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Preface 

I was first introduced to the subject of this book by Wim Albers in 1986. He 
showed me an early version of Akritas (1988), in which an apparently completely 
new x2-test in the random censoring model was described. In the classical i.i.d. 
model the x2-test statistic reduced to a simple functional of a process which was 
an intriguing transformation of the empirical distribution function. 

Shortly after that, I learned more about this process from several other seem
ingly independent sources [in the end all sources trace back to Aalen (1976)]. In 
Aki (1986) the process was attributed to the innovation approach in Khmaladze 
(1981 ), and in Shorack and Wellner (1986) two chapters were dedicated to "the 
basic martingale". 

Provided that T is not too large, the basic martingale behaves on the interval 
[O, T] as a lineair transformation of some empirical process. The recognition 
of this fact led to Einmahl and Koning (1992), in which several results for the 
empirical process were transferred to stochastic integrals with respect to the basic 
martingale. A main tool was a strong approximation on the interval [O, T]. 

The work on that paper made the usefulness of a more general strong ap
proximation clear to me, so I started investigating the interval [O, oo ). A major 
difficulty is that on this interval the basic martingale no longer behaves as a linear 
transformation of an empirical process. As Theorem 2 on page 26 shows, this 
difficulty can be taken care of. In fact, Theorem 2 goes somewhat further than a 
strong approximation, since it also presents an exponential inequality governing 
the approximation. The combination of an approximation and an exponential 
inequality is referred to as a KMT-type inequality. 

The major theme of this book is the statistical application of the KMT-type 
inequality Theorem 2, especially in the areas of testing, estimation, deviations, 
and efficiencies. In Chapter 1 an overview is presented. Some basic tools are 
described in Chapter 2. The theory is developed in Chapters 3 and 4, applied to 
the problem of testing exponentiality in Chapter 5, and supported by computer 
simulations in Chapter 6. 

ALEX J. KONING 

May 1993 
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Chapter 1 

An overview 

This chapter is meant to provide an overview of the remainder of the book. 
Although some technical elements are outlined in section 1.9, the interested reader 
should consult the other chapters for full detail. 

1.1 Introduction 

The complexity of the finite sample distribution of a test statistic often makes 
approximation necessary. In most cases approximations are motivated by weak 
convergence arguments. However, such arguments fail to give insight into the 
accuracy of the approximation. Typically, the approximations are poor in the 
tail of the distribution, the region which is of importance in determining critical 
regions and probability values. 

This book discusses the use of the approximation theory of Komlos, Major 
and Tusnady (1975) to construct approximations for test statistics themselves, 
rather than for their distribution functions. The accuracy of the approximations 
is indicated by accompanying probability inequalities. 

These probability inequalities imply weak convergence. In fact, they have 
consequences which go far beyond weak convergence, such as deviation results 
[see section 1.2]. Thus, one may view the inequalities as refinements of the implied 
weak convergence results. 

The test statistics considered mainly occur in the random censoring model, 
and are of the goodness-of-fit type. Section 1.2 pays some attention to goodness
of-fit tests in the i.i.d. model. 

In section 1.2 the approximation of empirical processes is described. Sec
tions 1.3 and 1.4 introduce the notion of KMT-type inequalities and the random 
censoring model, respectively. Section 1.5 addresses testing the simple null hy
pothesis. The transition to the composite null hypothesis, the subject of sec
tion 1.8, is made in sections 1.6 and 1. 7. 
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1.2 KMT-inequalities for empirical processes 

Many tests for assessing the fit of a cumulative distribution function F(t) to an 
i.i.d. sample are based based on the empirical distribution function Fn of the 
sample. A vast majority of these so-called EDF tests have test statistics which 
can be expressed in terms of the empirical process 

(1.1) 

Obviously, empirical process theory has direct implications for this class of EDF 
tests. 

If the sample indeed originates from the distribution F, then it is noticed 
in Doob (1949) that as the sample size n tends to infinity, the empirical pro
cess seems to behave more and more as a familiar Gaussian process, Brownian 
bridge [with time F(t)]. This observation has provided the inspiration for the so
called Empirical Central Limit Theorem (ECLT], which tells us that the empiri 1.l 
process converges in distribution to a Brownian bridge. The ECLT appears as 
Theorem 1 on page 19 of this book. 

Although the ECLT is a very useful device, it only describes the asymptotic 
behavior of the empirical process. Hence, the question arises how well a Brownian 
bridge approximation to the empirical process performs for finite samples. This 
question was answered by Komlos, Major and Tusnady (1975) by giving their 
famous probability inequality, which appears as Inequality 2 on page 19. 

Within the class of empirical process EDF tests there is the important subclass 
of tests based on statistics of the form T(Un), where Tisa Lipschitz functional [see 
Definition 2 on page 27]. As examples of members of this subclass we mention 
Kolmogorov-Smirnov, Cramer-von Mises and x2 tests. Since according to the 
probability integral transformation we may take Un and Bn to be equal to Uno F 
and Bn o F, Inequality 2 implies that 

Hence, if we know the distribution of T(Bn) then we may use the KMT-inequality 
to bound probability values P(T(Un) > x). 

The KMT-inequality implies that the difference between P(T(Un) > x) and 
P(T(Bn) > x) soon becomes neglible if n tends to infinity, provided that x is 
kept fixed. However, if x tends to infinity and n is kept fixed, P(T(Bn) > x) 
typically behaves as exp{-ax2 } for some a > 0, whereas the difference between 
P(T(Un) > x) and P(T(Bn) > x) as indicated by the KMT-inequality behaves 
as exp{ -bx} for some b > 0. This difference will eventually become much larger 
than P(T(Bn) > x ). Thus, the usefulness of the KMT-inequality for bounding 
probability values depends on whether we let n or x tend to infinity. 

This immediately raises the question what will happen if we let n and x 
simultaneously tend to infinity. In other words: what can be said about the 



1.3. KMT-TYPE INEQUALITIES 3 

difference between P(T(Un) > Xn) and P(T(Bn) > Xn) as n tends to infinity, and 
P(T(Bn) > xn) behaves as exp{-a(xn)2 }? This question is addressed in Inglot 
and Ledwina (1990) and Inglot, Kallenberg and Ledwina (1989). 

It turns out that in case Xn -, oo and Xn = o( n 1/ 2 ) the difference be
comes neglible with respect to P(T(Bn) > Xn), Observe that in this situation 
P(T(Un) > xn) also behaves as exp{-a(xn) 2 }. In mathematical statistics this is 
known as a deviation result. Deviation results are important in the evaluation of 
statistical tests, and are classified according to the rate at which Xn is allowed to 
converge to infinity. A moderate deviation result allows Xn = O((log n )112 ), and 
is required in the computation of weak intermediate efficiency [see Kallenberg 
(1983)]. A Cramer type deviation result allows Xn = o(n116 ), and is required in 
the computation of intermediate efficiency [see Kallenberg (1983)]. A Chernoff 
type deviation result allows Xn = O(n112 ), and is required in the computation 
of Bahadur efficiency [see Bahadur (1960)]. Observe that the deviation result 
implied bv the KMT-inequality just falls short of being Chernoff type. 

For the interesting exa,mples of test statistics T(Un) the deviation result just 
described was already known before. However, the earlier work on deviations of 
T(Un) consists of separate results. A clear advantage of the KMT-inequality is 
that it enables a unified approach. 

1.3 KMT-type inequalities 

The KMT approach to the EDF statistics sketched above may be extended to 
statistics based on other stochastic processes. In particular, we are interested 
in statistics of processes Qn(t) for which there exist a sequence of identically 
distributed approximating Gaussian processes W.,(t) such that the KMT-type 
inequality 

P( sup IQn(t)-Wn(t)l>n--Y(c2logn+x)1'):Sc3exp{-c4x} (1.3) 
tE[O,oo) 

holds for O < 1 :S 1/2 and r > 0. 
By setting x equal to log n, it is easily seen that the supremum overt of Qn(t)

Wn(t) remains bounded in probability, even after multiplication by n-Y(lognt. 
This implies that Qn converges weakly to a Gaussian process having the same 
distribution as W1 . 

Although Qn is asymptotically Gaussian, the asymptotic distribution of the 
statistic T( Qn) is in general non-normal. Asymptotic Pitman efficacy can be 
defined for non-normal test statistics [see Rothe (1981)], but has the undesirable 
property of depending on the size of the test. Moreover, its computation is in most 
cases extremely troublesome. This makes it rather impractible to use asymptotic 
Pitman efficacy to evaluate test statistics based on Qn, 

From the proof of Theorem 3 on page 43 we may infer that inequality (1.3) 
yields a deviation result for T(Qn) allowing Xn = o(n-Y/(2T-l)), provided that 
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P(T(Qn) > x) behaves as exp{-ax 2 } for n tending to oo. Deviation results 
shed light on the "tail" behavior of the approximation. Hence, we may view 
the number 1 / (2r - 1) as an indicator of tail accuracy. It should be as high as 
possible. 

The implications of KMT-type inequalities for intermediate efficiency and for 
the equivalence of limiting approximate Bahadur efficiency and limiting Pitman 
efficiency are discussed in Kallenberg and Koning (1993) [see also Appendix A]. 
Here the ratio 1 / T is of importance. 

In later sections in this chapter KMT-type inequalities for processes occurring 
in the random censoring model are described. The distribution of the approxi
mating Gaussian process is in some cases omitted from the description, since it 
can be quite complex. Thus, our main focus in this chapter will be the accuracy 
of the approximation, as indicated by I and T. 

1.4 Censoring 

In the analysis of failure time data we are interested in the time passing between 
a first event and a second event. Sometimes a third event makes the observation 
of the second event impossible. In this situation we only know a lower bound to 
the actual failure time. It follows that we have two types of observations, which 
we call "uncensored" or "censored", depending on whether the second event is 
observed. 

Techniques for the analysis of failure time data should distinguish between 
these two types of observations. Hence, tests based on the empirical process are 
in general not applicable. 

Nevertheless, an abundance of tests is available for failure time data. A strik
ing feature of the leading tests is that the central role of the empirical process 
has been taken over by another stochastic process, which was named the basic 
martingale in Shorack and Wellner (1986). This process will be discussed in later 
sections. 

In what follows we shall assume that the so-called random censoring model 
holds. In this model we have two independent sequences X1 , ... , Xn and Yi, ... , Yn 
of non-negative i.i.d. random variables which are observed indirectly by means 
of the sample (Zi, 8i), ... , (Zn, 8n), defined by 

The distribution of X; is of interest. 
It is convenient to represent the sample (Z1 , 81), .•. , (Zn, 8n) by means of the 

empirical distribution functions 

n 

H!(t) = n-1 E l{z,9,o,=1}, 
i=I 

n 

Hn-(t) = n-1 E l{Z,<t}• 
i=l 

(1.4) 



1.5. TESTING THE SIMPLE NULL HYPOTHESIS 5 

One may show that results obtained under the random censoring model con
tinue to hold if the random variables Yi, ... , Yn are degenerated in +oo. In this 
case the random censoring model reduces to the classical i.i.d. model. 

1.5 Testing the simple null hypothesis 

The fact that nH~ is a counting process provides the entry point for an approach 
of the random censoring model, which has become quite popular over the last 
fifteen years. A counting process is a nondecreasing process starting at zero, 
making jumps of length 1 at random points in time, and is constant elsewhere. 
To each counting process corresponds another stochastic process, referred to as 
the compensator, such that the difference between the counting process and its 
compensator has the martingale property: the conditional expectation of the 
process at some time t given all events occurring before times < t is equal to the 
value attained by the process at time s. Observe that multiplying a martingale 
by a fixed constant does not affect the martingale property. 

Let Pn be the probability measure generated by the pairs of random variables 
(X1 , Yi,), ... , (Xn, Yn)- Suppose there exists a cumulative distribution function 
F, indexed by 0 belonging to some set 0, such that Pn(X1 :s; t) = F(t;Bn) for 
some Bn E 0. Typically, 0 is a very large class of distribution functions. 

Now, suppose we are interested in testing the simple null hypothesis that Bn 
equals B0 , where B0 is some element of the set 0. 

Let A(t; 0) denote...:.. log(l-F(t; 0)), the cumulative hazard function belonging 
to F(t; 0). The counting process nH~ has compensator n J~(I - Hn-(s ))dA(s; Bn)
The basic martingale 

is the difference between nH~ and its compensator under the null hypothesis, mul
tiplied by n-1/ 2 . If the null hypothesis holds, then the basic martingale behaves 
approximately as a Wiener process with time 

(1.6) 

Although this can be shown by Rebolledo's martingale central limit theorem, 
empirical process techniques [outlined briefly in section 1.9] are capable of pro
viding a KMT-type probability inequality [with 1 = 1/2 and r = 2]. Recall that 
KMT-type probability inequalities are refinements of central limit theorems. 

Now that we are able to establish asymptotic properties of the Mn(t; 00 ) with
out exploiting its martingale character, we may consider the martingale concepts 
discussed above merely as a natural way to arrive at a process which under the 
null hypothesis reflects the randomness in the sample. From a goodness-of-fit 
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0.0035, 0.0086, 0.0132, 0.0467, 0.0490*, 0.0669, 0.0802, 0.0830, 0.1086, 
0.1173, 0.1181*, 0.1518*, 0.1653*, 0.1900*, 0.2029*, 0.2037, 0.2109*, 0.2324, 

0.2342, 0.2394, 0.244 7*, 0.2596*, 0.2979*, 0.3681, 0.4055, 0.5316*. 

Table 1.1: Data given in Woolson (1981). A suffix* denotes that the observation 
was censored by the close of the study. 

perspective the essential feature of Mn(t; Bo) is its functional dependence on the 
null hypothesis value of the parameter Liust like the functional dependence on 
µ0 of the classical one-sample t-test]. Thus, if the null hypothesis does not hold 
there is no guarantee that the null hypothesis behavior will still apply. Actually, 
drastically different behavior is what we are hoping for, since this will facilitate 
distinguishing between the null and the alternative hypothesis. 

Observe that Mn(t; B0 ) shares a time-transformation property with the empir
ical process: if we transform the data by applying a function ( which is increas
ing almost everywhere with respect to F(t; B0 ), then the "new" basic martingale 
equals Mn(((t); B0 ). Thus this type of transformation only has the effect of alter
ing the time-scale. 

There is one special transformation which stands out because of its simplifying 
effect. If the distribution F( t; B0 ) is continuous, then transforming by applying 
the cumulative hazard function A(t; Bo) yield8 data which are under the null hy
pothesis standard exponentially distributed. This is convenient, since for testing 
standard exponentiality the basic martingale simplifies to 

(1.7) 

which is a spline function. Changes in slope relate to failure times, censored or 
uncensored. If a change in slope coincides with a jump, then the corresponding 
failure time is uncensored. 

The transformation by means of the cumulative hazard function is exploited 
in Woolson (1981 ), where data obtained from a random sample of 26 psychiatric 
patients are analyzed. The random sample was drawn from all psychiatric pa
tients who were first admitted to University of Iowa Hospitals during the years 
1935-1948. 

The cumulative hazard function was computed according to mortality tables 
for the State of Iowa. Observe that if there is no difference in mortality between 
the psychiatric patients and other residents of Iowa, then [and only then] the 
transformed data should have a standard exponential distribution, and hence the 
basic martingale takes the form ( 1. 7). In Figure 1.1 this stochastic process is 
depicted. 

Now the question arises whether Figure 1.1 corresponds to what we expect 
from the basic martingale under the null hypothesis. Informally, we could inspect 
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2.0 - -
1.0 

0.0 

0.00 0.20 0.40 0.60 
A(t) 

Figure 1.1: Basic martingale computed from [transformed] Woolson data. 

Figure 1.1, having the properties of a Wiener process in mind. For instance, there 
is some drift away from the X-axis noticable in the figure, which could be a sign 
that we are not dealing with a process close to a Wiener process. In other words: 
there is some reason to doubt the null hypothesis. 

If we are not content with such loose findings, then a formal approach which 
uses the basic martingale to construct test statistics is more appropriate. In 
Woolson (1981) the test proposed by Breslow (1975) is applied. Fundamentally, 
the test of Breslow uses Mn( oo; B0 ) as test statistic. Under the null hypothesis 
Mn(·;B0 ) behaves approximately as a Wiener process with time H1(·;Bo) [see 
(1.6)], and thus Mn( oo; Bo) behaves approximately as a normal random variable 
with mean 0 and variance H 1 ( oo; B0 ). Because the distribution of Yi is unknown, 
it becomes necessary to estimate H1 ( oo; Bo). This is typically done using the 
estimator 

(1.8) 

which is the null hypothesis compensator of H;.(t) evaluated in oo. In case of 
the Woolson data the estimator (1.8) takes the value 0.1794. As roughly can 
be inferred from Figure 1.7, Mn(oo;B0 ) itself takes the value 2.033. Thus, the 
test based on Mn( oo; Bo) and estimated variance yields an asymptotic probability 
value 0.0000, which leads to rejection of the null hypothesis. Hence, the mortality 
of psychiatric patients differs from the mortality of other inhabitants of the State 
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of Iowa. 
In Chapter 3 a broad class of tests based on sublinear Lipschitz functionals 

of stochastic integral with respect to the basic martingale is studied. Within this 
class the test statistics are of the form T( Qn), where Qn(t) is defined as 

(1.9) 

Ln(t) is a random element of D[0,oo) satisfying certain properties, and T is 
sublinear [see Definition 1 on page 20] as well as Lipschitz. 

An example of a sublinear Lipschitz functional is the projection in infinity 
TR(O = c(oo). Tests based on statistics of the form TR(Qn) are called gener
alized rank tests. Special cases are the aforementioned test of Breslow, and the 
generalized rank tests of Fleming and Harrington, having weight process 

Ln(t) = (1 - F(t; 0o)Y (1.10) 

[see Fleming, O'Fallon, O'Brien and Harrington (1980), Fleming and Harring
ton (1981), Harrington and Fleming (1982), Fleming, Harrington and O'Sullivan 
(1987)]. Generalized rank test statistics are asymptotically normal. 

The supremum functional Ts(O = sup1E[O,oo) l(t) is another example of a sub
linear Lipschitz functional. Tests of the form Ts(Qn) are called supremum type 
tests. Special cases are the test studied by Aki (1986), and the supremum type 
tests of Fleming and Harrington, also having weight process (1.10). Supremum 
type test statistics have a non-normal asymptotic distribution. 

The general KMT-inequality given in Theorem 2 on page 26 for an appropri
ately centered version of the stochastic integral Qn(t) and its specialization for 
the null hypothesis [with 1 = 1/6 and T = 2] enable the computation of various 
kinds of efficacies. These efficacies all coincide, and are maximized by generalized 
ranh. and supremum type tests based on a weight process which satisfies 

(1.11) 

at a sufficient rate. Here P0 is the probability measure corresponding to the 
null hypothesis, "Pa( t; 00 ) is the score function [the evaluation in 00 of the partial 
derivative of log ,\(t; 0) in the direction in which the alternative approaches the 
null hypothesis], and ,\(t; 0) is the derivative of A(t; 0). The generalized rank 
tests based on this type of weight process are asymptotically most powerful. The 
corresponding supremum type tests do not perform much less, since they have 
efficiency 1 [in the sense of approximate Bahadur efficiency, limiting approxi
mate Bahadur efficiency, weak asymptotic intermediate efficiency, and - under 
extra conditions on Ln(t) - asymptotic intermediate efficiency] with respect to 
the asymptotically most powerful generalized rank tests. 

This implies that the statistics TR(Mn(·; 00 )) and Ts(Mn(·; 00 )) are recom
mended for testing against alternatives of the proportional hazard type, and 
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statistics TRUo(l - F(s; 0o))dMn(s; Bo)) and TsUo(l - F(s; 0o))dMn(s; Bo)) for 
testing against logistic shift alternatives. 

In this respect the application of the test of Breslow to the Woolson data is 
certainly appropriate, since there are psychological motivations for assuming a 
proportional hazard model for psychiatric patients. This model states that the 
hazard of a psychiatric patient is proportional to the baseline hazard, in our case 
the hazard of an inhabitant of the State of Iowa. 

1.6 Adjusting the null hypothesis 

The fact that for the Woolson data TR(Mn(·;00 )) leads to rejection of the null 
hypothesis could be interpreted as an indication that a proportional hazard model 
is indeed more appropriate. But does it fit the data? 

Recall that in the previous section it was convenient to apply the cumulative 
hazard function to the data, since in this way the general problem was reduced to 
the problem of testing standard exponentiality. Under the proportional hazard 
model it is convenient to apply the baseline cumulative hazard to the data, since 
the transformed data follow an exponential distribution with unknown mean, say 
Vn, The actual hazard experienced by a psychiatric patient is equal to the baseline 
hazard divided by Vn. Hence, the general problem of testing the proportional 
hazard model is now reduced to the problem of testing exponentiality. 

Observe that the mean of the exponential distribution is not known. Our null 
hypothesis gives an incomplete specification of the distribution of the data, and 
is henceforth composite. The unknown mean is a nuisance parameter. 

Let us return to a more abstract level: since the simple null hypothesis was 
rejected, we adjusted the null hypothesis by adding an extra nuisance parameter 
to our model. Section 4 hypothesized that Pn(X1 ::::; t) could be written as 
F(t;0n), From now on we write this probability as F(t;vn,Bn) for some (vn,Bn) 
in the set i x 0. Already anticipating the necessity of the inclusion of more 
nuisance parameters to make the model fit the data, we assume that i is a 
subset of r-dimensional Euclidean space. 

Let Pv0 denote the probability measure which corresponds to the point ( v0 , Bo). 
Observe that Pv0 "belongs" to the null hypothesis that 0"" equals 00 • 

1.7 M-estimation 

Under Pv0 the basic martingale takes the form 

(1.12) 

where i\(t;v,0) = ---'log(l - F(t;v,0)). In practical situations we are faced with 
the problem that the null hypothesis does not provide any knowledge about the 
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actual value of v0 . Hence, we replace v0 by some random element v(n) E T in an 
effort to obtain this knowledge elsewhere. Under P110 this random element should 
be an estimator of v0 • 

A convenient class of estimators to use is the class of M-estimators as proposed 
by Hjort (1985). Within this class estimators are obtained as solutions to the set 
of M-equations 

<I> ·(oo· v(n)) = 0 nt , , i = 1, ... , r, (1.13) 

where <I>ni(t;v) is defined as a stochastic integral with respect to the basic mar
tingale 

(1.14) 

The integrand <Pi( t; v) is a given deterministic function. M-estimators are gener
alizations of the maximum likelihood estimator. The latter estimator was studied 
in this context by Borgan (1984 ), and is obtained by setting </>;( t; v) equal to the 
partial derivative of log ,\(t; v, 00 ) with respect to the ith component of v. h :·e 
,\( t; v, 0) denotes the hazard function, the derivative with respect to t of the cu
mulative hazard function A(t; v, 0). A general theory of M-estimation is worked 
out in subsection 4.2.1 on page 52. 

Consider the exponential distribution function F(t; v, 00 ) = 1 - e-t/v. Since 
the corresponding hazard function ,\(t; v, 00 ) equals v, the maximum likelihood 
estimator v(n) is obtained by setting <Pi( t; v) equal to 1/v. Multiplying both sides 
of (l.13) by v yields the maximum likelihood equation 

(1.15) 

For the Woolson data the maximum likelihood estimator of the unknown mean 
of the baseline cumulative hazard transformed data attains the value 0.309. This 
suggests that the baseline hazard is less than a third of the real hazard a psychi
atric patient experiences, leading to the preliminary conclusion that the hazard 
of a psychiatric patient is more than three times as high as the hazard of an 
arbitrary resident of Iowa. 

Of course, this only holds under the proportional hazard model. Before turn
ing the preliminary conclusion into a definitive one, we should assess the validity 
of the model. This can be done by the methods described in the next section. 

The stochastic integral Mn(t; v<n), 00 ), depicted in Figure 1.2, is closely related 
to a well-known and frequently used graphical technique for assessing exponen
tiality. The total time on test plot is constructed by plotting 

versus H!(t) [see Barlow and Proschan (1969), and for variants Gill (1986)). Here 
v<n) is the maximum likelihood estimator. If the data indeed follow an exponential 
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Figure 1.2: The stochastic integral involved in the construction of the maximum 
likelihood estimator. 

distribution, then the total time on test plot should be approximately straight, 
making a 45 degree angle with the X-axis. 

Observe that at x = Ji(l - Hn_(s ))dA(s; v(n), B0 ) the vertical deviation of the 
total time on test plot from the ideal line equals n-1l2 Mn(t; v(n),B0 ). 

1.8 Testing the composite null hypothesis 

Now that we have the M-estimators at our disposal, it seems obvious to adapt 
the test statistics discussed earlier to the composite null hypothesis by simply 
plugging in these estimators. This leads to statistics T(Qn(·; v(n))), where T is 
as before and Qn(t;v) is defined by 

Qn(t; v) = l Ln(s; v)dMn(s; v, Bo) (1.16) 

for some weight process Ln(t; v). By exploiting the relation between M-estimators 
and stochastic integrals with respect to the basic martingale, the KMT-type 
inequalities for Qn(t) can be extended to Qn(t; v(n)). However, we must pay a 
price for the plugged-in estimator: the accuracy of the probability inequalities 
governing the approximation decreases. This is reflected in the values 1 = 1/6 
and T = 3. 
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Figure 1.3: The stochastic integral leading to optimal generalized rank and supre
mum type tests for testing exponentiality versus logistic shift alternatives. 

Again, the KMT-inequalities lead to various kinds of efficacy which all coincide 
and are maximized by generalized rank tests based on weight processes satisfying 

r 

Ln(t;v(n)) --tpv0 1Pa1o(t;vo,Bo) + LCi</>;(t;vo), 
i=l 

and supremum type tests based on weight processes satisfying 

Ln(t; V(n)) --tpv0 1Pa10(t; Vo, Bo) 

(1.17) 

(1.18) 

[see Theorem 13 on page 67]. Here the c;'s are constants, and 1/i0 10(t; v, Bo) is the 
effective score function, i.e. a projected version of the score function 1/,0 (t; v, B0 ), 

defined similar to the score function 1/ia(t; Bo) we encountered earlier. The con
vergence in Pvo -probability should take place at a sufficient rate. 

If the estimation method is maximum likelihood then the following holds. The 
optimal generalized rank tests have asymptotic relative Pitman efficiency 1 with 
respect to the generalized likelihood ratio test, and thus are asymptotically most 
powerful. The optimal supremum type tests have efficiency 1 [in the sense of ap
proximate Bahadur, limiting asymptotic relative Pitman and weak intermediate 
efficiency] with respect to the optimal generalized rank test. 

The effective score function 1Pa1o( t; v, B0 ) also appears in Hjort (1990), in an 
investigation of x2-tests based on Qn(t; v<n>). Although the argument there lacks 
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mathematical rigour, it underlines the universal importance of the effective score 
function as weight process. 

As a direct consequence of (1.13), adding a term c;q,;(t; v) to the weight pro
cess does not alter the generalized rank test. This property, reflected in (1.17), is 
especially convenient when the estimation method is maximum likelihood, since 
in this case the difference between 1Pa1o( t; v, 00 ) and 1Pa( t; v, 00 ) is a linear combina
tion of the functions </>;( t; v ). It is easier to construct a weight process converging 
to 1Pa(t;v,0o) than one converging to 1Pa1o(t;v,0o). 

For given t, an optimal generalized rank test for testing the proportional 
hazards model versus alternatives where the ratio between the hazard and the 
baseline hazard function changes at point t is the statistic Mn(t;v<nl,00 ), where 
v<n) is the maximum likelihood estimator. Thus, the total time on test plot is in 
particular useful for the detection of change points in the hazard function. 

Judged by the enormous popularity of the one-sample Wilcoxon test, logistic 
shift alternatives are of far greater practical importance than the change point 
alternatives just described. For testing exponentiality versus logistic shift alter
natives the weight process 

L( . )=( -F(· ()))·_f000 I-F(s;v,0o)(l-Hn_(s))dA(s;v,00 ) ( ) 
n t, V 1 t, v, o H;,(oo) 1.19 

leads in combination with maximum likelihood estimation to optimal generalized 
rank and supremum type tests (see subsection 5.3.2 on page 92]. For the Woolson 
data standardized versions of the corresponding test statistics attain values 0.338 
and 0.711, leading to probability values 0.7355 and 0.8892 respectively. Hence, 
it is clear that the proportional hazards model should not be rejected, and that 
our earlier conclusion about the mortality of a psychiatric patient was justified. 

1.9 Some technical details 

In this section it is briefly outlined how the various KMT-type inequalities are 
derived from the original KMT-inequality, and how the sublinearity of T leads 
to deviation results. Of course, the remarks in this section hold only under 
appropriate conditions. These are given in the following chapters. 

First we consider the simple null hypothesis. We may re-express Mn(t; 00 ) as 
follows: 

(1.20) 

[see page 24]. Here U~(t) and Un_(t) are empirical processes corresponding to 
H~(t) and Hn-(t), and D(t; 00 , 0n) is a deterministic function which is identical 
to zero if 0n equals 00 • Now applying the original KMT-inequality yields that 
a stochastic integral with respect to Mn(t; 00 ) - n 112 D(t; 00 , 0n) is approximated 



14 CHAPTER 1. AN OVERVIEW 

by a Gaussian process. Under the null hypothesis the approximating process is 
time-transformed Wiener. 

An alternative approach for obtaining KMT-type inequalities for Mn(t; 00 ) 

under the simple null hypothesis is given in Koning (1993), and uses partial 
sum process techniques. The resulting KMT-type inequality has , = 1/4 and 
T = l. The partial sum approach also has useful applications outside the random 
censoring model. 

The transition from the simple to the null hypothesis is enabled by the two 
following facts. There exists an element Vno in Y such that under Pn the ran
dom variable n 1/ 2 ( v<n) - Vno) is closely approximated by a random vector with 
components 

(1.21) 

[see Theorem 7 on page 55], where D( t; Vno, 00 , vn, On) is the obvious extension of 
D(t;00 ,0n) [see (4.6) on page 54]. Moreover, there exists an r-dimensional func
tion K0 (t; Vno) [defined by ( 4.16) on page 57] such that Qn(t; v<n)) is approximated 
by 

(1.22) 

Hence, after subtracting n 1/ 2 Ji Ln(s; Vno)dD(s; Vno, Oo, Vn, On) from Qn(t; v<nl), 
the resulting process is approximated by a zero mean Gaussian process. Even 
under Pv0 the covariance function of the latter process remains intricate [see 
Theorem 8 on page 58]. 

The theory of Borell (1975) describes the tail behavior of sublinear functionals 
of Gaussian processes [see Inequality 5 on page 21]. It follows that there exists 
nonnegative constants a, a such that 

(1.23) 

(1.24) 

Now the Lipschitz property of T enables us to obtain deviation results for T(Qn) 
[xn = o(n1118 ) allowed] and T(Qn(·;v(nl)) [xn = o(n1130 ) allowed] from the KMT
type inequalities. The differences in rate are due to differences in accurateness of 
the corresponding inequalities. 

1.10 Concluding remarks 

In this chapter applications of KMT-type inequalities in the theory of goodness" 
of-fit tests were described. As the section on M-estimation indicates, there are 
other areas where KMT-type inequalities are of use as well. 
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In Castelle (1991) the study of stochastic integrals J~ Ln(s)dH;,(s) leads to 
results for some well-known two-sample generalized rank tests and for maximum 
likelihood estimation in the Cox regression model. 

The field of nonparametric estimation in the random censoring model is cov
ered in Burke, Csorgo and Horvath (1981), where the Nelson-Aalen estimator 
of the cumulative hazard function A(t) and the Kaplan-Meier estimator of the 
distribution function F(t) are investigated. Processes related to these estimators 
can be expressed as stochastic integrals with respect to the basic martingale. 
Analogues for Qn(t) of the Chibisov-O'Reilly theorem, the Lai-Wellner Glivenko
Cantelli theorem and the James law of the iterated logarithm are derived, and 
their implications for the Nelson-Aalen and the Kaplan-Meier estimator discussed 
in Einmahl and Koning (1992). 

Other examples of KMT-type inequalities and their implications can be found 
in Csorgo and Horvath (1993). 

The intricate asymptotic structure of Qn(t; v(n)) shows some resemblance to 
the asymptotic structure of the empirical process with estimated parameters [see 
Durbin (1973)). In Khamaladze (1981, 1982) a transformation of this process is 
constructed which converges to a time-transformed Wiener process. A similar 
transformation can be constructed for Qn(t; v(n)). However, this transforma
tion is quite complex, and involves the in general unknown distribution function · 
H 1 ( t; Vo, 0o), the expectation of H;,( t) under Pvo. Estimating this distribution 
function complicates matters even further. 
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Chapter 2 

Tail probabilities of various 
suprema 

2.1 The empirical process 

Empirical processes have been the subject of ongoing investigations for over half 
a century. In this chapter we encounter the most important results. For a more 
elaborate survey we refer to Csorgo and Revesz ( 1981) and to Shorack and Wellner 
(1986). 

Let (n, A, P) be a probability space, and let { Z;}~1 be a sequence of ran
dom variables mapping (!1, A) into ((0, 1], .r), where F C B[O, 1 ]. Let P be the 
probability measure induced by the sequence { Z;}~1 • 

Suppose each of the random variables within this sequence has a standard 
uniform distribution under P. The (standard] uniform empirical process at stage 
n is defined by 

n 

Un(t) = n-1!2 L(l{.Z,:9} - t) (2.1) 
i=l 

for O :S t :S 1. It is easily seen that - inftE[O,I] Un(t) is equal in distribution to 

suptE[O,l] Un(t). Moreover, we have 

P( sup IUn(t)I > x) 
tE[0,1] 

:S P( sup Un(t) > x) + P(- inf Un(t) > x) 
tE[O,l] tE[O,l] 

:S 2P( sup Un(t) > x) 
tE[0,1] 

(2.2) 

Hence, bounds for tail probabilities of suptE[O,l] Un( t) directly translate into bounds 

for tail probabilities of - inftE[0,1] Un(t) and suptE[O,I] !Un(t)j. 

17 
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An important early result for the tail probability of suptE(O,IJ {!n(t) was derived 
in Smirnov ( 1944). Surprisingly, it is known under the name Birnbaum-Tingey 
formula, since it was also discovered in Birnbaum and Tingey (1951). It tells us 
that 

P( sup Un(t) > yn112 ) 
tE[0,l] 

n~y) y ( i; ) (y + i/n)i-1(1 - y - i/nr-i 

for O < y < l. Applying Stirling's formula to (2.3) yields that 

lim P( sup Un(t) > x) = exp{-2x2 } 
n->oo tE[0,l] 

(2.3) 

(2.4) 

for x > 0. The Birnbaum-Tingey formula provided the basis of the following 
well-known equality. 

Inequality 1 (DKW-Inequality) There exists a positive constant c1 such that 

P( sup Un(t) > x) :=; c1 exp{-2x2 } 
tE[0,l] 

for x > 0. 

The DKW-inequality was first proven in Dvoretzky, Kiefer and Wolfowitz 
(1956). Observe that if we know a valid value of c1 , then the DKW-inequality 
enables us to construct a conservative version of a Kolmogorov goodness-of-fit 
test. The rather intriguing conjecture that c1 could be set equal to 1 was made 
in Birnbaum and McCarty (1958). Equation (2.4) shows that the Birnbaum
McCarty conjecture implies that constructing a Kolmogorov goodness-of-fit test 
by using asymptotic methods never yields an anti-conservative test. 

For over thirty years the Birnbaum-McCarty conjecture remained an open 
question in empirical process theory. During these years various attempts have 
been made to prove it, resulting in steadily decreasing permitted minimal values 
of c1. As recommended values of c1 have acted 305.2 [Devroye and Wise (1979)], 
29 [Shorack and Wellner (1986)], and 2312 [Hu (1985)]. Recently, the Birnbaum
McCarty conjecture was proven in Massart (1990) for a slightly modified ver
sion of the DKW-inequality which restricts attention to values of x satisfying 
exp{-2x2 } ::; 1/2. 

A generalization of the DKW-inequality, which can be applied in the non-i.i.d. 
case and not only to the empirical process but related processes as well, can be 
found in Marcus and Zinn (1984). 

Asymptotic expansions of the distributions of SUPte[o,iJ Un(t) are found in 
Lauwerier (1963), Penkov (1976) and Gnedenko, Korolyuk and Skorohod (1961), 
whereas other approximations to this distributions are contained in Stephens 
(1970) and Harter (1980). 
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2.2 The Brownian bridge approximation 

In Doob (1949) it is noticed that as the sample size n tends to infinity, empirical 
processes seem to behave more and more like a Brownian bridge. This observation 
has provided the inspiration for the following result [also known as Donsker's 
Theorem, since it originally appeared in Donsker (1952)]. 

Theorem 1 (Empirical Central Limit Theorem) The sequence of empiri
cal processes {Un(t)}~=I converges in P-distribution, as random elements of 
D[O, 1], to a Brownian bridge. 

As a consequence of the well-known Skorohod construction Theorem 1 implies 
the existence of a probability space on which we have a sequence of empirical pro
cesses and a Brownian bridge such that the supremum of the difference between 
each of the empirical processes and the Brownian bridge converges to zero in 
probability. 

An alternative to the Skorohod construction [Skorohod (1956)] is the so-called 
Hungarian construction, given in Komlos, Major and Tusnady (1975). The Hun
garian construction culminates into the following inequality. 

Inequality 2 (KMT-Inequality, Brownian bridge version) If the probabil
ity space (!1,A, P) is sufficiently rich, then there exists a sequence {Bn(t)}:;"= 1 of 
Brownian bridges such that 

P( sup IUn(t) - Bn(t)I > n-112 (c2logn + x)) S C3exp{-c4x}, 
tE[0,1] 

where c2 -c4 are absolute constants. 

In Bretagnolle and Massart (1989) it is shown that c2, c3 and c4 may be taken 
as 12, 2 and 1/6, respectively. 

For some applications [for instance, the derivation of a law of the iterated log
arithm] it is necessary to imbed the sequence of Brownian bridges into a Kiefer 
process [see Kiefer (1972)]. However, imposing this extra structure on the se
quence of Brownian bridges seems to worsen the rate of convergence. The most 
far stretching result concerning the Kiefer process approximation is given by In
equality 3. This inequality requires that the underlying probability space is the 
same for every n E JN. It is still an open question whether this inequality can be 
improved so as to yield the same rate of convergence as does Inequality 2. 

Inequality 3 (KMT-Inequality, Kiefer process version) If the probability 
space (!1, A, P) is sufficiently rich, then there exists a Kiefer process K(t, n) such 
that 

P( sup IUn(t)-n- 1l 2k(t,n)I > n-112(c5 logn + x)logn) S Ct3exp{-c1x}, 
tE[0,1] 

where c5 -c7 are absolute constants. 
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In Mason and van Zwet (1987) a refined KMT-inequality is given, which 
emphasizes the behavior of the approximation near 0 and 1. However, for our 
purposes the original KMT-inequality suffices. 

2.3 The general Gaussian process 

Among the Gaussian processes, the Wiener process W(t) takes first place. Results 
for the supremum of this process are well-known and can even be considered 
classical. The reflection principle yields 

P( sup W(t) > x) = 2P(N(0, 1) > x) (2.5) 
tE[0,1] 

00 

P( sup IW(t)I > x) = 41::(-ll P(N(0, 1) > (2k + l)x) (2.6) 
tE[O,l] k=O 

Interest in the supremum of a general Gaussian process came about rela
tively late, at the beginning of the seventies [Fernique 1970, 1971)), Landau and 
Shepp ( 1971) and Marcus and Shepp ( 1971)]. The following inequality was then 
obtained. 

Inequality 4 (Inequality of Fernique) There exist positive constants c8 and 
C9 such that for every x > 0 and every separable Gaussian process Z(t) satisfying 
P(suptE[O,oo) IZ(t)I < oo) = 1 

P( sup IZ(t)l > x 
tE[O,oo) 

sup £{Z(t)}2):::; c8 exp{-C9x2}. 
tE[O,oo) 

In Borell (1975) an inequality for the tail probability of sublinear functionals 
of a Gaussian process is given which relates this tail probability to the norm of 
the sublinear functional induced by the Gaussian process, and yields a finer result 
than Inequality 4 when applied to the supremum of a Gaussian process. 

Definition 1 A functional T which maps D[0, oo) into IR, is said to be sublinear 
ifT(e + ():::; T(e) + T(() and T(~) = cT(e) for all c ~ 0 and e,( E D[0,oo). 

Refer to Pollard (1984), page 108, for the definition of the function space 
D[0,oo). 

The norm of a sublinear functional T induced by the Gaussian proces Z(t) is 
defined as 

IITllz(t) = sup T(f), 
/EO,;:, 

(2.7) 

where OK- is the unit ball in K., the reproducing kernel Hilbert space belonging 
to Z(t). The theory of reproducing kernels is described extensively in Aronszajn 
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(1950). The reproducing kernel Kw belonging to a standard Wiener process on 
[0,1] consist of functions f mapping [0, 1] into m, which are absolutely contin
uous and satisfy J~(f'(s)) 2ds < oo. The norm of an element of Kw is equal to 
J~(J'(s))2ds, and hence the unit ball in Kw is the set S of functions f mapping 
[0, 1] into m, which are absolutely continuous and satisfy J~(J'(s))2ds::; 1 as well 
as f(O) = 0. 

The set S may seem familiar to statisticians and probabilists, since it also 
shows up in connection with the law of the iterated logarithm [see Strassen 
(1964)]. We shall refer to Sas the set of Strassen functions. 

Inequality 5 (Inequality of Borell) Let X(t) be a mean zero separable Gaus
sian process satisfying P(sup1e[o,oo) IX(t)I < oo) = 1, and let T be a sublinear 
function. Assume that P(T(X) > ullTllx) ::; 1/2 for some u. Then fort 2: u 

P(T(X) > t11Tllx)::; P(N(0, 1) > t - u). 

