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Chapter 1 

Introduction 

1.1. INTRODUCTION, SCOPE, AND BACKGROUND 

In this monograph some statistical aspects of classifications are considered. 
Two different meanings of the word classification should be distinguished: · 
first, that where structures are imposed on an hitherto unstructured class of 
objects, e.g. by defining subclasses, designing categorical, hierarchical, or taxo
nomic systems, secondly, that where individual objects are allocated to the 
different classes of such predetermined systems. 

We shall concern ourselves mainly with problems associated with the second 
meaning. Many activities result in such classifications. We are subconsiously 
recognizing, i.e. classifying, objects around us such as books, chairs, cats, dogs, 
etc. Taking action on the basis of such classifications is often completely 
interwoven with our everyday behaviour. Spoons, forks, knives are recognized 
as such and put into different boxes. Patterns are recognized as letters from 
which words and sentences are made. In these situations the observer feels no 
uncertainty about the true group membership of the observed objects. An 
assessment of the consequences of corresponding actions can be made without 
taking into account the fact that the objects could have been misinterpreted. 

However, there are many practical situations in which considerable uncer
tainty exists about a specific classification, and consequently the observer has 
to often reckon with a wide range of possible consequences of corresponding 
actions. For example, pathologists are often concerned with situations in which 
there is much uncertainty about the true disease a patient is suffering from. 

Much scientific work deals with the classification of objects, in both men
tioned meanings of the world. In disciplines like archeology, biology, psychol
ogy, medicine, etc., the task may be to design a categorical system, or, if such 
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a system has become available, to allocate objects or individuals to the 
different classes. 

Classification methods are studied from an abstract, i.e. not subject matter 
related point of view by techniques like discriminant analysis, pattern recogni
tion, statistical decision functions, cluster analysis, fuzzy sets, etc. Each of 
these techniques focuses, from its own point of view, on a smaller or greater 
part of the process in which relations are established between objects and 
classes. 

An ideal system such as a categorical system which partitions the overall 
population of objects into mutually exclusive subpopulations, may not always 
be expected to fully describe the real situation. Definitions may be more or less 
vague, or not enough knowledge is available. However, in this monograph we 
shall assume that a well-defined system with mutually exclusive classes, which 
are together exhaustive, is available. 

The classification or assignment of a specific object to a class or population 
will usually appear as a forced decision at the end of the process of investigat
ing relations between objects and classes. We shall consider models in which 
previous to the stage in which the classification is made, a set of probabilities 
has been computed for the object. One such probability indicates the probabil
ity that the object belongs to a specific population. Such probabilities are 
always conditional on the model specified. This means that in the statistical 
models we shall consider, these probabilities depend on the definitions of the 
populations, number of the populations, features selected, probability densities 
of these features for the populations, vector of scores of the objects on these 
features, and prior probabilities. 

If the above-mentioned model parts are all known then the probabilities, 
which we shall call posterior probabilities from now on, can be computed 
without statistical uncertainty. In practice, however, not all model parts are 
completely known. For example, the population probability densities of the 
features have to be estimated from past observations. The consequence is that 
the posterior probabilities are affected by statistical uncertainties. In this 
monograph we shall study, among other things, some aspects of these statisti
cal uncertainties in the posterior probabilities by means of the sampling distri
butions of the estimators of posterior probabilities. 

Most of the statistical models in this monograph can be described as fol
lows. The object under investigation is known to originate from one of k(;..2) 
populations II 1, •.• ,Ih. By means of the scores on p measurements, a p dimen
sional vector of scores x, characterizing the object, is obtained. We regard x as 
the outcome of a p dimensional random vector X. The probability distribution 
of this random vector X depends on the population the object comes from. 
Because it is unknown which population the object comes from, it is therefore 
unknown by which one of the k probability distributions the random vector X 
is described. Let these k probability distributions by which the populations 
II1, ••• ,IIk are characterized, have probability densitiesf1, •.. ,}k on thep dimen
sional outcome space f!l" of X. Then the object under investigation produces the 
probability density values f 1 (x ), ... ,fk(x) for the k populations. Often k so-
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called prior probabilities p1, ... ,pk, ~i=iPh=l can be assigned to the object. 
This assignment should be based on information which is conditionally 
independent of X given the population number. The meaning of these prior 
probabilities can be made clear by looking at the situation in which only the 
object and the k populations are given and no vector of scores of the object is 
available. In that situation the prior probabilities contain all the information 
we have about the group membership of the object. If we introduce the ran
dom variable T with 

P(T=t) = p1 , t = l, ... ,k 

where T describes the number of the population to which x belongs, then 
.2:XIT =t has density J;, t = l, ... ,k. The conditional probabilities Ptlx t = l, ... ,k 
are determined by the theorem of Bayes. We have 

Ptix = P(T=tlX=x) 
k 

= P(T=t)J;(x)/ ~ P(T=h)Ji,(x) 
h=I 

k 

= P1ft(x)/ ~ Ph/h(x) t = l, ... ,k. (1.1.1) 
h=l 

It is assumed that the numerical values of x,pl,···•Pk are given. If /1,---,fk 
would also be known, then also f 1(x), ... ,fk(x), and hence the posterior proba
bilities Pi1x, t = l, ... ,k, can be computed. _ 

However, in practice, the population densities / 1 , ••• ,fk are unknown. Often, 
only their functional form as an element of a class or family of densities can 
be postulated. Accordingly, let us assume that the k-tuple of population densi
ties is fully specified once the value is given of the underlying parameter 0 
which can be any element of the parameter set E>. Write / 1,0, ••• ,fk.0 for these 
population densities. As 0 is unknown, the values f 1,0(x), ... ,fk.0(x) in the 
observation vector x are unknown. Hence the posterior probabilities 

k 

P11xC0) = P1ft,0(x)/ ~ Ph/h,o(x) t= l, ... ,k (1.1.2) 
h=I 

(see (1.1.1)) are functions of the unknown parameter 0. This implies that they 
themselves have to be regard as unknown parameters. 

Throughout this monograph it is assumed that for each of the populations 
II1, ..• ,IIk a random sample of objects is given. Each object is characterized by 
its p dimensional vector of scores. Thus, data of the form 
xh 1, ... ,xhn.ElliP,h=l, ... k, the so-called training samples, are available to us 
and regarded as outcomes of the independent random variables 
xhl,···,Xhn.,h=l, ... ,k, where xhj has density Ji,,0,h=l, ... ,k;j=l, ... ,nh. 
Further, let XIT =t have density J;, 0 • From the training samples the unknown 
parameter 0, the unknown values Ji,, 0(x), h = l, ... ,k, and the unknown posterior 
probabilities Phix(0), h = l, ... ,k can be estimated. If R11x denotes an estimator 
for Pi1xC0), then R11x=r1,x,p,, ... ,p,(X11,--·,Xkn) where r is a suitable function. 
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Now, let n =n 1 + · · · +nk, and 

R-lx = (R Ilx, ... ,Rklxf and P-1AB) = (P11AB), ... ,pklx(Bf. 

The asymptotic distribution of n l/2(R.
1
x - P-1AB)) for various models will be 

one of the main objects of study of this monograph. 
Strong emphasis on the statistical uncertainties in estimates of posterior pro

babilities can be found in the following publications. SCHAAFSMA (1976) 
presents the asymptotic distributions of some statistics useful in obtaining such 
results. MCLACHLAN (1977) studied the asymptotic bias of posterior probabili
ties in a k = 2 model, but ignored the asymptotic variance. ScHAAFSMA and 
VAN V ARK (1977) present asymptotic distributions of estimators for posterior 
probabilities in the case k = 2, p = 1 under assumptions of normality of the 
population distributions and equality of the variances. In SCHAAFSMA and 
v AN V ARK (1979) results for the multivariate case p ~ I can be found. They 
assume k = 2 and equality of covariance matrices. In AMBERG EN (1981) their 
results have been extended to the case k~2,p ~ 1 and equality of the covari
ance matrices. This latter publication also presents variances and covariances 
of some related statistics. AMBERGEN and SCHAAFSMA (1982) consider the case 
k~2,p~I, normality of the population densities, both for the situation of 
equality of covariance matrices and for the situation in which no assumptions 
about the equality of covariance matrices are made. This latter publication 
also theorizes about the nonparametric approach where kernel estimators are 
used for the estimation of posterior probabilities. AMBERGEN (1984) gives 
asymptotic distributions of estimators for posterior probabilities in the situa
tion that both continuous and discrete variables are involved. AMBERGEN and 
ScHAAFSMA (1983, 1984) studied, as an application of the theory of estimating 
posterior and typicality probabilities, the origin of the Border Cave cranium, a 
subject well-known in physical anthropology. AMBERGEN and SCHAAFSMA 
(1985) compare four estimators of posterior probabilities under the assumption 
that the populations have normal densities. 

Further relevant articles are those of SCHAAFSMA (1973, 1982, 1983, 1985a, 
1985b ). A credibility interval for the posterior probabilities has been derived 
by RIGBY (1982). CRITCHLEY and FORD (1984a, 1984b, 1985) studied uncer
tainties in certain statistics, e.g. estimators of log-odds, which are basic to the 
estimation of posterior probabilities, in k = 2 models. They introduced plots 
displaying the discriminant scores together with the statistical uncertainties in 
the corresponding log-odds. RuAL (1984) extended their work to the case of 
unequal covariance matrices. AITCHISON, HABBEMA, and KAY (1977) com
pared the estimative method with the predictive method (see section 3.5). 
HABBEMA, HILDEN, and BJERREGAARD (1978, 1981) studied the measurement 
of performance in probabilistic diagnosis. Various types of scoring rules 
played a major role in their research. HERMANS and HABBEMA (1975) com
pared five methods to estimate posterior probabilities. HERMANS et al. (I 981) 
evaluated several methods of discriminant analysis by means of posterior pro
babilities and penalty scores. They studied the reliability of the estimated pos
terior probabilities by means of equation (9) of HABBEMA, HILDEN, and 
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BJERREGAARD (1978,II). GANESALINGAM and MCLACHLAN (1979) analysed 
data of HABBEMA, HERMANS and VAN DEN BROEK (1974) by computing 
discriminant functions and posterior probabilities. They tried to obtain some 
idea of the reliability of the estimated posterior probabilities by comparing the 
results of the two methods. 

Recent publications closely related to the subject of this monograph, are the 
following ones. CRITCHLEY, FORD, and RIJAL (1988) present methods based 
on the profile log-likelihood with the aim of improving the small-sample pro
perties of interval estimates for posterior log-odds. CRITCHLEY, FORD, and 
RIJAL (1987) review a number of methods. CRITCHLEY, FORD, and HIRST 
(1988) present an evaluation of methods of interval estimation for log-odds by 
applying them to a set of medical data. CRITCHLEY, FORD, and HIRST (1987) 
deal with a possible simplification of the profile log-likelihood method. 

Some of the results presented in this monograph have been implemented in 
the computer program POSCON, that has been programmed by D.M. van der 
Sluis. The program computes estimates of posterior probabilities, standard 
deviations, and correlations between them. An important facility, which has 
been implemented in this program, is that the set of variables is allowed to be 
partitioned into a number of subsets which are regarded as independent. To 
each of the subset one of the models, to be considered in the next chapters, 
can be applied. See the manuals of the computer program by VAN DER SLUIS, 
SCHAAFSMA and AMBERGEN (1985, 1986), section 5.2 of this monograph for a 
short description, VAN DER SLUIS and ScHAAFSMA (1984), and SCHAAFSMA and 
AMBERGEN (1987). 

The subject of selecting variables has not been treated in this monograph. 
For a recent study and survey we refer to STEERNEMAN (1987). 

In many practical discrimination problems both continuous and discrete 
variables are involved. For example in medicine a differential diagnosis is 
often based on discrete variables, e.g. symptoms which are present or absent, 
as well as based on continuous variables, e.g. clinical tests. A method often 
used in this situation is logistic discrimination. See Cox (1966, 1970), DAY 
and KERRIDGE (1967) and ANDERSON (1972, 1973). The inverse of the 
Fisher-information matrix of corresponding maximum likelihood estimators 
can be used to give standard errors of the logistic posterior probabilities. By 
means of iterative algorithms the maximum likelihood parameters are com
puted. The logistic approach is also used if all variables are of one type, 
discrete or continuous. The logistic posterior probabilities are equal to the 
classical posterior probabilities for example when the variables are (I) multi
variate normal with equal covariance matrices, (2) multivariate dichotomous, 
(3) multivariate dichotomous following the log-linear model with equal second 
and higher order effects, (4) a combination of (I) and (3), (see ANDERSON 
(1973)). Many have applied the logistic approach. For example, KRusINSKA 
(1981, 1982) uses iterative algorithms for the maximum likelihood estimators of 
the parameters of the logistic discriminant functions in order to compute pos
terior probabilities in a k =2 (k?32, respectively) model with data from 
exponential families of distributions. The measure of the goodness of 
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discrimination is the percentage of correctly classified individuals. 

1.2. CHAPTER OUTLINES 

In this section a short survey will be given of the subjects to be studied in the 
following chapters. 

In chapter 2, the main result of this research, the asymptotic distribution of 
the estimator of the vector of posterior probabilities is derived for a wide class 
of models. Each of these models has k-;;. 2 populations and p-;;. 1 variables. 
We distinguish between models in which all variables are discrete, those where 
all variables are continuous, and models in which some variables are discrete, 
the other ones being continuous. If all variables are continuous, then it is 
assumed that they follow a multivariate normal distribution. If both continu
ous and discrete variables are involved, then the normality of the continuous 
variables is assumed to be conditional on the discrete ones. Further, some spe
cial cases are specified by assuming equality of covariance matrices of mul
tivariate normal distributions for some special groups of outcomes of the 
discrete variables. 

Chapter 3 starts with the standard construction of Bayes rules in situations 
where the parameters of the population densities are known. Some applica
tions of Bayes rules to relevant problems with normal densities are given. 
Next, in situations where parameters of the population densities are unknown, 
the asymptotic distribution of the posterior probabilities is used in various 
ways. Further, attention is paid to situations where a forced decision has to be 
taken. The fully Bayesian approach is also considered. 

In chapter 4 various miscellaneous results are given. For models with mul
tivariate normal distributions, the non-existence of unbiased estimators of the 
posterior probablities is established. Unbiased estimators for various· quanti
ties such as (1) the value of the multivariate normal density in a specified 
point, (2) the value of the log-odds, and (3) the logarithm of the multivariate 
normal density, are derived. Variances and covariances of the last two estima
tors are obtained. Further, various methods of constructing confidence inter
vals for posterior probabilities are compared. 

In chapter 5 a numerical application is studied, a short description of the 
computer program POSCON is given, and a simulation study is carried out. 
The application concerns a case from physical anthropology, namely a cranium 
found in Border Cave in South Africa. The computations were performed by 
a computer program written by the author. The computer program POSCON 
is a new, extended version of this earlier program. Section 5.3 deals with a 
simulation study where both discrete and continuous variables are involved. 
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Derivation of the asymptotic distribution of the 

estimator for the vector of posterior probabilities 

2.1. INTRODUCTION AND SUMMARY 

7 

In this chapter the asymptotic distribution of the estimator of the vector of 
posterior probabilities is derived for various models. The models have in com
mon that k;;;.2 populations are involved about which information is available 
through so-called training samples. The vector of scores of the individual or 
object we want to study, as well as the prior probabilities for each of the k 
populations for this individual or object are given. The posterior probabilities 
belonging to the individual or object are considered as parameters which are 
estimated from the training samples. 

In this chapter we shall use the notation in which X refers to a continuous 
random vector, D to a discrete one, and (X,D) to a random vector consisting 
of continuous as well as discrete components. Y will be used in the discussion 
of the general situation covering each of the three cases. Let the vector of 
scores of the individual or object under investigation be denoted by y, which is 
considered as a realisation of the random vector Y. Let T be the random vari
able which describes the number of the population the vector of scores y 
comes from, and let 

P(T=t) = p1 , t= 1, ... ,k 

denote the prior probabilities which are assumed to be given. The conditional 
distribution ~YIT=t) depends on the unknown parameter 0E0, usually 
through some subvector 01, t = 1, ... ,k. Let ~YIT=t) have the Radon
Nikodym derivative f,, 0 with respect to some measure o on the outcome space 
of Y, (t = l, ... ,k). In our models the measure o will be (1) the Lebesgue meas
ure, or (2) the counting measure, or (3) the product of (1) and (2). The poste
rior probabilities P,[y(O) are given by 
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k 

P11r(0) = Ptft,o(y)I}:, Phfi,,o(y) t = 1, ... ,k (2.1.1) 
h=I 

(see (1.1.2)). These posterior probabilities depend on the unknown parameter 
0. We shall estimate P,1r(0), t = 1, ... ,k from the training samples Y11,••·,Ykn, 
which are considered outcomes of the independent random variables 
Y11 , ••• , Ykn,· The random variable Yh; has the same distribution as Y given 
T =h (i = 1, ... ,nh; h = 1, ... ,k). Let R11r be an estimator of P11r(0),t = 1, ... ,k. Of 
course, R 11r is a function of Y 11 , ••• , Ykn,· We shall use the notation 

R.1r = (R 11r,···,Rklrl and P-1r(0)=(P11r(0), ... ,pklr(0))7. 

Let 00 be the real but unknown parameter point. Further, let 
n=n I + · · · +nk. We shall derive that 

2n I12(R.1r-P-iy(00) - Nk(0,'¥00 Mo0 '¥00 ) (2.1.2) 

where '1'00 is the k Xk matrix of partial derivatives of P-1r(0) with respect to 
1ogft. 0(y), t = 1, ... ,k evaluated at the point (logf1,00 (y), ... ,logfk.00 (y)f. From 

k 

P11r(0) = P1exp(Iogft.o(y ))/ }:, Phexp(IogJi,,o(y )) 
h=I 

t = 1, ... ,k, we have that '1'00 is specified by 

'¥00,11 = P1[y(0o)(l-p11r(0o)) t = 1, ... ,k (2.1.3) 

(2.1.4) 

The matrix M 00 has size k X k and depends on the model assumptions to be 
imposed. Note that '1'00 can also be written as 

'¥ 00 = diag(P-1r(0o)- P-1r(0o)Pf/0o) 

where diag means diagonal matrix. Further, note that '¥ 00 is symmetric and 
that J'I' 00 I =0. 

Instead of P-1r(00), '1'00 , and M 00 , expressing that the vector of posterior pro
babilities and the two matrices depend on 00 , we shall usually use the shorter 
notations P-1r, '¥, and M, respectively. 

The derivation of the asymptotic result of (2.1.2) for various models will be 
the subject of this chapter. 

Three different kinds of model will be studied. These differ from each other 
in the types of components of the random variables Y and 
Yh;, i = l, ... ,nh; h = 1, ... ,k. Let there be q components of discrete type and p 
components of continuous type. We distinguish between 

(I) all discrete; q>0,p =0, 
(2) all continuous; q=0,p>0, 
(3) both continuous and discrete; q >0, p >0. 

For the reader's convenience, the corresponding results are mentioned below. 
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The proofs will be given in the sections 2.3 up to 2.6. 

Ad(l). (All components are discrete). Let us, for notational convenience, 
transform the q discrete random variables into a new one. Let the categories 
of this new random variable be numbered from 1 up to d(,;;;; oo ). Usually, this 
number d is the product of the numbers of categories of the q original random 
variables, but in practice some recoding may be applied reducing the number 
of categories. Accordingly, we work with the independent discrete-valued ran
dom variables 

in which 

P(D=elT=t)=pie, e=l, ... ,d; t=l, ... ,k, 

t =l, ... ,k P(T=t)=p1 , 

P(Dh;=t/J=Phe' e= l, ... ,d; i = 1, .. -,nh; h = l, ... ,k, 

and 
d 

"'_2,phe= 1, h = l, ... ,k. 
e=I 

Let j denote the outcome of the random variable D. Then, using the natural 
estimator of the p11/s, i.e. that to be defined in (2.3.2), the elements of the 
matrix M in (2.1.2) are 

M 11 = b1- 1pij1(1-ptJ) t = l, ... ,k 

t,s = l, ... ,k; t=/=s 

where b1 is defined by nif n-b1, t = l, ... ,k, and y has been replaced by j. 

Ad(2). (All components are continuous.) We assume that the p continuous 
variables follow a multivariate normal distribution. So the independent ran
dom variables 

X,X11,---,Xln 1 ,···,Xkl,···,Xkn, 

are distributed as follows 

XIT = t ~ Np(µ,1, ~1) t = l, ... ,k 

P(T = t) =p1 t = l, ... ,k 

xhi ~ Np(µ,h, ~h) i = 1, .. -,nh; h l, ... ,k. 

Let J;(x) denote the J;, 0(y) of (2.1.1) then 

where 
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A~-1 = (x -µ1fL1- 1(x -µ1)-

It is natural to distinguish between situations where equality of the dispersion 
matrices L1 , ... ,Lk is imposed, case (A), and those where this assumption is not 
made, case (B). As a consequence, different estimators will appear each having 
its own asymptotic distribution. 

(A). (Equality of dispersion matrices: L1 = · · · =Lk=L.) We distinguish 
between two ways of estimating the posterior propabilities. 
(A.I). Because of the equality of dispersion matrices the factors 

I I 

(2?T)-2PJL1J-2 can be cancelled in numerator and denominator of (2.1.1). 
Then using the estimator to be defined in (2.4.16) the matrix M of (2.1.2) 
becomes 

t = l, ... ,k 

(A.2). The factors mentioned under A. l are not cancelled. Using the estima
tors to be defined in A.2 of section 2.4 the matrix M becomes 

I _ I 
Mu = 2 p + (b1 1 - l)A~;t + 2 A!;t 

for t,s = l, ... ,k; t~s. 

REMARK. The matrices M presented under A. l and A.2 are different. The first 
one is the covariance matrix of the asymptotic distribution of 

112-.!_ ~z J_ 2 _ 
n ( 2Ax;t- 2Ax;1), t -1, ... ,k. 

Whereas the M under A.2 is the covariance matrix of the asymptotic distribu
tion of 

However, if the Ms are premultiplied and postmultiplied by the matrix 'I' 
specified in (2.1.3) and (2.1.4), the composed matrices 'I' M'I' are equal for both 
approaches. Therefore, the asymptotic distributions of the estimator of the 
vector of posterior probabilities are equal for both approaches. 

(B). (No assumptions about the dispersion matrices.) With the estimators to 
be defined in B of section 2.4 matrix M becomes 

I -
Mu = 2 b1 1(p +A!;1) t = l, ... ,k 

t,s = l, ... ,k; t~s. 
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REMARK. If L1 = · · · = Lk is assumed then a comparison . between the 
matrices M under A.2 and B is of interest as a check on the validity of the for
mulas. The matrices M under B and A.2, which are the covariance matrices of 
the asymptotic distribution of n 112(logf(x)-logf(x)), have the property that 
their difference is positive definite. For this verification see remark after 
theorem 2.4.4. 

Ad(3). (Both continuous and discrete components.) The discrete variables are 
combined into one discrete variable. We assume further that the p continuous 
variables have conditional on the discrete variable a multivariate normal distri
bution. We work with the independent random variables 

(X,D), (XJ1,DJ1), ... ,(X1n 1 , D1n), ... ,(Xk1, Dk1), ... ,(Xkn,,Dkn) 

in which 

XID = e, T=t ~ Np(J1,1e,Lie) t=l, ... ,k; e=I, ... ,d 

P(D = e1T=t) =pie t= 1, ... ,k; e= 1, ... ,d 

P(T=t) = Pt t=l, ... ,k 

and 

Xh;IDhi = e ~ Np(µ,he, Lhf) i=l, ... ,nh; h=l, ... ,k; e = I, ... ,d 

P(Dh; = 0 = Phe i=l, ... ,nh; h =1, ... ,k; e = 1, ... ,d. 

Again different cases are generated by making different assumptions about the 
dispersion matrices Lhe ,h = 1, ... ,k; e= 1, ... ,d. In each of the cases a special esti
mator for the posterior probabilities will appear. These estimators differ in the 
way in which the dispersion matrices LhJ,h = 1, ... ,k are estimated; here j comes 
from the realisation (x,j) of (X,D). The four cases presented below are special 
situations of the more general results to be presented in theorem 2.5.2 and 
2.5.3. We have for the matrix M of (2.1.2) that the following results hold true. 

First. (No assumption about L 11, ... ,LkJ·) 

M,, = b,- 1 { ;p,:,1 IP Hi "j) + p ,:,1 (1-p,;)} 

M1s = 0 

for t,s = 1, ... ,k; t=i=s. 

Second. (Assumption LhJ = · · · =Lhd, h = 1, ... ,k.) 

M,, = b< 1 {; IP Hi "j) + plj 1(1-p,;XI + IIL;l} 

M,s = 0 

for t,s = l, ... ,k; t=/=s. 
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Third. (Assumption ~IJ= · · · =~kJ-) 

Mu= h;- 1 rij1(1-Pt) + pij 1Li;;tJ} 

+ (±PhJbh)-1 {~p -Li;;11+-½Li;;1J} 
h =I 

Mis = -½( f Phibh)-I fp-Li;;tj-LiLJ + Li;;tjsj} 
h=I t 

for t,s = 1, ... ,k; t=/=s. 

Fourth. (Assumption ~ 11 = · · · =~kd-) 
1 1 

Mu = b,- 1plj1(1-ptj+LiLJ> + 2 p-Li;,1J+2Li;;tj 

1 12 __!_2 J_4 
M,s = 211-2Lix;tJ- 2Lix;sj+ 2Lix;tjsj 

for t,s = 1, ... ,k; t=/=s. 
In the above mentioned results the following notations were used: 
Li;;tjsj=(x-µtjf~u/(x -µsJ) with u =tor u =s, and Li;;tJ = Li;;tjtj· 

REMARK. The results of the discrete case under ad(l), and the continuous 
cases A.2 and B under ad(2) can be derived as special situations of these for
mulas. The discrete case is obtained from each of these four cases by taking 
p =O, and Li;;11 =Li;;sJ=Li;;tJsJ=O. If the discrete variable has only one possi
ble outcome then the continuous variables are the only interesting ones. 
Therefore, with p11 = 1, tj replaced by t, and tjsj replaced by ts, we obtain that 
case first becomes B, second becomes B, third becomes A.2, and fourth 
becomes A.2. For more of such special derivations, especially those who give 
A.I, we refer to the remarks after theorem 2.5.2 and 2.5.3. 

In many applications one can throw doubt on the assumption of normality 
and especially that of equality of covariance matrices. In such situations a 
suitable approach is to do tests about the normality and equality of covariance 
matrices in order to get a decisive answer. Possible transformations of the 
data may precede these tests. 

If the normality is rejected, and eventually other types of parametrized den
sities are rejected too, one can always fall back upon nonparametric methods 
with kernel and window estimators. Such methods for obtaining the popula
tion densities are often based on the minimization of the integrated mean 
squared error, which is the variance plus the squared bias. See the early arti
cles of ROSENBLATT (1956), PARZEN (1962), and CACOULLOS (1966). A review 
article about the subject is BEAN and TsoKos (1980). The sensitivity of the 
estimated population densities for the width parameter can cause large stan
dard errors in the estimates of the posterior probabilities. Asymptotic distribu
tion results for posterior probability estimates based on nonparametric 
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methods with kernel estimators can be found in e.g. AMBERGEN and 
SCHAAFSMA ( 1982). 

Simulation-based comparative studies on the quality of the linear, quadratic, 
and kernel discrimination have been done by e.g. REMME et al. (1980) for 
multinormal, lognormal, etc. distributions. Their criterion for the goodness of 
discrimination is the percentage of correct classifications. See also articles of 
HABBEMA et al. (1974, 1978). 

The effects of dimension on the percentage of correct classification for 
linear, quadratic, and kernel discrimination were studied by e.g. VAN NESS 
and SIMPSON (1976) and VAN NESS (1979). 

By means of the bootstrap method, standard errors or confidence intervals 
for the posterior probability can also be obtained. As references to the 
bootstrap method we mention EFRON (1977, 1981, and 1982). The percentile 
method, described in EFRON (1981) section 4, can be used for obtaining a 
confidence interval for the posterior probabilities for each of the earlier men
tioned models. 

Dealing with both discrete and continuous variables, KRusINSKA (1984) 
transforms the discrete variables into linguistic variables using a transforma
tion method of SAITTA and ToRAsso (1981). Thereafter linear or quadratic 
discrimination functions can be applied. For linguistic variables and related 
membership functions of fuzzy sets, see ZADEH (1965, 1975, and 1976). 

The type of distribution used for the case of both continuous and discrete 
variables in ad (3) and in section 2.5, is a special one of the class of conditional 
Gaussian distributions presented in LAURITZEN and WERMUTH (1984). They• 
studied so-called mixed-interaction-models for a set of continuous and discrete 
variables using conditional Gaussian distributions. If there are q discrete and 
p continuous variables, i belongs to the outcome space of the discrete ones, 
and y to the outcome space of the continuous ones, then the probability func
tion of a conditional Gaussian distribution is given by 

j(i,y) = exp{g(i) + h(ify- ~YT A(i)y} 

where g is a real valued function of i, h is a vector valued function of i taking 
values in lllP ,A(i) is a p Xp matrix valued function of i taking values in the set 
of positive definite symmetric matrices. Easy to see that the continuous vari
ables given the discrete ones follow a multivariate normal distribution. In 
LAURITZEN and WERMUTH (1984) a mixed-interaction-model is represented by 
a graph. A vertex of the graph corresponds to a variable. Connections 
between vertices by line segments have the following meaning. If for any pair 
of vertices, not directly connected with each other, the corresponding variables 
are conditionally independent given the remaining variables, then the model 
has the G-Markov property. Interesting is that a conditional Gaussian distri
bution has the G-Markov property if and only if it is G-Gibbsian. This latter 
property means that the logarithm of the probability function has an expan
sion in which the index runs over those subsets of the discrete variables whose 
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corresponding vertices are all directly connected with each other. The func
tions used in such an expansion depend only on the variables of the index ele
ment. For the conditional Gaussian distributions this becomes, for example 

I 
logf(i,y) = ~ q,a(i)+ ~ 71a(ify-2 ~yT'Ya(i)y 

dka dka dka 

where A is the set of all discrete variables. See also DARROCH, LAURITZEN, 
and SPEED (1980), EDWARDS (1986), and GILL (1985). A recent publication 
about this and related subjects is WERMUTH and LAURITZEN (1987). 

