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FOREWORD

For me one of the highlights of highschool-mathematics was the introduction of the concept
inner product. Problems that in earlier schoolyears could only be handled with geometric
methods, were now be poured in an algebraic form and were then easily solved with a combi-
nation of algebraic manipulation and geometric insight. The strength of this combination has
made a tremendous impression on me.

During my later study of mathematics this feeling became even stronger, when it turned out
that this combination was also fruitful in the more general context of inner product spaces.
Apart from their beautiful structure, inner product spaces have been studied extensively for the
many applications they produced, e.g. in Fourier-analysis.

In the winter of 1987 I was introduced to the subject of median algebras by Dr. Marcel van
de Vel — they play an important role in his monograph “Theory of Convex Structures”. When
it appeared to me that the combination of algebraic manipulation and geometric insight was vi-
tal in this area too I became very interested. Median algebras have — sometimes implicitly—
appeared in rather different disciplines of mathematics such as discrete mathematics, lattice
theory and topology, each of which use their own language. This makes it rather difficult to
get an overall view of the subject. When, with the help of Marcel, I obtained that view, it
seemed to me that one of the reasons median algebras were not that popular was the seeming
lack of applications. Furthermore it surprised me that the highly natural class of median alge-
bras arising from metric spaces and normed spaces, was hardly studied.

With this monograph, based on my dissertation, I therefore hope to achieve the follow-
ing things:
- Giving an introduction to the subject of median algebras.
- Presenting a theory of median algebras arising from metric and normed spaces.
- Connecting the theory of median algebras to the real world by means of applications.
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SYMBOLS

N={1,2,..},
Z,Q,R,
AAB,

A’

2,

Xie1Xis

[A ], #A),
A, cl (@A),
A, int(A),
allb,
anb,
allb,
avb,

inf (A),
min(A),
sup (A),
max (A),
D (b,r),
diam(A),
p(A,B),
PH>

co(A),
co(A),
sp(A),
sp(A),

ker (f),

(f1
iff,

.7

set of natural numbers

set of integers, rationals and reals respectively
symmetric difference of A and B

complement of A

power set of X

Cartesian product of sets (X;);¢;

cardinality of A

(topological) closure of A

interior of A .

collection of maximal lowerbounds of points a,b in a partial order
infimum (meet) of points a,b in a lattice

collection of minimal upperbounds of points a,b in a partial order
supremum (join) of points a,b in a lattice

infimum of A

minimum of A

supremum of A

maximum of A

closed ball at a point b of radius r in metric space
diameter of A, i.e. sup {p(a,b) | a,beA}

distance between A and B, i.e. inf{p(a,b) | acA ; be B}
Hausdorff metric

convex hull of A

convex closure of A, i.e. the closure of co(A)

linear span of A

linear closure of A, i.e. the closure of sp(A)

kernel of a linear function f

equivalence class of integrable functions

if and only if

end of proof
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’ INTRODUCTION

-das mittelding- das wahre in allen sachen,

kennt und schdtzt man izt nimmer.

(WA. Mozart)

A point p in a metric space (X,p) is (metrically) between a, b € X provided that
p(a,b) = p(a,p) + p(p,b). This definition was first formulated by Menger in 1928 (see [56]).
The (metric) interval joining two points a, b of X is the set /,(a,b) consisting of all points
between a and b.

In this thesis we consider modular metric spaces (X, p), which have the property that all
sets of type

Mx(a,b,c)=15(a,b) N 1,(b,c) N1y(c,a)

are nonempty. For example, if X is the real line R with its natural metric, then Mg (a,b,c) con-
sists of one point only, namely the middle one of a, b, c. More generally, the operator My is
single-valued if X equals R"” with the “sum-norm”. It is properly multivalued if X equals R"
with the “max-norm”. These states of the values of My (singlevalued/multivalued) correspond
with rather opposite situations.

In 1947, Birkhoff and Kiss [15] considered a ternary (so-called median) operator on a
distributive lattice, and discussed its properties. One year later, Avann [5] formulated a gen-
eral concept of a median algebra. This is a set with a ternary operation possessing a few natur-
al properties, which are fulfilled, for instance, by the single-valued operator of R" with the
sum-norm. The Birkhoff-Kiss operator is a metric-free example. The subsequent papers [72],
[73], [74], of Sholander provide some characterizations of median algebras appealing to the
intuitive meaning of the word “median”. Some of his results were used later by Avann [6] to
conclude that if the operator My of a modular metric space X is single-valued, then it gives a
median operator. To emphasize that the set My(a,b,c) can have more than one point, the opera-
tor My is called a multimedian operator. In the fortuitous situation that My is single-valued, the
space (X, p) is a median metric space.

More recently, median algebras have been studied from the viewpoint of convexity.
Sholander’s concept of median betweenness gives rise to an interval operator which, in turn,
leads to a natural description of convex sets. A convexity arising from a median algebra has a
number of properties reminding of traditional convexity in vector spaces, specifically in inner
product spaces. For instance, disjoint convex sets can be separated with complementary half-
spaces, and certain convex sets (such as polytopes) allow for a natural projection similar to

-viii-
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metric nearest point projections. In fact, an important part of this thesis deals with a combina-
tion of traditional convexity and median convexity: a study of modular normed spaces.

As can be seen from the 1983 survey paper of Bandelt and Hedlikova [8] median alge-
bras were not widely known outside of lattice theory or graph theory, until recently. Nonethe-
less, median spaces have occurred in a somewhat disguised form in topology (normally super-
compact spaces and superextensions —see van Mill’s dissertation [58]). Here, the idea is to
use a closed subbase with the following intersection property: any collection of subbase
members that meet two by two meet altogether. Formally replacing the closed subbase by the
collection of closed balls in a metric space leads to a description of hyperconvex metrics, the
study of which goes back to Nachbin [63] and to Aronszaijn and Panitchpakdi [4]. Hypercon-
vex metric spaces, and more general spaces with the “(3,2) Intersection Property of balls” yield
another type of example of modular spaces. In these spaces the values of the operator My are
usually genuinely multivalued.

In this dissertation we present a study of modular metric spaces —in which the median
metric spaces play a prominent role— thereby combining viewpoints from median convexity
and that of intersection properties of balls. This study, which is mainly set in the disciplines of
metric geometry and analysis, is applicable in rather various situations, such as modular lat-
tices, graphs and Banach spaces. In this fashion, we obtain new examples of spaces with the
“(3,2) Intersection Property of balls” and we are able to solve a problem of Aronszaijn and
Panitchpakdi on the completion of these spaces in the affirmative. We also give an application
of the developed theory in chapter VII, where results on shortest network of line segments in-
terconnecting an arbitrary set (Steiner trees) are presented.

Organization

Some basic information on partial orders, (multi-)lattices, and convexity is presented in
Chapter I, culminating in a general (metric-free) theory of modular spaces. Some standard
results have been provided with a proof in order to make our treatment somewhat self-
contained. Among other things, it is shown that median spaces are modular spaces with an
abundance of convex sets.

Chapter Il specializes to modular metric spaces (as described above). Here it is shown
that the modularity condition corresponds with the “(3,2) Intersection Property of balls”.
Apart from the early work of Nachbin and of Aronszaijn and Panitchpakdi, this topic received
attention from Isbell [40], [41], Lima [48], en Lindenstrauss [50], [51]. Prominent exam-
ples are: L (n)-spaces, K (1)-spaces, and metric (“valuated”) lattices. Particular attention is
given to extension properties of contractive maps, completeness, and weak topology (that is,
the topology generated by the convex closed sets). Also an explicit description of the comple-
tion of a modular metric space is given. This description, which consists of adding conver-
gence points of “decreasing” or “increasing” sequences, resembles the classical Carathéodory
extension theorem for measures to c-algebras. This is the starting point for a “Heine-Borel”
type theorem, characterizing weak compactness in modular metric spaces.
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Chapter III further specializes to modular normed spaces. Among the important results
are: a characterization of L ;(u)-spaces as median Banach spaces, or, as Banach spaces with an
additive orthogonality. The latter justifies the above claim of analogy with inner product
spaces. As a consequence, each median normed space embeds (linearly) isometrically into an

L (u) space.

Chapter IV provides characterizations of spaces of type /,(/) in terms of the Hausdorff
property of the weak topology (in the sense of Chapter II). These results are used in a decom-
position of modular Banach spaces into two modular ones. One factor has no linear function-
als compatible with the metric (sub)convexity (equivalently, it has no non-trivial metrically
convex bodies), whereas the other has a point-separating collection of such functionals. Medi-
an Banach spaces of the first type correspond with atom-free L (i) spaces, whereas spaces of
the second type correspond with /, (/) spaces.

Some questions on isometric embedding of median metric spaces into L (i) spaces are
considered in Chapter V. We use results of Assouad and Deza [7] to show that L (i) spaces
are not only universal median normed spaces but in fact are universal median metric spaces:
each median metric space embeds isometrically into an L,(u) space. Completely different
techniques have been used to show that a median metric space embeds isometrically into {, (1)
iff it can be embedded as a median subalgebra.

Chapter VI deals with the amalgamation of modular (metric) spaces. This construction
results into a unique modular space extending the original ones, and which is median if the ori-
ginal spaces both are. Particular attention goes to the extension of metrics which are “adapted”
to an interval operator in the sense that balls around convex sets are convex. The results are
applied to construct median or hyperconvex metrics on collapsible polyhedra in an elegant and
natural way. This construction generalizes and simplifies that of Mai and Tang [53].

Finally, an application of median geometry is given Chapter VII. Here the topic is the
theory of Steiner trees, which deals with the following type of problem. How can you design a
network connecting all consumers that minimizes the quantity of material used? This type of
problem arises in the design of telephone networks, oil pipelines, and electrical circuitry. The
main result of this chapter is that in general median metric space such trees exist and can be
found in a finite number of steps. This generalizes and strengthens a result of M. Hanan [35] in
the plane. The method employed by Hanan is rather technical and ad hoc as it involves highly
specific constructions in the plane. In contrast, we have based our methods on a fairly well
developed geometry of median metric spaces. In particular, there is no need to restrict to two
dimensions.

Somewhat more detailed summaries can be found at the beginning of
each chapter, with the exception of chapter 1.

Note on notation: when referring to a result within this dissertation, we
only specify its chapter number if it differs from the current one.
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PRELIMINARIES

§ 1 Partial orders

1.1 Lattices. Let (P,<) be a poset (partially ordered set). If x,yeP have an infimum
(resp. supremum) then it will be denoted by xay (resp. xvy). A semi-lattice is a poset S in
which each pair of points x,y has an infimum. A lattice is a partially ordered set in which each
pair of points has an infimum and a supremum. If K,L are lattices, then f:K — L is called a (lat-
tice) homomorphism provided

faa)=fEAfQ) 5 favy)=fE)VI),
for all x,ye K. Note that a homomorphism is order preserving. A bijective homomorphism is
called an isomorphism. A least (resp. greatest) element of a lattice —if any— is called a unit,
‘and will be denoted by 0 (resp. 1).
A lattice L is called distributive provided that

Vx,y,zeL :xv(yaz)=(xvy)a(xvz),
or equivalently,
Vx,y,zeL : xa(yvz)=(xay)v(xaz).
A lattice L is called modular provided that
a <c implies av(bac)=(avb)ac (a,b,cel).

Modularity is considerably more general than distributivity. For instance, nearly all lattices
arising from algebraic considerations are modular, but usually not distributive.

u q
X1 X3 X

v P
Fig. 1.1A: The lattice K 3. Fig. 1.1B: The lattice N5
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Figure 1.1A depicts the non-distributive lattice K, 3, and Figure 1.1B depicts the non-
modular lattice Ns. In fact the following hold. A lattice is modular if and only if it does not
contain the lattice N5 as a sublattice, and a. modular lattice is distributive if and only if it does
not contain the lattice K, 3. See [13] or [28].

1.2 Lattice groups. A partial order < on an Abelian group G with zero element 0 is
called a group order, provided that 0<x implies a <x+a for all a,xeG. In this situation, the
pair (G,<) is called an Abelian ordered group. Observe that a (non-trivial) ordered group can
not have units. If < constitutes a lattice, then (G,<) is called an Abelian lattice (ordered) group.
See [13], where it is also shown that a lattice group is a distributive lattice, and that any Abeli-
an torsion free group can be made into an Abelian lattice group.

The most prominent example arises from vector spaces. A group order < on a:real vector
space V with the property that 0<x implies 0<Ax for all AeR§, is called a vector order. The
pair (V,<) is called an ordered vector space in this situation. If < constitutes a lattice, then (V,<)
is called a vector lattice, or a Riesz space. See the book of Luxemburg and Zaanen [52].

For a point x in an Abelian lattice group G, we define the positive part by x* =xv0, the nega-
tive part by x~ =-(x0), and the modulus by |x|=x"+x". We remark that Birkhoff [13]
defines the negative part of x differently by taking x™=x0. Our notation is most common in
the theory of Riesz spaces.

1.3 Boolean algebras. Let L be distributive lattice with units 0,1. A point aeL is called
an atom if for beL with 0<b <a either b=0 or b=a. Two points x,x’eL are complementary
provided that

xnx'=0 5 xvx’=1.

In these circumstances x’ is a complement of x. A point xeL can have at most one comple-
ment. The lattice L is called complemented if every xe L has a complement.

A Boolean algebra (A, v, A) is a complemented, distributive lattice. As a (classical). ex-
ample of Boolean algebras we have the following. A collection of subsets 4 of a set X is called
an algebra of sets if
(1) D.Xed,

(2) A,Bed then A NBed,

(3) A,Bed then AABeA.

One can easily verify that the triple (4, U, ) yields a Boolean algebra. () In fact by the
“Stone representation theorem” (Theorem 1.5) each Boolean algebra can be seen as an algebra
of sets. An algebra of sets closed under taking countable unions is called a 6-algebra.

A homomorphism between Boolean algebras, is a lattice homomorphism with the additional
property that p(0)=0and p(1)=1. Hence, there is no such thing as a trivial Boolean homomor-
phism.

The following is a well-known connection between. ultra-filters- and' (Boolean). homomor-
phisms with values in {0,1}. Let X be a set. Then.J is an ultra-filter on X iff F=p~'(1)for some
homomorphism: of the: power set 2% into {0,1}. In a natural fashion one can define a notion of

! The use of a script-character refers to an algebra of sets, as opposed to an-abstract Boolean:algebra.
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filter on a Boolean algebra. By using maximal filters one obtains:

1.4 Lemma. (e.g. [1, p. 197-199]) Let (A, v, A ) be a Boolean algebra and 0#acX,
then there exists a homomorphism h :A — {0,1} with p(a)=1. =

We remark that there is a correspondence between the power set 2¥ and the function
space {0,1}*: a set A cX corresponds with the characteristic function y, on A, defined by
xa(x)=1iff xeA. It is well-known that {0,1}* endowed with the topology of pointwise conver-
gence, yields a compact Hausdorff space.

Let (A, v, A ) be a Boolean algebra. Then B(A) denotes the subset of {0,1}* consisting of
all homomorphisms between A and {0,1}. Endow B(A) with the relative topology of {0,1}*.
The following is a rather straightforward consequence of Lemma 1.4.

1.5 Theorem. (Stone representation theorem) Let (A, v, A ) be a Boolean algebra.
Then,
(1)  The function space B(A) is a compact Hausdorff topological space.
(2) The function j:(A, v, A)—28®) . j(@)={peB(A)|p(a)=1}, is a homomorphism. The
values of j are closed and open in B(A). ]

1.6 Measures on Boolean algebras; Measure spaces. Let (4, v, A ) be a Boolean
algebra. A function p:A —[0,] is called a (finitely-additive) measure on A provided
(1) wo)=0,
(2) uis finitely additive, i.e. if ay, ' - - ,a, are pairwise disjoint elements of A, i.e. ¢;Aq;=0
for distinct i, j, then

WX a)=%7_ wa).

The binary function py(a,b)=p(avb)-u(aab) yields a pseudo-metric on
Ag,={a€A | u(a) < =}. This pseudo-metric space will be denoted by K (A, ). The quotient of
Aj, Obtained by dividing out zero sets will be denoted by K (4, ).

If (4, v, A ) is an algebra of sets with unit X, then a measure | on « is called c-additive if
for each sequence (A;)i~; of pairwise disjoint sets in 4 whose union is also in « the following
equality holds

H(UZA) =37 HA).
If 4 is a o-algebra, then the triple (X, 4,u) is called a measure space. For general reference see
the book of Royden [69]. A prominent type of example is given by the counting measure p on
the c-algebra 2/ for some index set /, which is given by:

#F) ifF is finit
“‘”z{m oherise, D

The following result is classical.

1.7 Theorem. (Carathéodory extension theorem) A c-additive measure 1 on an algebra
of sets (4, v, A) with unit X can be extended to a c-additive measure on the smallest c-
algebra &’ in X containing 4. If X is the union of countable many elements of 4 of finite meas-
ure, then this extension is unique. L
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In a measure space one can define the “integral” I fdu for a measurable function

f:X > [—oo,00]. If I | f | du is finite, then fis called absolutely integrable. The collection of in-
tegrable functions on X is a pseudo-normed space with pseudo-norm £l —f |f |dp. If fis an

integrable function, then [f] denotes the class of measurable functions g that equal f “almost
everywhere” (i.e. u({x | f (x)#g(x)})=0). One then defines

L(X,4,1w)={[f] | f is absolutely integrable}.

In literature these Banach spaces are commonly called L ; () spaces. If u is the counting meas-
ure on an index set / then the associated Banach space is usually denoted by /,(f). For [ finite,
say |I|=n, the space [,(I) is just (R, ||.l;) where ||.|l, denotes the sum norm, which is
defined by
”(xh o "xn)“s= le ! +o !xnl'
The space K (<, 1) (wWhich is usually denoted by K ;(X,«,p)) corresponds with the closed sub-
set {[xy] | Ued ; W(U) < =} of L (X,4,1n). Hence, K;(X,«,u) is a complete metric space.

We obtain a nice application of the theorems of Carathéodory and Stone. See [64].

1.8 Theorem. Let (A, v, A ) be a Boolean algebra, and let 1 be a measure on A. Then
there is a c-algebra A’ with a c-additive measure |, such that A is (isomorphic with) a
subalgebra of 4, and |\’ extends .

Proof: By the Stone representation theorem we can look upon A as an algebra 4 consist-
ing of clopen sets in B(A), and we can regard p as being defined on 4. Suppose thatA;,4,, - - -
is a sequence of pairwise disjoint members of « such that their union is in 4. As elements of «
are clopen sets of B(A), we see that A, =@ for large enough n. Hence p is trivially c-additive.
Applying the Carathéodory extension theorem to u and 4 concludes the proof of the theorem. m

§ 2 Convex structures

2.1 Convexities. The following notions are taken from the monograph of van de Vel
[79]. A family C of subsets of a set X is called a convexity on X if
(C-1)Q,Xx are in C.
(C-2) C is stable for intersections.
(C-3) C is stable for updirected unions, i.e. if S<C is non-empty and updirected then L. is
in C.
The pair (X,C) is called a convex structure, and members of C are called (C-)convex. Each
A c X is contained in a smallest convex set, the convex hull of A or co (A) for short. The convex
hull of a finite set is called a polytope. A polytope spanned by two points is.called a segment.
A subset H of X is called a (C-)halfspace provided both H,X \H are members of C. Let us say
that two disjoint subsets A,B in X are separated by a C-halfspace H' provided A cH and
BnH=@. This notion gives rise to the following separation axioms S, S,, S3, S3 on C as.fol-
lows:
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S,: Points in X are C-convex.

§,: distinct points in X can be separated by C-halfspaces.

S3:  Each C-convex subset C in X can be separated by C-halfspaces from points g C.
S4:  Each pair of disjoint convex subsets in X can be separated by C-halfspaces.

Axiom S, is usually called the Kakutani separating property. Clearly, S, implies S, and
under assumption of S, 854 —>S3—S,.

2.2 Interval operators. An operator /:X2 —2¥ is called an interval operator if it has
the following properties for all a,b e X:
(I-1) Convexity of points: I (a,a)={a}.
(I-2) Extensiveness: a,bel(a,b).
(I-3) Symmetry: [(a,b)=I(b,a).
The pair (X,/) is called an interval space. A subset C of X is called star-shaped at a point cye C
provided that

VeeC : I(cg,c)cC.

The subset C is called I-convex, if C is star-shaped at all of its points. One can easily verify
that the collection of all /-convex subsets yields a convexity (the I-convexity). The hull opera-
tor of this convexity will be denoted by co;,. We give some examples.

2.3 Segment operator of convexity. Let (X,C) be an S,-convexity. Then the segment
operator, i.e. the operator assigning to each pair of points the segment between those points, is
.an interval operator.

2.4 Standard interval operator. Let V be a real vector space. The standard interval
operator co is given by

co(a,b)={ta+(1-t)yb |0<t<1},
for all a,b e V. The induced convexity is called standard.

2.5 Metric interval operator. Let (X, p) be a metric space. The metric interval operator
1, is defined by

I,(a,b)={xeX | p(a,x)+p(x,b)=p(a,b)},
for all a,beX. The I ,-convex subsets are called p-convex, geodesically convex, or simply
metric-convex. The concept of metric intervals originates from Menger [56].

As an illustration we mention that the metric intervals of an inner product space coincide
with the standard intervals.

2.6 Lattice interval operator. Let (L,v,) be a lattice. The lattice interval operator /; is
defined by

I)(a,b)={xeL | (arx)v(bax)=x=(avx)a(bvx)},
for all a,beL. This lattice interval operator was introduced by Glivenko [30]. See also the

book of Blumenthal and Menger, [16], where other interval operators on lattices are con-
sidered as well. The I;-convex subsets are also called I-convex.
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The: following result summarizes-some.of the. properties-of lattice interval operators. In the
sequel, [a,b] will denote the order interval between. two points a <b in a lattice.

2.7 Proposition.. Let L be:alattice: Then the following.are true for all a;b;xel:
(1) xelfa,b) implies arb<x<avb:
(2) anbelf(a,b); avbel(a,b).
(3) If a<btheni(a,b) is exactly the order interval between:a,b:
(4)  The convexity induced by I, consists of all order-convex sublattices of L.

Proof: For a proof of (1), consider the following (in)equalities:

x <xvianb)<(avx)a(xvb)=x,
in which the equality is by assumption. Hence equality holds throughout, showing; that aab'<x.
The other inequality is derived similarly. For:a proof: of (2), for x=anb, we find that
(arx)v(xab)=xvx=x and (avx)a(xvb)=arb=x. Hence xel)(a,b). Similar computations yield
avbel(a,b). For a proof of (3), suppose that a<b. If a <x<b; then (avx)a(xvb)=x. Consider-
ing the dual formula as well, we find that xe/,(a,b). The opposite implication follows from the:
first part of the lemma. For a proof of (4), to find the convex hull co (a,b) of two points-a,beL,
one should start with /;(a,b). Then take all pairs a’,b’e [,(a,b) and add /,(a’,b’). Then repeat the
process until the set stabilizes. By combining parts (2) and (3) we see that the convex-hull of:
a,b, must include the entire order-interval [asb,avb]. By using part (1), it can be seen that no
other points are obtained during the stabilization process. | 8

Let us introduce some further terminology. A point ¢ of an interval space (X;!) is said to:
be in between a and b if and only if c e/ (a,b). These so-called “betweenness” relations are:stu-
died by several authors, among which are Pitcher and Smiley [66], and Sholander [72], [73],
[72].

2.8 An alternative way of describing interval spaces. Let X be a set. An operator
M : X3 —2X is called a mixing-operator provided the following. conditions are fulfilled:
(M-1) Absorption or majority rule : M (a,a,b)={a}.
(M-2) Symmetry : if ¢ is any permutation of a, b, ¢ then M (c(a),5(b),6(c)) =M (a,b;c).

By the standard mixing-operator of an interval space (X,/)is meant the operator: M
defined by the formula M (a,b,c)=1(a,b) "1 (a,c)NI(b,c). Sometimes we:shall use. the:notation.:
M; or My for this operator.

Starting with a mixing-operator one can construct three interval operators I}, cl3 c /3 on:X.
by taking:
() Ih(@b)={xeX | {x}=M(@bx)},
(i) I(ab)={xeX | xeM(ab,x)},
(iii) 13(a,b)=U{M (a,b,x) | xe X}, fora,be X.

In general the mixing-operators induced by Ii; (i =1,2,3) do are notiequalto M:. T foliow--
ing result’is-straightforward:
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2.9 Proposition. The following formulae hold for a mixing operator M of an interval
operator [ on X:

Iy(a,b)=13(a,b)=1(a,b) (a,beX). "

2.10 Morphisms, subspaces and products of interval spaces. Let (X;,/;) (i=1,2) be in-
terval spaces, and let f: X; - X,. A function fis called interval preserving, or IP provided

fU@b)clf (a).f (b)),
for all a,be X,. One can verify that f also “preserves” the induced convexities on X and X, in
the sense that preimages under f of /,-convex sets are /,-convex sets. As an example of IP-
functionals we offer the following. Consider the convexity on {0,1} consisting of all subsets of
{0,1}. Let H be a C-halfspace, then the functional f:X — {0,1} that is 1 on H and 0 elsewhere is
an IP-functional.

Let (X,I) be an interval space, and let Y cX. Then the operator Iy :Y? —2" defined by
Iy(y1,y2)=I(y,y2)NY is an interval operator on Y. The operator Iy is called the relative inter-
val operator. The mixing operator My of Y induced by this operator, i.e. My =M; Y, equals the
relative mixing operator.

Let (X;,1;) for ie ! be a collection of interval spaces..On the Cartesian product H‘,E Xi the
product interval operator I is defined by

In((@)ier,(b)ie ) =TT, . fi(ai,bi),
for all (a;);es,(bi)iese I, Xi-

A straightforward verification shows that I is indeed an interval operator on the product.
The mixing operator M, of IT,_X: takes the form [T,  M;, where M; denotes the mixing opera-

tor of X;.

2.11 Median operators. A median (operator) m on a set X is a function m : X — X with
the following properties:
(M-1) Absorption or majority rule : m(a,a,b)=a.
(M-2) Symmetry : if o is any permutation of a, b, ¢ then m (c(a),0(b),06(c))=m (a,b,c).
(M-3) Transitive rule : m(m(a,b,c),d,c)=m(a,m(b,c,d),c).

The pair (X,m) is called a median algebra. By virtue of the symmetry one can look upon
the transitive rule of medians as a “swapping” rule (which might be easier to remember): in the
expression m(m (a,b,c),d,c) —in which the point ¢ occurs at two levels— one may exchange
the point d with either of a,b.

A median can be seen as a (singlevalued) mixing operator. Sholander [72], [73], [74],
presented several axiom systems for median algebras. The most prominent type of example is
that of a distributive lattice (e.g. a Boolean algebra) with

m(a,b,c)=(arb)v(arc)v(bnc).
Note that by distributivity the right-hand side is not changed if we permute the roles of  and v.
This example first appeared in a 1947 paper [15] of Birkhoff and Kiss.
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The median m of a totally ordered lattice, e.g. R, is given by
m(a,b,c)= the middle one of a,b,c.

2:.12 Median interval operator. One can readily verify:that for a median operator the
interval operations /1, I% and I3, coincide. This yields a canonical median interval operator,
which is denoted by I,,. The I,,-convex subsets are called median-convex, or simply m-convex.
We remark that median intervals are m-convex. See [73], or Theorem 4.24.

We mention the following characterization of median interval space, which shall be par-
ticularly motivating. We refer to [73] or {79].

2.13 Theorem. The following are equivalent for an interval space (X,I).
(1)  (X,1) is derived from a median.
(2)  (X,I) has the following properties for all x,y,ze X

(i) Ifzel(x,y)thenl(x,z)cl(x,y).

(i) |1Gy)nI(xz)nly,z) | =1
Moreover, the expression between the bars in (ii) defines the ambient median.

Proof: For a self-contained proof (?): implication (1)—(2) is Example (iv) of Para-
graph 3.1, and implication (2) — (1) is Proposition 4.1 combined with Corollary 4.17. ]

We now introduce a particular intersection property of sets. Consider any cardinal
number X >2. A collection C of subsets of a set X has the (X;2) Intersection Property (briefly
(X,2)-IP) provided every subcollection of cardinality < X consisting of sets meeting two by
two has a non-empty intersection. We shall be mainly interested in the case that X is a finite
cardinal. The collection C has the finite intersecting property (briefly (F,2)-IP) if it has the
(n,2)-1P for all finite cardinal numbers n. The collection C has the arbitrary intersecting pro-
perty {briefly (A,2)-IP) if it has the (X,2)-IP for all cardinal numbers X.

The (F,2)-IP can be used to characterize median convexity as follows. See also [79].

2.14 Theorem. The following are equivalent for an S| convexity C.
(1)  The convexity C is derived from a median.
(2) CisS, and has the (F,2)-IP.
(3) CisS, and has the (F,2)-IP.

Proof: For a self-contained proof (2): Implication (3) — (2) is evident. As to implication
(2) = (1), according to Theorem 2.13 it suffices to show that the mixing operator M induced by
the segment operator co(—,-) of C is single-valued (it is non-empty by-the (F,2)-IP). To this
end, let x;y be two distinct points ina value M (a,b,c) of the mixing operator. . Separate x;y:by.a-
halfspace -H: We.may assume that'a,be H. This implies that the whole set M{a;b;c) c.co(a;b) is
contained in H, a contradiction. Implication (1) — (3), is Theorem 4.19. [ £

From:(2) we. conclude in: particular: that distinct' points in:a median: algebra can: be
separated by-halfspaces. Applying:this result'to the lattice convexity of ‘a-Boolean algebra:we
obtain Lemma1:4;

: One should better skip this proof at first reading.
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2.15 Halfspace reasoning. In median convexity there is a particular form of calculus
involving convex sets and separating halfspaces that can be used in several situations. The fol-
lowing example might be illustrative: A median algebra (X,m) satisfies (we write xyz for
m(x,y,2)):

(M-3") 5-point transitive rule : ((abu)(abv)w)=(ab (uvw)). (%)
For a proof, let a,b,u,v,we X and suppose that (M-3") does not hold. Then by the Kaku-

tani separation property there exists an m-halfspace H that contains the point ab(uvw) and
misses the point (abu)(abv)w (see Figure 2.15).

ab (uvw) H o (abu)(abv)w
a, o b
u, Y

Fig. 2.15: halfspace reasoning

We repeatedly use the following consequence of Theorem 2.13: the point (xyz) is the only
point in the intersection 1,,(x,y) N1, (x,z) " 1,,(y,z). If both points a, b are members of H, then
‘(abu), (abv)el,(a,b) cH and hence (abu)(abv)we H, a contradiction. Assuming a,be X |H yields
a similar contradiction. We may assume that ae H and be X \ H. With this configuration of the
points a,b it is impossible that either u,ve H or u,ve X \ H holds. Hence without loss of generali-
ty we may assume that ue H and ve X | H. Now all points except w have been placed. If weH,
then (abu)(abv)we H, a contradiction. If we X | H, then ab (uww)e X | H, another contradiction.

Under assumptiom of (M-1) en (M-2) one can deduce (M-3) from (M-3") by simple
algebraic manupilation. To prove the reverse implicaton in an algebraic fashion seems not not
easy — see [47].

2.16 Morphisms, subspaces and products of median algebras. Let (X;,m;) (i=1,2) be
median algebras, and let f: X, — X,. Then the function fis called median preserving (MP), or a
homomorphism provided

f(my(a,b,c))=m;y(f (a).f (b).f (c)),
for all a,b,ce X,. One can verify that a MP function also preserves median intervals. Let A be
a Boolean algebra, and let f be a function A — {0,1} with f(0)=0 and f(1)=1. Then fis a
median homomorphism iff fis a Boolean homomorphism.

Let (X;,m;) for iel be a collection of median algebras. On the Cartesian product I, X
the product median m, is defined by

! Many authors —e.g. Birkhoff [13], and Sholander [72], [73], [74]— define median operators by (M-1),
(M-2) and (M-3").
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ma((@)iers(biien) (c)ien) =T1._ miai,bi,ci),

iel
for all (a;)ies,(bi)icrr(ci)ici€[[Xics- A straightforward verification shows that m, is a median
operator. The interval operation on the product induced by m, is precisely the product of the
interval operators /,, . This leads to the standard median operator of R".

If all (X,,I;) are equal to R with the standard interval operator, then the (standard) median
operator of the Riesz space R’ equals the product median.

The following is a generalization of the “Stone representation theorem”.

2.17 Theorem. Let (X,m) be a median algebra and let be X. Then

(1)  The function space B,(X)={f X — {0,1} | f is a homomorphism with f (b)=0} is a compact
Hausdorff topological space.

(2) The function j :(X,m) —25® :j(@)={peBy(X) | p(a)=1} is a homomorphism. The values
of j are closed and open in B (X). ]

2.18 Corollary. (cf. [8, Theorem 1.5]1) Each median algebra is isomorphic with a
median stable subset of a power set. Moreover, each finite median algebra embeds in a finite
Boolean algebra, and hence in a Euclidean space-equipped with the product median. =

A subset Y of a median algebra (X,m) is median stable provided m (Y*)c Y. In particular,
the restricted map m |y» yields a median algebra. The median stabilization of a subset Z,
med (Z) for short, is the smallest median stable subset including Z.
One of the remarkable properties of median stabilization, though rather difficult to find in
literature, is that the stabilization of a finite set is finite. A proof of this appears in Chapter V.

2.19 Theorem. Let (X,m) be a median algebra, and let Z cX. A point peX is not con-
tained in the median stabilization of Z, if and only if then there exist halfspaces G,H such that

peGNH ; GNHNZ=0.

Proof: The “if” part of the theorem is evident. First we shall prove the “only if” part of
the theorem for finite Z. To this end, as med (Z) is finite and pe med (Z) the S; property of the
(median) convexity of X gives rise to a finite number of halfspaces H,, - - - ,H, such that:

pe N H, ; med(Z) N N H;=02.

o p

med(Z) I

Fig. 2.19: separating a point from a median stable set




§2: Convex structures 11

’

Observe that the sets med (Z) N H; (i=1,2 - - - n) are relatively convex in the median alge-
bra (med (Z),m). Hence by the finite intersection property of median convexity (Theorem 2.14)
there must be halfspaces G,H among H |, - - - ,H,, such that G "H nmed (Z)=2.

The proof that the “only if” part of the theorem holds for arbitrary Z uses the following
compactness argument. For V c Z finite let B(V) be the collection of pairs (g,k), where g,h are
median preserving functions X — {0,1} with g(p)=h(p)=0 and (g (v),h (v))#(0,0) for all ve V.

One can easily verify that the sets B(V) are compact subsets of B, (X) x B,(X) — see Theorem
2.17. Moreover, the sets B(V) have the finite intersection property by the first part of the
proof. Hence by compactness there exists a pair (g,#) that is contained in B (V) for every finite
set V.cZ. One can easily see that the associated halfspaces G =g~'(0), H =h~!(0) are as desired.

]

We end this section with some remarks on computing the median stabilization of a finite
subset Z in a median algebra (X,m). An iterative process is as follows; define Z, =Z and

Zp1=m(Zy,2y,2,) (n€N) ; Zo=UpenZy,
Then med (Z)=Z.,. As mentioned earlier the median stabilization of a finite subset is finite,
hence from certain n on the Z, equal med (Z). Information on this » is useful for computational
purpose. To this end, define the median stabilization degree (msd) of a median algebra X as the
smallest neINU{o} such that med (Z)=2Z, for all Z c X, see [10]. For instance, the msd of R is
zero (evident) and the msd of RxR is one. We outline a proof of the latter statement. Let
. ZcIRxR be finite and p e med (Z). By the use of a translation we may assume that p equals the
origin. As the lattice of points generated by Z is median stable, there exist points a=(0,a;),
b=(b,,0) in Z. If either a,,b, is zero then we are done. Otherwise, by Theorem 2.19 there ex-
ists a point ¢ =(c,c,) such that (c,,c,) and (b,a,) are in opposite quadrants. Hence, the medi-
an of a,b,c equals p, i.e. peZ,.

In a similar fashion one can show that msd (R")<n-1. See [10], where it is actually shown

that msd (R") grows like log, 5(n).

In many situations — for instance in R" — it is possible to obtain a finite median stable
subset X containing Z at forehand. The following is then an alternative method to compute
med (Z). Find all halfspaces in X and intersect them, then throw away all points in X that are
seperated — in the sense of the previous theorem — from Z by these sets.

For example, let Z be a subset of R?> with the product median, and let X be the lattice of
points generated by Z. Then the halfspaces are the intersections of X of halfspaces parallel to
x-axis or y-axis. Hence the number of intersections involved is in the order of #Zx#Z.
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§ 3 Geometric interval operators

In the study of interval spaces induced by metrics and medians, many proofs and
definitions involve only a few general properties. These properties are used as an axiom
system for geometric interval operators. The resulting theory can be applied in other situa-
tions as well, e.g. (modular) lattices, and it provides us with convenient terminology.

