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0. Introduction 

In this monograph we study finite-dimensional Hamiltonian systems with Ha-
miltonian · 

1 n 

H = 2 2::>/ + V(q) (0.1) 
1=1 

where p = (pi, ... ,Pn) and q = (qi, ... , qn) are momentum and coordinate 
vectors of IR2n and the potential V(q) is of the following type: 

V(q) = g2 L v(qj - qk) 
j<k 

(0.2) 

where g E lR is a coupling constant and where the function v(q) may be of the 
following form: 

(I) 
(II) 
(III) 
(IV) 
(V) 

(0.3) 

where p( x) is the Weierstrass function and a, w E lR are parameters. These 
Hamiltonians describe one-dimensional n-particle systems with pairwise inter­
action. The Weierstrass function p(x) = p(x;w1,w2) is doubly periodic in x in 
the complex plane with halfperiods w1 and w2 . In the limit in which one of the 
periods goes to infinity one gets, up to a constant, a potential of type II or III. 
If both periods go to infinity one obtains a potential of type I. So the systems 
of type IV are the most general. Replacing a by ia in a potential of type III, 
one gets a system of type II and, if one puts a = 0, one gets a system of type I. 
The system of type I is known as the Calogero-Moser model ([2], [3]) and that 
of type II as the Sutherland model ([4], [5]). 
The potential V(q) can also have the form: 

n-1 

V(q) = L g/v(qj - qj+1) (VI) (0.4) 
j=l 

or 
n 

V(q) = L v(qj - qj+1), (VI') (0.5) 
j=l 

where 
v(q) = exp2q (0.6) 

and where the 0 < gj E lR are coupling constants. 
These Hamiltonians describe n-particle systems with nearest-neighbour inter­
action and are known as the nonperiodic Toda lattice (VI) and the periodic 
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Toda lattice (VI '). One can get the nonperiodic Toda lattice as a strong cou­
pling limit of the Sutherland model (see [53]) and the periodic Toda lattice is 
obtained by adding the potential energy term exp 2( qn - q1 ). 
All these systems are related to the root system An-l and they are completely 
integrable in the sense of Liouville (see chapter 2 for a precise statement). 
Now there turn out to be all kind of generalizations of these systems. One can 
associate integrable systems of these type to each root system. Also one can 
quantize these systems ([1],(15]). Furthermore there are relativistic generaliza­
tions of the classical and the quantum systems (see [16],[17],[18),(19) and [53) for 
a recent review). There have also been found integrable relativistic models with 
an external potential ([21]). For the classical type I model, mastersymmetries 
have been found ((20]). 
All these systems are integrable in the classical or quantum sense. In [52) 
Opdam has proved that the quantum systems of type I, II and III are completely 
integrable for all root systems and for all values of the coupling constants 
9a, using socalled shift operators. By taking a classical limit, using symbols 
of differential operators, the integrability of the classical systems follows as 
well, for all root systems and all values of the coupling constants. In [51) and 
[50) Heckman has simplified this proof, using properties of the socalled Dunkl 
operators. 
On the other hand, Olshanetsky and Perelomov have proved in (38) and (43) 
the integrability of the classical systems of type I-V, using a Lax matrix and a 
certain functional equation. This proof however up to now only seems to work 
for classical root systems, and only for special values of the coupling constants 
(in the BCn and Bn case). 
For the models of type VI and VI', the socalled Toda systems, and for nu­
merous other integrable sytems, there exists a group-theoretical proof of the 
integrability, using the socalled Kostant-Adler-Symes-Reyman-Semenov-Tian­
Shansky (K.A.S.R.S.) construction (see in particular [11) for a review). For 
these systems the solution of the Hamilton equations can be reduced to a fac­
torization problem in a group G. 
It is still not clear what kind of relation there exists between the K.A.S.R.S. 
theorem on the one hand, and the integrable systems that can be solved using 
this theorem, and the integrable systems of Calogero-Moser type on the other 
hand, i.e. the models of type I-V and their generalizations. 
In this monograph we describe a way of obtaining the classical systems of type 
I-V, which is reminiscent of the K.A.S.R.S. construction and which seems to 
generalize that setting. In particular there seems to be no Yang-Baxter operator 
or double Lie algebra to describe the corresponding Poisson structure. 

The setup of this book is as follows: 
In chapter 1 we describe the models of type I-V associated with root system 
An-1· This is merely a reformulation of (1). 
In chapter 2 we collect some properties of Poisson manifolds. 
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In chapter 3 we review some facts about real semisimple Lie algebras and 
observe some properties of quasi-split Lie algebras. 
In chapter 4 we describe in some detail the theory of Poisson structures on Lie 
algebras, double Lie algebras, Yang-Baxter operators and Lie bialgebras. In 
section 4.5 we describe the K.A.S.R.S. theorem and illustrate it by the examples 
of the Toda lattice and the harmonic oscillator. 
In chapter 5 we use the theory of the chapters 2-4 to construct the systems of 
type I-V as Hamiltonian systems on real semisimple Lie algebras. This is done 
in section 5.3 by constructing a (nontrivial) Poisson imbedding of the phase 
space M in a larger space P = A x g, where A is the configuration space and 
g is a real semisimple Lie algebra. In section 5.4 it is shown how the Hamilton 
equations can be derived. 
In section 5.5 a condition is formulated for a certain constant elementµ E g (the 
moment), which is sufficient for integrability, and this condition is translated in 
a condition on the dimension of the centralizer of µ in the compact subalgebra 
t 
In section 5.6 it is shown how the Lax equation can be derived, using the 
condition of section 5.5 and a functional equation. In section 5. 7 this leads to a 
(new) Lie algebraic proof of the integrability of the systems of type I-III. The 
only ingredients in this proof are the functional equation, the condition on µ 
and the properties of g and Ad-invariant functions. 
In chapter 6 we analyse in more detail the examples which are related to clas­
sical root systems. In section 6.1 we classify all possible µ's in the case of 
quasi-split Lie algebras and in the case of root systems of exceptional type. 
This results in a few unknown choices, corresponding to the classical root sys­
tems and to the F4 case. All this suggests that the construction of a Lax pair, 
as described in chapter 5, does not work in the case of root systems of type 
Es, E1, E5 and G2. 
In section 6.2 it is shown how the examples ofµ which are known to satisfy the 
condition of section 5.5 can be constructed in a canonical way. They are all 
elements of quasi-split Lie algebras and for these cases there exists an involutive 
automorphism er, commuting with the Cartan automorphism 0, which has some 
extra properties, which makes it possible to characterize µ in a canonical way. 
In section 6.3 a Lie algebraic construction is given of the Lax pair in the case 
of the classical root systems, explaining why the conditions on the coupling 
constants are necessary. 
In section 6.4 a certain property of the root system An-l is formulated that 
could explain why the construction of µ does not work in the case of the ex­
ceptional root systems. 
In chapter 7 we try to analyse the relation between the construction of chapter 
5 and the K.A.S.R.S. theorem. The upshot is that there does not seem to 
exist a double Lie algebra structure which "explains" the Poisson structure of 
chapter 5 and the corresponding Lax pair. 
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1. The An-I models 

1. 1. The models of type I - IV. 

In this section we describe in more detail the systems of type I-IV (see [1] and 
[49] for more details). Consider first its configuration space. Because V(q) 
becomes infinite if qi = qk for j -=/- k, the ordening of the particles during the 
evolution of the system cannot change and so one may assume that qi > qk if 
j < k. The configuration space for the systems I and II is therefore of the form 

and for the systems III and IV it has, up to periodicity, the form 

(1.2) 

where d = 1r / a for type III and d = 2w / a for type IV, with w a halfperiod of 
V(q). The phase space Mis given by 

(1.3) 

Now let fi,h E C(XJ(M), then the canonical Poisson bracket on MC lR2n is 
defined by 

{Ji, h} = t (afi ah _ afi ah) 
i=l api aqi aqi api 

so for the coordinate functions one has 

Hamilton's equations are given by 

qi= {H,qi} = aH = Pi 
api 

Pi= {H,pi} = -!Hq· = g2 I>'(qk - qi) 
J k#-j 

where the dot denotes the time derivative. For type I these become: 

Define 

qi= Pj, 'Pj = -2g2 I)qk - qj)-3 

kf.j 

1 n 

Ptot = - LPj 
n j=l 

(1.4) 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 
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then, because v(q) = v(-q), (1.6) implies 

qtot = Ptot, Ptot = o (1.9) 

so the system is translation invariant and one has the Poisson bracket relations 

{H, qtot} = Ptot, {H,Ptot} = 0, (1.10) 

Now define the matrices L and M by 

L = LPjejj + g L(qj - qk)- 1i(ejk - ekj) (1.11) 
i i<k 

2 
M = g L(qi - qk)~2i(eik + eki - eji - ekk + ;;,In) ( 1.12) 

i<k 

where {eik,J, k = 1, ... ,n} is the standard basis of gl(n,C), i = A, g E IR 
a coupling constant and In the n x n identity matrix. L is hermitian, M is 
traceless and skew-hermitian and a straightforward calculation, using 

(1.13) 

shows that (1.7) is equivalent with the matrix equation 

L=[M,L] (1.14) 

if one requires that C/tot = Ptot. The Hamiltonian can be written as 

(1.15) 

Equation (1.14) is known as a Lax equation for the Calogero-Moser model and 
(L, M) is called a Lax pair. Now define 

1 k 
fk(L) = ktrL , 

These are real-valued functions and 

h=H 

From the Lax equation (1.14) one easily derives with induction that 

and so, using the properties of the trace, one concludes that 

(1.16) 

(1.17) 

( 1.18) 

(1.19) 

and because fk(L) = ½ I:.i=l >-./ are polynomials in the eigenvalues >-.j of L, it 
follows that the eigenvalues are conserved, so one immediately gets n constants 
of motion. Going to the center-of-mass coordi1;1ates <]j =:== qi -qtot, P.i = Pi -Ptot, 
L becomes traceless and {Pj, qk} = /5ik - ¾, <]j = Pj, Pi= P.i· 
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Because L is hermitian and M is skew-hermitian the Lax equation implies 
that there exists a one-parameter family U(t) of unitary matrices such that 
U(O) = In and 

L(t) = U(t)L(O)U(t)- 1 (1.20) 

so L(t) undergoes an isospectral deformation under the action of the group 
SU(n). Differentiating (1.20) one gets back the Lax equation (1.14) with M = 
(Ju- 1 . So the solution of the Lax equation is reduced to the construction of the 
one-parameter group U(t). This can be solved for the Calogero-Moser model, 
as we shall see presently. 
Now define the matrices P, Q andµ by 

Q = diag(q1, ... , qn), qi > q2 > • • • > qn 

µ=gLi(ejk+ekj) 
j<k 

From (1.9),(1.11) and (1.12) one derives the following relations 

[Q,L] = µ 

[Q,M] = Lotr 

[M,µ] = 0 

Q = P = Ldiag 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

where Ldiag and L0 tr denote the diagonal component resp. the off-diagonal 
component of L. Note that (1.24)-(1.27) uniquely determine L, Min terms of 
the %,Pj· 
From this one also derives: 

[Q, L] + [Q, L] 
=[P, L] + [Q, [M, L]] 
=[P, L] + [[Q, M], L] + [M, [Q, L]] 

=[P, L] + [L0 tr, L] + [M, µ] = 0 

so (1.14) and (1.27) are consistent with (1.24). Now define the matrix 

X(t) = L(O)t + Q(O) 

then X(t) is hermitian and 

[X(t), L(O)] = µ 

(1.28) 

(1.29) 

(1.30) 
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Because X(t) is hermitian there exists a unitary matrix U(t) such that 

U(t)X(t)U(t)- 1 = Q(t) = diag(q1(t), ... , qn(t)) (1.31) 

At this point it is not yet clear that Q(t) indeed satisfies (1.24)-(1.28). This 
has still to be shown. Now it turns out (see [46]) that it is possible to choose 
U(t) in such a way that U(O) = In and 

U(t)µU(t)- 1 = µ 

and if one now defines 
L(t) = U(t)L(O)U(t)- 1 

then Q(t) and L(t) satisfy 

[Q(t), L(t)] 

= [U(t)X(t)U(t)- 1 , U(t)L(O)U(t)- 1 ] 

= U(t)[X(t), L(O)]U(t)- 1 

= U(t)µU(t)- 1 = µ 

(1.32) 

(1.33) 

(1.34) 

which implies that qj(t)-/=- qk(t) if j-/=- k and U(t) becomes unique by requiring 
that q1(t) > q2(t) ... > qn(t). Differentiating (1.31) gives 

so equating diagonal and off-diagonal components yields 

Q = Ldiag = P 

differentiating (1.32) gives 
[uu- 1 , µ] = 0 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

and differentiating (1.33) gives the Lax equation (1.14). From (1.37), (1.38) 
and (1.14) it follows that uu- 1 = M, so we have constructed a one-parameter 
family U(t) such that (Q(t), L(t)) is the solution of the equations (1.14) and 
(1.27) which also satisfy (1.24)-(1.26) and {qj(t), 1 :S j :Sn} are the eigenval­
ues of X(t). So the solution of the Calogero-Moser model is reduced to the 
calculation of the eigenvalues of X(t). 

Example 1.1. (n = 2) Let (p, q) denote the center-of-mass coordinates, with 
q > 0 then one has 
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and Q = diag(q, -q), P = diag(p, -p) and 

X(t) = (q(O) + tp(O))(en - e22) + 1/2igtq(0)-1(e12 - e21) (1.40) 

and the eigenvalues of X(t) are (A(t), -A(t)) with 

A(t) = J(q(O) + tp(0))2 + 1/4g2t2q(0)-2 > 0 (1.41) 

and so q(t) = A(t), p(t) = ~(t) and because His constant it follows that 

p(±oo) = Jp(0) 2 + 1/4g2q(o)-2 

The matrix U(t) is given by 

U(t) = coss/2 + isins(e12 + e21) 

where 
. 2 -l.(1-lq(0)+tp(0)I) 

sm s - 2 A(t) 

and so 

s = 1/2 arcsin ( 2q(t)\(tJ 

Observe that this is well-defined because 
g2t2 

----<1 
4q(0)2 A(t)2 -

Now we return to the models of type II-IV and make the ansatz 

L = P + g I:x(qj - qk)i(ejk - ekj) 
j<k 

M = g LY(qj - qk)i(ejk + ekj) 
j<k 

- g L z(qj - qk)i(ejj + ekk - ~In) 
j<k n 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

so L is hermitian, M skew-hermitian, x, y and z are real-valued functions, with 

x(-q)=-x(q), y(-q)=y(q), z(-q)=z(q) (1.47) 

and 
v(q) = x2(q) + constant (1.48) 

If one requires that Hamilton's equations (1.6) are equivalent with the Lax 
equation (1.14), under the assumption that (}tot = Ptot, where L and M as in 
(1.45) and (1.46) then it turns out that 

y(q) = -x'(q) (1.49) 

and x(q) and z(q) have to satisfy the functional equation 

x({)x1(17) - x(17)x'({) = x({ + 17)[z({) - z(17)] (1.50) 

This functional equation has been solved by several people and one has 
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Theorem 1.2. 
(1.50) and 

[38] Let x(rJ) be an odd meromorphic function which satisfies 

lim 1JX(1J) = 1 ,, .... o 

then 
z(rJ) = x11 (rJ)/2x(rJ) 

(x') 2 = x4 - 2bx2 + c b, c E ~ 

and x( 1J) can have the following form: 

x(rJ) = 

1/-1 

acoth(arJ) 
a sinh-1 ( arJ) 
a cot(arJ) 
asin- 1 (arJ) 
a en( arJ)/sn( arJ ), a dn( arJ)/sn( arJ), a/sn(arJ) 

(I) 
(II a) 
(II b) 
(III a) 
(III b) 
(IV a,b,c) 

(1.51) 

(1.52) 

(1.53) 

(1.54) 

where sn, en and dn are the Jacobi elliptic functions and a E ~ is a parameter. 

□ 

This gives a Lax pair for the systems I-IV. From (1.52) and (1.53) one derives 

z(rJ) = x(rJ)2 - b 

so the functional equation can be simplified to 

and M becomes: 

M = g L y(qi - qk)i(ejk + ekj) 
j<k 

- g I:x2(qj - qk)i(ejj + ekk - ~In) 
j<k n 

(1.55) 

(1.56) 

(1.57) 

Again H = ½trL2 and from the Lax equation it follows that the fk are con­
served quantities and L undergoes an isospectral deformation. One can also 
prove with the help of the functional equation that the fk are in involution and 
are functionally independent ([49]), so the systems of type I-IV are completely 
integrable. In some cases one can explicitly solve these equations by construct­
ing the one- parameter family U(t). In chapter 5 we shall give another (Lie 
algebraic) proof of the integrability of ~Jhe models of type I, II, and III. 
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1.2. The model of type V. 

Now consider the model of type Vas defined in (0.1)-(0.3) (see [1] and [49] for 
more details). The configuration space and phase space are the same as for the 
models of type I and II and Hamilton's equations are given by: 

Pi= -2g2 L)qk - qj)-3 + 2w2g2 2)qk - qj) (1.58) 
kjj kjj 

Define the matrices P,Q,L,M and µ as for type I, then one can easily verify 
that the equations (1.58) are equivalent with the matrix equations: 

(1.59) 

This is not yet a Lax equation. So define 

(1.60) 

then 
(1.61) 

and 
(1.62) 

where t denotes the hermitian adjoint. From (1.59) it follows that 

(1.63) 

Now define 
N1=L+L-, N2 =L-L+ (1.64) 

then N1 and N2 are hermitian and satisfy the Lax equations 

N1 = [M, N1] 

N2 = [M,N2] (1.65) 

Finally define 
(1.66) 

then N is again hermitian, H = 1/2trN and N satisfies the Lax equation 

N = [M,N] (1.67) 

So the eigenvalues of N are conserved and N undergoes an isospectral defor­
mation. Using N one can explicitly solve this model. To see this define 

X(t) = Q(0) cos wt+ w- 1 L(0) sin wt (1.68) 
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X(t) is hermitian, so there exists a one-parameter family U(t) of unitary ma­
trices, such that 

U(t)X(t)U(t)- 1 = Q(t) (1.69) 

Of course at this point one has to show that this Q(t) indeed satisfies (1.59)­
(1.61). Now define 

L(t) = U(t)(L(0) cos wt - wQ(0) sinwt)U(t)-1 (1.70) 

Again one can choose U(t) in such a way that U(t)µU(t)- 1 =µand U(0) = In. 
Now 

[Q(0), X(t)] = c;;- 1 sin (wt)µ ( 1. 71) 

and so 
[Q(t), L(t)] = µ (1. 72) 

So again qj(t)-/- qk(t) if j-/- k and U(t) becomes unique by requiring q1(t) > 
q2(t) ... > qn(t). Differentiating (1.69) with respect tot gives: 

Q = [uu-1 , Q] + L (1. 73) 

and equating left- and righthand sides yields: 

(1.74) 

Differentiating (1.70) gives: 

(1. 75) 

and combining (1.74) and (1.75) it follows that M = uu-1 so we have con­
structed an integral curve ( Q( t), L( t) ), satisfying (1.59). Using (1.69) and (1. 70) 
one can check that 

N(t) = U(t)N(0)U(t)- 1 (1. 76) 
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2. Poisson manifolds and completely integrable systems 

In this chapter we collect some well-known facts about Poisson manifolds. We 
refer to the literature ([22],[23],(24],[25],[26],(39],[40]) for the proofs and further 
details. 
Let M be an n-dimensional smooth manifold. 

