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We study the sets of resource-bounded Kolmogorov random strings: 
R, = {xl crtnl (x) ~ lxl} for t(n) = 2n•. We show that the class of sets 
that Turing reduce to R, has measure 0 in EXP with respect to the 
resource-bounded measure introduced by Lutz. From this we conclude 
that R, is not Turing-complete for EXP. This contrasts with the 
resource-unbounded setting. There R is Turing-complete for co-RE. 
We show that the class of sets to which R, bounded truth-table 
reduces, has P2 -measure 0 (therefore, measure 0 in EXP). This answers 
an open question of Lutz, giving a natural example of a language 
that is not weakly complete for EXP and that reduces to a measure O 
class in EXP. It follows that the sets that are ,,:; brr·hard for EXP have 
P2 -measure 0. ·C 1997 Academic Press 

1. INTRODUCTION 

One of the main questions in complexity theory is the 
relation between complexity classes, such as P, NP, and, 
EXP. It is well known that P £NP r;;. EXP. The only strict 
inclusion that is known is the one between P and EXP. It is 
conjectured however that all of the inclusions are strict. 

In the late sixties and early seventies Cook [ Coo71] 
and Levin [ Lev73] discovered a number of NP-complete 
problems. Since then many people studied the complete 
problems of this and other complexity classes (see for 
example [ GJ79, BH77, Mah82, Ber77] ). From the point of 
view of complexity theory, the usefulness of these complete 
problems is that in order to separate P from NP one only 
has to focus on one particular complete problem and prove 
for this problem that it is not in P. Similar considerations 
are valid for EXP since this class also exhibits complete 
problems. 
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However, Kolmogorov [ Lev94] suggested, even before the 
notions of P, NP, and NP-completeness existed, that lower 
bou~d efforts_ might best be focused on sets that are relatively 
devoid of simple structure. That is, the NP-complete 
problems are probably too structured to be good candidates 
for separating P from NP. One should rather focus on the 
intermediate less structured sets that somehow are complex 
enough to prove separations. As a candidate of such a set he 
proposed to look at the set of what we call nowadays the 
resource-bounded Kolmogorov random strings. 

In this paper we try to follow this type of approach. We 
study the sets R1 of strings that are Kolmogorov random 
with respect to time bounds t of the form t( n) = 2"i: R, = 

{ x I C''"'(x) > lxl }. A variant of this set was studied before 
by [ B094] with respect to instance complexity. A more 
restricted version of this set, namely RP for p a polynomial, 
was studied by Ko [ Ko9 l]. 

It is well known that the time unbounded version of this 
set, i.e., the co-RE set of truly Kolmogorov random strings, 
is Turing-complete for co-RE [ Mar66]. In this paper 
however we will show that the resource bounded version is 
not Turing-complete for EXP, supporting Kolmogorov's 
intuition at least for EXP. We actually show something 
stronger. We prove that the sets that Turing reduce to R, 
have measure 0 in EXP with respect to the resource­
bounded measure introduced by Lutz [ Lut92]. Hence R1 is 
not even weakly Turing-complete. 
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Applying the results of Kautz and Miltersen [ KM94] we 
get that R, is not Turing-hard for NP relative to a random 
oracle. 

These results show that R, mirrors almost none of the 
structure of EXP and NP. Furthermore, by the results of 
Ambos-Spies et al. [ ASTZ94] it follows that sets that have 
the same property, i.e., sets that are not weakly complete, 
have measure 0 in EXP and hence are rare and atypical. 

On the other hand, it is not hard to see that R, is 
P-immune, i.e., it has no infinite subset in P, and thus is com­
plex enough to figure as the set Kolmogorov had in mind. 
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We also examine the sets that R, reduces to, i.e., 
{A \ R 1 ~;.'A}, for some reducibility r. We prove that for ~~11 -
reductions this class of sets has p2 -measure 0, therefore also 
has measure 0 in EXP (in fact, this result is established for 
any set having infinitely many hard instances, in the sense of 
instance complexity). As a consequence of these reflections 
we establish that the class of sets that are ~;;11 -hard for EXP 
have p 2 -measure 0. (This last result was improved for com­
plete sets by Ambos-Spies et al. in [ASNT94 ].) 

