
Multigrid for Steady Gas Dynamics
Problems*

P.W. Hemker B. Koren W.M. Lioen
M. Nool

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

H.T.M. van der Maarel
MARIN, P.O. Box 28, 6700 AA Wageningen, The Netherlands

Abstract

This paper consists of two parts. In the first part we give a review of a good
multigrid method for solving the steady Euler equations of gas dynamics on a
locally refined mesh. The method is self-adaptive and makes use of unstructured
grids that can be considered as parts of a nested sequence of structured grids. It
is briefly described and applied to some steady Euler-flow problems. The method
appears to be much more accurate and efficient than the corresponding multigrid
method that applies global refinements only.

In the second part of the paper, vectorisation of the code is treated. To enable
this vectorisation, index arrays are introduced and added to the quad-tree type
data-structure that is applied in the scalar case. Speed-up factors are given for the
same test cases as considered in the first part of the paper. The results are most
satisfactory.

Note: In essence, this paper was already published in [12].

1 A solution-adaptive multigrid method for the
steady Euler equations

In this first section we describe a self-adaptive multigrid method, developed at CWI, for
the solution of steady gas dynamics problems. The method can be applied for the Euler
as well as for the Navier-Stokes equations. However, because of space limitations in this
paper we restrict ourselves to the treatment of the Euler equations. The extension to
the N avier-Stokes equations is found e.g. in [18]. For a survey of different multigrid
approaches to these equations we refer to [11].

Our Euler solver essentially uses a sequence of nested refinements, and the discreti­
sations at the various levels of refinement yield a set of nonlinear algebraic equations for

*The research reported in this paper was partly performed in the framework of the BRITE-EURAM
Aeronautics R&D Programme of the European Communities (Contract No. AER2-CT92-0040). The
vectorisation was supported by Cray Research, Inc., under grant CRG 91.01. Use of supercomputer
facilities was sponsored by the Stichting Nationale Computerfaciliteiten.

393

each discretisation level. The method to solve these nonlinear systems is the nonlinear
multigrid scheme (FAS), which may be embedded in the full multigrid algorithm (FMG)
as well as in an iterative defect-correction process (ItDeC). First these three basic algo­
rithms are described as they are combined with the use of locally refined grids. Next
the strategy to introduce local refinements is described. Following that, aspects of the
computer coding are discussed for the local grid-refinement method. As an illustration,
numerical results are presented for shock reflection on a flat surface and for transonic
flow around an airfoil. These test cases are standard; they are used to validate the
method and to get an idea of the gain in efficiency by the local grid-refinement method,
in comparison to the corresponding uniform-grid method. We give CPU execution times
for the scalar implementation of the local grid-refinement code and we compare these to
those obtained with an implementation for uniform grids only. The latter implementa­
tion uses the same multigrid and defect-correction algorithms as the adaptive code (see
Section 1.4. l). Significant speed-up factors are observed.

In Section 2 of this paper we describe the technique used for this vectorisation on a
Cray Y-MP.

1.1 Multigri<J. and iterative defect correction

1.1.1 The first-order finite volume discretisation

To discretise the problem, the domain 0 is subdivided into disjoint quadrilateral cells
D;,j, such that Di,j and ni,j±i or O;±i,j are neighbouring cells. Further we denote the
neighbours of O;,j by Oijk, (k=N,S,E,W) and a common cell edge by riik = Tiii n Dijk·

The restriction to this kind of regular geometry is not necessary for the discretisation
method but it leads to simple data structures when the method is implemented.

By integration of the fluid dynamics equations over rl;,j we obtain

:t j l.,; q dxdy + fc0 yn,, + gny) ds = 0, (1)

or

(2)

where Vii is the volume of cell ni,j and q;; is the mean value of the state variable q over
rl;,j. Further we introduce the notation

(3)

where Sijk is the length of rijk and fijk is the mean flux outward 0;,j over the side rijk·

The space discretisation of the equations is done according to the Godunov principle:
the state q(t, x, y) is approximated by %(t) for all D;,j and the mean fluxes fijk are
approximated from the states in the adjacent cells. For this purpose, a computed flux
fijk(qt, qtk) is introduced to replace fijk· Here, qfj and qfjk are approximations of q at
both sides of rijk· Thus we obtain the semi-digcretisation of (2):

v. 0% ~ f (k k) ij at = - L, Sijk ijk qij> qijk ,
k

(4)

and for the steady equations we obtain the discrete system of equations

(5)

394

which is short for

(Nh(qh))i; := L Sijk fijk(qt, qtk) = 0, v i, j.
k

In order to solve (5), we first generalise the problem slightly to

(6)

We use iteration with the full approximation scheme (FAS). For this we need a sequence
of discretisations

with ho > h1 > · · · > h1 = h .

For the meshwidth h;_1 we take h;_1 = 2 h;. For an irregular mesh we delete each second
line of mesh points to obtain the coarser grid.

One FAS cycle for the solution of (6) consists of the following steps: start with an
approximate solution qh; improve qh by application of 111 nonlinear (pre-) relaxation
iterations to Nh(qh) = rh; compute the residual Nh(qh)i find an approximation of Qh on
the next coarser grid, say q2h. For this we may either use a restriction q2h = R2h,hqh, or
use another previously obtained approximation q2h. Compute

and approximate the solution of

N2h(q2h) = T2h (7)

by application of u FAS cycles. The result is ifa; correct the current solution by

qh := qh + Ph,2h (i12h - q2h) ;

improve qh by application of 112 nonlinear (post-) relaxation iterations to Nh(qh) = rh.

In this process the steps between the pre- and the post-relaxation are the coarse grid
correction. These steps are skipped on the coarsest grid h0 • For the solution of the
nonlinear system (5), FAS iteration is simply applied with rh = 0 on the finest grid.
During the FAS iteration, on the coarser grids, non-zero right-hand sides appear in (7).

For the grid transfer operators Ph,2h and R2h,h we make a choice that is consistent
with the concept of our finite volume discretisation. This discretisation is essentially a
weighted residual method, where the solution is approximated by a piecewise constant
function (on cells D;,;) and where the residual is weighted by characteristic functions on
all O;,;. From this point of view, it is natural to use a piecewise constant interpolation
for Ph,2h and to use addition over subcells for R2h,h· Notice that R2h,h = Pl,2h. With
these choices it is clear that

(8)

i.e. the coarse grid finite volume discretisation is a formal Galerkin approximation of the
fine grid finite volume discretisation. Using (8) on all different levels, we obtain a nested
sequence of discretisations.

The effect of the Galerkin approximation N2h = R 2h,h Nh Ph,2h on the approximate
solution qh obtained after a coarse grid correction is the following property of its residual

395

..

Because R2h h is an addition over 4 neighbouring cells, this means that the restriction
of the resid~al mainly contains high frequency components. A small restriction of the
residual implies that possible large residuals over neighbouring cells cancel: the residual
is rapidly varying. Local relaxation methods, such as point Gauss-Seidel, are now able to
eliminate such residuals efficiently. In this way, FAS is a quite efficient method to solve
the first order discrete equations. The second order accurate discrete equations cannot
be solved this way because they lack sufficient numerical diffusion.

For the second-order discretisation FAS is embedded in an iterative defect-correction
(ltDeC) process [2]. The implementation of the multigrid scheme for the self-adaptive
discretisation is based on the same principles. These principles are described in detail
in [14, 15, 28, 30] and applied in [18, 16, 17]. Iterative defect correction is applied in
[18, 16, 9, 29].

