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Preface 

Algorithms for the numerical integration of ordinary differential equations 

(ODEs) have been studied for many years, if not for centuries. Although the most 
popular methods of today, i.e., the linear multistep methods and the Runge-Kutta 

methods, originate from the last century, the great break-through in their 
development was initiated by the introduction of the electronic computer in the 

1950s. Since then, many efficient methods have been constructed and analyzed. This 

research has resulted in a couple of robust and reliable codes for the automatic 
integration of ODEs. Approximately at the time that questions arose like 'Is There 

Anything Left To Do ?' [Gear, SIAM Review 23, 1981], the appearance of the 
vector and parallel computers was a second impulse for the development of 
numerical methods. Initially, the field of numerical linear algebra was (and still is) 

(re)considered to exploit the facilities offered by the new architectures. Gradually, 
also researchers in the ODE-field got interested in these machines since 'almost 
anything in nature is described by differential equations'. The well established 

algorithms were re-examined.in order to take advantage of these 'supercomputers'. 
This research is certainly indispensable, since many problems in the technical 

sciences - such as real time applications, computational fluid dynamics, and all 

kinds of partial differential equations, in general - are still waiting for a treatment 
that is sufficiently efficient to cope with the demands. 

At CWI, the study of parallel methods for ODEs started in the fall of 1988; 
some of the resulting papers are collected in this monograph. It consists of six 

papers (chapters), preceded by an introduction. All papers have appeared in scientific 

journals and are reprinted here with granted permission of the publishers. 

The first two papers deal with parallel numerical methods for nonstiff OD Es and 
are joined into Part I. These papers are: 

1. Parallel iteration of high-order Runge-Kutta methods with stepsize control, 

P.J. van der Houwen and B.P. Sommeijer, 

published in: J. Comput. Appl. Math. 29 ( 1990), 111-127. 

2. Block Runge-Kutta methods on parallel computers, 

P.J. van der Houwen and B.P. Sommeijer, 

published in: Z. Angew. Math. Mech. 72 (1) (1992), 3-18. 

The topic of Part II, containing the remaining four papers, is the construction and 

analysis of algorithms for the efficient parallel integration of stiff ODEs. Its 
contents reads: 
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3. A-stable parallel block methods for ordinary and integro-differential equations, 

B.P. Sommeijer, W. Couzy and P.J. van der Houwen, 

published in: Appl. Numer. Math. 9 (1992), 267-281. 

4. Embedded diagonally implicit Runge-Kutta algorithms on parallel computers, 

P.J. van der Houwen, B.P. Sommeijer and W. Couzy, 

published in: Math. Comp. 58 (1992), 135-159. 

5. Iterated Runge-Kutta methods on parallel computers, 

P.J. van der Houwen and B.P. Sommeijer, 

published in: SIAM J. Sci. Stat. Comput. 12 (1991), 1000-1028. 

6. Analysis of parallel diagonally implicit iteration of Runge-Kutta methods, 

P.J. van der Houwen and B.P. Sommeijer, 

published in: Appl. Numer. Math. 11 (1993), 169-188. 

The introductory chapter has been written with the aim to acquaint the reader with 

the concepts discussed in the papers. It has the intention to provide an entrance for 

the unspecialized reader. It discusses in less technical terms the ideas underlying the 

technical papers and comprises an example in which a problem from circuit analysis 

is integrated on a parallel computer by means of an automatic code based on one of 

the methods described in Chapter VI. Its performance is compared with the best 

sequential codes currently available. 
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Introduction 

1. MOTIVATION AND GENERAL SCOPE 

Due to the never-ending demand for more speed in scientific computation, the 

available computerpower of new architectures has tremendously increased during the 

last decades. This is mainly obtained by new hardware design and by a prodigious 

progress in micro-electronics. However, this hardware advancement is not sufficient 

to meet the requirements as they occur in large-scale problems. The main problem in 

effectively exploiting this huge potential of computerpower is the fact that there is 

very little software available for these machines. In order to be efficient, this 

software should be based on algorithms that are well tuned to the new architectures. 

Since many numerical algorithms were designed for the traditional sequential 

computers, the existing methods are not necessarily the best. This is particularly true 

in the field of numerical methods for ordinary differential equations. Therefore, it is 

highly desirable to (re)consider these algorithms and, eventually, replace them with 

more suitable candidates. 

Herewith, we arrive at the major aim of this monograph: the construction and 

analysis of new algorithms, specifically designed for a wide class of new 

architectures, thus making an attempt to decrease the arrears of software with respect 

to hardware. 

We will concentrate on numerical methods for the initial value problem (IVP) for 

the ordinary differential equation (ODE), written in the autonomous form 

(1.1) y'(t) =f(y(t)), 

Although parallel computers are available now for quite a few years, it is remarkable 

that the construction of parallel methods for (1.1) received only marginal attention 

and in fact is still in its infancy. A possible explanation may be that the integration 

of an IVP by a step-by-step process is sequentially in nature and thus offers little 

scope to exploit parallelism. 

Nevertheless, there are some avenues: at first, there is the rather obvious way to 

distribute the various components of the system of ODEs amongst the available 

processors. This is especially effective in explicit methods, since they frequently 

need the evaluation of the right-hand side function/for a given vector y, so that the 

components off can be evaluated independently of one another. Following the 

terminology of Gear [13), this is called parallelism across the problem. A more 

interesting approach, called parallelism across the method, is to employ the 
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-parallelism inherently available within the method. Concurrent evaluations of the 

entire functionf for various values of its argument and the simultaneous solution of 

various (nonlinear) systems of equations are examples of parallelism across the 

method. Remark that this form of parallelism is also effective in case of a scalar 

ODE (i.e., N=l in (l.l)), whereas parallelism across the problem aims at large N

values. Also notice that both approaches can be combined because they are more or 

less 'orthogonal'. Still another approach, which could be termed parallelism across 

the time, is followed by Bellen et al. [2]. Contrary to the step-by-step idea, they 

perform a number of steps simultaneously, thus calculating numerical 

approximations in many points on the t-axis in parallel. In fact, these methods 

belong to the class of waveform relaxation methods. Experiments have shown (cf. 

[2]) that a significant speedup can be obtained by this approach provided that the 

number of steps is (very) large. In this monograph we will confine ourselves to 

parallelism across the method. 

Unfortunately, many existing algorithms that perform well on a sequential 

computer can take hardly profit from a parallel configuration. This feature 

necessitates us to construct new methods, specifically designed for parallel execution. 

In doing so, it was in many cases unavoidable to introduce some redundancy in the 

total volume of computational arithmetic. Hence, compared with a good sequential 

solver, it is overambitious to expect a speedup in the solution time with a factor s, 

ifs processors are available. 

In many of the methods considered in this monograph, a small number (typically 

in the range from 2 to 6) of concurrent subtasks of considerable computational 

complexity can be distinguished. Consequently, (i) these methods are aiming at so

called 'coarse-grain' parallelism and (ii) communication and synchronization overhead 

will be small compared with CPU time. In the following sections we will explain 

several approaches leading to parallel integration methods. 

2. PARALLELRUNGE-KUTIA MEIHODS 

The general Runge-Kutta (RK) method to proceed the numerical solution of (l.l) 

from tn over a step his given by 

(2.la) 

(2.1 b) 

s 

Yn+I = Yn + h L bi f(Yi), 
i=I 

s 

Yi = Yn + h L aij f(Yj), 
j=I 

i = 1, ... ,s. 
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Here,.yn=y(tn), aij, bi are the coefficients defining the RK method and sis called the 

number of stages. The quantities Yi, the stage values, can be considered as 

intermediate approximations to the solution y. An RK method is said to be explicit 

if aij=O, j ~ i. Otherwise, it is called an implicit RK (IRK) method. For the 

algorithms described in this Introduction, our starting point will always be an IRK 

method. 

A nice feature of IRK methods is that a high order of accuracy can be combined 

with excellent stability properties [6]. Well-known examples of such IRKs are the 

Gauss-Legendre methods (order 2s and A-stable) and the Radau IIA methods (order 

2s-1 and L-stable ). A serious disadvantage however, is_ the high cost of solving the 

algebraic equations defining the stage values Yi. Since the Yi are coupled in general, 

this is a system of dimension s-N, thus involving O((s-N)3) arithmetic operations. 

This is the main reason that IRK methods have not received great popularity to serve 

as the basis for efficient, production oriented software. In the literature, several 

remedies have been proposed to reduce the amount of linear algebra per step. 

Examples of these are the Diagonally Implicit RK (DIRK) methods [23, 9, 1, 8] and 

the Singly Implicit RK (SIRK) methods [3, 5]. However, both approaches have their 

own disadvantages (cf. e.g. [ 15]). Another possibility to realize the excellent 

prospects that IRK methods offer, is the use of parallel processors. 

Motivated by our starting point that parallelism across the method should also be 

effective for scalar ODEs, we will assume throughout that (1.1) is a scalar equation. 

This has the notational advantage that we can avoid tensor products in our 

formulation. However, the extension to systems of ODEs, and therefore to 

nonautonomous equations, is straightforward. 

In describing the parallel methods, it will be convenient to use a compact 

notation for the RK method (2.1). Introducing A=(aij), b=(bi), Y=(Yi) and 

e=(l, .. . ,l)T, all of dimensions, a succinct notation of the RK method reads 

(2.2a) 

(2.2b) 

Yn+I = Yn + h bT f(Y), 

Y = Yn e + h A f(Y), 

where f(v ):=(J(vj) ), for a given vector v=(vj)-

The main problem in the application of an IRK is the solution of (2.2b) for the 

stage vector Y; once this vector has been obtained, (2.2a) is straightforward. A direct 

treatment to solve (2.2b) (i.e., applying some form of modified Newton iteration) 

offers little scope to exploit parallelism, except for the linear algebra part, but this 

aspect is not discussed here. To solve Y from (2.2b), we propose the iteration 

process 
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(2.3a) y(J) _ h D f(YW) = Yn e + h [A - D]f(YU-1)), J=l, ... ,m. 

Here, Dis a diagonal matrix. This is crucial, since now, given an iterate y(j-l), each 

individual component Y/j) of the unknown iterate y(j) has to be solved from an 

implicit relation of the form 

(2.3b) i=l, ... ,s, 

where Li is the ith component of the right-hand side vector in (2.3a) and di is the ith 

diagonal entry of the matrix D. Clearly, all Li depend on y(j-I), but can be computed 

straightforwardly (even in parallel). The bulk of the computational effort involves 

the solution of the s equations for the components Y/j), i=l, ... ,s. However, given 

the Li, the equations (2.3b) are uncoupled and can be solved in parallel. Hence, 

assuming that we have s processors available, each iteration in (2.3a) requires 

effectively the solution of only one implicit relation of the form (2.3b). This is 

especially advantageous in case of (large) systems of ODEs, because then each 

iteration in (2.3a) requires effectively the solution of a system of dimension N, the 

ODE dimension. As a consequence, the total iteration process has the effect that the 

solution of one system of dimension s-N has been transformed into the solution of a 

sequence of m systems, all of dimension N. Moreover, since D is the same in all 

iterations, the (parallel) LU-decompositions of the matrices / - h di dj/dy can be 

reslricted to the first iteration. Summing up, the total computational complexity of 

the iteration process is O(N3+mN2 ), whereas a direct treatment requires 

O(s3N3+Ms2N2), with M the number of (modified) Newton iterations required. 

Since typical s-values range from 2 to 6 and because the required number of 

iterations m is quite modest (see the Chapters IV, V and VI), we now arrive at a 

manageable level of arithmetic. Notice that this approach is quite similar to that of a 

DIRK method, where also only one LU-decomposition of a matrix of dimension N 

is required per step. 

To start the iteration (2.3a), we need the initial approximation y(O). One of the 

possibilities to choose this vector is given by 

(2.3c) 

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit 

parallelism (in the same way as described for (2.3a)); C is an arbitrary full matrix. In 

the sequel, the initial approximation y(O) will be referred to as the predictor. 

If m iterations have been performed with (2.3a), then the new approximation at 

tn+I is defined by (cf. (2.2a)) 
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Once an underlying IRK has been selected (henceforth called the corrector), the 

freedom left in the iteration process (2.3) consists of the matrices B, C and D, and 

the number of iterations m. 
With respect to the matrix D, we have considered several possibilities: first of 

all, there is the simplest choice, which sets D equal to the zero-matrix. Methods of 

this type are analyzed in Chapter I. Notice that the choice D=O leads to an explicit 

iteration process and, consequently, the resulting scheme is only suitable for nonstiff 

equations. This approach has received relatively much attention in the literature (see 

[24, 21, 18, 4, 19]). Choosing the 'trivial' predictor y(O)=y11 e, the order behaviour of 

the resulting algorithm can be formulated as (see also [18, 19, 20]) 

Theorem 2.1. The method { (2.3a) with D=O, (2.3c) with B=C=O, (2.4a)} is of order 

min {p*, m+ I } , where p* is the order of the corrector (2.2). [] 

Notice that this method is. itself an explicit RK methods with s-m+l stages. 

However, on a parallel machine, the effective number of stages equals only m+ I 
(provided that s processors are available). This means that if the number of iterations 

m ::;; p*-1, then we obtain an explicit RK method where the number of effective 

stages equals the order. This is an optimal result [18] and compares favourably with 

the situation for classical (uniprocessor) explicit RK methods, where the number of 

stages increases faster than linearly if we want a high order. 

Next we consider the case of stiff problems, leading us to implicit methods, i.e., 

to D =/:. 0. Before specifying particular choices of D, we first want to discuss an aspect 

of the corrector which is relevant with respect to stiffness. In integrating stiff OD Es, 

a favourable property of the method is that it is 'stiffly accurate'. This notion has 

been introduced by Prothero and Robinson [25] and means that the RK method 

satisfies bT=e/A, with es the sth unitvector. Hence, bT equals the last row of A, or 

equivalently, the last component of the stage vector Y is an approximation to the 

solution at the new steppoint t11+ 1- Therefore, in case of a stiffly accurate corrector, 
(2.4a) will be replaced by 

(2.4b) Yn+I := e/ y(m)_ 

Now, we return to the discussion of the matrix D; we distinguish two cases: 

(i) D is such that after a prescribed number of iterations the resulting method has 

good stability properties. This approach is discussed in Chapter IV. 
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(ii) Another option is to solve the corrector and to choose D in such a way that we 

obtain fast convergence in the iteration process (2.3a). This strategy is the subject of 

the Chapters V and VI. 

In the following two subsections these cases will be briefly discussed; 

henceforth, the above Parallel Diagonally-Iterated RK methods will be denoted by 

PDIRK methods. 

2.1. Diagonal iteration with a prescribed number of iterations 

In Chapter IV, we will consider methods for which the number of iterations m is 

fixed. As we shall see, this number is dictated by the orders of the corrector and of 

the predictor. This strategy is motivated by the following theorem: 

Theorem 2.2. Let p* be the order of the underlying corrector (2.2). Then the order p 

of the resulting PDIRK method { (2.3), (2.4a), (2.4b)} is given by 

min {p*, m+r} 

min {p*, m+l+r} 

min {p*, m+2+r} 

for all matrices B, C and D, 

if (C+B)e = Ae, 

if, in addition, BAe = A 2e, 

where r takes the value I if Yn+I is defined by (2.4a) (i.e., the nonstiffly accurate 

case) and r=O if Yn+ 1 is defined by (2.4b) (the stiffly accurate case). 

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK 

method has the same property. [] 

Based on this theorem, we stop iterating as soon as the order has reached the 

order of the corrector, since a continuation of the iteration process would not increase 

the order of the PDIRK method (see also [4]). 

With respect to the choice of the predictor, we restrict our considerations to the 

case C=O. For the matrix B we remark that B=O or B=D are obvious choices. 

Although B and D may be different diagonal matrices, the choice B=D has the 

computational advantage that the LU-decompositions of/ - di h Jf/Jy, which are 

needed during the iteration of (2.3a), can also be used in solving (2.3c) for y(O)_ 

The diagonal matrix D is still free and can be used to give the resulting PDIRK 

method optimal stability characteristics. In Chapter IV we distinguish two 

approaches: matrices D with constant and with varying diagonal entries. In the first 

case, i.e., D is of the form d· I, it is possible to perform a rather thorough stability 

analysis. It turns out that unconditionally stable PDIRK methods can be constructed. 

A few of these methods are listed in Table 2.1. The relevant d-values can be found in 

Chapter IV. 
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Table 2.1. Unconditionally stable PDIRK methods with D=d·I 

corrector matrices B and D attainable order p # effective stages stability 

Gauss B = 0, D =d·I p :s; 4, p = 6 p-l A-stable 

Gauss B=D=d·I p :s; 6, p = 8 p L-stable 

RadauIIA B=O,D=d-1 p :s; 6, p = 8 p L-stable 

RadauIIA B=D=d-1 p :s; 8, p = 10 p+l L-stable 

If we allow the matrix D to have nonconstant entries, then it is possible to save one 

iteration without reducing the order, simply by setting B=D=diag(Ae) (cf. Theorem 

2.2). Some of the resulting PDIRK methods turn out to be only A( a)-stable, 

however with a close to 90°. In Table 2.2, we collect a few methods with good 

stability properties. 

Table 2.2. PDIRK methods with a nonconstant D-matrix 

corrector attainable order p # effective stages stability 

Gauss/Radau IlA p :s; 5 p-1 strongly A-stable 

Gauss/Radau IlA p = 6, 7 p-l A( a)-stable, a> 83° 

RadauIIA p = 3, 5, 7 p L( a)-stable, a > 89° 

2.2. Diagonal iteration until convergence 

PDIRK methods with a fixed number of iterations, as considered in the previous 

subsection, are in fact special DIRK methods. It is well known [10] that DIRK 

methods possess a so-called stage order equal to I which, in general, drastically 

reduces the accuracy. As a matter of fact, in many stiff problems the actually 

observed order equals the stage order (or, sometimes the stage order+ 1 ). As a 

consequence of this so-called order-reduction phenomenon, the relevance of methods 

with a high algebraic (i.e., classical) order and a low stage order is questionable. 

Therefore, apart from the 'fixed-m-strategy' we also consider the approach where the 

corrector is iterated until convergence. This implies that we can rely on all the 

characteristics of the corrector, like stability and accuracy behaviour and, in 

particular, the stage order. For example, s-stage IRK methods of Gauss and Radau 

type both have stage order s. In addition, they have a very high algebraic order 

(superconvergence) but, as observed above, this property seems to be of minor 

importance in many stiff problems. Therefore, in the Chapters V and VI, we also 

consider (A-stable) Newton-Cotes and Lagrange type IRKs; in these (collocation) 

methods the superconvergence is exchanged for an increase by one of the stage order. 

This is obtained by adding one explicit stage to the s implicit stages. The time 
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needed for this extra explicit stage is quite negligible compared with the time 

involved in solving the implicit stages. Thus, we arrive at correctors with algebraic 

order = stage order = s+ 1, which are suitable for parallel iteration on an s-processor 

machine. 

Having decided to solve the corrector, we can now consider (2.3a) as an iteration 

process, where 'iteration' has the classical meaning. This leads us automatically to a 

criterion for choosing the matrix D: this matrix should be such that we have fast 

convergence in (2.3a). 

It is easy to show that the iteration error Y - y(J), in first approximation, 

satisfies the recursion 

(2.5a) Y- y(J) = Z(z) [Y- yU-1)], 

where the iteration matrix Z is defined by 

(2.5b) 

Here, ;l, denotes an approximation to the derivative Jjlc)y and should be understood to 

run through the spectrum of the Jacobian matrix in case of systems of ODEs. The 

convergence behaviour of (2.3a) is completely determined by the iteration matrix Z 

and we have the matrix D at our disposal to obtain fast convergence. 

The main difficulty in choosing D is that Z depends on z, i.e., on the problem. 

Therefore, we cannot expect to find a uniformly 'best' D-matrix. Since we are 

aiming at the integration of stiff equations, we consider the influence of Z on the 

eigenvectors of Jf/c)y corresponding to eigenvalues of large modulus. For lzl ➔ 00, Z 

behaves as / - D-1 A. Thus a strong damping of these eigenvectors leads us to the 

minimization of the spectral radius of / - D- 1 A. Observe, that the 'nonstiff' 

eigenvectors (corresponding to small values of lzl) are already damped since Z 

behaves as z[A - D] for lzl ➔ 0. With this approach we obtain fast convergence. 

However, we do not claim that this choice of D is the best possible. For example, a 

more sophisticated strategy might be the minimization of (some norm of) Z(z) over 

the whole, or the 'stiff part' of the left halfplane. 

Another possibility could be to minimize the principal stiff error constants in the 

resulting PDIRK method; this option is studied in Chapter VI. Several other options 

to choose D are discussed in Chapter V and many of these have been used in 

numerical tests, but it turns out that the behaviour of the strategy based on the 

minimization of the spectral radius p of I - n-1 A could not be improved. 

Based on this approach, we have constructed methods for s = 2, 3 and 4. Only for 

s = 2 it is possible to determine D analytically such that p(I - n-1 A) = 0. For the 

larger values of s, the D-matrices have to be calculated numerically. The p-values 
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increase with sand are (for the several correctors) in the range (0.004, 0.01) ifs= 3 

and in the range (0.02, 0.1) for s = 4. 

2.3. A numerical example 

To obtain insight in the actual performance of these parallel Runge-Kutta 

methods, we have tested a parallel implementation of a PDIRK method based on the 

'minimal-spectral-radius-strategy'. For the corrector, we selected the 4-stage Radau 

IIA method. Since this IRK is of collocation type, the collocation polynomial 

passing through the stage values is easily computed in each step. The predictor y(O) 

is obtained by extrapolating the collocation polynomial calculated in the preceding 

step. Since this prediction is rather accurate, it is to be expected that this will result 

in fewer iterations compared with the 'trivial' predictor y(O)=yne, We equipped this 

method with a provisional strategy for error control and stepsize selection ( details 

concerning the implementation strategy can be found in [27]). The resulting code is 

termed PSODE. 

We have implemented PSODE on the ALLIANT FX/4 computer (four parallel 

processors and shared memory) and applied it to several test problems. The goal of 

these tests is twofold: (i) we want to investigate to what extent the theoretical 

parallelization can be realized in practice; in other words, how close we can approach 

the ideal speedup factor 4 on this four-processor machine and (ii) we want to compare 

the performance of the code PSODE with that of a good sequential solver. To that 

purpose we select the recent (sequential) code RADAU5 of Hairer & Wanner [15]. 

This choice is motivated by the observation that it solves a Radau IIA method (viz., 

the 3-point 5th-order one); this starting point is quite similar to that of PSODE, 

although the approach to obtain the Radau-solution is completely different. 

Furthermore, we included in our tests the code LSODE of Hindmarsh [16]. This 

BDF-based code has formulas up to order 5 available, from which only those of first 

and second order are A-stable. Hence, LSODE is less robust as a general stiff solver, 

but, on the other hand, it is generally accepted as a good sequential solver and enjoys 

considerable usage over a long period. 

In comparing the parallel code PSODE with the two sequential codes, we do not 

take into account effects originating from a possible 'parallelization over the loops'. 

By this we mean that a long loop is cut into s smaller parts which are then assigned 

to the s processors. In Section 1, this effect is termed 'parallelism across the 

problem' and can in fact be used by any ODE solver. Here we merely want to test 

intrinsic parallelism (called 'parallelism across the method'). In order to exclude the 

effects of 'parallelism across the problem', LSODE and RADAU5 are run on a 

single processor. In fact, the amount of intrinsic parallelism offered by LSODE and 

RADAU5 is very modest (see also the remark at the end of this section). 
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Of course, if one is interested in 'parallelism across the problem', then the 

sequential codes could be implemented on -an s-processor machine. However, in that 

case a fair comparison would require assigning 4s processors to PSODE, since in 
each of the 4 concurrent subtasks of PSODE, the 'parallelism across the problem' 

can equally well be exploited (cf. Section 1, where we have mentioned that both 

parallelization techniques are 'orthogonal'). 

Summarizing, we may say that PSODE needs 4 times the number of processors 

given to a sequential code, simply because it possesses a 4-fold amount of intrinsic 

parallelism. The large number of processors utilized by PSODE reflects the current 

tendency in parallel computing, since modern architectures - and certainly those 

entering the market in the coming years - have an 'almost unlimited' number of 

processors (massive parallelism). 

Another aspect which is of utmost importance for the performance of a stiff code, 

is the amount of linear algebra per step, which in turn strongly depends on the 

dimension of the ODE. Prior to the specification of our test problem, we will briefly 

discuss the characteristics of the various codes with respect to this aspect: 

A common feature of the three codes is that they need from time to time an LU

decomposition of the matrix involved in their respective iteration processes to solve 

the nonlinear relations. Since the factorization of a general N-dimensional matrix 

requires approximately 2N3/3 arithmetic operations, this will dominate the total 
costs of the integration for large-scale problems. Here we may think of complicated 

problems from circuit analysis or semi-discretized (higher-dimensional) partial 

differential equations. In such applications, systems of ODEs with several thousands 

of equations are quite usual. In this connection we remark that both LSODE and 

PSODE deal with matrices of dimension N. Hence, it is to be expected that their 

mutual comparison is only marginally influenced if N increases and all other aspects 

are left unchanged. 

Matters are different for the code RADAU5, since it has to deal with matrices of 

dimension 3N. By exploiting the special structures in these matrices, Hairer and 

Wanner are able to reduce the total work of the LU-decomposition to I oN3 /3 

operations [15], thus gaining a factor 5 compared with a direct treatment, which 

would have required 2(3N)3/3 operations. However, this number 10N3/3 compares 

unfavourably with the number 2N3/3 (associated with LSODE and PSODE), and 

causes a serious drawback for RADAU5 when applied to large-scale problems. 

To get a first indication of the performances of the codes, we have applied them 

to a small test problem originating from circuit analysis. It was first described by 

Horneber [17] and extensively discussed in [14, p.112] and [11]. This (stiff) system 

describes a ring modulator, which mixes a low frequency and a high frequency signal. 
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The modulated signal is then used as input for an amplifier. The resulting system of 

15 ODEs is defined by 

where 

Y1' = C-I [Ys - 0.5 Y10 + 0.5 Y11 + Y14 - Y1IR] 

Y2' = C-I [yg - 0.5 Y12 + 0.5 YI3 + Y15 - yif R] 

y3' = Cs-1 [y10 - g(z1) + g(z4)] 

y4' = Cs-1 [- Yll + g(z2)- g(z3)] 

Ys' = Cs-I [yl2 + g(z1) - g(Z3)] 

Y6' = Cs-1 [- Yl3 - g(z2) + g(z4)] 

Y1' = Cp-1 [-y7/Ri + g(z1) + g(z2)- g(z3) - g(z4)] 

Ys' = -Lh-1 Yi 

yg' = - Lh-1 Y2 

Y10' = Ls-1 [0.5 Yi - Y3 - 17.3 Y10] 

Y11'=Ls- 1 [-0.5y1 +y4-17.3yll] 

Y12' = Ls-1 [0.5 Y2 - Ys - 17.3 yn] 

y13' = Ls-1 [- 0.5 Y2 + Y6 - 17.3 y13] 

Y14' = Lr1 [-Yi+ e1(t)- 86.3 Y14] 

Y1s' = Lr1 [-y2 - 636.3 Yis], 

Z1 := Y3 - Ys - Y7 - ei(t), Z2 := - Y4 + Y6 - Y1 - e2(t), 

Z3 := Y4 + Ys + Y1 + e2(t), Z4 := - Y3 - Y6 + Y1 + e2(t), 

and the function g, which models the characteristics of the diodes, is defined by 

g(z) := 40.67286402· I0-9 [ exp (17.7493332 · z) - I ]. 

The signals e1 and e2 are defined by 

e1 (t) := 0.5 sin (2 103 n t), ei(t) := 2 sin (2 I o4 n t). 

The technical parameters have been given the values C= 16-10-9, R=25000, 

Cp=l0-8, Rj=S0, Lh=4.45, Ls=0.0005 and Lt=0.002, resulting in a heavily oscil

lating solution. Not yet fixed is the value of the capacity Cs, In our test, we give it 

the value 10-9, which seems technically meaningful. It is reported [14] that small 

Cs-values cause serious difficulties. In the limit, i.e. on setting Cs=0, we end up 

with a differential-algebraic system. The integration interval in our test is [O, 10-3]; 

the initial values are given by Yi(O)=O, i=l, ... ,15. For several values of TOL (the 
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local error bound) the results obtained by the codes RADAU5, LSODE and PSODE 

are collected in Table 2.3. Here, T1 and T4 denote the CPU time (in seconds) when 

the program is run on 1 and 4 processors, respectively. Recall, that we restrict the 

timings for the sequential codes to T1. The accuracy is measured by means of A, 

which is defined by writing the maximum nonn of the global (relative) error in the 

endpoint in the form 10-.1. Furthermore, Nsteps denotes the number of (successful) 

integration steps and m stands for the average number of (effective)f-evaluations per 

step .. 

Table 2.3. Performance of the codes RADAU5, LSODE and 

PSODE for the circuit problem 

-Method TOL Nsteps m A T1 T4 

RADAU5 10-2 1275 9.0 1. l 33. l 
10-3 2277 7.6 2.6 48.6 

10-4 3922 6.7 3.8 72.4 

10-5 6761 6.1 4.9 110.9 

LSODE 10-3 7054 1.5 1.4 33.6 
10-4 9772 1.4 2.8 44. l 

10-5 13266 1.4 2.9 57.7 

10-6 17887 1.3 3.8 74.7 

10-7 23310 1.3 4.5 93 .1 

10-S 30253 1.2 4.9 114.3 

PSODE 10-2 1185 7.3 1.4 80.0 21.4 
10-3 1561 7.3 3. 1 104.5 27.8 

10-4 2272 7 .1 4.1 146.4 39.6 

10-5 3437 6.9 5.2 212. l 57.7 

These results give rise to the following conclusions: 

(i) with respect to our first goal, we see that the speedup factor for PSODE 

(obviously defined by T1/T4) is approximately 3.7, which is pretty close to the 

'ideal' factor 4 on this machine. This factor rapidly converges to 4 if the dimension 

of the problem increases. 

(ii) concerning our second goal, we observe a remarkable similarity between 

RADAU5 and PSODE: both codes need approximately 7 /-evaluations per step; 

moreover, to produce the same accuracy, the required number of steps is of the same 

order of magnitude (for the more stringent values of TOL, the difference in the 

number of steps increases, which is probably due to the higher order of PSODE). 
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There _is however a striking difference between the two Radau-based codes and 

LSODE; this code is very cheap per step, but needs much more integration steps to 

produce the same accuracy. For example, to obtain a relative accuracy of about 5 

digits, PSODE needs"" 3400 steps, RADAU5 twice as many, whereas for LSODE 

this number is 9 times as large. Taking into account the computational effort per 

step of the various codes, the comparison with PSODE yields a double amount of 

time both for LSODE and RADAU5. Approximately the same ratios are observed in 

the low-accuracy range (say, L1=3). 

As mentioned before, this example is only a model problem describing a small 

(part of an) electrical circuit, and is still far away from a real-life application. 

However, even for this small system of ODEs, the performance of (this provisional 

version of) PSODE is already superior by a factor 2 to that of the (well-established) 

codes LSODE and RADAU5. 

Summarizing, we can say that 

- the PSODE-approach is much more promising to serve as the basis for an 

efficient, 'all-purpose' stiff solver than the LSODE-approach. This is due to the 

improved mathematical qualities, viz. the high order in combination with A

stability. 

- In comparison with RADAU5, PSODE has the advantage that in large-scale 

problems, the (dominating) LU-factorizations require a factor 5 less 

computational effort. In this connection we remark that a few preliminary 

experiments with a problem of dimension 75 reveal that the overall gain of 

PSODE is already more than a factor 4. 

For really large-scale problems we expect that the speedup factor will be in the 

range 6 - 8, depending on the required accuracy. This number is composed of the 

asymptotic factor 5 coming from the algebra part and the remaining factor 

1.2 - 1.6 originating from the higher order of PS ODE. 

Remark: it should be mentioned that RADAU5 offers a possibility to exploit a 

small amount of intrinsic parallelism. In using two processors, the total number 

of arithmetic operations to perform the LU-decomposition can be reduced from 

10N3/3 to sN3/3. We refrained from adapting the code RADAU5 in order to 

exploit this feature. 
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-3. PARALLEL BLOCK MEIHODS 

Another technique to construct parallel methods for ODEs is based on block 

methods [26, 12, 28, 29]. For the construction of this type of methods, it is 

convenient to introduce the so-called block vector 

(3.1) 

where Yn,cj denotes an approximation to the exact solution y(t) at t = tn + cih. 

Similar to the preceding section, the methods will be presented for a scalar ODE; 

however, also for block methods, the extension to systems of ODEs is 

straightforward. Again using the convention that f(v) = (f(vj)), a (one-step) block 

method is defined by 

(3.2) Yn+I =A Y 11 + h Bf(Y11 ) + h Cf(Yn+IJ, n = 0, I, 2, ... , 

where A, B and C are matrices of dimension s. Notice that (3.2) is a direct 

generalization of the (one-step) linear multi step (LM) method 

(3.2') Yn+l = a Yn + h b f(yn) + h c f(Yn+IJ, 

with a, b and c scalar variables. 

Initially, the block methods were introduced to circumvent the restrictions that 

apply to LM methods: the limitation on the order because of zero-stability (known 

as the 'first Dahlquist barrier') and the order-restriction with respect to A-stability 

( which is usually called 'Dahlquist's second barrier'). As we shall see, both 

restrictions can be avoided by changing from the LM methods to the block methods. 

Moreover, parallelism can be achieved in a very natural way. 

However, it should be observed that - in contrast to the Runge-Kutta type of 

methods considered in Section 2 - the block methods are not self-starting. Clearly, 

the recursion (3.2) needs the vector Yo, which requires as many starting values as 

there are distinct values Cj. 

In the next two subsections, we will consider parallel block methods for nonstiff 

and stiff ODEs, respectively. 

3.1. Parallel block methods for nonstiff equations 

Within the class of LM methods, nonstiff ODEs are usually solved by the so

called predictor-corrector (PC) approach. We will consider a similar technique in the 

case of block methods. To be more specific, let us call the (implicit) block method 
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(3.2).the corrector. Solving implicit relations is avoided by defining an explicit 

predictor of the form 

(3.3) Y pred = E Yn + h F f(Yn), 

with E and F matrices of dimension s. Substitution of Y pred into the right-hand 

side of (3.2) yields the block predictor-corrector (BPC) method 

(3.4) Yn+l =A Yn + h Bf(Yn) + h C/(E Yn + h F f(Yn)). 

In accordance with the terminology used in the LM case, this application is called 

the PECE mode. Of course, one can continue this process by substituting the result 
of (3.4) into the right-hand side of (3.2), etc.; in this way we arrive at the P(EC)mE 

mode. 
The parallelism in this type of methods is obvious: the s components in f(Y n) 

(and in/(Ypred)) can be computed concurrently, so that (3.4) requires effectively 

only two right-hand side evaluations per step (provided of course, that sufficiently 
many processors are available). 

In the literature, several parallel BPC methods have been proposed. We mention 
the work of Miranker and Liniger [22], of Shampine and Watts (cf. Worland [30]) 

and the multistep block methods of Chu and Hamilton [7]. In Chapter II of this 
monograph, methods of the form (3.4) are analyzed and new BPC methods are 

derived for the cases s = 2, 3 and 4: Contrary to the methods given in the literature, 
the BPC methods in Chapter II exploit the feature that the components of the block 
vector represent approximations to the exact solution at not necessarily equidistant 

points. 
Using this property, it is possible to obtain (zero-)stable BPC methods with as 

high an order as 2s. This is obtained by first constructing a predictor of the form 

(3.3) of order 2s- l. Notice that, similar to the LM situation, this predictor itself 

does not necessarily be zero-stable. 
A next question might be: 'how many processors are needed for the parallel 

implementation of these BPC methods ?' For the schemes presented in Chapter II, 

we have the uniform answer: 'two'. This is achieved by requiring the firsts- 2 rows 

of the matrices B, C and F to contain zero elements. This implies that we do not 
need to assign a processor to the first s - 2 components of the block vector, since 

their values and derivatives can be adopted from the preceding step. However, 
assuming that there is no restriction on the number of available processors, this 

property is not of a great practical value. 
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- Summarizing: for s = 2, 3 and 4, it is possible to construct BPC methods with a 

nbnempty stability region including the origin, which 

(i) are of order 2s, 

(ii) need (at most) s starting values, 

(iii) require, on a two-processor machine, effectively two right-hand side 

evaluations per step. 

We remark that the methods proposed by Donelson and Hansen [12] share the 

properties (i) and (ii). However, their stability regions are not available and 

moreover, if they are implemented on a parallel machine, they would need s 
processors. In this connection, we remark that Donelson and Hansen did not have in 

mind to apply their methods in a parallel context; they merely wanted to circumvent 

the first Dahlquist barrier. 

Finally, we remark that the methods proposed by Chu and Hamilton [7] share the 

aforementioned properties (ii) and (iii), but have an order not exceeding four. On the 

other hand, the stability regions of their BPC methods are larger than those of the 

methods derived in Chapter II. 

3.2. Parallel block methods for stiff equations 

For the numerical integration of stiff ODEs, a method should preferably 

(i) be A-stable, and 

(ii) have a high order of accuracy. 

However, it is well known that these are conflicting demands for linear multistep 

methods (this is the so-called 'second Dahlquist barrier'). One possible way to 

achieve the goals (i) and (ii) is to consider implicit block methods. In the literature, 

several methods of this type have been proposed. For example, in [28] Watts and 

Shampine construct block methods based upon quadrature formulas of the Newton

Cotes type and show that these schemes are A-stable for orders~ 8 (see also [291). 

These methods fit into the class (3.2), however, they have a full C-matrix. As a 

consequence, the s components of the block vector have to be solved 

simultaneously, a situation similar to the one encountered in implicit Runge-Kutta 

methods (observe the resemblance between (3.2) and (2.2b)). Hence, these implicit 

block methods are not suitable for parallel execution. 

In Chapter III we discuss what can be achieved within the class of parallel 

implicit block (PIB) methods, subject to the aforementioned requirements with 

respect to order and stability. To that end, the matrix C in (3.2) is replaced by a 

diagonal matrix D: 

(3.2 ") n = 0, 1, 2, .... 
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As a r_esult of this 'simplification', we sacrifice a lot of free parameters originally 

occurring in the matrix C but, on the other hand, we now arrive at a scheme in 

which the various components of Y n+ 1 are uncoupled as far as implicitness is 

concerned (cf. (2.3b) for a similar situation in the Runge-Kutta context). Hence, 

having s processors available, scheme (3.2") requires effectively the solution of one 

implicit relation, the dimension of which equals that of the system of ODEs. This 

means that the computational effort per step is quite similar to that of the celebrated 

backward differentiation formulas (BDFs). 

The next step is, of course, to raise the order of the PIB method beyond 2. To 

that end we perform a numerical search in the space of free parameters. For example, 

for s=2 we have the A-stable PIB method 

(3.5) ( 
147 161 J 7 

0 1 220 220 io 0 
Yn+1=( )Yn+h f(Yn)+h[ 13 ]/(Yn+lJ, 

0 1 50 23 0 _ 
- 33 66 6 

with c1=21/10 and c2=l. In this PIB method, the second component of Yn+l (i.e., 

Yn+l) yields a third-order approximation to the exact solution. 

Continuation of the numerical search process for s=3, yields several fourth-order 

A-stable parallel block methods. For the same value of sit is even possible to raise 

the order to five, however, then we loose the property of A-stability. It turns out that 

an extremely small lobe in the nonpositive halfplane does not belong to the stability 
region of these methods. An adequate characterization of the stability region of these 

methods (and of the BDFs, as well) is obtained by extending the well-known concept 

of A (a)-stability: 

Definition 3.1.: A block method of the form (3.2) is said to be A( a, /3, 1)-stable if: 

(i) its region of stability contains the infinite wedge {z I - a< n:- arg(z) < a}, 

with O < a::;; 'IT:/2, and all points in the nonpositive halfplane with lzl > {3, 
(ii) yis the maximum value of the spectral radius of the amplification matrix 

[/ - zC]-1 [A + zB] for all z with Re(z)::;; 0 lying in the instability region. [] 

Using this definition, the stability characteristics of the methods derived in Chapter 

III and of the BDFs are summarized in Table 3.1 (notice that BDFs are straight

forwardly fitted in the formulation (3.2)). In this table, the vector c contains the 

abscissae defining the block vector, i.e., c := (c1, c2, ... , c8 )T, and an '*' means that 

the corresponding value is not relevant. 
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· Table 3.1. Values of a (in degrees), /3 and y for the BDFs and some PIB methods 

Method cT Order a /3 y 

BDF3 (-1, 0, 1) 3 88.40 1.94 1.046 

PIB3 (21/10, 1) 3 900 0 * 
BDF4 (-2,-1,0, 1) 4 73.2° 4.72 1.191 

PIB41 (5, 13/4, 1) 4 900 0 * 
PIB4n (3, 5, 1) 4 900 0 * 
BDF5 (-3, -2, -1, 0, 1) 5 51.8° 9.94 1.379 

PIB51 (-2.747, -2.122, 1) 5 >89.98° 0.16 1.0000026 

PIB5n (1.6153, 4.7871, 1) 5 >89.98° 0.30 1.000069 

4. CONCLUSIONS AND FUrURE RESEARCH 

We have shown that iterating a fully implicit RK method leads in a natural way 

to parallel integration methods. This approach can be used both for stiff and nonstiff 

ODEs. Although it is conceptually not necessary to start with a fully implicit RK 

method, such IRKs are an excellent choice to serve as a method, underlying the 

iteration process. 

In the nonstiff case, the Gauss methods are recommended because of their highly 

accurate behaviour. Moreover, the optimal order of these IRKs with respect to the 

number of stages, minimizes the number of required processors. Observe however, 

that this aspect is only of marginal interest. Following this approach, it is possible 

to construct explicit RK methods for which the (effective) number of stages equals 

the order. This property holds for an arbitrarily high order and is principally 

impossible within the class of sequential explicit RK methods. 

For stiff equations, a stiffly accurate IRK is a good choice; in particular, Radau 

IIA methods are suitable candidates. In the stiff case, the parallel, diagonally-implicit 

iteration leads to methods with nice features, both from a computational and a 

mathematical point of view. The property that only one matrix of the ODE 

dimension has to be factorized per step, reduces the amount of linear algebra to an 

acceptable level. We have seen that performing a fixed number of iterations results in 

L-stable methods with a high algebraic order, but with a (at least, formally) low 

stage order. Alternatively, iterating until convergence yields a high algebraic order as 

well as a high stage order. Moreover, already after a modest number of iterations, 

these methods are unconditionally stable . 
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A .different approach to obtain parallel ODE solvers is provided by the class of 

block methods. Contrary to the RK-based methods, they are, in general, not self

starting. 

