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Preface

Algorithms for the numerical integration of ordinary differential equations
(ODEs) have been studied for many years, if not for centuries. Although the most
popular methods of today, i.e., the linear multistep methods and the Runge-Kutta
methods, originate from the last century, the great break-through in their
development was initiated by the introduction of the electronic computer in the
1950s. Since then, many efficient methods have been constructed and analyzed. This
research has resulted in a couple of robust and reliable codes for the automatic
integration of ODEs. Approximately at the time that questions arose like ‘Is There
Anything Left To Do 7’ [Gear, SIAM Review 23, 1981], the appearance of the
vector and parallel computers was a second impulse for the development of
numerical methods. Initially, the field of numerical linear algebra was (and still is)
(re)considered to exploit the facilities offered by the new architectures. Gradually,
also researchers in the ODE-field got interested in these machines since ‘almost
anything in nature is described by differential equations’. The well established
algorithms were re-examined.in order to take advantage of these ‘supercomputers’.

This research is certainly indispensable, since many problems in the technical
sciences — such as real time applications, computational fluid dynamics, and all
kinds of partial differential equations, in general — are still waiting for a treatment
that is sufficiently efficient to cope with the demands.

At CWI, the study of parallel methods for ODEs started in the fall of 1988;
some of the resulting papers are collected in this monograph. It consists of six
papers (chapters), preceded by an introduction. All papers have appeared in scientific
journals and are reprinted here with granted permission of the publishers.

The first two papers deal with parallel numerical methods for nonstiff ODEs and
are joined into Part I. These papers are:

1. Parallel iteration of high-order Runge-Kutta methods with stepsize control,
P.J. van der Houwen and B.P. Sommeijer,
published in: J. Comput. Appl. Math. 29 (1990), 111-127.

2. Block Runge-Kutta methods on parallel computers,
P.J. van der Houwen and B.P. Sommeijer,
published in: Z. Angew. Math. Mech. 72 (1) (1992), 3-18.

The topic of Part II, containing the remaining four papers, is the construction and
analysis of algorithms for the efficient parallel integration of stiff ODEs. Its
contents reads:
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3. A-stable parallel block methods for ordindry and integro-differential equations,

B.P. Sommeijer, W. Couzy and P.J. van der Houwen,
published in: Appl. Numer. Math. 9 (1992), 267-281.

4. Embedded diagonally implicit Runge-Kutta algorithms on parallel computers,
P.J. van der Houwen, B.P. Sommeijer and W. Couzy,
published in: Math. Comp. 58 (1992), 135-159.

5. Iterated Runge-Kutta methods on parallel computers,
P.J. van der Houwen and B.P. Sommeijer,
published in: SIAM J. Sci. Stat. Comput. 12 (1991), 1000-1028.

6. Analysis of parallel diagonally implicit iteration of Runge-Kutta methods,
P.J. van der Houwen and B.P. Sommeijer,
published in: Appl. Numer. Math. 11 (1993), 169-188.

The introductory chapter has been written with the aim to acquaint the reader with
the concepts discussed in the papers. It has the intention to provide an entrance for
the unspecialized reader. It discusses in less technical terms the ideas underlying the
technical papers and comprises an example in which a problem from circuit analysis
is integrated on a parallel computer by means of an automatic code based on one of
the methods described in Chapter VI. Its performance is compared with the best
sequential codes currently available.
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Introduction

1. MOTIVATION AND GENERAL SCOPE

Due to the never-ending demand for more speed in scientific computation, the
available computerpower of new architectures has tremendously increased during the
last decades. This is mainly obtained by new hardware design and by a prodigious
progress in micro-electronics. However, this hardware advancement is not sufficient
to meet the requirements as they occur in large-scale problems. The main problem in
effectively exploiting this huge potential of computerpower is the fact that there is
very little software available for these machines. In order to be efficient, this
software should be based on algorithms that are well tuned to the new architectures.

Since many numerical algorithms were designed for the traditional sequential
computers, the existing methods are not necessarily the best. This is particularly true
in the field of numerical methods for ordinary differential equations. Therefore, it is
highly desirable to (re)consider these algorithms and, eventually, replace them with
more suitable candidates.

Herewith, we arrive at the major aim of this monograph: the construction and
analysis of new algorithms, specifically designed for a wide class of new
architectures, thus making an attempt to decrease the arrears of software with respect
to hardware.

We will concentrate on numerical methods for the initial value problem (IVP) for
the ordinary differential equation (ODE), written in the autonomous form

(1.1) y'(t)=f(y(t)), 0<t<T, yeRN, f:RN RN

Although parallel computers are available now for quite a few years, it is remarkable
that the construction of parallel methods for (1.1) received only marginal attention
and in fact is still in its infancy. A possible explanation may be that the integration
of an IVP by a step-by-step process is sequentially in nature and thus offers little
scope to exploit parallelism.

Nevertheless, there are some avenues: at first, there is the rather obvious way to
distribute the various components of the system of ODEs amongst the available
processors. This is especially effective in explicit methods, since they frequently
need the evaluation of the right-hand side function f for a given vector y, so that the
components of f can be evaluated independently of one another. Following the
terminology of Gear [13], this is called parallelism across the problem. A more
interesting approach, called parallelism across the method, is to employ the
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parallelism inherently available within the method. Concurrent evaluations of the
entire function f for various values of its argument and the simultaneous solution of
various (nonlinear) systems of equations are examples of parallelism across the
method. Remark that this form of parallelism is also effective in case of a scalar
ODE (i.e., N=1 in (1.1)), whereas parallelism across the problem aims at large N-
values. Also notice that both approaches can be combined because they are more or
less ‘orthogonal’. Still another approach, which could be termed parallelism across
the time, is followed by Bellen et al. [2]. Contrary to the step-by-step idea, they
perform a number of steps simultaneously, thus calculating numerical
approximations in many points on the f-axis in parallel. In fact, these methods
belong to the class of waveform relaxation methods. Experiments have shown (cf.
[2]) that a significant speedup can be obtained by this approach provided that the
number of steps is (very) large. In this monograph we will confine ourselves to
parallelism across the method.

Unfortunately, many existing algorithms that perform well on a sequential
computer can take hardly profit from a parallel configuration. This feature
necessitates us to construct new methods, specifically designed for parallel execution.
In doing so, it was in Amany cases unavoidable to introduce some redundancy in the
total volume of computational arithmetic. Hence, compared with a good sequential
solver, it is overambitious to expect a speedup in the solution time with a factor s,
if s processors are available.

In many of the methods considered in this monograph, a small number (typically
in the range from 2 to 6) of concurrent subtasks of considerable computational
complexity can be distinguished. Consequently, (i) these methods are aiming at so-
called ‘coarse-grain’ parallelism and (ii) communication and synchronization overhead
will be small compared with CPU time. In the following sections we will explain
several approaches leading to parallel integration methods.

2. PARALLEL RUNGE-KUTTA METHODS
The general Runge-Kutta (RK) method to proceed the numerical solution of (1.1)
from t, over a step £ is given by

s
(2.1a) Yn+l =Yn+h 3 bi f(Yy),

i=1

s
(2.1b) Yi=y,+h ‘Zlaij fYj), i=1,..,s.
v j=
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Here,.y,=y(ty), ajj, b; are the coefficients defining the RK method and s is called the
number of stages. The quantities Y;, the stage values, can be considered as
intermediate approximations to the solution y. An RK method is said to be explicit
if a;j=0, j2i. Otherwise, it is called an implicit RK (IRK) method. For the
algorithms described in this Introduction, our starting point will always be an IRK
method.

A nice feature of IRK methods is that a high order of accuracy can be combined
with excellent stability properties [6]. Well-known examples of such IRKs are the
Gauss-Legendre methods (order 2s and A-stable) and the Radau ITA methods (order
2s—1 and L-stable). A serious disadvantage however, is the high cost of solving the
algebraic equations defining the stage values Y;. Since the Y; are coupled in general,
this is a system of dimension s-N, thus involving O((s-N)3) arithmetic operations.
This is the main reason that IRK methods have not received great popularity to serve
as the basis for efficient, production oriented software. In the literature, several
remedies have been proposed to reduce the amount of linear algebra per step.
Examples of these are the Diagonally Implicit RK (DIRK) methods [23,9, 1, 8] and
the Singly Implicit RK (SIRK) methods [3, 5]. However, both approaches have their
own disadvantages (cf. e.g. [15]). Another possibility to realize the excellent
prospects that IRK methods offer, is the use of parallel processors.

Motivated by our starting point that parallelism across the method should also be
effective for scalar ODEs, we will assume throughout that (1.1) is a scalar equation.
This has the notational advantage that we can avoid tensor products in our
formulation. However, the extension to systems of ODEs, and therefore to
nonautonomous equations, is straightforward.

In describing the parallel methods, it will be convenient to use a compact
notation for the RK method (2.1). Introducing A=(a;j), b=(b;), Y=(Y;) and
e=(1,...,1)T, all of dimension s, a succinct notation of the RK method reads

(222)  yn41=yn+hbTf(Y),

(22b) Y=y,e+hAfY),

where f(v):=(f(v})), for a given vector v=(v)).

The main problem in the application of an IRK is the solution of (2.2b) for the
stage vector Y; once this vector has been obtained, (2.2a) is straightforward. A direct
treatment to solve (2.2b) (i.e., applying some form of modified Newton iteration)
offers little scope to exploit parallelism, except for the linear algebra part, but this
aspect is not discussed here. To solve ¥ from (2.2b), we propose the iteration
process
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(23a) YUV -hDAYV)=y,e+h[A-DIAY0-V), j=1,..m.

Here, D is a diagonal matrix. This is crucial, since now, given an iterate Y(j“l), each
individual component Y;(/) of the unknown iterate ¥() has to be solved from an
implicit relation of the form

23b) YD -hd;f(v;0)-z;=0, i=1,....s,

where Z; is the ith component of the right-hand side vector in (2.3a) and d; is the ith
diagonal entry of the matrix D. Clearly, all 2; depend on YU-1), but can be computed
straightforwardly (even in parallel). The bulk of the computational effort involves
the solution of the s equations for the components Y;(/), i=1,...,s. However, given
the Zj, the equations (2.3b) are uncoupled and can be solved in parallel. Hence,
assuming that we have s processors available, each iteration in (2.3a) requires
effectively the solution of only one implicit relation of the form (2.3b). This is
especially advantageous in case of (large) systems of ODEs, because then each
iteration in (2.3a) requires effectively the solution of a system of dimension N, the
ODE dimension. As a consequence, the total iteration process has the effect that the
solution of one system of dimension s-N has been transformed into the solution of a
sequence of m systems, all of dimension N. Moreover, since D is the same in all
iterations, the (parallel) LU-decompositions of the matrices I — hd; df/dy can be
restricted to the first iteration. Summing up, the total computational complexity of
the iteration process is O(N 34mN?), whereas a direct treatment requires
0(s3N3+Ms2N2), with M the number of (modified) Newton iterations required.
Since typical s-values range from 2 to 6 and because the required number of
iterations m is quite modest (see the Chapters IV, V and VI), we now arrive at a
manageable level of arithmetic. Notice that this approach is quite similar to that of a
DIRK method, where also only one LU-decomposition of a matrix of dimension N
is required per step.

To start the iteration (2.3a), we need the initial approximation ¥(9). One of the
possibilities to choose this vector is given by

23c) YO _pBAYO)=y,e+h Cfiy,e)

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit
parallelism (in the same way as described for (2.3a)); C is an arbitrary full matrix. In
the sequel, the initial approximation ¥(9) will be referred to as the predictor.

If m iterations have been performed with (2.3a), then the new approximation at
t,+1 is defined by (cf. (2.2a))



(42).  yn41 =yn +hBTAY(M).

Once an underlying IRK has been selected (henceforth called the corrector), the
freedom left in the iteration process (2.3) consists of the matrices B, C and D, and
the number of iterations m.

With respect to the matrix D, we have considered several possibilities: first of
all, there is the simplest choice, which sets D equal to the zero-matrix. Methods of
this type are analyzed in Chapter 1. Notice that the choice D=0 leads to an explicit
iteration process and, consequently, the resulting scheme is only suitable for nonstiff
equations. This approach has received relatively much attention in the literature (see
[24,21, 18,4, 19]). Choosing the ‘trivial’ predictor ¥(O)=y,, e, the order behaviour of
the resulting algorithm can be formulated as (see also [18, 19, 20])

Theorem 2.1. The method {(2.3a) with D=0, (2.3c) with B=C=0, (2.4a)} is of order
min{p*, m+1}, where p* is the order of the corrector (2.2). [1

Notice that this method is itself an explicit RK methods with s-m+1 stages.
However, on a parallel machine, the effective number of stages equals only m+1
(provided that s processors are available). This means that if the number of iterations
m < p*-1, then we obtain an explicit RK method where the number of effective
stages equals the order. This is an optimal result [18] and compares favourably with
the situation for classical (uniprocessor) explicit RK methods, where the number of
stages increases faster than linearly if we want a high order.

Next we consider the case of stiff problems, leading us to implicit methods, i.e.,
to D # O. Before specifying particular choices of D, we first want to discuss an aspect
of the corrector which is relevant with respect to stiffness. In integrating stiff ODEs,
a favourable property of the method is that it is ‘stiffly accurate’. This notion has
been introduced by Prothero and Robinson [25] and means that the RK method
satisfies bT=e TA, with e the sth unitvector. Hence, bT equals the last row of A, or
equivalently, the last component of the stage vector Y is an approximation to the
solution at the new steppoint #,.41. Therefore, in case of a stiffly accurate corrector,
(2.4a) will be replaced by

(24b)  yp41 =e T Y(M),
Now, we return to the discussion of the matrix D; we distinguish two cases:

(i) D is such that after a prescribed number of iterations the resulting method has
good stability properties. This approach is discussed in Chapter IV.
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(ii) Another option is to solve the corrector and to choose D in such a way that we
obtain fast convergence in the iteration process (2.3a). This strategy is the subject of
the Chapters V and V1.

In the following two subsections these cases will be briefly discussed;
henceforth, the above Parallel Diagonally-Iterated RK methods will be denoted by
PDIRK methods.

2.1. Diagonal iteration with a prescribed number of iterations

In Chapter IV, we will consider methods for which the number of iterations m is
fixed. As we shall see, this number is dictated by the orders of the corrector and of
the predictor. This strategy is motivated by the following theorem:

Theorem 2.2. Let p* be the order of the underlying corrector (2.2). Then the order p
of the resulting PDIRK method {(2.3), (2.4a), (2.4b)} is given by

min {p*, m+r} for all matrices B, C and D,
min {p*, m+1+r} if (C+B)e = Ae,
min {p*, m+2+r} if, in addition, BAe =A2e,

where r takes the value 1 if y,+1 is defined by (2.4a) (i.e., the nonstiffly accurate
case) and r=0 if y, ;1 is defined by (2.4b) (the stiffly accurate case).

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK
method has the same property. ]

Based on this theorem, we stop iterating as soon as the order has reached the
order of the corrector, since a continuation of the iteration process would not increase
the order of the PDIRK method (see also [4]). '

With respect to the choice of the predictor, we restrict our considerations to the
case C=0. For the matrix B we remark that B=0O or B=D are obvious choices.
Although B and D may be different diagonal matrices, the choice B=D has the
computational advantage that the LU-decompositions of I — d; h df/dy, which are
needed during the iteration of (2.3a), can also be used in solving (2.3c) for y(0),

The diagonal matrix D is still free and can be used to give the resulting PDIRK
method optimal stability characteristics. In Chapter IV we distinguish two
approaches: matrices D with constant and with varying diagonal entries. In the first
case, i.e., D is of the form 4/, it is possible to perform a rather thorough stability
analysis. It turns out that unconditionally stable PDIRK methods can be constructed.
A few of these methods are listed in Table 2.1. The relevant d-values can be found in
Chapter IV.



Table 2.1. Unconditionally stable PDIRK methods with D=d"I

corrector matrices B and D attainable order p  # effective stages  stability
Gauss B=0,D=dl p<4,p=6 p-1 A-stable
Gauss B=D=dl ps6,p=8 p L-stable
Radau TA B=0,D=dl p<6,p=8 p L-stable
Radau ITA B=D=dl p<8p=10 p+l L-stable

If we allow the matrix D to have nonconstant entries, then it is possible to save one
iteration without reducing the order, simply by setting B=D=diag(Ae) (cf. Theorem
2.2). Some of the resulting PDIRK methods turn out to be only A(e)-stable,
however with o close to 90°. In Table 2.2, we collect a few methods with good
stability properties.

Table 2.2. PDIRK methods with a nonconstant D-matrix

corrector attainable orderp  #effective stages stability
Gauss/Radau ITA p<S5S p-1 strongly A-stable
Gauss/Radau ITIA p=67 p-1 A(a)-stable, o > 83°
Radau ITA p=3,5717 p L(a)-stable, o > 89°

2.2. Diagonal iteration until convergence

PDIRK methods with a fixed number of iterations, as considered in the previous
subsection, are in fact special DIRK methods. It is well known [10] that DIRK
methods possess a so-called stage order equal to 1 which, in general, drastically
reduces the accuracy. As a matter of fact, in many stiff problems the actually
observed order equals the stage order (or, sometimes the stage order+1). As a
consequence of this so-called order-reduction phenomenon, the relevance of methods
with a high algebraic (i.e., classical) order and a low stage order is questionable.
Therefore, apart from the ‘fixed-m-strategy’ we also consider the approach where the
corrector is iterated until convergence. This implies that we can rely on all the
characteristics of the corrector, like stability and accuracy behaviour and, in
particular, the stage order. For example, s-stage IRK methods of Gauss and Radau
type both have stage order s. In addition, they have a very high algebraic order
(superconvergence) but, as observed above, this property seems to be of minor
importance in many stiff problems. Therefore, in the Chapters V and VI, we also
consider (A-stable) Newton-Cotes and Lagrange type IRKs; in these (collocation)
methods the superconvergence is exchanged for an increase by one of the stage order.
This is obtained by adding one explicit stage to the s implicit stages. The time
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needed for this extra explicit stage is quite negligible compared with the time
involved in solving the implicit stages. Thus, we arrive at correctors with algebraic
order = stage order = s+1, which are suitable for parallel iteration on an s-processor
machine.

Having decided to solve the corrector, we can now consider (2.3a) as an iteration
process, where ‘iteration’ has the classical meaning. This leads us automatically to a
criterion for choosing the matrix D: this matrix should be such that we have fast
convergence in (2.3a).

It is easy to show that the iteration error ¥ — ¥(J), in first approximation,
satisfies the recursion

(25a) Y -Y0)=2()[Y-yU-1)], j=1,...,m, z:=hA,

where the iteration matrix Z is defined by

(2.5b)  Z(z) :=zD[I-zD]"[D-1A -1].

Here, A denotes an approximation to the derivative gf/dy and should be understood to
run through the spectrum of the Jacobian matrix in case of systems of ODEs. The
convergence behaviour of (2.3a) is completely determined by the iteration matrix Z
and we have the matrix D at our disposal to obtain fast convergence.

The main difficulty in choosing D is that Z depends on z, i.e., on the problem.
Therefore, we cannot expect to find a uniformly ‘best’ D-matrix. Since we are
aiming at the integration of stiff equations, we consider the influence of Z on the
eigenvectors of gf/dy corresponding to eigenvalues of large modulus. For Izl — e, Z
behaves as /— D~ 1A. Thus a strong damping of these eigenvectors leads us to the
minimization of the spectral radius of I-D1A. Observe, that the ‘nonstiff’
eigenvectors (corresponding to small values of Izl) are already damped since Z
behaves as z[A — D] for IzI - 0. With this approach we obtain fast convergence.
However, we do not claim that this choice of D is the best possible. For example, a
more sophisticated strategy might be the minimization of (some norm of) Z(z) over
the whole, or the ‘stiff part’ of the left halfplane.

Another possibility could be to minimize the principal stiff error constants in the
resulting PDIRK method; this option is studied in Chapter VI. Several other options
to choose D are discussed in Chapter V and many of these have been used in
numerical tests, but it turns out that the behaviour of the strategy based on the
minimization of the spectral radius p of /—D~1A could not be improved.

Based on this approach, we have constructed methods for s =2, 3 and 4. Only for
s=2 it is possible to determine D analytically such that p(/—D~!A) = 0. For the
larger values of s, the D-matrices have to be calculated numerically. The p-values
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increase with s and are (for the several correctors) in the range (0.004, 0.01) if s=3
and in the range (0.02, 0.1) for s=4.

2.3. A numerical example

To obtain insight in the actual performance of these parallel Runge-Kutta
methods, we have tested a parallel implementation of a PDIRK method based on the
‘minimal-spectral-radius-strategy’. For the corrector, we selected the 4-stage Radau
ITA method. Since this IRK is of collocation type, the collocation polynomial
passing through the stage values is easily computed in each step. The predictor y(©®
is obtained by extrapolating the collocation polynomial calculated in the preceding
step. Since this prediction is rather accurate, it is to be expected that this will result
in fewer iterations compared with the ‘trivial’ predictor YO0=y, e. We equipped this
method with a provisional strategy for error control and stepsize selection (details
concerning the implementation strategy can be found in [27]). The resulting code is
termed PSODE.

We have implemented PSODE on the ALLIANT FX/4 computer (four parallel
processors and shared memory) and applied it to several test problems. The goal of
these tests is twofold: (i) we want to investigate to what extent the theoretical
parallelization can be realized in practice; in other words, how close we can approach
the ideal speedup factor 4 on this four-processor machine and (ii) we want to compare
the performance of the code PSODE with that of a good sequential solver. To that
purpose we select the recent (sequential) code RADAUS of Hairer & Wanner [15].
This choice is motivated by the observation that it solves a Radau IIA method (viz.,
the 3-point Sth-order one); this starting point is quite similar to that of PSODE,
although the approach to obtain the Radau-solution is completely different.
Furthermore, we included in our tests the code LSODE of Hindmarsh [16]. This
BDF-based code has formulas up to order 5 available, from which only those of first
and second order are A-stable. Hence, LSODE is less robust as a general stiff solver,
but, on the other hand, it is generally accepted as a good sequential solver and enjoys
considerable usage over a long period.

In comparing the parallel code PSODE with the two sequential codes, we do not
take into account effects originating from a possible ‘parallelization over the loops’.
By this we mean that a long loop is cut into s smaller parts which are then assigned
to the s processors. In Section 1, this effect is termed ‘parallelism across the
problem’ and can in fact be used by any ODE solver. Here we merely want to test
intrinsic parallelism (called ‘parallelism across the method’). In order to exclude the
effects of ‘parallelism across the problem’, LSODE and RADAUS are run on a
single processor. In fact, the amount of intrinsic parallelism offered by LSODE and
RADAUS is very modest (see also the remark at the end of this section).
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Of course, if one is interested in ‘parallelism across the problem’, then the
sequential codes could be implemented on an s-processor machine. However, in that
case a fair comparison would require assigning 4s processors to PSODE, since in
each of the 4 concurrent subtasks of PSODE, the ‘parallelism across the problem’
can equally well be exploited (cf. Section 1, where we have mentioned that both
parallelization techniques are ‘orthogonal’).

Summarizing, we may say that PSODE needs 4 times the number of processors
given to a sequential code, simply because it possesses a 4-fold amount of intrinsic
parallelism. The large number of processors utilized by PSODE reflects the current
tendency in parallel computing, since modern architectures — and certainly those
entering the market in the coming years — have an ‘almost unlimited’ number of
processors (massive parallelism).

Another aspect which is of utmost importance for the performance of a stiff code,
is the amount of linear algebra per step, which in turn strongly depends on the
dimension of the ODE. Prior to the specification of our test problem, we will briefly
discuss the characteristics of the various codes with respect to this aspect:

A common feature of the three codes is that they need from time to time an LU-
decomposition of the matrix involved in their respective iteration processes to solve
the nonlinear relations. Since the factorization of a general N-dimensional matrix
requires approximately 2N3/3 arithmetic operations, this will dominate the total
costs of the integration for large-scale problems. Here we may think of complicated
problems from circuit analysis or semi-discretized (higher-dimensional) partial
differential equations. In such applications, systems of ODEs with several thousands
of equations are quite usual. In this connection we remark that both LSODE and
PSODE deal with matrices of dimension N. Hence, it is to be expected that their
mutual comparison is only marginally influenced if N increases and all other aspects
are left unchanged.

Matters are different for the code RADAUS, since it has to deal with matrices of
dimension 3N. By exploiting the special structures in these matrices, Hairer and
Wanner are able to reduce the total work of the LU-decomposition to 10N3/3
operations [15], thus gaining a factor 5 compared with a direct treatment, which
would have required 2(3N)3/3 operations. However, this number 10N3/3 compares
unfavourably with the number 2N3/3 (associated with LSODE and PSODE), and
causes a serious drawback for RADAUS when applied to large-scale problems.

To get a first indication of the performances of the codes, we have applied them
to a small test problem originating from circuit analysis. It was first described by
Horneber [17] and extensively discussed in [14, p.112] and [11]. This (stiff) system
describes a ring modulator, which mixes a low frequency and a high frequency signal.
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The modulated signal is then used as input for an ampliﬁer. The resulting system of
15 ODE:s is defined by

yi'=C-1[ys =05 y;0+ 0.5y +y14— yi/R]
¥2'=C1 [yg =05 y15+0.5 y13 + y15 = y2/R]
y3' = Cs 10— 8(z)) + 8(z4)]

ya'=Cs [y + 8(20) — 8(z3)]

ys'=Cs7' iz + 8(21) - 8(z3)]

¥6 = Cs [=y13 - 8(z0) + 8(z4)]

y7'= Cpl [=y/R; + g(z1) + 8(22) — 8(23) — 8(24))
ys'=—Lp1y

Yo'=—Lp 1y

yio'=Lg 1 [0.5y; = y3 = 17.3 0]
yi'=Ls [ 05y +y,— 173 y;]
yi2'=Lg 1 [0.5y, = ys = 17.3 ;5]

y13' = Lg [- 0.5y, + y6 = 17.3 y13]

yig =Lt [=y1 + e1(5) — 863 yy4]

yis' =L [~ y, — 636.3 yys],

where
Z1:=y3—ys—yr—ext), Zp:=—Ya+Ye—y1— extb),
23 = Y4+ Y5+ Y7+ ex(t), 24 :=—Yy3— Y6+ Y7 + (),

and the function g, which models the characteristics of the diodes, is defined by
g(2) :=40.67286402:1079 [ exp (17.7493332-2) — 1 ].

