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Chapter 1 

INTRODUCTION 

1.1 BACKGROUND 

Queueing theory is concerned with the mathematical analysis of the perfor
mance of systems that offer services for collective use, like telephone exchanges 
and computer networks. Due to the finite capacity of such systems queueing 

. arises in many practical situations when too many users require access to the 
same facility at the same time. The mathematical study of queueing 
phenomena started with the investigation of telephone call congestion and 
delay about the beginning of this century. Later, queueing theory was success
fully applied in operations research and management science, in particular for 
production planning; in the past decades it has become an almost indispens
able tool for the performance prediction of complex computer communication 
systems. 

A queueing model is usually described in terms of customers requiring ser
vice, service facilities providing service, and queues containing customers wait
ing for service. The present study is devoted to the analysis of queueing 
models where customers may repeatedly return to some service facility to 
obtain several phases of service before they finally depart from the system. · 
Such feedback phenomena occur in a wide variety of processes arising in 
computer-communication and in production networks. 

The basic queueing model representing the occurrence of feedback consists 
of a waiting room and a single service facility at which customers arrive 
according to a stochastic process; after having obtained a random amount of 
service a customer either returns to the queue of waiting customers to await 
another service or leaves the system, according to a probabilistic feedback 
scheme. 

An example that illustrates the feedback phenomenon is found in manufac
turing processes where quality control inspections are performed after the exe
cution of an operation on a part or product, see Fig. 1. 1. A part that does not 
meet the quality standards is sent back for reworking; this may happen several 
times until it finally passes the test and proceeds to the next phase of opera
tion. 
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buffered parts waiting 
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Fig. 1.1 Quality control of parts during a production process. 

Another important example of the occurrence of feedback is encountered in 
a computer system which operates in a time sharing mode. In Fig. 1.2 a 
scheme of such a time sharing system is shown. In a time shared computer 
system each job is allocated a small time interval for uninterrupted processing 
at the CPU. If the total required processing time of a job exceeds the length 
of this interval it is fed back to a system of queues containing waiting jobs; 
here the job waits until it is permitted a second tum in the processing facility, 
according to a certain scheduling algorithm. This procedure is repeated until 
the job has obtained its required processing time and leaves the system. 

new jobs 
~---jobs queueing for 

processing 

system of queues 

partly served 
jobs 

finished jobs 

Fig. 1.2 Principle of feedback in a time shared computer system. 

The introduction of time sharing systems in the early sixties and the need to 
determine their performance has led to an extensive study of queueing models 
with feedback. On the other hand, theoretical investigations concerning net
works of queues have also stimulated research on feedback queues. The 
research of J.R. Jackson (Jackson [1957,1963]) on queueing networks with 
exponential services and independent external Poisson arrival processes 
revealed that, under certain assumptions, a queue in such a network in steady 
state behaves just like an MIMI s queue in isolation. In the case of so called 
feedforward networks where customers never return to a queue they have once 
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left, one can indeed prove that the input process to each queue is a Poisson 
process. But when feedback is possible the input process is no longer a Pois
son process - which makes the MIMI s behaviour all the more surprising. 
These observations revived the interest in single server queueing models with 
feedback of customers, like an MIMI I queue with constant feedback probabil
ity. In particular, the stochastic aspects of customer flows in feedback queues 
were extensively studied (cf. the survey by Disney and Konig [1985]). Further
more, the steady state queue length processes in Jackson networks and their 
generalizations, the so called BCMP networks (see Baskett et al. [1975]), 
appeared to be amenable to a detailed analysis; however, the analysis of other 
important characteristics such as the waiting time and sojourn time processes 
presented quite some difficulties. Again the case of feedforward Jackson net
works was relatively simple - as long as each node contains only a single 
server; in this case the joint steady state distribution of the successive sojourn 
times of a particular customer could explicitly be obtained, cf. Lemoine [1979] 
and Walrand and Varaiya [1980]. But it readily became clear that the possibil
ity of customers overtaking one another introduced considerable analytical 
difficulties. Once more the MIMI I queue with feedback provided the simplest 
example to study this 'overtaking' phenomenon in isolation. 

The aim of the present study is the analysis of sojourn times in single server 
queueing models with feedback: we shall derive the joint steady state distribu
tion of the successive sojourn times of a customer in a feedback queue with a 
quite general feedback mechanism. As an important by-product, our study on 
feedback queues leads to new insights in the analysis of the well-known and 
widely used 'processor sharing' model for time sharing systems. 

The remainder of this chapter is organized as follows. In Section 1.2 we 
shall first describe a basic feedback queueing model and discuss its main pro
perties. Next, the central feedback model of this study is introduced. Time 
sharing systems and models are discussed in Section 1.3. In Section 1.4 we 
introduce an interesting variant of the 'standard' MIGi I queueing model, viz. 
an MIG/I queue with a fixed number of additional permanent customers; that 
are customers who reside permanently in the system, i.e. they are fed back 
after each service. Section 1.5 contains an extensive overview of the literature 
related with the models considered in the present study. Section 1.6 is con
cerned with assumptions about the notations and terminology used in this 
monograph. Finally, in Section 1.7 we give an overview of the contents of 
Chapters 2-5. 

1.2 QUEUEING MODELS WITH FEEDBACK 

The basic, in literature most frequently encountered, feedback queueing model 
is the MIG/I queue with 'Bernoulli' feedback, see Fig. 1.3. The behaviour of 
the customers in this model is as follows. New customers, arriving according 
to a Poisson process, join the end of the queue. Immediately after his service 
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Poisson 
arrivals 

p 

1-p 
server 

Fig. 1.3 The M/G/1 queue with Bernoulli feedback. 

completion a customer returns to the end of the queue with probability p or 
leaves the system with probability 1-p, O,s;;;p<l. It is assumed that all service 
times are independent, identically distributed, random variables. The custo
mers in the queue are served according to the 'head-of-the-line' discipline. 

It is readily seen that the M/G/1 queue with Bernoulli feedback has a sta
tionary queue length process which has the same distribution as an equivalent 
M/G/1 queue without feedback, i.e. an M/G/1 system in which the service 
time distribution of a customer is equal to that of the total service time a cus
tomer obtains in the feedback model. Indeed, because the feedback probabili
ties are constant the queue length distribution is independent of the order in 
which the customers are served; so we may assume that they are served in one 
stretch with a service time equal to the total service time that they would have 
if they were served in the original manner. 

A much more difficult task is the determination of the distribution of the 
total sojourn time of a customer. The problem is caused by the fact that the 
total sojourn time of a particular (tagged) customer is the sum of the (partial) 
sojourn times during his successive passes through the system, which are 
clearly not independent of each other. Moreover, for the analysis of the 
sojourn time of a tagged customer one has to take into account that new custo
mers may arrive during the presence of the tagged customer and reside in the 
system during some passes (note that their services contribute to the tagged 
customer's total sojourn time), but leave the system before the tagged custo
mer. The possibility that customers can overtake each other leads to depen
dencies which almost invariably makes the determination of the sojourn time 
distribution impossible (see e.g. the survey of Boxma and Daduna [1989] on 
sojourn times in queueing networks). For the M/G/1 queue with Bernoulli 
feedback, however, the sojourn time problem could be solved, see Takacs 
[1963]. Takacs obtained a recurrence relation for the (Laplace-Stieltjes 
transform and generating function of the) joint distribution of a tagged 
customer's total sojourn time and the number of customers present in the sys
tem after k services, k = 1,2,.... The derivation is based on the observation 
that for a tagged customer the joint distribution of the duration of his (i + 1 )-
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th pass through the system (also called his (i + 1)-th sojourn time) and the 
number of customers present at the end of his (i + 1)-th service is completely 
determined by his i-th sojourn time and the number of customers present at 
the end of his i-th service, i = 1,2, ... (i.e. the joint 'process of successive service 
completion epochs and queue length at these epochs is a Markov renewal pro
cess). In fact, this observation is the basis of the analysis of most of the feed
back models discussed in the present study. 

The feedback model investigated in this monograph is actually a generaliza
tion of the MIM/1 queue with Bernoulli feedback. It is an MIM/1 feedback 
model in which the probability that a customer is fed back after service com
pletion depends on the number of times he has already been served: when a 
customer completes his i-th service he departs from the system with probability 
1-p(i) and he recycles with probability p(i), i = 1,2,.... Obviously, taking 
p (i)=P this model reduces to the MIMI 1 queue with Bernoulli feedback. In 
the sequel a customer who is visiting the queue for the i-th time will be called 
a 'type-i customer', i = 1, 2, .... 

It is important to note that the MIMI 1 queue with general feedback as 
described above belongs to the well-known class of so called 'product form' 

- networks (see e.g. Baskett et al. [1975) and Kelly [1979)), i.e. the (stationary) 
finite dimensional joint queue length distribution of the different types of cus
tomers is known and has a product form. It is noted here that due to the gen
eral feedback mechanism the distribution of the total number of customers in 
the system is not the same as the queue length distribution in the standard 
MIGi 1 queue with service times equal to the total service time in the feedback 
queue, as is the case for the MIG/I queue with Bernoulli feedback. 

The main result of the present study of the MIMI 1 queue with general feed
back is a complete description of the joint distribution of the successive 
sojourn times of a particular customer. 

1.3 TIME SHARING MODELS; ROUND ROBIN AND PROCESSOR SHARING QUEUES 

In Section 1.1 we already described the principle of time sharing in computer 
systems. Actually, the motivation for the introduction of time sharing comput
ers has been to provide multiple users simultaneous and (almost) direct access 
to a single processor unit. In fact this is achieved by giving small jobs (for 
which the users expect small response times) preferential treatment at the 
expense of the longer ones (for which the users expect larger response times). 
It is desirable that this property is reflected by queueing models of time shared 
systems. Accordingly the performance measure most often used for time shar
ing models is the response time for a job conditional on its required service 
time. We shall discuss this performance measure for the time sharing model 
described below. 

The MIG/I queue with the so called 'round robin' (RR) service discipline is 
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the most frequently encountered queueing model for the time shared computer 
systems as described in Section I. I. We have pictured this single queue model 
in Fig. 1.4. 

Poisson 
arrivals I · · · I 

queue 

reentering customers 

server 

depar
---~-----,a,.- tures 

Fig. 1.4 The M/G/1 queue with round robin service. 

The customers are served as follows. New customers, arriving according to a 
Poisson process, join the end of the queue. The customers in the queue are 
~erved according to the head-of-the-line discipline receiving a (small) fixed 
quantum q of service. At the end of his service quantum a customer leaves the 
system if his total service requirement is met; if not he returns to the end of 
the queue with his remaining service requirement reduced by an amount q. 

To overcome the mathematical problems that arise from the analysis of the 
RR model with fixed positive quantum size q it is often assumed that q➔O (an 
idea originally due to Kleinrock [19671). RR models under the assumption 
q➔O are called processor sharing (PS) models and are of great interest; they 
have pleasing mathematical properties and they also accurately model the per
formance of many real systems. 

In queueing literature the PS service discipline is often described as follows: 
when there are n ;;;.1 customers present in the system then each customer 
receives service at a rate which is I/ n times the rate of service that a solitary 
customer in the system would receive. It is easily seen that this alternative 
description coincides with the original definition of PS as the limiting case of 
the RR service discipline. 

The M/G/1 PS queue has some very interesting mathematical properties. 
First, the mean conditional sojourn time ESP8 (x) of a customer with service 
demand x ;;;.Q is linear in x and depends only on the first moment of the ser
vice time distribution: (see Kleinrock [1967], Sakata et al. [1971]) 

where p denotes the offered load to the system. This formula shows in which 



7 

way the PS discipline provides preferential treatment to short jobs (customers): 
a job half as long as an other will spend on the average half as long in the sys
tem. The above formula for the mean conditional sojourn time in the MIG/I 
PS queue should be compared with the result for the corresponding quantity in 
the MIG/I first-come-first-served (FCFS) queue: 

with A and /32 denoting the arrival intensity and the second moment of the ser
vice time distribution, respectively. 

Another important property of the MIG/I PS queue is that the (stationary) 
queue length distribution is 'insensitive' to the character of the service time dis
tribution, apart from its first moment: 

Pr { k customers in the system} = (I - p )l , k = 0, 1, .... 

This insensitivity property also holds for the joint queue length distribution in 
networks of PS queues ( cf. Baskett et al. [ 1975], Kelly [ 1979]). 

The usefulness of the PS service discipline for modeling the performance of 
computer systems, and its mathematical properties, have strongly contributed 
to the extensive use of PS (network) models in present day performance 
analysis. 

A very difficult mathematical problem for PS models is the determination of 
the sojourn time distribution. The difficulties are caused by the same 
phenomenon as occurring in the analysis of sojourn times in feedback queues: 
the PS service discipline allows customers to overtake each other. A solution 
of the sojourn time problem for the MIG/I PS queue was first obtained by 
Yashkov [1983]. However, the derivation of his results is complicated and 
does not provide much insight into the behaviour of the main sojourn time 
characteristics. 

In this monograph we present a new, more transparent method for the 
derivation of the (Laplace-Stieltjes transform of the) distribution of the sojourn 
time in the MIG/I PS queue. The idea is to consider the MIG/I PS queue as 
a limiting case of the MIMI I queue with general feedback (see Section 1.2). 
The PS model is obtained by letting the feedback probabilities approach one 
and the mean service time at each loop approach zero, such that a customer's 
total required mean service time remains constant. Different choices of the 
feedback probabilities lead to different service time distributions in the PS 
queue. Application of this limiting procedure to the sojourn time results 
obtained for the MIMI 1 feedback queue leads to results for the corresponding 
quantities in the PS queue. 

The method described above exploits well-known product form results for 
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the feedback model and gives much insight into the occurrence of many basic 
sojourn time properties for the limiting PS model. 

Many generalizations and variants of the PS (round robin) service discipline 
have been introduced, see e.g. the surveys by Jaiswal [1982] and Yashkov 
[1987]. For most of them the sojourn time distribution problem (even for the 
simplest MIMll case) is still unsolved. For one generalization, called 'general
ized processor sharing' (GPS), we shall present in this monograph some new 
sojourn time results. Therefore, the GPS model will be discussed here in some 
more detail. 

The GPS discipline generalizes the PS discipline as follows: when there are 
n;;;. 1 customers present in the system then each customer is served with a rate 
equal to J (n) with JO an (almost) arbitrary positive function. Obviously, for 
J(n)=l/n the GPS discipline reduces to the PS discipline (assuming that the 
total capacity of the server is normalized to one). 

Network models of GPS queues contain many interesting special cases such 
as the classical Erlang and Engset systems as well as many new processor shar
ing systems, see Cohen [1979]. The GPS discipline generalizes known results 
for classical networks: it preserves the product form and insensitivity property 
of the joint distribution of the queue lengths at the different nodes. At present 
most sojourn time results for GPS models are limited to the mean conditional 
sojourn time of a customer with given service demand. In general, sojourn 
time distributions are still unknown. 

In this monograph we propose a new approach to the analysis of GPS 
queues. The idea is similar to that for the PS case: we consider the MIG/I 
GPS queue as a limiting case of the MIMI 1 queue with general feedback 
introduced in Section 1.2 but with state dependent service rates. Different 
choices of the service rates in the feedback model lead to different service rate 
functions JO in the GPS queue. We show that (known) results for the 
MIGi 1 GPS queue can be very easily obtained from the analysis of this (pro
duct form) feedback model with state dependent service rates. (In fact, the 
analysis of the single node GPS model can be easily extended to the analysis 
of networks of GPS queues). For a special class of GPS disciplines this 
approach leads to new results for the sojourn time distribution. 

1.4 MODELS WITH PERMANENT CUSTOMERS 

An extreme case of a feedback queue is a closed queueing system, i.e. a queue
ing system with a fixed number of 'permanent' customers. Closed queueing 
systems model the situation where the number of customers in the system is 
constant ( once a customer has obtained his required service he is immediately 
replaced by another one with the same characteristics). A queue with addi
tional permanent customers is a system where next to the ordinary customer 
stream(s) also permanent customers are processed. An interesting aspect in 
such a case is the interference of permanent customers with the other customer 
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streams, in particular the influence of the presence of the permanent customers 
on the queueing characteristics of the other customers. In the last chapter of 
this monograph, Chapter 5, we consider some single queue single server 
models with two types of customers: (i) ordinary customers who arrive accord
ing to a Poisson process, and (ii) a fixed number of permanent customers who 
immediately return to the end of the queue after having received a service. See 
Fig. 1.5 for the case of an M/G/1 queue with permanent customers. Our 
main goal is to present a study of the influence of the presence of additional 
permanent customers on queue lengths and sojourn times of the 'Poisson cus
tomers' for the standard M/ G / 1 queue and for the feedback and PS models 
discussed in the previous sections. 

Poisson 
arrivals -----➔ 

_________ ,_depar
tures 

queue server 

additional permanent customers 

Fig. 1.5 The M/G/ 1 queue with additional permanent customers. 

The main reason for studying these relatively simple models with permanent 
customers is that these models expose - stripped from all non-essential features 
- a structure that appears in many representations of computer and communi
cation networks. For example, consider a telephone exchange to which two 
types of jobs are offered: call requests and operator tasks. To guarantee acer
tain quality of service to the call requests only a limited number, say K, of 
operator tasks (which are assumed to be always available) is allowed to be in 
the system at the same time. Obviously, it is important to know in which way · 
the choice of the control parameter K influences the performance of the system 
with respect to the waiting times of the call requests and the throughput of the 
operator tasks. 

Another reason for studying models with permanent customers is that there 
are several interesting relations with other important queueing models. For 
example, the M/G/1 queue with one additional permanent customer behaves 
exactly like a vacation queue, a queueing model where the server interrupts the 
service to a customer stream at certain epochs to take a vacation. Other 
related models are discussed in Chapter 5. 
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1.5 REVIEW OF RELATED LITERATURE 

In this section we discuss some literature related to this study and indicate the 
place of the study within the literature. We restrict ourself mainly to literature 
concerning single server models where the ( external) arrival process is a Pois
son process. Work on multi resource systems (networks) and finite source 
models is not discussed. 

1.5.1 Feedback queues 
A pioneering study on feedback systems is Takacs [1963]. He considered the 
MIG/I FCFS queue with Bernoulli feedback. His main result is a recurrence 
relation for the Laplace-Stieltjes transform (LST) and generating function of 
the joint distribution of a customer's total sojourn time and the number of cus
tomers present in the system after k services, k = 1,2, .... The key observation 
leading to this result is that for a tagged customer the joint process of succes
sive service completion epochs and queue length at these epochs is a Markov 
renewal process, see Section 1.2. In fact, this observation is the basis of the 
analysis in most of the feedback studies discussed below. 

Disney [1981], Disney et al. [1984] and Doshi and Kaufman [1988] have also 
studied queue length and sojourn time distributions in the MIGll Bernoulli 
feedback queue in some detail. In particular Doshi and Kaufman derive the 
LST of the joint distribution of the sojourn times of a customer on his succes
sive passes through the system. Disney et al. [1980] is mainly concerned with a 
fundamental study of several traffic flow processes in the system and queue 
length distributions at different embedded stochastic epochs, see also Disney 
and Konig [1985]. They show for the MIM/1 queue with Bernoulli feedback 
that the input process (the successive epochs at which a customer (re)enters the 
queue) and the output process (the successive service completion epochs) are 
Markov renewal processes; for general service times the output process is also 
Markov renewal. It is shown that for positive feedback probabilities these 
processes are never renewal. Disney and Konig [1985] also present an over
view of literature concerned with the analysis of Bernoulli feedback models. 

Fontana and Diaz Berzosa [1984,1985] extend some results obtained for the 
MIGi 1 model with Bernoulli feedback to a more general feedback model with 
non preemptive priorities. However, one should take care in applying their 
results because some of them do not agree with those in Disney et al. [1980] 
(e.g. Fontana and Diaz Berzosa [1984,1985] erroneously conclude that for the 
MIG/I Bernoulli feedback queue the queue length distribution at output and 
arbitrary epochs are equal; Disney et al. [1980] prove that this does not hold). 

Simon [1984] analyzes an MIGII feedback queue with multiple customer 
types and preemptive and non preemptive priority levels that may change after 
a service completion; the customers are fed back a fixed number of times. The 
main result of his paper is the derivation of a set of linear equations for the 
mean sojourn time of each visit. 

The feedback model studied by Lam and Shankar [1981] is basically the 
same as the MIM/1 queue with general feedback analyzed in the present 
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study. They consider the model as a time sharing model with exponentially 
distributed service quanta. Lam and Shankar derive the total sojourn time dis
tribution. This distribution is a special case of our result for the joint distribu
tion of the sojourn times of a customer on his successive cycles. Nelson [1987] 
also considers queues with general feedback, but with varying service times, to 
study the effect that assigning increasing service times to customers has on 
mean sojourn times. 

Ali and Neuts [1984] consider an MIG/I Bernoulli feedback queue with a 
waiting room and a service room. Newly arriving customers and customers 
who have been fed back join the waiting room. Whenever the service room 
becomes empty all customers from the waiting room, together with a random 
number of overhead customers, are transferred to it. Ali and Neuts determine 
the stationary distribution of queue lengths at various embedded random 
epochs and the distribution of a customer's waiting time until his first service. 

Hunter [ 1989] considers single server queues with state dependent feedback 
and finite waiting room. In particular, he studies an appropriately constructed 
Markov renewal process which describes the behaviour of the system starting 
at the arrival of a tagged customer; the sojourn time of the tagged customer 
relates to a first passage time in this process. For some special cases (e.g. the 
MIMI 1/2 queue with Bernoulli feedback) this approach leads to the deriva
tion of explicit expressions for the LST of the distribution of the total sojourn 
time. Mean sojourn times are obtained for the MIMll/N (N;:e,1) queue with 
Bernoulli feedback. Hunter also gives a brief survey of the literature on 
sojourn times in feedback models. 

1.5.2 Time sharing and processor sharing queues 
The first queueing model for a time shared computer system was presented by 
Kleimock [1964]. He studied a single queue single server system under the 
round robin discipline as a discrete time Markovian model. Since then until 
the early seventies many papers on (variants of) this model have been pub
lished, see e.g. Schrage [1967], Kleinrock [1967], Coffman and Kleimock 
[1968], Adiri and Avi-Itzhak [1969A,1969B], Sakata et al. [1971], Adiri [1972] 
and Muntz [1972]. All these papers are concerned with the derivation of mean 
queue lengths and sojourn times apart from Muntz [1972]. Muntz derives the 
queue length and sojourn time distribution for an MIMI 1 queue under the 
RR discipline with fixed quantum size and overhead due to switching between 
customers. An extensive discussion on time sharing systems and models, with 
many references, is given by Kleimock [1976, Chapter 4] and Jaiswal [1982]. 

To simplify the mathematical analysis of RR models Kleimock [1967] pro
posed to study the case that the size of the service quanta shrinks to zero, thus 
obtaining the processor sharing discipline. In particular the derivation of queue 
length distributions and mean (conditional) sojourn times appeared to be much 
easier for the PS model than for the corresponding RR system with positive 
service quanta. Kleimock [1967] showed that for the MIM/1 PS queue the 
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mean conditional sojourn time is linear in the required service time ( cf. the for
mula in Section 1.3). Sakata et al. [1971] obtained the same result for the case 
of general service times by letting in their RR model the quantum size tend to 
zero. O'Donovan [1974] and Asare and Foster [1983] derived the mean condi
tional sojourn time directly from the behaviour of the MIGll PS queue. A 
very recent paper on this subject is Foley and Klutke [1989]. Foley and 
Klutke show that the (non stationary) queue length process starting at the 
arrival of a tagged customer is stochastically strictly increasing during the pres
ence of the tagged customer, which makes it quite surprising that the mean 
conditional sojourn time is a linear function of the required service time. 
Their approach, based on introducing different time scales for different 
processes, provides insight into this somewhat paradoxical property. In this 
monograph we shall give an explanation of it which is based on our 'feedback 
approach' to PS queues. 

The derivation of the insensitivity property of the distribution of the queue 
length in the MIG/I PS queue (given in Section 1.3) is originally due to 
Sakata et al. [1969]. In fact, they obtain their result as a special case of the 
queue length distribution in a multi server processor sharing model. 

In contrast to the derivation of queue length distributions it appeared to be 
much more difficult to derive sojourn time distributions for PS queues. 
Coffman et al. [1970] obtained the distribution of the conditional sojourn time 
for the MIMI 1 PS queue; for general service times it remained an unsolved 
problem until the early eighties. The LST of the distribution of the condi
tional sojourn time for the MIG/I PS queue was obtained by Yashkov [1983], 
Ott [1984] and Schassberger [1984]. The approaches used by Yashkov and Ott 
are quite similar. The essence is a decomposition of the sojourn time of a 
(tagged) customer as the sum of 'time delays' which are induced by the custo
mers present in the system at the arrival of the tagged customer (and by the 
tagged customer himself); these time delays include the influence of customers 
who arrive during the sojourn time of the tagged customer. It is shown that 
the time delays can be interpreted as lifetimes of some terminating branching . 
process. The dynamics of the time delays is described by some integro
differential equations derived by using ideas from branching theory. 
Schassberger [1984] obtained his result by means of the analysis of a discrete 
time queue under a slight variation of the standard RR discipline in which a 
newly arriving customer immediately receives a quantum of service and only 
then joins the tail of the queue. Using known sojourn time results for this RR 
model ( obtained in Schassberger [ 1981]) and letting the quantum size shrink to 
zero he finds results for the corresponding sojourn times in the MIG/I PS 
queue. Schassberger [1984] also gives the theoretical background of the weak 
convergence of the sojourn time distribution for the discrete time RR model to 
the distribution of the sojourn time in the PS queue. 

The analysis of the sojourn time distribution in the MIGi 1 PS queue pro
posed in this monograph is in some sense similar to the method used by 
Schassberger [1984]. We first analyze a kind of RR (feedback) queue with 
exponentially distributed service quanta and then take appropriate limits such 
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that the behaviour of the system approaches that of the M/G/1 PS queue. 
The advantage of this method is that it exploits well-known product form 
results for the feedback model which give much insight into the behaviour of 
the sojourn time in the limiting PS model. The proof that the distribution of 
the sojourn time in the feedback model converges weakly to that in the PS 
model has been given recently by Resing et al. [1989]. 