The results for nonstiff equations seems to be even more promising than for the 

RK-based methods: using s starting values, it is possible to obtain order 2s (thus far, 

only for s::;;; 4) with 2 /-evaluations. Moreover, the number of processors can be 

restricted to 2, but again, this is not a significant advantage. However, the stability 

regions of the resulting block methods are much smaller than those of the RK-based 

methods and, moreover, we expect the block methods to have much larger error 

constants. 

In the stiff case, A-stable block methods of orders ::;; 4 can be constructed as well 

as an 'almost A-stable' method of order 5. This result is less favourable than for the 
RK-based methods, where very high orders can be combined with unconditional 

stability. On the other hand, the block methods require only one implicit relation to 

be solved per step (and per processor), whereas the RK-based methods have to solve a 

sequence of implicit relations. 

In the future, we plan to perform an extensive comparison between the parallel 

RK methods and the parallel block methods on the basis of a broad collection of test 

problems. 

Apart from that, the code PSODE (cf. Section 2.3) is still in a research phase and 

needs a better tuning of its strategy parameters, since the performance of any code 

critically depends on such a tuning. In particular, these parameters have to be chosen 

in such a way that the number of LU-factorizations is minimized. Furthermore, we 
plan to extent the code with the facility to treat ODEs of the form M y'(t) = j( y(t)), 

where M is a matrix which may be singular, resulting in a differential-algebraic 

system. 

To exploit the abundance of the available processors, one can reserve a number of 
processors - apart from those performing the integration method - which 

continuously update the Jacobian matrix and calculate LU-factorizations, 

corresponding to various stepsizes that are realistic for the present part of the 

integration interval (this would of course require an adaptation of the stepsize 

selection strategy). 

Another, more theoretical, aspect that needs attention in the future, is the 

construction of A-stable block methods of orders exceeding 4. This might be 

obtained by exploiting more free parameters in the matrices A, Band D (see (3.2")). 
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1. INIRODUCilON 

Implicit Runge-Kutta (RK) methods for solving the initial value problem for the 

system of ordinary differential equations (ODEs) 

(1.1) 
d"ltl 
~=J(y(t)) 

dt 

are seldom used in predictor-corrector (PC) iteration, because RK correctors are much 

more expensive than linear multistep (LM) correctors. This is due to the increased 

number of coupled nonlinear algebraic equations. Although RK correctors of order p 
usually possess smaller error constants than LM correctors of comparable order, an 

accuracy-computational effort graph will be in favour of PC methods based on LM 

methods. However, matters are different when parallel computers are used. It is well 

known that PC iteration, being a form of functional iteration (or Jacobi iteration), 

allows a high degree of parallelism, because, by partitioning the system of equations 

into subsystems of equal computational complexity, we can assign to each processor 

such a subsystem and perform the iteration steps in parallel. The problem is of 

course the partitioning in subsystems of equal computational complexity. In the case 

of iterating s-stage RK methods, there is a natural partitioning based on the s 

subsystems corresponding to the s stages of the RK method. In this way, the 
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computation time involved in applying RK correctors can be reduced a great deal on 

parallel computers. We shall call these 'parallel, iterated' RK methods PIRK 

methods. The idea of iterating an implicit RK method to exploit parallelism goes 

back to Jackson and Ni;;rsett [10] and also in [9], [11], and [12] such methods have 

been debated. Before continuing our discussion on PC iteration, we emphasize that 

the choice of an implicit RK corrector has nothing to do with the excellent stability 

characteristics such methods usually possess, since this property is not preserved 

when the PC approach is followed. Their choice is solely determined by the fact that 

a high order of accuracy is easily obtained and, particularly, because of the potential 

parallelism exhibited by these methods. Hence, in the sequel we will assume that the 

class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands. 

If the predictor is itself an (explicit) RK method, then the PIRK method also 

belongs to the class of explicit RK methods. In !series and Ni;;rsett [9] it was proved 

that explicit RK methods of order p necessarily require at least p effective stages, and 

in Ni;;rsett and Simonsen [12] the question was posed whether it is always possible 

to find explicit RK methods of order p using not more than p effective stages, 

assuming that sufficiently many processors are available (an explicit RK method is 

said to have p effective stages if the computation time required for evaluating all 

right-hand sides in one step is p times the computation time required by one right

hand side evaluation). This question motivated us to look in the class of PIRK 

methods for explicit RK methods, the order of which equals the number of effective 

stages; such methods will be called optimal RK methods. We will show that PIRK 

methods generated by any (not necessarily implicit) s-stage RK corrector of order p 

do not require more than p effective stages provided that s processors are available. 

The next question is the least number of processors needed to implement an optimal 

explicit RK method. For example, in [12] a 5th-order, 6-stage RK method of Butcher 

which can be implemented on two processors requiring only 5 effective stages is 

mentioned. This method is clearly an example of an optimal 'minimal processor' 

RK method. So far, we did not succeed in answering the question of least number of 

necessary processors. Therefore, we have looked for RK methods of which the 

number of stages is small with respect to their order. It is well known that, within 

the class of RK methods, those of Gauss-Legendre type require least number of 

stages to obtain a given order; to be more precise, s-stage Gauss-Legendre methods 

have order p=2s. Hence, for an 'optimal' implementation of these methods, we need 

only s processors. Furthermore, the stability regions can directly be derived from 

known results for truncated Taylor series, they allow an extremely simple 

implementation, and we obtain automatically a sequence of embedded methods of 

varying order which can be used for stepsize control. PIRK codes of order 8 and l 0 

using automatic stepsize control are compared with the code DOPRI8 of Hairer, 

Ni;;rsett and Wanner [5] which is a variable step implementation of the 8th-order 
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explicit RK formula with 7th-order embedded formula of Prince and Dormand [13]. 

All codes use the same stepsize strategy. By a number of experiments, the 

performance of the PIRK codes is demonstrated. Both codes are considerably cheaper 

than DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a 

FORTRAN implementation of the PIRK methods. This implementation has the 

feature that the user can introduce arbitrary RK correctors by means of their Butcher 

arrays. 

Instead of using (one-step explicit) RK predictors one may use LM predictors 

reducing the number of effective stages. First results based on LM predictors are 

reported by Lie [11], using a fourth-order, two-stage Gauss-Legendre corrector and a 

third-order Hermite extrapolation predictor. With this PC pair, one iteration suffices 

to obtain a fourth-order PIRK scheme. We shall briefly discuss the use of multistep 

predictors, in particular for RK correctors of general (nonquadrature) type. Various 

predictor methods are compared showing that the efficiency of PIRK methods using 

multistep predictors is higher, but the price to be paid for the increased efficiency is 

more storage and a less easy implementation. 

Finally, the methods proposed in the following sections will be described for 

scalar differential equations of the form ( 1. 1 ). Their application, however, is 

straightforwardly extended to systems of OD Es. 

2. OPI'IMAL RKMEIHODS 
Our starting point is the s-stage, implicit, one-step RK method of the form 

(2.la) 

where Tn+ 1 is implicitly defined by 

(2.lb) 

Here, h is the integration step, e is a column vector of dimension s with unit entries, 

b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the 

convention that for any given vector v=(vj),J(v) denotes the vector with entriesf(vj). 

By iterating the equation for Tn+l m times by simple functional iteration and using 

the mth iterate as an approximation to Tn+ 1, we obtain the method 

(2.2) rUJ =f(yne + hArU-lJJ, j = 1, ... , m; Yn+l = Yn + hbTr(m). 

Since the s components of the vectors rUJ can be computed in parallel, provided that 

s processors are available, the computational time needed for one iteration of (2.2) is 
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equivalent to the time required to evaluate one right-hand side function on a 

sequential computer. Hence, the total costs of (2.2) per integration step comprise the 

calculation of the initial approximation r(O) plus m right-hand side evaluations. In 

the following, we always assume that we have s processors at our disposal and, 

speaking about 'computational effort per step', we mean the computational time 

required per step ifs processors are available. If the computational effort per step 

equals the computation time for performing M right-hand side evaluations, then we 

shall say that the method requires M effective stages. Here, and in the sequel, we 

have assumed that the costs per step are predominated by the time needed to evaluate 

the derivative function. If this happens to be not the case for a particular ODE, then 

the overhead, which is sequential in essence, will take a relative large portion of the 

total costs per step and, consequently, the parallel evaluation of the s (cheap) right

hand side functions will not result in an overall speedup with a factors. 

We shall call the method providing r(O) the predictor method and (2.1) the 

corrector method and the resulting parallel, iterated RK method will be briefly called 

PIRK method. It should be observed that in the present case of RK correctors, the 

predictor and corrector methods do not directly generate approximations to Yn+I as is 

the case in PC methods based on LM methods. However, at any stage of the 

iteration process we can compute the current approximation to Yn+ I by means of the 

formula 

(2.S) yU) := Yn + hbTrUJ, j = 0, I, .... 

Let r(O) be an approximation torn+ I satisfying the condition 

resulting in y(O) = Yn+ 1 + 0( M+ 1 ). Predictor methods satisfying (2.4) will be called 

predictor methods of order q. 

Suppose that A and b T are such that the corrector (2.1) is of order p and let the 

predictor method be of order q- I. Then, it has been proved in Jackson and N,ilrsett 

[10] that the (global) order of Yn+I as defined by (2.2) equals p*:= min{p, q+m }. By 

using the simple predictor method r(O) :=f(yn)e =rn+J+O(h), i.e., q=l, we 

immediately have as a corollary of this result the next theorem. 

Theorem 2.1. Let {A,bT} define ans-stage RK method (which need not be implicit) 

of order p. Then the PIRK method defined by 

r(O) =f(yn)e, 

(2.5) r(j) =f(yne+hArU- 1)), }=l, ... ,m, 

Yn+ I = Yn + hb Tr(m) 
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represents an (m+l)s-stage explicit RK method of order p*:=min{p, m+l} requiring 

m+ 1 effective stages. [] 

Method (2.5) can also be represented by its Butcher array. Defining the s

dimensional vector O and the s-by-s matrix O both with zero entries, we obtain 

0 

A 0 

0 A 0 

0 0 A 0 

We remark that this Butcher tableau represents a direct translation of (2.5), 

resulting in (m+l)s stages. However, written in this form, the 0-matrix in the first 

row could be replaced by a scalar zero, since the prediction r<O) has equal components 

and, consequently, can be produced by one processor. This would lead to an explicit 

RK method possessing ms+ 1 stages. 

Setting m=p-1, it follows from this theorem that the question posed by N!<Srsett 

and Simonsen [12] can be answered in the affirmative: any pth-order RK method 
{A, b T} generates an explicit RK method of the form (2.5) of order p requiring only p 

effective stages. Such explicit RK methods will be called optimal RK methods. Of 

course, within the class (2.5) the number of processors needed for the 

implementation is dictated by the number of stages s of the generating corrector. For 

example, the lOth-order, 17-stage RK method ofHairer [4] generates an explicit RK 

method of the form (2.5) which is also of order 10 if we set m=9 and which is 

optimal in the above sense. However, the implementation of this method requires 17 

processors. This suggests the problem of constructing RK methods of order p which 

are optimal and require least number of processors. The 5th-order, 6-stage RK 
method of Butcher mentioned in [12] is an example of such a method: it can be 

implemented on two processors requiring only 5 effective stages. From the theory of 

RK methods based on high-order quadrature methods, such as Gauss-Legendre and 

Radau methods [5], we can immediately deduce a lower bound for the number of 

processors needed to implement optimal RK methods of the form (2.5): 

Theorem 2.2. RK methods of the form (2.5) are optimal if m s; p-1. For even p the 

least number of required processors equals p/2 and the generating RK corrector is the 
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pth-order Gauss-Legendre method; for odd p the least number of processors is (p+ I )/2 

and the generating RK corrector is the pth-order Radau method. D 

Thus, optimal RK methods requiring less than L (p+ I )/2 J processors cannot be 

found among the methods of the form (2.5). Since (2.5) allows an extremely simple 

implementation and provides automatically a sequence of embedded formulas which 

can be used for error estimation (see Section 5) and order variation, we have not 

looked for methods requiring less than L (p+ 1 )/2 J processors. 

In order to illustrate the significance of Theorem 2.2, we make a comparison 

with explicit RK methods devised for one-processor computers (sequential methods). 

In Table 2.1 the minimal number of stages Smin (and therefore the minimal number 

of right-hand side evaluations) needed to generate such methods of order pare listed. 

In addition, we list the number of stages S for which these RK methods have· 

actually been constructed (cf. [5, Section 11.6)), and the numbers of effective stages 

Seff and processors Spr needed by the optimal RK methods of Theorem 2.2. 

Table 2.1. Comparison of sequential RK methods and optimal RK methods 

of the form (2.5) 

p ::;4 5 6 7 8 9 10 

Sequential Smin p 6 7 9 11 ~12 ~13 

RK s p 6 7 9 11 17 

Optimal Seff p 5 6 7 8 9 10 

RK Spr 3 3 4 4 5 5 

Finally, we remark that if the RK corrector is based on quadrature (or collocation) 

methods, then the initial approximation rCO) can be interpreted as the derivative 

f(Y(O) ), where y(O) is an approximation to y(tne+hAe ). Suppose that the 

components of y(O) are computed (in parallel) by using an explicit (q-1 )-stage RK 

method of order q-1 with stepsizes hAe. Then the resulting PIRK method is still an 

explicit RK method itself and it is optimal if m ::; p-q corrections are performed. 

3. MULTISTEP PREDICTORMEIBODS 

Evidently, we can save computing time by using multistep predictor methods. 

As observed above, such predictors should provide approximations to the derivative 

valuesj(y(tne+hAe)) in the case where the generating RK method {A,bT} is derived 

from quadrature formulas. Any set of linear multistep methods providing 

approximations to the components of y(tne+hAe) serves this purpose. 
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In this paper we briefly discuss the case of arbitrary RK correctors where we 

cannot give an easy interpretation for the initial approximation 7(0)_ In such cases, it 

is possible to construct multistep predictor methods by performing the auxiliary 

vector recursion 

where E denotes the forward shift operator, i.e., Efn =fn+l· The predictor method is 

now simply defined by 

(3.lb) 7(0) ·- .r 1 --Jn+. 

Here o(~) is a polynomial of degree k-1 whose coefficients are matrices of 

appropriate dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a 

k-step PC method requiring m+ 1 right-hand side evaluations per step. For m=O, this 

method fits into the class of methods investigated in [7]. 

By Taylor expansion of fn+l (or, y(O)), conditions for the satisfaction of 

7n+1-fn+1=0(hq) can be derived in terms of A and o(~). For instance we have the 
following theorem. 

Theorem 3.1. Let the corrector defined by {A, b T} be of order p, then the k-step PC 

method 

(3.2) 
fn+l 
7(0) 

Yn+l 

=f(yne + ho(E)E""k+lfn), 

=fn+l, 70) =f(yne + hA7U-1)), j = 1, ... , m, 

= Yn + hbTr(m) 

is of order p*:=min{p, q+m}, where 

q = 2 if Ae - o(l)e = 0. 

q = 3 if, in addition, A2e - o2(1)e + ko(l)e - o'(l)e = 0, 

rA2e - to2(1)e + ko(l)e - o'(l)e = 0. [] 

Example 3.1. The most simple example is the case where k=l and o(~)=O, so that 

7(0)=f(yn)e and q=l. This case has been already considered in the preceding section. 

Next we choose k=l and o(~)=A. It is readily verified that the order conditions for the 

predictor are satisfied for q=2. The algorithm (3.2) assumes the one-step form 

(3.3) 
fn+l 
7(0) 

Yn+l 

= f(yne + hAfn), 

=fn+l• 7(j) =f(yne + hA7(j-l)), j = 1, ... , m, 
= Yn + hbT7(m). 
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If the RK corrector has order p, then by performing m=p-2 corrections this method 

is also of order p and requires p-1 right-hand side evaluations per step. Formally, the 

method no longer belongs to the class of one-step RK methods. However, in actual 

applications, the method is self-starting if we takefo=f(yo)e. 

Finally, we choose k=2 and o(l;)=2Al;-A which satisfy the order conditions for 

q=3. The algorithm (3.2) assumes the two-step form 

(3.4) 
fn+I 
r(O) 

Yn+l 

=f(yne + 2hAfn- hAfn-I), 

=fn+I, rO) =f(yne + hAr0- 1)), j =I, ... , m, 

= Yn + hbTr(m)_. 

If the RK corrector has order p, then by performing m=p-3 corrections this method 

is also of order p and requires p-2 right-hand side evaluations per step. [] 

4. STABILITY 

We consider linear stability with respect to the test equation 

(4.1) y'(t) = 11,y(t). 

It is easily verified that application of (2.5) yields the recursion 

where we have written z=Ah. The stability polynomial is given by 

In the particular case where we choose m=p-1, p being the order of the corrector, we 

obtain a stability polynomial of degree p. According to Theorem 2.1, this PIRK 

method is of order p so that the stability polynomial is consistent of order p, i.e., it 

approximates exp(z) with pth-order accuracy. Thus, we have proved the next 

theorem. 

Theorem 4.1. Let the corrector be of order p. If m=p-1, then the method (2.5) 

becomes an (explicit) RK method with the stability polynomial 

Using a result on truncated Taylor series (cf. [6, p.236]), we have the next 

corollary of this theorem. 
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Corollary 4.1. The method of Theorem 4.1 is stable in the interval [- l3reaJ,0], where 

(4.4) l3real"" 0.368 (p+l) [19(p + 1)]11(2(p+l)) . [] 

Defining [-i l3imag, i l3imagl to be the interval on the imaginary axis where the 

method of Theorem 4.1 is stable, we list in Table 4.1 the values of l3real (and its 

approximation provided by (4.4)) and of l3imag for orders p=l ,2, ... , 10. 

Table 4.1. l3real and l3imag for the method of Theorem 4.1 

p=l p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=IO 

True value of l3real 2.00 2.00 2.52 2.78 3.22 3.55 3.95 4.31 4.70 5.07 

Value according to ( 4.4) 1. 8 3 2.17 2.53 2.90 3.28 3.65 4.03 4.41 4.78 5.16 

True value of l3imag 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00 

5. SIBPSIZE CONI'ROL 

In this section we will describe a simple strategy to implement the afore

mentioned methods with a variable stepsize in order to control the local truncation 

error. This strategy is the same as the one employed by Hairer, N0rsett and Wanner 

[5, p. 167) in their code DOPRI8, in which they have implemented the 13-stage, 8th

order explicit RK method with the embedded method of order 7 of Prince and 

Dormand. 

This strategy is based on the observation that when iterating the equation (2.1 b) 

for rn+I we obtain approximations rU) of successively increasing order, i.e., 

rW - rn+I = O(hmin{p, q+j} ), j=l, 2, ... , m. 

Thus, apart from our final approximation Yn+i:=Yn+hbTr(m), we can easily construct 

a reference solution (cf. (2.3)) 

for some k < m. Since r(k) has already been computed, this does not require additional 

right-hand side evaluations. This reference solution y(k) can be considered as an 

'embedded' solution [5]. 

Now, as an estimate for the local error E in the step from tn to tn+1=tn+h, we 

take 

(5.2) 
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for some norm 11·11. Usually, one uses reference solutions y(k) such that the orders of 

Yn+ 1 and y(k) differ by 1. Here we follow this approach and choose k=111- I. 

First, we will discuss the case where we restrict our stepsize strategy to methods 

in which the number of iterations 111 is fixed in each step and is given by 111=p-q. 

Hence, ,.(m)_rn+I and ,.(m-l)_rn+I behave as O(hP) and O(hP-1 ), respectively, and, 

consequently, 

Then £ is compared with some prescribed tolerance TOL and the step is accepted if 

£::; TOL, and rejected otherwise. Furthermore, the value of £ allows us to make an 

estimate for the asymptotically optimal stepsize: 

which will be taken in the next step (or to recompute the current step in case of 

rejection). However, to give the code some robustness, we actually implemented (cf. 

[5, p.167]) 

• I !~ (5.3) hnew = h · mm { 6, max { 3, 0.9 -\/-££- 1}}. 

The constants 6 and r in this expression serve to prevent an abrupt change in the 

stepsize and the safety factor 0.9 is added to increase the probability that the next 

step will be accepted. 

Apart from the variable stepsize implementation mentioned above, the PIRK 

methods allow for a simple extension of the control strategy by which also the order 

of the method may vary from step to step. This can be achieved by abandoning the 

approach of a fixed number of iterations. Referring to the description above, we can 

construct a sequence of reference solutions, i.e., after each iteration the 'embedded' 

solution 

is computed. Then, we use the difference of two successive reference solutions as an 

estimate for the local error, i.e., 

eU) := 11 yU) - yU-1) 11. 

If, during the iteration, the tolerance criterion eW::; TOL is satisfied for some 

J=io < 111, then there is no need to proceed with the iteration process and we accept 
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yUo) as the numerical solution Yn+ I. This suggests to try the next step with the 

value of m defined by m=jo. Since 

p* = min {p+ 1, q + jo}, 

a prediction for the next stepsize can be made according to (5.3), where p is replaced 

by p* and e by i::Vo) . 

It may happen that the tolerance condition is not satisfied for j=jo s m. In such 

cases, the values of m and h predicted in the preceding step were not reliable. One 

may then decide to reject the current value of m and to continue the iteration process. 

This is particularly recommendable if the value of the current p* is less than p. If the 

continuation of the iteration process does not help to satisfy the tolerance condition 

i::W s TOL for j s M, where M is some prescribed upper bound for the number of 

iterations per step, then the (relatively costly) alternative is rejection of the current 

value of h, to redefine h according to (5.3) using the most recent information on the 

error, and to perform the present step once again. In this way a variable order variable 

stepsize RK method can be constructed. 

6. NUMERICALEXPERIMEN'IS 
We present a few examples illustrating the efficiency of PIRK methods on 

parallel computers. The calculations are performed using 14-digits arithmetic. The 

methods tested were all applied in P(EC)mE mode. 

6.1. Comparison of various predictor methods 
In order to examine the effect of various predictor methods on the efficiency of 

the PIRK algorithm we performed a few tests by integrating the equation of motion 

for a rigid body without external forces (cf. [8, Problem B5]): 

(6.1) 
YI'= Y2Y3, 

Y2° = - YIY3, 

Y3' = - .51YJY2, 

YJ(O) = 0, 

yz(0)=l, OstsT. 

y3(0) = 1, 

In these tests we used the lOth-order Gauss-Legendre corrector and the following 

predictor methods: 

Predictor I: r(O) = f(yn)e (cf. (2.5)) q=l p=min{m+l, 10} 

Predictor II: r<O) defined by the standard 4th-order RK q=5 p=min{m+5,10} 

Predictor ill: r(O) =f(yne + hAfn) (cf. (3.3)) q=2 p=min{m+2,10} 

Predictor IV: r(O) = f(yne + 2hAfn - hAfn-1) (cf. (3.4)) q=3 p=min { m+ 3, 10} 
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In the Tables 6.1 a and 6.1 b we have listed the values DW, where D denotes the 

number of correct decimal digits at the endpoint, i.e., we write the maximum norm 

of the error at t=T in the form 10-D, and where N denotes the total number of 

effective right-hand side ev'ahtatrons performed during the integration process. 

Furthermore, we indicated the effective order Peff, that is the order of accuracy which 

is ~n numericaHy. 

Table 6.1a. Values DW for problem (6.1) with T=20. 

Predictor I Predictor II 
h-1 m=8 m=9 m;,,,10 m=4 m=5 m=6 

5.6\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220 

2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440 

4 10.6\720 13.0\800 12.3\880 10.5\720 13.3\800 12.2\880 

Peff"" 9 10 10 9 10 10 

Table 6.1b. Values DW for problem (6.1) with T=20. 

Predictorrrl Predictor IV 
h-1 m=7 m=8 m=9 m=7 m=8 

4.8\160 5.5\180 7.5\200 4.6\160 5.7\180 

2 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360 

4 9.7\640 11.6\720 12.1\800 10.4\640 12.4\720 

Peff"" 9 10 10 10 10 

Comparing experiments with equal N (notice that these tables contain for each h 

and each predictor an experiment with No: l 80h-1 ), we conclude that in most 

experiments the third-order predictor IV and the second-order predictor III yield the 

most accurate values. However, the price we pay is more storage and a more 

complicated implementation because of the auxiliary recursion for fn- The predictors 

I and II produce comparable accuracies. As the added storage for the predictors III and 

IV is not offset by comparable reduction in the volume of computation, we 

recommend predictor I in actual computations. The resulting PIRK method is a true 

one-step RK method of an extremely simple structure, and consequently allowing for 

an easy and straightforward implementation. A FORTRAN code based on this PIRK 

method can be found in the Appendix to this paper. 
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6.2. Comparloon with the lOth-order methods of C~ and Hairer 

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing 

their 1 0th-order RK methods. In Table 6.2 the results of the experiments performed 

by Curtis and Hairer are reproduced together with results obtained by the PC pairs 

consisting of the predictors I, II and III, and the 1 0th-order Gauss-Legendre corrector. 

Again we see that the simple predictor I can compete favourably with the predictors 

II and ill. 

Table 6.2. Values DW for problem (6.1) with T=60. 

Method p 60/h D N 

Runge-Kutta 4 12000 9.6 48000 

Adams-Moulton-Bashforth 4 6000 8.1 12000 

Runge-Kutta-Curtis 10 240 9.9 4320 

Runge-Kutta-Hairer 10 240 10.1 4080 

(2.2) with predictor I and m=9 10 156 10.0 1560 

(2.2) with predictor I and m=lO 10 150 10.0 1650 

(2.2) with predictor II and m=5 10 150 10.1 1500 

(2.2) with predictor II and m=6 10 156 10.1 1716 

(2.2) with predictor ill and m=8 10 210 10.0 1891 

(2.2) with predictor III and m=9 10 168 10.0 1681 

6.3. Comparison with the 8(7)-method of Prince and Dormand 
The 8(7)-method of Prince and Dormand [13) is nowadays generally considered as 

one of the most efficient methods with automatic stepsize control for TOL-values 

approximately in the range 1 o-7 to 1 o- I 3. In this subsection we compare the 

DOPRI8 code, as given by Hairer, N~rsett and Wanner [5], with the PIRK method 

based on predictor I and the Gauss-Legendre correctors of orders 8 and 10. To let the 

comparison of the DOPRI8 code and the PIRK codes not be influenced by a different 

stepsize strategy, we equipped the PIRK codes with the same strategy (see Section 

5). These codes are respectively denoted by PIRK8 and PIRKlO. 

6.3.1. Fehlberg problem 

As a first test problem we take an example from Fehlberg [3): 

(6.2) 

YI'= 2 t YI log(max{Y2, 10-3}), 

Yi=- 2 ty2 log(max{y1, 10-3}), 

Y1(0) = 1, 

Y2(0) = e, 
0 $ t $ 5, 
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with exact solution YI (t)=exp(sin(t2)), Y2Ct)=exp(cos(t2)). For tolerances TOL 

running from 10-5 up to 10-12 we computed the D and corresponding N-values. 

Instead of presenting the polygon graph for these values as was done in [5], we 

preferred to present the DW lying on this polygon for a number of integer values of 

D. In Table 6.3 these values are listed. 

Table 6.3. Values of N for problem (6.2). 

Method D=5 D=6 D=7 D=8 D=9 D=lO D=ll 

DOPRI8 595 759 963 1227 1574 1990 2503 
PIRK8 379 495 623 786 978 1383 1874 

PIRKl0 327 388 490 704 884 977 1078 

6.3.2. Euler equations 

Next, we apply the codes to Euler's equation for a rigid body (cf. (6.1)). The 

performance of the code is presented in Table 6.4. 

Table 6.4. Values of N for problem (6.1) with T=60. 

Method D=6 D=7 D=8 D=9 D=lO D=ll D=l2 

DOPRI8 415 576 728 898 1133 1422 1817 

PIRK8 294 381 534 728 961 1172 1746 
PIRKlO 252 297 357 426 580 730 920 

6.3.3. Orbitequations 

Finally, we apply the codes to the orbit equations (cf. [8, Problem D2]) 

YI' =y3, YI(0)= 1-£, 

n'=y4, n(0) = 0, 

(6.3) y3'= 
- YI 

y3(0) = 0, o::;;r::;;20. 
(y12 + Y22)3/2 ' 

y4'= 
-n ~ 3 

(y12 + Y22)3/2 ' Y4(0) = ' £=To, 
£ 

The performance of the codes is presented in Table 6.5. An obvious conclusion 

which can be drawn, is that - at least for these three test examples - both PIRK 

codes are more efficient than DOPRI8; in the average, PIRK8 requires 3/4 of the 

number of /-evaluations that are needed by DOPRI8 to yield the same accuracy, 

whereas PIRKlO is almost twice as efficient. The superiority of PIRKlO, especially 

in the high-accuracy range, is undoubtedly due to its higher order. Therefore, it would 

be interesting to compare this method with an embedded (sequential) Runge-Kutta 
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pair of comparable order. Unfortunately, to the best of our knowledge, such formulae 

have not been constructed in the literature. 

Table 6.5. Values of N for problem (6.3). 

Method D=5 D=6 D=7 D=8 D=9 D=lO D=ll 

DOPRI8 615 723 831 1062 1284 1780 2024 

PIRK8 463 559 679 859 1099 1411 1876 

PIRKlO 378 448 540 662 784 911 1076 

7. CONCLUSIONS 

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that 

are capable of efficiently exploiting the parallelism of an MIMD computer 

architecture. Assuming that sufficient processors are available, it is shown how to 

derive 'optimal methods', i.e., methods requiring a number of parallelised !
evaluations equal to the order. Within the class of optimal methods considered, the 

required number of processors s is least with respect to the order p if the algorithm is 

based on an iterated Gauss-Legendre RK method and this minimal number is given 

by s=r p. It is known that optimal methods exist requiring a smaller number of 

processors (an example is the fifth-order method of Butcher, mentioned in the 

Introduction), but it is not clear how to formulate a general construction procedure to 

arrive at such methods for arbitrary order. 

A nice feature of the methods proposed is that they provide an embedded reference 

solution without additionalf-evaluations. This advantage has been utilized to make a 

variable step implementation which has been compared with the code DOPRI8, 

nowadays considered as 'the state of the art' for the automatic integration of ODEs. 

On the basis of some test examples, the performance of the new code is compared 

with DOPRI8 and, in terms of the required number of !-evaluations, demonstrates a 

superior behaviour. 

Another aspect is the simple implementation of the new algorithm. In the 

Appendix a FORTRAN subroutine is provided which accepts a general RK method 

of arbitrary order, defined in terms of its Butcher tableau. For example, if there is 

need for an automatic integration routine of order higher than 8, as is furnished by 

DOPRI8, then we can suffice to specify e.g. a high-order Gauss method (the 

construction of which is simple and fully described in [ 1]) and call this subroutine. 

Furthermore, for such accuracy demands, we remark that even in the case that the 

parallel evaluation of the derivatives is not possible (e.g. on a uniprocessor machine) 

or not relevant (e.g., because the evaluation off is very inexpensive and offset by the 

overhead), this code may still be of value. Since classical embedded RK pairs of such 
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high orders are lacking, it may turn out that, even in the non-parallelised form, the 

present code is more efficient than DOPRI8, in spite of its large redundancy with 

respect to the number off-evaluations (cf. the discussion following Theorem 2.1). It 

is easily verified that this approach can offer sequential embedded RK methods of 

arbitrary order p, using m·s+ 1 = (p2-p+2)/2 stages. This aspect, which is a direct 

consequence of the simplicity of the PIRK algorithm, needs further investigation. 
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APP~IX 
Here we give the implementation (in FORTRAN 77) of the optimal PIRK 

methods of the form (2.5), including error control. This subroutine offers the user 

the facility to specify an arbitrary Runge-Kutta method by means of the matrix A 

and the vectors bT and c (see also the description of these parameters). 

Although this routine has been coded in standard FORTRAN 77, it will require 

machine-dependent amendment as to exploit the parallelism. Therefore we shall 

discuss in some detail the most important loop in this subroutine, i.e., the 80-loop. 

It is here, that the parallel calculation of the components of the iterate rO) is to be 

performed (cf. (2.2)). A first observation is that this loop contains a call to another 

subprogram (viz., FCN). The separate compilation of subprograms prevents the 

compiler from actually parallelising this loop, since it is unknown what happens 

within FCN. Nevertheless, if the present source is offered to a compiler without 

giving any instructions, the outcome (i.e., the 'optimized' object code) will be the 

product of all kinds of operations, like unravelling, interchanging, distributing loops 

etc., and will certainly speed up the execution. However, the parallelisation will 

probably not completely fit in with the ideas as advocated in the present paper. 

Therefore, we have to insert an explicit specification concerning the way the 

compiler has to do its job; for example, we can specify that it is in this case without 

any danger to parallelise over the FCN-calls. Most parallel computers offer so-called 

'directives' for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall). 

Since these directives may differ for various parallel machines, we decided to code 

this loop in standard FORTRAN. 

Another observation is that the 80-loop contains two nested innerloops: one over 

the components of the ODE and one to form the innerproduct of a row of A and the 

iterate vector r0-1). If the parallel machine at hand has an architecture in which each 

processor is a vectorprocessor, then it may be advantageous to interchange these 

innerloops. Such considerations depend on the dimension of the ODE, the startup 

time of the particular vectorprocessor, the 'smartness' of the compiler, etc. 

To sum up, in order to obtain an optimal performance, the user of the subroutine 

PIRK is advised to adjust the 80-loop to the specific situation he is dealing with, 

like the number of processors available (perhaps even larger than s), the dimension 

of the problems to be solved, etc. 

SUBROUTINE PIRK(N, NR, FCN, T, V, TEND, TOL, H, S, P, 
+ NRA, A, B, C, VN, FN, RJ, RJM 1 .. BIGV, VREF) 

c------------------------------------------------------------------
c PIRK SOLVES AN INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST
C ORDER DIFFERENTIAL EQUATIONS OF THE FORM V'(T)=F(T,V(T)). 
C THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND 
C DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED. 
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C IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS 
C ASSUMED THAT THE NUMBER OF ST AGES IN THE RUNGE-KUTT A METHOD 
C. DOES NOT EXCEED THE NUMBER OF PROCESSORS AVAILABLE. 
C 
C MEANING OF THE PARAMETERS: 

C -----------------------------
C N 
C 

C NR 
C 
C 

C FCN 
C 
C 

C 

C 

C 
C 

C 
C 

C 

C T 
C 

C 
C 

C y 

C 
C 
C 
C TEND 
C 
C TOL 
C 
C 
C H 
C 
C 
C s 
C 
C p 

C 
C NRA 
C 
C 
C A 
C B 
C C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

- INTEGER VARIABLE 
THE DIMENSION OF THE SYSTEM 

- INTEGER VARIABLE 
FIRST DIMENSION OF THE ARRAYS RJ, RJM 1 AND BIGY AS 
DECLARED IN THE CALLING PROGRAM (NR .GE. N) 

- SUBROUTINE 
A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE 
F(T, Y(T)) 

ITS SPECIFICATION READS: 
SUBROUTINE FCN(N,T, Y ,F) 
DIMENSION Y(N),F(N) 

ON RETURN, F(I) (1=1, ... ,N) MUST CONTAIN THE VALUE OF 
THE I-TH COMPONENT OF THE DERIVATIVE VECTOR 
FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM 

- REAL VARIABLE 
THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET 
TO THE INITIAL VALUE. ON RETURN, T CONTAINS THE VALUE 
FOR WHICH Y IS THE SOLUTION 

- REAL ARRAY OF DIMENSION (AT LEAST) N 
THE DEPENDENT VARIABLE. ON ENTRY, Y SHOULD CONTAIN THE 
INITIAL VALUES OF THE DEPENDENT VARIABLES. 
ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T 

- REAL VARIABLE 
TEND SPECIFIES THE END POINT OF THE INTEGRATION INTERVAL 

- REAL VARIABLE 
TOL (>0) SPECIFIES A BOUND FOR THE LOCAL TRUNCATION 
ERROR 

- REAL VARIABLE 
ON ENTRY, H SHOULD BE GIVEN A VALUE WHICH IS USED AS A 
GUESS FOR THE INITIAL STEPSIZE 
INTEGER VARIABLE 
NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTT A METHOD 
INTEGER VARIABLE 
ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTT A METHOD 
INTEGER VARIABLE 
FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE 
CALLING PROGRAM (NRA .GE. S) 

- REAL ARRAY OF DIMENSION (NRA,L) W 1TH L .GE. S 
- REAL ARRAV OF DIMENSION (AT LEAST) S 
- REAL ARRAV OF DIMENSION (AT LEAST) S 

THE PARAMETERS A, BAND C DEFINE THE RUNGE-KUTT A 
METHOD, WRITTEN IN THE SO-CALLED BUTCHER-NOTATION 
(USUALLY, THE ELEMENTS OF CARE EQUAL TO THE ROW-SUMS 
OF THE MATRIX A). 
IN PRINCIPLE, ANV RUNGE-KUTTA METHOD CAN BE USED. 
HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE 
NUMBER OF STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE' 
METHOD IS SELECTED. THE CORRESPONDING A, BAND C CAN 



C BE FOUND IN: 
C J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES, 
C MATH. COMP. 18 (1964) PP. 50-64 
C YN - REAL ARRAY OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAY 
C FN - REAL ARRAV OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAV 
C RJ - REAL ARRAV OF DIMENSION (NR,L) WITH L .GE. S 
C USED AS SCRATCH ARRAV 
C RJM1 - REAL ARRAY OF DIMENSION (NR,L) W 1TH L .GE. s 
C USED AS SCRATCH ARRAV 
C BIGV - REAL ARRAV OF DIMENSION (NR,L) WITH L .GE. s 
C USED AS SCRATCH ARRAV 
C VREF - REAL ARRAV OF DIMENSION (AT LEAST) N 
C USED AS SCRATCH ARRAV 

c------------------------------------------------------------------
D I MENSI ON V(N), VN(N) ,FN(N), VREF(N) ,RJ(NR, ") ,RJM 1 (NR, *), 

+ BIGY(NR,*),A(NRA,*),B(*),C(*) 

INTEGER S,P 
LOGICAL REJECT 

c------------------------------------------------------------------
c THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING 
C THE INTEGRATION PROCESS 
C 

C 

C 

C 

NFCN 
NSTEPS 
NACCPT 
NREJCT 

NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F 
NUMBER OF INTEGRATION STEPS 
NUMBER OF ACCEPTED STEPS 
NUMBER OF REJECTED STEPS 

c------------------------------------------------------------------
COMMON/STAT /NFCN,NSTEPS,NACCPT ,NREJCT 

c---------------------------------------------------------
c SMALLEST NUMBER SATISFYING 1.0 + UROUND > 1.0 
C UROUND MAV REQUIRE AMENDMENT ON DIFFERENT MACHINES 

c---------------------------------------------------------
DATA UROUND/7.lE-15/ 

c------------------
c INITIALISATIONS 

c------------------
REJECT:.FALSE. 

NFCN=O 
NSTEPS:O 

NACCPT=O 
NREJCT:O 
TOL:MAX(TOL, 1 O.O*UROUND) 

c--------------------------------------------------------------
c ON ITERATING THE RUNGE-KUTT A METHOD, WE USE A PREDICTION 
C OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO 
C OBTAIN A RESULT OF ORDER P. 

c--------------------------------------------------------------
M=P-1 

c-------------------
c INTEGRATION STEP 

c-------------------
10 CONTINUE 

IF (H .LT. 1 O.O*UROUND) THEN 
WRITE(6, 1 )T 

FORMAT(' THE ROUTINE HAS ADVANCED THE SOLUTION UP TO 
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+ T=',E 16.8,/,' AND STOPPED BECAUSE THE STEP SIZE HAS', 

+ 'BECOME TOO SMALL'/' TRV A LESS STRINGENT VALUE', 

+ 'OF TOL OR CHANGE TO A HIGHER-ORDER METHOD') 

RETURN 

ENDIF 

IF (TEND-T .LT. UROUND)RETURN 

IF (T+H .GT.TEND) H=TEND-T 

c----------------------
c FORM THE PREDICTION 

c----------------------
DO 20 I=1,N 

20 VN(l)=V(I) 

CALL FCN(N,T,VN,FN) 

NFCN=NFCN+1 

30 NSTEPS=NSTEPS+1 

DO 50 L= 1,S 

D040I=1,N 

40 RJMl(l,L):FN(I) 

50 CONTINUE 

c----------------------------------------------
c IN THE 110-LOOP, THE ITERATION IS PERFORMED 

c----------------------------------------------
DO 110 J= 1,M 

c-------------------------------------------------------------
c IN THE 80-LOOP, THE S STAGES ARE PERFORMED CONCURRENTLY 

c-------------------------------------------------------------
D080 L:1,S 

D070I=1,N 

BIGV(l,L)=VN(I) 

DO 60 K= 1 ,S 

60 BIGV(l,L)=BIGV(l,L)+H"A(L,K)*RJM 1 (l,K) 

70 CONTINUE 

CALL FCN(N,T+C(L)*H,B IGV( 1,L),RJ( 1,L)) 

80 CONTINUE 

NFCN=NFCN+l 

c---------------------
c SHIFT THE ITERATES 

c---------------------
lF (J .LT. M)THEN 

DO 100 L= 1,S 

D090I=1,N 

90 RJM 1 (l,L):RJ(l,L) 

100 CONTINUE 

ENDIF 

110 CONTINUE 

c------------------------------------·----------
c CALCULATE THE FINAL SOLUTION OF THIS STEP 

C AND A REFERENCE SOLUTION FOR ERROR CONTROL 

c-----------------------------------------------
00 130 I=1,N 

V(l)=VN(I) 

VREF(I )=VN( I) 

DO 120 K= 1,S 

V( I ):V( I )+H*B(K)*RJ( I ,Kl 

120 VREF( I ):VREF( I )+H*B(K)*RJM 1 (I ,K) 

130 CONTINUE 



c----------------
c ERROR CONTROL c----- · _________ _ 

ERROR:0.0 

DO 140 I=1,N 

DENOM=MAX( 1.0E-6, ABS(V(I)), ABS(VN(I)), 2.0*UROUND/TOL) 

140 ERROR:ERROR+((V(l)-VREF(I ))/DENOM)**2 

ERROR:SQRT(ERROR/N) 

FAC:MAX( 1.0/6.0 ,MI N(3.0 ,(ERROR/TOL)**( 1.0/P)/0. 9)) 

HNEW:H/FAC 

IF (ERROR ~T.TOL)THEN 

c--------.----------
c STEP IS REJECTED 

c-------------------
lF (NACCPT .GE. 1) NREJCT:NREJCT+l 

REJECT :.TRUE. 