The signals e; and e, are defined by
e() :=0.5sin (2103 1), ex(r) := 2 sin (2104 7).

The technical parameters have been given the values C=16-10"9, R=25000,
Cp=10‘8, R;=50, Lp=4.45, L;=0.0005 and L=0.002, resulting in a heavily oscil-
lating solution. Not yet fixed is the value of the capacity Cjy. In our test, we give it
the value 10-9, which seems technically meaningful. It is reported [14] that small
Cs-values cause serious difficulties. In the limit, i.e. on setting C;=0, we end up
with a differential-algebraic system. The integration interval in our test is [0, 1073];
the initial values are given by y;(0)=0, i=1,...,15. For several values of TOL (the
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local error bound) the results obtained by the codes RADAUS, LSODE and PSODE
are collected in Table 2.3. Here, T and T4 denote the CPU time (in seconds) when
the program is run on 1 and 4 processors, respectively. Recall, that we restrict the
timings for the sequential codes to 7. The accuracy is measured by means of A,
which is defined by writing the maximum norm of the global (relative) error in the
endpoint in the form 10~4. Furthermore, Nsteps denotes the number of (successful)
integration steps and m stands for the average number of (effective) f-evaluations per

step.
Table 2.3. Performance of the codes RADAUS5, LSODE and
PSODE for the circuit problem
Method TOL Nsteps m A Ty T4
RADAUS5 10-2 1275 9.0 1.1 33.1
103 22717 7.6 2.6 48.6
104 3922 6.7 3.8 72.4
10-5 6761 6.1 4.9 110.9
LSODE 103 7054 1.5 1.4 33.6
104 9772 1.4 2.8 44.1
10°5 13266 1.4 2.9 57.7
1076 17887 1.3 3.8 74.7
1077 23310 1.3 4.5 93.1
10-8 30253 1.2 4.9 114.3
PSODE 102 1185 7.3 1.4 80.0 21.4
1073 1561 7.3 3.1 104.5 27.8
104 2272 7.1 4.1 146.4 39.6
10-5 3437 6.9 5.2 212.1 57.7

These results give rise to the following conclusions:

(i) with respect to our first goal, we see that the speedup factor for PSODE
(obviously defined by T(/T4) is approximately 3.7, which is pretty close to the
‘ideal’ factor 4 on this machine. This factor rapidly converges to 4 if the dimension
of the problem increases.

(ii) concerning our second goal, we observe a remarkable similarity between
RADAUS and PSODE: both codes need approximately 7 f-evaluations per step;
moreover, to produce the same accuracy, the required number of steps is of the same
order of magnitude (for the more stringent values of TOL, the difference in the
number of steps increases, which is probably due to the higher order of PSODE).
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There is however a striking difference between the two Radau-based codes and
LSODE,; this code is very cheap per step, but needs much more integration steps to
produce the same accuracy. For example, to obtain a relative accuracy of about 5
digits, PSODE needs = 3400 steps, RADAUS twice as many, whereas for LSODE
this number is 9 times as large. Taking into account the computational effort per
step of the various codes, the comparison with PSODE yields a double amount of
time both for LSODE and RADAUS. Approximately the same ratios are observed in
the low-accuracy range (say, A=3).

As mentioned before, this example is only a model problem describing a small
(part of an) electrical circuit, and is still far away from a real-life application.
However, even for this small system of ODEs, the performance of (this provisional
version of) PSODE is already superior by a factor 2 to that of the (well-established)
codes LSODE and RADAUS.

Summarizing, we can say that
- the PSODE-approach is much more promising to serve as the basis for an
efficient, ‘all-purpose’ stiff solver than the LSODE-approach. This is due to the
improved mathematical qualities, viz. the high order in combination with A-
stability.

- In comparison with RADAUS, PSODE has the advantage that in large-scale
problems, the (dominating) LU-factorizations require a factor 5 less
computational effort. In this connection we remark that a few preliminary
experiments with a problem of dimension 75 reveal that the overall gain of
PSODE is already more than a factor 4.

For really large-scale problems we expect that the speedup factor will be in the
range 6 - 8, depending on the required accuracy. This number is composed of the
asymptotic factor 5 coming from the algebra part and the remaining factor
1.2 - 1.6 originating from the higher order of PSODE.

Remark: it should be mentioned that RADAUS offers a possibility to exploit a
small amount of intrinsic parallelism. In using two processors, the total number
of arithmetic operations to perform the LU-decomposition can be reduced from
10N3/3 to 8N3/3. We refrained from adapting the code RADAUS in order to
exploit this feature.
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3. PARALLEL BLOCK METHODS

Another technique to construct parallel methods for ODEs is based on block
methods [26,12,28,29]. For the construction of this type of methods, it is
convenient to introduce the so-called block vector

3.1 Yn+1 = (yn,cl’ Yn,cys s )’n,cs)Tv cs=1,

where y, ., denotes an approximation to the exact solution y(7) at t =ty + c;h.
Similar to the preceding section, the methods will be presented for a scalar ODE;
however, also for block methods, the extension to systems of ODEs is
straightforward. Again using the convention that f{v) = (f(Vj)), a (one-step) block
method is defined by

(3.2) Ypi1 =AY, +h Bf(Yy) +h CHYpit), n=012 ..,

where A, B and C are matrices of dimension s. Notice that (3.2) is a direct
generalization of the (one-step) linear multistep (LM) method

(3.2) Yn+l=ayn+h b flyn) + hc flyn+1),

with a, b and c scalar variables.

Initially, the block methods were introduced to circumvent the restrictions that
apply to LM methods: the limitation on the order because of zero-stability (known
as the ‘first Dahlquist barrier’) and the order-restriction with respect to A-stability
(which is usually called ‘Dahlquist's second barrier’). As we shall see, both
restrictions can be avoided by changing from the LM methods to the block methods.
Moreover, parallelism can be achieved in a very natural way. ,

However, it should be observed that — in contrast to the Runge-Kutta type of
methods considered in Section 2 — the block methods are not self-starting. Clearly,
the recursion (3.2) needs the vector Y(), which requires as many starting values as
there are distinct values c;.

In the next two subsections, we will consider parallel block methods for nonstiff
and stiff ODEs, respectively.

3.1. Parallel block methods for nonstiff eqﬁations

Within the class of LM methods, nonstiff ODEs are usually solved by the so-
called predictor-corrector (PC) approach. We will consider a similar technique in the
case of block methods. To be more specific, let us call the (implicit) block method
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(3.2).the corrector. Solving implicit relations is avoided by defining an explicit
predictor of the form

(3.3) YP4 = EY, +h FAY,),

with E and F matrices of dimension s. Substitution of ¥ P*¢ into the right-hand
side of (3.2) yields the block predictor-corrector (BPC) method

(34) Y41 =AY, +hBfiY,) +h CAEY, +h FfY,)).

In accordance with the terminology used in the LM case, this application is called
the PECE mode. Of course, one can continue this process by substituting the result
of (3.4) into the right-hand side of (3.2), etc.; in this way we arrive at the P(EC)ME
mode.

The parallelism in this type of methods is obvious: the s components in f(Y})
(and in f{¥ P4)) can be computed concurrently, so that (3.4) requires effectively
only two right-hand side evaluations per step (provided of course, that sufficiently
many processors are available).

In the literature, several parallel BPC methods have been proposed. We mention
the work of Miranker and Liniger [22], of Shampine and Watts (cf. Worland [30])
and the multistep block methods of Chu and Hamilton [7]. In Chapter II of this
monograph, methods of the form (3.4) are analyzed and new BPC methods are
derived for the cases s=2,3 and 4. Contrary to the methods given in the literature,
the BPC methods in Chapter II exploit the feature that the components of the block
vector represent approximations to the exact solution at not necessarily equidistant
points.

Using this property, it is possible to obtain (zero-)stable BPC methods with as
high an order as 2s. This is obtained by first constructing a predictor of the form
(3.3) of order 2s—1. Notice that, similar to the LM situation, this predictor itself
does not necessarily be zero-stable.

A next question might be: ‘how many processors are needed for the parallel
implementation of these BPC methods ?” For the schemes presented in Chapter II,
we have the uniform answer: ‘two’. This is achieved by requiring the first s —2 rows
of the matrices B, C and F to contain zero elements. This implies that we do not
need to assign a processor to the first s—2 components of the block vector, since
their values and derivatives can be adopted from the preceding step. However,
assuming that there is no restriction on the number of available processors, this
property is not of a great practical value.



16

Summarizing: for s=2,3 and 4, it is possible to construct BPC methods with a
nonempty stability region including the origin, which
(1) are of order 2s,
(i1)) need (at most) s starting values,
(iil) require, on a two-processor machine, effectively two right-hand side
evaluations per step.

We remark that the methods proposed by Donelson and Hansen [12] share the
properties (i) and (ii). However, their stability regions are not available and
moreover, if they are implemented on a parallel machine, they would need s
processors. In this connection, we remark that Donelson and Hansen did not have in
mind to apply their methods in a parallel context; they merely wanted to circumvent
the first Dahlquist barrier.

Finally, we remark that the methods proposed by Chu and Hamilton [7] share the
aforementioned properties (ii) and (iii), but have an order not exceeding four. On the
other hand, the stability regions of their BPC methods are larger than those of the
methods derived in Chapter II.

3.2. Parallel block methods for stiff equations
For the numerical integration of stiff ODEs, a method should preferably

(i) be A-stable, and

(i1) have a high order of accuracy.
However, it is well known that these are conflicting demands for linear multistep
methods (this is the so-called ‘second Dahlquist barrier’). One possible way to
achieve the goals (i) and (ii) is to consider implicit block methods. In the literature,
several methods of this type have been proposed. For example, in [28] Watts and
Shampine construct block methods based upon quadrature formulas of the Newton-
Cotes type and show that these schemes are A-stable for orders <8 (see also [29]).
These methods fit into the class (3.2), however, they have a full C-matrix. As a
consequence, the s components of the block vector have to be solved
simultaneously, a situation similar to the one encountered in implicit Runge-Kutta
methods (observe the resemblance between (3.2) and (2.2b)). Hence, these implicit
block methods are not suitable for parallel execution.

In Chapter III we discuss what can be achieved within the class of parallel
implicit block (PIB) methods, subject to the aforementioned requirements with
respect to order and stability. To that end, the matrix C in (3.2) is replaced by a
diagonal matrix D:

(32"  Ypu1 =AY, +hBfiY,) +hDfi¥pn1) n=0,1,2,...
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As a result of this ‘simplification’, we sacrifice a lot of free parameters originally
occurring in the matrix C but, on the other hand, we now arrive at a scheme in
which the various components of ¥, are uncoupled as far as implicitness is
concerned (cf. (2.3b) for a similar situation in the Runge-Kutta context). Hence,
having s processors available, scheme (3.2") requires effectively the solution of one
implicit relation, the dimension of which equals that of the system of ODEs. This
means that the computational effort per step is quite similar to that of the celebrated
backward differentiation formulas (BDFs).

The néxt step is, of course, to raise the order of the PIB method beyond 2. To
that end we perform a numerical search in the space of free parameters. For example,
for s=2 we have the A-stable PIB method

147 161 7
01 220 220 o ©
35 Ypi1 = Y +h Yp)+h Yne1),
(3.5) n+1 (0 1) n 50 23 fi¥n) 0 13 f(¥n+1)
T 33 66 6

with ¢;=21/10 and c,=1. In this PIB method, the second component of ¥,+1 (i.e.,
Yn+1) yields a third-order approximation to the exact solution.

Continuation of the numerical search process for s=3, yields several fourth-order
A-stable parallel block methods. For the same value of s it is even possible to raise
the order to five, however, then we loose the property of A-stability. It turns out that
an extremely small lobe in the nonpositive halfplane does not belong to the stability
region of these methods. An adequate characterization of the stability region of these
methods (and of the BDFs, as well) is obtained by extending the well-known concept
of A(0)-stability:

Definition 3.1.: A block method of the form (3.2) is said to be A(a, B, P)-stable if:
(i) its region of stability contains the infinite wedge {z | — @ < T — arg(z) < o},

with 0 < @ < 7/2, and all points in the nonpositive halfplane with Izl > 3,

(ii)) yis the maximum value of the spectral radius of the amplification matrix
[I-zC1 1A + zB] for all z with Re(z) <0 lying in the instability region. []

Using this definition, the stability characteristics of the methods derived in Chapter
IIT and of the BDFs are summarized in Table 3.1 (notice that BDFs are straight-
forwardly fitted in the formulation (3.2)). In this table, the vector ¢ contains the
abscissae defining the block vector, i.e., ¢ := (¢, ¢3, ..., ¢5)T, and an ‘*’ means that
the corresponding value is not relevant.



18
- Table 3.1. Values of « (in degrees), B and ¥ for the BDFs and some PIB methods

Method e’ Order o B y
BDF3 (-1,0, 1) 3 88.4° 1.94 1.046
PIB3 (21/10, 1) 3 90° 0 *
BDF4 (-2,-1,0, 1) 4 73.2° 4.72 1.191
PIB4 5, 13/4, 1) 4 90° 0 *
PB4y (3,5, 1) 4 90° 0 .

BDF5 (-3,-2,-1,0, 1) 5 51.8° 9.94 1.379
PIB5y (-2.747, -2.122, 1) 5 > 89.98° 0.16 1.0000026
PIB5p1 (1.6153,4.7871, 1) 5 > 89.98° 0.30 1.000069

4. CONCLUSIONS AND FUTURE RESEARCH

We have shown that iterating a fully implicit RK method leads in a natural way
to parallel integration methods. This approach can be used both for stiff and nonstiff
ODEs. Although it is conceptually not necessary to start with a fully implicit RK
method, such IRKs are an excellent choice to serve as a method, underlying the
iteration process.

In the nonstiff case, the Gauss methods are recommended because of their highly
accurate behaviour. Moreover, the optimal order of these IRKs with respect to the
number of stages, minimizes the number of required processors. Observe however,
that this aspect is only of marginal interest. Following this approach, it is possible
to construct explicit RK methods for which the (effective) number of stages equals
the order. This property holds for an arbitrarily high order and is principally
impossible within the class of sequential explicit RK methods.

For stiff equations, a stiffly accurate IRK is a good choice; in particular, Radau
ITA methods are suitable candidates. In the stiff case, the parallel, diagonally-implicit
iteration leads to methods with nice features, both from a computational and a
mathematical point of view. The property that only one matrix of the ODE
dimension has to be factorized per step, reduces the amount of linear algebra to an
acceptable level. We have seen that performing a fixed number of iterations results in
L-stable methods with a high algebraic order, but with a (at least, formally) low
stage order. Alternatively, iterating until convergence yields a high algebraic order as
well as a high stage order. Moreover, already after a modest number of iterations,
these methods are unconditionally stable .
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A different approach to obtain parallel ODE solvers is provided by the class of
block methods. Contrary to the RK-based methods, they are, in general, not self-
starting. :

The results for nonstiff equations seems to be even more promising than for the
RK-based methods: using s starting values, it is possible to obtain order 2s (thus far,
only for s <4) with 2 f-evaluations. Moreover, the number of processors can be
restricted to 2, but again, this is not a significant advantage. However, the stability
regions of the resulting block methods are much smaller than those of the RK-based
methods and, moreover, we expect the block methods to have much larger error
constants.

In the stiff case, A-stable block methods of orders < 4 can be constructed as well
as an ‘almost A-stable’ method of order 5. This result is less favourable than for the
RK-based methods, where very high orders can be combined with unconditional
stability. On the other hand, the block methods require only one implicit relation to
be solved per step (and per processor), whereas the RK-based methods have to solve a
sequence of implicit relations.

In the future, we plan to perform an extensive comparison between the parallel
RK methods and the parallel block methods on the basis of a broad collection of test
problems.

Apart from that, the code PSODE (cf. Section 2.3) is still in a research phase and
needs a better tuning of its strategy parameters, since the performance of any code
critically depends on such a tuning. In particular, these parameters have to be chosen
in such a way that the number of LU-factorizations is minimized. Furthermore, we
plan to extent the code with the facility to treat ODEs of the form M y'(t) =f(y(1)),
where M is a matrix which may be singular, resulting in a differential-algebraic
system.

To exploit the abundance of the available processors, one can reserve a number of
processors — apart from those performing the integration method — which
continuously update the Jacobian matrix and calculate LU-factorizations,
corresponding to various stepsizes that are realistic for the present part of the
integration interval (this would of course require an adaptation of the stepsize
selection strategy).

Another, more theoretical, aspect that needs attention in the future, is the
construction of A-stable block methods of orders exceeding 4. This might be
obtained by exploiting more free parameters in the matrices A, B and D (see (3.2")).
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1. INTRODUCTION
Implicit Runge-Kutta (RK) methods for solving the initial value problem for the
system of ordinary differential equations (ODEs)

an Ao g

are seldom used in predictor-corrector (PC) iteration, because RK correctors are much
more expensive than linear multistep (LM) correctors. This is due to the increased
number of coupled nonlinear algebraic equations. Although RK correctors of order p
usually possess smaller error constants than LM correctors of comparable order, an
accuracy-computational effort graph will be in favour of PC methods based on LM
methods. However, matters are different when parallel computers are used. It is well
known that PC iteration, being a form of functional iteration (or Jacobi iteration),
allows a high degree of parallelism, because, by partitioning the system of equations
into subsystems of equal computational complexity, we can assign to each processor
such a subsystem and perform the iteration steps in parallel. The problem is of
course the partitioning in subsystems of equal computational complexity. In the case
of iterating s-stage RK methods, there is a natural partitioning based on the s
subsystems corresponding to the s stages of the RK method. In thisbway, the
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computation time involved in applying RK correctors can be reduced a great deal on
parallel computers. We shall call these ‘parallel, iterated” RK methods PIRK
methods. The idea of iterating an implicit RK method to exploit parallelism goes
back to Jackson and Ngrsett [10] and also in [9], [11], and [12] such methods have
been debated. Before continuing our discussion on PC iteration, we emphasize that
the choice of an implicit RK corrector has nothing to do with the excellent stability
characteristics such methods usually possess, since this property is not preserved
when the PC approach is followed. Their choice is solely determined by the fact that
a high order of accuracy is easily obtained and, particularly, because of the potential
parallelism exhibited by these methods. Hence, in the sequel we will assume that the
class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands.

If the predictor is itself an (explicit) RK method, then the PIRK method also
belongs to the class of explicit RK methods. In Iserles and Ngrsett [9] it was proved
that explicit RK methods of order p necessarily require at least p effective stages, and
in Ngrsett and Simonsen [12] the question was posed whether it is always possible
to find explicit RK methods of order p using not more than p effective stages,
assuming that sufficiently many processors are available (an explicit RK method is
said to have p effective stages if the computation time required for evaluating all
right-hand sides in one step is p times the computation time required by one right-
hand side evaluation). This question motivated us to look in the class of PIRK
methods for explicit RK methods, the order of which equals the number of effective
stages; such methods will be called optimal RK methods. We will show that PIRK
methods generated by any (not necessarily implicit) s-stage RK corrector of order p
do not require more than p effective stages provided that s processors are available.
The next question is the least number of processors needed to implement an optimal
explicit RK method. For example, in [12] a Sth-order, 6-stage RK method of Butcher
which can be implemented on two processors requiring only 5 effective stages. is
mentioned. This method is clearly an example of an optimal ‘minimal processor’
RK method. So far, we did not succeed in answering the question of least number of
necessary processors. Therefore, we have looked for RK methods of which the
number of stages is small with respect to their order. It is well known that, within
the class of RK methods, those of Gauss-Legendre type require least number of
stages to obtain a given order; to be more precise, s-stage Gauss-Legendre methods
have order p=2s. Hence, for an ‘optimal’ implementation of these methods, we need
only s processors. Furthermore, the stability regions can directly be derived from
known results for truncated Taylor series, they allow an extremely simple
implementation, and we obtain automatically a sequence of embedded methods of
varying order which can be used for stepsize control. PIRK codes of order 8 and 10
using automatic stepsize control are compared with the code DOPRI8 of Hairer,
Ngrsett and Wanner [5] which is a variable step implementation of the 8th-order
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explicit RK formula with 7th-order embedded formula of Prince and Dormand [13].
All codes use the same stepsize strategy. By a number of experiments, the
performance of the PIRK codes is demonstrated. Both codes are considerably cheaper
than DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a
FORTRAN implementation of the PIRK methods. This implementation has the
feature that the user can introduce arbitrary RK correctors by means of their Butcher
arrays. '

Instead of using (one-step explicit) RK predictors one may use LM predictors
reducing the number of effective stages. First results based on LM predictors are
reported by Lie [11], using a fourth-order, two-stage Gauss-Legendre corrector and a
third-order Hermite extrapolation predictor. With this PC pair, one iteration suffices
to obtain a fourth-order PIRK scheme. We shall briefly discuss the use of multistep
predictors, in particular for RK correctors of general (nonquadrature) type. Various
predictor methods are compared showing that the efficiency of PIRK methods using
multistep predictors is higher, but the price to be paid for the increased efficiency is
more storage and a less easy implementation.

Finally, the methods proposed in the following sections will be described for
scalar differential equations of the form (1.1). Their application, however, is
straightforwardly extended to systems of ODEs.

2. OPTIMAL RK METHODS
Our starting point is the s-stage, implicit, one-step RK method of the form

(212)  yp41 =yn+ hbTrpey,

where ry,41 is implicitly defined by

(2.1b) Tntl = f(yne + hAry1).

Here, A is the integration step, e is a column vector of dimension s with unit entries,
b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the
convention that for any given vector v=(v}), f(v) denotes the vector with entries f{v;).
By iterating the equation for r,41 m times by simple functional iteration and using
the mth iterate as an approximation to 7,41, we obtain the method

(2.2) rl) =flype + hAFG=1)), j=1,..,m; yp41 =yn + hbTr(M),

Since the s components of the vectors (/) can be computed in parallel, provided that
s processors are available, the computational time needed for one iteration of (2.2) is
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equivalent to the time required to evaluate one right-hand side function on a
sequential computer. Hence, the total costs of (2.2) per integration step comprise the
calculation of the initial approximation r(0 plus m right-hand side evaluations. In
the following, we always assume that we have s processors at our disposal and,
speaking about ‘computational effort per step’, we mean the computational time
required per step if s processors are available. If the computational effort per step
equals the computation time for performing M right-hand side evaluations, then we
shall say that the method requires M effective stages. Here, and in the sequel, we
have assumed that the costs per step are predominated by the time needed to evaluate
the derivative function. If this happens to be not the case for a particular ODE, then
the overhead, which is sequential in essence, will take a relative large portion of the
total costs per step and, consequently, the parallel evaluation of the s (cheap) right-
hand side functions will not result in an overall speedup with a factor s.

We shall call the method providing r(©0) the predictor method and (2.1) the
corrector method and the resulting parallel, iterated RK method will be briefly called
PIRK method. It should be observed that in the present case of RK correctors, the
predictor and corrector methods do not directly generate approximations to yp+1 as is
the case in PC methods based on LM methods. However, at any stage of the
iteration process we can compute the current approximation to y,,| by means of the
formula

(2.3) yi) =y, + BbTFU), j=0,1, ...
Let (9 be an approximation to r,41 satisfying the condition
Q4 rO=r . +0m),

resulting in y(o) =yp+1 + O( h9+1). Predictor methods satisfying (2.4) will be called
predictor methods of order q.

Suppose that A and bT are such that the corrector (2.1) is of order p and let the
predictor method be of order g— 1. Then, it has been proved in Jackson and Ngrsett
[10] that the (global) order of y,;1 as defined by (2.2) equals p*:= min{p, g+m}. By
using the simple predictor method r(0):=f(y,)e =r,.1+0(h), ie., g=1, we
immediately have as a corollary of this result the next theorem.

Theorem 2.1. Let {A, 5T} define an s-stage RK method (which need not be implicit)
of order p. Then the PIRK method defined by

rO  =fiy,e,
(2.5) ) =fiy,e + hAFG-Y), j=1,..., m,
Yn+1 =yn+hbTr(m)
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represents an (m+1)s-stage explicit RK method of order p*:=min{p, m+1} requiring

m+1 effective stages. []

Method (2.5) can also be represented by its Butcher array. Defining the s-
dimensional vector § and the s-by-s matrix O both with zero entries, we obtain

0
A O

0O A O

o . . . 0O A O
or . . . 0T 0T BT

We remark that this Butcher tableau represents a direct translation of (2.5),
resulting in (m+1)s stages. However, written in this form, the O-matrix in the first
row could be replaced by a scalar zero, since the prediction () has equal components
and, consequently, can be produced by one processor. This would lead to an explicit
RK method possessing ms+1 stages.

Setting m=p—1, it follows from this theorem that the question posed by Negrsett
and Simonsen [12] can be answered in the affirmative: any pth-order RK method
{A, b} generates an explicit RK method of the form (2.5) of order p requiring only p
effective stages. Such explicit RK methods will be called optimal RK methods. Of
course, within the class (2.5) the number of processors needed for the
implementation is dictated by the number of stages s of the generating corrector. For
example, the 10th-order, 17-stage RK method of Hairer [4] generates an explicit RK
method of the form (2.5) which is also of order 10 if we set m=9 and which is
optimal in the above sense. However, the implementation of this method requires 17
processors. This suggests the problem of constructing RK methods of order p which
are optimal and require least number of processors. The Sth-order, 6-stage RK
method of Butcher mentioned in [12] is an example of such a method: it can be
implemented on two processors requiring only 5 effective stages. From the theory of
RK methods based on high-order quadrature methods, such as Gauss-Legendre and
Radau methods [5], we can immediately deduce a lower bound for the number of
processors needed to implement optimal RK methods of the form (2.5):

Theorem 2.2. RK methods of the form (2.5) are optimal if m <p—1. For even p the
least number of required processors equals p/2 and the generating RK corrector is the
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pth-order Gauss-Legendre method; for odd p the least number of processors is (p+1)/2
and the generating RK corrector is the pth-order Radau method. []

Thus, optimal RK methods requiring less than | (p+1)/2 | processors cannot be
found among the methods of the form (2.5). Since (2.5) allows an extremely simple
implementation and provides automatically a sequence of embedded formulas which
can be used for error estimation (see Section 5) and order variation, we have not
looked for methods requiring less than | (p+1)/2 | processors.

In order to illustrate the significance of Theorem 2.2, we make a comparison
with explicit RK methods devised for one-processor computers (sequential methods).
In Table 2.1 the minimal number of stages sy, (and therefore the minimal number
of right-hand side evaluations) needed to generate such methods of order p are listed.
In addition, we list the number of stages S for which these RK methods have
actually been constructed (cf. [5, Section 11.6]), and the numbers of effective stages
Seff and processors Spr needed by the optimal RK methods of Theorem 2.2.

