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Preface 

Over the past decades, much attention has been paid to the use of 
preconditioned iterative methods for the solution of self-ad joint elliptic 
boundary value problems. A thorough investigation has shown that 
these iterative methods are eminently applicable for the solution of most 
frequently occurring elliptic problems. However, elliptic boundary value 
problems are relatively simple, and the increase of the computational 
capacity uf the large computer mainframes nowadays creates a growing 
need to investigate more complex physical problems, such as those found 
in the oil recovery, airplane and semiconductor industry. As there is a 
growing demand for the investigation of these - often time-dependent 
- physical problems, the study of the behaviour of iterative methods for 
this type of problems becomes of interest. In view of this development, 
this thesis considers the use of such methods for the global finite element 
technique applied to initial value problems. This application, recently 
shown to be one of a growing interest, has been far less studied so far, 
the cause being undoubtedly the complexity entailed by non self-adjoint . 
differential equations, which can for instance give rise to a solution with 
layers moving in time. 

In general, the performance of iterative methods for the solution of non
linear time-dependent partial differential equations depends strongly on 
the applied discretization technique, since this technique determines 
the subsequent systems of equations to be solved. If the discretization 
technique is by a finite element method, the following discretization 
degrees of freedom can be distinguished. 

• The construction and refinement of a computational grid covering 
the computational domain. 

• The type of finite elements and associated basis representing the 
approximate solution on this grid. 

• The non-linear solution method to linearize either the partial 
differential equation or the related system of equations. 

• The type of - preconditioned iterative - solution method for the 
solution of the resulting assembled systems of linear equations. 

Each of these points will influence the behaviour of the iterative solution 
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method since it influences the coefficient matrix of the system of equa
tions as well as the coefficient matrix of the preconditioner. For many 
physical non-linear time-dependent problems the total computational 
solution time involved is dominated by the construction of a suitable 
computational grid and the assembly of the resulting linearized system 
of equations. Therefore, even iterative methods of optimal complexity, 
i.e., with a number of arithmetic operations proportional to the degrees 
of freedom, may not lead to effective overall solution methods. In or
der to overcome this problem, one may integrate the grid construction, 
matrix and preconditioner assembly and iterative method into a non
linear iterative solution method. Alternatively, one can try to optimize 
the separate discretization parameters and study the behaviour of pre
conditioned iterative methods for linear systems of equations separately, 
using iterative methods to be found in the literature. 

In order to gain insight in the behaviour of the types of linear iter
ative solution methods for the discretization parameters to be proposed, 
the latter approach of separate analysis has been followed in this thesis. 
This will hopefully contribute to the construction of effective iterative 
solution methods in the future. 

To solve the non-linear time-dependent equations, a continuous global 
time-space finite element discretization technique will be examined. 
This technique uses a finite element approximation in time and space 
simultaneously, for a relatively large time-period (t;-i, t;], called time
slab. The technique is called continuous since the approximate solution 
on t = t; will be taken to be an initial value for the solution to be ap
proximated on the next time-slab (t;, t;+il, leading to a finite element 
solution in time-space which is continuous throughout the whole compu
tational domain. This is in contrast to the so-called discontinuous global 
time-space finite element techniques which are said to be discontinuous 
since the solution on each next time-slab only approximately satisfies 
the initial value provided on the previous time-slab at t = t;. This allows 
the approximated solution on the computational domain to be - slightly 
- discontinuous at the interfaces between time-slabs. The advantage of 
the latter methods is the possibility to adjust the computational grid at 
the interface of two time-slabs, but as it turns out to be fairly easy to 
use locally refined grids in two and three space dimensions (see chap-
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ter 5 and Bansch [12]), this becomes less important. Early work on the 
discontinuous methods in time-space can be found in Hulme [ 15] for or
dinary differential equations, and in Jamet [16] for parabolic problems. 
More recent publications can be found in Johnson [17], [18] and Aziz 
and Monk [9]. For publications concerning the continuous time-slabbing 
technique see Axelsson and Maubach [5], [6], of which a summary can 
be found in chapters 1 - 4. 

In order to obtain an accurate approximate solution on a given time
slab - as pointed out before, the solution of the differential equation 
may have layers moving in time - a coarse initial computational grid of 
simplices covering the time-space domain has to be provided (simplex 
in two and three space dimensions stands for triangle resp. tetrahe
dron). Considering problems with one space and one time dimension, a 
two-dimensional computational grid is constructed from a coarse initial 
computational grid with the use of local newest vertex bisection refine
ment as shown in Mitchell [19] or Sewell [20]. In the three-dimensional 
case, i.e., two space dimensions combined with the time dimension, 
analogous refinement methods exist, as is shown by [12]. Contrary to 
the two-dimensional regular refinement method of a triangle into four 
congruent children, see for instance Deuflhard and Leinen [ 14], this 
newest vertex bisection grid refinement technique has rarely been ex
amined and/or applied before and is therefore investigated in detail in 
chapter 5. The approximate finite element solution on a given time-slab 
will be represented either on a standard nodal finite element basis, as 
explained in Axelsson and Barker [3], or on a hierarchical finite element 
basis as in Yserentant [23]. 

First, this bisection refinement turns out to be simple to analyze 
and effective, i.e, the computational time involved to track and refine 
along moving layers is relatively small compared to the computational 
time used by the linear iterative solver for the solution of the systems of 
equations. Further, as the bisection refinement technique is rather sim
ple, a sparsity pattern analysis of the resulting matrix can be given (see 
section 5.5), leading to a finite element row-wise ordered matrix storage 
method, different from the classical row-wise ordered matrix storage 
method to be found in [3] or in Bank and Smith [11]. This enables 
numerical tests with matrices explicitly represented on a hierarchical 
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finite element basis, contrary to results in Banlc et. al. Jn [10], where 
the hierarchical matrix is never assembled. Such tests exploiting clas
sical preconditioning techniques for an hierarchical basis, to the best 
knowledge of the author, have never been published in the literature 
before. 

Furthermore, related to the new matrix storage method, the finite 
dimensional vector representation to be used for the approximate so
lution is also non-standard. Contrary to classical grid point numbering 
strategies, where one tries to optimize the bandwidth of the resulting 
matrix (see [3]), in this thesis the points are numbered such that the 
numbering reflects the level of local refinement applied to create them, 
as explained in chapter 5. Since the numbering of the grid points does 
not change the resulting finite element basis, it does not influence the 
rate of convergence of unpreconditioned iterative methods as this rate 
is only determined by the eigenvalues of th.e matrix. However, if one 
uses incomplete Gaussian factoriza,tion /LU for the construction of an 
accelerating preconditioner, the spectrum of eigenvalues of the precon
ditioner will depend on this numbering due to the incomplete nature 
of the factorization and thus influence the rate of convergence of the 
accelerated iterative solution method. 

After the determination of the grid and the local refinement technique, 
the finite element basis functions to be used for the solution on one time
slab are taken to be of the exponentially weighted type as in chapter 2 
and/or the upwind Petrov-Galerkin type as in chapter 3. This choice has 
no influence on the matrix storage or sparsity pattern analysis referred 
to above. The weighing or upwind version of the standard nodal or hier
archical basis functions is used since this yields better results on coarser 
grids. For the relatively recent continuous global time-space finite ele
ment discretization this is shown by discretiza,tion error estimates for a 
variety of physically interesting classes of problems in the first chapters 
of this thesis. Although most discretization error estimates are valid for 
finite element basis functions of arbitrary high polynomial degree, only 
the linear case, and in chapter 7 the quadratic case, is considered in the 
numerical tests presented. 

For the linearization of the partial differential equation on a certain time
slab the damped inexact Newton algorithm as presented in [13] is used. 



One can follow two lines of analysis. One possibility is to use the fi
nite element method directly for the discretization of the time-dependent 
non-linear differential equation, resulting in a non-linear algebraic equa
tion, which can be solved by the damped inexact Newton algorithm. This 
approach has been followed in some of the numerical tests in the first 
chapters where the initial coarse grid was refined prior to the application 
of the non-linear Newton method. 

Alternatively, one can use the Newton method to construct a se
quence of linear partial differential equations, to be solved by a finite 
element method, but not necessarily on identical grids. Using this ap
proach one can combine the Newton method with adaptive refinement 
of the grid until the desired accuracy is obtained. This approach has been 
used in chapter 5. 

The use of a Newton-like non-linear solution algorithm requires 
the assembly of the Jacobian matrix, involving the computation of 
derivatives. As will be shown for all special but frequently occurring 
cases to be presented, this assembly is relatively easy and turns out to be 
not much more expensive than the computation of the gradient. It was 
often considered to be an expensive task, see e.g. [7] where the Jacobian 
matrix is only updated in regions where the solution varies relatively 
much. Chapter 7 demonstrates that for the cases to be considered in this 
chapter there is no reason to avoid the updating and assembly of the 
Jacobian matrix. 

Finally, the iterative methods are presented in the last chapter. Most of 
them can be found in [l], [2], [3], [21] and [22]. They are well-known 
and have been tested thoroughly in the literature for non self-adjoint 
static problems. Several numerical tests in this thesis demonstrate their 
performance for the systems of equations emanating from the continuous 
global time-space finite element technique, showing their applicability 
also to this type of initial value problem. All tests involve an acceleration 
by a preconditioner obtained by an incomplete Gaussian factorization, 
and are therefore influenced by the grid point numbering as determined 
by the local grid refinement technique used. It should be noted that 
this type of Gaussian preconditioning is probably far from optimal. 
For elliptic self-adjoint boundary value problems on regular grids there 
exist optimal order algebraic multi-level iterative solution methods (see 
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e.g. [ 4] or [8]) which can in certain cases be extended to _grids obtained 
by the local bisection refinement proposed, as is shown in chapter 6. The 
construction of optimal order iterative methods for the non self-adjoint 
type of problems examined in this thesis still remains an open problem. 

The remainder of this thesis is organized as follows. Chapter 1 introduces 
the classes of partial differential equations to be considered, defines the 
notations to be used in the sequel and presents the continuous global 
time-space finite element solution method. It is shown that this method, 
which is related to a Petrov-Galerkin variational formulation, leads to a 
global discretization error bounded by the maximum local discretization 
errors over all time-slabs. The solution of the differential equation per 
slab and the applicability of the theory presented is demonstrated with 
the use of a simple example differential equation, for which an estimate 
for the local discretization errors is provided. Next, chapter 2 defines 
the continuous global time-space finite element discretization method 
for time-dependent problems in one space dimension and provides dis
cretization error estimates in order to show that the local discretization 
errors are relatively easy to control. An extension of the presented the
ory to the multi-dimensional Petrov Galerkin streamline upwind case, 
is considered in chapter 3. At the end of this chapter a brief discussion 
concerning the applicability of global finite element techniques to more 
general cases can be found. Then, after the first chapters dealing with a 
single partial differential equation, chapter 4 introduces the continuous 
and discontinuous time-slabbing technique for the time-dependent Sto
kes system of partial differential equations. Local discretization error 
estimates are provided and the inf-sup condition related to the global 
time-space finite element solution is studied in detail. 

Chapter 5 investigates the finite element basis used in all pre
ceeding chapters in relation with the underlying grid geometry and 
refinement The local grid bisection refinement is studied in detail, the 
sparsity patterns of the resulting - hierarchical - matrices are investi
gated and a solution algorithm, combining the grid refinement method 
and the non-linear Newton solution method, is provided. As the grid 
refinement method proposed leads to level structured matrices, optimal 
order algebraic multi-level iterative solution methods for certain locally 
refined grids are considered in chapter 6. 
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The Jacobian matrix underlies all error estimates in the first chap
ters and is needed for the non-linear Newton solution method. The fac
torization of this matrix is studied in chapter 7, investigated are the 
properties of the quadrature rules used for the computation of its entries. 
Finally, the damped inexact Newton algorithm together with the itera
tive methods are presented in chapter 8. Studied is the solution of the 
linearized systems of equations taking into account the stopping crite
rion, the Jacobian matrix assembly and its preconditioning. The iterative 
solution methods presented are the basis for all numerical tests presented 
in this thesis. 

All chapters are related to reports which are published, to appear, sub
mitted or in preparation. Every chapter will be accompanied by informa
tion, explaining to which reports its sections are related. Some of them 
contain additional unpublished sections explaining the basic principles 
underlying the theory presented. To avoid overlap, some - parts of -
sections have been deleted, under reference to an earlier chapter, and 
cross references have been added. The number of numerical tests has 
been reduced by replacing the original - published - tests by new ones. 
Further, in order to enable a more uniform presentation, some notations · 
originally used in the reports have been adjusted. However, different 
fields in physics prefer their own notation for the diffusion tensor, to 
be introduced in chapter 1. In order to adapt to conventional notational 
rules the tensor will be denoted as follows. 

• Related to the Stokes and Navier-Stokes equation, the diffusion 
tensor, being the inverse of the Reynolds number, is denoted by v. 

• Related to potential flow theory, it will denoted by p, the non
linear potential flow density. 

• Applied to potential electromagnetic problems, the tensor, refer
ring to the electromagnetic reluctivity, is denoted by v. 

• It is denoted by E in the case of a singular perturbed parabolic 
equation. 

Finally, for static differential equations, the domain of definition will 
always be denoted by n, throughout all chapters. If the problem is time
dependent, then n will denote the space domain and Q will denote the 
time-space domain in order to avoid confusion. Without regard of the 
time-dependency, the grid is denoted by Q and all definitions related to 
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the grid and the finite element basis defined thereon are with the use of 
calligraphic characters. 
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The global ti01e-space 
finite elentent 01ethod 

The abstract and all sections except the added sections 

on variational formulations and finite element discretizations 

are part of: Axelsson 0. and Maubach J., Stability and high order 

approximation of monotone evolution equations valid 

for unbounded time by continuous time-slabbing methods, 

Internal report of the Supercomputer Computations 

Research Institute, Rorida State University, Tallahassee, 

U.S.A. 1990, submitted to SIAM Journal on Numerical Analysis. 

Abstract 

Using amazingly straightforward and short proofs it is shown tha:t sta
bility for unbounded time and arbitrary high order discretization errors 
for evolution equations with strongly monotone operators, such as arise 
for non-linear parabolic problems, can be achieved using time-slabbing. 

Within each time-slab one for instance can use finite elements in 
the time-space domain. The advantage of doing so is that for problems 
with layers (boundary or interior) one can easily obtain a certain order of 
the quality of approximation, using an order of magnitude fewer degrees 
of freedom than is needed for classical time-stepping methods, possibly 
using moving grids. 

Key words: Initial value problems, Finite elements, Error bounds, Grid 
generation and refinement, Stokes equation 
AMS(MOS) subject classifications: 65L05, 65M15, 65M50, 65M60 



2 The global time-space 

1.1 Introduction 

When solving semidiscretized evolution equations for non-linear partial 
differential equations using standard time-stepping methods, it turns out 
to be difficult to achieve a high order of approximation in both time and 
space. The reason for this is that because of the stiffness of the problems 
a severe reduction of the order of approximation, obtainable for non
stiff problems, can occur (for details, see [17] and [28], for instance). 
Furthermore, classical theories for ordinary differential equations are 
not applicable because the order of the systems and the stiffness of the 
problem for semidiscretized evolution problems increases with some 
power of h - l where h is the stepsize parameter in space. 

For some results for lower (second) order time-stepping methods, 
see [3], [6] and [24]. In [6] and [24] it was shown that using the so 
called 0-method with proper values of 0, error estimates of up to second 
order of approximations are valid for unbounded time and infinitely stiff 
problems, if the operator satisfies the strong monotonicity condition to 
be presented in section 1.2. Also see [12] and [13], where it is shown 
that one can obtain higher than second order B-convergence for certain 
classes of problems. 

In recent years much attention has been paid to moving finite 
element methods. In these, the grid is adjusted in space at every time-step 
to resolve steep gradients in the space variables of the solutions better, 
but the time-step itself is taken constant for the whole space domain. 
This means that the time-step must be chosen as small as the steepest 
gradients in time require for their solutions but this time-step may be 
far too small for the part of the domain where the solution is smooth. 
As has been indicated in [25], there is also a danger of overlooking long 
range effects of small eddies (circular currents), corresponding to high 
frequency components in such methods. 

It is shown that by a time-slabbing method, i.e., a method where 
one recursively solves the evolution equation in a time-space domain 
(called slab) with fixed size, using finite element methods in time-space, 
one can resolve the solution where it has layers, i.e., steep gradients, 
more efficiently, namely with an order of magnitude fewer degrees of 
freedom than for the classical time-stepping method. 

In addition, it is shown that this method is stable and that the error 
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estimates remain bounded for all times for strongly monotone evolution 
equations - which can be infinitely stiff - and depend only on the local 
errors at each time-slab. Using finite elements of arbitrarily high order, 
for instance a p-method, one also gets discretization error estimates 
in time-space of arbitrary high order. The disadvantage with the time
space finite element method is that one needs elements in a space of one 
dimension more than for the space variable of the evolution problem. 
However, as has recently been shown in [2] and [11], there now exist 
solution methods using a multi-level structure of the matrix for which the 
computat~onal complexity is optimal - or suboptimal by a factor log h -
that is, the number of required arithmetic operations is proportional, or 
nearly proportional, to the degrees of freedom. This means that method 
to be presented, which is of the implicit type, acts essentially as an 
explicit method as far as the computational complexity per time-step is 
concerned. 

The method to be presented steps forward from one time-slab to 
the next in a continuous manner, i.e., simply by using the values at a 
time t; computed for the time-slab (t;-1, t;], as a Dirichlet boundary 
condition for the next time-slab ( t;, t ;+ i]. 

Methods which use time-slabbing techniques but based on a dis
continuous stepping method, i.e., which allow for - small - disconti
nuities of the function values at the interface between two time-slabs, 
have been considered in [21] and [23]. The advantage of the continuous 
time-slabbing method presented here over these earlier methods is, that 
it enables the use of standard finite element packages for convection dif
fusion equations and in addition is simpler to implement and to analyze. 
Global error control is provided for, simply by controlling the local er
rors for each time-slab. This can for instance be done using an adaptive 
grid refinement method, with hierarchical basis functions. By creating 
hierarchically defined growing finite element spaces for each time-slab 
one can solve problems with various scales of physical details. The 
continuous method was first presented for a special application in [9] 
and [10]. In the present chapter more general proofs will be presented 
and applied for evolution equations. 

The remainder of the chapter is organized as follows. In sec
tion 1.2, the type of evolution problems to be considered is introduced, 
after which in section 1.3 the variational formulation of the time-slabbing 
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method is presented. In section 1.4 the stability of the method is shown 
and, after section 1.5 on finite element basis functions, discretization 
error estimates are derived in section 1.6. In the last section some con
clusions are drawn. 

1.2 A class of stable evolution problems 

There are two general classes of evolution problems- see (1.2.4) - that 
are potential candidates for the efficient application of the time-slabbing 
method. In order to introduce them, let n C Rn be an open bounded 
connected domain, defining the time-space domain Q = n x (0, oo) as 
is shown in fig. 1.2. Then, let for an open and bounded set X C Rm, 
m ~ 1, X stand for its topological closure, CP(X) denote the set 
of p times continuously partial differentiable functions u: X 1-----+ R, 
and CP (X) c CP (X) be the subset of those functions for which all the 
partial derivatives can be extended continuously to the boundary ax 
of X. Further, let c0 (X) denote the set of continuous functions on a 
set X and let the partial derivatives of a vectorial function u on n be 
defined by 'Vu= [.Y'..u1, ... , "Vun]T with 

0 a T 
'V Ui = [ ~ui, . .. , ~ui] and 

ux1 uXn 

Throughout this section 'V will denote the gradient in the space direc
tions only. In the case of possible confusion, this gradient will be denoted 
by 'V x· 

Related to the evolution equations, for given O ~ ti-I < ti 
boundary conditions Uc will be prescribed on the cylinder surface r c = 
{ (x, t) E Rn+l:x E an I\ t E [t j-1, tj]} and an initial value uo will be 
given at the bottom boundary r1 = {(x, t) E Rn+1:x E n /\ t = ti-d· 
Here an stands for the boundary of the space domain, which is assumed 
to be smooth (see [1] or [27]). Finally, let ro = r 1 u r c and define 
for O < ti < oo the top boundary r 3 = {(x, t) E Q:x E n /\ t = ti }. 
Boundary conditions on r 1 will be denoted by uo, on the cylinder surf ace 
by Uc, and on the union of the latter two by 'Y = (uo, Uc). 
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In the sequel, unlike usual, CP(Q) x Cq((t;-1, t;]) denotes the set 
of functions on the time-space domain n x (t;-1, t;] which are p times 
continuously partial differentiable in the directions of the domain n and 
q times in the time direction. 

The first class of problems can be described by the nonstationary La
dyu,.enskaya model for incompressible viscous flow 

8 n 8( 8) n 8 
-n:rU - E -n-::- €(U)-n-=-U + E Uk-n-=-U + V p = I 
ui k=l UXk UXk k=l UXk 

in Q, and 

at r C and r •. Here 

u(x, t) = uc(t) 
u(x, 0) = uo(x) 

Y:u = 0 
(1.2.1) 

• the solution components u andp are such thatu = [u1, ... , un]T, 
0 - 2 1 with u1, ... , Un E C (Q) n {C (Q) x C ((0, oo))} and p E 

C0(Q) n {C1(f2) x C0((0, oo))}. 
• the initial value function uo, Dirichlet boundary conditions Uc 

and source function/ are n-dimensional vectorial functions. 
• the diffusion tensor e is a function of u. 

e(u) = eo + edVulq-2 , 

where 2 < q ::; 4, eo > 0 and e1 ~ 0. 

(1.2.2) 

The nonstationary Ladyzhenskaya model for incompressible viscous 
flow reduces for e1 = 0 to the Navier-Stokes equation, and if in addition 
the non-linear convection term is neglected, the equation reduces to 
the Stokes equation. A finite element approximation method for this 
problem (see section 1.5) was recently studied in [16]. 

The second class is the class of non-linear convection-diffusion problems 
described by the equation 

4u - E-£- (e(u)-£:-u) +bTVu = f 
ui k=l UXk UXk 

u(x, t) = uc(t) 
u(x, 0) = uo(x) 

(1.2.3) 
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In this case 
• the scalar solution u E c0(Q) n {C2(0) x C1((0, oo))}. 
• the diffusion tensor €(u), which is given by 

0 < €(u) = €(X, t, IV ul 2) < oo, 

can be non-linear and time-dependent. 
• the absolute value of the flow field b = b(x, t) is bounded above 

in Q. 

The classes of differential equations defined above have a space-domain 
which does not vary with time. However, the theory to be presented is not 
restricted to such cases. It allows for space-domains varying with time, 
but in order to simplify notations it will be assumed that the boundary of 
the domain does not change with time. Also, without loss of generality, 
in order to simplify the presentation of the global time-space finite 
element method, only problems with Dirichlet boundary conditions will 
be studied. In the presence of Neumann boundary conditions at - parts 
of - the cylinder r c, the theory can be presented similarly. 

In order to show that the solutions of the problems above are stable let H 
be a reflexive Banach space and consider an evolution equation of the 
form 

d 
dt u + G(u, t) = 0 t > 0 

(1.2.4) 
u(O) = uo 

where uo E H, and the restriction to time t of the solution u, u ( t) E H 
for all t > 0. Here, by definition, the functionals -9t ·, G( ·, t) are 
mappings H i--+ H', where H' denotes the dual space of H. As H is 
reflexive, there exists a Hilbert space L such that H is a continuous 
injection of L which is a continuous injection of H'. Let in L ( • , • ) and 
II · II denote the inner product resp. associated norm, and let ( · , • ) be the 
duality pairing on L' x L. Clearly, this formulation includes the special 
case where G in (1.2.4) is a complex vectorial function of ordinary 
differential equations. 

In order to show the stability of the solutions of G, the following defini
tions are introduced. First, the function G( •, t) is called an unbounded 
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functional if 

IIG(u, t)II -+ oo for llull -+ oo 

for every time t > 0. Further, the functional G is said to be monotone 
if there exists a nonnegative continuous scalar function p: [0, oo) 1---1- R 
such that 

(G(u, t) - G(v, t), u - v) :::: p(t)llu - vll2 '111,veH'lt>O. (1.2.5) 

and G is called strongly monotone or dissipative in the case where in 
addition 

p(t) :::: Po > 0 'lt>O · 

Finally, G is called conse-rvative (such as is the case for first order 
hyperbolic systems) if 

(1.2.6) 

It can be seen (see [ 16]) that Ladyzhenskayas equation ( 1.2.1) under the 
appropriate assumptions corresponds to an evolution equation with an· 
unbounded monotone operator. The same is valid for (1.2.3) under the 
appropriate conditions on the diffusion tensor and flow field. 

Now consider the stability properties of the functional G. If u and v are 
two solutions of (1.2.4) for different initial values, then 

1 d 
2 d/" - v,u - v) + (G(u, t)- G(v, t),u - v) =0 'lt>O, 

that is, by ( 1.2.5) 

d 2 2 
dt (llu - vii ) + 2p(t)llu - vii ~ 0 'lt>O 

which leads in tum to 

llu(t) - v(t)II ~ exp (-1t p(s) ds) llu(0) - v(0)II 'lt>O (1.2.7) 
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since the solution of Xt + 2p(t)x = c(t) for x(O) E [0, oo) and c(t) $ 0 is 
given by 

0 < x(t) = [x(O) + it c(s)ea(s) ds] e-a(t) 

$ x(O)e-a(t) 

where a(s) = 2 J; p(c;)dc;. Hence, (1.2.4) is stable for monotone opera
tors. If F is strongly monotone then this equation reduces to 

(1.2.8) 

so ll(u-v)(t)ll 1-+ Oas t 1-+ oo, which means that(l.2.4) is asymptotically 
stable. Finally, if G is conservative, then 

llu(t) - v(OII = llu(0) - v(0)II Vt>O 

according to equation (1.2.7). 

1.3 A variational formulation 

In this section the variational formulation principle will be introduced. 
To this end some basic Sobolev space theory is presented and the gradient 
functional and its directional derivatives are defined. After an example 
of a strictly monotone functional G the global time-space variational 
formulation for this example is presented. 

To simplify the introduction of the variational formulation, as
sume that the problem under investigation concerns a scalar problem, 
i.e., u = u. Let for an open, bounded and connected set n c Rn, 
L2(!1) be the space of Lebesgue square integrable functions over n with 
associated inner product resp. norm given by 

(u, v) = L uv dx and llull = (u, u)112, 

using the Lebesgue integration. Let the Sobolev space HP(n) be the 
closure in II· II norm of the set of CP(n) (see e.g. [27]). As HP(n) is 
the closure of a set of functions which are continuously differentiable, 
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associated to each function u E HP(n) exists a so-called trace function, 
the restriction of u to the boundary of the set an. 

Most partial differential equations involve Dirichlet boundary 
conditions, prescribing the solutions trace at - part of - the boundary of 
the domain. Therefore, let the Dirichlet boundary be denoted by ro C 
an and define the associated set of functions 

(l.3.1) 

for a given trace f. By definition let rN = an - I'o be that part of 
the boundary where Neumann boundary conditions, involving the first 
derivates of the solution, are prescribed. 

The classical variational formulation solution method to obtain a solu
tion of a differential equation can be seen as a method to find a minimum 
of an energy functional g: H;(n) 1-+ R for a given trace,. As an example 
look at the energy functional 

g(u) = ½ L 1Vuj2 dx 

defined for all u E H;(n). In order to find a minimum u E H;(n) of g 

look at the Gateaux directional derivative for all v E Hb(n) defined by 

aa g(u) = lim !{g(u + <;v) - g(u)} 
V ,;->0 <; (1.3.2) 

=(g'(u), v) 

where the derivative g' ( u) is by definition required to be a linear func
tional on the space Hbcn) for all u, and where the derivative value 
of g'(u) in the direction of v is denoted with the use of the duality 
pairing ( •, • ): [H1(n)]' x H1(n) 1-+ R. If the limit in (1.3.2) exists 
uniformly in v then the functional g is said to be Frechet differentiable. 

Clearly, the functional g attains a minimum in u E H;(n) if the 
directional derivatives in all directions v E Hb(n) are equal to zero, 
where with the use of (1.3.2) 

(G(u), v) = lo V uTV v dx (l.3.3) 
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for all V E men), where G = g' is called the gradient of g. Analogous 
to the definition of the directional derivative of g, the derivative of G is 
defined by 

(0° G(u), v) = lim !(G(u + \WJ - G(u), v) 
w ~-o\ (1.3.4) 

=(G' (u)w, v). 

In this case, where G' is the second directional derivative of the energy 
functional g, it is called the Hessian matrix. However, one can prove that 
there does not exist an energy functional corresponding to a 'gradient' 
functional G(u) if its derivative (G'(u)w, v} is not symmetric in the 
arguments v and w, an example of nonsymmetry being 

for a non-zero flow field b. In this case the functional G' is called the 
Jacobian matrix, i.e., the first derivative of G, but in the sequel G will be 
called gradient for the sake of simplicity, even if there exists no related 
energy function. 

Now finding the minimum of g is related to finding the solution of: Find 
a function u E H;(n) such that 

(1.3.5) 

A solution u E H;(n) n C2(n) of this problem is also the solution of 
the related partial differential equation 

-bi.u = Oin n 
u = 'Y at ro = an 

(1.3.6) 

since, using a Green-Stokes partial integration lemma (see e.g. [7]), one 
has 
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for all v E lIA(O). A classical solution u E C2(0) of equation (1.3.6) 
is also a solution of (1.3.5), which is called the Galerkin variational 
formulation of (1.3.6). Note that there is less regularity required of a 
solution satisfying (1.3.5) than for a solution of (1.3.6). 

Now recall equation (1.2.4), and let H = H1(0), L = L2(0) where 
the associated norm, inner product and duality pairing are those related 
to L 2(0). Before introducing the global time-space variational formula
tion consider the example where n c Rn and the Laplace functional 
G( •, t): II 1-+ H' in (1.2.4) for all functions u E His given by 

This functional is strongly monotone since for solutions u and v of 
equation (1.2.4) and for w = u - v, with the use of a Green-Stokes 
partial integration lemma 

(G(u, t)- G(v, t),u - v) = L VwTVw dx 

= L 1Vwl2 dx- i wVwTnds 

= L 1Vwl2 dx + i w2 ds 

2:::c L w2 dx Vt>O 

for some positive scalar c, independent of u, v and t > 0. Here, boundary 
integrals can be deleted and added since for solutions u, v clearly u - v = 
0 at an. The inequality above holds in general, for all functions w E H, 
see e.g. [27], page 20. Since this inequality will be used quite frequently 
in the sequel, in order to understand it, consider 

Lemma 1.3.1 For a domain n C Rn, n 2::: 2, with smooth enough 
boundary, 
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for all functions u E H1(!1), where c2 = sup{lxl2:x E !1}/(n - 1). 
Proof. For a given function u E C2(!1) by partial integration one gets 

for arbitrary positive scalar c, where nx E R denotes the one-dimen
sional x-component of the unit outward normal vector. This leads to 

whence the application of this procedure to every space dimension n 
yields 

Setting c2 = sup{lxl2:x E n} /(n - 1) gives for all x En 

n - (lxl/ c)2 ~ n - 1: 12 · (n - 1) ~ 1 , 
sup{lxl :x En} 

and exploiting the fact that H1(!1) is the closure of c2(n) under the L2 

norm leads to the desired result for n ~ 2. □ 

Note that lemma 1.3.1 is only valid for n ~ 2; for the simple one
dimensional case see [27]. With the use oflemma 1.3.1 now G is clearly 
strictly monotone since w = 0 at the boundary an. 

A global time-space variational formulation associated with the ex
ample functional G is now derived in the following way. Define for a 
given positive t1 a computational domain n x (0, t1], for the sake of 
simplicity denoted by Q C Rn+I for the remainder of this paragraph. 
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Then, for a solution u E C2(11) x C1((0, oo)) of equation (1.2.4) and 
smooth enough function v satisfying homogeneous Dirichlet boundary 
conditions on ro = r1 u r c, i.e., V = 0 at ro, one has 

Ut - l:::.u = 0 VxeO,tE(O,=) ⇒ 

L [ut(X, t) - l:::.u(x, t)] v dx = 0 VtE(O,=) ⇒ 

tJ 

j L [ut(x, t) - l:::.u(x, t)] v dxdt = O ⇒ 
0 

f -UVt+"'vuT"'vvdxdt+ f v"'vuTnxds+ f uvntds=0 ⇒ 
JQ laQ laQ 
k -UVt + "'v uT"'v v dxdt + L uv(x, tJ) dx = 0 

where nx is the n-dimensional space component of the unit outward 
normal vector of the surface 8Q of Q and nt is the one-dimensional 
time component of this vector. Taking the derivatives into account, this 
latter formula is well defined for all functions u E C0(Q) n {H;(n) x 
L2((0, tJ])} and all functions v E Hb(Q). Here the latter space is defined 
substituting Q for n in (1.3.1) and, unlike usual, H~(n) x Lq((0, tJ]) 
is the set of functions u on n x (0, t J] which have trace , , are p 
times generalized partial differentiable in the directions of the domain n 
(see e.g. [7]), and for which the Lebesgue integral of uq + l"'v xulP 
over n x (0, t J] exists. Therefore, in this case, the global time-space 
Petrov-Galerkin variational formulation of (1.2.4) will be given by: 
Find u E c0(Q) n {H;(n) X L2((0, tJ])} such that 

(F(u),v) = k -UVt + "'vuT"'vv dxdt + in uv(x, tJ) dx 
(1.3.7) 

= 0 V vEJ\\(Q) • 

The formulation is said to be of the Petrov Galerkin variational for
mulation type as the space of possible solution functions u, called trial 
functions, is not equal to the space of approximating test functions v. 

Note that a variational formulation requires less regularity, i.e., smooth
ness of derivates, of possible solutions in general. However, a classical 
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solution of (1.2.4) is also a solution of (1.3.7). Therefore, if one can 
prove that there exists only one solution to this latter equation and if 
one can prove that there exists solutions of (1.2.4), then the solution 
of (1.3.7) will be a solution in the classical sense. 

1.4 The time-slabbing solution method 

In order to solve equation ( 1.2.4) the computational domain n x (0, t J] C 
Q will be partitioned in time-slabs 

Q; = n X (t;-1, t;] where O:;: to < t1 < ... < tJ < 00 

assuming without loss of generality that t; - t;-i = ~t. In order to 
introduce the continuous time-slabbing technique let 

• u be the exact solution of (1.2.4) on Q for given initial value uo. 
• u;,h be an approximate solution to the same equation on Q; on 

the first time-slab satisfying the initial value uo,h, an interpolant 
or spline approximation of u0, but at each following interval its 
initial value satisfying u;,h(t;-i> = i;-1,h(t;-1). 

• u; be the exact solution of ( 1.2.4) on Q; satisfying the same in1tial 
value as the approximate solution, i.e., i;(t;-1) = i;-1,h(t;-1) 
for all j = 1, 2 ... , J. 

Note that f,, u;,h and u; satisfy the same boundary conditions at 8Q;. 
The functions u;,h and u; also satisfy the same initial value condition. 

As the approximation method to obtain u;,h is of no relevance to the 
proof of stability, it will be specified later on. Actually, uh ( t ;-i) can even 
contain types of errors such as numerical quadrature errors and iteration 
errors due to the use of an iterative solution method and premature stop
ping, or errors due to the interpolation of the initial value u;-t,h(t;-1). 

The stability analysis for the evolution equation (1.2.4) for strongly 
monotone operators now follows readily by (1.2.8). Using the definitions 
above one can see that on an arbitrary time-slab Q; 
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where the local discretization error at time t; is given by llr(t;)II = 
llu;(t;)- u;,h(t;)II. Note that for 

by definition. Repeated use of the above in combination with (1.4.1) 
shows that the global discretization error can be estimated by 

J 

llu(tJ)-UJ,h(tJ)ll~e-JpoAtlluo-uo,hll+ L e-<J-j)poAtllr(t;)II 
j=l 

1- e-JpaAt 

~e-JpoAtlluo-uo,hll+ l _ e-PoAt l~~)lr(t;)II _,_ 
- 1 

~e JpaAtlluo-uo,hll+ 1 _ e-PaAt 1~~)1r(t;)II _,_ 

for all Po.6.t E R large enough, since 

J 1 J """'X J-s = _-_x_ 
LJ 1-x 
s=l 

for all 1 =/ x E R and J E JN. This leads to the following elementary 
but important result. 

Theorem 1.4.1 Let u ;,h be the approxima,te finite element solution of 
the evolution equation (1.2.4) on Q; for initial value u;-1,h(t;-1) and 
let u; be the exact solution of this equation on Q; for the same initial 
value. Then, if G in ( 1.2.4) is strongly monotone, 

(1.4.2) 

for all J E JN, where r(t;) = ii;(t;) - ii;,h(t;)for all j E JN and uo,h is 
an interpolant or spline approximation of uo. □ 
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Theorem 1.4.1 shows that one has control of the error, even on an 
unbounded number of time intervals, and that the error at any time line 
or plane t = t; is bounded by the maximal local error llr( t;) II times the 
constant (1 - e-PoD.trl. Since the scalar b.t can be taken fixed this 
constant can also be regarded fixed. (see also [19], page 160). 

Similarly, for monotone and conservative operators, the error 
bound 

is readily derived. Here the errors will increase at most linearly with the 
number of time-slabs. 

1.5 The finite element discretization 

In order to introduce the finite element discretization technique let the 
domain Q be covered completely by a set of simplices Q, where in 
two dimensions simplex stands for triangle. This set is called grid, and 
its elements have mutually empty intersection (for more details _see 
chapter 5). This grid will be used to construct the finite element basis 
functions, which must be of high order if one wants to obtain a high 
order discretization error estimate. 

First, for the sake of simplicity, consider the definition of piecewise linear 
basis functions. Let then-dimensional reference simplex 6. c R" be 
defined by 

n 

6.={xeR":x>OALx; < 1}, 
j=l 

having n + 1 vertices i-1, ••• ,i-n+l = 0, (1, 0, ... , 0), ... , (0, ... , 0, 1), 
where for abbreviation i'r = (x1,r, ... , xn,r), and x > 0 means x; > 0 
for all r. It is well-known that for each simplex b. E Q there exists an 
affine transformation 

[ 

x1,2 - x1,1 

X = F .6.X + X1 = : 
Xn,2 - Xn,l 

x1,n+l .- x1,1 ] A 

: X+Xt 

Xn,n+l - Xn,l 
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mapping the reference simplex l. onto 6 such that x1, ... , Xn+I are 
mapped onto x1, ••• , Xn+I (see [7]). In order to distinguish vertices of 
different simplices easily, the verticesxr of a simplex are denoted by ~.6.) 
when needed. 

On the reference simplex, corresponding to its vertices, n + 1 linear basis 
functions are defined by 

n 

<p1(x) = 1- LXr 
r=l 

<t?r(X) = Xr-1 , r = 2, ... , n + 1. 

Further, let for each simplex in the grid the linear approximation polyno
mial <p~.6.) corresponding tox~.6.) be given by the relation 'P~.6.)(x) = <t?r(x) 
via the affine transformation. If { Xi} f" denotes the set of all vertices, 
then for given number i there will be several simplices 6 and r = 
{1, ... , n + 1} such thatx~.6.) = Xi. Corresponding to each vertexx = Xi 

a piecewise linear finite element basis function 'Pi is defined element
wise as follows. If for given 6 there exists an r such that x~.6.) = Xi, 

then 'Pi = r.p~.6.) on 6, elsewise 'Pi = 0 on 6. 

Higher order finite element basis functions are constructed analogously 
to the procedure above using a set of polynomials on the n-dimensional 
reference simplex and the affine transformation. For the general case 
see [7], section 5.1, or [29] where approximation polynomials of arbi
trary degree p are used. One can also see chapter 7 of this thesis, which 
employs finite element basis functions of order two. 

Suppose that grid refinement will be used to obtain a suitable grid, as 
will be demonstrated in chapter 5, leading to a sequence of grids Q)°> C 

Qy> C • • • c Q)k>. As in equation (5.9.1), the span of the finite element 

basis functions on each subsequent grid Qt> is denoted by 1t(Qt>) and 

where V(Qt>) stands for the set of vertices of all simplices in a grid Qt>. 
A basis of finite element basis functions obtained as above is called a 
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standard nodal finite element basis. For future use also define the grid 
size parameter ht>, being the minimum simplex diameter of all the 

simplices in Qt>. Depending on the circumstances, h)k) can be denoted 
by h<k> or just by h. 

Let the computational domain be denoted by Q and the grid on Q by Q 
and consider the example (1.3.7). In this case for r 0 = r 1 u r c the 
Galerkin global time-space finite element variational formulation will 
be given by: Find an approximate or discrete solution uh E 1-(,-y(Q) such 
that 

(F(uh), v) = IQ -UhVt + '7 uf'v V dxdt + ( uv(x, tJ) dx le. lr. (1.5.1) 

= 0 \;/ vE1io(Q) • 

Concerning the existence of such a discrete solution of a Galerkin fi
nite element variational formulation as above, see Ciarlet [14]. Now, 
requiring the continuous solution to be equal to limh!O uh E H;(Q), 
the global time-space variational formulation used in all chapters is: 
Find u E H;(Q) such that 

(F(u), v) = 1Q -UVt + v uT'vv dxdt + i uv(x, tJ) dx 
.. . (1.5.2) 

= 0 \;/ vEllfi(Q) • 

This formulation requires more regularity of the solution than equa
tion (1.3.7) as the solution is supposed to be generalized differentiable 
in time, but for many cases of physical interest one can show that existing 
solutions have indeed the required smoothness. 

Before considering the general case in the next section, consider the local 
error on a time-slab n x (tj-I, tj] for the sake of simplicity denoted 
by Q. If, for given initial value, u is defined to be the exact solution on 
this time-slab and if uh is the finite element approximate solution of the 
variational formulation for the same initial value, then the local error is 
given by 



finite element method 19 

In order to estimate this local error define 

• fl1, the interpolation of it in 1-i(Q), 
• 8 := it - uh E H1(Q), the discretization error, 
• T/ := it - u1 E H1(Q), the interpolation error, and 
• cp := uh -fl1 E 1-io(Q), the interpolation minus the discretization 

error. 

To simplify the presentation, assume that the Dirichlet boundary condi
tions and the initial value function are homogeneous, whence 

½ lo cp2(x, t;) dx + l IV cpl2 dxdt = 

(F(flh) - F(fl1), cp) = 
(F(fl) - F(fl1), cp) = 

l -TJ<.pt + V r?V cp dxdt + l r,cp(x, t;) dx = 

l 'PT/t + V r,TV cp dxdt 

with the use of the relation 

l VVt dxdt = l v2(x,t;) dx- l VVt dxdt vvEllfi(Q)• 

The last term of the former equation can be estimated above by 

with the use of lemma 1.3.1 and the Cauchy-Schwarz relation between 
inner product and associated norm. At its turn, the last factor in this 
bound can be estimated above by 
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This clearly implies that there exists a positive scalar c such that 

L <{i(x, t;) dx::; L cp2(x, t;) dx + l 1v cpl2 dxdt 

<cl 11; + IV 1112 dxdt. 

Hence, using the Necas trace inequality (see [27], page 84), stating that 
there exists a positive scalar c such that 

(1.5.3) 

for all functions u E H1(Q) where V x,t denotes the gradient in space 
and time, leads to 

llr(t;)ll2 = L fP(x, t;) dx 

::;2 L cp2(x, t;) dx + 2 L 772(x, t;) dx 

::;cl 11; + IV 1112 dxdt 

for some scalar c > 0. Using the classical interpolation error estimate 
(2.5.2) presented in chapter 2, the bound 

is obtained for all 0 ::; p ::; s, where p is the degree of the finite 
element approximation polynomials used for the discrete solution and 
interpolant. As this is valid for all time-slabs and the scalar D only 
depends on the geometry of the domains Q;, this implies that for time
slabs of constant width t; - t;-1 = ~t the global error is bounded 
above in time, according to theorem 1.4.1. Note that 11 · lls+I stands for 
the Sobolev s + 1 norm over Q, including all space and time derivatives 
up to order s + 1. 
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1.6 Newton method and local discretization error 
estimates 

21 

Here the local errors r(t;) for the Galerkin variational formulation 
are considered for the problem (1.2.3) on the domain Q;, treated as 
a convection-diffusion problem. The diffusion tensor is taken to be that 
of equation (1.2.2) for a scalar function, i.e., f(u) = fo + ft IV ulq-2 • 

Let ro = r1 u r C and r3 be defined as in sections 1.2 and 1.3. Then 
problem (1.2.3) can be reformulated as follows. Find u E H~(Q;) C 

H1(0) x L2((t;-i, t;]) such that for all v E fib(Q;) 

t; 

j In [utV+f(u)VuTVv+bTVuv-fv] dxdt=O, (1.6.1) 

t;-1 

where H~(Q;) for a given trace g is defined using equation (1.3.1). Note 
that on r1 and on r3, V xuT nx = 0, where nx is the unit outward normal 
vector in the space directions. For the simplicity of notation let Q = Qi 
in the sequel. 

One can now follow either of two lines of analysis. Using the 
finite element method directly on the non-linear problem (1.6.1) and the 
theory for error estimates for bounded monotone operators (see [18]), 
we can derive discretization error estimates, similar to the derivation for 
linear coercive problems. The resulting equation is a non-linear algebraic 
equation which must be solved by some iterative method, such as the 
Newton method. 