From the results obtained by Yashkov [1983], Ott [1984] and Schassberger 
[ 1984] expressions for the second and higher moments of the sojourn time dis
tribution can be derived. The resulting formulas are very complex and their 
(numerical) evaluation requires quite some effort. As far as we know no atten
tion has been paid in the processor sharing literature to the derivation of 
approximations or asymptotic formulas which are useful for practical evalua
tion, apart from a paper by Y ashkov [ 1986]. He derived some asymptotic esti
mates for the conditional sojourn time variance for customers with very small 
or very large service demands. In this monograph simple approximations for 
the second moment of the sojourn time in the M/G/1 PS queue are presented. 
The derivations of these approximations are mainly based on new asymptotic 
results (e.g. heavy traffic and an extension of Yashkov's results) and on exact 

· expressions for specific service time distributions. 

A fundamental study of the generalized processor sharing service discipline 
is given by Cohen [1979]. Cohen studies the class of GPS disciplines in a very 
general model of closed and open networks with multiple customer types. This 
model contains as special cases the classical Erlang and Engset systems, the 
multi server M/G/s PS queue as well as many new PS systems. He obtains 
generalizations of known results for classical networks such as the product 
form and insensitivity property of the joint distribution of the queue lengths at 
the nodes and the mean conditional sojourn time of a customer with given ser
vice demand; sojourn time distributions are not studied. 

In the present study it is shown that most of Cohen's GPS results can be 
obtained by using an approach similar to the one used for the analysis of the 
PS case, see the discussion at the end of Section 1.3. In addition, we shall 
derive the LST of the distribution of the sojourn time in the M/G/1 GPS 
queue for a special class of GPS disciplines. 

Next to the GPS discipline there exist many other generalizations and vari
ants of the PS discipline. For an overview of the various models and a discus
sion of the results we refer to the surveys by Jaiswal [ 1982] and Y ashkov 
[1987]. Recently some studies on two interesting variants of the M/G/1 PS 
queue appeared, which are not covered by Jaiswal [1982] and Yashkov [1987]. 
Avi-Itzhak and Halfin [1988] consider an M/M/1 PS queue with a limited 
number (r) of service positions and preemption when there are at least r custo
mers in the system upon the arrival of a new customer. (The case without 
preemption is treated in Avi-Itzhak and Halfin [1989A]). They present 
methods for calculating the LST and the moments of the (conditional) sojourn 
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time distribution; it is shown that for r-HXJ the results coincide with the 
results obtained by Coffman et al. [ 1970). In Rege and Sengupta [ 1989) a 
'gated' MIMI I PS queue is studied. In this model a gate controlling the 
access to the service facility opens when the server becomes idle, admitting at 
most m ;;..1 waiting customers, and then closes again. Here, the case m = 1 
corresponds to the MIMII FCFS queue. (Avi-Itzhak and Halfin [1989B] con
sider the case m = oo for general service times). The authors derive the LST of 
the waiting time distribution, the LST of the distribution of the time in service 
conditional on the required amount of service and the mean conditional 
sojourn time. Both PS variants can be used for modeling the performance of 
certain multiprogrammed (time shared) computer systems in which the degree 
of multiprogramming is limited to some maximum due to the constraints of 
finite memory. 

1.6 ASSUMPTIONS AND NOTATIONS 

Throughout this study we assume that all the systems considered are stable (in 
statistical equilibrium), i.e. we assume that all involved stochastic processes 
(e.g. the queue length process and the sojourn time process) are stationary. 
For the systems studied in this monograph necessary and sufficient conditions 
for stability are well-known or else can be easily obtained from existing results 
for related models. So, when we refer to the 'sojourn time of an arbitrary cus
tomer' then we mean an independent copy of the sojourn time of the nth 
(newly) arriving customer, for some n;;.. 1. Similarly, the 'queue length at an 
arbitrary epoch' refers to an independent copy of the queue length at some 
time t. 

Throughout, random variables representing service times are indicated by 
bold printed Greek letters tau (-r); all other random variables are indicated by 
capitals also printed in bold type. Sections, formulas, theorems, figures, etc. 
are referred to by a numeral indicating the chapter in which they originally 
occur followed by their number within that chapter. 

1.7 OVERVIEW OF THE CONTENTS OF THE NEXT CHAPTERS 

Chapter 2 is concerned with a fundamental analysis of sojourn times in the 
MIMII queue with general feedback. We first derive, in the form of Laplace
Stieltjes transforms and generating functions, a recursive expression for the 
joint steady state distribution of the successive sojourn times and the number 
of customers present in the system at each service completion of a tagged cus
tomer who has been fed back k times, k =O, 1, .... Using this result it is shown 
that the successive sojourn times have the same marginal distribution, which is 
negative exponential. We also derive some other sojourn time characteristics, 
such as the distribution and the variance of the total sojourn time after k ser
vices and the correlation coefficient of the i-th and the J-th sojourn time of a 
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tagged customer, i <j. In particular, we prove the intuitively appealing pro
perties that the latter quantity is positive and that it decreases if j - i grows. 
It is shown that for some interesting special choices of the feedback probabili
ties (e.g. Bernoulli feedback) the general expressions reduce to simple, explicit 
formulas. Chapter 2 concludes with the analysis of an M/ G/ 1 queue with gen
eral feedback where the service time of a customer at each service depends on 
the number of times that he has been fed back. The results for this model are 
restricted to mean queue lengths and sojourn times. For the special case of 
deterministic feedback (i.e. each customer is fed back a fixed number of times) 
and all mean service times equal it is shown that from the second visit on the 
successive mean sojourn times of a tagged customer are all equal. 

In Chapter 3 the sojourn times in the M/G/1 PS queue are analyzed by tak
ing appropriate limits in the M/M/ 1 queue with general feedback. We first 
formulate the limiting procedure and then show how this procedure can be 
applied to the sojourn time formulas for the M/M/1 feedback model obtained 
in Chapter 2. It appears that some well-known results for the M/G/1 PS 
queue (e.g. the mean conditional sojourn time) follow immediately from the 
product form properties of the joint queue length distribution in the feedback 
model. Next to the mean sojourn time we also derive the variance of the 
sojourn time and the (LST of the) sojourn time distribution. In particular, a 
new asymptotic result for the variance of the conditional sojourn time for cus
tomers with a very small service demand is obtained. Subsequently it is 
pointed out how the analysis of the M/G/1 PS queue can be extended to the 
analysis of the M/G/1 queue with generalized processor sharing by applying a 
similar limiting procedure to the M/M/1 queue with general feedback and 
state dependent service rates. Using known product form results for the latter 
model we present a new, simple, derivation of the queue length distribution 
and mean conditional sojourn time in the M/G/1 GPS queue. The last sec
tion of Chapter 3 is devoted to the analysis of sojourn times in the M/G/1 PS 
queue with Bernoulli feedback. From the results for the M/M/ 1 queue with 
general feedback obtained in Chapter 2 and application of the limiting pro
cedure we derive new results for the correlation coefficients of the successive 
sojourn times of a tagged customer in the PS feedback model. 

In Chapter 4 we develop some simple approximation formulas for the 
second moment of the conditional and unconditional sojourn time in the 
M/G/1 PS queue. The main reason for the development of these approxima
tions is that the exact expressions can in general only be evaluated numerically 
and require perfect information about the service time distribution (which is 
almost never available in practical situations). The approximations depend on 
the service time distribution only through its first and second moment. They 
are mainly based on new asymptotic results (e.g. heavy traffic) and on simple 
exact expressions for some specific service time distributions. The many 
numerical examples show that these simple two-moment approximations are 
sufficiently accurate for many practical purposes. A refinement of the approxi
mations is obtained by taking the third moment of the service time distribution 
into account. 
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As mentioned before, Chapter 5 is concerned with the study of some queue
ing models with additional permanent customers. First a detailed study of the 
basic model, the M/G/1 queue with permanent customers, is presented. The 
analysis is largely based on a decomposition of the queue length as a sum of 
independent random variables; the distributions of these random variables are 
obtained from known results for a related M/G/1 model with vacations. We 
derive queue length and sojourn time distributions for the Poisson customers 
and the permanent customers and we obtain simple explicit expressions for 
their first moments. Next, the M/M/1 queue with general feedback and addi
tional permanent customers is studied. We obtain the rather remarkable result 
that for the case with K;;;,, 1 additional permanent customers the sojourn time 
distribution is the (K + I)-fold convolution of the sojourn time distribution in 
the original system (i.e. without permanent customers). Application of the lim
iting procedure as described in Chapter 3 leads to a similar result for the 
M/G/1 PS queue with additional permanent customers. 

Most results presented in this monograph are new except from that concern
ing the distribution of the sojourn time in the M/G/1 PS queue; actually the 
analysis of PS queues as presented in this study is new and our approach pro
vides much more insight into the main sojourn time and queue length charac
teristics than previous methods. 

The results of Chapter 2 are based on Van den Berg et al. [1989) and Van 
den Berg and Boxma [1989A]. The first three sections of Chapter 3 are mainly 
based on Van den Berg and Boxma [1989B). Chapter 4 is based on Van den 
Berg [1989). 
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Chapter 2 

THE M/M/1 QUEUE WITH GENERAL FEEDBACK 

2.1 INTRODUCTION 

In this chapter we consider an M/M/ 1 queue with a very general feedback 
mechanism. When a newly arriving customer, to be called a type- I customer, 
has received his service, he departs from the system with probability 1-p(l) 
and is fed back to the end of the queue with probability p(l); in the latter case 
he becomes a type-2 customer. When he has received his i-th service, he leaves 
with probability 1 - p (i) and he recycles with probability p (i), in the latter case 
becoming a type-(i + 1) customer. The service times of each customer at all 
visits are independent, identically, negative exponentially distributed random 
variables. The resulting queueing model has the property that the joint queue
length distribution of type-i customers, i = 1,2, ... , is of product-form type. 
This property will be exploited to analyze the sojourn time process. In partic
ular, we present a complete description of the joint distribution of the sojourn 
times of a customer on his successive cycles. 

In the queueing literature, research on feedback queues has been mainly res
tricted to single server queues with Bernoulli feedback (see Takacs [1963], Dis
ney (1981], Disney et al. [1984] and Doshi and Kaufman [1988]). The Ber
noulli feedback mechanism is a special case of the one in the present study: 
take p(i) = p in the general model. Lam and Shankar [1981] have studied a 
feedback model with basically the same feedback procedure as described 
above; they derive the total sojourn time distribution. This distribution comes 
out as a special case of our result for the joint distribution of a customer's suc
cessive sojourn times. 

The organization of this chapter is as follows. In Section 2.2 the model is 
described in detail and some preliminary results are given. Section 2.3 con
tains our main result. We derive a formula for (the transform of) the joint dis
tribution of the successive sojourn times of a tagged customer in the system 
and the numbers of customers of the various types present at his successive 
departure epochs. In Section 2.4 it is shown that the sojourn times in all indi
vidual cycles are identically, negative exponentially, distributed. Also, the 
correlation between the sojourn times of the j-th and k-th cycle of the tagged 
customer is calculated; furthermore, the distribution of the total sojourn time 
is derived. In Section 2.5 two special feedback mechanisms are studied: 
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Bernoulli feedback (Subsection 2.5.1) and deterministic feedback (Subsection 
2.5.2). Finally, in Section 2.6 a similar model with generally distributed service 
times at each visit is considered. We derive a set of linear equations from 
which the mean sojourn time per visit can be calculated. Sections 2.2 through 
2.5 are based on Van den Berg and Boxma [1989A]; Section 2.6 is based on 
Van den Berg et al. [ 1989]. 

2.2 MODEL DESCRIPTION 

We consider a single server queueing system with infinite waiting room, see 
Fig. 2.1. Customers arrive at the system according to a Poisson process with 
intensity ;\>0. After having received a service, a customer may either leave 
the system or be fed back. When a customer has completed his i-th service, he 
departs from the system with probability I - p (i) and is fed back with proba
bility p (i). Fed back customers return instantaneously, joining the end of the 
queue. A customer who is visiting the queue for the i-th time will be called a 
type-i customer. To avoid the problems that occur in dealing with an infinite 
number of different customer types, it is assumed that after a certain number 
of services the feedback probabilities of a customer remain constant. Thus 
p(i) = p(N) := p, i=N,N+l, ... for some N;;,,,I. The service discipline is 
first-come-first-served (FCFS). 

p(i) 

I · · · I 1-p(i) 

Fig. 2.1 The MIMI 1 queue with general feedback. 

It is assumed that the successive service times of a customer are independent, 
negative exponentially distributed, random variables, with mean /3. These ser
vice times are also independent of the service times of other customers. 
Introduce 

with 

q(O) : = I, (2.1) 
i-1 

q(i) : = II p(j), i = 1, ... ,N - 1, 
j=O 

oo m-1 
q(N): = ~ II p(j) = q(N - l)p(N-1)1(1-p), 

m=N j=O 
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p(O) := 1. 

Note that >i.q(i) is the arrival rate of type-i customers, i = l, ... ,N. The total 
offered load to the queue per unit of time, denoted by p, is given by 

N 

p = >i./f~q(i). (2.2) 
i=I 

For stability it is required that p< 1. 

We are interested in the following steady-state quantities: 

- X;: number of type-i customers in the system at an arbitrary epoch, 
i=l, ... ,N; 

- xy>: number of type-i customers in the system at the j-th service completion 
of a customer, i = I, ... ,N, j = 1,2, ... ; 

- x~0>: number of type-i customers in the system at the arrival of a new custo
mer, i = l, ... ,N; 

- S/ time required for the J-th pass through the system (j-th sojourn time), 
j=l,2, ... ; 

k 
- s<k>: total sojourn time after k services: s<k) = ~Sj, k = 1,2 .... 

j=I 

It is important to note that the system described above can be considered as 
a queueing network consisting of one queue with N types of customers. Type-i 
customers are fed back with probability p (i) after service, and then change 
into type-(i + 1) customers, i = l, ... ,N -1. Type-N customers are fed back 
with probability p after service, and do not change their type. Because the ser
vice times are assumed to be independent exponentially distributed, the joint 
distribution of the number of type-i customers in the system at an arbitrary 
epoch, i = 1,2, ... ,N, is of product-form type, see Baskett et al. [1975). It is 
found that, for x 1, ... ,xN = 0,1, ... , 

(2.3) 

(X + · · · + X )I N 
(1-p) I N • IT(>i.,Bq(i)t'. 

X1! ... XN! i=I 

It is convenient to have at our disposal the generating function of the joint 
queue length distribution. We have, for jz; I :,;;;;;1, i = l, ... ,N, 
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(2.4) 

ao 
(1-p) ~ ~ ... ~ 

m=O x 1 xN 

x 1 + ... +xN=m 

(1-p)m~O [i!A/3q(i)z;]m = ;-p 
1 - ~'A/3q (i)z; 

i=I 

The distribution of the total number of customers in the system coincides with 
the queue length distribution in an ordinary MIMI 1 model: 

i.e. 

(2.5) 

We shall use these results in the next section. 

2.3 MAIN RESULTS 

In this section we present, in the form of Laplace-Stieltjes transforms and gen
erating functions, an expression for the joint steady-state distribution of the 
successive sojourn times s1, j = 1, ... ,k, and the number of type-i customers, 
xpl, i = 1, ... ,N, present at the j-th service completion of a customer who is fed 
back at least k -1 times, k = 1,2, .... 

Let us follow a tagged customer from the moment he arrives as a type- I cus
tomer until he completes his k-th service. Obviously, the k successive sojourn 
times of the tagged customer depend on the number of customers of each type 
present in the system upon his arrival, the behaviour of these customers and 
the behaviour of subsequent arrivals. The PASTA property (Wolff [1982]) 
implies the equality of the joint queue length distribution at the epoch of a 
new arrival and at an arbitrary epoch: 

Hence, for Re w;;;;.O, lz;,11 :s;;;l, i = 1, ... ,N,j =O, ... ,k, 

( S S ) X(O) x<•l x<k) x<k) 
E{ - W1 ,+ ••• +Wk k ( I N ) ( I N )} -e Z1,o •.• 2 N,O .•• 2 1,k •.. ZN,k - (2.7) 
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00 00 

~ ~ P(x1, ... ,xN) X 
x,=O xN=O 

The conditional expectation in the RHS of (2.7) can be evaluated by using the 
following property, which is easily seen to hold: (XY +I), · · · ,xi + 1>), which 
determines the distribution of Si +2, is conditionally independent of 
{(XV>, · · · ,XW), j =O, ... ,i -1; S1, ···,Si} given {(XY>, · · · ,XW); Si+i}, 
i = 1, ... ,k -1, i.e. the joint process of successive service completion epochs 
and queue length vector at these service completion epochs is a Markov 
renewal process (cf. <;inlar [1975, Ch. 10]). The calculations, which are very 
lengthy, are omitted here; they can be found in Appendix 2.1 at the end of 
this chapter. There it is shown that 

-(w s + +w s) x<•i x<•i x<•i x<•i E{e , , ... • '(z, ···z N )···(z, ···z N) 1x<0>=x ... x<0>=x} 1,0 N,O l,k N,k I 1, , N N 

. k N 
= II Af (j,w,z) II (zi,off (i,w,z))\ (2.8) 

j=l i=l 

(2.9) 

Af(i,w,z) := [I +,B{wk-i+l +>-.-AZ1,k-i+1A1/(i-1,w,z)[A1/(i-2,w,z)[ · · · 

[Af (2,w,z)[Af (l,w,z)[p(i - l)zi,k + 1-p(i -1)) 

p(i-2)zi-l,k-l + 1-p(i -2)]p(i -3)zi-2,k-2 + 1-p(i -3)) ... ] 

p(l)z2,k-i+2 + l-p(l)]})-1, i =3, ... ,k, 

/:(i, w,z) : = Af (k, w,z)[Af (k - l,w,z)[ · · · [Af (2,w,z)[Af (l,w,z) (2.10) 

[p(k +i - l)zk+i,k+ 1-p(k +i -l)]p(k +i -2)zk+i-1,k-l + 

1-p(k +i-2)]p(k +i -3)zk+i-2,k-2 + 1-p(k +i-3)) · · ·] 

p(i)zi+1,1+l-p(i)], i=l, ... ,N. 

Here we have defined 

zi,/ =zN,j, i =N + 1, ... ,N +k. 
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REMARK 2.1 
From the calculations in Appendix 2.1 it is seen that the factor (z;, 0.f!c (i, w,z )r 
in the RHS of (2.8) is due to the contribution to { (XY), ... , X'-/)), j = 0, ... ,k; 
S1, ••• , Sk} induced by the x; type-i customers present in the system upon the 
first arrival of the tagged customer, i = l, ... ,N; the factor Ir _ A f (j, w,z) is 
due to the contribution induced by the tagged customer him'self. These con
tributions are all independent, cf. (2.8). 

Substituting (2.8) and (2.3) into (2.7) and evaluating the summations (use (2.4)) 
we obtain our main result: 

THEOREM 2.1 

S S (0) (0) (k) (k) 

E{ -(w, ,+ ... +w, ,){ X 1 XN ) { X, XN )} _ e Z1,o ... zN,0 ... Z1,k ... zN,k -

k N 
(l-p) ITAk (j,w,z) 

(2.11) 

N 
Rewj~o, lz;,11.;;;1, i=l, ... ,N, j=O, ... ,k. 

l -A/3 ~ q (i)z;, 0.f!c (i, w,z) 
i=I 

COROLLARY 2.1 
The La,place-Stieltjes transform of the joint distribution of the first k successive 
sojourn times of a customer, who is fed back at least k - I times, is given by 

k 
(l-p) ITAf(j,w) 

E{e -(w,S,+ ... +w,S,)} = ___ ,._·=--'l'------
N 

l-A/3 ~ q(i)f!c(i,w) 

(2.12) 

i=I 

with, 

(2.13) 

Af (i,w): = [l +/3{wk-i+I +A-AAf(i -1,w)[Af (i -2,w)[ · · · [Af (2,w)[Af (l,w) 

p(i -2)+ I-p(i -2)Jp(i -3)+ I-p(i -3)) · · · ]p(l)+ l-p(l)]}]- 1, 

i =3, ... ,k, 
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fl (i, w) : = Af (k, w)[Af (k -1,w)[ · · · (2.14) 

[Af (2,w)[Af (1,w)p(k +i -2)+ 1-p(k +i -2)] 

p(k +i -3)+ 1-p(k +i -3)] · · · ]p(i)+ 1-p(i)], i = 1, ... ,N. 

PROOF 
Substitute zi,J= 1 into (2.9)-(2.11), i = 1, ... ,N, j =O, ... ,k. 

COROLLARY 2.2 
The joint distribution of the number of type-i customers, i = 1, ... ,N, present in the 
queue at the end of the j-th service of a tagged customer is independent of j and 
given by 

(2.15) 

i=l 

lz;l.;;;;1, i=1, ... ,N, j=0,1, ... ,k. 

PROOF 
It follows from (2.3) and (2.6) that (2.15) holds for j =O. If (2.15) also holds 
for j = l, then it cle;;Jitly holds for all j =O, 1, .... The validity of (2.15) for j = 1 
follows by a simple calculation. 

REMARK 2.2 
Corollary 2.2 is, in a more general context, known as the 'arrival theorem' for 
product form networks, see e.g. Walrand [1988, Section 4.4]. This theorem 
implies that an arriving type-i customer (who has just completed his (i - 1 )-th 
service) 'sees' the system as at an arbitrary epoch. 

The Laplace-Stieltjes transform of the joint sojourn time distribution 
((2.12)-(2.14)) can be presented in a form which is more suitable for obtaining 
sojourn time moments. For this purpose we first rewrite (2.13) and (2.14): 

i-1 
Af(i,w) := [l+,Bwk-i+l+t.,B{l-q(i-l)ITAf(j,w)- (2.16) 

j=I 

i-1 i-1 
~ q(i -l)(l-p(i -/)) II Af (j, w)}]- 1, i = l, ... ,k, 

/=2 j=I 

{ic(i,w) := ~[q(k+i-l)ITAf(j,w)+ 
q(i) j=I 

(2.17) 
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k k 
~q(k +i-/)(1-p(k +i -/))ITAf (j,w)], i = 1, ... ,N, 

with 

1=2 

q(O): = 1, 
i-1 

qO) : = IIPU), i = 1,2, ... , 
j=O 

j=I 

and an empty product being one by definition. From (2.17) it is found that 
the summation in the denominator of (2.12) can be written as 

N k-I k k k 
A/3~q(i)/1(i,w) = (p-A/3 ~ q(i))ITAf(j,w) + A/3~q(k-l + l)ITAf(j,w). 

i=I i=l j=I 1=2 j=I 

Substituting this into (2.12) and introducing 

we obtain 

(2.18) 

1-p 

1=2 i=I 

with, from (2.16), 

Mk(i,w) = (1 +{3wk-i+I)Mk(i-l,w)+A/3 [Mk(i-l,w)-q(i-1)- (2.19) 

~
1q(i - j)(l -p(i - J))Mk(j-1,w)], i = l, ... ,k. 

j=2 

Note that (2.18) and (2.19) are independent of N - the number of different cus
tomer types in the system. Hence, this result for the joint sojourn time distri
bution is also valid without the assumption made in Section 2.2 that the feed
back probabilities remain constant after a finite number N of services. More
over, it follows from (2.18) and (2.19) that the joint distribution of the first k 
successive sojourn times of a particular customer depends on the feedback 
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probabilities only through p(l), ... ,p(k -3) and p (which reflects the 
influence of p(k -2), p(k -1), ... , cf. (2.1), (2.2)). In the next section we shall 
use (2.18) and (2.19) to derive some important sojourn time characteristics. 

2.4 SOJOURN TIME CHARACTERISTICS 

In this section we derive expressions for some important sojourn time charac
teristics such as the marginal distribution of the successive sojourn times, the 
correlation coefficient of the i-th and the j-th sojourn time of a particular cus
tomer, and the mean and variance of the total sojourn time after k services. 
As an example we study the case that a customer receives exactly 2 services; 
for this case simple explicit results for the above mentioned sojourn time 
characteristics are obtained. 

The fact that the joint queue length distribution at the arrival of a customer 
and after each of his passes is the same ( cf. Corollary 2.2), implies that the 
sojourn times s1, j = 1, ... ,k have the same marginal distribution. S1 can 
easily be obtained from (2.18) and (2.19) by taking k = l. It is found that the 

. sojourn times are negative exponentially distributed with mean /Jl(l-p): 

(2.20) 

Note that this coincides with the sojourn time transform in an ordinary 
N 

MIMI l queue with mean service time fJ and arrival rate i\ ~q (i), cf. (2.5). 
i=I 

In order to investigate the dependence between the i-th and j-th sojourn 
times we have computed the Laplace-Stieltjes transform of the joint distribu
tion of S; and s1, 1,;:;;i <J,;:;;k. It is found from (2.18) and (2.19) that 

(2.21) 

where c1 _; is determined by 

C 1 = 1, (2.22) 
n -I 

Cn = (1 +i\fJ)Cn-1-i\fJ ~ q(n -[)(1-p(n -/))C1-1, n =2, ... ,k-1. 
1=2 

Note that E { e -(w,s, +wjSj)} only depends on i and j through the difference j - i. 
This property might also have been derived from Corollary 2.2. 
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REMARK 2.3 
It was pointed out by Prof. J.W. Cohen that the two-dimensional Laplace
Stieltjes transform given by (2.21) is of a type for which the corresponding 
joint probability density function, Ji,i-, ·), is known. From the formula given 
in entry 8 of Table B in Voelker and Doetsch [1950, p. 208] it is found that, 
for t..;;i<j..;;k, 

Ji,ix,y) = (2.23) 

From (2.21) the correlation coefficient, corr(S;,Sj), can easily be obtained: 

(2.24) 

It follows from (2.22) and (2.24) that corr(S;,Sj) as a function of i and j only 
depends on j-:-i. Noting that in (2.22) ~;;:2

1q(n -/)(1-p(n -/))..;; 1 
(remember that q(n -1)(1-p(n -/)) is the probability that a customer receives 
exactly n -I services) it follows by induction that the row { Cn, n = 1,2, ... } is 
monotonically increasing. Hence, from (2.24), corr(S;,Sj) decreases if j-i 
grows. In particular it can be proven that lim Cn = 1 I ( I - p ), see Chapter 3, 

n➔OO 

yielding lim corr(S;,Sj)=0. For j-i = 1, corr(S;,Sj)=p. So, the successive 
j-i➔OO 

sojourn times of a tagged customer are always correlated positively. 