In the next section we proceed by giving a brief description of these methods, includ­
ing their slight modifications for our solution-adaptive application as studied in [22].

1.1.2 A locally nested sequence of discretisations

In order to use multigrid for discretisations on locally refined grids, we have to specify
grid-transfer operators. Starting from a certain level, lb, now the discrete problems
do not extend over all the domain 0, but -for finer levels- over increasingly smaller
subdomains. The discrete problem on such a fine grid (level l + 1) is completed by
boundary conditions that require the solution to join with the solution on the next
coarser grid (level l). We denote the restriction operators for the solution and the
residual by R!+i and :n:+l respectively, and the prolongation operator by P/+1. These
grid transfer operators are defined such that a sequence of locally nested discretisations
{N1}1=0, ... ,L is obtained. This means that a Galerkin approximation, Rf+1N1+1 P/+I, of
the fine-grid discretisation N1+1 equals the coarse-grid discrete operator N 1, restricted
to the refined cells. This implies that, for each cell OL for which a refinement exists on
level l + 1, we have

{Nz(q')}:J == {~+1N1+1(.Pi1+1q1)}:J. (g)

The restriction operator for source terms, ~+I• is given by addition of the sources:

{K l+l}I - "' l+l 1+1r iJ - L... rn,m•

n~".".!.cnL;
(10)

The restriction operator for the solution, Rl+1, is defined by taking the mean value:

If the grid is sufficiently smooth, this restriction is second-order accurate. The operator
~or the pr?longation of a solution correction, P/+1, corresponds with piecewise constant
mterpolat1on:

{Pz1+1q1}1+1 == q! . 'v'O'+i c o! .
n,m 'J' n,m "" • (11)

As s~o":'n in [16, 18, 30], because of (9), these restrictions and prolongation show a good
mult1gr1d performance, even with simple point Gauss-Seidel relaxation.

396

The prolongation (11) and restriction (10) satisfy the multigrid rule (see [7, 10, 32])

mp+mr >m,

where mp is the order of accuracy of the prolongation, mr is the order of accuracy of the
restriction and m is the order of the differential equation.

n1+1 " -Rl d . (For r 1 , mp = 1, 1or 1+1, mr = 1 an m = 1 for the Euler equations.)
For the restrictions and prolongation described above, the first-order accurate discrete

equations form a locally nested sequence, except for the equations at the inter-grid
boundaries. A first-order accurate interpolation near the inter-grid boundary, which
intro.duces first-order accurate virtual states at the other side of this boundary (and
hence shows first-order weak consistency, see [23, Chapter 2]), yields a locally nested
sequence.

1.1.3 FAS and FMG

On level l, we denote the discrete operator, Nh, with first-order accuracy by Nf, and
that with second-order accuracy by Nfr. The set of equations to be solved is then first

where the right-hand side r 1 is given by

rl. =
i,1

fn•. rh dx,
"' when o;,j is on the finest grid;

{ l l l)}l Nr(R1+1q ;,;

- {1t1 (Nf+1 (q1+1) -- r1+1)} :,j,
when the cell Oi,; is subdivided.

(12a)

(12b)

A complete FAS-cycle for the locally refined grid, where all q1, l = 0, ... , L are
improved, is a recursive algorithm defined by the following steps:

1. improve the solution q1 by applying v1 pre-relaxations to (12a) at level l, resulting
in the approximate solution (q1)o;

2. compute the right-hand side r1- 1, determined by (12b) at level l, using q1 = (l)o;
3. improve the solution q1- 1 by applying a FAS-cycles to the equations (12a) at level

l - l;
h 'd t' dl-1 1-1 R!-1(I) . 4. compute t e coarse gn correc ion = q - 1 q o,

5. improve the solution q1 by adding the prolongation of the coarse-grid correction:

qi= (q1)0 + P/-idl-1;

6. improve the solution q' by applying v2 post-relaxation sweeps to the system (12a)
at level l.

The steps (2)-(5) together are called the coarse-grid correction steps. These steps are
skipped at the level l = 0. . .

Upon convergence of the nonlinear multigrid iteration, the solutJOn not only satisfies
(12) for all l, but also

1 {Rl 1+1}1 qi,j = 1+1 q i,j·
(13)

397

As a relaxation procedure in FAS a collective symmetric point Gauss-Seidel relaxation
is used on each level of refinement. This means that for each cell flL visited during
this relaxation process, the complete state qL is updated. This implies the solution of
a local 4 x 4 nonlinear system, {Nf (q1)}L = rl,i' which is done by Newton iteration.
The stopping criterion for the Newton iteration is chosen so that, in all but exceptional
cases, only one or two iteration steps are made. On each level, after a first (nonlinear)
relaxation sweep in the usual lexicographical order, another sweep is done in the reverse
direction. This smoother is shown to be very efficient in both subsonic and supersonic
Euler-flow computations [14].

The initial solution on the finest level is obtained by the application of nested it­
eration, also called full multigrid (FMG) [3, 4, 7]. This means that the system is first
solved on the coarsest grid, l = 0, simply by sufficient relaxation. On the finer levels,
l = 1, 2, · · ·, L, the FMG-scheme is recursively defined as follows:

l. initialise the solution on level l by q1 := PL q1- 1;

2. improve the solution on level l by the application of "/ FAS-cycles with level l as
highest level;

3. if the solution on level l is not sufficiently accurate, then introduce level l + 1 by
(locally) refining the grid and apply the FMG-cycle for level l + 1;

In the experiments presented at the end of this section we use O" = 1 (V-cycles), v1 =
v2 = 1 (a single pre-relaxation and a single post-relaxation) and"(= 1 (a single V-cycle,
before starting a higher level). The prolongation fi/+ 1 used in the FMG-algorithm is
bilinear interpolation.

1.1.4 Iterative defect correction

In the previous section, we showed how the first order accurate discrete system (12) is
solved. Generally, first order accuracy is not sufficient, and we want to solve a second
order accurate discretisation. The system of equations with second-order accuracy is not
efficiently solved by the same technique as the first order system. The reason is that
the second-order discrete system has less numerical dissipation, and hence a sufficiently
efficient relaxation procedure cannot be found. The second-order system is solved by
iterative defect correction (ItDeC) [2, 7]. Let the set of our equations at level l be given
by

(14)

The ItDeC-algorithm makes use of the fact that an efficient technique does exist for
the lower-order system Nf (q1) = r1• An initial approximation for the ItDeC-process is
obtained by application of the FAS-algorithm to (12). In the ItDeC-process the right­
hand side r1 depends on the defect of the higher-order accurate equations, through

{ l l }L { l l }L NI(q) i,i - Nn(q) i,j'

if n;,j is a cell on the finest grid,

{ NL(Rl ql+l)}L I 1+1 ..
i,J

- {R~+1 (Nf+1(q1) - ri+i) r ,
l,J

if a refinement exists for cell n;,j .

Upon convergence of the ItDeC-scheme, equation (14) is satisfied.

398

(15)

-
In [16] it is shown that one nonlinear multigrid cycle per defect-correction cycle is

sufficient and most efficient. In our experiments at the end of this section we use a single
nonlinear multigrid cycle per defect-correction cycle indeed.