Alternatively, Newton's method, or some Newton like method 
on (1.6.1 ), can be used to get a sequence of linear differential problems. 
Each of these problems is solved by a finite element method, but not 
necessarily for identical grids. This latter option opens up the possibil
ity of combining the algebraic solution method with the discretization 
method or more precisely, with the adaptive grid refinement method. 
Therefore this second approach has definite practical advantages over 
the first one, where one must work on a fixed finite element grid. 

Now let F'(u, t) be the Gateaux directional derivative of F(u, t) 
and consider the variational formulation of the Newton sequence uU>, 

(F'(u<l), t)(u(l+l) - u<1>), v) = -r<l)(F(u<l), t), v) vvEIJfi(Q) (1.6.2) 
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where, for a given functional G(u, t), F(u, t) = u, + G(u, t) and the 
duality pairing and corresponding norm are defined by 

t; 

(u, v) = J k uv dxdt, lllvlll = (v, v) 112 • 

t;-1 

For problem (1.6.1) one has 

t; 

(F(u,t),v)= J fo[u,v+€(u)'\7uT'\7v+bT'\7uv-fv] dxdt, 

t;-1 

t; 

(F'(u,t)w,v) = J k [wtV+€(u)'\7wT'\7v+bT'\7wv] dxdt+ 

t;-1 

t; 

½€1(q - 2) J k IVulq-4'\luT'\lw'\luT'\lv dxdt, 

t;-1 

according to equation (l.3.4). The parameter r<l) in (1.6.2) is a damping 
parameter if r<l) ~ 1. For r<l) = 1, the method reduces to the standard 
Newton method. As has been shown in [5] and [ 15], the damping param
eter can be chosen such that the Newton method converges for any initial 
approximation. In the type of problems here considered, it turns out that 
the method converges with r<l) = 1, because already the initial function 
can be chosen fairly accurately. As has also been shown in [5] and [15], 
there is a further important improvement of the Newton method. This 
is based on the observation that it is inefficient to solve (l.6.2) very 
accurately for the first iterations, because the corresponding approxima
tion u<1+1> is only an approximation of the final solution lim1 ..... oo u<O and 
usually not a very accurate one. Therefore, instead, a solution u<1+1> is 
computed such that for all/= 0, 1, ... 

where e(l) is a sequence of positive numbers converging monotonically 
to zero, or to some predetermined accuracy e, i.e., lim, ..... 00 e<1> = e. 
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Therefore, as one iterates further, this sequence forces the linearized 
equation in the Newton method to be solved increasingly more accu
rately. This method has been called the damped and inexact Newton 
method (DIN), see[5] and [15] for an analysis of its convergence. 

What makes this method additionally attractive in the present 
context is that it can be combined in a natural way with the finite element 
discretization of the problem. At the initial stage one can start with a 
somewhat coarse grid and refine this from one Newton iteration to the 
next, for instance by adding grid points and hierarchical basis functions 
thereon. Note however, that one has to use the exact nodal values of 
the bounaary function uc for the new (added) points on the boundary. 
Also (1.6.3) needs to be modified to 

for all I = 0, 1, ... , where u ~> is the interpolant of the function u<l) from 
the possibly coarser grid QO> onto the space Q<1+1>. The corresponding 
finite element spaces are nested (see section 1.5), rl(Q<l)) c rl(QO+l)) 
and are subspaces of H1 (Q). A natural choice of the forcing sequence c<1> 
is then a power of h<1>. 

At every Newton step one needs to solve a linear convection 
diffusion problem. The variational finite element formulation of (1.6.4), 
assuming homogeneous Dirichlet boundary conditions --y = 0, takes the 
following form. Find a correction x = u<1+1> - u~> E 1i0(Q<1+1)) such 
that 

(1.6.5) 

for all v E 1io(Q(l+l)). To simplify the presentation it will now be as
sumed that the spaces 1io(Q<l)) = 1{0 , i.e., are identical for all iterations, 
and that h<1> = h. For the derivation of a discretization error estimate, 
first note that for all u E m(Q) 

(ut +bTVu,u) =(ut - V-(bu),u) and 

(ut +bTVu, u) = - ½(uV-b, u) + ½ / u2(x, t;) dx. 
lr3 

Analogous to the proofs in [9] and [10], using the condition V-b $ 0, the 
boundedness of lbl, and exploiting the definition of e(u), it is possible to 
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show (see chapters 2-4) that there exists a positive scalar c such that 

where the Cauchy-Schwarz inequality and the arithmetic-geometric 
mean inequality have been used. Here x I denotes the interpolant of x 
in rlo. Now, assume that for some O < s $ k, where k is the degree of 
the approximation polynomials used in the finite elements, the following 
relation holds 

IIIV x,t<X - xr)III $ chslllxllls+l. 
Here 111 · llls+I denotes aSobolevnorm of order s+l on Q (i.e., containing 
L2(Q) norms of space derivatives of x up to orders+ 1) and c a positive 
generic constant (in general not the same at different occurrences). Now, 
the last two equations show that 

<ollV (n - XI >IIL'CQJ + { ½ { (n - xd(x, t;) dx }' 
12 

'., eh' lllxlll,.1 • 

(1.6.6) 
Analogous to the discretization error estimate at the end of section 1.5, 
one can demonstrate that in particular the errors at the interface t = t i 

given by the expression { f r3 (x - X h )2 (x, t j) dx} l 12 , as wen as the 

finite element errors in the gradient in Q, are bounded by the right
hand side of (1.6.6), which has approximation orders. Hence, if u is 
sufficiently smooth and the finite element space of a sufficiently high 
order, an arbitrary order of approximation can be obtained. 

Note that the parabolic type operators considered here have a 
smoothing property in the respect that for increasing t, the solution gets 
smoother. For any fixed t, one can have infinitely differentiable solutions 
if the source function f and the boundary conditions allow this, even 
if the initial function is non-smooth. However, if one wants accurate 
approximations in the whole domain, then the initial function needs to 
be smoothed prior to applying the method. At every interface between 
two time-slabs a spline approximation of uh can be taken, using only 
the nodal values but defining proper derivatives at the node points by 
taking (weighted) averages of the derivatives of uh at the node points. 
In this way the spline approximation at time t = t i will be (the trace of) 
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a function of a higher order Sobolev space, such as HP(Q),-p ~ 2, and 
the discretization error estimates above are valid with maximal s, i.e., 
s = k. 

Incidently, since the finite element method on the time-slab will 
only see the node values of the approximating spline (which equal 
the node values of uh), the approximating spline function need not be 
computed. It will only be needed if a different set of node points at the 
interface is used. 

The order of the discretization errors at the interfaces can be 
improved. For singular perturbation type problems, where €( u) << 1 
in (1.2.3), the streamline upwind finite element method of [20] can be 
used to this end. As has been shown in [4], [8], [22] and [26] for the 
case that €1 = 0 in (1.6.1), this can improve the interior error estimate 
in the L2 norm by half an order (so it will still be suboptimal by such 
an amount). Similarly the discretization error at the interfaces will be 
improved. Now let €1 = 0 in (1.6.1) and consider instead of (1.6.5) the 
variational formulation 

8b(u, v) + acu, v) = -(F(u~>, t), v + 8v1,) (1.6.7) 

where v1, = Vt + bT"v vis the streamline directional derivative in time
space. Furthermore, ac u, V) is the bilinear form defined by the right-hand 
side of (1.6.5) and 

b(u,v)= L [ / Y:(-a"vu)v1, dxdt+j u1,v1, dxdt] 
AEQ JA A 

(1.6.8) 

where Q is the set of finite elements (triangles) in the time-space domain. 
In relation (1.6.7), 8 is a positive parameter which needs to be chosen 
such that €08 =::; O(h2) in order to guarantee the coerciveness of 8b+a on 
the finite element space V (for further details, see [8] and the next two 
chapters). The standard Galerkin method can now be applied to (1.6.7) 
and it is readily seen that when €0 = O(h) this method with 8 = O(h) 
improves the order of the approximation as compared to the case ( 1.6.5) 
where 8 = 0. This result is stated in the following theorem. 

Theorem 1.6.1 Consider the streamline finite element method ( 1.6. 7) 
to compute afinite element correction x in (1.6.5) on a time-slab Q. 
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Then, if eo6::; O(h2), the discretization error at the upper boundary r3 
satisfies 

{£,<x- x.l2 dx }'
12 

$ eh' [.1112 +<~12 +r 112h] lllxlll .. , ,s $ k 

where k is the degree of the piecewise polynomial finite elements used 
in V. □ 

The above estimate is proved in [8] and does not use any duality 
argument or elliptic regularity. It shows that, if 6 = O(h), imply
ing eo ::; O(h), then 

{£, (x - x.l2 dx} 112 S ch"'121Hxlll.+1, s S k • 

This is an optimal order estimate and applies to singular perturbation 
type problems where eo is very small. Note that the error estimate in 
theorem 1.6.1 is valid even for problems where e0 = 0, i.e., for first order 
hyperbolic problems. 

The standard procedure for regular problems, where an elliptic 
regularity estimate for the ad joint operator F* is valid, is to use a duality 
argument to prove an optimal order estimate in L2(Qj), Then a trace 
inequality could be used to improve the discretization error estimate at 
the interfaces in (1.6.6) by half an order. However, as the problem is not 
of second order in the time variable, such an elliptic regularity is not 
valid when the problem is solved in time-slabs. 

Finally, note that if an adaptive grid refinement method is used 
in order to control the local errors of each time-slab, one also has an 
automatic time-step control method. Namely, by increasing the required 
number of degrees of freedom within a time-slab as the current time-step 
decreases, and vice versa. Proceeding this way, the degrees of freedom 
will remain approximately constant within each time-slab. For regular, 
uniform elements in time (see figure 1.1), with one layer of piecewise 
linear finite element basis functions defined thereon, the time-slabbing 
method is equivalent to the Crank-Nicolson method. 

As has been shown in [4], where the time-slabbing method with one 
or several layers of uniform elements is used (see fig. 1.1) for the in
terpolation error for linear problems, a cancellation effect occurs in 
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the term lll(u - uh)t + bTV (u - uh)lllq for polynomial basis func
tions of odd degree, with the effect that the error in llu - uhllL2(Q> 
and { fr 3(u - uh)2(x, t;) dx} 112 becomes of higher order than for ir

regular elements. If either Eo :5 O(h2) or Eo = 0(1) it can be shown that 
the error is of optimal order but this estimate requires then one order 
higher regularity of the solution, u E HA:+2(Q) n H/i(Q). Therefore, the 
time-slabbing method will not give lower order of errors than standard 
time-stepping methods, but it gives the additional freedom of using ir
regular elements in time and space to approximate solutions with layers 
better. 

Finally, it can be seen that if a 'spectral' finite element method 
based on Legendre polynomials or certain combinations of such poly
nomials in the time variable is used, the time-slabbing method becomes 
equivalent to an implicit Runge-Kutta method for solving the corre
sponding semidiscrete system of ordinary differential equations. 

1. 7 Conclusions 

It has been shown that time-slabbing is an efficient technique to get 
higher order approximations and is applicable for many types of prob
lems. It does not suffer from the error reduction phenomenon which is 
found for certain high order time-stepping methods. 

Furthermore, shocks and layers can be resolved more easily us
ing this technique. An additional advantage not discussed in the present 
chapter is that the method for a single time-slab can also be used for a 
backward heat equation, for instance when one uses only one - big -
time-slab (0, tJ], assuming that the given data on the line t = tJ corre
sponds to an essentially layer-free solution. Then the irreversibility of 
the process, normally showing up in an exponential increase of numer
ical errors, will be noticed much less than for a standard time-stepping 
method. 
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Fig. 1.2 Time-slab for space do
main (0,1). 

Fig. 1.3 (a) Divide each small cube into 6 pyramids from the center. (b) 
Divide each pyramid into 4 tetrahedrons. ( c) One level of the hierarchical 
extension type. 
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Abstract 

Time-stepping methods for parabolic problems require a careful choice 
of the stepsize for stability and accuracy. Even if a stable implicit time
stepping method is used, one might be forced to choose very small 
time-steps in order to get a sufficient accuracy, if the solution has steep 
gradients, even if these occur only in a narrow part of the domain. 
Therefore the solution of the corresponding algebraic systems can be 
expensive since many time-steps have to be taken. The same consider
ations are valid for explicit time-stepping methods. 

A discretization technique using finite element approximations 
in time and space simultaneously for a relatively large time-period, 
called time-slab, is presented in this chapter. This technique may be 
repeatedly applied to obtain further parts of the solution in subsequent 
time intervals. It will be shown that, with the method proposed, the 
solution can be computed cheaply, even if it has steep gradients, and 
that stability is automatically guaranteed. For the solution of the non
linear algebraic equations on each time-slab fast iterative methods can 
be used. 
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2.1 Introduction 

The method most frequently used for the numerical integration of para
bolic differential equations is the method of lines, where one first uses 
a discretization of space derivatives by finite differences or finite ele
ments and then uses some time-stepping method for the solution of the 
resulting system of ordinary differential equations. Such methods are, at 
least conceptually, easy to perform. However, they can be expensive if 
steep gradients occur in the solution, when stability must be controlled. 
Also the global error control can be troublesome. 

This chapter considers a simultaneous discretization of space and time 
variables for a one-dimensional parabolic equation on a relatively long 
time interval, called time-slab. The discretization is repeated or adjusted 
for following time-slabs using continuous finite element approxima
tions. In this method the efficiency of finite elements is utilized by 
choosing a finite element grid in the time-space domain such that the 
grid has been adjusted to steep gradients of the solution, both with re
spect to the space and the time variables. In this way, all the difficulties 
with the classical approach are solved: stability, discretization error esti
mates and global error control are automatically satisfied. Such a method 
has been discussed previously in [l] and [5]. The related boundary value 
techniques and global time integrations for systems of ordinary differ
ential equations have been discussed in several papers, see [13] and the 
references quoted therein. In [19] a time-space method with discontinu
ous elements in time has been used, which is based on methods in [20], 
[21] and [24]. 

In the present chapter, an equation which describes the electro
magnetic vector potential in ferromagnetic materials is taken to demon
strate the proposed discretization and solution method, but the tech
niques provided may also be applied to other types of parabolic equa
tions including equations in many space variables. 
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The remainder of the chapter is organized as follows. In section 2.2 
the necessary information about the parabolic differential equation and 
the parameters involved is given. Then in section 2.3 this non-linear 
parabolic equation is reformulated as a two-dimensional boundary value 
problem. After this, section 2.4 and section 2.5 consider the solution 
method and discretization error estimates for the problem. Section 2.6 
concludes with a discussion of the method. Numerical results can be 
found in section 3.5. 

2.2 Evolution equations 

Let n C R be an open interval and consider the following non-linear 
evolution equation defined on the time-space interval Q := n x (0, oo) 

-(wx(x, t))x + bux(x, t) + 7Ut(X, t) 
u(x, 0) 
u(O, t) 
u(l, t) 

= f(x, t) 
= uo(x) 
= l(t) 
= r(t) 

(x,t) E Q 
x En 

t E (0,oo) 
t E (0,oo) 

(2.2.1) 

where the diffusion E and the flow velocity functions b, a satisfy E = 
E(u;(x, t)) resp. b = b(x, t) and a = a(x, t). Here f is a source function 
and uo some L2(f2) integrable function, l and r are the left- and right
hand side square integrable boundary conditions. In addition, assume 
that a ~ ao > 0, b, a E C1(Q). The latter space stands for the vector 
space of continuously partial differentiable functions in Q, which -
including the partial derivatives - can be extended continuously to the 
boundary of the domain Q. Further, let for the simplicity of notation 

bx + <7t ::::; 0 and define E1 = ¾E(() where ( = u;, and assume that 

E > 0 and E' ~ 0. The theory to be presented in this chapter will be valid 
for inhomogeneous boundary conditions of the Dirichlet type. 

In the classical way of solving (2.2.1), one first discretizes the space
variable x, e.g., with the use of a finite element method (see [25]). Then 
the calculation of the solution of the system of ordinary differential 
equations obtained is done with the use of a time-stepping method. One 
of the disadvantages of this approach is that, in order to get a good 
approximation of the solution u(x, t) for large values oft > 0, many 



36 The weighted Galerkin global 

small time-steps must be used if the solution has steep gradients, even 
if these occur only in a small part of the space interval. Furthermore, for 
explicit time-stepping methods, the stepsize must be chosen to satisfy 
an Euler method type stability criterion (however, as shown in [17] 
and [23] there exist methods with extended stability regions which can 
partly alleviate this difficulty). Also the local discretization errors made 
with the use of a time-stepping method have to be monitored closely 
to control the global errors made in time. Here a method is considered 
where a finite element grid is chosen for the time-space domain. This 
method has no such disadvantages. 

2.3 Two-dimensional time-slab formulation 

In order to compute the solution of (2.2.1) a computational domain 
n x (0, t J] c Q is partitioned into a number of time-slabs Q; = n x 
(t;-1, t;] for O = to < ti < ... < tJ < oo, assuming without loss of 
generality t; - t;-1 = ~t for all j (see fig. 1.2). The time-slabs Q; 
have lower and upper boundaries denoted by r1 resp. r3, and left and 
right boundaries r 4 resp. r 2• The number of such time-slabs is finite, 
independent of the choice of the grid parameter, associated with the 
finite elements. For the first time-slab Q1 an initial value uo on r1 has 
to be given, but for each following time-slab Q;+i the solution at r3 of 
Q; will be taken to provide a Dirichlet boundary condition at r 1, 

With this approach problem (2.2.1) can be rewritten into: 
AT 

-(Euz(x, t))z + b V u(x, t) 
u(x,0) 
u(O, t) 
u(l, t) 

on each time-slab with 

= f(x, t) 
= uo(x) 
= l(t) 
= r(t) 

in Q; 
at r1 
onr4 
onr2 

(2.3.1) 

• tensor E = e(u!) and flow field i, = [b(x, t), a(x, t)]T, where it 
is assumed that a ~ ao > 0 in order to preserve the parabolic 
nature of the equation 

• square integrable functions I and r, prescribing the Dirichlet 
boundary conditions on the left respectively right boundary 

• the divergence operator V: and gradient operator V defined on 
the two-dimensional ( x, t) space and 
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• square integrable source function f at Qi and initial value func-
tion uo at the boundary r 1. 

Note that in the remainder of this chapter the gradient and divergence 
operators will act on the two-dimensional time-space space. Further, 
there is no need to impose any boundary condition at the boundary f3, 
because for all possible trial functions u and all test functions v the 
corresponding boundary integral 

where nx is the x component of n, the unit outward normal of the 
boundary 8Q j· At this boundary the solution u of (2.3.1) and ux are 
initially unknown. 

An advantage of the formulation (2.3.1) is that it permits the 
use of small sized elements inside layers, for an accurate time-space 
finite element discretization. Such layers can arise for b > 0 along the 
boundary r 2, for b < 0 along the boundary r 4 and in the interior along a 
shockwave, typically starting at the south-west comer, if uo(O)-=/ l(O) and 
b > 0. In other parts of the time-space domain one can use much larger 
elements thus reducing the number of degrees of freedom considerably 
compared to a classical time-stepping method. 

As will be shown, the computation of the finite element solution 
on each time-slab can be done efficiently. The solution u of (2.3.1) will 
be calculated by a non-linear iterative method, which implies that an 
initial solution uo must be provided. If there is any a priori knowledge 
about the solution then this information can be used to construct a proper 
initial grid for each time-slab. 

2.4 Variational finite element solution method 

Consider the variational formulation of the non-linear two-dimensional 
problem (2.3.1) for a certain time-slab Q :=Qi.Let the space H1(Q) 
be the Sobolev space of order l on Q and define the boundary function 
1 at fo := f1 U f2,4 by 1 := (uo,r,l), i.e., 1 - uo at f1, 1 = r(t) 
at f2 and 1 _ l(t) at r 4. To simplify the analysis, assume that there 
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exists an extension of, to Qin H1(Q), which excludesthe occurrence 
of interior layers due to discontinuous boundary data. Define the test 
and trial spaces by HA(Q): = { v E H1(Q): v = 0 at r0 } resp. H;(Q): = 
{u E H1(Q): u =, at ro}, both in the sense of traces. 

In order to improve if possible standard Galerkin finite element dis
cretization error estimates, consider the use of a suitable weighted 
Petrov-Galerkin method and therefore the determination of a suitable 
weighing function g (see e.g. [16], section 3.4, page 90). The weighted 
Petrov Galerkin variational formulation is 

(2.4.1) 

where the gradient F is given by 

(2.4.2) 

for all u, v E H1 (Q). In order to determine g, without being restrictive, 
it is assumed that all boundary conditions are homogeneous Dirichlet 
conditions. Then, with the use of the Green-Stokes formula, (2.4.1) turns 
out to be equivalent to 

l EuxVx9 +L(g)Vuv dxdt = l gfv dxdt vvE8i\(Q) (2.4.3) 

where L(g) = [ Egx l + gb is a functional on [H1(Q)r. As 

for all v E HACQ), the substitution of u = v into (2.4.3) leads to a 
left-hand side equal to 

f gEv; - ½ V.L(g)v 2 dxdt + ½ j v2L(g)T n dx. JQ lr3 
(2.4.4) 
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This left-hand side can be estimated below in terms of llvlli only if g ~ 0 
satisfies 

k -½V-L(g)v2 dxdt ~ k cv2 dxdt 

J v2L(g)T n dx ~ 0 
1'r3 

for all Lebesgue square integrable functions v and some c ~ 0. 

(2.4.5) 

Assuming that -V.b = 0 and c = 0, the first inequality (2.4.5) is satis
fied, if-½ V. L(g) = c. Note that the latter equation resembles the ad joint 
equation of the original unweighted variational formulation (formula
tion (2.4.2) with g = 1) since 

This implies that the determination of a suitable weight function can be 
as difficult as solving the original variational problem. 

However, for the global time-space case with tensor E and ·flow 
field i, as defined before, the functional L(g) is given by 

One can easily verify that the choice g(x, t) = e-a(t-t;) satisfies (2.4.5) 
for a given time-slab Qi and fixed a ~ 0 as V. L(g) = g V. b ::5 0. To 
simplify future proofs only this function will be used for the derivation 
of error estimates in section 2.5. It suffices to consider the first time-slab 
(to, t1) := (0, T), thus reducing the weight function tot 1--+ e- 0 t. 

Using the exponential weight function, one finds that, for all u, v E 
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H1(Q), (F(u), v) is equal to 

{ Eux(ve-cxt)x + (j/ '\7 u - f)ve-cxtdxdt- j ve-cxt Euxnx ds= JQ laQ 
f €Ux 8

8 (ve-cxt) + (bT \7 u - f)ve-cxtdxdt- j ve-cxt Euxnx ds= 
}Q X h2,4 
{ €UxVxe-cxt + (bT \7 u - f)ve-cxtdxdt- j ve-cxt Euxnx ds= 
h Ir~ 
{ [Euxvx + (bT \7 u - f)v] e-cxtdxdt- j ve-cxt Euxnx ds h Ir~4 

Linearization of this weak formulation with the use of a damped Newton 
method now leads to a sequence oflinear systems and solutions u<k+l) E 
H~(Q) 

Here the Hessian or Jacobian matrix F' is defined as in (1.3.4), by 
substituting F for G, whence for all u, v, w E H1(Q) 

(F'(u)w, v) = l [B(u)wxVx +bT '\7wv] e-cxt dxdt -

j ve-cxt B(u)wxnx ds 
lr2,4 

(2.4.7) 

where the tensor B(u) (see chapter 3 for the multi-dimensional case) is 
defined by 

B(u) = €(u;) + 2u;f'(u;) 

as can be seen easily using (1.3.4 ). Further r<k) is a positive scalar which 
is called damping parameter for values less than 1. This scalar can be 
monitored from step to step in order to achieve convergence, see for 
instance [3] and [12]. 

The fact that u<k+l) - u<k) E H6(Q), a linear vector space on 
which the Jacobian matrix will be positive definite (see below), implies 
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that the damped Newton algorithm defined by (2.4.6) will converge for 
properly chosen damping parameters T(k) (see e.g. [3]). 

Note that, due to the convective termbT V wv in the integrand of (2.4.7), 
the Jacobian matrix F'(u) is not symmetric, but because of the special 
structure of the tensor E and the nonsymmetric term, the technique 
described in [10] for symmetric problems can be modified easily in 
order to assemble the gradient and Jacobian matrix cheaply. 

Define the Hilbert space fi1 ( Q) :) H1 ( Q), the closure of C1 ( Q) 
under the weighted norm 

which is related to a corresponding inner product. Let the norms II · lls a 
and I· ls,a denote the exponentially weighted Sobolev norm resp. sem'i
norm of orders on H1(Q), and let ( •, • )s,a denote the inner products 
corresponding to the weighted seminorms. In the case that a = 0, the 
subscript ',a' is omitted. Note that 11 · lls a and 11 · lls are equivalent norms 
for all s ~ 0 and a ~ 0. The norm Ill • Ill can be seen as a weighted 
Sobolev 1 measure in space combined with a weighted L 2 measure in 

time on 1:i1 ( Q). With the use of the set of norms introduced, and under 
some assumptions to be derived on the tensor E and flow field b, F'(u) 
will be seen to be uniformly positive definite on Hb(Q), i.e., 

(F' (u)v, v) ~ clllvlll > 0 V vEllfi(Q), 

for some positive scalar c. 
In order to see this, first note that 

(F'(u)w,v) = l [BwxVx +bT Vwv] e-at dxdt 

for all v E H6(Q) and all u, w E H1(Q). An analysis of the separate 
terms in this expression shows that 

(2.4.8) 
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for all u, v E H1(Q), with 

Amin := inf { €(() + 2( €'((): ( = u;(x, t), (x, t) E Q}, 

and that 

is identical to 

J vwe-atj,T n dx - f w(\7-bve-at + i,T V (ve-at)) dxdt 
lr3 JQ 

=e-aT J vwbT n dx -
lr3 l w [v.bve-at + vbT v e-at + e-atj,T V V] dxdt 

=e-aT J vwu dx - f i,T Vvwe-at dxdt + 
lr3 JQ 

l vw(au - \7-b)e-at dxdt V wEH1(Q)v vEllfi(Q) 

~T 
because V = 0 at r 1 u r2,4, v e-at = [0, -ae-at]T and b n = (j at r3. 
This latter relationship leads to 

l (bT Vv)ve-at dxdt = 

½e-aT J v2u dx+½ f v2(au-\7-b)e-at dxdt ~ 
lr3 JQ (2.4.9) 

½e-aT J v2u dx+bmin { v2e-at dxdt 
lr3 JQ 

forallv E Hb(Q)wherebmin :=inf{½(au(x,t)-\7-b(x,t)):(x,t) E Q}. 
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Now (2.4.8) and the above show that the Jacobian matrix satisfies 

(F'(u)v, v) ~Amin lv;e-at dxdt+bmin lv2e-at dxdt+ 

½e-aT J v2u dx 
Jr3 (2.4.10) 

~min{Amin,bmin} l [v 2 +v;] e-at dxdt 

=:c · lllvlll V vE8<\(Ql uEH1(Q), 

i.e., is uniformly positive definite if Amin and bmin both are positive. For 
positive bmin ~ Amin this estimate turns out to be uniform in c. 

In the situation where bmin = 0 note that for piecewise continuous 
functions v on Q the restriction to a certain time t E ( t i- l , t i], will also 
be piecewise continuous on n, in particular v(x, t) E H1(n). If r is a 
nontrivial subset of n, then, due to a Friedrichs inequality (see [26], 
page 20, or [15]), there exists a positive scalar /3 > 0 such that for all 
functions V E H1(n) 

In v;(x, t) dx + i v2(x, t) ds ~ f3 In [v2(x, t) + v;(x, t)] dx. 

In the one-dimensional case, where r is equal to the set endpoints of 
the open interval n, it is by definition nontrivial. Because v is piecewise 
continuous on n and due to the fact that the space-domain does not vary 
within time, the expression above can be integrated with respect to the 
time, with the use of a weight e-at, leading to 

for all piecewise continuous functions v on n. This implies that 

are equivalent norms on the subspace of piecewise continuous functions 
of v E H 1 ( Q) with v = 0 at r 2,4, whence for bmin = 0 and such functions 
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V 

(F'(u)v, v) ~Amin f v;e-at dxdt + ½e-aT J v2u dx 
}q lr3 

~/3Amin l [v2 + v;] e-at dxdt =: clllvlll2 
(2.4.11) 

for all a ~ 0. Because bmin = 0 this estimate is not bounded uniformly in 
e (see the definition of Amin) but contrary to the previous estimate (2.4.10) 
it is also valid for a= bmin = 0. Hence (2.4.10) will be used mainly for 
singularly perturbed problems while (2.4.11) will be used for regular 
problems. 

Each linear system (2.4.6) is discretized with the use of two-dimensional 
triangular finite elements (FE) (maximum height h) with linear ba
sis functions (see e.g. [28], [14], [6] or [22]). Additional upwind, i.e., 
streamline-upwind diffusion basis functions (SUPG) (see [18] or [ 4]), is 
optional. For this latter method the linear basis functions v are replaced 
by v+«5V v for some scalar «5 > 0. As has been shown in [7], for instance, 
the upwind technique can be very helpful to get a more strongly positive 
definite system for convection dominated problems and hence increase 
the rate of convergence of certain generalized preconditioned conjugate 
gradient iterative methods. 

The use of a finite dimensional subspace of H1 (Q) in (2.4.6) to approx
imate u leads to a sequence of corresponding finite dimensional linear 
systems of the form Ffi (ut>>(ut+1> - ut>> = -r<k> Fh (u~k>), defined as 
usual in finite element methods, with limk-+oo u~k) := Uh, the discrete 
solution in vector representation (see e.g. [3]). These linear nonsymmet
ric finite dimensional systems of equations are solved by iteration with 
the use of preconditioned linear equation solvers. For the numerical tests 
GCGLS [2] or COS [27] are used to this end. These iterative methods 
and the Newton method can be found in chapter 8. 

2.5 Discretization error estimate 

In order to study the discretization error on time-slab Q = Q;, con
sider the introduction of a finite dimensional finite element test function 
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subspace 1-l of H 1 ( Q), based on an underlying (initial) finite element tri
angulation Q = Qi of the time-slab. Using 1-l, define 1-lo := 8<\(Q) n 1-l, 
1-l, := H~(Q)n1-l. The function,, which describes the Dirichlet bound
ary conditions, is assumed to be of such a type that 1-l, =/ 0, e.g., if 1-l is 
a space of piecewise linear functions, then , has to be piecewise linear 
too. Also consider the following definitions. 

Definitions 
• u E H~(Q), a solution of (2.4.1), i.e., (F(u), v) = 0 for all 

v E 8<\(Q), 
• uh E 1-l,, a discrete solution satisfying (F(uh), v) = 0 for all 

functions v E 1-lo, 
• u 1, the interpolation of u on 1-l, 
• 0 := u - uh E H1(Q), the discretization error, 
• r, := u - u1 E H1(Q), the interpolation error and 
• r..p := uh - u1 E 1-lo, the interpolation minus the discretization 

error. 

In order to estimate the discretization error note that r..p = 0 at r 0 , and 
assume that €, i, with a 2: ao > 0 and a 2: 0 are such that the following 
four conditions are satisfied 

Amin =inf { €(() + 2( €' ((): ( = u;(x, t), (x, t) E n} > 0 

Amax =sup{€(()+ 2(€'((): ( = u;(x, t), (x, t) En}< oo 

bmin =inf{ ½(aa(x, t) - \7-b(x, t)): (x, t) E n} > 0 

bmax =sup{max{lb(x,t)l,a(x,t)}:(x,t) En}< oo 

for all u E H1(Q). Then for bmin > 0 with the use of (2.4.10) 

(F(uh)-F(ft1),r..p) =(11 
F'(ft1+<:;r..p)r..pd<:;,r..p) 

(2.5.1) 

= J. }q[ B( fi 1 H<p )<p! + b TV \0\0 },-•t dx dt d, 

> A · 1r..p2 e-at dxdt+b · 1r..p2e-atdxdt _ mm x mm 
Q Q 
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+ ½e-aT j ,p2u dx 
1'r3 

~ min{Amin, bmin}lllc,olll2 =: cdllc,olll2 
or for bmin = 0 with the use of (2.4.11) 

(F(uh)-F(u1), c,o) ~Amin [ c,o;e-at dxdt + ½e-aT j c,o2u dx 
JQ 1'r3 

~/3Amin l [c,o2 + c,o;] e-at dxdt =: cdllc,olll2. 

Further 
(F(uh)-F(ilJ), v) =(F(u) - F(u1), v) 'ef ve1-lo 

and for all a ~ 0 

(F(u)-F(u1), c,o) =(11 
F'(u1 + <;7J)17d<;, c,o) 

= J.'J) B( fj I + -~ )~x'Px + il v' ~<p f- 0 'dx dt ds 

~ l/maxl7Jxe-½atl lc,oxe-½at I dxdt 

+ lJbT v'77e-½atllc,oe-½atl dxdt 

~Amax(l11;e-at dxdt)½ <] :;e-at dxdt)½ + 

bmax(h11; + 77;)e-at dxdt)½ <] cj2e-at dxdt)½ 

~max{Amax,bmaxJ(h77; +17;)e-at dxdt)½ · 

«j /;e-at dxdt)½ + <] : 2e-at dxdt)½) 

~v'2 max{ Amax, bmax}(h77; + 77;)e-at dxdtlllc,olll)½ 

~ v'2 max {Amax, bmax} I 11 I 1 Ill C,O Ill 
=:c2l11lilllc,olll -
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This relation is obtained with the use of the estimate 

va+-lb ~ ..fira+b 
for all positive real numbers a and b. 

These relations above, in combination with 

1110111 = 11111 - 'PIii ~ 11111111 + lll<f'III ~ 1111111 + lll<f'III, 

lead to 
1110111 ~Cl+ c2 )ll11ll1. 

C} 
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Finally for u E HP ( Q) consider the classical interpolation error estimate 

(2.5.2) 

In combination with the former relations this gives the discretization 
error estimate 

(2.5.3) 

which is uniform in€ if bmin > 0. Since the Ill · Ill norm is slightly weaker. 
than the II · 11 1 norm, the discretization error estimate is not of optimal 
order, even if u E H2(Q), the Sobolev space of order 2. 

In order to investigate the conditions in (2.5.1) consider, as an example, 
the electromagnetic field penetration into a half-space of ferromagnetic 
material. In a Carthesian space the imposed magnetic field is parallel to 
the z-axis, while the induced electric field is parallel to the x-axis. In this 
case the magnetic vector potential has only one contributing component 
parallel to the z-axis, and under certain additional assumptions (see 
for instance [23]) this enables the formulation of a one-dimensional 
parabolic differential equation for this component. 

The following non-linear parabolic differential equation models 
a magnetic vector potential in a one-dimensional piece of iron with a 
sinusoidal magnetic potential applied on its right boundary: 

-(v(u;(x, t))ux(x, t))x+O"ut(x, t) =O O<x<l, O<t<oo 
u(x,0) =uo(x) O<x<l 
u(l, t) =c sin(21rwt) O~t<oo <2·5.4) 
u(O, t) =O O~t<oo 
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for some L2(0, 1) integrable function g with g(l) = g(O) = 0. The 
parameters involved are 

w the angular frequency of the magnetic vector potential 
on the left boundary, 

c the amplitude of the magnetic vector potential applied thereon, 
u the material-dependent electric conductivity, often a constant, 
µo the magnetic permeability of the vacuum, µ 0 = 4,r 1 o-7Hm-1, 

µr the relative magnetic permeability inside the iron, µr = µr(O, 
µ the magnetic permeability inside the iron,µ= µo •µrand 
v the magnetic reluctivity, v = µ-1• 

The reluctivity is in practice a non-linear material-dependent function 
depending on the square of the magnetic flux density ( = u;(x, t) 
(see [8] for an example of a measured reluctivity). Here, in all test cases 
considered, it will be modeled by 

(I")_ arctan(,(( - (o)) + arctan(,((o)) 
V ':, = Vmin + Vmax • 1r ( (1" )) 

2 + arctan , 1:.0 
(2.5.5) 

where 

Vmax { 

Vmin the relative minimum of the modelled reluctivity v.( (), 
the relative maximum of this function, 

' its steepness and 
(o its turning point. 

Its derivative ~v therefore is given by 

See [9] for an example of this function for given Vmin, Vmax, , and (o. 
Note that for the time-independent formulation of (2.5.4) with 

a reluctivity defined as above and boundary conditions uo(x) = 0 and 
u(l) = c, the exact solution u is given by u(x) = c • x. Hence the solution 
of the stationary problem contains no layers. 
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Denoting the magnetic reluctivity v by e, note that in this case e' ~ 0 
and A(():= e(O + 2(e'(O is a continuous function, bounded above and 
below on [0, oo) by 

0 < Amin := fmin :5 A(() :5 A((max) =: Amax < 00 'r/ (E[O,oo), 

1 2 2 ! (max = -((4~ (0 + 3)2 - ~(o) 
~ 

whence the first two conditions of (2.5.1) are satisfied. Due to b = [0, l]T, 
clearly bmin = 0 and bmax = 1 < oo, whence all conditions of (2.5.1) 
are satisfied for all weighing functions e- 0 t with a~ 0. For numerical 
results we refer to [9] and section 3.5. 

2.6 Conclusions 

The use of finite elements in both time and space, where the time-space 
domain is considered as a whole in the generation of finite elements, 
is efficient. The method is applicable also in multi-dimensional prob- _ 
lems, where tetrahedron elements can be used, for instance. As has been 
shown, the stability of time-stepping on the larger time-slabs is an im
mediate consequence of the positive definiteness of the Jacobian matrix. 
The use of ordinary continuous finite element approximations enables 
the use of standard finite element packages for the time-space domain. 
Adaptive refinement of an initial grid on each time-slab in order to lo
cate and fit steep gradients is advisable and is presently studied by the 
authors. 

Finally the solution of the linear systems can be performed quite 
cheaply. Using still more efficient preconditioners, for instance those 
based on incomplete factorization or domain decomposition (see [7] 
and [11]), one can get methods for which the computational effort is not 
larger than about proportional to the number of node points. 

Acknowledgements 

1bis study was suggested by dr. Arne Woltbrandt, ABB, Corporate Research, VllsterAs, Sweden. 



50 The weighted Galerkin global 

2. 7 References 

[l] Axelsson 0., Finite element methods for convection-diffusion 
problems, in Numerical Treatment of Differential Equations, 
(Strehmel K. ed.) Leipzig: Teubner 1988 (Teubner-Texte zur 
Mathematik; Bd. 104), 171-182 [Proceedings of the Fourth Sem
inar "Numdiff-4", Halle, 1987] 

[2] Axelsson 0., A generalized conjugate gradient, least square 
method, Numerische Mathematik, 51(1987), 209-227 

[3] Axelsson 0., On global convergence of iterative methods, in Itera
tive Solution of Nonlinear Systems of Equations, 1-19 LNM#953, 
(Ansorge R., Meis Th. and Tornig W. eds.), Springer Verlag, 1982 

[4] Axelsson 0., On the numerical solution of convection dominated 
convection diffusion problems, in Mathematical Methods in En
ergy Research (Gross K.1. ed.), 3-21, SIAM Philadelphia 1984 

[5] Axelsson 0., The numerical solution of partial differential equa
tions, in Mathematics and Computer Science II: fundamental 
contributions in the Netherlands since 1945 (Hazewinkel M., 
Lenstra J.K. and Meertens L. eds.), 1-18, North-Holland 1986 

[6] Axelsson 0. and Barker V.A., Finite Element Solution of Bound
ary Value Problems, Academic Press, Orlando, Florida, 1984 

[7] Axelsson 0., Eijkhout V., Polman B. and Vassilevski P., Itera
tive solution of singular pertubation 2nd order boundary value 
problems by use of incomplete block-factorization methods, BIT, 
29(1989),867-889 

[8] Axelsson 0. and Maubach J., A time-space finite element dis
cretization technique for the calculation of the electromagnetic 
field in ferromagnetic materials, Journal for Numerical Methods 
in Engineering, 29(1989), 2085-2111 

[9] Axelsson 0. and Maubach J., A time space finite element method 
for nonlinear convection diffusion problems, in Notes on Nu
merical Fluid Mechanics, (Hackbush W. and Rannacher R. eds.) 
Vol. 30, 6-23, Vieweg, Braunschweig, 1990 [Proceedings of the 
Fifth GAMM-Seminar, Kiel, West Germany 1989] 

[10] Axelsson 0. and Maubach J., On the updating and assembly of 
the Hessian matrix infinite element methods, Computer Methods 
in Applied Mechanics and Engineering, 71(1988), 41-67 



finite element method 51 

[11] Axelsson 0. and Polman B., A robust preconditioner based on 
algebraic substructuring and two-level grids, in Robust Multi
Grid Methods (Hackbusch W. ed.), Notes on Numerical Fluid 
Mechanics, Vol. 23, 1-26, Vieweg, BraunSchweig, 1988 

[12] Axelsson 0. and Steihaug T., Some computational aspects in the 
numerical solution of parabolic equations, Journal of Computa
tional and Applied Mathematics, 4(1978), 129-142 

[13] Axelsson 0. and Verwer J.G., Boundary value techniques for 
initial value problems in ordinary differential equations, Mathe
mHics of Computation, 45(1985), 153-171 

[14] Ciarlet P.O., The Finite Element Method for Elliptic Problems, 
North-Holland Puhl., Amsterdam, 1978 

[15] Friedman A., Partial Differential Equations, Holt, New York, 
1969 

[ 16] Hemker P.W.,A numerical study of stiff two-point boundary value 
problems, Ph.D. thesis, S.M.C., Amsterdam, 1977 

[17] Houwen V.d. P.J.,Construction of Integration Formulas for Initial 
Value Problems, North-Holland, Amsterdam 1976 

[18] Hughes T.J. and Brooks A., A multi-dimensional upwind scheme . 
with no crosswind diffusion, in AMO, 34(1979), Finite ele
ment methods for convection dominated flows (Hughes T.J. ed.), 
ASME, New York 

[19] Hughes T.J.R. and Hulbert M., Space-time finite element methods 
for elastodynamics: formulation and error estimates, Computer 
Methods in Applied Mechanics and Engineering, 66(1988), 339-
363 

[20] Jamet P., Galerkin-type approximations which are discontinuous 
in time for parabolic equations in a variable domain, SIAM 
Journal on Numerical Analysis, 15(1978), 912-928 

[21] Johnson C. and Pitkaranta J., An analysis of the discontinuous 
Galerkin method for a scalar hyperbolic equation, Report MAT
A215, Institute of Mathematics, Helsinki University of Technol
ogy, Helsinki, Finland, 1984 

[22] Kardestuncer H. (editor in chief) and Douglas H.N. (project edi
tor), Finite Element Handbook, Mc Graw Hill, 1987 

[23] Karlsson K.-E. and Wolfbrandt A., An explicit technique for cal
culating the electromagnetic field and power losses in ferromag-



52 

netic ma,terials, internal report 721-83, department for electrical 
analysis methods ASEA, Vasteras, Sweden, 1983 

[24] Lesaint P. and Raviart P.A., On a finite element method for solving 
the neutron transport equation, in Mathematical Aspects of Finite 
Elements in Partial Differential Equations (de Boor C. ed.), 89-
123, Academic Press, New York, 1974 

[25] Necas J., Introduction to the Theory of Nonlinear Elliptic Equa
tions, Prague, 1982 

[26] Necas J., Les Methodes Directes en Theorie des Equations Ellip
tiques, Masson, Paris, 1967 

[27] Sonneveld P., CGS, a fast Lanczos-type solver for non-symmetric 
linear systems, SIAM Journal on Scientific and Statistical Com
puting, 10(1989),36-52 

[28] Zienkiewicz 0., The Finite Element Method in Engineering Sci
ence, 3rd edition, Mc Graw-Hill, New York, 1977 



-
A ntulti-dintensional 
streantline upwind 
approach 

Revised version of: Maubach J.M.L., Preconditioned iterative methods for problems 

discretized in time-space, in Lecture Notes of the Summer school on Preconditioned 

Conjugate Gradient Methods and Applications, Nijmegen, The Netherlands 1989, 274-291. 

The theory has been generalized to the multi-dimensional case and a section on other 

global finite element applications has been included. The revised numerical tests 

are partially related to those in: Axelsson 0. and Maubach J., A time-space finite 

element discretization technique for the calculation of the electromagnetic field 

in ferromagnetic materials, International Journal for Numerical Methods in Engineering 

29(1989), 2085-2111; parts of which are reprinted with the kind permission of, and 

copyrighted by, John Wiley & Sons, Ltd. 

Abstract 

53 

Time-stepping methods for parabolic problems require a careful choice 
of the stepsize for stability and accuracy. Even if a stable implicit time
stepping method is used, one might be forced to choose very small 
time-steps in order to get sufficient accuracy, if the solution has steep 
gradients, even if these occur only in a narrow part of the domain. There
fore the solution of the corresponding algebraic systems can be expen
sive since many time-steps have to be taken. The same considerations 
apply to for explicit time-stepping methods. In this chapter a discretiza
tion technique is presented, which uses finite element approximations in 
time and space simultaneously for a relatively large time-period, called 
time-slab. This technique may be repeatedly applied to obtain further 
parts of the solution in subsequent time intervals. It will be shown that, 
with the method proposed, the solution can be computed cheaply, even 
if it has steep gradients, and that stability is automatically guaranteed. 
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For the solution of the non-linear algebraic equations on each time-slab 
fast iterative methods can be used. 