Definition 2.1. A Poisson structure or Poisson bracket is a skew-symmetric 
bilinear map { , } : C00 (M)xC00 (M) -+ C00 (M) which satisfies the following 
properties (f,g, h E C00 (M)): 

{Jg, h} = f {g, h} + {!, h }g (Leibniz property) (2.1) 

{ {f, g }, h} + cycl. = 0 ( Jacobi identity) (2.2) 

So a Poisson structure turns the commutative algebra C00 (M) into a Lie algebra 
such that {h, .} : C00 (M)-+ C00 (M) is a derivation for all h E C00 (M). 

Definition 2.2. A Poisson manifold is a manifold with a Poisson structure. 

Example 2.3. Let M = IR2m with coordinates {pi, ... ,Pm, qi, ... , qm} and 
define 

{f,g} = f ( aJ ag _ at ag) 
j=l 8pj 8qj 8qj Pj 

(2.3) 

This is the socalled canonical Poisson bracket and {Pj, qk} = Dj k · 

Definition 2.4. A Poisson mapping <p : M -+ N, with M and N Poisson 
manifolds, is a smooth map which satisfies: 

<j)*{f,g}N = {<j)*(f),</)*(g)}M (2.4) 

for all f,g E C00 (M), where the pullback </)*: C00 (N)-+ C00 (M) is defined by: 

</)*(f)(m) = f(<j)(m)), m EM (2.5) 

A diffeomorphic Poisson mapping <p : M -+ M is called an automorphism of 
the Poisson manifold M. 

Definition 2.5. An infinitesimal endomorphism A of a Poisson manifold M 
is a linear map A: C00 (M)-+ C00 (M) which satisfies: 

A{f,g} = {A(f),g} + {f,A(g)} (2.6) 

so it is a derivation of the Lie algebra C00 (M); it is called an inner endomor­
phism if there exists a function h E C00 ( M) such that 

A(f) = {h, f} (2.7) 

Definition 2.6. A submanifold N C M, where M and N are Poisson man­
ifolds, is a Poisson submanifold of M if the inclusion i : N -+ M is a Poisson 
mapping. 
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Definition 2. 7. A function f E C00 ( M) is called a Casimir function ( or 
distinguished function, cyclic function or invariant) if f E Z(C00 (M)), i.e. 
{f, h} = 0 for all h E C00 (M). 

Remark 2.8. The constant functions are Casimir functions. 

Definition 2.9. With each h E C00 (M) one can associate a vector field 
Vh : C00 (M) - C00 (M) by defining 

vh(f) = {h, f}, f E C00 (M) (2.8) 

This is called the Hamiltonian vector field associated with the Hamiltonian h. 

Lemma 2.10. The map h 1-+ vh has the following properties: 

Vh {f, g} = { vh(f), g} + {f, vh(9)} 

Vfg = fvg + 9Vf 

(2.9) 

(2.10) 

(2.11) 

Proof. This follows directly from the definition of the Poisson bracket. □ 

So the map v: C00 (M) - V(M) defined by v(h) = vh is a Lie algebra homomor­
phism from C00 (M) into the Lie algebra of inner infinitesimal endomorphisms 
of M. 

Definition 2.11. Let vh be a Hamiltonian vector field with Hamiltonian h. 
Let </> : IR. - M be a smooth curve in M such that 

(2.12) 

where (vh)(<f>(t)) is the value of vh in ef>(t). Equations (2.12) are called Hamil­
ton's equations with Hamiltonian h. The unique maximal integral curve passing · 
through x E M is denoted by 1/J( t, x) and is called the flow of vh and is often 
written as 

(2.13) 

Example 2.12. Let M = IR.2m with Poisson bracket (2.3). Then the Hamil­
tonian vector field v f corresponding to f is given by 

VJ= f ( 8/ ~ - 8/ ~) 
j=l 8pj 8qj 8qj 8pj 

(2.14) 

Let ef>(t) = (p(t), (q(t)) be a curve in M then Hamilton's equations become: 

~( t) = (- 88 t , ... , _ 88 t , 88 t , ... , 88 f ) 
q1 qm PI Pm 

(2.15) 
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written out in terms of the coordinates (p1 , ... ,Pm, q1, ... , qm) these become: 

. of 
%=~, 

up; 

. of 
p·--­

J - oq; (2.16) 

Take for example f = Ej=l a;p;, where a; E IR, then VJ = Ej=l a; a!;, which 
is the generator of a translation, and the corresponding flow is 'ljJ( t, p, q) 
(p, q + ta), where a= (a1, ... , am)-

Lemma 2.13. For each t, the flow exp(tvh) : M -+ M determines a (local) 
Poisson automorphism of M. 

Definition 2.14. Two functions f, g E C00 (M) are said to be in involution if 
{f,g} = 0. 

Lemma 2.15. Let vh denote a Hamiltonian vector field, let f E C00 (M) and 
f and h in involution, then f is constant along integral curves of vh, 
Proof. 

d . 
d/(<f>(t)) = df(<f>(t))(<f>(t)) = df(<f>(t))(vh(<f>(t))) 

= vh(f)(<f>(t)) = {h,f}(<f>(t)) = 0 

□ 

Example 2.16. Consider the Calogero-Moser model as defined in (1.6) and 
(1.7). In this case {H,Ptot} = 0, which followed from the translation-invariance. 
So the total momentum is conserved along integral curves of Hamilton's equa­
tions. 

From the properties of the Poisson bracket it follows that in each point m E M, 
Vh depends only on dh and {/, g} depends only on df and dg, so there is a bundle 
map B: T* M-+ TM such that vh = B(dh) and v = Bd: C00 (M)-+ V(M). 
B is sometimes called the Hamiltonian operator. One may also think of B as 
defining a contravariant skew-symmetric 2-tensor W on M, for which 

{f,g} = W(df,dg) = dg(B(df)) (2.17) 

The tensor W is sometimes called a cosymplectic structure. Now let { xi, j = 
1, ... , n} be local coordinates on M. Then it follows from the properties of the 
Poisson bracket that one can write: 

(2.18) 

where 
(2.19) 
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So a Poisson structure is determined by the system of functions W j k. These are 
sometimes called the structure functions of M relative to the local coordinates 
x1, and the matrix W is called the structure matrix of M. One can also 
view the WJk as the components of the cosymplectic structure. The Jacobi 
identity is equivalent to the Jacobi identity for the coordinate functions. In 
local coordinates one has in each point x E M 

(2.20) 

Example 2.17. Choose W constant and skew-symmetric. 

Definition 2.18. The rank of a Poisson structure at a point x E Mis defined 
as the rank of the linear map B(x): T;M---+ TxM. In local coordinates it is 
also the rank of the matrix Wik(x). 

Lemma 2.19. The rank of a Poisson manifold at any point is always an even 
integer. 

Lemma 2.20. The rank of a Poisson manifold is constant along flows of 
Hamiltonian vector fields. 

Definition 2.21. A Poisson manifold M is called symplectic if the rank is 
everywhere equal to the dimension n of M. 

Corollary 2.22. A symplectic manifold is even-dimensional. 

If M is a symplectic manifold, then one can define a symplectic structure on 
Mby 

w(Bdf, Bdg) = dg(B(df)) (2.21) 

From the properties of B it follows that w is a closed non-degenerate 2-form 
on M. 

Theorem 2.23. Each Poisson manifold M naturally splits into a family of 
even-dimensional symplectic manifolds, the leaves of the socalled symplectic 
foliation. The dimension of any such leaf N equals the rank of the Poisson 
structure at any point y E N. 

Theorem 2.24. (Darboux) Let M be an n-dimensional Poisson manifold of 
constant rank 2m ::; n. At each x E M there exist local coordinates 

where 2m + l = n, in terms of which the Poisson bracket takes the form: 

(2.22) 
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so {Pj, qk} = lij k and the Zj are Casimir functions. The leaves of the symplectic 
foliation intersect the coordinate chart in the slices { z1 = c1, ... , z1 = ct} 
determined by the distinguished coordinates z. So locally a Poisson structure 
always has the canonical form (2.22), but this is often not the most convenient 
way of viewing a Poisson structure. This is for example the case for Poisson 
structures on Lie algebras, which will be studied in chapter 4. 

Finally consider completely integrable Hamiltonian systems (in the commu­
tative case). These are systems which satisfy the conditions of the following 
well-known Liouville-theorem. 

Theorem 2.25. (Liouville) Let M be a symplectic manifold of dimension 
n = 2m and consider Hamilton's equations on M with Hamiltonian h. If 
there exist m functions {Ji, ... , fm, Ji = h}, which are functionally indepen­
dent, such that {!J, h} = 0 for all j, k then the Hamiltonian system is com­
pletely integrable, which means that there exist global action-angle coordinates 
{ Ij, </>j, j = 1, ... , m} on M in which the equations become: 

(2.23) 

These are 2m ordinary differential equations which can be integrated immedi­
ately. 

Remark 2.26. The Liouville theorem does not give an explicit construction 
of the angle variables, but in concrete examples, for example the Calogero­
Moser model, there often exists a natural construction of these action-angle 
variables. For example, in the case of the Calogero-Moser model ([18], [44]) the 
action variables are the eigenvalues Aj of L and the angle variables are given 
by: 

1 . 1 
</>j = --;tr(Qv- ), 1 ~ j ~ n 

J 

and one can easily verify, using (1.16), (1.25), (1.27) and (1.14) and the prop­
erties of the trace, that: 

. 1 . 
<Pi= --:tr(V) = !J(L) 

J 

Finally, a useful criterium to decide whether a submanifold is a Poisson sub­
manifold is the following: 

Lemma 2.27. A submanifold N CM of a Poisson manifold Mis a Poisson 
submanifold iff all Hamiltonian vector fields are tangent to N. 

Corollary 2.28. If M is a vector space and N a subspace this simplifies to 
the condition: 

v1(x) EN, for all x E N,f E C00 (M) (2.24) 
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3. Real semisimple Lie algebras 

In this chapter 9 is a finite-dimensional real semisimple Lie algebra (see [30],[32] 
and [33] for the proofs and more details). Let < , > be the Killing form 
and 0 a Cartan involution of 9, with corresponding eigenspace decomposition 
9 = tffij), which is orthogonal with respect to the Killing form, and commutation 
relations 

[t,t] C t, [t,p] C j), [J:l,J:I] C t (3.1) 

The Killing form is negative definite on t and positive definite on j) and one 
can define an inner product on 9 by 

< x,y >0= - < x,0(y) > (3.2) 

Let G be a connected Lie group with Lie algebra 9, such that G has finite 
center, and let K be the subgroup corresponding to t. Then K is a maximal 
compact subgroup of G and the center of G is contained in K. Let 9c be the 
complexification of 9, which is again semisimple. Now suppose 9 is noncompact, 
so <limp =/= 0. Then j) contains a maximal abelian subspace a. Let qR be 
a maximal abelian subalgebra of 9 which contains a and which is 0-stable. 
Then the complexification qc is a Cartan subalgebra of 9c. Also one has the 
orthogonal decomposition 

(3.3) 

and we write qk = qR n t. Let m be the centralizer of a in t, then 

(3.4) 

Now let 
(3.5) 

be the root space decomposition of 9 with respect to ad a, with corresponding 
root system R, then 

9o =mffia (3.6) 

and we write 

9o..L = L 9a (3.7) 
aER 

R is called the restricted root system of the pair (9, a). Let D. denote the simple 
roots with respect to some ordening, R+ the positive roots, R_ the negative 
roots and define 

9+ = L 9a, 9- = L 9a (3.8) 
aER+ 
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One also has 0(ga) = 9-a and the commutation relations 

Furthermore one has 

[ga, 9,B] C 9a+,B if a+ /3 E R 

[go, 9o] C 9o, [m, m] cm 

[go,9+l C 9+, [go,9-] C 9-

[ga, 9-a] C 9o, [go, 9a] C 9a 

< 9a, 9,B >= 0 if a+ /3 =/ 0 

(3.9) 

(3.10) 

Example 3.1. Let g = sl(3, q, viewed as a real Lie algebra. It consists of 
all traceless 3 x 3-matrices over <C, and the Killing form is given by 

< x, y >= Retr(xy) 

for x,y E g. The Cartan involution 0 is given by 0(x) = -xt, where t denotes 
the hermitian conjugate. Then £ = {traceless skew-hermitian matrices}, p = 
{traceless hermitian matrices}, G = SL(3, <C) and K = SU(3). Choose a = 
{ real diagonal matrices with zero trace}, then m = ia. In this case ~ k = m, so 
~R = mEB a= 9o- Let q = diag(q1,q2,q3) Ea and define €j(q) = qj,J = 1,2,3. 
Then the restricted root system R is given by R = { a j k : = t: j - t: k, 1 ~ j =I 
k ~ 3} and is of type A2. 
Choose 

D.= {aj :=t.i -tj+1, j = 1,2} 

then the positive roots are R+ = {ajk ER, 1 ~ j < k ~ 3} and R_ = {ajk E 
R, 3 ~ j > k ~ 1 }. The root spaces g 0 are given by 

Definition 3.2. The (real) rank of g is defined as l = dim a and m,. : = dim g0 

is called the multiplicity of the root a. 

Remark 3.3. In contrast to the complex case R can be a non-reduced root 
system, m 0 can be > 1 and m is in general a proper non-zero subspace of g0 

and is not necessarily abelian. 

Example 3.4. If g = sl(3, <C) then l = 2 and ma = 2 for all a E R. Also m 
is abelian. 
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Because the Killing form restricted to a is positive definite and nondegenerate, 
a is an [-dimensional Euclidian vector space with inner product ( , ) and 
one can identify a and a* with the help of ( , ). If a E a* one defines ta E a 
by 

(a, ta)= a(a), for all a Ea 

and if a, fJ E a* one defines 

Furthermore one defines 
h -~ 

a - (a,a) 

(3.11) 

(3.12) 

(3.13) 

Now choose O -/- ea E 9a, a E R+, and the following two different normaliza­
tions: 

a) Define (see [33]) 

and normalize ea in such a way that 

then also 
2 

< e_a, e_a >0= -( --) 
a,a 

and one has the commutation relations 

[e,,, e_a] = ha 

[ha, ea] = 2ea 

[ha, e_a] = -2e_a 

so {ha,ea,e-a} forms an sl(2,IR) subalgebra. Also 

From (3.14) it follows that 

and so 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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b) Now define (see (38]): 
e_a := 0(ea) E 9-a (3.21) 

and normalize ea in such a way that 

< ea, ea >0= 1 (3.22) 

then also 
(3.23) 

and 
(3.24) 

Now one has the commutation relations 

1 
[ea, e_a] =-ta= - 2(a, a)ha 

[ha, ea] = 2ea 
(3.25) 

[ha, e_a] = -2e_a 

and also 
(3.26) 

and 

(3.27) 

Example 3.5. Let 9 = sl(3, C). In this case one has: 

where dj = ejj and so ( a, a) = 2. Now the two normalizations almost coincide, 
so choose the second one. If one chooses ea;k = iejk , then e-a;k = iekj and if 
one chooses ea;k = ejk then e-a;k = -ekj• 

Definition 3.6. An element x E j) is called regular if dim Centg(x) = dim 90· 

Lemma 3. 7. An element q E a is regular iff a( q) =f. 0 for all a E R. In that 
case Centg(q) = 90· 

Definition 3.8. The positive Weyl chamber a+ of a is defined as 

a+= {a Ea I a(a) > 0, for all a ER+} 

The Weyl alcove at, d E JR., is defined as 

a! = { a E a I 0 < a( a) < d, for all a E R+} 

So a+ and at consist of regular elements. 

(3.28) 

(3.29) 



Definition 3.9. The character 8 of g is defined as: 

8 = dim p - dim t 

But because dim g~ n p = dim g~ n t one also has 

8=l-dimm 
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(3.30) 

(3.31) 

Definition 3.10. A real noncompact semisimple Lie algebra is called split if 
dim m = 0, quasisplit if ryk = m (see [42, p 172]) and a normal real form of gc 
if dim ryk = 0. 

Example 3.11. Let g = sl(3, q, then q = diag(q1, q2, q3) E a is regular if 
q1 -/- q2 -/- q3 -/- q1. The positive Weyl chamber and Weyl alcove are given by: 

Because in this case m = ia, 8 = 0 and because ryk = m, g is quasisplit. 

Lemma 3.12. A real semisimple Lie algebra g is split iff it is a normal real 
form. 

Lemma 3.13. If g is a normal real form and semisimple then ma= 1 for all 
aE R. 

Now specialize to the simple noncompact Lie algebras. Then one has: 

Theorem 3.14. If g is a real simple noncompact Lie algebra then it belongs 
to one of the following two types: 

Type III: the pair (g, 0) is such that g is a simple noncompact real Lie alge­
bra, the complexification gc is a simple Lie algebra over (C and 0 is a Cartan 
involution such that t is a compactly embedded subalgebra. 

Type IV: the pair (g, 0) is such that g is a complex simple Lie algebra, viewed 
as a real Lie algebra and 0 is the conjugation of g with respect to a maximal 
compactly imbedded subalgebra. 

The Lie algebras of type IV are listed in Table IV and those of type III in Table 
V of [30]. 
Now suppose g is quasi-split then dim ijk = dim m but also dim ryk = rank 9c -
dim a and combining this with (3.31) one gets the following condition: 
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Lemma 3.15. A Lie algebra g is quasi-split iff 

rankgc = 2l - 8 (3.32) 

Now combining the information of Tables IV, V and VI of [30] and Tables 9.3 
and 9.6 of [32] one finds the following: 

Proposition 3.16. If g is a real noncompact simple Lie algebra of quasi-split 
type, then g belongs to one of the following classes: 

1) g is of type IV. 
2) g is of type III and is a normal real form of 9C· 
3) g is of type III and one of the following series: 

AIII (p = q,p = q + 1), BDI (p = q + 2), E II 

where we have used the notation of [30]. 

(3.33) 

Proof. If g is of type IV then m = ia, so m is abelian, 8 = 0 and rank 9c = 2l, 
so the condition (3.32) is satisfied. If g is of type III and a normal real form 
then dimm = dim~k = 0, so 8 =land rankgc = l. Now suppose g is of type 
III and not a real form then one can check the condition (3.32) and one finds 
that the only cases are the ones in (3.33), with: 

AIII (p = q) 
g = su(q, q), 8 = 1, l = q, 9c = sl(2q, q, rank 9c 
s(u(q) EBu(q)),R = Cq 

AIII (p = q + 1) 

2q - 1 2l - 8, t 

g = su(q+l,q),t = s(u(q+l)EBu(q)),8 = 0,l = q,gc = sl(2q+l,C),rankgc = 
2q,R= BCq 

BDI (p = q + 2) 
g = so(q + 2, q), t = so(q + 2) EB so(q), R = Bq, 8 = q - 1, l = q, gc = so(2q + 
2,C),rank 9c = q + 1 

Ell 
g = E5, t = su(6) EB su(2), R = F4, 8 = 2, l = 4, 9c = E5, rankgc = 6 □ 

Using this classification and the tables already mentioned one also finds: 

Proposition 3.17. If g is a real simple noncompact Lie algebra, the following 
properties are equivalent: 

(i) g is quasi-split. 
(ii) m is abelian. 
(iii) ma ~ 2 for all a E R. 
(iv) the Satake diagram has no black nodes. 