H=HNEW 

GOTO 30 

ELSE 

c-------------------
c STEP IS ACCEPTED 

c-------------------
NACCPT:NACCPT+ 1 

T:T+H 

IF (REJECT) THEN 

HNEW:MIN(HNEW ,H) 

REJECT =.FALSE. 

ENDIF 

H=HNEW 

GOTO 10 

ENDIF 

END 
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1. INIRODUCDON 

Block methods turned out to be efficient methods for solving the initial value 

problem for the system of ordinary differential equations (ODEs) 

411> = f(y(t)) 

on parallel computers (cf. e.g. Worland [10] and Chu & Hamilton [31). Most block 
methods occurring in the literature can be interpreted as block linear multistep 

methods (BLM methods), that is, they are derived from the linear multistep (LM) 

method 

in which Yn is replaced by an m-dimensional vector Y n := (ynm, Ynm+ 1, ... , 
Ynm+m-I)T and where the (scalar) coefficients of the polynomials p and <J' are 
replaced by matrices. Thus, in BLM methods the components of the block vector Yn 
represent approximations to the exact solution at equidistant points. 

In this paper, we consider block methods where the components of the block 

vector represent approximations to the exact solution at not necessarily equidistant 
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points. In this way, we obtain additional parameters for increasing the order of 

accuracy of the method. In the derivation of these methods it turns out to be 

convenient to start with a Runge-Kutta (RK) method, and, by analogy with BLM 

methods, to replace they-values generated by the method by vectors the components 

of which represent approximations to the exact solution. If these vectors are k

dimensional, then the RK parameters are replaced by k-by-k matrices. We shall call 

these methods block Runge-Kutta methods (BRK methods). 

In Section 2, we give a precise definition of BRK methods and we give examples 

of methods from the literature which can be written as BRK methods. The 

representation in BRK form provides a unifying way of describing all sorts of 

methods (including BLM methods) and is particularly convenient for describing 

block methods for use on parallel computers. In Section 3 the order conditions for 

explicit one-stage methods and implicit two-stage methods are given, and Section 4 

is devoted to the construction of these BRK methods with k = 2, 3, 4. We shall 

particularly be interested in explicit methods. For explicit methods with given k we 

tried to maximize the order and to minimize the number of processors without 

increasing the number of sequential right-hand side evaluations per step (we shall call 

this minimal number of processors the optimal number of processors). It is possible 

to derive explicit one-stage methods of order 2k-1, using not more than 2 

processors. However, if the requirement of zero-stability is imposed (which is crucial 

if the method is to be used as a method on its own), then the order reduces to k+ 1. 

We also derive zero-stable, explicit two-stage methods of order 2k for two-processor 

computers. In Section 5, the various methods are compared for a few test problems 

from the literature. 

It turned out that, like for all block methods, stability is a critical aspect of BRK 

methods. In this paper, we did not concentrate on stability aspects. Only when free 

parameters were available which could not be used for increasing the order, we have 

employed them to increase the stability of the method. 

2. BLOCKRUNG~KUITAMEIHODS 
Let us start with the conventional s-stage RK method 

i = l, ... , s+l; 

(2.1) 
(s+l) 

Yn+ I = Y n+ I , n = 0, I, .... 
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The general structure of the block Runge-Kutta (BRK) methods considered in this 

paper is a direct generalization of this conventional method. We introduce block 

vectors Yn, the components of which are numerical approximations to the exact 

solution values at k points. To be more precise, let Yn+I be defined by 

Ck= 1, 

where Yn,c denotes a numerical approximation to the exact solution value y(tn+ch). 

For scalar ODEs, we now define the s-stage block RK (BRK) method 

i = 1, ... , s+ 1; 

(2.1 ') 

where Ai and Bij are k-by-k matrices and where we use the convention that for any 

given vector v = (vj),J(v) denotes the vector with entries f(vj)- This method can be 

considered as the block analogue of (2.1 ). It is straightforwardly extended to systems 

of ODEs and therefore also to nonautonomous equations. In order to start the 

method, one needs the initial vector Yo, which requires as many starting values as 

there are distinct values Cj (J=l, ... ,k). 

In analogy with the Butcher array for describing the RK methods (2.1), i.e., the 

(s+ 1 )-by-(s+ 1) array 

b1 I 

bs, 1 

hs+l,l hs+l,s 

we may describe the BRK methods (2.1 ') by the k(s+ 1 )-by-k(s+ 1) array 

A1 B11 

Bss 

As+ I Bs+l ,I Bs+l,s 
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This notation is particularly convenient when more than two stages are involved. 

It frequently happens that the two last rows of this array are identical. In such cases, 

we shall omit the last row in order to save space. 

We call the method explicit if the matrices Bij vanish for}'?. i, and implicit 

otherwise. In this paper, we are mainly interested in explicit methods. For explicit 

methods, the k components of the blocks.f(Yj],) can be computed in parallel; hence 

if k processors are available, then (explicit) BRK methods require not more than s 
(sequential) right-hand side evaluations per step. However, the required number of 

processors is often less thank, without causing the number of (sequential) right-hand 

side evaluations per step to exceeds. For instance, it may happen that in the formula 

for a particular component of Yn+I no right-hand side evaluations occur, that is, all 

rows in the matrices Bij corresponding to this component vanish. In such cases, the 

processor assigned to this component is not needed. Similarly, if the rth column of 

all matrices Bij vanishes, then the computation of the corresponding component of 

Y11+ I does not require any right-hand side evaluation not already occurring in the 

formulas for the other components, so that there is no need to assign a processor to 

this component. We define the optimal number of processors as the number of 

processors for which the number of (sequential) right-hand side evaluations per step 

is minimal. In the explicit case, the representation (2.1 ') is very convenient for 

implementing the method on a computer, because the actual code is a direct 

translation of the formula (2.1 ') and the instructions for the computer in order to 

exploit the built-in parallelism of the method are obvious. 

The points tn and tn+c1h (j-:t;k) will respectively be called step points and block 

points. Block points coincide with step points if the corresponding value of c1 is an 

integer. Upon completion of the integration process, the accuracy of the numerical 

solution obtained does not necessarily be the same at all points tn+c1h. Points where 
the corresponding components of Yn+I do have the same order as the components 

corresponding to the step points tn will be called output points. 

and 

The general explicit one- and two-stage methods are respectively given by 

0 0 

B21 0 
i.e., Yn+I =A3Yn + hB3if(A1YnJ 

+ hB32f(A2Yn + hB2if(A1Y11 )). 
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Here,-0 denotes the k-by-k matrix with zero entries. 

As a numerical example of an (explicit) 3-stage method, we present the modified 

multistep method of Butcher [1] of order 5 as a BRK method: the block point vector 

is given by c = (O,l)T and the Butcher array assumes the form: 

0 

0 

0 3/8 9/8 

0 0 0 

-23/5 28/5 -26/15 0 32/15 -4 

0 1 0 0 0 0 
C = (0, l)T. 

0 0 0 0 0 0 0 

-1/31 32/31 -1/93 12/93 64/93 0 15/93 0 

The construction of higher-order BRK methods is rather difficult in the general 

case. In this paper, we shall construct high-order methods of a special form which are 

obtained by using the predictor-corrector (PC) technique. Our starting point is the 

special implicit two-stage method 

I 0 0 ±l A B C 
(2.2) = A ' 

A B C 

i.e., Yn+I = AYn + hBf(Yn) + hCf(Yn+1). 

If C does not vanish, then we can use this method as corrector and if C=O, then it 

can be used as (a one-stage) predictor formula, e.g., 

(2.2') *8· i.e., Yn+I =AYn + hBf(Yn)-

From this pair we can generate higher-stage BRK methods by PC iteration provided 

that the block point vectors c:=(CJ, ... ,ck)T are identical. For example, in PECE mode 

we obtain the special two-stage BRK method 
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I 

D 

0 0 
E 0 

(2.3) , i.e., Yn+l = AYn + hBf(YnJ + hCf(DYn + hEf(YnJJ. 

A B C 

Finally, it should be remarked that (2.2) is also the representation of the so-called 

general linear methods introduced by Butcher in 1966 (see Butcher [2]). Most 

methods from the literature (including the general BRK method (2.1 ')) can be cast 

into the form (2.2). However, although the original method is explicit, the general 

linear method version is often implicit. For example, the explicit two-stage BRK 

method (2.3) can be rewritten in the form (2.2) by redefining the matrices A, B and 

C in (2.2), but C will not be a zero matrix. Thus, for implementation of higher

stage BRK methods on parallel computers, the representation (2.2) is less suitable. 

In the following subsections, we present in BRK form a number of methods 

which have been proposed for use on parallel computers. In particular, we give 

examples of the predictor-corrector methods of Miranker and Liniger [8] and 

Shampine and Watts (cf. Worland [10]), and the multi-block methods of Chu and 

Hamilton [3]. A discussion of block methods for parallel computation may be found 

in Gear [5]. 

2.1. Methods of Miranker and Lmiger 

The methods of Miranker and Liniger [8] can be presented as explicit, one-stage 

BRK methods. For example, their second-order method can be represented by the 

array 

1 0 

0 
(2.4) c=(2,l)T, 

0 2 0 

0 1/2 1/2 

and their fourth-order method by 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 
(2.5) C = (-1, 0, 2, J)T. 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 -1/3 4/3 8/3 -5/3 

0 0 0 l /24 -5/24 9/24 19/24 



53 

Both methods require only two processors and respectively two and four starting 

values when implemented in BRK form. 

2.2. Predictor-Corrector method of Shampine and Watts 

The PC method of Shampine and Watts [9] is based on the block method of 

Clippinger and Dimsdale (1958), which can be presented in the form (2.2) as 

I 0 

0 

0 0 5/24 1/3 -1/24 

0 0 1/6 2/3 1/6 
(2.6) 

and on the predictor method defined by 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
(2.7) C = (-1/2, 0, 1/2, l)T. 

0 0 I 0 0 0 0 0 

0 0 0 0 0 0 0 

0 1/3 1/3 1/3 0 1/4 -1/3 13/12 

0 1/3 1/3 1/3 0 29/24 -3 79/24 

Method (2.6) is one of the oldest block methods proposed in the literature. Shampine 

and Watts proved that this corrector method is fourth-order accurate at the step 

points. They also proved that the predictor method is third-order accurate and 

possesses favourable stability properties. This predictor can also be applied as a 

method on its own and requires four starting values and one processor. 

In order to apply the PC pair (2.7)-(2.6) using the BRK format, we rewrite the 

corrector in the form 
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1 0 0 0 

0 l 0 0 

0 0 l 0 

0 0 0 I 

0 0 }; 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0' 0 0 0 

0 0 0 0 o, CJ 5/24 0 o, 1/3-1/24 

0 ff 0 r 0 0 0 1/6 0 0 2/J. I/6 
(2.6') ,. c= (-In, o,, 1/2, l}T. 

The PC method of Shampine and Watts was implemented by Worland PO] on two 

processors, 

2.3. Mulfi-bloclt methods of Cim and Hamilton 

Chu and Hamilton [3~ generalized the cyclic linear mu:ltiistep, nietlwds. of 

Donelson and Hansen [4]. Families of thir.d0 and fourth,-order multi,.block methods 

were derived. We give two eX:amples of tneir k=2 methods, wlirich can be represented 

in the form (2.2) or (2.2'). The first example is the explicit thirct-orcler meth0d 

r 0 

0 
(2.8) C = (1/2,. l)T, 

5 -4 1 2 

28-27 6 9 

and the second example is the fourth-order implicit method 

0 

0 1 

0 . -1/48 13/48 13/48 -l/48 

0 0 1/6 213 1/6 
(2.9} C =(l'/2,l)T_ 

2.4. Parallel MRK methods 

An example of methods which can be written in the form (2.3)\ and which do not 

originate from PECE methods, is the famity of first-order, explicit parallel MRK 

methods (cf. van der Houwen et al. [61) 
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0 0 0 0 0 

0 0 0 0 0 

0 1--a, a, 0 0 0 
(2.10) c = (0, c, l)T, 

0 0 0 0 0 

0 0 0 
.l!1_ 
(l--a,) 

0 

0 0 l-c-b1 b1 C 

where a 1, b 1, b3 and c are free parameters. Third-order accuracy is obtained by setting 

5 
b3 =--, 

6c 

with c as a free parameter. These methods require three starting values and only one 

sequential right-hand side evaluation on two processors. Notice that (2.10) is of the 

general explicit one-stage form in which the matrix A 1 has not been replaced by the 

identity matrix as was the case in (2.2'). 

3. ORDER CONDffiONS 
In this section, we restrict our considerations to parameter arrays of the form 

(2.2) either with C=O or C~O. Let the exact solution be substituted into (2.2). 

Then, in general, the order conditions are derived by requiring that the residual vector 

is of order hP+1 for all components (that is, we require that all components of Yn+l 

are pth-order approximations to the corresponding exact solution values). In this 

way, we obtain the following condition for pth-order consistency: 

(I - zC) exp(zc) - (A + zB) exp(zc - ze) = O(zP+ 1 ), 

e := (1, l, ... , t)T, c := (ct, c2, ... , ck?-

By defining the error vectors 

Co := Ae - e; Ct := A(c - e) +Be+ Ce - c; 
(3.la) 

the conditions for pth-order consistency take the form 

(3.lb) Cj = 0, j = 0, I, ... , p. 

Here, powers of vectors are meant to be componentwise powers. 



- In the construction of high.order formulas it is con:venient to specify the matrix 

A in: (2.2) in' advance, because the eigenvalues of A should lie in a, zer.o~stable 

configuration, that is, they should' be on the unit disc, those on the unit circle: being 

simpfo (such a zero-stability condition is difficult to satis·fy simufraneously with the 

order conditions unless k is su1ifieiently small). A natural choice for the matrix A is 

su~tra by observing that 

tn+c;fz 

Yn+l -Yne a,:. ( J f('yft);)dt]. 
tn 

Replacing the integral term by a quadrature formula, we obtain a method' where A is 

of the form, 

this matrix has one eigenvalue r and k-1 zero eigenvalues, so that a reasonable 

srabifity region may be expected ~cf. the analogous situation for linear mulitistep 

methods of Adams-type}. BR.K methods possessing a matrix A of the form fl.2) will 

oe called Adams-type methods. 

Assuming that A is given and is such that Ae=e, the most simple way to derive 

high•order formulas is to specify the vector c. This leaves us with a linear system of 

p equations for each c0mponent formula, of the corrector fonnula. Howeve11, in this 

app:i:oacfr, the free parameters in the vector c are nor exploited. These firee parameters 

may be used for minimizing the error vector C p+ 1· For instance, we may add to the 

order conditions (3.1) the condition that c is such that ll C p+ r 11 is minimal for some 

norm ll· 11. Alternatively,. one may sac:i:ifice the l'inearity of the order conditions and 

choose c such that certain components of the error vector vanish, tnat is, it is not 

necessary that all components of Y n+ 1 are ptn-order approximations. 

io be more general, we denote the order of consistency of the formula fox: Yn,ci 

by Pi and define tne set J q := f iE {I, 2, ... , k} I Pi=q}. Now, we introduce the 

following property: 

Property 3.1. (i) Jp u lp-1 = { 1,.2, ... ,k}, 

(ii} for each ie J p, the matrix A has vanishing elements aij for aH 

jf=-lp-1.· 
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If this-property is satisfied, then the method (2.2) produces pth-order results at the 

points tn+c;h, n=l,2, ... and all iElp. One may interpret this as a form of super

convergence. 

As an example, in the Adams-type BRK methods with matrix A of the form 

(3 .2 ), the first k- I components of Y n only occur in the right-hand side as argument 

of the function f, so that these components are allowed to be of one order less than 

the order of Yn, without decreasing the order of the approximations at the points tn. 

We recall that from an explicit and implicit BRK method with identical block 

point vector c:=(q , ... ,ck)T, we can derive higher-stage BRK methods by PC 

iteration. By requiring that the explicit method (predictor) and the implicit method 

(corrector) provide approximations to y(tn+c1h), respectively of orders q and p, for all 

}, we obtain after r iterations a method which provides approximations of order 

p*=min {p, q+r}. Since the predictor need not to be stable, one can employ the full 

freedom of the generating matrices, so that q is usually sufficiently large to get the 
maximal attainable order p of the corrector in just one correction (PECE mode). If 

not, then one may decide to continue the iteration. 

4. CONSTRUCTION OF BRK MEmODS 
Since the implementational complexity of the BRK method is mainly determined 

by the number of starting values and the associated storage needed to implement the 

method, we shall distinguish the various methods by their number of starting values. 

The methods constructed in the following subsections will be compared with 

methods from the literature. 

4.1. Methods requiring two starting values 

In this subsection we consider methods where the block vector Yn is defined by 

Yn+I := (yn,c, Yn+Jl. 

At first sight, it would be natural to choose c=l/2. However, as we shall see, a more 

judicious choice is possible. 

4.1.1. Explicit one-stage methods. We shall construct the family of second-order 

BRK methods of Adams-type and the general family of third-order methods. 

Second-order methods of Adams-type. The conditions (3.1) with C=O and A defined 

by (3.2) can be satisfied for p=2 and yield 
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1 0 

0 
(4.1) 

-c2 c(2-c) 
0 

2(1-c) 2(1-c) 
-1 3-2c 

0 -- --
2(1-c) 2(1-c) 

with error vector 

(4.2) 1 (c2(c-3)) C3=- . 
2 3c-5 

The following special cases of (4.1) will be tested in the numerical experiments at 

the end of this section: 

c=O 
C = l/2 

C =5/3 

c=2 
c=I+4113 

c=3 

( 4.1) reduces to the Adams-Bashforth method 

'natural choice' 

Local error at tn+ 1 is O(h4) 

( 4.1) reduces to Miranker-Liniger method (2.4) 

IIC3ll00 minimized 

Local error at tn+ch is O(h4) 

C3 = ( 0.0, -2.5)T 

C3 ""(-0.3, -1.s)T 

C3 ""(-1.9, o.o)T 

C3 = (-2.0, +0.5)T 

C3 ""(-1.4, +1.4)T 

C3 = ( o.o, +2.0)T 

We observe that the case c=S/3 will raise the order to 3 at all step points tn, in spite 

of the second-order accuracy of Yn,c, because of the special form of the matrix A (cf. 

Property 3.1). 

Third-order methods. Next we construct the family of one-stage BRK methods in 

which all components are at least of third order. We find the method 

1 0 

0 
(4.3) 

' 
c = (c, l)T, C ::f. 1, 

c2(3-c) 1-3c c2 C 

(1-c)3 (1-c)3 (1-c)2 (1-c)2 

5-3c -c3+3c2-4 2-c (2-c)2 

(1-c)3 (1-c)3 (1-c)2 (1-c)2 

with error vector 
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This method is zero-stable for all values of c for which the eigenvalues of A are on 

the unit disc and are not both equal to 1. Since A has the eigenvalues 1 and 

(c2-2c-5)/(c-1)2, we obtain the condition 

c2-2c-5 
A := -(-c--1-)2-

This leads to the necessary condition 

(4.4) c'2!1+"✓3. 

The parasitic eigenvalue A vanishes for c=l ±"«>. Unfortunately, the value c=2 which 

makes Yn+l fourth-order accurate is not in the range (4.4). If c=l/2, then the method 

reduces to the method (2.8) of Chu and Hamilton. 

A number of experiments was carried out in order to illustrate the effect of c on 

the accuracy of the methods (4.1) and (4.3). We chose the nonlinear initial value 

problem 

(4.5) y'(t) = sin(y5) - sin(sin5(t)) + cos(t), y(O) = 0, 0::;; t::;; 1, 

with exact solution y(t)=sin(t). 

In Table 4.1 the results are given. The absolute error obtained at the end point of 

the integration interval is written in the form 10-d and the values of d are given in 

the table (d may be interpreted as the number of correct decimal digits). Each column 

contains results which required the same number of sequential right-hand sides. In 

these and subsequent experiments, the starting values incorporated in the initial 

vector Yo are taken from the exact solution. 

These results show the theoretical order of accuracy. It is clear that the choice 

c=l/2 is not the best possible. Furthermore, the value c=1+4113 (minimal-norm

value) does not improve the accuracy, so that we refrain from considering this special 

case in the subsequent sections. Notice that the method (4.1) with c=S/3 produces 

results which are comparable with the results of the method (4.3) with c=l ± K 
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Table 4.1. Correct decimal digits at t==I for problem (4.5) obtained 

by BRK methods with k==2 and s==l. 

Sequential right-hand sides 6 12 24 48 96 order 

Adams-Bashforth method 1.8 2.4 3.0 3.6 4.2 2 

Miranker-Liniger method (2.4) 2.7 3.2 3.7 4.3 4.9 2 

BRK method (4.1): c==l/2 2.0 2.5 3.1 3.7 4.4 2 

BRK method (4.1): c==1+4113 2.1 2.7 3.3 3.9 4.5 2 

BRK method (4.1): c==3 1.9 2.5 3.1 3.7 4.3 2 

BRK method (4.1): c==5!3 3.1 4.0 5.0 5.9 6.8 3 

BRK method (4.3): c==l+'V6 3.1 4.0 4.9 5.8 6.7 3 

BRK method (4.3): c==l-% 3.3 4.1 4.9 5.8 6.7 3 

4.1.2. Implicit two-stage methods of Adams-type. The conditions (3.1) with 

nonvanishing matrix C can be satisfied for p==4 by 

0 

0 
-c3 c(c2-6c+6) c(c2-6c+6) -c3 

(4.6) 0 
12(1-c) 12(1-c) 12(1-c) 12(1-c) 

(1-2c) -6c2+10c-3 3-2c 6c2-14c+7 
0 

12(1-c)(2-c) 12c(l-c) 12c(l-c) 12(1-c)(2-c) 

with c == (c, l)T, c-:;:. 0, 1, 2. 

The corresponding error vector is given by 

The following special cases of (4.6) will be considered: 

( 11 8 )T (4.6) is equivalent with the corrector (2.9) C5 == - 192 , - 192 

( 4'V5 )T Local error at tn+l is O(h6) C5 == - 125 , 0 

4.1.3. Predictor-corrector methods. In order to 'solve' the corrector equation defined 

by (4.6) one may use a PC method with predictor defined by (4.3). The PC methods 

determined by the matrices (4.3)-(4.6) require two starting values and, in PECE 

mode, they all have at least order 4. For c==l-ffi5, we achieve order 5 in PE(CE)2 
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mode. We remark that for the predictor formula, the value of c is not required to 

satisfy the inequalities ( 4.4 ). 

We illustrate the performance of the PC method (4.3)-(4.6) by comparing it with 

the 2-step Adams PC method (notice that the BRK method (4.3)-(4.6) with c=l/2 is 

equivalent with the Chu-Hamilton pair (2.8)-(2.9)). In the Tables 4.2, the correct 

decimal digits at t=l and the total numbers of sequential right-hand side evaluations 

are listed for the various methods in PECE mode and in PE(CE)2 mode. 

Table4.2a. Correct decimal digits at t= 1 for problem ( 4.5) obtained 

by BRK methods in PECE mode with k=2. 

Sequential right-hand sides 6 12 24 48 96 

Two-step Adams-PC method 2.1 3.1 4.1 5.0 5.9 

Chu-Hamilton pair (2.8)-(2.9) 4.3 5.4 6.5 7.6 8.7 

BRK method (4.3)-(4.6): c=l -ffi5 4.8 5.4 6.5 7.6 8.8 

Table 4.2b. Correct decimal digits at t= 1 for problem ( 4.5) obtained 

by BRK methods in PE(CE)2 mode with k=2. 

Sequential right-hand sides 6 

Two-step Adams-PC method 1.8 

Chu-Hamilton pair (2.8)-(2.9) 3.9 

BRK method (4.3)-(4.6): c=l -ffi5 3.9 

4.2. Methods requiring three starting values 

The block vector Yn is now defined by 

12 

3.1 

5.7 

5.5 

24 48 96 

4.2 5.1 6.0 

9.3 8.4 9.5 

7.0 8.5 10.0 

order 

3 

4 

4 

order 

3 

4 

5 

providing us with two free parameters. As before, equidistant output points need not 

to be the best choice. Because of the rapidly increasing complexity of the derivations 

if more than 2 starting values are used, we shall not consider the general case as in 

the preceding section, but we shall restrict our considerations to a few special cases. 

4.2.1. Explicit one-stage methods. We consider Adams-type methods and a more 

general family of zero-stable methods. 

Third-order methods of Adams-type. If C=O, then the following array satisfies the 

conditions (3.1) for p=3 and for all ( distinct) values of CJ and c2 different from 1: 
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0 0 

0 I 0 

0 0 
(4.7) 

0 0 a1 - <crl)b1 (c1-l)b1 c 1 - a 1 + (c 2-c1)b1 

0 0 a 2 - (c2- I )b2 (c1-J)bz c2 - a 2 + (crc 1 )b2 

0 0 a 3 - (c 2- I )b3 (c1-l)b3 c3 - a3 + (crc1)b3 

where c = (CJ, c2, J)T and 

i = 1, 2, 3. 

We restrict our considerations to the two-processor case, that is, we set CJ =0. By 

virtue of the special form of A we obtain order p=4 at the step points if the third 

formula has order 4 while the first and second formula have order 3. Setting the third 

error component equal to zero we find ci= 17 /l 0. 

Fourth-order methods. Let us consider methods of the form 

I 0 0 

0 I 0 

0 0 
(4.8) C = (0, C, J)T. 

0 0 0 0 0 

a21 a22 a23 b21 b22 b23 

a31 a32 a33 b31 b32 b33 

Solving the conditions (3.1) for p=4 with c=l/2 we obtain 

0 0 

0 0 

0 0 
c = (0, 1/2, I )T, 

0 0 0 0 0 

-9-a 9 l+a (-10-a)/6 (-22-4a)/6 (8-a)/6 

-b 64 -63+b (-9-b)/6 (I 08-4b )/6 (99-b )/6 
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where_a and bare free parameters. We could have used these parameters for increasing 

the order of accuracy to p=5. However, then the method turns out to be zero

unstable. Therefore, we shall employ them for improving the stability of the 

method. In particular, we choose a and b such that the parasitic roots of the 

characteristic equation of A vanish. This characteristic equation is given by 

(8- 1) (8 2 + (55 -b)8+ 9b- 64a - 576) = 0, 

so that we are led to the values a= - 81/64 and b = 55. The corresponding Butcher 

array becomes 

1 0 0 

0 0 

0 0 
(4.9) , C = (0, 1/2, l)T. 

0 0 0 0 0 

-495/64 9 -17/64 -559/384 -271/96 593/384 

-55 64 -8 -32/3 -56/3 22/3 

The following table illustrates the performance of the above explicit, one-stage 

methods. 

Table4.3. Correct decimal digits at t= l for problem ( 4.5) obtained 

by BRK methods with k=3 and s= l. 

Sequential right-hand sides 6 12 24 48 96 order 

Adams-Bashforth 3.2 3.9 4.8 5.6 6.5 3 

BRK method (4.7): (q,ci) = (0,1/2) 3.4 4.2 5.1 6.0 6.9 3 

BRK method (4.7): (q,c2) = (0,17/10) 4.1 5.3 6.5 7.7 8.9 4 

BRK method (4.9) 4.0 5.1 6.4 7.6 8.8 4 

4.2.2. Implicit two-stage methods. We assume the generating array of the form 

1 0 0 

0 1 0 

0 0 
(4.10) 

0 0 0 0 0 0 0 0 

a21 a22 a23 b21 b22 b23 0 C22 C23 

a31 a32 a33 b31 b32 b33 0 c32 C33 
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with c = (0, c, l)T and we derive a fifth-order method of Adams-type and a sixth-order 

method with increased stability interval which is not of Adams-type. 

Adams-type method of order 5. We choose c=l/2 and A of the form (3.2), and find 

that the order conditions (3 .1) can be satisfied for p=5 by 

1 0 0 

0 1 0 

0 0 
(4.11) 

0 0 0 0 0 0 0 0 

0 0 11/1440 -37/720 19/60 0 173/720 -19/1440 

0 0 -1/180 1/45 2/15 0 31/45 29/180 

with c = (0, 1/2, l)T. 

4.2.3. Predictor-corrector methods. We consider two PC methods which are in PECE 

mode of orders 5 and 6, respectively. 

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11) 

detl!rmine a PC method of order p=5. It requires three starting values and, if two 

processors are available, then only two sequential right-hand side evaluations per step 

are needed. 

Method of order 6. Next we consider PC methods where the predictor and corrector 

are generated by matrices of the form (4.8) and (4.10), and where c is still a free 

parameter. We try to construct a PC method which is of order 6 in PECE mode by 

choosing the free parameters such that the corrector formula for Yn+ 1 becomes of 

order p=6, whereas the other corrector formula and the two predictor formulas have 

order p=5. 
To that purpose, we have investigated methods where 

[ 

0 0 

A:= 0 0 

a 0 

(notice that A does not refer to the second component of the block vector so that the 

corrector formula corresponding to this component may be of one order less than that 
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of the.third component). This leads to a one-parameter family of sixth-order PECE 

methods which can be represented in the form (2.3), i.e., 

Yn+I =AYn + hBf(Yn) + hCf(DYn + hEf(Yn)). 

The free parameter will be used to improve the (linear) stability of the method. The 

(linear) stability of this two-stage BRK method can be investigated by applying the 

method to the test equation y'=Ay to obtain the recursion 

Yn+l = R(z) Yn, R(z) := A + z(B +CD)+ z 2CE, z := Ah, 

and by requiring that the matrix R satisfies the simple Von Neumann stability 

condition, that is, it has its eigenvalues on the unit disc those on the unit circle 

being simple. Choosing c as the free parameter, we start with determining a range of 

relevant c-values by requiring that R(O) satisfies the stability condition (zero

stability). Since the eigenvalues of R(O)=A are given by 0, 1 and -a, we require 

-1 ::;-a <1. It can be shown that imposing the conditions for sixth-order accuracy on 

the corrector formula for Yn+I leads to 

a= 
15c2 -3Ic+ 13 

15c2 + c- 3 

so that c should be not less that 1/2 in order to ensure zero-stability. As before, we 

shall not consider the maximization of the general stability boundary. Instead we 

consider the simpler case of maximizing the real stability boundary. A numerical 

search reveals that the real stability boundary is maximized for c"" 4.16 and is 

approximately given by 2.247. In order to obtain (simple) rational expressions for 

the entries of the various matrices, we do not choose this 'optimal' value of c, but 

we set c = 4 yielding the stability boundary 1. 766. 

The predictor is generated by the matrices 

I 0 0 

0 I 0 

0 0 

(4.12) C = (0,4, l)T 

0 0 0 0 0 
27 -25 -325 25 100 
2 54 27 5 

9 9 

3 5 -16 1 -1 16 
2 54 27 2 18 9 
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-and the corrector by 

0 0 

0 1 0 

0 0 
(4.13) 

0 0 0 0 0 0 0 

0 0 
4 76 2 

0 
58 

75 45 45 225 

129 112 1141 -47 2110 26 
241 0 241 7230 4338 2169 0 10845 

with c = (0, 4, I )T. 

The following table is the k=3 analogue of the preceding tables: 

Table 4.4. Correct decimal digits at t=l for problem (4.5) obtained 

by BRK methods in PECE mode with k=3. 

Sequential right-hand sides 6 12 24 48 96 

Three-step Adams-PC method 3.6 4.5 5.7 6.9 8.1 

BRK method (4.9)-(4.11) 4.5 6.0 7.5 9.0 10.5 

BRK method (4.12)-(4.13) 5.0 6.9 8.9 10.9 13.0 

4.3. Predictor-Corrector method requiring four starting values 

0 
88 
45 

896 
2169 

order 

4 

5 

6 

We have searched for two-processor predictors in the class of methods of the form 

0 0 0 

0 I 0 0 

0 0 I 0 

0 0 0 I 
C = (-1, 0, C, l)T. 

0 I 0 0 0 0 0 0 

0 0 0 0 0 0 0 

031 032 033 034 b31 b32 b33 b34 

041 042 043 o44 b41 b42 b43 b44 

For a given value of c we can achieve order 7 by solving two linear systems of 8 

equations each in 8 unknowns. 
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The corrector was chosen such that 

0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

031 o'32 0 l-a31-a32 b31 b32 b33 b34 0 0 C33 C34 

041 042 0 l-a41-a42 b41 b42 b43 b44 0 0 C43 C44 

withc = (-1,0,c, l)T. 

By this choice we achieve that the order conditions (3.1) simplify considerably. 

Given the value of c, this method can be made order 8 accurate in each component 

equation, again by solving two linear systems of 8 equations in 8 unknowns. These 

four systems of 8 equations have been solved numerically in terms of the parameter c 

and for a range of c-values we computed the real stability boundary /3real of the 

PECE mode. We found that /3real was maximal for c = 2.58 (/3real = 0.358). In order to 

obtain a method with (simple) rational parameter values we chose c = 512 resulting in 

f3real = 0.302. The corresponding predictor is generated by 

0 0 0 

0 1 0 0 

0 0 0 

0 0 0 
(4.14) 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

5975 1539 537 2793 225 567 
9 

2205 
224 20 -15 -32 32 8 32 

82 117 63232 2 3 18 128 
343 125 128625 -3 49 25 - 1225 

with c = (-1, 0, 5/2, J)T; the corresponding corrector is defined by 
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( 4.15) 

where 

1 
A =30469 

1 
B =30469 

1 
C = 30469 

0 

0 

53·73· ! 3·83 
210 

0 

36·53·263 
21 

4549 33· ! 039 

0 0 

0 0 

33.54.73 36·52·7· l 7·67 
~ 216 

23029 33·13-1709 
3-7 5·7 

0 0 0 

0 0 0 

32·5·7·809 
0 0 23 

0 0 
29·11 
3·5·7 

0 0 

0 

0 
36·73·827 

- 210 

0 - 33 79 

0 0 

0 0 

35.52.73 35·5·73·13 
-y- 25 

28·32·3 l 32·61·337 
5·7 5 

0 

0 

33·53·73·37 
216 

14369 

and c = (-1, 0, 5/2, 1 )T. Table 4.5 compares this method in PECE mode with the 

four-step Adams and four-step Shampine-Watts method. 

Table 4.5. Correct decimal digits at t=l for problem (4.5) obtained 

by BRK methods in PECE mode with k=4. 

Sequential right-hand sides 6 12 24 48 96 order 

Four-step Adams-PC method 3.3 4.8 6.4 7.9 9.5 5 
Shampine-Watts pair (2. 7)-(2.6') 3.6 4.8 6.0 7.2 8.4 4 
BRK pair (4.14)-(4.15) 7.3 10.2 12.8 8 
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5. SUMMARY OF IVIETHODS AND NUMERICAL EXAMPLES 

The explicit, zero-stable methods and the PC combinations discussed in the 

preceding sections will be applied to a number of initial value problems. In addition, 

we give the results obtained by the classical Adams formulas. First, however, we 

summarize the main characteristics of the various methods. 

5.1. Summary of methods 

Below we have listed a few important features such as the block point vector c, 

the order p, and the number of processors P opt needed to implement the method with 

only one right-hand side evaluation per step. 

Table 5.la. Survey of explicit one-stage BRK methods of the form (2.2'). 

Reference cT Popt p Remarks 

Miranker-Liniger [8] (2, 1) 2 2 See (2.4) 

(-1,0,2,1) 2 4 See (2.5) 

Shampine-Watts [9] (-1/2,0,1/2,1) 3 See (2.7) 

Chu-Hamilton [3] (l/2,l) 2 3 See (2.8) 

This paper (c,l) 2 3 See (4.1) with c=5/3 

(c, l) 2 3 See (4.3) 

(q,c2,l) 2 3 See (4.7) 

(CJ,C2,l) 2 4 See (4.7) with (q,c2) = (0,17/10) 

(0, 1/2, l) 2 4 See (4.9) 

(0,4, l) 2 5 See (4.12) 

(-1,0,5/2, I) 2 7 See (4.14) 

Table 5.lb. Survey of implicit BRK methods of the form (2.2). 

Reference cT Popt p Remarks 

Clippinger-Dimsdale (l/2,l) 2 4 See (2.6) 

Chu-Hamilton [3] (l/2,l) 2 4 See (2.9) 

This paper (c, l) 2 5 See (4.6) with c=l--fs/5 

(0,1/2,1) 2 5 See (4.11) 

(0,4, I) 2 6 See (4.13) 

(-1,0,5/2,l) 2 8 See (4.15) 
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Table 5.lc. Survey of PC pairs in PE(CE)' mode. 

Predictor Corrector cT 

(2.7) (2.6') (-1/2,0, 1/2, 1) 

(2.8) (2.9) (1/2,1) 

(4.3) with c=l-fs/5 (4.6) with c=l-fs/5 (c, 1) 

(4.9) ( 4.11) (0, 1/2, 1) 

(4.12) (4.13) (0,4, 1) 

(4.14) (4.15) (-1,0,5/2,1) 

5.2. Nonlinear problem with rapidly increasing solution 

The first test problem is the nonlinear problem 

(5.1) y'(t) = -y3 + t9(10 + t21 ), y(0) = 0, 0::; t::; 1, 

p 

4 

4 

5 

5 

6 

8 

r 

1 

2 

with exact solution y(t)=t10. In Table 5.2 the results are listed. Since the number of 

sequential right-hand side evaluations per step varies from 1 to 3 for the various 

methods, we adapted the stepsize as to obtain that each column of this table contains 

results with an equal number of sequential right-hand side evaluations over the whole 

integration interval. 

A first observation is that most parallel methods behave more efficiently than the 

corresponding one-processor Adams methods, showing that already on two-processor 

machines parallelism can be exploited. Furthermore, these results clearly demonstrate 

the superiority of the high-order methods, especially the 6th- and the 8th-order BRK 

methods. It should be remarked that these two methods produce unstable results 

(indicated by an '*' in Table 5.2) for large stepsizes, in spite of their large real 

stability boundary. The reason is that these methods employ a block point tn+ch, 

with c much larger than 1, viz. c=4 and c=5/2, respectively. Since the modulus of 

of/c)y, which determines the maximally allowed stepsize, is a rapidly increasing 

function oft (at the solution, loflc}yl behaves as 3·t20), it is clear that an evaluation 

of/beyond the endpoint t=l may easily cause instabilities. 
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Table 5.2. Correct decimal digits at t=l for problem (5.1). 

Sequential right-hand sides 6 12 24 48 96 order 

Two-step Adams-Bashforth method 0.3 0.8 1.3 1.9 2.5 2 

Miranker-Liniger method (2.4) 0.6 1.2 1.9 2.5 3.1 2 

BRK method (4.1): c=5/3 2.6 2.4 3.1 3.9 4.8 3 

BRK method (4.3): c=l--f6 0.5 1.2 2.0 2.9 3.8 3 

Two-step Adams pair: PECE 0.2 0.9 1.7 2.5 3.4 3 

Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 1.1 1.9 3.0 4.2 5.5 4 
BRK pair (4.3)-(4.6): PE(CE)2, c=l-'✓5/5 2.0 2.9 4.1 5.7 7.4 5 

--------------------------------------------------------
Three-step Adams-Bashforth method 0.5 1.1 1.9 2.7 3.6 3 

Method (4.7): (q,ci) = (0,17/10) 2.0 2.6 3.7 4.8 6.0 4 

Three-step Adams pair: PECE 0.3 1.1 2.1 3.3 4.5 4 

BRK pair (4.9)-(4.11): PECE 1.2 2.2 3.6 5.1 6.7 5 

BRK pair ( 4.12)-( 4.13): PECE * * 1.5 5.3 7.4 6 

--------------------------------------------------------
Four-step Adams-Bashforth method 0.6 1.4 2.5 3.6 4.8 4 

Miranker-Liniger method (2.5) 1.1 2.3 3.5 4.7 5.9 4 

Four-step Adams pair: PECE 1.3 2.6 4.0 5.5 7.0 5 

Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 1.8 2.9 4.1 5.3 4 

BRK pair (4.14)-(4.15): PECE * 1.3 5.6 9.0 11.6 8 
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5.3. Orbit equation 

The second problem was taken from the test set of Hull et al. (7]: 

(5.2) 

YI' = Y3, 

Y2° = Y4, 

y3' = -y1 (yJ 2 + yz2)-312, 

y4, = -yz (yi 2 + Y22)-312, 

Yl (0) = 1 - e, 
yz(0) = 0 

e = 0.3 

Table 5.3. Correct decimal digits at t=20 for problem (5.2). 

Sequential right-hand sides 240 480 960 1920 3840 order 

Two-step Adams-Bashforth method 0.3 0.7 1.2 1.7 2.3 2 

Miranker-Liniger method (2.4) 0.5 2.1 2.1 2.5 3.1 2 

BRK method (4.1): c=5!3 0.3 1.2 2.1 3.0 3.9 3 

BRK method (4.3): c=l-'V6 0.3 1.2 2.1 3.0 3.9 3 

Two-step Adams pair: PECE -0.1 0.6 1.4 2.3 3.2 3 

Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 -1.5 0.1 3.7 5.2 6.5 4 

BRK pair (4.3)-(4.6): PE(CE)2, c=l-'✓5/5 1.4 3.2 4.8 6.4 7.9 5 

--------------------------------------------------------
Thrc:e-step Adams-Bashforth method 0.1 1.0 1.9 2.8 3.7 3 

Method (4.7): (q,cz) = (0,17/10) 1.9 3.5 4.4 5.5 6.7 4 

Three-step Adams pair: PECE 0.4 1.8 3.4 5.0 6.2 4 

BRK pair (4.9)-(4.11): PECE 1.3 2.8 4.4 5.9 7.4 5 

BRK pair (4.12)-(4.13): PECE 3.3 4.9 6.8 8.6 9.6 6 

Four-step Adams-Bashforth method 1.4 2.3 3.4 4.6 5.8 4 

Miranker-Liniger method (2.5) 2.0 4.4 4.8 5.8 6.9 4 

Four-step Adams pair: PECE 0.8 2.0 3.5 5.0 6.5 5 
Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 2.9 4.1 5.1 6.2 4 

BRK pair (4.14)-(4.15): PECE 3.9 6.8 9.0 8 

For this example, which describes a system of ODEs, the errors are measured in 

the maximum norm. Since most methods nicely show their asymptotic order 

behaviour, the high-order BRK methods are again superior to the low-order ones. 