3.1 Basepoint orders. Let (X,/) be an interval space and let be X. The following defines
a reflexive relation on X:
x<y & xel(b,y).
The relation <, is called the basepoint relation at b. The following questions are natural.
(i)  Are basepoint relations transitive? That is, are intervals star-shaped at their endpoints,
viz. does ce!(a,b) imply I (a,c)c!(a,b)?
(i) Are basepoint relations anti-symmetric? Viz. if I(a,b)=1I(a,b’) then b=b"
(iii) Are the relations (/(a,b),<,) and (/(b,a),<,) mutually inverse for all a,beX? Viz. if
a,b,x,y € X satisfy x,yel(a,b) and xel(a,y), then yel (x,b). See Figure 3.1.

Fig. 3.1: the inversion law

For a counterexample to (i), consider the set X ={1,2,3,4}, and define an interval opera-
tor I on X by 1(i,j)={i,j} for {i,j}#{1,3},{1,4} and I (1,3)={1,2,3} ; I (1,4)={1,3,4}.
For a counterexample to (ii), (iii), take the indiscrete interval operator of a set with at least
three points. We now come to the following definition. An interval operator / on a set X is
called geometric if it satisfies:
(G-1) star-shapedness: If cel(a,b), then I (a,c) c1(a,b).
(G-2)inversion law: If a,b,x,y € X satisfy x,yel(a,b) and xe I (a,y), then ye I (x,b).
The above examples show that the axioms (G-1) and (G-2) are independent. Axioms (G-1)
and (G-2) can also be formulated in the following way:

3.2) For all a,b,x,ye X the statements yel(a,b), xel(a,y) imply xel(a,b), yel(x,b).

Axioms (G-1) and (G-2) are considered by several authors, e.g. Blumenthal & Menger,
Hedlikovd, and Sholander. Hedlikova [37] uses the term “ternary space” for geometric inter-
val space.

Note that the product of geometric interval spaces is geometric. As further examples of
geometric interval operators we have the following:
(i) the (standard) segment operator of a linear vector space (evident),
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(ii) the metric interval operator of a metric space (straightforward),
(iii) the lattice interval operator of a modular lattice (see Theorem 4.2 below),
(iv) the median interval operator of a median algebra (X,m) ([37], [73]).
For a proof of the last statement, lety € I,,(a,b) and x € I,,(a,y). Then,
m(a,x,b) =m(a,m(a,x,y),b) =m(a,m(a,b,y),x)=m(ay,x)=x,
showing that x € I,,(a,b). On the other hand,
m(x.y,b) =m(m(a,x,y),y,b) = m(m(a,b,y),y.x) = m(y,y,x) = y,
showing that y € 1,,(x,b). Whence I,, is geometric by (3.2). Let us show how the formula
m(a,b,c)=1,(a,b)NI,(a,c)Nl,(b,c) (a,b,ceX), *)
which is mentioned in Theorem 2.13, can be deduced from the geometric properties. First, it
is clear that the point m(a,b,c) is at least contained in the right-hand set of (*). Next, let z be
another point in this set. Then
z=m(z,a,b)=m(m(z,a,c),a,b)=m(m(a,b,c),a,z).
Whence, zel,,(a,m (a,b,c)). Similarly we obtain zel,,(b,m(a,b,c)). Hence z=m(a,b,c).
The following result summarizes some of the properties of geometric interval operators.

3.3 Proposition. Let (X,I) be a geometric interval space and let a,b,ce X. Then,
(1) Every basepoint relation of X is a partial order.
In particular the interval operators I}, and I3 coincide.
(2) The mixing operator M has the following property:

Va,b,ceX ceM(a,b,c) M (a,b,c)={c}. (3.3.3)

Proof: For a proof of the non-trivial part of statement (2): let xeM (a,b,c). That is,
xel(b,c). By assumption we have cel (b,a) so (G-1) yields I(b,c)cI(b,a). We can now apply
(G-2) to the points b,a,x,c which yields cel(x,a). As the last set is contained in /(a,c) we can
apply (G-2) to the points a,c,c,x which yields xel(c,c)={c}. Statement (1) follows from (2). ®

3.4 Gates. Let (X,/) be a geometric interval space and let C be a subset. A gate of xin C
is a point c,e C such that c,e(x,c) for all ce C. See [21], [37], [42].

Clearly, c, is the smallest element of C in the basepoint order with basepoint x. As <, is
a partial order by Proposition 3.3, the point x can have at most one gate in C. The subset C is
called gated, provided every xe X admits a gate in C. Hedlikova [37] and Isbell [42], use the
name “Chebyshev sets” for gated sets. The induced gate function x — c, is denoted by pc. For
example, if (X,m) is a median algebra, then any interval /,,(a,b) is gated. The induced gate
function is given by x —» m(a,b,x). (See [79], or Corollary 4.15).
We mention some properties of gates in a geometric interval space (X,/).

(3.4.1) Let x have a gate p in C cX. If D is a subset of X which is star-shaped at x and meets C,
thenpeC N D.

(3.4.2) Any gated subset of X is convex. See [42].
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For a: proof of statement (3:4.2), let' € be a gated subset. of (X,/). Consider a,beC, and
cel(a,b). Letc’ be the gate of ¢ in C. Then by. definition: we. have ¢’el(c,a), and c’e I(e,b): By
axiom: (G-1)- the last formula: yields ¢’efi(c,b) = l(a;b): Hence we can apply (G-2) to the points
a,b,c’,c which yields cel(c’,b). By axiom (G-2) that is-I(c,b)cI(c’,b), i.e. I(c,b)=I(c’,b). By
Proposition 3.3(1) we conclude ¢ =c’eC, as desired.

Let C be a gated subset of X.
(3.4.3) If D cC is gated in (C,I), then'D is gated in (X,/). See [42].

(3.4.4) (transitive rule) If D is a gated subset of X not disjoint from C, then C N D is also gated
in X and p¢c ~p =pc-pp (composition product). See [42].

(3.4.5) If D is any gated subset of X, then the composition P =pc- pp, is idempotent, i:e. PZ=P.
In particular, for any element.c,eC the points n; =pp(c); n, =pc(n,) are mutual gates, i.e. n,
is the gate of n, in D and vice versa.

3.5 Proposition. The collection of gated subsets of a geometric interval space has the
(F,2)-IP.

Proof: Let (X,/) be a geometric interval space. First, the proposition is trivially true for
collections consisting of two members. Next, assume that the proposition is true for collec-
tions of cardinality less than n > 2 and suppose that D, - - - ,D, is a collection of gated'sets.in:X
that meet two by two. Then by the inductive hypotheses there is a point

X€E ﬁfl:zD,:.
If x” is the gate of x in D, then by (3.4.1), x’eD, nD; (for i=2,3, - - - ,n), and.x” is a point as
desired. L 3
§ 4 Modular spaces

As stated earlier, the interval operator of a median algebra is geometric. (¥) Whence in view of
Theorem 2.13 median algebras correspond with geometric interval spaces with a single-valued
mixing operator (see also Corollary 4.17). So it is natural to call such interval spaces median.
A modular space is defined to be a geometric interval space such that the mixing operator
M; :(a,b,c)—>I(a,b)nI(a,c)nI(b,c) takes non-empty values. In this situation the mixing
operator is called the multimedian.

From Theorem 2.13 one deduces that an interval space satisfying the star-shapedness axiom
(G-1) with a singlevalued mixing operator is median —hence the remaining axiom (G-2) fol-
lows automatically. This phenomenon can be explained by the following —alternative— ax-
iom system for modular spaces.

‘ The results of this section were obtained by H.-J. Bandelt, M. van de Vel and'the author. See [11].
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4.1 Proposition. Let (X,I) be an interval space that satisfies axiom (G-1) and such that
the mixing operator only takes non-empty values. Then (X,I) is modular iff the mixing operator
M has property (3.3.3).

Proof: The “only if part” is Proposition 3.3. Conversely, let a,b,x,yeX such that
x,yel(a,b) and xel(a,y). By star-shapedness we obtain that M (x,y,b)cM (a,y,b)={y}. As by
assumption the value M(x,y,b) is non-empty, we conclude that this set equals {y}, that is
yel(y,b) as desired. ]

One can find simple examples of interval spaces, which do not satisfy the star-
shapedness axiom (G-1), but do have a non-empty mixing operator. Whence axiom (G-1) can
not be omitted in Proposition 4.1. The following example, which was first mentioned by Sho-
lander [73], is rather interesting.

We first introduce some concepts. A Steiner point of three points a,b,c in a metric space
(X, p) is a point in X that minimalizes the expression

p(a,s)+p(b,s)+p(c,s) (seX).
We mention that in modular metric space (see below) a point in the multimedian is a Steiner
point of the ambient three points (Corollary II: 1.12). In Chapter VII will investigate the rela-

tion between Steiner points and medians in greater depth. For an inner product space
(X, <.,.>) we define the Steiner intervals by
Is(a,b)={zeX | <a—z,b-—z>$—’/2~”a—z||'||b—z”},

“for all a,be X. Geometrically this means that z is in between a and b iff the angle between the
vectors a —z,b—z is more than 120 degrees. Then the value M (a,b,c) of the mixing operator
consists of one point, namely the (unique!) Steiner point of the triple a,b,c. See for instance
[18]. That the Steiner intervals do not satisfy axiom (G-1) is a direct verification. In particu-
lar, these intervals are not Steiner-convex either —actually, it follows from the results in

chapter 1V that the Steiner convexity only consists of the singletons, the empty set and the
whole X.

Many examples of modular space arise from lattice theory.

4.2 Theorem. Let L be a lattice, and let M, be the mixing operator of L (induced by the
lattice intervals). Then the following are equivalent:
(1) L is modular.
(2)  The interval operator I, satisfies axiom (G-1).
(3) M, only takes non-empty values.
(4) (L.,I)) is a modular space.
In any of the above situations the value M(a,b,c) contains the point (arb)v(anrc)v(bac). More-
over, M, is single-valued iff L is distributive.

Proof: For a proof of implications (2),(3) — (1), suppose that L is not modular. Then it
contains the lattice N5, (see Fig. 1.1B for notation), as a sublattice.

A straightforward verification shows that pe,(x,y) and y’e/(p,y). Hence, if I, satisfies the

star-shapedness axiom (G-1) then y’el(x,y). That is y"=(xvy)a(y ‘vy)=y. This settles implica-
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tion (2) —(1):

For a proof of implication (3)— (1), let ze M(x,y’,y) then (cf. Proposition 2.7) y’<z<y,
hence y=yag=(yvz)a(zvx)=2z. Similarly we have y’=y’vp=(y’rz)v(zax)=z. Whence y=y’, a
contradiction. Implication (4) — (1) now trivially follows.

For (1) = (2): Let bel(a,c) and del)(a,b). Hence (Proposition 2.7), aac<b and arb<d.
These inequalities are used in the following calculations:

d =(ard)(dnrb)=(ard)v{ ([dr((@rb)v(bac)) } =(and)v{ ((arb)v(dnbnc) }
=(ard)(anb)(drbac)<(anrd)(dnrc)<d.
The third equality is modularity. Hence d=(and)v(dac). Dually d=(avd)a(dvc). That is,
dely(a,c) as desired.

For (1) = (3): Let a,b,ceL, and consider the point m=(avb)a(bvc)a(cva). By using the modu-
lar law we find

avm = av{ (bve)a{ (cva)a(avb) } } = { av(bvc) Ya{ (cva)a(avb) } = (cva)a(avb).

Similar equalities hold for bvm and cvm. If follows that (avm)a(mvb)=m, with similar formulas
for all other combinations. For a dual formula consider the following computation:
(arm)v(bam)={(arm)vb}rm = {{ar(avm)a(mvb))vb}rm

={(aa(mvb))vb}am = {(avb)a(mvb)} xm =m.
The first and fourth equality are applications of modularity, whereas the second equality fol-
lows from substituting m=(avm)s(mvb). Similar formulas- hold for other combinations.
Therefore, mel)(a,b) N Iy(b,c) N I)(c,a). We remark that by duality the point (aab)v(bac)v(caa)
is also contained in the value M (a,b,c) of the mixing operator.

In view of implications (1) — (2),(3), all that needs to be verified for implication (1) — (4) is
that /; satisfies the inversion axiom (G-2). To this end, let a,beL and yel/(a,b), xel/(a,y). By
Proposition 2.7(2), the latter condition implies ay <x, hence aay <xay. We conclude,

(a ny )v(y Ab) < (x ny )V(y b )
Now the left hand side equals y by assumption, whereas the right hand side is less or equal to y.
Whence equality holds troughout, that is (xay)v(yab)=y. Similarly we obtain (xvy)a(yvb)=y.
We conclude that ye)(x,b). Observe that modularity is not required in this part of the proof.
Whence the lattice interval operator of any lattice satisfies the inversion axiom (G-2). This was
earlier observed by Blumenthal and Menger [16, ex. 1 p. 67].

For a proof of the last statement, if the mixing operator of L is single-valued, then in view of
an earlier remark (aab)v(bac)v(caa)=(avb)a(bvc)alcva) for all a,b,ceL. It is well-known that
the latter property is equivalent with distributivity of L. See [13]. =

The equivalence of statements (1) and (2) are taken from E. Pitcher and F. Smiley in
[66]. The equivalence of statements (1) and (3) and the concluding statements are taken: from
H. Draskovicova [20]. From the proof of implication (1) — (4) one can also deduce

4.3 Metric interval spaces. In' this thesis we are mainly interested in metric interval
spaces; by abuse of language a metric space is called modular (resp: median) if the underlying
metric interval space is modular (resp. median).
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u a
X1 X3
v b
Fig. 4.3A: K; 3 Fig. 4.3B: K3 3 minus edge

For example, the standard median of R, induced by the order, is also the metric median in-
duced by the standard metric onR. Similarly, the standard median of R" is derived from the
sum-norm (see II: §1).

Modular (metric) space was first studied in the context of graphs. These so-called modular
graphs (compare II: 1.1), where introduced by Howorka [38]. See also the paper of Bandelt
and Mulder [9]. The modular graphs depicted in Figures 4.3A, 4.3B, shall be of particular
interest.

As further examples of modular metric spaces we mention the metric spaces of type K (u),
L(u). (see Theorems II: 1.8 and II: 1.9).

4.4 Some general results.

(4.4.1) The convexity of a modular space has the (F,2)-IP.
In view of Theorem 2.14 the previous result states that we can look upon median spaces as
. modular spaces with an abundance of convex subsets.

(4.4.2) Let C be a convex subset of a modular space and let be C. Then any minimal element in
(C,<p) is a minimum, i.e. a gate.

From the following result we obtain a method of verifying whether a multimedian is a
median.

4.5 Theorem. Let I,,I, be two modular interval operators on a set X with respective
multimedians M (M. If M (a,b,c)"M,(a,b,c)#D for all a,b,ceX, then I,=I, and m,=M,.
In particular, ifI,(a,b) c1,(a,b) for all a,be X then I, =1,.

Proof: Let a,beX, and let xel,(a,b), i.e. M (a,b,x)={x} by Proposition 3.3. By as-
sumption the sets M, (a,b,x), M ,(a,b,x) meet, whence xe M,(a,b,x), i.e. xel,(a,b) by using Pro-
position 3.3 once more. We have shown that /,(a,b) is contained in /,(a,b). Similarly we ob-
tain the other inclusion, hence /,(a,b)=1,(a,b). ]

This result has several interesting consequences.

4.6 Corollary. (cf. Th. 4.24) The segment operator of a modular space is geometric iff
all intervals are convex.

Proof: Segments being convex, the segment operator clearly satisfies axiom (G-1).
Also, as the multimedian of (X,/) is contained in the mixing operator of the segment operator
the mixing operator of (X,co;) only takes non-empty values. From the previous theorem we
conclude that the segment operator of a modular space satisfies axiom (G-2) if and only if the
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interval operator equals the segment operator, i.e. if the intervals / are /-convex. =

4.7 Corollary. Let (X,I) be the a modular space. If there exists a median m on X such
that m(a,b,c)e M (a,b,c) for all a,b,ce X, then m and M coincide. ]

A function f:X, — X, between modular spaces (X,,/,) and (X,,/,) is called multimedian
preserving, if the sets f (M (a,b,c)), M2(f(a),f (b),f (c)) meet for all a,b,ce X (in fact, it follows
that the first set is always included in the second). Two modular spaces are called isomorphic
if there exists a bijective multimedian preserving map.

A subset Y of a modular space is called multimedian stable provided that the value
M(y,,y2,y3) of the multimedian meets Y for all y,,y,,y3e Y. We remark that for median spaces
these notions coincide with the earlier introduced notions “median preserving” and “median
stable”.

Observe that the image of a multimedian preserving function is multimedian stable. With
“halfspace reasoning” (see 2.15) one can verify that gate functions in median space preserve
the median. A similar property for gate functions in multimedian space does not hold.

It is not difficult to show that a multimedian preserving function is interval preserving
(and vice versa). The following result is somewhat stronger.

4.8 Theorem. Let (X,,I,) and (X,1,) be modular spaces, and let f:X |, — X, be a sur-
jective multimedian preserving map. Then,
fiGex))=1(f (1) f (x2)) and [ (M (xy,x2,x3))=My(f (x1),f (x2),f (x3)).

for all x | ,x,,x3€X . In particular, f maps I,-convex subsets onto I,-convex subsets.

Proof: Let a,be X, and a’e f~'(a), b’e ' (b). We take I(a,b)=f (I ,(a’,b")).
First, we shall verify that the definition of i(a,b) does not depend on the choice of a’,b’. To
this end, suppose a”e f~!(a), b”c f(b). Let ze f(I,(a’,b")), say z = f(z’) with z’el(a’,b’). On
the one hand,

{2} ={f @)} =f M (a’,b",2)), )
and on the other hand,
M;(a,b,z)=M,(f (a’).f (b").f (). 2

As the sets on the right-hand side of (1) and (2) meet, we conclude from Proposition 3.3 that
{z}=My(f(@").f (b"),f (z)). Now as the sets f(M(a”,b",2")) and M1(f (a”),f (b").f (2) (={z})
meet we obtain that the set f(M,(a”,b”,z’)) contains the point z. Whence there exists a
Z"eM(a”,b",z2")cl(a”,b”) with f(z”)=z. We have shown that f(/,(a’,b")cf I (a”,b")).
The other inclusion is similar. From the above we also conclude that

I(a,b)cl4(a,b) 3)
for all a,be X,. Secondly, we show that Iis geometric. To this end, let ye;(a,b) and xe;(a,y).
Hence there are preimages y’,a’,b’ of y,a,b respectively such that y‘el,(a’,b’). As
i(a,y)=f(l|(a ’,y")) there exists a preimage x” of x such that x’e/,(a’,y"). By the geometric pro-
perties of /, we have x’e/,(a’,b") and y’el,(x",b"). By definition xei(a,b) and yei(x,b).
Therefore I is geometric by (3.2). Finally, a simple set-theoretic argument shows that (A:I
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denotes the mixing operator of i)
f(M y(@",b",c) M (a,b,c) “
for all a,b,ceX, anda=f(a’),b=f(b’),c =f(c).
From formulae (3), (4) it follows_ that (X5,1) is a modular space comparable with (X,,/,). So
from Theorem 4.5 we deduce that M =M, I =1,, and the theorem follows. [ ]

We remark that the surjectivity in the previous result is not essential. If f: X, »X, is
multimedian preserving, then Im (f) equipped with the relative interval operator is also modular
(its multimedian equals the relative multimedian).

We obtain two corollaries about a (not necessarily surjective) function f:X, ->X,
between modular spaces (X,/;) and (X,,/,).

4.9 Corollary. If fis a multimedian preserving function, then
f (M (a,b,c)) cM>(f(a), f (b).f (c))- =

4.10 Corollary. The following are equivalent.
(1) fis multimedian preserving.
(2) fis interval preserving. :
If (X»,15) is median then properties (1),(2) are also equivalent with
(3)  finverts I,-convex subsets into I -convex subsets.

Proof: The equivalence of properties (1) and (2) follows from Theorem 4.8 and the re-
‘marks after this lemma. Implication (2) - (3) holds for all geometric interval spaces. For a
proof of implication (3) - (2), let a,be X,. As median intervals are m-convex we have the fol-
lowing formula

f(coi(a,b)) ccos(f (a).f (b))=1:(f (a),f (b)) 4)
Hence we have
f(ab))cf(coi(a,b))cir(f (a).f (b)),

as desired. [ |

4.11 Corollary. Let (X,,I,) and (X,,1;) be modular spaces, and let f:X | — X, be a sur-
Jective multimedian preserving map. If G cX, is gated then so is f(G), and the following
equality holds.

prcy° f=fpc. L

4.12 Modular space and (multi)lattices. The following lemma summarizes some of
the properties of basepoint orders in modular space.

4.13 Lemma. Let (X,1) be a modular space, and let z,a,be X.
(1) Ifm<,a,b, then M (m,a,b) € M(z,a,b), and for any m’e M (m,a,b) we have m <, m’".
(2) The value M(z,a,b) of the multimedian equals the set of maximal lower bounds of the
points a,b in <,.
(3) If nel(a,b) then there exists an n’e M (z,a,b) with n’ <,n.
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Proof: The proof of statement (1) is straightforward.

a

zab Wb
me

°Z

Fig. 4.13: basepoint orders in modular space

For a proof of (2), let m<,a,b. By (1) we obtain an element m’e M (z,a,b) with m<,m’<, a,b.

Next, suppose that ne X satisfies m’<,n<,a,b. By the above reasoning we may assume that

neM (z,a,b). Using the geometric properties of the intervals one can verify that
nel(m’,a)nI(m’,b)N1I(a,b)=M(m’,a,b).

The latter right-hand side equals {m’} by Proposition 3.3. For a proof of (3), let m,;e M (z,a,w)

and m,eM(z,b,w). By the inclusion I(m,,m;)cI(m,b)cl(a,b), we obtain

M (z,m,m;)cM (z,a,b). Hence any point n’e M (z,m,m)) is as desired. ]

As a consequence of Lemma 4.13(3) we obtain the following.

4.14 Corollary. Let (X,I) be a multimedian space. Then the following are equivalent
for a,b,ceX:
(1) Mc(a,b,c) is a singleton.
(2) Md(a,b,c) is I-convex.

Proof: Implication (1) — (2) is trivial. Conversely, let the set M (a,b,c) be I-convex, and
let my,m,eM (a,b,c). Then the subset M (c,m,m;) is contained in M (a,b,c). Hence by Lemma
4.13(2) any meM(c,m,m,) is a maximal lower bound of the points b,c in <.. However
m<.my,m,<.a,b, whence m=m,=m,. ]

4.15 Corollary. Let I(a,b) be an interval in a modular space (X,I). Then a point ze X
has a gate in I (a,b) iff M(z,a,b) is a singleton. Moreover, in this situation the unique member
of M (z,a,b) is the gate of z in I (a,b). ]

Let X,Y be sets and let F : X — 2" be a multivalued function. For A cX there is a natural
definition of F(A) as

F(A)= U F(a).

acA
This convention enables us to use notation of type M (A,b,c), M(a,B,c) in modular space.

Sometimes —when no ambiguity arises— we shall write xyz instead of M (x,y,z) and (xyz)bc in-
stead of M (M (x,y,z),b,c) etc..
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The following is a “four-point transitive rule” for modular space.

4.16 Theorem. Let (X,I) be a modular space, and let a,b,c,de X. Then the following
hold:
(I) Vxe(abc)dc Iyea(bed)c : xel(c,y).
(2) If abc is a singleton then (abc)dc ca(bed)c.

Proof: For a proof of statement (1), let meabc, and xe mdc. Hence we have x<.d and
x$.m<.a,b. By Lemma 4.13 we obtain an ne bcd with x<.n. Using this result once more yields
a yeanc ca(bed)c with n<.y. The point y is clearly as desired. For a proof of (2), let
x€(abc)dc. By using statement (1) twice we obtain ye a(bed)c and x e (abc)de with x <,y <.x’.
Hence x=y=x"by Lemma 4.13(2). =

Repeated application of (1) leads to a chain in <, of points which alternate between the
sets M (M (a,b,c),d,c), M (M (d,b,c),a,c) and M (M (a,d,c),b,c). In modular graphs, all bounded
chains of all basepoint orders are finite, and it follows that the three composed multimedians
must have a point in common.

We do not know whether sets of type M (M (a,b,c),d,c) are always closed —they probably
are not. (see also the remarks prior to Example II: 2.20). Hence the above result can not be
directly extended to general (complete) modular metric spaces.

4.17 Corollary. (= Th. 2.13) A singlevalued multimedian is a median operator. ]

We now derive two classical results on median convexity. See also [79].

4.18 Theorem. Let (X,I) be a median interval space.
(1) Ifa,b,ceX then the set I(a,l(b,c)) (°) is gated. Moreover, I(a,I (b,c))=1(I(a,b),c).
(2) IfCcXis convex, and xe X then the convex hull of {x} U C is given by I (x,C).

Proof: Let xeX and let p=m(a,m(b,c,x),x). First, the point p is contained in the set
I(a,I(b,c)). Next, let rel(a,l(b,c)), that is rel(a,s) for some sel(b,c). As p<, b,c we conclude
that p <,s, by virtue of Lemma 4.13. Also p <, a, hence by a similar use of Lemma 4.13 we ob-
tain that p <, ». Whence p is the gate of x in I (a,/ (b,c)).

In particular, we obtain that the set I (a,/ (b,c)) is convex. Evidently, the convex hull of the
points a.b,c contains the set I (a,/ (b,c)). Whence co(a,b,c)=1(a,! (b,c)), and the last statement of
(1) easily follows.

Statement (2) simply follows from (1). ]

Property (2) of Theorem 4.18 is known as Join-hull commutativity, see [79)].

4.19 Theorem. (=Th. 2.14) The convexity of a median interval space has the Kaku-
tani separation property.

Proof: Let A, B be disjoint convex subsets of a median interval space (X,/). By using
Zorn’s Lemma we first find a convex set GoA maximal with the property that it avoids B, and
then a convex set HoB maximal with the property that it misses G. Suppose that peX \ (G UH).

s See the convention of p. 20.
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By Join-hull commutativity the sets I (p,G), I (p,H) are convex. Hence by maximality of G and
H there exist ge G, and he H such that I (p,g) meets H (in say k'), and / (p,h) meets G (in say g").
As G,H are down-directed in <, we may assume that g’ <,g and 4’ <,h. See Figure 4.19 below.

Fig. 4.19: Separating disjoint convex subsets

Hence, g’ <,g,h and h’ <,g,h. In view of Lemma 4.13 the point M (p,g,h) lies in both intervals
I(g’,g) and I (h’,h). That is, M (p,g,h)e H "G =, a contradiction. We conclude that G and H
are complementary halfspaces. ]

4.20 Multilattices. The following notion provides us with a different viewpoint of
basepoints orders in modular space. Let (P,<) be a partial order and a,be P. The collection of
maximal lowerbounds (resp. minimal upperbounds) will be denoted by a 15 (resp. a U b). P is
called a multilattice if for each a,be P the following hold:

(1) the seta [ b is non-empty, and if u <a,b then there exists au’ea,; [1b; withu<u’,
(2) the seta Ll bis non-empty, and if a,b <u then there exists au’ea, U b, withu’<u.

The collection of all such u as described in (1) (resp. (2)) will be denoted by (a [1b),
(resp. (a [1b),). See the paper of Benado, [12]. If P (only) satisfies condition (1), then P is
called a semi-multilattice. From parts (1) and (2) of Lemma 4.13 we conclude the following.

(4.21) Partial orders of type (<,,/(a,b)) in modular space are multilattices. Moreover,
x My),=M(ux,y)and (x Uy), =M (b,x,y) (for u<,x,y).

In [12] an extended version of modularity and distributivity for multilattices is intro-
duced. A multilattice L is modular provided the following holds. If p<ge L andp<x, y<qare
such that (cf. Figure 1.1B)

pexly;qgexlly,

and if y” is such that p<y’<y (in particular, pe x [1y") and ge x Ll y’, then y=y’. A multilat-
tice L is distributive provided the above conclusion holds with the hypothesis “p<y’<y” re-
placed by “pe x MNy””. See [12].

4.22 Proposition. Let (X,I) be a modular space, then all multilattices of type (<,,1 (a,b))
are modular.

Proof: Let x,y,p,qe I (a,b) satisfy

P=aXy <uq s M(x,y,p)=p ; M(x,y,q)=4q,
and let y’ be such that p<,y’<,y and M (x,y’,q)=q. We have y’el(p,y) and hence yel(y’,q).
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As gel(x,y”) we see that yeI(y’,q)cI(y’,x) But y’el(p,y) <! (x,y), whence y ' =y. ]

Somewhat confusingly, modular MULTlIlattices need not be modular interval spaces (cf.
Th. 4.25), even when they occur as an interval of a modular space.

4.23 Example. A modular graph with an interval that is not a modular graph.

Fig. 4.23: non-modular interval in a modular graph.

Figure 4.23 indicates a modular graph G, in which the interval uv =G \{w} is not a
modular graph (use the points ¢; fori =1, 2, 3).

It is a natural question whether the intervals of a modular space are distributive multilat-
tices. The following result gives a characterization.

4.24 Theorem. The following are equivalent for a modular space X:
(1)  Partial orders of type (<,,1 (a,b)) are distributive lattices.
(2)  Partial orders of type (<,,1(a,b)) are distributive multilattices.
(3) The “join” operation is associative, i.e. I(a,l(b,c))=1(I(a,b),c)
(4) X does not contain K , 3 as a multimedian stable subspace.
(5) All intervals of X are convex.
(6) X is median.

Proof: Let {u,v,x,x;,x3} be a multimedian stable subset of X isomorphic with K, 3 such
that u, v correspond with the elements of K,; of degree three (see Figure 4.3A). As
M (x;,xj,u)=u and M (x;,x;,v)=v for distinct 1<,j <3, the multilattice (uv,<,) cannot be distribu-
tive. This proves implications (1) = (2) — (4).

Let x),x3,x3eX and u#veM(xx3x;). If x;"e M(x\,u,v), then x,"e uwv and
u, ve M(x,",x5,x3). So, without loss of generality, x,x,,x3 € uv. The points x;,x,,x; are evi-
dently distinct and satisfy M (x;,x;,u)={u} and M (x;,x;,v)={v} for distinct 1<i,j<3. It appears
that {u,v,x,,x;,x3} is a multimedian-stable subspace of X isomorphic with K, 3, establishing
the implication (4) — (6).

¢ See the convention of p. 20.
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Implication (6) — (1) is well-known, for a direct proof: By (4.21) and Proposition 4.22 each
partial order of type (<,,/(a,b)) is a modular lattice. If such lattice is not distributive then it
contains a sublattice of type K,; —see Paragraph 1.1. Consult Figure 1.1A for notation.
Now elementary basepoint order considerations yield that the multimedian M (x,,x,,x3) con-
tains both u and v, a contradiction.

For a proof of implication (3) — (4), suppose X includes a multimedian stable subspace iso-
morphic with K ;. Then (see Figure 4.3A) x, € I (u,v)cI(I (x2,%3),v). Now M (xy,x,,x3) does
not contain x, (for otherwise M (x,x,,x3) = {x.}), and as
I(x9,1(x3,v)) I (x2,] (x3,%5)) =1 (x3,x,), we conclude that x; & I(x,,/ (x3,v)).

Finally, implications (6) — (3) and (6) — (5) are well-known, whereas (5) — (6) follows from
Corollary 4.14. ]

Implication (5)— (6) is a strengthing of [16, Theorem 2.23] and [62, Theorem 3.16]
where this result is shown for metric —see II: §1— lattices and modular graphs (with their
geodesic metric) respectively.

In regard of Example 4.23, one may wonder how the situation is with modular (proper)
lattices. Here is a characterization.

4.25 Theorem. The following are equivalent for a modular space.

(1) All intervals are modular lattices.

(2) The space does not include a multimedian-stable subspace isomorphic with the modular
graph K 5 3 minus an edge.

Proof: First, note that if a modular space X includes a K3 ; minus an edge, then (see Fig-
ure 4.3B) the “top” and “bottom” points a, b span an interval of X which is properly a multilat-
tice. Next, suppose that X has an interval ab which is not a lattice. Then there exist u, v € ab
with distinct maximal lower bounds x, y in the basepoint order <,. Note that none of u, v, x, y
can be equal to either a or b and that x, y € M (4,v,a). If u’ € M(x,y,b), then ’ € ab and x, y are
still maximal lower bounds of u’,v. So, without loss of generality, we also have
u, v.e M(x,y,b). All conditions obtained so far remain valid if b is replaced with a point of
M (u,v,b) and if a is replaced with a point of M (x,y,a). We now arrive at a multimedian-stable
configuration

{a b,uvxy}
in X, which apparently is a copy of K ; 3 minus an edge. |

Benado [12] shows that modular multilattices satisfy a “Jordan-Holder” type theorem.
The same result then holds for all modular spaces by Proposition 4.22. We present a simple
direct proof.

4.26 Theorem. Let X be a modular space. If there exists a finite maximal chain joining
two points a, b € X, then all maximal chains joining a,b are of the same length (7).

4 The length is understood to be the number of steps in the chain, in other words: the number of elements

minus one.
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Proof: We verify by induction on n >1 that if there is a maximal chain of length n
between two points a, b of X, then all chains a — b are finite and of length <n. For n=1, the
conclusion is evident. Assume the result to be valid for maximal chains of length n>1. Let
o:a — b be a maximal chain of length n + 1, and consider a finite chain B:a — b. Let u, resp. v,
be the last element # b in a, resp. B. Note that u, b are neighbors and that the part of o from a
to u is a maximal chain of length n. If v € au then by inductive assumption,  cannot be longer
than n+1. We assume v ¢ au, or, equivalently, u ¢ vb. As M (u,v,b) must contain (at least) one
of u, b, we see that b € M (u,v,b). Take x € M (u,v,a). Application of Proposition 4.22 shows
that x, v are neighbors. By induction, there is a maximal chain from a to u via x of length n.
Composing its part up to x with the edge to v we obtain a maximal chain from a to v via x of
length at most n. By induction, the part of B up to v is of length <n, and B itself is of length
<n+l. |}



CHAPTER II

MODULAR METRIC SPACES

Until now, we considered modular spaces from the viewpoint of general interval spaces.
We now specialize to metric intervals of type

Io(a,b)={x | p(a,x)+p(x,b)=p(a,b)}

in a metric space (X,p). Modular metric spaces are related with spaces having the (3,2) In-
tersection Property of balls. It was an open problem of Aronszaijn and Panitchpakdi in
[4], whether completions of such spaces still have the (3,2) Intersection Property of balls.

We show that metric multimedians are non-expansive multifunctions, and we use this
result to settle the previous problem in the affirmative. It turns out that such completions
arise by a procedure similar to that occurring in the proof of the Carathéodory extension
theorem of measures to c-algebras. See sections 1,2, and 3.

In sections 4 and 5 we show that metric completeness of modular metric space can be
expressed in terms of “weak” compactness of order-bounded subsets.

The main result of section 6 is that all median operators are “metric” if we allow
metrics with values in Riesz spaces, and that many of the results and techniques on metric
medians extend to the general situation. (*)

§ 1 Examples; connections with (3,2)-IP of balls
We first present some examples of modular metric spaces: finite modular spaces, L ; (1) spaces,
K (1) spaces, and more generally: metric lattices.

1.1 Finite modular spaces. Let (X,/) be a geometric interval space. Then two points
a,be X are neighbors if ab=1{a,b}. We say that (X,I) is discrete provided bounded chains in
basepoint orders are finite. In this situation the neighbor relation induces a graphical structure
with the set X as vertices. Moreover, by the geometric properties of the interval operator, each
step in a maximal chain a — b in the basepoint order of a represents an edge. Whence the in-
duced graph is connected. If the interval operater, resulting from the geodesic metric, coin-
cides with the given operator of X, then X is called graphic.

! Sections 1, 2 and 4 as well as the first half of section 3 (until paragraph 3.8) are taken from [85]. The
results of the second half of section 3 and the whole of section 5 were obtained by M. van de Vel and the
author. See [83].
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1.2 Lemma. If (X,]) is a discrete modular space, then each geodesic from aeX to be X
is increasing in (I (a,b),<,).

Proof: The result is evident for geodesics of length one. Let n>1, and assume that the
result holds for all geodesics of length at most n. Let a=aq, " *,a,,; =b be a geodesic of
length n+1. By the induction hypotheses the geodesic a=ay, ‘' ',a, is increasing in
(I (a,a,),<,). As the points a,, b are neighbors, the value M (a,a,,b) of the multimedian must be
equal to either a, or b. If the first situation occurs then a, <,b and we are done. So assume the
last situation occurs, i.e. bel(a,a,). By virtue of Theorem I:4.26 any maximal chain in
(I(a,b), <,) is of length n. But this contradicts the assumption that ag, - - - ,a, is a geodesic. ®

1.3 Theorem. (cf. [46]) Any discrete modular space is graphic.

Proof: From Lemma 1.2 we conclude that all points of X can be connected with finite
paths and that the I-intervals are contained in the geodesic intervals /,. By Theorem I: 4.5 we
conclude that I =1,. ]

1.4 Metric lattices. A valuation on a lattice L is a function v : L >R which satisfies:

v(xvy)+v(xay)=v(x)+v(y) (x,yel).