Before any local grid refinement is introduced, first the solution is approximated,
sufficiently accurate, on a certain level lb. This is done by the application of the nested
iteration FMC, one or two FAS-cycles to approximately solve the first-order discretisation
and then a sufficient number of ItDeC-cycles for second-order accuracy.

1.2 Refinement cycles

Solution-adaptive grid refinement involves automatic grid refinement at some stage in
the solution process. Based on an a-posteriori estimate of relevant quantities appearing
in the refinement criterion, the grid is refined where these quantities exceed a pre-set or
solution-dependent threshold value (see e.g. [27]).

A computation that uses local grid refinement starts with the FMC-algorithm and
subsequent iterative defect correction. It yields first an approximate solution for the
uniform grid on some basic level lb. Introduction oflocal grid refinements is accomplished
by the following refinement algorithm, where l is the highest available level:

1. determine which cells on level l should be refined (or may be deleted), based on
the refinement criterion and on an a-posteriori estimate of the relevant quantities
used in the refinement criterion;

2. decide whether a grid on level l + 1 should be created, denote the (new) highest
level by L;

3. refine the grid and delete obsolete cells on all levels, from h up to and including
level L - 1;

4. initialise the approximate solution of the newly created refinements by the ap­
plication of the prolongation f>;;:+1 , for m = lb, ... , L - 1 (similar to the FMC­
algorithm);

5. improve the solution on all levels by the application of p FAS iterations (first-order
discretisation), or by p ItDeC-cycles (second-order discretisation) on the complete
sequence of grids;

6. either apply a refinement cycle on the new system, or solve the present system of
equations by a sufficient number of (FAS or ItDeC) iteration;

The decision in step (2) of the refinement algorithm may be determined by the answer
to the question whether the grids on all currently present levels have sufficiently con­
verged, or whether the highest level allowed has already been reached. Notice that for
newly created cells, the refinement cycle actually is an application of the nested itera­
tion algorithm FMG, as introduced in the previous section. For the prolongation J5/+i
a bilinear interpolation is used for newly created cells. In second-order computations,
after initialisation of the solution for newly created cells, defect correction is continued,
without first applying the nonlinear multigrid scheme to the first-order accurate system
(12). The number of iterations p before a new refinement cycle is started, in step (5)
of the refinement algorithm, determines to a large extent the efficiency of the adaptive
grid-refinement method. However, using an insufficient number of iterations in step (5)
may yield a grid too much distorted by the insufficiently converged numerical solution.
In practice, p = 1 or p = 2 for a first-order discretisation appears to yield a grid virtually
the same as the grid obtained by using a fully converged solution. For a second-order
discretisation p = 4 or p = 5 appears to be sufficient.

399

1.3 A scalar implementation

In order to perform Euler-flow computations, accelerated by multigrid with solution­
dependent local grid refinement, a computer code has been developed in portable For­
tran 77. This code consists of two modules. One module, called BASIS, is entirely
devoted to set up and maintain the data structure. It is described in [13]. The second
part, called EULER, consists of routines related to the adaptive multigrid Euler-flow
computations. This module is described in [24]. Recently, it appeared that the effi­
ciency of the code could benefit essentially from vectorisation [21]. This resulted in an
additional module, called EUVEL, which is presented in Section 2.

In the code, the (sequence oflocally refined) grids over the domain that is discretised,
is composed of so-called patches. A patch consists of a corner point, and (if not at a
top or right side of a grid) a vertical cell edge, a horizontal cell edge and a cell interior.
If a patch contains a cell, sufficient neighbour patches exist to provide the necessary
edges and vertices. On the other hand, each corner point, each edge and each cell of
the geometric structure belong to some patch. The data in the structure are stored and
referenced through these patches. By the nature of the refinements, the patches in the
data structure are related in a quad-tree structure. The tree of cells is a genuine subtree
of the tree of patches.

In the linked list that implements the quad-tree structure, nine pointers are used for
each patch. One pointer is used for the parent of a patch, four pointers for the kid patches
and four pointers for the neighbours of each patch. In the Fortran implementation each
patch has a unique number, and the use of pointers in the linked list is emulated by a
large, two-dimensional array of type integer. For each patch the patch-numbers of its
parent, its possible kids and its possible neighbours are stored column-wise in the integer
array. Furthermore, for each patch a set of properties is kept, which identify the type of
the patch: whether the patch contains a cell, whether the horizontal cell edge or vertical
cell edge is part of the inter-grid boundary or the boundary of the domain, whether
the cell contained in the patch should be refined at the earliest possible occasion, etc ..
These properties are stored column-wise in a two-dimensional array of type logical,
where the column number corresponds with the unique number of the patch, and the
row with the specific property. Finally, the numerical data for the problem are kept in
another two-dimensional array of type real (or double precision). These data are also
addressed through the unique patch number. For each patch a total of 18 real numbers
is stored. The data structure handled by BASIS has a much wider range of applications
than Euler-flow computations or cell-centred discretisation schemes.

The actions on the data in the data structure are performed through a depth-first
traversal of the quad-tree. The subroutines performing the necessary numerical actions
work by the application of this tree traversal algorithm.

For each patch visited through this algorithm, a subroutine is called to perform some
action on the data in the structure. The quad-tree structure and the use of such a
traversal algorithm to perform any task, is very well-suited for the implementation of a
multigrid algorithm with adaptive mesh refinement. However, automatic vectorisation
(i.e., vectorisation by a compiler) of a code of this nature does not gain any performance.
Therefore, in the vector extension library presented in Section 2, subroutines are provided
that collect pointers to patches contained in the geometric structure of a single level
of refinement. These pointers are placed in an appropriate order in a separate array
of pointers. The array of pointers makes the algorithm fit for vectorised processing.
Essentially, by using indirect addressing via those pointers, instead of tree-traversing,

400

the original subroutines that were called for a single patch to perform some numerical
action, have been replaced by subroutines that work on multiple patches. Details follow
in Section 2.

1.4 Numerical results

1.4.1 Shock reflection

The problem In this section we consider a shock reflection problem. This is a gas
dynamics problem of a supersonic flow along a fiat solid surface. The domain of definition
is n = {(x,y) I 0 < x < 4, 0 < y < 1}, and the flat surface is located at y = 0. A shock
is impinging from the point (0, 1), at an angle of 29° with the positive x-direction. At
the inflow boundary x = 0, the boundary conditions for this solution are given by

u(O,y) 1,
v(O, y) = 0,

M(O, y) = 2.9,
p(O,y) = 1

(x-veloci ty)
(y-velocity)
(Mach number)
(density).

(16)

At the inflow boundary y = 1, the flow perpendicular to the horizontal boundary is
subsonic, and we impose three conditions. These are approximately given by

u(x,1)
v(x, 1)

M(x, 1) =

0.90322141,
-0.17459319,

2.37807192.

The boundary y = 0 is the solid wall, and we impose impermeability, given by

v(x,O) = 0.

(17)

The shock is reflected at the solid wall, at an angle of about 23.279°. The exact solution
is known from shock relations. It is a piecewise constant function. The impinging and
reflected shocks form the discontinuities of this function.

Refinement The domain n is rectangular. The coarsest grid used, level l = 0, is a
6 x 2 grid. The basic level is lb = 1. Since, away from the shock, the exact solution is a
constant function for both a first-order discretisation and a second-order discretisation,
the local discretisation error is zero away from the shock. For an adaptive computation,
it is sufficient for this problem to use only the variation of the solution as the refinement
criterion. Grids are refined on the basis of the first undivided difference of a solution
component. According to research on the use of undivided differences as a general
refinement criterion, it is found that of any component of the solution, the first undivided
difference of density gives the best results [5].