The Laplace-Stieltjes transform of the distribution of a customer's total time 
spent in the system until the end of his k-th pass s<k): = S1 + ... + Sk, can be 
obtained from (2.18) b.() substituting wj =w0 , j = 1, ... ,k. From (2.20) it follows 
immediately that E { s< > } is linear in k: 

(2.25) 

To derive an expression for the variance of this sojourn time, var(S(kl), it is 
convenient to use the formula 

k k k 
var(S(k)) = ~var(S;)+2~ ~ cov(Si,Sj). 

i=l i=lj=i+l 

Hence, from (2.20), 
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k k 
var(S(k)) = k var(S1)+2~ ~ cov(S;,S1). 

i=lj=i+I 

The covariance of S; and S1, cov(S;,Sj), and var(S1) can easily be obtained 
from the results (2.20) and (2.24). It is found that 

(2.26) 

with C I, ... , ck I given by (2.22). 

The Laplace-Stieltjes transform of the distribution of the total sojourn time S 
of an arbitrary customer is now given by 

-w s 00 - -w s<'> · 
E{e O } = ~q(k)(l-p(k))E{e O }. (2.27) 

k=I 

In an example, we shall examine the case k = 2 for which explicit closed 
form results can easily be obtained. 

ExAMPLE 2.1 (The case k = 2) 
From (2.21) and (2.22) it follows that for the case k =2, 

(2.28) 

Note that the feedback probabilities p (i), i = 1, ... ,N, enter into the joint distri
bution of S 1 and S2 only via the offered load p. Thus, as long as p remains 
constant, the joint distribution of S 1 and S2 is independent of the individual values 
ofp(i), i=l, ... ,N. (Consequently, this also holds for S; and S;+J, i=l,2, ... , 
cf. (2.21)). Doshi and Kaufman [1988) derived (2.28) for the (special) case of 
Bernoulli feedback (p (i) p ). 

From (2.24) it follows that 

(2.29) 

Let F 2(t) denote the distribution function of the sojourn time until the end of 
the second pass: 
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From (2.28) we find 

1-Vp l+Vp 

2Vp 1 + Vp +fiwo · 

Hence 

Fz(t) = l + Vp (l-e-r(I-Vp)I.B) - l-.jf (l-e-t(l+Vp)I.B), t;;..O. (2.30) 
2Vp 2 p 

In Doshi and Kaufman [1988], F 2 (-) is compared with the distribution of 
S1 + S2 that results when one assumes that S1 and S2 are independent. Due 
to the positive correlation between S1 and S2 (cf. (2.29)), it is found that F 2(-) 

has a longer "tail" than this approximate distribution. 

Finally, the variance of S 1 + S2 is obtained from (2.26): 

(2.31) 

2.5 SPECIAL CASES: BERNOULLI FEEDBACK AND DETERMINISTIC FEEDBACK 

In this section we study two feedback systems which are special cases of the 
general model described in Section 2.2, viz., Bernoulli feedback (Subsection 
2.5.1) and deterministic feedback (Subsection 2.5.2). For these models we 
obtain simple, explicit expressions for most of the quantities analyzed in Sec
tion 2.3. The results for the deterministic feedback model have been published 
before in Van den Berg et al. [1989]. The Laplace-Stieltjes transform of the 
joint sojourn time distribution in the Bernoulli feedback model has also been 
derived by Doshi and Kaufman [1988]. 

2.5.1 Bernoulli feedback 
The Bernoulli feedback model is obtained from the general model by taking 
p (i) - p: when a customer completes his service he departs from the system 
with probability 1 -p and is fed back with probability p. 
Obviously 

p = __ljl__ 
1-p 

The Laplace-Stieltjes transform of the joint distribution of the successive 
sojourn times S1, ••• ,Sk can be obtained from (2.12)-(2.14) (or from (2.18) 
and (2.19)) by substitutingp(i) - p. The expression that results from (2.12)-
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(2.14) has also been derived by Doshi.and Kaufman [1988]. 

To obtain explicit expressions for E { e -(w,s,+"'181>}, corr(Si,Sj), and 
var(S<k>), (see (2.21), (2.24) and (2.26)) we have to derive Cn, n = l, ... ,k -1, 
from the set of difference equations (2.22). After the substitution 
q(j)=pj-t, J = 1,2, ... , (2.22) reduces to 

C 1 = 1, (2.32) 
n-1 

Cn = (I+X/J)Cn-1-XfJ ~ (pn-l-l_pn-l)C1-1, n=2, ... ,k-I. 
/=2 

From (2.32) it follows that 

C2 = l+X{J, 

Cn-pCn-1 = (1 +X{J)Cn-1-p(l +X{J)Cn-2-XfJ(l-p)Cn-2, 

n =3, ... ,k - I. 

Hence 

C 1 = 1, (2.33) 

C2 = l+X{J, 

Cn = (1 +X{J+p)Cn-1-(X{J+p)Cn-2, n =3, ... ,k -1. 

The general solution of (2.33) is given by 

where y 1 = 1 and y 2 = X{J + p are the roots of 

y 2 -(1 +X{J+p)y +(X{J+p)=O, 

and U I and U 2 are determined by 

UtJ1 +U2J2=l, 

u tYT + u 2Y~ = 1 + X{J. 

After some calculations it is found that 

C = 1-p(XP+pt-l 
n -~~~~-, n=l, ... ,k-1. 

1-p 
(2.34) 
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Substitution of (2.34) in (2.21 ), (2.24) and (2.26) yields, respectively 

E{e-<"',s,+"';S;)} = _______ I_-.,__ _____ _ 
I p(~V'+ y·-;-i ' 

1-p+f1w-+/1w·+/12uH/J· - JJ P 
I J I J 1-p 

(2.35) 

(2.36) 

(2.37) 

[_Ll 2 [k + 2-P-{_k_ - 1 1 (1-(p + "A.Pi)}] , 
1-p 1-p 1-p 1-p (l-p)2 

k=l,2, .... 

It follows from (2.36) that. li!D corr(S;,S1)=0 (cf. Section 2.3). It is also seen 

that corr(S;,S1) is an incr~;;Jng function of "A./1 for fixed i and j. These intui
tively appealing properties are illustrated in Fig. 2.2. 

The Laplace-Stieltjes transform of the distribution of s<k) can be obtained 
from (2.18) and (2.19) by substituting w1=w0, j=l, ... ,k. The resulting set of 
difference equations (2.19) can be solved in the same way as (2.33). After 
extensive but straightforward calculations it is found that 

where, 

XJ = 
1 +Pwo+"A./J+p+ V(l +Pwo+"A./1+p)2-4(p+p/1wo+'A.P) 

2 

1 +/1wo+"A./1+p-y(l +Pwo+"A./1+p)2 -4(p +p/1w0 +">..P) 
2 

X2 -(1 + /Jwo) 
Q1 =-----

x2-x1 

x1 -(1 +Pwo) 
Q2 = ----

x1-x2 
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Fig. 2.2 corr(Si,S) as a function of offered load p= 1"!_p, withp =0.5. 

2.5.2 Deterministic feedback 

31 

Taking p(i)= 1, i = l, ... ,N -1, p(N)=p =0, we obtain the deterministic feed
back model in which each customer is fed back exactly N - l times and leaves 
the system after the N-th service. 
Obviously 

p = NA/3. 

Noting that 

q(j) = q(j) = 1, 0,;;;;,.j,;;;;,.N, 

= 0, j>N, 

it is easily seen from (2.18) and (2.19) that 

E{e-(w,S,+ ... +w,S,)} = ------k---!-~P------, (2.39) 

Mk(k,w) - A/3 ~ Mk(i,w) - (N-k)A/3 
i=O 
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with 

Mk(O,w) = 1, (2.40) 

Mk(i,w) = (1 +A/3+/3wk-;+1)Mk(i-l,w)-AP, i = 1, ... ,k, k,s;;,.N. 

At the end of this subsection we shall use (2.39) and (2.40) to obtain an expli
cit expression for the Laplace-Stieltjes transform of the total sojourn time dis
tribution. 

As in Subsection 2.5.1 we solve the set of difference equations (2.22) to 
obtain explicit expressions for E{e-(w,S;+w;S1)}, corr(S;,S1) and var(S(k)) from 
the general formulas (2.21), (2.24) and (2.26). Substituting in (2.22) 
p(i)=q(i)= I, i = 1, ... ,N -1, we get 

C 1 = 1, 

Cn = (1 +A/3)Cn-1, n =2, ... ,N -1. 

Hence 

Now it follows from (2.21), (2.24) and (2.26) that 

(2.41) 

(2.42) 

The Laplace-Stieltjes transform of the distribution of the total sojourn time 
after k services is obtained from (2.39) and (2.40) by substituting 
w1 =wo, j = 1, ... ,k. The resulting set of relations yields 

i-1 
Mk(i,w) = (1 +A/3+/3woi-A/3 ~ (1 +A/3+/3w0'/ = 

j=O 

wo . A 
-'\-(l+A/3+/3WQ)'+--, i=O, ... ,k, k,s;;,.N. 
/\+w0 A+w0 

(2.44) 
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Using (2.44) it follows from (2.39) that 

(2.45) 

Re w0 ;;;;.0, k,;;;;;_N. 

REMARK 2.4 
The simple explicit formula (2.45) for the LST of the total sojourn time distri
bution has been obtained under the assumption that k,;;;;;_N_ Unfortunately, 
this result can not be extended to the sojourn time of a (special) customer who 
is fed back k > N times. The problem is that, for k > N, the set of difference 
equations (2.19) for the Mk(i, w )'s can not be explicitly solved ( cf. (2.44) for the 
case k,;;;;;_N). The same holds for the solution of the C/s from (2.22) for the 
analysis of the sojourn time variance. 

2.6 FURTHER EXTENSIONS 

In this section we consider the feedback model described in Section 2.2 with 
the following extension: the successive service times of a customer are gen
erally distributed and may depend on the number of times he has already been 
fed back. We also omit the assumption made in Section 2.2 that the feedback 
probabilities remain constant after a finite number (N) of services (cf. the dis
cussion below (2.19)). For this extended model the joint stationary distribu
tion of the number of type-i customers in the system is no longer of product 
form type. In fact no results concerning the distribution of the queue length 
are available. Consequently, it can not be expected that we are able to obtain 
sojourn time distributions. Therefore, in this section, we restrict ourself to the . 
derivation of mean queue lengths and mean sojourn times. First, as in Simon 
[1984] ( cf. Subsection 1.5 .1 ), we derive a set of linear equations from which the 
mean sojourn time per visit can be calculated. Next, we show that for the spe
cial case of deterministic feedback with all mean service times equal (but not 
necessarily negative exponentially distributed), this set of linear equations can 
be solved explicitly. It appears that from the second visit on, all mean sojourn 
times are equal. Finally, explicit results are obtained for the case of Bernoulli 
feedback. 

2. 6.1 Derivation of a set of linear equations 
We consider the case that the service time distribution of a customer who has 
been fed back i -1 times is given by B;(·), with mean /3; and second moment 
f3fl, i = 1,2, .... The definitions of type-i customers and their characteristic 
quantities, as given in Section 2.2, are extended in an obvious way. Denote by 
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pi: =Aq(i)/3i the offered traffic due to type-i customers. Obviously the stability 
condition for this system is that p= ~"=- Pi < 1. We start by obtaining a 
relation for ES1• Note that a newly arri~iig customer is a Poisson arrival and 
hence PASTA (see Wolff [1982]) applies. Consider the mean amount of work 
that has to be handled before this newly arriving customer (in the following: 
the tagged customer) receives his first service. This quantity consists of two 
components: 

1. the mean amount of waiting work found upon his arrival that is handled 
00 

before his first service, given by: ~/3;EXf; 

2. 
i = I oo /3(2) 

the mean amount of work currently in service:; ;P; 2fii ; 

where Xf denotes the number of waiting type-i customers. The expression for 
the second component follows by noting that, at an arbitrary epoch, a type-i 
customer is being served with probability Pi, while his residual service time has 
mean f3Fl 12/3;. It may now be seen that, 

With EXf = EXi - Pi we obtain: 

(2.46) 

ESi + 1 is composed of mean service times of "old" customers ( customers who 
were already present at the first arrival of the tagged customer) and of custo
mers who have arrived during the first i sojourn times. It is easily seen that 
the mean number of old type-} customers still present in the queue ( as type
}+ i customers) immediately after the i-th service of the tagged customer is 

given by q(i ~i) EX1. The mean number of customers that arrived during the 

tagged cus(omer's j-th sojourn time and that are still present (as type
(i - j + 1) customers) at the end of his i-th service is Aq(i - j + I)ES1. Hence 

_ 00 q (j + i) i . _ . 
ESi+I - ~ U) f3J+iEXJ + A~q(1 J + I)/3i-J+IESJ + /3;+1 ' (2.47) 

j=I q j=I 

i = I,2, .... 

The mean number of type-} customers in the system and the j-th sojourn time 
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can be related to each other by Little's formula (see e.g. Kleinrock [1975]): 

Substituting this into (2.46) and (2.47) leads to 

(2.48) 

00 i 

ES;+1 = L,PJ+;ES1 + L,P;-1+ 1ES1 + /3;+ 1 , i = 1,2,.... (2.49) 
j=I j=I 

Formulas (2.48) and (2.49) represent an infinite set of linear equations in 
ES1, ES2 , . . . . For some special cases this set of equations can be easily 
solved explicitly. In the next subsections we shall consider two cases which 
yield interesting results for the successive mean sojourn times of a customer. 

2.6.2 Special case: MIGi 1 queue with deterministic feedback 
In this subsection we assume that the customers require exactly N services and 
that all service time distributions are the same, i.e. B;(.) B(.) and p(i)= 1, 
i = l, ... ,N - l, p(N)=O, in the general model. Let S denote the total sojourn 
time after N services. The equations (2.48) and (2.49) now become: 

(2.50) 

N-i i 

ES;+ 1 = A/3 Li ES1 + A/3L,ES1 + /3, i = l, ... ,N -1. (2.51) 
j=I j=I 

Due to the symmetry in (2.51) we have that 

ES;+J = ESN-i+I, i = l, ... ,N -1. 

Subtracting ES; from ES;+ 1, we obtain 

- >-.f3(ES; + 1 - ES;), 

i =2, ... ,N -1. 

Hence, ES; = ES;+J, i =2, ... ,N - l, and, interestingly, we have 

(2.52) 
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Now from (2.50) and (2.52): 

ES1 = ')\.{:JES1 + (N -1)')\./:JES2 + ~ N(/f-2L-2[:J2) + {:J. (2.53) 

And from (2.51) and (2.52): 

ES2 = 2')\.f:JES1 + (N - 2)')\.{:JES2 + f:J. (2.54) 

Solving equations (2.53) and (2.54) yields: 

(1-(N -2)')\.f:Ji-N(/f-2>-2[:J2) 

ESi = 1-!'},_/:J + (l+A/3)(1
2
-NA/:J) 

(2.55) 

Hence 

ES= Nf:J + l+N')\.{:J A N(/f-2>-2[:J2) 
1 - N')\.f:J l - N')\.{:J 2 1 + ')\./3 . (2.57) 

For N = l (2.57) gives the well-known formula for the mean sojourn time in 
the standard M/G/1 queue, (see e.g. Cohen [1982)) 

A/f-2> 
ES = 2(1 -'},_{:J) + {:J, (2.58) 

as could be expected. 
Observe from (2.55) and (2.56) that ES1 = ES2 if the service times are nega
tive exponentially distributed (i.e. {f-2> = 2/32), cf. Section 2.3. Noting that 
(1-(N-2)A/:J)ANl2>')\.2{:JN (use N')\.{:J=p<l) it follows from (2.55) and 
(2.56) that ES1 <ES2 if {f-2> <2/32 and ES1 > ES2 if /f-2> > 2/32. 

REMARK 2.5 
Note that, in fact, for the derivation of (2.52) it suffices to assume that all 
mean sojourn times are equal, i.e. /:Ji = f:J, i = 1, ... ,N. 

2.6.3 Special case: MIG/1 queue with Bernoulli feedback 
In this subsection we consider the M/G/1 queue with Bernoulli feedback, i.e. 
Bl·) = BO and p (i) = p in the general model. For this case the set of equa
tions (2.48) and (2.49) reads 
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ES, = ">-P~j-lESj + ;(P<2L-2p2)~j-l + p. 
j=I j=I 

(2.59) 

ES;+! = ">-P~j+i-lESj + ">-PDi-jESj + {J, i=l,2,.... (2.60) 
j=I j=I 

· Introducing 

M := ;@2>-2p2) l~p' 

Mj := ~ [Esj- l-">.{J1(1-p) ], j=l,2, ... , 

we can rewrite (2.59) and (2.60) into 

i-1 . 00 ;+ ._, 
M;+1 = ">-P~p1M;-j + ">-PD 1 Mj, i=l,2, .... 

j=O j=I 

From (2.62), 

M;+2 = (">-P+p)M;+I = 

(2.61) 

(2.62) 

(2.63) 

Substitution of (2.63) into (2.61) and (2.62) leads to a set of two linear equa
tions with two unknowns M I and M 2 ; these equations yield 

so 

- 1-p-">.flp 
M, - 1-p-">-P' 

M2 = ">-P l-p(">.p+p) 
1-p-">-P ' 

ES, = p + ~(P<2) _ 2p2)_l _ 1 - p -">.{Jp 
1-">.{J/(l-p) 2 1-p 1-p -">-P ' 

(2.64) 
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ESk = 1-A/3~(1 -p) + (2.65) 

~(/f-2>-2/i)-1-A/3 l -p(A/3+p) (A/3+p)k- 2 , k =2,3, .... 
2 1-p l-p-'}.../3 

From (2.64) and (2.65) it follows that the successive mean sojourn times are all 
equal if the service times are exponentially distributed (/f-2l = 2/32), cf. Section 
2.3. Using A/31(1-p)=p<l it can be shown that ES1 <ES2 if 13<2><2/32 and 
ES1 > ES2 if {f-2> > 2/32 . In the previous subsection we have observed similar 
properties for the first two sojourn times in the M/G/ 1 queue with determinis
tic feedback. Apparently, the difference between ES1 and ES2 is due to the 
fact that a customer's first sojourn time may contain a residual service (of 
mean length 13<2> / (2/3)) while the second sojourn time only consists of complete 
service times, cf. (2.50), (2.51) and (2.59), (2.60). From (2.65) it is seen that, 
for k-H:tJ, 

(2.66) 

which is the mean sojourn time per visit in the case of a negative exponential 
service time distribution, cf. (2.20). 

Finally, the mean total sojourn time, ES, is given by 

(2.67) 

This result has been obtained before by Takacs [1963]. 
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APPENDIX 2.1 
In this appendix we derive Formula (2.8). For ease of notation we introduce 
the service time distribution function B(t):=l-e- 11 P; then-fold convolution 
of BO is denoted by B(·t*, n =1,2, .... 
The derivation of (2.8) is based on the fact that (Xf +I), ... , X¼ + 1)), which 
determines the distribution of S; +2 , is conditionally independent of 
{(X\0), ... ,X\~I>), ... ,(xf- 1l, ... ,xi- 1)); S1, ... ,S;} given {(X\i), ... , 
X¼}); S;+i}, i=l, ... ,k-1. Using this property it is easily seen that, condi-
tioning on the number of type-} arrivals, nt), during the m-th sojourn time, 

S (0) (0) {k) (k) E{ -(w, I + ... +w,S,)( x, . . . XN ) ..• ( XJ . . . XN ) I x<O) _ x<O)- } 
e Z1,o ZN,O ZJ,k ZN,k l -X1, · · ·, N -XN 

Note that by definition z;,/ =zN,J, i =N + l, ... ,N +k, j = l, ... ,k. 

We first evaluate the integral with respect to tk, obtaining 

S S (OJ (OJ (k) (kJ E{ -(w, ,+ ... +w, ,)( x, _ .. XN ) __ • < x, ___ XN) 1x<O)- x<O)- } 
e Z1,o zN,O ZJ,k zN,k l -X1, · · ·, N -XN 
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(k-11 (k-1) N +k-1 (k-1) 

(1 +,B{wk+l-.(l-z1,k)}r<1+nl +--+nN+k-d II (p(j)zj+l,k + I-p(j)fj 
j=I 

-i\t, _ 1(1- z 1, _ 1Ai (1,w,z)[p(l)z" + I -p (I)]) e . . 

N+k-2 (k-2) 

II (Af (l,w,z)[p(j + I)z1+2,k+ I-p(j + I)Jp(j)z1+1,k-1 + I-p(J)/j 
j=I 

Next the integral with respect to tk-l is evaluated, yielding 

00 00 00 

zx1 ... zxN AN(I w z) f e -w1t1 f e -w,1, . . . f e -w,_,1,_, 
1,0 N,O k , , 

11=0 1,=0 1,_,=0 

N+k-2 (k-2) 

II (Af (l,w,z )[p (j + I )z1 +2,k + I -p (j + I )]p (j)z1 + 1,k- 1 + 1-p (J)/j 
j=I 
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00 00 00 

zto · · · z~oAf (l,w,z)Af (2,w,z) f e -w,t, f e -w,t, · · · f e -w,_,,,_, 
t,=O 12 =0 1,_,=0 

oo (Xt )n\'> <•> [ N XJ [ · ] <•> <•> <•> l ~ e -1'1, I zn' II ~ Xi (j)n1+• (I - (j))x1-n1+• z~1+1 
"'-' O)f 1,1 "'-' n(I p p J+l,I 

n\1>=0 n1 · ·=tn)'l. =O 1 I 

IT' If e -M. (N~•:•• zf~ [NIT-I n£'> [n17m~ 1)lp(jl;"'],(1-p(J)lt-•>-n;"';,z;;1•1,m]} 
m =2 r\m> =O n · j = I nj"';, =O 1 + I 

N+k-2 (k-2) 

II (Af (2,w,z)[Af(I,w,z)fp(j + 1)z1+2,k+ I ~p(j + 1)]p(j)z1+1,k-1 + l-p(J)t1 

j=I 

We now sum over n\k-2), ... ,n'h+P-2 and subsequently integrate with 
respect to tk-2, thus obtaining Af (3,w,z) terms; etc.; finally the summations 
over n\1>, ... , n}J> and the integration over t I are performed, which gives rise 
to the </f (i,w,z)t contribution in Formula (2.8). 
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Chapter 3 

THE M/G/1 PROCESSOR SHARING QUEUE 

AS A LIMITING MODEL OF THE 

M/M/1 FEEDBACK QUEUE 

3.1 INTRODUCTION 

In the previous chapter we have regarded the feedback model as an M/M/1 
queue in which after each service it is decided whether or not the customer is 
fed back. In this chapter we consider the same model from another point of 
view, viz. as a round robin (time sharing) model in which a customer's service 
demand requires a stochastic number of exponentially distributed service 
quanta with mean length /3. Obviously, the service requirements are com
pletely determined by the feedback probabilities p (1 ), p (2), · · · , as defined in 
Chapter 2. From this point of view it is intuitively clear that if the mean ser
vice time /3 shrinks to zero while the feedback probabilities go to one such that 
a customer's total required service time remains unchanged, the behaviour of 
the feedback queue approaches that of the M/G/1 processor sharing (PS) 
queue. Different choices of the feedback probabilities lead to different service 
time distributions in the PS queue. 

The queue length process in a round robin type of queue is usually less 
amenable to mathematical analysis than the queue length process in its limit
ing case, a PS queue. This has been the main reason for the queueing analysis 
of processor sharing, see Kleinrock [1976]. Sakata et al. [1969] showed that the 
distribution of the queue length, XPS, in the M/G/1 PS queue is independent 
of the distribution of the required service time apart from its first moment: 

Pr{XP8 =j} = (l-p)pi, j=0,l,2, ... , (3.1) 

with p the offered load per unit of time. The determination of the sojourn time 
distribution in a PS queue has turned out to be a much harder problem. Only 
recently the sojourn time distribution in the M/G/1 PS queue has been 
derived, cf. Yashkov [1983], Ott [1984], Schassberger [1984], and the survey of 
Yashkov [1987]. We refer to Section 1.5 for a brief description of the 
approaches used by these authors. The approach presented in this chapter is 
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new: via a limiting procedure we obtain sojourn time results for the MIGi 1 
PS queue from known sojourn time results ( obtained in Chapter 2) for the 
M/M/ 1 queue with general feedback. 

The limiting procedure described above was first proposed by Van den Berg 
et al. [1989A]. In that paper it is shown how the distribution of the sojourn 
time in the MIDI 1 PS queue follows immediately (by taking appropriate lim
its) from the sojourn time distribution in the MIMI 1 queue with deterministic 
feedback. In Van den Berg and Boxma [1989B] this method has been 
extended to the analysis of the processor sharing queue with general service 
times. In these papers the authors concluded on intuitive grounds that the per
formance measures such as the sojourn time in the feedback model converge to 
the corresponding performance measures in the processor sharing queue. Only 
very recently a formal proof of this convergence has been given by Resing et 
al. [1989]. They present a probabilistic coupling between the M/G/1 PS queue 
and the approximating sequence of MIMI 1 feedback queues, which shows that 
the sojourn time of the n-th customer in the feedback model converges almost 
surely to the corresponding quantity in the PS model. From this result they 
conclude the distributional convergence of the steady state sojourn times. The 
proof partially follows the same line of thought as Schassberger [1984]. 

The organization of the rest of this chapter is as follows. Section 3.2 con
tains some definitions and restates those results of Chapter 2 that are essential 
for the analysis in Section 3.3. In the latter section we study sojourn times in 
the M/G/1 PS queue, by taking appropriate limits in the M/M/1 queue with 
feedback. We first derive the mean sojourn time (Subsection 3.3.2) and the 
sojourn time variance (Subsection 3.3.3). Next, in Subsection 3.3.4, it is shown 
how the LST of the distribution of the sojourn time in the M/ G / 1 PS queue 
can be obtained. Section 3.2, Subsection 3.3.2 and Subsection 3.3.3 are mainly 
based on Van den Berg and Boxma [1989B]. In Section 3.4 we consider the 
same feedback model as in Chapter 2 but with state dependent service rates. 
It is shown how a similar limiting procedure leads to the analysis of the 
MIG/ 1 queue with the so called 'generalized processor sharing' service discip
line. This section is restricted to the derivation of mean sojourn times. In the 
last section of this chapter, Section 3.5, we analyze sojourn times in the 
M/G/1 PS queue with feedback. Using the (M/M/1 FCFS) feedback results 
obtained in Chapter 2 and applying the limiting procedure we derive new 
results for the correlation coefficients of the successive sojourn times of a 
tagged customer. 