Corollary 1 We have 

Each of the Gaussian processes to which we shall apply Inequality 5 can be 
considered to be a linear transformation of some standard Wiener process. Thus, 
a sublinear functional T of such a Gaussian process Z(t) is in essence a sublinear 
functional Tz(t) of the underlying standard Wiener process. This observation 
leads to 

IITllz(t) = supTz(t)(J), 
JES 

which makes the computation of norms as in (2. 7) relatively easy. 

(2.8) 

The inequality of Fernique seems to imply that it is rather the variance func
tion than the covariance function which determines the tail behavior of the supre
mum of a Gaussian process. However, the covariance function is not completely 
irrelevant, as some finer results show. In Adler and Samorodnitsky (1987) a 
refinement of the inequality of Fernique is given which is based on metric en
tropy methods [see Dudley (1967)]. Talagrand (1988) presents a necessary and 
sufficient condition for 

. P(suptE[Ooo) Z(t) > x) 
hm ' = 1 
x-oo P(N(0, 1) > x{suptE[O,oo) £{Z(t)}2}-1/ 2 ) 

(2.9) 

to hold. This condition can be verified by metric entropy methods and entails 
the behavior of the covariance function near points where the variance function 
reaches its maximum. 

For a completely different approach, treating suprema of Gaussian processes 
from a boundary crossing perspective, refer to Durbin (1985). 
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Chapter 3 

The simple null hypothesis 

3.1 Introduction 

In this chapter, which contains the material of Koning (1991 ), we consider the 
situation where (f!, .A, P) is a probability space, Fn is a subset of B[O, oo ), and 
at stage n each of the independent random variables X 1 , ... , X n, Yi, ... , Yn maps 
(f!, .A) into ([O, oo ), Fn)- The probability measure induced by these random vari
ables is denoted by Pn. Each pair (X;, Y;) is assumed to have the same distribu
tion. 

The censoring distribution, the distribution of the censoring time Y;, does 
not depend on n. Hence, there exists a cumulative distribution G such that 
G(t) = Pn(Y; ::;; t) for each n. Defectiveness of G(t) is allowed. 

The failure time distribution, the distribution of X;, is more complicated since 
it depends on n. This dependence is given structure in the following way: there 
exists a cumulative distribution function F, indexed by 0 belonging to some set 
0, and a sequence of points {0n}~=l such that F(t; 0n) = Pn(X; ::;; t) for "Very 
n E JN [that is, 0n is the actual value of 0 at stage n]. 

Now suppose 00 is an element of 0 which is of special interest to us, say 
because we want to know whether 0n could possibly be equal to 00 for every 
n E JN. 

If 0n equals 00 (denote the probability measure corresponding to this situation 
by P0 , the expectation operator based on this probability measure by £0 and the 
situation itself by "under P0"], then the basic martingale takes the form 

Mn(t; 0o) = n 112{H~(t) - l (1 - Hn-(s))di\(s; 0o)}, (3.1) 

where i\(t; 0) = - log(l - F(t; 0)) is the cumulative hazard function belonging to 
F(t; 0) and H!(t) and Hn_(t) are given by (1.4) on page 4. Note that we only 
know that Mn(t; 0o) is a martingale under P0 • If 0n is arbitrary [refer to this 
situation as "under Pn", and denote the expectation operator belonging to Pn by 
En] then the process Mn(t; 00 ) is in general not a martingale. Nevertheless, we 

23 
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also call Mn(t; 00 ) a basic martingale. Although misleading, this does not lead 
to difficulties since we do not encounter the original basic martingale Mn(t; On) 
anymore. 

In section 3.3 we study tests based on a special type of functional of a weighted 
version of a process Qn(t), which is a stochastic integral with respect to the basic 
martingale, that is 

(3.2) 

Here the weight process Ln(t) is a random element of D(O,oo) which possesses 
certain properties. 

The probability theory underlying the results in section 3.3 is presented in sec
tion 3.2, where the process Qn(t) is approximated. The common way to approach 
a stochastic integral with respect to the basic martingale is by martingale meth
ods, but in this chapter an empirical process approach is followed, fundamented 
on an alternative representation of Mn(t; 00 ) in terms of empirical processes. A 
slight drawback of the empirical process approach is that we must assume that 
both F(t; 0) and G(t) are continuous on the complete real line. However, this 
assumption has its rewards: the knowledge obtained by the empirical process 
approach is far more precise than can be obtained by using standard martingale 
methods such as Rebolledo's Central Limit Theorem. 

Define the cumulative distribution functions H1(t; On) and H(t; On) by 

and the empirical processes U~(t; On) and Un_(t; On) by 

U~(t; On)= n 1l2{H~(t) - H1(t; On)}, 

Un_(t; On)= n 112{Hn_(t) - H(t; On)}. 

Then we may decompose Mn(t; 00 ) conveniently into three parts 

(3.5) 

(3.6) 

Mn(t; Bo) = U~(t; On)+ l Un_(s; Bn)di\(s; Bo)+ n112 D(t; Bo, On) (3.7) 

[compare to the decomposition given in equation (7.1.2) in Shorack and Wellner 
(1986)]. The first two parts involve empirical processes, and can be handled by 
empirical process theory. The third part is nonrandom and involves the function 

D(t;00 ,0) = l(l -H(s;O)){di\(s;0)-di\(s;00 )}. (3.8) 

Observe that if O coincides with 00 , then D(t; 00 , 0) is identical to zero. As can be 
expected, the function D( t; 00 , 0) will show up frequently in our results. Loosely 
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speaking, it reflects the distance between the distribution functions F( t; 0) and 
F(t; 00 ). 

Although for the empirical process approach it is needed that G is continuous 
on the complete real line, we may show that our approximation results remain 
true on [0,t*), where t* = sup{t: G(t) < l} is finite, if G is continuous only on 
(-oo, t*), by appropriately modifying G on the interval [t*, oo ). Thus, our results 
also have implications for Type I censoring. 

Moreover, the assumption of independence between X; and Y; may be relaxed. 
However, it is crucial that (3.4) still holds. 

Finally, we point out to the reader that sections 3.2 and 3.3 contain results 
only, and that proofs are gathered in section 3.4. 

3.2 Probability inequalities 

In this section we present probability inequalities which concern the approxi
mation on the halfline [0, oo) of [a centered version of] the process Qn(t) by a 
one-parameter Gaussian process, both under Pn as under P0 • For treatment of 
the former situation, the foliowing condition is needed. 

Condition 1 There exists constants O < a < 1/2 and Ccx < oo such ihat 

for every () E 0. 

Essentially, Condition 1 relates the right tail behavior of F(t; 0) to the right 
tail behavior of F(t;00 ). Note that if (1 - F(t;0))/(1 - F(t;00 )) remains uni
formly bounded in 0, then Condition 1 is satisfied for any a > 0. Observe that 
Condition 1 implies 

where c10 = Ccx + 1/a. From (3.9) it immediately follows that D(t; 00 , 0) remains 
bounded by c10 . 

The weight process Ln(t) is assumed to satisfy Condition 2. 

Condition 2 There exists a positive non-decreasing function q( t) such that 
a Ln( · )/ q( ·) is a random element in [the left continuous right limits version of} 

D[O, oo) endowed with the .:!1 metric. 
b There exists a constant c11 not depending on ()n such that 

sup ILn(t)!/q(t) < cu, 
!E[O,oo} 

V(Ln(·)/q(·)) < cu 

with Pn -probability 1 {here V (!) denotes the total variation off}. 
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c There exists a deterministic function L(t; 0,,) such that for every /3 < 1/2 

Pn( sup !Ln(t) - L(t; Bn)j/q(t) > C12n-{3) ~ C13n-c14 , 

tE[O,oo) 

where c12 -c14 are positive constants not depending on Bn. 
d There exist constants c15 -c17 > 0 such that for every x > 0 

Po( sup !Ln(t) - L(t;Bo)l/q(t) > n-112(c15 1ogn + x)) 
tE[O,oo) . 

~ c16 exp{ -c17x }. 

Both suptE[O,oo) jL(t;Bn)l/q(t) and V(L(·;Bn)/q(·)) do not exceed cu as a con
sequence of Condition 2. 

Subsequent results may be viewed as bearing upon Qn(t)/q(t) rather than 
upon Qn( t) itself. Hence, the choice of q(t) will often be inflicted by the pro" cted 
application of these results. Typically, one chooses q(t) = (1-F(t; 00))-P for some 
p:::: 0. 

Under Conditions 1 and 2 we have the following result. 

Theorem 2 . There exists a sequence {Wn(t) };;"=1 of mean zero Gaussian pro
cesses which have covariance function 

(3.10) 

such that for every /3 < (1/2 - a) I\ 1/6 there exist positive constants c18-c20 not 
depending on Bn such that 

Pn( sup l{Qn(t) - n112 r Ln(s)dD(s;Bo,Bn)} 
tE[O,oo) lo 

-1' L(s; Bn)dWn(s)j/q(t) > C1sn-{3) ~ c19n-c2o. (3.11) 

Moreover, there exist positive constants c21 -c23 such that for every x > 0 

Po( sup IQn(t)- r L(s;Bo)dWn(s)j/q(t) 
tE[O,oo) lo 
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Corollary 2 The sequence { Qn( t )/ q( t )};';°= 1 converges in Po-distribution to 
X(t; 00 )/q(t), where X(t; 00 ) is a time-transformed Wiener process with variance 
function J~(L(s; Oo))2dH1(s; 00 ). 

In Theorem 2 a stochastic integral with respect to a Gaussian process ap
pears. This integral is defined in the usual way, that is J~ L(s;On)dWn(s) denotes 
L(t; On)Wn(t) - J~ Wn(s)dL(s; On), 

There is a refinement of Theorem 2 worth mentioning. If the stochastic process 
Ln(t) coincides with the function L(t; On) with Pn-probability 1, then (3.11) holds 
for every /3 < (1/2 - a). Moreover, the term n-1/ 6 in (3.12) may be replaced by 
n-1/2. 

An approximation of Qn(t) by a two-parameter Gaussian process, only valid 
under Po and on some fixed closed interval, can be found in Einmahl and Koning 
(1992), where it is used to derive complete analogues of the Chibisov-O'Reilly 
theorrrn, the Lai-Wellner Glivenko-Cantelli theorem and the James law of the 
iterated logarithm. 

Convergence in P0-distribution of the sequence {Qn(t)/q(t)};';°= 1 may also be 
obtained by using Rebolledo's martingale central limit theorem (Shorack and 
Wellner (1986), p. 895], provided that the weight process Ln(t) is predictable. 
However, such an approach does not lead to probability inequalities of the same 
type as (3.12), which will prove to be essential for deriving moderate deviation 
results for the test statistics considered in the next section. 

3.3 Sublinear tests 

In this section we study sublinear tests for the simple null hypothesis that On 
equals 00 • These tests are based on statistics of the form T(Qn(·)/q(·)), where T 
is a special type functional mapping D[O, oo) into JR. We consider the behavior 
of these test statistics under the null hypothesis and under fixed and local alter
natives, as well as efficiencies of the corresponding tests. Generalized rank and 
supremum type tests receive special attention, and are shown to be in some sense 
optimal for specific choices of the weight process. 

Definition 2 A functional T mapping D[O, oo) into IR is said to be Lipschitz if 
there exists a constant er such that 

IT(O - T(()I s er sup l((t) - ((t)I 
tE(O,oo) 

for every t ( E D(O, oo). 

Condition 3 The functional T is sublinear and Lipschitz. 
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Since T is sublinear, the tail behavior of a random variable obtained by ap
plying T to some Gaussian process ( is described by. Inequality 5. The Lipschitz 
property, which is borrowed from Inglot and Ledwina (1990), enables us to carry 
these results to some extent over to non-Gaussian processes close to ( 

3.3.1 Deviations 

Let S be the set of Strassen-functions and define 

a= {supT( r L(s;0o)f'(H1(s;0o))dH 1(s;00)/q(·))}- 2 • 
Jes lo 

(3.13) 

One may interpret a- 1/ 2 as the norm of the functional T induced by the repro
ducing kernel Hilbert space of the Gaussian process X(t; 0O)/q(t), the limit in 
P0-distribution of the sequence {Qn(t)/q(t)}:;"=I· Suppose that 

Condition 4 The number a is positive. 

Theorem 3 describes the tail behavior of T(X(·; 00 )/q(·)) [and thus the tail be
havior of the asymptotic distribution of T(Qn(·)/q(·))], and presents a moderate 
deviation result for T(Qn(·)/q(·)). It holds if equation (3.12) and Conditions 3 
and 4 hold. 

Theorem 3 We have 

lim C 2 log P0(T(X(·; 00 )/q(·)) > t) = -a/2. 
t-+oo 

(3.14) 

Furthermore, 

(3.15) 

for any sequence {sn}::"=1 such that Sn --too and Sn= o(n1118) as n --too. 

Since Sn= O((logn)112) is a special case of Sn= o(n1118), Theorem 3 implies 
that a moderate deviation result holds for T(Qn(·)/q(·)). Moderate deviation 
results are important from a statistical perspective, because they play a role in 
evaluating the performance of a test. 

As with Theorem 2, Theorem 3 can be refined in the special case where Ln(t) 
coincides with L(t;0O) with P0-probability 1. Now Sn= o(n1118 ) may be replaced 
by Sn= o(n116 ), and thus we have obtained a Cramer type large deviation result. 
A Cramer type large deviation result should be distinguished from a Chernoff 
type large deviation result which allows Sn= O(n112 ). 

To transform (3.14) into a moderate or large deviation result, probability 
inequalities of the type (3.12) are needed. Hence, Theorem 3 does not follow 
from Rebolledo's Central Limit Theorem. 
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It is possible to generalize Theorem 3 by relaxing the Lipschitz requirement in 
Condition 3. For example, in Inglot and Ledwina (1989) it is assumed that there 
exists a constant er > 0 and a weight function q( t) belonging to some special 
class such that 

IT(O - T(()I ~ er sup l((t) - ((t)l/q(t) for all(,( E D(O,oo). 
tE[O,oo) 

However, since the functionals of our primary interest, the generalized rank and 
supremum type functionals, already are Lipschitz, we have preferred to present 
Theorem 3 in the simple version. 

Since in general the distribution function H1 ( t; 00 ) is involved in a, practical 
problems arise when the censoring distribution G is unknown. In this case it seems 
best to multiply the original weight process by the square root of an estimator 
for a. Typically, estimators for a are obtained by replacing H1 (t; 00 ) by Ji(l -
Hn-( s ))dA(s; 00 ). Of course, it should be verified whether the newly constructed 
weight process meets all requirements. 

3.3.2 Behavior under the alternative hypothesis 

Next, we consider the behavior of T( Qn(· )/q(· )) under the alternative hypothesis. 
Before turning to local alternatives, we first briefly discuss the behavior under a 
fixed alternative. Suppose that 0 is an element of 0, not necessarily equal to 00 , 

and that we have Bn = 0 for all n E JN (we shall refer to this situation as "under 
Po"]. Combining equation (3.11) with Conditions 2c, and 3 yields for every /3 > 0 

(3.16) 

To make treatment of the behavior under local alternatives possible we need 
additional notation and conditions. First we assume 

Condition 5 0 is a convex subset of JRP. 

The hazard function >.( t; 0) is defined as the derivative with respect to t of 
A(t; 0). Let '1/;;(t; 0) denote the first order partial derivative of log >.(t; 0) with 

respect to the ith component of 0, and 'lf;~\t; 0) the second order partial derivative 
of log>.( t; 0) with respect to the i th and /h components of 0. 

Condition 6 For every 0 E 0 and i,j = 1, ... ,P the functions >.(t; 0), 'I/J;(t; 0) 
and 'If;~)( t; 0) exist. For some /3 > 0 there exists a constant c24 such that for every 
0 E 0 and i,j = 1, ... ,p 

la"° ('1/;;(s; 0))2 (1 - H(s; B))P-2a)-f3dA(s; 0) < c24 , 

fo 00 ('I/J!J\s; 0))2(1 - H(s; 0))2<1- 2a)-f3dA(s; 0) < C24, 
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In the description of the behavior of the test statistics under local alternatives, 
the p-dimensional vector function Ka(t) is involved. The ith element of Ka(t) is 
defined by 

(3.17) 

It is easily proved that Ka;(t)/q(t) remains uniformly bounded in t and 00 under 
Conditions 1 and 6. 

Recall that L(t; 0) is the limiting function of the process Ln(t) under P0. Let 
L!1l(t; 0) denote the first order partial derivative of L(t; 0) with respect to the ith 
component of 0, and LlJl(t; 0) the second order partial derivative of L(t; 0) with 
respect to the ith and jlh components of 0. 

Condition 7 For every 0 E 0 and i,j = l, ... ,p the functions Ll1l(t; 0) and 
L[;\ t; 0) exist. There exists a constant c25 such that for every 0 E 0 and for 
i,j = 1, ... ,P 

sup (1 - H(t; 0))1121Ll1\t; B)l/q(t) < c2s, 
tE[O,oo) 

sup (1 - H(t; 0)) 1-"ILU)(t; B)l/q(t) < C25, 
tE[O,oo) 

Theorem 4 Suppose the sequence {Bn}%1 converges to the point 00 • Leth be 
the p-dimensional unit vector defined by h = limn-oo(Bn - Bo)/IBn - Bol, and let 
<J' denote limn-oo n1/ 2 jBn - Bol-
a If <J' = oo then (n112 1Bn - Bol)~1T(Qn(·)/q(·)) converges in Pn-probability to 

T(hT Ka(•)/q(·))I. 
b If <J' < oo then {T(Qn(·)/q(·))}~=I converges in Pn-distribution to the random 

variable T( { X( ·; Bo) + <J'hT I<a( ·)} / q( ·)). 

Theorem 4 reveals three types of behavior of the sequence of test statistics 
{T(Qn(·)/q(·))}~=ll depending on the rate at which the alternatives converge to 
the null hypothesis. If the rate is faster than n-1/ 2 then we have convergence in 
distribution to the same limit as under the null hypothesis. If the rate is of the 
order n-1/ 2 then we also have convergence in distribution, but to a limit different 
from the one under the null hypothesis. If the rate is slower than n-1/ 2 then the 
convergence in distribution is lost, since the sequence of test statistics blows up 
as n tends to infinity. 

3.3.3 Efficiencies 

Now that we have investigated the behavior of the test statistics, it is time to eval
uate the corresponding tests. For assessing the performance of a test a multitude 
of efficiency concepts are available. A few of them are discussed. 



3.3. -SUBLINEAR TESTS 31 

To introduce these concept, consider two infinite sequences of tests. Each of 
the tests in these two sequences has the same size, that is the same probability of 
falsely rejecting the null hypothesis. For ease of exposition, suppose that the n th 

test in the ith sequence [i = 1, 2] is based on the test statistic Tin, rejects the null 
hypothesis if Tin > tin, and does not reject if T;n < tin• We have no knowledge 
about the action taken if Tin = tin• Hence, the power of the n th test in the ith 

sequence under P8 is bounded from below by P8 (T;n > tin) and from below by 
Pe(Tin ~ t;n)• 

The definition of asymptotic relative Pitman efficiency that follows next is 
adopted from Wieand (1976). 

Definition 3 For a given function ~ : 0 -+ [O, l], let Nf ( 0) be the largest sample 
size such that Pe(Tin ~ tin) < ~( 0). If for a unit vector h E !RP there exists a 

constant ef 2( h) such that 

and 
Ni3(0 ) -

limsup ~:::; ef2 (h) 
i-00 N~(0i) 

for any sequence {0j}~1 tending to 00 while satisfying limj-oo ~(0j) E (0, 1) 

and Iimi-oo(Bj - 0o)/l0i - Bol = h, then ef2(h) is the asymptotic relative Pitman 
efficiency in the direction h of the first sequence of tests with respect to the second. 

By using this general definition one allows the asymptotic relative Pitman 
efficiency to depend on both size and power [which are kept under cor,.,rol] of 
the tests. In Rothe (1981) an alternative definition is given which involves 

liminfj__,00 Ng(0j)/Nf(Bj) and limsupj__,00 N~(0i)/Nf(0j), where Ji](B) is the 

smallest sample size such that Pe(Tin > t;n) ~ ~(0). In case there is a transfor
mation of the test statistics available so as to obtain transformed test statistics 
which are asymptotically normal and have asymptotic variance 1 for any seque11ce 
{0n}~1 such that limn__,00 n 112 l0n - 00 1 < oo, then the asymptotic relative Pit
man efficiency does not depend on size and power. The asymptotic mean of these 
transformed test statistics divided by limn__,00 n 112 l0n - 00 1 is the square root of 
what is called the efficacy of the sequence of test statistics. For two such sequences 
the asymptotic relative Pitman efficiency is equal to the ratio of their respective 
efficacies. Unfortunately, since the efficacy approach can not be followed for 
general sublinear tests [the supremum type tests are for instance explicitly non
normal], the task of establishing asymptotic relative Pitman efficiencies becomes 
too formidable. 
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Under these circumstances approximate Bahadur efficiencies are often much 
easier to compute. 

Definition 4 A sequence of test statistics {T;n}~=I · is said to be a standard se
quence if the following three conditions are satisfied. 
a The sequence {T;n}~=I converges in P0 -distribution to a random variable T;. 
b There exists a constant a; > 0 such that 

lim C 2 log P0 (T; > t) = -a;/2. 
t-+oo ' 

c For every fixed 0 E 0 - { 00 } there exists a constant b;( 0) > 0 such that 
ln- 1l 2T;n - b;(0)J converges to zero in Po-probability. 

The approximate Bahadur slope of a standard sequence {T;n}~=I is defined as 
a;(b;(0)) 2 . The approximate Bahadur efficiency of a standard sequence {T1n}~=I 
with respect to another standard sequence {T2n}~=I is defined as the ratio of their 
respective Bahadur slopes a1 ( b1 ( 0) )2 / a2 ( b2 ( 0) )2 . 

By Corollary 2 and equations (3.14) and (3.16) it immediately follows that 
the approximate Bahadur slope of the sequence {T(Qn(·)/q(·))}~=I is given by 
a{T(J~ L( s; 0)dD( s; 00 , 0)/ q( ·)) }2. 

Approximate Bahadur efficiency has been subject to some criticism. Already 
in Bahadur (1960) it is advocated that conclusions should not be entirely based on 
approximate Bahadur slopes. In Wieand (1976) a condition is given under which 
the existence of the limiting [as the alternative approaches the null hypothesis] 
approximate Bahadur efficiency implies the existence of the limiting [as the size of 
the test approaches zero] asymptotic relative Pitman efficiency and the equality 
of the two limits. This condition obviates most of the difficulties involved in the 
interpretation of approximate Bahadur efficiencies, at least for 0 in the vicinity 
of 00 • 

Definition 5 A standard sequence {T;n}~=I is said to be a Wieand sequence if 
there is a constant E* > 0 such that for every l > 0 and 8 E (0, 1) there exists an 
integer N such that 

Pe(ln- 112Tin - b;(0)J > Eb;(0)) < 0 

for every fixed 0 satisfying J0 - 00 1 < f* and n > N/(b;(0))2. 

Theorem 5 (Wieand (1976)) Let {T1n}~=l and {T2n}~=l be two Wieand se
quences. Suppose 1ime-+Oo b;(0) = 0 for i = 1,2 and suppose that for every p
dimensional unit vector h the limit 

(3.18) 

exists if (0 - 0o)/l0 - 0ol tends to h. Then the limiting {as the size of the tests 
approaches zero} asymptotic relative Pitman efficiency exists and is equal to the 
limit given in (3.18}. 
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Theorem 5 is not valid if Rothe's definition of asymptotic relative Pitman 
efficiency is used. See Appendix A for more details. 

Obviously, the limiting asymptotic relative Pitman efficiency does not de
pend on the size. Surprisingly, by letting the size of the test tend to zero, the 
dependence on the power has also vanished. 

Theorem 6 Let h be a p-dimensional unit vector, and let 0 approach 00 from 
the direction h [that is, limo-00 (0 - Bo)/10 - Bol = hj. If 

e(h) = a{T(hT I<a(·)/q(-))} 2 (3.19) 

is not equal to zero, then {T(Qn(·)/q(·))};::"= 1 is a Wieand sequence with approxi
mate Bahadur slope of the form 

10 - 0ol2{e(h) + o(l)}. (3.20) 

The Wieand approach to efficiency is based on letting both the size of the 
test tend to zero and the alternative tend to the null hypothesis. However, both 
operations are done separately. In Kallenberg (1983) a concept of efficiency is pro
posed based on performing both operations simultaneously. It can be considered 
as intermediate between the Pitman and the exact Bahadur approach. 

Definition 6 A sequence of test statistics {T;n};::"=1 is said to be a Kallenberg 
sequence if the fallowing conditions are satisfied. 
a There exists a constant a; > 0 such that 

for all sequences {sn};:"=1 such that Sn---+ oo and sn = o(n116 ) as n---+ oo. 
b There exists a positive function b;(0) such that n-112T;n/b;(0n) ---+ 1 in Pn

probability for all sequences {Bn};:"=1 such that Bn---+ Bo and n 1l2IBn - Bol---+ oo 
as n tends to infinity. 

If the sequences {T1n};;"=1 and {T2n};;"=1 both are I<allerrberg and if the limit 
limn-= a1 (b1 ( Bn) )2 / a2( b2( Bn) )2 exists, then the asymptotic intermediate efficiency 
of {T1n};;"=1 with respect to {T2n};;"=1 is defined as this limit. 

Typically, b;(0) behaves near 00 as a linear function of 10 - 00 1, which justifies 
introducing the intermediate slope limn-= a;(b;(0n)/l0n -00 1)2. If the weight pro
cess Ln(t) coincides with L(t;00 ) with Pn-probability 1, then T(Qn(·)/q(·))};:"=1 is 
a Kallenberg sequence with intermediate slope equal to the quantity e( h) defined 
by (3.19), as follows from Theorem 4 and the refinement of Theorem 3. 

A variant of asymptotic intermediate efficiency, also proposed in Kallenberg 
(1983), is weak asymptotic intermediate efficiency. Here only sequences {sn};:"=1 

such that Sn ---+ oo and Sn = O((log n )112 ) as n ---+ oo are considered. Observe 
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that the sequence {T(Qn(·)/q(·))}:;"=1 has weak intermediate slope e(h), even if 
the weight process does not coincide with its limiting weight function. Hence, the 
weak intermediate approach yields the same picture as the Wieand approach. 

The concepts in Kallenberg {1983) were proposed so as to correspond with 
several types of moderate and large deviation results. In the light of Theorem 3 
it is tempting to propose a variant of asymptotic intermediate efficiency, which 
considers sequences {sn}::":1 such that Sn -+ oo and Sn= o(n1118 ) as n tends to 
infinity. 

In the beginning of this section we assumed that the functional T is sublinear. 
A close look reveals that sublinearity is used in the derivation of {3.14) only. Thus, 
we may set up an equivalent theory for functionals other than sublinear, provided 
a result similar to (3.14) holds. As examples we mention the functionals occuring 
in Cramer-von Mises and chi-square tests [see Durbin (1973)]. 

However, we have preferred to restrict our attention to the class of sublinear 
tests, since it comprises two particularly appealing subclasses, the class of gen
eralized rank tests, based on the generalized rank functional TR, and the ,Jass of 
supremum type tests, based on the supremum functional Ts. The remainder of 
this section is devoted to these two subclasses. We should warn that all the atten
tion given here to generalized rank and supremum type tests could falsely yield 
the impression that they are the only sublinear tests worth notice. For instance, 
refer to Aki and Kashiwagi (1989) for a sublinear test based on a functional other 
than TR and Ts. 

3.3.4 Generalized rank and supremum type tests 

It is easily seen that both TR and Ts satisfy Condition 3. Hence, our theory 
applies (set q(t) equal to 1 for all t E [O, oo )]. An application of the Cauchy
Schwarz inequality yields 

(sup[' L(s;Oo)f'(H1(s;00 ))dH1(s;00 ))2 ~ f'(L(s;00 ))2dH1(s;Oo) 
Jeslo lo 

for every t E [O, oo ). Moreover, the right-hand side of latter inequality is achieved 
and bounded by f000 (L(s; 00 ))2dH1(s; 00 ). Thus, defining aR and as according to 
(3.13), with T replaced by TR and Ts respectively, it follows that 

Similarly defining eR(h) and es(h) according to (3.19), we obtain 

eR(h) = aR{hT Ka(oo)} 2 , 

es(h) = as{ sup hT I<a(t)}2. 
tE[O,oo) 

(3.21) 

(3.22) 

(3.23) 
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It should be noted that if the weight process coincides with its limiting func
tion with Pn-probability 1, then TR( Qn) can be written as the sum of i.i.d. random 
variables [see Proposition 3.1 in Aki (1986)], and hence results for this special 
type generalized rank test may be proven in a simpler manner. For instance, 
Theorem 3 is now an immediate consequence of Theorem 1 on page 549 of Feller 
(1971 ). Observe that this alternative proof also leads to a Cramer type large 
deviation result. 

As opposed to general sublinear tests, generalized rank tests do allow us to 
compute asymptotic relative Pitman efficiencies. By Corollary 2 and Theorem 46, 
it follows that the asymptotic power against local alternatives 0n = 00 + n-1l2h 
of the test based on TR( Qn) of size a equals 

where Z& is the (1- a) quantile of the standard normal distribution. This implies 
that Lhe efficacy of the sequence of test statistics {TR(Qn)}~=l is equal to eR(h). 

Since applying the Cauchy-Schwarz inequality to hT /{0 ( oo) yields 

(3.24) 

where 1/J(t; 00 ) is the p-dimensional vector with elements t/J;(t; 00 ), it follows that 
eR(h) [and hence asymptotic relative Pitman efficiency, limiting approximate Ba
hadur efficiency and weak intermediate efficiency of generalized rank tests] is 
maximized by those tests based on weight processes with limiting weight func
tion satisfying 

L(t; 00 ) 0( hT 1/J(t; 00 ). (3.25) 

From the following lemma it follows that the upper bound for the efficacy derived 
in Rao (1963) coincides with the right hand side of inequality (3.24), and thus 
generalized rank tests based on weight processes with limiting weight function 
satisfying (3.25) are asymptotically most powerful. 

Lemma 1 The Fisher information matrix 1(00 ) equals the p x p matrix with 
elements 

Clearly, the use of a generalized rank test instead of a classical test [the likeli
hood ratio test, say] does not have to result in loss of asymptotic relative efficiency. 
This raises the question whether the same conclusion holds for a supremum type 
test. After all, in contrast to the generalized rank test which is not consistent 
against alternatives approaching the null hypothesis in a direction perpendicular 
to Ka ( oo ), the supremum type test has the character of an omnibus test. Needless 
to say, it is rather attractive to have an efficient omnibus test at our disposal. 
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In virtually the same way as with eR( h ), we obtain that es( h) is maximized 
by supremum type tests based on weight processes 'h'.ith limiting weight function 
satisfying (3.25). Furthermore, it is easily seen that these tests have efficiency 
1 with respect to the optimal test in the sense of' limiting asymptotic relative 
Pitman efficiency, limiting approximate Bahadur efficiency and weak intermediate 
efficiency. 

This last result may impel to question the usefulness of concepts which are 
not able to distinguish between generalized rank tests and supremum type tests. 
However, as recent results on the tail behavior of the supremum of a Gaussian 
process show, this inability is basically a consequence of letting the size of the test 
tend to zero, which is the sensible thing to do if we are committed to avoiding 
making errors, Type I as well as Type II. From Rubin and Sethuraman (1965) it 
follows that minimizing the Bayes risk leads to letting the size of the test tend 
to zero at a rate n- 1 . Observe that this is exactly the situation to which weak 
intermediate efficiency refers. 

3.4 Proofs 

In this section we prove the theorems presented in sections 3.2 and 3.3. 

Proof of Theorem 2 As in Einmahl and Koning (1992), proof of Proposition 1 
[see also Theorem 3.1 in Burke, Csorgo and Horvath (1981)], let Un denote the 
empirical process based on the uniform (0,1) random variables 

Z; = 8;H1(Z;; On)+ (l - 8;){H1 ( oo; On)+ H0(Z;; On)}, 

where 

is the cumulative distribution function of the censored failure times under Pn. 
Note that 

Un_(t;On) = [Jn_(H1(t;On)) 

+Un-(H1(oo; On)+ H0(t; On)) - Un_(H1(oo; On)), 

where Un-(t) denotes the left continuous version of Un(t). Inequality 2 yields the 
existence of a sequence {.Bn(t)}~=l of Brownian bridges with continuous sample 
paths such that for all x > 0 

Pn( sup JUn(t) - Bn(t)J > n-112(c2 log n + X )) ~ C3 exp{ -C4X }. 
tE[O,oo) 

(3.26) 
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Now define mean zero Gaussian processes B~(t), Bn(t) and Wn(t) by 

Bn(t) = Bn(H1 (i; Bn)) 

+Bn(H1(oo; Bn) + H0 (t; Bn)) - Bn(H1(oo; Bn)), 

The processes B~(t) and Bn(t) are used to approximate U~(t; Bn) and Un_(t; Bn), 
respectively. Thus, it follows by (3.7) that Wn(t) approximates Mn(t; Bo) -
n112 D(t; Bo, Bn)- Before studing the implications of this approximation, we first 
pay attention to the covariance structure of Wn(t). Covariance calculations yield 

and hence {3.10). Observe that (3.10) implies 

{3.27) 

from which we may infer by (3.9) 

{3.28) 
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where c26 = 1 + 2c10 • To gain some probabilistic insight in the process Wn(t), 
remark that 

t Bn(s) 
Wn(t)- lo 1 _ H(s;Bn/D(s;Bo,Bn) 

is a time-transformed Wiener process with variance function H1 (t; Bn)- Moreover, 
the process Bn(t)/1-H(t; Bn) is a time-transformed Wiener process with variance 
function H(t; Bn)/(1 - H(t; Bn)). 

Recall that Wn(t) approximates Mn(t; B0 )-n112 D(t; Bo, Bn), As a direct conse
quence we have that J~ Ln(s ){ dMn(s; B0 ) - n112dD(s; B0 , Bn)} is approximated by 
J~ Ln(s)dWn(s). Unfortunately, the latter process is not easy to work with [it may 
not even be Gaussian], so we prefer replacing J~ Ln(s)dWn(s) by f~ L(s; Bn)dWn(s). 
To evaluate the effects of this replacement, we make use of a pure jump process 
Jn(t), which is defined by 

for t E Ii,n, (3.29) 

where Ii,n = [xi,n, Xi+1,n) and 0 = Xo,n < X1,n < · · · < Xm(n),n = oo is a grid 
chosen so as to satisfy 

{n (1 - H( s; Bn) )" { dA( s; Bn) + dA( s; Bo)} 

s; n-1/3 fo00 (1 - H(s; Bn))"{dA(s; Bn) + dA(s; Bo)} (3.30) 

for i = 0, ... , m( n) - 1. If the grid is chosen carefully, then there is no need for 
m(n) to exceed n 1! 3 + I. We shall assume that this is indeed the case. 

It follows by (3.28) that the variance of the mean zero Gaussian process Wn(t) 
is bounded by c26c10, whereas the variance of the mean zero Gaussian process 
Jn(t) - Wn(t) is bounded by c26c10n-1/3 _ Hence, by applying Inequality 4 we 
obtain 

Pn( sup IJn(t)I > x) s; Pn( sup IWn(t)I > x) 
tE[O,oo) tE[O,oo) 

s; csexp{-c27x2}, (3.31) 

Pn( sup IJn(t)- Wn(t)I > xn-116 ) s; csexp{-c21x2}, (3.32) 
tE[O,oo) 

where c27 = eg/(c26c10). Note that the application of Inequality 4 to Jn(t)-Wn(t) 
is justified since this process is separable. 

For any sequence { dn}~=l of points in (0, oo) we may now write 

sup l{Qn(t) - n112 ft Ln(s)dD(s;Bo,Bn)} 
tE[O,oo) lo 

t 6 - lo L(s;Bn)dWn(s)l/q(t) s; ~~ni, (3.33) 
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where 

lin2 = sup /Qn(t) - Qn(dn)//q(t), 
lE[dn,oo) 

lin4 = n112 sup 1 { Ln(s)dD(s; Bo, Bn)//q(t), 
tE[dn,oo) dn 

fins= sup I rt Ln(s){dWn(s) - d.ln(s)}//q(t), 
tE[O,oo) lo 

lin6 = sup I r{Ln(s)- L(s;Bn)}d.ln(s)//q(t). 
tE[O,oo) lo 
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Observe that the terms fins and lin6 relate to the replacement of J; Ln(s)dWn(s) 
by Ii L(s; Bn)dWn(s). 

Later in this proof we will meet two specific choices of { dn };;'°=1 . A first choice 
leads to (3.11), and a second to (3.12). Both choices have in common that dn ------too 
as n ------t oo. But before these choices are made, we explore the behavior of lini, 
i=l, ... ,6 for general sequences. Integration by parts yields with Pn-probability 1 

lint::; { sup /Ln(t)/q(t)/ + V(Ln(·)/q(·))} 
tE[O,oo) 

X { sup /Mn(t; Bo) - n 112 D(t; Bo, Bn) - Wn(t)/} 
tE[O,dn] 

::; 2c11 { sup /U~(t; Bn) - B~(t)/ 
tE[O,dn] 

+ sup I f (Un_(s; Bn) - Bn(s))dA(s; Bo)I} 
!E[O,dn] lo 

::; 2cu(l + 3A(dn;Bo)) sup /Un(t) - Bn(t)/. 
tE[O,1] 

and therefore it follows by (3.26) that 

Pn(lin1 > 2cu(l + 3A(dn;Bo))n- 112(c2Iogn + x))::; c3exp{-c4x}. (3.34) 

Observing that lin2 = 0 if Zn,n < dn, where Zn,n denotes the largest order statistic 
of the sample Z1 , ... , Zn, we obtain 
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S 1 - (H(dn; BnW 

s n(l - H(dn; Bn)). 

Twice integrating by parts yields with Pn-probability 1 

~n3 S {V(Ln(·)/q(·)) + sup ILn(t)l/q(t)} 
tE[O,oo) 

x{ sup I l q(s)dWn(s)l/q(t)} 
tE[dn,oo) dn 

S 4cn sup IWn(t) - Wn(dn)I. 
tE[dn,oo) 

Thus, applying Inequality 4 yields 

(3.35) 

Pn(~n3 > 4cnx{ sup En{Wn(t) - Wn(dn)}2}112) S Csexp{-egx2}. (3.36) 
tE[dn,oo) 

Similarly, combining integration by parts with inequality (3.32) produces 

Pn(~ns > 4cnxn-116) S csexp{-c21x2}. 

Furthermore, we have with Pn-probability 1 

~n6 S { sup I t q(s)dJn(s)l/q(t)} 
tE[O,oo) Jo 

m(n)-1 

x{{ L l{Ln(x;+1,n)- L(Xi+1,n;Bn)}/q(x;+1,n) 

-{Ln(Xi,n) - L(x;,n; Bn)}/q(x;,n)I} 

+ sup ILn(t) - L(t;Bn)l/q(t)} 
tE[O,oo) 

S (4n1/3 + 6){ sup IJn(t)I} 
tE[O,oo) 

x{ sup ILn(t)- L(t;Bn)l/q(t)}. 
tE[O,oo) 

(3.37) 

(3.38) 

A general investigation of the behavior of ~n4 is rather useless, since it depends 
too much on the actual situation. Thus, we content ourselves with (3.34)-(3.38). 

Next we turn to the aforementioned specific choices of { dn}~=t · For both 
choices the inequalities just derived are sharpened, supplemented by an inequality 
for ~n4 , and combined. 
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To prove (3.11), choose /3 < (l/2-a)/\1/6, and dn so as to satisfy H(dn; Bn) = 
1 - n-h+l), where 1 = (1/2 - a - /3)/a. Note that 1 _ > 0. Since 

< C nI/2-(3 
- C, ' 

(3.39) 

it follows from (3.34) that 

Pn(lln1 > 2cu(l + 3ca)(l + c2)n-(3 log n) ~ c3n-c•. (3.40) 

By (3.35) we immediately have 

(3.41) 

From (3.27) we may infer for t ? dn 

and hence (3.36) implies 

Pn(lln3 > 4cn { c26c10n-h+2f3) log n }112) ~ csn-eg. (3.42) 

Integration by parts yields with Pn-probability 1 

lln4 ~ 2cun112 sup ID(t;0o,0n)- D(dn;Bo,Bn)I, 
tE[dn,oo) 

which leads in combination with (3.9) to 

From (3.37) we obtain 

Combining Condition 2c with equations (3.31) and (3.38), it follows that 

(3.43) 

(3.44) 

Pn(lln6 > l0c12n-(3(logn)112 ) ~ (c13 + cs)n-(cl4''\c27 ) (3.45) 

[note that we have used /3 + 1/3 < 1/2]. Now, (3.40)-(3.45) together with (3.33) 
yield (3.11). 