Key words: Time-stepping, Time-space finite elements, Nonlinear par
abolic differential equations, Convection diffusion, Grid refinement 
AMS(MOS) subject classifications: 65F10, 65M20, 65N30, 65N50 

3.1 Introduction 

The method most frequently used for the numerical integration of par
abolic differential equations is the method of lines. Here one first uses 
a discretization of space derivatives by finite differences or finite ele
ments and then uses some time-stepping method for the solution of the 
resulting system of ordinary differential equations. Such methods are, 
at least conceptually, easy to perform. However, they can be expensive 
if steep gradients occur in the solution, stability must be controlled, and 
the global error control can be troublesome. 

This chapter considers a simultaneous discretization of space and 
time variables for a one-dimensional parabolic equation on a relatively 
long time interval, called time-slab. The discretization is repeated or ad
justed for following time-slabs using continuous finite element approxi
mations. In such a method the efficiency of finite elements is utilized by 
choosing a finite element grid in the time-space domain where the finite 
element grid has been adjusted to steep gradients of the solution both 
with respect to the space and the time variables. In this way, one solves 
all the difficulties with the classical approach since stability, discretiza
tion error estimates and global error control are automatically satisfied. 
Such a method has been discussed previously in [1] and [3]. The related 
boundary value techniques or global time integration for systems of 
ordinary differential equations have been discussed in several papers, 
see [9] and the references quoted therein. In [11] a time-space method 
with discontinuous elements in time has been used, which is based on 
methods in [12], [13] and [15]. 

In the present chapter a non-linear convection diffusion problem 
is considered. This problem is presented and reformulated as a two
dimensional boundary value problem in section 3.2. In section 3.3 the 
discrete problem and a solution method is formulated, and in section 3.4 
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the stability and discretization error estimates for the method are consid
ered. Finally in section 3.5, numerical tests and a discussion of the grid 
generation method used, is found, and after a short overview of other 
possible applications of the global finite element method in section 3.6 
some conclusions are drawn in section 3.7. 

3.2 Parabolic differential equations 

Let n c 1Rn, n ~ 1, be an open bounded and polygonal domain and 
consider the following multi-dimensional non-linear parabolic partial 
differential equation on the time-space interval Q := n x (0, oo): 

- ~- (€V .ru(x, t)) + bV .ru(x, t) + aut(X, t) = f(x, t) 
u(x, 0) = uo(x) 
u(x, t) = Uc(t) 

(x, t) E Q 
X E Q 

x E an,t ~ o 
(3.2.1) 

where the diffusion € and the flow velocity functions b, a satisfy € = 
€(IV .ru 12) resp. b = b(x, t) E Rn and a = a(x, t), f is a source function, 
uo some L 2(Q) integrable function and uc is a square integrable Dirichlet · 
boundary condition. In addition, assume that a ~ ao > 0, b, a E C1(Q) 

(see chapter 1). Further, let V .rb + at ~ 0 and define € 1 = at€(() 

for ( = IV .r u 12 and assume that €' ~ 0. The parabolic problem above 
occurs in many applications of which one was considered in [6]. 

As in chapter 1, in order to compute the solution of (3.2.1), a computa
tional domain n x (0, t J] c Q is partitioned into a number of equidistant 
time-slabs Qi= n x (tj-l, ti] for0 = t 0 < t 1 < ... < tJ < oo, assum
ing without loss of generality t i - t i-l = 6t for all j (see fig. 1.2). The 
time-slabs have lower and upper boundaries denoted by r 1 = { (x, t) E 
Rn+1:x E QI\ t = ti-d resp. r3 = {(x, t) E Rn+1:x E QI\ t = t;}, and 
the cylinder surfacer c = {(x, t) E Rn+1:x E an/\ t E [t;-1, t;]}. The 
number of such time-slabs is finite, independent of the choice of the grid 
parameter, associated with the finite elements. For the first time-slab Q1 

an initial value uo on r 1 has to be given, but for each following time
slab Qi+l the solution at r3 of Q; will be taken to provide a Dirichlet 
boundary condition at r 1• With this approach problem (3.2.1) can be 
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rewritten into: 

AT 
-Vx· (EV .r:u(x, t)) + b V u(x, t) = f(x, t) 

on each time-slab with 

u(x, 0) = uo(x) 
u(x, t) = uc(t) 

in Q; 
at r1 
onrc 

(3.2.2) 

• tensor E = Diag(e(IV .rul2), ••• , e(IV .rul2)) of order n and flow 

field i, = [ !~~: !~] = [ ! ] E Rn+l, where it is assumed that 

u 2:: uo > 0 in order to preserve the parabolic nature of the 
equation 

• square integrable functions uo and uc, prescribing the initial value 
and the Dirichlet boundary conditions on the cylinder surface 

• the divergence operator V. and gradient operator V defined on 
the n + 1 dimensional (x, t) space and 

• square integrable source function f at n and initial value function 
uo at the Dirichlet boundary r 1• 

Throughout this chapter the gradient operator V = V .r:,t will denote 
the space plus time derivatives contrary to V .r which stands for the 
derivatives in space only. 

Note that, analogous to chapter 1, there is no need to impose any bound
ary condition at the boundaries r 1 and r 3, because for all possible trial 
functions u and all test functions v the corresponding boundary integral 

where n.r: is the n-dimensional space component of n, the unit outward 
normal of the boundary 8Q ;· At this boundary the solution u of (3.2.2) 
and V .r:u are initially unknown. 

3.3 Weighted streamline upwind solution method 

Consider the variational formulation of the non-linear two-dimensional 
problem (3.2.2) for a certain time-slab Q := Q;. Let H1(Q) be the 
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Sobolev space of order 1 on Q and define the boundary function "'f at 
ro := r1 ur c by"'( := (uo, Uc), i.e., "'((X, t) = uo(x) atr1, "'((X, t) = Uc(t) 
at r c• To simplify the analysis, assume that there exists an extension of 
"'f to Qin H1(Q), which excludes the occurrence of interior layers due 
to discontinuous boundary data. Furthermore, for the sake of simplicity, 
assume thatu(x, t) = uo > 0. Define the test and trial spaces byHb(Q): = 
{v E H1(Q):v = 0 at r 0 } resp. H;(Q):= {u E H1(Q):u ="'fat ro}, 
both in the sense of traces, and define the partial differential operator 
L(u) by 

(3.3.1) 

The weighted streamline upwind variational formulation now becomes 

(3.3.2) 

where for a given triangulation Q = { !::,. } of the domain Q, fixed a: 2:: 0 
and fixed S > 0, the gradient F for all v E ffb(Q) is defined by 

(F(u), v) = l [-.iV-(bL(u)) + L(u)] veg(t) dxdt 

= l .iL(u)bT Vveg(t) dxdt -

l .iL(u)ab2ve 9(t) dxdt -

J .iL(u)ve 9<t>i,T n ds + f L(u)ve 9<t) dxdt 
Jaq JQ 

=h L f L(u)bTVveu<t)dxdt+ 
6.EQ}1::,. 

(1 - o:.iu) l L(u)veg(t) dxdt 

(3.3.3) 

since L(u) = 0 on r I u r3 and V = 0 on r c• Here t I--+ e g(t) is a 
weight function controlled by a continuous differentiable function g on 
[0, oo ). This weight function can be useful to get better estimates of the 
discretization errors, as will be demonstrated in section 3.4. It suffices to 
consider the first time-slab, where the weight function t 1--+ e-at is used. 
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The positive scalar 6 is the streamline upwind parameter._ which will be 
used in order to get a strongly positive definite system for convection 
dominated problems and to obtain a discretization error estimate in the 
H1(f2) norm. The streamline upwind technique will increase the rate of 
convergence of certain generalized preconditioned conjugate gradient 
iterative methods. 

Note that a solution of (3.2.2) is also a solution of (3.3.2). Unless 
u E H2(Q), the leading term in (3.3.3) only exists as a sum of integrals 
over each individual element b.. Therefore dividing (3.3.3) by 1 -
a6a and setting 8 := 6/(1 - a6a) leads to the equivalent variational 
formulation 

(F(u), v) = 0 'v' vEl-lfi(Q), u E H;(Q) 

where now F is defined by 

(F(u), v) =8 L r L(u)i? V ve-at dxdt + r L(u)ve-at dxdt 
6.EQj6. }q 

whence 

(F(u), v) =8 L r -"¼:• (EV "u)i? V ve-at dxdt + 
6.EQ }6. 

8 l [i? Vu. j,T Vv - fbT vv] e-at dxdt + (3.3.4) 

l [<EV "u)TV "v +bT Vuv - fv] e-at dxdt 

for all v E lfA(Q) where faQ ve-at(EV "u)T nx ds = 0 dropped out due 

to V = 0 on r C and the fact that (EV "u)T nx = 0 at r1 u r3. Note that 
for C = Ota 

For every positive c the map h is a strictly increasing function, a bijection 
from [0, oo) onto [0, 1) whence 6 is uniformly bounded away from 
infinity in 8. 

Linearization of this weak formulation by a damped Newton method 
now leads to a sequence oflinear systems and solutions u<k+I) E H;(Q) 
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(F' (u(k))(u(k+l) - u<k>), v) = -T(k)(F(u(k)), v) \/ vEllfi(Q) (3.3.5) 

where the Gateaux directional derivative of F, the Jacobian matrix F', 
is defined as in chapter 1. For linear functionals F the Jacobian matrix 
is simply given by (F'(u)w, v) = (F(w), v) for all functions u, v and 
w; in the non-linear case the Jacobian matrix is given by 

(F'(u)w, v) =h L J -Vx· (BV xw) · bT V ve-at dxdt + 
.6.EQ 6 

I AT AT 
8 }Q b Vw · b Vve-at dxdt + 

l [cnv xw)TV xv +bT Vwv] e-at dxdt 

(3.3.6) 

for all v E HA(Q) and all u, w E H 1(Q), where the tensor Bis defined 
by 

B=E+2E'VuVuT, (3.3.7) 

with E' = Diag(E'(IV xul2), ••• , f'(IV xul2)), a matrix of order n. In 
order to see this consider the following lemma. 

Lemma 3.3.1 Let n C Rn be an open and bounded domain, let Ebe a 
diagonal matrix of order n with diagonal matrix entries Eii(X, IV xul2), 

and let 

then 

where E' = Diag(E~1 (x, IV xul 2), ..• , f~n(x, IV xul 2)). Further, if all 

diagonal elements of E are equal to f = E(X, IV xul2), then for B := 
E +2E'VuVuT 
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where the first and second eigenvalues have multiplicity n - 1 respec
tively 1. 
Proof. Using the chain-rule for differentiation in a Banach-space, first 
note that 

(F'(u)w,v)= In [EVxw+2~.ruTV.rw)·E'Vxu]TV.rv dx 

= In (EV xw)TV xv dx + 

2 L ~.ruTV xv)· (E'V .ruTV .rw) dx 

This, in combination with the fact that 

(V xuTV xv, E'V .ruTV .rw)e =(V xv, V xuE'V xuTV xw)e 

=(V xv, E'V xuV .ruTV .rw)e 

=(E'V .ruV .ruTV xw, V .rv)e 

yields the desired result. Here, ( ·, • )e stands for the Euclidian inner 
product. The eigenvalues of B and the multiplicity thereof follow easily 
from the definition of B, exploiting that V x u V .r u T is a matrix of rank 1. 

□ 

As an example consider the tensor matrices E = Diag(E(u;)) respec
tively E = Diag(E(u; +u;), E(u; +u;)) for which the lemma above leads 
to 

[ E+2u2 €' 
B = Diag(E + 2u;E') and B = 2 x, 

UxUyf 

Note that the first tensor corresponds to a time-slabbing problem with 
space-dimension 1, whereas the second tensor originates from the case 
of two space dimensions. This tensor also arises in the case of a static 
two-dimensional partial differential equation, since the lemma is not 
restricted to time-dependent problems. Now combining lemma 3.3.1 
with integration in time leads to (3.3.6). 

In order to study the Jacobian matrix on time-slab Q = Qi in detail, 
introduce the finite element test function spaces H, Ho and H-y on Qi 
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as in section 2.5. Finally, let the norms 11 · lls,a• I· ls,a and corresponding 
inner product on H1(Q) be defined as in section 2.4. Norms 11 · lls O 1::,. 

with additional domain subscript (here .0.) denote weighted Sob~lev 
norms of orders over this domain. With the set of norms introduced and 
under some assumptions to be derived on 'H, and with the tensor e and 
flow field i,, F'(u) will be seen to be uniformly positive definite on 'Ho, 
i.e., 

(F'(u)v, v) ~ ,k[ ½Amin IV xvl2+½8(bT V v)2] e-atdxdt+ 

k [½Aminbminv2] e-at dxdt + 

½e-aT J v2u dx 
lr3 

==lllvllli,a,.X,6 ~ ½xllvlli "lve?to, 

(3.3.8) 

for some positive scalars Amin, bmin and X• The subscripts A, 8 in 
111 · lllt,a,.x,6 henceforth are omitted for simplicity. The difference of sub
sequent approximate discrete solutions u~k+t) - u<;:> is an element of 
'Ho, whence (3.3.8) implies that the damped Newton algorithm given 
by (3.3.5) will converge for properly chosen damping parameters r<k) 

(see e.g. [2]). The relation (3.3.8) implies that there can be at most one 
solution of equation (3.3.5) as, using a standard inequality, 

O=(F(u)-F(v), u-v)= 1(F'(u+c;(v-u))(u-v), u-v)dc;~cllu-vlli 

forallsolutionsu,v E H~(Q)implyingu-v E HA(Q). Under appropri
ate assumptions on F the nonsymmetric Galerkin type equation (3.3.5) 
has a solution u<k+t) E H~(Q) according to [10]. 

In order to show that the Jacobian matrix is coercive, i.e., to show 
that (3.3.8) is satisfied, let u(A) denote the spectrum of a matrix A and 
assume that 

• There exist bounds Amin and Amax such that for all functions u E 'H, 
and all (x, t) E Q 

0 <Amin~ {A ER: A E u(B)} ~Amax< oo 
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where B = B(u(x, t)). 
• The scalars Amin and Amax satisfy 

2 h 2 
Arnaxt5 :S: (Co) Amin . 

• There exists a positive scalar Co such that the following inverse 
inequality holds 

(3.3.9) 

(see e.g. [ 10], page 140, for arbitrary high order of finite element 
basis functions). Note that this is trivially true if 1-l is the space of 
piecewise linear finite element basis functions on the triangulation 
Q. 

• On each D.. E Q the tensor B satisfies IVx·(B\7 xv)lo :s; c!D..xvlo 
for some scalar c, which is set to 1 for ease of notation. Note 
that this condition is satisfied for all differentiable functions € 

if piecewise linear or constant finite element basis functions are 
used. Also, in the cases where the diffusion changes only in time, 
i.e., where € = E(t), or where € is elementwise constant, this 
condition is satisfied. 

Now consider the terms in (3.3.6) separately. Exploiting the above as
sumptions, the first term in (3.3.6) can be estimated below because it is 
bounded above by 

AT 
t51Vx· (B\7 xv)lo,a,6 · lb \7 vlo,a,6 

I 2 I 12 I AT 2 :S:2Arnaxt5 D..xv O,a,6 + 2tS'lb \7 vlo,a,6 
I 2 2 -2 2 I AT 2 

:S:2Arnax8Coh l\7 xvlo,a,6 + 28lb \7 vlo,a,6 
(3.3.10) 

I I 12 I AT 2 :S:2Amin \7 xv O,a,6 + 2t5lb \7 vlo,a,6 

for all VE Hl(Q), since l(v, W)s,al :s; lvls,alwls,a for all v, w E H8 (f2) 
and jab! :s; ½(a2 + b2 ) for all positive a, b. An analysis of the separate 
sub-terms in the third expression of (3.3.6) shows that 



streamline upwind approach 63 

for all u, v E H1(Q), and that, analogous to the derivation in_(2.4.9), 

forallv E 1-IA(Q),wherebmin :=inf{½(o:u(x,t)-V-b(x,t)):(x,t) E Q}. 
Now (3.3.10), (3.3.11) and the above show that the Jacobian matrix 
satisfies estimate (3.3.8) 

(F'(u)i,v) 2:: l [½.Xminlv'xvl2+½S(bTVv)2] e-at dxdt+ 

{ [bminv2] e-at dxdt+½e-aT J v2u dx 
}q lr3 

for all v E Ho because of (3.3.9). 

(3.3.12) 

In order to get a coercivity estimate in the Sobolev 1 norm note that one 
has 

where 

(3.3.13) 

with In the identity matrix of order n. Omitting the subscript 'min' 
for Amin to simplify the notations, elementary computations show that 
forn 2:: 1 

Det(En - zln) =(.X - zr-1 • (z2 - (Slbl2 + .X)z + .XSo-2) 

=(.X - z)n-1 . p,\(Z). 
(3.3.14) 

Under the substitution 1h12 = (1 +~)o-2 for~ 2:: 0, the discriminant of the 
factor p,\(z) is equal to the following quadratic polynomial in .X 

d(.X) :=(h'lbl2 + .X)2 - 4.XSo-2 

=.X2 + 2S(lbl2 - 20-2).x + c52lbl4 

=.X2 + 2(~ _ l)So-2 _x + (1 + ~)2 c52u4. 
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The discriminant of d(A) is equal to 

4(1 - c;)282u4 - 4(1 + <;-)282u4 = -16c;82u 4 ~ 0 

leading to d(A) ~ 0 for all values of A. This inequality in tum guarantees 
that the factor P>.. in (3.3.14) has at least one positive real root. As the 
product of P>..'S roots is equal to its last term A8u2 this ensures the 
existence of two positive roots. Therefore, all eigenvalues of En are 
positive for all possible combinations of Amin > 0 and b, for all n ~ 1. 
Note that for E << 1 the roots of P>..(z) are of order 8 and of order Amin, 
implying 

Denoting the smallest eigenvalue of En with x, this leads to 

1 2 1 ~T 2 1 2 2 
2Aminlv'xvl + 28(b '\7v) ~ 2 x(l'\7xvl +vt) (3.3.15) 

whence for x ~ 1 the Jacobian matrix 

(F'(u)v,v) ~ ½xllvlli+½e-aT j v2u dx VvEHovuEH1(Q) (3.3.16) lr3 
is uniformly positive definite for positive bmin• The condition O(Ab) = 
O(h2), following from the relation below (3.3.9), implies x = O(h) for 
A = O(h) and 8 = O(h), and x = O(h2) if one of these two scalars 
is 0(1) and the other is O(h2). 

In the situation where bmin = 0, the restriction to a certain time t E 

(t;-1, t;] of piecewise polynomial functions v on Q, will also be piece
wise polynomial on n, in particular v(x, t) E H1(!1). As in chapter 2, 
due to a Friedrichs inequality, there exists a positive scalar /3 > 0, not 
depending on v, such that, 

J v 2(x, t) ds + r l'\7 xv(x, 012 dx ~ /3. r v2(x, t) + l'\7 xv(x, t)12 dx. Jan Jn Jn 
Since v is piecewise polynomial on n and the boundary of the space
domain does not vary with time, integration of the expression above 
with respect to the time shows that 

</J'\7 xvl2e-atdxdt)½ and cfjv2+l'\7 xvl 2] e-atdxdt)½ (3.3.17) 



streamline upwind approach 

are equivalent norms on rlo C H1(Q). Hence, for brnin = 0 

(F' (u)v, v)2:'.: l[ ½>-.rninf31V xvl2 +½8(bT V v>2] e-atdxdt+ 

f [½f3v2] e-atdxdt+½e-aT J v2a dx JQ lr3 

65 

(3.3.18) 

for all v E Ho. This estimate is not bounded uniformly in e, but con
trary to the previous estimate (3.3.8) it is also valid for a = bmin = 0. 
Hence (3.3.8) will be used mainly for singularly perturbed problems 
while relation (3.3.17) will be used for regular problems. The coer
civity constant estimate in the Sobolev 1 norm can now be obtained 
from (3.3.15). 

In order to give a discretization error estimate in section 3.4 it is neces
sary to show that the Jacobian matrix is a bounded functional. To this 
end, note that 

• For all a, b, 1 E R, , > 0 

(3.3.19) 

• The following relationship is valid for an arbitrary flow field i, 

(bT Vw)2 ::;llbll;IIVwll; = (1h12 + a2)11Vwll; 
=b~ax · IIV wll; 

for all w E H1(Q). 

(3.3.20) 

Here it is assumed that bmax < oo and II · II e stands for the Euclidian 
norm. 

Using (3.3.6) and (3.3.10) it is easy to derive that l(F'(u)w,v)I is 
bounded above by 
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which is at its tum bounded above by 

1 [ 2 2 2 ] ~ 2, M(w) + (1 + 8)bmaxlwl1,a + Amax Iv' xwlo,a + 

f k [v2 +Amaxlv'xvl2 +28(bTv'v)2] e-at dxdt 

for arbitrary , > 0 where M ( w) is defined by 

M(w) := A~ax L 8l~xwl~,a,6 
6EQ 

for all functions w piecewise in H2(Q). 

3.4 Discretization error estimate 

(3.3.21) 

In order to estimate the discretization error, consider the exact solu
tion u E H;(Q), the discrete solution uh E H, and its interpolant u1 E 

rl, as introduced in section 2.5. In addition, define the discretization 
error 8 := u - uh E H 1 ( Q), the interpolation error 'f/ := u - u 1 E H 1 ( Q) 
and the interpolation minus the discretization error 1.p := uh - u1 E Ho. 
Note that 1.p = 0 at r0 and that in fact u1 E H, and 8, 'f/ E H6(Q) due 
to the fact that rl, =/ 0. 

Now assume that€, i, with positive a and a are such that for all u E 
H1(Q) the following conditions are satisfied 

Amin= inf{.X ER: .X E a(B)} > 0 

Amax= sup{.\ ER: .X E a(B)} < oo 

bmin = inf { ½(aa(x, t) - \1.b(x, t)): (x, t) E Q} > 0 

bmax = sup{max{jb(x, t)I}: (x, t) E Q} < oo 
(3.4.1) 

2 h 2 h 2 
.Xmax8 ~ max{ (Co) , ( D) }.Xmin 

for some positive scalar D, to be specified below. Let , be a positive 
constant small enough such that 

. { Amin b 1 } mm ~ - ,, 1 - 2,, min - 2,, 1 > 0 
Amax 
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independent of the upwind scalar Ii. Then for bmin > 0 with the use 
of (3.3.12) 

Further 

(F(ilh) - F(il1), r.p) =(fo 1 
F 1(il1 + <;r.p)r.pd<;, r.p) 

~ fo 1
111'Pllli,ad<; = 111'-Pllli,o 

(F(uh)-F(il1),v) = (F(il)- F(il1),v) vvEH~(O) 

and according to (3.3.21) for all a~ 0 

(F(il) - F(il1), r.p) =(fo1 
F'(il1 + <;17)17d<;, r.p) 

(3.4.2) 

(3.4.3) 

~ ;, [M(17) + (1 + 6)b~axl77li,a + Amax IV x1116,a] + 

~ ,l[r.p2+AmaxlV x'Pl2+28(bT V r.p)2] e-01dxdt. 

A combination of these three relations leads for , small enough to the 
existence of a positive scalar co, independent of,\ and 6, such that 

(3.4.4) 

where c1 := (1 + b')b~ax + Amax• Now suppose the finite element subspace 
of H1 ( Q) under consideration is the space spanned by piecewise polyno
mials of degree k on the triangulation Q. Let u 1 denote the corresponding 
Lagrangian or Hermitian interpolant of a function u E Hs+1(Q). With 
the use of 

La; ~ (L lai 1)2 Va;ER 

i i 

in combination with the classical interpolation error estimate (2.5.2) 

L llil - il1llr,a,~ ~ Dhs+l-rllulls+l Vo::;r::;s::;k 
~EQ 
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(see [ 4], theorem 5.6) this leads to 

< _1_ [>? ~D2h2s-211ull2 + C D2h2sllull2 ] - 2co, max s+l 1 s+l 

:5 -21 (Amin+ c1D2)h28 llull;+l co, 
=: c2h28 llull;+l 

for all 0 :5 2 :5 s :5 k. In the case of piecewise linear Lagrangian basis 
functions note that for s = k = 1 

ll77xxllo,o,A = ll(u - UJ)xxllo,o,A = lluxxllo,o,A :5 hs-lllulls+1 · 

Finally, in combination with the triangle inequality II B 11 1 = 11!1/ - cp 11 1 :5 
1111111 + II cp 111, this leads to a discretization error estimate satisfying 

lllu - Uhllli :5 C. hsllulls+l 
1 (3.4.5) 

llu - 'Uhll1 :5 cx-2 · hsllulls+1 

for alls and k as above and x as defined by (3.3.15). Note that the error 
estimate is of optimal order for u E H2(f!) and that the error constant 
is 0(1) using the Ill· 111 1 norm. 

To analyze the boundedness in the space and time H1(Q;) norm of the 
discrete solution uh consider (3.3.4). For the sake of simplicity assume 
that the Dirichlet boundary condition uc on the cylinder surface r c 

is a homogeneous boundary condition, i.e., Uc = 0. Then the discrete 
solution uh on time-slab Q; with triangulation Q; is bounded by the 
global data e, b, f and initial data uo on that time-slab because un
der the appropriate assumptions posed in the beginning of this section 
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II A 112 l -cxT i A2 d l i A2 d Uh l ex 6 + 2e UhO' S - 2 UhO' S 
' ' r3 r, 

~8 L 1 Vx· (EV xuh). bT V Uhe-cxt dxdt + 
~EQ ~ 

8 l (bT V uh/e-cxt dxdt + 
(3.4.6) 

l [cEv xuh)TV xUh. bT V Uh Uh] e-cxt dxdt 

I AT 
= JQ (f +b y: f)uhe-cxt dxdt 

AT 
~Ill +b v: 1111 (X • lluhll1 ex , , 

for a some positive constant c, implying that II i1 h 11 1 ex is bounded. This 
is equivalent to ' 

for some positive constant c depending on the data€, 8 and a. Denoting 
AT 

the right-hand side of the latter equation by cb and Ill+ b Y: 111 1 ex by 
s b this leads to ' 

if sb > 0 and Cb ~ 0 

if Sb= 0. 

For many important equations of the type (3.2.2) the weighing scalar a 
can be taken zero, leading to a discrete solution bounded in L2-norm in 
time. Note that uo = 0 leads to cb ~ 0 and therefore to the boundedness 
of the discrete solution by the source function l and flow field b. 
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3.5 Grid generation and numerical results 

In order to study the performance of iterative solution methods for the 
global time-space finite element discretization technique proposed, three 
test problems in one-dimensional space are considered (see fig. 1.2). De
pending on the choice of the diffusion function €, there may appear a 
parabolic layers along r 2 and r 4• If the grid would not be refined here, 
oscillations would arise with the finite elemenent discretization method 
used, even in the case of a standard streamline upwind method, because 
no artificial diffusion perpendicular to the streamlines is used. However, 
the use of a fine grid along this layer makes artificial diffusion unneces
sary, and in addition provides an accurate resolution of the layers. 

Table 3.5.1 Grid generation details. 

Test Grid T N Fig. 

1 QiO) 12 12 
QilO) 3218 855 3.1 
Q~lO) 3216 856 3.3 

2 QiO) 6 8 
QilO) 5290 1377 3.5 
Q~lO) 4882 1281 3.8 

3 QiO) 80 54 
Q?2) 38004 9605 3.11 

The subsequently approximated parts of the solution are piecewise lin
ear. The old grid points at r3 of Qi must therefore be used as grid 
points for the boundary r 1 of the new time-slab domain Qi+ 1 , because 
otherwise the restriction of the discrete solution on r 3 (Qi) will not be 
exactly represented by the finite element functions on the new subdo
main. However, more grid points may be added, where the Dirichlet 
boundary conditions are determined by linear interpolation, to represent 
a boundary layer better. Also, one can adjust the grid such that one ends 
up with fewer nodes on r 3 than on r 1, which is convenient if the solution 
gets smoother with increasing time. 
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As an initial solution for the non-linear iterations on each time
slab, the initial solution for the first time-slab is used, imposing the 
Dirichlet boundary condition on r c• In practice, it would have been 
better to use the numerical solution of the previous time-slab contrary 
to the solution of the first time-slab. 

Table 3.5.1 gives a survey of the grids to be used for the numerical 
tests. For each grid Qt> (see sections 1.5 and 5.4) the space domain as 
well as the number of triangles T and the number of grid points N, 
depending on the time-slab, are given. The grids are constructed using 
an adapti, e refinement procedure, as described in section 5.9. 

Table 3.5.2 The test cases. 

Test case No. I No.2 No.3 

n (0.00,0.03) (0.00,0.06) (0,1) 
(to, t1) (0.00,0.02) (0.00,0.02) (0,j) 

Vmin 10-4 10-4 10-6 

Vmax. 0 4.6 · 10-3 0 
(o - 4.0 -
~ - 3.0 -
i, [0, l)T [0, 1] T [f0(x +2), l)T 
f 0 0 0 

l(t) 0 0 1 
r(t) h(t) h(t) 0 
uo(x) 0 0 0 
a 0 0 1 

u0(x, t) 013 · h(t) _!_ • h(t) {~ if X =0 
0.06 elsewise 

T(k) 1.0 1.0 1.0 
enonlinear 10-10 10-10 10-10 

eJinear 10-11 P · IIF(u<k))lle < 10-lO 10-12 

Remarks Linear Nonlinear Linear 

The test problems are defined using table 3.5.2, where the abbreviation 
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h(t) := 440 sin(27r50t) is used. Reference material for the first two test 
cases, which are based on the electromagnetic equation at the end of sec
tion 2.5, can be found in [14]. The first problem is a linear problem with 
a parabolic boundary layer for which an exact analytical solution exists. 
For a figure of the electromagnetic reluctivity v, see [7]. Following [ 14], 
the magnetic vector potennal applied in (2.3.1) has a frequency w of 
50Hz and an amplitude of c = 440Wbm-1• The electric conductivity u 
is taken to be a field independent constant, 5 • 106sm-1• The data for 
the reluctivity in test case 2 are determined with the use of the data in 
[14] and normalized for a conductivity equal to 1. 

Example 3 has a shock moving in time. It was chosen to demonstrate that 
large time-slabs - with moving shocks - can be handled efficiently. One 
of the differences between examples 1 and 3 is that for v = Vmin ! 0 
there will appear a parabolic boundary layer along r2 in the former 
case, whereas there is a shock inside the domain in the latter example. 
Another difference is that problem 3 has a flow field i, such that V. i, > 0. 
Problems 1 and 2 have a flow field where V. i, = 0. Therefore, only 
for problem 3 additional exponential weighting is used. Note that this 
problem is not covered by the provided theory, because the boundary 
conditions I can not be extended to a function in H1(Q) 

For a given problem, grid, and linear solver, table 3.5.3 shows the total 
number of non-linear iterations, with the number of linear iterations 
specified for each non-linear step. The Euclidian norms of the residuals 
of the initial solutions u0 on the first fime-slab are 0.25, 8.27 and 0.55 for 
tests 1-3. The linear solvers are accelerated with an ILU preconditioner, 
see for instance [4]. More information on these solvers can be found in 
chapter 8. The number of iterations for the third test is reasonable since 
there is very little diffusion. For a ! it has been observed that there is no 
convergence of the iterative solvers. For a ---+ oo however, the number 
of iterations decreases rapidly for increasing a. This is caused by the 
scaling with e-at. 

The'*' in table 3.5.3 indicates that the streamline upwind finite element 
basis functions have been used, contrary to the standard nodal ones, 
which are supposed to be the default choice. Figure 3.1 shows the 
grid Qi10> used for the first case. Because there is a parabolic boundary 
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Table 3.5.3 Numerical results. 

Prob. Grid Lin. Solver # Iterations 

l* QilO) GCGLS 1:39 
Q(lO) GCGLS 1:39 
Q{lO) CGS 1:29 
Q~lO) CGS 1:29 
QilO) CGSTAB 1:27 
Q~lO) CGSTAB 1:27 

1 QilO) GCGLS 1:112 
QilO) CGS 1:89 
QilO) CGSTAB 1:83 

2* Q?O) CGS 4:4,18,31,42 
Q~lO) CGS 4:4,29,31,36 

3* Q?2) CGS 1:276 

layer along r2, the grid is only fine in a small area along this boundary. 
The equidistant levels of the SUPG solution as well as the SUPG solution 
itself are shown in fig. 3.2 and 3.4, for the first time-slab and fifth time
slab respectively. Note that this solution almost behaves oscillatory on 
the latter time-slab. 

Figures 3.5-3.10 show the refined grid and the SUPG solution for 
the second test case, in which there is no layer involved. Note that the 
grid is partially refined over a larger area because the electromagnetic 
field penetrates further into the material. 

For problem 3, the grid Qi12> on the first time-slab and the equidistant 
levels of the computed solution are shown in figures 3.11 and 3.12. 
Magnifications of this grid and the computed solution thereon can be 
found in figs. 3.13 resp. 3.14. Analogous to grid generation for the 
problems 1 and 2, the grids on each time-slab have been constructed 
following the adaptive refinement procedure given in section 5.9, where 
other numerical examples can be found. 
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3.6 Other global finite element applications 

The time-slabbing technique may also be used for the solution of delay 
differential equations , i.e., equations of the type 

~T 
-Vx· (E"5!.xu(x, t)) + b \7 u(x, t) + u(x, t - b.t) = f(x, t) in Q 

u(x, t) = uo(x, t) in Qo 
U(X, t) = Uc(t) at r c 

(3.6.1) 
with Q0 = n x (-b.t, 0) analogous to (3.2.2). In this case the Jacobian 
matrix of the corresponding variational formulation in (3.3.6) will have 
an additional term on every time-slab ( arguments (x, t) are omitted where 
possible) 

I ~T JQ w(x, t - b.t)(v + 8b \7 v) dxdt Vv,wEH1(Q) (3.6.2) 

which vanishes on the finite element subspace 1i if the triangulation is 
such that all triangles have longest edge less than b.t. 

The global finite element techniques can be applied as well to partial dif
ferential equations which depend on a single parameter. As an example 
consider the equation 

-(€(1 + u;(x, ,\))-112u(x, ,\)x)x + ,\u(x, ,\) = 0 in Q 

u(x, ,\) = g at r (3.6.3) 

for a small positive scalar€. Here streamline upwind techniques analo
gous to the time-slabbing techniques introduced earlier can be applied 
to the two-dimensional (x, ,\) space. Note that this approach differs 
completely from the path following solution technique, which is a semi
discrete solution method. 

Another manner to obtain possibly better discretization error estimates 
is to transform the differential equation (3.2.1) by a variable transforma
tion, where e.g., the solution u is substituted by u • g, for some weighing 
function g. 
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3.7 Conclusions 

The efficiency of using finite elements in both time and space, where 
the time-space domain is considered as a whole regarding the use of 
finite elements, has been demonstrated. The method is applicable also in 
multi-dimensional problems where one can for instance use tetrahedron 
elements. As could be seen, the stability of time-stepping on the larger 
time-slabs is an immediate consequence of the positive definiteness 
of the Jacobian matrix. The use of ordinary continuous finite element 
approximations enables the use of standard finite element packages for 
the time-space domain. Adaptive refinement of an initial grid on each 
time-slab in order to locate and fit steep gradients is advisable and is 
presently studied by one of the authors. 

The solution of the linear systems can be performed quite cheaply. 
Using still more efficient preconditioners, for instance those based on 
incomplete factorization or domain decomposition (see [5] and [8]), one 
can get methods for which the computational effort is not larger than 
about proportional to the number of grid points. This means that one can 
get savings in the computational effort of orders of magnitude compared 
to standard time-stepping methods, even if moving grid strategies are -
used, when problems with local layers are solved. 

Finally, note that one could alternatively have used higher order 
elements instead of piecewise linear finite elements with obvious minor 
modifications done in the above presentation. This would have led to a 
faster rate of convergence of the discrete approximations for the solution 
of the partial differential equation. 
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Fig. 3.1 Test 1. The grid Qi10> on the first time-slab. 
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Fig. 3.2 Test 1. The isoclines of and the SUPG solution on the grid Qi10>. 
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Fig. 3.3 Test 1. The grid Q~10) on the fifth time-slab. 
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Fig. 3.4 Test 1. The isoclines of and the SUPG solution on the grid Q~IO). 
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o.ooi 0.010 0.016 o.oai o.026 o.cro o.(m o.O'tO o.0'!6 0.000 o.003 o.060 
X AXIS 

Fig. 3.5 Test 2. The grid Qi10) on the first time-slab. 
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Fig. 3.6 Test 2. The isoclines of the SUPG solution on the grid Qi10) • 
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Fig. 3.7 Test 2. The SUPG s~ution on the grid Qi10). 
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Fig. 3.8 Test 2. The grid Q~10) on the fifth time-slab. 
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Fig. 3.9 Test 2. The isoclines of the SUPG solution on the grid Q~10). 
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Fig. 3.10 Test 2. The SUPG 0;olution on the grid Q~10>. 
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Fig. 3.11 Test 3. The grid Qi12> on the first time-slab. 

0 0.111 0.10 O.IS 0.:111 0.29 0.3l O.E O.'tO O.'tS 0.9l O.SB O.E,O O.Ee O.'lll 0.'19 0.111 0.111 O.<JO O.'JB I 
X AXIS 

Fig. 3.12 Test 3. The isoclines of the exponentially weighted SUPG 
solution on Qi12>. 
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Fig. 3.13 Test 3. Magnification of the grid Qi12> in fig. 3.11. 
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Fig. 3.14 Test 3. Magnification of the solution for fig. 3.13. 
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The Stokes systent of 
differential equations 

-
1be section on the continuous time-slabbing technique for the Stokes problem 

and the section on the two-level hierarchical bases are part of the report: 

Axelsson 0. and Maubach, J., Stability and high order approximation of 

monotone evolution equations valid for unbounded time by continuous time 

slabbing methods, Internal report of the Supercomputer Computations Research 

Institute, Florida State University, Tallahassee, U.S.A., submitted to 

SIAM Journal on Numerical Analysis. All other sections including the abstract 

are from: Layton W. and Maubach J., Space-time finite element methods for 

fluid flow problems I. The basic theory for discontinuous Galerkin methods, 

Preliminary report of the Department of Mathematics and Statistics, 

University of Pittsburgh, Pittsburgh, PA. 15260, U.S.A. 1990. 

Abstract 

A time-space finite element procedure for the solution of the linear 
incompressible Stokes equations is studied. This procedure uses the 
so-called time-slabbing methodology as well as discontinuous Galerkin 
ideas for moving from one time-slab to the following one. An analysis of 
the error in the method for both the flow-field and the pressure is given. 
For the latter, an inf-sup condition of the time-space finite element spaces 
is required. 

Key words: Time-space finite elements, Error bounds, Nonlinear para
bolic differential equations 
AMS(MOS) subject classifications: 65M05, 65M60, 65M15 
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4.1 Introduction 

In this chapter the numerical solution via time-space finite element meth
ods of the time-dependent Stokes problem is considered. The algorithm 
to be considered is the, so-called, discontinuous Galerkin method intro
duced for parabolic problems in Jamet [12], [13], who also considers 
moving boundaries. The ultimate goal is to solve Navier-Stokes prob
lems using unstructured and adaptive time-space grids which incorpo
rate a priori and/or a posteriori knowledge of the solution behavior. This 
point of view involves an evolution of discontinuous Galerkin methods 
into discontinuous time-slabbing procedures, of which the continuous 
variant is extensively used in Maubach [18] and Axelsson and Maubach 
[l], [2]. In fact, the succes of this approach for parabolic problems when 
coupled with appropriate data structures and- fast solvers on each time
slab, suggests that the approach can be extended to fluid flow problems. 

In section 4.2 the continuous global time-space finite element method 
is considered. After that, in section 4.3, the discontinuous procedure for 
the linear Stokes problem is studied. Stability and an error estimate for 
the flow field are proved in propositions 4.3.1 and 4.3.2. Next, two rein
~rpretations of the celebrated inf-sup condition are examined, a local 
an<;l a global one. An error bound for the pressure valid under both is 
given. At this early stage in the development of time-space Galerkin 
methods for Navier-Stokes problems, the inf-sup condition which oc
curs in them, is not as completely understood as the one which occurs 
for the stationary problem. There are some interesting complications 
which arise from both the time-space formulation and the discontinuous 
Galerkin formulation. In section 4.4, some tensor product spaces are 
presented which satisfy the inf-sup condition arising for the continu
ous time-slabbing Galerkin methods, since in this case the condition is 
more standard and relatively easy to be satisfied. The construction of 
spaces which are based on unstructured grids and which satisfy the inf
sup conditions ( 4.4.4) and ( 4.5.2) is still an open problem. The related 
time-space inf-sup condition arising for the discontinuous time-slabbing 
Galerkin methods is analyzed in section 4.5. In this section also exam
ples of tensor product space.s, which satisfy the conditions are provided. 
Finally, in section 4.6 the use of a finite element hierarchical basis for 
the continuous time-space formulation is considered. 
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For early work on Galerkin methods in time for initial value prob
lems, see Hulme [ 10], [ 11] for ordinary differential equations, and J amet 
[12], [13] for parabolic problems. There has been quite a bit of work 
on this topic recently, especially for parabolic problems. For a repre
sentative selection, see Johnson [14], French [6], Aziz and Monk [3] as 
well as the previously cited references. Apparently, there has been little 
effort in the direction of validating these methods for fluid flow prob
lems - a challenge undertaken here. Interesting extensions of this work 
include coupled non-isothermal flows, see e.g. Boland and Layton [4] or 
[5], flow problems with moving boundaries, time-space adaptivity and 
resolution of issues related to the time-space inf-sup condition. 

4.2 The Stokes problem 

This section studies the numerical solution of the time-dependent Stokes 
problem by the use of global time-space finite element methods. The goal 
is to solve the problem on a fixed time-slab using adaptive hierarchically 
refined grids. Stability and error estimates for the flow field are proved 
first, and after considering the inf-sup condition on a time-slab an error 
bound valid for the pressure is obtained. Thereafter the use of a two-level 
hierarchical finite element basis is considered for the computation of the 
flow field. It will be shown in section 4.6 that each time the computational 
grid is refined, one can obtain a cheap initial approximation for the flow 
field by splitting this into two parts. 

In order to present the global time-space formulation for problems with 
constraints, consider the Stokes problem (the Navier-Stokes equations 
can be handled analogously). Consider n E R 2, an open bounded con
nected polygonal domain which defines the time-slab Q = n x (0, t J] 
and boundary an. Assume that Q has a smooth boundary. The solution 
u, p of the Stokes problem satisfies 

Ut - vD.u + V p = I inQ 
V.u = 0 inQ 

U= 0 at re (4.2.1) 
u(x, 0) = uo(x) at r1 

f O p(x, t) dx = 0 fort E (0, tJ] a.e., 
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where the two-dimensional vectorial function u = [ u 1, tt-2] T is such that 
u1, u2 E c0(Q) n {C2(Q) X C1((0, tJ])} and p E c0(Q) n {C1(Q) X 

C0((0, tJ])}, if/ and u0 are sufficiently smooth functions. Here r c = 
{(x, t) E Rn+l:x E 811 At E [0, tJ]}, and r1 = {(x, t) E Rn+l:x E 
n At = 0}. This equation has a unique solution (see e.g. [ 15] and [ 17]). In 
order to obtain an approximation of the solution u, p above define ro = 
r 1 u r c and a new set of Hilbert spaces 

V ={v E [H1(Q) x L2((0,tJD] 2 :v(x,t) =0atro} 

M ={q E L2(Q) X L2((0, tJ]): l q dxdt = O}, 

which will be used here and in the remainder of this section. Now the 
variational formulation of ( 4.2.1) is: find u E V and p E M such that 

l [utV + vVu: Vv + pV.v -/v] dxdt = 0 'v',ev 

l qV.u dxdt = 0 'v'qeM 
(4.2.2) 

since the homogeneous Dirichlet boundary conditions in (4.2.1) cause 
the solution f, to be an element of V. Here, Vu : V V = Vu r V VJ + 
V uf V v2 is defined as usual for all u = [ u 1, u2]T E V and all v = 
[ v1, v2]T E V. Further, for the construction of finite element spaces 
assume that Q c R3 has been divided into tetrahedral elements. Then, 

choose finite element subspaces V c [H1(Q)] 2 c V andM c M such 
that 

v E V => l qV.v dxdt = 0 'v'qeM (4.2.3) 

Several possible choices of finite element spaces which satisfing this 
relationship exist. Consider as an example V the set of piecewise lin
ear basis functions defined at the vertices of the tetrahedrons, and M, 
the space spanned by the basis functions that are piecewise constant 
per tetrahedron, and that satisfy the constraint Jq q dxdt = 0. For 
other choices, see [8]. The discrete Galerkin global time-space solu
tion uh,Ph E V x Mis now a solution of 

(4.2.4) 
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since condition (4.2.3) implies that JQ qV-uh dxdt = 0 for-all q E M 
automatically. 