2.2. MAIN LINE OF THE DERIVATION 

A central role in the derivation of the asymptotic distribution of the estimator 
of the vector of posterior probabilities is played by the "8-method" which is 
formulated in lemma 2.2.1. The dispersion matrix of the asymptotic distribu
tion of the estimator of the vector of posterior probabilities is given in (2.1.2) 
as the product of three matrices. This is a consequence of the 8-method. 

LEMMA 2.2.1 
If 

.It'n 112(Yn -71) - Np(0,~) 

for some sequence of p-dimensional random vectors Yn, n = 1,2,... and 
g=(g 1, ••• ,gq}7: RP-Rq is differentiable in T/ while 

a _ a a T 
--;- - (-'.I-, ... ,-'.}-) 
vX vX1 vXp 

and 

then 

.:t'n 112(g(Yn)-g(71)) - Nq(0, 'v g('q)~('v g('q)f). 

This lemma can be found, for example, in SERFLING (1980), section 3.3, 
theorem A. Application of this lemma in the derivation of the asymptotic dis
tribution of the estimator of posterior probabilities for the cases of the follow
ing sections, will be along the following lines. First, the asymptotic distribp
tion of the estimator of the vector () of unknown parameters is derived. Let On 
be the estimator of () and let n =n 1 + · · · +nk. We shall see that, if 
nhln-bh E(O, oo ), h = l, ... ,k, in all cases 

.It'n 112(8n-())- Nk(0,A) (2.2.1) 

where A depends on the model specified. The next step is the derivation of 
the asymptotic distribution of the estimator of the k logarithms of the Radon-
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Nikodym derivatives in the score vector y of the individual unde_!" investigation 
by ,!ipplying lemma 2.2.1. Let logfo(y)=(logf1,u(y), ... , logfk.u(y)f and let 
logfn(y) be the estimator of the vector logfo(y ), then 

!Fn 112(log.fn(y)- logfo(y)) - Nk(O,M) (2.2.2) 

where M depends on the model specified. M can be written as the product of 
three matrices, say M =AAA r, where A is given in (2.2.1) and A is the matrix 
of partial derivatives of logfo(y) in the point ()_ An exception to this step is 
the derivation to be given in section 2.4 for the case of equality of dispersion 
matrices. In that case the asymptotic distribution of the estimator of the vec
tor of squared Mahalanobis distances Ll;,1, t = 1, ... ,k is derived, instead of the 
asymptotic distribution of the estimator of the vector of the logarithms of den
sities. See also the remark under ad (2) in the previous section. The third step 
is the derivation of the asymptotic distribution of the estimator R ·IY of the vec
tor of posterior probabilities P·!Y· With lemma 2.2.1 we get 

.Pn 112(R.IY - P-i),) - Nk(O, 'Y M'Y) (2.2.3) 

where M is given in (2.2.2) and '1' is the matrix given in (2.1.3) and (2.1.4). 
There are some advantages in the availability of the asymptotic distribution 

of the estimators of the logarithm of the Radon-Nikodym derivatives in (2.2.2). 
Suppose that the set of component variables of the random vector Y is parti
tioned into s subsets which henceforth are regarded as mutually independent. 
Lety=(y(l), ... ,y<s)) denote the score vetor, in whichy<i> is the score vector of 
the j-th subset. The postulated independence implies that 

and 
s 

log.fiz.o(y) = ~ logfi/,b (y<i>) 
j=I 

where fi(,1 is the Radon-Nikodym derivative which belongs to the J-th subset 
of variables. The independence between the subsets implies that the dispersion 
matrix of the asymptotic distribution of 

n 112(log.fn(y )-logfo(y )) 

is the sum of the dispersion matrices of the asymptotic distribution of the 

n 112(log_?n>(yv>)-logfei)(y<i>)) 

j = 1, ... ,s. This obvious but useful result has been implemented in the POS
CON computer program to be discussed in section 5.2. More precisely, it is 
the basis of the incorporated update system: as the log-density estimates and 
the corresponding dispersion matrices are sums, a recursive implementation is 
allowed. 
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2.3. DISCRETE CASE 

In this section the asymptotic distribution of the estimator of the vector of the 
k posterior probabilities will be derived in the case that there are only discrete 
variables. Let the discrete variables be recoded into one discrete variable with 
d cells or categories as possible outcomes. Let Phe be the probability mass in 
cell e of population h, e= 1, ... ,d; h = 1, ... ,k. The object or individual for which 
we want to compute the posterior probabilities has such scores on the original 
discrete variables that in terms of the recoded variable its outcome is in cell j. 
Let D denote the recoded variable which generates this observation, then 

P(D= JIT=t)=P1J t= 1, ... ,k; j= 1, ... ,d 

where T is the variable which describes the number of the population the 
observation comes from. This T has distribution 

P(T=t)=p1 t = 1, ... ,k. 

These p/s are the prior probabilities. The posterior probabilities are given by 
k 

Pt[i = P(T=tiD=j) = P(T=t,D=j)I 2, P(T=h, D=j) 
h=I 

k 

= P(T=t)P(D=JiT=t)I ~ P(T=h)P(D =JiT=h) 
h =I 

k 

= P1P1/ 2, PhPhJ t = 1, ... ,k. 
h =I 

We shall use the notation P-[i=(P1[i,···,Pk[if-

(2.3.-1) 

Estimators of the posterior probabilities are function of the independently 
distributed random variables 

where 

P(Dhj=e) = Phe e= 1, ... ,d; h = 1, ... ,k; j = 1, .. -,nh· 

We shall use the notation R1li for the estimator of Pi[i, t = 1, ... ,k and write 
R.u=(R1[i,···,Rklif. Define 

1111 

Nhe = ~I{Dh;=e} h=l, ... ,k; e=l, ... ,d, 
i=l 

for the number of observations in cell e of training sample h. Write 

Phe = n;; 1 Nhr h = 1, ... ,k; e= 1, ... ,d, 

and let the estimator of the posterior probabilities be defined by 
k 

R1[i = P1P1/ 2, PhPhJ t = 1, ... ,k. 
h=I 

(2.3.2) 
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The variables Nhe, h = l, ... ,k; e= l, ... ,d; d < oo, are components of the random 
vector (Nh 1, ••• ,Nhd) following the multinomial distribution M(nh;Phl,···,Phd), 
h = l, ... ,d. The expectations, variances and covariances are given by 

ENhe = Phenh 

VARNhe = PheO-Phe)nh 

COV(Nhe,Nhm) = -PhePhmnh 

with as a consequence that 

Ephe = Phe 
A - I V ARphe - PheO - PM)nh 

A A _ -1 
COV(fthe, Phm) - -phefhmnh 

where, of course, h = l, ... ,k; e= l, ... ,d, and m = l, ... ,d. For nh tending to 
infinity the following result can be formulated for h = l, ... ,k 

A 

Phi Phi 

A 

Phd Phd 

where Vi is defined by 

Vi,tt = PhrO -phr) 

and 

t =l, ... ,d 

Vi,ts = -phsPhr t,s = l, ... ,d; t=/=s. 

(2.3.3) 

See, for example, CRAMER (1946) p. 318 or BISHOP et al. (1975) p. 470. It can 
be proved by establishing convergence of characteristic or moment generating 
functions. Another way to prove result (2.3.3) is by means of the multivariate 
central limit theorem to be formulated in section 2.4, see (2.4.8). From (2.3.3) 
and the independence between Phi, h = l, ... ,k for i fixed, it follows that 

Plj Plj 

!f'n 112 (2.3.4) 

Pkj Pkj 

where W is the diagonal matrix defined by 

Wu= h;- 1p1/l-p1j) t=l, ... ,k 
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and where n1/n-b1, t = l, ... ,k, n =n 1 + · · · +nk and, as indicated earlier, j is 
the cell containing the score of the individual under investigation. With 
lemma 2.2.1 we obtain 

Iogp 11 Iogp IJ 

.ff'n112 

where M is the diagonal matrix specified by 

Mu = b~ 1pij 1(l-p1) t = l, ... ,k. 

Once again applying the o-method (lemma 2.2.1) we obtain 

THEOREM 2.3.1 . 

.fen 112(R.u - P-u) - Nk(O, 'V M'lt) 

(2.3.5) 

(2.3.6) 

where Mis defined in (2.3.6) and 'V in (2.1.3) and (2.1.4) (Y has been replaced by 
J). 

2.4. CONTINUOUS CASE 

In this section we shall derive the asymptotic distribution of the estimator of 
the vector of posterior probabilities if the k populations have multivariate nor
mal densities in lllP. Two different cases will be considered. Namely, (A) the 
case with the assumption of equality of dispersion matrices, and (B) the case in 
which no assumption about the dispersion matrices is made. Moreover, we 
shall give two different approaches for the first case. As a consequence we 
shall consider the derivations of the approaches A.1, A.2, and B, supresent But 
first we shall present some theory for each of the three approaches. 

Let x be the vector of scores for the p variables of the individual under 
investigation. We shall consider x as the realisation of the random variable X 
with distribution 

XJT=t ~ Np(µ 1,L1) t= 1, ... ,k 

and use the postulated values 

P(T=t)=p1 t=l, ... ,k 

for the prior probabilities. The posterior probabilities are given by (see (2.1.1)) 
k 

Ptlx = P1ft(x)/ ~ PhJ,,(x) t = l, ... ,k (2.4.1) 
h=I 

where the value J,,(x) of the density of the h-th population at the vector x is 
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given by 

(2.4.2) 

in which 

(2.4.3) 

For the vector of the k posterior probabilities we shall use the notation 
P·!x =(P11x,···,Pk!xf-

Estimators of the posterior probabilities are functions of the independently 
distributed random vectors 

in which Xh;~Np(µ,h, Lh), h = 1, ... ,k; i = 1, ... ,nh· We shall use the notation Rt!x 
for the estimator of Piix, t = 1, ... ,k and write R.lx =(R i1x,···,Rklxf- The sample 
mean vector µh and the matrix of the corrected sums of squares and cross pro
ducts S h are defined by 

n, 

/Lh = nh 1 ~ xhi h = 1, ... ,k 
i=I 

and 

respectively. They are distributed as follows 

Jl,h ~ Np(µ,h,nh I Lh) 

and 

(2.4.4) 

h =1, ... ,k (2.4.5) 

·(2.4.6) 

(2.4.7) 

in which W is the notation for a Wishart distribution. Definition and proper
ties of a Wishart distribution are given in, for example, RAo (1973) p. 533, 
ANDERSON (1958), p. 154 and MUIRHEAD (1982), p. 85. 

A theorem which lies at the basis of many or our results is the multivariate 
central limit theorem. It can be formulated as follows (see RAo (1973), p. 
128). If Y 1, ••• , Yn are independent identically distributed (i.i.d.) random vari
ables which assume values in lliP with EY;=µ, and VARCOV(Y;)= T for 
i = 1, ... ,n, then 

n 

£'n 112 (n - 1 ~ Y; - µ,) - Np(O, T). (2.4.8) 
i=l 

If we apply this theorem to the estimator P.h defined in (2.4.4) we obtain 
1/2 A 

£'nh (µ,h - /Lh) - Np(O,Lh) (2.4.9) 
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where in fact the equality sign is vajid because of result (2.4.6) .. 
The asymptotic distribution of "'2,h = (nh - 1)- 1 Sh can also be derived. We 

shall use a slightly more general notation by replacing nh - l by f and s,, by };_ 
Let A be a mXn matrix. WriteAJ for thej-th column of A, j=l, ... ,n. Then 
vec(A) is the mn X 1 vector defined by 

vec (A) = (A!;', ... ,A~f-

This means that vec(A) is obtained by placing the columns of A below each 
other. 

If fi~ ~(f,"'2,), then 

.Sff112 (vec("'2,)-vec(S)) - Np2(0,T) 

where the p 2 Xp 2 matrix T is specified by 

T (j-l)p+i.(e-l)p +k ="'2,;k4je+ 4;eL-Jk 

for i,J,k,e= l, ... ,p. 

PROOF: By definition of the Wishart distribution 

A f f 
.Yfi = .Y~ zszI = .Y~ Ws 

s=I s=I 

(2.4.10) 

where Z 1, .•. ,z1 are i.i.d. with Zs~Np(0,"'2,) and W1, ... , w1 are i.i.d. with 
Ws~ Wp(l,"'2,) for s = l, ... ,f Thus 

A f 
.Yj112(vec("'2,)-vec("'2,)) = .Y/112(1"- 1 ~ vec(Ws)-vec("'2,)). 

s=l 

By means of the multivariate central limit theorem, see (2.4.8), it is proven that 
the distribution at the right-hand side tends to Np2(0, T). Therefore, note that 

Evec(Ws) = vec(EWs) = vec(EZsZ;) = vec("'2,) 

for s = l, ... ,J, and 

VARCOV(vec(Ws)) 

= E(vec(Ws)(vec(Ws)f)- Evec(Ws)(Evec(Ws)f 

= E (vec( ZsZ;)(vec( ZsZ;) f )-Evec( ZsZ;)(Evec( ZsZ;) f. 

The ((j- l)p +i,(e- I)p +k)-th element of VARCOV(vec(Ws)) is 

EZs,i Zs,JZs,kzs, e - EZs,i Zs,JEZs,k Zs, e 

= L-iJL-ke + L-;kL-Je + L-;eL-Jk - SiJSke 

= L-;kL;e + L-;eLJk 

for i,j,k, e= l, ... ,p and s = l, ... ,f This completes the proof of (2.4.10). 

Now, we shall present some definitions and notations about matrices. Some 
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properties, which will be used frequently later on, are also given. MAGNUS 

and NEUDECKER (1979, 1986, 1988), and MUIRHEAD (1982) are suitable refer
ences. 

Let A be a m X n and B a s X t matrix. The Kronecker product A ® B is the 
ms Xnt matrix with aiJB as its (i,j)-th submatrix, i = l, ... ,m and j = l, ... ,n. 

The following properties are useful. It is assumed that the size of the 
matrices is such that the sums and products exist. 

(a) (A 1 ®Bi)(A2 ®B2)=A 1A2 ®B1B2 

(b) (A ®Bf =AT®BT 

(c) (A ®B)®C=A ®(B®C) 

(d) (A+ B)®C=(A ®C)+(B®C) (2.4.11) 

(e) A ®(B +C)=(A ®B)+(A ®C) 

(f) A ®l= l®A =A 

(g) (aA)®(/3B)=a/3(A ®B),a and /3 scalars. 

If A is a m X m matrix then trace (A) is defined by 
m 

trace(A) = ~Au-
i=I 

If the matrix A has size m X n, B n X m, Cs X t, D t Xu, and E u Xv, then 

(a) trace (AB) = vecT(A T)vec(B) 

(b) vec(CDE) = (ET®C)vec(D). 
(2.4.12) 

Let e; = I.; denote the i-th column of the identity matrix I of dimension p. We 
define 

EiJ = e;eJ and KP = f f EiJ®Ep. 
i = lj = I 

For the p Xp matrices A and B we have 

(a) KP vec(A) = vec(A T) 

(b) KP = KJ 

(c) Kp(A ®B) = (B®A)Kp 

(d) 
T p p 

vec(J)vec (J) = ~ ~ EiJ ® EiJ. 
i=I j=I 

(2.4.13) 

With the above definiti9ns the convergence result (2.4.10) can also be 
expressed as follows. If fi~ Wp(f, L) then 

.Pf112(vec(~)-vec(L))- Np 2 (0,(Ip 2 +Kp)(L®L)) (2.4.14) 

(see also MUIRHEAD (1982), p. 90). MAGNUS and NEUDECKER (1980) define 
-½-p(p + I) 

v(L)=Lpvec(L) where LP is the linear transformation from ~pxp to~ 
which eliminates those elements of vec(L) which originate form the supradiago
nal part of L. Using this, (2.4.14) can be written as 
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A I 
2"f112(v(L)-v(L)) ➔ N-tp(p +iJ(0,2 Lp(lp' + Kp)(L0L)(lp' + Kp)LJ) 

where, of course, the covariance matrix is equal to Lp(lp' + Kp)(L0L)LJ. The 
advantage is that the covariance matrix is non-singular. However, we shall use 
the result (2.4.14). 

A.I. EQUALITY OF DISPERSION MATRICES 

It is assumed that the k dispersion matrices are equal, i.e. L 1 = · · · =Lk=L. 
Hence, in the formula of the posterior probabilities (2.4.1) the factors 
l27TLl- 112 =(27T)-P12ILl- 112 can be cancelled. This implies that 

(2.4.14) 

where 

(2.4.15) 

For the estimation of the common dispersion matrix L the observations of 
each of the k populations can be used. So, let us define 

k 

S = ~Sh 
h=I 

where Sh is defined in (2.4.5), then 
k 

S ~ ~( ~ (nh - I), L) 
h =I 

(see RAo (1973), section 8b). Sometimes additional information is available in 
the form of extra independent observations which can be used for improving 
the estimate of L. Therefore we shall write S ~ Wp(f, L) where 
f = L~ = 1 (nh - I) in most applications but larger values ofJ are also allowed. 
By replacing the parameters µh by /Lh, h = I, ... ,k and L by L = f- 1 Sin (2.4.15), 
the plug-in estimator 

.&~;h = (x-µhf(~)- 1(x-µh) (2.4.16) 

of A;;h, h = I, ... ,k is obtained. Next, by replacing A;;h by .&~;h in (2.4.14) the 
plug-in estimators R11x of Pi1x, t = I, ... ,k, and R-ix or P-ix are obtained. Let us 
define 

and 
A2 A2 A2 
Ax = (Ax;I,···,Ax;kf-

N ow, the asymptotic distribution of n 112(R.ix - P-1x) will be derived by means 
of the o-method (lemma 2.2.1) from the asymptotic distribution of 
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n 112(.&~ ;h - Ll; ;h)- This latter distribution will be derived in its tum from the 
k + 1 independent asymptotic distributional results 

!l'n 112(µh-µh) ➔ Np(0,b-,; 1"2.) h=l, ... ,k (2.4.17) 

and 

(2.4.18) 

by applying the 8-method. For that purpose and later derivations it is useful 
to have some matrix derivatives available. RAo (1973), ANDERSON (1958) and 
ROGERS (1980) are suitable references. If A is a p Xp matrix and b a column 
vector of length p, then 

(a) ..ill4J_ = IAl(A-1)7 aA 
(b) 

(c) 

(2.4.19) 

Let "2. denote a covariance matrix of size p Xp, and x andµ column vectors of 
lengthp {see ROGERS (1980) p. 85). If g =(x -µf"2.- 1(x-µ) then 

(a) lg_ = -2L- 1{x-µ) aµ 

(b) a(~~ 1) = (x -µ)(x -µf (2.4.20) 

(c) 1t = -L- 1(x -µ)(x-µfL- 1• 

Ifg=IL-Jl-r then 

(a) ag = -rl"2--Jl-,L 
d{L.-1) 

(b) * = rl"2.-1l-,L-1. 

If g = lnl"2-I then 

(a) 

(b) 

k = "2.-1 
a"2. 

ag = -"2. 
a("2.-1) . 

Now, applying formula (2.4.20,a) and (2.4.20,c) to Ll; ;h we obtain 

h, e= 1, ... ,k 

and 

(2.4.21) 

(2.4.22) 
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h=l, ... ,k 

where 8he=O if h-=/=e and 8h!= 1 if h =e and where vec (bbT)=b®b, b E!RP, has 
been used. This latter formula follows easily from the definitions of vec and 
®, and also from formula (2.4.12,b). Results about vector and matrix 
differentiation, as in above formulas, can also be found in MAGNUS and NEU
DECKER (1980, 1985, 1986, 1988). 

If nhln ➔ bh>O and nlf ➔ 1 then 

P,1 -µ, 

.Prz 1/2 

A 

P.k-p,k 

vec(~)-vec(~) 

where Bis the block-diagonal matrix specified by the blocks 

b1 1~, ••• ,bk 1~, (Ip 2 +Kp)(~®~). 

Now, by using lemma 2.2.1 we obtain that 

.Pn 112<A!-L\i) ➔ Nk(O,T) 

where T = D + Q with D the diagonal matrix specified by 

clL\ 2 clL\ 2 
Du= (-x f(br-1~)(-x) 

oµ,1 oµ,t 

- 4b-l A2 
- t .:.lx;t 

and Q specified by 

_ c)L\i T 
2 

clL\i 
Qst - ( clvec(~)) (Ip + Kp)(~®~)( ovec(~)) 

= (-(x-µ,sf~- 1®(x-µ,3 }7~-l)(Ip2+Kp) 

·(~®~)(-~-1(x-µ,1)®~-1(x-µ,,)) 

= (x-µ,sf~- 1(x-µ,1)(X -µ,sf~- 1(x -µ,t) 

+ ((x-µ,sf~-l ®(x -µ,sf~- 1)Kp(x-µ,1)®(x-µ, 1) 

= 2{(x-µ,sf~-l(x-µ,t)}2' 

where we have used that Kp(b®b)=Kp vec (bbT)=vec(bbT)=b®b. 
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So, the variance-covariance matrix T can be written, with b.!;i =(b.~;1)2, as 

T11 = 4b,- 1b.~;t + 2b.!;, t=I, ... ,k 

T,s = 2{(x -µsfL- 1(x -µ1)}2 t,s = I, ... ,k; t-=/=s. 

Finally, the asymptotic distribution of the estimator of the vector of posterior 
probabilities is given in the following theorem. 

THEOREM 2.4.1. 

2n 112(R.[x-P-[x) - Nk(O,'YM'Y) 

where 'Y has been specified in (2.1.3) and (2.1.4) and matrix M by 

t= I, ... ,k 

A.2. ALTERNATIVE DERIVATION IN THE CASE OF EQUALITY OF DISPERSION 
MATRICES 

It is also possible to derive the asymptotic distribution of the estimator of pos
terior probabilities in the case of equality of dispersion matrices without can
celling the factors (2w)-P12 ILl- 112, in contrast with (2.4.14). The motivation· 
for this extra derivation is th~t the intermediate results cq_ncerning the asymp
totic distributions of n112(fi,(x)-J,,(x)) and nf2(log.f,,(x)-log.f,,(x)) are 
interesting by themselves and did not appear in the foregoing derivation. In 
addition, assuming L1 = · · · =Lk, it is interestin.g to compare the variance of 
these asymptotic distributions with the corresponding variance which will be 
derived in case B where no assumption about the dispersion matrices is made. 
See further remark after theorem 2.4.4. 

The estimators R,1x, t = I, ... ,k are functions of the estimators .f,,(x) of the 
densities J,,(x),h = I, ... ,k. We get 

A k A 

R,[x = p1J;(x)I ~ Ph.f,,(x) t = I, ... ,k 
h =I 

wher~ fi(x), h = I, ... ,k are pbtained by replacing in .f,,(x) the /Lh and L by /Lh 
and L, respectively, where L = f- 1 S and 

J,,(x) = (2w)-P12 ILl- 112exp{-1(x-µhfL- 1(x-µh)} 

for h = I, ... , k. By using the results of (2.4.19) and (2.4.20) the following 
derivatives are obtained 

(2.4.23) 
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(2.4.24) 

With the derivatives in (2.4)3) and (2.4.24) and with the asymptotic distribu
tions of µ1, ... ,µk, and vec {L) in (2.4.17) and (2.4.18), we can derive, using the 
8-method of lemma 2.2.1, that 

.ff'n111 

where r is defined by 

_ 2 _!_ -} 2 _!_ 4 rt/ - (ft(x)) { 2P+(b, -l)~x;t + 2~x;d 

I 
+2{(x -µsfL-l(x -µ,)}2} 

fort, s= 1, ... ,k; t=fas and ~~;h in (2.4.15). 

(2.4.25) 

(2.4.26) 

(2.4.27) 

PROOF. The dispersion matrix r can be written as f=D + Q where D is a 
diagonal matrix. We have 

Du = ( a .fr(x) )(b1- I L)( a .fr(x) ) 
aµ1 aµt 

The matrix Q is specified by 

QI = ( a.1s(x) l(I '+ K )(L®L)( a_fr(x) ) 
s avec(L) P P avec(L) 

= fs(x){ --½vecT(L- 1) + -½«x -µsfL- 1)®((x -µsfL-I )} 

·(Ip'+ Kp)(L®L)_fr(x){ --½vec(L- 1) 



= fs(x )J;(x ){ ~ vecT c~:- 1 )(L 0 L)vec(L - I) 

--¼vecT(L- 1)(L0L)((L- 1(x -µ1))0(L- 1(x -µ1))) 

- -¼((x - µsfL- 1 )0((x - µsfL- I )(L 0 L)(vec(L- 1)) 

I + 4((x-µsfL- 1)0((x-µs)L- 1) 

· (L0L)(L- 1(x-µ1)0L-1(x -µ1)) 
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+ the last four terms again but with L0L replaced by Kp(L0L)}. 

Now, with (2.4.12.b) and (2.4.12.a) we find that 

vecT(L- 1)(L0L)vec(L- 1) = vecT(L- 1)vec(L) = trace(/) = p. 

Further, using (2.4.12.b) 

vecT(L- 1)((x -µ1)0(x -µ1)) 

= { ((x - µ1f 0(x - µ1f)vec(L-I)} T 

= {vec((x-µ1fL- 1(x-µ1))f = dL. 
Hence 

+ the four terms mentioned above}. 

Now, with (2.4.13.c) and (2.4.13.a) we get 

Kp(L 0 L)vec(L - 1) = (L 0 L)Kp vec(L - 1) = (L 0 L)vec(L - 1) 

and with (2.4.13.b) and (2.4.13.a) we derive that 

vecT(L- 1)Kp = (KJvec(2,- 1)f = (Kpvec(L- 1)f = vecT(L- 1). 

Further, Kp(b0b)=Kpvec(bbT)=vec(bbT)=b0b. Hence, the last four terms 
in Qs1 with Kp(L0L) are the same as the four terms with L0L. So that 

_ _!_ _!_ 2 _!_ 2 _!_ T -1 2 
Qst - fs(x)J;(x){ 2p- 2 dx;t- 2 dx;s+ 2 {(x-µs) L (x-µ 1)} } 

for s,t = I, ... ,k. 
The matrix r is obtained by putting fu=Du+Qu, t=I, ... ,k and fs1 =Qs1, 

t,s=I, ... ,k; s¥=-t. This completes the proof of (2.4.25). 

For the logarithm of the estimator of the density we can easily derive that 

logf 1 (x )- logf1 (x) 

!t'n112 (2.4.28) 

log f,,(x)-log Mx) 
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where M is defined by 

_J_ -1 2 · J... 4 
Mu - 2f' + (b1 - I)Lix;t + 2Llx;1 

For the estimator of the vector of posterior probabilities we obtain 

THEOREM 2.4.2. 

£7n 112(R .Ix - P-1x) - N k(O, ir Mir) 

(2.4.29) 

(2.4.30) 

(2.4.31) 

where ir is defined in (2.1.3) and (2.1.4) and M in (2.4.29) and (2.4.30), respec
tively. 

REMARK. At first sight the dispersion matrices ir Mir of the asymptotic distri
butions in theorems 2.4.1 and 2.4.2 look different because the M in theorem 
2.4.2 has a few terms more than the M in theorem 2.4.1. However, the matrix 
of these extra terms premultiplied and postmultiplied by ir is zero. Hence the 
ir Mir of theorem 2.4.1 and 2.4.2 are equal. See also the remark in section 2.1 
under A.2. 

B. No ASSUMPTION ABOUT THE DISPERSION MATRICES 

In this case there are k dispersion matrices Lh, h = l, ... ,k about which no 
further assumptions are made. The estimator for Ptix is 

A k A 

R11x = P1.ft(x)I L Ph/'h(x) t= l, ... ,k 
h=I 

where jj,(x), h = l, ... ,k are the estimators for the densities 

jj,(x) = (277)-P12 1Lhl- 112exp{--½(x-µhfL; 1(x -µh)} 

h = I, ... , k and which are obtained by replacing µh by µ,h and Lh by f;; 1 S h 
where jj, = nh - l. For these estimators we have 

1/2 A -£7nh (µh - µh) - Np(O,Lh) h -1, ... ,k (2.4.32) 

and 

.Pnf2(vec(~h)-vec(Lh)) - Np2(0,(lp2 + Kp)(Lh®Lh)) 

and these k + I estimators are independent of each other. 

LEMMA 2.4.3 . 

.Pnl12(fh(x)-jj,(x)) - N(O,-½(p +Li!:h)(/ix))2) 

(2.4.33) 

(2.4.34) 



and 

2hf2(log/h(x)-logjj,(x)) - N(O, ~(p+Li!;h)) 

for h = l, ... ,k. 
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(2.4.35) 

PROOF. The asymptotic variance in (2.4.34) is given by 

(ajj,(x)f(~h)(ajj,(x)f+( ajj,(x) f(J,+K)(~h®~h)( ajj,(x)) 
aµh aµh avec(~h) p p avec(~h) 

where we have used the 8-method of lemma 2.2.1 and the asymptotic variances 
in (2.4.32) and (2.4.33). The derivatives are specified by 

and 

ajj,(x) -1 
-a - = jj,(x )~h (x - µh) 

µh 

ajj,(x) I _ 1 1 -1 -1 
avec(~h) = fi,(x){-2vec(~h )+2(~h (x-µh))®(~h (x-µh))}. 

The computation is straightforward. The second statement, (2.4.35), follows 
by once again using lemma 2.2.1. 

Result (2.4.34) has been published earlier in AMBERGEN and SCHAAFSMA 

(1982, 1984). It will also be presented under (1) of theorem (4.5.1) of this 
thesis. 