Results For this problem, away from the shock, the discretisation yields equations with
local discretisation error equal to zero. The accuracy of the results will be determined to
a large extent by the resolution provided by the grid used. In the following paragraphs
we describe the first and the second order discretisation, respectively.

401

Table 1: Final number of cells used for shock reflection problem; first-order discretisation.

locally refined uniform
L composite total composite total
4 1533 2040 3072 4092
5 3582 4772 12288 16380
6 7797 10392 49152 65532

y

x

y

x

y

x

Figure 1: Locally refined grid and iso-lines of the Mach number for the shock reflection
problem on the locally refined and the uniform grid (from top to bottom). First-order
discretisation; L = 5.

First-order discretisation The equations resulting from the first-order discretisation,
are solved on an adaptively refined grid. For the highest level L we take successively
L = 4, 5, 6 to study the convergence behaviour. The number of FAS-iterations (V­
cycles) for each refinement cycle is two ('y = 2). A cell is refined if the absolute value
of the first undivided difference in either x-direction or y-direction exceeds 0.05. We
consider refinements to have become obsolete if the absolute value of the first undivided
difference of density drops under 0.025. In Table 1 the number of cells used are given
for both the locally refined and the uniform grids. Note that the number of cells doubles
approximately when going from L to L + 1. Figure 1 shows for L = 5 the grid obtained
by local refinement, with iso-plots of the Mach number on that grid as well as on the
corresponding uniform grid. In Figure 2 the convergence histories are given for both
the adaptive method and the uniform method. Along the vertical axis, these figures
show the logarithm of the mean of the four discrete L1 norms of the scaled residual of
the first-order discretisation, defined by (ALt1{Nf (q1) - r 1}l,;. Along the horizontal

402

log
(residual)

............
Ill
Ill ..
•

-lu+---,...----.----.+--'W....._J;.....L_~m
2 3 4 5 6 7

log(Newton iterations)

Figure 2: Residual versus amount of work: convergence histories for adaptively refined
and uniform grids; first-order discretisation; <>: L = 4; +: L = 5; o: L = 6; --: locally
refined; - -: uniform.

Table 2: Final number of cells used for shock reflection problem; second-order discreti­
sation.

locally refined uniform
L composite total composite total
4 924 1228 3072 4092
5 2004 2668 12288 16380
6 4707 6272 49152 65532

axis the figures show the logarithm of the number of elementary Newton iteration steps
performed (i.e., the approximate solution of the nonlinear 4 x 4-system used in the point
relaxation). For L = 6 the number of Newton iteration steps to convergence up to
machine precision for the adaptive method is about nine times less than the number
of iterations needed when a uniform grid is used, while virtually the same solution is
obtained (see Figure 1 and Figure 2). For L = 5 the number of iterations for the adaptive
method is about five times less and for L = 4 this is about 2.5 times less.

Second-order discretisation We use the second-order discretisation Nfl, with the
Van Albada limiter [1], and third-order accurate virtual states as defined in l23, Chap­
ter 2]. The refinement decision is the same as for the first-order discretisation. The
number of defect-correction iterations in each refinement cycle is five. It appears that,
after five defect-correction cycles, possible wiggles in the 'initial' solution have vanished.
The final locally refined grid and iso-lines of the Mach number for L = 5 are shown in
Figure 3. The number of cells for local refinement with this second-order discretisation
is shown in Table 2. Notice that the number of cells for levels L = 4, 5, 6 is much smaller
for the adaptive computation with second-order discretisation than for the computation
with first-order discretisation. For second-order discretisation some extra refinements
may be introduced, apart from the refinements introduced by the refinement criterion
itself. These extra refinements are introduced in order to let virtual states for the dis­
cretisation on level l depend only on the solution on levels l and l - 1, and not on the

403

-

y

x

1~2.4 2J2.3 y 2.8 2.0

o+-~~~~~~~=.--~~~~~~~____,

0 2 3 4

x

Figure 3: Grid and iso-lines of the Mach number for the shock reflection problem on a
locally refined grid; second-order discretisation; L = 5.

level l - 2.
Convergence histories for locally refined and uniform grids are given in Figure 4. This

figure shows the logarithm of the mean of the four discrete L1 norms of the second-order
discretisation versus the logarithm of the number of Newton iteration steps. We did
not consider L = 6 and a uniform grid. (The latter problem is so large that it caused
our workstation to start swapping pieces of memory to disk, resulting in a very large
processing time.)

Apparently, the defect-correction process does not converge for uniform grids. The
reason for this is possibly the following. On a uniform grid with finest level L, many more
Fourier modes can be represented than on the refined grid with finest level L. Especially
low-frequency modes can be represented very well on the uniform grid, better than on the
locally refined grid. In [6] an amplification factor g ~ 1 for low-frequency Fourier modes
is found, in case of the linear convection problem in two space dimensions. However, it
should be stressed that for this linear convection problem this high amplification factor
corresponds to functions that are constant in the characteristic direction of the problem.

The defect-correction algorithm for locally refined grids does converge. For second­
order discretisation and defect correction, discretisation on a locally refined grid yields
a more robust algorithm for this problem.

Execution time In order to get an idea of the execution time, for this problem we give
CPU-times of our scalar Fortran research code on an SGI IRIS INDIGO XS workstation.
Optimisation was done automatically by the compiler. In Table 3 we give the average
CPU-time per Newton iteration step. Note that these Newton iterations are again local
Newton iterations, used in the non.linear point Gauss-Seidel relaxation. Table 3 also
shows the average CPU-time for another (scalar) multigrid code, developed to work
with uniform grids only. This non-adaptive code, called EULER7, implements the same
multigrid and defect-correction algorithms as used in the code for adaptive computations
(see e.g. [16]). The FAS-algorithm on a locally refined grid appears to be only three
percent more expensive than on a uniform grid with the adaptive code. The iterative
defect correction appears to be about 183 more expensive. For the FAS-algorithm, the

404

log
(residual)

2 3 4 5 6 7
Jog(Newton iterations)

Figure 4: Residual versus amount of work: convergence histories for defect correction
and second-order discretisation on uniform and locally refined grids; <>: L = 4; +: L = 5;
o: L = 6; --: locally refined; - -: uniform.

Table 3: CPU-time required per Newton iteration step for the shock reflection problem.
The numbers denote CPU-time: ms/iteration.

adaptive-grid code uniform
locally uniform grid
refined code

FAS 0.96 0.93 0.84
ItDeC/FAS 1.14 1.03 0.84

405

x

1 ~2.4 LJ2.3 y 2.8 2.0

o~~~~~~---"-"""''-r-~~~~~~~~

0 1 2 3 4
x

Figure 3: Grid and iso-lines of the Mach number for the shock reflection problem on a
locally refined grid; second-order discretisation; L = 5.

level l - 2.
Convergence histories for locally refined and uniform grids are given in Figure 4. This

figure shows the logarithm of the mean of the four discrete L1 norms of the second-order
discretisation versus the logarithm of the number of Newton iteration steps. We did
not consider L = 6 and a uniform grid. (The latter problem is so large that it caused
our workstation to start swapping pieces of memory to disk, resulting in a very large
processing time.)