Table 2.1. Comparison of sequential RK methods and optimal RK methods

of the form (2.5)

p <4 5 6 7 8 9 10
Sequential Smin p 6 7 9 11 212 213
RK S p 6 7 9 11 - 17
Optimal Seff p 7 8 10
RK Spr - 3 3 4 4 5 5

Finally, we remark that if the RK corrector is based on quadrature (or collocation)
methods, then the initial approximation r(0) can be interpreted as the derivative
f(Y(O)), where Y(O) is an approximation to y(t,e+hAe). Suppose that the
components of Y(0) are computed (in parallel) by using an explicit (g—1)-stage RK
method of order g—1 with stepsizes hAe. Then the resulting PIRK method is still an
explicit RK method itself and it is optimal if m < p—q corrections are performed.

3. MULTISTEP PREDICTOR METHODS

Evidently, we can save computing time by using multistep predictor methods.
As observed above, such predictors should provide approximations to the derivative
values f{y(t,e+hAe)) in the case where the generating RK method {A, 5T} is derived
from quadrature formulas. Any set of linear multistep methods providing
approximations to the components of y(#,,e+hAe) serves this purpose.
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In this paper we briefly discuss the case of arbitrary RK correctors where we
cannot give an easy interpretation for the initial-approximation (. In such cases, it
is possible to construct multistep predictor methods by performing the auxiliary
vector recursion

B.12)  fur1 :=flyne + RS(E)ER*1f),

where E denotes the forward shift operator, i.e., E f;, = f;,+1. The predictor method is
now simply defined by

B.1b)  rO=f,, .

Here 8({) is a polynomial of degree k—1 whose coefficients are matrices of
appropriate dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a
k-step PC method requiring m+1 right-hand side evaluations per step. For m=0, this
method fits into the class of methods investigated in [7].

By Taylor expansion of f1 (or, Y(0)), conditions for the satisfaction of
rn+1 —fn+1=0(h9) can be derived in terms of A and 8({). For instance we have the
following theorem.

Theorem 3.1. Let the corrector defined by {A, 5T} be of order p, then the k-step PC
method

fas1 =fiyne + WYE)ETRHIL),
32 O =f.1 0 =fy,e +hAFG-Y), =1, .., m,
Yn+l =)Ynt hbTr(m)

is of order p*:=min{p, g+m}, where

g=2 if Ae—8(1)e =0.
g=3 if, in addition, AZe —82(1)e + k8(1)e — &'(1)e = 0,
>A2 — +82(1)e + kd(1)e — &'(1)e = 0. []

Example 3.1. The most simple example is the case where k=1 and &(£)=0, so that
r(0)=f( yn)e and g=1. This case has been already considered in the preceding section.
Next we choose k=1 and 8({)=A. It is readily verified that the order conditions for the
predictor are satisfied for g=2. The algorithm (3.2) assumes the one-step form

Jn+1 =vf()’n‘* + hAf_n)’
33) O =g D =fype +harG-Y), j=1,.m,
Yn+l =yn+ hbTr(M).
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If the RK corrector has order p, then by performing m=p—2 corrections this method
is also of order p and requires p—1 right-hand side evaluations per step. Formally, the
method no longer belongs to the class of one-step RK methods. However, in actual
applications, the method is self-starting if we take fo=f(yo)e.

Finally, we choose k=2 and 8({)=2A{~A which satisfy the order conditions for
g=3. The algorithm (3.2) assumes the two-step form

Jne1 =flyne + 2hAfn — hAfu-1), .
G4 O =fg, 0 =fype +hArUTD), j=1, . m,
Yn+l =Yyn+ hbTr(M)..

If the RK corrector has order p, then by performing m=p-3 corrections this method
is also of order p and requires p—2 right-hand side evaluations per step. []

4. STABILITY
We consider linear stability with respect to the test equation

4.1 (1) =My(1).

It is easily verified that application of (2.5) yields the recursion

4.2) Yn+1 = [1 +2bTe + 722bTAe + 23bTA2e + ... + 7"+ 1pTAMe]y,,
where we have written z=Ah. The stability polynomial is given by

4.3) Pims1(@) =1 + zbTe + 22bTAe + 23bTA2e + ... + 7+ 1pTAMe.

In the particular case where we choose m=p—1, p being the order of the corrector, we
obtain a stability polynomial of degree p. According to Theorem 2.1, this PIRK
method is of order p so that the stability polynomial is consistent of order p, i.e., it
approximates exp(z) with pth-order accuracy. Thus, we have proved the next
theorem.

Theorem 4.1. Let the corrector be of order p. If m=p—1, then the method (2.5)
becomes an (explicit) RK method with the stability polynomial

1 1 1
Pp@)=1+z+5322 +572% + .+ 520 ]

Using a result on truncated Taylor series (cf. [6, p.236]), we have the next
corollary of this theorem.
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Corollary 4.1. The method of Theorem 4.1 is stable in the interval [~ Brea},0], Where
44)  Preal = 0368 (p+1) [19(p + D]VE@+1) ]

Defining [~i Bimag, i Bimag] to be the interval on the imaginary axis where the

method of Theorem 4.1 is stable, we list in Table 4.1 the values of Prea (and its

approximation provided by (4.4)) and of Bimag for orders p=1,2,...,10.

Table 4.1. Brea) and Pimag for the method of Theorem 4.1

p=1 p=2 p=3‘ p=4 p=5 p=6 p=T7 p=8 p=9 p=10

True value of Breal 2.00 2.00 2.52 2.78 3.22 3.55 3.95 4.31 4.70 5.07
Value according to (4.4)1.83 2.17 2.53 2.90 3.28 3.65 4.03 4.41 4.78 5.16
True value ofﬁimag 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00

5. STEPSIZE CONTROL

In this section we will describe a simple strategy to implement the afore-
mentioned methods with a variable stepsize in order to control the local truncation
error. This strategy is the same as the one employed by Hairer, Ngrsett and Wanner
[5, p.167] in their code DOPRIS, in which they have implemented the 13-stage, 8th-
order explicit RK method with the embedded method of order 7 of Prince and
Dormand.

This strategy is based on the observation that when iterating the equation (2.1b)
for r,,41 we obtain approximations ) of successively increasing order, i.e.,

rl) = rpy1 = O(RMin{p, g+j}), j=1, 2,..., m.

Thus, apart from our final approximation yy41:=y,+hbTr("), we can easily construct
a reference solution (cf. (2.3))

(5.1 y*) =y, + hbTr(k),

for some k < m. Since r(k) has already been computed, this does not require additional
right-hand side evaluations. This reference solution y(*¥) can be considered as an
‘embedded’ solution [5].

Now, as an estimate for the local error € in the step from ¢, to t,,1=t,+h, we
take

(5.2) g = lly,e1 — ¥y,
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for some norm |Ill. Usually, one uses reference solutions y( k) such that the orders of
Yn+1 and y(k) differ by 1. Here we follow this approach and choose k=m—1.

First, we will discuss the case where we restrict our stepsize strategy to methods
in which the number of iterations m is fixed in each step and is given by m=p—q.
Hence, r(™) —r,,1 and r(m~1) —r, | behave as O(h”) and O(h"~1), respectively, and,
consequently,

€ =lyp1 =y Vll = lly, + h6TH™) — y, — RBTHM=1)|| = O(hP).

Then € is compared with some prescribed tolerance TOL and the step is accepted if
€ <TOL, and rejected otherwise. Furthermore, the value of € allows us to make an
estimate for the asymptotically optimal stepsize:

P [ToL
s 9
which will be taken in the next step (or to recompute the current step in case of
rejection). However, to give the code some robustness, we actually implemented (cf.

[5, p.167])

4
(53)  hpew=h min{6, max(5, 0.9 q/%}}.

The constants 6 and 13—in this expression serve to prevent an abrupt change in the
stepsize and the safety factor 0.9 is added to increase the probability that the next
step will be accepted.

Apart from the variable stepsize implementation mentioned above, the PIRK
methods allow for a simple extension of the control strategy by which also the order
of the method may vary from step to step. This can be achieved by abandoning the
approach of a fixed number of iterations. Referring to the description above, we can
construct a sequence of reference solutions, i.e., after each iteration the ‘embedded’
solution

y(]) =y, + hbTr(])

is computed. Then, we use the difference of two successive reference solutions as an
estimate for the local error, i.e.,

eli) = Il y0) = y =1 |,

If, during the iteration, the tolerance criterion e(/) <TOL is satisfied for some
J=jo <m, then there is no need to proceed with the iteration process and we accept
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y(Jo) as the numerical solution y, . This suggests to try the next step with the
value of m defined by m=j(. Since

glo) = o(h?*),  p* = min{p+1,q +jo},

a prediction for the next stepsize can be made according to (5.3), where p is replaced
by p* and € by €lo) .

It may happen that the tolerance condition is not satisfied for j=jg<m. In such
cases, the values of m and h predicted in the preceding step were not reliable. One
may then decide to reject the current value of m and to continue the iteration process.
This is particularly recommendable if the value of the current p* is less than p. If the
continuation of the iteration process does not help to satisfy the tolerance condition
€l) < TOL for j <M, where M is some prescribed upper bound for the number of
iterations per step, then the (relatively costly) alternative is rejection of the current
value of A, to redefine & according to (5.3) using the most recent information on the
error, and to perform the present step once again. In this way a variable order variable
stepsize RK method can be constructed.

6. NUMERICAL EXPERIMENTS

We present a few examples illustrating the efficiency of PIRK methods on
parallel computers. The calculations are performed using 14-digits arithmetic. The
methods tested were all applied in P(EC)™E mode.

6.1. Comparison of various predictor methods

In order to examine the effect of various predictor methods on the efficiency of
the PIRK algorithm we performed a few tests by integrating the equation of motion
for a rigid body without external forces (cf. [8, Problem B5]):

y1' =y2y3, y1(0) =0,
(6.1) ¥2'=-y1y3, y2(0)=1, 0<t<T.
y3'=-.5ly1y2, y3(0) =1,

In these tests we used the 10th-order Gauss-Legendre corrector and the following
predictor methods:

PredictorI:  r(0) =f{y,)e (cf. (2.5)) q
Predictor II: (O defined by the standard 4th-order RK g
Predictor I: ~ F(O) = f{y,e + hAf,) (cf. (3.3)) q
Predictor IV:  F(O) = f(y,e + 2hAf, — hAf,_1) (cf. (3.4)) g

1 p=min{m+1,10}
5  p=min{m+5,10}
2 p=min{m+2,10}
3 p=min{m+3,10}

I

1
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In the Tables 6.1a and 6.1b we have listed the values D\N, where D denotes the
number of correct decimal digits at the endpoint, i.e., we write the maximum norm
of the error at =T in the form 1072, and where N denotes the total number of
effective right-hand side evaluations performed during the integration process.
Furthermore, we indicated the effective order pefs, that is the order of accuracy which
is shown numerically.

Table 6.1a. Values D\V for problem (6.1) with 7=20.

Predictor I Predictor IT
1 m=8 m=9 m=10 m=4 m=5 m=6
1 5.6\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220
2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440
4 10.6\720 13.00800  12.3\880 10.5\720 13.3\800  12.2\880
Deff= 9 10 10 9 10 10
Table 6.1b. Values D\N for problem (6.1) with 7=20.
Predictor I Predictor IV
h1 m=7 m=8 m=9 m=7 m=8
1 4.8\160 5.5\180 7.5\200 4.6\160 5.7\180
2 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360
4 9.7\640 11.6\720  12.1\800 10.4\640  12.4\720
peff= 9 10 10 10 10

Comparing experiments with equal N (notice that these tables contain for each A
and each predictor an experiment with N=180A~1), we conclude that in most
experiments the third-order predictor IV and the second-order predictor III yield the
most accurate values. However, the price we pay is more storage and a more
complicated implementation because of the auxiliary recursion for f;,. The predictors
I and II produce comparable accuracies. As the added storage for the predictors III and
IV is not offset by comparable reduction in the volume of computation, we
recommend predictor I in actual computations. The resulting PIRK method is a true
one-step RK method of an extremely simple structure, and consequently allowing for
an easy and straightforward implementation. A FORTRAN code based on this PIRK
method can be found in the Appendix to this paper.
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6.2. Comparison with the 10th-order methods of Curtis and Hairer

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing
their 10th-order RK methods. In Table 6.2 the results of the experiments performed
by Curtis and Hairer are reproduced together with results obtained by the PC pairs
consisting of the predictors I, IT and III, and the 10th-order Gauss-Legendre corrector.

Again we see that the simple predictor I can compete favourably with the predictors
O and III. '

Table 6.2. Values D\N for problem (6.1) with 7=60.

Method p 60/h D N
Runge-Kutta 4 12000 9.6 48000
Adams-Moulton-Bashforth 4 6000 8.1 12000
Runge-Kutta-Curtis 10 240 9.9 4320
Runge-Kutta-Hairer 10 240 10.1 4080
(2.2) with predictor I and m=9 10 156 10.0 1560
(2.2) with predictor I and m=10 10 150 10.0 1650
(2.2) with predictor II and m=5 10 150 10.1 1500
(2.2) with predictor IT and m=6 10 156 10.1 1716
(2.2) with predictor ITI and m=8 10 210 10.0 1891
(2.2) with predictor IIT and m=9 10 168 10.0 1681

6.3. Comparison with the 8(7)-method of Prince and Dormand

The 8(7)-method of Prince and Dormand [13] is nowadays generally considered as
one of the most efficient methods with automatic stepsize control for TOL-values
approximately in the range 107 to 10713, In this subsection we compare the
DOPRIS code, as given by Hairer, Ngrsett and Wanner [5], with the PIRK method
based on predictor I and the Gauss-Legendre correctors of orders 8 and 10. To let the
comparison of the DOPRI8 code and the PIRK codes not be influenced by a different
stepsize strategy, we equipped the PIRK codes with the same strategy (see Section
5). These codes are respectively denoted by PIRK8 and PIRK10.

6.3.1. Fehlberg problem
As a first test problem we take an example from Fehlberg [3]:

y1'= 2ty log(max{ys, 1073}), y1(0) =1,
y2' == 21y, log(max{yq, 1073}), »2(0) = e,
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with exact solution yl(t)=exp(sin(t2)), y2(t)=exp(cos(t2)). For tolerances TOL
running from 1075 up to 10712 we computed the D and corresponding N-values.
Instead of presenting the polygon graph for these values as was done in [5], we
preferred to present the D\W lying on this polygon for a number of integer values of
D. In Table 6.3 these values are listed.

Table 6.3. Values of N for problem (6.2).

Method D=5 D=6 D=7 D=8 D=9 D=10 D=11

DOPRIS8 595 759 963 1227 1574 1990 2503
PIRKS 379 495 623 786 978 1383 1874
PIRK10 327 388 490 704 884 977 1078

6.3.2. Euler equations
Next, we apply the codes to Euler's equation for a rigid body (cf. (6.1)). The

performance of the code is presented in Table 6.4.

Table 6.4. Values of N for problem (6.1) with 7=60.

Method ~ D=6 D=7 D=8 D=9 D=10 D=1 D=12

DOPRIS 415 576 728 898 1133 1422 1817
PIRKS 294 381 534 728 961 1172 1746
PIRK10 252 297 357 426 580 730 920

6.3.3. Orbit equations
Finally, we apply the codes to the orbit equations (cf. [8, Problem D2 ])

y1'=y3, y1(0)=1-¢,

y2'=y4, ¥2(0) =0,
—-y1

(6.3) y3' = ————— y3(0) = 0, 0<1<20.
(12 + yp2)3/2
—Yy2 1 +¢ 3
'z ————rs 0) = , E=75,
Y= 012 +ya2)2 4 1-¢ 10

The performance of the codes is presented in Table 6.5. An obvious conclusion
which can be drawn, is that — at least for these three test examples — both PIRK
codes are more efficient than DOPRIS; in the average, PIRKS requires 3/4 of the
number of f-evaluations that are needed by DOPRIS to yield the same accuracy,
whereas PIRK10 is almost twice as efficient. The superiority of PIRK10, especially
in the high-accuracy range, is undoubtedly due to its higher order. Therefore, it would
be interesting to compare this method with an embedded (sequential) Runge-Kutta
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pair of comparable order. Unfortunately, to the best of our knowledge, such formulae
have not been constructed in the literature.

Table 6.5. Values of N for problem (6.3).
Method D=5 D=6 D=7 D=8 D=9 D=10 D=11

DOPRIS 615 723 831 1062 1284 1780 2024
PIRKS8 463 559 679 859 1099 1411 1876
PIRK10 378 448 540 662 784 911 1076

7. CONCLUSIONS

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that
are capable of efficiently exploiting the parallelism of an MIMD computer
architecture. Assuming that sufficient processors are available, it is shown how to
derive ‘optimal methods’, i.e., methods requiring a number of parallelised f-
evaluations equal to the order. Within the class of optimal methods considered, the
required number of processors s is least with respect to the order p if the algorithm is
based on an iterated Gauss-Legendre RK method and this minimal number is given
by s=17p. It is known that optimal methods exist requiring a smaller number of
processors (an example is the fifth-order method of Butcher, mentioned in the
Introduction), but it is not clear how to formulate a general construction procedure to
arrive at such methods for arbitrary order.

A nice feature of the methods proposed is that they provide an embedded reference
solution without additional f~evaluations. This advantage has been utilized to make a
variable step implementation which has been compared with the code DOPRIS,
nowadays considered as ‘the state of the art’ for the automatic integration of ODEs.
On the basis of some test examples, the performance of the new code is compared
with DOPRIS and, in terms of the required number of f-evaluations, demonstrates a
superior behaviour.

Another aspect is the simple implementation of the new algorithm. In the
Appendix a FORTRAN subroutine is provided which accepts a general RK method
of arbitrary order, defined in terms of its Butcher tableau. For example, if there is
need for an automatic integration routine of order higher than 8, as is furnished by
DOPRIS, then we can suffice to specify e.g. a high-order Gauss method (the
construction of which is simple and fully described in [1]) and call this subroutine.
Furthermore, for such accuracy demands, we remark that even in the case that the
parallel evaluation of the derivatives is not possible (e.g. on a uniprocessor machine)
or not relevant (e.g., because the evaluation of fis very inexpensive and offset by the
overhead), this code may still be of value. Since classical embedded RK pairs of such
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high orders are lacking, it may turn out that, even in the non-parallelised form, the
present code is more efficient than DOPRIS, in spite of its large redundancy with
respect to the number of f~evaluations (cf. the discussion following Theorem 2.1). It
is easily verified that this approach can offer sequential embedded RK methods of
arbitrary order p, using m-s+1 = (p2—p+2)/2 stages. This aspect, which is a direct
consequence of the simplicity of the PIRK algorithm, needs further investigation.
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APPENDIX

Here we give the implementation (in FORTRAN 77) of the optimal PIRK
methods of the form (2.5), including error control. This subroutine offers the user
the facility to specify an arbitrary Runge;Kutta method by means of the matrix A
and the vectors BT and ¢ (see also the description of these parameters).

Although this routine has been coded in standard FORTRAN 77, it will require
machine-dependent amendment as to exploit the parallelism. Therefore we shall
discuss in some detail the most important loop in this subroutine, i.e., the 80-loop.
It is here, that the parallel calculation of the components of the iterate r(/) is to be
performed (cf. (2.2)). A first observation is that this loop contains a call to another
subprogram (viz., FCN). The separate compilation of subprograms prevents the
compiler from actually parallelising this loop, since it is unknown what happens
within FCN. Nevertheless, if the present source is offered to a compiler without
giving any instructions, the outcome (i.e., the ‘optimized’ object code) will be the
product of all kinds of operations, like unravelling, interchanging, distributing loops
etc., and will certainly speed up the execution. However, the parallelisation will
probably not completely fit in with the ideas as advocated in the present paper.
Therefore, we have to insért an explicit specification concerning the way the
compiler has to do its job; for example, we can specify that it is in this case without
any danger to parallelise over the FCN-calls. Most parallel computers offer so-called
‘directives’ for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall).
Since these directives may differ for various parallel machines, we decided to code
this loop in standard FORTRAN.

Another observation is that the 80-loop contains two nested innerloops: one over
the components of the ODE and one to form the innerproduct of a row of A and the
iterate vector 7U—1), If the parallel machine at hand has an architecture in which each
processor is a vectorprocessor, then it may be advantageous to interchange these
innerloops. Such considerations depend on the dimension of the ODE, the startup
time of the particular vectorprocessor, the ‘smartness’ of the compiler, etc.

To sum up, in order to obtain an optimal performance, the user of the subroutine
PIRK is advised to adjust the 80-loop to the specific situation he is dealing with,
like the number of processors available (perhaps even larger than s), the dimension
of the problems to be solved, etc.

SUBROUTINE PIRK(N, NR, FCN, T, ¥, TEND, TOL, H, S, P,
+ NRA, A, B, C, YN, FN, RJ, RUJM1, BIGY, YREF)

PIRK SOLVES AN INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST-
ORDER DIFFERENTIAL EQUATIONS OF THE FORM Y'(T)=F(T,¥(T)).

THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND
DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED.

o000 o0o0
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IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS
ASSUMED THAT THE NUMBER OF STAGES IN THE RUNGE-KUTTA METHOD

" DOES NOT EXCEED THE NUMBER OF PROCESSORS AVAILABLE.

MEANING OF THE PARAMETERS:

NR

FCN

TEND -

TOL

NRA

@

1

INTEGER VARIABLE
THE DIMENSION OF THE SYSTEM
INTEGER YARIABLE
FIRST DIMENSION OF THE ARRAYS RJ, RUM1 AND BIGY AS
DECLARED IN THE CALLING PROGRAM (NR .GE. N)
SUBROUTINE
A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE
F(T,Y(T) .
ITS SPECIFICATION READS:

SUBROUTINE FCN(N,T,Y,F)

DIMENSION Y(N),F(N)

ON RETURN, F(I) (I=1,...,N) MUST CONTAIN THE VALUE OF

THE 1-TH COMPONENT OF THE DERIVATIVE VECTOR

FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM
REAL VARIABLE

THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET

TO THE INITIAL YALUE. ON RETURN, T CONTAINS THE YALUE
FOR WHICH Y IS THE SOLUTION

REAL ARRAY OF DIMENSION (AT LEAST) N

THE DEPENDENT YARIABLE. ON ENTRY, ¥ SHOULD CONTAIN THE
INITIAL YALUES OF THE DEPENDENT YARIABLES.

ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T
REAL VARIABLE

TEND SPECIFIES THE END POINT OF THE INTEGRATION INTERYAL
REAL VARIABLE

TOL (>0) SPECIFIES.A BOUND FOR THE LOCAL TRUNCATION
ERROR

REAL VARIABLE

ON ENTRY, H SHOULD BE GIVEN A YALUE WHICH IS USED AS A
GUESS FOR THE INITIAL STEPSIZE

INTEGER VARIABLE

NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTTA METHOD
INTEGER VARIABLE

ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTTA METHOD
INTEGER VARIABLE

FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE
CALLING PROGRAM (NRA .GE. S)

REAL ARRAY OF DIMENSION (NRA,L) WITH L GE. S

REAL ARRAY OF DIMENSION (AT LEAST) S

REAL ARRAY OF DIMENSION (AT LEAST) S

THE PARAMETERS A, B AND C DEFINE THE RUNGE-KUTTA
METHOD, WRITTEN IN THE SO-CALLED BUTCHER-NOTATION
(USUALLY, THE ELEMENTS OF C ARE EQUAL TO THE ROW-SUMS
OF THE MATRIX A).

IN PRINCIPLE, ANY RUNGE-KUTTA METHOD CAN BE USED.
HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE
NUMBER OF STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE’
METHOD IS SELECTED. THE CORRESPONDING A, B AND C CAN



C BE FOUND IN:

c J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES,

C MATH. COMP. 18 (1964) PP. 50-64

C YN - REAL ARRAY OF DIMENSION (AT LEAST) N

C USED AS SCRATCH ARRAY

C FN - REAL ARRAY OF DIMENSION (AT LEAST) N

C USED AS SCRATCH ARRAY

C RJ - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S

C USED AS SCRATCH ARRAY

C RJM1 - REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S

C USED AS SCRATCH ARRAY

C BIGY = - REAL ARRAY OF DIMENSION (NR,L) WITHL .GE. S

c USED AS SCRATCH ARRAY

C YREF - REAL ARRAY OF DIMENSION (AT LEAST) N

c USED AS SCRATCH ARRAY

C___._ ——— . - - -
DIMENSION Y(N),YN(N),FN(N),YREF(N),RJ(NR,*),RJM1(NR,*),
+ BIGY(NR,*),A(NRA,*),B(*),C(*)
INTEGER S,P
LOGICAL REJECT

C_..__ ________________

C THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING
C THE INTEGRATION PROCESS

c NFCN NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F
c NSTEPS NUMBER OF INTEGRATION STEPS

c NACCPT NUMBER OF ACCEPTED STEPS

c NREJCT NUMBER OF REJECTED STEPS

C___._. et - ————————— —— -

COMMON/STAT/NFCN,NSTEPS,NACCPT,NREJCT
E_ —————— e ————————
C SMALLEST NUMBER SATISFYING 1.0 + UROUND > 1.0
C UROUND MAY REQUIRE AMENDMENT ON DIFFERENT MACHINES

E___._ —— ——— e m———————

DATA UROUND/7.1E-15/

E __________________
C INITIALISATIONS
C __________________
REJECT=.FALSE.
NFCN=0
NSTEPS=0
NACCPT=0
NREJCT=0
TOL=MAX(TOL,10.0*UROUND)
C__ - -

C ON ITERATING THE RUNGE-KUTTA METHOD, WE USE A PREDICTION
C OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO
C OBTAIN A RESULT OF ORDER P.

