

CWI Tracts

Managing Editors

K.R. Apt (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (Eindhoven University of Technology)

Editorial Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.C. Backhouse (Eindhoven)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
H.J. Sips (Delft)
M.N. Spijker (Leiden)
H.C. Tijms (Amsterdam)

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Telephone 31-205929333, telex 12571 (mactr nl),
telefax 31 - 20 592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

Parallelism in the numerical integration of
initial value problems

B.P. Sommeijer

ISBN 90 6196 431 8
NUGl-code: 811

Copyright © 1993, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

iii

Preface

Algorithms for the numerical integration of ordinary differential equations

(ODEs) have been studied for many years, if not for centuries. Although the most
popular methods of today, i.e., the linear multistep methods and the Runge-Kutta

methods, originate from the last century, the great break-through in their
development was initiated by the introduction of the electronic computer in the

1950s. Since then, many efficient methods have been constructed and analyzed. This

research has resulted in a couple of robust and reliable codes for the automatic
integration of ODEs. Approximately at the time that questions arose like 'Is There

Anything Left To Do ?' [Gear, SIAM Review 23, 1981], the appearance of the
vector and parallel computers was a second impulse for the development of
numerical methods. Initially, the field of numerical linear algebra was (and still is)

(re)considered to exploit the facilities offered by the new architectures. Gradually,
also researchers in the ODE-field got interested in these machines since 'almost
anything in nature is described by differential equations'. The well established

algorithms were re-examined.in order to take advantage of these 'supercomputers'.
This research is certainly indispensable, since many problems in the technical

sciences - such as real time applications, computational fluid dynamics, and all

kinds of partial differential equations, in general - are still waiting for a treatment
that is sufficiently efficient to cope with the demands.

At CWI, the study of parallel methods for ODEs started in the fall of 1988;
some of the resulting papers are collected in this monograph. It consists of six

papers (chapters), preceded by an introduction. All papers have appeared in scientific

journals and are reprinted here with granted permission of the publishers.

The first two papers deal with parallel numerical methods for nonstiff OD Es and
are joined into Part I. These papers are:

1. Parallel iteration of high-order Runge-Kutta methods with stepsize control,

P.J. van der Houwen and B.P. Sommeijer,

published in: J. Comput. Appl. Math. 29 (1990), 111-127.

2. Block Runge-Kutta methods on parallel computers,

P.J. van der Houwen and B.P. Sommeijer,

published in: Z. Angew. Math. Mech. 72 (1) (1992), 3-18.

The topic of Part II, containing the remaining four papers, is the construction and

analysis of algorithms for the efficient parallel integration of stiff ODEs. Its
contents reads:

IV

3. A-stable parallel block methods for ordinary and integro-differential equations,

B.P. Sommeijer, W. Couzy and P.J. van der Houwen,

published in: Appl. Numer. Math. 9 (1992), 267-281.

4. Embedded diagonally implicit Runge-Kutta algorithms on parallel computers,

P.J. van der Houwen, B.P. Sommeijer and W. Couzy,

published in: Math. Comp. 58 (1992), 135-159.

5. Iterated Runge-Kutta methods on parallel computers,

P.J. van der Houwen and B.P. Sommeijer,

published in: SIAM J. Sci. Stat. Comput. 12 (1991), 1000-1028.

6. Analysis of parallel diagonally implicit iteration of Runge-Kutta methods,

P.J. van der Houwen and B.P. Sommeijer,

published in: Appl. Numer. Math. 11 (1993), 169-188.

The introductory chapter has been written with the aim to acquaint the reader with

the concepts discussed in the papers. It has the intention to provide an entrance for

the unspecialized reader. It discusses in less technical terms the ideas underlying the

technical papers and comprises an example in which a problem from circuit analysis

is integrated on a parallel computer by means of an automatic code based on one of

the methods described in Chapter VI. Its performance is compared with the best

sequential codes currently available.

V

Contents

Introduction. 1

PARTI

PARALLEL NUMERICAL METHODS FOR NONSTIFF ODEs

CHAPTER I : Parallel iteration of high-order Runge-Kutta methods

with stepsize control. ... 24

CHAPTER II: Block Runge-Kutta methods on parallel computers 46

PARTil

PARALLEL NUMERICAL METHODS FOR STIFF ODEs

CHAPTER ID : A-stable parallel block methods for ordinary

and integro-differential equations.. 78

CHAPTER IV: Embedded diagonally implicit Runge-Kutta
algorithms on parallel computers.. 98

CHAPTER V : Iterated Runge-Kutta methods on parallel computers.......... 128

CHAPTER VI : Analysis of parallel diagonally implicit iteration

ofRunge-Kutta methods..................................... 168

Index... 192

Introduction

1. MOTIVATION AND GENERAL SCOPE

Due to the never-ending demand for more speed in scientific computation, the

available computerpower of new architectures has tremendously increased during the

last decades. This is mainly obtained by new hardware design and by a prodigious

progress in micro-electronics. However, this hardware advancement is not sufficient

to meet the requirements as they occur in large-scale problems. The main problem in

effectively exploiting this huge potential of computerpower is the fact that there is

very little software available for these machines. In order to be efficient, this

software should be based on algorithms that are well tuned to the new architectures.

Since many numerical algorithms were designed for the traditional sequential

computers, the existing methods are not necessarily the best. This is particularly true

in the field of numerical methods for ordinary differential equations. Therefore, it is

highly desirable to (re)consider these algorithms and, eventually, replace them with

more suitable candidates.

Herewith, we arrive at the major aim of this monograph: the construction and

analysis of new algorithms, specifically designed for a wide class of new

architectures, thus making an attempt to decrease the arrears of software with respect

to hardware.

We will concentrate on numerical methods for the initial value problem (IVP) for

the ordinary differential equation (ODE), written in the autonomous form

(1.1) y'(t) =f(y(t)),

Although parallel computers are available now for quite a few years, it is remarkable

that the construction of parallel methods for (1.1) received only marginal attention

and in fact is still in its infancy. A possible explanation may be that the integration

of an IVP by a step-by-step process is sequentially in nature and thus offers little

scope to exploit parallelism.

Nevertheless, there are some avenues: at first, there is the rather obvious way to

distribute the various components of the system of ODEs amongst the available

processors. This is especially effective in explicit methods, since they frequently

need the evaluation of the right-hand side function/for a given vector y, so that the

components off can be evaluated independently of one another. Following the

terminology of Gear [13), this is called parallelism across the problem. A more

interesting approach, called parallelism across the method, is to employ the

2

-parallelism inherently available within the method. Concurrent evaluations of the

entire functionf for various values of its argument and the simultaneous solution of

various (nonlinear) systems of equations are examples of parallelism across the

method. Remark that this form of parallelism is also effective in case of a scalar

ODE (i.e., N=l in (l.l)), whereas parallelism across the problem aims at large N

values. Also notice that both approaches can be combined because they are more or

less 'orthogonal'. Still another approach, which could be termed parallelism across

the time, is followed by Bellen et al. [2]. Contrary to the step-by-step idea, they

perform a number of steps simultaneously, thus calculating numerical

approximations in many points on the t-axis in parallel. In fact, these methods

belong to the class of waveform relaxation methods. Experiments have shown (cf.

[2]) that a significant speedup can be obtained by this approach provided that the

number of steps is (very) large. In this monograph we will confine ourselves to

parallelism across the method.

Unfortunately, many existing algorithms that perform well on a sequential

computer can take hardly profit from a parallel configuration. This feature

necessitates us to construct new methods, specifically designed for parallel execution.

In doing so, it was in many cases unavoidable to introduce some redundancy in the

total volume of computational arithmetic. Hence, compared with a good sequential

solver, it is overambitious to expect a speedup in the solution time with a factor s,

ifs processors are available.

In many of the methods considered in this monograph, a small number (typically

in the range from 2 to 6) of concurrent subtasks of considerable computational

complexity can be distinguished. Consequently, (i) these methods are aiming at so

called 'coarse-grain' parallelism and (ii) communication and synchronization overhead

will be small compared with CPU time. In the following sections we will explain

several approaches leading to parallel integration methods.

2. PARALLELRUNGE-KUTIA MEIHODS

The general Runge-Kutta (RK) method to proceed the numerical solution of (l.l)

from tn over a step his given by

(2.la)

(2.1 b)

s

Yn+I = Yn + h L bi f(Yi),
i=I

s

Yi = Yn + h L aij f(Yj),
j=I

i = 1, ... ,s.

3

Here,.yn=y(tn), aij, bi are the coefficients defining the RK method and sis called the

number of stages. The quantities Yi, the stage values, can be considered as

intermediate approximations to the solution y. An RK method is said to be explicit

if aij=O, j ~ i. Otherwise, it is called an implicit RK (IRK) method. For the

algorithms described in this Introduction, our starting point will always be an IRK

method.

A nice feature of IRK methods is that a high order of accuracy can be combined

with excellent stability properties [6]. Well-known examples of such IRKs are the

Gauss-Legendre methods (order 2s and A-stable) and the Radau IIA methods (order

2s-1 and L-stable). A serious disadvantage however, is_ the high cost of solving the

algebraic equations defining the stage values Yi. Since the Yi are coupled in general,

this is a system of dimension s-N, thus involving O((s-N)3) arithmetic operations.

This is the main reason that IRK methods have not received great popularity to serve

as the basis for efficient, production oriented software. In the literature, several

remedies have been proposed to reduce the amount of linear algebra per step.

Examples of these are the Diagonally Implicit RK (DIRK) methods [23, 9, 1, 8] and

the Singly Implicit RK (SIRK) methods [3, 5]. However, both approaches have their

own disadvantages (cf. e.g. [15]). Another possibility to realize the excellent

prospects that IRK methods offer, is the use of parallel processors.

Motivated by our starting point that parallelism across the method should also be

effective for scalar ODEs, we will assume throughout that (1.1) is a scalar equation.

This has the notational advantage that we can avoid tensor products in our

formulation. However, the extension to systems of ODEs, and therefore to

nonautonomous equations, is straightforward.

In describing the parallel methods, it will be convenient to use a compact

notation for the RK method (2.1). Introducing A=(aij), b=(bi), Y=(Yi) and

e=(l, .. . ,l)T, all of dimensions, a succinct notation of the RK method reads

(2.2a)

(2.2b)

Yn+I = Yn + h bT f(Y),

Y = Yn e + h A f(Y),

where f(v):=(J(vj)), for a given vector v=(vj)-

The main problem in the application of an IRK is the solution of (2.2b) for the

stage vector Y; once this vector has been obtained, (2.2a) is straightforward. A direct

treatment to solve (2.2b) (i.e., applying some form of modified Newton iteration)

offers little scope to exploit parallelism, except for the linear algebra part, but this

aspect is not discussed here. To solve Y from (2.2b), we propose the iteration

process

4

(2.3a) y(J) _ h D f(YW) = Yn e + h [A - D]f(YU-1)), J=l, ... ,m.

Here, Dis a diagonal matrix. This is crucial, since now, given an iterate y(j-l), each

individual component Y/j) of the unknown iterate y(j) has to be solved from an

implicit relation of the form

(2.3b) i=l, ... ,s,

where Li is the ith component of the right-hand side vector in (2.3a) and di is the ith

diagonal entry of the matrix D. Clearly, all Li depend on y(j-I), but can be computed

straightforwardly (even in parallel). The bulk of the computational effort involves

the solution of the s equations for the components Y/j), i=l, ... ,s. However, given

the Li, the equations (2.3b) are uncoupled and can be solved in parallel. Hence,

assuming that we have s processors available, each iteration in (2.3a) requires

effectively the solution of only one implicit relation of the form (2.3b). This is

especially advantageous in case of (large) systems of ODEs, because then each

iteration in (2.3a) requires effectively the solution of a system of dimension N, the

ODE dimension. As a consequence, the total iteration process has the effect that the

solution of one system of dimension s-N has been transformed into the solution of a

sequence of m systems, all of dimension N. Moreover, since D is the same in all

iterations, the (parallel) LU-decompositions of the matrices / - h di dj/dy can be

reslricted to the first iteration. Summing up, the total computational complexity of

the iteration process is O(N3+mN2), whereas a direct treatment requires

O(s3N3+Ms2N2), with M the number of (modified) Newton iterations required.

Since typical s-values range from 2 to 6 and because the required number of

iterations m is quite modest (see the Chapters IV, V and VI), we now arrive at a

manageable level of arithmetic. Notice that this approach is quite similar to that of a

DIRK method, where also only one LU-decomposition of a matrix of dimension N

is required per step.

To start the iteration (2.3a), we need the initial approximation y(O). One of the

possibilities to choose this vector is given by

(2.3c)

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit

parallelism (in the same way as described for (2.3a)); C is an arbitrary full matrix. In

the sequel, the initial approximation y(O) will be referred to as the predictor.

If m iterations have been performed with (2.3a), then the new approximation at

tn+I is defined by (cf. (2.2a))

5

Once an underlying IRK has been selected (henceforth called the corrector), the

freedom left in the iteration process (2.3) consists of the matrices B, C and D, and

the number of iterations m.
With respect to the matrix D, we have considered several possibilities: first of

all, there is the simplest choice, which sets D equal to the zero-matrix. Methods of

this type are analyzed in Chapter I. Notice that the choice D=O leads to an explicit

iteration process and, consequently, the resulting scheme is only suitable for nonstiff

equations. This approach has received relatively much attention in the literature (see

[24, 21, 18, 4, 19]). Choosing the 'trivial' predictor y(O)=y11 e, the order behaviour of

the resulting algorithm can be formulated as (see also [18, 19, 20])

Theorem 2.1. The method { (2.3a) with D=O, (2.3c) with B=C=O, (2.4a)} is of order

min {p*, m+ I } , where p* is the order of the corrector (2.2). []

Notice that this method is. itself an explicit RK methods with s-m+l stages.

However, on a parallel machine, the effective number of stages equals only m+ I
(provided that s processors are available). This means that if the number of iterations

m ::;; p*-1, then we obtain an explicit RK method where the number of effective

stages equals the order. This is an optimal result [18] and compares favourably with

the situation for classical (uniprocessor) explicit RK methods, where the number of

stages increases faster than linearly if we want a high order.

Next we consider the case of stiff problems, leading us to implicit methods, i.e.,

to D =/:. 0. Before specifying particular choices of D, we first want to discuss an aspect

of the corrector which is relevant with respect to stiffness. In integrating stiff OD Es,

a favourable property of the method is that it is 'stiffly accurate'. This notion has

been introduced by Prothero and Robinson [25] and means that the RK method

satisfies bT=e/A, with es the sth unitvector. Hence, bT equals the last row of A, or

equivalently, the last component of the stage vector Y is an approximation to the

solution at the new steppoint t11+ 1- Therefore, in case of a stiffly accurate corrector,
(2.4a) will be replaced by

(2.4b) Yn+I := e/ y(m)_

Now, we return to the discussion of the matrix D; we distinguish two cases:

(i) D is such that after a prescribed number of iterations the resulting method has

good stability properties. This approach is discussed in Chapter IV.

6

(ii) Another option is to solve the corrector and to choose D in such a way that we

obtain fast convergence in the iteration process (2.3a). This strategy is the subject of

the Chapters V and VI.

In the following two subsections these cases will be briefly discussed;

henceforth, the above Parallel Diagonally-Iterated RK methods will be denoted by

PDIRK methods.

2.1. Diagonal iteration with a prescribed number of iterations

In Chapter IV, we will consider methods for which the number of iterations m is

fixed. As we shall see, this number is dictated by the orders of the corrector and of

the predictor. This strategy is motivated by the following theorem:

Theorem 2.2. Let p* be the order of the underlying corrector (2.2). Then the order p

of the resulting PDIRK method { (2.3), (2.4a), (2.4b)} is given by

min {p*, m+r}

min {p*, m+l+r}

min {p*, m+2+r}

for all matrices B, C and D,

if (C+B)e = Ae,

if, in addition, BAe = A 2e,

where r takes the value I if Yn+I is defined by (2.4a) (i.e., the nonstiffly accurate

case) and r=O if Yn+ 1 is defined by (2.4b) (the stiffly accurate case).

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK

method has the same property. []

Based on this theorem, we stop iterating as soon as the order has reached the

order of the corrector, since a continuation of the iteration process would not increase

the order of the PDIRK method (see also [4]).

With respect to the choice of the predictor, we restrict our considerations to the

case C=O. For the matrix B we remark that B=O or B=D are obvious choices.

Although B and D may be different diagonal matrices, the choice B=D has the

computational advantage that the LU-decompositions of/ - di h Jf/Jy, which are

needed during the iteration of (2.3a), can also be used in solving (2.3c) for y(O)_

The diagonal matrix D is still free and can be used to give the resulting PDIRK

method optimal stability characteristics. In Chapter IV we distinguish two

approaches: matrices D with constant and with varying diagonal entries. In the first

case, i.e., D is of the form d· I, it is possible to perform a rather thorough stability

analysis. It turns out that unconditionally stable PDIRK methods can be constructed.

A few of these methods are listed in Table 2.1. The relevant d-values can be found in

Chapter IV.

7

Table 2.1. Unconditionally stable PDIRK methods with D=d·I

corrector matrices B and D attainable order p # effective stages stability

Gauss B = 0, D =d·I p :s; 4, p = 6 p-l A-stable

Gauss B=D=d·I p :s; 6, p = 8 p L-stable

RadauIIA B=O,D=d-1 p :s; 6, p = 8 p L-stable

RadauIIA B=D=d-1 p :s; 8, p = 10 p+l L-stable

If we allow the matrix D to have nonconstant entries, then it is possible to save one

iteration without reducing the order, simply by setting B=D=diag(Ae) (cf. Theorem

2.2). Some of the resulting PDIRK methods turn out to be only A(a)-stable,

however with a close to 90°. In Table 2.2, we collect a few methods with good

stability properties.

Table 2.2. PDIRK methods with a nonconstant D-matrix

corrector attainable order p # effective stages stability

Gauss/Radau IlA p :s; 5 p-1 strongly A-stable

Gauss/Radau IlA p = 6, 7 p-l A(a)-stable, a> 83°

RadauIIA p = 3, 5, 7 p L(a)-stable, a > 89°

2.2. Diagonal iteration until convergence

PDIRK methods with a fixed number of iterations, as considered in the previous

subsection, are in fact special DIRK methods. It is well known [10] that DIRK

methods possess a so-called stage order equal to I which, in general, drastically

reduces the accuracy. As a matter of fact, in many stiff problems the actually

observed order equals the stage order (or, sometimes the stage order+ 1). As a

consequence of this so-called order-reduction phenomenon, the relevance of methods

with a high algebraic (i.e., classical) order and a low stage order is questionable.

Therefore, apart from the 'fixed-m-strategy' we also consider the approach where the

corrector is iterated until convergence. This implies that we can rely on all the

characteristics of the corrector, like stability and accuracy behaviour and, in

particular, the stage order. For example, s-stage IRK methods of Gauss and Radau

type both have stage order s. In addition, they have a very high algebraic order

(superconvergence) but, as observed above, this property seems to be of minor

importance in many stiff problems. Therefore, in the Chapters V and VI, we also

consider (A-stable) Newton-Cotes and Lagrange type IRKs; in these (collocation)

methods the superconvergence is exchanged for an increase by one of the stage order.

This is obtained by adding one explicit stage to the s implicit stages. The time

8

needed for this extra explicit stage is quite negligible compared with the time

involved in solving the implicit stages. Thus, we arrive at correctors with algebraic

order = stage order = s+ 1, which are suitable for parallel iteration on an s-processor

machine.

Having decided to solve the corrector, we can now consider (2.3a) as an iteration

process, where 'iteration' has the classical meaning. This leads us automatically to a

criterion for choosing the matrix D: this matrix should be such that we have fast

convergence in (2.3a).

It is easy to show that the iteration error Y - y(J), in first approximation,

satisfies the recursion

(2.5a) Y- y(J) = Z(z) [Y- yU-1)],

where the iteration matrix Z is defined by

(2.5b)

Here, ;l, denotes an approximation to the derivative Jjlc)y and should be understood to

run through the spectrum of the Jacobian matrix in case of systems of ODEs. The

convergence behaviour of (2.3a) is completely determined by the iteration matrix Z

and we have the matrix D at our disposal to obtain fast convergence.

The main difficulty in choosing D is that Z depends on z, i.e., on the problem.

Therefore, we cannot expect to find a uniformly 'best' D-matrix. Since we are

aiming at the integration of stiff equations, we consider the influence of Z on the

eigenvectors of Jf/c)y corresponding to eigenvalues of large modulus. For lzl ➔ 00, Z

behaves as / - D-1 A. Thus a strong damping of these eigenvectors leads us to the

minimization of the spectral radius of / - D- 1 A. Observe, that the 'nonstiff'

eigenvectors (corresponding to small values of lzl) are already damped since Z

behaves as z[A - D] for lzl ➔ 0. With this approach we obtain fast convergence.

However, we do not claim that this choice of D is the best possible. For example, a

more sophisticated strategy might be the minimization of (some norm of) Z(z) over

the whole, or the 'stiff part' of the left halfplane.

Another possibility could be to minimize the principal stiff error constants in the

resulting PDIRK method; this option is studied in Chapter VI. Several other options

to choose D are discussed in Chapter V and many of these have been used in

numerical tests, but it turns out that the behaviour of the strategy based on the

minimization of the spectral radius p of I - n-1 A could not be improved.

Based on this approach, we have constructed methods for s = 2, 3 and 4. Only for

s = 2 it is possible to determine D analytically such that p(I - n-1 A) = 0. For the

larger values of s, the D-matrices have to be calculated numerically. The p-values

9

increase with sand are (for the several correctors) in the range (0.004, 0.01) ifs= 3

and in the range (0.02, 0.1) for s = 4.

2.3. A numerical example

To obtain insight in the actual performance of these parallel Runge-Kutta

methods, we have tested a parallel implementation of a PDIRK method based on the

'minimal-spectral-radius-strategy'. For the corrector, we selected the 4-stage Radau

IIA method. Since this IRK is of collocation type, the collocation polynomial

passing through the stage values is easily computed in each step. The predictor y(O)

is obtained by extrapolating the collocation polynomial calculated in the preceding

step. Since this prediction is rather accurate, it is to be expected that this will result

in fewer iterations compared with the 'trivial' predictor y(O)=yne, We equipped this

method with a provisional strategy for error control and stepsize selection (details

concerning the implementation strategy can be found in [27]). The resulting code is

termed PSODE.

We have implemented PSODE on the ALLIANT FX/4 computer (four parallel

processors and shared memory) and applied it to several test problems. The goal of

these tests is twofold: (i) we want to investigate to what extent the theoretical

parallelization can be realized in practice; in other words, how close we can approach

the ideal speedup factor 4 on this four-processor machine and (ii) we want to compare

the performance of the code PSODE with that of a good sequential solver. To that

purpose we select the recent (sequential) code RADAU5 of Hairer & Wanner [15].

This choice is motivated by the observation that it solves a Radau IIA method (viz.,

the 3-point 5th-order one); this starting point is quite similar to that of PSODE,

although the approach to obtain the Radau-solution is completely different.

Furthermore, we included in our tests the code LSODE of Hindmarsh [16]. This

BDF-based code has formulas up to order 5 available, from which only those of first

and second order are A-stable. Hence, LSODE is less robust as a general stiff solver,

but, on the other hand, it is generally accepted as a good sequential solver and enjoys

considerable usage over a long period.

In comparing the parallel code PSODE with the two sequential codes, we do not

take into account effects originating from a possible 'parallelization over the loops'.

By this we mean that a long loop is cut into s smaller parts which are then assigned

to the s processors. In Section 1, this effect is termed 'parallelism across the

problem' and can in fact be used by any ODE solver. Here we merely want to test

intrinsic parallelism (called 'parallelism across the method'). In order to exclude the

effects of 'parallelism across the problem', LSODE and RADAU5 are run on a

single processor. In fact, the amount of intrinsic parallelism offered by LSODE and

RADAU5 is very modest (see also the remark at the end of this section).

10

Of course, if one is interested in 'parallelism across the problem', then the

sequential codes could be implemented on -an s-processor machine. However, in that

case a fair comparison would require assigning 4s processors to PSODE, since in
each of the 4 concurrent subtasks of PSODE, the 'parallelism across the problem'

can equally well be exploited (cf. Section 1, where we have mentioned that both

parallelization techniques are 'orthogonal').

Summarizing, we may say that PSODE needs 4 times the number of processors

given to a sequential code, simply because it possesses a 4-fold amount of intrinsic

parallelism. The large number of processors utilized by PSODE reflects the current

tendency in parallel computing, since modern architectures - and certainly those

entering the market in the coming years - have an 'almost unlimited' number of

processors (massive parallelism).

Another aspect which is of utmost importance for the performance of a stiff code,

is the amount of linear algebra per step, which in turn strongly depends on the

dimension of the ODE. Prior to the specification of our test problem, we will briefly

discuss the characteristics of the various codes with respect to this aspect:

A common feature of the three codes is that they need from time to time an LU

decomposition of the matrix involved in their respective iteration processes to solve

the nonlinear relations. Since the factorization of a general N-dimensional matrix

requires approximately 2N3/3 arithmetic operations, this will dominate the total
costs of the integration for large-scale problems. Here we may think of complicated

problems from circuit analysis or semi-discretized (higher-dimensional) partial

differential equations. In such applications, systems of ODEs with several thousands

of equations are quite usual. In this connection we remark that both LSODE and

PSODE deal with matrices of dimension N. Hence, it is to be expected that their

mutual comparison is only marginally influenced if N increases and all other aspects

are left unchanged.

Matters are different for the code RADAU5, since it has to deal with matrices of

dimension 3N. By exploiting the special structures in these matrices, Hairer and

Wanner are able to reduce the total work of the LU-decomposition to I oN3 /3

operations [15], thus gaining a factor 5 compared with a direct treatment, which

would have required 2(3N)3/3 operations. However, this number 10N3/3 compares

unfavourably with the number 2N3/3 (associated with LSODE and PSODE), and

causes a serious drawback for RADAU5 when applied to large-scale problems.

To get a first indication of the performances of the codes, we have applied them

to a small test problem originating from circuit analysis. It was first described by

Horneber [17] and extensively discussed in [14, p.112] and [11]. This (stiff) system

describes a ring modulator, which mixes a low frequency and a high frequency signal.

11

The modulated signal is then used as input for an amplifier. The resulting system of

15 ODEs is defined by

where

Y1' = C-I [Ys - 0.5 Y10 + 0.5 Y11 + Y14 - Y1IR]

Y2' = C-I [yg - 0.5 Y12 + 0.5 YI3 + Y15 - yif R]

y3' = Cs-1 [y10 - g(z1) + g(z4)]

y4' = Cs-1 [- Yll + g(z2)- g(z3)]

Ys' = Cs-I [yl2 + g(z1) - g(Z3)]

Y6' = Cs-1 [- Yl3 - g(z2) + g(z4)]

Y1' = Cp-1 [-y7/Ri + g(z1) + g(z2)- g(z3) - g(z4)]

Ys' = -Lh-1 Yi

yg' = - Lh-1 Y2

Y10' = Ls-1 [0.5 Yi - Y3 - 17.3 Y10]

Y11'=Ls- 1 [-0.5y1 +y4-17.3yll]

Y12' = Ls-1 [0.5 Y2 - Ys - 17.3 yn]

y13' = Ls-1 [- 0.5 Y2 + Y6 - 17.3 y13]

Y14' = Lr1 [-Yi+ e1(t)- 86.3 Y14]

Y1s' = Lr1 [-y2 - 636.3 Yis],

Z1 := Y3 - Ys - Y7 - ei(t), Z2 := - Y4 + Y6 - Y1 - e2(t),

Z3 := Y4 + Ys + Y1 + e2(t), Z4 := - Y3 - Y6 + Y1 + e2(t),

and the function g, which models the characteristics of the diodes, is defined by

g(z) := 40.67286402· I0-9 [exp (17.7493332 · z) - I].

The signals e1 and e2 are defined by

e1 (t) := 0.5 sin (2 103 n t), ei(t) := 2 sin (2 I o4 n t).

The technical parameters have been given the values C= 16-10-9, R=25000,

Cp=l0-8, Rj=S0, Lh=4.45, Ls=0.0005 and Lt=0.002, resulting in a heavily oscil

lating solution. Not yet fixed is the value of the capacity Cs, In our test, we give it

the value 10-9, which seems technically meaningful. It is reported [14] that small

Cs-values cause serious difficulties. In the limit, i.e. on setting Cs=0, we end up

with a differential-algebraic system. The integration interval in our test is [O, 10-3];

the initial values are given by Yi(O)=O, i=l, ... ,15. For several values of TOL (the

12

local error bound) the results obtained by the codes RADAU5, LSODE and PSODE

are collected in Table 2.3. Here, T1 and T4 denote the CPU time (in seconds) when

the program is run on 1 and 4 processors, respectively. Recall, that we restrict the

timings for the sequential codes to T1. The accuracy is measured by means of A,

which is defined by writing the maximum nonn of the global (relative) error in the

endpoint in the form 10-.1. Furthermore, Nsteps denotes the number of (successful)

integration steps and m stands for the average number of (effective)f-evaluations per

step ..

Table 2.3. Performance of the codes RADAU5, LSODE and

PSODE for the circuit problem

-Method TOL Nsteps m A T1 T4

RADAU5 10-2 1275 9.0 1. l 33. l
10-3 2277 7.6 2.6 48.6

10-4 3922 6.7 3.8 72.4

10-5 6761 6.1 4.9 110.9

LSODE 10-3 7054 1.5 1.4 33.6
10-4 9772 1.4 2.8 44. l

10-5 13266 1.4 2.9 57.7

10-6 17887 1.3 3.8 74.7

10-7 23310 1.3 4.5 93 .1

10-S 30253 1.2 4.9 114.3

PSODE 10-2 1185 7.3 1.4 80.0 21.4
10-3 1561 7.3 3. 1 104.5 27.8

10-4 2272 7 .1 4.1 146.4 39.6

10-5 3437 6.9 5.2 212. l 57.7

These results give rise to the following conclusions:

(i) with respect to our first goal, we see that the speedup factor for PSODE

(obviously defined by T1/T4) is approximately 3.7, which is pretty close to the

'ideal' factor 4 on this machine. This factor rapidly converges to 4 if the dimension

of the problem increases.

(ii) concerning our second goal, we observe a remarkable similarity between

RADAU5 and PSODE: both codes need approximately 7 /-evaluations per step;

moreover, to produce the same accuracy, the required number of steps is of the same

order of magnitude (for the more stringent values of TOL, the difference in the

number of steps increases, which is probably due to the higher order of PSODE).

13

There _is however a striking difference between the two Radau-based codes and

LSODE; this code is very cheap per step, but needs much more integration steps to

produce the same accuracy. For example, to obtain a relative accuracy of about 5

digits, PSODE needs"" 3400 steps, RADAU5 twice as many, whereas for LSODE

this number is 9 times as large. Taking into account the computational effort per

step of the various codes, the comparison with PSODE yields a double amount of

time both for LSODE and RADAU5. Approximately the same ratios are observed in

the low-accuracy range (say, L1=3).

As mentioned before, this example is only a model problem describing a small

(part of an) electrical circuit, and is still far away from a real-life application.

However, even for this small system of ODEs, the performance of (this provisional

version of) PSODE is already superior by a factor 2 to that of the (well-established)

codes LSODE and RADAU5.

Summarizing, we can say that

- the PSODE-approach is much more promising to serve as the basis for an

efficient, 'all-purpose' stiff solver than the LSODE-approach. This is due to the

improved mathematical qualities, viz. the high order in combination with A

stability.

- In comparison with RADAU5, PSODE has the advantage that in large-scale

problems, the (dominating) LU-factorizations require a factor 5 less

computational effort. In this connection we remark that a few preliminary

experiments with a problem of dimension 75 reveal that the overall gain of

PSODE is already more than a factor 4.

For really large-scale problems we expect that the speedup factor will be in the

range 6 - 8, depending on the required accuracy. This number is composed of the

asymptotic factor 5 coming from the algebra part and the remaining factor

1.2 - 1.6 originating from the higher order of PS ODE.

Remark: it should be mentioned that RADAU5 offers a possibility to exploit a

small amount of intrinsic parallelism. In using two processors, the total number

of arithmetic operations to perform the LU-decomposition can be reduced from

10N3/3 to sN3/3. We refrained from adapting the code RADAU5 in order to

exploit this feature.

14

-3. PARALLEL BLOCK MEIHODS

Another technique to construct parallel methods for ODEs is based on block

methods [26, 12, 28, 29]. For the construction of this type of methods, it is

convenient to introduce the so-called block vector

(3.1)

where Yn,cj denotes an approximation to the exact solution y(t) at t = tn + cih.

Similar to the preceding section, the methods will be presented for a scalar ODE;

however, also for block methods, the extension to systems of ODEs is

straightforward. Again using the convention that f(v) = (f(vj)), a (one-step) block

method is defined by

(3.2) Yn+I =A Y 11 + h Bf(Y11) + h Cf(Yn+IJ, n = 0, I, 2, ... ,

where A, B and C are matrices of dimension s. Notice that (3.2) is a direct

generalization of the (one-step) linear multi step (LM) method

(3.2') Yn+l = a Yn + h b f(yn) + h c f(Yn+IJ,

with a, b and c scalar variables.

Initially, the block methods were introduced to circumvent the restrictions that

apply to LM methods: the limitation on the order because of zero-stability (known

as the 'first Dahlquist barrier') and the order-restriction with respect to A-stability

(which is usually called 'Dahlquist's second barrier'). As we shall see, both

restrictions can be avoided by changing from the LM methods to the block methods.

Moreover, parallelism can be achieved in a very natural way.

However, it should be observed that - in contrast to the Runge-Kutta type of

methods considered in Section 2 - the block methods are not self-starting. Clearly,

the recursion (3.2) needs the vector Yo, which requires as many starting values as

there are distinct values Cj.

In the next two subsections, we will consider parallel block methods for nonstiff

and stiff ODEs, respectively.

3.1. Parallel block methods for nonstiff equations

Within the class of LM methods, nonstiff ODEs are usually solved by the so

called predictor-corrector (PC) approach. We will consider a similar technique in the

case of block methods. To be more specific, let us call the (implicit) block method

15

(3.2).the corrector. Solving implicit relations is avoided by defining an explicit

predictor of the form

(3.3) Y pred = E Yn + h F f(Yn),

with E and F matrices of dimension s. Substitution of Y pred into the right-hand

side of (3.2) yields the block predictor-corrector (BPC) method

(3.4) Yn+l =A Yn + h Bf(Yn) + h C/(E Yn + h F f(Yn)).

In accordance with the terminology used in the LM case, this application is called

the PECE mode. Of course, one can continue this process by substituting the result
of (3.4) into the right-hand side of (3.2), etc.; in this way we arrive at the P(EC)mE

mode.
The parallelism in this type of methods is obvious: the s components in f(Y n)

(and in/(Ypred)) can be computed concurrently, so that (3.4) requires effectively

only two right-hand side evaluations per step (provided of course, that sufficiently
many processors are available).

In the literature, several parallel BPC methods have been proposed. We mention
the work of Miranker and Liniger [22], of Shampine and Watts (cf. Worland [30])

and the multistep block methods of Chu and Hamilton [7]. In Chapter II of this
monograph, methods of the form (3.4) are analyzed and new BPC methods are

derived for the cases s = 2, 3 and 4: Contrary to the methods given in the literature,
the BPC methods in Chapter II exploit the feature that the components of the block
vector represent approximations to the exact solution at not necessarily equidistant

points.
Using this property, it is possible to obtain (zero-)stable BPC methods with as

high an order as 2s. This is obtained by first constructing a predictor of the form

(3.3) of order 2s- l. Notice that, similar to the LM situation, this predictor itself

does not necessarily be zero-stable.
A next question might be: 'how many processors are needed for the parallel

implementation of these BPC methods ?' For the schemes presented in Chapter II,

we have the uniform answer: 'two'. This is achieved by requiring the firsts- 2 rows

of the matrices B, C and F to contain zero elements. This implies that we do not
need to assign a processor to the first s - 2 components of the block vector, since

their values and derivatives can be adopted from the preceding step. However,
assuming that there is no restriction on the number of available processors, this

property is not of a great practical value.

16

- Summarizing: for s = 2, 3 and 4, it is possible to construct BPC methods with a

nbnempty stability region including the origin, which

(i) are of order 2s,

(ii) need (at most) s starting values,

(iii) require, on a two-processor machine, effectively two right-hand side

evaluations per step.

We remark that the methods proposed by Donelson and Hansen [12] share the

properties (i) and (ii). However, their stability regions are not available and

moreover, if they are implemented on a parallel machine, they would need s
processors. In this connection, we remark that Donelson and Hansen did not have in

mind to apply their methods in a parallel context; they merely wanted to circumvent

the first Dahlquist barrier.

Finally, we remark that the methods proposed by Chu and Hamilton [7] share the

aforementioned properties (ii) and (iii), but have an order not exceeding four. On the

other hand, the stability regions of their BPC methods are larger than those of the

methods derived in Chapter II.

3.2. Parallel block methods for stiff equations

For the numerical integration of stiff ODEs, a method should preferably

(i) be A-stable, and

(ii) have a high order of accuracy.

However, it is well known that these are conflicting demands for linear multistep

methods (this is the so-called 'second Dahlquist barrier'). One possible way to

achieve the goals (i) and (ii) is to consider implicit block methods. In the literature,

several methods of this type have been proposed. For example, in [28] Watts and

Shampine construct block methods based upon quadrature formulas of the Newton

Cotes type and show that these schemes are A-stable for orders~ 8 (see also [291).

These methods fit into the class (3.2), however, they have a full C-matrix. As a

consequence, the s components of the block vector have to be solved

simultaneously, a situation similar to the one encountered in implicit Runge-Kutta

methods (observe the resemblance between (3.2) and (2.2b)). Hence, these implicit

block methods are not suitable for parallel execution.

In Chapter III we discuss what can be achieved within the class of parallel

implicit block (PIB) methods, subject to the aforementioned requirements with

respect to order and stability. To that end, the matrix C in (3.2) is replaced by a

diagonal matrix D:

(3.2 ") n = 0, 1, 2,

17

As a r_esult of this 'simplification', we sacrifice a lot of free parameters originally

occurring in the matrix C but, on the other hand, we now arrive at a scheme in

which the various components of Y n+ 1 are uncoupled as far as implicitness is

concerned (cf. (2.3b) for a similar situation in the Runge-Kutta context). Hence,

having s processors available, scheme (3.2") requires effectively the solution of one

implicit relation, the dimension of which equals that of the system of ODEs. This

means that the computational effort per step is quite similar to that of the celebrated

backward differentiation formulas (BDFs).

The next step is, of course, to raise the order of the PIB method beyond 2. To

that end we perform a numerical search in the space of free parameters. For example,

for s=2 we have the A-stable PIB method

(3.5) (
147 161 J 7

0 1 220 220 io 0
Yn+1=()Yn+h f(Yn)+h[13]/(Yn+lJ,

0 1 50 23 0 _
- 33 66 6

with c1=21/10 and c2=l. In this PIB method, the second component of Yn+l (i.e.,

Yn+l) yields a third-order approximation to the exact solution.

Continuation of the numerical search process for s=3, yields several fourth-order

A-stable parallel block methods. For the same value of sit is even possible to raise

the order to five, however, then we loose the property of A-stability. It turns out that

an extremely small lobe in the nonpositive halfplane does not belong to the stability
region of these methods. An adequate characterization of the stability region of these

methods (and of the BDFs, as well) is obtained by extending the well-known concept

of A (a)-stability:

Definition 3.1.: A block method of the form (3.2) is said to be A(a, /3, 1)-stable if:

(i) its region of stability contains the infinite wedge {z I - a< n:- arg(z) < a},

with O < a::;; 'IT:/2, and all points in the nonpositive halfplane with lzl > {3,
(ii) yis the maximum value of the spectral radius of the amplification matrix

[/ - zC]-1 [A + zB] for all z with Re(z)::;; 0 lying in the instability region. []

Using this definition, the stability characteristics of the methods derived in Chapter

III and of the BDFs are summarized in Table 3.1 (notice that BDFs are straight

forwardly fitted in the formulation (3.2)). In this table, the vector c contains the

abscissae defining the block vector, i.e., c := (c1, c2, ... , c8)T, and an '*' means that

the corresponding value is not relevant.

18

· Table 3.1. Values of a (in degrees), /3 and y for the BDFs and some PIB methods

Method cT Order a /3 y

BDF3 (-1, 0, 1) 3 88.40 1.94 1.046

PIB3 (21/10, 1) 3 900 0 *
BDF4 (-2,-1,0, 1) 4 73.2° 4.72 1.191

PIB41 (5, 13/4, 1) 4 900 0 *
PIB4n (3, 5, 1) 4 900 0 *
BDF5 (-3, -2, -1, 0, 1) 5 51.8° 9.94 1.379

PIB51 (-2.747, -2.122, 1) 5 >89.98° 0.16 1.0000026

PIB5n (1.6153, 4.7871, 1) 5 >89.98° 0.30 1.000069

4. CONCLUSIONS AND FUrURE RESEARCH

We have shown that iterating a fully implicit RK method leads in a natural way

to parallel integration methods. This approach can be used both for stiff and nonstiff

ODEs. Although it is conceptually not necessary to start with a fully implicit RK

method, such IRKs are an excellent choice to serve as a method, underlying the

iteration process.

In the nonstiff case, the Gauss methods are recommended because of their highly

accurate behaviour. Moreover, the optimal order of these IRKs with respect to the

number of stages, minimizes the number of required processors. Observe however,

that this aspect is only of marginal interest. Following this approach, it is possible

to construct explicit RK methods for which the (effective) number of stages equals

the order. This property holds for an arbitrarily high order and is principally

impossible within the class of sequential explicit RK methods.

For stiff equations, a stiffly accurate IRK is a good choice; in particular, Radau

IIA methods are suitable candidates. In the stiff case, the parallel, diagonally-implicit

iteration leads to methods with nice features, both from a computational and a

mathematical point of view. The property that only one matrix of the ODE

dimension has to be factorized per step, reduces the amount of linear algebra to an

acceptable level. We have seen that performing a fixed number of iterations results in

L-stable methods with a high algebraic order, but with a (at least, formally) low

stage order. Alternatively, iterating until convergence yields a high algebraic order as

well as a high stage order. Moreover, already after a modest number of iterations,

these methods are unconditionally stable .

19

A .different approach to obtain parallel ODE solvers is provided by the class of

block methods. Contrary to the RK-based methods, they are, in general, not self

starting.

The results for nonstiff equations seems to be even more promising than for the

RK-based methods: using s starting values, it is possible to obtain order 2s (thus far,

only for s::;;; 4) with 2 /-evaluations. Moreover, the number of processors can be

restricted to 2, but again, this is not a significant advantage. However, the stability

regions of the resulting block methods are much smaller than those of the RK-based

methods and, moreover, we expect the block methods to have much larger error

constants.

In the stiff case, A-stable block methods of orders ::;; 4 can be constructed as well

as an 'almost A-stable' method of order 5. This result is less favourable than for the
RK-based methods, where very high orders can be combined with unconditional

stability. On the other hand, the block methods require only one implicit relation to

be solved per step (and per processor), whereas the RK-based methods have to solve a

sequence of implicit relations.

In the future, we plan to perform an extensive comparison between the parallel

RK methods and the parallel block methods on the basis of a broad collection of test

problems.

Apart from that, the code PSODE (cf. Section 2.3) is still in a research phase and

needs a better tuning of its strategy parameters, since the performance of any code

critically depends on such a tuning. In particular, these parameters have to be chosen

in such a way that the number of LU-factorizations is minimized. Furthermore, we
plan to extent the code with the facility to treat ODEs of the form M y'(t) = j(y(t)),

where M is a matrix which may be singular, resulting in a differential-algebraic

system.

To exploit the abundance of the available processors, one can reserve a number of
processors - apart from those performing the integration method - which

continuously update the Jacobian matrix and calculate LU-factorizations,

corresponding to various stepsizes that are realistic for the present part of the

integration interval (this would of course require an adaptation of the stepsize

selection strategy).

Another, more theoretical, aspect that needs attention in the future, is the

construction of A-stable block methods of orders exceeding 4. This might be

obtained by exploiting more free parameters in the matrices A, Band D (see (3.2")).

20

REF'ERENCF.S
[1] Alexander, R. (1977): Diagonally implicit Runge-Kutta methods for stiff

ODEs, SIAM J. Numer. Anal. 14, pp. 1006-1021.
[2] Bellen, A., Vermiglio, R. & Zennaro, M. (1990): Parallel ODE-solvers with

stepsize control, J. Comput. Appl. Math. 31, pp. 277-293.

[3] Burrage, K. (1978): A special family of Runge-Kutta methods for solving

stiff differential equations, BIT 18, pp. 22-41.

[4] Burrage, K. (1991): The error behaviour of a general class of predictor

corrector methods, Appl. Numer. Math. 8, pp. 201-216.

[5] Butcher, J.C. (1979): A transformed implicit Runge-Kutta method, J. Assoc.

Comput. Mach. 26, pp. 731-738.

[6] Butcher, J.C. (1987): The numerical analysis of ordinary differential

equations, Runge-Kutta and general linear methods, Wiley, New York.

[7] Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE's by multi

block methods, SIAM J. Sci. Stat. Comput. 8, pp. 342-353.

[8] Cooper, G.J. & Sayfy, A. (1979): Semiexplicit A-stable Runge-Kutta

methods, Math. Comp. 33, pp. 541-556.

[9] Crouzeix, M. (1975): Sur ['approximation des equations differentielles

operationelles lineaires par des methodes de Runge-Kutta, Ph. D. Thesis,

Universite de Paris.

[10] Dekker, K. & Verwer, J.G. (1984): Stability of Runge-Kutta methods for stiff

nonlinear differential equations, North-Holland, Amsterdam.

[11] Denk, G. & Rentrop, P. (1989): Mathematical models in electric circuit

simulation and their numerical treatment, in: Numerical Treatment of

Differential Equations, K. Strehmel (ed.), Teubner-Texte zur Mathematik 121,

pp. 305-316.
[12] Donelson, J. & Hansen, E. (1971): Cyclic composite multistep predictor

corrector methods, SIAM J. Numer. Anal. 8, pp. 137-157.

[13] Gear, C.W. (1988): Parallel methods for ordinary differential equations,

Calcolo 25, pp. 1-20.

[14] Hairer, E., Lubich, C. & Roche, M. (1989): The numerical solution of

differential-algebraic systems by Runge-Kutta methods, Lecture Notes in

Mathematics, vol. 1409, Springer-Verlag, Berlin.

[15] Hairer, E. & Wanner, G. (1991): Solving ordinary differential equations, II:

Stiff and differential-algebraic problems, Springer Series in Comp. Math.,

vol. 14, Springer-Verlag, Berlin.

[16] Hindmarsh, A.C. (1980): LSODE and LSODI, two new initial value ordinary

differential equation solvers, ACM/SIGNUM Newsletter 15 (4), pp. 10-11.

21

[17] _Horneber, E.H. (1976): Analyse nichtlinearer RLCU-Netzwerke mit hilfe der

gemischten Potentialfunction mit einer systematischen Darstellung der

Analyse nichtlinearer dynamische Netzwerke, FB: Elektrotechnik, Universitat

Kaiserslautern, Dissertation.