Apparently, the defect-correction process does not converge for uniform grids. The
reason for this is possibly the following. On a uniform grid with finest level L, many more
Fourier modes can be represented than on the refined grid with finest level L. Especially
low-frequency modes can be represented very well on the uniform grid, better than on the
locally refined grid. In [6] an amplification factor g RJ 1 for low-frequency Fourier modes
is found, in case of the linear convection problem in two space dimensions. However, it
should be stressed that for this linear convection problem this high amplification factor
corresponds to functions that are constant in the characteristic direction of the problem.

The defect-correction algorithm for locally refined grids does converge. For second­
order discretisation and defect correction, discretisation on a locally refined grid yields
a more robust algorithm for this problem.

Execution time In order to get an idea of the execution time, for this problem we give
CPU-times of our scalar Fortran research code on an SGI'IRIS INDIGO XS workstation.
Optimisation was done automatically by the compiler. In Table 3 we give the average
CPU-time per Newton iteration step. Note that these Newton iterations are again local
Newton iterations, used in the nonlinear point Gauss-Seidel relaxation. Table 3 also
shows the average CPU-time for another (scalar) multigrid code, developed to work
with uniform grids only. This non-adaptive code, called EULER7, implements the same
multigrid and defect-correction algorithms as used in the code for adaptive computations
(see e.g. [16]). The FAS-algorithm on a loca:lly refined grid appears to be only three
percent more expensive than on a uniform grid with the adaptive code. The iterative
defect correction appears to be about 18% more expensive. For the FAS-algorithm, the

404

-1

log
(residual)

-51-1-----....---..-----.-----..,-----i
2 3 4 5 6 7

log(Newton iterations)

Figure 4: Residual versus amount of work: convergence histories for defect correction
and second-order discretisation on uniform and locally refined grids;<>: L = 4; +: L = 5;
o: L = 6; --: locally refined; - -: uniform.

Table 3: CPU-time required per Newton iteration step for the shock reflection problem.
The numbers denote CPU-time: ms/iteration.

adaptive-grid code uniform
locally uniform grid
refined code

FAS 0.96 0.93 0.84
ltDeC/FAS 1.14 1.03 0.84

405

-

1.5 .

-1.5 ~--~--....._-~--~
-1 -0.5 0 0.5

x

Figure 5: Uniform grid of level l = 1, around NACA0012 airfoil.

adaptive code with local grid refinement, appears to be about 14% more expensive than
the non-adaptive code EULER7. For iterative defect correction, the adaptive-grid code
is about 34% more expensive than EULER7.

1.4.2 Transonic airfoil flow

In this section we consider transonic flow around the NACA0012-airfoil. The flow con­
ditions at the far-field boundary are: M00 = 0.8, angle of attack a = 1.25°, p00 = 1 and
(u2 + v2)00 = 1. The computational domain extends to about 100 chords to all sides.

As second-order operator, Nh, we use the Van Albada limiter scheme [28, l]. Again,
third-order accurate computation of virtual states is applied (see [23, Chapter 2] for
details). The limiter scheme is used because spurious wiggles in the solution are expected
if a non-limited, second-order scheme is used.

In the refinement criterion we use first undivided differences of the density, in both
streamwise direction and the perpendicular direction. Two thresholds are used, one for
each direction. This prevents the algorithm from refining in the neighbourhood of a shock
only. It allows the algorithm also to find the contact discontinuity, and to resolve the
expansion region. Then, we not only get a good resolution of the shock, but also a good
resolution of the expansion. This in turn is important for the accurate computation of the
lift and drag coefficients. The use of a single threshold value only (i.e., the same threshold
for both criteria) would be inefficient for a small threshold value (too many refinements).
On the other hand, a larger threshold value only refines at strong discontinuities.

The grid used is an 0-type grid. The coarsest grid is a 5 x 8 grid. The highest level
is L = 5. The uniform grid at level l = 1 is shown in full and in detail in Figure 5. A cell
is refined if the first undivided difference of density in flow direction is larger than 0.02,
or if this difference in the direction perpendicular to the flow is larger than 0.004. The
final adaptively refined grid, with L = 5, is shown in Figure 6. In Figure 7 the Mach
number distributions are shown both for an adaptively refined grid and a uniform grid.
The pressure distributions for the uniform grid and for the locally refined grid are shown
in Figure 8. For the lift and drag coefficient on the adaptively generated composite grid
we find Cz = 0.3480, cd = 0.0235. On the non-adaptive grid we find c1 = 0.3512 and
cd = 0.0235. The difference between these values is less than 10% of the scatter found

406

x

Figure 6: Locally refined grid with L::::: 5, around NACA0012 airfoil.

1.5 ~----~-

y 0

0.8 0.8

-1.5 +-------'---.l.-----1
-1 0 2

x

0.8 0.8

-1.5 +-------~--"'-------'
-1 0 2

x

Figure 7: !so-line plots of the Mach number for the transonic flow around a NACA0012
airfoil; a ::::: 1.25°; M 00 ::::: 0.8; locally refined grid: L ::::: 5; uniform grid: L ::::: 4.

407

-1.5,~---------------~

1

1.5--'.---------,..----------r
0 0.5

x

Figure 8: Pressure distribution for adaptively refined and uniform grids for transonic
flow around a NACA0012 airfoil; a = 1.25°; M00 = 0.8; --: locally refined grid,
L = 5; - -: uniform grid, L = 4.

between different reference results listed in [31]. This reference gives c1 = 0.3632 and
cd = 0.0230, obtained on a grid of20480 cells by Schmidt and Jameson [31]. The number
of cells on the adaptively generated composite grid is 7876 and a total number of 10488
cells was used in the computation. The non-adaptive grid uses 10240 cells on the finest
grid and a total number of cells of 13640. The convergence histories of both the adaptive
and non-adaptive case are shown in Figure 9. The adaptive computation takes about
three times less work than the computation on the non-adaptive grid.

The solution-adaptive multigrid method appears to be an efficient tool for detailed
studies of singular flow phenomena as well (see [19, 25]).

2 EUVEL: An EULER Vector Extension Library

In this section we describe the EUler Vector Extension Library (EUVEL), which contains
a set of vectorised subroutines for the same algorithm as used for the original subroutines
in BASIS and EULER. Since the implementation of the original subroutines in BASIS
and EULER is inherently scalar and since the greatest performance gain on a machine as
the Cray Y-MP is expected from vectorisation and not from parallelisation, we focus our
attention on vectorisation of the original EULER code, using the same data structure.
By the typical tree structure of the data structure used, it can be expected that paralleli­
sation of the code will be more straightforward. In Section 2.1 we describe an extension
of BASIS to facilitate the vectorisation. In Section 2.2 we describe the vectorisation of
some of the EULER subroutines. To enhance the vectorisation of the relaxation process,
Osher's flux-difference splitting scheme [26] was replaced by Van Leer's flux-splitting
scheme [20].