3.2 PRELIMINARY RESULTS 

We consider the M/M/1 feedback queue introduced and analyzed in Chapter 
2. In Section 2.2 we made the assumption that the feedback probabilities of a 
customer remain constant after a finite number of services. However, from the 
ultimate result for the joint sojourn time distribution ((2.18)) it appeared that 
this assumption is not needed, see the discussion below (2.19). In the 
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following no restrictions will be put on the structure of the feedback probabili
ties. So, we rewrite Definition (2.1 ): 

q(l) : = 1, (3.2) 
i-1 

q(i) := II p<J), ; =2,3, .... 
j=I 

Obviously, for stability it is required that the q(i)'s satisfy: 
00 

">./f~q(i) =: p < 1. 
i=l 

For future reference we introduce the generating function of the probabilities 
of visiting the queue exactly i times, i = 1,2, ... : 

00 • 

Q(z) := ~ q(i)(l-p(i))z 1, lzl~l, (3.3) 
i=I 

We now recall those feedback results obtained in Chapter 2 which are essen
tial for the analysis in the next sections. Some of the expressions will be 
rewritten such that they are more suitable for analyzing sojourn times in the 
M/G/1 PS queue. 

First, we slightly rewrite formula (2.18) and use it to obtain a convenient 
expression for the LST of the total sojourn time after k services. Replacing the 
term Mk(k,w) in the denominator of (2.18) by the RHS of (2.19) (with i =k) 
and substituting wj=w0, j = 1, ... ,k, it is easily seen that (using the notation 
introduced in (3.2)), for Re w0 ;;;;.o, k = 1,2, ... , 

S(k) 

E{e -.,. } = 
(3.4) ' 

1-
k-2 k-2 

(1 +,8wo)Mk-t - ">-.,8 ~ q(k-J-l)Mj - (p-">-.,8 ~ q(i)) 
j=l i=I 

where, 

Mo:= 1, (3.5) 

Mn:= (l+,8wo+A,8)Mn-t - A,B[q(n-1)+ ~ 1q(n-1)(1-p(n-l))M1-i], 
/=2 

n =1,2, .... 

(q(O) := 1) 
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In Chapter 2 it has been found thatthe mean total sojourn time after k ser
vices is linear in k, cf. (2.25): 

E{S(kl} = k_fi_, k = 1,2, .... 
l-p 

(3.6) 

Formula (2.26) gives the variance of the total sojourn time after k services: 

(k) - _Ii_ 2 2 _ _ k I · -var(S ) - ( ) [k 2(1 p) ~ ;Ck-Jl, k -1,2, ... , (3.7) 
l-p j=I 

where C 1, ••• , Ck_ 1 can be successively obtained from (2.22). This 
recurrence relation for the Cn can be simplified in the following way. Noting 
that q(n -/)(1-p(n -l))=q(n -1)-q(n -l + 1), and splitting the sum in 
(2.22) we obtain 

1=2 1=2 

Now, using C 1 = 1, it is easily seen that 

C 1 = 1 , (3.8) 

n-1 
Cn = l + "'A/3 ~ q(n -l)C,, n =2,3 .... 

/=I 

Taking generating functions and using (3.3) leads to 

00 Z 
C(z) := ~Cnzn = ----------

n =I (1-z)(l -A/3-1-~-z (1-Q(z))) 
lzl <L (3.9) 

The sequence C 1,C2, •.. is non-decreasing and, cf. (2.24), limited from above. 
Hence lim Cn exists; an Abelian theorem now implies that (cf. Titchmarsh 

n➔OO 

[1952)) 

lim Cn = lim(l-z)C(z) = - 1-. 
n➔oo z➔ I l-p 

(3.10) 

For future use we also introduce the generating function of the Mn's. From 
(3.5) it follows that 

1 +Pwo-A/3-z-(l-Q(z)) 
oo 1-z 

M(z) := ~Mnzn = z---------, lzl<L (3.11) 
n = 1 l -z (1 + {3w0 +"'A/3)+A/3zQ(z) 
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3.3 THE M/G/1 PROCESSOR SHARING QUEUE 

3.3.1 The limiting procedure 
In this section we show how the feedback results collected in Section 3.2 can 
be used to analyze the sojourn time in the M/G/1 PS queue. We apply a limit
ing procedure, in which /3-0 while the feedback probabiljties approach one in 
such a way that the mean total required service time, /3, remains a positive 
constant. We restrict ourself to those service times, -,PS, in the PS queue which 
are composed of negative exponentially distributed stages: 

(3.12) 

with a 1, ••• ,am>O, Lm- a1=l, r 1, ••• ,rm positive integers (cf. Kleinrock 
[1975], p. 145); note that this class of distributions contains the Erlang, 
hyperexponential and Coxian distributions, and that arbitrary probability dis
tributions of nonnegative random variables can be arbitrarily closely approxi
mated by distributions from this class (cf. Tijms [1986], p. 398). This choice of 
service time distribution for the PS queue enables us to choose the feedback 
probabilities (hence Q (z )) such that -,PS and the total required service time ,l"B 
in the feedback queue have exactly the same distribution - not just in the limit 
/3-0, but for a wide range of values of /3. Observe that, cf. (3.3), 

Re wo;;..O. 

Now choose 

_ m rt' (1-p;j)z 
Q(z) - L aJ 1- .. z ' 

j=I i=I Py 
(3.14) 

with 
A 

PiJ = l-/31 /3iJ > 0, i = 1, ... ,r1, j = 1, ... ,m. (3.15) 

Then 
A 

E{exp(-wo-l"B)} = f aJ II /3!/3iJ 
J = 1 ; = 1 1 + /3wo - ( 1 - /3 I /3iJ) 

(3.16) 

As an example, consider the case of Bernoulli feedback: 
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Q(z) = (1-p)zl(l-pz). In this case, 

1 +(,81(1-p))wo 
1 

--~-- (3.17) 
1 + ,Bw0 

Hence the total required service times in both the feed~ack queue and the PS 
queue are negative exponentially distributed with mean ,8=,81(1-p). 

When ,8➔0, performance measures in the feedback queue clearly approach 
corresponding performance measures in the PS queue. Resing et al. [1989] 
give a formal proof of the convergence of the sojourn time. Note that the 
queue length distribution in both models is the same for the whole range of 
possible ,8 values, cf. (3.1) and (2.5). Below we shall focus mainly on sojourn 
times. In particular we are interested in the sojourn time of a customer condi
tioned on his required service time. This is an important performance measure 
for time sharing systems like PS queues, cf. Kleinrock [1976]. We define for 
the PS queue 

- SP8 (x): conditional sojourn time of a customer with service demand x; 

- sPs: sojourn time of an arbitrary customer. 

Obviously, 

00 

f Pr{SP8 (x)<s}dPr{-?8 <x}, s;;;,,O. (3.18) 
x=O 

The conditional sojourn time SP8 (x) can be derived from the total sojourn 
time after k services, s<kl, in the feedback queue as follows. Choose Q (z) for 
the feedback queue as in (3.14), (3.15), and consider a newly arriving customer, 
say C, who requires exactly k services. Then take ,B=xl k and let k➔oo. It is 
easily seen that the total required service time of C approaches the constant x. 
Indeed, the LST of Cs total required service time equals (1 + ,Bw0 )-k = 
(1 + xw0 I k)-k ➔ e -xw,. Hence, for k➔oo, C can be viewed as a customer 
with service request x in the MIGi 1 PS queue with service time distribution 
characterized by (3.12). 

The limiting procedure described above will be applied below. We shall 
obtain results for the mean, the variance and the LST of the sojourn time in 
the PS queue from E{SP8 (x)}=limE{S(kl}, var(SP8 (x))=limvar(S(k)) and 

SPS( ) S"' k->oo k->oo 
E { e -w, x } = limE { e -w, } respectively. The results to be presented for the 

k->oo 
mean and the variance of the sojourn time are more general and more detailed 
than the results for the LST. 
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3.3.2 The mean sojourn time 
In the MIG/I PS queue, the mean sojourn time of a customer with service 
demand x is linear in x (cf. Kleinrock [1976]): 

(3.19) 

We now show how this well known result can be easily obtained from the 
feedback results collected in Section 3.2. The mean total sojourn time E { s<kl} 
of a customer who requires k services is linear in k, see (3.6). Apply the limit
ing procedure described in Subsection 3.3.1, taking {3=xl k and letting k-HYJ. 
Formula (3.19) now immediately follows from (3.6). 

3.3.3 The variance of the sojourn time 
The sojourn time variance for a customer with service request x in the MIG/I 
PS queue, var(SPS(x)), can be obtained by aff,lying the limiting procedure to 
(3.7). First, as an example, we derive var(S (x)) for the MIM/1 PS queue. 
Next the analysis is extended to the PS queue with general service times. This 
leads to a simple explicit expression for the asymptotic behaviour of 
var(SP8 (x)) for very large (x➔ oo) and very small (x➔O) service requests. 

The Ml Ml 1 PS queue 
As observed in (3.17), the choice Q(z) = (1-p)zl(l-pz) leads, in the feed
back queue as well as the PS queue, to a,, negative exponentially distributed 
total service time with mean /3 I (1-p) = /3. To obtain an explicit expression 
for var(S(kl), see (3.7), we derive Cn, n = 1,2, ... , from (3.9). Substituting 
Q(z) = (I-p)zl(l-pz) into (3.9) yields 

I-pz 
C(z) = z---~--

(1-z)(I-(>-/3+p)z) 

Rewriting the right-hand side of (3.20) as 

(U 1 + U I ) 
z 1 1-z 2 1-(>.{3+p)z ' 

it follows that 

(3.20) 

(3.21) 

with U1 =1/(l-p), U2=-pl(1-p), x 2 =>.{3+p. Substituting (3.21) into 
(3.7) yields 
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(-/3-)2[k + -1£._(_k_ _ I-(>..[J+pt )]. 
l-p I-p l-p (l-p)(l-p)2 

Let /3 be the mean service time for the MIMI I PS queue and let x be the ser
vice time of a tagged customer (cf. Subsection 3.3.2). Substitute [J=xl k and 
p = I - xl k/3 into (3.22). Letting k-H~ leads to var(SP8(x)): 

(3.23) 

a result previously obtained by Ott [1984]. Note that the sojourn time variance 
depends linearly on x for x-H:,o: 

2 /3 2/rl var(Sp8 (x)) ~ p X - __,_,___ X-HlO, 
(1-p)3 (1-p)4' 

(3.24) 

(see also Kleinrock [1976], p. 170), whereas it depends quadratically on x for 
·x-o: 

var(SPS(x)) ~ p x 2 - A 3 x-o. 
(I-p)2 3(1-p) x ' 

(3.25) 

The MIGi 1 PS queue 
We now derive an expression for var(SP8 (x)) for the M/G/1 PS queue, in par
ticular showing that the above asymptotic properties hold for general service 
time distributions. We consider service time distributions with LST as in 
(3.12), by choosing Q(z) as in (3.14), (3.15): 

A 

m rtr (I - p;.)z m rtr [Jz I f3u 
Q (z) = L a1 _ 'l = L a1 A 

j = I i = I l pijz j = I i = I 1 -(1- {J / {Jij )z 

Analogously to the MIMI I case analyzed above, (3.9) and (3.26) lead to: 

where 1 / x 2, ... , 1/ xL are the roots of 

z 
l-A/3-(1-Q(z)) = 0. 

1-z 

U 1, ••• , UL are determined by 

(3.26) 

(3.27) 

(3.28) 
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(3.29) 

Note that in (3.27)-(3.29) we have used the following assumption: 

ASSUMPTION 3.1 
It is assumed that the roots 1 / x 2, ••• , 1/ xL of (3.28) are all distinct. 

REMARK 3.1 
Assumption 3.1 can be easily proved to hold for the case of Erlang and 
hyperexponential service times; we have found no example for which the roots 
are not distinct. 

REMARK 3.2 

1 I x 2 , ••• , 1 I xL are the roots of a polynomial of degree L -1 ~ ~7= r1, see 
(3.26), (3.28); for example, for m-stage hyperexponential and m-stage Erlang 
service time distributions L =m + 1. Note that (3.29) leads to a set of L linear 
equations from which U 1, ••• , UL can be obtained. 

We now prove some properties of xi and Ui that will be used in the sequel. 

LEMMA 3.1 
(i) lxd < 1, i =2, ... ,L; 
(ii) xi can be written as 

Xi = 1-/Ja;, 

with ai independent of fJ, and Re ai > 0, i =2, ... ,L; 
(iii) U; is independent of fJ, i = 1, ... ,L, and U1 = 1 /(1-p). 

PROOF 
Noting that (see (3.9)), 

00 

(3.30) 

and A/J~ q(i) = p < 1, it follows immediately that Ix; I <1, i =2, ... ,L. To 
i =1 

prove (ii), substitute (3.26) into (3.28) and replace z by 1 I (1 - fJz). Then (3.28) 
reduces to 

= 0. (3.31) 

Since 1/ xi is a root of (3.28), (1-x;)/ fJ = a; is a root of (3.31). The fact that 
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/3 does not occur in the left-hand side of (3.31) implies that I - X; depends 
linearly on /3. The statement concerning Re a; > 0 now follows from (i). 
It follows from (3.29) that 

Observing that /3C (-1-_) is independent of /3, it is found that 
1-/3z 

X· I 
U; = lim x;(l - --' -_ )C (--_) 

z->a, 1- /3z 1- f3z 

is independent of /3. 
Finally, U 1 = I I (1- p) follows from (3.10), (3.27) and (i). 

Substituting (3.27) into (3.7) yields (cf. (3.22)) 

a L xk+k(l-x-)-1 
var(S(k))=(-,-,-)2[k-2(1-p)~U 1 1 ]. (3.33) 

1-p . 1 (l-x)2 
J =2 J 

Now, let x be the service time of a tagged customer, and take /3=xl k. For 
k-HXJ, var(SP5 (x)) follows from (3.33) and (i) of Lemma 3.1; integrating 
E{(SPS(x))2t=var(SPS(x))+x 21(1-p)2 over x and subtracting 
(E{SPS})2=/ l(l-p)2 yields the unconditional sojourn time variance. We 
collect these results in 

THEOREM 3.1 
In the MIGi 1 PS queue with service time LST given by (3.12), 

(3.34) 

(3.35) 

with a 2 , ••• ,aL the roots of (3.31) and U2, ••• , UL determined by (3.29), cf 
Remark 3.2; aj and Uj are independent of x, j =2, ... ,L. 

Formula (3.34) shows that var(SP5(x)) depends on the required service time 
x in a very simple way. It is convenient to use this formula for the analysis of 
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the behaviour of the sojourn time variance when x varies. Below we shall 
derive asymptotic results for x-oo and x-o. 

From (ii) of Lemma 3.1 it follows that 

Hence, the sojourn time variance is asymptotically linear in x: 

From (3.27) and (3.30), 

and 

It can be derived from (3.9) that 

and 

with ,Bi : = E{(-r1'8Y}, i =2,3. 

Hence, from (3.36), 

(3.36) 



Noting that, in (3.34), 

1-xa--e-xaj 
J 

and using 
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oo (-xai 
-~ ., , j=2, ... ,L; 

i=2 l. 

L - 1 - p 
~U-x - C2--- - A/3---, 
. 1 1 1 -p 1-p 

;=2 

it is found that ( cf. the remark below (3.37)) 

var(SPS(x)) ~ P 2 x 2 - A x 3 , x-o. 
(1-p) 3(1-p) 

(3.38) 

This expression appears to be independent of the service time distribution, 
apart from its first moment (cf. also (3.25)). The quadratic behaviour of 
var(SPs(x)) for small service requests x should be contrasted with the linear 
behaviour for large x. 

REMARK 3.3 
Formula (3.38) slightly generalizes Theorem 1 of Yashkov [1986]. Formula 
(3.37) is contained in Theorem 2 of the same paper; but for the service time 
distributions defined by (3.12), Yashkov's theorem follows immediately from 
(3.34). 

3.3.4 The distribution of the sojourn time 
Application of the limiting procedure to (3.4) yields the LST of the distribu
tion of the sojourn time in the MIGi 1 PS queue. The analysis can be per
formed along the same lines as the analysis of the sojourn time variance. It · 
appears that the Mn's in (3.4) have similar properties as the Cn's in the previ
ous subsection. However, there are some difficulties which did not arise in the 
analysis of the variance. These problems are due to the presence of the indivi
dual feedback probabilities contained in the q(n)'s in the denominator of (3.4). 
In general the q (n )'s are given by very complicated expressions and can not be 
explicitly determined for the whole class of service time distributions given by 
(3.12) (cf. (3.14), (3.15) and (3.16)). Therefore, we shall restrict ourself below 
to a subclass of these service times, viz. mixtures of Erlang distributions: (cf. 
(3.12)) 

E{e-w0.,.}=~a1 A , 
Ps m [ 1 ] '1 

J=I 1 +f3po 
(3.39) 
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with a 1, ••• ,am;;..O, ~m- a1= 1, r 1, ••• ,rm positive integers. The 
corresponding feedback pr6blbilities are determined by (cf. (3.14), (3.15)) 

with PJ = 1 - /3 I /31 > 0. 

From (3.40) we find 

m r [[-1] l-r q(/)(1-p(/)) = ~aj(l -p)' r -1 PJ 1, 
J=I J 

from which the q(n)'s can be obtained via: 

00 

q(n) = ~q(/)(1-p(/)), n = 1,2, .... 
l=n 

(3.40) 

(3.41) 

(3.42) 

Note that the (sub)class of distribution functions determined by (3.39) is still 
large enough to approximate the distribution of any nonnegative random vari
able arbitrarily closely (cf. Tijms [1986], p. 398). 

We shall start the analysis with a lemma that states some properties of the 
Mn's given by (3.5) (see also (3.11)). Then, as an example, we consider the 
M/M/ 1 PS queue and show how these properties can be exploited to derive 
from (3.4) the LST of the sojourn time distribution. Next, the general case is 
treated. Finally, we consider the M/D/1 PS queue. Although the determinis
tic distribution is not contained in the class of service time distributions deter
mined by (3.39) it appears that this case can be (partially) analyzed and yields 
simple expressions. 

Let I/ y 1, ••• , 1 / YL be the zeros of the denominator, 

1 - z (1 + f3w0 + A/3) + A/3zQ(z), (3.43) 

of the generating function M(z) of the Mn's, cf. (3.11). To obtain closed 
expressions for the Mn's we introduce the following assumption: (cf. Assump
tion 3.1) 

ASSUMPTION 3.2 
We assume that the zeros l / y 1, ••• , 11 YL of (3.43) are all distinct. 

Under this assumption it is easily seen that we can write, cf. (3.27), 

Mn= A1y7 + · · · + AzY1, n =1,2, ... , (3.44) 
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with A 1, ••. ,AL determined by 

(3.45) 

REMARK 3.4 

lly 1, ••• , llyL are the roots of a polynomial of degree L ~ l + L7= r1, see 
(3.11), (3.40); for example, for m-stage hyperexponential and m-stage Erlang 
service time distributions L =m + l. Note that (3.45) leads to a set of L linear 
equations from which A 1, ••• ,AL can be obtained (cf. Remark 3.2). 

Analogously to the proof of (ii) and (iii) of Lemma 3.1 it can be shown that 

LEMMA 3.2 
(i) y; can be written as 

Y; = l-/3d;, (3.46) 

with d; independent of /3, i = l, ... ,L; 

(ii) A; is independent of /3, i = l, ... ,L. 

Note that, in fact, d; = (1-y;)/ /3, i = l, ... ,L are the roots of: (cf. (3.43) and the 
derivation of (3.31)) 

(3.47) 

The properties stated in Lemma 3.2 will be used below. Before treating the 
general case we first give an example. 

The M/M/1 PS queue ~ 

For exponential service times (Q(z)=(l -p )z / (1-pz), with p = l -/31 /3) 

z 
1 + {3w0 -"},.,{3-1-_-z (1-(1-p)z /(1-pz)) 

M(z) = z--------------
1-z(l + f3w0 +A/3)+A/3z(l -p)z I (l -pz) 

(3.48) 

It is easily seen that the zeros 1/ y I and 1/ y 2 of the denominator of (3.48) are 
given by 

y 1 = ~ [ 1 + f3wo + A/3 + p + y (1 + f3wo + A/3 + p )2 - 4(p + p f3wo + A/3)] 

= 1 + ~ /3 [wo+A-11,8+ V(wo+A-11 ,8)2 +4wol ,8], 
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Y2 = ~ [ 1 + ,Bwo + A,8 + p - V (I + ,Bw0 + ~\,8 + p )2 - 4(p + p ,Bwo + ;\,8)] 

= l+ ~,B[wo+A-11,8-V(wo+A-l/,8)2+4;.,o/PJ. 

We can write (cf. (3.44)) 

(3.49) 

For the determination of A I and A 2 it is more convenient to use (3.5) instead 
of (3.45): 

A 1 +A 2 =M0 = 1, 

A I.Yi +A2}'2 = M 1 = 1 +,Bw0 • 

Hence 

Y1 -(1 +,Bwo) 
A2 = ----

Y1 -y2 

Now substitute (3.49) into (3.4) and evaluate the summations in the denomina
tor (take q_(i)=p;- 1). Taking in the resulting expressions y;= 1-,Bd;, i = 1,2, 
p = 1-,81 ,8, ,B=xl k and using that d; is independent of ,8 it is easily seen that 

2 
lim(l + ,Bwo)Mk- I = ~Ahe -xd, , 
k➔oo h =I 

k-2 A • 

limA,8 ~ q(i) = A,8(1-e-xl/3). 
k➔oo i=l 

Hence, cf. (3.4), 

(3.50) 

1-p 

It is easily shown that this result coincides with the result obtained in Coffman 
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et al. [1970] (formula (30) on page 128). Note that formula (30) of that paper 
represents the LST of the distribution of the total delay of a customer with a 
specific service demand. To match it with our result it has to be multiplied by 
the LST of the required service time (given bye -w,x). 

The MIG!l PS queue 
Now we shall treat the general case, i.e. the case that the service times are 
determined by (3.39). Consider in the corresponding feedback queue the total 
sojourn time after k services given by (3.4). As in the MIMI 1 case, we evalu-

ate the terms (l+,Bwo)Mk-1, "A,8''J:/~2q(k-J-l)M1 and "A,8'2/~2q(i) in the 
denominator and take the limit k--4rJ5 independently for each t~rril. The first 
term is simple: from (3.44) and (3.46) it is easily seen that 

The second one needs more effort. Using (3.41)-(3.44) and (3.46) it is found 
after extensive calculations that 

k-2 
"A,8 ~ q(k-J-l)M1 = 

j=I 

k -2 m r. - I [k • 2] . . . "A.,8-.;;:', M--.;;:',a -.;;:', -1 - . (1- )r.-1-, k-;-2-(r.-1-1) = 
,C..J J ,C..J n ,C..J r - l -1 Pn Pn 

j=I n=I i=O n 

The last equality is obtained by substitutingpn=l-,81,Bn, ,B=xlk and noting 

that [~;~t:.1] =O if k-j-2 < r,- I-;. 

Using that, actually by definition, 

k-r -l+i 

lim ~ ~(k-J-2)(k-J-3)···(k-J-2-(rn-2-i))X (3.52) 
k->oo j=I k 
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(xl(kPn)r-l-, A = A • [ 1-xdh I k lj 

we obtain 
k-2 

lim;\/J ~ q(k-J- l)Mj = 
k➔oo j=I 

1-x l(k/Jn) 

L m r,-1 -xl{J, x . • 
A"" A "" "" e j (_£ _ _!_)r,-I-, -s(d,-11/1,)ds 
~ h ~ an ~ ( l ")I A A e . 

h=I n=I i=O rn- -z ·s=O /Jn /Jn 

The evaluation of the third term is analogous to that of the second term: 

Hence, cf. (3.52), 

(3.53) 

(In the derivation of (3.54) one recognizes the convergence of the binomial 

probahility [,, i__ [ I_ j] (I - p,!'" -1 - ; p;- i -,,. - I - j) to the Poisson probability 

1 A r,-1-j -sl/1, • · 
(rn _ 1 _ J)! (s I Pn) e , cf. Feller [1950, Ch. 6]; a sumlar phenomenon 

occurs in the derivation of (3.53)). 

The integrals in (3.53) and (3.54) can be evaluated by noting that 
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Using the resulting expressions and (3.51) we obtain from (3.4): 

'THEOREM 3.2 
In the M!G/1 PS queue with service time LST given by (3.39),for Re w0 ;;;,,,0, 

SPS( ) s<kJ 
E{e -w0 x} = limE{e -w0 } = (3.55) 

k-¥:1:; 

with d 1, ••• ,dL the roots of (3.47) and A 1, ... ,AL determined by (3.45), cf 
Remark 3.4; dh and Ah are independent of x, h = l, ... ,L. 

For hyperexponentially (Hm) distributed service times (r1= 1, j = l, ... ,m, cf. 
(3.39)) (3.55) reduces to 

E{e -woSPS(x)} = (1-p) [ fAhe -xd, - AiaJne -x!P, 

h=l n=l 

(3.56) 

It is easily verified that for m = 1 (the M/M/1 case) (3.56) coincides with 
(3.50). 

REMARK 3.5 
Our formulas for the variance ((3.34), (3.35)) and the LST ((3.55)) of the 
sojourn time are given in terms of the roots of a polynomial and the solution 
of a set of linear equations. The corresponding formulas presented in Y ashkov 
[ 1987] are given in terms of multiple integrals. In general both types of formu
las can only be evaluated numerically. For obtaining numerical results it 
seems in our case to be more convenient to use the feedback results (2.22), 
(2.26) and (3.4), (3.5) and to evaluate a finite number of steps of the limiting 
procedure described in Subsection 3.3.1. 

As we remarked at the beginning of this subsection the analysis above does 
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not apply to the MID/I PS queue. In fact, the deterministic service times can 
be approximated by an Erlang-n distribution (for large n) but this leads to the 
problem of finding the roots of an (n + 1)-th degree polynomial and the solu
tion of a set of n + I linear equations (cf. (3.44), (3.45)). Below we shall show 
how explicit formulas for the sojourn time in the MIDI 1 PS queue can be 
easily obtained from the sojourn time in the MIM/1 queue with deterministic 
feedback analyzed in Chapter 2. 

