


1991 Mathematics Subject Classification: 65M20, 65M60, 65M50. 
ISBN 90 6196 424 5 
NUGl-code: 811 

Copyright© 1993, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



ACKNOWLEDGEMENTS 

This tract is a reprint of my thesis at the University of Amsterdam under supervi
sion of Professor dr. P.J. van der Houwen. 
The subject of this tract is moving-grid methods for time-dependent partial differen
tial equations in one and two space dimensions. The research for this tract was car
ried out at the department of numerical mathematics of the CWI (Centre for 
Mathematics and Computer Science) in Amsterdam. It was part of a joint CWI/Shell 
project titled 'Adaptive-Grid Techniques in Software for Evolutionary Partial Dif
ferential Equations'. This project was financially supported by the 'Netherlands 
Organization for Scientific Research' (NWO) via the 'Netherlands Foundation for 
the Technical Sciences' (STW). 

I want to thank all those who contributed somehow to the realization of this work. 
First of all, I'd like to express my particular gratitude to dr. J.G. Verwer for his gui
dance during this project and for his many contributions. I am also grateful to Prof. 
dr. P.J. van der Houwen for acting as a promotor and, as head of the department, for 
creating a pleasant and stimulating environment for doing scientific research. My 
special thanks are due to Joke Blom: her contributions to many chapters of this tract 
are indispensible. Finally, I would like to thank the Editorial Board of the CWl-tract 
series for giving me the opportunity to prepare this work. 





Contents 

1. General Introduction 1 
1. 1. THE METHOD OF LINES 2 
1.2. MOVING-GRID METHODS 3 
1.3. CONTENTS OF THE TRACT 5 
REFERENCES 6 

2. A Numerical Study of Three Moving-Grid Methods for One
Dimensional Partial Differential Equations Which Are Based on 
the Methods of Lines 9 

2.1. INTRODUCTION 9 
2.2. OUTLINE OF THE MOVING-GRID TECHNIQUES 11 

2.2.1. The Lagrangian approach 11 
2.2.2. Method I 14 
2.2.3. Method II 18 
2.2.4. Method III 21 

2.3. THE NUMERICAL TIME INTEGRATION 25 
2.4. NUMERICAL COMPARISONS 25 

2.4.1. Problem I: A scalar reaction-diffusion problem from combus-
tion theory 26 

2.4.2. Problem II: Burgers' equation 32 
2.4.3. Problem III: Waves travelling in opposite directions 38 

2.5. CONCLUSIONS 43 
REFERENCES 45 

3. A Moving-Grid Method for One-Dimensional PDEs Based on the 
Method of Lines 47 

3.1. INTRODUCTION 47 
3.2. THE SEMI-DISCRETE PDE 48 
3.3. THEMOVING-GRIDEQUATION 50 

3.3.1. Spatial equidistribution 50 
3.3.2. The grid-smoothing procedures 50 

3.4. DISCUSSION OF THE SMOOTHING PROCEDURES 52 
3.4.1. Preliminaries 52 
3.4.2. Spatial grid-smoothing 53 
3.4.3. Temporal grid-smoothing 56 

3.5. THE COMPLETE SEMI-DISCRETE SYSTEM 58 
3.5.1. The moving-grid equation in terms of nodal values 58 
3.5.2. The complete semi-discrete system and its numerical integra-

tion 59 



3.6. NUMERICAL EXAMPLES 60 
3.6.1. Problem I: The Dwyer-Sanders flame-propagation model 60 
3.6.2. Problem II: A 'hot spot' problem from combustion theory 62 
3.6.3. Problem III: Waves travelling in opposite directions 63 

3. 7. CONCLUSIONS 66 
REFERENCES 66 

4. An Evaluation of the Gradient-Weighted Moving-Finite-Element 
Method in One Space Dimension 69 

4.1. INTRODUCTION 69 
4.2. DESCRIPTION OF THE METHOD 70 

4.2.1. MFE 71 
4.2.2. GWMFE 73 
4.2.3. Implementation 76 

4.3. NUMERICAL EXPERIMENTS 79 
4.3.1. Problem I: Burgers' equation 80 
4.3.2. Problem II: A shifting pulse 85 
4.3.3. Problem III: Pulses traveling in opposite directions 86 
4.3.4. Problem IV: The Dwyer-Sanders flame-propagation model 90 
4.3.5. Problem V: A gasdynamics problem with a small diffusion 

term 92 
4.4. A COMPARISON WITH A MOVING-FINITE-DIFFERENCE METHOD 95 

4.4.1. The moving-finite-difference method 95 
4.4.2. MFD versus GWMFE 96 

4.5. CONCLUSIONS 98 
REFERENCES 99 

5. A Note on the Grid Movement Induced by MFE 101 
5.1. INTRODUCTION 101 
5 .2. THE MOVEMENT OF THE NODES IN MFE 103 

5 .2.1. Description of MFE 103 
5 .2.2. Relation of MFE with the method of characteristics 104 
5.2.3. Node movement for parabolic equations 

5.3. NUMERICAL EXAMPLES 
5.3.1. Example I ('Anisotropy') 
5.3.2. Example II ('Grid rotation') 
5.3.3. Example III ('Parabolic pulse') 

5.4. CONCLUSIONS 
REFERENCES 

6. Application of a Moving-Grid Method to a Class of 1 D Brine 
Transport Problems in Porous Media 

6.1. INTRODUCTION 
6.2. THE MOVING-GRID ALGORITHM 

6.2.1. The moving-grid algorithm 

105 
108 
108 
111 
113 
115 
115 

117 
117 
119 
119 



6.2.2. Grid smoothing 120 
6.2.3. Integration in time 122 
6.2.4. A moving-grid interface 122 
6.2.5. The spatial discretization in MGI 123 

6.3. THE 1D FLUID-FLOW/ SALT-TRANSPORT PROBLEM 125 
6.4. NUMERICAL EXAMPLES 128 

6.4.1. Example I 129 
6.4.2. Example II 130 
6.4.3. Example III 133 

6.5. CONCLUDING REMARKS 135 
REFERENCES 137 
APPENDIX 138 

7. Moving-Finite-Element Solution of Time-Dependent Partial Dif-
ferential Equations in Two Space Dimensions 141 

7 .1. INTRODUCTION 141 
7.2. DESCRIPTIONOFMFEINTWOSPACEDIMENSIONS 143 

7.2.1. The method 143 
7.2.2. Second-order operators 146 

7.3. ANEVALUATIONOFMFEIN2D 148 
7.3.1. Application to convection-reaction equations 149 
7.3.2. Application to reaction-diffusion equations 152 
7.3.3. Application to convection-diffusion equations 155 

7.4. CONCLUSIONS 161 
REFERENCES 163 

SUBJECT INDEX 167 





1 

Chapter 1 

General Introduction 

Standard numerical methods to solve time-dependent partial differential equations 
(PDEs) integrate on a uniform grid that is kept fixed on the entire time interval. If 
the solutions have regions of high spatial activity, a standard fixed-grid method is 
computationally inefficient, since to afford an accurate approximation, it should con
tain a very large number of nodes. The grid then needs to be locally refined. If the 
regions of high spatial activity are, moreover, moving in time, like for steep moving 
fronts, then methods are needed that also adapt the grid in time. 

Roughly spoken, one may distinguish two classes of time-dependent adaptive 
methods: 1. (class I) dynamic-regridding (moving-grid) methods and 2. (class II) 
static-regridding methods. In the latter class of methods, for which the adaptivity is 
also denoted by terms like 'local refinement' or 'h-refinement', the grid is only 
adapted at discrete time levels. Methods from class I, sometimes characterized by 
the term 'r-refinement', have the special feature to move the spatial grid continu
ously in the space-time domain while the discretization of the PDE and the grid 
selection procedure are intrinsically coupled. Both approaches have their advantages 
and disadvantages, depending, e.g., on the PDE model to be solved, the hardware 
used, the spatial domain in the model, etc .. 

The main advantage of class II methods is their conceptual simplicity and robust
ness in the sense, that they permit the tracking of a varying number of wave fronts. 
A drawback, however, is that interpolation must be used to transfer numerical quan
tities from the old grid to new grids. Also, numerical dispersion, appearing, e.g., 
when hyperbolic PDEs are numerically approximated, is not fully annihilated. 
Another disadvantage of static-regridding methods compared with methods using 
moving-grids is the fact that they produce no 'smoothing' in the time direction. For 
these methods the time-stepping accuracy therefore will demand, in general, smaller 
time steps than for moving-grid methods. Examples of methods belonging to class 
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II are found in [5, 10, 25, 33]. 
Class I methods use a fixed number of grid points, without need of interpolation, 

and let them move with whatever fronts are present. In the case of several steep 
fronts acting in different regions of the spatial domain, this could give problems in 
the numerical computation, if the grid is following one wave front and another one 
arises somewhere else. Since the number of grid points is fixed throughout the entire 
course of the computation, no 'new' grid is created for the new wave, but rather the 
'old' grid has to adjust itself abruptly. Another difficulty is of a topological nature, 
viz., the so-called 'mesh-tangling'. Moving-grid methods, therefore, often need a 
kind of regularization to cope with this phenomenon. This, unfortunately, involves, 
more or less, tuning of the extra regularization parameters. On the other hand, even 
though more computations per grid point are needed, the use of moving-grid 
methods may work out very efficiently, since, in general, fewer spatial grid points 
will be necessary. Some characteristic members in this class of methods can be 
found in [l l, 12, 14, 16]. 

This tract deals with moving-grid methods for time-dependent PDEs in one and 
two space dimensions. Below we will give a short description of the essential com
ponents of which such methods consist. 

1.1. THE METHOD OF LINES 

The discretization of time-dependent PD Es is often performed in two basic stages. 
First, the spatial variables are discretized on a selected space mesh, e.g., using 
finite-difference or finite-element approximations, so as to convert the PDE problem 
into a system of ordinary differential equations (ODEs) with time as independent 
variable. These ODEs are usually stiff. The discretization in time of this stiff ODE 
system then yields the required fully discretized scheme. This two-stage approach is 
often referred to as the method of lines (MOL). With this approach in mind, several 
sophisticated PDE software-packages have been developed in recent years. These 
MOL packages greatly benefit from the very successful developments of automatic 
stiff ODE solvers. A key factor here is the development of implicit BDF codes, such 
as the ones described by Hindmarsh [21], Petzold [26], and Berzins and Furzeland 
[6, 7]. Although most BDF codes have been designed to solve stiff ODE systems in 
an accurate and efficient way, experiences with MOL packages have revealed that 
this is also true for PDE problems. However, for solutions possessing large space
time gradients, like travelling wave fronts, a grid held fixed for the entire calculation 
can be computationally inefficient, since the grid will have to contain a very large 
number of nodes and the time steps still have to be small. In such cases, a moving
grid procedure, that attempts to adjust automatically both the space and the time 
stepsizes, is likely to be more successful. Since the grid movement, in general, will 
permit larger time stepsizes, it is attractive to automatize the time integration by 
combining the MOL procedure on a moving grid with a BDF code, just as for the 
fixed-grid case. 
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1.2. MOVING-GRID METHODS 

Consider the scalar PDE in one space dimension 

dU 
ai=.L(u), xEn, t>O, (1.1) 

with initial and boundary conditions 

ul 1=0=u 0(x), xE.Q, 

au 
'B(u,dx)lan=g(t), t>O, 

where u0 and g are given functions, and L represents a differential operator involv
ing only spatial derivatives up to second order. In the following, the domain 
.Q := (xL, xR) is supposed to be fixed for all times t>O under consideration. In gen
eral, the solution u (x, t) of ( 1.1) may have a very complex behaviour. Even for a res
tricted situation (a scalar linear PDE with simple boundary conditions), one can 
have severely varying u-values in space x and time t. 

A common approach handling these phenomena is to introduce a transformation 
which maps the variables x and t into new variables I; and -c. Such a transformation 
can be defined as, e.g., 

X =x(l;,-c) 

t = 'C 

U (x,t) = V (I;, 1:). 

(1.2) 

The effect of the transformation ought to be to stretch the co-ordinate in boundary or 
internal layers so that I av1a1; I is small when I dU/dx I is not. More generally, 
transformations are required to map strongly varying behaviour of u to a more 
moderate behaviour of v. An attractive side-effect of the time-dependent transfor
mation may be to obtain values for av/a-c essentially smaller than the duldt values, a 
phenomenon also appearing in the method of characteristics. If we take for example 
.L(u) = -y du/dx, the 'optimal' mapping is defined by the characteristic equation 
dxld'C = y, and the grid points merely follow the characteristics of the PDE, in which 
case we have the inverse transformation l;(x,t) = x-yt. Of course, when using a 
transformation, most difficulties are shifted to the problem of how to define and 
carry out the mapping. 

The Jacobian of the transformation ( 1.2) is given by 

J= d(x,t) 
acl;, -c) 

and, in order to preserve invertibility of the transformation, its determinant(= x1) is 
supposed to be non-zero for all points of time. This is, in the discrete case, 
equivalent to demanding that the grid points do not cross. Using the chain rule and 
the inverse of J, equation (1.1) can be rewritten as 

dU = dV - u dX = L (1.3) 
dt d'C X d'C , 
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where Ux=v1/x1;, and an additional equation for xT must be defined. Equation (1.3) 
is usually called the Lagrangian form of the PDE. 

Several possibilities are on hand to proceed further. A well-known choice is to 
define the mapping implicitly as 

x1; % = constant, for all t>O, (1.4) 

where Af is a positive function, the so-called weight or monitor function, e.g., 
depending on first and/or second order derivatives of the solution. Equation (1.4) 
reflects the basic principle of equidistribution. In discretized form, this becomes 
more obvious: 

(1.5) 

where X; (i=l, · · ·, N) are the time-dependent grid points subdividing the spatial 
domain Q into N + I parts, and Af; is a discrete formulation for Af on the interval 
(Xi-1 ,X;). Note, that we have assumed a uniform grid distribution in ~-space. With 
this condition, the grid interval in x-space will, of course, be small where the weight 
function is large, and vice versa. The term equidistribution stems from the observa
tion that (1.5) can be rewritten as 

X; 

J 91,L(<j>,t) d<j> = constant, 
xi-l 

thereby showing that the weight function Af is equally distributed over the spatial 
domain. The inverse co-ordinate transformation belonging to ( 1.5) then reads 

X 

~(x,t) = J 9\,L(<j>,t) d<!>IJ 91,L(<j>,t) d<j>. 
XL Q 

Equidistribution principles have been used in many different ways to numerically 
solve one-dimensional PD Es having solutions with steep transitions. One of the ear
liest attempts to apply equidistribution to ID time-dependent PDEs can be found in 
[35]. A more sophisticated application of the equidistribution idea is described by 
Dorfi and Drury [15]. They produce an adaptive method based on (1.4) with an 
arc-length monitor function 'Jv[ Additionally, the equidistribution principle is sup
plemented by two regularization procedures to cater for smooth grid trajectories in 
both space and time. Other examples, related to equidistribution being applied to 
1D PDEs, are described in, e.g., [l, 8, 29]. 

Beside equidistribution, a well-known approach to define a moving-grid method 
is to use a minimization of a functional (or integral) depending on measures of the 
error of the solution and/or grid structure properties. One approach is described by 
Petzold [27]. Using the transformed PDE (1.3), she defines the grid movement by 
minimizing a measure consisting of a combination of node velocities and time
derivatives of solution values. Two regularization terms serve to keep the transfor
mation non-singular and to smooth the grid movement. A regridding strategy is 
added to insert or delete or move nodes to resolve the spatial gradients. 

Perhaps the most important representative in this class of methods is the moving-
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finite-element method of Miller et al. [19, 23, 24]. In this method the error measure 
may be interpreted as being the square of the residual of the PDE written in finite
element form. Semi-discrete ODEs for the solution and the grid points are obtained 
by minimizing the integral of this error measure over these unknown quantities. 
Regularization of the minimization is needed to prevent it from becoming degen
erate and to keep control over the grid movement in time. An additional regulariza
tion must be used for second order PDE operators if the approximation space con
sists of piecewise linear trial functions. 

In two space dimensions application of moving-grid methods is much more 
difficult than in lD. For instance, there are many possibilities to treat the one
dimensional boundary and to discretize the spatial domain, each having their own 
difficulties for specific PDEs. However, the essential concepts underlying the co
ordinate transformation in lD also apply to higher dimensions. Important references 
in this respect are, e.g., [11, 12, 14, 16]. It must be noted, that the application of 
equidistribution principles in 2D is less straightforward than in lD. This is not the 
case for methods that are derived from a functional minimization, which are, in 
theory, easily extendable to PDE operators in higher space dimensions. It is also 
interesting to note, that the lD equidistribution principle (1.4) can be derived from 
the minimization method in [11] by restricting the method to one dimension. In fact, 
equation (1.4) can be obtained by applying the minimization, i.e., working out the 
Euler equations for the functional, and then integrating the so-obtained elliptic PDE 
for the grid. 

Other moving-grid methods in 2D based on minimization or equidistribution prin
ciples are described in [2, 13, 22, 28, 30, 36]. For more information on adaptive 
methods, in general, and on moving grids, in particular, the interested reader is 
referred to [3, 4, 17, 32] or the review papers [20] and [31]. 

1.3. CONTENTS OF THE TRACT 

The chapters in this book are based on the publications [9, 18, 34, 37-40]. Chapter 
2 describes a numerical study of three sample moving-grid methods for lD time
dependent partial differential equations. The three methods are: 1. a moving-finite
difference method (MFD) proposed by Petzold [27], 2. a moving-finite-difference 
method originally due to Dorfi & Drury [15], and 3. a moving-finite-element method 
(MFE) introduced by Miller et al. [23, 24]. This chapter emphasizes the perfor
mance of the methods with respect to efficiency, accuracy and robustness ( effect of 
regularization parameters and reliability of the numerical solution as for the fixed
grid case). The methods are tested on a set of three test problems each having their 
own characteristic solution behaviour. 

Chapter 3 deals with some theoretical and analytical properties of the moving
finite-difference method due to Dorfi & Drury. Especially, the effects of the appear
ing regularization parameters, which serve to smooth the grid distribution in space 
and the grid movement in time, are examined. 

In Chapter 4 the ID gradient-weighted MFE (GWMFE) method of Miller is 
evaluated. GWMFE is an extension of MFE based on adding a weighting term, that 
depends on the first spatial derivative of the solution, to the minimization procedure 
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that determines the movement of the grid points. A brief comparison is made 
between this method, its predecessor MFE and the MFD method of Chapter 3. 

Chapter 5 describes the grid movement induced by the MFE method, when 
applied to hyperbolic and parabolic PDEs in one and two space dimensions. 
Numerical examples show the relation between MFE and both equidistribution prin
ciples and the method of characteristics. 

Chapter 6 combines the CWI-report [9], describing a software interface in which 
the moving-grid method of Chapter 3 is incorporated, and [40]. It shows an applica
tion of the software interface to a class of ID brine transport problems in a porous 
medium, stemming from hydrology. 

Chapter 7 presents numerical testresults obtained by applying the MFE method in 
2D to different classes of PDEs. Among others, MFE is applied to the so-called 
'Molenkamp test', a standard test problem from meteorology, to a 'flame problem' 
from combustion theory, and to a 2D brine transport model from hydrology. 
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Chapter 2 

A Numerical Study of Three Moving-Grid Methods 
for One-Dimensional Partial Differential Equations 

Which Are Based on the Method of Lines 

2.1. INTRODUCTION 

9 

It is well known that many discretizations of time-dependent problems in partial 
differential equations (PDEs) can be derived by means of the following two-stage 
procedure. First, the space variables are discretized on a selected space mesh, 
mainly using finite-difference or finite-element approximations, so as to convert the 
PDE problem into a system of, usually stiff, ordinary differential equations (ODEs) 
with time as an independent variable. The discretization in time of this stiff ODE 
system then yields the required fully discretized scheme. In the literature this two
stage approach is often referred to as the method of lines (MOL). With this approach 
in mind, several sophisticated PDE packages have been developed in recent years, 
notably for one-space-dimensional problems [3, 4, 11, 15, 25, 26]. These MOL 
packages greatly benefit from the very successful developments of automatic stiff 
ODE solvers. Needless to say, the development of implicit BDF codes, initiated by 
Gear and further improved by, among others, Hindmarsh and Petzold, is a key factor 
here (see [11, 23] and the references therein). Indeed, certainly for intelligent users 
who know their problem, Gear-type solvers have proved to be highly efficient, 
robust and reliable, in that they work for a broad class of problems and usually solve 
the stiff ODE system under consideration in an accurate and efficient way. The 
experiences with MOL packages have revealed clearly that this is also true for 
semi-discrete PDE problems. 

However, from the PDE point of view, conventional MOL packages integrate in a 
semi-automatic way in the sense that they adjust the time step sizes automatically, 
but use a fixed space grid, chosen a priori, for the entire calculation. Depending on 
the degree of spatial activity, such a space grid is usually equispaced or mildly 
nonuniform. In many cases this semi-automatic approach works very satisfactorily, 
notably for problems in which the solution does not exhibit a high degree of spatial 
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activity, but also for problems where regions of rapid variation in space do not move 
when time evolves (stationary layers). However, for solutions possessing sharp 
moving spatial transitions, like travelling wave fronts or emerging boundary and 
interior layers, a grid held fixed for the entire calculation can be computationally 
inefficient, since this grid will almost certainly have to contain a very large number 
of nodes. In such cases, methods which attempt to adjust automatically both the 
space and the time step sizes are likely to be more successful in efficiently resolving 
critical regions of high spatial and temporal activity. Methods and codes which 
operate this way belong to the realm of adaptive or moving-grid methods. 

Over the past several years the interest in moving-grid methods has rapidly 
increased. Unfortunately, very few, if any, moving-grid software packages, gen
erally applicable up to nearly the same level of efficiency, robustness and reliability 
as conventional packages, are available yet, even for the relatively simple 1-D case. 
Admittedly, for an interesting variety of difficult example problems, various adap
tive techniques have been shown to be potentially very efficient, a prominent exam
ple being the moving-finite-element method invented by Miller and his co-workers 
[6, 10, 16-18, 20]. However, most of the techniques, including the moving-finite
element method, require some form of tuning to ensure that the automatic choice of 
the changing space nodes is safely governed. This additional tuning is to the detri
ment of reliability. Experience so far has made clear that, in general, the automatic 
space node selection is intrinsically difficult, in the sense that the tuning, being 
rather problem-dependent, does not lend itself to automation. Hence, algorithms 
employing moving-grid techniques usually require considerably more expertise of 
the user than most of the common fixed-grid algorithms in order for the best possi
ble results in terms of efficiency, robustness and reliability to be obtained. 
Noteworthy, in this connection, is that the moving-grid construction, with the 
accompanying tuning, is often a determining factor for the computational effort 
spent in the time integration. Traditionally, this point has been neglected in most of 
the work on time-dependent problems, probably because the greater part of the 
development effort is spent in doing a good job in the spatial direction. 

Following the philosophy of the MOL approach, this chapter is devoted to an 
evaluation and comparison, mainly based on extensive numerical tests, of three 
moving-grid methods for 1-D problems, viz., the finite-element method of Miller et 
al., the method published by Petzold [24], and a method based on ideas adopted 
from Dorfi and Drury [8]. The two latter ones are finite-difference methods. Con
cerning the time integration, all these three moving-grid methods can be straightfor
wardly combined with a stiff solver, just as in the conventional MOL approach. In 
the referenced papers, interesting results have been shown already using such a type 
of time integrator. Our examination of the three methods, presented in this chapter, 
is principally aimed at assessing which of the three methods is most suitable from 
the point of view of retaining the acknowledged features of reliability, robustness 
and efficiency of the conventional MOL approach. As already indicated by the 
remark made above, in such an examination the moving-grid determination should 
be considered not only in relation to spatial solvability properties, but also in rela
tion to the time-stepping process. Hence we shall pay considerable attention to the 
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question of efficiency of the time-stepping process. 
Briefly, this chapter is arranged as follows. In Section 2.2 we present an outline of 

the three methods under consideration, preceded by some general observations on 
the Lagrangian approach. This approach underlies the two finite-difference methods, 
while also the finite-element method can be interpreted this way. This section con
centrates on the semi-discretization. Section 2.3 deals with the numerical time 
integration by means of stiff BDF solvers. In Section 2.4 we discuss results of exten
sive numerical testing on a set of three test models from existing moving-grid litera
ture. This test set includes. a reaction-diffusion equation which models a problem 
from combustion theory, the well-known convection-diffusion equation of Burgers', 
and a system of two quasi-nonlinear hyperbolic equations, which may be considered 
as a prototype of an opposite travelling waves problem. It is worth emphasizing at 
the outset that these three problems show different solution behaviour. This is of 
importance with respect to our aim, which is to assess which of the three methods 
under consideration best enables the acknowledged features of reliability, robustness 
and efficiency of the conventional MOL approach to be realized. We are aware, of 
course, that experience based on a test set containing three example problems is 
necessarily limited. By choosing problems differing in solution behaviour, however, 
we are confident that our conclusions and recommendations have a much wider 
scope. This holds particularly true for the time integration aspect. Our conclusions 
and recommendations are summarized in Section 2.5. 

To conclude this introduction we wish to emphasize that in the present chapter we 
do not consider the extension of the methods to higher space dimensional problems. 
It should be acknowledged, however, that work reported by Miller, Baines, Wathen 
and others contains interesting results in this direction for the moving-finite-element 
method (see, e.g., [6] and the references therein). We do not know of higher space 
dimensional applications of the two finite-difference methods examined here. 

2.2. OUTLINE OF THE MOVING-GRID TECHNIQUES 

In order for this article to be read independently, we present in this section a brief 
outline of the main principles on which the three moving-grid methods are based. In 
view of the need for brevity, as well as for simplicity of presentation, this outline 
concentrates on the scalar form. This restriction is not essential. Concerning the 
automatic grid generation, the principles behind the three methods are the same as 
for systems and none of the three methods really distinguishes between scalar prob
lems and systems (the necessary changes for systems are always at the implementa
tion level, see [8,10,23] where applications to systems are discussed). For clarity, 
Section 2.2 deals only with the semi-discretization. We begin our outline with some 
general observations on the Lagrangian approach. 

2.2.1. The Lagrangian approach 
Virtually all of the space mesh adapting techniques for time-dependent problems 

attempt to move the nodes in such a way that, in regions of high spatial activity, 
there is enough spatial resolution. In other words, the construction of these methods 
is aimed at minimizing the number of space nodes relative to a certain level of 
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spatial accuracy. On the other hand, in most time-dependent applications large spa
tial gradients are accompanied by large temporal gradients, the standard example 
being provided by the simple running wave form u (x,t) = w (x - et). It thus is 
natural not only to minimize the computational effort put into the spatial discretiza
tion, but also to attempt to minimize the computational effort put into the time 
integration. Lest we miss the obvious, on a non-moving mesh a steep wave form 
such as u (x,t) = w (x - et) will require standard time-stepping techniques, including 
the sophisticated Gear methods, to use small time steps. This is inevitable, because 
when on a non-moving mesh the moving front passes a grid point, the solution at 
this grid point will change very rapidly. Small time steps are then necessary to retain 
accuracy. 

The above observation naturally leads one to consider the Lagrangian approach, 
which is best introduced via a co-ordinate transformation. Consider the PDE prob
lem 

(2.1) 

where L represents a differential operator involving only spatial derivatives, e.g., 

dulot = L(u) := -oc(u)lox+Eo2u/dx 2 + g(u), (2.la) 

XL< X < XR, t>O, E>O. 

The space interval is supposed to be fixed for all times t >0 under consideration. Let 
(s,t) be new independent variables linked with the old independent variables (x,t) 
through a co-ordinate transformation x = x (s,t). Denote v (s,t) = u (x,t). Then the 
total derivative of u is ovlot = oulox oxlot + oulot and the Lagrangian form of 
(2.1) reads 

dvldt = ou/dx ox/ot + L(u), SL< s < SR, t>O, 

and that of (2.1 a), 

dv/ot = ou/oxdxlot - de(u)lox + Ed2 uldx 2 + g(u), 

SL< s < SR, t>O. 

(2.2) 

(2.2a) 

Note that oulot measures the changes of u as a function of t at a fixed x value 
(Eulerian description) and dv/ot at a fixed s value (Lagrangian description). Thus 
the basic idea of the Lagrangian approach is that in the variables (s,t) the problem 
should be easier to handle numerically than in the original pair (x,t). Ideally, in the 
new variables any rapid transition should be absent; we can then take acceptable 
step sizes in the time direction while using a coarse uniforms-grid in space. A suit
able nonuniform x-grid then exists according to the change of variables x = x (s,t). 

In classical Lagrangian methods, as are being applied successfully to some types 
of fluid-flow problems, the movement of the nodes is attached, in an a priori 
manner, to a physically motivated, specific flow quantity. For example, for a prob
lem like (2. la) it makes sense to attach the movement of the nodes to the convection 
term oe (u )ldx, i.e., to choose dxlot = de (u )/du so as to obtain the parabolic equa
tion ov/ot = E o2u/ox 2 + g(u) (in a moving reference frame). The rationale behind 
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this choice is that parabolic problems without large first order terms usually possess 
smoother solutions and thus are less difficult to solve numerically. Of course, the 
numerical realization of the prescription dxldt = de (u )/du involves its own 
difficulties, but these are usually surmountable. 

Because we aim at application to a wide variety of problems we require that the 
transformation be based on a general 'systematic rule', e.g., spatial equidistribution. 
In fact, the choice of this 'systematic rule' determines to a great extent the moving
grid method under consideration. This will be illustrated quite clearly in the remain
ing sections. Here we wish to point out that it is not always possible to smooth the 
solution, through the co-ordinate transformation, in space and in time simultane
ously. This obviously depends on the nature of the solution sought, which can be 
nicely illustrated by examining Problem I of Section 2.4 (cf. [27], Section 2.5.3). Let 
us consider its solution near the left boundary, while the steep front is forming (the 
ignition phase). Assuming a uniform grid at the initial line (a choice suggested by 
the constant initial solution u (x, 0) = 1), the derivatives dxldt of many of the trajec
tories should be negative in order for the required refinement in the region of the 
steep front to be obtained, which is in accordance with the objective of smoothing 
the problem in space. However, during the formation of the front, duldx < 0 and 
du/dt > 0. It then follows immediately that dvldt > duldt, violating the objective of 
getting a smoother problem in time. Most Lagrangian-type methods do underly the 
first objective through a co-ordinate transformation based on spatial equidistribution 
properties. Spatial equidistribution forces nodes to migrate to regions of high spatial 
activity. So, during the formation of the front, for the present combustion problem 
these meth.ods offer no benefit as far as the time stepping is concerned. Once the 
front is formed and starts to propagate, both smoothing objectives are fulfilled if the 
transformation underlies spatial equidistribution, because then dxldt > 0 and still 
duldx < 0 and du/dt > 0. Any simple travelling wave form u (x,t) = f (x - et) is a 
trivial solution, in this respect, provided the grid trajectories satisfy dx/dt = e. 
Interestingly, the Lagrangian approach followed by Petzold [23] underlies the 
second objective. This approach, originally due to Hyman [13], is basically aimed at 
finding those trajectories along which the time rate of solution change is minimized, 
that is, dvldt < duldt. However, during the formation of the front in the present 
combustion example, this must imply that, in the front region, dxldt > 0, which 
means that points are moved away from the front, and thus the first objective is 
violated. This is contrary to the desired aim; however, Petzold's algorithm has a 
built-in regridding step which corrects this deficiency (see the next section). For this 
method it also holds that, once the front is formed and starts to propagate, both 
smoothing objectives are fulfilled. 

The two finite-difference methods we examine are based on the standard, central 
semi-discretization of the above Lagrangian form (2.2). More precisely, completely 
in line with the common MOL approach, consider numerical, continuous-time tra
jectories 

XL = X o< ... <X;(t) < X;+1 (t)< ... <XN+l = XR for O :s; t :s; t,nd, (2.3) 

with the associated grid functions 
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U=[U1, ···,UNf, X=[X1, ···,XNf-

Thus, U represents the semi-discrete approximation to the PDE solution u restricted 
to the moving space grid X and is the solution of the ODE system 

. . 
U; = X;[(U;+i - U;_1)/(X;+1 - X;_1)] + L;(U, X), 1 -5. i -5. N, (2.4) 

where the symbol · denotes differentiation to time, U; denotes the semi-discrete total 
derivative and the operator L stands for the difference operator replacing the dif
ferential operator £ on the grid. For example, the right-hand side function of (2.la) 
is approximated at grid point i, 1 -5. i -5. N, by 

L;(U,X) = - {[c(U;+d - c(U;_1)]/[X;+1 -X;_1]} 

+ £{ ((U;+i - U;)l(X;+1 - X;) 

-(U; - U;_i)/(X; -X;_i))/(0.S(X;+r -X;-1))} + g;(U). 

In the discussion to follow, we neglect the treatment of boundary conditions, 
since these are dealt with in the usual way. We recall that, for convection-diffusion 
problems with steep gradient or near-shock behaviour, the use of central differenc
ing of first order terms is not ideal and one would probably consider stable upwind 
or flux-corrected approximations. In this chapter, the central approximation is used 
since it facilitates comparisons between the three methods (the finite-element 
method uses standard piecewise linear basis functions) and because it represents a 
severe test for a good moving grid X (t). Any deviation from an ideal Lagrangian 
grid movement, assuming this exists, will soon result in unphysical, oscillatory solu
tions. As already indicated above, the definition of X (t) is highly important and 
determines to a great extent the complete moving-grid method. 

2.2.2. Method I 
Method I is the finite-difference moving-grid method proposed by Petzold [24] 

(version A). Each time step consists of two computational stages: a moving Lagran
gian step, involving the application of a stiff ODE solver to an augmented semi
discrete system, followed by a second (regridding) stage in which a redistribution of 
points at the forward time level is carried out through a De Boor-type equidistribu
tion algorithm. Both are equally important for the application of the method. How
ever, in contrast to most methods, grid points are not necessarily moved in the 
desired direction of high spatial activity. Loosely speaking, one of the purposes of 
the regridding stage is to correct this deficiency. 

The semi-discrete system 
We begin our outline with the derivation of the (augmented) semi-discrete sys

tem, which consists of the equations of system (2.4) together with grid equations for 
the implicit determination of the unknown grid X. Consider the Lagrangian form 
(2.2) where, for convenience of notation, u and x now denote the derivatives dvldt 
and dxldt, respectively. The underlying transformation, which is originally due to 
Hyman [13], is chosen to minimize in a certain sense the total derivative u. This is 
done by selecting x such that 
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is minimized, where a ~ 0 is a real number. Differentiation to x and equating to zero 
yields the differential expression it au1ax + ax = 0, which can be written as the sin
gle ODE 

x = (-au/at au1ax )/( a + (au1ax )2 ), 

with x as a dependent and t as an independent variable, provided u, au/at and du/ax 
are known functions of x. For given x (0) on the initial space interval, the solution of 
this ODE defines the trajectory x (t) (t~0) along which the rate of change of u, that is 

it= (a au/at)/(a + (au/dx)2), 

is minimized in the above sense. It is hereby tacitly assumed that the above ODE is 
uniquely solvable. The parameter a serves to regularize the transformation. For 
a= 0 we have it = 0, which in general cannot be a solution. Observe that, in regions 
where (du/ax)2 is negligible relative to a, the transformation has no effect. The 
travelling wave form u (x,t) = w (x - et) nicely shows the idea behind this transfor
mation. For this solution we have 

x = (c (aw1ax)2)/(a + (aw1ax)2), 

it= (-a c(aw/ax))/(a + (dw/ax)2) 

and for a= 0 the grid point x (t) moves with the wave with speed c. Recall, how
ever, that grid points are not always moved in the desired direction. 

Hence, the transformation employed leads to the grid equation 

it duldx + ax = 0, SL< s < SR, t>0. 

When combined with (2.2), it can be solved for the unknowns u and x. The grid 
equation is written in this form to avoid ill-conditioning problems in the numerical 
solution process [24]. At this stage it is pointed out that in actual application the new 
variable s is not used explicitly, that is, computations will always be performed in 
terms of the original variables (x,t). Note that explicit use of s would require that its 
bounds be properly defined, which we have not done. Like (2.2), this grid equation 
is spatially discretized on the grid (2.3) so that we obtain 

. . 
U;[( U;+1 - U;_1 )/(X;+i - X;_1 )] + a X; = 0, I ~ i ~ N. (2.5) 

Equations (2.4), (2.5) form the augmented, semi-discrete system and define the 
unknown variables U and X. 

In addition to the regularization term ax, the grid computation needs an extra reg
ularization to prevent neighbouring grid points from crossing. Note that, even when 
the single ODE for the exact grid trajectory is uniquely solvable, the grid trajectories 
for a set of given initial points may approach each other arbitrarily closely. Petzold 
[24] has suggested that, instead of (2.5), · 

. . 
U;[(U;+1 - U;-1)l(X;+1 -X;-1)] + aX; (2.6) 

+ A, [(X; - X;-1 )/(X; - X;-1 )2 - (X;+J - X;)/(X;+J - X;)2] = 0 



16 

should be used, where A > 0 is the second regularization parameter. This form 
results when 

(u;)2 + a (.x;)2 (2.7) 

+ A [(.x; -.x;_i)2 /(x; - X;_i)2 + (X;+J - x;)2 /(x;+I - X;)2 ] 

is minimized with respect to X;. This regularization term is related to the 'intemodal 
viscosity' tenn of the moving-finite-element method (see Section 2.2.4). The use of 
this type of regularization is based on heuristic considerations. If neighbouring 
points tend to approach each other very closely, the denominators in (2.6) will even
tually decrease beyond the level needed to let the regularization term dominate the 
entire expression. If this happens, the minimization procedure will result in nearly 
equal neighbouring grid velocities, with the effect that, when time evolves, neigh
bouring points are prevented from approaching further. 

Necessarily, the regularization is problem-dependent and in actual application 
there is no guarantee that points will not cross. On the other hand, at sufficiently 
large A the grid becomes non-moving. Hence, if A is chosen too large, it may happen 
that points are forced to stay apart too much so that locally the grid is not fine 
enough to resolve anticipated small-scale structures. Following [24], we have used 
throughout the values a= 1, ').._ = 0.2. Needless to say other choices of regularization 
terms are conceivable. It should be emphasized, though, that it is not easy, if possi
ble at all, to find an optimal regularization. It is noteworthy that regularization 
always has some smoothing effect on the grid trajectories, which is desirable for the 
time integration. Hence, regularization not only influences the spatial solvability 
performance of the moving-grid method, but also the performance of the stiff solver. 

In order to bring the augmented semi-discrete system (2.4), (2.6) into a more 
compact form, we introduce the vector Y = [U 1, X 1, ••• , U;, X;, . .. , UN, XNf- The 
semi-discrete system then takes the linearly implicit form 

Jl(Y)Y = G(Y) for t > 0 and Y(O) given, (2.8) 

where 5l(Y) is block tridiagonal and the (2i-1 )th and the (2i)th element of the 
vector-valued function G are given by 

(2.9) 

Inspection of the matrix Af = - 5l reveals that for any vector Y its symmetric part 
(Af + 'Jvf)/2 is negative definite, so that, according to the known property that the 
real part of any eigenvalue is smaller than or equal to the maximum eigenvalue of 
(Af + 'lvf)/2, the matrix 5l is non-singular. This means that system (2.8) is a 
genuine, stiff ODE system. Even when grid points cross, the matrix remains non
singular. This is handy because it means that crossing need not be fatal. More pre
cisely, after each (modified) Newton iteration within an implicit moving integration 
step with the stiff solver, a check on crossing is made. If crossing is detected, the 
current step is interrupted and redone with a smaller step size. 

The regridding step 
The above transformation is interesting in itself, because it provides a smoother 
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problem in time. This will be beneficial for the numerical integration process. A 
disadvantage is that this transformation may not necessarily move the grid points in 
the direction of high spatial activity. To overcome this deficiency, an intermediate 
regridding is carried out, in principle after every successful moving integration step. 