Proof. Observe that ma = 2 for type IV and ma = 1 for normal real forms. 
Inspection of Table VI from [30] shows that the Proposition is true. D 
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4. Poisson structures on Lie algebras 

4.1. Introduction. 

In this chapter we consider Poisson structures on Lie algebras and their relation 
with integrable systems, via the Kostant-Adler-Symes theorem. For most of 
the proofs and for more details we refer to [ll],[12],[13],[14],[36],[37],[47] and 
[48]. 
Let g be a real finite-dimensional Lie algebra. Let <p : g 0 g ---> g be a 2-form 
on g with values in g and define { , } : C00 (g*) x C00 (g*) ---> C00 (g*) by: 

{f,g}(.X) = >.(cjJ(F,G)) (4.1) 

where f, g E C00 (g*), F = df(>.), G = dg(>.), >. E g*, and where we identified 
T*g* with g, so we view F and Gas elements of g. 

Proposition 4.1. If <p satisfies the Jacobi identity 

cp(cp(x,y),z) +cycl. = 0 for all x,y,z E g (4.2) 

then ( 4.1) defines a Poisson bracket on c= (g*) and the linear functions on g* 
form a Lie subalgebra of c= (g*) 

Proof. It is clear that { , } is skew-symmetric, bilinear and satisfies the 
Leibniz rule. From chapter 2 we know that the Jacobi identity is equivalent 
with the Jacobi identity for coordinate functions. But coordinate functions on 
g* belong to (g*)* ~ g, so if one takes x, y E g then dx(>.) = x, dy(>.) = y and 
{x, y}(>.) = .X(cp(x, y)), so {x, y} E (g*)* ~ g. From this one gets d{x, y}(>.) = 
cp(x, y), so 

{{ x, y}, z }( >.) + cycl. = .X ( cp( </J( x, y), z)) + cycl. = 0 for all >. E g*, x, y, z E g 

□ 

We shall use the symbol (g, <p) to denote the vector space g equipped with the 
bracket cp. 
Now assume that g has a nondegenerate invariant symmetric bilinear form 
< , >. Identify g and g* using the isomorphism K : g ---> g* defined by 
K(x)(y) =< x,y > for all x,y E g. Now define 

{f,g}(x) =< x,cp(F,G) > ( 4.3) 

where f, g E c=(g), x E g, F = 'V f(x), G = 'V g(x) and< 'V f(x), y >= df(x)(y) 
for all x, y E g. One easily checks that this defines a Poisson bracket on C00 (g) 
which is isomorphic with the bracket (4.1),where the isomorphism is given by 
the pull-back of,-,,, and g* forms a Lie subalgebra of C00 (g). So if <p satisfies 
the Jacobi identity, then there are two Lie algebra structures on g and a Lie 
algebra structure on g*, which are in general independent of each other. 
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Example 4.2. Let <f>(x,y) = [x,y] then the corresponding Poisson structure 
on C00 (g*) is known as the Lie-Poisson bracket or Kirillov-Kostant bracket. In 
this case the two Lie algebra structures on g coincide. 

4.2. Double Lie algebras and Yang-Baxter operators. 

Now make the ansatz 

<f>(x,y) = ½[R(x),y] + ½[x,R(y)] := [x,y]R 

where R E End g. 

( 4.4) 

Definition 4.3. A pair (g, R) is called a double Lie algebra if ( 4.4) satisfies the 
Jacobi identity. The symbol 9R is used to denote the vector space g equipped 
with the bracket (4.4). 

Now define 

w(x, y) = R[R(x), y] + R[x, R(y)] - [R(x), R(y)], x, y E g (4.5) 

then, using the Jacobi identity for [ , ), it is easy to show that the Jacobi 
identity for ( 4.4) is equivalent with 

[w(x, y), z] + cycl. = 0 (4.6) 

Definition 4.4. An operator RE End g is called a Yang-Baxter operator if 
w(x, y) = p[x, y] for all x, y E g, where p E IR is a constant. If p = 0 this reduces 
to the Yang-Baxter equation 

w(x,y)=O (4.7) 

If p -/- 0 one can rescale R in such a way that it satisfies the modified Yang­
Baxter equation 

w(x, y) = [x, y] (4.8) 

The operator R is called unitary if R* = - R where R* denotes the adjoint of 
R. 

Proposition 4.5. If Risa Yang-Baxter then ( 4.4) satisfies the Jacobi identity. 

Proof. Substitute ( 4. 7) or ( 4.8) in ( 4.6) and use the Jacobi identity for 
[ , ]. D 

Example 4.6. A trivial solution of (4.8) is R = id. In this case <f>(x,y) = 
[x, y], so of course one refinds the situation of Example 4.2. So the Lie algebra 
g itself is a (trivial) double Lie algebra. 

Example 4.7. Take g = sl(2, CC), then all unitary Rare of the form R = ad z 

for some z = ah+f3e+,f,a,{3, 1 EC. All these operators Rare Yang-Baxter 
operators, because w(x, y) = 4(a2 + {3,)[x, y], for all x, y E g. 



Definition 4.8. A function f E C00 (g) is called Ad-invariant if 

f(Adh(x)) = f(x), for all x E g, h E G 
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(4.9) 

Here G is a connected Lie group with Lie algebra g and Ad is the adjoint 
representation of G on g. 

Lemma 4.9. Let f, g E C00 (g) be Ad-invariant functions then they have the 
following properties: 
(i) [v'f(x),x] = 0 
(ii) [v'f(x), v'g(x)] = 0 
(iii) v' f(Adh(x)) = Adh(v' f(x)) 
(iv) ft I t=O v' f(x + t[y, x]) = [y, v' f(x)] 
for all x, y E g, h E G. 

Proof. We first prove (iii). For all x, y E g one has: 

< v' J(Adh(x)), y > 

= ft I t=O J(Adh(x) + ty) 

= ft I t=O f(x + tAdh- 1(y)) 

=< v'f(x),Adh- 1 (y) > 
=< Adh(v'f(x)),y > 

and so the result follows. Now (iv) is nothing but the infinitesimal form of (iii), 
(i) follows from (iv) by taking y = x and (ii) follows from (iv) and (i) by taking 
y = v'g(x) in (iv). □ 

Example 4.10. Let 'P : g --+ End V be a finite-dimensional representation of 
g and define 

(4.10) 

then the fk are Ad-invariant functions and are homogeneous polynomials of · 
degree k. 

Now consider the Lie-Poisson bracket on C00 (g) 

{f,g}(x) =< x, [F,G] > (4.11) 

where f,g E C00 (g),x E g and F = v'f(x),G = v'g(x). The structure func­
tions are given by 

(4.12) 

where c{k are the structure constants of g with respect to a basis {Tj }, {7'j} is 
the dual basis and x = xi 'I'j and so the Poisson bracket becomes in coordinate 
form: 

·k I af ag 
{f,g} = q X axi axk (4.13) 



26 

where we have used the sommation convention. 
The map B(x): g-+ g is given by 

B(x)(y) = adx(y), y E g 

and so the Hamiltonian vector field is given by 

or in coordinate form: 
'k 1 of a 

VJ(x) = C: X -{). f) k xJ X 

and Hamilton's equations become: 

( 4.14) 

(4.15) 

( 4.16) 

(4.17) 

From (4.14) one also sees that rank B(x) = dimO,,, where Ox is the AdG-orbit 
through x. If g is semisimple and x is regular, then the corresponding orbit is 
call?,d a generic orbit, otherwise it is called a singular orbit (see [28], [36] and 
[37] for the non-semisimple case). 
The following theorem has much to do with Theorem 2.23 and precizes it in 
this particular case. 

Theorem 4.11. [28] The Lie-Poisson bracket has the following properties: 
(i) the Ad-invariant functions are Casimir functions. 
(ii) the symplectic leaves are the orbits of Ad Gong and are the common level 
sets of the Ad-invariant functions. 
(iii) for all h E G, Ad h is a linear Poisson automorphism, which preserves the 
leaves of the symplectic foliation. 
(iv) if .X = K(y) E g* then V>. = -ady and 

exp( tv>, (x)) = Ad( exp(-ty ))(x) ( 4.18) 

so the flow of V>, is the orbit of exp(-ty) through x. 

Now consider the more general situation where g is a double Lie algebra. Then 
there is the following theorem: 

Theorem 4.12. [12] Let 9R be a double Lie algebra with Poisson bracket 

{f,g}(x) =< x,[F,G]R > (4.19) 

where [F,G]R as in (4.4), then: 
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(i) the Ad-invariant functions on g are in involution with respect to ( 4.19) 
(ii) 

v1(x) = ½[x, R(F)] + ½R*[x, F] 

(iii) if f is Ad-invariant then: 

(iv) 
B(x) = adx o R + R* o adx 

= ½[adx,R] if R is unitary 

(4.20) 

( 4.21) 

( 4.22) 

Proof. (i) follows directly from Lemma 4.9, (ii) and (iv) follow directly from 
(4.19) and (4.4) and (iii) follows from Lemma 4.9 and (ii). D 

So in the case of a double Lie algebra the Ad-invariant functions are in involu­
tion and if x is regular they are also functionally independent. So to construct 
integrable systems one has to restrict oneselves to a symplectic submanifold of 
dimension 2l. 

Remark 4.13. Theorem 4.11 and 4.12 can be formulated more generally in 
the case of ( 4.1) without identifying g and g*. Instead of the adjoint repre­
sentation one has to use the coadjoint representation of g on g*. If g has a 
nondegenerate invariant symmetric bilinear form, then the adjoint and coad­
joint representations are equivalent (see [12] and [13] for more details). 

4.3. Poisson automorphisms of double Lie algebras. 

Definition 4.14. A Yang-Baxter operator R is called invariant with respect 
to x E g if (in the ring of endomorphisms of the vector space g) 

Ro ad x - ad x o R = [ R, ad x] = 0 (4.23) 

If R is unitary this implies B(x) = 0 so v1(x) = 0, which means that x is a 
fixed point. 

Lemma 4.15. If Risa Yang-Baxter operator and 0 E Autg a Lie algebra 
automorphism of g then R := 0R0- 1 is again a Yang-Baxter operator and R 
and R are called equivalent. 

Proof. Straightforward. □ 

Definition 4.16. R is called invariant with respect to 0 E Aut g if R = 0R0- 1 . 
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Proposition 4.17. If R is invariant with respect to 0 E Aut g then 0 E 

AutgR, 0 is a linear Poisson automorphism of (4.19) and 

B(0(x)) = 0B(x)0- 1 

Proof. Straightforward. 

(4.24) 

□ 

Example 4.18. If R is invariant with respect to x then R is invariant with 
respect to 0 = Ad(exp(tx)) and this is an inner Poisson automorphism. 

Example 4.19. If R = id then it is invariant with respect to all 0 E Aut g. 

One can generalize this to the situation in ( 4.1) and then one has: 

Proposition 4.20. If 0 E Aut g satisfies 

0</J(x, y) = ip(0(x), 0(y)) (4.25) 

where <p as defined in section 4.1, then 0 E Aut(g, <p) and 0 is a linear Poisson 
automorphism of ( 4.1) and if 0 = Ad exp( tz) is an inner automorphism of g 
then ( 4.25) implies the infinitesimal identity 

[z, ip(x, y)] = </J([z, x], y) + ip(x, [z, y]) ( 4.26) 

If one views <p : g 0 g -, g as a 2-form with values in g then ( 4.26) is nothing 
else but 

( 4.27) 

which means that ad z is a derivation of the Lie algebra (g, <p ). 
Now let 0 = Ad exp( tz) be a Poisson automorphism, 0* the pull-back and define 

A(f)(x) = ft lt=O 0*(f)(x) = df(x)([z,x]) ( 4.28) 

Then A: C00 (g) _, C00 (g) is an infinitesimal endomorphism of g, as one checks 
easily. So if f is Ad-invariant, then 0*(!) = f and A(!) = 0. 



4.4. Properties of Yang-Baxter operators. 

Now we are going to study Yang-Baxt~r operators in more detail. 

Proposition 4.21. [12] Let R E End g be a solution of ( 4. 7) then 
(i) ½R: gR---+ g is a Lie algebra homomorphism. 
(ii) Im R is a subalgebra of g and ker R is an abelian ideal of gR. 
(iii) 

[Im R, Ker R] c Ker R 

[Im R, (Im R)J.] c (Im R)J. 

[Im R, (Ker R)J.] c (Ker R)J. 

[Ker R, (Ker R)J.] c (Im R)J. 

(iv) (Ker R)J. is a Poisson submanifold of g. 
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(4.29) 

Proof. (i) and (ii) follow immediately from (4.4) and (4.7); (iii) follows from 
(4.7), (ii) and the properties of the scalar product; (iv) follows from (iii), (4.20) 
and Corollary 2.28 , because Im R* = (Ker R)J.. 

Proposition 4.22. Let R E End g be a solution of ( 4.8) and define 

R± = ½(R±id), g± =lmR±, t± =KerR=i= (4.30) 

then: 
(i) R± : gR---+ g are Lie algebra homomorphisms. 
(ii) g± are subalgebras of g 
(iii) t± are ideals of gR 
(iv) Ker R is abelian in g 
(v) [g±, t±] C t± 
(vi) [t+,L]R = 0 
(vii) t:: and ti are Poisson submanifolds of g 
(viii) t± are subalgebras of g 
(ix) [g, Ker R] c Im R 

Proof. (i), (ii) and (iii) are direct consequences of the fact that one can 
rewrite ( 4.8) as: 

( 4.31) 

(iv) follows directly from ( 4.8) and (v) and (vi) follow from the fact that: 

[x, Y]R = [R+(x), y] + [x, R_(y)] (4.32) 

Now one has 

v1(x) = [x, R+(F)] + R'.'...[x, F] = [x, R_(F)] + Rt[x, F] (4.33) 
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Remark 4.24. If ( 4.38) is true then: 

Im R+ is abelian -{=:::;> R+ satisfies ( 4. 7) 

because of ( 4.40). 
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An important and interesting solution of ( 4.8) is given by the following 

Proposition 4.25. Let 9 = a EB b (vector space direct sum), where a and b 
are subalgebras, let 1fa and 7fb denote the corresponding projections and define 

R = 1fa - 1fb 

then R satisfies ( 4.8), and in this case one has: 

and 
R+ = 1fa, R_ = -1fb, 9+ = t+ = a, 9- = e_ = b 

Proof. Straightforward calculation. 

( 4.44) 

( 4.45) 

( 4.46) 

□ 

Corollary 4.26. Let na denote the normalizer of a in b, then R is invariant 
with respect to na, where a, b and Rare as in Prop. 4.25. 

Proof. Suppose x E na C b then [x, a] E a for all a E a. So for all y E 9: 

R[x,y]- [x,R(y)] 

=R[x, 1r a.Y + 1fbY] - [x, R( 1r aY + 1fbY )] 

=R[x, 1faY] + R[x, 1fbY] - [x, 1faY - 1fbY] 

=[x,1ray]- [x,1rby]- [x,1faY] + [x,1fbY] = 0 

Corollary 4. 27. R is x-invariant -{=:::;> 1r a ( x) E nh and 7fb ( x) E n0 .. 

Proof. Straightforward. 

□ 

□ 

Example 4.28. Let 9 be a real semisimple Lie algebra and let 9 = 9+ EB9o EB9-
be the triangular root space decomposition as defined m Chapter 3. Then 
a = 9+ EB 9o and b = 9- are subalgebras and so 

R=1r++1ro-1r- ( 4.47) 

is a Yang-Baxter operator, where 1r0 , 1r+ and 1r _ denote the projections on the 
corresponding subspaces. Now 1r0 = 1ro, 1r+ = 1r_, a1. = 9+, b1. = 9- EB 9o and 

R* = 1f - + 1fo - 1f + ( 4.48) 

and so R- = 1f + - 1r _ and R+ = 1ro. If 9 is quasi-split then 9o is abelian, 
R+ satisfies (4.7), and the commutation relations (3.9) imply that R* and R 
satisfy (4.38), so R- = 1f+ - 1f_ is a unitary Yang-Baxter operator. Observe 
that R2 = id, but (R-)2-=/= id! 
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4.5. The K.A.S.R.S. theorem. 

An important connection between solutions of ( 4.8) of the form ( 4.44) and 
integrable systems is given by the following theorem. 

Theorem 4.29. [12] (Factorization theorem of Kostant-Adler-Symes-Rey­
man-Semenov-Tian-Shansky) Let g be a real Lie algebra with a nondegenerate 
invariant symmetric bilinear form and identify g and g* using this form. Let 
g = aEBb with a and b subalgebras. Let R = 7ra -7rb be the corresponding Yang­
Baxter operator and { , } the corresponding Lie-Poisson bracket ( 4.19). 
Then one has (4.45) and (4.46). Let h E C00 (g) be an Ad-invariant function, 
with H = \lh(x) and consider Hamilton's equations with Hamiltonian h: 

(4.49) 

Let A and B be the connected subgroups of G corresponding to the subalgebras 
a and band let (ga(t),gb(t)) be the solution (for small t) of the factorization 
problem 

(4.50) 

where H(O) = \lh(x(O)), then the solution of the Lax equation (4.49) is given 
by: 

( 4.51) 

Proof. Differentiating (4.51) gives 

. [ . -1 l [ . -1 l X = gbgb , X = gaga , X ( 4.52) 

and 
(4.53) 

where we have used Lemma 4.9. Now differentiate (4.50): 

d 
!lb(t)gb(t)-1 = d/ga(t)exptH(O))gb(t)- 1 

= !la(t) exp(tH(O))gb(t)- 1 + ga(t) exp(tH(O))H(O)gb(t)- 1 

= !la(t)ga(t)-1gb(t)gb(t)-l + gb(t)H(O)gb(t)-l 

= !la(t)ga(t)-l + H(t) 
(4.54) 

and so H = !]bgb -l - ilaga -l, which implies 

( 4.55) 

because a and b are subalgebras, and substituting this in ( 4.52) gives ( 4.49). 

□ 
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So the solution of the Lax equation ( 4.49) is reduced to a factorization problem 
in the Lie group G. This is the finite-dimensional group-theoretical analogue 
of the Riemann-Hilbert problem in the case of partial differential equations. 

From Prop. 4.22 it follows that one can restrict ( 4.49) to the Poisson subma­
nifold a.L or b.L. 

Remark 4.30. One can formulate Theorem 4.29 for any real Lie algebra, 
without identifying g and g*, using the coadjoint representation (see [12]). 

We shall now consider two applications of Theorem 4.29. 

Example 4.31. (The finite nonperiodic Toda lattice) Let g be a normal real 
form of a simple complex Lie algebra, then dim m = 0 and ma = 1 for all 
a E R. Choose O =/=- ea E 9a with normalization (3.15). Now consider the 
following decomposition: 

g = t EB [ (Iwasawa decomposition) (4.56) 

where [ = g0 EB g_ (Borel subalgebra) and t is the maximal compact subalgebra 
as defined in chapter 3. Then one has in terms of the projections 1r0 , 1r+, 1r _ 
and the Cartan involution 0: 

Also 
g = e.L EB c.L 

where t.L = p and [.L = g_ and one has 

so 
1r;;_ = 7rp. = 7r_ + 1r_0 

1rj = 1rP = 1ro + 1r+ - 1r_0 

Now the Yang-Baxter operator R = ?rk - 1r1 becomes: 

and 
R* = 1r_ + 21r_0 -1ro - 1r+ 

but 01r + = 1r _ 0 and so one gets 

(4.57) 

( 4.58) 

(4.59) 

(4.60) 

( 4.61) 

( 4.62) 

( 4.63) 



34 

so one sees that the skew-symmetric part of R is the unitary Yang-Baxter 
operator of Example 4.28. Now take as phase space the Poisson submanifold 
p and as Hamiltonian h( x) ½ < x, x > then V h( x) = x and Hamilton's 
equations become 

with respect to the Yang-Baxter operator R. But because x E p one has 
B(x+) = -x_ and so . 