In order to show that the discrete solution is bounded L 2(0) and in time, 
the following norms will be needed. For u E V define 

{ }
1/2 

lllulllo = l lu(x, t)12 dxdt , lllulll1 = IIIVulllo 

and 

lllulllq = {L u(x, t,)2 dx + vlllullli} 1/2 

On the set M, 111 · lllo will be used as a norm. Note that the gradient V 
always denotes the space derivatives, it does not include the time deriva
tives. The time-space gradient will be denoted by V x,t and to avoid 
confusion sometimes V is denoted by V x· 

First it is shown that lllil h Ill Q of the flow field Uh is bounded in time-space. 
Since there are non-slip homogeneous Dirichlet boundary conditions one
may substitute v = uh E V in (4.2.4) leading to 

l [(uh)tllh + vVuh: Vuh -/uh] dxdt = 0 => 

½ lo u!(x, tJ) dx - ½ L u!(x,0) dx + vllluhllli = k/uh dxdt 

implying that 

lllilhlll~ ~ ~lllflll~ + f u!(x,0) dx, v Jn (4.2.5) 

as there exists a scalar c > 0 such that lllvlll~ ~ clllvllli for all v E V. 
Hence, if there exists a positive scalar c such that 
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then the finite element solution Uh is bounded for all time t > 0. In 
view of (1.4.2), time-slabbing for subsequent time-slabs will lead to 
a good approximation of the solution u of ( 4.2.2) if the discretization 
error lllu - ihlllq is bounded as in (1.6.6). 

In order to show this, let ( E V be chosen arbitrary and set f/ = u - (, 
<.p = uh - C and 8 = 1'/ - <.p. Now subtracting the continuous (4.2.2) 
and discrete (4.2.4) formulations for an arbitrary q E M leads to the 
following error equation 

l ["PtV+v\7<.p:Vv] dxdt= l [TJtV+vVTJ:Vv+(p-q)V.v] dxdt 

for arbitrary v E V. Setting v = <.p E V leads to 

½ lo <.p2(X, tJ) dx + vlll"Pllli 

= l [1'/t"P + v\71'/: V <.p + (p- q)V.<.p] dxdt + ½ L <.p2(x, 0) dx. 

Under the assumption that uh(x,0) = u(x,0) = uo(x), the terms in the 
right-hand side of the lat~r equation can be estimated above by 

lo <.p2(x, 0) dx = lo (uh - ()2(x, 0) dx = L u5(x) dx 

l [TJt"P + v\71'/ : V <.p + (p- q)\7. <.p] dxdt :::; 

1 2 CJV 2 2 V 2 2 
civ IIITJtlllo + 4 111"Plllo + vlllTJlll1 + 4111"Plll1 + c2IIIP - qlllo:::; 
1 2 2 (1 + c1 )v 2 2 

-IIITJtlllo + vlllTJlll1 + 4 lll"Plll1 + c2IIIP - qlllo 
c1v 

for some positive scalars c1 and c2 (forinstance, on V ct Ill · Ill~ :::; Ill · llli). 
This leads to 
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and via relations ✓ a2 + b2 < a + b and a2 < b2 + ad =} a < b + d for - - -
positive a, b, d E R, one gets 

for some generic positive scalar c. This finally leads to the relation 

1119III~ :::;211111111~ + 2lllcplll~ 

{ 
2 1 2 2 

:::;c vlll11lll1 + ;-lll77tlllo + IIIP - qlllo + 

L 1J2(x, t,) dx + L u~(x) dx} 
for all ' = u - 17 E V and all q E M whence 

lllu - uhlll~ :::;c inf { [ (u - v)2(x, tJ) dx + vlllu - villi}+ 
vEV Jn 

c inf {.!.111ut - Vtlll~} + 
vEV V 

c inf { IIIP - qlll~} + c f u5(x) dx. 
qEM Jn 

Using the Necas trace inequality (see [19], page 84) one can esti
mate fn(i, - v)2(x, tJ) dx above by IIIV x,t(i, - v)lllo, leading to 

lllu - uhlll~ :::;c :~i { lllu - villi+ lllut - vtlll~} + 

c inf { IIIP - qlll~} + c f u5(x) dx. 
qEM Jn 

(4.2.7) 

Using for example piecewise linear basis functions for V on a grid of 
tetrahedrons with maximal diameter h leads to 

lllu - Uh Ill~ :::; eh+ inf { IIIP - qlll~} 
qEM 

(4.2.8) 
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if u and Ut are sufficiently regular. However, it should be noted that 
the combination of elementwise linear functions for the flow and ele
mentwise constant functions for the pressure is unstable. Note that one 
may get similar error estimates if other finite element spaces are used, 
for example tensor product finite element spaces. For the pressures p 
and Ph one can obtain a similar error bound, provided that a non-standard 
inf-sup condition holds for X, M 

where c is again a positive scalar. Note that the error bound for the 
pressure variable involves the time derivative of the flow field error. The 
error bound (4.2.5) does not provide an estimate in this case, but the 
use of streamline upwind or duality techniques could provide a bound 
including this term, analogous to ( 4.2.5). The bound is obtained using 
an inj-sup condition, claiming that there exist a constant /3 such that 

See theorem 4.4.1, for the derivation of such a bound for the continuous 
global time-space time-slabbing case. Summarizing one can conclude 
that it is possible to use time-slabbing for the solution of the Stokes 
equations. Section 4.6 will comment on some of the advantages of this 
technique and indicate how it can be combined with local refinement and 
hierarchically defined finite element basis in order to save computational 
effort. 

4.3 The discontinuous approach for the Stokes 
problem 

This section studies the discontinuous time-slabbing numerical solution 
of the Stokes problem by using time-space finite element methods (see 
e.g. [9]). Here n E Rn, n = 2, 3 is an open, bounded, connected and 
polygonal domain which defines Q = n x (0, t J] and the boundary on. 
For the simplicity of exposition, assume that n = 2 in the sequel, and that 
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the solution u,p of the Stokes problem (4.2.1) is sufficiently smooth. 
In order to give a discontinuous time-space Galerkin variational for
mulation for this equation, some definitions have to be introduced. Let 
0 = 0 < t1 < . . . < t J be a partitioning of (0, t J] used to partition 
the computational domain Q into time-slabs by Q; := n x (t;-1, t;]. 
Further define as usual for v E c0(Q) 

v+(x, t) = lim v(x, t+e), v-(x, t) = lim v(x, t-e), v-(x, 0) = v(x, 0) 
e!O e!O 

for all x E n and all time t E (0, t J]. For each function defined on Q let 
P; denote its restriction onto Qi and define the sets 

X = {v: Q f-+ Rn: P;v E [c2(Q;)] n AV= 0 at an X (t;-1, t;]} 

M = {q: Q f-+ R: P;q E C1(Q;) A Lq(x, t) dx = 0 fort;-1 <t<t;} 

where for a domain Q, CP(Q) is the subset of CP(Q) of those functions 
for which all the partial derivatives can be extended continuously to the 
boundary of Q. Note that elements of X and M may be discontinuous 
across time levels t i for all j = 1, ... , J. Further define for v = [ v1, v2]T -
the norms 

llvll~2(Q) = l lvl2 dxdt = l vr + Vi dxdt 

llv(x, t)ll~2cn> = In lv(x, t)12 dx 

lllvlllt- = vllVvll~2<Q;> + llv-cx, t;)ll~2cm 

J 

lllvlll:. = L vllVvll~2(Q;) + .~ax {llv-(x, t;)ll~2co)} 
. J-1, ... ,J 

J=l 

for all j = 1, ... , J, where Vv = [Vv1, Vv2]T. Note that the norm 
Ill· 111- is almost a Sobolev I norm H1(Q) on Q, it only lacks the time 

derivative and has an additional L 2 contribution. 

Now let X and M be the closure of X and M under the norms Ill · 111-
resp. II· IIL2(Q)• let X; = P;X and M; = P;M and consider the varia
tional formulation of the Stokes problem. First note that the continuous 
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solution u,p of (4.2.1) is also a solution of 

k UtV + vv'u: v'v + p\7.v -fv dxdt = 0 'vvex 

In q\7.u(x, t) dx = 0 'vqeM, for a.e. 0 < t ~ tJ 

(4.3.1) 

under the given initial and boundary conditions as in ( 4.2.1) where as 
usual v' u : v' v = v' ufv' v1 + v' ufv' v2. Since the test functions v E X 
and q E M are allowed to be discontinuous across time-slabs and since 
u+(x, t) = u-(x, t) for all (x, t) E Q for smooth enough data (see [21]), 
the classical solution u, p is also a solution to 

f UtV + vv'u: v'v + p\7.v - fv dxdt 
lQ; 

+ In (u+ - u-)v+(x, t;-d dx = 0 'vveX; 

In q\7.u(x,t) dx =0 'vqeM;, fora.e. t;-i < t ~ t; 

(4.3.2) 

for all j = 1, ... , J. In this chapter u, p will denote a solution of ( 4.2.1) 
in the weak sense of ( 4.3.2). 

Now, suppose that uh, Ph are the discrete solutions of the same equations 
where X i and M; are substituted by finite element subspaces X; = P; X 
and Mi = P; M, for j = 1, ... , J. In order to decouple the system of 
equations for the flow-field u and the pressure p above, consider the 
introduction of the subspace V C X of divergence free functions, 
defined by 

V = {v EX: In q\7.v(x, t) dx = 0 'vqeM, for a.e. 0 < t ~ tJ} 

and a discrete subset V C X by 

V = {v EX: L q\7.v(x, t) dx = 0 'vqeM, for a.e. 0 < t ~ tJ}. 
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This space V is only approximate divergence free, relative t-0 the space 
M. Note that O E V, but without further knowledge it is not clear if V 
is any larger. 

Now setting Uh,Ph in V resp. M to be a solution of equa
tion (4.3.2), this system of equations reduces to 

for all v E V; and all time-slabs Q;. 

For the derivation of the error estimates in the sequel, the following dual 
norms are useful 

_ _ 1 Jqfv dxdt _ -½ Jq;fv dxdt 
llfll*,h - v 2 sup llv' II and llft,h,; - v sup llv' II . 

vEV _V L2(Q) vEV; _V L2(Q;) 

Note that since V </:. V, II · t h is an exterior approximation of the V* 
' norm. Exploiting these norms one can derive 

Lemma 4.3.1 For all q E L2(Q) and all f E [L2(Q)]2 there exist 
positive scalars c such that 

forallu EX. 

llu llf 2(Q) ~ cllv' U llf 2(Q) 
llullf2cQ) ~ cv-1lllulll: 
llfll:,h ~ cv- 1 llfllf2cQ> 

ll q'v'v dxdtl :5 cllqllt'(Q)ll'v•llt'(Q). 

Proof. Consider the first two statements. Let u E X, whence u(x, t) E 
[H1 (!l)] 2 for almost every time t E (0, t J ]. From a Friedrichs inequality 
it follows that 

L lu(x, t)f dx ~ c L Iv' u(x, t)12 dx 
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holds at almost every time t since u = 0 at aft Here c is positive 
and independent of the time since n is not varying with time, whence 
integration with respect to the time variable leads to 

and consequently to 

The third statement can be verified using 

Note that by construction one has got 

for all u E V and all/ E L 2( Q). The last statement holds since 

l 1v.v12 dxdt = l ((vi)x + (v2)y)2 dxdt ~ 211vv11~2(Q) 

Now consider the stability of the discrete solution. To this end it will be 
proved that llluh Ill- is bounded above independent of the time t1 > 0 
and the partitioning of (0, t 1 ] used. 

Theorem 4.3.1 The discrete solution is bounded by the initial value and 
source function as follows 
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Proof. Since Uh E V substitution of v = uh in (4.3.3) in combination 
with 

1 (uh)tUh dxdt = -1 uh(Uh)t dxdt + [ (u"i:(x, tj))2 dx-
~ ~ k 

L cut(x,tj_i))2 dx 

1 (uh)tUh dxdt =½ [ (u"i:(x, tj))2 dx - ½ / (u!(x, tj_i))2 dx 
~ k k 

leads to 

or equivalently 

½ L cu;;(x, tj))2 ax - ½ L cu:cx, tj-1))2 dx + L cu:cx, fj_i))2 ax 

+ vllVuhl1~2(Q·) = 1 /uh dxdt + [ u,:(x, tj-1)u!(x, tj_i) dx. 
, Q; ln 

Using the relations 

1 /uh dxdt ~½llfll: h 1· + ½vl1Vuhll~2(Q·) 
Q; ' ' , 

L u,:(x, tj_i)u:cx, tj_i) dx ~½ L cu,;(x, tj-1))2 dx + 

½ L cu:cx, f j_i))2 dx 

Recombining terms, one gets 
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for each time-slab. Summation over all time-slabs leads to 

Similarly, summation over all time-slabs yields 

Thus, as t; is arbitrary, max;=1, ... ,J{llu;;(x,t;)ll~2cn)} is bounded in a 
similar way. Adding this l00 (L2(Q)) bound to the previous L2(H1 (Q)) 
bound yields the result. □ 

An error estimate for the velocity field is obtained for the time-space 
formulation by standard techniques. These can be refined to include 
pressure estimates under a suitably generalized inf-sup condition, to be 
considered in section 4.4. 

Theorem 4.3.2 If the boundary of the domain and the data are smooth 
enough then 

lllii - Uh Ill~ S:2 ~t { cll(ii - v ), 11!,h + 2vll'v (ii - •lllf ,(Ql + 

hu-v)2(x, tJ) dx+ huo(x)-v(x, 0))2 dx+ 

where the summation term vanishes if v = TJ E V is substituted. 
Proof. Choose C E V arbitrary and write 

{ 
(J = u - uh the discretization error 
1J = u - C the ( to be) interpolation error 
cp = Uh - C the difference of the previous two 
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Subtracting the variational formulation (4.3.3) from (4.3.2) leads for 
arbitrary q E M to 

f 9tv+vV9: Vv+(p-q)V.v dxdt+ lQ; 
In (9+ - e-)v+(x, ti-d dx = 0 

(4.3.4) 

for all v E V. Since this equation is linear with respect to the argument 9 
setting 9 = 'T/ - cp and choosing v = cp E V leads to 

f 'Pt'P + vV cp : V cp + f (cp+ - cp-)cp+(x, lj-1) dx = 
lQ; ln 
f 'T/t'P + vV 'T/ : V cp + f (r,+ - 'T/-)cp+(x, lj-1) dx dxdt + 

JQ; ln 
L (( -C)p+(x, ti-d dx - q)V.cp dxdt. 

According to lemma 4.3.1 there exists a positive scalar c such that 

f vV 'T/ : V cp dxdt lQ; 

I (p - q)V. cp dxdt 
lQ; 

l.l (1/+ - ,,-)cp•(x, t ;-1) dr 12 
'., .l (1/+ - ,,-)2(x, t ;-, ) dr . 

L (cp+(x, tj_i))2 dx. 

Note that the first estimate above only holds for cp E V according to the 
definition of the dual norm. Treating the terms involving the cp+(x, ti-l) 
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and cp-(x, t;-i) as in the previous lemma now yields 

vllV c,,ll~2(Q;) +½In lc,,-(x, t;)l 2 dx $ 

½ L lc,,-(x, t;-1)1 2 dx + cu-½ k (77+ - 77-)cp+(x, t;-1) dx + 

v½ IIV c,,IIL2(Q;) · { cll77tll*,h,j + v½ IIV 11IIL2(Q;) + cv-½ IIP - qllL2(Q;)} 

for each time-slab. Addition over time-slabs j = 1, ... , s < J leads to 

If,= ii1, the interpolant of the solution u to (4.3.2), .then 17+(x, t;-1) = 
17-(x, t;-1) if the solution u E C0(Q) and if the· finite element bases 
used on e.ach V; are such that 17+(x, t;-i> = 77-(x; t;-i> on each time 
t;, j = 1, ... , J. The first assumption will be satisfied if the boundary 
of the domain is smooth enough and if the initial and source function 
data are small and smooth enough, the latter will be satisfied using a 
finite element space V for the whole domain Q and taking for V; the 
restriction of this space to Q;. This means that the last term in the 
equation above will vanish if we choose , = u 1. The first term on the 
right-hand side also vanishes if uh(x, 0) = u0(x) is taken as a Dirichlet 
boundary condition on the first time-slab. 

The use of the triangle inequality without the assumptions above 
concerning the choice of, now leads to 

1116111: :52ll1'1·111: + 2lllc,,III: 

$2cllf1t 11!,h + 4vllV 11ll£2cQ) + 

2 f (11-(x, tJ))2 dx + 2~IIP - qll~2(Q) Jn v 
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Note that the integrand at t = 0 is bounded by 

Substituting the expressions for 9, TI and <.p above lead to the desired 
result. □ 

To obtain error estimates for the pressure, a suitable generalization of 
the inf-sup condition is imposed, to be discussed in more detail in 
section 4.5. The original version was due to Babuska and Brezzi. To this 
end introduce a slightly different triple bar norm 

where now the integral over the lower instead of the upper time boundary 
of the domain Q; is taken into account. For the moment being assume 
that 

Assumption There exists a positive scalar /3 such that 

IJq. qV.v dxdtl 
inf sup { ' } ?. /3; > 0 . 

qEM; 11EX; lllvlll;-1,+llqllL2(Q;> 
(4.3.5) 

Remark 4.3.1 In section 4.4 several examples of V and M are con
structed which satisfy this assumption above. 

Lemma 4.3.2 Suppose (4.3.5) holds, then 
(i) There exists a unique solution llh,Ph 

(ii) There exists a positive scalar c such that 

J~t (llut - Vt ll~2<Q; > + IIV (u - v)ll~2<Q; >) 

$ c j~ (llut -vtll~2(Q;) + IIV(u -v)ll~2(Q;)) 
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for allu E H1(Q;). 

Proof. Note that evidently the opposite of (ii) is true since V c X. □ 

Now consider the pressure error estimate. 

Theorem 4.3.3 Suppose the inf-sup condition 4.3.2 holds, then the 
approximate pressure Ph satisfies the following estimate 

IIP - P• IIL'(Q) :c; ; ( v - l .~~ {llp - qllL'(Q)} + llii, - (iih)t 11.,. + 

v½ IIV (u - Uh)IIL2(Q) + 

v-½ t I (u! - u-,;)2(x, t;-d dx) . 
i=1 Jn 

for some scalar c > 0 and /3 = min;=t, ... ,J{/3; }. 

Proof. Subtracting the variational equations of which u and Uh are the 
solutions one obtains 

for all v E V;. Reordering the terms in this equation and substituting 
Ph - p = Ph - q + q - p for arbitrary q EM gives us 

f (ph-q)V-v dxdt = f (p-q)V-v dxdt+ f 8tv+vV8: Vv+ 
lQ; lQ; lQ; 

L (8+ - e-)v+(x, t;_i) dx VvEV 
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Substitution of the relations 

f 8tV dxdt 
lQ; 

f vV8: Vv dxdt 
}q; 
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l.l (8+ - 9-)v+(x, t;-1) dxl :5cv-½ .l (8+ - 8-)2(x, t;-i) dx • 

lllvlll;-1,+ 

l; (p- q)V.v dxdt :52v-½ IIP - qllL2(Q;) • lllvlll;-t,+ 

in the equation above, leads to the estimate 

f (ph - q)V.v dxdt :5lllvlll;-t,+ · (2v-½ IIP - qllL2(Q;) + 
}q; 

I 

cll8tll*,h,i + v 2 IIV 8IIL2cq;) + 

cv-! L (9+ - 9-)2(x, t;-,) dx) 
for all v E Vandall q EM. Dividing the equation by lllvlll;-i + · IIPh -
qlbcQ; >• taking the supremum over all v E V and multiplying again 

by IIPh - qllL2(Q;) leads to 

lfQ; (ph - q)V.v dxdtl 
IIPh - qllL2(Q; > • sup{ lllvlll · II - II } .. ev ,-1,+ Ph q L2(Q;) 

I I 

:52v-2 IIP - qllL2(Q;) + cll8tll*,h,j + v2 IIV 8IIL2(Q;) + 

cv-½ .l (8+ - 9-)2(x, t;-1) dx. 

Now using the fact that for arbitrary functions a, b: M i--+ R 

inf {a(q)b(q)} 2::: inf {a(q)} • inf {b(q)} 
qEM qEM qEM 
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and using that the supremum over v E V may be replaced by the 
supremum over v E X (see lemma 4.3.1) one finds the existence of 
positive scalars /3 and c such that 

inf {IIPh - qllv(Q·)} < _13c ( inf {v-½ IIP - qllv(Q·)} + 
qEM ' qEM ' 

I 

IIOtt,h,j + v~ IIV OIIL2(Q;) + 

v-l L (8+ - o-)2(x,t;-il dx). 

Finally, a straightforward summation over all time-slabs and the triangle 
inequality lead to the desired result. □ 

Note that the summation term does not vanish, not even under the 
same conditions on the solution and the grid as posed in the previous 
theorem. Note also that this pressure error bound involves the error in 
the time derivative of the flow field. This can be estimated in various 
ways when standard finite element spaces are used. For example, note 
that Ill · Ill+ dominates the L 2( Q) norm. Thus one can obtain (suboptimal) 
bounds for ll(u - uh)tllL2(Q) by using inverse estimates. Other methods, 
which can yield better results, involve duality techniques, following for 
example Aziz and Monk [3]. 

4.4 The continuous inf-sup condition 

The inf-sup condition introduced in section 4.3 is a natural time-space 
analog of the steady-state version. However, the differences between 
the steady-state version and this present version for time-slabs introduce 
some new and interesting difficulties. As an introduction we first exam
ine the local version arising in the continuous Galerkin time-slabbing 
formulation. Recall the classical static and local version 

(4.4.1) 
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Naturally, it is desirable that this condition be satisfied in the limit in the 
case where h -+ 0. That is, for the case where the infimum over q E M 
and the supremum over v E X is taken. To this end, consider the 
following theorem 

Theorem 4.4.1 Let n be, as before, a connected and polygonal domain. 
Then 

IIQ- qV-v dxdtl 
inf sup { ' } 2:: /3i > 0, 

qEM; vEX; llv'vliu(Q;)llqllL2(Q;) 
(4.4.2) 

for a constant /3 i > 0 independent of j. 
Proof. Choose q E Mi fixed. Since q E Mj, for each time t E (tj-1, tj] 
the function q satisfies the relation In q(x, t) dx = 0 implying q E L5(n) 
for almost every time t E (tj-I, tj]. As L5(n) is precisely the range of 

the divergence operator acting on [HA(n)] 2 (see Girault and Raviart [8], 

corollary 2.4, p. 24, or Girault and Raviart [7]) there is a v E [HA(n)] 2, 

unique modulo the addition of a divergence free element of [HA(n)] 2, 

with V-v = q. Further, there exists a positive scalar c such that 

llv' vllL2(n) ~ cllqllL2<n> • 
Now, in order to verify (4.4.2) define vq(X, t) by the above procedure for 
almosteveryt E (tj-t,tj]. Since 

t; t; 

j llv'vqll[2(n)dt ~ c2 j llqll[2(n)dt 
t;-1 t;-1 

it follows that 

IIQ; qV-vq dxdtl IQ; q2 dxdt _1 

II II > 2 = C > 0 . v'vqllL2(Q;)llq L2(Q;> - cllqliucQ;) 

This holds for v q as constructed from which 
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and (4.4.2) follow, since this is valid for every q E M;. _El 

Now consider the problem of verifying the discrete inf-sup condition 
arising in the continuous Galerkin method. It is shown that this condi
tion holds, for example, when the finite element space approximating 
the pressure and each component of the velocity are tensor products 
provided that the spatial factors satisfy the classical condition. One 
observation which facilitates the following proof is that if M; x X; 
satisfies an inf-sup condition for a certain intermediate space X; and 
if X; contains X; then M; x X; does so too. 

Let (t;-1, t;] be the j-th time interval and let A= A(t;-1, t;], 
A A 1 

and A= A(t;-1, t;] be finite element spaces in H ((t;-1, t;]). Furhter, 
let B, B be finite element spaces, defined over n such that B c 4(11) 
and B C ~(11) and define · 

M; =BX A 

[ A A] 2 
X; = BX A . 

The intermediate space .X; c X;, where X; = {v EX;: v = v(x)b(t)}, 
will be helpful in the anal,sis of inf-sup condition on the pair M; x X;. 
Considering the condition upon M x X; and substituting q = q(x)a(t) E 
M; and v = v(x)b(t) EX; into (4.4.1) reduces this formula to · 

t; 
fa q(x)V.v(x) · f a(t)b(t) dt dx 

inf sup { II II II II t;ll1 II } ~ /3; > O, (4.4-3) 
aqEM bvEX; q L2(0) V V L2(0) a L2(J;) II bllL2(J;) 

since (aq, bv) -+ f Q; aqV. (bv) dxdt is a continuous function of both 
arguments aq and bv (see Girault and Raviart [7], eq. (1.12) p.60). Note 
that, since X; c X;, the inf-sup condition holds on the latter space 
if it holds on the former. Thus the inf-sup condition correspondingly 
splits into two conditions, of which one is the classical condition in the 
steady-state Stokes problem. This is recorded as 

A [ A] 2 Theorem 4.4.2 LetC(11) = 8 and C(11) = 8 . Then equation (4.4.3) 
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is implied by the following two conditions 

t; 
f a(t)b(t) dt 

(4.4.4) 

inf sup{ t;-i } > f31 j > 0 
aEA bEA llallv(I)lbllL2(I;) - ' 

Proof. This follows by rearrangement of (4.4.3). D 

Consider some choices of products of finite element spaces which sat
isfy the conditions posed in this theorem. Note that the second condi
tion in (4.4.4) is easy to satisfy is as shown below. The first condition 
of ( 4.4.4) is a classical one. 

Theorem 4.4.3 The following choices of A in combination with A 
satisfy the second inequality in ( 4.4.4) 

( a) A = A for any choice of A = A In particular for A = A = 
pk(tj-1, ij], the span of polynomials in t of degree less than or 
equal to k E JN. 

(b) A= [l] and A= [l, t, t2]. 

(c) A=[l]andA={bEP1(tj-1,t. i)/\bEP1(t. 1,tj)}. 
1-2 1-2 

(d) A= [l, t] and A= [l, t, t2, t 3], or 
( e) more in general, any choice for which A C A. 

Proof. For all of the cases above, given a E A pick b = a E .A. □ 

The cases (b), (c) and (d) are listed separately above since they will 
re-emerge when considering the discontinuous Galerkin method inf-sup 
condition. Now, as a concrete example of tensor product spaces Mi, Xj, 
consider the Hood-Taylor pair for the spaces C(f2), C(f2) and A = [l], 
A = [ 1, t]. This leads for a corresponding grid of prismatic elements D. 
to 

• Mi = { q(x, t): q E C0(Qj) n ~(Qj) /\ qlL:::. = bo + b1x1 + bix2 
for some bo, bi, bi ER} 
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• X; = {v(x, t): v E [c0(Q;)r n [lf&(Q;)] 2 /\(v1,2)1~ = (ao+a1t)• 

(bo+b1x1 +bix2+b3xr+b4x1x2+bsx~) for some ao, a1, bo, ... , bs E 
R}. 

Here the functions in M; and X; are defined elementwise by their 
restrictions to all prismatic elements 6.. 

4.5 The discontinuous inf-sup condition 

With the error estimates for the pressure, involving the inf-sup condition, 
in mind define again the norm 

lllvlll~-1,+ = vll\7 vll~2(Q;) + ½ llv+(x, t ;-1)IIL2<m • 
The inf-sup condition using this norm reads 

fi . µV-v dxdt 
inf sup { Q, } ~ /3; > 0 

qEM; vEX; llµIIL2(Q;)lllvlll;-1,+ 

(4.5.1) 

(4.5.2) 

for the continuous case. Here M; = {µ E L2(Q;): fn µ(x, t) dx = 0 

for a.e. t E (0, tJ]} and X; is the closure of [HA(n) x H1((t;_1, t;D] 2 

in Qi. For the discrete case M; and X; are replaced by M; resp. X;. 
In order to simplify the proof of the continuous analog of (4.5.2), 

only the case of a smooth boundary will be considered. Specifically, 
assume that the domain n is an open bounded set in RN with r = an 
an n - 1 dimensional C00 variety with n locally on one side of r. 

Let p(x) denote, following Lions and Magenes [16], p. 171, a smooth 
positive function on n vanishing on r like d(x, r), the distance of x tor. 
This means that for x E r 

Now define the family of spaces 0 ;, following Lions and Magenes [16], 
pp. 180-185, as follows. Lets E R, s > 0 be such that s - ½ is not an 
integer. Then 
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where D' denotes the dual of the space of infinitely times differen
tiable functions on Qi with compact support on Qi. For negative s the 
corresponding space E>J is defined as the dual of e;s. 

Theorem 4.5.1 Suppose that the smoothness assumption on r holds. 
Then the inf-sup condition (4.5.2) holds. 
Proof. Let there be given a function µ E Li( Qi). For almost every t E 

(0, tJ] construct a function v E [H5(Q;)]2 satisfying v'-v = µ like in 
section 4.4. For this choice of v one clearly has 

JQ. µv'-v dxdt llµIIL2<Q·) 
Ill 111' II I = , I. C4·5·3) 
v j-I,+ µI L2(Q;) (vllVvll2 + !llv+(x t. 1)112 )2 - L2(Q;) 2 , J- L2(S1) 

From standard results concerning this construction of v, see e.g. [7], 
it follows that for almost every time t there exists a positive scalar c, 
independent of the time, such that 

IIVvllL2cn) S cllµIIL2(n) 

and hence IIVvllL2cQ;) S cllµlbcQ;)· Thus it remains to be shown that · 

for some c > 0. From standard results concerning trace operators in 
negative order Sobolev spaces, e.g. given in [ 16], pp. 17 5-177, it follows 
that for r - ½ (/. 1N for anyµ E n--;tCQ;) 

llµ+(x, t;-1)IIH-r-1/2(S1) S llµllv~r(Q;) 

where one may take the operator A to be, for example, the time-space 
Laplacian Aµ = µtt+D:.µ under Dirichlet boundary conditions. The D--_;/ 
norm is defined in [16], section 6, via interpolation spaces e-s(Q;) as 

Regularity results associated with this construction of v give 
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Further, with r = ½ - c (so r - ½ is not an integer) and Aµ = µtt + 6.µ 

where again results from [16], section 6.6, pp. 177-180, have been used 
to obtain the last inequality. Thus, from the definition of the n;,_s norm 

(4.5.5) 

(see [16], section 6.3, pp. 170-173), inserting (4.5.5) with the identifica
tion q = A-1 µ into (4.5.4), gives 

Now for O < c < ½, theory of elliptic operators ensures that 

Further, since for s > 0 one has the relation H8 (Q;) c 0 8 (Q;) c 
L2(Q;), it follows that for s > 0 this implies H-8 (Q;) :) e-s(Q;) :::> 
L2(Q;) with continuous imbeddings. Thus for -s = -½ + c 

Substituting these two inequalities in the previous one (4.5.6) gives 

which suffices to complete the proof. □ 

Remark 4.5.1 The requirement that In µ(x, t) dx = 0 for almost ev
ery t;-1 ~ t ~ t;, rather than IQ; µ(x, t) dxdt = 0 is necessary for 
even the beginning of the verification of the inf-sup condition, if classi
cal result are to be used to this end. 
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4.6 Two-level hierarchical bases 

As is known one can decompose the solution of the Stokes equation into 
a part related to the smallest eigenvalues of the Laplacian operator 6., 
and into a second (high frequency) part corresponding to the larger 
eigenvalues. One can show that the high frequency part is essentially 
time-independent relative to the low frequency part (see [17]). Since a 
semi-discrete Galerkin time-stepping approach, using a fixed time-step 
size to approximate a discrete solution, neglects the influence of higher 
frequenc) components such a method can lead to significant errors, in 
particular when integration over a long time-period is taken into account. 

Using time-slabbing techniques one can treat each high frequency 
component on its own time-scale since grid refinement here means re
finement simultaneously in space and time. As usual the higher fre
quency basis functions correspond to those basis functions created hi
erarchically after refinement -Jf a grid defining the low frequency basis 
functions. Creating hierarchically defined growing finite element spaces 
implies that for each time-slab one is able to solve for various scales of 
physical details. 

Therefore, consider the use of a two-level hierarchical finite ele
ment basis for the approximation of the flow field vector uh in ( 4.2.4 ). It 
will be shown that, for a two-level hierarchical basis streamline upwind 
formulation of the Stokes problem (4.2.4), the finest level contribu
tion to uh is small relative to coarse level contribution. Thereafter it is 
shown how to compute a cheap initial approximation for the finest level 
contribution. 

As an example consider the solution of the Stokes problem (see also [21] 
on the unit-cube Q = n x (0, tJ] = (0, 1)2 x (0, 1), divided into h-3 

small subcubes. A coarse piecewise linear basis function space V on Q is 
defined via the small cubes as is shown in fig. 1.3. Now suppose uh E V 
is a solution to the Stokes problem ( 4.2.4 ), then the use of the streamline 
upwind formulation (1.6.5) with 8 = v and b = 0 leads to 

tJ J fo[(uh)tllh+vV x,tuh:V x,tllh-/(uh+b'(uh)t)] dxdt=O 
0 

(4.6.1) 
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whence, analogous to the derivation of the equation in theorem 4.3.1, 
one can show that there exists a positive scalar c such that 

tJ 

VJ L 1Vx,tihl2 dxdt+ L u!(x,tJ) dx :S ~lllflll~+ L u5(x) dx. 
0 

A discretization error bound for (4.6.1) can be obtained analogously to 
the derivation (4.2.7). 

A hierarchical extension to V now is constructed using the non
standard uniform refinement of tetrahedrons as shown in fig. 1.3. The 
span of the piecewise linear basis functions created will be denoted 
by v+. Now let Uh = u EB v E V EB v+ be the solution of (4.6.1) on 
the new two-level hierarchical basis V EB v+. For the sake of simplicity 
redefine Ill · 111 1 for the remainder of this section by 

differing from the previous definition in that the gradient component 
in time is included. Then, using a strengthened Cauchy-Bunyakovski
Schwarz inequality given by 

tJ 

j L V x,tu: V x,tv dxdt :S ,lllulll1 · lllvlll1 VuEVVvEV+, 

0 

one obtains that there exists a scalar O ::; , < 1, independent of v, such 
that 

v(l - , 2) { lllullli + lllvllli} :S ~lllflll~ + L u5(x) dx, (4.6.2) 

where the last term vanishes for homogeneous Dirichlet boundary con
ditions. 

Now note that for elements of the sets V and v+ the following relations 
hold 

ciillulll~ :S lllullli VuEV 

c2h-2lllvlll~ :S lllvllli VvEV+ 
(4.6.3) 
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For u E V equation (4.6.3) holds since the restriction u(t) E HA<n) for 
all t E (0, t J ]. Using a classical Friedrichs inequality for fixed time t 

(4.6.4) 

integrating over the interval (0, t1], and using IV xul2 ~ IV x,tul2 gives 
the desired result since the domain n does not vary with time. For v E v+ 
equation ( 4.6.3) holds because there exist positive scalars CJ and c2 such 
that for all basis functions w E v+ 

tJ tJ 

J la IV x,tw(x, t)l2 dxdt =CJ· hand J la w2(x, t) dxdt = c2 · h3 • 

0 0 

These basis functions have empty mutual support, whence for w = 
Ei O.i<f)i (<pi are the basis functions spanning v+) and c2 = ci/c2 

lllwlll~ = L a;lll'-Pilll~ = L a;c2J h2lll'-Pillli 
i i 

= c2J h2 L a;lll'-Pillli = c2J h2lllwlllf 
i 

leading to the inequalities in (4.6.3). Note that this proof differs from 
proofs in [22] and [20] since it exploits the fact that the basis functions 
have empty mutual support. With the use of (4.6.3) one now obtains 

whence for a fixed-size time-slab clearly the contribution of v E V to uh 
is small relative to the contribution of u E v+. 

Taking (4.6.5) into account, an initial approximation can be computed 
as follows. Let u E V be the finite element solution of the Stokes 
problem (4.6.1) and let Uh E V EB v+ be the finite element solution 
of (4.6.1), using the hierarchically extended basis. Then Uh can be 
approximated by uh = u + v for some function v E v+. Since the 
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contribution v E v+ is time-independent relative to u-E V (see [17]) 
one may substitute Vt = 0 in (4.6.1), and because of (4.6.5) one may 
assume V .rv : V .rv = 0, in the same equation. This leads to the linear 
relation 

l [utV + vV .ru : V .rv -fv] dxdt 

=½ l V<u + 6ut) - UtU - vlV .r,tul2] dxdt 

which provides an initial approximation for v E v+. As this system 
of equations for v has the dimension of v+ and the basis functions 
in v+ have empty mutual support, the approximation v E v+ is easy to 
calculate. 

Clearly, hierarchical finite element bases, which are exploited 
in many different ways in classical Galerkin variational formulations, 
can also be applied effectively for the global time-space approach. This 
enables the use of standard finite element packages for the solution of 
time-space variational formulations. 
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The performance of preconditioned conjugate gradient methods for the 
solution of a linear system of equations H x = b depends strongly on 
the quality of the preconditioner. In general, the matrix H is a sparse 
matrix whose sparsity pattern only depends on discretization choices for 
a given node ordering. For the construction of a preconditioner only the 
matrix entries are needed, but investigations so far have shown clearly 
that taking into account the sparsity pattern structure, leads to more 
effective preconditioning techniques. 

As the sparsity pattern is of importance for the construction of 
good preconditioners, it is analyzed here for the hierarchical matrix H 
resulting from a given discretization. The hierarchy is induced by the 
grid refinement method applied. It is shown that the sparsity pattern is 
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irregular but well structured in general, and a simple refinement method 
is presented which enables a compact storage and quick retrieval of the 
matrix entries in the computer memory. An upper bound for the C.-B.-S. 
scalar for this method is determined to demonstrate that it is well suited 
for multi-level preconditioning and it is shown to have satisfying angle 
bounds. Further, it turns out that the hierarchical matrix may be partially 
constructed in parallel, is block structured and shows fast block decay 
rates. 

Key words: Sparsity structure, Adaptive grid refinement, Hierarchical 
finite elements, Error indication, Parallel computing 
AMS(MOS) subject classifications: 65N30, 65N50, 65W05, 65Fl0, 
65Fl0 

5.1 Introduction 

At present the use of hierarchical finite element basis functions, in 
combination with adaptive grid refinement for the solution of elliptic 
boundary value problems, has been investigated thoroughly (see _e.g. 
[11], [12], [14], [20], [28], [29], [31], [32] and [38]) to show that this 
approach is eminently applicable to problems with complicated bound
ary geometry. Most approaches investigated so far implicitly use the 
hierarchical matrix H, resulting from a grid obtained by an adaptive 
grid refinement method, via the relationship H = JT AI as in [38]. 
Here A is the standard nodal matrix on the grid mentioned and I is a 
grid geometry dependent lower triangular identity transformation from 
the hierarchical to the standard nodal basis. As multiplications with 1-t 
and I are easy to perform, solving Hx = b for a given vector b with 
the use of the equivalent system A(Ix) = 1-tb as in [21] has several 
advantages. It is possible to assemble and store A and multiply by it 
elementwise, see e.g. [17]. The number of matrix entries to be stored 
will be proportional to the number of unknowns. On the other hand, I 
is often defined recursively, prohibiting a parallel multiplication ( one 
can use domain decomposition techniques to overcome this) and the 
use of elementwise stored data induces much indirect memory address
ing each time a multiplication is performed, slowing down the overall 
computational performance. 
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All approaches mentioned avoid an analysis of the sparsity pat
tern J, the set of couplings (i,j) corresponding to possible non-zero 
entries hi; of the hierarchical matrix H, which is more complicated in 
the hierarchical case than that of ordinary finite elements. Because one 
does not know the sparsity patterns structure a straightforward row-wise 
ordered storage technique (see e.g. [3]) is used in general; for each de
gree of freedom i, the numbers j for which (i,j) E J are stored in an 
integer row. This technique is often quite expensive due to a generally 
large number of shifts needed to store the numbers j in an increasing 
order. To check whether (i,j) E J for given i and j, e.g. occurring 
during a pointwise incomplete factorization of H, is costly because this 
involves searching through an integer row. 

This chapter will show that for the discretization choices of any 
given grid refinement technique, a coarse initial grid and type of finite 
element basis functions, it is possible to determine the sparsity patterns 
structure of the resulting hierarchical matrix by studying the changes 
in J caused by refinement of a single triangle. This shows for frequently 
used refinement techniques that the sparsity pattern has a (sometimes 
even binary) tree structure which can be stored in a row-wise ordered 
manner without any shifting and such that checking whether (i,j) E J
for given j involves at most one 'if ... then' instruction, independent of 
the dimension of the matrix and the number of refinements applied to 
the initial coarse grid. 

Unfortunately the number of possible non-zero entries of H is 
bounded above by O(kN), k the number of refinements and N the 
number of unknowns, whence a matrix vector multiplication will not 
be of optimal computational complexity O(N) if the number of refine
ment levels is unrestricted. In general the entries [H]i; are of order 

O(J2-l(p-q)I) if the related basis functions i and j are of level pre
spectively q as is shown in [26]. Also, the storage of the hierarchical 
matrix in the computer memory allows for the direct application of many 
well-known preconditioning techniques. 

Since the sparsity patterns structure depends on the type of local re
finement technique used, some types of refinement techniques will be 
studied in more detail. A refinement technique introduced to this end is 
the newest vertex bisection refinement proposed by Sewell [34], [35] and 
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adapted by Mitchell [28], similar to the longest edge bisection method 
of Rivara [32] and [33]. The difference between the methods is that for 
a given triangle the former method bisects the edge opposite a specific 
vertex whereas the latter method bisects its longest edge. Unlike the 
regular grid refinement used by [5], Bank [12], [18], [20] and Yseren
tant [38] these bisection methods do not create children congruent to 
their parents. 

The main advantage of the newest vertex technique proposed 
is its simplicity. Mitchells technique is a one fase recursive technique, 
which keeps all triangles compatible (at most one neighbour along each 
of the three edges) at all times contrary to Rivara, who has to enforce 
compatibility after each refinement by refining an additional number 
of triangles, and Bank and Yserentant [11], who even need a third 
fase in which the bisections used to enforce compatibility are removed. 
Further advantages are that there is no need to compute side lengths as 
in Rivaras refinement algorithm and that the number of different angles 
created during repeated refinement is at most eight times the number 
of triangles in the initial coarse grid whence a properly chosen initial 
grid avoids bad angles (see e.g. [9]) automatically. The newest vertex 
bisection method is generalizable to domains in more than two space 
dimensions and for higher order finite element basis functions. 

As the sparsity pattern is analyzed bearing the construction of an 
effective multi-level preconditioner in mind, angle bounds for the re
finement methods above are investigated and the Cauchy-Buniakowskii
Schwarz scalar , 2 is derived. The results obtained demonstrate that grid 
refinement methods leading to a well structured sparsity pattern in ad
dition can be well suited for multi-level preconditioning. 

The remainder of the chapter is organized as follows. The newest vertex 
grid refinement method, which will be used to demonstrate the results 
of the sparsity pattern analysis in the view of its simplicity, is introduced 
in section 5.2. The construction of a standard nodal and hierarchical 
finite element basis is given brief attention in section 5.4 after which 
in section 5.5 a sparsity pattern analysis is presented for the hierarchi
cal basis, for various grid refinement techniques. The block decay rate 
of the hierarchical matrices is studied in section 5.7. The number of 
the hierarchical matrix entries as well as the storage of the complete 
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hierarchical matrix in the computer memory are investigated briefly in 
section 5.6. Section 5.8 considers angle bounds for the grid refinement 
methods studied and provides estimates for -y2 in order to show that the 
newest vertex refinement method, having one of the simplest structured 
sparsity patterns possible, may also be used for the construction of multi
level preconditioners. Finally in section 5.9 sparsity patterns resulting 
from some discretizations of example partial differential equations are 
presented and in section 5.10 some conclusions are drawn. 

5.2 The newest vertex local grid refinement 

Let the computational domain Q C Rn, be an open and bounded polyg
onal domain covered by an initial coarse grid of simplices. Here simplex 
stands for interval in 1 dimension, for triangle in 2 dimensions and for 
tetrahedron in 3 dimensions. For instance, an initial coarse grid on a 
line could consist of a single interval, on the unit-square it could con
sist of two triangles, and on the unit-cube it could consist of at least 5 
tetrahedra (see e.g. [30]). The domain will be only in space in the case_ 
of a static differential equation, and will be in time-space in the case of 
time-slabbing, where Q = Q; (see the notation introduced in chapter 1 ). 
In general it is very difficult to fit a grid to an arbitrary domain (see [24 ]), 
therefore, to start with, only the case of a refinement of a given initial 
coarse triangulation will be paid attention to. This section introduces 
the newest vertex grid refinement method and the properties of it that 
are essentially determined the resulting matrices sparsity pattern. These 
properties are very basic and are satisfied by most existing refinement 
methods, like e.g. the regular refinement method. 