[18] Iserles, A. & N0rsett, S.P. (1990): On the theory of parallel Runge-Kutta

methods, IMA J. Numer. Anal. 10, pp. 463-488.

[19] Jackson, K.R. & N0rsett, S.P. (1990): The potential for parallelism in

Runge-Kutta methods, Part I: RK formulas in standard form, Technical

Report No. 239/90, Dept. of Computer Science, University of Toronto.

[20] Jackson, K.R. & N0rsett, S.P.: The potential for parallelism in Runge-Kutta

methods, Part II: RK predictor-corrector formulas, in preparation.

[21] Lie, I. (1987): Some aspects of parallel Runge-Kutta methods, Report No.

3/87, Dept. of Mathematics, University of Trondheim.

[22] Miranker, W.L. & Liniger, W. (1967): Parallel methods for the numerical

integration of ordinary differential equations, Math. Comp. 21, pp. 303-320.

[23] N0rsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report

Mathematics and Computation No. 6/74, Dept. of Mathematics, University

of Trondheim.

[24] N0rsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta

methods, in: Numerical methods for ordinary differential equations, A. Bellen,

C.W. Gear & E. Russo (eds.), Proceedings of the L'Aquila conference, 1987,

Lecture Notes in Mathematics, vol. 1386, Springer-Verlag, Berlin, pp. 103-

117.

[25] Prothero, A. & Robinson, A. (1974): On the stability and accuracy of one

step methods for solving stiff systems of ordinary differential equations,

Math. Comp. 28, pp. 145-162.

[26] Shampine, L.F. & Watts, H.A. (1969): Block implicit one-step methods,

Math. Comp. 23, pp. 731-740.

[27] Sommeijer, B.P. (1993): Parallel-iterated Runge-Kutta methods for stiff

ordinary differential equations, J. Comput. Appl. Math. 45, pp. 151-168.

[28] Watts, H. A. & Shampine, L.F. (1972): A-stable block implicit one-step

methods, BIT 12, pp. 252-266.

[29] Williams, J. & Hoog, F. de (1974): A class of A-stable advanced multistep

methods, Math. Comp. 28, pp. 163-177.

[30] Worland, P.B. (1976): Parallel methods for the numerical solution of ordinary

differential equations, IEEE Trans. Computers C-25, pp. 1045-1048.

PART I

Parallel numerical methods for nonstiff OD Es

CHAPrERI

Parallel ite:ration of high-o:rde:r Runge-Kutta methods

with stepsize cont:rol

Reprinted from

J. Comput. Appl. Math. 29 (1990), 111-127

with granted permission from ELSEVIER SCIENCE PUBLISHERS B.V.

25

Parallel Iteration of High-Order Runge-Kutta
Methods with Stepsize Control

P.J. van der Houwen and B.P. Sommeijer

Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. This paper investigates iterated Runge-Kutta methods of high order
designed in such a way that the right-hand side evaluations can be computed in
parallel. Using stepsize control based on embedded formulas a highly efficient code is
developed. On parallel computers, the 8th-order mode of this code is more efficient
than the DOPRI8 implementation of the formulas of Prince and Dormand. The lOth
order mode is about twice as cheap for comparable accuracies.

1991 Mathematics Subject Classification: 65L06

1991 C.R. Classification: G,1.7

Key Words: numerical analysis, Runge-Kutta methods, parallelism.

1. INIRODUCilON

Implicit Runge-Kutta (RK) methods for solving the initial value problem for the

system of ordinary differential equations (ODEs)

(1.1)
d"ltl
~=J(y(t))

dt

are seldom used in predictor-corrector (PC) iteration, because RK correctors are much

more expensive than linear multistep (LM) correctors. This is due to the increased

number of coupled nonlinear algebraic equations. Although RK correctors of order p
usually possess smaller error constants than LM correctors of comparable order, an

accuracy-computational effort graph will be in favour of PC methods based on LM

methods. However, matters are different when parallel computers are used. It is well

known that PC iteration, being a form of functional iteration (or Jacobi iteration),

allows a high degree of parallelism, because, by partitioning the system of equations

into subsystems of equal computational complexity, we can assign to each processor

such a subsystem and perform the iteration steps in parallel. The problem is of

course the partitioning in subsystems of equal computational complexity. In the case

of iterating s-stage RK methods, there is a natural partitioning based on the s

subsystems corresponding to the s stages of the RK method. In this way, the

26

computation time involved in applying RK correctors can be reduced a great deal on

parallel computers. We shall call these 'parallel, iterated' RK methods PIRK

methods. The idea of iterating an implicit RK method to exploit parallelism goes

back to Jackson and Ni;;rsett [10] and also in [9], [11], and [12] such methods have

been debated. Before continuing our discussion on PC iteration, we emphasize that

the choice of an implicit RK corrector has nothing to do with the excellent stability

characteristics such methods usually possess, since this property is not preserved

when the PC approach is followed. Their choice is solely determined by the fact that

a high order of accuracy is easily obtained and, particularly, because of the potential

parallelism exhibited by these methods. Hence, in the sequel we will assume that the

class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands.

If the predictor is itself an (explicit) RK method, then the PIRK method also

belongs to the class of explicit RK methods. In !series and Ni;;rsett [9] it was proved

that explicit RK methods of order p necessarily require at least p effective stages, and

in Ni;;rsett and Simonsen [12] the question was posed whether it is always possible

to find explicit RK methods of order p using not more than p effective stages,

assuming that sufficiently many processors are available (an explicit RK method is

said to have p effective stages if the computation time required for evaluating all

right-hand sides in one step is p times the computation time required by one right

hand side evaluation). This question motivated us to look in the class of PIRK

methods for explicit RK methods, the order of which equals the number of effective

stages; such methods will be called optimal RK methods. We will show that PIRK

methods generated by any (not necessarily implicit) s-stage RK corrector of order p

do not require more than p effective stages provided that s processors are available.

The next question is the least number of processors needed to implement an optimal

explicit RK method. For example, in [12] a 5th-order, 6-stage RK method of Butcher

which can be implemented on two processors requiring only 5 effective stages is

mentioned. This method is clearly an example of an optimal 'minimal processor'

RK method. So far, we did not succeed in answering the question of least number of

necessary processors. Therefore, we have looked for RK methods of which the

number of stages is small with respect to their order. It is well known that, within

the class of RK methods, those of Gauss-Legendre type require least number of

stages to obtain a given order; to be more precise, s-stage Gauss-Legendre methods

have order p=2s. Hence, for an 'optimal' implementation of these methods, we need

only s processors. Furthermore, the stability regions can directly be derived from

known results for truncated Taylor series, they allow an extremely simple

implementation, and we obtain automatically a sequence of embedded methods of

varying order which can be used for stepsize control. PIRK codes of order 8 and l 0

using automatic stepsize control are compared with the code DOPRI8 of Hairer,

Ni;;rsett and Wanner [5] which is a variable step implementation of the 8th-order

27

explicit RK formula with 7th-order embedded formula of Prince and Dormand [13].

All codes use the same stepsize strategy. By a number of experiments, the

performance of the PIRK codes is demonstrated. Both codes are considerably cheaper

than DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a

FORTRAN implementation of the PIRK methods. This implementation has the

feature that the user can introduce arbitrary RK correctors by means of their Butcher

arrays.

Instead of using (one-step explicit) RK predictors one may use LM predictors

reducing the number of effective stages. First results based on LM predictors are

reported by Lie [11], using a fourth-order, two-stage Gauss-Legendre corrector and a

third-order Hermite extrapolation predictor. With this PC pair, one iteration suffices

to obtain a fourth-order PIRK scheme. We shall briefly discuss the use of multistep

predictors, in particular for RK correctors of general (nonquadrature) type. Various

predictor methods are compared showing that the efficiency of PIRK methods using

multistep predictors is higher, but the price to be paid for the increased efficiency is

more storage and a less easy implementation.

Finally, the methods proposed in the following sections will be described for

scalar differential equations of the form (1. 1). Their application, however, is

straightforwardly extended to systems of OD Es.

2. OPI'IMAL RKMEIHODS
Our starting point is the s-stage, implicit, one-step RK method of the form

(2.la)

where Tn+ 1 is implicitly defined by

(2.lb)

Here, h is the integration step, e is a column vector of dimension s with unit entries,

b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the

convention that for any given vector v=(vj),J(v) denotes the vector with entriesf(vj).

By iterating the equation for Tn+l m times by simple functional iteration and using

the mth iterate as an approximation to Tn+ 1, we obtain the method

(2.2) rUJ =f(yne + hArU-lJJ, j = 1, ... , m; Yn+l = Yn + hbTr(m).

Since the s components of the vectors rUJ can be computed in parallel, provided that

s processors are available, the computational time needed for one iteration of (2.2) is

28

equivalent to the time required to evaluate one right-hand side function on a

sequential computer. Hence, the total costs of (2.2) per integration step comprise the

calculation of the initial approximation r(O) plus m right-hand side evaluations. In

the following, we always assume that we have s processors at our disposal and,

speaking about 'computational effort per step', we mean the computational time

required per step ifs processors are available. If the computational effort per step

equals the computation time for performing M right-hand side evaluations, then we

shall say that the method requires M effective stages. Here, and in the sequel, we

have assumed that the costs per step are predominated by the time needed to evaluate

the derivative function. If this happens to be not the case for a particular ODE, then

the overhead, which is sequential in essence, will take a relative large portion of the

total costs per step and, consequently, the parallel evaluation of the s (cheap) right

hand side functions will not result in an overall speedup with a factors.

We shall call the method providing r(O) the predictor method and (2.1) the

corrector method and the resulting parallel, iterated RK method will be briefly called

PIRK method. It should be observed that in the present case of RK correctors, the

predictor and corrector methods do not directly generate approximations to Yn+I as is

the case in PC methods based on LM methods. However, at any stage of the

iteration process we can compute the current approximation to Yn+ I by means of the

formula

(2.S) yU) := Yn + hbTrUJ, j = 0, I,

Let r(O) be an approximation torn+ I satisfying the condition

resulting in y(O) = Yn+ 1 + 0(M+ 1). Predictor methods satisfying (2.4) will be called

predictor methods of order q.

Suppose that A and b T are such that the corrector (2.1) is of order p and let the

predictor method be of order q- I. Then, it has been proved in Jackson and N,ilrsett

[10] that the (global) order of Yn+I as defined by (2.2) equals p*:= min{p, q+m }. By

using the simple predictor method r(O) :=f(yn)e =rn+J+O(h), i.e., q=l, we

immediately have as a corollary of this result the next theorem.

Theorem 2.1. Let {A,bT} define ans-stage RK method (which need not be implicit)

of order p. Then the PIRK method defined by

r(O) =f(yn)e,

(2.5) r(j) =f(yne+hArU- 1)), }=l, ... ,m,

Yn+ I = Yn + hb Tr(m)

29

represents an (m+l)s-stage explicit RK method of order p*:=min{p, m+l} requiring

m+ 1 effective stages. []

Method (2.5) can also be represented by its Butcher array. Defining the s

dimensional vector O and the s-by-s matrix O both with zero entries, we obtain

0

A 0

0 A 0

0 0 A 0

We remark that this Butcher tableau represents a direct translation of (2.5),

resulting in (m+l)s stages. However, written in this form, the 0-matrix in the first

row could be replaced by a scalar zero, since the prediction r<O) has equal components

and, consequently, can be produced by one processor. This would lead to an explicit

RK method possessing ms+ 1 stages.

Setting m=p-1, it follows from this theorem that the question posed by N!<Srsett

and Simonsen [12] can be answered in the affirmative: any pth-order RK method
{A, b T} generates an explicit RK method of the form (2.5) of order p requiring only p

effective stages. Such explicit RK methods will be called optimal RK methods. Of

course, within the class (2.5) the number of processors needed for the

implementation is dictated by the number of stages s of the generating corrector. For

example, the lOth-order, 17-stage RK method ofHairer [4] generates an explicit RK

method of the form (2.5) which is also of order 10 if we set m=9 and which is

optimal in the above sense. However, the implementation of this method requires 17

processors. This suggests the problem of constructing RK methods of order p which

are optimal and require least number of processors. The 5th-order, 6-stage RK
method of Butcher mentioned in [12] is an example of such a method: it can be

implemented on two processors requiring only 5 effective stages. From the theory of

RK methods based on high-order quadrature methods, such as Gauss-Legendre and

Radau methods [5], we can immediately deduce a lower bound for the number of

processors needed to implement optimal RK methods of the form (2.5):

Theorem 2.2. RK methods of the form (2.5) are optimal if m s; p-1. For even p the

least number of required processors equals p/2 and the generating RK corrector is the

30

pth-order Gauss-Legendre method; for odd p the least number of processors is (p+ I)/2

and the generating RK corrector is the pth-order Radau method. D

Thus, optimal RK methods requiring less than L (p+ I)/2 J processors cannot be

found among the methods of the form (2.5). Since (2.5) allows an extremely simple

implementation and provides automatically a sequence of embedded formulas which

can be used for error estimation (see Section 5) and order variation, we have not

looked for methods requiring less than L (p+ 1)/2 J processors.

In order to illustrate the significance of Theorem 2.2, we make a comparison

with explicit RK methods devised for one-processor computers (sequential methods).

In Table 2.1 the minimal number of stages Smin (and therefore the minimal number

of right-hand side evaluations) needed to generate such methods of order pare listed.

In addition, we list the number of stages S for which these RK methods have·

actually been constructed (cf. [5, Section 11.6)), and the numbers of effective stages

Seff and processors Spr needed by the optimal RK methods of Theorem 2.2.

Table 2.1. Comparison of sequential RK methods and optimal RK methods

of the form (2.5)

p ::;4 5 6 7 8 9 10

Sequential Smin p 6 7 9 11 ~12 ~13

RK s p 6 7 9 11 17

Optimal Seff p 5 6 7 8 9 10

RK Spr 3 3 4 4 5 5

Finally, we remark that if the RK corrector is based on quadrature (or collocation)

methods, then the initial approximation rCO) can be interpreted as the derivative

f(Y(O)), where y(O) is an approximation to y(tne+hAe). Suppose that the

components of y(O) are computed (in parallel) by using an explicit (q-1)-stage RK

method of order q-1 with stepsizes hAe. Then the resulting PIRK method is still an

explicit RK method itself and it is optimal if m ::; p-q corrections are performed.

3. MULTISTEP PREDICTORMEIBODS

Evidently, we can save computing time by using multistep predictor methods.

As observed above, such predictors should provide approximations to the derivative

valuesj(y(tne+hAe)) in the case where the generating RK method {A,bT} is derived

from quadrature formulas. Any set of linear multistep methods providing

approximations to the components of y(tne+hAe) serves this purpose.

31

In this paper we briefly discuss the case of arbitrary RK correctors where we

cannot give an easy interpretation for the initial approximation 7(0)_ In such cases, it

is possible to construct multistep predictor methods by performing the auxiliary

vector recursion

where E denotes the forward shift operator, i.e., Efn =fn+l· The predictor method is

now simply defined by

(3.lb) 7(0) ·- .r 1 --Jn+.

Here o(~) is a polynomial of degree k-1 whose coefficients are matrices of

appropriate dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a

k-step PC method requiring m+ 1 right-hand side evaluations per step. For m=O, this

method fits into the class of methods investigated in [7].

By Taylor expansion of fn+l (or, y(O)), conditions for the satisfaction of

7n+1-fn+1=0(hq) can be derived in terms of A and o(~). For instance we have the
following theorem.

Theorem 3.1. Let the corrector defined by {A, b T} be of order p, then the k-step PC

method

(3.2)
fn+l
7(0)

Yn+l

=f(yne + ho(E)E""k+lfn),

=fn+l, 70) =f(yne + hA7U-1)), j = 1, ... , m,

= Yn + hbTr(m)

is of order p*:=min{p, q+m}, where

q = 2 if Ae - o(l)e = 0.

q = 3 if, in addition, A2e - o2(1)e + ko(l)e - o'(l)e = 0,

rA2e - to2(1)e + ko(l)e - o'(l)e = 0. []

Example 3.1. The most simple example is the case where k=l and o(~)=O, so that

7(0)=f(yn)e and q=l. This case has been already considered in the preceding section.

Next we choose k=l and o(~)=A. It is readily verified that the order conditions for the

predictor are satisfied for q=2. The algorithm (3.2) assumes the one-step form

(3.3)
fn+l
7(0)

Yn+l

= f(yne + hAfn),

=fn+l• 7(j) =f(yne + hA7(j-l)), j = 1, ... , m,
= Yn + hbT7(m).

32

If the RK corrector has order p, then by performing m=p-2 corrections this method

is also of order p and requires p-1 right-hand side evaluations per step. Formally, the

method no longer belongs to the class of one-step RK methods. However, in actual

applications, the method is self-starting if we takefo=f(yo)e.

Finally, we choose k=2 and o(l;)=2Al;-A which satisfy the order conditions for

q=3. The algorithm (3.2) assumes the two-step form

(3.4)
fn+I
r(O)

Yn+l

=f(yne + 2hAfn- hAfn-I),

=fn+I, rO) =f(yne + hAr0- 1)), j =I, ... , m,

= Yn + hbTr(m)_.

If the RK corrector has order p, then by performing m=p-3 corrections this method

is also of order p and requires p-2 right-hand side evaluations per step. []

4. STABILITY

We consider linear stability with respect to the test equation

(4.1) y'(t) = 11,y(t).

It is easily verified that application of (2.5) yields the recursion

where we have written z=Ah. The stability polynomial is given by

In the particular case where we choose m=p-1, p being the order of the corrector, we

obtain a stability polynomial of degree p. According to Theorem 2.1, this PIRK

method is of order p so that the stability polynomial is consistent of order p, i.e., it

approximates exp(z) with pth-order accuracy. Thus, we have proved the next

theorem.

Theorem 4.1. Let the corrector be of order p. If m=p-1, then the method (2.5)

becomes an (explicit) RK method with the stability polynomial

Using a result on truncated Taylor series (cf. [6, p.236]), we have the next

corollary of this theorem.

33

Corollary 4.1. The method of Theorem 4.1 is stable in the interval [- l3reaJ,0], where

(4.4) l3real"" 0.368 (p+l) [19(p + 1)]11(2(p+l)) . []

Defining [-i l3imag, i l3imagl to be the interval on the imaginary axis where the

method of Theorem 4.1 is stable, we list in Table 4.1 the values of l3real (and its

approximation provided by (4.4)) and of l3imag for orders p=l ,2, ... , 10.

Table 4.1. l3real and l3imag for the method of Theorem 4.1

p=l p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=IO

True value of l3real 2.00 2.00 2.52 2.78 3.22 3.55 3.95 4.31 4.70 5.07

Value according to (4.4) 1. 8 3 2.17 2.53 2.90 3.28 3.65 4.03 4.41 4.78 5.16

True value of l3imag 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00

5. SIBPSIZE CONI'ROL

In this section we will describe a simple strategy to implement the afore

mentioned methods with a variable stepsize in order to control the local truncation

error. This strategy is the same as the one employed by Hairer, N0rsett and Wanner

[5, p. 167) in their code DOPRI8, in which they have implemented the 13-stage, 8th

order explicit RK method with the embedded method of order 7 of Prince and

Dormand.

This strategy is based on the observation that when iterating the equation (2.1 b)

for rn+I we obtain approximations rU) of successively increasing order, i.e.,

rW - rn+I = O(hmin{p, q+j}), j=l, 2, ... , m.

Thus, apart from our final approximation Yn+i:=Yn+hbTr(m), we can easily construct

a reference solution (cf. (2.3))

for some k < m. Since r(k) has already been computed, this does not require additional

right-hand side evaluations. This reference solution y(k) can be considered as an

'embedded' solution [5].

Now, as an estimate for the local error E in the step from tn to tn+1=tn+h, we

take

(5.2)

34

for some norm 11·11. Usually, one uses reference solutions y(k) such that the orders of

Yn+ 1 and y(k) differ by 1. Here we follow this approach and choose k=111- I.

First, we will discuss the case where we restrict our stepsize strategy to methods

in which the number of iterations 111 is fixed in each step and is given by 111=p-q.

Hence, ,.(m)_rn+I and ,.(m-l)_rn+I behave as O(hP) and O(hP-1), respectively, and,

consequently,

Then £ is compared with some prescribed tolerance TOL and the step is accepted if

£::; TOL, and rejected otherwise. Furthermore, the value of £ allows us to make an

estimate for the asymptotically optimal stepsize:

which will be taken in the next step (or to recompute the current step in case of

rejection). However, to give the code some robustness, we actually implemented (cf.

[5, p.167])

• I !~ (5.3) hnew = h · mm { 6, max { 3, 0.9 -\/-££- 1}}.

The constants 6 and r in this expression serve to prevent an abrupt change in the

stepsize and the safety factor 0.9 is added to increase the probability that the next

step will be accepted.

Apart from the variable stepsize implementation mentioned above, the PIRK

methods allow for a simple extension of the control strategy by which also the order

of the method may vary from step to step. This can be achieved by abandoning the

approach of a fixed number of iterations. Referring to the description above, we can

construct a sequence of reference solutions, i.e., after each iteration the 'embedded'

solution

is computed. Then, we use the difference of two successive reference solutions as an

estimate for the local error, i.e.,

eU) := 11 yU) - yU-1) 11.

If, during the iteration, the tolerance criterion eW::; TOL is satisfied for some

J=io < 111, then there is no need to proceed with the iteration process and we accept

35

yUo) as the numerical solution Yn+ I. This suggests to try the next step with the

value of m defined by m=jo. Since

p* = min {p+ 1, q + jo},

a prediction for the next stepsize can be made according to (5.3), where p is replaced

by p* and e by i::Vo) .

It may happen that the tolerance condition is not satisfied for j=jo s m. In such

cases, the values of m and h predicted in the preceding step were not reliable. One

may then decide to reject the current value of m and to continue the iteration process.

This is particularly recommendable if the value of the current p* is less than p. If the

continuation of the iteration process does not help to satisfy the tolerance condition

i::W s TOL for j s M, where M is some prescribed upper bound for the number of

iterations per step, then the (relatively costly) alternative is rejection of the current

value of h, to redefine h according to (5.3) using the most recent information on the

error, and to perform the present step once again. In this way a variable order variable

stepsize RK method can be constructed.

6. NUMERICALEXPERIMEN'IS
We present a few examples illustrating the efficiency of PIRK methods on

parallel computers. The calculations are performed using 14-digits arithmetic. The

methods tested were all applied in P(EC)mE mode.

6.1. Comparison of various predictor methods
In order to examine the effect of various predictor methods on the efficiency of

the PIRK algorithm we performed a few tests by integrating the equation of motion

for a rigid body without external forces (cf. [8, Problem B5]):

(6.1)
YI'= Y2Y3,

Y2° = - YIY3,

Y3' = - .51YJY2,

YJ(O) = 0,

yz(0)=l, OstsT.

y3(0) = 1,

In these tests we used the lOth-order Gauss-Legendre corrector and the following

predictor methods:

Predictor I: r(O) = f(yn)e (cf. (2.5)) q=l p=min{m+l, 10}

Predictor II: r<O) defined by the standard 4th-order RK q=5 p=min{m+5,10}

Predictor ill: r(O) =f(yne + hAfn) (cf. (3.3)) q=2 p=min{m+2,10}

Predictor IV: r(O) = f(yne + 2hAfn - hAfn-1) (cf. (3.4)) q=3 p=min { m+ 3, 10}

36

In the Tables 6.1 a and 6.1 b we have listed the values DW, where D denotes the

number of correct decimal digits at the endpoint, i.e., we write the maximum norm

of the error at t=T in the form 10-D, and where N denotes the total number of

effective right-hand side ev'ahtatrons performed during the integration process.

Furthermore, we indicated the effective order Peff, that is the order of accuracy which

is ~n numericaHy.

Table 6.1a. Values DW for problem (6.1) with T=20.

Predictor I Predictor II
h-1 m=8 m=9 m;,,,10 m=4 m=5 m=6

5.6\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220

2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440

4 10.6\720 13.0\800 12.3\880 10.5\720 13.3\800 12.2\880

Peff"" 9 10 10 9 10 10

Table 6.1b. Values DW for problem (6.1) with T=20.

Predictorrrl Predictor IV
h-1 m=7 m=8 m=9 m=7 m=8

4.8\160 5.5\180 7.5\200 4.6\160 5.7\180

2 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360

4 9.7\640 11.6\720 12.1\800 10.4\640 12.4\720

Peff"" 9 10 10 10 10

Comparing experiments with equal N (notice that these tables contain for each h

and each predictor an experiment with No: l 80h-1), we conclude that in most

experiments the third-order predictor IV and the second-order predictor III yield the

most accurate values. However, the price we pay is more storage and a more

complicated implementation because of the auxiliary recursion for fn- The predictors

I and II produce comparable accuracies. As the added storage for the predictors III and

IV is not offset by comparable reduction in the volume of computation, we

recommend predictor I in actual computations. The resulting PIRK method is a true

one-step RK method of an extremely simple structure, and consequently allowing for

an easy and straightforward implementation. A FORTRAN code based on this PIRK

method can be found in the Appendix to this paper.

37

6.2. Comparloon with the lOth-order methods of C~ and Hairer

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing

their 1 0th-order RK methods. In Table 6.2 the results of the experiments performed

by Curtis and Hairer are reproduced together with results obtained by the PC pairs

consisting of the predictors I, II and III, and the 1 0th-order Gauss-Legendre corrector.

Again we see that the simple predictor I can compete favourably with the predictors

II and ill.

Table 6.2. Values DW for problem (6.1) with T=60.

Method p 60/h D N

Runge-Kutta 4 12000 9.6 48000

Adams-Moulton-Bashforth 4 6000 8.1 12000

Runge-Kutta-Curtis 10 240 9.9 4320

Runge-Kutta-Hairer 10 240 10.1 4080

(2.2) with predictor I and m=9 10 156 10.0 1560

(2.2) with predictor I and m=lO 10 150 10.0 1650

(2.2) with predictor II and m=5 10 150 10.1 1500

(2.2) with predictor II and m=6 10 156 10.1 1716

(2.2) with predictor ill and m=8 10 210 10.0 1891

(2.2) with predictor III and m=9 10 168 10.0 1681

6.3. Comparison with the 8(7)-method of Prince and Dormand
The 8(7)-method of Prince and Dormand [13) is nowadays generally considered as

one of the most efficient methods with automatic stepsize control for TOL-values

approximately in the range 1 o-7 to 1 o- I 3. In this subsection we compare the

DOPRI8 code, as given by Hairer, N~rsett and Wanner [5], with the PIRK method

based on predictor I and the Gauss-Legendre correctors of orders 8 and 10. To let the

comparison of the DOPRI8 code and the PIRK codes not be influenced by a different

stepsize strategy, we equipped the PIRK codes with the same strategy (see Section

5). These codes are respectively denoted by PIRK8 and PIRKlO.

6.3.1. Fehlberg problem

As a first test problem we take an example from Fehlberg [3):

(6.2)

YI'= 2 t YI log(max{Y2, 10-3}),

Yi=- 2 ty2 log(max{y1, 10-3}),

Y1(0) = 1,

Y2(0) = e,
0 $ t $ 5,

38

with exact solution YI (t)=exp(sin(t2)), Y2Ct)=exp(cos(t2)). For tolerances TOL

running from 10-5 up to 10-12 we computed the D and corresponding N-values.

Instead of presenting the polygon graph for these values as was done in [5], we

preferred to present the DW lying on this polygon for a number of integer values of

D. In Table 6.3 these values are listed.

Table 6.3. Values of N for problem (6.2).

Method D=5 D=6 D=7 D=8 D=9 D=lO D=ll

DOPRI8 595 759 963 1227 1574 1990 2503
PIRK8 379 495 623 786 978 1383 1874

PIRKl0 327 388 490 704 884 977 1078

6.3.2. Euler equations

Next, we apply the codes to Euler's equation for a rigid body (cf. (6.1)). The

performance of the code is presented in Table 6.4.

Table 6.4. Values of N for problem (6.1) with T=60.

Method D=6 D=7 D=8 D=9 D=lO D=ll D=l2

DOPRI8 415 576 728 898 1133 1422 1817

PIRK8 294 381 534 728 961 1172 1746
PIRKlO 252 297 357 426 580 730 920

6.3.3. Orbitequations

Finally, we apply the codes to the orbit equations (cf. [8, Problem D2])

YI' =y3, YI(0)= 1-£,

n'=y4, n(0) = 0,

(6.3) y3'=
- YI

y3(0) = 0, o::;;r::;;20.
(y12 + Y22)3/2 '

y4'=
-n ~ 3

(y12 + Y22)3/2 ' Y4(0) = ' £=To,
£

The performance of the codes is presented in Table 6.5. An obvious conclusion

which can be drawn, is that - at least for these three test examples - both PIRK

codes are more efficient than DOPRI8; in the average, PIRK8 requires 3/4 of the

number of /-evaluations that are needed by DOPRI8 to yield the same accuracy,

whereas PIRKlO is almost twice as efficient. The superiority of PIRKlO, especially

in the high-accuracy range, is undoubtedly due to its higher order. Therefore, it would

be interesting to compare this method with an embedded (sequential) Runge-Kutta

39

pair of comparable order. Unfortunately, to the best of our knowledge, such formulae

have not been constructed in the literature.

Table 6.5. Values of N for problem (6.3).

Method D=5 D=6 D=7 D=8 D=9 D=lO D=ll

DOPRI8 615 723 831 1062 1284 1780 2024

PIRK8 463 559 679 859 1099 1411 1876

PIRKlO 378 448 540 662 784 911 1076

7. CONCLUSIONS

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that

are capable of efficiently exploiting the parallelism of an MIMD computer

architecture. Assuming that sufficient processors are available, it is shown how to

derive 'optimal methods', i.e., methods requiring a number of parallelised !
evaluations equal to the order. Within the class of optimal methods considered, the

required number of processors s is least with respect to the order p if the algorithm is

based on an iterated Gauss-Legendre RK method and this minimal number is given

by s=r p. It is known that optimal methods exist requiring a smaller number of

processors (an example is the fifth-order method of Butcher, mentioned in the

Introduction), but it is not clear how to formulate a general construction procedure to

arrive at such methods for arbitrary order.

A nice feature of the methods proposed is that they provide an embedded reference

solution without additionalf-evaluations. This advantage has been utilized to make a

variable step implementation which has been compared with the code DOPRI8,

nowadays considered as 'the state of the art' for the automatic integration of ODEs.

On the basis of some test examples, the performance of the new code is compared

with DOPRI8 and, in terms of the required number of !-evaluations, demonstrates a

superior behaviour.

Another aspect is the simple implementation of the new algorithm. In the

Appendix a FORTRAN subroutine is provided which accepts a general RK method

of arbitrary order, defined in terms of its Butcher tableau. For example, if there is

need for an automatic integration routine of order higher than 8, as is furnished by

DOPRI8, then we can suffice to specify e.g. a high-order Gauss method (the

construction of which is simple and fully described in [1]) and call this subroutine.

Furthermore, for such accuracy demands, we remark that even in the case that the

parallel evaluation of the derivatives is not possible (e.g. on a uniprocessor machine)

or not relevant (e.g., because the evaluation off is very inexpensive and offset by the

overhead), this code may still be of value. Since classical embedded RK pairs of such

40

high orders are lacking, it may turn out that, even in the non-parallelised form, the

present code is more efficient than DOPRI8, in spite of its large redundancy with

respect to the number off-evaluations (cf. the discussion following Theorem 2.1). It

is easily verified that this approach can offer sequential embedded RK methods of

arbitrary order p, using m·s+ 1 = (p2-p+2)/2 stages. This aspect, which is a direct

consequence of the simplicity of the PIRK algorithm, needs further investigation.

REFERENCES
[I] Butcher, J.C. (1964): Implicit Runge-Kutta processes, Math. Comp. 18, 50-64.

[2] Curtis, A.R. (1975): High-order explicit Runge-Kuttaformulae, their uses, and

limitations, J. Inst. Maths. Applies. 16, 35-55.

[3] Fehlberg, E. (1968): Classical fifth-, sixth-, seventh-, and eighth-order Runge

Kutta formulas with stepsize control, NASA Technical Report 287, extract

published in Computing 4 (1969), 93-106.

[4] lfairer, E. (1978): A Runge-Kutta method of order JO, J. Inst. Math. Applies.

21, 47-59.

[5] Hairer, E., N0rsett, S.P. & Wanner, G. (1987): Solving ordinary differential

equations I. Nonstiff problems, Springer Series in Comp. Math., Vol. 8,
Springer-Verlag, Berlin.

[6] Houwen, P.J. van der (1977): Construction of integration formulas for initial

value problems, North-Holland, Amsterdam.

[7] Houwen, P.J. van der, Sommeijer, B.P. & Mourik, P.A. van (1989): Note on

explicit parallel multistep Runge-Kutta methods, J. Comp. Appl. Math. 27,
411-420.

[8] Hull, T.E., Enright, W.H. , Fellen, B.M. & Sedgwick, A.E. (1972):

Comparing numerical methods for ordinary differential equations, SIAM J.

Numer. Anal. 9, 603-637.

[9] !series, A. & N0rsett, S.P. (1990): On the theory of parallel Runge-Kutta

methods, IMA J. Numer. Anal. 10, 463-488.

[10] Jackson, K.R. & N0rsett, S.P. (1988): Parallel Runge-Kutta methods, to

appear.

[I I] Lie, I. (1987): Some aspects of parallel Runge-Kutta methods, Report No.

3/87, University of Trondheim, Division Numerical Mathematics.

[12] N0rsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta

methods, in: A. Bellen (ed.): Workshop on Numerical Methods for Ordinary

Differential Equations, L'Aquila, 1987, Lecture Notes in Mathematics, Vol.

1386, Springer-Verlag, Berlin, I 03-117.

[13] Prince, P.J. & Dormand, J.R. (1981): High-order embedded Runge-Kutta

formulae, J. Comp. Appl. Math. 7, 67-75.

41

APP~IX
Here we give the implementation (in FORTRAN 77) of the optimal PIRK

methods of the form (2.5), including error control. This subroutine offers the user

the facility to specify an arbitrary Runge-Kutta method by means of the matrix A

and the vectors bT and c (see also the description of these parameters).

Although this routine has been coded in standard FORTRAN 77, it will require

machine-dependent amendment as to exploit the parallelism. Therefore we shall

discuss in some detail the most important loop in this subroutine, i.e., the 80-loop.

It is here, that the parallel calculation of the components of the iterate rO) is to be

performed (cf. (2.2)). A first observation is that this loop contains a call to another

subprogram (viz., FCN). The separate compilation of subprograms prevents the

compiler from actually parallelising this loop, since it is unknown what happens

within FCN. Nevertheless, if the present source is offered to a compiler without

giving any instructions, the outcome (i.e., the 'optimized' object code) will be the

product of all kinds of operations, like unravelling, interchanging, distributing loops

etc., and will certainly speed up the execution. However, the parallelisation will

probably not completely fit in with the ideas as advocated in the present paper.

Therefore, we have to insert an explicit specification concerning the way the

compiler has to do its job; for example, we can specify that it is in this case without

any danger to parallelise over the FCN-calls. Most parallel computers offer so-called

'directives' for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall).

Since these directives may differ for various parallel machines, we decided to code

this loop in standard FORTRAN.

Another observation is that the 80-loop contains two nested innerloops: one over

the components of the ODE and one to form the innerproduct of a row of A and the

iterate vector r0-1). If the parallel machine at hand has an architecture in which each

processor is a vectorprocessor, then it may be advantageous to interchange these

innerloops. Such considerations depend on the dimension of the ODE, the startup

time of the particular vectorprocessor, the 'smartness' of the compiler, etc.

To sum up, in order to obtain an optimal performance, the user of the subroutine

PIRK is advised to adjust the 80-loop to the specific situation he is dealing with,

like the number of processors available (perhaps even larger than s), the dimension

of the problems to be solved, etc.

SUBROUTINE PIRK(N, NR, FCN, T, V, TEND, TOL, H, S, P,
+ NRA, A, B, C, VN, FN, RJ, RJM 1 .. BIGV, VREF)

c--
c PIRK SOLVES AN INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST
C ORDER DIFFERENTIAL EQUATIONS OF THE FORM V'(T)=F(T,V(T)).
C THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND
C DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED.

42

C IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS
C ASSUMED THAT THE NUMBER OF ST AGES IN THE RUNGE-KUTT A METHOD
C. DOES NOT EXCEED THE NUMBER OF PROCESSORS AVAILABLE.
C
C MEANING OF THE PARAMETERS:

C -----------------------------
C N
C

C NR
C
C

C FCN
C
C

C

C

C
C

C
C

C

C T
C

C
C

C y

C
C
C
C TEND
C
C TOL
C
C
C H
C
C
C s
C
C p

C
C NRA
C
C
C A
C B
C C
C
C
C
C
C
C
C
C
C

- INTEGER VARIABLE
THE DIMENSION OF THE SYSTEM

- INTEGER VARIABLE
FIRST DIMENSION OF THE ARRAYS RJ, RJM 1 AND BIGY AS
DECLARED IN THE CALLING PROGRAM (NR .GE. N)

- SUBROUTINE
A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE
F(T, Y(T))

ITS SPECIFICATION READS:
SUBROUTINE FCN(N,T, Y ,F)
DIMENSION Y(N),F(N)

ON RETURN, F(I) (1=1, ... ,N) MUST CONTAIN THE VALUE OF
THE I-TH COMPONENT OF THE DERIVATIVE VECTOR
FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM

- REAL VARIABLE
THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET
TO THE INITIAL VALUE. ON RETURN, T CONTAINS THE VALUE
FOR WHICH Y IS THE SOLUTION

- REAL ARRAY OF DIMENSION (AT LEAST) N
THE DEPENDENT VARIABLE. ON ENTRY, Y SHOULD CONTAIN THE
INITIAL VALUES OF THE DEPENDENT VARIABLES.
ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T

- REAL VARIABLE
TEND SPECIFIES THE END POINT OF THE INTEGRATION INTERVAL

- REAL VARIABLE
TOL (>0) SPECIFIES A BOUND FOR THE LOCAL TRUNCATION
ERROR

- REAL VARIABLE
ON ENTRY, H SHOULD BE GIVEN A VALUE WHICH IS USED AS A
GUESS FOR THE INITIAL STEPSIZE
INTEGER VARIABLE
NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTT A METHOD
INTEGER VARIABLE
ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTT A METHOD
INTEGER VARIABLE
FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE
CALLING PROGRAM (NRA .GE. S)

- REAL ARRAY OF DIMENSION (NRA,L) W 1TH L .GE. S
- REAL ARRAV OF DIMENSION (AT LEAST) S
- REAL ARRAV OF DIMENSION (AT LEAST) S

THE PARAMETERS A, BAND C DEFINE THE RUNGE-KUTT A
METHOD, WRITTEN IN THE SO-CALLED BUTCHER-NOTATION
(USUALLY, THE ELEMENTS OF CARE EQUAL TO THE ROW-SUMS
OF THE MATRIX A).
IN PRINCIPLE, ANV RUNGE-KUTTA METHOD CAN BE USED.
HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE
NUMBER OF STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE'
METHOD IS SELECTED. THE CORRESPONDING A, BAND C CAN

C BE FOUND IN:
C J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES,
C MATH. COMP. 18 (1964) PP. 50-64
C YN - REAL ARRAY OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAY
C FN - REAL ARRAV OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAV
C RJ - REAL ARRAV OF DIMENSION (NR,L) WITH L .GE. S
C USED AS SCRATCH ARRAV
C RJM1 - REAL ARRAY OF DIMENSION (NR,L) W 1TH L .GE. s
C USED AS SCRATCH ARRAV
C BIGV - REAL ARRAV OF DIMENSION (NR,L) WITH L .GE. s
C USED AS SCRATCH ARRAV
C VREF - REAL ARRAV OF DIMENSION (AT LEAST) N
C USED AS SCRATCH ARRAV

c--
D I MENSI ON V(N), VN(N) ,FN(N), VREF(N) ,RJ(NR, ") ,RJM 1 (NR, *),

+ BIGY(NR,*),A(NRA,*),B(*),C(*)

INTEGER S,P
LOGICAL REJECT

c--
c THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING
C THE INTEGRATION PROCESS
C

C

C

C

NFCN
NSTEPS
NACCPT
NREJCT

NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F
NUMBER OF INTEGRATION STEPS
NUMBER OF ACCEPTED STEPS
NUMBER OF REJECTED STEPS

c--
COMMON/STAT /NFCN,NSTEPS,NACCPT ,NREJCT

c---
c SMALLEST NUMBER SATISFYING 1.0 + UROUND > 1.0
C UROUND MAV REQUIRE AMENDMENT ON DIFFERENT MACHINES

c---
DATA UROUND/7.lE-15/

c------------------
c INITIALISATIONS

c------------------
REJECT:.FALSE.

NFCN=O
NSTEPS:O

NACCPT=O
NREJCT:O
TOL:MAX(TOL, 1 O.O*UROUND)

c--
c ON ITERATING THE RUNGE-KUTT A METHOD, WE USE A PREDICTION
C OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO
C OBTAIN A RESULT OF ORDER P.

c--
M=P-1

c-------------------
c INTEGRATION STEP

c-------------------
10 CONTINUE

IF (H .LT. 1 O.O*UROUND) THEN
WRITE(6, 1)T

FORMAT(' THE ROUTINE HAS ADVANCED THE SOLUTION UP TO

43

44

+ T=',E 16.8,/,' AND STOPPED BECAUSE THE STEP SIZE HAS',

+ 'BECOME TOO SMALL'/' TRV A LESS STRINGENT VALUE',

+ 'OF TOL OR CHANGE TO A HIGHER-ORDER METHOD')

RETURN

ENDIF

IF (TEND-T .LT. UROUND)RETURN

IF (T+H .GT.TEND) H=TEND-T

c----------------------
c FORM THE PREDICTION

c----------------------
DO 20 I=1,N

20 VN(l)=V(I)

CALL FCN(N,T,VN,FN)

NFCN=NFCN+1

30 NSTEPS=NSTEPS+1

DO 50 L= 1,S

D040I=1,N

40 RJMl(l,L):FN(I)

50 CONTINUE

c--
c IN THE 110-LOOP, THE ITERATION IS PERFORMED

c--
DO 110 J= 1,M

c---
c IN THE 80-LOOP, THE S STAGES ARE PERFORMED CONCURRENTLY

c---
D080 L:1,S

D070I=1,N

BIGV(l,L)=VN(I)

DO 60 K= 1 ,S

60 BIGV(l,L)=BIGV(l,L)+H"A(L,K)*RJM 1 (l,K)

70 CONTINUE

CALL FCN(N,T+C(L)*H,B IGV(1,L),RJ(1,L))

80 CONTINUE

NFCN=NFCN+l

c---------------------
c SHIFT THE ITERATES

c---------------------
lF (J .LT. M)THEN

DO 100 L= 1,S

D090I=1,N

90 RJM 1 (l,L):RJ(l,L)

100 CONTINUE

ENDIF

110 CONTINUE

c------------------------------------·----------
c CALCULATE THE FINAL SOLUTION OF THIS STEP

C AND A REFERENCE SOLUTION FOR ERROR CONTROL

c---
00 130 I=1,N

V(l)=VN(I)

VREF(I)=VN(I)

DO 120 K= 1,S

V(I):V(I)+H*B(K)*RJ(I ,Kl

120 VREF(I):VREF(I)+H*B(K)*RJM 1 (I ,K)

130 CONTINUE

c----------------
c ERROR CONTROL c----- · _________ _

ERROR:0.0

DO 140 I=1,N

DENOM=MAX(1.0E-6, ABS(V(I)), ABS(VN(I)), 2.0*UROUND/TOL)

140 ERROR:ERROR+((V(l)-VREF(I))/DENOM)**2

ERROR:SQRT(ERROR/N)

FAC:MAX(1.0/6.0 ,MI N(3.0 ,(ERROR/TOL)**(1.0/P)/0. 9))

HNEW:H/FAC

IF (ERROR ~T.TOL)THEN

c--------.----------
c STEP IS REJECTED

c-------------------
lF (NACCPT .GE. 1) NREJCT:NREJCT+l

REJECT :.TRUE.

H=HNEW

GOTO 30

ELSE

c-------------------
c STEP IS ACCEPTED

c-------------------
NACCPT:NACCPT+ 1

T:T+H

IF (REJECT) THEN

HNEW:MIN(HNEW ,H)

REJECT =.FALSE.

ENDIF

H=HNEW

GOTO 10

ENDIF

END

45

CHAPrERil

Block Runge-Kutta methods on parallel computers

Reprinted from

. Z. Angew. Math. Mech. 72 (1) (1992), 3-18

with granted permission from AKADEMIE VERLAG

Block Runge-Kutta methods on
parallel computers

P.J. van der Houwen and B.P. Sommeijer

CW/: Centre for Mathematics and Computer Science
Post box 94079, I 090 GB Amsterdam, The Netherlands

Abstract. In this paper block methods for solving ODEs on parallel
computers are constructed. Most block methods found in the literature
produce approximations to the exact solution at equidistant points. Here, we
allow that the approximations correspond to nonequidistant points like the
intermediate approximations computed in Runge-Kutta methods. This
approach enables us to improve the order of accuracy. We concentrate on
explicit methods such that they are suitable for use on parallel computers.

/991 Mathematics Subject Classification: 65L06

/99/ CR Classification: G.1.7

47

Key Words: numerical analysis, stability, block Runge-Kutta methods, parallelism.

1. INIRODUCDON

Block methods turned out to be efficient methods for solving the initial value

problem for the system of ordinary differential equations (ODEs)

411> = f(y(t))

on parallel computers (cf. e.g. Worland [10] and Chu & Hamilton [31). Most block
methods occurring in the literature can be interpreted as block linear multistep

methods (BLM methods), that is, they are derived from the linear multistep (LM)

method

in which Yn is replaced by an m-dimensional vector Y n := (ynm, Ynm+ 1, ... ,
Ynm+m-I)T and where the (scalar) coefficients of the polynomials p and <J' are
replaced by matrices. Thus, in BLM methods the components of the block vector Yn
represent approximations to the exact solution at equidistant points.

In this paper, we consider block methods where the components of the block

vector represent approximations to the exact solution at not necessarily equidistant

48

points. In this way, we obtain additional parameters for increasing the order of

accuracy of the method. In the derivation of these methods it turns out to be

convenient to start with a Runge-Kutta (RK) method, and, by analogy with BLM

methods, to replace they-values generated by the method by vectors the components

of which represent approximations to the exact solution. If these vectors are k

dimensional, then the RK parameters are replaced by k-by-k matrices. We shall call

these methods block Runge-Kutta methods (BRK methods).

In Section 2, we give a precise definition of BRK methods and we give examples

of methods from the literature which can be written as BRK methods. The

representation in BRK form provides a unifying way of describing all sorts of

methods (including BLM methods) and is particularly convenient for describing

block methods for use on parallel computers. In Section 3 the order conditions for

explicit one-stage methods and implicit two-stage methods are given, and Section 4

is devoted to the construction of these BRK methods with k = 2, 3, 4. We shall

particularly be interested in explicit methods. For explicit methods with given k we

tried to maximize the order and to minimize the number of processors without

increasing the number of sequential right-hand side evaluations per step (we shall call

this minimal number of processors the optimal number of processors). It is possible

to derive explicit one-stage methods of order 2k-1, using not more than 2

processors. However, if the requirement of zero-stability is imposed (which is crucial

if the method is to be used as a method on its own), then the order reduces to k+ 1.