The MID/I PS queue 
Consider the MIMI 1 queue with deterministic feedback in which el!:ch custo
mer receives exactly N services, see Subsection 2.5.2. Taking N = f /U .Bl and 
f3 = x I k it is clear that the total sojourn time after k services in the feedback 
queue approaches, for k➔oo, the sojourn time of a (special) £UStomer with ser
vice demand x in the MIDI 1 PS queue with service time {3. Application of 
this limiting procedure to (2.45) yields immediately the LST of the distribution 
of SPS(x): 

(3.57) 

Re wo;;.O, 

This result has been obtained before by Ott [1984]. 

REMARK 3.6 
A A 

(3.57) holds only for O,;;;;;x,;;;;;{3. To Ribtain a similar formula for x>/3 we need 
an explicit expression for E { e -w.s } for k > N, cf. (2.45); but as noted in 
Remark 2.4 this seems to be impossible for the case of deterministic feedb~ck. 
Ott's method also precludes the derivation of an explicit formula for x > /3 ( cf. 
Remark 5.2 in Ott [1984]). 

We conclude this section with a remark on the state of the PS system just 
after the departure of a tagged customer. 

REMARK 3.7 
From Corollary 2.2 and application of the limiting procedure, see Subsection 
3.3.1, it follows that for the MIG/1 PS queue the state of the system (the 
number of customers present and their residual service requests) just after the 
departure of a tagged customer who has received an amount x ;;.o of service is 
described by the stationary distribution of the state of the system at an arbi
trary epoch, independent of x. This result slightly extends Theorem 2.3 of Ott 
[1984]. Ott's theorem concerns only the distribution of the number of custo
mers at a departure epoch of a tagged customer with initial service demand x. 
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In the previous sections it has been shown that the M/G/1 PS queue can be 
considered as a limiting case of an M/M/1 queue with feedback. We 
exploited the well known product form property of the joint queue length dis
tribution to derive some sojourn time characteristics in the feedback queue and 
we used these results to obtain corresponding performance measures in the PS 
queue. In this section we shall show how a completely similar method can be 
applied to analyze an interesting generalization of the PS service discipline 
denoted as 'generalized processor sharing' (GPS). The GPS service discipline, 
investigated by Cohen [1979], generalizes the PS discipline as follows: when 
there are j customers present in the system then the service rate for each of 
these customers is f (j)>O, i.e. during a small time !J.t the attained service of 
each customer increases with f (j)D..t, j = 1,2, .... Note that, when j customers 
are present, the capacity of the server (the total service rate) is equal to jf (j), 
j = 1,2, .... If f (j)= 1/ j then the GPS model clearly reduces to the PS model. 
It will be shown below that results for the M/G/1 GPS queue can be easily 
obtained from the analysis of the M/M/1 feedback queue with state dependent 
service rates. Indeed, it is intuitively clear that when we choose the service rate 

· in the feedback queue equal to jf (j) when there are j customers present and 
let the mean service times /3-0 (p (i)-1) as described in Subsection 3.3.1 then 
the behaviour of the feedback queue approaches that of the GPS queue. The 
formal proof of this convergence is completely analogous to that of the PS 
case, see Section 3.1. To illustrate this new approach to the GPS service dis
cipline we shall show how the following two basic G PS results can be easily 
obtained from corresponding results for the feedback queue with state depen
dent service rates. Let 

cj,(n):= [IIf(i)l-i, n=l,2, ... , 
;=I 

(3.58) 

:= 1, n =O. 

For the M/G/1 GPS queue, cf. Cohen [1979], 

(i) the distribution of the number of customers XGPS present in the system is 
given by 

Pr{XGPS =n} 
p~ cj,(n) 
n. 

~ ~ cj,(j)' 
J=ol · 

(3.59) 

(ii) the mean conditional sojourn time, E{SGPS(x)} of a customer with service 
demand x is given by 
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f p~ q,(_n + I) 
On. 

E{SGPS(x)} = xn= . ' 

f ~ q,(j) 
j=OJ. 

(3.60) 

where p denotes, as usual, the offered load to the system per unit of time. 

The formulas (3.59) and (3.60) have been derived under the stability condition 

~ 'l=,o .£/,q,(j) < oo. Note that both the queue length distribution and the 

mean ~~ditional sojourn time are independent of the service time distribution 
apart from its first moment; E{SGPS(x)} is linear in x. Apparently, the GPS 
service discipline generalizes similar properties of the MIG/I PS queue, cf. 
(3.19). 

In fact, Cohen [ 1979] studies the GPS discipline in a very general model of 
open and closed networks with different job classes. This general model con
tains e.g. the classical Erlang and Engset systems. For the analysis Cohen 
uses the technique of the supplementary variable. He obtains generalizations 
of known results for closed and open networks such as the product form and 
the insensitivity property of the probabilities of the network states, cf. Baskett 
et al. [1975]; sojourn time results are restricted to means. We have found that 
most of these results can also be obtained from the MIMI I feedback queue 
with state dependent service rates or from networks of these feedback queues. 
In fact the GPS network can be considered as a limiting model of a network 
consisting of MIMI I feedback queues with state dependent service rates and 
suitably chosen routing probabilities. Each feedback queue corresponds to a 
node in the GPS network. This network of feedback queues is contained in 
the well known class of product form networks analyzed by Baskett et al. 
[1975]. Application of the limiting procedure to their results yields Cohen's 
GPS results. Here we shall restrict ourself to the derivation of (3.59) and 
(3.60). 

3.4.2 Analysis 
Consider the MIMI I feedback model described in Section 2.2 but with one 
difference: when there are j customers present in the system then the server 
works with a rate µiJ), j = 1,2, .... Note that the amount of service that a cus
tomer receives during each pass is still exponentially distributed with mean /J; 
only the speed with which he is served may change during time. The 'old' case 
is obtained by taking µiJ) = I. As in Section 2.2 we start the analysis assum
ing that the feedback probabilities remain constant after a finite number of 
services, i.e. p (i) = p, i;;. N for some N;;. l. (The notation introduced before 
is extended in an obvious way). Thus, the total number of different customer 
types is limited to N. It will appear later on that the results are independent 
of N; so, this assumption is no restriction. We define 
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i-1 
Pi:= APilp(i), i=I, ... ,N-1, 

j=l 

--~N-1. 
PN .- I- Ilp(i). 

p j=I 

Thus, Pi is the offered load to the system per unit of time due to type-i custo
mers. Obviously, the total offered load to the system per unit of time, p, is 

equal to ~~= 1p;. 

The (stationary) joint queue length distribution is found from the general 
network results obtained by Baskett et al. (1975]: 

with 

1 C=------
oo m 
~ PmlI(µ(i))-1 

m=O j=l 

(3.61) 

(3.62) 

an empty product being one by definition. (Note, for the derivation of (3.61) 
and (3.62), that in Baskett et al. (1975] the service rate is defined as the mean 
number of customers that can be served per unit of time; multiplication by P 
yields our definition of the service rate.) 

It follows from (3.61) and (3.62) that the distribution of the total number of 
customers in the system is given by 

(3.63) 

n =0,1, .... 

The mean number of type-h customers in the system can also be obtained 
from (3.61) and (3.62): 

(3.64) 
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oo m+I 
PhC~(m+l)pm II(µ(j))- 1 , h=l, ... ,N. 

m=O J=l 

Using Little's formula it follows immediately that the mean duration of the h
th sojourn time, E {Sh}, of a customer is given by 

_ oo m m+I . -I _ 
E{Sh} - pc~(m+I)p II (µ(j)) , h-1, ... ,N. (3.65) 

m =O j=l 

Note that both (3.63) and (3.65) are independent of N. In addition E {Sh} is 
independent of h. Hence, the mean total sojourn time after k services is linear 
ink: 

oo m+I 
p ~ (m + l)pm II (µ(j))-1 

E{S(k)} = k m=O ·=I , k = 1,2, .... 
oo m 
~ PmII(µ(j))-1 

(3.66) 

m=O j=l 

Now, choose the feedback probabilities such that the total required service 
time has the same distribution as the service time in the GPS queue, cf. (3.14)
(3.16). Substitution of µ(j) = jf (j) in (3.63) and (3.66) and application of the 
limiting procedure described in Subsection 3.3.1 yield immediately the GPS 
results (3.59) and (3.60). 

Although our approach to the GPS queue yields simple derivations of the 
results previously obtained by Cohen [1979] it seems to be very hard to derive 
new results such as the sojourn time distribution. The problem is the untracta
bility of the distribution of the successive sojourn times of a customer in the 
feedback queue with state dependent service rate. For the derivation of the · 
distribution of the sojourn time in the feedback queue with constant service 
rate, which led to the sojourn time distribution in the PS queue, we used the 
property that the joint process of successive departure epochs and queue length 
vectors at these departure epochs is a Markov renewal process, cf. the deriva
tion of (2.8). However, this property does not hold in the feedback queue with 
state dependent service rate. Indeed, in the latter model a customer's sojourn 
time does not only depend on the number of customers of each type present at 
the beginning of the previous sojourn time and the number of new arrivals dur
ing it but it depends also on the epochs at which these arrivals occur. More
over, the sojourn time is also dependent on the order of the different types of 
customers in the queue. 
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In this section we consider an MIG/I PS queue with feedback. The feedback 
mechanism has the same structure as described in Chapter 2 for the MIMI 1 
FCFS queue, i.e. the probability that a customer is fed back after completing 
his service may depend on the number of times he has already been served. 
We shall study the successive sojourn times of a tagged customer. In particu
lar we are interested in dependencies between these sojourn times. 

The PS queue with feedback has been studied before by Klutke et al. [1988). 
They consider the special case of Bernoulli feedback and analyze the behaviour 
of the internal input and output processes. In particular they study the 
influence of the shape of the service time distribution on the interoutput time 
distribution. Their main result is that when service time distributions with the 
same mean are convexly ordered (see Stoyan [1983)), so are interoutput time 
distributions. The purpose of their study is to gain insight into the properties 
of traffic processes in general queueing networks with processor sharing nodes. 

In Klutke et al. [1988) it is remarked that the study of flow processes is cru
cial to understanding the behaviour of more complicated processes in the sys
tem. As an example the authors mention the sojourn time process and say 
that "this is still an open problem". In this section we shall show that sojourn 
time results for the MIGi 1 PS queue with feedback can be obtained from the 
sojourn time results for the MIMI 1 FCFS feedback queue derived in Chapter 
2. 

3.5.2 Model description and notations 
We consider an MIGll PS queue with feedback (PSFB), see Fig. 3.1. When a 
customer in the system has completed his i-th service, he departs from the sys
tem with probability 1-p(i) and is fed back with probability p(i), i = 1,2, .... 
Fed back customers return instantaneously, i.e. due to the PS service discip
line a returning customer is immediately taken into service again. The succes
sive service requests T1, ,'.2 , . • . of _a custQmer are independent r3!1do:tp. vari
ables with distribution functions B 1(·), B 2(-),... and means /31, /32, ... 

respectively. New customers arrive according to a Poisson process with inten
sity A. Obviously, for stability it is required that the offered load p = 
Ai<o-fav))fifa<O)<P1+ · · · +Pj) < 1. 
j=I i=I ~ -

We are interested in the successive sojourn times S1(T1), ••• ,SN(TN) of a 
( tagged) customer in the PSFB queue who requires at least N ;;;..1 services of 
length T 1, • •• , TN;;;..o respectively. 11,! parti2ular we shall derive an expression 
for the correlation coefficient, corr(S;(T;),Sj(Tj)), of the i-th and the j-th 
sojourn time of a tagged customer, i,j = l, ... ,N. ' 

For the analysis of the successive sojourn times in the PSFB queue we shall 
consider corresponding sojourn times in an associated processor sharing queue 
without feedback. Let B(·) denote the distribution function of the total 
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p(i) 

I -p(i) 

PS 

Fig. 3.1 The M/G/1 PS queue with feedback. 

required service time, i.e. 

B(t) := f<o-fa<mff;u))(B1U)* · · · *B/t)), 1;;.,,o. (3.67) 
j=I i=l 

It is easily Sefn that the behaviour of the M/G/1 PS queue with service time 
distribution BO is exactly the same as the behaviour of the PSFB qufue 
described above. In the sequel the PS queue with service time distribution BO 
will be called "the associated PS queue" (or simply "the PS queue"). For a 
tagged customer with initial service demand -r1'8 ;;.,,T1 + · · · +TN, 
T1, ... , TN;;.,,o, in the associated PS queue we define: 

- Sf8 (Ti): time during which the remaining service demand of the tagged cus
tomer is in the range (-r1'8 - Li-_ T1 ,-r1'8 - Li-=I T1-], i = 1, ... ,N. 

J-1 J-1 

Obviously, the joint distribution of Sf8 (T 1 ), •.. , Sf 8 (T;) does not depend on 
Ti+ 1, ••• , TN, i = I, ... ,N - I; Sf8(T 1) is distributed as the conditional sojourn 
time of a tagged customer with service demand T1 : 

(3.68) 

It is clear that the quantities Sf8 (Ti), i = 1, ... ,N in the _associated PS queue 
correspond to the successive sojourn times S1(T1), ••• ,SN(TN) in the PSFB 
queue, i.e., for 11, ... ,tN;;.,,Q, 

- -
Pr{S1(T1)<t1, ... ,SN(TN)<tN} = (3.69) 

Specifically, 
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So below we shall focus on the sojourn times sfs{T;), T;~O, i = l, ... ,N, in the 
PS queue. 

3.5.3 Analysis A 

Consider the MIG/1 PS queue with service time distribution BO. We assume 
that BO belongs,_ to the class of p1lase-type distributions given by (3.12). The 
first moment of BO is denoted by /3. From Remark 3.7 it follows immediately 
that for 2,;;;;.;,;;;;.N the joint distribution of sfs(T;), ... ,S1/l(TN) does not 
depend on T1, j = l, ... ,i -1; in fact Remark 3.7 implies that, cf. (3.68), 

SPS PS 

E{e -wo; (T;)} = E{e-w,S (T;)}, T20 · 1 N R 2 0 (371) ; ,,,_. , 1 = , ... , , e w0 ,,,_. . . 

Hence means are simply given by, see (3.19), 

T 
E{Sfs(T;)} = -1-'-, i=l, ... ,N, 

-p 
(3.72) 

with offered load p=AP. It also follows that corr(SfS(T;),SfS(T1)), 
T 1, ••• , TN~O depends only on T;, T1 and ~J-:=_1 Tn, I,;;;;.i<j,;;;;.N. Hence, 

· PS PS n-,+.l · ·-for the analysis of corr(S; (T;),S1 (T1)), T 1, ... JN~O, 1,;- l, ... ,N we can 
restrict ourself to the determination of corr(SfS(Ti),Sfs(T3)), T 1,T2 ,T3 ~0 
without loss of generality. Below we shall derive an expression for 
corr(Sfs(T1),Sfs(T3)), T 1,T2,T3~0. We shall consider corresponding 
sojourn times in the MIMI 1 FCFS feedback queue and apply the limiting pro
cedure described in Subsection 3.3.1. The analysis is largely analogous to the 
derivation of the sojourn time variance in the MIG/1 PS queue, see Subsec
tion 3.3.3. 

Consider the MIMl1 FCFS feedback queue with mean service time /3 and 
feedback probabilities p(i), i=l,2, ... relatedA with /3 such that the total 
required service time has distribution function BO, see (3.14)-(3.16). We fol
low a tagged customer during his first k = k 1 + k 2 + k 3 successive sojourn 
times S1, ... ,Sk. Define 

S1(k1): =S1 + · · · +sk1, 

S2(k2):=sk1+1 + ... +sk1+k,, 

S3(k3): =Sk1+k,+1 + · · · +sk1+k,+k,· 

Clearly, when we take k 2 = fT2 1 /31, k3 = fT3 I /31, /3= T 1 I k1 and let k 1 ➔oo 
then S 1(k 1), S2(k 2) and S3(k 3) correspond to the PS quantities sfs(T1), 
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sfs(T2) and sfs(T3) respectively (cf. Subsection 3.3.1; note that, for k 1-Hx:i, 

k;/3-T;, i = 1,2,3). We shall first derive corr(S1(k 1),S3(k 3)) for general 
k 1,k2,k3~0. Next, taking k 2, k 3 and /3 as indicated above we use 

corr(Sfs(T1),Sfs(T3)) = lim corr(S1(ki),S3(k3)). (3.73) 
k 1->oo 

From the definition of SiCk;), i = 1,2,3, it follows that the covariance of 
S1(k 1) and S3(k 3) can be written as 

k, k, 
cov(S1(k1),S3(k3)) = ~ ~cov(S;,Sk,+k,+), k1,k2,k3~0. (3.74) 

i=lj=I 

The covariance of S; and s1 is found from (2.20) and (2.24): 

co,(S;,Sj) ~ [ I~ p r (I -(1-p)Cj-;), I..;; <j ..;k, 

with Cn, n = 1, ... ,k as in Subsection 3.3.3, see (3.27)-(3.30). 

(3.75) 

Substituting (3.75) into (3.74) and writing Cn as in (3.27) it follows that, for 
k1,k2,k3~0, 

The third equality of (3.76) follows from (iii) of Lemma 3.1. Replacing in 
(3.76) x1 by 1-/3a1, l =2, ... ,L, see (3.30), we obtain 

(3.77) 
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Now, taking in (3.77) appropriate limits, i.e. k2=rr21,81, k3 = rr3 I ,87, 
,8=T1!k 1 and k 1-">oo, we find, cf. (3.73): 

Hence, from (3.71) and (3.34), 

(3.79) 

L 
-~ UI(1 I a1)2e -T,a,(1-e -T1a')(I-e -T,a,) 

/=2 

Returning to the PS queue with feedback we have from (3.79) (cf. (3.70), the 
discussion below (3.72) and Lemma 3.1): 

THEOREM 3.3 - -
For the successive sojourn times S1 (T 1 ), .•• , SN(T N ), T 1, ••• , T N ~0, of a 
tagged customer in the MIGi I PSFB queue with total service request LST given 
by (3.12), 

- -
corr(S;(T;),Sj(Ij)) = (3.80) 

L 
- ~ UI(1 I a1)2e -T,.Ja'(1-e -T,a,)(1-e -½a') 

/=2 
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l~i<j~N, 

with Ti 1-:=""J-I 1Tn. a2, ... ,aL are the roots of(J.31) and U2, ... , UL are 
' ~n=i+ 

determined by (3.29), cf Remark 3.2; a1 and U1 are independent of Tm 
n = 1, ... ,N, I =2, ... ,L. 

It _ is _interesting to consider some asymptotic properties of 
corr(Si(TJ,Sj(Tj)). First, noting that in (3.80) Re a1 > 0, I =2, ... ,L, see 
Lemma 3.1, we obtain 

- -
corr(Si(TJ,S/T1)) - 0, T;,T/;;;.0, Ti,1-oo, l~i<j~N, (3.81) 

which is intuitively clear. Another asymptotic result applies to the case that 

T;, T1 and Ti,J become very small. Using ~~= 2 U1=1-11(1-p) and (3.34), 
(3.38) it follows from (3.80) that 

- -
corr(S;(Ti),Sj(Tj)) - I, Ti,Tj,Ti,J-o, l~i<j~N. (3.82) 

This result can be explained as follows. Suppose a tagged customer starts his 
i-th service at time t. For T;, r:,1 and T;,J close to zero it may be expected that 
the successive sojourn times S;(T;), ... , S/Tj) of the tagged customer are 
small (cf. (~.72)) and n2 new arrivals or departures occur during the time inter
yal [t,t +~;(T;)+ ... +Sj(,T1)]. Hence, due to the PS 2ervice discipline 
Sj(Tj)= T1S;(TJI Ti, i.e. S/T1) is completely determined by Si(T;). 

We conclude this section with an example. 

The MIMI 1 PS queue with Bernoulli feedback _ _ 
Consider the MIM/1 PS queue with Bernoulli feedback, i.e. B(t) = 1-e-1113 , 

p(i) p, 0~p<l, see Subsection 3.5.2. For Jhis_case the total required service 
time is exponentially distributed with mean /3=/31(1-p), cf. (3.67). From the 
calculations for the determination of the sojourn time variance in the MIMI 1 
PS queue, see Subsectiop 3.3.3, we have in (3.80) L=2, U2 =-l/(l-p), 
a2 =(l-x 2)1 /3=(1-p)I /3. Hence, for the MIM/1 queue with Bernoulli feed
back (3.80) reduces to 

- -
corr(S;(T;),Sj(Tj)) = (3.83) 

. . . 
e -T,_il-p)l/3(1-e -T;(l-p)l/3)(1-e -Tp-p)l/3) 

I I ' 

2 [e -T;(J-p)I.B - 1 + T;(l -p)I ,a] 2 [e -Tp-p)I.B - 1 + T/1 -p)I ,a] 2 
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Chapter 4 

SIMPLE APPROXIMATIONS FOR SECOND MOMENT 

CHARACTERISTICS OF THE SOJOURN TIME IN 

THE M/G/1 PROCESSOR SHARING QUEUE 

4.1 INTRODUCTION 

Although in literature considerable attention has been paid to the exact 
analysis of the sojourn time in the M/G/1 PS queue, little work has been done 
on the investigation of the practical implications of the results. The expres
sions for the second moment and the LST of the sojourn time distribution 
obtained by Yashkov [1983], Ott [1984] and Schassberger [1984], see also 
(3.34), (3.35) and (3.55), are complex and not very attractive for practical 
applications. Only for the mean sojourn time a simple explicit expression 
exists; this expression is insensitive to the service time distribution apart from 
its first moment, see (3.19). The formulas for the second moment of the 
sojourn tin1e require perfect information about the service time distribution, 
which is almost never available in practice. Moreover, in general these formu
las can only be evaluated numerically. As far as we know no attention has 
been paid to the derivation of approximations or asymptotic formulas which 
are useful for practical evaluation, apart from a paper by Y ashkov [ 1986]. 
Yashkov derives some asymptotic estimates for the conditional sojourn time 
variance for customers with small or large service times. We have obtained 
similar results in Section 3.3, see (3.37) and (3.38). In particular the asymp
totic formula (3.38), for customers with small service times, slightly generalizes 
Yashkov's result, cf. Remark 3.3. 

Actually, our interest in approximations for second moment characteristics 
of the sojourn time in the M/G/ 1 PS queue started with the derivation of 
(3.37) and (3.38). We found that these asymptotic formulas yield reasonable 
estimates for a wide range of the parameter values. The discovery of simple 
bounds for the second moment of the sojourn time also stimulated the investi
gation of approximations. Indeed, noting that in (3.7) Cn;;;,,,1, n=l,2, ... , it is 
easily seen that, for the total sojourn time after k services in the feedback 
queue, 
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var(S(k)) ..;; p (k a)2 k - l 2 (l-p)2 /J ' - ' , •••• 

Hence, applying the limiting procedure described in Section 3.3, 

(4.1) 

Note that this bound depends on the service time distribution only through its 
first moment. Obviously, (4.1) implies an upper bound for the unconditional 
sojourn time variance which depends on the first two moments of the service 
time distribution. After having noticed the existence of these bounds we found 
out that they can also be easily obtained from the results in Y ashkov [ 1983] 
and Ott [1984]. However, neither Yashkov nor Ott points at this interesting 
property of the sojourn time variance in the PS queue. 

The aim of the present study is to derive approximations for the second 
moment of the sojourn time distribution, which are quite simple and yet accu
rate enough for most practical purposes. Some very simple approximation for
mulas based on the first and second moment of the service time are presented. 
The accuracy of the approximations is tested for a large number of different 
service time distributions and a wide range of traffic intensities. A refinement 
of the approximation is obtained by taking the third moment of the service 
time into account. This refinement yields remarkably accurate results with 
relative errors less than 1.5 percent in most cases. 

The organization of the rest of this chapter is as follows. In Section 4.2 we 
introduce the notations and give a summary of those known sojourn time 
results which are relevant for our study. We also present some extensions and 
new results. In particular the heavy traffic behaviour of the second moment of 
the sojourn time is derived. Section 4.3 is concerned with the second moment 
of the conditional sojourn time of a customer with service demand x. We show 
that the asymptotic result (3.38) yields reasonable approximations for a wide 
range of x values. In Section 4.4 approximations are developed for the second 
moment of the unconditional sojourn time. We first propose an approximation 
which uses only information about the first and second moment of the service 
time distribution (Subsection 4.4.1 ). In Subsection 4.4.2 we construct a more 
detailed (and more accurate) approximation formula, which is based on the 
first three moments of the service time distribution. 

4.2 NOTATIONS AND PRELIMINARY RESULTS 

We copsider an M/G/1 PS queue with arrival rate;\ ~d service time distribu
tion lj(-) with first and second moment {J and {32 • It is assumed that 
p: =;\/J< 1 and that the system is in steady state. Since confusion with the 
sojourn time in the feedback queue is not possible we use in the rest of this 
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chapter S(x) and S instead of SP8(x) and sPs to denote the conditional and 
unconditional sojourn time in the PS queue. 

The sojourn time formulas obtained by Yashkov [1983] and Ott [1984] are 
more suitable for heavy traffic analysis than our expressions derived in Chapter 
3. They have for the second moment of the conditional sojourn time, 

2 2 X 

E{S2(x)}= x 2 + 2 /(x-t)(l-R(t))dt, 
(1-p) (l-p) t=O 

(4.2) 

where R(t) represents the waiting time distribution for !he M/G/1 first come 
first served (FCFS) queue with service time distribution B(-), 

00 • 

R(t) = (1-p) ~pnpn (t), 
n=O 

1 I ~ 
F(t) = --;;- f (1-B(u)) du . 

f3 u =O 

(4.3) 

Note, for the wrutmg time distribution R (t) m ( 4.2), that 
1-R(t):s;;;;l-R(0)=p, i;;;,,Q_ Hence, cf. (4.1), 

2 1 +p 2 
E{S (x)}:,;;; (l-p)2x . (4.4) 

A lower bound for E { S2(x)} follows immediately from the mean sojourn time, 
given by (3.19), and Schwartz' inequality (or alternatively from (4.2)), 

2 
E{S2(x)} ;;;,, x 2 

(1-p) 
(4.5) 

So, 

(4.6) 

Note that the upper bound is 100p% higher than the lower bound and that 
these bounds depend only on the mean service time; this supports a certain 
robustness of E {S2(x)} for the service time distribution. 