If Bn = 00 , then we may obtain a sharper result by making a different choice 
of dn. Let x > 0, and choose dn so as to satisfy H(dn;00 ) = 1-exp{-x}/n. By 
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noting that A(dn; B0 ) ~ - log(l - H(dn; Bo)) = log n + x, we obtain from (3.34) 
for n > l 

Furthermore, we have by (3.35) 

and since by (3.27) 

it follows by (3.36) 

X sup Eo{Wn(t) - Wn(dn)} 2 

tE(dn,=) 

< -1 
- n ' 

(3.46) 

(3.47) 

(3.48) 

As a simple consequence of the fact that D(t; B0 , B0 ) is identical to zero, we have 

(3.49) 

Equation (3.37) implies 

(3.50) 

whereas combining Condition 2d with equations (3.31) and (3.38) yields 

Hence, (3.46)-(3.51) together with (3.33) yield (3.12). 
We conclude the proof of Theorem 2 with the remark that if Ln(t) coincides 

with L( t; Bn) with Pn-probability 1, it suffices to bound the left hand side of (3.33) 
by r:_t=I ~ni• This yields the refinement of Theorem 2 mentioned at the end of 
section 2. D 
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Proof of Theorem 3 Equation (3.14) directly follows from Corollary 1. To 
prove (3.15), observe that as a consequence of Theorem 2 there exists a process 
Xn(t;Oo), equal in P0-distribution to X(t;00 ), which satisfies 

Po( sup IQn(t) - Xn(t; Oo)l/q(t) > n-c,s ( C21 log n + x )°29 ) 
tE[O,=) 

(3.52) 

with C2s = 1/6 and C29 = 2. Now, let C30 = C2s/(2c29-l) and choose Czi < f3 < 2. 
Note that for n ---+ oo 

nc30(2-/3)( sn)-6 » nc30(2-/3) » log n, 

ncao(2-/3\sn)'6 = (n-caosn)'6-2(sn)2 » (sn)2, 

(n-caosn)°29/3-1 ~ 1 

[here an » bn denotes bn/ an ---+ O], and hence (3.52) implies 

:::; Po( sup IQn(t) - Xn(t; 00 )j/q(t) > nc3o(I-c29 /3)(sn)°29 /3) 
tE[O,=) 

:::; C22 exp{ -C23( ncao(2-/3)( sn)-6 - c21 log n)} 

(3.53) 

Since T(Xn(·;00 )/q(·)) and T(X(-;00 )/q(·)) are equal in P0-distribution, we 
may bound Po(T(Qn(·)/q(·)) > sn) from below by 

Po(T(X(·; Oo)/q(·)) > sn(l + cr(n-c30 sn)°29 /3-l)) 

-Po(T(Xn(·; Oo)/q(·)) - T(Qn(·)/q(·))I > cync3o(l-c29 /3)(sn)°29 /3) 

and from above by 

Po(T(X(·;Oo)/q(·)) > sn(l - cr(n-c30 sn)°29 /3-l)) 

+Po(T(Xn(·;Oo)/q(·))-T(Qn(·)/q(·))I > cyncao(l-c29/J>(sn)°29/3) 

and thus it follows that (3.14) and (3.53) together yield (3.15). This concludes 
the proof of Theorem 3. □ 

The proofs of Theorem 4 and Theorem 6 make repeated use of the following 
lemma, which holds under Conditions 1 and 6. 
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Lemma 2 Let g(t; B) be a real valued function, gf '(t; B) the first order partial 
derivative of g( t; B) with respect to the i th component of B. Suppose there exists a 
constant c 31 such that 

sup (1 - H(t; B))½lg(t; B)I < c31, 
tE[O,oo) 

sup (1 - H(t; B)) 1-algf1l(t; B)I < C31 
tE[O,oo) 

for every B E 0. Then there exists a constant c32 such that 

(3.54) 

(3.55) 

sup I t g(s; B)dD(s; Bo, B)I :S C32IB - Bol, (3.56) 
tE[O,oo) lo 

for every B E 0. Let gql(t; B) the second order partial derivative of g(t; B) with 
respect to the ith and j1 components of B. If 

then 

for every B E 0. 

sup (1- H(t;B)tlg(t;B)I < C31, 
tE[O,oo) 

sup (1 - H(t; B))½lgf1'(t; B)I < c31, 
tE[O,oo) 

sup (1- H(t;B)) 1-alggl(t;B)I < C31 
!E[O,oo) 

sup I t g( s; B)dD( s; Bo, 0) 
tE[O,oo) lo 

-l (B - Bof 'lj;(s; Bo)g(s; Bo)dH1(s; 00 )1 

:S cdB - Bol 2 

Corollary 3 There exists a constant c32 such that 

it 1 

sup I (1 - H(s;B))- 2 dD(s;Bo,B)I :S cdB- Bol-
tE[O,oo) 0 

for every BE 0. 

(3.58) 

(3.59) 

(3.60) 

(3.61) 



3.4. PROOFS 

Proof of Lemma 2 For convenience, we introduce the functions 

A0 (t;0) = A(t;0)-A(t;00), 

>.0 (t; 0) = >.(t; 0) - >.(t; 00 ). 
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Let AP\ t; 0) and >.P\ t; 0) respectively denote the first order partial derivatives 
of A0(t; 0) and >.0 (t; 0) with respect to the i th component of 0. Furthermore, let 
Al]\ t; 0) and >.lJ\ t; 0) respectively denote the second order partial derivatives 
of A0 (t; 0) and >.0 (t; 0) with respect to the ith and j!h components of 0. By 
Condition 6 we have for every t E [O, oo) 

and henr,e 

l (1 - H(s; 0))½-"1>.P)(s; O)lds 

= l(l -H(s;0))½-"l1P;(s;0)ldA(s;0) 

::; {fo00 (1 - H(s; 0))f3dA(s; 0)} 112 

x{f (1/y;(s; 0))2(1 - H(s; 0)) 1- 2"-11dA(s; 0)} 112 

::; ( C24/ /3) 112, 

(1 - H(t; 0))½-"IAP)(t; 0)1 

= (1 - H(t; 0))½-<>J l >.Pl(s; 0)dsl 

::; l (1 - H(s; 0))½-"1>.P\s; 0)Jds 

::; (c24//3)112 . 

Now, we find by using the identity 

1- H(t;0) = (1- H(t;00 ))exp{-A0(t;0)} 

(3.62) 

(3.63) 

that the first order partial derivative of f6 g(s; 0)>.0 (s; 0)(1 - H(s; O))ds with re
spect to the ith component of 0 is given by 

l { {9[11(s; 0) - g(s; O)AP\s; 0)}>.0 (s; 0) + g(s; 0)>.P\s; 0)}(1 - H(s; O))ds, 

and is bounded in t and 0, as follows from Condition 1, (3.54), (3.55), (3.62) and 
(3.63). By expressing D(t;00 ,0) as f6(1- H(s;0))>.0 (s;0)ds we obtain (3.56) 
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As for (3.57), by writing H1 (t;O) = I~(l - H(s;O))>.(s;O)ds, it follows that 
the first order partial derivative of I~ g( s; O)dH1 ( s; 0) with respect to the i th com
ponent of O is given by 

and is bounded in t and O. 

and 

Finally (3.61 ). For every t E [O, oo) we have 

l (1 - H(s; 0))!1- 2"lj>.iJl(s; O)jds 

= l(l -H(s;O))P- 2")11/iU)(s;O) + 1/,;(s;0)1/,j(s;0)ldA(s;0) 

$ {fo00 (1 - H(s; O))'°dA(s; 0)} 112 

X {fo00 (1/iU)(s; 0))2(1 - H(s; 0))2(1- 2a)-,6dA(s; 0)} 112 

+{fo00 (1/,;(s; 0))2(1 - H(s; 0)) 1- 2"-,6dA(s; 0)} 112 

x{{'"' (1/,j{s; 0))2(1 - H(s; 0)) 1 - 2"-,6dA(s; 0)} 112 

(3.64) 

(1 - H(t; 0))(1- 2")1AU\t; 0)1 $ (c24//3)112 + C24. (3.65) 

Note that the first order partial derivative of Ii g(s; 0)>.0 (s; 0)(1-H(s; 0))ds with 
respect to the ith component of 0 equals Ii g( s; 00 )1/,;( s; 00 )dH1 ( s; Bo) when eval
uated at 0 = 00 • Furthermore, the second order partial derivative with respect 
to the ith and jlh component of 0 is given by 

l { {gf ;l(s; 0) - gf!l(s; 0)A;1\s; 0) - g}1\s; 0)Afl(s; 0) 

-g(s; B)A)}l(s; 0) + g(s; 0)A)1>(s; 0)A~1\s; 0)}>.0 (s; 0) 

+{g;1>(s; 0) - g(s; 0)A?>(s; 0)}>.i1\s; 0) 

+{gf1\s; 0) - g(s; 0)Al1\s; 0)}>.}1l(s; 0) 

+g(s;0)>.U\s;0)}(l - H(s;O))ds. 

Hence, (3.61) follows from Condition 1, Condition 6, (3.55), (3.58), (3.60) and 
(3.62)-(3.65). This concludes the proof of Lemma 2. D 
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Proof of Theorem 4 Let {Wn(t)}~=l be the sequence of mean zero Gaussian 
processes given in Theorem 2. We may write 

4 

sup JQn(t) - n112 J0n - 0oJhT Ka(t)J/q(t):::: L~ni, (3.66) 

where 

tE(O,oo) i=l 

~nl = sup J{Qn(t)- n 112 l Ln(s)dD(s;0o,0n)} 
tE(O,oo) . 0 

-l L(s; 0n)dlVn(s)J/q(t), 

~n2 = sup I r L(s; 0n)dWn(s)J/q(t), 
tE(O,oo) lo 

~n3 = n112 sup I r(Ln(s)- L(s;0n))dD(s;0o,0n)l/q(t), 
tE(O,oo) lo 

~n4=n112 sup I f 1 L(s;0n)dD(s;0o,On)-l0n-0oJhTJ{a(t)l/q(t). 
tE(O,oo) Jo 

By (3.11) we have for f3 < (1/2 - a)/\ 1/6 

From integration by parts we obtain with Pn-probability 1 

~n2:::: 2c11 sup I r q(s)/q(t)dWn(s)I 
tE(O,oo) lo 

:::: 2c11 sup 2 sup JWn(s)J 
tE(O,oo) O~s:S/ 

:::: 4c11 sup JWn(t)J. 
tE[O,oo) 

(3.67) 

Since by (3.28) and Condition 1 the variance function of the process Wn(t) is 
bounded by ( c26)2, it follows by Inequality 4 

Pn(~n2 > 4c11c26x):::: csexp{-cgx2 }. (3.68) 

Lemma 2 yields the existence of a constant c33 such that 

~n4:::: C33n112 {J0n - OoJ 2 + J(0n - 0o) - JOn - OoJhJ} (3.69) 

and for every 0 E 0 and /3 < 1 /2 

Pn(n13 sup r(Ln(s) - L(s; 0n))dD(s; 0o,0)/q(t) > C33J0 - 0ol) 
tE[O,oo) lo 

:::: Pn(n13 sup sup JLn(s) - L(s; On)J/q(t) > c12)
tE[O,oo) O~s~t 
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Note that by Condition 2c this last inequality implies 

Pn((n 112 1Bn - Bol)- 1 ~n3 > C33n-J3) :'.S C13n-c". (3.70) 

The first part of the theorem is now easily proved by means of the inequality 

4 

:S cr(n112 IBn - Bolt1 L ~ni, (3. 71) 
i=l 

To prove the second part of the theorem, we first note that the supremum 
overt of the distance between the processes Qn(t)/q(t) and {Id L(s; Bn)dWn(s) + 
n112 IBn - BolhT I<a(t)}/q(t) is bounded by ~nl + ~n3 + ~n4, and hence converges 
to zero in Pn·probability if n112 IBn -Bal tends to a finite limit as n-+ oo. Thus, it 
remains to show that the latter process converges in Pn-distribution to {X(t; Bo)+ 
uhT I<a(t)}/q(t), which boils down to the convergence in Pn-distributi, 1 of 
Jd L(s; Bn)dWn(s)/q(t) to X(t; Bo)/q(t). 

Let Bn(t) be as defined in the proof of Theorem 2. Split J; L(s; Bn)dWn(s )/q(t) 
into the two parts 

and 
{' Bn(s) 

Jo L(s; Bn\ _ H(s; Bn/D(s; Bo, Bn)/q(t). 

The first part may be interpreted as a time-transformed Wiener process di
vided by q(t), the time transformed Wiener process having variance function 
J;(L(s; Bn))2dH1 (s; Bn)/(q(t))2. It follows from our Lemma 2 and Theorem Vl.10 
in Pollard (1984) that the first part converges in Pn-distribution to X(t; B0 )/ q( t). 
Use Lemma 2 to show that the supremum overt of the second part converges to 
zero in Pn·probability. This completes the proof of Theorem 4. D 

Proof of Theorem 6 Let ~nl, ~n2 , ~n3 and ~n4 be as in the proof of Theorem 4, 
and define b(Bn) as T(J~L(s;Bn)dD(s;Bo,Bn)/q(·)). We may write 

ln-112T(Qn(·)/q(·)) - b(Bn)I :'.S crn-112{~nl + ~n2 + ~nJ}, (3.72) 

Furthermore, we have 

Since e( h) is not equal to zero, this yields the existence of positive constants 
t* and C34 such that for Bn satisfying IBn - Bal < t* 

(3.74) 
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Now suppose 0 E 0 - { 0o} satisfies 10- 0ol < €*, and set 0n equal to 0. Choose 
€ > 0 and 8 E (0, 1). By (3.67) and (3.68) it follows that there exists an integer 
N 1 not depending on 0 such that for n > N 1 

P0(~n1 > (Ni)1 12t/4cT) < 8/4, 

P0(~n2 > (Ni)1 12l/4cT) < 8/4. 

Hence, for n > Nif(b(0)) 2 we have 

P0(n- 112 {~nl + ~n2} > tb(0)/2cT) < 8/2, (3.75) 

since n > N1 and (Ni/n) 112 < b(0). Moreover, (3.70) implies the existence of an 
integer N > N1 not depending on 0 such that for n > N 

P0(~n3 > tb(0)/2cT) 

< 8/2. (3. 76) 

Combining (3.72)-(3.76) now yields that {T(Qn(·)/q(·))}~=l is indeed a Wieand 
sequence. 

Finally, (3.20) immediately follows from (3.69) and (3.73). This concludes the 
proof of Theorem 6. D 

Proof of Lemma 1 The log-likelihood of the observation ( Z1 , 81 ) under Po is 

£(0; Zi, 81) = 8dog A(Zi; 0) - A(Z1; 0) 

[see Borgan (1984)]. This yields that 

f) {Z1 
80/(0;Z1 ,81 ) = 811jJ;(Z1 ;0)- Jo 1jJ;(s;0)dA(s;0) 

is the score for the ith component of 0. Observe the close relation between 1jJ;(t; 0) 
and the score function. The information matrix 1(0) has elements 

f) f) 
l;j{ 0) = £0{ 80/( 0; Zi, 81) }{ 80i £( 0; Z1, 81)} 

= lx:, 1/J;(t; 0)1jJj(t; 0)dH1(t; 0) 

- lx:, 1jJ;(t; 0) l 1Pi(s; 0)dA(s; 0)dH1 (t; 0) 

- fo00 1/Jj(t; 0) l 1/;;(s; 0)dA(s; 0)dH1 (t; 0) 

+ l,o l 1jJ;(s;0)dA(s;0) l 1Pi(u;0)dA(u;0)dH(t;0) 

= lx:, 1P;(t; 0)1jJj(t; 0)dH1(t; 0). 
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The last line follows from 

fo'x, 'lj;;(t; 0) l 1Pj(s; 0)dA(s; 0)dH1(t; 0) 

+ f'0 '1j;;(t;0) l i/!;(s;0)dA(s;0)dH1(t;0) 

= fo(X) {'lj;;(t; 0) l 1Pj(s; 0)dA(s; 0) 

+'lj;;(t;0) l i/!;(s;0)dA(s;0)} l(X) dH(u;0)dA(t;0) 

= fo(X) l' {'lj;;(t; 0) l 1Pi(s; 0)dA(s; 0) 

+'lj;j(t; 0) l i/!;(s; 0)dA(s; 0)}dA(t; 0)dH( u; 0) 

= fo(X) fou i/i;( t; 0)dA( t; 0) fou 'lj;;( s; 0)dA( s; 0)dH( u; 0). 

This ends the proof of Lemma 1. □ 



Chapter 4 

The composite null hypothesis 

4.1 Introduction 

In this chapter the results for the simple null hypothesis are extended to the 
composite null hypothesis, which involves estimation as well as testing. Though 
the lines of the previous chapter are followed rather closely, this chapter is made 
as self-contained as possible. As a consequence some of the remarks may seem 
familiar. 

Again, (n, A, P) is a probability space, and Fn C B[O, oo ). At stage n 
each of the independent random variables X 1 , ... , Xn, Yi, .. . , Yn maps (n, A) 
into ([O, oo ), Fn)- The probability measure induced by these random variables is 
denoted by Pn- Each pair (X;, Y;) is assumed to have the same distribution. The 
censoring distribution, the distribution of the censoring time Y;, does not depend 
on n. Hence, there exists a cumulative distribution G such that G(t) = Pn(Y; :::; t) 
for each n. Defectiveness of G is allowed. The failure time distribution, the dis
tribution of X;, does depend on n. 

However, the structure of the dependence of the failure time distribution on 
the sample size n is different. Now we suppose the existence of a cumulative 
distribution function F, indexed by (v,0) belonging to some set ix 0, and a 
sequence of points {(vn,0n)}~=l such that F(t;vn,0n) = Pn(X;:::; t). 

The set i refers to the nuisance parameter, the parameter which value is not 
specified in the null hypothesis. Any information concerning these parameters 
must be supplied by the sample. 

The set 0 refers to the parameter of interest, the parameter which value is 
specified in the null hypothesis. Denote the value of the parameter of interest 
under the null hypothesis by 00 • Thus, at every stage n we want to test the null 
hypothesis that 0n equals 00 . 

Let Vo be an ai·bitrary element of i. If ( Vn, 0n) equals ( v0 , 00 ) [denote the 
probability measure corresponding to this situation by Pvo, the expectation op
erator belonging to this probability measure by Evo, and the situation itself by 

51 
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"under Pv0 "] then the basic martingale takes the form 

where i\(t;v,0) = -log(l -F(t;v,0)) is the cumulative hazard function belong
ing to F(t;v,0). If (vn,0n) is arbitrary [refer to this situation as "under Pn" and 
denote the expectation operator by En] we also call Mn(t;v0 ,00 ) a basic martin
gale, despite the fact that the martingale property is in general lacking. 

In section 4.3 we study tests based on a sublinear Lipschitz functional of a 
process Qn(t; v(nl), where v(n) is a random element of i and 

( 4.2) 

is a stochastic integral with respect to the basic martingale. Here the weight 
process Ln(t; v) is a stochastic process. 

We restrict ourselves to the case where i is a convex subset of JR:. In sec
tion 4.2 the probability theory underlying the results in section 4.3 is presented. 
Proofs are gathered in section 4.4. 

4.2 Probability inequalities 

In this section we present probability inequalities which concern the approxima
tion on the halfline [O,oo) of [a centered version of] the process Qn(t;v(n)) by a 
one-parameter Gaussian process, both under Pn as under Pv0 • For treatment of 
the former situation, the following condition, which relates the right tail behav
ior of F(t;v,0) to the right tail behavior of F(t;v0 ,00 ), is needed (compare with 
Condition l]. 

Condition 8 There exists constants O < a < 1/2 and Ccx < oo such that 

fo00 (1 - F(s; v, 0))"di\(s; Vo, 0o) < Ccx 

for every v, Vo E i and 0 E 0. 

4.2.1 The M-estimator v(n) 

Of course, before studying the process Qn(t; v(nl) we must know the properties of 
the random variable v(n). It is desirable that, at least under the null hypothesis, 
v(n) is an estimator for v0 • Hence, we let v(n) belong to the class of M-estimators 
proposed by Hjort (1985). An M-estimator v(n) is obtained as the solution in i 
to the equations 

i = 1, ... , r, ( 4.3) 
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where <I>ni( t; v) is the stochastic integral 

( 4.4) 

and ef>i( t; v) is a given function. 
The most prominent example of an M-estimator is without any doubt the 

maximum likelihood estimator. Since under Pv0 the log-likelihood of the sample 
(Z1,b1), ... ,(Zn,bn) is given by 

n lx, log >.(s; vo, 0o)dH~(s) - n fo00 (1 - Hn_(s))dA(s; v0 , 00 ), (4.5) 

where >.(t; v, 0) is the hazard function, the derivative of the cumulative hazard 
function A(t; v, 0) with respect tot, the maximum likelihood estimator is obtained 
as M-estimator by setting cp;(t;v) equal to 1/;;(t;v,00 ), where 1/;;(t;v,0) denotes 
the first order partial derivative of log>.( t; v, 0) with respect to the i th component 
of v [see Borgan (1984)]. 

The study of the behavior of v!n) involves the following regularity conditions 
on 1/;;(t;v,0) and q>;(t;v). 

Condition 9 There exists a constant C,J, such that for every i = 1, ... , r and 
v E T the function 1/;;(t; v,00 ) exists, is bounded by C,J, and has total variation 
bounded by C,J,, The first order partial derivatives of 1/J;(t; v, 00 ) with respect to the 
components of v exist, are bounded by ( C,J, )2, and have total variation bounded by 
(c,J,)2. 

Condition 10 For every i = 1, ... , r and v ET the function q>;(t; v) is bounded 
by ( C,J, t 2 and has total variation bounded by ( C,J, t 2 • The first order partial deriva
tives of cp;( t; v) with respect to the components of v exist, are bounded by ( c,J,)-1, 
and have total variation bounded by ( C,J, )-1 . The second order partial deriva:ives 
of cp;(t; v) with respect to the components of v exist, are bounded by 1, and have 
total variation bounded by 1. 

Condition 10 is less restrictive than it might seem at first glance, since it is 
clear from ( 4.3) that multiplying c/>;( t; v) by a nonzero constant has no effect on 
the estimator itself. Observe that the constant may even depend on v. 

However, Condition 10 does involve restrictions on the behavior of the second 
order partial derivatives, which may prevent the maximum likelihood estimator 
from falling into the framework considered here. If this is the case, one may weigh 
replacing the maximum likelihood estimator by a closely related M-estimator, 
obtained by setting q>;( t; v) equal to a smoothed version of 1/;;(t; v, 00 ). 

Before formulating two additional conditions, we first introduce the cumula
tive distribution functions 
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H(t;vn,0n) = Pn(X1 St) 

[note that H 1 (t; Vn, 0n) is possibly defective]. Moreover, we define the function 
D(t;v',00 ,v,0) by 

D(t;v',00 ,v,0) = l(l -H(s;v,0)){di\(s;v,0)-di\(s;v',00 )}. (4.6) 

Condition 11 There exists a function 1r : T x 0 ----+ T such that 

for i = l, ... , r, v E T and 0 E 0. 

The function D(t; 1r(v, 0), 00 , v, 0) appears frequently in our results. To in
crease readability we shall abbreviate it by D(t;v,0). It reflects the distance 
between the distribution F( t; v, 0) and the set of distributions under the null 
hypothesis. 

It is possible to choose 1r so as to satisfy 1r( v, 00 ) = v for any v E i. We 
shall tacitly assume this is indeed the case. Hence, we may view ( 1r( v, 0), 00 ) as a 
projection of the point ( v, 0) on T x { 00 }. Moreover, it immediately follows that 
D(t;v,00 ) equals zero for any t E [O,oo) and v E i. 

Let 2 0 ( v, 0) be the r x r matrix with elements 

3o;j(v,0) = fo 00 </>;(s;1r(v,0))1jJj{s;1r(v,0),00 )dH1(s;v,0) 

- fo00 {</>;(s;1r(v,0))1Pi(s;1r(v,0),0o) 

+<l>D\s; 1r( v, 0), 0o)}dD(s; v, 0), 

where <t>D\ t; v) denotes the first order partial derivative of </>;(t; v) with respect 
to the jlh component of v. We shall assume that 3 0 satisfies Condition 12. Refer 
to the matrix AAT as the square of the matrix A. 

Condition 12 There exist a constant c35 such that the eigenvalues of the square 
of the matrix 3o( v, 0) all exceed ( c3s) 2 for every v E T and 0 E 0. 

The complexity of the last two conditions may seem discouraging. However, 
if we are only interested in what happens under the null hypothesis then we may 
set 0 = { Bo} and the situation clarifies considerably. Now Condition 11 holds 
automatically as follows from setting 1r(v, 0) = v. Moreover, Condition 12 only 
involves 3 0 ( v, 00 ). 0 bserve that 
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Hence, 3 0 ( v, 00 ) is of a much simpler nature than 3 0 ( v, 0). 
To verify Condition 12 in the general case a two stage procedure could be 

succesful. First show that the eigenvalues of the square of 3 0 ( v, 00 ) are bounded 
from below, uniformly in v. Then try to show that the eigenvalues of the 
square of 3 0 ( v, 0) - 3 0 ( 1r( v, 0), 00 ) remain small enough to guarantee that Con
dition 12 holds. Note that the elements of 3 0 ( v, 0) - 3 0 ( 1r( v, 0), 00 ) are bounded 
by 4( c,i.,)-1 suptE[O,oo) D( t; v, 0). Thus this approach can be expected to work if 
suptE[O,oo) D(t; v, 0) is small, which occurs in the neighborhood of 00 . 

Denote 1r( Vn, Bn) by Vno, 3o( Vn, Bn) by 3on and 3o( vo, Bo) by I:eo, and let </>(t; v) 
be the r-dimensional vector with elements <p; ( t; v). 

Theorem 7 There exist positive constants c36 , C37 not depending on Vn or Bn 
and a random variable Sn such that if 

Sn < n 112, 

then there exists a solution v(n) to the equations (4- 3) which satisfies 

n112 lv(n) - Vnol < C36Sn 

n 1/ 2 l30,; fo00 </>(s; Vno){ dMn(s; Vno, Bo) - dD(s; Vn, Bn)} 

-n112(v(n) - Vno)I < c37{Sn} 2 

(4.7) 

( 4.8) 

(4.9) 

Furthermore, for every /3 > a there exist positive constants c38, c39 not depending 
on Vn or Bn, such that 

(4.10) 

Moreover, if ( Vn, Bn) = ( v0 , 00 ), then there exist positive constants c40 - C42 not 
depending on v0 such that 

Pv0 ( Sn > x( C40 log n + x2)) :S C41 exp{ -c42x2} 

for every x > ( n 112 log n )-1 . 

(4.11) 

The strength of inequality ( 4.9) depends on the behavior of the random vari
able n-1/2{Sn}2. In the following corollary this behavior is characterized. 

Corollary 4 If a< 1/4, then 

If(vn,Bn) = (vo,Bo), then 

Pv0 (n- 112 {Sn} 2 > n-112x(c40 logn + x)2) :S C41 exp{-c42X} 

for every x > ( n112 log n )-2. 

(4.12) 

( 4.13) 
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Our approximation of the process Qn(t;v<n)) is based on (4.9) directly. How
ever, ( 4.9) may also be used to prove asymptotic normality of the estimator 
v<n), since by the refinement of Theorem 2 we may approximate f000 <fi(s; Vno) 
{ dMn(s; Vno, B0 ) - dD(s; Vn, Bn)} by the r-dimensional Gaussian random variable 
in defined by 

(4.14) 

where Wn(t; Vno) is the Gaussian process of Theorem 2. Under Pn the covariance 
function of Wn( t; Vno) is somewhat intractable, and thus there is little use in giving 
an expression for the asymptotic variance of n 1!2( v<n) -Vno) under Pn, But again, 
everything becomes more transparent if (vn,Bn) equals (v0 ,B0 ). Under Pv0 the 
process Wn(t;v0 ) is a Wiener process with variance function H 1(t;v0 ,B0 ), and 
hence the covariancematrix of in is equal to Eee, the r x r matrix with elements 

Eeeij = fo 00 </ii(s; vo)<Pi(s; vo)dH1{s; Vo, Bo) 

Hence, we arrive at the following corollary. 

(4.15) 

Corollary 5 If(vn,Bn) = (v0 ,B0 ), then there exists a sequence {in}~=t ofr
dimensional Gaussian random vectors with zero expectation and covariance ma
trix Eee such that 

as n --1- oo. 

The convergence in Pv0-distribution of the sequence { n 112 ( v<n) - vo)}~=l to a 
Gaussian random variate with zero expectation and covariance matrix E;a1 EeeE0-,1, 
where Eoe denotes the transpose of Ee0, was proved for the maximum likelihood 
estimator by Borgan (1984) using martingale methods. Observe that in this case 
E;"o1EeeE0,1 is equal to E;,,1. Hjort (1985) mentions that the approach of Borgan 
can be extended to M-estimators without difficulty. However, the results obtained 
in this way do not stretch as far as Corollary 4, which also conveys information 
about the rate of convergence. 

4.2.2 The process Qn(t; v(n)) 

Now that we have gained some knowledge about the M-estimator v<n), it is time 
to direct our attention to the process Qn(t; v<n)). But first we make some as
sumptions about the weight process Ln(t; v ). 

Condition 13 The weight process Ln( t; v) satisfies 
a Ln( ·; v) is a random element in [the left continuous right limits version of} 

D[O, oo] endowed with the .11 metric. There exists a constant c43 not depending 
on v, Vn or Bn such that Ln ( t; v) is bounded by c43 and has total variation 
bounded by c43 with Pn -probability 1. 
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b There exists a deterministic function L( t; v, 0) such that for every /3 < 1/2 
there exist positive constants c44 -c46 not depending on Vn or On such that 

Pn( sup ILn(t;vno) - L(t;vn,On)I > C44n-13 ) < C45n-c•6 • 

tE[O,oo) 

In addition, there exist positive constants c47 -c49 not depending on Vo, such 
that for every x > 0 

Pv0 ( sup ILn(t;vo)- L(t;vo,Oo)I > n-112(c41logn+x)) 
tE[O,oo) 

c The first order partial derivatives of Ln( t; v) with respect to the components of 
v arP random elements of D[O, oo). With Pn -probability 1 they are bounded by 
c43 , and have total variation bounded by c43 • 

d For every i = 1, ... , r there exists a deterministic function LP1(t; v, 0) such that 
for every j3 < 1/2 there exist positive constants c4cc46 not depending on Vn or 
On such that 

Pn( sup IL~:l(t; Vno) - L\11 (t; Vn, On)I > C44n-13 ) < C45n-°'6 , 

tE[O,oo) 

where L~:\t;v) is the first order partial derivatine of Ln(t;v) with respect to 
the ith component of v. 

e With Pn-probability 1 the second order partial derivatives of Ln(t; v) with re
spect to the components of v are random elements of D[O, oo). They are 
bounded by c43 , and have total variation bounded by c43 • 

Condition 13 asks of various random elements of D[O, oo) that they are uni
formly bounded and have uniformly bounded total variation with Pn-probability 
1. However, if needed we may replace "Pn-probability 1" by "Pn-probability 
tending to 1 at a fast enough rate". The rate at which Pn(Sn < cn112 ) tends to 
1 is for any c > 0 fast enough. In section 5.3 the relaxed version of Condition 13 
is used. 

To describe the effect of the M-estimator v(n) on the process Qn(t; v(n)), 
we introduce the r-dimensional vector function I<0(t; v, 0). The ith element of 
I<0 (t;v,O) is defined by 

I<o;(t;v,O) = l L(s;v,0)1/J;(s;1r(v,0),00 )dH1 (s;v,O) 

+ l { L(s; v, 0)1/J;(s; 1r( v, 0), 00 ) + Ll11(s; v, O)}dD(s; v, 0). (4.16) 



58 CHAPTER 4. THE COMPOSITE NULL HYPOTHESIS 

Observe that K0;(t; v, 0) remains bounded, uniformly in v and 0. Moreover, we 
have under Pv0 

Ko(t;vo,0o) = l L(s;v0 ,00 )ij;(s;v0 ,00 )dH1(s;v0 ,00 ), (4.17) 

where ij;(t;v,0) is the r-dimensional vector with components if;;(t;v,0). 

Theorem 8 There exists a sequence {Wn(t; Vno) };:"=1 of mean zero Gaussian pro
cesses with covariance function 

/1' /\t2 
- lo {D(ti;vn,0n) + D(t2;vn,0n) 

-2D(s; Vn, 0n)}dA(s; Vno, 0o) 

(4.18) 

such that for every (3 < (1/2 - 2a) /1. 1/6 we have 

Pn( sup l{Qn(t;v(n)) - n112 rt Ln(s;vno)dD(s;vn,0n)} 
tE[O,oo) lo 

-{{ L(s; Vn, 0n)dWn(s; Vno) 

-(Ko(t; Vn, 0n)f2o1 fo00 </J(s; Vno)dWn(s; Vno)}I 

-(3) < -c52 > cson _ cs1n , (4.19) 

where C50-Cs2 are positive constants not depending on Vn or 0n, 
If in addition ( Vn, 0n) = ( vo, 00 ) then there exist positive constants C53 - Css, 

not depending on ( v0 , 00), such that 

Pvo( sup IQn(t;v<n)) - { rt L(s;vo,0o)dWn(s;vo) 
tE[O,oo) lo 

-(Ko(t; Vo, Oo)f r.;01 lo"° </J(s; vo)dWn(s; Vo)} I 

> n-116(1 + x)(c53logn + x)2)::; c54exp{-cssX}. (4.20) 

Corollary 6 is based on the observation that the Gaussian process which 
is used in Theorem 8 to approximate Qn(t; v(n)) under Pv0 may be written as 
J0

00 Lo(s,t;vo)dWn(s;0o), where the function Lo(s,t;vo) is defined by 

Lo(s,t;vo) = L(s;vo,00)1<,:9} - (I<o(t;vo,Oo)fr.;01</J(s;vo). (4.21) 
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It seems that L0 (s,t;v0 ) is an adapted version of L(s;v0 ,00 ), in which the influ
ence of the M-estimator at the stochastic integral evaluated at point t is accounted 
for. 

Corollary 6 The sequence { Qn(t; v<n))}~=I converges in Pv0 -distribution to a 
mean zero Gaussian process X(t; v0 , 00 ) with covariance function 

t'voX (t1; Vo, Oo)X(t2; Vo, Oo) 

= lxi Lo(s,t1;vo)Lo(s,t2;vo)dH1(s;v0 ,0o). ( 4.22) 

Corollary 6 implies that the variance function of X(t; v0 , 00 ) may be written 
as 

( 4.23) 

Since we have 

(4.24) 

we may view the operator which assigns Jo"° L0(s,t;v0 )f(s)dH1(s;v0 ,00 ) to any 
J E D[0,oo) such that J000(f(s))2dH1(s;v0 ,00 ) < oo as a Hilbert-Schmidt opera
tor. This operator is used to transform Wn(t; v0 ) into a Gaussian process which 
under Pvo closely approximates Qn(t; v<n>). The relatively complicated form of 
the covariance function of Qn(t; v<n>) gives rise to the interesting question whether 
there exists another operator which can be used to transform Qn(t; v<n>) into a 
process closely approximated by Wn(t; v0 ) under Pvo. It is possible to solve this 
inverse problem by following the path set out by Khamaladze (1981, 1982) in his 
study of the empirical process with estimated parameters. 

However, the derivation of probability inequalities of the type given in Theo
rems 2 and 8 for the transformed process would require additional notation and, 
above all, quite unpleasant conditions. Therefore, we do not pursue this point 
any further. 

The second part of Condition 13b is only needed for verifying (4.20). Thus, 
{ 4.20) and Corollary 6 remain valid if the second part of Condition 13b is dropped. 

The proof of Theorem 8 makes us of Theorem 1. Just like this theorem, The
orem 8 can be sharpened in the case where Ln(t; Vno) coincides with L(t; Vn, On) 
with Pn-probability 1. Then, (4.19) holds for every (3 < {1/2-2a), and in {4.20) 
the term n-1/ 6 may be replaced by n-1/ 2 . 

Convergence in distribution of a sequence of processes strongly related to 
{Qn(t;v(n))}~=I was obtained by Hjort (1984) [see also Hjort (1990)]. 
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4.3 Sublinear tests 

As in the previous chapter we may use a functional T mapping D[O, oo) into IR, to 
construct a goodness-of-fit test. Applying T to the process Qn(t; v<nl), we obtain 
a statistic which can be used to test the composite null hypothesis On = 00 • 

In this section we study deviations, behavior under fixed and local alterna
tives, and efficiencies of sublinear tests, based on test statistics T(Qn(t; v<nl)), 
where T satisfies Condition 14. 

Condition 14 The functional T is sublinear and Lipschitz. 

Observe that this condition is exactly the same as Condition 3. Thus, the 
remarks concerning Condition 3 also apply here. 

4.3.1 Deviations 

Define 

a(vo) = {supT( f00 Lo(s, ·; vo)J'(H1(s; Vo,Oo))dH1 (s; Vo, Oo))}-2 

/ES Jo 
( 4.25) 

where S is the set of Strassen functions. One may interpret (a(vo))-1/ 2 as the 
norm of the functional T, this time induced by the reproducing kernel Hilbert 
space of the Gaussian process X(t; v 0 , 00 ), the limit in Pv0 -distribution of the 
sequence { Qn(t; v(n))}~=l. Suppose that 

Condition 15 infvoET a(v0 ) is positive. 

Theorem 9 describes the tail behavior of T(X(·; v0 , 00 )) (and thus the tail be
havior of the asymptotic distribution of T(Qn(·; v(n)))], and presents a deviation 
result for T(Qn(-; v(n))). It is valid whenever equation (4.20) and Conditions 14 
and 15 hold. 

Theorem 9 We have 

lim C 2 inf (a(v0 ))-1 logPv0 (T(X(-;v0 ,00 )) > t) = -1/2. 
t->oo voET 

lim C 2 sup(a(v0)f1 logPv0 (T(X(·; vo,Oo)) > t) = -1/2. 
t->oo voET 

Furthermore, 

for any sequence {sn}~=l such that Sn-+ oo and Sn= o(n1130 ) as n-+ oo. 

( 4.26) 

( 4.27) 

( 4.28) 

( 4.29) 
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Obviously, ( 4.28) and ( 4.29) also hold for any sequence { sn}~=I such that 
sn-+ oo and Sn= O((logn) 112 ). The deviation result based on the latter type of 
sequence is called moderate and is important from a statistical perspective, since 
it plays a role in evaluating the performance of a test. 

As with Theorem 8, Theorem 9 can be refined in the special case where 
Ln(t; v0 ) coincides with L(t; v0 , 00 ) with Pv0-probability 1. Now sequences { sn}~=I 
such that Sn-+ oo and Sn= o(n1l 10 ) are allowed. 

From a practical viewpoint it is desirable that a test for the composite null 
hypothesis is based on a test statistic which has under the null hypothesis an 
asymptotic distribution which does not depend on the actual value of the un
known parameter. Hence, the rate at which the tail of the distribution of the test 
statistic decays should not depend on the unknown parameter. Theorem 9 implies 
that in order for this latter situation to occur it is sometimes needed to multiply 
the original weight process by the square root of a( v). Of course, it should be 
verified whether the newly constructed weight process meets all requirements. 

Since in general the distribution function H1(t;v0 ,00 ) is involved in a(v), a 
slight problem arises when the censoring distribution G is unknown. In this case 
it seems best to divide the weight process by the square root of an estimator for 
a(v ). Typically, estimators for a( v) are obtained by replacing H 1(t; v0 , 00 ) by 
J~(l - Hn_(s))di\(s;vo,0o)-

4.3.2 Behavior under the alternative hypothesis 

To describe the behavior of T(Qn(·; v<nl)) under a fixed alternative, suppose that 
Vn = v E T and 0n = 0 E 0 for every n E JN [we shall refer to this stuation as 
"under P(v,o)"]. Then for every /3 > (2a - 1/2)+ 

as follows from combining (4.19) with Conditions 13 and 14. 
The treatment of local alternatives requires a more substantial effort. First 

we impose structure on 0. 

Condition 16 0 is a convex subset of IR,P. 

As an immediate consequence of Condition 16 we have that T x 0 is a subset of 
JR;+P. Hence, it is sensible to redefine tp;(t; v, 0) as the first order partial derivative 
of log -\(t; v, 0) with respect to the ith component of ( v, 0), i = 1, ... , r + p. Note 
that this redefinition is consistent with the earlier definition. Likewise, redefine 
1/J}J>(t; v, 0) as the second order partial derivative with respect to the ith and jlh 

component of (v,0). 
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Condition 17 For every v E Y, 0 E 0 and i, j = 1, ... , r + p the functions 
>.(t; v, 0), 'lj;;(t; v, 0) and 'lj;ill(t; v, 0) exist. For some /3 > 0 there exists a constant 
c56 such that for every v E Y, 0 E 0 and i, j = 1, ... , r + p 

100 ('1/;;(s; v, 0))2(1 - H(s; v, B))P-2"')-/JdA(s; v, 0) < Cs6, 

100 ('1/;U)(s;v,0))2(1- H(s;v,0)) 2( 1- 2"')-/JdJ\(s;v,0) < Cs6• 

Denote the p-dimensional vector with components '1/;r+i(t; v0 , 00 ) by '1/;a(t; v0 , 00 ), 

and define 

( 4.31) 

(compare with ( 4.21 )]. Observe that under Conditions 8 and 9 the components 
of I<a1o(t; vo) remain uniformly bounded in t, Vo and Bo. 

Let Al1l(t; v, 0) denote the first order partial derivative of J\(t; v, 0) with re
spect to the i th component of (v,0). Define the r x r matrix 3b(v,0) by 

3bij(v,0) = lo00 ef>;(s; 1r(v,0))'1/;i(s; 1r(v, 0),00 )dH1(s; v,0) 

+ fo00 1/i;( s; 1r( v, 0))A;1)( s; 1r( v, 0), 00 )dD( s; v, 0), (4.32) 

Condition 18 All eigenvalues of the square of the matrix 3b( v, 0) exceed (c35 ) 2 

for every v E Y and 0 E 0. 

It should be noted that 3b( v, 00 ) = 30 ( v, 00 ) for every v E Y. Since the 
smallest eigenvalue of the square of 3b( v, 0) tends to the smallest eigenvalue 
of foe square of 3b( v, 00 ) as 0 tends to 00 , the remarks on the verifiability of 
Condition 12 also apply to Condition 18. 

The next condition concerns 1l1l(t; v, 0), the first order partial derivative of 
L(t; v, 0) with respect to the ith component of (v, 0), and LlJl(t; v, 0), the second 
order partial derivative of L(t; v, 0) with respect to the ith and jlh components of 
(v, 0). 