( 4.65) 

Now one gets the Toda lattice by restricting the equations ( 4.64) to the Poisson 
submanifold Oµ., consisting of the Ad* L-orbit through the element µ, defined 
by 

µ = L 9a( Ea + e_a), 0 < 9a E IR ( 4.66) 
aEA 

Here we have identified [* and tl. = p via the Killing form, and L is the 
connected subgroup of G with Lie algebra [. A general element of O µ can be 
written as: 

L=P+ L9aexpa(Q)(ea+e_,,) 
aEA 

where P, Q E a. The Hamiltonian H is given by 

2 2 
1 "'"""" 9a ( ) H = 2 < P, P > + L, -( -) exp 2a Q 

a EA a, a 

and the Lax equation (4.64) becomes 

L=[L,M] 

where 
M = L+ - L_ = L 9a expa(Q)(ea - e_a) 

aEA 

If one specializes this to the case g = sl( n, IR), one gets: 

n-1 

µ = L 9i( ej,j+l + ei+l,j ), 9j > 0 
j=l 

n n-1 

H = ½ LP] + L gJ exp2(qj - qi+i) 
j=l j=l 

( 4.67) 

(4.68) 

(4.69) 

(4.70) 



n-1 

L = P + L gj exp(qj - QJ+1)(ej,j+l + ej+i,j) 
j=l 

n-1 

M = L gj exp( Qj - Qj+1 )( ej,j+l - ej+l,j) 
j=l 

and Hamilton's equations become 
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( 4. 71) 

(4.72) 

with the convention that q0 = -oo, Qn+i = oo. In this case the orbit O,, 
consists of the socalled Jacobi matrices. These have simple spectrum and the 
factorization in SL( n, IR) in this case is known as the ortho-triangular decom­
position or Q L factorization (see [8],[9],[10] and [25] for more details). 
One can also take the Yang-Baxter operator R-, because the Jacobi matrices 
are again a Poisson submanifold (but not the subspace p!). One gets the same 
Lax equation, but the factorization is somewhat more difficult. Observe that 
the Lie-brackets [ , ]R and [ , ]R- are non-isomorphic and that 

(4.73) 

and so 
( 4. 7 4) 

so 0 is an anti-automorphism of 9R- . 

Example 4.32. (Harmonic oscillator) Consider the decomposition (9 is a real 
semisimple Lie algebra) 

9=nEBb (4.75) 

where n = 9+ and b = 9o EB 9- (Borel subalgebra) and the corresponding 
Yang-Baxter operator (cf. Example 4.28) 

R = 7r n - 7rb = 7r + - 7ro - 7r - (4.76) 

and 9 = n.l.. EB b.1.., where n.l.. = 9+ EB 9o, b.l.. = 9- and also R+ = 7rn, R_ = -1rb, 
so the Hamiltonian vector field on n.l.. becomes 

VJ(x) = [x, 1r11 (F)] - 1r;[x, F] 

= [x, 1r+(F)] - (1ro + 1r+)[x, F] 
(4.77) 

If one now takes as Hamiltonian the function f(x) = ½ < x, x >, then Hamil­
ton's equations become 

(4.78) 
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Now take g = sl(n, q and take as the phase space the elements x E n1- of the 
form: 

n 

x = i LWjejj + L ajkejk (4.79) 
j=l j<k 

n 

f(x) = ½Re[tr(x2 )] = -½ L wJ (4.80) 
j=l 

with Lj=l Wj = 0 and Hamilton's equations become: 

( 4.81) 

These equations describe ½n( n -1) harmonic oscillators, which for g = sl(2, q 
reduce to the well-known one-dimensional harmonic oscillator , by taking w1 = 
-w2 = ½w, q12 = q and P12 = p. Factorizing exp[-tx(0)] one gets: 

( 4.82) 

so 
x(t) = Ad(gm(t))x(O) (4.83) 

is the solution of (4.81). 
Of course in this special case the Lax equation ( 4. 78) can be integrated imme­
diately, because xo = 0, so one does not need the factorization theorem. But 
one should observe that with respect to the given Poisson bracket Pjk and qjk 

are not canonically conjugated variables. Instead, for example in the case of 
n = 2, one has 

(4.84) 

and if one defines P = p and Q = -½q-1 then 

{P,Q} = 1 ( 4.85) 

Z = p2 +w2q 2 belongs to the center and the Hamiltonian is given by H = -¼w2 . 

Remark 4.33. One can also take R = 1r + - 1r _, because then n1- is again a 
Poisson submanifold, since Ker(R-) = n and one gets the same Lax equation. 
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4.6. Lie bialgebras. 

Consider the Poisson bracket on C00 (g) as defined in (4.3). Because g* is a 
Lie subalgebra of C00 (g), this induces a Lie algebra structure on g*, which is 
isomorphic with the Lie algebra (g, </>), so we shall denote this bracket also by 
<f>. Define the dual map </>* : g --+ g @ g by 

< </>*(x), y@ z >=< x, <f>(y, z) >, x, y, z E g (4.86) 

Definition 4.34. [47] The pair (g, g*) is called a Lie bialgebra, if </>* is a 
one-cocycle with values in g@ g, i.e.: 

d<f>*(x,y) :=</>*([x,y])-x.<f>*(y)+y.<f>*(x) =0 (4.87) 

where g acts on g @ g by: 

x.(y@z)=[x,y]@z+y@[x,z], x,y,zEg (4.88) 

The connection between Lie bialgebras and integrable systems is given by the 
following Proposition: 

Proposition 4.35. Let h(t) = exp ty E G denote a one-parameter subgroup 
of G and let 0(t) = Adh(t). Let f, g E C00 (g) be Ad-invariant, then: 

A{f,g}(x) = d{f,g}(x)([y,x]) 

=< x, (Ly</>)(F, G) > 
=< d<f>*(y, x), F@ G > 

for all x, y E g. 

Proof. 
0*{f,g}(x) = {f,g}(Adh(x)) 
=< Adh(x), </>(V f(Adh(x)), Vg(Adh(x))) > 
=< Adh(x), </>(Adh(F), Adh(G)) > 

where we have used Lemma 4.9, and so 

A{f,g}(x) = -ft lt=0 0*{f,g}(x) 

=< [y, x], </>(F, G) > + < x, </>([y, F], G) + </>(F, [y, G]) > 

and this can be rewritten in the form (4.89). 

(4.89) 

□ 

Proposition 4.36. Suppose (g, g*) is a Lie bialgebra and G is a connected, 
simply connected Lie group, then the Ad-invariant functions form a Lie subal­
gebra of C(X)(g). 

Proof. Let f, g be Ad-invariant functions, then, because d<f>* = 0, Prop. 
4.35 implies A{f,g} = 0, and this implies 0*{!,g} = {f,g}, so {f,g} is Ad­
invariant. D 
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The connection between Lie bialgebras and double Lie algebras is given by the 
following 

Proposition 4.37. [12] A double Lie algebra (g, R) is a Lie bialgebra iff: 
(i) there is a nondegenerate invariant bilinear form on g 
(ii) R is unitary. 

Proposition 4.38. Suppose g is a complex or real semisimple Lie algebra 
and (g, g*) is a Lie bialgebra, then g is also a double Lie algebra. 

Proof. Because g is real or complex semisimple each 1-cocycle is a cobound­
ary, so </>* is exact, which means that there exists a skew-symmetric tensor 
r E g 0 g, such that</>*= dr. Here dr(x) = [x 0 id+ id 0 x, r]. Now identify r 
with a unitary R E End g via the Killing form, i.e.: 

< r, x 0 y >=< x, R(y) >, x, y E g 

then one finds, using the invariance of the Killing form that 

</>(x, y) = -[R(x), y] - [x, R(y)] 

so (g, R) is a double Lie algebra. 

( 4.90) 

□ 

Remark 4.39. In this case the Ad-invariant functions form an abelian Lie 
subalgebra of C00 (g), but in general this is not true. 

Recall that (g, R) is a double Lie algebra if R is a Yang-Baxter operator. In 
general this is not a necessary condition, but one has: 

Proposition 4.40. [47] Suppose g is a complex simple Lie algebra, (g, R) is 
a double Lie algebra and R is unitary, then R is a Yang-Baxter operator. 

Proof. Define the 3-form < R, R > with values in <C by: 

< R, R > (x, y, z) =< x, [R(y), R(z)] > +cycl., x, y, z E g ( 4.91) 

Because R is skew-symmetric < R, R > is also skew-symmetric, and for all 
x,y,z,uEg: 

Lu < R, R > ( X, y, Z) 

=< [u,x], [R(y),R(z)] > + < x, [R[u,y],R(z)] > 

+ < x, [R(y), R[u, z]] > +cycl. 

=< u, [z, [R(x), R(y)] - R[R(x), y] - R[x, R(y)]] + cycl. >= 0 

because of ( 4.6) and ( 4.5). But if g is a complex simple Lie algebra, the only 
ad-invariant 3-form is a < x, [y, z] >, with a E <C, so 

< R,R > (x,y,z) =a< x,[y,z] > 
and rewriting this yields 

R[R(x), y] + R[x, R(y)] - [R(x), R(y)] = a[x, y] 

so R is a Yang-Baxter operator. 

(4.92) 

□ 
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Remark 4.41. The 3-form < R, R > is known as the Schouten bracket of R 
with itself (see [48]). 

Proposition 4.42. Suppose <fa* is ad z-invariant with z E g, which means 
<fa* ( [ z, x]) = z .<fa* ( x) for all x E g, then 0( t) = Ad exp( tz) is a Poisson automor­
phism of ( 4.3). 

Proof. This is nothing but the dual version of Prop. 4.20. □ 
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5. Hamiltonian systems of type 1-V on Lie algebras 

5.1. Introduction. 

In this chapter we are going to construct Hamiltonian systems of type I-V for 
all root systems. This will be done by defining a phase space and a Poisson 
bracket on it. Also we shall derive a Lax equation in the case of the classical 
root systems and give a Lie algebraic proof of the integrability for the systems 
of type I, II, and III. 

Let R be a root system in an n-dimensional Euclidian vector space E and let 
~, R+ and ( , ) be defined as in chapter 3. Let a f----+ 9a be a Weyl group­
invariant mapping of R into [O, oo ). This implies that 9a = 9(1 if ( a, a) = ((], (3). 
Let p, q E E and qa = ( a, q) and define: 

H = ½(p,p) + L g" 2v(qa) (5.1) 
o:ER+ 

with v(x) as in (0.3). Then H is determined by the root system R. 
Let { d1, j = 1, ... , n} be an orthonormal basis of E; denote by p1, q1 the 
components of p resp. q w.r.t. this basis and by O:j the components of a. 
Defo1e the configuration space A by: 

A= {q EE I qo: > 0,a ER+} (positive Weyl chamber) (5.2) 

for type I, II and V, and 

A= {q EE I qo: > 0, a ER+, O*(q) < d} (Weyl alcove) (5.3) 

for type III and IV. Here is n the maximal positive root, d = 7r / a for type 
III and d = 2w / a for type IV. So A consists of regular elements. The phase 
space is now defined by M = A x E. Take the canonical Poisson bracket on 
MC EXE= IR.2n; i.e. 

{f g} _ °'""' ( of og _ of!!.!!__) 
' - ~ op1 oq1 oq1 op1 

(5.4) 

for f, g E C00 (M). Then Hamilton's equations become: 

. oH 
qj = opj = P1 

. oH °'""' 2 '( ) Pj = -~ = - L.., 9a V qa O:j 
% aER+ 

(5.5) 

These equations are the generalizations of (1.6) for abstract root systems. 
If v(x) is of type I-IV then, using (1.48) and (1.49), (5.5) becomes: 

q1 = Pj, Pj = 2 L 9a 2x(qa)y(q,,)a1 (5.6) 
o:ER+ 

where the functions x and y are defined in (1.49) and (1.54). 
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5.2. The Weierstrass p-function. 

Now consider the Weierstrass function p(z; w1, w2) with half-periods w1 and w2. 

It satisfies the differential equation 

(5.7) 

The constants g2, g3 E (C are called the invariants of p and should not be 
confused with the coupling constants ga. The discriminant ~ is defined by 

(5.8) 

Let e1, e2, e3 denote the roots (in q of the cubic equation 

(5.9) 

then ~ can be expressed in terms of e1, e2, e3 by 

(5.10) 

Thus all roots are different if~ -/=- 0. Also 

(5.11) 

and of course the e1, e 2, e3 satisfy the symmetric function relations: 

The type IV case corresponds with~?: 0. Then e1, e2, e3 are real and so are 
g2, g3. If ~ > 0 the roots are numbered in such a way that e1 > e2 > e3 and 
there is the following correspondence between tuples ( p, w1, w2, g2, g3, e1, e2, e3) 

on the one side and tuples ( x( 'T/), k, k', K, K', b, c) on the other side ( with x( TJ) . 
of type IVc): 

v(ry) = a2p(ary;w1,w2) = x(ry)2 -1/3a2 (k 2 + 1) (5.13) 

e1 = 1/3(2 - k2), e2 = 1/3(2k2 - 1), e3 = -1/3(k2 + 1) 

~ = 16k4 (1 - k2 )2, b = ½a2 (k 2 + 1), c = a4 k2 

g2 = 4/3 ((1 + k2)2 - 3k2) > 0 

g3 = 4/27(1 + k2)(2 - k2)(1 - 2k2) (5.14) 

and w1 = K, w2 = iK'. 
Let z1 , z2 be the roots of the equation 

z2 - 2bz + c = 0 (5.15) 
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and D = 4(b2 - c) its discriminant, then 

z1=a2, _z2=a2k2, D=a4 (1-k2 )2 
and so z1 > z2 > 0 because 0 < k2 < 1 and also 

(5.16) 

e1 = 1/3a-2(2z1 - z2), e2 = 1/3a-2(2z2 - z1), 

Aa12 = 16Dc2 

e3 = -1/3a-2 (z1 + z2) 

(5.17) 

From (5.14) one sees that indeed e1 > e2 > e3 and moreover e1 > 0, e3 < 0 
and 

e2 = 0 if k2 = ½ 
< 0 if O < k2 < ½ 
> 0 if½< k 2 < 1 

Also 92 > 0 because 0 < k 2 < 1 and 

93 = 0 if e2 = 0 

> 0 if e2 < 0 

< 0 if e2 > 0 

(5.18) 

(5.19) 

The type II and III cases correspond with a limit situation in which A = 0, so 
k2 = 0 or k2 = 1. 

Type II: 

k = 1,k' = 0,e1 = e2 = 1/3,e:i = -2/3,92 = 4/3,93 = -8/27,q = 1,K = 
oo, K' = (1/2)1r,b = a2 ,c = a4 ,D = 0 

a2p(a77) = a2coth2a77 - 2/3a2 (5.20) 

so one gets the type Ila case and the Illa case can be obtained by the substi­
tution a -t ia. 

Type III: 

k = 0,k' = l,e1 = 2/3,e2 = e3 = -1/3,K = 1/21r,K' = oo,q = 0 

92 = 4/3, 93 = 8/27, b = 1/2a2 , c = 0, D = a4 

a2p(a77) = a2 sin-2(a77) -1/3a2 (5.21) 

so one gets the type IIIb case and the Ilb case by the substitution a -t ia. The 
type I potential can be obtained by taking the limit a -t 0 and in this case 

92 = 93 = 0, e1 = e2 = e3 = 0, K = K' = oo, b = c = D = A = 0 

This can be derived by scaling the constants 92, 93, e1 , e2, e3 and using 

s:>(1Ji92,93) = a2p(a77;92a-4,93a-6) 

Then 
v'(11)2 = 4v(77)3 - 9~v(77) - 93 

(5.22) 

(5.23) 

(5.24) 
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5.3. The Poisson structure. 

Let g be a real noncompact semisimple Lie algebra with restricted root system 
R (cf. chapter 3) and define P =Ax g. Let (q, z) E P, then T(q,z)p ~ a EE) g, 
so the Killing form induces a non-degenerate scalar product on T(q,z)p by 

(5.25) 

We will identify a and a* = E using the Killing form. One can view P as a 
trivial vector bundle over A with fiber g and projection 7f : P ---+ A, given by 
1r(q,z) = q, where (q,z) E P. 
Now define the linear map X(q) : g---+ g by: 

X(q)(z) = 0 if z E 9o, X(q)(ea) = x(o:(q))ea ( 5.26) 

and choose the function x in such a way that 

x(qa) > 0 if q EA (5.27) 

This can be realized by choosing it of type I, II b, III b, and IV c in (1.54 ). Then 
X(q) is semisimple, and because of (5.27) Ker X(q) = go and X(q): gc}---+ gc} 
is an isomorphism. Now define x- 1 (q) by 

(5.28) 

In the same way define the map Y ( q) : g ---+ g by 

Y(q)(z) = 0 if z E 9o, Y(q)(ea) = y(o:(q))ea (5.29) 

and R := -Y x- 1 (From now on we suppress the q-dependence). Because x(ry) 
is uneven and y( 77) is even, it follows that 

X : t ---+ p, p ---+ t, Y : t ---+ t, p ---+ p (5.30) 

Lemma 5.1. The maps X, Y satisfy the following properties: 
(i) X is skew-symmetric and Y is symmetric with respect to the Killing form. 
(ii) X and Y commute. 
(iii) X and Y commute with ad z for all z E 9o­
(iv) 

1ro[X(x), y] = -1ro[x, X(y)] 

1ro[Y(x), y] = 1ro[x, Y(y)] for all x, y E g 

where 1ro denotes the projection on 9o-

(5.31) 

Proof. (i) is clear because x(ry) is uneven and y(ry) is an even function. (ii) 
is trivial, (iii) follows from the definition and from the fact that [go, g,~] C 9a 
and (iv) follows from (i) and (iii). D 
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Now define 

[x, y]n = [1ra(x), R(y)] + [R(x), 1ra(y)], x, y E g 

where 7f a denotes the projection on a. 

Proposition 5.2. Formula (5.32) defines a new Lie bracket on g 

Proof. 

[[x, Y]n, z]n + cycl. 

= [[1ra(x), R(y)] + [R(x), 1ra(Y)], z]n + cycl. 

= [R[1ra(x), R(y)] + R[R(x), 1fa(y)], 1fa(z)] + cycl. 

= [[1ra(x), R2(y)] + [R2(x), 1fa(y)], 1fa(z)] + cycl. 

= [[1ra(x), R2(y)], 1fa(z)] + [[R2(y), 1fa(z)], 1fa(x)] + cycl. 

= [[1ra(x), 1fa(z)], R2(y)] + cycl. = 0 

(5.32) 

where we have used Lemma 5.l(iii),(iv) and the Jacobi identity for [ , ]. D 

Now consider the corresponding Lie-Poisson bracket on C00 (g). This can be 
extended to a Poisson bracket on P in the following way. Let f, g E C00 ( P) and 
F1 and F2 the components of F = v' f(q, x) (with respect to the decomposition 
P =Ax g), then define 

{J,g}i(q, x) =< x, [F2, G2]n > 

where (q,x) E P and R = R(q). 

(5.33) 

Proposition 5.3. Formula (5.33) defines a Poisson bracket on P, which is 
linear on each fiber g. 

Proof. The skew-symmetry and Leibniz rule are clear, so from chapter 2 we 
know that it is suffient to prove the Jacobi identity for coordinate functions. For · 
coordinate functions on g it reduces to the Jacobi identity for the Lie bracket 
[ , ]n on g. Now observe that 

(5.34) 

D 

Now define a second bracket on C00 (P) by setting for (q,x) E P and f,g E 

C00 (P) 
(5.35) 

Proposition 5.4. Formula (5.35) defines a Poisson structure on P. 