In order to obtain a grid which is suited for the finite element solution 
of a partial differential equation it is of importance that 

• the refinement algorithm will always lead to a compatible grid, 
• that the recursion involved will be of finite length and allows for 

local refinement, i.e., not forcing uniform refinement, 
• the angles of the tetrahedra created are bounded above away 

from 1r (see [9]) which is automatically the case if only a finite 
number of similarity classes is generated. 
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For the two-dimensional variant this is shown by Mitchell using induc
tion techniques in combination with graph theory. 

Let a triangle be a topologically open subset of R 2• Now let an initial 
coarse grid Q<0> = {~} of triangles be given such that {x E ~: ~ E 
Q<0>} = Q. This implies that the boundary of Q should be piecewise 
linear, whence isoparametric elements as in [3] are not considered in this 
chapter. A basic building block of each grid refinement algorithm is the 
method to divide a triangle. In the newest vertex bisection case a triangle 
~ c R 2 of a certain level l(~) has three vertices x1,x2,x3 E R 2, of 
which the first is called the newest vertex, and denoted by denoted 
by x1::,.. By definition the edge opposite this vertex is called the base 
and the triangle sharing this base is said to be the neighbour, if this 
exists (see fig. 5.4). The bisection of a triangle~ always takes place by 
adding an edge from its newest vertex to the midpoint of its base. The 
vertexx created on the base will be the newest vertex of both children ~i 

(i = 1, 2) which satisfy 

(5.2.1) 

By definition the levels of the children and their vertices are given by 

(5.2.2) 

All vertices, edges and triangles of the initial coarse grid Q<0> have 
level 0. Further, the children ~i have the unique parent P(~i) and the 
subsequent ancestors 

Pk(~)= (Po .. • o P)(~) V k=l, ... ,l(I::..) -------k 

where P 0(~) =~in order to simplify notations. 

As mentioned before, one of the difficulties in grid refinement is that of 
maintaining the compatibility of the triangulation. Therefore consider 
the refinement of a triangle in a perfect matching given grid, i.e., a grid 
in which all triangles are compatibly divisible. This means that for every 
triangle either its base is lying at the boundary or its neighbours base 
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coincides with its own base. Now the refinement of a triangle is defined 
by the following recursive algorithm: 

Refine the triangle: 
H the neighbour is not compatibly divisible 
Then Refine the neighbour 
Fi 
bisect the triangle and its neighbour. 

Figure 5.~ shows, starting from a perfect matching coarse initial grid, 
some refi11ement steps including the refinement of a not compatibly 
divisible triangle. Further, figs. 5.10 and 5.11 show an already refined 
grid. It is of course of importance that the refinement algorithm above 
will always yield a compatible grid and that the recursion involved will 
be of finite length and not too large. That this is easy, is shown by the 
following lemma. 

Lemma 5.2.1 For the newest vertex method the following statement 
holds 

(i) Given any compatible initial triangulation, there exists a choice -
of newest vertices such that every triangle is compatibly divisible. 

(ii) The length of the recursion involved with the refinement of an 
arbitrary triangle is bounded by its level plus 1. 

(iii) For each pair of compatibly divisible triangles L:::.1 and L:::.2, 
l(l:::.1) = l(l:::.2). 

Proof. See Mitchell [29] for a proof in full detail. □ 

Note that the local refinement of a pair of triangles is completely de
termined by the local numbers of their vertices. This implies that the 
labeling of the vertices for the children is the most important part of the 
local newest vertex refinement. Now the refined or initial coarse grid 
will be used to construct the finite element basis functions needed for 
the solution of the partial differential equation under consideration. 

5.3 Bisection refinement in three dimensions 

In Maubach [27] it is shown that the newest vertex approach can not 
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straightforwardly be extended to the case of 3 or more dimensions. For 
higher dimensions, [27] introduces a new simplex bisection refinement 
based on coverings of the n-cube with simplices. This method leads to 
compatible grids and creates at most n different congruency classes for 
each simplex, independent on the level of subsequent refinement. The 
algorithm has the advantage that it can be used in any dimension, but it is 
only applicable to simplicial grids which are part of a standard simplicial 
covering of then-cube (see for instance [1]). In three dimensions several 
refinement methods exist. One of the first discovered was a bisection 
method by Bansch [15] which is likely to be equivalent to the bisection 
method described below. 

The bisection of an n-simplex presented below, only involves the order
ing of the vertices of this simplex (as is the case in Mitchell's newest 
vertex method), and the level of the simplex under consideration. Ini
tially, all coarse grid n-simplices T are said to be of level l(T) = 0. If a 
simplex T is bisected, the two created simplices are called its children, 
and the ordering of their vertices is defined by the following bisection 
step. 

Bisect (simplex): 
BEGIN 
Let k := n - !(simplex) mod n; 
Get simplex vertices: Xo,x1, ... ,Xn-1,Xni 
Create the new vertex: z := ½{xo +xk}; 
Create child1: x1,x2, ... ,Xk, Z,Xk+l, ... ,Xni 
Create child2: Xo,x1, ... ,Xk-1,Z,Xk+l, ... ,Xni 
Let l(child1) :=!(simplex)+ 1; 
Let I( child2) := !(simplex) + 1; 

END. 

Then, reformulating Mitchells proposal in [28] leads to the following 
refinement algorithm of a tetrahedron 

Re.fine the tetrahedron: 
While a neighbour is not compatibly divisible 
Do Re.fine the neighbour 
Od 
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bisect the tetrahedron and its neighbours. 

Note that this is a recursive algorithm: in order to refine a single tetra
hedron it is possible that a whole chain of incompatible neighbours - of 
neighbours - must be refined. The algorithm is easy to implement but 
for the part of finding neighbours (this can be done using permutations 
as in [27], but there may be more simple and effient ways). 

The bisection step in combination with the refinement algorithm has 
been thoroughly tested in 2 and 3 dimensions. First consider some simple 
examples, where the simplices are refined if they intersect a certain line 
or plane, or contain a point. 

• Uniform refinement of the cube is shown in fig. 5.46, 
• Local refinement in a plane { (x, y, z ): z = 0} and along a line 

{(x, y, z): x = 0 A y = z} is shown in figs. 5.47 and 5.48, 
• Local refinement around ( 1, 1, 1) and ( ~, ½ ~, }s) can be found 

in the figures 5.49 resp. 5.50 and 5.51. 

In a second example all tetrahedra intersecting the hemi-sphere x ~ ½ -
and (x - ½)2 + (y- ½)2 + (z - ½)2 = l6 are refined. Pictures to be found 
in figures 5.52 - 5.57 show that a refinement up to 18 levels deep is 
very local and that the positions of the vertices reflects the surf ace of 
the hemi-sphere. Further, random refinement creating grids containing 
up to 0(105) tetrahedrons has been observed to function well. 

5.4 The standard nodal and hierarchical basis 

As the sparsity pattern of the finite element matrix to be considered, not 
only depends on the underlying grid, but also depends on the type of 
finite element basis functions used, these functions will be considered in 
more detail. First the types of bases to be used in the numerical examples 
are described, after this basic properties of the basis functions, needed 
for the sparsity pattern analysis, are considered. 

Let a compatibly divisible grid Q be given. At each grid point a finite 
element basis function c.p is defined as is usual in finite element methods, 
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piecewise linear or quadratic, and only locally non-zero on the surround
ing simplices (see section 1.5 or [3], [16], [19], [22], [36] and [39]). If all 
nodes on Q, which can be a locally refined grid, are defined this way, the 
finite element basis will be called standard nodal finite element basis. 
By way of abbreviation a finite element basis function will sometimes 
be called node in the sequel. 

Another method to define the finite element basis is to exploit 
the local grid refinement. First, on an initial coarse compatibly divisible 
grid Q a standard nodal finite element basis is defined as above. Then, 
during the local grid refinement, every time a new point is created, its 
related finite element basis function is defined as above, using the grid 
as this is directly after the local refinement. This leads to a situation 
in which nodes can exist with a strongly varying magnitude in support 
(see below), small support typically corresponding to nodes of a higher 
level. Proceeding this way for all points created during the refinement 
phase, the resulting basis is called a hierarchical finite element basis. 

Now consider properties of the finite element basis functions which are 
of importance for the sparsity pattern analysis of the resulting matrix. 
To this end let the support and the base of a node <p, defined at a unique 
vertex Xcp, be defined by respectively 

Dcp :={x E Q:<p(x) :,{0}* 

Bcp :={.6 E Q:Dcp n .6 :,{0} 

where for a set X, X* denotes the open part of its topological closure. 
The supports of nodes created by regular resp. bisection refinement are 
shown in figures 5.2 and 5.4. The level of <p is by definition given 
by l(<p) = l(xcp). If xcp = X.6.., the newest vertex of some triangle .6 E Q, 
then in the sequel, in order to simplify the notation, <p = <p .6..· Further, as 
is standard in finite elements, the grid is supposed to be such that there 
exists a scalar c E JN, independent of <p, such that IBcpl ::; c, where 
for a set X, IX I denotes its number of elements. Also, the refinement 
is supposed to lead to a compatible grid, which is formulated by the 
requirement 

(5.4.1) 
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where v(6) denotes the set of vertices of 6, implying that if 6 E B'i' 
then x 'i' is one its vertices. 

For the following definitions, assume that one is dealing with a time
dependent partial differential equation, discretized with the use of a 
continuous global time-space finite element method. In the time inde
pendent case, the definitions are valid if all subscripts j are omitted. 
Now define 

• the triangle set 7(k) = 7;<k) to be the set of all triangles of a certain 

lev~l k ~ 0 on time-slab j. Note that a triangle in 7(k) can only 
be refined once and that its children belong to 7(k+I)_ As long as 
the children exist, the triangle will remain in 7(k)_ 

• the grid Q = Qi = Qt> = u!=t T}8>, i.e., the set of all triangles 
up to and including level k on time-slab j. 

• the set containing all vertices V(T) of an arbitrary set of trian
gles T. Note that V(Q) - V(Q<0>) is equal to the set of all created 
vertices and that by definition v<k> = V(Qjk)) - V(Qt- 1>) is the 
set of all vertices of level k ~ 1. In order to simplify the notations 
in the sequel let V = V(Q). 

• the set of finite element basis functions :F(T) defined at the differ
ent vertices of an arbitrary set of triangles T. Also here :F(Q) -
:F(Q<0>) is equal to the set of all created basis functions. 

• the span of the finite element basis functions in the set :F(Qjk>), 

denoted by H(Q) = H(Qt\ Note that H(Q) C H1(Q) and that 
this span is identical for the hierarchical and the standard nodal 
basis. 

• the total number of different vertices of level k, n<k) = IV(k))I, 

Analogously define N = Ni = Nt> = IV(Qt>)I to be the total 

number of vertices in Q, also said to be the number of degrees of 
freedom. 

Note that the subset of Q of triangles without children in the case of 
newest vertex grid refinement has exactly ½ ( I QI + I Qo I) elements, which 
can be proved easily by induction. This subset is important as it serves 
the definition of a standard nodal basis. 

For the assembly of the finite element matrix, after the grid refinement 
has taken place, each node is assigned a unique number i E { 1, ... N}, 
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in such a way that for all nodes 

(5.4.2) 

This leads to an hierarchical matrix with a natural block structure, where 
the blocks are determined by the levels of the refinement. It is advisable 
to number the vertices and corresponding nodes of the initial coarse grid 
such that the resulting coarse grid matrix is as sparse as possible (see 
e.g. [3] for an algorithm to this end). Fig. 5.7 shows a one-dimensional 
hierarchical basis. 

5.5 A sparsity pattern analysis 

In this section, the sparsity pattern of a matrix is defined with the use of 
some of the definitions from section 5.2 and some elementary results, 
valid for grid refinement methods satisfying the conditions (5.2.1) up 
to (5.4.2), are proved. Next, these results are used to examine the sparsity 
patterns structure for a general case. Finally, the general result obtained 
is considered in more detail for the regular and newest vertex bisection 
refinement. 

Consider the definition of the sparsity pattern resulting from a chosen 
discretization. A node r..p i is said to be coupled with node 'Pi and (i, j) E 
N x N is said to be a coupling iff De;,; n De;,; =/ 0. The sparsity pattern 
is defined as the set of couplings 

depending on the grid geometry and the finite element basis functions 
used but not on the partial differential equation discretized. Note that the 
sparsity pattern is a symmetric subset of N x N by definition, whence 
it suffices to examine the coupling sets C(r..pi) 

containing all nodes coupled to and of level lower than or equal to l( 'Pi). 
Before proceeding to the main analysis, consider the following lemma 
providing some basic and simple tools. 
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Lemma 5.5.1 A grid refinement method satisfying ( 5.2.1 )-( 5.4.2) leads 
to a grid Q with 

• The intersection of every 61, 62 E Q is either one of them, or 
empty 

\/ b.1,b.2eQ[61 C 62 V 62 C 61 V 61 n 62 = 0]. 

• If 61, 62 E Q and 61 n 62 =/ 0 then 

{ 
1(61) < 1(62) => 61 :) 62 
1(61) = 1(62) => 61 = 62 
1(61) > 1(62) => 61 C 62 

• All triangles 6, f::. E Q satisfy 

{ l(pl(b.!-i(6)) = i 'yi=0,1, ... ,l<f-) 
6 C 6 {:} pl(b.)-l(b.)(6) = 6 . 

(5.5.1) 

(5.5.2) 

(5.5.3) 

Proof. The results above follow directly with the use of combinations 
of the equations (5.2.1) up to (5.4.2). □ 

Intuitively, considering the definition of the nodes in the previous sec
tion, a coupling set of a hierarchically defined node cp will contain nodes 
defined on ancestors of the triangles belonging the base of cp. For locally _ 
refined grids, consisting of a few triangles, this can easily be verified 
by hand, but in the general case one must exploit some of the basic 
properties provided in the previous section in order to prove this. Now 
let p(cp) denote the number of parents which created a node cp, note that 

p(cp) = l{P(6): 6 E Bcp}I. 

Furthermore, define the sets D and E for all triangles 6 E Q by 

D(6) := {µ E F:Dµ n 6 =/0 /\ l(µ) :5 1(6)} 

E(6) := {µ E F: Dµ n 6 =/ 0 /\ l(µ) = 1(6)}. 
(5.5.4) 

Because the coupling set of a level zero node is easy to determine, only 
coupling sets of created nodes are considered in the following theorem. 

Theorem 5.5.1 For all nodes cp E F(Q) - F(Q<0>) and all b. E Q 
containing D cp, C ( cp) is the union of three disjoint sets 

l(b.)-l(.6.)-1 l(A) 
C(cp) = U E(6) U U LJ E(Pk(6)) U LJ E(Pk(f::.)). 

k=l 
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Proof. Let cp E .r(Q)- .r(Q<0>). Nodes created after cpjiave a number 
greater than the number of cp according to (5.4.2), whence no such 
nodes are added to cp's coupling set after its creation. The creation 
of new triangles also does not influence the old nodes and couplings 
whence C ( cp) can be examined under the assumption that cp is the last 
node created. 

Note that, due to (5.4.2), directly after a node 'Pi = cp has been created, 
this node has the highest possible node number i, leading to 

C(cpi) ={cp; E .r:D,;,; n D,;,; -::/0 Aj Si} 
={ cp; E .r: D,;,; n D,;,; -=/ 0} 
={µ E .r: Dµ n D,;,-=/ 0} 

= LJ {µE.r:Dµn6-=/0} 

because D,;, = (U{6:6 E B,;,})*. Furthermore,suppose Dµ n 6 -::/0, 
then there exists~ E Bµ such that~ n 6 -=/ 0. Property (5.2.1) now 
implies 6 c ~ whence according to (5.5.2) l(µ) = l(~) s 1(6). This 
leads to 

C(cp) = LJ {µ E .r: Dµ n 6-=/ 0 Al(µ) S 1(6)} = LJ D(6). 
6.EBv, 6.EBv, 

Now consider the sets D(6). Note first of all that for all 6 E Q - Q<0> 
for allµ E .r 

Dµ n 6-=/ 0 Al(µ) S l(P(6)) {::} 

Dµ n P(6)-=/ 0 Al(µ) S l(P(6)) 

because for any 6 E Q - Q<0> and node µ E .r 

Dµ n P(6)-=/ 0 A I(µ) S l(P(6)) {::} 

:lAeB,J~ n P(6)-=/ 0 Al(~) S l(P(6))] {::} 

:lAeB,.£P(6) C ~Al(~) S l(P(6))]:::} 

:lAEB,. [6 C ~Al(~) S l(P(6))]:::} 

:lAeB,. [~ n 6-=/ 0 Al(~) S l(P(6))] {::} 

Dµ n 6-=/ 0 Al(µ) S l(P(6)) 

(5.5.5) 



and locally refined grids 131 

due to (5.5.2), (5.4.1) and 6 c P(6). The opposite direction follows 
with the use of 6 n !). =/ 0 ~ P(6) n !). =/ 0. Therefore the relationship 
between the sets D(6) and E(6) is, according to (5.5.5), given by 

D(6) ={µ E F: Dµ n 6 =/0 A I(µ) $1(6)} 

={µ E F: Dµ n 6 =/0 Al(µ)< l(6)}U 

{µ E F: Dµ n 6 =/ 0 A I(µ)= 1(6)} 

={µ E F: Dµ n 6 =/ 0 Al(µ)$ l(P(6))} U E(6) 

={µ E F: Dµ n P(6) =/ 0 Al(µ)$ l(P(6))} U E(6), 

leading to 
D(6) = D(P(6)) U E(6) (5.5.6) 

whence according to D(P1<A>(6)) = E(P1<A>(6)) and relation (5.5.6) 

l(A) l(A) 

D(6) = LJ E(Pk(6)) and C(cp) = LJ LJ E(Pk(6)). 
k=O AEB~k=O 

Note that the sets E(Pk(6)), k = 0, 1, ... , 1(6) are mutually disjunct 
because they contain nodes of different levels. 

Now suppose that there exists a triangle t). E Q such that D cp C t). then 
due to (5.5.3), for all 6 E Bcp, 

pl(A)-l(A)(6) = !). ~ pl(A)-l(A)+k(6) = pk(t).) 

for all k = 0, l(t).) whence 

l(A) l(A) 

C(cp) = U D(6) = U U E(Pk(6)) = U LJ E(Pk(6)) 
k=O AEB~ 

l(A)-l(A)-1 l(L!.) 

= U E(6) U U U E(Pk(6)) U U E(Pk(t).)). 
k=O 

Clearly three different parts can be distinguished. The first part of the 
union, called head part, consists of a union of sets E(6) with a non
empty intersection containing the nodes created simultaneously with cp. 
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The second part, called middle part, consists of sets E(l::::,.) which may 
overlap partially but the last part, called tail part, consists of mutually 
disjoint sets E(6). 

Now consider the existence of such a triangle~ E Q. If p(cp) = 1 then 
there exists a unique parent~ of level 1(6) - 1 which contains D"' 
whence the above formula reduces to 

1(.6.) 

C(cp) = LJ E(6) U LJ E(Pk(~)). 
f::..EBv, k=l 

If p( cp) = 2 and if cp is created at a line of level m > 0, then clearly there 
exists a unique ancestor ~ of level m - 1 which contains D"' whence 

l(t::..)-1(.6.)-1 1(.6.) 

C(cp) = LJ E(6) u LJ U E(Pk(6)) U U E(Pk(~)). 
f::..EBv, f::..EBv, k=l k::O 

For nodes with two parents, which are created at a line of level O _the 
coupling set has only a head and middle part, the tail part has length 
zero. Note that this derivation is not restricted to the use of triangular 
elements. D 

The theorem above shows that indeed all nodes coupled to a certain 
given node cp are defined on one of the ancestors of a triangle belonging 
to the base of cp. In addition, it shows that it is sufficient to take into 
account only those nodes defined on a vertex of an ancestor pk(6) 
which are an element of E(Pk(6)) for given k and triangle 6 E B"'. 
Obviously the sparsity pattern is structured with respect to the level 
structure of the grid refinement under consideration. 

In order to be able to estimate the number of couplings IJI, i.e., 
the number of matrix entries, consider the sets E(6), for certain 6 E Q, 
in more detail. 

Lemma 5.5.2 For all 6 E Q the set E(6) satisfies 

E(6) = {µ E v(6): l(µ) = 1(6)} 
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whence there exist positive scalars a and b such that for all created 
nodes <.p E F(Q) - F(QC0>) 

IC(ip)I ~ al(<.p) + b 

the length of the coupling set is bounded linearly by the level. 
Proof. Consider the first part and supposeµ E E(.6.). Then Dµ n 6 =I 
0 so there exists a l. E Bµ such that l. n 6 =I 0. Further l(l.) = 
l(µ) = 1(6), according to (5.5.2) resulting in 6 = l. E Bµ whence 
due to (5.4.1) µ E v(.6.). The opposite direction is trivial. According 
to the characterization of the E sets above IE(.6.)I ~ 3 for all triangles 
6 E Q. The coupling sets for nodes <.p E F(Q) - F(QC0>) satisfy, 
according to (5.5.6) and (5.4.1), 

l(L::.) 

IC(ip)I = LJ LJ E(Pk(.6.)) < LJ E(.6.) + 3p(ip)(l(cp) + 1) 
l::.EBc;, k=O l::.EBc;, 

= 3c + 3p(ip)(l(cp) + 1) 

whence a= 3p(<.p) and b = 3(c + p(<.p)) may be taken. □ 

This lemma provides an upper bound for the number of entries of the 
hierarchical matrix for a general refinement technique satisfying the 
conditions in section 5.2. In order to obtain sharper estimates for specific 
refinement techniques, consider again the sets E(.6.), first for the regular 
grid refinement technique considered by Bank and Yserentant in [38]. 
Their technique distinguishes between three different types of triangle 
refinement (see fig. 5.1) called red triangle refinement of the first and 
second kind and green triangle refinement which is necessary to maintain 
the compatibility of the grid. Here IE(.6.)1 depends on the triangle: for 
the red refinement E(.6.) = 3 for the triangle 6 created in the middle of 
its parent and E(.6.) = 2 for the triangles 6 created along the boundaries 
(see e.g. fig. 5.2). In the green bisection case E(.6.) = 1 for both children 
as will be demonstrated below. 

For the bisection refinement of Mitchell and Rivara, ( the support 
of the created nodes differs from the regular refinement case as is shown 
in figs. 5.4 and 5.2), IE(.6.)1 = 1 for all 6 E F(Q) - F(QC0>), as is a 
direct consequence of the lemma below. 
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Lemma 5.5.3 The newest vertex grid refinement implies 
(i) A triangle 6. of level 1(6.) ~ 1 has exactly 

one vertex of level 1(6.), its newest vertex Xb.. 
one vertex of level 1(6.) - 1, the vertex XP(b..) and 
one vertex of level less than 1(6.) - 1 if 1(6.) > 1 or of 
level O if 1(6.) = 1. 

(ii) A compatibly divisible pair of triangles 6.1 and 6.2 of level l > 1 
have exactly 

two vertices of level l, both newest vertices x 6.i and x 6.2 

one common vertex of level l - 1, x P(b.. 1) = x P(b..2) 

one common vertex of level less than l - 1 
(iii) Each created vertex Xb.. is situated on at most 1 different lines of 

which 
one of level less than 1(6.), the base atwhichxb.. is created 
two of level 1(6.), created together with x b. and 
at most four of level l ( 6. )+ 1, created afterwards eventually. 

(iv) If a vertexxb.. is created ata line lm of level m > 0 thenxp2i.(6.) E 
lm for all O ::; 2k ::; l(xb..) - m where l(xb..) - m ~ 0 is always 
even. 

Proof. The first statement is easy to verify for 1(6.) equal to 1 or 2. 
Suppose it is true for triangles 6. of a certain level 1(6.) > 1 and take 
a triangle 6. with vertices Xb.., XP(b..) and x with l(x) < 1(6.) - I. The 
refinement of this triangle leads to the creation of one vertex y of level 
1(6.) + 1 and two children 6.1 and 6.2 such that v(6.1) = {y,xb..,XP(b..)} 

resp. v(6.2) = {y,xb..,x }. Clearly the vertices of both children satisfy 
the conditions posed on their level, whence by induction the statement 
is proved. 

Note that two compatibly divisible triangles 6.1 and 6.2 of level 
k have four vertices always including the newest vertices Xb,. 1 and Xb..2 
oflevel k and the XP(b..i) and XP(b..2) of level k - I. If XP(b..1) =/ XP(b..2) 

then both triangles must have one vertex of level k and two vertices of 
level k - I, which is impossible fork > I. Fork = I the statement does 
not hold, see fig. 5.8 for a counter example. 

The third statement follows with induction, analogous to the 
first, so consider the last statement and suppose that x b. is created at 
a line lm. Then, according to (ii) note that Xp2(6.) E lm if, of course, 
l(xb..) ~ m-2. Subsequent application of this result, taking into account 
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that on the initial grid all lines and vertices have level 0, leads to (iv). □ 

Theorem 5.5.1 in combination with lemma 5.5.3(ii) show that, for the 
newest vertex grid refinement technique the basis functions belonging 
to F(Qt>) - F(Qjk-l)) are mutually uncoupled. This means that the 
resulting block structured hierarchical matrix (see (5.4.2)) will have di
agonal blocks that are diagonal matrices. Since this refinement technique 
leads to a matrix with a simply structured sparsity pattern it is even pos
sible to give a precise upper bound for the number of couplings IC{cp)I 
of a nodt: cp. To this end define the function l{m::O} on IN to obtain 
value 1 if m = 0 and O otherwise and consider 

Theorem 5.5.2 If cp E F(Q) - F(Q<0>) is created at a line of level m 
then/or p(cp) = 1 respectively p(cp) = 2 

{ IC(cp)I = l(cp) + 3 · 
IC(cp)I = !Z(cp) + 3 - ½m + (1 - ½mod(l(cp), 2))1{m::O}. 

(5.5.7) 

Proof. Let <p E F(Q)-F(Q<0>) have one parent whence automatically. 
m = 0. Because cp is a created node, there exists a triangle 6 E Q - Q<0> 
such that cp = <p 6.. Defining the path of this node by the row of nodes 

(5.5.8) 

then according to theorem 5.5.1 and lemma 5.5.2 the coupling set C(cp) 
will exactly contain all elements of this row. All nodes in the coupling 
set are of different level, IE{6)1 = 1 for all 6 E Q - Q<0> according 
to the previous lemma and the nodes on the coarsest grid are defined 
standard nodally leading to the desired result. 

If cp has two parents then according to theorem 5.5.1 C(cp) 
contains exactly cp itself, at most 2 = p( <p) ancestors at each level 
0 < k < l(cp) and at most 4 nodes of level 0. Lemma 5.5.2(iv) shows 
that for a node with two different parents 6 1, 62 E F the middle 
part of the coupling set will have several overlapping sets E(P2k(6i)). 
The elementary counting necessary to obtain the second result above 
is left to the interested reader. Note that for this type of refinement 
IC(cp)I ~ Jl(cp) + 4 for all nodes cp E F(Q)- F(Q<0>). D 



136 On finite element matrices 

Some graphs of paths of nodes of the grid in fig. 5.10 are provided in 
fig. 5.12. For this grid, and that shown in fig. 5.11, theorem 5.5.2 can 
easily be verified. For instance, figure 5.12 shows a graph of C(19), 
denoting the coupling set C(cp1g), which is in tum a union of the paths 

{ 'P19, 'P18, 'P14, 'P11, cp7, 'P6, cp4, cp3, 'P2, cpi}, 

and 

{ 'P19, 'P17, 'P14, 'PIO, 'P7, 'P5, 'P4, 'P3, 'P2, 'PI}· 

As there are at most two paths a graph is shown starting at the head, 
showing the middle part (with overlaps) and the tail. Note that the first 
elements of the path of a vertex are not always the vertex itself and the 
vertices of its parent(s). This is shown for the first path of C(cp19) above, 
where parent vertex x1 is visited after non-parent vertices x10 and x11. 
However, the theorem assures that by following the path all coupled 
nodes, also those defined at the vertices of the parent(s) will be visited 
eventually. The bisection refinement around a singularity is shown in 
fig. 6.1 where IC(cpi)I = i for all nodes 'Pi situated on the line y = x with 
i > 4. The standard nodal basis sparsity pattern is a subset of that of 
the hierarchical case due to the definition of the basis functions in both 
cases. 

In this section it has been demonstrated that the sparsity patterns 
structure only depends on the triangle ancestor hierarchy induced by 
the refinement strategy chosen. For certain types of refinement, such 
as the newest vertex refinement technique, it has been shown that one 
can determine all coupled nodes by simply following paths of ancestor 
triangles. 

5.6 The storage of the hierarchical matrix 

As has been shown the sparsity pattern of a matrix is a very irregular 
but structured subset of N x N in general. First it will be shown that 
the set of couplings J can be stored efficiently due to this structure 
and thereafter the number of the matrix entries IJI is computed for two 
examples. 
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The ordinary row-wise ordered storage scheme can be described with 
the use of a map .M: J ~ JN as follows. For each ( i, j) E J the number j 
is stored in a row of integers at position .M(i, j) = g(i) + f(j) where f 
and g are defined by 

{ g(l) = 0 
g(i) = g(i - 1) + IC(c.pi-i>I, i 2:: 2 and f(j) E {1, ... 'IC(c.pi)I} 

for all i, j E { 1, ... , N}. Consider in the following the newest vertex 
bisection refinement, without loss of generality. In this case, according 
to theorem 5.5.1 and 5.5.2, a node 'Pi maximally is coupled to itself, two 
nodes of level m for all O < m < l(c.pi) and four nodes of level 0. A 
special row-wise ordered storage scheme can be defined with the use of 
the map M: J ~ JN, M(i,j) = g(i)+ f(j)+3 where f and g are defined 
by 

and 

{ g{l) = 1 
g(i) = g(i - 1) + 2l(c.pi-l) + 4, i 2:: 2 

f(j) E {-3,-2,-1,0} 
E {2l(c.pj) - 1, 2l(c.pj)} 
= {2l(c.pi) - 1} 

if O = l(c.pj) 
if O < l(c.pj) 
if l(c.pj) = l(c.pi) 

for all i,j E {1, ... , N}. As an example consider fig. 5.13 for the grid 
in fig. 5.10, where for each node 'Pi separately the corresponding piece 
of the row is shown in a table, taking g(i) = 1 for all i for simplicity. For 
instance, fig. 5.13 shows in row 15 that node c.p1s is coupled to nodes c.p1, 
c.p2 and c.p3 of level 0, to node c.p4 of level 1, etc. 

The length of the coupling sets of nodes of level zero is typically 5 
for a uniform coarse triangulation of the unit-square. In order to see this 
consider e.g. [3] or fig. 5.15 where the vertices are numbered from 
bottom to top in a left to right manner. The nodes with 9 couplings 
have only 4 couplings with nodes of lower number and are coupled to 
themselves. Hence, if the scalar 4 in the definition of g of the map M 
is changed to 5, and if the level of all nodes of a standard nodal base is 
set to zero, then this storage scheme can also be used for standard nodal 
basis functions. 

The advantage of the special scheme is that for created nodes c.p i, 
'Pi checking whether (i,j) E J only involves at most one 'if ... then' 
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instruction contrary to at most log2 IC(<pi)I of such instructions in the 

ordinary case. The disadvantage is that IM(J)I > I.M(J)I = IJI but one 

can consider the computing speed gained more important than the loss 
of some computer memory. 

The number of possible non-zero entries of the matrix resulting from 
the discretization is for N(k) = N/> equal to 

N(k) 

IJI = IJkl = 2 · L IC(<pi)I - N(k) =: 2Ek - N(k) (5.6.1) 
i=l 

according to the definition of C. Therefore J is determined by Ek, 

Theorem 5.6.1 If the initial coarse grid is as shown in the first picture 
of fig. 5.14 then 

• after k successive uniform newest vertex bisection refinement 
steps shown in fig. 5.14 

for some scalars Ci independent of k. 

• after k successive newest vertex bisection refinement steps around 
the corner (0, 0) as shown in fig. 6.1 

N (k) _ { Jk if k even 
- 3 1 

2k - 2 elsewise, 

Ek = ¾ak2 + ¼02b - a)k 

limk->oo ~=¾a ⇒ Ek ~ ¾a(N(k))2, k-+ oo. 
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Proof. As there exist positive scalars a and bsuch that IC(cp)I .~ al(cp)+b 
for every node cp E V the number Ek is bounded by 

N(lc) N(k) 

Ek= L IC(cp;)I ~ L al(cp) + b 
i=l i=l 

k 

= L(N(i) - N(i-I))(ai + b) + bN<0> 

i=l 
k 

~ L(N(i) - N(i-l))(ak + b) + bN<0> 

i=l 

leading to IJI = O(kN<k>), k -)- oo. Now N<k) and Ek are determined 
for the two cases above. 

Note that the number of vertices after k steps of uniform newest 
vertex bisection of the unit-square is equal to the number of vertices after 
k / 2 steps of uniform regular refinement fork even ( compare fig. 5 .14 and 
fig. 5.15), so fork even the formula for N<k) is straightforward to derive .. 
For k odd the formula is obtained by taking differences from adjacent 
even levels. Then Ek is calculated exactly by taking the sum over the 
coupling sets as in (5.6.1). Note that fork even k = log2((~ - 1)2) 
leading to an asymptotic behaviour of Ek ~ aN<k) log N<k). · 

The formula for N<k) and Ek for the refinement around the ori
gin (0, 0) can easily be derived with the use of fig. 6.1. □ 

This theorem suggests that the upper bound O(kN) will be somewhere 
between O(N · log2 N) and O(N2) if the number of refinement levels 
k is not restricted. If it is bounded then the hierarchical matrix will 
have O(N) entries. For the newest vertex refinement method IC(cp)I ~ 
!Z(cp) +4 for all cp E F(Q)-F(Q<0>) and IC(cp)I ~ 4 for all cp E vo due 
to the regular numbering of the coarse grid leading to a = ! and b = 4 
in the theorem above. 

As far as the computation of an entry of the hierarchical matrix is 
concerned note that the matrix can be assembled nodewise in parallel. 
However, this can lead to memory bank conflicts because different nodes 
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may have common ancestors. An entry related to a coupling of two nodes 
of equal level can be computed with the use of an element matrix as 
usual in finite elements, the fast factorization method proposed in [ 6] 
may be used to this end. Note that an advantage of using a hierarchical 
matrix is that one only needs to assemble the part of the matrix related 
to the new basis functions J="(Qt>) - :F(Qt-1\ after the grid Q<k-I) 

has been refined, in the case of a Laplacian tensor where the tensor e is 
elementwise constant on the coarse grid Q<0>. 

Matrix vector multiplications can be performed using the parent 
function P without the map M and they do not involve checks on J. 
A sparse incomplete Gaussian or Cholesky factorization such as that 
proposed in [13] is easy to construct for the special storage scheme. 

5.7 Block decay rates 

In this section it is shown that the block parts Hp,q of the hierarchical 
matrix H, containing the entries of coupled basis functions of levels p 
and q, have entries decaying in absolute value for IP - qi ~ oo. To this 
end let IL'::.I measure the largest edge of a triangle f::. E Q and define the 
grid size parameters h(k) := max6 er<1c>{IL'::.I}. One then can prove the 
following lemma. 

Lemma 5.7.1 For the newest vertex bisection respectively the regular 
refinement 

(5.7.1) 

Proof. Consider for given f::. E Q its four newest bisection similarity 
classes of children as is shown in fig. 5.5. By an induction argument it 
follows that triangles of classes 1 & 4 can only be refined into children 
of classes 2 & 3 and vice versa whence IL'::.I = ½IP2(!:::.)I yielding the 
desired result The relationship If::. I = ½IP ( f::.) I for the regular refinement 
as shown in fig. 5.15 is obvious. □ 

Note that the above result implies that all triangles in class 1 & 4 and 2 
& 3 are of even level respectively odd level. Further, for each triangle 
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6. E Q with vertices (x1, y1), (x2, Y2) and (x3, y3) there exists an affine 
transformation 

[ xl = [x2-x1 X3-x1] [~]+[xi] =:F1::,.[~]+[x1] (5.7.2) 
Y Y2 - Yl Y3 - Yl Y Yl Y Yl 

mapping the reference triangle defined by A = { (x, y): x + y < 1, x > 
0, y > 0} onto 6.. Given a basis function on the b., the corresponding 
local finite element basis function <.pr on 6. is defined by <.pr(x, y) = 
<{)r(x, y) using (5.7.2). Proceeding this way, for every node <.pi E V 
and 6. E Q either there exists a local basis function c.pr on 6. such that 
<.pi = c.pr on 6., or <.pi = 0 on 6.. The formulas for the grid parameters and 
the definition of the local basis functions above enable the computation 
of bounds on the partial derivatives of these local basis functions. To 
this end define the Frobenius norm for an n by n matrix A by 

n 

IIAIIF := ( L a;;)l/2 
i, j=l 

and the uniform pointwise partial derivative bound on the reference 
element by 

Coo:= max sup {IV<j;r(x,y)I}. 
r (x,i))EL!. 

For the sake of simplicity an isosceles triangle 6. E Qk is a triangle 
such that Det(F1::,.) = (h<k>)2 and l/i;I ~ h<k>. 

Lemma 5.7.2 For all 6. E Qk and all <.pr, c.p 8 defined on thereon 

l~<.psTVc.pr)(x,y)I ~ ½IIF.C:111~ · (IV<j;rl2 + IV<j;sl2) ~ c~IIF.C:111~ 
for all points (x, y) in 6.. If additionally 6. is isosceles then for all (x, y) 
in 6., IV <.pr(x, y)I ~ 2c00 • (h(k))-1. 
Proof. Note that a partial derivative in the i-th direction of a basis 
function <.pr is equal to the inner product of column i of the inverse E 
of the Jacobian matrix of Ft::. with the column containing all derivatives 
of the corresponding reference basis function <{)r, i.e., 

8c.pr = 8<pr ax + 8<pr a,g = [ e11 l T [ fi l 
ax ax ax a,g ax e21 !gr c5.7.3> 
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whence 

O'{)r O'{)s O'{)r O'{)s 
---+----ox ox oy oy 

implying that 

l{VcpsTVcpr)I S IIEll~IVcprllVcpsl S ½IIEll~{IVcprf + IV'Psl2) 

s c~,IIEII~ 

leading to the first part of lemma 5.7.2. For isosceles triangles 6. E Q 
by definition Det(F~) = 2 • Area(6.) = (h(k))2 and Iii; I S h(k) leading 
to lei; I s (k<k))-1 and IIF~1 II~ s 4(h<k))-2 yielding the desired result. 

□ 

Now, investigate the magnitude of the entries of the hierarchical matrix. 
As before, assume that the nodes are numbered in such way that lower 
level nodes have lower numbers. This leads to 

Theorem 5.7.1 Assume that all triangles in Q, obtained with the newest 
vertex bisection refinement, are isosceles and assume that piecewise 
linear hierarchical finite element basis functions are defined on the 
vertices created. If node '{)i E :F of level p is coupled to a node cp i E 
C(cpi) of level O sq s p then 

[H]ij =a kV '{)jTv I.Pi dx + (3 k '{)j'{)i dx 

s48a · h(p)(h(q))-1 + ~(3(h(p))2 

(5.7.4) 

for all positive scalars a and (3. For piecewise quadratic hierarchical 
basis functions a similar result holds. 
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Proof. Assume 'Pi E C(cpi), l(cpi) = p ~ q = l(cpi) and (3 = O. Note that 
the integration over the domain Q is reduced to the integration over all 
triangles L within the set B'f'i, so consider first the contribution to [Hlii 
from the integration over one of the triangles L. Because cp i E C ( 'Pi), 
there exists a triangle '6.2 E Br.p; such that 6 c '6.2. As 'Pi is defined at 
one of the vertices of '6.2, its restriction to L is a linear combination of 
the local basis functions cps defined at L 

8 

Analogously there exists a number r such that 'Pilb. = 'Pr, whence for 
an arbitrary point x E L 

1
1 v cp i Tv 'Pi dxdt I = J t <p ;(N.)'<J 'I'• Tv 'Pr dxdt 

b. b. s=l 

3 

= 1 L)'Pi(N8 )- 'Pi(X))Vcp8 TVcprdxdt +O 
b. s=l 

3 

:', ~ l(<p;(N.)- <p;(x))l • l.l "'I'• Tv 'Pr dxdtl 

3 

= ~ l<N. - x)T'<J <p;(x)I · l.l "'I'• Tv 'Pr dxdtl 

3 

~ h(p). CoollF,;:; IIF L 11v 'Ps Tv 'Prl dxdt 
s=l b. 

3 

~ Cooh(p)IIF,;:; IIF L fz c~IIF,;:1 ll~IDet(F b.)I d~ 
s=l b. 

~ ~c~h(P) • IIF,;:; IIFIIF,;:1 ll~IDet(F b.)I 

because the basis functions are linear and the reference element matrix 
A 

A=½[;: 11 ~l [AJ,. = [ vv,;vv,rdx 
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has zero row sums. If all 6 E Q are isosceles then 

because of lemma 5.7.2, whence for the newest vertex bisection refine
ment 

since IBe;,; I $ 4 for all nodes 'Pi E V and c00 $ 1 for the local linear 
finite element basis functions. For discretizations with /3 =I O note that 
for piecewise linear basis functions there exists r, s such that 

because of the reference element matrix 

Note that analogous results are valid for other than piecewise linear basis 
functions and other grid refinement methods. In the regular refinement 
case similar results can be obtained. □ 

For the Dirichlet equation on the uniform refined unit-square many 
entries corresponding to couplings in the sparsity pattern are zero which 
is explained for the case of piecewise linear basis functions by 

Theorem 5.7.2 Let node 'Pi E F be coupled to node node 'Pi E F. If 
p(<pi) = 2 and De;,; C l::..for some 6 E Bcp; then 

for the newest vertex refinement method. 
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Proof. Note that for the newest vertex bisection refinementJriangles of 
classes 1 & 4 can only create children of classes 2 & 3 and vice versa. 
By an induction argument it follows that the two parents must be of the 
same similarity class whence the affine transformation of one of them 
maps the union of both onto the unit-square, and maps 'Pi to a node <p 
piecewise linear on the unit-square and defined at point ( ½, ½ ). This node 
has value 1 at the center of the unit-square, vanishes at its boundary, and 
is linear on all 4 triangles bordered by the unit-square and the lines y = x 
andy = 1- x. 

For both directional derivatives, the integral over the unit-square 
of this piecewise linear node is equal to zero This is easy to verify, 
taking into account that the restriction of <j; to the four triangle parts 
is 2y, 2(1 - x), 2(1 - y), and 2x respectively. The above mentioned 
mapping applied to the function cp; leads to a piecewise linear image 
on the unit-square. As this image has a constant gradient, the theorem 
above follows. D 

5.8 The C.-B.-S. scalar for the Laplacian equation 

In section 5.5 it has been shown that frequently used grid refinement 
techniques lead to a hierarchical matrix with a structured sparsity pat
tern. However, in order to exploit this sparsity pattern structure for the 
construction of efficient multi-level preconditioners, the grid refinement 
techniques considered must satisfy additional conditions. For the regular 
refinement method these criteria, related to the angles in the grid under 
consideration, have already been studied in the literature (see below), 
but for the newest vertex bisection case very little seems to be known. 

For the sake of completeness therefore, this section will quote 
well-known estimates for the regular refinement method and will de
rive analogous results for the newest vertex bisection case. Considered 
are angle bounds and the computation of the grid geometry dependent 
Cauchy-Buniakowskii-Schwarz scalar 12• This latter scalar determines 
the rate of convergence of algebraic multi-level preconditioners as con
sidered in [7] and [8]. As is well-known, the angle bounds are of great 
importance for the determination of the discretization error. In order 
to obtain reasonable discretization error estimates the angles should be 
bounded below and away from 1r. 
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First consider the role of the scalar , 2• Discretizing a linear partial 
differential equation using finite element basis functions defined on an 
underlying grid geometry leads (see section 5.9) to a system of linear 
equations 

(5.8.1) 

where the matrix and vector representation depend on the type of finite 
element basis considered. Suppose a two-level hierarchical base (see 
[7], [8], [11] and [20] for multi-level methods) is used whence, due to 
the two-level block structure, the system can be written as 

(5.8.2) 

where 
• Ak is the matrix representing the Laplacian operator on the finite 

element basis defined standard nodally on V(Q<k>). 

• H k is the matrix representing the Laplacian operator on the stan
dard nodal finite element basis on all vertices of V(Q<k-l)) and 
hierarchically on v<k>. 

• h is the transformation matrix representing the identity operator 
from the hierarchical to the standard nodal basis as defined above. 