We also derive zero-stable, explicit two-stage methods of order 2k for two-processor

computers. In Section 5, the various methods are compared for a few test problems

from the literature.

It turned out that, like for all block methods, stability is a critical aspect of BRK

methods. In this paper, we did not concentrate on stability aspects. Only when free

parameters were available which could not be used for increasing the order, we have

employed them to increase the stability of the method.

2. BLOCKRUNG~KUITAMEIHODS
Let us start with the conventional s-stage RK method

i = l, ... , s+l;

(2.1)
(s+l)

Yn+ I = Y n+ I , n = 0, I,

49

The general structure of the block Runge-Kutta (BRK) methods considered in this

paper is a direct generalization of this conventional method. We introduce block

vectors Yn, the components of which are numerical approximations to the exact

solution values at k points. To be more precise, let Yn+I be defined by

Ck= 1,

where Yn,c denotes a numerical approximation to the exact solution value y(tn+ch).

For scalar ODEs, we now define the s-stage block RK (BRK) method

i = 1, ... , s+ 1;

(2.1 ')

where Ai and Bij are k-by-k matrices and where we use the convention that for any

given vector v = (vj),J(v) denotes the vector with entries f(vj)- This method can be

considered as the block analogue of (2.1). It is straightforwardly extended to systems

of ODEs and therefore also to nonautonomous equations. In order to start the

method, one needs the initial vector Yo, which requires as many starting values as

there are distinct values Cj (J=l, ... ,k).

In analogy with the Butcher array for describing the RK methods (2.1), i.e., the

(s+ 1)-by-(s+ 1) array

b1 I

bs, 1

hs+l,l hs+l,s

we may describe the BRK methods (2.1 ') by the k(s+ 1)-by-k(s+ 1) array

A1 B11

Bss

As+ I Bs+l ,I Bs+l,s

50

This notation is particularly convenient when more than two stages are involved.

It frequently happens that the two last rows of this array are identical. In such cases,

we shall omit the last row in order to save space.

We call the method explicit if the matrices Bij vanish for}'?. i, and implicit

otherwise. In this paper, we are mainly interested in explicit methods. For explicit

methods, the k components of the blocks.f(Yj],) can be computed in parallel; hence

if k processors are available, then (explicit) BRK methods require not more than s
(sequential) right-hand side evaluations per step. However, the required number of

processors is often less thank, without causing the number of (sequential) right-hand

side evaluations per step to exceeds. For instance, it may happen that in the formula

for a particular component of Yn+I no right-hand side evaluations occur, that is, all

rows in the matrices Bij corresponding to this component vanish. In such cases, the

processor assigned to this component is not needed. Similarly, if the rth column of

all matrices Bij vanishes, then the computation of the corresponding component of

Y11+ I does not require any right-hand side evaluation not already occurring in the

formulas for the other components, so that there is no need to assign a processor to

this component. We define the optimal number of processors as the number of

processors for which the number of (sequential) right-hand side evaluations per step

is minimal. In the explicit case, the representation (2.1 ') is very convenient for

implementing the method on a computer, because the actual code is a direct

translation of the formula (2.1 ') and the instructions for the computer in order to

exploit the built-in parallelism of the method are obvious.

The points tn and tn+c1h (j-:t;k) will respectively be called step points and block

points. Block points coincide with step points if the corresponding value of c1 is an

integer. Upon completion of the integration process, the accuracy of the numerical

solution obtained does not necessarily be the same at all points tn+c1h. Points where
the corresponding components of Yn+I do have the same order as the components

corresponding to the step points tn will be called output points.

and

The general explicit one- and two-stage methods are respectively given by

0 0

B21 0
i.e., Yn+I =A3Yn + hB3if(A1YnJ

+ hB32f(A2Yn + hB2if(A1Y11)).

51

Here,-0 denotes the k-by-k matrix with zero entries.

As a numerical example of an (explicit) 3-stage method, we present the modified

multistep method of Butcher [1] of order 5 as a BRK method: the block point vector

is given by c = (O,l)T and the Butcher array assumes the form:

0

0

0 3/8 9/8

0 0 0

-23/5 28/5 -26/15 0 32/15 -4

0 1 0 0 0 0
C = (0, l)T.

0 0 0 0 0 0 0

-1/31 32/31 -1/93 12/93 64/93 0 15/93 0

The construction of higher-order BRK methods is rather difficult in the general

case. In this paper, we shall construct high-order methods of a special form which are

obtained by using the predictor-corrector (PC) technique. Our starting point is the

special implicit two-stage method

I 0 0 ±l A B C
(2.2) = A '

A B C

i.e., Yn+I = AYn + hBf(Yn) + hCf(Yn+1).

If C does not vanish, then we can use this method as corrector and if C=O, then it

can be used as (a one-stage) predictor formula, e.g.,

(2.2') *8· i.e., Yn+I =AYn + hBf(Yn)-

From this pair we can generate higher-stage BRK methods by PC iteration provided

that the block point vectors c:=(CJ, ... ,ck)T are identical. For example, in PECE mode

we obtain the special two-stage BRK method

52

I

D

0 0
E 0

(2.3) , i.e., Yn+l = AYn + hBf(YnJ + hCf(DYn + hEf(YnJJ.

A B C

Finally, it should be remarked that (2.2) is also the representation of the so-called

general linear methods introduced by Butcher in 1966 (see Butcher [2]). Most

methods from the literature (including the general BRK method (2.1 ')) can be cast

into the form (2.2). However, although the original method is explicit, the general

linear method version is often implicit. For example, the explicit two-stage BRK

method (2.3) can be rewritten in the form (2.2) by redefining the matrices A, B and

C in (2.2), but C will not be a zero matrix. Thus, for implementation of higher

stage BRK methods on parallel computers, the representation (2.2) is less suitable.

In the following subsections, we present in BRK form a number of methods

which have been proposed for use on parallel computers. In particular, we give

examples of the predictor-corrector methods of Miranker and Liniger [8] and

Shampine and Watts (cf. Worland [10]), and the multi-block methods of Chu and

Hamilton [3]. A discussion of block methods for parallel computation may be found

in Gear [5].

2.1. Methods of Miranker and Lmiger

The methods of Miranker and Liniger [8] can be presented as explicit, one-stage

BRK methods. For example, their second-order method can be represented by the

array

1 0

0
(2.4) c=(2,l)T,

0 2 0

0 1/2 1/2

and their fourth-order method by

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
(2.5) C = (-1, 0, 2, J)T.

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 -1/3 4/3 8/3 -5/3

0 0 0 l /24 -5/24 9/24 19/24

53

Both methods require only two processors and respectively two and four starting

values when implemented in BRK form.

2.2. Predictor-Corrector method of Shampine and Watts

The PC method of Shampine and Watts [9] is based on the block method of

Clippinger and Dimsdale (1958), which can be presented in the form (2.2) as

I 0

0

0 0 5/24 1/3 -1/24

0 0 1/6 2/3 1/6
(2.6)

and on the predictor method defined by

0 0 0

0 0 0

0 0 0

0 0 0
(2.7) C = (-1/2, 0, 1/2, l)T.

0 0 I 0 0 0 0 0

0 0 0 0 0 0 0

0 1/3 1/3 1/3 0 1/4 -1/3 13/12

0 1/3 1/3 1/3 0 29/24 -3 79/24

Method (2.6) is one of the oldest block methods proposed in the literature. Shampine

and Watts proved that this corrector method is fourth-order accurate at the step

points. They also proved that the predictor method is third-order accurate and

possesses favourable stability properties. This predictor can also be applied as a

method on its own and requires four starting values and one processor.

In order to apply the PC pair (2.7)-(2.6) using the BRK format, we rewrite the

corrector in the form

54i

1 0 0 0

0 l 0 0

0 0 l 0

0 0 0 I

0 0 }; 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0' 0 0 0

0 0 0 0 o, CJ 5/24 0 o, 1/3-1/24

0 ff 0 r 0 0 0 1/6 0 0 2/J. I/6
(2.6') ,. c= (-In, o,, 1/2, l}T.

The PC method of Shampine and Watts was implemented by Worland PO] on two

processors,

2.3. Mulfi-bloclt methods of Cim and Hamilton

Chu and Hamilton [3~ generalized the cyclic linear mu:ltiistep, nietlwds. of

Donelson and Hansen [4]. Families of thir.d0 and fourth,-order multi,.block methods

were derived. We give two eX:amples of tneir k=2 methods, wlirich can be represented

in the form (2.2) or (2.2'). The first example is the explicit thirct-orcler meth0d

r 0

0
(2.8) C = (1/2,. l)T,

5 -4 1 2

28-27 6 9

and the second example is the fourth-order implicit method

0

0 1

0 . -1/48 13/48 13/48 -l/48

0 0 1/6 213 1/6
(2.9} C =(l'/2,l)T_

2.4. Parallel MRK methods

An example of methods which can be written in the form (2.3)\ and which do not

originate from PECE methods, is the famity of first-order, explicit parallel MRK

methods (cf. van der Houwen et al. [61)

55

0 0 0 0 0

0 0 0 0 0

0 1--a, a, 0 0 0
(2.10) c = (0, c, l)T,

0 0 0 0 0

0 0 0
.l!1_
(l--a,)

0

0 0 l-c-b1 b1 C

where a 1, b 1, b3 and c are free parameters. Third-order accuracy is obtained by setting

5
b3 =--,

6c

with c as a free parameter. These methods require three starting values and only one

sequential right-hand side evaluation on two processors. Notice that (2.10) is of the

general explicit one-stage form in which the matrix A 1 has not been replaced by the

identity matrix as was the case in (2.2').

3. ORDER CONDffiONS
In this section, we restrict our considerations to parameter arrays of the form

(2.2) either with C=O or C~O. Let the exact solution be substituted into (2.2).

Then, in general, the order conditions are derived by requiring that the residual vector

is of order hP+1 for all components (that is, we require that all components of Yn+l

are pth-order approximations to the corresponding exact solution values). In this

way, we obtain the following condition for pth-order consistency:

(I - zC) exp(zc) - (A + zB) exp(zc - ze) = O(zP+ 1),

e := (1, l, ... , t)T, c := (ct, c2, ... , ck?-

By defining the error vectors

Co := Ae - e; Ct := A(c - e) +Be+ Ce - c;
(3.la)

the conditions for pth-order consistency take the form

(3.lb) Cj = 0, j = 0, I, ... , p.

Here, powers of vectors are meant to be componentwise powers.

- In the construction of high.order formulas it is con:venient to specify the matrix

A in: (2.2) in' advance, because the eigenvalues of A should lie in a, zer.o~stable

configuration, that is, they should' be on the unit disc, those on the unit circle: being

simpfo (such a zero-stability condition is difficult to satis·fy simufraneously with the

order conditions unless k is su1ifieiently small). A natural choice for the matrix A is

su~tra by observing that

tn+c;fz

Yn+l -Yne a,:. (J f('yft);)dt].
tn

Replacing the integral term by a quadrature formula, we obtain a method' where A is

of the form,

this matrix has one eigenvalue r and k-1 zero eigenvalues, so that a reasonable

srabifity region may be expected ~cf. the analogous situation for linear mulitistep

methods of Adams-type}. BR.K methods possessing a matrix A of the form fl.2) will

oe called Adams-type methods.

Assuming that A is given and is such that Ae=e, the most simple way to derive

high•order formulas is to specify the vector c. This leaves us with a linear system of

p equations for each c0mponent formula, of the corrector fonnula. Howeve11, in this

app:i:oacfr, the free parameters in the vector c are nor exploited. These firee parameters

may be used for minimizing the error vector C p+ 1· For instance, we may add to the

order conditions (3.1) the condition that c is such that ll C p+ r 11 is minimal for some

norm ll· 11. Alternatively,. one may sac:i:ifice the l'inearity of the order conditions and

choose c such that certain components of the error vector vanish, tnat is, it is not

necessary that all components of Y n+ 1 are ptn-order approximations.

io be more general, we denote the order of consistency of the formula fox: Yn,ci

by Pi and define tne set J q := f iE {I, 2, ... , k} I Pi=q}. Now, we introduce the

following property:

Property 3.1. (i) Jp u lp-1 = { 1,.2, ... ,k},

(ii} for each ie J p, the matrix A has vanishing elements aij for aH

jf=-lp-1.·

57

If this-property is satisfied, then the method (2.2) produces pth-order results at the

points tn+c;h, n=l,2, ... and all iElp. One may interpret this as a form of super

convergence.

As an example, in the Adams-type BRK methods with matrix A of the form

(3 .2), the first k- I components of Y n only occur in the right-hand side as argument

of the function f, so that these components are allowed to be of one order less than

the order of Yn, without decreasing the order of the approximations at the points tn.

We recall that from an explicit and implicit BRK method with identical block

point vector c:=(q , ... ,ck)T, we can derive higher-stage BRK methods by PC

iteration. By requiring that the explicit method (predictor) and the implicit method

(corrector) provide approximations to y(tn+c1h), respectively of orders q and p, for all

}, we obtain after r iterations a method which provides approximations of order

p*=min {p, q+r}. Since the predictor need not to be stable, one can employ the full

freedom of the generating matrices, so that q is usually sufficiently large to get the
maximal attainable order p of the corrector in just one correction (PECE mode). If

not, then one may decide to continue the iteration.

4. CONSTRUCTION OF BRK MEmODS
Since the implementational complexity of the BRK method is mainly determined

by the number of starting values and the associated storage needed to implement the

method, we shall distinguish the various methods by their number of starting values.

The methods constructed in the following subsections will be compared with

methods from the literature.

4.1. Methods requiring two starting values

In this subsection we consider methods where the block vector Yn is defined by

Yn+I := (yn,c, Yn+Jl.

At first sight, it would be natural to choose c=l/2. However, as we shall see, a more

judicious choice is possible.

4.1.1. Explicit one-stage methods. We shall construct the family of second-order

BRK methods of Adams-type and the general family of third-order methods.

Second-order methods of Adams-type. The conditions (3.1) with C=O and A defined

by (3.2) can be satisfied for p=2 and yield

58

1 0

0
(4.1)

-c2 c(2-c)
0

2(1-c) 2(1-c)
-1 3-2c

0 -- --
2(1-c) 2(1-c)

with error vector

(4.2) 1 (c2(c-3)) C3=- .
2 3c-5

The following special cases of (4.1) will be tested in the numerical experiments at

the end of this section:

c=O
C = l/2

C =5/3

c=2
c=I+4113

c=3

(4.1) reduces to the Adams-Bashforth method

'natural choice'

Local error at tn+ 1 is O(h4)

(4.1) reduces to Miranker-Liniger method (2.4)

IIC3ll00 minimized

Local error at tn+ch is O(h4)

C3 = (0.0, -2.5)T

C3 ""(-0.3, -1.s)T

C3 ""(-1.9, o.o)T

C3 = (-2.0, +0.5)T

C3 ""(-1.4, +1.4)T

C3 = (o.o, +2.0)T

We observe that the case c=S/3 will raise the order to 3 at all step points tn, in spite

of the second-order accuracy of Yn,c, because of the special form of the matrix A (cf.

Property 3.1).

Third-order methods. Next we construct the family of one-stage BRK methods in

which all components are at least of third order. We find the method

1 0

0
(4.3)

'
c = (c, l)T, C ::f. 1,

c2(3-c) 1-3c c2 C

(1-c)3 (1-c)3 (1-c)2 (1-c)2

5-3c -c3+3c2-4 2-c (2-c)2

(1-c)3 (1-c)3 (1-c)2 (1-c)2

with error vector

59

This method is zero-stable for all values of c for which the eigenvalues of A are on

the unit disc and are not both equal to 1. Since A has the eigenvalues 1 and

(c2-2c-5)/(c-1)2, we obtain the condition

c2-2c-5
A := -(-c--1-)2-

This leads to the necessary condition

(4.4) c'2!1+"✓3.

The parasitic eigenvalue A vanishes for c=l ±"«>. Unfortunately, the value c=2 which

makes Yn+l fourth-order accurate is not in the range (4.4). If c=l/2, then the method

reduces to the method (2.8) of Chu and Hamilton.

A number of experiments was carried out in order to illustrate the effect of c on

the accuracy of the methods (4.1) and (4.3). We chose the nonlinear initial value

problem

(4.5) y'(t) = sin(y5) - sin(sin5(t)) + cos(t), y(O) = 0, 0::;; t::;; 1,

with exact solution y(t)=sin(t).

In Table 4.1 the results are given. The absolute error obtained at the end point of

the integration interval is written in the form 10-d and the values of d are given in

the table (d may be interpreted as the number of correct decimal digits). Each column

contains results which required the same number of sequential right-hand sides. In

these and subsequent experiments, the starting values incorporated in the initial

vector Yo are taken from the exact solution.

These results show the theoretical order of accuracy. It is clear that the choice

c=l/2 is not the best possible. Furthermore, the value c=1+4113 (minimal-norm

value) does not improve the accuracy, so that we refrain from considering this special

case in the subsequent sections. Notice that the method (4.1) with c=S/3 produces

results which are comparable with the results of the method (4.3) with c=l ± K

60

Table 4.1. Correct decimal digits at t==I for problem (4.5) obtained

by BRK methods with k==2 and s==l.

Sequential right-hand sides 6 12 24 48 96 order

Adams-Bashforth method 1.8 2.4 3.0 3.6 4.2 2

Miranker-Liniger method (2.4) 2.7 3.2 3.7 4.3 4.9 2

BRK method (4.1): c==l/2 2.0 2.5 3.1 3.7 4.4 2

BRK method (4.1): c==1+4113 2.1 2.7 3.3 3.9 4.5 2

BRK method (4.1): c==3 1.9 2.5 3.1 3.7 4.3 2

BRK method (4.1): c==5!3 3.1 4.0 5.0 5.9 6.8 3

BRK method (4.3): c==l+'V6 3.1 4.0 4.9 5.8 6.7 3

BRK method (4.3): c==l-% 3.3 4.1 4.9 5.8 6.7 3

4.1.2. Implicit two-stage methods of Adams-type. The conditions (3.1) with

nonvanishing matrix C can be satisfied for p==4 by

0

0
-c3 c(c2-6c+6) c(c2-6c+6) -c3

(4.6) 0
12(1-c) 12(1-c) 12(1-c) 12(1-c)

(1-2c) -6c2+10c-3 3-2c 6c2-14c+7
0

12(1-c)(2-c) 12c(l-c) 12c(l-c) 12(1-c)(2-c)

with c == (c, l)T, c-:;:. 0, 1, 2.

The corresponding error vector is given by

The following special cases of (4.6) will be considered:

(11 8)T (4.6) is equivalent with the corrector (2.9) C5 == - 192 , - 192

(4'V5)T Local error at tn+l is O(h6) C5 == - 125 , 0

4.1.3. Predictor-corrector methods. In order to 'solve' the corrector equation defined

by (4.6) one may use a PC method with predictor defined by (4.3). The PC methods

determined by the matrices (4.3)-(4.6) require two starting values and, in PECE

mode, they all have at least order 4. For c==l-ffi5, we achieve order 5 in PE(CE)2

61

mode. We remark that for the predictor formula, the value of c is not required to

satisfy the inequalities (4.4).

We illustrate the performance of the PC method (4.3)-(4.6) by comparing it with

the 2-step Adams PC method (notice that the BRK method (4.3)-(4.6) with c=l/2 is

equivalent with the Chu-Hamilton pair (2.8)-(2.9)). In the Tables 4.2, the correct

decimal digits at t=l and the total numbers of sequential right-hand side evaluations

are listed for the various methods in PECE mode and in PE(CE)2 mode.

Table4.2a. Correct decimal digits at t= 1 for problem (4.5) obtained

by BRK methods in PECE mode with k=2.

Sequential right-hand sides 6 12 24 48 96

Two-step Adams-PC method 2.1 3.1 4.1 5.0 5.9

Chu-Hamilton pair (2.8)-(2.9) 4.3 5.4 6.5 7.6 8.7

BRK method (4.3)-(4.6): c=l -ffi5 4.8 5.4 6.5 7.6 8.8

Table 4.2b. Correct decimal digits at t= 1 for problem (4.5) obtained

by BRK methods in PE(CE)2 mode with k=2.

Sequential right-hand sides 6

Two-step Adams-PC method 1.8

Chu-Hamilton pair (2.8)-(2.9) 3.9

BRK method (4.3)-(4.6): c=l -ffi5 3.9

4.2. Methods requiring three starting values

The block vector Yn is now defined by

12

3.1

5.7

5.5

24 48 96

4.2 5.1 6.0

9.3 8.4 9.5

7.0 8.5 10.0

order

3

4

4

order

3

4

5

providing us with two free parameters. As before, equidistant output points need not

to be the best choice. Because of the rapidly increasing complexity of the derivations

if more than 2 starting values are used, we shall not consider the general case as in

the preceding section, but we shall restrict our considerations to a few special cases.

4.2.1. Explicit one-stage methods. We consider Adams-type methods and a more

general family of zero-stable methods.

Third-order methods of Adams-type. If C=O, then the following array satisfies the

conditions (3.1) for p=3 and for all (distinct) values of CJ and c2 different from 1:

62

0 0

0 I 0

0 0
(4.7)

0 0 a1 - <crl)b1 (c1-l)b1 c 1 - a 1 + (c 2-c1)b1

0 0 a 2 - (c2- I)b2 (c1-J)bz c2 - a 2 + (crc 1)b2

0 0 a 3 - (c 2- I)b3 (c1-l)b3 c3 - a3 + (crc1)b3

where c = (CJ, c2, J)T and

i = 1, 2, 3.

We restrict our considerations to the two-processor case, that is, we set CJ =0. By

virtue of the special form of A we obtain order p=4 at the step points if the third

formula has order 4 while the first and second formula have order 3. Setting the third

error component equal to zero we find ci= 17 /l 0.

Fourth-order methods. Let us consider methods of the form

I 0 0

0 I 0

0 0
(4.8) C = (0, C, J)T.

0 0 0 0 0

a21 a22 a23 b21 b22 b23

a31 a32 a33 b31 b32 b33

Solving the conditions (3.1) for p=4 with c=l/2 we obtain

0 0

0 0

0 0
c = (0, 1/2, I)T,

0 0 0 0 0

-9-a 9 l+a (-10-a)/6 (-22-4a)/6 (8-a)/6

-b 64 -63+b (-9-b)/6 (I 08-4b)/6 (99-b)/6

63

where_a and bare free parameters. We could have used these parameters for increasing

the order of accuracy to p=5. However, then the method turns out to be zero

unstable. Therefore, we shall employ them for improving the stability of the

method. In particular, we choose a and b such that the parasitic roots of the

characteristic equation of A vanish. This characteristic equation is given by

(8- 1) (8 2 + (55 -b)8+ 9b- 64a - 576) = 0,

so that we are led to the values a= - 81/64 and b = 55. The corresponding Butcher

array becomes

1 0 0

0 0

0 0
(4.9) , C = (0, 1/2, l)T.

0 0 0 0 0

-495/64 9 -17/64 -559/384 -271/96 593/384

-55 64 -8 -32/3 -56/3 22/3

The following table illustrates the performance of the above explicit, one-stage

methods.

Table4.3. Correct decimal digits at t= l for problem (4.5) obtained

by BRK methods with k=3 and s= l.

Sequential right-hand sides 6 12 24 48 96 order

Adams-Bashforth 3.2 3.9 4.8 5.6 6.5 3

BRK method (4.7): (q,ci) = (0,1/2) 3.4 4.2 5.1 6.0 6.9 3

BRK method (4.7): (q,c2) = (0,17/10) 4.1 5.3 6.5 7.7 8.9 4

BRK method (4.9) 4.0 5.1 6.4 7.6 8.8 4

4.2.2. Implicit two-stage methods. We assume the generating array of the form

1 0 0

0 1 0

0 0
(4.10)

0 0 0 0 0 0 0 0

a21 a22 a23 b21 b22 b23 0 C22 C23

a31 a32 a33 b31 b32 b33 0 c32 C33

64

with c = (0, c, l)T and we derive a fifth-order method of Adams-type and a sixth-order

method with increased stability interval which is not of Adams-type.

Adams-type method of order 5. We choose c=l/2 and A of the form (3.2), and find

that the order conditions (3 .1) can be satisfied for p=5 by

1 0 0

0 1 0

0 0
(4.11)

0 0 0 0 0 0 0 0

0 0 11/1440 -37/720 19/60 0 173/720 -19/1440

0 0 -1/180 1/45 2/15 0 31/45 29/180

with c = (0, 1/2, l)T.

4.2.3. Predictor-corrector methods. We consider two PC methods which are in PECE

mode of orders 5 and 6, respectively.

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11)

detl!rmine a PC method of order p=5. It requires three starting values and, if two

processors are available, then only two sequential right-hand side evaluations per step

are needed.

Method of order 6. Next we consider PC methods where the predictor and corrector

are generated by matrices of the form (4.8) and (4.10), and where c is still a free

parameter. We try to construct a PC method which is of order 6 in PECE mode by

choosing the free parameters such that the corrector formula for Yn+ 1 becomes of

order p=6, whereas the other corrector formula and the two predictor formulas have

order p=5.
To that purpose, we have investigated methods where

[

0 0

A:= 0 0

a 0

(notice that A does not refer to the second component of the block vector so that the

corrector formula corresponding to this component may be of one order less than that

65

of the.third component). This leads to a one-parameter family of sixth-order PECE

methods which can be represented in the form (2.3), i.e.,

Yn+I =AYn + hBf(Yn) + hCf(DYn + hEf(Yn)).

The free parameter will be used to improve the (linear) stability of the method. The

(linear) stability of this two-stage BRK method can be investigated by applying the

method to the test equation y'=Ay to obtain the recursion

Yn+l = R(z) Yn, R(z) := A + z(B +CD)+ z 2CE, z := Ah,

and by requiring that the matrix R satisfies the simple Von Neumann stability

condition, that is, it has its eigenvalues on the unit disc those on the unit circle

being simple. Choosing c as the free parameter, we start with determining a range of

relevant c-values by requiring that R(O) satisfies the stability condition (zero

stability). Since the eigenvalues of R(O)=A are given by 0, 1 and -a, we require

-1 ::;-a <1. It can be shown that imposing the conditions for sixth-order accuracy on

the corrector formula for Yn+I leads to

a=
15c2 -3Ic+ 13

15c2 + c- 3

so that c should be not less that 1/2 in order to ensure zero-stability. As before, we

shall not consider the maximization of the general stability boundary. Instead we

consider the simpler case of maximizing the real stability boundary. A numerical

search reveals that the real stability boundary is maximized for c"" 4.16 and is

approximately given by 2.247. In order to obtain (simple) rational expressions for

the entries of the various matrices, we do not choose this 'optimal' value of c, but

we set c = 4 yielding the stability boundary 1. 766.

The predictor is generated by the matrices

I 0 0

0 I 0

0 0

(4.12) C = (0,4, l)T

0 0 0 0 0
27 -25 -325 25 100
2 54 27 5

9 9

3 5 -16 1 -1 16
2 54 27 2 18 9

66

-and the corrector by

0 0

0 1 0

0 0
(4.13)

0 0 0 0 0 0 0

0 0
4 76 2

0
58

75 45 45 225

129 112 1141 -47 2110 26
241 0 241 7230 4338 2169 0 10845

with c = (0, 4, I)T.

The following table is the k=3 analogue of the preceding tables:

Table 4.4. Correct decimal digits at t=l for problem (4.5) obtained

by BRK methods in PECE mode with k=3.

Sequential right-hand sides 6 12 24 48 96

Three-step Adams-PC method 3.6 4.5 5.7 6.9 8.1

BRK method (4.9)-(4.11) 4.5 6.0 7.5 9.0 10.5

BRK method (4.12)-(4.13) 5.0 6.9 8.9 10.9 13.0

4.3. Predictor-Corrector method requiring four starting values

0
88
45

896
2169

order

4

5

6

We have searched for two-processor predictors in the class of methods of the form

0 0 0

0 I 0 0

0 0 I 0

0 0 0 I
C = (-1, 0, C, l)T.

0 I 0 0 0 0 0 0

0 0 0 0 0 0 0

031 032 033 034 b31 b32 b33 b34

041 042 043 o44 b41 b42 b43 b44

For a given value of c we can achieve order 7 by solving two linear systems of 8

equations each in 8 unknowns.

67

The corrector was chosen such that

0 0 0

0 1 0 0

0 0 1 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

031 o'32 0 l-a31-a32 b31 b32 b33 b34 0 0 C33 C34

041 042 0 l-a41-a42 b41 b42 b43 b44 0 0 C43 C44

withc = (-1,0,c, l)T.

By this choice we achieve that the order conditions (3.1) simplify considerably.

Given the value of c, this method can be made order 8 accurate in each component

equation, again by solving two linear systems of 8 equations in 8 unknowns. These

four systems of 8 equations have been solved numerically in terms of the parameter c

and for a range of c-values we computed the real stability boundary /3real of the

PECE mode. We found that /3real was maximal for c = 2.58 (/3real = 0.358). In order to

obtain a method with (simple) rational parameter values we chose c = 512 resulting in

f3real = 0.302. The corresponding predictor is generated by

0 0 0

0 1 0 0

0 0 0

0 0 0
(4.14)

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

5975 1539 537 2793 225 567
9

2205
224 20 -15 -32 32 8 32

82 117 63232 2 3 18 128
343 125 128625 -3 49 25 - 1225

with c = (-1, 0, 5/2, J)T; the corresponding corrector is defined by

68

(4.15)

where

1
A =30469

1
B =30469

1
C = 30469

0

0

53·73· ! 3·83
210

0

36·53·263
21

4549 33· ! 039

0 0

0 0

33.54.73 36·52·7· l 7·67
~ 216

23029 33·13-1709
3-7 5·7

0 0 0

0 0 0

32·5·7·809
0 0 23

0 0
29·11
3·5·7

0 0

0

0
36·73·827

- 210

0 - 33 79

0 0

0 0

35.52.73 35·5·73·13
-y- 25

28·32·3 l 32·61·337
5·7 5

0

0

33·53·73·37
216

14369

and c = (-1, 0, 5/2, 1)T. Table 4.5 compares this method in PECE mode with the

four-step Adams and four-step Shampine-Watts method.

Table 4.5. Correct decimal digits at t=l for problem (4.5) obtained

by BRK methods in PECE mode with k=4.

Sequential right-hand sides 6 12 24 48 96 order

Four-step Adams-PC method 3.3 4.8 6.4 7.9 9.5 5
Shampine-Watts pair (2. 7)-(2.6') 3.6 4.8 6.0 7.2 8.4 4
BRK pair (4.14)-(4.15) 7.3 10.2 12.8 8

69

5. SUMMARY OF IVIETHODS AND NUMERICAL EXAMPLES

The explicit, zero-stable methods and the PC combinations discussed in the

preceding sections will be applied to a number of initial value problems. In addition,

we give the results obtained by the classical Adams formulas. First, however, we

summarize the main characteristics of the various methods.

5.1. Summary of methods

Below we have listed a few important features such as the block point vector c,

the order p, and the number of processors P opt needed to implement the method with

only one right-hand side evaluation per step.

Table 5.la. Survey of explicit one-stage BRK methods of the form (2.2').

Reference cT Popt p Remarks

Miranker-Liniger [8] (2, 1) 2 2 See (2.4)

(-1,0,2,1) 2 4 See (2.5)

Shampine-Watts [9] (-1/2,0,1/2,1) 3 See (2.7)

Chu-Hamilton [3] (l/2,l) 2 3 See (2.8)

This paper (c,l) 2 3 See (4.1) with c=5/3

(c, l) 2 3 See (4.3)

(q,c2,l) 2 3 See (4.7)

(CJ,C2,l) 2 4 See (4.7) with (q,c2) = (0,17/10)

(0, 1/2, l) 2 4 See (4.9)

(0,4, l) 2 5 See (4.12)

(-1,0,5/2, I) 2 7 See (4.14)

Table 5.lb. Survey of implicit BRK methods of the form (2.2).

Reference cT Popt p Remarks

Clippinger-Dimsdale (l/2,l) 2 4 See (2.6)

Chu-Hamilton [3] (l/2,l) 2 4 See (2.9)

This paper (c, l) 2 5 See (4.6) with c=l--fs/5

(0,1/2,1) 2 5 See (4.11)

(0,4, I) 2 6 See (4.13)

(-1,0,5/2,l) 2 8 See (4.15)

70

Table 5.lc. Survey of PC pairs in PE(CE)' mode.

Predictor Corrector cT

(2.7) (2.6') (-1/2,0, 1/2, 1)

(2.8) (2.9) (1/2,1)

(4.3) with c=l-fs/5 (4.6) with c=l-fs/5 (c, 1)

(4.9) (4.11) (0, 1/2, 1)

(4.12) (4.13) (0,4, 1)

(4.14) (4.15) (-1,0,5/2,1)

5.2. Nonlinear problem with rapidly increasing solution

The first test problem is the nonlinear problem

(5.1) y'(t) = -y3 + t9(10 + t21), y(0) = 0, 0::; t::; 1,

p

4

4

5

5

6

8

r

1

2

with exact solution y(t)=t10. In Table 5.2 the results are listed. Since the number of

sequential right-hand side evaluations per step varies from 1 to 3 for the various

methods, we adapted the stepsize as to obtain that each column of this table contains

results with an equal number of sequential right-hand side evaluations over the whole

integration interval.

A first observation is that most parallel methods behave more efficiently than the

corresponding one-processor Adams methods, showing that already on two-processor

machines parallelism can be exploited. Furthermore, these results clearly demonstrate

the superiority of the high-order methods, especially the 6th- and the 8th-order BRK

methods. It should be remarked that these two methods produce unstable results

(indicated by an '*' in Table 5.2) for large stepsizes, in spite of their large real

stability boundary. The reason is that these methods employ a block point tn+ch,

with c much larger than 1, viz. c=4 and c=5/2, respectively. Since the modulus of

of/c)y, which determines the maximally allowed stepsize, is a rapidly increasing

function oft (at the solution, loflc}yl behaves as 3·t20), it is clear that an evaluation

of/beyond the endpoint t=l may easily cause instabilities.

71

Table 5.2. Correct decimal digits at t=l for problem (5.1).

Sequential right-hand sides 6 12 24 48 96 order

Two-step Adams-Bashforth method 0.3 0.8 1.3 1.9 2.5 2

Miranker-Liniger method (2.4) 0.6 1.2 1.9 2.5 3.1 2

BRK method (4.1): c=5/3 2.6 2.4 3.1 3.9 4.8 3

BRK method (4.3): c=l--f6 0.5 1.2 2.0 2.9 3.8 3

Two-step Adams pair: PECE 0.2 0.9 1.7 2.5 3.4 3

Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 1.1 1.9 3.0 4.2 5.5 4
BRK pair (4.3)-(4.6): PE(CE)2, c=l-'✓5/5 2.0 2.9 4.1 5.7 7.4 5

--
Three-step Adams-Bashforth method 0.5 1.1 1.9 2.7 3.6 3

Method (4.7): (q,ci) = (0,17/10) 2.0 2.6 3.7 4.8 6.0 4

Three-step Adams pair: PECE 0.3 1.1 2.1 3.3 4.5 4

BRK pair (4.9)-(4.11): PECE 1.2 2.2 3.6 5.1 6.7 5

BRK pair (4.12)-(4.13): PECE * * 1.5 5.3 7.4 6

--
Four-step Adams-Bashforth method 0.6 1.4 2.5 3.6 4.8 4

Miranker-Liniger method (2.5) 1.1 2.3 3.5 4.7 5.9 4

Four-step Adams pair: PECE 1.3 2.6 4.0 5.5 7.0 5

Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 1.8 2.9 4.1 5.3 4

BRK pair (4.14)-(4.15): PECE * 1.3 5.6 9.0 11.6 8

72

5.3. Orbit equation

The second problem was taken from the test set of Hull et al. (7]:

(5.2)

YI' = Y3,

Y2° = Y4,

y3' = -y1 (yJ 2 + yz2)-312,

y4, = -yz (yi 2 + Y22)-312,

Yl (0) = 1 - e,
yz(0) = 0

e = 0.3

Table 5.3. Correct decimal digits at t=20 for problem (5.2).

Sequential right-hand sides 240 480 960 1920 3840 order

Two-step Adams-Bashforth method 0.3 0.7 1.2 1.7 2.3 2

Miranker-Liniger method (2.4) 0.5 2.1 2.1 2.5 3.1 2

BRK method (4.1): c=5!3 0.3 1.2 2.1 3.0 3.9 3

BRK method (4.3): c=l-'V6 0.3 1.2 2.1 3.0 3.9 3

Two-step Adams pair: PECE -0.1 0.6 1.4 2.3 3.2 3

Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 -1.5 0.1 3.7 5.2 6.5 4

BRK pair (4.3)-(4.6): PE(CE)2, c=l-'✓5/5 1.4 3.2 4.8 6.4 7.9 5

--
Thrc:e-step Adams-Bashforth method 0.1 1.0 1.9 2.8 3.7 3

Method (4.7): (q,cz) = (0,17/10) 1.9 3.5 4.4 5.5 6.7 4

Three-step Adams pair: PECE 0.4 1.8 3.4 5.0 6.2 4

BRK pair (4.9)-(4.11): PECE 1.3 2.8 4.4 5.9 7.4 5

BRK pair (4.12)-(4.13): PECE 3.3 4.9 6.8 8.6 9.6 6

Four-step Adams-Bashforth method 1.4 2.3 3.4 4.6 5.8 4

Miranker-Liniger method (2.5) 2.0 4.4 4.8 5.8 6.9 4

Four-step Adams pair: PECE 0.8 2.0 3.5 5.0 6.5 5
Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 2.9 4.1 5.1 6.2 4

BRK pair (4.14)-(4.15): PECE 3.9 6.8 9.0 8

For this example, which describes a system of ODEs, the errors are measured in

the maximum norm. Since most methods nicely show their asymptotic order

behaviour, the high-order BRK methods are again superior to the low-order ones.

Hence, the conclusion can be drawn that the introduction of non-equally spaced block

points tn+c1h favourably influences the performance of the BRK methods.

73

5.4. Euler's equation of motion

The third problem is Euler's equation of motion (cf. Hull et al. [7]):

Yi'= Y2Y3, YI(0) = 0

(5.3) Y2' =-y1 Y3, Y2(0) = 1

y3' = -0.51 YI Y2, y3(0) = 1.

Table 5.4. Correct decimal digits at t=20 for problem (5.3).

Sequential right-hand sides 120 240 480 960 1920 order

Two-step Adams-Bashforth method 1.2 1.9 2.5 3.1 3.7 2

Miranker-Liniger method (2.4) 1.6 2.4 3.1 3.8 4.4 2

BRK method (4.1): c=5/3 1.7 2.6 3.5 4.4 5.3 3
BRK method (4.3): c=l-"✓6 1.6 2.6 3.5 4.4 5.3 3

Two-step Adams pair: PECE 1.2 2.0 2.9 3.8 4.7 3
Chu-Hamilton pair (4.3)-(4.6): PECE, c=l/2 * 3.3 4.7 6.0 7.3 4

BRK pair (4.3)-(4.6): PE(CE)2, c=l-''J5/5 2.5 3.9 5.5 7.0 8.5 5

--
Three-step Adams-Bashforth method 1.5 2.4 3.3 4.2 5.1 3

Method (4.7): (q,c2) = (0,17/10) 2.8 4.1 5.4 6.6 7.9 4

Three-step Adams pair: PECE 1.4 2.7 4.0 5.3 6.5 4

BRK pair (4.9)-(4.11): PECE 2.7 4.1 5.6 7.1 8.6 5
BRK pair (4.12)-(4.13): PECE 3.2 5.1 6.9 8.7 10.7 6

--
Four-step Adams-Bashforth method 3.3 3.8 4.8 6.0 7.1 4

Miranker-Liniger method (2.5) 3.1 5.0 6.3 7.2 8.3 4

Four-step Adams pair: PECE 2.5 3.4 4.8 6.2 7.7 5
Shampine-Watts pair (2.7)-(2.6'): PECE 1.9 3.3 4.6 5.9 7.2 4
BRK pair (4.14)-(4.15): PECE 2.9 7.4 9.8 8

This table gives rise to the same conclusions as formulated at the previous test

problems.

To sum up, these examples clearly show that, even when only 2 processors are

used, a substantial gain in efficiency can be obtained when compared with sequential

(uniprocessor) methods. This especially holds for the high-order BRK methods.

74

REFERENGS

[I] Butcher, J.C. (1965): A modified multistep method for the numerical

integration of ordinary differential equations, J. ACM 12, 124-135.

[2] Butcher, J.C. (1987): The numerical analysis of ordina,y differential equations,

Runge-Kutta and general linear methods, Wiley, New York.

[3] Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE's by multi-block

methods, SIAM J. Sci. Stat. Comput. 8, 342-353.

[4] Donelson, J. & Hansen, E. (1971): Cyclic composite multistep predictor

corrector methods, SIAM J. Numer. Anal. 8, 137-157.
[5] Gear, C.W. (1988): Parallel methods for ordinary differential equations, Calcolo

25, 1-20.

[6] Houwen, P.J. van der, Sommeijer, B.P. & Mourik, P.A. van (1989): Note on

explicit parallel multistep Runge-Kutta methods, J. Comput. Appl. Math. 27,

411-420.
[7] Hull, T.E., Enright, W.H. , Fellen, B.M. & Sedgwick, A.E. (1972):

Comparing numerical methods for ordinary differential equations, SIAM J.

Numer. Anal. 9, 603-637.
[8] Miranker, W.L. & Liniger, W. (1967): Parallel methods for the numerical

integration of ordinary differential equations, Math. Comp. 21, 303-320.
[9] Shampine, L.F. & Watts, H.A. (1969): Block implicit one-step methods,

Math. Comp. 23, 731-740.

[10] Worland, P.B. (1976): Parallel methods for the numerical solution of ordinary

differential equations, IEEE Trans. Comput. C-25, 1045-1048.

-

PART II

Parallel numerical methods for stiff OD Es

CHAPrERill

A-stable parallel block methods fo:r

o:rdina:ry and integro-diffe:rential equations

Reprinted from

Appl. Numer. Math. 9 (1992), 267-281

with granted permission from ELSEVIER SCIENCE PUBLISHERS B.V.

A-stable parallel block methods for ordinary
and integro-clifferential equations

B.P. Sommeijer, W. Couzy and P.J. van der Houwen

Centre for Mathematics and Computer Science
Post box 94079, 1090 GB Amsterdam, The Netherlands

79

Abstract. In this paper we study the stability of a class of block methods which are
suitable for integrating ordinary and integro-differential equations on parallel
computers. A-stable methods of orders 3 and 4 and A(a)-stable methods with
a> 89.9° of order 5 are constructed. On multiprocessor computers these methods are
of the same computational complexity as implicit linear multistep methods on one
processor computers.

1991 Mathematical Subject Classification: 65L06, 65L20

1991 C.R. Classification: G.1.7, G.1.9

Keywords: numerical analysis, block methods, parallelism

1. INIRODUCTION
Many algorithms for numerically solving initial value problems for ordinary

differential equations (ODEs):

(1.1) ~ dt = f(t, y(t)), y(to) = YO,

or Volterra integro-differential equations (VIDEs):

t

(1.2) d~t)=J(t,y(t), f k(t,x,y(x))dx), y(to)=yo,
to

are based on implicit linear multistep methods (LM methods), in particular on

Backward Differentiation methods (BDF methods). The main reason for their

popularity is the relatively low computational effort per step, at least when compared

with other suitable methods for stiff equations, such as implicit Runge-Kutta

methods. However, the BDFs have one serious disadvantage: they are subject to the

so-called 'second Dahlquist barrier', which says that the order cannot exceed two if

the method has to be A-stable. Thus the higher-order BDFs lack the property of A

stability. This means that if a high-order formula is selected (dictated by accuracy

80

· considerations), then it may happen that - for certain types of stiff ODEs or VIDEs -

the algorithm encounters stability problems which usually result in a dramatical

degradation of the performance. To circumvent this behaviour it is highly desirable

to have A-stable methods of high order without increasing the computational effort

per step.
It is our aim to construct such methods. They are most easily formulated as so

called block methods. Block methods can be considered as a set of simultaneously

applied linear multistep methods to obtain several numerical approximations within

one application. Numerous block methods have been proposed in the literature

including high-order A-stable ones (see e.g. Watts and Shampine [16]). However,

these implicit methods require in each application an amount of work which by far

exceeds the computational effort required by a BDF. In recent papers (cf. e.g. Chu

and Hamilton [3]), block methods have been given which solve the huge implicit

relations on a parallel computer which indeed significantly reduces the computational

costs. However, all these techniques follow the approach of predictor-corrector

iteration, which in fact restricts their application to nonstiff problems.

Like Chu and Hamilton, we will employ parallelism to obtain the afore

mentioned goals. We shall construct A-stable methods of orders three and four, and

A(a)-stable methods of order five with a"" 7r/2. Furthermore, by carefully segmenting

the total work per step into a few subtasks of approximately equal computational

length, these methods require an amount of work which is very similar to what a

BDF requires when implemented on a uni-processor machine. In Section 5.3 we will

see that a high degree of parallelization is obtained. Since the implicit relations are

solved by a Newton-type process (as is the case in BDF implementations) rather than

in a predictor-corrector fashion, the property of A-stability is preserved.

In Sections 2 and 3, we present the construction of block methods for ODEs, in

Section 4, block methods for VIDEs employing these block ODE solvers are

discussed, and in Section 5, numerical experiments are reported. The way of

construction is based on extremely simple tools: firstly, certain order-conditions are

imposed such that a number of parameters are left free, and secondly, a numerical

search over the free parameters is carried out to give the method the optimal stability

characteristics. So far, we did not succeed in developing more sophisticated search

techniques by analytical means.

2. PARALLEL BLOCK METHODS FOR ODES

In order to simplify the formulas, we present the derivations of the block

methods for scalar, autonomous ODEs. The extension of these methods to systems

of ODEs, and therefore also to nonautonomous equations, is straightforward.

81

The block methods studied in this paper are a direct generalization of the implicit

one-step method

(2.1) Yn+l = ayn + h bf(Yn) + h df(Yn+IJ, n = 0, I, ... ,

where h is the stepsize and Yn an approximation to y(tnJ- By introducing block

vectors

where Yn,i denotes a numerical approximation to the exact solution value y(tn+cih),

and assuming that (I.I) is a scalar equation, we can define the block method

(2.3) Yn+l = AYn + hBf(Yn) + hDf(Yn+iJ,

where A, B and D are k-by-k matrices. Here we use the convention that for any given

vector v = (vj), f(v) denotes the vector with entries f(vj)- This method can be

considered as the block analogue of (2.1). A characteristic of these methods is that,

unlike conventional block methods based on linear multistep methods, the block

point vector c is allowed to have k- I noninteger components. In order to start the

method, one needs the initial vector Yo, which requires, in general, as many starting

values as there are distinct values Cj (J=I, ... ,k). Notice that the last component of

Y n+ 1 contains the step point value Yn+ 1 · Furthermore, we remark that, in general,

Yn,i -1:- Ym,j, even if n+ci = m+cj.