Proof. Trivial, because the corresponding structure matrix is constant and 
skew-symmetric. D 
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Proposition 5.5. The brackets { , }o and { , h form a Hamiltonian 
pair, which means that { , }0 + ..\.{. , h satisfies the Jacobi identity for 
all..\. E JR. 
Proof. Because { , }0 and { , h are Pois;on brackets, one only has to 
prove that 

{{f,g}o,hh + {{f,g}i,h}o + cycl. = 0 (5.36) 

To prove this it is sufficient to prove it for coordinate functions and then it 
is clear that the first term of (5.36) is zero because the structure matrix of 
{ , } 0 is constant, so one only has to prove: 

{ {/, g}i, h}o + cycl. = 0 

First we prove the following Lemma: 

(5.37) 

Lemma 5.6. Let f, g be coordinate functions on P and (q, z) E P, then 

1r1 v'{f,g}i(q, z) = 1ra[R'(G2), [z, 1ra(F2)]] + 1ra[R'(F2), [1ra(G2), z]] (5.38) 

(5.39) 

where 

R'(q)(ea) = r'(a(q))ea, r(TJ) = -x-1(TJ)Y(TJ) = x-1 (TJ)x'(TJ) 

Proof. Let ( q( t), z + ty) be a curve in P through ( q, z ), then 

< v'{/1 g}i(q, z), (ci, y) > 

= ft I t=O {/, g}i(q(t), z + ty) 

= ft I t=O < Z + ty, [1r2 y' f(q(t), Z + ty), 11"2 y' g(q(t), Z + ty)]R(q(t)) > 
=< Y, [1r2 v' f ( q, Z ), 1r2 v' g( q, z )]R(q) > 

+ < z, ft I t=O [1r2 y' f(q(t), Z + ty), 11"2 y' g(q(t), Z + ty)]R(q(t)) > 
=< y, [F2, G2)R(q) > + < z, [1raF2, [ci, R'(q)(G2)]] > 
+ < z, [[q, R'(q)(F2)], 1raG2] > 
=< Y, [F2, G2)R(q) > 
+ < q, [R'(q)(G2), [z, 1raF2]] + [R'(q)(F2), [1raG2, z]] > 

where we have used Lemma 5.1. This proves Lemma 5.6. 

Now substitute (5.38) and (5.39) in (5.37) to obtain: 

< 1r2v'{f,g}i(q,z),H1 > - < 1r1v'{f,g}i(q,z),H2 > +cycl. 

□ 

The first term is zero because H1 Ea and [F2 , G2]R E g~ and the second term 
becomes: 

- < [R'(G2), [z, 1raF2]] + [R'(F2), [1raG2, z]], H2 > +cycl. 

=< z, [1raF2, [R'(G2), 1raH2]] + [[R'(F2), 1raH2], 1raG2] > +cycl. = 0 

for the same reason as in the proof of Prop. 5.2. This ends the proof of Prop. 
5.5. □ 
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Now define 
{f,g} = {J,g}i + {f,g}o (5.40) 

This is a Poisson structure on P, and the Hamiltonian vector field correspond­
ing to a function f is given by: 

where (q,x) E P. 

Now chooseµ E g} and define 

P,,, = {(q, X(q)µ + xo), q EA, xo E 9o} (5.42) 

Remark 5. 7. P,,, can be viewed as a trivial fibre subbundle of P = A x g, 
because 'ljJ : Ax go --> P,,, C P, defined by 'l/;(q, xo) = (q, X(q)µ + xo) is an 
isomorphism, which is linear in the fibres. 

Lemma 5.8. We have 
C00 (m) c Z(C00 (P)) 

Proof. Let f E C00 (m) then F1 = 0 and F2 E m, so from (5.41) it follows 
that v1(q,x) = 0 for all (q,x) E P, and so f E Z(C00 (P)). □ 

Proposition 5.9. P,,, is a Poisson submanifold of P. 

Proof. Let (q(t), x0 (t) + X(q(t))µ) denote a curve in P,,, with q Ea, xo Ego. 
Differentiating this with respect to t gives 

(q(t), [Y(q(t))µ, q(t)J + xo(t)) E T(q,x)Pµ, (5.43) 

and comparing this with (5.41) one sees that v1(q,x) E Tcq,x)Pµ, for all (q,x) E 
P and f E C00 (P), so using Lemma 2.27 we conclude that P,,, is a Poisson 
submanifold of P. □ 

One can rewrite Hamilton's equations on P,,,, using Lemma 5.1 and the defini­
tion of R and one gets: 

(5.44) 

Proposition 5.10. If µ E t then P,,, is a Poisson manifold of constant rank 
2l, where l = dim a. 

Proof. Consider the map B(q, x) : T(q,x)Pµ, --> T(q,x)Pµ, with (q, x) E P,,,. 
From Lemma 5.8 and Prop. 5.9 it follows that 

m c Ker B(q, x), Im B(q, x) c T(q,x)Pµ, (5.45) 
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and also dimT(q,x)P1,, = 3l - 8 (where 8 as defined in chapter 3). Because 
dimKerB(q,x) +dimimB(q,x) = dimT(q,x)Pµ it is sufficient to prove that 
KerB(q,x) = m. So let v(q,x) = (cj, [Yµ,cj] +xo) E T(q,x)Pµ and assume that 
v( q, x) E Ker B( q, x ), then one has: 

1r11 xo = 0, q = 1r11 [Yµ, [Yµ, cj]], cj Ea, xo E 9o 

but this implies 

0 :S< cj, cj > =< cj, 1r 11 [Y µ, [Y µ, cj]] > 
=< [cj, y µ], [Y µ, cj] > 
= - < (cj, Yµ], [cj, Yµ] >:S 0 

(5.46) 

(5.47) 

because Y µ E e and the Killing form is positive-definite om p. Thus< cj, cj >= 0 
and so cj = 0, which implies that v( q, x) E m. □ 

Corollary 5.11. The symplectic leaves of P1, have dimension 2l and they 
intersect P1,, in the coordinate slices mj = const., where { mj, j = 1, ... , dim m} 
are coordinates on m. 

Remark 5.12. We will denote by Pi the symplectic leaf, for which mj = 0. 
In that case one has x E p and a general element of Pi will often be denoted 
by (Q,L), where Q Ea, LE p and PE a. 

5.4. Derivation of Hamilton's equations. 

Now we are ready to give a (generalized), K.A.S.R.S type construction of the 
Hamiltonian systems as defined in Section 5.1. 

Choose 0 -/- ea E 9a for a E R+ with normalization (3.21) and (3.22) and 
define 

µ = L ga(ea + e_a) Ee (5.48) 
aER+ 

where ga is a Weyl group invariant function of a. Because in general dim 9a = 
ma > 1, this choice is not unique. To describe the models of type I-IV define 
on P,, the following function 

f(q,x) = ½ < x,x > (5.49) 
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where (q,x) E Pµ,. Using (3.27) one finds 

J(q,x) = ½ < xo + Xµ,xo + Xµ > 

= ½ < xo, xo > +½ < L X(ea + e_a), L X(e13 + e_13) > 
aER+ /3ER+ 

= ½ < xo, Xo > +½ L 9a913x(a(q))x(,8(q)) < ea - e_a, e13 - e_/3 > 
a,/3ER+ 

= ½ < xo,xo > + L 9a 2x(a(q))2 

aER+ 

= ½ < P,P > + L g,}v(qa) + ½ < Xm,Xm > 
aER+ 

(5.50) 
where xo = p + Xm, p E a, Xm E m. Restricting this to a symplectic leaf, where 
Xm =canst., gives the Hamiltonian (5.1) of type I-IV. 
From (5.49) one derives 

F1 = 0, F2 = X 

and substituting this in (5.44) one finds: 

and so 
p = 1rax = 1ra[Yµ,Xµ] 

= 7ra[ L 9aY(ea + e-a), L 913X(e13 + e_13)] 
/3ER+ 

= L 9a913Y(a(q))x(,8(q)}rra[e,, + e_a, e13 - e_13] 
a,/3ER+ 

= L 9a 2y(qa)x(qa)ta 
aER+ 

(5.51) 

(5.52) 

(5.53) 

Now take the components with respect to the orthonormal basis { dj, j = 
1, ... , n} of E and one gets back the Hamilton equations (5.5) and (5.6). Here 
we make constantly use of the identification of a and a* = E. Under this 
identification one has the correspondence 

v a h a := -(--) +-> a 
2 a,a 

(5.54) 

To describe the system of type V one has to take as Hamiltonian the function: 

H = f(q,x) = ½w2 < q,q > +½ < x,x > 

where w E IR is a constant, and then 

(5.55) 

(5.56) 
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Substituting this in (5.39) one finds 

q = P, x = [Yµ,p] + 1r0 [Yµ, Xµ] - w2q ( 5.57) 

and one easily verifies that these are the same equations as (1.58) in the case 
of a root system of type An-I (if one identifies q with Q, p with P and x with 
L ). So we shall view (5.55) as the generalization of the type V Hamiltonian for 
abstract root systems. 

5.5. A condition on µ. 

Hamilton's equations (5.52) and (5.57) are not yet in Lax form. In order to 
derive the Lax equation one has to impose conditions on the element µ, where 
µ E t n m.L. It turns out that a sufficient condition is the following: 

(Vk E t)(1rm[k, µ] = 0-+ 3m Em, [k + m, µ] = 0) (5.58) 

In chapter 6 it is shown that such elements do exist. In the split case, when 
m = {O}, the condition is trivial and implies that µ E Z(t). In section 6.1 the 
nontrivial cases, where t is not semisimple, are listed. In this section we will 
assume that g is not of split type, so m =f. {O}. 
Now consider the following chain of maps: 

(5.59) 

where A = 1r m o adµ, 1r m denotes the projection on m and 1rif denotes the 
projection on gt. Then (5.58) is equivalent with : 

Ker Ac Im1r5"" 

but one also has: 

Im 1r5"" c Ker A 

because µ E t n gt. 

Lemma 5.13. m = Centm(µ) EBimA 

Proof. 
Im A= (Ker A*).L = Ker(ad µ o 1rml 

= (m.L EB Centm(µ)).L 

= Centm(µ).L nm 

and m = Centm(µ) EB Centm(µ).L nm 

(5.60) . 

(5.61) 

□ 



50 

Using Lemma 5.13 and (5.61) one obtains the following relations: 

dim Centt(µ) = dim Centm(µ) + dim Im ?T,;1-

dim t n g~ = dim Ker A+ dim Im A = dim Ker A+ dim m - dim Centro(µ) 

dim Im ?Tf ::;; dim Ker A 

Using these relations one can prove: 

(5.62) 

Proposition 5.14. Suppose µ E t n mj_, then the following properties are 
equivalent: 
(i) dim Ker A= dim Im ?Tt (which implies (5.58)) 
(ii) dimCentt(µ) = dimt- 2dimm + 2dimCentro(µ) 

Proof. 
(i)⇒(ii) 

dim Centt(µ) = dim Centm(µ) + dim Im ?Tf 
= dim Centro(µ) + dim Ker A 

(ii)⇒(i) 

= dim Centm (µ) + dim t n g~ - dim m + dim Centm (µ) 

= dim t - 2 dim m + 2 dim Centm (µ) 

dim Ker A = dim t - 2 dim m + dim Centm (µ) 

= dimCente(µ) - dim Centro(µ) 

= dimim?Tf 

□ 

Remark 5.15. So we are looking for elements µ E t n mj_ for which the 
dimension of the AdK-orbit is equal to 2 dim m - 2 dim Centro(µ). In [ 45] Adler 
also derives some sufficient conditions on µ. He remarks that his properties A 
and B imply that one should look for µ's whose orbits have dimension 2 dim t. 
However, his construction only seems to work for Lie algebras of type IV, and in 
this case his condition coincides with ours if one requires that dim Centm (µ) = 
0. So in this case our condition is more general and we will show in section 
6.1 that the only µ which satisfies this condition is the one already known 
for the An-l case. Moreover, our condition can be formulated for all real 
semisimple Lie algebras and our proof of the integrability assumes no other 
special properties of g. Adler also requires that 9a =/- 0, but in the BCn case 
this is not necessary. 
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Because m C Ker A and Im A C m it follows that Im A C Ker A, so A2 = 0. 
Now 

t = Ker A EB (Ker A)J_ 

= Ker A EB Im (adµ o 1rm) 

and if one of the conditions of Prop. 5.14 is satisfied one can define a linear 
map 

M: Ker A---+ Im A (5.63) 

as follows: if k E Ker A then according to (5.58) there exists an element m Em 

such that (k + m, µ] = 0. But because of Lemma 5.13 one may take the 
component of m in Im A and still (k + m, µ] = 0. This uniquely defines a linear 
map M : Ker A ----+ Im A with the property that [M(k) + k, µ] = 0, in other 
words: 

M +id: Ker A----+ Centt(µ) 

We also observe the following 

(5.64) 

Proposition 5.16. Ifµ satisfies one of the properties in Prop. 5.14, then one 
has the following exact sequence of maps: 

Proof. Trivial. 

5.6. Derivation of the Lax equation. 

( 5.65) 

□ 

Now we are ready to derive a Lax equation for the models of type I-V. Recall 
the functional equation 

(5.66) 

Let q E A, o:, /3 E R and o: + /3 E R and take 'r/ = o:( q), l = f3(q), then one gets 
the following equation for the maps X and Y: 

(5.67) 

Now let z1,z2 E gt, with z1 = I:aER>..°'ea,z2 = I:/3ERµf3e/3, then, because of 
linearity, one easily derives that 

(5.68) 

for all z1, z2 E gt. 
Now suppose that µ E t n gt satisfies (5.58). Choose z1 = z2 = µ in (5.68), 
then 

(5.69) 
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Now 
1rm[µ,X 2µ] = -1rm[Xµ,Xµ] = 0 

so X 2 µ E Ker A and thus 

(5.70) 

where M : Ker A-> Im A is the map which was defined in section 5.5. And so 

X[µ,X 2µ] = X[MX 2µ,µ] 

= [MX 2µ,Xµ] 

where we used Lemma 5.1. 

(5.71) 

Proposition 5.17. Supposeµ satisfies (5.58) and X and Y satisfy the func­
tional equation (5.67), then Hamilton's equations (5.52) on Pµ can be written 
in the form: 

q = p, X = [ M, X - Xm] (5.72) 

where (q, x) E Pµ, Xm denotes the component of x in m, and M = MX 2µ+Yµ. 
So on the symplectic leaf PJ, x is in Lax form, i.e. x = [ M, x]. In general one 
has on Pµ Xp = [M, Xp], because Xm = 0. Here Xp denotes the projection of x 
on j). 

Proof. Substitute (5.69) and (5.71) in (5.52) to find 

x = [Yµ,p] +1ra[Yµ,Xµ] 

= [Yµ,p] + [Yµ,Xµ]- 1rcf[Yµ, Xµ] 

= [Yµ,x -xm] + X[µ,X 2µ] 

= [Yµ,x-xm] + [MX 2µ,Xµ] 

= [MX 2µ + Yµ,x - Xm] = [M,x - Xm] 

where M = MX 2 µ + Y µ. D 

Using this result one can also easily derive a Lax equation for the type V model. 
Indeed, on PJ Hamilton's equations (5.57) become 

(5.73) 

Now let g be the Lie algebra of an associative algebra and define N = x 2 +w2q2 , 

then 
N = xx + xx + w2(<jq + q<j) 

= [M, x]x - Ciqx + x[M, x] - w2xq + w2(pq + qp) 

= [M, x2] -w2{(Xµ)q + q(Xµ)} 

(5.74) 



On the other hand one has, because in this case Y = X 2 

[M, N] = [M, x2 + <~::,2q2] 

so N is in Lax form. 

= [M,x2] +w2 [X2µ,q2] 

= [M,x2] +w2q[X2µ,q] +w2[X2µ,q]q 

= [M, x2] -w2{q(Xµ) + (Xµ)q} 

5.7. A proof of the integrability for type I, II, and III. 
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(5. 75) 

To prove that the Ad-invariant functions are in involution on Pµ we first derive 
another form of the functional equation (5.66). For notational convenience we 
write f for the function x. 

Proposition 5.18. Suppose the function f satisfies the functional equation 

f(x)f'(y) - J(y)J'(x) = f(x + y)(f(x)2 - f(y)2) (5.76) 

and 

J'(x)2 = f(x)4 - 2bf(x)2 + c, f(x) =J 0 

then f also satisfies the functional equation 

( f'(x) f'(y)) C 

f(x + y) f(x) + f(y) = f(x)f(y) - f(x)f(y) 

Proof. 

f(x + y) (f'(x) + f'(y)) (f(x)2 - f(y)2) 
f(x) f(y) 

= f(x + y)(f(x)2 - f(y)2)(f(x)f'(y) + f(y)J'(x))[f(x)f(y)r 1 

= (f(x)J'(y) - f(y)J'(x))(f(x)J'(y) + f(y)f'(x))[f(x)f(y)r 1 

= (/(x)2 f'(y)2 - f(y)2 J'(x)2)[f(x)f(y)rl 

(5.77) 

(5.78) 

= {f(x)2(f(y)4 - 2bf(y)2 + c) - f(y) 2(f(x)4 - 2bf(x)2 + c)}[f(x)f(y)r1 

= (c - f(x) 2 f(y) 2)(/(x)2 - f(y)2)[f(x)f(y)r 1 

which implies (5.78). □ 

In fact, given (5.77), (5.78) and (5.76) are equivalent, because 
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Proposition 5.19. Suppose f satisfies (5.77) and (5.78), then it also satisfies 
(5.76). 

Proof. Differentiating (5.78) to x resp. y and subtracting, one gets 

( f"(x) f"(y)) 
2/(x + y) 2f(x) - 2f(y) 

( f'(x) 2 f'(y) 2) -1 (f'(x) f'(y)) 
= f(x + y) f(x)2 - f(y)2 - c[f(x)f(y)] f(x) - f(y) 

+ f(x)f'(y) - f'(x)f(y) 

( c ) (f'(x) f'(y)) 
= f(x)f(y) - f(x)f(y) f(x) - f(y) 

C (!'(x) f'(y)) / I 
- f(x)f(y) f(x) - f(y) + f(x)f (y) - f (x)f(y) 

= 2(/(x)f'(y) - f(y)f'(x)) 

which implies (5.76), because (5.77) implies 

f"(x) = f( )2 - b 
2f(x) X 

(5.79) 

□ 

Corollary 5.20. If f satisfies (5.78) and (5.77), then R = -Y x-1 and X 
satisfy the equation 

Now let f E C00 (g) be an Ad-invariant function, viewed as a function on Pµ,, 
by defining f(q,x) = f(x). Then F1 = 0 and F2 = F = Vf(x). 

Lemma 5.21. Let f be an Ad-invariant function, viewed as a function on 
Pµ,, then 1rm[µ, X(1rpF)] = -[1rmF, 1rmx]. 
Proof. Because f is Ad-invariant one has [F, x] = 0. Taking the £-component 
of this gives [1rpF, 7rpx] = [1rmx, 1riF]. Using this one gets: 

1rm[µ, X(1rpF)] = -1rm[Xµ, 1rpF] = -1rm[1rpx, 1rpF] 

= -1rm[1riF, 7rmX] = -[1rmF, 7rmX] 

where we have used extensively the commutation relations (3.9). □ 

Corollary 5.22. X( 1rpF) E Ker A if one of the following conditions is satis­
fied: 
(i) g is quasi-split. 
(ii) f is restricted to the symplectic leaf Pi. 
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So ifµ satisfies (5.58), f is Ad-invariant, and one of the conditions in Corollary 
5.22 is satisfied, one can write 

and so 
X[µ, X(1rpF)] 
= X[MX(1rµF),µ] 

= [MX(1rpF), Xµ] 
= [MX(1rpF), x] 

By taking F = x one gets back (5.71). 