2.1 Extensions to BASIS

A strict definition of the data structure is found in [13]. In the following subsections
we briefly summarise the data structure, possibly repeating some information given in
preceding sections. The computational domain 0 is partitioned into a finite number of

408

log
(residual)

0 2 4 6
106 Newton iterations

Figure 9: Residual versus amount of work: convergence histories of defect correction
and second-order discretisation for NACA0012 airfoil flow; a= 1.25°; M00 = 0.8; locally
refined grid: L = 5; uniform grid: L = 4.

quadrilateral cells. For the adaptive multigrid algorithm different levels of refinement of
the grid are used. Each cell of the grid 0 1 on level l > 0 is a member of a division of a cell
of 0 1- 1 , into a set of 2 x 2 smaller cells. We call the cell on 01- 1 the parent cell and the
four smaller cells of the subdivision on 01 the NE-kid, SE-kid, SW-kid, and NW-kid cell,
respectively (using the compass to denote the direction). The data structure is ordered
by patches: the union of a point with possibly a horizontal cell edge, a vertical cell edge
and a cell interior. The data structure consists of a quad-tree of such patches (i.e., at
most four new branches at each node). With each cell (or node), a patch as well as a
number of pointers, properties, coordinates and numerical values are associated.

The kernel of EULER is a BASIS subroutine called Scan, which accomplishes a
depth-first quad-tree traversal, invoking an external subroutine (Doit), which is passed
as argument to Scan, for every patch found. Another argument of Scan is an INTEGER
array Order (1 : 4) which contains a permutation of the directions NE, SE, SW, NW: the
order in which the four kid cells (branches in the tree) are visited. Since Dolt is called
separately for every patch found we hardly find any performance gain by automatic
vectorisation .. On the other hand, the data structure is ideally suited for a self-adapting
mesh. So, we decided to leave the data structure unchanged and to add a pointer
structure in order to allow vectorisation.

Each patch has an 'arbitrary' identification number. Therefore, two successive patch
numbers can be related to patches that have nothing in common. All information con­
cerning patches and their relations is stored in three large two-dimensional arrays:

PNTR - an INTEGER array,
PPTY - a LOGICAL array,
DATA - a REAL (or DOUBLE PRECISION) array.

These arrays have MNOP (Maximum Number Of Patches) columns. To prevent tree-wise
scanning of the patches each time, we operate on patches of which the pointers are listed
in various index arrays. Which specific index array is used depends on the kind of action.

First of all, pointers to patches that belong to the same level are gathered and
stored into an array LevelW(O:MNOP). Array LevelW (combined with INTEGER array

409

NLev(O:MNOL), where MNOL denotes the Maximum Number Of Levels), tells us where we
can find patches of level k: the array segment

LevelW(l:NLev(O))
contains pointers to patches on level l = 0, whereas the segment

LevelW(NLev(k-1)+1:NLev(k))
contains pointers to patches on level l == k.

The collective symmetric point Gauss-Seidel relaxation can be vectorised by using a
diagonal ordering. For this purpose, the elements of LevelW, referring to patches, are
stored such that their diagonal number (being the sum of the ~- and 77-coordinates) is
in monotonously non-descending order. The INTEGER array NDiag(0: MNOD, 0: MNOL,
0:2)1, informs about the position of the diagonal elements within the array LevelW.
The patches on diagonal d of level k can be found in the range

NDiag(d,k,O) : NDiag(d,k,1)

of LevelW. These index arrays are all generated by a subroutine, SortLv, and they must
be updated only when the cell structure (the mesh) has changed.

2.2 Vectorisation of some of the EULER subroutines

We have restricted vectorisation to the most time-consuming subroutines. All subrou­
tines adapted were originally implemented using Scan.

2.2.1 Computation of the flux, transport and their derivatives

To enhance the performance of the vectorised relaxation routines, it appeared that the P­
variant of Osher's flux-difference splitting scheme ([15]) could be replaced by Van Leer's
flux-splitting scheme. The relaxation process is responsible for approximately 80-90%
of the total CPU-time. The vector length used in the relaxation will be at most the
number of cells in a diagonal of the finest grid. However, since we are dealing with an
adaptively refined grid, in many cases this vector length will not be very large. The
motive for preferring Van Leer's scheme above Osher's scheme is its smaller number of
branchings. In Osher's scheme there are 16 different possibilities, whereas in Van Leer's
scheme there appear to be only 4. In fact, the main problem in vectorising is not the
number of conditions, but the small number of patches that satisfy a particular condition
in the upwind scheme. Moreover, this number of patches in a diagonal decreases during
the relaxation process, because the number of Newton-steps needed on the individual
patches may differ. It is clear that the 16 possibilities in Osher's scheme would result in
smaller vector lengths than the 4 possibilities in Van Leer's scheme.

The original subroutine FTA computes the Flux, the Transport and the left and right
transport derivatives on a single patch. We created a generic source (to be pre-processed
by cpp, the C language pre-processor) with the functionality of FTA. It operates on mul­
tiple patches (passed as an array of patch numbers), and it has Van Leer's flux-splitting
scheme completely inlined. With cpp six different versions are generated, working on
multiple patches, but with different variants for horizontal and vertical cell edge; in ad­
dition, left or right derivatives are computed if necessary. It saves us from passing some
original arguments, and -more important- it saves us from the resulting conditions in
the generated subroutines. For example, one of the variants, FTAHLS, replaces FTA on

1 Here MNOD denotes the Maximum Number Of Diagonals,

410

Horizontal cell edge computing Left derivatives and it operates on multiple patches (a
Subset). Inside an FTA variant, lists of patch numbers are pre-computed satisfying the
subsonic and supersonic :6.ow conditions considered in the Van Leer scheme; this is done
completely vectoris.ed. Next, the :6.ux, the transport and the derivatives are computed
(completely vectorised) using indirect addressing via the pre-computed lists.

2.2.2 Right-hand side computation

Originally, the right-hand sides were constructed using Scan over all patches that build
up the grid. Vectorisation by looping over all patches on one level is not feasible because
too many actions must be performed for each patch. Fluxes must be calculated and sent
to the memory locations in DATA. Then, the residuals of the kids are collected, or, when·
there are no kids, a source term is evaluated. For the vectorisation it is better to split
up the actions and to perform them on all patches residing on the same level. The new
structure of the subroutine MkRhs, which computes the right-hand side, looks as follows:

call ZRhsV(...)
if (lev .eq. TopLev) then

call MkRhsTV()
else

call MkRhsKV()
call MkRhsHV()
call MkRhsVV()

end if

These subroutines operate on multiple patches, listed in an index array, and they perform
one of the following subtasks:

ZRhsV - initialises the right-hand sides in DATA on a given level;
MkRhsTV - evaluates the source term on the highest level and assigns the value to

the corresponding DATA memory location;
MkRhsKV - adds the right-hand sides of the kids or, when there are no kids, a

source term is evaluated and assigned;
MkRhsHV - calculates the horizontal :6.uxes and adds them to conesponding DATA

memory locations of the cells and/or their (southern) neighbour;
MkRhsVV - calculates the vertical :6.uxes and adds them to corresponding DATA

memory locations of the cells and/or their (western) neighbours.

The computation of the :6.uxes is bounded by many restrictions: distinction should be
made between green cell edges (i.e. edges at fine-coarse grid interfaces), boundary edges,
and ordinary edges. Moreover, it should be known whether the patches have kids or
not. Fortunately, the computation of the horizontal and vertical :6.uxes can be done
independently, minimising the number of conditions for a patch.

Again it turns out to be convenient to use index arrays in order to save tests on
properties of patches and to make vectorisation easier.

The flux transport computation across ordinary cell edges has been completely vec­
torised. For the green and boundary cell edges the :6.ux computation required a slightly
different approach. However, as soon as the left and right states have been computed
for all green and boundary edges, the process can proceed analogous to the 'ordinary'
case, i.e., c9mpletely vectorised. The :6.uxes are computed by the vectorised subroutines

411

described in Section 2.2.1. Finally, sending of the flux values to the patches and/or their
neighbours can be done in a straightforward way.