If v satisfies, x <y implies v(x) <v(y) (x,yeL), then v is called positive and the pair (L,v) is
called a metric lattice. If v satisfies, x <y implies v(x)<v(y) (x,yeL), then v is called isotone
and the pair (L,v) is called a pseudo-metric lattice. Valuations on lattices were first introduced
by Glivenko [30], [31]. See also Birkhoff [13, chapter 10], or Blumenthal & Menger [16,
chapter 2], where valuations are assumed to take non-negative values only. However, this res-
triction plays no major role in their work. In section 6 we allow valuations to have values in
any Abelian lattice group.

We remark that valuations on Riesz spaces in the sense of Schaefer in [71] are not valua-
tions in our sense —however the restrictions of such valuations to the positive cone are.

The name “metric” lattice is explained by the following formula which determines a
(pseudo-)metric on a (pseudo-)metric lattice L:

p(x.y)=vxvy)-v(xay) (x, y € L),
see [13]. Here are some straightforward examples of metric lattices, taken from [16].

(1.4.2) Let L =N, ordered as follows a <b iff a divides b. Note that arb and avb are the greatest
common divisor, respectively the smallest common multiple of a,b. Take

v(a)=log (a).

(1.4.3) Let S be the collection of finite dimensional subspaces of some vector space V, and let
v(M)=dim(M),

for MeS.

(1.4.4) Let (A,u) be a Boolean algebra with a (finitely-additive) measure. Note that K (4, ) in-
herits the (distributive) lattice structure of A. The following yields a positive valuation.
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v(a)=u(a),
where a denotes the class of ae A.

(1.4.1) Let C* be the positive cone of an L (1) space and let v be (the restriction of) the norm,
v)=llxll.
A norm [|.[| on a Riesz space X is called a Riesz norm provided it is compatible with the
Riesz modulus; that is, |x| <|y| implies ||x|| < ||yl for all x,yeX. In this situation the triple
X, <, 1111y is called a normed Riesz space, if — in addition— ||.1| is complete, then this triple
is called a Banach lattice. Observe that || x || =] |x| || for all points x in a normed Riesz
space. An L-space is a normed Riesz space, such that ||x+yl|l =llx|| +lyll for all positive
x,y in X. See [71]. The most prominent example of L-spaces are the Banach lattices of type
L(n). In fact, the famous Kakutani representation theorem ([44], [49]) states that each com-
plete L-space is linearly isometric with an L(u) space. We mention that the subspaces of
L ([0,1]) consisting of Riemann integrable functions and of the essentially bounded functions
also yield L-spaces. See [69].
The following example of metric lattices does not seem to be widely known.

1.5 Proposition. Any L-space X equipped with
v)=1lxt 1 = 11x 1l
yields a metric lattice. Moreover, the metric induced by v equals that induced by ||.1|.

Proof: We first show that v is additive, i.e. v(x +y)=v(x)+v(y) for all x,yeX. First, for
positive points in X additivity holds by assumption. Next, for general points x,y in X use the
equality

x+y) +x"+y =(x+y) +xt+y™
and the first result. We now cbtain the following equalities:

v(x)+v()=vx+y)=v((xay)+(xvy))=v(xay)+v(xvy).

That is, v is a valuation. To show that v is positive, consider points x <y. Then y =x+(y —x)
and as y —x >0 we conclude v(y)=v(x)+v(y —x) > v(x)

The proof of the last statement follows from the additivity of v, and the formula
xvy —xay = |x—y|, which is valid for points x,y in any Riesz space. =

Observe that if X is a space of type L (X, 4,1), then the valuation v, as described in the
previous proposition, is given by v ([f ])=_[ fdp ([f JeL (X, 4,p)).
X

1.6 Lemma. A metric lattice L is modular, and metric betweenness in L is equivalent
with geometric betweenness.

Proof: The first statement appears in [13, p. 232], and [16, p. 58 ], and the second state-
ment is taken from [30]. ]

In section 6 (Lemma 6.1) we shall prove a generalization of Lemma 1.6. From Lemma
1.6 together with Theorem I: 4.2 we obtain:
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1.7 Theorem. A metric lattice L is a modular metric space. The lattice L is a median
metric space if and only if L is distributive. : ]

We now obtain two “concrete” examples of median metric spaces, which shall turn out
to be universal in the sense that all median metric spaces can be isometrically embedded in
them (see chapter V).

We recall from paragraph I: 2.16, that a product space of type IR* can be equipped with the
product median m, derived from RR.

1.8 Theorem. Any L-space is a median normed space. More specifically, if (N,4,1) is a
measure space then the metric median of the Banach L-space L ((N,4,1) is given by

m’((f ).IgLIhD) =[mx(f.8 )] for all [f],[g],[h]eL (N,4,p). =
1.9 Theorem. Let (N,4,1) be a measure space. Then the space K {(N,4,|1) is a complete
median stable subset of L |(N,4, ). ]

1.10 Sharp radii. Let (X, p) be a metric space, and let (x;,x;,x3)e X>. Using elementary
linear algebra one can see there is a unique triple ($,75,r%) in IR?, such that

p(x;,xj)=ri+rjfor i#je {1,2,3}. (1.10.1)
In fact we have .

ri =YAp(ey,x2)+plx1,x3)—plxz,x3))

ry =Yplxy,x2) = plx 1, x3)+p(xa,x3)) (1.10.2)

ry =Y—pey,x2)+pley,x3)+plxz,x3)).
We call them the sharp radii corresponding to (x,x,,x3). This enables us to define a function,
(r$,r5,r5): X3 >R3. By the triangle inequality of p the numbers r§ (i=1,2,3) are non-negative.

1.11 Propeosition. Let (X, p) be a metric space with the metric mixing operator M. Then
the following are equivalent for x,,x;,x3,meX.
(1) meM(xy,x3,x3).
2)  p(x;,m)=ri fori=1,2,3.
3)  p(x;,m)<ri fori=1,2,3.
(4)  plxr,m)+p(xa,m)+p(x3,m)=Yap(xy,x)+p(x1,x3)+p(xz,x3)).
In particular, the distance of x; (i=1,2,3) to a member m of M (x|,x,,x3) is independent of the
choice of m.

Proof: First, let me M (x,x,,x3). Then taking r;=p(x;,m) yields a solution of (1.10.1).
Hence implication (1) — (2) follows. Implication (2) — (3) is evident. Next, by the triangle ine-
quality of p any m as described in (3) actually satisfies p(x;,m)=ri (i=1,2,3). By invoking the
definition of sharp radii we obtain implication (3) —(4). Finally, as the left-hand side of (4)
equals

Va(px 1,m)+p(xz,m)+p(xy,m) +p(x3,m)+p(xa,m) +p(x3,m)),
implication (4) — (1) can be deduced by use of the triangle inequality of p. ]
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A simple application of the triangle inequality shows that for arbitrary m the left-hand
side of equality 1.11(4) is minorized by the right-hand side. From this observation we deduce
the following:

1.12 Corollary. With the notation of Proposition 1.11: If M(x,,x,,x3) is non-empty,
then this set consists of the collection of Steiner points of the triple x |,x,,x3 ]

It follows from Proposition 1.11(4) that for points a,b,c in a modular graph G with geo-
desic metric p the number p(a,b)+ p(a,c) +p(b,c) must be even, that is G is bipartite.

In contrast with Corollary 1.12, not each Steiner point of the points x,x,,x3 needs to be a
member of the mixing operator M (x,x,,x3). Indeed, consider any inner product space X of di-
mension 22 and let x,x,,x3 be some affinely independent points in X. Then these points have
a Steiner point (see Chapter I), but the mixing operator of these points is empty (recall that the
metric intervals of X coincide with the standard intervals). In this light, the following result
due to Avann [6] is somewhat surprising:

If for all points a,b,c in a graph G with its geodesic metric p, there is a unique point that
minimalizes the expression p(a,x)+p(b,x)+p(c,x) (x€G), then G is a median graph.

In the proof of Proposition 1.11 we encountered the following principle, derived from
the triangle inequality of a metric. If xe D (x,r;) "D (x,,r;) and r| +r,=p(a,b) then p(x,x;)=r;
(i=1,2). We shall use this principle without further reference.

We now introduce a well-known intersection property of balls. By abuse of language
we say that a mietric space (X, p) has the (*,2)-IP (where * denotes a cardinal number, “F” or
“A”) if and only if p is convex and if the collection of closed balls has the (*,2)-IP. We recall
that a metric p is convex if for all x,y e X and 0<¢<1 there exists a ze X with p(x,z)=¢p(x,y) and
PB,2)=(1-1)p(x.y).

Metric spaces with the (X,2)-IP property were introduced by Aronszaijn and Pan-
itchpakdi in [4], who use the name “hyperconvex metrics”. See also the work of Isbell [40],
[41], who uses the name “injective metrics”. The term “(n,2)-IP” was introduced by Linden-
strauss for normed spaces in [50].

The following is a different description of the (X,2)-IP.

(1.13) Let R be a cardinal number. A metric space (X, p) has the (X,2)-IP iff for every collec-
tion of closed balls {D (x;,r;)};<x in X with p(x;,x;)<r;+r; (i,j < R) we have

n
.ﬁlD (x;,r)) 2D
i=

1.14 Examples. Let (X,7) be any metric space. A continuous function f:X - R is called
bounded provided sup,.x f (x) <. The set consisting of all bounded functions X - R, denoted
by B.(X), is a normed space with norm || f|| =sup,cy f (x). If we endow the set I with the
discrete topology then the corresponding space of bounded functions shall be denoted by sim-
ply B(I). One can easily verify that spaces of type B.(X) have the (F,2)-IP, compare the proof
of [4, Theorem 1, p. 431] where this is shown for compact X.
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Let X be a metric space with the (F,2)-IP, and let IF (X) be the collection of all non-empty in-
tersections of finitely many balls in X. It follows from the argument used by Sine in [75,
Theorem 15], that /F (X) endowed with the Hausdorff metric (see section 2) also has the (F,2)-
IP.

From Proposition 1.11 we conclude that the value M (x,,x,,x3) of a metric mixing opera-
tor is the intersection of the closed balls D (x;,r{). Hence, metric spaces with ihe (3,2)-IP, e.g.
spaces of type B.(X), are modular. We show a converse of this result.

1.15 Lemma. Let (X,p) be a metric space. Let x,x,,x3€X, and ry,r,,r320. If for any
i#jin{1,2,3}

plxix))Sritrj,
then each r; can be replaced by a number r; such that 0<r;<r; and at least two of the three ine-
qualities become equalities.

Proof: Take

ri=max (p(x1,X2) = r2,pX1,%3)~r3,0)

ra=max(p(x,x2)~71,p(x2,x3)~r3,0)

r3=max(p(x,x3)=71,p(x2,x3)~2,0).
It is easy to see that the r; are non-negative, and a case study shows that the r; are as desired. ®

There is simpler proof of the previous lemma using a “continuity” argument. However
the appearing formulae shall be of later use.

The next lemma roughly states that in modular metric spaces the intersection of three
balls can be replaced by an intersection of two balls. This lemma was partially inspired by the
proof of [48, Theorem 3.2].

1.16 Lemma. Let (X,p) be a modular space. If x,x,,x3€X and r,r,,r320 are such

that
plx1,x2)=r +r;
plry,x3)=ri+r3
plxa,x3)Sry+r;
and if r} =ri(xy,x2,x3) (i=1,2,3), thenr] 2r, and
D(xy,r{)ND(x5,r3)ND(x3,r3)= v} D(xy,r1)ND(m,r] -ry).
meM(x;,x2.55)

Proof: By invoking the definition of sharp radii we obtain the following (in)equalities

ri=Ypley,x2) + (e 1,x3) = Py, x3) 2 Yor +ry+ry+r3=(ra+r3))=r.

First we shall prove the inclusion from right to left. To this end, take me My(x,x,,x3).
By Proposition 1.11 we have p(x,,m)=ri. Now let weD(x,,r\)nD(m,r} —=r;). Then
p(x,w)=r; and p(w,m)=r} —r;=p(x,m)—r,. Hence we obtain

Plx2,w)Splxz,m)+p(m,w)=pQxa,m)+pley,m)=ri=plx;,xa)=ry=ry.

One similarly shows that p(x;,w)<rj, establishing the inclusion from right to left of the
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theorem.
As for a proof of the reverse inclusion, let we D (x,r|)ND (x,,r;) "D (x3,r3). We have
the following sequence of equalities.
M (x1,x2,x3) "D (w,ri =r1)=D(x1,r1) "D (x2,r3) "D (x3,r3) "D (w,r} —ry)
=D (xy,r{)NM(x2,x3,w)
=M (xp,x3,w)#D. 1)
The first equality in formula (1) only invokes Proposition 1.11. As for the second equality in
(1), we shall first verify the following formulae:
P(x2,x3)=r}*r}
plea,w)=r +ri-r @
plxs,w)=ri+ri-ry.
The first equation of (2) follows by definition of sharp radii. As for the second equation of (2),
it is clear that r5 +rj =p(x,,x;)=r;+r, and hence ry=r5 +r{ —r;. Now as p(x,,w)=r, the
second equality of (2) is clear. One similarly verifies the third equality of (2). By applying
Proposition 1.11 we obtain:

D (x3,75)ND(x3,r3) "D (w,r{ —=r1)=M(x3,x3,w).
For a proof of the third equality in (1); it is easy to see that wel,(x1,x2) N I,(x;,x3). By the
geometric property of metric intervals we obtain:

M (x2,x3,w)=1(x2,w) NI (x3,w) NI (x2,x3)

clo(xa,x1) N o (x3,x1) N p(x2,x3) =M (x1,X2,x3).

Now as M (x,x,,x3)cD (x;,r}), the third equality of (1) is proven.
After taking meM (x,x5,x3) "D (w,ri —r) we find that we D (x,r;) "D (m,r} —r,), establish-
ing the inclusion from left to right of the lemma. ]

The following theorem shows that with respect to the (3,2)-IP, the multimedian is ob-
tained by a crucial intersection of three balls.

1.17 Theorem. The following are equivalent for a metric space (X, p).
(1) (X,p)is a modular metric space and p is a convex metric.
(2) (X,p) has the (3,2)-IP.

Proof: Implication (2)—(1) has been observed earlier. For a proof of implication
(1)—>(2), take any x,x,,x3eX and r,r,,r3 20 satisfying

plxixj))sri+r; V 1<i,j<3,
By Lemma 1.15 we may assume

Plxyxa)=ri+ry

Plxy,x3)=ri+r;

p(xp,x3)<ry+rs.

Let r} be the sharp radii. By Lemma 1.16 r{ 2r,. By assumption M (x,x,x3) is non-empty.
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Let me M (x,x,,x3). As (X,p) is metrically convex we have
D(x,r))ND(m,ri-r,)#3
and by the previous lemma
D (xy,r1)ND(x3,r)ND(x3,r3)2D. ]

See Theorem 2.14, for a description of modular metric spaces with the (3,2)-IP in terms
of connectedness.

1.18 Remarks. It is essential in (1) above that the metric be convex. However, it is
possible to weaken the definition of a “convex” metric, and the “(n,2)-IP” by replacing the
non-negative real numbers by the non-negative part of any (additive) subgroup of R, e.g.
INU {0} or @f. In this way we also obtain a more general version of “adapted” metric. Certain
parts of the theory (in particular Lemma 1.15 and Theorem 1.17) are still valid in the adapted
setting. With such modifications, the theory applies to connected graphs (with its geodesic
metric) as well.

As a corollary to Theorem 1.17 we obtain that modular normed spaces have the (3,2)-IP.
This result was first proved by A. Lima in [48]. In the works of Hanner, [36], it is shown that,
modulo linear isometrics, there are but finitely many norms on R” (neN) with the (3,2)-IP.
Whence, the same holds for modular norms onIR". As spaces of type L,(u) are median
(Theorem 1.8) they have the (3,2)-IP. The following result was first proven by Lindenstrauss
in [51, p. 491]. We give a more direct proof.

1.19 Corollary. Let X be an L |(u) space. Then,
X has the (4,2)-IP iff dim (X) < 2.

Proof: For a proof of the implication from left to right, we will show that an L ; (i) space
X of dimension greater than 2 cannot have the (4,2)-IP. We assume that X =L ;(Y,4,p). It is left
to the reader to ascertain that three linearly independent measurable functions in Y give rise to
three pairwise disjoint measurable sets U,,U,,U3 of positive measure in the basic measure
space. Let X;; be the characteristic function of U; (i=1,2,3), and consider the following radii
r;€R and points a; of X:
1
WUy
Whence, |la; ~a;|| =2 for all i # j. Now consider the following equalities

0=M(ay,az,a;)=D(ay,r1)ND(az,r2)ND(as,r3),

ay+ay=M(aj,a3,a4)=D(ay,r)ND(as,r3)ND(as,ry)

a; Xyl (=1,2,3) ; ag=a,+az+a3 and r;=1 (i=1,2,3,4)

The first and third equality follow from Theorem 1.8, whereas the second and fourth equality
follow from Proposition 1.11. Therefore we must have

D(ay,ry)ND(ay,ra)nD(as,r3)ND(as,rs)=2.

The implication from right to left is evident. ]
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1.20 Pointed products. If {(X;,p;)}/-; is a finite collection of metric spaces then there

n
are several metrics on the Cartesian product [],_ X;. We are particularly interested in the
“sum” metric on this product, given by

)=, 0)=1)= 3 pilroys)
k=1

A generalization to products of arbitrarily many metric spaces goes as follows. Let (X;,p;)ics
be a collection of metric spaces and let b =(b;);c; e [TX;- The pointed product I5(X; | iel) at b,

iel
is the set of (x;);c; with x;e X; such that

(1) x;#b; for at most countably many iel (say iy,ip, =" ).
(@) 3 pi, (x5 b;,) < .
k=1

On a pointed product we take the following (“sum”) metric p. If (x;)ic;,(vi)icsi€ 8 (X; | i€l),
then there are only countable many elements of / such that x; # b; or y; #b;. Enumerate them as
i1,i2, "+, and define

P((xiersOidier) = ki i, (%55, )-
=1

A straightforward calculation shows that p indeed is a metric. If all X; are normed spaces then
one usually takes b;=0 for all ie/. If all X; equal IR then the pointed product at 0 equals the
well-known space I, (/).

A pointed product I5(X; | iel) is a convex subset of the product space (I'l,. Xi-I ), and the
metric interval operator I, equals the relative interval operator. In particular, the metric mix-

ing operator of a pointed product /4 (X; | ieI) equals the relative mixing operator M. Whence,
a pointed product is a modular metric space provided all factor spaces are.

1.21 Lemma. Let I%(X; | icI) be a pointed product with metric p. Then p is a convex
metric if and only if every p; is.

Proof: We shall only show the “if” part as the other part is obvious. Let
x=()ics»y=0)ies€ 8 (X; | ieI), and let 0<:<1. For each iel we can find a point z=z€X;,
such that

Pilxizi) =P, yi) + Pilyizi)=(1 =1y px;,y;).
This yields a point z=(z),; in the pointed product with p(x,z)=¢p(x,y) and
p(y,z)=(1-t)p(x,y), as desired. |

As a consequence of Theorem 1.17 and Lemma 1.21 we arrive at the following result,
which was obtained by Lindenstrauss [50] in case all factors are Banach spaces.
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1.22 Theorem. Let (X, p) be the pointed product of (X;,p;)ic;- Then,
(X,p) has the (3,2)-IP if and only if every (X, p;) has the (3,2)-IP. ]

§ 2 Calculus in modular metric spaces

2.1 The (n,2)-IP versus the Hausdorff metric. We recall some well-known notions.
Let (X, p) be a metric space and let

2. ={@#A cX| A closed and bounded }.
Clearly, if (X,p) is a modular space then the multimedian takes its values in 2§,. The “dis-

tance” between two sets A,Be2{, is given by inf{p(a,b) | acA beB}. Obviously this does not
yield a genuine (pseudo)metric on 2f,. The Hausdorff distance between A,Be 2f, is given by

pH(ArB) =max (sup p(a,B),sup P(b’A ))
a€cA beB

We also mention the Pompéiu distance between A,B — cf. [67]— which is given by
Pr(A,B)=Ys(sup p(a,B)+ sup p(b,A)).
aeA bheB

One can easily verify that py and pp yield metrics on 2%, the Hausdorff metric, and the
Pompéiu metric respectively. Observe that for A € 2¥. and xe X we have

pu({x}A) =sup p(x,A).

We usually drop the singleton’s braces. Hence, if M (a,b,c) is a value of a metric multimedian
then (Proposition 1.11):

PH(“: M (a7b’ C)) = P(a,M (ll,b, C)) = I/Z(P(a»b) + p(av C) - p(b’c))
We shall use this without further reference.

Unless stated otherwise we endow 2%. with the Hausdorff metric. We have introduced
the Pompéiu metric —which is not commonly used— as it turns out to be a useful tool. From
the following inequalities it follows that p; and pp are equivalent.

2.2) If A,Be2f. then p(A,B)<pp(A,B)<py(A,B)<2:pp(*,B).

We mention the following problem which plays an important role in the paper [4] of
Aronszaijn and Panitchpakdi. Consider a non-empty intersection of a finite collection of
closed balls in a metric space, and suppose that we vary the involved radii and points a “little”
—such that the new intersection remains non-empty. Then what can we say about the Haus-
dorff metric between these intersections? The following result —which is shown by a straight-
forward verification— gives a partial answer.

2.3 Proposition. Let N!Z{ D(x;,r;) and N2} D(x";,r’;) be non-empty intersections in a
metric space with the (n, 2)-IP. Then,

-1 - o ’
pu( NI D(x;r) , NI D(x;r )< l<fl!”‘<a:‘_‘( [ri=r’i ] +p(x;x")).



36 II: MODULAR METRIC SPACES

’

No similar result is known when intersecting n balls in a metric space with the (n, 2)-IP.
From the previous result we infer that the multimedian of a metric space with the (4,2)-IP is a
Lipschitz map of factor 2 with respect to the sum-metric on X>. We shall show below that all
multimedians are such Lipschitz mappings, but the proof is more elaborate.

2.4 Contractivity of multimedians.

2.5 Lemma. Let (X,p) be a modular space and let a,b,c,de X. Then,
(1) py(c,M(abc,d,c))=py(c,M (a,bcd,c)).
(2) pu(c,M(abc,d,c))=YAp(c,d)+p(c,abc)—p(d,abc)).
3) p(c,d)+p(c,abc)-p(d,abc)=p(c,a)+p(c,bed)—p(a,bed).
(4)  Y(p(c,a)+p(c,b)+p(b,a))+p(d,abc) = ¥(p(c,b) + p(c,d) + p(d,b)) + p(a,bcd).

Proof: For the proof of formula (1), take any xe M (abc,d,c). By Theorem I: 4.16, there
exists a ye M (a,bcd, c) such that xe/(c,y). Hence p(c,x)<p(c,y). As we took xe M (abc,d,c) arbi-
trarily we obtain that the left-hand side of (1) is less than or equal to the right-hand side. By
permuting the roles of a and d we obtain the other inequality.

For a proof of the formulae (2),(3) and (4), take any xe M (abc,d,c). There is a ze abc such that
x€ zdc, hence by Proposition 1.11 .

p(c,x)=Y4p(c,z) +p(c,d) - p(d,z)) = ¥«p(c,abc) +p(c,d) - p(d, 2)).

(2) easily follows from this. Combining formulae (1) and (2) yields formula (3). For a proof of
(4), by Proposition 1.11(2) we have p(c,abc)=¥(p(c,a)+p(c,b)—p(a,b)), and a similar equality
holds for p(c,bcd). Substituting this in equality (3) yields

p(c,d)+"p(c,a) +p(c,b) - p(a,b)) —p(d,abc) =p(c,a) + V(p(c,b) +p(c,d) - p(b,d)) - p(a, bed).
By subtracting p(c,d)+p(c,a)+p(c,b) on both sides and dropping all minus signs we obtain for-
mula (4). ]

2.6 Theorem. Ifa,b,c,d,x are points in a modular metric space (X, p), then
(1) p(a,abc)+p(b,abc)+p(c,abc)+ p(d,abc)=p(a,bed)+p(b,bed) + p(c,bed) + p(d, bed).

(2) p(a,abc)+p(b,abc)+p(c,abc)+ p(d,abc) < p(a,x)+p(b,x) +p(c,x)+p(d,x).

Proof: Part (1) follows from Proposition 1.11(4) combined with Lemma 2.5(4).

For a proof of the second part of the corollary, let xeX. Without loss of generality we may
assume that xel,(a,b). Indeed, take x’c abx then

p(a,x")+p(b,x") +ple,x) +p(d,x") = p(a,x) - p(x,x ") +p(b,x) - p(x,x ) +p(c,x ) + p(d;x”)

=p(a,x)+p(b,x)+p(c,x") —p(x,x")+p(d,x") - p(x,x")
<p(a,x)+p(b,x)+p(c,x)+p(d,x).
The inequality is the triangle inequality of p. Hence we may now conclude that
p(a,x)+p(b,x)+ p(c,x)+p(d,x) = p(a,abx) + p(b,abx )+ p(c,abx) + p(x,abx) + p(d,x)
=p(a,abc)+p(b,abc)+p(c,abc)+ p(x,abc)+p(d,x)
>p(a,abc)+p(b,abc)+p(c,abc)+p(d,abc)
The second equality is the first part of the corollary and the inequality is the triangle inequality
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of p. =
Observe that the second part of the previous corollary implies that connecting four

points in median metric space with one of the (four) medians gives a minimal connecting net-
work using one extra point.

Let (X, p) be a metric space and A cX. A point xeX is said to have a metric nearest point
in A if there is a point aeA with p(x,a)=p(x,A). The set A is said to admit metric nearest points
if every xe X has a metric nearest point in A. The following states that values of multimedians
consist of metric nearest points.

2.7 Proposition. Let (X, p) be a modular space, and let a,beX. Then the interval I (a,b)
admits metric nearest points. Furthermore, if xe X then any member of M (x,a,b) is a metric
nearest point of x in I (a,b).

Proof: Let xe X and take any ze M (x,a,b). By construction of M, we have
p(x,2)="(p(x,a) +p(x,b) - p(a,b)).
Now let cel(a,b), that is p(a,b)=p(a,c)+p(c,b). Substituting this in the previous equation
yields p(x,z)=%(p(x,a)-p(a,c)+p(x,b)—p(c,b)). Using the triangle inequality twice gives
p(x,z) < %(p(x,c) +p(x,c))=p(x,c) . So zis a metric nearest point of x in I (a,b). |
The following result which states that values of the multimedian admit metric nearest
points from certain “directions” shall be quite fruitful. See also Example 2.20.

2.8 Proposition. Let (X,p) be a modular space and let a,a’,b,ce X. Then, compare Fig-
ure 2.8, any point d in a’bc has a metric nearest point p in abc. Moreover, pel(a,d).

a oa
p1

d

abc p P2 a’be

Fig. 2.8: p; +p,=p

Proof: The point d is contained in the interval /(b,c) so by Lemma I: 4.13(3) there ex-
ists a peabe such that peI(a,d). To verify that p is a metric nearest point of d in abc let xe abc.
Then,

P(d:x)zP(dva)‘P(a,x)=p(d,a)—P(aaP)=P(drP)-
In which the inequality is triangle inequality, the first equality is Proposition 1.11 and the
second equality expresses pel(a,d). =

As a consequence of Proposition 2.8 we have the followirng.



38 II: MODULAR METRIC SPACES

2.9 Proposition. Let (X,p) be a modular space let a,a’,b,ce X and de a’bc. Then the fol-
lowing hold (see Figure 2.8). .
(1) p(d,abc)=p(a,d)-p(a,abc).
(2) p(a’be,abc)=p(a,a’bc)-p(a,abc)
(3)  sup p(x,abc)=py(a,a’bc) - py(a,abe).
xea'bc
A map F: (X, p) - (Y, p’) between (pseudo)metric spaces that satisfies
p'(F(x), Fy))sM-p(x,y)

for some fixed constant M and all x,ye X is called a Lipschitz map with Lipschitz factor M. If M
can be taken 1 then F is called non-expansive.

The next theorem states that a metric multimedian is non-expansive with regard to the
sum-metric on X> and the Pompéiu metric on 25..

2.10 Theorem. Let (X,p) be a modular space and let a,a’,b,b’,c,c’ X, then

pp(abc,a’b’c’) < p(a,a”)+p(b,b")+p(c,c).

Proof: Consider the following (in)equalities:
pp(abc,a’be) =Y Sup Cp(d, abc)+ Sup p(d,a’bc))
=Y4py(a,a’bc) - py(a,abc)+py(a’,abc) - py(a’,a’be))
<Wpu({a}, ') +pu{a}{a'})=pa.a).
The second equality is Proposition 2.9(3) twice, and the inequality is the triangle inequality

of py. The theorem now follows from the triangle inequality of pp. ]

The following two results are obtained from (2.2).

2.11 Theorem. If abc and a’b’c’ are values of a metric multimedian, then
p(abe,a’b’c’y < p(a,a’)+p(b,b") +p(c,c’).

In particular, a metric median is contractive with respect to the sum metric on X°. ]

2.12 Theorem. The multimedian of a modular metric space is a Lipschitz map_with
factor 2. -

From the previous result we conclude that a multimedian is Lower Semi Continuous
(LSC) (see for instance [22]). By the famous Michael selection theorem [57] we obtain that
the multimedian of a modular Banach space admits a continuous selection— observe that in
these circumstances the values of the multimedian are (standard) convex and complete.

Simple examples in the modular graph K, ; show that the Lipschitz factor 2 appearing in the
previous corollary is sharp. We present some consequences of the Lipschitz property in two,
rather different, circumstances: discrete and connected modular spaces.
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2.13 Theorem. Let G be a modular graph and let a,b,c € G. Then each pair of points in
M (a,b,c) can be joined by a geodesic of which the vertices alternate between M (a,b,c) and its
complement.

Proof: Let m,#m, be points in M (a,b,c), and let a’e M (a,m,m,). As p(a,m)=p(a,m;)
(Proposition 1.11) we also have p(a’,m)=p(a’,m,). Whence p(m,m,)=2-p(a,m1). In partic-
ular, the distance between m; and m, is even. So if p(m,,m,)=2 there is nothing left to be
proved. Assume that p(m,m,)> 2. By virtue of Proposition 1.11 we have

pa’,mi)=p(a’,my)="2p(m,m3).

So we can take a point xe/(a’,m ) distinct from m, and a’. See Figure 2.13.

b. e C
W’
X
ae
ae

Fig. 2.13: A value of the multimedian in a graph

As myeM(a’,b,c) the Lipschitz factor two of M (Theorem 2.12) enables us to take a point
yeM (x,b,c) with p(m,,y)<2-p(a’,x). By using the Lipschitz property once more we conclude
that p(m,,y)<2-p(m ,,x) —observe that m, =M (m,,b,c). By the calculations

P(m 1 1y)+ p(y,m 2) < 2(p(m lvx) +P(x»a ’)= P(m 1,m 2)’
we derive that the last three inequalities are equalities, which implies uel(m,m)\{m,m,}.
Also, from Lemma I: 4.13(1) we obtain that M (x,b,c)cM (a,b,c), that is ye M (a,b,c). The
result now easily follows with induction. =

2.14 Theorem. Let (X,p) be a modular metric space with (metrically) complete inter-
vals. Then the following are equivalent:
(1) Allintervals of X are connected
(2) Xis arc-wise-connected.
(3) p is metrically convex.
(4) X is connected.

Proof: Implication (1) — (3) is easy, and in fact holds for all metric spaces. Indeed, let
a,beX and 0<s<p(a,b). If the closed balls D(a,s), and D (b,p(a,b)-s) are disjoint, then the
open balls B(a,s), B(b,p(a,b)) yield a separation of I(a,b). Blumenthal and Menger, [16,
Theorem 6.2], show that in a complete metric space with a convex metric, distinct points can
be connected with an isometric arc. So implications (3)—(2) —(1) are valid for all metric
spaces with complete intervals.

Implication (1) —(4) is evident. For a proof of implication (4) — (3), let a,b be distinct
points in X. In view of [16, Theorem 6.2] we only have to show that the set I(a,b)\{a,b} is
non-empty. To this end, assume to the contrary that / (a,b)={a,b}. Let e=%p(a,b). By connec-
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tivity of X, we can find a finite sequence x,x,, - - - ,x, of points in X such that x, =a, x, =b and
p(x;,x;+1) <€ Consider the sets M; =M (a,b,x;) I (a,b) (1<i<n). For each i we have

Pr(Mi,M;41) S2:p(x;,xi41)<p(a, ). ™
Note that each set M; must be one of {a},{b}. As M,={a} and M,={b}, there exists a
j:1<j<nsuch that M;={a} and M;,, = {b}. This contradicts formula (*). ]

Consider a connected median metric space X. The metric interval between points a,be X
is the image of the function X - X : x - m(a,b,x). As the median is continuous (it is even non-
expansive), the interval /(a,b) is connected. Hence conditions (1),(4) of the above corollary are
equivalent for all median metric spaces regardless of completeness of intervals. It seems that
the above argument can not be adapted to general modular metric spaces.

2.15 Corollary. Let (N,d,u) be a measure space. Then the following are equivalent
(see Theorem 1.9):
(1) K{(N,4,u) is connected.
(2) (N,4,p) is atomless.

Proof: By Theorem 1.9, K(N,4,u) is a complete median metric space. It is well-
known that (2) is equivalent with metrical convexity of K;(N,4,un). Hence, property (1) is
equivalent with metrical convexity of K (N, «,u) by Theorem 2.14. ]

We conclude that in the situation of Corollary 2.15 the range of p, i.e. the set
{W(A) < | Aed}, is a closed interval in R. This is a special case of a theorem of Liapounoff.

2.16 A transitive rule for metric multimedians. Recall the four-point transitive rule
for medians: ((abc)dc)=(a(bcd)c). We shall extend the domain of a multimedian such that this
operator is also defined on triples (A,b,c) in which 4 is a (closed) subset and b,c are points, and
we shall show that the transitive rule —which can then be formulated— holds.

The earlier encountered extension of the multimedian M (4,b,c) (see p. 20) does not obey the
four-point transitive rule. Actually, by the aid of Theorem I: 4.24(4) one can verify that the
four-point transitive rule is satisfied for this extension if and only if M is a median.

We need some notions. Let (X,d) be a metric space. If A cX is non-empty and closed,
and x € X, then we put

IxA]=1[A,x]={yeX | p(r,y)+p(»,A)=p(x,A) }. (2.16.1)
The set I[x,A ] is closed and usually different from 7(x,A). We now define

[Abc]=I(A,d)NI(A,c)NId,c), (2.16.2)
and similarly we define [bAc] and [bcA | (Which equals [Abc]). (2) If A ={a} is a singleton then
[Abc] is just [abc ], i.e. [-,—,—] is an extension of M.

We make two assertions. Let A cX be closed and xe X. Then we have the following (tri-
angle) inequality:

: We use rectangular brackets [,] to avoid ambiguity with the earlier introduced notation 7 (x,A), M (A, b,c) etc.
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P(xA)<p(x,y)+p(y,A). (T1)
If all points of A have the same distance to x, then
plry)<p(x,A)+p@A,y). (T2)

Let A be a closed set. In analogy with earlier notation we let
r1=Y4p(A,b) +p(A,c)-p(b,c))
ra=%(p(A,b)-p(A,c)+p(b,c)) (2.16.3)
r3=Y{ = p(A,b)+p(A,c) +p(b;c)).
denote the sharp radii corresponding with the triple A,b,c. By triangle inequality (T1) the
numbers r,,r; are non-negative. For r, the type of assumption prior to (T2) is required.

The following is a simple extension of Proposition 1.11.

2.17 Proposition. Let (X,p) be a metric space with the metric mixing operator M. Then
the following are equivalent for a non-empty, closed set A and points x,,x3,meX.
(1) meM[A,x;,x3]
(2) pA,m)=r] and p(x;,m)=ri for i=2,3.
3) p@A,m)<r] and p(x;,m)<r} for i=2,3.
(4 pA,m)+p(xa,m)+p(xs,m)="Yp(A,x;) +p(A, x3)+p(x2,x3)) L
We emphasize on the fact that [(abc)dc ] can be empty. In Example 2.20 we shall give
conditions to avoid this. We are now able to show the announced transitive rule of the mul-
" timedian.

2.18 Theorem. Let (X, p) be a modular space. Then,
Va,b,c,d [(abc)dc]=[a(bed)c]. (2.18.1)

Proof: Let ry,,ry,r. be the sharp radii corresponding with abc,d,c, and let r,,rpcq,7’c be
the sharp radii for a,bcd,c. With the aid of Proposition 2.17, we first show that a point
ze[(abc)dc] is in [a(bed)c]. The opposite inclusion then directly follows from symmetry con-
siderations.