The method (2.3) is suitable for direct use on parallel computers if the matrix D

is diagonal, since such a form uncouples the various components as far as

implicitness is concerned; the corresponding methods will be called parallel block

methods. Using k processors, each processor has to evaluate a component of f(Y nJ

and to solve a system of equations whose dimension is that of the system of ODEs

(1.1). If Newton's method is used for solving the system of equations, then each

processor needs the Jacobian matrix I - h djj cJf/c)y and its LU-decomposition. Either

the various processors have to compute themselves the data they need, or one may

consider the use of additional processors for computing the Jacobian matrices and

their LU-decompositions. Let us consider the second strategy. As soon as the

additional processors have completed an update of the matrix cJf/c)y and computed the

LU-decompositions of the k matrices/- h djj cJfic)y, then the first k processors can

replace their data by the new data. However, usually the computational job of

computing Jacobian matrices and LU-decompositions is so substantial that the speed

of updating may not be great enough. In such cases, the use of matrices D with equal

diagonal elements is recommendable, because then the Jacobian matrices I - h djj cJf/c)y

82

are all identical, so that only one instead of k decompositions are required. Therefore,

methods where D is of the form d· I, I being the identity matrix, have some

advantage.

If D is a full matrix, then the block method is not directly suitable for use on

parallel computers. However, (2.3) allows the application of an iteration process that

has a high degree of parallelism. This iteration method is of the one-level form

[1- h C ~in)] y(j+I) -· hEf(YU+I)) =

AYn + h Bf(Yn) - h C ~(Yn) y(j) + h [D - E]f(YU)),
iJy

where C and E are suitable iteration matrices. There are several possibilities for

choosing these matrices in order to achieve parallelism and to preserve stability. We

mention:

(i) C diagonal and E=O (linear diagonal iteration),

(ii) C=O and E diagonal (nonlinear diagonal iteration), and

(iii) C=D, E=O combined with diagonalization of C (diagonalized Newton).

A smyey of properties of diagonal iteration in the case where (2.3) corresponds to

Runge-Kutta methods can be found in [10]. The diagonalized Newton process was

proposed by Lubich [12]. In passing we remark, that one might also consider higher

level iteration methods. For example, the 'pipeline' iteration proposed by Feldstein

[5] fits into the family of three-level iteration methods.

In a forthcoming paper, we will study the above iteration process if the matrix D

in (2.3) is a full matrix. In the present paper, we assume that D is diagonal.

The conditions for pth-order consistency for methods of the form (2.3) are
extremely simple and read (cf. [9])

(2.4) C1 = 0, j = 0, 1, ... , p,

with

Co:=Ae-e; C1 :=A(c-e)+Be+De-c;

C1 := A(c - e)i + J[B(c - e)i- 1 + DcJ-1] - cl, j = 2, 3, ... ,

where e denotes the vector with unit entries and where powers of vectors are meant to

be componentwise powers.

In order to compare the components of these vectors with the error constants

corresponding to conventional linear multistep methods, we introduce the normalized

error vectors [8]

83

(2.5) -
C-

Er= j ! (B + D)e '

where the division of vectors is meant component wise. When a linear k-step method

is written in the form (2.3) with c=(-k+2, ... , -2,-1,0, l)T, then the last component

of Ej equals the normalized error constant of the linear k-step method. Since these

block methods are in fact a composition of k conventional linear multistep methods,

the theory developed for the latter class of methods (see Henrici [8] or Hairer, N~rsett

and Wanner [7]), is to a large extent also applicable in the case of block methods. In

particular, this theory can be used to determine the order of convergence of the block

methods, that is the behaviour of Yn+I - YUn+I), with YUn+1):=(y(tn+cih),

y(tn+czh), ... ,y(tn+hJ)T, for h ➔ 0 and tn=to+nh fixed (see also Cooper [4]).

3. STABilXfY

The (linear) stability of block methods can be investigated by applying the

method to the test equation y' = l y. This leads to a recursion of the form

(3.1) Yn+I = M(z) Yn, M(z) := [/- zDJ- 1[A + zB], z :=Ah.

M will be called the amplification matrix and its eigenvalues the amplification

factors. Here we observe that, by requiring the elements of the diagonal matrix D to

be positive, the matrix / - zD is nonsingular for all z on the negative real axis.

Therefore, in the sequel we will assume that the (diagonal) elements of D are

positive.

In our stability analysis we shall use the following result on the power of a

matrix N (cf., Varga [15, p. 65]):

where II • II and p(N) are the spectral norm and radius of N and where all diagonal

submatrices of the Jordan normal form of N which have spectral radius p(N) are at

most q-by-q. If p(N) < 1 or p(N) = q = 1, then N is said to be power bounded.

Following the familiar stability definitions used for RK and LM methods, we

shall call the region where the amplification matrix M(z) is power bounded, the

stability region of the block method. If the stability region contains the origin, then

the method is called zero-stable. The region where IIMnll tends to zero will be called

the strong stability region. If the (strong) stability region of a block method contains

the left half plane, then the block method is called (strongly) A-stable; furthermore,

if the amplification matrix of an A-stable method has vanishing eigenvalues at

infinity, then the method is called L-stable.

84

- For some methods (i.e., the BDF methods) a less demanding definition of

stability is more appropriate. Therefore the notion of A (a)-stability has been

introduced The angle a defines a wedge in the left half plane and the method is stable

if z lies inside this wedge. This is, however, a rather crude way to describe the

stability region, since for the higher-order BDF methods the part of the left half

plane which is not included in the stability region is a small lobe near the imaginary

axis. To provide more detailed information on the stability region, we introduce two

additional parameters leading to the notion of A(a, {3, y)-stability:

Definition 3.1. A method is said to be A(a, {3, y)-stable if

(i) its region of stability contains the infinite wedge {z: - a< Jr- arg(z) < a},

0 < a::;; 1rl2, and all points in the nonpositive halfplane with lzl > {3, and

(ii) 1 +y is the maximum value of the spectral radius of M(z) when z runs through

the region of instability lying in the nonpositive halfplane. []

Note that A(n/2, 0, 0)-stability implies A-stability. The degree of instability of

the method is measured by y.
If we set A= D = I and B = 0 in (2.3), then the method reduces to a set of k

completely uncoupled one-step methods of the Backward Euler type, each advancing

the solution from tn-J+Cih to tn+cih (i=I,2, ... ,k). Evidently, these k formulas can

be efficiently implemented on a k-processor machine (in fact, they could equally well

run on k separate computers). Such methods have excellent stability properties (e.g.,

the property of L-stability), but are only of first order. However, by using full

matrices A and B, that is the k formulas of the block method share the same

information from the previous step, the order can be considerably increased. In the

next two subsections, we investigate fork= 2 ('two-dimensional block methods') and

k = 3 ('three-dimensional block methods') to what values the order can be raised while

preserving the favourable stability properties of Backward Euler (stability plots may

be found in [14]).

3.1. Two-dimensional block methods

First we consider the case k=2 and choose the coefficient matrices of the form

(al l-a1) (b11 b12) (d1 0) T
(3-3) A= a2 l-a2 'B= b21 b22 'D= 0 d2 'c=(c,l).

Imposing the conditions for second-order consistency we can express the entries of

the matrix Bin terms of the five free parameters c, a1, a2, d1 and d2:

85

(3.4a).

where q =c and ci=l. The components Cij of the vectors Ci (i ~ 3) are given by

An elementary calculation shows that C3j vanishes if

(3.4b)

and that C4j also vanishes if, in addition,

(3.4c)
C - 2

d2=----
2(c - 3)

The characteristic equation of the amplification matrix in (3 .1) can be written in

the form

(3.5) P(s.z) := det [A + zB - t;(I - zD)] =

l -a1 +b12z

1 - a2 + b22z - t;(1 - d2z)
)=o.

We shall determine the z-region where this polynomial has its roots t; within the

unit circle, that is, the region of strong stability. In addition, we should impose the

condition of zero-stability, i.e., the condition that the two eigenvalues a= 1 and

a=a1-a2 of A are on the unit disk those on the unit circle being simple, i.e.,

A further restriction on the range of the free parameters is obtained by imposing the

'stability at infinity' condition. By this we mean that the roots of the polynomial

P(t;,00) are on the unit disk (which is of course anyhow a necessary condition for A

stability). By virtue of the Hurwitz-criterion we obtain (recall that d 1 and d2 are

assumed to be positive)

86

3.-1.1. Second-order methods. If we are satisfied with second-order accuracy, then we

may choose the free parameters aj and dj in (3.4a) such that the matrix B vanishes

while preserving the property of A-stability. For example, if c=0 then the method is

equivalent with the familiar two-step Backward Differentiation Formula generated by

(3.8) D -(O O) c = (0,I)T.
- 0 2/3 '

3.1.2. Third-order methods. Third-order accuracy is achieved by choosing

C31 =C32=0, leaving us with three free parameters for monitoring the stability of the

method. We find

c(c2 - 3c + 6d1) 3c + 12d2 - 6cd2 - 5
a1=

(c - I)3
a2 =

(c - 1)3

(3.9) b1 I =
c2 - 2cd1 - c2d1

b12 =
c - 2cd1 - d1

(c-1)2 (c-1)2

b21
2 - 5d2 - c + 2cd2

b22 =
(c - 2)2 - d2(c2 - 6c + 8)

=
(c - 1)2 (c - 1)2

leaving c, d1 and d2 as the free parameters. Taking into account the conditions of

zero-stability and 'stability at infinity' (conditions (3.6) and (3.7)), we performed a

numerical search in the (c,d1,d2)-space. It turned out that the regions of A-stable

(c,d1,d2)-values are so small that A-stable points and strongly unstable points are

close together, that is, a small perturbation of these values causes the method to

violate the A-stability conditions. For example, the values

(3.10) c = 0.917387, d1 = 0.319523, d2 = 0.347067,

generate such a 'marginally' A-stable method. There is, however, an alternative

approach. It is easily verified that putting a2=C32=0 yields methods providing third

order approximations at the step points tn and second-order approximations at the

points tn+ch. It turns out that in the space of free parameters the regions of A-stable

methods are larger so that it is easier to find A-stable methods by a numerical search.

For example, we found the A-stable, third-order method

87

(3.11) [
147 161 J 7
220 220 [10

B= D=
_ 50 ~ ' O

33 66

0 J l ~3 , C = w(21, lO)T

with the normalized error vectors E3""' (0.19, 0)T and E4""' (0.20, -0.0l 7)T. The ampli

fication factors at the origin equal 0 and 1, and the maximal amplification factor at

infinity is ""' 0.94.

3.1.3. Fourth-order methods. Fourth-order accuracy for both components is obtained

by choosing C31 = C32 = C41 = C42 = 0. Alternatively, replacing C41 = 0 by a2 = 0,

reduces the order of the first component to 3, without affecting the order of the

second component. In both approaches we are left with one free parameter for

monitoring the stability of the method. Unfortunately, the stability regions of these

fourth-order methods are rather limited and do not even allow for A(a)-stability.

Thus, in the class (3.3) the fourth-order methods seem to be of no interest.

3.2. Three-dimensional block methods

For k=3 we expect to find A-stable methods of order four and we may hope for

A(a)-stable methods of order five. These two cases will be investigated in the

following subsections.

3.2.1. Fourth-order methods. Let us choose the matrix A such that ai3 = 1 - ail - ai2,

i = 1, 2, 3, so that Co vanishes. The vectors Cj vanish for j = 1, 2, 3, 4 if the entries

bij and dj satisfy the linear systems

1

q-1 c2-l

(q-1)2 (ci-1)2

(q-1)3 (c2-1)3

(3.12)

1 bil

0 Ci bi2
=

0 c/ bi3

0 Ci3 di

Ci- ail (q-1) - ai2(c2-l)

½[ci2 -an(ci-1)2 - ai2(c2-1)2]

½ [ci3 - ail (q-1)3 - ai2(c2-l)3]

¼[ci4 -an(ci-1)4 -ai2(c2-1)4]

, i = 1, 2, 3.

88

This shows that there is a family of fourth-order block methods with eight free

parameters: an, a;2 (i = 1, 2, 3), CJ and c2.

In order to ensure zero-stability, we require that the matrix A has its two parasitic

eigenvalues within the unit circle. Writing the characteristic equation of A in the

form ((- 1)('2 + qo(+ ro) = 0, we find that we have zero-stability if

(3.13) lqol < ro+l, ro < 1,

qo :=a31 + a32 - a11 - a22,

ro := a11 a12+a31a12 + a32a21 - a11 a32 - a21 a12 - a22a31.

Taking this constraint into account, we performed a numerical search over the free

parameters to obtain the A-stable method

-1
3 13·1303

2 2 29·5·1 I 0 0

1 I 0
277

0 A= 2 2 D= 2·3 2· 13

I 3 0 0
16001

-1
2 2 29·32·5

(3.14)
5· 13·43 15161 29·43·83
~ 25·32· I l 211.32-5

B=
-73 -467 - 7·3 7

2·3 2·7 2·33·7 2·33·13

5·16069 54419 41927

211.32-7 25·33·5·7 21 t.33

with c = (5, 13/4, l)T and with normalized error vector E5 "'(0.13, 0.27, 0.075)T. Its

amplification factors at the origin are 0, 1/2 and 1, and at infinity the maximal

amplification factor is "' 0.92.

The above direct search method is rather expensive, and therefore we also applied

an alternative approach where

(3.15)

m k

L L lµ;jlqij
i= 1 j= 1

was minimized over the free parameters b;2 and d; (i=l, 2, 3), CJ and c2. Here, k = 3,

the qij are control parameters and µij, j=l, ... , k denote the eigenvalues of the

amplification matrix M(z;) defined in (3.1) with Zi running through a set of m points

lying on the imaginary axis. In this way we found the A-stable method

(3.16)

(

2820 -183 -1037]

A= l;OO -7100 -3423 12123 ,

-1020 -1607 4227

(
-398 -92 -177 J

B= 4~0 6282 -92 2143 ,

1098 272 507

C = (3,5, I?

89

with normalized error vector E5"' (3.67, 0.19, 0.064)T_ At the origin the

amplification factors are 0.81, 0.81 and 1, and at infinity the maximal amplification

factor is"' 0.37.

3.2.2. Fifth-order methods. Along the same lines as we constructed the fourth-order

method (3.16), we proceeded with the fifth-order case. Now only five free parameters

are available, say di (i = 1, 2, 3), CJ and c2. Imposing the constraint (3.13), we found a

few A(a, /3, y)-stable methods which may be considered as A-stable in most practical

applications.

We mention the A(a,/3, y)-stable method with a"' 89.9988°, /3"'0.16 and

Y"' 2.6· 10-6 generated by

(3.17)

(

-.37354856915573

A= .45636214490330

-71.558907928027

(

-.089579683013023

B= .037434812789650

-18.279469309687

(
.261 0 0]

D= 0 .581 0 ,

0 0 .832

1.3772028209449 -.0036542517891531 J
.58957191150098 -.045934056404276 ,

69.945110840701 2.6137970873262

-.020791477924637

. 78549538208108

-29.674965823418

.0023118793010643 J
.024702269787981 ,

-1.6401568285440

with normalized error vector E6"' (0.007, 0.0038, - O.OlS)T. At the origin the

amplification factors are 0.92, 0.92, and 1, and at infinity the maximal amplification

factor is"' 0.993.

Finally, we present theA(a,/3, y)-stable method with a"' 89.98°, /3"' 0.30 and

Y"' 6.9· 10-5 generated by

90

(
.58694824150708 -.042737729478577 .45578948797150 J

A= 73.394943213338 2.5499.812910344 -74.944924504372 ,

1.3881897627759 -.0035265226034516 -.38466324017241

(3.18) B- -30.332265183768 -1.5938561820999 -18.934741340575 (

.78434821208875 .023439431423946 .033345158796322 J
- -.012761141648945 .0022604702667178 -.092097195902230 '

(
1.6153]

c= 4.7
1
871 ,

and with normalized error vector E6"" (0.004, -0.016, 0.007)T_ At the origin the

amplification factors are 0.88, 0.88 and 1, and at infinity the maximal amplification

factor is"" 0.89.

3.3. Survey of method characteristics

We conclude with a survey of the parameters a, /3 and y characterizing the

stability regions of the block methods derived in this paper (see Definition 3.1) and

compare them with those of the BDFs (details about the BDF methods can be found

in f 6]). In Table 3.1 these values are listed (an '*' in the y-column means that the

corresponding value is not relevant). In addition, we give the normalized error vectors

defined in (2.5) of all methods. For a uniform presentation, we first formulated the

BDFs as block methods. We recall that a k-step BDF method can be cast in the form

(2.3) with block point vector c = (2-k, ... , -1, 0, 1)T_

Finally, we remark that a k-step, kth-order BDF requires k starting values,

independent of its formulation, whereas the block methods of this paper need only 2

(for p = 3) or 3 (for p = 4, 5) starting values.

Table 3.1. Normalized error vectors and values of ex, /3 and y.

Method Order p Ep+lT a /3 r
BDF3 3 (0,0, 1/4) 88.4° 1.94 0.046
(3.11) 3 (0.20, -0.017) 900 0 *
BDF4 4 (0, 0, 0, 1/5) 73.2° 4.72 0.191
(3.14) 4 (0.13, 0.27, 0.075) 900 0 *
(3.16) 4 (3.67, 0.19, 0.064) 900 0 *
BDF5 5 (0, 0, 0, 0, 1/6) 51.8° 9.94 0.379
(3.17) 5 (0.007, 0.0038, -0.015) >89.9° 0.16 0.0000026
(3.18) 5 (0.004, - 0.016, 0.007) >89.9° 0.30 0.000069

91

4. AP.PUCATIONTOVOL'IERRAINfEGRO-DIFFERENTIALEQUATIONS

Consider the initial value problem for VIDEs given by (1.2). The most

straightforward way of solving numerically this problem replaces the integral term in

(1.2) by a quadrature formula and integrates the resulting ODE by some ODE

integrator. This 'direct quadrature' method will be indicated by DQ method. The

stability of DQ methods strongly depends on the quadrature formula used for

approximating the integral term, particularly if the VIDE in (1.2) is stiff. For

example, DQ methods using Gregory quadrature formulas become easily unstable

(see, e.g., [I]).

A more stable approach is based on the approximation of the integral term by

converting it into a differential equation and by integrating this differential equation

by an ODE solver. For that purpose, we introduce the function

s

(4.1) z(t,s) := f k(t, x, y(x)) dx,
to

and we write the initial value problem (1.2) in the form

(4.2a) ~ dt =J(t,y(t),z(t,t)), y(to) = YO·

The method now consists of the application of an ODE solver to the initial value

problem (4.2a), where the values of z(t,t) needed by the ODE solver are obtained by

integrating the initial value problem

(4.2b) ik(t,s) () as = k t, s, y(s) , z(t,to) = O

from s=to until s=t. This method still belongs to the class of DQ methods, however,

it uses a special quadrature formula derived from an ODE solver. If the ODE solver is

an LM method (p,cr), then the quadrature formula is called (p,cr)-reducible (cf.

Matthys [13]). Similarly, we shall call the DQ method (p, CJ)-reducible if both initial

value problems (4.2a) and (4.2b) are solved by the same LM method (p,cr), and (A, B,

D)-reducible if (4.2a) and (4.2b) are solved by the same block method (2.3) generated

by the matrices A, B and D.

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the

usual stability analysis of VIDE solvers (cf., e.g., Brunner and Lambert [2] and

Matthys [13]), we shall consider stability with respect to the basic test problem

92

(4.3)

t

d~t) = sy(t) + T1 I y(x) dx,
to

y(to) = YO·

Using the representation (4.2) and writing z(t,t)=z(t), this problem can be represented

in the form

(4.4) d1t) = SY(t) + T/Z(t), y(to) = YO,
d7ftl
~ = y(t), z(to) = o.

Application of the block method (2.3) to each of these equations yields the

recursions

(4.5)

Zn+l =AZn + hBYn + hDYn+I·

We shall show that (4.5) is algebraically equivalent with the recursion obtained by

applying (2.3) to the system (4.4). Writing (4.4) in the form

(4.4') !u(t) = (r 6)u(t), u(t) := (~gJ),

the block method (2.3) takes the form

Un+I =A O Un+ hB 0 /(UnJ + hD O f(Un+IJ, Un+I := (yn,J, Zn,I; ... ;yn,k, Zn,k?,

(4.5')

with Yn,j and Zn,j denoting the components of the (column) vectors Yn+J and Zn+I

used in (4.5), and where the tensor products A O U n and B O f(U 11) are defined

according to

(4.6)

with Oj and hjdenoting the jth row vectors of the matrices A and B, respectively. It

is now readily verified that by reordering the equations occurring in (4.5') such that

the first, third, fifth, ... equations come first and the second, fourth, sixth, ...

equations come next, we obtain the recursions (4.5).

93

Hence, if;\, andµ denote the eigenvalues of the Jacobian matrix associated with

(4.4'), then the recursion (4.5) is stable if both h;\, and hµ are in the stability region

of the block method (2.3). The corresponding region of (h~, h211) = (h;\,+ hµ, -h2Aµ)

values will be called the stability region of the (A, B, D)-reducible DQ method.

Furthermore, if this stability region contains the set { (h~, h21]): ~ < 0, 1J < 0}, then

the DQ method is called Ao-stable. The preceding considerations can be summarized

in the following theorem which generalizes a result for LM methods originally given

by Brunner and Lambert [2].

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by

the matrices A, Band D, and let;\, andµ be defined by;\,+µ=~, Aµ=-1]. Then the

set { (h ~, h2 11): h ;\, E S, h µ E S} defines the region of stability of the (A, B, D)

reducible DQ method. [J

From this theorem it follows that the (A, B, D)-reducible DQ method is Ao-stable

if, and only if, the generating block method (A, B, D) is A-stable. Thus, the use of

the block methods constructed in this paper avoids the so-called 'second Dahlquist

barrier' which applies to Ao-stable (p,cr)-reducible DQ methods for VIDEs (cf. [13,

Theorem 5]).

5. NUMERICAL EXPERIMENTS

5.1. Accuracy test
To verify the order of the various methods we integrated the test problem

proposed by Kaps [11]:

Yt(0)=l,

(5.1)
dY2 ---;;-= YI - Y2 (1 + Y2), Y2(0) = 1,

with 0 ~ t ~ T. The exact solution is given by YI =exp(-2t) and Y2=exp(-t) for all

values of the parameter e. In Table 5.1, we have listed the values L1, where L1 denotes

the number of correct decimal digits at the endpoint (i.e., we write the maximum

norm of the error at t=T in the form 1 o-L1). In all experiments the theoretical order of

the method is shown for sufficiently small values of h (if p is the order of the

method, then, on halving the step size, the value of L1 should increase by"" 0.3 p).

94

Table 5.1. Values of L1 for problem (5.1) with T=l, e=10-8.

Method p h=l/4 h=l/8 h=l/16 h=l/32 h=l/64 h=l/128

BDF3 3 2.8 3.7 4.6 5.5 6.5 7.4

(3.11) 3 2.8 3.6 4.4 5.2 6.1 7.0

BDF4 4 3.4 4.7 5.9 7.1 8.4 9.6

(JJ4) 4 3.8 5.2 9.5 7.9 8.9 10.0

(3.16) 4 3.1 3.9 4.8 5.9 7.1 8.2

BDF5 5 4.0 5.6 7.2 8.7 10.2 12.0

(3.17) 5 2.6 4.0 5.5 7.3 9.2 10.3

(3.18) 5 4.7 5.4 6.4 7.7 9.2 10.1

5.2. Stability test

We tested the stability of the methods by integrating a problem in which the

Jacobian matrix has purely imaginary eigenvalues:

(5.2)
dy1
dt=-aY2 + (1 + a)cos(t), d12 = ay1 - (1 + a) sin(t), 0 :5 t :5 T,

with initial conditions Yl (0)=0, Y2(0)=1 and exact solution Yl =sin(t) and Y2=cos(t)

for all values of the parameter a.
In Table 5.2, the results are listed for T=lO0. Values of L1 corresponding to

stepsizes that are theoretically unstable are in boldface and overflow is indicated by *·
The unstable results of the BDFs are in agreement with their regions of instability

indicated in Table 3.1 (the phenomenon that BDF5 becomes stable again for

sufficiently small h is due to the fact that its imaginary interval of instability is
given by i [0.71, 9.94]). ✓

Table 5.2. Values of L1 for problem (5.2) with T=lOO, a=lO.

Method p h=4l5 h=2l5 h=l/5 h=l/10 h=l/20 h=l/40

BDF3 3 2.0 2.9 3.9 * * 4.9
(3.11) 3 2.1 2.8 3.4 4.0 4.6 5.3

BDF4 4 2.2 * * * 2.9 8.2
(3.14) 4 2.8 4.0 4.9 5.8 6.8 8.0
(3.16) 4 1.6 2.7 3.8 4.9 5.8 6.8

BDF5 5 -0.1 * * * 8.5 10.3
(3.17) 5 1.2 2.0 3.4 4.7 6.2 7.6
(3.18) 5 2.9 3.9 5.1 6.4 7.6 8.6

95

Nt'lxt, we show that the 'almost' A-stable fifth-order methods (3.17) and (3.18)

behave as A-stable methods in practice. We performed experiments for a= 1 and a= 4

with h=l/8: for a= l both integration processes are theoretically unstable, and for

a= 4 the processes are stable. In Table 5.3 the results are listed for increasing length

of the integration interval: these results clearly show that both methods perform

perfectly stably for a= 1 and the T-values chosen.

Table 5.3. Values of L1 for problem (5.2) for h=l/8.

Method a= 1: theoretically unstable a= 4: theoretically stable

(3.17)

(3.18)

T=lO T=lO0 T=lOOO

3.6

4.5

3.8

4.3

3.6

4.8

T=lO T=lO0 T=lO00

4.0

5.4

3.9

5.4

3.9

5.4

5.3. Volterra integro-differential equation
Consider the initial value problem

(5.3)

t

111..!l.= - 1 + at(l +t)2 + ~ ln(2+2t) + a f
dt (l +t)2 y(t) 2+t O

dx I

I +(l +t)y(x) ' y(l) = 3 '

with 2::; t::; T and a> 0. The exact solution is given by y(t)=ll(l +t). For a= 1, this

problem has been discussed in [2]. From the expressions

·= qt_ Jk = _ a 1 +t
11 . Jz Jy (l +(I +t)y)2

it follows that (5.3) is stable if t > 0 and y ~ 0. Furthermore, we see that in the

vicinity of the exact solution we have ~"' - a(1 +t)2 and 11"' - a(1 +t), so that the

stiffness of this problem increases with a and t. For example, if a=T=lO, then an

Ao-stable method is highly desirable.

Table 5.4 lists results for various methods and values of the stepsize h. Notice

that the results for the stiff problem (a= 10) are not less accurate (even more

accurate) than the results for the nonstiff problem (a= 1), showing that stiffness does

not cause any problem. Similar to the ODE case (cf. Table 5.1), the method (3.14)

performs very accurately, whereas (3.17) is significantly less accurate.

96

Table 5.4. Values of L1 for problem (5.3) at T=IO.

a=l a=lO

Method Orderp h=I/2 h=I/4 h=l/8 h=I/2 h=I/4 h=l/8

BDF3 3 5.7 6.8 7.9 6.0 6.9 7.8
(3.11) 3 5.5 6.5 7.3 5.4 6.5 7.3

BDF4 4 5.4 7.0 8.3 6.5 8.1 9.4
(3.14) 4 6.0 8.3 9.1 6.4 8.6 10.9
(3.16) 4 5.2 6.2 7.2 6.7 7.9 8.5

BDF5 5 5.1 7;2 8.9 6.1 8.2 9.9
(3.17) 5 2.5 5.2 7.2 2.9 5.3 7.5
(3.18) 5 6.0 6.9 8.2 6.8 8.5 9.3

5.4. Performance test on the ALLIANT FX/4

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by

integrating the problem (5.1) of Kaps. In Table 5.5, we have listed timings on P

processors and the rate of efficiency of a k-processor method, i.e., the execution time

on one processor divided by k times the execution time on k processors. These

results show that the gain factor is close to its optimal value.

Table 5.5. Timings (in seconds) for problem (5.1) at T=l with e=10-8 and h=l/256.

method k

(3.11) 2

(3.18) 3

P=l

0.43

0.66

P=2

0.23

0.45

P=3

0.23

0.25 0.25

Efficiency rate

0.93

0.88

From this table we conclude that the performance is close to its optimum, that

is, the gain factor obtained for a k-processor method is almost equal to k. Table 5.5

also lists timings in cases where methods have the disposal of one more processor

(i.e., k+I) than the number (i.e., k) they are designed for. We see that this additional

processor is not utilized, since the k processors (concurrently) solve the k implicit

relations and the extra processor is idle. As mentioned before, it could have been

exploited for updating the Jacobian matrix, but in this test we did not include such a

technique.

It should be noted that the efficiency rate is slightly dependent on implementation

strategies, such as how accurately the nonlinear systems are solved. For example, it

may happen that the first (or any other) implicit relation requires less Newton

iterations than the other implicit relations (e.g., because of a more accurate initial

approximation); in such cases this first processor will be idle for some time, which

of course, has a bad influence on the efficiency rate.

97

REFERENCES
[l] Brunner, H. & Houwen, P.J. van der (1986): The numerical solution of

Volterra equations, CWI Monograph No.3, North-Holland, Amsterdam.

[2] Brunner, H. & Lambert, J.D. (1974): Stability of numerical methods for

Volterra integro-differential equations, Computing 12, 75-89.

[3] Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE's by multi-block

methods, SIAM J. Sci. Stat. Comput. 8, 342-353.

[4] Cooper, G.J. (1978): The order of convergence of general linear methods for

ordinary differential equations, SIAM J. Numer. Anal. 15, 643-661.

[5] Feldstein, A. (1990): Oral communication at the International Conference on

the Numerical Solution of Volterra and Delay Equations, Arizona State

University, May 25-28.

[6] Gear, C.W. (1971): Numerical initial value problems in ordinary differential

equations, Prentice Hall, Englewood Cliffs, N.J.

[7] Hairer, E., N~rsett, S.P. & Wanner, G. (1987): Solving ordinary differential

equations I. Nonstiff problems, Springer Series in Comp. Math., Vol. 8,

Springer-Verlag, Berlin.

[8] Henrid, P. (1962): Discrete variable methods in ordinary differential equations,

Wiley, New York.

[9] Houwen, P.J. van der & Sommeijer, B.P. (1992): Block Runge-Kutta methods

on parallel computers, Z. Angew. Math. Mech. 72, 3-18.

[10] Houwen, P.J. van der & Sommeijer, B.P. (1990): Parallel ODE solvers, in:

Proc. of the International Conference on Supercomputing, Amsterdam, June

11-15, ACM Press, 71-81.

[11] Kaps, P. (1981): Rosenbrock-type methods, in: Numerical methods for stiff

initial value problems (eds.: G.Dahlquist & R. Jeltsch), Bericht Nr.9, Inst. fiir

Geometrie und Praktische Mathematik der RWTH Aachen.

[12] Lubich, Chr. (1990): Oral communication at the International Conference on

the Numerical Solution of Volterra and Delay Equations, Arizona State

University, May 25-28.

[13] Matthys, J. (1976): A-stable linear multistep methods for Volterra integro

differential equations, Numer. Math. 27, 85-94.

[14] Sommeijer, B.P., Couzy, W. & Houwen, P.J. van der (1989): A-stable parallel

block methods, Report NM-R8918, Centre for Mathematics and Computer

Science, Amsterdam.

[15] Varga, R.S. (1962): Matrix iterative analysis, Prentice Hall, Englewood Cliffs,

N.J.

[16] Watts, H.A. & Shampine, L.F. (1972): A-stable block implicit one-step

methods, BIT 12, 252-266.

CHAPIERIV

Embedded diagonally implicit Runge-Kutta algorithms

on parallel computers

Reprinted from

Embedded diagonally implicit Runge-Kutta algorithms

on parallel computers,
P.J. van der Houwen, B.P. Somrneijer and W. Couzy,

Mathematics of Computation, Volume 58, pp 135-159, 1992,

by permission of the American Mathematical Society

99

Embedded diagonally implicit Runge-Kutta
algorithms on parallel computers

P.J. van der Houwen, B.P. Sommeijer and W. Couzy

Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. This paper investigates diagonally implicit Runge-Kutta methods in which
the implicit relations can be solved in parallel and are singly diagonal-implicit on
each processor. The algorithms are based on diagonally implicit iteration of fully
implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such
a way that the resulting algorithm is A(a)-stable or L(a)-stable with a equal or very
close to rc/2. In this way, highly stable, singly diagonal-implicit Runge-Kutta
methods of orders up to 10 can be constructed. Because of the iterative nature of the
methods, embedded formulas of lower orders are automatically available allowing a
strategy for varying the stepsize and the order.

1991 Mathematics Subject Classification: 65L06, 65L20

1991 C.R. Classification: G.1.7

Key Words: numerical analysis, Runge-Kutta methods, parallelism.

1. INIRODUCI10N

In N~rsett and Simonsen [21), Jackson and N0rsett [16), and !series and N0rsett

[15], it was observed that on parallel computers, predictor-corrector methods (PC

methods) based on implicit Runge-Kutta (RK) correctors are particularly attractive

for solving initial value problems for the system of ordinary differential equations
(ODEs)

(1.1)
d"ftl
~=f(y(t)).

On sequential computers, implicit RK methods are seldom used as corrector

equation, because of the large number of implicit relations to be solved when using

these correctors. However, matters are different when parallel computers are used,

since PC methods, being a form of functional iteration, possess a high degree of

parallelism. First results based on the PC approach were reported by Lie [18], who

uses a fourth-order, two-stage Gauss-Legendre corrector and a third-order Hermite

extrapolation predictor. In [12], these 'parallel, iterated' RK methods (which we shall

briefly call PJRK methods) have been investigated for a variety of predictor methods

100

·and it was concluded that, from an implementational point of view, one-step

predictors are preferable. Related PC methods were studied by Tam in his thesis [24].

In particular, families of methods were constructed with elliptically shaped stability

regions. An analysis of the error behaviour of a very general class of PC methods,

including all methods indicated above, was given by Burrage [2].

An attractive feature of PIRK methods is the availability of embedded formulas of

lower orders allowing a strategy for step and order variation without additional costs.

On the other hand, owing to their explicit character, PIRK methods have rather

limited regions of stability and are therefore only suitable for integrating nonstiff

systems.

In this paper, we shall be interested in integrating stiff systems, and we will

investigate the possibility of constructing methods that are more stable than PIRK

methods by diagonally implicit iteration of fully implicit RK methods. After a fixed

number of iterations, such methods belong to the class of DIRK methods, and are

therefore essentially different from the explicit PIRK methods studied in the

aforementioned papers. DIRK methods resulting from diagonally implicit iteration

have the property that effectively they are singly diagonal-implicit RK (SDIRK)

methods when run on parallel computers. Furthermore, like the PIRK methods, they

possess embedded formulas of lower order which make them an ideal starting point

for developing variable order/variable step codes. We shall call the 'Parallel,

Diagonal-implicitly Iterated' RK methods PDIRK methods.

In the literature, various (S)DIRK methods were published for the integration of

stiff systems of ODEs. The most recent contributions are the parallel DIRK methods

oflserles and Njljrsett [15], which are, like PDIRK methods, effectively of SDIRK

type on multi-processor computers (these methods are the first and, as far as we

know, the only parallel DIRK methods published in the literature). However, the

order of most DIRK methods is limited top= 4 (the only DIRK methods exceeding

this order are those of Cooper and Sayfy [5]). By diagonal iteration of implicit RK

methods it is possible to construct highly stable PDIRK methods of orders up to 10.

Table 1.1 presents the characteristics of a number of SDIRK methods from the

literature together with the most stable PDIRK methods of order p > 4 derived in the

present paper. In this table, DIRK II denotes the Type II methods of !series and

Nprsett [15], Pemb indicates that embedded methods of orders ::;;Pemb are available

and s denotes the number of stages of the underlying corrector in the PDIRK

methods (by choosing Gauss-Legendre or Radau IIA correctors we may set

s = L(p+ l)/2J, where L·J denotes the integer part function). Furthermore, the number

of sequential stages is defined as the number of implicit systems to be solved on

each processor in each step. Finally, we introduce the concept of L2-stability, which

means that the method possesses an A-acceptable stability function for which the

degree of the numerator is two less than the degree of the denominator.

101

Table 1.1. (S)DIRK and PDIRK methods.

Seq. Proces-
Method Order Stages Stages sors Stability Pemb Reference

SDIRK p=3 p-1 p-1 A-stable 1 [19]

SDIRK p=3 p-1 p-1 Strongly A-stable [6]

SDIRK p=4 p-1 p-1 1 A-stable I [6], [1]

SDIRK p=5,6 5 5 1 A-stable 1 [5]

SDIRK p=3 p p 1 S-stable p-1 [4]

SDIRK p=3 p+l p+l 1 L-stable p-1 [22]

SDIRK p=4 p+l p+l 1 S-stable p-1 [4]

DIRKII p=4 p p-2 2 L-stable p-1 [15]

PDIRK p=5 3(p-1) p-1 3 Strongly A-stable p-1 § 3.2

PDIRK p=6 3(p-1) p-1 3 Strongly A(a)-stable p-1 § 3.2, a:>89.9°

PDIRK p=7 4(p-1) p-1 4 A(a)-stable p-1 § 3.2, a:>89.9°

PD IRK pS4,p=6 s(p-1) p-1 s A-stable p-1 § 3.1

PD IRK p$6,p=8 sp p s L-stable p-1 § 3.1

PDIRKp$8,p=10 s(p+l) p+l s L2-stable p-1 § 3.1

This table shows that the PDIRK methods constructed in this paper have the

advantages of high order, good stability and embedded formulas, but the disadvantage

of quite a large number of sequential stages per step. For example, in spite of its

inherent parallelism, the number of sequential stages per step of an L2-stable,

eighth-order PDIRK method is 3 times as large as that of the A-stable, fourth-order

SDIRK method of Crouzeix [6] and Alexander [1], and 9 times as large as that of the

BDF methods. However, due to the iterative nature of PDIRK methods, the 'later'

stages are relatively cheap because there are accurate initial iterates available for

solving the associated implicit relations. This feature, and in particular their high

order and unconditional stability, make PDIRK methods a promising starting point

to base a code on. This is confirmed by a few preliminary experiments reported in

Section 4, where we show by means of two 'difficult' test problems taken from the

literature, that a provisional implementation of an L2-stable, seventh-order, four

processor PDIRK method is already far superior to the SDIRK code SIMPLE of

N!llrsett and Thomsen [22] and at least competitive with the BDF code LSODE of

Hindmarsh [11]. The development of a more sophisticated code based on PDIRK

type methods and much more extensive comparisons with existing sequential codes

on a significant class of stiff problems will be subject of our future research and

should provide more reliable data on the efficiency of PD IRK-based codes.

102

Z. PDIRKMErHODS

For notational convenience, we shall assume in the following that the equation

(1. 1) is a scalar equation. However, all considerations below are straightforwardly

extended to systems of ODEs, and therefore, also to nonautonomous equations. Our

starting point is the s-stage, implicit, one-step RK method

(2.la) Yn+l =y11 + hbTJ(Y),

where Y is implicitly defined by the set of algebraic equations

(2.1 b) Y := Yne + h Af(Y).

Here, h is the integration step, e is a column vector of dimension s with unit entries,

b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the

convention that for any given vector v=(v1),f(v) denotes the vector with entriesf(v1).
By iterating, say m times, the equation for Y by diagonally implicit iteration, we

obtain the method

(2.2) y()) = y11e + h [A - D]f(YU-IJ) + h D f(YUJ),

where j = 1, 2, ... , m, and D is a diagonal matrix with arbitrary, nonnegative diagonal

elements and y(O) denotes an initial approximation to the vector Y. Notice that after

each iteration the current approximation yW to Yn+ 1 can be computed. As we shall

see in Section 2.1, the order of these approximations increases by I in each iteration.

Therefore, the mth iterate will be used to continue the integration process and the

preceding iterates can be used for error control.

Since the matrix Dis of diagonal form, the s components of each vector y()) can

be computed in parallel, provided that s processors are available. Thus, effectively,

we obtain a method which requires per integration step the computational time

needed for computing one component of the initial approximation y(O) and the

successive solution of m equations. In the following, we always assume that we

have s processors at our disposal and we shall speak about computational effort per

step when we mean the computational time required per step if s processors are

available. We shall call the method providing y(O) the predictor method and (2.1) the

corrector method.

There are several possibilities for choosing the matrix D. The most simple

choice sets D = 0 to obtain an explicit iteration method (fixed point or functional

iteration). This approach was followed in, e.g., N0rsett and Simonsen [21], in Lie

[18], and in van der Houwen and Sommeijer [12]. These papers deal with the

iteration of implicit methods for solving nonstiff ODEs. As stated in the

103

introduction, we are aiming at stiff OD Es, which requires the use of matrices D -:t; 0.

One possibility of exploiting nonzero matrices D is improving the rate of

convergence of the iteration process. For example, by identifying the diagonal

elements of D with those of A we obtain the nonlinear Jacobi iteration method.

Alternatively, one may choose D such that the stability region of the iterated method

rapidly converges to that of the corrector (cf. [131). In this paper, however, we

choose D such that we have for a prescribed number of iterations favourable stability

characteristics, such as A-stability or L-stability (as far as we know, this approach

has not yet been investigated in the literature). We restrict our considerations to the

case where the predictor method is itself an RK-type method. Hence, by performing

m iterations with (2.2) and by accepting y(m) as the final approximation to Yn+l, we

obtain an RK method with a fixed number of stages. Furthermore, we assume that

the predictor is explicit or at most diagonally implicit. Then, the resulting parallel

RK method belongs to the class of DIRK methods (Diagonally Implicit RK

methods), and will be briefly called the PDIRK method.

2.1. Order of PDIRK methocJs
Assuming that the iteration process (2.2) converges as m ➔ oo, the values yU)

approximate the solution of the corrector method (2.1), i.e., y(00)=Yn+l· The

approximation yO) differs from y(00) by the amount

yW-y(00) = yW- Yn+l = hbT [f(YW)- f(Y)].

If the right-hand side function is sufficiently smooth, then the iteration error

y(j) - Y satisfies the approximate recursion

y(j) _ Y"" h [[- h ivr1 *[A -D][YU-1) _ Y] =

hi ([I - h * vr1 * [A - D])i[y(O) - Y],

so that

Let the predictor be of order q, i.e.,

then

so that y(m) has (global) order q+m.

104

In this paper, we shall study PDIRK methods with predictors of the form

Because this predictor is implicit, we will choose the matrix B of diagonal form in

order to exploit parallelism. Since

it is easily verified that the predictor (2.5) is always first-order accurate; it becomes

of order two if (E + B-A) e vanishes and of order three if, in addition, (BA -A 2) e

vanishes.

By defining Yn+I according to

(2.6) Yn+ I := y(m) = Yn + h b T f(Y(m)),

the PDIRK method is completely determined. For this method, we summarize the

above order considerations in the following theorem:

Theorem 2.1. Let the corrector be of order p*; then the approximation Yn+ I

generated by the PDIRK method { (2.5), (2.2), (2.6)} has order min {p*, m+ 1 } for all

matrices B and E, order min {p*, m+2} if (E+B)e = Ae, and order min {p*, m+ 3} if, in
addition, BAe = A 2e. [)

We remark that correctors of any order are explicitly available. Correctors of any

even order p* are provided by the p*/2-stage Gauss-Legendre methods and correctors

of any odd order p* are provided by the (p*+ 1)/2-stage Radau methods.

2.2. Stiffly accurate PDIRK methods

As was discussed by Alexander [l], when integrating stiff equations it may be

advantageous to use RK methods {A, b} of which bT equals the last row of A, i.e.,

bT=e/A, where sis the number of stages of the RK method. Such RK methods are

termed stiffly accurate. Therefore, it is of interest to look for PDIRK methods

possessing the property of stiff accuracy. Formally, we can associate with any

PDIRK method a new PDIRK method possessing the property of stiff accuracy,

simply by replacing (2.6) with

(2.7) Yn+I = e/ y(m)_

105

Of course, this only yields a feasible method if the last component of the vector

y(m) p~ovides an approximation to Yn+ 1 · For example, this is true if the corrector

itself is stiffly accurate, i.e., bT=e/A. We shall call the two versions corresponding

to (2.6) and (2.7) PDIRK methods of Type I and II, and denote them by PDIRK1 and

PDIRK11, respectively. Thus,

Type I : PDIRK method { (2.5), (2.2), (2.6)}

Type II : PDIRK method { (2.5), (2.2), (2.7) }.

The following theorem is the analogue of Theorem 2.1:

Theorem 2.2. Let the corrector be stiffly accurate (bT=e/A) and be of order p*; then

the approximation Yn+l generated by the PDIRK11 method is also stiffly accurate,

and has order min {p *, m } for all matrices B and E, order min {p *, m + l } if

(E+B)e =Ae, and order min{p*, m+2} if, in addition, BAe =A2e. []

2.3. Various types of PD IRK methods and their Butcher arrays
Given the generating RK method (corrector) {A, b} defined by (2.1), we shall

investigate three special families of PDIRK methods, either of Type I or of Type II,

which differ from each other by the way in which the predictor is defined, i.e., in

choosing the matrices B and E. Let O denote the s-by-s matrix with zero entries,

then we distinguish:

Type A : Last-step-value predictor

Type B : Backward Euler predictor

Type C : Theta method predictor

(E=B=O) y(O) := Yne ,

(E=O,B=D) y(O) :=yne + hDJ(y(O)),

(B=D) y(O) :=yne +hEf(yne)+hDJ(y(O)).

Notice that the matrix B either vanishes or is chosen equal to D. Although, in

general, Band D may be different (diagonal) matrices, the particular choice B=D has

advantages with respect to the implementation of the method. Typically for stiff

equations, the implicit relations in which the matrix D =diag(d1, d2, ••• , ds) is involved,

will be solved by some form of Newton iteration, which requires (in the case of

systems of ODEs) the LU-decomposition of the matrices / -di h dfli)y. Clearly, if

B = D then these decompositions can also be used in solving the predictor (see also

the discussion below). In the remainder of this paper, the analysis is performed in

terms of a general matrix B and concrete results are only specified for B = 0 or B = D.