Suppose the moving step with the stiff solver has delivered the numerical (vector) 
values un, xn at the n-th forward time level. Then, by application of a De Boor
type regridding algorithm, which uses un, xn for input, a second level n grid is 
determined. This new grid, zn, say, satisfies (approximately) 

Az I au/eh I + (Az:)2 1 a2u1ax 2 1 = constant. (2.10) 

It would lead us too far here to discuss the implemented De Boor algorithm in detail. 
Here we only remark that we keep the number of moving points fixed, whereas Pet
zold [24] adapts the number of moving points so that (approximately) 

Az I au1ax I + (Az:)2 I a2 u1ax 2 1 ~ specified tolerance, 

while the number of points is the smallest number needed to satisfy this inequality. 
We have decided to work with a fixed, given number of moving points for com
parison with the other two methods. In conclusion, zn equidistributes (2.10), which 
has the effect that points are concentrated in regions of high spatial activity. This 
alleviates the deficiency mentioned above. Because the grid zn will normally differ 
from xn, it is necessary to interpolate from xn onto zn prior to the next moving 
integration step. This is done via the 'dual reconnecting grid' approach, which is a 
compromise between choosing the best grid and avoiding needless interpolations. 
Briefly, the. idea is as follows. zn divides the space interval into zones. Each zone is 
allowed to contain one point from xn. If a zone contains just one point, no interpola
tion takes place. If a zone is empty, a point is added and a (monotone) interpolation 
is carried out. If there are more points from xn in a zone, points are deleted. Grid 
points at the edge of zones which are too close to other points are moved apart. In 
this way the final grid to be used for the next moving step is created. Hence, on most 
time steps only a few interpolations are carried out (and eventually none). This is of 
importance, since interpolation usually damages the accuracy a little. Another 
attractive feature of the dual reconnecting grid approach is that points can be added 
and deleted locally. This is advantageous when locally the solution undergoes sud
den rapid changes (birth of new layers). 

When considered on its own, the idea of intermediate regridding is interesting 
because, as a sort of added bonus, it provides the possibility of more direct control 
on the placement of nodes through equidistribution (and connected herewith heuris
tic spatial error monitoring based on equation (2.10)). One could say that the inter
mediate regridding step makes the regularization less critical, though regularization 
should not be omitted. A considerable disadvantage of regridding is that it necessi
tates interpolation and that it interrupts the time-stepping process. Frequent interpo
lation may damage the accuracy considerably, while the interruption of the time
stepping process causes a restart situation for the stiff solver (in our case a BDF 
solver). In other words, after a regridding the Jacobian matrix is updated and the 
integration is continued with the implicit Euler method on the newly chosen grid 
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(with that step size that would have been used on the next step had there been no 
restart). The inevitable consequence is that, when there are many genuine regrid
dings, the solver does not get the chance of switching to a higher order formula, 
which no doubt is detrimental when high accuracy in time is needed. It is clear that 
this situation is somewhat in contradiction with the MOL approach and that there is 
room for some improvement here [24). 

2.2.3. Method II 
Method II is also a finite-difference method based on the semi-discrete Lagran

gian form (2.4). The main ideas of moving the grid are derived from Dorfi and 
Drury [8]. An implicit equation for X (t) is used which underlies a spatial equidistri
bution transformation based on an arc-length monitor function. An important feature 
of Method II is that the grid movement is regularized by employing a smoothing 
technique in both space and time. The spatial grid smoothing ensures that the ratio 
of adjacent grid intervals is restricted, thus controlling clustering and grid expan
sion. The temporal grid smoothing ensures a smooth progression of X(t) by 
preventing the points from responding too quickly to current solution gradients. This 
is highly desirable for efficient numerical time stepping. 

The semi-discrete system 
We shall derive the semi-discrete grid equations for the implicit determination of 

the moving grid X (t). Let us first recall the idea of the spatial equidistribution 
transformation which is used in Method II. Hence, the theoretical co-ordinate 
transformation supposed in equation (2.2) is now of the form 

X ¾ 

s(x,t) = fM(~,t) d~lri(t), ri(t) = f M(~,t)d~, 

where M (x,t) is a chosen monitor function which should reflect space dependence 
of the PDE solution. The spatial equidistribution of this monitor function is enforced 
by dividing the interval O s:; s s; I into N + I equal parts. Through the inverse transfor
mation, the N theoretical grid trajectories x;(t) = x (i/N,t), t ~ 0, ( 1 s:; i s; N) where 
x 0 , xN+I are the given boundaries xL and xR, respectively, then satisfy the equidistri
bution relation 

f M(~,t) d~ = ri(t)IN (0 s:; i S;;N). 

Consequently, in regions where M will be large, the grid trajectories will become 
close and vice versa. By applying the midpoint quadrature rule and inserting semi
discrete variables, at the semi-discrete level this equidistribution relation is taken to 
be 

(X;+1 - X;) M; = constant (0 s:; i :-::; N), (2.11) 

where M; now represents the semi-discrete monitor value at the midpoint of the i-th 
sub-interval [X;, X;+t1- Following Dorfi and Drury, we use the arc-length monitor 
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M; = (1 + (U;+1 - U;)2l(X;+ 1 -X;)2)'12 , 

which has the property of placing grid points along uniform arc-length intervals and 
gives good point placement at the 'lip' of a shock. Of course, other choices of Mare 
conceivable. Because M is positive, solution values X; of (2.11) cannot cross. For a 
discussion of monitor functions and equidistribution, see for example Pereyra and 
Sewell [22], Furzeland [9], Carey and Dinh [5]. 

By elimination of the constant in (2.11), a set of N semi-discrete grid equations 
for the implicit determination of the moving grid X is obtained 

(2.12) 

Combining these with the semi-discrete PDE equations (2.4) yields the (augmented) 
semi-discrete problem for the unknown grid functions U and X. However, as men
tioned previously, Dorfi and Drury regularize the grid movement by performing a 
smoothing technique both in space and time. This amounts to modifying the grid 
equation system (2.12). We shall first describe their modification for the spatial grid 
smoothing. 

For this purpose we introduce the point concentrations 

n; = 1/(X;+i - X;) (0::; i ::; N). 

Using these variables, the grid equation system (2.12) is written in the form 

n;_1/M;_1 = n;IM; (1::; i ::;N) 

(2.13) 

(2.14) 

and the spatial grid smoothing is then carried out by replacing the point concentra
tions in this system by their smoothed (numerically diffused) counterparts 

n; = n; - K(K+ l)(n;+I - 2n; + n;_1 ), K > 0, 

to obtain the new grid equation system 

n;-1/M;-1 = n;IM; (2::;i::;N-1). 

(2.15) 

(2.16) 

Neglecting the influence of the boundaries, it can be shown that this filtering pro
cedure is equivalent to a certain smoothing procedure for the monitor function [8], 
thus ensuring that the adjacent point concentrations are restricted such that 

(2.17) 

This spatial smoothing can also be achieved by 'padding' the monitor function 
[9, 14], but this approach is not recommended here since within a MOL framework 
the implicit coupling between X and U then varies at each time step. For a given N 
and a given monitor function distribution, the choice of K determines the minimum 
and maximum interval lengths. The monitor function determines the relative shape 
of the X; distribution, K and N determine the absolute level of clustering [8]. In 
actual application, a value of K of about 1 or 2 is recommended. This yields mod
estly graded space grids. In our experiments we have used K = 2. The value of K 

plays an important role in controlling space discretization errors on non-uniform 
grids (see, for example, [9]). 

System (2.16) must be completed with boundary conditions. Following [8], at the 
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boundaries the 'concentration gradients' are set to zero, 

n 0 =n 1 and nN-I =nN. (2.18) 

Note that the use of the grid equations (2.16), (2.18) introduces a 5-point coupling in 
X. Needless to say, this slightly increases the computational costs of the method (per 
step). 

The temporal grid smoothing described next replaces the set of algebraic equa
tions (2.16) by the following set of differential equations 

(n;-1 + 't" dn;-1/dt)IM;-1 = (ii;+ 't" dn;ldt)IM;, (2.19) 

i- ;?: 0 (2 :5: i :::; N -1 ), 

again with boundary conditions (2.18). This system is constructed as follows. Con
sider the monitor function values M(t) occurring in equation (2.16) (for conveni
ence of notation we suppress the lower index i). The temporal grid smoothing hinges 
on the replacement of M (t) by 

R(t) = JM(t-cn)e-ada, i-;?:0, 
0 

where M(t) is now thought of as being defined on the semi-infinite interval [-00, t]. 
In actual application, the extension to the interval [ - 00, OJ is neglected. This is 
allowed due to the presence of the exponential damping factor and the fact that the 
parameter i- is supposed to be rather small (the choice i- = 0 yields R (t) = M (t)). By 
partial integration the differential form 

M (t) = R (t) + i- dR (t)/dt 

can be recovered, which is used to construct (2.19). More precisely, the numerically 
diffused point concentration values ii(t) of equation (2.16) are now taken propor
tional to R (t), rather than to M (t). Let c (t) be the proportionality constant, that is, 
R (t) = c (t) ii(t). Substitution into this differential form gives 

M (t) = c (t)(n(t) + i- dn(t)/dt) + 't n(t)dc (t)/dt. 

If we then neglect the time dependence of the proportionality constant c (t), and sub
sequently eliminate it, the grid equation system (2.19) is recovered. 

The motivation behind the use of the monitor function R (t), which is 'averaged in 
time', is that, when the grid movement is attached to R (t) rather than to M (t), it is 
prevented from adjusting immediately to the new monitor values. Instead, the use of 
R (t) forces the grid to adjust over a time interval of length i- from old to new moni
tor values, i.e., the parameter i- acts as a delay factor. The aim of this approach is to 
avoid temporal oscillations in the original grid trajectories defined by (2.16). These 
oscillations are typical for grids generated via numerical spatial equidistribution 
techniques. When applied to solutions with very large gradients, relatively large 
errors occur with these techniques. Needless to say, for the numerical time integra
tion a smooth grid X (t) is highly desirable, otherwise too many Jacobian evaluations 
are needed when an implicit solver is applied. 



21 

Albeit heuristic in nature, there is no doubt that the temporal grid smoothing pro
cedure is of importance. The choice of the delay factor 'C requires some expertise 
but, in our experience, this is not too critical. Increasing 'C too much results in a grid 
that lags too far behind any propagating wave or shock. Note that, for sufficiently 
large values of 'C, a non-moving grid results. Trivially, too small values for 'C render 
no effect. In practice it makes sense to choose 'C close to the anticipated temporal 
step size value such that, over one or a few time levels, the influence of past monitor 
values is felt. The stabilizing effect of 'C is similar to that of the damping factor A 
introduced in Coyle, Flaherty and Ludwig [7]. 

To sum up, the semi-discrete grid equations (2.19) with the boundary conditions 
(2.18) determine the continuous-time moving grid X(t). Of importance to note is 
that we work with the 2N unknowns U;, X;(l :5: i :5: N) and that in our implementa
tion the point concentration derivatives that occur in (2.15), (2.19) are replaced by 

dn;ldt = - (X;+i -X;)/(X;+i -X;)2. 

More specifically, in the numerical integration U;(t) and X;(t) are computed with the 
same integration formulas, which is different from the implementation in [8] (see 
formula (10)). Consequently, in our case the i-th equation of system (2.19) couples 
the nodal points 

with the nodal point velocities 
. . 

X;+2, X;+i, X;, X;_1, X;-2, 

and the solution values 

A little inspection reveals that the vector version of the final augmented semi
discretized system of ODEs can be brought to a linearly implicit ODE form with a 
known bandwidth in a similar way to that used for Method I (cf. (2.8)), 

Jl.(Y)Y = G(Y) for t > 0 and f(O) given. (2.20) 

2.2.4. Method lI/ 
Method III is the moving-finite-element method introduced by Miller et al. 

[16, 20]. This method also generates a system of continuous-time ODEs for mesh 
points and numerical approximations in these moving points. The grid movement is 
regularized by using penalty functions. 

The semi-discrete system 
Consider the continuous-time grid X introduced in (2.3) with unknown com

ponents. On such a grid, the moving-finite-element method approximates the solu
tion u (x,t) of problem (2.1) by an expansion (summation from 1 to N) 

U(x,t) = L, U;(t) a;(x, X(t)), (2.21) 
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where a.; are the standard piecewise linear basis functions that depend on the nodal 
positions X; and U; are the amplitudes of the approximate solution U(x,t) at the 
corresponding nodal positions. Differentiating this expression with respect to t 
gives, after some elementary calculations 

(2.22) 

where the f3; are piecewise linear discontinuous basis functions with the same sup
port as a.;. We have 

f3;(x)= -m;+1a.; forX;::;x::;X;+J, 

0 elsewhere, 

where m; = (U; - U;_ 1)/(X; - X;_1) is the slope of the semi-discrete approximation 
U (x,t) on [~;-J, X;]. It is of interest to note that (2.22) is akin to the Lagrangian 
form (2.2); U; plays the role of the Lagrangian derivative ov/ot and the nodal velo
city X; that of oxlot (see [2, 9, 21] for a discussion of the Lagragian nature of 
Method III). 

The equations determining the semi-discrete unknowns U; and X; are now 
obtained in the standard Galerkin way by minif!1izing ~he square of the L 2-norm of 
the residual R ( U) = U1 - -4 U) with respect to U; and X;. This gives a system of 2N 
equations in the 2N unknowns U;, X; (boundary conditions are incorporated in the 
standard way): 

. . 
L < a.;' a. j > u j + < a.;' f3 j > X j = < a.;' -4 U)> 1 ::; i ::; N, 

. . 
I:< f3;, a.j > uj + < f3;, f3j >Xj = < f3;, -4U)> 1::; i :s;N, 
j 

(2.23a) 

(2.23b) 

where <.,.> denotes the usual inner product. Assuming zero velocities, the first 
equation is readily recognized as the standard, semi-discrete Galerkin equation. The 
second equation originates from the additional minimization with respect to the 
nodal velocities. Using the linear forms for a.; and f3;, the inner products on the left
hand side may be evaluated to give, respectively, 

1 . . . 
6 [M;U;-1 + 2(M; + M;+i)U; + LlX;+i U;+il (2.24a) 

1 . . . 
- 6 [LlU;X;_1 + 2(LlU; + LlU;+i)X; + LlU;+1X;+il 

= <a.;,.4_U)>, 1::;;::;N, 
1 . . . 

- 6 [LlU;U;-1 + 2(LlU; + LlU;+1)U; + LlU;+i U;+il (2.24b) 

= < f3;, _[j__U)>, 1 ::; i::; N, 
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where M; =X; -X;_1 , etc. 
Using the vector notation Y = [U 1, X 1, ... , U;, X;, ... , UN, XNf, we thus arrive at 
the continuous-time, semi-discrete moving-finite-element system 

Yl(Y)Y = G(Y) for t > 0 and Y(O) given, (2.25) 

where Yl(Y) is a block tridiagonal matrix and G (Y) is given by 

G(Y) = (<ex,, .fJ...U)>, < f3,, .fJ...U)>, ... ,<aN, .fJ...U)>, < f3N, .lJ...U)>f. 

The matrix .9l(Y) contains only quantities from the left-hand sides of (2.24), which 
are related to the discretization of cJu/cJt on the moving mesh (cf. (2.8), (2.20)). 
What remains now is to integrate this ODE system numerically to obtain the 
required fully discretized solution. 

The moving-finite-element method has aroused considerable interest yet at the 
same time has been subject to criticism because of its complexity and the inherent 
problems of parallelism and points drifting extremely close together. Parallelism 
occurs when the gradients of U on adjacent cells, say m; and m;+1, become equal. 
The (2i + 1 )-th column of .9l is then equal to m; times the 2i-th column, so that the 
mass matrix .9l becomes singular. When nodes drift extremely close together, the 
mesh may become tangled or nodes may even cross in the numerical integration 
process. Miller [17] suggests that these two problems can be overcome by introduc
ing regularization terms (penalty functions) in the residual minimization. Instead of 
using R ( U) alone the minimization is thus carried out for 

where 

< R(U), R(U) > + I,(£jb.X.j - Sj)2 , 

j 

(2.26) 

with C 1, C 2 and d small, user-chosen constants. In particular, d serves as a user
defined minimal node distance. The modifications involved are only made to the 
mesh point equations (2.23b) and the combined effect is to add 

£TM;-£T+1M;+1 and £;S;-£;+1S;+1 

to the left- and right-hand side, respectively. The £-terms serve to avoid parallelism. 
It can be shown that the addition of these terms renders the mass matrix .9l diago
nally dominant [18], and thus regular. They represent a form of 'internodal' viscos
ity, since they penalize relative motion between nodes and, provided the penalty is 
sufficiently large to take over before the mass matrix becomes numerically singular, 
result in the degenerate nodes being carried along with the rest of the solution. The 
£-terms do prevent node overtaking in a dynamic way since the internodal viscosi
ties become infinite as & tends to zero; however over longer time intervals degen
erate nodes (those caught in straight line segments where they are unneeded) may 
still slowly drift together. The S-terms, sometimes called internodal spring forces, 
serve to prevent this long term numerical drift. 

As for any other method, the regularization is somewhat heuristic and necessarily 
problem-dependent. For example, if C 1 is chosen too large, the grid movement is 



24 

restricted ( C 1 :::::00 gives a non-moving grid) with the result that there may not be 
sufficient refinement in regions of large spatial activity (a typical phenomenon is 
then that the grid moves slower than a front region). On the other hand, if C I is too 
small, the mass matrix 51. may become numerically singular. Also of great impor
tance is that the minimal node distance d be small enough in relation to the antici
pated small-scale structure. However, too small values of d and C 2 may allow 
numerical errors to lead to near node overtaking (or even worse), which is a source 
of severe numerical difficulties in the time integration, even for the most robust stiff 
solver. When nodes drift extremely close together, the sets of nonlinear algebraic 
equations to be solved at each time step are likely to become badly conditioned. 
This hampers the Newton iterative process and results in a higher number of itera
tions and Jacobian updates than in the conventional MOL application. It is our 
experience that Method III is rather sensitive in this respect. We shall illustrate this 
extensively in the discussion of the numerical experiments. 

At this place we should also mention that the explicit time stepping approach 
advocated by Baines, Wathen and their co-workers (see [2] and the references con
tained in [6]) is aimed at avoiding the necessity of regularization with the accom
panying difficulties. However, while these explicit techniques work very success
fully on purely first order hyperbolic problems, they obviously suffer from the expli
cit time-step restriction when applied to parabolic problems, including those of the 
diffusion-convection type, even with little diffusion. Therefore we consider explicit 
techniques as Jess feasible for use in a general-purpose MOL algorithm. 

Finally, we list some of the inner products that are needed to handle our test prob
lems (g represents a nonlinear source function; cf. [10]): 

< a;, -UUx > = - !J.U;(U/9 + U;_1/18) - !J.U;+i (U/9 + U;+1/18), 

< P;, -UUx > = m;!J.U;(U/3 + U;_1/6) + mi+1/J.U;+ 1 (U/3 + Ui+ 116), 

< a;, g(U)> = [g((U;_1 + U;)l2)M; + g((U;+i + U;)l2)M;+iJl2, 

<P;,g(U)>= -[m;g((U;_1 +U;)l2)M; 

+m;+1g((U;+1 + U;)l2)M;+iJl2. 
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2.3. THE NUMERICAL TIME INTEGRATION 
For the numerical time integration of the three derived semi-discrete systems 

(2.8), (2.20) and (2.25), we have used two existing stiff Gear solvers. All results for 
Method I have been obtained with the original (version A) source code of Petzold 
[24], except that we have applied it with a fixed number of moving points. Conse
quently, Method I uses Petzold's own BDF code DASSL [23]. The software imple
menting Methods II and III has been prepared by ourselves. Both these methods use 
the LSODI-based BDF code of the SPRINT package [3, 4] for the time integration. 
Because the Gear codes of SPRINT and DASSL are very much alike, the choice 
between the two should be of minor importance for the performances observed. For 
all three methods use of the banded form of the equations is exploited in the Jaco
bian formation and numerical linear algebra computations. 

From the user's point of view it is of interest to note that the stiff solvers can be 
used in the same way as in the conventional approach. Apart from providing a sub
routine for the ODE system (numerical differencing for Jacobians was used) and 
specifying the initial vector Y (0) and required output times, one must define the 
familiar local error tolerances atol and rtol , the desired local error norm, and, 
optionally, an initial time-step value. Throughout we have used atol = rtol = TOL 
(to be specified) and the common Li-norm. For the automatic grid determination 
one must specify N, the number of moving space nodes, and the various regulariza
tion parameters. Recall that for Method I their values have been specified already in 
Section 2.2.2. For Method II we still must specify 't (see Section 2.2.3) and for 
Method III the parameters C 1, C 2 and d (see Section 2.2.4). 

We emphasize that the choice of the regularization parameters is of importance, 
not only to obtain a good positioning of grid points, but also to obtain an efficient 
time-stepping process. This will be illustrated quite clearly in the next section, 
which deals with the numerical experiments. In other words, we wish to pay consid
erable attention to the efficiency (number of time steps, Jacobian updates and back 
solves) of the time-stepping process, a point which has been neglected in most of the 
moving-grid work on time-dependent problems. 

2.4. NUMERICAL COMPARISONS 
We shall present results from extensive numerical testing with three example 

problems, viz., (I) a scalar reaction-diffusion equation that models a 'hot spot' prob
lem from combustion theory, (II) Burgers' equation, a scalar prototype for model
ling nonlinear convection-diffusion phenomena, and (III) a system of two quasi
nonlinear hyperbolic equations modelling the interaction of two waves travelling in 
opposite directions. It is worth emphasizing at the outset that these three problems 
have different solution behaviours. We recall that our main aim is to assess which of 
the three moving-grid methods is most suitable for retaining the acknowledged 
features of reliability, robustness and efficiency of the conventional MOL approach. 
For this reason, our first problem was chosen such that a comparison with results 
obtained on a non-moving grid is still feasible. This will enable us to compare the 
mutual efficiency of time-stepping on moving and non-moving grids, a point which 
has received insufficient attention in the moving-grid literature. 
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2.4.1. Problem/: A scalar reaction-diffusion problem from combustion theory 
This problem is described in Adjerid and Flaherty [ 1] as a model of a single-step 

reaction with diffusion and reads 

duldt = d2uldx 2 + D(l+a-u) exp(-olu), O<x<l, t>0, 

duldx(0,t) = 0, u(l,t) = 1, t>0, 

u (x, 0) = 1, 0::; x::; 1, 

where D = Re 0 /(ao) and R, o, a are constant numbers. The solution represents a 
temperature of a reactant in a chemical system. For small times the temperature gra
dually increases from unity with a 'hot spot' forming at x = 0. At a finite time, igni
tion occurs, causing the temperature at x = 0 to increase rapidly to 1 + a. A flame 
front then forms and propagates towards x = 1 at a very high speed. The degree of 
difficulty of the problem is very much determined by the value of o. Following [l], 
we have selected the problem parameters a= 1, o = 20, R = 5. Petzold [24] also 
used this problem as a test example, but with the more difficult parameter choice 
a= 1, o = 30, R = 5. The problem reaches a steady state once the flame propagates 
to x = 1. For the current choice of parameters, the steady state is reached slightly 
before time t = 0.29, which we take as the end point. The problem has also been 
used as a test example in [27], whence we have copied the plotted reference solution 
(solid lines in the plots). We use times t = 0.26, 0.27, 0.28, 0.29 for output. 

For the numerical process two solution phases should be distinguished, viz., the 
formation of the 'hot spot' with the flame front (the ignition phase) and the propaga
tion of this front to the right end point x = 1 ( the propagation phase). Accurate han
dling of the formation of the 'hot spot' and the ignition is of importance. The igni
tion proceeds very rapidly, causing a widely different time scale, so that variable 
steps in time are a necessity. A difficulty hereby is that the start of the ignition must 
be detected accurately and without overshoot by the local error control mechanism 
of the stiff solver, so that the step size can be rapidly reduced to a level small 
enough to simulate the ignition accurately. Small errors at this time point result in 
significantly larger global errors later on. Some trial and error tests have revealed 
that the BDF codes need a time tolerance value TOL of l.E-5, using an initial step 
size of l.E-5. For methods which are able to step in time with higher order formulas, 
such a small tolerance should cause no problems. It is certainly detrimental to a 
method which is forced to use a low order time-stepping formula, like Method I. For 
clarity we emphasize that due to the sensitivity of estimating the ignition point, the 
errors resulting from the time-integration are more important than the errors result
ing from the spatial discretization. 

Because the flame is not very thin, this problem can also be satisfactorily solved 
in the conventional way on a uniform, non-moving mesh consisting of, say, about 40 
to 100 nodes, at least for the current choice of o = 20. The problem is of interest for 
moving-grid methods of the Lagrangian type, since these methods should be able to 
reduce significantly the number of time steps needed to complete the propagation 
phase. Finally, in all the experiments described below, including those done on a 
uniform non-moving mesh, we have used 40 moving points and in all cases the start 
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grid was taken to be uniform. 
In the plots the solid or dashed lines represent accurate reference solutions while 

the marks represent the PDE approximations generated in the experiment discussed. 
Integration information, which serves to compare the mutual time-stepping 
efficiency of the three methods, is presented in terms of STEPS = total number of 
successful time steps, JACS = total number of Jacobian evaluations, and BS = total 
number of back solves. The two latter quantities determine, to a great extent, the 
CPU time needed to complete the integration over the specified time interval. 

Results for Method I 
For the present problem Method I (version (A)) is indeed not competitive because 

the low order time-stepping method turns out to be too expensive. Only during the 
formation of the 'hot spot' can the advantage of using higher order in time formulas 
be really employed. At the start of the ignition and during the whole of the propaga
tion phase, the method keeps regridding, which means that very many restarts are 
made with the first order implicit Euler rule, for which the local accuracy demand of 
TOL = 1.E-5 is simply too high. Fig. 2.1 shows the PDE solution generated at the 
four output times (specified above) and gives the values for STEPS, JACS and BS. 
Observe that the numerical front is ahead of the true one. Concerning the quality of 
the reference solution we note that in [27] it is claimed that the reference solution is 
'exact up to plotting accuracy', except perhaps in the neighbourhood of x = 0 at the 
first output time t = 0.26. All experiments with the present flame problem, including 
those with Methods II and III, show a deviation here. It should be remarked that we 
counted a large number of 259 error test failures. The greater part of these occur 
directly after a genuine regridding, indicating that the step-size selection of the res
tart mechanism is not well tuned. To test this we have repeated the integration using 
a maximal order of one, so that then at all integration steps the implicit Euler 
method is used. We now counted 960 successful steps and only 28 error test 
failures, which is normal. The results of this experiment are also shown in Fig. 2.1. 
One sees that the results of the backward Euler run are less accurate, in spite of the 
fact that more time steps are used. This shows nicely that, during the formation of 
the 'hot spot', version (A) benefits from the use of the higher order formulas. It 
should also be realized that a large number of step rejections will considerably 
increase BS and, most likely, also JACS (compare the given quantities of the two 
experiments). No attempt has been made to repair this failure because, even without 
these many rejections, the method would not be competitive with Method II and III. 

We recall that we have applied the method with a fixed number of nodes, whereas 
in [23] the number of nodes is variable. This, however, is of minor importance. 
Even with a variable number of nodes many regriddings are performed, which is the 
main shortcoming. Admittedly, when a fixed number of nodes is used the dual 
reconnection strategy will probably lead to somewhat more interpolations, as it is 
then not possible to truly delete points. 

A natural question is how Method I would perform if the regridding were carried 
out not every time step, but every k-th time step (k to be prescribed) or at prescribed 
times. If the chosen time intervals are large enough, so that DASSL can enlarge the 
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FIGURE 2.1. Results for Problem I obtained with Method I. We have used 
t = 0.26, 0.27, 0.28, 0.29 for output. The left-hand plot corresponds to 

the version (A) run with STEPS= 663, JACS = 709, BS = 1845, 
and the right-hand plot to the implicit Euler run with 

STEPS= 960, JACS = 663, BS = 1974. 

, .. 

order and use the same Jacobian, the drawback of the intermediate regriddings 
should then be alleviated considerably. In addition, the co-ordinate transformation 
governing the grid movement softens the solution behaviour in time, which in itself 
is beneficial for the time-stepping process. A word of warning is in order, of course. 
During the moving-integration process, the nodes may be sent away from the evolv
ing front (cf. Section 2.2.1), which makes this alternative mode of operation a bit 
risky. Yet we do believe that this approach of intermediate regridding is much more 
promising and that it deserves further attention. By way of illustration, we have 
again solved the current flame problem with regridding at step points nearest to the 
prescribed times t = lO0k/0.29 fork= 1(1)100. This gives a solution of comparable 
accuracy to that observed in the version (A) run, but with a significant reduction in 
computational costs. The data are STEPS = 331, JACS = 98, BS = 739 and we 
counted 35 error test failures. As anticipated, DASSL now also uses higher order 
formulas (mostly order 3) over the entire time interval. 
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Results for Method II 
An important parameter of Method II is the grid parameter t, which has been 

introduced to govern the temporal grid smoothing. Figure 2.2 shows typical results 
for four decreasing values of t, of which the largest value has been chosen such that 
a non-moving grid results. This enables us to compare the mutual efficiency of 
time-stepping on a moving and a non-moving grid. We see that, as the values oft 
decrease, the grid follows the flame better and better and STEPS is steadily reduced, 
which nicely reflects the Lagrangian nature of the method in the propagation phase. 
Further, and this is most important for efficiency reasons, the method keeps JACS 
and BS at the same low level, which is the desired MOL behaviour. Needless to say, 
compared to the first method Method II performs much more efficiently. This is 
largely due to the fact that in all runs BDF orders up to three ( occasionally four and 
five) were used over the entire time interval. The accuracy is also much better, 
though it should be observed that the numerical flame front is a little too fast over 
the entire solution interval because the scheme is taking too large time steps. The 
accuracy improves notably by reducing TOL, but at the cost of more computational 
work. The experiments indicate that it suffices to work with a fairly small value for 
t. In fact, for the present problem temporal grid smoothing turns out to have little 
effect. The choice t = 1.E-8 yields STEPS = 162, JACS = 41, BS = 511 without a 
noticeable change in accuracy. 

Finally, we wish to point out that the 'non-moving, uniform grid computation' of 
Fig. 2.2 (the case t = 1.0) should not be interpreted as the conventional uniform grid 
computation, because the semi-discrete systems differ. Although this should have no 
influence on the PDE solutions generated, it obviously may influence the solution 
process through the Newton iteration. 

Results for Method Ill 
Let us inspect Fig. 2.3, which shows plots of grids and PDE approximations for 

four decreasing values of the regularization parameter C 1 , beginning with C 1 = 10 
(in all four cases C 2 = d = 0). This largest value for C I yields a virtually non
moving grid. The aim of this experiment, as mentioned with respect to Method II, is 
to illustrate the dependence of the time-stepping process on the grid movement. It is 
our experience that in this respect the finite-element method behaves less satisfac
torily than Method II. The approximations on the uniform non-moving grid are very 
accurate, except perhaps within the vicinity of x = 0 during ignition. The attractive, 
conventional MOL behaviour is nicely visible. JACS is only a small fraction of 
STEPS and also BS is rather low. This is just why the conventional MOL approach 
is often so efficient. To avoid a possible misunderstanding, it should again be real
ized here that the 'uniform grid computation' (the case C 1 = 10) differs from the 
conventional one, in the sense that the semi-discrete systems, and thus the Jacobian 
matrices encountered, are different. This may have some influence on the solution 
process but the PDE solutions generated should be identical. 

Let us now consider the remaining cases. As to be expected, we see that the grid 
follows the flame better and better for decreasing C 1 , with the result that an even 
better resolution is obtained during the propagation phase. We also see that, in spite 
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of the fact that STEPS slightly decreases with C 1, JACS and BS steadily grow. For 
example, the increase in JACS and BS when C 1 changes from 10 to 0.1 is 
significant, while the grid movement is still rather modest and also the nodes are 
well separated (hence, it here suffices to put C 2 = d = 0). Disappointingly, for the 
smaller C 1 values quite a lot of computational effort must be spent in order to solve 
the nonlinear systems which arise. It will be clear that, in such a situation, antici
pated savings in total computational effort, due to a reduction of the number of 
space nodes, may well be largely annihilated owing to the much larger costs for the 
time-stepping. It should further be observed that, in contrast to Method II, the 
Lagrangian nature of the moving-finite-element method during the propagation 
phase does not lead to a considerable decrease of time steps. 

In a sense, the application of the moving-finite-element method places us in a 
dilemma. A near-'optimal' value for the regularization parameters would yield a 
near-'optimal' grid movement and an excellent approximation. On the other hand, 
the current experiment indicates that the grid may move at the expense of consider
ably higher computational costs. One might argue here that for C 1 small the points 
come too close, since a further decrease of C 1 would yield node overtaking. How
ever, in all four cases illustrated, the grid points are still sufficiently separated. We 
conjecture that the problems associated with the iterative Newton solution of the 
nonlinear algebraic moving-finite-element system are probably due to some kind of 
ill-conditionedness which is inherent to the moving-finite-element construction. This 
conjecture is supported by the observation that in all four runs BDF orders of three, 
and occasionally four, have been used over the entire time interval, which indicates 
that the semi-discrete solutions cannot be very unsmooth. Moreover, the number of 
time steps is not markedly large. In other words, the observed difficulty of the high 
frequency of Jacobian evaluations is probably hidden somewhere in the nonlinear 
equation system itself. 

Another point of concern is the choice of the regularization parameters C 1, C 2 

and d. In spite of the fact that the meaning of these parameters is sufficiently clear, it 
is not clear at the outset how to select them. Loosely speaking, the control offered 
by them is in a sense not direct enough. By way of illustration, consider the two 
choices C 1 = 0.025, 0.05. For C 1 = 0.025 the grid is positioned rather well, which 
can be seen by taking a closer look at the steady state solution. Most of the points 
are concentrated where the curvature is largest and also the distribution within the 
layer is good. On the other hand, one might still argue that the ratio of adjacent 
points left of the front is rather large, which, as is well known, may be detrimental to 
spatial accuracy. Doubling C 1 yields better ratios, but then the grid is somewhat too 
slow, with the result that now too many points are wasted in the flat part. We admit 
that these observations are rather subtle and that similar observations can be made 
for Method II concerning the choice of the parameter 1:. Still, it is our experience 
that fine-tuning Method III can be rather troublesome, which brings us in direct 
conflict with the important issues of robustness and reliability. For example, 
decreasing C 1 further to 0.0125 results in a totally wrong steady state solution, 
whereas the generated transient solution is perfectly all right (with C 2 = d = O; this 
failure can be overcome by adjusting C 2 and d). 
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FIGURE 2.2. Solutions and trajectories for Problem I generated by Method II. 
The output times are as in Fig. 2.1. 
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2.4.2. Problem II: Burgers' equation 

,., ... ... 

I =0.0001: 
STEPS- 150 
JACS=34 
BS=450 

Our second example is the well known Burgers' equation 

0 < x < l, t > 0, 

... , .. 
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FIGURE 2.3. Solutions and trajectories for Problem I generated by Method III. 
The output times are as in Fig. 2.1. 

supplemented with the smooth initial function u (x, 0) = sin (21tX) + 0.5sin (ru:) and 
homogeneous Dirichlet boundary conditions. This problem also served as a test 
example in [10,12]. The solution is a wave that first develops a very steep gradient 
and subsequently moves towards x = 1. Because of the zero boundary values, the 
wave amplitude diminishes with increasing time. We consider the time interval [0,2] 

, .. 
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and use times t = 0.2, 0.6, 1.0, 1.4, 2.0 for output. 

c, =0.025: 

STEPS= 205 

J.40i= 176 

BS= 796 

In contrast with the previous problem, the location of the fine grid region is very 
critical, since all three methods are known to generate spurious oscillations readily if 
the grid in the layer region is too coarse, just as with standard central differences on 
a non-moving grid. Concomitant with this form of space instability is the danger of 
having non-smooth continuous-time, semi-discrete solutions. In other words, despite 
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the fact that we move the grid, these solutions still have a tendency to oscillate, even 
for small grid deviations. There is no doubt that this non-smoothness is detrimental 
to any ODE solver and therefore the present problem provides a difficult test for any 
moving-grid method. In all experiments we have worked with 40 moving nodal 
points and a uniform start grid. 

Results for Method I 
For the above Burgers' equation problem, Method I, at least the (A) version, falls 

dramatically behind when compared with Methods II and III. Using an initial step 
size of l.E-5, we have run the method for three values of TOL, viz., l.E-2, l.E-3 and 
l.E-4. In all three cases the method generates the correct spatial profile; however, 
the numerical wave runs much too fast, in particular for the two lower tolerances. 
This must be attributed to the inaccuracy of the implicit Euler scheme, which is used 
in almost all steps, and to the very frequent interpolations. Taking into account the 
computational effort needed for TOL = l.E-4, a further reduction of TOL was not 
considered worthwhile. Again we must conclude that the disappointing performance 
is due to the regridding at virtually all steps, forcing the method to use the first order 
Euler formula. In passing we note that for this problem the number of step failures, 
which in an experiment with Problem I turned out to be uncommonly large, is here 
virtually negligible. 

Again the question arises as to what extent the less frequent regridding approach 
mentioned in the discussion of results for Problem I would be more promising. By 
way of illustration we have rerun the method for TOL = l.E-3, l.E-4 while regrid
ding only at step points nearest to the prescribed times t = k/50 for k = 1 ( 1) 100. As 
for Problem I, this gives a considerable improvement, both in accuracy and with 
respect to computational costs. The results are shown in Fig. 2.4. These results, 
while not yet competitive with those of Method II and III, do, however, indicate 
clearly that the approach of occasional regridding in time is to be preferred to the 
approach of regridding at (nearly) every step, which underlies version (A). It is 
likely that here is room for considerable improvement. For example, the number of 
time steps for TOL = l.E-4 is about -{fa times larger than for TOL = l.E-3, which 
indicates that the (locally second order) implicit Euler method is still used very fre
quently. No doubt, had higher order formulas been used, better performance would 
have been observed. 

Results for Method II 
Figure 2.5 depicts the grids and solutions for Method II for 't = l .E-1 and l .E-3 

(TOL = l.E-3 and the initial time step is l.E-5). The corresponding integration data 
are listed in Table 2.1, together with the results obtained for 't = l.E-2 and l.E-4. 
The (plotting) accuracy for the three smaller 't values is the same and without doubt 
can be called excellent. Recall that the solid lines represent a highly accurate refer
ence solution and that the marks correspond to the numerical solutions generated in 
the present experiment. 

As already observed in the problem description, due to the small amount of diffu
sion the semi-discrete solutions have a tendency to oscillate as soon as the grid 
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FIGURE 2.4. Results for Problem II obtained with Method I using the intermediate 
regridding approach. The output times are t = 0.2, 0,6, 1.0, I .4, 2.0. The 

left-hand plot corresponds to TOL = 1.E-3 
(STEPS= 561, JACS = 482, BS = 1486) and the right-hand one to 

TOL = 1.E-4 (STEPS= 1650, JACS = 919, BS = 3986). 

becomes a little bit too coarse in the layer region. This makes the problem difficult 
to solve and, in fact, is the main cause for the relatively large number of Jacobian 
updates. It also explains the much larger effort and wiggles for 't = 0.1, for which 
value the grid is a little bit too slow. It is obvious that, for a problem like this, the 
choice of 't, which dictates the grid movement, is more critical than for Problem I. 
On the other hand, as for Problem I, a rather small value for 't ( of the order of the 
averaged time step used) turns out to be most appropriate. Most of the time steps 
used were for the shock formation and collision with x = I; very few steps were 
needed to propagate the shock from x = 0.6 to x = 0.95. Finally, the cusps in the ('t = 
l.E-3) grid near t = 1.4 are due to the change of shape in the solution when the 
shock reaches the right-hand boundary. The fact that these are virtually absent in the 
('t = l.E-1) grid nicely illustrates that here the temporal grid smoothing is too large. 