Condition 19 For every v E Y, 0 E 0 and i,j = 1, ... ,r + p the functions 
Ll1l(t; v, 0) and LlJl( t; v, 0) exist. There exists a constant c57 such that for every 
v E Y, 0 E 0 andi,j = 1, ... ,r+p 

sup (1- H(t;v,0)) 112 1Ll1l(t;v,0)1 < c57, 
tE(O,oo) 

sup (1- H(t;v,0)) 1-"'ILlJl(t;v,0)1 < C57. 
tE[O,oo) 
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Theorem 10 Suppose the sequence { ( vn, Bn)} ~=I converges to the point ( Vo, Bo). 
Leth be the p-dimensional unit vector defined by h = limn_00 (Bn - Bo)/IBn - Bol, 
and let a denote limn-oo n112 IBn - Bol-
a If a= oo then (n 112 j0n - 0O1)-1T(Qn(·;v(n))) converges in Pn-probability to 

T(hT I<a10(·; vo)), 
b If a< 1/4 and a< oo then {T(Qn(·;v(nl))}~=l converges in Pn-distribution 

• T 
to T(X( ·; Vo, Bo) + ah I<a10( ·;Vo)). 

The proof of Theorem 10b makes use of the fact that (4.19) holds for some 
/3 > 0, which provides the reason for the occurrence of the restriction a< 1/4. 

If o < 1 / 4 then Theorem 10 reveals three types of behavior of the sequence of 
test statistics {T(Qn(·; v(nl))};:"=1 , depending on the rate at which the alternatives 
converge to the null hypothesis. If the rate is faster than n-1/ 2 then we have 
convergence in distribution to the same limit as under the null hypothesis. If 
the rate is of the order n-1/ 2 then we also have convergence in distribution, but 
to a limit different from the one under the null hypothesis. If the rate is slower 
than n-1/ 2 then the convergence in distribution is lost, since the sequence of test 
statistics blows up as n tends to infinity. 

4.3.3 Efficiencies 

In the previous chapter a number of efficiency concepts were introduced. However, 
the definitions given there only apply to the simple null hypothesis. We shall now 
carry these definitions over to the composite null hypothesis, and reflect on their 
implications. 

Our definition of asymptotic relative Pitman efficiency is restricted to the 
situation in which we have two infinite sequences of tests of the same size, and 
where the n th test in the ith sequence is based on the test statistic T;n, rejects the 
null hypothesis if T;n > tin, and does not reject if T;n < tin, Again, we have no 
knowledge about the action taken if T;n = tin• 

Definition 7 For a given function 'fJ : T x 0 --+ [O, 1], let Nf ( v, 0) be the largest 
sample size such that P(v,o)(T;n ~ t;n) < '/J( v, 0). If for a unit vector h E m,P and 

every vO ET there exists a constant efih; vO) such that 

and 
-ij 
N (v 0 ) -

limsup 2. 3 ' 3 < efJ (h· v ) . -(J - 12 , 0 
1-00 N (v 0) 1 J' J 
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for any sequence { ( Vj, Bj )}fa:1 tending to ( v0 , 80 ) while satisfying limj-+oo 

/3(vj,Bj} E (0, 1) and limj-+oo(Bj-Bo)//Bj-Bo/ = h, then efih;vo) is the asymp
totic relative Pitman efficiency of the first sequence of tests with respect to the 
second. 

This definition allows the asymptotic relative Pitman efficiency to depend 

on both size and power of the tests. It does not involve !i}( v, B), the smallest 
sample size such that P(v,o)(Tin > t;n) ~ /3( v, B), as is propagated by Rothe 
(1981). An efficacy approach is possible if there is a transformation of the 
test statistics available such that the transformed tests statistics are asymptoti
cally normal and have asymptotic variance 1 for any sequence {Bn}~=l such that 
limn-+oo n 112 /Bn -80 / < oo. The asymptotic mean of the transformed test statistics 
divided by limn-+oo n112 /Bn - 80 / is the square root of what is called the efficacy 
of the sequence of test statistics. For two such sequences the asymptotic relative 
Pitman efficiency is equal to the ratio of their respective efficacies. In absence of 
such a transformation, the computation of asymptotic relative Pitman efficienL ;s 
becomes too formidable for general sublinear tests. 

Definition 8 A sequence of test statistics {T;n}~=l is said to be a standard se
quence if the following three conditions are satisfied. 
a The sequence {T;n}~=l converges in Pv0 -distribution to a random variable T;. 
b There exists a constant a; such that 

Jim C 2 inf log Pvo (T; > t) = -a;/2. 
t-+oo voET 

lim C 2 sup log Pv0 (T; > t) = -a;/2. 
!-+oo voET 

c There exists a positive function b;( v, B) such that /n- 112T;n - b;( v, B) / converges 
to zero in Pc v,o)-probability for every v E i and B E 0 - {Bo}. 

The approximate Bahadur slope of a standard sequence {T;n}~=l is defined as 
a;(b;(v, 8))2 • The approximate Bahadur efficiency of a standard sequence {T1n}~=l 
with respect to another standard sequence {T2n}~=t is defined as the ratio of their 
respective Bahadur slopes a1(b1(v,B))2/a2 (b2 (v,B)) 2 • 

By Corollary 6 and equations ( 4.26), ( 4.27) and ( 4.30) it immediately fol
lows that the approximate Bahadur slope of {T(Qn(·; v<n)))}~=l is given by 
a(v0 ){T(J~ L(s; v, B)dD(s; v, 8))}2. 

Definition 9 A standard sequence {T;n}~=l is said to be a Wieand sequence if 
there is a constant f.* > 0 such that for every l > 0 and b E (0, 1) there exists an 
integer N such that 

P(v,o)(/n- 112T;n - b;(v,B)/ > f.b;(v,B)) < 6 

for every v E i, BE 0 - {80 } satisfying /B - 80 / < f.* and n > N/(b;(v,8))2. 
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Since our definition of standard sequences slightly extends the one used in 
Wieand (1976) (it allows Pvo(T; > t) to depend on v0 ], an adaption of Wieand's 
result is in order. 

Theorem 11 (Wieand (1976), adapted) Let {T1n}~1 and {T2n}::"=1 be two 
Wieand sequences. Suppose lim(v,0)->(vo,Oo) b;( v, 0) = 0 for i = 1, 2 and suppose 
that for every p-dimensional unit vector h the limit 

( 4.33) 

exists if (0 - 00 )/10 - 00 1 tends to h. Then the limiting (as the size of the tests 
approaches zero) asymptotic relative Pitman efficiency exists and is equal to the 
limit given in (4.33). 

Theo1. ·m 11 is not valid if variants of asymptotic relative Pitman efficiency 
such as in Rothe (1981) are used. See Appendix A for more details. 

Theorem 12 Let h be a p-dimensional unit vector, let ( v, 0) approach ( v0 , 00 ) 

from the direction h {that is, h = lim(v,O)->(vo,Oo)(0 - Bo)/10 - Bol}, and define 
e(h;v0 ) by 

(4.34) 

Ifinfv0 e-re(h;vo) is not equal to zero, then {T(Qn(·;•}n)))}~=l is a Wieand se
quence with approximate Bahadur slope of the form 

( 4.35) 

Definition 10 A sequence of test statistics {T;n};::"=1 is said to be a Kallenberg 
sequence if the following conditions are satisfied. 

a There exists a constant a; such that 

for all sequences {Sn} ;::"=1 such that Sn -+ oo and Sn = o( n 116 ) as n -+ oo. 
b There exists a positive function b;( v, 0) such that n-1l 2T;n/b;( Vn, Bn) converges 

to 1 in Pn-probability for all sequences {(vn,Bn)};::"=1 tending to Y X {Bo}. 
If the sequences {T1n};::"=1 and {T2n}~1 both are Kallenberg and the limit limn_,00 

a1(b1(vn,Bn))2/a2(b2(vn,0n))2 exists, then the asymptotic intermediate efficiency 
of {T1n};:"=1 with respect to {T2n}~=I is defined as this limit. 



CHAPTER 4. THE COMPOSITE NULL HYPOTHESIS 

The typical behavior of b;( v, 0) near ix { 00 } is as a linear function of l0n -0ol
This brings us to call lim71 _ 00 a;(b;(vn, 0n)/l0n - 0ol)2 the intermediate slope of 
the Kallenberg sequence {T;n}~=t · 

Theorem 9 does not ensure that {T(Qn(·; v(n))) }~=l is a Kallenberg sequence. 
Reason for us to turn to a variant of asymptotic intermediate efficiency, weak 
asymptotic intermediate efficiency. Here only sequences { sn}~=l such that Sn -+ 

oo and Sn = 0( (log n) 1/ 2 ) as n -+ oo are considered. Observe that the sequence 
{T(Qn(•;v<nl))}~=l has weak intermediate slope e(h;vO). Hence, the weak inter
mediate approach yields the same picture as the Wieand approach. Theorem 9 
shows that our tests may be evaluated using a variant of asymptotic intermediate 
efficiency which considers sequences {sn}~=l such that Sn-+ oo and Sn= o(n113O) 
as n tends to infinity. 

In the beginning of this section we assumed that the functional T is sublinear. 
A close look reveals that Condition 14b is used only in the derivation of (4.26) 
and ( 4.27). Thus, we may set up an equivalent theory for functionals other than 
sublinear, provided results similar to ( 4.26) and ( 4.27) hold. 

4.3.4 Generalized rank and supremum type tests 

We have already seen that both Tn and Ts satisfy Condition 14. Hence, our 
theory applies. Defining an(vO) and as(vO) according to (4.25), with T replaced 
by Tn and Ts respectively, it follows that 

an(vo) = {fo00 (Lo(s,oo;vo))2dH1 (s;vo,00 )}-1 , 

as(vo) = { sup f 00(Lo(s,t;vo))2dH1(s;vo,00)}- 1 

te[O,oo) lo 

( 4.36) 

( 4.37) 

[discover the relation with the variance function of .X(t; v0 , 00 ) by comparing with 
equation (4.23)]. Similarly defining en(h,v0 ) and es(h,vO) according to (4.34), 
we obtain 

en( h, Vo) = an( vo){ hT I<aio( oo; vo)}2, ( 4.38) 

es(h,vo) = as(vo){ sup hTI<aio(t;vo)}2 • (4.39) 
tE[O,oo) 

As opposed to general sublinear tests, generalized tank tests do allow us to 
compute asymptotic Pitman efficiencies. By Corollary 6 and Theorem 10b, it 
follows that the asymptotic power against local alternatives On = 00 + n-1!2 h of 
the test based on Tn( Qn( ·; v<">)) of size o: equals 

Pv0 (.X'(oo;vo,0o) > z;;(an(vo))- 112 - hTI<aio(oo;vo)), 

where z;; is the (1 - a) quantile of a standard normal distribution. This implies 
that the efficacy of the sequence of test statistics {TR( Qn( ·; v<">) )}~=1 is equal to 
en(h,vo), 
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Let I ( v0 , 00 ) be the Fisher information matrix, the symmetric ( r + p) x ( r + p) 
matrix with elements 

( 4.40) 

Partition this matrix as follows 

( 4.41) 

where loo is an r x r matrix. Define the effective score function 7Pajo( t; v0 , 00 ) by 

( 4.42) 

The effective score function may be interpreted as a projection of the score func
tion 7Pa(t; v0 , 00 ). Observe that 

( 4.43) 

The right-hand side of the latter equation is known as effective Fisher information. 

Theorem 13 The maximized values of eR(h, v0 ) and es(h, v0 ) are both equal 
to hT{Iaa - I 00lix}I00 }h. Generalized rank tests based on weight processes with 
limiting weight function satisfying 

(4.44) 

where II is an arbitrary r-dimensional vector, are maximizing eR(h, v0 ). Supre
mum type tests based on maximum likelihood estimation and weight processes with 
limiting weight function satisfying 

( 4.45) 

are maximizing es(h, v0 ). 

One may infer from the proof of Theorem 13 that for every supremum type 
test with es(h, Vo) = hT Uaa - Iaoloo1 Ioa}h there exists a generalized rank test 
[based on either the same stochastic integral or a "killed" version Qn(t I\ r; v<nl), 
where O < T < 00 fixed) with eR(h, Vo) = hT Uaa -Iaolor} Ioa}h. The reverse is not 
true. If the stochastic integral underlying a generalized rank test with eR( h, v0 ) = 
hT {Iaa - Iaoloo1 Ioa}h does not converge in Pvo-distribution to a Gaussian process 
attaining its maximum in oo, then we have that es(h, v0 ) is less than hT {Iaa -
Iaolol Ioa}h for the supremum type test based on the same stochastic integral. 
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This fact makes the choice of the weight process more critical for supremum 
type tests than for generalized rank tests: Preferably, the construction of a weight 
process should lead to 

fo00 (Lo( s, t; vo) )2dH1( s; v0 , 00 ) :S fo00 (Lo( s, oo; vo) )2dH1 ( s; Vo, Oo)-

That is, under maximum likelihood estimation the weight process should be based 
on (4.45) rather than on (4.44). 

Shortly after Theorem 9 a method of standardizing a weight process was 
described. If we follow this method for weight processes with limiting weight 
function satisfying ( 4.45), we obtain that the standardized weight processes have 
limiting weight function 

(4.46) 

As far as generalized rank tests are concerned, the choice of the M-estimator 
turns out to be of secondary importance. The maximized value of en(h, v0 ) does 
not depend on the estimation procedure. Equation ( 4.46) does not depend on the 
estimation procedure. For a weight process constructed according to ( 4.46) we 
have an(v0 ) = 1, so the asymptotic behavior of the test statistics under the null 
hypothesis is not influenced by the estimation procedure. This implies that the 
quantity en(h,v0 )/an(v0 ), which characterizes the behavior of the test statistic 
under the alternative hypothesis, does not depend on the estimation procedure. 

The choice of the M-estimator is far more important for supremum type tests, 
because of its effect on the position where the variance function f000(L0 (s, t; v0))2 

dH1 (s; v0 , 00 ) is maximized. For a general M-estimation procedure this position 
is difficult to determine. Theorem 13 restricts itself in this respect to maximum 
likelihood estimation. 

In Hjort (1990) x2-tests constructed from Qn(t; v<n>), where v<n) is the max
imum likelihood estimator, are studied using martingale methods. The effective 
score function appearing in our (4.45) also shows up in Hjort's equation (5.7). 
Without rigorous mathematical support, Hjort states that as a weight process 
this function "is a very good choice". 

The maximum likelihood procedure pays no attention to the alternative hy
pothesis. A modification of the maximum likelihood estimator is obtained by 
choosing 

( 4.47) 

This choice sets J0
00 </J;(s; v )1/Jr+j( s; v, 00 )dH1 (s; v, 00 ) equal to zero for every v E 

Y, i = 1, ... ,r and j = 1, ... ,p. Hence, the r x p matrix Sa(v,00 ) defined in 
( 4.100) on page 80 is a null matrix. Since this matrix is related to the r x p 
matrix of partial derivatives of ,r( v, 0) with respect to the components of 0 [see 
the proof of Lemma 3), we may say that estimation is in a sense performed 
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"perpendicular" to the alternative hypothesis. Again the situation where the 
censoring distribution G is unknown calls for extra attention, since G is involved 
in IoaI;;;,1. We may try to estimate this quantity, but then the resulting function 
ifJ( t; v) is a random element of D[O, oo ), and falls outside our framework. 

4.4 Proofs 

In this section the proofs of previously stated theorems are gathered, with excep
tion of Theorem 11, which is proved in Appendix A. 

Proof of Theorem 7 Let <I>ni( v) be shorthand notation for <I>ni( oo; v ). Then 
the ith equation involved in the definition of the M-estimator v(n) may be written 
as <I>n;(v(n)) = 0 [see equation (4.3) on page 52). 

The proof is based on a second order expansion of <I>n;(v) around Vno• The 
stochastic terms in the expansion are approximated by means of deterministic 
counterparts. The quality of these approximations is reflected by the random 
variable Sn, to be introduced later. Conditional on the event Sn < n 112 we use 
the "approximated" expansion to show the existence of v(n), and prove ( 4.8) and 
( 4.9). Subsequently, empirical process theory is used to study the behavior of the 
random variable Sn in some detail, yielding (4.10) and (4.11). 

The first order partial derivative of <I>n;( v) with respect to the jlh component 
of v is given by 

,y,.(l) ( ) - -1/2 / 00 ,;.(1)( . )dM ( . B ) 
'j'nij V - n Jo '+'ij s, v n s, v, o 

- loo</>;( s; v )1/Jj{ s; v, Bo)(l - Hn-( s) )dA( s; v, Bo). (4.48) 

Furthermore, the second order partial derivative of <I>n;(v) with respect to the j'h 
and kth components of v is given by 

<I>~:}k(v) = n-112 fo00 cpm(s; v)dMn(s; v, Bo) 

- fo00 
{ (/J;(s; v )NW(s; v, Bo)+ 1Pi(s; v, Bo)1Pk(s; v, Bo)} 

<t>D)(s; v)1/Jk(s; v, Bo)}(l - Hn_(s))dA(s; v, Bo), ( 4.49) 

where <t>l}l(t; v) is the second order partial derivative of (/J;(t; v) with respect to the 

/hand the kth components of v, and 1/J;l\t; v) is the first order partial derivative 
of 1Pi(t; v) with respect to the kth component of v. 

Let <I>~1l(v) denote the r x r matrix with elements <I>~~}(v), and <I>~:)(v) the 

r x r matrix with elements <I>~:!k( v ). By making essentially the same expansion 
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a.s in Borgan (1984), we obtain 

i)ni(v) = tni(Vno) + 4>~~>(vno)(v - V71o) + (v - Vnof c)~~>(v')(v - Vno)/2 (4.50) 

for every v ET. Here c)~!l(v110 ) is the ith row of t~1>(vno), and v' a point on the 
line segment between v and Vno• 

Now define constants css-eoo by css = 4(1 + c"' + 1/o.), Cs9 = C3s/6cssr3, 
Coo ::::: ((c.i,)2cs5C59/6r) A (c,t,css/2r2 ) A c5s, and let Vn denote the closed ball in 
T with centre Vno and radius c59• Moreover, denote the empirical processes 
n1l2{H!(t) - H1(t;vn,On)} and n1l2{Hn_(t) - H(t;vn,On)} by U!(t;vn,On) and 
Un-(t; Vn, On), respectively. The random variable Sn is defined by 

Sn= (2/eoo){ sup IU~(t;vn,On)I 
tE(O,oo) 

+ sup sup f'IUn-(s;vn,On)ldA(s;v,Oo)}, (4.51) 
te[O,oo) vev,. lo 

Observe that for functions f, g which are bounded by 1 and have total vari
ation not exceeding 1, we have for every v E Vn 

ln-112 fo00 J(s)dMn(s;v,Oo)- fo00 g(s)(I -Hn-(s))dA(s;v,Oo) 

-fo''°u(s)+g(s)}dD(s;v,Oo,Vn,On) 

+ focx; g(s)dH1(s;vn,On)I 

$ jn-112 fo00 g(s)dU!(s; Vn, On)I 

+ln-112 focx; {f(s) + g(s)}Un-(s; Vn, On)dA(s; v, Oo)I 

$ <;oon-l/2Sn, 

where the last inequality follows from integration by parts. Hence, by Condition 9, 
Condition 10 and Condition 11 we have 

Md for all v E V11 

(4.52) 

(4.53) 
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where Aniik( v) is defined by 

Anijk( v) = fo00 
{ </>;( s; v ){ ifa)!\ s; v, Bo) + 1Pi( s; v, Bo)1Pk(s; v, Bo)} 

+ef>lJl( s; v )ip( s; v, Bo)}dH1 ( s; Vn, Bn) 

-l'° { </>;(s; v ){ ifa}!l(s; v, Bo) + ipj(s; v, Bo)1Pk(s; v, B0 )} 

+4>l}l( s; v) + <t>UJ( s; v )1Pk( s; v, Bo)}dD( s; v, Bo, Vn, Bn)

Note that IAnijk(v)I :'.S Css for all v E Y. 
Assume that ( 4. 7) holds. It follows that 

l<I>n;(vno)I < C35C59/6r, 

lm(l) ( ) -::;- . · I / 2 
'¥ nij Vno + ~oni1 < C35 2r , 

and for every v E Vn 
l<I>~:jk(v)I < 2css-

As a consequence of (4.55) and Condition 12 we have 

71 

(4.54) 

( 4.55) 

( 4.56) 

( 4.57) 

We shall now prove the existence of a solution in Vn to the equations ( 4.3). 
Let R,,( v) be the r-dimensional function defined by 

where <I>n(v) is the r-dimensional function with elements <I>n;(v). Then it suffices 
to show the existence of v<n) E Vn such that v(n) = Rn( v<nl). 

For every v E Vn we have for some v' on the line segment between v and Vno 

r T T 

< L{2l<I>n;(vno)I + L L l<I>~:jk(v')l(lv - Vnol)2}/c35 
i=l j=l k=l 

(4.58) 

and hence Rn( v) maps Vn into Vn. Furthermore, for every v, v* E Vn there exist 
points v', v" on the line segment between v and v* such that 
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:::: 2l{cI>rl(vno) - cI>~1l(v')}(v - v*)l/c35 

:::: 2{t t t lcI>~:}k(v")l}(lv - v*!)2 /c35 
i=l j=l k=I 

:::: 2lv - v*l/3. (4.59) 

Set s0 equal to Vno, and define the sequence { s.}f:;1 recursively bys; = Rn(s;_i). 
From ( 4.58) and ( 4.59) it follows that this sequence converges to a point v<n) E Vn 
which satisfies v<n) = Rn(v<nl). 

Next we show ( 4.8) and ( 4.9). From ( 4.50), ( 4.56) and the fact that cI>ni( v<n)) = 
0 for i = 1, ... , r, we may derive 

( 4.60) 

where 
r r 

t - 31 <n> I ""l;r,.(1>( )+-= .. I <,,n - Cssr v - Vno + LJ LJ 'l' nij Vno ~om1 • (4.61) 
. i=l j=l 

and hence it follows from (4.52) that choosing c36 = 4eoor/c35 (c,t,) 2 yields (4.8). 
Combining (4.8), (4.53) and (4.61) gives 

(4.62) 

which together with Condition 12, ( 4.8) and ( 4.60) leads to ( 4.9), with c37 = 
C3s{ CJ6Cssr3 + Csor2 / C,t,} / C35. 

The remainder of this proof, the verification of (4.10) and (4.11), resembles 
part of the proof of Theorem 2. Let [1n(t) be the empirical process based on the 
uniform (0,1) random variables Z1 , ... , Zn, defined by 

where 

H0 (t; Vn, On) = H(t; Vn, On) - H1 (t; Vn, On) 

is the cumulative distribution function of the censored failure times under Pn. 
Inequality 1 yields 

Pn( sup IUn(t)I > x):::: 2c1 exp{-2x2 }. 
!E(O,l] 

(4.63) 
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Let {dn};;,"=1 be a sequence of points in [O, oo). Later in this proof we specify this 
sequence in two different ways, depending on whether we are checking ( 4.10) or 
( 4.11 ). Since Condition 9 implies that for every t E [O, oo) and v E Vn 

where ct,1 = 1 + rc,f,c59, it follows that 

A(t; v, 0o) :S ct;1A(t; Vno, 0o), 

Furtherm re, we may write 

where as consequences of the construction of Un(t) and (4.65) we have 

~tn = sup JU~(t; Vno, 0o)J 
tE[O,oo) 

:S sup JUn(t)J, 
tE[0,1] 

~2n = sup sup {' IUn-(s;vn,0n)JdA(s;v,0o) 
tE(O,dn] vEVn lo 

~3n = sup sup {' JUn-(s;vn,0n)JdA(s;v,0o). 
tE(dn,oo) vEVn }dn 

Together with ( 4.68) and ( 4.69), inequality ( 4.63) yields 

Pn(~tn + ~2n > 4ct;1A(dn; Vno, 0o)x) :S 2c1 exp{-2x2}. 

Observing that ( 4.66) impii~s 

~3n:::; n1/2ct;1 f 00 (l - H(s;vn,0n))dA(s;vno,0o) 
jdn 

(4.64) 

( 4.65) 

( 4.67) 

( 4.68) 

( 4.69) 

(4.70) 

( 4. 71) 
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where Zn,n denotes the largest order statistic of the sample Z1, ... , Zn, we obtain 

(4.72) 

Now choose /3 > a:, and dn so as to satisfy H(dn;vn,Bn) = 1 - n-(l+"Y), where 
1 = (/3 - o:)/o:. By Condition 8 we have 

it follows from ( 4. 71) and ( 4. 72) that 

Pn(~1n + ~2n > 4cacti1n13✓('Ylogn)/2) $ 2c1n-"Y, (4.73) 

and hence ( 4.10). 
Finally, assume (vn,Bn) = (vo,00 ). Choose dn so as to satisfy H(dn;vo,Bo) = 

1- exp{-2x2}/n, where x > (n112 lognt1. By noting that 

A(dn;vo,Bo) < logn + 2x2, 

f00 (1 - H(s; v0 , 00 ))dA(s; Vo, Bo) < exp{-2x2 } /n 
jdn 

we obtain from ( 4. 71) and ( 4. 72) 

Pn(~1n + ~2n > 4ct;1x(logn + 2x2 )) < 2c1 exp{-2x2 }, (4.75) 

Pt'0(~3n > ct;1X logn) $ exp{-2x2}, (4.76) 

by which (4.11) readily follows. This concludes the proof of Theorem 7. D 

Proof of Theorem 8 The proof is based on replacing stochastic terms in a 
second order expansion of Qn(t; v) by deterministic counterparts. The "approx
imated" expansion is applied to Qn(t;v<nl), and combined with (4.9) and Theo
rem 2. 
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The first order partial derivative of Qn(t; v) with respect to the ith component 
of v is given by 

Q~~\t;v) = l L~~1{s;v)dMn(s;v,0o) 

-n112 { Ln(s;v)ip;(s;v,0o)(I - Hn-(s))dA(s;v,0o), (4.77) 

and the second order partial derivative of Qn( t; v) with respect to the ith and jlh 

components of v is given by 

Q~:t(t;v) = l L~:t(s;v)dMn(s;v,0O) 

-n112 { { Ln(s; v )NU)(s; v, 0o) + ip;(s; v, 0o)1Pi(s; v, 0o)} 

+L~~)( s; v )ip;( s; v, 00 ) 

+ L~~\ s; v )1Pj( s; v, 00) }(1 - Hn-( s) )dA( s; v, 00). ( 4. 78) 

Here L~~~ ( t; v) denotes the second order partial derivative of Ln ( t; v) with respect 
to the i1 and jlh components of v. 

Now define 

Q~~)(t;v) = n 112 { Ln(s;v)ip;(s;v,0o)dH1(s;vn,0n) 

-n112 {{Ln(s;v)ip;(s;v,0o) 

+L~~\s; v )}dD(s; v, 0o, Vn, 0n), 

Q~ (2) ( . ) - 1/2 ri { (1)( . ) ·( . 0 ) (1)( . ) ·( . 0 ) nij t, V - n Jo Lnj s, V ip, s, v, o + Lni s, v ip1 s, v, o 

+Ln(s; v)NU\s; v, 0o) 

+ip;( s; v, 00)1Pj( s; v, 0o)} }dH1 ( s; Vn, 0n) 

-n1l2 { {L~~\s; v )ip;(s; v, 00) + L~~\s; v )1Pi(s; v, 0o) 

+Ln(s; v )NU\ s; v, 0o) + tp;(s; v, 0o)1Pi(s; v, 0o)} 

( 4. 79) 

( 4.80) 
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By Condition 9, Condition 13 and integration by parts we obtain the existence 
of a constant Ct,2, not depending on Vn or Bn, such that 

I,,,·( . 0 ) -112Q-(1>( . )I sup no, t, Vn, n - n ni t, Vno 
tE[O,oo) 

:S Ctl2{ sup JLn(t;vno)- L(t;vn,Bn)I 
tE[O,oo) 

+ sup JL~\t;vno) - L!11(t;vn,0n)I}, 
tE[O,oo)· 

sup JQ~~)(t; Vno) + Q~~\t; Vno)J :S Ct;2Sn, 
tE[O,oo) 

and for every v E Vn 

( 4.81) 

( 4.82) 

(4.83) 

Next we introduce the set nn, consisting of all W E f! such that Sn :::; n1/ 2 

and that all random elements in D[O, oo) occurring in Condition 13 are bounded 
and have bounded variation as specified in this condition. By noting that there 
exists a constant Ct,3, not depending on Vn or Bn, such that for w E nn 

sup JQ~~}(t;v)J :S Ct;1n112, 
tE[O,oo) 

it follows from ( 4.83) that for w E nn and v E Vn 

sup JQ~~~(t;v)I :S (Ctl2+Ctl3)n112, 
tE[O,oo) 

and hence by ( 4.8) 

sup J(v(n) - Vnof Q~2l(t; v)(v(n) - Vno)I $ Ct,4n-112{Sn}2, 
tE[O,oo) 

(4.84) 

where Q~2>(t;v) is the r x r matrix with elements Q~~}(t;v) and Ct,4 = (Ct,2 + 
Ct,3)( C36r )2. 

Furthermore, letting Q~1l(t; v) denote the r-dimensional vector with elements 

Q~~>(t;v), we obtain by (4.8), (4.81) and (4.82) for every w E nn 

sup J(v(n) - Vnof { Q~1>(t; Vno) + n112 Ko(t; Vn, Bn)}I 
tE(O,oo) 

T 

:S Jv<n) - Vnol L { sup JQ~~)(t; Vno) + Q~~>(t; Vno)I 
i=l tE[O,oo) 

+ sup JQ~~)(t;vno)-n 112Ko;(t;vn,0n)I} 
tE[O,oo) 
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::; C36Cti2n -l/2 Sn L { Sn 
i=l 

+n1/ 2 sup ILn(t; Vno) - L(t; Vn, 0n)I 
tE[O,oo) 

+n1/ 2 sup JL~~)(t;vno) - L!11 (t;vn,0n)J}. 
tE[O,oo) 
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( 4.85) 

Since for every v E Vn and t E [O, oo) we may find a point v' on the line segment 
between v and Vno such that 

Qn(t; v) = Qn(t; Vno) + (v - Vnof Q~1l(t; Vno) 

+(v - Vnof Q~l(t;v')(v -Vno)/2, 

it follows from (4.84) and (4.85) that for every w E nn 

sup JQn(t; V(n))- Qn(t; Vno) + n112 (v(n) - Vnof Ko(t; Vn, 0n)I 
IE[O,oo) 

r 

::; (l:64 + C36Ctl2)n-l/2 Sn L {Sn 

+n1/ 2 sup JLn(t; Vno) - L(t; Vn, 0n)J 
IE[O,oo) 

+n1/ 2 sup JL~~\t;vno) - L!11 (t;vn,0n)I}. 
IE[O,oo) 

(4.86) 

[here we have used v(n) E Vn if w E fln]. Hence, by ( 4.9) and the fact that 
K0 (t; v, 0) remains bounded, uniformly in v and 0 [say by Ctis], we obtain 

r 

::; (l:64 + C36Ctl2 + C37Ct,5)n-l/2Sn L {Sn 
i=l 

+n1/ 2 sup ILn( t; Vno) - L( t; Vn, 0n)I 
tE[O,oo) 

1/2 IL(l)( . ) L[l](t· 0 )I} +n sup ni t, Vno - i , Vn, n 
tE[O,oo) 

( 4.87) 

for every w E nn. Now, (4.19) follows from (4.10), Condition 13 and by applying 
Theorem 2 to Qn(t; Vno) and J0

00 r/>(s; Vno)dMn(s; Vno, 0o) separately. 
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For the special case (vn,On) = (v0 ,80 ), we may replace (4.81) by 

If,, (. o ) i12Q~(l>( . )I sup \o;.t,vn, n -n ni t,vno 
tE[O,oo) 

$ lti2 sup JLn(t; Vno) - L(t; Vn, On)I, 
tE[O,oo) 

and hence ( 4.87) simplifies to 

r 

$ (lti4 + CJ6lti2 + C37Ct;5)n-l/2 Sn L {Sn 
i=l 

+n1!2 sup /Ln(t; vo) - L(t; Vo, Oo)I} 
tE[O,oo) 

(4.88) 

(4.89) 

for every w E fln. Applying Theorem 2 twice, together with Condition 13 and 
(4.11) yields (4.20). This concludes the proof of Theorem 8. □ 

Proof of Theorem 9 Equations ( 4.26) and ( 4.27) are obtained along the lines 
of the proof of Theorem 5.2 in Borell (1975). 

To prove ( 4.28) and (4.29), define the mean zero Gaussian process Xn(t; Vn, Dn) 
by 

• ft 
Xn(t;vn,Bn) = Jo L(s;vn,Bn)dWn(s;vno) 

-(Ko(t; Vno, 0o)f2oJ fo00 </>(s; Vno)dWn(s; Vno), 

Observe that Xn(t;vo,Oo) is equal in Pv0 -distribution to X(t;v0 ,00 ). Moreover, 
by Theorem 8 we have 

Pv0 ( sup IQn(t; v<n)) - Xn(t; Vo,Oo)I > n-c28 (c4ologn + xY29 ) 

tE[O,oo) 

$ c,n exp{ -c42X}, (4.90) 

with C2s;:::: 1/6 and C29 = 3. Let C30;:::: C2s/(2c29 - 1) and choose Czi < /3 < 2. By 
the same methods as ti<;ed in the proof of Theorem 3 one may show 

( 4.91) 
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Now (4.28) and (4.29) follow from bounding Pv0 (T(Qn(·; v(n))) > sn) between 

and 

This concludes the proof of Theorem 9. □ 

To prove Theorems 10 and 12 we need the following lemma, a "composite null 
hypothesis" version of Lemma 2. 

Lemma 3 Let g(t; v, 0) be a real valued function, gf1\t; v, 0) the first order par
tial derivative with respect to the ith component of (v,0). Suppose there exists a 
constant Ct,6 such that 

sup (1- H(t;v,0))½lg(t;v,0)1 :=:; C66, (4.92) 
tE[O,oo) 

sup (1- H(t;v,0)) 1-"lgf1\t;v,0)1 :=:; C66 (4.93) 
tE[O,oo) 

for every v E T and 0 E 0. Then there exists a constant Ct,1 such that 

sup I r g(s; v, 0)dD(s; v, 0)1 s; C61l0 - Bol, ( 4.94) 
tE[O,oo) lo 

sup I t g(s;v,0)dH1(s;v,0) 
tE[O,oo) lo 

-l g(s;1r(v,0),0o)dH1 (s;1r(v,0),00 )1 

s; Cti1l0 - 0ol- (4.95) 

for every v ET and 0 E 0. Let g~\t; v, 0) the second order partial derivative of 
g( t; v, 0) with respect to the i th and /h components of ( v, 0). If 

sup (1 - H(t; v, 0))"'lg(t; v, 0)1 :=:; C66, 
tE[O,oo) 

( 4.96) 
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sup (1- H(t;v,O))½Jg?\t;v,8)1::::; C£6, 
tE[O,oo) 

sup (1- H(t;v,8)) 1-"'lgi)(t;v,8)1::::; Yi6 
tE[O,oo) 

then there exists an r-dimensional function I<:,oe t; V) such that 

sup J f'g(s;v,8)dD(s;v,8)-(8-8ofI<:1o(t;7r(v,8))1 
tE[O,oo) Jo 

for every v E T and 8 E 0. 

Proof of Lemma 3 Let the 3a(v,8) be the r x p matrix with elements 

3aij(v,8) = lo00 cp;(s;1r(v,8))1Pr+i(s;7r(v,8),8o)dH1(s;v,8) 

+ lo"° v,;(s; 7r(v, O))A~~i(s; 7r(v, 8), 80 )dD(s; v, 8), 

and define I<!10 (t; v) by 

I<!10(t;v) = lo"° g(s;v,80){'1/Ja(s;v,80) 

( 4.97) 

( 4.98) 

( 4.99) 

(4.100) 

-( {3o( v, Bo)}-13a( v, 80) f '1/J( s; v, Bo)}dH1(s; v, Bo)- ( 4.101) 

The Implicit Function Theorem tells us that the r x r matrix of partial derivatives 
of 1r(v,8) with respect to the components of v equals 

and that the r x p matrix of partial derivatives of 1r( v, 8) with respect to the 
components of 8 equals 

-{3o(v, e)}- 13a(v, 8). 

Now fix v' E T and define the function K : 0 - T by 

7r(K(8),8) = V 1 • 

A second application of the Implicit Function Theorem yields that the r x p 
matrix of partial derivatives of K with respect to the components of 8 equals 

The elements of this matrix and the partial derivatives of these elements with 
respect to the components of 8 are uniformly bounded in v', v and 8. 
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Let g(t; v) be defined as g(t; ,c(O), 0), let gf1l(t; v) be the first order partial 

derivative with respect to the i th component of 0, and let gV\t;v) denote the 
second order partial derivative of g( t; v) with respect to the ith and /h components 
of 0. We have 

sup (1- H(t;1r(v,0),0o))½lg(t;v)I S Ctis, 
tE(O,oo) 

sup (1 - H(t; 1r(v, 0), 0o)) 1-"'lgf1\t; v)I S Ctis 
!E[O,oo) 

for some constant Ct,8 • Moreover, if (4.96)-(4.98) hold, then we have 

sup (1- H(t;1r(v,0),0o))"'lg(t;v)I S Ctis, 
tE(O,oo) 

sup (1 - H(t; 1r(v,0),0o))½lgf1>(t; v)I S Ctis, 
tE[O,oo) 

sup (1 - H( t; 1r( v, 0), Bo) )1-"'l§V\ t; v )I S Ctis-
tE[O,oo) 

Hence we are in the position to apply Lemma 2. By noting that Ctis may be 
chosen independently of v' our lemma follows. D 

Proof of Theorem 10 Let {Wn(t; Vno)}~=l be the sequence of mean zero Gaus
sian processes given in Theorem 8. We may write 

where 

sup IQn(t; V(n)) - n 112 !0n - BolhT Ka1o(t; vo)I 
tE(O,oo) 

$ D.1n + D.2n + D.3n + D.4n + D.sn, 

D.1n= sup l{Qn(t;v(n))-n112 rLn(s;vno)dD(s;vn,Bn)} 
tE(O,oo) lo 

-{l L(s; Vn, Bn)dWn(s; Vno) 

-(Ko(t; Vn, Bn)f='.oJ lo"" </>(s; Vno)dWn(s; Vno)}I, 

D.2n = sup I r L(s; Vn, Bn)dWn(s; Vno) 
tE[O,oo) lo 

-(Ko(t; Vn, Bn)f='.oJ lo"" </>(s; Vno)dWn(s; Vno)I, 
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~4n = n 112 sup I r L(s; Vn, 0n)dD(s; Vn, 0n) 
tE[O,co) lo 

~Sn= n112 l0n - 0ol sup {hT I<a1o(t; Vno) - hT I<a1o(t; vo)}. 
tE[O,co) 

By (4.19) we have for /3 < (1/2 - 2o) /\ 1/6 

n ( A -{3) < -cs2 rn illn > Cson _ C51n . (4.102) 

Recall that K0;( t; v, 0) is bounded by Cf;s- It follows that the r components of 
(30J f Ko( t; Vn, 0n) are bounded by c35C(;5, and hence we obtain by integration by 
parts with Pn-probability 1 

~2n $ 2(c43 + C35C(;sr) sup IWn(t; Vno)I 
tE[O,co) 

The variance function of the process Wn(t; Vno) is bounded by (1 + 4(ca- + l/o))2 , 

and thus Inequality 4 leads to 

(4.103) 

where C(;9 = 2(c43 + C35C(;sr)(l + 4(ca- + 1/o)). By observing that K!1O (t; v) equals 
Ka1o(t;v) if g(t;v,0) is equal to L(t;v,0), and that the components of Ka1o(t;v) 
remain bounded, it follows from Lemma 3 that there exists a constant c70 such 
that 

~4n $ C1on112{l0n - 0ol 2 + l(0n - 0o) - (10n - 0olh)I}, 

and for every v E i, 0 E 0 and /3 > 1/2 

(4.104) 

Pn(nf3 sup r(Ln(s;vno)- L(s;vn,0n))dD(s;v,0) > C1ol0- 001) 
tE[O,co)jO 

$ Pn(nf3 sup ILn(t; Vno) - L(t; Vn, 0n)I > C44). 
tE[O,co) 

Note that by Condition 13 this last inequality implies 

Finally, there exists a constant c71 such that 

(4.105) 

(4.106) 
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The first part of the theorem is now easily proved by combining the inequality 

with ( 4.102)-( 4.106). 
In the proof of Theorem 9 we introduced the mean zero Gaussian process 

Xn( t; Vn, On), Observe that 

sup IQn(t; V(n)) - {Xn(t; Vn, On)+ n 112 1Bn - BolhT I<aio(t; Vno)}I 
tE(O,oo) 

Since the right hand side of this inequality converges to zero in Pn-probability 
because a is finite, we may prove the second part of the theorem by showing that 
the process Xn(t; Vn, On) +n1!21on - Bo/hT I<a1o(t; Vno) converges in Pn-distribution 
to X(t; vo, 00 ) + ahT I<aio(t; v0 ). This boils down to verifying the convergence 
in Pn-distribution of Xn(t;vn,Bn) to X(t;vo,Bo), which can be done by using 
Lemma 3 to. check the conditions of Theorem VI.10 in Pollard (1984). This 
completes the proof of Theorem 10. □ 

Proof of Theorem 12 Let L).1n, L).2n, L).3n and L).4n be as in the proof of Theo
rem 10, and define b( Vn, On) as T(J~ L( s; Vn, Bn)dD( s; Vn, On)). We may write 

(4.107) 

Furthermore, we have 

(4.108) 

Since infvoET e(h; v0 ) is not equal to zero, this yields the existence of positive 
constants f.* and c72 such that 

(4.109) 

for On satisfying /On - Bo/< f.*. 
Now suppose OE 0 - {Bo} satisfies IBn - Bol < f.*, and set (vn,Bn) equal to 

( v, 0) for every n E JN. Choose f. > 0 and 8 E (0, 1 ). By ( 4.102) and ( 4.103) 
it follows that there exists an integer N1 not depending on v or O such that for 
n > N 1 

P(v,0)(L).1n > (Ni) 112f./4cr) < 8/4, 

P(v,0)(L).2n > (Ni)112 f./4cr) < 8/4. 