[: __________________ g - = = o -
M=P-1
C ___________________
C INTEGRATION STEP
c
10 CONTINUE
IF (H .LT. 10.0%UROUND) THEN
WRITE(6,1)T

1 FORMAT(" THE ROUTINE HAS ADVANCED THE SOLUTION UP TO



+ T=',E16.8,/,” AND STOPPED BECAUSE THE STEP SIZE HAS’',
: + " BECOME TOO SMALL'/® TRY A LESS STRINGENT VALUE',
I ' OF TOL OR CHANGE TO A HIGHER-ORDER METHOD')
RETURN
ENDIF

IF (TEND-T .LT. UROUND) RETURN
IF (T+H .GT. TEND) H=TEND-T

c -
C FORM THE PREDICTION
c ;
DO 20 I=1,N
20 YNCD=Y(I1)
CALL FCN(N,T,YN,FN)
NFCN=NFCN+1
30 NSTEPS=NSTEPS+1
DO S0 L=1,5
DO 40 I1=1,N
40 RJM1(I,L)=FN(I)
50  CONTINUE
C.._
C INTHE 110-L0O0OP, THE ITERATION IS PERFORMED
c —
DO 110 J=1,M
C ————

C INTHE 80-LOOP, THE S'STAGES ARE PERFORMED CONCURRENTLY

DO 80O L=1,5
D070 1=1,N
BIGY(I,L)=YN(I)
DO 60 K=1,5
60 BIGY(I,L)=BIGY(I,L)+H*A(L,K)*RJIM1(I,K)
70 CONTINUE
CALL FCN(N,T+C(L)*H,BIGY(1,L),RJ(1,L))
80 CONTINUE
NFCN=NFCN+1
C - -
C SHIFT THE ITERATES
C _____________________
IF (J LT. M) THEN
DO 100 L=1,S
DO 90 I=1,N
90 RJIM1(I,L)=RJ(I,L)
100 CONTINUE
ENDIF
110 CONTINUE
C - p—
C CALCULATE THE FINAL SOLUTION OF THIS STEP
C AND A REFERENCE SOLUTION FOR ERROR CONTROL
C - -
DO 130 I1=1,N
Y(=YN(I)
YREF(I)=YN(1)
DO 120 K=1,S
Y(D)=Y(1)+H*B(K)*RJ(I,K)
120 YREF(1)=YREF(1)+H*B(K)*RJM1({I,K)

130 CONTINUE



ERROR=0.0
DO 140 I=1,N
DENOM=MAX(1.0E-6, ABS(Y(1)), ABS(YN(1)), 2.0%UROUND/TOL)

140 ERROR=ERROR+({Y(1)-YREF(1))/DENOM)**2

(@}

(9}

ERROR=SQRT(ERROR/N)
FAC=MAX(1.0/6.0,MIN(3.0,(ERROR/TOL)**(1.0/P)/0.9))
HNEW=H/FAC

IF (ERROR .GT. TOL) THEN

STEP IS REJECTED

IF (NACCPT .GE. 1) NREJCT=NREJCT+1
REJECT=.TRUE.
H=HNEW
GOTO 30
ELSE

STEP IS ACCEPTED
NACCPT=NACCPT+1
T=T+H
IF (REJECT) THEN

HNEW=MIN(HNEW H)
REJECT=.FALSE.
ENDIF
H=HNEW
GOTO 10
ENDIF
END
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Abstract. In this paper block methods for solving ODEs on parallel
computers are constructed. Most block methods found in the literature
produce approximations to the exact solution at equidistant points. Here, we
allow that the approximations correspond to nonequidistant points like the
intermediate approximations computed in Runge-Kutta methods. This
approach enables us to improve the order of accuracy. We concentrate on
explicit methods such that they are suitable for use on parallel computers.
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1. INTRODUCTION
Block methods turned out to be efficient methods for solving the initial value
problem for the system of ordinary differential equations (ODEs)

DO _ fry(ey

on parallel computers (cf. e.g. Worland [10] and Chu & Hamilton [3]). Most block
methods occurring in the literature can be interpreted as block linear multistep
methods (BLM methods), that is, they are derived from the linear multistep (LM)
method

P(E)yn = ha(E) f(yn),

in which y, is replaced by an m-dimensional vector Y, := Vnm>Ynm+1s - »
Ynm+m-1)T and where the (scalar) coefficients of the polynomials p and ¢ are
replaced by matrices. Thus, in BLM methods the components of the block vector ¥,
represent approxiniations to the exact solution at equidistant points.

In this paper, we consider block methods where the components of the block
vector represent approximations to the exact solution at not necessarily equidistant
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points. In this way, we obtain additional parameters for increasing the order of
accuracy of the method. In the derivation of these methods it turns out to be
convenient to start with a Runge-Kutta (RK) method, and, by analogy with BLM
methods, to replace the y-values generated by the method by vectors the components
of which represent approximations to the exact solution. If these vectors are k-
dimensional, then the RK parameters are replaced by k-by-k matrices. We shall call
these methods block Runge-Kutta methods (BRK methods).

In Section 2, we give a precise definition of BRK methods and we give examples
of methods from the literature which can be written as BRK methods. The
representation in BRK form provides a unifying way of describing all sorts of
methods (including BLM methods) and is particularly convenient for describing
block methods for use on parallel computers. In Section 3 the order conditions for
explicit one-stage methods and implicit two-stage methods are given, and Section 4
is devoted to the construction of these BRK methods with k=2, 3, 4. We shall
particularly be interested in explicit methods. For explicit methods with given k we
tried to maximize the order and to minimize the number of processors without
increasing the number of sequential right-hand side evaluations per step (we shall call
this minimal number of processors the optimal number of processors). It is possible
to derive explicit one-stage methods of order 2k—1, using not more than 2
processors. However, if the requirement of zero-stability is imposed (which is crucial
if the method is to be used as a method on its own), then the order reduces to k+1.
We also derive zero-stable, explicit two-stage methods of order 2k for two-processor
computers. In Section 5, the various methods are compared for a few test problems
from the literature.

It turned out that, like for all block methods, stability is a critical aspect of BRK
methods. In this paper, we did not concentrate on stability aspects. Only when free
parameters were available which could not be used for increasing the order, we have
employed them to increase the stability of the method.

2. BLOCKRUNGE-KUTTA METHODS
Let us start with the conventional s-stage RK method

s

(i) j .

yn+l=yn+hz bijf(y(,{il , =1, 0, 5+ ]
J=1

@.1)

' (s+1
yn+1 =yn+l)a n=0, l,....
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The general structure of the block Runge-Kutta (BRK) methods considered in this
paper i$ a direct generalization of this conventional method. We introduce block
vectors Y, the components of which are numerical approximations to the exact
solution values at k points. To be more precise, let ¥,..1 be defined by

Yne1 =Oncp Ynep )’n,ck)Ta ck=1,

where yj - denotes a numerical approximation to the exact solution value y(z,+ch).
For scalar ODEs, we now define the s-stage block RK (BRK) method

Y(l)l‘AYn"'hz Bl]f(Y(J) i=1,..,s+1;
(2.1

(s+1
Yoe1 = Y00, n=o01, .,

where A; and Bj; are k-by-k matrices and where we use the convention that for any
given vector v =(vj), f(v) denotes the vector with entries f{v;). This method can be
considered as the block analogue of (2.1). It is straightforwardly extended to systems
of ODEs and therefore also to nonautonomous equations. In order to start the
method, one needs the initial vector ¥, which requires as many starting values as
there are distinct values ¢j =1,....k).

In analogy with the Butcher array for describing the RK methods (2.1), i.e., the
(s+1)-by-(s+1) array

b1 . . . bis
bs1 . . . bs s
bs+1,1 . . . bs+1,s

we may describe the BRK methods (2.1') by the k(s+1)-by-k(s+1) array

Aq B11 . . . By
Ag By Bgs
As+1 ] Bse1,1 - . - Bsi1,s
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This notation is particularly convenient when more than two stages are involved.
It frequently happens that the two last rows of this array are identical. In such cases,
we shall omit the last row in order to save space.

We call the method explicit if the matrices Bj; vanish for j2 i, and implicit
otherwise. In this paper, we are mainly interested in explicit methods. For explicit
methods, the k components of the blocks f( Yf{:l ) can be computed in parallel; hence
if k processors are available, then (explicit) BRK methods require not more than s
(sequential) right-hand side evaluations per step. However, the required number of
processors is often less than k, without causing the number of (sequential) right-hand
side evaluations per step to exceed s. For instance, it may happen that in the formula
for a particular component of Y, no right-hand side evaluations occur, that is, all
rows in the matrices Bjj corresponding to this component vanish. In such cases, the
processor assigned to this component is not needed. Similarly, if the rth column of
all matrices Bjj vanishes, then the computation of the corresponding component of
Y,+1 does not require any right-hand side evaluation not already occurring in the
formulas for the other components, so that there is no need to assign a processor to
this component. We define the optimal number of processors as the number of
processors for which the number of (sequential) right-hand side evaluations per step
is minimal. In the explicit case, the representation (2.1') is very convenient for
implementing the method on a computer, because the actual code is a direct
translation of the formula (2.1') and the instructions for the computer in order to
exploit the built-in parallelism of the method are obvious.

The points 7, and t,+cjh (j#k) will respectively be called step points and block
points. Block points coincide with step points if the corresponding value of ¢j is an
integer. Upon completion of the integration process, the accuracy of the numerical
solution obtained does not necessarily be the same at all points #,+cjh. Points where
the corresponding components of Y, do have the same order as the components
corresponding to the step points z,, will be called output points.

The general explicit one- and two-stage methods are respectively given by

A1 (0] )
) ie, Ypy1 =A2Y, +hB1f(A1Yy),
Az | By
and
Al 0O O
Ay | By O

, le., Ypi1=A3Y,+hB31f(A1Y,)
A3 | B3; B3 + hB32f(A2Yy + hB21f(A1Y,)).
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Here,-O denotes the k-by-k matrix with zero entries.

As a numerical example of an (explicit) 3-stage method, we present the modified
multistep method of Butcher [1] of order 5 as a BRK method: the block point vector
is given by ¢ =(0,1)T and the Butcher array assumes the form:

1 0
0 1
0 3/8 9/8

0 0 0
-23/5 28/5 |-26/15 O 32/15 -4

0 1 0 0 0 0

, ¢=(0,DT.

0 1 0 0 0 0 0 0

—-1/3132/31|-1/93 12/93 64/93 0 15/93 0

The construction of higher-order BRK methods is rather difficult in the general
case. In this paper, we shall construct high-order methods of a special form which are
obtained by using the predictor-corrector (PC) technique. Our starting point is the
special implicit two-stage method

I | o o 1o o
A | B C A|lB

(2.2) = :
A |l B C

ie., Yp41 =AYn +hBf(Yy) + hCf(Yp41).

If C does not vanish, then we can use this method as corrector and if C=0, then it
can be used as (a one-stage) predictor formula, e.g.,

2.2) , ie., Ypi1 =AY, +hBf(Y,).

From this pair we can generate higher-stage BRK methods by PC iteration provided
that the block point vectors ¢:=(c1,...,c¢)T are identical. For example, in PECE mode
we obtain the special two-stage BRK method



52

I | o o
' D | E o :
2.3) , ice., Yp41 =AY, + hBf(Yy) + hCADY,, + hEf(Y,)).
A | B C

Finally, it should be remarked that (2.2) is also the representation of the so-called
general linear methods introduced by Butcher in 1966 (see Butcher [2]). Most
methods from the literature (including the general BRK method (2.1')) can be cast
into the form (2.2). However, although the original method is explicit, the general
linear method version is often implicit. For example, the explicit two-stage BRK
method (2.3) can be rewritten in the form (2.2) by redefining the matrices A, B and
C in (2.2), but C will not be a zero matrix. Thus, for implementation of higher-
stage BRK methods on parallel computers, the representation (2.2) is less suitable.

In the following subsections, we present in BRK form a number of methods
which have been proposed for use on parallel computers. In particular, we give
examples of the predictor-corrector methods of Miranker and Liniger [8] and
Shampine and Watts (cf. Worland [10]), and the multi-block methods of Chu and
Hamilton [3]. A discussion of block methods for parallel computation may be found
in Gear [5]. :

2.1. Methods of Miranker and Liniger
The methods of Miranker and Liniger [8] can be presented as explicit, one-stage
BRK methods. For example, their second-order method can be represented by the

array
1 0
0 1

2.4) s c = (2’ I)T,
0 1 2 0

0 1 |1/21/2

and their fourth-order method by

10 00
01 00
00 10
00 01
(2.5) , c=(-1,0,2,1T.
o1 00|00 0o o o
0 0 01 0 0 0 0
00 01 |-1/3 4/3 8/3 -5/3
0 0 01 1/24 -5/24 9/24 19/24
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Both methods require only two processors and respectively two and four starting
values when implemented in BRK form.

2.2. Predictor-Corrector method of Shampine and Watts
The PC method of Shampine and Watts [9] is based on the block method of
Clippinger and Dimsdale (1958), which can be presented in the form (2.2) as

1 0
0 1

0 1 0 5/24 1/3 -1/24

0 1 0 1/6 2/3  1/6
(2.6) , c=(1/2, DT,

and on the predictor method defined by

1 0 0 0
01 0 O
0 0 1 0
0 0 0 1
2.7) , c=(-1/2,0,1/2, )T,
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1/3 1/3 1/3) 0 1/4 -1/3 13/12
0 1/3 1/3 1/3 | 0 29/24 -3 79/24

Method (2.6) is one of the oldest block methods proposed in the literature. Shampine
and Watts proved that this corrector method is fourth-order accurate at the step
points. They also proved that the predictor method is third-order accurate and
possesses favourable stability properties. This predictor can also be applied as a
method on its own and requires four starting values and one processor.

In order to apply the PC pair (2.7)-(2.6) using the BRK format, we rewrite the
corrector in the form
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1 0 0 0
01 0 0
00 1 0
00 0 1
00 1 0 000 06 00 0 O
0 0 0 I 00 0 0 00 0 0
0 0 0 1 00 05724 0 O 1/3-1/24
000 1| 00 O01/6 0 0 2/3 1/6
(2.6 : , . €= (=1/2,0,1/2,1)T.

The PC method of Shampine and Watts was implemented by Worland [[10] on two
Processors..

2.3. Multi-block metheds of Chw and Hamilton

Chu and Hamilton [3] generalized the cyclic linear multistep methods of
Donelson and Hansen [4]. Families of third- and fourth-order multi-block methods
were derived. We give two examples of their k=2 methods which can be represented
in the form (2.2) or (2.2"). The first example is the explicit third-order method

(2.8) , c = (1/2,1)T,

and the second example is the fourth-order implicit method

0 1 ;—1/48 13/48 13/48 —1/48

o 1| 0 1/6 213 116
29 ‘ . e=(2nh

2.4. Parallel MRK methods

An example of methods which can be written in the form (2.3), and which do not
originate from PECE methods, is the family of first-order, explicit parallel MRK
methods (cf. van der Houwen et al. [6])
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1 0 0 0 0 0
0 0 1 0 0 0
0 l—al a 0 0 0
(2.10) , c=(0,c, DT,
0 0 1 0 0 0
by

0 0 1 _—

(1-ay)
0 0 1 I—C—bl b] c

where ay, by, b3 and c are free parameters. Third-order accuracy is obtained by setting

|m

at = b1=%—ca1, b3=-‘_

W |
o

1
+ =
3 1+

=
+
N

C

with c as a free parameter. These methods require three starting values and only one
sequential right-hand side evaluation on two processors. Notice that (2.10) is of the
general explicit one-stage form in which the matrix A| has not been replaced by the
identity matrix as was the case in (2.2").

3. ORDER CONDITIONS

In this section, we restrict our considerations to parameter arrays of the form
(2.2) either with C=0 or C#0. Let the exact solution be substituted into (2.2).
Then, in general, the order conditions are derived by requiring that the residual vector
is of order AP*! for all components (that is, we require that all components of ¥4
are pth-order approximations to the corresponding exact solution values). In this
way, we obtain the following condition for pth-order consistency:

(I - zC) exp(zc) — (A + zB) exp(zc — ze) = o),

e:=(1,1,..,DT, ¢:=(c1,c2,...,cp)T.
By defining the error vectors

Co:=Ae—e; Cj:=A(c—e)+Be+Ce—c;
(3.1a)

Ci=Alc—ey +jlBc—ey 1 +Cc/7l1-¢/, j=2,3, ..,
the conditions for pth-order consistency take the form

@.1b) Cj=0, j=0,1,..p.

Here, powers of vectors are meant to be componentwise powers.
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In: the construction of high-order formulas it is convenient to specify the matrix
A in (2.2) in advance, because the eigenvalues of A should lie in a zero-stable
configuration, that is, they should be on: the unit disc, those on: the unit circle being
simple (such a zero-stability condition is difficult to satisfy simultaneously with: the
order conditions unless k is sufficiently small). A natural choice for the matrix A is
sugggsted by observing that

Ypel —yne = ( J’f(}’(t))df) .
th

Replacing the integral term by a quadrature formula, we obtain a: method where A is
of the form:

(3.2) A=

This matrix has one eigenvalue I and k—1 zero eigenvalues, so' that a reasonable
stability region may be expected (cf. the analogous situation for linear multistep
methods of Adams-type). BRK methods possessing a matrix. A of the form: (3.2) will
be called Adams-type methods.

Assuming that A is given and is such that Ae=e, the most simple way to derive
high-order formulas is to specify the vector c. This leaves us with a linear system of
p equations for each component formula of the corrector formula. However, in this
approach, the free parameters in the vector ¢ are not exploited. These free parameters
may be used for minimizing the error vector Cp.|. For instance, we may add to the
order conditions (3.1) the condition that ¢ is such that Il Cp4 Il is minimal for some
norm |l - ll. Alternatively, one may sacrifice the linearity of the order conditions and
choose ¢ such that certain components of the error vector vanish, that is, it is not
necessary that all components of ¥, are pth-order approximations.

To be more general, we denote the order of consistency of the formula for In,c;
by p; and define the set J, := { ie {1,2, ...k}l pi=q}. Now, we introduce the
following property:

Property 3.1. () JpUJp-1= {1,2, .k},
(iiy for each ie Jp, the matrix A has vanishing elements a;; for all
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If this-property is satisfied, then the method (2.2) produces pth-order results at the
points fp+c;h, n=1,2,... and all i€ J,,. One may interpret this as a form of super-
convergence.

As an example, in the Adams-type BRK methods with matrix A of the form
(3.2), the first k—1 components of Y}, only occur in the right-hand side as argument
of the function f, so that these components are allowed to be of one order less than
the order of y,,, without decreasing the order of the approximations at the points #,.

We recall that from an explicit and implicit BRK method with identical block
point vector ¢:=(c{,...,ck)T, we can derive higher-stage BRK methods by PC
iteration. By requiring that the explicit method (predictor) and the implicit method
(corrector) provide approximations to y(f,+cjh), respectively of orders g and p, for all
J» we obtain after r iterations a method which provides approximations of order
p*=min{p, g+r}. Since the predictor need not to be stable, one can employ the full
freedom of the generating matrices, so that g is usually sufficiently large to get the
maximal attainable order p of the corrector in just one correction (PECE mode). If
not, then one may decide to continue the iteration.

4. CONSTRUCTION OF BRK METHODS

Since the implementational complexity of the BRK method is mainly determined
by the number of starting values and the associated storage needed to implement the
method, we shall distinguish the various methods by their number of starting values.
The methods constructed in the following subsections will be compared with
methods from the literature.

4.1. Methods requiring two starting values
In this subsection we consider methods where the block vector Y, is defined by

Yn+1 = Ono )T

At first sight, it would be natural to choose ¢=1/2. However, as we shall see, a more
judicious choice is possible.

4.1.1. Explicit one-stage methods. We shall construct the family of second-order
BRK methods of Adams-type and the general family of third-order methods.

Second-order methods of Adams-type. The conditions (3.1) with C=0 and A defined
by (3.2) can be satisfied for p=2 and yield
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1 0
0 1
4.1)
0 1 -c? c(2-¢c)
2(1-¢c) 2(1-¢)
0 1 -1 3-2¢
' 2(1-¢) 2(1-¢)

c=(, DT, c#1,

The following special cases of (4.1) will be tested in the numerical experiments at
the end of this section:

c=0 (4.1) reduces to the Adams-Bashforth method
c=1/2 ‘natural choice’

c=5/3 Local error at f,,4] is 0(h4)

c=2 (4.1) reduces to Miranker-Liniger method (2.4)
c=1+43  IC3ll.. minimized

c=3 Local error at t,,+ch is 0(h4)

C3 =(0.0,-2.5)T
C3 =(-03,-1.8)T
C3=(-19, 0.0)T
C3 = (=20, +0.5)T
Cy=(-14, +1.4)7T
C3 = (0.0, +2.0)T

We observe that the case ¢=5/3 will raise the order to 3 at all step points z,, in spite
of the second-order accuracy of y,, ., because of the special form of the matrix A (cf.

Property 3.1).

Third-order methods. Next we construct the family of one-stage BRK methods in
which all components are at least of third order. We find the method '

1 0
0 1
(4.3)
c2(3-c) 1-3¢ c
(1-¢)? (1-c)3 (1-0?  (1-c)?
5-3c¢ -c3+3¢2-4 2—c (2-c)?
(1-¢)3 (1-c)3 (1-02  (1-c)?

with error vector

c4;( - ):

—-(2-¢)?
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This method is zero-stable for all values of ¢ for which the eigenvalues of A are on
the unit disc and are not both equal to 1. Since A has the eigenvalues 1 and
(c2-2c-5)/(c-1)2, we obtain the condition

c2-2¢-5
(c-1)2 °

-1<21<1, A=

This leads to the necessary condition
44)  c<1-V3, c21+V3.

The parasitic eigenvalue A vanishes for c=1 -l_:\[g. Unfortunately, the value c=2 which
makes yp,+1 fourth-order accurate is not in the range (4.4). If c=1/2, then the method
reduces to the method (2.8) of Chu and Hamilton.

A number of experiments was carried out in order to illustrate the effect of ¢ on
the accuracy of the methods (4.1) and (4.3). We chose the nonlinear initial value
problem

4.5) Y@ = sin(y5) — sin(sin3(¥)) + cos(?), y(0) =0, 0<t<1,

with exact solution y(#)=sin(?).

In Table 4.1 the results are given. The absolute error obtained at the end point of
the integration interval is written in the form 1074 and the values of d are given in
the table (d may be interpreted as the number of correct decimal digits). Each column
contains results which required the same number of sequential right-hand sides. In
these and subsequent experiments, the starting values incorporated in the initial
vector Yy are taken from the exact solution.

These results show the theoretical order of accuracy. It is clear that the choice
¢=1/2 is not the best possible. Furthermore, the value c=1+412 (minimal-norm-
value) does not improve the accuracy, so that we refrain from considering this special
case in the subsequent sections. Notice that the method (4.1) with ¢=5/3 produces
results which are comparable with the results of the method (4.3) with c=1 £ V6.
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Table 4.1. Correct decimal digits at =1 for problem (4.5) obtained
by BRK methods with k=2 and s=1.

Sequential right-hand sides 6 12 24 48 96  order
Adams-Bashforth method 1.8 2.4 3.0 3.6 4.2 2
Miranker-Liniger method (2.4) 2.7 3.2 3.7 43 4.9 2
BRK method (4.1): ¢=1/2 2.0 2.5 3.1 3.7 4.4 2
BRK method (4.1): c=1+413 2.1 2.7 3.3 3.9 4.5 2
BRK method (4.1): ¢=3 1.9 2.5 3.1 3.7 4.3 2
BRK method (4.1): ¢=5/3 3.1 4.0 5.0 5.9 6.8 3
BRK method 4.3): c=1+V6 3.1 40 49 58 67 3
BRK method (4.3): =16 3.3 4.1 4.9 5.8 6.7 3

4.1.2. Implicit two-stage methods of Adams-type. The conditions (3.1) with
nonvanishing matrix C can be satisfied for p=4 by

1 0
0 1
@.56) 0 1 -3 c(c2—6c+6) c(c2~6c+6) -3
12(1-c) 12(1-c) 12(1-c) 12(1-c)
o 1 (1-2¢) —-6¢2+10c-3 3-2¢ 6c2-14c+7
12(1-¢)(2—¢)  12¢(1-¢) 12¢(1-¢)  12(1-c)(2—c)

withe = (c, DT, ¢ #0,1, 2.
The corresponding error vector is given by

1 (c3(02 -5¢+5) )

Cs=_ -
5776 | 5c2-10c+4

The following special cases of (4.6) will be considered:

c =% (4.6) is equivalent with the corrector (2.9) Cs = (— % - %)T
c=1- Tﬁ Local error at t,4] is O(h) C5= (— %/—g_ 0)T

4.1.3. Predictor-corrector methods. In order to ‘solve’ the corrector equation defined
by (4.6) one may use a PC method with predictor defined by (4.3). The PC methods
determined by the matrices (4.3)-(4.6) require two starting values and, in PECE
mode, they all have at least order 4. For c=1-V5/5, we achieve order 5 in PE(CE)2
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mode. We remark that for the predictor formula, the value of ¢ is not required to
satisfy the inequalities (4.4).

We illustrate the performance of the PC method (4.3)-(4.6) by comparing it with
the 2-step Adams PC method (notice that the BRK method (4.3)-(4.6) with c=1/2 is
equivalent with the Chu-Hamilton pair (2.8)-(2.9)). In the Tables 4.2, the correct
decimal digits at =1 and the total numbers of sequential right-hand side evaluations
are listed for the various methods in PECE mode and in PE(CE)2 mode.

Table 4.2a. Correct decimal digits at #=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=2.

Sequential right-hand sides 6 12 24 48 96  order
Two-step Adams-PC method 2.1 3.1 4.1 5.0 5.9 3
Chu-Hamilton pair (2.8)-(2.9) 4.3 5.4 6.5 7.6 8.7 4

BRK method (4.3)-(4.6): c=1-V5/5 48 54 65 76 88 4

Table 4.2b. Correct decimal digits at #=1 for problem (4.5) obtained
by BRK methods in PE(CE)? mode with k=2.

Sequential right-hand sides 6 12 24 48 96  order
Two-step Adams-PC method 1.8 3.1 4.2 5.1 6.0 3
Chu-Hamilton pair (2.8)-(2.9) 3.9 5.7 9.3 8.4 9.5 4

BRK method (4.3)-(4.6): c=1—/5/5 39 55 7.0 8.5 10.0 5

4.2. Methods requiring three starting values
The block vector Y}, is now defined by

Yni1 = Oncpp Yney yn+1)T,

providing us with two free parameters. As before, equidistant output points need not
to be the best choice. Because of the rapidly increasing complexity of the derivations
if more than 2 starting values are used, we shall not consider the general case as in
the preceding section, but we shall restrict our considerations to a few special cases.