(5.81) 

(5.82) 

Using (5.80) one can rewrite the bracket { , h on Pµ, as follows, where we 
write F = F2 and G = G2: 

{f, g}i(q, x) =< x, [1raF, R(G)] + [R(F), 1raG] > 
=< x, [1raF, R(1rpG)] + [R(1rpF), 1faG] > 
=< x, [1rpF, R(1rpG)] + [R( 1rpF), 1rpG] > 

- < x, [1rt1rpF, R(1rpG)] + [R(1rpF), 1rt1rpG] > 

The second term in (5.83) becomes, using Lemma 5.1: 

- < Xµ, [1rt1rpF, R(1rpG)] + [R(1rpF), 1rt1rpG] > 

=< µ, X[1rt Fp, R(Gp)] + X[R(Fp), 1rtGP] > 

= c < µ, 1rt[x-1(Fp), x-1(Gp)] > - < µ, 1rt[x(Fp), X(Gp)] > 
= c < µ, [x-1(Fp), x- 1(Gp)] > - < µ, [X(Fp), X(Gp)] > 

(5.83) 

(5.84) 

where Fp resp. GP denote the components of F resp. G in p. So the Poisson 
bracket on Pµ, can be written as: 

{f, g }i(q, x) =< x, [R(Fp), Gp]+ [Fp, R(Gp)] > 
+ c < µ, [x-1(Fp), x- 1 (Gp)] > (5.85) 

- < µ, [X(Fp), X(Gi,)l > 

so the Hamilton vectorfield corresponding to a function f becomes 

vJ(q, x) = (1raF, 1rp[x, R(Fp)] - 1rpR[x, Fp] 

- cX-1[µ, x-1(Fp)] + X[µ, X(Fp)] - F1) 
(5.86) 
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Theorem 5.23. Let Pµ be the phase space of the models of type I, II or III, 
with Poisson bracket (5.40). Let f, g E c=(g) be Ad-invariant functions, viewed 
as functions on Pµ, whereµ satisfies (5.58). Then they are in involution on Pg 
and the Hamiltonian vectorfield on Pg corresponding to such an Ad-invariant 
f can be written as: 

(5.87) 

Proof. For the models of type I, II and III, one has c = 0, if the function 
x('TJ) is chosen of type I, Ilb and IIIb. If (q,x) E Pg then x E p, so if f is 
Ad-invariant then [Fp, x] = 0. Using this and (5.82), one can rewrite (5.86) as: 

x = [x, R(Fp)] + X[µ, X(Fp)] 

= [x, R(Fp)] + [MX(Fp), x] 

Now the involution off and g follows as a corollary, because [G, x] = 0. □ 

Remark 5.24. For the general model of type IV this proof does not work, 
because it is not clear how the c-term in (5.86) can be recast in Lax form. 
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6. Construction of examples 

6.1. Classification ofµ. 

So we have shown in the previous chapter that (5.58) is a sufficient condition 
to derive the Lax equation and to prove that the Ad-invariant functions are 
in involution. In section 5.5 it was shown that (5.58) is equivalent with a 
restriction on the dimension of the AdK-orbit through µ. From this condition 
we derive a necessary inequality and classify all elements µ which satisfy that 
inequality. In the case of the classical root systems we thereby restrict ourselves 
to the Lie algebras of quasi-split type. One reason for this restriction is that 
all the examples that are found up to now, are connected with quasi-split Lie 
algebras. Moreover, in these cases µ can be defined in a canonical way, as will 
be shown in section 6.2 and 6.3. For the root systems of exceptional type we 
also list the possible elements in the non-quasi-split case. 
So let g be a real simple noncompact Lie algebra with Cartan involution B. Let 
t be a Cartan subalgebra oft which contains IJk- From the classification in [30] 
it follows that t will be of the form: 

(6.1) 

where c denotes the center of t, with dim c < 1 and t1 and t2 are simple. 
Evidently one has c C t and so 

(6.2) 

where t1 and t2 are Cartan subalgebras of t1 and t2. From Prop. 5.14 it follows 
that it is sufficient to look for elements µ E t n mJ. which satisfy 

dim Centi(µ) = dim t - 2 dim m + 2 dim Centm (µ) 

but because Centi(µ)= c E9 Centts(µ) this becomes: 

(6.3) 

dim Cent is(µ) = dim ts - 2 dim m + 2 dim Centm (µ) ( 6.4) 

Furthermore we assume that g is not split, so m -/= {O}, otherwise µ E c. 
Because t = AdK(t) and because dimension relations are the same for the 
whole orbit, we are looking for elements t E t, of the form: 

(6.5) 

which satisfy: 

dimCentts(t) = dimt8 - 2dimm+ 2dimCentm(µ) (6.6) 

where tc is the component oft in c and t 8 the component oft in t1 E9 t2. 
Ifµ E c thenµ satisfies (6.3), but because we also require that µ E mJ. this is 
only a nontrivial solution if c C mJ., so: 
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Lemma 6.1. Suppose dime= 1, thenµ E c satisfies (6.3) and O-=/= µ E m.l 
iff CC m..L. 

In general c c/.. m.l but: 

Lemma 6.2. c nm= {O}. 

Proof. Suppose c E cnm, choose q Ea+· Normalize the root vectors ea such 
that ea - e_a E j:l, then 

because [q, ea - e_a] E £ and c E c. So [c, ea - e_a] E a because q is regular. 
But because c E m one also has [c, ea - e_a] E a.1, which implies [c, ea] = 0 for 
all a ER+, because [m, 9a] C 9a· But this means that c E Z(g) = {O}. D 

Now consider the complexification £c = ls EB its, which is again semisimple, 
with Cartan subalgebra IJ = ts EB its. Let IJ1 = t1 EB it1 and IJ2 = t2 EB it2. Let <I> 
denote the root system of the pair (£c, IJ) with root space decomposition 

Then dim g°' = 1. For each a E IJ* define ta E IJ such that 

"'(ta, h) = a(h) for all h E 1J 

(6.7) 

(6.8) 

where"'(,) is the Killing form of £c. Then its = IR-< ta, a E <I> )-. So it is clear 
that our problem is equivalent to finding an element h E its which satisfies 

dimCentec(h) =dim£ • ...- 2dimm+ 2dimCentm(µ) (6.9) 

Now it is easy to see that 

dim Centec(h) = dime 1J + I{ a E <I> I a(h) = O}I 

but dime IJ = dim ts, so (6.9) becomes 

(6.10) 

dim£., - dim ts - 2 dim m + 2 dim Centm(µ) = I{ a E <I> I a(h) = O}I (6.11) 

Now let Li denote the simple roots of <I>, <I>+ the positive roots. Identify IJ with 
IJ*, using the Killing form of £c. Define the fundamental dominant weights 

* 1 -Aj E IJ by (>..j,ak) = 2(ak,ak)8jk, where ak E ~-
Because of the Weyl group invariance of our problem and because each weight 
>.. E IJ* is conjugate under the Weyl group to a dominant weight, it is sufficient 
to find a a dominant weight 

dim!J 

>.. = L CjAj, 
j=l 

c· > 0 
J -

(6.12) 
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which satisfies 

2b(>.) =dime. - dim t. - 2 dim m + 2 dim Centm(µ) ( 6.13) 

where 
b(>.) = l{a E <I>+ I (a,>.)= 0}I (6.14) 

One can calculate b(>.) as follows: colour the vertices of the Dynkin diagram 
of <I> black which correspond to the >.j for which c_i =/= 0, then 2b(>.) equals the 
total dimension of the subdiagrams which are formed by the white vertices. 

Example 6.3. Consider <I>= A3 and take>.= c1>.1, then 2b(>.) = IA2I = 6. 
Here IA2I denotes the total number of roots in A2. 

From (6.13) one can derive the following necessary condition: 

2b(>.) 2: dimes - dim ts - 2 dim m (6.15) 

First consider the Lie algebras of type IV. Then e is semisimple and dim m = 
dim t = l, so (6.15) becomes: 

2b(>.) 2: dime - 3l (6.16) 

1. Consider g = sl( n + 1, q, viewed as a real Lie algebra, then e = su( n + 
1), R = <I> = An, l = n, dime = n( n + 2). It is easy to see that 2b( >.) ::; dime - 3l 
and one has equality if>.= c1>.1 or>.= c.,,>.n, with c1, Cn =/= 0, because IAn-1 I = 
n(n - 1) = n(n + 2) - 3n. So, combining this with (6.13), this means that one 
must require that Centm(µ) = {0}. 

It turns out that this is the only solution in the case of the type IV algebras, 
because, using the information in [29),[30] and [35] and the inequalities: 

IDnl::; IAnl::; IB,,I for n::; 3 

IAnl < IDnl < IBnl for n > 3 

it is easy to verify that for all the other root systems 

2b(>.) <dime - 3l 

Example 6.4. Take g = G2, then dime= 14, but 2b(>.)::; IA11 < dim e-3l = 
8. 

Next consider the normal real forms. Then, cf. Lemma 3.12, g is split, i.e. 
dim m = 0, so (6.3) implies thatµ E c. So all the possible solutions correspond 
with the cases where e is not semisimple. This gives the following examples: 
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2.AI (n = 2): g = sl(2, JR.),£= so(2), dim£= 1, R = A1 (isomorphic with AIII 
(p=q=l)). 

3. DI (p = q+2): g = so(2, 2), £ = so(2)EBso(2), R = D2 ~ Ai xA1 (isomorphic 
with AI (n = 2)xAI (n = 2)). 

4. CI (n ;::: 1): g = sp(n, IR.), £ = u(n), R = Cn (the case n = 1 is isomorphic 
with AI (n = 2)). 

5. BI (q = l,p = 2): g = so(2, 1), £ = so(2), R = Bi = Ai (isomorphic with 
AI (n = 2)). 

6. BI (q = 2,p = 3): g = so(3, 2), £ = so(3) EB so(2), R = B2 (isomorphic with 
CI (n = 2)). So the only non-isomorphic case is CI (n 2 2), withµ E c. 

Next consider the quasi-split Lie algebras of type III which are not normal real 
forms. 

7. AIII (p = q = n 2 1): g = su(n, n), £ = c EB su(n) EB su(n), R = Cn, IJ> = 
An-I EBAn-l, dim£= 2n2 -1, dim m = n-1, dim l = 2n-l, so dim fs -dim ls -

2 dim m = 2( n - 1 )2 and the only solutions are: 

A= (c1.X1,0), A= (cn-IAn-I,O) 

Here .X1 and An-I denote fundamental dominant weights and the notation 
(c1.X1,0) means that the component of .X in Qi is c1.X1 and the component of .X 
in Q2 is zero. These two cases are conjugate under the Weyl group so consider 
the first one. If c1 = 0 then µ E c and because in this case c C m.L, this is a 
solution. If c1 =/- 0 then 

2b(.X) = IAn-21 + IAn-11 = (n - l)(n - 2) + (n - l)n = 2(n -1)2 

so one has equality in (6.15) and so one must require that dimCentm(µ) = 0. 
Of course one also has the solutions .X = (0, ci.X1) and .X = (0, c,,_1.An-1) with 
dimCentm(µ) = 0. 
From this it is clear that for all other choices of .X one has 2b(.X) < 2(n - 1)2 . 

8. AIII (p = q + 1 = n + 1 2 2): g = su(n + 1, n) and £ = c EB su(n + 1) EB 
su(n), dim£= 2n(n + 1), R = BCn, IJ> = An EE, An-I, dimm = n,diml = 2n, so 
dim £8 - dim ls - 2 dim m = 2n(n -1) and one has the solution .X = (ci.X1, 0) or 
the conjugate solution .X = (en.An, 0). In this case c (/_ m.L, so one must take c1 =/-
0 and then 2b(.X) = 2IAn-1I = 2n(n - 1). So one has again equality in (6.15) 
and one must require that dim Centm(µ) = 0. Another solution is .X = (0, c1.X1) 
or A= (O,cn-lAn-d, with c1,cn-l =/- 0 and 2b(.X) = 2(n2 -n+ 1) 2 2n(n- l). 
In this case one must require that dim Centm (µ) = 1. One can easily verify 
that for n 2 5 these are the only solutions and for all other choices of .X 
we have 2b( .X) < 2n( n - 1). For n = 3 one has furthermore the solution 
.X = (0,c1.X1 + c2.X2), with ci =/- 0 A. c2 =f. 0 and 2b(.X) = 12 so one must have 
dim Centm(µ) = 0. For n = 4 there is the solution .X = (0, c2.X2) with 2b(.X) = 24 
so again dim Centm(µ) = 0. 
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9. BDI (p = q + 2, q = n ~ 1): g = so(n + 2, n), t = so(n + 2) EEl so(n), dim t = 
n( n + 1) + 1, dim m = 1, R = En and 

dim t = n + 1 if n is even 

= n if n is uneven 

The n = 1 case is isomorphic with the case g = sl(2, q and the n = 2 case 
is isomorphic with AIII (p = q = 2), so let n ~ 3. For n = 3 one has 
dim t-dim t-2 dim m = 8 and t ~ B2E0A1 and the only solution is>.= (0, ci>.i) 
for which 2b(>.) = 8. Because one has equality in (6.15) one must require 
dimCentm(µ) = 0. But in this case m C so(5), so dimCentm(µ) = 1, which 
means that there is no>. satisfying (6.13). 
For n = 4 one has dim t- dim t- 2 dim m = 14 and t = s0(6) EEl so( 4) ~ A3 EEl D2 
and D2 ~ A1 x A1. The only>. which satisfies (6.15) is>.= (0, c1>.1, 0) and in 
this case 2b(>.) = IA3I + IA1 I = 14. Again one has equality in (6.15) so one must 
require dimCentm(µ) = 0, but because m C s0(6) one has dimCentm(µ) = 1. 
So again there is no >. which satisfies (6.13). One can easily check that for 
n ~ 5 one has 2b( >.) < dim t - dim t - 2 dim m. 

10. EII: g = E5, R = F4 , t = su(6) EEl su(2), dim t = 38, dim m = 2, dim t = 6, 
so dim t - dim t - 2 dim m = 28 and because 4> = A5 EEl A1, the only possibility 
is >. = (0, c1>.1) with c1 =/- 0 and then 2b(>.) = IA5I = 30, so for (6.13) to be 
satisfied one must have dim Centm(µ) = 1. But m C su( 6) so this cannot be 
the case. 

Let us finally consider the non-quasi-split cases where R is of exceptional type. 

11. EVI: g = E1, R = F4, t = so(l2)EElsu(2), 4> = D5 E0A1, dim t = 69, dim m = 
9, dim t = 7, so dim t - dim t - 2 dim m = 44, and the only solution is ,\ = 
(0,c1>.1) with c1 =/- 0 and 2b(>.) = ID61 = 60, so one must require that 
dimCentm(µ) = 8. But m C so(12) so this cannot be the case. 

12. EIX: g = Es, R = F4 , t = E1 EEl su(2), 4> = E 7 EEl A1, dim t = 136, dim m = 
28, dim t = 8, so one must require 2b(>.) ~ 72. There are two possibilities: 
>. = (0, c1>.1) with c1 =/- 0 and 2b(,\) = IE1I = 126, so dim Centm(µ) = 27 
and 
>. = (c1>.1,c1>.1) with c1 =/- 0 I\ c1 =/- 0 and 2b(>.) = IE61 = 72, so one must 
require dimCentm(µ) = 0. 

So let g be a real semisimple noncompact Lie algebra with restricted root system 
of exceptional type, then the only possible choices for µ which cannot be ruled 
out correspond with the root system F4 and are given in 12. 

Remark 6.5. This implies that the construction of the Lax pair in chapter 
5 does not work for the cases E5, E1, Es and G2. 
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Remark 6.6. Another reason for restricting to the quasi-split case is the 
following: the analysis in this section determines dominant weights >. E !J* 
which satisfy the inequality (6.15) and so corresponding elements t E t which 
satisfy (6.15). To obtain from this an element µ E m1- which satisfies (6.3) 
one has to be sure that the AdK-orbit through t intersects m1-, and that the 
constants Cj can be chosen in such a way that Centm(µ) has the right dimension. 
If g is quasi-split one has m c t so t1- c m1-. So one only has to know that the 
AdK-orbit through t intersects t1-, and this follows from a convexity theorem 
of Kostant (see [31, p. 473]). 

6.2. A construction ofµ for quasi-split Lie algebras. 

Now let CJ' be a (nontrivial) involutive automorphism of g, i.e. G' 2 = id, which 
commutes with the Cartan involution 0. The corresponding eigenspace decom­
position is denoted by g = !J E9 q, with commutation relations: 

[!J, !J] C (J, [!J, q] C q, [q, q] C !J ( 6.17) 

Because 0 and CJ' commute one also has: 

t = (t n !J) E9 (t n q), p = (p n !J) E9 (p n q) ( 6.18) 

and all these decompositions are orthogonal with respect to the Killing form. 
Now choose a and IJR G'-stable. Then m is G'-stable too and one has the orthog­
onal decomposition: 

a= (an !J) E9 (an q), m = (m n !J) E9 (m n q) (6.19) 

Furthermore consider the involutive automorphism CJ'a = CJ'0 with eigenspace 
decomposition g = !Ja E9 qa and 

(6.20) 

Now suppose that the triple (g, CJ', 0) satisfies one of the following conditions: 

(i) dim(9,, n qa) = 1 for all a E R 

(ii) dim(g,, n !Ja) = 1 for all a E R 

If this is the case, define root vectors e,, and e_,, as follows: 

(6.21) 

(6.22) 

(i) Choose for all a E R+ the root vector ea E 9a n qa which satisfies (3.22) 
and define e_,, = 0(ea) E 9-a· Then one has CJ'(e,,) = -0(ea) = -e_,,, so 

(6.23) 

Now define: 
µ= L 9a(ea+e_a)Etnq (6.24) 

aER+ 
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(ii) Choose for all a E R+ the root vector ea E 9a n !Ja which satisfies (3.22) 
and define e_a = 0(ea) E 9-a• Then one has er(ea) = 0(ea) = e_,,, so 

( 6.25) 

Now define: 
µ= L ga(ea+e-a)Etn(J (6.26) 

aER+ 

There is a strong relation between triples (g, er, 0) which satisfy (6.21) or (6.22) 
and quasi-split Lie algebras. Indeed, comparing Prop. 3.16 with Table IV in 
[41] one can verify that the following is true: 

Proposition 6. 7. Let g be a real noncompact simple Lie algebra, then the 
following properties are equivalent: 
(i) g is quasi-split. 
(ii) there exists an involutive automorphism er and a Cartan involution 0 which 
commutes with er such that (6.21) or (6.22) is true. 