Hence, the conclusion can be drawn that the introduction of non-equally spaced block 

points tn+c1h favourably influences the performance of the BRK methods. 
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5.4. Euler's equation of motion 

The third problem is Euler's equation of motion (cf. Hull et al. [7]): 

Yi'= Y2Y3, YI(0) = 0 

(5.3) Y2' =-y1 Y3, Y2(0) = 1 

y3' = -0.51 YI Y2, y3(0) = 1. 

Table 5.4. Correct decimal digits at t=20 for problem (5.3). 

Sequential right-hand sides 120 240 480 960 1920 order 

Two-step Adams-Bashforth method 1.2 1.9 2.5 3.1 3.7 2 

Miranker-Liniger method (2.4) 1.6 2.4 3.1 3.8 4.4 2 

BRK method (4.1): c=5/3 1.7 2.6 3.5 4.4 5.3 3 
BRK method (4.3): c=l-"✓6 1.6 2.6 3.5 4.4 5.3 3 

Two-step Adams pair: PECE 1.2 2.0 2.9 3.8 4.7 3 
Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 * 3.3 4.7 6.0 7.3 4 

BRK pair (4.3)-(4.6): PE(CE)2, c=l-''J5/5 2.5 3.9 5.5 7.0 8.5 5 

--------------------------------------------------------
Three-step Adams-Bashforth method 1.5 2.4 3.3 4.2 5.1 3 

Method (4.7): (q,c2) = (0,17/10) 2.8 4.1 5.4 6.6 7.9 4 

Three-step Adams pair: PECE 1.4 2.7 4.0 5.3 6.5 4 

BRK pair (4.9)-(4.11): PECE 2.7 4.1 5.6 7.1 8.6 5 
BRK pair (4.12)-(4.13): PECE 3.2 5.1 6.9 8.7 10.7 6 

--------------------------------------------------------
Four-step Adams-Bashforth method 3.3 3.8 4.8 6.0 7.1 4 

Miranker-Liniger method (2.5) 3.1 5.0 6.3 7.2 8.3 4 

Four-step Adams pair: PECE 2.5 3.4 4.8 6.2 7.7 5 
Shampine-Watts pair (2.7)-(2.6'): PECE 1.9 3.3 4.6 5.9 7.2 4 
BRK pair (4.14)-(4.15): PECE 2.9 7.4 9.8 8 

This table gives rise to the same conclusions as formulated at the previous test 

problems. 

To sum up, these examples clearly show that, even when only 2 processors are 

used, a substantial gain in efficiency can be obtained when compared with sequential 

(uniprocessor) methods. This especially holds for the high-order BRK methods. 
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1. INIRODUCTION 
Many algorithms for numerically solving initial value problems for ordinary 

differential equations (ODEs): 

(1.1) ~ dt = f(t, y(t)), y(to) = YO, 

or Volterra integro-differential equations (VIDEs): 

t 

(1.2) d~t)=J(t,y(t), f k(t,x,y(x))dx), y(to)=yo, 
to 

are based on implicit linear multistep methods (LM methods), in particular on 

Backward Differentiation methods (BDF methods). The main reason for their 

popularity is the relatively low computational effort per step, at least when compared 

with other suitable methods for stiff equations, such as implicit Runge-Kutta 

methods. However, the BDFs have one serious disadvantage: they are subject to the 

so-called 'second Dahlquist barrier', which says that the order cannot exceed two if 

the method has to be A-stable. Thus the higher-order BDFs lack the property of A

stability. This means that if a high-order formula is selected (dictated by accuracy 
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· considerations), then it may happen that - for certain types of stiff ODEs or VIDEs -

the algorithm encounters stability problems which usually result in a dramatical 

degradation of the performance. To circumvent this behaviour it is highly desirable 

to have A-stable methods of high order without increasing the computational effort 

per step. 
It is our aim to construct such methods. They are most easily formulated as so

called block methods. Block methods can be considered as a set of simultaneously 

applied linear multistep methods to obtain several numerical approximations within 

one application. Numerous block methods have been proposed in the literature 

including high-order A-stable ones (see e.g. Watts and Shampine [16]). However, 

these implicit methods require in each application an amount of work which by far 

exceeds the computational effort required by a BDF. In recent papers (cf. e.g. Chu 

and Hamilton [3]), block methods have been given which solve the huge implicit 

relations on a parallel computer which indeed significantly reduces the computational 

costs. However, all these techniques follow the approach of predictor-corrector 

iteration, which in fact restricts their application to nonstiff problems. 

Like Chu and Hamilton, we will employ parallelism to obtain the afore

mentioned goals. We shall construct A-stable methods of orders three and four, and 

A( a)-stable methods of order five with a"" 7r/2. Furthermore, by carefully segmenting 

the total work per step into a few subtasks of approximately equal computational 

length, these methods require an amount of work which is very similar to what a 

BDF requires when implemented on a uni-processor machine. In Section 5.3 we will 

see that a high degree of parallelization is obtained. Since the implicit relations are 

solved by a Newton-type process (as is the case in BDF implementations) rather than 

in a predictor-corrector fashion, the property of A-stability is preserved. 

In Sections 2 and 3, we present the construction of block methods for ODEs, in 

Section 4, block methods for VIDEs employing these block ODE solvers are 

discussed, and in Section 5, numerical experiments are reported. The way of 

construction is based on extremely simple tools: firstly, certain order-conditions are 

imposed such that a number of parameters are left free, and secondly, a numerical 

search over the free parameters is carried out to give the method the optimal stability 

characteristics. So far, we did not succeed in developing more sophisticated search 

techniques by analytical means. 

2. PARALLEL BLOCK METHODS FOR ODES 

In order to simplify the formulas, we present the derivations of the block 

methods for scalar, autonomous ODEs. The extension of these methods to systems 

of ODEs, and therefore also to nonautonomous equations, is straightforward. 
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The block methods studied in this paper are a direct generalization of the implicit 

one-step method 

(2.1) Yn+l = ayn + h bf(Yn) + h df(Yn+IJ, n = 0, I, ... , 

where h is the stepsize and Yn an approximation to y(tnJ- By introducing block 

vectors 

where Yn,i denotes a numerical approximation to the exact solution value y(tn+cih), 

and assuming that (I.I) is a scalar equation, we can define the block method 

(2.3) Yn+l = AYn + hBf(Yn) + hDf(Yn+iJ, 

where A, B and D are k-by-k matrices. Here we use the convention that for any given 

vector v = (vj), f(v) denotes the vector with entries f(vj)- This method can be 

considered as the block analogue of (2.1 ). A characteristic of these methods is that, 

unlike conventional block methods based on linear multistep methods, the block 

point vector c is allowed to have k- I noninteger components. In order to start the 

method, one needs the initial vector Yo, which requires, in general, as many starting 

values as there are distinct values Cj (J=I, ... ,k). Notice that the last component of 

Y n+ 1 contains the step point value Yn+ 1 · Furthermore, we remark that, in general, 

Yn,i -1:- Ym,j, even if n+ci = m+cj. 

The method (2.3) is suitable for direct use on parallel computers if the matrix D 

is diagonal, since such a form uncouples the various components as far as 

implicitness is concerned; the corresponding methods will be called parallel block 

methods. Using k processors, each processor has to evaluate a component of f(Y nJ 

and to solve a system of equations whose dimension is that of the system of ODEs 

(1.1). If Newton's method is used for solving the system of equations, then each 

processor needs the Jacobian matrix I - h djj cJf/c)y and its LU-decomposition. Either 

the various processors have to compute themselves the data they need, or one may 

consider the use of additional processors for computing the Jacobian matrices and 

their LU-decompositions. Let us consider the second strategy. As soon as the 

additional processors have completed an update of the matrix cJf/c)y and computed the 

LU-decompositions of the k matrices/- h djj cJfic)y, then the first k processors can 

replace their data by the new data. However, usually the computational job of 

computing Jacobian matrices and LU-decompositions is so substantial that the speed 

of updating may not be great enough. In such cases, the use of matrices D with equal 

diagonal elements is recommendable, because then the Jacobian matrices I - h djj cJf/c)y 
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are all identical, so that only one instead of k decompositions are required. Therefore, 

methods where D is of the form d· I, I being the identity matrix, have some 

advantage. 

If D is a full matrix, then the block method is not directly suitable for use on 

parallel computers. However, (2.3) allows the application of an iteration process that 

has a high degree of parallelism. This iteration method is of the one-level form 

[1- h C ~in)] y(j+I) -· hEf(YU+I)) = 

AYn + h Bf(Yn) - h C ~(Yn) y(j) + h [D - E]f(YU)), 
iJy 

where C and E are suitable iteration matrices. There are several possibilities for 

choosing these matrices in order to achieve parallelism and to preserve stability. We 

mention: 

(i) C diagonal and E=O (linear diagonal iteration), 

(ii) C=O and E diagonal (nonlinear diagonal iteration), and 

(iii) C=D, E=O combined with diagonalization of C (diagonalized Newton). 

A smyey of properties of diagonal iteration in the case where (2.3) corresponds to 

Runge-Kutta methods can be found in [10]. The diagonalized Newton process was 

proposed by Lubich [12]. In passing we remark, that one might also consider higher

level iteration methods. For example, the 'pipeline' iteration proposed by Feldstein 

[5] fits into the family of three-level iteration methods. 

In a forthcoming paper, we will study the above iteration process if the matrix D 

in (2.3) is a full matrix. In the present paper, we assume that D is diagonal. 

The conditions for pth-order consistency for methods of the form (2.3) are 
extremely simple and read ( cf. [9]) 

(2.4) C1 = 0, j = 0, 1, ... , p, 

with 

Co:=Ae-e; C1 :=A(c-e)+Be+De-c; 

C1 := A(c - e)i + J[B(c - e)i- 1 + DcJ-1] - cl, j = 2, 3, ... , 

where e denotes the vector with unit entries and where powers of vectors are meant to 

be componentwise powers. 

In order to compare the components of these vectors with the error constants 

corresponding to conventional linear multistep methods, we introduce the normalized 

error vectors [8] 
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(2.5) -
C-

Er= j ! (B + D )e ' 

where the division of vectors is meant component wise. When a linear k-step method 

is written in the form (2.3) with c=(-k+2, ... , -2,-1,0, l)T, then the last component 

of Ej equals the normalized error constant of the linear k-step method. Since these 

block methods are in fact a composition of k conventional linear multistep methods, 

the theory developed for the latter class of methods (see Henrici [8] or Hairer, N~rsett 

and Wanner [7]), is to a large extent also applicable in the case of block methods. In 

particular, this theory can be used to determine the order of convergence of the block 

methods, that is the behaviour of Yn+I - YUn+I), with YUn+1):=(y(tn+cih), 

y(tn+czh), ... ,y(tn+hJ)T, for h ➔ 0 and tn=to+nh fixed (see also Cooper [4]). 

3. STABilXfY 

The (linear) stability of block methods can be investigated by applying the 

method to the test equation y' = l y. This leads to a recursion of the form 

(3.1) Yn+I = M(z) Yn, M(z) := [/- zDJ- 1[A + zB], z :=Ah. 

M will be called the amplification matrix and its eigenvalues the amplification 

factors. Here we observe that, by requiring the elements of the diagonal matrix D to 

be positive, the matrix / - zD is nonsingular for all z on the negative real axis. 

Therefore, in the sequel we will assume that the (diagonal) elements of D are 

positive. 

In our stability analysis we shall use the following result on the power of a 

matrix N (cf., Varga [15, p. 65]): 

where II • II and p(N) are the spectral norm and radius of N and where all diagonal 

submatrices of the Jordan normal form of N which have spectral radius p(N) are at 

most q-by-q. If p(N) < 1 or p(N) = q = 1, then N is said to be power bounded. 

Following the familiar stability definitions used for RK and LM methods, we 

shall call the region where the amplification matrix M(z) is power bounded, the 

stability region of the block method. If the stability region contains the origin, then 

the method is called zero-stable. The region where IIMnll tends to zero will be called 

the strong stability region. If the (strong) stability region of a block method contains 

the left half plane, then the block method is called (strongly) A-stable; furthermore, 

if the amplification matrix of an A-stable method has vanishing eigenvalues at 

infinity, then the method is called L-stable. 
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- For some methods (i.e., the BDF methods) a less demanding definition of 

stability is more appropriate. Therefore the notion of A ( a)-stability has been 

introduced The angle a defines a wedge in the left half plane and the method is stable 

if z lies inside this wedge. This is, however, a rather crude way to describe the 

stability region, since for the higher-order BDF methods the part of the left half 

plane which is not included in the stability region is a small lobe near the imaginary 

axis. To provide more detailed information on the stability region, we introduce two 

additional parameters leading to the notion of A( a, {3, y)-stability: 

Definition 3.1. A method is said to be A(a, {3, y)-stable if 

(i) its region of stability contains the infinite wedge {z: - a< Jr- arg(z) < a}, 

0 < a::;; 1rl2, and all points in the nonpositive halfplane with lzl > {3, and 

(ii) 1 +y is the maximum value of the spectral radius of M(z) when z runs through 

the region of instability lying in the nonpositive halfplane. [] 

Note that A(n/2, 0, 0)-stability implies A-stability. The degree of instability of 

the method is measured by y. 
If we set A= D = I and B = 0 in (2.3), then the method reduces to a set of k 

completely uncoupled one-step methods of the Backward Euler type, each advancing 

the solution from tn-J+Cih to tn+cih (i=I,2, ... ,k). Evidently, these k formulas can 

be efficiently implemented on a k-processor machine (in fact, they could equally well 

run on k separate computers). Such methods have excellent stability properties (e.g., 

the property of L-stability), but are only of first order. However, by using full 

matrices A and B, that is the k formulas of the block method share the same 

information from the previous step, the order can be considerably increased. In the 

next two subsections, we investigate fork= 2 ('two-dimensional block methods') and 

k = 3 ('three-dimensional block methods') to what values the order can be raised while 

preserving the favourable stability properties of Backward Euler (stability plots may 

be found in [14]). 

3.1. Two-dimensional block methods 

First we consider the case k=2 and choose the coefficient matrices of the form 

( al l-a1) ( b11 b12) ( d1 0) T 
(3-3) A= a2 l-a2 'B= b21 b22 'D= 0 d2 'c=(c,l). 

Imposing the conditions for second-order consistency we can express the entries of 

the matrix Bin terms of the five free parameters c, a1, a2, d1 and d2: 
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(3.4a). 

where q =c and ci=l. The components Cij of the vectors Ci (i ~ 3) are given by 

An elementary calculation shows that C3j vanishes if 

(3.4b) 

and that C4j also vanishes if, in addition, 

(3.4c) 
C - 2 

d2=----
2(c - 3) 

The characteristic equation of the amplification matrix in (3 .1) can be written in 

the form 

(3.5) P( s.z) := det [A + zB - t;(I - zD)] = 

l -a1 +b12z 

1 - a2 + b22z - t;( 1 - d2z) 
)=o. 

We shall determine the z-region where this polynomial has its roots t; within the 

unit circle, that is, the region of strong stability. In addition, we should impose the 

condition of zero-stability, i.e., the condition that the two eigenvalues a= 1 and 

a=a1-a2 of A are on the unit disk those on the unit circle being simple, i.e., 

A further restriction on the range of the free parameters is obtained by imposing the 

'stability at infinity' condition. By this we mean that the roots of the polynomial 

P(t;,00) are on the unit disk (which is of course anyhow a necessary condition for A

stability). By virtue of the Hurwitz-criterion we obtain (recall that d 1 and d2 are 

assumed to be positive) 
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3.-1.1. Second-order methods. If we are satisfied with second-order accuracy, then we 

may choose the free parameters aj and dj in (3.4a) such that the matrix B vanishes 

while preserving the property of A-stability. For example, if c=0 then the method is 

equivalent with the familiar two-step Backward Differentiation Formula generated by 

(3.8) D -( O O ) c = (0,I)T. 
- 0 2/3 ' 

3.1.2. Third-order methods. Third-order accuracy is achieved by choosing 

C31 =C32=0, leaving us with three free parameters for monitoring the stability of the 

method. We find 

c(c2 - 3c + 6d1) 3c + 12d2 - 6cd2 - 5 
a1= 

(c - I )3 
a2 = 

(c - 1)3 

(3.9) b1 I = 
c2 - 2cd1 - c2d1 

b12 = 
c - 2cd1 - d1 

(c-1)2 (c-1)2 

b21 
2 - 5d2 - c + 2cd2 

b22 = 
(c - 2)2 - d2(c2 - 6c + 8) 

= 
(c - 1)2 (c - 1)2 

leaving c, d1 and d2 as the free parameters. Taking into account the conditions of 

zero-stability and 'stability at infinity' (conditions (3.6) and (3.7)), we performed a 

numerical search in the (c,d1,d2)-space. It turned out that the regions of A-stable 

(c,d1,d2)-values are so small that A-stable points and strongly unstable points are 

close together, that is, a small perturbation of these values causes the method to 

violate the A-stability conditions. For example, the values 

(3.10) c = 0.917387, d1 = 0.319523, d2 = 0.347067, 

generate such a 'marginally' A-stable method. There is, however, an alternative 

approach. It is easily verified that putting a2=C32=0 yields methods providing third

order approximations at the step points tn and second-order approximations at the 

points tn+ch. It turns out that in the space of free parameters the regions of A-stable 

methods are larger so that it is easier to find A-stable methods by a numerical search. 

For example, we found the A-stable, third-order method 
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(3.11) [ 
147 161 J 7 
220 220 [ 10 

B= D= 
_ 50 ~ ' O 

33 66 

0 J l ~3 , C = w(21, lO)T 

with the normalized error vectors E3""' (0.19, 0)T and E4""' (0.20, -0.0l 7)T. The ampli

fication factors at the origin equal 0 and 1, and the maximal amplification factor at 

infinity is ""' 0.94. 

3.1.3. Fourth-order methods. Fourth-order accuracy for both components is obtained 

by choosing C31 = C32 = C41 = C42 = 0. Alternatively, replacing C41 = 0 by a2 = 0, 

reduces the order of the first component to 3, without affecting the order of the 

second component. In both approaches we are left with one free parameter for 

monitoring the stability of the method. Unfortunately, the stability regions of these 

fourth-order methods are rather limited and do not even allow for A(a)-stability. 

Thus, in the class (3.3) the fourth-order methods seem to be of no interest. 

3.2. Three-dimensional block methods 

For k=3 we expect to find A-stable methods of order four and we may hope for 

A(a)-stable methods of order five. These two cases will be investigated in the 

following subsections. 

3.2.1. Fourth-order methods. Let us choose the matrix A such that ai3 = 1 - ail - ai2, 

i = 1, 2, 3, so that Co vanishes. The vectors Cj vanish for j = 1, 2, 3, 4 if the entries 

bij and dj satisfy the linear systems 

1 

q-1 c2-l 

(q-1)2 (ci-1)2 

(q-1)3 (c2-1)3 

(3.12) 

1 bil 

0 Ci bi2 
= 

0 c/ bi3 

0 Ci3 di 

Ci- ail (q-1) - ai2(c2-l) 

½[ci2 -an(ci-1)2 - ai2(c2-1)2] 

½ [ci3 - ail (q-1)3 - ai2(c2-l )3] 

¼[ci4 -an(ci-1)4 -ai2(c2-1)4] 

, i = 1, 2, 3. 
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This shows that there is a family of fourth-order block methods with eight free 

parameters: an, a;2 (i = 1, 2, 3), CJ and c2. 

In order to ensure zero-stability, we require that the matrix A has its two parasitic 

eigenvalues within the unit circle. Writing the characteristic equation of A in the 

form ((- 1)('2 + qo( + ro) = 0, we find that we have zero-stability if 

(3.13) lqol < ro+l, ro < 1, 

qo :=a31 + a32 - a11 - a22, 

ro := a11 a12+a31a12 + a32a21 - a11 a32 - a21 a12 - a22a31. 

Taking this constraint into account, we performed a numerical search over the free 

parameters to obtain the A-stable method 

-1 
3 13·1303 

2 2 29·5·1 I 0 0 

1 I 0 
277 

0 A= 2 2 D= 2·3 2· 13 

I 3 0 0 
16001 

-1 
2 2 29·32·5 

(3.14) 
5· 13·43 15161 29·43·83 
~ 25·32· I l 211.32-5 

B= 
-73 -467 - 7·3 7 

2·3 2·7 2·33·7 2·33·13 

5·16069 54419 41927 

211.32-7 25·33·5·7 21 t.33 

with c = (5, 13/4, l)T and with normalized error vector E5 "'(0.13, 0.27, 0.075)T. Its 

amplification factors at the origin are 0, 1/2 and 1, and at infinity the maximal 

amplification factor is "' 0.92. 

The above direct search method is rather expensive, and therefore we also applied 

an alternative approach where 

(3.15) 

m k 

L L lµ;jlqij 
i= 1 j= 1 

was minimized over the free parameters b;2 and d; (i=l, 2, 3), CJ and c2. Here, k = 3, 

the qij are control parameters and µij, j=l, ... , k denote the eigenvalues of the 

amplification matrix M(z;) defined in (3.1) with Zi running through a set of m points 

lying on the imaginary axis. In this way we found the A-stable method 
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( 

2820 -183 -1037] 

A= l;OO -7100 -3423 12123 , 

-1020 -1607 4227 

( 
-398 -92 -177 J 

B= 4~0 6282 -92 2143 , 

1098 272 507 

C = (3,5, I? 

89 

with normalized error vector E5"' (3.67, 0.19, 0.064)T_ At the origin the 

amplification factors are 0.81, 0.81 and 1, and at infinity the maximal amplification 

factor is"' 0.37. 

3.2.2. Fifth-order methods. Along the same lines as we constructed the fourth-order 

method (3.16), we proceeded with the fifth-order case. Now only five free parameters 

are available, say di (i = 1, 2, 3), CJ and c2. Imposing the constraint (3.13), we found a 

few A(a, /3, y)-stable methods which may be considered as A-stable in most practical 

applications. 

We mention the A(a,/3, y)-stable method with a"' 89.9988°, /3"'0.16 and 

Y"' 2.6· 10-6 generated by 

(3.17) 

(

-.37354856915573 

A= .45636214490330 

-71.558907928027 

(

-.089579683013023 

B= .037434812789650 

-18.279469309687 

(
.261 0 0 ] 

D= 0 .581 0 , 

0 0 .832 

1.3772028209449 -.0036542517891531 J 
.58957191150098 -.045934056404276 , 

69.945110840701 2.6137970873262 

-.020791477924637 

. 78549538208108 

-29.674965823418 

.0023118793010643 J 
.024702269787981 , 

-1.6401568285440 

with normalized error vector E6"' (0.007, 0.0038, - O.OlS)T. At the origin the 

amplification factors are 0.92, 0.92, and 1, and at infinity the maximal amplification 

factor is"' 0.993. 

Finally, we present theA(a,/3, y)-stable method with a"' 89.98°, /3"' 0.30 and 

Y"' 6.9· 10-5 generated by 
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( 
.58694824150708 -.042737729478577 .45578948797150 J 

A= 73.394943213338 2.5499.812910344 -74.944924504372 , 

1.3881897627759 -.0035265226034516 -.38466324017241 

(3.18) B- -30.332265183768 -1.5938561820999 -18.934741340575 ( 

.78434821208875 .023439431423946 .033345158796322 J 
- -.012761141648945 .0022604702667178 -.092097195902230 ' 

(
1.6153] 

c= 4.7
1
871 , 

and with normalized error vector E6"" (0.004, -0.016, 0.007)T_ At the origin the 

amplification factors are 0.88, 0.88 and 1, and at infinity the maximal amplification 

factor is"" 0.89. 

3.3. Survey of method characteristics 

We conclude with a survey of the parameters a, /3 and y characterizing the 

stability regions of the block methods derived in this paper (see Definition 3.1) and 

compare them with those of the BDFs (details about the BDF methods can be found 

in f 6]). In Table 3.1 these values are listed (an '*' in the y-column means that the 

corresponding value is not relevant). In addition, we give the normalized error vectors 

defined in (2.5) of all methods. For a uniform presentation, we first formulated the 

BDFs as block methods. We recall that a k-step BDF method can be cast in the form 

(2.3) with block point vector c = (2-k, ... , -1, 0, 1 )T_ 

Finally, we remark that a k-step, kth-order BDF requires k starting values, 

independent of its formulation, whereas the block methods of this paper need only 2 

(for p = 3) or 3 (for p = 4, 5) starting values. 

Table 3.1. Normalized error vectors and values of ex, /3 and y. 

Method Order p Ep+lT a /3 r 
BDF3 3 (0,0, 1/4) 88.4° 1.94 0.046 
(3.11) 3 (0.20, -0.017) 900 0 * 
BDF4 4 (0, 0, 0, 1/5) 73.2° 4.72 0.191 
(3.14) 4 (0.13, 0.27, 0.075) 900 0 * 
(3.16) 4 (3.67, 0.19, 0.064) 900 0 * 
BDF5 5 (0, 0, 0, 0, 1/6) 51.8° 9.94 0.379 
(3.17) 5 (0.007, 0.0038, -0.015) >89.9° 0.16 0.0000026 
(3.18) 5 (0.004, - 0.016, 0.007) >89.9° 0.30 0.000069 
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4. AP.PUCATIONTOVOL'IERRAINfEGRO-DIFFERENTIALEQUATIONS 

Consider the initial value problem for VIDEs given by (1.2). The most 

straightforward way of solving numerically this problem replaces the integral term in 

( 1.2) by a quadrature formula and integrates the resulting ODE by some ODE 

integrator. This 'direct quadrature' method will be indicated by DQ method. The 

stability of DQ methods strongly depends on the quadrature formula used for 

approximating the integral term, particularly if the VIDE in (1.2) is stiff. For 

example, DQ methods using Gregory quadrature formulas become easily unstable 

(see, e.g., [I]). 

A more stable approach is based on the approximation of the integral term by 

converting it into a differential equation and by integrating this differential equation 

by an ODE solver. For that purpose, we introduce the function 

s 

(4.1) z(t,s) := f k(t, x, y(x)) dx, 
to 

and we write the initial value problem (1.2) in the form 

(4.2a) ~ dt =J(t,y(t),z(t,t)), y(to) = YO· 

The method now consists of the application of an ODE solver to the initial value 

problem (4.2a), where the values of z(t,t) needed by the ODE solver are obtained by 

integrating the initial value problem 

(4.2b) ik(t,s) ( ) as = k t, s, y(s) , z(t,to) = O 

from s=to until s=t. This method still belongs to the class of DQ methods, however, 

it uses a special quadrature formula derived from an ODE solver. If the ODE solver is 

an LM method (p,cr), then the quadrature formula is called (p,cr)-reducible (cf. 

Matthys [13]). Similarly, we shall call the DQ method (p, CJ)-reducible if both initial 

value problems (4.2a) and (4.2b) are solved by the same LM method (p,cr), and (A, B, 

D)-reducible if (4.2a) and (4.2b) are solved by the same block method (2.3) generated 

by the matrices A, B and D. 

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the 

usual stability analysis of VIDE solvers (cf., e.g., Brunner and Lambert [2] and 

Matthys [13]), we shall consider stability with respect to the basic test problem 
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(4.3) 

t 

d~t) = sy(t) + T1 I y(x) dx, 
to 

y(to) = YO· 

Using the representation (4.2) and writing z(t,t)=z(t), this problem can be represented 

in the form 

(4.4) d1t) = SY(t) + T/Z(t), y(to) = YO, 
d7ftl 
~ = y(t), z(to) = o. 

Application of the block method (2.3) to each of these equations yields the 

recursions 

(4.5) 

Zn+l =AZn + hBYn + hDYn+I· 

We shall show that (4.5) is algebraically equivalent with the recursion obtained by 

applying (2.3) to the system (4.4). Writing (4.4) in the form 

(4.4') !u(t) = ( r 6 )u(t), u(t) := (~gJ), 

the block method (2.3) takes the form 

Un+I =A O Un+ hB 0 /(UnJ + hD O f(Un+IJ, Un+I := (yn,J, Zn,I; ... ;yn,k, Zn,k?, 

(4.5') 

with Yn,j and Zn,j denoting the components of the (column) vectors Yn+J and Zn+I 

used in (4.5), and where the tensor products A O U n and B O f(U 11 ) are defined 

according to 

(4.6) 

with Oj and hjdenoting the jth row vectors of the matrices A and B, respectively. It 

is now readily verified that by reordering the equations occurring in (4.5') such that 

the first, third, fifth, ... equations come first and the second, fourth, sixth, ... 

equations come next, we obtain the recursions (4.5). 
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Hence, if;\, andµ denote the eigenvalues of the Jacobian matrix associated with 

(4.4'), then the recursion (4.5) is stable if both h;\, and hµ are in the stability region 

of the block method (2.3). The corresponding region of (h~, h211) = (h;\,+ hµ, -h2Aµ)

values will be called the stability region of the ( A, B, D)-reducible DQ method. 

Furthermore, if this stability region contains the set { (h~, h21]): ~ < 0, 1J < 0}, then 

the DQ method is called Ao-stable. The preceding considerations can be summarized 

in the following theorem which generalizes a result for LM methods originally given 

by Brunner and Lambert [2]. 

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by 

the matrices A, Band D, and let;\, andµ be defined by;\,+µ=~, Aµ=-1]. Then the 

set { (h ~, h2 11): h ;\, E S, h µ E S} defines the region of stability of the (A, B, D)

reducible DQ method. [J 

From this theorem it follows that the (A, B, D)-reducible DQ method is Ao-stable 

if, and only if, the generating block method (A, B, D) is A-stable. Thus, the use of 

the block methods constructed in this paper avoids the so-called 'second Dahlquist 

barrier' which applies to Ao-stable (p,cr)-reducible DQ methods for VIDEs (cf. [13, 

Theorem 5]). 

5. NUMERICAL EXPERIMENTS 

5.1. Accuracy test 
To verify the order of the various methods we integrated the test problem 

proposed by Kaps [ 11]: 

Yt(0)=l, 

(5.1) 
dY2 ---;;-= YI - Y2 (1 + Y2), Y2(0) = 1, 

with 0 ~ t ~ T. The exact solution is given by YI =exp(-2t) and Y2=exp(-t) for all 

values of the parameter e. In Table 5.1, we have listed the values L1, where L1 denotes 

the number of correct decimal digits at the endpoint (i.e., we write the maximum 

norm of the error at t=T in the form 1 o-L1). In all experiments the theoretical order of 

the method is shown for sufficiently small values of h (if p is the order of the 

method, then, on halving the step size, the value of L1 should increase by"" 0.3 p). 
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Table 5.1. Values of L1 for problem (5.1) with T=l, e=10-8. 

Method p h=l/4 h=l/8 h=l/16 h=l/32 h=l/64 h=l/128 

BDF3 3 2.8 3.7 4.6 5.5 6.5 7.4 

(3.11) 3 2.8 3.6 4.4 5.2 6.1 7.0 

BDF4 4 3.4 4.7 5.9 7.1 8.4 9.6 

(JJ4) 4 3.8 5.2 9.5 7.9 8.9 10.0 

(3.16) 4 3.1 3.9 4.8 5.9 7.1 8.2 

BDF5 5 4.0 5.6 7.2 8.7 10.2 12.0 

(3.17) 5 2.6 4.0 5.5 7.3 9.2 10.3 

(3.18) 5 4.7 5.4 6.4 7.7 9.2 10.1 

5.2. Stability test 

We tested the stability of the methods by integrating a problem in which the 

Jacobian matrix has purely imaginary eigenvalues: 

(5.2) 
dy1 
dt=-aY2 + (1 + a)cos(t), d12 = ay1 - (1 + a) sin(t), 0 :5 t :5 T, 

with initial conditions Yl (0)=0, Y2(0)=1 and exact solution Yl =sin(t) and Y2=cos(t) 

for all values of the parameter a. 
In Table 5.2, the results are listed for T=lO0. Values of L1 corresponding to 

stepsizes that are theoretically unstable are in boldface and overflow is indicated by *· 
The unstable results of the BDFs are in agreement with their regions of instability 

indicated in Table 3.1 (the phenomenon that BDF5 becomes stable again for 

sufficiently small h is due to the fact that its imaginary interval of instability is 
given by i [0.71, 9.94]). ✓ 

Table 5.2. Values of L1 for problem (5.2) with T=lOO, a=lO. 

Method p h=4l5 h=2l5 h=l/5 h=l/10 h=l/20 h=l/40 

BDF3 3 2.0 2.9 3.9 * * 4.9 
(3.11) 3 2.1 2.8 3.4 4.0 4.6 5.3 

BDF4 4 2.2 * * * 2.9 8.2 
(3.14) 4 2.8 4.0 4.9 5.8 6.8 8.0 
(3.16) 4 1.6 2.7 3.8 4.9 5.8 6.8 

BDF5 5 -0.1 * * * 8.5 10.3 
(3.17) 5 1.2 2.0 3.4 4.7 6.2 7.6 
(3.18) 5 2.9 3.9 5.1 6.4 7.6 8.6 
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Nt'lxt, we show that the 'almost' A-stable fifth-order methods (3.17) and (3.18) 

behave as A-stable methods in practice. We performed experiments for a= 1 and a= 4 

with h=l/8: for a= l both integration processes are theoretically unstable, and for 

a= 4 the processes are stable. In Table 5.3 the results are listed for increasing length 

of the integration interval: these results clearly show that both methods perform 

perfectly stably for a= 1 and the T-values chosen. 

Table 5.3. Values of L1 for problem (5.2) for h=l/8. 

Method a= 1: theoretically unstable a= 4: theoretically stable 

(3.17) 

(3.18) 

T=lO T=lO0 T=lOOO 

3.6 

4.5 

3.8 

4.3 

3.6 

4.8 

T=lO T=lO0 T=lO00 

4.0 

5.4 

3.9 

5.4 

3.9 

5.4 

5.3. Volterra integro-differential equation 
Consider the initial value problem 

(5.3) 

t 

111..!l.= - 1 + at(l +t)2 + ~ ln(2+2t) + a f 
dt (l +t)2 y(t) 2+t O 

dx I 

I +(l +t)y( x) ' y(l) = 3 ' 

with 2::; t::; T and a> 0. The exact solution is given by y(t)=ll(l +t). For a= 1, this 

problem has been discussed in [2]. From the expressions 

·= qt_ Jk = _ a 1 +t 
11 . Jz Jy (l +(I +t)y)2 

it follows that (5.3) is stable if t > 0 and y ~ 0. Furthermore, we see that in the 

vicinity of the exact solution we have ~"' - a( 1 +t)2 and 11"' - a( 1 +t), so that the 

stiffness of this problem increases with a and t. For example, if a=T=lO, then an 

Ao-stable method is highly desirable. 

Table 5.4 lists results for various methods and values of the stepsize h. Notice 

that the results for the stiff problem (a= 10) are not less accurate (even more 

accurate) than the results for the nonstiff problem (a= 1), showing that stiffness does 

not cause any problem. Similar to the ODE case (cf. Table 5.1), the method (3.14) 

performs very accurately, whereas (3.17) is significantly less accurate. 
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Table 5.4. Values of L1 for problem (5.3) at T=IO. 

a=l a=lO 

Method Orderp h=I/2 h=I/4 h=l/8 h=I/2 h=I/4 h=l/8 

BDF3 3 5.7 6.8 7.9 6.0 6.9 7.8 
(3.11) 3 5.5 6.5 7.3 5.4 6.5 7.3 

BDF4 4 5.4 7.0 8.3 6.5 8.1 9.4 
(3.14) 4 6.0 8.3 9.1 6.4 8.6 10.9 
(3.16) 4 5.2 6.2 7.2 6.7 7.9 8.5 

BDF5 5 5.1 7;2 8.9 6.1 8.2 9.9 
(3.17) 5 2.5 5.2 7.2 2.9 5.3 7.5 
(3.18) 5 6.0 6.9 8.2 6.8 8.5 9.3 

5.4. Performance test on the ALLIANT FX/4 

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by 

integrating the problem (5.1) of Kaps. In Table 5.5, we have listed timings on P 

processors and the rate of efficiency of a k-processor method, i.e., the execution time 

on one processor divided by k times the execution time on k processors. These 

results show that the gain factor is close to its optimal value. 

Table 5.5. Timings (in seconds) for problem (5.1) at T=l with e=10-8 and h=l/256. 

method k 

(3.11) 2 

(3.18) 3 

P=l 

0.43 

0.66 

P=2 

0.23 

0.45 

P=3 

0.23 

0.25 0.25 

Efficiency rate 

0.93 

0.88 

From this table we conclude that the performance is close to its optimum, that 

is, the gain factor obtained for a k-processor method is almost equal to k. Table 5.5 

also lists timings in cases where methods have the disposal of one more processor 

(i.e., k+I) than the number (i.e., k) they are designed for. We see that this additional 

processor is not utilized, since the k processors (concurrently) solve the k implicit 

relations and the extra processor is idle. As mentioned before, it could have been 

exploited for updating the Jacobian matrix, but in this test we did not include such a 

technique. 

It should be noted that the efficiency rate is slightly dependent on implementation 

strategies, such as how accurately the nonlinear systems are solved. For example, it 

may happen that the first (or any other) implicit relation requires less Newton 

iterations than the other implicit relations (e.g., because of a more accurate initial 

approximation); in such cases this first processor will be idle for some time, which 

of course, has a bad influence on the efficiency rate. 
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1. INIRODUCI10N 

In N~rsett and Simonsen [21), Jackson and N0rsett [16), and !series and N0rsett 

[15], it was observed that on parallel computers, predictor-corrector methods (PC 

methods) based on implicit Runge-Kutta (RK) correctors are particularly attractive 

for solving initial value problems for the system of ordinary differential equations 
(ODEs) 

(1.1) 
d"ftl 
~=f(y(t)). 

On sequential computers, implicit RK methods are seldom used as corrector 

equation, because of the large number of implicit relations to be solved when using 

these correctors. However, matters are different when parallel computers are used, 

since PC methods, being a form of functional iteration, possess a high degree of 

parallelism. First results based on the PC approach were reported by Lie [18], who 

uses a fourth-order, two-stage Gauss-Legendre corrector and a third-order Hermite 

extrapolation predictor. In [12], these 'parallel, iterated' RK methods (which we shall 

briefly call PJRK methods) have been investigated for a variety of predictor methods 
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·and it was concluded that, from an implementational point of view, one-step 

predictors are preferable. Related PC methods were studied by Tam in his thesis [24]. 

In particular, families of methods were constructed with elliptically shaped stability 

regions. An analysis of the error behaviour of a very general class of PC methods, 

including all methods indicated above, was given by Burrage [2]. 

An attractive feature of PIRK methods is the availability of embedded formulas of 

lower orders allowing a strategy for step and order variation without additional costs. 

On the other hand, owing to their explicit character, PIRK methods have rather 

limited regions of stability and are therefore only suitable for integrating nonstiff 

systems. 

In this paper, we shall be interested in integrating stiff systems, and we will 

investigate the possibility of constructing methods that are more stable than PIRK 

methods by diagonally implicit iteration of fully implicit RK methods. After a fixed 

number of iterations, such methods belong to the class of DIRK methods, and are 

therefore essentially different from the explicit PIRK methods studied in the 

aforementioned papers. DIRK methods resulting from diagonally implicit iteration 

have the property that effectively they are singly diagonal-implicit RK (SDIRK) 

methods when run on parallel computers. Furthermore, like the PIRK methods, they 

possess embedded formulas of lower order which make them an ideal starting point 

for developing variable order/variable step codes. We shall call the 'Parallel, 

Diagonal-implicitly Iterated' RK methods PDIRK methods. 

In the literature, various (S)DIRK methods were published for the integration of 

stiff systems of ODEs. The most recent contributions are the parallel DIRK methods 

oflserles and Njljrsett [15], which are, like PDIRK methods, effectively of SDIRK

type on multi-processor computers (these methods are the first and, as far as we 

know, the only parallel DIRK methods published in the literature). However, the 

order of most DIRK methods is limited top= 4 (the only DIRK methods exceeding 

this order are those of Cooper and Sayfy [5]). By diagonal iteration of implicit RK 

methods it is possible to construct highly stable PDIRK methods of orders up to 10. 

Table 1.1 presents the characteristics of a number of SDIRK methods from the 

literature together with the most stable PDIRK methods of order p > 4 derived in the 

present paper. In this table, DIRK II denotes the Type II methods of !series and 

Nprsett [15], Pemb indicates that embedded methods of orders ::;;Pemb are available 

and s denotes the number of stages of the underlying corrector in the PDIRK 

methods (by choosing Gauss-Legendre or Radau IIA correctors we may set 

s = L(p+ l)/2J, where L·J denotes the integer part function). Furthermore, the number 

of sequential stages is defined as the number of implicit systems to be solved on 

each processor in each step. Finally, we introduce the concept of L2-stability, which 

means that the method possesses an A-acceptable stability function for which the 

degree of the numerator is two less than the degree of the denominator. 
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Table 1.1. (S)DIRK and PDIRK methods. 