CHAPTER 4. THE COMPOSITE NULL HYPOTHESIS 

Hence, for n > Nif(b(v,0)) 2 we have 

(4.110) 

since n > N1 and (Ni/n)112 < b(v,0). Moreover, (4.105) implies the existence of 
an integer N > N1 not depending on v or O such that for n > N 

P(u,e)(~3n > lb(v,0)/2cT) 

S P(u,e)((n112 l0n - 001)-l ~3n > C72l) 

< 8/2. (4.111) 

Combining (4.107)-(4.111) now yields that {T(Qn(·; v<n)))}~=l is indeed a Wieand 
sequence. 

Finally, (4.35) immediately follows from (4.104) and (4.108). This concludes 
the proof of Theorem 12. D 

Proof of Theorem 13 Observe that for any r-dimensional vector T/ and every 
t E (0, oo) U { oo} . 

l"" 1/T t/J( s; Vo, Oo)Lo(s, t; vo)dH1 ( s; vo, 00) 

= 1/T Ko(t; vo, 0o) - 11TE0;,E0,; Ko(t; vo, Bo) 

=0. 

By choosing 1J equal to 10(} Ioah it follows that we may write hT Ka1o(t; vo) as 

lx, hT{tpa(s; Vo, 0o) - Iaoloo1t/J(s; Vo, Oo)}Lo(s, t; vo)dH1(s; Vo, Oo), 

and hence we have by the Cauchy-Schwarz inequality that { hT Ka1o(t; vo)}2 is 
bounded by 

hT{/aa - Iaoloo1loa}h fo'x,(Lo(s,t;vo))2dH1(s;vo,Oo) 

for every t E (0,oo) U {oo}. This immediately yields that both en(h,v0 ) and 
es(h, vo) are bounded by hT Uaa - IaoIO(} Ioa}h. It is easily established that this 
upper bound is achieved by generalized rank tests based on ( 4.44) and by supre
mum type tests based on maximum likelihood estimation and ( 4.45). □ 



Chapter 5 

Testing exponentiality 

5.1 The exponential distribution 

If E; is a random variable having an exponential distribution with mean e-v then 
it follows that 

The parametrization chosen here is fairly uncommon. But, as we shall see later, 
for our purposes it is rather convenient. The standard exponential distribution 
is worth special mention. Here v equals zero. 

It is easily seen that the cumulative hazard function belonging to the ex
ponential distribution is linear with intercept O and slope ev. Note that the 
corresponding basic martingale is a spline. 

In this chapter the standard exponential distribution is used to generate sam
ples X1 , ... , Xn under the null hypothesis. Moreover, when investigating the 
effect of censoring various exponential distributions are used to generate samples 
Yi, ... , Yn. In this respect note that if X; has a standard exponential distribution 
and Y; an exponential distribution with mean e-v, then the probability that X; 
is censored by Y; is given by 

5.2 Harrington and Fleming alternatives 

In the results of previous chapters the functions 'lj.J(t; 00 ) and 'lj;(t; v0 , 00 ) show 
up regularly. Hence, the applicability of these results depend heavily on the 
complexity of these functions. In Harrington and Fleming (1982) a family of 
distributions indexed by a single location parameter is constructed such that 

'lj.J(t;00 ) = (1- F(t;00 )Y 

85 

(5.1) 
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for some fixed p 2'. 0. The distributions within this family correspond to random 
variables which are allowed to take values anywhere on the real line. In this · 
section we study an extended Harrington and Fleming family, indexed by two 
parameters, and always containing the exponential distribution as special case. 

5.2.1 Derivation 

The fact that we are dealing with a location parameter enables us to write 

>.(t; 0) = >.(t - 0 + Bo; Bo) 

for all t E IR,. Hence, we have 

N(t; 00 ) 

'if;(t;Oo)= >.(t;Oo)' 

where N( t; 00 ) denotes the derivative of>.( t; 00 ). Thus, to find a family such that 
(5.1) holds, we must solve the equation 

N(t; 00) _ ( ( . ))P 
>.(t;Oo) - 1- F t,00 , (5.2) 

which is actually a second order differential equation in disguise, as can be noted 
by writing 1 - F(t; 00 ) = exp{-A(t; 00 )}. Let us for a moment restrict ourselves 
to positive values of p. Then the solution to the differential equation (5.2) is 
given by 

(5.3) 

Note that for p = l we obtain the logistic distribution. 
Unbrtunately, the Harrington and Fleming distributions do not fit into our 

framework, since they put positive mass on the negative part of the real line. 
Nevertheless, they indicate the way to construct other families of distributions 
better suited for our purposes. Observe that (5.3) implies 

(5.4) 

Replacing F(t; 00 ) by the distribution of an exponential random variable with 
mean e-u, we obtain from (5.4) 

(5.5) 

Now let us derive the Harrington and Fleming distribution for p equal to zero. 
In this case the solution to (5.2) is given by 

F(t; Bo)= 1 - exp{-e1}, 
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which implies 
1 - F(t; 0) = (1 - F(t; Bo)txp{o-90 }, 

and hence the failure time is an exponential random variable with mean e00 - 0-v. 

Of course, this distribution can be considered to be a special case of the distribu
tion F(t; v, 0), so no adjustments of (5.5) are needed to include the case p = 0. 
We shall refer to the family of distributions F(t; v, 0) as the family of Harring
ton and Fleming alternatives to the exponential distribution. We point out that 
for small values of p, the Harrington and Fleming alternatives closely resemble 
the exponential distribution. In fact, for p equal to zero we cannot speak of 
alternatives anymore. 

By rewriting (5.4) in the intriguing form 

it follows that 

(1 - F(t;0))-p - 1 

(1 - F(t; 00))-P - 1 

1- F(t;Bo) = [l + ((1- F(t;B)tP - l)e00 - 0r 1/p 

by which the inverse of F(t; v, 0) is readily calculated. When applied to uni
form random variables this inverse generates random variables having distribution 
F(t; v, 0). However, we shall generate latter random variables in an alternative 
though strongly related way. Suppose E; is a standard exponential random vari
able. Then 

(pev)-1 log(l + (epE, - l)e80 - 0 ) 

is a random variable with distribution F(t; v, 0). 

5.2.2 Maximum likelihood estimation 

(5.6) 

Testing whether the random variables X1 , ... , Xn follow an exponential distri
bution with unknown mean involves estimation of this mean under the null
hypothesis. Since we have 

it follows that 
1/Ji(t;v,00 ) = 1, 

and hence the maximum likelihood estimator v(n) can be found by solving the 
likelihood equation 

H;,(oo)-exp{v(n) - vo} f'\1 - Hn_(t))dA(s;vo,Bo) = 0 

(here v0 is some arbitrary element of T), which yields 

v(n) =Vo+ log H;,(oo) - log fo0\1 - Hn_(t))dA(s; Vo, Bo). 
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Condition 11 on page 54 requires the existence of a certain function 1r(v,O), 
related to the M-estimator. This function indeed exists and is given by 

1r(v,O) = v0 + logH1 (oo; v, 0) - log fo''0 (1 - H(s;v,O))dA(s; v0 , Oo). 

The description of the behavior of v(n) involves the 1 x 1 matrices 3 0 ( v, 0), 
3a(v,0) and 3b(v,0). For the maximum likelihood estimator both 3 0(v,00 ) and 
3b(v,Oo) have H 1(oo;v,00 ) as single element. Hence for Conditions 12 and 18 
to hold it is necessary that H 1 ( oo; v, 00 ), the proportion uncensored observations 
under the null hypothesis, remains bounded away from zero. Observe that since 
in our framework the censoring distribution does not depend on Vn or On, the pres
ence of censoring leads to the requirement that e-v should not exceed a certain 
limit. However, it is possible [at the cost of additional complexity] to extend our 
framework by allowing the censoring distribution to depend on the parameters 
of the failure time distribution. This extension, which involves a straightforward 
generalization of Lemma 3, enables us to consider types of censoring in which the 
censoring distribution is linked to the failure time distribution. 

If the proportion of uncensored observations remains indeed bounded away 
from zero, then Lemma 3 may be used to show that Conditions 12 and 18 hold 
if 0 is appropriately chosen. The single element of 3.,(v,00 ) is equal to µp(v), 
where µ13( v) is defined by 

µp(v) = fo00 (1- F(s;v,Oo))PdH1 (s;v,Oo). 

It should be stressed that the form of the function t/J1 (t; v, 00 ) depends on 
the actual parametrization of the failure times. For instance, parametrizing the 
exponential distribution in the common way [using the reciprocal of the mean 
as parameter) leads to a different function t/J1(t;v,00 ), and hence to a different 
maximum likelihood estimator. 

5.2.3 Modified maximum likelihood estimation 

In the preceding chapter a modification of the maximum likelihood estimator was 
introduced, which was constructed "perpendicular" to the null hypothesis. In the 
situation considered here, this estimator is based on the function 

</>1 (t;v) = µp((v))(l - F(s;v,00 ))P-1. 
µ2p V 

Now 3o(v,Oo) and 3.,(v,Oo) have as single element µ0 (v) - (µp(v))2/µ 2p(v) and 
zero, respectively. The matrix 3b( v, 00 ) is equal to 3 0 ( v, 00 ). Observe that due to 
the involvement of the censoring distribution G in µp( v) and µ2p( v) the modified 
maximum likelihood estimator can only be constructed if G is known. If there 
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is no censoring present, then µ/3( v) = (1 + /3)-1 , and hence </>1 ( t; v) takes the 
relatively easy form 

1 + 2p 
</>1(t;v) = --exp{-pevt} -1, 

l+p 

while the single elements of the matrices 3 0 ( v, 00 ) and 3a( v, 00 ) equal p2 /(2p+ 1). 
Without knowledge of the censoring distribution, we can not apply the mod

ified maximum likelihood estimation procedure to the Woolson data. Thus, to 
illustrate this procedure we introduce a second data set. 

In Proschan (1963) a sample of 15 failure times of airconditioning equipment 
in aircraft is given. In this data set the phenomenon of censoring is absent. Nev
ertheless, when applied to the Proschan data the modified maximum likelihood 
procedure fails to yield an estimate for v<n). 

The estimator v<n) should satisfy <I>n1 ( oo; v(n)) = 0 by equation ( 4.3) on 
page 52. In c;,igure 5.1 <I>n1 ( oo; v) is displayed as a function of v. As one can see 
it takes positive values only, leaving the modified maximum likelihood estimator 
undefined. Of course, it is .possible to extend the definition of an M-estimator 
so as to cover this case also. E.g. rather than setting <I>n1 ( oo; v(n)) equal to zero 
we could minimize the absolute value of <I>n1 ( oo; v<nl). For the Proschan data 
this extended procedure yields -5.3474 as an estimate for Vn. In contrast, the 
maximum likelihood estimate is -4. 7980. 

Witr.out question the phenomenon observed here is undesirable, but under
standing may enable us to avoid it. To arrive at an explanation view the basic 
martingale Mn(t; v, Oo) as the difference between the "counting process" part 
n 112H!(t) and the "compensator" part exp{v - v0 } f~(l - Hn_(s))dA(s;v0 ,00 ). 

Note that the latter part can alternatively be represented as exp{ v - Vno} Ji(l -
Hn-(s))dA(s;vn0 ,00 ). As v tends to -oo the process Mn(t;v,00 ) behaves more 
and more like the counting process part. The compensator part becomes domi
nant as v tends to +oo. 

Now observe that for fixed t the function ef>1(t; v) changes sign from positive 
to negative as v travels from -oo to +oo. As a consequence <I>n1 ( oo; v) is positive 
for values of v close to either -oo or +oo. Thus, in order for <I>n1 ( oo; v) to have 
a zero, there must be a deep enough "dip" somewhere in its graph. As we can 
see from Figure 5.1 the dip exists, but is not deep enough. 

74, 
12, 
59, 

57, 
70, 
27, 

48, 29, 
21, 29, 

153, 26, 

502, 
386, 
326. 

Table 5.1: Data given in Proschan (1963). 
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1.40. 

<I>n1 ( oo; V) 

0.70 

-10.0 -7.5 -5.0 
V 

Figure 5.1: <l>,..1 (oo;v) for modified maximum likelihood estimation procedure, 
applied to the Proschan data. Minimized value is 0.32467. 

In case the dip was deep enough we would have had the choice between [at 
least) two zeroes. Our theory leads us to expect that cI>,.1 (oo; v) seen as a function 
of v has a positive derivative near v(n). Hence, if there are two zeroes we should 
choose the one to the right of the point where the dip is maximal. In this respect 
it is noteworthy that for the Proschan data the maximum likelihood estimate 
is larger than the estimate based on the generalized definition of the modified 
maximum likelihood estimation procedure. 

In the previous chapter we concluded that the estimation procedure was of 
secondary importance as far as asymptotic properties were concerned. However, 
at this moment it seems that we should prefer a function <Pi ( t; v) which does not 
change sign [say, which is nonnegativeJ. By using similar arguments as above it 
follows that such a function leads to <I>n1 ( oo; v) being positive for values of v close 
to -oo, being negative for values of v close to +oo, and hence having an odd 
number of zeroes. 

An additional advantage of a nonnegative function <Pt ( t; v) is that Condi
tion 11 holds automatically. The integral J;o c/>-1(s;v')dD(s;v',00 ,v,O) is positive 
for values of v' dose to -oo, and negative for values of v' close to +oo. This 
can be seen by viewing the function D( t; v', 00 , v, 9) as the difference between 
f~(I - H(s; v, 9))dA(s; v, 9) and its counterpart J~(l - H(s; v, 9))dA(s; v', 90 ). 
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Figure 5.2: Stochastic integral related to the modified maximum likelihood esti
mator, constructed from the Proschan data. The value of v<n) is -5.3474. 

5.3 Weight processes 

In this section we are dealing with a sample (Zi, 81 ), ... , (Zn, 8n) arising from 
a Harrington and Fleming alternative to the exponential distribution [that is, 
F(t;vn,On) is defined according to (5.5)], and we discuss appropriate choices of 
the weight process which lead to optimal generalized rank and supremum type 
tests for the composite null hypothesis that the sample comes from an exponential 
distribution with unknown mean. The choices have in common that their limiting 
weight functions satisfy 

L(t;v,Oo) = (l -F(t;v,Oo)Y- µp(v)/µo(v)_ 
Jµ2p(v) - (µp(v)) 2 /µo(v) 

(5.7) 

(compare with (4.46)). Hence, we always have aR(vo) = as(v0 ) = 1. Moreover, 

eR(h,vo) = es(h,vo) = Jµ2p(vo)- (Jtp(vo))2 /µo(vo)-

5.3.1 Known censoring distribution 

If the censoring distribution is known then we are in the position to make the 
obvious choice of using the limiting weight function L(t; v, 00 ) as weight process. 
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Figure 5.3: Stochastic integral based on maximum likelihood estimation and 
weight process for known censoring distribution, constructed from the Proschan 
data. The value of v<n) is -4. 7980. The two-sided generalized rank and supremum 
type test statistics attain values 1.529 and 1.967, respectively. The corresponding 
asymptotic probability values are 0.1262 and 0.0983. 

The most important case of a known censoring distribution is the absence of 
censoring. Here we have µp(v) = (1 + /3)-1 , and hence setting the weight process 
equal to the right-hand side of (5.7) results in 

Observe that 

JI +2p 
Ln(t;v) = --[(l + p)exp{-pevt}- I). 

p 

L~1/(t;v) = -(1 + p)jl + 2pevtexp{-pevt} 

L~;>1 (t; v) = -(1 + p)jl + 2p(pev - l)evt exp{-pct} 

(5.8) 

Moreover, using the fact that L(t; v, 0) = Ln(t; 1r( v, 0)) for every v E i and 
0 E 0, it is easily seen that the weight process in (5.8) satisfies Condition 13. 

5.3.2 Unknown censoring distribution 

If G is unknown then it will not be possible to compute µp(v), and thus we are 
forced to estimate it. As remarked before, the common way to obtain estimators 
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for quantities involving H1 ( t; v, 00 ) is to replace this distribution function by 
Ji(l - Hn_(s))dA(s; v, 00 ). This procedure yields as weight process 

where 

ftf3(v) = fo''\1 - F(s;v,Bo)/(1- Hn_(s))dA(s;v,Bo) 

= fo'x, exp{-,Bevs}(l - Hn_(s))evds. 

(5.9) 

(5.10) 

To verify Condition 13 we need some insight into the random behavior of 
ftf3( v ). Lemma 4 supplies us with the necessary knowledge, by relating the dif
ference between a generalized version of ftf3( v) and its deterministic counterpart 
to the random variable Sn of Theorem 7 on page 55. 

Lemma 4 Let g( t; v) be a real valued function, and define 

µ(v;g) ~ fo00 g(s;v)(l - Hn_(s))dA(s;v,Bo), 

µ(v,O;g) = fo00 g(s;1r(v,0))(1-H(s;v,0))dA(s;1r(v,0),00 ). 

If the function g( t; v) remains uniformly bounded in t and v, then there exists a 
constant c73 such that for every w E n 

lft(vnoi9) - µ(vn,Bn;g)I ~ C73n-112 Sn. 

Corollary 7 If for every i =, ... , r the function gJ1l(t; v), the first order partial 
derivative of g( t; v) with respect to the ith component of v, remains uniformly 

bounded in t and v, then there exists a constant c73 and a function µ\ 11 (v,0;g) 
such that for every w E D 

1 ,(1)( . ) [I]( (} . )I< -1/25 µ; Vno, 9 - µi Vn, n, 9 _ C73n n· 

where µjtl ( v; g) is the first order partial derivative ofµ( v; g) with respect to the 
i th component of v. 

If in addition the function gi\t;v), the second order partial derivative of 
g( t; v) with respect to the ith and jlh components of v, remains uniformly bounded 

in t and v, then there exists a constant c73 and a function µ\~l ( v, 0; g) such that 
for every w E !1 

where µlJl ( v; g) is the first order partial derivative ofµ( v; g) with respect to the 
i1h and jlh components of v. 
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Proof of Lem,ma 4 From (4.51): we ohtai1J1: 

lfe(vno; g): - µ(vn, (J;n; g)I 

= I fo00 g(s; Vno.){Hn_(s) - H(s; Vn, 0,.)}dA(s; Vno, 0o}I 

::; lg(t;vno)ln- 112 sup I riun-(s;vn,Bn)dA(s;vno,Bo)I 
tE[O,oo) Jo 

::; sup lg( t; Vnlif)I( <:e,o/6)n-112 Sn. 
tE[O,oo) 

Proof of Corollary 7 Define 

Then we have 

g;(t; v) = g?l(t; v) + g(t; v )'ef;;( t; v, Bo), 

g;j(t; v) = g}f\t;. v) + gJ1l(t; v )·1/Ji(t; v, B0 ) 

+g;1\t; v)'l/J;(t; v,Bo) + g(t; v)'l/JU)(t; v, Bo)-

□ 

Since bnth g:(t;v) and g;j(t;v} remai,n unifonnly bounded in t and v, we a:re in 
the position to apply Lemma 3, which yields the desired result. D 

5.4 Total time on test p·lots 

The weight processes of the previous section were derived so as to yield generalized 
rank and suprernum type tests which are optimal ag;ifost a specific alternative. 
However, in some circumstances the choice for some test statrstk is not based 
on specific optimality, but on ccms-istency against a: broad dass of alternatives 
instead. In this respec~ statistics based on total time on test plots are worth 
mentioning. 

Total time on test plots are discussed in Barlow and Proschan (1969) and 
in Gill (1986), According to the former paperj they are obtained by plotting 
J;(l - H,._(s })dl'i.(s; v(n}, 00 ) versus H!(t), where v(n) is the maximum likelihood 
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estimator. Under Type II censoring these plots allow to make assessments con
cerning the hazard function underlying the data. In particular, monotone hazard 
functions are easily recognized: depending on whether the hazard function is 
increasing or decreasing, the plot shows a convex or concave curve. 

If the underlying distribution function is exponential [corresponding to a con
stant hazard function], then the total time on test plot should reflect a straight 
line through the origin, making a 45 degree angle with the X-axis. The deviations 
from this line are connected to the process Mn(t; v(n), 00 ). Not surprisingly, many 
proposals for tests for exponentiality inspired by the total time on test plot turn 
out to be based on functionals of Mn( t; v(n), 00 ). The supremum type test was 
mentioned in Barlow and Campo (1975). Observe that the generalized rank test 
does not make much sense, since it follows from the definition of the maximum 
likelihood estimator that Mn( oo; v<n), 00 ) is zero. 

The asymptotic theory for Mn(t;v(n),00 ) is simply derived from the fact that 
for this process we have 

H1(t; Vo, 0o) 
Lo(s,t;vo) = l{s$1} - HI( . 0 )' 

. oo, Vo, 0 

That is, the sequence {Mn(t; v<n), 0o)}~=l converges in Pv0 -distribution to a mean 
zero Gaussian process with covariance function 

H 1(t1 I\ t2; vo, 0o)(l - H 1(t1 V t2; vo, 0o)) 
H1(oo;vo,0o) 

For a better understanding of the qualities of the total time on test plot, 
consider the cumulative distribution function 

{ 
1 - exp{-ev+et} 

F(t;v,0) = 
1 - exp{-ev+eT - ev-0(t - r) 

where T E [O, oo) is fixed. It follows that 

1P1(t;v,0) = 1, 

'lj;2 (t;v,0) = { 1 

- 1 if t > T. 

if t S T, 

if t ST, 

if t > T, 

Now suppose that our knowledge of the censoring distribution is sufficient to 
determine H1(r;v,00 ) and H1(oo;v,00 ). In order to find optimal generalized 
rank and supremum type tests, we choose a weight process recommended by 
Theorem 13, yielding 

1-H1 (r;v,Oo) 
H 1 (oo;v,Oo) 

H 1 (r;v,Oo) 
H 1 ( oo;v,Bo) 

if t S T, 

if f > T. 
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The resulting stochastic fotegtaJ satisfies 

Hence, we may view the test based on the statistic Mn( r; v(n), 00} as an op
timal generalized rank test for the composite null hypothesis 0 == 0 in the 
example above. With some more effort we may show that the test based on 
erther SUPo<Kr Mn( t; v<n>, 0o) or sup,,,<t<oo Mn(t; vfn)', 0'o), depending. on whether 
Cv0 {Mn( r; ;:;<itl, 0o)} 2 is equal to SUPo<t~r-£,,ff{ Mn(t; v(n), 00}}2 or equaHo SUPr<t<oo 

t'v0 {Mn(t; vCn), 00)} 2 , is an optimal s;;p~emum type test for the same testing p~ob
lem. 



Chapter 6 

Small sample characteristics 

6.1 Simulations 

The theory of the preceding chapters is asymptotic of nature. It can be expected 
to work if the sample size n is large, but there is no absolute guarantee that this 
theory is also applicable in situations where the sample size is relatively small. 

In this chapter we investigate which are the limitations to our theory with 
respect to sample size. The investigation is conducted by means of simulation 
experiments in situations described in section 5.1 and subsection 5.2.1. 

Within the class of goodness-of-fit tests considered in our theory, a test is 
determined by four items: the estimation procedure, the weight process Ln(t; v ), 
the functional T, and the testsize. In the simulations choices are made for each 
of these items. 

• If we count "no estimation" [that is, replace v(n) by v0] as an estimation 
procedure, then two different estimation procedures are available, the other 
procedure being maximum likelihood. The modified maximum likelihood 
procedure, introduced in section 4.3, is not included in the simulations 
because of the weaknesses discussed in section 5.2. 

• The weight process Ln ( t; v) is always a linear function of exp{ -pevt}, where 
p equals 1. For administrative reasons the weight process is identified by a 
two-digit identification code, which determines the coefficients of the linear 
function. The first digit indicates whether the coefficients are deterministic 
[1; involve µ11(v)] or random [2; involve J111(v)]. The second digit marks the 
kind of weight process; it can be either 1 [one-sample log-rank: slope of the 
linear function is equal to zero], 2 [one-sample generalized Wilcoxon: inter
cept of the linear function is equal to zero] or 3 [weight process advocated 
in section 5.3]. 

• A description of the functionals T used is given in Table 6.1. For each test 
statistic an asymptotic P-value is computed. For generalized rank tests this 

97 
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is done by means of the standard normal distribution, while for supremum 
type tests the distribution of the supremum of a standard Wiener process 
on [O, l] is used. Observe that for a supremum type test with underlying 
stochastic integral not weakly converging to some time-transformed Wiener 
process, the asymptotic P-value is asymptotic in two respects: not only the 
sample size n should be large enough, the observed value of the test statistic 
should be large as well. 

The asymptotic P-value facilitates intercomparison, since it transforms the 
various test statistics under study to statistics which have nearly the same 
null-distribution, while preserving the characteristics of the resulting test. 

• Each test statistic is combined with 5 different test sizes, running from 
0.5/n to 2.5/n. 

During the simulations, a histogram of the asymptotic P-values is constructed. 
This histogram, which has interval width (5nt1 , is used afterwards for density 
estimation. 

The estimated density under the null hypothesis serves as the basis for the 
construction of critical points of the P-values. If Table 6.4b tells us that the 
critical point of the left-sided generalized rank test is 0.0136 for size 0.020, this 
means that rejecting the null hypothesis if and only if the asymptotic P-value 
is less than or equal to 0.0136 yields a test with size 0.020 "exactly", implying 
that we would obtain an anticonservative test if we were to use the asymptotic 
P-value as an approximation to the exact P-value [that is, rejection only takes 
place if the asymptotic P-value is less than or equal to 0.020]. 

Subsequently, power is estimated by computing the left tail probability be
longing to a critical point of the asymptotic P-value. This computation takes 
place according to the estimated density under one of the four alternative hy
potheses. 

The sample sizes used are 25, 50 and 100. For each of these sample sizes 
we construct 10000 replications of five types of censored and five types of uncen
sored samples. For the construction of censored samples the standard exponential 
distribution serves as censoring distribution. 

Test Functional T(O 
Leftsided Rightsided Twosided 

Generalized rank -e( oo) l(oo) ll(oo)I 
Supremum type SUP1ero oo\ -l(t) SUP1ero ool l(t) SUPtE[O,oo) ll(t)I 

Table 6.1: Functionals used. 
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6.2 The simple null hypothesis 

The simulated samples are drawn from a distribution F(t; Vn, 0n) belonging to the 
family of Harrington and Fleming alternatives to the exponential distribution, as 
described in Section 5.2. The value of Vn and pare always O and 1, respectively. 
Hence, we are considering logistic shift alternatives to the standard exponential 
distribution. 

The parameter of interest On varies in the following way with sample size: 

(6.1) 

where CH is chosen according to the type of hypothesis under which simulation 
takes place. There are five types of hypotheses: HLL, HL, H0 , HR and HRR; the 
respective choices of CH are -1.0, -0.5, 0.0, 0.5 and 1.0. The resulting values of 0n 
are displayed in Table 6.2. The value of On under Ho coincides with 00 • 

The asymptotic power of a generalized rank test is equal to the probability 
that a standard normal random variable exceeds Za - (On - 00 )JneR(h), where 
Za is the (1 - a) quantile of the standard normal distribution. 

Approximating Za by ✓-2Ioga, we find that equation (6.1) implies that 
under HLL and HRR the power of a size 1/n one-sided generalized rank test 
based on stochastic integral 12 [for which eR( h) = µ 2p( v0 )] will tend to 0.5 as n 
tends to infinity. However, the power of such a test will still be far away from 
0.5 in the region of the sample sizes we are considering, due to poor quality of 
the approximation of Z&, Table 6.3 indicates the power we could expect from the 
generalized rank test based on stochastic integral 12. . 

Observe that the same crude approximation of Za is used under similar con
ditions in the weak intermediate efficiency concept. 

Sample Type of HLL HL Ho HR HRR 
size Censoring 
25 None -0.8789 -0.4395 0.0000 0.4395 0.8789 
25 Exp(l) -1.0149 -0.5075 0.0000 0.5075 1.0149 
50 None -0.6852 -0.3426 0.0000 0.3426 0.6852 
50 Exp(l) -0. 7912 -0.3956 0.0000 0.3956 0.7912 
100 None -0.5257 -0.2628 0.0000 0.2628 0.5257 
100 Exp(l) -0.6070 -0.3035 0.0000 0.3035 0.6070 

Table 6.2: Values of On, The values of Vn, 00 and p are always equal to 0, 0 and 
1, respectively. 



100 CHAPTER 6. SMALL SAMPLE CHARACTERISTICS 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Sample size 25 
0.020 0.686 0.216 0.216 0.686 0.584 0.145 0.145 0.584 
0.040 0.784 0.315 0.315 0.784 0.686 0.217 0.217 0.686 
0.060 0.837 0.387 0.387 0.837 0.744 0.271 0.271 0.744 
0.080 0.871 0.446 0.446 0.871 0.784 0.316 0.316 0.784 
0.100 0.895 0.495 0.495 0.895 0.814 0.355 0.355 0.814 

Sample size 50 
0.010 0.681 0.177 0.177 0.681 0.588 0.120 0.120 0.588 
0.020 0.771 0.256 0.256 0.771 0.681 0.177 0.177 0.681 
0.030 0.820 0.315 0.315 0.820 0.735 0.220 0.220 0.735 
0.040 0.852 0.362 0.362 0.852 0.771 0.257 0.257 0.771 
0.050 0.875 0.403 0.403 0.875 0.799 0.288 0.288 0.799 

Sample size 100 
0.005 0.677 0.145 0.145 0.677 0.590 0.099 0.099 0.590 
0.010 0.761 0.209 0.209 0.761 0.677 0.145 0.145 0.677 
0.015 0.806 0.257 . 0.257 0.806 0.727 0.180 0.180 0.727 
0.020 0.837 0.296 0.296 0.837 0.761 0.209 0.209 0.761 
0.025 0.859 0.329 0.329 0.859 0.786 0.235 0.235 0.786 

Table 6.3: Asymptotic power of generalized rank test based on stochastic inte
gral 12 (no estimation). Also valid for generalized rank test based on stochastic 
integral 13 (maximum likelihood estimation). 

6.2.1 Stochastic integral 11 

The first stochastic integral we encounter, type 11 (no estimation], is based on 
the w~ight process 

(6.2) 

Hence, this stochastic integral yields the same tests as the basic martingale 
Mn(t; Vo, 0o). The generalized rank test is the well-known test of Breslow (1975), 
a one-sample logrank test. The supremum type test was investigated by Aki 
(1986). Both tests are indicated for detecting proportional hazards alternatives. 
In our simulations the alternatives are of a different type, namely logistic shift. 
We have an = as = 1 and 

(6.3) 

In the absence of censoring this becomes eR(h) = e5 (h) = 1/4. 
To obtain some intuition about how the small sample behavior deviates from 

the asymptotic behavior, we first pay some attention to M1( oo; v0 , 00 ), the basic 
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martingale for sample size 1, evaluated at infinity. Remark that Mn( oo; vo, Oo) is 
an appropriately scaled sum of n independent copies of M1 ( oo; v0 , 00 ). 

We may view M1 ( oo; v 0 , 00 ) as a difference between two nonnegative random 
variables 81 and A(Z1 ; v 0 , 00 ), which do not have much in common. The former 
takes values O and 1 only (in the absence of censoring it even becomes degener
ate], and hence is bounded. The latter takes values everywhere on the complete 
halfline, and in general has a distinct tail. Thus, for small sample sizes we may en
counter asymmetric behavior of the basic martingale. Since the limiting process 
of the basic martingale is Gaussian the asymmetry should vanish as the sample 
size becomes larger. 

Under H0 both random variables have mean H 1 ( oo; v0 , 00 ), and hence we 
expect that the mean of Mn( oo; v0 , 00 ) is equal to zero. Tables 6.4a, 6.5a and 6.6a 
show that this expectation, which also could be inferred from martingale theory, 
becomes true. 

Moreover, these tables reflect the asymmetry of the basic martingale. Under 
HL and HLL the mean of Mn(oo;v0 ,00 ) deviates more from zero than under 
their counterparts Hn and Hnn- This is in part compensated by the standard 
deviation, which tends to inflate under HL and HLL and to deflate under Hn and 
Hnn-

If we conclude from Tables 6.4a, 6.5a and 6.6a that the generalized rank test 
based on Mn( t; v 0 , 00 ) is more sensitive to the left than to the right, then we are 
drawing our conclusions too hastily. The asymmetry of the basic martingale is 
also reflected in the tail behavior under Ho, since the left tail of Mn( oo; v0 , 00 ) is 
more outstretched than the right tail. 

The adverse location of the leftsided critical points annuls the initial higher 
sensitivity on the left side, and even makes the leftsided generalized rank test less 
sensitive than the rightsided generalized rank test. 

Tables 6.4, 6.5 and 6.6 also indicate that the effects of the asymmetry of the 
basic martingale are even worse for supremum type tests. 

6.2.2 Stochastic integral 21 

The stochastic integral type 21 [no estimation] is a variant of stochastic integral 
11, having weight process 

(6.4) 

Hence, it is obtained by dividing the basic martingale by the square root of the 
variance estimator µ0 (v0 ) = fo"°(l-Hn-(s))dA(s; v0 , Oo). By making this division 
the martingale property is lost. The quantities en(h) and es(h) are the same as 
for stochastic integral 11, and are given by (6.3). 

Before looking at the simulation results, we first investigate the behavior of 
stochastic integral 21 evaluated at oo for sample size 1 by viewing it as the dif
ference between the random variables c51 (A(Z1;v0 ,00)t1!2 and (A(Z1;v0 ,00 ))1/ 2 . 
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Both are nonnegative and take values everywhere on the complete halfline. In 
general, the former random variable is heavier tailed than the latter. Moreover, 
under H0 the random variables differ in mean. To examplify, suppose censoring 
is absent. Now we have 

81 2} Po(--;:==== s; x) = exp{-x- , 
JA.( Z1; Vo, Bo) 

Po(JA.(Z1;vo,0o) s; x) = 1-exp{-x2 }. 

The tail of 81 ( A.( Z1 ; v0 , 00 ) t 1!2 , which vanishes at a rate x-2 , is quite heavy, 
whereas the tail of ( A.( Z1 ; v0 , 00 ) ) 112 is moderate [that is, comparable to the tail of 
a Gaussian random variable]. Moreover, under P0 the mean of 81(A.(Z1 ; vo, 00))-1/ 2 

is equal to 1r1/ 2 and differs from the mean of (A.(Z1 ; v 0 , 00 )) 1!2 , which is equal to 
1r1/ 2 /2. It seems that the behavior of stochastic integral 21 shows asymmetry that 
is in some sense opposite to asymmetry in the behavior of stochastic integral 11. 
This is also reflected in Tables 6.7, 6.8 and 6.9. 

Though eR( h) and es( h) coincide, the supremum type tests surpass the gen
eralized rank test in simulated power. This is not only true for stochastic integral 
21, but also for stochastic integral 11, and underlines the omnibus character of 
the supremum type tests. 

Surprisingly, Tables 6.4c and 6.7c show that the simulated power of one-sided 
tests based on stochastic integral 21 do not differ much from the simulated power 
of the corresponding tests based on stochastic integral 11. This is certainly not 
true for the two-sided tests. Two-sided tests based on stochastic integral 21 are 
relatively more sensitive to positive and less sensitive to negative values of Bn. 

6.2.3 Stochastic integral 12 

The weight process underlying stochastic integral 12 is given by 

(6.5) 

The generalized rank test based on stochastic integral 12, a one-sample version 
of the two-sample generalized Wilcoxon test, was recommended by Harrington 
and Fleming (1982) as a test against the alternatives proposed in the same paper 
[which we have highlighted in section 5.2], to be used if there is no censoring 
present. Their recommendation followed from heuristic arguments. Indeed, the 
theory in section 3.3 shows that this test is optimal. 

For stochastic integral 12 we have 

(6.6) 

If there is no censoring present we have eR(h) = es(h) = 1/3. If the censoring 
distribution is standard exponential then eR(h) = es(h) = 1/4. 
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The stochastic integral evaluated at infinity may be viewed as the scaled sum 
of n independent copies of the random variable (1- F( Z1 ; v0 , Bo) )81 -F( Z1; vo, Bo), 
which takes values between -1 and 1. For instance, under H0 and in the absence 
of censoring this random variable is uniformly distributed on the interval [-1, l]. 

This suggests that the behavior of the stochastic integral is very close to 
symmetry, an impression confirmed by the uncensored sample simulation results. 
The censored sample simulations show a slight difference between the left- and 
right-sided critical values, and a higher sensitivity to negative values of Bn. 

The simulated power of the generalized rank test is in accordance with the 
asymptotic power given in Table 6.3. 

As we compare with the simulation results for stochastic integral 11, we see 
that the one-sided tests indeed yield higher power. However, the two-sided supre
mum type test gets the worst of it under HL and HLL· 

6.2.4 Stochastic integral 22 

Stochastic integral 22 is a variant of stochastic integral 21, to be used if the 
censoring distribution is unknown. Its weight process is 

(6.7) 

The generalized rank test based on stochastic integral 22 appeared in Harrington 
and Fleming (1982). The quantities eR(h) and es(/,) are given by (6.6). 

As we compare the uncensored sample results of stochastic integral 22 and 
stochastic integral 12, we do not spot many differences ;n simulated power of the 
one-sided tests. This in contrast to two-sided tests: those based on stochastic 
integral 22 are relatively more sensitive to positive and less sensitive to negative 
values of Bn. Observe that we reached the same conclusion in the comparison 
of stochastic integral 12 with stochastic integral 11, suggesting that the use of 
a variance estimator does not have much effect on the power of one-sided tests, 
but shifts the sensitivity of two-sided tests to the right. In censored samples, the 
shift in sensitivity is also noticable for one-sided tests. 