For the estimator of the vector of posterior probabilities we obtain 

THEOREM 2.4.4. 

£7n 112(R .Ix - P·lx) - Nk(O, qr Mqr) 

where M is defined by 

l -1 4 M 11 = 2 b1 (p + Lix;h) t = l, ... ,k 

M1s = 0 t,s = l, ... ,k; tc::j=s 

and qr is given in (2.1.3) and (2.1.4). 

REMARK. A comparison bAetween the covariance matrices of the asymptotic 
distributions of n 112(1ogf,,(x)-logf(x)) in the cases A.2 and B if 
~ 1 = · · · =~k is assumed, is of interest because it provides a check on the 
validity of the formulas. The matrix V of the differences between on the one 
hand (2.4.35) and on the other (2.4.29) and (2.4.30) is 

1 -Vu = 2 (b1 1 -l){(p-l) + (Li;;1-l)2} t=l, ... ,k 
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for t,s = l, ... ,k; t=/=s. We shall verify that Vis positive definite. This result is 
obvious because the estimation method A.2 in which all observations are used 
for the estimation of the common dispersion matrix 2:, will have smaller vari
ance for the estimation of 2:~ = 1a1log.fr(x), a1 E~, t = l, ... k, than method B will 
have. The verification is given first for the case p = 1, next for p ~ 2. Let 
a=(a1,••·,akf-

Case p = 1. We have A~;ts-A;;1AL =O, hence 

T _ _!_"°" -I 2 2 2 _!_ "°" A2 2 a Va - 2 ,r;;;.,b1 (Ax;1 -l) a1 - 2 (,::.,(...ix;i-l)a1). 

I I 

With the Cauchy-Schwarz inequality we derive that 

(~(A;;1 - l)a1)2 = (~(bf12)(b1- 112(A;;1 - l)a1))2 

Using this result we find aTVa~O. 

Case p ~2. Define V = C + D where 

C11 = 1(p -2)(b1- 1 - 1) t = 1, ... ,k 

t,s = I, ... ,k; t=fas 

and 

t = I, ... ,k 

(2.4.36) 

for t,s=l, ... ,k, t=fas, where we use A!;is=A;;1A;;scos2y1_s with Yt,s being the 
angle between (x -µ1f2:- 112 and (x -µsfl:- 112 • Now, we have that 

1 _ I 
aTca = 2 (p-2)~b1 1al-2 (p-2)(~a1)2. 

I I 

Again, Cauchy-Schwarz gives that 

(~a1)2 = (~(bf2)(b;- 112a1))2 

(2.4.37) 
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With this inequality we find a T Ca ;;;,,,o. In order to verify that aT' Da ;;;,,,o, note 
that 

+ 1~b;-1a;-1(~a,)2 (2.4.38) 
t t 

t,s 

With the inequalities (2.4.36) and (2.4.37) we find 

T 1 ""'A2 A2 • 2 a Da ;;;,,, 2~L.1x;tL.lx;sa1asSlll Yt,s. 
t,s 

If the a/s t = I, ... ,k all have the same sign then aTDa;;;,,,O. The situation 
remains that there are positive as well as negative a/s. From now on, let t 
denote the index of positive and s the index of negative a;'s. Split the summa
tions in (2.4.38) into a part with positive and a part with negative a;'s. Apply 
inequalities (2.4.36) and (2.4.37) to these parts. Use the lower bound 
~,.s6.I;16.La,as for the last term of (2.4.38), take terms together, then 

T J...""' ""' -I A2 2 2 J_""' ""' -I A2 2 2 a Da ;;;,,, 2(~bs)(~b, (L.lx;,-1) a,) + 2(~b,)(~bs (L.lx;s-1) as) 
s t t s 

s 

t,s 

t,s 

So, it is established that Vis a positive definite matrix. This reassures us that 
no computational errors are made. 

2.5. BOTH CONTINUOUS AND DISCRETE VARIABLES 

In this section the asymptotic distribution of the estimator of the vector of the 
k posterior probabilities will be derived in the case that there are both continu
ous and discrete variables. As mentioned in section 2.1 the discrete variables 
are combined into one discrete variable which can take on d different values. 
By these d different values each of the k populations is divided into d subpo
pulations. Let (h,l) be the /-th subpopulation of population h; h = I, ... ,k; 
e= I, ... ,d. The p continuous variables, given the discrete variable, follow a mul
tivariate normal distribution, or in other words, the subpopulations can be 
associated with a multivariate normal density in lliP. The score (x,J) on the 
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continuous and discrete variable of the individual or object we are interested 
in, is considered as a realisation of the random variable (X,D) which has dis
tribution 

XID = ~ T = t ~ Np(µ,ie,"'2.re) C= 1, ... ,d; t = 1, ... ,k 

P(D = eir=t) = Pre C= 1, ... ,d; t = 1, ... ,k 

P(T=t) = Pt t= 1, ... ,k 

where the Pt, t = 1, ... ,k are the given prior probabilities. The posterior proba
bilities are defined by 

where 

k 

Pti(x,J) = P(T=t).ft(x,j)I ~ P(T=h)fj,(x,j) 
h=I 

k 

= P1PtJ.ft/x)/ ~ PhPhJfh/x) t = 1, ... ,k 
h=I 

jj,(x,0 = P(D=CIT=h)Ji,c(x) 

and 

li,c(X) = (2'1T)-P 12 l"'2.hr 112exp{ -1-(x - /J,l,Cf"'2,i;r l (x - /J,hC)} 

for C= 1, ... ,d; h = 1, ... k, which is the density of the (h,0-th subpopulation, i.e. 
the conditional density of X given T=h,D =e. 
For the vector of the k posterior probabilities we shall use the notation 

P-l(x,J) = (P11(x,J),···,Pki(x,J)f-

Estimators of the posterior probabilities are functions of the random vari
ables 

which yield the training samples. They are independent of each other and dis
tributed according to 

XhilDhi = e ~ Np(µ,hc,"'2.hc) i = 1, ... ,nh; h = 1, ... ,k; e= 1, ... ,d 

P(Dh;=0=phC i = l, ... ,n1,; h = 1, ... ,k; e= 1, ... ,d. 

Let us define the random variable 
n, 

Nhs = ~l(Dh;=s) h=l, ... ,k; s=l, ... ,d 
i=I 

wich gives the number of observations in cell s of sample h. Here I is the indi
cator function. Let nhs denote the outcome of Nhs· Hence 
nh1 + · · · +nhd=nh where n 1 + · · · +nk=n. We shall assume that nhs>l, 
h = 1, ... ,k, s= 1, ... ,d without explicitly mention this each time. Further, let us 
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define 

A -IN Phs = nh hs h=l, ... ,k; s=l, ... ,d 

as the estimator of Phs and 
n, 

P.hs = N,;; 1 "'2;I(Dhi=s)Xhi 
i=l 

and 

as estimat2rs for µhs and ~hs, respectively, for h = 1, ... ,k and e= 1, ... ,d. The 
estimator J,,j(x), h = 1, ... ,k, where j is given by the score (x,j), is defined by 
replacing in J,,j(x) the paramater µhJ by P.hJ and ~hJ by a suitable estimator 
which will be defined explicitly in the various cases which follow. The estima
tor R,l(x,J) of Pti(x,J) fort= 1, ... ,k is defined by 

A k A 

R,l(x,J) = PtPtJftJ(x )/ "'2; PhPhJJ,,j(x) 
h=I 

and the notation for the k estimators together is 

R.l(x,J) = (R11cx,J)•···•Rkl(x,J)f-

For the derivation of the asymptotic distribution of the estimator of the vec- . 
tor of posterior probabilities we shall use the following lemma. 

LEMMA 2.5.1. 
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for h = 1, ... ,k and where Mh is ad +d(p +p 2) square block-diagonal matrix with 
blocks 

s =1, ... ,d 

with Dh a diagonal matrix with diagonal elements Ph 1 , ••• ,Phd, and where 
Ph=(phl,···,Phdf and KP definedjust after (2.4.12). 

PROOF. The proof of this lemma is given in section 2.6. 

As in the situation of only continuous variables in section 2.4, we shall also 
consider two cases in this section. However, instead of assumptions about 
dispersion matrices of populations themselves, the assumptions about the 
dispersion matrices of the subpopulations lead to the two cases. With j the 
score on the discrete variable, j considered fixed, we shall distinguish between 
the following situations. 

A. No assumption about the dispersion matrices LJJ up to LkJ· 
B. Equality of the dispersion matrices L 11 up to LkJ· 

A. No ASSUMPTION ABOUT THE DISPERSION MATRICES LJJ UP TO Lkj 

Let us use the notation Lh =LhJ, h = l, ... ,k, where j is the score on the discrete 
variable. Now, define the sets of indices 

Gh = {s; I:s;;;s=s;;;dforwhichLhs = Lh}, h=l, ... ,k. 

The value fi/x) of density fiJ at the score vector x is estimated by fi/x) 
\_Yhich is obtained by replacing in fh/x) the parameter /J,hJ by fLhJ and LhJ by 
Lh, defined as follows 

Thus we assume that the observations of those subpopulations which have the 
same dispersion matrix as LhJ, are used for the estimation of the latter. 
For large nh we find 

and, lemma 2.5.1 implies that 

£>nf2(vec(~h)-vec(Lh)) - Np2(0,( 2,Ph1)- 1(lp2 +Kp)(Lh®Lh)) 
IEG, 



where the notation ~h is used for ~hj· Together with the result 

.Pnf2(µhj-µ,hj) ➔ Np(O,p,;/~h), 

mentioned in lemma 2.5.1 and with the derivatives 

oJ,ij(x) and ofi,/x) 
OP.hj ovec(~h) ' 
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evaluated at the point (µ,~, veer (~h)f, see also (2.4.23) and (2.4.24), we can 
easily derive with lemma 2.2.1 that 

.Pnf2(fizj(x)-Ji,/x)) ➔ N(O,fh) 

where 

rh = (Ji,j(x))2{p,;/112x;hj+ b,( ~Phs)- 1 -( ~Phs)- 111i;hj 
seG• seG• 

+-½( ~Phs)- 111!;hj} 
seG• 

and in which 

11i;hj = (x-µ,hjf~;;/(x-µ,hj)-

This is proved in the same way as the analogue result in lemma 2.4.3. For the 
variance r h we can write r h = Dh + Qh where 

Dh = (Ji,j{x))2p,;/11i;hj 

and 

Now, using the asymptotic distribution of nf2(phj-Phj) mentioned in lemma 
2.5.1, it is easy to derive that 

1/2 A A 

.Pnh (phjfi,j{x)-Phjfi,j{x)) ➔ N(O,0h) 

where 

Further 

where 

Th = b,( ~Phs)- 1 +(phj 1 -( ~Phs)- 1)11i;hj+-½( ~Phj)- 1 f1!;hj 
seG• seG• seG, 
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The following theorem can now be formulated. 

THEOREM 2.5.2. 

2'n112(R.l(x,J)-P·l(x,J))- Nk(0,'YM'Y) 

where 'Y is defined in (2.1.3) and (2.1.4) and M by 

Mu = b~ 1 { ~p( ~Pts)-I +(p;j1-( ~Pts)- 1)Ll;;tj 
SEG, SEG, 

+-½-(~P1s)- 1Ll;;1J + p;j1(1-ptJ)} t=l, ... ,k 
SEG, 

M 1s = 0 t,s = l, ... ,k; t=/=-s 

and where b1 = lim n1n -I, t = l, ... ,k. 
n➔oo 

REMARK. From theorem 2.5.2 a number of special cases can be derived. 
(I). Take G1 =LJ}, this means that only the observations from subpopulation 

(t,J) are used for the estimation of "2. 11 . Hence LsEG,Pts =ptJ and 

M _ b-1{_!_ -1 +J_ -IA4 + -1(1 )} 
II - t 2PPtJ 'iPtJ ~x;tj Pt} -pt} · 

(2). Take G1 ={s; s=l, ... ,d}, this means that the subpopulations (t, 1) up to 
(t,d) are assumed to have the same dispersion matrix. We obtain 
LsEG,Pts = 1 and 

Mu = b~ 1 { ~p + (p17"1- l)Ll;;1J +-½-Ll;;tJ +p17'1O-p1j)}. 

(3). Take d = l, hence with probability 1 the discrete variable has a given 
value. The only nontrivial random variables are the continuous ones. 
The asymptotic distributions are the same as those of the model with no 
assumptions about the dispersion matrices in section 2.4. Now, 
P11=l, LsEG,Pis=l, and (t,J)-(t, l)-t, then 

Mu = -½-b1- 1{p + Ll;;1 } t = l, ... ,k 

and this formula can also be found in theorem 2.4.4. 
( 4). By taking p = 0 we obtain the case of only discrete variables presented in 

section 2.3. With Ll;;hJ=Ll;;hJ=0 the diagonal elements of M become 

Mu= b~ 1p;_j1(1-Ptj) t=l, ... ,k 

see also theorem 2.3.1. 

REMARK. The above-mentioned cases correspond with cases mentioned earlier 
in section 2.1 under ad (1 ), ad (2) and ad (3). We have that (I) is ( ad (3), first), 
(2) is (ad(3), second), (3) is (ad(2), B), and (4) is ad(l). 
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REMARK. Note that the continuous case B, see section 2.1, can be derived as a 
special case of above-mentioned cases (1) and (2). 

B. EQUALITY OF THE DISPERSION MATRICES LJJ UP TO Lkj 

Let us use the notation L=LIJ= · · · =LkJ and define the set G of double 
indices as follows 

G = {(h,s); 1,s;;;h,s;;;k; l,s;;;s,s;;;d for which Lhs=L}. 

Jhe densities fi,/x), h = l, ... ,k at the score vector x are estimated by 
fi,j(x), h = 1,-,:.-,k. The estimated densities are obtained by replacing /J,hJ by µ 
and LhJ by L in the formula of the densities. The estimator LhJ of L is based 
on the observation vectors of the subpopulations with double index in the set 
G. We define 

1 n,. 
~ ( -l) ~ ~l(Dh;=s)(Xh;-µhs)(Xh;-µhsf 

ntu (h,s)EG i = I 
(t,u)EG 

~ (nhs-1) A 

£., ~ Lhs· 
(h,s)EG £.J (ntu -1) 

(t,U)EG 

For large n this can be written as 

~C:::: (h,~G [ ~hs;:ubt l ~hs-
(t,u)EG 

With use of lemma 2.5.1 it can derived that 

Now, using 

.ff'n 112(vec(~)-vec(L)) - Np2(0,( ~ Phsbh)- 1(lp' + Kp)(L0L)). 
(h,s)EG 

.Pn 112 (µh1- /J,hJ) - N(O,pi;/ b-;; 1 L) 

from lemma 2.5.1 and the expressions for 

aJ,,/x) and aJ,,/x) 
aµ,s; avec(L) ' 

evaluated at the vector (µ,'fu,vecT(L)f and given earlier in (2.4.23) and (2.4.24), 
we can derive with the 8-method of lemma 2.2.1 that 

.ff'nl/2 
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where r is given by f=D +Q and D a diagonal matrix with 

Du = ( oftj(x) )7<p,71b;1"'2.)( ofr/x)) 
aµtj aµtj 

- {I" ( ))2 -lb-I A2 
- Vlj X Ptj I U.x;tj t =1, ... ,k 

and the matrix Q is defined by 

_ ofrj(x) T -I 
2 

ofsj(x) 
Q,s - ( a ec("'2.)) (( ~ Phubh) (Ip + Kp)("'2.®"'2.))( 'dvec("'2.)) 

V (h,u)eG 

for t,s = 1, ... ,k, hence 
V 

r/1 = (fr/x))2{ ~( ~ Phubh)- 1 + ((p,jb,)- 1 -( ~ Phubh)- 1)A'i:;tj 
(h,u)eG (h,u)eG 

+1( ~ Phubh)- 1A!;1j} t = 1, ... ,k 
(h,u)eG 

and 

- ~ -Ll A2 A2 A4 r,s - frj(x)fsj(x)( .t:..J Phubh) 2{p-1.1x;tj-t..lx;sj +1.1x;tjsj} 
(h,u)eG 

for t,s = 1, ... ,k; t=/=-s and in which 

Ai;tjsj = (x -µtj)7"'2.- 1(x-µs) 

and A;;,j=A;;1jtj· 
Next we derive that 

.fenl/2 

where E> is defined as 

E> = diag{bj; 1Ph/1-ph)({hj(x))2, h = 1, ... ,k} 

+ diag{phj, h = 1, ... ,k }f diag{phj, h = 1, ... ,k} 

and where diag { dh, h = 1, ... k} denotes the diagonal matrix with d 1 , ... , dk as its 
diagonal elements. Further we find 

log(plj/1/x)) - log(p1j/1/x)) 

.fen 112 

A 

1og(pkj/k/x)) · - 1og(pkj/kj(x)) 
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where M is defined by 

Mu= b; 1pij1{I-p,j +ll;;,j} 

~ -1 J_ 2 J_ 4 + ( ~ Phubh) { 1]J-flx;tj+ 2flx;tj} 
(h,u)eG 

- j_ ~ -1 A2 A2 A4 } 
M,s - 2( ~ Phubh) {p-ux;tj-ux;sj + Ux;tjsj 

(h,u)eG 

for t,s = I, ... ,k; t=t=s. Hence 

THEOREM 2.5.3 . 

.Pn 112(R.l(x,j)-P·l(x,j)) ➔ Nk(O, i'M\Jr) 

where '1r is defined in (2.1.3) and (2.1.4) and M just above this theorem. 

Because of the property that the sum of the elements of a row or column of 
the matrix 'I' is zero, see also the remark after theorem 2.4.2, theorem 2.5.3 can 
also be formulated with M replaced by M', where M' is defined by 

M'u = b; 1p 1"'j1 {1-p,j + fl;;tj} + ( ~ Phubh)-qfl!;tj 
(h,u)eG 

REMARK. The following special cases can be derived. 
(1). G={(h,j); h =I, ... ,k}. This means that only the observations of the sub-

populations (l,j), ... ,(k,j) are used for the estimation of~- Cases (la) and 
(lb) are obtained by replacing ~(h,u)eGPhubh by ~i=1Phjbh in Mand M', 

respectively. 
(2). G = {(h,s); h = I, ... ,k; s = 1, ... ,d}. The assumption is that all subpopula

tions have the same dispersion matrix. We obtain that ~(h,u)eG Phubh = I. 
Substituting this into the formulas for M and M' gives case (2a): 

M - b-l -1(1 + A2 ) +J_ A2 +J_,\4 
tt - t Ptj -p,j Ux;tj 2P -ux;tj 21.J.x;tj 

and case (2b): 

M , - b-l -1(1 + A2 ) +J_,\4 
tt - t Ptj -p,j Ux;tj 2Ux;tj 

, _J_ 4 
M ts - 2flx;tjsj· 

(3). Assume that d = 1. Hence we have only continuous variables. The results 
are the same as those of equality of dispersion matrices in section 2.4, see 
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theorems 2.4.1 and 2.4.2. Putting d = I, Ptj = I, ~(h,u)eG Phubh = I, and 
(h,j)=h in the formulas for Mand M' gives case (3a): -

_ J.. -1 2 J.. 4 
Mu - 2f' + (b, -1)/).x;t + 21).x;t 

- J.. J.. 2 J.. 2 J.. T -I 2 M,s - 21'- 21).x;,- 21).x;s+ 2{(x-µ,) ~ (x-µs)} 

and case (3b): 

M l - b-1 A2 +l..A4 
It - t l..lx;tj 21..>.x;t 

which are the same as the M of theorem 2.4.2 and the M of the theorem 
2.4.1, respectively. 

(4). Take p =0, hence only discrete variables are involved. We obtain M=M' 
where 

M 11 = b1 1p(j1(1-ptj) 

M,s = 0 

which correspond with the elements of matrix Min theorem 2.3.1. 

REMARK. These above-mentioned cases correspond with cases mentioned ear
lier in section 2.1 under ad(l), ad(2), and ad(3). We have that (la) is (ad(3), 
third), (2a) is (ad(3),fourth), (3a) is (ad(2), A.2), (3b) is (ad(2), A.I), and (4) is 
ad(l). 

REMARK. The continuous case A.I, see section 2.1, can be obtained as a spe
cial case of above-mentioned cases (lb), (2b), and (3b). The continuous case 
A.2 can be derived from (la), (2a) and (3a). 

2.6. PROOF OF LEMMA 2.5.1 

In this section we shall give three different methods of proving lemma 2.5.1. 
This lemma deals with the situation of the nh independently distributed ran
dom variables (Xh;, Dh;), i = I, ... ,nh, h fixed, 1 :s;;;;;.h :s;;;;;.k and 

Xh;jDh;=e ~ Np(µhe,~he) i =I, ... ,nh; h =I, ... ,k; e=I, ... ,d 

and 

P(Dh;=e) =phe i=I, ... ,nh; h=I, ... ,k; e=I, ... ,d. 

The lemma gives the asymptotic distribution of 
" ,..T T " " ,...T T " T 

(phi, Jl,hi, vec (~h1), ... ,phd, Jl,hd, vec (~ha)) , 



41 

see lemma 2.5.1 for the precise formulation. 

METHOD 1 

This method of proof is based on lemma 2.6.1, which gives a relation between 
asymptotic distributions of a fixed and a random sampling scheme. The ran
domness of the sampling scheme is brought about by the discrete component 
of the random variables. The k different classes in lemma 2.6.1 correspond 
with the d classes of the training set variables of section 2.5. 

Let Wern: IRqxm-lRq, e = l, ... ,k and m = 1,2, ... be continuous functions. Let 
the i.i.d. 'random variables Y}eJ ,i = 1,2, ... each with density function Jo,, BeEIRq 
assume values in IRq, e= l, ... ,k. The random variables w<,;?, defined by 

w<J = W~mO'\eJ, ... , y(j) e= l, ... ,k; m = 1,2, ... 

are assumed to satisfy 

.Pm 112(w<J-0e)- Nq(O,~e) e=I, ... ,k. 

Let (X;,D;), i = l, ... n, be i.i.d. random variables whose distributions are given 
by 

k 

P(D;=d) =pd>O, d=l, ... ,k, ~pd=l 
d=I 

and X;ID; =d has density Jo,, d = l, ... ,k; i = 1, ... ,n. Let N~n be defined by 
n 

N~n = ~I(D;=e) e=l, ... ,k 
i=I 

where I is the indicator function, and let p ~n be defined by 
~ - -1 

P~n - n N~n e = 1, ... ,k. 

Further, let W~n be defined by 

W~n = W~n,(Xe, , ... ,Xe) e = 1, ... ,k 

where ne is the value assumed by Ne,n and where X~ (X with subindex 
~,j = 1, ... ,ne) is the j-th element of the subsequence of those X;'s with D;=e. 
Now, using the notation Pn=(p1,n,···,Pk,nf and p =(p 1, ... ,pkf, we have the 
following result. 

LEMMA 2.6.1. 

.Pn 112 

Pn-p 

W1,n-81 
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where M is a b/ockdiagonal matrix with the blocks 

D T -1~ -I~ -pp , P1 ..:..1,••·,Pk ..:..k 

and where Dis the diagonal matrix D =diag{p 1, ... ,Pk}-

PROOF. We shall prove the convergence in distribution by the pointwise con
vergence of the corresponding characteristic function. So, let t 0 E~k, ti E~q, 

t = I, ... ,k then we define 

cpn(to,t1,·•·,tk) = 
E { exp(itif n 112(pn -p )+ it[ n 112(W1,n -Oi)+ · · · 

+ it[n 112(Wk,n -Ok))}. 

By conditioning to D 1, ... ,Dn formula (2.6.1) can be written as 
k 

(2.6.1) 

ED,, ... ,D, {E { exp(itif n 112(pn -p )+ ~ itJ n 112(WJ,n -Oj))ID 1 =d 1, .•. ,Dn =dn}} = 
j=I 

k 

ED,, ... ,D, { exp(itif n 112(pn -p ))E {exp(~ itJ n 112(wj,n -O))ID J =d 1 , ... ,Dn =dn}} 
j=I 

k 

~ exp(itif n 112(pn -p ))E {exp(~ itJ n 112(fl7J,n -Oj))ID 1 =d 1 , ... ,Dn =dn} 
(d,, ... ,d,) j=I 

(2.6.2) 

where P(D1 =d1, ... ,Dn =dn)=pd, ···Pd,· The W1,m•··, wk,n are conditional 
on D 1, ... ,Dn independent because of their definitions in which the (Xi,D;) 's 
appear as i.i.d. random variables. Hence the expression for the characteristic 
function, formula (2.6.2), becomes 

k 

~ exp(itif n 112(pn-p))IT E{ exp(itJ n 112(WJ,n -01))ID1 =d1 , ... ,Dn =dn} 
(d,, ... ,d,) j = I 

·P(D1 =d1,---,Dn =dn)

Now, note that 

1l'(f17J,nl(D1 =d1,--·,Dn =dn;Nj,n =n1)) = .PW}{) 

hence 

1l'(n 112 (f17J,n -01)l(D 1 =d 1, ... ,Dn =dn;NJ,n =n1)) 

= 1l7(2!_)112ny2(W}{l -OJ) 
nJ 

so the formula (2.6.3) becomes 

(2.6.3) 

k 

~ exp(itif n 112(pn -p )) II E { exp(itJ( 2!_ )112nY2(W}{l -Oj))} 
(n,, ... ,n,) J=I nj 



· P(N l,n =n 1, ... ,Nk,n =nk)= 
k 

~ exp(it6n 112(pn-p))II q,~l(t/~)112) 
(n,, ... ,n,) J = I nj 
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· P(N 1,n =n 1, ... ,Nk,n =nk) (2.6.4) 

where q,~l is the characteristic function of nY2(f0ll -01). Now, let us write 
for j = I, ... ,k 

q,~l(t/~)112) = 'Pill(t1P1112)+ R~l(t1,PJ, n) (2.6.5) 
ni 

where 'Pill is the characteristic function of the Nq(0,"'2-1) distribution, which is 
the limit distribution of m 112(fM{,l -01). The fact that characteristic functions 
are bounded in absolute value by one and hence the remainder terms 
R~l(t1,p1, n) bounded in absolute value by two, implies that 

k k 
III (cpillU1PT1 12 )+ R~\t1,P1,n))-II'Pill(11P1 112 )! 
j=I j=I 

k 

~f(k) ~ IR~l(tJ,PJ, n)! (2.6.6) 
j=I 

in which f (k) is a suitable constant which depends only on k. Using (2.6.5) 
and (2.6.6), formula (2.6.4) can be written as 

where 

k 

~ exp(it6n 112(pn -p))II 'PillU1P1 112 ) 
(n,, ... ,n,) j=I 

k 

IRI~ ~ f (k) ~ IR~l(tJ,PJ, n)IP(N1,n =n 1, ... ,Nk,n =nd 
(n,, ... ,n.) j =_I 

k 

= f(k)~EIR~(t1,p1,n)I
J=I 

(2.6.7) 

(2.6.8) 

Now, because n 112(pn -pn) converges in distribution to a Nk(O,D -pp T) distri
bution, (see CRAMER (1946) p. 419), the first term of formula (2.6.7) tends to 

_!_ T T k _!_ T -I 
exp(- 2 to(D-pp )to-~ 2 tJPJ "'2-J11) 

j=I 

which is the desired characteristic function. The proof is finished if we show 
that the remainder term R tends to zero. Now, 

EIR~(tJ,PJ, n)l~Elcp~(tj( ;_ )112)-cpill(t/; )112)1 
J J 

+ Elcpill(t/; )112)-cpill(11PT112)I-
J 

(2.6.9) 
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For the first term at the right-hand side of formula (2.6.9) we have that 

N1~Bin(n,pj) 

n P 
t -(-) 1/2 -1 p -:-112 
1 N- ; ; 

J 

</>~)(1)-<1><£(t), 'vt E(ijq, uniform on compact sets 

hence 

Further, because of 

lcf,<;(,}(t-( ..!!_ )112)-cf,V)(t-( ..!!_ )112)1 ..;;2 
j 1 N- 00 1 N-

1 J 

(2.6.10) 

(2.6.11) 

we conclude from (2.6.12) and (2.6.11) (see CHUNG (1968) th. 4.1.4) that 

Elcf>~(tj( ;_ )112)-cf,'/1(tj( ;_ )112)1-0. (2.6.12) 
J J 

For the second term at the right-hand side of formula (2.6.9) we obtain from 

N1~Bin(n,pj) 

</><£ is a continuous function 

n P 
t-(-)1/2-t p-:-112 
; N- ; ; 

J 

that 

and 
p 

</>f£(t/; )112 )-cf>f£(11pT1 12)-o. 
J 

(2.6.13) 

Further 

l</>CU(t/ ;_ )112)-cpf£(t1PT 112)I ..;; 2-
J 

(2.6.14) 

Formula (2.6.13) and (2.6.14) imply that 

E l</>CU(tj(; )112 )-cp(£(t1PT112 )1-0. 
J 

(2.6.15) 

This completes the proof of lemma 2.6.1. 

The proof of lemma 2.5.1 £all easily be obtained by using lemma 2.6.1. For 
the estimators µhe and vec(};h e) of the mean and dispersion matrix respectively 
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see section 2.4, and MUIRHEAD (1982) p. 90. Now, let (µhe, vecT(~he)f play 
the role of w<J in lemma 2.6.1, then the correctness of lemma 2.5.1 follows 
immediately. 