2.2.3 The residual

The computation of the residual on the composite grid (i.e., the grid consisting of all cells
that have not been refined) corresponds to the previously discussed computation of the
right-hand sides of the· equations. First-order fluxes in horizontal and vertical direction
must be computed. Again, it is possible to separate the horizontal and vertical part. For
both directions index arrays are generated for the composite grid. The computational
complexity for the residual computation and the right-hand side evaluation is roughly
the same.

Originally, after the residual was computed, another Scan through the data structure
was made to construct the L 1 and L 00-norms of the residual fields. The weighting is
done by a multiplication of the residual by a factor 4-1, where l is the level on which the
cell resides. This implies, that for each patch its weighting factor must be computed.
Operating along the index array LevelW has the additional advantage of a constant
weighting factor for each level.

Both norms can be calculated at vector speed using the BLAS subroutines SASUM

and ISAMAX, respectively. Originally, the norms were computed simultaneously; in the
modified code these norms are computed separately for each residual field.

2.2.4 The relaxation

Collective symmetric point Gauss-Seidel relaxation is used as the relaxation procedure
in EULER. Point refers to the property that during the update of a state vector on a
patch all other state vectors are kept fixed. Collective refers to the property that the
update of the state vector on a patch is done for all of its four components simultane­
ously. Symmetric means that after a relaxation sweep a new sweep is made with the
reverse ordering. For each cell visited during a relaxation sweep a system of four non­
linear equations is approximately solved by Newton iteration, the differential operator
being (8/8u, 8/av, 8/ac, 8/8z)T; see [15] for definitions and details. We consider two
·possibilities for vectorising the relaxation:

1. Replacing symmetric Gauss-Seidel by a red-black ordering. This leads to an essen­
tially worse convergence factor (based on other experiments we expect to loose a
factor 5).

2. Staying with symmetric Gauss-Seidel, but using a diagonal ordering (since the non­
linear systems on a grid-diagonal are completely decoupled) and replacing Osher's
scheme by Van Leer's scheme. This results in longer vectors, because the number
of choices in the upwind scheme reduces from 16 to 4.

A comparison of both choices shows a better efficiency for the latter approach. This
means that, except for the replacement of Osher's flux-difference splitting scheme by Van
Leer's flux-splitting scheme, we keep exactly the algorithm as used in the original EULER
code. It can be easily seen that the original relaxation, using Scan with (SW, NW, SE,
NE)-ordering, corresponds to the lexicographical ordering, which in turn is identical
to the diagonal ordering because all non-linear systems on a diagonal are completely
decoupled. In Section 2.1, we already described how an additional pointer structure has
been added to facilitate working on diagonals.

412

We still have to describe how the decoupled non-linear systems on a diagonal are
solved. First, the linearised (4 x 4) systems are constructed by use of the previously
described flux, transport and derivatives subroutines. Next, a single Newton iteration
step is performed, in which a 4 x 4 linear systems must be solved. For this, a subroutine
was developed which contains one completely vectorisable loop, in which the loop body
solves a 4 x 4 linear system using Gaussian elimination with partial pivoting. In order
to vectorise this loop and to enhance the vector and even the scalar performance, the
Gaussian elimination code for the solution of the 4 x 4 system is completely unrolled. A
problem is that one or more of the linear systems might be singular. This is taken care
of by replacing the matrix-diagonal elements by '1' and separately marking the systems
singular. Finally, we notice that we do not know beforehand, how many Newton iteration
steps are to be performed. After a Newton step on the patches in a grid-diagonal, we test
whether the specified accuracy is reached, and then the patch numbers are collected of
the non-linear systems that did not reach the required accuracy. The Newton process is
continued on this probably much smaller subset. The iteration process is finished if either
the subset becomes empty or a certain number of Newton steps has been performed.

2.2.5 Some other vectorised subroutines

Finally, we discuss some other interesting subroutines that have been vectorised, viz.,
RstSol, BckUp and AddP1. The first, RstSol computes a restriction of the solution on
a given level, and sends it to .the memory locations of the solution on another level.
BckUp makes a copy from the solution. AddP1 interpolates and adds the correction from
one level to another. The Scan approach originally used being too expensive, in the
new implementation the actions are performed directly for multiple patches and can be
vectorised, including the IF-tests on the patch properties. Additional index arrays are
not necessary.

2.3 Vector Performance

We consider the same two test problems that were used in Section 1.4. In this section,
our main interest is the performance improvement obtained by vectorisation.

2.3.1 Shock reflection

The first test problem is the shock reflection problem considered in Section 1.4.1. Here
the finest grid has dimensions 128 x 64, so the maximal diagonal length (being the
maximal vector length) in the relaxation process is 64. The vector speed-up, measured
for one FAS-cycle, can be found in Table 4. The total cost of maintaining the additional
data structure, which allow vectorisation is 0.0142 CPU seconds, being only 2.53 of the
total execution time.

2.3.2 Transonic airfoil flow

The second problem is the transonic flow problem around the NACA0012-airfoil, shown
in Section 1.4.2. Beside the replacement of Osher's flux-difference splitting scheme by
Van Leer's, the solution method differs for this problem due to the 0-type grid. In
this case the diagonal ordering no longer corresponds with the original lexicographical
ordering. For the solution a cylindrical grid (a rectangular grid with coinciding lower

413

Table 4: Speed-up achieved with EUVEL on shock reflection problem. The CPU time
is given in seconds.

CPU time CPU time Speed
routine original EUVEL up
Add.Pi 0.0107 0.0009 12
Bek Up 0.0079 0.0002 40
MkR.hs 0.2070 0.0279 7.4
Relax 2.1587 0.5294 4.1
RstSol 0.0106 0.0006 18
FAS 2.3949 0.5590 4.3

Res 0.1707 0.0208 8.2
NormRP 0.0275 0.0008 34

Table 5: Speed-up achieved with EUVEL on airfoil problem. The CPU time is given in
seconds.

subroutine
AddP1
BckUp
MkR.hs
Relax
RstSol
FAS Total

I Res
NormRP

CPU time
original
0.0229
0.0167
0.4193
4.4489
0.0427
4.9510

0.3396
0.0500

CPU time
EUVEL
0.0019
0.0004
0.0641
0.9914
0.0025
1.0605

0.0347
0.0015

Speed
Up
12
40
6.5
4.5
17
4~7

and upper boundaries) is used: the d-th diagonal, having d as sum of the ~- and .,,_
coordinates, extends over the lower boundary to the diagonal in the rectangular grid
having d + NY as sum of the ~- and 'TI-coordinates. (NY is the number of points in the
17-direction). In fact, the diagonals on the rectangular grid render into spirals on the
cylindrical grid. In Table 5, we can find the vector speed-up for this problem.

2.4 Conclusions

Whereas, at first sight, the quad-tree data structure used for the self-adaptive algorithm
seems not suitable for use on a vector computer, we have vectorised the EULER code,
obtaining a vector speed-up factor of 4-5. To judge this speed-up we must bear in
mind, first, the indirect addressing, necessary for the adaptive grid, and second, the
relatively small average vector length due to the adaptive grid. Furthermore, the use
of adaptive grids instead of uniformly refined grids has already decreased the amount
of computational work by a factor 5-10 for realistic problems. We could obtain slightly
higher vector speeds by changing the refinement criterion. However, in that case, the
increase of computational work is not compensated by the increased vector speed.