4.2.1. Explicit one-stage methods. We consider Adams-type methods and a more
general family of zero-stable methods.

Third-order methods of Adams-type. If C=0, then the following array satisfies the
conditions (3.1) for p=3 and for all (distinct) values of ¢ and ¢ different from 1:
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1 0 O
0 1
0 0 1

“.7 s
0 0 1 ayj—(cp-1)by  (e=Dby ¢y —aj+(c—cpby
00 1 ay—(c=1by  (c;=Dby 3= ay + (cy—c1)by
0 01 az—(cp-1)b3  (c1=Db3  c3—az + (cr—cp)b3

where ¢ = (cq, ¢2, 1)T and

2= ;2 b= Ci2(20i—3cl +3)
"T2c1-1)7 TP 6ler - D(ea-1)(ca-c1)

i=1,2,3.

We restrict our considerations to the two-processor case, that is, we set c;=0. By
virtue of the special form of A we obtain order p=4 at the step points if the third
formula has order 4 while the first and second formula have order 3. Setting the third
error component equal to zero we find c=17/10.

Fourth-order methods. Let us consider methods of the form

0 O
0 1 0
0 0 1
4.8) , ¢ =(0,c, NT.
0 0 1 0O 0 O

ay ap axp | by by by

a1 az azy | b3y b3y bas

Solving the conditions (3.1) for p=4 with c=1/2 we obtain

0 0
0 1 0
0 0 1
, ¢ =(0,1/2, )T,
0 0 1 0 0 0

9a 9 l+4a (-10-a)/6 (-22-4a)/6 (8-a)/6
-b 64 -63+b | (-9-b)/6 (108-4b)/6 (99-b)/6
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where a and b are free parameters. We could have used these parameters for increasing
the order of accuracy to p=5. However, then the method turns out to be zero-
unstable. Therefore, we shall employ them for improving the stability of the
method. In particular, we choose a and b such that the parasitic roots of the
characteristic equation of A vanish. This characteristic equation is given by

(6-1) (82 +(55-b)6+9b - 64a — 576) =0,

so that we are led to the values a =—81/64 and b =55. The corresponding Butcher
array becomes

1 0 0
0 1 0
0 0 1
(4.9) , ¢ =(0, 12, DT,
0 0 1 0 0 0
-495/64 9 —17/64 |-559/384 —271/96 593/384
-55 64 -8 -32/3  -56/3 22/3

The following table illustrates the performance of the above explicit, one-stage
methods.

Table 4.3. Correct decimal digits at r=1 for problem (4.5) obtained
by BRK methods with k=3 and s=1.

Sequential right-hand sides 6 12 24 48 96 order

Adams-Bashforth 3.2 3.9 4.8 56 65 3
BRK method (4.7): (c1,¢2) = (0,1/2) 34 4.2 5.1 60 6.9
BRK method (4.7): (c1,¢2) =(0,17/10) 4.1 5.3 6.5 7.7 89
BRK method (4.9) 4.0 5.1 6.4 7.6 8.8

B oW

4.2.2. Implicit two-stage methods. We assume the generating array of the form

0 0
0O 1 O
0 0 1

(4.10)
0 1 00 0 00 0

ay ayp ap | by by by 0 ¢ e
as1 ayp a3 | b3y b3y b3z 0 c3p c3n
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with ¢ = (0, ¢, 1)T and we derive a fifth-order method of Adams-type and a sixth-order
method with increased stability interval which is not of Adams-type.

Adams-type method of order 5. We choose ¢=1/2 and A of the form (3.2), and find
that the order conditions (3.1) can be satisfied for p=5 by

10
0 1 O
0 0
(@.11) |
0 0 1 0 0 0 0 0 0
0 0 1] 11/1440 -37/720 19/60 0 173/720 —19/1440
0 1| -1/180 1/45  2/15 0  31/45 29/180

with ¢ = (0, 172, T.

4.2.3. Predictor-corrector methods. We consider two PC methods which are in PECE
mode of orders 5 and 6, respectively.

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11)
determine a PC method of order p=5. It requires three starting values and, if two

processors are available, then only two sequential right-hand side evaluations per step
are needed.

Method of order 6. Next we consider PC methods where the predictor and corrector
are generated by matrices of the form (4.8) and (4.10), and where c is still a free
parameter. We try to construct a PC method which is of order 6 in PECE mode by
choosing the free parameters such that the corrector formula for y,1 becomes of
order p=6, whereas the other corrector formula and the two predictor formulas have
order p=5.

To that purpose, we have investigated methods where

0 0 1
A=| 0 O 1
a 0 l-a

(notice that A does not refer to the second component of the block vector so that the
corrector formula corresponding to this component may be of one order less than that
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of the_third component). This leads to a one-parameter family of sixth-order PECE
methods which can be represented in the form (2.3), i.e.,

Y41 =AY, + hBf(Y,) + hCA(DY,, + hEf(Y,)).

The free parameter will be used to improve the (linear) stability of the method. The
(linear) stability of this two-stage BRK method can be investigated by applying the
method to the test equation y’=Ay to obtain the recursion

Yp+1=R(z) Yn, R(z) =A+z(B+CD)+z2CE, z:=MAh,

and by requiring that the matrix R satisfies the simple Von Neumann stability
condition, that is, it has its eigenvalues on the unit disc those on the unit circle
being simple. Choosing c as the free parameter, we start with determining a range of
relevant c-values by requiring that R(0) satisfies the stability condition (zero-
stability). Since the eigenvalues of R(0)=A are given by 0, 1 and —a, we require
—1<-a<1. It can be shown that imposing the conditions for sixth-order accuracy on
the corrector formula for y,,, 1 leads to

_ 15¢2-31c+13
T 15¢24c¢-3

so that ¢ should be not less that 1/2 in order to ensure zero-stability. As before, we
shall not consider the maximization of the general stability boundary. Instead we
consider the simpler case of maximizing the real stability boundary. A numerical
search reveals that the real stability boundary is maximized for ¢ =4.16 and is
approximately given by 2.247. In order to obtain (simple) rational expressions for
the entries of the various matrices, we do not choose this ‘optimal’ value of c, but
we set ¢ =4 yielding the stability boundary 1.766.

The predictor is generated by the matrices

1 0 0
1 0
0 0 1
(4.12) , c=(0,4,1)T
0 0 1 0 0 0
27 25 2325 | o 25 100
2 54 27 9 9
3 5 Zl6 L -l 16
2 54 27 2 18 9
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-and the corrector by

1 0 0

0 1 0

0 0 1

(4.13)

0 1

0 1
129 112
241 241

0 0 0
4 16 2
75 45 45
1141 —-47 2110
7230 4338 2169

0 0 0

, 8 88
225 45
26 896

0 70845 2169

with ¢ = (0,4, D)T.

The following table is the k=3 analogue of the preceding tables:

Table 4.4. Correct decimal digits at z=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=3.

Sequential right-hand sides 6 12 24 48 96  order
Three-step Adams-PC method 3.6 4.5 5.7 6.9 8.1 4
BRK method (4.9)-(4.11) 4.5 60 75 90 105 5
BRK method (4.12)-(4.13) 5.0 6.9 89 109 130 6

4.3. Predictor-Corrector method requiring four starting values
We have searched for two-processor predictors in the class of methods of the form

(= = R
O O = O
o - O O
_0 O O

@4 axn a4y Gy

Ay G a4 Gy

0 0 0 0
0 0 0 0
by by by by

by biy by by

, c=(-1,0,c,1)T.

For a given value of ¢ we can achieve order 7 by solving two linear systems of 8

equations each in 8 unknowns.



The corrector was chosen such that

1 0
0 1
0 0
0 0
0 1
0o 0
a3 apn
g Gy

- o O O

0 0
1 0
l-a31-a3; bsy.

1-a41—as by
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0 0 0 O 0
0 0O 0 O 0
b3, 0 0 c33 c3
byy 0 0 ci3 cu

with ¢ = (-1,0,c, DT.

By this choice we achieve that the order conditions (3.1) simplify considerably.
Given the value of c, this method can be made order 8 accurate in each component
equation, again by solving two linear systems of 8 equations in 8 unknowns. These
four systems of 8 equations have been solved numerically in terms of the parameter ¢
and for a range of c-values we computed the real stability boundary Breg] of the
PECE mode. We found that Brea] was maximal for ¢ =2.58 (Brea] =0.358). In order to
obtain a method with (simple) rational parameter values we chose ¢ = 5/2 resulting in
Breal =0.302. The corresponding predictor is generated by

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4.14) ,

0 1 0 0 0 0 0

0 0 0 1 0 0 0
5975 1539 537 2793 567 9 2205
224 20 3 32 8 32
82 117 63232 2 18 128 .
343 125 128625 3 25 71225

with ¢ = (1,0, 5/2, 1)T; the corresponding corrector is defined by
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I o O
: A B C
(4.15) ,
where
0 1 0 0
0 0 0 1
1
=z 53731383 3653263 3673827 |,
30469 ST o7 0 -=m
4549 331039 0 -3379
0 0 0 0
0 0 0 0
B=—t—| 335473 365271767 355273 3557313
30469 29 Y 25 25 ’
23029 3313:1709 283231 3261337
37 57 T 57 5
00 0 0
00 0 0
1 3257809 33537337
C=30469| 0 0 —5y— -—5m ’
2911
0 0 '3—5-'7' 14369

and ¢ = (-1,0,5/2, 1)T. Table 4.5 compares this method in PECE mode with the
four-step Adams and four-step Shampine-Watts method.

Table 4.5. Correct decimal digits at t=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=4.

Sequential right-hand sides 6 12 24 48 96  order
Four-step Adams-PC method 33 438 6.4 79 95 5
Shampine-Watts pair (2.7)-(2.6") 3.6 4.8 6.0 7.2 8.4 4
BRK pair (4.14)-(4.15) 7.3 102 128 8
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5. SUMMARY OF METHODS AND NUMERICAL EXAMPLES

The explicit, zero-stable methods and the PC combinations discussed in the
preceding sections will be applied to a number of initial value problems. In addition,
we give the results obtained by the classical Adams formulas. First, however, we
summarize the main characteristics of the various methods.

5.1. Summary of methods

Below we have listed a few important features such as the block point vector ¢,
the order p, and the number of processors Pop needed to implement the method with
only one right-hand side evaluation per step.

Table 5.1a. Survey of explicit one-stage BRK methods of the form (2.2).

Reference cT Popt p  Remarks
Miranker-Liniger [8] 2,1 2 2 See(24)
(-1,0,2,1) 2 4 See(2.5)
Shampine-Watts [9]  (-1/2,0,1/2,1) 1 3 See(2.7)
Chu-Hamilton [3] (1/2,1) 2 3 See (2.8)
This paper (c,D) 2 3 See(4.1) with ¢=5/3
(c,) 2 3 See(4.3)
(c1,¢2.1) 2 3 See(d.7)
(c1,c2.1) 2 4 See(4.7) with (c1,¢2) = (0,17/10)
(0,1/2,1) 2 4 See(4.9)
0,4,1) 2 5 See(4.12)
(-1,0,5/2,1) 2 7 See(4.14)

Table 5.1b. Survey of implicit BRK methods of the form (2.2).

Reference cT Popt P Remarks
Clippinger-Dimsdale (1/2,1) 2 4 See (2.6)
Chu-Hamilton [3] (1/2,1) 2 4 See (2.9)
This paper (c,1) 2 5 See (4.6) with c=1—\[g/5
(0,1/2,1) 2 5 See (4.11)
(0,4,1) 2 6 See (4.13)
(-1,0,5/2,1) 2 8 See (4.15)
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Table 5.1c¢. Survey of PC pairs in PE(CE)" mode.

 Predictor Corrector ' T p r
Q.7 2.6) (-1/2,0,1/2,1) 4 1
2.8) 2.9) (1/2,1) 4 1
@3) with c=1-V5/5  (4.6) with c=1-\5/5 @) 5 2
“.9) : (4.11) 0,1/2,1) 5 1
4.12) 4.13) (0,4,1) 6 1
4.14) : 4.15) (-1,0,5/2,1) 8 1

5.2. Nonlinear problem with rapidly increasing solution
The first test problem is the nonlinear problem

(5.1 V() =-y3 + 910 + 21), y0)=0, 0<r<1,

with exact solution y( 1)=t10. In Table 5.2 the results are listed. Since the number of
sequential right-hand side evaluations per step varies from 1 to 3 for the various
methods, we adapted the stepsize as to obtain that each column of this table contains
results with an equal number of sequential right-hand side evaluations over the whole
integration interval.

A first observation is that most parallel methods behave more efficiently than the
corresponding one-processor Adams methods, showing that already on two-processor
machines parallelism can be exploited. Furthermore, these results clearly demonstrate
the superiority of the high-order methods, especially the 6th- and the 8th-order BRK
methods. It should be remarked that these two methods produce unstable results
(indicated by an ‘s’ in Table 5.2) for large stepsizes, in spite of their large real
stability boundary. The reason is that these methods employ a block point t,+ch,
with ¢ much larger than 1, viz. c=4 and ¢=5/2, respectively. Since the modulus of
df/dy, which determines the maximally allowed stepsize, is a rapidly increasing
function of ¢ (at the solution, Idf7dyl behaves as 3:120), it is clear that an evaluation
of f beyond the endpoint =1 may easily cause instabilities.
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Sequential right-hand sides 6 12 24 48 96  order
Two-step Adams-Bashforth method 03 08 13 19 25 2
Miranker-Liniger method (2.4) 06 12 19 25 3.1 2
BRK method (4.1): ¢=5/3 26 24 3.1 39 48 3
BRK method (4.3): c=1-V6 05 12 20 29 38 3
Two-step Adams pair: PECE 02 09 17 25 34 3
Chu-Hamilton pair (4.3)-(4.6): PECE, ¢=1/2 1.1 19 3.0 42 55 4
BRK pair (4.3)-(4.6): PE(CE)2, c=1-V5/5 20 29 41 57 74 5
Three-step Adams-Bashforth method 05 1.1 19 27 36 3
Method (4.7): (c1,c2) = (0,17/10) 20 26 37 48 60 4
Three-step Adams pair: PECE 03 1.1 21 33 45 4
BRK pair (4.9)-(4.11): PECE 1.2 22 36 51 6.7 5
BRK pair (4.12)-(4.13): PECE * * 1.5 53 74 6
Four-step Adams-Bashforth method 06 14 25 36 48 4
Miranker-Liniger method (2.5) 1.1 23 35 47 59 4
Four-step Adams pair: PECE 1.3 26 40 55 7.0 5
Shampine-Watts pair (2.7)-(2.6"): PECE 1.1 1.8 29 41 53 4
BRK pair (4.14)-(4.15): PECE * 13 56 9.0 116 8
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5.3. Orbit equation
‘The second problem was taken from the test set of Hull et al. [7]:

y1'=y3, yi0)=1-¢ £=03

y2'=y4, y2(0)=0
(5.2)

y3'==y1 012432732, y30)=0

1+ ¢
ya'=-y2 012 + y22) 732, WO =\
Table 5.3. Correct decimal digits at #=20 for problem (5.2).

Sequential right-hand sides 240 480 960 1920 3840 order
Two-step Adams-Bashforth method 03 07 12 17 23 2
Miranker-Liniger method (2.4) 05 21 21 25 3.1 2
BRK method (4.1): ¢=5/3 03 12 21 30 39 3
BRK method (4.3): =16 03 12 21 30 39 3
Two-step Adams pair: PECE -0.1 06 14 23 32 3
Chu-Hamilton pair (4.3)-(4.6): PECE, ¢=1/2 -1.5 0.1 37 52 65 4
BRK pair (4.3)-(4.6): PE(CE)?, c=1-\5/5 14 32 48 64 79 5
Three-step Adams-Bashforth method 01 1.0 19 28 37 3
Method (4.7): (c1,¢2) = (0,17/10) 1.9 35 44 55 67 4
Three-step Adams pair: PECE 04 18 34 50 62 4
BRK pair (4.9)-(4.11): PECE 1.3 28 44 59 74 5
BRK pair (4.12)-(4.13): PECE 33 49 68 86 96 6
Four-step Adams-Bashforth method 1.4 23 34 46 58 4
Miranker-Liniger method (2.5) 20 44 48 58 69 4
Four-step Adams pair: PECE 08 20 35 50 65 5
Shampine-Watts pair (2.7)-(2.6"): PECE 1.1 29 41 51 62 4
BRK pair (4.14)-(4.15): PECE 39 6.8 9.0 8

For this example, which describes a system of ODEs, the errors are measured in
the maximum norm. Since most methods nicely show their asymptotic order
behaviour, the high-order BRK methods are again superior to the low-order ones.
Hence, the conclusion can be drawn that the introduction of non-equally spaced block
points t+cjh favburably influences the performance of the BRK methods.
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5.4. Euler's equation of motion
The third problem is Euler's equation of motion (cf. Hull et al. [7]):

Y1'=y2y3 y1(0) =0
(5.3) y2'=-y1y3, y200)=1
¥3'=-0.51y1y2, ¥3(0) = 1.

Table 5.4. Correct decimal digits at #=20 for problem (5.3).

Sequential right-hand sides : 120 240 480 960 1920 order
Two-step Adams-Bashforth method 1.2 19 25 31 37 2
Miranker-Liniger method (2.4) 1.6 24 3.1 38 44 2
BRK method (4.1): ¢=5/3 1.7 26 35 44 53 3
BRK method (4.3): c=1-V6 1.6 26 35 44 53 3
Two-step Adams pair: PECE 1.2 20 29 38 47 3
Chu-Hamilton pair (4.3)-(4.6): PECE, ¢c=1/2 * 33 47 60 73 4
BRK pair (4.3)-(4.6): PE(CE)?, c=1-V5/5 25 39 55 70 85 5
Three-step Adams-Bashforth method 1.5 24 33 42 51 3
Method (4.7): (c1,¢2) = (0,17/10) 28 41 54 66 79 4
Three-step Adams pair: PECE 1.4 27 40 53 65 4
BRK pair (4.9)-(4.11): PECE 27 41 56 71 86 5
BRK pair (4.12)-(4.13): PECE 32 51 69 87 107 6
Four-step Adams-Bashforth method 33 38 48 60 71 4
Miranker-Liniger method (2.5) 31 50 63 72 83 4
Four-step Adams pair: PECE 25 34 48 62 77 5
Shampine-Watts pair (2.7)-(2.6'): PECE 19 33 46 59 72 4
BRK pair (4.14)-(4.15): PECE 29 74 98 8

This table gives rise to the same conclusions as formulated at the previous test
problems.

To sum up, these examples clearly show that, even when only 2 processors are
used, a substantial gain in efficiency can be obtained when compared with sequential
(uniprocessor) methods. This especially holds for the high-order BRK methods.
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processor computers.

1991 Mathematical Subject Classification: 65106, 65120
1991 C.R. Classification: G.1.7, G.1.9
Keywords: numerical analysis, block methods, parallelism

1. INTRODUCTION
Many algorithms for numerically solving initial value problems for ordinary
differential equations (ODEs):

(.1 égll=f(t, Y0, (o) = Yo,

or Volterra integro-differential equations (VIDEs):

t
12 Yoy, [kexyxd). 0 =yo.

to

are based on implicit linear multistep methods (LM methods), in particular on
Backward Differentiation methods (BDF methods). The main reason for their
popularity is the relatively low computational effort per step, at least when compared
with other suitable methods for stiff equations, such as implicit Runge-Kutta
methods. However, the BDFs have one serious disadvantage: they are subject to the
so-called ‘second Dahlquist barrier’, which says that the order cannot exceed two if
the method has to be A-stable. Thus the higher-order BDFs lack the property of A-
stability. This means that if a high-order formula is selected (dictated by accuracy
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-considerations), then it may happen that — for certain types of stiff ODEs or VIDEs —
the algorithm encounters stability problems which usually result in a dramatical
degradation of the performance. To circumvent this behaviour it is highly desirable
to have A-stable methods of high order without increasing the computational effort
per step.

It is our aim to construct such methods. They are most easily formulated as so-
called block methods. Block methods can be considered as a set of simultaneously
applied linear multistep methods to obtain several numerical approximations within
one application. Numerous block methods have been proposed in the literature
including high-order A-stable ones (see e.g. Watts and Shampine [16]). However,
these implicit methods require in each application an amount of work which by far
exceeds the computational effort required by a BDF. In recent papers (cf. e.g. Chu
and Hamilton [3]), block methods have been given which solve the huge implicit
relations on a parallel computer which indeed significantly reduces the computational
costs. However, all these techniques follow the approach of predictor-corrector
iteration, which in fact restricts their application to nonstiff problems.

Like Chu and Hamilton, we will employ parallelism to obtain the afore-
mentioned goals. We shall construct A-stable methods of orders three and four, and
A(0)-stable methods of order five with o= 7/2. Furthermore, by carefully segmenting
the total work per step into a few subtasks of approximately equal computational
length, these methods require an amount of work which is very similar to what a
BDF requires when implemented on a uni-processor machine. In Section 5.3 we will
see that a high degree of parallelization is obtained. Since the implicit relations are
solved by a Newton-type process (as is the case in BDF implementations) rather than
in a predictor-corrector fashion, the property of A-stability is preserved.

In Sections 2 and 3, we present the construction of block methods for ODEs, in
Section 4, block methods for VIDEs employing these block ODE solvers are
discussed, and in Section 5, numerical experiments are reported. The way of
construction is based on extremely simple tools: firstly, certain order-conditions are
imposed such that a number of parameters are left free, and secondly, a numerical
search over the free parameters is carried out to give the method the optimal stability
characteristics. So far, we did not succeed in developing more sophisticated search
techniques by analytical means.

2. PARALLEL BLOCK METHODS FOR ODES

In order to simplify the formulas, we present the derivations of the block
methods for scalar, autonomous ODEs. The extension of these methods to systems
of ODEzs, and therefore also to nonautonomous equations, is straightforward.
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The block methods studied in this paper are a direct generalization of the implicit
one-step method

2.1 Yn+1 =ayn+hbflyn) + hdfiyns1), n=0,1,..,

where & is the stepsize and y, an approximation to y(#,). By introducing block
vectors

22)  Ype1 =00 5 n k) €=l )Ty k=1,

where yp, ; denotes a numerical approximation to the exact solution value y(tp+c;h),
and assuming that (1.1) is a scalar equation, we can define the block method

(23) Yni1 =AYy + hBf(Yy) + hDf(Y 4 1),

where A, B and D are k-by-k matrices. Here we use the convention that for any given
vector v = (vj), f(v) denotes the vector with entries f(vj). This method can be
considered as the block analogue of (2.1). A characteristic of these methods is that,
unlike conventional block methods based on linear multistep methods, the block
point vector ¢ is allowed to have k—1 noninteger components. In order to start the
method, one needs the initial vector Y(, which requires, in general, as many starting
values as there are distinct values ¢j (j=1,...,k). Notice that the last component of
Y41 contains the step point value y,.1. Furthermore, we remark that, in general,
Yn,i %Ym,j» even if n+c;=m+c;j.

The method (2.3) is suitable for direct use on parallel computers if the matrix D
is diagonal, since such a form uncouples the various components as far as
implicitness is concerned; the corresponding methods will be called parallel block
methods. Using k processors, each processor has to evaluate a component of f(Y})
and to solve a system of equations whose dimension is that of the system of ODEs
(1.1). If Newton's method is used for solving the system of equations, then each
processor needs the Jacobian matrix / —h dj; gf/dy and its LU-decomposition. Either
the various processors have to compute themselves the data they need, or one may
consider the use of additional processors for computing the Jacobian matrices and
their LU-decompositions. Let us consider the second strategy. As soon as the
additional processors have completed an update of the matrix df/dy and computed the
LU-decompositions of the k matrices - h dj;j f/dy, then the first k processors can
replace their data by the new data. However, usually the computational job of
computing Jacobian matrices and LU-decompositions is so substantial that the speed
of updating may not be great enough. In such cases, the use of matrices D with equal
diagonal elements is recommendable, because then the Jacobian matrices I - h dj adffdy
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are all identical, so that only one instead of k decompositions are required. Therefore,
methods where D is of the form d-/, I being the identity matrix, have some
advantage.

If D is a full matrix, then the block method is not directly suitable for use on
parallel computers. However, (2.3) allows the application of an iteration process that
has a high degree of parallelism. This iteration method is of the one-level form

[1-n céf%)-]wﬂ) ~ hEfY(+V) =
AYp +hBf(Y,) - h ng%yy,i YU) + n[D - E] fiY()),

where C and E are suitable iteration matrices. There are several possibilities for
choosing these matrices in order to achieve parallelism and to preserve stability. We
mention:

(i) Cdiagonal and E=O (linear diagonal iteration),
(i) C=O0 and E diagonal (nonlinear diagonal iteration), and
(ili) C=D, E=0 combined with diagonalization of C (diagonalized Newton).

A survey of properties of diagonal iteration in the case where (2.3) corresponds to
Runge-Kutta methods can be found in [10]. The diagonalized Newton process was
proposed by Lubich [12]. In passing we remark, that one might also consider higher-
level iteration methods. For example, the ‘pipeline’ iteration proposed by Feldstein
[5] fits into the family of three-level iteration methods.

In a forthcoming paper, we will study the above iteration process if the matrix D
in (2.3) is a full matrix. In the present paper, we assume that D is diagonal.

The conditions for pth-order consistency for methods of the form (2.3) are
extremely simple and read (cf. [9])

24)  Cj=0, j=0,1,.,p,
with

Co=Ae—~e; C1:=A(c-e)+Be+De-c;
Cj:=A(c—e)/+j[B(c—e)/'1+ch'1]—cj, j=2,3,..,

where e denotes the vector with unit entries and where powers of vectors are meant to
be componentwise powers.

In order to compare the components of these vectors with the error constants
corresponding to conventional linear multistep methods, we introduce the normalized
error vectors [8]
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C.

2.5) g E;j :=j—!'m ,

where the division of vectors is meant component wise. When a linear k-step method
is written in the form (2.3) with ¢ = (=k+2,..., =2,—1, 0, 1)T, then the last component
of Ej equals the normalized error constant of the linear k-step method. Since these
block methods are in fact a composition of k£ conventional linear multistep methods,
the theory developed for the latter class of methods (see Henrici [8] or Hairer, Ngrsett
and Wanner [7]), is to a large extent also applicable in the case of block methods. In
particular, this theory can be used to determine the order of convergence of the block
methods, that is the behaviour of Y41 — Y(#,41), with Y(z,,+1 ):=(y(t,,+c1h),
Y(tptcoh),....y(ty+h ))T, for h — 0 and t,=tg+nh fixed (see also Cooper [4]).

3. STABILITY
The (linear) stability of block methods can be investigated by applying the
method to the test equation y'=Ay. This leads to a recursion of the form

(3.1 Ypi1 =M@) Yn, M) :=[I-zD]"[A +2zB), <z:=Ah.