Results for Method III 
In all the experiments we have used the time tolerance value TOL = 1.E-3 with 

initial step size l.E-5. As a first experiment we tried the method using regularization 
parameter values copied from Hrymak, McRae and Westerberg [12]. Their values 
are: C 1 = 0.01, C2 = 1.E-4 and d = 5.E-5. Hrymak et al. integrate Problem II only 
until t = I and on this time interval the integration is successful. However, upon 
continuing the integration to the end point t = 2, we experienced node crossing near 
approximately t = 1.4. Increasing C 1, for example, overcomes the crossing. For C 1 
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FIGURE 2.5. Results for Problem II obtained with Method II. The output times 
are the same as in Figure 2.4. The two upper plots correspond to 't = 0.1 

and the two lower ones to 't = 0.001. 

37 

,., 

= 0.025 the integration is successful over the entire time interval 0 ~ t ~ 2 and leads 
to a very accurate solution, but at rather large costs, viz., STEPS = 364, JACS = 270 
and BS = 941. This, in tum, can be improved by enlarging the minimal node dis
tance parameter d, for example, d = 1.E-4 yields an equally accurate solution. Figure 
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't STEPS JACS BS 

l.E-1 747 428 2595 

l.E-2 293 164 910 

l.E-3 212 120 708 

l.E-4 224 134 749 

TABLE 2.1. Variation of 'C. 

2.6 shows this solution, obtained using C 1 = 0.025, C 2 = d = 1.E-4, for which the 
costs are STEPS= 271, JACS = 190, BS = 719. 

A further increase of d, to about 5.E-4, is not possible since then the grid in the 
layer becomes too coarse and thus the familiar oscillations arise. In the present 
experiment these also end in node crossing. In view of the oscillations, we recall that 
there should be an upper limit on d and that this upper limit is related to the size of 
the viscosity parameter E in Burgers' equation, since it is this parameter which deter
mines the width of the layer region. Some further trial and error runs, with the ear
lier values C 1 = 0.025 and C 2 = l .E-4, revealed that the admissible range for d is 
not very large. We observed node crossings ford= l.E-5 and d = 5.E-4. 

In conclusion, Method III is able to solve the present difficult Burgers' equation 
problem with high accuracy, but not without considerable tuning. It should also be 
noted that the costs of the successful, accurate computation of Fig. 2.6 are larger 
than those of the successful runs with Method II for the smaller 't values. We attri
bute this to the fact that here SPRINT starts to integrate with the first order implicit 
Euler scheme as soon as the wave develops the steep gradient, and hence does not 
exploit the higher order BDF formulas. This, in tum, indicates that, for the convec
tion dominated problem, the continuous-time, semi-discrete solution generated by 
the moving-finite-element method will be rather non-smooth in time, a situation we 
already anticipated in the problem description. 

2.4.3. Problem /II: Waves travelling in opposite directions 
Our third example problem is a two-component, semi-linear hyperbolic system, 

the solution of which is constituted by two waves travelling in opposite directions 
(copied from Madsen [15], see also [27]). The system is given by 

ilufdt = - ilulilx - lO0uv, 

ilvlilt = ilvlilx - I00uv, 

for t>0 and -0.5<.x<0.5, and the solution is subjected to homogeneous Dirichlet 
boundary conditions and to the initial condition 

u(x,0)=(I+cos(I0rrx))/2 for xE[-0.3,-0.1] and u(x,0)=0 otherwise, 

v(x,0)=(l+cos(IOrrx))/2 for xE[0.1,0.3] and v(x,0)=0 otherwise. 



39 

FIGURE 2.6. Solutions for Problem II computed with Method III. The output times 
are the same as in Figures 2.4 and 2.5. The parameter values are 

C 1 = 0.025, C2 = l.E-4, d = 1.E-4. 

Note that th~se are functions with a mere C 1-continuity, which represent wave 
pulses located at x = -0.2 and x = 0.2, respectively. Initially, the nonlinear term 
lO0uv vanishes, so that for t>0 these waves start to move without change of shape 
and with speed 1, u to the right and v to the left. At t = 0. l they collide at x = 0 and 
the nonlinear term becomes positive, resulting in a nonlinear interaction leading to 
changes in the shapes and speeds of the waves. Specifically, the crests of the waves 
collide a little beyond t = 0.25 and they have separated again at approximately 
t = 0.3, so that from this time on the solution behaviour is again dictated by the 
linear terms. At the nonlinear interaction, the pulses lose their symmetry and experi
ence a decrease in amplitude. 

To save space, in this section we restrict ourselves to presenting results for 
Method II and III (Method I was applied, but with rather inaccurate results). As out
put times we have selected the values t = 0.1, 0.2, 0.25, 0.3, 0.5 and in all experi
ments the integration has been started at t = 0 on a non-uniform, solution-adapted 
grid consisting of 41 points. For both methods we have used the time step toJerance 
value TOL = 1.E-3 and an initial step size of 1.E-5. 

Results for Method II 
Figure 2.7 shows the grid and the numerical approximations at the specified out

put times, obtained with a value of 1.E-3 for the grid delay parameter 't. We see that 
the solutions are fairly accurate and point out that the visible inaccuracies are only 
due to a somewhat optimistic choice for TOL and the number of points. These inac
curacies will vanish if more points and a smaller tolerance are used. Also the grid 
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positioning is good over the entire time interval, i.e., there is sufficient refinement 
near the travelling waves before and after the interaction. In the present experiment 
we have replaced the (regularization) constant 1 of the arc-length monitor 

(1+ (c)u/c>x)2 + (cJvlc>x)2f' 

by 0.1. The reason is that when the waves have separated they are no longer very 
steep, with the result that the value 1.0 is somewhat too large for obtaining sufficient 
refinement in the vicinity of the two waves, at least when only 41 points are used. 
With this number of points, it is also necessary that, after the separation, the grid 
refines properly in the vicinity of the waves, since otherwise spurious oscillations 
will become visible. Recall that after the separation we are just solving the first 
order hyperbolic model problem using standard central differences. This experiment 
shows that it is desirable that the regularization constant of the monitor function be 
made solution-dependent, in some way or another. Finally, the costs of the run are 
STEPS = 105, JACS = 58 and BS = 332. 

Results for Method III 
A typical result obtained with the parameter values C 1 = 0.05, C 2 = l .E-4 and d = 

1.E-5 is shown in Fig. 2.8. The costs of the run are STEPS= 71, JACS = 38 and BS 
= 177. We see that up to approximately t = 0.25 the grid moves in the right way and 
the two numerical waves follow the exact ones quite accurately. As for Method II, 
the small, visible inaccuracies are due to a somewhat optimistic choice of TOL and 
the number of points. Unfortunately, the method fails to track accurately the separa
tion of the waves, which can be seen by inspecting the grid. Although after the 
separation the solution is quite accurate, except for the wiggle at the tails (see 
t = 0.5), the grid positioning is not in accordance with the location of the two waves, 
in contrast with the positioning for 0:::; t:::; 0.25. For t>0.25 the grid tends to become 
more or less uniform over the greater part of the space interval and does not refine in 
the vicinity of the travelling waves. 

It is noted that this grid deficiency does not vanish upon increasing the number of 
points and the temporal accuracy level, at least for 60 moving points and TOL = 
1.E-4 (the right upper plot of Fig. 2.8 depicts the corresponding grid). Attempts to 
overcome it by changing the penalty parameters were not successful either; nor was 
the addition of a small amount of viscosity (1.E-4) to suppress spurious oscillations. 
The addition of a small amount of artificial viscosity, which was suggested by Keith 
Miller (personal communication), does reduce the oscillations in the solution, but 
does not have a visible impact on the grid. It is conjectured that the observed 
difficulty has to do with the property that, for the hyperbolic model problem we are 
actually solving after the separation, the moving-finite-element method moves the 
grid at speed one and returns the exact solution, but does not adjust the grid to the 
new separated pulse profile. Nodes are dragged out of the pulses as they separate 
because of the large, intemodal viscosity coefficient Cy which we found necessary 
to use to get the code to work. This value of Cy is 100 to 600 times the standard 
choice of Miller [ 18]. 
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FIGURE 2.7. Grid trajectories and solutions for Problem III computed with 
Method II. The output times are t= 0.1, 0.2, 0.25, 0.3, 0.5. 
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FIGURE 2.8. Grid trajectories and solutions for Problem III computed with 
Method III. The left-hand grid plot and the four lower plots belong to the 

run with 40 moving points and TOL = l .E-3. Output times are the same as in 
Figure 2.7, except that here t= 0.1 has been omitted. The right-hand grid 

corresponds to 60 points and TOL = l .E-4. 
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2.5. CONCLUSIONS 

We have examined three Lagrangian-based moving-grid methods for systems of 
1-D time-dependent partial differential equations. Our aim has been to assess which 
of these methods offers the best prospects for reliable, efficient and robust method
of-lines application, preferably with as little user intervention as possible. For this 
purpose we have carried out a numerical comparison with three different test exam
ples. For the time integration we have used two existing, closely related stiff ODE 
codes, both of which are based on the acknowledged BDF formulas. We formulate 
the following conclusions: . 

(i) We cannot recommend Method I for general use, although it is quite reliable 
and robust; for example, we never found it necessary to use values for the parame
ters a and A different from the specified default values. The very frequent regrid
dings mean that the method has to integrate almost always with the first order impli
cit Euler rule, thus preventing the Lagrangian procedure from exploiting the attrac
tive, higher order BDF formulas. In many situations this will be detrimental to 
efficiency, apart from incurring the extra cost of a Jacobian update after regridding. 
A second drawback of regridding is the need to interpolate. In spite of the fact that 
accurate monotone interpolation is combined with the dual reconnection strategy, 
which implies that. after a regridding the number of point interpolations is not very 
numerous, many successive interpolations can still cause a perceptible loss of spatial 
accuracy. In this connection it is worthwhile to note that one of the recognized 
advantages of Lagrangian schemes, when operating with a fixed number of moving 
points, is that they do not require interpolation. 

Our experjments indicate that a significant improvement can be obtained when 
the number of regriddings is limited in some way or another (the intermediate 
regridding approach) because then the time-stepping can benefit more from the 
Lagrangian nature of the method. When considered on its own, the underlying 
Lagrangian transformation is of interest since the aim is to achieve smoothness in 
time, which is of course attractive, certainly when the higher order BDF formulas 
are available for the time integration. 

(ii) We do not wish to conceal the fact that we have mixed feelings about the 
moving-finite-element approach underlying Method III, at least as far as our appli
cation is concerned. This is based on the following observations. In this approach 
the movement of the grid is basically governed by a minimization procedure, akin to 
the procedure for standard non-moving-grid Galerkin schemes. For practical appli
cation within an implicit method-of-lines procedure it is necessary, through the use 
of penalty terms, to regularize this minimization so as to avoid node overtaking and 
singular mass matrices. Inevitably, the choice of the parameters involved is 
problem-dependent and experience has revealed clearly that this often leads to trou
blesome application. Quite some tuning may be needed to make the grid move in a 
satisfactory way. In a sense, the effect of the regularization on the minimization 
does not seem to provide a sufficiently clear and unique set of rules for moving the 
grid. In this respect the spatial equidistribution approach which underlies Method II 
is more transparent. 

The need for tuning is obviously in conflict with the aim of robustness. Another 
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point of concern we should like to bring forward here is that the time-stepping 
behaviour of Method III is rather sensitive with respect to the grid movement. If the 
grid does not move in the right way, the time-stepping can easily become rather 
expensive. Furthermore, even if the grid does move satisfactorily, it may still hap
pen that the time-stepping costs are rather large compared with the costs of time
stepping in the conventional way on a non-moving grid (assuming of course that a 
non-moving grid is feasible); see, for example, the experiment carried out with 
Problem I. We admit that this comment will apply to any moving-grid procedure, 
including Method II. It is our experience, however, that in this respect the latter 
method behaves better. 

(iii) We believe that, for the application we have in mind, the approach of the 
finite-difference Method II is to be preferred above the moving-finite-element 
approach of Method III. We have found Method II easier to work with than Method 
III and also more efficient. The grid movement of Method II is directly attached to 
equidistribution in space of a chosen monitor function whereas that of Method III 
has no underlying equidistribution principle and so there is no improvement 
mechanism for an incorrect initial node distribution. As already indicated under (ii), 
it is our experience that this approach provides a better and more unique way of 
automatically adjusting the grid to large spatial gradients. 

However, Method II may easily encounter difficulties in tracking sharp comers of 
a solution where, nearby, the first derivative is not very large. A simple example of 
such a situation is provided by the model convection equation u1 + ux = 0 with a tri
angular pulse as initial value. Computing the moving triangular pulse solution with 
Method II· will result in a numerical solution showing the familiar spurious oscilla
tions. This does not happen with genuine shocklike structures because these have an 
arclength associated with it. Very large spatial derivatives attract enough points to 
prevent the oscillations to arise but the triangular pulse form does not lead to 
sufficient refinement near the sharp moving comers. We have experienced numeri
cally that this sort of difficulty will also arise when solving the Burgers' equation 
with a trapezoidal pulse as an initial value instead of the sinusoidal one, a test exam
ple suggested by Keith Miller [19]. In this connection it should be emphasized that 
the MFE method does not suffer from this particular deficiency and can handle this 
sort of initial values in the Burgers' equation with great accuracy using relatively 
few points [10,20]. 

An important feature of the approach of Method II is the grid smoothing capabil
ity. Despite involving two method parameters, viz., K and 'C, the choice of these 
parameters has not proved to be troublesome. The meaning of K is very clear and for 
general use K can be taken equal to, say, 1 or 2. Admittedly, the actual choice to be 
made for 'C is less clear. Our experience in the experiments is that it is best to keep 'C 

small so that the grid movement is almost exclusively dictated by the spatial equidis
tribution at the forward time level, as long as this does not lead to oscillatory grids. 
However, for general use it is not recommended to set 'C = 0. The temporal grid 
smoothing property deserves some more study. 

(iv) In conclusion, we consider the approach of Method II as most promising for a 
general method-of-lines application. 
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A Moving-Grid Method for One-Dimensional PDEs 
Based on the Method of Lines 

3.1. INTRODUCTION 
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We consider systems of partial differential equations (PDEs) in one space dimen
sion, 

u, = .£.1...u,x,t), XL< x < XR, t > 0, (l.la) 

with the initial and boundary conditions 

u(x,0)=u0(x), xL<x<xR and b(u,x,t)=O, x=xL, xR, t>O. (l.lb) 

Here £ and b are spatial differential operators and it is tacitly assumed that the prob
lems under consideration are well-posed and that they possess a unique solution. 
The differential operator £ is supposed to be of at most 2-nd order. In particular, we 
are concerned with problems with disparate space and time scales giving rise to 
solutions with large space-time gradients. However, we do not consider genuinely 
discontinuous shock solutions as those arising in first order hyperbolic problems. 
Problems with disparate space and time scales occur in many applications from the 
engineering sciences and often an adaptive or moving grid can improve the 
efficiency and accuracy of a numerical computation. 

The method described here is based on the method of lines (MOL) which is a 
well-known approach for numerically solving PDE problems such as (1.1), In the 
MOL approach the discretization of the PDE is carried out in two stages. In the first 
stage the space variables are discretized on a selected space mesh, normally chosen 
a priori for the entire calculation, so as to convert the PDE problem into a system of, 
usually stiff, ordinary differential equations (ODEs) with time as independent vari
able. The second stage then deals with the numerical integration in time of this stiff 
ODE system to generate the desired numerical solution. With this MOL approach in 
mind, several sophisticated PDE packages have been developed in recent years, 
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notably for one-space-dimensional problems (see, e.g., [2, 3, 8, 10, 11, 14, 15]). 
These MOL packages greatly benefit from the very successful developments of 
automatic stiff ODE solvers. In particular, the implicit Gear-type BDF solvers play 
a prominent role here. Gear-type solvers have proved to be efficient, robust and reli
able, in that they work for a broad class of problems and usually solve the stiff ODE 
system under consideration in an accurate and efficient way. The experiences with 
MOL packages have revealed clearly that this is also true of semi-discrete PDE 
problems on fixed space grids. However, for solutions possessing large space-time 
gradients, like travelling wave fronts or emerging boundary and interior layers, a 
grid held fixed for the entire calculation can be computationally inefficient, since 
this grid will almost certainly have to contain a very large number of nodes. In such 
cases, a moving grid procedure that attempts to adjust automatically both the space 
and the time-stepsizes is likely to be more successful in efficiently resolving critical 
regions of high spatial and temporal activity. 

The method described in this chapter is of Lagrangian type and, at the semi
discrete level, automatically moves continuous-time grid lines to regions of high 
spatial activity. The grid movement underlies the principle of spatial equidistribution 
of nodes and employs regularization techniques borrowed from Dorfi and Drury [4]. 
The spatial discretization is based on standard central differencing since we aim at a 
large problem class. For the numerical integration in time we use a sophisticated 
BDF code [2, 3, 11]. From the users point of view it is of interest to note that this 
stiff solver can be used in a similar easy way as in the conventional (non-moving) 
approach. Some parameter tuning is required to govern the regularization of the grid 
movement .as well as to optimise the efficiency. Needless to say, tuning is an impor
tant issue since the need for tuning is in conflict with robustness and ease of use. 
The numerical study of [7], where a comparison is presented between our current 
method, the adaptive moving-grid method of Petzold [12], and the moving-finite
element method (MFE) of Miller, shows that in this respect the current method com
pares favourably with the MFE method. 

In Section 3.2 we introduce the semi-discretization in a moving reference frame, 
completely in line with the common MOL approach. In Section 3.3 we give the 
moving-grid equation that determines the continuous-time grid trajectories impli
citly in terms of the semi-discrete solution on this grid. Section 3.4 is devoted to a 
discussion of the two grid-smoothing procedures that are used to regularize the grid 
movement. In Section 3.5 we discuss the complete semi-discrete system and its 
numerical integration. Section 3.6 presents results of numerical experiments with 
three different example problems and the final Section 3.7 is devoted to a brief con
clusion. 

3.2. THE SEMI-DISCRETE PDE 
Virtually all of the space mesh adapting techniques for time-dependent problems 

attempt to move the nodes in such a way that, in regions of high spatial activity, 
there is enough spatial resolution. In other words, the construction of these methods 
is aimed at minimizing the number of space nodes relative to a certain level of spa
tial accuracy. On the other hand, in most time-dependent applications large spatial 
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gradients are accompanied by large temporal gradients, the standard example being 
provided by the simple running wave form u (x, t) = w (x -et). It is thus natural not 
only to minimize the computational effort put into the spatial discretization, but also 
to attempt to minimize the computational effort put into the time integration. Note 
that on a non-moving mesh a steep wave form such as u (x,t) = w (x-ct) will require 
standard time-stepping techniques, including the sophisticated Gear methods, to use 
small time-steps. The reason for this is that as the moving front passes a grid point, 
the solution at this grid point will change very rapidly and so small time steps are 
then necessary to retain accuracy. The above observation naturally leads one to con
sider the Lagrangian discretization approach where the grid is moved continuously 
along with the solution with the aim of reducing these rapid transitions. Note, how
ever, that it is not always possible to reduce them simultaneously in space and time 
(see [7, 16] for a more comprehensive discussion). 

We start our derivation at the semi-discrete level. Thus, completely in line with 
the common MOL approach, consider smooth, continuous-time trajectories 

xL=Xo< ··· <X;(t)<X;+1(t)< ··· <XN+I =xR for t~O, (2.1) 

which are, as yet, unknown. Introduce, along x(t) = X;(t), the total derivative 

(2.2) 

and spatially discretize, for each fixed t, the space operators dldx and L so as to 
obtain the semi-discrete system 

. . 
U; = X; [(U;+i - U;_1 )/(X;+1 - X;_1)] + L;, t > 0, 1 ~ i ~ N. (2.3) 

As usual, U;(t) represents the semi-discrete approximation to the exact PDE solution 
u at the point (x,t) = (X;(t),t) and L; is the finite difference replacement for £1..u,x,t) 
at this point. Note that the standard, central difference approximation for Ux is used. 
It is supposed that L; is also based on standard, 3-point, central differencing. Further 
it is of interest to observe that at this stage of development the only errors intro
duced are the space discretization errors. With the associated grid functions 

X = [X j, ••• 'xNf, u = [Uf, ... ' uit, L = [Lf, ... 'Lit. 

D; = (U;+1 - U;-1 )/(X;+1 - X;-1 ), D = [Df, · · · , vif, 
we reformulate (2.3) in the more compact form 

. . 
U=XoD+L, t>O, U(0)given, (2.4) 

which rerresents the semi-dfscrete system to be numerically integrated in time. The 
notation X o D means that X; is to be multiplied with all components of the vector 
D;. 

In the discussion to follow, we neglect the treatment of boundary conditions, 
since these are dealt with in the usual way. We also wish to emphasize that for 
convection-diffusion problems with steep gradient or near-shock behaviour, the use 
of central differencing of first order terms is not ideal and one would probably con
sider stable upwind or flux-corrected approximations, since otherwise any deviation 
from an ideal Lagrangian grid movement, assuming this exists, readily results in 
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unphysical oscillatory solutions. It is emphasized that the actual generation of the 
moving grid is the central issue here and that other spatial discretizations can be 
easily implemented. 

3.3. THE MOVING-GRID EQUATION 

3.3.1. Spatial equidistribution 
We shall construct an equation that defines the time-dependent grid X implicitly 

in terms of the continuous-time solution U. This grid equation underlies the familiar 
notion of spatial equidistribution. Introduce the point concentration values 

n; = (LlXS1, AX; =X;+i -X;, 0:::; i :::;N, (3.1) 

and the spatial equidistribution equation 

(3.2) 

where M; ~ ,la > 0 represents a monitor value that reflects spatial variation over the 
i-th subinterval [X;, X;+i ]. Typically, M; is a semi-discrete replacement of a solution 
functional m (u) containing one or more spatial derivatives. For example, the 1-st 
derivative functional (in scalar form; the change for systems is obvious) 

m(u)=(ex+(ux)2 )"'' (3.3) 

yields, employing central differencing, 

(3.4) 

The parameter ex> 0 serves to ensure that M; is strictly positive. Unless noted other
wise ex= 1, which leads to the well-known arc-length monitor which has the pro
perty of placing points along uniform arc-length intervals. All numerical results 
reported in this paper have been obtained with the monitor (3.4) or its modification 
for systems. Of course, other choices for the monitor (e.g., solution curvature) could 
be used. 

3.3.2. The grid-smoothing procedures 
Equation (3.2) prescribes X in an implicit way in terms of U. However, as well 

known, for practical application the grid movement dictated by such an equidistribu
tion equation needs to be regularized in order to avoid an oscillatory, distorted grid. 
For this purpose we now introduce two grid-smoothing procedures (borrowed from 
[4]), one for generating a spatially smooth grid, and the other for avoiding oscilla
tions for evolving time. Use of the two grid-smoothing procedures amounts to modi
fying (3.2). We will first briefly describe these modifications and delay a more 
comprehensive discussion of the grid-smoothing to Section 3.4. 

The spatial grid-smoothing is effected by replacing the point concentrations in 
(3.2) by their numerically 'anti-diffused' counterparts 

no= no - K(K+ l)(n 1 - no), 

ii;= n; - K(K+ l)(n;+J - 2n; + n;_1 ), K > 0, 1 :::; i :::; N -1, (3.5) 
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iiN = nN - K(K+l)(nN-1 - nN), 

which results in the now 5-point coupled (in X) system 

(3.6) 

The first and last equation in (3.5) involve the 'zero concentration gradient' boun
dary conditions 

where n_1 and nN+I correspond to the artificial points X_1 and XN+2, respectively. In 
[7], and also in [4], the similar conditions n 0 = n 1, nN-I = nN have been used. How
ever, these imply that the first and last monitor values, M O and MN, respectively, are 
removed from the moving grid equation (in (3.6) the index i then runs from 2 to 
N-1). This is not appropriate in cases where the boundary monitor values are much 
larger than the interior ones, like, e.g., in Problem I of Section 3.6 during the genera
tion of the steep flame front at the right boundary. The present boundary conditions 
overcome this deficiency. 

The introduction of the 'anti-diffused' point concentrations is equivalent to acer
tain smoothing procedure for the monitor function (see Section 3.4), thus ensuring 
that the adjacent point concentrations are restricted such that 

(3.7) 

This condition implies that the grid we compute is locally bounded and, most impor
tantly, provides a natural way to control clustering and grid expansion. While the 
monitor function determines the relative shape of X, the value of K and N determine 
the level of clustering. Further, for a given N and a given monitor function distribu
tion, the choice of K determines the minimum and maximum interval lengths. In 
actual application, a value of K of about 1 or 2 is recommended so that modestly 
graded space grids are obtained. In all our experiments we have used the (rather 
conservative) default value K = 2. Recall that the grading of the space grid plays an 
important role in controlling space discretization errors (see, for example, [6]). 

When combined with the spatial grid-smoothing, the temporal grid-smoothing is 
effected by replacing the system of algebraic equations (3.6) by the following sys
tem of differential equations 

(3.8) 

The introduction of the derivatives of the point concentrations serves to prevent the 
grid movement from adjusting solely to new monitor values. Instead, the use of 
(3.8) forces the grid to adjust over a time interval of length 'C from old to new moni
tor values, i.e., the parameter 'C acts as a delay factor (see Section 3.4). The aim here 
is to avoid temporal oscillations and hence to obtain a smoother progression of X (t). 
These oscillations can arise in grids generated via spatial equidistribution tech
niques, because when applied to solutions with extremely large gradients, the 
numerical monitor values are very sensitive to small perturbations in the grid and 
vice versa. With oscillatory trajectories it is certain that near steep fronts one or 
more components in the ODE system rapidly vary for evolving time. This is 
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detrimental for the numerical time stepping and also causes difficulty in the Newton 
solution of the sets of nonlinear algebraic equations that arise in the implicit time 
integration with the stiff solver. 

In contrast to the choice of K, the choice of a good value for 't is less simple. 
Increasing 't too much results in a grid that lags too far behind any moving spatial 
transition. In fact, for sufficiently large values of 't a non-moving grid results. For
tunately, our numerical experience (see Section 3.6) indicates that in many situa
tions temporal grid-smoothing is actually redundant. We owe this to the spatial 
grid-smoothing which also helps to prevent the grid from oscillating. However, in 
situations where smoothing in time is advisable, it makes sense to attempt to choose 
't close to the anticipated temporal step size value such that, over one or a few time 
levels, the influence of past monitor values is felt. The discussion of the next section 
is aimed at providing more insight in this matter. 

3.4. DISCUSSION OF THE SMOOTHING PROCEDURES 

3.4.1. Preliminaries 
Equations (3.8) are based on the relation 

'tn; + n; = cM;, t > 0, 0:::; i:::; N, (4.1 a) 

where c = c (t) is the proportionality constant involved. This proportionality constant 
is solution dependent and in fact also depends on the parameters 't and K. This 
dependence is suppressed in our notation and we shall use c (t) as a generic notation 
for, possibly, different constants of proportionality. Using µ = K(K+ 1), we first 
rewrite ii; in (3.5) as 

no= - µn 1 + (l+µ)no, 

n; = - µn;+J + (1 +2µ)n; - µn;_ 1, 

iiN = - µnN-l + (I+µ)nN. 

I::s;i::s;N-I, (4. lb) 

For initial conditions we suppose a given concentration distribution n;(0), 0 :::; i :::; N, 
that has been subjected already to the spatial grid-smoothing procedure, i.e., the ini
tial grid satisfies (3.6) at t = 0. For the actual practice this is a natural assumption 
because the space smoothing is also applied at later times. Violation of this assump
tion makes it likely that already within the first time-step the grid is forced to 
undergo a large change. However, in principle, an initial grid not satisfying (3.6) can 
be used. 

We have N + I equations for the N + I unknowns n;, 0 ::,; i ::,; N, if we consider the 
proportionality constant c (t) and the monitor values M;(t) as being given. In fact, 
for the analysis presented in the remainder of this section it is convenient to 
uniquely represent the N + I concentrations n;(t) for t ~ 0 in terms of the initial con
centrations n;(0) and the values c(t), M;(t) as described below. First, solving (4.la) 
yields the nonlinear Volterra integral equation system 

t 

n;(t) = e-t/'t[n;(0) + f "C-l e'1't c (s )M;(s )ds], t ~ 0, 0:::; i :::; N, 
0 

(4.2) 
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where n;(0) is determined by n;(0) through (4.lb). We have a system of nonlinear 
Volterra integral equations because the monitor function values M; depend on all 
concentrations in a nonlinear way. Second, the matrix M associated to the system of 
linear equations (4.lb), i.e., 

(4.3) 

is symmetric, positive definite. Hence, M is non-singular and the point concentra
tions n; are uniquely expressed into n; by 

n = M-1ii. (4.4) 

Equations (4.2)-(4.4) define the moving grid X(t) in an implicit way. Although this 
definition is not of much practical use, it is useful for a qualitative study of the 
smoothing procedures. 

3.4.2. Spatial grid-smoothing 
Let us first discuss the spatial grid-smoothing in isolation from the temporal 

smoothing (t = 0, K > 0). As outlined above, given ii, the spatial grid-smoothing 
amounts to solving for the point concentrations n; from system (4.3). We present a 
rather technical lemma that gives the precise form of the solution of this system. 

LEMMA 3.1. Let v = K/(K+l). The solution of the linear system (4.3) can be 
represented in the form 

N 

n; = (1+2K)+l:vlHI Vj, 0 ~ i ~N, 
j=O 

where 

Vo=(1+2K)C2, Vj=nj, l~j~N-1, VN=(1+2K)v-NC1, 

with, for k = 1 and 2, 
N-I 

- - -1 . N-. -
Ck=ak1no+ak2nN+K(1+2K) 1:,[ak Iv1 +ak2v 1]nj, 

j=I 

a 22 =-KID, a 11 =vNa 22 , a 12 =-(l+K)ID, a 21 =v-Na 12 , 

D = rvN -(l+K)2v-N. 

(4.5) 

PROOF The characteristic equation of the homogeneous recursion associated with 
(4.lb) has the roots v and v-1, so that the associated homogeneous solution is given 
by 

C -i C ; 
ni,hom = 1V + 2V, 

where C 1, C 2 are arbitrary constants. A particular solution of the inhomogeneous 
recursion is easily checked to be 

N-I 
n . =(1+2K)-1 ~v1Hln-, 0<1.<N 1,par ~ 1 , - - , 

j=I 
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which is just ( 4.5) with the first and last term omitted. Hence, the general solution of 
(4.lb) reads 

N-1 

n; = C ,v-i + C 2vi + (1+2KT1 I, vlHI iij, 0 sis N, 
j=I 

where the two constants C 1, C 2 serve to match the boundary conditions, i.e., the 
first and last equation of ( 4.1 b ). An elementary calculation leads to ( 4.5). The intro
duction of the auxiliary quantities Vj only serves to express the solution in this 
specific form. D 

At first sight expression ( 4.5) is a bit complicated by the incorporation of the 
boundary conditions. Neglecting these leads to the more transparent expression 

N-1 

n; = (1+2KT1 I, vlHI iij 
j=I 

(4.6) 

given in [4]. The relevant point in all this is the appearance of the 'smoothing ker
nel' VI HI. Note that O < V < l. 

Next the equidistribution equation (4.la) is taken into account, i.e., we now sim
ply substitute ii j = cM j into ( 4.5) to obtain 

N -
n; = c (1+2Kr1 I,vlHI Mj, 0 Si SN, 

j=O 
- - -

(4.7) 

where Mj = Mj for 1 s j s N-1 and M O and MN are defined in exactly the same 
way as V0 and VN in (4.5). Likewise, (4.6) then reads 

N-1 

n; = c (1+2Kr1 L ylHI Mj. 
j=I 

The following important corollary can thus be made: 

(4.7a) 

COROLLARY 3.1. Taking the anti-diffused concentrations ii; proportional to M; is 
equivalent to taking the concentrations n; proportional to the smoothed monitor 
value 

N -
A;= I,v1H 1Mj. □ 

j=O 

REMARK 3.1. A trivial consequence of the proportionality of n; to the positive 'mon
itor' values A;, is that all concentrations n; remain positive which means that the 
spatial grid-smoothing cannot lead to node crossing. Of course, this is also a direct 
consequence of the grid ratio condition (3.7). Further it is of interest to note that all 
values ii; are positive too, which can be concluded from the two following observa
tions. First, all ii; are either positive or negative, as they are proportional to M;. 
Second, if all ii; < 0, then all n; must be negative which is a contradiction. D 

The motivation behind the spatial grid-smoothing lies in the desirable grid condi
tion (3.7) which serves to control clustering and grid expansion: 
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THEOREM 3.1. The spatial grid-smoothing restricts the concentrations n; such that 
(3. 7) is satisfied. 
PROOF Consider ( 4. 7). From the inequalities Ii - j-11 ::C: Ii - j I+ 1 and 0 < v < 1 we 
directly deduce 

N _ N _ 

n-ln- =v-1 ["' Af.yli-jl+l]I["' Af .yli-j-11] < v-1 
' 1+! £., J £., J - , 

j=O j=O 

because all terms in the numerator are smaller than or equal to the corresponding 
terms in the denominator. In a similar simple way the left-hand side inequality of 
(3.7) is proved. □ 

In the proof, the size of the 'monitor values' M; plays no role whatsoever, only 
the fact that they are positive is used. As a matter of fact, for any randomly chosen 
set of positive values M;, condition (3.7) is satisfied. This is an attractive feature 
with respect to robustness, but also makes it difficult to precisely quantify the effect 
of the space smoothing on the original equidistributing grid. An additional compli
cating factor, in this respect, is the effect of the 'zero concentration gradient' boun
dary conditions, although having 

X1-Xo=Xo-X-1, XN+1-XN=XN+2-XN+1 (t:2:0) 

is a natural restriction and certainly advantageous with respect to spatial accuracy 
near the boundary. Further, while neglecting the boundaries, the averaged expres
sion (4.7a) looks very natural. Our practical experience is that the spatial grid
smoothing procedure leads to a point distribution where the monitor function will 
determine the relative shape of the distribution and the value of K and N the level of 
clustering. We refer to Dorfi and Drury [ 4] for a numerical illustration. 

It is of interest to observe that, for a given N, the choice of K determines the 
minimum and maximum interval lengths. In actual application, the minimum should 
be related to the expected small scale features in the solution to be computed. Sup
pose that in a transition from small to large space gradients and back, a solution 
requires a local refinement in a grid with a factor of 1 om. Let N10c be the number of 
points in this transition region. Then, if the point concentration variation is bounded 
by 1 + 1/K, it follows from 

(1 + 1/K)O.SN,,,, = lOm, 

that N1oc is at least 

N1oc = 2mln(l0)/ln(l+l/K):::: 4.6m/ln(l+l/K). (4.8) 

For example, form= 3 and K = 1, 2, 3, we have, respectively, N10,.:::: 20, 34 and 48. 
Note that the factor of 0.5 above accounts for the fact that a local grid refinement is 
supposed to be followed by a local grid expansion. Using the 'rule of thumb' (4.8), 
one can make a quick (but somewhat crude) estimate of the number of points 
needed for a particular problem by summing the minimum number required to solve 
each small scale feature [4]. 
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REMARK 3.2. The range of summation in (4.7) may be changed without violating the 
grid ratio condition. For example, if only the direct neighbouring monitor values are 
used, n; becomes proportional to 

i+I 

A;= L yli-jlMj =VM;-1 +M; +VM;+1, 
j~i-1 

1'5.i-5.N-l, 

while condition (3. 7) remains valid. This suggests, for example, to realize the grid 
smoothing directly via the rule 

(4.9) 

We have not tested this alternative. Note that this technique preserves the 3-point 
coupling in X, but a drawback is that M; becomes coupled to M;_2 , M;_1 and M;+t. 

Another obvious alternative which comes to mind is to perform the smoothing on 
the M; values rather than on the point concentrations. The M; values are then 
replaced by 

G; = M; - K(K+l)(M;+1 - 2M; + M;-1), K > 0, 

so as to obtain the grid equation system 

G;_1M;-1 = G;M;. (4.10) 

This smoothing prncedure also leads to a grid X satisfying condition (3.7) and to 
slightly simpler equations (certainly so after the temporal grid-smoothing). As yet 
we don't know whether this particular choice of smoothing is better or worse than 
that based on the point concentrations. □ 

3.4.3. Temporal grid-smoothing 

In terms of equidistribution, temporal grid-smoothing means that 'C~; + n; is taken 
proportional to the monitor values M;, as can be seen in equation (4.la). The intro
duction of the derivative of the point concentration implies that the grid movement 
is no longer dictated by solution values at the current time level t, but also depends 
on past solution values. By preventing the grid movement from adjusting solely to 
new monitor values at time t, we hope to introduce a smoothing effect so as to avoid 
oscillatory trajectories X;(t), t 2 0. 

Let us examine the solution for n;(t) in the following form (cf. (4.2)), where 11t 

represents a typical stepsize that is taken in a numerical time integration: 
t 

n;(t)=e-ill11n;(t-11t)+ f 1:-1e<s-t)l1 c(s)M;(s)ds, t2!1t, 0'5.i-5.N. (4.11) 
t-/',.t 

We see that n;(t) is determined by the sum of e-ruicn;(t-11t) and a weighted average 
of values c (s )M;(s) over the interval [t-11t,t ]. The weighting is determined by the 
size of 'C and is exponentially decaying for backward time values. One can see that 'C 

acts as a delay factor for the grid movement and that the influence of past solution 
values is exponentially decaying. 

For 'C➔O, n;(t)➔c (t)M;(t) whereas n;(t)➔n;(t-11t) as 'C➔=. It follows that for 
sufficiently large values of 'C a non-moving grid results. This means that increasing 'C 
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too much will result in a grid that lags too far behind any moving steep spatial tran
sition. On the other hand, too small values for 't render no smoothing effect. In 
situations where temporal grid-smoothing is advisable, it makes sense to choose 't 
close to the anticipated At-values, so that over one or a few time levels the influence 
of past monitor values is felt. This suggests allowing 't vary with At. Note that so far 
we have assumed that 't is constant over the whole range of integration. 

For an alternative interpretation of the smoothing in time procedure, it is illustra
tive to examine the implicit Euler discretization ( 1-st order BDF formula) of the 
equation 

-'tM; (MS2 + (MS1 = cM;, t > 0, 0::;; i ::;; N, (4.12) 

which arises from ( 4.1 a) by putting K = 0 and by substituting 

dn/dt =-M/(M;)2. 

Spatial grid-smoothing is omitted here to simplify the presentation. Observe that, 
apart from the spatial smoothing, it is just this semi-discrete equation which is 
numerically integrated in time after elimination of the constant of proportionality 
(see Section 3.5). Let y= 1:/M. Then the implicit Euler replacement of (4.12) is 
given by 

-y(M;,k - M;,k-1)(M;,kr2 + (M;,k)-1 = ckMi,b k:?: 1, 0::;; i::;; N, (4.13) 

where M;,k is the approximation to M; at time t = tb tk = tk-l + At and t0 = 0. This 
fully discrete relation shows that, instead of taking (M;,k)-1 proportional to Mi,k, 
with numerical temporal grid-smoothing we take the entire grid point expression at 
the left-hand side of (4.13) proportional to M;,k- This term contains only grid values. 
The contribution from the previous time-level should introduce the desired smooth
ing effect. For the special choice 't = At, the simple equidistribution relation 

(M;,kr\M;,k-1/M;,k) = ckMi,k (4.14) 

results. Observe that for the higher order BDF formulas, similar equidistribution 
relations are found, the only difference being that then M;,k-I is replaced by a linear 
combination of such differences over more previous time-levels. 