Seq. Proces-
Method Order Stages Stages sors Stability Pemb Reference 

SDIRK p=3 p-1 p-1 A-stable 1 [19] 

SDIRK p=3 p-1 p-1 Strongly A-stable [6] 

SDIRK p=4 p-1 p-1 1 A-stable I [6], [1] 

SDIRK p=5,6 5 5 1 A-stable 1 [5] 

SDIRK p=3 p p 1 S-stable p-1 [4] 

SDIRK p=3 p+l p+l 1 L-stable p-1 [22] 

SDIRK p=4 p+l p+l 1 S-stable p-1 [4] 

DIRKII p=4 p p-2 2 L-stable p-1 [15] 

PDIRK p=5 3(p-1) p-1 3 Strongly A-stable p-1 § 3.2 

PDIRK p=6 3(p-1) p-1 3 Strongly A(a)-stable p-1 § 3.2, a:>89.9° 

PDIRK p=7 4(p-1) p-1 4 A( a)-stable p-1 § 3.2, a:>89.9° 

PD IRK pS4,p=6 s(p-1) p-1 s A-stable p-1 § 3.1 

PD IRK p$6,p=8 sp p s L-stable p-1 § 3.1 

PDIRKp$8,p=10 s(p+l) p+l s L2-stable p-1 § 3.1 

This table shows that the PDIRK methods constructed in this paper have the 

advantages of high order, good stability and embedded formulas, but the disadvantage 

of quite a large number of sequential stages per step. For example, in spite of its 

inherent parallelism, the number of sequential stages per step of an L2-stable, 

eighth-order PDIRK method is 3 times as large as that of the A-stable, fourth-order 

SDIRK method of Crouzeix [6] and Alexander [1], and 9 times as large as that of the 

BDF methods. However, due to the iterative nature of PDIRK methods, the 'later' 

stages are relatively cheap because there are accurate initial iterates available for 

solving the associated implicit relations. This feature, and in particular their high 

order and unconditional stability, make PDIRK methods a promising starting point 

to base a code on. This is confirmed by a few preliminary experiments reported in 

Section 4, where we show by means of two 'difficult' test problems taken from the 

literature, that a provisional implementation of an L2-stable, seventh-order, four

processor PDIRK method is already far superior to the SDIRK code SIMPLE of 

N!llrsett and Thomsen [22] and at least competitive with the BDF code LSODE of 

Hindmarsh [11]. The development of a more sophisticated code based on PDIRK

type methods and much more extensive comparisons with existing sequential codes 

on a significant class of stiff problems will be subject of our future research and 

should provide more reliable data on the efficiency of PD IRK-based codes. 
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Z. PDIRKMErHODS 

For notational convenience, we shall assume in the following that the equation 

(1. 1) is a scalar equation. However, all considerations below are straightforwardly 

extended to systems of ODEs, and therefore, also to nonautonomous equations. Our 

starting point is the s-stage, implicit, one-step RK method 

(2.la) Yn+l =y11 + hbTJ(Y), 

where Y is implicitly defined by the set of algebraic equations 

(2.1 b) Y := Yne + h Af(Y). 

Here, h is the integration step, e is a column vector of dimension s with unit entries, 

b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the 

convention that for any given vector v=(v1),f(v) denotes the vector with entriesf(v1). 
By iterating, say m times, the equation for Y by diagonally implicit iteration, we 

obtain the method 

(2.2) y()) = y11e + h [A - D]f(YU-IJ) + h D f(YUJ), 

where j = 1, 2, ... , m, and D is a diagonal matrix with arbitrary, nonnegative diagonal 

elements and y(O) denotes an initial approximation to the vector Y. Notice that after 

each iteration the current approximation yW to Yn+ 1 can be computed. As we shall 

see in Section 2.1, the order of these approximations increases by I in each iteration. 

Therefore, the mth iterate will be used to continue the integration process and the 

preceding iterates can be used for error control. 

Since the matrix Dis of diagonal form, the s components of each vector y()) can 

be computed in parallel, provided that s processors are available. Thus, effectively, 

we obtain a method which requires per integration step the computational time 

needed for computing one component of the initial approximation y(O) and the 

successive solution of m equations. In the following, we always assume that we 

have s processors at our disposal and we shall speak about computational effort per 

step when we mean the computational time required per step if s processors are 

available. We shall call the method providing y(O) the predictor method and (2.1) the 

corrector method. 

There are several possibilities for choosing the matrix D. The most simple 

choice sets D = 0 to obtain an explicit iteration method (fixed point or functional 

iteration). This approach was followed in, e.g., N0rsett and Simonsen [21], in Lie 

[18], and in van der Houwen and Sommeijer [12]. These papers deal with the 

iteration of implicit methods for solving nonstiff ODEs. As stated in the 
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introduction, we are aiming at stiff OD Es, which requires the use of matrices D -:t; 0. 

One possibility of exploiting nonzero matrices D is improving the rate of 

convergence of the iteration process. For example, by identifying the diagonal 

elements of D with those of A we obtain the nonlinear Jacobi iteration method. 

Alternatively, one may choose D such that the stability region of the iterated method 

rapidly converges to that of the corrector (cf. [131). In this paper, however, we 

choose D such that we have for a prescribed number of iterations favourable stability 

characteristics, such as A-stability or L-stability (as far as we know, this approach 

has not yet been investigated in the literature). We restrict our considerations to the 

case where the predictor method is itself an RK-type method. Hence, by performing 

m iterations with (2.2) and by accepting y(m) as the final approximation to Yn+l, we 

obtain an RK method with a fixed number of stages. Furthermore, we assume that 

the predictor is explicit or at most diagonally implicit. Then, the resulting parallel 

RK method belongs to the class of DIRK methods (Diagonally Implicit RK 

methods), and will be briefly called the PDIRK method. 

2.1. Order of PDIRK methocJs 
Assuming that the iteration process (2.2) converges as m ➔ oo, the values yU) 

approximate the solution of the corrector method (2.1), i.e., y(00 )=Yn+l· The 

approximation yO) differs from y( 00) by the amount 

yW-y(00) = yW- Yn+l = hbT [f(YW)- f(Y)]. 

If the right-hand side function is sufficiently smooth, then the iteration error 

y(j) - Y satisfies the approximate recursion 

y(j) _ Y"" h [[- h ivr1 *[A -D][YU-1) _ Y] = 

hi ([I - h * vr1 * [A - D])i[y(O) - Y], 

so that 

Let the predictor be of order q, i.e., 

then 

so that y(m) has (global) order q+m. 
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In this paper, we shall study PDIRK methods with predictors of the form 

Because this predictor is implicit, we will choose the matrix B of diagonal form in 

order to exploit parallelism. Since 

it is easily verified that the predictor (2.5) is always first-order accurate; it becomes 

of order two if (E + B-A) e vanishes and of order three if, in addition, (BA -A 2) e 

vanishes. 

By defining Yn+I according to 

(2.6) Yn+ I := y(m) = Yn + h b T f(Y(m) ), 

the PDIRK method is completely determined. For this method, we summarize the 

above order considerations in the following theorem: 

Theorem 2.1. Let the corrector be of order p*; then the approximation Yn+ I 

generated by the PDIRK method { (2.5), (2.2), (2.6)} has order min {p*, m+ 1 } for all 

matrices B and E, order min {p*, m+2} if (E+B)e = Ae, and order min {p*, m+ 3} if, in 
addition, BAe = A 2e. [) 

We remark that correctors of any order are explicitly available. Correctors of any 

even order p* are provided by the p*/2-stage Gauss-Legendre methods and correctors 

of any odd order p* are provided by the (p*+ 1 )/2-stage Radau methods. 

2.2. Stiffly accurate PDIRK methods 

As was discussed by Alexander [l], when integrating stiff equations it may be 

advantageous to use RK methods {A, b} of which bT equals the last row of A, i.e., 

bT=e/A, where sis the number of stages of the RK method. Such RK methods are 

termed stiffly accurate. Therefore, it is of interest to look for PDIRK methods 

possessing the property of stiff accuracy. Formally, we can associate with any 

PDIRK method a new PDIRK method possessing the property of stiff accuracy, 

simply by replacing (2.6) with 

(2.7) Yn+I = e/ y(m)_ 
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Of course, this only yields a feasible method if the last component of the vector 

y(m) p~ovides an approximation to Yn+ 1 · For example, this is true if the corrector 

itself is stiffly accurate, i.e., bT=e/A. We shall call the two versions corresponding 

to (2.6) and (2.7) PDIRK methods of Type I and II, and denote them by PDIRK1 and 

PDIRK11, respectively. Thus, 

Type I : PDIRK method { (2.5), (2.2), (2.6)} 

Type II : PDIRK method { (2.5), (2.2), (2.7) }. 

The following theorem is the analogue of Theorem 2.1: 

Theorem 2.2. Let the corrector be stiffly accurate (bT=e/A) and be of order p*; then 

the approximation Yn+l generated by the PDIRK11 method is also stiffly accurate, 

and has order min {p *, m } for all matrices B and E, order min {p *, m + l } if 

(E+B)e =Ae, and order min{p*, m+2} if, in addition, BAe =A2e. [] 

2.3. Various types of PD IRK methods and their Butcher arrays 
Given the generating RK method (corrector) {A, b} defined by (2.1), we shall 

investigate three special families of PDIRK methods, either of Type I or of Type II, 

which differ from each other by the way in which the predictor is defined, i.e., in 

choosing the matrices B and E. Let O denote the s-by-s matrix with zero entries, 

then we distinguish: 

Type A : Last-step-value predictor 

Type B : Backward Euler predictor 

Type C : Theta method predictor 

(E=B=O) y(O) := Yne , 

(E=O,B=D) y(O) :=yne + hDJ(y(O)), 

(B=D) y(O) :=yne +hEf(yne)+hDJ(y(O)). 

Notice that the matrix B either vanishes or is chosen equal to D. Although, in 

general, Band D may be different (diagonal) matrices, the particular choice B=D has 

advantages with respect to the implementation of the method. Typically for stiff 

equations, the implicit relations in which the matrix D =diag(d1, d2, ••• , ds) is involved, 

will be solved by some form of Newton iteration, which requires (in the case of 

systems of ODEs) the LU-decomposition of the matrices / -di h dfli)y. Clearly, if 

B = D then these decompositions can also be used in solving the predictor (see also 

the discussion below). In the remainder of this paper, the analysis is performed in 

terms of a general matrix B and concrete results are only specified for B = 0 or B = D. 

For future reference, we specify the various PDIRK1 families of methods in terms 

of their Butcher arrays and give the corresponding orders of accuracy p1: 
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TypeIA: 

1. D-:1-O: p1 = min {p*, m+ I } 

j=0 0 

j=l A-D D 

j=2 0 A-D D 

j=3 0 0 A-D D 

j=m 0 0 A-D D 

OT 

TypeIB: 

1. D -:1-O: p1 = min{p*, m+I} 

2. D := diag(Ae ): p1 = min{p*, m+2} 

j=0 n· 
j=l A-D D 

j=2 0 A-D D 

j=3 0 0 A-D D 

j=m 0 

TypelC: 

I. D-:1-O,E-:1-O: 

2. D := diag(Ae -Ee), E -:I- 0: 

3. D := diag(Ae-Ee), DAe =A2e: 

0 
j=0 E D 

j=l 0 A-D D 

j=2 0 0 A-D D 

j=m 0 

0 A-D D 

p1 = min{p*, m+ I} 

p1 = min{p*, m+2} 

p1 = min{p*, m+3} 

0 A-D D 
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In these arrays, 0 denotes the s-dimensional nullvector. Type II versions are 

obtained by defining Yn+I by means of (2.7) instead of by (2.6), and, if the weights 

of the corrector satisfy b T =e 5 TA, then by virtue of Theorem 2.2, we may replace p1 

by pll and m by m-1. Notice that the b-vector is not actually needed if the algorithm 

is based on Type II methods. Furthermore, we remark that methods of Type B.2 are 

completely determined by the generating corrector, and that those of Type C.3 

prescribe the matrix D and the row sums of the matrix E. 

As already observed, PDIRK methods all belong to the class of DIRK methods 

(since the name DIRK is not consistently used in the literature, we remark that we 

shall call an RK method of DIRK type if the strict upper triangular part of its 

Butcher tableau vanishes). Moreover, the ith processor (i=l ,2, ... ,s) is faced with 

solving a sequence of implicit relations in each of which the decomposition of the 

matrix I - di h of/oy is required (in case of systems of ODEs). Since this 

decomposition can be used in all m iterations in (2.2), we shall say that PDIRK 

methods are singly diagonally implicit RK methods (SDIRK methods). Here we 

remark that this terminology is often reserved for methods in which all stages are 

implicit with the same diagonal entry in their Butcher array. However, the zero 

diagonal entries in PDIRK methods of the Types A and C (originating from B=O) do 

not exclude these methods from the class of SDIRK methods, since these zeros mean 

thatf(yn) has to be evaluated prior to the iteration process. Because the bulk of the 

computational effort per step consists in solving the implicit relations, the costs of 

this explicit stage are relatively negligible. 

Therefore, taking parallelism into account, we shall say that PDIRK methods 

require k sequential stages if each processor has to solve k implicit relations per step. 

Thus, Type A methods require m sequential stages, whereas for Type B and Type C 

methods this number is given by m+ 1. 

Finally, we observe that if the diagonal matrix D has equal diagonal entries, then 

all processors need the same LU-decomposed matrix in their solution processes. In 

such cases, this decomposition, as well as the evaluation of the Jacobian matrix 

of/oy, may be performed by an additional processor, providing a 'fresh' 

decomposition for all processors as soon as it is available. 

3. STABILITY 

Applying the PDIRK method to the test equation 

(3.1) y'(t) = A,y(t), 
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yields a relation of the form 

where z:=Ah and Rm(z) is a rational function, the so-called stability function. The 

stability functions corresponding to PDIRK1 and PDIRK11 methods will be denoted 

by R1m(z) and R11m(z), respectively. They can be directly derived from the Butcher 

arrays by using the familiar 'determinant formula' (cf., e.g., [7, p.72)). However, the 

dimension of these arrays is usually so high that the evaluation of the determinants 

is rather tedious, even for small values of the number of iterations m. Therefore, we 

shall derive these stability functions by alternative techniques. 

From (2.6) and (2. 7) we see that the stability functions are respectively 

determined by 

In order to derive an expression for y(m) we write 

where the matrix Qj follows from 

y(j) = [I - zDr l [yne + z[A - D] y(j-1)] = 

[/-zDr1 [yne +z[A-D][J-zD]-1Qj-1Ynel 

Introducing the matrix function 

Z = Z(z) := z[A - D][I - zDJ-1, 

we find that Qj satisfies the recursion 

Qo = [I - zD][I - zB]-1 [I+ zE], 

Hence, the stability functions are given by 

(3.3) 

Qm = Qm(z) :=I+ Z + Z2 + ... + zm-l + zm[J- zD][J -zB]-1[] + zE]. 
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We shall separately consider the case where the diagonal matrices Band D have 

constant diagonal elements, and the case where the matrices B and D are arbitrary 

diagonal matrices. 

3.1. PDIRK methods with constant diagonal elements 
First, we consider the effect of setting D=d· l on the attainable order of those 

PDIRK methods which already impose conditions on the matrix D. Assuming that 

the generating corrector always satisfies the condition Ae=c, we find, according to the 

specification of PDIRK methods in Section 2.3, that 

TypeB.2: 

Type C.3: 

D = diag(Ae) 

. DAe =A2e 

de=c, 

de =Ac. 

By observing that third-order correctors require that bTe=l, bTc=l/2, bTAc=l/6 and 

bTc2=113, we see that PDIRK methods of Type B.2 cannot satisfy these conditions, 

so that their order is limited top*= 2, which is obtained for d=l/2. A necessary 

condition for Type C.3 methods to satisfy these third-order conditions requires d=l/3. 

However, the fourth-order condition bTA2c = 1/24 cannot be satisfied, so that the 

order of Type.C.3 methods is limited top*= 3. Obviously, we are not interested in 

such low-order methods. Furthermore, as will be shown below, we shall exclude 

methods of Type C.1, because the number of sequential stages is not optimal with 

respect to the order p. Thus, in this section we shall concentrate on PDIRK methods 

of Type A.1, Type B.1 and Type C.2. 

Next, we return to the stability functions (3.3). For B=b·l and D=d·l the matrix 

Qm(Z) can be written as 

Qm(z) = (1 - bz)(l - dzr-1 ' 

where Nm(z) is a polynomial in z with matrix-valued coefficients; (3.3) becomes 

(3.4) 

This representation shows that both stability functions are of the form 

r 

(3.5a) R(z) := (l -dztq P(dz), P(dz) := L Cj (dz)i, 
j=O 
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where the coefficients Cj depend on q and d (recall that either b=0 or b=d). For future 

reference, it is convenient to specify the values of r and q for the various types of 

methods. In Table 3.1 these values are listed for general values of d. 

Table 3.1. Values of rand q in the stability function (3.5a). 

Type IA I8 IC IIA IlB ITC 

r= m+l m+l m+2 m m m+l 

q= m m+l m+I m m+I m+l 

For an arbitrary given value of d the order of consistency of the stability function 

(3.5a) cannot exceed r, hence, by choosing m such that the order p of the PDIRK 

method equals r, we achieve that the number of sequential stages is minimal with 

respect to the order p. 

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The following 

theorem defines an explicit representation of the stability function. 

Theorem 3.1. Let p be the order of the method and let m be such that r=p; then the 

coefficients of (3.5a) are given by 

(3.5b) ~ ( q ) (-1 y'-i . 
Cj= £..J ._. "7';ji, 1=0, l, ... ,q; 

i=O J l l. 

q . 
~ ( q) (-1)1 

Cj= !,- i (j-i)!dj-i ' 
1=0 

where j = q+l, q+2, ... , p, and O! := 1. 

Proof. Since it is assumed that the method is of order p we necessarily have 

R(z)=exp(z)+O(zP+ 1 ). By expanding the function ( 1 - dz)q exp(z) in a Taylor series at 

z=O and by equating corresponding coefficients in this expansion and in the 

polynomial P(z), defined in (3.5a), we can find the first p+ 1 coefficients of P. Hence, 

all coefficients of Pare uniquely determined and are given by (3.5b) (see also N0rsett 

[19] and Butcher [3, p. 246] for expressions in terms of derivatives of Laguerre 

polynomials). [] 

Notice that the condition r=p excludes methods of Type C.1, because for Type I 

and Type II variants the maximal order is m+ 1 and m, respectively, which is one 

lower than the corresponding value of r. As a consequence, for methods of Type C 

with stability functions of the form (3.5), the order should be increased by one, 

which is obtained by requiring the matrix E to satisfy the condition Ee= Ae - de. 
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By-means of Theorem 3.1 the stability analysis is now rather straightforward. 

Following Njlirsett [20) and Butcher [3], we write u=y2 and define the so-called £

polynomial 

From the condition R(z)=exp(z)+O(zP+ 1) it follows that I R(iyld) 12= l +O(y p+ 1 ), so 

th11t E(y2)=O(yP+ 1 ). Hence, all terms of E(y2) of degree less than p+ 1 in y vanish, 

so that 
q 

E(u)= L ej ui, 
j=Lpl2J+l 

with Cj := 0 if j > p or j < 0. 

Because of the maximum principle, we have A-stability if I R(iy) I is bounded by l 

for all real y, so that the method is A-stable if, and only if, E(u) is nonnegative for 

u~O. 

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let the 

range of d-values which are A-acceptable be denoted by lpq, i.e., lpq:={d: E(u)~ 0 for 

all u ~ 0}; then the following summary is easily obtained by using Table 3.1 and the 

order results obtained for the various types of methods (p* denotes the order of the 

corrector { A, b} ): 

Table 3.2. Summary of properties of PD IRK methods with constant 

diagonal elements. 

A-acceptable 
Type Condition Order Sequential stages d-values 

IA.1 m:Sp*-1 m+l m lm+l,m 
IB.l m:Sp*-1 m+l m+l lm+l,m+l 
IC.2 m:Sp*-2 m+2 m+l lm+2,m+l 
IIA.l m:Sp* m m lm,m 
IIB.l m:Sp* m m+l lm,m+l 
IIC.2 m:Sp*-1 m+l m+l lm+l,m+l 

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if q > p. From Table 

3.2 we see that the methods of Type IIB.1 possess L-acceptable stability functions. 

Since L-stable methods are usually more suitable for integrating stiff equations than 



A-stable methods, the methods of Type IIB. l are of interest in spite of the additional• 

sequential stage when compared with the other methods, However, just as in the case 

of Sl)IRK methods, it is possible that an A-stable method. can be made L.-statlle ifi 

the interval ofA-acceptable d-values- contains a: value for which cp vanishes. Eon 

q = p $ 15, this has been investigated' oy Wolffirandt[25] and it was found. that such, 

values of d exist for p$6 and'p = 8. Thi& information is summacized,in Table 3.3a. 

In a similar way, £-acceptable ranges.ofd~values can be foundtinthecase q,=p+l. 

These ranges turn out to be nonempty for p $ 8· and. for. p= 10,. amf are given in 'Tiabli:l 

3.3b: Moreover, we list the values, of dp;p+l, which, are inside. these L-aGceptable· 

ranges and cause cp to vanish,. resulting in even. strongerdamping at 'infinity' CE2-

stabili ty). 

Finally, we considered the case· q = p -1, resulting from, rtt.1 and IC.2 type 

methods. Since now the degree of the numerator in, B(z;): is: lm:gen than that 0£ tlie 

denominator,. a necessary condition for this case ttl yield' A\..stabili~; is, that cp 

vanishes. For p = 2, 3; ... ,. 10 we determined:, tire:· zeros of cp<:tl): andi checked: the result

ing stability function on A.s-acceptabiiity. Only for p=2' (d=l!T); p=3: (d=(3+ ✓iJ)/6); 
p=4 (d=l .06857902B); and p=6 (d=0A7'.32683"9126) A·-stability can fie obtained. 

Hence, in this way we have found A-stable methods, of orders p $ 4 anrl p=o reqµii:ing.' 

p-1 sequential stages. This 11esult is similar to what- is possible in the case of RK 
methods for sequential computers (cf. [:t]; for p $ 4: and: [5] for: p=6); however,. the 

present methods contain embedded formulas of lbwer order. 

Tabf~ 3.311. A-acceptable and L-acceptable values of dfur p =q: 

Range l'pp 

[1/2, oo] 

r114, oo] 

[1/3, I .068'] 

~(i).395, 1'.2'80J 

[0.247, 0361]' + [0.4ZI,0:473J; 

[0:285, €B4l 
empty 

[0.218, 0.264], 

empty 

empty 

1: 

11±-vf U'2: 
0.4358<6~5© 

0SZ2!H60625 
()U78Cl5'.3184J'.O 

0.3'3'41423671 

(i):2'3437315%· 

Notice tl'rat an,y s-stage·, pth-order couectoi; (even ex.pl,icit correct"©,r metlwds,) can 

be l'lise"d for gffletating A-sta:h:Ee methods. oiE l'ype ffl;, .m:cl! aRy ptlfu.>-o:rtrer co1mec:1!0., 

saitisfyin:g: tie oondition' 1,:11=e/ A. for generating tJiie A.-stalll,le metoods of Type RA 

and OC,. or nfue .L-stai:de ffle~- of Type DB. 
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Furthermore, we have seen that the stability can be improved by selecting special 

d-values. Another possibility, which might be useful in a variable-stepsize 

implementation, is to exploit the length of the A- and L-acceptable ranges: for small 

changes in the stepsize h, the value of h·d could be kept fixed (as long as the 

corresponding d-value is still in the allowed range, of course), so that a new 

decomposition of I - h d c)J/c)y can be avoided. 

Table 3.3b. Ranges of L-acceptable values of d for p = q -1. 

p =q-1 Range lp,p+I dp,p+I 

[1--fin, 1+✓ 1121 0.5 

2 [0.181, 2.185] 0.5±-fi."m 

3 [0.224, 0.572] 0.3025345782 

4 [0.248, 0.676] 0.3888576711 

5 [0.184, 0.334] 0.2168805435 

6 [0.205, 0.378] 0.2579552416 

7 [0.157, 0.2029]+[0.2052, 0.234] 0.1690246379 

8 [0.171, 0.259] 0.1929778040 

9 empty 

10 [0.147, 0.165]+[0.1938, 0.1961] 0.1541460739 

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff 

systems, the actually observed order is usually much lower than the classical order p. 

In fact, the order behaviour is often dictated by the so-called stage order r (for a 

definition of this notion and its consequences the reader is referred to [7]). Since most 

(P)DIRK methods have stage order r = I, one might question the relevance of PDIRK 

methods possessing a high classical order. And indeed, for a general stiff problem, 

this order reduction phenomenon has great impact on the accuracy of this type of 

methods. 

However, in [10], Hairer, Lubich and Roche give a thorough analysis of the 

behaviour of RK methods when applied to a singular perturbed problem of the form 

(3.6) 
dyz 
-;ji"=h(y1,y2), with E << 1, 

and show that for special RK methods the classical order may still dominate the 

global error, especially if stiffness increases (i.e., if E ➔ 0). The motivation for 

considering this particular problem class is that it has practical significance and has 

been extensively studied in the literature (see the references cited in [10]). An 

important characteristic of problems of the form (3.6) is that the eigenvalues of the 

Jacobian matrix can be clustered into two groups, and behave as 0(1) and O(e-1), 



respectively. Here we give the essential result of Hairer et aL concerning the global 

error (cf. [10, Theorem l on p. 680]): 

1'heorem3.2. Let the RK method be A-stable and let e:c;;Constant·h; then the global 

error for the stiff component YI behaves as O(ehr) + O(hP) ifbT==esTA and'as 

O(fir+i\,if IR( 00 )I< I. For both cases; the global error for the nonstiff component Y2 

beha~.,as O(ehr+l) + O(hP). [i] 

This result indicates that Type Il methods are to be preferred if e ➔ 0, since then the 

global error is dominated by the classical order, whereas methods of Type I will 

behave according to their (low) stage order. 

To illustrate these properties, we applied a few of the PDII~K methods derived in 

the preceding subsection to a problem of the form (3.6), proposed by Kaps [17]: 

d 
;1 == _ (2 + e-1 )YI+ i:;-I (Y2)2, Y1(0) == 1, 

(3.6') 
dy2 dt =YI-no+ Y2), 

C) ::; t :c;; l, 

Y2(0) == 1, 

with the smooth exact solution y I ==exp(-2t) and Y2=exp(-t) for all values of the 

parameter e. 
The methods we have used' in our tests are based on correctors of different 

classical order ( a specification of these correctors can be found in the appendix to the 

report [ 14]). Moreover, all methods were equipped with the special dpp or dp,p+ 1 

values given in the Tables 3.3 and, consequently, are L-stable and L2-stable, 

respectively. 

For e= l o~8 the absolute errot for the stiff component y 1 at the end p0int t:::: l is 

given irt Taole 3.4; here, the error is written in, the: foFm• 10-A artd the values of ,1, are 

listed. Notice that the Type II methods require a stiffly accurate corrector (such as the 

Radau IIA formulas} and that L-stable, seventh-order PDIRK methods are only 

possible within the family of Type JIB. f methods (cf. Tables 3.2 and 3.3b). ThiS 

table clearly demonstrates the superiority of the stiffly accurate Type II methods over 

the Type I methods, wnich show onfy a second'-order beflaviour foi; tne global error 

(recaU that r= l for the Type IB. U methods}. On the other hand, the stiffly accurate 

methods exhibit the classical order in the error behaviour and thus bodr results are in 

perfect agreement with the estimates in the theorem of Hairer et al. 

From this experiment we may conclude that it is relevant indeed t-0 have nigfr" 
order PDIRK methods for integrating stiff systems of the form (3.6), in spite of their 

low stage order. 

Comparing the efficiency of tne vari'Ms pataHel methods of type ID:, we observe 

that schemes of Type A and C are equally effrcient, sinG:e tfuey req®i'l'e the s,ame 
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number of sequential stages (cf. Table 3.2). The Type IIB. 1 methods yield slightly 

more accurate results, but need an additional stage to reach the same order (we remark 

that the seventh-order method of this type does not show full advantage, since the 

integration process was impeded by the machine precision). 

Table 3.4. Values of L1 at t=l for the first component of problem (3.6') with e=I0-8. 

Seq. Stages 
Type Corrector Order h=I/4 h=l/8 h=l/16 h=l/32 h=I/64 per step Proc. 

IB.1 Radau IIA 3 3.7 4.1 4.6 5.2 5.8 3 2 

Gauss-Legendre 4 2.9 3.6 4.2 4.8 5.4 4 2 

Explicit RK 4 3.0 3.7 4.3 4.9 5.5 4 4 

RadauIIA 5 3.6 4.3 4.9 5.5 6.1 5 3 

Gauss-Legendre 6 3. I 3.7 4.4 5.0 5.6 6 3 
-- - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - -

HA.I Radau IIA 3 4.0 4.9 5.8 6.7 7.6 3 2 

RadauIIA 5 6.9 8.4 9.8 10.6 11.0 5 3 
- - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - --- - -- - - - - - - - -- - - -- -- - - - - - -- - --- - - - - - - - - - - - - - - - - - - - - --

11B.1 Radau IIA 3 4.3 5.2 6.1 7.0 7.9 4 2 

RadauIIA 5 7.2 8.7 10.3 11.8 11. 8 6 3 

Radau IIA 7 9.7 10.2 I 0.6 10.9 11.2 8 4 
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - -- - - - - - - - -- -

IIC.2 RadauIIA 3 4.0 4.9 5.8 6.7 7.6 3 2 

RadauIIA 5 6.9 8.4 9.8 10.6 11.0 5 3 

3.2. PDIRK methods with arbitrary diagonal matrices 
In the case where B and D are allowed to be arbitrary diagonal matrices, it is 

convenient to express Qm(Z) in the form 

Qm(Z) = [/-ZJ-1[/ - zm] + zmQo 

= [I -Z]-1 [/ - zm] + zm[I - zD][I - zB]-1[1 + zE]. 

Since [/ - zDJ-1 = [/ - zAJ-1 [/ - Z], we find 

Qm(Z) = [/ -zD][I -zAr1 [I - zm + [/-Z]zm[I-zD][I -zB]-1 [/ + zE]], 

so that (3.3) yields 

(3.3') 
R1m(Z) = 1 +z,bT[i-zAJ-1[1-zm + [/-Z]ztn[I-zD][l-zB]-1[! +zE]]e, 

RIIm(Z) =e/[I-zAJ-1[1-zm + [I-Z]ztn[l-zD][l-zB]-1[1 +zE]]e = 

= 1 +e/[/-zAJ-1 [zA-zm + [/-Z]ztn[/-zD][/-zB]-1[1 +zEJ]e. 
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In the following two subsections, a representation for the stability functions 

without inverses of matrices will be given, and stability characteristics of PDIRK 

methods of the Types IB.2, IIB.2 and IIC.3 are presented. 

3.2.1. Representation theorems. The following theorem gives a representation of 

the stability functions in terms of determinants containing only inverses of diagonal 

matrices: 

Theorem 3.3. The stability functions (3.3') can be represented by 

(3.7) 

II det{/-zA + [zA -zm + [I-Z]Z111 [1-zD][I-zB]- 1 [I+ zE]]ee/} 
R (z)------------_,;;.-........ _,;;.----------------=-.............. -

m - det {/ - zA} 

Proof. Applying the identity 

1 TN-l _ det {N + yxT} 
+ x y - det {N} 

to the stability functions, (3.3') straightforwardly leads to the representations (3.7). [] 

The expressions (3.7) can be simplified for the respective Types A, Band C: 

Corollary 3.1. Let the matrix Z be given by Z = z[A - D][J- zD]- 1; then the 

following assertions hold: 

(a) The stability function of PDIRK methods of Type A. I are given by 

I det{ / - zA + z[I - zzmA]ebT} R 
111

(z) = _ _,_ ___ ..;;.... ____ ......_ , 

det {/ - zA} 
(3.8a) 

II det{/-zA +z[I-Z111 ]AeesT} 
R (z)--------------------

m - det { / - zA } 
(b) The stability function of PDIRK methods of Type B are given by 

(3.8b) 
I det{ / - zA + z[I - zm+I ]ebT} 

R m(Z) = ---------------- , 
det {/ - zA} 

11 det{ / - zA + [zA - zm+I Jee/} R m(Z) = _........_ ____________ ...._..._ 
det {/ - zA} 
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(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are given by 

(3.8c) 
RI z _ det{J-zA+z[/-zzm+lA]ebT} 

m ( ) - det {/ - zA } ' 

Rn z _ det{I-zA+z[I-zm+ 1]AeesT} 
m( ) - det {/ - zA} 

[] 

Notice that these expressions no longer explicitly depend on E and B and are 

completely determined by the corrector and the matrix Z. 

3.2.2. Stability characteristics. In this subsection, we consider the stability of 

PDIRK methods. We shall distinguish between methods based on Radau IIA 

correctors and on Gauss-Legendre correctors. 

The Radau IIA correctors have order p=2s-1, where s is the number of stages, and 

satisfy the condition bT=esTA (their Butcher arrays for s=l, ... ,4 are given in the 

appendix to [14]). Owing to this property, PDIRK methods of Type I and Type II are 

both relevant. We confine our considerations to types which require (with respect to 

their order) less sequential stages than the corresponding methods indicated in Table 

3.2, that is, we consider methods of the Types IB.2, IIB.2, and IIC.3. For these 

types of methods, the stability functions are completely determined. 

Table 3.5. Characteristics of PDIRK methods 

Type Corrector Order Seq.Stages Processors Stability 

IB.2 RadauIIA 3 2 2 Strongly A-stable 
Gauss-Legendre 4 3 2 Strongly A-stable 
RadauIIA 5 4 3 Strongly A-stable 
Gauss-Legendre 6 5 3 Strongly A(a)-stable, a=89.97° 
RadauIIA 7 6 4 Strongly A( a)-stable, a:=83.3° 

IIB.2 RadauIIA 3 3 2 L(a)-stable, a=89.75° 
RadauIIA 5 5 3 L(a)-stable, a=89.12° 
RadauIIA 7 7 4 L(a)-stable, a=89.02° 

IIC.3 RadauIIA 3 2 2 A-stable 
RadauIIA 5 4 3 A(a)-stable, a=89.997° 
RadauIIA 7 6 4 A(a)-stable, a=89.95° 

In Table 3.5, we present a summary of the characteristics of these methods for 

several orders. Based on the stability functions (3.8), the stability region of the 

methods was determined numerically. It turned out that some stability functions are 

only A(a)-acceptable. However, in these cases a is very close to 90° (in the 

Appendix to [14], a set of stability regions is given, including the regions of the 

embedded lower-order methods). 
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· Furthermore, we considered PDIRK methods based on Gauss-Legendre correctors. 

Such s-stage correctors have order 2s, but are not stiffly accurate and, hence, only 

Type I methods are relevant. In Table 3.5 we have included the characteristics of 

fourth- and sixth-order methods of Type IB.2 (the generating correctors can be found 

in [3, p. 219] ). 

In comparison with the PDIRK methods constructed in Section 3.1, we observe 

that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential stage 

less to obtain a given order of accuracy. Moreover, with the exception of the 7th

order method of Type IB.2, these methods possess almost the same good stability 

properties. 

For the methods of Type IIB.2 (for which the order equals the number of 

sequential stages), only the seventh-order is relevant, since in Section 3.1 it turned 

out to be impossible to construct an L-stable method of order 7 with 7 sequential 

stages; the third- and fifth-order methods of Type IIB.2 do not have an advantage over 

the £-stable methods described in Section 3 .1. 

3.2.3. Accuracy test. We conclude this section by applying the methods specified in 

Table 3.5 to the problem (3.6'). Using the same notation as described in Section 

3.1.3, the results are given in Table 3.6. 

Again, the stiffly accurate Type II methods are much more efficient than the 

methods of Type I. Moreover, the order behaviour nicely illustrates the results of the 

theorem of Hairer et al. (cf. Section 3.1.2). Furthermore, within the class of stiffly 

accurate methods, the C-variant is superior to the B-variant, since it is cheaper and 

yields, for this example, more accuracy. 

Table 3.6. Values of .1 at t=l for the first component of problem (3.6') with E=I0-8. 

Seq. Stages 
Type Corrector Order h=l/4 h=l/8 h= 1/16 h=l/32 h=l/64 per step Proc. 

IB.2 Radau IIA 3 2.8 3.8 4.1 4.7 5.3 2 2 
Gauss-Legendre 4 2.7 3.4 4.0 4.6 5.3 3 2 

Radau IIA 5 2.4 2.8 3.4 4.1 4.8 4 3 

Gauss-Legendre 6 3.0 3.5 4.1 4.8 5.4 5 3 

Radau IIA 7 4.2 4.6 5.2 5.8 6.4 6 4 
-------------------------------------------------------------------------------------
11B.2 Radau IIA 3 3.4 4.1 4.9 5.8 6.7 3 2 

Radau IIA 5 4.9 6.1 7.5 9.0 10.4 5 3 

Radau IIA 7 6.4 8.2 10.1 11.9 12.5 7 4 
-------------------------------------------------------------------------------------
IIC.3 Radau IIA 3 4.3 5.2 6.1 7.0 7.9 2 2 

Radau IIA 5 6.6 8.0 9.4 10.8 11.6 4 3 
Radau IIA 7 8.7 10.6 12.0 12.3 12.6 6 4 
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4. EFFICIENCYTISIS 

Finally, we will investigate the performance of PDIRK methods when run on a 

parallel computer. Because it is highly desirable to use an unconditionally stable 

method of high order, we selected a PDIRK method of Type IIB.1 with a D-matrix of 

the form D=d·I. On the basis of the accuracy test described in Section 3.1.2, we 

decided to choose the seventh-order, four-point Radau IIA corrector (see (A.3) in the 

Appendix to [14)), with m=7 iterations. The resulting method is of order seven (cf. 

Theorem 2.2) and by choosing d=0.1690246379 we achieve strong damping at 

infinity (L2-stability, cf. Table 3.3b). Hence, taking into account the (implicit) 

predictor, the method requires eight sequential stages per step. We have implemented 

this method on an ALLIANT FX/4 computer, having four parallel (vector-) 

processors, shared memory and approximately 16 digits arithmetic precision. Since 

the underlying Radau method has four stages, we may expect an efficient use of this 

machine. 

In order to be able to test problems with a strongly fluctuating solution, we 

equipped the above fixed-order PDIRK method with a simple strategy for error control 

and stepsize selection. Since the PDIRK approach provides a whole set of embedded 

reference solutions of lower order, we can construct an estimate of the local 

truncation error without additional costs. For this purpose we take 

II e4 Ty(m) - e4 Ty(m-l)II as an estimate for the local error. All implicit relations are 

iterated using modified Newton iteration. If convergence happens to fail within a 

fixed number of iterations (in our version, we choose this number equal to 10), then 

we update the Jacobian and, if still no convergence can be obtained, we halve the 

stepsize (repeatedly, if necessary). Furthermore, the Newton process to solve for y(j) 

is started with the initial guess y(j-l), which is of increasing accuracy for increasing 

j. It should be observed that this provisional implementation certainly can be 

improved by a better tuning of the separate elements (for example, all kinds of 

thresholds and strategy parameters should be tuned on the basis of extensive testing). 

Since it is not the aim of this paper to present such a 'production code', we will give 

results for our 'research version'. 

The goal of our tests is twofold: 

(i) We want to investigate to what extent the theoretical parallelization can be 

realized in practice; in other words, what speedup factor can be obtained on this four

processor machine. Obviously, the ideal factor of four will be too optimistic, due to 

some unavoidable overhead, like communication and sequential parts in the program. 

(ii) We want to compare the performance of the parallelized PDIRK code with that 

of a good sequential ODE solver. Within the class of sequential solvers based on 

unconditionally stable methods, we selected the code SIMPLE of Nfllrsett and 

Thomsen [22]. The method underlying this robust and reliable code is closely related 
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·to the PDIRK method, i.e., it is also based on an unconditionally stable, diagonally 

implicit Runge-Kutta method. Furthermore, SIMPLE is, like PDIRK, equipped with 

embedding techniques to control the local error. A disadvantage of this code is that 

its order is rather low; it is based on a third~order DIRK method .. However,. high-order 

A-stable DIRK-codes are not available in the literature. Since many problems are 

more efficiently integrated if high-order formulas are available, we also looked for a 

code based on methods of various orders. This leads us to LSODE of Hindmarsh [ 11 J. 
This BDF based code has enjoyed very successful usage over a long period. However,. 

the fact that only the first- and second-order formula in this code are unconditio14aJ1y 

stable, makes LSODE less robust as a general stiff solver .. It is well known that the 

performance of this code may decrease significantly when it is applied to profulerns 

with eigenvalues in the vicinity of the imaginary axis (see,. for example, Stewart 

[231). On the other hand, since LSODE is generally accepted as being a good 

sequential ODE solver, we decided to include it in our tests. 

In the next subsections, we describe the results obtained when the aforementioned 

three codes are applied to some hard problems. Since the codes mre different in nature 

(low order versus high order, onestep versus multistep), we refrain from specifying 

the traditional statistical output of an automatic ODE solver, like number of steps, 

number of LU-decompositions etc. It should be observed that the work involved per 

step is quite different for the various codes: for instance, the sequential number of 

implicit relations to be solved per step equals l for LSODE, 4 for SIMPLE, and 8 for 

PDIRK. Since the codes do not yield equal accuracy for the same value of the local 

error control parameter TOL, we list results for various values of TOL and measured 

the accuracy produced as well as the CPU-time required. All accuracies are given in 

terms of L\, the number of correct digits in the endpoint of the integration interval 

(see Section 3.1.2), and the CPU-tirnes are given in seconds. 

4,1. Robertson kinetics example 

In our first example we solve a set of reaction-rate equations: 

d~J = - 0.04 YI + 104 Y2 Y3, 

(4.1) d;2 = 0.04 YI - 104 Y2 Y3 - 3·107 (Y2)2, 

dy3 dt = 3·107 (Y2)2, 

defined on the interval [0, 108] with initial conditions y 1 (0) = 1, Y2(0) = y3(0) = 0. 

This problem is also used by Hindmarsh and Nprsett-Thomsen to illustrate the 

performance of LSODE and SIMPLE. 
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Initially, the solution changes rapidly and small stepsizes are required; gradually 

the solution reaches a steady state and the stepsize can be increased considerably. In a 

typical situation we observed stepsizes in the range [1 o-3, 106]. Hence this problem 

imposes a severe test on the stepsize selection procedure. The results obtained by the 

various codes are collected in Table 4.1. Here Ti means the CPU-time when only one 

processor is used, and T4 denotes the CPU-time required when the program is run on 

four processors. 

Table 4.1. A-values and CPU-times for problem (4.1) 

Method IDL A T1 T4 
10-4 6.5 0.63 0.85 

SIMPLE 10-5 7.8 1.38 >T1 
10-6 9.5 3.67 >T1 

LSODE 

10-5 7.4 0.35 >T1 
10-7 8.6 0.80 >T1 
10-9 10.3 1.71 >T1 

PDIRK 102 8.5 0.51 0.19 
100 11.1 1.08 0.37 

These results give rise to the following conclusions: 

(i) Concerning the parallelization of the PDIRK code we observe a speedup with a 

factor (T1IT4 "') 2.68 and 2.91 for the two values of TOL that we have used. One 

reason why these numbers are less than the optimal speedup factor 4, is the 

introduction of inevitable overhead (and of scalar code). Another reason is 

algorithmic in nature. Each component of the prediction y(O) is a numerical 

approximation to the ODE solution at the point tn+d h (actually, all processors have 

solved exactly the same implicit relation in this predictor stage). These components 

are used as an initial guess in the various Newton processes computing y(l). Since 

the components of y(l) are approximations to the ODE solution at different points 

(i.e., the Radau points), these initial guesses do not have equal accuracy, so that we 

may expect different numbers of Newton iterations on the various processors. In the 

case TOL = 1, we measured the actual numbers of Newton iterations over the whole 

integration interval and found, for the four processors, 848, 924, 1012 and 1043, 

respectively. This means that in some steps a few processors have met the 

convergence criterion in the Newton process, and thus have been idle for some time 

while waiting for the other processors to complete solving their implicit relation. 