Step I1: p(c,z)=r".. As p(c,z)=r. we must prove r.=r, or, explicitly,
Yp(abe,c)—plabe,d) +p(c,d)) = Yo — p(a,bed) + p(a, ) + p(bed, c)),
but this is just Lemma 2.5(3).
Step 2: p(a,z)=r,. For this consider the following inclusion
I[c,abc ) cI(c,a). ¢))]
To show this take xe I (c,abc), so p(c,x)+p(x,abc)=p(abc,c). Now
p(c,a)=p(c,abc)+p(abc,a) 2 p(c,x) +p(x,a) 2 p(c,a).
The first equality follows by definition of abc, whereas the second equality is by assumption.
The first inequality is (T2). We conclude that all inequalities above are equalities. This gives
p(c,x)+p(x,a)=p(c,a), that is: xel (a,c).
Now by construction of [(abc)cd], we have zel(c,abc). So by (1), p(c,z)+p(z,a)=p(c,a).
Thus we obtain
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p(z.a)=p(c,a)-p(c,z)=p(c,a)~r'c=rq
as desired.
Step 3: p(bcd,z) <rpy. By Theorem 2.6(1)
p(z,bed) + p(b,bed) +p(c, bed) + p(d, bed) = p(z,cdz) + p(b, cdz) + p(c, cdz) + p(d; cdz).
Now notice that dcz =z, which gives
p(z,bcd) +p(b,bed) +p(c,bed) + p(d,bed) = p(b,z) + p(c,z) + p(d, z),
or
p(z,bed)=p(b,z) +p(c,z) +p(d,z) — (p(b,bed) + p(c,bed ) + p(d, bed)).
Now consider the following (in)equalities,
p(e,2)+p(z,d)=p(c,d),
p(b,bed) +p(c,bed) +p(d, bed) = V(p(b,c) +p(b,d) + p(c,d)), )
p(b,z)<p(b,abc)+plabce,z).
The first equality is implied by ze [(abc)dc ], the second is Proposition 1.11(4), whereas the last
inequality is just the triangle inequality (T1). From the (in)equalities in (2) we obtain that
p(z,bed) < p(b,abc)+p(abe,z) + p(c,d) - Ya(p(b,c) + p(b,d) + p(c,d)),
=p(b,abc)+p(abc,z)+ VA —p(b,c) - p(b,d) +p(c,d).
As p(abc,z)=p(abc,c)-p(c,z) we have
p(z,bcd)<p(b,abc)+p(abe,c) - p(c,z) + V(- p(b,c) — p(b,d) + p(c,d)),
=p(b,c)—p(c,z) + ¥o(—p(b,c)—p(b,d) +p(c,d)),
=Y(p(b,c) - p(b,d) +p(c,d)) - p(c,2).
As p(c,z)=r'. and p(c,bed) = ¥2(p(b,c) - p(b,d) + p(c,d)), we now come to the desired inequality
p(z,bed) < p(c,bed) -1 . =rpey,
where the last equality is by definition of the sharp radii. ]
In the following theorem we present a sufficient condition for the set [(abc)dc] being
non-empty.
2.19 Theorem. Let (X,p) be a modular space and let a,b,c,deX. If M(a,b,c) admits
metric nearest points and if N c M (a,b,c) is the resulting set of metric nearest points of d, then
[(abc)dc |=(N,d,c) < (abc,d,c). (€))
In particular, [(abc)dc ] is non-empty.
Proof: As the statement on inclusion in (1) is obvious, we concentrate on the equality.

We first show that the left-hand side is contained in the right-hand side. Let y be an element of
the left-hand side in (1). That is (cf. Proposition 2.17),

p(,abc)+p(y,c)+p(y,d)=Y(p(abc,c)+p(abe,d) + p(c,d)).
Let x be a metric nearest poini of y in abc. Then using the previous equation,
PO,x)+p(,¢) +p(y,d) = Yxp(abe,c)+p(abe,d) +plc,d)),
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< Yp(x, e Hp(x,d) +p(c,d)).
In which the last inequality is by definition of distance to set. Using the triangle inequality
three times we obtain

P0.x)+p(y,c) +p(,d) < Velp(x,y Jp(y;c) +p(x,y) + p(y.d) +p(c,y) + p(y,d))
=p(,x) +p(y,0) +p(y,d).
So all inequalities are in fact equalities. In particular p(abc,d)=p(x,d), that is: x is a metric
nearest point of 4 in abc, and
PO,x)+p(,¢) +p(y,d) = Yp(x,c)+p(x,d) +p(c,d)),
that is ye M (x,d,c) (Proposition 1.11(4)). We conclude that y is contained in the right-hand
side.
For a proof that the right-hand side of (1) is contained in the left-hand side, let x be a metric
nearest point of d in abc and let ye xdc. Then by Proposition 1.11(4)
PU.X)+Pp(y.d) +p(y,c) = %lp(x,d) + plx,c) +p(d, ).
Now p(x,d)=p(abc,d) by assumption and p(x,c)=p(abc,c) (as xe abc). We obtain that
PU.x)+Pp(y.d) +p(y.c) = ¥p(abe,d) + plabe,c) + p(d, ).
We arrive at
p(y,abc)+p(y,d)+py,c)<p(y,x)+p(y,d) +p(y,c) = Y(p(abc,d) + p(abe,c) + p(d,c)).
By using (T1) we conclude that the inequality is an equality, that is: ye [abc,d,c | by Proposition
2.17. : ]
We remark that —under the conditions of the previous theorem— there is another

description of [(abc)dc ], namely as the points of M (abc,c,d) that realize the Hausdorff distance
of ¢ to M (abc,c,d). Compare Lemma 2.5(1).

2.20 Example. Let (X,p) be a modular space with multimedian M and a,b,ce X. In each
of the following two cases, M (a,b,c) admits metric nearest points.
(1) M¢(a,b,c) is compact. ’
(2) (X,p) has the (4,2)-IP.

We do not know “more reasonable” conditions, such as completeness of the metric,
under which values of multimedians in modular metric space admit metric nearest points.

§ 3 The completion of modular metric spaces

Let (X,p) be any metric space. We shall implicitly use the following property of the hy-
perspace 2X. If (B,);-, is converging to B in 2, then for every be B there exists a sequence
(bn)r=1, with b,e B, for all neN, converging to b. In particular, if (4,);-; is converging to A in
2, and A, c B, for all nelN, then A cB.
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3.1 Theorem. If (X,p) is a modular space then so is its completion (X p). Moreover,
the multimedian of X is the unique continuous extension of M :X> — 2{,, given by the descrip-
tion

(a,b,c) = clx(Mx(a,b,c)),

10 the whole of X ’,

Proof: We _consider X as a dense subspace of )}‘. We denote the Hausdorff metric on 2{,}0
by py. Let Mz(a,b,c) denote the mixing-operator of (X,p). By Theorem 2.12 the multimedian
My :X> -2 is a Lipschitz map with Lipschitz factor 2, with respect to the Hausdorff metric
on 2%.. Hence the same holds for M, with respect to the Hausdorff metnc on 2%.. By [22, p.
298] (2’( ,Py) is a complete metric space. As X3 is a dense subset ofX we can (uniquely) ex-
tend M to a Lipschitz map (with Lipschitz factor 2) M to the whole of X. Proposition 1.11 to-
gether with a continuity argument show that M(a b,c)cMx(a,b,c), for a,b,ceX. In particular, e
is modular. For the other inclusion, Lemma 2.5(4) together with a continuity argument show
the following equality for a,b,c,deX:

Y(p(c,a) + ple,b) + p(b,a)) + p(d, M (a,b,c)) = (p(c,b) + plc,d) + p(d, b)) + P(a,M(b,c,d)). )]
Now let me Mx(a,b,c), that is Mx(m,b,c)=Mx(b,c,m)={m}. Now as A;I(b,c,m) is contained in
Mx(b,c,m) we must have M(b,c,m)={m}. Hence from equality (1) with d =m one deduces:

Y(p(c,a) + p(c,b) +p(b,a)) + P(m, M(a,b,¢)) = Y(p(c,b) +p(c,m) + p(m, b)) + pla,m), or

P(m,M(a,b,c))=Y(p(c,b) +p(c,m) + p(m,b) + 2:p(a,m)) - ¥Ap(c,a) + p(c,b) + p(b,a)).

Now as m is a member of both /;(a,c) and I;(a,b), we obtain the equality:
p(m,M(a,b,c))=¥4(p(c,b) +p(c,a) +(b,a)) - ¥(p(c,a) +p(c,b) + p(b,a)) =O.
By the closedness of M (a,b,c), we conclude that me A:l(a,b,c)‘ ]

For any metric space (X,p) the set { {x} | xeX} is a closed subset of 2§.. We obtain the
following corollary from Theorem 3.1:

3.2 Corollary. The completion of a median metric space is a median metric space. B

A more straightforward proof of the previous corollary goes as follows. As a metric
median is uniformly continuous it extends to a uniformly continuous ternary operation m” of
the completion X’. By continuity m” is a median which selects from the multimedian of X’.
Hence by Corollary I: 4.7 m’ equals the multimedian, i.e. X’ is a median metric space.

Aronszaijn and Panitchpakdi [4, p. 419] have shown that if (X, p) has the (n+1,2)-IP then
its completion (X,p) has the (n,2)-IP. Whether (X,p) also has the (n+1,2)-IP is an open prob-
lem. For normed spaces the problem was settled in the affirmative by Lindenstrauss [50]. We
are now able to solve this problem for n=2:
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3.3 Corollary. If (X, p) has the (3,2)-IP then so has its completion *,p).

Proof: By Theorem 3.1 (X,p) is a modular space. By the quoted result in [4] (X,p) has
the (2,2)-IP, which means that (X,p) has a convex metric. The theorem now follows from

Theorem 1.17. =
S tl
S2 L
53 t3
b ts

Fig. 3.3: the (2,2)-IP is not inherited by the completion

As an illustration we show that the (2,2)-IP is not inherited by the completion. Consider
the points

5=(0,0), t=(1,0), 5,=(0,2"™), £, =(1,2"™") (nelN).
Let X =[s,(0,0))U[¢1,(1,0)) Upenw[sn, 2], see Figure 3.3. Then the geodesic metric p on X is
convex, and the completion of (X,p) equals X U {s,}. One can easily verify that /5(s,t)={s,t}.

The following result describes the interval operator of the completion of a modular
metric space.

3.4 Theorem. Let (X,p) be a modular space with completion ()2’,6). Then,
(1)  The (metric) interval function I :X?>—2f, of X is contractive with regard to the sum metric

on X2 )
(2) The interval function 15 of the (modular) space (X,p) is the unique extension of

1:X22f,, given by the description

(a,b) = clx(I (a,b)).

Proof: Let M,M be the multimedians of X and X respectively. See Theorem 3.1. For a
proof of part (1), take a,a’,b’e X. By the triangle inequality of py it suffices to show that

pu(l(a,b).I(a’,b))<p(a,a’). 3
To this end, take xe/(a,b), then

P, M (a’,b,x))=Yop(x,a’) + p(x,b)— p(a’,b))

= ’/z(p(x, al) + p(a’b) - p(xra)" p(a,’b)) < p(a’ al)'

As the set M (a’,b,x) is contained in /(a’,b) we have established that p(x,/ (a’,b)) < p(a,a’). By

permuting the roles of a and a” one arrives at (3). For a proof of part (2), we shall first show
the following equality:

I(a,b)=13(a,b), 4
for all a,be X. The inclusion from left to right follows for simple topological reasons. For a
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proof of the inclusion from right to left, take ze /5(a,b). Let (z,)7-; be a sequence in X converg-
ing to z. Construct a sequence (c,)y-; inf(a,b) by choosing c,e M(a,b,z,) (neN). Then,
p(cn,2) < py(M(a,b,2,),2) =pyy (M, b,z,), M(a, b,2)) < 2:p(z;,,2).

The first inequality follows by definition of Hausdorff metric, the equality is evident, whereas
the last inequality applies that Misa Lipschitz map (with factor 2). Hence c,eM(a,b,z,) con-
verges to z, and we have shown (4). To conclude the proof of part (2), as the space (z{’, p)is
modular its interval function /; is continuous by part (1). In view of equality (4), I; is the
(unique) continuous extension of /. [ 3

3.5 Corollary. Let (X,p) be a modular space, with completion X. Suppose that C is a
subset of X and ae C. Then,
(1) IfC is p-convex (resp. star-shaped at a) in X then so is its closure in X.
(2) IfC is p-convex (resp. star-shaped at a) in X then so is the completion Clg(C) of C in X =

3.6 Corollary. Let (X,p) be a modular space. Then the collection. of p-convex subsets
in 2§ is closed. [ ]

We remark that the last three results do not hold in general metric spaces. To this end,
let T be the (closed) triangle in the plane spanned by the origin, e; =(1,0) and e, =(0,1), and let
X be Tu{(1,1)} minus the open convex segment (0,e,). We endow X with the restriction of the
sum-metric p. Then the following are easily verified. The interval /,(0,e,) only consists of
0,e, while the interval between those points in the completion of X equals the segment [0,e]
(cf. Th. 3.4). X minus the points e,,e,, and (1,1) is p-convex, but its closure is not (cf. Cor.
3.5). The set X minus the point (1,1) can be obtained as a limit of p-convex subsets- in the hy-
perspace metric, but is not p-convex itself (cf. Cor. 3.6).

3.7 Decreasing and increasing sequences. We recall that a partially ordered set D is
downdirected provided for each d;,d,e D there exists de D with d <d, and d <d,. The concept:
of an updirected set is defined dually. A function of an updirected set D' to a set X is usually
called a net. We often use notation of type (p;);cp for nets. If X is also ordered, then a net that
respects this order, i.e. i < j implies p; <p;, is called increasing. The concept of a decreasing net
is defined dually. If the partial order is a basepoint order with basepoint b, then a sequence or a
net in X which is decreasing (increasing) in <, will be called b-decreasing (b-increasing).

The following proposition is a simple generalization of [2, Lemma: 2.8]:

3.8 Proposition. Let (X,p) be a metric space, and let P =(p;);cp be a net in X. Then: the
following hold:
(1) Ineither of the following situations a net P =(p;);p is Cauchy:
(i) The net P is decreasing in <.
(i) The net P is bounded and increasing in <,
(2) If P as described in (i) (resp: (ii)) converges to-pe X, then p = inf (D) (resp: p=sup(D)).

Proof:: For a proof of (i), let € >0:. Define R = inf {p(b,p;) | ic D’}. There exists. an: ic.D)
such: that p(b,p;) < R+ %-e. Then for all j>i we have R <p(b,p;)< p(b;p;) < R + /€. Consequent-
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ly, p(pi.p;)=p(b,p;)—p(b,p;) < €. Whence, for all jk>i
PW)>pi) SPW):pi) +PDipe) < Ve +Vre=e
A similar argument works under the assumptions of (ii).

For a proof of (2), let P be as described in (i). Clearly pel(b,p;) for all ieD, i.e. pis a
lower bound of the p; in <,. Suppose that g <,p;, i.e. p(b,p;)=p(b,q)+p(g,p;), for all ie D. Then
by continuity p(b,p)=p(b,p)+p(g,p). That is g<, p. The proof of the remaining part of (2) is
similar. ]

The converse of statement (2) in the previous proposition is in general not true: the sub-
set (1,2) of the metric space {0} U(1,2)uU {3} has the origin as infimum and 3 as supremum,
however these points are not adherent to (1,2). There is an affirmative result for normed spaces,
see Proposition III: 2.5.

By the previous lemma we come to the following notion. A metric space (X, p) is down-
converging relative to b (briefly, b-downconverging) provided each b-decreasing sequence in X
converges to a point of X. Similarly, X is upconverging relative to b (or, b-upconverging) pro-
vided each bounded, b-increasing sequence in X converges to a point of X. If both conditions
hold relative to the basepoint b, then we say that X is converging relative to b (or, b-
converging).

It turns out that “monotone” sequences provide as much information as the more general
decreasing or increasing nets.

3.9 Theorem. Let (X,p) be a metric space and let be X. Then the following hold.
(1) IfX is b-downconverging, then any decreasing net in <, converges.
(2) IfXis b-upconverging, then any increasing bounded net in <, converges.

Proof: For a proof of (1), let P=(p;);cp be a decreasing net in <,, and let
R=inf {p(b,p;) | ieD}. Take any point j(1)e D such that p(b,p;1)) <R +27!. By induction, hav-
ing constructed j(1)< -+ <j(n) in D such that p;,)<ypjq and p(b,pjp) <R+27 for
1<p<q<n, we take j(n+1)2j(n) in D, such that p(b,pju+1y)) <R+27"*D. This gives a
b-decreasing sequence (pj))n-1, Which by assumption converges to some point p. Evidently,
p(b,p)=R.
Let >0 and fix NeIN such that 27V <e. Then for any i 2 j(N) in D, we have that (cf. the proof
of Proposition 3.8) p(p,p;) <2-¢€. Hence the net P converges to p.
The proof of statement (2) is largely the same. ]

In a geometric interval space (X,/), the following multivalued “cone” function can be
defined on the collection of finite sequences of X.
(I1) cone(a)={x},
(I2) cone(a;,ay, =" ,an41)=U{l(m,a,,) | mecone(ay,az, - ,a,)} (n21).
Observe that cone(a,b)=1(a,b) (a,beX), and that cone(a,b,c)=1(I(a,b),c) —compare Theorem
I: 4.18.

In view of Theorem I: 4.24 the cone function is symmetric iff X is median. Moreover, in a
median algebra (X,m), the set cone(a;,a,, ' - - ,a,) is gated, and the gate function f, takes the
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following form:

(3.10) frx)=m(a1,a3,x) ; fer1@)=m(@psr,filx),x) (2<k <n).
See [79]. For a direct proof proceed as in Theorem I: 4.18, where (3.10) is shown for n'=3.
In particular, cone(ay,a,, * - * ,a,) is precisely the convex hull of the points.a,,as, - - - ,a, (i.e.

a polytope). Although the cone function is not symmetric in a general interval spaces (see
above), the following can be shown by means of induction.

(3.11) Let (X,I) be a geometric interval space, and let beX. Ifa,, - - - ,a, is a finite collection in
X that is totally ordered in <, then

cone(ay, " -+ ,a,)=I(minj. a;, maxj., a;).
The following result describes the behavior of the corie operator with- respect to the
Hausdorff metric py on (bounded) sets. This result is a generalization of Theorem 3.4(1).

3.12 Lemma. The following inequality holds for all finite sequences (a;)}-,(b;)i=; in a
modular metric space (X, p):

PH(CO“C(“!’ e ,a,,),cone(bl, e ’bn))s ip(ai’bi)'
i=1

Proof: By the triangle inequality of py it suffices to prove that

pu(cone(ay, - ,a,),cone(ay, * * *,a,-1,b,)) < p(an, bn).
We must verify that for each xe cone(a,, * - - ,a,),
p(x,cone(ay, ***,an-1,b)) < p(an,by)-
By invoking the definition of cone, there is a ze cone(a, - - - ,a,_;) such that xe/(z,a,). Consid-

ery=M(b,,z,x). As
M (b,,z,x) c I(b,,z) < cone(ay, - * - ,b,),
we find that ye cone(a, - - * ,b,). Consider the following (in)equalities:
plx,cone(ay, * - *,b,)) <plx,y)
=Y(= p(bn,2) + p(by,x) +p(z,X))
=Y2(= p(bn,2) +p(by,x) +p(an,2) - p(an,x)
=Y2(p(an,z) = p(bn;2) +p(by,x) — p(ay,x))
<p(a,,by).
The first equality only uses Proposition 1.11, and the last inequality involves xe I (a,,z). ]
From this lemma, combined with the remarks prior to it, we obtain:
3.13 Corollary. Let (X,p) be a median metric space, and let (X,p) be its completion.
Then for each xe X and for each >0 there is a p-convex subset C of the original space X such
that
xeCl 3(C); diam(C)<e. -
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A subset C of a modular space X is called multimedian at a point 0c X provided that
M(0,c,c;) c Cforallcy,ceC. :

The following subsets of a modular metric space X are multimedian at 0: the whole X,
any p-convex subset of X and any star-shaped subset at 0. In particular, any closed ball around
0 and any interval starting at 0 is multimedian at 0.

The following simple fact is stated here for later reference (cf. Corollary 3.5).

(3.14) Let (X,p) be a modular metric space, and let (X’, p) denote its completion. If C is mul-
timedian at b€ X then so are the closure in X and in X.

Consider a fixed basepoint 0 of metric space (X, p), and let (5(, p) denote the completion of
X. If C is a non-empty subset of X, then C (resp. C°) will denote the subspace of X, consisting
of all limits of O-decreasing (0O—increasing) Cauchy sequences in C. We now come to one of
the main results of this section.

3.15 Theorem. Let (X,p) be a modular metric space, and let C c X be multimedian
at 0. Then the completion of C is given by (C,)°.

The proof of Theorem 3.14 requires a construction to transform sequences in a modular
space into increasing and decreasing sequences. As this construction shall be of later use also,
we formulate it as a lemma.

3.16 Lemma. Let (X,I) be a modular space, and let (x,);-, be a sequence in X. Then
" there exist sequences P*=(pk):_, in X satisfying the following conditions.

(1:k) pk=x.

(2:k) pkeM(©O,p%_;,x,) for n > k.

(3:k) pkil <opk for n2k.

Py =X

P’ pi=x;

2] p3 pi=x3

pl p2 p3 i

Fig. 3.16: construction of the sequences p%

Proof of Lemma 3.16: For k =1, we take p} =x,, and, recursively,
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pll!EM(pllt—l vovxn)'
See Figure 3.16. Next, let />1 and suppose that sequences P satisfying (1:k), (2:k), and (3:k)
have been defined for 1 <k <. Take p}=x, and, recursively,

P£I+l EM(pfn:—‘l’pLaxnﬂ)'
By induction on n, we verify the following formula:

PheM (0,p}_1,x,) (for n>1) and piZy <o p}, (for n21). *
First, pi7} <o pi~" <o x, =p!, which settles the above formula in case n =/. Next, assume that for-
mula (*) holds for some n >/ Then p’7} <y x,.; by (2:1-1), and pl3} <, ph by (*). Whence by
the construction of p,,; and by Lemma I: 4.13, we obtain:

Phat EM PP Xn 1) € M(O,phoxni1)s Pt SoPhat
In particular, p! 2} <o plil <o pl., as required in (*) for n+1. ]

Proof of Theorem 3.14: Let C be the closure of C in the completion X of X. Let xeC
and fix a sequence (x,),-; in C converging to x. Without loss of generality, p(x,x,)<2™". Let
the sequences P* =(pk)7_, be as constructed in Lemma 3.16. As C is multimedian at 0, it fol-
lows from formulae (1:k), (2:k), (as stated in Lemma 3.16) that p*eC (n k). From formula
(2:k) we conclude that each sequence P*=(p¥):_, is O-decreasing. Hence it converges to a
point p* in C,. By (1:k), pf=xiecone(x;). If n=k and pXecone(x, - -,x,), then, since
Pk el (pk.x,.1) by (2:k), we conclude by induction that

Pn+1 Econ-ep(xk!xkﬂv :xn+l) o Conep(xerkﬂv 7xn+l)'

The completion of a modular metric space being modular (Theorem 3.1) we can apply Lemma
3.12 (with one sequence constant and equal to x) to the effect that

Pr(x,cones (xe,xeet * Xa))S Y, plx,x;)
=k

< iz“f <2 k=1).
=
In particular, p(x,p%)<2*-D for n>k. Hence, p(x,p*¥)<2*D and (p*);., converges to x.
From formula (3:k) we deduce that p*~! <, p¥. So, (p*)7-, is a O-increasing sequence in Cy,
which is bounded by the above result. Hence this sequence converges in (C,)°, showing that

xXe (C (])0 . ]
3.17 Corollary. Let (X,p) be a modular space. Then a subset multimedian at b is com-
plete if and only if it is b-converging. =
3.18 Corollary. The completion of a modular space (X, p) is given by (X,)°. "

From this corollary we obtain the following characterization of completeness of modular
metric spaces.



§4: Gated sets in (modular) metric spaces 51

’

3.19 Theorem. The following are equivalent for a modular metric space X.
(1) X s converging in some basepoint order.
(3) X is upconverging in all basepoint orders.
(2) X is converging in all basepoint orders.
(4) X is complete. : |

3.20 Corollary. Let (X,p) be a modular space with completion (A—’ ,p). Then the follow-
ing formula holds for all a,be X:

(U o(@,b))a)y = p(a,b))a)* =Clx(I o (a,b))=1;(a,b).

Proof: For a proof of the first equality: by the inversion axiom (G-2) any increasing se-
quence in (5,,/;(a,b)) is decreasing in ($p,/;(a,b)). The second equality follows from Theorem
3.15. Finally, the last equality is shown in Theorem 3.4(2). ]

3.21 Theorem. Let (X,p) be a modular space, and let ()~( ,p) denote its completion. Then
the following are equivalent:
(1) X is downconverging in each of its base-point orders.
(2) Allintervals of X are complete.
(3) X is a metric-convex subset of X.

Proof: Implications (1)—(2)—>(3) follow from Corollary 3.20 and implications
(3) > (2) > (1) are evident. ]
In contrast with Theorem 3.19, down(up-)convergence in one base-point order need not
imply down(up-)convergence for other base-points. For a simple example, consider the fol-
lowing median subalgebra X of the plane (coordinate-wise median)
X={(x1,x3) |0<x; <1 fori=1,2;x,+x,<1}uU{(0,0)}.
This space is down-converging in the order of (¥2,%), but not in the order of (0,0). On the other
hand, the space is up-converging from the viewpoint of (0,0), but not from the viewpoint of
(%,%). Moreover, (X®), is not complete as it does not contain the points (1,0) and (0,1). Com-
pare with Corollary 3.18.
We mention an affirmative result: a normed space upconverging in one point is upconverg-
ing in all of its points. See Proposition III: 2.5 and Corollary III: 2.6.

§ 4 Gated sets in (modular) metric spaces
The following result summarizes some properties of gated sets in general metric spaces.

4.1 Proposition. Let (X, p) be a metric space and let (/{’,5) denote its completion. Then
the following hold for a gated set C c X.
(1) The gate function p-: X —C is contractive.
(2) Cis closed and p-convex.
(3) The set Cly(C) is gated in X s its gate function is the unique continuous extension of
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pc:X —C to the whole of/{’.

Proof: For a proof of (1), take x,yeX. By definition of gate, p(x)e!(x,p(y)), that is
px.p () +p(p (x).p (v)) =p(x,p (). Similarly we obtain, p(y,p () +p( ().p (x)) =p(y,p (x)). Ad-
ding these equalities we obtain

2p(p(x).p N =px.p ()~ P ).y) +p(.p (x)) — P(p (x),X) S 2:p(x,y),
by the triangle inequality. That C is p-convex is just (I: 3.4.2). As C={xeX | x=p(x)}, the rest
of statement (2) follows from (1).
For a proof of (3), as pc: X —C is contractive we can uniquely extend this function to a con-
tractive map p :X —C. A routine argument shows that p is the gate function of C. =

Part (1) of the previous proposition was first shown by A. Dress and R. Scharlau in [21].

From Proposition 4.1(3) we conclude that gated sets in arbitrary metric spaces behave well

with respect to taking completions. This is contrary to the behavior of geodesically convex
subsets (cf. Corollary 3.5, and the remarks prior to Paragraph 3.7).

In a general metric space a closed (or even complete) geodesically convex subset need not
be gated. We work towards such a result for modular metric spaces.

Let (X, p) be a metric space, and let be X. Any subset C of X downdirected in <, can be
seen as a Cauchy net by Proposition 3.8. Hence under some form of completeness this net
converges to the gate of b in C. For instance if C is b-downconverging, or if there exists aceC
such that I (b,c) " C is complete. The above applies in particular if X is a modular metric space,
and if C is multimedian at 5. We conclude to the following.

4.2 Proposition. Let (X,p) be a downconverging modular metric space. If a closed
subset C c X is multimedian at beX, then b has a gate in C. In particular, a subset of X is gated
if and only if it is p-convex and closed. E

We remark that by Theorem 3.21 a modular metric space is downconverging iff all in-
tervals of X are (metrically) complete.

The following result compares metric nearest points with order nearest points (i.e., with
gates) in a modular metric space.

4.3 Proposition. Let (X,p) be a modular space and let C be a subset of X which is mul-
timedian at be X. Then the following are equivalent for pe X.
(1) pisthe gate of binC.
(2) pis a metric nearest point of b in C.

Proof: Implication (1) — (2) is evident. For a proof of the other implication let pe C be as
described in (2). Let ceC and suppose meM (b,p,c)\{p}. Then evidently p(b,m) < p(b,p). As
me C, this contradicts (2). We conclude M (b,p,c)={p} for all ceC, i.e. p is the gate of bin C.m

In Proposition I: 3.5 it is shown that gated sets in a general geometric interval space
have the (F,2)-IP. We now come to stronger intersection properties of gated sets in a metric
space. The following notion is convenient. Let B be a subset of a metric space (X,p) and let
beX. The subset B is called b-upbounded, or upbounded at b if any sequence (b;)i; in B in-

i=1
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creasing in the basepoint order <, is bounded.
One can easily verify that replacing “sequence” by “net” in the last definition yields an
equivalent notion.

4.4 Remark. Each bounded subset of X is evidently b-upbounded. The converse does
not hold, not even for geodesically convex subsets. For ieIN we let ¢;e/,(IN) denote the unit
vector with the i-th coordinate one and all other coordinates zero. Then the (median stable)
subset C of /,(IN), defined by

C={\e | icN,—i SA<i},
is 0-upbounded but not bounded. Note that C is star-shaped at 0 and complete. There is an
affirmative result for geodesically convex subsets in a modular normed space. For instance: in

a modular Banach space a geodesically convex subset upbounded at one of its points is bound-
ed. See Theorem III: 5.10.

The following lemma shall be used in different situations.

4.5 Lemma. Let (X,p) be a metric space and beX. Let b be a downdirected collection
of closed subsets gated at b. If C c X is a b-upbounded b-upconverging subset, star-shaped at b
such that C "G # @ for all Ge b then

CnNyzd.

Proof: For Ge .y we let n; denote the gate of b in G. By formula (I: 3.4.1) nge C. One
easily verifies that the net {n; | Ge &} directed by b, is increasing in <,. As {ng | Ged} is
contained in C it is bounded. Hence this net converges, say to a point pe C by assumption. As
all Ge b are closed, p is a member of every such G, i.e.

peCN N ]

We now derive two results: one concerning general metric space, and one for modular
metric space.

4.6 Theorem. Let (X,p) be a metric space and be X. Let & be a collection of gated sub-
sets. If C c X is a b-upbounded b-upconverging subset, star-shaped at b, and if C meets N for
all finite subcollections of b, then

CnNyzd.

Proof: By formula (I: 3.4.4) the intersection of finite members of . is gated, and by Pro-
position 4.1(2) gated sets are closed. Whence the collection

{("F | Fcb finite },
satisfies the assumption of Lemma 4.5. ]

For a downconverging modular metric space, gated sets are precisely the non-empty
convex closed subsets by Proposition 4.2.  For such spaces, Theorem 4.6 is a particular case of
the following result.
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4.7 Theorem. Let (X,p) be a modular metric space and be X. Let & be a collection of
closed subsets multimedian at b. If C c X is a complete b-upbounded subset, star-shaped at b
such that C meets N for each finite subcollection of &, then

CnNyzQ.

Proof: As in the proof of the previous theorem we consider the collection

Ypm={nF | Fcb finite }.
This collection consists of closed subsets multimedian at b meeting C. As C is complete, any
member of &, has a gate from b. Then we apply Lemma 4.5. ]

The proof of Theorem 4.7 only uses that C is b-converging. However this property is
equivalent with completeness of C by Corollary 3.17. Theorem 4.7 applies in particular for a
collection of closed p-convex subsets. In the next section we shall interpret Theorem 4.7 in
terms of a “weak” topology.

In view of Proposition 4.2 a non-empty intersection of gated sets is gated. The question
now arises whether this holds for arbitrary metric spaces, and what the gate function of the in-
tersection looks like. For convenience we introduce the following. Let X be a Hausdorff topo-
logical space, and let (p;);¢; be a collection of functions of X into itself, such that their compo-
sition products commute two by two. Let F be the collection of finite subsets of /, direct & by
inclusion. The collection (p;);¢; is called composable if for every xe X the net

(TT, , i) e
directed by #, converges in X. The limit function is called the composition of the family
(Pidier-

We can now prove the following result.

4.8 Theorem. Let (X,p) be a downconverging metric space, and let (C;);c; be a collec-

tion of gated subsets of X with a non-empty intersection. Then the associated gate functions p;
(iel) are composable, and their composition yields the gate function of M;¢,C;.

Proof: Let xeX and let F </ be finite. By formula (I: 3.4.4) the functions p; commute
pairwise, and the function Hier,» is the gate function of the set n;.rC;. Hence if cen;¢,C;
then the net

( nieFPi(x) JFed
is decreasing in (I (x,c), <.). By assumption it converges to say ge/(x,c). As cen;¢;C; was ar-
bitrary, we conclude that q is the gate of x in NC;. -

iel
The condition that X be downconverging, cannot be removed from Theorem 4.8.

We end this section with some results concerning upbounded subsets. It is natural to ask
whether a subset that is upbounded at ore of its points is upbounded at all of it points.
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4.9 Proposition. Let (X,p) be a modular metric space and let C c X be multimedian at
both points 0,c. If C is 0-upbounded and 0-downconverging, then C is c-upbounded.

Proof: Assume to the contrary that (x,);-, is a c-increasing sequence in C that is un-
bounded. Let the sequences P*=(p¥); in X be as constructed in Lemma 3.16. See Figure
3.16. We argue as in the proof of Theorem 3.15. As C is multimedian at 0, it follows from
formulae (1:k), (2:k) (as stated in Lemma 3.16) that pXe C (n 2k). From formula (2:k) we con-
clude that each sequence P* = (p¥);; is O-decreasing. Hence it converges to a point p* in C. By
(3-k) we deduce that the sequence (p*);-, is O-increasing. By (1:k), p§ =x,econe(x,). If n>k
and pke cone(x;, - - - ,x,), then, since p%,, eI (p¥,x,.,) by (2:k), we conclude by induction that

Pl +1 €CONE (Xies X115 " ** s Xns1)- O]
The right-hand side of formula (1) equals /,(x,x,+1) by (3.11). By Proposition 2.7 we obtain

pe,p¥1)2p(c,x), hence p(c,p¥)=p(c,x). We conclude that the sequence (p)i-; is O-
increasing and unbounded. This contradicts the assumption that C is 0-upbounded. B

From the previous result we conclude that in a downconverging modular metric space a
geodesically convex subset that is upbounded at one point is upbounded at all points.
We next consider the question whether the closure of an upbounded subset is upbounded.

4.10 Proposition. Let (X,p) be a downconverging modular metric space and let C be a
subset of X, star-shaped at the point 0e C. If C is 0-upbounded, then the completion of C is 0-
upbounded. In particular the closure of C in X is 0-upbounded.

Proof: Let C X denote the respective completions of C and X. Assume to the contrary
that (x,)»-; is a 0-increasing sequence in C that is unbounded. We construct a sequence (y,)n-1
in C with the following properties:
@ pGayn) <27,
(") Yn S() Xn
(i) y1<oy2<0 """ So¥a
for all neIN. To this end, let neIN. By Theorem 3.15 there is a 0-increasing sequence (z;)z-; in
C converging to x,. Let keIN be such that p(z},x;)<27! and let y;=z}. Suppose that
Y1,¥2, ** .,y have been constructed such as in (i), (ii) and (iii) for some n>1. As metric mul-
timedians are Lipschitz (Theorem 2.12), there exists a k€N such that i
pH(xn+l ’Mé(aner-l ’ZZH)S 2—(’”])'
Choose Y41€M (Y Xqs1,28 ") Then y,., satisfies (i), (i) and (iii) by construction. As Cis
star-shaped at 0 (Corollary 3.5) we have that y,,+le(:‘. Also, y,,ﬂelf,(y,,,zz“). In view of
Theorem 3.21, the latter interval is contained in X. Whence, y,,HGé' nX=C. This concludes
the induction.
By properties (i) and (iii) we obtain that (y,)>-; is an unbounded 0-increasing sequence in C,
contradicting the assumption that C is 0-upbounded. ]
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§ 5 Weak topologies in modular metric spaces

5.1 Motivation. Let (X,p) be a (modular) metric space. The weak(p) topology or,
weak(metric) topology, is generated by the collection of closed p-convex subsets in X. We usu-
ally denote this topology by 1,,.

The construction of the weak(metric) topology is similar to the construction of the standard
weak topology in a locally convex topological vector space V. Indeed, the collection of closed
(standard) convex subsets of V yields a closed subbase for the standard weak topology.