The heavy traffic behaviour of E {S2(x)} can be derived from ( 4.2) by noting 
that the heavy traffic behaviour of the waiting time distribution for the M/G/1 
FCFS queue is, for p-1, negative exponential, i.e. (see Cohen [1982, p. 596]) 

R(-t-) ~ 1-e-tld, for p-1 , 
l-p 

(4.7) 
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I A A 

where d = 2 pf32 I /3. 

Substituting ( 4. 7) into ( 4.2) yields 

(4.8) 

The asymptotic behaviour of E{S2(x)} for x-o is given by (3.38) and 
(3.19): 

E{S2(x)} ~ l+p x 2 - A P x 3 , forx-o. 
(l-p)2 3/3(1-p) 

(4.9) 

For exponential and deterministic service times, simple explicit expressions 
for E S2(x) exist. For future use we state these expressions. From (3.23) and 
(3.57) it follows that 

A A2 

E{S2(x)}Exp = 2pf3 2pf3 (1-e-x(l-p)!/J) x;;;;.o' (4.10) x-
(1-p)3 (I -p)4 ' 

A2 

E{S2(x)bEr = 2 2 2/3 . 
X - (epxl P -1-pxl ft), o,s;;;._x,s;;;._/3. (4.11) 

(l -p)2 p2(1-p) 

From (3.19) and the above results for S(x) it follows immediately that for 
the unconditional sojourn time S, cf. (3.18), 

E{S} = _/3_, 
1-p 

For exponential and deterministic service times, 

A2 
2 - 2+p /3 E{S }Exp - (I +-2-) 2 , 

-p (1-p) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 



2p2 
E{S2 }DET = -~

(1-p)2 

REMARK 4.1 

2p2 

-P2-(~l --p-) (eP- l -p). 
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(4.16) 

(4.13) implies that, for the MIG/I PS queue, the dependence of E{S2 } on the 
third moment of the service time distribution is limited. This should be con
trasted with the behaviour of the second moment of the sojourn time distribu
tion for the MIGi I FCFS queue. For the FCFS discipline it depends linearly 
on the third moment of the service time distribution, see e.g. Cohen [ 1982]. 

In the following sections the above results are exploited to develop simple 
approximations for E{S2(x)} and E{S2}. We present extensive tables com
paring the approximations with exact values. The service time distributions 
which we have chosen to test the approximations are: 
- exponential distribution 
- deterministic distribution 
- k-stage Erlang distribution (Ek) 
- two-stage hyperexponential distribution (H 2), in particular 

H 2 with balanced means (HfM), and 
H 2 with gamma normalization (H<f.N) 

- two-stage Coxian distribution ( C 2) 

- three-stage hyperexponential distribution (H 3) 

These types of service time distributions are often used for practical applica
tions in queueing theory, see Tijms [1986] and Whitt [1982, 1984]. A 

In practice service times are often characterized by the mean, /3, and the 
squared coefficient of variation, c2, defined by 

2 - (J2 
C - -;;-y , 

/3 
where ,:r2 denotes the service time variance, see Tijms [ 1986]. Here we shall use 
c2 rather than a2 to characterize the variability of the service times. 

The HfM and H<j_N distributions have been introduced to reduce the number 
of parameters of the H 2 distribution, see Tijms [1986]; they are uniquely deter
mined A by their first two moments. In particular, the H<f_N distribution with 
mean I} and c2 ;;;;,, 1 has the same third moment as the gamma distribution with 
mean /3 and squared coefficient of variation c2 • In Section 4.4 the class of H 2 

distributions will be considered in more detail. 

The tables presented at the end of this chapter contain relative errors of the 
approximations for various service time distributions. The relative error is 
defined as 

JOO% approximation result - exact result . 
exact result 

The exact values of E{S2(x)} and E{S2 } have been obtained from (3.34) and 
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(3.35). For Hk and Ck (and Ek) service time distributions these formulas 
require the roots of a polynomial of degree k and the solution of a set of k 
linear equations. Even for the case k = 2, the resulting expressions are very 
large and complicated and do not give much insight into the influence of the 
parameters. 

4.3 APPROXIMATION OF E{S2(x)} 
In this section we show that the asymptotic result ( 4.9) yields a good approxi
mation for E{S2(x)} for an important range of x-values. 

We define (cf. (4.9)), 

2 l+p 2 P 3 E{S (x)}APPX: = ---'---x - A x . 
(l -p)2 3/3(1-p) 

(4.17) 

Note that E{S2(x)}APPX satisfies the heavy traffic behaviour of E{S2(x)} (see 
(4.8)) and that E{S2(x)}APPX is smaller than the upper bound of E{S2(x)} 
given by (4.4). Approximation E{S2(x)}APPX is independent of the service 
time distribution apart from its first moment. Obviously it can not be applied 
for )oo large values of x because it becomes negative for 
x>3/3(1 +p)/(p(l-p)). Moreover, assuming that the variance of S(x) is a 
convex function of x (cf. (4.9) and (3.37)), we may not expect that 
E{S2Sx)}APPX is a good approximation for x>x 1, where 
x 1 =/31(1-p)=E{S} is the point of inflection of (cf. (3.38)) 

f ( ) P x 2 - A P x 3 • 
X = (l-p)2 3/3(1-p) 

(4.18) 

For x<x 1, E{S2(x)}APPX is within the bounds of E{S2(x)} given by (4.6). 

In Table 4.1 approximation results are compared with e1rnct res11lts for a 
1 A A 3 A A /312 /3 

number of different values of x (x =-2 {3, /3, 2 {3, 2/3, --, -1-) and 
1-p -p 

different service time distributions. For each of these cases p varies from 0.1 
to 0.9. For the sake of clarity only the relative approximation errors are given. 
It appears that for most cases the relative approximation errors are negative. 
As exp~cted, the approximation becomes less accurate when x grows. For 
0,s;;,x~f3A the relative errors are less than 2.34% in absolute value. For 
0,s;;,x ,;;;;,213 the maximum relative error is 6.5~%. When x remains Aconstant the 
maximum errors occur for p,:::;:0.3. For x =/31(2(1-p)} and x =/31(1-p) the 
relative errors tend to increase when p grows. For x =/31(1-p) the maximum 
error is 11.29%. 
It is seen from the results for different service time distributions that the accu
racy of the approximation tends to decrease when c2 becomes larger. 
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REMARK 4.2 
In Van den Berg [1988] we have derived an approximation for E{S2(x)} for 
the whole range of possible x-values (x ;;a,,,O) by appropriately combining the 
two asymptotic formulas ( 4.9) and (3.37). The idea is as follows. Two values 
.x I and x 2 are determined, such that for x :,;;;;;i 1 ( 4.9) yields a good approxima
tion and for x;;a,,,i 2 (3.37) yields a good approximation. For .x 1 .;;;;;x.;;;;;x 2 , 

E{S2(x)} is approximate'! by the term x 2 /(l-p)2 plus a linear function of x, 
cf. (3.37). We took .x 1 =/J/(1-p). Details about the determination of .x 2 are 
given in Van den Berg [1988]. The approximation yields reasonably good 
results for service time distributions with c2 not too large (O,s;;;c2 .;;;;;2). For 
these cases we found relative errors which are typically less than 10%. A 
minor drawback of this approximation is that it needs the first three moments 
of the service time distribution (cf. (3.37)). 

4.4 APPROXIMATION OF E{S2 } 

In this section we propose two different approximations for the second 
moment of the unconditional sojourn time S. First we derive a simple approx
imation which is based on the exact formula of E { S2 } for the case of deter
ministic service times and for exponentially distributed service times. This 
approximation uses only the first two moments of the service time distribution. 
Next it is shown how this simple approximation can be improved. We derive 
a ( second) approximation based on exact expressions of E {S2 } for two classes 
of H 2 distributions. This latter approximation also takes the third moment of 
the service time distribution into account. 

4.4.1 Simple approximation 
It follows from (4.13) that an approximation E{S2}APP of E{S2 }, which 
satisfies 

(4.19) 

yields relative errors which are bounded by 100p% in absolute value. This 
observation and the relations for E {S2 } given in Section 4.2 support the idea 
to derive an approximation for E {S2 } which is based only on the first two 
moments of the service time distribution. We propose an approximation 
which is a linear interpolation on the service time squared coefficient of varia
tion such that it yields exact results for the case of exponential and determinis
tic service times. This type of two-moment approximations is often used to 
estimate performance measures (e.g. mean sojourn times) in (complex) queue
ing systems, see Tijms [1986, Ch. 4]. The rationale behind it is that the 
Pollaczek-Khinchine formula for the mean sojourn time E{SFCFS} in the 
M/G/1 FCFS queue allows the representation 
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(4.20) 

where E{SFCFS}Exp and E{SFCFS}DET denote the mean sojourn time for the 
special cases of exponential and deterministic service times (with the same 
means). Note that this kind of representation is also allowed for the mean 
sojourn time in the M/G/1 PS queue, cf. (4.12). For the present case of the 
second moment of the sojourn time distribution in the M/G/1 PS queue this 
idea leads to an approximation E {S2 }APP I for E {S2 } which reads as follows: 

(4.21) 

Note that this approximation has the following appealing properties: 

APPROXIMATION PROPERTIES 

(I) The approximation is exact for deterministic service times. 
(2) The approximation is exact for exponentially distributed service times. 
(3) The approximation yields values between the lower and upper bound of 

E{S2 } given by (4.13). 
( 4) The approximation satisfies the heavy traffic behaviour of E { S2 } ( see 

(4.14)). 
(5) The approximation yield~ the exact value of E{S2 } for p=O: 

E{S2}APP = E{S2 } = /32, for p=O. 

The approximation results for the test set of service time distributions and 
traffic intensities are presented in Table 4.2. It appears that the approximation 
yields reasonably good results. In all tested cases the relative approximation 
error is smaller than 5%. In particular for service time distributions with c2 

close to one (O..;;c 2 ..;;2) the relative errors are less than 1.89%. Obviously this 
small error is due to the fact that the approximation is exact for exponential 
and deterministic service times. For larger values of c2 (c 2 >4) the approxima
tion becomes worse. It is noticeable that the approximation is significantly 
better for the H 2 distribution with gamma normalization (HYN) than for the 
H 2 distribution with balanced means (HfM). In the next subsection we shall 
show that this is due to the influence of the third moment of the service time 
distribution on E { S2 }. 

4.4.2 Detailed approximation 
The simple approximation (4.21) tends to be less accurate if the squared 
coefficient of variation of the service time distribution becomes larger. 
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Therefore, for service time distributions with c2 ;;,, 1 we shall develop a new 
approximation, APP2, for E{S2 }. This approximation is based on simple 
exact formulas for two classes of extreme H 2 distributions. It contains the 
first three moments of the service time distribution. 

We start with recalling some characteristics of the class of H 2 distributions. 
The H 2 distribution function is given by 

A(I) A(~ 

BH,(t) = a(l-e-11 /J ) + (l-a)(l-e- 11 /J ) , (4.22) 

A(]) A(2) 
where O,;;;;a,;;;; 1 Q,;;;;/3 ,;;;;13 . 

' A A(]) A(2) 
So, there are three parameters. Given the mean /3=a/3 +(I -a)/3 and 
c2 ;;,, l there is thus one remaining degree of freedom, r, defined by 

A (I) 

- a/3 
r - a'jPl +(l -a>'/Pl · 

r = I I 2 yields the class of H 2 distributions with balanced means (HfM). 

Obviously, if fJ and c2 ar~ given,,_ r determines the third moment, {J3 , of the 
H 2 distribution. For fixed /3 and /32 (c2), the smallest possible value of /33 is 

A 3 A2 A A 
obtained for r=O. In that case /33 = 2 /32 1/3. For r-I, /33-oo (see Whitt 

[1982,1984]). 

Our numerical experience ';Yith respe£t to If 2 distributions indicates that 
E{S2 } becomes smaller when /33 grmys (/3 ang /32 cop.stant). So (cf. (4.13)), we 
expect that E{S2 }H has a limit for /33-oo, /3 and /32 fixed. From (3.35) it is 

A l A 

found that, for /3 and /32 fixed, 

E{S2}H;"' =. lim E{S2}H, (4.23) 
/J,---->oo(r---->l) 

(4.24) 

It is easily seen that, for c 2 ;;,, 1, 

(4.25) 

A A2 
In ( 4.25), equality holds if c 2 = 1 (/32 = 2/3 ), hence if the service times are 
exponentially distributed. 



80 

Now we introduce two approximation assumptions to extend the above 
results with respect to H 2 distributions to general service time distributions. 

Assumption 1: E {S2 } depends only on the first three moments (P, P2 , P3 ) of 
the service time distribution. 

Assumption 2: E {S2 } decreases if P3 grows (P and P2 fixed). 

Under these assumptions it follows from ( 4.23) and ( 4.24) that, for c2 ;;;.1, 
A 3 A 2 A 

/33~/]il/3, 

(4.26) 

(4.23), (4.24) and (4.26) suggest an approximation, APP2, for E{S2} which 
reads as follows: 

A A2 

E{S2}APP2 =y(l+-2P) 132 2 +(1-y)( 132 + 2P /3 ), (4.27) 
-p (l-p) (l-p)2 2-p (l-p)2 

The choice of the weight factor y will be partially determined by the approxi
mation properties listed below (4.21). Besides the properties (2)-(5) we require 
that 

(6) for /3, /32 fixed, 
a A2 

2 /J2 + ..11!_ f3 Jim E S APP2 = ---
/J,➔oo (l-p)2 2-p (l-p)2 ' 

(7) 
A 3 A 2 A 

for /33 - 2 /32 I /3, 

2 p /32 
E{S }APP2 = (1 +-2-) 2 -p (l-p) 

Note, that, without any further specification of y, APP2 satisfies the approxi
mation properties (2) and (5). Considering the other required properties ((3), 
(4), (6) and (7)) it is natural to choose y as follows, 

(4.28) 

where YI represents the relative influence of '/33 on E{S2}. YI remains to be 
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A A 

specified. We assume that y1 depends only on /3 and /32. Note that y1 has to 
be chosen such that y is dimensionless. The most obvious choices are 

A3 A A 

y1 = 1 / /3 or y1 = 1 / (/3/32). For both cases we compared approximation results 
with exact results. Our test set consisted of H 2 service time distributions with 
c2 ranging from 1 to 20. For each value of c2 a larg~ number of P3 values 
was considered. It appeared that the choice y1 = 1 / (/3/32) yields much b<?tJer 
results than y1 = 1 / /3 . However, in most cases the choice y1 = 1 / (/3/32) 

underestimated E { S2 }. In particular for larger values of c 2 the approximation 
results beci¥Pe worse. Extensive tests of the approximation for some variants 
of y1 = I / (/3/32) led to a modification which yields remarkably accurate results: 

I I 
'YI = (c2-l) PP2 . 

So, the ultimate approximation formula is given by ( 4.27), with 

(4.29) 

It is seen from Table 4.3 that for HfM and HyN service time distributions 
(with c2 =2, 4, 6) APP2 yields very accurate results with relative errors less 
than 1%. 

Table 4.4 illustrates the influence of P3 on E { S2 }. This table shows exact 
values of E {S2 } for a number of H 2 distributions with the same first and 
second moment but with a different third moment. The traffic intensity varies 
from 0.1 to 0.95. The relative approximation errors of APP2 are indicated 
l]elow the exact values of E { S2 }. As we stated before E { S2 } decreases when 
/33 grows. Note that even for large c2 (c2 = 10) the relative approximation 
errors are less than 1.5%. It may be concluded from Table 4.4 that the 
influence of the third moment of the service time distribution on E {S2 } 

increases when c2 grows, cf. (4.13). 
In Table 4.5 APP 2 is tested for some arbitrarily chosen H 3 and C 2 service 

time distributions. The relative errors are in all cases less than 1.5%. 

Originally, APP2 has been developed for service time distributions with 
A 3 A 2 A 

c2;;;,,1, /33;;;,, 2 /321/3. For these cases E{S2}APP2 can be interpreted as an 

interpolation formula, see ( 4.27). Nevertheless, approximation formula ( 4.27) 
(together with (4.29)) can be applied to service time distributions with c2 <1 or 
A 3 A 2 A 

/33 < 2 /32 I /3 as well. In Table 4.6 some results are shown for deterministic, 

C 2 and Ek service time distributions with c2 < I. It appears that the accuracy 
of APP 2 for these cases is about the same as the accuracy of APP 1. 
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4.5 CONCLUSIONS 

In this section we briefly review the results and sum up the main characteris
tics of the different approximation formulas proposed in Section 4.3 and Sec
tion 4.4. 

We have studied the second moment of the conditional and unconditional 
sojourn time, E{S2(x)} and E{S2 }, for the M/G/1 processor sharing queue. 
An upper bound and some asymptotic properties (like the heavy traffic 
behaviour) have been derived. Based on these properties and on exact expres
sions for specific service time distributions we developed some simple approxi
mations. The approximations have been compared with exact results for a 
large number of different service time distributions and a wide range of traffic 
intensities. We conclude as follows. 
- The influence of the third and higher moments of the service time distribu
tion on E{S2(x)} and E{S2 } is limited. An upper and a lower bound for 
E{S2(x)} can be expressed in terms of x (the service demand of a tagged cus
tomer) and the traffic intensity p, see (4.6). The corresponding upper and 
lower bound for E {S2 } contain only the second moment of the sojourn time 
distribution and p, see ( 4.13). 
- Approximation APPX for E{S2(x)}, given by (4.17), is based on the asymp
totic result (3.38) for x-o. It depends on the service time distribution only 
through its first moment. APP X yields reaponably good results for not too 
large values of x, see Table 4.1. For o,;;;;_x ,;;;;_p the relative error of the approxi
mation is a few percAent. The approximation becomes less accurate when x 
increases. For x =2P the relative errors are typically less than 7%. APPX 
satisfies the heavy traffic behaviour of E S2(x), see (4.8). 
- The approximations for E{S2 }, APP 1 and APP2, given by (4.21) and (4.27), 
have been constructed in such a way that they have the following appealing 
properties: 

* they are exact for exponential service times 
* they yield values between the lower and upper bound of E { S2 } 

* they satisfy the heavy traffic behaviour of E { S2 } 

* they yield the exact value of E{S2 } for p=O. 
In addition, APP 1 yields exact results for deterministic service times; APP2 is 
exact for two classes of extreme H 2 distributions. 
- Approximation APP 1 is the most simple approximation. It depends on the 
first two moments of the service time distribution. For not too large values of 
c2 (c2 ,r;;;;,_6) it yields fairly accurate results, see Table 4.2. In practical situations 
APP 1 may be applied as a first order approximation for E{S2 }. 

-APP2 depends on the first three moments of the service time distribution. It 
is based on exact formulas of E{S2 } for two classes of extreme H 2 distribu
tions. The details of the construction of APP2 are rather heuristic. Neverthe
less, it yields remarkably accurate results. APP2 has been tested for a large 
number of different service time distributions with c2 ranging from Oto 10, see 
Tables 4.3 through 4.6. In all of these cases the relative error is less than 1.5%. 
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TABLE 4.1. Approximation of E{S2(x)}. The table contains relative errors 
(%) of approximation APPX (given by ( 4.17)) for various service time distribu
tions. 

Service time distribution: HfM, c2 =2. 

l A 

X =/3 
3 A 

X =2/3 x=l__L_ x=-/3-p x=-/3 x=-/3 
2 2 2 1-p l-p 

0.1 -0.19 -0.66 -1.35 -2.18 -0.23 -0.80 
0.3 -0.32 -1.16 -2.40 -3.94 -0.62 -2.20 
0.5 -0.27 -0.99 -2.08 -3.46 -0.99 -3.46 
0.7 -0.15 -0.56 -1.19 -1.99 -1.44 -4.80 
0.9 -0.04 -0.15 -0.30 -0.51 -2.31 -6.61 

Service time distribution: HfM, c2 =4. 

A 

1 A 3 A A x=l__/3_ x=-/3-p x=-/3 X =/3 x=-/3 X =2/3 
2 2 2 1-p l-p 

0.1 -0.22 -0.77 -1.55 -2.46 -0.27 -0.93 
0.3 -0.39 -1.39 -2.83 -4.58 -0.76 -2.61 
0.5 -0.35 -1.26 -2.58 -4.23 -1.26 -4.23 
0.7 -0.21 -0.77 -1.60 -2.64 -1.93 -6.11 
0.9 -0.06 -0.23 -0.48 -0.79 -3.39 -8.98 

Service time distribution: HfM, c2 = 6. 

A A 

1 A A 3 A x=l__/3_ x=_L_ p x=-/3 X =/3 x=-/3 X =2/3 
2 2 2 1-p l-p 

0.1 -0.24 -0.82 -1.63 -2.59 -0.29 -0.99 
0.3 -0.42 -1.50 -3.02 -4.86 -0.81 -2.78 
0.5 -0.38 -1.37 -2.80 -4.56 -1.37 -4.56 
0.7 -0.24 -0.86 -1.78 -2.92 -2.14 -6.67 
0.9 -0.07 -0.27 -0.55 -0.91 -3.85 -10.01 

Service time distribution: exponential. 

1 A 3 A A 

X =l__/L x=-/3-p x=-/3 X =/3 x=-/3 X =2/3 
2 2 2 1-p l-p 

0.1 -0.14 -0.53 -1.11 -1.85 -0.17 -0.64 
0.3 -0.23 -0.86 -1.86 -3.17 -0.45 -1.70 
0.5 -0.17 -0.66 -1.46 -2.53 -0.66 -2.53 
0.7 -0.08 -0.30 -0.67 -1.19 -0.83 -3.19 
0.9 -0.01 -0.04 -0.09 -0.16 -0.96 -3.74 
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TABLE 4.1 (Cont'd) 

Service time distribution: H<.J,N, c2 =2. 

1 A 

X =/3 
3 A 

X =2{3 X = J__ __fi_ X =__ii_ p x=-/3 x=-/3 
2 2 2 1-p 1-p 

0.1 -0.25 -0.83 -1.58 -2.45 -0.30 -0.98 
0.3 -0.45 -1.51 -2.91 -4.56 -0.85 -2.69 
0.5 -0.41 -1.38 -2.68 -4.21 -1.38 -4.21 
0.7 -0.26 -0.87 -1.69 -2.64 -1.99 -5.66 
0.9 -0.08 -0.27 -0.52 -0.79 -2.82 -7.15 

Service time distribution: H<.f.N, c2 =4. 

A 

1 A 

X =/3 
3 A 

X =2{3 X =J____fi_ x=-/3-p x=-/3 x=-{3 
2 2 2 1-p 1-p 

0.1 -0.34 -1.07 -1.98 -2.98 -0.41 -1.26 
0.3 -0.64 -2.03 -3.79 -5.75 -1.17 -3.52 
0.5 -0.61 -1.96 -3.68 -5.61 -1.96 -5.61 
0.7 -0.41 -1.33 -2.50 -3.81 -2.93 -7.72 
0.9 -0.14 -0.46 -0.86 -1.30 -4.33 -10.02 

Service time distribution: H<.f_N, c2 =6. 

A A 

1 A A 3 A 

X =J____fi_ x=-/3-p x=-/3 X =/3 x=-/3 X =2{3 
2 2 2 1-p 1-p 

0.1 -0.38 -1.18 -2.16 -3.23 -0.45 -1.39 
0.3 -0.72 -2.26 -4.17 -6.29 -1.31 -3.88 
0.5 -0.69 -2.21 -4.11 -6.22 -2.21 -6.21 
0.7 -0.48 -1.53 -2.85 -4.32 -3.33 -8.63 
0.9 -0.17 -0.54 -1.00 -1.52 -4.98 -11.29 

Service time distribution: E 2 • 

A 

1 A A 3 A A 

X =J____fi_ X =__ii_ p x=-/3 X =/3 x=-/3 X =2/3 
2 2 2 1-p 1-p 

0.1 -0.03 -0.24 -0.68 -1.32 -0.05 -0.32 
0.3 -0.00 -0.24 -0.86 -1.88 -0.06 -0.75 
0.5 0.07 0.05 -0.26 -0.91 0.05 -0.91 
0.7 0.11 0.27 0.33 0.24 0.32 -0.84 
0.9 0.06 0.19 0.34 0.48 0.85 -0.53 
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TABLE 4.2. Approximation of E{S2 }. The table contains relative errors(%) 
of approximation APPl (given by (4.21)) for various service time distributions. 

Service time distribution: HfM_ 

p c2 =2 c2 =4 c2 =6 

0.10 0.29 0.52 0.62 
0.30 0.91 1.67 2.01 
0.50 1.52 2.88 3.49 
0.70 1.89 3.65 4.48 
0.90 1.26 2.50 3.11 
0.95 0.75 1.50 1.87 

Service time distribution:HyN_ 

p c2 =2 c2 =4 c2 =6 

0.10 -0.13 -0.22 -0.28 
0.30 -0.29 -0.52 -0.61 
0.50 -0.30 -0.54 -0.63 
0.70 -0.17 -0.27 -0.31 
0.90 0.00 0.05 0.07 
0.95 0.01 0.05 0.08 

Service time distributions with c2 < 1. 

p E4 E3 E1 C~I) c~2) 

0.10 0.18 0.14 0.13 0.00 0.00 
0.30 0.35 0.35 0.28 0.00 -0.02 
0.50 0.38 0.38 0.32 -0.07 -0.09 
0.70 0.25 0.24 0.21 -0.13 -0.11 
0.90 0.05 -0.01 0.04 -0.11 -0.07 
0.95 0.02 -0.01 0.02 -0.08 -0.04 
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TABLE 4.3. Approximation ofE{S2 }. The table contains relative errors(%) 
of approximation APP2 (given by (4.27) and (4.29)) for various service time 

distributions with c 2 ;;a,, 1, P3 ;;a. ~ p; Ip. 

Service time distribution: HfM_ 

p c2 =2 c2 =4 c2 =6 

0.10 -0.15 -0.27 -0.32 
0.30 -0.32 -0.58 -0.69 
0.50 -0.31 -0.53 -0.61 
0.70 -0.12 -0.09 -0.04 
0.90 0.08 0.34 0.51 
0.95 0.07 0.26 0.39 

Service time distribution:HyN. 

p c2 =2 c2 =4 c2 =6 

0.10 -0.12 -0.21 -0.25 
0.30 -0.23 -0.41 -0.48 
0.50 -0.17 -0.30 -0.35 
0.70 -0.01 0.01 0.03 
0.90 0.09 0.20 0.26 
0.95 0.07 0.14 0.18 
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TABLE 4.4. The influence of the third moment of the service time distribution 
(ft3) on E{S2 }. In the table the exact values of E{S2 } are given. The relative 
approximation errors (%) of APP2 are indicated in parentheses below the 
exact values of E { S2 }. 