M will be called the amplification matrix and its eigenvalues the amplification
factors. Here we observe that, by requiring the elements of the diagonal matrix D to
be positive, the matrix /—zD is nonsingular for all z on the negative real axis.
Therefore, in the sequel we will assume that the (diagonal) elements of D are
positive.

In our stability analysis we shall use the following result on the power of a
matrix N (cf., Varga [15, p. 65]):

(3.2) NN = O(n9~1[p(N)]?) as n — oo,

where |l - Il and p(N) are the spectral norm and radius of N and where all diagonal
submatrices of the Jordan normal form of N which have spectral radius p(N) are at
most g-by-q. If p(N) <1 or p(N)=g =1, then N is said to be power bounded.

Following the familiar stability definitions used for RK and LM methods, we
shall call the region where the amplification matrix M(z) is power bounded, the
stability region of the block method. If the stability region contains the origin, then
the method is called zero-stable. The region where lIM™l tends to zero will be called
the strong stability region. If the (strong) stability region of a block method contains
the left half plane, then the block method is called (strongly) A-stable; furthermore,
if the amplification matrix of an A-stable method has vanishing eigenvalues at
infinity, then the method is called L-stable.
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For some methods (i.e., the BDF methods) a less demanding definition of
stability is more appropriate. Therefore the notion of A(c)-stability has been
introduced The angle o defines a wedge in the left half plane and the method is stable
if z lies inside this wedge. This is, however, a rather crude way to describe the
stability region, since for the higher-order BDF methods the part of the left half
plane which is not included in the stability region is a small lobe near the imaginary
axis. To provide more detailed information on the stability region, we introduce two
additional parameters leading to the notion of A(e;, 3, 7)-stability:

Definition 3.1. A method is said to be A(c, B, y)-stable if

(i) its region of stability contains the infinite wedge {z: — a<m—arg(z)< o},
0< < m/2, and all points in the nonpositive halfplane with Izl > 3, and

(ii) 14y is the maximum value of the spectral radius of M(z) when z runs through
the region of instability lying in the nonpositive halfplane. []

Note that A(n/2, 0, 0)-stability implies A-stability. The degree of instability of
the method is measured by .

If we set A=D =1 and B =0 in (2.3), then the method reduces to a set of k
compietely uncoupled one-step methods of the Backward Euler type, each advancing
the solution from #,,—1+c;h to t,+c;h (i=1,2,....k). Evidently, these k formulas can
be efficiently implemented on a k-processor machine (in fact, they could equally well
run on k separate computers). Such methods have excellent stability properties (e.g.,
the property of L-stability), but are only of first order. However, by using full
matrices A and B, that is the k formulas of the block method share the same
information from the previous step, the order can be considerably increased. In the
next two subsections, we investigate for k=2 (‘two-dimensional block methods’) and
k=3 (‘three-dimensional block methods’) to what values the order can be raised while
preserving the favourable stability properties of Backward Euler (stability plots may
be found in [14]).

3.1. Two-dimensional block methods
First we consider the case k=2 and choose the coefficient matrices of the form

, ¢=(c,DT.

(a1 l-a _f b11 b12 d 0
(3.3) A= , B , D

a l-a “\ b2y b2 N0 &

Imposing the conditions for second-order consistency we can express the entries of
the matrix B in terms of the five free parameters c, a1, a2, d] and d:
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A (2d;: — c;
(342) b)) =%(1—c)aj+-c-12-((-1—l:—£ll, bjp=cj+(1-c)aj—bj1 —dj, j=1.2,

where cj=c and c2=1. The components Cj; of the vectors C; (i23) are given by
Cij=(1-3)(c= 1 aj+icildj+ Fcj(cj—2d) (c - 1) 2—cf, j=1,2.
An elementary calculation shows that C3; vanishes if

(34b)  aj= (C__Clﬁ [3 (c=1) (¢j-2d)) + 2 ¢; Bdjc))],

and that C4j also vanishes if, in addition,

c c—2

(34c) d1=2(c_+1)’ d2=—2—(—c-:—5 .

The characteristic equation of the amplification matrix in (3.1) can be written in
the form

(35)  P(lz):=det[A+zB-{U-2zD)] =

o[ @1 b112-4(1-d12) l-aj+bi12z
e

ay+by1z 1—ap+boz— (1 -dyz)
We shall determine the z-region where this polynomial has its roots { within the
unit circle, that is, the region of strong stability. In addition, we should impose the
condition of zero-stability, i.e., the condition that the two eigenvalues ov=1 and
o=aj—ajp of A are on the unit disk those on the unit circle being simple, i.e.,

3.6) —-1<a;—-ax<1.

A further restriction on the range of the free parameters is obtained by imposing the
‘stability at infinity’ condition. By this we mean that the roots of the polynomial
P({,0) are on the unit disk (which is of course anyhow a necessary condition for A-
stability). By virtue of the Hurwitz-criterion we obtain (recall that di and dy are
assumed to be positive)

(3.7) | b11d2 + byody | <d1dy [d1dy + det(B)],  det(B) < d1da.
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3.1.1. Second-order methods. If we are satisfied with second-order accuracy, then we
may choose the free parameters a; and dj in (3.4a) such that the matrix B vanishes
while preserving the property of A-stability. For example, if c=0 then the method is
equivalent with the familiar two-step Backward Differentiation Formula generated by

0 1 00 0 O
(3.8) A= , B= , D= , ¢=(O,DT.
-1/3 4/3 00 0 273

3.1.2. Third-order methods. Third-order accuracy is achieved by choosing
C31=C32=0, leaving us with three free parameters for monitoring the stability of the
method. We find

c(c? -3¢ + 6dq) 3¢ + 12dy — 6¢cdp — 5
al = 3 9 a2= 3 9
(c-1) (c-1)
2 2
c*—2cd) — c4dy c—2cd] —d
(3.9) b1y = 3 , biog=—"7"
(c=1) (c=1)
2 —5dy—c +2cdy (c —2)2 —da(c? - 6¢ + 8)
ba1 = 3 » bao= 2 :
(c-1) (c—-1)

leaving ¢, d] and dj as the free parameters. Taking into account the conditions of
zero-stability and ‘stability at infinity’ (conditions (3.6) and (3.7)), we performed a
numerical search in the (c,d1,d7)-space. It turned out that the regions of A-stable
(c,dy,d2)-values are so small that A-stable points and strongly unstable points are
close together, that is, a small perturbation of these values causes the method to
violate the A-stability conditions. For example, the values

(3.100 ¢=00917387, d1=0.319523, dj=0.347067,

generate such a ‘marginally’ A-stable method. There is, however, an alternative
approach. It is easily verified that putting ap=C32=0 yields methods providing third-
order approximations at the step points #,, and second-order approximations at the
points t,+ch. It turns out that in the space of free parameters the regions of A-stable
methods are larger so that it is easier to find A-stable methods by a numerical search.
For example, we found the A-stable, third-order method
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. 147 161 7
_ 01 220 220 o © |
G A=(01)’ B=l 5o o5 |'P= 0 L3 ;€ =35 (21, 10)7
33 66 6

with the normalized error vectors E3=(0.19,0)T and E4 = (0.20,—0.017)T. The ampli-
fication factors at the origin equal 0 and 1, and the maximal amplification factor at
infinity is = 0.94.

3.1.3. Fourth-order methods. Fourth-order accuracy for both components is obtained
by choosing C31=C3p=C41 =Cyq2=0. Alternatively, replacing C41 =0 by ap =0,
reduces the order of the first component to 3, without affecting the order of the
second component. In both approaches we are left with one free parameter for
monitoring the stability of the method. Unfortunately, the stability regions of these
fourth-order methods are rather limited and do not even allow for A()-stability.
Thus, in the class (3.3) the fourth-order methods seem to be of no interest.

3.2. Three-dimensional block methods

For k=3 we expect to find A-stable methods of order four and we may hope for
A(o)-stable methods of order five. These two cases will be investigated in the
following subsections.

3.2.1. Fourth-order methods. Let us choose the matrix A such that ai3z=1-a;1 —ap,
i=1,2,3, so that C vanishes. The vectors Cj vanish for j=1, 2, 3, 4 if the entries
bjj and d; satisfy the linear systems
1 1 11 bi
c1-1 -1 0 ¢ bin
1=D? (=12 0 ¢ || bi3
=1 (1P 0 ¢ )\ 4
(3.12)
ci—ajl(c1—1) —aja(ca-1)
1
7 le? = ai(e1-1)2 - ajp(ca-1)?]
1 ,
3led = ain(e1=1)3 - ap(ca-1)%]

1
Tle —ain(e1-D* - ap(co-1)4]

i=1,2,3.
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This shows that there is a family of fourth-order block methods with eight free
parameters: a;1, a; (i=1,2,3), c1 and ¢3.

In order to ensure zero-stability, we require that the matrix A has its two parasitic
eigenvalues within the unit circle. Writing the characteristic equation of A in the
form (£ - 1)(¢2 + go¢ + rg) = 0, we find that we have zero-stability if

(3.13) Igol < ro+1, ro<1,

q0:=a3] +azz—ail —az,
ro:=ajlai2 +aziai2 + azzaz| —aj1a32 —az1a)2 — a24a3|.

Taking this constraint into account, we performed a numerical search over the free
parameters to obtain the A-stable method

1 3 .
(1 L 2 131303
2 2 2511 O 0
1 1 277
A=l 7 1 -3 | D= 23213 ’
13 0 16001
\—1 5 5‘ 29.32.5
(3.14)
51343 15161 294383
2“ 25.32‘11 211.32.5
B= -173 —467 —-1737
2:327 2337 23313
516069 54419 41927

211.32.7 25.33.5.7 211.33

with ¢ = (5, 13/4, 1)T and with normalized error vector E5=(0.13, 0.27, 0.075)T. Its
amplification factors at the origin are 0, 1/2 and 1, and at infinity the maximal
amplification factor is = 0.92.

The above direct search method is rather expensive, and therefore we also applied
an alternative approach where

m k
G15) DD lugij

=1 j=1

was minimized over the free parameters b;7 and d; (i=1, 2, 3), ¢ and c¢3. Here, k=3,
the gjj are control parameters and Wjj, j=1, ... ,k denote the eigenvalues of the
amplification matrix M(z;) defined in (3.1) with z; running through a set of m points
lying on the imaginary axis. In this way we found the A-stable method
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2820 -183 -1037 » 800
1 1
A= 1600 -7100 -3423 12123 |, D=5— g (8) ;)

-1020 -1607 4227
(3.16)

-398 -92 -177
o — - T
1098 272 507

with normalized error vector E5=(3.67,0.19, 0.064)T. At the origin the
amplification factors are 0.81, 0.81 and 1, and at infinity the maximal amplification
factor is = 0.37.

3.2.2. Fifth-order methods. Along the same lines as we constructed the fourth-order
method (3.16), we proceeded with the fifth-order case. Now only five free parameters
are available, say d; (i=1, 2, 3), ¢1 and c9. Imposing the constraint (3.13), we found a
few A(o, B, 7)-stable methods which may be considered as A-stable in most practical
applications.

We mention the A(a, B, v)-stable method with o = 89.9988°, §=0.16 and
Y= 26106 generated by

—.37354856915573 1.3772028209449 -.0036542517891531
A= .45636214490330 .58957191150098 -.045934056404276 |,
—71.558907928027 69.945110840701 2.6137970873262

—.089579683013023 —.020791477924637 .0023118793010643
(3.17) B=| .037434812789650 .78549538208108 .024702269787981
—18.279469309687 -29.674965823418 —1.6401568285440

261 0 0 -2.747
D=| 0 .581 0 |, e¢=|-2122]1,
0 0 .832 1

with normalized error vector Eg=(0.007,0.0038,—0.015)T. At the origin the
amplification factors are 0.92, 0.92, and 1, and at infinity the maximal amplification
factor is = 0.993.

Finally, we present the A(, B, y)-stable method with o = 89.98°, = 0.30 and
y=6.9-1075 generated by
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.58694824150708 —-.042737729478577 .45578948797150
A= 73.394943213338 2.5499812910344  -74.944924504372
1.3881897627759 —.0035265226034516 —.38466324017241

78434821208875  .023439431423946 .033345158796322
(3.18) B=| —30.332265183768 ~-1.5938561820999 -18.934741340575
~.012761141648945 .0022604702667178 —.092097195902230

57487 0 0 1.6153
D= 0 .83102 O , c=| 4.7871
0 0 2618 1

and with normalized error vector Eg= (0.004,-0.016,0.007)T. At the origin the
amplification factors are 0.88, 0.88 and 1, and at infinity the maximal amplification
factor is = 0.89.

3.3. Survey of method characteristics

We conclude with a survey of the parameters o, B and y characterizing the
stability regions of the block methods derived in this paper (see Definition 3.1) and
compare them with those of the BDFs (details about the BDF methods can be found
in [6]). In Table 3.1 these values are listed (an ‘*’ in the ¥-column means that the
corresponding value is not relevant). In addition, we give the normalized error vectors
defined in (2.5) of all methods. For a uniform presentation, we first formulated the
BDFs as block methods. We recall that a k-step BDF method can be cast in the form
(2.3) with block point vector ¢ = (2—k, ..., -1, 0, DT.

Finally, we remark that a k-step, kth-order BDF requires k starting values,
independent of its formulation, whereas the block methods of this paper need only 2
(for p=3) or 3 (for p=4,5) starting values.

Table 3.1. Normalized error vectors and values of o, 8 and 7.

Method Order p E," o B y

BDF3 3 0,0, 1/4) 88.4° 1.94 0.046
(3.11) 3 (0.20,-0.017) 90° 0 *

BDF4 4 0,0,0, 1/5) 73.2° 4.72 0.191
3.14) 4 (0.13,0.27,0.075) 9%0° 0 *

(3.16) 4 (3.67,0.19, 0.064) 90° 0 *

BDFj5 5 0,0,0,0, 1/6) 51.8° 9.94 0.379
(3.17) 5 (0.007,0.0038,-0.015) >89.9° 0.16 0.0000026
(3.18) 5 (0.004,-0.016,0.007) >89.9° 0.30 0.000069
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4. APPLICATION TO VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Consider the initial value problem for VIDEs given by (1.2). The most
straightforward way of solving numerically this problem replaces the integral term in
(1.2) by a quadrature formula and integrates the resulting ODE by some ODE
integrator. This ‘direct quadrature’ method will be indicated by DQ method. The
stability of DQ methods strongly depends on the quadrature formula used for
approximating the integral term, particularly if the VIDE in (1.2) is stiff. For
example, DQ methods using Gregory quadrature formulas become easily unstable
(see, e.g., [1]).

A more stable approach is based on the approximation of the integral term by
converting it into a differential equation and by integrating this differential equation
by an ODE solver. For that purpose, we introduce the function

N

“4.1) Z(t,s) = I k(t, x, y(x)) dx,
Iy

and we write the initial value problem (1.2) in the form
ay(t
@2 2ogiym,200), v =y

The method now consists of the application of an ODE solver to the initial value
problem (4.2a), where the values of z(2,¢) needed by the ODE solver are obtained by
integrating the initial value problem

(4.2b) _aﬁg&ﬁl =k(t,5,y(s)), z(ttg) =0

from s=tq until s=¢. This method still belongs to the class of DQ methods, however,
it uses a special quadrature formula derived from an ODE solver. If the ODE solver is
an LM method (p,0), then the quadrature formula is called (p,o)-reducible (cf.
Matthys [13]). Similarly, we shall call the DQ method (p, 0)-reducible if both initiak
value problems (4.2a) and (4.2b) are solved by the same LM method (p,0), and (4, B,
D)-reducible if (4.2a) and (4.2b) are solved by the same block method (2.3) generated
by the matrices A, B and D.

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the
usual stability analysis of VIDE solvers (cf., e.g., Brunner and Lambert [2] and
Matthys [13]), we shall consider stability with respect to the basic test problem
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- t

@y Logman [ymax 0=y
fo

Using the representation (4.2) and writing z(7,2)=z(t), this problem can be represented

in the form
@) 2Ly en, =0 LD yo), 29)=0.

Application of the block method (2.3) to each of these equations yields the
recursions

Ypi1 =AYy + hB[EY, + NZp) + hD[EY 4 + NZ 4],
4.5)
Zn+1 =AZn + hBYn + hDYn+]

We shall show that (4.5) is algebraically equivalent with the recursion obtained by
applying (2.3) to the system (4.4). Writing (4.4) in the form

(4.4 L= M \uw, uw=("?),
dt 10 (1)

the block method (2.3) takes the form

Upr1=AcUp+hBofiUy)+hDo flUpy1), Upy1:=0On1:2n,15 - 3 Ynk Zn,k)T’
4.5)
fUns1) = Eyn 1N 20,1, Y015 5 EYn kN 2n ko Y k) s

with yp, j and z,, ; denoting the components of the (column) vectors Y11 and Z;4 |
used in (4.5), and where the tensor products A °cU, and B °© f{U,) are defined
according to

AoUp=(a1Yp,a1Zy; ... ;ap¥n, arZ,)7,
4.6)
Bo fiUy):= (bl(é Y4 Zp),b1Yy; .. s bi(E Y41 Z,y), by Y )T,

with a; and b; denoting the jth row vectors of the matrices A and B, respectively. It
is now readily verified that by reordering the equations occurring in (4.5') such that
the first, third, fifth, ... equations come first and the second, fourth, sixth, ...
equations come next, we obtain the recursions (4.5).
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Hence, if A and u denote the eigenvalues of the Jacobian matrix associated with
(4.4"), then the recursion (4.5) is stable if both A and hu are in the stability region
of the block method (2.3). The corresponding region of (h&, h21) = (A + hyt, — h2Ap)-
values will be called the stability region of the (A, B, D)-reducible DQ method.
Furthermore, if this stability region contains the set {(k&, h2n): £<0, n<0}, then
the DQ method is called Ag-stable. The preceding considerations can be summarized
in the following theorem which generalizes a result for LM methods originally given
by Brunner and Lambert [2].

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by
the matrices A, B and D, and let A and u be defined by A+ u=¢§, Au=-1. Then the
set {(h &, h2 n): hAe S, hue S} defines the region of stability of the (4, B, D)-
reducible DQ method. i}

From this theorem it follows that the (A, B, D)-reducible DQ method is Ag-stable
if, and only if, the generating block method (A, B, D) is A-stable. Thus, the use of
the block methods constructed in this paper avoids the so-called ‘second Dahlquist
barrier’ which applies to Ao;stable (p, 0)-reducible DQ methods for VIDEs (cf. [13,
Theorem 57).

5. NUMERICAL EXPERIMENTS
5.1. Accuracy test

To verify the order of the various methods we integrated the test problem
proposed by Kaps [11]:

dy

—h=-@+eyi+el 002 nO)=1,
(5.1

dys

% = Y1 y2(1+y2), »0)=1,

with 0 < ¢ < T. The exact solution is given by y{=exp(-2¢) and yp=exp(-?) for all
values of the parameter €. In Table 5.1, we have listed the values A, where A denotes
the number of correct decimal digits at the endpoint (i.e., we write the maximum
norm of the error at =T in the form IO‘A). In all experiments the theoretical order of
the method is shown for sufficiently small values of A (if p is the order of the
method, then, on halving the step size, the value of A should increase by = 0.3 p).
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Table 5.1. Values of A for problem (5.1) with 7=1, =108,

Method p h=1/4  h=1/8 h=1/16 h=1/32 h=1/64 h=1/128
BDF3 3 2.8 3.7 4.6 5.5 6.5 7.4
G113 2.8 3.6 4.4 5.2 6.1 7.0
BDFs 4 3.4 4.7 5.9 7.1 8.4 9.6
(314) 4 3.8 5.2 9.5 7.9 89  10.0
(3.16) 4 3.1 3.9 4.8 5.9 7.1 8.2
BDFs 5 4.0 5.6 72 8.7 102 120
G175 2.6 4.0 5.5 7.3 9.2 103
(3.18) 5 4.7 5.4 6.4 7.7 9.2  10.1

5.2. Stability test
We tested the stability of the methods by integrating a problem in which the
Jacobian matrix has purely imaginary eigenvalues:

5.2) -‘3;—1=—ay2+(1+a)cos(t), %:ayl = (1 + ) sin(?), 0<t<T,
with initial conditions y1(0)=0, y2(0)=1 and exact solution y1=sin(#) and yy=cos(¢)
for all values of the parameter o.

In Table 5.2, the results are listed for 7=100. Values of A corresponding to
stepsizes that are theoretically unstable are in boldface and overflow is indicated by *.
The unstable results of the BDFs are in agreement with their regions of instability
indicated in Table 3.1 (the phenomenon that BDF5 becomes stable again for
sufficiently small # is due to the fact that its imaginary interval of instability is
given by i[0.71, 9.94]). ]

Table 5.2. Values of A for problem (5.2) with T=100, a=10.

Method p h=4/5 h=2/5 h=1/5 h=1/10  h=1/20  h=1/40

BDF; 3 2.0 2.9 39 X « 4.9
G.11) 3 2.1 2.8 3.4 4.0 4.6 5.3
BDF; 4 2.2 * * * 2.9 8.2
(.14) 4 2.8 4.0 4.9 5.8 6.8 8.0
(3.16) 4 1.6 2.7 3.8 4.9 5.8 6.8
BDFs 5 -0.1 * « * 8.5 10.3
G175 1.2 2.0 3.4 4.7 6.2 7.6

W

(3.18) 2.9 3.9 5.1 6.4 7.6 8.6
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Next, we show that the ‘almost’ A-stable fifth-order methods (3.17) and (3.18)
behave as A-stable methods in practice. We performed experiments for «=1 and ov=4
with A=1/8: for or=1 both integration processes are theoretically unstable, and for
a=4 the processes are stable. In Table 5.3 the results are listed for increasing length
of the integration interval: these results clearly show that both methods perform
perfectly stably for ac=1 and the T-values chosen.

Table 5.3. Values of A for problem (5.2) for h=1/8.

Method a=1: theoretically unstable a=4: theoretically stable
T=10  T=100 T=1000 T=10  T=100 T=1000

(3.17) 3.6 3.8 3.6 4.0 3.9 3.9

(3.18) 4.5 4.3 4.8 5.4 5.4 5.4

5.3. Volterra integro-differential equation
Consider the initial value problem

’ t
dy)  l+ou(1+)? o (242r ” B
@~ (14 ) ln( 24t/ 7Y 0-[ 1+(1+8)y(x)’ 2 =73,

(5.3)

with 2<7<T and a>0. The exact solution is given by y()=1/(1+1). For ot=1, this
problem has been discussed in [2]. From the expressions

2 (2 ok __ L4t
&= A Y1) 1"( 2+ 1T dy ~ « (1+(1+8)y)? °

it follows that (5.3) is stable if £>0 and y > 0. Furthermore, we see that in the
vicinity of the exact solution we have &= — o(1+£)2 and N =— a(1+t), so that the
stiffness of this problem increases with & and ¢. For example, if «=7T=10, then an
Ap-stable method is highly desirable.

Table 5.4 lists results for various methods and values of the stepsize h. Notice
that the results for the stiff problem (o= 10) are not less accurate (even more
accurate) than the results for the nonstiff problem (o= 1), showing that stiffness does
not cause any problem. Similar to the ODE case (cf. Table 5.1), the method (3.14)
performs very accurately, whereas (3.17) is significantly less accurate.
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Table 5.4. Values of A for problem (5.3) at T=10.

a=1 ' a=10
Method Orderp h=1/2 h=1/4 h=1/8 h=1/2 h=1/4  h=1/8
BDF3 3 5.7 6.8 7.9 6.0 6.9 7.8
3.1D) 3 5.5 6.5 7.3 5.4 6.5 7.3
BDF4 4 5.4 7.0 8.3 6.5 8.1 9.4
(3.14) 4 6.0 8.3 9.1 6.4 8.6 10.9
(3.16) 4 5.2 6.2 7.2 6.7 7.9 8.5
BDF5 5 5.1 7.2 8.9 6.1 8.2 9.9
(3.17) 5 2.5 5.2 7.2 2.9 5.3 7.5
(3.18) 5 6.0 6.9 8.2 6.8 8.5 9.3

5.4. Performance test on the ALLIANT FX/4

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by
integrating the problem (5.1) of Kaps. In Table 5.5, we have listed timings on P
processors and the rate of efficiency of a k-processor method, i.e., the execution time
on one processor divided by k times the execution time on k processors. These
results show that the gain factor is close to its optimal value.

Table 5.5. Timings (in seconds) for problem (5.1) at =1 with e=108 and h=1/256.

method & P=1 P=2 P=3 P=A Efficiency rate
3.11) 2 0.43 0.23 0.23 0.93
(3.18) 3 0.66 0.45 0.25 0.25 0.88

From this table we conclude that the performance is close to its optimum, that
is, the gain factor obtained for a k-processor method is almost equal to k. Table 5.5
also lists timings in cases where methods have the disposal of one more processor
(i.e., k+1) than the number (i.e., k) they are designed for. We see that this additional
processor is not utilized, since the k processors (concurrently) solve the k implicit
relations and the extra processor is idle. As mentioned before, it could have been
exploited for updating the Jacobian matrix, but in this test we did not include such a
technique.

It should be noted that the efficiency rate is slightly dependent on implementation
strategies, such as how accurately the nonlinear systems are solved. For example, it
may happen that the first (or any other) implicit relation requires less Newton
iterations than the other implicit relations (e.g., because of a more accurate initial
approximation); in such cases this first processor will be idle for some time, which
of course, has a bad influence on the efficiency rate.
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Abstract. This paper investigates diagonally implicit Runge-Kutta methods in which
the implicit relations can be solved in parallel and are singly diagonal-implicit on
each processor. The algorithms are based on diagonally implicit iteration of fully
implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such
a way that the resulting algorithm is A(o)-stable or L(c)-stable with o equal or very
close to n/2. In this way, highly stable, singly diagonal-implicit Runge-Kutta
methods of orders up to 10 can be constructed. Because of the iterative nature of the
methods, embedded formulas of lower orders are automatically available allowing a
strategy for varying the stepsize and the order.
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1. INTRODUCTION

In Ngrsett and Simonsen [21], Jackson and Ngrsett [16], and Iserles and Ngrsett
[15], it was observed that on parallel computers, predictor-corrector methods (PC
methods) based on implicit Runge-Kutta (RK) correctors are particularly attractive
for solving initial value problems for the system of ordinary differential equations
(ODEs)

an B )

On sequential computers, implicit RK methods are seldom used as corrector
equation, because of the large number of implicit relations to be solved when using
these correctors. However, matters are different when parallel computers are used,
since PC methods, being a form of functional iteration, possess a high degree of
parallelism. First results based on the PC approach were reported by Lie [18], who
uses a fourth-order, two-stage Gauss-Legendre corrector and a third-order Hermite
extrapolation predictor. In [12], these ‘parallel, iterated’ RK methods (which we shall
briefly call PIRK methods) have been investigated for a variety of predictor methods
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‘and it was concluded that, from an implementational point of view, one-step
predictors are preferable. Related PC methods were studied by Tam in his thesis [24].
In particular, families of methods were constructed with elliptically shaped stability
regions. An analysis of the error behaviour of a very general class of PC methods,
including all methods indicated above, was given by Burrage [2].