• Xk and bk are the solution and data vector. 
The solution of the system H kX k = bk above is split into two parts (see 
also [2], [4], [10] and [25]) by the static condensation of the hierarchi
cally defined nodes 

Sk-1X1,k = b1,k - H12,kH22\x2,k 

X2,k = Hii\(b2,k - H21,kX1,k) 
(5.8.3) 

where the Schur complement Sk-l = (Ak-l - H12,kHn~kH21,k) is a 
dense matrix in general. The rate of convergence of a PCG method for 
the solution of the first equation in (5.8.4) with Ak-l as a preconditioner 
depends on the C.-B.-S. scalar O < , 2 < 1 determined by 

(5.8.4) 
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for all x E RN,. with x E K er.L(Ak-d, and since the latter inequality 
is trivially satisfied (see [7]). Due to 

(1 - -y2)Ak-1X = Sk-lX {:} (H12,kH;_\H21,k - ,y2 Ak-1)X = 0 

the scalar , 2 is equal to 

max{..\ ER: {O} =/ Ker(B) C Ker.L(Ak-1)}, (5.8.5) 

where B = H12,kHi.i~kH21,k - ..\Ak-l• An upper bound is given by 
, 2 ~ ma{~eQ{,iJ, where ,i for all triangles 6. E Q is computed 

with the use of (5.8.5) (see e.g. [7]). The scalar , 2 is in fact a measure 
of the cosine of the angle between the span of the nodal and hierarchical 
basis (see [4]). As it depends on the finite element basis functions used it 
will be denoted by ,f and ,: in the linear resp. quadratic case from now 
on. First , 2 is considered for the well-known case of regular refinement, 
thereafter it will be computed for the bisection case. In order to simplify 
future notations ( (, o, /3) will denote a triangle with angles (, a and /3 
oriented counter-clockwise and the first angle ( corresponding to the 
newest vertex. 

Lemma 5.8.1 Consider a triangle 6. E Q with angles a, /3 and(. For 
the Laplace equation the regular refinement of this triangle in the linear 
resp. quadratic case leads to 

2 3 2 
11 = 4,q, 

where d = cos2 a+ cos2 f3 + cos2 (. 

(5.8.6) 

Proof. See [25] for the linear and the quadratic case. Note that in the 
linear case , 2 always is bounded below 3/4. □ 

Theorem 5.8.1 Consider a triangle 6. E Q with angles a, /3 and ( 
the angle to be bisected. For the Laplace equation the newest vertex 
bisection of this triangle in the linear resp. quadratic case leads to 

~ 2 
2 l (a+ /3) 

TI =22 ~2 /3~2• +a+ 
2 { 1 2 2} 'Yq =max 2,11,'Yc (5.8.7) 
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where 

2_ 1 (a+fe)4 a 2 +afe+fe2 +3 

'Ye - 2 (a2 + fe2 + 2)2 + 4(&2 + l)(fe2 + 1) &2 + afe + fe2 + 1 

~ ~ 
and a, /3 and ( denote the cotangents of the corresponding angles. 
Proof. Suppose that a triangle !:,. E Q with nodes { '-Pr }:=l is bisected 
such that q additional hierarchically defined nodes are created and define 
the corresponding hierarchical Laplacian element matrix H by 

H-[A - H21 
(5.8.8) 

where Hrs := f 1 V 1.p;V '-Pr for all r, s = 1, ... ,P + q. Note that for a 
node defined linearly resp. quadratically on !:,. its restriction to a child 
will also be linear resp. quadratic and hence is a linear combination of 
the childs nodes. Therefore all entries of H can be computed with the 
use of linear combinations of the standard nodally defined block A. 

Further, suppose that the angle ( is bisected into angles 81 and 
82 such that children (81, a, €1) and (82, €2, /3) are created (see fig. 5.1). 
Let the tilde accent ,~, denote the cotangent corresponding to each angle 
and note that 

(5.8.9) 

because the cotangent is a strictly decreasing function on (0, n) with 
properties 

cot(n - x) = - cot(x), ( ) cot(x)cot(y)- 1 
cot x + y = -----

cot(x) + cot(y) 
(5.8.10) 

for all x, y E (0, n). From now on the linear and quadratic case will be 
considered separately. 

If linear basis functions are used the newest vertex bisection of ( 
will create one new node, leading to the 4 by 4 matrix 

[ 

ea+ P) 
H= ! -P 

2 -a 
-(a+ /3) 

-fe 
<P +_C) 
-( 

fe 

-a -(ii+ ,8) ] 
-( 

(ii+,8:ii,+ii,) 
cc +a) 

a 
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Here the rank of H22 equals one, which implies the existence_of exactly 
one generalized eigenvalue A satisfying the condition above. Because 
matrix A has exactly one eigenvector [ 1, 1, 1 f corresponding to the 
eigenvalue 0, the condition C K er.L(A) requires the transformation of 
H12H;1 H21 - AA onto a basis which enables the elimination of this 
eigenvector. Then T-1(H12Hi;} H21 -AA)T, the transformed problem, 
is solved, where in this case the orthonormal matrix 

[ 

1 1 
v'3 ~ 

T= 0 0 
1 1 

v'3 -72 
transforms the standard basis to the basis ((1, 1, 1), (0, 1, 0), (0, 0, 1)). 
Note that, by construction of this transformation, the transformed matrix 
has first row and column equal to zero, whence a 3 x 3 minor system 
is left to be solved. This system obviously must have two eigenvalues 
equal to zero, because the rank of H 22 is equal to one, and it appears to 
have a third generalized eigenvalue 

2 &+~ 
'YI = ~ ~ ~ • a+ f3 + 81 + 82 

In order to check whether 0 < ,r < 1, the relationships (see also 
Mitchell [28]) 

sin(a - (3) 
cot(e1) = 2 . ( ) . (/3) , e2 = 1r - e1 sm a sm 

lead by (5.8.10) to 
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'fhe substitution of these latter relations into the previously obtained 
formula for ,f will yield the formula as given in the theorem. 

In the case of quadratic basis functions defined on the three 
vertices and the midpoints of the three edges of the parent, the newest 
vertex bisection leads to the creation of three new nodes (see fig. 5.14). 
Here His the 9 x 9 symmetric matrix with blocks A (see [3]), H22 given 
by 

3(5 + ,0) ,0 a 0 -45 -41?_ 
,0 3(,0 + () ( -4( 0 -4/3 

1 5 ( 3(( + _5) -4( -45 0 -
-8,0 3 0 -4( -4( 8do -85 

-45 0 -45 -8,0 8do -8( 
-4,0 -4,0 0 -85 -8( 8do 

~ [d1_~~2 
3 ~ 

-€2 

and 3H12 = 3Hfi defined by 

-3(5 + ,0) 0 0 
-(5+,0+81 +82+4i1) 
-(5 +,a+ 81 + 82 + 4i2) 

-2(5 + ,a - 61 - 62 + 2i1 + 2i2) 

35 - 61 + 4i1 
-(5 + 81) 

65 + 361 + 6i1 
-4€1 

-(,0 + 82) 
3~ - ~2 +4t2 
6/3 + 3<52 + 6t2 

-8,0 + 4i2 4(5 + ,0 + 81 - 82 + €I + €2) 
4(5 + ,a - 81 + 82 + i1 + i2) -85 + 4i1 -4€2 

where do= 5+,0+(, di = 5+61 +i1 and d2 = ,B+b2+i2. The substitution 
of the expressions derived for l 1, i2, 61, 82 into the elements of the 3 by 
3 block H22 leads to 

showing that this block is invertible and of rank 3 for all angles 0 < 
a + /3 < 1r, whence there may be at most three generalized eigen
values A which satisfy H12H:;,:} H21 - AA = 0. Matrix A has an 
eigenvector [ 1, 1, 1, 1, 1, 1 f corresponding to eigenvalue 0, so in this 
case T will transform the standard basis into the basis ( (1, 1, 1, 1, 1, 1 ), 
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(0, 1, 0, 0, 0, 0), ... , (0, 0, 0, 0, 0, 1)). Then T-1 (H12H2;_1 H21 - ,\A)T 
is a 6 x 6 matrix with first row and column equal to zero, so ,\ can be 
determined by computing the determinant of the remaining 5 x 5 minor, 
factorizing it, setting it equal to O and solving the equation thus obtained 
for ,\. This yields two eigenvalues 0, as to be expected, and exactly the 
three positive eigenvalues mentioned in (5.8.7). □ 

In contrast to the regular refinement, where the scalar , 2 is a function of 
the sum of the squares of the cosines of the three angles of the triangle, 
in the ne,,est vertex bisection method this is not the case, as is shown 
by 

Theorem 5.8.2 For the newest vertex bisection refinement of a triangle 
with an angle ( E (0, 1r) to be bisected 

(i) 'Yf and,: do not depend on the parameter d = cos2 a+ cos2 /3 + 
cos2 ( as they do for the regular refinement. 

(ii) 'Yf is a function of ( satifying 

0 < min{½,sin2(½O}::; ,f(()::; max{½,sin2(½O} < 1 

for all ( E (0, 1r) and hence is bounded away from O and I 
independent of the other angles. 

(iii) ,: is bounded away from 1 by 

3c2 

0 < ,; < 3 2 4 1 < 1 Vo<a+fJ<rr 
C + c+ 

where c = ¼(cot(a) + cot(/3))2• 

Proof. First consider (i).Note that for a triangle <¼1r, ½1r, ½1r) d = 1 and 

,f = 1~ but that for ( ½1r, ½1r, ¼ 1r) d = 1 and ,f = fo. In the quadratic 

case for the triangle (½1r, ¼1r, ¼1r) d = 1 and,:= i but for <½1r, ½1r, ¼1r) 

d = 1 and ,: = 1~ . 
Now consider (ii). For each triangle((, a, /3) with ( E (0, 1r) and a ::; /3 
there exists a positive angle e E [0, ½{1r - ()) such that 
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Here t is a measure for the deformation of the triangle, which will be 
isosceles fort= 0 and degenerated to a line when t reaches ½(1r - (). 
For a > /3 reverse the roles of a and /3. 

The substitution of the relations a = cot(½(1r - () - t) and 
/3 = cot(½(1r - () + t) into (5.8.7) and setting 

{ ( E (0, 7r) x = cos2(½(1r - ()) :::} x E (0, 1) 

t E [0, ½(1r - ()) y = cos2(t) :::} y E (x, 1) 

yields the formula 

2 x(l-x) 
TI = X + y(l _ 2X) V xE(O,l),yE(x,l). 

An investigation of this formula in order to determine its minimum and 
maximum in y for a given x, shows that for all x E (0, 1) the denominator 
will be positive and a linear function of y. For x E (0, ½>, ,r will be a 
decreasing function of y, whereas for x E ( ½, 1) ,r will be an increasing 
function with respect to this argument. For X = ½, ,r = ½, independently 
of y. Therefore, in the first two cases the bounds are provided by -the 
extreme values y = x and y = 1 corresponding to a triangle degenerated 
to a line and an isosceles triangle, leading to 

min{ ½, x} $ ,f $ max { ½, x} . 

Finally the substitution of x = cos2(½(1r - ()) = sin2(½0 yields the 
desired result. In the special case where ( = ½1r 

"V,2(_21 -) = _21 u 
I " V0<0t+/3<1r 

for all other angles a and f3. 

Fora proof of (iii) note that the formulas in (5.8.7) are symmetric in a and 
/3. In order to eliminate the cross terms a/3 in these formulas substitute 
the following transformation to the axis of symmetry a - /3 = 0 

[a] r:. [ 1 ] t= [ 1 ] . [ c] 1 [ ( a + /3>2 ] /3 = v c 1 + v x _ 1 with x = 4 (a _ /3>2 
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yielding for all x, c E [0, oo) 

2 - C C 
0<,, (ci, /3)= l ~-1 - < 1 

+x+c +c 

0 2c- /3-) (3 + X + 3c)c2 l 3c2 1 <, a, ----------c-------=--eq-:,---< 
c (1 + x + 3c)(l + 2x + x2 + 2c + c2) 3c2 + 4c + 1 

because both ,r and,: are decreasing functions of X on [0, 00) for fixed 
c, which attain their maximum at x = 0. □ 

The scalars ,i now can be computed for arbitrary ,6 E Q leading 
to a bound for the C.-B.-S. scalar , 2 as below (5.8.5). For the newest 
vertex bisection refinement method the maximum over all triangles can 
be replaced by the maximum over 4Qo triangles because of the fact that 
each coarse grid triangle has exactly four similarity classes of children, 
as is shown in fig. 5.5 (fig. 5.1 shows the congruent children for the 
first red regular refinement). For an arbitrary ,6 E Qo given by ((, a, /3) 
these four classes of children defined by eight different angles are (see 
fig. 5.6) 

The C.-B.-S. scalar upper bound therefore can be computed for an 
arbitrary refinement by considering only the coarse grid triangles, see 
section 5.9 for an example. Due to the similarity class property also 
the angle bounds only depend on the coarse grid geometry whence a 
properly chosen coarse grid automatically avoids bad angles. 

5.9 Numerical examples 

This section presents the local grid refinement and interpolation between 
subsequently refined grids in order to introduce a solution method for 
non-linear time-dependent differential equations. Further, investigating 
some examples, it is shown that the sparsity pattern is structured in 
the case of local grid refinement. Finally, at the end of this section, the 
C.-B.-S. scalar is computed for some example triangles. 
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First, consider the numerical solution of a time-dependent equation, 
using the global time-space finite element technique as presented in 
chapters 1 and 2. As an example, but without loss of generality, look at 
the following problem. Find u E H~(Q), such that 

Ut - Uxx = f in Q 
u = ' atro 

for smooth boundary data , on ro = r 1 u r c and source function f, 
where , prescribes the initial value function u0 as well as the Dirichlet 
boundary value conditions Uc. In order to solve this problem, let for 
a given grid Q;k), V(Qt)) denote the set of vertices of this grid and 

let rl(Q;k)) denote the span of the hierarchically or standard nodally 
defined finite element basis functions defined on these vertices. Further, 
define the set of trial functions 

Searching for a discrete solution u;~i in rl-y(Q;k)) implies that the Dirich
let boundary conditions are only approximated if the function , is not 
elementwise linear, or, in the case of higher order finite element ba
sis functions, piecewise polynomial of higher order. This is referred to 
by variational crime by Strange and Fix in [36]. 

For a given grid refinement technique and interpolation between sub
sequent grids, the regridded damped inexact Newton iterative method 
RDIN is given by the following solution algorithm 

k = 0; j = 1 
Whilej :s; J 
Do 

While k :s; K; 
Do 

Construct grid Qt); 

Construct interpolant u;~i E rl-y(Q;k\ 
Find u<.k) such that F(ft(_k)) = 0 

J,h J,h 
with Newtons method, 
using u;~i as start approximation; 
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Od 

k := k + 1 
Od 
k := 0 
j := j + 1 

for a given total number of time-slabs J and a given maximal level of 
subsequent grid refinements K i per time-slab, chosen to be uniformly 
equal to K in order to simplify the algorithm. The construction of the 
grid and interpolant can be found below, the Newton method is discussed 
in section 8.2. 

The construction of the grid and interpolant in the algorithm above 
is defined with the use of the newest vertex grid bisection refinement 
technique such that for all k ~ 0 and j ~ 1 by definition 

• Initially, when k = 0 and j = 1 then Qi0> is taken to be the initial 

coarse grid and u~0~ is taken to be a provided initial coarse start 
approximation in 1-{.y(Q<0>). 

• If k > 0 and j ~ 1 then there are several possibilities to con
struct a new grid Q;k> applying grid refinement to the grid Q;k-t). 
For the sake of simplicity only three possibilities will be distin
guished. 

• In the case of uniform refinement every triangle in Q;k-1) 
is refined. 

• In the case of line refinement all triangles without children 
in the grid Q;k-l) intersecting a predetermined line are 
refined. This type of refinement can be applied in such 
cases where one knows the position of boundary or internal 
layers. One can analogously distinguish plane refinement 
in the three-dimensional case. 

• A third possibility is to make use of the previously com
puted discrete solution ut;;1>, called adaptive refinement. 

A triangle of the grid Q;k-l) is refined if and only if the 

discrete solution ut;;1> has too large error on this triangle, 
the local error being estimated by some error indicator. 
Here, in order to reduce to complexity of the solution al
gorithm, each triangle of grid Qt-1> is refined if on this 



156 On finite element matrices 

triangle Iv x,tut;:l)(x, t)I > c, where C isa predetermined 

positive scalar. In order to be able to correct the possibly 
bad predictions of this simple error estimator, the adap
tive refinement is combined with adaptive derefinement. 
This means that every group of simultaneously created 
triangles on previous grids Q;s>, 0 ::::; s < k, without 
own children, will be deleted if on this group of trian-

gles Iv x,tut;:l)(x, t)I ::::; c. 

After the grid refinement, the interpolant u;7} E rl(Q;k>) is 

given by uj7} = z<k>ut;: 0 , where the interpolation functional 

z<k>: r{,-y{Qjk-I>) 1-+ r{,y{Qjk>) is defined by 

{ 
(I<k>u)(x) = u(x) if X E V(Qjk-I)) 

u(x) if X E V(k) I\ X E Q - ro 
1 (x) if X E V(k) I\ X E ro 

for given function u E 1{,,y{Qt-0 ). Note that this definition is 
independent of the finite element basis used. 

• Having completed the computations on a previous time-slab, i.e., 
in the case where k = 0, but j > 1, an initial coarse grid Qj0> for 
the new time-slab is constructed by reflecting the grid obtained on 
the previous time-slab along the grids upper boundary r3 and by 
deleting all triangles which have no vertex at this line. Further, 
the new interpolant Uj~~ E rl,(Qj0>) is by definition equal to 

the previous discrete solution uj7-;:1> at the remaining reflected 
vertices pointwise, except on those vertices lying on a r c• At 
such vertices the interpolant takes the exact value of the Dirichlet 
boundary condition function 1 . Note that any a priori knowledge 
concerning the discrete solution on this time-slab can be used to 
improve this interpolant and grid constructed. 

Summarizing, if one uses the RDIN algorithm for the global time-space 
finite element solution of a non-linear partial differential equation, one 
has to specify 

• the initial coarse grid Q<0> and initial approximation u}0>. 
• the type of grid refinement, and the threshold c for the error 

indicator, if adaptive refinement is used. 
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• the non-linear Newton solution method. 
Note that the weighing and streamline upwind finite element methods 
as proposed in the chapters 2 respectively 3, are only of influence for 
the assembly of the systems of linear equations to be solved within the 
Newton solution method. The grid refinement technique is not dependent 
on the type of finite element basis functions used. 

Table 5.9.1 The uniformly refined unit-square. 

k IT(k)I IQ(k)I n(k) N(k) Ek (H) Ek (N) 

0 2 2 4 4 14 14 
1 4 6 1 5 23 21 
2 8 14 4 9 59 41 
3 16 30 4 13 115 69 
4 32 62 12 25 279 137 
5 64 126 16 41 575 249 
6 128 254 40 81 1319 497 
7 256 510 64 145 2775 945 
8 512 1022 144 289 6151 1889 
9 1024 2046 256 545 13031 3681 

Now two example partial differential equations will be studied. For the 
first equation, the sparsity pattern of the resulting finite element matrix 
will be studied in detail, both for the hierarchical and the standard nodal 
basis. For the second equation, where streamline upwind finite element 
basisfunctions are used, the sparsity pattern is only considered for the 
standard nodal basis. For this problem, the functioning of the regridding 
will be demonstrated in detail. 

The first equation is the Dirichlet equation, given by 

-6.u =OinQ 

u = 1 at ro (5.9.2) 

for smooth Dirichlet boundary data 1 , taken from the span 

S = [l, x, y, xy, x 2 - y2, x3 - 3xy2, y3 - 3yx2 , x3 y -y3x]. (5.9.3) 

Here the unit-square will be refined using uniform newest vertex grid 
refinement starting from an initial coarse grid Q(O) as in the first picture 
of fig. 5.14. 
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Table 5.9.1 gives for Q<0> to Q<9> an overview of the elementary 
parameters, all defined in section 5.2 to section 5.6. The parameters 
depending on the type of finite element basis used are followed by '(H)' 
or '(N)' to distinguish between the hierarchical and standard nodal base. 

For this example, taking the Dirichlet boundary condition 

'Y =100 · {-17 · (x3y - y3x) + 13 • (x3 - 3xy2 ) - 11 • (y3 - 3yx2) + 

~(x2 - y2) - !_xy + 2-x - !_y - 1} 
10 10 10 10 ' 

figure 5.16 shows Q<10> and fig. 5.17 gives the isoclines of the solution. 
Then fig. 5 .18 and fig. 5 .19 present the sparsity pattern for a hierarchical 
resp. standard nodal basis on this grid geometry and figs. 5.20, 5.21 show 
the sparsity patterns subset of couplings corresponding to the non-zero 
matrix entries. In these pictures, those couplings (i,j) E J satisfying the 
conditions on hi; are plotted in such a way that (1, 1) is situated in the 
top-left comer, and (N, N) in the bottom-right comer. The horizontal 
and vertical lines show the block structure of the hierarchical matrix H, 
only serving reference purposes in the standard nodal case. The subsets 
of couplings related to positive matrix entries can be found in figs. 5.22 
and 5.23. 

In the hierarchical case, according to theorem 5. 7 .2, many entries 
are zero, which is demonstrated in fig. 5.20 and proved in theorem 5.7.2. 
Some off-diagonal entries are positive contrary to the standard nodal 
case. In the standard nodal case all nodes have by definition level O but 
they are numbered according to the corresponding vertices which are 
still of different levels. Fig. 5.21 shows that the upper left submatrix of 
the standard nodal matrix tends to become diagonal for k -+ oo, since 
nodes of lower level get de-coupled due to the uniform refinement. 

The set S is a special set, its first seven elements span exactly the set 
of all harmonic polynomials of degree less than four. This implies that 
the solution of the Dirichlet problem is equal to the Dirichlet boundary 
condition 'Y on the whole unit-square. Now, suppose that a uniform 
m x m isosceles initial coarse triangulation is covering the unit-square. 
Assume that for given 'Y, one of the in section 8.2 described iterative 
solution methods is used for the solution of the resulting systems F~d k = 
-Fk. Then, for all O < k ::; 10, m ::; 5, and initial starting solutionx<0> = 
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, pointwise equal at all vertices of QCO), 

- [dk,1] - [o] II (1) II -dk - dk,2 - * and X - , oo,QCkl -0, (5.9.4) 

observed to machine precision. Here '*' denotes possibly non-zero vec
tor components, 

llull00 QC/cl = max {lu(x)I}, 
' xEV(Q<kl) 

and xCl) = ut) is the first iterand of the damped Newton algorithm. 
Interesting is thatdk = c-1(F'xC0) -F) exactly, i.e., all iterative solvers 
converge in one interation step. Here Ck denotes the pointwise ILU 
preconditioner for F'. This observation holds both for the standard 
nodal and hierarchical basis representation, which is remarkable since 
the pointwise factorization of F; is incomplete and F; is different for 
both finite element bases used. This property is not influenced by the 
way the nodes are numbered, as long as the node numbering reflects 
the levels of refinement. However, it is destroyed if the initial coarse 
triangulation is not isosceles. 

For the sake of simplicity, denote the Jacobian matrix Fl by H k and Fk 
by/ k· Inspired by the special class of Dirichlet problems above, substi
tuting (5.9.4) 

A ["k-1]· HA f Uk = A m kUk = k, 
Uk,2 

(5.9.5) 

which latter system of equations is equal to that presented in (5.8.2), the 
following recursive V-cycle multi-level preconditioner Ck is obtained 
to approximate the discrete solution Uk 

f k-l =f k,l - H12,kH22\<f k,2 - {H21,kllk-d) 

ito = Ho1fo 

Uk,2 = H;_1k(f k 2 - H21,kllk-i), 
' ' 

(5.9.6) 

since Ak-1 = Hk-1 in (5.8.2) for a multi-level hierarchical basis. Under 
the assumption Hk-lllk-1 = f k-I• the first line in the latter system 
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of three equations is equivalent to the first line in (5.8.3), whence for 
the special class of Dirichlet problems above, a half V-cycle sweep 
yields the pointwise exact discrete solution Uk, A V-cycle multi-level 
preconditioner converging in one step for problems of this class clearly 
must use the solutions Ui on all previous levels 0 $ i $ k. A little bit 
of algebra shows that leaving out the part between brackets in (5.9.6) 
leads to 

ck= [ c~-i ~:::] 0 [ n22~/H21,k ~] , (5.9.7) 

another recursively defined V-cycle multi-level preconditioner Ck, As is 
shown in [37], this preconditioner has a condition number of order O(k2). 

The second example to be considered is the time-dependent convection
diffusion equation given by 

{ 

AT 
-€Uxx +b v' x,tu = 0 

u(-1, t) = 1, u(l, t) = 0 
u(x, -1) = 1 
u(x, -1) = 0 

in - 1 < X < 1, -1 < t $ 00 

on - 1 $ t $ 1 
on -1 < x $ 0 
on 0 < x < 1, 

(5.9.8) 

where e = 10-4 and b = [-½1r cos(1rt), l]T. The equations solution has 

a shock, moving as a cosine in time, so that the grid Qt+1> is constructed 

from Qt> using the adaptive refinement with refinement threshold 4.0. 
The initial coarse grid is shown in fig. 5.24. 

The computed SUPG standard nodal finite element solution and its 
equidistant isoclines are shown in figures 5.24 - 5.39 for the first two 
time-slabs. The sriarsity pattern of the standard nodal finite element ma
trix related to Q/2> is plotted in figs 5.40, 5.42 and 5.44. In the case 

of Qi12> it is shown figs. 5.41, 5.43 and 5.45. In these examples the spar
sity pattern locally is very irregular but clearly globally structured. The 
finite element matrix H is not symmetric, but, for instance, figure 5.44 
seems to indicate that the subset of positive entries is symmetric. In all 
tests so far, the nodes of lower level have lower node numbers, as is 
required by relation (5.4.2). Note that on the second time-slab, on Qi0>, 
the sparsity pattern of the finite element matrix shows that nodes of 
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higher level exist. This is due to the regridding introduced at the begin
ning of this section. The remaining higher level grid points, after the 
construction of the grid Qi0>, have unchanged level. It would have been 
better to have set the level of all remaining nodes to zero, but the here 
followed approach is easier to implement. 

The figures 5.24-5.39 show that the grid refinement strategy only 
produces angles of ½1r and ¼1r, which is certainly not true for the regular 
refinement strategy used by Bank and Y serentant, and Deuflhard, see 
forinstance [23]. The under- and overshooting (see e.g. 5.37) on Qf6> is 
approximately 5 percent, decreasing with increasing time-slab number. 
On grid Qi16) on the second time-slab, it is in the order of a half percent. 
Note that the slabs 1 and 2 fit perfectly together as is demonstrated in 
the figures 5.32 and 5.34. 

Table 5.9.2 A locally refined grid. 

k N n(k) n(k,16) Ek iO 
0 8 8 8 72 58% 
2 21 3 7 189 68% 
4 65 32 15 585 76% 
6 72 4 27 648 78% 
9 136 30 85 1224 84% 

12 904 297 332 8136 87% 
13 1497 512 527 13473 88% 
16 6078 2382 2382 54702 88% 

Due to the recursiveness of the bisection algorithm presented in sec
tion 5.2, the refinement of a triangle of level k can create several nodes 
of level O ~ i ~ k. During the uniform refinement of Q(k) in the first 
example this is not the case, only nodes of level k + 1 are created which 
means that the sets of vertices v<i), 0 < i < k are not altered after the 
construction of Q<k>. This is different for the second example, where the 
sets v<i) can grow due to the refinement of triangles of level i ~ k as is 
demonstrated in table 5.9.2 in the fourth column. Here n<k,!6) denotes the 
number of nodes for given level n<k) after 16 levels of refinement. The 
percentage of non-zero matrix entries from the total number of entries 
stored in memory can be found in the last column of table 5.9.2. Note 
that the adaptive refinement and derefinement method works despite the 
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fact that the Dirichlet boundary conditions are never exactly satisfied, 
see for example the figures 5.24 and 5.25. 

Table 5.9.3 Parameters for problem (5.9.8). 

Q(.k) 
J 

T N Ne Nd #It 

1,00 6 8 8 0 0 
1,02 42 21 10 0 0 
1,04 186 65 32 0 1 
1,06 214 72 4 45 1 
1,09 492 136 62 3 7 
1,12 3506 904 538 16 26 
1,13 5880 1497 647 54 34 
1,16 24166 6078 2545 233 181 
2,00 274 92 0 5986 1 
2,04 410 135 27 0 3 
2,06 420 135 4 49 2 
2,12 3038 786 334 28 18 
2,13 7298 1862 1096 20 65 
2,16 30194 7594 3215 140 205 

As table 5.9.3 for the first two time-slabs shows, the computation of 
the discrete finite element approximation on each time-slab can be done 
efficiently if the RDIN solution method is used to this end. Since the 
error estimator presented is cheaply to evaluate, it leads to a cheap and 
effective adaptive refinement method. On most grids on every time
slab, the ratio of created and deleted triangles is about 15:1. Sometimes 
a refined triangle is derefined later on. The solution time for slab 1 grids 
1-12 is negligible compared to the time used for the solution of 13-16. 
methods used. 

In order to get an impression of the values ,i for some triangles, 
note that in the case of linear basis functions the four similarity classes 
mentioned in section 5.8 correspond to the C.-B.-S. scalars (see (5.8.7)) 

~ 2 2 ~2 ~ 2 
2 2 2 2 1 (& + /3) & + 1 /3 + 1 1 (&-/3) +4 

,1,1'2,1'3,1'4 =2 -2 42 2' -2 13~2 2' -2 42 2' 2 -2 42 2 
Q'. + /J + Q'. + + Q'. + /J + Q'. +p + 

-2 21 21 2 =1'1,1'2, -,2, -,1· 
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Table 5.9.4 Scalars ,f and,~ for the newest vertex bisection. 

/;:, \,f, ,~ 1 at Class 2nd Class 3rd Class 4th Class 

(1 1 1 ) I 3 I 3 I 3 I 3 r1r, r1r, 471" 2'8 2'8 2'8 2 1 8 
(1 1 1 ) I I I II I II 3 27 371", 371", 371" 4'8 2'28 2' 28 4 ,40 

(1 2 1 ) 
12 71"' 371"' 4 71" 0.268,0.00157 j,0.303 },0.668 0.973,0.977 

(2 1 1 ) 371", 12 71", 471" 0.661,0.680 0.882,0.873 0.118,0.305 0.337,0.206 

(1 2 1 ) 471"' 371"' 12 71" 0.306,0.166 0.0820,0.0130 0.918,0.938 0.649,0.774 

Table 5.9. i gives ,f and,~ for some example triangles ((, a, /3) with ( 
the angle to be bisected, computed with the use of (5.8.7). Note that,: 
can be found using the table and the relationship,: = max{½ ,f, ,n. 
According to table 5.9.4, in the quadratic case it is best to have a 
largest angle of approximately ½71" bisected which was already shown by 
lemma 5.8.1 for the linear case. Clearly the newest vertex bisection and 
regular refinement method arc well suited for multi-level precondition
ing methods which shows that the advantages of a simple sparsity pattern 
and multi-level preconditioning may be combined for the construction 
of a preconditioner which is considered in more detail in [26]. 

5.10 Conclusions 

• If the number of refinement levels k is not bounded then the 
total amount of possibly non-zero entries of a hierarchical matrix 
is bounded above by O(kN). In practice, one has the bound 
log N :s; k :s; N. If the number of refinement levels is restricted 
then the number of possibly non-zero entries will be O(N) as in 
the standard nodal finite element matrix case. 

• The techniques provided to determine upper bounds for the 
lengths of coupling sets can easily be extended to all grid re
finement techniques mentioned in the introduction, for higher 
order basis functions and for the case of more space dimensions. 

• Three-dimensional local bisection refinement is possible and well 
suited for the generation of finite element grids. 

• The simple recursive newest vertex bisection technique is well 
suited for multi-level preconditioning because the C.-B.-S. scalar 
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'Y2 which determines the rate of convergence is well bounded 
below 1 and only depends on the initial coarse grid. 

• Newest vertex bisection refinement can be implemented highly 
efficient and compact, even in a programming language which 
does not allow for recursion, like fortran-77. 
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Fig. 5.1 Regular red-1 type of grid refinement and angles created. 

Fig. 5.2 Support of the nodes created by regular refinement. 

Fig. 5.3 Regular red-2 and green type of grid refinement. 

• Newest Vertex 

Parent 

Base 
Newest Vertices 

Fig. 5.4 Newest vertex grid refinement and support of created node. 

Fig. 5.5 The four congruency classes created by the newest vertex bi
section. 
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13 13 

Fig. 5.6 The eight angles involved with bisection. 

1 4 3 5 2 

~-
Fig. 5.7 1-Dimensionalhierarchi
cal basis functi ms 1, 2, 3, 4, 5 
with levels 0, 0, 1, 2, and 2. 

First refine triangles 12 and 13. 

To this end, first refine 1 o and 11. 

0 0 

0 0 

Fig. 5.8 Level 2 newest vertex 
with a parent with two level Over
tices and one level 1 vertex. 

3 '2 
e 16 

• 14 3 

• 
Then try to refine triangle 17. 

Now, triangle 17 can be refined. 

Fig. 5.9 An example application of the newest vertex grid refinement. 
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Fig. 5.l0Arefinedgrid with num
bers and levels of all vertices. 

Fig. 5.11 Nodes 7, 5, and 8 have 
different paths. 

C(18) 

Level 7 6 5 4 3 2 o 

Fig. 5 .12 Graphs of coupling sets of the nodes 18 and 19. 

Node (row) i 

1 1 2 3 * 
2 1 2 3 * /1]\ Coupled with node (column) j 
3 1 2 3 * 
4 1 2 3 * 4 * 
5 1 2 3 * 4 * 5 * * No coupling 
6 1 2 3 * 4 * 6 * 0 7 1 2 3 * 4 * 5 6 
8 1 2 3 * 4 * 5 * 8 * 
9 1 2 3 * 4 * 6 * 9 * 
10: 1 2 3 * 4 * 5 * 7 * 10 * 
11: 1 2 3 * 4 * 6 * 7 * 11 * 
12: 1 2 3 * 4 * 5 * 7 8 12 * 
13: 1 2 3 * 4 * 6 * 7 9 13 * 
14: 1 2 3 * 4 * 5 6 7 * 10 11 14 * 
15: 1 2 3 * 4 * 5 * 7 * 10 12 15 * 
16: 1 2 3 * 4 * 6 * 7 * 11 13 16 * 
17: 1 2 3 * 4 * 5 * 7 * 10 * 14 15 17 * 
18: 1 2 3 * 4 * 6 * 7 * 11 * 14 16 18 * 
19: 1 2 3 * 4 * 5 6 7 * 10 11 14 * 17 18 19 * 
Level: 1 2 3 4 5 6 7 

Fig. 5.13 Storage of the sparsity pattern couplings (i,j) in J for all 
i,j = 1, ... , 19. 
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Level o, 4 nodes Level 1, 5 nodes Level 2, 9 nodes Level 3, 13 nodes 

Level , , 25 nodes Level 5, 41 nodes Level 6, 81 nodes 

Fig. 5.14 Uniform newest vertex refinement of the unit-square. 

Level 0, 4 nodes Level 1, 9 nodes Level 2, 25 nodes Level 3, 81 nodes 

Fig. 5.15 Uniform regular red-1 refinement of the unit-square. 

Fig. 5.16 The grid Q0°>. 

0 U U U U U M U ~ U I 

"'" 
Fig. 5.17 The FEM solutions iso
clines of (5.9.2) on Q0°>. 
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II 

' 11~1---+..-:-:-~-------;:;__=----'"""'! 
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• 
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• 
I 

Fig. 5.18 Hierarchical pattem(H). 

I 

ii 

Ii 

II 

' 
·•--..-:-:-~~---------;:;__=----.£."'! I 

• 
Ii 
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Fig. 5.20 Subset hi; =, 0 (H). 

I 

Ii 

II 

' 
11--1-+.---+----'!r---------1 
ii 

• 
Ii 

• 

Fig. 5.22 Subset hi; > 0 (H). 

I 

II 

II 
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lz.fil....l,.....\-,..!:.:.Jl...,_ _ _;,i.. __ ___.::.__:_-'"""I 

I 
Ill 

Ii 

II 

ll 

Fig. 5.19 Stand. nodal pattem(N). 

II 

II 

II 

' 
lz.ffl,...J,-,-h-b----~----=--=---~ 
I 

• 
Ii 

!! 

Fig. 5.21 Subset hi; =I O (N). 

II 

II 

II 

' 
11-1-+--+-----'l.---------f 
I 

• 
Ii 

II 

Fig. 5.23 Subset hi; > 0 (N). 
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·I -0.9 ·0.8 -0.7 ·0.6 -0.S -0.\ ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.24 The initial coarse grid Qi0> on the first time-slab. 

·I -0.9 ·0.8 ·0.7 ·0.6 -0.S ·0,\ ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.25 The isoclines of the SUPG solution on the grid Qi0> • 

.. 
9 

"l 
.,.9 

!~~-t-~---t---;11\:---t-~---1'---;ll\:--?t-~--t-----;ll 

; -----------------------
·I -0.9 ·0.8 ·0.7 ·0.6 -0.S ·O.\ ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 

X AXIS 

Fig. 5.26 The grid Qi6> on the first time-slab. 

·I -0.9 ·0.8 ·0.7 ·0.6 -0.S ·M ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.27 The isoclines of the SUPG solution on the grid Q~6). 
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·I -0.9 -0.8 -0.7 -0.6 -0.S -0.1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.28 The grid Qi12> on the first time-slab. 

·I -0.9 -0.8 ·0.7 ·0.6 -0.S ·0.1 ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.1 O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.29 The isoclines of the SUPG solution on the grid Qi12>. 

·I -0.9 ·0.8 -0.7 ·0.6 -0.S ·0.1 ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.1 O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.30 The grid Qi13> on the first time-slab. 

·I -0.9 ·0.8 ·0.7 ·0.6 -0.S ·0.1 ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.\ O.S 0.6 0.7 0.8 0.9 I 
X AXIS 

Fig. 5.31 The isoclines of the SUPG solution on the grid Q~13>_ 
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-1 -0.9 -0.8 ·O.? ·0.6 -0.S ·O.'t ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 O., 0.9 0.6 O.? 0.8 0.9 1 
X ,11(15 

Fig. 5.32 The grid Qi16) on the first time-slab. 

-1 -0.9 -0.8 -0.? ·0.6 -0.S ·O., ·0.3 -0.2 -0.1 0 0.1 0.2 0.3 O., O.S 0.6 O.? 0.8 0.9 1 
X ,11((5 

Fig. 5.33 The isoclines of the SUPG solution on the grid Qi16). 

0 

~ 

9 

Fig. 5.34 The initial coarse grid Q~O) on the second time-slab. 

-0.9 

~ 

9 

Fig. 5.35 The isoclines of the SUPG solution on the grid Q~0). 
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0 

~ 

9 

Fig. 5.36 The grid Qi13> on the second time-slab. 

~ 

9 

Fig. 5.37 The isoclines of the SUPG solution on the grid Qi13>. 
0 

~ 

9 

Fig. 5.38 The grid Qi16> on the second time-slab. 

~ 

9 

Fig. 5.39 The isoclines of the SUPG solution on the grid Qi16>. 



and locally refined grids 

Fig. 5.40 Sparsity pattern Qi12). 

iil1111tt-t:+---1,-c----'lr---''k---~""l,r-----""'i 

ii§ 

Fig. 5.42 Subset hi; =/ 0 for Qi12). 

-11 I tttttt-+-+--+----.-~----------j 

i!§ 

Fig. 5.44 Subs. hi; > 0 for Qi12). 
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!§11JH-4--'l--,..,....,\---"l.---c~----'k--~--
i! 

• • m • • • • OUIII""" J 

Fig. 5.41 Sparsity pattern Q~12). 

!§11H+l4-'lr.-'l.----"l,~-"k------"k----,-------'11/H 
ii 

. h =/ Qo2) Fig. 5.43 Subset ii O for 2 • 

~ lttt'I.*.: ;'k:1.:._-'t-::-'-.i_+.-s-':.··~'-"-t--,----t,-_,..,,--_ c..c;----itttt 

!! 

• • m • • • • OUlll.,.,.J 

Fig. 5.45 Subs. hi; > 0 for Q~12). 
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Fig. 5.46 Grid Q<6), uniform re
fined cube in figure 1.3. 

Fig. 5.48 Grid QC9), refined along 
the line {(x,y,z):x = 0/\y = z}. 

Fig. 5.50 Grid Q<60), refined at the 
· (1 11 1) pomt 77, 2 .. 73, v'5 . 

On finite element matrices 

Fig. 5 .4 7 Grid QC6), refined in the 
plane { (x, y, z): z = O}. 

Fig. 5.49 Grid Q<9), refined at the 
point (1, 1, 1). 

Fig. 5.51 The grid in figure 5.50 
seen from a different viewpoint. 
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Fig. 5.52 Grid Q(lB) around the 
hemi-sphere (x - ½)2 + (y- ½)2 + 
( 1 )2 _ 1 • h > 1 Z - 2 - 16 Wlt X _ 2. 

Fig. 5.54 Cross-intersection with 
plane x = !-

Fig. 5.56 Cross-intersection with 
plane y = ¼-

0 • 
--- /-\,/·.·r:· 

:(::-. 
~~ •• 1 : 

,.! • . .. · 
·:,1i' . . -·-:- :,··_. <· i 
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Fig. 5.53 Vertices of this grid. 

Fig. 5.55 Cross-intersection with 
plane x = ½• 

Fig. 5.57 Cross-intersection with 
plane y = ½-
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Preconditioners for 
newest vertex grid 
refinement 

As in: Margenov S.D. and Maubach J.M., Optimal algebraic 

multi-level preconditioning for newest vertex grid refinement, 

Technical report no. 10, Bulgarian Academy of Sciences, 

Center oflnfonnatics and Computer Technology, Sofia 1990. 

The reports section concerning the newest vertex grid refinement 

has been skipped and the reports introduction has been split 

into two subsequent sections. An extension of the theory 

towards more general cases of refinement along a line is 

presented in [8]. 

Abstract 

181 

Recently proposed algebraic multi-level methods for the solution of 
two-dimensional finite element problems are studied for cases where 
the local newest vertex grid refinement is applied. After the introduction 
of this refinement technique it is shown that, by corn bining certain levels 
of refinement, a preconditioner of optimal order can be constructed for 
the case of local refinement along a line. 

For all algebraic multi-level preconditioners considered the rel
ative condition number is explicitly calculated. Numerical experiments 
which demonstrate the performance of these proposed preconditioners 
will be reported in a forthcoming paper. 

Key words: Finite elements, multilevel methods, optimal order precon
ditioners, newest vertex mesh refinement 
AMS(MOS) subject classifications: 65F10, 65N20, 65N30 
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6.1 Introduction 

Recently proposed algebraic multi-level solution algorithms as in [ 4] and 
[5] are one of the most effective techniques for the numerical solution 
of elliptic boundary value problems. So far these algorithms have been 
developed and tested mostly on uniformly refined grids. 

This chapter studies some variants of these methods based on 
grids which are locally refined with the use of newest vertex grid refine
ment. It is shown that these variants are an effective generalization of 
the uniform case. 

In order to introduce the algebraic multi-level methods for locally 
refined grids, a model problem is provided in section 6.2. Thereafter 
section 6.3 quotes well-known results for the algebraic multi-level pre
conditioning on uniformly refined grids, and section 6.4 considers the 
application of this type of preconditioning for the case of local newest 
grid refinement along a line (see chapter 5). The approximation of matrix 
blocks, needed to obtain an efficient preconditioner, is commented on 
in section 6.5. Finally, section 6.6 provides the standard nodal matrices 
related to the refinement around a corner of the domain and a point in 
the inner of the domain showing that for those cases a direct solution 
method is optimal. 

6.2 The model problem 

Let n E R 2 be an open bounded connected and polygonal domain 
with a boundary divided into a Dirichlet boundary part r0 with positive 
Lebesgue measure and a Neumann boundary part rN such that r = 
ro u rN and ro n rN = 0. The goal is to find a function u E C2(0) 
satisfying 

-\7x· (e(x)V xu) =fin n 
u = 'Y at ro 

V .ruT n = 0 at rN 

where f is a square integrable source function, 'Y the Dirichlet boundary 
data and V .r denotes the gradient on R2• The corresponding Galer
kin variational formulation is to find a function u E H~(O) = { v E 
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H1 (f!): v = , at ro} such that 

(F(u), v) = 0 V vEJ\\(O) (6.2.1) 

where 

(F(u), v) = - In [Vx· (c(x)V .ru) + J] v dx. 

The domain n is assumed to be covered with the triangles in a initial 
coarse grid Q(l>, e.g. as in fig. 5.14 or 6.1, such that c(x) is constant on 
every triangle ,6,.. 

F01 the solution of (6.2.1) a standard nodal finite element method 
will be used. lf1i&1> = { v E 1i(Q<l)): v(x) = 0 at V(QO>)nro} c H6(i1) 
denotes the span of piecewise linear basis functions corresponding to 
the initial triangulation QO) (see e.g. [2]) then the usual computational 
procedure leads to the linear system of equations 

(6.2.2) 

where A (1) is a weighted stiffness matrix, x the vector to be determined 
and b is determined by the source function f. 