In connection with the Alexander subbase lemma, see [22], Theorem 4.7 can be used to
derive that a subset of a modular metric space that is complete and both star-shaped and up-
bounded at some point, e.g. a complete ball, is weakly(metric) compact. This result makes it
interesting to work in modular metric spaces with a Hausdorff weak(metric) topology. The
Hausdorff property of this topology requires the existence of many p-convex subsets. As,
roughly speaking, modular (metric) spaces with an abundance of geodesically convex subsets
correspond with median (metric) spaces (cf. Theorem I:2.14, and I:4.4(1)), the
weak(metric) topology of properly multimedian spaces is usually not Hausdorff. Compare the
situation in normed spaces: a modular normed space with a Hausdorff weak(norm) topology is
median. See chapter I'V.

We introduce a topology on a modular metric space that is less attached to geodesically con-
vex subsets. Let (X,p) be a modular metric space and let beX. The basepoint topology at b,
briefly the b-topology, 1(b) is the topology generated by the collection of closed subsets in X
that are multimedian at b. Clearly, 1, ct(b). Note that closed balls around b and intervals
which have b as endpoint are subbase members of t(b).

5.2 Completeness and weak(metric) compactness. The next two theorems (which are
proved simultaneously) show the similarity between the basepoint topology of modular metric
space and the weak(metric) topology of median metric space.

5.3 Theorem. Let (X,p) be a modular metric space, and let C cX be a subset star-
shaped at be C. Then the following are equivalent:
(1) C is b-upbounded and complete.
(2) Cisb-compact.

5.4 Theorem. Let (X,p) be a median metric space, and let C X be a subset star-
shaped at be C. Then the following are equivalent:
(1) Cis b-upbounded and complete.
(2) Cis weakly(p) compact.

Proof: We refer to the above two theorems as (A) and (B). Let X and C be as stated in
either of the theorems. Implications (1) — (2) of (A) and (B) follow from the Alexander sub-
base lemma combined with Theorem 4.7. For a proof of the converse implications, let (x;);2;
be a b-increasing sequence in C. In the situation (A) we let A;=U{x; | j =i} and in the situa-
tion (B) we let A;=u {I 5(x;,x;) | j2i } for ieIN. Compare Figure 5.4.
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X3

X2

X1

Fig. 5.4: a b-increasing sequence

Situation (A): As a subset A; is evidently multimedian at b —compare (3.11}— so is its
metric closure cly(A;) by (3.14). Whence, the latter set is b-closed in X, and consequently the
intersection C NA; is b-compact in X.

Situation (B): Each subset A; is p-convex, see Theorem [: 4.24(5), therefore so is its metric
closure cly(A;) by Corollary 3.5. Consequently, the latter set is weakly(p)-closed, and whence
the intersection C N cly(A;) is weakly(p) compact.

Now consider any of the situations (A), (B). As the sets C N cly(A;) have the finite inter-
section property, there exists a point ae N;Z; C NA;, by compactness. Then,

p(b.x;)=p(b,A;)=p(b,clx(A;)) N C)) < p(b,a).

In which the first equality holds by virtue of (3.11). Hence the sequence (x;)iz; is bounded.
" Whence C is 0-upbounded.

For a proof of completeness of C, let (x;);Z; be a bounded b-increasing sequence in C.
As (x;)i; is a Cauchy sequence, it converges to a point m of the completion (X’,ﬁ) of (X, p).
Compare Figure 5.4. In the situation (A) we let A;=Clz({x; | j 2i}) and in the situation (B) we
letAi =I",(x,~,m).
More or less similar as above, we obtain that each set X NA; is b-closed in X in situation (A),
and weakly(p) closed in situation (B). Whence in situation (A) the sets C NA; are b-compact
subsets in X, and in situation (B) the sets C NA; are weakly(p) compact.

Now consider any of the situations (A), (B). On one hand as the C nA; evidently have
the finite intersection property we conclude that N{K; | ielN}#@. On the other hand, we have
that M;enA; ={m}. Hence {m}=n{K; | icIN}, and in particular meC.

We obtain that C is b-upconverging. Similarly we obtain that C is b-downconverging.
Hence C is b-converging, thus C is complete by Corollary 3.17. ]

We remark that there exist geodesically convex, weakly(metric) compact subsets that
are not bounded. See Remark 4.4. From Theorems 5.3, 5.4 we obtain the following corol-
laries.

5.5 Corollary. Let (X,p) be a modular space. Then the following are equivalent:
(1) X is complete.
(2) There exists a point be X such that all closed balls at b are b-compact.
(3) Forall beX closed balls with b as a center are b-compact. ]
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5.6 Corollary. Let (X,p) be a median space. Then the following are equivalent:
(1) X is complete.
(2) All closed balls of X are weakly(p) compact. B

We now obtain two extensions of Theorem 3.21.

5.7 Theorem. Let (X,p) be a modular space. Then the following are equivalent:
(1) X is downconverging.
(2) For each beX any closed subset of X multimedian at a point b has a gate from b.
(3) For each be X intervals having b as an endpoint are b-compact.

5.8 Theorem. The following are equivalent for a median metric space (X,p).
(I) X is downconverging.
(2) Each closed geodesically convex subset of X is gated.
(3) All intervals are weakly(p)-compact.

Proof: We refer to the above two Theorems as (A) and (B). Implications (1) = (3) of
(A) and (B) follow from Theorems 5.3 and 5.4. The converse implications follow by Theorem
3.21 combined with Theorems 5.3 and 5.4.

Implications (1) — (2) of Theorem (A) and (B) follow from Proposition 4.2. For a proof
of the implications (2) — (1), let be X and let (x;);z; be a b-decreasing sequence. In the situation
(A) we let K={x,x,, - - - } and in the situation (B) we let A be K =UZ;1 (xy,x;).

Situation (A): The set K is multimedian at b —compare (3.11)— hence so is its closure
cly(K) by (3.14). So by assumption b has a gate p in cly(K).

Situation (B): As the set K arises from an increasing union of intervals it is p-convex, hence
so is its closure cly(K) by (3.14). So by assumption b has a gate p in clx(K).

Now consider any of the situations (A), (B). Let D(p,r) be a closed ball around p. As
pecly(K) there exists a ke D (p,r)NK, that is kel (x,,x;) for some neIN. By the geometric pro-
perties of the metric intervals we obtain that x,,e I (p,k) for all m >n. As balls are star-shaped at
their center, we have x,,e D (b,r). Whence (x;)i; converges to p. ]

5.9 Relative weak topologies. Let (X,p) be a modular space. If Y cX is a subset with
M;(y1,y2,y3)cY for all y;,y,,y3€Y, then the two natural “b-topologies” on Y —the relative to-
pology w.r.t. the b-topology of X, and (the coarser) intrinsic b-topology of Y— coincide.
Indeed, let C be a subbase member of the intrinsic b-topology of Y, i.e. C is closed and mul-
timedian at b in Y. As C is multimedian at b in Y, and as M,(Y>) Y one readily verifies that C is
multimedian at b inX. By 3.14 the closure Cly(C) is multimedian at b inX. Hence
C=Clx(C)nY is a relatively closed subset of Y with respect to the b-topology of X.

A similar problem —and more relevant, see chapter IV— is whether the relative and the
intrinsic weak(metric) topology of a median stable subset of a median metric space coincide.
The answer is positive but requires some effort. It turns out the answer is positive even in a
broader setting.
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By a topological median algebra is meant a set X with a Hausdorff topology and a medi-
an operator on X which is continuous in this topology. See [79]. In these circumstances, the
weak topology of X is generated by the subbase consisting of all closed convex sets. This
definition is in accordance with the metric situation. Analogous one defines the notion of a
basepoint topology in X.

Finally, X is locally star-shaped provided for each pe X and each neighborhood U of p there
is a neighborhood V of p such that I (p,x) cU whenever xe V. For compact median algebras,
this condition can easily be derived from the (assumed) continuity of the median operator. See
van Mill and van de Vel [60]. If X is a median metric space, then the median operator is con-
tinuous and each metric ball is star-shaped from its center. Observe that the proofs of
Theorems 5.7 and 5.8 implicitly use that modular metric space is locally star-shaped.

5.10 Proposition. Let X be a locally star-shaped median algebra and let Y X be a
median stable subset. Then the weak topology of Y equals the relative weak topology, derived
from X.

Proof: By definition, a convex closed subset of X has a relatively convex, relatively
closed trace on Y. Conversely, let C cY be a relatively convex, relatively closed set. We veri-
fy that Cly(co(C))nY=C. Note that the closure of a convex set is convex. Next, let
yeCly(co(C))NY and fix a net (d;);e; in co(C) converging toy. For each j we fix a finite set
Fj c C with djecoy(F)). The polytope cox(F)) is gated; for a description of its gate function,
see (3.10). In view of this description the gate c; of ye Y is in the relative polytope coy(F)). In
particular, c;eC.

Let U cX be a neighborhood of y and let Vc U be as in the definition of local star-
shapedness. For some jjeJ and all j2j, we find d;eV, whence c;jel(y,d;)cU. So the net
(cj)jes converges to y, showing that ye Cly(C)=C. ]

5.11 Separation properties of the weak(metric) topology.

5.12 Proposition. Let (X,p) be a modular space such that the weak(p) topology is
Hausdorff. Then the following hold.
(1) If X is downconverging, then the weak(p) topology is regular.
(2) If X has complete balls, then the weak(p) topology is normal.

Proof: For a proof of statement (1), let xe X and let B be a closed interval-convex subset
of X. We conclude from Theorem 5.7 that B is gated. Let p be the gate of x in B. By applying

the Hausdorff property to the points p,x, we find closed interval-convex subsets C, - - *,C,,
D,, - ,D,, of X with
n m n m
D& KJ]Cl , X& 'UlDi and X= leC[ () leD, (3)
= 1= = 1=

Now let Q be the union of all sets C; or D; meeting B, and take U =X\Q. Then xg¢ U. Indeed,
suppose that xe C; and C;"B#@. Then clearly the gate p of x in B is in C;, contradicting for-
mula (3). The same formula states that x is not a member of any D;. As U is a (base) open ele-
ment of the weak(p) topology, the proof is complete.
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For a proof of statement (2), as observed at the beginning of this section, complete balls
in modular metric space are weakly(metric) compact. We conclude that the weak(p) topology
of X is o-compact Hausdorff, and hence that the weak(p) topology is normal. ]

5.13 Proposition. Let (X,p) be a median metric space with separable complete inter-
vals. If for each countable set A the set co(A) is weakly(p) normal, then X is weakly(p) normal.

Proof: The continuity of the interval function (Theorem 3.4), together with join-hull
commutativity of a median algebra (Theorem I: 4.18), imply that each polytope of X is also
separable. Now if A ¢ X is countable, then co(A) obtains as the union of countably many
separable spaces of type co(F), with F < A finite. It follows that co(A) is also separable for
countable sets A. We note that by the completeness of intervals, each non-empty convex
closed set of X has a gate function. See Proposition 4.2.

LetA, B c X be two disjoint and weakly(p) closed sets, let Ay c A, respectively By < B
be singletons, let Ky = co(A( U By), and let py: X — K be the gate function.

Assume that we have constructed sequences of countable sets Ag ¢ -+ c A, C A,
B, c ‘- < B, c B, together with convex closed sets K; = co(A; U B;) (where 0<i <n), such
that if p;: X - K; denotes the gate mapping, then p;(A) c pi(A;4,) and p;(B) c pi(B;4;) for
i=0,---,n-1. Now p,(A) is a subset of the separable metric space K,, and hence there is a
countable set A,,; < A with p,(A) < p,(A,+).- Similarly, there is a countable set B,,; — B
with p,(B) c p,(B,+1)- We may assume that A, c A,,; and B, c B,,;. Then put
Kny1 =co(Apsy U Bnyp)-

Having completed the inductive construction, we put A.. =U,cNAp, Bo = UpenBa, and
we let p., denote the gate map onto K., =co(A.. UB..). Observe that K., = Cl(U,-K,), and
that p.. is the pointwise limit of the maps p,,.

Let a € A and consider a weak(p) neighborhood U of p..(a). By passing to a smaller
neighborhood if necessary, we may assume that U is of type X | (UJL,C;), where the sets C; are
convex closed in X. SupposeA., c UL C;. As p,(a) converges to p..(a) we have p,(a) € U for
large enough n. We may assume that each set C; which is met by A ., is also met by each of the
sets A,, A4, - . We consider a point a,,; € A,,; such that p,(a,. )€ U, say: a,, € C;.
However, A, cK,, meets C; as well and hence p,(a,.;) should be in C;.

We have shown that p..(a) is weakly(p) adherent toA.,. Note that p.(A..)=A., and
hence that p..(A) c Cl,(p.(A..)). Here Cl, stands for weak(p) closure. We conclude that
P~(A) c A. In the same way, one can show that p.,(B) < B. It follows that p..(A) and p..(B)
have a disjoint weak(p) closure. By assumption, these sets can be separated with weakly(p)
open subsets of K.

The gate function p.. is continuous (Proposition 4.1) and convexity preserving (see the re-
marks prior to Theorem I: 4.8). Hence taking inverse images under p.., yields the desired
separation of A and B. ]
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5.14 Corollary. If (X,p) is a median-stable subset of |,(I) with complete relative inter-
vals, then X is weakly(p) normal. :

Proof: We first note that by the definition of weak(metric) topology, the original and
weak(metric) closure of a convex set in a modular metric space are always the same. LetA cX
be a countable set. Since the weak(metric) convex closure of a countable subset of /,(/) is
essentially a subset of /;(IN), it follows that co(4) (convex closure in /,()) is a weakly(metric)
metrizable set. See Theorem IV: 4.2. Now, the convex closure of A relative to X is a subset of
the above one, and the choice between intrinsic weak(metric) or relative weak(metric) topolo-
gy is indifferent by Proposition 5.10. Application of Proposition 5.13 gives the desired result.

[ ]

Compare Proposition 5.12 with the above corollary. It is not known whether median
metric spaces are isometrically embeddable in some /,(/) space under the assumption of being
weakly(metric) Hausdorff. See Theorem IV: 2.9, for an affirmative result on median normed
spaces. The complete median metric spaces that can be embedded in an /,(/) space evidently
correspond with closed median stable subsets. The assumption in Corollary 5.14, on com-
pleteness of relative intervals, leads one to relatively convex subsets of closed median stable
sets in /;(/), in regard of Theorem 3.21.

5.15 Comparing b-topologies and weak(metric) topologies. The following two results
indicate that a b-topology only “looks” in one direction, whereas the weak(metric) topology
-“looks” in all directions.

5.16 Theorem. Let X be a locally star-shaped median algebra. Then, the weak topolo-
8y of X is the largest topology on X coarser than each b-topology, viz.,

Tw= N T(x
v 15)(()’

Proof: The inclusion from left to right is evident. As for the reverse inclusion, let C be a
member of the right-hand side. Let x¢C. By assumption C is closed in t,. Hence there exist
closed subsets D,D,, - - - ,D,, multimedian at x with

xeUiaD; ;3 Ccui, D,

Let U be a star-shaped neighborhood of x avoiding Dy, - --,D,. Suppose that ye U nco(D;).
Then there exists a finite subset F of D; with ye co(F). As D; is downdirected in <., there exists
adeD; with d<, ffor all feF. As yeco(F), we also have that d <, y. But then del(x,y)cU, a
contradiction. We conclude that xe U}, cly(co(D;)). In other words, x is not weakly(metric)
adherent to C. As x¢C was arbitrary we obtain Cet,,. ]

One can also show:
5.17 Theorem. Let (X,p) be a downconverging modular metric space. If the weak(p)
topology is Hausdorff, then

T = N T(x).
xeX
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It is well-known that two topologies 1, €T, on a set X with (X,t;) Hausdorff and (X, 1)
compact, coincide. This leads to the following result.

5.18 Theorem. If (X,p) is a complete bounded modular space with a Hausdorff
weak(p) topology, then 1, =1(b) for all beX. If, in addition, (X,p) is compact, then 1,=1,, as
well. |

§ 6 All median operators are G-metric

Let G be an Abelian lattice group G. One may think of a Riesz space. A G-metric on a set X is

amap p:X? — G satisfying the following conditions:

(i) p(a,b)>0if a=b; p(a,a)=0,

(i)  p(a,b)=p(b.a),

(i) p(a,b)<p(a,c)+p(c,b),

for all a,b,ce X. See Hung [39]. The pair (X, p) is called a G-metric space. In analogy to the

situation in metric intervals one verifies that a G-metric interval operator—with its obvious

meaning— is geometric. This finally leads us to the class of modular/median G-metric spaces.
By a similar replacement of the real numbers by G in the definition of a valuation one ob-

tains the concept of a G-valuation, and a G-metric lattice. In analogy to the situation in metric

lattices one verifies that the formula

peey)=lxvy |=|xay | (x, y € L),
yields a G-metric if v is a positive G-valuation —see [13, ex. 4 p. 234]).
Observe that the mapping v :G — G given by v(x)=x yields a positive G-valuation. The in-

duced G-metric is simply given by p(x,y)= |x—y |, where |.| denotes the modulus operator of G
(see I: 1.2).

The following is a modification of Lemma 1.6.

6.1 Lemma. A G-metric lattice L is modular, and G-metric betweenness in L is
equivalent with lattice-betweenness.

Proof: We reason as in [13, p. 232], [16, p. 58 ]. If L is non-modular, then it contains
the lattice N5 as a sublattice. In the notation of Figure I: 1.1B we then have
v)+v()=vxay) +vixvy)=v(p)+v(g)=v(xay ) +vxvy)=v(x)+v ().
That is, v(y)=v(y). Whence y =y’ as v is positive, a contradiction.
Denote the G-metric intervals of L by /,(,.). Next, let a,beL and xel(a,b), that is
(arx)v(bax)=x =(avx)a(bvx).
pla,x)+p(x,b)=v(avx)—v(arx)+v(bvx)—v(bax)
=v(avx)+v(bvx) - (v(arx)+v(bax))
=v(avb)+v(x)=(v(arb)+v(x))
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=v(avb)—v(arb)=p(a,b):
The third equality uses (avx)v(bvx)=avb and (a~x)(bax)=anb, see Proposition I: 2.7(1).
We find that I,(a,b) =1 ,(a,b) and by Theorem I: 4.5 this gives I;=1,,. B

From the previous result together with Theorem I: 4.2 we obtain:

6.2 Theorem. A G-normed lattice L is a modular G-metric space, and the metric mul-
timedian and the lattice multimedian coincide. The lattice L is a median G-metric space if and
only if L is distributive. [ ]

As an (Abelian) lattice group is distributive [13], we conclude from Theorem 6.2 that
the (standard) median operator of an Abelian lattice group G is induced by the G-metric inter-
vals. Whence, we can look upon Riesz spaces as (linear) G-normed median spaces. We shall
show in chapter III, that (genuine) normed median spaces correspond with (subspaces of) L ; (1t)
spaces. The following is a generalization of this.

6.3 Theorem. FEach median space corresponds with a median stable subset of a Riesz
space. In particular, all median operators are G-metric.

Proof: Let (X,m) be a median algebra. Then X can be seen as a median stable subset of a
Boolean algebra « , see Corollary I: 2.18. Now the collection of step-functions on «, yields a
Riesz space L (see [52, p. 178]), in which 4, and hence X, occurs as a median stable subset. In
~ view of Theorem 6.2 the map p:L? L given by p(r,s)=|r-s|, yields a G-metric that gen-
erates the median of L. By taking the restriction of p to X we obtain a G-metric as desired. ®

In chapter V we shall show that median metric spaces correspond with median subsets
of normed median spaces, the L ; (1) spaces.

Let m be the median of a median G-metric space (X, p). Many of the results on metric medi-
ans derived in the present chapter extend to the G-metric situation. For instance, a G-median m
is contractive with respect to the sum-metric on X> — which evidently yields an Abelian lat-
tice group. We also mention an extended version of Theorem 2.6(1) (writing xyz for m (x,y,z)):

p(a,abc)+p(b,abc)+ p(c,abc) + p(d,abc) = p(a,bed) + p(b,bed) + p(c, bed ) + p(d, bed).
for all a,b,c,de X.

If a lattice group G is (conditionally) complete and totally ordered, then some of the results
for metric multimedians extend to the G-metric situation. For instance, a G-metric multimedi-
an is a Lipschitz map of factor 2 with respect to the “Hausdorff G-metric” and the sum-metric
on X3.



CHAPTER III
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MODULAR NORMED SPACES

The present chapter is devoted to modular normed spaces. In chapter II (Theorem II: 1.8)
an example of a median normed spaces appeared: an (abstract) L-space e.g. an L,(u)
space. One of the aims of this chapter is to prove that all median Banach spaces are of the
latter type. This is not only an interesting result in its own right but it also opens new per-
spectives in the study of L,(u) spaces: this result describes L ,(u) spaces as Banach spaces
with a special median convexity. Descriptions of L (i) spaces in terms of metric between-
ness have appeared earlier in literature. See [76, Theorem 3], where it shown that a
Banach lattice is an L (u) iff the “lattice betweenness” coincides with the metric between-
ness.

In the process of showing this characterization, it turned out that there are many similar-
ities between inner product (i. p.) spaces and median normed spaces. In fact, it is possible
to use techniques from i. p. spaces to get elegant proofs and results in L (i) spaces. An ex-
ample of such a similarity is that both types of spaces are characterized by a “tri-spherical
intersection property”. See the paper of Comfort and Gordon [17], for such a result in i.
p. space. The most striking similarity lies in the notion of “orthogonality”.

In sections 3 and 4 we characterize modular normed spaces with additive orthogonality.
In section 3 we do this for a distinct class of normed spaces, among which are the finite di-
mensional ones. Here the characterization is self-contained and uses techniques coming
from Hilbert space. The general characterization appears in section 4, and involves the
Kakutani representation theorem.

In section 5 we describe some of the rather peculiar properties of geodesically convex
subsets in modular normed space. From these properties new characterizations of L (i)
spaces are obtained.

§ 1 Introduction and motivation

1.1 Orthogonality. By a modular normed space, we mean a normed vector space such
that the induced metric space is modular. In other words, the mixing-operator of a modular
normed space only takes non-empty values. By a median normed space, we mean a normed
space such that the induced metric space is median. In this situation, the values of the mixing-
operator are singletons, and the mixing operator is called a normed median. The term modular
Banach space should speak for itself.
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Metric intervals and geodesically convex subsets of a normed space are usually called norm
intervals and norm-convex respectively. Note that a norm interval / is invariant under transla-
tion and under multiplication with scalars, i.e.

I(x+px+q)=x+I(p,q) ; M (p,q)=I(Ap,\q),

for all points p,q,x and AeR. The term “star-shaped” in normed space is always used with
respect to the norm intervals, and not with respect to the standard convex intervals.

We first recall the following. Two points x,y of a normed space X are called orthogonal
in the Pythagorean sense, briefly x Lpy, provided ||x+y|12=[lx[|2+lyll2. See [3], or [43].
Let us call a binary relation R on X additive if xR z and y R z implies (x+y)R z. The following
result of James is well-known, see [43].

A normed space is linearly isometric with an i. p. space iff 1p is additive.

Let us next consider two points x,y in a normed X that satisfy ||x+yll =lx|[ +1ly[l. In view of
the above, it might be natural to call such points “orthogonal”, however it turns out that the
name codirectional, as introduced in the paper of Alfsen and Effros [2], is more appropriate.
In [2] the points x,y are called antidirectional if ||x-y|l =1lx|| +]lyll. Directionality gives
rise to a notion of orthogonality as follows; the points x,y are called median orthogonal, briefly
xly, provided x,y are both codirectional and antidirectional. Further motivation of this
definition shall arise later.

One can easily verify that two points x,y in a normed space are orthogonal iff both values
M (0,x,y), M (0,x, —y) of the mixing operator equal zero (observe that the conditions 0e M (0,x,y)
and M (0,x,y)={0} are equivalent). In an i. p. space the value M (0,x,y) of the mixing operator
is empty iff the points x,ye X are independent —in particular, i. p. spaces of dimension at least
two are not modular. So in these circumstances the points x,y are median orthogonal iff one of
the points is the origin. Hence, in particular situations (e.g. in i. p. spaces) additivity of the
median orthogonality does not provide any information, simply because all orthogonal points
are trivial.

A modular normed space has an abundance of orthogonal points (cf. §4), and it turns out
that in such spaces the additivity of L characterizes median normed spaces. In particular it fol-
lows that L | (1) spaces correspond with modular Banach spaces with an additive orthogonality.

1.2 Riesz spaces. We compare our notion of “orthogonality” with a similar notion from
the theory of Riesz spaces. As usual we let |x| denote xvO—xA0 (xeL). Two points x,yeL are
called Riesz-orthogonal provided |x|a|y|=0. See [52], where it is shown that Riesz-
orthogonality of the points x,y is equivalent with the property [x+y|=|x—y|=]x|+|y|. That
is, the (L-metric) medians m (0,x,y), m(0,x,—y) both equal zero (Theorem II: 6.2). Whence
Riesz-orthogonality coincides with “median orthogonality”. We remark that Riesz-
orthogonality is additive.
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§ 2 Preliminaries

Let X be a normed space with unit ball B. A convex subset F of B is called a face of B whenev-
er p,geF if A-p+(1-LA)yqeF for p,ge B and Ae(0,1). The face F is called proper if F#B. A
one-point set {p} is a face iff p is an extreme point of B. By Zorn’s lemma there exist maximal
proper faces of the unit ball. See [2], where it is also shown that these faces are closed. If
[lpll=1 then we define face(p)= N{F | F is a face containing p}. We shall call these faces
minimal.

A subset C of X is called a cone if A-C cC for all non-negative A. A cone C is convex iff
C+C cC. One calls a cone C proper if C n—C =(0). If C-C =X, then C is called a generating
cone. The linear span of a convex cone C (i.e. the smallest linear subspace containing C) is
given by the set C —C. If A is any set in X then the cone generated by A, cone (A), is the smallest
cone in X containing A.

A cone C in X is called facial if C is generated by a proper face F of B (i.e. C =cone(F)). If
0#peX then the cone generated by face(p / ||pll) is denoted by C(p). If p=0 then we let
C(p)={0}. The cone C(p) is the smallest facial cone containing p. Every facial cone is convex
and proper. It shall be convenient to relate facial cones with norm-intervals. To this end, let
us mention the following results of Alfsen and Effros [2].

2.1 Lemma. ([2, Lemma 2.7]). Let C be a (standard) convex cone in a normed
space X. The following are equivalent:
(1) C s a facial cone.
(2) C is star-shaped (w. r. t. the norm, see §1) at the origin and every pair x,ye C is codirec-
tional. |

2.2 Lemma. ([2, Lemma 2.6]). If p is a point of a normed space X, then:

Co)= Y 10Ap)= UNIOp) .
23 Lemma. ([2, Lemma 2.3]). The following are equivalent for points x,y in a normed

space X.

(1) There is a facial cone containing x,y.

(2) xyeC(x+y).

(3)  Mx+yll=Hxll+1yll. L]

For any proper, convex cone C in a vector space, we let <. denote the vector order in-
duced by C, i.e. x<cy iff y—xeC. From Lemma 2.1 we conclude the following result, which
shall be of later use.

(2.4) Let C be a facial cone. Then the vector order <. on C coincides with the basepoint order
at zero.

From Lemma 2.3 we deduce also that if two points are codirectional then so are non-
negative multiples of these points. There is a similar result for antidirectional points. In partic-
ular, if two points are orthogonal then so are all multiples of these points. We shall use these
properties without further reference.
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The following result is a simple characterization of normed (linear) spaces that are up-
converging. Its proof is a modification of [71, Ch. II, Proposition 8.2], which concerns com-
pleteness of L-spaces.

2.5 Proposition. The following are equivalent for a normed space (X,1.1|).

(1) There is a be X such that every b-increasing sequence bounded in norm has a supremum
in (X y Sb)'

(2) There is a be X such that the basepoint order <, is upconverging.

(3) All basepoint orders are upconverging.

Proof: From the invariance of norm intervals under translation it simply follows that if
(1) or (2) hold for some beX, then they hold for all beX. This implies in particular that state-
ments (2) and (3) are equivalent. Implication (3) — (1) is Proposition II: 3.8. For a proof of im-
plication (1) — (2), by the above remark we may assume that b =0. We first prove the following
intermediate result.
(4) Let (x,);-; be a sequence of codirectional points in X with |lx,|l <2727, and let
si:Zi:lx" for ieIN. Then the sequence (s;)i; converges in X.

To this end, let y, =2"x, and z; =ZL=ly,, for ieIN. Then the sequences (s;)i2;, (z;)i=; are clearly
bounded, and increasing in <, by Lemma 2.3. We denote the suprema of these sequences by
s,z respectively. Then for all k,neIN with k >n we have s, —s, <o 2" *Yy —compare (2.4).
Hence s —s, <9 2" * "y, and consequently ||s—s,Il <27@*"||y||. Whence s, —s, which con-
cludes the proof of statement (4).

To obtain implication (4) — (2); given any bounded 0-increasing sequence, it suffices to
show that some subsequence converges. Let (p,);-; be a subsequence that satisfies
U pnse1—pall <2727, Let x, =pn.; —pa for nelN, then all x, are codirectional —compare Lemmas
2.1 and 2.1. Hence the sequence (x,),-; satisfies the assumptions of (4). From this statement
it now follows that s, =p, —p, constitutes a converging sequence in X. ]

We do not know whether the dual version of Proposition 2.5 —concerning decreasing
sequences and infima— holds.

A normed space that is upconverging at all of its points need not be complete. Indeed, as the
norm intervals of an inner product space coincide with the (complete) convex segments, any
non-complete inner product space yields a counterexample. By combining Proposition 2.5 and
Theorem II: 3.19, we obtain the following affirmative result for modular normed spaces,
which generalizes [71, Proposition 8.2].

2.6 Corollary. The following are equivalent for a modular normed space X.

(1) There is a be X such that every b-increasing sequence bounded in norm has a supremum
in (X ’ Sh)-

(2) There is a be X such that the basepoint order <, is upconverging.

(3) X is complete. [ ]
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In contrast with Corollaries II: 3.18, and 2.6 the completion of a modular normed space
X is not given by X°. See Remark III: 3.7.

The two notions of directionality can be formulated in terms of an “inner product” as
follows: for x,ye X we define the median inner product by

<x,y>=¥(llxll + 1yl - Hx—y| ).
Then the points x,y are codirectional iff <x, -y >=0.

2.7 Proposition. (continuity of the inner product) Let (X, |1.11) be a normed space, then
the following equality holds for all x,ye X:

<x,y><Max (11, 11yl

In particular, the inner product is a uniformly continuous function of X? into R.

Proof: Let x,yeX. By the triangle inequality we have ||y!| <|lx|| +|lx-y!l. This im-
plies

vl I+ Hy I =Tle=y < 21
The left-hand side is precisely <x,y >. Permuting the role of x and y concludes the proof of the
proposition. ]

If m is a point in the value M (x,, 0) of the mixing operator, then the <x,y>=|lm|| (cf.
Proposition II: 1.11). For convenience we write | M (x,y, O)“ for lmll.

The following is a well-known description of when a convex subset in an i. p. space ad-
mits metric nearest points.

Let C be a convex subset of an i. p. space (X, <.,.>), and let xe X, peC. T.fa.e.:
(1) <x-p,c-p>;<0 VceC.
(2) pis a (unique) metric nearest point of x in C.

We work towards such a description in modular normed space.

2.8 Proposition. Let C be a subset of a normed space (X, ||.11), and let xe X, pe C. Then
the following are equivalent.
(1) <x-p,c-p>=0 VceC.
(2) pisthe gate of xinC.
If X is modular and C is norm-convex, then conditions (1), (2) are also equivalent with:
(3) pis a metric nearest point of x in C.

Proof: For a proof of the equivalence of statements (1) and (2), by the definition of
(metric) mixing operator M, a point p is the gate of x in C iff M (x,c,p)=p for all ceC. As the
mixing operator is translation invariant, the last is equivalent with M (x —p,c —p,0)=0 for all
ceC, that is <x—p,c —p>=0for all ce C. The last statement is shown in Proposition II: 4.2. =

Let X be a normed space. For a subspace N of X we define the orthogonal complement
by N'={xeX | x Lz VzeN}. By the multiplicative stability of orthogonality, the line through
a member of Nt is contained in N*. That is, N* is a (non-proper) cone. This cone is not neces-
sarily a subspace of X. See Theorem 2.11 for a partial characterization.
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We remark that the set N* is generally not comparable with the complementary cone N’ of N
as introduced in [2]. However if X is modular then N* c N’ and equality holds if N is norm-
convex. In fact, for complete subspaces N equality holds iff N is norm-convex (compare
Theorem 2.9 below with [2, Theorem 2.9 ).

We recall the following concepts. Let V be any vector space, and let W, and W, be cones
in V. Then V is called decomposable into W, and W, if every xe V can be written as x=w; +w,
for some w;e W, and w,e W,. In this case w; is called the W; component (i=1,2). If the points
w,w, are uniquely determined by x, then we use the term unique decomposition. We now
come to a decomposition theorem for norm-convex subspaces.

2.9 Theorem. The following are equivalent for a subspace N of a normed space X:

(1) N has a gate function p.

(2)  Every point xe X can be decomposed into a point of N and of N*.

(3)  Every point xe X can be uniquely decomposed into a point of N and of N*.

For such a subspace N and a point xeX, the unique decomposition into N,N* is given by
x=p(x)+(x-p ().

If X is a modular space with complete intervals, then (1), (2), (3) are also equivalent with:

(4) N is closed and norm-convex.

Proof: We first show the following assertion:

(*) If X can be decomposed in N and N* then this decomposition is unique. Moreover, the
function p : X — N, assigning to xe X its N-component, is the gate function of N.

" To this end, let x=x+x* be a decomposition of xeX in N and N+. Hence, x—x =x'eN<, and
thus by Proposition 2.8 the point x is the gate of x in N. As gates are unique, so is the decompo-
sition of X in N and N*. The rest of assertion (*) easily follows.

For a proof of implication (1) — (2), take xe X. By Proposition 2.8, x—p(x)e N*. Therefore
x=p(x)+(x—-p(x)) is a decomposition of x in N and N*. Implications (2) —(3) and (3) > (1)
directly follow from assertion (*).

The last part of the lemma is shown in Proposition II: 4.2 for general modular metric spacesa

As N+ is a cone, the unicity part of Theorem 2.9 yields:

2.10 Corollary. A gate function p on a subspace of a normed spaces satisfies:
p(Ax)=NAp(x) for every xe X and AeR. ]

The following theorem characterizes when a subspace N has a linear gate function.

2.11 Theorem. The following are equivalent for a subspace N of a normed space X.
(1) N has a gate function and N* is a subspace.
(2) N has a linear gate function.
(3) There is a linear projection p : X — N satisfying ||x|| =1lpx)-x|l +|p)!| for all xe x.
Moreover, in any of the above situations N* has a gate function given by x —x —p (x).

Proof: The proof of implication (1) — (2) immediately follows from the uniqueness of
the decomposition of X in N and N*. For a proof of implication (2) — (3), the norm condition
occurring in (3) simply states that p (x)e/(x, 0), which is valid for every gate function on a sub-
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space of X. .

For a proof of implication (3) — (1), we first show that p is the gate function of N. To this
end, take xe X and ze N. By assumption and by linearity of p, we have

-zl =llpx-2)-G-2) +llpx -l = llpx)-p2)-x-2)|] + Hp@)-p@)Il,

and as p is a projection: |[x-z||= lp@)-xll +lp(x)-zIl. Whence p(x)el(x,z). As zeN was
arbitrary we conclude that p is the gate function on N. Next, we shall show that N* has also a
gate function. Consider the map p :X ->N':x—>x-p(x). By the assumption of (3)
Hxll=lp'@)-x !l +lp’(x)|] for all xeX. Clearly, p’ is a linear projection on N*. The forego-
ing argument (applied to p’ instead of p) yields that p’ is the gate function of N*. In particular,
N1 is norm-convex. Finally, as metric intervals are (standard) convex, N* is (standard) con-
vex. As N is a cone, N is a subspace. ]

We remark that subspaces N satisfying (3) were introduced by Cunningham [19], who
calls these spaces L-summands; the associated projections are called L-projections. See also
[2]. Let Ext (C) denote the set of extreme points of a convex subset C in a linear space.

2.12 Corollary. Let X be a normed space with unit ball B. If N c X is a subspace, then:
(1) If N has a gate function and N is of codimension‘ 1, then N is an L-summand.
(2)  If N is a non-trivial L-summand in X, then the following equality holds:

Ext (B)=Ext(BNN)UExt(BNN*1).

Proof: In view of Theorem 2.9, there exists a 0zpeN*. We show that N* equals the
line through p. Assume to the contrary that ge N1, is not a member of this line, i.e. p,q are in-
dependent points. As the codimension of N is one, there exists a non-zero element /e N, and a
scalar A such that g=A-p+I. As geN* we have M(0,A-p+1,1)=0, that is M(-LAp,0)=~1.
However the last left-hand side is zero as A-pe N+, a contradiction. In particular we conclude
that N* is linear. Whence N is an L-summand by Theorem 2.11.