METHOD 2 

In this proof of lemma 2.5.1 we begin with the definition of the following ran
dom variables, which are functions of (Xh;, Dh;), i = l, ... ,nh, namely 

Rhs,i = I(Dh; =s) 

Shs,i = Xh;I(Dh;=s) 

Ths,i = (Xh;®Xh;)l(Dh;=s) 

for s = l, ... ,d and i = l, ... ,nh. We formulate the following lemma. 
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LEMMA 2.6.2. 

n, 

n-,; 1 LRh1,i-Ph1 
i=I 

n, 

n-,; 1 Lshl,i-Phlµhl 
i=I 

"• 
n-,; 1LTh1,i-Ph1(vec('2.h1)+µh10µh1) 

i=l 

11, 

n-,; 1 LRhd,i-Phd 
i = I 

n, 

n-,; 1 L shd,i -phdµhd 
i=I 

n, 

nh I L Thd,i-phd(vec('2.hd)+µhd0µhd) 
i=I 

where Qh is a square matrix of size d(l +p + p 2> and partitioned as 

Qh, II Qh, Id 

Qh,dl Q1z,dd 

with Qh,sr,s = 1, ... ,d, t = 1, ... ,d square matrices of size 1 +p +p2. These Qh,st are 
specified by the following submatrices, for s = 1, ... ,d: 

Qh,ss;II = Phs(l-phs) 

Qh,ss;12 = Phs0-Phs)µfu 

Qh,ss;l3 = PhsO -phs) {vecT('2.hs)+ µh, 0µI,} 

Qh,ss;22 = Phs'2,hs +PhsO-Phs)µhsµfu 

Qh,ss ;23 = Phs {µfu 0 '2,hs + '2.hs 0 µI,} + 

Phs0 -Phs){µhs vecT ('2.1,s) + µhs(µ[, 0 µfu)} 

Qh,ss;33 = Phs {('2.hs0'2.hs)(lp2 + Kp)+(µhsµh,)0'2.hs + 
~0~0~+~0~0~+~0~~}+ 

PhsO-Phs){vec('2.hs)vecT('2.1zs) + 



47 

vec('2.hs)(p,'£®µ,'£) + (p,hs®P.hs)vecT("2.hs) + -
(p,hs ® P.hs )(p,'£ ® P,ks)} 

and the other submatrices of Qh,ss follow from the symmetry. For 
s = l, ... ,d, t = l, ... ,d, s::/=t we have 

Qh,ts;ll = -phtPhs 

Qh,ts;12 = -PhtPhsP.ks 

Qh,ts;13 = -phtPhs{vecT("2.hs)+µ,'£®µ,'£} 

Qh,ts;21 = -phtPhsP.ht 

Qh,ts;22 = -phtPhsP.htP.ks 
T T '-' T 

Qh,ts ;23 = -phtPhsP.ht { vec ("2.hs) + P.hs ® P.hs} 

Qh,ts;31 = -phtPhs {vec("2.ht)+µ,ht®µ,h,} 

Qh,ts;32 = -phtPhs {vec("2.h1)+µ,ht®P,ht}P.ks 

Qh,ts;33 = -phtPhs {vec("2.h,)vecr("2.hs) + 
(p,h,®P.ht)vecr("2.hs) + vec("2.h,)(µ,'£®µ,'£) + 

(p,ht ® P.ht)(p,fu ® P,ks) }. 

The proof of this lemma will be given after lemma 2.6.4. We shall first give a 
few equalities which are frequently used in the fortcoming derivations. Let -µ, 
be a p-dimensional vector and "2. a p Xp symmetrical matrix, then 

(a) vec(µ,µ,T)=µ,®µ,=Iµ,®µ,l =(/®µ,)(µ,® I)=(/®µ,)µ, 
(b) (p,®1)"2.=µ,®"2. 
PROOF. ((p,® /)"2.f = "2.(p,T ® /) = (1 ® "2.)(µ,T ® /) = µ,T ® "2. = (p,® "2.f 

(c) (/®µ,)"2.=("2.®µ,f 
PROOF. 

((J®µ,)"2.f ="2.(l®µ,T)=("2.® l)(J®µ,T)="2.®µ,T =("2.®µ,f 

(d) (p,®"2.)(I®µ,T)=µ,®"2.®µ,T 
PROOF. 

(p,®"2.)(1®µ,T) =((p,®"2.)® 1)(/® µ,T) = ((p,®"2.)J)®(lµ,T) = 
p,®"2.®p,T 

(e) ("2.®µ,)(p,r®I) = µ,r®"2.®µ, 

PROOF. (("2.®µ,)(p,T ®J)f =(µ,®/)("2.®µ,T)=(p,®/)(1 ®("2.®µ,T)) = 
(p,· l)®(/("2.®p,T))=µ,®"2.®p,T =(p,T ®"2.®p,f. 

LEMMA 2.6.3. 
(a) E I(Dh;=s) = Phs 
(b) VAR I(Dh;=s) = Phs(l-phs) 
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(c) E l(Dh;=s)Xhi = phsµhs 
(d) E l(Dh;=s)Xh;X'[; = Phs('2hs+µhsµ'f:s) 
(e) E l(Dh;=s)Xh;®Xh; = Phs(vec('2hs)+µhs®µhs) 

PROOF. (a) and (b) follow from the Bin(l,phs) distribution, (c), (d) and (e) can 
be derived with use of conditional expectations. 

LEMMA 2.6.4. 
Let U~Np(O,I) and X~Np(µ,"'2:.), then 

(a) E U@UT = I 
(b) E U®U = vec(J) 
(c) E UUT@U = 0 
(d) E uuT@uT = o 
(e) E X(XT@XT) = µ(µT@µT)+µvecT(2-)+µT@2,+2-@µT 
(f) E uuT@uuT = Kp+J@J+vec(J)vecT(J) 
(g) E(X®X)(XT@XT) = µµT®µµT +"'2:.®µµT +(µ®µ)vecT("'2:.) + 

µT®"'2:.®µ+µ®"'2:.®µT +vec("'2:.)(µT®µT) + 
µµT ® 2, + (2, ® "'2:.)(lp' + Kp) + vec("'2:.)vecT ("'2:.) 

where KP has been defined after (2.4.12). 

PROOF. Let U; be the i-th component of U, i = I, ... ,p. Then (a), ... ,(d) follow 
directly from 

EU;= E Uf = 0 

and 

E Uf = I , E Uf = 3 , i = I, ... ,p. 

PROOF of ( e ). 

EX(XT®XT) = E(µ+"'2:.1/2U)(µT +UT2,l/2)®(µT +UT2,l/2) 

= µ(µT®µT)+ Eµ(UT2,112@UT2,ll2) + 
£2,112 U(µT® UT2,112)+ £2,112 U(UT2,112@µT) 

where we have deleted terms with first and third moments of U. Now, using 
"'2:. 112 U = 1 ® "'2:. 112 U = "'2:. 112 U ® 1 the expression becomes 

µ(µT®µT)+µE(UT®UT)(2,112®2,l/2) + 
µT®2,l/2EUUT2,112 + 2,112EUUT2,112@µT. 

With EUUT =I, EUT® UT =vecT(J) and the property vec(ABC)= 
(CT@A)vec(B) with the special choice A =C ="'2:. 112 and B =I the proof of (e) 
is finished. 

PROOF of (f). Let TiJ = EiJ + E1; where EiJ is defined after (2.4.12), then 



EU;U1UUT = TiJ + 8iJI 

where 8iJ is the Kronecker delta: 8iJ= I if i=j and 8iJ=0 if i=/=j. Now, 

EUUT©UUT = E'2_U;U1EiJ©UUT = 
i,j 

'2_(EiJ©(TiJ+8iJI)) = '2_EiJ©TiJ+ '2_EiJ©8;/ = 
0 0 0 

'2_EiJ©EiJ+ '2_EiJ©EJi+('2_Eu)©I = 
i,j i,j i 

PROOF of (g). 

E(X®X)(xr@xr) = Exxr@xxr = 
E(µ+ Ll/2 U)(µT + UTLl/2)@(µ+ Ll/2 U)(µT + UTL112). 

If we delete the terms with first and third moments of U we find 

µµT©µµT +L1/2EUUTL112@µµT +EµUTL112@µUTLl/2 + 
EL112uµr®µUrL112 + EµUrL112®L112uµr + 

EL112uµr®L112uµr +µµr®L112EuurL112 + 
EL112uurL112®L112uurL112_ 
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Now, use EUUT =I, EUT@ ur =vecT(I) and vecr(I)(L 112 ©L112)= vecr(L), 
then the first three terms become 

µµT©µµT +L©µµT +(µ©µ)vecT(L). 

Using EU© ur =I the fourth term becomes 

(L112@µ)I(µT©Ll/2) = (I ©(L112@µ))(µT@L1/2) = 
(l ·µT)©((Ll/2@µ)Ll/2) = µT©(Ll/2@µ)(L112@ l)=µT©L©µ. 

The fifth term is the transpose of the fourth term and becomes µ©L©µr. 
Further, the sixth and seventh term can be evaluated into 

(L 112 © L 112 )vec(I)(µT © µT) = vec(L)(µT © µT) 

and 

µµT©L 112EUUTL 112 = µµT©L 

respectively. The last term can be written as 

(L 112 ©L 112 )EUUT©UUT(L 112 ©L 112 ) = 
(L 112 © L 112)Kp(L 112 © L 112) + (L 112 © L 112)(/ © I)(L 112 © L 112) + 

(L 112 © L 112 )vec( I)vecr ( l)(L 112 © L 112 ). 
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Using (~:: 112 0L 112)Kp=Kp(L 112 0L 112) and (L112 0L 112)vec(J)=vec(L) this 
becomes 

(L 0 L)(/p' + KP) + vec(L)vecT (L). 

This completes the proof of (g) and hence the proof of lemma 2.6.4 has been 
finished. The results of this lemma can also be found in, for example, 
MAGNUS and NEUDECKER (1979). 

PROOF OF LEMMA 2.6.2. The proof follows from the multivariate central limit 
theorem, see (2.4.8), and the lemmas 2.6.3 and 2.6.4. The expectations 
ERh~;,ESh ~; and ETh 1,i are given in lemma 2.6.3. The submatrices Qh,ss and 
Qh,ts of the variance-covariance matrix Qh are obtained in the following way 

Qh,ss;II = VAR(Rhs,;)= VAR(J(Dhi =s)) = PhsO-Phs)-

Further, without a detailed derivation, we summarize 

Qh,ss, 12 = EJ(Dh;=s)X[;-EI(Dh;=s)EJ(D1,;=s)X[; 

Qh,ss;l3 = EJ(Dh;=s)X[;®X[;- EJ(Dh; =s)EJ(Dh;=s)X[;®X[; 

Qh,ss;22 = EI(D1,; =s)Xh;X[;- EI(Dh;=s)X1,;EI(D1,; =s)Xh; 

Qh,ss;23 = EJ(D1z;=s)X1,;(X[;®Xh;)- EJ(Dh;=s)Xh;EI(D1z; =s)X[;®X[; 

Qh,ss, 33 = EJ(Dh;=s)(X1,;®Xh;)(X[;®X[;)- EI(D1,; =s)Xhi®Xhi 

·EI(D1,; =s)X[;®X[;. 

The elements of the submatrix Qh,ts are derived in a similar way. We have 

Qh,ts;II = COV(R1,1,;, R1,.,,;) = COV(J(Dh;=t), J(D1,;=s)) = 

= -phtPhs 

and it is easy to see that 

Qh,ts;l2 = -EJ(Dh;=t)EJ(Dh;=s)Xh; 

Qh,ts;l3 = -EJ(Dh;=t)EJ(Dh;=s)X[;®X[; 

Qh,ts;21 = -EI(D1,;=t)X1,;EI(D1,;=s) 

Qh,ts;22 = -EJ(D1,;=t)Xh;EI(D1,;=s)Xh; 

Qh,ts ;23 

Qh,ts;31 

- EI(D1,; =t)X1,;EI(D1,; =s)X[;®X[; 

- EI(D1,;=t)X1,;®Xh;EI(Dh; =s) 

Qh,ss, 32 = - EI(Dh; =t)Xh;®X1,;EI(D1,; =s)Xh; 

Qh,ss, 33 = - EJ(Dhi =t)X1,;®Xh;EI(D1,; =s)X[;®X[;. 

Now, with the results of lemma 2.6.3 and 2.6.4 the elements of Qh,ss and Qh,ts 
of lemma 2.6.2 can be obtained immediately. This completes the proof of 
lemma 2.6.2. 
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The Phs,µhs and vec(~hs), s = I, ... ,d can be expressed as functions of the 
Rhs,i, Shs,i and Ths,i s = I, ... ,d, i = I, ... ,nh. We have 

A 1 n, 
Phs = - ~ Rhs,i 

nh i ==1 

I n, 

-~Shs,i 
nh i == 1 

l n, 

-~Rhs,i 
nh i == 1 

I n, 
vec(j:hs)= N - I ~ l(Dh;=s)(Xh;-µhs)®(Xh;-µhsf 

hs i == 1 

We shall reformulate lemma 2.5.1 in a way which corresponds better with the 
formulation of lemma 2.6.2. 

LEMMA 2.6.5. 

µhi -µhi 

vec(~h 1 )-vec(~h 1) 

A 

µhd-µhd 

vec(~hd)-vec(~hd) 

where Bh is partitioned as Bh=(Bh,ts, t=I, ... ,d;s=I, ... ,d), with Bh,ts square 
matrices of size l +p +p 2, specified as follows. Fors= I, ... ,d the Bh,ss are the 
blockdiagonal matrices 

Bh,ss = diag{Phs(I-Phs), - 1-~hs, - 1-(lp' + Kp)(~hs®~hs)} 
Phs Phs 

and for s = I, ... ,d; t = I, ... ,d; t=/=-s: 
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B - T h,ts - -phtPhsf.Jf.J 

where f. 1 is the unit vector of size 1 + p + p 2. 

PROOF. For the proof of the asymptotic result of this lemma it is allowed to 
replace the factor N hs I (N hs - 1) in vec(Lhs t by I because this factor is I + o (1 ). 
After this replacement the Phs, /Lhs and vec(Lhs) are functions of 

In' In' In' 
- ~ Rhs,i, - ~ Shs,i and - ~ Ths,i· 
nh i = I nh i = I nh i = I 

In order to apply the 8-method of lemma 2.2.1 we shall define the function 

g: iijd(l +p+p2
) ➔ iijd(I +p+p 2

) 

where 

g=((g1,s, g2,s, g3,s), S = 1, ... ,d) 

with 

( ) - -] -2 0 g3,s U1, VJ, WJ, .. ,,Ud, Vd, Wd - Us Ws-Us Vs Vs 

and Us Elij 1, Vs ElijP, Ws ElijP Xp, for s = 1, ... ,d. 

Now, let the vector 1/k be defined by 

1/h = (phi, Ph1JLh1, Ph1(vec(Lh1) + JLhI 0µ,h1f, ... 

... ,Phd, PhdJLhd, Phivec(Lhd) + JLhd0JLhdff 

then the matrix of partial derivations of g at the vector 1/h are given by 
Vg(,,,)=(vg(,,,),is,t=l, ... ,d;s=l, ... ,d) with Vg('l,),ts square matrices of size 
1 +p +p 2 , specified by 

I T'<:' I T T - -vec (.,,•hs) + -µ,hs 0 JLhs 
Phs Phs 

I T 0 1 T 
--(µ,hs lp)--(Jp0JLhs) 

Phs Phs 

1 
-JP, 
Phs 

0 0 

for s=I, ... ,d and Vg('l,),rs=O for t=I, ... ,d;s=I, ... ,d;t,:f=s. The variance
covariance matrix Bh can be derive from 

Bh = V g(,,,)Qh(V g(,,,)f 

where Qh is defined in lemma 2.6.2. This completes the proof. 
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METHOD 3 

This method will be based on the asymptotic distribution of maximum likeli
hood estimators. If the independent identically distributed random variablfS 
Y;, i = I, 2,3, ... have probability density function Jo, with O=(O, ... ,Okf, and On 
is the maximum likelihood estimator of O based on Y 1, ••• , Yn then 

.Pn 112(0n-0) - N(O,Ti 1 ) 

where I O is the Fisher-information matrix defined by 

(lo)s,t = Eo{- ao~;01 logfo(Y1)} s, t=l, ... ,k. 

We shall prove that Ph1,--·,Phd, Jl,h1, n-;;/ (nh1 -1) ~hl,···,µhd, n-;;,/(nhd- l)~hd 
are the maximum likelihood estimators of Phl,···,Phd, µhi, 2.hl,···,µhd, 2.hd, 
respectively. For reasons of notational convenience we shall drop the index h. 
The above-mentioned asymptotic result is also valid if, instead of a probability 
density function, a Radon-Nikodym derivative with respect to a suitable meas
ure is taken. 

Let f be the Radon-Nikodym derivative of the distribution of 
(X;, D;), i= 1, ... ,n with respect to the product measure of Lebesgue measure 
and counting measure. Let (x;, d;) be the outcome of (X;, D;) then 

f(x;,d;) = P dfµd,, ~d, (x;) 

in which the first factor is the probability that the discrete random variable has 
outcome d; and in which the second factor is the value of the multivariate nor
mal density with parameters µd, and 2.d, at the vector X;, i = 1, ... ,n. The max
imum likelihood estimators yield those parameters for which logII? = if(x;, d;) 
is maximal. We have that 

n d ns d ns 

logIIf(x;, d;) = logll IT11s, + logll Ilfµ.,~,(xs) 
i=I s=I i=I s=I i=I 

d n, d n, 

= logll ITPs, + ~ logIIfµ,,~, (xs) 
s =I i=l s=I i=I 

d 

= L(p1,••·,Pd) + ~Ls(µs, 2-s) 
s=I 

where s 1 , .•• ,sn, are those indices for which ds, =s, i = 1, ... ,ns. Let t 1 , .•. ,tn, be 
the remaining indices: d1 =/=-s,i=1, ... ,n1, ns+n1 =n. We shall now derive the 

I A A A 

maximum likelihood estimators Ps, Jl,s and ~s for Ps, µs, and 2.s, respectively, 
s =1, ... ,d. 

a n 
-a-logIIf(x;, d;) = 

'Ps i = I 
(•) a d n, 

=-log II ITPs, 
aps s=li=I 
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Ps 1-ps · 

Equating this last expression to zero gives 

: ns 
Ps = -, s=1, ... ,d 

n 

Note that the expression just after the ( *) also appears when the maximum 
likelihood estimators of the parameters of a multinopnal ~istribution are 

derived by means of differentiation. This implies that L(p 1 , ... ,pd) is maximal. 

a n 
-a-logIIf(x;,d;) = 

µs i=I 

(*) a n, 

=-a-logIIfµ,, L,(xs) 
µs i=I 

n, 

= ~ ~; 1(xs, -µs)
i=l 

Equating this to zero gives 

Further 

: I n, 
µs = -~xs,, s=1, ... ,d. 

ns i=l 

a n, 

a~ logilf(x;, d;) = 
s i=I 

(*) a n, 
- -logTT' (x ) - a"' 1-lJ µ,, L., s, 

.,c,s z=l 

- ~ a I I 1- u2 _!_ T - l 
- ;-:-'1 a~s { og 2'7TL., - 2 (xs, -µs) Ls (xs, -µs)} 

- _!_ .._, - I +_!_ .._, -1 ( ~ ( )( )T)'-' -1 - - 2ns.,c,s 2.,c,s £.. Xs, -µs Xs, -µs .,c,s · 
i=I 

Equating this to zero and substituting /Ls for µs gives 

~ I n, 
~s = -~(xs-µs)(xs-µsf, s=1, ... ,d. 

ns i=I ' ' 

Now, note that the expressions just after the last two (*)'s also appear when 
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the maximum likelihood estimators of the mean and covariance matrix of a 
multivariate !_lOrmal distribution are derived by means of differentiation. 

Hence Ls<ji,s, ±s) is maximal. See the proof of WATSON (1964), used for exam
ple in MUIRHEAD (1982), p.84 and RAo (1973), p. 531. Thus we have that 

d ~ 

L(p,, ... ,pd)+ LL/~s,Ls) 
s=I 

is maximal. Hence Ps,~s, and ±s, s = 1, ... ,c{ are maximum likelihood estima
tors. Because they are equal to Ps, ~s, and Ls, s = 1, .... ,d we have proved that 
these last-mentioned are maximum likelihood estimators. 

Let us now consider the Fisher-information matrix of a multinomial distri
bution and of a multivariate normal distribution. For a multinomial distribu
tion with vector of parameters p=(p 1, ... ,pdf and vector of maximum likeli
hood estimators Pn we have 

.Pn 112(pn-p) ➔ N(O,Ti') 

where 

r;' = B-ppT with B=diag(p,, ... ,pd)-

For a multivariate normal distribution with mean µs, covariance matrix Ls, 
using the notation As=(µ[,vecT(Ls)f and ~s,n, the corresponding vector of 
maximum likelihood estimators, we have 

.Pn 112(~s,n-As) ➔ N(O,Ji:, 1) 

where 

[Ls O l 1-1 -
A, - 0 (Ip2+Kp)(Ls®Ls) 

with KP defined after (2.4.12). 
We shall show that the covariance matrix in lemma 2.5.1 is the inverse of 

the Fisher-information matrix 

-az 
ft:. = Ed--r logf(X1, Di)} 

a A a A 

where ~=(pr, Ai, ... ,AJf. We shall drop the index 1 in X 1 and D 1• We have 
that 

I• ~ EnEx1n~, { a~!~ (lngJ,,.,,(X)+ logp,)} 

= E nE XID =s { - o~ log/,,,,~, (X)} +ED { - o~ logv n}• a A a A a A a A 

The last term is a matrix with zeros everywhere, except for the upper-left block 
of size d X d. That block is equal to the Fisher-information matrix IP of the 



56 

above-mentioned multinomial distribution. For the first term we need the fol
lowing four matrices 

(a) EnExlD=s{ a;a~Tlog/µ,,}:,(X)} =0. 

(b) EnEx1D=s{ a;a~;log/µ,,}:,(X)} =O v=I, ... ,d 

(c) EnEx1n=s{ a;.:~;log/µ,,}:,(X)} 

= EvEx1v=s{8sv a;.:~;log/µ,,}:,(X)} 

~ En8n,Ex1n~,{ a;t:; log/,.,.(X)} 

~ p,EX]Dc, { a;:~/logf ,. ,:, (X)} 

= pJx, v= 1, ... ,d 

where 8 is the Kronecker-symbol and Ix, is the Fisher-information matrix of 
the multivariate normal distribution with vector of parameters Av. 

(d) { -a2 } EvEXID=s T log/µ }: (X) = 0, v, w = 1, ... ,d;v=pw. 
a>..wa>..v " ' 

So, the Fisher-information matrix I 1:,. is the block-diagonal matrix with blocks 
Ip,P1lx 1 , ••• ,pJh,- The inverse Ij; 1 is the covariance matrix in lemma 2.5.1. 
This completes the proof. 



Chapter 3 

Incorporating standard errors of 

posterior probabilities in 

decision-making processes 

3.1. INTRODUCTION 
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In this chapter we shall describe how the results of chapter 2 can be incor
porated in decision-making processes. We suppose that there are k popula
tions with corresponding densities Ji,, 8 , h = 1, ... ,k where 0 is an element of the 
parameter set E>. Let X denote the random variable which generates the vector 
of scores x. We assume that X has density ft. 8 if the vector of scores belongs 
to population t. Let X 11 , ••• ,Xkn, denote the random variables which generate 
the training samples x 11 , •.. ,xkn,. For these random variables we assume that 
XhJ has density Ji,, 8• Moreover X,X 11 , ••• ,Xkn, are supposed to be independent. 
If the parameter 0 is unknown, then the sample space is denoted by !!l"' + I, 
which is the product of the outcome spaces of X,X 11 , ••• ,Xkn, where n =~~'=!· 
If the parameters are known, then the training samples are not needed with as 
a consequence that after their deletion, the sample space is denoted by !!£, i.e. 
the outcome space of X. In that case we will often write Ji, instead of 
Ji,,8, h = 1, ... ,k. Further we assume that an action set d= { a I ,···,am} and a loss 
function L(t,a), which is a function of t and a, have been specified. The 
unknown number t of the population from which x is a random drawing is 
usually considered to be the outcome of a random variable T with values in 
the set {l, ... ,k}. The probabilities P(T=t)=p1, t = l, ... ,k are the prior proba
bilities. We shall assume that numerical values of PI ,···,Pk are given. We con
sider the posterior probabilities 

k 

Ptix = Ptft,8(x)I ~ Ph/i,,8(x) t = 1, ... ,k. 
h =I 

If the parameter 0 and the prior probabilities PI ,···,Pk are known, then the 
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optimal decision rule assigns to x that action a for which the conditional 
expected loss 

k 

E{L(T,a)jX=x} = ~L(t,a)PiJx 
t=I 

is minimal (non-uniqueness, allowing randomization, appears if there is more 
than one action for which this minimum is obtained). This is the Bayes rule. 
More about this approa~h of constructing multiple decision rules when popula
tion densities are known can be found in section 3.2. 

In practice, however, the parameter 0 is unknown. In section 3.3 we shall 
consider an approach in which the conditional expected losses 
E{L(T,a1)JX=x},j=1, ... ,m are regarded as unknown parameters which have 
to be estimated from the training samples. For expressing the statistical uncer
tainties in the estimates, the theory of chapter 2 can be used. 

If one is forced to take a decision and wants to comply with this demand in 
a rational manner, than one will need a procedure which prescribes the action 
to be chosen. Such decision rules are studied in section 3.4. 

While the theory in the sections 3.2, 3.3 and 3.4 has a classical-statistical 
touch, that in section 3.5 deals with the so-called fully Bayesian approach. 
Here priors are not only postulated on {I, ... ,k} but also on 0. This requires a 
more or less subjectivistic attitude. 

3.2. TAKING DECISIONS IF PARAMETERS ARE KNOWN 

Model I of this section concerns the situation in which t is regarded as an 
unknown parameter assuming a value in the parameter set {1, ... ,k }. In model 
2 class number t is regarded as the outcome of random variable T with 
P(T=t)=p1, t = 1, ... ,k being given in advance. In any case the specific class 
densities are assumed to be known. 

Model 1. Suppose that the number t has to be considered as an unknown 
parameter because no real meaning is involved in the randomness of T, or 
because no reasonable information is available with respect to p1, .• ·,Pk· Let 
the vector of scores x be the outcome of the random variable X which has den
sity J; where t is an unknown element of { 1, ... ,k }. Let the sample space g{be 
the set of all possible outcomes of X. Defined ..w' as the set of m possible 
actions and let L(t,a) be the loss if action a is taken while t is the true but 
unknown population number. Let the function d :g{ -d be a nonrandomized 
decision rule. The risk of decision rule d, as a function of the unknown 
number t, is given by 

m m 

R (t,d) = E 1L(t,d(X)) = ~ L(t,aj)Pi(Rj) = ~ L(t,aj) j J;(x )dx 
j=I j=I R1 

where the R1={xE¥; d(x)=a1},j=1, ... ,m satisfy R 1 U · · · URm=~ and 
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Model 2. Let t be the outcome of the random variable T where the prior pro
babilities P(T=t)=p,, t = 1, ... ,k are given. The sample space.¥, the action set 
Sil and the loss function L are suppose to be the same as in model 1. Let d be 
a nonrandomized decision rule. Use the notation p for the prior distribution 
p1,.,.,Pk· The Bayes risk of d with respect top is defined as 

k 

r(p,d) = ~ PhR(h,d) 
h=I 

which is a weighted average of the values of the risk function defined in model 
1. An obvious interpretation is that 

r(p,d) = EE{L(T,d(X))IT} = EL(T,d(X)) 

is the overall expected loss if d is applied. 

Procedures. For both models larger classes of decision rules can be defined by 
introducing the concept of randomization. For model 2 this is not very useful 
because, for given p, the Bayes risk can be minimized by choosing an 
appropriate nonrandomized rule (see FERGUSON (1967). p. 43). Thus the fol
lowing remarks about randomized rules are only of practical interest for model 
1. Two different randomization techniques can be distinguished. On the one 
hand we have the randomized decision rules corresponding with probability 
distributions on the class of nonrandomized decision rules. On the other hand 
we can assign to every element x E~ a distribution over the set Sil of possible 
actions. They are called behavioral decision rules. If the action space Sil con
sists of a finite number of elements, say m, then a behavioral rule can obvi
ously be characterized by cp(x)=(<t>(llx), ... ,cp(mlx)) where cp(jlx) is the proba
bility that action aj is taken after x E~has been observed and ~j = 1 <t>(ilx) = 1. 
See BLACKWELL and GIRSHICK (1954) for an extensive treatment and proof of 
the essential equivalence of both types of randomization. 

Comparing procedures for model 1. The following fundamental concepts come 
from Wald's general theory of statistical decision functions. However, here 
they are adapted to the specifications of model 1. References are WALD 
(1950), LEHMANN (1950, 1959), ANDERSON (1958), and FERGUSON (1967). 

Let d and d' be two decision rules. We say that d' is as good as d if 
R(t,d'),r;;;;,R(t,d), t = 1, ... ,k, and that d' is better than d if R(t,d'),r;;;;,R(t,d), 
t = 1, ... ,k while R(t,d')<R(t,d) for at least one t E{l, ... ,k }. A decision ruled 
is called admissible if there is no decision rule better than d. A class of rules is 
called complete if for every rule outside the class there is a rule in the class 
which is better. A class of rules is called essentially complete if for any rule d 
outside the class there is one in the class which is as good as d. 

The class of nonrandomized decision rules can be considered a subset of 
both the class of nonrandomized decision rules and the class of behavioral 
decision rules. For most of the situations to be considered, the class of 
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nonrandomized rules is sufficiently large. According to DvoRESTSKY, WALD 
and WOLFOWITZ (1951) (see FERGUSON (1967) p. 79), the class of nonrandom
ized rules is essentially complete if the parameter set and the action set are 
both finite, and the probability distribution of X has no point masses. 

Before constructing procedures for model 1, we focus on the following prob
lem. 

Constructing the Bayes rule for model 2. It is natural to construct the Bayes 
rule dp, with respect to the prior distribution p, i.e. to construct the rule which 
minimizes the expected risk r(p,d): 

r(p,dp) = inf r(p,d). 
d 

This rule d P can be obtained by conditioning with respect to the observed 
data. For that purpose note that 

r(p,d) = EL(T,d(X)) 

= E {EL(T,d(X))IX} 

where, for a particular value of x, the integrand 
k 

EL(T,d(X))[X=x) = ~L(t,d(x))p11x 
t=I 

is the conditional expected loss. Hence d P is obtained by defining that for any 
fixed x Eflthe value dp(x) is that action a Edwhich minimizes the conditional 
expected loss EL((T,a)[X=x). Thus the Bayes rule not only minimizes r(p,d), 
it also minimizes the conditional expected loss given any outcome x of X. 