With respect to stochastic integral 21, the stochastic integral clearly yields 
higher simulated power, especially for generalized rank tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; Vo) -2.5089 -1.1775 -0.0006 1.0270 1.8984 
st.dev. Qn( oo; vo) 1.2064 1.1066 0.9935 0.9013 0.7754 
skewness Qn(oo; vo) -0.2450 -0.2967 -0.3690 -0.4190 -0.4382 
kurtosis Qn( oo; vo) 0.0579 0.0787 0.1239 0.2699 0.3639 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0136 0.0340 0.0216 0.0082 0.0544 0.0154 
0.040 0.0299 0.0539 0.0422 0.0209 0.0832 0.0370 
0.060 0.0510 0.0741 0.0642 0.0350 0.1092 0.0599 
0.080 0.0713 0.0914 0.0852 0.0509 0.1334 0.0809 
0.100 0.0923 0.1094 0.1053 0.0692 0.1592 0.1045 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.579 0.175 0.194 0.572 0.550 0.157 0.063 0.332 
0.040 0.690 0.253 0.278 0.673 0.643 0.215 0.129 0.464 
0.060 0.763 0.325 0.349 0.740 0.699 0.262 0.189 0.561 
0.080 0.806 0.377 0.395 0.782 0.737 0.300 0.235 0.620 
0.100 0.837 0.426 0.440 0.815 0.766 0.330 0.278 0.668 

Supremum type test 
0.020 0.626 0.188 0.214 0.644 0.619 0.183 0.023 0.199 
0.040 0.740 0.281 0.303 0.746 0.725 0.267 0.068 0.376 
0.060 0.798 0.347 0.376 0.808 0.780 0.326 0.121 0.487 
0.080 0.842 0.406 0.433 0.848 0.814 0.370 0.165 0.565 
0.100 0.874 0.459 0.486 0.878 0.845 0.411 0.212 0.633 

C 

Table 6.4: Tests based on stochastic integral type 11 (no estimation) and n = 25. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; Vo) -2.6880 -1.2767 0.0009 1.1440 2.1442 
st.dev. Qn( oo; vo) 1.1637 1.0741 1.0096 0.9064 0.8265 
skewness Qn(oo;vo) -0.1545 -0.2768 -0.3440 -0.3658 -0.3906 
kurtosis Qn( oo; vo) 0.0754 0.0255 0.0323 0.2722 0.2386 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0054 0.0205 0.0091 0.0041 0.0290 0.0077 
0.020 0.0124 0.0320 0.0195 0.0096 0.0470 0.0172 
0.030 0.0205 0.0431 0.0295 0.0156 0.0592 0.0272 
0.040 0.0290 0.0520 0.0411 0.0226 0.0699 0.0365 
0.050 0.0385 0.0612 0.0522 0.0304 0.0818 0.0483 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.533 0.121 0.160 0.574 0.514 0.111 0.040 0.303 
0.020 0.633 0.183 0.227 0.657 0.601 0.164 0.087 0.435 
0.030 0.701 0.231 0.275 0.711 0.655 0.198 0.122 0.510 
0.040 0.746 0.271 0.310 0.745 0.701 0.232 0.162 0.575 
0.050 0.782 0.309 0.345 0.773 0.733 0.258 0.196 0.620 

Supremum type test 
0.010 0.599 0.145 0.179 0.633 0.592 0.141 0.024 0.243 
0.020 0.697 0.214 0.261 0.733 0.684 0.204 0.056 0.385 
0.030 0.758 0.262 0.308 0.777 0.741 0.249 0.091 0.479 
0.040 0.801 0.309 0.345 0.808 0.777 0.282 0.118 0.539 
0.050 0.832 0.351 0.381 0.836 0.808 0.318 0.153 0.595 

C 

Table 6.5: Tests based on stochastic integral type 11 (no estimation) and n = 50. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; vo) -2.8722 -1.3656 0.0048 1.2636 2.3894 
st.dev. Qn(oo;vo) 1.1257 1.0725 1.0015 0.9377 0.8719 
skewness Q n ( oo; Vo) -0.1833 -0.0575 -0.1562 -0.1560 -0.3505 
kurtosis Qn( oo; v0 ) 0.1006 -0.0101 0.1590 0.0286 0.0881 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0024 0.0084 0.0038 0.0018 0.0106 0.0033 
0.010 0.0061 0.0142 0.0091 0.0050 0.0208 0.0089 
0.015 0.0097 0.0183 0.0137 0.0082 0.0275 0.0124 
0.020 0.0153 0.0238 0.0185 0.0119 0.0319 0.0175 
0.025 0.0208 0.0293 0.0236 0.0167 0.0382 0.0229 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.506 0.089 0.111 0.512 0.483 0.080 0.032 0.293 
0.010 0.617 0.146 0.161 0.605 0.579 0.126 0.072 0.417 
0.015 0.676 0.181 0.192 0.653 0.631 0.154 0.098 0.482 
0.020 0.734 0.226 0.228 0.697 0.670 0.177 0.119 0.529 
0.025 0.771 0.258 0.256 0.730 0.701 0.200 0.143 0.571 

Supremum type test 
0.005 0.562 0.104 0.120 0.576 0.559 0.101 0.024 0.271 
0.010 0.685 0.172 0.193 0.692 0.672 0.162 0.057 0.424 
0.015 0.747 0.213 0.233 0.741 0.712 0.188 0.079 0.480 
0.020 0.790 0.251 0.258 0.764 0.754 0.219 0.104 0.541 
0.025 0.825 0.288 0.291 0.793 0.785 0.246 0.128 0.589 

C 

Table 6.6: Tests based on stochastic integral type 11 (no estimation) and n = 100. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; vo) -1.9871 -0.9820 0.1001 1.2910 2.5929 
st.dev. Qn(oo; vo) 0.8302 0.9106 1.0119 1.1623 1.3168 
skewness Qn( oo; vo) 0.1902 0.1855 0.2282 0.2734 0.3854 
kurtosis Qn( oo; vo) 0.1021 0.0295 0.1244 0.0630 0.1389 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0328 0.0110 0.0178 0.0258 0.0172 0.0217 
0.040 0.0543 0.0256 0.0377 0.0459 0.0378 0.0430 
0.060 0.0776 0.0433 0.0563 0.0658 0.0596 0.0632 
0.080 0.0989 0.0599 0.0774 0.0821 0.0849 0.0845 
0.100 0.1194 0.0783 0.0966 0.1024 0.1084 0.1050 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.580 0.176 0.194 0.570 0.329 0.058 0.180 0.549 
0.040 0.689 0.253 0.278 0.673 0.463 0.112 0.244 0.635 
0.060 0.762 0.323 0.348 0.740 0.546 0.156 0.291 0.686 
0.080 0.806 0.377 0.396 0.781 0.618 0.201 0.334 0.727 
0.100 0.837 0.427 0.440 0.815 0.666 0.236 0.368 0.753 

Supremum type test 
0.020 0.624 0.185 0.213 0.632 0.446 0.093 0.172 0.573 
0.040 0.737 0.280 0.300 0.737 0.585 0.162 0.236 0.663 
0.060 0.801 0.353 0.370 0.799 0.665 0.215 0.278 0.714 
0.080 0.838 0.404 0.433 0.845 0.722 0.267 0.318 0.751 
0.100 0.873 0.459 0.478 0.874 0.764 0.307 0.352 0.781 

C 

Table 6. 7: Tests based on stochastic integral type 21 (no estimation) and n = 25. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.2409 -1.1183 0.0731 1.3365 2.6797 
st.dev. Qn( oo; vo) 0.8588 0.9193 1.0127 1.0923 1.2178 
skewness Qn( oo; vo) 0.1778 0.0907 0.0592 0.1204 0.1574 
kurtosis Qn( oo; vo) 0.0927 -0.0266 -0.0785 0.0741 0.0863 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0145 0.0078 0.0104 0.0133 0.0104 0.0115 
0.020 0.0255 0.0155 0.0209 0.0229 0.0220 0.0234 
0.030 0.0360 0.0244 0.0302 0.0325 0.0312 0.0352 
0.040 0.0462 0.0320 0.0397 0.0412 0.0407 0.0448 
0.050 0.0566 0.0404 0.0500 0.0510 0.0515 0.0545 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.533 0.122 0.161 0.576 0.360 0.054 0.132 0.529 
0.020 0.635 0.184 0.226 0.657 0.478 0.093 0.187 0.611 
0.030 0.702 0.232 0.275 0.711 0.542 0.126 0.225 0.653 
0.040 0.747 0.271 0.310 0.745 0.588 0.156 0.252 0.687 
0.050 0.781 0.309 0.346 0.773 0.630 0.182 0.280 0.715 

Supremum type test 
0.010 0.603 0.148 0.177 0.628 0.457 0.079 0.128 0.558 
0.020 0.700 0.216 0.260 0.725 0.580 0.136 0.190 0.645 
0.030 0.761 0.268 0.303 0.771 0.653 0.182 0.232 0.699 
0.040 0.802 0.312 0.342 0.805 0.697 0.213 0.263 0.727 
0.050 0.833 0.354 0.382 0.832 0.730 0.241 0.286 0.753 

C 

Table 6.8: Tests based on stochastic integral type 21 (no estimation) and n = 50. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.4953 -1.2375 0.0551 1.4118 2.8098 
st.dev. Qn( oo; vo) 0.8843 0.9496 1.0046 1.0812 1.1612 
skewness Qn(oo;vo) 0.0675 0.2184 0.1538 0.1735 0.0019 
kurtosis Qn( oo; vo) 0.0828 0.0387 0.1109 0.0353 0.0139 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0064 0.0031 0.0036 0.0060 0.0039 0.0038 
0.010 0.0125 0.0065 0.0083 0.0117 0.0090 0.0095 
0.015 0.0177 0.0094 0.0131 0.0166 0.0135 0.0157 
0.020 0.0251 0.0135 0.0169 0.0220 0.0172 0.0209 
0.025 0.0317 0.0176 0.0215 0.0283 0.0223 0.0254 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR Hu, HL HR HRR 

Generalized rank test 
0.005 0.509 0.091 0.112 0.514 0.320 0.036 0.089 0.457 
0.010 0.615 0.146 0.160 0.602 0.440 0.067 0.130 0.547 
0.015 0.676 0.181 0.192 0.653 0.513 0.092 0.161 0.604 
0.020 0.735 0.227 0.229 0.697 0.553 0.112 0.183 0.639 
0.025 0.771 0.258 0.255 0.729 0.591 0.132 0.204 0.669 

Supremum type test 
0.005 0.583 0.112 0.124 0.580 0.400 0.049 0.087 0.494 
0.010 0.689 0.173 0.188 0.683 0.547 0.094 0.136 0.604 
0.015 0.747 0.213 0.225 0.731 0.623 0.135 0.176 0.668 
0.020 0.791 0.253 0.256 0.762 0.671 0.161 0.200 0.702 
0.025 0.827 0.291 0.290 0.791 0.702 0.182 0.219 0.725 

C 

Table 6.9: Tests based on stochastic integral type 21 (no estimation) and n = 100. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(=; Vo) -2.4705 -1.2552 -0.0056 1.2677 2.4906 
st.dev. Qn(=; vo) 0.9437 0.9867 0.9935 0.9986 0.9411 
skewness Qn(=; vo) 0.1673 0.0898 -0.0437 -0.0476 -0.0150 
kurtosis Qn( =; vo) -0.0295 -0.0596 0.0041 -0.0771 -0.1089 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0205 0.0202 0.0213 0.0201 0.0245 0.0231 
0.040 0.0409 0.0420 0.0407 0.0422 0.0484 0.0441 
0.060 0.0605 0.0607 0.0619 0.0624 0.0733 0.0680 
0.080 0.0827 0.0830 0.0826 0.0798 0.0993 0.0918 
0.100 0.1018 0.1041 0.1023 0.1007 0.1214 0.1123 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.679 0.216 0.223 0.681 0.576 0.142 0.152 0.582 
0.040 0.783 0.316 0.329 0.793 0.678 0.215 0.224 0.682 
0.060 0.836 0.388 0.394 0.840 0.740 0.273 0.283 0.746 
0.080 0.876 0.452 0.458 0.879 0.783 0.319 0.328 0.791 
0.100 0.899 0.497 0.507 0.902 0.814 0.359 0.363 0.820 

Supremum type test 
0.020 0.634 0.194 0.217 0.675 0.546 0.139 0.135 0.557 
0.040 0.746 0.299 0.314 0.780 0.648 0.207 0.206 0.660 
0.060 0.800 0.365 0.391 0.840 0.716 0.266 0.264 0.727 
0.080 0.834 0.413 0.454 0.875 0.758 0.316 0.307 0.771 
0.100 0.866 0.466 0.498 0.894 0.786 0.348 0.343 0.802 

C 

Table 6.10: Tests based on stochastic integral type 12 (no estimation) and n = 25. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 



6.2 .. THE SIMPLE NULL HYPOTHESIS 111 

HLL HL Ho HR HRR 
mean Qn(oo; vo) -2. 7531 -1.4008 0.0090 1.3952 2.7374 
st.dev. Qn(oo; vo) 0.9678 0.9949 1.0041 0.9878 0.9591 
skewness Qn( oo; vo) 0.0421 -0.0946 -0.0353 -0.0335 -0.0963 
kurtosis Qn( oo; vo) -0.0557 -0.0788 -0.1121 -0.0061 0.0510 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0107 0.0117 0.0125 0.0099 0.0117 0.0130 
0.020 0.0187 0.0223 0.0229 0.0199 0.0237 0.0220 
0.030 0.0282 0.0318 0.0313 0.0284 0.0343 0.0324 

II o.o4o 0.0367 0.0415 0.0404 0.0376 0.0430 0.0434 
0.050 0.0473 0.0514 0.0498 0.0477 0.0529 0.0518 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.678 0.186 0.189 0.688 0.599 0.137 0.132 0.601 
0.020 0.755 0.250 0.271 0.777 0.688 0.192 0.187 0.686 
0.030 0.810 0.305 0.325 0.819 0.731 0.227 0.222 0.730 
0.040 0.840 0.349 0.371 0.851 0.767 0.260 0.258 0.765 
0.050 0.869 0.392 0.409 0.874 0.794 0.288 0.286 0.790 

Supremum type test 
0.010 0.628 0.164 0.172 0.661 0.569 0.131 0.121 0.578 
0.020 0.729 0.237 0.253 0.759 0.644 0.173 0.166 0.652 
0.030 0.776 0.287 0.306 0.805 0.698 0.212 0.208 0.707 
0.040 0.810 0.335 0.343 0.830 0.742 0.248 0.242 0.747 
0.050 0.841 0.376 0.380 0.855 0.766 0.273 0.265 0.771 

C 

Table 6.11: Tests based on stochastic integral type 12 (no estimation) and n = 50. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo;vo) -3.0270 -1.5210 0.0066 1.5154 2.9940 
st.dev. Qn( oo; vo) 0.9825 1.0059 0.9934 1.0063 0.9878 
skewness Qn( oo; v0 ) 0.0169 0.1574 0.0199 0.0238 -0.1805 
kurtosis Qn( oo; vo) 0.0282 0.0133 0.0289 0.0087 -0.0607 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0042 0.0055 0.0042 0.0042 0.0057 0.0043 
0.010 0.0110 0.0109 0.0092 0.0101 0.0121 0.0099 
0.015 0.0168 0.0160 0.0150 0.0172 0.0174 0.0159 
0.020 0.0211 0.0213 0.0219 0.0230 0.0236 0.0230 
0.025 0.0261 0.0257 0.0282 0.0278 0.0276 0.0286 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.660 0.135 0.155 0.676 0.565 0.090 0.090 0.563 
0.010 0.777 0.223 0.220 0.759 0.670 0.141 0.141 0.655 
0.015 0.823 0.276 0.265 0.801 0.732 0.182 0.183 0.718 
0.020 0.845 0.303 0.302 0.832 0.777 0.222 0.221 0.760 
0.025 0.864 0.334 0.332 0.853 0.805 0.253 0.248 0.788 

Supremum type test 
0.005 0.626 0.124 0.143 0.660 0.541 0.088 0.084 0.542 
0.010 0.739 0.199 0.214 0.752 0.649 0.137 0.134 0.644 
0.015 0.798 0.259 0.254 0.790 0.708 0.176 0.172 0.702 
0.020 0.829 0.301 0.293 0.824 0.754 0.212 0.209 0.746 
0.025 0.846 0.327 0.316 0.840 0.777 0.237 0.233 0.770 

C 

Table 6.12: Tests based on stochastic integral type 12 (no estimation) and n = 
100. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.6827 -1.3144 -0.0069 1.2127 2.2095 
st.dev. Qn(oo; vo) 0.9600 0.9889 0.9949 0.9891 0.9857 
skewness Qn( oo; vo) 0.1601 -0.0420 0.1245 0.1567 -0.0424 
kurtosis Qn( oo; vo) 0.0668 0.0678 -0.0579 -0.0133 -0.0032 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0244 0.0195 0.0218 0.0269 0.0229 0.0255 
0.040 0.0435 0.0401 0.0435 0.0463 0.0464 0.0498 
0.060 0.0612 0.0602 0.0637 0.0658 0.0693 0.0710 
0.080 0.0806 0.0779 0.0836 0.0853 0.0926 0.0921 
0.100 0.0986 0.0988 0.1024 0.1062 0.1154 0.1150 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.776 0.257 0.197 0.560 0.665 0.160 0.138 0.466 
0.040 0.846 0.344 0.295 0.679 0.762 0.240 0.208 0.580 
0.060 0.882 0.410 0.366 0.740 0.809 0.294 0.259 0.642 
0.080 0.906 0.469 0.417 0.781 0.841 0.340 0.302 0.684 
0.100 0.923 0.514 0.471 0.821 0.864 0.375 0.337 0.714 

Supremum type test 
0.020 0.756 0.245 0.183 0.535 0.651 0.160 0.128 0.441 
0.040 0.823 0.331 0.276 0.650 0.745 0.236 0.193 0.549 
0.060 0.862 0.396 0.346 0.716 0.792 0.287 0.239 0.604 
0.080 0.889 0.451 0.400 0.760 0.823 0.332 0.275 0.649 
0.100 0.909 0.500 0.449 0.794 0.847 0.373 0.312 0.685 

C 

Table 6.13: Tests based on stochastic integral type 12 (no estimation) and n = 25. 
Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn Hnn 
mean Qn( oo; Vo) -2.9356 -1.4346 0.0160 1.3357 2.5290 
st.dev. Qn(oo;vo) 0.9731 0.9889 0.9887 0.9866 0.9940 
skewness Qn(oo;v0 ) 0.1730 0.0761 -0.0530 0.0011 0.0696 
kurtosis Qn( oo; v0 ) -0.0120 0.0398 -0.0368 -0.0892 -0.0176 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0133 0.0100 0.0116 0.0138 0.0115 0.0140 
0.020 0.0241 0.0196 0.0233 0.0261 0.0216 0.0252 
0.030 0.0346 0.0285 0.0336 0.0357 0.0314 0.0362 
0.040 0.0457 0.0384 0.0435 0.0481 0.0416 0.0466 
0.050 0.0547 0.0492 0.0535 0.0572 0.0539 0.0574 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn Hnn HLL HL Hn Hnn 

Generalized rank test 
0.010 0.771 0.214 0.158 0.576 0.671 0.134 0.115 0.499 
0.020 0.837 0.294 0.229 0.676 0.755 0.200 0.172 0.601 
0.030 0.872 0.353 0.283 0.731 0.796 0.242 0.212 0.654 
0.040 0.898 0.403 0.333 0.778 0.825 0.277 0.243 0.691 
0.050 0.912 0.435 0.379 0.814 0.848 0.310 0.275 0.722 

Supremum type test 
0.010 0.745 0.202 0.148 0.558 0.664 0.138 0.113 0.491 
0.020 0.819 0.284 0.216 0.652 0.735 0.194 0.157 0.571 
0.030 0.851 0.332 0.264 0.708 0.777 0.233 0.195 0.627 
0.040 0.881 0.387 0.306 0.748 0.807 0.268 0.225 0.665 
0.050 0.895 0.418 0.351 0.787 0.828 0.298 0.252 0.695 

C 

Table 6.14: Tests based on stochastic integral type 12 (no estimation) and n = 50. 
Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn HRR 
mean Qn(oo; Vo) -3.1813 -1.5650 -0.0012 1.4840 2.8180 
st.dev. Qn(oo; vo) 0.9902 1.0035 0.9990 0.9930 0.9735 
skewness Qn( oo; vo) 0.0615 -0.0067 0.0172 0.0445 0.0627 
kurtosis Qn( oo; vo) 0.0272 0.0634 -0.0628 -0.0304 -0.1104 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0062 0.0050 0.0055 0.0059 0.0056 0.0061 
0.010 0.0108 0.0096 0.0112 0.0116 0.0098 0.0116 
0.015 0.0155 0.0139 0.0157 0.0177 0.0152 0.0167 
0.020 0.0210 0.0204 0.0205 0.0225 0.0206 0.0214 
0.025 0.0263 0.0252 0.0249 0.0267 0.0268 0.0274 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HnR HLL HL HR HRR 

Generalized rank test 
0.005 0.753 0.175 0.134 0.599 0.661 0.115 0.096 0.515 
0.010 0.813 0.232 0.193 0.685 0.741 0.167 0.144 0.613 
0.015 0.847 0.277 0.234 0.731 0.781 0.198 0.173 0.660 
0.020 0.875 0.315 0.286 0.779 0.807 0.227 0.200 0.692 
0.025 0.893 0.349 0.317 0.807 0.826 0.251 0.221 0.718 

Supremum type test 
0.005 0.725 0.161 0.128 0.575 0.646 0.115 0.091 0.498 
0.010 0.796 0.227 0.176 0.655 0.723 0.159 0.130 0.581 
0.015 0.838 0.279 0.225 0.714 0.762 0.193 0.161 0.633 
0.020 0.862 0.308 0.262 0.751 0.788 0.219 0.186 0.668 
0.025 0.876 0.335 0.299 0.785 0.813 0.247 0.213 0.700 

C 

Table 6.15: Tests based on stochastic integral type 12 (no estimation) and n = 
100. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo;vo) -2.2360 -1.1624 0.0380 1.4089 2.9266 
st.dev. Qn( oo; vo) 0.8033 0.9057 1.0068 1.1480 1.2667 
skewness Qn( oo; vo) 0.3294 0.3004 0.2372 0.2789 0.3802 
kurtosis Qn(oo; vo) 0.1695 0.1496 0.2227 0.1071 0.1084 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0295 0.0115 0.0172 0.0316 0.0129 0.0193 
0.040 0.0519 0.0306 0.0386 0.0577 0.0318 0.0425 
0.060 0.0721 0.0479 0.0600 0.0790 0.0541 0.0634 
0.080 0.0943 0.0695 0.0801 0.0981 0.0795 0.0876 
0.100 0.1140 0.0908 0.0995 0.1192 0.1007 0.1112 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.680 0.217 0.222 0.682 0.448 0.083 0.196 0.648 
0.040 0.783 0.316 0.331 0.796 0.597 0.156 0.276 0.742 
0.060 0.837 0.388 0.395 0.842 0.684 0.222 0.330 0.794 
0.080 0.876 0.452 0.458 0.879 0.736 0.269 0.369 0.825 
0.100 0.900 0.498 0.508 0.903 0.777 0.312 0.403 0.846 

Supremum type test 
0.020 0.631 0.193 0.219 0.679 0.410 0.074 0.194 0.647 
0.040 0.744 0.297 0.316 0.784 0.553 0.142 0.272 0.737 
0.060 0.798 0.363 0.393 0.842 0.632 0.195 0.316 0.783 
0.080 0.834 0.412 0.458 0.876 0.695 0.248 0.362 0.817 
0.100 0.865 0.463 0.499 0.895 0.738 0.293 0.399 0.845 

C 

Table 6.16: Tests based on stochastic integral type 22 (no estimation) and n = 25. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.5403 -1.3217 0.0401 1.5004 3.0692 
st.dev. Qn(oo; vo) 0.8433 0.9244 1.0094 1.0916 1.1856 
skewness Qn( oo; vo) 0.1642 0.0602 0.1406 0.1864 0.1680 
kurtosis Qn( oo; vo) 0.0072 -0.0212 -0.0447 0.0576 0.1438 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0157 0.0073 0.0113 0.0158 0.0066 0.0108 
0.020 0.0249 0.0156 0.0213 0.0280 0.0154 0.0210 
0.030 0.0349 0.0240 0.0313 0.0378 0.0243 0.0312 
0.040 0.0447 0.0334 0.0395 0.0483 0.0318 0.0412 
0.050 0.0553 0.0426 0.0492 0.0591 0.0411 0.0514 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.682 0.188 0.190 0.691 0.511 0.094 0.170 0.663 
0.020 0.756 0.251 0.269 0.777 0.614 0.146 0.226 0.736 
0.030 0.808 0.303 0.324 0.820 0.682 0.187 0.269 0.778 
0.040 0.842 0.351 0.373 0.852 0.719 0.216 0.296 0.800 
0.050 0.869 0.392 0.409 0.875 0.754 0.250 0.327 0.821 

Supremum type test 
0.010 0.630 0.165 0.175 0.666 0.453 0.080 0.161 0.645 
0.020 0.727 0.236 0.254 0.760 0.561 0.126 0.217 0.719 
0.030 0.776 0.286 0.307 0.807 0.628 0.164 0.256 0.762 
0.040 0.810 0.334 0.344 0.832 0.676 0.195 0.287 0.791 
0.050 0.840 0.374 0.382 0.857 0.713 0.224 0.315 0.811 

C 

Table 6.17: Tests based on stochastic integral type 22 ( no estimation) and n = 50. 
No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; Vo) -2.8397 -1.4559 0.0280 1.5959 3.2537 
st.dev. Qn( oo; vo) 0.8787 0.9488 0.9965 1.0835 1.1513 
skewness Qn( oo; vo) 0.1150 0.2746 0.1530 0.1764 -0.0241 
kurtosis Qn(ao;vo) 0.0801 0.0891 0.0922 0.0397 -0.0521 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0062 0.0034 0.0044 0.0066 0.0031 0.0049 
0.010 0.0145 0.0079 0.0096 0.0140 0.0082 0.0097 
0.015 0.0211 0.0123 0.0141 0.0225 0.0124 0.0154 
0.020 0.0255 0.0169 0.0200 0.0295 0.0175 0.0202 
0.025 0.0310 0.0211 0.0262 0.0346 0.0212 0.0260 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.661 0.135 0.153 0.675 0.503 0.069 0.125 0.631 
0.010 0.779 0.224 0.221 0.762 0.620 0.113 0.179 0.714 
0.015 0.825 0.276 0.267 0.804 0.679 0.147 0.212 0.752 
0.020 0.845 0.302 0.303 0.834 0.730 0.180 0.244 0.785 
0.025 0.865 0.335 0.334 0.854 0.766 0.211 0.274 0.810 

Supremum type test 
0.005 0.627 0.124 0.141 0.656 0.482 0.065 0.127 0.630 
0.010 0.737 0.197 0.217 0.754 0.581 0.103 0.172 0.702 
0.015 0.797 0.259 0.255 0.791 0.650 0.138 0.211 0.749 
0.020 0.830 0.302 0.293 0.824 0.689 0.164 0.235 0.773 
0.025 0.846 0.327 0.316 0.841 0.726 0.190 0.260 0.796 

C 

Table 6.18: Tests based on stochastic integral type 22 (no estimation) and n = 
100. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.2593 -1.1703 0.0334 1.4153 2.9081 
st.dev. Qn( oo; vo) 0.7537 0.8685 1.0072 1.1883 1.4242 
skewness Qn( oo; vo) 0.3465 0.1826 0.3746 0.4447 0.2876 
kurtosis Qn( oo; v0 ) 0.3054 0.2065 0.1635 0.3483 0.2306 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0328 0.0115 0.0183 0.0391 0.0128 0.0199 
0.040 0.0533 0.0293 0.0413 0.0615 0.0321 0.0462 
0.060 0.0734 0.0479 0.0620 0.0821 0.0511 0.0712 
0.080 0.0919 0.0651 0.0813 0.1004 0.0745 0.0932 
0.100 0.1095 0.0875 0.1011 0.1233 0.0973 0.1142 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR Hu HL HR HRR 

Generalized rank test 
0.020 0.725 0.224 0.225 0.656 0.469 0.076 0.207 0.633 
0.040 0.811 0.316 0.327 0.750 0.636 0.155 0.288 0.714 
0.060 0.860 0.385 0.400 0.805 0.714 0.216 0.334 0.756 
0.080 0.891 0.443 0.448 0.838 0.766 0.264 0.375 0.786 
0.100 0.910 0.490 0.500 0.867 0.802 0.307 0.409 0.811 

Supremum type test 
0.020 0.694 0.209 0.224 0.653 0.412 0.062 0.202 0.629 
0.040 0.779 0.292 0.323 0.748 0.586 0.137 0.282 0.713 
0.060 0.826 0.359 0.386 0.794 0.673 0.195 0.337 0.757 
0.080 0.857 0.409 0.446 0.832 0.727 0.240 0.374 0.785 
0.100 0.884 0.463 0.491 0.860 0.764 0.280 0.404 0.805 

C 

Table 6.19: Tests based on stochastic integral type 22 (no estimation) and n = 25. 
Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.5515 -1.3127 0.0446 1.4920 3.0873 
st.dev. Qn(oo; Vo) 0. 7966 0.8895 0.9965 1.1267 1.3034 
skewness Qn( oo; vo) 0.3045 0.2346 0.1233 0.1841 0.2629 
kurtosis Qn( oo; vo) 0.0985 0.1021 0.0337 0.0002 0.1047 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0182 0.0059 0.0095 0.0199 0.0064 0.0096 
0.020 0.0304 0.0139 0.0210 0.0331 0.0147 0.0223 
0.030 0.0408 0.0221 0.0307 0.0462 0.0230 0.0334 
0.040 0.0533 0.0313 0.0404 0.0586 0.0315 0.0438 
0.050 0.0630 0.0414 0.0517 0.0694 0.0414 0.0551 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.724 0.192 0.179 0.656 0.494 0.070 0.163 0.633 
0.020 0.805 0.271 0.259 0.746 0.637 0.127 0.228 0.715 
0.030 0.845 0.324 0.314 0.796 0.698 0.170 0.269 0.756 
0.040 0.879 0.380 0.365 0.828 0.742 0.206 0.302 0.787 
0.050 0.896 0.415 0.404 0.855 0.780 0.242 0.337 0.811 

Supremum type test 
0.010 0.688 0.174 0.174 0.653 0.439 0.059 0.154 0.624 
0.020 0.768 0.245 0.251 0.737 0.591 0.112 0.225 0.711 
0.030 0.818 0.305 0.302 0.784 0.658 0.152 0.264 0.751 
0.040 0.849 0.353 0.343 0.813 0.703 0.186 0.295 0.779 
0.050 0.871 0.391 0.383 0.840 0.739 0.217 0.324 0.800 

C 

Table 6.20: Tests based on stochastic integral type 22 (no estimation) and n = 50. 
Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vo) -2.8453 -1.4611 0.0189 1.6074 3.2586 
st.dev. Qn(oo; Vo) 0.8423 0.9220 1.0016 1.0965 1.1892 
skewness Qn( oo; vo) 0.1730 0.1140 0.1342 0.1735 0.1851 
kurtosis Qn( oo; vo) 0.0830 0.1155 -0.0324 0.0143 -0.0617 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0087 0.0034 0.0051 0.0091 0.0036 0.0059 
0.010 0.0139 0.0071 0.0102 0.0161 0.0071 0.0101 
0.015 0.0195 0.0107 0.0149 0.0231 0.0108 0.0156 
0.020 0.0254 0.0165 0.0198 0.0282 0.0159 0.0201 
0.025 0.0314 0.0207 0.0244 0.0329 0.0207 0.0263 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.714 0.158 0.157 0.670 0.530 0.070 0.138 0.642 
0.010 0.781 0.213 0.217 0.743 0.638 0.114 0.189 0.710 
0.015 0.823 0.261 0.257 0.781 0.693 0.144 0.222 0.748 
0.020 0.853 0.300 0.309 0.825 0.734 0.172 0.248 0.773 
0.025 0.876 0.332 0.338 0.845 0.762 0.198 0.274 0.794 

Supremum type test 
0.005 0.678 0.147 0.152 0.663 0.506 0.068 0.139 0.642 
0.010 0.760 0.207 0.209 0.730 0.591 0.100 0.180 0.699 
0.015 0.807 0.257 0.249 0.771 0.657 0.133 0.218 0.739 
0.020 0.830 0.286 0.291 0.808 0.695 0.157 0.242 0.765 
0.025 0.850 0.312 0.323 0.831 0.732 0.182 0.269 0.790 

C 

Table 6.21: Tests based on stochastic integral type 22 (no estimation) and n = 
100. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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Sample Type of HLL HL Ho HR HRR 
szze Censoring 
25 None -1.7579 -0.8789 0.0000 0.8789 1.7579 
25 Exp(l) -3.0447 -1.5224 0.0000 1.5224 3.0447 
50 None -1.3703 -0.6852 0.0000 0.6852 1.3703 
50 Exp(l) -2.3735 -1.1867 0.0000 1.1867 2.3735 
100 None -1.0513 -0.5257 0.0000 0.5257 1.0513 
100 Exp(l) -1,8209 -0.9105 0.0000 0.9105 1.8209 

Table 6.22: Values of Bn. The value of Vn, vo, Bo and p are always equal to 0, 0, 
0 and 1, respectively. 

6.3 The composite null hypothesis 

As in the previous section, the simulated samples are drawn from a distribution 
F(t;vn,Bn) belonging to the family of Harrington and Fleming alternatives to 
the exponential distribution. The values of Vn and p are O and 1, respectively. 
However, the parameter of interest Bn varies in a different way with sample size: 

21ogn 
(6.8) 

where v0 is equal to zero. Again CH is chosen according to the five types of 
hypotheses HLL, HL, H0 , HR and HRR under which simulation takes place; the 
respective choices of CH are -1.0, -0.5, 0.0, 0.5 and 1.0, resulting in the values of Bn 
listed in Table 6.22. The asymptotic power of the generalized rank test based on 
stochastic integral 13 and maximum likelihood estimation is given in Table 6.3. 
For size 1/n the power of a one-sided version of this test will under HRR and HLL 
tend to 0.5 as n tends to infinity. 

6.3.1 The maximum likelihood estimator 

On the basis of Theorem 7 and its corollaries we expect that v!n) has a distribution 
which is close to Gaussian if the sample size is sufficiently large. Moreover, under 
H0 the mean is close to zero and the variance should be near ( nH1 ( oo; v0 , Bo) )-1 . 

As far as H0 concerns, in Table 6.23 we see that although the mean of v!n) 

deviates from zero in uncensored samples, it tends to zero rather quickly [roughly 
at a rate n- 1J. For censored samples the deviation is unnoticable. The variance 
of v1") is in both tables as indicated. 
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HLL HL Ho HR HRR 
Sample size 25; no censoring 

mean v(n) -0.7436 -0.3936 0.0177 0.5029 1.0580 
st.dev. v(n) 0.1331 0.1643 0.2002 0.2496 0.3153 
skewness v(n) 0.2820 0.2259 0.2756 0.1672 0.0561 
kurtosis v(n) 0.0179 0.0488 0.1580 0.0956 -0.0528 

Sample size 50; no censoring 
mean v(n) -0.6023 -0.3167 0.0101 0.3782 0.7834 
st.dev. v(n) 0.1016 0.1201 0.1411 0.1694 0.2021 
skewness v(n) 0.0718 0.2544 -0.0947 0.1701 0.1833 
kurtosis v(n) 0.0658 0.0818 0.0426 0.0462 0.0115 

Sample size 100; no censoring 
mean v<n) -0A773 -0.2475 0.0044 0.2824 0.5787 
st.dev. v<n) 0.0766 0.0875 0.0995 0.1143 0.1300 
skewness v(n) 0.1303 -0.0761 0.0374 0.1051 0.0959 
kurtosis v<n) -0.0133 -0.0021 -0.0002 0.0058 0.0374 

Sample size 25; standard exponential censoring 
mean v<n) -1.5431 -0.8943 -0.0015 1.1522 2.5095 
st.dev. v(n) 0.2363 0.2581 0.2950 0.3486 0.3997 
skewness v<n) -0.5300 "0.2887 -0.1889 -0.2045 -0.1894 
kurtosis v<n) 0.8844 0.5535 0.2429 0.1699 0.2315 

Sample size 50; standard exponential censoring 
mean v<n) -1.2828 -0.7154 0.0009 0.8723 1.8736 
st.dev. v<n) 0.1669 0.1812 0.2025 0.2336 0.2721 
skewness v<n) -0.2753 . -0.2176 -0.1274 -0.0040 -0.1408 
kurtosis v<n) 0.1905 0.2161 0.1948 0.1749 0.0635 

Sample size 100; standard exponential censoring 
mean v<n) -1.0317 -0.5621 0.0002 0.6539 1.3898 
st.dev. v<n) 0.1221 0.1313 0.1425 0.1586 0.1809 
skewness v(n) -0.2834 -0.0988 0.0171 -0.0144 0.1241 
kurtosis v(n) 0.2477 0.1269 0.0046 -0.0584 0.0962 

Table 6.23: Description of the behavior of the maximum likelihood estimator. 
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6.3.2 Stochastic integral 12 

We have already encountered stochastic integral 12 in discussing the simulation 
results for the simple null hypothesis. The inclusion of this stochastic integral in 
the simulations for the composite null hypothesis is intended to show the perils 
of plugging in estimators and subsequently carrying on as under the simple null 
hypothesis. 

Since stochastic integral 12 is scaled for the simple null hypothesis, we do not 
have that aR(v0 ) and as(v0 ) are equal to 1. Instead, we have aR(vo) = 4 and 
as( v0 ) is even larger. As a consequence, the computed asymptotic P-values are 
far too conservative [see Tables 6.24b, 6.25b and 6.26b]. 

The magnitude of the computed asymptotic P-values raised some difficulties 
with the storage of the simulation results, These were solved by choosing the 
interval width of the histogram of the asymptotic P-values differently, which 
unfortunately made the precision of the simulated power decrease. 

If we are using critical values as given in Tables 6.24b, 6.25b and 6.26b, then 
Theorem 13 on page 67 yields that the generalized rank test is optimal. However, 
the supremum type test is not. It is clear from Tables 6.24c, 6.25c and 6.26c that 
a supremum type test is outdistanced by the corresponding generalized rank test. 

6.3.3 Stochastic integral 13 

Stochastic integral 13 is based on the weight process for known censoring distri
bution proposed in section 5.3. The quantities eR(h, v0 ) and es(h, v0 ) are given 
by 

eR(h,vo) = es(h,vo) = Jµ2p(vo) - (µp(vo))2/µo(vo)- (6.9) 

If censoring is absent then both eR(h, v0 ) and es(h, v0 ) are equal to 1/12. If the 
censoring distribution is standard exponential they become 1/36. 

Since the generalized rank tests based on stochastic integrals 12 and 13 differ 
from each other by a multitude of Mn( oo; v<n), 00 ), which is zero by the definition 
of the maximum likelihood estimator, their power should be about the same. The 
differences between the simulated power of generalized rank tests in Table 6.24c 
and Table 6.27c should be adressed to the inaccuracy of the simulated power men
tioned in the discussion of stochastic integral 12. The same holds for Tables 6.25c 
and 6.28c, and Tables 6.26c and 6.29c. 

The supremum type tests based on stochastic integral 13 perform better than 
those based on stochastic integral 12. The only exception is the two-sided supre
mum type test when applied to a situation in which On is negative. 

The simulated power of the generalized rank test tends to be lower than the 
asymptotic power given in Table 6.3, especially for the smaller test sizes. This 
effect is stronger for samples where censoring is present. 
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6.3.4 Stochastic integral 23 

125 

The weight process for unknown censoring distribution proposed in section 5.3 
leads to stochastic integral 23. For this stochastic integral en(h, v0 ) and es(h, v0 ) 

coincide with those for stochastic integral 13, and hence are given by (6.9). 
On the whole, tests based on stochastic integral 23 seem to be more sensitive 

to negative values, and less sensitive to positive values than the corresponding 
tests based on stochastic integral 13. The difference in sensitivity is stronger 
for two-sided tests than for one-sided tests, for supremum type tests than for 
generalized rank tests, and for small samples than for large samples. In rather 
surprising contrast to two-sided tests, the simulated power of one-sided tests in 
uncensored samples remains relatively unaffected by the choice between the two 
stochastic integrals. 
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HLL HL Ho HR HRR 
mean Qn(oo; v<n)) -1.0809 -0.6409 -0.0898 0.5314 1.1619 
st.dev. Qn( oo; v!nl) 0.3097 0.3921 0.4905 0.6101 0.7482 
skewness Qn(oo;v(n)) 0.4893 0.3543 0.3055 0.3904 0.3986 
kurtosis Qn( oo; v!nl) 0.3068 0.0904 0.2030 0.1534 0.1028 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.1583 0.1524 0.2536 0.0666 0.0896 0.1000 
0.040 0.1865 0.2070 0.3105 0.0963 0.1324 0.1533 
0.060 0.2065 0.2416 0.3548 0.1207 0.1689 0.1887 
0.080 0.2268 0.2686 0.3862 0.1435 0.1983 0.2158 
0.100 0.2436 0.2914 0.4135 0.1641 0.2253 0.2504 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.625 0.182 0.206 0.553 0.450 0.092 0.161 0.491 
0.040 0.743 0.276 0.305 0.661 0.610 0.174 0.213 0.560 
0.060 0.810 0.346 0.371 0.717 0.709 0.247 0.253 0.606 
0.080 0.861 0.412 0.420 0.757 0.767 0.299 0.283 0.636 
0.100 0.893 0.470 0.465 0.786 0.810 0.348 0.311 0.662 

Supremum type test 
0.020 0.542 0.155 0.180 0.496 0.453 0.107 0.103 0.368 
0.040 0.669 0.243 0.262 0.599 0.593 0.186 0.158 0.458 
0.060 0.744 0.311 0.326 0.668 0.662 0.239 0.193 0.510 
0.080 0.797 0.367 0.373 0.708 0.706 0.278 0.222 0.544 
0.100 0.836 0.421 0.415 0.738 0.756 0.325 0.256 0.586 

C 

Table 6.24: Tests based on stochastic integral type 12 (maximum likelihood esti
mation) and n = 25. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn Hnn 
mean Qn(oo; vlnJ) -1.2453 -0.7006 -0.0607 0.6449 1.3887 
st.dev. Qn( oo; v(n)) 0.3464 0.4138 0.4950 0.5834 0.6955 
skewness Qn(oo; v(n)) 0.3151 0.3780 0.2343 0.1073 0.0958 
kurtosis Qn( oo; v<n)) 0.0730 0.1572 0.0186 -0.1256 0.0173 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.1283 0.1230 0.2050 0.0434 0.0580 0.0641 
0.020 0.1530 0.1576 0.2497 0.0662 0.0850 0.0997 
0.030 0.1683 0.1819 0.2828 0.0841 0.1084 0.1244 
0.040 0.1879 0.2001 0.3094 0.0992 0.1291 0.1484 
0.050 0.1998 0.2148 0.3302 0.1122 0.1446 0.1698 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn Hnn HLL HL Hn Hnn 

Generalized rank test 
0.010 0.644 0.150 0.188 0.622 0.496 0.078 0.145 0.562 
0.020 0.748 0.222 0.269 0.705 0.626 0.140 0.191 0.626 
0.030 0.798 0.273 0.319 0.753 0.706 0.187 0.232 0.669 
0.040 0.849 0.340 0.361 0.783 0.753 0.227 0.263 0.698 
0.050 0.875 0.378 0.392 0.804 0.788 0.262 0.285 0.720 

Supremum type test 
0.010 0.541 0.114 0.153 0.539 0.447 0.076 0.082 0.407 
0.020 0.668 0.191 0.221 0.631 0.584 0.136 0.133 0.504 
0.030 0.738 0.254 0.276 0.689 0.650 0.177 0.164 0.557 
0.040 0.786 0.301 0.320 0.731 0.703 0.220 0.195 0.599 
0.050 0.816 0.339 0.352 0.758 0.740 0.258 0.223 0.631 

C 

Table 6.25: Tests based on stochastic integral type 12 (maximum likelihood esti
mation} and n = 50. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn Hnn 
mean Qn(oo;v<n)) -1.3881 -0.7630 -0.0323 0. 7286 1.5403 
st.dev. Qn( oo; v<nl) 0.3779 0.4358 0.4986 0.5694 0.6417 
skewness Qn( oo; v!n)) 0.1092 0.2182 0.2227 0.0705 0.0306 
kurtosis Qn(oo; v!n)) -0.0570 0.0015 0.0517 -0.0068 0.0099 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.1137 0.0877 0.1591 0.0339 0.0331 0.0440 
0.010 0.1339 0.1142 0.1996 0.0489 0.0497 0.0672 
0.015 0.1480 0.1334 0.2305 0.0588 0.0617 0.0834 
0.020 0.1584 0.1471 0.2510 0.0696 0.0739 0.0985 
0.025 0.1678 0.1598 0.2675 0.0798 0.0841 0.1109 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn Hnn HLL HL Hn Hnn 

Generalized rank test 
0.005 0.691 0.157 0.139 0.610 0.484 0.067 0.121 0.579 
0.010 0.775 0.220 0.200 0.698 0.614 0.114 0.165 0.653 
0.015 0.821 0.265 0.247 0.746 0.699 0.161 0.204 0.701 
0.020 0.846 0.299 0.281 0.777 0.743 0.192 0.227 0.729 
0.025 0.867 0.330 0.313 0.799 0.774 0.220 0.248 0.747 

Supremum type test 
0.005 0.561 0.113 0.111 0.519 0.446 0.068 0.074 0.427 
0.010 0.663 0.167 0.164 0.612 0.560 0.112 0.113 0.525 
0.015 0.716 0.203 0.201 0.662 0.623 0.142 0.140 0.574 
0.020 0.763 0.241 0.236 0.699 0.665 0.168 0.163 0.610 
0.025 0.796 0.276 0.265 0.726 0.700 0.189 0.183 0.638 