We have thus obtained a natural example of a non-weakly 
complete set for EXP that is not in P, answering an open 
question of Lutz (verbal communication). Juedes and Lutz 
[ JL93] note the existence of sets in E whose upper and lower 
~;,,-spans are both small. We extend this result by showing 
that R, is also a set for which both the lower and upper ~~11 -
spans have measure 0 in EXP, which in the lattice induced by 
~~11 -reductions means that R, lives in a nowhere land, with 
almost nothing below or above it. 

2. PRELIMINARIES 

See [ BDG88, BDG90] for standard notation and basic 
definitions on complexity classes and reductions. 

Lets0 , s 1 , s 2 , ... be the standard enumeration of the strings 
in { 0, 1} * in lexicographical order. Let ,1. denote the empty 
string. Given a string w E { 0, 1} *, let C"' be the set 

ell'= { x E { 0, 1} , I w is a prefix of x}. 

Given a sequence x and n EN, x[O ... n - 1] denotes the finite 
prefix of x that has length n. Given a set X, &'( X) denotes the 
power set of X. Q denotes the set of rational numbers. 

We will use the characteristic sequence XL of a language L, 
defined as follows: 

and 

iff s; belongs to L. 

By identifying a language with its characteristic sequence 
we identify the class of languages over { 0, l} with the set 
{ 0, l} x. of all sequences. 

Consider the random experiment in which a language 
A £;; { 0, 1} * is chosen probabilistically, using an independent 
toss of a fair coin to decide membership of each string in A. 
Given a property of languages n, let PrAII(A)] denote the 
probability that property fl holds for A when A is chosen in 
this fashion. 

We will use the following notation for exponential 
time complexity classes: E=DTIME(2°1111 ) and EXP= 
DTIME(2111~ 1 '). 

We use the function classes p = UkE N DTIMEF(nk) and 
P2 =Uk., N DTIMEF{210glnl\ 

Next we include the main definitions of measure in EXP 
and E. For a complete introduction to resource-bounded 
measure see [ Lut92] and [ May94]. 

Intuitively, the measure in EXP is a functionµ: &J(EXP) 
~ [O, l] with some additivity properties, whose main 
purpose is to classify by size criteria the subclasses of EXP. In 
this sense, the smallest classes are those X for whichµ( X) = 0 
and the largest are those havingµ( X) = 1. 

We only define measure 0 and measure 1 in EXP because 
we are always interested in classes that are closed under finite 
variations, and from a resource-bounded generalization of 
the Kolmogorov 0-1 law [ May94] these classes can only 
have measure 0 or measure 1 in EXP, if they are measurable 
at all. 

DEFINITION l. A martingale is a function d: { 0, l} * ~ Q 
satisfying 

for all w E { 0, 1} *. 

d(w) = d(wO) + d(wl) 
2 

DEFINITION 2. A martingale d is successful for a 
language x E { 0, l} "'~ iff 

lim sup d(x[O ... n]) = oo. 

For each martingale d, we denote the class of all 
languages for which dis successful as S[ d], that is 

S[d] = { x\ lim sup d(x[O .. . n]) = oo}. 
n- •X· 

DEFINITION 3. A class Xs{O, l}''- has p 2 -measure 0 
(denoted by µ P2( X) = 0) iff there exists a martingale d E p 2 

such that, Xs S[d]. 
A class Xs {O, I}""' has p 2 -measure 1 (denoted by 

µP2(X) = 1) iff X" has p 2 -measure 0. 
A class X s { 0, 1} "'- has measure 0 in EXP iff X n EXP 

has p 2 -measure 0. This is denoted by µ(X[ EXP)= 0. 
A class X £;; { 0, 1} x. has measure I in EXP iff X" has 

measure 0 in EXP. This is denoted byµ( XI EXP)= 1. 

The measure in EXP just defined is known to be non­
trivial because of the Measure Conservation Theorem 
[Lut92], stating that EXP does not have p 2 -measure 0. 

Similarly, p-measure and measure in E are defined as 
follows 

DEFINITION 4. A class X £ { 0, 1} '· has p-measure 0 
(denoted by µP(X) =0) iff there exists a martingale dep 
such that, Xs S[d]. 

A class X £;; { 0, l} "' has p-measure 1 (denoted by 
µP(X) = 1) iff X" hasp-measure 0. 
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A class X £: { 0, 1 } z has measure 0 in E iff X n E has 
p-measure 0. This is denoted by µ(XIE)= 0. 

A class X £: { 0, 1 } ·~. has measure 1 in E iff X' has measure 
0 in E. This is denoted by µ(XIE)= 1. 