Finally, the following result shows that smoothing in time does not interfere with 
the grid-ratio condition (3.7): 

LEMMA 3.2. The combined space-time grid-smoothing restricts the concentrations n; 

such that (3. 7) is satisfied. _ 
PROOF For condition (3.7) to hold, the actual size of the va!ues Mj is irrelevant, 
according to the proof of Theorem 3.1. It is sufficient that all Mj > 0. It thus suffices 
to prove that the solutions ii; of the differential equati_sms (4.la), as given in (4.2), 
remain positive for all t:?: 0, since this implies that all Mj > 0 (see Lemma 3.1). First 
we recall that n;(O) > 0, as shown in Remark 3.1. Now suppose that at a certain time 
t' the constant of proportionality c (t) becomes negative (if c (t) > 0 for all t, the 
proof is complete). Then, since M; > 0, a right neighbourhood oft= t' exists where 
all ii;(t) will decrease. Because all entries of the matrix M-1 arising in equation (4.3) 
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are positive (see again Lemma 3.1 or observe that M is a Stieltjes matrix), all point 
concentrations n;(t) will also decrease in this right neighbourhood. This is impossi
ble since the interval [xL, xR] is fixed. Hence we have a contradiction for the 
assumption that c (t) can be negative and the proof is complete. □ 

REMARK 3.3. The temporal grid-smoothing discussed here is closely related to that 
suggested in [1, 9]. The main difference lies in the fact that in [I, 9] the derivative 
of X; is introduced directly into an equidistribution equation based on nodal values 
X;, whereas here the equation for the concentration values n; is modifie~. This leads 
to a different system of grid equations when written in terms of X; and X;. □ 

3.5. THE COMPLETE SEMI-DISCRETE SYSTEM 

3.5.1. The moving-grid equation in terms of nodal values 
Inserting 

-l · . 2 
n; = (b.X;) , n; = -b.X;l(b.X;) (5.1) 

The 1-st and N-th equation slightly differ due to the boundary conditions and are 
easily found. Note that, away from the boundary, the_ noda~ poin_ts ~;+2 , ~i+l, X;, 
X;-i, X;_2 are coupled with the nodal point velocities X;+2 , X;+i, X;, X;_ 1, X;_2 and 
the monitor values M;_ 1, M;. 

For future reference, system (5.2), together with the 1-st and N-th equation, is 
represented in the form of the nonlinear ODE system 

-c13(X, U)X = g (X, U) (5.3) 

where 13 is the NxN penta-diagonal matrix associated to the left-hand side part of 
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(5.2). In order that we have a genuine ODE system, it is required that 'B(_X, U) is 
non-singular for any X, U. If no time smoothing is carried out, i.e., 't = 0, we are left 
with the algebraic system 

g(X,U) =0, (5.4) 

which represents the equidistribution relation combined with spatial grid-smoothing. 

REMARK 3.4. An alternative and somewhat simpler moving-grid equation system 
that has essentially the same smoothing properties as (5.2) is obtained by putting 
µ = 0 in its left-hand side. This renders 'B tri-diagonal and symmetric positive 
definite. In terms of point concentrations, the resulting system reads tn; + n; = cM; 
(cf. (4.la)), which shows that the temporal grid-smoothing is carried out on the con
centration values n; rather than on n;. □ 
3.5.2. The complete semi-discrete system and its numerical integration 

Systems (2.4) and (5.3) together form the complete semi-discrete system that is 
numerically integrated in time, 

t'BX = g, 
. . 
U-XoD=L, 

t > 0, X (0) given, 

t > 0, U (0) given. 

(5.5a) 

(5.5b) 

In case of Dirichlet boundary conditions, the total number of equations and 
unknowns is (NPDE+l)xN, where NPDE is the number of components of the origi
nal PDE problem (1.1). For other types of boundary conditions, the number of equa
tions and unknowns slightly differs. The supposed non-singularity of the matrix 'B 
trivially implies that for t > 0 we have a genuine ODE system; for t = 0 we _ha~e a 
DAE system of index one. The large matrix that multiplies the derivatives X, U in 
(5.5) has a rather simple, lower block-triangular structure. We cannot exploit this 
advantage since the system is numerically integrated with an implicit method. The 
Newton iteration matrix involved contains the partial derivative matrices of g and L 
with respect to X and U, or approximations thereof, and hence the lower block
triangular structure is lost. It is therefore computationally more attractive to change 
the order of unknowns so as to obtain a band-matrix. When using the order 
· · · , U;_1, X;_1, U;, X;, U;+i, X;+i, · · · , the band-width for the Newton matrix 

becomes 4x(NPDE + 1) + 1. This is based on the fact that we work with standard 3-
point central differences for the spatial operators, that X is 5-point coupled, and that 
the monitor M; is given by (3.4). 

For the numerical integration of the above semi-discrete system, one can use, in 
principle, any stiff method designed to solve linearly implicit systems of the present 
type. The results of the next section have been obtained with the BDF code DASSL 
(version of 830315) [11]. A similar code is the LSODI-based BDF code of the 
SPRINT package [2, 3]. We have experimented with both these codes (see also [7]) 
and since they are very much alike, the choice between the two should be of minor 
influence to the performances observed. This indeed turns out to be true in the case 
of successful runs. However, in some cases we have experienced a rather different 
performance. With both codes and for different problems runs were interrupted due 
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to fatal Newton errors, especially so when using extremely fine grids. This could be 
due to the fact that in our experiments the local error and Newton convergence test 
has been applied to X; and not to 11X;. Also, with moving grid methods a poor pred
iction of X; can be generated in the preparation of the actual BDF step, thus causing 
convergence problems for the Newton solver. These aspects need further attention 
(e.g., in a study along the lines of Petzold and Li:itstedt [13]). 

From the user's point of view it is of interest to note that DASSL, and likewise 
the stiff solver of SPRINT, are used in the same way as in the conventional, non
moving MOL approach. Apart from providing a subroutine for the semi-discrete 
system (numerical differencing for Jacobians was used) and specifying the initial 
values and required output times, one must define only the local absolute and rela
tive error tolerances, atol and rtol, the desired local error norm, and an optional ini
tial time-step value M 0 . Throughout we have used atol = rtol := TOL and the stan
dard weighted Euclidean norm; TOL and ~to will be specified with the three exam
ple problems in the next section. 

The method parameters for the grid are N, the number of moving points, the grid
smoothing parameters Kand 't, and the constant a of the monitor (cf. (3.4)) 

[ 
NPDE l 'I, 

M, = a+NPDE-1 I: (Ui+1. 1 - U,)2 /(X,+1 -x,)2 
1~1 

(5.6) 

The choice a= 1 yields the common arc-length monitor; this we have used 
throughout, unless noted otherwise. For K the default value 2 was selected, while 't 
was simply put equal to zero. Additional tests have shown that for the three exam
ple problen;is below the temporal grid-smoothing is redundant, which is of course a 
favourable situation. We wish to emphasize, however, that for other problems a 
positive value for 't may lead to a better performance. As observed previously, this 
aspect deserves more attention. 

3.6. NUMERICAL EXAMPLES 

We present numerical results for three different example problems. In the plots 
the solid or dashed lines represent accurate reference solutions ( obtained from [ 16]) 
while the marks represent the generated PDE approximations. Integration informa
tion, which serves to show the time-stepping efficiency of the process, is presented 
in terms of STEPS= total number of successful time steps, JACS = total number of 
Jacobian evaluations, and BS = total number of back solves. The two latter quanti
ties determine, to a great extent, the CPU time needed to complete the integration 
over the specified time interval. 

3.6.1. Problem I: The Dwyer-Sanders flame-propagation model 
This model, first proposed as a test example in [5J, simulates several basic 

features of flame propagation. It has two components, a mass density u and a tem
perature v. The PDE system is given by 

duldt=·<)2u/iJx 2 -uf(v), 0<x<l, 0<t~.006, 

dvldt = d2vldx 2 + uf (v), 0 < X < l, 0 < t ~ .006, 
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where f (v) = 3.52xl06exp(-4/v). The initial functions are u (x, 0) = 1, v (x, 0) = 0.2 
(0 ~ x ~ l) and the boundary conditions are given by 

i)u/i)x (0,t) = i)v/i)x (0,t) = 0, 

i)u/i)x (l,t) = 0 and v (l,t) = 0.2 + t/0.0002 (t ~ 0.0002), 

V (1,t) = 1.2 (t ~ 0.0002). 

The given function for v at the right boundary represents a heat source that generates 
a steep flame front. When v reaches its maximum, this front starts to propagate from 
right to left at a relatively high speed. The speed of propagation of the front is 
almost constant. At the final time t = 0.006, the front has come close to the left 
boundary. 
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FIGURE 3.1. Problem I (N = 40). Grid and temperature front at times 
t = .15x10-3 , .3x10-3 , .6x10-3 (.6xl0-3) .6x10-2 . 

The initial grid X (0) was taken uniform with N = 40. A uniform start grid pro
vides a difficult test since the method rapidly must refine near x = 1 in order to accu
rately simulate the fast generation of the front. The remaining parameters to be 
specified are ~t O = 10-6 and TOL = 10-4. In passing we note that the error control 
mechanism of DASSL may reduce the specified initial stepsize ~t0 • In the present 
experiment M 0 was reduced to .1276xl0-6 . 

Fig. 3 .1 shows plots of the grid and the computed temperature front for a range of 
output times. The costs of the run amount to STEPS = 148, BS = 410, JACS = 52. 
Inspection of the plots justifies the conclusion that the grid movement and the accu
racy of the approximation are very satisfactory over the entire time interval (also for 
the density which is not shown here). The small lump for early times is genuine and 
is contaminated with only very little overshoot (not visible here). For later times the 
numerical front is slightly too fast. These small errors are spatial, i.e., they remain if 
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many more time steps are spent and disappear if more space points are used. For 
example, for N = 80 and TOL = 10-4, which costs STEPS= 164, BS = 492, JACS = 
66, the approximations are exact up to plotting accuracy. Admittedly, 80 moving 
points for this problem is quite a lot. It turns out that a relatively large number of 
points are wasted in the front, especially for N = 80, while there are not too many 
near the foot and the top. We owe this to the arc-length monitor. A comparison with 
results shown in [16], where a second derivative monitor is used that deemphasizes 
the front and places more points where the curvature is largest, suggests that imple
mentation of a second derivative monitor in the current algorithm would improve 
the spatial accuracy. 

3.6.2. Problem II: A 'hot spot' problem from combustion theory 
This problem is described in Adjerid and Flaherty [ 1] as a model of a single-step 

reaction with diffusion and reads 

oulot = cJ2ulox2 + D(l + a - u)exp(-8/u), 0 < X < I, t > 0, 

oulox(0,t)=0, u(l,t)=l, t>0, 

U (X, 0) = 1, 0 :s; X :s; 1, 

where D = Re0 /(a8) and R, 8, a are constant numbers. The solution represents a 
temperature of a reactant in a chemical system. For small times the temperature gra
dually increases from unity with a 'hot spot' forming at x = 0. At a finite time, igni
tion occurs, causing the temperature at x = 0 to increase very rapidly to l + a. A 
flame front then forms and propagates towards x = I at high speed. The degree of 
difficulty of the problem is very much determined by the value of 8. Following 
[1, 7, 16], we have selected the problem parameters a= 1, 8 = 20, R = 5. The prob
lem reaches a steady state once the flame propagates to x = l. For the current choice 
of parameters, the steady state is reached slightly before time t = 0.29, which we 
take as the end point. We use times t = 0.26, 0.27, 0.28, 0.29 for output. It is noted 
that for t = 0.26 the reference solution is not sufficiently accurate near x = 0, but it is 
very accurate for the remaining output times [16]. 

For the numerical process, two solution phases should be distinguished, viz., the 
formation of the 'hot spot' with the flame front (the ignition phase) and the propaga
tion of this front to the right end point x = l (the propagation phase). Accurate han
dling of the formation of the 'hot spot' and the ignition is of importance. The igni
tion proceeds very rapidly, causing a widely different time scale, so that variable 
steps in time are a necessity. A difficulty is that the code must detect the start of the 
ignition very accurately at the right time, so that the step size can be rapidly reduced 
to a level small enough to simulate this ignition in a sufficiently accurate way. Small 
errors at this time point result in significantly larger global errors later on. Some trial 
and error tests have revealed that the BDF code needs at least a time tolerance value 
TOL of 10-5 , while using an initial step size of 10-5 [7]. These are the values we 
have used. The small tolerance does not cause any problems with the high-order 
integrators. 

Figure 3.2 shows a plot of the computed grid and the flame front on this grid for 
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a.a 1.0 

the four specified output times, using 40 moving nodes. The costs of this experi
ment amount to STEPS= 136, BS = 382, JACS = 35. The 'hot spot' nature is clearly 
visible from the grid. The numerical flame appears to be too slow, but is almost in 
the right position fort= .27 and .28 (the plot at t = .29 is the steady state solution). 
As for the previous problem, it is the spatial error that dominates and decreasing 
TOL gives no further improvement. Changing N to 80 yields a very accurate solu
tion (up to plotting accuracy), while there is no great increase in the number of time 
steps, viz., STEPS = 159, BS = 423, JACS = 37. Inspection of the solution shows 
that, similar as for Problem I, there are quite a few points in the flame front, but not 
very many at the top. Also here a curvature monitor would improve the spatial accu
racy, see [16] for comparison. Finally we refer to [7] where results for a range of 
values 'C > 0 are shown. 

3.6.3. Problem III: Waves travelling in opposite directions 
Our third example problem is a two-component, semi-linear hyperbolic system, 

the solution of which is given by two waves travelling in opposite directions 
(copied from [10], see also [7, 16]). The system is 

<1u/<1t = - <1u/<1x - lO0uv, 

cJv /cJt = + cJv /cJx - lO0uv, 

for t > 0 and -0.5 < x < 0.5, and the solution is subjected to homogeneous Dirichlet 
boundary conditions and to the initial condition 

u (x, 0) = 0.5(1 + cos (101CX)) for x E [-0.3,-0.1] and u (x, 0) = 0 otherwise, 
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v (x, 0) = 0.5(1 + cos (l01tx)) for x E [+0.1,+o.3] and v (x, 0) = 0 otherwise. 

Note that these are functions with a mere C 1 continuity, which represent wave 
pulses located at x = -0.2 and x = 0.2, respectively. Initially, while the pulses are 
separated, the nonlinear term 1 OOuv vanishes, so that for t > 0 these waves start to 
move with speed 1 and without change of shape, u to the right and v to the left. At 
t = 0.1 they collide at x = 0 and the nonlinear term becomes nonzero, resulting in a 
nonlinear interaction leading to changes in the shapes and speeds of the waves. 
Specifically, the crests of the waves collide a little beyond t = 0.25 and they have 
separated again at approximately t = 0.3, so that from this time on the solution 
behaviour is again dictated by the linear advection terms. At the nonlinear interac
tion, the pulses lose their symmetry and experience a decrease in amplitude. 

DASSL has been applied with N = 40, TOL = 10-3 and M 0 = 10-5 . For conveni
ence, we have again used a uniform start grid. However, unlike the two previous 
problems, this uniform grid does not satisfy the constraint (5.4) which it should if 
't = 0. To circumvent this start up difficulty, we have simply put 't small (10-8), so 
that we are in an ODE situation and any grid can be used to start up the time integra
tor. DASSL then lowers our guess of Lit0 to .3x10-10 and completes the integration 
using 111 successful steps (46 up to t = 10-3), 327 back-solves and 78 Jacobian 
evaluations. The value 't = 10-8 is of course excessively small, so that, very soon 
after the start, we are very close to the 't = 0 situation. It is emphasized that if 't = 0 
and we start on a grid satisfying (5.4), or choose 't larger than 10-8 in case of a uni
form start grid, the number of required steps will be smaller (see also [7]). 

Fig. 3.3 shows the grid and the numerical approximations at the specified output 
times. We see that the grid movement nicely mimics the interaction and point out 
that the visible inaccuracies are due to a somewhat optimistic choice for TOL and 
the number of points. These inaccuracies will vanish if more points are used and 
again we remark that a curvature monitor would probably lead to significantly more 
accuracy (see [16]). In the present experiment we have replaced the (regularization) 
constant a= 1 of the arc-length monitor by 0.1. The reason is that when the waves 
have separated they are no longer very steep, with the result that the value 1.0 is 
somewhat too large for obtaining sufficient refinement in the vicinity of the two 
waves, at least for N = 40. With this number of points it is also necessary that, after 
the pulses separate, the grid refines properly in the vicinity of the waves, else spuri
ous oscillations become visible. Recall that after the separation we are just solving 
the first order hyperbolic model problem using standard central differences. This 
experiment shows that it is desirable that the regularization constant of the arc
length monitor function be made solution-dependent, in some way or another. On 
the other hand, the results published in [ 16] indicate that with a curvature monitor 
this is less important. 
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3.7. CONCLUSIONS 
This work has been carried out in connection with a joint CWI/Shell project on 

'Adaptive Grids'. One of the aims of this project is to develop a reliable, robust and 
efficient lD moving-grid method, based on the method of lines, which can be used 
in almost the same easy way as existing MOL packages that integrate on a non
moving grid. The demand of ease of use requires that, as far as possible, the user 
should be relieved from fine tuning the grid movement. The results obtained so far 
justify the conclusion that the technique discussed in this paper goes a long way 
towards fulfilling the above requirements. 

An important feature is the grid-smoothing capability involving the two method 
parameters K and 'C. The meaning of K is very clear and for general use K can be 
taken equal to, say, 1 or 2. At the present stage of development, the actual choice to 
be made for 'C is less clear. Fortunately, our numerical experience indicates that in 
many cases it is possible to simply put 1: = 0 or to select 1: really small, so that the 
grid movement is almost exclusively dictated by the spatial equidistribution at the 
forward time level. The numerical results also suggest very clearly to implement a 
curvature monitor as in [16]. 

Finally we should mention that, in a few instances, the stiff solvers interrupted the 
integration due to a Newton convergence test failure, especially so when using 
extremely fine grids. This could be due to the fact that, in the experiments reported, 
the local error and Newton convergence test was applied to X; and not to!).)(;. Also 
poor prediction of the velocities may have caused difficulties for the Newton solver. 
These aspects need further attention (e.g., in a study along the lines of Petzold and 
Lotstedt [13]). 
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Chapter 4 

An Evaluation of the Gradient-Weighted 
Moving-Finite-Element Method 

in One Space Dimension 

4.1. INTRODUCTION 
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Moving-grid methods are becoming increasingly popular for several kinds of par
abolic and hyperbolic partial differential equations (PDEs) involving fine scale 
structures such as steep moving fronts, emerging steep layers, pulses, shocks, etc .. 
Moving-grid methods use nonuniform space grids and, like Lagrangian methods, 
move the grid continuously in the space-time domain while the discretization of the 
PDE and the grid selection are intrinsically coupled. Well-known examples are pro
vided by the moving-finite-element (MFE) method originally proposed by Miller 
and Miller [16] and Miller [11], and by the moving-finite-difference (MFD) method 
discussed in Verwer, Blom, Furzeland and Zegeling [20] (see also references 
therein). The MFD method is restricted to problems in one space dimension and is 
strongly based on ideas due to Dorfi and Drury [6]. 

Because of the intrinsic coupling between the discretization of the PDE and the 
grid selection, the application of moving-grid methods is not without difficulties, not 
even in the relatively simple case of one space dimension. The main difficulty we 
are referring to is the threat of grid distortion which can only be avoided by using 
penalty terms which, to some extent, are artificial and invariably involve parameter 
tuning. The parameter tuning is known to be very important, not only to provide for 
a safe automatic grid-point selection, but also for efficiency in the time-stepping 
process. Another difficulty is that the automatic grid-point selection introduces non
linear equations which may appear troublesome if handled with standard Newton 
solvers as commonly in use in implicit, stiff ODE solvers. 

Due to these specific difficulties, the question arises as to how moving-grid 
methods combined with implicit, stiff ODE solvers (method-of-lines (MOL) 
approach) do compare with common fixed-grid MOL procedures concerning the 
important issues of efficiency and, in particular, robustness, reliability and ease of 
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use. This is a natural question because, on the one hand, fixed-grid MOL procedures 
are known to become more and more popular, but, on the other hand, their use is 
limited when steep moving transitions must be resolved, since in such situations too 
many points in space and time may be needed. 

In a previous evaluation report, see Furzeland, Verwer and Zegeling [8], we have 
attempted to provide insight in this question. There we have tested three moving
grid methods for time-dependent PDE problems in one space dimension, including 
the MFE and the above mentioned MFD method. On account of this investigation a 
moving-grid interface was developed meant for automatic use in combination with 
the MFD method and a stiff ODE integrator (see Blom and Zegeling [5]). The inter
face provides the possibility of letting grid points move in time and performs the 
spatial discretization of the PDE problem under consideration without additional 
programming effort for the user, completely similar as in standard, fixed-grid inter
faces like those of the SPRINT package [3, 4] and of Sincovec and Madsen [17, 18]. 

In [8] we have also reported rather severe difficulties in applying MFE. The 
current evaluation report is to a great extent devoted to the gradient-weighted MFE 
(GWMFE) method, again for the one-dimensional case. The gradient-weighting 
amounts to the use of weighting functions in the finite-element formulation that 
depend on the gradient ux of the solution. This treatment results in a more robust 
process in that the parameter tuning becomes easier and also less critical. A second 
improvement, specifically concerning the implicit solution of the nonlinear system 
required in the time-stepping process, results from a particular block-diagonal 
preconditioning of the fully discretized equations (Miller [15]). One of the goals of 
the current examination therefore, is to find out to which extent GWMFE is a gen
eral purpose method. While most tests in the literature of (GW)MFE refer to 
strongly convection dominated convection-diffusion problems, in this chapter we 
test GWMFE also on true parabolic equations. 

This chapter is divided into five sections. In Section 4.2 we describe the main 
ideas of MFE and GWMFE and the implementation of the latter. Section 4.3 con
tains the results of extensive numerical experiments on a set of five test models. In 
this test set are included Burgers' equation with a small diffusion coefficient, a 
scalar diffusion problem describing a shifting pulse, a system of two nonlinear 
convection-reaction equations, a flame-propagation model with a heat source at the 
boundary, and a problem from gasdynamics with a small diffusion term. Section 4.4 
is devoted to a concise comparison between GWMFE and the MFD method from 
[5, 20]. In Section 4.5 our conclusions and recommendations are summarized. 

4.2. DESCRIPTION OF THE METHOD 

In this section an outline is given of GWMFE. Miller derived the method from 
his own moving-finite-element method (MFE). Since many basic properties of 
GWMFE are related very naturally to MFE properties, we first give a description of 
the MFE method. 
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4.2.1. MFE 
Consider the scalar PDE problem 

u1 =L(u), xL<x<xR, t>O, (2.1) 

where L represents a differential operator involving only spatial derivatives up to 
second order. The space interval is supposed to be fixed for all times t > 0 under 
consideration. Corresponding to the common method-of-lines approach, we consider 
N time-dependent grid points 

xL =X0 < · · · <Xi(t) <Xi+i(t) < · · · <XN+I =xR 

On such a grid, MFE approximates the solution u (x,t) of (2.1) by 

N 
u :::: U = IP/t) a./x, {Xi(t)}} 

j=I 

N 
= IP/t) a./x,XH (t),X/t),Xj+J (t)), 

j=I 

(2.2) 

(2.3) 

where a. j is the standard piecewise linear basis function which is 1 at the jth node 
and O at the other nodes. Differentiating U with respect to t and applying the chain 
rule gives 

(2.4) 
j=I 

where Pj = -Uxa.j. It must be noted that Pj is piecewise linear discontinuous. The 
equations determining the semi-discrete unknowns Uj and Xj are now obtained ~n 
the S!andard Galerkin way by minimizing the L2-norm IIR(U)II~ with respect to Ui 
and Xi, where 

R(U) == U1 - L(U) (2.5) 

is the PDE residual. This minimization gives a system of 2N ordinary differential 
equations in the 2N unknowns Ui and Xi: 

N • • 
:E < a.i, a.j > uj + < a.i, pj > xj = < a.i, L(U)>, i = 1, ... ,N, 
j=I 

N . • 
:E < pi, a.j > uj + < pi, pj > xj = < pi, L(U)>, i = l, ... ,N, 
j=I 

(2.6a) 

(2.6b) 

where <,> denotes the usual L2 -innerproduct. It is clear that (2.6a) without the X
innerproducts is just the standard Galerkin method applied to (2.1) using piecewise 
linear basis and test fu_nctions on a nonuniform grid. The time dependency of the 
grid is reflected in the X-innerproducts in (2.6a) and the complete equation (2.6b). 

Working out the innerproducts and defining the vector 

Y==(U1,X1, · · ·• ui,xi, · · ·• uN,xNf, 

we arrive at the semi-discrete MFE system 

.. 
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.9l.(Y) Y = G(Y), t > 0, Y(O) given, (2.7) 

where Jl(Y) is a block-tridiagonal matrix, the so-called mass-matrix, containing the 
innerproducts of the basisfunctions { a, j} and { p j}, whereas the only problem
specific terms are contained in the vector G (Y). Note that the boundary conditions 
are assumed to be incorporated in (2.7). 

This ODE-system must be integrated numerically to obtain the required fully 
discretized solution. Before starting to integrate in time, we must ask ourselves 
whether (2. 7) represents a well-defined system. The minimization of IIR ( U)II~ ( cf. 
(2.5)) has a unique solution if and only if the basis functions { a, j } and { P j} are 
linearly independent. This is only the case as long as m/1-mj+I at every node, where 
mj is the slope of the semi-discrete approximation U on [Xj-I, Xj]- But even if the 
solution exists and is unique the question remains whether (2.7) is 'easily' solvable. 
A natural requirement for that is regularity of the mass-matrix .9l.(Y) to avoid the 
problem of solving a DAE system of index 1 or higher. Concerning this, it can be 
shown that Jl(Y) is singular in exactly two situations (cf. Wathen [22]). 

The first singularity is caused by the same reason as above and is called parallel
ism, which means that the approximation U has zero second differences at some 
node (mk = mk+I for some k E { 1, · · · ,N} ). This implies that the dete1minant of Jl 
is zero. In other words, system (2. 7) becomes singular whenever a straight line can 
be drawn through the three neigh boring points (X; _ 1 , U; _ 1 ), (X;, U;) and 
(X;+J, U;+J ). In physical terms this means that, in absence of curvature (uxx = 0 
locally), the method has no way to determine in which direction the grid points 
should be moved. 

The second degeneracy of Jl arises whenever two nodes are coming too close 
together. Jl will then become very ill-conditioned and numerically singular. Hence 
one will need some mechanism to control the grid-point motion. 

Furthermore, the nonlinear steady-state system G (Y) = 0 may exhibit degenera
cies as well, for instance, in the case of parallelism. 

To overcome these problems, Miller [12] introduces the following regularization 
terms (penalty functions) in the residual minimization. Instead of IIR(U)II~ the 
minimization is carried out for 

where 

N+I . 
IIR(U)II~ + L (£/~'.xj -S)2, 

j=I 

(2.8) 

Cy C~ 
£2 - --- £-S· = ---- AX1- :=X1- -X1-_1, (2.9) 

j - AXj - o' 1 1 (AXj - 8)2 ' 

with C 1, C 2 and o small, user-chosen, constants. In particular, o serves as a user
defined minimum node distance. The modifications involved are only made to the 
grid-point equations (2.6b) and the combined effect is to add 

£[ !iX; - £T+1!iX;+1 and E;S; - E;+i S;+i 

to the left- and right-hand side, respectively. The £-terms serve to avoid the degen
eracy caused by parallelism. It can be shown that the addition of these terms renders 
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the mass-matrix JI positive definite [16], and thus regular. They represent a form of 
'intemodal' viscosity, since they penalize relative motion between the nodes and 
result in the degenerate nodes being carried along with the rest of the solution, pro
vided the penalty is sufficiently large to take over before the mass-matrix becomes 
numerically singular. The £-terms do prevent node overtaking in a dynamic way 
since the intemodal viscosities become infinite as /1X tends to 8; however over 
longer time intervals degenerate nodes (those caught in straight line segments where 
they are unneeded) may still slowly drift together. The S-terms, sometimes called 
intemodal spring forces, serve to prevent this long term numerical drift. For a 
clarification of the effect of the intemodal spring forces, we refer to Herbst et al. [9]. 

As for any other method, the regularization is somewhat heuristic and necessarily 
problem-dependent. For example, if C 1 is chosen too large, the grid movement is 
restricted ( C 1 ➔00 gives a non-moving grid) with the result that there may not be 
sufficient refinement in regions of large spatial activity (a typical phenomenon is 
then that the grid moves slower than a front region). On the other hand, if C I is too 
small, the mass-matrix JI may become numerically singular. Also of great impor
tance is that the minimum node distance 8 be small enough in relation to the antici
pated small-scale structure. However, too small values of 8 and C 2 may allow 
numerical errors to lead to near node overtaking (or even worse), which is a source 
of severe numerical difficulties in the time integration, even for the most robust stiff 
solver. When nodes drift extremely close together, the sets of nonlinear algebraic 
equations to be solved at each time step are likely to become badly conditioned. 

As can be seen in the numerical experiments in [8] (using a straightforward 
implementation without the features mentioned in Section 4.2.3), it is not possible to 
give a problem-independent interval for the parameters C 1, C_2 and 8, for which the 
MFE method solves the PDE properly, proper in the sense of reliability of the 
obtained solution with respect to the user-chosen penalty parameters, and time
integrational aspects, respectively. Among others, for this reason the gradient
weighted MFE method has been developed. 

4.2.2. GWMFE 
An important class of PDE problems may be represented by the well-known 

Burgers' equation 

(2.10) 

with a steep moving front solution u (x,t) as pictured below for two given points in 
time. 
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u(x,t) 

X 

In such a front u1 is a near delta function and in case of a true shock not an L 2-

function. To use the L2 -norm in the minimization of the residual u1 - L(u) is there
fore for such problems not appropriate. Since the normal component of u1, [u1]N, 
remains bounded even in an arbitrarily steep front, it is preferable to minimize the 
residual of the PDE for the normal motion of the solution. So, instead of using the 
L 2-norm, GWMFE uses the weighted L 2-norm 

Ill R(U) 1112 = f[U1 - L(U)]ids = f(R(U))2wdx, 

where the weighting function w = w ( Ux) is defined by 

1 
w(Ux)=---

✓1+U~ 

(2.11) 

(2.12) 

Baines [2] has proved that for (2.10), with £ = 0, MFE is identical to the method 
of characteristics and therefore will gradually concentrate most of the grid points 
into the front. It is likely that such a grid movement will also occur for (2. 10) with 
0 < £ < 1. Apart from the fact that points are then wasted in the steepest part of the 
front, this leads to numerical problems since the grid points may come very close to 
one another. The penalty terms introduced in (2.8) will partly remedy the situation, 
but this may require subtle tuning and, as already mentioned in the previous section, 
the practical experience with MFE is that tuning alone is not always sufficient for a 
good performance. The gradient-weighting, as incorporated in GWMFE, aims at 
de-emphasizing the steep parts of the solution and, as a positive side result, at reduc
ing the need for tuning. The grid points will be concentrated more near the comers 
of the front (but still in the front). For scalar truly hyperbolic PDEs, however, both 
MFE and GWMFE will be (mathematically) equivalent to the method of charac
teristics, so in this case the gradient weighting will not provide a_remedy._ 

For GWMFE the minimization of (2.11) with respect to U; and X; gives, as 



before, a system of 2N OD Es in the 2N unknowns U; and X; 

N • . 

L < a;, ajw > uj + < a;, ~jw > xj = < a;, L{U)w>, 
j=I 

N • • 

L < ~;, ajw > Uj + < ~;, ~jw > Xj = < ~;, L{U)w>, 
j=I 

i=l, ... ,N, 
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(2.13a) 

(2.13b) 

where the weighting function w = w(Ux) is defined by (2.12). The only difference 
with (2.6) is that the inner products are replaced by weighted inner products. A nice 
property of w, due to the piecewise linear approximation (2.3), is the fact that it is 
constant on each cell. Like before, insertion of all innerproducts yields the semi
discrete GWMFE system of the form 

(2.14) 

Also in this case, the mass-matrix Ylg may become singular. It is known that 
singularity occurs if we have parallelism. It is also known that in case of parallelism 
the steady-state system G g(Y) = 0 has at least two linearly dependent equations. In 
order to prevent these singularities, Miller [13) has suggested to carry out the 
minimization for the penalized expression 

N+I . 
IIIR(U) 1112 + 1:(E-;l;-S;)2, (2.15) 

i=I 

where ET :=A 2 ll;, E;S; := B 2 llT, with A and B user-chosen constants, and l; is the 
length of the ith segment. In contrast with MFE, the modifications involved induce 
changes to both equations (2.13a) and (2.13b ). The combined effect is that each ith 
segment adds a 'viscous' penalty force of magnitude Erl; =A 2i;/l;, and a 'spring' 
penalty force of magnitude E;S; = B 2 llT to the two nodes at its ends, both penalty 
forces working in the tangential direction. It is clear that, with these modifications, 
GWMFE produces equations that are even more complicated and nonlinear than the 
penalized MFE equations (2.6) (see also Section 4.2.3). 

As for MFE, the 'segment viscosity' terms ET serve to avoid parallelism. This 
means that the parameter A provides for the regularity of the mass-matrix ..91.g in the 
near degenerate situation of an almost flat solution. Likewise, the 'intemodal spring' 
terms E;S; take over to regularize the semi-discrete system in the steady-state case 
G g = 0 whenever parallelism occurs. In applications, it is often possible to put B 
equal to zero so that only the parameter A remains. A third penalty parameter, such 
as the 8 in MFE, is not considered in the present form of E; or E;S;. The direct analo
gue l; - 8 is redundant: it is unlikely that l; tends to zero because this would require 
that both M; ➔ 0 and 11U; ➔ 0. Leaving out the penalty parameter to refrain M; 
from becoming zero might be defended by noting that GWMFE is supposed to send 
considerably less points in the steep parts of the solution. 

It must be noted that we derived MFE and GWMFE for scalar PDEs. However, 
the foregoing can be generalized very naturally to a system of PDEs by replacing 
the residual (2.15) by 
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(2.16) 
k=I j=l 

where k denotes the k-th PDE component, NPDE equals the total number of PDEs, 
and 

Here Wk represents a weighting factor to emphasize, if wanted, a particular PDE 
component. In our tests we have taken Wk = 1 for all components. Likewise, Ak and 
Bk have been chosen to be independent of k. 

Carlson and Miller use in their code GWMFEIDS a shared set of x positions for 
the nodes of all the approximating functions Uk. Although it is possible to use more 
than one grid this seems only advisable for very specific systems of PDEs, since the 
number of equations would be increased and it would complicate the implementa
tion considerably. 

4.2.3. Implementation 
The test results with GWMFE in [13] were obtained with the GWMFEIDS code 

developed by N. Carlson and K. Miller. In that code a second order Diagonally 
Implicit Runge-Kutta method (DIRK2) has been used as time integrator for the ODE 
system (2.14 ). Miller conjectured [ 15] that it would be profitable to use a higher 
order stiff ODE solver like the SPGEAR module in SPRINT. We therefore discon
nected the modules of GWMFEIDS which compute the residual and coupled them 
directly to SPRINT, using the stiff BDF code SPGEAR as time integrator. 

In this subsection we will discuss some of the 'implementation tricks' in 
GWMFEIDS which we feel to contribute significantly to the performance of the 
code and which are not previously described in the open literature by the authors 
Carlson and Miller. 

But firstly we would like to give the reader an idea of the complexity of the ODE 
system (2.14). To that intent we work out equation (2.13) + penalty terms for the 
scalar PDE 

Ur = eUxx + (f (t,X, U ))x + g (t,X, U ). 

Let W; be defined by W; := u✓1+m7 and AU;:= U; - U;-1 for X;-1 s;x -:s;x;. Then 
(2.13a) plus penalties yield for i = I, · · · ,N, 

W; A 2 2 . W; A 2 . 
(-6 AX; - - 3-(AU;) )U;_1 + (--6 AU; - - 3-AX;11.U;)X;_1 + 

~ ~ 

W; A 2 2 W;+J A 2 2 . (3 AX; + - 3-(AU;) + --AX;+t + - 3-(AU;+i) )U; + 
l; 3 l;+t 



77 

X Xi+l 

+ w; f a;g (t,x, U (x))dx + W;+i f a;g (t,x, U(x))dx. (2.17a) 
X-, 

(2.13b) together with the penalties gives a similar expression as (2.17a) except for 
the diffusion term, which reads 

(2.17b) 

It is obvious that the resulting system is extremely nonlinear. 
Note, that for the gradient-weighted MFE method the evaluation of both the 

innerproducts < a;, u_uw > and < ~;, u_uw > has to be interpreted in the sense of 
'mollification', i.e., the piecewise linear function U is smoothed at the nodal points 
(cf. Miller [12, 16]). The £-terms in (2.17a) and (2.17b) are the limits obtained for 
the 'mollified' innerproducts if the mollification parameter tends to zero. 

The implementation of the 'uxx-terms' has to be done carefully because both the 

formulae -ln(m; + ✓mr+ 1) + ln(m;+i + ✓mf +i +I) and ✓mr+ I - ✓mf +1 + 1 are sus
ceptible to loss of accuracy by roundoff error if m; and m;+J are small and the first 
formula also if m; or m;+J is large and negative. In GWMFElDS, < ~;, u_uw > is 
evaluated as 

1 + ✓mr+r +l 

which gives automatically the correct expression even for small values of m;. In 

< a;, uxxw >, ln(m; + ✓mf+l) is evaluated as 

sign(m;) ln( Im; I + ✓mr + 1 ) 

to avoid the problems for large and negative m;, and in case TJ = m/✓mr+l is small 
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as a truncated Taylor series, viz., 

- c:::r.7 _!_ 1 +r1 - _!_ 3 _!_ 5 _!_ 7 
ln(m;+-vm;,1)= 2 ln( l-TJ)-TJ+ 3TJ + sTJ + 7Tl · 

A second problem which arises if one would implement the method straightfor
wardly within the method-of-lines context is that a tolerance of, say, 10-4 for both 
the time error and the convergence to the solution of the nonlinear system is quite 
insufficient if the horizontal distance between two nodes is also of order I 0-4. 
Therefore we have, following the GWMFElDS implementation, used as acceptance 
criterion for both the time error and the convergence of the Newton process that as 
well 

llvltolll < 1 

should hold as 

I v(X;+1)-v(X;) I 
max------- < 1, 

; M;+1P 
(2.18) 

where v is a vector either containing an estimate of the time error or the last correc
tion in the Newton process, and p a user-defined parameter to indicate what weight 
should be given to the relative error tolerance on node distance. This implies that for 
0 < p::;; 1 the 'uncertainty' in M; will not be larger than M; itself. 

Another feature that is implemented in GWMFEIDS and which we also adopted 
is the block-diagonal preconditioning of the highly nonlinear implicit BDF equations 

(2.19) 

where (Y - Z)/(f)..t d) is in our case the BDF substitute for Y, with Z a vector depend
ing on information from previous time steps and d a parameter that depends on the 
integration formula in use. 

This preconditioning is prompted by the results of Wathen [22] for the MFE 
mass-matrix YI. in (2.7). He proved that premultiplying A by the inverse of its block
diagonal 'lJ results in a matrix '1Y 1 (Y) .521.(Y) which is very well-conditioned. In fact, 
the condition number is even independent of the grid and the solution. Miller [ 14] 
showed that this holds also for 1'g1 (Y) .521.g(Y) (the analogue of '1Y1 YI. in case of 
gradient-weighting). Although the effects of preconditioning system (2.19) with 
1'g1 (Y) has not yet been analytically shown, numerical results suggest that it has a 
considerable influence on the condition number of the Jacobian of the nonlinear sys
tem (2.19) too. Therefore we solve not (2.19) but instead 

(2.19') 

Note that the 1'g1 in (2.19') includes also that part of the penalty functions that 
occurs in the left-hand side of (2.17). 
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4.3. NUMERICAL EXPERIMENTS 

In this section we discuss test results obtained with our implementation of the 
GWMFE method for five example problems, viz., (I) Burgers' equation, a scalar 
model for nonlinear convection-diffusion phenomena; for this PDE we took two dif
ferent initial solutions, (II) a linear heat conduction problem with a shifting and 
oscillating pulse as solution, (III) a system of two nonlinear convection-reaction 
equations representing two opposite traveling pulses, (IV) a flame-propagation 
model with a heat source at the boundary, and (V) Sod's problem from gasdynamics 
with a small diffusion term. With these five problems we test the performance of the 
GWMFE method on a wide variety of solutions having a high degree of spatial 
activity, ranging from steep moving wave fronts to pulses and emerging and dying 
layers. 