Now, in order to obtain a sufficiently accurate solution for the . 
problem defined by (6.2.1), the recursive newest vertex grid refinement 
technique (see section 5.2) is used to construct a sequence of ~rids QO) C 
Q<2> c • • • c Q<1>, corresponding finite element spaces 1ib > C 1if> C 

· · · C 1-{g> and standard nodal stiffness matrices A <1>, A <2>, ... , A <1>. 
In order to calculate the solution of the system of equations related 

to the finest grid Q<1> 

Ax=b (6.2.3) 

where A= A(l>,x = x(l> andb = b(l), a preconditioned conjugate gradient 
(PCG) iterative solution method (see e.g. [2]) will be used. Solving this 
algebraic system of equations with a preconditioning matrix C, the 
convergence properties of the PCG method are given by the estimate 

where 

. 2 

/i>T A-1/i> < ( 2 q' ·) . r<o>T A-•r<o> 
- 1 + q2i 

fi-1 
q= fi+l' 

(6.2.4) 



184 Preconditioners for 

and the residual is given by r<i) = b - A.x<i>. The estimate (6.2.4) shows 
that the number of iterations needed to reduce the norm of the residual 
by a factor c is 0( ,Jx>. 

The main goal of this chapter is to construct a matrix C such 
that solving the system of linear equations for C requires an amount of 
arithmetic operations linear proportional to the number of unknowns. It 
also is required that the condition number x above is bounded uniformly 
with respect to the number of the degrees of freedom. 

6.3 Algebraic multi-level preconditioning 

In this section the basic requirements needed for the possible application 
of algebraic multi-level preconditioning are summarized and checked 
for the simple case of uniform newest vertex grid refinement of the 
unit-square. Consider the system 

(6.3.1) 

where 1 ~ k ~ l, for l defined as in section 6.1. In order to de
fine a preconditioning matrix c<k+l) the nodes .r(Q<k+l)) of grid Q<k+l) 

are partitioned into two mutually disjunct subsets .r(Q<k+l)) - .r(Q<k>) 
and .r(Q<k>). Corresponding to this partitioning A<k+l) takes the follow
ing two by two block structure 

(6.3.2) 

where the first pivot block Ai~+l) corresponds to the nodes of .r( Q<k+l))

.r( Q<k>) and the second diagonal block A~~+I) corresponds to nodes 
of .r(Q<k>), following a notation by [4] and [5]. Note that this notation 
is slightly different from the notation used in chapter 5. Following the 
construction proposed in [4] a two-level preconditioner c<k+l) will be 
defined by 

(6.3.3) 
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where A<k> = A~+1>. Using this definition one can prove 

Lemma 6.3.1 The matrices A<k+l) and c<k+l) are spectrally equivalent, 
i.e., there exists a positive scalar µ such that 

(6.3.4) 

for all vectors x. Further, µ is independent of the number of the degrees 
of freedom N(k+l), the size of the matrix A<k+l), andµ= 1-,2, where, 
is the constant in the strengthened C.-B.-S inequality. 
Proof. Note that 

c<k+i> A<k+i> _ [ o o ] - - o A<k> - s<k+l> 

where the Schur complement is given by 

s<k+1> _ A<k+l> _ A<k+l> A<k+1>-• A<k+l> 
- 22 21 11 12 · 

Using e.g. [4], lemma 2.1, the lemma follows. This result was first ob
tained by Axelsson [1], Kuznetsov [6] and Axelsson and Gustafsson [3]. -
Note that the inequalities are sharp and that the scalar, can be computed 
locally from the element stiffness matrices. □ 

After this example of a two-level preconditioner now consider the gen
eral multi-level case. The linear system of equations to be solved is 
again (6.2.3), but now the preconditioner C = c<k+l) is defined recur
sively by 

c0> = A0> 

[
A(k+l) 0 l [ 

c<k+l> - n A~<k> o oI - A(k+l) 
21 

(6.3.5) 

for all k = 1, 2, ... , l - 1, where 

(6.3.6) 

and Prix) is a properly normalized and shifted Chebyshev polynomial 
of degree {3. In this case one can prove 
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Lemma 6.3.2 Let the preconditioning matrix C be defined by (6.3.5), 
(6.3.6) and let A be defined as in (6.3.2). Then 

• if the polynomial degree f3 > (1- , 2)-1 then the relative spectral 
condition number x(c-1 A) is bounded by a constant indepen
dent of the number of degrees of freedom N = N<0 of the finest 
grid, i.e., C and A are spectrally equivalent 

• the total computational costs Z per PCG iteration step involving 
preconditioner C are bounded by 

1 - r1 
Z ~ cN · (1 + r + r2 + • • • + r1- 1) = cN-

l - r 

where r = f3 maxk { N(k) / N<k+I)} for some positive scalar c. 

Proof. One can prove the first statement with the use of uniform es
timates for x(C(k+l)-I A(k+l)), as are obtained by Axelsson and Vas
silevski [4] and [5]. The estimate of the total computational costs in the 
second statement follows directly from the factorized structure of the re
cursively defined algebraic multi-level preconditioner c<k+I) (for some 
more details, see e.g. [7]). Note that obviously Z = O(N) for r < 1, 
which is necessary to obtain an optimal preconditioner. D 

In order to illustrate the behaviour of the described multi-level precon
ditioner C above consider the following example where uniform newest 
vertex grid refinement is used (see also [10] where a generalization of 
the bisection refinement to higher dimensions can be found). 

First let Q be the unit-square and let QO) c Q<2> c . • • c Q(k) 

be obtained by uniform newest vertex grid refinement, as is shown in 
figs. 5.9. Here (1- , 2r 1 = 2 (see e.g. [9]) and according to lemma 6.3.1 
f3 2: 2 leads to r > l. Therefore, straightforwardly taking the levels of 
refinement induced by the newest vertex refinement method as the levels 
defining the multi-level preconditioner C in (6.3.6) will not lead to an 
optimal multi-level preconditioner with respect to the number of degrees 
of freedom. 

In order to overcome this difficulty consider a reformulation of 
the above where every two uniform refinement steps are joined into 
one level as far as the preconditioning is concerned. This means that 
each Q(k) is obtained after 2k steps of refinement. Again local analysis 
shows that (1- , 2)- 1 = 2 whence an optimal order preconditioner C is 



newest vertex grid refinement 187 

yielded taking {3 E {2, 3} altematingly. One obtains respectively r =0.5 
for {3 = 2 and r =0.75 for {3 = 3, and in both cases the computational 
costs are Z = O(N). Note that in this case of uniform refinement the 
stiffness matrices A(k) on the grids in fig. 5.14 coincide with those 
corresponding to the uniform refinement, as shown in fig. 5.15 (see 
also [2], [4]). 

6.4 Local refinement along a line 

Consider the unit-square n with initial coarse grid QO> as shown in 
fig. 6.1 (a). This domain is refined subsequently along the lower bound
ary such that Q<2> as shown in fig. 6.1 (b) is obtained after four steps 
of local newest vertex grid refinement. Applying the same technique 
to Q<2> leads to grid Q<~> as shown in fig. 6.1 (c). Hence, in order to 
construct an optimal order preconditioner every four refinement levels 
are combined into one level regarding the multi-level preconditioning 
algorithm (6.3.6), i.e., Q(k) is obtained after 4k refinement steps. 

To simplify the presentation, assume that the boundary points, 
including those lying on a Dirichlet boundary, are taken into account for . 
the number of unknowns N(k) related to Q(k). In order to determine this 
number let, only in this section, n<k) denote the number of unknowns 
at the 2 • k th level of ordinary newest vertex refinement. Then N<k) = 
n<2k-l) and, as is easy to verify, · 

(6.4.1) 

The solution of (6.4.1) can be written as the sum 

n<k) = cizk +do+ d1k 

where c1zk is the general solution of the homogeneous difference equa
tion n<k+l) - 2n<k) = 0, which has root z = 2 corresponding to the 
related characteristic equation. The term do + d 1 k is a partial solution of 
the inhomogenous equation (6.4.1). The substitution of z = 2 and the 
determination of the coefficients lead to 

n<k) = 2k + k 

N(k) = 22k + 2k - 1 . 
(6.4.2) 
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The obtained result hence can be summarized as follows 

Theorem 6.4.1 For the newest vertex refinement along a line as de
scribed in the beginning of this section 

N(k+l) 
N(k) > 3.6 (6.4.3) 

for all k EN. 
Proof. Following (6.4.2) one has 

N(k+l) 6k + 2 
N(k) = 4 - 22k+l + 2k > 4 - 0.4 = 3.6 

yielding the desired result. D 

Now consider the estimation of the scalar, in the strengthened C.-B.-S. 
inequality, or more precisely, the estimation of the relative condition 
number x = (1 - , 2r 1• Following the general procedure to this end, let 
the domain n be partitioned into so-called macro elements Ai, i = 1, 2, 
as are shown in fig. 6.2. The macro elements correspond naturally to the 
refinement procedure shown in fig. 6.1. 

Using the usual partitioning of the nodes belonging to :F(Q<k+l))
:F( Q<k>) and to :F( Q<k>) one can write the macro element stiffness matrix 
related to the cases in fig. 6.2 in the form 

AA = [Au A12] A A (6.4.4) 
21 22 

such that A11 corresponds to the nodes in :F(Q<k+l)) - :F(Q<k>). As is 
well known, the relative spectral condition number x = (1- , 2)-1 is in 
this case equal to the largest eigenvalue ,\ of the generalized eigenvalue 
problem 

(6.4.5) 

where A is equal to one of the two macro elements Ai. The Schur 
complement SA is defined as usual by SA = A22 - A21Ao1 A12 using 
the blocks of the macro element matrix AA. Approximation of the largest 
generalized eigenvalue leads to the estimate 

I 
I 2 < 2.85 -, (6.4.6) 
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whence one can conclude 

Theorem 6.4.2 The multi-level preconditioning method based on local 
newest vertex grid refinement along a line, as presented in this section, 
is of optimal arithmetic costs O(N) for /3 E { 2, 3}. 
Proof. Combine the results above with theorem 6.4.1. □ 

Note that the realization of the PCG method with the above defined 
multi-level preconditioninf matrix C requires a repeatedly solution of 
systems with matrices Ait1> for k = 1, ... , l - I. It is well known 
that the condition number of these matrices is bounded uniformly above 
whence a conjugate gradient method can be used effenciently to this 
end. 

6.5 Algebraic multi-level preconditioning with 
approximate blocks 

For the realization of a preconditioned conjugate gradient method with 
the preconditioner C in (6.3.5) one needs to solve linear systems involv
ing the matrices Ai~>, k = 1, 2, ... , l. These positive definite matrices 
have a condition number independent of N, but unfortunately this con
dition number x(Ai~>) increases strongly due to the combination of the 
newest vertex refinement levels. For the uniform refinement case (where 
no combination of refinement levels is needed) the blocks Ai~) are diag
onal leading to an algorithm of inverse free type (for more details about 
such methods see [4], [5] and [12]) but in this case one finds 

x(Ai~>) ~ 36 (6.5.1) 

by solving the eigenvalue problems corresponding to the 11-subblocks 
of the matrices AA as in section 6.4. This estimate shows that the so 
called direct approach with regard to the multi-level algorithm, where 
the conjugate gradient method is used for the solution of the systems 
with the matrices Ai~>, is not very efficient (the condition numbers are 
too large). 

In order to overcome this difficulty, one could use a precondi
tioned conjugate gradient algorithm where the blocks Ai~> are approxi
mated by positive definite matrices B~1>, for all k = 2, 3, ... , l. 
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Lemma 6.5.1 If (32 > (1 - ·;-2) and p > x(Bi7>-' Ai?) - 1 > 0 then 
the relative condition number of the resulting multi-level preconditioning 
matrix c<k) with respect to A is bounded uniformly by a-1 where forµ= 
l -,2 

• for (3 = 2, 

4µ- 1 
a= ------;:========== 

1 +2p+ J4µ- 1 +(1 +2p)2 
(6.5.2) 

• for (3 = 3, a E (0, 1) is the smallest positive root x of the cubic 
equation 

px3 + (6p + 9 - µ)x2 + (9p + 6 - 6µ)x + 1 - 9µ = 0. (6.5.3) 

Note that such an a exists for µ > b. 
Proof. See the results in [5]. D 

Consider the following construction of approximations ni7> for the 
blocks Ai~> (for some related results, see [7]). The superscripts Ck) are 
omitted whenever possible for the sake of convenience. For the con
struction of the approximation, let the macro element B be as in fig. 6.3 
and let its associated nodes be partitioned into two sets, the first one 
containing the inner nodes and the second one the remaining boundary 
nodes. Then the block Air= Af1 is factorized as follows 

[D F] [D o] [I n-•p] 
Au = pT E = pT S o O I ' (6.5.4) 

where the Schur complement S = S 8 is defined by S = E - pT n-1 F, 
and the D block corresponds to the inner nodes of the macro element B. 
From the definition of the global matrix A, it follows that the global 
Schur complement S can be written as the sum 

(6.5.5) 

Now the promised approximation ni7> is defined by the formula 

n<k>=[D o] [I n- 1F] 
11 pT s O O I (6.5.6) 
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where the S is an approximation of S defined by 

S= L Sc. (6.5.7) 
CCBCQ(k) 

Here Sc stands for the macro element Schur corn plements corresponding 
to the partition (6.5.4) and the macro elements C = Ci C 8 as in fig. 6.4. 

It is obvious, that Sand S, respectively A 11 and B11, are spectrally 
equivalent with a relative spectral condition number x(B01 A11) inde
pendent of N. Taking into account (6.5.5) and (6.5.6), this result is stated 
in 

Lemma 6.5.2 The spectral condition number x(B01 A11) is bounded 
above by the scalar 1.93 uniformly in N. 
Proof. Using a local analysis on macro element level, one obtains the 
estimations 

In combination with the solution of the generalized eigenvalue problem 

B -B s X = AS X' (6.5.8) 

yielding Amax/ Amin = 1.9245 by approximation, whence 

□ 

Theorem 6.5.1 The spectral condition number x(C-1 A) is uniformly 
bounded by 

xcc-1A) ~ 24 (6.5.9) 

for /3 = 2. Therefore the total arithmetic costs of the proposed algebraic 
multi-level algorithm with approximate blocks B~7> are linear propor
tional to N. 
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Proof. The first estimate follows from theorem 6.4.2, lemma 6.5.1 and 
the relations (6.5.2) and (6.5.3). As x(e-1 A) = 0(1), the total num
ber of iterations for the preconditioned conjugate gradient solution of 
the system (6.2.3) is of 0(1). Now consider the structure of the block 
matrix Bu. The blocks D and S are block diagonal matrices with 2 
by 2 blocks. Therefore the solution of the systems An with precon
ditioner Bn in a preconditioned conjugate gradient method involves 
only 0(N) arithmetic operations. Hence the total arithmetic costs per 
iteration is 0(N) and (6.5.9) holds. □ 

The special block structure of the matrices S makes the considered 
algorithm very suitable for a parallel realization. 

6.6 Standard nodal matrices for point sources 

The newest vertex refinement into a comer of the computational domain 
will lead to the following sparse standard nodal finite element matrix 
(see fig. 6.6 for the numbering of the degrees of freedom in this case). 

2A= 

0 
F 

A12 0 
B er 
e B er 

e 

0 pr 

0 

0 

0 
B Dr 

0 D E 

The bordering submatrices are given by 

An=[~ 
0 0 

] [-2 * ~I] 2 * -1 * 
* 2 A12 = ~l -1 

* * * 
and 

F= [* * * -2] 

D =[-2 -2 -2] 

E = [8]. 

A21 = A[i 
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The block tridiagonal parts are given by 

[ 
8 -1 

B= -1 4 
-1 0 

193 

~ll 
-1 

Here an asterix at position (i,j) means that [A]ij = 0 since the corre
sponding nodes are not coupled (see e.g. [11]). Therefore, the (possibly) 
non-zero entries above correspond to coupled nodes. This implies that 
every sparse matrix resulting from the standard nodal finite element 
discretization of an arbitrary partial differential equation on this grid 
will have precisely the above sparsity pattern. Clearly a direct solution 
method, like Gaussian elimination, will yield an optimal result concern
ing the number of arithmetic operations. 

Note that figure 6.6 shows that the node numbering reflects the 
level structure as was demanded in section 5.2. The bordering matri
ces Au, A12, A21 and F will vanish if the computational domain is a 
subset of a larger computational domain and if domain decomposition 
techniques are used to isolate the subdomain. This will also happen if 
one imposes Dirichlet boundary conditions on all boundary points 1, 2, _ 
3 and 4. 

The finite element matrix A resulting from symmetric local newest 
vertex grid refinement around a point is the following (see fig. 6.5 for 
the node numbering applied in this case) 

Au A12 0 0 ET 
A21 B er 0 

2A= 
0 e B er 

e 0 

0 B er 
E 0 0 e D 

where 

[ 21 J oar] [-21 0 ] Au= JT 8 JT A12 = JT JT A21 = A[i 
OGT J 41 -G -21 
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and 

B= [ 8/ -GT] 
-G 81 

D = [ 8/ 
-2G 

-2GT] 
8/ 

with blocks 

and 
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= [-2/ -GT] 
C O -21 

[o JT o] 
E= 0 -2KT 0 

l{T = [ 1 1 1 1 ] JT = [ * * * *] . 

In this case the A11 matrix block contains the couplings between the 
nodes of level 0, 1 and 2, and the following B blocks contain the 
couplings of each next two subsequent levels of refinement. Also in this 
case of a matrix of band-width 19 a direct solution method will be of 
optimal computational complexity. 

6.7 References 

[1] Axelsson O.,On multigridmethodsofthe two-leveltype,in Multi
grid Methods (Hackbusch W. and Trottenberg U. eds.), LNM 960, 
Springer Verlag, 1982, 352-367 [Proceedings, Koln-Porz 1981] 

[2] Axelsson 0. and Barker V.A., Finite Element Solution of Bound
ary Value Problems, Academic Press, Orlando, Florida, 1984 

[3] Axelsson 0. and Gustafsson I., Preconditioning and two-level 
multigrid methods of arbitrary degree of approximation, Mathe
matics of Computation, 40(1983 ), 219-242 

[4] Axelsson 0. and Vassilevski P.S., Algebraic multilevel precondi
tioning methods I, Numerische Mathematik, 56(1989), 157-177 

[5] Axelsson 0. and Vassilevski P.S., Algebraic multilevel precon
ditioning methods II, SIAM Journal on Numerical Analysis, 
27(1990), 1569-1590 



newest vertex grid refinement 195 

[6] Kuznetsov Yu.A.,Multigrid Domain Decomposition Methods for 
Elliptic Problems, Preprint of lectures of the VIII International 
Conference in Computational Methods for Applied Sciences and 
Engineering, 2(1987), 605-616 

[7] Margenov S.D., Inverse-free multilevel methods I, Technical re
port no. 4, Bulgarian Academy of Sciences, Center oflnformatics 
and Computer Technology, Sofia, 1989 

[8] Margenov S.D. and Maubach J.M., Optimal algebraic multilevel 
preconditioning for local refinement along a line, accepted by 
the Journal of Numerical Linear Algebra with Applications, The 
Netherlands, 1994 

[9] Margenov S.D., Vassilevski P.S. and Neytcheva M.G., Optimal 
order algebraic multilevel preconditioners for finite element 2-
D elasticity equations, Report 9021, Mathematics department, 
University of Nijmegen, The Netherlands, 1990 

[10] Maubach J., Local bisection refinement for n-simplicial grids 
generated by reflections, to appear, SIAM Journal on Scientific 
and Statistical Computing, 1994 

[11] Maubach J.M., On the sparsity pattern of hierarchical finite 
element matrices, in Lecture Notes in Mathematics 1457, 79-104, -
(Axelsson 0. and Kolotilina L. Yu. eds.), Springer Verlag, 1990, 
[Proceedings of the International Conference on Preconditioned 
Conjugate Gradient Methods and Applications, Nijmegen, _The 
Netherlands, 1989] 

[12] Vassilevski P., Algebraic multilevel preconditioners of elliptic 
problems with condensation of the finite element stiffness matrix, 
Compt. rend. de I' Acad. Bulg. Sci. 43(1990), no. 6, to appear 



196 

(a) (b) (c) 

Fig. 6.1 Newest vertex bisection refinement along a line. 

Fig. 6.2 Macro elements A1 and 
A2. 

Fig. 6.4 Macro elements C1 and C2. 

Fig. 6.3 Partitioning of the nodes 
for an approximation of the ma
trix Au. 
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Fig. 6.5 Refinement around point. Fig. 6.6 Refinement into a comer. 
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Abstract 
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For many non-linear differential equation solvers the assembly of the 
Hessian matrix is an expensive task. Hence numerical methods like the 
damped inexact Newton method (see [2], [11]), are often too expensive 
to use as the Hessian matrix has to be updated many times. The goal 
of this chapter is to show that in some special but frequently occurring 
cases, where the Hessian matrix has a special structure, updating it is 
not more expensive than updating the gradient vector if a particular 
factorization of the stiffness matrix is used. In these cases most of the 
computing time spent in the non-linear solver will be used to solve linear 
systems of equations, and the assembly of the Hessian matrix usually 
becomes a minor task. The present chapter extends earlier results of this 
nature in [3] and in [6]. 

Key words: Finite elements, Galerkin methods, Quadrature formulas 
AMS(MOS) subject classifications: 65N30, 65D32 
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7.1 Introduction 

This chapter considers the assembly of Hessian matrices in finite element 
methods. Finite element solution of non-linear differential equations like 
the electromagnetic field eq~ation, the torsion of an elastic bar, or the 
full potential equation in aaoodynamics, leads to a discretized non-linear 
system of equations F(x) = 0 in N variables, where N can be very 
large. Often non-linear elliptic differential equations are solved with the 
use of an iterative damped inexact Newton method or with multigrid 
methods (see e.g. [14], [15] where a flow problem is solved). In the 
present chapter Newton methods are considered because they involve 
the assembly of a Hessian matrix. 

A damped inexact Newton method is an iterative method in 
which one encounters the approximate solution of a system of equations. 
The problem is to find a search direction p<k> such that II F' (x<k>)p<k) + 
F(x<k>))II < pCk)IIF(x<k))II, or more generally 

11c;1 [F'(x<k>)p(k) + F(x(k))] II < p<k>11c;1 F(x(k))II-
Then x<k+l) = x<k) + r<k>p<k). Ck is a preconditioner of F' (x<k>), p<k) a 
forcing sequence, r<k> > 0 a damping parameter to be. chosen small 
enough to obtain global convergence, and the matrix F' (.t(k)) is the 
derivative of the residual F at the point x<k). F' and F are also called 
Hessian matrix and gradient. For recent presentations of such methods, 
see [2] and [11]. 

Using a finite element method for a non-linear system of equa
tions, one has to approximate F' (x<k)) and F(x<k)) because of the in
tegrals imposed by the variational formulation. This approximation of 
F' (x<k)) and F(x<k>) often is very expensive to compute because it in
volves the repeated evaluation of integrals of non-linear functions of 
the finite element basis functions. In the past this has led to several 
techniques of (avoidance of) updating the Hessian matrix: 

• only updating the Hessian matrix every p-th step or only updating 
it in regions of the domain of definition where it varies relatively 
much (see e.g. [8]) 

• the assembly of an approximation of (F' (x<k)))- 1 preserving the 
sparsity structure patterns of the original Hessian matrix ( see [ 10]) 

• assembly of a factorization of the Hessian matrix on element level 
in order to avoid the factorization of the global matrix (see e.g. [1] 
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where the natural factor method with a QR factorization, with Q 
an orthogonal matrix and R a triangular matrix, is presented) 

• assembly of the Hessian matrix with exact integration but for a 
slightly modified vector x<k> instead of x<k> (see [8]). 

The Hessian matrix can safely be approximated because it serves only 
to determine a search direction p<k>. However, if it is nearly singular 
then it may be necessary to compute a very accurate approximation, or 
even the exact Hessian matrix, in order for it to be positive definite. In 
critical regions (regions with steep gradients or almost singular Hessian) 
this is difficult due to the large quadrature errors caused by fast varying 
functions within the finite elements. 

The gradient has always to be approximated rather accurately 
because it serves as a stopping criterion of the iterative algorithm. 

Linearizing a partial differential equation F(x) = 0 with a damped inex
act Newton method leads to a sequence oflinear equations F' (x<k>)p<k) = 
-F(x<k>). If we discretize this system by using a variational formulation 
and choosing appropriate basis functions and quadrature rules for the in
tegration, this leads to linear systems of equations F' (x<k>)p<k) = F(x<k>), 
with F' (x<k>) the Hessian matrix, F(x<k>) the gradient vector and the 
search directionp<k) to be solved. In many important practical problems 
the matrix F' turns out to have a special structure which makes its up
dating cheap compared to the assembly of the gradient vector and the 
solution of the linear system. This will be shown by means of an exam
ple but the techniques provided can be used to derive cheap formulas 
for other cases as well. 

A matrix F' associated with non-linear operators in divergence form, 
which will be called divergence form stiffness matrix, or for short, stiff
ness matrix, has the special structure mentioned above. For this class of 
matrices it will be proved in section 7.3 that there exists a factorization 
BM BT, depending only on the basis functions and quadrature formu
las used for the finite element discretization (section 7.2). For some 
frequently used basis functions and quadrature formulas the matrices B 
and M are cheap to compute elementwise. In some specific cases all 
errors caused by quadrature formulas are captured in the matrix M. 

The factorization has some general advantages. Matrix B, for 
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instance, depends only on the grid geometry of the finite element grid, 
on the finite element basis functions and on the quadrature formulas 
used. If F' = F'(u) is a non-linear matrix, depending on a function 
u, then only M depends on this function u. Frequently Mis a block 
diagonal matrix. The proposed factorization extends earlier results in [3] 
and [ 6] of this nature. 

Similar factorizations of the stiffness matrix are well-known for finite 
element matrices derived from frame structures and electric networks, 
see for instance for early references [ 16], [ 17] and [ 18]. To the best of the 
authors knowledge, however, not much has previously appeared on this 
topic for finite element methods for continuous problems and for non
linear problems. However, in his recent book [22], Strang comments 
much about such factorizations. 

7 .2 Definition of a stiffness matrix 

A discretization for the linearized differential equation is determined 
completely by the choice of basis functions and quadrature rules used to 
evaluate the integrals appearing inthe variational formulation. Therefore 
the.stiffness matrices will be presented after a short comment on these 
two choices. Thereafter it will be shown that the Hessian of differential 
equations in divergence form is often a stiffness matrix. 

First consider the choice of the basis functions. Assume that n E Rn 
is an open and bounded polygonal domain with a finite element grid 
ut1 n, and global c0 finite element functions. The local basis func
tions { cp~>} ~ 1 on n, are chosen such that the space 1P r, of polynomials 
up to degree r, over n, satisfies 1Pr, C ½, where ½ is spanned by 
these basis functions (see fig. 7 .2 for an example of ]Pi). The global 
basis functions { cpi}~1 are constructed in the usual manner from their 
contribution of the local basis functions on each element n,. The set 
spanned by the global basis functions will henceforth be denoted by V. 

Definition A quadrature rule is of degree d if it is exact for all polyno
mials in Pd. 
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Now, consider the choice of a quadrature rule Q. On the topological 
closure of each element n,, an element quadrature rule Q 1 defined by a 
set of quadrature points { Nf>} {~1 and weights wr> E JR. is chosen such 
that 

(7.2.1) 

for all h E H5(n), <p~>, <p~l) E Vi and all p, q E { 1, ... , n }. Note thatthe 
element quadrature rule depends on the degree of the polynomial basis 
functioris in Vi. If for instance Vi = 1P r, then Q 1 has to be exact for all 
polynomials of 1P2cr,-l)· 

Now the quadrature rule Q on n is defined by 

L 

Q(h) = L Q1(h) ~ [ h dx. 
1=1 ln 

(7.2.2). 

It will be used to approximate all domain integrals such as those appear
ing in stiffness matrices, from now on. Some well-known and easily 
derived properties are: 

Lemma 7.2.1 Let Q be defined as above then 
• Q is a linear and continuous functional 

• If the derivative of a function G(u) is denoted by fvG(u), this 
fe~ V 

~{ Q(G(u))}=lim{ Q(G(u+<;v))-Q((G(u)) }=Q( ~G(u)) 
& ~~ <; & 

• The sets of weights satisfy :Ei~i wr> = Area(n1) on each element 
n, 

• If all weights are positive then Q is monotone: h 2: 0 ⇒ Q(h) 2: 
o. □ 
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Remark 7.2.1 The basis functions can have different orders of polyno
mial degree r, in different elements 0.1. However, it must be assumed 
that the finite element approximation is c0 , which typically leads to a 
situation as in figure 7 .1. 

Now the class of stiffness matrices is introduced. A matrix H is a stiffness 
matrix iff 

(7.2.3) 

for some n by n positive definite matrix A on n, where n is the number 
of space dimensions. 

Especially for the solution of non-linear problems, where A = 
A(x, \7 u) the efficient updating of these matrices is important because 
they vary from one iteration step to the next. Also the subsequent use of 
grid refinement, in order to approximate layers more accurately, makes 
a reevaluation necessary. 

Stiffness matrices occur in many important practical problems. Consider 
for instance the following non-linear equation on divergence form: 

where 

-V.(A(x, Vu)Vu) = f on n 
u = 0 on ro 

A(x, Vu)VuT n = g on rN 

• 0, c Rn open and bounded, 
• ro U rN = 80,, ro n rN = 0, 
• f, g: n 14 R sufficiently smooth given functions, 
• A = [ap,q] an n by n matrix, ap,q given functions on n, 
• n the unit outer normal vector. 

(7.2.4) 

Depending on the matrix A in (7 .2.4) the differential equation can, for 
instance,represent 

• the electromagnetic field equations, or torsion of an elastic bar. 
Here 

A = Diag(a11, ... , ann) 

with aPP = app(IV u 12). The latter functions can differ by a large 
factor between two areas of different materials 
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• the potential equation in aerodynamics. In this case A = ain 
with the gas density function a= a(J\7 uJ2) = c00 (1 --y(J\7 uJ2 -

v;,))11<2"r) and In the identity matrix of order n. For more infor
mation see section 7 .9 

• Navier's equations of stress and strain which give a coupled 
system of equations (see e.g. [7]). In the linearized case A is the 
constant coefficient matrix 

For more information about this system of equations see sec
tion 7.7 

• the classical stiffness matrix [Alij = Q(Un \7 <pj)T\7 <pi), which 
is a discretization of the Laplacian on the domain n. 

In all the problems above, A is a nonsingular matrix. 

As promised in the introduction, it will now be shown that the Hes- · 
sian sometimes is a stiffness matrix. Therefore, consider the classical 
variational formulation of (7.2.4): find u E Hb(n) such that 

f (A(x, \7 u)\7 u)T\7 v dx = [ fv dx + J gv ds V vEHb(O) (7.2.5) 
k k ~N 

where H1(n) is the Sobolev space of first order and (in the sense of 
traces) Hb(n) = { u E H1 (n): u = 0 on fo}. The (source) terms to the 
right in the equation are of no importance, so we disregard them in the 
following discussion. 

The gradient F( u) can be defined as a dual operator on v E Hb(n) 
by 

(F(u),v) = i (A(x, \7u)\7u)T\7vdx. 

In discretized form this becomes [F(u)Ji = Q((A(x, \7 u)\7 u)T\7 <pi) 
whence the gradient is closely related to a stiffness matrix. For some 
special choices of A its derivative is a stiffness matrix: 
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Theorem 7.2.1 Suppose matrix G is defined by 

for some matrix A of order n with entries ap,q = ap,q(X, Vu). Then the 
derivative G' of G is given by 

for a certain matrix E of order n. 
Proof. An elementary computation for space dimension n = 2 yields 
(see chapter 3, lemma 3.3.1 for details) 

For higher space dimensions an analogous formula can be derived. Note 
that this theorem is also correct if Q represents exact integration. □ 

7 .3 Factorization of a stiffness matrix 

To prove the existence of the proposed factorization for a stiffness matrix 
H an additional set of Lagrangian basis functions is introduced. This 
set is closely related to a mixed variational formulation of (7.2.4) (see 
e.g. [3] and [6]) which will be discussed in section 7.8. 

Connected to the set of quadrature points on each element define the 
Langrangian polynomial basis functions { v,~l)} %~1 by 

(7.3.1) 

where 8m,k is the Kronecker function. To each such local function v,~> 
a unique discontinuous global function 'IP·<'> is defined by 

i k 

{ v,<l) on n, 
'IP iO> = k -c 

k O On n, (7.3.2) 
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where TI7 is the complement of n, in n (note that the index mapping 
(l, k) 1-+ i~> is a bijection). Hence each local function 'ljJr> induces one 
global function '1/)·<'> which has only support on n,. The set of all global 

ik 

functions 'ljJ i<o is ( omitting the subscript i~)) denoted by { '1/)i} ~; where 
le 

N' = ~f:1 q1. Henceforth W1 and M will denote the set spanned by 
these local respectively global basis functions. 

Lemma 7.3.1 Let the local basis functions {'ljJkl)H~1 be de.fined as 
above. Then 

for all functions h, all l E { 1, ... , L} and all k E { 1, ... , q1}. 
Proof. Note that the global basis function 'ljJi(I> has only support on the 

k 

element l according to (7.3.2). Therefore Q('ljJi(l)h) = Q,('ljJr> h).Because 
k 

'lpr>cN~) = Dk,m on n, this completes the proof. If h(Ni0) = 0 then by 
definition Q- 1('1jJi(l)h-1) = 0. □ 

le 

Now consider the factorization theorem: 

Theorem 7.3.1 Let the N by N stiffness matrix H be de.fined by 

for some matrix A of order n, with the use of finite element basis 
functions { cpi}~1, a quadrature formula Q and corresponding basis 

functions { '1/)i} ~;. Then there exists a factorization 

(7.3.3) 

where B is an N by n · N' rectangular block matrix, 

forallpE {l, ... ,n},alli E {1, ... ,N}andallj E {1, ... ,N'} 
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and M is a square block matrix of order n · N', 

[ 

Af~l,l) ~.. M~l,n) l 
M= . . . . . . 

Af(n,l) . . . Af(n,n) 

with blocks 
M(p,q) = Diag(Q- 1(a;,~it,J)) 

for all p, q E { 1, ... , n} and all j E { 1, ... , N'}. 
Proof. By a straightforward computation one gets 

[H]ij = Q((AVr.pj)TVr.pi) 

L 

= L Q,((AV C{)j)TV 'Pi) 
l=l 

L n 8 8 
= I: I: Q,<ap,q ax 'Pi ax C{)j) 

l=l p,q=l p q 

(7.3.5) 

L n q, 8 8 
= L L L { ax C{)i(Nll))ap,q(Nll)) ax r.p j (Nl/))} . wr) 

l=l p,q=l k=l P q . 

L n q, 8 8 
- """"' """"' """"'{ (l) -1 -1 (1)2 (l) } - ~ ~ ~ Q1('lpk 8x 'Pi)Q, (ap,q"Pk )Q1('lpk 8x C{)j) 

l=l p,q=l k=l P q 

n N' 

= L L[B(P)]ik[M(p,q)]kk[B(q)Thi 

p,q=l k=l 

n 

= L [B(p) M(p,q) B(q)T]ij 

p,q=l 

= [BMBT]ij 

according to lemma 7.3.1, (7.3.4) and (7.3.5). □ 

Remarks 7.3.1 
• According to lemma 7.3.1, B is easy to compute (assume in

dex j = iZ>): 

{ 
(l) 8 (l)(N(l)) 

[B(P)]ij = ~k 8xp 'Pr k 
'f . - (l) 1 'Pz1n, - 'Pr 

if 'Pi in, = 0. 
(7.3.6) 
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The sparsity structure of B can be very irregular but it will be 
easy to compute elementwise, as will be shown in section 7.4. It 
turns out that there is no need to assemble B. 

• Note that the submatrices B<P>T are discretizations of the deriva
tive operators on n, i.e., B<P>T is the discretization off 1---+ .J:- f 

UXp 

for functions f defined on n 
• Matrix Mis also easy to compute and store; according to (7.3.5) 

all M<P,q) are diagonal matrices 

• If the set of Lagrangian basis functions W1 satisfies 

(7.3.7) 

then 

Qz(tpr>~cp~>) = r 1/)r>~cp~> dx 
8xp }01 8xp 

which implies that quadrature errors will only arise during the 
calculation of matrix M and matrix B is calculated exactly. This 
is possible for triangular grid elements with linear or quadratic _ 
basis functions (for instance see table 7.3.1). 

In section 7.4 it will be shown that a stiffness matrix H can be computed 
cheaply elementwise. But, since quadrature rules and basis functions 
play an important role in the factorization first a brief overview of some 
possible choices. 

Example 7.3.1 Suppose that triangular grid elements and cubic basis 
functions are used. Then Vi = JP3, which implies that the quadrature rule 
must at least be of degree 2 • (3 - l) = 4 for the factorization of H, 
according to (7.2.1). Further(7.3.7) implies W1 c 1P2 whence there may 
be at most 6 = Dim(1P2) quadrature points (cf. fig. 7.2) if one wants the 
quadrature errors to be restricted to the calculation of matrix M. 

Example 7.3.2 Depending on the degree of the polynomial basis func
tions '{) on the two-dimensional reference triangle 0, = { ( X, y) E R 2: X > 
0, y > 0, x+y < 1} table 7 .3.1 and fig. 7.3 gives some quadrature rules Q 
(A= Area(O)). The quadrature rule on each specific element n1 can be 
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Table 7 .3.1 Examples of quadrature rules on triangles. 

basis function type J ij quadrature rule Q 
linear on a triangle, 1 1 1-point midpoint: 
degree 1 (V c Pi) N = <½,});WI= A 

quadratic on a triangle, 2 3 3-point Gauss: 
degree 2 (V c P2) Ni= <½,O);w1 = }A 

N2 = (0, ½);w2 = }A 

N -(1 1)·w - 1 A 3 - 2' 2 , 3 - 3 

cubic on a triangle, 4 6 Radons 7-point: 
degree 4 (V c P3) N -(1 1)·w - 9 A 1 - 3, 3 • 1 - 40 

N2 = (r,r);w2 = y 

N3 = (r,s);w3 = y 
z - lSS+ffiA 

- 1200 N4 = (s,r);w4 = y 
y _ 1ss-ffiA 

- 1200 Ns = (t, t); ws = z 
r - 6-ffi s - 9+2{i5 

- 21 ' - 21 N6 = (v, t); W6 = z 

t - 6+{fs V - 9-¥15 - 21 '. - 1 N1 = (t, v);w1 = z 

derived through 

f h dx = ~ hlDet(i)I dx = IDet(i>I ~ h dx ~ IDet(i)I · Q(h) lo, la la 
where Det( i) is the determinant of Jacobian of the affine transformation 
from fl on ton, and h the accordingly transformed function h. The table 
does not hold if isoparametric basis functions are used. 

The second column of the table shows the necessary degree J of the 
quadrature rule and the maximal number of quadrature points ij for 
which (7.2.1) respectively (7.3.7) are satisfied. Further an example of a 
quadrature rule found in recent literature (see e.g. [24]) is presented in the 
fourth column. Note that all proposed quadrature formulas have positive 
weights whence the signs of the transformed weights (wk • IDet(i)I) are 
also positive. 
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Example 7.3.3 Table 7.3.2 and fig. 7 .5 present some quadrature rules 
for rectangular elements. Note that in this case (7.3.7) is not satisfied. 
For a general space dimension n it is possible to find quadrature rules 
with positive weights of degree di satisfying (7.2.1) (see [24], pages 
54, 55). For more recent information about quadrature rules see for 
example [12], [19], [13] and the references therein. 

Table 7.3.2 Examples of quadrature rules on rectangles. 

basis function type J ij quadrature rule Q 
bilinear on a rectangle, 2 3 4-point Gauss: 
degree 3 (V C 1P2) N _ ( 1 I )· W _ I 

I - v'3' y3 , 1 - 4 
N ( 1 1 )· W _ I 

2 = - v'3' 73 ' 2 - 4 
N _ ( I 1 )· W _ I 

3 - -73, -73 , 3 - 4 
N _ ( 1 1 )· W _ I 4 - v'3' - y3 , 4 - 4 

biquadratic on a rectangle, 6 10 Tylers 12-point 
degree 6 (V C lP4) (see e.g. [24]) 

7 .4 Cheap evaluation of a stiffness matrix 

Here the factorization method will be explored for a special choice of 
finite element basis functions and quadrature formula. It appears to be 
very cheap for this particular choice. 

Consider an open and bounded two-dimensional polygonal domain n 
with triangular grid elements. On each grid element n, standard bi
quadratic basis functions { cp~>}~1 are used (see e.g. [5], [25] or [23]). 
According to (7.2.1) the quadrature rule must be of second order so 
a 3-point Gauss quadrature formula (see table 7.3.1) is used on each 
element: 

3 

Qi(h) = L w~> · h(Nkl)) (7.4.1) 
k=I 

where Nkl) are the edge midpoints and wr> = ½Area(f!,). This implies 

that there have to be three local Lagrangian basis functions { 1/'~>}1=1 
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(see fig. 7.4). In [6] linear basis functions are chosen to this end, but 
because only property (7 .3.1) is used, no further specification is needed. 

Now consider the assembly of the stiffness matrix 

for an arbitrary 2 by 2 matrix A, which will be done at element level, 
with 6 by 6 element matrices 

(7.4.2) 

In theorem 7.3.1 n c Rn may be chosen arbitrary whence (choose n1) 

(7.4.3) 

with M:,'·q) a 3 by 3 diagonal matrix and sy,> a full 6 by 3 matrix (space 
dimension n = 2, number of finite element basis functions N ::;;: 6 and 
the number of quadrature points N' = 3). 

In this particular case investigation of matrix BY,> shows that it has a 
simple structure: instead of eighteen possibly different entries it has only 
six different entries which are furthermore related as follows: 

[-Q /3 'Y -0 8 

5J B<t>T = : -/3 'Y e -e (7.4.4) 

/3 -"'( ,\ ,\ 

where o: + /3 + 'Y = 0 and 

o: = -Q1(t/J~1>~,A1>) = -}Area(n1)..g_,,Al)(N}1>) 8 = 2 • o: 
UXp UXp 

/3 = -Q1(t/J1l) a~ cp~)) e = 2. /3 
p 

'Y = -Qi(tp(l) 8 cp(l)) ,\ = 2. 'Y. 
1 OXp 3 

The regular structure of this element matrix is caused by the 
fact that its entries are the values of the partial derivatives of the basis 
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functions at the quadrature points. Because these partial derivatives 
are simple polynomial expressions some of their values at different 
quadrature points are equal, leading to less different entries in BP,>. 

In the non-linear case there is no need at all to store mgtrix Bin 
memory if all the partial derivatives of the basis functions ~<.p~> are 

UXp 

computed to evaluate .J?-u = E:1 O:i .J?-'Pi• 
UXp UXp 

Note that Q evaluates BP,> exactly in this case (see (7.3.6)) 
whence all quadrature errors made are limited to the matrix M. 

According to (7.3.5) the matrix Mfl'•q) is described by 

Mf11,q) = Diag(p, u, r) (7.4.5) 

where 

Denoting the entries of B}q> as those in BP,>, but with additional primes, 

an explicit formula for Hf11,q) can be constructed 

(7.4.6) 

where C(l), c<2>, c<3> and c<4> are given by 

[ 
(p + u + r)o:o:' (-p - u + r)o:/31 (-p + u - r)o:,'] 

(-p-u+r)/30: 1 (p+u+r)/3/3' (p-u-r)/3,' 
(-p + U - T ),o:1 (p - (j - T ), /31 (p + U + T ),,' 

[ 
(p8'+u£1+r>-.')o: (-p81-uc'+r>-.')o: (-p8'+u£ 1-r>-.')o:] 

(-p8' -uc' +r >-.')(3 (p8' +uc' +r )..')/3 (p8' -uc' -T >-.')/3 
(-p8' +u£1 -T >-.'), (p8' -u£1 -T )..'), (p8' +u£1 +r )..'), 

[ 
(p8+ue+r>-.)o:1 (-p8-ue+r>-.)(3' (-p8+ue-r>-.),'] 

(-p8 - UE + T A)0:1 (p8 + UE + T )..)(31 (p8 - UE - T )..),1 

(-p8 + UE - T A)0:1 (p8 - UE - T A)/31 (p8 + UE + T A),1 
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and 

[ 
p88' +o-ec1 +r ,\,\' -p88' -o-Ec1 +r ,\,\' -p88' +o-ee:' -r ,\,\' l 

-p88' -o-ee:' +r ,\,\' p88' +o-ee:' +r ,\,\' p88' -o-ee:' -r ,\,\' . 
-p88' +o-ee:' -r ,\,\' p88' -o-ee:' -r ,\,\' p88' +o-ee:' +r ,\,\' 

This is obviously a bit messy to program, but since the formula is grid 
independent it has to be done only once. 

Definition A floating point operation (flop) will stand for a multiplication 
or a multiplication combined with an addition. 

In order to compare the number of floating point operations needed to 
construct H1 in (7.4.2) respectively (7.4.3), it is assumed that all entries 

ap,q and all (partial derivatives) of basis functions 8~ c.p~1> are calculated 
p 

and stored in advance. The costs of this preliminary work are the costs 
for the evaluation at the quadrature points of 

• V c.p~> and Vu. For each quadrature point this is approximately 66 
flops with an additional 6 flops per element whence the overhead 
costs are 204 flops. 

• the entries of the matrix A. Suppose the evaluation of each ap,q 

costs about d flops, then the matrix evaluation costs are: 12d 
flops. 