Bayes rules for model 2 are admissible if all prior probabilities are positive 
(FERGUSON (1967), p. 60). 

The Bayes rule constructed by minimizing the conditional expected loss 
};}=1L(t,d(x))p11x can equally well be obtained by minimizing the expression 

k 

~ L(t,d(x)pJi(x) 
t=I 

because the denominator j(x) = };t = 1 Phfi,(x) of Ptix plays no part in the 
minimization process. The sample space fl is partitioned by the Bayes rule d P 

into m regions R1,J = l, ... ,m where (apart from non-uniqueness complications) 
k k 

Ri = {x;~L(t,a1)P11x = min(~L(t,a;)Ptix)}. 
t=I I t=I 

EXAMPLE. Consider the special case of 0-1 loss, i.e. m =k, L(t,a1)= 1 if t=l=J 
and O if t = j. The Bayes rule is obtained if 

k k 
R1= {x; ~ p1J;(x)=min( ~ p1fr(x))} 

t = l;t=/=-j I t = l;t=/=-i 
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{x; p1fj(x) = max (p;f;(x))} 
I 

Thus, the Bayes rule assigns the individual under investigation to the popula
tion with maximal posterior probability. 

EXAMPLE. A special application is that in which the probability densities are 
those of multivariate normal distributions: 

The Bayes rule is given by the regions 

R1 = {x; 1ogp1 --½1og(det(~1))--½(x-/L)T~T1(x -/11) maximal}. 

If covariance matrices are equal these regions become 

R1 = {x; 1ogp1--½(x-/L1>7~- 1(x-/L1) maximal}. 

If, in addition, the prior probabilities are equal these become 

R1 = {x; (x-/L)T~- 1(x -/11) minimal}. 

This means that the assignment is to that population which has the smallest 
Mahalanobis distance from observation x. It is easy to see that equality of the 
covariance matrices implies that the boundaries of the regions R1,j = 1, ... ,k are 
linear. If the covariance matrices are not equal then these boundaries have a 
quadratic form. 

Constructing minimax rules for model 1. For model 1 we shall consider the 
minimax rule d*. This rule is defined by 

max R(t,d*) = inf max R(t,d) 
t d t 

where d runs over the set of all possible randomized rules. Minimax strategies 
were introduced in game theory by VON NEUMANN and MORGENSTERN (1944). 
WALD (1950) extended their ideas by regarding the theory of statistics as a 
game of the statistician (player 2) against nature (player 1 ). Clear descriptions 
can be found in ANDERSON (1958), FERGUSON (1967), LEHMANN (1959), etc. 

A decision rule which has the same risk R(t,d) for all points of the parame
ter set is called an equalizer rule. If an equalizer rule is Bayes then it is a 
minimax rule (see FERGUSON (1967), p. 91). We saw that the Bayes rule dP 
with respect to some prior p can be identified with m regions R 1 (p), ... ,Rm(P) in 
the sample space !!£. If a (least favorable) prior distribution p can be found 
such that 
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m 

R(t,dp) = ~ L(t,aj)Pi(Rj(p)) 
j=I 

does not depend on t, then d P is an equalizer rule, Bayes rule, and hence 
minimax rule. 

In the special case of 0- I loss (m = k) the risk reduces to 

R(t,dp) = l-Pi(Ri(p)), t=l, ... ,k. 

In this case dP is minimax if p is such that P1(Ri(p)) does not depend on 
t E { l, ... ,k }. 

EXAMPLE. Letf1(x) be the density of N(0,l) andfz(x) that of N(~,2). Let 

the loss be 0-1 and m =k =2. 
(a). The Bayes rule for prior distribution p=(p1 ,p2) is given by the partition 
{R1(P),R2(P)} of Ill where 

Using the notation 

we have 

(b). The Bayes rule of (a) is an equalizer, and hence minimax rule if .the fol
lowing probabilities are equal 

and 
_I I 

P2(R2(P)) = <I>(-2 \1 + A(p)))+ l -<I>(-2-2 (1-A(p))). 

(c). The minimax rule among the rules which have only one cutting point can 
be obtained as follows. Let de be the rule with cutting point c, i.e. 

R1,c = {x; x<c} and R2,c = {x;x;;;a,c}. 

The risks are 

and 
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The required minimax rule is obtained for that c which is the wµque solution 
of R(l,dc)=R(2,dc). This gives c =.21. 

3.3. DISCUSSING THE CHOICE OF DECISION IF PARAMETERS HA VE 
TO BE ESTIMATED 

In this section we shall consider the realistic situation in which the k densities 
are unknown while T has the prior distribution defined by P(T=t)=p1, 

t = l, ... ,k, numerical values of the p1 being specified. We shall focus on the 
choice of decision. In section 3.2 this was done of model 2 in which the ()'s 
were known. The present section contains some adequate supplementaries 
when the ()'s are unknown. The sample space !J!' + 1 is the space of outcomes of 
X,X 11 , ••• ,Xkn, where X generates the vector of scores x of the individual under 
investigation and Xh; generates the vector of scores xh;, i = l, ... ,nh; h = l, ... ,k. 
All these 1 +~¾=inh variables are considered independent given() and {T=t}. 
The random variable Xh; has density J,,, 8 where () is the unknown parameter. 
The density of X is given by the simultaneous distribution of (X, T) where 
XIT=t has density J;, 8• The action set is denoted by.91={a 1, •.. ,am}· The loss 
function is given by L(t,a). As usual, let the posterior probabilities be denoted 
by 

k 

P11xC0) = Ptft,o(x)/ ~ p,J,,,o(x) , h = l, ... ,k. 
h=l 

We shall use the notation Ptix instead of the longer notation Pi1xC0), although 
this latter expresses explicitly that the posterior probabilities depend on the 
unknown parameter 0. The conditional expected loss, given the observation x, 
if action aj is chosen, is 

k 

E{L(T,aj)IX=x} = ~L(t,aj)P11x, j = l, ... ,m. 
t=l 

In practice, the parameter () has to be estimated from the training samples 
xh;, i = I, ... ,nh; h = I, ... ,k. The uncertainty in the estimate to be obtained 
causes uncertainties in the population densities, the posterior probabilities, and 
the conditional expected losses. One of the aims of this thesis is to provide 
means to express these statistical uncertainties. These or similar means should 
be applied unless the statistical uncertainties are negligible. 

Being interested in statistical inference with respect to the ~~= 1L(t,aj)Ptix we 
focus on the estimates 

k 

~ L(t,aii>tlx , j = I, ... ,m. 
t=l 

In the previous chapter asymptotic distributions were derived under various 
model assumptions. These results are of the form 

!Rn 112(R.ix -p·lx)-Nk(O,~.lx) 



64 

where ~-Ix depends on the choice of the model. Let L be the k X m matrix 
with Lr1=L(t,a1), then 

!Pn 112(LTR.lx - LT P-1x)-Nm(O,LT~·lxL) 

where 
k 

(LT R.1x)j = ~ L(t,a)Ptlx 
t=I 

is the estimator of the conditional expected loss 
k 

(LT P-1x)J = ~ L(t,a)Ptlx 
t=I 

if action a1 is chosen (j = I, ... ,m). It is obvious that the corresponding covari
ance matrix n - I L T~·lxL should play a part in the considerations if the statisti
cal uncertainties expressed by this matrix cast reasonable doubt on statements 
which one would like to make. 

Testing, ranking, and selection techniques. Various kinds of considerations can 
be based on the asymptotic distribution of LT R.lx· After having obtained real
isations of the estimators of the posterior probabilities and the covariance 
matrix, we can forget the original context and base our considerations entirely 
on these realisations. We can apply various techniques of testing hypotheses, 
ranking actions, selecting actions, etc. In our approach the posterior probabili
ties and the conditional expected losses are regarded as parametric functions to 
be estimated. Distributions of their estimators have been derived. These 
results can be used for testing statistical hypotheses about these parametric 
functions. 

The asymptotic distribution of n 112(R.1x -p.1x) is the multivariate normal dis
tribution Nk(O,~·lx) on the k - I dimensional hyperplane 

Lk = {x; x E~k , xTI=O, I = (1, ... , If} 

in the k dimensional space ~k. This implies that the asymptotic distribution 
of n 112(L T R .Ix - LT P-1x) is concentrated on a hyperplane of dimension at most 
min(k -1,m) in ~k- The actual dimension depends on the structure of the 
loss matrix L. The just-mentioned multivariate normal distributions can be 
used to obtain approximations to the exact distributions of R ·Ix and LT R ·Ix· 
We have the approximations: 

and 

1 
R.lx ~ N(P-1x,-~·lx) 

n 

T T I T 
L R.1x ~ N(L P-1x,-L ~-lxL). 

n 

The sets on which the exact distributions are defined are easily indicated as 
follows. Let e1,J= l, ... ,k be the j-th unit vector in ~k- Let t1,J = l, ... ,k 
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denote the j-th row in the loss matrix L. The distribution of R .1_, is concen
trated on the so-called unit simplex 

k k 

Uk= {y;yE~k,y=~a;e;, a;;;;;.O, i=l, ... ,k,~a;=l} 
i=I i=l 

and the distribution of LT R .1x on 
k 

HK,L = {z; ZE~m, z= ~a;l;, a;;;;;.O, i=l, ... ,k, 
i=l 

Confidence regions for the unknown pararp.eter P·ix can be constructed by 
means of isodensity ellipsoids. Assume t~at L-lx is the estimate of L-lx· Note 
that its rank is equal to k - I. Because L-lx is symmetric, there exists a k X k 
orthogonal matrix U, i.e. l..f UT = uT U = I, such that 

A [A.Ix Ol UTL·jxU = 0 0 

A 

where A.ix is a (k - I) X (k - I) diagonal matrix. Let 

V = (UTR.lx)<I) 

be the vector of the first k -1 components of UTR.lx· Then 
A -] 

S = {v: PE~k-l, n(V-vf A.Ix (V-v):s;;;Xk-1(a)} 

is an approximate confidence ellipsoid for UT P·ix of significance level I - a. 
Here xi- 1(a) is the point with P(G>xi- 1(a))=a if G~xk-I- Hence 

{r: rEUk, (UTr)<1lES}, 

where ( UT r )<1) is the vector of the first k - I components of uT r, is an 
approximate confidence ellipsoid for P-jx· 

In an analogous way confidence ellipsoids for the vector of conditional 
expected losses LT P·ix can be constructed. Let Y be an orthogonal matrix of 
size m X m such that 

where r.lx is a diagonal matrix of order C=min(k -1,m). Let 

Z = (YTLTR·lx)<I) 

be the vector of the first e components of YTLTR.lx· Then 
A -1 

SL= {z: ZE~ 1, n(Z-zfr.lx (Z-z),;;;; xi(a)} 

is an approximate confidence ellipsoid for the parameter yT LT P-lx of 
significance level I - a. Hence 

{ w: wEHK,L, (YT w)<ll ES£} 

where (YT w)<1l is the vector of the first e components of yT w, is an 
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approximate confidence ellipsoid for LT P·lx· 
In practice, instead of the confidence ellipsoids for the whole vector P·lx or 

LT P-ix, confidence intervals for the separate posterior probabilities 
Piix, t = 1, ... ,k or conditional expected losses (LT P-ix)J,J = 1, ... ,m will suffice. 
One can use 

R + I -1/2{(~ ) }1/2 tjx - ll...'z-an ·Ix tt 

and 

(LTR·1x)j + u...+.,n-1!2{(LT~-lxL)jj }1/2 

as confidence intervals of confidence level I -a for Ptlx and (LT P-1x)J, respec

tively, t = 1, ... ,k;j= 1, ... ,m. Here UJ_a is the point with P(U>UJ_.,)- 1
2a if 

2 2 

U ~N(0, 1). Because these intervals are derived from the limiting multivariate 
normal distribution, it can happen that the intervals are not concentrated in 
the zero-one interval. Various transformations are applicable to overcome this 
trouble. We present here an adapted version of Fisher's variance stabilizing 

transformation, f(p)- ~ln.l±E_= arctanh(p) where -1,;;;;p,;;;;+1, for the 
1-p 

correlation coefficient computed from a sample from a bivariate normal distri
bution (see WITTING and NOLLE (1970), p. 52). Let 

g(x)=1In 1~x i.e. x =1+1tanh(g(x)) 

then 

w 1/2 ~-~~ 
,.z:, n (g(R11x)-g(P11x))➔N(0, 2 2 )· 

4ptlx(I - Ptlx) 

From a 100(1-a)% confidence interval for g(P,Jx) a 100(1-a)% confidence 
interval for Ptlx is obtained by 

-1/2{(~ ) }1/2 I I n -"'·Ix 11 

2 +2 tanh { arctanh(2R11x - 1 )+UJ_,, 2 ) } · 
2 Rtlx(l - Rtlx 

These intervals have the property that for point estimates R,1x =1 the intervals 

are symmetric around R1ix· For other point estimates the intervals are asym
metric around R 11x, stretching out to either the boundary O or I, whichever one 
lies farthest away from the point estimate. 

If k =2 then a confidence interval for the log-odds log(f1(x)/h(x)) can be 
used, because the posterior probability 

P21x = {I +(p1IP2) exp(log(/1(x)/h(x)))}- 1 

is a function of the log-odds. A confidence interval for the posterior probabil
ity is a one-to-one transformation of the one for the log-odds and it is a subin
terval of (0, 1) (see also SCHAAFSMA and VAN V ARK (1979). CRITCHLEY, FORD 



67 

(1984a, 1984b 1985), CRITCHLEY, FORD and RIJAL (1987, 1988), CRITCHLEY, 

FORD and HIRST (1987, 1988) and RIJAL (1984) focussed on the interval esti
mation of the log-odds instead of the interval estimation of the posterior pro
babilities. 

In some situations it is interesting to judge certain specific linear combina
tions a T P·lx and b T LT P-1x of posterior probabilities and conditional expected 
losses. The corresponding 100(1-a)% confidence intervals are 

aTR·lx + u..+an-l/2{aTilxa}l/2 

and 

b T LT R.lx + u..+an -112 { b T L T:i;·lxLb} 1/2' 

respectively. A special case is testing whether a difference exists between two 
particular posterior probabilities, or between two conditional expected losses. 
If, for example, the i-th and J-th posterior probability are considered, then the 
hypothesis H :p;lx = Pjlx is rejected in favour of A :p;1x*Pjlx• if R;lx - Rjlx is not 
contained in the interval 

0 + u..+an-l/2{(i1x);; + (:i:.1x)jj-2(i1x)ij}l/2_ 

An interesting question, from a statistical point of view, is whether the 
population with the largest estimated posterior probability coincides with the 
population with the largest theoretical, but unknown, posterior probability. 
First, let us introduce some notation. Let {(1), ... ,(k)} be the permutation of 
{ 1, ... ,k} defined by 

Ro)lx< · · · <R(k)lx· 

This means R(h)lx• h = 1, ... ,k are the order statistics of Rhlx• h = 1, .... ,k and (h) 
is the statistic which gives the number of the population which appears with 
the h-th smallest of the estimated posterior probabilities. Further, let 
{[1], ... ,[k]} be the permutation for which 

P[IJlx< ... <P[kJlx· 

However, because Prix, t = 1, ... ,k are unknown, these [t ], t = 1, ... ,k are 
unknown. Now, the above question, whether {(k)=[k]}, can be analyzed by 
considering the theoretical probability 

Po,x((k)=[k]) 

as a function of()_ Let ai=n- 1(~-ix)ij, i,j=l, ... ,k and let us for notational 
convenience assume that [k]=k, i.e. (8,x) is such that the true posterior proba
bility is largest for population k. We have that 

is AN ( ) 
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where r is the (k - l)X(k -1) matrix with 

·i=l, ... ,k-1 

I'iJ =at+ <17<k-ai-a1<1 i,j=l, ... ,k-1; i=/=j. 

The probability that Rklx becomes the largest estimated posterior probability, 
P o,x((k)=k), is 

P{R11x-Rk1x<O, ... ,Rk-llx-Rklx<O}, 

which can obviously be approximated by the value F(O, ... ,O) of the distribu
tion function of Nk_ 1({3,I') where {31=p11x-Pklx(i=l, ... ,k-l) and where r 
has been defined above. Of course F(O, ... , 0) = G( - /3) where G is the distri
bution function of Nk_ 1(0,I'). Note that -{31>0 if [k]=k(j=l, ... ,k-1). 
The computation of F (Ok_ i) or G( - /3) requires numerical integration. 

An interesting inequality with respect to the probability that Rhlx becomes 
the largest estimated posterior probability, is as follows. Note that we drop 
the assumption that [k]=k. We use that P(n;A;);;e,1-~;P(AD for events 
A 1, ••• ,An. Applying this we get 

k 

Po,A(k)=h) = P( n {R;1x-Rh1x<O}) 
i 

i=f'h 

k k Pilx -phlx 
;,, 1 - ~ P(Rfix - Rhlx >0) ~ 1- ~ <I>( 2 2 2 112 ) 

i=l i=l {a;;+ahh-2<J;h} 
i=f'h i=f'h 

where <I> is the distribution function of the standard normal distribution. For 
the probability that the population with the largest estimated posterior proba
bility coincides with the population with the largest theoretical posterior pro
bability we get 

Po,A(k)=[k]);,, 1- ± <I>({ 2+ P~lx-P[~I\ }112)· 
i=l <1;; <J[k][k]- <J;[k] 

i=f'[k l 

In practice this lower bound can be estimated by substituting Rcqx for P[kJlx• 

(k) for [ k ], and by making similar replacements for the variances and covari
ances. 

The k computed point estimates R11x, t= l, ... ,k depend on the training sam
ples. Other training samples would have given other point estimates. An 
interesting question is which population would have its corresponding poste
rior probability occurring most often as largest in a very long series of training 
samples when the observation x is the same each time. Therefore, let {i 1,. •• ,ik} 
be the ordering defined by 

Po,A(k)=i1)< · · · <Po,A(k)=ik)-

The population with the number ik is the solution of this problem. Assign
ment to this population can thus be motivated. Interesting is whether the 
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ordering {i 1, ... ,ik} coincides with the ordering {(l), ... ,(k)}. 
There are various rules in the theory of ranking and selection which can be 

applied to the vectors R ·Ix and LT R ·Ix. Most of these rules are derived under 
the assumptions of normality. We refer to three books about the subjects: 
BECHHOFER, KIEFER and SOBEL (1968), GIBBONS, OLKIN and SOBEL (1977) and 
GUPTA and PANCHAPAKESAN (1979). Two ranking ideas for the posterior pro
babilities are worth mentioning. The first idea is to take a fixed u E[O, 1] and 
rank the populations according to the increasing order of 

Po,x(R11x>u) t = 1, ... ,k. 

This is approximately as the ranking in increasing order of 

u-Rtlx -
1-<I>(-~) t -1, ... ,k 

au 

or as the ranking in decreasing order of 

t =1, ... ,k. 

The second idea is as follows. Rank the populations according to the increas
ing order of 

R11x-uaa11 t=l, ... ,k 

where a, and thus ua, is fixed. These points are the lower bounds of one-side 
confidence intervals for Pi1x, t = 1, ... ,k with a confidence level of 1-a. 

The conditional expected losses play a role in the ranking and selection of 
the actions. Interesting problems are, for example, "selecting a subset contain
ing the best", or, in medical terminology, "making a differential diagnosis con
sisting of all possible diseases". In these problems a central role is played by 
the selection of those actions which are not significantly worse than the best, 
i.e. the action with minimal conditional expected loss. We shall confine our
selves to a reference to the earlier mentioned books about ranking and selec
tion. 

3.4. FORCED DECISIONS 

In this section we shall consider situations in which one is forced to take a 
decision. It is not always satisfying for the client or applied statistician to 
have only estimations and standard errors of posterior probabilities and condi
tional expected losses. Often he wants a recommendation or specific rule, 
especially when he is forced to take a decision. In two auxiliary models we 
shall make some proposals, which incorporate the standard errors of the poste
rior probabilities. 

Let us assume that in the original model the action set is d= { a 1, ... , am} and 
that loss function L(t,a1), t = l, ... ,k;j= I, ... ,m describes the loss when action 
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a1 is taken if the observation comes from poRulation t. Further we have reali
sations rt of R11x,t=l, ... ,k and Si} of n- 112 c~:·1x)1/2 i=l, ... ,k;j=l, ... ,k where 
we call to mind that the parameters have the following relation to each other 

.ff'n 112(R .Ix - P-1x)--'>N(O,~-lx). 

The problem is now that a procedure has to be constructed which prescribes 
which action a E.SJi' has to be chosen given the r1, t = l, ... ,k; 
siJ, i = 1, ... ,k;j= l, ... ,k and L(t,a1) j = l, ... ,m; t= 1, ... ,k. The simple plug-in 
procedure is a possibility. This rule chooses that action for which 
~}= 1L(t,a)r1, which is an estimate for E{L(T,a)IX=x}, is minimal. When the 
loss function has O - 1 structure, this rule chooses that action for which the 
estimated posterior probability is maximal. This is often done in practice. 
However, the standard errors of the r1, t = l, ... ,k are not taken into account. 
We shall describe two auxiliary models in which the standard errors 
s11 , t = 1, ... ,k are not ignored. In the auxiliary models a fictitious decision 
experiment is done which has a simpler structure than that of the original 
model. The decision taken in the auxiliary model is used as the decision ulti
mately taken. The link between the original and the auxiliary model is that 
the outcomes of the estimators of the posterior probabilities in the original 
model are taken as outcomes of variables to be used in the auxiliary model. 

Auxiliary model 1 (See also ScHAAFSMA (1985)). Let the unknown parameters 
p1, t = 1, ... ,k of this auxiliary model correspond with the unknown posterior 
probabilities Piix,t=l, ... ,k in the original model. For the point p=(p 1, ..• ,A) 
in the parameter set 8={(p 1, ... ,Pk);p;;;,,,O,~;p;=l} the vector (N 1, ... ,Nk) of 
observable random variables follows a multinomial distribution 
M(n * ;p 1 , ... ,Pk) where n * is defined later on and which has realisations 
N1=n1=r1n*, t=l, ... ,k. Thus the estimators N/n* in the auxiliary model 
have the same realisations as the estimators R11x of the posterior probabilities 
in the original model, namely r1, t = I, ... ,k. In addition we consider the unob
servable random variable T, independent of (N 1 , ••• ,Nk), and with 
P(T=t)=p1, t= l, ... ,k. Further, the loss is given by L'(p,t,a1)=L(t,aj). For 
the risk of a decision rule d, which can only be a function of the observable 
random variables (N 1, ... ,Nk), we get 

R(p,d) = EpL'(p,T,d(N1,••·,Nk)) = EpL(T,d(N1,••·,Nk)) 
k 

= E{2,L(t,d(N1,••·,Nk))p1} 
t=I 

because of the independence between T and (N 1, ... ,Nk)- If we define 
k 

L *(p, a1) = EpL'(p,T, aj) = EpL(T,aj) = 2, L(t,aj)p1, 

t=I 

which corresponds with the conditional expected loss 

E{L(T,a1)1X=x} = ~}=1L(t, a)P11x 
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in the original model, then the risk of ruled can be written as 

R(p,d) = EPL*(p,d(N1,••·,Nk)). 

Further, let us suppose that on 0 the prior P(p) is given. The problem is to 
choose that action a E.91 such that the expected risk, i.e. the expected condi
tional expected loss in the original model, is minimal. Hence, the correspond
ing Bayes rule is obtained by minimizing 

jR(p,d)dP(p). 
8 

The solution is derived by taking for fixed (n 1 , ... ,nk) that action a which 
minimizes 

f L *(p,a)dP(pln 1, ••• ,nd. 
8 

Let the prior P(p) be the distribution with constant density, i.e. the Dirichlet 
distribution with all parameters equal to one. The density of a Dirichlet distri
bution is given by (see DEGROOT (1970), p. 50) 

f(a1 + · · · +ak) a -I a.-1 
P(p1,••·,Pk; a1,·•·,ak)= f( ) f( ) P1 1 ···Pk' 

O'.J • • • ak 

where ai>0,i=l, ... ,k and Pi~0,i=l, ... ,k, ~f=iPi=l. The distribution 
P(pln 1 , ... ,nk) becomes the Dirichlet distribution with parameters 
n 1 +I, ... , nk + 1. Hence the conditional expected loss becomes 

! ~ f(n*+k) n, n, 
e1~/(t,a)p1 f(n1 +l) ... f(nk+1l1 ... Pk dpi·•·dPk. 

The action which is assigned to (n 1, ... ,nk) is the solution of 
k 

min~L(t,a)/p~' · · ·p7'+ 1 • • ·p~'dp 1 ... dPk. 
a t=l 8 

Using the Dirichlet (n 1 + 1, ... , n1 +2, ... , nk + 1) distribution this becomes 

. k f(n 1 + 1) · · · f(n1 + 2) · · · f(nk + 1) 
mm"" L(t a)------------

a 1~1 ' f(n*+k+l) 

or 

k f(n1 +2) 
min ~ L(t,a)---

a t=I f(n1 +1) 

or 

k 1 k 

min{ ~L(t,a)r1 + -. ~L(t,a)}. 
a t=I n t=I 

Note that this result differs only from that where the statistical uncertainties 
are ignored, by the addition of the second term. If n * tends to infinity then 
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the difference disappears completely. 
What remains to be done is to determine n*. Note that (N1, ••• ,Nk} has a 

M(nj;p 1, ••• ,Pk) distribution, hence N; has variance n*p;(l-p;),i=l, ... ,k and 
N;in*, which is an estimator for p;, has variance p;(l-p;)ln\_ 1, ... ,k. Recall 
that for the variances of R;1x we got the realisations ST; =n -lc~::-1x);;, i = 1, ... ,k. 
In order to get a good link between the original and the auxiliary model we 
choose n * such that either (I) or (2) holds, where (I) and (2) are defined as fol
lows: 

(I). The mean of the variances in the original model is the same as the 
mean of the variances in the auxiliary model: 

k2 kp;(l-p;) 
~S;; = ~ * . 
i=l i=I n 

With r; as the estimate of p; this implies that n * has to be chosen 
according to 

k k 
n* = (~ {r;(l-r;)})/ ~s1;. 

i=l i=l 

(2). The mean of the variances of the e largest estimated posterior probabili
ties in the original model are equal to the mean of variances of the 
corresponding estimates in the auxiliary model. So, let r[IJ,· .. ,r[kl be the 
realisations r 1 , ... ,rk in increasing order and s[iiJ the standard derivation 
belonging to r[iJ then 

k 

n* = ( ~ 
i=k-e+I 

k 

{r[i1(1-r[;J)})/ ~ SfiiJ· 
i=k-e+I 

Auxiliary model 2. A drawback of auxiliary model I is that the standard errors 
are modified a bit and that the correlations between estimates are ignored. An 
alternative model for specifying the actions to be chosen, given 
r1,ssc, t,s = 1, ... k, is as follows. A random vector Z has outcome z, where Z has 
the Nk(P, n - I L-1x) distribution with p unknown and L-jx known. Z must be 
compared with the R.1x in the original model in which it has approximately the 
Nk(P-1x,n- 1L.1x) distribution. The original P·lx corresponds with p=(p 1, ••• ,Pk)
W e assume that this unknown parameter p belongs to the parameter set 
8={(p 1, ... ,pk);L;p;=1,p;;;,,O,i=1, ... ,k}. Further, there is an unobservable 
random variable T with P(T =t)=p1, t = 1, ... ,k, L;p; = l. The loss function is 
defined by L'(p,t,a)=L(t,a1) in which t is the unobservable realisation of T. 
On the parameter set e the prior pd(p;I) is specified, where I =(1, ... , I). This 
is a Dirichlet distribution with all parameters one, thus it has the constant den
sity Pd(p;/)=f(k)=(k-1)!. Further letf(z;p,n- 1L.

1
x) be the density of Z. 

The T and Z are independent given p. So, if we define 
k 

L*(p,a1) = ErL'(p,T,a1) = ~L(t,a)p1 , 

t=I 
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we find that the risk of a rule din the parameter point p is given by. 

R(p,d) = E pL'(p, T,d(Z)) = E PL * (p,d(Z)). 