Taking this aspect into account, the optimal parallelization cannot exceed a speedup 

factor equal to (848+924+1012+1043)/1043 "'3.67. The measured speedup in this 

case equals 2.91 (i.e., 79%), showing that the overhead (communication, scalar code 

etc.) only slightly degrades the performance. The reduction of the ideal factor 4 to 



122 

J.67 is a price we have to pay in choosing a PDIRK method. We may conclude that 

the actual efficiency of the method as a whole, defined as the total speedup divided by 

the number of processors used, equals 2.9114 = 0.73. 

(ii} Concerning the scafar codes SIMPLE and LS0DE, we observe that they run 

faster on one processor than on four (see the result obtained by SIMPLE for 

TOI,ci:f0-4). Apparently, the parallelization and vectorization overhead does not pay 

for rilti~ problem (this might be different in case of an ODE with many components). 

Tl'letefore, we only give timings for the uniprocessor experiments. 

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in 

the high-accuracy range. This is obviously due to its low order. LSODE, which can 

utilize higher orders, is more efficient in this range but, when compared to PDIRK, 

its CPU-time is approximately four times larger to obtain 8.5 digits precision and 

this factor increases if still higher-precision results are requested (notice that even on 

one processor, PDIRK is faster than LS0DE on this problem). 

(iv) Finally, we observe that the value for T0L used by PDIRK is several orders of 

magnitude larger than the value used by either SIMPLE or LS0DE to achieve the same 

global error. This can _be explained as follows: Owing to its high order, the local 

truncation error of PDIRK is usually relatively small. Therefore, if crude tolerances 

ate used, the error control mechanism signals that a large stepsize can be used in 

order to balance the estimated and the requested local error. On the other hand, the 

Newton process imposes a !imitation on the stepsize. In our implementation, the 

Newton processes to solve for y(O) are given the value Yn as initial iterate. 

Unfortunately, for large values of h (as suggested by the error estimator) this initial 

iterate is not always inside the contraction domain for the Newton process, resulting 

in an adequate reduction of the stepsize. As a consequence, this high-order scheme, 

using a small(er) stepsize, will produce a local error which is much smaller than 

requested. 

In conclusion, for this test problem (and also for the problem to be discussed in 

the next subsection), the restriction on the stepsize imposed by the Newton process 

is more stringent than that imposed by the local error control, unless very small 

values for T0L are used. We have also integrated some linear ODEs (for which the 

convergence problems are not relevant, of course) and observed a relation between 

T0L and the global errot similar to that of SIMPLE and LS0DE, 

Summarizing, for obtaining highly accurate results, the above experiment shows 

that the high order of the PDIRK method is worth the large amount of redundancy 

introduced in its construction. In this conne£tion we remark that the order of these 

methods can still be raised to 10, whereas an increase of the order is not possible for 

13DF methods and not feasible for embedded DIRK methods underlying the SIMPLE 

ctlde, 
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4.2. Van der Pol's equation 
Our second example is given by the van derPol equation 

(4.2) y" - µ (1-y2)y' + y = 0. 

For µ=5, this is problem E2 from the test set of Enright et al. [8]. However, as 

reported there, on the interval [0, 1] the spectral radius of the Jacobian does not exceed 

15, so that the problem is not really stiff. Therefore, we set this parameter to 50. 

For this µ-value the equation exhibits so called 'relaxation oscillations', which 

means that the solution possesses internal boundary layers. Furthermore, we consider 

an integration interval sufficiently large to capture such an internal layer, which 

again requires an adequate stepsize selection procedure. The problem tested in this 

section is defined by 

dy1 
di =y2, YJ(0) = 2, 

(4.2') 

d;2 = 50 (1 - (y1)2) Y2 -y1, 

0::; t :s; 41.5 . 

Y2(0) = 0, 

This test example has also been discussed by Gottwald and Wanner in [9]. At 

approximately !=40.7, the solution YI drops from 1 to -2 on a very short interval, 

forcing the codes to reduce their steplengths dramatically (several orders of 

magnitude). The results of the various codes applied to this problem can be found in 

Table 4.2. 

Table 4.2. Li-values and CPU-times for problem (4.2') 

Method lOL L1 T1 T4 

10-6 5.6 1.07 >T1 
SIMPLE 10-8 6.9 5.64 >T1 

10-IO 7.8 25.5 >T1 

10-6 4.3 0.24 >T1 
LSODE 10-8 6.3 0.42 >T1 

10-I0 7.8 0.83 >T1 

10 5.1 0.56 0.20 
PDIRK 10-2 6.1 1.20 0.41 

10-5 7.2 2.44 0.82 

Again, we see that PDIRK can take advantage from the availability of four 

processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency is 

"' 0. 72). For this problem the loss in efficiency due to overhead is less than 
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O - 0. 72 =) 0.28, because the various processors required a different number of 

Newton iterations (viz., for TOL=I0-5 we found 3186, 3561, 3882 and 4092 

iterations, respectively, thus reducing the optimal speedup factor from 4 to 3.6). 

Furthermore, it is quite clear that the low-order SIMPLE code becomes 

excessively more expensive for smaller values of TOL. On the other hand, LSODE 

behaves rather efficient for this problem and is approximately equally efficient as 

PDIRK. 

4.3. Conclusions 
On the basis of these (difficult) problems we may draw the following conclusions: 

- the actually obtained degree of parallelization of the PDIRK method is fairly close 

to its ideal value. 

- the reason that SIMPLE is less efficient than the other two codes, especially in the 

high accuracy range, is because of its low order. 

it is well known that the higher-order BDF formulas lack the property of L

stability. This may result in serious difficulties for LSODE in the case that the 

Jacobian has eigenvalues in the vicinity of the imaginary axis. However, the two 

test problems do not belong to this category; hence, LSODE has not been faced 

with the limitation of the stability regions of the higher-order BDFs. 

- unlike the implementation of SIMPLE and LSODE, the implementation of PDIRK 

does not require additional costs in calculating a reference solution. 

- the present research version of the PDIRK code is at least as efficient as the well

balanced, extensively tested LSODE code. 

- a future version of a PDIRK code can be improved as follows: 

(i) better tuning of the stepsize strategy parameters and, particularly, 

finding more accurate initial iterates for the Newton process in the 

prediction stage; 

(ii) implementation of a variable-order strategy; L-stable PDIRK fonnulas of 

orders up to 10 (excluding order 9) are available; 

(iii) implementation of a stiffness detector, like the one in SIMPLE, and 

switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in 

nonstiff regions of the integration interval. 
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Abstract. This paper examines diagonally implicit iteration methods for solving 
implicit Runge-Kutta methods with high stage order on parallel computers. These 
iteration methods are such that after a finite number of m iterations, the iterated 
Runge-Kutta method belongs to the class of diagonally implicit Runge-Kutta 
methods (DIRK methods) using mk implicit stages where k is the number of stages 
of the generating implicit Runge-Kutta method (corrector method). However, a large 
number of the stages of this DIRK method can be computed in parallel, so that the 
number of stages that have to be computed sequentially is only m. The iteration 
parameters of the method are tuned in such a way that fast convergence to the 
stability characteristics of the corrector method is achieved. By means of numerical 
experiments it is also shown that the solution produced by the resulting iteration 
method converges rapidly to the corrector solution so that both stability and accuracy 
characteristics are comparable with those of the corrector. This implies that the 
reduced accuracy often shown when integrating stiff problems by means of DIRK 
methods already available in the literature (which is caused by a low stage order) is 
not shown by the DIRK methods developed in this paper provided that the corrector 
method has a sufficiently high stage order. 
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1. INIRODUCilON 
1.1. Runge-Kutta methods 

Suppose that we want to solve stiff initial value problems for systems of first

order, ordinary differential equations (ODEs), i.e., 

(1.1) ~t) =/(t, y(t)), y(to) = Yo, y : IR ➔ JRd, f: IR x JRd ➔ JRd, 

by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires 

that the RK method should be sufficiently stable, preferably A-stable, and therefore 



130 

implicit. This leads us to fully implicit RK methods (IRK methods) in which the 

Butcher array 

(1.2) 

has a full A-matrix. Most widely used are the IRK methods based on Gaussian 

quadrature formulas (such as Gauss-Legendre, Lobatto and Radau methods), which 

are known to be A-stable for any order of accuracy. However, the high degree of 

implicitness of these methods implies that solving the implicit relations is rather 

costly. In general, a k-stage IRK method (that is, band care k-dimensional vectors 

and A is a k-by-k matrix) requires in each step the solution of a system of dimension 

kd, so that the computational complexity is of order (kd) 3 . This compares 

unfavourably with implicit linear multistep methods which require in each step the 

solution of a system of dimension d. 

In order to reduce the computational labour involved when using implicit RK 
methods, various people have considered diagonally implicit RK methods (DIRK 

methods) possessing a lower triangular A matrix and therefore requiring (in general) 

in each step the solution of k systems of dimension d. Hence, the computational 

complexity is now of order kd3 instead of order (kd) 3. Unfortunately, the price we 

have to pay for the less expensive DIRK methods is a considerable drop in accuracy 

in many stiff problems. This is caused by the phenomenon of order reduction (cf., 

e.g., [21], [9], [11]) which reduces the observed order of RK methods to their stage 

order (or their stage order plus one). Most DIRK methods are particularly sensitive 

to order reduction because their stage order is only one or two, which is much 

smaller than fork-stage Gauss-Legendre, Lobatto IIIA and Radau IIA methods which 

have all stage order k. 

An alternative for the DIRK methods are the singly implicit RK methods (SIRK 
methods) of Burrage [2] which possess a high stage order. By means of a 

transformation technique due to Butcher (see [5], [6]), these SIRK methods can be 

transformed into methods that are, like DIRK methods, only diagonally implicit. 

However, the additional transformations required in each step cause that the total 

costs per step are considerably higher than for DIRK methods. 

Yet another possibility is the use of parallel processors. In this paper, we shall 

show that on parallel computers the fully implicit relations associated with IRK 
methods can be solved efficiently by using the highly parallelizable iteration 

methods of diagonally implicit type proposed in van der Houwen et al. [13]. This 

brings us back to using IRK methods as corrector method instead of using DIRK or 

SIRK methods. In particular, we shall concentrate on iterating IRK methods 

possessing high stage orders. 
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1.2. IRK methods with high stage orders 

Most IRK methods are designed in such a way that they have a high order at the 

step points. However, as already remarked above, a high order at step points is often 

spoiled by order reduction, so that it seems more natural to look for IRK methods 

with as high a stage order as possible. In order to achieve this, we shall consider 

(k+ 1 )-stage IRK methods of the type 

0 

(1.3) C 

0 

a 

OT 

A 

where bo is a scalar, a, b and c are k-dimensional vectors, and A is again a k-by-k 

matrix. IRK methods of this type have roughly the same computational complexity 

as the IRK methods of type (1.2), but they possess the additional parameter vector a 
which can be used for increasing the stage order. To see that (1.2) and ( 1.3) are 

(almost) equally expensive, let us assume (for simplicity of notation) that (1.1) is a 

scalar problem (i.e., d=l), and let us introduce the vectors 

where Yn,i denotes a numerical approximation to the exact solution value y(tn+cih), 

h being the stepsize. Then we can write (1.3) in the form 

(1.3') 

Here, e is the vector with unit entries, and we used the convention that for any given 

vectors v=(vj) and t=(tj),J(t, v) denotes the vector with entries f(tj, Vj)- If bo = 0 and 

a= 0, then it follows from (1.3') that (1.3) reduces to (1.2), so that in each step the 

computational complexity of (1.2) and (1.3) differ by the evaluation of f(tn,Yn), but 

both methods require the solution of a system of dimension kd. Since the bulk of 
the computational effort goes in solving this system, the methods (1.2) and (1.3) 

may be considered as equally expensive. 

The vectors Y n+ 1 and c will, respectively, be called the stage vector and the 

block point vector, and the points tn and tn+cjh will, respectively, be called step 

points and block points. The minimal order achieved at the block points and step 

points are, respectively, the stage order and step point order. 

If the method parameters are chosen in such a way that the stage order is as large 

as possible with c arbitrary, then (1.3) is equivalent to the IRK method derived from 
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l:,agrange quadrature formulas and will be called a Lagrange method. If Cj = jlk, then 

Lagrange methods reduce to the Newton-Cotes methods studied in Watts and 

Shampine [23], and if the components of c equal the Lobatto quadrature points, then 

they reduce to the Lobatto IIIA methods. However, Newton-Cotes and Lobatto IIIA 

methods are only weakly A-stable (i.e., the method hardly damps the highly stiff 

components in the numerical error). It is our aim to construct Lagrange methods 

with better stability properties than Newton-Cotes and Lobatto IIIA methods, i.e., 

methods which damp both nonstiff and stiff components occurring in the numerical 

error (strongly A-stable methods). 

An important family of IRK methods are the so-called stiffly accurate methods 

(cf. Alexander [l]). If the IRK method is of the form (1.3), then this family is 

obtained by setting 

where ek is the kth unit vector. Notice that, when represented by their Butcher array 

(1.3), the last row in (1.3) equals the preceding one. It was shown by Hairer et al. 

[ 11] that this property implies that for certain classes of stiff problems the method 

does not suffer the effect of order reduction. Examples of stiffly accurate IRK 
methods are the Lobatto IIIA, Radau IIA, and Newton-Cotes methods. 

1.3. Diagonally implicit iteration of IRK methods 

After a finite number of m iterations of the implicit relation for Yn+l given in 

(1.3') by the aforementioned diagonally implicit iteration process (or briefly diagonal 

iteration) (see also Section 3), the resulting scheme actually is an (mk+ 1 )-stage 

DIRK method. One of these stages is explicit and the other mk stages are of 

diagonally implicit form. However, a large number of these mk implicit stages can 

be computed in parallel, resulting in a process where only m stages have to be 

computed sequentially. 

The iteration parameters of the method can be tuned in such a way that we get 

fast convergence to the stability characteristics of the corrector method, provided that 

the corrector is stiffly accurate (in Subsection 3.3.1, we will show that the diagonal 

iteration of the type employed in this paper is not suitable for iterating nonstiffly 

accurate correctors). 

Second, it has been demonstrated that the iterated methods based on strongly A

stable correctors (such as the Radau IIA correctors and the Lagrange correctors derived 

in Section 4) are within a few iterations strongly A-stable themselves. It is highly 

unlikely that this nice property is shared by the methods based on (weakly) A-stable 

IRK correctors because the stability function of the iterated methods should converge 

to a (weakly) A-acceptable function. In fact, for a number of Newton-Cotes and 
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Lobatto IIIA correctors it was checked that the stability function becomes A

acceptable only after an infinite number of iterations. 

Finally, numerical experiments reveal that the drop in accuracy, exhibited in 

many stiff problems by the conventionally constructed DIRK methods, is not shown 

by the DIRK methods constructed by the diagonal iteration process of this paper. In 

a forthcoming paper [4] it is intended to present a theoretical analysis of this 

phenomenon using the error analysis proposed in Burrage [3]. 

2. ACCURACY ANDSTABILITYOFTHECORRECTOR 

In the the following two subsections, we discuss the stage order, step point 

order, and stability of the corrector equation (1.3'). 

2.1. Stage order 

Let Y(tn+J) denote the vector with components y(tn+Cih) where y is the locally 

exact solution of (1.1) satisfying y(tn)=Yn, then, following Butcher [7], (1.3') is said 

to have stage order r if the residual left upon substitution of Y(tn+U into the 

formula for Y n+ J is of order r+ 1 in h, i.e., 

(2.1) Y(tn+J) - hAf(etn +eh, Y(tn+J)) - eyn - haf(tn, Yn) = O(hr+I ). 

The stage-order conditions for (1.3') are straightforwardly derived (cf. [22]) and are 

given by 

where ci denotes the vector with components ( cif. Thus, to achieve stage order r for 

a given block point vector c, we have to solve rk linear equations in k 2+k 

unknowns, so that the maximal stage order equals k+ 1. The corresponding methods 

will be called wgrange methods. 

2.2. Step point order 

Consider the formula for Yn+I given in (1.3'): 

Since Yn+I approximates Y(tn+I) with (local) order r+I, r being the stage order (cf. 

(2.1)), we can derive that Yn+I has (at least) order p = min {r+ 1, q} if the conditions 
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ar-e satisfied. We remark that p may be larger than min { r+ 1, q} if the methods 

possess the property of so-called 'superconvergence' which for example is the case in 

Gauss, Radau, and Lobatto methods. The error constant of (2.3) is given by 

(2.5) 
__ Dq+I _ (q+l)bTcq - 1 

Eq+I .- (q+l)! - (q+l)! 

Assuming that c is given, the conditions (2.4) present a linear system of q 

equations in k+ l unknowns, so that by setting q = k+ 1 we achieve at least step point 

order p = min { r+ 1, k+ l } for any block point vector c. 

As already observed in the introduction, the usual approach in exploiting the 

vector c is the maximization of the step point order (to obtain 'superconvergence'). 

Alternatively, one may use c for improving the stability of the method or for the 

minimization of error constants. In this paper, we shall use c for achieving strong 

A-stability. 

In the special case of stiffly accurate methods satisfying condition (I .4 ), Yn+ 1 

equals the last component of Y n+ 1 so that the step point order p is also at least the 

stage order r, but is sometimes higher. For instance, the Newton-Cotes methods 

have stage order k+l and, if k is even, step point order k+2. 

2.3. Stability 

By applying (1.3') to the test equation y'=A.y, we are led to recursions of the form 

Hence, 

(2.7) Yn+I = R(z)Yn, R(z) := 1 + boz + zbT[[-zAr1[e + za]. 

R(z) is called the stability function of the one-step method. In the special case of 

stiffly accurate methods where (I .4) is satisfied, (2. 7) reduces to 

The stability region of the method is defined by the region where R is bounded 

by 1. In the case of the Newton-Cotes methods where the components of c are 

equally spaced, it was shown in Watts and Shampine [23] that they are A-stable for 

k:s; 8 (but they are not fork= 9 and k= 10). 

We conclude this section by summarizing in Table 2.1 the characteristics of a 

number of correctors available in the literature. In this table, it is assumed that the 
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IRK method is presented in the form (1.3'), so that for all methods listed the 

dimension of the implicit relation to be solved equals kd, d being the dimension of 

the system of ODEs. 

Table 2.1. Summary of characteristics of IRK methods. 

Stage Stiffly 
Method Stages Order p order r Stability accurate Reference 

Gauss-Legendre k 2k k A-stable for all k no [7] 
Lobatto IDA k+I 2k k+l A-stable for all k yes [9] 
RadauIIA k 2k-I k L-stable for all k yes [7] 
Newton-Cotes k+l 2L(k+2)/2 J k+l A-stable fork :s; 8 yes [23] 

Lagrange k+l k+I k+I Strongly A-stable yes §4(k:$4) 

3. DIAGONALITERATION 

We shall use a diagonal iteration method to solve the stage vector Yn+I from the 

fully-implicit (corrector) equation defined in (1.3} For scalar differential equations, 

the iteration method reads 

(3. la) 
y(l) - hD f(etn +eh, y(l)) = Yne + haf(tn, Yn) + h [A-D]f(t(O), y(O)), 

y(j)_h Df(etn +eh, y(j)) =yne + haf(tn, y11) + h [A-D]f(et11 +eh, y()-I)), 

j=2, 3, ... , 

where (t(O) ,y(O)) is an initial approximation to (etn+eh,Y n+ J) and D is an arbitrary 

diagonal matrix. If m iterations are performed, then Yn+I is defined by 

respectively, for nonstiffly and stiffly accurate correctors (cf. (1.4)). 

By virtue of the diagonal structure of D, the iterated method (3.1) is suitable for 

use on parallel processors because in each iteration the components of y()) can be 

computed in parallel. 

There are many possibilities for choosing the matrix D which we summarize 

below: 

(i) D = 0: this is the most simple choice and yields an explicit iteration method 

(fixed point or functional iteration). This approach was followed in N!l,lrsett and 

Simonsen [20], Lie [18], van der Houwen and Sommeijer [12], and Burrage [3]. 
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-These papers deal with the iteration of implicit methods for solving nonstiff OD Es. 

In the case of stiffODEs, one should use matrices D=f. 0. 

(ii) D is such that for a prescribed number of iterations the method has favourable 

stability characteristics like A-stability or L-stability. This approach was followed in 

van der Houwen et al. [13], where the corrector only serves for providing its order of 

accuracy. In fact, it was shown that one may even use explicit correctors and still 

can obtain A- and L-stability after the particular number of iterations and a suitable 

choice of the matrix D. 

(iii) D = diag(Ae) or D = diag(A): this choice leads to nonlinear Jacobi-type 

iteration. The few experiments we performed revealed that the convergence is rather 

poor, so that we dropped this option. 

(iv) D is such that the nonstiff components in the iteration error are strongly 

damped. This type of diagonal iteration will be called nonstiff iteration. Nonstiff 

iteration can be achieved by minimizing the spectral radius of the matrix A - D (see 

Subsection 3.2). A large number of experiments showed that this is not the way to 

proceed, at least not in the case of the one-step initial approximations to Y n+ I used 

in this paper. 

(v) D is such that the stability function Rm(z) of the iterated method rapidly 

converges to the stability function Rcorr(z) of the corrector. Hence, the corrector not 

only serves for providing its order of accuracy as in [13], but the iterated method also 

reflects the (assumed) nice stability properties of the corrector. Within this 'stability 

function approach' there are various approaches: 

v- 1 c = A - I c: this relation uniquely defines D provided that A is 

nonsingular. As observed by Hundsdorfer [15], such matrices Dimply that the 

stability functions of the corrector and of the iterated method are identical at 

infinity. Although a few first experiments did not yet show satisfactory 

results, this option should be investigated more closely (see [4]). 

Minimization of the spectral radius of the matrix / - v-1 A. This choice 

implies that Rm fastly converges to Rcorr at infinity, but, at the same time, it 

also strongly damps the stiff components of the iteration error. This type of 

diagonal iteration will be called stiff iteration. It is the approach adopted in the 

present paper (see Subsection 3.3). Our experiments in Section 5 reveal that 

stiff iteration is suited for suppressing the phenomenon of order reduction 

within a few iterations, and in this respect, the methods of this paper perform 

much better than the methods proposed in [13]. 

Other options as suggested by one of the referees, where some norm of 

I - v-1 A is minimized rather than the spectral radius, or where Rm - Rcorr is 

minimized along the negative z-axis (or larger portions of the left halfplane), 

has not yet been tested and may turn out to be still more effective. 
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(vi) D is such that the lower order error terms in the truncation error are 

minimized. Since after a finite number of iterations the iterated method (3.1) 

formally is still a DIRK method and therefore suffers from order reduction, such an 

approach directly attacks the source for order reduction. This topic will also be 

considered in [ 4]. 

The approach of stiff iteration followed in this paper seems to be rather effective. 

However, by no means we do claim that this is the best way to proceed. In [4] we 

shall present more firm theoretical and experimental evidence of the merits of the 

various approaches for choosing the matrix D. 

3.1. Computational costs 

Each step of the (outer) iteration method (3. la) requires the solution of a 

diagonally implicit relation. In order to solve this relation, we apply Newton 

iteration (inner iteration). There are various possibilities for starting the iteration 

method (3.1 a) and the Newton iteration method, and for choosing the Jacobian 

matrix J := aJ!Jy needed in the Newton iteration process. Obvious choices are listed 

in Table 3.1. 

Table 3.1. Starting the inner and outer iteration processes. 

Order of approximation 0 

Jacobian matrix diag [J(etn, eyn)] diag [J(etn +eh, Yne + hcf(ln,Yn))] 

Initial Newton iterate y(j-1) Yne + haf(tn, Y11) + hAf(etn +eh, y(J-I)) 

All possible combinations are equally expensive because the values of f(tn,Yn), 

f(et11+eh,y(j-l)) and diag(J) are anyhow needed. The first-order approximations will 

reduce the magnitude of the smooth error components (low frequencies) more than 

the zero-order approximations do, but, unlike the zero-order approximations, they 

will also introduce stiff error components in the case of stiff differential equations. 

This particularly applies to the Jacobian matrix and the initial inner iterate because 

these approximations are needed in each outer iteration. Therefore, we shall only 

consider zero-order approximations to the Jacobian matrix and to the initial inner 

iterate (notice that in the case of systems of equations, the matrix J becomes a 

block-diagonal matrix). Furthermore, our experiments revealed that using zero-order 

approximations for the initial outer iterate is more robust than the above first-order 

approximations, and yields comparable accuracies. However, it should be observed 

that the topic of choosing suitable initial approximations to the stage vector 
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(-:including multistep approximations in order to reduce the number of iterations), is 

extremely important and needs further research. Burrage [3] discussed this topic in 

the case of a general class of explicit predictor-corrector methods for nonstiff 

problems. His approach may be used to study initial approximations in the case of 

diagonally implicit predictor-corrector methods for stiff problems. 

By performing m iterations, the method (3.1) may be considered as a DIRK 

method with mk+ 1 stages, of which one stage is explicit and the other mk stages are 

diagonally implicit. In fact, we may represent the method by the Butcher array 

}=0 0 
}=I c-De D 
}=2 a A-D D 
}=3 a 0 A-D D 

J=m a 0 0 A-D D 
(3.1') 

bo OT OT OT bT 
(nonstiffly accurate correctors) 

ekTa QT OT ekT(A-D) ekTD 
(stiffly accurate correctors) 

Since each iteration step in (3.1 a) essentially requires the 'wall clock time' 

involved in evaluating one component off( etn+ch,y(j-l)) and solving one system 

of dimension d, we conclude that, effectively, the work involved in performing one 

step by the DIRK method (3.1 ') consists of 

(evaluation off and J) + (LU-decomposition of/- djhl) + 

(3.2) m[evaluation off+ N (forward/backward substitution+ evaluation off)]. 

In this expression N is defined by 

(3.3) N .-

with Nj denoting the number of Newton iterations for computing that component of 

y(j) which requires the largest number of Newton iterations. Usually, the m 

iterations are the most expensive part of the total effort per step, and therefore we 

shall say that a DIRK method has m effective or sequential stages if there are m 

diagonally implicit systems to be solved. 
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3.1.1. Comparison with conventional DIRK methods. In the experiments reported in 

this paper, we used the stopping criterion that the Newton correction should be 

about the machine precision which is for our computer 10-14. It turned out that N1 
rapidly decreases with j which can be explained by observing that the initial iterate 

for starting the next inner iteration becomes more accurate when j increases. This is 

an advantage when compared with conventionally constructed DIRK methods already 

available in the literature (such DIRK methods will be indicated by 'conventional' 

DIRK methods), because, for conventional DIRK methods, the number of Newton 

iterations for solving the implicit relations in the successive stages do, in general, 

not decrease. 

In order to appreciate the computational costs of DIRK methods of type (3.1 '), 

we should compare m with the number of sequential stages of conventional DIRK 

methods. In Table 3.2, the characteristics of such DIRK methods are listed together 

with the PARK and PDIRK methods derived in [16] and [13]. 

Table 3.2. Summary of characteristics of DIRK, PARK and PD IRK methods of 

order p'?:.3. 

Order Stage order Seq. stages Processors Stability Reference 

p=3 1 p-1 1 A-stable [19] 

p=3 2 p-1 Strongly A-stable [8] 

p=4 p-1 A-stable [8], [l] 

p=4 p-2 2 L-stable [16] 

p=3,4,5 p-1 L(p+l)/2 J Strongly A-stable [13] 

p=6,7 p-1 L(p+l)/2J Strongly A( a)-stable [13] 

p~6, p=8 p L(p+l)/2 J L-stable [13] 

p=7, 8, 10 p+l L(p+l)/2 J L-stable [13] 

3.2. Order of accuracy 
In order to analyse the order of accuracy of the iterated method (3.1 ), let Y(tn+ 1) 

denote the vector with components y(tn+cih), where y is the locally exact solution 

of (1.1). Then, in first approximation, we obtain 

Y(tn+IJ - y()) = [Y(tn+IJ - Yn+Jl + [Yn+I - y())] 

(3.4a) = [Y(tn+1J- Yn+Jl + Z [Yn+I - y()-I)] 

= [Y(tn+J)- Yn+Jl + z) [Yn+I _y(O)], J = 1, 2, ... , 

where Z is the iteration matrix defined by 
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(3.4b) Z = Z(hDJ) := [/ - hDJr I [AD-1 - /] hDJ, 

with J again denoting the Jacobian matrix off. 

Let r be the stage order of the corrector (1.3), then (cf. (2.1 )) 

Since Z = O(h) and Y n+ 1 - y(O) = O(h), the local errors of the stage vectors satisfy the 

order relation 

(3.5) Y(tn+I) - y(j) = O(hr+I) + O(hi+I ), 

so that, after m iterations, (3.1) defines a method in which y(m) approximates 

Y(tn+U with order r*=min{r,m}. We shall say that (3.l) has stage orderr* 

(although formally, when (3.1) is considered as a DIRK method, its stage order is 

only I). Thus, the optimal stage-order methods, that is the methods based on the 

Lagrange methods as defined above, have stage order r* = k+ I provided that at least 

m = k+ I iterations are performed. 

In order to get more insight into the rate of convergence of the iteration process 

(3.1 ), we consider the test equation 

(3.6) 
d,,tt\ 
~ = Ay(t), 

where A runs through the spectrum A(J) of J. The matrix Z assumes the form 

(3.7) Z = zD [I-zDr1 [D-1A -/] = z [I-zDr1 [A - DJ, z := Ah. 

Suppose that J has a complete eigensystem, and let us call the eigenvectors of hl 

corresponding to the eigenvalues of large and small modulus, respectively, stiff and 

nonstiff components. From (3.7) we see that for the nonstiff components (i.e., 

corresponding to small values of I z I) the matrix Z behaves approximately as 

z[A - DJ. Hence, these components in the iteration error are strongly damped if the 

matrix A - D has eigenvalues of small magnitude. Thus, rapid convergence of the 

nonstiff components is obtained by minimizing the spectral radius of A - D. 

However, as already remarked above, such a nonstijf iteration process gives a poor 

overall convergence. Alternatively, for the stiff components (i.e., corresponding to 

large values of I z I), the matrix Z behaves as -D-1 [A - DJ. Hence, a strong damping 

of these components requires the minimization of the spectral radius of/ - D-1A, 
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leading to stiff iteration. In the following subsection, we shall see that this 

condition also plays a role in the stability of the iterated method. 

3.3. Stability 
One may argue that there is no reason to continue the iteration process after m = r 

iterations, because the stage errors of the corrector and of the iterated method have 

become of the same order in h and may therefore be expected to be of comparable 

magnitude. However, there is no guarantee that after m = r iterations the stability 

properties of (1.3') are also comparable with those of the corrector. This brings us to 

consider the stability of the DIRK method (3.1 '). In order to see how the stability 

depends on the number of iterations m, we apply the method to the test equation 

(3.6), so that (3. la) reduces to 

We shall discuss the stability of iterating a nonstiffly accurate and a stiffly accurate 

corrector separately. 

3.3.1. Nonstiffly accurate correctors. If Yn+ 1 is computed by means of the formula 

Yn+I =[I+ zbo]Yn + zbTy(m), 

then it can be expressed as 

so that the stability function is given by 

It is easily verified that this function can be written in the form 

Assuming that the stage order of the corrector is at least one, we may set Ae + a = c 

(see (2.2)), so that 

(3.10) 
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where kcorr denotes the stability function of the corrector given by (2.7). Finally, 

on substitution of (3.7) into (3.10) we obtain 

(3.11) 

From this expression we can derive the convergence behaviour of Rm to Rcorr for 

large values of I z I: 

showing that for any fixed m the stability function becomes unbounded as I z I tends 

to infinity, unless the matrix Dis such that 

Writing this equation as 

we see that it can be satisfied for all m if we choose D such that [15] 

(3.12) 

Unfortunately, a few first experiments showed that the performance of the corres

ponding method (3.1 ') is not satisfactory (see Subsection 5.3). Therefore, we 

conclude that diagonal iteration as defined by (3.1 ') is in general not suitable for 

iterating nonstiffly accurate correctors and excludes the Gauss-Legendre formulas as 

suitable corrector methods. However, it should be remarked that by defining the 

initial iterate y(O) implicitly, rather than just setting y(O) = Yne, the above stability 

problem can be avoided (cf. [13]), so that the matrix D remains available for 

improving the performance of the iteration process. As observed in Subsection 3.1, 

the topic of finding suitable initial approximations to the stage vector in diagonally 

iterated RK methods deserves further research, but will not be an issue in this paper. 

3.3.2. Stiffly accurate correctors. In the stiffly accurate case where Yn+ 1 is computed 

by means of the formula 

we arrive at the stability function 
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where Rcorr is defined by (2.8). We may express this function in the form 

where 

am(Z) := [zekT [Z(zD)r [/-zAr1c] 1/m 

= [zm+lekT ( [/ - zDr·I [A - D]r [/- zAr1c] 1/m. 

For fixed values of m and assuming that D has positive diagonal elements, the 

function am(z) is bounded for all z in the closed left halfplane. This suggests to 

characterize the rate of convergence of Rm to Rcorr by means of am(z). We shall call 

am(z) the convergence factor associated with z. For example, we have 

am(0)=0, am(00 ) :=[-ekT[Z(-oo)rA-lc] 11m 
(3.14) 

= [-ekT [J-D-IAr A-lc]llm_ 

Ideally, in order to get fast convergence of the stability function Rm(Z) to that of 

the corrector, we should try to minimize am(Z) in the closed left halfplane. However, 

since in actual computation m is determined by some error criterion, we do not 

know m in advance, so that such an approach may be unattractive, particularly for 

larger values of k where more values of m have to be considered. Nevertheless, in a 

future paper [4], this possibility will be studied more closely in order to get further 

insight into how crucial the choice of D really is. 

Another possibility is the minimization of am(Z) for the highly stiff components 

(large values of I z I), because (3 .14) shows that am(Z) is already small for the nonstiff 

components. The most simple way to achieve this determines D according to (3.12), 

so that am(00 ) vanishes for all m [15]. In the experiments done so far, the con

vergence of the corresponding iteration process (3 .1) is not satisfactory. 

However, by choosing the matrix D, for a given corrector, such that the spectral 

radius of Z(-oo) = I - n-1 A is minimized over all possible diagonal matrices D with 

positive entries, we obtained a satisfactory convergence behaviour in a large number 

of experiments (see Section 5, and the Appendix to [14]). The better convergence 

may be explained by observing that in this way, not only the value of am(00 ) is 

expected to be small (cf. (3.14)), but as already shown in Subsection 3.2, at the 

same time the stiff components in the iteration error are strongly damped. 
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Together with the computation of the matrix D (cf. Section 4), we computed, as 

a: posteriori test, for a few values of m the 'worst' convergence factor defined by 

(3.15) am := Max lam(z)I. 
Re z:50 

Because O'm(Z) is an analytic function in the closed left halfplane, its maximum is 

assumed on the boundary, i.e., on the imaginary axis. 

In calculating am it turned out that this quantity is larger than I for small values 

of m but rather quickly decreases to a moderate size as m increases. The values of am 

show by what factor the (maximal) difference between the two stability functions is 

reduced in each iteration if we continue to iterate when the stage order of the cor

rector has been reached. Due to the fact that am> I for small 111, it is likely that the 

corresponding iterated method is not A-stable. On the other hand, assuming that the 

iteration process (3.1) is convergent, we know that [am(z)im➔O for 111➔00 , i.e., 

Rm(Z) converges to the A-acceptable stability function Reorr(z). Therefore, it is of 

interest to know the minimal value of m such that Rm(Z) is A-acceptable for all 111 

equal to or larger than this minimal value. This for the iteration process critical 

number of iterations will be denoted by merit· Evidently, the value of merit is 

expected to be large if the corrector is not strongly A-stable. In order to illustrate 

this, we considered the methods using weakly A-stable Newton-Cotes and Lobatto 

IHA correctors ( cf. Table 2.1) with minimized spectral radius of / - D- 1 A. We 

verified that (for z in the closed left halfplane) the value of max IRm(z)I ,l, I as m ➔ 00 , 

so that A-stability is only obtained in the limit. Hence, the Lobatto IIIA and the 

Newton-Cotes formulas seem to be less suitable as corrector methods. For the 

strongly A-stable Lagrange correctors and the L-stable Radau IIA correctors however, 

we found modest values of merit, so that after a few iterations the resulting method 

is already A-stable (see Section 4). 

4. CONSTRUCTION OF MEIHODS 

In this section, we consider a number of stiffly accurate correctors and we will 

construct the corresponding matrices D for use on two-, three- or four-processor 

computers (i.e., methods of dimension k= 2, 3, 4). 

Fork= 2, we shall give a rather detailed derivation, because in this case, it is still 

possible to construct suitable matrices D analytically. We derive matrices D for 

correctors of Newton-Cotes, Lobatto IIIA, strongly A-stable Lagrange, Radau IIA, 

and Gauss-Legendre type. The Gauss-Legendre method is not stiffly accurate, and 

therefore not suitable for diagonal iteration of type (3 .I'), but it is included to 

demonstrate its unstable performance. For k > 2, we resort to numerical search 
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meth9ds for finding suitable matrices D. Here, we refrained from looking for D 

matrices for the Gauss-Legendre method because of the rather poor two-processor 

results. In Subsection 4.4 a summary of the main properties of the various methods 

is given. 

It may be of interest to note that in our numerical search for strongly A-stable 

correctors we encountered strong numerical evidence for the following conjecture: 

Conjecture. A necessary condition for a stiffly accurate Lagrange method as defined 

in Subsection 1.2 to be strongly A-stable is 

k 

L Cj > k~ 1 . [] 
j=I 

In order to save space, the correctors are presented by means of the matrix A and 

the vectors a and c, and the iterated versions by only giving the matrix D, because, 

together with the corrector, D completely defines the iterated method. In the 

following, we only consider stif.f iteration, that is, the construction of D will always 

be based on the minimization of the spectral radius p(/-D-1A) of the matrix 

I - v-1 A. If the entries of Dare not exact (i.e., fork~ 3), then they are approximated 

by rational expressions. In addition to D, we present the values of p(/ - v-1 A), the 

range for CJm with r 5: m 5: 10, the corresponding interval / cr on the imaginary axis 

where !he maxima are assumed, and the value of merit are given (cf. Subsection 

3.3.2). Finally, the stage and step point orders of the methods are denoted by rand p, 

respectively. 

4.1. Two-processor methods 

4.1.1. Lagrange methods. Let us first consider two-dimensional Lagrange methods 

(k=2) satisfying the condition (1.4). The stage-order conditions (2.2) can be solved 

for r = 3 and yield the stiffly accurate Lagrange method 

(4.la) A= I (c(3-2c) -c3 J I 
6(1-c) c-1 2-3c ,a=6(1-c) ( 

3c - 4c2 + c3 J, c = ( c ) 
-c-1 +4-3c 1 

with p = r = 3, and c a free parameter (recall that p = 4 if c = 1/2). An elementary 

calculation shows that the stability function of (4.la) is given by 

(4.2) 
6 + 2(2-c )z + (1-c )z2 

R(z) = 
6 - 2(c+l)z + cz2 

This function is A-acceptable for c ~ 1/2 and strongly A-acceptable for c > 1/2. 
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_ Next, we determine the matrix Din (3.1). It is convenient to write 

so that 

The eigenvalues of/ - v-1 A satisfy the equation 

µ2 -sµ+ P =O, 

S := 2-c(3-2c)81 -(2-3c)8i, P := [1-c(3-2c)8i] [1-(2-3c)8i] +c28182. 

By setting S=P=O we achieve that p(/-D-1A) vanishes. The parameters 81 and 82 

then satisfy the equations 

leading to 

c(3-2c)81 + (2-3c)02 = 2, 

81 = 1 + Q 
c(3 - 2c) 

82 = .!...::._Q_ , Q := ±%c 
2-3c 6(1-c) 

so that the matrix D is given by 

(4.1 b) D= 1 
6(1 - c) 

(
c(3 - 2c) 0 J 

1 + Q 
2 -3c ' 

0 --
1 - Q 

The iterated Lagrange method with zero convergence factor at infinity is completely 

determined by the corrector (4.la) and the matrix (4.lb). 

For c = 1/2 we derive from (4. la) the Newton-Cotes corrector (withp =4 and r=3) 

(4.3a) I ( 8 -I) I (5) ( 1/2) 
A = 24 16 4 , a = 24 4 , c = I . 
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We observe that this corrector coincides with the three-stage Lobatto IIIA method. 

The stability function R of (4.3a) reduces to the (2,2)-Pade approximation to the 

exponential function. Recall that R is A-acceptable but not strongly A-acceptable. 

From (4.lb) we obtain the matrix 

(4.3b) D- 3+'✓3 (
_l O ] 

- O 2(3~'/'3) ' 
p(/- D-1A) = 0, CTm E [0.21, 0.36], 

la= [3.9i, 5.li], merit= 00 • 

A natural question now is, whether it is possible to choose c such that the 

stability is improved. Unfortunately, ( 4.1 a) shows that it is not possible to achieve 

L-stability (which would require c = 1), but strong A-stability is obtained for c > 1/2. 

For example, by choosing c = 3/4 we have R( oo) = 1/3. The corresponding Lagrange 

method is defined by 

1 ( 216 -81 ) 1 ( 81 ) ( 3/4) 
(4.4a) A = 288 256 -48 , a = 288 80 ' C = 1 

for which p = r= 3. The iterated version is defined by 

(4.4b) D = ( 4('12-iO~+ 1) 01 J·, 1 p(I-D- A)= 0, CTm E [0.21, 0.33], 

6(-v2-l) 

la= [3.2i, 4.li], merit= 2. 

4.1.2. Gauss and Radau methods. As reference methods for our numerical 

experiments, we take the conventional two-stage Gauss-Legendre and Radau IIA 

methods. The Gauss-Legendre corrector, and its iterated version is defined by 

(4.5a) A-- a=O, bo=0, b--e c--1 ( 3 3-2'✓3) 1 1 ( 6-2'✓3) 
- 12 3+2'✓3 3 ' - 2 ' - 1 2 6+2'✓3 , 

p = 4, r = 2, 

(4.5b) 
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The Radau TIA-based method is given by: 

(4.6a) A =/2 (:~I} a=O, bo=0, bT=e2TA, c=( 1;3), 
p = 3, r= 2, 

I (20-5% 0 ) 
(4.6b) D= 30 0 12+3"6 , p(/-D-1A)=O, <Jme [0.27,0.35], 

la= [2.6i, 3.7i], merit= 1. 