The following is an immediate consequence of the 
definitions 

PROPOSITION 5. If X has p-measure 0 then X has 
p 2 -measure 0. If X hasp-measure 0 then X has measure 0 in 
E. If X has P2-measure 0 then X has measure 0 in EXP. 

Next we state an important property of measure in EXP 
and E, the a-additivity property, that will be an important 
tool in the proof that certain classes have measure 0. 

DEFINITION 6. A class X is a P2-union (p-union) of the 
p 2 -measure 0 (p-measure 0) classes X0 , X 1, X2 , ..• iff 

,-,( 

X= U X; 
i=O 

We also will use the notion of instance complexity but 
also only give an intuitive definition; see [ LV93, OKSW94] 
for exact definitions. A Turing machine Mis consistent with 
a set A iffor all x, M(x) outputs YES, NO or? and further­
more, if M(x) outputs YES (NO) then xEA(x~A). The 
!-bounded instance complexity with respect to a set A and 
a string x is: 

IC'1" 1(x: A) =min{ IMI IM is a t(n)-bounded Turing­

machine consistent with A and deciding x}. 

We study the sets R, = { x I C'(" 1(x) ~ !xl}, for t(n) = 211", 

for some k ~ 2. Observe that R, is decidable in time 2"t(n), 
therefore R, E EXP. A variant of this this set was 
studied before in [ 8094]. we will use the following version 
of Theorem 3.2 in [8094 ], concerning the instance 
complexity of the strings in R,: 

THEOREM 9. There exists n 1 E N, c 1 > 0, such that for 
every XE R,, lxl ~ n,, 

and there exists a single constant k E N such that for every 
i, there is a martingale d; with X; s;; S[ d;], such that d; is 
computable in time 2(Iognlk (in time nk). 

We also study the set R 1= {xl C'M(x) ~ lxl }, for l(n) = 
LEMMA 7 [Lut92]. If X is a p 2-union (p-union) of 2k", k ~ 3. For this set we also have 

p 2 -measure 0 (p-measure 0) classes, then X has Pi-measure 
0 (p-measure 0). 

Let ~~ be a reducibility and A be a set. P,(A) = 
{BIB~;.' A}. We will call P,(A) the lower span of A. 
P r- 1(A) = {BI A~;: B} is called the upper span of A. 

DEFINITION 8. Given a reducibility ~;.', we say that a 
language A EEXP is ~;.'-weakly complete for EXP if P,(A) 
does not have measure 0 in EXP. 

Weak completeness, studied in [Lut94, ASTZ94, JL94 ], 
is a resource-bounded measure generalization of the 
classical notion of complete language. In [ ASTZ94], 
Ambos-Spies et al. prove that the class of many-one weakly 
complete sets for EXP has measure 1 in EXP, which con­
trasts with the fact that the class of complete languages for 
the same class has measure 0. That is, complete languages 
are rare in EXP while weakly complete languages are 
typical. 

Very recently, an elegant proof of Regan, Sivakumar and 
Cai [RSC95] showed that if P,(A) has measure I in EXP, 
then A is ~~-complete. Therefore, for A weakly complete 
but not complete it must be the case that Pr( A) is not 
measurable in EXP. 

We will use resource bounded Kolmogorov complexity. 
We will only give an intuitive definition here; see [ LV93] 
for precise definitions. For ta time bound: 

C'111 l(x) = min{ !Ml I M{A) =X in time t( lxl )} . 

THEOREM 10. There exists n2 EN, c2 > 0, such that for 
every x E R 1, lxl ~ n1. 

3. MAIN RESULTS 

In this section we prove our main results. Let in the 
following t be a function of the form t(n) = 2"k for some 
k ~ 2, and let I be /( n) = 2 kn for k ~ 3. The next theorem 
shows that R, is not weakly Turing-complete for EXP. 

THEOREM 11. PT(R,) has measure 0 in EXP. 

Proof We start by showing that every ~j.-reduction to 
R, can be done such that, on every input of the form 0", 
every query length is less than n. 