For a proof of (2), let p be the L-projection of N. First, let e be an extreme point of B, and let
s= ||p(e)||, t= ||e—p(e)||. By Theorem 2.11(3) we have s+¢=1. If both s,z are non-zero,
then the equality e =s[p(e)s™']+¢:[(e —p(e))t™'] would contradict the assumption that e is ex-
treme. So one of s,¢ is zero, whence e is in the right-hand side of thc formula in (2). For a
proof of the other inclusion, let e be an extreme point of B NN. Assume to the contrary that
e=t-a+(1-1)b for some 0<t<1 and a,b #e in the unit sphere. After taking images under the
linear projection p, we obtain that e is a convex combination of the points p(a),p(b). As an L-
projection p is non-expansive (in fact all gate functions are non-expansive) the points p (a),p (b)
are contained in the unit ball of X. Hence one of these points, say p(a), equals e. So in particu-
lar |Ip(a)ll =1. So after evaluating the formula |lall =|lp(a)-all +11p(a)ll, we conclude that
a=e, a contradiction. We similarly obtain the other part of the inclusion. =

The following result shows that many normed spaces have norm-convex subspaces.
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2.13 Proposition. Let (X, ||.|]) be a normed space with unit ball B.
(1) The following are equivalent for a unit vector ec X:

(i) e is an extreme point of B.

(ii) C(e)={\e|reR}.

(iii) 1(0,e)={\e | re[0,1]}.
In particular, a line through an extreme point of the unit ball is a norm-convex subspace.
(2) IfX is modular, then non-antipodal extreme points are mutually orthogonal.

Proof: The proof of part (1) follows from Lemma 2.2.

For a proof of part (2), take different, non-antipodal extreme points e;,e, of B. Clearly e,
and e, are independent. To show the orthogonality of e; and e,, it suffices to show that
M (0,e,,e,)=0. To this end, take me M (0,e,,e,)#<. By the minimality of the intervals /(0,e,)
and /(0,e,) and the definition of M (0,e,,e;), we obtain that m is a multiple of both e; and e,.
By the independence of e, and e, we conclude that m equals zero. ]

We obtain a simple description of facial cones in modular normed space.

2.14 Corollary. Let X be a modular normed space with completion X. Then,
(1) A convex cone C is facial iff it is star-shaped at the origin and proper.
(2) The completion of a facial cone in X is a facial cone in X.

In particular, a point which is extreme in the unit ball of X is extreme in the unit ball of X.

Proof: The “only if” part of (1) is Lemma 2.1. Conversely, let C be a proper, convex
cone, star-shaped at the origin. In view of Lemma 2.1 we only have to verify that all points in
C are codirectional. To this end, let x,ye C. Consider the following inclusions:

M(0,x, -y)cI(0,x)nI(0,-y)cCn-C={0}. 3)
The first inclusion only invokes the definition of the mixing operator, the second inclusion
holds by star-shapedness at 0 of C, whereas the equality holds by properness of C. As the set
M (0,x, —y) is non-empty we conclude that M (0,x, —y) = {0}, that is x,y are codirectional.

For a proof of the statement (2), let C (F) be a facial cone in X. Let Clz(C (F)) be the com-
pletion of C (F). We shall apply Lemma 2.1. It is shown in Corollary II: 3.5, that if C is a sub-
set of a modular metric space X star-shaped at a point c, then the completion of C is star-shaped
at ¢ in the completion of X. The cone C(F) is star-shaped at the origin, whence so is the com-
pletion Clz(C(F)) of C(F). As points in Clz(C(F)) are clearly codirectional, we can apply
Lemma 2.1 to conclude that Clx(C (F)) is a facial cone.

The last statement follows directly from statement (2) and Proposition 2.13(1). ]

2.15 Problem. Is the completion of a maximal face of the unit ball in modular normed
space maximal in the completion?

It is well-known that L ;([0,1]) has no extreme points in its unit ball. From the previous
corollary we conclude that the L-space R consisting of the Riemann integrable functions on
[0,1] can not have extreme points in its unit ball either.
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§ 3 Characterizing a class of modular normed spaces
Note that if the codirectionality relation of a normed space X is additive, then so is the an-
tidirectionality relation (and vice versa). Let us say that X has an additive directionality if ei-
ther of the above conditions is satisfied.

Clearly, an additive directionality implies an additive orthogonality. In section 4 we shall
show that for modular normed space the reverse implication also holds.

We start with a fundamental lemma.
3.1 Lemma. A median normed space has an additive directionality.

Proof: Let x,y,zeX be such that both pairs x,z and y,z are antidirectional, that is:
M (0,x,z2)=M (0,y,z)=0. Let w=(x+y)/2, then by convexity wel(x,y). Using the five-point tran-
sitive rule of medians (see I: 2.15) we obtain the following equalities:
M (0,z,w)=M (0,z,M (x,y,w))=M (M (0,2,x),M (0,2,y),w)=M (0,0,2)=0.
So the points w and z are antidirectional, hence so are 2’w=x+y and z. =

Let (X, |I.1]) be a modular normed space. A collection {a; | ic/} in a normed space is
called orthonormal if each a; is a unit vector and distinct a;,a; are median orthogonal. The fol-
lowing is easily verified.

3.2 Proposition. Let (X, ].1) be a modular normed space with an additive orthogonali-
ty. Let A be a subset of X, then
(1) xe(spA)' iffx La VaeA.
(2) IfA is an orthonormal set then A is independent. [
If fi:X—>X for i=1,2, ---,n are functions, then the composition fy- --- - f, will be
denoted by TT7_, /-

3.3 Lemma. Let (X, |1.11) be a modular normed space with an additive orthogonality,
and leta\, " - ,a, be non-antipodal extreme points of the unit ball. If p;, p} are the gate func-
tions of sp(a;) and sp(a;)* respectively (i=1,2, - ,n), then

(1) The gate function of the subspace sp(a, - - ,a,)* is given by the composition I}, pt.
(2) For every xe X the following equality holds: x =X pi)+(T;. lp,-L)(x).
(3) The linear.span sp(a,, " * * ,a,) is norm-convex and the gate function of this span is given
by E?zll’i-
Proof: For a proof of part (1) of the lemma, by Proposition 3.2 we obtain the equality
sp(@y, + @)t = Nysp(a)t. C))
By the transitive rule of gate functions —(I: 3.4.4)— we obtain that the gate function of the
subspace sp(a, - - - ,a,)* equals I‘[:'ﬂp,»l, showing part (1).

For a proof of part (2) we shall show by induction on k that the following equality holds for
all1<k<n

x=3* po)+ITE PP (Q(K)



§3: Characterizing a class of modular normed spaces 73

’

To this end, by Proposition 2.13(1), the subspace sp(a,) is norm-convex so (Q(1)) obtains
from Theorem 2.11. Assume Q (k) for 1<k<n=-1. Applying Theorem 2.11 with respect to the

norm-convex set sp(ax.) and the point (H:‘zlp,*)(x) yields:
(15 PO =P ((T5_, pDEN +PE1 (TTE, ). ®)

1
By Proposition 3.2, the norm-convex line through a; ., is contained in the set sp(ay, = - ,a)"*.
We have already shown that I’I:,‘=1 pi is the gate function on this set. Now by the transitive

rule of gate functions ( (I: 3.4.4)) we conclude that

P (T, P ) =P ().
Substituting this in (5) one can deduce Q(k+1) from Q(k), completing the proof of part (2).
Part (3) directly follows from Theorem 2.9. ]

As the span of a set is determined by its finite subcollections, we conclude:

3.4 Corollary. Let (X, |].11) be @ modular normed space with an additive orthogonality.
Let E be a collection of extreme points of the unit ball. Then the linear span sp(E) of E is a
norm-convex subspace of X. ]

We need the following well-known lemma.

3.5 Lemma. Let F:I —[0,%0) be a function such that X Fli)<e for every countable
subset {i ,i5, """} of I. Then there are at most countable icI with F (i) > 0. ]

A normed space X (say, with unit ball B) is said to have the Krein-Milman property,
briefly (K-M) property, if sp(Ext(B))=X. If we denote the antipodal relation by 4, i.e. xA y iff
x =zy, then the cardinality of Ext(B)/A is called the extremity of X. Observe that the extremity
of ,(I) is simply the cardinality of /.

3.6 Theorem. Let X be a modular normed space with the (K-M) property. Let X denote
the completion of X. If R is the extremity of X, then the following statements are equivalent:
1) Xis linearly isometric with | |(R).
(2) X has a normed median.
(3) X has an additive directionality.
(4) X has an additive orthogonality.

Proof: Implications (1)—(2), (3)—>(4) are directly verified, whereas implication
(2)—>@3) is Lemma 3.1. For a proof of implication (4) —(1), let B denote the unit ball of X.
Choose a complete representation set R c Ext (B) of Ext (B)/A. For each eeR we let p, denote its
gate function. As the image of p, is one dimensional, we can find for every xe X a scalar A, (x)
such that the equality p.(x)=A.(x)e holds. Lete,e,, - ,e, be a (finite) subset of R. By Lem-
ma 3.3(2) the map ZL,P& is the gate function of the subspace sp (e ,e,, * - - ,e,). Now consid-
er the following (in)equalities:

el =127 pe )+ 1lx =27 pe ) 21127 pe, @I =T A, )]
In which the first equality is Theorem 2.9 and the last equality follows by orthonormality of the
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e, e,. Whence, for a countable subset {e,,e,, - - - } of R we have the inequality

> e @) < Hxll <o, »)
Now define the function J : X —/,(R) by

J(¥)e=Ae(x) (ecR).
Lemma 3.5 insures that J takes it values in /,(R). Moreover, J restricted to the linear span of

Ext(B) yields a linear isometry. As the image of this map is dense in X, we obtain a linear
isometry of X onto /,(R). [ ]

3.7 Remark. Not every (dense) median stable subspace of an /, (/) space has the (K-M)
property. To this end, let v be the measure on the power set of Z which is induced by defining
u({x})=2""1 (xe Z) on the atoms. Also consider the following algebra of sets in Z:

d={DcZ|3meN,, : D+m=D}.

Compare [34, p. 10]. Then the Riesz space Y consisting of step-functions on members of 4
(see [52, p. 178]) can be considered as a dense median stable subspace of the Banach space
X =L (Z,2%,1) (which is linearly isometric with /,(IN)). Then none of the extreme points in the
unit ball of X —which correspond with the singletons of Z— lie in Y. Whence in view of
Corollary 2.14 the unit ball of Y possesses no extreme points.

Actually, by virtue of Lemma 2.13 none of the extreme points in the unit ball of X can be ap-
proximated by an increasing sequence in the basepoint order (Y,<,). It even follows that these
extreme points can not be approximated by an increasing sequence in the Riesz order of Y.
Compare the remarks at the end of II: §3.

3.8 Corollary.

(1) A median Banach space is reflexive iff it is finite dimensional.

(2) Modulo linear isometries the only norm on R" with a Banach median is the sum-norm
(e Gy, x)ll =27 x]).

(3) Let X be a median Banach space. Then there is an index set I and a median Banach space
Y such that X is linearly isometric with the product YxI,(I) equipped with the sum-norm,
and where the unit ball of Y has no extreme points (unless Y is trivial). Modulo linear
isometrics this decomposition is unique.

Proof: For a proof of (1), if a Banach space X is reflexive then it has property (K-M). By
Theorem 3.6 we conclude that a reflexive median normed space is an [,(R) space. It is well-
known that /,(R) is non-reflexive, if X is infinite. Part (2) follows as any finite dimensional
Banach space has property (K-M).

For a proof of part (3), let N be the linear span of Ext(B). By Corollary 3.4, N is a norm-
convex subspace. By Corollary II: 3.5 the closure N is also norm-convex. Lemma 3.1 states
that N* is a subspace. Hence taking Y =N* yields a decomposition of X in Y and N as described
in Theorem 2.11. By Corollary 2.12(2) we obtain that the unit ball of Y has no extreme
points. Clearly N has the (K-M) property. Let / be an index set of cardinality equal to the ex-
tremity of N. Then N is linearly isometric with [ (/) by Theorem 3.6. For a proof of the unici-
ty of such decompositions, let Y’ x/,(/) be another decomposition as described in (3). The ex-
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tremity of Y’ is 0, hence by Corollary 2.12(2) we conclude that the cardinality of J equals the
extremity of X. So the cardinalities of J and I are equal, showing that /,(/) and /, (/) are linear-
ly isometric. This implies that Y” and Y are also linearly isometric. ]

Corollary 3.8(3) is well-known for L (u) spaces (which turn out to be precisely the
median Banach spaces). In chapter IV we will show a generalization of Corollary 3.8(3): each
modular Banach space can be (uniquely) decomposed into a “rigid” part and an [, (/) part.

§ 4 Characterizing modular spaces with additive orthogonality

4.1 A-spaces. Let X be a normed space (say, with unit ball B). Then X is called a CL-
space if there is a maximal face F of B with X=C(F)-C(F). The latter is implied by
B=co(Fu —F). The concept of a CL-space was introduced by Fullerton in [25] for Banach
spaces. We shall say that X is CL-generated by C (F). The following (stronger) notion was in-
troduced by Alfsen and Effros [2]. The space X is called an A-space if there exists a proper,
convex cone C in X, such that

(1) VxyeC: ||x+y|| =|lx]l+ ”y”.

(2) For every xeX there are ¢ ,c,eC withx=c, -c, and Hxll=Hey Il +Heall.
Observe that ¢, ¢, are orthogonal. If for all x the corresponding c,,c;, are unique, then X is
called a uniquely generated A-space. We shall say that X is (uniquely) A-generated by C. One
can easily verify that if X is an A-space then the corresponding (A-generating) cone must be
(maximal) facial. See [2, Corollary 5.2].

It is shown by Lima that modular Banach spaces are A-spaces, see [48, Theorem 2.5].
We also mention that a modular normed space is CL-generated if and only if it is A-generated
(Lemma 4.7). The next proposition —a modification of the result that positive operators
between Banach lattices are continuous— gives a relation between norm-intervals and Banach
A-spaces. This result shall be of particular use for modular Banach spaces. See IV: §2.

4.2 Proposition. Let (X,,|1.11,) be a Banach A-space and let (X,,||.||,) be a normed
space. Then each linear function f:X |, — X , that preserves the norm-intervals is continuous.

Proof: Let D, be the unit ball of X, and let X be A-generated by the cone C. One can
easily verify that the norm of f equals sup{!|f(x)||, | xeCnD,}. Hence, if fis not bounded,
then there exists a sequence x,eC with ||x, ||, =0, and || f (x,)!]5 = ce. By completeness the
Cauchy sequence ZL,X" (keIN) converges to a point peC. For each neIN we have p —x,eC,
hence

Hp=xally+ 1z, 11 =pll.

That is x,e/,(0,p). So by assumption on f we have f(x,)el,(0,f (p)). In particular we con-
clude || fe)!15 < 1 f(p)Il,. We obtain a contradiction. ]
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The completeness in Proposition 4.2 can not be omitted. See the remarks after Corollary
Iv:2.7.

4.3 Corollary. Two complete A-spaces on a vector space that induce the same norm-
intervals are equivalent. L

The following relates decompositions in A-spaces with maximal and minimal points.
We use the notation introduced in I: 4.20.

4.4 Proposition. Let X be a normed space, A-generated by a convex cone C and let
x=x"—x" be an orthogonal decomposition with x*,x~ e C. Then with respect to the vector order
<cwe havex*ex |10, x"ex 0.

Proof: Suppose that ceC satisfies that x <cc <cx* (see Figure 4.4), hence, x*-c>:0
and cel (x,x*).

P o
'

Fig. 4.4: an orthogonal decomposition

As x*el(0,x) we obtain from the geometric properties of metric intervals that x*e/(0,c). Now
we obtain

He—x* 1T+ 1lem+x 1 =Hell =t [T+ e 1T+ et
=l Il +1lell =llx+ell,

in which the last equality follows as the points x~,c are codirectional. We conclude that
c-x*el(0,x"+c). As the cone C is star-shaped at the origin, c —x*eC, whence x* —c <-0. We
conclude that x* =c, and therefore x*ex L/ 0. The second part of the proposition follows from
the formula x — (x Ll 0)=x [10, or by symmetric reasoning. ]

We remark that the order <. in the previous proposition need not induce a multilattice
structure on X.

4.5 Vector multilattices. A vector multilattice is a multilattice derived from a vector
order. We observe that the many well-known formulae from the theory of Riesz space (such as
x+y—(xay)=xvy) are in fact valid for general vector orders with the obvious changes. The fol-
lowing is easily verified

4.6 Proposition. Let < be a vector order on a vector space X such that the positive cone
C generates X. Then, < is a vector multilattice (resp. lattice) iff (C,<) is a semi-multilattice
(resp. semi-lattice). ]
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4.7 Lemma. Let C(F) be a facial cone in a modular normed space, and let
Y=C(F)~C(F). Then the following hold:
(1)  The order <c () yields a vector multilattice on'Y.
(2) YisA-generated by C(F).
In particular, a modular normed space is CL-generated if and only if it is A-generated.

Proof: By Lemma 2.1, C(F) is an updirected union of intervals of type /(0,c) (ceC).
As the partial orders (1(0,c),<) are semi-multilattices by (I: 4.21), so is the order (C (F),<g).
The latter order coincides with (C (F),<¢), by (2.4). Hence we can apply Proposition 4.6. For
a proof of statement (2), let xeX and mex 0. Hence, x—mex [10. In particular the points
m,m —x are codirectional. We also have Oex [1(m -x). As the basepoint order and the vector
order coincide on the positive cone (2.4), we obtain that M (m,m —x,0)=0 —see (I: 4.21). So
the points m,m —x are also antidirectional. [

4.8 Problem. Is the subspace Y of Lemma 4.7 modular? Compare Proposition 4.10.

The following lemma shows that under certain restrictions orthogonal decompositions
are unique.

4.9 Lemma. Let X be a modular normed space with an additive orthogonality. Let F be
a face of the unit ball, and let c,c;,d, d,eC(F) such that ¢, Lc,, d Ldy. Ifci—cy=d—d,,
then C; =di (l = 1,2)

Proof: We derive the following formula, which takes the greatest part of the lemma’s
proof:

Cll.02+d2. (1)

To this end, as ¢,c, +d,e C(F) we conclude from Lemma 2.1 that the points ¢, and ¢, +d, are
codirectional. We shall show that these points are also antidirectional, i.e. that

M(O,C1,02+d2)=0. (2)
Let x denote dy-d, (=c,-c,). By the assumption on orthogonality we obtain that
ell =1d, 11+ 1ldyll =1le, Il +1lc,ll. First, consider the following sequence of triangle ine-
qualities:

Hey+di Il +llep+dyll <lle [T+ 11a, 1+ eyl + 11,11,
=llxll+lxll =H2xll=lle, +d) —(cy +d)ll,
sl|c1+d1|| +||cz+d2||.
We conclude that all inequalities are in fact equalities. Hence Oel(c, +d,c; +d>), that is:
0=M(0,c,+d;,co+d;). ©)
Next consider the following equalities:
Hd 11+l =(cr+d)ll=1la 1l +112:dy~d, I
=lld 1 +2:1dy 11+ a1 =2:(lld, 1] +11d, 1)
=ll2xll=lle, +d; —(c,+dy)||.
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The second equality uses d, Ld,. We conclude that c,el(c,+d;,c,+d;). As the interval
I(c,+d,,c,+d>) is star-shaped at its endpoint c, +d,, we obtain the following inclusion.

I(cr,cr+dy)cl(c+dy,ca+dy). “)
Finally, we assert the following:

M(O,cy,c2+d2)=1(0,c1)N10,c2+dr)NI(cy,c,+d))
QI(O,C] +d1)n](O,C2 +d2)ﬂl(c| +dl,C2 +d2)=M(0,C] +d1,C2+d2)=0. (5)

The first and second equality of (5) only invoke the definition of M. The third equality of (5) is
just assertion (3). We shall prove the inclusion in (5). As ¢, and 4, are in a common facial
cone (namely, C(F)), Lemma 2.3 states that |lc, || +|ld,|l=1lc,+d,ll, ie. ¢,€:(0,c, +d)).
By the star-shapedness of the interval /(0,c,+d;) at the end point ¢, +d;, we obtain that
1(0,¢,)c1(0,c; +d,). This formula together with (4) shows the inclusion in (5). Assertion (5)
yields equality (2), establishing formula (1).

By assumption, ¢ Lc,, and by the multiplicative stability of orthogonality we also have
¢y 1 -2¢,. Now by additivity of orthogonality , together with formula (1), we conclude that

(] _LC2 —dz. . (6)
By permuting the role of the ¢ and d, we obtain
d\ J.Cz —dz. (7)

By using the additivity once more on the formulae (6) and (7), we obtain that ¢, -d; Lc,—d>.
By assumption, the points ¢, —d, and ¢, —d, are equal. As the origin is the only point orthogo-
nal to itself we conclude that ¢, —d| =c, —d, =0, which concludes the proof of this lemma. =

4.10 Proposition. Let C(F) be a facial cone in a modular normed space, and let
Y=C(F)-C(F). Then the following are equivalent.
(1) Y has an additive orthogonality.
(2) Yisuniquely A-generated by C (F).
(3) For all x,y e C (F) the value M (x,y,0) of the multimedian is a singleton.
(4) YisanL-space.

Proof: Implication (4) — (1) follows from Lemma 3.1. Implication (1)—(2), follows
from Lemmas 4.7 and 4.9. For a proof of implication (2) — (3), suppose that m ,,m,e M (x,y, 0).
Then the points x —m;,m; -y are contained in opposite facial cones, hence they are antidirec-
tional. Also as |lx—m;|l +|lm;—yll =1lx-y|| these points are codirectional. So the points
x —m; m;—y are orthogonal (i =1,2). We conclude that

X—my=x—my ; my—y=mjy-Jy,
from the definition of uniquely A-generated space. Whence, m;=m,. If C(F) satisfies proper-
ty (3), then (C(F),<p) is a semi-lattice. Hence, from Proposition 4.6 we conclude that Y is a
vector lattice with an additive positive cone, i.e. X is an L-space. ]

The equivalence of statements (2), (4) was first shown by Lima in [48, Corollary 3.8].
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4.11 Theorem. The following are equivalent for a normed space X.
(1) X is a modular CL-space with an additive orthogonality.
(2) X is a modular A-space with an additive orthogonality.
(3) X is a uniquely generated modular A-space space.
(4) Xis an L-space. ]

Before stating the main result of this section, let us discuss a description of additive
orthogonality in terms of an additive property of the median inner product <.,.>. As a straight-
forward calculation shows that <x,x+x>=<x,x>=||x|| for all x in a normed space X, we can
not expect this inner product to obey the formula <x +y,z>=<x,z>+<y,z> for all x,y,zeX.
However, by considering a few cases one verifies that the (median) inner product of R satisfies

<x+y,z><<x,z>+<y,z>

for all x,y,zeR. Motivated by this we call the median inner product subadditive if the latter
inequality holds. By using the subadditivity of R point-wisely we deduce the following:

4.12 Lemma. The median inner product of an L (1) space is subadditive. =

4.13 Theorem. The following are equivalent for a modular normed space X.
(1)  The completion X of X is linearly isometric with an L | (1) space.
(2) X is a median-stable subspace of an L (1) space.
(3) X has a normed median.
(4)  The intervals of X are norm-convex.
(5) X has a subadditive inner product.
(6)  The directionality of X is additive.
(7)  The orthogonality of X is additive.
(8)  Every subspace of X of dimension at most three, has an additive orthogonality.

Proof: We derive the following sequences of implications:

H=>@)>G)=6) >N —=@); )@@ :(N->C)— ().
As spaces of type L (u) are median (Theorem II: 1.8) implication (1) — (2) is clear. Implica-
tion (2)—(5) is Lemma 4.12, and implications (5)—(6)—(7)—(8) are evident. The
equivalence of statements (3) and (4) is shown in Theorem I: 4.24, for general (metric) modu-
lar space. Implication (3)—(7) is Lemma 3.1, and the equivalence of statements (7) and (8) is
a straightforward verification. For a proof of implication (7) — (3), let xeX. By Proposition
4.10 the facial space C(x)—C(x) is an L-space. As the metric interval /(0,x) is contained in
C(x) by Lemma 2.2, the ordered set (/ (0,x),<,) is a distributive lattice. By translation we con-
clude that all ordered sets of type (I (a,b),<,) with a,be X are distributive lattices. Whence X is
a median normed space, see Theorem I: 4.24. For a proof of implication (3) - (1), as the com-
pletion of a median metric space is median (Corollary II: 3.2) X is a median Banach space. As
a modular median Banach space is a CL-space by [48, Theorem 2.5], we conclude that X is a
complete L-space. By the classical Kakutani representation theorem, see [49], X is linearly
isometric with an L | (i) space. ]



80 III: MODULAR NORMED SPACES

The previous result states that the L (1) spaces are universal median normed spaces:
each median normed space corresponds with a median-stable subspace of an L (u) space. In
chapter V we will show that L (i) spaces are universal median mefric spaces: each median
metric space corresponds with a median-stable subspace of an L (it) space.

4.14 Problem. Does there exist a median normed space that is not an L-space?

4.15 Example. The L-space B consisting of all essentially bounded Lebesgue integr-
able functions on the unit interval yields an example of a norm-convex, whence median-stable,
subspace of L ([0,1]). The space R B consisting of all Riemann integrable functions on the
unit interval yields an example of a median-stable subspace of L ([0,1]), which is not norm-
convex. Indeed, take a positive Lebesgue measurable function f on the unit interval, that is
(point-wise) below the function c identically one, i.e. [f ]e/(0,[c]), and not Riemann integrable.
Actually, the norm-convex hull of R, i.e. the smallest norm-convex set containing R, is B.

§ 5 Norm-convex subsets
The following is one of the main results of this section.

5.1 Theorem. Let X be a modular normed space. Suppose that C is a norm-convex
proper cone in X. Let Y be the subspace C —C. Then,
(1) The subspace Y is an L-space that is norm-convex in X.
(2) C is a gated subset of Y. Moreover, ifp’:Y — C is the gate function of C, then the unique
orthogonal decomposition of a point yeY is given by y =p’(y)-p’(-y).
(3) IfCis gated in X, and if p : X — C is the corresponding gate function, then Y is gated in X
and X ->Y :x > p(x)—-p(—x) is the gate function of Y.

Proof: From Corollary 2.14 we conclude that C is a facial cone. Evidently Y is a norm-
convex subset of X. By Lemma 4.7, Y is A-generated by C. Let yeY, and let y=c*—c~ be an
orthogonal decomposition with members of C. Proposition 4.4 states that the point c* is maxi-
mal in the ordered set (C n1(0,y),<y). Whence by (I: 4.4.2) we conclude that c* is the gate of y
in C. Similarly we obtain that —¢~ is the gate of y is —C. As gates are unique, we conclude
from Proposition 4.10 that Y is an L-space. At the same time, we have shown that C is gated in
Y and that the gate map behaves as described in (2).

For a proof of statement (3), we shall first show that if Y has a gate function, say g, then
it has the form described in (3). Indeed, let xe X. As the point g (x) is a member of Y we can use
(2) to obtain g(x)=p(q(x))—p(-q(x)). Now consider the following equalities:

qx)=p@x)-p@(-x)=qpx)-q(p(-x)=pE)-p(-x).

The first equality follows from Corollary 2.10, where the equality —q(x)=g(-x) is shown.
The second equality follows the commutativity of gate functions on non-disjoint subsets, see

(I: 3.4.4). The last equality is evident as g is a projection. To prove the existence of gates in Y
we consider two cases:
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(i) C is complete. We shall show that Y is complete, which immediately implies that Y is gat-
ed. To this end, by Proposition II: 4.1, the gate function of C, p, is contractive. Hence the im-
age under p of a Cauchy sequence yields a Cauchy sequence. Using the decomposition as
described in (2), we obtain that ¥ is complete.

(ii) general case: As usual let X, C denote the completions of X and C respectively, and let p be
the gate function of C. By the previous case we conclude that C-Chasa gate function g of the
right form, i.e. g(x)=p(x)-p(-x) for all xeX. So we are done if we show that p(x)=p(x) for
all xe X. To this end, p(x) is the unique metric point of x in C. On the other hand p(x) realizes
the distance from x to C. Hence, as p(x,C):p(x,é’) we are done. ]

The following corollary is geometrically obvious but a straightforward proof seems
quite difficult.

5.2 Corollary. Let X be a modular normed space. Then the following are equivalent for
a facial cone C (F).
(1) The intervals of type 1(0,p) with pe C (F) are norm-convex.
(2) The cone C(F) is norm-convex.
Hence, for pe X: 1(0,p) is norm-convex iff C (p) is norm-convex.

Proof: For a proof of implication (1) —(2), let x,ye C(F). As C(F) is a facial cone,
x,yel(0,x+y)c C(F). By assumption the interval /(x,y) is contained in /(0,x +y) and hence
in C(F). As the points x,y were arbitrary we conclude that C (F) is norm-convex.

‘For a proof of the other implication, assume that C(F) is norm-convex. Let peC(F). By the
previous theorem the subspace Y=C(F)-C(F) is an L-space. Hence, the (relative) interval
1(0,p)NY is norm-convex in Y. As Y is a norm-convex subspace of X, the interval /(0,p) is
norm-convex in X. =

The following result is a nice characterization of L | (i) spaces.

5.3 Theorem. Let X be a modular normed space. Then the following are equivalent:
(1) X s linearly isometric with an L (1) space.
(2) X is complete and there is a maximal facial cone C in X that is norm-convex.
(3)  There is a complete facial cone C in X that is norm-convex and satisfies C —C =X.

Proof: Implication (1) —(2) is obvious, whereas implication (2) —(3) follows as every
complete modular normed space is A-generated by [48, Theorem 2.5]. For a proof of implica-
tion (3) > (1), as C admits gates, we conclude from Theorem 5.1 that C —C is an L-space. As
remarked in the proof of Theorem 5.1 (case (i)) the space C - C is complete. E

We now arrive at a characterization of median normed spaces.

5.4 Theorem. Let X be a modular normed space. Then the following are equivalent:
(1) X is a median normed space.
(2)  Every minimal facial cone of X is norm-convex.
(3)  Every facial cone of X is norm-convex.
(4)  Every point of X is contained in a norm-convex facial cone.
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Proof: For a. proof of ‘implication (1) —(2), by Theorem-4.13.the: intervals-are. norm-
convex.. Hénce by Corollary 5.2 we:conclude:that every .(mrinintal) facial cone:is norm-convex:
Implication:(2) — (3) also follows from:Corollary- 52 Implication:(3)— (4} is evident. Hence:
we are: left with the proof of implication:(4)—(1). In-view.of Theorem:4:13.we:have:show:that:
metric intervals are norm-convex. To this end, it suffices to show-this-for intervals-of ‘type.
1(0,p) with' peX. By assumption there:is a.proper, norm-convex:cone-C containing.p: By
Corollary 5.2 we deduce that the interval /(0,p) is norm-convex: | =

5.5 Constructing: proper, norm-convex-cones. Suppose that D is-a norm-convex-sub-
set of a.modular normed space which has the origin as an extreme:point.. Then-one.readily
verifies that the cone' C (D) of D is proper and norm-convex. So from Theorem 5.1(1) . and.
Theorem I: 4.24(5) we obtain the following:.

5.6 Proposition. . Let D be a-norm-convex subset in a modular -normed space-X with at
least one extreme point. Then
(1) The affine span of D is a norm-convex affine space which, up to translation, is an L--

space.
(2) Any interval of type I (a,b) (a,be D), is norm-convex.
In particular, D is a median metric space. | =

Clearly, we can not replace the existence of an extreme point by the condition D #X .in-
the above proposition. Indeed, consider the cone X xIR{ in the space X xIR. Where X is a.(non=
median) modular normed space, and the product is equipped with: the sumnorm.:

The following proposition gives a way to find extreme points in certain’ norm-convex-
subsets.

5.7 Proposition. Let X be' a modular normed space with completion X. Let D bea
norm-convex subset of X and a,be D. Then;
(1) Ifbis maximal in the order (C, <,) then b is an extreme point of D.
(2)  Any extreme point of D is an extreme: point of Clx(D).

Proof: For a proof of the first statement, without loss of generality-we:may assume:that:
a=0. Assume to the contrary b is not extreme, that is b'=%(x+y) for some x,yeD{b}. We
shall first verify the following formula:

M(y,b.x+y)=b: (3):
To this end, let me M(y,b,x +y). By norm-convexity of D we obtain that'meD. Next,.considér-
the following formula:

mel(bx+y)cl(@x+y). 4):
The:inclusion follows-as:b'is in"the standdrd 'interval between 0, and x++y; and as:-normeintervalss
are. star-shaped at the. endpoints.. The:geometric. properties-of metric. intervals- together rwithh
formula(4) iyield bel (0;m), hence:b'=mby. maximality.of ib. This:shows-formuta«(3) From(3) ;
we-deducethat bel (yix +y), i.e
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a0 =y) |1+ 1@+ ) =11x ]

This formula also states that be(0,x), which implies b =x by maximality of b. We arrive at a
contradiction, hence b is an extreme point of D.

For a proof of the second statement, let e be an extreme point of D. By the use of a translation
we may assume that e equals the origin. In this case the cone C (D) of D is a proper, noim-
convex cone. Now by Corollary 2.14(1) we conclude that this cone is facial. By Corollary
2.14(2) we conclude that the cone Clyz(C(D)) is a facial cone of X, and is hence proper. From
this it follows that the origin is extreme in Cly(D). [ ]

5.8 Remark. Suppose that C is a norm-convex, complete subset of a mod:lar normed
space X, and that C is upbounded at a point x ;e C. Using a maximal chain one can find a point
x3 which is maximal in the order (C, <,,) (cf. the proof of [2, Theorem 2.9]). In the same
fashion one can change x, into a point maximal in the order (C, <,,). Such points are called
mutually maximal in C.

We now arrive at a nice characterization of norm-convex intervals in terms of bounded,
norm-convex subsets.

5.9 Theorem. The following are equivalent for points x,y in a modular normed space X.
(1) The interval I (x,y) is norm-convex.
(2)  There exists a bounded, norm-convex subset B of X containing x,y.
- (3)  There exists a norm-convex subset B of X containing x,y, together with an extreme point.
Hence, X is a median normed space iff every pair of points in X is contained in some norm-
convex set as described in (2) or (3).

Proof: Implication (1)—(2) is evident. For a proof of implication (2)— (1), let B be as
described in (2). As usual let X denote the completion of X. We shall show that the interval
Ix(x,y) is norm-convex in X This immediately implies that the interval /(x,y) is norm-convex
in X. To this end, by Corollary II: 3.5, clx(B) is a (bounded, complete) norm-convex subset.
Hence, by Proposition 5.7(1) B has an extreme point, say e. By Proposition 5.6 we conclude
that the interval Ix(x —e,y — ) is norm-convex in X. Hence, so is the interval Ix(x,y), as desired.

Implication (1) - (3) follows from the fact that either endpoint x,y is extreme in the interval
I(x,y). Finally, implication (3) — (1) follows from Proposition 5.6.
The last statement follows directly from Theorem 4.13. ]

The following result shows an even stronger relation between bounded, norm-convex
subsets and intervals.

5.10 Theorem. The following are equivalent for a subset D in a modular normed
space X.
(1) D is gated and there are mutually maximal points in D.
(2) D is a norm-convex interval.
In particular, a complete, norm-convex subset of X that is upbounded at one of its points is an
interval.
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Proof: Implication (2) — (1) is evident. For a proof of implication' (1) - (2), let x,x, be
mutually. maximal points'in D. Denote the gate function of D by p: We-may' assume' that x;
equals-the:origin. The cone C(D) is norm-convex: and proper in X. Let zeD'c C(D), then the
points x,,z are codirectional, that is x,,ze/(0,x, +z). We verify that

x2,2€1(0,p(x5 +2)). 3)
To this end, let n denote either of x,,z. By definition of a-gate we have p:(x; +z)el (n;x5 +z). By
the geometric properties of metric intervals we obtain that nel(0,p(x, +2)), i.e. formula (3).
Hence by maximality of x, in (D, <y), x =p (x; +z). Now formula (4) states that ze/(0,x,), as
desired.

The last statement of ‘the theorem' follows from Remark 5.8 and the equivalence of state-
ments (1) and (2). m

5.11 Corollary.- Let (X,||.||) be a downconverging modular normed space. Then any
norm-convex subset C upbounded at one of its points is bounded.

Proof: By Proposition II: 4.10 the completion CofCisa complete, norm-convex subset
of the completion X of X that is upbounded at one of its points (actually, C and C are upbound-
ed at all points by Proposition II: 4.9). Hence C is a (bounded) interval by Theorem 5.10. =

As a consequence of Theorem 5.10 we conclude that if C is a bounded, closed, norm-
convex subset of an L' (1) space, then there exist integrable functions f;g such that

C={[h)]| h(x) is in between f (x) and g(x) almost everywhere: }.

5.12 Remarks. The equivalence of statements (1) and (2) in Theorem 5.9,  as well as
Theorem 5.10, are not true in a general modular metric space. As a counterexample to the first
assertion just consider the (bounded) unit ball -of (R3, |].|l ). For a counterexample to the
second assertion, consider the following (median-stable) subset 7 of ®R?, |1.11,):

T={xeR? | -1<x;<1Ax,=0} U {xelR? | x;=0A —1<x,<1}.