An attractive feature of PIRK methods is the availability of embedded formulas of
lower orders allowing a strategy for step and order variation without additional costs.
On the other hand, owing to their explicit character, PIRK methods have rather
limited regions of stability and are therefore only suitable for integrating nonstiff
systems. '

In this paper, we shall be interested in integrating stiff systems, and we will
investigate the possibility of constructing methods that are more stable than PIRK
methods by diagonally implicit iteration of fully implicit RK methods. After a fixed
number of iterations, such methods belong to the class of DIRK methods, and are
therefore essentially different from the explicit PIRK methods studied in the
aforementioned papers. DIRK methods resulting from diagonally implicit iteration
have the property that effectively they are singly diagonal-implicit RK (SDIRK)
methods when run on parallel computers. Furthermore, like the PIRK methods, they
possess embedded formulas of lower order which make them an ideal starting point
for developing variable order/variable step codes. We shall call the ‘Parallel,
Diagonal-implicitly Iterated’ RK methods PDIRK methods.

In the literature, various (S)DIRK methods were published for the integration of
stiff systems of ODEs. The most recent contributions are the paralle] DIRK methods
of Iserles and Ngrsett [15], which are, like PDIRK methods, effectively of SDIRK-
type on multi-processor computers (these methods are the first and, as far as we
know, the only parallel DIRK methods published in the literature). However, the
order of most DIRK methods is limited to p =4 (the only DIRK methods exceeding
this order are those of Cooper and Sayfy [5]). By diagonal iteration of implicit RK
methods it is possible to construct highly stable PDIRK methods of orders up to 10.

Table 1.1 presents the characteristics of a number of SDIRK methods from the
literature together with the most stable PDIRK methods of order p >4 derived in the
present paper. In this table, DIRKII denotes the Type II methods of Iserles and
Ngrsett [15], pemb indicates that embedded methods of orders < pemp are available
and s denotes the number of stages of the underlying corrector in the PDIRK
methods (by choosing Gauss-Legendre or Radau IIA correctors we may set
s = | (p+1)/2], where | -] denotes the integer part function). Furthermore, the number
of sequential stages is defined as the number of implicit systems to be solved on
each processor in each step. Finally, we introduce the concept of L2-stabi1ity, which
means that the method possesses an A-acceptable stability function for which the
degree of the numerator is two less than the degree of the denominator.
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Table 1.1. (S)DIRK and PDIRK methods.

Seq. Proces-
Method Order  Stages Stages sors Stability Pemb  Reference
SDIRK p=3 p-1 p-1 1 A-stable 1 [19]
SDIRK p=3 p-1 p-l 1  Strongly A-stable 1 [6]
SDIRK p=4 p-1 p-1 1 A-stable 1 [6], [1]
SDIRK p=5,6 5 5 1 A-stable 1 [5]
SDIRK p= p p 1 S-stable p-1 [4]
SDIRK p= p+l  p+l 1 L-stable p-1 [22]
SDIRK p=4 p+l  p+l 1 S-stable p-1 [4]
DIRKII p=4 p p—2 2 L-stable p-1 [15]
PDIRK p=5 3(p-1) p-1 3 Strongly A-stable p-1 §3.2
PDIRK p=6 3p-1) p-1 3 Strongly A(o)-stable p-1 § 3.2, >89.9°
PDIRK p=7 4p-1) p-1 4 A(0)-stable p-1 §3.2, a>89.9°
PDIRK p<4,p=6 s(p-1) p-1 = A-stable p-1 § 3.1
PDIRK p<6,p=8 sp ' p s L-stable p—1 § 3.1
PDIRK p<8,p=10 s(p+1) p+1 = L2-stable p-1 § 3.1

This table shows that the PDIRK methods constructed in this paper have the
advantages of high order, good stability and embedded formulas, but the disadvantage
of quite a large number of sequential stages per step. For example, in spite of its
inherent parallelism, the number of sequential stages per step of an L2-stable,
eighth-order PDIRK method is 3 times as large as that of the A-stable, fourth-order
SDIRK method of Crouzeix [6] and Alexander [1], and 9 times as large as that of the
BDF methods. However, due to the iterative nature of PDIRK methods, the ‘later’
stages are relatively cheap because there are accurate initial iterates available for
solving the associated implicit relations. This feature, and in particular their high
order and unconditional stability, make PDIRK methods a promising starting point
to base a code on. This is confirmed by a few preliminary experiments reported in
Section 4, where we show by means of two ‘difficult’ test problems taken from the
literature, that a provisional implementation of an L2—stable, seventh-order, four-
processor PDIRK method is already far superior to the SDIRK code SIMPLE of
Ngrsett and Thomsen [22] and at least competitive with the BDF code LSODE of
Hindmarsh [11]. The development of a more sophisticated code based on PDIRK-
type methods and much more extensive comparisons with existing sequential codes
on a significant class of stiff problems will be subject of our future research and
should provide more reliable data on the efficiency of PDIRK-based codes.
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2. PDIRK METHODS

For notational convenience, we shall assume in the following that the equation
(1.1) is a scalar equation. However, all considerations below are straightforwardly
extended to systems of ODEs, and therefore, also to nonautonomous equations. Our
starting point is the s-stage, implicit, one-step RK method

(2.1a) Yn+1 =Yn + hbBTA(Y),

where Y is implicitly defined by the set of algebraic equations
(2.1b) Y=ye+hAf(Y).

Here, A is the integration step, e is a column vector of dimension s with unit entries,
b is an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the
convention that for any given vector v=(v)), f{v) denotes the vector with entries f{v)).

By iterating, say m times, the equation for Y by diagonally implicit iteration, we
obtain the method

22) YU =yue+h [A-DIfAYU-V)+hD YD), Y=y, +hbTfYU)),

where j=1,2, ... ,m, and D is a diagonal matrix with arbitrary, nonnegative diagonal
elements and ¥(O) denotes an initial approximation to the vector Y. Notice that after
each iteration the current approximation y(/) to y,41 can be computed. As we shall
see in Section 2.1, the order of these approximations increases by 1 in each iteration.
Therefore, the mth iterate will be used to continue the integration process and the
preceding iterates can be used for error control.

Since the matrix D is of diagonal form, the s components of each vector ¥() can
be computed in parallel, provided that s processors are available. Thus, effectively,
we obtain a method which requires per integration step the computational time
needed for computing one component of the initial approximation ¥(9 and the
successive solution of m equations. In the following, we always assume that we
have s processors at our disposal and we shall speak about computational effort per
step when we mean the computational time required per step if s processors are
available. We shall call the method providing Y(O) the predictor method and (2.1) the
corrector method.

There are several possibilities for choosing the matrix D. The most simple
choice sets D = O to obtain an explicit iteration method (fixed point or functional
iteration). This approach was followed in, e.g., Ngrsett and Simonsen [21], in Lie
[18], and in van der Houwen and Sommeijer [12]. These papers deal with the
iteration of implicit methods for solving nonstiff ODEs. As stated in the
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introduction, we are aiming at stiff ODEs, which requires the use of matrices D # O.
One péssibility of exploiting nonzero matrices D is improving the rate of
convergence of the iteration process. For example, by identifying the diagonal
elements of D with those of A we obtain the nonlinear Jacobi iteration method.
Alternatively, one may choose D such that the stability region of the iterated method
rapidly converges to that of the corrector (cf. [13]). In this paper, however, we
choose D such that we have for a prescribed number of iterations favourable stability
characteristics, such as A-stability or L-stability (as far as we know, this approach
has not yet been investigated in the literature). We restrict our considerations to the
case where the predictor method is itself an RK-type method. Hence, by performing
m iterations with (2.2) and by accepting y(") as the final approximation to yp41, we
obtain an RK method with a fixed number of stages. Furthermore, we assume that
the predictor is explicit or at most diagonally implicit. Then, the resulting parallel
RK method belongs to the class of DIRK methods (Diagonally Implicit RK
methods), and will be briefly called the PDIRK method.

2.1. Order of PDIRK methods

Assuming that the iteration process (2.2) converges as m —> oo, the values y(J)
approximate the solution of the corrector method (2.1), i.e., y(*)=y,,1. The
approximation y(/) differs from y(*>) by the amount

Y =y =) — yp g =m BT [fY0)) - f(¥)].

If the right-hand side function is sufficiently smooth, then the iteration error
Y() - Y satisfies the approximate recursion

YO -Y=nI h-.l; D] %[A DI[Y | Y] =
w(ii-nZLpr1Lia-p1Yiyo -y
so that

v eyt Lpr(—n L o124 — 1Y 7O -
@3y =ypr =t Lpr(u-n ot Lia - 01) "1y O - ).

Let the predictor be of order g, i.e.,
24)  YO-yv=0h) = yO -y, =0,

then :
Y™ = ypi1 = O(ha+mH),

so that y("™) has (global) order g+m.
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In this paper, we shall study PDIRK methods with predictors of the form
(2.5) YO :=y,e+ hEf(y,e) + hBAYD).

Because this predictor is implicit, we will choose the matrix B of diagonal form in
order to exploit parallelism. Since

YO Y = yne+hEfiyne) + hBflyne + hEf(yne) + h Bf(yne)) -

yne —hAflyne + hAf(yne)) + 0(h3),

it is easily verified that the predictor (2.5) is always first-order accurate; it becomes
of order two if (E + B—A) e vanishes and of order three if, in addition, (BA —A2) e
vanishes.

By defining y,+1 according to

(26)  yn+1:=y(M =y, + hBTfY(M)),

the PDIRK method is completely determined. For this method, we summarize the
above order considerations in the following theorem:

Theorem 2.1. Let the corrector be of order p*; then the approximation yp41
generated by the PDIRK method {(2.5), (2.2), (2.6)} has order min{p*, m+1} for all
matrices B and E, order min{p*, m+2} if (E+B)e = Ae, and order min{p*, m+3} if, in
addition, BAe=A2e. ]

We remark that correctors of any order are explicitly available. Correctors of any
even order p* are provided by the p*/2-stage Gauss-Legendre methods and correctors
of any odd order p* are provided by the (p*+1)/2-stage Radau methods.

2.2. Stiffly accurate PDIRK methods

As was discussed by Alexander [1], when integrating stiff equations it may be
advantageous to use RK methods {A, b} of which bT equals the last row of 4, i.e.,
bT=e;TA, where s is the number of stages of the RK method. Such RK methods are
termed stiffly accurate. Therefore, it is of interest to look for PDIRK methods
possessing the property of stiff accuracy. Formally, we can associate with any
PDIRK method a new PDIRK method possessing the property of stiff accuracy,
simply by replacing (2.6) with

Q7))  ype1=egTYM),
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Of courrse, this only yields a feasible method if the last component of the vector
y(m) pi‘ovides an approximation to y,41. For example, this is true if the corrector
itself is stiffly accurate, i.e., bT=e;TA. We shall call the two versions corresponding
to (2.6) and (2.7) PDIRK methods of Type I and II, and denote them by PDIRK! and
PDIRKI], respectively. Thus,

Type 1 :PDIRK method {(2.5), (2.2), (2.6)}
" Type II : PDIRK method {(2.5), (2.2), (2.7)}.

The following theorem is the analogue of Theorem 2.1:

Theorem 2.2. Let the corrector be stiffly accurate (bT=e;TA) and be of order p*; then
the approximation y, generated by the PDIRK!!I method is also stiffly accurate,
and has order min{p*, m} for all matrices B and E, order min{p*, m+1} if
(E+B)e = Ae, and order min{p*, m+2} if, in addition, BAe =AZe. 0

2.3. Various types of PDIRK methods and their Butcher arrays

Given the generating RK method (corrector) {A, b} defined by (2.1), we shall
investigate three special families of PDIRK methods, either of Type I or of Type II,
which differ from each other by the way in which the predictor is defined, i.e., in
choosing the matrices B and E. Let O denote the s-by-s matrix with zero entries,
then we distinguish:

Type A : Last-step-value predictor (E=B=0) Y(© .= Yne .
Type B : Backward Euler predictor (E=0,B=D) Y :=y e + h DY),
Type C : Theta method predictor (B=D) YO = Yne +hEf(yne)+hDf{ Y(0).

Notice that the matrix B either vanishes or is chosen equal to D. Although, in
general, B and D may be different (diagonal) matrices, the particular choice B =D has
advantages with respect to the implementation of the method. Typically for stiff
equations, the implicit relations in which the matrix D =diag(d;, d5,..., ds) is involved,
will be solved by some form of Newton iteration, which requires (in the case of
systems of ODEs) the LU-decomposition of the matrices I—d; h df/dy. Clearly, if
B =D then these decompositions can also be used in solving the predictor (see also
the discussion below). In the remainder of this paper, the analysis is performed in
terms of a general matrix B and concrete results are only specified for B=0 or B=D.

For future reference, we specify the various PDIRK! families of methods in terms
of their Butcher arrays and give the corresponding orders of accuracy p!:
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Type IA:

Type IB:

Type IC:

D#0: pl=min{p*, m+1}

j=0 o

j=1 |A-D D

j=2 O A-D D

j=3 O O AD D

jsm | 0 . . . 0 A-D D
or . . . 0T oT T

D #0: pl=min{p*,m+1}

D :=diag(Ae): p'=min{p*, m+2}

j=0 D

j=1 |A-D D

j=2 O A-D D

Jj=3 O O A-D D

j=m o . . . O A-D D
or . . . 0T 0T BT

D#0O,E#O0: pl'=min{p*, m+1}

D :=diag(Ae—Ee), E + O: pI = min{p*, m+2}

D :=diag(Ae — Ee), DAe = A2e:  p! = min{p*, m+3}

0

j=0 E D

j=1 O A-D D

j=2 | o o0 A-D D

j=m (0] . . . O A-D D
or . . . 0T 0T BT




107

In these arrays, 0 denotes the s-dimensional nullvector. Type II versions are
obtained by defining y,+1 by means of (2.7) instead of by (2.6), and, if the weights
of the corrector satisfy bT=e,TA, then by virtue of Theorem 2.2, we may replace p!
by p!l and m by m—1. Notice that the b-vector is not actually needed if the algorithm
is based on Type II methods. Furthermore, we remark that methods of Type B.2 are
completely determined by the generating corrector, and that those of Type C.3
prescribe the matrix D and the row sums of the matrix E.

As already observed, PDIRK methods all belong to the class of DIRK methods
(since the name DIRK is not consistently used in the literature, we remark that we
shall call an RK method of DIRK type if the strict upper triangular part of its
Butcher tableau vanishes). Moreover, the ith processor (i=1,2,...,s) is faced with
solving a sequence of implicit relations in each of which the decomposition of the
matrix I—d;h df/dy is required (in case of systems of ODEs). Since this
decomposition can be used in all m iterations in (2.2), we shall say that PDIRK
methods are singly diagonally implicit RK methods (SDIRK methods). Here we
remark that this terminology is often reserved for methods in which all stages are
implicit with the same diagonal entry in their Butcher array. However, the zero
diagonal entries in PDIRK methods of the Types A and C (originating from B=0) do
not exclude these methods from the class of SDIRK methods, since these zeros mean
that f{y,,) has to be evaluated prior to the iteration process. Because the bulk of the
computational effort per step consists in solving the implicit relations, the costs of
this explicit stage are relatively negligible.

Therefore, taking parallelism into account, we shall say that PDIRK methods
require k sequential stages if each processor has to solve k implicit relations per step.
Thus, Type A methods require m sequential stages, whereas for Type B and Type C
methods this number is given by m+1.

Finally, we observe that if the diagonal matrix D has equal diagonal entries, then
all processors need the same LU-decomposed matrix in their solution processes. In
such cases, this decomposition, as well as the evaluation of the Jacobian matrix
df/dy, may be performed by an additional processor, providing a ‘fresh’
decomposition for all processors as soon as it is available.

3. STABILITY
Applying the PDIRK method to the test equation

GD Y=k,
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yields a relation of the form
Yn+1 = Ru(2yn,

where z:=Ah and R,,(z) is a rational function, the so-called stability function. The
stability functions corresponding to PDIRK! and PDIRK!! methods will be denoted
by le(z) and Rum(z), respectively. They can be directly derived from the Butcher
arrays by using the familiar ‘determinant formula’ (cf., e.g., [7, p.72]). However, the
dimension of these arrays is usually so high that the evaluation of the determinants
is rather tedious, even for small values of the number of iterations m. Therefore, we
shall derive these stability functions by alternative techniques.

From (2.6) and (2.7) we see that the stability functions are respectively
determined by

B2 ynet =yn+2bTYM =RL @y, and  ypi =T YO = R 2y,
In order to derive an expression for ¥(™) we write

YU) = (I-zDI"1Qjype,
where the matrix Q; follows from

YU) = [I-zD1! [yne +z[A - DIYU-V)] =
(1 - zD)! [yye +2[A = DI - zD11Q)_1yne].

Introducing the matrix function
Z=2@) =z[A- D)l -zD]"!,
we find that Q; satisfies the recursion
Qo=[I-zDII-zB) \[I +2E],  Qj=1+2Qj1. j=1.
Hence, the stability functions are given by
RUn(2) = 1 +2T(1 - 2D1"' Qu(e,  RW(2) = €Tl — 2D 1 Qpy(2e,

(3.3)
Om=0m@) =1+Z+Z2+ ...+ 7" 4 ZM[] — zD\[I —zB]"\[I + zE].
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We shall separately consider the case where the diagonal matrices B and D have
constant diagonal elements, and the case where the matrices B and D are arbitrary
diagonal matrices.

3.1. PDIRK methods with constant diagonal elements

First, we consider the effect of setting D=d'I on the attainable order of those
PDIRK methods which already impose conditions on the matrix D. Assuming that
the generating corrector always satisfies the condition Ae=c, we find, according to the
specification of PDIRK methods in Section 2.3, that

Type B.2: D = diag(Ae) = de =c,
Type C.3: - DAe = AZe = dc =Ac.

By observing that third-order correctors require that bTe=1, bTc=1/2, bTAc=1/6 and
bTc2=1/3, we see that PDIRK methods of Type B.2 cannot satisfy these conditions,
so that their order is limited to p*=2, which is obtained for d=1/2. A necessary
condition for Type C.3 methods to satisfy these third-order conditions requires d=1/3.
However, the fourth-order condition bTA2¢ = 1/24 cannot be satisfied, so that the
order of Type.C.3 methods is limited to p*=3. Obviously, we are not interested in
such low-order methods. Furthermore, as will be shown below, we shall exclude
methods of Type C.1, because the number of sequential stages is not optimal with
respect to the order p. Thus, in this section we shall concentrate on PDIRK methods
of Type A.1, Type B.1 and Type C.2.

Next, we return to the stability functions (3.3). For B=b-I and D=d-I the matrix
Om(2) can be written as

Np(z)
(1 = bz)(1 — dz)™1

Om(z) =

’

where Ny,(z) is a polynomial in z with matrix-valued coefficients; (3.3) becomes

BTN y(2)e e;TN,(2)e
4 L (=1 - M) = ——
GO = T a—ar O g —an

This representation shows that both stability functions are of the form

r

(35a) R@:=(1-doyIP(d), Pd) =, cj(dzy,
j=0
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where the coefficients c;j depend on g and d (recall that either b=0 or b=d). For future
reference, it is convenient to specify the values of r and g for the various types of
methods. In Table 3.1 these values are listed for general values of d.

Table 3.1. Values of r and ¢ in the stability function (3.5a).

Type 1A B IC A 1B Inc
r= m+1l  m+1 m+2 m m m+1
q= m m+1 m+1 m m+1 m+1

For an arbitrary given value of d the order of consistency of the stability function
(3.5a) cannot exceed r, hence, by choosing m such that the order p of the PDIRK
method equals r, we achieve that the number of sequential stages is minimal with
respect to the order p.

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The following
theorem defines an explicit representation of the stability function.

Theorem 3.1. Let p be the order of the method and let m be such that r=p; then the
coefficients of (3.5a) are given by

q (_l)]—l . ("l)l

i=0
where j=g+l1,g+2,..,p,and 0! :=1.

Proof. Since it is assumed that the method is of order p we necessarily have
R(z)=exp(z)+0(z’*1). By expanding the function (1 —dz)4 exp(z) in a Taylor series at
z=0 and by equating corresponding coefficients in this expansion and in the
polynomial P(z), defined in (3.5a), we can find the first p+1 coefficients of P. Hence,
all coefficients of P are uniquely determined and are given by (3.5b) (see also Ngrsett
[19] and Butcher [3, p. 246] for expressions in terms of derivatives of Laguerre
polynomials). []

Notice that the condition r=p excludes methods of Type C.1, because for Type I
and Type II variants the maximal order is m+1 and m, respectively, which is one
lower than the corresponding value of r. As a consequence, for methods of Type C
with stability functions of the form (3.5), the order should be increased by one,
which is obtained by requiring the matrix E to satisfy the condition Fe = Ae — de.
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By-means of Theorem 3.1 the stability analysis is now rather straightforward.
Following Ngrsett [20] and Butcher [3], we write u=y2 and define the so-called E-
polynomial

E@) =11 -iy)a2[1 - IRGy/a)I2] = (1 - iy)9I? - |PGiy)l?
= (lv +u) —[co— cou + cqu® — ... 12— uleq — c3u + csu? — ... 2.
From the condition R(z)=exp(z)+0(zP*) it follows that | R(iy/d) [2=1+0(y P*1), so

that E(y2)=0(y1’+1). Hence, all terms of E(yz) of degree less than p+1 in y vanish,
so that

q
Euw)= z ej W, ej =ej(d) = (,q) - Cj2 -2 2 (-1)¢ Cj-i Cj+i
J=LpI2+1 i=1

with ¢; := 0if j>p or j<O0.

Because of the maximum principle, we have A-stability if | R(iy) | is bounded by 1
for all real y, so that the method is A-stable if, and only if, E(u) is nonnegative for
u=0.

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let the
range of d-values which are A-acceptable be denoted by 1,4, i.e., Ipg:={d: E(u) 20 for
all u>0}; then the following summary is easily obtained by using Table 3.1 and the
order results obtained for the various types of methods (p* denotes the order of the
corrector {A, b}):

Table 3.2. Summary of properties of PDIRK methods with constant
diagonal elements.

A-acceptable

Type Condition Order Sequential stages  d-values
IA.1 m<p*-1 m+1 m Ims1,m
IB.1 m<p*—1 m+1 m+1 Im+1,m+1
IC.2 m<p*-2 m+2 m+1 T2 m+1
IIA.1 m<p* m m Imm
IIB.1 m<p* m m+1 I m+1
IIC.2 m<p*-1 m+1 m+1 Im+1,m+1

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if g > p. From Table
3.2 we see that the methods of Type IIB.1 possess L-acceptable stability functions.
Since L-stable methods are usually more suitable for integrating stiff equations than
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A-stable methods, the methods of Type IIB.1 are of interest in spite of the additional
sequential stage when compared with the other methods. However, just as in the case'
of SDIRK methods, it is' possible that an A-stable method: can be made L-stable if
the interval of A-acceptable d-values contains a: value for which cj, vanishes. For
g=p <15, this has been investigated by Wolfbrandt [25] and it was: found that such.
values of d exist for p<6 and p =8. This information is summarized:in Table 3.3a.

In a similar way, L-acceptable ranges of d-values can be found in the case g =p+1.
These ranges turn out to be nonempty for p <8 and for p=10, and: are given in Table
3.3b. Moreover, we list the values of dp,p+1» which are inside these L-acceptable
ranges and cause ¢, to vanish, resulting in even stronger damping at ‘infinity’ (L2-
stability).

Finally, we considered the case g =p —1, resulting from: IA.1 and IC.2 type
methods. Since now the degree of the numerator in R(z) is: larger than: that of the
denominator, a necessary condition for this case to yield A-stability, is that ¢,
vanishes. For p=2,3;...., 10 we determined the zeros of cp(d) and: checked: the result-
ing stability function on A-acceptability. Only for p=2' (d=1/2), p=3 (d=(3+\3)/6),
p=4 (d=1.0685790213), and p=6 (d=0.47326839126) A-stability can be obtained.
Hence, in this way we have found A-stable methods of orders p <4 and p=6 requiring
p—1 sequential stages. This result is similar to what is possible in. the case of RK.
methods for sequential computers (cf. [1] for p <4 and [5] for p=6); however, the
present methods contain embedded formulas of lower order.

Table 3.3a. A-acceptable and L-acceptable values of d for p=g.

p=q Range I, dpp
1 [1/2, o] I
2 [1/4, o] 1V 172
3 [1/3, 1.068] 0.43586650
4 [0.395, 1.280] 0.5728160625
5 [0.247, 0.361] + [0.421,0.473] 0:2780538410:
6 [0:285, 0.54] 0.3341423671
7 empty
8 [0.218, 0.264] 0.2343731596
9 empty
10 empty

Notice that any s-stage, pth-order corrector (even explicit corrector methods) can
be used for génerating A-stable methods of Type IB, and any pth-order corrector
satisfying the condition bT=e TA for generating the A-stable methods of Type HA
and HC, or the L-stable methods of Type IB.
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Furthermore, we have seen that the stability can be improved by selecting special
d-values. Another possibility, which might be useful in a variable-stepsize
implementation, is to exploit the length of the A- and L-acceptable ranges: for small
changes in the stepsize h, the value of h'd could be kept fixed (as long as the
corresponding d-value is still in the allowed range, of course), so that a new
decomposition of I — h d gf/dy can be avoided.

Table 3.3b. Ranges of L-acceptable values of d for p=g—1.

p=q-1 Range 1j 541 dp p+1
1 n=\1/2, 1+V1/2] 0.5
2 [0.181, 2.185] 0.5+ 1/12
3 [0.224, 0.572] 03025345782
4 [0.248, 0.676] 0.3888576711
5 [0.184, 0.334] 0.2168805435
6 [0.205, 0.378] 0.2579552416
7 [0.157, 0.2029]+[0.2052, 0.234] 0.1690246379
8 " [0.171, 0.259] 0.1929778040
9 empty

10 [0.147, 0.165]+[0.1938, 0.1961] 0.1541460739

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff
systems, the actually observed order is usually much lower than the classical order p.
In fact, the order behaviour is often dictated by the so-called stage order r (for a
definition of this notion and its consequences the reader is referred to [7]). Since most
(P)DIRK methods have stage order r= 1, one might question the relevance of PDIRK
methods possessing a high classical order. And indeed, for a general stiff problem,
this order reduction phenomenon has great impact on the accuracy of this type of
methods.