4.2. Three-proces.90r methods 
4.2.1. Newton-Cotes method. For k = 3 and equidistant abscissas the corrector is 

given by 

(4.7a) ( 
19 -5 I ] 

A=i2 32 8 0 , 

27 27 9 

with p = r = 4, and with A-acceptable stability function (see Watts and Shampine 

[23]). By a numerical search we found the matrix 

897 
7303 O O 

(4.7b) D= 
2485 I 

0 10968 0 , p(/- D- A)"" 0.01, <Jm e [0.49, 0.77], 

8980 
0 0 27627 

la= [7.li, 8.4i], merit= 00• 

4.2.2. Lobatto IIlA method. Fork= 3 and Lobatto abscissas the corrector is given by 

(4.8a) ( 
25-"'5 25-13"'5 -1+"'5] 

A= 1; 0 25+13"'5 25+"'5 -1-"'5 , 

50 50 I 0 

with p = 6 and r = 4, and with A-acceptable stability function (see Dekker and Verwer 

[9]). The iterated version is generated by 
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2661 O O 
5542 

(4.8b) D= 
754 1 

0 6891 0 , p(/ - D- A) ""0.0043, CJm e [0.52, 0.88], 

O O 1567 
9771 

la= [8.9i, IOi], merit= 00• 

4.2.3. Lagrange method. By keeping CJ and c2 free, we can construct strongly A

stable methods with stage order four. It can be shown that the stability function is 

A-acceptable for CJ +c2 = 1 and strongly A-acceptable for CJ +c2 > I. A numerical 

search produced the block point vector c = (7/12, 5/6, l)T for which parameter values 

of acceptable magnitude and a damping factor I R( oo) I"" 0.143 are obtained. The 

corresponding corrector reads 

(4.9a) ( 

98392 

A= 12; 960 112000 

110592 

-81634 3 I 213 J 
-61600 28000 , 

-48384 36288 

~
2589] 

a = I 2;960 2400 ' 
2464 

with p = r = 4. The iterated method is generated by 

2246 
10669 O O 

(4.9b) D = 0 ;~!~ 0 , p(J- D-1A) == 0.011, CJm e [0.49, 0.69], 

O O 3026 
8923 

la= [5.li, 6.2i], merit= 3. 

4.2.4. Radau method. The 3-stage Radau 11A corrector is defined by [7] 

88 - 7✓6 296 - 169✓6 -2 + 3 ✓6 
360 1800 225 

(4.10a) A= 296 + 169✓6 88 + 7 ✓6 -2 - 3 ✓6 
a= 0, ho= 0, 

1800 360 225 ' 

16 - ✓6 16 + ✓6 I 
36 36 9 

bT = e3TA, c =Ae 
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with p = 5, r = 3, and L-acceptable stability function. The matrix D is given by 

4365 
13624 O O 

(4.10b) D= o 1032 o , p(l-D-1A)""0.0047, 7373 <Jm E [0.52, 1.0), 

O O 1887 
5077 

la= [6.6i, 9.3i], merit= 5. 

4.3. Four-processor methods 
4.3.1. Newton-Cotes method. Fork= 4 and equidistant abscissas the corrector is 

given by 

646 -264 106 -19 

CJ 1 992 192 32 -8 __ l_ 232 _ T 
(4.lla) A= 2880 ' a - 2880 243 ' ho - e4 a, 

918 648 378 -27 

.1024 384 1024 224 224 

bT=e4TA, c={J 
with p = 6, r = 5, and with A-acceptable stability function. A numerical search did not 

produce a better matrix D than 

(4.llb) D= 

992 
10759 O O 0 

0 1365 0 
8107 0 

0 

0 

2709 
O 11281 O 

0 0 .!.211. 
5549 

, p(l - D-1A) ""0.1, <Jm E [0.76, 1.04], 

la= [8.7i, l l.8i], merit= 00 • 



151 

4.3.2. Lobatto IlIA method. For k=4 and Lobatto abscissas the corrector is given by 

343-9\121 392-96\121 343-69\121 -21+3\121 
2520 2205 2520 1960 

392+105\121 8 392-105\121 3 

A= 
2880 45 2880 320 

343+69\121 392+96\121 343+9\121 -21-3\121 
2520 2205 2520 1960 

49 16 49 
180 45 180 20 

(4.12a) 
119+3 21 7- 21 

1960 
14 

13 
320 

bo = e4Ta, bT=e4TA, 2 a= 
119-3\121 

, c= 
7+\121 

1960 14 

20 

with p = 8, r = 5, and with A-acceptable stability function. A numerical search 

produced the matrix 

(4.12b) D= 

2964 0 0 0 
9943 

1875 
O 10334 O O 

608 
O O 9403 O 

3799 
O O O 23419 

, p(/-D-1A) ""0.021, C5m E [0.87, 1.32], 

la= [l5.4i, l9i], merit= 00 • 

4.3.3. Lagrange method. Numerically, we found that the stability function is A

acceptable for c 1 +c2+c3 = 3/2 and strongly A-acceptable for c 1 +c2+c3 > 3/2. For 

c = (116, 7/12, 11/12, l)T we obtained parameter values of acceptable magnitude and a 

damping factor I R( 00) I"" 0.325. The corresponding corrector with p = r = 5 reads 
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( 

5452832 

A =--1__ 17484082 
49896000 16192946 

16232832 

(4.13a) 

The iterated method is generated by 

5147 
38467 O O O 

(4.13b) D= 

1983 
0 ~ 0 0 

3197 
0 0 i'4'o'9o 0 

-872784 926800 

13296591 -6182575 

22005423 7263025 

21897216 9676800 

-556248 ) 
3486252 

-1229844 ' 

598752 

(2) l 7 

c=rr :~ . 

3086 0 ·O O 12339 
lcr = [8.2i, I 1.8i], merit = 6. 

4.3.4. Radau method. The four-stage Radau IIA corrector reads 

(

.11299947932316 -.04030922072352 .02580237742034 -.0099046765073 ) 

= .23438399574740 .20689257393536 -.04785712804854 .01604742280652 . 

A .21668178462325 .40612326386737 .18903651817006 -.02418210489983 

.22046221117677 .38819346884317 .3288401998006 l/16 . 

(4.14a) 

with p = 1, r = 4, and with L-acceptable stability function. The iterated method is 

generated by 

(4.14b) D= 

3055 O O O 
9532 

531 
O 5956 O O 

O O 1471 O 
8094 

O O O 1848 
7919 

, p(/-D-1A)"'0.024, 0,nE [0.74, 1.31], 

lcr = [10.0i, 17.2i], merit= 7. 
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4.4. Survey of methods 
In table 4.1, we have summarized a few characteristics of the methods derived in 

the preceding subsections. 

Table 4.1. Main characteristics of diagonally iterated IRK methods. 

O'm-range 
Method p r k p(/-D-1A) (r::5:m::5: 10) 1'1crit 

Newton-Cotes (4.3) 4 3 2 0 [0.21, 0.36] 00 

Lagrange (4.4) 3 3 2 0 [0.21, 0.33] 2 

Radau 11A (4.6) 3 2 2 0 [0.27, 0.35] 1 

Gauss (4.5) 4 2 2 0 00 00 

Newton-Cotes (4.7) 4 4 3 0.008 [0.49, 0.77] 00 

Lobatto IIIA (4.8) 6 4 3 0.0043 [0.52, 0.88] 00 

Lagrange (4.9) 4 4 3 0.01 [0.49, 0.69] 3 

Radau 11A (4.10) 5 3 3 0.0047 [0.52, 1.0] 5 

Newton-Cotes (4.11) 6 5 4 0.1 [0.76, 1.04] 00 

Lobatto IIIA (4.12) 8 5 4 0.021 [0.87, 1.32] 00 

Lagrange (4.13) 5 5 4 0.045 [0.59, 0.93] 6 

Radau 11A (4.14) 7 4 4 0.024 [0.74, 1.31] 7 

In this table, the value of the step point order p corresponds to values of m equal 

to or greater than p, and the value of the stage order r corresponds to that of the 

corrector. From a computational point of view, the Lagrange and Radau IIA methods 

are the most attractive ones, because merit is relatively small. Thus, if these 

methods are implemented with some local error strategy for automatically estimating 

the number of iterations m and the stepsize h needed to meet the local error 

tolerance, then the value of the 'computational efficiency' quantity mL/h for 

integrating an interval of length L will not be unnecessarily large because of the 

development of instabilities. This observation is confirmed by the numerical 

experiments in Subsection 5.4. 

5. NUMERICALEXPERIMENTS 
In this section, the (stiff) diagonal iteration method developed above will be 

tested by integrating a number of stiff test problems. Subsection 5.1 presents these 

test problems. Subsection 5.2 compares the effective orders of Gauss-Legendre, 

Newton-Cotes, Lobatto IIIA, Radau IIA, and Lagrange correctors, and in Subsection 

5.3, the performance of the diagonal iteration process with respect to the number of 
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iterations is tested for a few two-processor correctors. Finally, in Subsection 5.4, we 

compare the efficiency of the iterated methods with a few DIRK methods from the 

literature. 

We recall that we only used the zero-order approximations to the Jacobian matrix 

and to the initial inner and outer iterates. In the tables of results, the accuracy of the 

results is given by means of the number of correct digits A of the numerical solution 

at the endpoint T (i.e., we write the maximum norm of the error at t =Tin the form 

1 o-A). The computational costs are proportional to mUh, where h is the fixed step 

length, L := T-to is the length of the integration interval, and m is the fixed number 

of outer iterations per step. In actual applications of these methods, some strategy is 

needed to select hand m. However, since our test problems are such that the exact 

solution is equally smooth in the whole integration interval, it is reasonable to use 

fixed h and m. 

5.1. Test problems 
We briefly discuss a few test problems partly taken from the literature and partly 

constructed in order to test some special aspect of the methods. All problems are 

defined on the interval [to,TJ. 

Our first problem is the stability test problem of Prothero and Robinson [21] 

(5.la) ,= -e-1(y- g(t)) + g'(t), y(to) = g(to), to=O, T= 1, 

where the exact solution equals g(t) and e is a small parameter. Prothero and 

Robinson used this problem to show the order reduction of RK methods when e is 
small. In our experiments we set 

(5.lb) g(t) =cos(t), e= 10-3. 

The second test problem is the nonlinearization of problem (5.1): 

with exact solution y(t) = g(t) for all values of the parameter e. As in the preceding 

problem we set 

(5.2b) g(t) = cos(t), e= 10-3. 
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The third test problem is that of Kaps [17]: 

dY2 
--;ji°= YI - Y20 + Y2), 

(5.3) 

YI (to)= Y2Uo) = I, to=0, T= I, 

with the smooth exact solution YI = exp(-2t) and Y2 = exp(-t) for all values of the 

parameter E. This problem belongs to the class of problems for which stiffly 

accurate RK methods do not suffer order reduction whatever small E is ( cf. Hairer et 

aL [11]). 

The test set of Enright et al. [ 10] contains the following system of OD Es 

describing a chemical reaction: 

(5.4a) 9;/;-= - 0 2500y3 0 y, (
.013 + IOOOy3 0 0 J 

.013 0 IO00y1 + 2500Y2 

with y(0) =(I, I, O)T. Since we use fixed step sizes in our experiments, we avoided 

the initial phase by choosing the starting point at to = I and we used the 

corresponding initial values 

( 
0.990731920827 J 

(5.4b) y(I)"" 1.009264413846 . 

-.366532612659 10-5 

At t = T = 51 we found the approximate solution 

( 
0.591045966680 J 

y(51)"" 1.408952165382 . 

-.186793736719 10-5 

In order to show the performance of the methods on PDEs we included the 

convection-diffusion problem 

(5.5) 
du iflu du 2 . 
dt = u dx2 - x cos(t) dx - x sm(t), to=0, T= 1, 

with Dirichlet boundary conditions and with exact solution u(x,t) =x2cos(t). Standard 

finite difference discretization of the spatial derivatives on a uniform grid with mesh 

size 1/40 leads to a system of 39 ODEs whose exact solution is given by 

(j/40)2cos(t),j= 1, ... ,39. 



156 

5.2. Effective orders of the correctors 

First of all, we want to show that in many stiff problems the property of 

superconvergence does not pay because of the phenomenon of order reduction, and 

that strong stability properties may improve the accuracy considerably. 

The Tables 5. la, 5.1 b, and 5. lc present Ll-values for the various test problems 

obtained for Uh= 1, 2, 4, 8, 16 by iterating the corrector to convergence. 

Table S.la. Problems (5.1) and (5.2). Values of Ll for Llh = 1, 2, 4, 8, 16. 

Corrector p r k . (5.1) (5.2) 

(4.3a) 4 3 2 4.7 5.4 6.0 6.7 7.7 4.7 5.3 5.9 6.6 7.5 
(4.4a) 3 3 2 5.1 5.9 6.8 7.8 8.8 5.0 5.8 6.7 7.7 8.7 
(4.5a) 4 2 2 I. 9 2.5 3.1 3.8 4.7 1.9 2.5 3.1 3.8 4.6 
(4.6a) 3 2 2 4.2 4.7 5.3 5.9 6.5 4.2 4.7 5.2 5.8 6.4 

(4.7a) 4 4 3 6.1 7.3 8.5 9.7 6.0 7.3 8.5 9.7 
(4.8a) 6 4 3 6.1 7.3 8.6 9.8 6.1 7.3 8.5 9.7 
(4.9a) 4 4 3 6.5 7.6 8.8 I 0.1 6.5 7.6 8.8 10.0 
(4.10a) 5 3 3 5.0 6.0 6.9 7.9 4.9 5.9 6.9 7.8 

(4.1 la) 6 5 4 7.0 8.2 9.5 6.9 8.1 9.4 
(4.12a) 8 5 4 7.1 8.4 9.6 7.0 8.3 9.5 
(4.13a) 5 5 4 7.5 8.9 10.5 7.4 8.9 10.4 
(4.14a) 7 4 4 6.3 7.4 8.6 6.3 7.3 8.5 

Table S.lb. Problem (5.3) with E= 10-3 and 10-8. Values of Ll for Llh = 1, 2, 4, 8, 16. 

Corrector p r k (5.3) with E= 10-3 (5.3) with E = 10-8 

(4.3a) 4 3 2 3.3 4.3 5.1 5.9 7.0 3.3 4.5 5.7 6.9 8.1 
(4.4a) 3 3 2 2.7 3.6 4.4 5.3 6.2 2.7 3.6 4.4 5.3 6.2 
(4.5a) 4 2 2 1.2 1.8 2.4 3.2 4.3 1.2 1.8 2.4 3.0 3.6 
(4.6a) 3 2 2 2.4 3.2 4.1 5.0 5.9 2.4 3.2 4.1 5.0 5.9 

(4.7a) 4 4 3 4.2 5.4 6.6 7.8 4.2 5.4 6.7 7.9 
(4.8a) 6 4 3 4.7 6.0 7.3 9.3 5.4 7.2 9.0 10.8 
(4.9a) 4 4 3 3.8 5.0 6.1 7.3 3.9 5.0 6.2 7.3 
(4.10a) 5 3 3 4.0 5.3 6.3 7.3 4.4 5.8 7.3 8.8 

(4.1 la) 6 5 4 5.4 6.7 8.0 5.9 7.7 9.6 
(4.12a) 8 5 4 5.6 6.8 8.2 7.8 10.2 12.6 
(4.13a) 5 5 4 5.8 7.2 8.8 6.0 7.4 8.8 
(4.14a) 7 4 4 5.0 6.4 7.8 6.6 8.7 10.8 
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Table S.lc. Problems (5.4) and (5.5). Values of L1 for Llh =I, 2, 4, 8, 16. 

Corrector p r k (5.4) (5.5) 

(4.3a) 4 3 2 4.5 5.7 6.9 8.2 9.4 3.2 4.2 5.4 6.5 7.7 
(4.4a) 3 3 2 3. I 4.0 4.9 5.8 6.7 3. I 4.0 4.8 5.7 6.6 
(4.5a) 4 2 2 5.0 6.1 7.3 8.5 9.7 I. 9 2.6 3.2 3.9 4.8 
(4.6a) 3 2 2 3.4 4.3 5.2 6.1 7.0 2.5 3.2 4.0 4.8 5.7 

(4.7a) 4 4 3 4.7 5.9 7 .1 8.3 4.6 5.9 7.2 8.4 
(4.8a) 6 4 3 6.4 8.3 10.1 11.8 4.8 6.2 7.7 9 .1 
(4.9a) 4 4 3 4.2 5.4 6.6 7.8 4.5 5.6 6.8 7.9 
(4.10a) 5 3 3 5.3 6.8 8.3 9.8 3.6 4.8 6.1 7.3 

(4.11 a) 6 5 4 6.7 8.5 10.3 5.7 7.4 9.2 
(4. I 2a) 8 5 4 8.6 11.0 6.0 7.7 9.5 
(4.13a) 5 5 4 6.9 8.2 9.7 6.4 7.8 9.3 
(4. 14a) 7 4 4 7.9 9.8 11. 8 5.2 6.5 8.0 

From these results we can derive for each test problem the effective orders by 

computing (Li(h)-L1(2h))/0.3. For h we chose the smallest value for which results 

are available. The resulting effective orders are listed in Table 5.2. For each problem, 

the result of the most accurate corrector is indicated in bold face. 

The results for the first three problems clearly demonstrate that the various 

methods often do not show their step point order, so that the property of 

superconvergence is of limited value in the case of stiff problems. 

Table 5.2. Effective orders shown by the correctors for Problems (5.1) - (5.5). 

(5.3) (5.3) 
Corrector p r k (5.1) (5.2) £=10-3 £=10-8 (5.4) (5.5) 

Newton-C. (4.3a) 4 3 2 3.3 3.0 3.7 4.0 4.0 4.0 
Lagrange (4.4a) 3 3 2 3.3 3.3 3.0 3.0 3.0 3:0 
Gauss (4.5a) 4 2 2 3.0 2.7 3.7 2.0 4.0 3.0 
Radau IIA (4.6a) 3 2 2 2.0 2.0 3.0 3.0 3.0 3.0 

Newton-C. (4.7a) 4 4 3 4.0 4.0 4.0 4.0 4.0 4.0 
Lobatto IIIA (4.8a) 6 4 3 4.0 4.0 6.7 6.0 5.7 4.7 
Lagrange (4.9a) 4 4 3 4.3 4.0 4.0 3.7 4.0 3.7 
Radau IIA (4. JOa) 5 3 3 3.3 3.0 3.3 5.0 5.0 4.0 

Newton-C. (4.1 la) 6 5 4 4.3 4.3 4.3 6.3 6.0 6.0 
Lobatto IIIA (4.12a) 8 5 4 4.0 4.0 4.7 8.0 8.0 6.0 
Lagrange (4.13a) 5 5 4 5.3 5.0 5.3 4.7 5.0 5.0 
Radau IIA (4.14a) 7 4 4 4.0 4.0 4.7 7.0 6.7 5.0 
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5.3. Performance of the iteration process for two-processor correctors. 

· In this subsection, we consider the performance of the iteration method for 

solving the two-processor corrector equations. Since the rate of convergence of a 

particular iteration method turned out to be comparable for the Newton-Cotes 

corrector and the Lagrange corrector, we only present results for the most accurate 

one. In the case of the Gauss and Radau corrector, the iteration methods behaved 

quite differently so that we include results for both correctors. Moreover, the Gauss 

corrector was also iterated with a matrix D defined by the relation (3.12). Since for 

the two-processor Gauss corrector ( 4.5a) we have Ae = c, i.e., A-1c = e, it follows 

that v-1c =e, so that 

• 1 (6 - 2 ✓T O ) 
D=d1ag(c)=rr ✓- , 

0 6 + 2 3 
-1 I p(l-D A)= 2. 

In the Tables 5.3 and 5.4 we only present results for the problems (5.2) and (5.4) 

for which most methods, respectively, show their stage order and their step point 

order (additional results for the other test problems may be found in the Appendix to 

[14]). Divergence of the inner iteration is indicated by *, and values in bold face 

indicate that the accuracy of the corrector is reached (and that Ll does not change 

anymore). For several values of Uh the accuracies corresponding to the correctors of 

Lagrange type (first column), of Gauss-Legendre with D defined by (4.5b) (second 

column), of Gauss-Legendre with D defined above (third column), and of Radau HA 

(fourth column) are listed. These results confirm that, in general, the Gauss corrector 

is not suited to be iterated by diagonal iteration methods when started with an 

explicit predictor. 

Table 5.3. Values of Ll for Problem (5.2) obtained by iterating the Lagrange 

corrector (4.4a), Gauss corrector (4.5a), and Radau HA corrector (4.6a). 

m lih=2 lih=4 lih=8 lih=16 

4.1 -2.2 -2.2 5.3 4.0 * * 4.8 3.6 * * 5.0 2.7 * * 5.3 
2 5.8 -1.l 1.1 4.7 6.5 * 1.1 5.2 6.7 * 0.6 5.9 6.7 * * 6.7 

3 2.4 2.2 6.7 2.9 2.6 7.7 3.9 3.2 5.8 8.4 1.9 3.8 6.4 

4 2.5 1.9 3.1 2.5 3.8 3.1 8.7 4.6 3.8 

5 2.1 2.6 3.2 3.9 

10 2.6 3.2 4.1 5.3 
20 2.5 3.1 3.8 4.6 
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Table 5.4. Values of Ll for Problem (5.4) obtained by iterating the Lagrange 

corrector (4.4a), Gauss corrector (4.5a), and Radau IIA corrector (4.6a). 

m Uh=2 Uh=4 Uh=8 Uh=l6 

2.3 1.5 1.5 2.1 2.6 * * 2.4 2.8 * * 2.7 3.1 * * 3.0 
2 3.9 2.9 2.8 3.5 4.5 * 3 .4 4.1 5.2 * 4.0 4.7 5.8 * 4.5 5.3 

3 5.4 4.8 3.8 4.5 6.4 5.7 4.7 5.4 7.4 6.6 5.6 6.3 8.3 6.9 6.5 7.2 

4 5.7 5.9 4.9 4.3 6.9 7.1 6.1 5.2 8.1 8.3 7.2 6.1 9.3 9.5 8.4 7.0 

5 6.1 5.7 7.3 7 .1 8.2 8.5 8.3 9.4 9.7 9.5 

6 6.1 7.3 8.5 9.5 

7 9.7 

5.4. Efficiency of diagonally iterated IRK correctors 
In this final subsection, we compare the efficiency of the diagonally iterated IRK 

correctors with three fourth-order DIRK methods from the literature, viz. the three

stage method generated by the Butcher array 

I ro + s) I ro + s) 
I 

-~I; 
I 

2 r(l +I;) 

½-o-s) (I + I;) - (I + 21;) 
I ro + s) 

(5.6) , I;= }"'3 cos(r'8), 

1 1 - _l_ 1 
61;2 31;2 61;2 

(cf. Crouzeix [8] and Alexander [1]), and the four-stage, parallel DIRK methods of 

Iserles and Njijrsett [16]: 

1 1 
2 2 

1 0 1 
1 3 3 1 
2 2 2 2 

0 -3 2 0 
(5.7) 

1 1 1 1 
3 6 3 6 
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2 2 
2 

0 
2 

3 3 
1 5 5 I 
2 2 2 2 
1 5 4 

0 
2 

3 3 3 3 
(5.8) 

- I 
3 

- I 
3 

2 2 

The method (5.6) is A-stable and requires three sequential stages per step. The 

methods (5.7) and (5.8) are A-stable and L-stable, respectively, and require only two 

sequential stages per step (when run on a two-processor computer). 

We restrict our considerations to the above three DIRK methods and to the 

Newton-Cotes, Lobatto IIIA, Lagrange, and Radau IIA correctors where each method 

uses a fixed number of m iterations per step. Recalling that iterating an IRK 

corrector by means of m diagonal iterations in each step yields a method that is in 

fact a DIRK method with m sequential stages, we conclude that all methods have in 

common that they belong to the class of DIRK methods. However, in the case of 

the 'genuine' DIRK methods (5.6), (5.7), and (5.8), the number of sequential stages 

per step is known in advance, whereas in the case of the DIRK methods based on 

iteration the number of sequential stages m that yields acceptable accuracies, is not 

known in advance and, in actual computation, it should be determined on the basis 

of some local error strategy. On the other hand, as we shall see, the accuracy of the 

iterated methods is less sensitive to the phenomenon of order reduction. 

In the Tables 5.5 and 5.6, m always denotes the number of sequential stages per 

step. Hence, all results in one column of these tables correspond to DIRK methods 

that use m sequential stages per step, so that all results corresponding to the same 

value of mL/h required roughly the same computational effort. In the tables, the 

highest value of ~ corresponding to the same mL/h value, that is, the 'most 

efficient' integration result, is indicated in bold face. As in the preceding subsection, 

we only present results for the problems (5.2) and (5.4). Results for the additional 

test problems may be found in the Appendix to [14]. 

In the case of the nonlinear Prothero-Robinson problem, Table 5.5a shows that 

the number of iterations needed by the iterated methods to 'reach' the accuracy of the 

corrector solution increases with k, that is, the higher-order methods need more 

iterations to solve the corrector; moreover, they have a 'slow start': after 2 iterations 

the accuracy is still rather modest, whereas the lower-order methods have already 

converged, showing full corrector-precision. This can be explained by observing that 

we used a zero-order predictor for y(O) for all k, so that the 'distance' between 

predictor and corrector solution increases with k. Thus, for this problem, the lower-
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order -methods are more efficient than the higher-order ones, unless very high 

accuracies are requested. Furthermore, when we compare the various types of iterated 

methods (Newton-Cotes, Lobatto, Lagrange, or Radau), then the Lobatto IIIA 
methods perform not as well whereas the strongly A-stable Lagrange methods are 

slightly superior to the others. In the case of the 'genuine' DIRK methods (5.6), 

(5.7) and (5.8), the Iserles-Njllrsett methods are more accurate than the Crouzeix

Alexander method, which is presumably due to the L-stability property of the 

Iserles-Njllrsett method. 

It is of particular interest to see how the iterated methods compare with the 

'$enuine' DIRK methods. For example, Table 5.5a shows that the Newton-Cotes, 

Lobatto IIIA, Lagrange, and Radau IIA based methods, respectively, produce 5, 0, 21 

and 4 'most efficient' results, whereas the 'genuine' DIRK methods none. A further 

indication of the superiority of the iterated methods is given by Table 5.5b where we 

list results for the iterated methods with m = 4 and for the parallel DIRK methods 

(5. 7) and (5.8). All these methods have step point order p = 4, but the accuracies 

obtained for the same computational-costs value of mL/h differ largely, which is 

caused by the order reduction exhibited by the 'genuine' DIRK methods. 

For the more innocent chemical reaction problem (5.4) the order reduction is not 

shown. Table 5.6a shows that the high-order iterated methods again require more 

iterations to obtain the corrector precision than the lower-order methods, however, 

here for low values of m, all iterated methods are roughly equally efficient. 

Furthermore, the scores of 'most efficient' results for the Newton-Cotes, Lobatto 

IIIA, Lagrange, and Radau IIA based methods are respectively 8, 5, 6 and 7, and 

among the DIRK methods only (5.7) scores twice. The analogue of Table 5.5b is 

given by Table 5.6b. It reveals that the iterated methods are usually much more 

efficient than the parallel DIRK methods and in any case at least competitive. 
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T.able 5.Sa. Problem (5.2): Results for diagonally iterated correctors and for the 
methods (5.6), (5.7), and (5.8). 

Method k Llh m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=lO ··· m = oo 

Crouzeix-Alex. (5.6) 1 1 - 1.0 
Iserles-N(llrsett (5. 7) 2 1.5 
Iserles-N(llrsett (5.8) 2.1 
Newton-C. (4.3) 3.4 4.7 4.7 
Lagrange (4.4) 3.5 5.0 5.0 
Radau IIA (4.6) 3.8 4.2 4.2 
Newton-C. (4.7) 3 3.2 3.7 5.6 6.1 6.0 6.0 
Lobatto IIIA (4.8) 3.0 2.7 4.7 6.0 6.0 6.1 6.1 
Lagrange (4.9) 3.2 3.9 5.5 6.7 6.5 6.5 
Radau IIA (4.10) 3.4 3.1 5.0 4.9 4.9 
Newton-C. (4.11) 4 3.1 3.6 4.9 4.7 5.2 6.0 7.2 7.0 6.9 6.9 
Lobatto IIIA (4.12) 2.7 2.2 2.3 3.9 4.6 5.4 6.8 6.9 7.0 7.0 
Lagrange (4.13) 3.0 2.8 3.1 3.9 5.0 6.4 7.1 7.3 7.4 7.4 
Radau IIA (4.14) 2.9 2.8 3.0 4.7 5.6 6.8 6.3 6.3 
Crouzeix-Alex. (5.6) 1 2 - 2.5 
Iserles-N(llrsett (5. 7) 2 2.4 
Iserles-N(llrsett (5.8) 2.7 
Newton-C. (4.3) 4.0 5.3 5.3 
Lagrange (4.4) 4.1 5.8 5.8 
Radau IIA (4.6) 5.3 4.7 4.7 
Newton-C. (4.7) 3 3.4 3.5 6.4 8.1 7.2 7.3 7.3 
Lobatto IIIA (4.8) 3.0 2.2 5.3 6.0 7.3 7.3 
Lagrange (4.9) 3.5 3.8 5.9 7.5 7.6 7.6 
Radau IIA (4.10) 3.8 2.8 5.9 5.7 5.9 5.9 
Newton-C. (4.11) 4 3.3 3.3 5.2 5.2 5.3 5.9 6.7 7.8 8.3 8.1 8.1 
Lobatto IIIA ( 4.12) 2.3 I. I 1.4 4.0 4.5 5.5 6.9 7.3 8.4 8.3 8.3 
Lagrange (4.13) 2.9 2.3 2.7 4.9 5.2 6.5 8.3 8.9 8.9 
Radau IIA (4.14) 2.8 2.2 2.6 5.0 6.0 7.0 7.5 7.3 7.3 
Crouzeix-Alex. (5.6) 1 4 - 2.8 
Iserles-N(llrsett (5.7) 2 3.0 
Iserles-N(llrsett (5.8) 3.2 
Newton-C. (4.3) 3.9 5.8 5.9 5.9 
Lagrange (4.4) 4.0 6.5 6.7 6.7 
Radau IIA (4.6) 4.8 5.2 5.2 
Newton-C. (4.7) 3 3.1 3.0 6.6 7.7 8.4 8.5 8.5 
Lobatto IIIA (4.8) 2.3 0.7 5.5 6.2 7.7 8.1 8.5 8.5 
Lagrange (4.9) 3.2 3.5 6.2 7.7 9.9 8.8 8.8 
Radau IIA (4. 10) 3.6 2.0 5.6 6.2 6.8 6.9 6.9 
Newton-C. (4.11) 4 2.9 2.5 5.0 5.5 5.5 6.0 6.8 7.7 8.7 9.8 9.4 
Lobatto IIIA (4.12) I.I * * 5.0 4.3 5.6 6.4 7.2 8.3 9.0 9.5 
Lagrange (4.13) 2.3 0.8 1.5 5.1 5.6 6.8 7.9 8.8 9.7 10.8 10.4 
Radau IIA (4.14) 2.1 0.6 1.2 5.2 6.3 7.9 8.4 8.5 8.5 
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Table5.6a. Problem (5.4): Results for diagonally iterated correctors and for the 
methods (5.6), (5.7), and (5.8). 

Method k Llh m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 ···m=oo 

Crouzeix-Alex. (5.6) 1 1 - 3.4 
lserles-Nprsett (5. 7) 2 3.4 
lserles-Nprsett (5.8) 3.3 
Newton-C. ( 4.3) 2.1 3.4 4.3 4.5 4.5 
Lagrange ( 4.4) 2.1 3.5 3.1 3. I 
Radau IIA (4.6) 1. 7 2.9 3.6 3.4 3.4 
Newton-C. (4.7) 3 1. 8 3.5 5. I 4.7 4.7 
Lobatto IIIA (4.8) 1.6 3. I 4.3 5.6 6.3 6.4 6.4 
Lagrange (4.9) 1.8 3.5 4.3 4.2 4.2 
Radau IIA (4.10) 2.0 3.2 4.3 5.9 5.3 5.3 
Newton-C. (4.11) 4 1. 7 3.6 5.2 6.5 6.7 6.7 
Lobatto IIIA ( 4.12) 1.4 2.7 4.6 6.0 7 .1 8.3 8.6 8.6 
Lagrange (4.13) 1.6 3. 1 5.8 6.6 7.0 6.9 6.9 
Radau IIA (4. 14) 1.5 3.2 4.8 7.4 7.8 7.9 7.9 

Crouzeix-Alex. (5.6) I 2 - 4.4 
lserles-Nprsett (5.7) 2 4.5 
lserles-Nprsett (5.8) 4.4 
Newton-C. (4.3) 2.3 3.9 5.4 5.7 5.7 
Lagrange (4.4) 2.3 4.5 4.0 4.0 
Radau IIA (4.6) 2.1 3.5 4.5 4.3 4.3 
Newton-C. ( 4. 7) 3 2.0 4.2 6.2 5.9 5.9 
Lobatto IIIA (4.8) 1. 9 3.8 5. 1 6.8 8.1 8.3 8.3 
Lagrange (4.9) 2.1 4.1 5.5 5.4 5.4 
Radau IIA (4.10) 2.2 3.8 5 .1 6.9 6.8 6.8 
Newton-C. ( 4.11) 4 2.0 4.5 6.7 7.9 8.5 8.5 
Lobatto IIIA ( 4.12) 1. 7 3.3 5.4 7.2 8.5 10.0 10.9 11.0 11.0 
Lagrange (4.13) 1. 9 3.7 6.3 7.5 8.3 8.2 8.2 
Radau IIA (4.14) 1.8 3.7 5.6 8.0 8.8 10.1 9.8 9.8 

Crouzeix-Alex. (5.6) 1 4 - 5.5 
Iserles-Nprsett (5.7) 2 5.7 
lserles-Nprsett (5.8) 5.6 
Newton-C. (4.3) 2.6 4.5 6.4 6.9 6.9 
Lagrange (4.4) 2.6 4.7 4.9 4.9 
Radau IIA (4.6) 2.4 4.1 5.4 5.2 5.2 
Newton-C. (4.7) 3 2.3 5.0 7.2 7. I 7 .1 
Lobatto IIIA (4.8) 2.2 4.4 6.0 7.9 9.7 10. 1 10. 1 
Lagrange (4.9) 2.4 4.8 6.8 6.6 6.6 
Radau IIA ( 4.10) 2.5 4.5 6.0 7.9 8.3 8.3 
Newton-C. ( 4.1 I) 4 2.3 5.4 7 .1 8.9 10.6 10.3 I 0.3 
Lobatto IIIA ( 4.12) 2.0 4.0 6.1 8.4 I 0.1 I 1.9 12.3 12.3 
Lagrange ( 4.13) 2.2 4.2 7.2 8.7 9.9 9.7 9.7 
Radau IIA (4.14) 2.1 4.3 6.6 9.1 I 0.2 12.2 11.8 11.8 
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Table 5.5b. Problem (5.2): Efficiency test of fourth-order methods. 

Method p m k mUh=4 mUh=8 mlih= 16 

Iserles-N0rsett (5.7) 4 2 2 2.4 3.0 3.6 
Iserles-N0rsett (5.8) 4 2 2 2.7 3.2 3.8 
Newton-C. (4.3) 4 4 2 4.7 5.3 5.9 
Newton-C. (4.7) 4 4 3 6.1 8.1 7.7 
Lobatto IHA (4.8) 4 4 3 6.0 6.0 6.2 
Lagrange (4.9) 4 4 3 6.7 7.5 7.7 
Radau IIA (4.10) 4 4 3 4.9 5.7 6.2 
Newton-C. (4.11) 4 4 4 4.7 5.2 5.5 
Lobatto IIIA (4.12) 4 4 4 3.9 4.0 5.0 
Lagrange (4.13) 4 4 4 3.9 4.9 5. I 
Radau IIA (4.14) 4 4 4 4.7 5.0 5.2 

Table 5.6b. Problem (5.4): Efficiency test of fourth-order methods. 

Method p 111 k mlih=4 mUh=8 mLlh= 16 

Iserles-N0rsett (5.7) 4 2 2 4.5 5.7 6.9 
Iserles-N0rsett (5.8) 4 2 2 4.4 5.6 6.7 
Newton-C. (4.3) 4 4 2 4.5 5.7 6.9 
Newton-C. (4.7) 4 4 3 4.7 5.9 7 .1 
Lobatto IIIA (4.8) 4 4 3 5.6 6.8 7.9 
Lagrange (4.9) 4 4 3 4.2 5.4 6.6 
Radau IIA ( 4.10) 4 4 3 5.9 6.9 7.9 
Newton-C. (4.11) 4 4 4 6.5 7.9 8.9 
Lobatto IIIA (4.12) 4 4 4 6.0 7.2 8.4 
Lagrange (4.13) 4 4 4 6.6 7.5 8.7 
Radau IIA (4.14) 4 4 4 7.4 8.0 9.1 

6. CONCLUDING REMARKS 

In this paper we have derived a diagonally implicit iteration scheme to solve a 

fully implicit Runge-Kutta method. The structure of this iteration process is such 

that a parallel computer can be fully exploited. Starting with an implicit RK method 

with k implicit stages (the corrector), each iteration requires the solution of k 

systems of equations of dimension equal to the number of ODEs. Since these 

systems can be solved completely independently, the effective computational work 

per iteration equals the solution of one such system, provided that k processors are 

available. 

The free parameters in the iteration scheme are chosen in such a way that the 

corresponding stability functions converge as quickly as possible to the stability 
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function of the corrector, which is chosen to be (at least) A-acceptable. Although we 

have numerical evidence that this is not a bad choice, we do not claim that it is the 

best possible. In a forthcoming paper it is intended to give theoretical support for 

this choice. 

A second aspect considered in this paper, is the choice of the particular corrector 

method. The well-known implicit RK methods of high classical order, such as the 

' Gauss-Legendre, Radau, and Lobatto methods, seem to be suitable candidates. 

However, since it is the stage order which usually determines the order behaviour in 

integrating stiff differential equations, these methods are not necessarily optimal 

correctors. Because the stage order is significantly smaller than the classical order for 

these methods, we will encounter the phenomenon of order reduction. Therefore, we 

also considered Newton-Cotes and Lagrange correctors, which have - for the same 

number of implicit relations per iteration - a stage order which is one higher than 

for Gauss-Legendre and Radau methods and is equal to the stage order of Lobatto 

methods. 

Apart from these order considerations, it turned out that the stability behaviour of 

the iterated scheme largely depends on the choice of the corrector. For example, it is 

shown that the Gauss-Legendre corrector is not suitable in this context, since it is 

not stiffly accurate. Consequently, only for very 'innocent' stiff problems, where we 

have no order reduction, the Gauss-Legendre corrector is useful, but as a method for 

general stiff problems it is disadvantageous. 

The other four types of correctors are all stiffly accurate, which has the effect that 

certain classes of stiff problems can be integrated without order reduction. For such 

problems the classical order should be a decisive factor, viz. in these cases the 

Lobatto IHA corrector is superior and also the Newton-Cotes corrector is a good 

choice. However, these correctors are only A-stable and it is shown that the stability 

function of the iterated method is not A-acceptable unless the corrector is really 

solved. This means that the iteration process based on these correctors easily 

encounters stability problems. Hence, a corrector possessing better stability 

characteristics, such as the Radau IIA method (L-stable) and the Lagrange method 

(strongly A-stable), will be much more robust. We showed that after a few iterations 

the stability function of the iterated methods based on these correctors is A

acceptable. 

Since the stage order of the Lagrange corrector is one larger than that of the 

Radau IIA corrector, we think that it is a good choice for integrating general stiff 

equations; it combines adequate stability characteristics with a relatively high stage 

order. Our numerical experiments confirm this advice. 

Furthermore, we have compared our methods with sequential and parallel DIRK 

methods from the literature. This comparison is rather obvious since the effective 

computational work per iteration equals the work per stage in a DIRK method. It 
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turned out that the diagonally iterated RK methods are much more efficient than the 

'conventional' DIRKs. The reason is that only low order 'conventional' DIRKs with 

good stability properties are available in the literature and, more importantly, these 

DIRKs have a stage order equal to I. This property gives these methods a very poor 

performance in case of general stiff problems. 

Finally, we remark that the construction of diagonally iterated methods of 

arbitrarily high order is straightforward, and we observed in our experiments that, 

especially the high order methods, showed remarkably high accuracies. 
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Abstract. In this paper, we analyse parallel, diagonally implicit iteration of Runge
Kutta methods (PDIRK methods) for solving large systems of stiff equations on 
parallel computers. Like Newton-iterated backward differentiation formulas (BDFs), 
these PDIRK methods are such that in each step the (sequential) costs consist of 
solving a number of linear systems with the same matrix of coefficients and with 
the same dimension as the system of differential equations. Although for PDIRK 
methods the number of linear systems is usually higher than for Newton iteration of 
BDFs, the more computational intensive work of computing the matrix of 
coefficients and its LU-decomposition is identical. The advantage of PDIRK methods 
over Newton-iterated BDFs is their unconditional stability (A-stability for Gauss
based methods and L-stability for Radau-based methods) for any order of accuracy. 

Special characteristics of the PDIRK methods will be studied, such as the rate of 
convergence, the influence of particular predictors on the resulting stability 
properties, and the stiff error constants in the global error. 
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1. INTRODUCTION 

Consider the initial value problem for systems of ordinary differential equations 

(ODEs) of dimension d 

In this paper, we analyze integration methods based on iteration of implicit Runge

Kutta (RK) methods of collocation type. Such RK methods possess both a large 

step-point order and a large stage order. Furthermore, by a suitable choice of the 

collocation parameters, these RK methods are unconditionally stable for any order of 

accuracy. 

We shall employ the diagonally implicit iteration-type methods proposed in 

[7, 8). These methods are designed in such a way that a large number of the implicit 
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systems to be solved can be processed in parallel, so that the number of systems that 

have to be solved sequentially is substantially reduced when implemented on multi

processor computers. As a reference method, we take the method based on the 

backward differentiation formulas (BDFs), which is considered as one of the best 

methods for sequential computers. The sequential computations (i.e., the 

computations that cannot be performed in parallel on a multi-processor system) of 

the parallel diagonal-implicitly iterated RK (PDIRK) methods are of the same nature 

as those of Newton-iterated BDFs, that is, in each step, both types of methods 

require the sequential solution of a number of linear systems with the same matrix of 

coefficients and with the same dimension as the system of differential equations. 