In [12] Miller gives a rationale of the penalty choice, based on a remedy of the 
degeneracies in both 5'l. and the residual system (see also Section 4.2.2). This results 
in a 'standard choice' coupled with the time-tolerance TOL. The parameter in the 
viscous penalty force should be A 2 .? TOL 2 , say TOL < A < 10 TOL. The standard 
choice for the Bin the spring penalty force is B 2 = 0, unless it concerns a problem 
approaching steady-state with possible geometrical parallelism degeneracies. In this 
case the balancing of penalty contributions and true terms lead to B 2 ::::: 0.1 £ TOL 2 , 

where £ is the coefficient of the diffusion term, cf. (2.10). To get an impression of 
the dependency of the GWMFE method on the penalty parameters, the first Burgers' 
problem was tested for a large set of penalty parameter values A 2 and B 2 . More
over, for this problem the robustness of GWMFE was compared with respect to that 
of MFE as .tested in [8]. All other problems were run with a smaller range of 
penalty parameter values based on the standard choice. 

For all runs the 'cell-width' relative error tolerance parameter p from (2.18) was 
taken 0.1 and block-diagonal preconditioning was used in solving the nonlinear sys
tem with Newton. For a few cases we evaluated the effects of these 'implementation 
tricks'. The relative error tolerance on cell widths was, as can be expected, espe
cially effective for the problems with a steep moving wave as solution; e.g., without 
this feature Burgers' problem often broke down at the point where the shock reaches 
the boundary due to node crossing. Block-diagonal preconditioning was of great 
benefit for the condition number of the Jacobian of the nonlinear system. Without 
preconditioning the condition number was frequently of the order of the inverse of 
the machine precision (say 1014 with a machine precision of :::::10- 16 ). Precondition
ing reduced it to :::::107 • The actual speedup was, in view of these numbers, not so 
large, but it is clear that preconditioning makes the method much more robust. 

In some cases, for example in problems I, III and V, vertical rescaling of the 
PDE-system could result also in a better performance of GWMFE [15]. Such avert
ical rescaling, say by a factor M (replacing 'u' by 'Mu' everywhere in the PDE), 
could allow a larger range of successful values of A 2 • However, to choose the value 
of M, some insight into the solution behavior is needed, which makes it difficult to 
incorporate this parameter in an automatic code. For this reason we do not present 
results for rescaled PDE-systems. 

In [23] we have given a catalogue of worked-out innerproducts. The integrals 
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resulting from the innerproducts < a;, -4U)w > and < 13;, ,4U)w > were 
evaluated exactly unless indicated otherwise. If numerical quadrature was used, 
Boole's rule was applied (closed Newton-Cotes with error O (h 7)). We have also 
tried Simpson's rule (O(h 5)) but this gave, for problem IV, far worse results. This 
difficulty with numerical quadrature on certain types of problems has already been 
mentioned by Miller [11] in his extensive testing of the MFE method. 

The results will be presented in tables and for a few parameter choices in plots 
wherein marks will indicate the GWMFE approximation and the solid line the exact 
solution. If no exact solution was available, we used a very accurate numerical 
reference solution. 

In the description of the experiments the following notation has been used: 
~t O initial step size, 
TOL time-tolerance value (absolute and relative) for the SPGEAR integrator, 
NPTS number of grid points, 
STEPS number of successful time steps, 
JACS number of Jacobian evaluations, 
CTF number of correction time failures, i.e., no convergence of the Newton 

process after 3 iterations with a new Jacobian, or node crossing, 
ETF number of times the ODE integrator rejected a step, 
CPU normalized CPU-time, i.e., CPU:= CPU-secs/CPU-secsmin, where 

CPU-secsmin is the minimum number of CPU seconds used for the prob
lem under consideration, 

ORD average order used by the time integrator measured over the whole time 
range. 

Finally, we give marks for the quality of the computed solution (compared to either 
the exact solution or (in plots) to the numerical reference solution) and the quality of 
the grid (distribution and the smoothness of the motion in time): ++ (very good), + 
(good), □ (reasonable), - (bad), and -- (very bad). x indicates that GWMFE broke 
down during the run. 

4.3.1. Problem 1: Burgers' equation 
This model, which can be considered as the simplest, non-trivial 1-D analogue to 

the Navier-Stokes equations, possesses a nonlinear convection term combined with 
a very small diffusion term, 

U1 = EUxx - UUx, 0 < X < l, t > 0, 0 <£«I. (3.1) 

We make a distinction between two specific problems (both stemming from Miller 
[15]): 

a) the initial condition is the smooth function 

u I t=O = sin(27tX) + 0.5sin(7tX ), 0 :s; x s; l, 

accompanied by homogeneous Dirichlet boundary conditions. 
In this case the solution is a wave that first develops a very steep gradient, with a 
shock width proportional to £, and subsequently moves towards the right boundary 
x = I. It then collides with the boundary and forms a very thin boundary layer. This 
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collision is a difficult part of the computation. Next, for increasing time t the ampli
tude u decreases due to the Dirichlet boundary conditions. Finally, for t ➔ 00 the 
solution dies out towards the steady-state solution u = 0. While the choice £ = 10-3 

yields a problem having all properties for testing a moving-grid method, we take the 
even smaller value £ = 10--4 as a more severe test case. The problem is solved on the 
time interval [0,2]. (See also [8].) 

b) the initial condition is the trapezoid 

0.2 0 ~x ~0.1 

8x -0.6 0.1 ~x ~ 0.2 

u lt=O = 1 0.2 ~x ~ 0.5, 

-l0x + 6 0.5 ~x ~ 0.6 

0 0.6 ~x ~ 1 

with the boundary conditions 

U I x=O = 0.2, U I x=l = 0, t > 0. 

For this case the course of the amplitude u is roughly the same as for case a), with 
the understanding that the solution now possesses several sharp features unlike the 
sinusoidal pulse which is very smooth outside the shock region. Again we consider 
the case£= 10-4 and the time interval [0,2]. 

Numerical results for Problem la 
Starting on a uniform grid with the number of grid points NPTS = 21, and as 

time-integration parameters TOL = 10-3 and t:.t O = l 0-5, we obtain a series of test 
results by choosing B 2 = 10-3, 10-11 (standard choice), resp., 0 and by letting A 2 

increase from 10-9 to 10-3 . The results are given in Table 4.1. 
It can be seen that except for the largest value of A 2 the results are very satisfy

ing. For A 2 = 10-3 the speed of the shock was much too slow. There was not much 
difference between the grids and the solutions for the other values of A 2 , but for 
extreme values of A 2 the ODE system and the resulting nonlinear system sometimes 
were harder to solve, which made the co~putation more expensive. For B 2 = 0 and 
to some extent also for the standard choice B 2 = 10-11 the grid points were concen
trated in the shock and no grid points were lying in the curvature. This makes the 
behavior of GWMFE more precarious. Choosing a spring penalty value of 
B 2 = 10-3, which is too large from the view of a reasonable balance of penalty con
tributions and terms of the system (2.14 ), results in a case like this in a very efficient 
performance, especially with the standard choice for A 2 • This efficiency is likely to 
be caused by the fact that the grid points are pushed out of the front into the curva
ture by the large spring forces (see also Fig. 4.2). The computation broke down only 
twice, for B 2 = 0, both times because of (near) node crossing. This robustness is 
strikingly compared with the MFE method as tested in [8], as can be seen from the 
plots in Fig. 4.1 where the acceptable range of penalty parameter values is graphi
cally represented (by a shaded area) for both the GWMFE and the MFE method. 
One should remember, however, that in the MFE implementation neither some form 
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A2 

IE-9 

IE-8 

IE-7 

IE-6 

IE-5 

IE-4 

lE-3 

IE-9 

IE-8 

lE-7 

IE-6 

IE-5 
IE-4 

IE-3 

IE-9 

IE-8 

IE-7 

IE-6 

IE-5 

IE-4 

IE-3 

-00 

a 

a 

t=l.4 t =2.0 qual. qual. 

B2 STEPS JACS STEPS JACS CTF ETF CPU ORD sol. grid 

IE-8 278 205 429 326 91 16 2.3 1.27 ++ + 
IE-8 274 183 396 280 79 27 2.1 l.l 8 ++ + 
IE-8 197 144 266 197 56 13 1.4 1.37 ++ + 
IE-8 174 140 232 186 56 7 1.3 1.41 ++ ++ 
IE-8 140 105 191 146 49 2 1.0 1.40 ++ ++ 
IE-8 135 I II 179 147 55 I 1.0 1.40 ++ ++ 
IE-8 162 138 201 171 62 3 1.2 1.37 - + 

IE-11 303 214 377 261 80 18 1.9 1.28 ++ + 
IE-11 276 200 356 250 70 23 1.9 1.24 ++ + 
IE-11 243 184 300 229 69 16 1.6 1.3 I ++ + 
lE-11 255 227 315 279 98 5 1.9 1.38 ++ ++ 
IE-11 266 253 334 315 106 11 2.1 1.35 ++ ++ 
IE-11 150 126 400 386 146 0 2.6 1.38 ++ ++ 
IE-11 163 135 206 175 64 3 1.2 1.42 - + 

0 305 224 424 306 84 31 2.2 1.26 ++ + 
0 275 195 351 253 70 16 1.8 1.23 ++ + 
0 222 161 292 215 70 II 1.5 1.41 ++ + 
0 225 196 291 255 87 8 1.7 1.36 ++ ++ 
0 206 189 X 301 6 1.34 ++ ++ 
0 156 136 X 266 I 1.36 ++ ++ 
0 170 138 208 167 63 3 1.2 1.45 - + 

TABLE 4.1. Problem la. Integration history. 
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1.0 

1.0 

of preconditioning nor relative error tolerance onocell widths was available. We 
therefore incorporate only the results up to time t = 1.4 in these plots. 

In Fig. 4.2 we give plots of the typical grid behavior and solution. One can see 
that in both cases illustrated the solution is accurate up to plot resolution. 

The time-integration process is not really satisfying for this problem. The number 
of Jacobians almost equals the number of (successful) steps. Even if we take into 
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account the number of step failures (ranging from ::::: 50 - 100) the number is still 
quite large. Also the observed average order turns out to be rather low. In fact 
SPGEAR almost never uses a third order method, not even in the time intervals 
where the problem is smooth and no step rejection or convergence failure occurs 
(t E [0.4, 1.2] and t E [1.5,2.0]). The fact that the order is not increased in these 
regions is somewhat amazing since plots of the X;(t) and the U;(t) show that both 
are reasonably smooth curves. However, in these areas the step size is drastically 
increased (only 10% of the steps is used in the smooth parts) and it could be that this 
is more efficient than an increase of the order for this coarse time tolerance. Most of 
the computational work is done where the shock is formed (at t::::: 0.2) and when the 
shock reaches the boundary (at t::::: 1.3). In these regions no high order method will 
be used because of the continual (true or near) node crossings within the iterative 
Newton process which result in convergence problems. 

t =0.9 t =2.0 qua!. qua!. 

A' B' STEPS JACS STEPS JACS CTF ETF CPU ORD sol. grid 

IE-6 lE-8 200 168 248 203 64 8 I.I 1.44 +t- + 
IE-5 IE-8 178 160 223 191 68 1 1.0 1.38 +t- +t-

lE-4 JE-8 189 161 228 189 65 7 1.0 1.36 + +t-

lE-6 lE-11 177 144 227 184 70 3 1.0 1.39 +t- + 
IE-5 IE-11 191 176 276 247 91 3 1.3 1.37 +t- +t-

IE-4 IE-J 1 206 179 403 373 138 9 2.0 1.37 + +t-

TABLE 4.2. Problem lb. Integration history. 

Numerical results for Problem lb 
For this problem, which is of the same nature as the above, we used only a small 

range of penalty parameter values, viz., A 2 = 10-6 , 10-5 , 10-4 and B 2 = 10-8 , 10-11 . 

The integration parameters were chosen the same, i.e., NPTS = 21, TOL = 10-3 , and 
~to= 10-5 . The results are given in Table 4.2 and Fig. 4.3. The performance is 
comparable with that of problem la. We have also run this problem with B 2 = 0 and 
the same A 2 -values. Again the results are comparable if the method does not break 
down, but it seems advisable to take B 2 slightly larger than zero for this problem to 
handle the degeneracies in the near steady-state situation. Although Miller's stan
dard choice results in B 2 = 10-11 , the larger value of B 2 = 10-s seems both for this 
and for the previous problem to lead to more efficiency. 
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FIGURE 4.3. Problem lb. Grid and solution at times t = 0.0, 0.4, 0.8, 
0.9, 2.0 (Li,+,x,◊ ,V) for A 2 = IE-5 and B 2 = lE-11. 

4.3.2. Problem II: A shifting pulse 

1.0 

The ideas for this problem stem from Adjerid and Flaherty [ 1], who constructed a 
model (in 2-D) of a rotating cone using an exact solution. The PDE reads as fol
lows: 

U1 = Uxx + f (x, t ), 0 < X < 1, t > 0, 

where f is chosen in such a way that 

._ -a(x-r1(t))' (l • ( )) ( ) 1 (2 · (A )) Uexact -- e - sm yltt , r~ t := 4 + sm i-,1tt 

(3.2) 

satisfies (3.2). The boundary conditions at x = 0 and x = 1, being of Dirichlet type, 
and the initial condition, being a Gaussian pulse, are derived from the exact solution 
u exact. The three parameters a > 0, ~ > 0 and y ~ 0 each have their own meaning in 
the model. Choosing y > 0 means that the pulse will decrease and rise again with a 
period of 2/y. The steepness of the solution is controlled by the parameter a in the 
exponential function and ~ represents the speed of the pulse which moves periodi
cally from the left to the right boundary and back again in a period of 2/~. We have 
chosen the values a= 320, ~ = 1 and y = 2. The PDE is integrated over one period, 
i.e., until t = 2.0. 

The integrals stemming from < a;,fw > and < ~;,.fw > were evaluated by 
numerical quadrature using Boole's rule. 

Numerical results for Problem II 
For this problem we start on a nonuniform grid with NPTS = 41 and all but the 

two boundary points concentrated around the pulse, uniformly distributed between 
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t =2.0 qua!. qua!. 

A2 B2 STEPS JACS CTF ETF llerrll- CPU ORD sol. grid 

IE-6 0 310 215 52 9 5.IE-2 1.0 1.33 □ + 
IE-5 0 608 504 173 0 4.2E-2 2.2 1.34 □ ++ 
IE-4 0 988 912 348 2 j_3E-2 3.8 1.25 □ ++ 

TABLE 4.3. Problem II. Integration history. 

0.35 and 0.65. If one starts with a uniform grid the results are slightly worse. The 
time-integration parameters were again TOL = 10-3 and ~to= 10-5 . Since there is 
no steady-state involved in this problem we use the standard choice for the spring 
force penalty, B 2 = 0 and for A 2 the range 1 o-6 , 10-5 , 10-4 . 

The performance of the GWMFE method for this problem is significantly less 
satisfying than for the convection dominated Burgers' problem of the previous sec
tion. The oscillating character of the solution makes that GWMFE loses track of the 
movement of the pulse when the amplitude goes to zero and picks it up again only if 
the pulse is already at some height, thereby losing accuracy. The grid plots show 
that after the solution has become zero (at t = 0.25 and 1.25) the grid points do not 
return fast enough to their position around the pulses to get a correct approximation 
of the right-hand side of the PDE. The fact that GWMFE does not adjust itself fast 
enough to an emerging pulse can also be shown by starting the problem at t O = 0.25 
and on a uniform grid (since u = 0) (cf. Fig. 4.4). 

The efficiency of the GWMFE method is, for this problem, strongly dependent on 
the penalty parameter choice; for approximately the same accuracy the amount of 
work varies rather capriciously with a factor 3 to 4 for different choices of A 2 (cf. 
Table 4.3). 

The time integrator reacts on this problem in a similar way as on the previous one. 
Again we see that for all parameter choices the number of Jacobian updates is large 
relative to the number of time steps even if we add the number of rejected steps. 
Also the order. behavior is more or less the same. In regions which are supposed to 
be easy for GWMFE, i.e., a moving pulse which is significantly larger than zero, 
SPGEAR rather increases the step size than the order. 

4.3.3. Problem Ill: Pulses traveling in opposite directions 
Our third example problem is a two-component, semi-linear hyperbolic system, 

the solution of which is given by two pulses traveling in opposite directions (copied 
from [10], see also [8, 20, 21]). The system is given by 

u, = -ux - I00uv 

Vx - lO0uv 
-0.5 < X < 0.5, t > 0, (3.3) 

and the solution is subjected to homogeneous Dirichlet boundary conditions and the 
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starting at t 0 = 0.0 (above) and t 0 = 0.25 (below). 

initial condition 

{
0.5 (1 + cos(lOrcx)), 

u lr~o = 0 , 

{
0.5 (1 + cos(l01tx)), 

V 11~= 0 , 

-0.3 ~x ~-0.1 

elsewhere 

0.1 ~x ~ 0.3 

elsewhere 
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1,0 

1.0 
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Note that these are functions with a mere C 1 continuity, which represent wave 
pulses located at x = -0.2 and x = 0.2, respectively. Initially, while the pulses are 
separated, the nonlinear term 1 00uv vanishes, so that for t > 0 these pulses start to 
move with speed 1 and without change of shape, u to the right and v to the left. At 
t = 0.1 they collide at x = 0 and the nonlinear term becomes nonzero, resulting in a 
nonlinear interaction leading to changes in the shapes and speeds of the pulses. 
SpecificalW, the crests of the pulses collide a little beyond t = 0.25 and they have 
separated again at t :::: 0.3, so that from this time on the solution behavior is again 
dictated by the linear advection terms. At the nonlinear interaction, the pulses lose 
their symmetry and experience a decrease in amplitude. 

t = 0.5 qua!. qual. 

A2 B2 STEPS JACS CTF ETF CPU ORD sol. grid 

lE-6 0 210 166 38 14 1.0 1.30 + □ 
IE-5 0 267 221 60 10 1.3 1.39 + + 
IE-4 0 345 297 98 12 1.8 1.35 -

TABLE 4.4. Problem III. Integration history. 

Numerical results for Problem III 
In contrast with our experience with the MFE method, GWMFE is not able to 

solve this problem without addition of (artificial) diffusion. Therefore, we added to 
both equations a diffusion term £uxx, resp. £Vxx· The tests as described below are 
done with £ = 1 o-4; we also have tried £ = 10-5 but then GWMFE broke down. 

Again we start on a nonuniform g1id with NPTS = 41 and all but the two boun
dary points concentrated uniformly around the pulses. In this case too a uniform ini
tial grid led to slightly worse results. The time-integration parameters TOL and ~to, 
and the GWMFE penalty parameters A 2 and B 2 have the same values as in 
Problem II. The results are given in Table 4.4 and Figs. 4.5 and 4.6. Note that the 
solid (u), resp. dashed (v), line in the plots represents an accurate reference solution 
of the original problem without diffusion term. 

For this problem a correct choice of A 2 is of importance. A 2 = 10-6 or 10-5 yields 
a satisfactory approximation, but A 2 = 10-4 results in a very bad performance after 
the pulses have collided, as is illustrated in Fig. 4.6. For the other values of A 2 the 
approximation is much better (cf. Fig. 4.5), but the computation is still quite expen
sive. 

Miller showed [15] that for this problem a 'vertical rescaling' of the PDEs by a 
large factor (say 1000) could help to improve the performance of GWMFE. Rescal
ing the PDEs gives the method much lower traveling pulses to deal with. In fact it 
means that GWMFE is replaced by the original MFE method, which is profitable 
since for this problem no gradient weighting is needed. 
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4.3.4. Problem IV: The Dwyer-Sanders flame-propagation model 

r- .25 

D,3 0.5 

Our fourth problem (see [7] for more details and also [20, 21]) serves as a useful 
test example for the simulation of several basic features which occur in physical 
flame models. The two PDEs for mass density u and temperature v are given by 

U1 =uxx -uf(v) 

Vr =v_u:+uf(v) 
, 0 < x < I, 0 < t::;:; 0.006, 

where f ( v) = 3.52 106 e-4/v. The initial functions are 

U lr=O = l.O 
0 :::::x::;:; 1, 

V I /=0 = 0.2 

and the boundary conditions read 

Ux I x=O = 0, Vx I x=O = 0, t > 0, 

and 

Ux lx=I = 0, { 
t 

0.2+--, 
V I x=l = 0.0002 

1.2, 

0 < t::;:; 0.0002 

0.0002 ::::; t ::;:; 0.006 

(3.4) 

The time-dependent forcing function for the temperature at the right boundary 
represents a heat source which generates a flame front. As soon as the temperature 
v I x=I reaches its maximum value 1.2 at t = 0.0002, this flame front starts propagat
ing to the left at a relatively high (almost constant) speed ::: 150. For t = 0.006 the 
front has nearly reached the left boundary. 

The integrals stemming from < a;,ufw > and < ~;,ufe· > were evaluated by 
numerical quadrature using Boole's rule. 
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t =0.006 qua!. qua!. 
Ai B2 STEPS JACS CTF ETF CPU ORD sol. grid 

IE-8 0 1566 627 82 166 3.9 2.07 - □ 
lE-7 0 400 181 19 55 1.1 1.71 □ + 
lE-6 0 361 164 25 27 1.0 1.79 + + 

TABLE 4.5. Problem IV. Integration history. 
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FIGURE 4.7. Problem IV. Grid and temperature component for A 2 = lE-6 and 
B2 = 0 at t = .15E-3, .3E-3, .6E-3, 1.2 E-3, ... , 6E-3 (from right to left). 

Numerical results for Problem IV 

~ 

p 

1,0 

For this problem a strongly nonuniform initial grid was needed with NPTS = 41: 
20 uniformly distributed grid points in [0.0,0.9], 10 in [0.9,0.99] and 10 in 
[0.99,1.0]. The time-integration parameters were TOL = 10-4 and !1t0 = 10-5 • We 
only present data for the standard penalty parameter choices A 2 = 10-8 , 10-7 , 10-6 ; 

B 2 =0. 
If we start on a uniform grid the flame front at the right boundary starts at the 

wrong time, but the solution has more or less the correct speed. This behavior is 
conform our observation in Problem II that GWMFE can not detect and resolve an 
emerging pulse. If one approximates the innerproducts with Simpson quadrature 
instead of Boole's rule (with a nonuniform starting grid) the solution is initially the 
same, but the flame propagates much too fast. It is possible that even the seventh 
order quadrature rule is not accurate enough to approximate the integral over the 
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source term and that this causes the flame to propagate slightly too fast as can be 
seen in Fig. 4.7 (plot marks are centered). This problem would probably benefit 
from an appropriate adaptive quadrature method. The grid behavior can be 
explained for the lower band that points are absorbed in the front and can not pass 
through a zero curvature (cf. Baines [2]). Note that the gap in the X-T diagram 
above the upper band is desirable because the solution is nearly constant there. 

The obtained average order is higher than for the previous problems (probably 
because of the tighter tolerance), but unfortunately here the step size behaves very 
erratically. A plot of the step sizes shows a saw-tooth: the step size is increased, say 
4 times in a row, then a convergence error occurs whereupon the step size is 
decreased by a factor of 4. Then the time error is found to be very small, so the step 
size is increased, etc., etc .. It is possible however, that this behavior results from the 
fact that SPGEAR is not tuned to the strongly nonlinear problems arising from PDEs 
discretized on a grid which moves continuously in time. Another explanation, given 
by Miller [15], is that each time a new node runs into the front this results in small 
residual oscillations set up in the nodes just outside the lip of the shock as the nodes 
readjust. The 20 widely spaced nodes placed in the initial grid ahead of the front are 
not really needed in the present problem and it would probably be more efficient to 
use fewer of them. 

4.3.5. Problem V: A gasdynamics problem with a small diffusion term 
The system of equations for this problem are the one-dimensional Euler equations 

of gasdynamics in conservative form supplemented by a small diffusion term 

U1 =-vx+Euxx 

d v 2 
V1 = ---=;--{ (y-l)w - 0.5(y-3)-} + EV.u 

ox u 0<x<l, t>O, (3.5) 

d v 2 . V 
W1 = ---=;--{ (yw - 0.5(y-l)-)-} + EWxx 

ox u u 

where u, v and w are the density, momentum and total energy per unit volume, 
respectively, and y is the ratio of specific heats (y= 1.4 in the case of a perfect gas). 
The initial conditions are linear ramps 

{ 
1, 

u I t=O = linear, 

0.125, 

0, 

w lt=O = { 
2.5, 

linear, 

0.25, 

Osx s0.5-5£ 

0.5-5£ S X S 0.5+5£ 

0.5+5£ sx s 1 

0sxsl 

0 sx s 0.5-5£ 

0.5-5£ S X S 0.5+5£ 

0.5+5£ sx s 1 

The boundary conditions for u and w are of Neumann-type 

Ux lx=O = Wx lx=O = 0, resp., llx Ix=! = Wx Ix=! = O; 

v is subjected to homogeneous Dirichlet boundary conditions. For £ = 0 there is no 
classical solution for this problem, but we are interested in the weak solution, which 
is the limiting solution as do. This is the so-called shocktube problem, cf. Sod [19], 
and the problem and its weak solution are briefly described as follows. Consider a 
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long thin cylindrical tube contammg a gas separated by a thin membrane, and 
assume the gas is at rest on both sides of the membrane, but with different constant 
pressures and densities on each side. At time t = 0, the membrane is broken, for 
example by a laser beam, and the problem is to determine the ensuing motion of the 
gas. The course of the solution is as follows: at t = 0 the membrane in the tube 
bursts, with the consequence that the initial discontinuity breaks up into two discon
tinuities, a contact-discontinuity and a shock wave, which move to the right boun
dary, and a rarefaction wave moving to the left. If the shock wave has reached the 
right boundary, it reflects from the wall. For O < £ « 1 the course of the solution is 
expected to be approximately the same, but now without true discontinuities. In fact 
the contact discontinuity will be rather smeared in comparison with the inviscid 
case. Of course, the shock wave and the rarefaction wave will also be smoothed 
depending on the size of£. 

The integrals resulting from the innerproducts in the right-hand sides of the 
second and third PDE were evaluated by numerical quadrature using Boole's rule. 

Numerical results for Problem V 
In the experiment described below we used a diffusion coefficient £ = 10-3 • We 

have also tried £ = 10-4 . This resulted in a failure of GWMFE because the stepsizes 
taken by the integrator were much too small to reach the endpoint due to conver
gence problems. 

We started on a nonuniform grid with NPTS = 41 with 33 points on the linear 
ramp between [0.5-5£,0.5+5£], 3 points in an interval of length 10£ on both sides of 
the ramp and the boundary points. The time-integration parameters were TOL = 
10-3 and Lit0 = 10-5 and the (standard) penalty parameter values A 2 = 10-6 and 
B2 = 0. The time-integration interval was [0,1). 

The integration statistics at the endpoint were STEPS = 698, JACS = 522, 
CTF = 120, ETF = 53, and ORD = 1 .48. To give some insight where GWMFE 
experienced most trouble: 33 steps were needed to reach t = 0.OI, 60 for t = 0. I and 
only 35 to go from t = O. l to the wall at t = 0.28. The reflection phase, t = 0.28 until 
t = 0.29, took 102 (successful) steps. Until t = 0.41, when the rarefaction wave has 
reached the left boundary and the contact discontinuity has crossed the reflected 
shock, another 102 steps were needed. The last phase from t = 0.41 until 1.0 took 
surprisingly many steps, 399. This can be only explained by the oscillations both in 
the grid movement and in the solution itself, the latter caused by a too coarse grid 
around the reflected shock. In another run we used the true discontinuities for u and 
w as initial conditions and all but the two boundary points uniformly distributed over 
the interval [0.45,0.55). In this case the initial phase gave, as could be expected, 
more difficulties. On a total of 586 steps 170 were used to reach t = 0.1, but from 
t = 0.41 until 1.0 only 134 steps were needed, the solution remained without oscilla
tions and the grid points stayed in the shock band. This difference in behavior 
shows that for this problem GWMFE should be applied with care. For the graphical 
representation of the results we refer to Figs. 4.8 and 4.9. The reference solution in 
Fig. 4.8 was obtained by using 81 grid points and a time tolerance of 10-5 . Acom
parison with the solution for£= 0 shows that the added diffusion induces consider
able smearing, but on the other hand the speed of the shock is approximated satis
factorily. It should be noted however that more carefully chosen diffusion terms 
could be used to decrease the smearing of the contact discontinuity in particular. 
The grid movement is not really optimal. The grid follows the shock wave quite 
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FIGURE 4.8. Problem V. Grid and PDE components at t = .15, .23, .28 (~,+,x) 
for A 2 = lE-6 and B 2 = 0. 

well and also the rarefaction wave can be clearly seen in Fig. 4.8; but there are very 
few points in the region of the contact discontinuity. And on the whole the grid 
movement is not very smooth, although for the last part of the integration this is 
probably due to the inaccurate and oscillating approximation of the solution. 

This is a very hard problem for a nonspecialized code and we therefore consider 
the result as satisfying although GWMFE showed itself more sensitive to the choice 
of the penalty parameters and the initial grid or solution than for the previous 
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problems; small changes in A 2 (say 10-5, with B2 = 0 or 10-11 ) resulted in a failure 
and changes in the initial grid more than once caused strongly oscillating solutions 
at a later time. 

4.4. A COMPARISON WITH A MOVING-FINITE-DIFFERENCE METHOD 

In [8] a numerical comparison was made, a.o., between MFE (i.e., without 
gradient-weighting) and a moving-finite-difference method MFD (see also [5, 20]). 
The methods were tested extensively on three test problems. One of the conclusions 
was that MFD performed favorably with respect to efficiency and robustness com
pared to MFE. In this section we will update that test work with the comparison of 
MFD versus GWMFE on the current set of test problems which has more variety 
(e.g., sharp moving comers) than the previous. For the sake of completeness we will 
first give a short description of the MFD method. 

4.4.1. The moving-finite-difference method 
The MFD method is based on the Lagrangian discretization approach where the 

grid is moved continuously along with the solution with the aim of reducing the 
rapid transitions in space and in time that occur when a moving front passes a 
(fixed) grid point. The PDE (2.1) is transformed to its Lagrangian form 

(4.1) 

where u denotes the total time derivative. This PDE is discretized in space using N 
time-dependent grid points (cf. (2.2)) to obtain 

· (U;+1 - U;-1) · 
U;- -----X;=L;, t>O, 1 ::::;i::::;N. 

(X;+1 -X;_1) 
(4.2) 
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Here, U; represents the semi-discrete approximation to the exact PDE solution u and 
L; is the ( centered) finite-difference replacement for the differential operator L, both 
at the point (x,t) = (X;(t),t). To solve the ODE system (4.2) additional equations are 
required for the time-dependent grid points X;. The moving-grid technique that con
trols the spatial grid-movement in time is due to Dorfi and Drury [6]. For the 
theoretical background and some analytical aspects of the method we refer to [20], 
whereas a description of a MOL interface using this technique can be found in [5]. 
The underlying idea behind this grid movement is the spatial equidistribution of 
some monitor function. The grid equation reads 

- -
n;_1 + 'tn;_1 n; + 'tn; 
-----=---

M;_ 1 M; 
(4.3) 

where n; := n; - K(K+ l)(n;+i - 2n; + n;_1) and n; stands for the, so-called, point con
centration n; := (M;)-1 of the grid. Kand 'tare smoothing parameters; K :2: 0 denotes 
a spatial smoothing parameter and 1: :2: 0 is a time-smoothing parameter. M; is a 
monitor function, viz., the semi-discrete representation of the first derivative solu
tion functional 

The parameter a should regularize the transformation in regions where u is flat; its 
magnitude determines the number of grid points in flat regions. In a sophisticated 
implementation a could be related to the total integral over m (u) with a= 0, but 
until now we just chose a constant related to the average magnitude ( over the time
integration interval) of the first spatial derivative of the solution. 

In the grid equation the parameter K determines the level of clustering of the grid 
points and the arclength monitor M; determines the shape of the X;-distribution. The 
parameter 't prevents the grid movement from adjusting immediately to new values 
of the monitor function M;, therefore trying to avoid temporal oscillations in the grid 
which may cause relatively large errors, when applied to solutions with steep gra
dients. A standard choice for the spatial smoothing parameter is K = 2 and a typical 
choice for the temporal smoothing parameter 't = 10-3 . Equations (4.2) and (4.3) are 
combined to yield a (stiff) system of ODEs. 

4.4.2. MFD versus GWMFE 
In this section we will compare the perfonnance of the MFD method and 

GWMFE. As far as the results have been published before, notably in [8, 20], we 
will refer to those papers for the precise results of MFD and restrict ourselves here 
to some remarks. 

For Problem Ia, the Burgers' equation with the sinusoidal initial condition, both 
methods are comparable (cf. Table 4.1 and the results given in [8]). For Problem III 
the over-all performance of MFD is better. Although GWMFE, with A 2 = 10-6 or 
10-5 and B 2 = 0, gives a good solution, the computation is still quite expensive 
(STEPS :::: 250 and JACS :::: 200) in comparison with the data obtained with the 
MFD-method in [8], viz., STEPS = 105 and JACS = 58. Also for Problem IV 
GWMFE needed much more time steps and Jacobians ( 500 and 250) than the 
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MFD method which gave an accurate solution at the cost of STEPS= 148 and JACS 
= 52 (cf. [20]). 
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FIGURE 4.10. Problem lb. Grid and solution at times t = 0.0, 0.4, 0.8, 
0.9, 2.0 (+,*,O,x,+) MFD. 21 grid points (above) and 41 grid points (below). 

However, MFD has considerable difficulties with Problem lb (the trapezoid initial 
condition). We did two experiments, with 21, resp., 41 grid points. The first was 
roughly twice as expensive as the GWMFE run (STEPS= 447 and JACS = 224) and 
the results were extremely bad ( cf. Fig. 4.10). With 41 grid points MFD performs 
much better (STEPS= 165 and JACS = 115), but the sharp comers at t = 0.4 are still 
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not very well resolved. This can be explained by the fact that MFD applies a grid
point movement based on the equidistribution of the arclength and accordingly puts 
most of the points in the shock ignoring the less steep slope at the left of it. As a 
consequence, the space derivatives in that region, using a total number of 21 grid 
points, cannot be approximated well enough by finite differences resulting in large 
oscillations. 

As could be expected the difference in performance between both methods on 
problem II is similar to that on problem IV. With comparable results MFD (STEPS 
= 158, JACS = 80) is much cheaper than GWMFE. Even more important is the fact 
that there is no difference in performance of MFD if one starts at t = 0.25, indicating 
that MFD has less problems than GWMFE with emerging pulses. 

Undoubtedly, GWMFE will perform better than MFD on problem V because of 
its resemblance to Problem lb, although we did no actual experiments with the MFD 
method on this problem. 

It is obvious from the data above that neither of the two methods is a general pur
pose method. MFD has problems with solutions having discontinuous derivatives 
(sharp comers) (resulting in smearing and/or oscillations), largely different monitor 
values in different parts (oscillations), or near-shocks (small time steps caused by 
(temporary) node-crossing). Adding more grid points improves almost always the 
total performance (including the time stepping), but this makes the method less 
efficient of course. GWMFE has its problems with solutions with emerging struc
tures; it is, in contrast to MFD, dependent on the initial placement of the nodes. 
Moreover, it results in a strongly nonlinear ODE system which is difficult to solve 
and, in the framework of MOL-methods, most ODE solving packages, to our experi
ence, will not efficiently solve the system. 

4.5. CONCLUSIONS 

In this chapter we have tested the gradient-weighted MFE method in 1-D on five 
difficult problems with steep moving fronts from different areas of application. A 
first observation concerns the robustness of the preconditioned GWMFE method 
compared with the MFE method as used in [8]. Our experience has been, for one of 
the five problems at least, that for GWMFE the range of penalty parameters is much 
wider. Miller's rational choice for the values of the penalty parameters A 2 and B 2 

has worked quite well for most problems, but there is some indication that for a 
tighter time tolerance the value of the viscous penalty parameter A 2 should be taken 
relatively larger than for a more coarse time tolerance (cf. Problem IV). The rela
tive error tolerance on node distance (cf. (2.21)) meant an improvement especially 
when the nodes were concentrated in a small band; p = 0.1 appeared to be a good 
choice. We strongly advise to use the block-diagonal preconditioning of the resi
dual. Although we as yet do not precisely understand why, it brings down the condi
tion number of the Jacobian of the nonlinear system with several orders of magni
tude. 

We do not advocate to use GWMFE as a general purpose method for all kinds of 
evolutionary problems. The disadvantage is not only the much more complex non
linear system resulting from the addition of the strongly nonlinear grid equation, but 
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also the fact that GWMFE does not get on with the method-of-lines approach. Com
pared to a fixed grid integration the number of Jacobians needed is much larger, say 
1 Jacobian per 10 steps versus 2 every 3 steps, which means a factor 6. Although 
GWMFE solves Burgers' equation quite satisfactorily and the gasdynamics problem 
(with diffusion) reasonably, it has its difficulties with problems having an emerging 
solution. Our advise is to use GWMFE mainly when the solution is known to have 
steep moving fronts (not true shocks) over the whole time-integration interval. 
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Chapter 5 

A Note on the Grid Movement Induced by MFE 

5.1. INTRODUCTION 

During the last decade, moving-grid methods in one space dimension have 
become popular for solving several kinds of parabolic and hyperbolic Partial Dif
ferential Equations (PDEs) involving fine scale structures such as steep moving 
fronts, emerging steep layers, pulses, shocks, etc .. Moving-grid methods use nonuni
form space grids, and move the grid continuously in the space-time domain while 
the discretization of the PDE and the grid selection procedure are intrinsically cou
pled. Examples are provided by the Moving-Finite-Element (MFE) method of 
Miller [11, 13], and by the Moving-Finite-Difference (MFD) method discussed in 
Verwer et al. [18] (see also references therein). The latter is, in contrast with MFE, 
restricted to problems in one space dimension. 

In two space dimensions, however, application of moving-grid methods is less 
trivial than in ID. For instance, there are many possibilities to treat the one
dimensional boundary and to discretize the spatial domain each having their own 
difficulties for specific PDEs. Therefore, 2D moving-grid methods have mostly 
been applied only to special types of PDEs. The MFE method ([7, 9, 12]), consider
ing its general approach, allows in principle a large class of problems to be dealt 
with. However, because of the intrinsic coupling between the discretization of the 
PDE and the grid selection, the application of MFE, as for any other moving-grid 
method, is not without difficulties. The main difficulty we are referring to is the 
threat of grid distortion. Grid distortion can occur in many different ways due to the 
quite complex solution behaviour of 2D-evolution problems. For example, sharp 
layer regions could develop and propagate through the domain, or rotating pulses 
could emerge and die out again. The purpose of this chapter is to describe the node 
movement induced by MFE for various PDEs and to indicate some problems con
cerning the grid structure that can result from this movement. 
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A standard way of describing moving-grid methods, is the introduction of a 
transformation of the three dependent variables x, y (space), and t (time) into new 
variables ~, T], and 't (usually one chooses t=e). The effect of the transformation 
may be to stretch the coordinates in a steep region, so that the transformed deriva
tives are small compared with the old ones. Of course, many of the difficulties that 
the spatial discretization yields are now shifted to the problem of how to define the 
mapping. After having applied the transformation, we obtain the so-called Lagran
gian form of the PDE. Within this new formulation the time-derivatives of the spa
tial variables x and y appear. It is clear, that before using a numerical scheme to 
discretize the model, one has to define extra equations for these quantities. There are 
various approaches to take care of this. First, one can use a 2D extension of the 
equidistribution principle, see, e.g., Brackbill and Saltzman [6], or Dwyer [10]. This 
idea is either very difficult to work out and to implement, due to the complicated 
structure of the formulas, or, in a simpler form, it can only be applied to a small 
class of models. Second, one can use the method of characteristics. This method 
can, however, only be applied to certain scalar hyperbolic equations or systems hav
ing a common convective velocity. For general systems in 2D the use of this method 
is problematical if possible at all. We would like to focus our attention on the MFE 
method, which defines the transformation in terms of a residual minimization. For 
scalar hyperbolic equations MFE is related to the method of characteristics (see, 
e.g., Baines [2, 3]). This link with the characteristics of the PDE is very useful in 
one dimension. For in that case all 'disturbances', i.e., shocks, pulses, etc., can 
merely follow the characteristics. So, once the user has located the grid points at the 
right positions, the characteristics do the rest. This has the advantage that MFE 
needs very few points to follow such solutions. In two dimensions it may work 
properly as well, for the same reasons (see, e.g., Miller [12], or Carlson and Miller 
[7]). However, in some situations one has to be very careful in applying this 
method. We will illustrate this with some examples. For parabolic equations the 
node movement induced by MFE is less understood. For ID scalar equations one 
can derive asymptotic relations for the node movement and for the node distribution, 
indicating that for parabolic equations MFE strives after an equidistribution of 
second and first order derivatives. An example gives some indication that these 
results possibly also hold in 2D. 