C 

Table 6.26: Tests based on stochastic integral type 12 (maximum likelihood esti
mation) and n = 100. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; v\nJ) -2.1617 -1.2819 -0.1796 1.0628 2.3237 
st.dev. Qn( oo; v<n)) 0.6195 0.7841 0.9811 1.2203 1.4965 
skewness Qn(oo; v<n)) 0.4893 0.3543 0.3055 0.3903 0.3986 
kurtosis Qn(oo; v<n)) 0.3068 0.0904 0.2030 0.1534 0.1028 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0225 0.0198 0.0226 0.0422 0.0134 0.0222 
0.040 0.0377 0.0512 0.0430 0.0699 0.0324 0.0474 
0.060 0.0507 0.0806 0.0646 0.0920 0.0546 0.0722 
0.080 0.0673 0.1082 0.0831 0.1180 0.0792 0.0985 
0.100 0.0826 0.1360 0.1017 0.1404 0.1043 0.1246 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.623 0.181 0.205 0.552 0.451 0.093 0.161 0.492 
0.040 0.745 0.278 0.305 0.660 0.613 0.175 0.214 0.560 
0.060 0.809 0.345 0.372 0.718 0.710 0.248 0.254 0.607 
0.080 0.862 0.414 0.420 0.757 0.766 0.298 0.283 0.636 
0.100 0.894 0.470 0.465 0.785 0.809 0.347 0.311 0.661 

Supremum type test 
0.020 0.618 0.180 0.217 0.562 0.292 0.042 0.202 0.544 
0.040 0.739 0.278 0.295 0.649 0.471 0.102 0.266 0.620 
0.060 0.802 0.342 0.361 0.707 0.576 0.154 0.308 0.661 
0.080 0.853 0.408 0.411 0.747 0.657 0.206 0.348 0.694 
0.100 0.882 0.453 0.456 0.779 0.714 0.256 0.383 0.723 

C 

Table 6.27: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 25. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vln)) -2.4907 -1.4012 -0.1215 1.2897 2.7773 
st.dev. Qn( oo; v(n)) 0.6929 0.8275 0.9900 1.1667 1.3910 
skewness Qn( oo; v(n)) 0.3151 0.3780 0.2343 0.1073 0.0958 
kurtosis Qn(oo;v(n)) 0.0730 0.1572 0.0186 -0.1256 0.0173 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0117 0.0101 0.0112 0.0200 0.0061 0.0107 
0.020 0.0203 0.0224 0.0215 0.0346 0.0154 0.0215 
0.030 0.0274 0.0349 0.0320 0.0496 0.0250 0.0351 
0.040 0.0381 0.0461 0.0419 0.0627 0.0354 0.0466 
0.050 0.0461 0.0563 0.0516 0.0764 0.0444 0.0578 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.643 0.150 0.188 0.621 0.495 0.078 0.145 0.561 
0.020 0.748 0.221 0.270 0.705 0.627 0.140 0.192 0.627 
0.030 0.799 0.272 0.320 0.754 0.708 0.189 0.232 0.671 
0.040 0.848 0.338 0.360 0.783 0.753 0.227 0.262 0.698 
0.050 0.875 0.378 0.391 0.802 0.788 0.262 0.285 0.720 

Supremum type test 
0.010 0.630 0.144 0.179 0.603 0.357 0.040 0.171 0.592 
0.020 0.738 0.218 0.259 0.692 0.501 0.081 0.223 0.656 
0.030 0.800 0.281 0.313 0.739 0.603 0.128 0.272 0.705 
0.040 0.839 0.325 0.351 0.772 0.661 0.164 0.305 0.732 
0.050 0.866 0.372 0.384 0.794 0.705 0.192 0.328 0.751 

C 

Table 6.28: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 50. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; v\nJ) -2. 7763 -1.5259 -0.0645 1.4571 3.0805 
st.dev. Qn(oo; v(n)) 0.7558 0.8716 0.9972 1.1389 1.2834 
skewness Qn( oo; v(n)) 0.1092 0.2182 0.2227 0.0705 0.0306 
kurtosis Qn( oo; v(n)) -0.0570 0.0015 0.0517 -0.0068 0.0099 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0080 0.0036 0.0049 0.0124 0.0026 0.0048 
0.010 0.0134 0.0082 0.0104 0.0208 0.0058 0.0094 
0.015 0.0179 0.0129 0.0163 0.0276 0.0102 0.0149 
0.020 0.0226 0.0181 0.0214 0.0341 0.0138 0.0219 
0.025 0.0267 0.0230 0.0260 0.0408 0.0182 0.0263 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.693 0.157 0.141 0.616 0.486 0.068 0.121 0.580 
0.010 0.776 0.221 0.203 0.701 0.617 0.115 0.165 0.654 
0.015 0.819 0.261 0.245 0.744 0.696 0.159 0.203 0.700 
0.020 0.846 0.298 0.282 0.777 0.741 0.191 0.226 0.727 
0.025 0.865 0.327 0.312 0.798 0.772 0.216 0.246 0.745 

Supremum type test 
0.005 0.674 0.146 0.139 0.605 0.387 0.043 0.135 0.600 
0.010 0.760 0.212 0.194 0.681 0.500 0.074 0.177 0.662 
0.015 0.803 0.253 0.242 0.733 0.579 0.101 0.214 0.704 
0.020 0.832 0.288 0.271 0.759 0.651 0.133 0.248 0.739 
0.025 0.856 0.317 0.304 0.785 0.686 0.154 0.266 0.755 

C 

Table 6.29: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 100. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 



132 - CHAPTER 6. SMALL SAMPLE CHARACTERISTICS 

HLL HL Ho Hn Hnn 
mean Qn(oo;v<n)) -1.8702 -1.1822 -0.1362 0.9217 1.6082 
st.dev. Qn(oo; v<n)) 0.7950 0.8010 0.9887 1.3607 1.7703 
skewness Qn( oo; v(n)) -0.3152 -0.1281 0.3725 0.7136 0.9926 
kurtosis Qn(oo;v(n)) -0.0514 0.1657 0.5918 1.0510 1.7083 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0204 0.0188 0.0178 0.0353 0.0118 0.0151 
0.040 0.0381 0.0464 0.0394 0.0657 0.0327 0.0407 
0.060 0.0552 0.0733 0.0617 0.0945 0.0593 0.0690 
0.080 0.0715 0.1030 0.0817 0.1200 0.0834 0.0958 
0.100 0.0885 0.1310 0.1035 0.1449 0.1091 0.1255 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn HnR HLL HL HR Hnn 

Generalized rank test 
0.020 0.396 0.138 0.180 0.336 0.256 0.073 0.140 0.278 
0.040 0.527 0.224 0.253 0.421 0.389 0.135 0.187 0.342 
0.060 0.615 0.294 0.304 0.475 0.481 0.190 0.224 0.386 
0.080 0.679 0.354 0.351 0.520 0.543 0.237 0.252 0.415 
0.100 0.728 0.409 0.391 0.555 0.599 0.280 0.278 0.440 

Supremum type test 
0.020 0.384 0.136 0.183 0.338 0.165 0.038 0.160 0.309 
0.040 0.512 0.220 0.257 0.421 0.288 0.090 0.220 0.378 
0.060 0.598 0.288 0.315 0.481 0.380 0.135 0.265 0.428 
0.080 0.654 0.342 0.354 0.521 0.447 0.173 0.298 0.460 
0.100 0.707 0.393 0.389 0.555 0.502 0.214 0.330 0.494 

C 

Table 6.30: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 25. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn Hnn 
mean Qn(oo; v<n)) -2.2354 -1.3145 -0.1076 1.2216 2.2743 
st.dev. Qn( oo; v(n)) 0.7809 0.8333 0.9853 1.2965 1.7302 
skewness Qn(oo; v(n)) -0.1759 0.0189 0.2438 0.3669 0.7487 
kurtosis Qn( oo; v(n)) 0.0986 0.1111 0.2499 0.4027 0.7663 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0136 0.0079 0.0103 0.0222 0.0053 0.0081 
0.020 0.0221 0.0186 0.0207 0.0376 0.0156 0.0226 
0.030 0.0324 0.0332 0.0313 0.0516 0.0239 0.0347 
0.040 0.0401 0.0458 0.0422 0.0657 0.0363 0.0469 
0.050 0.0493 0.0587 0.0543 0.0776 0.0479 0.0602 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn Hnn HLL HL Hn Hnn 

Generalized rank test 
0.010 0.498 0.143 0.171 0.426 0.322 0.066 0.148 0.388 
0.020 0.604 0.201 0.238 0.501 0.444 0.118 0.190 0.449 
0.030 0.685 0.258 0.298 0.560 0.528 0.157 0.224 0.486 
0.040 0.731 0.294 0.338 0.595 0.594 0.194 0.251 0.513 
0.050 0.771 0.339 0.366 0.627 0.646 0.232 0.278 0.538 

Supremum type test 
0.010 0.479 0.137 0.170 0.420 0.215 0.035 0.154 0.399 
0.020 0.594 0.200 0.248 0.515 0.354 0.080 0.221 0.486 
0.030 0.662 0.249 0.287 0.556 0.431 0.113 0.258 0.525 
0.040 0.714 0.292 0.331 0.600 0.491 0.143 0.286 0.554 
0.050 0.749 0.323 0.367 0.629 0.545 0.170 0.310 0.580 

C 

Table 6.31: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 50. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo; vln/) -2.6127 -1.4 708 -0.0769 1.4259 2.7542 
st.dev. Qn(oo; v(n)) 0.7917 0.8383 1.0164 1.2443 1.5497 
skewness Qn(oo; v(n)) -0.0218 0.0448 0.1697 0.2699 0.2691 
kurtosis Qn(oo; vlnl) -0.0534 0.1373 0.1738 0.2143 0.0762 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0050 0.0030 0.0037 0.0073 0.0021 0.0032 
0.010 0.0107 0.0074 0.0076 0.0168 0.0055 0.0073 
0.015 0.0147 0.0130 0.0129 0.0230 0.0097 0.0125 
0.020 0.0192 0.0173 0.0190 0.0291 0.0133 0.0181 
0.025 0.0229 0.0213 0.0233 0.0355 0.0185 0.0233 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.513 0.093 0.143 0.473 0.355 0.040 0.120 0.435 
0.010 0.646 0.161 0.203 0.555 0.466 0.075 0.158 0.492 
0.015 0.700 0.199 0.249 0.610 0.558 0.111 0.191 0.541 
0.020 0.748 0.238 0.275 0.641 0.624 0.147 0.222 0.578 
0.025 0.777 0.266 0.297 0.661 0.661 0.169 0.238 0.598 

Supremum type test 
0.005 0.486 0.084 0.138 0.462 0.258 0.023 0.124 0.442 
0.010 0.631 0.157 0.195 0.546 0.372 0.048 0.169 0.511 
0.015 0.686 0.196 0.238 0.598 0.459 0.075 0.205 0.558 
0.020 0.725 0.230 0.268 0.628 0.521 0.099 0.232 0.592 
0.025 0.759 0.259 0.301 0.657 0.566 0.119 0.255 0.615 

C 

Table 6.32: Tests based on stochastic integral type 13 (maximum likelihood esti
mation) and n = 100. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 



6.3. - THE COMPOSITE NULL HYPOTHESIS 135 

HLL HL Ho HR HRR 
mean Qn(oo; vlnJ) -2.5843 -1.4571 -0.2413 0.9568 2.0603 
st.dev. Qn( oo; v(nl) 0.8544 0.9362 1.0125 1.1183 1.2755 
skewness Qn( oo; v(nl) 0.1440 0.0118 -0.0374 0.0973 0.2046 
kurtosis Qn( oo; v(n)) -0.0257 -0.0991 0.0559 0.0741 0.1778 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0101 0.0313 0.0154 0.0187 0.0255 0.0211 
0.040 0.0214 0.0636 0.0313 0.0403 0.0499 0.0423 
0.060 0.0337 0.0934 0.0473 0.0609 0.0742 0.0671 
0.080 0.0482 0.1215 0.0660 0.0846 0.0997 0.0887 
0.100 0.0629 0.1477 0.0865 0.1092 0.1261 0.1096 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.020 0.618 0.178 0.209 0.558 0.575 0.151 0.095 0.379 
0.040 0.744 0.274 0.303 0.658 0.694 0.232 0.145 0.463 
0.060 0.812 0.349 0.369 0.717 0.760 0.289 0.185 0.520 
0.080 0.862 0.414 0.419 0.757 0.810 0.346 0.221 0.566 
0.100 0.893 0.470 0.464 0.786 0.849 0.395 0.257 0.606 

Supremum type test 
0.020 0.620 0.178 0.213 0.555 0.521 0.124 0.132 0.441 
0.040 0.747 0.278 0.292 0.646 0.641 0.192 0.196 0.532 
0.060 0.811 0.349 0.356 0.699 0.717 0.253 0.245 0.595 
0.080 0.859 0.412 0.408 0.742 0.762 0.293 0.280 0.632 
0.100 0.889 0.464 0.452 0.775 0.795 0.331 0.311 0.658 

C 

Table 6.33: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 25. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; v<n)) -2.8551 -1.5364 -0.1641 1.1944 2.5041 
st.dev. Qn( oo; v(n)) 0.8911 0.9439 1.0071 1.0731 1.1909 
skewness Qn( oo; v(n)) 0.0749 0.1252 -0.0094 -0.0902 -0.0735 
kurtosis Qn(oo;v(n)) -0.0674 -0.0068 -0.0208 -0.1120 0.0969 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0054 0.0156 0.0083 0.0094 0.0122 0.0105 
0.020 0.0119 0.0303 0.0176 0.0202 0.0255 0.0213 
0.030 0.0178 0.0443 0.0262 0.0312 0.0373 0.0320 
0.040 0.0270 0.0563 0.0341 0.0431 0.0487 0.0436 
0.050 0.0337 0.0672 0.0449 0.0568 0.0599 0.0562 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.010 0.635 0.145 0.187 0.620 0.599 0.124 0.090 0.457 
0.020 0.749 0.221 0.268 0.704 0.710 0.189 0.137 0.549 
0.030 0.801 0.274 0.322 0.754 0.762 0.233 0.171 0.597 
0.040 0.849 0.340 0.361 0.783 0.794 0.268 0.196 0.630 
0.050 0.874 0.377 0.392 0.803 0.829 0.311 0.229 0.668 

Supremum type test 
0.010 0.632 0.145 0.179 0.602 0.547 0.101 0.115 0.502 
0.020 0.745 0.221 0.259 0.691 0.651 0.158 0.168 0.587 
0.030 0.802 0.278 0.311 0.736 0.714 0.198 0.205 0.633 
0.040 0.843 0.330 0.348 0.767 0.755 0.231 0.240 0.672 
0.050 0.872 0.380 0.384 0.794 0.788 0.264 0.272 0.704 

C 

Table 6.34: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 50. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; vlnJ) -3.0751 -1.6314 -0.0937 1.3753 2.8332 
st.dev. Qn(oo; v!nl) 0.9156 0.9623 1.0027 1.0607 1.1205 
skewness Qn( oo; v!n)) -0.0646 0.0458 0.0515 -0.0831 -0.1074 
kurtosis Qn( oo; v!n)) -0.0999 -0.0676 -0.0034 -0.0067 0.0394 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0045 0.0057 0.0053 0.0068 0.0051 0.0058 
0.010 0.0085 0.0119 0.0104 0.0125 0.0097 0.0114 
0.015 0.0129 0.0169 0.0146 0.0183 0.0159 0.0168 
0.020 0.0164 0.0234 0.0196 0.0238 0.0199 0.0221 
0.025 0.0202 0.0291 0.0247 0.0304 0.0254 0.0277 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.692 0.155 0.139 0.612 0.618 0.114 0.093 0.519 
0.010 0.774 0.219 0.203 0.700 0.712 0.168 0.133 0.602 
0.015 0.823 0.266 0.241 0.742 0.756 0.203 0.157 0.642 
0.020 0.848 0.300 0.283 0.776 0.792 0.235 0.183 0.676 
0.025 0.867 0.329 0.314 0.799 0.818 0.262 0.207 0.705 

Supremum type test 
0.005 0.678 0.148 0.139 0.605 0.557 0.092 0.104 0.540 
0.010 0.758 0.210 0.192 0.675 0.651 0.134 0.147 0.620 
0.015 0.807 0.255 0.242 0.732 0.708 0.169 0.178 0.660 
0.020 0.834 0.290 0.268 0.755 0.743 0.197 0.203 0.691 
0.025 0.861 0.324 0.302 0.783 0.771 0.221 0.226 0.717 

C 

Table 6.35: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 100. No censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn(oo;vlnJ) -2.8138 -1.5424 -0.2213 0.7090 1.1824 
st.dev. Qn(oo;v!n)) 0.9407 1.0018 1.0388 1.0960 1.2419 
skewness Qn(oo; v!n)) 0.2262 0.0034 -0.0759 -0.0518 0.1543 
kurtosis Qn( oo; v<n)) -0.0464 -0.1069 -0.0652 0.0672 0.3960 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.020 0.0076 0.0330 0.0128 0.0134 0.0358 0.0195 
0.040 0.0178 0.0583 0.0267 0.0297 0.0658 0.0417 
0.060 0.0306 0.0865 0.0443 0.0502 0.0913 0.0637 
0.080 0.0429 0.1139 0.0627 0.0730 0.1174 0.0901 
0.100 0.0577 0.1374 0.0791 0.0947 0.1435 0.1150 

b 

Size One-sided test Two-sided test 
of test HLL HL HR fl.'IR HLL HL HR HRR 

Generalized rank test 
0.020 0.663 0.191 0.153 0.288 0.642 0.173 0.051 0.140 
0.040 0.773 0.294 0.216 0.374 0.742 0.256 0.088 0.195 
0.060 0.836 0.373 0.275 0.438 0.802 0.325 0.123 0.246 
0.080 0.873 0.434 0.327 0.491 0.838 0.378 0.160 0.288 
0.100 0.899 0.492 0.367 0.531 0.864 0.419 0.185 0.324 

Supremum type test 
0.020 0.686 0.197 0.152 0.291 0.643 0.167 0.063 0.162 
0.040 0.791 0.298 0.228 0.381 0.747 0.250 0.109 0.235 
0.060 0.848 0.380 0.281 0.442 0.799 0.310 0.148 0.282 
0.080 0.888 0.451 0.326 0.488 0.836 0.363 0.186 0.326 
0.100 0.910 0.503 0.367 0.532 0.864 0.405 0.220 0.366 

C 

Table 6.36: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 25. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho Hn Hnn 
mean Qn(oo; vln)) -3.1650 -1.6180 -0.1682 1.0020 1.7408 
st.dev. Qn(oo; v(n)) 0.9699 1.0124 1.0113 1.0526 1.1820 
skewness Qn( oo; v(n)) 0.1576 0.0563 -0.0837 -0.2078 0.1002 
kurtosis Qn( oo; v(n)) -0.0450 -0.0851 -0.0480 0.0441 0.0562 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.010 0.0056 0.0171 0.0092 0.0094 0.0179 0.0125 
0.020 0.0107 0.0308 0.0172 0.0180 0.0321 0.0256 
0.030 0.0183 0.0442 0.0255 0.0278 0.0465 0.0359 
0.040 0.0245 0.0605 0.0356 0.0398 0.0584 0.0482 
0.050 0.0311 0.0733 0.0449 0.0496 0.0720 0.0589 

b 

Size One-sided test Two-sided test 
of test HLL HL Hn Hnn HLL HL Hn Hnn 

Generalized rank test 
0.010 0.745 0.187 0.143 0.374 0.720 0.168 0.060 0.227 
0.020 0.816 0.252 0.208 0.457 0.793 0.229 0.091 0.289 
0.030 0.864 0.324 0.259 0.515 0.833 0.274 0.119 0.336 
0.040 0.888 0.368 0.310 0.565 0.862 0.320 0.149 0.380 
0.050 0.908 0.407 0.340 0.597 0.881 0.354 0.173 0.410 

Supremum type test 
0.010 0.760 0.191 0.142 0.371 0.709 0.155 0.069 0.251 
0.020 0.828 0.262 0.205 0.457 0.794 0.223 0.113 0.328 
0.030 0.870 0.325 0.257 0.514 0.828 0.262 0.144 0.372 
0.040 0.897 0.379 0.291 0.552 0.856 0.302 0.175 0.415 
0.050 0.913 0.416 0.328 0.588 0.874 0.333 0.197 0.444 

C 

Table 6.37: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 50. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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HLL HL Ho HR HRR 
mean Qn( oo; v<n)) -3.4306 -1.7217 -0.1192 1.2254 2.2003 
st.dev. Qn( oo; v<nl) 0.9883 0.9882 1.0271 1.0378 1.1022 
skewness Qn(oo;v(n)) 0.0873 0.0091 -0.0652 -0.1170 -0.1709 
kurtosis Qn(oo; v<n)) -0.0689 0.0228 -0.0293 0.0102 0.0174 

a 

Size Generalized rank test Supremum type test 
of Left- Right- Two- Left- Right- Two-

test Sided Sided Sided Sided Sided Sided 
0.005 0.0030 0.0070 0.0037 0.0041 0.0064 0.0056 
0.010 0.0061 0.0129 0.0089 0.0096 0.0124 0.0111 
0.015 0.0087 0.0195 0.0127 0.0142 0.0168 0.0170 
0.020 0.0120 0.0258 0.0162 0.0188 0.0225 0.0212 
0.025 0.0159 0.0312 0.0202 0.0238 0.0286 0.0266 

b 

Size One-sided test Two-sided test 
of test HLL HL HR HRR HLL HL HR HRR 

Generalized rank test 
0.005 0.754 0.149 0.117 0.411 0.697 0.114 0.050 0.263 
0.010 0.824 0.215 0.164 0.493 0.794 0.184 0.089 0.357 
0.015 0.856 0.256 0.211 0.551 0.829 0.220 0.111 0.399 
0.020 0.882 0.295 0.246 0.592 0.850 0.248 0.128 0.431 
0.025 0.902 0.336 0.274 0.626 0.870 0.274 0.145 0.460 

Supremum type test 
0.005 0.746 0.140 0.108 0.388 0.701 0.113 0.064 0.293 
0.010 0.833 0.222 0.158 0.476 0.778 0.164 0.100 0.372 
0.015 0.866 0.268 0.190 0.519 0.820 0.208 0.127 0.425 
0.020 0.889 0.305 0.220 0.559 0.842 0.233 0.143 0.456 
0.025 0.906 0.338 0.254 0.597 0.861 0.260 0.164 0.486 

C 

Table 6.38: Tests based on stochastic integral type 23 (maximum likelihood esti
mation) and n = 100. Standard exponential censoring. 
a: description stochastic integral; 
b: critical points asymptotic P-values; 
c: simulated power generalized rank and supremum type tests. 
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6.4 Conclusion 

Replacing µ/3( v0 ) by µ/3( v0 ) in the weight process shifts the sensitivity. The di
rection of the shift depends on whether we are dealing with the simple [increased 
sensitivity to the right] or composite [increased sensitivity to the left] null hy
pothesis. 

An exception should be made for one-sided tests. The indifference spotted 
here seems to suggest that the replacement has about the same effect as a mono
tone transformation of the test statistic. 

If censoring occurs, then left-sided tests should be preferably be based on 
stochastic integral 12 [simple null hypothesis] or 23 [composite null hypothe
sis], and right-sided tests on stochastic integral 22 [simple null hypothesis] or 13 
[composite null hypothesis]. No preference can be given for one-sided tests in the 
absence of censoring. The same is true for two-sided tests, since higher sensitivity 
to the left or right is no criterium for two-sided tests, where the user is supposed 
to be ignorant of direction. 
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Appendix A 

On Wieand's theorem 

This appendix contains the first three sections of Kallenberg and Koning (1993), 
which materialized in an effort to generalize Theorem 11, stated in section 4.3 on 
pag, 65. 

Wieand's theorem on equivalence of limiting approximate Bahadur efficiency 
and limiting Pitman efficiency is extended in several ways. Conditions on mono
tonicity and continuity are obviated, composite null hypotheses are incorporated, 
and the implications of a weaker form of Wieand's Condition III* are investigated. 

A.1 Introduction 

To compare the performance of two sequences of test statistics, many efficiency 
concepts have been proposed. Probably the most widely used is asymptotic 
relative Pitman efficiency. 

In Bahadur (1960) the concept of exact Bahadur efficiency was proposed. This 
concept requires large deviation results, the derivation of which often becomes 
the stumbling-block in the application. As a "quick and dirty" variant Bahadur 
simultaneously proposed approximate Bahadur efficiency, valid for comparison of 
so-called standard sequences. Since it is rather easy to verify whether a sequence 
of test statistics actually is standard, approximate Bahadur efficiency in spite of 
its apparent shortcomings [see Bahadur (1960)] has become quite popular. 

In favour of approximate Bahadur efficiency, Bahadur argued that for many 
well-known test statistics the limiting [as the alternative approaches the null hy
pothesis] approximate Bahadur efficiency is equal to the asymptotic relative Pit
man efficiency. Working with an extended version of asymptotic relative Pitman 
efficiency, Wieand ( 1976) elaborated this point by presenting a condition under 
which the limiting approximate Bahadur efficiency, coincided with the limiting 
[as the size of the test tends to zero] asymptotic relative Pitman efficiency. 

Unfortunately, Wieand only proved the theorem which stated this coincidence 
for the simple null hypothesis. Moreover, he requires continuity and strict mono-

143 
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(0o,0) 0 

Figure A.l: Limiting Pitman efficiency. 

tonicity of the tail of the asymptotic null distribution of the sequence of test 
statistics. In this note we extend Wieand's theorem to composite null hypothe
ses, while discarding continuity and strict monotonicity conditions. 

Evaluating limiting Pitman efficiency means that the alternative is sent to the 
null hypothesis and afterwards the size o: to zero. This is outlined in Figure A.l. 

The order of the operations is reversed for the limiting approximate Bahadur 
efficiency, as is sketched in Figure A.2. 

Under Wieand's Condition III* it holds for standard sequences of test statistics 
that both ways of approaching (00 , 0) yield the same result. In fact it can be 
shown that for any way in which (0,o:) tend to (00 ,0) the result is the same, 
provided that Wieand's Condition III* holds. 

Often, the knowledge of the behavior of the test statistics is available in great 

(0o, 0) 0 

Figure A.2: Limiting Bahadur efficiency. 
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a 

(0o, 0) 0 

Figure A.3: The restricted area of admitted trajectories. 

detail under the null hypothesis, but scarse under the alternative hypothesis. 
This may lead to problems with the verification of Wieand's Condition III*, since 
it deals explicitly with the behavior under the alternative hypothesis. However, if 
a weaker form of the condition holds [cf. Definition 13 in section A.2] it still can 
be shown that we come close to the answer of the Bahadur approach for any tra
jectory in a restricted region, for instance trajectories as sketched in Figure A.3. 

The closer we want to be to the answer of the Bahadur approach, the smaller 
the area of admitted trajectories. This is reflected by a lowering of the curve 
depicted in Figure A.3, and implies that we should restrict ourselves to tests of 
even smaller size. 

Thus, the quality of the approximation of the finite sample relative efficiency 
by the approximate Bahadur efficiency for alternatives close to the null hypothesis 
is only guaranteed in case of (very) small levels. 

The organization is as follows. In section A.2 notation is introduced and 
definitions are given, while section A.3 contains the results. Proofs can be found 
in Kallenberg and Koning (1993). 

A.2 Preliminaries 

Consider the situation in which we have two infinite sequences of test statistics 
{T1n}~=l and {T2n}~=I, rejecting the null hypothesis Ho : 0 E 0o for large values 
of the test statistics. The number n here refers to the number of available ob
servations. The whole parameter space is denoted by 0, which is a metric space 
with metric d. For each a E (0, 1) the critical value is denoted by t;n(a). So, H0 

is rejected if T;n > t;n(a), accepted if T;n < t;n(a), and 

sup P00 (Tin > t;n(a)) ~a~ sup P00 (Tin ~ t;n(a)). (A.I) 
~E~ ~E~ 
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Definition 11 For each a, /3 E (0, 1) and 0 E 0 - 0 0 , let Ni( a, /3, 0) be the 
largest sample size such that the power at 0 of the size a test based on {Tin};':"=1 

is less than /3. 

The finite sample relative efficiency of {T1n};::"=1 with respect to {T2n};';°=1 is 
denoted by N 2 (a,f3,0)/N1 (a,/3,0). A value larger than 1 indicates that {Trn};::"=1 

is preferred to {T2n};:'= 1 , since {T1n};:'=1 needs less observations for the same 
performance. 

Definition 12 {T;n};:'=1 is said to be a standard sequence if the following three 
conditions are satisfied. 
a There exists a nondecreasing function Gi such that infeoE8o Pe0 (Tin :::; t) tends 

to G;(t) for all continuity points ofG;. 
b There exists a constant ai > 0 such that 

lim C 2 log(l - Gi(t)) = -a;/2. 
t-+oo 

(A.2) 

c There. exists a positive function b;( 0) such that jn - 1!2 T;n - bi( 0) I converges to 
zero in Po -probability for every 0 E 0 - 0 0 • 

The approximate Bahadur slope of a standard sequence {Tin}~=I is defined as 
a;(b;(0))2. The approximate Bahadur efficiency of a standard sequence {Trn}~=I 
with respect to another standard sequence { T2n} ~=I is defined as the ratio of their 
respective Bahadur slopes a1 (b1(0))2 /(a2 (b2(0))2]. 

This is a slightly weaker form of the definition of standard sequences given in 
Bahadur (1960), not requiring continuity of G;. 

For a standard sequence {Tin};:'=1 define for each O < a < 1 

9:;( a) = inf { t : 1 - G; ( t) :::; a} , qi(a) = sup{t: 1 - Gi(t) 2: a}. 

By this definition and the monotonicity of Gi we obtain 

1 - G;(t) > a for all t < q.(a), ..,_, 

1 - G;(t):::; a for all t > 9:;(a), 

It is easily seen that 

1 - G;(t) 2: a for all t < q;(a), 

1 - Gi(t) > u for all t > q;(a). 

(A.3) 

(A.4) 

In view of Definition 12a, denote for each 1: > 0 and O < a < 1 by ff; = ni(a, 1:) 
the smallest number such that for all n 2'. ni(a, 1:) 

(A.5) 
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Similarly denote for each e > 0 and O < a < 1 by !b = !L( a, e) the smallest 
number such that for all n ~ &( a, E) 

(A.6) 

Define n;(a,E) by 
n;(a,l) = max(n;(a,E),&(a,e)). (A.7) 

Finally we present the weaker form of Wieand's Condition III*. 

Definition 13 A standard sequence {T;n}~=l is said to be a { sn}~=1 -Wieand 
sequence if there is a constant E7 > 0 such that for every l > 0 and 8 E (0, 1) 
there exists a constant C;( l, 8) such that 

(A.8) 

for every 0 E 0- 0o satisfying infooE0o d(0,0o) < li and n 1l 2 b;(0) > C;(l,8)sn, 

It can be shown that a standard sequence {Tin}~=l is a {sn};::'°=1-Wieand se
quence if there exists a. nondefective cumulative distribution function Q such 
that 

(A.9) 

for every x > 0 and 0 E 0- 0o satisfying infooE0o d(0, 0o) < E7 [chom,e C;(l, 8) so 
as to satisfy Q( EC;( E, 8)) > 1 - 8]. Remark that if sn remains bounded, Defini
tion 13 reduces to Wieand's Condition III* [in case of a simple null hypothesis], 
and the observation above is a consequence of the lemma given in section 4 in 
Wieand (1976). In the sequel we shall use the phrase "under Wieand's Condition 
III*" to indicate that Sn remains bounded, thereby tacitly extending Wieand's 
original definition to general null hypotheses. 

We close this section by introducing a set which plays a role in section A.3. 
For each a, e, 8 E (0, 1) let A(a, l, 8) be the set of points 0 E 0 - 0 0 for which 

-logo: 
n>---

- a;{b;(0)}2 
implies (A.10) 

for i = 1, 2. Lemma 5 sheds light on the relation between the set A( a, l, 8) and 
Wieand's Condition III*. Observe that in case we have 

inf b;( 0) = 0, 
BE0-0o 

this lemma implies that A( a, e, 8) equals 0 - 0 0 for a sufficiently small if and 
only if Sn is bounded. 

Lemma 5 If Sn remains bounded then for every e, 8 > 0 there exists a( e, 8) > 
0 such that A( a, e, 8) coincides with 0 - 0 0 for every O < a < a( e, 8). If 
infoEA(a,<,6) b;( 0) = 0 for some a, l, 8 > 0, then Sn remains bounded. 
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A.3 Results 

Our main result is the following theorem, which shows where the finite sample rel
ative efficiency N2( a, /3, 0)/N1 (a, /3, 0) may be approximated by the approximate 
Bahadur efficiency ai{ b1(0)}2 /[a2{ b2 (0) }2]. (If limits are taken with 0 tending to 
some subset of 0 0 , then of course 0 runs through 0 - 0 0 ; further the notation is 
explained in section A.2.) 

Theorem 14 Let {T1n}~=l and {T2n}~1 be two { sn}~=1 -Wieand sequences, and 
let 0 0 be a subset of 0 0 • Suppose that the limit 

(A.11) 

exists. For each a,E,O E (0, 1), let A*(a,E,O) be a subset of A(a,E,O) satisfying 

limlimsup sup inf d(0,00 ) = 0. 
,_,a a,-,Q BEA•(a,,,6) Boee; 

(A.12) 

Assume that 
l. 1. n;(a,E) 
Im sup 1m sup sup [ 1 ] < 1. 

,-,o a,-,Q BEA•(a,,,6) a~{!,(9)}2 

(A.13) 

Then for /3 E [o, 1 - o] we have 

l. 1. . f . f N2( a, /3, 0) 1. 1. N2( a, /3, 0) (0 *) 1m 1m m m = Im 1m sup sup = e - 0 • 
,_,a a,-,Q BEA•(a,,,6) N1 ( a, /3, 0) ,_,a a,-,O BEA*(a,,,6) N1 ( a, /3, 0) 

(A.14) 

When considering a specified trajectory 0( a, E, o), along which 00 is ap
proached as a -+ 0, it seems obvious to choose A*( a, E, o) equal to the singleton 
containing 0( a, f., o). 

If Wieand's Condition III* does not hold, the requirement that 0( a, f., 6) should 
be an element of A( a, E, 6) limits the trajectories admitted for a fixed f. > 0. The 
lower E, the smaller the area through which the trajectories are allowed to run. 
As already observed in section A.2, this is reflected in Figure A.3 by a lowering 
of the curve. For instance, if n 112 / Sn is a monotone increasing function g of n, 
condition (A.10) holds if and only if 

( - loga ) 
g a;{b;(0)}2 b;(0) > C;(E,6) 

for i = 1,2. 
If Wieand's Condition III* does hold, the set A(a, t:, o) equals 0 - 0 0 if 0 < 

a < a( t:, o), where a( E, o) is given by Lemma 5. It now easily follows that for 
every sequence {(0j,Cij)}~l tending to (0o,0) we obtain 

N2(ai,/3,0i) (0 *) 
-+ e o ' N1(ai,/3,0i) 

(A.15) 
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provided that 
. . n;(aj, t) 

hmsup hm r· -. 21 . l < 1, e--+O J-+OCJ oga,2 
a,{b,(01 )} 

as is formally seen by taking A*( a,<", 8) equal to {Bi} if O'.j ~ a < O'.j-l, j = 1, 2, ... 
[a0 = l]. This is closely related to intermediate efficiency [cf. Kallenberg (1983)]. 

Another consequence of Lemma 5 is that under Wieand's Condition III* we 
may take A*(a, <", 8) to be the intersection of 0-00 with an arbitrary environment 
of 0~, shrinking to 0~ as a -, 0, and [afterwards] l -, 0. More precisely, let 

*( ) { ( ) . n;(a,t) -2loga} 
A a,t,8 = 0 EA a,t,8 : mf d(B,Bo) < <", < {b (B)} 2 • 

BoE00 1 + <" a; i 

Then (A.12) and (A.13) are satisfied. Now consider a sequence {Bj}~1 which 
tends to 0~ as j -, =· Assume that 

Let a,<", 8 > 0 satisfy a < a( t, 8), with a(<", 8) as in Lemma 5. Then there exists 
j(a,t,8) such that for all j ::::: j(a,t,8) we have Bi E A*(a,t,8), and hence it 
follows that 

(A.16) 

Applying Theorem 14 we get 

and therefore 

I. 1. N2(a,(:J,0i) (0 *) Im Im = e - 0 . 
"'-oj-oo N1(a,(:J,Bj) 

Since the sequence { 0j}~1 was arbitrarily chosen, it follows that 

I. 1. N2(a,(:J,B) (0 *) Im Im = e - 0 • 
"'-o 0-00 N1 ( a, (:J, 0) 
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This extends Wieand's theorem to testing problems with composite null hypothe
ses. Moreover, note that Wieand's conditions on continuity and monotonicity are 
not needed to obtain this result. 

There exist alternative definitions of limiting Pitman efficiency which involve 
!:L( a, /3, 0), the smallest sample size such that the power at 0 of the size a test 
based on {T;n};;"=1 is greater than or equal to /3. Observe that there is a dis
proportionate effect of the behavior of T;1 on N;(a, /3, 0). Definition 13 only has 
meaning for sample sizes which are sufficiently large, and is therefore not capable 
of providing lower bounds for N;(a, /3, 0). It follows that the fact that {T;n};;"=1 

is a { Sn }~1-Wieand sequence does not shed light on asymptotic relative Pitman 
efficiency as defined in for instance Rothe (1981). 

In absence of Wieand's Condition III* the verification of (A.13) requires some 
effort. In case the test statistics are functionals of either the empirical process or 
the partial sum process, the approximation theorems available for these processes 
[see Komlos, Major and Tusnady (197,5)] may lead to probability inequalities of 
the type considered in the following lemma. 

Lemma 6 Suppose that {T;n};;"=1 is a standard sequence for which there exist a 
random variable T; with distribution function G;, positive constants r, 1 , ,\ and 
a sequence kn = o( n-rl-r) such that 

sup P00 (jT;n - T;j > n--r(kn + xr) S e-,\x. (A.17) 
8oE0o 

Then for every f > 0 there exist a constant c( f) such that ( A .13) holds for 

A*(a,f,b) = {0 E A(a,f,h) : a;{b;(0)} 2 < jlogaj1--rh/c(t)}. 

Typically, one finds I S 1/2, r ~ 1 and kn proportional to log n [see Chap
ters 2-4, Koning (1993), and Csorgo and Horvath (1993)]. 

The magnitude of kn allowed in Lemma 6 strongly suggests that it is essentially 
the tail rather than the center of the distribution of n-YjT;n -T;I which determines 
the shape of A*(a,f,h). 



Bibliography 

Aalen, 0.0. (1976). Nonparametric inference in connection with multiple decrement 
models. Scand. J. Statist. 3, 15-27. 

Adler, R.J. and Samorodnitsky, G. (1987). Tail behaviour for the suprema of Gaussian 
processes with applications to empirical processes. Ann. Probab. 4, 1339-1351. 

Aki, S. (1986). Some test statistics based on the martingale term of the empirical 
distribution function. Ann. Inst. Statist. Math. 38A, 1-21. 

Aki, S. and Kashiwagi, N. (1989). Asymptotic properties of some goodness-of-fit tests 
based on the L1 norm. Ann. Inst. Statist. Math. 41, 753-764. 

Akritas, M.G. (1988). Pearson-type goodness-of-fit tests: the univariate case. J. 
Amer. Statist. Assoc. 83, 222-230. 

Aronszajn, N. (1950). The theory of reproducing kernels. Trans. Amer. Math. Soc. 
68, 337-404. 

Bahadur, R.R. (1960). Stochastic comparisons of tests. Ann. Math. Statist. 31, 
276-295. 

Barlow, R.E. and Proschan, F. (1969). A note on tests for monotone failure rate based 
on incomplete data. Ann. Math. Statist. 40, 595-600. 

Barlow, R.E. and Campo, R. (1975). Total time on test processes and applications to 
failure data analysis. Reliability and Fault Tree Analysis, 451-481. 

Birnbaum, Z.W. and Tingey, F.H. (1951). One sided confidence contours for proba
bility distribution functions. Ann. Math. Statist. 22, 592-596. 

Birnbaum, Z.W. and McCarty, R.C. (1958). A distribution-free upper confidence 
bound for P(Y < X) based on independent samples of X and Y. Ann. Math. 
Statist. 29, 558-562. 

Borell, C. (1975). The Brunn-Minkowsky inequality in Gauss space. Invent. Math. 
30, 207-216. 

Horgan, 0. (1984). Maximum likelihood estimation in counting process models, with 
applications to censored failure time data. Scand. J. Statist. 11, 1-16. 

1,51 



152. BIBLIOGRAPHY 

Burke, M.D., Csi:irgo, S., Horvath, L. (1981). Strong approximations of some bio
metric estimates under random censorship. Z. Wahrscheinlichkeitstheorie verw. 
Gebiete 56, 87-112. 

Breslow, N.E. (1975). Analysis of survival data under proportional hazards model. 
lnt. Stat. Rev. 43, 45-58. 

Bretagnolle, J., and Massart, P. (1989). Hungarian constructions from the nonasymp
totic viewpoint. Ann. Probab. 17, 239-256. 

Castelle, N. (1991). Principes d'Invariance et Application a la Statistique de Modeles 
Censures. Ph. D. Thesis, Universite Paris-Sud. 

Csi:irgo, M. and Revesz, P. (1981). Strong Approximations in Probability and Statis
tics. Academic Press, New York. 

Csi:irgo, M. and Horvath, L. (1993). Weighted Approximations m Probability and 
Statistics. Wiley, New York. 

Devroye, L.P. and Wise, G.L. (1979). On the recovery of discrete probability densities 
from imperfect measurements. J. Franklin Inst. 307, 1-20. 