H 2 service time distributions with {J= 1, c2 =4. 

A 

/33 p=0.10 p=0.30 p=0.50 p=0.10 p=0.90 p=0.95 

37.500 6.498 12.00 26.67 85.47 909.1 3810 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

49.084 6.434 11.68 25.65 82.10 889.2 3762 
(-0.25) (-0.50) (-0.40) (-0.01) (0.26) (0.19) 

68.329 6.388 11.43 24.78 78.74 864.3 3698 
(-0.26) (-0.58) (-0.56) (-0.15) (0.34) (0.29) 

105.42 6.353 11.24 24.02 75.35 830.6 3609 
(-0.19) (-0.47) (-0.54) (-0.28) (0.24) (0.26) 

190.02 6.329 11.09 23.41 72.17 785.3 3441 
(-0.11) (-0.29) (-0.38) (-0.31) (0.01) (0.08) 

310.86 6.318 11.02 23.12 70.47 751.6 3295 
(-0.07) (-0.19) (-0.26) (-0.25) (-0.13) (-0.09) 

716.53 6.309 10.97 22.86 68.85 709.3 3063 
(-0.03) (-0.08) (-0.12) (-0.14) (-0.17) (-0.22) 

1391.8 6.306 10.95 22.77 68.21 689.0 2927 
(-0.02) (-0.04) (-0.06) (-0.08) (-0.13) (-0.20) 

2291.9 6.305 10.94 22.73 67.94 679.6 2856 
(-0.01) (-0.03) (-0.04) (-0.05) (-0.09) (-0.16) 

4541.9 6.304 10.93 22.70 67.74 671.9 2794 
(-0.00) (-0.01) (-0.02) (-0.03) (-0.05) (-0.10) 

00 6.303 10.92 22.67 67.52 663.6 2724 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
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TABLE 4.4 (Cont'd) 

H 2 service time distributions with {:J= 1, c2 = 10. 

A 

{33 p=0.10 p=0.30 p=0.50 p=0.10 p=0.90 p=0.95 

181.50. 14.29 26.41 58.67 188.0 2000 8381 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

223.21 14.17 25.80 56.78 181.9 1965 8298 
(-0.29) (-0.50) (-0.35) (0.05) (0.28) (0.19) 

330.00 14.01 24.95 53.89 171.3 1891 8110 
(-0.40) (-0.80) (-0.68) (0.03) (0.70) (0.53) 

502.34 13.90 24.34 51.62 161.6 1802 7859 
(-0.31) (-0.73) (-0.72) (-0.04) (1.00) (0.86) 

710.16 13.84 24.00 50.26 155.0 1724 7612 
(-0.24) (-0.60) (-0.65) (-0.09) (1.13) (1.09) 

1323.2 13.78 23.61 48.65 146.4 1588 7093 
(-0.14) (-0.37) (-0.44) (-0.11) (1.13) (1.37) 

1845.6 13.76 23.49 48.11 143.2 1523 6797 
(-0.10) (-0.27) (-0.34) (-0.10) (1.04) (1.42) 

4162.2 13.73 23.31 47.31 138.4 1401 6129 
(-0.05) (-0.13) (-0.17) (-0.06) (0.69) (1.26) 

12263 13.72 23.22 46.89 135.7 1315 5543 
(-0.02) (-0.04) (-0.06) (-0.03) (0.30) (0.71) 

30488 13.71 23.19 46.76 134.8 1285 5305 
(-0.01) (-0.02) (-0.02) (-0.01) (0.13) (0.34) 

00 13.71 23.17 46.67 134.2 1264 5124 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
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TABLE 4.5. Relative approximation errors(%) of APP2 for H 3 and C2 ser
vice time distributions. 

p 

0.10 
0.30 
0.50 
0.70 
0.90 
0.95 

ml) HS2) c~1) c~2) 

-0.20 -0.29 -0.15 -0.30 
-0.54 -0.71 -0.31 -0.63 
-0.65 -0.82 -0.25 -0.54 
-0.44 -0.48 -0.04 -0.04 
-0.00 0.20 0.12 0.40 
0.00 0.10 0.09 0.31 

HS1): c2 =2.778, ,?3 =40.963 
HS2): c2=4.130, {J3=85.622 
c~'): c2 =2.200, ,83 = 18.240 
C~2): C 2 = 5 .000, ,?3 = 84.000 
C~3): c2=8.5?6, ,83=187.33 
In all cases: /3 = 1 

c~3) 

-0.32 
-0.63 
-0.48 
0.05 
0.39 
0.28 

TABLE 4.6. Relative approximation errors (%) of APP2 for various service 

time distributions with c2 ~ 1 and ,83 ~ ~ p; I ,B. 

p DET E4 E2 c; 

0.10 -0.02 0.16 0.12 0.06 
0.30 -0.18 0.23 0.22 0.11 
0.50 -0.36 0.16 0.18 0.10 
0.70 -0.44 -0.02 0.05 0.04 
0.90 -0.25 -0.10 -0.04 -0.02 
0.95 -0.13 -0.08 -0.03 -0.02 

* c2 =0.75 
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Chapter 5 

QUEUEING MODELS WITH ADDITIONAL 

PERMANENT CUSTOMERS 

5.1 INTRODUCTION 

In the previous chapters we considered models with a single Poissonian exter
nal arrival stream. However, in many practical situations a service facility is 
shared by two or more classes of customers originating from different sources. 
An interesting aspect is the influence of the interference of the different custo
mer streams on their queueing behaviour. A simple case occurs when it is 
assumed that the arrival processes are independent Poisson processes and the 
service discipline does not depend on the origin of the customers. Indeed, in 
that case the resulting 'overall' arrival process is also Poisson and hence we can 
use known results for the corresponding single arrival stream model. 

In this chapter we consider single server queueing models with two classes of 
customers, viz. (i) ordinary customers who arrive according to a Poisson pro
cess, and (ii) permanent customers who immediately return to the end of the 
queue after having received a service. In Fig. 5.1 we have depicted the basic 
model: an M/G/1 FCFS queue with K permanent customers all having their 
own service time distribution B;(-), i = l, ... ,K; the ordinary customers, in the 
sequel called 'Poisson customers', have service time distribution B 0(-). 

K 

Fig. 5.1 The M/G/1 queue with K additional permanent customers. 

Note that the presence of permanent customers may represent the existence of 
an 'infinite customer pool' (or several infinite customer pools) of which only a 
fixed number (K) is allowed to be in the system at the same time; when one of 
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these customers departs upon service completion then a new customer from the 
pool immediately enters the queue. The main goal of this chapter is to study 
the influence of the K permanent customers on queue length and sojourn time 
of the Poisson customers. 

Besides the basic model described above we shall also analyze some variants 
related with the models considered in the previous chapters, viz. the MIMI 1 
queue with general feedback and its limiting case, the MIGll processor shar
ing queue. The analysis of these models with additional permanent customers 
yields very interesting new results for the sojourn time distribution of the Pois
son customers. 

The MIG/1 queue with additional permanent customers is related with a 
class of models referred to as vacation queues. These are queueing models 
where a server now and then interrupts the service to a customer stream to 
take a vacation, see e.g. Fuhrmann and Cooper [ 1985] and the survey of Doshi 
[1986]. For the special case K = 1 our model behaves exactly like an MIG/1 
queue with vacations and so called 'gated service'. This is an MIGll vacation 
queue in which, after a server vacation, the server handles exactly those custo
mers who are present at the end of the vacation, etc.. Clearly, a service of the 
permanent customer in our model (with K = 1) corresponds to a server vaca
tion in the gated vacation model. 

The MIGll queue with vacations is a special case of a cyclic service model, a 
single server multi queue model in which the server attends to the queues in 
cyclic order, see e.g. Takagi [1986]. In Section 5.5 it will be pointed out that 
for general K;;;;. l the MIG/1 queue with K permanent customers can be 
viewed as a cyclic service model of a type not yet studied before. 

Other related queueing models are the finite and infinite source interaction 
model studied by Kaufman [1985] (see also Boxma [1986A, 1986B] and Doshi 
and Wong [1987]), and a model with two stages of waiting introduced and 
analyzed in Ali and Neuts [1984]. 

The MIGll queue with K permanent customers is also studied by Boxma 
and Cohen [1989]. In particular, they present a fundamental analysis of the 
Markov chain of queue lengths at service completion epochs. In this chapter 
we present a different approach which is based on the observation that the 
queue length at an arbitrary epoch is the sum of K independent random vari
ables which are related with queue lengths in the model with one permanent 
customer; the distributions of these random variables are obtained from 
known results for the MIG/1 queue with vacations. 

As mentioned above we shall also consider the MIMI 1 queue with general 
feedback and additional permanent customers. This is a very interesting 
model. Under the assumption that the service times of the permanent custo
mers and the service times of the Poisson customers have the same exponential 
distribution, the addition of permanent customers to the MIMI 1 feedback 
queue preserves the product form property of the joint queue length 
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distribution, cf. (2.3). Using this property we can derive the joint distribution 
of the successive sojourn times of a tagged Poisson customer. The analysis is 
largely analogous to the case without permanent customers, see Chapter 2. It 
appears that the queue length and sojourn time distributions become the 
(K + 1)-fold convolution of the queue length and sojourn time distribution in 
the original system. Application of the limiting procedure described in Section 
3.3 leads to similar results for the MIGi 1 PS queue with K additional per
manent customers. Note that, actually, the service discipline in the latter 
model is a special case of generalized processor sharing, i.e. an M/G/1 GPS 
queue with service rate function f (j) = l I (j + K) ( cf. Section 3.4). 

The organization of this chapter is as follows. First, in Section 5.2, we give 
a detailed description of the basic model (the MIG! 1 queue with K additional 
permanent customers) and introduce some notations. Section 5.3 is concerned 
with the derivation of mean queue lengths and sojourn times. We show that 
these quantities can be obtained from simple balance arguments. In Section 
5.4 distributions of queue lengths and sojourn times are obtained. We start 
with the case of only one permanent customer (Subsection 5.4.1). The results 
for this case are obtained from known results for the MIGi 1 queue with vaca
tions. Next, in Subsection 5.4.2, the general model with K-;;;. I permanent cus
tomers is studied. In the remaining part of Section 5.4 we consider the results 
for some special choices of the service time distributions (Subsection 5.4.3), 
and we analyze a generalization, viz. the M/G/1 queue with Bernoulli feed
back and additional permanent customers (Subsection 5.4.4). Section 5.5 is 
concerned with the relation with cyclic service models. Finally, in Section 5.6 
we study the MIMI 1 queue with general feedback and additional permanent 
customers together with the corresponding M/G/1 (G)PS queue. 

5.2 MODEL DESCRIPTION AND NOTATIONS 

We consider the single server queueing system with infinite waiting room pie- · 
tured in Fig. 5.1. There are two classes of customers, viz. (i) ordinary custo
mers who arrive according to a Poisson process with intensity A, and (ii) a 
class of K permanent customers who immediately return to the end of the 
queue after having received a service. The service discipline is first come first 
served (FCFS). The order of the permanent customers in the system is fixed; 
they are numbered from I to K. The service times of the Poisson customers 
and of the permanent customers are assumed to be independent random vari
ables; those of the Poisson customers all have the same distribution B 0(-) and 
the i-th permanent customer has service time distribution Bi(-), i = 1, ... ,K. The 
first two moments of Bi(-) are denoted by Pi and PF) respectively, i =O, ... ,K. 
/3k) denotes the Laplace-Stieltjes transform of Bk), i =O, ... ,K. Obviously, the 
total offered load to the queue per unit of time due to the Poisson customers, 
Po, is given by 



Po = A/Jo-

93 

(5.1) 

For stability it is required that Po< 1. (For a formal derivation of this stability 
condition see Boxma and Cohen [ 1989]). 

Observe that p0 can also be viewed as the long range fraction of time spent on 
serving Poisson customers ( as can be formally proved using the theory of 
regenerative processes, see Cohen [1976]). Similarly, we define for the per
manent customers: 

- Pi: fraction of time that (permanent) customer i is in service, i = 1, ... ,K. 

Noting that the total fraction of time spent on serving permanent customers is 
equal to 1 - Po it is easily seen that 

Pi 
Pi= -=-(I-po), i=l, ... ,K, 

/3 
(5.2) 

with 

- K 
/3 : = 21/31-

j=I 

We shall use (5.2) in the next sections. 

We are interested in the following steady-state quantities: 

- Xo: number of Poisson customers in the system at an arbitrary epoch; 

- S0 : sojourn time of a Poisson customer; 

- Ci: sojourn (cycle) time of permanent customer i, i = 1, ... ,K (i.e. time 
between two successive service completions of customer i, i = 1, ... ,K). 

The generating function of the distribution of Xo is denoted by Xo(·). In the 
next section we shall derive the mean values of these performance measures; in 
Section 5.4 distributions are obtained. 

5.3 MEAN QUEUE LENGTHS AND SOJOURN TIMES 

In this section we derive expressions for the mean sojourn times and queue 
lengths. It is shown how simple (balance) arguments can be used to derive 
these quantities. We start with the analysis of the mean sojourn time of the 
Poisson customers. Next, the mean cycle times of the permanent customers are 
derived. 

Poisson customers 
The PASTA property (see Wolff [1982]) implies that a newly arriving (tagged) 
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Poisson customer 'sees' the system as at an arbitrary epoch. Hence, the proba
bility that the tagged customer arrives during the service of a Poisson customer 
is equal to p0 ; the probability that permanent customer i is in service upon 
arrival of the tagged customer is equal to P;, i = 1, ... ,K. Now, considering the 
mean amount of work in the system that has to be handled before the tagged 
customer receives his service it follows by a similar argument as used for the 
derivation of (2.46), that 

Using Little's formula, 

EXo = AESo, 

it follows from (5.3) that 

1 [ K K {3~2
) l ESo = -i-=- ~(1- P;)/3; + ~P; 213 _ · 

Po ;=o i=O 1 

Substituting (5.2) into (5.4) we find 

/3(2) - K /3 p(2) 

ESo = ~-0- + Po + _/3_ + ~ -d-(-'- - /3;). 
1 - Po 2/30 1 - Po ; = 1 f3 2/3; 

Again applying Little's formula yields the mean queue length EX0 . 

(5.3) 

(5.4) 

(5.5) 

Note that the first two terms in the right-hand side of (5.5) represent the mean 
sojourn time in a standard M/G/1 queue (i.e. without permanent customers). 
The expression becomes very simple when all service times are exponentially 
distributed (i.e. p}2l = 2/3f, i = 0, ... ,K). In that case, 

ES = /3o+/3 
o I . -po 

(5.6) 

REMARK 5.1 
It follows from (5.5) that the mean sojourn time ES0 of the Poisson customers 
in the M/G/1 queue with K permanent customers is larger than the mean 
sojourn time ESf)"Per of the Poisson customers in the same M/G/1 queue but 
with only one ('super') permanent customer who has a service time which is 
equal to the sum of the service times of the K permanent customers in the ori
ginal model. Noting that the second moment of the service time of the super 

permanent customer is given by ~~= 1([3}2>+2{3;~:=i+ij) it is easily found 
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that 

We shall now consider the mean cycle times of the permanent customers. 

Permanent customers 
From the fact that the order of the permanent customers in the system is fixed 
it follows immediately that their mean cycle times are all equal: 

(5.7) 

It is easily seen that, in steady-state, the mean amount of work that arrives 
during a cycle of customer i is equal to the mean amount of work that is served 
during a cycle. This balance argument leads to the following equation for 
ECi: 

ECi = /3 + (AEC;)/30 , i = l, ... ,K, 

yielding 

EC;= - 13-, i=l, ... ,K 
1-po 

(5.8) 

(5.9) 

Note that in the right-hand side only the first moments of the various service 
time distributions do occur. Apparently, this is due to the fact that the succes
sive cycle times of a permanent customer consist of a random sum of complete 
service times. 

There are some other simple and interesting methods to derive formula (5.9). 
Here, we mention two of these methods. 

(i) From the definition of P; it follows that P; I /3i equals the throughput of 
customer i. Hence, from Little's formula: EC;=ll(p;l/3;), i=l, ... ,K. 
Substituting (5.2) into this expression yields (5.9). 

(ii) The service of a permanent customer induces an amount of work to be 
handled by the server which consists of the permanent customer's own 
service time plus the sum of the lengths of a (random) number of stan
dard M/G/1 (.\, B 0(-)) busy periods. This number is equal to the number 
of Poisson customers who arrive during the service time of the permanent 
customer. So, the mean amount of work induced by a service of customer 
j is given by {31 +.\/3//30 I (l -p0 )), j = l, ... ,K. Noting that during a cycle 
of customer i all permanent customers receive exactly one service it fol
lows from a balance argument that, cf. (5.9), 
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The methods used in this section for the derivation of mean sojourn (cycle) 
times are based on mean value analysis. The derivation of queue length and 
sojourn time distributions requires a more detailed study of the model. This 
will be presented in the next section. It will also give us more insight into the 
results obtained above. 

5.4 DISTRIBUTIONS OF QUEUE LENGTHS AND SOJOURN TIMES 

In this section we derive expressions for the generating functions and Laplace
Stieltjes transforms of the distributions of the queue lengths and the sojourn 
(cycle) times of the different customers in the model. We shall start in Subsec
tion 5.4.1 with the case of only one permanent customer (K = 1 ); in Subsection 
5.4.2 the general case (K~ 1) is considered. A close study of the behaviour of 
the system with K permanent customers will show that its queue length at an 
arbitrary epoch can be written as the sum of K independent random variables, 
which are related with queue lengths in the model with one permanent custo
mer. The distributions of these random variables can be obtained from the 
results in Subsection 5.4.1. In Subsection 5.4.3 we shall consider the results 
for some special choices of the service time distributions. Finally, Subsection 
5.4.4 is concerned with the analysis of the MIG/I queue with Bernoulli feed
back and additional permanent customers; it appears that this generalization 
can be analyzed completely analogously to the basic model. 

5.4.1 The case K = 1 
In this subsection we consider the MIGi 1 queue with one permanent custo
mer. As pointed out in Section 5.1 this special case behaves exactly like an 
MIG/I queue with vacations and gated service. A service of the permanent 
customer corresponds to a server vacation in the vacation model. For the 
analysis we shall use the following decomposition result for the distribution of 
the queue length in a vacation queue. Define for the MIGi 1 queue with vaca
tions, 

- X(-): generating function of the distribution of the queue length at an arbi
trary epoch, 

- XvO: generating function of the distribution of the queue length at an arbi
trary epoch given that the server is on vacation, 

and let 

- ?T(·): generating function of the distribution of the queue length at an arbi
trary epoch in the corresponding standard MIG/I queue (i.e. the same 
model without vacations). 



Then, 

THEoRE~ 5.1 (Fuhrmann and Cooper [1985)) 

X(z) = Xv(z)w(z), lzl-s;;I. 
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(5.10) 

Actually, this result does not only hold for the M/G/1 vacation queue with 
gated service; it is valid for a very general class of vacation models, see 
Fuhrmann and Cooper [1985]. 

Now, we return to the M/G/1 queue with one permanent customer. Define 

- Xp: number of Poisson customers in the system at an arbitrary epoch given 
that the permanent customer is in service, 

and let Xp(·) denote the generating function of the distribution of Xp. From 
(5.10) it follows immediately that the generating function XoO of the distribu
tion of the queue length at an arbitrary epoch can be written as 

Xo(z) = Xp(z )'1T(z ), I z I ..;; 1. (5.11) 

The generating function of the queue length distribution in the standard 
M/G/1 queue, 'IT(-), is given by the well-known formula (see e.g. Cohen [1982], 
p. 238): 

(l-z),80{;\(1-z)} 
'IT(z) = (I-po) Po{;\(1-z)}-z , lz 1..;;1. (5.12) 

For the derivation of Xp(z) we need the following definitions: 

- XPB: number of Poisson customers in the system just after the start of a ser
vice of the permanent customer; 

- XPE: number of Poisson customers in the system at a service completion 
epoch of the permanent customer. 

XPBO and XPE(-) will denote the generating functions of the distributions of 
XPB and XPE, respectively. 

The number of Poisson customers present at an arbitrary epoch during the ser
vice of the permanent customer is equal to the number of Poisson customers 
present at the start of that service plus the number of Poisson customers that 
has arrived during the past service time. It is easily seen that these quantities 
are independent. Hence, 
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(5.13) 

I -Pi (11) 
(Remember that, for Re 71;;:.0, --- is the LST of the distribution of the 

P111 
past part of the service time.) 

Analogously, we have 

(5.14) 

Now, from (5.11)-(5.14) it follows that 

(5.15) 

It remains to determine XPEO-

The discrete time stochastic process constituted by the number of Poisson 
customers present in the system at the successive service completion epochs of 
the permanent customer is easily seen to be a Markov chain with state space 
{O, 1, ... } and stationary transition probabilities PiJ given by 

(5.16) 

with * the convolution operator. Application of standard Markov chain 
theory leads to the following functional equation for XPEO: 

XPE(z) = P1 {;\(1-z)}XPE(Po{A(l-z)}), jz I ~I. (5.17) 

From this equation the moments of XPE can be obtained. For example, 
differentiating both sides once and taking z = 1 yields, 

(5.18) 

Analogously, the moments of the distribution of Xo can be obtained from 
(5.15) and (5.17). It is easily found that, for the case K = I, 

A a a/2) A a/2) 
EXo = _,.,_I_ - A/J1 + A_/JI_ + ~-/JO_ + Po• 

1-po 2/Ji I -po 2/Jo 
(5.19) 



This is in agreement with (5.5) for K = 1 (noting that EXo =AES0). 

REMARK 5.2 
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The generating function of the distribution of the queue length at the departure 
epochs of the Poisson customers is also given by (5.15). Indeed, an up-and
down-crossing argument shows that this distribution equals the queue length 
distribution seen by an arriving Poisson customer; the PASTA property implies 
that this is also the distribution of the queue length at an arbitrary epoch. 

REMARK 5.3 
In Boxma and Cohen [1989] it is shown that the unique (non trivial) solution 
of (5.17) is given by: 

00 

XPE(z) = IT/31 {i\(l-8h(z))}, lz I ,;;;;I, (5.20) 
h =O 

with 

80(z) : = z, (5.21) 

8h+ 1(z) := /3o{i\(l-8h(z))}, h =0,1, .... 

The derivation is based on iteration of (5.17) and on some well-known results 
from branching theory; the condition Po< 1 guarantees the convergence of the 
infinite product in (5.20). 

The LST's of the sojourn time of the Poisson customers and the cycle time 
of the permanent customer can be derived from the above queue length results. 
Noting that the cycle time of the permanent customer consists of his own ser
vice time plus the service times of the Poisson customers present in the system 
just after the end of his previous service, we have, 

(5.22) 

with XPEO determined by (5.17). The LST of the sojourn time distribution of 
the Poisson customers can be derived from (5.15). The classical observation 
for FCFS queues that the number of Poisson customers left behind by a 
departing customer equals the number of (Poisson) arrivals during the sojourn 
time of that departing customer, leads to (cf. Remark 5.2) 

Hence, 

E { e -.,,s,} = Xo(l -1) / i\), Re 'IJ;;,,,Q_ (5.23) 
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From the above results the moments of the distributions of S0 and C1 can be 
obtained. Differentiating (5.22) and (5.23) once with respect to ri and taking 
ri=O yields the mean cycle time and sojourn time (use (5.18) and (5.19)); it is 
easily verified that these results coincide with the 'results obtained in Section 
5.3. 

We conclude this subsection with a remark on notation. For the analysis in 
the next subsection it is convenient to have at our disposal a specific notation 
for some of the quantities in the model with one permanent customer. There
fore, for the M/G/1 queue with one permanent customer and service time dis
tributions B 0(-) and B;(-} for the Poisson customers and the permanent custo
mer respectively we define, for i = 1, ... ,K, 

- X6I,i)(·): generating function of the distribution of the number of Poisson 
customers in the system at an arbitrary epoch; 

- X~i)(-): generating function of the distribution of the number of Poisson 
customers in the system at a service completion epoch of the per
manent customer. 

Obviously, these quantities can be obtained from (5.15) and (5.17) by taking 
B1(-) B;(·),i=l, ... ,K. 

5.4.2 The case K;;;;.1 
We now turn to the case of an arbitrary number K;;;;. 1 of permanent custo
mers. In Fig. 5.2(a) we have pictured the composition of the queue just after a 
service completion epoch of permanent customer i - 1. It can be described as 
follows: counted from the head of the queue there is a group of Poisson custo
mers followed by permanent customer i; subsequently there is a second group 
of Poisson customers followed by permanent customer i + 1, etc., until finally 
the queue is ended by a K-th group of Poisson customers followed by per
manent customer i -1 (who has just returned from the head of the queue). 
The group of customers consisting of the Poisson customers at the head of the 
queue and permanent customer i will be called 'group i'; the group of custo
mers consisting of permanent customer j and the Poisson customers ahead of j 
and behind j-1 will be called 'group j', j = 1, ... ,K, f=/=i. (Note that during a 
service time the last permanent customer in the queue may be followed by one 
or more Poisson customers; in that case these Poisson customers are assumed 
to be members of the group at the head of the queue, cf. Fig. 5.2(b)). The 
(random) number of Poisson customers in a particular group will be referred 
to as the 'size' of that group. So, the total number of Poisson customers in the 
system is equal to the sum of the sizes of the K groups. To determine the dis
tribution of the size of each group we shall first investigate how these groups 
develop. Let us start with the present situation, i.e. just after a service comple
tion of permanent customer i -1. Now, the first customer of group i is taken 
into service; next the second one, etc, until finally permanent customer i 



permanent 
customer i- l 

tail 
I i-1 I I · · · I 

group i-l 

'new' Poisson 
customers 

A~ +-Ii 
... 

permanent Poisson 

I i-21 

I · · · I 

customer i customers 

tail 

I I 

I · · · I I i-11 

group i 

I · · · I 

(a) 

I i-21 I · · · I 

.... 
group i 

(b) 

I · · · I I i-21 

(c) 

Fig. 5.2 Composition of the queue 
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permanent Poisson 
customer i customers 

...._____.__Ii+]] 1_-.. I ._____.____] I ___,] h""' 

group i 

permanent 'old' Poisson 
customer i customers 

H l---11+--~ 
. .. 