This chapter is divided into four sections. In Section 5.2 we briefly describe MFE 
in two space dimensions, its relation to the method of characteristics for hyperbolic 
equations and results on the grid movement that can be derived for the parabolic 
case. Section 5.3 contains two examples of hyperbolic PDEs with a typical solution 
behaviour. For these two examples it is shown that MFE yields a severely distorted 
grid, although the computed solution remains accurate. However, this distortion can 
lead to a breakdown of the numerical time-stepping procedure. Section 5.3 also con
tains an example of a parabolic equation for which MFE strives after a transforma
tion equidistributing second order derivatives. Finally, Section 5.4 is devoted to 
some conclusions. 



5.2. THE MOVEMENT OF THE NODES IN MFE 
Let us consider the scalar PDE 

du at= .[j__u), (x,y)EQ, t>O, 

with initial and boundary conditions 

u l,=0 = u0(x,y), (x,y)EQ, 

B(u, v'u)lan = g(t), t>O, 
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(2.1) 

where u 0 and g are given functions, and L represents a differential operator involv
ing only spatial derivatives up to second order. In general, the solution u (x,y,t) of 
(2.1) may have a very complex behaviour. Even for a restricted situation ( a scalar 
linear PDE with simple boundary conditions), one can have severely varying u

values in space (x,y) and time t. Some examples in this context are steep moving 
fronts and emerging and rotating pulses. 

A common approach handling these phenomena is to introduce a transformation 
which maps the variables x, y, and t into new variables ~, TJ, and 1:. Such a 
transformation can be defined as, e.g., 

X = X(~, TJ, 1:) 

y = y(~, TJ, 1:) 
t = "[ 

(2.2) 

u (x,y,t) = v(~, TJ, 1:). 

Applied to the left-hand side of equation (2. l) this gives 

du dv dx dy 
at= d'! - Ux d'! - UY"a,r' (2.3) 

and additionally equations for x and y must be defined. The effect of the transfor
mation may be to stretch the coordinates in a steep region in space so that, for exam
ple, us and u11 are small in contrast with ux and uy. This type of transformation is 
strived after by methods which equidistribute first or higher order derivatives of the 
solution. Another effect of the transformation may be to decrease the dv /d'! as is 
done by the method of characteristics and by the finite difference method of Petzold 
([15], in lD). Of course, when using a transformation, most difficulties are shifted 
to the problem of how to define and carry out the mapping. The Moving-Finite
Element (MFE) method can, in some cases, also be shown to underly a transforma
tion of variables (Baines [3]). Below we will discuss this method and in particular 
the node movement induced. 

5.2.1. Description of MFE 
MFE restricts v, x, and y to U, X, and Y from a finite-dimensional subspace. The 

MFE-approximations are piecewise linear on a, in our case hexagonally connected, 
triangularization of Q 

v::: U = I; U/1:) a/~, TJ), 
jEl 
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x::::: X = :EX/t) a/~, T]), (2.4) 
jEl 

y::::: Y = :E Y/t:) a/~, Tl), 
jEJ 

where J is the set of indices of the grid points and aj are the standard piecewise 
linear hat functions. Substituted in the PDE (2.1), (2.3), this approximation gives in 
general a non-zero residual R, defined by 

R ( au dX dY) = au - u dX - u dY - .L(U 
-, ' -, , -, -, X -, V -, ) ' u't: u't: u't: u't: u't: · u't: 

A least-squares minimization is performed on R with respect 
dU;fd't:, dX;fd't:, and dY;ld't:, yielding a system of implicit ODEs 

< R, a; > =0 

< R, - Uxa; > = 0 

< R, - Uya; > = O , Vi El, 

(2.5) 

to the unknowns 

(2.6) 

where<,> is the usual Lrinnerproduct on Q (for an elaboration of (2.6), see [3]). 
This ODE-system must be integrated numerically to obtain the required fully discre
tized solution. It is known, that this system may become very stiff. For integration in 
time, therefore, a suitable stiff ODE-solver must be used to cover all possibilities. 

In practical applications, regularization terms (penalty functions) will be added 
before the minimiz_atic_m proc<:dure is carried out. These penalties prevent the 
parametrization of V, X, and Y becoming degenerate (see [9]). Further, they pro
duce forces on the grid movement to prevent the triangles from getting too thin or 
from losing their orientation. In our experiments we use the penalty functions as 
defined in [9], but in this section we will not discuss their influence on the grid 
movement, since the penalties are not the 'driving forces' behind the movement. 

Although the Gradient Weighted version of MFE (see, e.g., [7, 20]) is more robust 
than MFE for steep solutions, the phenomena observed below will be essentially the 
same for GWMFE. 

5.2.2. Relation of MFE with the method of characteristics 
Only a few theoretical properties of the resulting ODE system (2.6) are known. 

One important property is the relation of MFE, in both ID and 2D, with the method 
of characteristics for the scalar hyperbolic PDE with 

du du 
.L(u) = - ~1(u,x,y,t) dx - P2(u,x,y,t)ay. (2.7) 

It is easy to derive that for ~1 and P2 linear in u, x, y, while setting aside boundary 
effects, the ODE system (2.6) is equivalent to 

X; = P1 ( U;, X;, Y;, t), 

Y; = ~2(U;, X;, Y;, t), (2.8) 

V; = 0, iEJ. 
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This simple formulation holds for nonlinear P1 and P2 in lD as well (see, e.g., 
Baines [2, 3]). So, the ODE system is identical to the discretized system of charac
teristic ODEs for the PDE (2.1). In the case that 

du du 
L(u) = - Pi- - P2- + £~u, (2.9) 

dX dy 
. . 

<?ne can expect, that for small£ (and assuming that the parametrization of U, X, and 
Y is not degenerate), MFE results in a grid movement more or less the same as (2.8). 
(In one dimension one can even quantify the perturbation of the characteristics pro
duced by the diffusion term (see below).) 

In lD this relation with the characteristics is very useful. For, in that case, shocks 
and pulses have only one degree of freedom to move: they propagate along the 
characteristic curves of the PDE. In many cases in two space dimensions, this 
characteristic behaviour is also very beneficial (cf. [8, 12]). However, there are 
some situations in 2D for which this behaviour will give problems. The main pur
pose of this note is to illustrate this. We will discuss some of these problems in Sec
tion 5.3. 

5.2.3. Node movement for parabolic equations 
Theoretically, little is known about the grid movement in 2D induced by MFE 

when applied to parabolic PDEs. In one space dimension, however, it is possible to 
get some insight by examining specific PDEs. Thrasher and Sepehmoori [16] have 
derived expressions for the so-called asymptotic node velocity and density for the 
transport equation in lD. These expressions are obtained by letting the number of 
grid points in an arbitrary subinterval tend to infinity using the concept of asymp
totic grading functions (see below). Here, we will analyze in an analogous way the 
node distribution in an asymptotic sense for the scalar PDE 

dU d2u at=µ dx2 + F(x,u,t), (2.10) 

where F can also contain spatial derivatives of u. 
Let us first write down the MFE-equations (2.6) in one space dimension (without 

penalty terms) for the PDE (2.10). These are 
. . 

L < a;, aj > uj + < a;, - Uxaj > xj = < a;, µuxx+F>, 
j 

. . 

(2.lla) 

I,<-Uxa;, aj > Uj +<-Uxa;,-Uxaj >Xj =<-Uxa;, µuxx+F>, (2.llb) 
j 

i=l, · · · ,N, 

where N denotes the total number of moving-grid points. Before continuing, we 
must make some assumptions regarding smoothness of the variables and the rate of 
convergence. For more details we refer to [16]. 

Let j'be defined by 

d.'.t = dj' + d.'.t du :=F 
dx dx du dx · 

(2.12) 
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Let the spatial domain be defined as [xL, xR] and let [A, B] be an arbitrary subinter
val, with time-dependent endpoints A (t) and B (t), not including any exceptional 
points, i.e., points which have a zero curvature or a zero asymptotic node density. 
Define j=j(N) and k=k(N) so that Xj-I is the first node and Xk+I the last node, 
respectively, in [A, B ]. Define h to be max j s;; s:k+I {h;} and h; = X; - X;_1. We then 
need the following assumptions: 
(I) convergence and smoothness of the transformation in (2.2) 

I) x (~, 't) is a continuous asymptotic grading function, i.e., 

limX;(Nl('t) = limx(i(N)/N, 't). 
N➔= N➔= 

2) x has continuous third derivatives (except possibly at a finite number of excep
tional points). 

(II) smoothness of u and F 
the function 'Yin (2.12) and the exact solution u (x,t) have continuous third 
derivatives. 

(III) rate of convergence 

X; =x(i/N) + 0(1/N), for j-I sis k+l 

X; =x,(i/N) + O(l/N), for j-1 sis k+l 

X; -X;_1 = x(i/N) - x((i-1)/N) + 0 (l/N2 ), for j sis k+ l 

X; - X;_1 = x,(i/N) - x,((i-I)IN) + 0 (l/N2), for j sis k+ I 

U; = u(X;) + 0(1/N), for j-1 sis k+l 
. . 
U; = u1(X;) + ux(X;) X; + 0 (1/N), for j-1 sis k+ 1. 

U; - U;_ 1 = u (X;)- u(X;_1) + O(l/N2) for j sis k+l 
. . . . ') 

U; - U;-1 = u1(X;) - u1(X;-!) + Ux(X;)X; - Ux(X;-1 )X;-1 + 0 (1/N-) 

for j sis k+l 

From these assumptions the following relations can be derived 

i) h; =xs(ilN)IN + 0(1/N2 ) = 0(1/N) 

ii) m; := (U; - U;_ 1)lh; = ux(X;) + 0 (h) = ux(X;_ 1) + 0 (h) 

iii) 

iv) 

v) 

vi) 

. + . . . - . . 
U; := U; -m;+ 1X; = u1(X;) + O(h), U; := U; - m;X; = u/X;) + O(h) 

Ill;= Un(X;) + O(h) 

X; is bounded 

0 (1/N) and O (h) are interchangeable. 

Working out the innerproducts and applying Taylor expansions of 'Y around U; 
and X;, equations (2.11 a) and (2.1 1 b) can be combined to obtain 

. - . + . - . + 
h;+1 (U;+I + 2U;) - h;(2U; + U;-1) -

h;+i -h; m;+1h;+i -m;h; m;+iht+i +m;h7 
6{---5'x +------:[,, +------:fxu + (2.13) 

2 ' 2 ' 3 ' 
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h 2 h2 2 h2 2h2 i+t + ; m;+t i+t +m; ; 3 
6 'fxx, + 6 'fuu,} = O(h ). 

The next step is summation of equation (2.13) on the interval [A, B] from i = j to k. 
This yields 

. - . + . - . + 
hk+l(Uk+I +2Uk)-hj(2Uj +Uj-1)-

3{hk+1!fx, -hj!fxi +mk+lhk+t'fu, -mjhj'fui} + (2.14) 

k • _ • + h; m;h; 
. ~ [h;(-U; + U;-1 )-6{ - 2(!fx, - !fx,_,)- -2-('fu, - 'fu,_,) + 
!=J+I 

m;ht hT mtht 
-3-('fxu, + !fxu,_,) + 6 ('fxx, + 'fxx,_,) + - 6-('fuu, + 'fuu,_,)}] = O(h 2). 

Using assumption II, the relations ii), iii), iv), and v), and substituting the PDE 
(2.10) we arrive at a discrete formulation of the distribution of the nodes 

3µ[hk+tUxx(Xk)- hjuxx(Xj)] -

k • 

L {hf[µ Uxxx(X;) + Uxx(X;)(X; + 'fu)]} = O(h 2 ). 

i=j+I 

Applying i), multj.plying by N, and letting N➔00 results in the continuous form 

Uxx - J µuxxx + Uxx[X + 'fu] [ lB B • 

3µ ~ - ~ dx. 
':Ix A A ':Ix 

Finally, differentiating results in the asymptotic node movement 

. Uxxx ~xx 
X = - 'fu + µ (2--3-). 

Uxx ~x 

(2.15) 

(2.16) 

(2.17) 

Note, that relation (2.17) is valid only in intervals without points with a zero 
asymptotic node density (~x = 0) or with zero curvature (uxx = 0). However, Baines 
[3] stated that grid points cannot pass a point with zero curvature with the conse
quence that grid points are confined to regions between two zero-curvature points 
(the so-called anti-cluster property of singular points). In fact, the grid points are 
even repulsed from the singular points. 

If µ -::/:- 0, then equation (2.17) can be integrated to obtain the asymptotic node dis
tribution 

~x = K(t) I Uxx I 213exp(-1-J(-:fu -.x)dx). 
3µ 

(2.18) 

For µ=0 and F=F(u,t) equation (2.17) means that a grid point will propagate 
along the characteristic .x = -:Fu and is not dependent on the grid distribution. This is 
the situation as described in Section 5.2.2. For µ-::/:- 0 one can easily derive asymp
totic node distributions for restricted choices of F. For instance, the node distribu
tion of the so-called shifting pulse, which we used as an example in [20], once every 
point travels with the velocity of the pulse, is given by 
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~x = K(t) I Uxx I 213 (2.19) 

which can be derived from (2.18) provided that x =x(t) and F = F(x,t). So once 
every point travels with the velocity of the pulse, the nodes should be distributed by 
MFE according to (2.19) and the plots in [20] show indeed that MFE approximately 
equidistributes some power of the second derivative of the solution. 

For convection-diffusion equations like (2.9), one can derive from (2.18), assum
ing that x = 0, u, = 0 and F = F (u,t), a steady-state distribution 

(2.20) 

indicating that in this case a combination of first and second order derivatives is 
equidistributed. 

5.3. NUMERICAL EXAMPLES 

In our numerical expeiiments we have solved the implicit ODE system (2.6) with 
the (implicit) BDF integrator SPGEAR of the SPRINT package [4] in the usual way. 
This means, among others, that the resulting algebraic system is solved by a 
modified Newton process. 

5.3.1. Example I ('Anisotropy') 
Our first example is an anisotropic wave front (see Whitham [19, p.254]). In 

short, anisotropy means that a difference exists between the directions of the charac
teristic curves of the PDE (the movement of the 'fluid' -particles) and the movement 
of the wavefront. This phenomenon can not occur in one space dimension. In 2D, 
anisotropy may give rise to a distorted MFE grid eventually leading to a breakdown 
of the numerical time-stepping procedure. 

Probably the best way to illustrate this effect is by giving a PDE-example. Con
sider, for this purpose, 

au au au at= -P, ax -Pza-; +£~U, (3.1) 

on the domain Q = (0, I )x(O, I), with 

P1 =u, 

3 P2 = c2 - u), 

U I 1~0 = Ucxact I 1~, 

u I an= Uexact I an, 

and 

3 1 I 

-4x+4y-t 
I+exp ------"--

Uexact = 4 - 4---[~---~l . 
32£ 

The exact solution of this model problem (a scalar version of the system in [5, 
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p.89]) describes a wavefront with a steep transition area of thickness O (£), that 
moves, under an angle of 135° with the positive x-axis, from the middle of Q to the 
upper left comer. For EJ,0 the transition area becomes steeper, and for £=0 a pure 
hyperbolic situation is created with a discontinuous moving shock. 

(2/3,1) 

(0,1/3) 

(1/6,0) 

FIGURE 5.1. Node movement by characteristics from t = 0 tot = I. 

Formulation (2.8) reveals that the method of characteristics, and, to a great extent 
MFE as well, at first will send the grid points to the upper right comer of the 
domain. This can be seen very easily by writing out the equations (2.8) for this case 
(£ = 0): 

for y >x + t (3.2.a) 
. 3 

X;=U;(t):::'. 4 , 
· 3 3 
Y; = 2 - U;(t):::; 4 , 

and 

for y <x + t (3.2.b) 
. I 

X;=U;(t):::'. 2 , 
. 3 
Y; = 2 - U;(t) :::; 1. 

The characteristic movement from t = 0 until t = 1 is pictured in Figure 5 .1. This 
grid movement will lead to a coarse grid in the lower left comer of Q, since all grid 
points are moved to the upper right comer. Further, at later points in time, a 



110 

FIGURE 5.2. MFE grid for Example I at t = 0.5 and 1.0. 
Dividing each quadrilateral by the diagonal from upper left to lower right 

gives the MFE triangles. 

congestion of grid points near the upper side of the domain Q will arise, due to the 
boundary effects. Since, in that area, the relative distance between the nodes will 
become very· small, the penalty functions should keep the points from moving into 
each other and thus the ease with which the ODE system (2.6) can be solved (if at 
all), will become very dependent upon the correct choice of the penalty functions. It 
could easily result in a drastic drop of performance only caused by inadmissible tri
angle orientations during the Newton process. It must be noted, however, that for 
Ej,O MFE will resemble the method of characteristics more and more, resulting in an 
almost exact solution in each grid point. In Figure 5.2 a boundary layer of points is 
shown, obtained by applying MFE to problem (3.1) with £ = 5. 10-3 and a uniform 
starting grid of I lxl I moving grid points. At I ::: I .02 the computational process 
breaks down because of the unacceptable triangle orientations. This could be 
prevented by taking larger penalty values resulting in a less accurate solution. 

It is obvious that for these situations a procedure to delete and create nodes could 
be added to MFE to prevent a congestion of grid points and to keep the finite ele
ment approximation of the solution accurate enough. Also for this special case, a 
solution to eliminate the anisotropy in the PDE could be found. One could think of 
applying a transfonnation to the PDE that describes a rotation of the variables over 
an angle qi = 135°. In the new variables the characteristic curves and the direction of 
the normal to the wave front would coincide (the anisotropy would then cease to 
exist). In general situations, however, it is, a priori, unclear how to choose qi, espe
cially qi could even be time-dependent. So far, it has not been possible to reformu
late MFE in a proper way to generate such a transformation automatically. 
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5.3.2. Example II ( 'Grid rotation') 
Our second example, copied from [14), is concerned with the fact that in 2D an 

unwanted rotation of the grid can occur. To illustrate this, consider 

.E.!±_ _ _ A du _A!!!!_ 
dt - 1-'l dx 1-'2 dy' 

on the domain Q = (-0.5, 1.5)x(-0.5, 1.5), with 
I P1 = +n(y- 2), 

I P2 = - n(x - 2), 

and 

u Ian =0. 

(3.3) 

Although the boundary condition is mathematically not consistent with the initial 
condition, it is expected that this will give no problems in numerical computations, 
since the difference is less than the machine precision. 

The exact solution describes a pulse that moves around in circles with a constant 
speed. During this movement the shape of the pulse does not change. The charac-

1 I 
teristic curves are circles with centre ( 2, 2), which can be derived immediately 

from (2.8) and (3.3): 

U; = 0 and 
I I 

(X; - 2 )2 + (Y; - 2 )2 = rt, 0 < r; < 1, 

with r; = 0, Vi. 
In contrast with the previous example, the movement of the grid points might be 

called ideal. They follow the steep parts of the solution in an optimal way and MFE 
benefits by this property, resulting in a good approximation. However, since we 
fixed the comer points of the square, the grid will exhibit an unwanted spiral struc
ture. This occurs when the pulse has moved down to the lower region of Q. A 
consequence of this effect is the so-called line tangling, a 2D version of node cross
ing in ID. The numerical procedure will break down whenever this occurs, again 
because of inadmissible triangle orientations during the Newton process. In this 
case, however, larger penalty values can only delay but not prevent the breakdown. 
We show this spiral effect in Figure 5.3, where we pictured the grids, produced by 
MFE, at various time values. The starting grid consists again of 1 lxl 1 points of 
which 5x5 are distributed uniformly around the cone in (0.25,0.75)x(0.5,l.0). At 
t :::: 1.52 the computation breaks down. Again the MFE approximation in each grid 
point is rather accurate and the performance of MFE in the time stepping process is 
satisfying until the spiral structure leads to line tangling. 

Note that in this case intermediate grid rezoning or annihilation and creation of 
points, based only on the accuracy of the MFE approximation, would be no cure for 
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r O'Ml.-0~) 

FIGURE 5.3. MFE grid for Example JI at t = 0.25, 0.5, 1.0 and 1.5. 
Dividing each quadrilateral by the diagonal from upper left to lower right 

gives the MFE triangles. 

the grid distribution problem. Of course, there are some other means to check this 
effect, again for this special case. First, one could allow the grid points on the boun
dary to move with the internal points (i.e., 'move around the corner'). For this prob
lem, for instance, it is easy to replace Q initially by a circular domain and allow free 
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movement of the boundary nodes. The grid then produces no longer spirals, but is 
congruent with the initial grid and rotated with the characteristic velocity, and the 
problem is solved without any trouble. Another trick to avoid that the numerical pro
cedure breaks down, is described by Mueller and Carey [14]. They add an extra 
penalty term to the method, which brings on an anti-rotation to the grid movement. 
This regularization term, however, has only a limited working: with any choice of 
the constant, appearing in the penalty, there remains some point of time for which 
the line tangling takes place. Only, with larger penalty values the method would col
lapse at a later moment in the time-integration. But, larger penalty values also result 
in a worse resolution of the pulse, yielding larger errors during the computation. 

5.3.3. Example III ('Parabolic pulse') 
In the two previous examples we encountered difficulties in applying MFE due to 

its strong relation with the method of characteristics for hyperbolic equations. Next, 
we give an example of a PDE with an exact solution very similar to that of model 
(3.3), but now the PDE has a parabolic character. It has already been treated by 
several authors ([ 1, 17]), and is defined by 

au a,= flu+ f (x,y,t), (3.4) 

on the domain Q = (-0.5, 1.5)x(-0.5, 1.5), with 

U I t=O = Uexact I 1~0, 

u I an = Uexact I an, 

The source f (x,y,t) is chosen so that the exact solution is 

Uexact = exp(-80[(x-r (t))2 + (y-s (t))2 ]), 

where 

r (t) = (2+sin (1tt))/4, s (t) = (2+cos (1tt))/4. 

This solution is a rotating pulse and thus very similar to the solution of Example II. 
However, in contrast with the hyperbolic Example II, the grid points do not move 
according to a principle like (2.8). In particular, MFE, applied to (3.4), shows no 
spiral effect. The points are not stuck to their position on the pulse and the grid 
structure remains more or less the same during the time-stepping. This is illustrated 
in Figure 5.4, where we pictured the grid at several points in time. Although the 
error of the approximation is higher than in Example II (this can be repaired by 
increasing the number of points), the procedure does not break down because of grid 
tangling. On the contrary, once the grid has been forced around the cone, the time 
stepping process is satisfying, although the penalty choice is also of influence in this 
case. 

Finally, noteworthy is that the concentration of triangles in regions with large 
second order derivatives indicates a similar equidistribution behaviour as stated in 
Section 5.2.3 for one dimension. 
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FIGURE 5.4. MFE grid for Example III at t = 0.25, 0.5, 1.0 and 2.0. 
Dividing each quadrilateral by the diagonal from upper left to lower right 

gives the MFE triangles. 
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5.4. CONCLUSIONS 
For hyperbolic or strongly convection dominated convection-diffusion equations, 

the grid points are moved by MFE in a way similar to the method of characteristics. 
This results in a very good approximation of the solution but sometimes also in dis
torted grids, because the grid movement is independent of the grid distribution. Such 
grids then eventually cause the numerical time-stepping to fail. A procedure to 
delete and create points could in some cases be a remedy, but will on the other hand 
complicate the method considerably. 

For scalar parabolic equations one can show that in ID the MFE movement of a 
grid point does depend on the grid distribution. MFE approximates a transformation 
striving after equidistribution of derivatives of the solution. An example showed 
that possibly this remains valid also in 2D. 
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Chapter 6 

Application of a Moving-Grid Method to a Class of 1 D 
Brine Transport Problems in Porous Media 

6.1. INTRODUCTION 

The subject of this chapter originates from the problem of disposal of hazardous 
waste, e.g., high-level radioactive waste, in salt formations. The most probable 
mechanism for release of these wastes to the biosphere is by transport via ground
water. Existing standard mathematical models for the study of groundwater flow and 
brine transport assume that the salt concentration is less than or equal to seawater 
concentration. This, however, is not true for flows in the vicinity of rock salt forma
tions. In the vicinity of these formations, e.g., salt domes, the salt concentration may 
become very large and in fact to an extent that the groundwater flow is really 
influenced by the salt concentration. Recent theoretical and experimental hydrologi
cal studies indicate that for such high-concentration situations the involved basic 
equations of flow and transport need to be modified [9, 10]. This involves a 
significant effort in numerical modelling since the partial differential equations 
(PDEs) which show up cannot be solved by analytical means. The contents of the 
current chapter has its origin in part of these numerical modelling studies. 

We discuss the application of a numerical moving-grid method, originally 
developed for general time-dependent PDEs in one space dimension, to a specific 
class of nonlinear, brine transport problems borrowed from [7]. Our purpose is two
fold. Firstly, while focusing on the application, we wish to show that this numerical 
method is a valuable tool for modelling nonlinear (brine) transport problems in one
space dimension, specifically so for problems having solutions with rapid transi
tions, such as a solute front transported in the soil or a sharp fresh-salt water inter
face. Secondly, while now focusing on the numerical analysis aspects, we wish to 
show that for the class of transport problems chosen, the grid-movement approach is 
successful and may provide a notable improvement compared to the more traditional 
approach of time-stepping on a fixed spatial grid. 
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The numerical method is based on the method-of-lines (MOL) approach for solv
ing time-dependent PDEs (see, e.g., Ch. 10 in [5], and [11]). The method is of the 
finite-difference type and implicit, and thus applicable to wide classes of one-space 
dimensional PDE systems. In addition, the main feature of the method is that for 
evolving time it automatically refines the spatial grid in regions with large spatial 
transitions. Since it is a Lagrangian type method, in many cases of practical interest 
the grid movement also softens the solution behaviour in time, so that larger time 
steps can be taken than on a fixed spatial grid. The actual moving-grid algorithm 
underlies the principle of spatial equidistribution and is provided with appropriate 
grid regularization procedures to cater for smooth grid trajectories. The principal 
ideas for this regularization emanate from [6] and a further comprehensive discus
sion of the complete moving-grid algorithm can be found in [13] (see also [8] and 
the references therein). 

An advantage of the moving-grid method is that it can be implemented in most of 
the MOL software packages based on sophisticated implicit stiff ODE/DAE solvers. 
We mention the BDF solvers developed by Gear, Byrne, Hindmarsh, Petzold and 
others (see, e.g., [4]). In the brine transport problem application we have used the 
FORTRAN package SPRINT [l]. SPRINT is a package developed for solving gen
eral algebraic, ordinary and partial differential equations. Its core is formed by 
implicit stiff ODE/DAE solvers (of BDF type). In [3] SPRINT has been provided 
with a software interface based on the moving-grid method here considered. This 
moving-grid interface (MGI), being an extension of the fixed-grid interface based on 
[12], is a most convenient tool for researchers who wish to concentrate on modelling 
their physics, since it automatically carries out the spatial discretization, thus reliev
ing them from numerical choices to be made and saving programming time. The use 
of MGI merely requires that the mathematical problem be formulated in terms of 
FORTRAN statements. Consequently, both the spatial discretization and the tem
poral integration can then be left to the package and the user only has to set to some 
numerical control parameters, like a local tolerance parameter for the numerical 
integration in time, the number of points for the spatial discretization, and some 
parameters controlling the grid movement. In the experiments reported here we have 
used the MGI from [3]. 

Section 6.2 is devoted to the moving-grid method. An outline is given on impor
tant properties and principles of this method. The class of fluid-flow/salt-transport 
problems we focus on is discussed in Section 6.3. The physical properties involved 
here are advection-dispersion and in case of dominant advection solutions with rapid 
spatial and temporal transitions arise. In Section 6.4 we present results of numerical 
tests, emphasizing the occurrence of the rapid transitions and the use of the 
moving-grid method. Section 6.5 is devoted to concluding remarks. 
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6.2. THE MOVING-GRID ALGORITHM 

6.2.1. The moving-grid algorithm 
We will present the algorithm along the lines of the numerical method-of-lines 

approach for solving time-dependent PDEs. Consider an abstract Cauchy problem 
for a system of PDEs in one space dimension, 

du at = .L(u), XL < X < XR, f > 0, (2.1) 

where u = u (x,t) and Lis a spatial operator of at most order 2. We do not discuss 
boundary conditions here, since these are dealt with in the usual way. It is assumed 
that the solution u has (a sufficient number of) finite temporal and spatial derivatives 
and these are allowed to be very large. We thus focus on problems possessing solu
tions u with very large spatial and temporal variations, but do not consider problems 
with genuine discontinuous solutions. 

The discretization of the PDE is carried out in two stages. In the first stage .L(u) is 
discretized on a selected space mesh, which converts (2.1) into a Cauchy problem 
for an ODE system. The second stage then deals with the numerical integration in 
time of this semi-discrete system. Let us discuss the first stage, which here takes 
place in a moving reference frame. First we choose N time-dependent grid points 
X;(t), 1 s i s N, defining the space grid 

X: xL = X 0 < ... <X;(t) < X;+1(t) < ... <XN+I = xR, t ~ 0. (2.2) 

As yet the trajectories X;(t) are unknown, but they are supposed to be (sufficiently 
often) differentiable. Next, along each trajectory x (t) = X;(t) we introduce the total 
derivative 

(2.3) 

and spatially discretize the space operators d/dx and L so as to obtain the Lagran
gian semi-discrete system 

. . 
U; = X;[(U;+i -U;_1)/(X;+I -X;_1)] + L;, t>0, 1 sisN. (2.4) 

Here, U; and L; represent the semi-discrete approximation to their exact counter
parts u and Lat the point (x,t) = (X;(t),t). The finite-difference replacement for Lis, 
in principle, still free to choose. We discuss this in Section 6.2.5. Note that we use 
the standard, central finite-difference approximation for u,v Also note that the boun
dary values U O and UN+ 1 are to be defined from the semi-discretization of the physi
cal boundary conditions. The internal grid points X; are still free to choose. The pur
pose is to let them move automatically such that the grid X becomes fine in regions 
of high spatial activity and coarse in regions where the spatial variation is low. One 
way to accomplish this is to apply equidistribution. For this purpose we introduce 
the point-concentration values [6] 

n; = (AK;)-1, AK; = X;+i -X;, 0 s i s N, (2.5) 

and the equidistribution equation 
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l :,:; i :,:; N, (2.6) 

where M; ~ {a> 0 represents a so-called monitor value that reflects the variation in 
space. The parameter a> 0 serves to ensure that M; remains positive. Trivially, n; is 
proportional with M;. Thus the equidistribution idea assumes that if some measure 
of the spatial error is available, here taken to be represented by M;, then a good 
choice for the grid X would be one for which the error is equidistributed over X. 

In applications the monitor M; is usually taken to be a semi-discrete replacement 
of a solution functional m (u) containing one or more spatial derivatives (note that 
the variables U; and X; are still time continuous). Lest we miss the obvious, the 
choice of monitor is important because it plays a decisive role in the actual local 
grid refinement. Following [2, 8, 13], in the present implicit MOL approach we 
advocate the first derivative monitor 

] NPDE 

M; = (a+ NPDE I: P_;(AU/)2(MS2f', AU/= u/+1 - uf, (2.7) 
J=l 

where NPDE denotes the number of PDEs in (2.1) and U/ is the j-th component of 
the vector variable U;. Note that, at a given point of time, (2.7) is a semi-discrete 
replacement of m (u) = (a + lluxll2f2 , where 11- II is the involved weighted Euclidean 
norm. With a= 1 we have the well-known arc-length monitor which places grid 
points along uniform arc-length intervals. We use a as a parameter which can even
tually be used for tuning purposes. In fact, the main purpose of this tuning parameter 
is to keep the monitor values positive, saying that a small value of a suffices. 
Clearly, a should not be taken too 'large' compared to the maximum of lluxll2 , since 
this would result in a uniform grid, approximately. The weighting parameters P; in 
(2.7) serve to make it possible to let certain components dominate the grid move
ment. This may be desirable in case of a badly scaled problem, for example. The 
actual choice of the monitor parameters a, P1, ••• , PNPDE will influence the out
come of a numerical simulation and, therefore, their optimal choice is problem 
dependent. On the other hand, our experience is that with the monitor (2.7) the 
method is quite robust and a bad choice merely effects the resulting accuracy. This 
means that given a well described problem class, like the brine transport problems, a 
close-to-optimal choice is normally easy to determine. 

6.2.2. Grid smoothing 
The Cauchy ODE problem resulting from the first MOL stage thus reads 

. . 
U; = X;[( U;+i - U;_ 1 )/(X;+i - X;_1 )] + L;, t>O, 1 :,:; i:,:; N, 

n;_ 1IM;_ 1 = n;IM;, t > 0, I:,:; i:,:; N. 

(2.8a) 

(2.8b) 

After prescribing initial data for U; and X;, 1 :,:; i :,:; N, and the boundary values U 0 

and U N+I from a semi-discretization of the physical boundary conditions, system 
(2.8) can be numerically integrated in time so as to obtain the final fully discrete 
solution on the moving grid X. However, since (2.8b) prescribes X in an implicit 
way in terms of the unknowns U;, there is little control over the grid movement. For 
example, it may happen that the grid distance M; varies extremely rapidly over X or 
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that for evolving time the trajectories X;(t) tend to oscillate. A too large variation in 
MC; may be detrimental to spatial accuracy and temporal grid oscillations do hinder 
the numerical time-stepping since the grid trajectories are computed automatically 
by numerical integration. Following [6,8,13], we therefore employ two so-called 
grid-smoothing procedures, one for generating a spatially smooth grid and the other 
for avoiding temporal grid oscillations. This involves a modification of the grid
equation system (2.8b). 

The modified grid-equation system is given by 

- d- - d-
(n;_1 + 't dt n;_i)/M;_1 = (n; + 't dt n;)IM;, t>O, 1 ::::; i :s; N, (2.9) 

where ii;= n; - K(K+l)(n;+J - 2n; + n;_1) with n_1 = n 0, nN+I = nN. We note in 
passing that in the actual implementation n; is replaced by (MS1 and n; by 
- t;X/(M; )2. The modification thus results in a 5-point coupled, time-dependent 
grid-equation system. A consequence of the grid-smoothing is that, in addition to the 
monitor parameters a, P1, ••• , PNPDE, two new grid parameters have been intro
duced, namely Kand 't. 

The parameter K > 0 is connected with the spatial grid-smoothing. Any grid X 
solving (2.9) satisfies 

K n;-1 K+l --<--<-
K+l - n; - K ' 

(2.10) 

showing that we have control over the variation in M;. Through K we can control 
grid clustering and grid expansion. Loosely speaking, the monitor function still 
determines the shape of X and K the level of clustering. Note that the extreme value 
K = 00 yields a uniform grid. Of importance is to emphasize that for a given number 
of points N, and any given distribution of monitor function values M; , K determines 
the minimal and maximal interval lengths (see, e.g., [13]). In actual application the 
minimum should of course be related to the expected small scale features in the 
sought solution. In our application we choose K = 2. With this value of K we not 
only obtain a rather modestly graded space grid, but also keep a sufficient number of 
points within the actual transitions of du/cJx. 

The parameter 't ~ 0 is connected with the temporal grid-smoothing and serves 
to act as a delay factor for the grid movement. More precisely, the introduction of 
the temporal derivative of the grid X forces the grid to adjust over a time interval of 
length 't from old to new monitor values, which provides a tool for suppressing grid 
oscillations and hence to obtain a smoother progression of X (t). However, choosing 
't too large will result in a grid X that lags too far behind any moving steep spatial 
transition. In fact, it can be shown that for 't➔00 a nonmoving grid results. In situa
tions where temporal grid-smoothing is really advisable, one should therefore 
choose 't not too large. For practical purposes a good choice is one which is close to 
the minimal temporal stepsize taken in the numerical integration, so that the 
influence of past monitor values is felt only over one or a few time steps. 
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6.2.3. Integration in time 
We now have semi-discretized (2.1) on a moving grid. The semi-discrete formu

lation consists of the combined equations (2.8a) and (2.9), where ni = (MS1 and 
iii= - /'JX/(Mi)2 are used to convert the dependence on the point concentration 
values into a 'natural' dependence on the grid points Xi. Recall that the boundary 
values U O and UN+ 1 are to be defined from the spatial discretization of physical 
boundary conditions. The equations can be written in the linearly implicit ODE sys
tem form 

Yl(Y)Y = G (Y), t > 0, Y(0) given, (2.11) 

where Y assumes the natural ordering of unknowns U{, X;, i.e., Y = 
( · · ·, U], · · ·, uf PDE, Xi,··-l- Form (2.11) is a standard format for various well
known stiff ODE/DAE solvers. Note that without temporal grid-smoothing (2.9) is 
of purely algebraic form, so that (2.11) then becomes a DAE system. The numerical 
results in this chapter have been obtained with the LSODl-based BDF solver of the 
SPRINT package. A similar solver is DASSL [4] which we have also applied else
where [13]. It is of interest to note that in our moving-grid application these solvers 
are employed in essentially the same way as in the conventional nonrnoving MOL 
approach. 

6.2.4. A moving-grid interface 
As the integration in time is done automatically by the stiff integrator, it makes 

sense to also automize the spatial discretization of the PDE operator with its boun
dary conditions. This is particularly attractive for researchers who wish to concen
trate on modelling their physics, since it saves programming time and relieves them 
from numerical choices to be made. Such a FORTRAN interface for use with the 
moving-grid method has been developed in [3]. We have also used this interface, 
called MGI, in the tests reported in Section 6.4. 

MGI is an extension of the fixed-grid interface from [12] which is available in the 
SPRINT package and covers the following PDE system: 

NPDE Ouk a 
~ Cjk(x,t,u,ux)-:;;- = x-m---=,-(xm Rj(x,t,u,ux)) - Qj(x,t,u,ux), 
k=l at ax 

(2.12) 

Index j runs from 1 to NPDE, uk is the k-th component of the vector-valued func
tion u, and Rj, Qj can be thought of as flux and source or sink terms, respectively. 
The parameter m serves to cover polar co-ordinates (m = l or 2). In our present 
application we work in Cartesian co-ordinates and thus m = 0. The coefficient func
tions Cjk, Rj, Qj are supposed to be at least continuous. The boundary conditions 
should fit in the MGI master form 

(2.13) 

and the standard initial condition uk(x, 0) = u~ is supposed. The underlying spatial 
discretization of MGI is briefly discussed in Section 6.2.5. For a more detailed 
description of the use of MGI we refer to [3]. 
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6.2.5. The spatial discretization in MG/ 
In order to reduce accuracy problems that arise for coefficients like x-m in (2.12) 

when x is near zero and m >O, a spatial discretization method is used which is 
second order in space. The nonlinear Galerkin-based method is extensively 
described in Skeel and Berzins [12]. In the following we give a summary of this 
discretization method when applied to the PDE class (2.12) transformed to its 
Lagrangian form. We omit, however, the error analysis which can be found in Skeel 
and Berzins. 