Let C be an arbitrary subset of a modular normed space. The following is an iterative
process to obtain the norm-convex hull of C. Define

¢, =C 3 Cua1 = VYryec, I (y)  (nelN).

Then the norm-convex hull of C is given by u,.nC,. One can easily verify that
diam (C,,) < 3"diam(C), hence the C, are bounded iff C is bounded.
Starting with a two point set C = {x,y}, Theorem 5.9 gives the following equivalences:
- The interval I (x,y) is not norm-convex:
- diam/(C,,) ténds to infinity,
- the C, do not stabilize after:finite steps.
Soltan: showed in-[77]. that if an-interval I{(x;y) in the space (R?, ||.||;.x) is not' norm:
convex; then'its convex hull is the whole of R®. See also chapter V.



CHAPTER IV

DECOMPOSING MODULAR BANACH SPACES

The result of Soltan [77], that R* with the “max” norm has no norm-convex bodies except
for R? itself, is particularly motivating for our approach below. Let us say that a normed
space is rigid if it has no norm-convex bodies except for itself. This condition is shown to
be equivalent with the non-existence of functionals which preserve the metric convexity.
This may also motivate the use of the term “rigid”. See section 1, where we develop some
general results concerning (non-)rigidity for so-called “vector convexities” in linear
spaces. These results are applied in the following sections to the norm-convexity of a
modular normed space.

Spaces of type /,(/) are opposed to rigid ones, in the sense that they are character-
ized among modular Banach spaces by the existence of a separating collection of function-
als that “preserve” the metric convexity. The abundance of such functionals in a normed
space X corresponds with the Hausdorff property of the weak(norm) topology of X. See
section 2.

In section 3, we characterize /,(/) spaces in terms of the existence of metrics that
“preserve” the norm convexity.

The main result of this chapter appears in section 4. This states that each modular
Banach space can be decomposed into a rigid space and an /,(/) space. The decomposition
involves the “sum” norm on a product of two factors, and is a generalization of the decom-
position of an L (i) space into an atom free part and an /,(/) part — compare Corollary
I1: 3.8 (3). ()

§ 1 Vector convexities

For non-defined terms see [45]. Let X be a vector space. A convexity C on X is called a
vector convexity if
(V-1) C consists of (standard) convex subsets.
(V-2)C is stable under translations.
(V-3)C is stable under homotheties with positive coefficients, i.e. if Ce C and xe X, A >0 then
x+A(C-x)eC.

The results of this chapter, except the results appearing in §3, were obtained by van de Vel and the author.
See [81].
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Note that by axiom (V-2) it suffices to check axiom (V-3) for peints xe C. The convexi-
ty C is called symmetric if UeC implies —-UeC. Evidently, a halfspace in C is a (standard)
halfspace in X. A (linear) functional on X is called a C-functional, if the preimage of each
halfspace in R is a halfspace of C. If the convexity € is induced by an interval operator then
C-functionals correspond with the interval-preserving functionals (cf. Corollary I: 4.10). Two
sets A,B in X are C-separated (resp. strongly C-separated) if there exists a continuous C-
functional that separates (resp. strongly separates) the subsets A and B.

As an example of a convexity (resp. vector convexity) we mention the geodesic convexi-
ty of a metric (resp. normed) space. Recall that geodesically convex subsets in normed space
are usually called norm-convex. In any vector space, the collection of all affine subsets is a
vector convexity.

1.1 Topological vector spaces. We are interested in vector convexities on fopological
vector spaces. We remark that any vector space X can be endowed with a Hausdorff, locally
convex vector topology. To this end, a point x in a subset A c X is called a core point, if each
line through x meets A in a (line-) open set. See the book of Kelley and Namioka, [45], who
use the term “radial at x”. The collection of all symmetric, convex subsets in X in which the
origin occurs as a core point, forms a local base for a Hausdorff, locally convex topology,
known as the core topology. See [45, exercise 6l].

Let X be a topological vector space, and let C be a convex body in X, i.e., a convex subset
with non-empty interior. If ceint(C), then the following hold (see [45, ch. 4]):

int(C)=c+ o M(C-c) (1.1.1)
el(C)=c+ N M(C~e) (1.1.2)

In particular we conclude that int (C)=int (C). One can apply the above equalities to obtain the
well-known fact that a half-line starting in an interior point of a convex set intersects the boun-
dary of C in at most one point. Throughout, the origin of a vector space is denoted by 0.

1.2 Lemma. Let X be a topological vector space, and let C be a convex, open subset of
X. Then C is a halfspace, iff the boundary of C is convex, iff the boundary of C is a closed hy-
perplane. E

This well-known result follows from the fact that two disjoint convex subsets A,B with A
open can be separated by a (continuous) functional. See [70, Theorem 3.4].

1.3 Proposition. Let X be a topological vector space, and let C be a vector convexity
on X. Then the following hold for each Ue C with non-empty interior.
(1) int(U) and cl(U) are members of C.
(2) IfUis open, and ifue cl(U), A >0, then MU -u)e C
(3) If C is symmetric, and if U is an open halfspace then the hyperplane cl(U)nX \U and the
halfspaces int (X \U), cl(U), X \U are also members of C.
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Proof: Statement (1) directly follows from formulae (1.1.1) and (1.1.2) (observe that
the union in (1.1.1) involves a totally ordered collection of sets). For a proof of statement (2)
consider the following calculation:

MU —u)=int (cl (MU —u)))=int (A (cl (U —u))) =int (A-(cl (U) - u)).
By using axioms (V-2) and (V-3) of a vector convexity and statement (1), we obtain that
int (M(cl (U)-u)) is a member of C, hence so is A(U —u). Statement (3) is an immediate conse-
quence of (1). ]

The following result is of crucial importance. Throughout, d(U) denotes the boundary of
asetU.

1.4 Lemma. Let X be a topological vector space, and let C be a vector convexity on X.
If UeC is an open set and if C c d(U) is convex, then there exists a (standard) open halfspace
H of X including U, disjoint with C, and such that He C.

Proof: The collection @ of all OeC, which are open and disjoint with C, is partially or-
dered by inclusion. As every chain in @ evidently has an upper bound, we can apply Zorn’s
lemma to obtain a maximal element H in @. We claim the following equality for any de d(H):

H=d+ U \(H -d). Q)]

To this end, denote the right-hand side of (1) by H(d). Clearly, H(d) is an open set
including H, and A-(H —d) e C for all A >0 by Proposition 1.3(2). As the sets appearing in the
union (1) constitute a chain, this shows that H(d)e C. For a point c € C(INJ(H)) it is evident
that C "H(c)=9. Hence H(c)e ®, and by the maximality of H we obtain that H(c)=H. Sup-
pose that aeH(b) for two points a#b of 0H. Then there exist A>0 and xeH such that
a=b+Mx-b). If A<1 then ae(b,x], which implies that ae H, a contradiction. We conclude
that A > 1. Hence

b=a+~}:}_il—(x—a)e H(a).

In other words: a € H (b) implies b € H (a). This allows to conclude that C n H (d)=% for any
d e d(H) and in particular, that H (d)=H as required in (1). For, if c is in the intersection, then
d € H(c)=H, a contradiction.

We use formula (1) to show that the boundary of H is convex. Suppose that there exist
dy,d,e0H such that (d,,d,)nH#3. Fix eeH and te(0,1) such that e=¢td, +(1-1)d,. Then
dy=d,+t7(e~d,). In view of (1) this means that 4, H, a contradiction. Now apply Lemma
1.2 to conclude that H is an open halfspace. Clearly this set is as desired. ]

1.5 Theorem. Let X be a topological vector space, let C be a symmetric vector convexi-
tyon X, and let U € C be a body. Then the following hold.
(1) If C cdU is non-empty and convex, then C and U can be C-separated. In particular,
each u € U can be strongly separated from C.
(2) Ifcecl(U), then c and U can be strongly C-separated.
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Proof: For a proof of statement (1), by applying Lemma 1.4 and Proposition 1.3(3) we
obtain an open halfspace H which contains the interior of U and includes C in its boundary.
Clearly H corresponds with a continuous C-functional separating between C and U. As f can-
not be constant on U, the second part of (1) follows at once.

For a proof of statement (2), let u be any point in int (U). The ray through c starting at u
intersects the boundary of U in precisely one point, and we may assume that this point is the
origin. Now we can use (1) to separate the origin and U. Suppose that ¢ lies in the closed
halfspace H containing U. Then the segment [u,c) lies in the interior of H. Hence the origin
lies in the interior of H, a contradiction. [ ]

The above result does not hold if the point xg d(U) is replaced by a C-convex set disjoint
with U. A simple counter-example can be constructed as follows. If ¢, and C, are (sym-
metric) vector convexities on X, then so is the collection of all sets of type

CinC,y (Ciel,Chely).

Consider the convexity which results in this way from the “rectangular” convexity of R? and
the affine convexity of IR? consisting of all lines parallel to the line x +y=0. Then no rectangu-
lar body can be separated from a “special” line.

A vector convexity on a topological vector space is said to be rigid provided it contains
no non-trivial convex body. The following characterization of rigidity is a direct consequence
of Theorem 1.5

1.6 Corollary. Let X be a topological vector space with a symmetric vector convexity
C. Then the following are equivalent:
(1) X does not admit non-trivial continuous C-functionals.
(2) Xisrigid. ]
In a topological vector space with a symmetric vector convexity C, the weak(C) topology
is defined to be generated by the closed subbase consisting of all convex sets which are closed
in the original topology. If X is a normed space and if C is the collection of all norm-convex
sets in X, then this topology is precisely the “weak(norm) topology”, introduced in II: §5. If C
consists of all (standard) convex subsets of X, and if X is a locally convex topological vector
space, then the above topology is a standard weak topology, i.e., a topology on X generated by
a collection of continuous functionals (see [70, § 3.8]). We note that, in general, a weak(C) to-
pology need not be a standard weak topology. See Theorem 1.8.

The weak(C) topology of a vector space X is T, precisely if C contains all singletons of
X. The next proposition describes when this topology is Hausdorff.

We introduce two notions of boundedness, the first of which is well-known. A (convex)
subset C of a topological vector space is called bounded if for every neighborhood U of the ori-
gin there exists a real number s > 0 such that C cs-U. See [45, p. 44]. A (convex) set C of a
(general) vector space is called line-bounded if the intersection of C with any line in X is a
bounded subset of the line.
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1.7 Proposition. Let X be a topological vector space, and let C be a symmetric vector
convexity. Then the following are equivalent:
(1) The weak(C) topology of X is Hausdorff.
(2)  Every pair of distinct points in X can be strongly C-separated.
If, in addition, X has a bounded (standard) convex body, then statements (1) and (2) are also
equivalent with:
(3) The C-convex hull of a bounded set is line-bounded.

Proof: Implication (2) — (1) is evident. For a proof of implication (1) —(2), let x,y be
two distinct points in X. Then there are two disjoint neighborhoods of x and y in the weak(C)
topology of X. This implies that there exist closed sets Cy, - - - ,C,,, Dy, - - ,D,,e€ C with

ye iL:J]C,-,xE i\;lDi and X = ik:JlCiUi;JlDi.

We may assume that this covering of X is irreducible. Then each of the sets
Cy,+,Cp,Dy, -+ ,D,, must have a non-empty interior. We may assume that xe C;. Then the
point y and the set C; satisfy the conditions of Theorem 1.5. Consequently, we can strongly
separate C; (a fortiori x) and y.

Next we derive the implication (3) = (2). To this end, let x,yeX. By (3) we obtain a C-
convex, line-bounded convex body B in X. We may assume that OeB. As B is line-bounded,
there exists a A such that x +AB avoids y. Hence by Theorem 1.5 (applied to y and x +A-B) we

can strongly C-separate x and y.

Finally, we establish the implication (2) - (3). Let B be a bounded set and consider the
collection (f;);; of all continuous C-functionals. As the f; are bounded on B there exists an iel
such that f (B) < [-V:,Y:] (Y;eR). Now the subset

Oierfi (= Y),
is a C-convex line-bounded set containing B, which gives (3). ]

For a normed space (X, ||.||), let B(X, 1.1 l) be the diameter of the smallest norm-convex
set including the unit ball B of X. Soltan [77], showed that B@R”", ||.||)<e (where |].1| is any
norm on R") if and only if there exists a point-separating collection of norm-functionals
f1, . f,on @ |1.1]). See [77]. Proposition 1.7 leads to the following generalization of this
result: the norm-convex hull of B is line-bounded if and only if there exists a point-separating
collection of continuous norm-functionals on X.

From the previous proposition we deduce that if a weak(C) topology is Hausdorff, then
the collection of continuous C-functionals & is point separating. Hence this collection of func-
tionals determines a standard weak topology, coarser than the original weak(C) topology. The
question arises whether these topologies coincide. The next result gives a simple characteriza-
tion. If X is a vector space, and if C is a vector convexity on X, then a topology on X (not
necessarily a vector topology) is locally C-convex provided each point has a neighborhood base
of C-convex sets. See [79].
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1.8 Theorem. Let X be a topological vector space, and let C be a symmetric vector
convexity that contains all singletons of X. Then the following are equivalent:
(1) The weak(C) topology is a vector topology.
(2) The weak(C) topology is regular.
(3) The weak(C) topology is locally C-convex.
(4) The weak(C) topology is generated by the collection of continuous C-functionals of X.

Proof: We first establish the following intermediate statement.
(5) Let N be a weakly(C) closed neighborhood of ge X. Then there exists a finite number of
continuous C-functionals (f;)7-, together with real numbers (;)7-,,such that

genizifi (—ek]) < N.
We may assume that N #X. By the definition of weak(C) topology, there exist C-convex closed
subsets C, - -+ ,C, of X such that

q¢ VCiiN U(JC)=X. (6)

As all sets appearing in the last equation are closed, we may assume that all C; have a non-
empty interior. By Theorem 1.5, there is a continuous C-functional f; such that

filg) < inf {fi(x) | xe C;}. @)
Denote the right-hand side of (7) by A; (i=1,2, ---,n). Then by (6) we obtain that the set
AN ((~e\)) | i=1,2, - - - ,n} is as desired.

Having established (5), we proceed as follows. A T, vector topology is regular, show-
ing implication (1) — (2). The intermediate statement directly gives the implications (2) — (3)
and (2) — (4), whereas the implication (4) — (1) is trivial.

We are left with a proof of (3) > (2). Let C be a weakly(C) closed set in X and let g¢ C.
Then C can be covered with a finite number of C-convex closed sets not containing g. To pro-
duce a C-closed neighborhood of g disjoint with C, it is therefore sufficient to consider C to be
a C-convex closed set itself. Let N be a convex neighborhood of ¢ disjoint with C. If
Nn C =, then we are done. If, on the other hand, the convex set C =N Cis non-empty,
then by Theorem 1.5(1), there is a continuous C-functional f such that f () < inf (f (Cy)). For
&> 0 sufficiently small, the set U=N N f~!((s,f (q)+€)) is a convex weak(C) neighborhood of ¢
and UNC(=@. Evidently, U N C=Q. ]

The argument in (5) above shows that in a vector convexity C with singletons and with a
regular weak(C)-topology, each convex closed set of C can be separated from a point outside
by a finite collection of continuous C-functionals. The example mentioned after Theorem 1.5
also shows that, for general vector convexities, this cannot be improved to a situation where
only one (?) C-functional is needed. For modular normed spaces, however, it is possible to
derive such a result. See Theorem 2.9.

2 It is not difficult to verify that if f,, ---,f, are (continuous) linear functionals separating a point p from a

convex closed set C, then there is a linear combination 37 c;f; which separates p from C. In circumstances
as above, such combinations need not be C-functionals.
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§ 2 Weak(norm) topology in modular normed spaces

The norm-convexity of a modular normed space has somewhat stronger properties than
a general vector convexity. See Lemma 2.2 below, and the remarks after Theorem 2.9.

From Theorem I: 2.14 and-Proposition 1.7 we obtain the following.

2.1 Theorem. If the weak(norm) topology of a modular normed space X is Hausdorff,
then X is median. ]

In the next results we study the weak(norm) topology of a modular normed space more
extensively. It turns out that dense median stable subspaces of /,(/) spaces are precisely the
modular normed spaces with a regular weak(norm) topology.

We start with three lemmas. The second lemma concerns continuous norm-functionals,
and the first lemma states that in Banach spaces continuity of such functionals is self-provided.

2.2 Lemma. Any norm-functional on a modular Banach space is continuous.

Proof: As each norm-functional is norm-interval preserving (cf. Corollary I: 4.10(3)),
the theorem follows from Proposition III: 4.2. ] =

2.3 Corollary. The following are equivalent for a modular Banach space.
(1) Xisrigid.
(2) No norm-convex, proper subset of X has a core point.

Proof: Implication (2) - (1) is evident. For a proof of the converse implication, assume
to the contrary that C #X is a norm-convex subset in X with a core point. If we endow X with
the core topology, then C becomes a norm-convex body. Whence by Theorem 1.5 there exists
a non-trivial norm-functional f on X. By Lemma 2.2 the functional f is continuous in the
norm-topology. We conclude that X is not rigid, a contradiction. ]

2.4 Lemma. Let X be a modular normed space with completion X, and let H be a
norm-convex closed hyperplane of X through the origin. Then,
(1) The completion H of H in X is the kernel of a continuous norm-functional of X.
(2) The median orthogonal complement A of H in X is the span of an extreme point in the
unit ball of X.

Proof: For a proof of statement (1), it is well-known that H is the kernel of a continuous

functional fon X. Let f:X —R be the (unique) continuous extension of f. We first show that H
is the kernel of f.
Obviously, H ¢ }"_1(0). As for the reverse inclusion, let xe}_l(O), and pick a point ee X with
f(e)=1. As X is dense in X, there is a sequence (x,);-; in X converging to x. Let k, =x,~f (x,)e
(neN). Then k,eH and

Hfayell =k, + foeyed—k, || 2p(x, , H).

Hence, as f (x,) —)}(x):O we conclude that the p(x,H)=0, i.e. xe H.
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Our proof of statement (1) is complete if we show that ;’_1([0,&)) is norm-convex in X.
For convenience let C, = {xe,{’ | }'(x) >0}, and' C_=-C,. First, in Theorem II: 3.1 it is shown
that the completion of a modular metric space Y is modular, and in Corollary II: 3.5 it is shown
that the completion of a norm-convex subset of Y is norm-convex in the completlon There-
fore, X is a modular Banach space, and H is norm-convex in X. Next, let a,be f ([0 o)) (see
Figure 2.4).

ker (]')

Fig. 2.4: the kernel of a norm-functional

Striving for a contradiction, suppose that cel(a,b) with ce C_. As H —}_I(O) is norm-convex,
we may assume that ae C,. Then the interval /(a,c) meets the open sets C,,C_. As intervals
are connected (they are even convex) the interval I(a,c) meets H in say a’. Hence,
a’el(a,c) cI(a,b). By star-shapedness of intervals at either endpoint, ce!(a’,b). By applying
the same method to b if be H we conclude that c is metrically between two points a’,b" in H.
However as H is norm-convex we conclude that ce H, contradicting the assumption that ce C_.

For a proof of statement (2), as H is norm-convex and complete th1s hyperplane is gated.
By virtue of Corollary III: 2. 12(1) Xis linearly isometric with AxH" C]early H* is of di-
mension 1. Hence any point e in H" of norm 1, is extreme in the unit ball of A" and spans the
whole of /™. By Corollary IIl: 2.12(2) any such point is also extreme in the unit ball of X =

2.5 Remarks. It is not true that a hyperplane, which occurs as a convex set of a sym-
metric vector convexity C, corresponds with a C-functional: just consider the “affine” convexi-
ty of a vector space. For general normed spaces, each hyperplane of the metric convexity in-
duces a norm-functional (cf. the proof of Lemma 2.4). The following is not known:

2.6 Problem. Does the canonical extension of a continuous norm-functional to the
metric completion preserve the metric convexity?

Lemma 2.4 states that the answer to the above is affirmative for modular normed spaces.

It is well-known, and easy to show, that the extreme points of the unit ball in an L (1)
space correspond with characteristic functions on atoms of the ambient ¢-algebra. Hence from
Lemma 2.4(2) one can deduce thiat the (continuous) norm-functionals on X are precisely the
evaluation mapping on atoms. We obtain the following corollary.
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2.7 Corollary. Let X=L,(N,4,u) be an L (u) space. Then the following are equivalent:
(1) The unit ball of X has no extreme points.
(2) There is no norm-convex subset C #X with a core point.
(3) The measure space (N,4,1) is atom free. H

From the previous result we conclude that the space L ([0,1]) has no (non-trivial) norm-
functionals. We are now able to give an example of a discontinuous norm-functional on a
(non-complete) median normed space. Indeed, let R,B be the subspaces of L ([0, 1]) consisting
of the collections of Riemann integrable functions and essentially bounded integrable functions
respectively. Then R is median stable and B is norm-convex in L([0,1]) (see Example
III: 4.15). If we endow these spaces with the core topology, then the characteristic function of
the unit interval is a core point of the positive cones of R and B. Hence by Theorem 1.5 there
exist non-trivial norm-functionals on R and B. By Lemma 2.4 these functionals cannot be
norm-continuous.

2.8 Lemma. Let X be a normed space. If xe X has a gate c in a subset C of X, and if a
norm-functional f strongly separates x and c, then f also strongly separates x and C.

Proof: Straightforward. . ]

The following result is a strengthening of Theorem 1.8.

2.9 Theorem. For a modular normed space X the following are equivalent.

. (1) Relative to the weak(norm) topology, X is a topological vector space.

(2) Each norm-convex closed subset A of X can be strongly norm-separated from points g€ A.

(3) The weak(norm) topology of X is generated by a collection of continuous norm-
functionals that separates any norm-convex closed set A from points qe A.

(4) The completion of X is linearly isometric with | ,(I) for some index set I.

Proof: We shall show the following sequence of implications:

MH-=>@-@-03)-01).
For a proof of implication (1) —(2), let A be a norm-convex closed subset of X, and let g¢A. By
Theorem 1.8(4), there exist continuous norm-functionals fi, - - -, f, and scalars A, - - - ,A, such
that

fi@ <M fori=1,2,---,n; A c_:y‘j,*'([?\.,-,oo). 5)
If none of the functionals fy, - - -, f, strongly separate A from g, then the convex sets

A, and f'(—oeo,A)) fori=1,2, - - ,n,
meet two by two (each halfspace meets A by assumption, whereas the halfspaces meet in g).
The convexity of a modular (metric) space has the (F,2)-IP, see (I: 4.4.1). In our situation, this
conflicts with (5).
For a proof of implication (2) — (4), let X denote the completion of X. From Theorem 2.1 we
conclude that X is at least a median space, hence by Corollary II: 3.2 so is X. Let Ext (l}) be the
set of extreme points in the unit ball B of X. We shall now show that X has the (K-M) property,
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i.e., the convex closure of Ext(B) in X equals B. To this end, if X fails to have the (K-M) pro-
perty then the linear closure N =sp(Ext(B)) is not the whole of X. As X is dense in X there ex-
ists an xe X \N. In Corollary HI: 3.4 it is shown that N is a norm-convex subspace of X. Hence
as N is complete, it is gated. Let n be the gate of x in N.

We claim that n and x can be strongly norm-separated in X. (®) By Corollary II: 3.13, we
can find a (small) norm-convex closed convex set U in X that avoids x, and such that ne Clx(U).
By assumption on X there exists a continuous norm-functional f strongly separating U and x.
The extension fof fto X is a norm-functional by Lemma 2.4. Clearly ]strongly separates
Clx(U) and x, and a fortiori, j-’strongly separates n and x.

Invoking the definition of the gate n we conclude that )-“ strongly separates x and N as
well, i.e. N cker(f). By Lemma 2.4(2) there exists a point eeExt(B) spanning f_l(O)l.
Clearly e¢ N, contradicting the definition of N.

We have shown that X is a median Banach space with the (K-M) property. In Theorem
I1I: 3.6 it is shown that such a space is linearly isometric with /, (/) for some index set /.

For a proof of implication (4) — (3), let X be a dense median stable subspace of /,(/) for
some index set /. We shall show that the collection of coordinate functions of I, (/), restricted
tc X, is as described in (3). To this end, as these functionals are clearly continuous norm-
functionals the topology t generated by them is coarser than the weak(norm) topology of X.
We shall show that 1 contains a subbase of the weak(norm) topology, namely the closed norm-
convex subsets of /;(/). Suppose that C is a closed and norm-convex subset of X. Take xeC.
By Corollary II: 3.5 the completion CofC isa gated set of the completion /,(/) of X. Lety be
the gate of x in C. As x#y we can find a coordinate function p strongly separating x and y.
Hence by Lemma 2.8, p strongly separates C and y. In particular the restriction of p to X
strongly separates C and x. This shows that C is closed in 1, i.e. Cet. Finally, implication
(3) —>(1) is standard. ]

The previous result asserts that /,(/) as well as its dense median stable subsets have a
regular weak(norm) topology. By Corollary II: 5.14 this topology appears to be even normal
on norm-convex subsets.

A difference between Theorems 1.8 and 2.9 is that the latter requires only one functional
for separating a point from a convex set. This type of extension cannot be obtained in the gen-
eral setting of Theorem 1.8.

The next two corollaries (which are proved simultaneously) provide some additional in-
formation on isometric embedding in /,(/) spaces.

2.10 Corollary. If a modular normed space X can be isometrically embedded in an
11(I) space, then X is median and its weak(norm) topology is regular. Conversely, if X is a
median normed space with a Hausdorff weak(norm) topology, and if all metric intervals of X
are complete, then X embeds isometrically in an [ (I) space.

! At this stage of the proof we could not decide whether X has a regular or even a Hausdorff weak(norm) to-

pology. Otherwise, Proposition 1.7 would have done the job.
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2.11 Corollary. The only L (1) spaces allowing for an isometric embedding in an I ,(I)
space are the | (J) spaces with |J | < |I].

Proof: First, let X be a modular normed space which is isometrically embedded in an
1,(I) space. In particular, X is a median stable set in /,(/). In Proposition II: 5.10 it is shown
that the weak(metric) topology of a median stable subset of a median metric space is the rela-
tive topology derived from the weak(metric) topology of the ambient space. Now [,(/) has a
regular weak(norm) topology by Theorem 2.9 and hence the weak(norm) topology of X is reg-
ular as well. Similarly, the median subspace X has a regular weak(norm) topology. Hence by
Theorems 1.8 2.9 the Banach space X is an isometric /;(J) space where, evidently, |J | < |I].
By Theorem III: 4.13 the class of median Banach spaces consists exactly of the L (i) spaces,
and we obtain Corollary 2.11 in this way.

On the other hand, it follows from Proposition II: 5.12 that if a median metric space with
complete intervals has a Hausdorff weak(metric) topology, then this topology is even regular.
Another application of Theorems 1.8 and 2.9 gives the result. ]

2.12 Problem. Is each modular normed space with a Hausdorff weak(norm) topology
isometrically embeddable in an l,(I) space? Or, equivalently, is the Hausdorff property of the
weak(norm) topology inherited by the completion?

Observe that above mentioned spaces are at least median (Theorem 2.1). We can also
deduce the following.

2.13 Proposition. Let X be a normed space with a Hausdorff weak(norm) topology.
Then either the completion X of X has infinitely many extreme points in its unit ball, or X is
finite dimensional.

Proof: Let B denote the unit ball of X. By Proposition 1.7 there at least exists a closed
norm-hyperplane H;. Without loss of generality Oe /,. In view of Lemma 2.4(2) there is an
extreme point of B not in the closure I:l, of H;. As H, is norm-convex it is also a modular
normed space. By the earlier cited Proposition II: 5.12 the weak(norm) topology of H, is the
relative topology derived from the weak(norm) topology of the whole X. In particular the
weak(norm) topology of H, is Hausdorff. Hence, we can apply the above to H, to conclude
that there exists a closed norm-hyperplane H, in H, and an extreme point e, in the unit ball of
the completion f-ll that is not in Flz. By Corollary III: 2.12(2), e, is also an extreme point
of B. If X is not finite dimensional, then we can continue this argument to obtain infinitely
many extreme points in B. "
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§ 3 Adapted metrics .
A metric d on X is called compatible with a geometric interval space (X,/) provided the follow-
ing holds:

If C is I-convex then so is the closed ball D4(C,r) around C.

It is possible to give an equivalent definition in terms of open balls. Note that the
discrete metric on X is compatible with (X,/). As every convex set is an updirected union of
polytopes we obtain:

(3.1) A metric d is compatible with a geometric interval space (X,/) provided closed balls
around polytopes are convex.

The following is easily verified.

(3.2) A compatible metric respects basepoint orders in the following sense: if x<,y then
d(b,x)<d(b,y).

Let X be a topological space. Equip R¥ with the product interval operator /. Then the
subspace B.(X) is I .-convex, hence I, restricted to B.(X) yields a median interval space.

3.3 Example. The supremum-norm of B.(X) is compatible with the median convexity of
this space.

Proof: Let < be the product order of R¥, i.e. f<g iff f(x)<g(x) for all xeX. Let
F={f, " ,f,} be a finite subset of R¥, and let p, q respectively denote the point-wise
minimum and maximum of these functions. It is well-known and easy to prove that the medi-
an convex hull of F consists of the order segment [p,q]. Hence polytopes of R¥ correspond
with order intervals of type [p,q]. As B.(X) is an I -convex subset of R, the same holds for
B(X) with the additional property that the functions p and q are bounded. One can easily veri-
fy that a closed (norm-)ball of radius r 20, around such a segment [p,q] equals the order seg-
ment [p—r,q+r] —note that the median of the points p,q,f € %B.(X) yields a metric nearest
point of fin [p,q]. Whence closed ball around polytopes are convex. By (3.1) we conclude that
the supremum norm is as desired. [

In view of (I: 4.4.1) a convex metric compatible with a convexity with the (F,2)-IP has
the (F,2)-IP of balls. This partially motivates our interest in compatible metrics. The follow-
ing result summarizes some of the properties of such metrics.

3.4 Lemma. Let (X,I) be a geometric interval space and let d be compatible with I.
Then the following hold for B c X gated and C X convex:
(1) IfceC, then d(pg(c),C)=d(B,C). In particular, pg is a metric nearest point function and
B is closed in (X,d).
(2) IfC is gated, then any pair of mutual gates b,c of B,C realize the distance between B and
C, i.e. d(B,C)=d(b,c).
(3) If(X,1) is median, then pg is contractive w.r.t. (X,d).
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Proof: For a proof of (1), denote r=d(B,C). If ¢>0, then the ball D(C,r +¢€) meets B.
As C is convex so is this ball, and consequently pg(c) is a member of it ( (I: 3.4.1)). Whence
d(pp(c),C)<r+ec. As £ >0 was arbitrary, we obtain statement (1). Statement (2) follows from
statement (1).

For a proof of statement (3), let x,yeX. If ael(x,pp(x)) then by definiticn of gate
as<,pp(x)<,pp(y). Hence by (3.2) d(pp(x).pp(y))<d(a,pp(y)). Whence

d(I (x,pp(x)),pp(¥)) =d (pp(x),pp (¥))- ™)
Now the ball D (I(x,pg(x)),d(x,y)) contains y and meets B (in pg(x)). From (I: 3.4.1) we con-

clude that pg(y)e D (I(x,pg(x)),d(x,y)), i.e. d(I(x,pg(x)),ps(y))<d(x,y). By formula (*) this
amounts to d (pg(x),pp(y)) <d(x,y), as desired. |

3.5 Proposition. Let (X,m) be a median algebra, and let d be a compatible metric.
Then the restriction of d to a median stable subset Y of X yields a compatible metric onY. If
moreover d is a convex metric and Y is m-convex then the restriction of d to Y is also a convex
metric.

Proof: Let d’ denote the restriction of d to Y. We aim at the use of (3.1). Let F be a
finite subset of Y, and let » > 0. Consider the following equality:

D (coy(F),r)=Dga(cox(F),r)nY. O]
To this end, the inclusion from left to right in (1) is evident. Let y be a member of the right-
hand side in (1). The polytope cox(F) is gated, see (II: 3.10). By Lemma 3.4 the gate p of y in
cox(F) is a metric nearest point in cox(F) with respect to d, i.e. d(y,p)<r. By the description of

the gate p in (II: 3.10), if follows that p is also the gate of y in coy(F). Whence, y is a member of
the right-hand side of (1).

For a proof of the last statement of the proposition, let a,beY and 0<s <d(a,b). Then the
closed balls in D(a,s), D (b,d (a,b)-s) and the convex set Y meet two by two. Hence these sets
meet altogether, which implies that the restriction of 4 to Y is convex. ]

We now come to a topological version of compatibility. Let (X,/) be a geometric inter-
val space, and let t be a topology on X. Let 1,, be the weak topology of 1, i.e. the topology gen-
erated by the collection of closed I-convex subsets of X. The metric d is said to be adapted to
the triple (X,/,7) if:

(i) dis compatible with (X,/),

(ii) The topology 14 on X induced by d satisfies: 1, c Ty 1.

The notion of adapted metric was introduced by van Mill and van de Vel in [61] for compact
topological median algebras.

Metrics adapted to the triple (X,/,,T,) derived from a metric space (X, p), shall be of spe-
cial interest. The next result follows from Propositions II: 5.10 and 3.5.

3.6 Proposition. Let X be a locally star-shaped median algebra, and let d be an adapt-
ed metric. Then the restriction of d to a median stable subset Y of X yields an adapted metric
onY. |
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3.7 Corollary. Let Y be a median stable subset of a space of type I,(I). Then the
supremum norm of B(l) restricted to Y yields a metric adapted to the sum-norm of I(I).

Proof: Observe that for each topological space (X,1), the topological median algebra
(Bo(X),1,7)11) is locally star-shaped (even “locally convex”). The space /,(I) is an I ;-convex
subspace of B(I). Hence by Example 3.3 and Proposition 3.6, the sup-norm restricted to /, (/)
yields an adapted norm onto /, (/) endowed with the relative sup-norm topology. The latter to-
pology is evidently coarser than the topology induced by the sum-norm of /,(f). Also, by vir-
tue of Theorem 2.9 the weak(sum-norm) of /,(/) is generated by the coordinate projections
pi:[1(I)>R (iel). Hence the weak(sum-norm) topology of /;(I) is coarser than the relative
sup-norm topology on /,(I). This shows that the sup-norm restricted to /,(/) is adapted to the
sum-norm. Applying Proposition 3.6 concludes the proof. =

It is possible to weaken the notions of a compatible or an adapted metric for a geometric
interval space (X,/) by requiring that closed balls around singletons are I-convex. In this situa-
tion we say that a metric p is point-compatible with (X,I) (or: point-adapted to a triple (X,1, 7).

We remark —we shall not use this— that in Propositions 3.5 and 3.6, “compatible”, resp.
“adapted” can be replaced by “point-compatible”, resp. “point-adapted”. We now come to the -
main theorem.

3.8 Theorem. For a modular normed space the following are equivalent:

(1) X has an adapted metric.

(2) X has a point-adapted metric.

(3) For each norm-convex closed subset A of X and each point q¢A there is a norm-convex
norm-neighborhood of q disjoint with A.

(4) The completion of X is linearly isometric with [ (I) for some index set I.

Proof: Implication (i) —(2) is trivial. For a proof of implication (2)—(3), let d be a
point-adapted metric on X. Let A and g be as prescribed in (3). As the weak topology is coarser
than the topology of (X,d) there exists a closed ball D (g,r) with r >0 avoiding A. As the topol-
ogy of d is coarser than the norm topology of /,(/) we conclude that D(q,r) is a norm-convex
norm-neighborhood of q. For a proof of implication (3)— (4), let A be a norm-convex closed
subset of X, and let g¢A. By assumption there exists a norm-convex (norm-)neighborhood U of
q avoiding A. Let X denote the completion of X and let U and A be the closure in X of U and 4,
respectively. By a simple topological argument we obtain that mt(U)mX equals the X —interior
of the X—closure of U, which in turn equals the X —interior of U (U is a convex body of X).
Whence, int((}) avoids A and so

int(U)NA =@. )
By Corollary II: 3. 5 the sets A U are complete, norm-convex subset of the completion of X. In
particular, the set Alis gated. Let peA be the gate of ¢ in A. As int (U) is norm-convex by Pro-
position 1.3, we deduce from formula (5) that p ¢ int (U). Hence by Theorem 1.5 we can find a
continuous norm-functional f separating U and p. Hence f strongly separates ¢ and p and in
view of Lemma 2.8, f also strongly separates a and A. In particular the restriction of fto X
strongly separates g and A. By Theorem 2.9 we obtain that the completion of X is a space of
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type [, (1).
The proof of implication (4) — (1) is Corollary 3.7. [ ]

§ 4 The decomposition theorem

4.1 Theorem. Let X be a modular normed space with complete intervals. Then there
exist an index set I, a subspace Z of 1,(I), and a rigid modular normed space Y such that X is
isometric with the product Y x Z, equipped with the sum norm. In particular, the spaces Y and
Z have complete intervals. The decomposition is unique up to isometry.