The additional costs with the use of (7.4.2) for a nonsymmetric matrix 
A without zero entries are 36 • (2 + 3 • 4 • 2) = 936 flops because 

3 2 

[H ] _ 1 A en ) " " cN<l>) a <ocN<l>) a <'>cN<l>) l rs - 3 rea l ~ ~ ap,q k . 8x 'Pr · k . 8x '-Ps k · 
k=l p,q=l q p 

(7.4.7) 
For a symmetric matrix A without zero entries the additional costs are 
approximately halved: 21 · 26 = 546 flops. 

Now suppose that (7.4.3) is used for the assembly. The additional costs 
for an nonsymmetric matrix A without zero entries are 2 • 27 + 2 • 45 = 144 
flops, divided among the four submatrices H}1>•q) in (7.4.6) as follows: 

• 27flopsfortheassemblyofH}P,P>: [ !; ~l (inthiscasec<3>T = 

c<2>) 
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• 45 flops for the assembly of H{p,q): [ ~~ 1
3
2 ] (p =/- q). 

If A is symmetric then the additional costs will be 2 · 27 + 45 = 99 flops. 

From the above one can conclude that the use of (7.4.6) instead of (7.4.7) 
gives a reduction of floating point operations with a factor 

936 + 12d + 204 
144 + 12d + 204. 

(7.4.8) 

Therefore, one can see that the assembly of a stiffness matrix with 
the use of the factorization method is relatively cheap compared to the 
straightforward method given by (7.4.2) if d is not too large. Hence it 
can be updated frequently even in the non-linear case. 

Remarks 7.4.1 
• For linear basis functions on a triangular grid elements n c R.2 

an improvement can be achieved in a similar manner (see e.g. [3] 
or [6]) 

• The element matrices nyi> are expected to have a regular struc- . 
ture, if for example other basis functions are used in three
dimensional problems, leading to a reduction of the computa
tional work if a factorization technique is used 

• Evaluating the basis functions with the use of local barycentric 
coordinates (L1, L2, L3) as in [21], instead of local coordinates 
(x, y), is advisable because the former implementation will take 
fewer flops 

• In some special but frequently occurring cases dis typically about 
15 flops (see e.g. section 7.9) depending on the entries ap,q• In 
more complicated cases where matrix A has more different entries 
ap,q, parts of the expressions for these entries are often related. 

7 .5 Preconditioning of a stiffness matrix 

It appears to be relatively easy to determine the condition number of 
a matrix a-1 H for two positive definite stiffness matrices H and G, 
which is of interest if a preconditioned iterative linear solver is used. To 
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this end the matrices Band Mare investigated more closely to derive 
an estimate for this condition number. 

Now consider the following definitions 
• The spectrum u(H) of a matrix H is the set of all eigenvalues of 

H 
• Two matrices H and G are called spectrally equivalent if there 

exist positive scalars .X1 and .X2 such that for all vectors x 

Theorem 7.5.1 Matrix BBT is a stiffn,ess matrix which is spectrally 
equivalent to the stiffness matrix A if all weights wr> are positive. 
Proof. Assume that on all elements l quadrature formulas Q, are used 

withpositiveweights.NotefurtherthatBBT = E;=1 B<P>n<P>T accord
ing to theorem 7.3.l. Define the scalars Wmin, Wmax to be the extreme 
quadrature weights of all weights wr>. Further let the matrix C of order 
n be defined by C = Diag(c, ... , c) with the function c satisfying _ 

(7.5.1) 

on each element n, for all k E { 1, ... , q1}. Define a stiffness matrix S 
analogous to (7 .2.3) where matrix C replaces A. Because C is a diagonal 
matrix 

n 

[Sli; = Q((C'v cp;)T'v 'Pi)= L n<P> Mt•P> n<P>T 
p=l 

where M1•P> are N' by N' diagonal matrices with [M1•P>]mm = 
Q-1(c-1t/Jm 2). According to (7.3.2) and lemma 7.3.1, M1•p) = IN, 
whence S = BBT. Hence BBT is a stiffness matrix. 

Now let u = E:1 °'i'Pi and define u = [0.1, ... ,o.N]T. Then 
obviously 
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where ( • , •) denotes the Eucledian inner product on lRN. Further C is a 
positive definite diagonal matrix on n whence ( Q is monotone according 
to lemma 7 .2.1) 

and analogously (BBT u, u) ~ Wmax • (Au, u). Hence the matrices BBT 
and A are spectrally equivalent. □ 

Remarks 7.5.1 
• For a given bounded domain n C lR n there always exists a 

quadrature rule of degree d such that all quadrature points belong 
ton and such that all weights are positive (see e.g. [24], page 58 
and further) 

• If the assumptions of theorem 7.5.1 are satisfied then a(BBT) C 
(0, oo) because a(A) C (0, oo). This implies also that {x E 
lRN: BT x = 0} = 0 

• As can be seen from the above it is not advisable to use quadrature 
rules with negative weights because they may lead to the loss of 
the spectral equivalence between BBT and A. 

The following theorem relates the spectrum of H to the spectrum of 
A if A is a positive (or negative) definite matrix. As can be seen the 
eigenvalues of M are easy to determine. 

Theorem 7.5.2 Assume that Mis defined as in (7.3.5) and define matrix 
M<m> by 

[ 

a11 

M(m) = (wi))-1 : 

ani 

a1n l 
: (Nkl)) 

ann 

for some index m = ii>. Then a(M) = u~:1 a(M<m>). 
If all weights wi> are positive then a(A1) C (0, oo) ⇒ a(H) C (0, oo ). 
Proof. Note that there exists a permutation matrix P such that PM p-1 

is a block diagonal matrix with n by n blocks M<m) as defined above. 
Bearing this in mind it is clear that a(M) = u~:1 a(M<m>). 

Now suppose all weights are positive and Mis positive definite. 
Use of the fact that H = BMBT and that {x E lRN: BT x = 0} = 0 
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yields 

whence His also positive definite. □ 

Remarks 7.5.2 
• For the last part of the proof above it is sufficient to assume that 

Mis positive definite on the set {BT x:x E 'IR.N} 
• The eigenvalues of M are the eigenvalues of A at the quadrature 

points Nkl) scaled with (w~))-1 

• If the spectrum a(M<m)) contains a negative element or a zero 
element for just one m E { 1, ... , N'} then stiffness matrix H 
can be indefinite. 

Let H and G be two symmetric stiffness matrices and consider the 
following estimate for the condition number of c- 1 H. 

Theorem 7.5.3 De.fine the stiffness matrices Hand G by 

where the positive de.finite symmetric matrices A and Z are given by 
A= [ap,q], Z = [zp,q] with ap,q, zp,q given functions on n, and assume 
that Q has positive weights. 

Suppose G is factored into LLT with L a lower triangular matrix 
and let )q, An be the minimum respectively maximum eigenvalue of 
the complete spectrum a = {At, ... , An} C (0, oo) of the generalized 
eigenvalue problem Ax = AZx. 
Then the condition number Cond(L- 1 H L-T) satisfies 

Cond(L- 1 H L-T) :'.S ~; (7.5.2) 

independent of the choice of the basis functions {'Pi} t 1• 

Proof. Because A and Z are symmetric positive definite there ex
ist a complete set of eigenvectors and a spectrum a as above. Let 
for u = [a1, ... , aN ]T the function u be defined by u = E:1 ai'Pi, 
then uTHu = Q((A\7u)T\7u). From standard algebra it is known 
that if A satisfies the assumptions above then A1xT Zx ::; xT Ax ::; 
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AnXT Zx for all x E JRN. Because Q is monotone and linear this 
yields A1Q((ZVu)TVu) $ Q((AVu)TVu) $ AnQ((ZVu)TVu) on 
n. From this it follows directly that Cond(L-1 H L-T) $ An/ )..1. □ 

Remarks 7.5.3 
• For Z = In this leads to (LLT = A) Cond(L-1 H L-T) $ 

An(A)/A1(A)where0 < A1(A) $ An(A)aretheextremeeigen
values of A 

• If furthermore A = C as defined in theorem 7.5.1 then the con
dition number satisfies Cond(L-1 BET L-T) = Wmax/Wmin• 

7 .6 Advantages of the factorization 

Some advantages of the use of the factorization method for the assembly 
of stiffness matrices compared to the use of straightforward quadrature 
methods are: 

• The matrix BT, which is a discretization of the gradient operator, 
depends only on the grid geometry. Furthermore the matrix M . 
is a discretization of matrix A, so during the computation of M 
one gets information about A. If matrix H = H(u) is non-linear 
then only Mand not B will depend on this function u. Hence 
updating H only involves updating M 

• According to theorem 7.3.1 the degree of the local basis func
tions and quadrature formulas may vary from element to element. 
Hence it is possible to use quadrature rules for elements lying 
near boundaries or internal layers which differ from those used 
for other parts of the domain 

• For some specific choices of { <p~)} ~~1 and { 1Pkl)} {~1 the element 
matrix Bt will be very simple, thereby considerably reducing the 
amount of work to be performed 

• If Mis invertible, then H-1 can be approximated by 

(BBT)- 1 BM-1 BT (BBT)- 1. 

This approximation is especially accurate when M is close to a 
constant times the identity matrix, see e.g. [4] and [3]. Some of 
the advantages are: 
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- for an arbitrary grid B BT is nonsingular and spectrally equivalent 
to the stiffness matrix A on n if all weights are positive. 
Matrices A and B BT have the same sparsity structure as 
H which means that no new pointer arrays have to be 
generated 

- Matrix M-1 .is easy to compute due its simple structure 
• When solving linear systems with matrix B M BT by iteration, 

the residuals can be computed in a stable way using differences, 
which implies that the resulting round-off errors in the com
puted solutions are bounded independent of the fineness of the 
grid. In the present formulation, the matrix vector multiplication 
with B and BT are then performed as sum of differences which 
means that they can be computed with no or small roundoff er
rors (see [5]). Without this trick these errors increase as O(N), 
N -+ oo, in a two-dimensional problem. 

7.7 The Navier's system of equations 

In this section the Navier's equations, which describe the deformation 
of solids or the flow of fluids, illustrate an extension of theorem 7 .3.1 to 
systems of differential equations. Theorem 7.5.3 will be used to obtain 
condition numbers of some preconditioned versions. 

In two space dimensions the Navier's equations can be written as the 
following linear system of differential equations: 

a 1-v a l+v a 
--u1 - ---ui - ----u2 = ft onn 

8x2 2 8y2 2 8xy 
1-v a a t+v a 

----u2 - -u2 - ----ui = h on n 
2 8x2 8y2 2 8xy 

(7.7.1) 

u = 0 on r 

where v = v / (l - v) with v the Poisson ratio (see for instance [7] 
and [20]) and u = [u1, u2]T. The scalar v E (0, 1) is related to the 
properties of the material used. For almost inelastic (incompressible) 
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material v ~ 1. The variational formulation of (7.7.1) is: find u = 
[ui, u2] E Vi 0 Vi such that 

In (Av'u)Tv'v dx = 0 VvEVi@½ (7.7.2) 

where Vi, Vi c H6(!1) are simultaneously the trial and testspaces and A 
is a symmetric but not diagonal matrix 

[~ ~ ~ ~1 
0 0 b 0 
C O O a 

with a = 1, b = (1 - v)/2 and c = (1 + v)/2. Note that A is singular for 
v = 1. 

Now discretize (7.7.2) by chosing Vi = Vi = V, the set spanned by 
the finite element basis functions {'Pi} ~i, and a quadrature rule Q with 
positive weights. Define { wi};!f to be a basis for V ® V and the 2N 
by 2N stiffness matrix H by [H]ij = Q((Av'wj)Tv'wi). Then, in an 
analogous way to section 7.3, it can be shown that H can be factorized 
into a form EMBT where Bis an N by 4N' matrix and Mis a 4N' 
by 4N' matrix 

H = B M BT, B = [ BO) B<2> B(i) B<2>] 

[

M(l,i) 0 0 M0,4)] 

0 M<2,2> 0 0 
M = 0 0 M<2,2> 0 

M0,4) 0 0 M(i,i) 

with BO), B<2>, M(l,l), M<2,2> and M0,4) defined as in (7.3.4) respec
tively (7 .3.5). 

Finally, an estimate of the condition number of H, preconditioned by 
two particular stiffness matrices G, is presented. To this end define the 

o 0:cl (1 - 0)c 
b 
0 

[ 

a 0 
0 b 

A(O) = 0 (1 - 0)c 

0c 0 

D = Diag(a, b, b, a) 
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where 0 :s; fJ :s; 1 and note that A= A(l). 

Theorem 7.7.1 Let A, A(fJ), and D be defined as above. Then 
• for[H]ij = Q((Av'w;)Tv'wi)and[G]ij = Q((l4v'w;)Tv'wi) = 

LLT one has 

• for[H]ij = Q((Av'w;)Tv'wi)and[G]ij = Q((Dv'w;)Tv'wi) = 
LLT one has 

Proof. First note that matrix A in (7.7.2) can be replaced by matrix 
A(fJ) for all 0 E [0, l] without changing equation (7.7.2) because the 
homogeneous boundary conditions imply 

f (!la v)udx=0 f ~ v~ udx+(l-0) f ~ v~ udx \feE[O,tJ 
Jn uxy Jn ux uy Jn uy ux . 

for all u, v E H6(Q). Now use theorem 7.5.3 to determine the condition 
number: 

□ 

• Let matrix Z = ]4, then G = A = LLT. Consider the eigen
value problem Ax = A.l,.x. In this case it is easy to see that 
o- = {(1 - v)/2, (3 + v)/2}. According to theorem 7.5.3 hence 
Cond(L- 1 H L-T) :s; (3 + v)/(1 - v) 

• Now take matrix Z = D and let A = A(0). The solution of 
the generalized eigenvalue problem A(0)x = A.(0)Dx now yields 
o- := {a± 0c, a± (1 - 0)c/b }. Minimization of Amax(B)/ Amin(B) 
for 0 E [0, l] yields, according to [7], 0 = 2/(3 - v) whence 
Cond(L- 1HL-T) :s; 2/(1- v). 

As can be seen it is possible to extend the theory of section 7.3 for 
systems of partial differential equations without any restrictions. In this 
case it is advisable to assemble H elementwise using the submatrices 
B<P) M(p,q) B(q)T as in section 7.4. 



of the Hessian matrix 

7 .8 Stiffness matrices and mixed variational -
formulation 

223 

Earlier methods (see [3] and [6]) to derive the BM BT factorization of 
stiffness matrices used a mixed variational formulation of the system of 
coupled equations related to (7.2.4): 

A-1 z - Vu = 0 on n 
-V-z = f on n 

u = 0on fo 

zTn = g on rN 

(7.8.1) 

with z = AV u, A an n by n nonsingular matrix and n the outer normal 
of n. 

Now consider a discretized mixed variational formulation of (7.8.1). 
Choosing as before a finite element space V c HA(n), a quadrature 
rule Q asin (7.2.1) and a corresponding finite element space Mc L2(n) 
constructed as in section 7.3, this gives: find uh E V andzh E Mn such 
that 

Q((A-1zh)Tw) - Q<Y'.:uf w) = 0 VweMn 

-Q(zfv v > = f J v dx + 1 gv ds v vEV Jn lrN 
where h is the finite element grid parameter. If one takes 

(7.8.2) 

({t/,1, 0, ... , 0),., {tpN1 , 0, ... , 0), (0, tf'l, 0, ... , 0),., (0, ... , 0, tf'N' )) 

as a basis for Mn, and sets 

N 

{ 
Uh = E O!i,h'Pi 

i=l 
n (1) (N') T 

Zh = E[(3i h, • · · , /3i h ] tf'i 
i=l ' ' 

f3 _ /3(1) t3<N') T 
-[ ihl'''' ih]' 

' ' 

then this leads to the system of equations 
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or equivalently 

where the block matrices M and B are defined as in theorem 7.3.1. 

Note that the representatiO'IT of matrix M depends on the order of the 
basis functions of Mn. If the basis for Mn above is permuted into 

((tp1, 0, ... , 0), · · ·, (0, ... , 0, tpi), ("PN', 0, ... , 0), · · ·, (0, ... , 0, "PN' )) 

then this leads to a block diagonal matrix M = Diag(MO), ... , M<N')) 
of order nN' with diagonal blocks M(m) of order n as defined in theo
rem 7 .5.2. The block structure of M for both bases is shown in fi.gure 7 .6. 

For nonsingular matrices A the factorization (theorem 7.3.1) and the 
mixed formulation coincide. This has already been proved for a positive 
definite diagonal matrix A in [3], [6] for the choice of: 

• quadratic basis functions together with 3-point Gaussian quadra
ture on a triangulation of a two-dimensional domain 

• linear basis functions in combination with I-point Gaussian qua
drature on a similar domain. 

7 .9 Numerical results 

In this section a non-linear differential equation is studied to compare the 
computational work for the residual (gradient) and the Hessian with the 
use of the factorization method. Further the computational complexity 
for the various parts of a damped inexact Newton solution algorithm is 
examined to provide an estimate of the assembly costs for the Hessian 
in comparison with the total computational costs. 

As a test problem consider the following non-linear differential equation 
which models a subsonic potential flow around an airplane wing (see 
fig. 7.7) 

-V:(p(lv'ul2)v'u) = 0 on n C R 2 

P(lv' ul2) = Poo0 - ½(Iv' ul2 - v~))512 
(7.9.1) 
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with boundary conditions 

p(IVul2)VuT n = 0 
u(x) = v00 • x 

on the wing 
at infinity. 
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Here p00 is the air density at infinity and v00 = M 00 is the wind velocity 
at infinity (see e.g. [9]), with M00 being the Mach number at infinity. For 
other types of domain, like windtunnel sections, see [15]. Note that rN 
is the wing profile and that r0 is a circle around the airplane wing, at a 
suitable distance. 

If this equation is linearized using a Newton method and if the resulting 
linear systems are discretized with the use of quadratic finite element ba
sis functions { <pi}~1 on triangles in combination with 3-point Gaussian 
quadrature, then the gradient F(u) and its derivative, the Hessian F' (u), 
are given by (see [8] and [9]) 

[F(u)]i =Q(p(IVul2)VuTV <pi) - J (p(IVul2)VuT n)<pids 
lrN 

[F'(u)]ij =Q(p(IVul2)V <p;TV 'Pi+ 

2 · p'(IVul2)VuTV<p;VuTV<pi) 

where p'(() = &p((), ( = 1Vul2• Note that for II 1Vul2 11 00 ,n < (5 + 

v~)/6 the Hessian is positive definite. 

According to theorem 7 .2.1 F' is a stiffness matrix. Rewriting F and F' 
into stiffness matrices yields 

F(u) = G(u)u - f 

[G(u)]i; = Q((AV<p;)TV<pi) 

A= Diag(p(IVul2), p(IVul2)) 

[f]i= J (p(IVul 2)VuTn)<pids 
lrN 

[F'(u)]ij = Q((AV <p;)TV <pi) 
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Note that G and F' are both stiffness matrices with bandwidth 19. 
In order to simplify the comparison of the assemblage costs for the 

gradient and Hessian, assume that the evaluation of A at one quadrature 
point costs d = 15 flops and that the evaluation of A costs 2d flops 
(evaluation of p(IVul2) and p'(IVul2)). Further, for this choice of basis 
functions, the asymptotic relationship 2L = N will be used, which is 
true in the limit case where the grid parameter h ---+ 0. Therefore the 
additional matrix vector multiplication needed for the assembly of the 
gradient costs 19 • 2L = 38£ flops. 

Now comparing the costs of the gradient assembly with (7.4.6) 
and (7 .4. 7) gives 

{ (21 • {2 + 3 • 2 • 2} + 3d + 204)£ = 753£ for F with (4.7) 
(2 • 27 + 3d + 204)£ + 38£ = 341£ for F with (4.6) 

whence leading to a ratio of (4.6): (4.7) = 1 : 2.2. 
If the factorization method for the element matrix assembly for F 

as well as for F' is used, then this yields 

{ (2 • 27 + 3d + 204)£ + 38£ = 341£ for F with (4.6) 
(2 • 27 + 45 + 6d + 204)£ = 393£ for F' with (4.6) 

leading to a ratio of F : F' = 1 : 1. 2, which is fairly good compared to 
[8], where the ratio of assembly costs is about F : F' = 1 : 5. 

Assembling Hessian and gradient simultaneously will reduce the 
overhead costs (except for the evaluation of p') hence further reducing 
tl'le' assembly costs for one Newton step: 

{ 341£ + 393L = 734£ for F and F', (4.6) apart 
341£+ (2 • 27 + 45 + 3d)L = 485£ for F and F' simultaneous. 

This means that the costs for the calculation of the gradient assembly 
are only multiplied by a factor 1.4. Therefore one may conclude that the 
calculation of the Hessian costs almost nothing. 

Table 7.9.1 Assembly costs. 
task #flops 
(1) assembly F · 170N 
(2) assembly F' additional 12N 
(3) factorization F' 50N 
(4) one step ILU-CG 43N 
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Now consider the total costs for each damped inexact Newton step, with 
ILU-CG to solve the linearized systems (for the sparsity pattern of the 
Jacobian matrix, see fig. 7 .8). The costs can be divided into those for the 
assembly of F and F', the ILU factorization of F' and for the solution 
of F'x = F with the ILU-CG. Table 7.9.1 (see also [5], pp.384,385) 
shows the costs for the separate parts for the simultaneous assembly of 
F and F'. 

Because one Newton iteration step consists of several ILU-CG 
iteration steps, one roughly obtains the approximate ratios 

(1): (2): (3): (4) = 4: 2: 1 : i 

where i is the average number of PCG iterations per Newton step (note 
that backtracking can be neglected if one uses the continuous method in 
[2]). For an almost transonic problem with v00 = 0.748, using several 
coarse grids, obtained by uniform refinement from a coarse grid Q<0) as 
in chapter 5, this average number i is shown in table 7.9.2. 

Table 7.9.2 # Newton steps. 

Grid N #Newton steps i 

QlUJ 561 4: 8,14,17,22 16 
QllJ 1073 4: 3,37,58,79 45 
QlLJ 2145 3: 6,70,96 58 
QljJ 4193 3: 10,117,149 92 

Here the stopping criterions (see sections 5.9 and 8.2) are given by 
Enonlinear = 10-10 and £linear, such that one has quadratic convergence 
(see section 8.2). On all grids Q<k), the starting residual F(u}k)) of the 
interpolant of the previous solution is in the order of 10-1• On the first 
grid, u}k)(x, y) = v;0 • x is taken as a starting solution. See figs. 7.10, 
7 .12 resp. 7 .9, 7 .11 for the finite element grid and isoclines of the Mach 
number on the domain of the solution of (7.9.1) for N = 4193 on 
grid Q<3). In the third column of table 7.9.2, after the semicolon, the 
number of linear iterations for the separate Newton steps are listed. 

Note in passing that there is no difficulty solving problems with 
Mach numbers smaller than but arbitrary close to 1 (subsonic case). 
Newtons method diverges however in the transonic case. 



228 On the updating and assembly 

Note that it costs nothing to compute the eigenvalues of A and A during 
the assembly of G and F' in this test example because 

a(A) = {p(IV u 12)} 

a(A) = {p(IV u 12), p(IV u 12) + 2 · IV u 12 • p' (IV u 12)} . 

This is of practical importance because if the smallest eigenvalue of A 
becomes negative then the Hessian will eventually become indefinite if 
the grid will be refined up to a high level. This indefiniteness can cause 
the ILU-CG to crash and make the damped inexact Newton method 
useless. 

Further, since the Hessian is not uniformly positive definite, note that a 
breakdown could occur if one of the subsequent iterands would become 
transonic due to a too large stepsize, determined by r<k)_ However, for 
the numerical test presented above where the solution is nearly transonic, 
but still subsonic, it is fairly easy to prevent the damped inexact Newton 
method from breaking down. In order to see this, note that the second 

eigenvalue in a(A) is precisely equal to p(x, IV u 12)(1 - M 2 (x, IV u 12 ), 

where 

(7.9.2) 

Here, in computational fluid dynamics, the term M2 is called the Mach 
number (squared). If this Mach number is uniformly less than one then 
the problem is said to be of subsonic nature - the problem is elliptic-, if 
it is locally greater than or equal to one, the problem becomes transonic 
- a parabolic layer arises - and if the Mach number is uniformly greater 
than one than the problem is said to be supersonic or hyperbolic. Before 
introducing the modification of the diffusion tensor to ensure that the 
Newton algorithm can not break down, consider the Mach number for 
some well-known examples. 

Example 7.9.1 Consider the case where p(IV xul2) = f(x) · (IV xul2)P. 
Then 
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whence the Mach number squared is uniformly less than 1 for all p > 
-½. Note that the Ladyzhenskaya model (1.2.2) has a diffusion tensor 
of this type, possibly scaled by a constant. 

Example 7.9.2 Consider the minimal surface equation tensor where 

In this case the Mach number is equal to 

for all possible solutions u. Note that the Mach number in this case is 
not uniformly bounded below 1, and that equation (1.2.3) admits such a 
diffusion tensor. 

Finally, the modification of the diffusion tensor p is investigated. The 
smallest eigenvalue of A, p( () + 2( p' ((),is clearly greater than or equal 
to O if p(() > 0 and p(() + 2(p'(0 ~ 0. Now consider the positive 
function b: [O, oo) ~ [O, oo) defined by 

b(() =co((+ c1)-1l2, co, c1 E (0, oo). 

It is easily verified that b(() + 2(b'(0 = b(() • c1/(( + ci) > 0 for 
all co, c1 E (0, oo ). However, this estimate is not uniform in (. 

Now a breakpoint (0 is chosen such that M2((0) = 1-£forgiven 
£ E (0, 1) leading to the unique choice 

2 1- £ 
(o = (5 + V ) • --

oo 6-£ 

where (o > v~ # £ > 1 - v~. Then scalars co and c1 are chosen 
such that the graphs of p and b fit continuously differentiable at the 
breakpoint (o. In order to determine these scalars note that 

p(() = gP(() b(() = cofq(() 
p'(() = -½gP-1(() b'(() = -½cofq-l(O 
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where g(() = 1 - i'(( - v~), f(() = ( + q, and p = 1/(2-y) = i 
resp. q = -½. The continuously differentiability condition leads to the 
conditions 

p((o) = b((o) A p'((o) = b'((o) 

and therefore to the conditions 

g((o) = f((o) ⇒ ci = g((o) - (o 

Finally, this leads to a modified tensor p defined by 

p(() = p(() 
p(() = b(() 

for ( E [O, (o) 
for ( E [(o, oo). 

(5 +v~)E; 
=----

6-c 

= (5 +v~)
3 

6-c 

Using the tensor p, a solution with Mach number uniformly less than 1-
c will be a solution of the original problem with diffusion p and a 
breakdown can not occur. As the modification is easy to compute, it is 
an easy way to avoid a breakdown of the Newton solution algorithm. 

In the airplain wing example c is chosen to be 0. 005, whence the 
breakpoint (o = 0. 9228. On all grids, the computed solutions remained 
below this threshold, whence every solution is a subsonic solution of 
equation (7.9.1), without diffusion tensor modification. 

7 .10 Conclusions 

It has been demonstrated that for many practically important examples 
like the electromagnetic field equations or the potential equations for 
aerodynamics the assembly of the Hessian matrix which occurs in a 
damped Newton algorithm is not more expensive than the assembly of 
the gradient, if the factorization method presented in this chapter is used. 
Hence in those cases there is no need to avoid updating the Hessian each 
iteration step or to use other techniques to assemble the Hessian such as 
those described in the introduction. 

It can even be stated that the computation of the Hessian costs 
almost nothing except for the calculation of the derivative of a function 
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as the residual has to be calculated at each iteration step in any case. 
The extra work needed for the Hessian is often so small that, when the 
gradient has already been computed, it amounts to about the computing 
time needed to store its entries. 

Use of the factorization method provides also good information 
about positive definiteness of the stiffness matrix. Also more insight in 
the effect of the use of quadrature formulas in finite element methods is 
provided. 
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Fig. 7 .1 An example of a piece
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Fig. 7 .5 Quadrature rules on a square. 
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Fig. 7.4 Basis functions and qua
drature points. 
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Fig. 7 .6 Matrix M on first and on second basis. 
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Fig. 7.7 The computational do
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Fig. 7 .9 Isoclines of the solution 
on Q<3). 

Fig. 7.11 Magnification fig. 7.9. 
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Fig. 7.8 Standard nodal sp. pat
tern. 

Fig. 7 .10 The refined grid Q<3). 

Fig. 7.12 Magnification fig. 7.10. 
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-
Non-linear iterative 
solution 01ethods 

An unpublished extension to all previous chapters presenting 

the damped inexact Newton algorithm and iterative solution 

methods used for the numerical tests presented. Also the 

computation of the Jacobian matrix for all partial diffential 

equations studied in this thesis is presented. 

8.1 The Jacobian matrix 
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The Jacobian matrix, as used for the derivation of the discretization 
error estimates and the damped inexact Newton solution method, turns 
out to be easy to determine for all differential equations considered in 
this thesis. After the examination of this Jacobian matrix the damped 
inexact Newton method using it and the iterative solution methods are 
presented. The formulas and solution methods presented are the basis 
for all numerical test in the previous chapters. 

Lemma 8.1.1 Let V x denote the gradient in space dimension and V the 

gradient in space and time. Further let F(x, u, IV xul2)for u E H;(Q) 
be defined by 

(F(x, u, IV xul2), v) = k (E(x, u, IV xul2)V xu)TV xv dxdt + 

f f(x, u, Vu)v dxdt + j vh ds 
JQ lrN 



238 Non-linear iterative 

for all functions v E HA(Q), where Eis a diagonal 11Ultrix and the func
tion h describes the Neu11Ulnn boundary conditions. Then the Jacobian 
11Ultrix is given by 

, 2 oF 2 
(F (x, u, IV xul )w, v) =( ow (x, u, IV xul ), v) 

= l [{E+2E'VxuVxuT}Vxw]TVxv+ 

[ oE ] r o 
w ( 0u)Vxu Vxv+[w 0uf+ 

T of 
Vw --] · v dxdt 
- oVu 

for all functions u E H~(Q) and all v, w E HACQ). 
Proof. This follows straighty using elementary Banach-space analysis 
concerning partial derivatives of functionals and exploiting the defini
tion (1.3.4) and lemma 3.3.1. D 

Note that the Jacobian matrix is no longer symmetric in v, w in the 
case that E depends on u or f depends on V xu. For numerical tests 
considering static two-dimensional partial differential equations, the 
integration in time, which is part of the definition of F and its derivative, 
is simply omitted. The integrals involved are approximated elementwise 
(for all triangles in a grid Q covering Q) with the use of a second degree 
Gaussian quadrature rule, as can be found in chapter 7. It should be 
noted that for all linear partial differential problems studied, the use of 
linear or quadratic basis functions in combination with this quadrature 
rule leads to exact integration, i.e., integration without quadrature errors. 

8.2 The damped inexact Newton method 

The damped inexact Newton method (DIN) used for all numerical test 
is introduced in [5]. There it is shown that the method converges for 
all finite dimensional non-linear systems of equations F(x) = 0 with 
uniformly positive definite Jacobian matrix F'. It is closely related to the 
simpler damped Newton method, which can be formulated in pseudo 
programming code by 
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k=O 
While IIF(x(k))II > cnonlinear 

Do 

Od 

d(k) := { F' (x<k>)} - 1 F(x<k>) 
x<k+l) := x<k) + 7 (k+1)d(k) 

k := k + 1 
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for a predetermined precision cnonlinear• Here the parameter r<k+l) is 
called the damping parameter and II · II denotes a norm. In the case 
r<k) = 1 f1e method reduces to the classical Newton method where the 
correction Jk) = x<k+l) - x<k) has to be computed exactly or for instance 
to machine precision accurate. 

The damped inexact Newton method is called damped since the 
damping parameter r<k) is involved and it is said to be inexact since the 
subsequently computed corrections d(k) are only computed to a certain 
predetermined precision, as can be seen in the following pseudo code 
describing the method 

r<0> = 1; k = 0 
While IIF(x<k))II > cnonlinear 

Do 

Od 

r<k+l) := min(l, 2r<k)) 

Determine d(k) such that 
IIF'(x<k))d(k) + F(x<k))II < c~~ear 

x<k+l) := x<k) + r<k+l)d(k) 

While IIF(x<k+l))II/IIF(x<k))II > (1 - ,r<k+I)) 
Do 

7 (k+l) := 7 (k+l) /2 
x<k+l) := x<k) + r<k+l)d(k) 

Od 
k := k + 1 

for givenx<0>. Here c~~ear = p<k)IIF(x<k>)II with pCk) is a forcing sequence. 
In all numerical tests p<k> is chosen to be p<k> = min{ 1~, IIF(x<k))II }. The 
scalar 1 , which is an arbitrary scalar to be chosen in the interval (0, 1 ), 
is set to 1 = 1~ for all tests. Note that the damping parameter r<k) is 
determined automatically. This, together with the fact that no estimates 
involving the norm of the Jacobian matrix are needed, is the reason that 
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this method has been used. Other methods can for inslance be found 
in [2]. 

One can show (see [5]) that the above choice for the forcing 
sequence guarantees the existence of a positive K E 1N such that r<k> = 1 
for all k ~ K. Hence, fork large enough, the DIN method reduces to an 
undamped inexact method. 'iln combination with the choice of the forcing 
sequence above, this will lead to quadratic convergence for k -+- oo, 
i.e., 

llx<k+l) - x<k)II ~ cllx<k) - x<k-l)ll2 

for a certain positive scalar c. Note that the iterandsx<k+l) in the damped 
inexact Newton method could have been defined differently, with the 
use of 

IIF' (x<k>)(x<k+l) - x<k>) + r<k) F(x<k))II < cfr~ear , 

as presented in section 1.6. This approach simplifies the notations in
volved since no separate search direction d(k) is needed. However, it is 
not used for the actual computations, since for the possible case of a 
very small damping parameter, the vector r<k> F(x<k>) gets too small. 

For all numerical tests presented, including the linear problems, the 
DIN method is used for the solution of the partial differential equation, 
discretized with the use of finite element basis functions where F above 
denotes the gradient vector and F' its related Jacobian matrix. In order 
to simplify the notations for the presentation of the iterative solution 
methods in the next section, let for given x<k>, the matrix A = F' (x<k>) 
and vector b = -F(x<k>) be defined by 

using the finite element basis as in chapter 5, the Gaussian quadrature 
rule as in (7.4.1) and the definition of F and F' given in lemma 8.1.1. 

Note that this notation implies that IF'(x<k>)d(k) + F(x<k>)I = jr<k>j, 

where r<k> denotes the residual. This means that the iterative solution 
methods to be presented will have a stopping criterion llr<k)II < cfr~ear· 

The matrix A is stored in the special row-wise ordered man
ner as introduced in section 5.6. The node numbering, determining 
the sparsity pattern of the matrix and the vector, satisfies (5.4.2), in 
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order to guarantee a block structured matrix in the case that a hier
archical finite element basis representation is used. Further, assuming 
that x<0> E 1-{,y(Q) (see (5.9.1)) satisfies the - inhomogeneous - Dirich
let boundary conditions, the search direction must satisfy homogeneous 
boundary conditions, i.e., d(k) E 1-io(Q). In order to guarantee this the 
matrix A and vector b are always modified as follows. Let <pi be a node 
defined at a Dirichlet boundary point, then for all j 

[A]ij = [A]ji = [b]i = 0 and [Afo = 1 

Note that this procedure in some cases also has to be followed in order 
to prevent the matrix from being singular. This would for instance be 
the case if F is the Laplacian functional and a standard nodal finite 
element basis is used for the construction of the matrix A. Then, without 
the modification above, A maps the vector [l, ... , l]r, onto 0, i.e., the 
unmodified matrix A is singular. 

8.3 The solution of systems of linear equations 

A linear system of equations Ax = b as obtained in the previous section, 
emanating from the discretization of a partial differential equation, is 
usually sparse and of large order. Iterative solution methods, exploiting 
these properties, are mostly much cheaper solution methods than the 
classical Gaussian elimination method. Main reason is the fact that the 
latter method causes a large amount of matrix fill in (see [4]) and there
fore demands the whole matrix to be stored in the computer memory. 
Using an iterative solution method, only non-zero entries of the matrix 
have to be stored, and the matrix A- 1 will not be computed. 

In order to speed up the convergence rate of an iterative method a 
preconditioner C = LU ::::::: A is constructed by the incomplete Gaussian 
factorization /LU (see for instance [4], pages 40, 41). Here incomplete 
means that during the row-wise ordered elimination without pivoting, 
corrections are neglected if they do not correspond to couplings ( i, j) 
of the sparsity patterns J, presented in section 5.5. The elimination 
takes into account the node numbering - reflecting the level of refine
ment (5.4.2) - by starting to eliminate using the nodes of the highest 
level, implying that the resulting preconditioner LU depends on the 
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numbering of the nodes. Tests in [6] using a standard nodal finite ele
ment basis have shown the influence from several numbering strategies 
on the rate of convergence. 

There exist many other possible preconditioning techniques for 
symmetric positive definite matrices A emanating from elliptic differen
tial equations, but here the incomplete LU preconditioner is used since 
for time-dependent problems the related A is not symmetric. However, 
in the case of a positive definite matrix A one could consider also the 
elementwise factorization technique proposed in [7]. 

All numerical test performed use one of the described iterative solution 
methods below. The initial approximation x<0) is always taken to be 
equal to c-1b. The stopping criterion used by all iterative methods 
is llr<k)II < £linear for a given precision clinear, where II · II denotes the 
Euclidian norm. This differs from the proposed criteria in the literature 
(see e.g. [4] and [11]), for comparison purposes. As all norms on a finite 
dimensional vector space are equivalent, there is no specific reason to 
choose the Euclidian norm in the stopping criterion. For example, the 
max-norm II· II= could have been used as a cheap alternative. Note 
that the stopping criterion does not take into account the type of finite 
element basis used. 

The first and oldest method to be considered is the preconditioned conju
gate gradient PCG solution method as described in e.g. [ 4]. This method 
in general can only be used to solve symmetric positive definite linear 
systems of equations and is given by the following pseudo code 

r<0) := Ax<0) - b 
d(O) := -c- 1r<0) 

k :=0 
While llr(k)II > Clinear 

Do 
a = -(r<k), d(k)) 
f3 = a/(d(k), Ad(k)) 
x<k+l) = x<k) + f3d(k) 
r<k+l) = r<k) _ f3d(k) 

'Y = (lk+l), c-•r<k+l))/,a 
d<k+l) = f3d<k) _ c-•r<k+l) 

k := k + I 
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Od 
for all numerical tests performed. 

As the time-dependent partial differential equations give rise to non
symmetric systems of equations other iterative solution methods are 
necessary. For the solution of nonsymmetric positive definite problems 
the more recently developed preconditioned generalized conjugate gra
dient least squares GCGLS method and conjugate gradient squared 
CGS method have been used. The GCGLS method can be described by 
(see e.g. [l]) 

7(0) := A,x(O) - b 
p(O) := c-IrCO) 

d(O) := -p(O) 

k := 0 
While llr(k)II > cfinear 

Do 
c/k) := -(rCk), Ad(k)) / (Ad(k), Ad(k)) 

xCk+l) := x(k) + c/k)d(k) 

7Ck+l) := rCk) + a,Ck) Ad(k) 

pCk+l) := c-I7 (k+l) 

Od 

h(k+l) := AT Ap(k+I) 

f3kk}_ i := (h(k+l), d(k-j)) / (Ad(k-j), Ad(k-i\ j = 0, ... , k 

d(k+I) ·= -p(k+I) + "~ (.l(k) -d(k-j) 
• L.,3=1 fJk-J 

k := k + 1 

For practical reasons a truncated version of this algorithm is used, where 
only the last l search directions are used to determine the new search 
direction. The summation term in the algorithm above then ranges 
from j = max(0, k - l + 1) to j = k. One can prove, if the symmetric 
part is positive definite (see [1], [3]), that the residuals rCk) converge 
monotonically to zero. 

The CGS solution method (see [11]) is given by the code 
pCO) := 0; qCO) := 0; a,CO) := 1; 
yCO) := L-Ib 
rC0) := b - Au-1yC0) 

cCO) := L-1 rCO) 
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;(0) := cCO) 

k := 0 
While llrCk)II > €linear 

Do 
c:ik+l) := (,~(O), C(k)) 

/3 := 0 (k+l) / 0 (k) 

uCk+l) := c(k) + f3qCk) 

cCk+l) := q(k) + /3p(k) 
p(k+l) := uCk+l) + f3c(k+l) 

cCk+l) := L-l Au-lpCk+l) 

1 := 0 (k+l) /(,.CO), cCk+l)) 

q(k+l) := uCk+l) - ,c(k+l) 

c<k+l) := u(k+l) + q(k+I) 

yCk+l) := yCk) + ,c(k+l) 

Od 

r(k+I) := lk) - ,Au-lc(k+l) 

cCk+l) := L-lrCk+l) 

k := k + 1 

X := u-lyCk+l) 

Non-linear iterative 

for arbitrary ,.CO). In all tests performed ,.CO) := L - 1 rCO). Note that the 
algorithm above computes the solution x on a transformed bases (trans
formation with L- 1 ). 

There is no proof of convergence available for this method, pos
sibly due to the fact that breakdown can occur for c,.C0), cCk)) = 0 for 
certain k. Contrary to the GCGLS method, the residuals rCk) do not con
verge monotonically to zero in general. P1ior to convergence, they can 
vary several orders of magnitude (early literature can be found in [10]). 
However, recently, v.d. Vorst [12] introduced the related Bi-CGSTAB 
iterative solver which behaves more stable, also for problems which 
contain a moving shock. The convergence rate is approximately that of 
the CGS method. 

Recently several parallel finite element methods were developed by 
Layton, Rabier and Maubach (see for instance [8] and [9]). Depending 
on the choice of the finite element basis, these methods are element
wise parallel and can solve non-linear partial differential equations with 
constraints in parallel. 
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Index 
The index table provides for most of the definitions to be found inside 
this textbook the page number of their introduction and in some instances 
some additional references. 

adaptive derefinement 156 
adaptive refinement 155, ix 
affine transformation 16 
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approximation polynomial 17, 24 
asymptotically stable 8 

base 122, 126 

Chebyshev polynomial 185 
child 122 
classical interpolation error 
estimate 20, 47 
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compatible 120, 126 
compatibly divisible 122 
computational domain 12 
conjugate gradient squared COS 
243 
conservative 7 
continuous solution 18 
continuous time-slabbing 14, 86 
convection-diffusion problem 5 
coupled 128 
coupling set 128 
coupling 128 
cylinder surface 4, 55 

damped inexact Newton method 
(DIN) 238 
degrees of freedom 127 

delay differential equation 7 4 
diffusion tensor 5, xi 
Dirichlet boundary conditions 9 
Dirichlet equation 157 
discontinuous time-slabbing 86 
discrete solution 18 
discretization error estimate 47, 68, 
viii 
dissipative 7 
divergence form stiffness matrix 
201 
duality pairing 9 

energy functional 9 
error indicator 155 
Euclidian inner product 60 
evolution equation 6 

finite element basis function 17 
flow field 6 
Frechet differentiable 9 
Friedrichs inequality 43, 64 

Galerkin variational formulation 11 
Gateaux directional derivative 9 
generalized conjugate gradient 
least squares GCGLS 243 
global discretization error 15, x 
global time-space finite element 
variational formulation 18 
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global time-space variational 
formulation 12, 18 
gradient 10, 200, ix 
green triangle refinement 133 
Green-Stokes 10 
grid size parameter 140, 18 
grid 16 

Hessian matrix 10,200 
hierarchical finite element basis 
126 
homogeneous boundary condition 
68 

Navier's equations 220 
Navier-Stokes equation 5 
Necas trace inequality 20, 91 
neighbour 122 

Index 

Neumann boundary conditions 9 
newest vertex bisection refinement 
119, vii 
newest vertex 122 
Newton method 239 
node 126 

parent 122 
path following 7 4 

incomplete Gaussian factorization path 135 
ILU 241, viii perfect matching 122 
inhomogeneous boundary Petrov Galerkin variational 
condition 35 formulation 13 
interpolant 14 plane refinement 155 
inverse inequality 62 preconditioned conjugate gradient 
isoparametric elements 122 PCG 242 
isosceles triangle 141 preconditioned iterative method v 

Jacobian matrix 10, 59, ix 

Ladyzhenskaya model 5 
Lebesgue integration 8 
level 122 
line refinement 155 
local discretization error 15, x 
longest edge bisection 120 

macro element 188 
matrix fill in 241 
minimal surface equation 229 
monotone 7 
mutually uncoupled 135 

quadrature rule 203 

red triangle refinement 133 
reference simplex 16 
reference triangle 141 
regridded damped inexact Newton 
iterative method RDIN 154 
regular grid refinement 120 
residual 240 

Schur complement 146, 185 
simplex 121 
single parameter 7 4 
sparsity pattern 119, 128, vii 
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standard nodal finite element basis trace function 9 
126, 18 transonic 227, 228 
stiffness matrix 183, 201, 204 trial function 13 
Stokes equation 5 

unbounded functional 7 
uniform refinement 155 

strongly monotone 7 
subsonic 224 
supersonic 228 
support 113, 126 uniformly positive definite 238 

unit outward normal 12, 13, 37, 56 

test function 13 
time-slab 14, 36, vi variational crime 154 