First we apply the Lagrangian transformation. 
Let w be defined by w := uxx and S j by 

• • NPDE • k k 
sj = Sj(x,t,U,Ux,u,w) ·= L cj,k(u - w ) + Qj-

k=l 

Then system (2.12) becomes 

Sj =x-m(xmRj)x for j=l, ... ,NPDE, (2.14) 

with Cj,k> Qj, and Rj defined as before. On the spatial grid (2.2) we will formulate 
the Galerkin method for (2.14). Introduce the approximation Uk of uk 

N+l 
Uk(x) = L Uf<l>\m>(x). 

i=O 

Let w\ml denote the test functions. The trial functions <1>\ml and the test functions 
w\ml are given in the Appendix. Introduce the weight function xm and integrate 
(2.14) on [xL, Xk] partially, so as to obtain 

XR 

f m (m>s dx - m (m>c )R I m (m>( )R I X 'If, j - XR 'If, XR j x=x, - XL 'If, XL j x=xl - (2.15) 
XL 

for j=l, ... ,NPDE and i=O, ... ,N+l. 

Using the fact that w\m>(x)=O for x ~X;_1 and x ~X;+t we get for i=l, ... ,N and 
j=l, ... ,NPDE 

(2.16) 

The integration over an interval [X;_1, X;] is performed by numerical quadrature 
using 1 quadrature point ~i-'I,· After applying the numerical integration on 
[X;_1, X;] and [X;, Xi+tl and lumping (that is evaluation of i/ takes place in X; 
rather than in~) (2.16) yields 

X1 Xi+I 

si.-½ f xmu,(m)dx + si.+'12 f xmu,(m)dx -
J "l'l J '!'I -

X1-1 X 
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X. d (m) X,+1 d (m) 

- i:µ Ri,-½ Jxm-µ~dx - i:µ Ri,+'I, J xm-µ~dx + E (2.17) 
':>,-½ 1 dx ':>i+'I, 1 dx ' 

where 

x,_, X, 

s//2 = S/~i-½, t, u (~;-\/,), Ux(~;-1/,), U;, W;), 

st'1' = S/~;+•1,,t, u (~;+•1,), uxe~i+'12),U;, W;), 

R~+½ = R /~i+½,t, U (~;+•12), Ux(~;+ 112)), 

and E stands for the total error due to interpolation, quadrature and lumping. For the 
definition ofµ we make a distinction between two special cases 
i) the regular case (m = 0 or xL > 0): µ = m 

ii) the singular case (m > 0 and xL = 0): µ = -1. 
The choice of~ depends onµ. On an interval [X;, X;+i] we choose ~i+'I, = Y-µ,;+ 112 , 

where Yp,i+IIZ denotes the GauB-point for the weight function xP, i.e., 

J (x-yp,i+l/2)xPdx=0. 
X, 

(2.18) 

The numerical integration in (2.17) is then second order accurate. If we neglect the 
error E in (2.17), we arrive at a semi-discrete approximation of (2.14 ), for i = 1, ... ,N 

with 

X+, d (ml 
ym+I J m+I 'If, dx d )"0 1 ':,i+'/2 = - X -- , an ':,i+½ = · 

x, dx 

For a list of the test functions '!')ml, the trial functions <l>)m), the quadrature points 
~i+½ and the integrals sf+"t! see the Appendix. In [ 12) a justification is given for all 
choices of the parameters and functions. There it is shown that the spatial discretiza
tion method is second order accurate, both in the regular and the singular case. 

The right boundary equation in (2.13) x/xR,t) R.i lx=x. = YJ lx=xR is combined with 
the semi-discrete approximation of (2.15) with i =N + 1 

m+I ym+l 
S(N+l)-'I, XR - ':,N+½ ym-u ):µ. RN+l/2 m R I 

J m+l + ':JN+112 ':>N+½ j =xR j x=x, (2.20) 

to eliminate Rj lx=x,· 

In the regular case the same procedure is applied to the left boundary equation in 
(2.13) x/xL,t) Rj lx=X1 = YJ lx=X1 and 

ym+l xm+l 
So+½ ':,'/2 - L ):m R'/2 - m R I 

J - ':,½ j - - XL j x=x , 
m+l 1 

(2.21) 

from which we can eliminate R.i lx=xl. If xL and mare both zero we take xZ,=l. In 
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the singular case, however, we use just the semi-discrete approximation of (2.15) 
with i =0 which gives 

(2.22) 

This means, that for X 1 ➔xL the boundary equation tends to R j I x=x,. =O, which is a 
natural constraint for polar problems. 

Equations (2.19) and (2.9) are combined to the now fully semi-discretized system 
(2.11). 

6.3. THE 1D FLUID-FLOW/ SALT-TRANSPORT PROBLEM 

Disposal of radioactive wastes in rock salt formations is being considered as a 
serious possibility by a number of countries. An integral part of the safety assess
ment of waste disposal is the study of mathematical models for nuclide transport to 
the geosphere via groundwater flow. Existing standard models for groundwater flow 
and salt transport assume that the salt concentration is less than or equal to seawater 
concentration. In such low-concentration situations the models in use have been 
sufficiently validated and in many cases of interest the fluid flow and the salt con
centration equation can be treated uncoupled. However, for flows in the vicinity of 
rock salt formations the salt concentration may become high and influence the fluid 
density to an extent that it effects the fluid flow. On the other hand, salt is tran
sported by the fluid and thus fluid flow and salt transport are mutually coupled. The 
existing standard models and their uncoupled treatment are then no longer adequate 
for safety assessment which makes it interesting to study this intricate situation. 
Recent theoretical and experimental hydrological studies [9, 10] indicate that for 
such high-concentration situations the involved basic equations of flow and transport 
need to be modified, which requires a significant effort in numerical modelling. Here 
the moving-grid method enters the scene, because in the high-concentration situa
tions also large concentration gradients prevail, making the use of fixed-grid 
methods inefficient. 

In the modelling of transport of M solutes by groundwater flow generally M + 1 
sets of equations appear, viz., one set for each solute and a set for the flowing fluid 
[9]. The set for the fluid (brine) constitutes the fundamental balance of mass pro
perty of the fluid supplemented with a Darcy-law expressing conservation of 
momentum. Similarly, for each solute the associated set constitutes the balance of 
mass property supplemented with conservation of momentum through a Fickian
type law. If temperature changes are important, then an energy equation should be 
added. Also, if deformation effects of the porous medium and porosity changes are 
important, then an additional set of equations for the solid phase of the porous 
medium has to be provided. In the present study we do not consider temperature or 
deformation effects and assume only one solute, the salt. We thus consider an isoth
ermal, single-phase, two-component saturated flow model in the idealized case of 
one space dimension. It is further assumed that no external body forces except grav
ity exist and that the two brine components, water and salt, do not react or adsorb. 
This specific model, which we have borrowed from the RIVM report [7], has been 
selected for demonstration purposes. 
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The model comprises the following set of equations. For the fluid and salt we 
have, respectively, 

The fluid density p is supposed to obey the equation of state 

P = Po exp (~(P-Po) + yw), 

(3.1) 

(3.2) 

(3.3) 

with constant reference density p0 , constant reference pressure p 0 , constant 
compressibility coefficient ~, and constant salt coefficient y. Other constants are 
porosity n, permeability k, viscosity µ, gravity g and dispersion length 'A. The vari
ous variables are the (Darcy) velocity of the fluid q, the hydrodynamic pressure p 
and the salt-mass fraction w. We thus consider the medium to be homogeneous with 
respect to porosity, permeability and viscosity. However, inhomogeneities, and also 
sources and sinks, can easily be taken into account. 

The set of equations can be formulated as a system of two PDEs with pressure p 
and salt concentration ffi as independent variables. To this end we compute, from 
(3.3), 

(3.4) 

and subsitute into (3.1) to obtain the fluid-mass balance equation 

. ap aw a 
np~- + npy- = - -(pq). at at ax (3.5) 

A further substitution yields the salt transport equation 

aw aw a 
npat = - pqa.; - ax (pJ). (3.6) 

We have used this form as input for the numerical solution method. A few com
ments are in order. First, substitution of the expression for J into (3.6) yields the 
advection-dispersion equation 

aw aw a aw 
np-a = -pq-a. + -a (p'Alq I-a), 

t X X X 
(3.7) 

showing that in the present model the physical salt-transport phenomena are advec
tion and dispersion. Molecular diffusion is absent here. It is easily built in, however, 
since this merely amounts to adding a small constant to 'A I q 1- Assuming 'frozen' 
coefficients, we see that the Peclet number is 

Pe = I Lpq I = !:._ 
p'Alq I 'A' 

(3.8) 

where L denotes the physical length of the medium. Hence, for 'A « L advection 
dominates and this is just the physical situation that gives rise to steep concentration 
gradients. Another point worth to mention is that the compressibility coefficient ~ is 
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very small compared to the salt coefficient y. In fact, it is often zero, in which case 
the balance equation (3.5) reduces to 

am a 
npy- = - -(pq) (3.9) 

dt dX 

and a pldt is absent. We then have two equations for dWldt of which (3.5) can be 
rewritten to a PDE containing only spatial derivatives. Hence this rules out the pos
sibility of explicit time-stepping. Note that if we would also put y = 0, that then the 
density p is constant and the. mass balance equation reduces to the simple pressure 
equation Pxx = 0. Of course, a zero salt coefficient y is not realistic in our applica
tion. 

Non-scaled Scaled 

Time 0 < t < T [sec l I= t/to, to= µL2 /(kop0) = 104 

Space 0<x <L [ml x=x/L 
End time T [sec] T=Tlto 

Domain length L= 1 [ml L= 1 

Pressure p [kglmlsec 21 p = pipo 

Salt concentration (0 ro= ro/m0 

Density p [kg!m 3] P = pipo 

Penneability k=ko= 10-12 [m2l k = k/ko = 1 

Viscosity µ= ~ = 10-3 [kglm/secl µ=µ/~= 1 

Reference pressure Po= 105 [kglmlsec 21 Po= 1 

Salt inflow concentration m0 = 0.26 ro0 = 1 

Reference density Po= 103 [kg/m 31 Po= 1 

Gravity force g= 9.81 [mlsec 21 g = (poLg)po = 0.0981 

Porosity n=0.2 n =0.2 
Salt coefficient r=0.69 'Y = rroo = 0.1794 

Dispersion length A[ml A=AiL 
Compressibility coefficient ll= 10·10 [msec 2 !kgl ~ = JlPo = 10-5 

TABLE 6.1. Model data. Bold face notation is used for the non-scaled quantities. 

To complete the model description, we must give the initial and boundary condi
tions. Defining the space-time domain as [0,L ]x[0, T], the initial and boundary con
ditions we have imposed for w(x,t) and p (x,t) are, respectively, 

and 

m(x, 0) = 0, 0::;; x::;; L, 

am 
ax(l,t) m(0,t) = m0 > 0, 0, 0 < t ::;; T, 

(3.10a) 

(3.10b) 
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p(x, 0) = Po[(l-x/L)P1eft + (x/L)Pright], 

p(0,t) = PoPleft, p(L,t) = PoPright• 

0 :--; x :--; L, 

0 < t :--; T, 

(3.1 la) 

(3.llb) 

where ro0 is the left-end salt concentration and p left and p right are pressure 
coefficients. 

We have selected these conditions with the aim of generating a travelling salt 
front. Note that at t = 0 there is no salt in the medium and that the inflow value 
roo > 0. Hence, assuming appropriate model data, this should give rise to a travelling 
front. The steepness and speed of the front will of course be determined by the com
plete set of physical data. A characteristic set is given in Table 6.1 which comprises 
all data needed to run the problem, except for the end time T, the dispersion length 
A, and the pressure coefficients p left and p right· Finally, numerically we have 
treated the problem in scaled, dimensionless form. We refer to Table 6.1 for the 
scaling relations with the dimensionless values of all quantities involved. From these 
relations one can check that all equations are left invariant (note that this also holds 
for (3.3) due to the fact that after scaling p 0 = 1). Hence, in the remainder we have 
worked with the same set of equations as discussed above. The pressure coefficients 
p left and p right are left unchanged and will be specified with the nume1ical exam
ples. 

6.4. NUMERICAL EXAMPLES 

We will present results of three numerical examples. To simplify the demonstra
tion, these results have been obtained with a fixed set of numerical control parame
ters: 

TOL = 10-5 (temporal integration) (4.la) 

K = 2, 't = 10-3 , a= 10-2 , P1 =0, P2 =1 (grid movement) (4.lb) 

i 
X;(O) = N + I , 0 :-,:; i :-,; N + I (uniform initial grid) (4.lc) 

SPRINT was called in standard mode, thus providing automatically an initial step
size and Jacobian evaluation. The Euclidean norm was used for local error control 
while ( 4. la) was imposed for all components of the vector Y ( cf. (2.11 ); 
NPDE=2, u 1 = p, u 2 = ro). Note that TOL = 10-5 is quite small. However, to 
accurately simulate the rapid birth of the salt front, which arises from the incon
sistency between the initial and left-end salt concentration, a small tolerance value is 
natural. We also emphasize that we always started on a uniform grid, just for con
venience of use. This means that immediately after start the method should rapidly 
cluster most of the grid points near the left boundary. 

The grid parameters take on more or less standard values, except for p 1• The 
choice P 1 = 0 means that the pressure gradient d p ldx is not taken into account in the 
monitor (2.7). We decided to omit d pldx in the monitor since in our examples 
d p/dx varies very slowly and thus acts more or less in the same manner as the con
stant regularization parameter a. In such cases a too large value for the near con
stant pressure gradient yields a unnecessarily large regularization effect. This, in 
turn, would imply that variations in the concentration gradient droldx become of 
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6.4.1. Example I 
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The first example is defined by the data of Table 6.1, together with 
A = 1.E -3, T = 5 and p Left = 1. 7, p right = 1.0. With this choice of pressure initial 
function the arising salt front travels to the right boundary and finally renders a 
steady state for p and co with p equal to the linear initial pressure and co = COo = 1. 
The steady state starts to settle at about t = 2, far before the end time T = 5 has been 
reached. Consequently, due to the uniform salt concentration, at about t = 2 the grid 
should again become uniform. Hence this example provides an interesting test for 
the moving-grid method. The pressure p undergoes only a marginal change for t > 0 
and below we will therefore only plot co. 

Figure 6.1 depicts the grid and salt concentrations at some values of t for N = 25 
and 50. We see that the grid accurately reflects the anticipated solution behaviour. 
At very early times the grid points rapidly cluster near x = 0, then the cluster travels 
with the front and when the steady state is reached, a uniform grid appears. While 
N = 25 results in a little overshoot at the top and in a little smearing at the foot, 
N = 50 gives already very accurate salt concentration profiles. The profiles for 
N = 100 (not shown here) do equal those for N = 50 up to plotting accuracy. 

Table 6.2 shows integration history for N = 25, 50 and 100 and serves to provide 
insight in the costs of the implicit numerical integration method. The given data 
have the following meaning: STEPS= number of integration steps; JACS = number 
of Jacobian updates; RESIDS = total number of evaluations of the ODE system, 
including those needed for the Jacobian updates; NITER = total number of Newton 
iterations; CPU = central processing time on an ALLIANT/FX4 computer, using 
one processor. Note that our decision to start on a uniform initial grid has its price. 
For example, for N = 100 more than half the number of steps is used to reach 
t = 0.1. In fact, at t = 10-4, 10-3 , 10-2 , we have, respectively, STEPS = 39, 152, 
271. A great deal of these steps is needed simply to adjust the initial grid to the very 
steep concentration profile at the very early times (see the right upper plot in Figure 
6.1). Therefore, somehow adjusting the initial grid to the expected solution profile at 
the first forward time level will reduce STEPS significantly. We also wish to remark 
that the method efficiently detects the steady state, since for t > 2 the temporal step
sizes are rapidly increased and very few steps are required to complete the integra
tion. Finally, we have also tabulated ffimax - COo, which is the maximal overshoot at 
the given points of time. We see that already for N = 25 the overshoot is very little. 

A further inspection of the salt concentration plots shows that, as expected, the 
first derivative monitor (2.7) places quite a number of points just within the front 
where oco/ox is largest. Fortunately, the spatial grid-smoothing, resulting in relation 
(2.10), has the nice side-effect of keeping a substantial number of points at the foot 
and top of the front, where oco/ox becomes smaller and finally zero. This only 
works, of course, if K is taken not too small. Note that there should be enough points 
at the foot and top so as to avoid wiggles, since the spatial discretization is based on 
a common central finite-volume scheme. For a comparison of results obtained with a 
second-derivative monitor based on m (u) =(a+ llux.xll2 )'/4 and with a fixed grid, the 
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reader is referred to [14]. There it is concluded that the moving-grid approach with 
the first-derivative monitor is to be preferred with respect to accuracy and 
efficiency. 

6.4.2. Example II 
The second example is also defined by the data of Table 6.1, but now 

p Left = 1.11, p right = 1.0, T = 500 and A= l .E -4. The smaller pressure gradient in 
the initial function has two effects. First, it yields a smaller fluid velocity resulting in 
a larger time scale, which explains the larger value for T. The second and more 
interesting effect is that the travelling salt front now comes to a stand still before it 
has reached the right boundary. This happens at about t = 150, at which point of 
time the front lies near x = .6. The reason is that the fluid velocity q tends to zero, 
uniformly in x, which settles the system into a steady state and this takes place long 
before the salt front has reached the right boundary. We note that this phenomenon 
is rather special in the sense that it heavily depends on the initial pressure gradient. 
The stand still of the salt front is lost with a relatively slight change in this gradient. 
Also note that this stand still requires a zero molecular diffusion which in reality is 
not true, of course. However, the simulation of this rather subtle situation provides a 
nice numerical test as it requires an accurate balancing of gravity force pg and pres
sure gradient force a pldx in the Darcy velocity expression in (3.1). Finally, we have 
made the dispersion length ten times smaller than in the previous example, giving a 
Peclet number of l .E +4 and a much steeper front (recall that the spatial discretiza
tion of the MGI is based on a common central finite-volume scheme). Figure 6.2 
shows the computed grid and salt concentration profiles at some values of time for 
N = 25 and 50. Like in the previous example, we see that the grid movement accu
rately reflects the anticipated solution behaviour. For early times it is completely 
similar, while for later times the cluster around the steep salt front remains in posi
tion. We also see that N = 25 now results in more overshoot, due to the fact that the 
dispersion length is ten times smaller than in the previous example. However, 
N = 50 again gives a very accurate solution and the profiles for N = 100 (not shown 
here) do equal those for N = 50 up to plotting accuracy. 

Table 6.3 contains part of the integration history for N = 25, 50 and 100, provid
ing the same information as before. With this table we wish to call attention for an 
inherent model difficulty stemming from the absolute value function in the 
dispersion-flux expression pJ = - pA I q I cox. In the table this difficulty manifests 
itself in the large number of time steps and Jacobian updates used over the 'near 
steady-state interval' [200, 500] for N = 100 (recall that the steady state starts to set
tle at about t = 150). While the code easily detects the numerical steady state solu
tion with 25 and 50 points, which can be concluded from the few number of steps 
needed to integrate from t = 200 to t = 500, this is clearly not the case with 100 
points. In fact, with 100 points this 'near steady-state part' of the integration interval 
requires 1038 - 423 = 615 integration steps and 707 - 105 = 602 Jacobian updates, 
which is rather extreme. What has happened here is that the iterative Newton algo
rithm repeatedly fails to converge, so that the strategy of the SPRINT code keeps the 
temporal stepsize down and keeps asking for new Jacobians. 
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FIGURE 6.1. Example I: Gridlines and salt concentration profiles at 
t= 0.1, 0.5, 1.0, 5.0. The left part of the figure corresponds with 

N = 25 and the right part with N = 50. Note the difference 
in scaling in each of the two gridline plots. 
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STEPS JACS RESIDS NITER OVERSHOOT CPUtime (sec.) 

N=25 t=0.l 149 39 931 407 7.0E-3 --

t=0.5 198 47 1175 545 7.0E-3 --

t=l.0 220 52 1302 607 6.0E-3 --

t=5.0 565 144 3532 1610 -- 140 

N=50 t=0.l 202 53 1282 574 8.0E-4 --

t=0.5 225 58 1413 638 l.0E-3 --

t=l.0 234 61 1481 667 1.0E-3 --

1=5.0 450 118 2904 1335 -- 236 

N=IO0 t=0.l 301 83 1988 882 3.0E-4 --

t=0.5 317 87 2085 927 3.0E-4 --

t=l.0 326 89 2140 956 6.0E-4 --

1=5.0 529 142 3533 1648 -- 566 

TABLE 6.2. Example I: Integration histories. 

The Newton convergence failure is caused by I q I if q;::;0. The following obser
vations explain this. Due to the absolute value function, entries of the Jacobian 
matrix contain sign(q). Consequently, if q;::;O, then during the Newton iteration 
approximate values for q readily change sign. Since the size of entries is large, as 
they contain terms (M;f2 , and ;'j.X; can be very small, it happens that during the 
iteration process entries frequently change their value from large positive to large 
negative, or vice versa. No doubt this severely hinders the convergence of the itera
tive Newton process and, as we have observed, often will lead to convergence 
failures and requests for a Jacobian update. This explains why the march to steady 
state in the case of 100 points is so troublesome. However, we stipulate that also 
with 25 and 50 points the march to steady state eventually becomes troublesome. It 
all depends on the size of the computed velocities q and is a matter of accuracy. 
With lesser points the computed velocities arrive in the troublesome regime for 
larger values of time when the system has become sufficiently stationary or, in other 
words, when the numerical velocities have become sufficiently small. Ironically, 
with 100 points the accuracy is sufficiently good to have the troublesome Newton 
convergence behaviour already for 200 < t < 500. 

We emphasize that the troublesome march to steady state originates from the 
Jacobian matrix needed in the iterative solution process and not from the integration 
formula itself. In fact, we have also run the problem with I q I replaced by ✓q 2 + £ 

with £ = 10-5 , which completely remedies the situation and a normal march to 
steady state is observed with very large stepsizes towards the end value T, even up 
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to T = 1012 . When the modelling does not allow this slight modification in the 
dispersion-flux expression, an alternative remedy is to change the expression for 
I q I only in the entries of the Jacobian, so as to avoid the sign changes. This 
involves a little change of the Jacobian matrix and thus should not interfere 
significantly with the convergence behaviour of the iterative Newton method. 

6.4.3. Example III 
This example is derived from Example I by changing the salt concentration value 

co(0,t) = 1 to the step function 

1, 0 < t::; 0.75, 

w(0,t) = (4.2) 

0, 0.75 < t::; 5.0. 

Thus for O < t ::; 0.75 the two solutions are equal and at t = 0.15 the step function 
generates a second front at x = 0 resulting in a block-form concentration profile. The 
block then travels to the right boundary and eventually the system runs into steady 
state with uniform zero salt concentration. For the moving-grid method this solution 
is more difficult to compute, since now two travelling fronts are present which 
appear and disappear at different values of t. Hence, instead of two times, four times 
the solution shape is drastically changed and the automatic grid movement and step
size control should be able to cope with these drastic changes. For example, without 
neglecting the already existing first front, at t = 0.15 the method must rapidly cluster 
grid points at the left boundary and decrease the time step to timely see the onset of 
the second front. Therefore, for the same accuracy, roughly twice the number of grid 
points and time-stepping effort will be needed as for Example I. 

We have used N = 25, 50, 100. Apparently, 25 points is not enough, but with 50 
points the solution is already fairly accurate. A comparison for 50 and 100 points 
reveals only minor differences at the top of the computed salt block profile and we 
may conclude that the results are very satisfactory. The gridline plot in Figure 6.3 
for N = 100 nicely reveals the onset of the second front where very small time steps 
have been taken, similar as at t = 0 (see Figure 6.1). The arrival of the two fronts at 
the right boundary can also be clearly recovered from the plot, like the change to the 
uniform steady state grid. Note that also here small time steps are needed to accu
rately simulate the rapid solution change. The integration costs tabulated in Table 
6.4 indeed show that the time-stepping effort is about twice as large as for Example 
I. As anticipated, comparison of Tables 6.2 and 6.4 reveals that the costs are mainly 
determined by the drastic changes in the solution shape. Once the front exists, the 
time stepping is done very efficiently, as can be deduced from the number of Jaco
bian updates listed in Table 6.2 at t = 0.1 and 1.0. 
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STEPS JACS RESIDS NITER OVERSHOOT CPUtime (sec.) 

N=25 t=l 160 40 958 421 2.0E-2 --

t=lO 239 64 1509 654 3.0E-2 --
t=lOO 335 92 2155 930 3.0E-2 --

t=200 354 95 2244 980 4.0E-2 --

t=500 373 101 2371 1072 4.0E-2 95 

N=50 t=l 249 59 1473 685 4.0E-3 --
t=lO 300 72 1787 826 2.0E-3 --

t=lOO 338 79 1983 931 2.0E-3 --

t=200 355 81 2048 968 2.0E-3 --

t=500 379 88 2204 1033 2.0E-3 185 

N=lOO t=l 312 85 2058 926 4.0E-4 --
t=l0 346 93 2253 1015 4.0E-4 --

t=lOO. 410 103 2538 1168 7.0E-4 --

1=200 423 105 2592 1196 8.0E-4 --

t=500 1038 707 12700 3344 9.0E-4 1753 

TABLE 6.3. Example II: Integration histories. 

STEPS JACS RESIDS NITER CPUtime (sec.) 

N=lOO l=l.0 554 159 3734 1624 --

t=2.0 819 262 6008 2511 --
1=5.0 1009 308 7259 3154 1146 

TABLE 6.4. Example III: Integration histories. 

6.5. CONCLUDING REMARKS 

We have applied a moving-grid finite-volume method to a particular class of 

one-space dimensional fluid-flow/salt-transport problems with rapid spatial and tem

poral transitions in the salt concentration. The success of this method rests on two 

sorts of automatic grid-adaptation. The first adaptation is connected with the space 

grid and serves to cope with the rapid spatial transitions. These are dealt with by 
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FIGURE 6.3. Example III: Gridlines and salt concentration profiles at 
t= 0.1, 0.5, 1.0, 2.0, 5.0 for N = 100. 

1.0 

integrating on grids that spatially equidistribute a relevant measure of the error. The 
equidistriblition is realized in a dynamic Lagrangian approach where the grid is 
adapted continuously in time. This feature is important since it makes it possible to 
accurately and efficiently follow steep travelling fronts. The second adaptation 
serves to cope with rapid temporal transitions and is just the use of variable stepsizes 
in the numerical integration. Variable stepsizes are a prerequisite when drastic solu
tion changes have to be dealt with, like the onset of a steep front. The numerical 
integration has been performed with the LSODI based stiff ODE solver of the 
SPRINT package [1]. 

Our findings reported in Section 6.4 have convincingly shown that the method is 
very well suited to solve ID brine transport models involving high concentration 
gradients. Because we have worked with an a priori chosen set of numerical control 
parameters, it is most likely that tuning of these parameters will further enhance the 
efficiency and accuracy for the specific model at hand. Since the method has been 
originally developed for general, one-space dimensional PDE systems [6,13], the 
method is also an excellent candidate for solving fluid-flow/solute-transport prob
lems from other fields of application. In this connection it is worth to emphasize the 
user-friendly computational environment of the SPRINT package and the moving
grid interface MGI [3], which together provide a numerical software tool that 
requires a minimum of programming effort. 



137 

REFERENCES 
1. M. BERZINS, P.M. DEW, and R.M. F'URZELAND (1989). Developing Software for 

Time-Dependent Problems Using the Method of Lines, Appl. Numer. Math., 5, 
375-398. 

2. J.G. BLOM and J.G. VERWER (1989). On the Use of the Arclength and Curva
ture Monitor in a Moving-Grid Method which is Based on the Method of Lines, 
Report NM-N8902, Centre for Mathematics and Computer Science (CWI), 
Amsterdam. 

3. J.G. BLOM and P.A. ZEGELING (1989). A Moving-Grid Interface for Systems of 
One-Dimensional Time-Dependent Partial Differential Equations, Report NM
R8904, Centre for Mathematics and Computer Science (CWI), Amsterdam 
(submitted to ACM Trans. Math. Software). 

4. K.E. BRENAN, S.L. CAMPBELL, and L.R. PETZOLD (1989). Numerical Solution 
of Initial-Value Problems in Differential Algebraic Equations, North-Holland. 

5. K. DEKKER and J.G. VERWER (1984). Stability of Runge-Kutta Methods for Stiff 
Nonlinear Differential Equations, North-Holland. 

6. E.A. DORFI and L. O'DRURY (1987). Simple Adaptive Grids for 1-D Initial 
Value Problems, J. Comput. Phys., 69, 175-195. 

7. J.C.H. VAN EUKEREN, P.A. ZEGELING, and S.M. HASSANIZADEH (1991). Practi
cal Use of SPRINT and a Moving-Grid Interface for a Class of ID Nonlinear 
Transport Problems, Report nr. 959101001, RIVM, Bilthoven, The Nether
lands. 

8. R.M. F'URZELAND, J.G. VERWER, and P.A. ZEGELING (1990). A Numerical 
Study of Three Moving Grid Methods for One-Dimensional Partial Differential 
Equations which are based on the Method of Lines, J. Comput. Phys., 89, 349-
388. 

9. S.M. HASSANIZADEH (1990). Experimental Study of Coupled Flow and Mass 
Transport: a Model Validation Exercise, in Calibration and Reliability in 
Groundwater Modeling, ed. K. KOVAR, IAHS Publication No. 195, Walling
ford, Oxfordshire, U.K .. 

10. S.M. HASSANIZADEH and A. LEIJNSE (1988). On the Modeling of Brine Tran
sport in Porous Media, Water Resources Research, 24, 321-330. 

11. J.M. SANZ-SERNA and J.G. VERWER (1989). Stability and Convergence at the 
PDE / Stiff ODE Interface, Appl. Numer. Math., 5, 117-132. 

12. R.D. SKEEL and M. BERZINS (1990). A Method for the Spatial Discretization of 
Parabolic Equations in One Space V ariable, SIAM J. Sci. Stat. Comput., 11, 1-
32. 

13. J.G. VERWER, J.G. BLOM, R.M. FuRZELAND, and P.A. ZEGELING (1989). A 
Moving-Grid Method for One-Dimensional PDEs based on the Method of Lines, 
in Adaptive Methods for Partial Differential Equations, 160-175, ed. J.E. 
FLAHERTY, P.J. PASLOW, M.S. SHEPHARD AND J.D. V ASILAKIS, SIAM, Phi
ladelphia. 

14. P.A. ZEGELING, J.G. VERWER, and J.C.H. V. EUKEREN (1992). Application of a 
Moving Grid Method to a Class of Brine Transport Problems in Porous Media, 
Int. J. Numer. Methods Fluids, 15, 175-191. 



138 

APPENDIX 

0 

X XL 

if singular} 

if regular 

0 elsewhere 

'l'\ml(x) = f Y-mdy/ f Y-mdy X; ~x ~X;+i i =I, ... ,N, 
X X; 

0 

(m) ( ) -{ I - 'l'W\x) 
'l'N+I X -

0 

Note that 

I t l y,n+I. n egra s '=>i+'/2. 

Trial functions <j>(ml: 
In the regular case 

elsewhere 

XN ~x ~xR 

elsewhere 

m=O 

m = I 
m=2 

if singular and i = 0 

otherwise 



and in the singular case 

Quadrature points ~i +½: 

In the regular .case 

X;+i +X; 

2 

X;+1 -X; 

ln(X;+1IX;) 

ln(X;+1/X;) 

-<XTl1 -XT1) 

and in the singular case 

2 xr+1 -xr 
~i+½ = -3 x2 xz 

i+l - i 

elsewhere 

elsewhere 

XN ::;;x ::;;xR 

elsewhere 

m=O 

m= 1 

m=2 

139 





141 

Chapter 7 

Moving-Finite-Element Solution of Time-Dependent 
Partial Differential Equations in Two Space 

Dimensions 

7.1. INTRODUCTION 

The aim of this chapter is to show the capability of the 2D moving-finite-element 
method (MFE) to solve different kinds of time-dependent partial differential equa
tions (PDEs) having solutions with steep moving fronts, rotating pulses, or other 
features involving fine scale structures. MFE belongs to the class of moving-grid 
methods, which is a subclass of the class of (time-dependent) adaptive-grid 
methods. Adaptive-grid methods are numerical methods for PDEs which strive to 
resolve the sharp transitions in the PDE solution to acceptable degrees of accuracy 
thereby avoiding the use of an excessive amount of spatial grid points. Fixed-grid 
methods are in such situations computationally inefficient, since, to afford an accu
rate approximation, they should contain an unacceptably large number of nodes. 
Adaptive methods use non-fixed, non-uniform or locally uniform grids and automat
ically concentrate the grid in regions of high spatial activity during the time
integration process. 

In contrast with the one-dimensional case (see, e.g., [20, 24, 35]), application of 
moving-grid methods in two space dimensions is less trivial. For instance, there are 
many possiblities to treat the one-dimensional boundary and to discretize the spatial 
domain each having their own difficulties for specific PDEs. Therefore, 2D 
moving-grid methods have hardly been applied to real-life problems. The MFE 
method [10, 14, 20, 24], considering its general approach, allows in principle a large 
class of PDE problems to be dealt with. However, because of the intrinsic coupling 
between the discretization of the PDE and the grid selection, the application of 
MFE, as for any other method, is not without difficulties. The main difficulty we are 
referring to is the threat of grid distortion. Grid distortion can occur in many dif
ferent ways due to the quite complex solution behaviour of 2D-evolution problems 
[38]. This chapter describes some aspects of the MFE method when applied to 
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various kinds of PDEs with different underlying background. More precisely, three 
main PDE characteristics are recognized, i.e., convection, diffusion, and reaction. 
For each of this notions MFE acts differently with respect to efficiency (time
integration process), grid movement, etc .. 

MFE is based on the well-known nume1ical method-of-lines (MOL) approach for 
solving time-dependent PDEs. The MFE-method used here restricts its finite
dimensional approximation to a piecewise linear function on a hexagonally con
nected triangularization of the 2D spatial domain. The grid movement is generated 
by a least-squares minimization of the so-obtained PDE residual with respect not 
only to the time-derivatives of the solution amplitudes, as in the standard (fixed
grid) Galerkin case, but also to the now unknown grid velocities. This procedure 
yields, according to the MOL idea, a large system of stiff ODEs, which may be 
integrated with a sophisticated implicit stiff ODE/DAE solver, for example the 
SPGEAR module in the SPRINT package [8, 9]. 

In literature, several tests of the MFE method in 2D are described. These can be 
found, e.g., in [3, 6, 10, 14, 18, 29, 38]. Theoretically, however, little is known about 
the moving-finite-element method in 2D. An exception in this respect is the work by 
Baines and Wathen [4, 7,36,37], and Miller [23]. A very important theoretical pro
perty is the relation of MFE in both lD and 2D, for hyperbolic PDEs, with the 
method of characteristics [4]. Secondly, for convection/diffusion equations with a 
small diffusion coefficient it can be shown that MFE resembles a perturbed method 
of characteristics [4, 38]. Additionally, in the case of parabolic equations there is a 
strong link of MFE with equidistribution principles [38]. All these properties have 
their influence on the performance of the method when applied to different types of 
PDEs, as we will see in this chapter. 

This chapter is divided into four sections. In Section 7.2.1 we describe the MFE 
method for a general system of PDEs in two space dimensions. The treatment of 
second-order operators is discussed in Section 7.2.2. Section 7.3.1 shows an applica
tion of MFE to convection-reaction equations. A special feature of this section is 
the use of a non-rectangular domain for the so-called 'Molenkamp-test' (see also 
[26, 30]), which is an important testproblem in meteorology. In Section 7.3.2 MFE is 
applied to a reaction-diffusion equation from combustion theory [19,27]. An 
interesting aspect in this section is the effect of the regularization parameters (penal
ties) on the grid movement, quality of the solution, and the numerical time-stepping 
procedure, respectively. Section 7.3.3 deals with convection-diffusion equations, 
and shows the effect of a small diffusion coefficient in the PDE on the semi-discrete 
MFE system. Also in this section, MFE is applied to a system of nonlinear brine 
transport problems in a porous medium, of importance in the field of hydrology 
[34, 39]. Finally, Section 7.4 is devoted to some concluding remarks. 
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7.2. DESCRIPTION OF MFE IN TWO SPACE DIMENSIONS 

7.2.1. The method 
In this section a description is given of the moving-finite-element method in two 

space dimensions. For more details the reader is referred to [10, 11, 20, 24]. The 
method is presented along the lines of the numerical method-of-lines (MOL) 
approach. 

Consider an abstract Cauchy problem for a system of PDEs in two space dimen
sions, 

au<n 
~ = Lj, j=l, · · · ,p (x,y)Eil, t>O, (2.1) 

where Lj is a spatial differential operator containing at most second-order deriva
tives. The MFE-approximation to u <n is chosen to be piecewise linear on a hexago
nally connected triangularization of n 

M 

u<n:::: u<n=l:; uF>(t) a1(x,y, {X1(t),Y1(t)}), j=l, · · · ,p, (2.2) 
l=I 

where M denotes the total number of gridpoints, and a,1 are the standard piecewise 
linear hat functions. Differentiating (2.2) with respect to t by the chain rule, and 
using the time-dependence of the gridpoints (X1(t ), Y1(t)) we obtain 

uF>=i u\j)al +X1~F> + Y(tF>, j=l, · · · ,p. (2.3) 
l=I 

The basis functions ~p> (see Figure 7.1) have the same support as a,1, i.e., the hexa
gon of triangles surrounding the j-th node. They are discontinuous at the center and 
on the inner edges of the hexagon; they are zero on the hexagonal boundary and 
take on (for each PDE-component) the six different values of - au<!) ldx at the cen
tral vertices of the six triangles. Note that due to the piecewise linear approximation 
(2.2), - au<!) liJx has a constant value on each triangle. A similar description l}olds 
for iin, but now related to - au<1> Id y. The equations determining the semi-discrete 
unknowns up>, X1 and Y1 are now obtained. in the standard Galerkin way by minim
izing the PDE residual R with respect to u;1>, X; and Y;, where 

p ( ') 2 2 
R := L Wj IIU/ -Lj(U)IIL,(O) + !;Pk. (2.4) 

j=I k 

Here wj are non-negative weight factors and Pk is the grid-regularization term 
(penalty) (see [11]) 

(2.5a) 

with 

(2.5b) 

and 
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FIGURE 7 .1. The basis functions a1 (left) and Wl (right). 

£2 ? 
£kSk:=(-)- , 

fik 
(2.5c) 

where £1 and d are small user-specified constants. The effects of adding this 
penalty term are explained below. Note that the second sum in (2.4) is taken over 
the three perpendiculars lik of each triangle. The minimization of (2.4) is performed 
by setting 

cJR 
~ =0, for i=l, · · ·, M; j=l, · · · ,p, 
cJV; 

d~ = d~ = 0, for i=l, · · ·, M 
cJX; cJY; 

and results in a large system of (p+2)xM ordinary differential equations in the 
unknowns u[n, X; and Y;: 

M • (j) () . ( ') . 
I,<a;,a1>V1 + <a;,~11 >X, + <a;,y/ >Y1 = <a;,Lj(U)>, ,~1 (2.6a) 

for i=l, · · · ,M; j=l, · · ·, p, 

(2.6b) 

for i=l, · · ·, M, 
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(2.6c) 

for i=l, · · ·, M, 

wher~ <.,.> denotes the usual Lrinnerproduct. It is clear that (2.6a) without the X
and Y-innerproducts is just the standard Galerkin method applied to (2.1) using 
piecewise linear basis and trial functions on. a nonu!1iform triangular grid. The time
dependency of the grid is reflected in the X- and Y-innerproducts in (2.6a) and the 
complete equations (2.6b) and (2.6c). 

Working out the innerproducts and defining the vector 

ll := (···,up>, ... , U)P>, X;, Y;, · · · f, 
we arrive at the semi-discrete MFE system 

J<l(T1,€i) ~ = G (ll,E~), t >0, ll(0) given, (2.7) 

where ..91. is a symmetric matrix, the so-called mass-matrix, containing quantities 
from the left-hand sides of (2.6), whereas the only problem-specific terms are con
tained in the vector G. It must be noted that, for e1 =e2=0, i.e., without regularizafion 
terms, there exist fundamental difficulties with solving system (2. 7). 