Donsker, M.D. (1952). Justification and extension of Doob's heuristic approach to 
the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23, 277-281. 

Doob, J.L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. 
Math. Statist. 20, 393-403. 

Dudley, R.M. (1967). The sizes of compact sets of Hilbert space and continuity of 
Gaussian processes. J. Funct. Anal. 1, 290-330. 

Durbin, J. (1973). Distribution Theory for Tests Based on the Sample Distribution 
Function. SIAM, Philadelphia. 

Durbin, J. (1985). The first-passage density of a continuous Gaussian process to a 
general boundary. J. Appl. Prob. 22, 99-122. 

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character 
of the sample distribution function and of the classical multinomial estimator. 
Ann. Math. Statist. 27, 642-669. 

Einmahl, J.H.J. and Koning, A.J. (1992). Limit theorems for a general weighted 
process under random censoring. Canad. J. Statist. 20, 77-89. 

Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. 2. 
Wiley, New York. 

Fernique, X. (1970). lntegrabilite des vecteurs gaussiens. C. R. Acad. Sci. Paris Ser. 
A 270, 1698-1699. 



BIBLIOGRAPHY 153 

Fernique, X. (1971). Regularite des processus gaussiens. Invent. Math. 12, 304-320. 

Fleming, T.R. and Harrington, D.P. (1981). A class of hypothesis tests for one and 
two samples of censored data. Comm. Stat. Theor. Meth. 13, 2469-2486. 

Fleming, T.R., Harrington, D.P. and O'Sullivan, M. (1987). Supremum versions of 
the log-rank and generalized Wilcoxon statistics. J. Amer. Statist. Assoc. 82, 
312-320. 

Fleming, T.R., O'Fallon, J.R., O'Brien, P.C. and Harrington, D.P. (1980). Modi
fied Kolmogorov Smirnov test procedures with applications to arbitrarily right
censored data. Biometrics 36, 607-625. 

Gill, R.D. (1980). Censoring and Stochastic Integrals. Math. Centre Tracts 124. 
Mathematisch Centrum, Amsterdam. 

Gill, R.D. ( 1983). Large sample behaviour of the product-limit estimator on the whole 
line. Ann. Statist. 11,49-58. 

Gill, R.D. (1986). The total time on test plot and the cumulative time on test statistic 
for a counting process. Ann. Stat. 14, 1234-1239. 

Gnedenko, B.V., Korolyuk, V.S. and Skorohod, A.V. (1961). Asymptotic expansions 
in probability theory. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 2, 
153-170. U niv. California Press, Berkeley, California. 

Harter, H.L. (1980). Modified asymptotic formulas for critical values of the Kol
mogorov test statistic. Am. Statist. 34, 110-111. 

Harrington, D.P. and Fleming, T.R. (1982). A class of rank test procedures for 
censored survival data. Biometrika 69, 553-566. 

Hjort, N.L. (1984). Weak convergence of cumulative intensity processes when pa
rameters are estimated, with applications to goodness-of-fit tests in models with 
censoring. Report no. 764. Norwegian Computing Center. 

Hjort, N.L. (1985). Comment on "Counting process models for life history data: a 
review" by P.K Andersen and 0. Borgan. Scand. J. Statist. 12, 141-150. 

Hjort, N.L. (1990). Goodness of fit tests in models for life history dat based on 
cumulative hazard rates. Ann. Statist. 18, 1221-1258. 

Hu, I. (1985). A uniform bound for the tail probability of Kolmogorov-Smirnov statis
tics. Ann. Statist. 13, 821-826. 

lnglot, T. and Ledwina, T. (1990). On probabilities of excessive deviations for 
Kolmogorov-Smirnov, Cramer-von Mises and chi-square statistics. Ann. Statist. 
18, 1491-1495. 



134 BIBLIOGRAPHY 

Inglot, T. and Ledwina, T. (1989). Large and moderate deviations for some function
als of weighted empirical process. Technical Report. 

Kallenberg, W.C.M. (1983). Intermediate efficiency, theory and examples. Ann. 
Statist. 11, 170-182. 

Kallenberg, W.C.M., Koning, A.J. (1993). On Wieand's theorem. Research paper. 

Khamaladze, E.V. (1981). Martingale approach in the theory of goodness-of-fit tests. 
Theory Probab. Appl. 26, 246-:-265. 

Khamaladze, E. V. ( 1982). Some applications of the theory of martingales to statistics. 
Uspekhi Mat. Nauk 37:6, 193-212. Translation: Russian Math. Surveys 37:6, 
215-237. 

Komlos, J., Major, P. and Tusnady, G. (1975). An approximation of partial sums of 
independent R.V.'s and the sample F. I. Z. Wahrsch. verw. Gebiete 34, 33-58. 

Koning, A.J. (1991). Stochastic Integrals and Goodness-of-fit tests. Ph. D. Thesis, 
University of Twente. 

Koning, A.J. (1992). Approximation of stochastic integrals with applications to 
goodness-of-fit tests. Ann. Statist. 20, 428-454. 

Koning, A.J. (1993). Approximation of the basic martingale. Ann. Statist., accepted 
for publication. 

Landau, H.J. and Shepp, L.A. (1971). On the supremum of a Gaussian process. 
Sankhya Ser. A 32, 369-378. 

Lauwerier, H.A. (1963). The asymptotic expansion of the statistical distribution of 
N.V. Smirnov. Z. Wahrsch. verw. Geb. 2, 61-68. 

Marcus, M.B. and Shepp, L.A. (1971 ). Sample behaviour of Gaussian processes. Proc. 
Sixth Berkeley Symp. Math. Statist. Prob. 2, 423-441. Univ. California Press, 
Berkeley, California. 

Marcus, M.B. and Zinn, J. (1984). The bounded law of the iterated logarithm for the 
weighted empirical distribution process in the non-i.i.d. case. Ann. Probab. 12, 
335-360. 

Mason, D.M. and van Zwet, W.R. (1987). A refinement of the KMT-inequality for 
the uniform empirical process. Ann. Probab. 15, 871-884. 

Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer Wolfowitz inequality. 
Ann. Probab. 18, 1269-1283. 

Penkov, B.I. (1976). Asymptotic distribution of Pyke's statistic. Theor. Prob. Appl. 
21, 370-374. 



BIBlIOGRAPHY 155 

Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics. 
Springer-Verlag, New York. 

Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate. 
Technometrics 5, 375-383. 

Rao, C.R. (1963). Criteria of estimation in large samples. Sankhya Ser. A 25, 
189-206. 

Rothe, G. (1981). Some properties of the asymptotic relative Pitman efficiency. Ann. 
Statist. 9, 663-669. 

Rubin, H. and Sethuraman, J. (1965). Bayes risk efficiency. Sankhya Ser. A 21, 
347-356. 

Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications to 
Statistics. Wiley, New York. 

Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theor. Prob. Appl. 
1, 261-290. 

Smirnov, N.V. (1944). Approximate laws of distribution of random variables from 
empirical data. Usp. Mat. Nauk 10, 179-206 (in Russian). 

Stephens, M.A. (1970). Use of the Kolmogorov-Smirnov, Cramer-von Mises and re
lated statistics without extensive tables. J. Roy. Statist. Soc. B 32, 115-122. 

Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. 
Wahrsch. verw. Gebiete 3, 211-226. 

Talagrand, M. (1988). Small tails for the supremum of a Gaussian process. Ann. 
Inst. Henri Poincare 24, 307-315. 

Wieand, H.S. (1976). A condition under which the Pitman and Bahadur approaches 
to efficiency coincide. Ann. Statist. 4 , 1003-1011. 

Woolson, R.F. (1981). Rank tests and a one-sample log rank test for comparing 
observed survival data to a standard population. Biometrics 37, 687-696. 



Author Index 

Aalen, 0.0., i, 151 
Adler, R.J., 21,151 
Aki, S., i, 8, 34, 35, 151 
Akritas, M.G., i, 151 
Aronszajn, N., 20, 151 

Bahadur, R.R., 3, 32, 143, 146, 151 
Barlow, R.E., 10, 94, 95, 151 
Birnbaum, Z.W., 18, 151 
Borell, C., 14, 20, 78, 151 
Borgan, 0., 10, 53, 56, 70, ·151 
Breslow, N.E., 7, 100, 152 
Bretagnolle, J ., 19, 152 
Burke, M.D., 15, 36, 152 

Campo, R., 95, 151 
Castelle, N ., 15, 152 
Csorgo, M., 17, 152 
Csorgo, S., 15, 36, 150, 152 

Devroye, L.P., 18, 152 
Donsker, M.D., 19, 152 
Doob, J.L., 2, 19, 152 
Dudley, R.M., 21, 152 
Durbin, J ., 15, 21, 34, 152 
Dvoretzky, A., 18, 152 

Einmahl, J.H.J., i, 15, 27, 36, 152 

Feller, W., 35, 152 
Fernique, X., 20, 152 
Fleming, T.R., 8, 85, 102, 103, 153 

Gill, R.D., 10, 94, 153 
Gnedenko, B.V., 18, 153 

Harrington, D.P., 8, 85, 102, 103, 153 
Harter, H.L., 18, 153 
Hjort, N.L., 10, 12, 52, 56, 59, 68, 153 
Horvath, L., 15, 36, 150, 152 
Hu, I., 18, 153 

156 

Inglot, T., 3, 28, 29, 153 

Kallenberg, W.C.M., 3, 33, 34, 143, 145, 
154 

Kashiwagi, N., 34, 151 
Khamaladze, E.V., i, 15, 59, 154 
Kiefer, J ., 18, 19, 152 
Komlos, J., 1, 2, 19,150, 154 
Koning, A.J ., i, 4, 14, 15, 23, 27, 36, 143, 

145, 150, 152, 154 
Korolyuk, V.S., 18, 153 

Landau, H.J., 20, 154 
Lauwerier, H.A., 18, 154 
Ledwina, T., 3, 28, 29, 153 

Major, P., 1, 2, 19, 150, 154 
Marcus, M.B., 18, 20, 154 
Mason, D.M., 20, 154 
Massart, P., 18, 19, 152 154 
McCarty, R.C., 18, 151 

O'Brien, P.C., 8, 153 
O'Fallon, J .R., 8, 153 
O'Sullivan, M., 8, 153 

Penkov, B.I., 18, 154 
Pollard, D., 20, 48, 83, 155 
Proschan, F., 10, 89, 94, 151, 155 

Rao, C.R., 35, 155 
Rothe, G., 3, 31, 64, 65, 150, 155 
Rubin, H., 36, 155 
Revesz, P., 17, 152 

Samorodnitsky, G., 21, 151 
Sethuraman, J., 36, 155 
Shepp, L.A., 20, 154 
Shorack, G.R., i, 4, 17, 18, 24, 27, 155 
Skorohod, A.V., 18, 19, 153, 155 
Smirnov, N.V., 18, 155 
Stephens, M.A., 18, 155 



AUTHOR INDEX 

Strassen, V., 21, 155 

Talagrand, M., 21, 155 
Tingey, F.H., 18, 151 
Tusnady, G., 1, 2, 19, 150, 154 

Wellner, J.A., i, 4, 17, 18, 24, 27, 155 
Wieand, H.S., 31, 32, 65,143,155 
Wise, G.L:, 18, 152 
Wolfowitz, J ., 18, 152 
Woolson, R.F., 6, 7, 155 

Zinn, 18, 154 
Zwet, W.R. van, 20, 154 

157 



Subject Index 

alternatives, 
logistic shift, 9 
proportional hazards, 8 

approximate Bahadur efficiency, 32, 64, 
146, 148 

approximate Bahadur slope, 32, 64, 146 
asymptotic intermediate efficiency, 3, 4, 

33, 65 
asymptotic relative Pitman efficiency, 31, 

63,143 

baseline hazard, 9 
basic martingale, 5, 23, 52 

decomposition into three parts, 24 
standard exponentiality, 6 

Birnbaum and Tingey formula, 18 
Birnbaum-McCarty conjecture, 18 
Brownian bridge, 2, 19 

censored failure time Z;, 4 
censored observation, 4 
censoring, 4 

Type I, 25 
Type II, 95 

censoring distribution, 23, 51 
censoring indicator r5;, 4 
censoring time Y; , 4 
Chernoff type large deviation result, 28 
compensator, 5 
composite null hypothesis, 9 
counting process, 5 
Cramer type large deviation result, 28 
Cramer-von Mises test, 2 
cumulative distribution function, 2, 5 
cumulative hazard function, 5, 23, 52 
cumulative hazard transformation, 6, 9 

deviation result, 3 
Chernoff type, 3 
Cramer type, 3 
moderate, 3 

DKW-inequality, 18 

158 

Donsker's Theorem, 19 

EDF-test, 2 
efficacy, 8 

asymptotic Pitman, 3 
composite null hypothesis, 64 
simple null hypothesis, 31 

efficiency, 
approximate Bahadur, 32, 64, 143, 146, 

148 
asymptotic relative Pitman, 31, 63, 143 
Bahadur, 3 
finite sample relative, 146, 148 
intermediate, 3, 4, 33, 65 
limiting approximate Bahadur, 4, 32, 

65, 143, 144 
limiting asymptotic relative Pitman, 4, 

143, 144, 150 
weak intermediate, 3, 33, 66 

Empirical Central Limit Theorem, 2, 19 
empirical distribution function, 2 
empirical process, 2, 24 

uniform, 17 
approach, 24 

failure time X;, 4 
failure time distribution, 23, 51 
Fisher information, 35, 67 

effective, 67 
generalized rank functional, 8 
generalized rank test, 8 

hazard function, 53 
Hilbert-Schmidt operator, 59 
Hungarian construction, 19 

inequality, 
Borell, 21 
Fernique, 20 

intermediate slope, 33, 66 

Kallenberg sequence, 33, 65 



SUBJECT INDEX 

Kiefer process, 19 
KMT-inequality, 2 

Brownian bridge version, 19 
Kiefer process version, 19 

KMT-type inequality, 3 
Kolmogorov-Smirnov test, 2 

limiting approximate Bahadur efficiency, 
4, 32, 65, 143, 144 

limiting asymptotic relative Pitman efficiency, 
4, 143, 144, 150 

Lipschitz functional, 2 
log-likelihood, 53 

M-estimator, 52 
approximation under null hypothesis, 

56 
asymptotic normality, 56 
behavior of, 55 
choice of, 68 

martingale, 5 
maximum likelihood estimation, 53, 87 

modified, 68, 88 
moderate deviation result, 28, 61 

null hypothesis, 
simple, 5 
composite, 9 

parameter, 
of interest, 51 
nuisance, 51 

Proschan data, 89 

random censoring model, 4 
Rebolledo's CLT, 5, 27 
reproducing kernel Hilbert space, 20, 28, 

60 

score function, 8 
effective, 12, 67, 68 

simple null hypothesis, 5 
Skorohod construction, 19 
slope, 

approximate Bahadur, 32, 64, 146 
weak intermediate, 33, 66 
intermediate, 33, 66 

square of a matrix, 54 
standard sequence, 32, 64, 146 
standardizing the weight process, 61 

Strassen functions, 21, 28, 60 
sublinear functional, 20 
supremum functional, 8 
supremum type test, 8 

test of Breslow, 8, 100 
total time on test plots, 94 

uncensored observation, 4 
under Po, 23 
under Pn, 23, 52 
under Pv 0 , 52 

159 

weak asymptotic intermediate efficiency, 
3, 33, 66 

weak asymptotic intermediate slope, 33, 
66 

Wieand sequence, 32, 64, 147 
Wieand's condition, 143, 148 
Wieand's Theorem, 32 

adapted, 65 
Woolson data, 6, 89 

x2 test, 2 



List of Symbols 

a constant describing [asymptotic] tail 
behavior ofT(Q,.(-)/q(-))), 28 

an constant describing tail behavior of 
Tn(Q,.), 34 

an(vo) constant describing tail behavior of 
Tn(Q,.(-; vo)), 66 

as constant describing tail behavior of 
Ts(Q,.), 34 

as(v0 ) constant describing tail behavior of 
Ts(Q,.(-; vo)), 66 

ii(vo) constant reflecting [asymptotic] tail 
behavior of Q,.(t; v(n)), 60 

B~(t) Gaussian process used to construct 
Wn(t), 37 

Bn(t) Gaussian process used to construct 
Wn(t), 37 

Bn(t) Brownian bridge approximating 
Un(t), 19 

D(t; Oo, 0) function reflecting distance be
tween F(t; 0) and F(t; 00 ), 24 

D(t; v', Oo, v, 0) function reflecting distance 
between A(t; v, 0) and A(s; v', Oo), 54 

D(t; v, 0) abbreviation for 
D(t; ir(v, 0), Oo, v, 0), 54 

D[O, oo) function space, 20 

e(h) limiting approximate Bahadur, lim
iting asymptotic relative Pitman and 
weak intermediate efficiency of test 
based on T(Qn(·)/q(-)), 33 

e(h; vo) limiting approximate Bahadur, 
limiting asymptotic relative Pitman 
and weak intermediate efficiency of 
T(Qn(·; v(n))), 65 

160 

en(h) asymptotic relative Pitman, limiting 
approximate Bahadur and weak in
termediate efficiency of test based on 
Tn(Q,.), 34 

en(h, vo) asymptotic relative Pitman, lim
iting approximate Bahadur 
and weak intermediate efficiency of 
Tn(Qn(·; vo)), 66 

es(h) limiting approximate Bahadur, lim
iting asymptotic relative Pitman and 
weak intermediate efficiency of test 
based on Ts(Qn), 34 

es(h, v0 ) limiting approximate Bahadur, 
limiting asymptotic relative Pitman, 
and weak intermediate efficiency of 
Ts(Qn(·; vo)), 66 

ef 2(h) asymptotic relative Pitman effi
ciency in the direction h, 31 

ef 2(h; vo) asymptotic relative Pitman effi-
ciency, 64 

Eo expectation under Po, 23 

En expectation under Pn, 23, 52 

Ev 0 expectation under Pv 0 , 51 

F(t) cumulative distribution function of 
X;, 2 

F(t; On) cumulative distribution function, 
simple null hypothesis, 5, 23 

F(t; v,., On) cumulative distribution func
tion of X;, composite null hypothe
sis, 51 

Fn(t) empirical distribution function, 2 

G(t) cumulative distribution function of 
Y;, 23, 51 



LIST OF SYMBOLS 

H(t; 0n) cumulative distribution function 
of Z 1 under Pn, simple null hypoth
esis, 24 

H(t; Vn, 0n) cumulative distribution func
tion of z, under Pn, 53 

H 0 (t; 0n) cumulative distribution function 
of censored failure times, 36 

H 0 (t; vn, 0n) cumulative distribution func
tion of censored failure times, 72 

H 1(t; 0n) cumulative distribution function 
of observed failure times under Pn, 
simple null hypothesis, 5, 24 

H 1(t; Vn, 0n) cumulative distribution func
tion of observed failure times under 
Pn, composite null hypothesis, 53 

H~(t) empirical distribution function of 
observed failure times, 4 

Hn(t) empirical distribution function of all 
observations, 4 · 

I(0o) Fisher information matrix, simple 
null hypothesis, 35 

I(vo, 0o) Fisher information matrix, com-
posite null hypothesis, 67 

loo r x r submatrix of I(vo,0o), 67 

Ioa r x p submatrix of I(vo, 0o), 67 

Iao p x r submatrix of I(vo, 0o), 67 

Iaa p x p submatrix of I(vo, 0o), 67 

Jn(t) jump process approximating Wn(t), 
38 

Ko(t; v, 0) r-dimensional vector function 
describing effect of v<n) on behavior 
Qn(t; v(n)), 57 

K 0 (t) p-dimensional vector function, 30 

K 0 10 (t; vo) p-dimensional vector function, 
62 

k(t, n) Kiefer process approximating 
Un(t), 19 

L( t; 0n) deterministic function approxi
mating Ln(t) under Pn, 26 

L(t; v, 0) limiting function of Ln(t; v), 57 

161 

L;1\t; 0) first order partial derivative of 
L(t; 0) with respect to the ith com
ponent of 0, 30 

L;1)(t; v, 0) first order partial derivative of 
L(t; v, 0) with respect to the ith com
ponent of (v, 0), 62 

L~'/(t; v) first order partial derivative of 
Ln(t; v) with respect to the ith com
ponent of v, 57 

L)J\t; 0) second order partial derivative of 
L(t; 0) with respect to the ith and jlh 

components of 0, 30 

L)]l(t; v, 0) second order partial derivative 

of L(t; v, 0) with respect to the ith 

and /h components of (v, 0), 62 

L~~} ( t; v) second order partial derivative of 
Ln(t; v) with respect to the ith and 
ph components of v, 75 

L\'1(t; v, 0) limiting function of L~';l(t; v), 
57 

Lo(s,t;vo) version of L(s;vo,0o,vo,0o), in 
which the influence of the M
estimator at the stochastic integral 
evaluated at point t is accounted for, 
58 

Ln(t) weight process, integrand stochastic 
integral Qn(t), 24 

Ln(t; v) weight process, integrand stochas
tic integral Qn(t; v), 52 

Mn(t; 00 ) basic martingale, simple null hy
pothesis, 5, 23 

Mn(t; Vo, 0o) basic martingale, composite 
null hypothesis, 52 

IB3(0) smallest sample size such that the 
power of the test is at least as desired 
under Po, 31 

W3 ( v, 0) smallest sample size such that the 
power of the test is at least as desired 
under P(v,O), 64 

-J 
N; (0) largest sample size such that the 

power of the test is less than desired 
under Po, 31 



162 

-p 
N; (v, 0) largest sample size such that the 

power of the test is less than desired 
under P(u,8), 63 

Po probability measure under the null 
hypothesis, simple null hypothesis, 
23 

Pn actual probability measure, 23, 51 

P(u,6) probability measure under fixed al
ternative Vn = v and 0n = 0, 61 

Po probability measure under fixed al
ternative 0n = 0, 29 

Pu 0 probability measure under the null 
hypothesis, composite null hypothe
sis, 51 

Q~1\t; v) r-dimensional vector with ele

ments Q~~\t; v), 76 

Q~1/ ( t; v) first order partial derivative of 
Qn(t; v) with respect to the ith com
ponent of v, 75 

Q~2)(t; v) r x r matrix with elements 
Q(2) ( . ) nij t, V , 76 

Q~~}(t; v) second order partial derivative of 
Qn(t; v) with respect to the ith and 
j'h components of v, 75 

Qn(t) stochastic integral with respect to 
Mn(t; 0o), 24 

Qn(t; v) stochastic integral with respect to 
Mn(t; v, 0o), 52 

Q~~)(t; v) approximation of Q~1/(t; v), 75 
-(2) . (2) 

Qn;;(t, v) approximation of Qn;;(t; v), 75 

R,.(v) r-dimensional function derived from 
M-equations, satisfying v(n) 
Rn( v(n)), 71 

S set of Strassen functions, 21 

Sn random variable describing behavior 
of M-estimator, 55, 70 

TR generalized rank functional, 8 

Ts supremum functional, 8 

U~(t; 0n) empirical process based on H~ (t), 
24 

U~(t; Vn, 0n) empirical process, 70 

LIST OF SYMBOLS 

Un ( t) empirical process, 2 

Un-(t; 0n) empirical process based on 
Hn_(t), 24 

Un-(t; Vn, 0n) empirical process, 70 

Un(t) uniform empirical process, 17, 72 

Vn closed ball in i with centre Vno and 
radius c59, 70 

W(t) standard Wiener process, 20 

Wn(t) Gaussian process approximating [a 
centered version of] the basic mar
tingale, 26, 37 

Wn(t; Vno) mean 
zero Gaussian processes involved in 
approximation of Qn(t; v<n)), 58 

X(t; 0o) limit in Po-distribution of Qn(t) in 
q-metric, 27 

X; failure time, 4 

X(t;vn,0n) mean zero Gaussian process 
approximating centered version of 
Qn(t; v(n)), 59, 78 

Y; censoring time, 4 

Z; censored failure time, 4 

Z; transformation of (Z;, 6;) to stan
dard uniform random variable, 36, 72 

a constant, 25 

/3(0) desired power under Po, 31 

/3( v, 0) desired power under P(u,8), 63 

6; censoring indicator, 4 

00 value of parameter of interest under 
the null hypothesis, 23, 51 

0n actual value of parameter of interest, 
23, 51 

0 parameter of interest, 23, 51 

>.(t; 0) hazard function, simple null hypoth
esis, 8, 29 

>.(t; v, 0) hazard function, composite null 
hypothesis, 53 

A(t; 0) cumulative hazard function belong
ing to X;, simple null hypothesis, 5, 
23 



LISY-OF SYMBOLS 

A(t; v, 0) cumulative hazard function be
longing to F(t; v, 0), composite null 
hypothesis, 52 

A) 1)(t; v, 0) first order partial derivative of 
A(t; v, 0) with respect to the ith com
ponent of (v,0), 62 

µ/3( v) integral, 88 

µ/J(v) estimator of µ/J(v), 93 

3o(v, 0) r x r matrix describing the behav
ior of M-estimator, 54 

3b( v, 0) r x r matrix, 62 

3on abbreviation for 3o( Vn, 0n), 55 

ir( v, 0) projection related to M-estimator, 
mapping '.f X 0 into '.f, 54 

Eeo abbreviation for 3o(vo, 0o), 55 

E,e covariance matrix of <l>n, 56 

v<n) M-estimator, 52 

vo value of nuisance parameter under 
Pv0 , 51 

Vn actual value of nuisance parameter, 
51 

Vno abbreviation for ir(vn, 0n), 55 

v nuisance parameter, 51 

</,(t; v) r-dimensional vector with elements 
,p;(t; v), 55 

,t,)Jk(t; v) second order partial derivative of 
,p;(t; v) with respect to the jlh and 
the k th components of v, 69 

<Pi ( t; v) function used for constructing an 
M-estimator, 53 

4>~1\v) r x r matrix with elements cf>~1;~(v), 
69 

cf>~~} ( v) first order partial derivative of 
4>n;( v) with respect to the jlh com
ponent of v, 69 

4>~1/(vno) ith row of cf>~1)(vno), 70 

cf>~:}k( v) second order partial derivative of 
4>n;(v) with respect to the jlh and 
k1h components of v, 69 

163 

cf>~:\ v) r x 1· matrix with elements 

cf>~jk( v), 69 

4>n;(v) shorthand notation for 4>n;(oo; v), 
69 

4>n;(t; v) stochastic integral with integrand 
</,;(t; v), involved in equations deter
mining M-estimator, 53 

<l>n r-dimensional Gaussian random vec
tor approximating n 112Eeo(v<n) -
Vno), 56 

1/,(t; v, 0) r-dimensional vector with compo
nents 1/,;(t;v,0), 58 

VJ)J>(t; 0) second order partial derivative of 
.X(t; 0) with respect to the ith and /h 

components of 0, 29 

1/JJi\t; v) first order partial derivative of 
V'j(t; v) with respect to the k th com
ponent of v, 69 

1/Ja(t; 0o) score function, simple null hy
pothesis, 8 

1/Ja(t; Vo, 0o) p-dimensional vectur function 
with elements 1/Jr+i(t; vo, 0o), 62 

1/,;(t; 0) first order partial derivative of 
.X(t; 0) with respect to the ith com
ponent of 0, 29 

1/,;(t; v, 0) first order partial derivative of 
.X(t; v, 0) with respect to the ith com
ponent of ( v, 0), 53 

1Pa1o(t; vo, 0o) effective score function, 67 

On subset of 11, 76 

(0, A, P) underlying probability space, 17, 
23, 51 





MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
/: model and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
II: probabilistic background. 1964. 
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markuvian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transformalions of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda. Topological semigraups. I 964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 'i965~ Wijngaarden. Formal properties of newspaper Du1ch. 

13 H.A. Lauwerier. Asymptolic expansions. 1966. out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. 1966. 
16 J.W. de Bakker. Formal definition ':j,,programminl 
~a~ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riel. Formula manipulation in· ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P.J. van der Houwen. Finite difference methods for solving 
partial difleremial equations. 1968. 
21 E. Wattel. The compacmess operator m set theory and 
topology. l %8. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part I. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. l %8. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and pro1ec
tive geometry. 1969. 
f;6~uropean Meeting 1968. Selected statistical papers, part /. 

ri6~uropean Meeting 1968. Selected statistical papers, part I I. 

28 J. Oosterhof(. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoef!. Error detecting decimal codes. l 969. 
30 H. Brandt Corstius. Exercises in computational linguisllcs. 
1970. 
31 W. Molenaar. Approximations to the Poisson, binomial and 
hypergeometric distribwion funclions. 1970. 
32 L. de Ha~. On regular variation and ils applicalion to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix• 
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An ana(vsis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn. E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz. W.L van der Poe!, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 lnformallca 
Symposium 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis oj /s,S) inventory models. 1972. 
41 A. Verbe.ek. Superextensions of topological spaces. 1972. 
4_2 W. Vervaat. Success epochs in Bernoulli trials (with appltca
ttons in number theory). 1"972. 

43 F.H. Ruymgaart. Asymptoti,· theory of rank tests for 
independence. 1973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkerna. Monotone transfonnations and limit laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation systems, part I: the language. 1913. 
47 R.P. van de Riel. ADC ALGOL, a portable language for 
formula manipulation systems, part 2: the compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-X8. 1973. 
49 H. Kok. Connected orderab/e spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L Peck, CH.A. 
Koster, M. Smtzoff, C.H. Lindsey, LG.LT. Meertens, R.G. 
Fisk er (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part /: 
theory of designs.finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. l 914. 
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficienc_y con• 
cept in statistics. 1975. 
59 J.L Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. ~vmmetric c/o,-ed categories. 1975. 
65 J. de Vries. Topological transformation groups, 1: a categor• 
ical approach. 1975. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. I 976. 
69 J. K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non--periodic LAme 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 
74 H.J.J. te Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected topo• 
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 

77 W .C.M. Kallenberg. Asymptotic optimality oj likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij . .JntroducJion to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Empertcal distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical study of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science I/, part I. 1976. 
82 K.R. Apt. J.W. de Bakker (eds.). Foundations oj computer 
science I/, part 2. 1976. 
83 LS. van Benthem Jutting. Checking 1.Andau's 
"Grundlagen" in the AUTOMATH srstem. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Latin by Hermann of Carinthia (?), books 
vii-xii. 1977. 

85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix i. a program
ming s,rstem for opera~ions on vectors and matrices over arbi
trary,· Jields and oj vanable Sb!. 1978. 
88 A. Schrijver. MatrOldr and linking systerm. 1977. 
89 J.W. de Roever. Complex Founer tram.formation and 
ana~~·t1c funct10nals with unbounded carriers. 1978. 



90 L.P.J. GroeneWegen. Characterization of optimal strategies 
In dynamic games. llJS I. 
91 J.M. Geysel. Transcendence in fields of positive characteris
tic. 1979. 
92 P J. Weeda. Finite generalized Markov programming. 1979. 
i~7~_.c. Tijms, J. Wessels (eds.). Markov decision theory. 

94 A. Bift.sma. Simultaneow approximations in 1ranscenden1a/ 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chain,. 1978. 
96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages, 
and growth functionJ. 1980. 
97 A. Federgruen. Markov/an control problems; functional 
equations ana algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Bo~ 
(eds.). Interfaces between computer science and operatio~ 
research. I <178. 
100 P.C. Baayen, D. van Dulst. J. Oosterholf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
I. 1979. 
101 P.C. Baayen, D. van Dulst, J. Oosterholf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. rn~8~. van Dulst. Reflexive and superreflexive Banach spaces. 

103 K. van Ham. Classifying infinitely divisible distributions 
by functional equations. 11)78". 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979. 
105 R. Helmers. Edgeworth expansions for linear combinations 
of orders/at/sties. 1982. 
l~/· Schrijver (ed.). Packing and covering in combinatorics. 

107 C. den Heijer. The numerical ,olution of nonlinear opera
tor equations by imbedding methods. 1979. 
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science II I, part I. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Found,,tions of 
computer science Ill, part 2. 1979. 
110 J.C. van Vliet. ALGOL 68 transput, part/: historical 
review and discussion of the implementation model. 1979. 

:.:,lo!·~ r;,~: ALGOL 68 transput, part II: an implemen• 

112 H.C.P. Berbee. Random walks with stationary increments 
and renewal theory. 1919. 
113 T.A.B. Snijders. Asymptotic optimality theory for testing 
problems with restrictetf alternatives. 1979. 
114 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic ana!Ysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part I. 1979. 
116 P.C. Baaycn, J. van Mill (eds.). Topological structures II, 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes with continuous 
state space. 1979. 

~i~~- ~-9~0-oeneboom. LDrge deviations and asymptotic efficien• 

119 F.J. Peters. SP'}rse matrices and substructures, with a novel 
implementation oJfinite element algorithms. 1980. 

1;!e~~~~t~t~r;;_r.1~80'.he asymptotic analysis of large• 

121 W .H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solution of •ystems of nonlinear 
equation,. 1980. 
123 I. Yuhasz. Cardinal functions in topology - ten years later. 
1980. 
124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction systems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicialfixed point algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Smt, A.H. Veen. JLP: intermediate language for pictures. 
1980. 

131 R.J.R. Back~ Correctness pre.serving program refinements: 
proof theory· and applications. 1980. 
132 H.M. Mulder. The interval function of a graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of location esti
mators. I 981. 
134 J.C. van Vliet. H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, MJ.B. Stokhof 
(eds.). Formal methods in the study of language. part I. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhol 
(eds.). Formal methods in the study of language, part//. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematica/ models of epidemics. 1981. 
139 J. van der Wal. Stochastic 4),namic programming, succes
sive approximations and nearly oplimol stralegies for Markov 
deciswn processes and Markov games. 1981. 
140 J.H. van Geldrop. A mathematical theory ofpure 
exchange economies withoul the no-critical-point ~yp01hesis. 
1981. 
141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano threefold,. 1981. 
142 H.R. Bennell, D.J. Lutzer (eds.). Topoloy· and order 
structures, part I. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eij$enraam. The solution of initial value problems using 
~':Jrral arithmetic; formulation and analysis of an algorithm. 

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. 1981. 
:;;r-H- Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. Unear programming and finite Mar
kov/an control problems. 1983. 
149 C.B. Huijsmans. M.A. Kaashoek. W.A.J. Luxemburg. 
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium 
in honour of A.C. Zaanen. 1982. 
ISOM. Veldhorst. An analysis of sparse ma1rix storage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order asymptoticsfor simple linear 
rank statistics. 1982. 
:i~2?.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Application of the theory of boun@ry value 
problems in the analysis of a queueing model with paired ser
vices. I 982. 
154 H.W. Lenstra, Jr., R. Tijdernan (eds.). Computational 
methods in number theory, part I. 1982. 
155 H.W. Lenslra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part II. 1982. 
156 P.M.G. Apers. Query processing and @ta allocation in 
distributed @tabase systems. I 983. 
157 H.A.W.M. Kneppers. The covariant classifu:ation oftwo
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part I. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Found,,tions of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of 1he 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen'j;~;n techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions of 
diaphantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part}. 1983. 



CWITRACTS 
:9~;r.J. Epema. Surfaces with canonical hyperplane sections. 

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in terms of negligibility. 1984. 
3 A.J. van der Schaft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoogenboom. Intertwining functions on compact Ue 
groups. 1984. 
6 A.P,W. BOhm: Datajlow computation. 1984. 

7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoorn. Algorithms and approximations for queue
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. 1984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 
functions: the gamma function, the exponential integrals and 
error-like functions. 1984. 
11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
~~{5~nitial value problems: an analysis of one step methods. 

13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.~.P. Groothuizen. Mixed elliptic-hyperbolic partial dif

{e;;;~ial operators: a case-study in Fourier integral operators. 

I 7 H.M.M. ten Eikelder. Symmetries for dynamical and Hamil
tonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Montague 
f~i~_mar, part I: Philosophy, framework, computer science. 

20 B.F. Schriever. Order dependence. 1986. 

;,~tPo:.- 1;:~. der Vecht. Inequalities for stopped Brownian 

22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspects of a11 evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrafilters over definable sub
sets of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
~6 A.~. Veen. The misconstrued semicolon: Reconciling 
imperative languages and dataflow machines. 1986. 
27 A.J.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. 1986. 
28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 2: Applications to natural language. 1986. 

J!Jk;~lr9nJ~~man. Almost invarialll subspaces and high gain 

30 A.G. de Kok. Production-inventory control models: 
approximations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs 
for factorial experiments. 1987. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approach. 1987. 

f~8~.L. Eaton. Lecrures on topics in probability inequalities. 

36 A.H.P. v~n der Burgh, R.M.M. Mattheij (eds.). Proceedings 
of the first mternational conference on industrial and applied 
mathematics (JC/AM 87). 1987. 
37 L. Stougie. Design and analysi~ of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Freak. On Banach algebras, renewal measures and 

regenerative processes. 1987. 
39 H.J.M. Peters, OJ. Vrieze (eds.). Surveys in game theory 
and related topics. 1987. 
40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distribured operating 
system: Selected papers 1984-1987. 1987. 
42 ~.R.J. Asveld, A. Nijhoh (eds.). Essays on concepts, for
mahsms, and 100/s. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1987. 
44 A. W. van de!' Vaart. Statistical estimation in large parame
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 

i;~!.piJ'~kreijse. Multigrid solution of the steady Euler equa-

47 J.B. Pijkstra. Analysis of means in some non-standard 
situations. 1988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness-of-fit tests. 1988. 

~~!:'rg:_ubs. Numerical solution of the shallow-water equa-

50 F. de Kerf. Asymptotic analysis of a class of perturbed 
Korteweg-de Vries initial value problems. 1988. 
51 P.J.M. van Laarhoven. Theoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous decoupling transfonnatimis for 
linear boundary value problems. 1988. 
53 K.C.P. Machielsen. Numerical solution of optimal control 
problems with state constraints by sequential quadratic pro
gramming injunction space. 1988. 
54 L.C.R.J. Willenborg. Computational aspects of survey dala 
processing. 1988. 
55 ~.J. van der Steen. A program generator for recognition, 
parsmg and transduction with syntactic patterns. J 988. 
56 J.C. Ebergen. Translating programs into delay-insensitive 
circuits. 1989. 
57 S.M. Verduyn Lunel. Exponential rype calculus for linear 
delay equations. 1989. 
58 M.C.M. de Gunst. A random model for plant cell popula
tion growth. 1989. 

;!~~gvjV. ~9:~·. Characterizations of Banach spaces not con-

60 H.E. de Swart. Vacillation and predictability properties of 
low-order atmospheric spectral models. 1989. 
61 P. de Jong. Central limit theorems for generalized multil
inear fonns. l 989. t~8IJ. de Jong. A specification system for statistical software. 

63 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part I. 1989. 
64 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part JI. 1989. 

1~8~:M.M. de Weger. Algorithms for diophantine equations. 

66 A. Jung. Cartesian closed categories of domains. 1989. 
67 J.W. Polderman. Adaptive control & identification: Conflict 
or conjlux?. 1989. 
68 H.J. Woerdeman. Matrix and operator extensions. 1989. 
69 B.G. Hansen. Monotonicity properties of infinitely divisible 
distributions. 1989. 
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-jive 
years of operations research in the Netherlands: Papers dedi
cared to Gijs de Leve. 1990. 
71 P.J.C. Spreij. Counting process systems. ldentificatio11 and 
stochastic realizalion. 1990. 
72 J.F. Kaashoek. Modeling one dimensional pattern formation 
by anti-diffusion. 1990. 
73 A.M.H. Gerards. Graphs and polyhedra. Binary spaces and 
cutting planes. 1990. 
74 ~- Koren. Multigrid and defect correction for the steady 
Navter-Stokes equations. Application to aerodynamics. 1991. 
75 M.W.P. Savelsbergh. Computer aided routing. 1992. 



76 O.E. Flippo. Stability, duality and decomposition in general 
mathematical programming. 1991. 
77 AJ. van Es. Aspects of nonparametric density estimation. 
1991. 
78 G.A.P. Kindervater. Exercises in parallel combinatonQJ 
computing. 1992. 

79 J.J. Lodder. Towards a symmetrical theory of generalized 
functions. 1991. 
80 S.A. Smulders. Control offreeway traffic flow. 1993. 
81 P.H.M. America, J.J.M.M. Rutten. A parallel object
oriented language: design and semantic foundations. 1992. 

82 F. Thuijsman. Optimality and equilibria in . stochastic 
games. 1992. 
83 RJ. Kooman. Convergence propenies of recurrence 
sequences. I 992. · 
84 A.M. Cohen (ed.). Computational aspects of Ue group 
representations and related topics. Proceedings of the 1990 
Computational Algebra Seminar at CW/, Amsterdam. 1991. 

85 V. de Valk. One-dependent processes. 1993. 
86 J.A. Baars, J.A.M. de Groot. On topological a11d linear 
equivalence of certain function spaces. 1992. 
87 A.F. Monna. The way of mathematics and mathematicians. 
1992. 
88 E.D. de Goede. Numerical methods for the three
dimensional shallow waterequatio11s. 1993. 
89 M. Zwaan. Moment problems in Hilbert space with applica
tions to magnetic resonance imaging. 1993. 
90 C. Vuik. The solution of a one-dimensional Stefan problem. 
1993. 

91. E.R. Verheul. Multimedians in metric and nom1ed spaces. 
1993. 
92. J.L.M. Maubach. Iterative methods for non-linear partial 
differential equations. 1993. 
93. A.W. Ambergen. Statistical uncertainties in posterior pro
babilities. 1993. 
94. P.A. Zegeling. Moving-grid methods for timewdependent 
partial differe11tial equations. 1993. 
95. M.J.C. van Pul. Statistical analysis of software reliability 
models. 1993. 
96. J.K. Scholma. A Lie algebraic study of some integrable 
systems associated with root sysiems. 1993. 

97. J .L. van den Berg. Sojourn times in feedback a,nd proces
sor sharing queues. 1993. 
98. A.J. Koning. Stochastic integrals and goodness-of-fit tests. 
1993. 