Let N be a Turing machine that decides R,. Let A be such 
that A ~ j. R, via machine M. Fix n E N and denote as 
{ q 1, q2 , ••. , qm} the queries in the computation of M(R,, 0") 
(in order of appearance). Assume that there is a 
q e { q1 , q2 , ••. , q111 } such that jqj ~ n and q ER,. Let qi be the 
first such q to appear. We can generate q1 from 011, R,< 11 (that 
is, an algorithm for R,) and j, because we can simulate the 
computation of M(R,, 0") up to obtaining thejth query by 
answering to queries of length smaller than n according to 
R, and answering NO to queries of length at least n. The 
time used in this generation of qi is at most p(n) · 211 - 1 • 

t( n - 1 ), for p a polynomial depending on M. Let n0 be such 
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that for each n ~ n 0 , p(n) · 211 ·- 1 • t(n - 1) < t(n) and IMI + 
INI +log n + log(p(n)) < n. Then for n ~ n0 if there is a 
query q in the computation of M(R,, 0") with q ER, and 
lql ~n then there exists qi in R, such that lq;I ~n and 
C'(q1) < n. Th~s would contradict the definition of R,, so no 
such q can exist. 

Thus for each n ~ n0 , if there is a query q for M(R,, 0") 
such that !qi~ n, we can assume that q rt R,. Thus there is a 
polynomial time machine M' such that A= L(M', Ri) and 
for every n EN, all queries in the computation of M'(R,, 0") 
have length less than n. 

Next we define the classes 

X; = {A I A ~ 1;.R, via M; and for all n, all queries on 0" 

have length less than n}, 

where { M; Ii e N} is a presentation of all polynomial time 
oracle Turing machines, and { q; Ii e N} are the correspond­
ing polynomial time bounds. By the property of ~1;.-reduc­
tions to R, that we just proved, we know that PT(R,) ~ 
ui X;. This allows us to show that PT(Ri) has measure 0 in 
EXP by using the p 2 -union lemma. 

For each i e N we define d1 a martingale witnessing that X; 
has p 2 -measure 0. For each iE N, let n; be such that 
q;(n) < 2" for each n ~ n;. Let ie N, wel:'*, b E {O, 1}. 

d;(w)= 1 if ls1111 I <n; 

d;(wb) = d;(W) if s111'1 rf { 0} *. 

d1(wb) = 2 · d1(w) if s 1ll'1 e{O}*, ls1w 11 ~n;, 

and M;(R< 1·'· 1"il,s 111.1)=b. 

d;(wb) =0 if S111·1E{O}*,ls111·1l~n;, 

and M.(R < l-'1wil s ) .J. b 
1 ' ln·I -r ' 

By definition d; is a martingale. To compute d1(w) we 
need to compute R 1<Iog<lll'I> and simulate M 1 on inputs of the 
form 0", for n ~log( I wl ). Thus d; can be computed in time 
t(log(iwl)) · lwl 2, and this bound does not depend on i. 

Next we show that for each i EN, X; ~ S[d;]. Fix i EN 
and A e X 1 • By the definition of X; it is clear that for each 
neN, M;(R 1< 11 ,0")=A(011 ), i.e., A[2"-l]=A(s2,,_i)= 
M;( R; h 11 11 >, s2,, _ 1 ). Thus by the definition of d1, for each 
n>n;d1(A[0 ... 2"-l])=2·d1(A[0 ... 2"-2]) and if m is 
not of the form 2" - I then d1(A[O ... m]) = d;(A[O ... m - 1 ]). 
Thus lim 111 d;(A[O ... m] = oo and A E S[d;]. 

The proof is finished by applying the p 2-union lemma 
(Lemma 7). I 

With the same proof technique we can show the next 
theorem for R 1• This time the Kolmogorov complexity argu­
ment implying that reductions to R 1 are length increasing 
can be done without computing membership in R 1 at all, 

because queries are nonadaptive and there are only a poly­
nomial number of them. 

THEOREM 12. Pu(R1) has pleasure 0, hence measure 0 
in E. 

As a corollary of the proof of Theorem I I we have that 
the theorem holds for any infinite subset of R,. 

COROLLARY 13. Let A E EXP be an infinite subset of R,. 
Then 

Let A EE be an infinite subset of R 1• Then 

As an immediate consequence of Theorems 11and12 we 
have the following: 

COROLLARY 14. R, is not Turing-complete for EXP and 
R1 is not truth-table-complete for EXP. 

Also Theorem 11 shows that R, is not weakly Turing­
complete for EXP, and Theorem 12 shows that R 1 is not 
weakly truth-table-complete for EXP or E. Note that weak 
completeness for EXP does not necessarily imply weak 
completeness for E [ JL94]. 