I · · · I Ii+ 11 I · · · I I heW 

group i+ l 

(a) just after the service completion of permanent customer i - l, 
(b) during the service of group i, 
(c) just after the service completion of permanent customer i. 
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completes his service. During these services group i consists of two parts, see 
Fig. 5.2(b): (i) permanent customer i together with the ('old') Poisson custo
mers in front of him who have not yet been served to completion, and (ii) 
Poisson customers at the end of the queue (behind permanent customer i - 1) 
who have newly arrived during the past service time of group i. Just after the 
service completion of permanent customer i this second part has developed 
into a complete, 'new', group i at the end of the queue, see Fig. 5.2(c); its size 
is equal to the number of Poisson customers who have arrived during the ser
vice of the 'old' group i. Note that the size of the other groups has not 
changed. After the service completion of group i the service of group i + 1 is 
started, next the service of group i + 2, etc. During the service of groups 
i + I, ... , i - 1 group i moves to the head of the queue, while its size remains 
unchanged. Just after the service of permanent customer i - I the order of the 
different groups within the queue is again as in Fig. 5.2(a). Now, a second ser
vice of group i is started, and the whole procedure as described above is 
repeated, etc. 

From the above discussion and from the memoryless property of the Poisson 
arrival process it is clear that during the service of group i this group behaves 
exactly like an MIGi I queue with one permanent customer and service time dis
tributions B 0(-) and B;(-) for the Poisson customers and the permanent customer 
respectively, i = 1, ... ,K It is also seen that at a service completion epoch of one 
of the permanent customers the sizes of the groups are independent; this indepen
dence property also holds at an arbitrary epoch given that group i is in service, 
i = I, ... ,K Now define, for i = 1, ... ,K, 

- xgl (-): generating function of the distribution of the number of Poisson cus
tomers present in the system at an arbitrary epoch given that group i 
is in service; 

- xi~o: generating function of the distribution of the number of Poisson cus
tomers present in the system at a service completion epoch of per
manent customer i. 

It is easily seen that 

X<i) < ) - IIK x<I.J)< ) PE Z - PE Z , i=I, ... ,K, lzJo;;;;I, 
j=I 

and 

xg\z) = xg,i)(z)IIX~i>(z)' i=l, ... ,K, Jzlo;;;;I, 
j=l 
j=/=i 

(5.24) 

(5.25) 
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where the generating functions X~/ (-) and X6J,j) (-) of the queue length distri
butions in the model with one permanent customer are given by (5.20) and 
(5.15) respectively (see also the definitions at the end of Subsection 5.4.1). 
Substituting (5.15) into (5.25) yields 

(i) 1 1-,8;{1\(1-z)} ( )IlKX(J,j)() 
Xo (z) = ,B;{l\(1-z)} ,B;l\(1-z) 7TZ j=I PE z, (5.26) 

i=l, ... ,K, lzl,;;;;I. 

Obviously, the probability p; that group i is in service at an arbitrary epoch is 
equal to the long range fraction of time that group i is in service. Noting that 
the mean time spent on serving group i during a cycle is equal to ,8; I (1- p0) 

(cf. the derivation of (5.24) and (5.18)) we have from (5.9), 

p; = 

Hence, for K~ 1, 

K (i) 
Xo(z) = D;Xo (z) = 

i=l 

,8;!(1-po) 

,8/(1-po) 

,8; fJ , i = 1, ... ,K. (5.27) 

(5.28) 

K (I") K,8 1 1-,B;{A(l-z)} 
1r(z){_IIXpi{ (z)}~ ~ ,B{l\(l-z)} ,8;A(l-z) , i=l, ... ,K, lzl,;;;;I. 

j=I z=l ,8 1 

Remember that 1r(z) represents the generating function of the queue length dis
tribution in the M/G/1 queue without permanent customers, cf. (5.12). Note 
that it is not allowed to take K=O in (5.28); in its derivation K is explicitly 
assumed to be positive. 

The LST's of the sojourn time and cycle time distributions can be easily 
obtained from the above queue length results. Analogously to the derivations 
of the sojourn time and cycle time in the model with one permanent customer 
we have, from (5.24) (cf. (5.22)), 

-11C, (i) K K (1,j) 
E{e } = XPE(flo(1J))Il.8/11) = II {,8/11)XPE (.80(11))}, (5.29) 

j=I j=I 

i = 1, ... ,K, Re 11;;:,,o, 
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and, from (5.28) (cf. (5.23) and Remark 5.2), 

Differentiating these expressions once with respect to 'I/ and taking 11=0 yields 
the mean cycle time of the permanent customers and the mean sojourn time of 
the Poisson customers; it is easily verified that these results coincide with (5.9) 
and (5.5). 

5.4.3 Results for some special choices of the service time distributions 
For some special choices of the different service time distributions in the model 
the queue length and sojourn time formulas (5.24) and (5.28)-(5.30) reduce to 
much simpler expressions. The following two cases are worth mentioning. 

(i) Equal service time distributions for the permanent customers 
If B10- · · · - BK(-), then, from (5.24), 

X(i) K 
PE(z) = (XPE(z)) , 

and, from (5.28), 

i=I, ... ,K, lzlo;;;;I, 

with XPEO determined by (5.20). 

(5.31) 

(5.32) 

(ii) All service time distributions equal and negative exponential 
If B;(t) = 1-e -ttP., i =O, 1, ... ,K, then the solution of the functional equation 
(5.17) has an explicit form (cf. Remark 5.3, for the solution of the general 
case). Defining, for lz I o;;;;I, n = 1,2, ... , 

f 1l(z) := f(z) := .Bo{A(l-z)}, 

f n + l)(z) : = f<fnl(z )), 

one can iterate (5.17) in the following way: 

(5.33) 



( f.ttv>(z) )XPE(jm>(z )). 
j=I 

For our case of exponentially distributed service times, i.e. (cf. (5.33)) 

f(z) = 1 +,BoA(l-z) 
1 1 

1 +po(l-z)' 

it is easily found that 

f.ttv>(z) = __ 1 __ 
m 

j=l 1 +(1-z) ~P8 
h=I 

1-pgi+t 
1+(1-z)( 1 -1) 

-po 

. and hence, 

Now, from (5.34)-(5.36) we obtain (cf. (5.20)) 

m➔oo j=I 
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(5.35) 

(5.36) 

(5.37) 

which equals the generating function of the queue length distribution in an 
ordinary M/M/1 queue. Substituting (5.37) into (5.31) and (5.32) we find, for 
lz I .;;;;1, 

[ ]

K 1-po 

l-p0z ' 
i=l, ... ,K, (5.38) 

Xo(z) = -po [ 
1 ]K+l 
1-p0z 

(5.39) 

Formula (5.39) exposes a remarkable effect of the presence of permanent cus
tomers on the queue length of the Poisson customers in an M/M/ 1 queue: 
their queue length distribution becomes the (K + 1 )fold convolution of the queue 
length distribution in the system without those permanent customers. 
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From (5.29), (5.30), (5.38) and (5.39) the LSTs of the cycle time and sojourn 
time distribution are obtained: for Re 'IJ;;;.O, 

i =1, ... ,K, (5.40) 

(5.41) 

So, the presence of K permanent customers also leads to a (K + I)-fold 
increase of the sojourn times of the Poisson customers. 

REMARK 5.4 
The above mentioned phenomenon (expressed by (5.41)) for the case of identi
cal, exponential service times can be explained as follows. Consider the model 
with one permanent customer, i.e. the case K = 1 (the general case follows 
immediately from this special one). It is seen from Formula (5.40) that the 
successive cycle times of the permanent customer are exponentially distributed 
with mean /30 I (1- p0). A newly arriving (tagged) Poisson customer enters the 
queue during one of these cycles; it is clear that his sojourn time, S0, is equal 
to the residual cycle time (Ctl) plus the sum of the service times of the custo
mers who have arrived during the past cycle time (V) plus his own service time 
( .,.0): S0 = c~R) + V + .,.0 _ From standard probabilistic arguments it follows that 
the residual and past cycle time are exponentially distributed with mean 
/Jo I (1 - p0), and it is found that the number of customers who have arrived 
during the past cycle time has a geometric distribution with mean Po I (1 - p0). 

Moreover, ctl, V and .,.0 are mutually independent. Now it is easily seen that 
V + .,.0 is exponentially distributed with mean /Jo I (1- p0) and, hence, S0 has a 
2-stage Erlang distribution (E2) with mean 2/Jo I (1-p0), cf. (5.41). 

REMARK 5.5 
Note that in the present exponential (product form) case a departing (and 
hence again arriving) permanent customer sees the system in equilibrium with 
one less customer of his own type (see e.g. Walrand [1988, Section 3.41), which 
confirms the relation between (5.38) and (5.39), and between (5.40) and (5.41). 

In Section 5.6 it will be shown that generalizations of (5.38)-(5.41) hold for 
the MIMI 1 queue with general feedback and additional permanent customers. 

5.4.4 Generalizations; the MIGi 1 queue with Bernoulli feedback and additional 
permanent customers 
The results obtained in the previous subsections can be generalized in several 
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ways. Firstly one may allow different arrival rates during the service of the 
permanent customers. Another interesting possibility is the inclusion of a 
(Bernoulli) feedback mechanism for the Poisson customers. For both generali
zations the basic decomposition formula (5.11), which is implied by Theorem 
5.1, remains valid (see Fuhrmann and Cooper [1985] and Shanthikumar 
[ 1988]), and the analysis can be carried out in almost exactly the same way as 
in Subsection 5.4.1 and Subsection 5.4.2. We shall consider the feedback case 
in some more detail. 

The MIG I 1 queue with Bernoulli feedback and additional permanent customers 
Consider the MIG/I queue with K permanent customers described in Section 
5.2 and assume in addition that the Poisson customers, after having received a 
service, are fed back to the end of the queue with probability p and leave the 
system with probability 1-p. 

As for the model without feedback we first analyze the case K = 1. Clearly, 
this case behaves exactly like an MIG/I Bernoulli feedback queue with vaca
tions and gated service. In Fuhrmann and Cooper [1985] it is pointed out that 
for this generalization of the 'standard' MIGi 1 vacation queue (without feed
back) Theorem 5.1 remains valid with, in (5.10), 'IT(·) denoting the generating 
function of the queue length distribution in the corresponding MIG/I queue 
with Bernoulli feedback but without vacations. It is well-known that 'IT(·) is 
given by: (see e.g. Takacs [1963]) 

~ (1- z)(l -p )fio{;\(1-z)} 
'1T(z) = (1-p0\1-p+pz)fio{;\(l-z)}-z' 

provided that 

Po:= _!!2__ < 1. 
1-p 

(5.42) 

(5.43) 

(Note that 'IT(·) equals the generating function of the queue length distribution 
in the standard MIG/I queue with service time distribution B 0(t) = 
~~ (1-p)pj-l B~• (t), cf. (5.12)). Now, it is easily seen that for the present 
m6de1 with Bernoulli feedback the rest of the analysis in Subsection 5.4.1 does 
not change with the exception that the functional equation (5.17) for the gen
erating function XPEO of the queue length distribution just after a service 
completion of the permanent customer becomes 

(5.44) 

With this adaptation Formula (5.15) for the generating function XoO of the 
queue length distribution at an arbitrary epoch remains valid. Now, from 
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equation (5.44), (cf. (5.18)) 

(5.45) 

and hence, from (5.15), (5.42) and (5.45) we have, for the case K = I, (cf. 
(5.19)) 

>../3 I ( 1 ) o/2) ApA /1 p<2) 
EXo = 1 A-p - >../31 + >..-PI_ + -~-[p-0-+-0-J + p0 • (5.46) 

l - Po 2/31 1 - Po 1 -p 2/30 

REMARK 5.6 
It follows from (5.45) that the mean cycle time, EC1, of the permanent custo
mer is given by EC1 = f30EXPE + /31 = /31 I (1-p0). As might be expected, for 
/30 = /31 = /3 this result coincides with (2.66) which gives the mean k-th sojourn 
time of a tagged customer in the M/G/1 queue with Bernoulli feedback for 
k-HYJ. 

It is easily seen that, using the above formulas for the case K = I, the 
analysis for the case K;;,, I can be carried out in exactly the same way as for 
the model without feedback and that all queue length formulas in Subsection 
5.4.2 remain unchanged. For example, from the generating function of the 
queue length distribution given by (5.28) and from (5.45), (5.46) we obtain for 
general K;;,, 1, 

(5.47) 

Hence, using Little's formula, the mean total sojourn time of the Poisson custo
mers is given by: (cf. (5.5)) 

- . (2) 

ESo = /3/(l-:p) + f I!! (l!..!_-/3i) + (5.48) 
1 - Po i = 1 /3 2/3; 
A (2) 

..J?2...._[p_l!.2_+&1 + _/!!!__ 
1 - Po 1 - p 2{J0 1 - p 
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REMARK 5.7 
Having obtained the generating function of the distribution of the queue 
length at an arbitrary epoch we can also derive the LST of the joint distribu
tion of the successive sojourn times of a tagged Poisson customer. The 
analysis can be done almost completely analogously to the case without per
manent customers as treated by Doshi and Kaufmann [1988]. We shall only 
consider the case of negative exponential service times in some detail; in Sec
tion 5.6 it is shown how the LST of the joint sojourn time distribution in the 
MIMI l queue with general feedback and additional permanent customers can 
be obtained from the corresponding result derived in Chapter 2 for the same 
model without permanent customers. 

5.5 RELATION WITH CYCLIC SERVICE MODELS 

In Section 5.1 it has been pointed out that the MIG/1 queue with one per
manent customer behaves exactly like an MIG/1 queue with vacations and 
gated service. In this section we shall show that the MIG/1 queue with K;;;,, l 
permanent customers can be viewed as a variant of a cyclic service model. 

A cyclic service model (also called a polling model) is a single server multi 
queue model in which the server attends to the queues in cyclic order, see e.g. 
Takagi [1986] and Groenendijk [1990]. From the analysis in Subsection 5.4.2 
it follows that the MIGi l queue with K permanent customers can also be 
viewed as a cyclic service model with K queues - albeit a rather special one, see 
Fig. 5.3. 

/ 
/ 

A ~ ID 2 
I 

I 

~ 
K 

Fig. 5.3 The MIGi 1 queue with permanent customers viewed as a cyclic 
service model. 

The service times of the permanent customers correspond to the switch-over 
times of the server between successive queues; the customers in these queues 
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represent the (Poisson) customers in the different groups in the single queue 
MIG/I model (cf. Fig. 5.2). To take into account that during the service of a 
particular group all new arrivals are attached to that group (cf. Fig. 5.2(b)), we 
have to assume that arrivals at a queue can only take place during its service 
and during the subsequent switch-over time. 

The resulting polling model is non-standard, but it is well-known that under 
very general conditions the mean cycle time in a polling model is given by the 
sum of the mean switch-over times, divided by one minus the load of the sys
tem (see e.g. Takagi [19861). Indeed this result holds here; it coincides with 
Formula (5.9) for the mean cycle time of a permanent customer. 

5.6 THE MIMI 1 FEEDBACK QUEUE WITH ADDITIONAL PERMANENT CUSTOMERS 

5.6.1 Introduction 
In this section we consider the same MIMI 1 queue with general feedback as in 
Chapter 2 but with K;;;.1 additional permanent customers. This model is pic
tured in Fig. 5.4. 

p(i) 

I · · · I 1-p(i) 

K 

Fig. 5.4 The MIMI 1 feedback queue with K additional permanent customers. 

It is assumed that the service times of the Poisson customers and the per
manent customers are independent, negative exponentially distributed random 
variables, all with mean /3. For the Poisson customers the assumptions about 
the feedback mechanism, notations, terminology, etc. are the same as for the 
model without permanent customers, see Section 2.2. Our main goal is to 
study the influence of the presence of the permanent customers on the joint 
distribution of the successive sojourn times of a (tagged) Poisson customer and 
to use the results for the analysis of the sojourn time in the MIG/I PS queue 
with additional permanent customers. The results for this latter model are 
obtained by applying the same limiting procedure as used for the case without 
permanent customers, see Chapter 3. 

Because the Poisson customers and the permanent customers have the same 
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exponential service time distribution, the joint stationary distribution of the 
number of type-i (Poisson) customers, Xj, i = l, ... ,N, in the system at an arbi
trary epoch is of product form type. From the queue length results for general 
product form networks (see Baskett et al. [1975]) it is found that for our 
model, cf. (2.3), 

(Remember that q(i) represents the relative arrival rate of type-i (Poisson) cus
tomers, i = l, ... ,N (cf. (2.1)), and that p denotes the total offered load to the 

system per unit of time due to the Poisson customers: p=LA~=//3q(i)). 

The generating function of the joint queue length distribution is given by: (cf. 
the derivation of (2.4)) 

(5.50) 

I oo 
(1-pf+l K! LA LA ... LA 

m=O x, xN 

(m +K)! N x 
I I Il(A/3q(i)z;) ; 

XJ ..• "XN· ;=J 

x,+ ... +xN=m 

[ 
}-p ]K+I 

1- fz;A/3q(i) 
i=I 

lz;l~I, i=l, ... ,N. 

Comparing this result with (2.4) we observe a similar phenomenon as for the 
standard M/M/1 queue (cf. (5.39)): the presence of the K permanent customers 
in the MIMI 1 feedback queue leads to a joint queue length distribution which is 
the (K + I )fold convolution of the joint queue length distribution in the same 
model without permanent customers. In the next subsection we shall use (5.50) 
for the analysis of the sojourn time distribution. 

5.6.2 Sojourn time distribution 
In this section we present, in the form of Laplace-Stieltjes transforms and gen
erating functions, an expression for the joint steady state distribution of the 
successive sojourn times Sj, j = l, ... ,k, and the number of type-i customers, 
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xy>, i = 1, ... ,N, present at the j-th service completion of a customer who is fed 
back at least k -1 times, k = 1,2, .... It will appear that for the derivation of 
this quantity we can largely rely on the analysis of the sojourn time in the 
model without permanent customers given in Section 2.3. 

Consider a newly arriving (tagged) customer, say C, and suppose that he 
finds x~0> =xi type-i (Poisson) customers in the system, i = l, ... ,N, together 
with the K permanent customers. It is easily seen that the determination of 
the (conditional) joint sojourn time distribution of C can be performed in 
almost exactly the same way as for the original MIMI l feedback queue 
without permanent customers, see Appendix 2.1, the only difference being that 
for the present model one has to take into account that after each of his ser
vices C finds K additional permanent customers in the queue (besides the 
different types of Poisson customers). Realizing this it follows immediately 
from the analysis in Appendix 2.1 that, for Rew/;;;.O, jzi,jl~I, i=I, ... ,N, 
j =O, ... ,k, (cf. (2.8)) 

[ 
k ]K+I N 

= }] Af(j,w,z) ig (zi,off (i,w,z))\ (5.51) 

with w:=(w1, ... ,wk), z:=((z 10, •.. ,zNo), ... ,(z 1k, ... ,zNk)), and with 
Af(·,·,·) and/1(·,·,·) defined by (2.9) and (2.10). co'mparing (5.51) with the 
result ((2.8)) for the corresponding quantity in the model without permanent 
customers it appears that these results differ only by a factor 
(ITk=IAf(j,w,z)t; note that this could have been obtained directly from the 
dischssion in Remark 2.1. 

Using the PASTA property and deconditioning we obtain from (5.50) and 
(5.51) our main result: 

THEOREM 5.2 
The joint distribution of the successive sojourn times and the number of Poisson 
customers of each type present in the system at the service completion epochs of a 
tagged Poisson customer is the (K + 1 )fold convolution of the corresponding 
(joint) distribution in the model without permanent customers, cf (2.11): 

( S S ) X(O) x(O) (k) (k) 

E( - w, ,+ ... +w, , ( , N ) ( X, XN )} e Z1,o ... zN,0 ... ZJ,k ... ZN,k (5.52) 

1 
k 

(1-p) IJAf(j,w,z) 
K+I 
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Using Theorem 5.2 most of the sojourn time characteristics can be immedi
ately obtained from the results given in Section 2.4. Here we shall restrict our
self to a summary of the most important characteristics. 

The J-th sojourn time S1 of a Poisson customer has a (K + I)-stage Erlang 
distribution (EK+i) with mean (K + 1),81(1-p): (cf. (2.20)) 

(5.53) 

The correlation coefficient, corr(S;,S1), of the i-th and the J-th sojourn time 
of a Poisson customer is independent of the number of permanent custo
mers in the system: (cf. (2.24)) 

corr(S;,S) = 1-(1-p)CJ-i, I~i<j~k, (5.54) 

with Cn, n = I, ... ,k - I, determined by (2.22). 

The variance of the total sojourn time after k services, var(S(kl), is given 
by: (cf. (2.26)) 

REMARK 5.8 
Noting that in the present product form model a departing (and hence arriv
ing) permanent customer sees the system in equilibrium with one less customer 
of his own type (see e.g. Walrand [1988, Section 3.4]) the characteristics of the 
successive cycle times of a particular permanent customer can be immediately 
obtained from the above sojourn time results for the Poisson customers. For 
example, the cycle times have a K-stage Erlang distribution (EK) with mean 
K,81(1-p), cf. (5.53). 

5.6.3 The MIGi 1 PS queue with additional permanent customers 
In Section 3.3 it has been shown how queue length and sojourn time results for 
the MIG/I processor sharing queue can be obtained from queue length and 
sojourn time results for the MIM/1 queue with general feedback. We applied 
a limiting procedure in which the mean service time ,8----»0 while the feedback 
probabilities approach one in such a way that a customer's total required ser
vice time remains constant, see Subsection 3.3.1. It is easily seen that applica
tion of the same limiting procedure to the present MIMI 1 feedback model 
with K permanent customers leads to the MIGi 1 PS queue with K permanent 
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customers. Note that the behaviour of the latter model is independent of the 
service time distribution(s) of the permanent customers (the permanent custo
mers are always in service). From (5.50) it follows immediately that for the 
MIG/I PS queue with K permanent customers, the distribution of the queue 
length xPs at an arbitrary epoch is the (K + 1 )fold convolution of the queue 
length distribution in the same model without permanent customers: (cf. (3.1)) 

[ ]

K+l 
1-p 
1-pz 

(5.56) 

i.e. 

(5.57) 

with p the offered load to the system per unit of time due to the Poisson custo
mers. From Theorem 5.2 we obtain the following remarkable sojourn time 
result: 

THEOREM 5.3 
For the MIG/I PS queue with K permanent customers the distribution of the 
conditional sojourn time sPs(x) of a Poisson customer with given service demand 
x is the (K + 1 )fold convolution of the conditional sojourn time in the same model 
without permanent customers. This also holds for the unconditional sojourn time 
sPs of an arbitrary Poisson customer. 

Theorem 5.3 implies: (cf. (3.19)) 

E{SPs(x)} = (K + 1)-1 x , x;;;.O. 
-p 

REMARK 5.9 

(5.58) 

For the present PS model it is interesting to study the influence of the presence 
of the Poisson customers on the 'speed' with which the permanent customers 
are served. For x;;;.O let cPs(x) be the time required to give the permanent 
customers an amount x of service. From the discussion in Remark 5.8 and 
application of the limiting procedure it follows that cPs(x) is distributed as the 
conditional sojourn time of a tagged Poisson customer with service demand x 
in the same model but with one less permanent customer. For example, from 
(5.58), 

(5.59) 

This formula shows that the influence of the Poisson customer stream on 
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E{CPS(x)} is simply a reduction of the capacity of the server by an amount p. 
Moreover, (5.59) implies that the mean total amount of service obtained by the 
permanent customers per unit of time (given by Kx I E { cPs(x)}) is indepen
dent of K. 

REMARK 5.10 
In Remark 3.7 we concluded that for the M/G/1 PS queue (without per
manent customers) the queue length distribution just after the departure of a 
tagged customer who has received an amount x of service is the same as at an 
arbitrary epoch, independent of x. From (5.56) it follows that for the M/G/1 
PS queue with one permanent customer the queue length distribution at an 
arbitrary epoch is the two-fold convolution of the queue length distribution in 
the PS queue without permanent customers. Since one would expect that, 
when the required service time x of a tagged customer becomes very large, the 
behaviour of the M/G/1 PS queue approaches that of the corresponding PS 
queue with one permanent customer, it seems paradoxical that both statements 
are true. However, viewing the M/G/1 PS queue as the limiting case of the 
M/M/1 queue with general feedback this is immediately clear (the departure 
of a tagged customer in the PS model corresponds to the (last) service comple
tion of a tagged customer in the feedback model which is more likely to occur 
when there are fewer customers in the system). A similar 'paradox' for queue 
lengths in PS queues is discussed in Foley and Klutke [1989]. 

REMARK 5.11 
It should be noted that the M/G/1 PS queue with K permanent customers can 
also be viewed as a special case of generalized processor sharing (GPS), cf. 
Section 3.4: if there are j customers present in the system then the service rate 
for each of these customers is f (j) = I / (j + K), j = I, 2, ... . It is easily verified 
that (5.57) and (5.58) coincide with the results for the queue length distribution 
and the mean sojourn time in the M/G/1 GPS queue given by (3.59) and 
(3.60) respectively, that have already been obtained by Cohen [ 1979]. Theorem 
5.3 is a new result. 

REMARK 5.12 
Using Theorem 5.3 the approximations for second moment characteristics of 
the sojourn time in the ordinary M/G/1 PS queue (developed in Chapter 4) 
can be easily extended to approximations for the corresponding quantities in 
the PS model with permanent customers. 

The above results for the queue length and the sojourn time in the M/G/1 
PS queue with permanent customers are interesting both from a theoretical 
and a practical point of view. One example where this queueing model may 
arise is provided by a 'Stored Program Controlled' (SPC) telephone exchange 
that is offered two types of jobs: (i) call requests, and (ii) operator tasks (see 
De Waal [1989]). To guarantee a certain quality of service of the call requests 
only a limited number (K) of operator tasks is allowed to be in service at the 
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same time. It is clear that under heavy traffic conditions of the operator tasks 
and for appropriate assumptions about the system parameters the above for
mulas (5.56)-(5.58) (approximately) reflect the influence of the choice of the 
control parameter K on the queue length and the delay of the call requests. 
From the discussion in Remark 5.9 it follows that under certain conditions the 
maximum throughput of the operator tasks is independent of K. So, if the 
objective is to minimize the delay of the call requests and to maximize the 
throughput of the operator tasks one should take K as small as possible, i.e. 
K=l. 
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