For future reference, we specify the various PDIRK1 families of methods in terms

of their Butcher arrays and give the corresponding orders of accuracy p1:

106

TypeIA:

1. D-:1-O: p1 = min {p*, m+ I }

j=0 0

j=l A-D D

j=2 0 A-D D

j=3 0 0 A-D D

j=m 0 0 A-D D

OT

TypeIB:

1. D -:1-O: p1 = min{p*, m+I}

2. D := diag(Ae): p1 = min{p*, m+2}

j=0 n·
j=l A-D D

j=2 0 A-D D

j=3 0 0 A-D D

j=m 0

TypelC:

I. D-:1-O,E-:1-O:

2. D := diag(Ae -Ee), E -:I- 0:

3. D := diag(Ae-Ee), DAe =A2e:

0
j=0 E D

j=l 0 A-D D

j=2 0 0 A-D D

j=m 0

0 A-D D

p1 = min{p*, m+ I}

p1 = min{p*, m+2}

p1 = min{p*, m+3}

0 A-D D

107

In these arrays, 0 denotes the s-dimensional nullvector. Type II versions are

obtained by defining Yn+I by means of (2.7) instead of by (2.6), and, if the weights

of the corrector satisfy b T =e 5 TA, then by virtue of Theorem 2.2, we may replace p1

by pll and m by m-1. Notice that the b-vector is not actually needed if the algorithm

is based on Type II methods. Furthermore, we remark that methods of Type B.2 are

completely determined by the generating corrector, and that those of Type C.3

prescribe the matrix D and the row sums of the matrix E.

As already observed, PDIRK methods all belong to the class of DIRK methods

(since the name DIRK is not consistently used in the literature, we remark that we

shall call an RK method of DIRK type if the strict upper triangular part of its

Butcher tableau vanishes). Moreover, the ith processor (i=l ,2, ... ,s) is faced with

solving a sequence of implicit relations in each of which the decomposition of the

matrix I - di h of/oy is required (in case of systems of ODEs). Since this

decomposition can be used in all m iterations in (2.2), we shall say that PDIRK

methods are singly diagonally implicit RK methods (SDIRK methods). Here we

remark that this terminology is often reserved for methods in which all stages are

implicit with the same diagonal entry in their Butcher array. However, the zero

diagonal entries in PDIRK methods of the Types A and C (originating from B=O) do

not exclude these methods from the class of SDIRK methods, since these zeros mean

thatf(yn) has to be evaluated prior to the iteration process. Because the bulk of the

computational effort per step consists in solving the implicit relations, the costs of

this explicit stage are relatively negligible.

Therefore, taking parallelism into account, we shall say that PDIRK methods

require k sequential stages if each processor has to solve k implicit relations per step.

Thus, Type A methods require m sequential stages, whereas for Type B and Type C

methods this number is given by m+ 1.

Finally, we observe that if the diagonal matrix D has equal diagonal entries, then

all processors need the same LU-decomposed matrix in their solution processes. In

such cases, this decomposition, as well as the evaluation of the Jacobian matrix

of/oy, may be performed by an additional processor, providing a 'fresh'

decomposition for all processors as soon as it is available.

3. STABILITY

Applying the PDIRK method to the test equation

(3.1) y'(t) = A,y(t),

108

yields a relation of the form

where z:=Ah and Rm(z) is a rational function, the so-called stability function. The

stability functions corresponding to PDIRK1 and PDIRK11 methods will be denoted

by R1m(z) and R11m(z), respectively. They can be directly derived from the Butcher

arrays by using the familiar 'determinant formula' (cf., e.g., [7, p.72)). However, the

dimension of these arrays is usually so high that the evaluation of the determinants

is rather tedious, even for small values of the number of iterations m. Therefore, we

shall derive these stability functions by alternative techniques.

From (2.6) and (2. 7) we see that the stability functions are respectively

determined by

In order to derive an expression for y(m) we write

where the matrix Qj follows from

y(j) = [I - zDr l [yne + z[A - D] y(j-1)] =

[/-zDr1 [yne +z[A-D][J-zD]-1Qj-1Ynel

Introducing the matrix function

Z = Z(z) := z[A - D][I - zDJ-1,

we find that Qj satisfies the recursion

Qo = [I - zD][I - zB]-1 [I+ zE],

Hence, the stability functions are given by

(3.3)

Qm = Qm(z) :=I+ Z + Z2 + ... + zm-l + zm[J- zD][J -zB]-1[] + zE].

109

We shall separately consider the case where the diagonal matrices Band D have

constant diagonal elements, and the case where the matrices B and D are arbitrary

diagonal matrices.

3.1. PDIRK methods with constant diagonal elements
First, we consider the effect of setting D=d· l on the attainable order of those

PDIRK methods which already impose conditions on the matrix D. Assuming that

the generating corrector always satisfies the condition Ae=c, we find, according to the

specification of PDIRK methods in Section 2.3, that

TypeB.2:

Type C.3:

D = diag(Ae)

. DAe =A2e

de=c,

de =Ac.

By observing that third-order correctors require that bTe=l, bTc=l/2, bTAc=l/6 and

bTc2=113, we see that PDIRK methods of Type B.2 cannot satisfy these conditions,

so that their order is limited top*= 2, which is obtained for d=l/2. A necessary

condition for Type C.3 methods to satisfy these third-order conditions requires d=l/3.

However, the fourth-order condition bTA2c = 1/24 cannot be satisfied, so that the

order of Type.C.3 methods is limited top*= 3. Obviously, we are not interested in

such low-order methods. Furthermore, as will be shown below, we shall exclude

methods of Type C.1, because the number of sequential stages is not optimal with

respect to the order p. Thus, in this section we shall concentrate on PDIRK methods

of Type A.1, Type B.1 and Type C.2.

Next, we return to the stability functions (3.3). For B=b·l and D=d·l the matrix

Qm(Z) can be written as

Qm(z) = (1 - bz)(l - dzr-1 '

where Nm(z) is a polynomial in z with matrix-valued coefficients; (3.3) becomes

(3.4)

This representation shows that both stability functions are of the form

r

(3.5a) R(z) := (l -dztq P(dz), P(dz) := L Cj (dz)i,
j=O

110

where the coefficients Cj depend on q and d (recall that either b=0 or b=d). For future

reference, it is convenient to specify the values of r and q for the various types of

methods. In Table 3.1 these values are listed for general values of d.

Table 3.1. Values of rand q in the stability function (3.5a).

Type IA I8 IC IIA IlB ITC

r= m+l m+l m+2 m m m+l

q= m m+l m+I m m+I m+l

For an arbitrary given value of d the order of consistency of the stability function

(3.5a) cannot exceed r, hence, by choosing m such that the order p of the PDIRK

method equals r, we achieve that the number of sequential stages is minimal with

respect to the order p.

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The following

theorem defines an explicit representation of the stability function.

Theorem 3.1. Let p be the order of the method and let m be such that r=p; then the

coefficients of (3.5a) are given by

(3.5b) ~ (q) (-1 y'-i .
Cj= £..J ._. "7';ji, 1=0, l, ... ,q;

i=O J l l.

q .
~ (q) (-1)1

Cj= !,- i (j-i)!dj-i '
1=0

where j = q+l, q+2, ... , p, and O! := 1.

Proof. Since it is assumed that the method is of order p we necessarily have

R(z)=exp(z)+O(zP+ 1). By expanding the function (1 - dz)q exp(z) in a Taylor series at

z=O and by equating corresponding coefficients in this expansion and in the

polynomial P(z), defined in (3.5a), we can find the first p+ 1 coefficients of P. Hence,

all coefficients of Pare uniquely determined and are given by (3.5b) (see also N0rsett

[19] and Butcher [3, p. 246] for expressions in terms of derivatives of Laguerre

polynomials). []

Notice that the condition r=p excludes methods of Type C.1, because for Type I

and Type II variants the maximal order is m+ 1 and m, respectively, which is one

lower than the corresponding value of r. As a consequence, for methods of Type C

with stability functions of the form (3.5), the order should be increased by one,

which is obtained by requiring the matrix E to satisfy the condition Ee= Ae - de.

111

By-means of Theorem 3.1 the stability analysis is now rather straightforward.

Following Njlirsett [20) and Butcher [3], we write u=y2 and define the so-called £

polynomial

From the condition R(z)=exp(z)+O(zP+ 1) it follows that I R(iyld) 12= l +O(y p+ 1), so

th11t E(y2)=O(yP+ 1). Hence, all terms of E(y2) of degree less than p+ 1 in y vanish,

so that
q

E(u)= L ej ui,
j=Lpl2J+l

with Cj := 0 if j > p or j < 0.

Because of the maximum principle, we have A-stability if I R(iy) I is bounded by l

for all real y, so that the method is A-stable if, and only if, E(u) is nonnegative for

u~O.

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let the

range of d-values which are A-acceptable be denoted by lpq, i.e., lpq:={d: E(u)~ 0 for

all u ~ 0}; then the following summary is easily obtained by using Table 3.1 and the

order results obtained for the various types of methods (p* denotes the order of the

corrector { A, b}):

Table 3.2. Summary of properties of PD IRK methods with constant

diagonal elements.

A-acceptable
Type Condition Order Sequential stages d-values

IA.1 m:Sp*-1 m+l m lm+l,m
IB.l m:Sp*-1 m+l m+l lm+l,m+l
IC.2 m:Sp*-2 m+2 m+l lm+2,m+l
IIA.l m:Sp* m m lm,m
IIB.l m:Sp* m m+l lm,m+l
IIC.2 m:Sp*-1 m+l m+l lm+l,m+l

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if q > p. From Table

3.2 we see that the methods of Type IIB.1 possess L-acceptable stability functions.

Since L-stable methods are usually more suitable for integrating stiff equations than

A-stable methods, the methods of Type IIB. l are of interest in spite of the additional•

sequential stage when compared with the other methods, However, just as in the case

of Sl)IRK methods, it is possible that an A-stable method. can be made L.-statlle ifi

the interval ofA-acceptable d-values- contains a: value for which cp vanishes. Eon

q = p $ 15, this has been investigated' oy Wolffirandt[25] and it was found. that such,

values of d exist for p$6 and'p = 8. Thi& information is summacized,in Table 3.3a.

In a similar way, £-acceptable ranges.ofd~values can be foundtinthecase q,=p+l.

These ranges turn out to be nonempty for p $ 8· and. for. p= 10,. amf are given in 'Tiabli:l

3.3b: Moreover, we list the values, of dp;p+l, which, are inside. these L-aGceptable·

ranges and cause cp to vanish,. resulting in even. strongerdamping at 'infinity' CE2-

stabili ty).

Finally, we considered the case· q = p -1, resulting from, rtt.1 and IC.2 type

methods. Since now the degree of the numerator in, B(z;): is: lm:gen than that 0£ tlie

denominator,. a necessary condition for this case ttl yield' A\..stabili~; is, that cp

vanishes. For p = 2, 3; ... ,. 10 we determined:, tire:· zeros of cp<:tl): andi checked: the result

ing stability function on A.s-acceptabiiity. Only for p=2' (d=l!T); p=3: (d=(3+ ✓iJ)/6);
p=4 (d=l .06857902B); and p=6 (d=0A7'.32683"9126) A·-stability can fie obtained.

Hence, in this way we have found A-stable methods, of orders p $ 4 anrl p=o reqµii:ing.'

p-1 sequential stages. This 11esult is similar to what- is possible in the case of RK
methods for sequential computers (cf. [:t]; for p $ 4: and: [5] for: p=6); however,. the

present methods contain embedded formulas of lbwer order.

Tabf~ 3.311. A-acceptable and L-acceptable values of dfur p =q:

Range l'pp

[1/2, oo]

r114, oo]

[1/3, I .068']

~(i).395, 1'.2'80J

[0.247, 0361]' + [0.4ZI,0:473J;

[0:285, €B4l
empty

[0.218, 0.264],

empty

empty

1:

11±-vf U'2:
0.4358<6~5©

0SZ2!H60625
()U78Cl5'.3184J'.O

0.3'3'41423671

(i):2'3437315%·

Notice tl'rat an,y s-stage·, pth-order couectoi; (even ex.pl,icit correct"©,r metlwds,) can

be l'lise"d for gffletating A-sta:h:Ee methods. oiE l'ype ffl;, .m:cl! aRy ptlfu.>-o:rtrer co1mec:1!0.,

saitisfyin:g: tie oondition' 1,:11=e/ A. for generating tJiie A.-stalll,le metoods of Type RA

and OC,. or nfue .L-stai:de ffle~- of Type DB.

113

Furthermore, we have seen that the stability can be improved by selecting special

d-values. Another possibility, which might be useful in a variable-stepsize

implementation, is to exploit the length of the A- and L-acceptable ranges: for small

changes in the stepsize h, the value of h·d could be kept fixed (as long as the

corresponding d-value is still in the allowed range, of course), so that a new

decomposition of I - h d c)J/c)y can be avoided.

Table 3.3b. Ranges of L-acceptable values of d for p = q -1.

p =q-1 Range lp,p+I dp,p+I

[1--fin, 1+✓ 1121 0.5

2 [0.181, 2.185] 0.5±-fi."m

3 [0.224, 0.572] 0.3025345782

4 [0.248, 0.676] 0.3888576711

5 [0.184, 0.334] 0.2168805435

6 [0.205, 0.378] 0.2579552416

7 [0.157, 0.2029]+[0.2052, 0.234] 0.1690246379

8 [0.171, 0.259] 0.1929778040

9 empty

10 [0.147, 0.165]+[0.1938, 0.1961] 0.1541460739

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff

systems, the actually observed order is usually much lower than the classical order p.

In fact, the order behaviour is often dictated by the so-called stage order r (for a

definition of this notion and its consequences the reader is referred to [7]). Since most

(P)DIRK methods have stage order r = I, one might question the relevance of PDIRK

methods possessing a high classical order. And indeed, for a general stiff problem,

this order reduction phenomenon has great impact on the accuracy of this type of

methods.

However, in [10], Hairer, Lubich and Roche give a thorough analysis of the

behaviour of RK methods when applied to a singular perturbed problem of the form

(3.6)
dyz
-;ji"=h(y1,y2), with E << 1,

and show that for special RK methods the classical order may still dominate the

global error, especially if stiffness increases (i.e., if E ➔ 0). The motivation for

considering this particular problem class is that it has practical significance and has

been extensively studied in the literature (see the references cited in [10]). An

important characteristic of problems of the form (3.6) is that the eigenvalues of the

Jacobian matrix can be clustered into two groups, and behave as 0(1) and O(e-1),

respectively. Here we give the essential result of Hairer et aL concerning the global

error (cf. [10, Theorem l on p. 680]):

1'heorem3.2. Let the RK method be A-stable and let e:c;;Constant·h; then the global

error for the stiff component YI behaves as O(ehr) + O(hP) ifbT==esTA and'as

O(fir+i\,if IR(00)I< I. For both cases; the global error for the nonstiff component Y2

beha~.,as O(ehr+l) + O(hP). [i]

This result indicates that Type Il methods are to be preferred if e ➔ 0, since then the

global error is dominated by the classical order, whereas methods of Type I will

behave according to their (low) stage order.

To illustrate these properties, we applied a few of the PDII~K methods derived in

the preceding subsection to a problem of the form (3.6), proposed by Kaps [17]:

d
;1 == _ (2 + e-1)YI+ i:;-I (Y2)2, Y1(0) == 1,

(3.6')
dy2 dt =YI-no+ Y2),

C) ::; t :c;; l,

Y2(0) == 1,

with the smooth exact solution y I ==exp(-2t) and Y2=exp(-t) for all values of the

parameter e.
The methods we have used' in our tests are based on correctors of different

classical order (a specification of these correctors can be found in the appendix to the

report [14]). Moreover, all methods were equipped with the special dpp or dp,p+ 1

values given in the Tables 3.3 and, consequently, are L-stable and L2-stable,

respectively.

For e= l o~8 the absolute errot for the stiff component y 1 at the end p0int t:::: l is

given irt Taole 3.4; here, the error is written in, the: foFm• 10-A artd the values of ,1, are

listed. Notice that the Type II methods require a stiffly accurate corrector (such as the

Radau IIA formulas} and that L-stable, seventh-order PDIRK methods are only

possible within the family of Type JIB. f methods (cf. Tables 3.2 and 3.3b). ThiS

table clearly demonstrates the superiority of the stiffly accurate Type II methods over

the Type I methods, wnich show onfy a second'-order beflaviour foi; tne global error

(recaU that r= l for the Type IB. U methods}. On the other hand, the stiffly accurate

methods exhibit the classical order in the error behaviour and thus bodr results are in

perfect agreement with the estimates in the theorem of Hairer et al.

From this experiment we may conclude that it is relevant indeed t-0 have nigfr"
order PDIRK methods for integrating stiff systems of the form (3.6), in spite of their

low stage order.

Comparing the efficiency of tne vari'Ms pataHel methods of type ID:, we observe

that schemes of Type A and C are equally effrcient, sinG:e tfuey req®i'l'e the s,ame

115

number of sequential stages (cf. Table 3.2). The Type IIB. 1 methods yield slightly

more accurate results, but need an additional stage to reach the same order (we remark

that the seventh-order method of this type does not show full advantage, since the

integration process was impeded by the machine precision).

Table 3.4. Values of L1 at t=l for the first component of problem (3.6') with e=I0-8.

Seq. Stages
Type Corrector Order h=I/4 h=l/8 h=l/16 h=l/32 h=I/64 per step Proc.

IB.1 Radau IIA 3 3.7 4.1 4.6 5.2 5.8 3 2

Gauss-Legendre 4 2.9 3.6 4.2 4.8 5.4 4 2

Explicit RK 4 3.0 3.7 4.3 4.9 5.5 4 4

RadauIIA 5 3.6 4.3 4.9 5.5 6.1 5 3

Gauss-Legendre 6 3. I 3.7 4.4 5.0 5.6 6 3
-- - - - - - - - - -- -- - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - -

HA.I Radau IIA 3 4.0 4.9 5.8 6.7 7.6 3 2

RadauIIA 5 6.9 8.4 9.8 10.6 11.0 5 3
- - - - - - - - -- --- - -- - - - - - - - -- - - -- -- - - - - - -- - --- --

11B.1 Radau IIA 3 4.3 5.2 6.1 7.0 7.9 4 2

RadauIIA 5 7.2 8.7 10.3 11.8 11. 8 6 3

Radau IIA 7 9.7 10.2 I 0.6 10.9 11.2 8 4
-- -- - -- - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - -- - - - - - - - -- -

IIC.2 RadauIIA 3 4.0 4.9 5.8 6.7 7.6 3 2

RadauIIA 5 6.9 8.4 9.8 10.6 11.0 5 3

3.2. PDIRK methods with arbitrary diagonal matrices
In the case where B and D are allowed to be arbitrary diagonal matrices, it is

convenient to express Qm(Z) in the form

Qm(Z) = [/-ZJ-1[/ - zm] + zmQo

= [I -Z]-1 [/ - zm] + zm[I - zD][I - zB]-1[1 + zE].

Since [/ - zDJ-1 = [/ - zAJ-1 [/ - Z], we find

Qm(Z) = [/ -zD][I -zAr1 [I - zm + [/-Z]zm[I-zD][I -zB]-1 [/ + zE]],

so that (3.3) yields

(3.3')
R1m(Z) = 1 +z,bT[i-zAJ-1[1-zm + [/-Z]ztn[I-zD][l-zB]-1[! +zE]]e,

RIIm(Z) =e/[I-zAJ-1[1-zm + [I-Z]ztn[l-zD][l-zB]-1[1 +zE]]e =

= 1 +e/[/-zAJ-1 [zA-zm + [/-Z]ztn[/-zD][/-zB]-1[1 +zEJ]e.

116

In the following two subsections, a representation for the stability functions

without inverses of matrices will be given, and stability characteristics of PDIRK

methods of the Types IB.2, IIB.2 and IIC.3 are presented.

3.2.1. Representation theorems. The following theorem gives a representation of

the stability functions in terms of determinants containing only inverses of diagonal

matrices:

Theorem 3.3. The stability functions (3.3') can be represented by

(3.7)

II det{/-zA + [zA -zm + [I-Z]Z111 [1-zD][I-zB]- 1 [I+ zE]]ee/}
R (z)------------_,;;.-........ _,;;.----------------=-.............. -

m - det {/ - zA}

Proof. Applying the identity

1 TN-l _ det {N + yxT}
+ x y - det {N}

to the stability functions, (3.3') straightforwardly leads to the representations (3.7). []

The expressions (3.7) can be simplified for the respective Types A, Band C:

Corollary 3.1. Let the matrix Z be given by Z = z[A - D][J- zD]- 1; then the

following assertions hold:

(a) The stability function of PDIRK methods of Type A. I are given by

I det{ / - zA + z[I - zzmA]ebT} R
111

(z) = _ _,_ ___ ..;;.... _____ ,

det {/ - zA}
(3.8a)

II det{/-zA +z[I-Z111]AeesT}
R (z)--------------------

m - det { / - zA }
(b) The stability function of PDIRK methods of Type B are given by

(3.8b)
I det{ / - zA + z[I - zm+I]ebT}

R m(Z) = ---------------- ,
det {/ - zA}

11 det{ / - zA + [zA - zm+I Jee/} R m(Z) = _........_ _____________..._
det {/ - zA}

117

(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are given by

(3.8c)
RI z _ det{J-zA+z[/-zzm+lA]ebT}

m () - det {/ - zA } '

Rn z _ det{I-zA+z[I-zm+ 1]AeesT}
m() - det {/ - zA}

[]

Notice that these expressions no longer explicitly depend on E and B and are

completely determined by the corrector and the matrix Z.

3.2.2. Stability characteristics. In this subsection, we consider the stability of

PDIRK methods. We shall distinguish between methods based on Radau IIA

correctors and on Gauss-Legendre correctors.

The Radau IIA correctors have order p=2s-1, where s is the number of stages, and

satisfy the condition bT=esTA (their Butcher arrays for s=l, ... ,4 are given in the

appendix to [14]). Owing to this property, PDIRK methods of Type I and Type II are

both relevant. We confine our considerations to types which require (with respect to

their order) less sequential stages than the corresponding methods indicated in Table

3.2, that is, we consider methods of the Types IB.2, IIB.2, and IIC.3. For these

types of methods, the stability functions are completely determined.

Table 3.5. Characteristics of PDIRK methods

Type Corrector Order Seq.Stages Processors Stability

IB.2 RadauIIA 3 2 2 Strongly A-stable
Gauss-Legendre 4 3 2 Strongly A-stable
RadauIIA 5 4 3 Strongly A-stable
Gauss-Legendre 6 5 3 Strongly A(a)-stable, a=89.97°
RadauIIA 7 6 4 Strongly A(a)-stable, a:=83.3°

IIB.2 RadauIIA 3 3 2 L(a)-stable, a=89.75°
RadauIIA 5 5 3 L(a)-stable, a=89.12°
RadauIIA 7 7 4 L(a)-stable, a=89.02°

IIC.3 RadauIIA 3 2 2 A-stable
RadauIIA 5 4 3 A(a)-stable, a=89.997°
RadauIIA 7 6 4 A(a)-stable, a=89.95°

In Table 3.5, we present a summary of the characteristics of these methods for

several orders. Based on the stability functions (3.8), the stability region of the

methods was determined numerically. It turned out that some stability functions are

only A(a)-acceptable. However, in these cases a is very close to 90° (in the

Appendix to [14], a set of stability regions is given, including the regions of the

embedded lower-order methods).

118

· Furthermore, we considered PDIRK methods based on Gauss-Legendre correctors.

Such s-stage correctors have order 2s, but are not stiffly accurate and, hence, only

Type I methods are relevant. In Table 3.5 we have included the characteristics of

fourth- and sixth-order methods of Type IB.2 (the generating correctors can be found

in [3, p. 219]).

In comparison with the PDIRK methods constructed in Section 3.1, we observe

that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential stage

less to obtain a given order of accuracy. Moreover, with the exception of the 7th

order method of Type IB.2, these methods possess almost the same good stability

properties.

For the methods of Type IIB.2 (for which the order equals the number of

sequential stages), only the seventh-order is relevant, since in Section 3.1 it turned

out to be impossible to construct an L-stable method of order 7 with 7 sequential

stages; the third- and fifth-order methods of Type IIB.2 do not have an advantage over

the £-stable methods described in Section 3 .1.

3.2.3. Accuracy test. We conclude this section by applying the methods specified in

Table 3.5 to the problem (3.6'). Using the same notation as described in Section

3.1.3, the results are given in Table 3.6.

Again, the stiffly accurate Type II methods are much more efficient than the

methods of Type I. Moreover, the order behaviour nicely illustrates the results of the

theorem of Hairer et al. (cf. Section 3.1.2). Furthermore, within the class of stiffly

accurate methods, the C-variant is superior to the B-variant, since it is cheaper and

yields, for this example, more accuracy.

Table 3.6. Values of .1 at t=l for the first component of problem (3.6') with E=I0-8.

Seq. Stages
Type Corrector Order h=l/4 h=l/8 h= 1/16 h=l/32 h=l/64 per step Proc.

IB.2 Radau IIA 3 2.8 3.8 4.1 4.7 5.3 2 2
Gauss-Legendre 4 2.7 3.4 4.0 4.6 5.3 3 2

Radau IIA 5 2.4 2.8 3.4 4.1 4.8 4 3

Gauss-Legendre 6 3.0 3.5 4.1 4.8 5.4 5 3

Radau IIA 7 4.2 4.6 5.2 5.8 6.4 6 4

11B.2 Radau IIA 3 3.4 4.1 4.9 5.8 6.7 3 2

Radau IIA 5 4.9 6.1 7.5 9.0 10.4 5 3

Radau IIA 7 6.4 8.2 10.1 11.9 12.5 7 4

IIC.3 Radau IIA 3 4.3 5.2 6.1 7.0 7.9 2 2

Radau IIA 5 6.6 8.0 9.4 10.8 11.6 4 3
Radau IIA 7 8.7 10.6 12.0 12.3 12.6 6 4

119

4. EFFICIENCYTISIS

Finally, we will investigate the performance of PDIRK methods when run on a

parallel computer. Because it is highly desirable to use an unconditionally stable

method of high order, we selected a PDIRK method of Type IIB.1 with a D-matrix of

the form D=d·I. On the basis of the accuracy test described in Section 3.1.2, we

decided to choose the seventh-order, four-point Radau IIA corrector (see (A.3) in the

Appendix to [14)), with m=7 iterations. The resulting method is of order seven (cf.

Theorem 2.2) and by choosing d=0.1690246379 we achieve strong damping at

infinity (L2-stability, cf. Table 3.3b). Hence, taking into account the (implicit)

predictor, the method requires eight sequential stages per step. We have implemented

this method on an ALLIANT FX/4 computer, having four parallel (vector-)

processors, shared memory and approximately 16 digits arithmetic precision. Since

the underlying Radau method has four stages, we may expect an efficient use of this

machine.

In order to be able to test problems with a strongly fluctuating solution, we

equipped the above fixed-order PDIRK method with a simple strategy for error control

and stepsize selection. Since the PDIRK approach provides a whole set of embedded

reference solutions of lower order, we can construct an estimate of the local

truncation error without additional costs. For this purpose we take

II e4 Ty(m) - e4 Ty(m-l)II as an estimate for the local error. All implicit relations are

iterated using modified Newton iteration. If convergence happens to fail within a

fixed number of iterations (in our version, we choose this number equal to 10), then

we update the Jacobian and, if still no convergence can be obtained, we halve the

stepsize (repeatedly, if necessary). Furthermore, the Newton process to solve for y(j)

is started with the initial guess y(j-l), which is of increasing accuracy for increasing

j. It should be observed that this provisional implementation certainly can be

improved by a better tuning of the separate elements (for example, all kinds of

thresholds and strategy parameters should be tuned on the basis of extensive testing).

Since it is not the aim of this paper to present such a 'production code', we will give

results for our 'research version'.

The goal of our tests is twofold:

(i) We want to investigate to what extent the theoretical parallelization can be

realized in practice; in other words, what speedup factor can be obtained on this four

processor machine. Obviously, the ideal factor of four will be too optimistic, due to

some unavoidable overhead, like communication and sequential parts in the program.

(ii) We want to compare the performance of the parallelized PDIRK code with that

of a good sequential ODE solver. Within the class of sequential solvers based on

unconditionally stable methods, we selected the code SIMPLE of Nfllrsett and

Thomsen [22]. The method underlying this robust and reliable code is closely related

120

·to the PDIRK method, i.e., it is also based on an unconditionally stable, diagonally

implicit Runge-Kutta method. Furthermore, SIMPLE is, like PDIRK, equipped with

embedding techniques to control the local error. A disadvantage of this code is that

its order is rather low; it is based on a third~order DIRK method .. However,. high-order

A-stable DIRK-codes are not available in the literature. Since many problems are

more efficiently integrated if high-order formulas are available, we also looked for a

code based on methods of various orders. This leads us to LSODE of Hindmarsh [11 J.
This BDF based code has enjoyed very successful usage over a long period. However,.

the fact that only the first- and second-order formula in this code are unconditio14aJ1y

stable, makes LSODE less robust as a general stiff solver .. It is well known that the

performance of this code may decrease significantly when it is applied to profulerns

with eigenvalues in the vicinity of the imaginary axis (see,. for example, Stewart

[231). On the other hand, since LSODE is generally accepted as being a good

sequential ODE solver, we decided to include it in our tests.

In the next subsections, we describe the results obtained when the aforementioned

three codes are applied to some hard problems. Since the codes mre different in nature

(low order versus high order, onestep versus multistep), we refrain from specifying

the traditional statistical output of an automatic ODE solver, like number of steps,

number of LU-decompositions etc. It should be observed that the work involved per

step is quite different for the various codes: for instance, the sequential number of

implicit relations to be solved per step equals l for LSODE, 4 for SIMPLE, and 8 for

PDIRK. Since the codes do not yield equal accuracy for the same value of the local

error control parameter TOL, we list results for various values of TOL and measured

the accuracy produced as well as the CPU-time required. All accuracies are given in

terms of L\, the number of correct digits in the endpoint of the integration interval

(see Section 3.1.2), and the CPU-tirnes are given in seconds.

4,1. Robertson kinetics example

In our first example we solve a set of reaction-rate equations:

d~J = - 0.04 YI + 104 Y2 Y3,

(4.1) d;2 = 0.04 YI - 104 Y2 Y3 - 3·107 (Y2)2,

dy3 dt = 3·107 (Y2)2,

defined on the interval [0, 108] with initial conditions y 1 (0) = 1, Y2(0) = y3(0) = 0.

This problem is also used by Hindmarsh and Nprsett-Thomsen to illustrate the

performance of LSODE and SIMPLE.

121

Initially, the solution changes rapidly and small stepsizes are required; gradually

the solution reaches a steady state and the stepsize can be increased considerably. In a

typical situation we observed stepsizes in the range [1 o-3, 106]. Hence this problem

imposes a severe test on the stepsize selection procedure. The results obtained by the

various codes are collected in Table 4.1. Here Ti means the CPU-time when only one

processor is used, and T4 denotes the CPU-time required when the program is run on

four processors.

Table 4.1. A-values and CPU-times for problem (4.1)

Method IDL A T1 T4
10-4 6.5 0.63 0.85

SIMPLE 10-5 7.8 1.38 >T1
10-6 9.5 3.67 >T1

LSODE

10-5 7.4 0.35 >T1
10-7 8.6 0.80 >T1
10-9 10.3 1.71 >T1

PDIRK 102 8.5 0.51 0.19
100 11.1 1.08 0.37

These results give rise to the following conclusions:

(i) Concerning the parallelization of the PDIRK code we observe a speedup with a

factor (T1IT4 "') 2.68 and 2.91 for the two values of TOL that we have used. One

reason why these numbers are less than the optimal speedup factor 4, is the

introduction of inevitable overhead (and of scalar code). Another reason is

algorithmic in nature. Each component of the prediction y(O) is a numerical

approximation to the ODE solution at the point tn+d h (actually, all processors have

solved exactly the same implicit relation in this predictor stage). These components

are used as an initial guess in the various Newton processes computing y(l). Since

the components of y(l) are approximations to the ODE solution at different points

(i.e., the Radau points), these initial guesses do not have equal accuracy, so that we

may expect different numbers of Newton iterations on the various processors. In the

case TOL = 1, we measured the actual numbers of Newton iterations over the whole

integration interval and found, for the four processors, 848, 924, 1012 and 1043,

respectively. This means that in some steps a few processors have met the

convergence criterion in the Newton process, and thus have been idle for some time

while waiting for the other processors to complete solving their implicit relation.

Taking this aspect into account, the optimal parallelization cannot exceed a speedup

factor equal to (848+924+1012+1043)/1043 "'3.67. The measured speedup in this

case equals 2.91 (i.e., 79%), showing that the overhead (communication, scalar code

etc.) only slightly degrades the performance. The reduction of the ideal factor 4 to

122

J.67 is a price we have to pay in choosing a PDIRK method. We may conclude that

the actual efficiency of the method as a whole, defined as the total speedup divided by

the number of processors used, equals 2.9114 = 0.73.

(ii} Concerning the scafar codes SIMPLE and LS0DE, we observe that they run

faster on one processor than on four (see the result obtained by SIMPLE for

TOI,ci:f0-4). Apparently, the parallelization and vectorization overhead does not pay

for rilti~ problem (this might be different in case of an ODE with many components).

Tl'letefore, we only give timings for the uniprocessor experiments.

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in

the high-accuracy range. This is obviously due to its low order. LSODE, which can

utilize higher orders, is more efficient in this range but, when compared to PDIRK,

its CPU-time is approximately four times larger to obtain 8.5 digits precision and

this factor increases if still higher-precision results are requested (notice that even on

one processor, PDIRK is faster than LS0DE on this problem).

(iv) Finally, we observe that the value for T0L used by PDIRK is several orders of

magnitude larger than the value used by either SIMPLE or LS0DE to achieve the same

global error. This can _be explained as follows: Owing to its high order, the local

truncation error of PDIRK is usually relatively small. Therefore, if crude tolerances

ate used, the error control mechanism signals that a large stepsize can be used in

order to balance the estimated and the requested local error. On the other hand, the

Newton process imposes a !imitation on the stepsize. In our implementation, the

Newton processes to solve for y(O) are given the value Yn as initial iterate.

Unfortunately, for large values of h (as suggested by the error estimator) this initial

iterate is not always inside the contraction domain for the Newton process, resulting

in an adequate reduction of the stepsize. As a consequence, this high-order scheme,

using a small(er) stepsize, will produce a local error which is much smaller than

requested.

In conclusion, for this test problem (and also for the problem to be discussed in

the next subsection), the restriction on the stepsize imposed by the Newton process

is more stringent than that imposed by the local error control, unless very small

values for T0L are used. We have also integrated some linear ODEs (for which the

convergence problems are not relevant, of course) and observed a relation between

T0L and the global errot similar to that of SIMPLE and LS0DE,

Summarizing, for obtaining highly accurate results, the above experiment shows

that the high order of the PDIRK method is worth the large amount of redundancy

introduced in its construction. In this conne£tion we remark that the order of these

methods can still be raised to 10, whereas an increase of the order is not possible for

13DF methods and not feasible for embedded DIRK methods underlying the SIMPLE

ctlde,

123

4.2. Van der Pol's equation
Our second example is given by the van derPol equation

(4.2) y" - µ (1-y2)y' + y = 0.

For µ=5, this is problem E2 from the test set of Enright et al. [8]. However, as

reported there, on the interval [0, 1] the spectral radius of the Jacobian does not exceed

15, so that the problem is not really stiff. Therefore, we set this parameter to 50.

For this µ-value the equation exhibits so called 'relaxation oscillations', which

means that the solution possesses internal boundary layers. Furthermore, we consider

an integration interval sufficiently large to capture such an internal layer, which

again requires an adequate stepsize selection procedure. The problem tested in this

section is defined by

dy1
di =y2, YJ(0) = 2,

(4.2')

d;2 = 50 (1 - (y1)2) Y2 -y1,

0::; t :s; 41.5 .

Y2(0) = 0,

This test example has also been discussed by Gottwald and Wanner in [9]. At

approximately !=40.7, the solution YI drops from 1 to -2 on a very short interval,

forcing the codes to reduce their steplengths dramatically (several orders of

magnitude). The results of the various codes applied to this problem can be found in

Table 4.2.

Table 4.2. Li-values and CPU-times for problem (4.2')

Method lOL L1 T1 T4

10-6 5.6 1.07 >T1
SIMPLE 10-8 6.9 5.64 >T1

10-IO 7.8 25.5 >T1

10-6 4.3 0.24 >T1
LSODE 10-8 6.3 0.42 >T1

10-I0 7.8 0.83 >T1

10 5.1 0.56 0.20
PDIRK 10-2 6.1 1.20 0.41

10-5 7.2 2.44 0.82

Again, we see that PDIRK can take advantage from the availability of four

processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency is

"' 0. 72). For this problem the loss in efficiency due to overhead is less than

124

O - 0. 72 =) 0.28, because the various processors required a different number of

Newton iterations (viz., for TOL=I0-5 we found 3186, 3561, 3882 and 4092

iterations, respectively, thus reducing the optimal speedup factor from 4 to 3.6).

Furthermore, it is quite clear that the low-order SIMPLE code becomes

excessively more expensive for smaller values of TOL. On the other hand, LSODE

behaves rather efficient for this problem and is approximately equally efficient as

PDIRK.

4.3. Conclusions
On the basis of these (difficult) problems we may draw the following conclusions:

- the actually obtained degree of parallelization of the PDIRK method is fairly close

to its ideal value.

- the reason that SIMPLE is less efficient than the other two codes, especially in the

high accuracy range, is because of its low order.

it is well known that the higher-order BDF formulas lack the property of L

stability. This may result in serious difficulties for LSODE in the case that the

Jacobian has eigenvalues in the vicinity of the imaginary axis. However, the two

test problems do not belong to this category; hence, LSODE has not been faced

with the limitation of the stability regions of the higher-order BDFs.

- unlike the implementation of SIMPLE and LSODE, the implementation of PDIRK

does not require additional costs in calculating a reference solution.

- the present research version of the PDIRK code is at least as efficient as the well

balanced, extensively tested LSODE code.

- a future version of a PDIRK code can be improved as follows:

(i) better tuning of the stepsize strategy parameters and, particularly,

finding more accurate initial iterates for the Newton process in the

prediction stage;

(ii) implementation of a variable-order strategy; L-stable PDIRK fonnulas of

orders up to 10 (excluding order 9) are available;

(iii) implementation of a stiffness detector, like the one in SIMPLE, and

switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in

nonstiff regions of the integration interval.

Acknowledgement. The authors like to thank dr. W.H. Hundsdorfer for the fruitful

discussions on the order reduction phenomenon and drs. W.M. Lioen for assisting

them with the experiments on the ALLIANT FX/4.

125

REFEREN~
[1] Alexander, R. (1977): Diagonally implicit Runge-Kutta methods for stiff

ODEs, SIAM J. Numer. Anal. 14, 1006-1021.

[2] Burrage, K. (1991): The error behaviour of a general class of predictor-corrector

methods, Appl. Numer. Math. 8, 201-216.

[3] Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,

Runge-Kutta and general linear methods, Wiley, New York.

[4] Cash, J.R. & Liem, C.B. (1980): On the design of a variable order, variable

step diagonally implicit Runge-Kutta algorithm, J. Inst. Maths. Applies. 26,

87-91.

[5] Cooper, G.J. & Sayfy, A. (1979): Semiexplicit A-stable Runge-Kutta

methods, Math. Comp. 33, 541-556.

[6] Crouzeix, M. (1975): Sur /'approximation des equations differentielles

operationnelles lineaires par des methodes de Runge-Kutta, Pb. D. Thesis,

Universite de Paris.

[7] Dekker, K. & Verwer J.G. (1984): Stability of Runge-Kutta methods for stiff

nonlinear differential equations, CWI Monograph 2, North-Holland,

Amsterdam-New York-Oxford.

[8] Enright, W.H., Hull, T.E. & Lindberg, B. (1975): Comparing numerical

methods for stiff systems of ODEs, BIT 15, 10-48.

[9] Gottwald, B.A. & Wanner, G. (1981): A reliable Rosenbrock integrator for

stiff differential equations, Computing 26, 355-360.

[10] Hairer, E., Lubich, Ch. & Roche, M. (1988): Error of Runge-Kutta methods

for stiff problems studied via differential algebraic equations, BIT 28, 678-700.

[11] Hindmarsh, A.C. (1980): LSODE and LSODI, two new initial value ordinary

differential equation solvers, ACM/SIGNUM Newsletter 15 (4), 10-11.

[12] Houwen, P.J. van der & Sommeijer, B.P. (1990): Variable step iteration of

high-order Runge-Kutta methods on parallel computers, J. Comp. Appl. Math.

29, 111-127.

[13] Houwen, P.J. van der & Sommeijer, B.P. (1990): Iterated Runge-Kutta

methods on parallel computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

[14] Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1989): Embedded

diagonally implicit Runge-Kutta algorithms on parallel computers, Report

NM-R8912, Centre for Mathematics and Computer Science, Amsterdam.

[15] Iserles, A. & N0rsett, S.P. (1990): On the theory of parallel Runge-Kutta

methods, IMA J. Numer. Anal. 10, 463-488.

[16] Jackson, K.R. & N0rsett, S.P. (1988): Parallel Runge-Kutta methods

(manuscript).

126

[17] Kaps, P. (1981): Rosenbrock-type methods, in: Numerical methods for stiff

initial value problems, G. Dahlquist and R. Jeltsch (eds.), Bericht nr. 9, Inst.

fiir Geometrie und Praktische Mathematik der RWTH Aachen.

[18] Lie, I. (1987): Some aspects of parallel Runge-Kutta methods, Report No.

3/87, Division Numerical Mathematics, University of Trondheim.

[19] N~rsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report

Mathematics and Computation No.6/74, Dept. of Mathematics, University of

Trondheim.

[20] N~rsett, S.P. (1975): C-polynomials for rational approximation to the

exponential function, Numer. Math. 25, 39-56.

[21] N~rsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta

methods, in: Numerical methods for ordinary differential equations, A. Bellen,

C.W. Gear & E. Russo (eds.), Proceedings L'Aquila 1987, Lecture Notes in

Mathematics 1386, Springer-Verlag, Berlin, 103-117.

[22] N0rsett, S.P. & Thomsen, P.G. (1984): Embedded SDIRK-methods of basic

order three, BIT 24, 634-646.

[23] Stewart, K. (1990): Avoiding stability-induced inefficiencies in BDF methods,

J. Comput. Appl. Math. 29, 357-367.

[24] Tam, H.W. (1989): Parallel methods for the numerical solution of ordinary

differential equations, Report No. UIUCDCS-R-89-1516, Computer Science

Department, University of Illinois.

[25] Woltbrandt, A. (1977): A study of Rosenbrock processes with respect to order

conditions and stiff stability, Ph. D. Thesis, Chalmers University of

Technology, Goteborg.

-

CHAPfERV

Iterated Runge-Kutta methods on parallel computers

Reprinted with permission from the
SIAM Journal on Scientific and Statistical Computing,

volume 12, number 5, pp. 1000-1028.

Copyright 1991 by the Society for Industrial and Applied

Mathematics, Philadelphia, Pennsylvania. All rights reserved.

Iterated Runge-Kutta Methods on
Parallel Computers

P.J. van der Houwen and B.P. Sommeijer

Centre for Mathematics and Computer Science
P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

129

Abstract. This paper examines diagonally implicit iteration methods for solving
implicit Runge-Kutta methods with high stage order on parallel computers. These
iteration methods are such that after a finite number of m iterations, the iterated
Runge-Kutta method belongs to the class of diagonally implicit Runge-Kutta
methods (DIRK methods) using mk implicit stages where k is the number of stages
of the generating implicit Runge-Kutta method (corrector method). However, a large
number of the stages of this DIRK method can be computed in parallel, so that the
number of stages that have to be computed sequentially is only m. The iteration
parameters of the method are tuned in such a way that fast convergence to the
stability characteristics of the corrector method is achieved. By means of numerical
experiments it is also shown that the solution produced by the resulting iteration
method converges rapidly to the corrector solution so that both stability and accuracy
characteristics are comparable with those of the corrector. This implies that the
reduced accuracy often shown when integrating stiff problems by means of DIRK
methods already available in the literature (which is caused by a low stage order) is
not shown by the DIRK methods developed in this paper provided that the corrector
method has a sufficiently high stage order.

1991 Mathematics Subject Classification: 65L06, 65L20

1991 C.R. Classification: G.1.7

Key Words: Diagonally implicit Runge-Kutta methods, parallelism, stability.

1. INIRODUCilON
1.1. Runge-Kutta methods

Suppose that we want to solve stiff initial value problems for systems of first

order, ordinary differential equations (ODEs), i.e.,

(1.1) ~t) =/(t, y(t)), y(to) = Yo, y : IR ➔ JRd, f: IR x JRd ➔ JRd,

by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires

that the RK method should be sufficiently stable, preferably A-stable, and therefore

130

implicit. This leads us to fully implicit RK methods (IRK methods) in which the

Butcher array

(1.2)

has a full A-matrix. Most widely used are the IRK methods based on Gaussian

quadrature formulas (such as Gauss-Legendre, Lobatto and Radau methods), which

are known to be A-stable for any order of accuracy. However, the high degree of

implicitness of these methods implies that solving the implicit relations is rather

costly. In general, a k-stage IRK method (that is, band care k-dimensional vectors

and A is a k-by-k matrix) requires in each step the solution of a system of dimension

kd, so that the computational complexity is of order (kd) 3 . This compares

unfavourably with implicit linear multistep methods which require in each step the

solution of a system of dimension d.

In order to reduce the computational labour involved when using implicit RK
methods, various people have considered diagonally implicit RK methods (DIRK

methods) possessing a lower triangular A matrix and therefore requiring (in general)

in each step the solution of k systems of dimension d. Hence, the computational

complexity is now of order kd3 instead of order (kd) 3. Unfortunately, the price we

have to pay for the less expensive DIRK methods is a considerable drop in accuracy

in many stiff problems. This is caused by the phenomenon of order reduction (cf.,

e.g., [21], [9], [11]) which reduces the observed order of RK methods to their stage

order (or their stage order plus one). Most DIRK methods are particularly sensitive

to order reduction because their stage order is only one or two, which is much

smaller than fork-stage Gauss-Legendre, Lobatto IIIA and Radau IIA methods which

have all stage order k.

An alternative for the DIRK methods are the singly implicit RK methods (SIRK
methods) of Burrage [2] which possess a high stage order. By means of a

transformation technique due to Butcher (see [5], [6]), these SIRK methods can be

transformed into methods that are, like DIRK methods, only diagonally implicit.

However, the additional transformations required in each step cause that the total

costs per step are considerably higher than for DIRK methods.

Yet another possibility is the use of parallel processors. In this paper, we shall

show that on parallel computers the fully implicit relations associated with IRK
methods can be solved efficiently by using the highly parallelizable iteration

methods of diagonally implicit type proposed in van der Houwen et al. [13]. This

brings us back to using IRK methods as corrector method instead of using DIRK or

SIRK methods. In particular, we shall concentrate on iterating IRK methods

possessing high stage orders.

131

1.2. IRK methods with high stage orders

Most IRK methods are designed in such a way that they have a high order at the

step points. However, as already remarked above, a high order at step points is often

spoiled by order reduction, so that it seems more natural to look for IRK methods

with as high a stage order as possible. In order to achieve this, we shall consider

(k+ 1)-stage IRK methods of the type

0

(1.3) C

0

a

OT

A

where bo is a scalar, a, b and c are k-dimensional vectors, and A is again a k-by-k

matrix. IRK methods of this type have roughly the same computational complexity

as the IRK methods of type (1.2), but they possess the additional parameter vector a
which can be used for increasing the stage order. To see that (1.2) and (1.3) are

(almost) equally expensive, let us assume (for simplicity of notation) that (1.1) is a

scalar problem (i.e., d=l), and let us introduce the vectors

where Yn,i denotes a numerical approximation to the exact solution value y(tn+cih),

h being the stepsize. Then we can write (1.3) in the form

(1.3')

Here, e is the vector with unit entries, and we used the convention that for any given

vectors v=(vj) and t=(tj),J(t, v) denotes the vector with entries f(tj, Vj)- If bo = 0 and

a= 0, then it follows from (1.3') that (1.3) reduces to (1.2), so that in each step the

computational complexity of (1.2) and (1.3) differ by the evaluation of f(tn,Yn), but

both methods require the solution of a system of dimension kd. Since the bulk of
the computational effort goes in solving this system, the methods (1.2) and (1.3)

may be considered as equally expensive.