Now 

1 
f(z; p,-};·lx)pd(p;J) 

n 
P(plz) = 1 

j j(z ;p, - };_lx)pd(p;I)dp 
e n 

and the Bayes rule is obtained by taking for fixed z that action a for which 

k 1 f ( ~ L(t,a )pz)f(z; p, -};·lx)pd(p;I)dp 
0 t=I n 

or 

k 1 
~L(t,a)jJ(p; z,-};·lx)Pzdp 

1=1 e n 

is minimal. The transformation back to the original model is by replacing z by 
(r 1, .•• ,rk) which are the realisations of R 11x,···,Rklx· Note that for a sufficiently 
small dispersion matrix n - I };·Ix the rule approaches the rule 

le 

min ~ L(t,a)r1• 

a I =I 

3.5. FULLY BAYESIAN APPROACH 

In this section we shall describe an approach in which the k densities 
Ji,, 8, e= l, ... ,k are unknown, a prior T has been put on the numbers l, ... ,k and 
a prior P on the parameter set 0. More precisely, prior T is given by 
P(T=t)=p1,t=l, ... ,k, prior P has density p(O) in 0E0, and T and Pare 
independent. In other words, a prior has been put on the parameter set 
{l, ... ,k}X0 with value p1p(O) in the parameter point (t,O) and with above
mentioned marginals and such that independence holds. Let the observations 
x,x 11 , ... ,Xkn, be an element of the sample space _qr, which consists of all out
comes which are generated by the independent random variables 
X,X 11 , ... ,Xkn,· The probability density on .?[is given by 

k n, 

J; ()(x) II IIfi, 8(xh;). 
' h=li= ' 

Further, there is the action set .#={a 1, ••• ,am} and the loss function L(t,a) 
where a Ed and t E { l, ... ,k }. The risk of decision ruled in the parameter point 
(t, 0) is given by 

R(t,0,d) = E1,8L(t,d(X,X11,••·,Xkn)) 
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k n, 

= jL(t,d(x,x 11 , ... ,Xkn )J; o(x) II II f,, o(xh;)dxdx11 · · · dxkn. 
!1£ ' , h=I i=r''' k 

The Bayes risk of decision ruled with respect to prior (T,P) becomes 

R(d) = EL(T,d(X,X11,••·,Xkn)) 
k 

= ~ Pt j E1,0L(t,d(X,X 11 , •.• ,Xkn))p(0)d0. 
t=I El 

The Bayes rule is obtained by minimizing the conditional expected loss: 
k 

min ~ jL(t,a)p(t, 0lx,x 11, ... ,Xkn)dO 
a t = le 

which can be written as 
k 

min ~ L(t,a)PpreAt) 
a t=I 

where PpreAt) is the predictive posterior probability 

Ptft,preAX) 
PpreAt) = k , t = 1, ... ,k 

~ Pufu,preAX) 
u=I 

with J;,pred(x) the predictive density of the distribution of the vector of scores 
in population t, evaluated at the observation x: 

with 

J;,preAx) = jJ;,o(x)p(0lx11,••·,xkn)d0 
El 

k n, 

p (O)s 111; 11 fs,o(Xs;) 

k n, 

f p(0)s l:li 11/s,o(Xs;)d0 
El 

A special case is that in which the assumptions are made that 0=(01, ... ,0k), 
that the prior probability p(0)=p 1 (01) • • • Pk(0k), and that J;,o = J;,o,, t = 1, ... ,k. 
Writing E> = E>1 X · · · X 81c we obtain 

p(0lx11,---,Xkn) = P1(0J!x11,--•,X1n) · · · Pk(01clxkl,···,xkn) 

and the predictive density is given by 

J;,preAx) = /fo,(x)pi(01IX11,---,X1n)d01. 
El, 

The approach of this section is called the predictive or fully Bayesian 
approach. A series of articles has been published on the subject, especially by 
GEISSER (1964, 1965, 1966, 1967, 1970, 1977, 1980, 1982a,b). The series was 
preceded by the articles of GEISSER and CORNFIELD (1963) and CORNISH 



75 

(1961), in which the fiducial argument of FISCHER (1935, 1954) was elaborated 
upon. Studies about comparisons between predictive and estimative 
approaches can be found in, for example, GEISSER (1982a), AITCHISON and 
KAY (1975), MCLACHLAN (1979), HERMANS and HABBEMA (1975), AITCHISON, 
HABBEMA and KAY (1977), HABBEMA and HERMANS (1978). One of their 
results is that the predictive approach gives less extreme estimates for the pos
terior probabilities than the estimative approach. However, MORAN and MUR
PHY (1979) showed that if adjustments for the bias of the odds in the estima
tive method are made, both methods are comparable. 
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Chapter 4 

Miscellaneous results, normal densities 

4.1. INTRODUCTION 

Throughout this chapter we shall assume that there are k(?;,,2) populations and 
p continuous variables. The variables follow a p-variate normal distribution. 
In some cases we shall assume that the covariance matrices are equal and in 
other cases that they are not, but it will always be clear which case we are 
dealing with. We shall present unbiased estimators and their variances for 
various statistics. These statistics appear in a natural way if one tries to esti
mate the posterior probabilities. In section 4.2 a proof is given that unbiased 
estimators for posterior probabilistics themselves do not exist if normality is 
assumed. Now, recall that the posterior probabilities can be written as 

k 

Ptix = P1.ft(x)l"'2,p,Ji,(x), t=l, ... ,k (4.1.1) 
h =I 

with .ft(x) the density of the t-th population at vector x. Unbiased estimators 
with minimum variance of the k densities are given in section 4.3. If we define 
the log-odds 

in case of equal covariance matrices, then 
k 

Ptix = { L, PhP;- 1 exp(fx;h1)} -I, t = 1, ... ,k. 
h=I 
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In section 4.4 unbiased estimators for these tx;ht are given together with their 
variances and covariances. The posterior probabilities can also be written as 
functions of logarithms of the population densities. The unbiased estimators 
of the log-densities and their variances are derived in section 4.5. Section 4.6 
presents the results of a simulation study of the quality of confidence intervals 
for posterior probabilities constructed on the basis of asymptotic distributions. 

4.2. THE NON-EXISTENCE OF UNBIASED ESTIMATORS FOR POSTE
RIOR PROBABILITIES 

In this section it is proved that unbiased estimators for the posterior probabili
ties do not exist under assumptions of normality. We shall give a proof for the 
case that two populations are involved. The more general case with more than 
two populations can simply be given by extending the proof of this section. 

Let the two populations correspond with the p-dimensional multivariate nor
mal densities 

The training samples are generated by the independent random variables 

Xi1,---,Xin1 with XJi~Np(µ,Ji, Li), i = 1, ... ,ni; j= 1,2 

Define 
n1 

Yi= nT1 ~XJi )=1,2 
i=l 

and 
n1 

Si ~ (~;- Yj)(XJi- Yj)T j = 1,2. 
i=l 

Then 

Yi~Np(µ,i,nT1Li) and Si~~(ni-1,Li), )=1,2. 

If we want to obtain an unbiased estimator for the posterior probability of 
population one, then we are searching for a function h :~p+p+pxp+pxp➔~ 
which satisfies 

( 4.2.1) 

for every point (µ, 1,µ,2,L1,L2) of the parameter set. Note that h depends on the 
vector of scores x, the prior probability p1, the sizes n I and n 2 of the samples, 
and the dimension p. 

However, we shall show that such a function h does not exist. Unbiasedness 
requires that (4.2.1) is true for every point in the parameter set. For the proof 
of the non-existence of an unbiased estimator it is sufficient that a subset of 
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the parameter set can be found on which ( 4.2.1) is not fulfilled. 
So, let us suppose that a function h exists which satisfies ( 4.2.1 ). After ta

king the expectation with respect to Y 2, S 1 and S 2 a function g: 111P ➔Ill is 
obtained which satisfies 

(4.2.2) 

After integrating out y 2, ... ,yp and replacingy 1 by y, µ11 byµ, P2P, 1 by a, x1 

by b, n I by n, Vn µ by v, and the transformation z = Vny, we get the follow
ing result. A function f : Ill ➔Ill for which 
+oo 

f f(z)-1- exp{--½(z-v)2}dz = [l+a exp{~(b-n- 112v)2}r 1 

-oo & 
(4.2.3) 

for all vEIII, where a >0 and b Elli. Another formulation for the left-hand side 
of ( 4.2.3) is 

+oo 

Evf(Z) = j f(z)dF,(z) (4.2.4) 
-oo 

where Z~N(v,1) and F, is the distribution function of Z. The left-hand side 
of (4.2.3) is transformed by the Gauss- or Weierstrass transformation 

t=-z, G(t) = J(-t)exp(-t 2 /2) 

into a two-side Laplace transform (see MAGNUS et al. (1966), p. 398). The 
consequence is that (4.2.3.) becomes 

+oo 

f G(t) exp(-tv)dt = (2'17) 112 expGv2)[l+a exp{-½(b-n- 112 v)2}]- 1. (4.2.5) 
-oo 

Now, by definition of Lebesgue integrability and the fact that the right-hand 
side of (4.2.5) is finite for every vEIII, we have 

+oo 

f I G(t) exp(-tv)ldt < + oo 'v'vEIII. 
-oo 

Let us define for the complex number z EC the following two functions 

+oo 

ge(z) = f G(t) exp(-tz)dt 
-oo 

and 

(4.2.6) 
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Note that the function ge(z) can be defined for every z EC, because 
IG(t)exp(-tz)I is integrable by (4.2.6). But this means that also G(t)exp(-tz) 
is integrable (see RUDIN (1964), p. 250), and 

lge(z)l:s;;;JIG(t) exp(-tz)ldt<+oo, \fzEC. 

It can be proved that gr(z) is analytic on C (see PAPOULIS (1962), p. 170). 
Further, the function g,(z) is analytic, with poles at the points z = u +iv where 

u = n- 112b-n- 112w, v= -n 112w- 1('1T+2k'IT) 

and 

and k E"ll... So, we have on C two analytic functions of which one has poles 
and the other none. This means that they are different on C and hence, by a 
result from analytic function theory, they cannot be equal on IR (see CONWAY 
(1973), theorem 3.7). But this is a contradiction with (4.2.5). The conclusion 
is that a function G satisfying ( 4.2.5) does not exist. So, it has been proved 
that unbiased estimators for posterior probabilities do not exist under assump
tions of normality. 

The non-existence of unbiased estimators of posterior probabilities has also 
been mentioned in SCHAAFSMA (1985b ). 

4.3. UNBIASED ESTIMATORS FOR NORMAL DENSITIES 

In section 4.2 we proved that unbiased estimators for the posterior probabili
ties themselves do not exist. However, the posterior probabilities are functions 
of other parameters, see for instance formula ( 4.1.1 ). An approach is to use 
the unbiased estimators of the basic parameters. This was done in the preced
ing chapters. However, other parameters like J,,(x ), logfj,(x ), etc. can be used 
as well. Plugging unbiased estimators for these parameters into the expression 
of the posterior probabilities provides a modification of the estimators for the 
posterior probabilities studied earlier. From formula ( 4.1.1) we see that 
J,,(x ), logf,,(x ), and L ;ht = log (/i,(t)/ J;(x )) can be used as parameters. In this 
and the following sections we shall therefore concentrate upon the unbiased 
estimation of these parameters. 

In this section we shall present the unbiased estimator with minimum vari
ance, MVUE, for the density J,,(x) of the multivariate normal distribution. 
Section 4.4 gives the unbiased estimator of L ;ht, and section 4.5 that of 
logf,,(x). 

Let X11 , .•• ,X1n, be independently and identically distributed, Xti~Np(µ, 1,"2-1). 
Try to find the minimum variance unbiased estimator, based on these X/s, for 
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fr(x) = j2'1TL1 j-l/2 exp{--½(x-µ1fL 1- 1(x-µ1)}. 

For p = I, KOLMOGOROV (1950) solved this problem by deriving the MVUE 
for the probability P(X11 >u\_using the Rao-Blackwell theorem. For that pur
pose he evaluated P(Xn ;;;e,ujX1, Si). Note that taking derivatives is a linear 
operat~n which preserves unbiasedness. So, the conditional density of X11 

given X1 and S1 is the best unbiased estimator for the density of the normal 
variable X 11 • Many authors have presented solutions to the problem for the 
case p;;;e,2. For a complete proof see for instance EATON and MORRIS (1970) 
or GHURYE and OUCIN (1969). Recently SCHAAFSMA (1985b) also obtained the 
estimator. T!!_e MVUE estimator for fr(x) is equal to the conditional density 
of X11 given X11 and S1, this is 

nt - T I 
·I(o,1i(n

1
_ 1 (x-Xi) S~ (x-X1)), 

~here I(o,l)(a)= 1 if a E(O, 1) and O otherwise. Further recall to mind that 
X1~Np(µ1,n1-

1L1) and S1~Wp({i,L1) wherefr=n1-l. This fr should not be 
confused with fr(x ), which is the density at point x. 

4.4. UNBIASED ESTIMATORS FOR LOG-ODDS AND THEIR VARI
ANCES 

In this section it is assumed that the densities of the k(;;;e,2) populations are 
multivariate normal with equal covariance matrices. In section 4.1 we saw that 
in that case the k posterior probabilities can be written as 

k 

P1jx = { ~ PhPt-l exp(fx;ht)}- 1, t = 1, ... ,k 
h=I 

where the log-odds fx ;ht = log(fi,(x )/ fr(x )) is specified by 

- I 
fx;ht = (µh-µ1fL 1{x-2 (µh+P.1)}, h, t=l, ... ,k. 

(4.4.1) 

(4.4.2) 

Unbiased estimators of the parameters fx;ht with their variances and covari
ances will be derived. Subsequently, they will be used in a theorem about the 
asymptotic distribution of the corresponding estimator of the vector of poste
rior probabilities. From the independent random variables Xhi, i = 1, ... ,nh; 
h = 1, ... ,k, in which Xhi is distributed as Np(µh, L) we form the independent 
statistics X 1., ••• ,Xk., S where 

n, 

Xh. = n-;; 1 ~Xh; , h =1, ... ,k 
i=I 
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and 
k n, 

s = ~ ~(Xh;-Xh.)(Xh;.:._XhY-
i=I i=I 

Then 

and 
k 

S~ Wp( ~ (nh-1), L). 
h=I 

To deal with situations where additional information is available for estimating 
L, we shall present results for the more general case where S has the Wp(J, L) 
distribution. As estimator for f x ;ht we use 

Ux;ht = (f-p-l)(Xh--x1ys- 1{x--hxh.+X1.)} 

+ ~p(n_;;-1-n;-1) 

which has the property that 

(4.4.3) 

EUx;ht = Sx;ht· (4.4.4) 

This result follows immediately from the independence of Xh., X 1 . and S, from 
EXh. =µh, EX1. =µ1, and 

Es-1 = (f-p -1)-1L-1. 

The statistic S - I is said to have an Inverse-Wishart distribution if S has a 
Wishart distribution. For more about Inverse-Wishart distributions see for 
example MUIRHEAD (1982), p. 97 and EATON (1983), p. 330. 

The next theorem lies at the basis of many of the computations which will 
follow. 

THEOREM 4.4.1. 
Suppose S ~ Wp(f, L). Let Sand L be partitioned as 

s = [s(l,IJ s(l,2J] L = [L(l,IJ L(l,2J] 
S (2, I) S (2,2) ' L(2, I) L(2,2) 

where S (I, I) and L(l, I) are q X q submatrices. Define 

S11.2 = S(l,IJ-S(1,21S{2,hJS<2,1J 

and 

then 
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(1) S11.2~Wp(f-p +q, L11.2) 

(2) Sll.2 is independent of(So,2i, S(2,2J) 

(3) s (l,2)IS(2,2)~N(L(l,2)L(2,hiS(2,2), L11.2 0S (2,2)) 

(4) S(2,2i~Wp-q(f, L(2,2i). 

References for this theorem are MUIRHEAD (1982) p. 93, SRIVASTAVA and 
KHATRI (1979) p. 79, and for the first two statements RAo (1965) p. 539. 

The special case of theorem 4.4.1 when L = I and q = 1, is given in the next 
corollary (Sis replaced by V and S(l,tJ by Vll)-

COROLLARY 4.4.2. 
If V ~ Wp(f,I) and V11 is the (1,1) element of V, then 

(I) vll -v(l,2) Vcz,hi V(2,I)~ Wi(f-p + 1, 1) = XJ-p+l 

(2) V 11 - V0 ,2i V<2,b V<2, tJ is independent of (Vo,2), V(2,2l) 

(3) (V(l,2)V(2,½2tiv(2,2)~Np-l(O, Ip-1) 

(4) V(2,2i~Wp-1(f, Ip-1). 

The following lemma about the inverse of a partitioned matrix is very useful 
(see RAo (1965), p. 33). 

LEMMA 4.4.3. 
Let A be a p Xp square matrix with 

A= and [
A(l,l) A(l,2)] 

A (2, I) A (2,2) 

where A (I, t) and A (I, I) are q X q submatrices, then 

(1) A(l,I) = (A(l,1)-A(l,2)A(2,h)A(2,I))-l 

(2) A(l,2) = -(A(l,l)-A(l,2)Ai2,h)A(2,1))- 1Ao,2)A(2,h) 

(3) A<2,1J = -A(2,h)A(2,I)(A(l,l)-A(1,2)A(2,hiA(2,1))-I 

(4) A <2·2) = Acz.hi + A<2.hiA c2,1i<A (l, l) -A o.2iAc2.bA (2, 1))- 1 A (1.2iAi2.hi-

The next lemma can be found in RAo (1965), p. 538. 

LEMMA 4.4.4. 
If S ~ Wp(f, L) and B a q Xp matrix, then 

BSBT ~ Wq(f, BLBT). 

A direct application of this lemma is the following corollary. 

COROLLARY 4.4.5. 
If V ~ W; (f, I) and 'Y an orthogonal matrix then 

2V = 2'YV'YT 
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and 

~v-1 = ~q,v-1q,r_ 

The following lemma gives results about first and second moments of the 
Inverse-Wishart distribution. 

LEMMA 4.4.6. 
Let V ~ "Wp(f, I) and let V and v- 1 be partitioned as the A and A - I of lemma 
4.4.3 with q = 1, V(l,I) and v<1,1) replaced by V 11 and V 11 , respectively, then 

PRoo~ of (I): E V 11 =E(V11 -V(l,2) V<2,h) V<2,l))- 1 which is the expectation of 
a 11XJ-p+1 distribution. 

PROOF of (2): A proof of this can be found in many places, for example in, 
DAS GUPTA (1968), LACHENBRUCH (1975), MUIRHEAD (1982), EATON (1983), 
etc. We shall give the proof of Eaton. Corollary 4.4.5 gives that £¥- 1 is 
invariant under orthogonal transformations: if irEO(p), the set of orthogonal 
p Xp matrices, then ~-I =_pq,v-lq,T_ Hence Ev- 1 = E'lrv- 1 

q,T = '1r Ev- 1 q,T for all '1r E O(p ), which implies that E v- 1 = cl, where c is a 
constant. According to (I) we get c=E(V- 1) 11 =EV11 =(f-p-1)-1. 

PROOF of (3): Lemma 4.4.3 (I) gives E(V11 )2 =E((V11 - v(l,2) V(2,h) V(2,1v- 1)2. 
From corollary 4.4.2 it follows that this is the second moment of a 11XJ-p+I 
distribution. 

PROOF of ( 4): With corollary 4.4.2 and lemma 4.4.3 we get 

E v<1,2)v<2,1) = E v 11 v(l,2) v<2,h) v<2,h) v<2,1) v 11 

= E(V11 )2 E trace {V<2,h)(V(l,2) V<2,¼2f(V(l,2) V<2,¼2)} 

= E(V11 )2 trace EV(2,h) 

Now apply (3) and note that trace EV(2,h) = trace {(f-(p-1)-1)-1/p-i}= 
(f-p)-1(p -1), where (2) is used. 

PROOF of (5): The same invariance considerations as in (2) give E v-2 =di, 
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where dis a constant. Now, d=(EV-2)n = E(V11 )2+Ev0,2>v<2,1> and apply 
(3) and (4) of this lemma. See DAS GUPTA (1968) and EATON (1983). 

PROOF of (6): With corollary 4.4.2 and lemma 4.4.3 we get 

E V<z ')v<1 2) E v-1 v v11 v11 v T,-1 ' ' = (2,2i (2, 1i (1,2i Y (2,2) 

- E(V")2E v-1!2(V v-1!2)T(V v-112)v-112 
- (2,2) (l,2i (2,2i (l,2i (2,2i (2,2i 

= E(V 11 )2 EV(2,h) 

Now, apply (3), lemma 4.4.4 and (2). 

PROOF of (7): 

E v 11 v<1,2i- -E vnv 11 v v- 1 
- (l,2i (2,2i 

- E(v11)2E v v-112cv-112 -o - - (1,2i (2,2i (2,2) -

where lemma 4.4.3 and corollary 4.4.2 has been used. 

PROOF of (8): 

E V II V(l,2) = EVIi v-1 V v11 
- (2,2i (2, I) 

E(v11)2E v-112v-112v 
- (2,2i (2,2i (2, 1i 

- E(Vll)2E v- 112 cv v- 112 )T -o - (2,2i (l,2i (2,2) -

PROOF of (9): 

E v<1-2i v<2,2i = - E V 11 Vo,2i Vo.hi (Vo.hi + Vo.hi V(2, 1i Vu\ v(l,2) Vo.hi) 

E v" v v- 112 v- 312 
- (1,2i (2,2i (2,2i 

+E(v11)2E v v-112v-1 v-112v v v-112v-112 
(1,2) (2,2i (2,2i (2,2i (2, 1i (1,2) (2,2i (2,2) 

=O 

where Vn.2 = Vn - v 0,2i V<2.hi V(2, 1) and corollary 4.4.2 (3) has been used. 

PROOF of (10): 

E V II v<2,2i _ EVIi v-1 +E v11 v-1 V v11 V v-1 
- (2,2i (2,2i (2,1) (l,2i (2,2) 

E V 11 v-1 +E(v11)2E v-112(v v-112)r(v v-112)v-112 
- (2,2i (2,2i (J,2i (2,2) (1,2i (2,2) (2,2i 

= E V 11 E V(2,h) +E(V11 )2E Vo,h) 

= {(j-p -1)-1 +(j-p -1)-l(j-p -3)-1 }(j-p)-llp-1 

= (j - p )- 1 (j - p - 1 )- 1 (j - p - 3)- I (j - p - 2)Jp - I· 

For the derivations which follow it is good to have a complete survey of all 
possible second moments of an Inverse-Wishart distribution. 
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LEMMA 4.4.7. 
If V ~ Wp(f, I) and i,j,k, e represent four positive integers, all different from each 
other, then 

(1) E vuv;; = (f-p -1)-1(!-p -3)-1 

(2) E viivJJ = (f-p)- 1(!-p -1)- 1(!-p -3)- 1(!-p -2) 
(3) E Vii ViJ = (f - p )- 1 (f - p - 1 )- 1 (f - p - 3)- 1 

(4) E vuviJ = o 
(5) E vuvJk = o 
(6) E ViJVik = 0 
(7) E ViJVkl = 0. 

PROOF. The first six moments can be obtained directly from lemma 4.4.6 using 
(3), (10), (6), (8), (10) and (6) respectively. However, the moments of (4), (5) 
and (6) can also be obtained in the following way. Take in corollary 4.4.5 for 
'1' a diagonal matrix with '1' 11 = I, '1' 22 = - I, '1' 33 = I, '1' 44 = - I and '1';; = I for 
i=5, ... ,p. Let B be a 4Xp matrix specified by B=(/4:0). Hence 
2nv- 1 BT =2B'l'V- 1'1'TBT which is 

v11 v12 v13 V14 + v11 _ v12 + v13 _ v14 

v21 v22 v23 v24 _ v21 + v22 _ v23 + v24 
!f1 

v31 v32 v33 v34 =!£1 + v31 _ v32 + v33 _ v34 

v41 v42 v43 v44 _ v41 + v42 _ v43 + v44 

After integrating out variables we get: 2V11 V 12 = -!f1V11 V 12 hence 
EV11 V 12 =-EV11 V 12 =0, further £V11 V23 =-£V11 V23 which implies 
EV11v23=-EV11v23=0 and 2v12V13=-!f1V12v13, hence EV12v13= 
- E V 12 V 13 =0. In order to prove (7) we apply the same technics but now 
with '1' 11 = -1, '1';; = I, i = 2, ... ,p hence 

v11 v12 v13 v14 + v11 _ v12 _ v13 _ v14 

v21 v22 v23 v24 _ v21 + v22 + v23 + v24 
!f1 

v31 v32 v33 v34 =!£1 _ v31 + v32 + v33 + v34 

v41 v42 v43 v44 _ v41 + v42 + v43 + v44 

Hence!f1V 12 V34 = -!f1V 12 V34 from which E V 12 V34 =0 follows. 

LEMMA 4.4.8 
If S~ Wp(f, :2.), X;~Np(µ;, n;- 1:2.), X1~Np(µ1, nT 1:2.), all independent of each 
other, and c,dEIJlP, then 
(I) Es- 1cdTs- 1 = (f-p)- 1(!-p -1)- 1(!-p -3)- 1 
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· {(f-p-2)L- 1cdTL-I +L- 1dcTL-I + cTL- 1dL- 1 }, 

(2) Exrs- 1X;XJs- 1~ = (f-p)- 1(!-p -1)- 1(!-p -3)-l 

. {(f-p-2)µ,TL- 1µ,;µ,JL- 1µ,1 + 2µ,rL- 1µ,1µ,rL- 1µ,1 

+ (2+p(f -p -2))(pn1 1nT1 + nT 1 µ,TL- 1 /J,; +n1 1 µ,JL- 1 µ,1)}, 

(3) EXT s - 1 X;XT s - 1 X; = (f - p - 1)- l (/ - p - 3)- I 

. {µ,TL- 1/J,;/J,rL- 1/J,; +2(p +2)n;- 1µ,TL-I/J,; + p(p +2)n;-2 }. 

PROOF. The first formula is a generalisation of the result of DAS GUPTA 

(19~8), lemma 2.4 (ii), in which c =d was given. The second and third formula 
can be obtained from COV(XTS- 1X), where 

S~Wp(f, L), vec(X)~N,xp(vec(µ,),D®L) 

with X andµ, of size p Xr, D =diag{n 11, ••• ,b; 1 }, X; and /J,; (i = l, ... ,r) the i-th 
column of X andµ,, respectively. Formula (3) is the second moment of a non
central F-distribution. However, we shall give our own proof in which (1) is 
derived from lemma 4.4.7 and in which (2) and (3) are derived from (1). 

PROOF of (1): Let V=L- 112SL- 112 , a =L- 112c and b=L- 112d then 

ES- 1cdTs-I = EL- 112 v- 1abTv- 1L- 112 

p p 
= L- 112 ~ ~ a;b/EV- 1E;EJV- 1)L- 112 

i=I j=I 

L-112 

where a; and b1 are the i-th and j-th element of a and b respectively. E; is the 
vector with 1 at the i-th and O at the other positions. Now, apply lemma 4.4.7 
then the expression becomes 

p p 
L- 112 ~ ~ a;b1{E;EJ(f-p)- 1(f-p -l)- 1(!-p-3)- 1(!-p -2) 

i=I j=I 
i=/=j 
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and the desired result can be obtained directly. 

PROOF of (2): The independence of the three statistics enables an easy use of 
conditional expectations. We obtain 

Exrs- 1 xxrs- 1 X- = Ex xE{xrs- 1 xxrs- 1 X-IX- X-} 
I I ] ] 1, j I I j j I> j 

= Ex,.x/XTE{s- 1xixJs- 11xi,XJ}Xj). 

Now, with (1) and using the notation a =(f-p)- 1(f-p -l)- 1(j-p -3)- 1, 

we obtain 

a(J-p -2)EXT"'2.- 1 xxr~- 1 X- + 2aExr~- 1 xxr~- 1 X-
, I ] ] I j I j 

which, using the independence between Xi and x1, can be written as 

a(j-p-2) trace(~- 1E(XiXT)) trace(~- 1E(XjXJ)) 

+2a trace(~- 1E(XjXJ)~-IE(XiXT)). 

Now, after the substitution EX;XT =VAR(XJ+EXiEXT = n;- 1~+µiµT and 
EXjXJ =nT 1~+µ1µJ, the result is obtained by straightforward computation. 

PROOF of (3): Conditioning to Xi gives 

Exrs- 1x.xrs- 1x = Ex(XrE{s- 1x.xrs- 11x}X) l l l l ; I I l I l 

and applying ( 1) gives 

(f-p-l)- 1(j-p-3)- 1EXT~-IX;xr~-Ixi 

in which the second moment of a non-central x]-distribution appears. Now, 
X-=µ-+n:-- 112 ~ 112 U where U~N (0 /) with EU=0 EUUTU=0 UTU~x2 

I I I > p > , > , . p> 
EUTU=p and EUTUUTU= VAR(UTU)+(EUTU)2 =p(p +2). Formula (3) 
can now be derived by straightforward computation. 

Remember that the aim of this section is to derive expectations, variances and 
covariances of the statistics Ux ;Jt defined in ( 4.4.3). The expectations have 
been given in (4.4.4). For the covariances we must distinguish between 
COV(Ux;Jt, Ux;Js) and COV(Ux;Jt Ux;is) where i,j,t and s represent four 
different numbers. From (4.4.3) we see that Ux;Jt and hence VAR(Ux;Jt), 
COV(Ux;Jt, Ux;Js) and COV(Ux;Jt, Ux;is) are invariant under the transforma
tion y-A(y - x), ~-A~ r, where A =~-1/2 ,y EIRP and x is the vector in the 
sample space· at which the posterior probabilities are computed. Hence the 
original problem with S ~ Wp(f, ~), Xe~ Np(JJ,e, ~) eE { i,j, t,s} is equivalent to 
the problem with x=0,S~Wp(f,l), Xe~Np(ve,l) where ve=~- 112(JLe-x) 
eE{i,j,t,s}. From (4.4.3) and (4.4.4) we derive that 

COV(Ux;Jt, Ux;is) = 
= ~(f-p -1)2E{(xrs- 1 x,-xJs- 1 x1)(xfs- 1 Xs-xT s- 1 xi)} 
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Analogue expressions for COV(Ux;Jt, Ux;Js) and VAR(Ux;Jt) are obtained by 
replacing the indices i by j and s by tin just-mentioned formula. By applying 
lemma 4.4.8 and using the notation 

<i,J> = (x -µ;f2:- 1(x -µ1) i,j E{i,j,s,t,} 

we obtain 

and 

VAR(Ux;Jt) = (f-p -I)(f-p)- 1([-p -3)- 1• 

I 
. r:i_(f-p)(f-p -I)-1(<J,J>-<t,t>)2 

+ <t,t> <J,J>-<t,J><t,J> 

+ (f- I)(f-p - l)-1 {(f-p)nTI -n1-1 }<j,J> 

+ (f-I)(f-p-I)- 1{(f-p)n-; 1 -nT 1 } <t,t> 

+ p(f- I)(f-p -1)-1 { ~(f-p)(nT2 +n-;2)-n-;1nT1}], 

COV(Ux;Jt, Ux;Js) = -½if-p -I)(f-p)- 1([-p-3)- 1. 