However, in [10], Hairer, Lubich and Roche give a thorough analysis of the
behaviour of RK methods when applied to a singular perturbed problem of the form

dyi dy .
(3.6) 87;=f1 O01.y2)s 72=f2(y1,y2), with e << 1,

and show that for special RK methods the classical order may still dominate the
global error, especially if stiffness increases (i.e., if €— 0). The motivation for
considering this particular problem class is that it has practical significance and has
been extensively studied in the literature (see the references cited in [10]). An
important characteristic of problems of the form (3.6) is that the eigenvalues of the
Jacobian matrix can be clustered into two groups, and behave as O(1) and O(g71),
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respectively. Here we give the essential result of Hairer et al. concerning the global
error (cf. [10, Theorem 1 on p. 680]):

Theorem 3.2. Let the RK method be A-stable and let £< Constant-#; then the global
error for the stiff component y| behaves as O(gh”) + O(hP) if bT = ¢;TA: and’ as
O+ Vyif IR(e)l < 1. For both cases, the global error for the nonstiff component y
behaves as O(eh™+1) + O(hP). T[]

This result indicates that Type II methods are to be preferred if £—0, since then the
global error is dominated by the classical order, whereas methods of Type I will
behave according to their (low) stage order.

To illustrate these properties, we applied a few of the PDIRK methods derived in
the preceding subsection to a problem of the form (3.6), proposed by Kaps [17]:

d o ,
2L _eety+e o2 O =1,

(3.6) t 0<r<t,
dys
o =y1—y2(1 +y2), ¥2(0) =1,

with the smooth exact solution: y;=exp(—2¢) and yy=exp(—t) for all values of the
parameter €.

The methods we have used in our tests are based on correctors of different
classical order (a specification of these correctors can be found in the appendix to the
report [14]). Moreover, all methods were equipped with the special dpp or dp p+1
values given in the Tables 3.3 and, consequently, are L-stable and L2-stable,
respectively.

For £=10-8 the absolute error for the stiff component yj at the end point =1 is
given in Table 3.4; here, the error is written in the form 104 and the values of A are
listed. Notice that the Type II methods require a stiffly accurate corrector (such as the
Radau ITA formulas) and that L-stable, seventh-order PDIRK methods are only
possible within the family of Type HB.1 methods (cf. Tables 3.2 and 3.3b). This
table clearly demonstrates the superiority of the stiffly accurate Type I methods over
the Type I methods, which show only a second-order behaviour for the global error
(recall that r=1 for the Type IB.I methods). On the other hand, the stiffly accurate
methods exhibit the classical order in the error behaviour and thus both results are in
perfect agreement with the estimates in the theorem: of Hairer et al.

From this experiment we may conclude that it is relevant indeed to have high-
order PDIRK methods for integrating stiff systems of the form (3.6), in spite of their
Tow stage order.

Comparing the efficiency of the various parallel methods of Type II, we observe
that schemes of Type A and € are equally efficient, since they require the same
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number of sequential stages (cf. Table 3.2). The Type IIB.1 methods yield slightly
more accurate results, but need an additional stage to reach the same order (we remark
that the seventh-order method of this type does not show full advantage, since the
integration process was impeded by the machine precision).

Table 3.4. Values of A at =1 for the first component of problem (3.6) with £=10-8.

Seq. Stages
Type Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 per step Proc.

IB.1 RadauIlA 3 3.7 4.1 46 5.2 5.8 3 2
‘ Gauss-Legendre 4 29 3.6 4.2 4.8 5.4 4 2
Explicit RK 4 3.0 37 43 4.9 5.5 4 4
Radau ITA 5 3.6 43 4.9 5.5 6.1 5 3

6 6 3

Gauss-Legendre

IIA.1 RadaullIA 3 4.0 49 5.8 6.7 7.6 3 2
Radau ITA 5 69 84 98 10.6 11.0 5 3

IIB.1 RadaulIA 3 - 43 5.2 6.1 7.0 7.9 4 2
Radau ITA 5 7.2 87 103 11.8 11.8 6 3
Radau ITIA 7 9.7 10.2 10.6 109 11.2 8

IIC.2 RadaullA 3 40 4.9 5.8 6.7 7.6 3 2
Radau [TA 5 6.9 8.4 9.8 10.6 11.0 5

3.2. PDIRK methods with arbitrary diagonal matrices
In the case where B and D are allowed to be arbitrary diagonal matrices, it is
convenient to express Q,,(z) in the form

Om(2) =U~-2ZI"[1-2m +2mQy
= [I- 211 = 2] + Z"[I - zD][I - zB]" 1[I + zE).

Since [I - zD]™! = [I - zA]"![I - Z], we find
Om(2) = I - 2D - zA1"[1 - 2 + I - Z)Z"{1 - D)l - 2BY 1[I + 2E1] ,
so that (3.3) yields
- Rly(z) =1+2T[I-zA1[1-2" + [I-Z)ZM1 - zD)[I - :BY I + 2E] Je,
o) RU(2) =eT[I-2AT\[1-2" + [I- 2121 - D) [ - 2B] I + 2E] Je =

=1+e,T[I—2A]"[2A = 2" + [I- Z) 2] — 2D)[I - zBY [ + 2E] Je.
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In the following two subsections, a representation for the stability functions
without inverses of matrices will be given, and stability characteristics of PDIRK
methods of the Types IB.2, IIB.2 and IIC.3 are presented.

3.2.1. Representation theorems. The following theorem gives a representation of
the stability functions in terms of determinants containing only inverses of diagonal
matrices:

Theorem 3.3. The stability functions (3.3') can be represented by

det{I-zA + [I—Z"" + [I - Z1ZM[I - zD][I - zB)~\[I + zE] |ebT }
det {I-zA}

Rly(z) =

_ det{I—zA + [24 = Z" + [I- Z1Z"[1 - 2D][1 - zB]"\ [ + zE] ] ee,")
9= det {I-zA}

Proof. Applying the identity

ta—1. _ det {N +yxT}
1+x'N 'y = det (V)

to the stability functions, (3.3") straightforwardly leads to the representations (3.7). []
The expressions (3.7) can be simplified for the respective Types A, B and C:

Corollary 3.1. Let the matrix Z be given by Z = z[A —D][I-2zD]"!; then the
following assertions hold:

(a) The stability function of PDIRK methods of Type A.1 are given by

(3.8a) RL,(2) = det{ I-zA +z[1 - ZZmA]ebT} ,

det {1 —zA}
RIL ()= det{1—zA +z[I - Z™]Aee," }
" det {1 - zA) '

(b) The stability function of PDIRK methods of Type B are given by

det{l—zA + z[I — Zm+1]ebT }
38b) Rl,(2)= ,
(38b)  Rly(2) FRSTESY
det{l—zA + [zA — Z"*1]ee T}

det {I—zA}

R, (2) =
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(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are given by

(3.8¢c) RL,(z) = det{/—zA + z[I — zZm*1A]ebT} |

det {I—zA}
det{I—zA + z[I - Z"+1]Aee,T}
R, (2) = el
m(2) det {I— ) []

Notice that these expressions no longer explicitly depend on E and B and are
completely determined by the corrector and the matrix Z.

3.2.2. Stability characteristics. In this subsection, we consider the stability of
PDIRK methods. We shall distinguish between methods based on Radau ITA
correctors and on Gauss-Legendre correctors.

The Radau ITA correctors have order p=2s—1, where s is the number of stages, and
satisfy the condition bT=e TA (their Butcher arrays for s=1,...,4 are given in the
appendix to [14]). Owing to this property, PDIRK methods of Type I and Type II are
both relevant. We confine our considerations to types which require (with respect to
their order) less sequential stages than the corresponding methods indicated in Table
3.2, that is, we consider methods of the Types IB.2, IIB.2, and IIC.3. For these
types of methods, the stability functions are completely determined.

Table 3.5. Characteristics of PDIRK methods

Type Corrector Order Seq.Stages Processors Stability
IB.2 RadaullA 3 2 2 Strongly A-stable
Gauss-Legendre 4 3 2 Strongly A-stable
Radau ITA 5 4 3 Strongly A-stable
Gauss-Legendre 6 5 3 Strongly A(a)-stable, 0:=89.97°
Radau TA 7 6 4 Strongly A(a)-stable, 0=83.3°
IIB.2 Radau A 3 3 2 L(a)-stable, @=89.75°
Radau IA 5 5 3 L(a)-stable, 0=89.12°
Radau IA 7 7 4 L(a)-stable, 0=89.02°
IIC.3 Radau A 3 2 2 A-stable
Radau ITA 5 4 3 A(a)-stable, a=89.997°
Radau IA 7 6 4 A(o)-stable, a=89.95°

In Table 3.5, we present a summary of the characteristics of these methods for
several orders. Based on the stability functions (3.8), the stability region of the
methods was determined numerically. It turned out that some stability functions are
only A(a)-acceptable. However, in these cases « is very close to 90° (in the
Appendix to [14],' a set of stability regions is given, including the regions of the
embedded lower-order methods).



118

Furthermore, we considered PDIRK methods based on Gauss-Legendre correctors.
Such s-stage correctors have order 2s, but are not stiffly accurate and, hence, only
Type I methods are relevant. In Table 3.5 we have included the characteristics of
fourth- and sixth-order methods of Type IB.2 (the generating correctors can be found
in [3, p. 219]).

In comparison with the PDIRK methods constructed in Section 3.1, we observe
that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential stage
less to obtain a given order of accuracy. Moreover, with the exception of the 7th-
order method of Type IB.2, these methods possess almost the same good stability
properties. '

For the methods of Type IIB.2 (for which the order equals the number of
sequential stages), only the seventh-order is relevant, since in Section 3.1 it turned
out to be impossible to construct an L-stable method of order 7 with 7 sequential
stages; the third- and fifth-order methods of Type IIB.2 do not have an advantage over
the L-stable methods described in Section 3.1.

3.2.3. Accuracy test. We conclude this section by applying the methods specified in
Table 3.5 to the problem (3.6"). Using the same notation as described in Section
3.1.3, the results are given in Table 3.6.

Again, the stiffly accurate Type II methods are much more efficient than the
methods of Type 1. Moreover, the order behaviour nicely illustrates the results of the
theorem of Hairer et al. (cf. Section 3.1.2). Furthermore, within the class of stiffly
accurate methods, the C-variant is superior to the B-variant, since it is cheaper and
yields, for this example, more accuracy.

Table 3.6. Values of A at =1 for the first component of problem (3.6") with £=10-8.

Seq. Stages
Type Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 per step Proc.
IB.2 Radau I1A 3 2.8 3.8 4.1 4.7 5.3 2 2
Gauss-Legendre 4 2.7 3.4 4.0 4.6 5.3 3 2
Radau ITA 5 2.4 2.8 3.4 4.1 4.8 4 3
Gauss-Legendre 6 3.0 3.5 4.1 4.8 5.4 5 3
Radau IIA 7 4.2 4.6 5.2 5.8 6.4 6 4
1IB.2 Radau IIA 3 3.4 4.1 4.9 5.8 6.7 3
Radau IIA 5 4.9 6.1 7.5 9.0 10.4 5 3
Radau IIA 7 6.4 8.2 10.1 11.9 12.5 7 4
IIC.3 Radau IIA 3 4.3 5.2 6.1 7.0 7.9 2 2
Radau ITA 5 6.6 8.0 9.4 10.8 11.6 4 3

Radau ITA 7 8.7 10.6 12.0 123 12.6 6 4
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4. EFFICIENCY TESTS

Finzilly, we will investigate the performance of PDIRK methods when run on a
parallel computer. Because it is highly desirable to use an unconditionally stable
method of high order, we selected a PDIRK method of Type IIB.1 with a D-matrix of
the form D=d'l. On the basis of the accuracy test described in Section 3.1.2, we
decided to choose the seventh-order, four-point Radau ITA corrector (see (A.3) in the
Appendix to [14]), with m=7 iterations. The resulting method is of order seven (cf.
Theorem 2.2) and by choosing d=0.1690246379 we achieve strong damping at
infinity (L2—stability, cf. Table 3.3b). Hence, taking into account the (implicit)
predictor, the method requires eight sequential stages per step. We have implemented
this method on an ALLIANT FX/4 computer, having four parallel (vector-)
processors, shared memory and approximately 16 digits arithmetic precision. Since
the underlying Radau method has four stages, we may expect an efficient use of this
machine.

In order to be able to test problems with a strongly fluctuating solution, we
equipped the above fixed-order PDIRK method with a simple strategy for error control
and stepsize selection. Since the PDIRK approach provides a whole set of embedded
reference solutions of lower order, we can construct an estimate of the local
truncation error without additional costs. For this purpose we take
] e4TY(m) - e4TY(m‘1)|| as an estimate for the local error. All implicit relations are
iterated using modified Newton iteration. If convergence happens to fail within a
fixed number of iterations (in our version, we choose this number equal to 10), then
we update the Jacobian and, if still no convergence can be obtained, we halve the
stepsize (repeatedly, if necessary). Furthermore, the Newton process to solve for Y()
is started with the initial guess Y(U-1), which is of increasing accuracy for increasing
J. It should be observed that this provisional implementation certainly can be
improved by a better tuning of the separate elements (for example, all kinds of
thresholds and strategy parameters should be tuned on the basis of extensive testing).
Since it is not the aim of this paper to present such a ‘production code’, we will give
results for our ‘research version’.

The goal of our tests is twofold:

(i) We want to investigate to what extent the theoretical parallelization can be
realized in practice; in other words, what speedup factor can be obtained on this four-
processor machine. Obviously, the ideal factor of four will be too optimistic, due to
some unavoidable overhead, like communication and sequential parts in the program.

(ii) We want to compare the performance of the parallelized PDIRK code with that
of a good sequential ODE solver. Within the class of sequential solvers based on
unconditionally stable methods, we selected the code SIMPLE of Ngrsett and
Thomsen [22]. The method underlying this robust and reliable code is closely related



120

to the PDIRK method, i.e., it is also based on an unconditionally stable, diagonally
implicit Runge-Kutta method. Furthermore, SIMPLE is, like PDIRK, equipped with
embedding techniques to control the local error. A disadvantage of this code is that
its order is rather low; it is based on a third-order DIRK method. However, high-order
A-stable DIRK-codes are not available in the literature. Since many problems are
more efficiently integrated if high-order formulas are available, we also looked for a
code based on methods of various orders. This leads us to LSODE of Hindmarsh [11].
This BDF based code has enjoyed very successful usage over a long period. However,
the fact that only the first- and second-order formula in this code are unconditionally
stable, makes LSODE less robust as a general stiff solver. It is well known that the
performance of this code may decrease significantly when it is applied to problems
with eigenvalues in the vicinity of the imaginary axis (see, for example, Stewart
[23]). On the other hand, since LSODE is generally accepted as being a good
sequential ODE solver, we decided to include it in our tests.

In the next subsections, we describe the results obtained when the aforementioned
three codes are applied to some hard problems. Since the codes are different in nature
(low order versus high order, onestep versus multistep), we refrain from specifying
the traditional statistical output of an automatic ODE solver, like number of steps,
number of LU-decompositions etc. It should be observed that the work involved per
step is quite different for the various codes: for instance, the sequential number of
implicit relations to be solved per step equals 1 for LSODE, 4 for SIMPLE, and 8 for
PDIRK. Since the codes do not yield equal accuracy for the same value of the local
error control parameter TOL, we list results for various values of TOL and measured
the accuracy produced as well as the CPU-time required. All accuracies are given in
terms of A, the number of correct digits in the endpoint of the integration interval
(see Section 3.1.2), and the CPU-times are given in seconds.

4.1. Robertson kinetics example
In our first example we solve a set of reaction-rate equations:

d
-i;‘- = — 004 y; +10% y3 y3,
d

@.1) ——-f = 0.04 y; - 104 y3 y3 = 3107 (39)2,
B3 207 (o2
d - 3 ]O (yZ) ’

defined on the interval [0,108] with initial conditions ¥1(0) =1, y2(0) = y3(0) = 0.
This problem is also used by Hindmarsh and Ngrsett-Thomsen to illustrate the
performance of LSODE and SIMPLE.
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Initially, the solution changes rapidly and small stepsizes are required; gradually
the solution reaches a steady state and the stepsize can be increased considerably. In a
typical situation we observed stepsizes in the range [10-3, 10]. Hence this problem
imposes a severe test on the stepsize selection procedure. The results obtained by the
various codes are collected in Table 4.1. Here 71 means the CPU-time when only one
processor is used, and T4 denotes the CPU-time required when the program is run on
four processors.

Table 4.1. A-values and CPU-times for problem (4.1)

Method TOL - A T1 T4
104 6.5 0.63 0.85
SIMPLE 10-3 7.8 1.38 >T1
106 9.5 3.67 >T|
10-5 7.4 0.35 >T}
LSODE 107 8.6 0.80 >T)
109 10.3 1.71 >T)
PDIRK 102 8.5 0.51 0.19
100 11.1 1.08 0.37

These results give rise to the following conclusions:

(i) Concerning the parallelization of the PDIRK code we observe a speedup with a
factor (T'1/T4 =) 2.68 and 2.91 for the two values of TOL that we have used. One
reason why these numbers are less than the optimal speedup factor 4, is the
introduction of inevitable overhead (and of scalar code). Another reason is
algorithmic in nature. Each component of the prediction ¥(0) is a numerical
approximation to the ODE solution at the point #,+d h (actually, all processors have
solved exactly the same implicit relation in this predictor stage). These components
are used as an initial guess in the various Newton processes computing Y(D. Since
the components of ¥(1) are approximations to the ODE solution at different points
(i.e., the Radau points), these initial guesses do not have equal accuracy, so that we
may expect different numbers of Newton iterations on the various processors. In the
case TOL = 1, we measured the actual numbers of Newton iterations over the whole
integration interval and found, for the four processors, 848, 924, 1012 and 1043,
respectively. This means that in some steps a few processors have met the
convergence criterion in the Newton process, and thus have been idle for some time
while waiting for the other processors to complete solving their implicit relation.
Taking this aspect into account, the optimal parallelization cannot exceed a speedup
factor equal to (848+924+1012+1043)/1043 = 3.67. The measured speedup in this
case equals 2.91 (i.e., 79%), showing that the overhead (communication, scalar code
etc.) only slightly degrades the performance. The reduction of the ideal factor 4 to
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3.67 is a price we have to pay in choosing a PDIRK method. We may conclude that
the actual efficiency of the method as a whole, defined as the total speedup divided by
the number of processors used, equals 2.91/4 = 0.73.

(it) Concerning the scalar codes SIMPLE and LSODE, we observe that they run
faster on one processor than on four (see the result obtained by SIMPLE for
TO%,L‘-‘I?O*‘)». Apparently, the parallelization and vectorization overhead does not pay
for this problem (this might be different in case of an ODE with many components).
Tﬁerefc’)re, we only give timings for the uniprocessor experiments.

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in
the high-accuracy range. This is obviously due to its low order. LSODE, which can
utilize higher orders, is more efficient in this range but, when compared to PDIRK,
its CPU-time is approximately four times larger to obtain 8.5 digits precision and
this factor increases if still higher-precision results are requested (notice that even on
one processor, PDIRK is faster than LSODE on this problem).

(iv) Finally, we observe that the value for TOL used by PDIRK is several orders of
magnitude larger than the value used by either SIMPLE or LSODE to achieve the same
global error. This can be explained as follows: Owing to its high order, the local
truncation error of PDIRK is usually relatively small. Therefore, if crude tolerances
are used, the error control mechanism signals that a large stepsize can be used in
order to balance the estimated and the requested local error. On the other hand, the
Newton process imposes a limitation on the stepsize. In our implementation, the
Newton processes to solve for Y0 are given the value y, as initial iterate.
Unfortunately, for large values of & (as suggested by the error estimator) this initial
iterate is not always inside the contraction domain for the Newton process, resulting
in an adequate reduction of the Stepsize. As a consequence, this high-order scheme,
using a smali(er) stepsize, will produce a local error which is much smaller than
requested.

In conclusion, for this test problem (and also for the problem to be discussed in
the next subsection), the restriction on the stepsize imposed by the Newton process
is more stringent than that imposed by the local error control, unless very small
values for TOL are used. We have also integrated some linear ODEs (for which the
convergence problems are not relevant, of course) and observed a relation between
TOL and the global error similar to that of SIMPLE and LSODE.

Summarizing, for obtaining highly accurate results, the above experiment shows
that the high order of the PDIRK method is worth the large amount of redundancy
introduced in its construction. In this connection we remark that the order of these
methods can still be raised to 10, wheteas an increase of the order is not possible for
BDF methods and not feasible for embedded DIRK methods underlying the SIMPLE
code.
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4.2. Van der Pol's equation
Our second example is given by the van der Pol equation

@42 Yy -p(-y)y+y=0.

For u=5, this is problem E2 from the test set of Enright et al. [8]. However, as
reported there, on the interval [0,1] the spectral radius of the Jacobian does not exceed
15, so that the problem is not really stiff. Therefore, we set this parameter to 50.
For this p-value the equation exhibits so called ‘relaxation oscillations’, which
means that the solution possesses internal boundary layers. Furthermore, we consider
an integration interval sufficiently large to capture such an internal layer, which
again requires an adequate stepsize selection procedure. The problem tested in this
section is defined by

= =Y2, y1(0) =2,
4.2 0<t<415.

dy
72 =50 (1-0DY) y2-y1.  y20)=0,

This test example has also been discussed by Gottwald and Wanner in [9]. At
approximately z=40.7, the solution y| drops from 1 to —2 on a very short interval,
forcing the codes to reduce their steplengths dramatically (several orders of
magnitude). The results of the various codes applied to this problem can be found in
Table 4.2.

Table 4.2. A-values and CPU-times for problem (4.2")

Method TOL A T1 T4
10-6 5.6 1.07 >Tq
SIMPLE 10-8 6.9 5.64 >Tq
10-10 7.8 25.5 >Tq
10-6 4.3 0.24 >Ty
LSODE 10-8 6.3 0.42 >Tq
10-10 7.8 0.83 >T}
10 5.1 0.56 0.20
PDIRK 10-2 6.1 1.20 0.41
10-5 7.2 2.44 0.82

Again, we see that PDIRK can take advantage from the availability of four
processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency is
= 0.72). For this problem the loss in efficiency due to overhead is less than
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(1-0.72 =) 0.28, because the various processors required a different number of
Newton iterations (viz., for TOL=10-3 we found 3186, 3561, 3882 and 4092
iterations, respectively, thus reducing the optimal speedup factor from 4 to 3.6).

Furthermore, it is quite clear that the low-order SIMPLE code becomes
excessively more expensive for smaller values of TOL. On the other hand, LSODE
behaves rather efficient for this problem and is approximately equally efficient as
PDIRK.

4.3. Conclusions
On the basis of these (difficult) problems we may draw the following conclusions:

- the actually obtained degree of parallelization of the PDIRK method is fairly close
to its ideal value.

- the reason that SIMPLE is less efficient than the other two codes, especially in the
high accuracy range, is because of its low order.

- it is well known that the higher-order BDF formulas lack the property of L-
stability. This may result in serious difficulties for LSODE in the case that the
Jacobian has eigenvalues in the vicinity of the imaginary axis. However, the two
test problems do not belong to this category; hence, LSODE has not been faced
with the limitation of the stability regions of the higher-order BDFs.

- unlike the implementation of SIMPLE and LSODE, the implementation of PDIRK
does not require additional costs in calculating a reference solution.

- the present research version of the PDIRK code is at least as efficient as the well-
balanced, extensively tested LSODE code.

- afuture version of a PDIRK code can be improved as follows:

(i)  Dbetter tuning of the stepsize strategy parameters and, particularly,
finding more accurate initial iterates for the Newton process in the
prediction stage;

(ii) implementation of a variable-order strategy; L-stable PDIRK formulas of
orders up to 10 (excluding order 9) are available;

(iii) implementation of a stiffness detector, like the one in SIMPLE, and
switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in
nonstiff regions of the integration interval.
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Abstract. This paper examines diagonally implicit iteration methods for solving
implicit Runge-Kutta methods with high stage order on parallel computers. These
iteration methods are such that after a finite number of m iterations, the iterated
Runge-Kutta method belongs to the class of diagonally implicit Runge-Kutta
methods (DIRK methods) using mk implicit stages where k is the number of stages
of the generating implicit Runge-Kutta method (corrector method). However, a large
number of the stages of this DIRK method can be computed in parallel, so that the
number of stages that have to be computed sequentially is only m. The iteration
parameters of the method are tuned in such a way that fast convergence to the
stability characteristics of the corrector method is achieved. By means of numerical
experiments it is also shown that the solution produced by the resulting iteration
method converges rapidly to the corrector solution so that both stability and accuracy
characteristics are comparable with those of the corrector. This implies that the
reduced accuracy often shown when integrating stiff problems by means of DIRK
methods already available in the literature (which is caused by a low stage order) is
not shown by the DIRK methods developed in this paper provided that the corrector
method has a sufficiently high stage order.
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1. INTRODUCTION
1.1. Runge-Kutta methods

Suppose that we want to solve stiff initial value problems for systems of first-
order, ordinary differential equations (ODEgs), i.e.,

an  2ogyw), yao)=yo, y:R-RL FiRx RISR

by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires
that the RK method should be sufficiently stable, preferably A-stable, and therefore
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implicit. This leads us to fully implicit RK methods (IRK methods) in which the
Butcher array

(1.2) c| A
bT

has a full A-matrix. Most widely used are the IRK methods based on Gaussian
quadrature formulas (such as Gauss-Legendre, Lobatto and Radau methods), which
are known to be A-stable for any order of accuracy. However, the high degree of
implicitness of these methods implies that solving the implicit relations is rather
costly. In general, a k-stage IRK method (that is, b and ¢ are k-dimensional vectors
and A is a k-by-k matrix) requires in each step the solution of a system of dimension
kd, so that the computational complexity is of order (kd)3. This compares
unfavourably with implicit linear multistep methods which require in each step the
solution of a system of dimension d.

In order to reduce the computational labour involved when using implicit RK
methods, various people have con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>