The vectors Y n+ 1 and c will, respectively, be called the stage vector and the

block point vector, and the points tn and tn+cjh will, respectively, be called step

points and block points. The minimal order achieved at the block points and step

points are, respectively, the stage order and step point order.

If the method parameters are chosen in such a way that the stage order is as large

as possible with c arbitrary, then (1.3) is equivalent to the IRK method derived from

132

l:,agrange quadrature formulas and will be called a Lagrange method. If Cj = jlk, then

Lagrange methods reduce to the Newton-Cotes methods studied in Watts and

Shampine [23], and if the components of c equal the Lobatto quadrature points, then

they reduce to the Lobatto IIIA methods. However, Newton-Cotes and Lobatto IIIA

methods are only weakly A-stable (i.e., the method hardly damps the highly stiff

components in the numerical error). It is our aim to construct Lagrange methods

with better stability properties than Newton-Cotes and Lobatto IIIA methods, i.e.,

methods which damp both nonstiff and stiff components occurring in the numerical

error (strongly A-stable methods).

An important family of IRK methods are the so-called stiffly accurate methods

(cf. Alexander [l]). If the IRK method is of the form (1.3), then this family is

obtained by setting

where ek is the kth unit vector. Notice that, when represented by their Butcher array

(1.3), the last row in (1.3) equals the preceding one. It was shown by Hairer et al.

[11] that this property implies that for certain classes of stiff problems the method

does not suffer the effect of order reduction. Examples of stiffly accurate IRK
methods are the Lobatto IIIA, Radau IIA, and Newton-Cotes methods.

1.3. Diagonally implicit iteration of IRK methods

After a finite number of m iterations of the implicit relation for Yn+l given in

(1.3') by the aforementioned diagonally implicit iteration process (or briefly diagonal

iteration) (see also Section 3), the resulting scheme actually is an (mk+ 1)-stage

DIRK method. One of these stages is explicit and the other mk stages are of

diagonally implicit form. However, a large number of these mk implicit stages can

be computed in parallel, resulting in a process where only m stages have to be

computed sequentially.

The iteration parameters of the method can be tuned in such a way that we get

fast convergence to the stability characteristics of the corrector method, provided that

the corrector is stiffly accurate (in Subsection 3.3.1, we will show that the diagonal

iteration of the type employed in this paper is not suitable for iterating nonstiffly

accurate correctors).

Second, it has been demonstrated that the iterated methods based on strongly A

stable correctors (such as the Radau IIA correctors and the Lagrange correctors derived

in Section 4) are within a few iterations strongly A-stable themselves. It is highly

unlikely that this nice property is shared by the methods based on (weakly) A-stable

IRK correctors because the stability function of the iterated methods should converge

to a (weakly) A-acceptable function. In fact, for a number of Newton-Cotes and

133

Lobatto IIIA correctors it was checked that the stability function becomes A

acceptable only after an infinite number of iterations.

Finally, numerical experiments reveal that the drop in accuracy, exhibited in

many stiff problems by the conventionally constructed DIRK methods, is not shown

by the DIRK methods constructed by the diagonal iteration process of this paper. In

a forthcoming paper [4] it is intended to present a theoretical analysis of this

phenomenon using the error analysis proposed in Burrage [3].

2. ACCURACY ANDSTABILITYOFTHECORRECTOR

In the the following two subsections, we discuss the stage order, step point

order, and stability of the corrector equation (1.3').

2.1. Stage order

Let Y(tn+J) denote the vector with components y(tn+Cih) where y is the locally

exact solution of (1.1) satisfying y(tn)=Yn, then, following Butcher [7], (1.3') is said

to have stage order r if the residual left upon substitution of Y(tn+U into the

formula for Y n+ J is of order r+ 1 in h, i.e.,

(2.1) Y(tn+J) - hAf(etn +eh, Y(tn+J)) - eyn - haf(tn, Yn) = O(hr+I).

The stage-order conditions for (1.3') are straightforwardly derived (cf. [22]) and are

given by

where ci denotes the vector with components (cif. Thus, to achieve stage order r for

a given block point vector c, we have to solve rk linear equations in k 2+k

unknowns, so that the maximal stage order equals k+ 1. The corresponding methods

will be called wgrange methods.

2.2. Step point order

Consider the formula for Yn+I given in (1.3'):

Since Yn+I approximates Y(tn+I) with (local) order r+I, r being the stage order (cf.

(2.1)), we can derive that Yn+I has (at least) order p = min {r+ 1, q} if the conditions

134

ar-e satisfied. We remark that p may be larger than min { r+ 1, q} if the methods

possess the property of so-called 'superconvergence' which for example is the case in

Gauss, Radau, and Lobatto methods. The error constant of (2.3) is given by

(2.5)
__ Dq+I _ (q+l)bTcq - 1

Eq+I .- (q+l)! - (q+l)!

Assuming that c is given, the conditions (2.4) present a linear system of q

equations in k+ l unknowns, so that by setting q = k+ 1 we achieve at least step point

order p = min { r+ 1, k+ l } for any block point vector c.

As already observed in the introduction, the usual approach in exploiting the

vector c is the maximization of the step point order (to obtain 'superconvergence').

Alternatively, one may use c for improving the stability of the method or for the

minimization of error constants. In this paper, we shall use c for achieving strong

A-stability.

In the special case of stiffly accurate methods satisfying condition (I .4), Yn+ 1

equals the last component of Y n+ 1 so that the step point order p is also at least the

stage order r, but is sometimes higher. For instance, the Newton-Cotes methods

have stage order k+l and, if k is even, step point order k+2.

2.3. Stability

By applying (1.3') to the test equation y'=A.y, we are led to recursions of the form

Hence,

(2.7) Yn+I = R(z)Yn, R(z) := 1 + boz + zbT[[-zAr1[e + za].

R(z) is called the stability function of the one-step method. In the special case of

stiffly accurate methods where (I .4) is satisfied, (2. 7) reduces to

The stability region of the method is defined by the region where R is bounded

by 1. In the case of the Newton-Cotes methods where the components of c are

equally spaced, it was shown in Watts and Shampine [23] that they are A-stable for

k:s; 8 (but they are not fork= 9 and k= 10).

We conclude this section by summarizing in Table 2.1 the characteristics of a

number of correctors available in the literature. In this table, it is assumed that the

135

IRK method is presented in the form (1.3'), so that for all methods listed the

dimension of the implicit relation to be solved equals kd, d being the dimension of

the system of ODEs.

Table 2.1. Summary of characteristics of IRK methods.

Stage Stiffly
Method Stages Order p order r Stability accurate Reference

Gauss-Legendre k 2k k A-stable for all k no [7]
Lobatto IDA k+I 2k k+l A-stable for all k yes [9]
RadauIIA k 2k-I k L-stable for all k yes [7]
Newton-Cotes k+l 2L(k+2)/2 J k+l A-stable fork :s; 8 yes [23]

Lagrange k+l k+I k+I Strongly A-stable yes §4(k:$4)

3. DIAGONALITERATION

We shall use a diagonal iteration method to solve the stage vector Yn+I from the

fully-implicit (corrector) equation defined in (1.3} For scalar differential equations,

the iteration method reads

(3. la)
y(l) - hD f(etn +eh, y(l)) = Yne + haf(tn, Yn) + h [A-D]f(t(O), y(O)),

y(j)_h Df(etn +eh, y(j)) =yne + haf(tn, y11) + h [A-D]f(et11 +eh, y()-I)),

j=2, 3, ... ,

where (t(O) ,y(O)) is an initial approximation to (etn+eh,Y n+ J) and D is an arbitrary

diagonal matrix. If m iterations are performed, then Yn+I is defined by

respectively, for nonstiffly and stiffly accurate correctors (cf. (1.4)).

By virtue of the diagonal structure of D, the iterated method (3.1) is suitable for

use on parallel processors because in each iteration the components of y()) can be

computed in parallel.

There are many possibilities for choosing the matrix D which we summarize

below:

(i) D = 0: this is the most simple choice and yields an explicit iteration method

(fixed point or functional iteration). This approach was followed in N!l,lrsett and

Simonsen [20], Lie [18], van der Houwen and Sommeijer [12], and Burrage [3].

136

-These papers deal with the iteration of implicit methods for solving nonstiff OD Es.

In the case of stiffODEs, one should use matrices D=f. 0.

(ii) D is such that for a prescribed number of iterations the method has favourable

stability characteristics like A-stability or L-stability. This approach was followed in

van der Houwen et al. [13], where the corrector only serves for providing its order of

accuracy. In fact, it was shown that one may even use explicit correctors and still

can obtain A- and L-stability after the particular number of iterations and a suitable

choice of the matrix D.

(iii) D = diag(Ae) or D = diag(A): this choice leads to nonlinear Jacobi-type

iteration. The few experiments we performed revealed that the convergence is rather

poor, so that we dropped this option.

(iv) D is such that the nonstiff components in the iteration error are strongly

damped. This type of diagonal iteration will be called nonstiff iteration. Nonstiff

iteration can be achieved by minimizing the spectral radius of the matrix A - D (see

Subsection 3.2). A large number of experiments showed that this is not the way to

proceed, at least not in the case of the one-step initial approximations to Y n+ I used

in this paper.

(v) D is such that the stability function Rm(z) of the iterated method rapidly

converges to the stability function Rcorr(z) of the corrector. Hence, the corrector not

only serves for providing its order of accuracy as in [13], but the iterated method also

reflects the (assumed) nice stability properties of the corrector. Within this 'stability

function approach' there are various approaches:

v- 1 c = A - I c: this relation uniquely defines D provided that A is

nonsingular. As observed by Hundsdorfer [15], such matrices Dimply that the

stability functions of the corrector and of the iterated method are identical at

infinity. Although a few first experiments did not yet show satisfactory

results, this option should be investigated more closely (see [4]).

Minimization of the spectral radius of the matrix / - v-1 A. This choice

implies that Rm fastly converges to Rcorr at infinity, but, at the same time, it

also strongly damps the stiff components of the iteration error. This type of

diagonal iteration will be called stiff iteration. It is the approach adopted in the

present paper (see Subsection 3.3). Our experiments in Section 5 reveal that

stiff iteration is suited for suppressing the phenomenon of order reduction

within a few iterations, and in this respect, the methods of this paper perform

much better than the methods proposed in [13].

Other options as suggested by one of the referees, where some norm of

I - v-1 A is minimized rather than the spectral radius, or where Rm - Rcorr is

minimized along the negative z-axis (or larger portions of the left halfplane),

has not yet been tested and may turn out to be still more effective.

137

(vi) D is such that the lower order error terms in the truncation error are

minimized. Since after a finite number of iterations the iterated method (3.1)

formally is still a DIRK method and therefore suffers from order reduction, such an

approach directly attacks the source for order reduction. This topic will also be

considered in [4].

The approach of stiff iteration followed in this paper seems to be rather effective.

However, by no means we do claim that this is the best way to proceed. In [4] we

shall present more firm theoretical and experimental evidence of the merits of the

various approaches for choosing the matrix D.

3.1. Computational costs

Each step of the (outer) iteration method (3. la) requires the solution of a

diagonally implicit relation. In order to solve this relation, we apply Newton

iteration (inner iteration). There are various possibilities for starting the iteration

method (3.1 a) and the Newton iteration method, and for choosing the Jacobian

matrix J := aJ!Jy needed in the Newton iteration process. Obvious choices are listed

in Table 3.1.

Table 3.1. Starting the inner and outer iteration processes.

Order of approximation 0

Jacobian matrix diag [J(etn, eyn)] diag [J(etn +eh, Yne + hcf(ln,Yn))]

Initial Newton iterate y(j-1) Yne + haf(tn, Y11) + hAf(etn +eh, y(J-I))

All possible combinations are equally expensive because the values of f(tn,Yn),

f(et11+eh,y(j-l)) and diag(J) are anyhow needed. The first-order approximations will

reduce the magnitude of the smooth error components (low frequencies) more than

the zero-order approximations do, but, unlike the zero-order approximations, they

will also introduce stiff error components in the case of stiff differential equations.

This particularly applies to the Jacobian matrix and the initial inner iterate because

these approximations are needed in each outer iteration. Therefore, we shall only

consider zero-order approximations to the Jacobian matrix and to the initial inner

iterate (notice that in the case of systems of equations, the matrix J becomes a

block-diagonal matrix). Furthermore, our experiments revealed that using zero-order

approximations for the initial outer iterate is more robust than the above first-order

approximations, and yields comparable accuracies. However, it should be observed

that the topic of choosing suitable initial approximations to the stage vector

138

(-:including multistep approximations in order to reduce the number of iterations), is

extremely important and needs further research. Burrage [3] discussed this topic in

the case of a general class of explicit predictor-corrector methods for nonstiff

problems. His approach may be used to study initial approximations in the case of

diagonally implicit predictor-corrector methods for stiff problems.

By performing m iterations, the method (3.1) may be considered as a DIRK

method with mk+ 1 stages, of which one stage is explicit and the other mk stages are

diagonally implicit. In fact, we may represent the method by the Butcher array

}=0 0
}=I c-De D
}=2 a A-D D
}=3 a 0 A-D D

J=m a 0 0 A-D D
(3.1')

bo OT OT OT bT
(nonstiffly accurate correctors)

ekTa QT OT ekT(A-D) ekTD
(stiffly accurate correctors)

Since each iteration step in (3.1 a) essentially requires the 'wall clock time'

involved in evaluating one component off(etn+ch,y(j-l)) and solving one system

of dimension d, we conclude that, effectively, the work involved in performing one

step by the DIRK method (3.1 ') consists of

(evaluation off and J) + (LU-decomposition of/- djhl) +

(3.2) m[evaluation off+ N (forward/backward substitution+ evaluation off)].

In this expression N is defined by

(3.3) N .-

with Nj denoting the number of Newton iterations for computing that component of

y(j) which requires the largest number of Newton iterations. Usually, the m

iterations are the most expensive part of the total effort per step, and therefore we

shall say that a DIRK method has m effective or sequential stages if there are m

diagonally implicit systems to be solved.

139

3.1.1. Comparison with conventional DIRK methods. In the experiments reported in

this paper, we used the stopping criterion that the Newton correction should be

about the machine precision which is for our computer 10-14. It turned out that N1
rapidly decreases with j which can be explained by observing that the initial iterate

for starting the next inner iteration becomes more accurate when j increases. This is

an advantage when compared with conventionally constructed DIRK methods already

available in the literature (such DIRK methods will be indicated by 'conventional'

DIRK methods), because, for conventional DIRK methods, the number of Newton

iterations for solving the implicit relations in the successive stages do, in general,

not decrease.

In order to appreciate the computational costs of DIRK methods of type (3.1 '),

we should compare m with the number of sequential stages of conventional DIRK

methods. In Table 3.2, the characteristics of such DIRK methods are listed together

with the PARK and PDIRK methods derived in [16] and [13].

Table 3.2. Summary of characteristics of DIRK, PARK and PD IRK methods of

order p'?:.3.

Order Stage order Seq. stages Processors Stability Reference

p=3 1 p-1 1 A-stable [19]

p=3 2 p-1 Strongly A-stable [8]

p=4 p-1 A-stable [8], [l]

p=4 p-2 2 L-stable [16]

p=3,4,5 p-1 L(p+l)/2 J Strongly A-stable [13]

p=6,7 p-1 L(p+l)/2J Strongly A(a)-stable [13]

p~6, p=8 p L(p+l)/2 J L-stable [13]

p=7, 8, 10 p+l L(p+l)/2 J L-stable [13]

3.2. Order of accuracy
In order to analyse the order of accuracy of the iterated method (3.1), let Y(tn+ 1)

denote the vector with components y(tn+cih), where y is the locally exact solution

of (1.1). Then, in first approximation, we obtain

Y(tn+IJ - y()) = [Y(tn+IJ - Yn+Jl + [Yn+I - y())]

(3.4a) = [Y(tn+1J- Yn+Jl + Z [Yn+I - y()-I)]

= [Y(tn+J)- Yn+Jl + z) [Yn+I _y(O)], J = 1, 2, ... ,

where Z is the iteration matrix defined by

140

(3.4b) Z = Z(hDJ) := [/ - hDJr I [AD-1 - /] hDJ,

with J again denoting the Jacobian matrix off.

Let r be the stage order of the corrector (1.3), then (cf. (2.1))

Since Z = O(h) and Y n+ 1 - y(O) = O(h), the local errors of the stage vectors satisfy the

order relation

(3.5) Y(tn+I) - y(j) = O(hr+I) + O(hi+I),

so that, after m iterations, (3.1) defines a method in which y(m) approximates

Y(tn+U with order r*=min{r,m}. We shall say that (3.l) has stage orderr*

(although formally, when (3.1) is considered as a DIRK method, its stage order is

only I). Thus, the optimal stage-order methods, that is the methods based on the

Lagrange methods as defined above, have stage order r* = k+ I provided that at least

m = k+ I iterations are performed.

In order to get more insight into the rate of convergence of the iteration process

(3.1), we consider the test equation

(3.6)
d,,tt\
~ = Ay(t),

where A runs through the spectrum A(J) of J. The matrix Z assumes the form

(3.7) Z = zD [I-zDr1 [D-1A -/] = z [I-zDr1 [A - DJ, z := Ah.

Suppose that J has a complete eigensystem, and let us call the eigenvectors of hl

corresponding to the eigenvalues of large and small modulus, respectively, stiff and

nonstiff components. From (3.7) we see that for the nonstiff components (i.e.,

corresponding to small values of I z I) the matrix Z behaves approximately as

z[A - DJ. Hence, these components in the iteration error are strongly damped if the

matrix A - D has eigenvalues of small magnitude. Thus, rapid convergence of the

nonstiff components is obtained by minimizing the spectral radius of A - D.

However, as already remarked above, such a nonstijf iteration process gives a poor

overall convergence. Alternatively, for the stiff components (i.e., corresponding to

large values of I z I), the matrix Z behaves as -D-1 [A - DJ. Hence, a strong damping

of these components requires the minimization of the spectral radius of/ - D-1A,

141

leading to stiff iteration. In the following subsection, we shall see that this

condition also plays a role in the stability of the iterated method.

3.3. Stability
One may argue that there is no reason to continue the iteration process after m = r

iterations, because the stage errors of the corrector and of the iterated method have

become of the same order in h and may therefore be expected to be of comparable

magnitude. However, there is no guarantee that after m = r iterations the stability

properties of (1.3') are also comparable with those of the corrector. This brings us to

consider the stability of the DIRK method (3.1 '). In order to see how the stability

depends on the number of iterations m, we apply the method to the test equation

(3.6), so that (3. la) reduces to

We shall discuss the stability of iterating a nonstiffly accurate and a stiffly accurate

corrector separately.

3.3.1. Nonstiffly accurate correctors. If Yn+ 1 is computed by means of the formula

Yn+I =[I+ zbo]Yn + zbTy(m),

then it can be expressed as

so that the stability function is given by

It is easily verified that this function can be written in the form

Assuming that the stage order of the corrector is at least one, we may set Ae + a = c

(see (2.2)), so that

(3.10)

142

where kcorr denotes the stability function of the corrector given by (2.7). Finally,

on substitution of (3.7) into (3.10) we obtain

(3.11)

From this expression we can derive the convergence behaviour of Rm to Rcorr for

large values of I z I:

showing that for any fixed m the stability function becomes unbounded as I z I tends

to infinity, unless the matrix Dis such that

Writing this equation as

we see that it can be satisfied for all m if we choose D such that [15]

(3.12)

Unfortunately, a few first experiments showed that the performance of the corres

ponding method (3.1 ') is not satisfactory (see Subsection 5.3). Therefore, we

conclude that diagonal iteration as defined by (3.1 ') is in general not suitable for

iterating nonstiffly accurate correctors and excludes the Gauss-Legendre formulas as

suitable corrector methods. However, it should be remarked that by defining the

initial iterate y(O) implicitly, rather than just setting y(O) = Yne, the above stability

problem can be avoided (cf. [13]), so that the matrix D remains available for

improving the performance of the iteration process. As observed in Subsection 3.1,

the topic of finding suitable initial approximations to the stage vector in diagonally

iterated RK methods deserves further research, but will not be an issue in this paper.

3.3.2. Stiffly accurate correctors. In the stiffly accurate case where Yn+ 1 is computed

by means of the formula

we arrive at the stability function

143

where Rcorr is defined by (2.8). We may express this function in the form

where

am(Z) := [zekT [Z(zD)r [/-zAr1c] 1/m

= [zm+lekT ([/ - zDr·I [A - D]r [/- zAr1c] 1/m.

For fixed values of m and assuming that D has positive diagonal elements, the

function am(z) is bounded for all z in the closed left halfplane. This suggests to

characterize the rate of convergence of Rm to Rcorr by means of am(z). We shall call

am(z) the convergence factor associated with z. For example, we have

am(0)=0, am(00) :=[-ekT[Z(-oo)rA-lc] 11m
(3.14)

= [-ekT [J-D-IAr A-lc]llm_

Ideally, in order to get fast convergence of the stability function Rm(Z) to that of

the corrector, we should try to minimize am(Z) in the closed left halfplane. However,

since in actual computation m is determined by some error criterion, we do not

know m in advance, so that such an approach may be unattractive, particularly for

larger values of k where more values of m have to be considered. Nevertheless, in a

future paper [4], this possibility will be studied more closely in order to get further

insight into how crucial the choice of D really is.

Another possibility is the minimization of am(Z) for the highly stiff components

(large values of I z I), because (3 .14) shows that am(Z) is already small for the nonstiff

components. The most simple way to achieve this determines D according to (3.12),

so that am(00) vanishes for all m [15]. In the experiments done so far, the con

vergence of the corresponding iteration process (3 .1) is not satisfactory.

However, by choosing the matrix D, for a given corrector, such that the spectral

radius of Z(-oo) = I - n-1 A is minimized over all possible diagonal matrices D with

positive entries, we obtained a satisfactory convergence behaviour in a large number

of experiments (see Section 5, and the Appendix to [14]). The better convergence

may be explained by observing that in this way, not only the value of am(00) is

expected to be small (cf. (3.14)), but as already shown in Subsection 3.2, at the

same time the stiff components in the iteration error are strongly damped.

144

Together with the computation of the matrix D (cf. Section 4), we computed, as

a: posteriori test, for a few values of m the 'worst' convergence factor defined by

(3.15) am := Max lam(z)I.
Re z:50

Because O'm(Z) is an analytic function in the closed left halfplane, its maximum is

assumed on the boundary, i.e., on the imaginary axis.

In calculating am it turned out that this quantity is larger than I for small values

of m but rather quickly decreases to a moderate size as m increases. The values of am

show by what factor the (maximal) difference between the two stability functions is

reduced in each iteration if we continue to iterate when the stage order of the cor

rector has been reached. Due to the fact that am> I for small 111, it is likely that the

corresponding iterated method is not A-stable. On the other hand, assuming that the

iteration process (3.1) is convergent, we know that [am(z)im➔O for 111➔00 , i.e.,

Rm(Z) converges to the A-acceptable stability function Reorr(z). Therefore, it is of

interest to know the minimal value of m such that Rm(Z) is A-acceptable for all 111

equal to or larger than this minimal value. This for the iteration process critical

number of iterations will be denoted by merit· Evidently, the value of merit is

expected to be large if the corrector is not strongly A-stable. In order to illustrate

this, we considered the methods using weakly A-stable Newton-Cotes and Lobatto

IHA correctors (cf. Table 2.1) with minimized spectral radius of / - D- 1 A. We

verified that (for z in the closed left halfplane) the value of max IRm(z)I ,l, I as m ➔ 00 ,

so that A-stability is only obtained in the limit. Hence, the Lobatto IIIA and the

Newton-Cotes formulas seem to be less suitable as corrector methods. For the

strongly A-stable Lagrange correctors and the L-stable Radau IIA correctors however,

we found modest values of merit, so that after a few iterations the resulting method

is already A-stable (see Section 4).

4. CONSTRUCTION OF MEIHODS

In this section, we consider a number of stiffly accurate correctors and we will

construct the corresponding matrices D for use on two-, three- or four-processor

computers (i.e., methods of dimension k= 2, 3, 4).

Fork= 2, we shall give a rather detailed derivation, because in this case, it is still

possible to construct suitable matrices D analytically. We derive matrices D for

correctors of Newton-Cotes, Lobatto IIIA, strongly A-stable Lagrange, Radau IIA,

and Gauss-Legendre type. The Gauss-Legendre method is not stiffly accurate, and

therefore not suitable for diagonal iteration of type (3 .I'), but it is included to

demonstrate its unstable performance. For k > 2, we resort to numerical search

145

meth9ds for finding suitable matrices D. Here, we refrained from looking for D

matrices for the Gauss-Legendre method because of the rather poor two-processor

results. In Subsection 4.4 a summary of the main properties of the various methods

is given.

It may be of interest to note that in our numerical search for strongly A-stable

correctors we encountered strong numerical evidence for the following conjecture:

Conjecture. A necessary condition for a stiffly accurate Lagrange method as defined

in Subsection 1.2 to be strongly A-stable is

k

L Cj > k~ 1 . []
j=I

In order to save space, the correctors are presented by means of the matrix A and

the vectors a and c, and the iterated versions by only giving the matrix D, because,

together with the corrector, D completely defines the iterated method. In the

following, we only consider stif.f iteration, that is, the construction of D will always

be based on the minimization of the spectral radius p(/-D-1A) of the matrix

I - v-1 A. If the entries of Dare not exact (i.e., fork~ 3), then they are approximated

by rational expressions. In addition to D, we present the values of p(/ - v-1 A), the

range for CJm with r 5: m 5: 10, the corresponding interval / cr on the imaginary axis

where !he maxima are assumed, and the value of merit are given (cf. Subsection

3.3.2). Finally, the stage and step point orders of the methods are denoted by rand p,

respectively.

4.1. Two-processor methods

4.1.1. Lagrange methods. Let us first consider two-dimensional Lagrange methods

(k=2) satisfying the condition (1.4). The stage-order conditions (2.2) can be solved

for r = 3 and yield the stiffly accurate Lagrange method

(4.la) A= I (c(3-2c) -c3 J I
6(1-c) c-1 2-3c ,a=6(1-c) (

3c - 4c2 + c3 J, c = (c)
-c-1 +4-3c 1

with p = r = 3, and c a free parameter (recall that p = 4 if c = 1/2). An elementary

calculation shows that the stability function of (4.la) is given by

(4.2)
6 + 2(2-c)z + (1-c)z2

R(z) =
6 - 2(c+l)z + cz2

This function is A-acceptable for c ~ 1/2 and strongly A-acceptable for c > 1/2.

146

_ Next, we determine the matrix Din (3.1). It is convenient to write

so that

The eigenvalues of/ - v-1 A satisfy the equation

µ2 -sµ+ P =O,

S := 2-c(3-2c)81 -(2-3c)8i, P := [1-c(3-2c)8i] [1-(2-3c)8i] +c28182.

By setting S=P=O we achieve that p(/-D-1A) vanishes. The parameters 81 and 82

then satisfy the equations

leading to

c(3-2c)81 + (2-3c)02 = 2,

81 = 1 + Q
c(3 - 2c)

82 = .!...::._Q_ , Q := ±%c
2-3c 6(1-c)

so that the matrix D is given by

(4.1 b) D= 1
6(1 - c)

(
c(3 - 2c) 0 J

1 + Q
2 -3c '

0 --
1 - Q

The iterated Lagrange method with zero convergence factor at infinity is completely

determined by the corrector (4.la) and the matrix (4.lb).

For c = 1/2 we derive from (4. la) the Newton-Cotes corrector (withp =4 and r=3)

(4.3a) I (8 -I) I (5) (1/2)
A = 24 16 4 , a = 24 4 , c = I .

147

We observe that this corrector coincides with the three-stage Lobatto IIIA method.

The stability function R of (4.3a) reduces to the (2,2)-Pade approximation to the

exponential function. Recall that R is A-acceptable but not strongly A-acceptable.

From (4.lb) we obtain the matrix

(4.3b) D- 3+'✓3 (
_l O]

- O 2(3~'/'3) '
p(/- D-1A) = 0, CTm E [0.21, 0.36],

la= [3.9i, 5.li], merit= 00 •

A natural question now is, whether it is possible to choose c such that the

stability is improved. Unfortunately, (4.1 a) shows that it is not possible to achieve

L-stability (which would require c = 1), but strong A-stability is obtained for c > 1/2.

For example, by choosing c = 3/4 we have R(oo) = 1/3. The corresponding Lagrange

method is defined by

1 (216 -81) 1 (81) (3/4)
(4.4a) A = 288 256 -48 , a = 288 80 ' C = 1

for which p = r= 3. The iterated version is defined by

(4.4b) D = (4('12-iO~+ 1) 01 J·, 1 p(I-D- A)= 0, CTm E [0.21, 0.33],

6(-v2-l)

la= [3.2i, 4.li], merit= 2.

4.1.2. Gauss and Radau methods. As reference methods for our numerical

experiments, we take the conventional two-stage Gauss-Legendre and Radau IIA

methods. The Gauss-Legendre corrector, and its iterated version is defined by

(4.5a) A-- a=O, bo=0, b--e c--1 (3 3-2'✓3) 1 1 (6-2'✓3)
- 12 3+2'✓3 3 ' - 2 ' - 1 2 6+2'✓3 ,

p = 4, r = 2,

(4.5b)

148

The Radau TIA-based method is given by:

(4.6a) A =/2 (:~I} a=O, bo=0, bT=e2TA, c=(1;3),
p = 3, r= 2,

I (20-5% 0)
(4.6b) D= 30 0 12+3"6 , p(/-D-1A)=O, <Jme [0.27,0.35],

la= [2.6i, 3.7i], merit= 1.

4.2. Three-proces.90r methods
4.2.1. Newton-Cotes method. For k = 3 and equidistant abscissas the corrector is

given by

(4.7a) (
19 -5 I]

A=i2 32 8 0 ,

27 27 9

with p = r = 4, and with A-acceptable stability function (see Watts and Shampine

[23]). By a numerical search we found the matrix

897
7303 O O

(4.7b) D=
2485 I

0 10968 0 , p(/- D- A)"" 0.01, <Jm e [0.49, 0.77],

8980
0 0 27627

la= [7.li, 8.4i], merit= 00•

4.2.2. Lobatto IIlA method. Fork= 3 and Lobatto abscissas the corrector is given by

(4.8a) (
25-"'5 25-13"'5 -1+"'5]

A= 1; 0 25+13"'5 25+"'5 -1-"'5 ,

50 50 I 0

with p = 6 and r = 4, and with A-acceptable stability function (see Dekker and Verwer

[9]). The iterated version is generated by

149

2661 O O
5542

(4.8b) D=
754 1

0 6891 0 , p(/ - D- A) ""0.0043, CJm e [0.52, 0.88],

O O 1567
9771

la= [8.9i, IOi], merit= 00•

4.2.3. Lagrange method. By keeping CJ and c2 free, we can construct strongly A

stable methods with stage order four. It can be shown that the stability function is

A-acceptable for CJ +c2 = 1 and strongly A-acceptable for CJ +c2 > I. A numerical

search produced the block point vector c = (7/12, 5/6, l)T for which parameter values

of acceptable magnitude and a damping factor I R(oo) I"" 0.143 are obtained. The

corresponding corrector reads

(4.9a) (

98392

A= 12; 960 112000

110592

-81634 3 I 213 J
-61600 28000 ,

-48384 36288

~
2589]

a = I 2;960 2400 '
2464

with p = r = 4. The iterated method is generated by

2246
10669 O O

(4.9b) D = 0 ;~!~ 0 , p(J- D-1A) == 0.011, CJm e [0.49, 0.69],

O O 3026
8923

la= [5.li, 6.2i], merit= 3.

4.2.4. Radau method. The 3-stage Radau 11A corrector is defined by [7]

88 - 7✓6 296 - 169✓6 -2 + 3 ✓6
360 1800 225

(4.10a) A= 296 + 169✓6 88 + 7 ✓6 -2 - 3 ✓6
a= 0, ho= 0,

1800 360 225 '

16 - ✓6 16 + ✓6 I
36 36 9

bT = e3TA, c =Ae

150

with p = 5, r = 3, and L-acceptable stability function. The matrix D is given by

4365
13624 O O

(4.10b) D= o 1032 o , p(l-D-1A)""0.0047, 7373 <Jm E [0.52, 1.0),

O O 1887
5077

la= [6.6i, 9.3i], merit= 5.

4.3. Four-processor methods
4.3.1. Newton-Cotes method. Fork= 4 and equidistant abscissas the corrector is

given by

646 -264 106 -19

CJ 1 992 192 32 -8 __ l_ 232 _ T
(4.lla) A= 2880 ' a - 2880 243 ' ho - e4 a,

918 648 378 -27

.1024 384 1024 224 224

bT=e4TA, c={J
with p = 6, r = 5, and with A-acceptable stability function. A numerical search did not

produce a better matrix D than

(4.llb) D=

992
10759 O O 0

0 1365 0
8107 0

0

0

2709
O 11281 O

0 0 .!.211.
5549

, p(l - D-1A) ""0.1, <Jm E [0.76, 1.04],

la= [8.7i, l l.8i], merit= 00 •

151

4.3.2. Lobatto IlIA method. For k=4 and Lobatto abscissas the corrector is given by

343-9\121 392-96\121 343-69\121 -21+3\121
2520 2205 2520 1960

392+105\121 8 392-105\121 3

A=
2880 45 2880 320

343+69\121 392+96\121 343+9\121 -21-3\121
2520 2205 2520 1960

49 16 49
180 45 180 20

(4.12a)
119+3 21 7- 21

1960
14

13
320

bo = e4Ta, bT=e4TA, 2 a=
119-3\121

, c=
7+\121

1960 14

20

with p = 8, r = 5, and with A-acceptable stability function. A numerical search

produced the matrix

(4.12b) D=

2964 0 0 0
9943

1875
O 10334 O O

608
O O 9403 O

3799
O O O 23419

, p(/-D-1A) ""0.021, C5m E [0.87, 1.32],

la= [l5.4i, l9i], merit= 00 •

4.3.3. Lagrange method. Numerically, we found that the stability function is A

acceptable for c 1 +c2+c3 = 3/2 and strongly A-acceptable for c 1 +c2+c3 > 3/2. For

c = (116, 7/12, 11/12, l)T we obtained parameter values of acceptable magnitude and a

damping factor I R(00) I"" 0.325. The corresponding corrector with p = r = 5 reads

152

(

5452832

A =--1__ 17484082
49896000 16192946

16232832

(4.13a)

The iterated method is generated by

5147
38467 O O O

(4.13b) D=

1983
0 ~ 0 0

3197
0 0 i'4'o'9o 0

-872784 926800

13296591 -6182575

22005423 7263025

21897216 9676800

-556248)
3486252

-1229844 '

598752

(2) l 7

c=rr :~ .

3086 0 ·O O 12339
lcr = [8.2i, I 1.8i], merit = 6.

4.3.4. Radau method. The four-stage Radau IIA corrector reads

(

.11299947932316 -.04030922072352 .02580237742034 -.0099046765073)

= .23438399574740 .20689257393536 -.04785712804854 .01604742280652 .

A .21668178462325 .40612326386737 .18903651817006 -.02418210489983

.22046221117677 .38819346884317 .3288401998006 l/16 .

(4.14a)

with p = 1, r = 4, and with L-acceptable stability function. The iterated method is

generated by

(4.14b) D=

3055 O O O
9532

531
O 5956 O O

O O 1471 O
8094

O O O 1848
7919

, p(/-D-1A)"'0.024, 0,nE [0.74, 1.31],

lcr = [10.0i, 17.2i], merit= 7.

153

4.4. Survey of methods
In table 4.1, we have summarized a few characteristics of the methods derived in

the preceding subsections.

Table 4.1. Main characteristics of diagonally iterated IRK methods.

O'm-range
Method p r k p(/-D-1A) (r::5:m::5: 10) 1'1crit

Newton-Cotes (4.3) 4 3 2 0 [0.21, 0.36] 00

Lagrange (4.4) 3 3 2 0 [0.21, 0.33] 2

Radau 11A (4.6) 3 2 2 0 [0.27, 0.35] 1

Gauss (4.5) 4 2 2 0 00 00

Newton-Cotes (4.7) 4 4 3 0.008 [0.49, 0.77] 00

Lobatto IIIA (4.8) 6 4 3 0.0043 [0.52, 0.88] 00

Lagrange (4.9) 4 4 3 0.01 [0.49, 0.69] 3

Radau 11A (4.10) 5 3 3 0.0047 [0.52, 1.0] 5

Newton-Cotes (4.11) 6 5 4 0.1 [0.76, 1.04] 00

Lobatto IIIA (4.12) 8 5 4 0.021 [0.87, 1.32] 00

Lagrange (4.13) 5 5 4 0.045 [0.59, 0.93] 6

Radau 11A (4.14) 7 4 4 0.024 [0.74, 1.31] 7

In this table, the value of the step point order p corresponds to values of m equal

to or greater than p, and the value of the stage order r corresponds to that of the

corrector. From a computational point of view, the Lagrange and Radau IIA methods

are the most attractive ones, because merit is relatively small. Thus, if these

methods are implemented with some local error strategy for automatically estimating

the number of iterations m and the stepsize h needed to meet the local error

tolerance, then the value of the 'computational efficiency' quantity mL/h for

integrating an interval of length L will not be unnecessarily large because of the

development of instabilities. This observation is confirmed by the numerical

experiments in Subsection 5.4.

5. NUMERICALEXPERIMENTS
In this section, the (stiff) diagonal iteration method developed above will be

tested by integrating a number of stiff test problems. Subsection 5.1 presents these

test problems. Subsection 5.2 compares the effective orders of Gauss-Legendre,

Newton-Cotes, Lobatto IIIA, Radau IIA, and Lagrange correctors, and in Subsection

5.3, the performance of the diagonal iteration process with respect to the number of

154

iterations is tested for a few two-processor correctors. Finally, in Subsection 5.4, we

compare the efficiency of the iterated methods with a few DIRK methods from the

literature.

We recall that we only used the zero-order approximations to the Jacobian matrix

and to the initial inner and outer iterates. In the tables of results, the accuracy of the

results is given by means of the number of correct digits A of the numerical solution

at the endpoint T (i.e., we write the maximum norm of the error at t =Tin the form

1 o-A). The computational costs are proportional to mUh, where h is the fixed step

length, L := T-to is the length of the integration interval, and m is the fixed number

of outer iterations per step. In actual applications of these methods, some strategy is

needed to select hand m. However, since our test problems are such that the exact

solution is equally smooth in the whole integration interval, it is reasonable to use

fixed h and m.

5.1. Test problems
We briefly discuss a few test problems partly taken from the literature and partly

constructed in order to test some special aspect of the methods. All problems are

defined on the interval [to,TJ.

Our first problem is the stability test problem of Prothero and Robinson [21]

(5.la) ,= -e-1(y- g(t)) + g'(t), y(to) = g(to), to=O, T= 1,

where the exact solution equals g(t) and e is a small parameter. Prothero and

Robinson used this problem to show the order reduction of RK methods when e is
small. In our experiments we set

(5.lb) g(t) =cos(t), e= 10-3.

The second test problem is the nonlinearization of problem (5.1):

with exact solution y(t) = g(t) for all values of the parameter e. As in the preceding

problem we set

(5.2b) g(t) = cos(t), e= 10-3.

155

The third test problem is that of Kaps [17]:

dY2
--;ji°= YI - Y20 + Y2),

(5.3)

YI (to)= Y2Uo) = I, to=0, T= I,

with the smooth exact solution YI = exp(-2t) and Y2 = exp(-t) for all values of the

parameter E. This problem belongs to the class of problems for which stiffly

accurate RK methods do not suffer order reduction whatever small E is (cf. Hairer et

aL [11]).

The test set of Enright et al. [10] contains the following system of OD Es

describing a chemical reaction:

(5.4a) 9;/;-= - 0 2500y3 0 y, (
.013 + IOOOy3 0 0 J

.013 0 IO00y1 + 2500Y2

with y(0) =(I, I, O)T. Since we use fixed step sizes in our experiments, we avoided

the initial phase by choosing the starting point at to = I and we used the

corresponding initial values

(
0.990731920827 J

(5.4b) y(I)"" 1.009264413846 .

-.366532612659 10-5

At t = T = 51 we found the approximate solution

(
0.591045966680 J

y(51)"" 1.408952165382 .

-.186793736719 10-5

In order to show the performance of the methods on PDEs we included the

convection-diffusion problem

(5.5)
du iflu du 2 .
dt = u dx2 - x cos(t) dx - x sm(t), to=0, T= 1,

with Dirichlet boundary conditions and with exact solution u(x,t) =x2cos(t). Standard

finite difference discretization of the spatial derivatives on a uniform grid with mesh

size 1/40 leads to a system of 39 ODEs whose exact solution is given by

(j/40)2cos(t),j= 1, ... ,39.

156

5.2. Effective orders of the correctors

First of all, we want to show that in many stiff problems the property of

superconvergence does not pay because of the phenomenon of order reduction, and

that strong stability properties may improve the accuracy considerably.

The Tables 5. la, 5.1 b, and 5. lc present Ll-values for the various test problems

obtained for Uh= 1, 2, 4, 8, 16 by iterating the corrector to convergence.

Table S.la. Problems (5.1) and (5.2). Values of Ll for Llh = 1, 2, 4, 8, 16.

Corrector p r k . (5.1) (5.2)

(4.3a) 4 3 2 4.7 5.4 6.0 6.7 7.7 4.7 5.3 5.9 6.6 7.5
(4.4a) 3 3 2 5.1 5.9 6.8 7.8 8.8 5.0 5.8 6.7 7.7 8.7
(4.5a) 4 2 2 I. 9 2.5 3.1 3.8 4.7 1.9 2.5 3.1 3.8 4.6
(4.6a) 3 2 2 4.2 4.7 5.3 5.9 6.5 4.2 4.7 5.2 5.8 6.4

(4.7a) 4 4 3 6.1 7.3 8.5 9.7 6.0 7.3 8.5 9.7
(4.8a) 6 4 3 6.1 7.3 8.6 9.8 6.1 7.3 8.5 9.7
(4.9a) 4 4 3 6.5 7.6 8.8 I 0.1 6.5 7.6 8.8 10.0
(4.10a) 5 3 3 5.0 6.0 6.9 7.9 4.9 5.9 6.9 7.8

(4.1 la) 6 5 4 7.0 8.2 9.5 6.9 8.1 9.4
(4.12a) 8 5 4 7.1 8.4 9.6 7.0 8.3 9.5
(4.13a) 5 5 4 7.5 8.9 10.5 7.4 8.9 10.4
(4.14a) 7 4 4 6.3 7.4 8.6 6.3 7.3 8.5

Table S.lb. Problem (5.3) with E= 10-3 and 10-8. Values of Ll for Llh = 1, 2, 4, 8, 16.

Corrector p r k (5.3) with E= 10-3 (5.3) with E = 10-8

(4.3a) 4 3 2 3.3 4.3 5.1 5.9 7.0 3.3 4.5 5.7 6.9 8.1
(4.4a) 3 3 2 2.7 3.6 4.4 5.3 6.2 2.7 3.6 4.4 5.3 6.2
(4.5a) 4 2 2 1.2 1.8 2.4 3.2 4.3 1.2 1.8 2.4 3.0 3.6
(4.6a) 3 2 2 2.4 3.2 4.1 5.0 5.9 2.4 3.2 4.1 5.0 5.9

(4.7a) 4 4 3 4.2 5.4 6.6 7.8 4.2 5.4 6.7 7.9
(4.8a) 6 4 3 4.7 6.0 7.3 9.3 5.4 7.2 9.0 10.8
(4.9a) 4 4 3 3.8 5.0 6.1 7.3 3.9 5.0 6.2 7.3
(4.10a) 5 3 3 4.0 5.3 6.3 7.3 4.4 5.8 7.3 8.8

(4.1 la) 6 5 4 5.4 6.7 8.0 5.9 7.7 9.6
(4.12a) 8 5 4 5.6 6.8 8.2 7.8 10.2 12.6
(4.13a) 5 5 4 5.8 7.2 8.8 6.0 7.4 8.8
(4.14a) 7 4 4 5.0 6.4 7.8 6.6 8.7 10.8

157

Table S.lc. Problems (5.4) and (5.5). Values of L1 for Llh =I, 2, 4, 8, 16.

Corrector p r k (5.4) (5.5)

(4.3a) 4 3 2 4.5 5.7 6.9 8.2 9.4 3.2 4.2 5.4 6.5 7.7
(4.4a) 3 3 2 3. I 4.0 4.9 5.8 6.7 3. I 4.0 4.8 5.7 6.6
(4.5a) 4 2 2 5.0 6.1 7.3 8.5 9.7 I. 9 2.6 3.2 3.9 4.8
(4.6a) 3 2 2 3.4 4.3 5.2 6.1 7.0 2.5 3.2 4.0 4.8 5.7

(4.7a) 4 4 3 4.7 5.9 7 .1 8.3 4.6 5.9 7.2 8.4
(4.8a) 6 4 3 6.4 8.3 10.1 11.8 4.8 6.2 7.7 9 .1
(4.9a) 4 4 3 4.2 5.4 6.6 7.8 4.5 5.6 6.8 7.9
(4.10a) 5 3 3 5.3 6.8 8.3 9.8 3.6 4.8 6.1 7.3

(4.11 a) 6 5 4 6.7 8.5 10.3 5.7 7.4 9.2
(4. I 2a) 8 5 4 8.6 11.0 6.0 7.7 9.5
(4.13a) 5 5 4 6.9 8.2 9.7 6.4 7.8 9.3
(4. 14a) 7 4 4 7.9 9.8 11. 8 5.2 6.5 8.0

From these results we can derive for each test problem the effective orders by

computing (Li(h)-L1(2h))/0.3. For h we chose the smallest value for which results

are available. The resulting effective orders are listed in Table 5.2. For each problem,

the result of the most accurate corrector is indicated in bold face.

The results for the first three problems clearly demonstrate that the various

methods often do not show their step point order, so that the property of

superconvergence is of limited value in the case of stiff problems.

Table 5.2. Effective orders shown by the correctors for Problems (5.1) - (5.5).