· [(f-p -1)- 1(<},j >-<t,t >)(<J,j >-<s,s >) 

+ <j,j > <J,j > - <j,s > <j,s > 

+ <t,s><t,s>-<t,j><t,j> 

+ 2(f- I)nT 1 <j,j > 
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·[(f-p-1)- 1(<),J>-<t,t >)(<i,i>-<s,s >) 

+ <i,J><i,J>-<s,J><s,j> 

+ <t,s > <t,s > - <i,t > <i,t > 

+ (f- l)(f-p -1)- 1(n;- I -n; I )(<J,J>-<t,t>) 

These formulas have also been mentioned in AMBERGEN (1981). The formula 
of VAR(Ux;jt) is also given in SCHAAFSMA (1982), p. 873, and in CRITCHLEY 

and FORD (1984b), section 3.3. 

The variances and covariances of the statistics Ux ;jt can be used for a 
verification of the asymptotic distribution of the estimator of the vector of pos
terior probabilities presented in theorem 2.4.1. We have 

k 

R11x = { ~ PhPt-l exp(Ux;hi)}- 1 t = I, ... ,k, 
h=I 

where Ux ;ht is defined in ( 4.4.3), as estimators for the posterior probabilities 
k 

Ptix = { ~ PhPt- 1 exp(fx;hi)}- 1 t = 1, ... ,k, 
h=I 

and where fx;ht is defined in (4.4.2). Let us define 

Ux = (Ux;JJ,···• Ux;kl,···,Ux;Jk,···, Ux;kkf 

and 

fx = (fx•JJ,···Jx·kl,···,fx.lk,···,fx·kk)T 
' ' ' ' 

in which the Ux;jj and fx;jj, j = I, ... ,k are zero. 

THEOREM 4.4.9. 
Ifn;ln➔b;>O, i = I, ... ,k then 

!l'n I12(Ux-fx) ➔ Nkxk(O, f) 

and 

!l'n 112(R.1x-P·1x) ➔ Nk(O,BfBT) 

where, with a notation in which f 1s,ij is the (i,J)-th element of the (t,s)-th subma
trix of size kXk of matrix f,for t = I, ... ,k: 
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J_ .. 2_!_ 2 ·2 ru,11 = 2 <;,; > + 2 <t,t, > - <t,1 > 

+bT1<j,j> + b;- 1 <t,t> j = l, ... ,k; f=/=t 

_!_ . 2 +b-1 - 2 <1,t> 1 <t,t, > i,j = I, ... ,k; i¥=.t;j¥=.t; i¥=.j 

ru,,1 = ru,11 = o j =I, ... ,k 

and for t,s = I, ... ,k; t¥=.s: 

r,s,it = - rtt,is 

f1s,sj = - fss,tj 

fts,ii fii,ls 

r,s.tj = r,s,js = 0 

r,s,st = - rss,11 

i¥=.j; j¥=.s; j¥=.t; i¥=.s; i¥=-t 

i¥=.t; i¥=.s 

j¥=.s; j¥=-t 

i¥=-t; i¥=.s 

j=I, ... ,k 

and B is a k X k 2 matrix, partitioned into k submatrices of size k X k, and with 
the notation B~ ts the (t,s)-th element of the C-th submatrix, fort= I, ... ,k: 

B1,tj = -pfjxPJPt-l exp(fx;jt) = -ptjxPJjx j=l, ... ,k;j¥=.t 

Bs,tJ = 0 

B1,tt = 0. 

j = I, ... ,k; s¥=.t 

Note that, because of the many zeros in rand B, we have 
k k 

(BfBT)1,s = ~ ~ P1jxPijxf1s,iJPsjxPJjx· 
i=I j=I 
i=/=t j=/=s 

We have checked that Bf BT ='11"0'1', where the matrix 0 has been specified in 
theorem 2.4.1, and the matrix 'Y in formulas (2.1.3) and (2.1.4). We shall not 
give this computation because it is long and tedious. We confine ourselves to 
a short outline of the straightforward computation. Partition the set of double 
indices h={(i,j);i=I, ... ,k;j=I, ... ,k} into the following subsets. For 
t = I, ... ,k; s = I, ... ,k and for the relations (R 1, ... ,R 5)E XI=I {=,¥=}we define 

S(t,s,R 1, ... ,R5) = 

Hence 



lk = LJ S(t,s,R1,••·,R5) 
(Ri, ... ,R,) 
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for t = 1, ... ,k and s = 1, ... ,k. Easy to verify that for t =s at most 5 and for t-=f=s 
at most 10 nonempty subsets S (t,s,R 1 , ••• ,R5) are defined. For any fixed pair 
t,s the nonempty subsets are disjunct. Subsequently 

(BfBT)t,s = ~ ~ '¥,;0ij'Yjs 
(R 1, ••• ,R,) (i,j)ES(t,s,R 1, ••• ,R,) 

fort= 1, ... ,k and s = 1, ... ,k. 

4.5. UNBIASED ESTIMATORS FOR LOGARITHMS OF NORMAL DEN
SITIES AND THEIR VARIANCES 

Unbiased estimators of the logarithm of the densities of the populations are 
derived when normality is assumed. The variances of these estimators are 
obtained and used in the asymptotic distribution of the posterior probabilities 
under various model assumptions. Throughout this section we shall assume 
that the k populations are characterized by multivariate normal distributions 
with unequal covariance matrices: Np(µ,h, ~h), h = l, ... ,k. The k posterior pro
babilities in (4.1.1) can be written as 

k 

PtJx = Pt exp(A1)/ ~ Ph exp(Ah), t = l, ... ,k (4.5.1) 
h=I 

where 

Ak = log([h(x)) 

I I I = -2P log(2'1T)-2 logl~hl-2 ~;;h (4.5.2) 

with 

~th = (x-µ,hf~;; 1(x -µ,h). 

The unbiased estimator of Ah which we shall consider in this section is 

I I 
Lh = - 2p log(?T)-2 log(IShl) 

- ~({h-p-1)(x-Xh_fS;; 1(x-Xh.) 

(4.5.3) 

where 

- _E_ - .I1tl i'(y) - dy {log(f(y))} - f(y) 

with 
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00 

f(Y) = f xY-ie-x dx, y>O, 
0 

and where Xh. and Ji; 1 Sh are the estimators of the mean and covariance 
matrix of the h-th distribution. Note that, Xh.~Np(µh,nh 1""2.h) and 
Sh~ ~(Ji,, ""2.h)- Do not confuse this fi, with fi,(x), the latter being the density 
at point x. 

Note also that Ah - A1 = tx-ht, defined in ( 4.4.2), and that Lh - L1 is an 
unbiased estimator for tx;ht· However, Lh- L1 is not equal to Ux;ht, defined in 
(4.4.3). This is because the estimators for the covariance matrices are different 
in the two approaches, which originate from different assumptions about these 
covariance matrices. 

For the variance of Lh we shall derive that 

I [p-I I 
VAR(Lh) = 4 J;/'1<-2(/i,-J)) + nh 2(ji,-p-3)- 1 

( 4.5.4) 

in which 

d2 oo 1 
'lr'(Y) = - 2 {log(f(Y))} = ~ . 2 

dy i=O (Y +1) 

(for this last equality see ERDEL YI et al. (1953), p.22). 
Sometimes, additional observations are available for the estimation of the 

covariance matrix, while these observations are not used for the estimation of 
the mean. This implies that the parameter fi1 is different from nh - 1. Let 
there be the following extra observations for the estimation of the covariance 
matrix ""2.h of the h-th population: a number of eh I extra observations from the 
h-th population itself, and % extra observations from a j-th extra population, 
which has density Np(µhJ• ""2.h) with µhJ unknown, for j =2, ... ,ah. Hence 
fi, = nh + ""2.'J"= 1 ( ehJ - 1 ). The extra observations may not be used for the estima
tion of the other k - 1 covariance matrices, and the extra populations are not 
selected from the other k - 1 populations. The asymptotic distributions we are 
looking for will depend on the way the nh, and ehJ, j = l, ... ,ah; h = l, ... ,k 
behave if n, where n=""2.~=Inh, tends to infinity. Let eh/nh-ch1,J=l, ... ,ah; 
h = l, ... ,k, and nhln-bh>O, h = l, ... ,k if n-oo. 

Let us define 
k 

R11x = Pt exp(L1)! ~ Ph exp(Lh) t = l, ... ,k 
h=i 

as estimators of the posterior probabilities in (4.5.1). Further, let us introduce 
the notations L=(L 1, ••• ,Lkf and A=(A1, ••• ,Ak}T. 



THEOREM 4.5.1. 
If n -HX! then 

:t'n 112(L-A) ➔ Nk(O, D) 

and 

:t'n 112(R.1x - P-1x) ➔ Nk(O, '¥ D'Y) 

where D is the diagonal matrix defined by 

ah ah 

Dh =-½b;;- 1(1 + ~ch1)- 1{p+2~chp1;;1z+~;;h} 
j=I j=I 
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for h = 1, ... ,k and where the matrix'¥ is defined in formulas (2.1.3) and (2.1.4). 

PROOF. The proof can be given with the same technique as used for theorem 
2.4.4. However, it is interesting to see that the diagonal elements of matrix D 
can also be derived from (4.5.4). In this derivation one needs that 

limn-.Jr'(n) = I 
n_,,oo 

which can be proved with 

00 I 00 I 00 I n 
I= nf--dt,s;;_n~--,s;;_nf-dt = --

n-1(t+l)2 i=o(i+n)2 n_ 1 t 2 n-1 

where the term in the middle is n'Y'(n). 

REMARK. A special case of theorem 4.5.1 is that in which there are no extra 
observations. This implies that ch1=0,j=1, ... ,a1,;h=l, ... ,k. Hence the diago
nal matrix D is specified by 

Dh =-½b;;-1(p+~;;1,) h=l, ... ,k. 

This is equal to theorem 2.4.4. 

In the remaining part of this section we shall prove that Lh in (4.5.3) is an 
unbiased estimator for Ah in (4.5.2) and that its variance is (4.5.4). For the 
sake of convenience we drop the index h and replace X1z. by Y, hence 
Y~Np(µ,, n- 1L) and S~~(j, L). 

From lemma 4.4.6 (2) and lemma 4.4.4 with B =L112 we derive that 
Es- 1 =(f-p -1)-IL- 1, hence 

E(f-p -l)(x -YfS- 1(x -Y) = 
= (/ - p - 1) trace{ (ES - 1 )(E(x - Y)(x - Y)T)} 

= (x -µ,fL- 1(x-µ,) + n- 1p. (4.5.5) 

From RAo (1965), p. 540, we see that ISl!ILI is distributed as the product of p 
independent central x2 variables with degrees of freedom: J-p + 1, ... ,f -1,f, 
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hence 

rom - r°''G G ... G 
.z; 1~1 -.z;, I 2 p 

where G;, i = I, ... ,p has the XJ -p +; distribution and the G;' s are mutually 
independent. Taking logarithms gives 

m_ p 
.ft'log l~I - ~;1 logG; 

hence 
p 

E loglSI = logl~I + .~ E logG;. 
1=! 

Now, we need the following lemma. 

LEMMA 4.5.2. 
If U ~x;, then 

1 
E logU = 'l't2v) + log2 

I 
VAR logU = 'V'Gv). 

(4.5.6) 

PROOF. We use that ElogU=M'(s)ls=O and Elog2 U=M"(s)ls=O where M(s) 
is the moment-generating function of logU: 

M(s) = Eeslogu = EUS, 

which can be computed by using the density p .( u) of U: 

We obtain that 

and with 

M(s) = 

1 
f(2 v+s)2s 

I rGv) 

'1'( ) = f'(x) and i''(x) = f"(x) -( f'(x) )2 
x f(x) f(x) f(x) 

the lemma can be proved. 

The application of lemma 4.5.2 to (4.5.6) gives 

p 1 
E loglSI = logl~I + p log2 + 2: '11(2 ([-p +i)). 

i=l 

(4.5.7) 
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The fact that Lh in (4.5.3) is an unbiased estimator of Ah in (4.5.2) follows 
immediately from (4.5.5) and (4.5.7). 

For the variance of Lh it can be derived from (4.5.3) that 

VAR(Lh) = 1vAR(loglSI) + 

1lf-p-1)2VAR((x -Y)7s- 1(x -Y)) + 

-½lf-p - l)COV(loglSI, (x -Y)TS-1(x -Y)). (4.5.8) 

The first two terms of the right-hand side are easiest to derive. For the first 
term, using (4.5.6) and lemma 4.5.2, we get 

VAR(loglSI) = VAR (logj) = i~J VAR(IogGi) 

= f 'lr'Fi"(f-p +i)) (4.5.9) 
i=I 

and for the second term of (4.5.8) we find with (4.5.5) and lemma 4.4.8 (3) that 

VAR((x -Y)TS-1(x-Y)) = 

(f-p -1)-2(1-p -3)- 1 {2.:l4 +4n - 1(f- l)i:l2 +2pn - 2(/- l)} (4.5.10) 

in which i:l2=(x -µ.)7~- 1(x -µ.). For the derivation of the third term in_ 
(4.5.8) we need the following two lemmas. 

LEMMA 4.5.3. 
If S ~ Wp(f, ~) and d EIRP then 

COV(loglSI, dTs- 1d) = -2(1-p -1)-2dT~- 1d 

PROOF. Let'¥ be an orthogonal matrix with dT~- 112 /lldT~- 112 11 as its first 
row. Let W=~- 112s~- 112 and V=irTW\Jr then W~"Wp(f, I) and 
V~"Wp(f, I). Now 

Define 

COV(loglSI, dTs- 1d) = 

= COV(logl~l/2~1121, dT~-112w-1~-112d) 

= COV(loglWI, dT~-112irTv-1ir~-112d) 

= COV(loglirV'lrTI, £jV- 1£1dT~- 1d) 

= dT~- 1dCOV(logWI, V 11 ). 

- v(J,2) v<2.b ] 
Ip-I 

(4.5.11) 
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hence I q = 1 and 

and 

WI = IV 11 - V<1.2J Ve2.~l Vo,2J I · IV<2,2J I 
= (V11 )- 1!V(2,21I 

where lemma 4.4.3 (1) has been used. Now, using the independence between 
V11 and V(2,2) (see corollary 4.4.2 (2)), expression (4.5.11) becomes 

-dT"2.- 1d COV(logV11 , V 11 ) = 
dT"2.- 1d {E(V 11 log(V1I )- 1)-EV11 E log(V11 )- 1 }. 

Now, let U=(V I1 )- 1 then, according to corollary 4.4.2 (1), U~x}-p+I· 
Further, introduce a G with a x}-p _ 1 distribution, then 

E(V11 log(Vll)- 1) = E(U- 1logU) = 

00 

= f u- 1(logu)uif-p +l)/2exp(-{ux ~)<f-p +l)/2r- 1t½(f -p + 1)) du 
0 

where lemma (4.5.2) has been used. Subsequently, with lemma 4.4.6 (1) we 
obtain EV 11 =(f-p -1)- 1, and once again using lemma (4.5.2) 

E log(V11 )- 1 = 'Yt½(f-p + 1)) + log2. 

Now, using 'Y(x + l)='l'(x)+ _l the proof of the lemma can easily be com-
x 

pleted. 

LEMMA 4.5.4. 
If S ~ Wp(f, "2.), D ~ Np(µ,, "2.) and S and D are independent, then 

COV(log!SI, DTs- 1D) = -2([-p -l)-2(p +µ,T"2,- 1 µ,). 

PROOF. We use that 

COV(g(S), h(D,S)) = 
= ED{COV((g(S)ID), (h(D,S)ID))} + 

COV(E{g(S)ID}, E{h(D,S)ID}) 
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where g and h are suitable real valued functions. Since E{g(S)ID} is a con
stant the last term disappears. So, the left-hand side of the lemma becomes 

En{COV(loglSI, (DTs- 1DtD=d))} 

and by lemma 4.5.3 this is 

-2(f-p-1)-2EDT"2.- 1D 

which evaluates to the right-hand side of the lemma, by which the proof is 
completed. 

The last term of the right-hand side of (4.5.8) can be evaluated by using 
lemma 4.5.4 with D =n 112 (x - Y). So 

COV(loglSI, (x -Y)TS- 1(x -Y))= 

= n- 1 COV(loglSI, DTs- 1 D) 

= -2n- 1(f-p-1)- 2 {p +n(x -µf"2.- 1(x -µ)}. (4.5.12) 

The variance of Lh, given in (4.5.4), can now easily be derived from (4.5.8) and 
the three formulas (4.5.9), (4.5.10) and (4.5.12). 

4.6. A COMPARISON OF THE ACCURACY OF FOUR METHODS OF 
CONSTRUCTING CONFIDENCE INTERVALS FOR POSTERIOR PRO
BABILITIES 

In this section we shall study the quality of four different methods of con
structing confidence intervals for posterior probabilities in a specific model. 
These methods originate from the use of different estimators. The confidence 
intervals are constructed on the basis of the asymptotic distributions of these 
estimators. The quality of the approximate confidence intervals is investigated 
by means of simulation experiments. The model is that in which a multidi
mensional observation vector originates from one of k populations, specified 
by multivariate normal distributions with equal covariance matrices. The esti
mators are based on training samples from the k populations. Observation 
vector and prior probabilities are given. 

Let x denote the observation vector which comes from one of the popula
tions. These populations are characterized by p-dimensional multivariate nor
mal distributions with equal covariance matrices. Accordingly, let Ji, denote 
the probability density function of Np(µ, "2.), h = 1, ... ,k. The means 
µh, h = 1, ... ,k and the covariance matrix "2, are unknown. For each of the k 
populations the outcomes xh 1 , .•. ,xh,,,, are given of the independent identically 
distributed random variables Xh 1 , ... ,Xh,,, in which Xh; has density Ji,. Let the 
prior probabilities be denoted by Ph, h = 1, ... ,k and considered given. The pos
terior probabilities are 

k 

Ptix = P1.fi(x)/ L, Phfi,(x), t = 1, ... ,k 
h=I 
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in which 

with 

A;;h = (x -µ1zf'2":.- 1(x -µh). 

By cancelling the factor 12'17'2":.1- 112 we get the simpler expression 

I k I 
PtJx = P1exp(-2 A;;1)/ ~ Phexp(-2 A;;h), 

h =I 

see also formula (2.4.14). 
Let X1, denote the mean of the sample of the h-th population and let S be 

the pooled matrix of corrected sums of squares and cross products 

i=l 

k n, 

S = ~ ~(X1,;-Xh)(X1,;-Xhf-
h =li=I 

Take n =n1 + · · · +nk and f =n -k then X1,~Np(µ1,, n,; 1 '2":.) and 
S ~ Wp(f, '2":.). With the notation 

V;;h = (x-XhfS- 1(x-Xh), 

the four different estimators R~1,J = 1, ... ,4 for PtJx, t = l, ... ,k are defined by 

· I A 2()) k I A 2()) 
R~l = Pt exp(-2 Ax;t )/ ~ Ph exp(-2 Ax;h) 

h=I 

in which :i !~k is an estimator for A; ;h: 

A2(1) - 2 
Ax;h - (f +k) Vx;h 
A 2(2) - 2 
Ax;h - f Vx;h 
A 2(3) - 2 
Ax;h - (f-p -1) Vx;h 
A2(4) - 2 -] 
Ax;lz - (f-p -1) Vx;h -pn1, . 

So, the estimator RH1 is obtained by plugging the maximum likelihood estima
tors X1, and (f +k)- 1S for µh and '2":., respectively, into the formula of A;;h· 
The other three estimators are obtained by applying the principle of unbiased
ness. The second estimator is based on ES= f2, and the third one on 
Es- 1 =(f-p-1)- 1'2":.- 1 (see MUIRHEAD (1982), p. 97). The fourth estimator 
satisfies 

A 2(4) - 2 
EAx;h -Ax;h. 

This can be verified by showing that 

E V;;h = (f-p -l)- 1A;;h + n,; 1 (f-p-l)- 1p. 



We derive this as follows 

E Vi;h = E(x-Xh)7S- 1(x -Xh) 

= E trace{(x -xh>7s- 1(x -Xh)} 

= E trace{ s- 1 (x - Xh)(x - Xh)7} 

= traceE{S- 1(x-Xh)(x-Xh)7} 

= trace {(ES- 1)(E(x -Xh)(x -xh)7)} 
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= trace {(ES- 1)(E(x - Xh)E(x - xh)7 + VAR(x - Xh))} ' 

where we have used that S and Xh are independent, that 
EtraceE{·}=traceE{·}, and that trace{AB}=trace{BA}. By putting 
Es- 1 =(f-p -1)- 1~- 1, E(x -Xh)=x -µ,h and VAR(x -Xh)=n,;- 1~ into 
the formula, the desired result is easily obtained. 

The distributions of the four estimators defined above are in first order 
asymptotically the same. For the estimator RHl the asymptotic distribution 
was derived in chapter 2, theorem 2.4.1. With the notation RYl=(RYiL---,R~~) 
this distributional result is given by 

!Rn 112(RYJ - P-1x) ➔ N k(O, '¥0'¥) 

with e defined in theorem 2.4.1 and 'Y in (2.1.3) and (2.1.4). From these 
asymptotic distributions we obtain the approximate 100(1-a)% confidence 
intervals for P,1x, t = l, ... ,k 

(i) _J_ (i) (i) J_ (i) . -
[Rrix 2Lr1x, Rf]x + 2Lr1xl, J -1, ... ,4 

where 

denotes the length of the confidence interval, and in which ~a is defined by 

P(U>~a)- ~a if Uhas a standard-normal distribution. The estimators 0(j) 
A(j) , A2(j) A2 

and 'Y. are defined by plugging-in the estimators R~l for Pi1x, Ah;x for Ax;h, 
and bV>(x -Xh)7 s- 1(x -Xe)+cv> for (x -µ,h)7~- 1(x-JJ,i) in the matrices E> 
and '¥, respectively, (j=l, ... ,4), where b<1>=J+k, b<2>=J, b<3> =b<4> 
= J-p -1, c<1> = c(2> =c<3> =O, and c<4> = -pn,;- 1 if h =e and c<4> =O if h=/=.e. 

In order to investigate the reliability of the four methods of constructing 
approximate confidence intervals, the following simulation experiment was car
ried out. Note that an overall comparison of small sample performance of the 

estimators R~l and the approximate confidence intervals R~l ~ L~l 

(j = 1, ... ,4) is rather complicated because the performance depends on the very 
large number of parameters 
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where t indicates the number of the population from which the vector of scores 
x has been drawn. We selected 500 parameter points for the simulation exper
iment, and we did the following for each point: compute Piix, generate 1000 
times a set of training samples and compute each time R~l, L~l(j = 1, ... ,4). 
Count the number of times the intervals contains the true value Ptjx and divide 
this number by 10, so that it can be compared with the 100(1-a). The 500 
points were grouped into 25 clusters of 20 points each. Within a cluster only 
the x vectors differ because they were drawn independently. For the points 
within a cluster the same training set was used. We made the restrictions 
t=l,a=0.05,µ, 1=0p,~=Ip,Ph=k- 1 (h=l, ... ,k) and considered only P!jx 

which is the most important, because often largest, posterior probability. For 
each cluster we averaged the results of the 20 points. These average results 
with their standard deviations are presented in Tabl 4.1; a cluster corresponds 
with a row in the table. In order to get a nice layout of the table we introduce 
the following notations: 

n =(n 1, .•. ,nk); µ,=(µ,1 ; ... ;µ,k); 

a =(O, 0, 0, Of; b =(2, 0, 0, Of; 

e=(l, I, 0, Of; f=(O, 0, 2, Of; 

14=(1, I, I, I); ls=(l4;l4); 

c =(O, 2, o, of; 
g =(O, 0, 0, 2f; 
m4 =(O, 1, 0, l); 

d =(I, I, I, If 

h =(O, 0, I, If 

ms =(m4;m4). 

Bias, mean square error (m.s.e) and mean absolute deviation (m.a.d.) of the 
point estimators R~l (j = 1, ... ,4, t = I) were also studied. 

For the chosen parameter points we conclude that the m. l. estimator R\M 
has a smaller bias, a smaller m.a.d. and a smaller m.s.e. than its competitors, 
at least on the average. Table 4.1 shows that the confidence intervals for 
j = 2, 3 and 4 are slightly more reliable than those based on the m. l. estimator 
(j = 1 ). Sample sizes should certainly not be smaller than 50 (25) if one 
requires that the true confidence coefficient of the interval based on the m. l. 
estimator and l -a=0.95 should not be smaller than 0.90 (0.85). 

The results of this section were published earlier in the Journal of Multivari
ate Analysis, 16, 432-439, (1985). Publication in this thesis is with permission 
of Academic Press, Inc. 
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Input parameter values Averaged confidence coefficients with standard deviations 
for the clusters for the four methods 

p, k, µ n j =l j=2 j=3 j=4 

p=4 50.14 92.0 2.0 92.8 1.8 93.3 1.6 93.0 1.6 
k=4 50.1 4 -25m4 90.8 2.6 91.8 2.3 92.8 1.9 92.3 2.0 
µ=(abcd) 25.1 4 +25m4 90.1 2.9 91.2 3.0 92.1 2.7 91.6 2.4 

25.14 88.9 3.2 90.6 2.7 92.0 2.1 91.4 1.9 
15.14 84.3 4.5 87.2 4.1 89.7 3.4 88.4 3.2 

p=4 50.ls 92.4 2.2 93.1 1.7 93.3 1.4 92.9 1.2 
k=8 50.ls -25ms 92.3 2.2 93.1 1.4 93.4 1.1 92.4 1.2 
µ= 25.1 8 +25ms 90.0 3.0 91.8 2.3 92.2 1.8 91.7 1.5 
(ab · · · gh) 25.1 8 90.5 3.3 91.6 2.3 92.2 1.6 91.3 1.3 

15.ls 87.7 4.8 89.8 3.3 90.0 2.2 89.4 1.6 

p=8 50.14 88.7 1.6 89.3 1.5 90.9 1.5 90.4 1.6 
k=4 50.14 -25m4 87.0 2.4 87.9 2.2 90.0 2.1 89.4 1.9 

[ abcd] 
25.14 +25m4 86.3 2.4 87.5 2.2 89.6 2.0 89.1 2.0 

µ= aaaa 25.14 83.4 2.4 85.0 2.2 88.2 2.3 87.2 2.3 
15.14 76.2 4.0 78.7 3.8 84.8 3.3 83.1 3.3 

p=8 50.14 86.4 2.3 88.0 2.1 91.4 2.7 91.1 2.7 
k=4 50.14 -25m4 83.8 2.5 86.0 2.4 90.4 2.8 90.5 3.1 

[ abcd] 
25.14 +25m4 84.4 2.6 86.2 2.7 90.3 3.5 89.2 3.2 

µ= aaaa 25.14 80.2 2.7 83.3 2.8 89.0 4.4 88.6 4.6 
15.14 73.3 3.8 77.5 4.3 86.5 6.3 85.6 6.7 

p=8 50.ls 89.4 2.2 90.0 1.8 90.8 1.4 90.3 1.4 
k=8 50.1 8 -25ms 89.1 2.1 90.0 2.1 90.9 1.6 89.4 1.7 
µ= 25.1 8 +25m 8 85.9 3.1 86.7 2.6 87.9 1.9 88.2 1.7 

[ ab · · · gh] 25.ls 85.0 4.2 86.6 3.2 88.0 2.3 87.3 2.2 
aa · · · aa 15.18 79.2 5.2 82.0 3.6 84.8 2.8 83.5 2.6 

TABLE 4.1. The Reliability of the Confidence Intervals 
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Chapter 5 

Application and simulation study 

5.1. THE BORDER CA VE CRANIUM 

In this section we shall illustrate our theory with an application from physical 
anthropology. Group membership discussions are important in physical 
anthropology and the often occurring impossibility to increase the size of the 
training samples in this field of science leads to the need to express the statisti
cal uncertainties in the group membership probabilities. In our theory this 
need is satisfied by presenting standard deviations for the posterior probabili
ties. 

The following application was suggested by the physical anthropologist G.N. 
van Yark, University of Groningen, and deals with the Border Cave cranium, a 
famous specimen in physical anthropology. 

In 1940, W.E. Horton, while digging for guano at Border Cave (near the 
boundary between Swaziland and Zululand, South Africa) found human 
remains including a partial adult cranium. More of the cranium was found 
during 1941-42. It is widely agreed that the cranium can be associated with 
Middle Stone Age industry, date 90.000-110.000 B.P.. However, the group 
membership of the cranium has been the subject of a controversy, described in 
a number of- articles. The basic question of interest being whether it is of 
Negro (Zulu, Sotho, Venda, Teita, Dogon, Nguni, Shangana-Tonga, etc.) or of 
Khoisan (Bushman and Hottentot, with present-day descendants San and 
Khoikhoin, respectively) origin. Among the first articles we mention COOK, 
MALAN and WELLS (1945), WELLS (1950, 1969, 1972) and BROTHWELL (1963). 
Discriminant analysis techniques were used in DE VILLIERS (1973), RIGHTMIRE 
(1979, 1981), CAMPBELL (1980, 1984), DE VILLIERS and FATTI (1982), AMBER
GEN and ScHAAFSMA (1984), and FATTI (1985). Some more interesting articles 
about the Border Cave cranium are those of BEAUMONT et al. (1972, 1978). 
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More about multivariate statistical techniques used in research to skeletal 
remains can be found in VAN V ARK (1970, 1976) and in VAN V ARK and VAN 

DER SMAN ( 1982). 
Our evaluation of Border Cave is based on a comparison with crania from 

k = 8 African populations, namely males and females of the Bushman, Zulu, 
Dogon and Teita (see Table 5.1). We used samples from van Varks's database. 