Corollary I4 contrasts with the situation in the recursion­
theoretic setting. Let R = { x I C( x) ~ Ix I } . It is not hard to 
see that R is effectively simple (see [ Odi89] for a definition). 
Moreover in [ Mar66] it is shown that every effectively 
simple set is Turing-complete for RE from which it follows 
that R is Turing-complete for co-RE. Kummer [ Ku96] has 
recently shown that R is truth-table-complete for co-RE. 

Moreover R, is a natural example of a Turing-incomplete 
set in EXP- P. R, is not in P since it is P-immune, this can 
be proven with basically the same argument that shows that 
R is effectively simple. 

Lutz has proposed to study the reasonableness and 
consequences of the hypothesis 'NP does not have measure 
0 in EXP' (see [ LuMa94] ). We have the following corollary 

COROLLARY 15. If NP does not have measure 0 in EXP, 
then R, is not Turing-hard for NP. 

Applying the results of Kautz and Miltersen [ KM94] we 
get the following: 

COROLLARY 16. Relative to a random oracle, R, is not 
Turing-hard for NP. 

Note that R, relative to an oracle can be defined using 
a relativization of resource bounded Kolmogorov com­
plexity. 
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It would be interesting to connect our results with those 
obtained in [ Ko91] for the set RP, with p a polynomial. In 
this case R1, is in co-NP. Ko [ Ko91] shows that there exists 
an oracle relative to which RP is incomplete for co-NP and 
not in P. 

Another application comes from the results in [ ASTZ94]. 
They show that the majority of EXP, i.e. a subclass of sets 
with measure 1, is weakly complete. It follows thus that R, 
is atypical in EXP. 

Next we will turn our attention to the upper span of 
R,-the class of sets that R, reduces to. We start by proving 
a general result about the ,;:;;;: 11 -upper span of any set 
having infinitely many hard instances, in the following 
sense. 

DEFINITION 17. Let /: N--;. N. A set c has infinitely 
many /(n)-hard instances if there exist infinitely many 
x E { 0, 1} * such that, 

THEOREM 18. Let k EN, let C be a set in E that has 
infinitely many n10g "-hard instances. Then Pk 1 tt( C) has 
p-measure 0. 

Proof We start by showing that every ,;:;;;: ,,-reduction 
from C, there are infinitely many x E { 0, 1 } * on which there 
are useful queries of length greater than lxl/(5k). We say 
that a query is useful if the answer to that query is necessary 
to compute the answer to the oracle computation, even if 
the answers to smaller queries are known. 

Let A be such that c,;:;; r II A via machine M. Fix 
x E { 0, 1} * and denote as { q 1 , q2 , ... , q"} the set of queries 
in the computation ofM(A, x), in lexicographical order. Let 
QM(A,x)={q 1,q2 , ••• ,qi}, for j,;:;;k, be such that the 
answers to the queries { q1 , q2 , •.• ,qi} determine M(A, x), 
but the answers to the queries { q 1 , q 2 , ••• ,qi 1 } don't. 

Assume that QM(A, x) s;; { 0, 1} "· 1'1 151<_ We are going to 
construct a short program that is consistent with C and 
decides membership of x. 

The program consists basically of a codification of both 
QM(A, x) and Q.w(A, x) n A, therefore the program size is 
at most 4kl'l 15k. On an input y, the program simulates the 
computation of M(A, y) by answering only to queries that 
belong to QM(A, x) according to Q.~A A, x) n A. If queries 
out of Q .~A A, x) are needed, the program halts with 
undefined output, otherwise it outputs the result of the 
simulation. The time used by this program on input x is at 
most p( lxl ), for pa polynomial depending on M. Let n0 be 
such that for each n ~ n0 , p(n) < n1"g 11 • Then for each x EL, 
with lxl ~ n0 , if QAAA, x) s;; { 0, 1} oe; lxl/Sk then JC" Iog"(x: CJ 
~ 4k lxl/5k < lxl. 

Since C has infinitely many n10g"-hard instances, this 
implies that there exist infinitely many x E { 0, 1} * such that 
QM(A, X) ${0, l} ,,;1,1/Sk_ 

Next we define the classes 

where { M; Ii EN} is a presentation of all k-tt-polynomial­
time oracle Turing machines, and { q; I i E N} are the 
corresponding polynomial time bounds. It is clear that 
Pk 1 u( C) £ U; X;. This allows us to show that P k--1 tt( C) has 
p-measure 0 by using the p-union lemma. 