In the next section we will see that all the examples of µ that are known to 
satisfy (5.58) belong to quasi-split Lie algebras and can be constructed as in 
(6.24) and (6.26). If (6.21) or (6.22) is true then one also has: 

Lemma 6.8. Suppose (g,er,0) satisfies (6.21) or (6.22) then: 
(i) a c p n q 
(ii) m c en q 

Proof. We prove it for the case (6.21). The other case is similar. 
(i) Observe that a is spanned by the t,, and 

so ta E q. 
(ii) Choose for a E R+ a root vector fn E 9a n !Ja which satisfies (3.22) and 
define f-a = 0(!0 ) E 9-a· Then er0(fa) = fa, so erU-a) = fa- Now define 

( 6.27) 

then 0(ha) ha, so ha E e and for all a E a one has [a, ha] = 0, so ha E 
9o n e = m and 1:lso er(ha) = -ha, so ha Em n q and, beause dim 9a :::; 2, m is 
spanned by the ha 's and so we conclude that m c en q. □ 

Now suppose one has the situation of ( 6.21) and µ E e n q is defined as in 
(6.24). Then en q c Ker A because m c en q and because of the commutation 
relations. To prove that µ satisfies (5.58) it is sufficient to prove it for all 
z Ee n q, because: 
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Lemma 6.9. Suppose one has the situation of (6.21), and suppose thatµ E 

t n q satisfies (5.58) for all z E t n q. Then also the following is true: 

w Et n ~ n Ker A* [w, µ] = 0 

and soµ satisfies (5.58) for all z E t 
Proof. For all z E t n q one has 

< [w, µ], z >=< w, [µ, z] >=< w, [µ, m(z)] > 
=< [w,µ],m(z) >=< 7rm[w,µ],m(z) >= 0 

so we conclude that [w, µ] = 0. □ 

Now suppose one has the situation of (6.22) andµ E en~ is defined as in (6.26). 
Then t n ~ E Ker A, because of the commutation relations and so µ can only 
satisfy (5.58) if t n ~ E Cent,(µ). 

Example 6.10. Let 9 be a normal real form and a = 0 then t = ~ and 
p = q, so ~a= 9 and qa = {O} and clearly condition (6.22) is satisfied. If now 
µ satisfies (5.58) then t = Cent,(µ), so µ must be a central element of e and 
this is only possible if t is not semisimple. Observe that this also follows from 
condition (ii) of Prop. 5.14 because dim m = 0. 
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6.3. Explicit construction of examples. 

In this section we will give an explicit construction of µ and the corresponding 
Lax pair for the classical root systems. In all these cases g is quasi-split and µ 
can be defined as in (6.24) and (6.26). 

6.3.1 The An-1 case 

Let g = sl(n, q, viewed as a real Lie algebra, with the Killing form given by 

< x,y >= Retr(xy) (6.28) 

The Cartan involution 0 is given by 0( x) = -x t, where t denotes the hermitian 
conjugate, and we choose <T(x) = -xt. Then £ = {skew-hermitian matrices}, 
p = {hermitian matrices}, 9 = { complex skew-symmetric matrices}, q =­
{ complex symmetric matrices}. Choose a = { real diagonal matrices}, then 
a is a <T-stable maximal abelian subspace of p and m = in. Moreover a, m C q. 
Let q = diag( q1 , ... , qn) E a and define E j ( q) = qj. Then the restricted root 
system R is given by R = {ajk := Ej - Ek,]-/- k} and is of type An-1• 
Choose 

ll = {a:· := c · - c ·+1 1 < J. < n - 1} 
J J J ' - -

(6.29) 

then the positive roots are R+ = {ajk E R,j < k} and R_ = {ajk E R,j > k}. 
The root spaces 9a are given by 

(6.30) 

and so ma = 2 for all a: E R. Also 

and 
(6.31) 

so dimga n qa = dimga, n Da = 1 for all a: ER. 
Following the construction in Section 6.2 choose ea;k = iejk and fa;k = ejk 
which satisfy the normalization (3.22). So e-a;k = iekj, f-aJk = -ekj, and 
define, as in (6.24): 

µ=gI:i(ejk+ekj), gE!R. 
j<k 

(6.32) 

which is precisely the element µ as defined in (1.23). Because An-l has only 
one root length, there is only one coupling constant, which is denoted by g. 
Moreover: 

en q n mj_ = Span --< ea + e_a, a E R+ >­

£ n D = Span --< fa + f-a' a E R+ >­

p n D = Span --< ea - e_a, a E R+ >­

p n q n aj_ =Span--< la - f-a,O: ER+>-

(6.33) 
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Furthermore one has: 
(6.34) 

where d1 = e11 and so (a, a)= 2. Here ta and ha are as defined in (3.9) and 
(3.13). 
The positive Weyl chamber and Weyl alcove are given by: 

a+ = { q E a I q1 - qk > 0 if j < k} 

a!= {q Ea I 0 < q1 - qk < d if j < k, d E !R} 

Lemma 6.11. Cent90 (µ) = {O} if g =/= 0. 

(6.35) 

Proof. Let q Ea and [q,µ] = 0 then g'2:,aER+ a(q)(ea - e_a) = 0 which 
implies a(q) = 0 for all a E R and so q = 0. Because m = ia the Lemma 
follows. □ 

Proposition 6.12. The element µ, as defined in (6.32), satisfies (5.58) and 
the map M : t n q n m.l -+ m is given by: 

(6.36) 

Proof. From Lemma 6.9 it follows that it is sufficient to construct the map 
M fort n q and one easily checks that [µ,(id+ M)(ea + e_a)] = 0. D 

Soµ satisfies (5.58) which was sufficient to prove integrability. Now use (6.36) 
in (5.72) and one gets back the Lax pair (L, M) as defined in (1.45) and (1.57). 

Remark 6.13. One can writeµ in the dyadic (see (34] for properties of dyads) 
form: 

µ = ig( e 0 e - In) (6.37) 

where e = (1, ... , 1) E !Rn and one easily checks thatµ is conjugate under AdK 
to ngi>-.1 if g ~ 0 and to -ngiAn-1 if g :S: 0. Here >-.1 and An-1 are fundamental 
dominant weights of sl(n,C), with 

A1 = ~diag(n -1, -1, ... , -1), 
n 

An-1 = ~diag(l, 1, ... , 1, 1 - n) 
n 

This example corresponds to case 1 of section 6.1. 

(6.38) 
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6.3.2 The BCn and Bn case 

Let g = su(n + l, n) which consists of matrices of the form: 

( 
A w B ) 

X = -vt ia -wt 
C V -At 

(6.39) 

where A E gl(n, C), B, C E u(n), a E IR, v, w EC' and tr(A- At)+ ia = 0. An 
element X E g will be denoted as X = (A, B, C, w, v, ia). 

Remark 6.14. The standard representation of su(n + l, n) is given by ma­
trices of the form 

( 6.40) 

where C E gl(n,C),A,B E u(n),v,w E C',a E IR. The relation between these 
two representations is given by X = gX g-1, where g E S0(2n + 1) is the 
element 

( 11,, 
g = 0 

_ _l_J 
,/?,n 

so that the correspondence is given by: 

0 ~In) 1 0 
0 J2In. 

(6.41) 

( 6.42) 

In the representation (6.39) one can take 0(X) = -Xt, cr(X) = -Xt and 

£={(A, B, B, w, w, ia), A E u(n)} 

p = {(A, B, -B, w, -w, 0), At= A} 

c = IR-< i(-In, (2n + l)J,,, (2n + l)In, 0, 0, 2n) >-- (6.43) 

1J = {(A, B, -Bt, w, w, 0), At= -A} 

q = {(A, B, Bt, w, -w, ia), At= A} 

For a one can take: 

a= {(D, 0, 0, 0, 0, 0), D = diag(q1, ... , qn)} ( 6.44) 
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so a C q and 

m = {(iD, 0, 0, 0, 0, ia), D real diagonal, 2trD +a= 0} (6.45) 

so m C q and m is abelian. From (6.44) and (6.45) it follows that l = n and 
dim m = n, so 8 = 0, as expected. Also mnt1 = mnt2 = cnm = {0}, dim c = 1 
and c <t. m.1. 
For the Cartan subalgebra t of t one can choose: 

t = {( iD1, iD2, iD2, 0, 0, ia), Di, D2 real diagonal, trD1 +a= 0} 

so m C t, c C t and dim t = 2n. The Killing form is given by: 

< x, y >= ½tr(xy) 

( 6.46) 

( 6.47) 

Let q = (D,0,0,0,0,0) Ea and define Ej(q) = qj, then the restricted root 
system is given by 

( 6.48) 

and is of type BCn. For the simple roots b. one can take b.= {cj - Ej+1, 1 :S 
j '.S n - 1, en} and then 

(6.49) 

Now write a..i k = c .i - ck, /3j k = c j + ck, then the corresponding root spaces are 
given by: 

g,.; =Span--< (0, 0, 0, ej, 0, 0), (0, 0, 0iej, 0, 0) >--

9-,-; =Span--< (0, 0, 0, 0, ej, 0), (0, 0, 0, 0, iej, 0) >--

92,-; =Span--< (0,iejj,0,0,0,0) >--

9-2,-; = Span --< (0, 0, iejj, 0, 0, 0) >--

9a;k = Span --< ( ejk, 0, 0, 0, 0, 0), (iejk, 0, 0, 0, 0, 0), j < k >--

9-a;k = Span --< ( ekj, 0, 0, 0, 0, 0), ( iekj, 0, 0, 0, 0, 0), j < k >--

9!3;k =Span--< (0, i(ejk + ekj), 0, 0, 0, 0), (0, ejk - ekj, 0, 0, 0, 0),j < k >--

9-P;k =Span--< (0,tl,i(ejk+ekj),O,0,0),(0,0,ejk-ekj,0,0,0),j < k >-- (6.50) 

so me:; = m°'ik = mp;k = 2 and m2c:; = 1. Also one has tc:; = dj := 
( ejj, 0, 0, 0, 0, 0) and < dj, dk >= bjk and so: 

tc:; = dj, (cj,Ej) = 1, h,.; = 2dj 

t2,-; = 2dj, (2cj, 2cj) = 4, h2,.; = ½dj 
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tajk = di - dk, (aik, O!ik) = 2, hajk = di - dk 

tpjk =di+ dk, (f3ik,/3jk) = 2, hpjk =di+ dk (6.51) 

In this case the involution ua is given by ua(x) =~and from (6.43) and (6.50) 
it follows that dim(ga n qa) = 1 for all a E R, so following the construction in 
6.2 define the root vectors by: 

le;= (0,0,0,ei,0,O), f-e; = (0,0,0,0,ei,0) 

e2e; = (0, V2iejj, 0, 0, 0, 0), e-2e; = (0, 0, V2ieii, 0, 0, 0) 

he; = f-2e; = 0 

ea;k = ( ieik, 0, 0, 0, 0, 0), 

fa;k = (eik, 0, 0, 0, 0, 0), 

epik = (0, i( eik + eki ), 0, 0, 0, 0), 

e-a;k = ( ieki, 0, 0, 0, 0, 0) 

l-a;k = (-eki,o,o,o,o,o) 

e-f3;k = (0, 0, i( eik + eki ), 0, 0, 0) 

Jpjk = (0, eik - eki, 0, 0, 0, 0), f-f3;k = (0, 0, eik - eki, o, 0, 0) 

where j < k. 
Now define as in (6.24) 

µ = L 9a(ea + e_a) 
aER+ 

(6.52) 

(6.53) 

where 9a is a Weyl group invariant function from R to R Because BCn has 
three different root lengths, there are three different coupling constants. Using 
(6.51) and (6.52) this becomes: 

µ = 9 L(ea;k + e-a;k) + 9 L(epik + e-/3;k) 
i<k i<k 

+ 91 L(ee; + e_e;) + 92 L(e2e; + e-2e;) (6.54) 

i i 

= (µ, P, + i92V2ln, P, + i92V2ln, i91e, i91e, 0) 

where P, is the element defined in (6.32), e = (1, ... ,1) E IR.n and 9,91,92 E JR. 
are constants, with 91 -=/- 0. 

Lemma 6.15. Ifµ-=/- 0 then Centa(µ) = {0}. 

Proof. Let q Ea and (q, µ] = 0 then 

for all j < k and this implies q = 0. D 
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Proposition 6.16. The element µ, as defined in (6.54), is conjugate under 
AdKto 

and to 

-(n+ 1)(2g- - 1-v'2g2)i(An, o)+ - 1-g2v'2c if 2g- - 1-v'2g2 S: 0 (6.55) 
n+l n+l n+l 

iff 
( 6.56) 

where A1 = n~l diag(n, -1, ... , -1) and An= n~l diag(l, 1, ... , 1, -n) are fun­
damental dominant weights of sl(n+l, q and c = idiag(nln+l, -(n+l)In) E c, 
where we have used the representation (6.40). 

Proof. First transformµ to the standard representation (6.40). After split­
ting off the c-component one gets a matrix iµ in su(n + 1), whereµ is of the 
form: 

µ= (~ ::: ~ 
b . . . b 
C • • . C 

: ) + diag(a - b, ... , a - b, 0) 

-na 

where a= n~1g2vf2, b = 2g and c = g1 v12, so c =f. 0. With induction one can 
easily prove that this matrix has eigenvalues a - b with multiplicity n - 1 and 
eigenvalues P1 and P2 with multiplicity 1, where P1 and P2 are the roots of the 
equation: 

A2 + (n - l)(a - b)A - n(a2 + (n - l)ab + c2) = 0 

so 
P1 = ½(n - l)(b - a)+ ½v'J5, P2 = ½(n - l)(b - a) - ½v'J5 

where Dis the disriminant. Now D can be rewritten as: 

D = (n - 1)2(a - b)2 + 4n(a2 + (n - l)ab + c2) 

= [(n + l)a + (n - l)b] 2 + 4nc2 

and because c =f. 0 this implies D > 0, so Pl > P2. 
Now consider the following cases: 
(i) Suppose ...fJ5 2 (n + 1) Jb - al then c2 2 b2 - (n + l)ab and Pl 2 a - b 2 P2· 

So µ is conjugate to 

diag(p1, a-b, ... , a-b, p2) = ½[(n+ l)(b-a)+VD]A1 + ½[( n+ l)(a-b )+v'J5]A,, 

where A1 and An are fundamental dominant weights of sl( n + 1, q. 
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(ii) Now suppose O < ,/J5 :S (n + 1) lb-al then c2 :S b2 - (n + l)ab. Now 
consider two subcases: 
a) Suppose b- a~ 0 then ,/J5 :S (n+ l)(b- a) and this implies P1 > P2 ~ a- b, 
so µ is conjugate to: 

diag(p1, p2, a - b, ... , a - b) = VD>-.1 + ½[(n + l)(b - a) - VD]>-.2 

b) Now suppose b - a :SO then ,/J5 :S (n + l)(a - b) and this implies a - b ~ 
P1 > P2, so µ is conjugate to: 

diag(a - b, ... , a - b, Pl, p2) = ½[(n + l)(a - b) - VD]An-1 + VD An 

From this it is clear that µ is of the form c1>-.1 or c,,,An if and only if ,/J5 = 
( n + 1) I b - al, but this is equivalent with c2 = b2 - ( n + 1 )ab, which is nothing 
else but (6.56). If ,/J5 = (n + 1) lb - al thenµ is conjugate to: 

( n + 1) ( b - a)). 1 + ac if b - a ~ 0 

(n + l)(a - b)>-.,,, + ac if b - a :S 0 

Because ,/J5 > 0 this also implies b - a -/:- 0. From this the results about µ 
follow. D 
So combining this with the discussion in 6.1 it is clear that one must require: 

and 

1 
29 - --h92 -1- o 

n+l 

Centm(µ) = {0} 

( 6.57) 

(6.58) 

but (6.57) follows from (6.56) and because 91 -:/- 0 (6.56) also implies 9-/:- 0 and 
one can check that this implies Centm(µ) = {0}. 

Remark 6.17. This element µ corresponds to the first example of case 8 in 
Section 6.1. 

Proposition 6.18. Suppose 91 -:/- 0 and (6.56) holds, then the map M 
t n q n m_1_ ---+ m is given by: 

4 4 
M( ef/;k + e-f/;k) = i( 2n + 1 I,, - e11 - ekk, 0, 0, 0, 0, 2n + 1 ) 

2 2 
M(e2,- + e_2 0 ) = i-v2(--ln - e11 , 0, 0, 0, 0, --) 

' 1 2n + 1 · 2n + 1 

M(e,-; + e_,-J = i(bI,,, - 919-1ejj, 0, 0, 0, 0, a) 
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where 

a= _2_ (91 - 2n.!L) 
2n + 1 9 91 

(6.59) 

and 
b __ 2_ (.!!_ + 91) 

2n + 1 91 9 
(6.60) 

Proof. Let X1, X2 Et n q with 

and A1, A2, Bi, B2 real symmetric, w1, w2 E !Rn, a1, a2 E IR and a1 + 2trA1 = 
a2 + 2trA2 = 0 then 

with 
A3 = [A2, A1] + [B2, B1] + W2 0 W1 - W1 0 W2 

B3 = [A2,B1] + [B2,A1] +w2 ®w1 -w1 ®w2 

w3 = (A2 + B2 - a2id)w1 - (A1 + B1 - a1id)w2 

Taking X2 =µ,the condition [X1, X2] = 0 reduces to the equations: 

(6.61) 

(6.62) 

(6.63) 

where we have used (6.37) and where <,>denotes the standard inner product 
in !Rn. Using (6.63) one can verify that 

[(id+ M)( ea + e_a), µ] = 0 for all o: E R+ (6.64) 

D 

Now one can apply the construction of chapter 5 and conclude that using (6.54) 
and (6.64) one can construct a Lax pair for Hamilton's equations for the BCn­
Hamiltonian: 

n 

H =½ LP/ + g2 L[x(qj - qk)2 + x(qj + qk)2] 
j=l j<k 

n n ( 6.65) 

+ 9/ Lx(qj)2 + 92 2 I::x(2qj)2 

j=l j=l 

for 91 -/- 0, 91 2 = 292 - \12992. 
This gives a more transparant Lie algebraic interpretation of the construction 
of Olshanetsky and Perelomov in [38] and [43]. 
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One can now consider three special cases: 

(i) 92 =JO =} BCn-model 
(ii) 92 = 0 ⇒ 91 2 = 292. This corresponds to the Bn-model for special values 
of the coupling constants. 
(iii) 92 =f. 0, 91 = 9 = v292- This can be viewed as a reduced A2n-model by 
imposing the conditions: 

(6.66) 

So one does not get a Lax representation for the En-model for all values of the 
coupling constants. 

Proposition 6.19. One can easily verify that in the general case 

[ec; + e-E; + M( eE; + e-E; ), µ] = v := 9-1(91 2 - 292 + 929V2)(JE; + f-E;) 

and 
[ea+ e_ 0 +M(ea + e_a),µ] = 0 

for all other roots a E R. This implies that Hamilton's equations for the general 
BCn model can be written in the following way: 

x = [Yµ +MX2µ,x] - X 3 v 

Now define: 

µ = 9 L(ea;k + e-a;k) - 9 L(ef/;k + e-f/;.) 
j<k j<k 

= (µ, -µ, -µ, 0, 0, 0) 

( ~' ~ -r) 
-µ 0 µ 

where fl = i9 Lj<k(e.ik + ekj) E su(n). In the standard representation this 
takes the form: 

(~ ~ ~) 
0 0 2µ 

so using the results in the An-case, it is clear that µ is conjugate under AdK 
to -2n9i(0, ,\n-1) if 9:::; 0 and to 2n9i(0, A1) if 9 ~ 0, where ,\1 and ,\n-1 are 
fundamental dominant weights of sl(n, q. 
One can also easily verify that: 

Centm(µ) = lR.-< (il0 , 0, 0, 0, 0, -2in) >-

so dim Centm(µ) = l. So thisµ satisfies (5.58) and corresponds to the second 
example of case 8 of section 6.1. Using this µ one gets another Lax repre­
sentation of the Dn-model. Of course one can also view µ as an element of 
su( n, n). Then dim Centm (µ) = 0 and this corresponds to the example of case 
7 in section 6.1. 
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6.3.3 The Cn and Dn case 

To obtain a Lax representation of the Cn and Dn-models we have to take 
g = su(n, n), which corresponds to removing the n + Ith column and row in 
(6.39) and taking 

v = w = a = 0, g1 = 0 (6.67) 

Then the restricted root system R is of type Cn. The elementµ takes the form: 

µ = (µ, µ + ig2V2In, µ + ig2V2In) (6.68) 

In the same way as in the su(n + 1, n) case one can check that 

Centa(µ) = {0} iff g f. 0 V g2 f. 0, Centm(µ) = {0} iff g f. 0 (6.69) 

If g = 0 then µ E c, dim Cente (µ) = dim£ and dim Centm (µ) = dim m, so µ still 
satisfies (5.58). If g f. 0 the map M is given by: 

M( eo:;k + e_o:ik) = i( '!,_ In - ejj - ekk, 0, 0) 
n 

. 2 
M(e13 k + e_13.k) = i(-In - ejj - ekk, 0, 0) , , n 

(6.70) 

The corresponding Hamiltonian is given by (6.65) with g1 = 0 and g f. 0 V 
g2 f. 0, so using (6.70) and the construction of chapter 5 one gets a Lax 
representation of the following models: 

(i) g f. 0 I\ g2 f. 0 =} On-model 
(ii) g f. 0, g2 = 0 =} Dn-model 
(iii) V2g2 = g f. 0 =} this can be viewed as a reduced A2n-1-model by imposing 
the conditions: 

qj + q2n+l-j = 0, 1 S j Sn 
(iv) g = 0, g2 f. 0 =} this can be viewed as n uncoupled A1-models. 