Measurements Border Bushmen Zulu Dogon Teita 
Cave 

males females males females males females males females 
N1=41 N2=49 N3=55 N4=46 N5=48 N6=53 N1=34 Ns=49 

I SOS, Supraorbital projection 10 6.73 5.69 6.18 5.24 5.40 4.08 6.44 
2 FMB, Bifrontal breadth 112 97.27 93.90 101.98 97.74 99.54 94.34 100.06 
3 NAS, Nasio-frontal subtense 15 15.41 16.20 17.84 16.48 16.46 15.45 18.79 
4 NFA, Nasio-frontal angle 150 143.20 143.65 141.51 142.70 143.46 143.68 138.88 
5 WMH, Check height 21 20.93 19.84 20.73 20.06 21.21 19.96 22.21 
6 FRC, Nasion-bregma chord 116 109.17 105.10 111.69 109.39 110.00 105.66 108.71 
7 FRS, Nasion-bregma subtense 32 28.46 28.22 27.71 27.70 26.69 25.64 26.62 
8 FRF, Nasion-subtense fraction 51 47.59 45.08 47.16 46.04 47.88 44.62 48.82 
9 FRA, Frontal angle 122 124.29 122.73 126.33 125.33 127.58 127.28 127.41 

10 OBB, Orbit breadth, left 45 39.27 37.67 40.44 39.20 39.71 38.08 39.65 
11 MOH, Mastoid height 26 25.24 21.61 28.42 25.61 29.06 25.21 29.09 

TABLE 5.1. Measurements of Border Cave compared with means for eight 
modern African populations 

4.94 
95.43 
17.12 

140.49 
20.18 

105.76 
27.02 
47.37 

125.43 
37.76 
24.18 

Unfortunately Hottentots were absent from this database. RIGHTMIRE (1979) 
had concluded that Border Cave is closest to the Hottentot centroid. However, 
RIGHTMIRE's (1979) Table 5.2 shows that Hottentot males and Bushman males 
are very similar. As a consequence we are not very concerned 

SOS 
2 FMB 
3 NAS 
4 NFA 
5 WMH 
6 FRC 
7 FRS 
8 FRF 
9 FRA 

10 OBB 
II MDH 

TABLE 5.2. 

standard 
deviation 

1.18 
3.43 
2.21 
4.43 
2.17 
4.63 
2.62 
3.46 
3.78 
1.65 
3.14 

Correlation-matrix 

2 4 6 7 9 10 11 

1.00 
0.29 1.00 
0.25 0.33 1.00 

-0.18 -0.07 -0.96 1.00 
0.06 0.26 0.03 0.04 1.00 
0.04 0.22 0.09 -0.04 0.22 1.00 

-0.01 0.06 -0.12 0.15 -0.02 0.60 1.00 
-0.03 0. 10 0.02 0.0 I 0.22 0.53 0. I 8 1.00 
0.03 0.04 0.19 -0.19 0.14 -0.18 -0.89 0.18 1.00 
0.08 0.63 0.25 -0.09 0.04 0.11 -0.0 l 0.02 0.06 1.00 
0.11 0.18 0.04 0.01 0.16 0.12 O.QJ 0.00 0.02 0.12 1.00 

Standard deviations and correlation matrix for the eleven 
measurements in the eight populations for the case with 
homogeneity of dispersion matrices 
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about the missing Hottentots. We used p = 11 variables, see Table 5.1, con
forming to the definitions of HOWELLS' (1973) measurement system. 

We shall show that the Border Cave cranium is not typical for any of the 
populations investigated by us. The original question whether Border Cave is 
of Negro or of Khoison origin is not property solved by comparing Border 
Cave with samples from subpopulations. Nevertheless this may be regarded as 
a first step. 

By making univariate comparisons (e.g. on the basis of Student's two sample 
test) using the scores of Border Cave, the means of the populations in Table 
5.1, and the standard deviations in Table 5.2, it is clear that Border Cave is 
not very typical for any of the eight populations, in fact it looks rather atypi
cal. 

The same conclusions can be reached on the basis of multivariate considera
tions. We shall consider three methods to discuss the typicality of the speci
men. 

(a) First we compute estimates of the Mahalanobis distances between Border 
Cave and the populations. Two cases, one with homogeneity of covariance 
matrices, the other without this assumption are considered. The following 
notations are used. Xh is the mean of the h-th sample, Sh the matrix of 
corrected sums of squares and cross products of the measurements for the h-th 
sample, S =Lt= 1 S1, the pooled matrix of corrected sums of squares and cross 
products and n =n 1 + · · · + nk. In the case of homogeneity of covariance 
matrices, the squared Mahalanobis distances are defined as 

A~;hh = (x -µhfL- 1(x -µh) 

for h = 1, ... ,k and their maximum likelihood estimators are 
A2 _ T -I l..lx;hh - n(x -X1,) S (x -Xh)-

ln the case that no assumptions are made about the covariance matrices the 
corresponding formulas become 

A~:h = (x -µhfLi; 1(x-µh) 

and 
A2 
b.x:h = nh(x-X1,fs;;'(x -Xh)-

h . A A2 1/2 A A2 1/2 
Te numencal values of Ax;1,1,={1..1x;hh} and Ax;h={Ax;h} are presented 
ip Table 5.3 and Table 5.4. The shortest ~istances in the two models are 
Ax;ll =6.4822 for the Bushman males and Ax;J =6.1420 for the Zulu males. 
These are so large that Border Cave can not be seen as a random drawing 
from any of the 8 populations, at least not if the estimates Xh, S and s,, are 
regarded as the true values of the corresponding population parameters. 

(b) Secondly, we can perform Hotelling tests to test the null hypothesis that 
Border Cave is from the same population as the h-th sample. Thus the 
analysis is based on the assumption of normality. Tests for the homogeneity 
of covariance matrices can also be performed, though this has not been done. 
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In the case of homogeneity, the Hotelling T 2 statistic 
A2 

nh(n -k -p + 1)n -l(n,, + l)- 1p -] D.x;hh 

has the F(p, n -k -p + 1) distribution (see RAo (1965), 8.b.2. XII). In the 
case without the assumption of homogeneity the statistic 

A2 
(nh-p) (nh + 1)-]p- 1D.x;h 

has the F(p, n,,-p) distribution. Table 5.3 and Table 5.4 show the results. In 
the column with the heading "F-prob" the level of significance is denoted. We 
see that all the levels are below 5%. Hence the null hypothesis that Border 
Cave and the h-th training sample are from the same population is rejected 
(h = 1, ... ,8). 

(c) The third method deals with typicality probabilities. If x is the vector of 
scores of Border Cave then we define the typicality probability of Border Cave 
with respect to population h as 

a,,(x) = P(G>(x-µ,hf2.;; 1(x-µ,h)) 

where G has the x; distribution. The atypicality of vector x with respect to 
population h is given by 1-a,,(x). The larger the Mahalanobis distance 
between x and the centre µ,,, of the population, the less typical x is for this 
population, and the smaller the typicality probability ah(x). Note that, 
although x is considered fixed, a1,(x) is an unknown parameter because a1,(x) 
depends on µ,,, and 2.,,. Hence it makes sense to consider confidence intervals 
for the typicality probabilities. Under the assumption of normality of distribu- · 
tions and homogeneity of dispersion matrices, an exact confidence interval for 
D.;;hh can be obtained by using the fact that 

A2 
nh (n -k -p + 1) n- 1p- 1D.x;hh 

has the noncentral F distribution with p and n - k - p + 1 degrees of freedom 
and noncentrality parameter nht:.;;hh (see RAo (1965) 8.b.2 XII). In the 
present study one might content oneself with approximate results based on the 
unbiased estimator 

;;: 2 

D.x;hh = (n -k -p - l)n-I D.;;1,1z-nj; 1p 

as estimator for t:.;;hh and with corresponding standard deviation 
;;: 2 

st.dev. (D.x;hh) = [(n -k -p -3)- 1 {2t:.!;hh + 

+ 4(n-k-l)nj; 1D.;;hh + 2p(n-k-l)nj; 2 }] 112 • 

Approximate 95% confidence intervals for the t:.; ;hh can be obtained with the 
formula 

;;:2 ;;:2 

D.x;hh + 1.96 st.dev. (D.x;hh) 

and an approximate 95% confidence interval for the typicality probability 
a,,(x) is given by 
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(P(x;;;.u.B. (11;;hh)), P(x;;;.L.B. (11;;hh))) 

where U.B. and L.B. mean upper and lower bound of the confidence interval, 
respectively. Numerical values are given in Table 5.3. We may conclude that 
Border Cave is very atypical for any of the 8 populations when normality of 
distributions is postulated. If we drop the assumption of homogeneity of 
dispersion matrices, then additional uncertainty appears because 2:h has to be 
estimated on the basis of sample h only, (h = 1, ... ,8). We shall derive approxi
mate confidence intervals in the same way as before. Exact confidence inter
vals for 11;.h can be derived from 

A2 
(nh-p) p -ll1x:h 

which has a noncentral F(p, nh -p; nh11L) distribution. The unbiased estima
tor 

~2 A2 
11x;h = (nh-p-2)n-,; 111x;h-nh 1 p 

for 11;;h has standard deviation 
~2 

st.dev. (11x;h) = [(nh-p -4)- 1{211;;h + 

4(nh - 2)n-,; 111; ;h + 2p(nh -2)n-,; 2 } ] 112 . 

See Table 5.4 for the numerical values of both quantities. Approximate 95% 
confidence intervals for the 11;;h are given by 

~2 ~2 
11x;h + 1.96 st.dev. (11x;h) 

and with 

(P(x;;;. U.B. (11; ;h)), P(x;;;. L.B. (11; ;h))) 

we obtain the approximate 95% confidence intervals for the typicality probabil
ities ah(x), h = I, ... ,k. From Table 5.4 we see that the intervals are much 
larger than in Table 5.3, the case of homogeneity of dispersion matrices. The 
two largest intervals are those of the Bush111an males and Zulu males. Interest-

ing is that for these two populations the 11x;h 's are almost equally large, but 
that the lengths of the approximate intervals for the typicality probabilities are 
very different (for Bushman males, twice as large as for Zulu males). This is 
caused by the difference in sample sizes ( 41 for the Bushman males and 55 for 
the Zulu males). For both populations the estimate 0.0026 for 
ah(x)=P(xf;;;.11;;1,) is very small. Hence the conclusion is that Border Cave is 
not typical for any of the populations. 

Our overall conclusion is that, whichever way we turn, Border Cave is not 
typical for any of the 8 populations and cannot be seen as a random drawing 
from any of the populations involved. 

In spite of the above conclusion it is illustrative to compute the posterior 
probabilities and their standard deviations. They are shown in Table 5.3 and 
Table 5.4 for equal prior probabilities. Because Border Cave is not a random 



107 

drawing from any of the 8 populations, these posterior probabilities have not 
the usual meaning and should not be attached to Border Cave. However, let 
us assume that, in some purely hypothetical situation, a random drawing from 

N; !:,x;hh F-prob Li_x ;hh 
~L 

L.B.(a1,(x)) U.B.(a1,(x)) st.dev(p1, Ix) st.dev(!:ix ;hh) Phlx 

males 41 6.4822 0.025 39.4976 3.5915 0.0000 0.0006 0.7493 0.2827 
Bushman 

females 49 7.5935 0.008 54.3450 4.6302 0.0000 0.0000 0.0003 0.0005 

males 55 6.6615 0.021 41.7962 3.6213 0.0000 0.0003 0.2307 0.2713 
Zulu 

females 46 7.1284 0.013 47.8503 4.1680 0.0000 0.0000 0.0092 0.0131 

males 48 7.1309 0.013 47.8940 4.1496 0.0000 0.0000 0.0091 0.0131 
Dogon 

females 53 8.3023 0.004 65.0248 5.4028 0.0000 0.0000 0.0000 0.0000 

males 34 7.3834 0.009 51.2680 4.6099 0.0000 0.0000 0.0015 0.0024 
Teita 

females 49 7.9342 0.006 59.3516 5.0106 0.0000 0.0000 0.0000 0.0000 

TABLE 5.3. Statistical quantities of Border Cave in the case of homogeneity 
of dispersion matrices. 

one of 8 populations has the posterior probabilities and standard deviations 
presented in Table 5.3 and Table 5.4. If conclusions are based only on the 
point estimates of the posterior probablities, then Table 5.3 suggests that the 
drawing is from population 1 (probability 0.75) and Table 5.4 suggests that the 
drawing is from population 3 (probability 0.94). However, if standard devia
tions are taken into account, Table 5.3 as wel as Table 5.4 suggest that the 

N; Li_x;h F-prob t:,x;h 
~2 

L.B.(a1,(x)) U.B.(a1,(x)) st.dev(Phlx) st.dev( !:ix ;h) Phlx 

males 41 6.5025 0.044 28.6076 8.1951 0.0000 0.3241 0.0558 0.3112 
Bushman 

females 49 7.6926 0.014 43.2518 10.7208 0.0000 0.0226 0.0000 0.0002 

males 55 6.1420 0.046 28.6075 6.6095 0.0000 0.1545 0.9434 0.3128 
Zulu 

females 46 7.3389 0.020 38.3992 9.9941 0.0000 0.0646 0.0006 0.0040 

males 48 7.4473 0.018 40.2121 10.1334 0.0000 0.0408 0.0002 0.0014 
Dogon 

females 53 9.7556 0.002 71.6202 16.6504 0.0000 0.0001 0.0000 0.0000 

males 34 9.8733 0.004 59.8860 19.7334 0.0000 0.0313 0.0000 0.0000 
Teita 

females 49 10.9610 0.001 88.0442 21.5855 0.0000 0.0000 0.0000 0.0000 

TABLE 5.4. • Statistical quantities of Border Cave m the case of hetero-
geneity of dispersion matrices. 

drawing can be from both population 1 and population 3. So, rather than the 
population with the largest posterior probability, the two populations with 
largest posterior probablities are chosen. Fortunately, in both tables, these are 
the same two populations. Hence the conflict between the two allocations in 
the case where assignments were made to the most probable population, has 
disappeared. 
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5.2. THE COMPUTER PROGRAM POSCON 

This section contains a short description of the computer program POSCON. 
The name POSCON was chosen by its programmer D.M. van der Sluis as a 
contraction of the words "posterior probability" and "confidence interval". 
Estimates of posterior probabilities, standard deviations, and correlations 
between the estimates of the posterior probabilities can be computed by the 
program. It is assumed that k mutually exclusive populations are involved and 
that the individual under investigation belongs to one of these k populations. 
The individual is characterized by a vector of scores. The k prior probabilities 
for the individual can be given, possibly with involved uncertainties. The pro
bability densities of the populations are computed from training samples. The 
formula of Bayes is used for the computation of the estimates of the posterior 
probabilities. The standard deviations of the estimates of the posterior proba
bilities are computed from the asymptotic distribution of the estimates. 
Further output of the program are estimates of typicality probabilities with 
their standard deviations, and F-probabilities of related Hotelling tests. 

The computer program POSCON consists of three parts CREA TE, 
CHANGE and RUN. A so-called POSCON system file contains the relevant 
information, such as a database of training samples from the populations. The 
two parts CREATE and CHANGE are used for creating and changing this 
database. The real computation is carried out by the part RUN on the basis 
of the statistical model specified by the user. 

POSCON, written in fortran 77, can be used interactively, but also com
mands from a special command file can be read. In the interactive mode the 
user has to type special commands or to use displayed menus. The program 
has a number of scratch files. One of them is a backup file of the input com
mands. This file can be used as a command file in a next run. Another 
scratch file contains the output written on the display as well as all kinds of 
information not automatically displayed. This scratch file can also be 
displayed. 

In the part RUN information is asked about the individual whose posterior 
probabilities have to be estimated. The user has to give the vector of scores of 
the individual. He has to select a number of variables and populations from 
the database, let's say p and k, respectively, and he has to specify the k prior 
probabilities. Next a probabilistic context has to be chosen. This consists of 
(I) an eventual partitioning of the set of p variables into subsets, and (2), a 
specification of the probabilistic models for the subsets. The subsets are 
regarded as stochastically independent for each of the k populations. Further
more they are also considered as independent of the information on the basis 
of which the prior probabilities are specified. For a choice of a probabilistic 
model for a subset of variables the following models are available. 
(I) DIS, all variables are discrete. 
(2) NOR, all variables are normally distributed. 
(3) NEC, all variables are normally distributed with the additional assump

tion that the covariance matrices of the k populations are equal. 
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( 4) MIX, some variables are discrete, the other ones are normally distributed 
conditional on the discrete ones. 

The theory behind the above-mentioned four models has been presented in 
chapter two of this monograph. 

The model MIX requires that some further choices have to be made. Let c 

be the number of possible outcomes of the vector of discrete variables. Hence 
a training sample can be divided into c classes by collecting all observations 
with the same outcome of the vector of discrete variables. With the command 
RECODE the user can combine various classes into one new class. Let d be 
the number of classes obtained in this way. A further assumption is that the 
continuous variables, given the discrete variables, have a multivariate normal 
distribution, which depends on the class to which the outcome of the discrete 
variables belongs. With respect to the k X d covariance matrices "'2-1,1, 
h = 1, ... ,k;j = l, ... ,d the program offers the following four options. 
(1) NOC, no constraints for the covariance matrices. 
(2) CLC, column constraints, "'2-IJ= · · · ="'2-kJ,J=l, ... ,d. 
(3) RWC, row constraints, "'2-1, 1 = · · · ="'2-1zd, h = I, ... ,k. 
(4) MXC, maximal constraints, "'2- 11 = · · · ="'2-kd· 

The model MIX is based on theory described in section 2.5 of this mono
graph. More about the computer program POSCON can be found in VAN DER 

SLUIS et al. (1984, 1985, 1986). 

5.3 A SIMULATION STUDY IN THE CASE OF BOTH CONTINUOUS 
AND DISCRETE VARIABLES 

In this section we study the quality of point estimates, standard deviations and 
confidence intervals for posterior probabilities in the case of both continuous 
and discrete variables. The study is based on simulations for the four cases 
mentioned in section 2.1 under ad(3). Theoretical results can be obtained 
from theorems 2.5.2 and 2.5.3. The four cases correspond with the options 
NOC, RWC, CLC, and MXC of the model MIX in the computer program 
POSCON, see section 5.2. 

The aim of this simulation study is certainly not to a give a comprehensive 
review of the goodness of the approximations based on theorems 2.5.2 and 
2.5.3. Such a study would require simulation results for many inputs, because 
the number of parameters in the case of both continuous and discrete variables 
is very large. In fact, we shall present only results for one very special parame
ter point. It is obvious that the conclusions to be arrived at can be very 
misleading if they are extrapolated to other situations. 

We restricted our attention to two populations (k =2) and four variables, 
namely two discrete and two continuous ones (p =2). The two discrete vari
ables had two categories each. The probabilities for the combined categories 
(d =4) are denoted by Pt1, t = 1,2; / = 1, ... ,4 and can be found in Table 5.5. 
The two continuous variables follow conditional on a combined category, a 
multivariate normal distribution; parameters are µ11 , "'2-,1, t = 1,2; l = 1, ... ,4; µ11 

can be read from Table 5.5. 
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j 
population I population 2 

PI} /J,Jj P21 JJ,21 
I 0.2 (0,0) 0.3 (0.25, 0.25) 
2 0.2 (0,3) 0.3 (0.50, 3.50) 
3 0.3 (3.0) 0.2 (3.75, 0.75) 
4 0.3 (3,3) 0.2 (4.00, 4.00) 

TABLE 5.5 Parameters of the subpopulations. 

Various sizes of the training samples were used, namely, n 1 = n 2 = 50, 100, 
200, 400, and 800. For each of these cases the following 4 points were done 40 
times: (I) a training set was drawn from the two populations, (2) 100 vectors 
of scores were drawn from population I, (3) for each of the vectors of scores 
the theoretical and estimated posterior probability of belonging to population 
I and the standard derivation were computed, and, whether or not the theoret
ical posterior probability was situated in the 95% confidence interval was 
registered, for each of the four models, (4) the frequency of confidence inter
vals with the theoretical posterior probability situated in it was computed, 
being some number between O and 100, for each of the four models. The 
means with their standard errors of these 40 numbers are presented in Table 
5.6 for the four models considered. Note that NOC means that no constraints 
are imposed, CLC means that L 11 =L21 , L 12 =L22, L13=L23 and L14=L24, 
RWC stands for L 11 = · · · =L 14 and L 12 = · · · =L24, and MXC means 
L11 = · · · =L14 = L21 = · · · =L24 . Hence, for the options NOC, CLC, 
RWC, and MXC the observations from I, 2, 4, and 8 subpopulations, respec
tively, are used for the estimation of the covariance matrices. 

Note that another way of simulation would have been generating vectors of 
scores and then for each of them generating a large number of training sam
ples. This would have given comparable figures for the confidence levels, but 
would have required much more computer time. 

The figures in Table 5.6 display that the nominal confidence level of 95% is 
not attained in most situations. The intervals are on the average, a bit too 
small. This shortcoming tends to decrease if the sample sizes are increased 
and 

n1=n2 NOC CLC RWC MXC 
50' 77.7 1.7 86.3 1.5 86.7 1.7 89.3 1.2 

100 84.4 1.8 89.4 1.7 89.8 1.8 90.1 2.0 
200 91.3 1.2 93.0 1.3 92.1 1.2 93.3 1.2 
400 92.6 1.0 93.7 1.1 93.6 1.1 93.5 1.1 
800 94.5 0.7 95.7 0.8 94.3 0.9 94.6 0.9 

TABLE 5.6 Confidence levels with standard errors. 
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theoretical frequency percentiles · mean st.dev. 

posterior 0 25 50 75 100 
probability 

0.0-0.1 9 -0.050 -0.048 -0.013 0.054 0.136 0.013 0.067 
0.1-0.2 53 -0.109 -0.050 -0.023 0.022 0.198 -0.003 0.066 
0.2-0.3 220 -0.156 -0.064 -0.017 0.040 0.364 -0.007 0.077 
0.3-0.4 582 -0.236 -0.045 -0.002 0.045 0.334 0.002 0.076 
0.4-0.5 678 -0.243 -0.054 -0.001 0.054 0.298 0.001 0.078 
0.5-0.6 553 -0.291 -0.044 0.007 0.068 0.305 0.007 0.088 
0.6-0.7 430 -0.429 -0.033 0.016 0.068 0.288 0.013 0.086 
0.7-0.8 474 -0.335 -0.049 0.007 0.053 0.235 0.002 0.079 
0.8-0.9 514 -0.339 -0.036 0.008 0.040 0.124 -0.001 0.061 
0.9-1.0 487 -0.686 -0.022 0.000 0.017 0.073 -0.008 0.048 

TABLE 5.7 Percentiles, means and standard deviations of distributions of 
differences between estimated and theoretical posterior probabili
ties for option RWC with n 1 =n 2 =200. 

the number of parameters is decreased, i.e., if NOC is replaced by CLC or 
RWC and if CLC or RWC is replaced by MXC. That the results for NOC 
with n 1 = n 2 = 50 are rather poor should be expected because 8 different 2 X 2 
conditional covariance matrices are estimated, each one from about 12 obser
vations. 

We may expect that goodness of approximate confidence intervals depends 
on the theoretical posterior probabilities themselves. Therefore, we shall study 
as function of the theoretical posterior probabilities, first, the differences 
between the estimated and theoretical posterior probabilities, secondly, the 
standard deviations of the estimated posterior probabilities, and, thirdly, the 
confidence levels of the confidence intervals. 

The differences between the estimated and theoretical posterior probabilities 
as function of the theoretical posterior probabilities are summarized in Table 
5.7 for the option RWC with n 1 =n 2 =200. The 40X 100=4000 theoretical 
posterior probabilities are grouped into 10 groups. The second column gives 
the respective frequencies. For each group the distribution of the just men
tioned differences is studied. Percentiles, means and standard deviations of 
these distributions are given. The distributions center reasonably well around 
zero. The standard deviations are largest for the values near 0.5 and smallest 
for the values near O and 1 of the theoretical posterior probability. A table 
like Table 5:7 was obtained for each of the 4 (model options) X 5 (sample 
sizes) = 20 situations studied. The minimum and maximum of the standard 
deviations of the 10 distributions of differences involved are presented in Table 
5.8 for each of the 20 situations. In fact, because of some outliers in the groups 
0.0-0.1 and 0.1-0.2, the minimums and maximums were chosen from the 
groups corresponding with the interval 0.2-1.0. We see that the standard devia
tions become smaller if the sample sizes are increased or if the model complex
ity (number of unknown parameters) is decreased. 
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NOC CLC RWC MXC 

n1 =n2 min. max. min. max. min. max. min. max. 

50 0.154 0.224 0.092 0.170 0.126 0.163 0.079 0.147 
100 0.087 0.176 0.046 0.129 0.054 0.125 0.043 0.117 
200 0.063 0.110 0.038 0.088 0.048 0.088 0.032 0.080 
400 0.048 0.085 0.025 0.067 0.023 0.066 0.021 0.062 
800 0.023 0.052 0.016 0.041 0.016 0.043 0.015 0.040 

TABLE 5.8 Minimum and maximum of standard deviations of distributions 
of differences between estimated and theoretical posterior proba
bilities. 

The standard deviation of the estimated posterior probabilities as function 
of the theoretical posterior probabilities are given in Table 5.9 for the option 
RWC with n 1 =n 2 =200. Percentiles, means and standard deviations of the 10 
distributions of standard deviations of posterior probabilities are displayed. 

theoretical percentiles mean st.dev. confidence 

posterior 0 25 50 75 100 level 
probability 

0.0-0.1 0.016 0.020 0.028 0.057 0.112 0.046 0.033 77.8 
0.1-0.2 0.030 0.051 0.059 0.077 0.190 0.068 0.028 94.3 
0.2-0.3 0.046 0.059 0.070 0.085 0.199 0.077 0.026 95.5 
0.3-0.4 0.044 0.056 0.066 0.082 0.226 0.074 0.026 93.3 
0.4-0.5 0.046 0.059 0.066 0.081 0.276 0.075 0.025 95.6 
0.5-0.6 0.050 0.064 0.076 0.094 0.203 0.083 0.027 93.3 
0.6-0.7 0.044 0.058 0.068 0.087 0.355 0.077 0.030 91.6 
0.7-0.8 0.036 0.052 0.059 0.075 0.306 0.069 0.029 90.7 
0.8-0.9 0.018 0.040 0.049 0.058 0.229 0.053 0.023 90.1 
0.9-1.0 0.001 0.019 0.031 0.043 0.305 0.034 0.026 87.3 

TABLE 5.9 Percentiles, means and standard deviations of distributions of 
standard deviations of posterior probabilities and confidence lev
els for option RWC with n 1 =n 2 =200. 

The last column gives the confidence level of the confidence intervals. Note 
the trend in the figures of percentile 0, 25, 50, 75 and the mean. The influence 
of P11AI-p11.J can be clearly detected, see formula 2.1.3 and 2.1.4. The means 
and 50-th percentiles can be compared with the standard deviations in Table 
5.7. They agree reasonably well. 

A comparison of the distributions of the standard deviations of the 
estimated posterior probabilities for the 20 situations can be made by means of 
Table 5. I O and Table 5 .11. The minimum and maximum of the means of the 
10 distributions are given in Table 5.10. We see that the larger the sample sizes 
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NOC CLC RWC MXC 
-

n1 =n2 min. max. min. max. min. max. min. max. 

50 0.126 0.220 0.074 0.162 0.096 0.160 0.068 0.153 
100 0.080 0.145 0.049 0.121 0.054 0.124 0.044 0.166 
200 0.052 0.101 0.033 0.082 0.034 0.083 0.029 0.078 
400 0.035 0.074 0.024 0.060 0.022 0.061 0.020 0.057 
800 0.023 0.053 0.016 0.042 0.015 0.044 0.014 0.041 

TABLE 5.10 Minimum and maximum of means of distributions of standard 
deviations of posterior probabilities. 

are, the smaller the means are. Further, the means become smaller going from 
left to right in the table. In Table 5.11 the means of the standard deviations of 
the 10 distributions are displayed. Largest variation in the values for the stan
dard deviations of the estimated posterior probabilities appear for small sam
ple sizes. The variation becomes smaller if the model complexity decreases. 

n1 =n2 NOC CLC RWC MXC 

50 0.135 0.064 0.075 0.053 
100 0.079 0.037 0.049 0.033 
200 0.044 0.023 0.027 0.020 
400 0.030 0.015 0.020 0.014 
800 0.020 0.010 0.013 0.009 

TABLE 5.11 Means of the standard deviations of distributions of standard 
deviations of posterior probabilities. 

As said before, the last column of Table 5.9 displays the confidence level of 
the confidence intervals for the posterior probabilities as function of the 
theoretical posterior probabilities for the option RWC with n 1 =n 2 =200. The 
figures of the groups 0.0-0.1 and 0.1-0.2 should not be taken too seriously, 
because of small numbers of generated values in these groups, 

NOC CLC RWC MXC 

n1 =n2 min. max. min. max. min. max. min. max. 
50 71.3 82.4 81.8 91.7 80.4 90.6 83.9 93.9 

100 74.4 90.9 85.6 93.2 83.5 94.0 83.7 94.4 
200 84.2 94.2 89.9 96.4 87.3 95.6 89.1 96.8 
400 86.8 95.2 91.5 95.9 91.1 95.0 90.6 96.5 
800 92.5 96.3 93.2 97.7 90.2 97.0 92.5 96.9 

TABLE 5.12 Minimum and maximum of confidence levels. 

see Table 5.7. Maximal figures for the confidence levels are attained for 
theoretical posterior probabilities near 0.5, whereas for larger values of 
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theoretical posterior probabilities the figures become smaller. This trend could 
also be seen for most of the other 19 situations. We had few generated values 
for the first groups for all situations. Deviations from the nominal confidence 
level were large for these groups. In table 5.12 the minimum and maximum of 
the confidence levels of the groups corresponding to the interval 0.2-1.0 are 
displayed. The trend is the larger the sample sizes the larger the minimums 
and maximums. For n 1 = n 2 = 50 and n 1 = n 2 = I 00 the levels are too small for 
all four models. For the other three sample sizes, for all four models, except 
for NOC with n 1 =n 2 =200, the nominal level of 95% is situated between the 
minimum and maximum. The models CLC, RWC and MXC appear to give 
better 95% confidence intervals than model NOC. 
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