(5.3) (5.3)
Corrector p r k (5.1) (5.2) £=10-3 £=10-8 (5.4) (5.5)

Newton-C. (4.3a) 4 3 2 3.3 3.0 3.7 4.0 4.0 4.0
Lagrange (4.4a) 3 3 2 3.3 3.3 3.0 3.0 3.0 3:0
Gauss (4.5a) 4 2 2 3.0 2.7 3.7 2.0 4.0 3.0
Radau IIA (4.6a) 3 2 2 2.0 2.0 3.0 3.0 3.0 3.0

Newton-C. (4.7a) 4 4 3 4.0 4.0 4.0 4.0 4.0 4.0
Lobatto IIIA (4.8a) 6 4 3 4.0 4.0 6.7 6.0 5.7 4.7
Lagrange (4.9a) 4 4 3 4.3 4.0 4.0 3.7 4.0 3.7
Radau IIA (4. JOa) 5 3 3 3.3 3.0 3.3 5.0 5.0 4.0

Newton-C. (4.1 la) 6 5 4 4.3 4.3 4.3 6.3 6.0 6.0
Lobatto IIIA (4.12a) 8 5 4 4.0 4.0 4.7 8.0 8.0 6.0
Lagrange (4.13a) 5 5 4 5.3 5.0 5.3 4.7 5.0 5.0
Radau IIA (4.14a) 7 4 4 4.0 4.0 4.7 7.0 6.7 5.0

158

5.3. Performance of the iteration process for two-processor correctors.

· In this subsection, we consider the performance of the iteration method for

solving the two-processor corrector equations. Since the rate of convergence of a

particular iteration method turned out to be comparable for the Newton-Cotes

corrector and the Lagrange corrector, we only present results for the most accurate

one. In the case of the Gauss and Radau corrector, the iteration methods behaved

quite differently so that we include results for both correctors. Moreover, the Gauss

corrector was also iterated with a matrix D defined by the relation (3.12). Since for

the two-processor Gauss corrector (4.5a) we have Ae = c, i.e., A-1c = e, it follows

that v-1c =e, so that

• 1 (6 - 2 ✓T O)
D=d1ag(c)=rr ✓- ,

0 6 + 2 3
-1 I p(l-D A)= 2.

In the Tables 5.3 and 5.4 we only present results for the problems (5.2) and (5.4)

for which most methods, respectively, show their stage order and their step point

order (additional results for the other test problems may be found in the Appendix to

[14]). Divergence of the inner iteration is indicated by *, and values in bold face

indicate that the accuracy of the corrector is reached (and that Ll does not change

anymore). For several values of Uh the accuracies corresponding to the correctors of

Lagrange type (first column), of Gauss-Legendre with D defined by (4.5b) (second

column), of Gauss-Legendre with D defined above (third column), and of Radau HA

(fourth column) are listed. These results confirm that, in general, the Gauss corrector

is not suited to be iterated by diagonal iteration methods when started with an

explicit predictor.

Table 5.3. Values of Ll for Problem (5.2) obtained by iterating the Lagrange

corrector (4.4a), Gauss corrector (4.5a), and Radau HA corrector (4.6a).

m lih=2 lih=4 lih=8 lih=16

4.1 -2.2 -2.2 5.3 4.0 * * 4.8 3.6 * * 5.0 2.7 * * 5.3
2 5.8 -1.l 1.1 4.7 6.5 * 1.1 5.2 6.7 * 0.6 5.9 6.7 * * 6.7

3 2.4 2.2 6.7 2.9 2.6 7.7 3.9 3.2 5.8 8.4 1.9 3.8 6.4

4 2.5 1.9 3.1 2.5 3.8 3.1 8.7 4.6 3.8

5 2.1 2.6 3.2 3.9

10 2.6 3.2 4.1 5.3
20 2.5 3.1 3.8 4.6

159

Table 5.4. Values of Ll for Problem (5.4) obtained by iterating the Lagrange

corrector (4.4a), Gauss corrector (4.5a), and Radau IIA corrector (4.6a).

m Uh=2 Uh=4 Uh=8 Uh=l6

2.3 1.5 1.5 2.1 2.6 * * 2.4 2.8 * * 2.7 3.1 * * 3.0
2 3.9 2.9 2.8 3.5 4.5 * 3 .4 4.1 5.2 * 4.0 4.7 5.8 * 4.5 5.3

3 5.4 4.8 3.8 4.5 6.4 5.7 4.7 5.4 7.4 6.6 5.6 6.3 8.3 6.9 6.5 7.2

4 5.7 5.9 4.9 4.3 6.9 7.1 6.1 5.2 8.1 8.3 7.2 6.1 9.3 9.5 8.4 7.0

5 6.1 5.7 7.3 7 .1 8.2 8.5 8.3 9.4 9.7 9.5

6 6.1 7.3 8.5 9.5

7 9.7

5.4. Efficiency of diagonally iterated IRK correctors
In this final subsection, we compare the efficiency of the diagonally iterated IRK

correctors with three fourth-order DIRK methods from the literature, viz. the three

stage method generated by the Butcher array

I ro + s) I ro + s)
I

-~I;
I

2 r(l +I;)

½-o-s) (I + I;) - (I + 21;)
I ro + s)

(5.6) , I;= }"'3 cos(r'8),

1 1 - _l_ 1
61;2 31;2 61;2

(cf. Crouzeix [8] and Alexander [1]), and the four-stage, parallel DIRK methods of

Iserles and Njijrsett [16]:

1 1
2 2

1 0 1
1 3 3 1
2 2 2 2

0 -3 2 0
(5.7)

1 1 1 1
3 6 3 6

160

2 2
2

0
2

3 3
1 5 5 I
2 2 2 2
1 5 4

0
2

3 3 3 3
(5.8)

- I
3

- I
3

2 2

The method (5.6) is A-stable and requires three sequential stages per step. The

methods (5.7) and (5.8) are A-stable and L-stable, respectively, and require only two

sequential stages per step (when run on a two-processor computer).

We restrict our considerations to the above three DIRK methods and to the

Newton-Cotes, Lobatto IIIA, Lagrange, and Radau IIA correctors where each method

uses a fixed number of m iterations per step. Recalling that iterating an IRK

corrector by means of m diagonal iterations in each step yields a method that is in

fact a DIRK method with m sequential stages, we conclude that all methods have in

common that they belong to the class of DIRK methods. However, in the case of

the 'genuine' DIRK methods (5.6), (5.7), and (5.8), the number of sequential stages

per step is known in advance, whereas in the case of the DIRK methods based on

iteration the number of sequential stages m that yields acceptable accuracies, is not

known in advance and, in actual computation, it should be determined on the basis

of some local error strategy. On the other hand, as we shall see, the accuracy of the

iterated methods is less sensitive to the phenomenon of order reduction.

In the Tables 5.5 and 5.6, m always denotes the number of sequential stages per

step. Hence, all results in one column of these tables correspond to DIRK methods

that use m sequential stages per step, so that all results corresponding to the same

value of mL/h required roughly the same computational effort. In the tables, the

highest value of ~ corresponding to the same mL/h value, that is, the 'most

efficient' integration result, is indicated in bold face. As in the preceding subsection,

we only present results for the problems (5.2) and (5.4). Results for the additional

test problems may be found in the Appendix to [14].

In the case of the nonlinear Prothero-Robinson problem, Table 5.5a shows that

the number of iterations needed by the iterated methods to 'reach' the accuracy of the

corrector solution increases with k, that is, the higher-order methods need more

iterations to solve the corrector; moreover, they have a 'slow start': after 2 iterations

the accuracy is still rather modest, whereas the lower-order methods have already

converged, showing full corrector-precision. This can be explained by observing that

we used a zero-order predictor for y(O) for all k, so that the 'distance' between

predictor and corrector solution increases with k. Thus, for this problem, the lower-

161

order -methods are more efficient than the higher-order ones, unless very high

accuracies are requested. Furthermore, when we compare the various types of iterated

methods (Newton-Cotes, Lobatto, Lagrange, or Radau), then the Lobatto IIIA
methods perform not as well whereas the strongly A-stable Lagrange methods are

slightly superior to the others. In the case of the 'genuine' DIRK methods (5.6),

(5.7) and (5.8), the Iserles-Njllrsett methods are more accurate than the Crouzeix

Alexander method, which is presumably due to the L-stability property of the

Iserles-Njllrsett method.

It is of particular interest to see how the iterated methods compare with the

'$enuine' DIRK methods. For example, Table 5.5a shows that the Newton-Cotes,

Lobatto IIIA, Lagrange, and Radau IIA based methods, respectively, produce 5, 0, 21

and 4 'most efficient' results, whereas the 'genuine' DIRK methods none. A further

indication of the superiority of the iterated methods is given by Table 5.5b where we

list results for the iterated methods with m = 4 and for the parallel DIRK methods

(5. 7) and (5.8). All these methods have step point order p = 4, but the accuracies

obtained for the same computational-costs value of mL/h differ largely, which is

caused by the order reduction exhibited by the 'genuine' DIRK methods.

For the more innocent chemical reaction problem (5.4) the order reduction is not

shown. Table 5.6a shows that the high-order iterated methods again require more

iterations to obtain the corrector precision than the lower-order methods, however,

here for low values of m, all iterated methods are roughly equally efficient.

Furthermore, the scores of 'most efficient' results for the Newton-Cotes, Lobatto

IIIA, Lagrange, and Radau IIA based methods are respectively 8, 5, 6 and 7, and

among the DIRK methods only (5.7) scores twice. The analogue of Table 5.5b is

given by Table 5.6b. It reveals that the iterated methods are usually much more

efficient than the parallel DIRK methods and in any case at least competitive.

162

T.able 5.Sa. Problem (5.2): Results for diagonally iterated correctors and for the
methods (5.6), (5.7), and (5.8).

Method k Llh m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=lO ··· m = oo

Crouzeix-Alex. (5.6) 1 1 - 1.0
Iserles-N(llrsett (5. 7) 2 1.5
Iserles-N(llrsett (5.8) 2.1
Newton-C. (4.3) 3.4 4.7 4.7
Lagrange (4.4) 3.5 5.0 5.0
Radau IIA (4.6) 3.8 4.2 4.2
Newton-C. (4.7) 3 3.2 3.7 5.6 6.1 6.0 6.0
Lobatto IIIA (4.8) 3.0 2.7 4.7 6.0 6.0 6.1 6.1
Lagrange (4.9) 3.2 3.9 5.5 6.7 6.5 6.5
Radau IIA (4.10) 3.4 3.1 5.0 4.9 4.9
Newton-C. (4.11) 4 3.1 3.6 4.9 4.7 5.2 6.0 7.2 7.0 6.9 6.9
Lobatto IIIA (4.12) 2.7 2.2 2.3 3.9 4.6 5.4 6.8 6.9 7.0 7.0
Lagrange (4.13) 3.0 2.8 3.1 3.9 5.0 6.4 7.1 7.3 7.4 7.4
Radau IIA (4.14) 2.9 2.8 3.0 4.7 5.6 6.8 6.3 6.3
Crouzeix-Alex. (5.6) 1 2 - 2.5
Iserles-N(llrsett (5. 7) 2 2.4
Iserles-N(llrsett (5.8) 2.7
Newton-C. (4.3) 4.0 5.3 5.3
Lagrange (4.4) 4.1 5.8 5.8
Radau IIA (4.6) 5.3 4.7 4.7
Newton-C. (4.7) 3 3.4 3.5 6.4 8.1 7.2 7.3 7.3
Lobatto IIIA (4.8) 3.0 2.2 5.3 6.0 7.3 7.3
Lagrange (4.9) 3.5 3.8 5.9 7.5 7.6 7.6
Radau IIA (4.10) 3.8 2.8 5.9 5.7 5.9 5.9
Newton-C. (4.11) 4 3.3 3.3 5.2 5.2 5.3 5.9 6.7 7.8 8.3 8.1 8.1
Lobatto IIIA (4.12) 2.3 I. I 1.4 4.0 4.5 5.5 6.9 7.3 8.4 8.3 8.3
Lagrange (4.13) 2.9 2.3 2.7 4.9 5.2 6.5 8.3 8.9 8.9
Radau IIA (4.14) 2.8 2.2 2.6 5.0 6.0 7.0 7.5 7.3 7.3
Crouzeix-Alex. (5.6) 1 4 - 2.8
Iserles-N(llrsett (5.7) 2 3.0
Iserles-N(llrsett (5.8) 3.2
Newton-C. (4.3) 3.9 5.8 5.9 5.9
Lagrange (4.4) 4.0 6.5 6.7 6.7
Radau IIA (4.6) 4.8 5.2 5.2
Newton-C. (4.7) 3 3.1 3.0 6.6 7.7 8.4 8.5 8.5
Lobatto IIIA (4.8) 2.3 0.7 5.5 6.2 7.7 8.1 8.5 8.5
Lagrange (4.9) 3.2 3.5 6.2 7.7 9.9 8.8 8.8
Radau IIA (4. 10) 3.6 2.0 5.6 6.2 6.8 6.9 6.9
Newton-C. (4.11) 4 2.9 2.5 5.0 5.5 5.5 6.0 6.8 7.7 8.7 9.8 9.4
Lobatto IIIA (4.12) I.I * * 5.0 4.3 5.6 6.4 7.2 8.3 9.0 9.5
Lagrange (4.13) 2.3 0.8 1.5 5.1 5.6 6.8 7.9 8.8 9.7 10.8 10.4
Radau IIA (4.14) 2.1 0.6 1.2 5.2 6.3 7.9 8.4 8.5 8.5

163

Table5.6a. Problem (5.4): Results for diagonally iterated correctors and for the
methods (5.6), (5.7), and (5.8).

Method k Llh m=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 ···m=oo

Crouzeix-Alex. (5.6) 1 1 - 3.4
lserles-Nprsett (5. 7) 2 3.4
lserles-Nprsett (5.8) 3.3
Newton-C. (4.3) 2.1 3.4 4.3 4.5 4.5
Lagrange (4.4) 2.1 3.5 3.1 3. I
Radau IIA (4.6) 1. 7 2.9 3.6 3.4 3.4
Newton-C. (4.7) 3 1. 8 3.5 5. I 4.7 4.7
Lobatto IIIA (4.8) 1.6 3. I 4.3 5.6 6.3 6.4 6.4
Lagrange (4.9) 1.8 3.5 4.3 4.2 4.2
Radau IIA (4.10) 2.0 3.2 4.3 5.9 5.3 5.3
Newton-C. (4.11) 4 1. 7 3.6 5.2 6.5 6.7 6.7
Lobatto IIIA (4.12) 1.4 2.7 4.6 6.0 7 .1 8.3 8.6 8.6
Lagrange (4.13) 1.6 3. 1 5.8 6.6 7.0 6.9 6.9
Radau IIA (4. 14) 1.5 3.2 4.8 7.4 7.8 7.9 7.9

Crouzeix-Alex. (5.6) I 2 - 4.4
lserles-Nprsett (5.7) 2 4.5
lserles-Nprsett (5.8) 4.4
Newton-C. (4.3) 2.3 3.9 5.4 5.7 5.7
Lagrange (4.4) 2.3 4.5 4.0 4.0
Radau IIA (4.6) 2.1 3.5 4.5 4.3 4.3
Newton-C. (4. 7) 3 2.0 4.2 6.2 5.9 5.9
Lobatto IIIA (4.8) 1. 9 3.8 5. 1 6.8 8.1 8.3 8.3
Lagrange (4.9) 2.1 4.1 5.5 5.4 5.4
Radau IIA (4.10) 2.2 3.8 5 .1 6.9 6.8 6.8
Newton-C. (4.11) 4 2.0 4.5 6.7 7.9 8.5 8.5
Lobatto IIIA (4.12) 1. 7 3.3 5.4 7.2 8.5 10.0 10.9 11.0 11.0
Lagrange (4.13) 1. 9 3.7 6.3 7.5 8.3 8.2 8.2
Radau IIA (4.14) 1.8 3.7 5.6 8.0 8.8 10.1 9.8 9.8

Crouzeix-Alex. (5.6) 1 4 - 5.5
Iserles-Nprsett (5.7) 2 5.7
lserles-Nprsett (5.8) 5.6
Newton-C. (4.3) 2.6 4.5 6.4 6.9 6.9
Lagrange (4.4) 2.6 4.7 4.9 4.9
Radau IIA (4.6) 2.4 4.1 5.4 5.2 5.2
Newton-C. (4.7) 3 2.3 5.0 7.2 7. I 7 .1
Lobatto IIIA (4.8) 2.2 4.4 6.0 7.9 9.7 10. 1 10. 1
Lagrange (4.9) 2.4 4.8 6.8 6.6 6.6
Radau IIA (4.10) 2.5 4.5 6.0 7.9 8.3 8.3
Newton-C. (4.1 I) 4 2.3 5.4 7 .1 8.9 10.6 10.3 I 0.3
Lobatto IIIA (4.12) 2.0 4.0 6.1 8.4 I 0.1 I 1.9 12.3 12.3
Lagrange (4.13) 2.2 4.2 7.2 8.7 9.9 9.7 9.7
Radau IIA (4.14) 2.1 4.3 6.6 9.1 I 0.2 12.2 11.8 11.8

164

Table 5.5b. Problem (5.2): Efficiency test of fourth-order methods.

Method p m k mUh=4 mUh=8 mlih= 16

Iserles-N0rsett (5.7) 4 2 2 2.4 3.0 3.6
Iserles-N0rsett (5.8) 4 2 2 2.7 3.2 3.8
Newton-C. (4.3) 4 4 2 4.7 5.3 5.9
Newton-C. (4.7) 4 4 3 6.1 8.1 7.7
Lobatto IHA (4.8) 4 4 3 6.0 6.0 6.2
Lagrange (4.9) 4 4 3 6.7 7.5 7.7
Radau IIA (4.10) 4 4 3 4.9 5.7 6.2
Newton-C. (4.11) 4 4 4 4.7 5.2 5.5
Lobatto IIIA (4.12) 4 4 4 3.9 4.0 5.0
Lagrange (4.13) 4 4 4 3.9 4.9 5. I
Radau IIA (4.14) 4 4 4 4.7 5.0 5.2

Table 5.6b. Problem (5.4): Efficiency test of fourth-order methods.

Method p 111 k mlih=4 mUh=8 mLlh= 16

Iserles-N0rsett (5.7) 4 2 2 4.5 5.7 6.9
Iserles-N0rsett (5.8) 4 2 2 4.4 5.6 6.7
Newton-C. (4.3) 4 4 2 4.5 5.7 6.9
Newton-C. (4.7) 4 4 3 4.7 5.9 7 .1
Lobatto IIIA (4.8) 4 4 3 5.6 6.8 7.9
Lagrange (4.9) 4 4 3 4.2 5.4 6.6
Radau IIA (4.10) 4 4 3 5.9 6.9 7.9
Newton-C. (4.11) 4 4 4 6.5 7.9 8.9
Lobatto IIIA (4.12) 4 4 4 6.0 7.2 8.4
Lagrange (4.13) 4 4 4 6.6 7.5 8.7
Radau IIA (4.14) 4 4 4 7.4 8.0 9.1

6. CONCLUDING REMARKS

In this paper we have derived a diagonally implicit iteration scheme to solve a

fully implicit Runge-Kutta method. The structure of this iteration process is such

that a parallel computer can be fully exploited. Starting with an implicit RK method

with k implicit stages (the corrector), each iteration requires the solution of k

systems of equations of dimension equal to the number of ODEs. Since these

systems can be solved completely independently, the effective computational work

per iteration equals the solution of one such system, provided that k processors are

available.

The free parameters in the iteration scheme are chosen in such a way that the

corresponding stability functions converge as quickly as possible to the stability

165

function of the corrector, which is chosen to be (at least) A-acceptable. Although we

have numerical evidence that this is not a bad choice, we do not claim that it is the

best possible. In a forthcoming paper it is intended to give theoretical support for

this choice.

A second aspect considered in this paper, is the choice of the particular corrector

method. The well-known implicit RK methods of high classical order, such as the

' Gauss-Legendre, Radau, and Lobatto methods, seem to be suitable candidates.

However, since it is the stage order which usually determines the order behaviour in

integrating stiff differential equations, these methods are not necessarily optimal

correctors. Because the stage order is significantly smaller than the classical order for

these methods, we will encounter the phenomenon of order reduction. Therefore, we

also considered Newton-Cotes and Lagrange correctors, which have - for the same

number of implicit relations per iteration - a stage order which is one higher than

for Gauss-Legendre and Radau methods and is equal to the stage order of Lobatto

methods.

Apart from these order considerations, it turned out that the stability behaviour of

the iterated scheme largely depends on the choice of the corrector. For example, it is

shown that the Gauss-Legendre corrector is not suitable in this context, since it is

not stiffly accurate. Consequently, only for very 'innocent' stiff problems, where we

have no order reduction, the Gauss-Legendre corrector is useful, but as a method for

general stiff problems it is disadvantageous.

The other four types of correctors are all stiffly accurate, which has the effect that

certain classes of stiff problems can be integrated without order reduction. For such

problems the classical order should be a decisive factor, viz. in these cases the

Lobatto IHA corrector is superior and also the Newton-Cotes corrector is a good

choice. However, these correctors are only A-stable and it is shown that the stability

function of the iterated method is not A-acceptable unless the corrector is really

solved. This means that the iteration process based on these correctors easily

encounters stability problems. Hence, a corrector possessing better stability

characteristics, such as the Radau IIA method (L-stable) and the Lagrange method

(strongly A-stable), will be much more robust. We showed that after a few iterations

the stability function of the iterated methods based on these correctors is A

acceptable.

Since the stage order of the Lagrange corrector is one larger than that of the

Radau IIA corrector, we think that it is a good choice for integrating general stiff

equations; it combines adequate stability characteristics with a relatively high stage

order. Our numerical experiments confirm this advice.

Furthermore, we have compared our methods with sequential and parallel DIRK

methods from the literature. This comparison is rather obvious since the effective

computational work per iteration equals the work per stage in a DIRK method. It

166

turned out that the diagonally iterated RK methods are much more efficient than the

'conventional' DIRKs. The reason is that only low order 'conventional' DIRKs with

good stability properties are available in the literature and, more importantly, these

DIRKs have a stage order equal to I. This property gives these methods a very poor

performance in case of general stiff problems.

Finally, we remark that the construction of diagonally iterated methods of

arbitrarily high order is straightforward, and we observed in our experiments that,

especially the high order methods, showed remarkably high accuracies.

ACKNOWLEDGMffif

The authors are grateful to Dr. W. H. Hundsdorfer for carefully reading the

manuscript and for many valuable suggestions during the investigations reported in

this paper.

REFERENCES
[1] Alexander, R. (1977): Diagonally implicit Runge-Kutta methods for stiff

ODEs, SIAM J. Numer. Anal. 14, 1006-1021.

[2] Burrage, K. (1978): A special family of Runge-Kutta methods for solving stiff

differential equations, BIT 18, 22-41.

[3] Burrage, K. (1991): The error behaviour of a general class of predictor-corrector

methods, Appl. Numer. Math. 8, 201-216.

[4] Burrage, K., Houwen, P.J. van der, Hundsdorfer, W.H. & Sommeijer, B.P.

(1991): Diagonal iteration of Runge-Kutta methods (in preparation).

[5] Butcher, J.C. (1976): On the implementation of implicit Runge-Kutta

methods, BIT 16, 237-240.

[6] Butcher, J.C. (1979): A transformed implicit Runge-Kutta method, J. Assoc.

Comput. Mach. 26, 731-738.

[7] Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,

Runge-Kutta and general linear methods, Wiley, New York.

[8] Crouzeix, M. (1975): Sur !'approximation des equations differentielles

operationnelles lineaires par des methodes de Runge-Kutta, Ph. D. Thesis,

Universite de Paris.

[9] Dekker, K. & Verwer, J.G. (1984): Stability of Runge-Kutta methods for stiff

nonlinear differential equations, CWI Monograph 2, North-Holland,
Amsterdam.

[10] Enright, W.H., Hull, T.E. & Lindberg, B. (1975): Comparing numerical

methods for stiff systems of OD Es, BIT 15, 10-48.

167

[11] Hairer, E., Lubich, Ch. & Roche, M. (1988): Error of Runge-Kutta methods

for stiff problems studied via differential algebraic equations, BIT 28, 678-700.

[12] Houwen, P.J. van der & Sommeijer, B.P. (1990): Parallel iteration of high

order Runge-Kutta methods with stepsize control, J. Comp. Appl. Math. 29,

111-127.

[13] Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1992): Embedded

diagonally implicit Runge-Kutta algorithms on parallel computers, Math.

Comp. 58, 135-159.

[14] Houwen, P.J. van der & Sommeijer, B.P. (1990): Iterated Runge-Kutta

methods on parallel computers, Report NM-R9001, Centre for Mathematics

and Computer Science, Amsterdam.

[15] Hundsdorfer, W.H. (1990): Private communication.

[16] Iserles, A. & N0rsett, S.P. (1990): On the theory of parallel Runge-Kutta

methods, IMA J. Numer. Anal. 10, 463-488.

[17] Kaps, P. (198 l): Rosenbrock-type methods, in: Numerical methods for stiff

initial value problems, G. Dahlquist and R. Jeltsch (eds.), Bericht nr. 9, Inst.

fi.ir Geometrie und Praktische Mathematik der RWTH Aachen.

[18] Lie, I. (1987): Some aspects of parallel Runge-Kutta methods, Report No.

3/87, Division Numerical Mathematics, University of Trondheim.

[19] N0rsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report

Mathematics and Computation No.6/74, Depart. of Mathematics, University

of Trondheim.

[20] N0rsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta

methods, in: Numerical methods for ordinary differential equations, A. Bellen,

C.W. Gear & E. Russo (eds.), Proceedings L'Aquila 1987, Lecture Notes in

Mathematics 1386, Springer-Verlag, Berlin.

[21] Prothero, A. & Robinson, A. (1974): On the stability and accuracy of one-step

methods for solving stiff systems of ordinary differential equations, Math.

Comp. 28, 145-162.

[22] Sommeijer, B.P., Couzy, W. & van der Houwen, P.J. (1992): A-stable

parallel block methods for ordinary and integro-differential equations, Appl.

Numer. Math. 9, 267-281.

[23] Watts, H.A. & Shampine, L.F. (1972): A-stable block implicit one-step

methods, BIT 12, 252-266.

CHAPrERVI

Analysis of parallel diagonally implicit iteration

of Runge-Kutta methods

Reprinted from

Appl. Numer. Math. 11 (1993), 169-188

with granted permission from ELSEVIER SCIENCE PUBLISHERS B.V.

Analysis of parallel diagonally implicit
iteration of Runge-Kutta methods

P.J. van der Houwen and B.P. Sommeijer

Centre for Mathematics and Computer Science
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

169

Abstract. In this paper, we analyse parallel, diagonally implicit iteration of Runge
Kutta methods (PDIRK methods) for solving large systems of stiff equations on
parallel computers. Like Newton-iterated backward differentiation formulas (BDFs),
these PDIRK methods are such that in each step the (sequential) costs consist of
solving a number of linear systems with the same matrix of coefficients and with
the same dimension as the system of differential equations. Although for PDIRK
methods the number of linear systems is usually higher than for Newton iteration of
BDFs, the more computational intensive work of computing the matrix of
coefficients and its LU-decomposition is identical. The advantage of PDIRK methods
over Newton-iterated BDFs is their unconditional stability (A-stability for Gauss
based methods and L-stability for Radau-based methods) for any order of accuracy.

Special characteristics of the PDIRK methods will be studied, such as the rate of
convergence, the influence of particular predictors on the resulting stability
properties, and the stiff error constants in the global error.

1991 Mathematics Subject Classification: 65L06, 65L20

1991 C.R. Classification: G. I. 7

Key Words: Diagonally implicit Runge-Kutta methods, parallelism.

1. INTRODUCTION

Consider the initial value problem for systems of ordinary differential equations

(ODEs) of dimension d

In this paper, we analyze integration methods based on iteration of implicit Runge

Kutta (RK) methods of collocation type. Such RK methods possess both a large

step-point order and a large stage order. Furthermore, by a suitable choice of the

collocation parameters, these RK methods are unconditionally stable for any order of

accuracy.

We shall employ the diagonally implicit iteration-type methods proposed in

[7, 8). These methods are designed in such a way that a large number of the implicit

170

systems to be solved can be processed in parallel, so that the number of systems that

have to be solved sequentially is substantially reduced when implemented on multi

processor computers. As a reference method, we take the method based on the

backward differentiation formulas (BDFs), which is considered as one of the best

methods for sequential computers. The sequential computations (i.e., the

computations that cannot be performed in parallel on a multi-processor system) of

the parallel diagonal-implicitly iterated RK (PDIRK) methods are of the same nature

as those of Newton-iterated BDFs, that is, in each step, both types of methods

require the sequential solution of a number of linear systems with the same matrix of

coefficients and with the same dimension as the system of differential equations.

Although, this number of linear systems is usually higher for PDIRK methods than

for Newton iteration of BDFs, the effort required for computing the Jacobian and the

LU-decomposition of the matrix of coefficients is identical. For large systems of

equations, these computations are the more computational intensive work, so that

the overall computation time is primarily determined by the number of Jacobian

updates and LU-decompositions. The advantage of PDIRK methods over Newton

iterated BDFs is their A~stability (Gauss correctors [2]), strong A-stability (Lagrange

correctors derived in [7]) or even L-stability (e.g. Radau IIA correctors) for high

orders of accuracy. The property that unconditional stability can be combined with

high orders reduces the number of integration steps (and therefore the number of

Jacobian updates and LU-decompositions) considerably.

In Section 2, we define the PDIRK iteration scheme and discuss some favourable

properties of the underlying implicit RK method (the corrector). We analyze the

influence of the initial iterate (the predictor) with respect to the stability of the final

result. Both implicit and explicit predictors of one-step and multistep type are

discussed. Furthermore, several options for the iteration parameters are considered.

Section 3 describes the convergence and stability for several predictor-corrector (PC)

combinations. An expression for the global error for the linear inhomogeneous test

equation y'(t)=Ay(t)+g(t) will be derived in Section 4. For various PC combinations

and several one-step predictors, the principal stiff error constants in the global error

expansion are calculated for several iteration strategies. Finally, in Section 5 the

results are compared and some recommendations are formulated.

2. PDIRK METHODS
In this section we define PDIRK methods by specifying the RK corrector, the

iteration scheme for solving the stage vector equation, the predictor formula, and the

formula for the step-point values. The various families of PDIRK methods are

determined by special choices of the iteration parameters occurring in the iteration

171

scheme. In order to simplify the notations, the formulas are given for scalar ODEs.

The extension to systems of ODEs is straightforward.

2.1. The corrector

We consider RK methods of the form

Y - h Af (etn + ch,Y) = eyn + ha f(tn,Ynl,
(2.1)

c :=a +Ae,

where ho is a scalar parameter, e is the vector with unit entries, a= (ai), b = (bi) and

c = (q) are k-dimensional vectors, and A= (aij) is a k-by-k matrix. In (2.1) we used the

convention that for any given vectors v = (vj) and t = (f_j),j{t,v) denotes the vector with

entries f{f_j,Vj)- We always assume that the matrix A is nonsingular. If the vector a or

the parameter bo does not vanish, then (2.1) presents an (s = k+ 1)-stage RK method

requiring k implicit stages and one explicit stage. If a= 0 and bo = 0, then (2.1)

reduces to the general (s = k)-stage RK method with s implicit stages. For a

discussion of the order of accuracy and the stage order of RK methods, we refer to

e.g. [4] and [3]. In the sequel, the method (2.1) will be called the corrector.

2.2. The iteration scheme

The stage vector equation in (2.1) is solved by applying the diagonal iteration

method studied in [8] and [7]. Let y(µ) denote the successive iterates, then we may

define the (highly parallel) iteration process

y(I) _ hDJ(etn + ch,y(I)) =

eyn + a hf(tn,Yn) + hAJ(etn + c*h,Y(O)) - h D J(etn + c*h,y(O)),
(2.2)

y(µ) _ h D J(etn + ch,y(µ)) =

eyn + a hf{tn,Yn) + hAJ(etn + ch,Y(µ-I)) - h D f(etn + ch,Y(µ-I)),

whereµ= 2, ... , m, and Dis a diagonal matrix whose diagonal elements Di (i = 1, ... , k)

are the iteration parameters which are assumed to be positive. The parameter vector

c* depends on the predictor formula used for computing y(O) and serves to make the

arguments off consistent in the first iteration (see Section 2.4). The step-point

formula defining Yn+I and the predictor formula will be discussed in the Sections 2.3

and 2.4, respectively. Together, the predictor formula, the iteration scheme (2.2), and

the step-point formula determine the PDIRK method.

Each iteration in (2.2) requires the solution of k nonlinear systems which can be

obtained by applying modified Newton iteration. We shall call this last iteration the

172

·inner iteration method and the iteration (2.2) the outer iteration method. Notice that
in each outer iteration the k nonlinear systems can be solved in parallel, provided
that k processors are available. Thus, the sequential costs per step consist of
computing y(O) and of solving m nonlinear systems of ODE dimension.

For particular choices of the predictor formula (e.g., explicit RK formulas) and
for step-point formulas as defined in Section 2.3, the PDIRK method as described

above can be interpreted as a diagonally implicit RK (DIRK) method using mk

diagonally implicit stages. Since the k stages in each outer iteration can be computed
in parallel, we arrive at a DIRK method with m sequential diagonally implicit

stages. These methods form a subclass of the much wider class of the PaRK methods
investigated by Jackson and Ni,jrsett [9, 10].

In [7] and [8] the performance of PDIRK methods was studied in the case where

in each of the m outer iterations the inner iteration method was continued until
convergence before starting the next outer iteration (this iteration strategy is also
used in conventional DIRK methods). However, this strategy may be rather

expensive if many iterations are needed to get the inner iteration converged.

Moreover, it does not take into account the special structure of the method. The
essential difference with conventional DIRK methods lies in the fact that the ith
component of each stage vector y(µ) is an approximation to the exact solution at the

point tn + c;h. This implies that y(µ-I) furnishes an excellent initial approximation
to the solution y(µ) to be obtained in the inner iteration process. As a consequence,

each outer iteration needs only a few inner iterations. Furthermore, in first
approximation, the convergence of the inner-outer iteration scheme and the stability

of the PDIRK method do not depend on the number of inner iterations. This
motivates our strategy to perform only one inner iteration per outer iteration, leading
to the iteration process

[I - hDJ] (y(O) - yCI)) = y(O) - h D f(etn + ch,y(O))

(2.3a)
- [eyn+a hfiJn,Yn) +hAf(etn +c*h,y(O))- hD f(etn +c*h,y(O))],

[/ - hDJ] (y(µ-1) - y(µ)) = y(µ-1)

- [eyn +ahJ{tn,Yn) + hAf(etn +ch,y(µ-I))], µ=2, ... , m.

Here, J denotes an approximation to the derivative off at the point (tn,Yn)

Evidently, if (2.3a) converges, then y(µ) converges to Y. In fact, one may interpret

(2.3a) as a modified Newton iteration scheme for solving Y from the stage vector

equation in (2.1) employing a diagonal approximation to the Jacobian matrix of
Y- hA.f(etn+ch,Y).

It may be useful to consider (2.3a) in the case of systems of ODEs. Then, the k

components Y/µ) of the stage vector iterate y(µ) have to satisfy the equations

173

[I - hojl] (Y/O) - Y/1)) = Y/O) - h oi f (tn + c;h,Y/O))
k

- [yn + ai hf(tn,Yn) + h L aijf(tn + cj*h,Y/O)) -h Oi f (tn + c;*h,Y/O))] ,
j=l

[I- ho;]] (Y;(µ-l) - Y/µ)) = Y/µ-l)
k

-[yn+a;hf(tn,Yn)+hL aijf(tn+Cjh,Y/µ-l))], µ=2, ... ,m,
j=l

where i = 1, ... , k and where now J denotes an approximation to the Jacobian matrix

off at the point (tn.Yn)- Notice that this iteration scheme can be viewed as a

modified Newton method for solving the stage vector equation employing a block

diagonal approximation to the Jacobian. Clearly, the k linear systems that are to be

solved in each outer iteration step can be solved in parallel. Since each system has

dimension equal to that of the system of ODEs, the computational complexity per

step and per processor essentially consists of the computation of y;(O), the

evaluation and LU-decomposition of the matrix J-h Oil (or its updating), m+2

evaluations of f, and m forward-backward substitutions. Of these costs, the

evaluation and LU-decomposition of/ - h o; J are the most time consuming, while the

evaluations off and the forward-backward substitutions are relatively cheap (notice

that the iteration parameters Oi are independent ofµ in order to avoid repeated LU

decompositions of 1-h o; Jin the successive iterations). Thus, when basing a code on

PDIRK methods, first of all the number of stepsize changes (which automatically

requires new LU-decompositions) and the number of Jacobian updates should be

minimized.

It is of interest to compare the sequential costs of PDIRK methods with the

sequential costs of the celebrated BDF-based methods. If the BDFs are solved· by

using m modified Newton iterations, then the sequential costs in each step of the

PDIRK methods and the Newton-iterated BDFs are almost identical. We expect that

PDIRK methods need more iterations but, because of their higher order, less steps to

produce some given accuracy. As explained above, evaluations off and the forward

backward substitutions are relatively cheap, so that for modest values of m, the

sequential costs per step of PDIRK methods are expected to be not much higher than

those of the BDFs. The reduced number of steps required by the PDIRKs should

make them superior to the BDFs.

2.3. The step-point values

Suppose that we adopt y(m) as a sufficiently accurate approximation to the exact

stage vector solution Y of the corrector (2.1). Then, the most natural way to

174

approximate the step-point value Yn+ 1 in (2.1) defines this value according to the

formula

However, the presence of the right-hand side evaluations in this formula may give

rise to loss of accuracy in the case of stiff problems (cf. [12]). This difficulty can be

overcome by applying a similar approach as proposed in [6] for the implementation

of implicit RK methods. Observing that the corrector (2.1) can be written in the

form

provided that A is nonsingular, we can approximate the corrector solution Yn+ I by

the formula

(2.3b)

where y(m) denotes the last computed approximation to Y. In many cases the

corrector satisfies the relations of stiff accuracy, i.e., Ck= I, bo = ak and b TA- 1 = ekT,

so that (2.3b) reduces to Yn+1 =ekTy(m)_ In order to avoid confusion, we shall from

now on denote the corrector solution and stage vector values obtained from Yn by

Un+1 and U, respectively.

2.4. The predictor
In [8] we considered one-step predictors of the form

(2.5) y(O) := eyn + h Ef(et11 ,eyn) + h BJ(et11 + c*h,y(O)),

where B and E are k-by-k matrices. Of particular interest are the cases where E

vanishes and where B is either the zero matrix yielding last step-value predictors

(LSP) or B = D yielding implicit Euler predictors (IEP).

However, by using information from the preceding step, that is the values of Yn

and the stage vector y(m) computed in the last step, we can construct more accurate

predictors. In order to indicate to which step a particular stage vector corresponds, we

define Y11 := y(m) if y(m) corresponds to the step [t11_J,t,iJ. Consider the two-step

predictor

(2.6) y(O) = V Y11 + v Yn + h Bf(et11 + c*h,y(O)),

where either B = 0 or B = D, and where the matrix V and the vector v satisfy the usual

consistency conditions (we shall assume that the vector v vanishes in the case of

175

stiffly· accurate correctors). The cases B = 0 and B = D will be referred to as the

extrapolation predictor (EXP) and the backward differentiation predictor (BDP).

If B = D, then both (2.5) and (2.6) require the solution of k implicit relations.

Similar to the strategy followed in solving the implicit relations in (2.2), we shall

perform just one Newton iteration (notice that the right-hand side derivatives required

in the Newton iteration method are identical to those occurring in (2.3a)). In order to

perform this Newton iteration we need an initial guess y(-I) for y(O)_ For the cases

(2.5) and (2.6) we shall, respectively, use

y(-I) = eyn, c* = (E + B)e; y(-1) = WYn + w y11 , c* = c,

where Wand ware to be determined (we shall assume that w vanishes in the case of

stiffly accurate correctors, and that W = V, w = v in the case where B = 0). If the

corrector is based on collocation, then the matrix W and the vector w can be

computed by extrapolating the collocation polynomial defined in Un- J ,tn] to the

interval Un,tn+Il and can be expressed in terms of the Lagrange interpolation

polynomials.

2.5. The iteration parameters

There are various options for choosing the number of iterations m, and the

iteration parameters <>i- In this paper, we consider three cases:

Option 1: fixed-number-of-iterations option

the number of iterations is fixed and such that the orders of the PD IRK

and corrector are equal

the iteration parameters are chosen such that the stability region in the

left halfplane is optimized.

Option 2: minimal-spectral-radius option

the number of iterations is sufficiently large to closely approximate

the corrector solution

the iteration parameters are such that the spectral radius of the matrix

D-1 A - I is minimized.

Option 3: minimal-stiff-error-constant option

the number of iterations is sufficiently large to closely approximate

the corrector solution

the iteration parameters are such that the principal stiff error constant

of the PDIRK method is minimized.

176

· Several families of methods constructed according to the fixed-number-of

iterations option were already considered in [8]. An interesting family considered in

that paper possesses the stability functions investigated by Wolfbrandt [13] and uses

constant iteration parameters Di determined by these stability functions. However,

because of the fixed number of iterations, these methods are in fact DIRK methods

and consequently, they have the disadvantage of possessing stage order q =I.In many

stiff problems, such a low stage order may lead to reduced accuracies. In order to get

insight into the extent of this accuracy reduction, we shall consider the magnitude of

the stiff error constants for the 'fixed-number-of-iterations PDIRK methods' (see

Section 4.2, Table 4.1).

For the explicit one-step predictor, [7] presents a number of PDIRK methods

constructed according to the minimal-spectral-radius option. The effect of

minimizing the spectral radius of the matrix D-1 A - I is a strong damping of the stiff

iteration error components. On the one hand, the number of iterations m should be

sufficiently large to solve more or less the RK corrector, on the other hand, m

should be sufficiently small to achieve that the (sequential) costs per step are not

excessive when compared with those of the BDFs. In this paper, we shall investigate

a few characteristics of the 'minimal-spectral-radius PDIRK methods' as a function

of m. In particular, in Section 3 we consider the rate of convergence (Table 3.1) and

the effect on the stability of the various predictors (Tables 3.2a and 3.2b), and in

Section 4 we consider the magnitude of the principal stiff error constants (Tables 4.2

and 4.3).

Option 3 offers an alternative to option 2 and directly addresses the truncation

error of PDIRK methods when applied to stiff systems. In this paper, we present

preliminary results for the simple inhomogeneous test equation y'(t) = Ay(t) + g(t).

3. CONVERGENCEANDSTABILITY

We shall investigate convergence and stability by means of the scalar test

equation y' = Ay. Note that for this simple test equation the particular strategy used

in the inner iterations is not relevant. For a rigorous convergence analysis of parallel

RK methods containing the PDIRK methods of this paper we refer to Jackson and

Njijrsett [9, 10].

3.1. Rate of convergence

From (2.2) it can be deduced that the iteration error satisfies the recursion

(3.1) U - Yn+I = Z(z) (U - y(m-l)) = ... = zm(z) (U - y(O)),

Z(z) :=zD[/-zD]-1 [D- 1A-I], z := Ah.

177

The region in the complex z-plane where zm(z) ➔ 0 for m ➔ oo will be called the

region of convergence. We define the iteration function C of the PDIRK method by

the spectral radius of Z(z), i.e.,

(3.2) C(z) := p(Z(z)) = p(zD[J- zDJ-1 [D-1A - I]).

Evidently, the region of convergence is determined by the set of points where

C(z) < 1. The rate of convergence is larger as the norm of C(z) is smaller in the

region of relevant values of z. Thus, adopting the maximum norm, we are led to the

minimization of C(z) in this region. In this connection we introduce the following

definition:

Definition 3.1. A PDIRK method is said to be strongly A-convergent if its iteration

function C(z) :s; 1J < 1 in the whole left halfplane Re z < 0. If, in addition, C(- oo) = 0,

then the PDIRK method is called L-convergent. []

First we consider the constant-o;-case which is of interest in the case of fixed

number-of-iterations methods.

Theorem 3.1. If D has constant, positive diagonal elements, then minimization of

p(D-1A-I) implies that the norm of C(z) is minimized whenever z is in the left

halfplane.

Proof. If D = o·J, then we may write C(z) = lo zl p(o 1 A - I) I 11 - o zl. In the left

halfplane, the maximum of the function loz/ (l - oz)I does not depend on o, provided

that O> 0. Hence, the norm of C(z) is minimized if p(D-1 A - I) is minimized. []

In the case where D does not have constant diagonal entries, we cannot derive

such a simple expression for C(z), and a numerical search is needed to find the matrix

D that minimizes the norm of C(z) in the left halfplane. However, our numerical

experiments revealed that also in the nonconstant-o;-case the minimization of

p(D-1A-/) yields fast converging PDIRK methods and that IICll := max{ C(z): Rez:s;0}

is considerably smaller than in the constant-o;-case.

Example 3.1. We consider an example of the fixed-number-of-iterations methods

studied in [8] which is based on the third-order Radau IIA corrector. For

m =3, A=J_(5-l)• 12 9 3 D=o-1, o = 0.43586650

178

this leads to a third-order, L-stable PDIRK method. The convergence function

associated with this method is given by C(z) :::; lo zl p(s-1 A - I) I 11 - o zl, where

p(o- 1 A - I) :::; o- 1 ✓ 1/6 - 28/3 + 82• Setting O:::; 0.43586650 we find that

C(z) < 0.59 in the whole left halfplane. Among the methods with D:::; 8 I this method

is almost optimal (the minimizing value is given by O= 1/2 leading to C(z) < ~""
0.577).

Next, we consider the case where D minimizes p(D-1 A - I). In [7] it was shown

that the method can be made £-convergent (i.e., it has vanishing p(D-1 A -I)) for

81=(4-%)/6 and 82=(4+%)/10. The corresponding matrix Z(z) is easily

computed, yielding IICII ""0.262. []

Table 3.1 lists the IICll-values for a number of minimal-spectral-radius PDIRK
methods. These methods are based on Radau IIA correctors and on the so-called

Lagrange correctors derived in [7]. The Lagrange methods are strongly A-stable,

stiffly accurate collocation methods which are completely determined by the

collocation vector c (see Table 3.1). Their stage order is one higher than that of the

Radau IIA methods which was achieved by using one explicit and k implicit stages.

However, they do not possess the superconvergence property of the Radau methods,

so that the computation of the nonstiff solution components is considerably less

accurate.

For the Radau IIA and Lagrange correctors with k implicit stages, the iteration

parameters are contained in the matrices DkR and DkL (k = 2, 3, 4):

(3.3a)

(3.3b)

(3.3c)

1 (20-516 0)
D2R = 30 0 12+316 '

4365
13624 0 0

D3R = 0 .!.Q1l 0
7373

0 0 .1.§E
5077

1.Q210
9532 0 0

0
531
5956 0 0

D4R = 1471
0 0 8094 0

0 0 0
1848
7919

D [
4(-A+I) O J

2L = 1 ,
0

6(& I)

2246
10669 0 0

D3L= 0 2537 0
8794

0 0
3026
8923

5147
0 0 0 38467

1983
0 17459 0 0

D4L= 3197
0 0 14090 0

3086
0 0 0 12339

179

Table 3.1 shows that these methods can all be made strongly A-convergent, and

that only the methods based on a two-stage corrector are L-convergent (see also [7]).