The first difficulty is a possible singularity in the mass-matrix ..9l.. The matrix ..91. is 
singular in the so-called case of 'parallelism'. Parallelism occurs in the absence of 
curvature in the solution of the PDE. In this case, the basisfunctions ~\jl and a.; 
(and/or y/> and a.;) become linearly dependent, which means that the parametriza
tion of the time-derivative cf/> in (2.3) degenerates. In other words, the minimiza
tion procedure then has no unique solution, resulting in a zero mass-determinant: 
det J<l(T1,0)=0. Therefore, to avoid the problem of solving a DAE system of index 1 
or higher, the er-term (2.5b), also called intratriangular viscosity, was introduced in 
the residual (2.4). It can be shown, that, for e1 :;c(), ..91. is positive-definite and thus reg
ular. The second degeneracy of ..91. arises whenever the triangles get too thin or lose 
their positive orientation, i.e., '2D mesh-tangling'. The matrix ..91. will then become 
very ill-conditioned and numerically singular, because in such cases the triangle 
area tends to zero, giving widely varying eigenvalues. Note, that this behaviour is 
time-dependent. Both singularities of the mass-matrix are also discussed theoreti
cally in [37]. Since it appears in the left-hand side of (2.7), the parameter e1 can 
also be seen to serve as a tool to control the grid-point motion. 

Another difficulty in (2. 7) could arise from a possible singularity of the nonlinear 
steady-state system: G (ll,0)=0. In the already described case of parallelism, which 
appears in applications with, e.g., a constant steady-state, the system G=O could 
have non-unique solutions. The parameter Ez in (2.5c) ('intratriangular spring 
force') serves to prevent this degeneracy. 

As for any other method, the regularization is somewhat heuristic and necessarily 
problem-dependent. For example, if e1 is chosen too large, the grid movement is 
restricted; E1 ➔00 gives a non-moving grid, with the result that there may not be 
sufficient refinement in regions of large spatial activity. On the other hand, if E1 is 
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too small, the mass-matrix JI. may become numerically singular. The parameter £2 

could be chosen equal to zero in most applications. For PDEs with 'flat' steady-state 
solutions a small non-zero value of £2 suffices to keep the semi-discrete ODE sys
tem regular. As for £ 1, too large values for £2 could restrict the grid movement: 
£2➔00 gives a uniform (non-moving) grid. 

The weight-factors w1 in (2.4) serve to make it possible to let certain PDE com
ponents dominate the grid movement equations (2.6b) and (2.6c). This may be desir
able for a badly scaled problem, or if one PDE component is strongly varying and a 
second component has only a mildly varying solution, for example. 

7.2.2. Second-order operators 
The MFE method used here has serious difficulties, when solving PDEs with 

second-derivative terms. Due to the piecewise linear approximation (2.2), second 
order derivatives fail to be defined in the usual sense. For example, /1,.u is zero on 

the interior of each triangle, but has a measure of constant strength - (a:++ a:- ) 
on on 

on each inner edge. Here the + and - denote the two triangles over which the jump is 
made. Furthermore, the basis function P; has a discontinuity along each inner edge. 
This can be derived from the relation P;=-Uxa;. These two properties combined 
indicate that the innerproduct <P;,/1,.u> even fails to be defined in the sense of distri
butions, which makes it impossible to evaluate h P;/1,.u dQ. Note that these con

siderations hold for the right-hand side y-innerproducts in (2.6c) as well. 
There are several 'tricks' to get around this fundamental difficulty: 

1. Miller [20, 24] uses the idea of 'mollification' to regularize the undefined inner
products. Mollification can be interpreted as using a limiting equation obtained 
by applying the minimizing condition to a PDE residual underlying a smoothed 
(mollified) piecewise linear function and then letting the limiting equation 
approach its now well-defined limit (using a small perturbation parameter, the 
so-called 8-mollifier). 

2. Johnson [17] and Mueller [28] apply Green's theorem in a clever way to work out 
the troublesome innerproducts. Their treatment, however, can only be used for 
special PDE operators. 

3. Sweby [31] uses the idea of 'recovery'. This involves fitting a piecewise polyno
mial to the first derivative and then differentiating this better defined quantity. The 
process is simple in one dimension, but in two dimensions the expressions may 
become very complex. 

4. Higher order test functions. This means, that instead of applying a minimization 
of the PDE residual, i.e., a projection on a space of piecewise linears, we do a 
projection on a higher order function space. Then, no problems are encountered 
when evaluating the right-hand side innerproducts. This Petrov-Galerkin 
approach works well in lD (see [16]), and seems to improve the nodal movement 
and position of the grid points in steep fronts. In 2D, however, the evaluation of 
the innerproducts is not so simple and straightforward as in one space dimension. 

It is interesting to note, that for the relatively simple case of a Laplacian operator 
ideas 1. and 2. yield identical semi-discrete equations. This is expressed by the 
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following lemma: 

LEMMA 7.1. The right-hand side innerproducts in (2.6b) for £1.__u) = Au using 
mollification are identical to the ones using idea 2. In other words: 

<~;,Au>1. = <~;,Au>2 .• 

PROOF By definition we have: 

(2.8) 

<~;,AU>z. = J~;Uxx dD. + J~;Uyy dD. =- J UxCl..;U_u dQ- J UxCl..;Uyy dD., 
Q Q 61 61 

where frc are the six triangles surrounding the grid point (X;,Y;). Applying the chain 
rule, the divergence theorem, and the small support of a;, respectively, this expres
sion can be written as 

where A ('t) is the area of triangle 't. Next, using relations between a.;.x, Cl..;,y, A ('t), 
the lengths L of an edge, and the unit normal vector n on an edge, (2.9) can be 
rewritten as 

(i.e.= inner edge), 

where n I and n 2 denote the x- and y-component of the normal vector n, du/on the 
normal and duld't the tangential derivative on each edge, and the second sum is 
taken over the two inner edges of 't. Expressing duldn and duld't in terms of u_" u y 

and n, finally results in 

du+ du- u; + u-; L 
I, ( a;:;-+a;:;-) 2 2 

6 edges 

This is equal to <~;,Au>1., since the mollified form consists of - (du+ ldn+du- ldn) 
(the constant measure of Au on each inner edge) and -(u1 + u~)/2, which can be 
interpreted as a mean value for -ux along an edge (see [11]). □ 

To apply MFE to real-life problems, such as the brine transport problem in Sec
tion 7.3.3, involves the treatment of a general second order flux term in combination 
with the piecewise discontinuous basis functions ~; and Y;- In this case, option 2. 
can not be used, and options 1. and 3. yield extremely complicated nonlinear semi
discrete terms in the right-hand side vector G in equation (2.7). We have used 
another idea, which is in our opinion the simplest justifiable option. The idea makes 
use of the fact, that, owing to the piecewise linear approximation, the first order spa
tial derivatives are constant on each triangle. For instance, the innerproduct of ~; 
with a flux term V· <j)(u, Vu) is treated as follows: 

<~;, V· <j)(u, Vu)>:= f ~; V· <j)(u, Vu) dD. = f -U, a; V· <j)(u, Vu) dD. 
Q 61 

:::: I,-Ux(•) fa; V· <j)(u, Vu) d't, (2.10) 
61 1 
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where the last integral may be approximated without difficulties in the usual way by 
some quadrature rule, e.g., the mid-point rule. It must be noted, that using (2.10) is a 
bit tricky, because the jumps of B;-values over triangle edges are, more or less, aver
aged in the approximating integral. In some sense, when replacing <I> by v' u, giving 
back the Laplacian, (2.10) is an averaged approximation to formula (2.8). Moreover, 
'freezing' one space dimension in (2.10), say the y co-ordinate, approximates the 
mollified interpretation of <B;,uxx>, since applying (2.10) to <B;,uxx> yields: 

<B;,Uxx> = I -uxCX;Uxx dx::::: L-ux,e/J CX;Uxx dx 
xi-1 2e/ e/ 

::::: -Ux,2el LI CX;Uxx dx (el =element), 
2el el 

where Ux, 2e1 is the average value of Ux over the two elements. Defining m; to be Ux 
on the element (X;_1 ,X;) and working out the integral by partial integration, we 
obtain 

m;+m;+1 1 2 2 
- 2 (m;+1-m;) =-2 (m;+1-m; ). 

The last expression is equivalent to <B;,Uu>1. (see [24]). 

For the brine-transport application, we evaluate the flux innerproducts according to 
the idea above. In the other numerical experiments in this chapter the second idea is 
used for the Laplacian-innerproducts. 

7.3. AN EVALUATION OF MFE IN 2D 
System (2.6) is implemented according to the ideas in [11]. This holds also for 

the treatment of the boundary terms. To obtain the fully discretized solution, ODE 
system (2.7) must be integrated numerically. It is known, that this system will usu
ally be extremely stiff. For integration in time, therefore, a suitable stiff ODE solver 
must be used. In our numerical experiments we have solved the implicit ODE sys
tem (2.7) with the (implicit) BDF integrator SPGEAR of the SPRINT package [8, 9] 
in the usual way. This means amongst others that the resulting algebraic system is 
solved by a modified Newton process. In the description of the experiments, which 
all were done on an SGI Indigo workstation, the following notation is used: 

STEPS= number of successful time-integration steps 
JACS= number of Jacobian evaluations 
BS = total number of Newton iterations 
TOL= time-tolerance (absolute and relative) for the SPGEAR integrator 
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7.3.1. Application to convection-reaction equations 
For this type of PDEs a standard form for the right-hand side operator £ in (2.1) 

is 

L(u)=-y·'Vu + g(u,x,y,t), (3.1) 

where y defines the convection term, and may depend on u, x, y, and t. This means, 
that (2.1) for this choice of £ is of the hyperbolic type. MFE applications to this 
class of PDEs can be found in [3, 6, 28, 29, 38]. It is known, see, e.g., [4], that, for 
this choice of PDE operator, there is a strong link between the semi-discrete MFE 
system (without regularization terms) and the characteristic equations of the PDE. 
More specifically, it can be shown that for PDE operators £ of the form (3.1) with y 
linear in u, x, y, while setting aside boundary effects, the ODE system (2.7) is 
equivalent to a discretized version of 

cx,yf =f, 

u =g. 

(3.2a) 

(3.2b) 

In many cases, this characteristic behaviour is very beneficial. However, there are 
some situations in 2D for which this behaviour could give problems. Two of these 
problems are described in [38]. The first problem has to do with a possible differ
ence between the directions of the characteristic curves of the PDE (the movement 
of the 'fluid' -particles) and the movement of the solution front. The second problem 
can be summarized by the term 'grid rotation', and may occur in PDE problems 
where the characteristic curves are circles, spirals, etc.. Furthermore, equations 
(3.2) show, that for y=O, i.e., when we are dealing with an ODE instead of a PDE, 
there will be no grid movement at all. This is a desirable property, since pure ODEs 
can not produce propagating wave solutions. 

The following numerical example from this PDE class is the so-called 
'Molenkamp-test', which is a standard test problem in meteorology (see also 
[25, 26, 30]). In fact, this example is identical to Example II in [38] enhanced with a 
linear reaction term. It was this example (without reaction term) for which MFE 
produced a strongly distorted grid when applied on a square with fixed comer 
points. It will be shown that, if we let the boundary points 'move around the comer', 
MFE produces a very accurate solution on a well-adapted grid. The effect on MFE 
of adding the reaction term will be examined as well. 

EXAMPLE I ('Molenkamp-test'): 
The operator £reads for this test-problem: 

1 du I du 
£(u)=-1t(y-2) dx + 1t(x-2)ay - c u, (3.3) 

with initial and boundary conditions 

1 2 3 2 
u I r=O = u 0(x,y) = exp(-80[(x-2 ) +(y-4 ) ]), 
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# rotations STEPS JACS BS Umax 

I JOO 68 374 1.00000 

3 205 162 842 1.00000 

5 289 234 1205 0.99989 

7 390 323 1664 0.99989 

TABLE 7.1. Example I: Integration history for c==O. 

u lan==O, 

The domain Q is chosen to be a circle with center (1/2, 1/2) and radius ff, in con
trast with the experiments in [38], where Q was represented by a square. It must be 
noted that the choice of a circular domain is certainly not rest1ictive. On c)Q equa
tion (2.6a) is replaced by u == 0. Equations (2.6b) and (2.6c) are not altered, so that 
the grid points on the boundary are now free to move. 

The exact solution describes a pulse that moves around in circles with a constant 
speed. During the movement the shape of the pulse changes, depending on the value 
of c in the reaction term. For c==O, the shape of the pulse i~ unchanged, whereas, for 
c>O, the peak of the pulse will decrease. The characteristic curves are circles with 
centre (1/2, 1/2) 

On these curves the solution varies according to u == - c u, resulting in the exact 
solution: u (x,y,t) == u0 e-c 1• 

From literature it is known, that many numerical methods have severe problems 
with solving this test example (see [25, 30]). Two important drawbacks of standard 
numerical techniques to solve (3.3) are, that either they damp out the solutions 
dramatically, because of numerical diffusion, and/or they exhibit strong oscillations 
in the solution during the integration process. 

In Table 7.1 and Figure 7.2 the results for MFE applied to model (3.2) on a circu
lar domain with c ==O are given. In the below described runs the standard choices 
TOL==I.E-3, £y==I.E-4 and d==I.E-9 are made. In this example the effects of the 
penalty terms are not essential; they are only needed to keep the semi-discrete sys
tem (2.7) non-degenerate. The starting grid consists of only I lxl 1 points of which 
5x5 are distributed uniformly around the cone in (0.25,0.75)x(0.5, 1.0). 

A notable point is that the integration costs remain almost constant during each 
rotation of the pulse. This can be explained by the property of MFE to follow the 
characteristic curves of the PDE, thereby yielding almost linearly (in x and y) vary
ing grid speeds during the calculations. Note, that this is the optimal way to follow 
the rotating pulse. Also, the maximum value of the pulse shows no tendency to 
decrease as for other methods. In fact, the en-or in the peak of the pulse is less than 
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FIGURE 7.2. MFE solution for Example I (c=0) at t= 0.0, 0.5, l.0 and 2.0. 

l.E-4 even after several rotation periods. Both effects can be explained by refer
ring to equation (3.2) with g=O. In contrast with [38], the grid structure now remains 
undistorted and well-adapted to the shape of the pulse. 

If we take a non-zero reaction term, for instance c=l or c=lO in (3.2), the results 
do not change dramatically. As for the previous case, the error induced by MFE for 
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the maximum amplitude is less than 1.£-4 for both c=l and c=IO. The time
integration costs are, say for c=l: STEPS= 95, JACS= 68, BS= 361 for the time
period 0$;t$;2. Again, this could be explained by the fact that the semi-discrete MFE 
system (2.7) is strongly related with equations (3.2), but now with g:;t:O. 

7.3.2. Application to reaction-diffusion equations 
For this type of PDEs a standard form for the right-hand side operator Lin (2.1) 

is 

L(u) = V·(D(u)Vu) + f (u,x,y,t), (3.4) 

with a diffusion coefficient D. MFE applications to this class of PDEs can be found 
in [2, 10, 17, 18,38]. 

In the folJowing numerical example, MFE is applied to a scalar reaction-diffusion 
equation. The effect of the penalty parameters £ 1 and £ 2 on the time-stepping pro
cess, the movement of the grid, and the quality of the solution, are examined, 
respectively. 

EXAMPLE II ('Flame propagation'): 
This example of the reaction-diffusion type is a model of a so-called single one

step reaction of a mixture of two chemicals [19] and stems from combustion theory. 
The right-hand side operator Lin (2.1) reads in this case 

L(u) = d liu + D(l+a-u)e-01u, (3.5) 

on the domain Q = (0, l)x(0, 1), subjected to the initial and boundary conditions 

u I r=o=l, 

du 
-::;--=0, at x=0, y=0, 
on 

u=l, at x=l, y=l. 

The dependent variable u here represents the temperature of the mixture. The 
parameter a is the heat release, D=Re 0 /a8 the Damkohler number, 8 the activation 
energy, and R is the reaction rate. For small times the temperature gradualJy 
increases in a circular area around the origin. Then, provided the reaction rate is 
large enough, at a finite time 'ignition' occurs causing the temperature to suddenly 
jump from near unity to 1 +a, while simultaneously a reaction front is formed which 
circularly propagates towards the outer Dirichlet boundary. When the front reaches 
the boundary the problem runs into steady-state. Following [ 1] we select the param
eter values a=I, 8=20, R=5, but choose a different value for the diffusion parameter 
d. While in [I] the diffusion coefficient d=l, we have here put d=0.1 as in [33]. A 
smaller diffusion parameter has the effect that the temperature front becomes 
steeper, particularly so upon approaching steady-state. With this choice of parame
ters the 'ignition' takes place at about t=.24 and the solution is in 'steady-state' at 
about t=.35. It is known (see, e.g., [13] for the one-dimensional case), that BDF 
codes need a rather smaIJ time tolerance TOL of, say 1.£-5, because of the different 
time-scales in the model. This is especially so to detect the start of ignition 
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accurately. Small errors at this time point result in significantly larger global errors 
later on. This 'local instability' of the model can be explained by inspection of the 
reaction term: for 1:<S;u:<S;l.8 its derivative dj /du is positive, for example 1.E +3 for 
u:::::J.6, resulting locally in growing solutions and for u~l.8 negative, for example 
-5.5E +3 for u:::::2.0, resulting in locally decreasing solutions, respectively. 

Since the initial solution is constant, we let MFE start on a uniform grid consist
ing of 21x21 moving grid points. The experiments shown below are separated in 
two different subcases. First, a standard value for d is chosen, viz., 1.E-9, while 
varying the first penalty parameter £1 from l .E -6 to 1. Second, with a fixed value 
for £1, viz., l .E -4, the effects of varying d within a range from 0 to 1 are studied. 

Figure 7.3 shows the grid and solution generated by MFE at some interesting 
points of time for the standard choice of parameters £1= 1.E -4 and £~= l.E -9. 
Although there is no exact solution available, the numerical solution may be com
pared with a 'reference' solution obtained by [33), where an adaptive grid with local 
refinement is used. Both solutions resemble very well, and both adaptive grids, 
although underlying totally different adaptation principles, indeed generate 
refinements in the same regions. Moreover, just as in Example III of [38), we see for 
this PDE (especially in steady-state, i.e., at t=0.35) a concentration of triangles in 
regions with large second derivatives. This corroborates the conjecture that for par
abolic equations in 2D there is a close relation between MFE and equidistribution 
principles. This is, unfortunately, only an experimental evidence, in contrast with 
the one-dimensional situation for which there is some theory available in this 
respect. 

Tables 7.2 and 7.3 show integration data for increasing values of £1 and £~, 
respectively. From Table 7.2 we note that the efficiency of MFE depends highly on 
the choice of £1• For very small values of this parameter the solution is still accurate, 
but is computed on a grid which moves not very smoothly in time. We also see, that 
for larger values of £1, the adaptivity of the method is influenced, while for too large 
choices the grid does not move at all. In this respect, the parameter £1, originally 
introduced in the minimization procedure to ensure the regularity of the mass
matrix, can also be seen as a smoothing parameter for the grid movement. The 
integration performance of MFE is in one aspect disappointing. If we calculate the 
ratio JA CS/STEPS as a function of £1, we see from the table that for £1 =l.E-4 this 
ratio is 0.34, i.e., when using MFE optimally, whereas for £1 =1 (a fixed grid) 
]ACS/STEPS is only 0.12. We may conclude, that the efficiency of MFE, at least 
for this testproblem, although resulting in accurate solutions, is strongly influenced 
by the choice of the intratriangular viscosity constant. The effect of the parameter 
£2 , introduced to keep the steady-state MFE system regular, is less important (see 
Table 7.3). In fact, £2 could have been chosen equal to zero for this example, since 
the steady-state solution still possesses a steep profile. Also, the time-integration 
process is not much influenced by this parameter, in contrast with the penalty con
stant £1• This can be seen in the second column of Table 7.3, where the number of 
time steps is almost constant for the smaller values of this parameter. Note, that a 
fixed (uniform) grid, with an inaccurate solution, is obtained, if we let £2 tend to 
infinity. In the case of a flat steady-state, as in the next numerical example, this so-
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FIGURE 7.3. Grids and solutions of Example II at t= 0.25237, 0.27653, 0.35000. 



called spring constant plays a more significant role. 

d STEPS JACS BS SOLUTION(*) GRID(**) 

l.E-6 1984 579 5928 O.K. NON-SMOOTH 

l.E-4 618 

l.E-2 502 

l.E-0 423 

d STEPS 

0 609 

l.E-9 618 

209 2188 O.K. 

93 1370 O.K. 

52 1066 BAD 

TABLE 7 .2. Example II: Variation of £T. 
(*): compared with the solution in [33] 

(**): this is, of course, a subjective notion 

JACS BS SOLUTION 

188 2105 O.K. 

209 2188 O.K. 

ADAPTIVE 

TOO SLOW 

FIXED 

GRID 

ADAPTIVE 

ADAPTIVE 
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l.E-6 635 186 2212 O.K. LESS NON-UNIFORM 

l.E-3 783 255 2839 INACCURATE ALMOST UNIFORM 

l.E-0 469 75 1250 BAD UNIFORM 

TABLE 7.3. Example II: Variation of d. 

7.3.3. Application to convection-diffusion equations 
For this type of PD Es a standard form for the righthand-side operator £ in (2.1) is 

L(u) = £ 11u - ~·Vu, (3.6) 

where, in general, £ is a small coefficient, and ~ a linear or nonlinear function of u. 
Depending on the proportion £/11~11, the PDE defined by (3.6) can be classified 
numerically as hyperbolic or parabolic. The numerical difficulties for this type of 
PDEs, in fact, arise because of this 'double' property: for do the PDE will be of the 
hyperbolic type, whereas otherwise the PDE will possess parabolic properties. MFE 
test results for this class of PDEs can be found in [10, 14, 21, 22, 28, 29, 38]. Since 
the displacement of solution fronts for this type of equations is mainly determined 
by the convection term ~-Vu, the complete movement may be defined by a per
turbed characteristic ODE system. In formulas: 

(3.7) 
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where r represents the position vector (x,yl, and f, hare some functions containing 
first and second order spatial derivatives of the solution u. Similar to the pure con
vective case (see Section 7.3.1), the semi-discrete MFE equations are now related to 
equations (3.7), of course without penalty terms (£1 =£2=0). In one space dimension, 
we can formulate the function f explicitly, both in the continuous and semi-discrete 
case, see, e.g., [12, 38]. In [4] it is shown that, in two dimensions, the MFE grid 
speeds are, in a certain sense, approximations to 

r = p + E ((Liu)Juw(Liu)yfuyy)1"· 

It is clear, that the perturbation term f, though multiplied by the small diffusion 
coefficient £, may be of importance in subregions of the spatial domain Q, where the 
solution of the PDE model possesses large first and second order derivatives, such as 
in boundary layers and steep transitions. Therefore, a proper treatment of the 
Laplacian-innerproducts in (2.7) is indispensable. 

The following two numerical PDE examples will show the performance of MFE 
for convection-diffusion equations. First, a simple linear PDE is discussed with the 
accent on the effects of the semi-discrete diffusion term, especially its effect in a 
boundary layer and for steady-state situations. The second example is a strongly 
nonlinear system of two PDEs, describing brine transport in a porous medium. Here, 
the weightfactors wj, which were defined in (2.4), play an important role. An addi
tional aspect in this example is the use of general second order flux terms. 

EXAMPLE III ('A linear model'): 
For this example we have chosen the convection term p to be constant: 

P=(P1,P2 )7' =(1,112)7°, and two different values for£: l.E-2 and l.E-3. The 
domain Q is the unit square and the boundary and initial conditions satisfy 

t=0: u=I for0:s;x::;;1111 and o::;;y:s;J/11, 

u = 0 elsewhere, 

t > 0: u = 1 for x = 0 and 0::;; y ::;; 1/11, and for y = 0 and 0::;; x::;; l/11, 

ciu a,; I an = 0, elsewhere. 

With these choices, the solution is a front that, starting as a small-sized block near 
(0,0), moves approximately with speed IIPII and direction p. After having reached the 
boundary, the solution u tends to a constant steady-state value of l for t➔00, as we 
have Neumann conditions on the remaining part of the boundary. Note, that this 
part of the computation is difficult, since the solution at the boundary is lifted from 0 
to I, while still obeying the Neumann conditions. 

In Table 7.4 the time-integration history is presented for E=l.E-2. Figure 7.4 
shows the grids and solutions at t=0.3, which is halfway the propagation phase of 
the front. Using the standard values Ej=l.E-4, £~=1.E-9 and TOL=I.E-3, MFE is 
applied to this test problem on a starting grid of 25x25 grid points, of which 13xl3 
are distributed uniformly over the block, and the remaining ones uniformly over the 
rest of the domain. 



157 

There are some interesting remarks to be made regarding the figures in the table. 
At first, we see a start-up phase, in which MFE tries to cope with the initial discon
tinuity u and the initial nonuniform grid. After that, the propagation phase of the 
solution dominates the performance of the moving-grid method. This can be seen 
from the almost constant time integration between t==0.25 and t==0.75. In this phase, 
MFE approximates a perturbed characteristic movement (see (3.7)), with a small 
perturbation term E f. Around t=l.0 the front hits the boundary, at which point the 
perturbation f is no longer negligible. As indicated above, this part of the computa
tion combined with the approach to steady-state takes many time steps. It must be 
noted, that, when taking a smaller diffusion coefficient, these effects appear even 
stronger. For E=l.E-3, the propagation phase until t==0.75 takes only STEPS=41, 
JACS= 24 and BS= 142, letting the characteristic movement of the grid points show 
better. On the other hand, the steady-state phase becomes proportionally more 
expensive. Until t=lO0.0, the diffusion takes over the integration process: 
STEPS= 333, JACS= 212 and BS= 1031. 

t STEPS JACS BS PHASE 

0.25 32 20 106 START-UP 

0.50 45 25 149 PROPAGATION 

0.75 57 34 200 PROPAGATION 

1.00 64 37 222 BOUNDARY EFFECTS 

100.00 119 64 381 STEADY-STATE 

TABLE 7.4. Example III: Integration history for E= 10-2 • 

EXAMPLE IV ('Brine transport in a porous medium'): 
This problem stems from hydrology and models the transport of salt in a porous 

medium [15]. In the present application we consider a particular model for isother
mal, single-phase (only fluids), two component (water and salt) saturated flow, 
which is constituted by a system of two PDEs basic to groundwater flow: a con
tinuity equation for the brine mass and a transport equation for the salt mass concen
tration. These equations are supplemented with two basic laws, viz., Darcy's law 
and Fick's law. After a few simplifications (see [34, 39]), the following system of 
two nonlinear PDEs determines the model 

aro npTt = -v'·(pJ) - pq·v'ro , (3.8a) 

c)p aro 
~npat + ynpTt = -v'·(pq) ' (3.8b) 
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where 

FIGURE 7.4. Grids and solutions of Example III at t=0.3 for 
E= 10-2 (left), 10-3(right). 

K 
q=--(VP-pg) (Darcy'slaw), 

µ 

J = -1JVco (Fick's Jaw). 

(3.9a) 

(3.9b) 



The 2x2 dispersion tensor is defined by 

a,L-a,T 
'lJ= (nDmo1+a.T I q I)/+ - 1 q-,-qqT, I q I = (qT q) 112 , 

To complete the physical model, an equation of state is added, given by 
~(P-P0 )+ym 

P = Poe • 
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(3.9c) 

(3.9d) 

In equations (3.8) and (3.9), the following notation is used: the quantities ro, P, p, n, 
µ, K, q, J and g represent, respectively, salt mass fraction, pressure, density, poros
ity, viscosity, permeability, Darcy velocity, dispersive flux and the gravity vector. 
Further, Dmol stands for the molecular diffusion, a,T for the transversal dispersion 
coefficient, a,L for the longitudinal dispersion coefficient, ~ for the compressibility, y 
for a salt coefficient, and p0, PO for reference density and pressure values. 

Some characteristic properties of PDE system (3.8) and (3.9) may be derived. 
First, it can be seen easily, that the matrix 'lJ is positive definite for I q I :;t:O. In addi
tion, however, it is noted that for I q I J,o the PDE system may, in some cir
cumstances, be not well-posed [32]. This ill-posedness could occur in special cases, 
such as in stagnation points or in vortices. In the present application the model does 
not suffer from these singular situations. Second, both dispersion coefficients a,T and 
a,L highly determine the character of equation (3.8a). Equation (3.8a) is of the 
convection-diffusion (advection-dispersion) type and, as usual, numerically difficult 
to solve if it is advection dominated. With the below selected initial and boundary 
conditions and the actual choice for a,T and a,L, steep travelling salt fronts are gen
erated. Further, a special feature of the model is that the compressibility coefficient 
~ is very small or even zero. If ~=0, then the 2x2-matrix multiplying the time
derivative vector (ro1,P1f is singular and (3.8b) is effectively replaced by an equa
tion without temporal derivatives. As we will use a stiff (implicit) ODE/DAE solver, 
viz., the BDF module of the SPRINT package, there is no need to distinguish 
between ~=O and ~:;t:O. Finally, it is known, that the pressure equation (3.8b) can, in 
certain circumstances, be approximated in a so-called Boussinesq sense, replacing it 
by the standard continuity equation V·q = 0. With the present conditions this results 
in a very smoothly varying pressure distribution P(x,y,t). For more information 
with regard to the PDE model, the interested reader is referred to [34, 39]. 

The application of MFE to this model needs an extra explanation. There are three 
additional aspects worth mentioning: 

1) The first aspect is the appearance of a matrix, not equal to the identity matrix, 
in front of the time-derivative. However, for this, only a minor modification is 
needed to apply the minimization procedure, which was explained in Section 7.2.1. 
No special difficulties are encountered when working out the innerproducts for the 
new semi-discrete formulation. 

2) The second aspect deals with the treatment of general second-order operators. 
This has already been treated in Section 7 .2.2. 

3) The third new aspect in this MFE-application is the use of the weight factors 
wj (see equations (2.6)). The wj were introduced to make it possible to let the grid 
movement equations (2.6b) and (2.6c) be dominated by certain PDE components. In 
the brine transport equation this possibility is very welcome. Since the pressure 
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gradients oP lox and oP lo y are expected to vary only slowly, the weight factor w 2 is 
taken zero. This means, that pressure effects are not taken into account in the 
moving-grid equations (2.6b) and (2.6c), and that the salt concentration changes 
take the responsibility for the grid movement (w 1 =l). 

In the present MFE-application constant values are taken for the permeability 
(K =l.E-10), viscosity (µ=l.E-3), porosity (n=0.4) and the molecular diffusion 
(Dmoi=0). Further, the model is subjected to initial and boundary conditions on the 
unit square (0, I )x(0, 1 ): 

w(x,y, 0) = O; P(x,y, 0) =Po-PI y, 

y = 0 and 2/11 < x < 8/11 : ow/on= 0, P = Po, 

y = 0 and x elsewhere w = Wo, P = Po, 

x = 0, 1 and 0 < y < I ow/on = oP/on = 0, 

y = I and 0 < x < I ow/on = 0, P = Po- p 1, 

where w0 , p 0 and p 1 are constants: w0=0.25, p 0=1.7E+5, p 1=0.7E+5. The 
remaining problem data are: ~=4.5£-10, y.=0.6923, p0=9.98£+2, P0=1.E+5 and 
g=(0,-9.Sll. The dispersion coefficients are chosen: ar=2.E-3 and aL=l.E-2. 

Under these conditions, the model describes an injection of salt water of a high 
concentration through two gates at the bottom of the domain. Due to the small 
values of aT and aL, and the boundary conditions imposed on the pressure com
ponent P, the solution w(x,y,t) of the PDE model is a travelling fresh/salt water 
front, moving from the lower boundary to the upper boundary. After having reached 
that boundary, the dispersion and the Neumann boundary condition take over the 
process, resulting in a smoothing out of the two fronts. For t sufficiently large the 
fronts disappear completely which means that the whole medium is filled with the 
high-salt concentration fluid. 

MFE is applied to this model with a starting grid of 3Ix21 gridpoints, of which 11 
gridpoints in the y-direction are distributed uniformly between 0 and 0.1 and the 
remaining ones uniformly over the rest of the domain. We have scaled the equations 
in such a way, that wand Pare of the same order of magnitude. Therefore, we can 
select one time-tolerance value for all DAE components, viz., TOL=l.E-3. The 
penalty parameter values are ET=l.E-4 and £~=1.E-8. Figure 7.5 shows the MFE 
solutions for w at some characteristic points of time. Since the solutions for p do not 
change dramatically, we leave them out of the discussion. We clearly see the move
ment of the grid points following the two salt fronts. The lower two plots picture the 
steady-state process, for which finally MFE renders a uniform grid. Table 7.5 gives 
the time-integration history belonging to this run. It is interesting to remark that the 
figures in Table 7 .5 are almost identical to the ones in Table 7.4. The four phases 
described in the previous example can also be recognized in this application: 1. the 
start-up phase, which costs a considerable number of STEPS for MFE to cope with 
the initial solution and grid distribution, 2. the propagation phase of the fronts, with 
a nearly constant time behaviour, for which the characteristic movement of the grid 
points is responsible, 3. the phase, in which the salt front hits the boundary and 4. 
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t STEPS JACS BS PHASE 

0.25 40 19 118 START-UP 

0.50 48 23 144 PROPAGATION 

1.00 59 25 174 PROPAGATION 

10.00 96 44 287 BOUNDARY EFFECTS 

l.E+6 146 71 423 STEADY-STATE 

TABLE 7.5. Example IV: Integration history. 

the steady-state phase. The last two phases account for almost 50% of the integra
tion effort. 

For practical simulations of the model there is a need for more general boundary 
conditions (flux-conditions) and smaller values for the dispersion coefficients. 
Smaller ay and aL have the effect to give yet steeper fronts in ro. However, to apply 
MFE on such cases, we need to consider a more careful treatment of the general 
second order flux terms (2.10), since they have a strong influence on the grid move
ment, especially in the steep parts of the moving front solution, and near steady
state. 

7.4. CONCLUSIONS 

As a member of the class of moving-grid methods, the moving-finite-element 
method (MFE) is able to accurately approximate solutions of PDE models in two 
space dimensions possessing steep local transitions. In this chapter MFE has been 
applied to PDEs with a different underlying background, viz., containing convec
tion, reaction and/or diffusion terms. In all examined cases, steep moving front solu
tions are satisfactorily followed by the semi-discrete moving-grid points. It must be 
stressed that compared with standard fixed-grid methods, a notable advantage of 
MFE is, that it can be used with a relatively small number of spatial grid points, 
when applied to PDEs with sharp transitions. 

The effect of the penalty parameters on the semi-discrete ODE system depends on 
the PDE to be solved. The first parameter, the intratriangular viscosity constant, £ 1, 

has an important influence on the efficiency of the time-stepping procedure. For 
small values the grid movement may become irregular, whereas for slightly larger 
values of £ 1 it can be seen as a grid-smoothing parameter. Too large values of £ 1 

yield an (unwanted) non-moving grid. The second parameter, the intratriangular 
spring constant, q, needs only to be used for PDEs with a flat steady-state solution, 
and, therefore, affects the time-integration process for large points of time. Further, 
the steady-state 'flame front' solution strengthens the conjecture, that, for parabolic 
equations, MFE is closely related to equidistribution principles. 

For convection-diffusion equations MFE resembles a perturbed method of 
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FIGURE 7.5. MFE solution of Example IV at 
t== 0, 0.1, 0.25, 0.5, 0.75, 1.E+6. 
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characteristics. The PDE diffusion coefficient plays an important role in this respect. 
Since MFE uses piecewise linear basis functions, second derivative terms are not 
well-defined. Several regularizations are possible to treat the troublesome innerpro
ducts. The diffusion term and, thus the choice of regularization, influences the grid 
movement around steep transitions, near boundary layers and also in near steady
state situations. 

MFE is applied to a brine transport problem in a porous medium. The weight fac
tors, introduced to emphasize or de-emphasize certain PDE components, are utilized 
to let the grid-movement of the method merely be driven by the first component, the 
salt mass fraction, which consists of steep moving fronts, and not by the second 
component, the pressure, which varies only little during the whole time-period. A 
special treatment, of the general flux term is carried out, using the average of the 
first derivatives of the solution, to cope with undefined innerproducts. 

Future developments to improve the performance of MFE, could contain: 1. the 
use of higher order basis/testfunctions, 2. the incorporation of an initial grid pro
cedure (see [5]), which could also be used for regridding after grid distortion, and 3. 
the implementation of general flux (Robin) boundary conditions. Finally, there is a 
need for more theoretical results with regard to moving-finite-elements in two space 
dimensions. 
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SUBJECT INDEX 

advection-dispersion, 126, 159 
anisotropy, 108 
arc-length monitor, 18, 50, 60, 96, 120 
artificial diffusion, 88 
asymptotic node-movement, 107 
asymptotic node-distribution, 107 

BDF, 25, 59, 76, 108, 122, 148 
Boole's rule, 80, 85, 90, 93 
boundary conditions for grid, 19, 51, 

113, 150 
boundary conditions for solution, 122 
brine-transport model, 126, 157 
Burgers' equation, 32, 73, 80 

condition number, 79 
convection-diffusion, 80, 108, 155, 159 
convection-reaction, 149 
co-ordinate transformation, 3, 12, 103 
curvature monitor, 50, 63, 129 

De-Boor-algorithm, 17 
DASSL, 25, 59, 122 
DIRK2, 76 
dispersion length, 126, 159 
Dwyer-Sanders PDE model, 60, 90 

efficiency, 10, 69, 142 
equation of state, 126, 159 
equidistribution, 4, 18, 50, 96, 108, 

113, 153 
exact solution, 85, 108, 111, 113, 150 

gradient-weighted MFE, 69, 104 
grid distortion, 108-113 
grid quality, 155 
grid rotation, 111 
groundwater flow, 125, 157 
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h-refinement, 1 
hyperbolic PDE, 38, 86, 111, 149 

initial grid (non-uniform), 39, 85, 88, 
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initial grid (uniform), 26, 35, 61, 64, 
81, 86, 110, 128, 153 

initial stepsize, 25, 60, 80, 128 
intemodal spring-force, 23, 73 
intemodal viscosity, 23, 73 
intratriangular spring-force, 145 
intratriangular viscosity, 145, 153 

Jacobian (evaluations), 27, 60, 80, 129, 
148 

Lagrangian, 11, 119, 123 
lumping, 123 

method of characteristics, 74, 104, 149 
method of lines (MOL), 2, 9 
midpoint rule, 18 
minimization of functional, 23, 71, 74, 

104,143 
Molenkamp test, 149 
mollification, 77, 146, 147 
monitor function, 4, 18, 50, 120 
moving-finite-difference method, 14, 

18, 47-67, 96, 117-139 
moving-finite-element method, 21, 71, 

81, 101-116, 141-165 
moving-grid interface (MGI), 122 

Newton iterations, 27, 60, 129, 148 
node-crossing, 23, 72, 75, 84, 111, 145 
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parabolic PDE, 26, 32, 60, 85, 105, 
113, 152 

parallelism, 23, 72, 75, 145 
Peclet number, 126 
penalty function, 23, 72, 75, 104, 110, 

113, 145 
piecewise linear function, 22, 71, 103, 

143 
point concentration, 19, 50, 96, 119 
polar co-ordinates, 122 
porous medium, 125, 157 
preconditioning, 78 

reaction-diffusion, 26, 60, 62, 90, 152 
recovery, 146 
regridding, 17,111,163 
regularization parameters, 15, 18, 23, 

50, 72, 75,120,145 
robustness, 9, 43, 81 
roundoff-error, 77 
r-refinement, 1 

second-order operators, 77, 146 
segment viscosity, 75 
serni-discretization, 13, 48, 71, 145 
shifting-pulse problem, 85 
shocktube problem, 92 
Simpson's rule, 80 
spatial discretization, 123 
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