For each iEN, let n; be such that q;(n)<2" for each 
n~n;. For each wE{O, l}* and iEN, let x(w,i) be the 
minimum x E { 0, 1} * such that Jxl ~ n; and for every 
EEC", QM,(B,x)${s0 , ... ,s1, 1 1}. That is, x(w,i) is the 
minimum input for which queries out of the prefix w of 
the oracle are needed. 

For each i E N we define d; a martingale witnessing that 
X; has p-measure 0. Let i E N, let w E { 0, 1} *, b E { 0, 1}. 

d,(Jc) = 1. 
If Ix( w, ill ~ 5k Llog( lwl )J then d1( wb) = d1( w). 
If lx(w, ill< 5 kllog( lwl )J then d,(wb) = d1(w). 

Pr B [ ( Mi ( B' x( w' i) ) = C( x( w, i) ) ) /\ ( c u·h ~ B) ] 
. 2. . . 

PrA(M1(B, x(w, i)) = C(x(w, i))) /\ (C,..~B)] 

By definition d1 is a martingale. To compute d1( w) we 
need to find x( w, i), simulating M 1 on at most all strings in 
C <Ski. Iogl lwl IJ, thus d1 can be computed in time 2 6 k Llogl lwl i.J · 

lwl 2, for c > 0 a constant such that CE DTIME(2'"), and 
this bound does not depend on i. 

Let us show that for each i EN, X1 s;; S[d;]. Fix i EN and 
A EX;. By definition of X 1, there exist infinitely many m EN 
such that lx(A[O ... m], iJI <Sk Llog(IA[O ... m]l)J. 

We define {a 11 I n E N} , an increasing sequence of natural 
numbers, as follows: 

a 1 = min{ m I lx(A[O ... m J, i)I < 5k L!og( IA[O ... m JI )J} 

a 11 + 1 =min{mlm>a 11 , x(A[O ... m], i)#x(A[O ... a11 ], i) 

and lx(A[O ... m], i)I < 5k Llog(IA[O ... m] I )J}, 

for each n EN. 

We show that for each n EN, 

2" 
d1(A[O ... a 11 + 1 -l]J~ 2k_ 1 d1(A[O ... a11 -l]). 

Let n E N. We define the string 

x = x(A[O ... a,,], i) = x(A[O ... a11 + 1 -1 ], i). 

Notice that for each n EN, 
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Notice also that, by definition of x, Q\l,(x, A)$ {s0 , ... , 

s.,,, - 1}, and therefore 

Pr a[ (M;(B, x) = C(x)) /\ ( c .. 1[0 ... 1,,. I Ji;; B)] < I. 

By definition of d;. 

d(A[o -l])=d-(A[O -1]).?"n+\·-an ; ... an+l 1 ••• an - · 

i="fY 1 Pr 8 [(M;(B, x) = C(x)) /\ (CA[O ... Jl i;; B)] 

i=u,, Pr 8 [(M;(B, x) = C(x)) /\ (CA[O ... ;- 11 i;;B)] 

= d;(A[O ... a,, - 1]). 2"'" 1 · "". 

Pr8 [(M;(B, X)=C(x)) /\ (C .. 1(0 "n+i lli;;B)] 

Pr 8 [(M;(B, x) = C(x)) /\ (CA[O. "". 11 i;;B)] 

Since A EX; and Q.11 ,(x, A)£ {s0 , .•. , s"n+I i}, 

Pr 8 [( M;(B, x) = C(x)) /\ (C,1ro .a,,, 1 11 i;;B)]=2 -a,,+ 1• 

Thus 

d;(A[O ... a,,+ 1 -1]) = d;(A[O ... a,, -1] ). 

2-un 

Pr8 [( M;(B, x) = C(x)) /\ (C,.1ro ... a,,. 11 !;;; B)] 

Also since 

Pr 8 [(M;(B, x) = C(x)) /\ (CA[o .. a,, 11 i;;BJ] 

is smaller than one, and M;(B, x) depends only on a 
maximum of k bits of B, the values of 

Pr 8 [(M;(B, x) = C(x)) /\ (CA[o .. ,,,, 11 i;;B)] 

can only be of the form m · 2 -k · 2 ···"",form e { 0, ... , 2k - 1}. 
Thus 

2k 
d;(A[O ... a 11 + 1 -1]);;::: 2k_ 1 ·d;(A[O ... a,,-l]) 

and lim111 d;(A[O ... m]) = oo. 
The proof is finished by applying the p-union lemma 

(Lemma 7). I 

The following theorem is basically an application of the 
p 2 -union lemma to the previous result. 