The price to be paid for vectorising the original Euler code is the replacement of
Osher's flux-difference splitting scheme by the somewhat less accurate Van Leer flux­
splitting scheme. This is a relatively low price, because it is possible to compensate for

414

this by applying defect correction with Osher's flux-difference splitting scheme.
As indicated in the introduction, vectorisation instead of parallelisation of the code

was a well-considered approach; the greatest performance gain on a Cray Y-MP was
expected from vectorisation. Parallelisation is still possible using domain decomposition
or, chopping up the quad-tree. Compared to our vectorisation efforts, parallelisation
should be relatively easy.

Requests for the modules BASIS, EULER and EUVEL can be directed to one of the
e-mail addresses: barry@cwi.nl or walter@cwi.nl.

References

[1] G.D. van Albada, B. van Leer, and W.W. Roberts. A comparative study of com­
putational methods in cosmic gas dynamics. Astron. Astrophys., 108:76-84, 1982.

[2] K. Bohmer, P.W. Hemker, and H.J. Stetter. The defect correction approach. In
K. Bohmer and H.J. Stetter, editors, Defect Correction Methods: Theory and Ap­
plications, volume 5 of Comput. Suppl., pages 1-32. Springer, Wien, 1984.

[3] A. Brandt. Multilevel adaptive computations in fluid dynamics. AIAA J., 18:1165-
1172, 1980.

[4] A. Brandt. Guide to multigrid development. In W. Hackbusch and U. Trottenberg,
editors, Multigrid Methods, number 960 in Lecture Notes in Mathematics, pages
220-312, Berlin, 1982. Springer.

[5] J .F. Dannenhoffer, III. Adaptive grid embedding for complex two-dimensional flows.
In J.E. Flaherty, P.J. Paslow, M.S. Shephard, and J.D. Vasilakis, editors, Adaptive
Methods for Partial Differential Equations, pages 68-82, Philadelphia, 1989. SIAM.

[6] J.-A. Desidfri and P.W. Hemker. Analysis of the convergence of iterative implicit
and defect-correction algorithms for hyperbolic problems. SIAM J. Sci. Comput.,
16:88-118, 1995.

[7] W. Hackbusch. Multi-Grid Methods and Applications. Number 4 in Springer Series
in Computational Mathematics. Springer, Berlin, 1985.

[8] W. Hackbusch and U. Trottenberg, editors. Multigrid Methods II, Proceedings of
the 2nd European Conference on Multigrid Methods, Cologne, 1985, number 1228
in Lecture Notes in Mathematics, Berlin, 1986. Springer.

[9] P.W. Hemker. Defect correction and higher order schemes for the multi grid solution
of the steady Euler equations. In Hackbusch and Trottenberg (8], pages 149-165.

[10] P.W. Hemker. On the order of prolongations and restrictions in multigrid proce­
dures. J. Comput. Appl. Math., 32:423-429, 1990.

(11] P.W. Hemker and G.M. Johnson. Multigrid approaches to the Euler equations.
In S.F. McCormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied
Mathematics, pages 57-72, Philadelphia, PA, USA, 1987. SIAM. ·

415

[12] P.W. Hemker, B. Koren, W.M. Lioen, M. Nool, and H.T.M. van der Maarel. Multi­
grid for steady gas dynamics problems. In M. Hafez and K. Oshima, editors, Com­
putational Fluid Dynamics Review 1995, pages 477-494, Chichester, 1995. Wiley.

[13] P.W .. Hemker, H.T.M. van der Maarel, and C.T.H. Everaars. BASIS: A data struc­
ture for adaptive multigrid computations. Technical Report NM-R9014, CWI, Am­
sterdam, 1990.

[14] P. W. Hemker and S.P. Spekreijse. Multigrid solutions of the steady Euler equations.
In D. Braess, W. Hackbusch, and U. Trottenberg, editors, Notes on Numerical Fluid
Mechanics, volume 11, pages 33-44, Braunschweig, 1985. Vieweg.

[15] P.W. Hemker and S.P. Spekreijse. Multiple grid and Osher's scheme for the efficient
solution of the steady Euler equations. Appl. Numer. Math., 2:475-493, 1986.

[16] B. Koren. Defect correction and multigrid for the efficient and accurate computation
of airfoil flows. J. Comput. Phys., 77:183-206, 1988.

[17] B. Koren. Euler flow solutions for transonic shock wave - boundary layer interaction.
Int. J. Numer. Meth. Fluids, 9:59-73, 1989.

[18] B. Koren. Multigrid and Defect Correction for the Steady Navier-Stokes Equations,
Application to Aerodynamics. Number 74 in CWI Tracts. CWI, Amsterdam, 1990.

[19] B. Koren and H.T.M. van der Maarel. On steady, inviscid shock waves at continu­
ously curved, convex surfaces. Theor. Comput. Fluid Dyn., 4:177-195, 1993.

[20] B. van Leer. Flux-vector splitting for the Euler equations. In E. Krause, editor, Pro­
ceedings Eighth International Conference on Numerical Methods in Fluid Dynamics,
number 170 in Lecture Notes in Physics, pages 507-512, Berlin, 1982. Springer.

[21] W.M. Lioen and M. Louter-Nool. EUVEL: An EULER Vector Extension Library.
Technical Report NM-R9318, CWI, Amsterdam, 1993.

[22] H.T.M. van der Maarel. Adaptive multigrid for the steady Euler equations. Comm.
Appl. Numer. Meth., 8:749-760, 1992.

[23] H.T.M. van der Maarel. A Local Grid Refinement Method for the Euler Equations.
CWI Tracts. CWI, Amsterdam, to appear.

[24] H.T.M. van der Maarel, P.W. Hemker, and C.T.H. Everaars. EULER: An adaptive
Euler code. Technical Report NM-R9015, CWI; Amsterdam, 1990.

[25] H.T.M. van der Maarel and B. Koren. Spurious, zeroth-order entropy generation
along a kinked wall. Int. J. Numer. Meth. Fluids, 13:1113-1129, 1991.

[26] S. Osher and F. Solomon. Upwind difference schemes for hyperbolic systems of
conservation laws. Math. Comput., 38:339-374, 1982.

[27] KG. Powell, M.A. Beer, and G.W. Law. An adaptive embedded mesh procedure
for leading-edge vortex flows. AIAA Paper, 89-0080, 1989.

[28] S.P. Spekreijse. Multigrid solution of monotone second-order discretizations of hy­
, perbolic conservation laws. Math. Comput., 49:135-155, 1986.

416

[29] S.P. Spekreijse. Second order accurate upwind solutions of the 2D steady Euler
equations by the use of a defect correction method. In Hackbusch and Trottenberg
[8], pages 285-300.

[30] S.P. Spekreijse. Multigrid Solution of the Steady Euler Equations. Number 46 in
CWI Tracts. CWI, Amsterdam, 1988.

[31] H. Viviand. Numerical solutions of two-dimensional reference test cases. In Test
Cases for Inviscid Flow Field Methods, number 211 in AGARD advisory report,
pages 6-1-6-68. AGARD, Neuilly sur Seine, 1985.

[32] P. Wesseling. An Introduction to Multigrid Methods. Wiley, Chichester, 1991.

417