Furthermore, we observe that the rates of convergence of the Lagrange-based methods

are slightly better. Hence, together with their increased stage order, the Lagrange

correctors seem to be attractive alternatives to the Radau correctors in problems

where the order of accuracy is determined by the stage order. However, in problems

where, apart from the stage order, the nonstiff (or, classical) order is important, the

superconvergent Radau correctors are to be preferred. As to the IICll-values given in

Table 3.1, it should be remarked that these are 'worst case' values, that is, in actual

computation, where the relevant values of z are located in a restricted region of the

left halfplane, the corresponding bound on C(z) may be much smaller.

Table 3.1. IIC11-values for minimal-spectral-radius PDIRK methods

based on Radau IIA and Lagrange correctors.

strongly
Corrector k IICII A-convergent L-convergent

RadauIIA 2 0.262 yes yes
3 0.401 yes no

4 0.527 yes no

Lagrange 2 C = (3/4,J)T 0.182 yes yes
3 C = (7/12,5/6,J)T 0.403 yes no

4 C = (1/6,7/12,J J/12,J)T 0.404 yes no

3.2. Region of stability

In order to investigate the stability properties of PDIRK methods we have to

specify the predictor formula. The stability of PDIRK methods using the one-step

predictor (2.5) was extensively discussed in [8] for the case where Yn+ J is defined by

(2.4). For the case (2.3b) considered in this paper, we have the following theorems:

Theorem 3.2. For the equation y' = 11, y the PD IRK solution generated by { (2.3a),

(2.3b), (2.5)} satisfies the recursion

Yn+ I = R,n(Z)Yn, R,n(z) := R(z) - E,n(Z),

R(z) := 1 + zbo + zbT[J - zA]-1 [e + za] ,

E,n(Z) := bTA-1 zm(z)([I - zAJ-1 [e + za] - [I - zB]-1 [I+ zE] e).

Here, R(z) is the stability function of the corrector reducing to

in the stiffly accurate case.

180

Proof. From the relations

(3.4) y(O) = [/ - zBJ-1 [/ + zE] ey11 , U = [I - zAJ- 1 [e + za] Yn,

it follows that

Hence, from the step-point formula (2.3b) we obtain

(3.6) Un+I - Yn+I = bTA-1(U - Yn+I)

=bTA-1zm(z)([!-zAJ-1 [e +za] - [I -zBJ-1 [I +zE] e)y11 •

Furthermore, introducing the stability function R(z) of the corrector, we may write

(3.7) U 11+1 = R(Z)Yn,

where R(z) is defined in the theorem. From (3.6) and (3.7) the assertion of the

theorem is immediate. []

Theorem 3.3. For the equation y' = Ay the PDIRK solution generated by {(2.3),

(2.6)} satisfies the recursion

(Yn+I) =Mm(z) (Yn),
Yn+I Yn

where Mm(Z) is the amplification matrix

[I-zm(z)][J-zAJ- 1[e+za] +zm(z) [/-zBJ- 1v) .

Proof. By means of the equation for U given in (3.4), relation (3.5) and

we derive that

(3.9) Yn+I = zm(z) [/-zBJ-1 VY11 +

([!-zm(z)][l-zAJ-1[e+za] + zm(z) [/-zBJ-1v)y11 •

Together with the step-point formula (2.3b) the one-step recursion of the theorem is

easily obtained. []

181

With the amplification matrix Mm(Z) we associate the stability function

(3.10) Rm(Z) := p(Mm(Z)),

where p(Mm) denotes the spectral radius of the matrix Mm, The region in the

complex z-plane where Rm(Z) < I will be called the region of stability associated with

m. Furthermore, we define merit as the minimal value of m for which this region

contains the whole left halfplane for all m;::: merit·

For future reference, we have computed the value of merit for a number of

predictor-corrector (PC) pairs. For the correctors we again chose the Radau IIA

methods and the Lagrange methods of Section 3.1. The predictors are those defined in

Section 2.4 and the matrices D are defined according to the minimal-spectral-radius

option (see (3.3a), (3.3b), and (3.3c)). Table 3.2a shows that merit increases if the

number of stages of the corrector increases. However, in actual computation, the

minimal number of iterations may be much smaller because many stiff problems

require only A(a)-stability. This means that automatic codes based on PDIRK

methods are likely to choose the number of iterations not larger than necessary to

ensure a stable performance. Table 3.2b presents the corresponding angles a as a

function of m (lack of A (0)-stability is indicated by *). The results illustrate the

favourable A(a)-stability characteristics of minimal-spectral-radius PD IRK methods

after only a few iterations. In general, the implicit predictors IEP and BDP possess

(of course) larger stability angles a than the explicit predictors LSP and EXP, even

if we take into account that the implicit predictors require extra computational effort

roughly comparable with an additional iteration. Furthermore, if we compare IEP and

BDP, then IEP has the best stability characteristics (in particular for Radau-based

methods). However, the overall efficiency will be reduced because of its low-order of

accuracy. Therefore, we drop the low-order predictors LSP and IEP and recommend

either the EXP or BDP predictor.

Table 3.2a. Values of merit of minimal-spectral-radius

PDIRK methods for various PC pairs

Corrector LSP EXP IEP BDP

RadauIIA k=2 I 1 1

k=3 5 5 2 4

k=4 7 7 4 7

Lagrange k=2 2 2 2 2

k=3 3 3 3 3

k=4 6 7 5 6

182

Table 3.2b. Values of a= a(_m) (in degrees) of minimal-spectral-radius PDIRK

methods for various PC pairs

Predictor Corrector k m= 1 m=2 m=3 m=4 m=5 m=6 m=7

LSP RadaulIA 2 90
EXP 90
IEP 90
BDP 90

LSP 3 * * 81. 9 89.94 90
EXP * * 64.7 88.7 90
IEP 87.5 90
BDP 65.0 81.8 88.4 90

LSP 4 * * * 40.3 80.5 88.5 90
EXP * * * * 70.3 84.2 90
IEP 60.2 75.9 86.1 90
BDP 43.0 14.6 67. I 78.2 84.6 88.6 90

···
LSP Lagrange 2 * 90
EXP * 90
IEP 86.5 90
BDP 89.82 90

LSP 3 * * 90
EXP * * 90
IEP 77.2 * 90
BDP 83.4 * 90

LSP 4 * * * 60.8 86.7 90
EXP * * * * 73.0 88.0 90
IEP 51.6 * * 86.5 90
BDP 48.8 * * 79.9 87.6 90

4. THE ERROR FUNCTIONS FOR THE LINEAR INHOMOGENEOUS TFST EQUATION

The following theorem presents a result for general RK methods derived in [IJ:

Theorem 4.1. For RK methods the global error en when applied to the test equation

y'(t) = Ay(t) + g(t) satisfies

en+l = R(z) en+ L, Qj(Z) hi YexU)(tn),
j=q+I

I · I I I · · I Qj(Z) := '7T [I -jbTcJ-] +"7TzbT[J-zA]- [cl-jAcJ-],
].].

where YexCt) denotes the exact solution of the test equation, R(z) is the stability

function of the RK method, and q is its stage order (i.e., the largest integer such that

1 - jbTcj-l = cj- jAcj-l = 0 for j= 1, ... , q). []

183

We shall prove a similar theorem for PDIRK methods employing one-step

predictors. As before, the simplicity of the test equation y'(t) = ;\,yU) + g(t) implies

that the particular strategy used in the inner iteration process is not relevant.

In the following, y(t) denotes the locally exact solution at tn, i.e., Yn = YUn)- It is

straightforwardly verified that for the linear inhomogeneous equation the recursion

(3.5) changes to

(4.1) U - Yn+I = zm(z)(U _ y(O) + h z-1 [gUne + he)- g(tne + he*)]).

Assuming that g is sufficiently differentiable, we may write for any fixed vector v

(4.2)

Hence,

'\:'I '(.') 1"\:"1 ·r.·) ·1 ·
g(tne + hv) = LJ ':"j" (h vY g 1 Un) = h LJ ':"j" hl y 1 Un) UvJ- - zvl].

. 0 J. . 0 J.
j= j=

h [g(tne + he)- g(tne +he*)]= L ~ YJ(z) hl yU)(tn),
. I J.
j=

YJ(z) := jeJ-I - zel - j(e*)i- 1 + z(e*Y,

Furthermore, it follows from (2.1) that

U = [/ - zAJ-1 [y(tn)e + h y'(tn)a + hA g(tne + he)],

so that

(4.3a) U=yne + L
)= I

CJ(Z) :=e,

4.1. One-step predictors

~ ej(z) W yU)Un),
J.

ej(z) := [I - zAJ- 1A UeJ-I - zel], j ~ 2.

Let us assume that y(O) is provided by a one-step formula, then it can also be

expanded in terms of a similar Taylor series with coefficients e)*(z):

(4.3b)

Thus,

(4.4) u - Yn+I = zm(z) L qj(z) iJ yU>un),
)=I

q 1 (z) := e* - CJ *(z), }~2.

184

Assuming that CJ *(z) does not depend on z, we may choose in (2.3) c* =CJ* so that

qJ (z) vanishes. Using the relation

the iteration error (4.4) can be expanded in terms of derivatives of the exact solution.

We obtain

(4.4') V - Yn+I = zm(z) I qj(z) (z) [Yn - Yex(tn)] +hi YexU)(tn)).

)=2

Since

we find

(4.6a) Un+I - Yn+I = Sm(z)[Yn - Yex(tn)] + I Qmj(Z) hi YexU)(tn),
)=2

(4.6b) Sm(Z) := bTA-1 zm(z) I qj(z) z!, Qmj(Z) := bTA-1 zm(z)qj(z).

)=2

Applying Theorem 4.1 to the corrector at the point tn with en= Yn - YexUn) and

assuming that jb Tci-1 = 1, j = 0, 1, ... , q) yields

(4.7) Un+I - Yex(tn+J) = R(z)[Yn - Yex(tn)]

+ (q~I)! zbT [l-zAJ-1 [cq+I -(q+ l)A cq] hq+I Yex(q+l)(tn)

+O(M+2);

hence,

Yn+I - Yex(tn+I) = Yn+I - Un+I + Un+I - YexUn+I)

= Yn+I - Un+I + R(z) [Yn - Yex(tn)] + O(M+I).

Thus, using (4.6a) we obtain

(4.8) Yn+I - Yex(tn+I) = (R(z)- S,n(z)) [Yn - YexCtn)]

-I Q,nj(Z) hi Yex(j)Un) + O(hq+ 1).
)=2

The functions Qmj(Z) will be called the error functions of the PDIRK method.

185

Finally, we show that the function R(z)- Sm(Z) is identical with the stability

function Rm of the PDIRK method. For that purpose, we consider the particular case

where the inhomogeneous term g vanishes. It is easily verified that we then may

write

(4.9) Yn+I - YexCtn+I) = Rm(Z) [Yn - YexUn)] + (Rm(Z) - eZ) YexCtn), g = 0.

Now, suppose that the initial value YO tends to zero. Then, YexCt) also tends to zero.

Since (4.8) holds for vanishing g too, it follows that Rm(z) = R(z) - Sm(z). Notice

that in the case of the predictor (2.5) the functions Sm(z) and Em(z) as defined in

Theorem 3.2 are apparently identical. Thus, we have proved the following PDIRK

analogue of Theorem 4.1:

Theorem 4.2. For one-step predictors possessing the expansion (4.3b) with c* =CJ*

the global error of PDIRK methods when applied to the test equation y'(t) = .:l y(t) +
g(t) satisfies the recursion

Yn+I - YexCtn+I) = Rm(Z) [Yn - YexCtn)] - I. Qmj(Z) hi YexU)(tn) + O(hq+ I),
)=2

Rm(Z) = R(z) - Sm(Z),

Sm(Z) :=bTA-1 zm(z) I. qj(z)z1, Qmj(z) :=bTA-1 zm(z)qj(z),
)=2

where q is the stage order of the corrector, and R(z) and Rm(z) are the stability

functions of the corrector and the PDIRK method, respectively. []

This theorem shows that the stage order of PDIRK methods is only one, unless

the error function Qm2(z) is identically zero for the m-value used (this is not

surprising because formally PDIRK methods are just DIRK methods which are

known to have stage order one). However, as all error functions Qmj(Z) contain the

factor zm(z), their maximal values IQm} are expected to decrease rapidly with m in

any region of the left halfplane, so that effectively the stage order shown in actual

computation is much higher.

The following corollary presents an explicit expression of Qmj for the predictor

(2.5).

Corollary 4.1. For the predictor (2.5) the error functions are given by

Qmj(z) := ~bTA-1 zm(z)z-1(jd-1 -[l-zBJ-1[i(c*Y- 1-z(c*Y]),
J.

for j = 2, ... , q, where c* := (B + E)e.

186

Proof. In the case (2.5) the expansion (4.3b) becomes

so that

y(O) = [I - zBJ-1 ([I+ zE] y(tn)e + h E g(tn)e + h B g(tne +he*))

= y(tn)e + [/-zBJ-1 (Ehy'(tn)e + B L ~ hiyOl(tn) [i(c*)i-1-z(c*Y]),
. 1 ;. ;=

q *(z) = [/ -zB]-1 (Ee+ Be - zBc*) = c* = (B + E)e,

cj*(z) = [I- zBJ-1 zB [i.c 1(c*)i-1 - (c*Y], j'?:. 2.

By virtue of Theorem 4.2 we may write

Qmj(z) =bTA-1 zm(z)qj(z)= F bTA- 1 zm(z) [cj(z) - c)*(z) + z- 1 J1(z)]

= *bTA-1 zm(z)z-1(U-zAJ-1[jd-1-zd]-[I-zBJ-1 [j(c*)i-1-z(c*)i]).
j.

By means of the simplifying condition C(q) associated with (2.1) (cf. [3]), we obtain

the relation JAd- 1 = d for j = 2, ... , q which leads to the result of the corollary. []

4.2. Last step-value predictor with constant iteration parameters
In the case of the predictor LSP (predictor (2.5) with B = E = 0) with constant

iteration parameters (D = &/), the error functions Qmj(z) can be factorized into factors

that depend on z and factors that do not depend on z. This enables us to derive an

explicit upper bound for Qmj(z).

Theorem 4.3. Let D = o-I and let the predictor be given by (2.5). Then the error

function bound in a region JR. is given by

If lR. is the infinite wedge defined by W:= { z: 1C/2:::; <f>:::; arg(z):::; n, - ,r:::; arg(z) :::;- <f>},

then

where Xm is the positive root of the equation x2 - (2 - m) x cos(</>) - m + l = 0.

187

Proof; The expression for the error bound IQ,njlR immediately follows from

Corollary 4.1. In order to derive an expression for the function d(m) we first observe

that

I 1 ~ z I = ✓ ~zl 2
1 - 21zl cos(arg(z)) + lzl

where '!r/2::; arg(z)::; n or - n::; arg(z) ::;- '!r/2. Hence,

I zm-1 I lzim-1

(1 - z)lll = [1 - 21zlcos(arg(z)) + lz12]ml2 ·

Since the function zm-l (1 - z)-m is analytic, its maximum value in W is assumed at

a point on the line arg(z) = </J. An elementary calculation reveals that the modulus of

this point is given by the positive root xm of the quadratic equation

x2 - (2 - m)cos(</J)x - m + I = 0. This leads us to the bound d(m) given in the

theorem. []

This theorem shows that in the case where the relevant z-values are in an infinite

wedge W, the optimal choice of the matrix D = 8·1 does not depend on W.

Furthermore, the function d(m) is slowly varying with m. This can be concluded

from the extreme cases where lR is either only the negative axis or the whole left

halfplane. We then have, respectively, x111 =m-I andxm =~ which yields

1 (I)m d(m)= -- 1--
m-1 m

and 1 (I)m/2 d(m)= I-;;
~

Thus, within a few iterations the function d(m) slowly converges to zero.

It is of interest to compare the error functions Qj(z) of conventional DIRK

methods (cf. Theorem 4.1) with the error functions Q,nj(Z) of PDIRK methods.

Table 4.1 presents a comparison for two conventional Nprsett-DIRK methods [11]

and a few L-stable, fixed-number-of-iterations PDIRK methods constructed according

to option 1 [8]. In this table, k denotes the number of processors needed, p* is the

order of the method, and m denotes the number of sequential stages per step (both for

the Nprsett-DIRK and PDIRK methods). Clearly, the PDIRK methods possess

considerably smaller error bounds.

188

Table 4.1. Values of IQ)JR. and IQm)lR. with R = {z: Re z:::; 0} for the N0rsett-DIRK

methods and fixed-number-of-iterations PDIRK methods.

Method / PC pair k oi m p* }=2 }=3 }=4 }=5

N0rsett-DIRK 1 2 3 0.144 0.076 0.024 0.0055

{LSP, Radau IIA} 2 0.43586650 3 3 0.024 0.015 0.005 0.0012

{LSP, Lagrange} 2 0.43586650 3 3 0.038 0.015 0.005 0.0012

NS1)rsett-DIRK 1 3 4 0.112 0.054 0.015 0.0040

{LSP, Radau IIA} 3 0.278053841 5 5 0.019 0.006 0.0014 0.0003

{ LSP, Lagrange} 3 0.572816063 4 4 0.046 0.013 0.0001 0.0012

{LSP, Lagrange} 4 0.278053841 5 5 0.025 0.005 0.0001 0.0001

4.3. Minimal-spectral-radius PDIRK methods

Table 4.2 lists values of IQm)lR. with R = {z: Re z:::; 0} for minimal-spectral

radius PDIRK methods (option 2), based on {LSP, Radau IIA} pairs and using the

iteration parameters given in (3.3). It turns out that form> p* the error constants

decrease by an almost constant reduction factor r as m increases by I and that they

are substantially smaller than those of the fixed-number-of-iterations PDIRK

methods of Table 4.1 (notice that r is almost independent of J).

Table 4.2. Values of the error constants for minimal-spectral-radius PDIRK methods.

PC pair k m p* }=2 }=3 }=4 }=5

{LSP, Radau IIA} 2 2 2 0.0249 0.0263 0.0102 0.0027

3 3 0.0060 0.0062 0.0024 0.0006

3 r "" .25 r"" .25 r"" .25 r"" .25

{LSP, Radau IIA} 3 3 3 0.0360 0.0086 0.0027 0.00076

4 4 0.0138 0.0031 0.0009 0.00025

5 5 0.0052 0.0012 0.0003 0.00009

5 r"" .40 r"" .38 r"" .39 r"" .38

{LSP, Radau IIA} 4 5 5 0.0153 0.00098 0.000031 0.00004

6 6 0.0079 0.00051 0.000016 0.00002

7 7 0.0041 0.00027 0.000008 0.00001

7 r"" .50 r"" .52 r"" .50 r"" .52

For future reference, we give a survey of the principal stiff error constants

IQm2IJR. with R = {z: Re z:::; 0} for a number of PC pairs. In Table 4.3, p denotes the

189

order-of the corrector and the order of the iterated method is in all cases given by

p* = min {p, m}. From these results we conclude that the explicit predictor LSP leads

to slightly smaller principal error constants than the implicit predictor IEP, provided

that we count the application of IEP as an additional iteration. Furthermore, the

Lagrange-based methods show considerably smaller error constants. However, we

should bear in mind that the nonstiff error constants of the Radau-based methods

decrease much faster than those of the Lagrange-based methods because of th~ high

(nonstift) orders of the Radau correctors. Finally, note that the reduction factors are

very close to the IICll-values listed in Table 3.1.

Table 4.3. Values of the principal error constant for minimal-spectral-radius PD IRK

methods.

Method k p m=k m=k+I m=k+2 r

{LSP, Radau IIA} 2 3 0.025 0.0060 0.0015 0.25

{IEP, Radau IIA} 2 3 0.024 0.0059 0.0015 0.25

{LSP, Lagrange} 2 3 0.013 0.0023 0.0004 0.18

{IEP, Lagrange} 2 3 0.006 0.0011 0.0002 0.18

{LSP, Radau IIA} 3 5 0.036 0.0138 0.0052 0.40

{IEP, Radau IIA} 3 5 0.014 0.0053 0.0020 0.41

{LSP, Lagrange} 3 4 0.008 0.0034 0.0014 0.40

{IEP, Lagrange} 3 4 0.004 0.0018 0.0007 0.40

{ LSP, Radau IIA} 4 7 0.027 0.0153 0.0079 0.50

{IEP, Radau IIA} 4 7 0.017 0.0088 0.0044 0.50

{LSP, Lagrange} 4 5 0.022 0.0092 0.0037 0.40

{ IEP, Lagrange} 4 5 0.013 0.0054 0.0021 0.40

5. CONCLUDING REMARKS

In this paper, we have studied special characteristics, such as the rate uf

convergence, the (linear) stability, and the stiff error constants of PDIRK methods

based on Radau IIA and Lagrange correctors using various types of iteration

parameters and predictors. The minimal-spectral-radius methods turn out to be either

comparable or superior to fixed-number-of-iterations methods. Confining our

considerations to minimal-spectral-radius methods, the following conclusions can be

drawn from our analysis:

Rate of convergence: Lagrange correctors are superior to Radau corrector for k = 2

or k = 4. Fork= 3, these correctors are comparable.

190

Linear stability:

Order reduction:

Lagrange correctors are slightly superior to Radau

correctors.

The implicit predictors IEP and BDP are superior to

explicit predictors EXP and LSP.

Lagrange correctors are superior to Radau correctors (both

with respect to the stage order and the magnitude of the

error constants).

The explicit predictor LSP is slightly superior to the

implicit predictor IEP.

Nonstiff error constants: The two-stage Radau corrector is comparable with the two

stage Lagrange corrector. Radau correctors are by far

superior to Lagrange correctors for k > 2.

The predictors EXP and BDP are by far superior to the

predictors LSP and IEP.

By these conclusions, we are led to recommend PDIRK methods using an

{EXP, Radau} PC pair and the minimal-spectral-radius iteration strategy as the most

efficient in the class of PDIRK methods.

REFERENCES
[I] Burrage, K., Hundsdorfer, W.H. & Verwer, J.G. (1986): A study of B

convergence of Runge-Kutta methods, Computing 36, I 7-34.

[2] Butcher, J.C. (1964): Implicit Runge-Kutta processes, Math. Comp. 18, 50-64.

[3] Butcher, J.C. (1987): The numerical analysis of ordina,y differential equations,

Runge-Kutta and general linear methods, Wiley, New York.

[4] Dekker, K. & Verwer, J.G. (1984): Stability of Runge-Kutta methods for stiff

nonlinear differential equations, North-Holland, Amsterdam.

[5] Hairer, E., Nf)rsett, S.P. & Wanner, G. (1987): Solving ordinary differential

equations, I. Nonstijf problems, Springer Series in Comp. Math., Vol. 8,

Springer-Verlag, Berlin.

[6] Hairer, E. & Wanner, G. (1991): Solving ordinary differential equations, II.

Stiff and differential-algebraic problems, Springer Series in Comp. Math., Vol.

14, Springer-Verlag, Berlin.

[7] Houwen, P.J. van der & Sommeijer, B.P. (1991): Iterated Runge-Kutta

methods on parallel computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

[8] Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1992): Embedded

diagonally implicit Runge-Kutta algorithms on parallel computers, Math.

Comp. 58, 135-159.

191

[9] -Jackson, K.R. & N0rsett, S.P. (1990): The potential for parallelism in Runge

Kutta methods, Part I: RK formulas in standard form, Technical Report No.

239/90, Department of Computer Science, University of Toronto.

[JO] Jackson, K.R. & N0rsett, S.P.: The potential for parallelism in Runge-Kutta

methods, Part II: RK predictor-corrector formulas, in preparation.

[11] N0rsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report

Mathematics and Computation No.6/74, Depart. of Mathematics, University of

Trondheim.

[12] Shampine, L.F. (1980): Implementation of implicit formulas for the solution

of OD Es, SIAM J. Sci. Stat. Comput. 1, 103-118.

[13] Wolibrandt, A. (1977): A study of Rosenbrock processes with respect to order

conditions and stiff stability, Ph. D. Thesis, Chalmers University of

Technology, Goteborg.

192

Index

A page number followed by the letter f indicates that relevant information can also

be found on the pages directly following the mentioned page. Major references are in

boldface.

A-acceptable stability function, 11 lf
A-convergence, l 77f

A-stability, 79f, 112, 145

A(a)-stability, 7, 80,181,182

A(a,/3,n-stability, 17, 84, 90

Adams-Bashforth (-Moulton)

methods, 37, 58f

Adams-type method, 56f

ALLIANT FX/4, 9, 96, 119f

Amplification matrix, 17, 83, 180

Arbitrarily high order, 18, 39

BDF methods, 79, 90f

Block methods

A-stable, order 3, 17, 86

A-stable, order 4, 87f

A(a)-stable, order 5, 89f

Adams-type, 56f

block vector, 14, 49, 80f

general definition, 14, 49f, 81

multi-block methods, 54

order conditions, 55f, 82

Block Runge-Kutta methods, 48f

Butcher tableaux, 29, 49f, I 06, 131,

138, 159, 160

Chu-Hamilton method, 54

Clippinger-Dimsdale method, 53

Codes

DOPRI8, 33f

LSODE, 9, 120

PDIRK, 119

PIRK8, 37f, 41

PIRKIO, 37f, 41

PSODE, 9

RADAU5, 9

SIMPLE, 119

Computational complexity, 4, 10,

137f

Convergence

A- and L-convergence, l 77f

of diagonally implicit iteration,

135f, 176f

Corrector

for Block methods, 15, 51

for PDIRK methods, 5, 102, 115,

117, 141f, 171

for PIRK methods, 28

CPU-timings, 12, 96, 121, 123

Critical m-values, 144, 181

Curtis' method, 37

Dahlquist's barriers

first, 14, 16

second, 14, 16, 79, 93

Diagonal(ly)

implicit iteration, 4, I 02, 132f,

17lf

implicit Runge-Kutta methods

(DIRK methods), 3, lOOf, 130,

159, 160

see also Runge-Kutta methods

matrix D

in Block methods, 16, 81

constant entries, 7, 109f, 177

varying entries, 7, 115f

Directives, 41

DIRK methods

see Runge-Kutta methods

£-polynomial, 111

Effective (number of) stages, 5, 28,

138

Embedded formulas, 33, 119

Error constants, 134, 188f

Error control

in PDIRK code, 119

in PIRK code, 33

in PSODE code, 9

Error functions, l 84f

Error vectors, 55f, 82f

FORTRAN 77, 41

Gauss-Legendre methods

2-stage, 115, 117, 147

3-stage, 115, 117

4-stage, 37, 38

5-stage, 37, 38

General linear method, 52

Global error, I 13, 114, 182f

Hairer's method, 37

Hardware advancement,

Integro-differential equation, 79, 91f

Iserles-Nprsett method, 139, 159, 160

Iteration

functional, 27

diagonal-implicit, see Diagonal(ly)

Iteration function, l 77f

L-acceptable stability function, 111 f

L-convergence, l 77f

L-stability, l l 2f

L2-stability, 100, 101, 113

193

L(a)-stability, 117

Lagrange methods

3-stage, 145, l 79f

4-stage, 149, l 79f

5-stage, 151, l 79f

Lobatto IIIA methods

3-stage, 147

4-stage, 148

5-stage, 151

LU-decompositions, 4, 10, 13, 81,

138

Minimal number of processors, 10,

15, 26, 29,48, 69

Miranker-Liniger methods, 52

Multi-block methods, 54

Multistep predictors, 9, 30, 174

Newton-Cotes methods

3-stage, 146

4-stage, 148

5-stage, 150

Nonequidistant points, 15, 47, 81

Nprsett-Crouzeix-Alexander (SDIRK)

methods, 101, 139, 159

Order

barriers, 14, 16, 79, 93

see also Dahlquist's barriers

conditions

in Block methods, 82

in Block Runge-Kutta methods,

55

effective, 156, 157

of Block methods, 48

of PDIRK methods, 6, 103f, l 39f

of PIRK methods, 5, 28

reduction, 7, 113, 130

stage, 7, 113, 130, 133

step-point, 133

194

Parallelism

across the method, 1, 9

across the problem, 1, 10

across the time, 2

coarse grain, 2

massive, 10

Parasitic roots, 59, 63

Partitioning, 25

PC iteration

in Block methods, 14, 15, 51
in Runge-Kutta methods, 25, 99

PDIRK methods

A-stable, 112

A(a)-stable, 117

L-stable, 112, 113

L2-stable, 112, 113

L(a)-stable, 117

stability, 107f, 134, 141f

with constant D-matrix, 109f

with varying D-matrix, 115f

PIRK methods

code, 41

corrector, 28, 29

predictor, 30f, 35f

stability boundaries, 33

Predictor

for Block methods, 15, 51
for PDIRK methods, 4, 104f, 174

for PIRK methods, 30f, 35f

Prince-Dormand method, 37f

Quadrature formulas, 16, 91f

Radau IIA methods

2-stage, 115f, 147, 177, 178f

3-stage, 115f, 149, 178f

4-stage, 9, 115f, 119f, 152, l 78f

Runge-Kutta methods

general definition, 2

optimal, 5, 29

of (S)DIRK type, 3, 100f, 130,

159, 160

of SIRK type, 3, 130

stiffly accurate, 5, 104

'the', 37, 115

S-stability, 101

Self-starting, 14, 19, 81

Shampine-Watts method, 53

SIRK methods

see Runge-Kutta methods

Software, 41

see also Codes

Speedup factor, 12, 38, 96, 121, 124

Stability

see also A-, A(a)-, A(a,/3, Y)-, L-,

L2-, L(a)-, S-, Zero-stability

functions, 116f, 141f

of PDIRK methods, 108f, 134f,

141f

Stability boundaries

of Block methods, 65, 67

of PIRK methods, 33

Stability regions

of BDF methods, 18, 90, 94

of Block methods, 16, 18, 90

of PDIRK methods, 179f

Stiff error constants, 175, 188f

Superconvergence, 7, 134

Test problems

chemical reaction, 155

circuit analysis, 11

Euler's equation, 35, 38, 73

Fehlberg's problem, 37

Kaps' problem, 93, 114, 155

nonlinear equation, 59f

orbit equations, 38, 72

PDE (convection-diffusion), 155

van der Pol's equation, 123

Prothero-Robinson problems, 154

rigid body problem, 35f

Robertson kinetics, 120

singularly perturbed problem, 113

stability test problem, 94

strongly increasing solution, 70

Volterra integro-differential

equation, 95

Updating Jacobian matrices, 19

Watts-Shampine method, 16, 134

Waveform relaxation, 2

Zero-stability, 56, 65, 83f

195

CWITRACTS
~9~_;r.J. Epema. Surfaces with canonical hype171lane sections.

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in tenns of negligibility. 1984.

3 A.J. van der Schaft. System theoretic des~·riptions of phvsical
systems. 1984. ·

4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.

5 B. Hoogenboom. Intertwining functions on compact Lie
groups. 1984.

6 A.P.W. Bohm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.'
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984.

9 C.P.J. Koymans. Models of the lambda calculus. 1984.

10 C.G. van der Laan, N.M. Temme. Calculation of special
functions: the gamma function, the exponential integrals and
error-like Junctions. 1984.
11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984.

1~ \Y·~: Hundsdorfer. The numerical solution of nonlinear
~'({51.nlllal value problems: an analysis of one step methods.

13 D. Grune. On the design of ALEPH. 1985.

14 J.G.F. Thiemann. Analytic ~paces and dynamic proiram
ming: a measure theoretic approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infinite
primes. 1985.

16 R.~.P. Groothuizen. Mixed elliptic-hyperbolic partial dif
{e;:;~ial operators: a case-study in Fourier integral operators.

17 ~I.M.M. ten Eikelder. Symmetries for dyna1J1ical a,ul Hamil
tonian systems. 1985.
18 A.D.M. Kester. Some large deviation results in statistics.
1985.
19 T.M.V. Janssen. Foundations and applications of Montague
f~i:~nar, part 1: Philosophy, framework, computer science.

20 B.F. Schriever. Order dependence. 1986.

~~,~~~·!;:~. der Vecht. biequalities for stopped Brownian

22 J.C.S.P. van der Woude. Topological dynamix. 1986.

23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. I 986.

24 J.C.M. Baeten. Filters and ultra.filters over definable sub-
sets of admissible ordinals. 1986. ·

25 A.W.J. Kolen. Tree network and planar rectilinear location
theory. 1986.

~6 A.H_. Veen. The misconstrued semicolon: Reconciling
zmperallve languages and datajlow machines. 1986.

27 A.J.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. 1986.

28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to natural language. 1986. '

J!~!-'~lf9n~~~man. Almost invariant subspaces and high gain

30 A.G. de Kok. Production~inventory control models:
approximations and algorithms. 1987.
31 E.E.M. van Berkum. Optimal paired comparison designs
for.factorial experiments. 1987.

32 J.H.J. Einmahl. Multivariate empirical processes. 1987.
33 OJ. Vrieze. Stochastic games with finite state and action
spaces. 1987.

34 P.H.M. Kersten. Infinitesimal symmetries: a computational
approach. I 987.

~~8~.L. Eaton. Lectures on topics in probability inequalities.

36 A.H.P. V?O der ~urgh, R.M.M. Mattheij (eds.). Proceedings
of the first mternatwnal conference on industrial and applied
mathematics (IC/AM 87). 1987.
37 L. Stougie. Design and analysis of algorithms for stochastic
integer programming. 1987.

38 J.B.G. Frenk. On Banach altebras, renewal measures and

regenerative processes. 1987.
39 HJ.M. Peters, OJ. Vrieze (eds.). Surveys in game theory
and related topics. 1987.
40 J.L. Geluk, L. de Haan. Regular variation, extensions and
Tauberian theorems. 1987.

41 Sape J. Mullender (ed.). The Amoeba distributed operating
system: Selected papers 1984-1987. 1987.

42 P.R.J. Asveld, A. Nijholt (eds.). Essays on concepts, for
malisms, and tools. 1987.
43 H.L. Bodlacnder. Distributed computing: structure and
complexity. 1987.
44 A.W. van der Vaart. Statistical estimation in large parame
ter spaces. 1988.
45 S.A. van de Geer. Regression analysis and empirical
processes. 1988.

~~!·.pj g;~kreijse. Multi grid solution of the steady Euler equa-

47 J.B. Dijkstra. Analysis of means in some non-standard
situations. 1988.
48 F.C. Drost. Asymptotic.,· for generalized chi~square
goodness~of-fit tests. 1988.

49 F.W. Wubs. Numerical solution of the shallow-water equa
tions. 1988.

50 F. de Kerf. Asymptotic analysis of a class of perturbed
Korteweg-de Vries initial value problems. 1988.
51 P.J.M. van Laarhoven. Theoretical and computational
aspects of simulated annealing. 1988.

52 P.M. van Loon. Continuous decoupling transformations for
linear boundary value problems. 1988.
53 K.C.P. Machielsen. Numerical solution of optimal control
problems with state constraints by sequential quadratic pro
gramming in function space. 1988.
54 L.C.~.J. Willenborg. Computational aspects of survey data
processmg. 1988.
55 ~.J. van der Steen. A program generator for recognition,
parsmg and transduction with syntactic patterns. 1988.
56 J.C. Ebergen. Translating programs into delay*insensitive
circuits. 1989.
57 S.M. Verduyn Lune!. Exponential type calculus for linear
delay equations. 1989.

58 M.C.M. de Gunst. A random model for plant cell popula
tion growth. 1989.

59 D. va~ Dulst. Characterizations of Banach spaces not con
taining l . 1989.
60 H.E. de Swart. Vacillation and predictability properties of
low-order atmospheric spectral models. 1989.

61 P. de Jong. Central limit theorems for generalized multil~
inearfonns. 1989.

?~8~:J. de Jong. A specification system for statistical software.

63 B. Hanzon. Identifiability, recursl\Je identification and
spaces of linear dynamical systems, part!. 1989.

64 B. Hanzon. Identifiability, recursive identification and
spaces of linear dynamical systems, part l!. 1989.

1~s~.'M.M. de Weger. Algorithms for diophantine equations.

66 A. Jung. Cartesian closed categories of domains. 1989.

67 J.W. Polderman. Adaptive control & identification: Conflict
or conff-ux?. 1989.
68 H.J. Woerdeman. Matrix and operator extensions. 1989.

~ist~ifti~:~s~~s:onotonicity properties of infinitely divisible

70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-five
years of operations research in the Netherlands: Papers dedi
cated to Gijs de Leve. 1990.

71 P.J.C. Spreij. Counting process systems. Identification and
stochastic realization. 1990.

72 J.F. Kaashoek. Modeling one dimensional pattern formation
by anti-diffusion. 1990.

73 A.M.H. Gerards. Graphs and polyhedra. Binary spaces and
cutting planes. 1990.

74 ~- Koren. Multigrid and defect correction for the steady
Navier-Stokes equations. Application to aerodvnamics. 1991.

75 M.W.P. Savelsbergh. Computer aided routing. 1992.

76 O.E. Flippo. Stability, duality and decomposition in general
·mathematical programming. 1991.

77 A.J. van Es. Aspects of 1wnparametric density estimation.
1991.
78 G.A.P. Kindervater. Er:ercises in parallel combinatorial
computing. 1992.

79 J.J. Lodder. Towards a symmetrical theory of generalized
functions. 1991.
80 S.A. Smulders. Control of freeway traffic flow. 1993.
81 P.H.M. America. J.J.M.M. Rutten. A parallel object
oriented language: de.,;ign and semantic foundations. 1992.
82 F. Thuijsman. Optimality and equilibria in stochastic
games. 1992.
83 R.J. Kooman. Convergence properties of recurrence
sequences. 1992.
84 A.M. Cohen (ed.). Computaiional aspects of Lie group
representations and related topics. Proceedings of the 1990
Computational Algebra Seminar at CW/, Amsterdam. 1991.
85 V. de Valk. One-dependent processes. 1993.
86 J.A. Baars, J.A.M. de Groot. On topological and linear
equivalence of certain function spaces. 1992.

87 A.F. Monna. The way of mathematics and mathematicians.
1992.
88 E.D. de Goede. Numerical methods for the three
dimensional shallow water equations. 1993.
89 M. Zwaan. Moment problems in Hilbert space with applica
tions to magnetic resonance imaging. 1993.
90 C. Vuik. The solution of a one-dimensional Stefan problem.
1993.
91. E.R. Verheul. Multimedians in metric and normed spaces.
1993.
92. J.L.M. Maubach. Iterative methods for non-linear partial
differential equations. 1993.
93. A.W. Ambergen. Statistical unc~rtainties in posterior pro
babilities. 1993.
94. P.A. Zegcling. Moving-grid methods for rime-dependent
partial differential equq,tions. 1993.

95. M.J.C. van Pul. Statistical analysis of software reliability
models. 1993.
96. J.K. Scholma. A lie algebraic study of some integrable
systems associated with root s_vstems. 1993.
97. J.L. van den Berg. Sojourn times in feedback and proces
sor sharing queues. 1993.
98. A.J. Koning. Stochastic integrals and 1:oodness-of-fit tests.
1993.
99. B.P. Sommeijer. Parallelism in the numerical integration
of initial value problems. 1993.

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.

2 A.R. Bloemena. Sampling from a graph. I 964.
3 G. de Leve. Generalized Markovian decision processes, part
I: model and method. 1964.

4 G. de Leve. Generalized Markovian decision processes, part
I I: probabilistic background 1964.

5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
dfcision processes, applications. 1970.

6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.

8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
IO E.M. de jager. Applications of distributions in mathematical

physics. 1964.

11 A.B. Paalman-de Miranda. Topological semigroups. 1964.-

12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54.

14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.

15 R. Doornbos. Slippoge tests. 1966.

16 J.W. de Bakker. Formal definition 1,,programmi"f;
;a~ges with an application to the de mition of AL OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part I. 1968.

18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.

19 J. van der Slot. Some properties relateito compactness.
1968.

20 P.J. van der Houwen. Finite difference methods for solving
partial differential equa.tions. 1968.
21 E. Wattel. The compactness operator in set theory and
topology. 1968.

22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
port/. 1%8.

23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures m
numerical algebra, part 2.) 968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. PaCrl. Representations of the Lorentz group and projec
tive geometry. 1969.

26 European Meeting 1968. Selec1ed staristical papers, part I
1968.

27 European Meeting 1968. Selected statistical papers, part I I.
1968.

28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.

29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.

31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribUlion functions. 1970.
32 L. de Haan. On regular variation and its applicarion to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservarion of infinite divisibili1y under mix
ing and related topics. 1970.
34 I. Juhasz, A. Verbeek, N.S. K.roonenberg. Cardinal func
tions in topology. 1971.

35 M.H. van Emden. An ana(vsis of complexi~~'- 1971.
36 J. Grasman. On the birth of boundary layers. 1971.

37 J.W. de Bakker, G.A. Blaauw. A.J.W. Duijvestijn, E.W.
Dijkstra, PJ. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. K.ruseman Aretz. W.L van der Poel, J.P. Schaap
K.ruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informal/ea
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Ana(vsis of (s,S) inventory models. 1972.

41 A. Verbeck. Superextensions of topological spaces. 1972.
4_2 W. Vervaat. Success epochs in Bernoulli trials (with applirn
twns in number theory). f972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.

44 H. Bart. Meromorphic operator i•alued functions. 1973.
45 A.A. Balkema. Monorone transformations and limit laws.
1973.
46 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systemt, part I: ihe language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. K.ruseman Aretz. P.J.W. ten Hagen, H.L
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.

49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L Peck, C.H.A.
Koster, M. Smtzoff, C.H. Lindsey, LG.LT. Metrtens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.

51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.

54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974.
55 M. Hall, Jr .. J.H. van Lint (eds.). Combinatorics. part I:
theory of designs, finite geometry and coding theory. 1974.

56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combina10rial
geome11y. I 914.
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part J:
combinatorial group rheory. I 974.
58 w_. Alb~rs. Asymprotic expansions and the deficiency con
cept m stanstics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes
1975.

60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Biller (ed.). Foundations of computer science.
1975.

64 W.J. de Schipper. Symmemc closed categories. 1975.
~5 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1975.

66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of .tecond order. 1976.
69 J.K. Lenstra. Sequencing ~v enumerative methods. 1977.
70 W.P. de Roever. Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.

72 J.K.M. Jansen. Simple perirx!ic and non-periodi~ Lame
functions and their applications m the theory of comcal
waveguides. 1977.

73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977.
76 M. Rem. Associons and the closure stalement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge. A.CM. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.

80 P.W. Hemker. A numerical study ofstifltwo-poinl boundary
problems. 1977.
81 K.R. Apt. J.W. de Bakker (eds.). Foundaltons of computer
science II, part I. I 976.
82 K.R. Apt, J.W. de Bakker (eds.). Founda1tons of computer
science I I, part 2. 1976.
83 LS. van Benthem Jutting. Checking Landau's
"Grundlagen" in the AUTOMATH svstem 1979.
84 H.L.L. Busard. The translation of the elemenrs of Euclid
from the Arabic mto l.Atin ~Y Hermann of Carinthia (?), books
vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen. M. Veldhorst. Torrix I, a program
ming system for oeerations o~ vectors and matrices over arbi
trary fields and oJ vanable s1:e. 1978.
88 A. Schrijver. Marroids and linking system,;;. 1977.
89 J.W. de Roever. Complex Fourier transfomiarion and
analytic functiona/s with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Characterization of optimal strategies
In dynamic games. I 98 I.
91 J.M. Geysel. Transcendence infields of positive characteris
tic. 1979.

92 P.J. Weeda. Finite generalized Markov programming. 1979. n7~_-C. Tijms, J. Wessels (eds.). Markov decision theory.

94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.

95 K.M. van Hee. Bayesian control of Markov chains. I 978.
96 P.M.B. VitAnyi. Lindenmayer systems: structure, languages,
and growth functions. 1980.
97 A. Federgruen. Markovian con/rot problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boa,s
(eds.). Interfaces between computer science and operations
research. Jg78.

100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genoorschap, part
1. 1979.

IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap. part
2. 1979.

:~~8~. van Dulst. Reflexive and superrejlexive Banach spaces.

l03 K. van Harn. Classifying infinite{y divisible distributions
by functional equations. 197K
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979.
105 R. Helmers. Edgeworth expansions for linear combinatwns
of order statistics. 19"82.

~~9~. Schrijver (ed.). Packing anq covering in combinatorics.

l07 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
I08 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science / II, part 1. l 979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science I/ I, part 2. 1979.
I IO J.C. van Vliet. ALGOL 68 transput, part l: historical
re,•iew and discussion of the implementation model. 1979.
I I I J.C. van Vliet. ALGOL 68 transput, part 11: an implemen
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.
I 13 T.A.B. Snijders. Asymptotic optimality theory for testing

problems with restricted alternatives. 1979.
I 14 A.J.E.M. Janssen. Application of the Wigner distribution Jo
harmonic analysis of generalized stochas1ic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures 11,
part I. 1979.
I 16 P.C. Baayen, J. van Mill (eds.). Topological structures 11,
part 2. I 979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.

118 P. Groeneboom. Large deviations and asymptotic efficien
cies. 1980.
119 F.J. Peters. Sparse matrices and substructures, with a novel
implementation ojfinite element algorithms. 1980.

120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.

122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. I 980.

:~~l YuhAsz. Cardinal functions in topology - ten years later.

124 R.D. Gill. Censoring and stochastic integrals. I 980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro~
gramming. 1980.

127 J.W. Klop. Combinator;· reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.

129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. ILP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correcrness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function ofa graph. 1980.
133 C.A.J. Klaassen. Statistical performance of locatwn esti•
mators. 1981.
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna
tional conference on ALGOl 68. 1981.
135 JAG. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part 1. 198 I.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part 11. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochasllc dynamic programming, succes
sive approximations and nearly optimal strategies for Markov
deciswn processes and Markov games. 1981.
140 J.H. van Geldrop. A mathemotical theory of pure r~~1~nge economies without the no-critical-pmnt hypothesis.

141 G.E. Welters. Abel-Jacobi isogenies for certain ~ypes of
Fano threefold.s. I 981.
142 H.R. Bennell, D.J. Lutzer (eds.). Topologv and order
structures, part I. 1981.
143 J.M. Schumacher. Dvnamic feedback ,n finite- and
infinire-dimenswnal linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems usmg
interval arithmetic; formulation and analysis of an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. I 98 I.
146 C.V.M. van der Mee. Semigroup andfactorizauon
methods in transport theory. 1981.

:;;2~.H. Tigelaar. Identification and mformative sample size.

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, proceedings of a ~ymposium
in honour of A.C. Zaanen. 1982.

150 M. Veldhorst. An ana{ysis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982.

:i~2~.F. van der Hoeven. Projections of lawless sequences.

153 J.P.C Blanc. Application of the theory of boundary value
problems m the ana?Ysis of a queueing model with paired ser
vices. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part 1. I 982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational
methods in number theory, part 11. I 982.
156 P.M.G. Apers. Query processing and data a/location in
distributed database systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed system..,, part l. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplet·tic group.
an algebraic approach. 1983.
162 J.J. Dik. Tests/or preference. 1983.

I 63 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.

164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C. T. van der Hoeven. On point processes. 1983.

16~ H.B.M .. Jonkers. Absrract~on, .specification and implemen~aJtt techmques, with an apphcalton to garbage co/lecuon.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topologv and order
structures, part 2. 1983.