THEOREM 19. Let C be a set in EXP that has infinitely 
many n10s 11-hard instances. Then Pt,;i(C) has Pi-measure 0, 
therefore measure 0 in EXP. 

For R, and R1 we have the next corollary 

COROLLARY 20. Pbr_/(R,) has p 2 -measure 0. For each 
k EN, P; 1

11 ( R1) hasp-measure 0. 

Proof Use Theorems 9, 10, 18, and 19. I 
This leaves us with a somewhat strange situation. The sets 

below R, with respect to Turing reductions and the sets 
above R, with respect to ~):11 -reductions are few and far 
between. 

The small span theorem of Juedes and Lutz [JL93] says 
that at least one of the lower and upper spans must have 
measure O; formally, for every A EEXP, either Pm(A) has 
measure 0 in EXP, or P,~ 1 (A) has p 2 -measure 0. In fact 
what they prove is that for every A E EXP, if Pm( A) does not 
have measure 0 in EXP, then P,~ 1{A) has p 2-measure 0. 
These results were later proved for ~);11 -reductions in 
[ASNT94 ], that is, 

THEOREM 21 (ASNT94]. Let A EEXP. If Pbu(A) does 
not have measure 0 in EXP, then P;,-t/(A) has p 2 -measure 0. 

Our results show that the converse of Theorem 21 is false, 
since Pbi/(R,) has p 2-measure 0 and Pbu(R,) has measure 0 
in EXP. (Juedes and Lutz proved in [JL93] that the 
converse of the many-one version of Theorem 21 is also 
false.) In fact we have seen that even a much weaker 
converse of Theorem 21 is false, since the following holds 

COROLLARY 22. There exists A E EXP such that both 
µP/Pt;;/(A )) = 0 and µ" 2(PT(A)) = 0. 

For the case of measure in E, we have a similar 
consequence. From [ASNT94] we know that: 

THEOREM 23 (ASNT94]. Let A EE, k EN. If 
Pk a(A) does not have measure 0 in E, then P ,;·~ u( A) has 
p-measure 0. 

We have shown that the converse of Theorem 23 is false, 

COROLLARY 24. There exists A EE such that both 
µP(P; ~tt(A)) = 0 and µ(Pu( A) I E) = 0. 

Another corollary is: 

COROLLARY 25. The class of sets that are ~):11 -hardfor 
EXP has Pi-measure 0. 

This corollary has been improved recently by Ambos-Spies 
et al. for the class of complete sets in ( ASNT94], where they 
show that the class of sets that are ~~11 -complete for E has 
measure 0 in E. 

Results similar to those in this section can be proven for 
the case of space bounds instead of time bounds, by defining 
the set RSS = { x I CS-'(ll)(x);;::: lxl}. 

THEOREM 26. There exists A E ESP ACE such that both 

µl'-'l'"')P k -u - 1(A)) = 0 andµ""'""'""( PT(A)) = 0. There exists 
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A EEXPSPACE such that both µl'~'""''.(Pbu'(A)) = 0 and 
µ" 211,11"AP-r(A)) =0. 

Here pspace and p2space-measure are defined similarly to 
p and p2 -measure (see [ Lut92] ). Notice that there is a 
slight improvement with respect to the time bound case, 
here the Turing-lower span has pspace-measure 0. 

As a last remark, the whole paper could have been written 
considering R~={xlCt111 >(x)~lxl"}, for e<l a fixed 
positive constant. 

4. CONCLUSIONS AND QUESTIONS 

We studied the lower span of Rt with respect to Turing 
reductions. We showed that this lower span has measure 0 
in EXP. As a consequence we obtained that relative to a 
random oracle Rt is not Turing-hard for NP. It would be 
interesting to connect these results to the set studied in 
[Ko91] and show that similar results are true with respect 
to the set studied there. We also studied the upper span of 
Rt and showed that with respect to :::;;~11 -reductions this 
upper span also has measure 0 in EXP. In fact, our proof 
shows that this upper span has p2 -measure 0. If we could 
push these results up to polynomial-time truth-table 
reductions it would result in proving that BPP "I= EXP, since 
it is known ([TB91], [AS]) that for every AEBPP, 
P1~ 1 (A) has Lebesgue measure 1, and therefore this upper 
span can't have p2-measure 0. 
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