Proposition 6.20. In these cases µ is conjugate under AdK to 

2ngi()11 , 0) + g2V2c if g? 0 

and to 
-2ngi(.Xn-l, 0) + g2V2c if g :S 0 

(6.71) 

where c = idiag(In, -In) E c and >.1 and An-1 are fundamental dominant 
weights of sl(n, C). 
Proof. First transform µ to the standard representation. After splitting off 
the c-component one is left with the matrix: 

(2t ~) 
whereµ= ig Z:j<k(ejk + ekj)- And so the result follows. 0 
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Now consider the case Cl (n 2: 2) with g = sp(n,!R), which consists of the 
matrices of the form: 

(6.72) 

where A, B, C E gl(n, !R) and B, C are real symmetric. Denote a general ele­
ment X by X = (A, B, C), then 

£={(A, B, -B), A E so(n), B real symmetric} 

p = {(A, B, B), A, B real symmetric} 

For a one can choose: 

a= {(D, 0, 0), D = diag(q1, ... , qn)} 

and then 
m = {0}, c = Span(0, In, -I11 ) 

(6.73) 

(6.74) 

(6.75) 

For the Killing form one can take (6.47) and the restricted root system is of 
type Cn. Now define 

(6.76) 

The Cartan involution is given by 

0(X) = 0(A, B, C) = (-At,-C, -B) (6. 77) 

In this case one can take (j = 0 and then (6.22) is true. Now define the root 
vectors as in 6.2 and then 

n 

µ = 92 :Z:)e2c; + e-2Ej) 
j=l 

(6.78) 

so one gets another Lax representation of case (iv) above, where the map M 
is trivial, because JL E c. 
This example corresponds with case 4 of section 6.1. 

6.4. Analysis of the map M. 

So in aU the examples of section 6.3 µ can be constructed in the same way: 

µ= L9a(en+e_n) (6.79) 
aER+ 

where 9a is Weyl group invariant and where the root vectors are defined as in 
section 6.2. The map M is given by: 

m(a) := M(ea + e_a) Em (6.80) 
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so that 
(6.81) 

This arises the question whether such a construction is possible for all quasi­
split Lie algebras, especially for the algebras of type IV. 
In this section we analyse in more detail the map M in the case of sl(n, C), as 
defined in (6.36), but now considered as a complex Lie algebra. Define 

µ = g 2)eik + ekj) 
j<k 

with g EC Recall from (6.36) that 

then one still has 
[e_ik + ekj + m( O:jk), µ] = 0 

(6.82) 

(6.83) 

Now Qc = m EB a is a Cartan subalgebra of 9 and the Killing form is given 
by < x, y >= tr(xy). Take a Chevalley basis { ea, e_a, ha} which satisfies the 
commutation relations: 

[ea, e_a] = ha 

[ha, ea] = 2ea 

[ha, e_a] = -2e_a 

and define the fundamental dominant weights )..i E Qc by: 

(6.84) 

Using these weights and the structure constants Ca,(3 one can give a more ab­
stract characterization of m(o:). First observe: 

Proposition 6.21. The map m( a) as defined in ( 6.83) has the following 
properties: 
(i) m(o:) = m(-o:) 
(ii) o:(m(o:)) = 0 
(iii) ,B(m(o:)) = 0 if (o:,,B) = 0 
(iv) 

,B(m(o:)) = Ca,-(3 if (o:,,B) = 1 

= -Ca,(3 if ( O:, ,8) = -1 

Proof. (i), (ii) and (iii) are clear. Now suppose a= Ej - Ek and ,B = cm - en, 
with m < n, j < k, and suppose ( a, ,B) = -1. Then a + ,B E R and there are 
two possibilities: 
a) j = n => m < n < k and 



so co.,/3 = -1 and ,B(m(a)) = 1 and this agrees with (6.83). 
b) m = k =} j < k < n and 

[em e13] = [e;k, ekn] = e;n =- eo.+(3 

so co.,/3 = 1 and ,B(m(a)) = -1 and again this agrees with (6.83). 
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If ( a, ,8) = 1 then a - ,8 E R and one can easily check that the proposition is 
k~ □ 

Corollary 6.22. Using the fundamental dominant weights m(a) can be writ­
ten as: 

where a; E ~-

I 

m(a) = ~)a, a;)(co.,o.; + co.,-o.; )A; 
j=l 

(6.85) 

In this form the definition of m(a) is valid for all root systems, but the ques­
tion arises which of the properties survive. Still m(a) = m(-a) because the 
structure constants satisfy co.,/3 = -c-o.,-/3· 
So one would like to know why (6.81) is not true for the other root systems. 
So let R be of type A, D or E and choose a Chevalley basis. Let a, ,8 E R 
and let ,8 - ra, ... , ,8 + qa be the a-string through ,8, then r - q = 2(( o.,/3)) and o.,o. 
[eo., e13] = 0 if q = 0 and [eo., e13] = ±(r + l)eo.+/3 if q;?: 1. Now for type A, D or 
E one has q + r S 1 so if q = 1 then r = 0. So co.,l = 1 if a+ ,8 E R. Also one 
has (a,a) = 2, so r - q = (a,,8). Combining these bits of information there 
are the following possibilities: 

q = 0, r = 0 =} ( a, ,8) = 0, a + ,8 f R, a - ,8 ~ R 

q = 0, r = 1 =} ( a, ,8) = 1, ,8 + a ~ R, ,8 - a E R 

q = 1, r = 0 =} (a, ,8) = -1, ,8 + a ER, ,8 - a~ R 

Using this one can compute for a ER+: 

[eo. + e_"' + m(a), µ] 

= L [eo. + e_"' + m(a), e13 + e_13 ] 
/3ER+ 

= L ca,(3(eo.+f3 - e-o.-(3) + L co.,-f3(eo.-f3 - e/3-o.) 
(3ER+ (3ER+ 

+ L ,8(m(a))(e13 - e_13) 
(3ER+ 

L c-,,o.(e7 - e_7 ) 

7ER+,(7,o.)=l 

L c,,o.(e, - e_7 ) 

,ER+,(,,o.)=-1 

+ L 1 (m(a))(e7 - e_7 ) 

,ER+ 

(6.86) 

(6.87) 
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where we have used 
Ca,fJ = Ct3,-a-f3 = C-a-fJ,a (6.88) 

and it is clear that ( 6.87) is zero if m( a) satisfies the properties of Prop. 6.21. 

Proposition 6.23. Define m( a) as in ( 6.85), then it satisfies the conditions 
of 6.21, if a, /3 E ~-

Proof. Choose a = ak, /3 = am, then a - /3 1:- R and so 

l 

m(ak) = I)ak,aj)cak,a;Aj 
j=l 

Now properties (ii), (iii) and (iv) follow directly from (6.89). 

Proposition 6.24. A necessary condition for Prop. 6.21 to hold is: 

for ak, am, an E ~, (am, an)= -1, (arn, ak) = 0, (an, ak) = -1. 

Proof. Let /3 = am+ an, then (/3, ak) = -1 and so 

and because of Prop. 6.21 (iv) this must be equal to -c°'k,fJ· 

(6.89) 

□ 

(6.90) 

□ 

Apparently this property of the structure constants is only satisfied in the case 
of the root system A,, and this could 'explain' why the construction only works 
for sl(n, C). 
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7. Lie bialgebras and Yang-Baxter operators 

In this chapter we want to compare the construction in chapter 5 and 6 with 
the construction of integrable systems in chapter 4 and see whether the Pois­
sonstructure can be understood in terms of an underlying double Lie algebra 
structure and a corresponding Yang-Baxter operator. 

7.1. The co-Lie-algebra structure. 

Let g be quasi-split, satisfying ( 6.21) and define the root vectors as in section 
6.2. Let r E g ® g be the skew-symmetric tensor corresponding to the map R, 
so 

< r,x®y >=< x,R(y) > (7.1) 

for all x, y E g, where we extended the Killing form to an g-invariant scalar 
product on g ® g. Now consider the Poisson structure on C00 (P) as defined in 
(5.33) and define the map <p by 

The dual map </)* is defined by 

< </J*(x),y®z >=< x,<p(y,z) > 

Using (7.1) one finds 

</)*(x) = (1r0 ® id)[r, x ®I]+ (id® 1r0 )[r, I® x] 

which can also be written as: 

</)*(x) = -(1r0 ®id+ id® 1r0 )dr(x) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

where dr(x) = [x®id+id®x,r]. Let {Tj} be a basis of g, {Tj} the dual basis, 
then one can write (7.4) as: 

j j 

Lemma 7.1. Let g be quasi-split, satisfying (6.21), and define the root vectors 
as in section 6.2, then: 
(i) < ea,f-a >= 0 for all a ER 
(ii) [emf-a]= [e_a, f,.] 
Proof. 
(i) Because ea E qa and f-a E !Ja one has a-a(ea) = -e,, and a-aU-a) = fa 
and so< ea, f-a >= 0 because a-a is an automorphism. 
(ii) [e 0 , f-a] - [e-a, fa] Ea, but for all a Ea 

< a, [ea, f-a] - [e-a, fa] >=< [a, ea], f-a > - < [a, e_aJ, fa >= 0 

because of (i) and so [ea, f-a] - [e-a, fa]= 0 □ 
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Corollary 7.2. ha= [eaJ-al, where ha as defined in (6.27). 

Now we can compute</>*, using R = -Yx-1 . 

Proposition 7.3. The dual map</>* is given by: 
(i) </>*(x) = 0 for all x E 9o• 
(ii) </>*(ea)= r(a(q))(ta 0 ea - ea 0 ta) for all a ER. 
(iii) </>*(fa)= r(a(q))(ta 0 fa - fa 0 ta) for all a ER, 
where r(r,) = x-1(r,)x'(r,). 
Proof. Straightforward calculation, using the commutation relations (3.9) 
and (3.25). D 

Now consider the boundary of the chain </>* : g -, g 12) g, defining the co-Lie­
algebra structure, defined by: 

d<f>*(x, y) = </>*([x, y]) - x.</>*(y) + y.<f>*(x) 
where g acts on g 0 gas in (4.88). 

Proposition 7 .4. 
(i) </>* is adgo-invariant, so d<f>*(x,y) = 0 if x Ego or y Ego, 
(ii) d</>*(ea, e_a) = d<f>*(fa, f-a) = 0 

(7.7) 

(iii) d<f>*(ea, f-a) = d</>*(e_a, fa)= 2r(a(q))([ea, f-a] ® ta - ta® [em f-aD 
(iv) d</>*(ea, ef3) = 0 if O =/-a+ (3 ~Rand (a,(3) = 0. 

Proof. 
(i) If x, y E go it is clear, because [go, go] C 90· So let x E 9o and y E 9a, 
then (i) follows from the commutation relation [go, 9a) C 9a, and because </>* 
is linear </>*([x, y]) = x.<f>*(y) for all x E g0 and y E g. 
(ii) d<f>*(ea, e_a) = e_a,</>*(ea) - ea,</>*(e-a) and 

e-a·</>*(ea) = r(a(q))e-a,(ta 0 ea - ea Q9 ta) 
= (a, a)r(a(q))(e-a 0 ea - ea 0 e_a) 

and so e-a•<l>*(ea)- ea,<f>*(e-a) = 0 because r is uneven. In the same way one 
can prove that d<f>*(fa, f-a) = 0. 
(iii) d</>*(ea, f-a) = f-a•</>*(ea) - ea,<f>*U-a) and 

f-a·</>*(ea) = r(a(q))f-a-(ta 0 ea - ea 0 ta) 
= ½(a, a)r(a(q)){2f-a 0 ea - 2ea 0 f-a 

+ha® [f-a, ea] - [f-a, ea]® ha} 
which implies, using Lemma 7.1: 

d<f>*(ea, f-a) = (a, a)r(a(q))([ea, f-a] 0 ha - ha® [ea, f-aD 

and so d</>*(ea, f-a) = d</>*(e_a, fa), 
(iv) d<f>*(ea, e13) = e13.</>*(ea) - ea,</>*(e{3) where 

ef3,<f>*(ea) = r(a(q))e[3,(ta 0 ea - ea 0 ta) 
= f3(ta)r(a(q))(ea 0 ep - ef3 ® ea) 

and because (a,(3) = 0, d<f>*(ea, ep) = 0. 

(7.8) 

D 
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Corollary 7.5. Let G0 be the connected subgroup of G with Lie algebra go, 
then Adg,g E Go is a Poisson automorphism of C00 (P). 
Proof. This follows from Prop. 4.42, Prop. 7.3 and Prop. 7.4. □ 

Corollary 7.6. Let f,g E C00 (g) be AdG-invariant, then {f,g}i is AdGo­
invariant. 

Proof. This follows from Prop. 4.35 and Prop. 7.4. □ 

Proposition 7.7. The pair (g, g*) is not a Lie bialgebra. 

Proof. For (g, g*) to be a Lie bialgebra, the chain <f,* must be a cocycle, i.e. 
d<f,* = 0. Now take O =fa a+ f3 ~ R and ( a, /3) =fa O then from (7.8) one derives 

d<f,*( ea, eµ) = ( a, /3)(r( a( q)) + r(/3( q)))( ea ® eµ - eµ ® ea) (7.9) 

and this is in general not equal to zero. □ 

7.2. The Poisson bracket on Pµ-

Now consider the c = 0 case, then R and X satisfy the functional equation: 

X[R(z1), z2] + X[z1, R(z2)] = -11"f[X(z1), X(z2)] (7.10) 

for all z1, z2 E g}. 

Proposition 7.8. Let g be quasi-split, satisfying (6.21). Suppose that µ 
as defined in (6.24) satisfies (5.58), then the Poisson bracket on Pi can be 
rewritten as 

{f,g}(q,x) =< x, [S(F),G] + [F,S(G)] > + < F,G1 > - < F1,G > (7.11) 

where the map S E End g is defined by 

S = R11"p - MX11"pnQ (7.12) 

Proof. Using (5.85) the bracket{, h on Pi can be rewritten in the following 
way: 

{f,g}i(q, x) =< x, [R(Fp), Gp]+ [Fp, R(Gp)] > - < µ, [X(Fp), X(Gp)] > 
(7.13) 

Because µ satisfies (5.58) and µ E t n q, t n q E Ker A and so the map M is 
defined on the whole space t n q. Using this the second term of (7.13) can be 
rewritten as: 

- < µ, [X(FpnQ), X(Gpnq)] + [X(Fpnq), X(GpnQ)] > 
=- < [µ, X(FpnQ)], X(Gpnq) > - < X(Fpnq), [X(GpnQ),µ] > 
= < [µ,MX(FpnQ)],X(Gpnq) > - < X(Fpnq),[µ,MX(GpnQ)] > 
=- < Gpnq),X[µ,MX(FpnQ)] > + < Fpnq),X[µ,MX(GpnQ)] > (7.14) 

= < Gpnq, [MX(FpnQ),x] > + < Fpnq, [x,MX(GpnQ)] > 
= < x, [Gpnq,MX(Fpn~)] + [MX(GpnQ), Fpnq] > 
= < x, [G, MX(FpnQ)] + [MX( GpnQ), F] > 

and combining this with (7.13) gives (7.11). □ 
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This suggests that S could be a possible candidate for a Yang-Baxter operator. 
So define 

w(y, z) = [S(y), z] + [y, S(z)] 

Because S is zero on t, it is clear that 

1P(Y, z) = 0 if y, z Et 

and 1P: t ® p----; t, p ® p - p. Now define: 

w(y, z) = Sw(y, z) - [S(y), S(z)] 

then 
w(y, z) = 0 if y, z Et or y Et, z E p 

and w: p ®P----; t 

Proposition 7.9. The map Sis not a Yang-Baxter operator. 

Proof. If it is a Yang-Baxter operator then S must satisfy: 

w(y, z) = ,\(q)[y, z] 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

where ,\(q) is a constant which may depend on q, but not on a. Now take 
y = ha Ea and z = la - f-a E p n q n aj_ then (7.19) reduces to 

r(a(q))2 = -\(q) for all a ER (7.20) 

which implies r =constant, and this is not true for root systems other than 
A1. D 

Proposition 7.10. The map 1P defines a Lie bracket on g iff S is a Yang­
Baxter operator. 

Proof. We already know from chapter 4 that if Sis a Yang-Baxter operator 
then 'Ip defines a Lie bracket. Now suppose that 'Ip defines a Lie bracket. This 
is equivalent with the condition: 

[w(y, z ), w] + cycl. = 0 

for ally, z, w E g. For y, z E p, w E t this reduces to 

[w(y, z), w] = 0 

(7.21) 

(7.22) 

for all w E £, so w(y, z) E Z(t). If t is semisimple then w(y, z) = 0 for 
all y, z E p. Combining this with (7.18) it follows that S is a Yang-Baxter 
operator. If t is reductive (7.22) implies that w(y, z) = c E c for ally, z E p. 
Now choose y, z, w E pin (7.21). Then one gets: 

[c, y + z + w] = 0 for all y, z, w E p 

and so c E Z(g) = {O} so w(y, z) = 0 for ally, z E g and so Sis a Yang-Baxter 
operator. D 
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Corollary 7.11. The pair (g, S) is not a double Lie algebra. 

Because S is zero on t and S : p ---+ £, the dual S* is zero on j.l and S* : t ---+ p. 
Using this one can rewrite the Poisson bracket on Pµ, as: 

< x, [S(F), G] + [F, S(G)] > 
= < x, [S(F), Gp]+ [Fp, S(G)] > 
= < x, [(S - S*)(F), Gp]+ [Fp, (S - S*)(G)] > 

so the restricion of cp* to Pµ, can be written as: 

cp*(x) = -(1rp 0 id+ id 0 1rp)ds(x) 

(7.23) 

(7.24) 

where s E g 0 g is the skew-symmetric tensor corresponding to the map S - S*. 
So the restriction of cp* to fibres Fq is the projection of a coboundary. 

Proposition 7.12. The map cp* has the following properties: 

(i) cp* is constant on fibres. 
(ii) cp*(Xea) = (X @id+ id@X)cp*(ea) 

Proof. This follows directly from Lemma 5.1 and Prop. 7.3. □ 

Proposition 7.13. The map S - S* is not a Yang-Baxter operator. 

Proof. The same as for Prop. 7.9. D 

All this suggests that there does not exist a double Lie algebra structure on g 
such that Pµ, is a Poisson submanifold and Hamilton's equations with respect 
to an Ad-invariant function are of type I, II, III or V. 
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