Although, this number of linear systems is usually higher for PDIRK methods than 

for Newton iteration of BDFs, the effort required for computing the Jacobian and the 

LU-decomposition of the matrix of coefficients is identical. For large systems of 

equations, these computations are the more computational intensive work, so that 

the overall computation time is primarily determined by the number of Jacobian 

updates and LU-decompositions. The advantage of PDIRK methods over Newton

iterated BDFs is their A~stability (Gauss correctors [2]), strong A-stability (Lagrange 

correctors derived in [7]) or even L-stability (e.g. Radau IIA correctors) for high 

orders of accuracy. The property that unconditional stability can be combined with 

high orders reduces the number of integration steps (and therefore the number of 

Jacobian updates and LU-decompositions) considerably. 

In Section 2, we define the PDIRK iteration scheme and discuss some favourable 

properties of the underlying implicit RK method (the corrector). We analyze the 

influence of the initial iterate (the predictor) with respect to the stability of the final 

result. Both implicit and explicit predictors of one-step and multistep type are 

discussed. Furthermore, several options for the iteration parameters are considered. 

Section 3 describes the convergence and stability for several predictor-corrector (PC) 

combinations. An expression for the global error for the linear inhomogeneous test 

equation y'(t)=Ay(t)+g(t) will be derived in Section 4. For various PC combinations 

and several one-step predictors, the principal stiff error constants in the global error 

expansion are calculated for several iteration strategies. Finally, in Section 5 the 

results are compared and some recommendations are formulated. 

2. PDIRK METHODS 
In this section we define PDIRK methods by specifying the RK corrector, the 

iteration scheme for solving the stage vector equation, the predictor formula, and the 

formula for the step-point values. The various families of PDIRK methods are 

determined by special choices of the iteration parameters occurring in the iteration 
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scheme. In order to simplify the notations, the formulas are given for scalar ODEs. 

The extension to systems of ODEs is straightforward. 

2.1. The corrector 

We consider RK methods of the form 

Y - h Af ( etn + ch,Y) = eyn + ha f(tn,Ynl, 
(2.1) 

c :=a +Ae, 

where ho is a scalar parameter, e is the vector with unit entries, a= (ai), b = (bi) and 

c = (q) are k-dimensional vectors, and A= (aij) is a k-by-k matrix. In (2.1) we used the 

convention that for any given vectors v = (vj) and t = (f_j),j{t,v) denotes the vector with 

entries f{f_j,Vj)- We always assume that the matrix A is nonsingular. If the vector a or 

the parameter bo does not vanish, then (2.1) presents an (s = k+ 1 )-stage RK method 

requiring k implicit stages and one explicit stage. If a= 0 and bo = 0, then (2.1) 

reduces to the general (s = k)-stage RK method with s implicit stages. For a 

discussion of the order of accuracy and the stage order of RK methods, we refer to 

e.g. [4] and [3]. In the sequel, the method (2.1) will be called the corrector. 

2.2. The iteration scheme 

The stage vector equation in (2.1) is solved by applying the diagonal iteration 

method studied in [8] and [7]. Let y(µ) denote the successive iterates, then we may 

define the (highly parallel) iteration process 

y(I) _ hDJ(etn + ch,y(I)) = 

eyn + a hf(tn,Yn) + hAJ(etn + c*h,Y(O)) - h D J(etn + c*h,y(O)), 
(2.2) 

y(µ) _ h D J(etn + ch,y(µ)) = 

eyn + a hf{tn,Yn) + hAJ(etn + ch,Y(µ-I)) - h D f(etn + ch,Y(µ-I)), 

whereµ= 2, ... , m, and Dis a diagonal matrix whose diagonal elements Di (i = 1, ... , k) 

are the iteration parameters which are assumed to be positive. The parameter vector 

c* depends on the predictor formula used for computing y(O) and serves to make the 

arguments off consistent in the first iteration (see Section 2.4). The step-point 

formula defining Yn+I and the predictor formula will be discussed in the Sections 2.3 

and 2.4, respectively. Together, the predictor formula, the iteration scheme (2.2), and 

the step-point formula determine the PDIRK method. 

Each iteration in (2.2) requires the solution of k nonlinear systems which can be 

obtained by applying modified Newton iteration. We shall call this last iteration the 
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·inner iteration method and the iteration (2.2) the outer iteration method. Notice that 
in each outer iteration the k nonlinear systems can be solved in parallel, provided 
that k processors are available. Thus, the sequential costs per step consist of 
computing y(O) and of solving m nonlinear systems of ODE dimension. 

For particular choices of the predictor formula (e.g., explicit RK formulas) and 
for step-point formulas as defined in Section 2.3, the PDIRK method as described 

above can be interpreted as a diagonally implicit RK (DIRK) method using mk 

diagonally implicit stages. Since the k stages in each outer iteration can be computed 
in parallel, we arrive at a DIRK method with m sequential diagonally implicit 

stages. These methods form a subclass of the much wider class of the PaRK methods 
investigated by Jackson and Ni,jrsett [9, 10]. 

In [7] and [8] the performance of PDIRK methods was studied in the case where 

in each of the m outer iterations the inner iteration method was continued until 
convergence before starting the next outer iteration (this iteration strategy is also 
used in conventional DIRK methods). However, this strategy may be rather 

expensive if many iterations are needed to get the inner iteration converged. 

Moreover, it does not take into account the special structure of the method. The 
essential difference with conventional DIRK methods lies in the fact that the ith 
component of each stage vector y(µ) is an approximation to the exact solution at the 

point tn + c;h. This implies that y(µ-I) furnishes an excellent initial approximation 
to the solution y(µ) to be obtained in the inner iteration process. As a consequence, 

each outer iteration needs only a few inner iterations. Furthermore, in first 
approximation, the convergence of the inner-outer iteration scheme and the stability 

of the PDIRK method do not depend on the number of inner iterations. This 
motivates our strategy to perform only one inner iteration per outer iteration, leading 
to the iteration process 

[I - hDJ] (y(O) - yCI)) = y(O) - h D f(etn + ch,y(O)) 

(2.3a) 
- [eyn+a hfiJn,Yn) +hAf(etn +c*h,y(O))- hD f(etn +c*h,y(O))], 

[/ - hDJ] (y(µ-1) - y(µ)) = y(µ-1) 

- [eyn +ahJ{tn,Yn) + hAf(etn +ch,y(µ-I))], µ=2, ... , m. 

Here, J denotes an approximation to the derivative off at the point (tn,Yn)

Evidently, if (2.3a) converges, then y(µ) converges to Y. In fact, one may interpret 

(2.3a) as a modified Newton iteration scheme for solving Y from the stage vector 

equation in (2.1) employing a diagonal approximation to the Jacobian matrix of 
Y- hA.f(etn+ch,Y). 

It may be useful to consider (2.3a) in the case of systems of ODEs. Then, the k 

components Y/µ) of the stage vector iterate y(µ) have to satisfy the equations 
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[I - hojl] (Y/O) - Y/1)) = Y/O) - h oi f (tn + c;h,Y/O)) 
k 

- [yn + ai hf(tn,Yn) + h L aijf(tn + cj*h,Y/O)) -h Oi f (tn + c;*h,Y/O))] , 
j=l 

[I- ho;]] (Y;(µ-l) - Y/µ)) = Y/µ-l) 
k 

-[yn+a;hf(tn,Yn)+hL aijf(tn+Cjh,Y/µ-l))], µ=2, ... ,m, 
j=l 

where i = 1, ... , k and where now J denotes an approximation to the Jacobian matrix 

off at the point (tn.Yn)- Notice that this iteration scheme can be viewed as a 

modified Newton method for solving the stage vector equation employing a block

diagonal approximation to the Jacobian. Clearly, the k linear systems that are to be 

solved in each outer iteration step can be solved in parallel. Since each system has 

dimension equal to that of the system of ODEs, the computational complexity per 

step and per processor essentially consists of the computation of y;(O), the 

evaluation and LU-decomposition of the matrix J-h Oil (or its updating), m+2 

evaluations of f, and m forward-backward substitutions. Of these costs, the 

evaluation and LU-decomposition of/ - h o; J are the most time consuming, while the 

evaluations off and the forward-backward substitutions are relatively cheap (notice 

that the iteration parameters Oi are independent ofµ in order to avoid repeated LU

decompositions of 1-h o; Jin the successive iterations). Thus, when basing a code on 

PDIRK methods, first of all the number of stepsize changes (which automatically 

requires new LU-decompositions) and the number of Jacobian updates should be 

minimized. 

It is of interest to compare the sequential costs of PDIRK methods with the 

sequential costs of the celebrated BDF-based methods. If the BDFs are solved· by 

using m modified Newton iterations, then the sequential costs in each step of the 

PDIRK methods and the Newton-iterated BDFs are almost identical. We expect that 

PDIRK methods need more iterations but, because of their higher order, less steps to 

produce some given accuracy. As explained above, evaluations off and the forward

backward substitutions are relatively cheap, so that for modest values of m, the 

sequential costs per step of PDIRK methods are expected to be not much higher than 

those of the BDFs. The reduced number of steps required by the PDIRKs should 

make them superior to the BDFs. 

2.3. The step-point values 

Suppose that we adopt y(m) as a sufficiently accurate approximation to the exact 

stage vector solution Y of the corrector (2.1 ). Then, the most natural way to 
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approximate the step-point value Yn+ 1 in (2.1) defines this value according to the 

formula 

However, the presence of the right-hand side evaluations in this formula may give 

rise to loss of accuracy in the case of stiff problems ( cf. [ 12]). This difficulty can be 

overcome by applying a similar approach as proposed in [6] for the implementation 

of implicit RK methods. Observing that the corrector (2.1) can be written in the 

form 

provided that A is nonsingular, we can approximate the corrector solution Yn+ I by 

the formula 

(2.3b) 

where y(m) denotes the last computed approximation to Y. In many cases the 

corrector satisfies the relations of stiff accuracy, i.e., Ck= I, bo = ak and b TA- 1 = ekT, 

so that (2.3b) reduces to Yn+1 =ekTy(m)_ In order to avoid confusion, we shall from 

now on denote the corrector solution and stage vector values obtained from Yn by 

Un+1 and U, respectively. 

2.4. The predictor 
In [8] we considered one-step predictors of the form 

(2.5) y(O) := eyn + h Ef(et11 ,eyn) + h BJ(et11 + c*h,y(O)), 

where B and E are k-by-k matrices. Of particular interest are the cases where E 

vanishes and where B is either the zero matrix yielding last step-value predictors 

(LSP) or B = D yielding implicit Euler predictors (IEP). 

However, by using information from the preceding step, that is the values of Yn 

and the stage vector y(m) computed in the last step, we can construct more accurate 

predictors. In order to indicate to which step a particular stage vector corresponds, we 

define Y11 := y(m) if y(m) corresponds to the step [t11_J,t,iJ. Consider the two-step 

predictor 

(2.6) y(O) = V Y11 + v Yn + h Bf(et11 + c*h,y(O)), 

where either B = 0 or B = D, and where the matrix V and the vector v satisfy the usual 

consistency conditions (we shall assume that the vector v vanishes in the case of 
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stiffly· accurate correctors). The cases B = 0 and B = D will be referred to as the 

extrapolation predictor (EXP) and the backward differentiation predictor (BDP). 

If B = D, then both (2.5) and (2.6) require the solution of k implicit relations. 

Similar to the strategy followed in solving the implicit relations in (2.2), we shall 

perform just one Newton iteration (notice that the right-hand side derivatives required 

in the Newton iteration method are identical to those occurring in (2.3a)). In order to 

perform this Newton iteration we need an initial guess y(-I) for y(O)_ For the cases 

(2.5) and (2.6) we shall, respectively, use 

y(-I) = eyn, c* = (E + B)e; y(-1) = WYn + w y11 , c* = c, 

where Wand ware to be determined (we shall assume that w vanishes in the case of 

stiffly accurate correctors, and that W = V, w = v in the case where B = 0). If the 

corrector is based on collocation, then the matrix W and the vector w can be 

computed by extrapolating the collocation polynomial defined in Un- J ,tn] to the 

interval Un,tn+Il and can be expressed in terms of the Lagrange interpolation 

polynomials. 

2.5. The iteration parameters 

There are various options for choosing the number of iterations m, and the 

iteration parameters <>i- In this paper, we consider three cases: 

Option 1: fixed-number-of-iterations option 

the number of iterations is fixed and such that the orders of the PD IRK 

and corrector are equal 

the iteration parameters are chosen such that the stability region in the 

left halfplane is optimized. 

Option 2: minimal-spectral-radius option 

the number of iterations is sufficiently large to closely approximate 

the corrector solution 

the iteration parameters are such that the spectral radius of the matrix 

D-1 A - I is minimized. 

Option 3: minimal-stiff-error-constant option 

the number of iterations is sufficiently large to closely approximate 

the corrector solution 

the iteration parameters are such that the principal stiff error constant 

of the PDIRK method is minimized. 
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· Several families of methods constructed according to the fixed-number-of

iterations option were already considered in [8]. An interesting family considered in 

that paper possesses the stability functions investigated by Wolfbrandt [ 13] and uses 

constant iteration parameters Di determined by these stability functions. However, 

because of the fixed number of iterations, these methods are in fact DIRK methods 

and consequently, they have the disadvantage of possessing stage order q =I.In many 

stiff problems, such a low stage order may lead to reduced accuracies. In order to get 

insight into the extent of this accuracy reduction, we shall consider the magnitude of 

the stiff error constants for the 'fixed-number-of-iterations PDIRK methods' (see 

Section 4.2, Table 4.1 ). 

For the explicit one-step predictor, [7] presents a number of PDIRK methods 

constructed according to the minimal-spectral-radius option. The effect of 

minimizing the spectral radius of the matrix D-1 A - I is a strong damping of the stiff 

iteration error components. On the one hand, the number of iterations m should be 

sufficiently large to solve more or less the RK corrector, on the other hand, m 

should be sufficiently small to achieve that the (sequential) costs per step are not 

excessive when compared with those of the BDFs. In this paper, we shall investigate 

a few characteristics of the 'minimal-spectral-radius PDIRK methods' as a function 

of m. In particular, in Section 3 we consider the rate of convergence (Table 3.1) and 

the effect on the stability of the various predictors (Tables 3.2a and 3.2b ), and in 

Section 4 we consider the magnitude of the principal stiff error constants (Tables 4.2 

and 4.3). 

Option 3 offers an alternative to option 2 and directly addresses the truncation 

error of PDIRK methods when applied to stiff systems. In this paper, we present 

preliminary results for the simple inhomogeneous test equation y'(t) = Ay(t) + g(t). 

3. CONVERGENCEANDSTABILITY 

We shall investigate convergence and stability by means of the scalar test 

equation y' = Ay. Note that for this simple test equation the particular strategy used 

in the inner iterations is not relevant. For a rigorous convergence analysis of parallel 

RK methods containing the PDIRK methods of this paper we refer to Jackson and 

Njijrsett [9, 10]. 

3.1. Rate of convergence 

From (2.2) it can be deduced that the iteration error satisfies the recursion 

(3.1) U - Yn+I = Z(z) (U - y(m-l)) = ... = zm(z) (U - y(O)), 

Z(z) :=zD[/-zD]-1 [D- 1A-I], z := Ah. 
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The region in the complex z-plane where zm(z) ➔ 0 for m ➔ oo will be called the 

region of convergence. We define the iteration function C of the PDIRK method by 

the spectral radius of Z(z), i.e., 

(3.2) C(z) := p(Z(z)) = p(zD[J- zDJ-1 [D-1A - I]). 

Evidently, the region of convergence is determined by the set of points where 

C(z) < 1. The rate of convergence is larger as the norm of C(z) is smaller in the 

region of relevant values of z. Thus, adopting the maximum norm, we are led to the 

minimization of C(z) in this region. In this connection we introduce the following 

definition: 

Definition 3.1. A PDIRK method is said to be strongly A-convergent if its iteration 

function C(z) :s; 1J < 1 in the whole left halfplane Re z < 0. If, in addition, C(- oo) = 0, 

then the PDIRK method is called L-convergent. [] 

First we consider the constant-o;-case which is of interest in the case of fixed

number-of-iterations methods. 

Theorem 3.1. If D has constant, positive diagonal elements, then minimization of 

p(D-1A-I) implies that the norm of C(z) is minimized whenever z is in the left 

halfplane. 

Proof. If D = o·J, then we may write C(z) = lo zl p( o 1 A - I) I 11 - o zl. In the left 

halfplane, the maximum of the function loz/ (l - oz)I does not depend on o, provided 

that O> 0. Hence, the norm of C(z) is minimized if p(D-1 A - I) is minimized. [] 

In the case where D does not have constant diagonal entries, we cannot derive 

such a simple expression for C(z), and a numerical search is needed to find the matrix 

D that minimizes the norm of C(z) in the left halfplane. However, our numerical 

experiments revealed that also in the nonconstant-o;-case the minimization of 

p(D-1A-/) yields fast converging PDIRK methods and that IICll := max{ C(z): Rez:s;0} 

is considerably smaller than in the constant-o;-case. 

Example 3.1. We consider an example of the fixed-number-of-iterations methods 

studied in [8] which is based on the third-order Radau IIA corrector. For 

m =3, A=J_(5-l)• 12 9 3 D=o-1, o = 0.43586650 
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this leads to a third-order, L-stable PDIRK method. The convergence function 

associated with this method is given by C(z) :::; lo zl p( s-1 A - I) I 11 - o zl, where 

p(o- 1 A - I) :::; o- 1 ✓ 1/6 - 28/3 + 82• Setting O:::; 0.43586650 we find that 

C(z) < 0.59 in the whole left halfplane. Among the methods with D:::; 8 I this method 

is almost optimal (the minimizing value is given by O= 1/2 leading to C(z) < ~"" 
0.577). 

Next, we consider the case where D minimizes p(D-1 A - I). In [7] it was shown 

that the method can be made £-convergent (i.e., it has vanishing p(D-1 A -I)) for 

81=(4-%)/6 and 82=(4+%)/10. The corresponding matrix Z(z) is easily 

computed, yielding IICII ""0.262. [] 

Table 3.1 lists the IICll-values for a number of minimal-spectral-radius PDIRK 
methods. These methods are based on Radau IIA correctors and on the so-called 

Lagrange correctors derived in [7]. The Lagrange methods are strongly A-stable, 

stiffly accurate collocation methods which are completely determined by the 

collocation vector c (see Table 3.1 ). Their stage order is one higher than that of the 

Radau IIA methods which was achieved by using one explicit and k implicit stages. 

However, they do not possess the superconvergence property of the Radau methods, 

so that the computation of the nonstiff solution components is considerably less 

accurate. 

For the Radau IIA and Lagrange correctors with k implicit stages, the iteration 

parameters are contained in the matrices DkR and DkL (k = 2, 3, 4 ): 

(3.3a) 

(3.3b) 

(3.3c) 

1 (20-516 0 ) 
D2R = 30 0 12+316 ' 

4365 
13624 0 0 

D3R = 0 .!.Q1l 0 
7373 

0 0 .1.§E 
5077 

1.Q210 
9532 0 0 

0 
531 
5956 0 0 

D4R = 1471 
0 0 8094 0 

0 0 0 
1848 
7919 

D [ 
4(-A+I) O J 

2L = 1 , 
0 

6(& I) 

2246 
10669 0 0 

D3L= 0 2537 0 
8794 

0 0 
3026 
8923 

5147 
0 0 0 38467 

1983 
0 17459 0 0 

D4L= 3197 
0 0 14090 0 

3086 
0 0 0 12339 
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Table 3.1 shows that these methods can all be made strongly A-convergent, and 

that only the methods based on a two-stage corrector are L-convergent (see also [7]). 

Furthermore, we observe that the rates of convergence of the Lagrange-based methods 

are slightly better. Hence, together with their increased stage order, the Lagrange 

correctors seem to be attractive alternatives to the Radau correctors in problems 

where the order of accuracy is determined by the stage order. However, in problems 

where, apart from the stage order, the nonstiff (or, classical) order is important, the 

superconvergent Radau correctors are to be preferred. As to the IICll-values given in 

Table 3.1, it should be remarked that these are 'worst case' values, that is, in actual 

computation, where the relevant values of z are located in a restricted region of the 

left halfplane, the corresponding bound on C(z) may be much smaller. 

Table 3.1. IIC11-values for minimal-spectral-radius PDIRK methods 

based on Radau IIA and Lagrange correctors. 

strongly 
Corrector k IICII A-convergent L-convergent 

RadauIIA 2 0.262 yes yes 
3 0.401 yes no 

4 0.527 yes no 

Lagrange 2 C = (3/4,J)T 0.182 yes yes 
3 C = (7/12,5/6,J)T 0.403 yes no 

4 C = (1/6,7/12,J J/12,J)T 0.404 yes no 

3.2. Region of stability 

In order to investigate the stability properties of PDIRK methods we have to 

specify the predictor formula. The stability of PDIRK methods using the one-step 

predictor (2.5) was extensively discussed in [8] for the case where Yn+ J is defined by 

(2.4). For the case (2.3b) considered in this paper, we have the following theorems: 

Theorem 3.2. For the equation y' = 11, y the PD IRK solution generated by { (2.3a), 

(2.3b), (2.5)} satisfies the recursion 

Yn+ I = R,n(Z)Yn, R,n(z) := R(z) - E,n(Z), 

R(z) := 1 + zbo + zbT[J - zA]-1 [e + za] , 

E,n(Z) := bTA-1 zm(z)([I - zAJ-1 [e + za] - [I - zB]-1 [I+ zE] e ). 

Here, R(z) is the stability function of the corrector reducing to 

in the stiffly accurate case. 
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Proof. From the relations 

(3.4) y(O) = [/ - zBJ-1 [/ + zE] ey11 , U = [I - zAJ- 1 [e + za] Yn, 

it follows that 

Hence, from the step-point formula (2.3b) we obtain 

(3.6) Un+I - Yn+I = bTA-1(U - Yn+I) 

=bTA-1zm(z)([!-zAJ-1 [e +za] - [I -zBJ-1 [I +zE] e )y11 • 

Furthermore, introducing the stability function R(z) of the corrector, we may write 

(3.7) U 11+1 = R(Z)Yn, 

where R(z) is defined in the theorem. From (3.6) and (3.7) the assertion of the 

theorem is immediate. [] 

Theorem 3.3. For the equation y' = Ay the PDIRK solution generated by {(2.3), 

(2.6)} satisfies the recursion 

( Yn+I) =Mm(z) (Yn), 
Yn+I Yn 

where Mm(Z) is the amplification matrix 

[I-zm(z)][J-zAJ- 1[e+za] +zm(z) [/-zBJ- 1v ) . 

Proof. By means of the equation for U given in (3.4), relation (3.5) and 

we derive that 

(3.9) Yn+I = zm(z) [/-zBJ-1 VY11 + 

([!-zm(z)][l-zAJ-1[e+za] + zm(z) [/-zBJ-1v )y11 • 

Together with the step-point formula (2.3b) the one-step recursion of the theorem is 

easily obtained. [] 
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With the amplification matrix Mm(Z) we associate the stability function 

(3.10) Rm(Z) := p(Mm(Z)), 

where p(Mm) denotes the spectral radius of the matrix Mm, The region in the 

complex z-plane where Rm(Z) < I will be called the region of stability associated with 

m. Furthermore, we define merit as the minimal value of m for which this region 

contains the whole left halfplane for all m;::: merit· 

For future reference, we have computed the value of merit for a number of 

predictor-corrector (PC) pairs. For the correctors we again chose the Radau IIA 

methods and the Lagrange methods of Section 3.1. The predictors are those defined in 

Section 2.4 and the matrices D are defined according to the minimal-spectral-radius 

option (see (3.3a), (3.3b), and (3.3c)). Table 3.2a shows that merit increases if the 

number of stages of the corrector increases. However, in actual computation, the 

minimal number of iterations may be much smaller because many stiff problems 

require only A(a)-stability. This means that automatic codes based on PDIRK 

methods are likely to choose the number of iterations not larger than necessary to 

ensure a stable performance. Table 3.2b presents the corresponding angles a as a 

function of m (lack of A (0)-stability is indicated by * ). The results illustrate the 

favourable A( a)-stability characteristics of minimal-spectral-radius PD IRK methods 

after only a few iterations. In general, the implicit predictors IEP and BDP possess 

(of course) larger stability angles a than the explicit predictors LSP and EXP, even 

if we take into account that the implicit predictors require extra computational effort 

roughly comparable with an additional iteration. Furthermore, if we compare IEP and 

BDP, then IEP has the best stability characteristics (in particular for Radau-based 

methods). However, the overall efficiency will be reduced because of its low-order of 

accuracy. Therefore, we drop the low-order predictors LSP and IEP and recommend 

either the EXP or BDP predictor. 

Table 3.2a. Values of merit of minimal-spectral-radius 

PDIRK methods for various PC pairs 

Corrector LSP EXP IEP BDP 

RadauIIA k=2 I 1 1 

k=3 5 5 2 4 

k=4 7 7 4 7 

Lagrange k=2 2 2 2 2 

k=3 3 3 3 3 

k=4 6 7 5 6 
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Table 3.2b. Values of a= a(_m) (in degrees) of minimal-spectral-radius PDIRK 

methods for various PC pairs 

Predictor Corrector k m= 1 m=2 m=3 m=4 m=5 m=6 m=7 

LSP RadaulIA 2 90 
EXP 90 
IEP 90 
BDP 90 

LSP 3 * * 81. 9 89.94 90 
EXP * * 64.7 88.7 90 
IEP 87.5 90 
BDP 65.0 81.8 88.4 90 

LSP 4 * * * 40.3 80.5 88.5 90 
EXP * * * * 70.3 84.2 90 
IEP 60.2 75.9 86.1 90 
BDP 43.0 14.6 67. I 78.2 84.6 88.6 90 

················································································································· 
LSP Lagrange 2 * 90 
EXP * 90 
IEP 86.5 90 
BDP 89.82 90 

LSP 3 * * 90 
EXP * * 90 
IEP 77.2 * 90 
BDP 83.4 * 90 

LSP 4 * * * 60.8 86.7 90 
EXP * * * * 73.0 88.0 90 
IEP 51.6 * * 86.5 90 
BDP 48.8 * * 79.9 87.6 90 

4. THE ERROR FUNCTIONS FOR THE LINEAR INHOMOGENEOUS TFST EQUATION 

The following theorem presents a result for general RK methods derived in [IJ: 

Theorem 4.1. For RK methods the global error en when applied to the test equation 

y'(t) = Ay(t) + g(t) satisfies 

en+l = R(z) en+ L, Qj(Z) hi YexU)(tn), 
j=q+I 

I · I I I · · I Qj(Z) := '7T [I -jbTcJ-] +"7TzbT[J-zA]- [cl-jAcJ- ], 
]. ]. 

where YexCt) denotes the exact solution of the test equation, R(z) is the stability 

function of the RK method, and q is its stage order (i.e., the largest integer such that 

1 - jbTcj-l = cj- jAcj-l = 0 for j= 1, ... , q). [] 
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We shall prove a similar theorem for PDIRK methods employing one-step 

predictors. As before, the simplicity of the test equation y'(t) = ;\,yU) + g(t) implies 

that the particular strategy used in the inner iteration process is not relevant. 

In the following, y(t) denotes the locally exact solution at tn, i.e., Yn = YUn)- It is 

straightforwardly verified that for the linear inhomogeneous equation the recursion 

(3.5) changes to 

(4.1) U - Yn+I = zm(z)( U _ y(O) + h z-1 [gUne + he)- g(tne + he*)]). 

Assuming that g is sufficiently differentiable, we may write for any fixed vector v 

(4.2) 

Hence, 

'\:'I '(.') 1"\:"1 ·r.·) ·1 · 
g(tne + hv) = LJ ':"j" (h vY g 1 Un) = h LJ ':"j" hl y 1 Un) UvJ- - zvl]. 

. 0 J. . 0 J. 
j= j= 

h [g(tne + he)- g(tne +he*)]= L ~ YJ(z) hl yU)(tn), 
. I J. 
j= 

YJ(z) := jeJ-I - zel - j(e*)i- 1 + z(e*Y, 

Furthermore, it follows from (2.1) that 

U = [/ - zAJ-1 [y(tn)e + h y'(tn)a + hA g(tne + he)], 

so that 

(4.3a) U=yne + L 
)= I 

CJ(Z) :=e, 

4.1. One-step predictors 

~ ej(z) W yU)Un), 
J. 

ej(z) := [I - zAJ- 1A UeJ-I - zel], j ~ 2. 

Let us assume that y(O) is provided by a one-step formula, then it can also be 

expanded in terms of a similar Taylor series with coefficients e)*(z): 

(4.3b) 

Thus, 

(4.4) u - Yn+I = zm(z) L qj(z) iJ yU>un), 
)=I 

q 1 (z) := e* - CJ *(z), }~2. 
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Assuming that CJ *(z) does not depend on z, we may choose in (2.3) c* =CJ* so that 

qJ (z) vanishes. Using the relation 

the iteration error (4.4) can be expanded in terms of derivatives of the exact solution. 

We obtain 

(4.4') V - Yn+I = zm(z) I qj(z) (z) [Yn - Yex(tn)] +hi YexU)(tn)). 

)=2 

Since 

we find 

(4.6a) Un+I - Yn+I = Sm(z)[Yn - Yex(tn)] + I Qmj(Z) hi YexU)(tn), 
)=2 

(4.6b) Sm(Z) := bTA-1 zm(z) I qj(z) z!, Qmj(Z) := bTA-1 zm(z)qj(z). 

)=2 

Applying Theorem 4.1 to the corrector at the point tn with en= Yn - YexUn) and 

assuming that jb Tci-1 = 1, j = 0, 1, ... , q) yields 

(4.7) Un+I - Yex(tn+J) = R(z)[Yn - Yex(tn)] 

+ (q~I )! zbT [l-zAJ-1 [cq+I -(q+ l)A cq] hq+I Yex(q+l)(tn) 

+O(M+2); 

hence, 

Yn+I - Yex(tn+I) = Yn+I - Un+I + Un+I - YexUn+I) 

= Yn+I - Un+I + R(z) [Yn - Yex(tn)] + O(M+I ). 

Thus, using (4.6a) we obtain 

(4.8) Yn+I - Yex(tn+I) = (R(z)- S,n(z)) [Yn - YexCtn)] 

-I Q,nj(Z) hi Yex(j)Un) + O(hq+ 1 ). 
)=2 

The functions Qmj(Z) will be called the error functions of the PDIRK method. 



185 

Finally, we show that the function R(z)- Sm(Z) is identical with the stability 

function Rm of the PDIRK method. For that purpose, we consider the particular case 

where the inhomogeneous term g vanishes. It is easily verified that we then may 

write 

(4.9) Yn+I - YexCtn+I) = Rm(Z) [Yn - YexUn)] + (Rm(Z) - eZ) YexCtn), g = 0. 

Now, suppose that the initial value YO tends to zero. Then, YexCt) also tends to zero. 

Since ( 4.8) holds for vanishing g too, it follows that Rm(z) = R(z) - Sm(z). Notice 

that in the case of the predictor (2.5) the functions Sm(z) and Em(z) as defined in 

Theorem 3.2 are apparently identical. Thus, we have proved the following PDIRK 

analogue of Theorem 4.1: 

Theorem 4.2. For one-step predictors possessing the expansion (4.3b) with c* =CJ* 

the global error of PDIRK methods when applied to the test equation y'(t) = .:l y(t) + 
g(t) satisfies the recursion 

Yn+I - YexCtn+I) = Rm(Z) [Yn - YexCtn)] - I. Qmj(Z) hi YexU)(tn) + O(hq+ I), 
)=2 

Rm(Z) = R(z) - Sm(Z), 

Sm(Z) :=bTA-1 zm(z) I. qj(z)z1, Qmj(z) :=bTA-1 zm(z)qj(z), 
)=2 

where q is the stage order of the corrector, and R(z) and Rm(z) are the stability 

functions of the corrector and the PDIRK method, respectively. [] 

This theorem shows that the stage order of PDIRK methods is only one, unless 

the error function Qm2(z) is identically zero for the m-value used (this is not 

surprising because formally PDIRK methods are just DIRK methods which are 

known to have stage order one). However, as all error functions Qmj(Z) contain the 

factor zm(z), their maximal values IQm} are expected to decrease rapidly with m in 

any region of the left halfplane, so that effectively the stage order shown in actual 

computation is much higher. 

The following corollary presents an explicit expression of Qmj for the predictor 

(2.5). 

Corollary 4.1. For the predictor (2.5) the error functions are given by 

Qmj(z) := ~bTA-1 zm(z)z-1(jd-1 -[l-zBJ-1[i(c*Y- 1-z(c*Y]), 
J. 

for j = 2, ... , q, where c* := (B + E)e. 
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Proof. In the case (2.5) the expansion (4.3b) becomes 

so that 

y(O) = [I - zBJ-1 ([I+ zE] y(tn)e + h E g(tn)e + h B g(tne +he*)) 

= y(tn)e + [/-zBJ-1 (Ehy'(tn)e + B L ~ hiyOl(tn) [i(c*)i-1-z(c*Y]), 
. 1 ;. ;= 

q *(z) = [/ -zB]-1 (Ee+ Be - zBc*) = c* = (B + E)e, 

cj*(z) = [I- zBJ-1 zB [i.c 1(c*)i-1 - (c*Y], j'?:. 2. 

By virtue of Theorem 4.2 we may write 

Qmj(z) =bTA-1 zm(z)qj(z)= F bTA- 1 zm(z) [cj(z) - c)*(z) + z- 1 J1(z)] 

= *bTA-1 zm(z)z-1(U-zAJ-1[jd-1-zd]-[I-zBJ-1 [j(c*)i-1-z(c*)i]). 
j. 

By means of the simplifying condition C(q) associated with (2.1) (cf. [3]), we obtain 

the relation JAd- 1 = d for j = 2, ... , q which leads to the result of the corollary. [] 

4.2. Last step-value predictor with constant iteration parameters 
In the case of the predictor LSP (predictor (2.5) with B = E = 0) with constant 

iteration parameters (D = &/), the error functions Qmj(z) can be factorized into factors 

that depend on z and factors that do not depend on z. This enables us to derive an 

explicit upper bound for Qmj(z). 

Theorem 4.3. Let D = o-I and let the predictor be given by (2.5). Then the error 

function bound in a region JR. is given by 

If lR. is the infinite wedge defined by W:= { z: 1C/2:::; <f>:::; arg(z):::; n, - ,r:::; arg(z) :::;- <f>}, 

then 

where Xm is the positive root of the equation x2 - (2 - m) x cos(</>) - m + l = 0. 
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Proof; The expression for the error bound IQ,njlR immediately follows from 

Corollary 4.1. In order to derive an expression for the function d(m) we first observe 

that 

I 1 ~ z I = ✓ ~zl 2 
1 - 21zl cos(arg(z)) + lzl 

where '!r/2::; arg(z)::; n or - n::; arg(z) ::;- '!r/2. Hence, 

I zm-1 I lzim-1 

(1 - z)lll = [1 - 21zlcos(arg(z)) + lz12]ml2 · 

Since the function zm-l (1 - z)-m is analytic, its maximum value in W is assumed at 

a point on the line arg(z) = </J. An elementary calculation reveals that the modulus of 

this point is given by the positive root xm of the quadratic equation 

x2 - (2 - m)cos(</J)x - m + I = 0. This leads us to the bound d(m) given in the 

theorem. [] 

This theorem shows that in the case where the relevant z-values are in an infinite 

wedge W, the optimal choice of the matrix D = 8·1 does not depend on W. 

Furthermore, the function d(m) is slowly varying with m. This can be concluded 

from the extreme cases where lR is either only the negative axis or the whole left 

halfplane. We then have, respectively, x111 =m-I andxm =~ which yields 

1 ( I )m d(m)= -- 1--
m-1 m 

and 1 ( I )m/2 d(m)= I-;; 
~ 

Thus, within a few iterations the function d(m) slowly converges to zero. 

It is of interest to compare the error functions Qj(z) of conventional DIRK 

methods (cf. Theorem 4.1) with the error functions Q,nj(Z) of PDIRK methods. 

Table 4.1 presents a comparison for two conventional Nprsett-DIRK methods [11] 

and a few L-stable, fixed-number-of-iterations PDIRK methods constructed according 

to option 1 [8]. In this table, k denotes the number of processors needed, p* is the 

order of the method, and m denotes the number of sequential stages per step (both for 

the Nprsett-DIRK and PDIRK methods). Clearly, the PDIRK methods possess 

considerably smaller error bounds. 
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Table 4.1. Values of IQ)JR. and IQm)lR. with R = {z: Re z:::; 0} for the N0rsett-DIRK 

methods and fixed-number-of-iterations PDIRK methods. 

Method / PC pair k oi m p* }=2 }=3 }=4 }=5 

N0rsett-DIRK 1 2 3 0.144 0.076 0.024 0.0055 

{LSP, Radau IIA} 2 0.43586650 3 3 0.024 0.015 0.005 0.0012 

{LSP, Lagrange} 2 0.43586650 3 3 0.038 0.015 0.005 0.0012 

NS1)rsett-DIRK 1 3 4 0.112 0.054 0.015 0.0040 

{LSP, Radau IIA} 3 0.278053841 5 5 0.019 0.006 0.0014 0.0003 

{ LSP, Lagrange} 3 0.572816063 4 4 0.046 0.013 0.0001 0.0012 

{LSP, Lagrange} 4 0.278053841 5 5 0.025 0.005 0.0001 0.0001 

4.3. Minimal-spectral-radius PDIRK methods 

Table 4.2 lists values of IQm)lR. with R = {z: Re z:::; 0} for minimal-spectral

radius PDIRK methods (option 2), based on {LSP, Radau IIA} pairs and using the 

iteration parameters given in (3.3). It turns out that form> p* the error constants 

decrease by an almost constant reduction factor r as m increases by I and that they 

are substantially smaller than those of the fixed-number-of-iterations PDIRK 

methods of Table 4.1 (notice that r is almost independent of J). 

Table 4.2. Values of the error constants for minimal-spectral-radius PDIRK methods. 

PC pair k m p* }=2 }=3 }=4 }=5 

{LSP, Radau IIA} 2 2 2 0.0249 0.0263 0.0102 0.0027 

3 3 0.0060 0.0062 0.0024 0.0006 

3 r "" .25 r"" .25 r"" .25 r"" .25 

{LSP, Radau IIA} 3 3 3 0.0360 0.0086 0.0027 0.00076 

4 4 0.0138 0.0031 0.0009 0.00025 

5 5 0.0052 0.0012 0.0003 0.00009 

5 r"" .40 r"" .38 r"" .39 r"" .38 

{LSP, Radau IIA} 4 5 5 0.0153 0.00098 0.000031 0.00004 

6 6 0.0079 0.00051 0.000016 0.00002 

7 7 0.0041 0.00027 0.000008 0.00001 

7 r"" .50 r"" .52 r"" .50 r"" .52 

For future reference, we give a survey of the principal stiff error constants 

IQm2IJR. with R = {z: Re z:::; 0} for a number of PC pairs. In Table 4.3, p denotes the 
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order-of the corrector and the order of the iterated method is in all cases given by 

p* = min {p, m}. From these results we conclude that the explicit predictor LSP leads 

to slightly smaller principal error constants than the implicit predictor IEP, provided 

that we count the application of IEP as an additional iteration. Furthermore, the 

Lagrange-based methods show considerably smaller error constants. However, we 

should bear in mind that the nonstiff error constants of the Radau-based methods 

decrease much faster than those of the Lagrange-based methods because of th~ high 

(nonstift) orders of the Radau correctors. Finally, note that the reduction factors are 

very close to the IICll-values listed in Table 3.1. 

Table 4.3. Values of the principal error constant for minimal-spectral-radius PD IRK 

methods. 

Method k p m=k m=k+I m=k+2 r 

{LSP, Radau IIA} 2 3 0.025 0.0060 0.0015 0.25 

{IEP, Radau IIA} 2 3 0.024 0.0059 0.0015 0.25 

{LSP, Lagrange} 2 3 0.013 0.0023 0.0004 0.18 

{IEP, Lagrange} 2 3 0.006 0.0011 0.0002 0.18 

{LSP, Radau IIA} 3 5 0.036 0.0138 0.0052 0.40 

{IEP, Radau IIA} 3 5 0.014 0.0053 0.0020 0.41 

{LSP, Lagrange} 3 4 0.008 0.0034 0.0014 0.40 

{IEP, Lagrange} 3 4 0.004 0.0018 0.0007 0.40 

{ LSP, Radau IIA} 4 7 0.027 0.0153 0.0079 0.50 

{IEP, Radau IIA} 4 7 0.017 0.0088 0.0044 0.50 

{LSP, Lagrange} 4 5 0.022 0.0092 0.0037 0.40 

{ IEP, Lagrange} 4 5 0.013 0.0054 0.0021 0.40 

5. CONCLUDING REMARKS 

In this paper, we have studied special characteristics, such as the rate uf 

convergence, the (linear) stability, and the stiff error constants of PDIRK methods 

based on Radau IIA and Lagrange correctors using various types of iteration 

parameters and predictors. The minimal-spectral-radius methods turn out to be either 

comparable or superior to fixed-number-of-iterations methods. Confining our 

considerations to minimal-spectral-radius methods, the following conclusions can be 

drawn from our analysis: 

Rate of convergence: Lagrange correctors are superior to Radau corrector for k = 2 

or k = 4. Fork= 3, these correctors are comparable. 
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Linear stability: 

Order reduction: 

Lagrange correctors are slightly superior to Radau 

correctors. 

The implicit predictors IEP and BDP are superior to 

explicit predictors EXP and LSP. 

Lagrange correctors are superior to Radau correctors (both 

with respect to the stage order and the magnitude of the 

error constants). 

The explicit predictor LSP is slightly superior to the 

implicit predictor IEP. 

Nonstiff error constants: The two-stage Radau corrector is comparable with the two

stage Lagrange corrector. Radau correctors are by far 

superior to Lagrange correctors for k > 2. 

The predictors EXP and BDP are by far superior to the 

predictors LSP and IEP. 

By these conclusions, we are led to recommend PDIRK methods using an 

{EXP, Radau} PC pair and the minimal-spectral-radius iteration strategy as the most 

efficient in the class of PDIRK methods. 
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