Proof: Let (H;);cs be the collection of all norm-convex closed hyperplanes through the
origin, and let Y= n{H; | ieS}. By Corollary III: 2.12 any H; (i€S) is an L-summand. Let p;
denote the L-projection of H;.

It follows from Theorem II: 4.8 that Y is gated, and that the gate function py of Y is the point-
wise limit of linear functions —namely, finite compositions of the p,— and is hence linear.
We conclude that Y is an L-summand. Hence, X decomposes into linear orthogonal comple-
ments Y and Y*: each xe X decomposes as

x=y+yt, (yev, ytey?t).

By definition of (median) orthogonality, |Ix||=Ilyll+[lyll holds, and hence X is linearly
“isometric with YxY*, equipped with the sum-norm. Observe that both ¥ and Y* are closed sub-
spaces of X, hence they have complete intervals.

First, we show that Y is rigid. Suppose that f is a non-trivial continuous norm-functional
on Y. Then H=f1(0) is a non-trivial closed norm-hyperplane of Y. One can easily verify that
the subspace H’=H +Y? is a norm-hyperplane in X containing the origin, conflicting with the
construction of Y.

Next we shall show that each pair of distinct points x,ye Y* can be strongly separated by a
continuous norm-functional on X. Indeed, as Y "Y' = {0} the point x -y can not be a member
of Y. Hence there exists an ie S such that the norm-hyperplane H; misses x —y. Clearly this im-
plies that x and y can be strongly separated by the corresponding norm-functional on X.

From Theorem 2.9 we conclude that the subspace Z =Y is linearly isometric with a dense
subspace of /,(/) for some index set /. Moreover, as Z has complete intervals, it follows from
Theorem II: 3.21 that Z is norm-convex in /;(/). Hence, decompositions as stated in the
theorem at least exist.

For a proof of unicity of such a decomposition under linear isometries, we shall show the
following, even stronger, result. Let V be an L-summand of X. If V is rigid and if distinct
points of V* can be strongly separated by norm-functionals of V*, then V=Y. To this end, as
continuous norm-functionals on X must be trivial on V, we have V c Y. For a proof of the other
inclusion, suppose to the contrary that ye Y| V. As X decomposes into V and V*, we can write
y=d+d* for some de V and d*e V*. Clearly, d*#0. By assumption we can find a continuous
norm-functional fon V+, that strongly separates d* from the origin. By taking fw+vh=f @)
for all ve V, vte V!, we extend f to a continuous norm-functioral ?on the whole of X. Howev-
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er, }(y):f(dl)¢0, which is impossible by the construction of Y. [ |

As a simple application of Theorem 4.1, one can verify that
(i) A modular space of type (IR%, ]].]]) is linearly isometric with /,(2);
(iiy A modular space of type (R®, |1.1]) is either rigid, or linearly isometric with /,(3).
These results also follow from the work of Hanner [36], where it is shown that, modulo linear
isometries, there are but finitely many modular norms on R” (neIN). If n=2 then there is only
one such norm, and for n =3 there are exactly two of them: the sum- and maximum-norm.

From Corollary 2.7 we conclude that for L (u) spaces Theorem 4.1 yields the well-
known result that an L (1) space is decomposable in a product of an atom free L (i) space and
an [, (/) space (cf. Corollary III: 3.8(3)).

Application: characterization of /,(/) spaces among modular Banach spaces in terms of pro-
perties of the weak(norm) topology.

Let X =1,(I) for some index set. By virtue of Theorem 2.9, the weak(norm) topology is
generated by the coordinate functions p; :/,(I) >R (iel). That is, the weak(norm) topology is a
standard weak topology. Depending on the cardinality of /, one of the following three situa-
tions occurs. '

CASE I: The index set / is uncountable. Evidently, no point in /;(/) has a countable
weak(norm) neighborhood base. Hence, the weak(norm) topology of /,(f) is not metrizable.
Also, by Proposition II: 5.12 the completeness of X, together with the Hausdorff property of its
weak(norm) topology, imply the regularity of this topology.

CASE II: The cardinality of the index set I is countably infinite. Clearly /,(IN) with the
weak(norm) topology is a topological subspace of RN with the product topology. In particular
the weak(norm) topology is metrizable. On the other hand, it is well-known that a weak topol-
ogy is normable if and only if the ambient vector space is finitely dimensional (cf. ([70, §
3.8]). Therefore, the weak(norm) topology of /;(IN) is not normable (for a direct proof of this
see e.g. [59, Lemma 1.2.1]).

CASE III: The cardinality of the index set I is finite, say |/ |=n. The weak(norm) to-
pology of /,(n) is normable.

Combining these cases with Theorem 2.9 we have shown the following result:

4.2 Theorem. Let X be a modular Banach space.
(1) The weak(norm) topology of X is Hausdorff if and only if X is linearly isometric with I,(I)
for some index set 1.
(2) The weak(norm) topology of X is metrizable if and only if X is linearly isometric with
1,(I) for some countable set I.
(3)  The weak(norm) topology of X is normable if and only if X is linearly isometric with [,(I)
for some finite set I. =

By Proposition 1.7 and Corollary 2.10 the modular Banach spaces in which the unit ball
has a line-bounded norm-hull are precisely the !, (/) spaces. The following is a characterization
of modular normed spaces in which the latter hull is genuinely bounded.
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4.3 Theorem. Let X be a modular normed space. Then the following conditions are
equivalent:
(1) X s linearly isometric with an [ |(n) space for some neIN.
(2) X contains a bounded norm-convex body.
(3) X contains a norm-convex body with an extreme point.

Proof: Let X be the completion of X. Then X is also a modular normed space by
Theorem II: 3.1. Consider the following additional statement:
@) X contains a norm-convex body with an extreme point.
We shall show the following implications:

(1)/ I @—= ()

Note that the implications (1) —(2),(3) are evident. For a proof of implication (2) — (4), let C
be a bounded norm-convex body in X. By Corollary II: 3.5(2) the completion CofCinXisa
norm-convex subset of X. Obviously, C has a non-empty interior and is bounded. By virtue of
Remark III: 5.8 and Proposition III: 5.7(1), a complete bounded norm-convex subset has an
extreme point. Therefore C has an extreme point.

Next, for a proof of implication (3) — (4), let C be a norm-convex subset of X with an ex-
treme point e. In Proposition III: 5.7(2) it is shown that under these conditions the point e
remains extreme in the completion C of C inX. By Corollary II: 3.5(2) once again, Cisa
norm-convex subset of X.

Finally, for a proof of implication (4)— (1), let C be a norm-convex body with an ex-
treme point e of X. We may assume that e equals the origin. By Theorem 4.1 we can regard b's
as a product Y x/,(I) (equipped with the sum-norm) of modular Banach spaces, in which the
space Y is rigid. Let us assume that Y is non-trivial. As the origin is an extreme point of C, the
subset C Y cannot contain non-trivial antipodal points, hence C NY is a proper norm-convex
body of Y. This is impossible as Y is rigid. We conclude that Y= {0}, that is, X is linearly
isometric with /,(I). Assume that the cardinality of / is infinite. Let x#0 be a member of C.
Observe that if x; >0 then, as C is norm-convex, all members of C have a non-negative i-th
coordinate. As / is infinite, every (non-trivial) ball contains two points x,y such that 0#x; =-y;
for some iel. But then C cannot have interior points. We conclude that X is linearly isometric
with [, (n) for some nelN. In particular X is finite dimensional, whence X =X. =

We remark that condition (3) is equivalent with the existence of a bounded, norm-
convex subset of X containing the unit ball. Another equivalent condition is, that the norm-
convex hull of a bounded set B (i.e. the smallest norm-convex set containing B) is bounded.



CHAPTER V

ISOMETRIC EMBEDDINGS OF MEDIAN SPACES

In the first section of this chapter we discuss two techniques which are of particular in-
terest to us.

The paper [7] written by P. Assuoad and M. Deza contains two chapters of a projected
(but not achieved) book on metric subspaces of L ,(u) spaces. Among other things, they
show that a metric space is isometrically embeddable in an L (i) space, whenever its finite
subsets are. As [7] is rather obscure we give full proofs of these results here.

Superextensions were introduced by de Groot in [32] in a topological setting. A funda-
mental property of the superextension of a space X is that it behaves as a free algebra with
members of X as generators: any function of the original set to a median algebra extends to
a median preserving function, defined over the superextension.

In section 2 we apply these techniques to show that median metric spaces correspond
with metric subspaces of L (u) and K (1) spaces.

In section 3 we use completely different techniques to show that a median metric space
embeds isometrically in an /,(n) iff it embeds as a median subalgebra. (*)

§ 1 Preliminaries

1.1 Finite subspaces of L, (1). We shall prove the following theorem.

1.2 Theorem. A metric space (X,p) is isometrically embeddable in an L (1) space iff
the metric subspace (F,p|r) is isometrically embeddable in an L (1) space for all finite subsets
Fof X.

For a proof of this theorem we descend to the (larger) class of pseudo-metric spaces. A
pseudo-metric space (X, p) is L-embeddable if it is isometrically embeddable in an L, (i) space.
First we introduce a special kind of L-embeddable spaces. A pseudo-metric space is called K-
embeddable if it isometrically embeddable in the pseudo-metric space K(X,«,u) for some
measure space (X, 4, ).

1.3 Lemma. ([7, Proposition 1.11]) A pseudo-metric space (X,p) is L-embeddable iff it
is K-embeddable.

! The results of this chapter were obtained by van de Vel and the author. See [82].
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Proof: All we need to verify is that L ;(i) spaces themselves are K-embeddable. To this
end, let (V,4, 1) be a measure space. Consider the product measure space:

(NxR,4®4,,u®p;). ()
We denote p ® u; by v. For feL(N,4,p) we define
E(N={(x)eNxR | 1> f(x)}.
Now we verify the following formulae:
(1) E(HAE(0)ed ®,
@ [Ifldu=vE Hae ).
To this end, formulae (1) and (2) are evident for step functions of (N,«,u); the general case
easily follows from this.
Hence, the function f— E (f)AE (0) is an isometry of L {(N,4,p) into K(N XR,d @4, ,u®p;). ®|
Let X be a set. Define Jy : X —2% by
Jx(x)={S |xeScX}.
Let o(X) denote the c-algebra on 2¥ generated by the sets (Jx(x))xc x-

1.4 Lemma. If a pseudo-metric space (X,p) is K-embeddable, then there is a measure
on o(X) such that (X,p) is isometrically embeddable in K (2% ,6(X),L).

Proof: Let f:X—>K(N,4,u) be an isometric embedding. The function
© f* (N, 4) - (2 6(X)) defined by f*(n)= {xe X | nef (x)}, is measurable as (we write J for Jy)
)=/ ) )
This allows us to define a measure u;, by taking
L @)=p¢ T W)
for Veo(X). By virtue of equality (1) we find that J takes values in K(2X,6(X),u/,). We show
that J is in fact an isometrical embedding of X into K(ZX,G(X),pf_). To this end, let x,ye X. Con-
sider the following equalities:
FI@AO) =TI EAS T TGN =f Af ).
By assumption, the p-measure of this set equals p(x,y). =

Surprisingly, the following corollary is not stated in [7].

1.5 Corollary. If a finite metric space (X,p) is isometrically embeddable in an L (1)
space, then it is isometrically embeddable in (IRZM| NIRINY

Proof: If (X,p) is isometrically embeddable in an L (1) space, then it is isometrically
embeddable in K (2¥,6(X),p) for some measure . Let N be the number of atoms in 6(X), then
clearly N <21X!. One can easily verify that K (22,6(X), 1) isometrically embeds in R". =

Some textbooks on measure theory, e.g. [33], define the notion “product measure space” only for o-finite
measure spaces. However this restriction is not essential; there is a canonic way to define the product meas-
ure space for arbitrary measure spaces. See for instance [69, p. 304].
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In section 2 we shall show that-a finite metric median space X can be embedded in
RIXI-1

1.6 Lemma. Let (d;);cp be a net of pseudo-metrics on a (fixed) set X converging point-
wisely to a pseudo-metric d. Then, if (X,p;) is K-embeddable for each i€ D then so is (X,d).

Proof: By Lemma 1.4, for each ie D there exists a measure y; on 6(X) such thatJy is an
isometric embedding of (X,d;) in K (2%',6(X),11z). As [0,%]°®, endowed with the topology of
pointwise convergence, is compact, the net (Uz );cp has a converging subnet. Let u be the limit
of this subnet. Then u is a finitely-additive measure, and Jy is an isometric embedding of (X, p)
into K (ZZX,G(X ),1t). Observe that the measure p need not be countable additive. However, by
Theorem I: 1.8 we can isometrically embed K @%,6(X),n), in K 1(X’,4,1") for some measure
space (X',4,1"). Whence, (X,p) is K-embeddable. |

Proof of Theorem 1.2: The “only if” part of the theorem is evident. For a proof of the
“if” part: fix be X. Let F be a finite subset of X. By rp: X —» F u{b} we denote the following re-
traction:

x if xeF
re(x)= b elsewhere.

Now define the pseudo-metric d on X by dr(x,y) =p(rp(x),rr(»)).

By assumption, the space (X,dr) is L-embeddable, and whence (by Lemma 1.3) it is K-
embeddable. Let 7 be the set of all finite subsets of X. Clearly p is the pointwise limit of the
net (dy)yey Where 7 is directed by inclusion. Hence by Lemma 1.4 p is K-embeddable, whence
L-embeddable. |

1.7 Remark. By Corollary 1.5 we can reformulate Theorem 1.2 as:

A metric space (X,p) is isometrically embeddable in an L () space iff the metric sub-
space (F,p|r) is isometrically embeddable in (IRZ" LI [,) for all finite subsets F of X.

1.8 Superextensions. Let X be a set. A linked system in 2¥ is a (non-empty) subcollec-
tion of 2¥ consisting of pairwise intersecting sets. See [84]. The set of all maximal linked sys-
tems (mis’s) in 2%, denoted by A(X), is called the superextension of X. (°) The superextension
A({1, - - ,n}) is simply denoted by A(n). For instance one can easily verify that for each xe X
the collection of type {S|xeScX}, is a maximal linked system. Whence, the mapping
Jy : X -MX) is a (set-theoretic) embedding. If X={1, -+ ,n} for some nelN, then this embed-
ding is simply denoted by J,.

Let Ie AM(X). The following observations are easily verified.

(1) IfAcAX, then either Al or X |Ael, but not both.
(2) IfAeland BoA, then Bel,

4 Qbserve that this definition uses Zorn’s lemma.
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Denote the median of the (distributive) lattice 2% by m.. The following is implicitly
shown in [84, p. 4].

1.9 Lemma. A(X) is a median stable subset of 2%".

Proof: We have to verify that m.(l,,/,,/3) is an mls for each /,,/,,/3e M(X). By definition
we have m.(l,05,03)=(nl)u(lNl3)u(l,nl3). Hence the collection m«(l,,l5,l5) is at least a
linked system. Suppose that A c X meets every element of m«(/,/5,/3), then at least two of the
following formulae hold:

Ael, ; Ael, ; Ael;.

Indeed, if for instance A¢!, and A¢!l,, then X \Ae!l, and X |\Ael,. Hence, X \Aem.(l,1,13),
contradicting the assumption on A. From this observation we deduce that Ae m«(ly,15,13). ]

In general the median subspaces A(X), o(X) of 2% are not comparable. It follows from
[84], that the superextension of a finite set X, is the median stabilization of {Jy(x) | xeX}.
Whence in this situation A(X) c 6(X).
The following result is due to Verbeek [84]. We give an alternative proof.

1.10 Theorem. Let X be a median space. Each function f:{1,2,..,n} —»F can be ex-
tended (with respect to the standard embedding J,) to a unique median preserving mapping
f:AMn)—>X.

Proof: The unicity of such an extension follows as A(n) is the median stabilization of
L), - ().
For me A(n) we take:

fmy= 0 co(f ().

The proof that f” is as desired goes in three steps.

First for me M(n), and for M |,M,e m we have that f(M )N f(M,)#J. Hence, the convex sets
appearing in the right-hand side of formula (1) meet two by two. As the cardinality of m is
finite, the right-hand side of (1) is at least non-empty.

Next, suppose that x,ye f'(m). There exists a halfspace H with xeH and ye H. Precisely one
of the formulae f~'(H)em, f~!(X \ H)e m holds, say the first one. But then co(f(f~' (H))) misses y,
contradicting the assumption that ye f'(m). This shows that f’ determines a function A(n) — X,
as desired. That f’ extends the standard embedding J,, is evident.

Finally, we verify that " is median preserving. To this end, let /,/,,/,e A(X). Striving for a
contradiction we suppose that

a=m(f'(1).fU2).fU3)) 5 b=Ff(me(l1,02,13)) ; a#b.
Let H be a halfspace in X with ae H and be H. Clearly at least two of f(I,),f(l,),f(I3) must lie
in H, say f({,),f(l;). Hence there are M;el; (i=1,2), with co(f(M;))cH. But now we have
M| UMyem(l,,l,,13), and therefore b = f'(m+(l,,l,,13))e co (f (M, UM,))c H, a contradiction. m

The following result shall be of crucial importance.
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1.11 Corollary. Let (X,m) be a median space, and let F c X be a finite set. Then the
median stabilization med (F) consists of at most 22"' points.

Proof: By Theorem 1.10 there exists a median preserving function f:A({1,2,..,n}) > X,
that contains F in its image. Clearly Im(f’) is a median stable subset of F, i.e. med (F)cim(f”).
Also as 22" consists of 22" points, the cardinality of the subset A({1,2,..,n}) is majorized by
that number. Hence so is the set Im (f). ]

§ 2 Isometric embedding in L ; (1) spaces

2.1 Lemma. Let (X,m) be a median algebra, and let C be a subset with a gate function
pc- Then the set

cone (C,a)={beX | bel(a,pc(b))}
is the smallest convex subset of X including C and a.

Proof: The only problem is to see that the right-hand side of the above formula is m-
convex. This can be obtained by “halfspace reasoning”, see I: 2.15. ]

We will refer to cone(C,a) as the cone with basis C with apex a. Note that

cone (C,a)=co(Cu{a}).

2.2 Lemma. Let (X,p) be a median metric space, and let C be a subset with gate func-
tion pc. If C xR is equipped with the sum metric p, then the function

fc :cone(C,a) > C xR, x = (p(x),px,p(x)),
satisfies the following equality for all xe cone (C,a):

ps(fex), fc(a)) = p(a,x).

Proof: Let xe cone(C,a). By Lemma 2.1, we have xe/(a,pc(x)) and hence that

p(a,x)+p(x,p (x))=p(a,p (x)). ™
Now consider the following equalities:
PP (x).p(a))+p(p (a).a) - p(p (x),x)=p(a,p (x)) - p(p (x),x) = p(a,x). **)

The first equality follows by definition of the gate p(a). The second equality is just property
(*). From (**) we conclude that

P (a),a)—p(p (x).x)=p(a.x) - p(p(a).p (x)).
As p is contractive (Proposition 1I: 4.1), the right-hand side of the equality is non-negative.
Therefore, (**) can be rewritten as

plp (x)p (@) + | p(p(a)a)-p(p (x),x) | =p(a,x),

which gives the result. ]
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2.3 Theorem. A median metric space (X,p) with n points is isometrically embeddable
inl 1 (n —1)

Proof: We establish the theorem by induction on n. For n=1, the situation is clear. Sup-
pose the result holds for median metric spaces with at most n points, and suppose that X has
n+1 points. Let (C;)/; be a maximal chain of non-empty convex sets in X. We consider
C=C,,_;. By virtue of the maximality of the chain, there is a point aeX such that
X=co(Cu{a}). We shall show that the map f- :X - C xR, considered in the previous lemma,
is an isometry.

To this end take x,yecone(C,a). If both x,y are members of C then, evidently,
ps(fe(), fc ) =p(x,y). If xecone(C,a)\C, then cone (C,x)=cone(C,a) (otherwise we could in-
sert an extra term cone(C,x) in the above chain). By Lemma 2.2 we conclude that
ps(fe(), fe®))=p(x,y). Therefore f. is an isometry. Now C has at most » points and by induc-
tive assumption, it embeds isometrically in /;(n-1). This yields an isometric embedding of X
in /{(n-1)xR (sum norm), which in turn is isometric with /,(n). |

2.4 Theorem. For a metric space (X,p), the following conditions are equivalent.
(1) (X,p) is a median metric space. '
(2) (X,p) is a median stable subspace of an L | (W)-space.
(3) (X, p) is a median stable subspace of a K \(W)-space.

Proof: The implications (3),(2) — (1) are obvious. For a proof of implication (1) — (2),
take any finite set F in X. By Corollary 1.11 the median stabilization med (F) of F is finite.
Hence the metric space (med(F),p|meacry) is median. By Theorem 2.3, we conclude that
(med (F),p|mea(r)) is isometrically embeddable in a (finite dimensional) L () space. In particu-
lar, its metric subspace (F,pr)c(med(F),p|mear)) is isometrically embeddable in an L ()
space. Now Theorem 1.2 and Lemma 1.3 finish the proof of the theorem. =

§ 3 Congruences and optimality

We recall the following results. Let (X,m) be a median algebra. If f: X — Y is a surjec-
tive, median preserving function, then f maps convex sets onto convex sets (Theorem I: 4.8).
Moreover, if the convex set C < X is gated, then so is f (C), and the respective gate functions
commute with f—see Corollary I: 4.11. We finally remark that a gate function preserves the
median, as one can verify by “halfspace reasoning” (see I: 2.15).

For each pair of disjoint convex sets C,D in a median algebra X there is a homomor-
phism X —{ 0,1} mapping C to 0 and D to 1 —see Theorem I: 4.19. This result is frequently
applied in case C={a}, D={b}. In a situation where /(a,b)={a,b}, the commuting of
homomorphisms with gate maps implies that, up to interchanging 0,1, there can be only one
homomorphism separating such a pair of points.
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By a congruence relation on X is meant an equivalence relation = such that
m(ay,b,cy=m(a,,b,c) whenever a; =a,. For a congruence “=” on X, consider the quotient
q:X — X/=. An induced median m can be defined on X /= as follows:

m(q(a).q(b).q(c)) = gm (a,b,c).

By definition, ¢ is a median-preserving function. Conversely, every median-preserving func-
tion of median algebras induces a congruence relation on its domain in the obvious way.

3.1 Lemma. ([8]) Each congruence relation on a product X | x X, of two median alge-
bras X |, X, is the product of a congruence on X | with a congruence on X .

Proof: Let X=X, x X, and fix a point of reference ¢ =(cy,c;) € X. The following two
sets are gated:

Ci={c1}xXpCr=X;x{cy }.

Letgq: X — X be the quotlent function, associated with the given congruence on X. We obtain
convex sets g(C;) = é‘ c X which are gated. Let p;: X — C; and p;: X — C; denote the gate
functions (i = 1, 2). This gives a median preserving function

p=@1.p2): X 5 C XCy
which we show to be an isomorphism.

As homomorphisms commute with gate functions, we have equalities p;- g =q- p; for
i=1, 2. It follows that p is surjective. Let b =(b,,b,) € X. By using the idempotent law of the
constituting factor medians, we see that m((c,b;),c,(by,c3))=c. Hence c¢ is the infimum in
X,<.) of (cy,b;) and (by,c;). Similarly, b is the infimum in (X,<,) of (by,c;) and (cy,b5). As
median preserving functions also preserve basepoint orders, we find that the point g(b) is the
infimum in (X,<,()) of u =q(cy,b;) and v =g(b,,c;). Hence g(b) is the supremum of u, v in
the basepoint order of g(c). Now u =p,q(b) and v = p,q(b), and injectivity easily follows. =

If each non-trivial congruence relation on a median algebra X identifies some points of
the subset Y, then Y is said to be optimal in X.

3.2 Proposition. Let Y be a subset of a product X | x X, of two median algebras. Then
there exist median-preserving quotients
qi: X; > X; o
of X; (i =1, 2) such that q, X q, is injective on Y and q(Y) is optimal in X | X X ,.

Proof: Evidently, if a nest of congruence relations is given on a median algebra X, then
its union is again a congruence relation. A simple application of Zorn’s lemma yields a
congruence relation = on X | x X,, maximal with the property that no two distinct points of Y
are related. By Lemma 3.1, the relation = splits over the factors, yielding the desired quo-
tients. n

In the next results we opéraie on product sets X, x X,. The labels “h” and “v” refer to
the viewpoint of a “horizontal” resp. “vertical” factor. The coordinate projections are denoted
by



§3: Congruences and optimality 109

’

T[;,:Xh XX‘, —)Xh; T[vZXh XXV ——)Xv.

A pair of points a # b in X, x X, is called horizontal (vertical) provided the vertical (horizontal)
projection m, (m,) identifies the pair. A pair which is neither horizontal nor vertical is called
skew. A few lemmas are required.

3.3 Lemma. Let a,b,c,d be four points in a product of two median algebras, and let
¢ =m(c,d,a);d =m(c,d,b).

If a, b is a horizontal (vertical) pair, then so is c, d.

Proof: Just use that the product’s median commutes with both factor projections. ]

The diagonal of [0,1] is a typical example of a non-optimally embedded algebra. The
(subalgebra) interval between (0,0) and (1,1) allows no horizontal pair, and yet the pair of end-
points is not a vertical one. In contrast we have:

3.4 Lemma. Let X be a median algebra which is optimally embedded in X), x X,, and let
a, b € X. If Iy(a,b) includes no horizontal pair, then a, b is a vertical pair.

Proof: Assume to the contrary that
ay = my(a) # by, = 1,(b),
and consider the smallest congruence relation = on the product space which identifies the con-
vex set C = I (ay,by) X { b, }, viz.,
/ usvedu,vVeCiu=m@,uv),v=mQ,uv) *)
(cf. Bandelt and Hedlikova [8]). Suppose u # v in X are congruent under =, and let u’,v’e C be

corresponding points as in (*). Being in C, these points constitute a horizontal pair. By Lem-
ma 3.3, u,v are horizontal, and so are the projections

u=m(a,b,u);v=m(a,b,v)
onto the interval /(a,b). These points are in Iy(a,b) since X is median stable, so by assumption,
u =v. The definition of gate gives that

u € Ix(uu),
whereas the intersection of the intervals Iy(u,v) and coy(u,u”) consists of u only. Hence, u is the
gate of u in Iy(u,v). Similarly, v is the gate of v in Ix(u,v). Asu =, this is a contradiction. We
conclude that some further identification can be performed on X, x X, without touching at X,
and the embedding is not optimal. ]

3.5 Construction. Let (X,p) be a median metric space which is embedded as a subalge-
bra of X;, X X,, and let a, b € X. We construct three real numbers

Pu(a,b), py(a,b), ps(a,b)20
as follows. Let F c Iy(a,b) be a finite median-stable set including a, b, and let K < F be a
maximal totally ordered set (a maximal chain) in the basepoint order <, joining a, b. We let

Prx (T€Sp. py k. Ps.x) be the sum of all distances between successive points of K which consti-
tute a horizontal (resp., vertical, skew) pair. Note that
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Pk *+ Pvk + Ps ik = Pla,b),
since each point other than a is taken from the metric interval between its predecessor and b.

We first verify that these numbers do not depend on the particular choice of K. Suppose
K’ ¢ F is another maximal chain joining a, b. In the finite median algebra F, each “atomic
pair” (i.e., a pair of type x, y such that /n(x,y)={x,y}) can be separated by exactly one
homomorphism X —{0,1}. If we pick one atomic pair of successors in K, then the
corresponding map separates between a, b, and hence it somewhere cuts an atomic pair of K'.
As this chain is increasing, only one such pair is cut. This establishes a bijective correspon-
dence () between successor pairs of K and of K’. Two corresponding pairs — say: 4 < v in K
and &’ < v’ in K’ — yield mutual gates u, 4" and v, v/, and hence they are of the same type and at
the same distance.

So we arrive at three numbers p,(F), p.(F), ps(F) 20, the sum of which equals p(a,b). If
G D F is another finite median-stable subset of /y(a,b), then each maximal chain K in F extends
to a maximal chain L in G. Evidently, a horizontal (resp. vertical) atomic pair of K subdivides
into atomic pairs of L which are exclusively horizontal (resp. vertical). A skew atomic pair of
K may subdivide into a mixture of all three types. In each case, the distances sum up to the dis-
tance of the original atomic pair of K. We conclude that

Now the collection of all finite median-stable subsets of Iy(a,b) is updirected under in-
clusion. The previous observations yield three numbers

ph(a’b) = SUprh(F); pV(a’b) = Supr pv(F)v p,\’(a7b) = ian ps(F)»
such that

p(a,b) = py(a,b) + p,(a,b) + ps(a,b).

3.6 Proposition. Let (X, p) be a metric median space which is optimally (algebraically)

embedded into a product X, x X, of median algebras. Then:

(1)  Each of the functions py, p,, py is a pseudo-metric on X.

(2) A pair of points a, b € X is horizontal (vertical) iff p,(a,b)=0 (py(a,b)=0). In either
case, ps(a,b) =0.

(3) Ifa,a and b, b’ are horizontal pairs, then p,(a,b)=p,(a’,b’) and p,(a,b) =p,(a’,b"). A
similar statement holds for vertical pairs.

(4) If c € Ix(a,b) then p.(a,b) =ps(a,c) + ps(c,b), where the subscript “*” denotes any of
h, v, s.

(5) If c e X and my(c) & mulx(a,b), then py(a,b) < py(a,c) + pu(c,b). A similar formula works
for the projection =,

Proof: (1): The properties
ps(a,b)=0if a = b, and

This argument also shows that maximal chains between two points are of equal length. Compare Theorem
I: 4.26.
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pe(a,b) = p.(b,a),
are straightforward for all three functions. As for the triangle inequality, consider a, b, ¢ € X.
It suffices to verify the property on a collection of finite median stable subsets of X including
a,b,c and inducing a cofinal collection of subsets on each of the intervals
Ix(a,b), Ix(a,c), Ix(c,b).

To this end, consider three finite median stable subsets F,,, F,., F, of the respective in-
tervals and let F be the (finite) median stabilization of F,, U F,. U F,. Consider maximal
chains K,., K, c F joining the points referred to by the label. We project the points of
K,. U K into Ix(a,b) by the map m (a,b, - - - ). The images are in F N Ix(a,b) by median stabil-
ity. An atomic pair is either identified, or it maps to another atomic pair of F, in which case the
corresponding endpoints form mutual gates and the image pair is of the same type. Finally,
pairs which correspond under mutual gate mappings are isometric (since gate projections are
non-expansive).

(2): If a, b € X is a vertical pair of points then evidently each discrete chain in /y(a,b) is built
with vertical pairs. Hence there is no contribution to pj or to p,. The converse follows from
Lemma 3.4

(3): Think of two horizontal pairs. By the triangle inequality we have

Ps(a,b) <py(a,a’) + ps(a’,b’) + ps(b',b).
The first and third term are zero by (2). The opposite equality obtains similarly. The same
kind of argument works with p, replaced by p,.

(4): The argument is a simplification of the one given in (1): consider all finite median stable
subsets of Iy(a,b) which contain a, b, c. As the choice of a maximal chain in a given median
stable subset is irrelevant, we need only consider chains through c¢. The result follows easily.

(5): Letd =m(a,b,c). Then d is in each of the intervals Ix(a,b), Ix(a,c), Ix(c,b), and three ap-
plications of (4) give

Pu(a;c) + pulc,b) = 2:py(c,d) = pu(a,b).
Now the pair of points ¢, d is not vertical, since m,(d) is in Iy(m,(a),m,(b)) and m,(c) is not.
Hence, by (2), p,(c,d) > 0. n

3.7 Corollary. Let the median metric space (X,p) be optimally embedded as a subalge-
bra of X, x X,, and suppose that the coordinate projections map X surjectively onto each of the
factors. Then there exists a metric p, on X, and a metric p, on X, with the following proper-
ties.

(1) p,, generates the median of X, and p, generates the median of X,.
(2) p=Pn+py

Proof: Given two points ay,b;, € X,, choose pre-images a, b € X. With the above nota-
tion, we put
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Pulan,by) = pu(a,b) + ¥op(a,b). : *)
Note that if different representatives a’, b’ are taken in X, then a, a” and b, b’ are vertical pairs
and by Proposition 3.6(3), the terms at the right-hand side of (*) remain unchanged. This
defines a metric by Proposition 3.6(1) and (2), which is compatible with the median of X}, by
Proposition 3.6(4) and (5). After defining a metric p, on X, in the same way, we obtain that
the metric p of X satisfies p = p, + p,, as required. |

3.8 Proposition. Let (X,p) be a median metric space which embeds algebraically into a
totally ordered set. Then there is an isometric embedding of (X, p) into the real line.

Proof: X is assumed to be a median stable subset of a totally ordered set L. This yields
that the median convexity of X is the relative convexity, induced from the (standard) order con-
vexity of L. In particular, the interval function of X is derived from the relative total order in-
duced on X. In the sequel we consider X=L.

Define a function f:X—IR as follows. Fix 0Oe X and put

0(O,x)  if x>0
f)= {—p(O,x) if x<0.

To see that f is an isometric embedding into R, let a,beX. For reasons of symmetry we need
only consider the following two possibilities.

CASE I: 0<a<b. Following the order-theoretic definition of I(a,b), we have ael(0,b).
Following the metric definition of I(a,b), we find p(0,a)+p(a,b)=p(0,b). Hence
f(b)-f(a)=p(a,b).

CASE 1II: a<0O<b. This time, we have p(a,0)+p(0,b)=p(a,b), and hence
—f (a)tf (b)=p(a,b). =

Combining the previous results leads us to the following.

3.9 Theorem. Let (X,p) be a median metric space which embeds algebraically into a
product of n totally ordered sets. Then there is an isometric embedding of (X, p) into l,(n).

Proof: We proceed by induction on the number r of factors. For n=1 this is the previous
result. Let X be algebraically embedded into 1_[:.':11141'- By Proposition 3.2, we obtain an op-
timal embedding of X into a product of a quotient of I L with a quotient of L,,;. As
median-preserving functions also preserve intervals and basepoint orders, it is evident that the
quotient of a totally ordered median algebra is totally ordered. By (inductive) application of
Lemma 3.1, we see that the former quotient is again a product of » totally ordered sets. Let X,
be the projection image of X into this product, and let X, denote the other projection image of
X. By Corollary 3.7, we obtain median metrics on each of the spaces X,,X,, such that the
corresponding “sum metric” on X, X X, agrees with the given metric of X. By the induction hy-
pothesis, these metric factor spaces can be isometrically re-embedded in, respectively, /,(n),
and R. The sum-metric on the product of these two spaces corresponds exactly with the sum-
norm of /,(n+1). L]
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We remark that the restriction to finitely many factors is essential: there exists a median
metric space which is algebraically embeddable in RN but can not be isometrically embedded
in /,(IN). Indeed, consider the following dense subspace of L ([0,1])

W={f;Q—>R| fis continuous}.

In view of Corollary IV: 2.11, W cannot be isometrically embedded in any /, (/) space.

The application of Theorem 3.9 requires a method of verifying whether a median
(metric) space is algebraically in a product of totally ordered sets. The following result was
found by E. Evans [23].

3.10 Theorem. The following are equivalent for a median algebra (X,m).

(1) m(a,b,c)e{a,b,c} Va,b,ceX.
(2) Either, X is embeddable in a totally ordered set (as a subalgebra), or it is a graphic
square. ]

Combining the previous theorem with Proposition 3.8 we obtain:

3.11 Corollary. A median metric space X satisfying formula 3.10(1) is either a metric
subspace of R or a graphic square. : ]



CHAPTER VI

AMALGAMATING SPACES

Suppose we have two geometric interval spaces (X,,/,) and (X,,/,) such that X, X, is
gated in both spaces. In section 1 we shall show that the interval operators I, /, can be
extended in a canonical way to the whole of X=X, UX,. This yields an interval operator /
on X, which is the unique geometric extension to X of /,, /,, such that the sets X, X, are
gated. Uniqueness of such extensions is relevant as this enables us to recover a geometric
interval space from a cover of (two) convex sets.

In section 2 we obtain a construction to extend compatible metrics on (X;,/;) and
(X2,1,) to the whole of (X,7). As compatible metrics on median spaces have the (F,2)-IP,
we this yields a method to construct such metrics on certain median interval spaces. This
construction is applied in section 3 to create median and hyperconvex metrics on collapsi-
ble polyhedra.

§ 1 The amalgamation of geometric interval spaces

For convenience we introduce the following convention. Let X,X, ---,X,,Y be sets. A
set of functions f;:X? Y (i=1,2, - - - ,n) is said to be matching if for all 1<i,j <n the mappings
fi»f; coincide on (X; "X;) (this set may be empty). Subsets of type X; N X; with i # j are called
conneclors.

We now come to an extension theorem for geometric interval operators. This result was
inspired by a result of van de Vel [80, Theorem 3.1], where an extension theorem for (topo-
logical) median convexities is shown (cf. Theorem 1.4 below).

1.1 Theorem. Suppose that (X,l,) and (X,,1,) are matching geometric interval
spaces, with a commonly gated connector. Let p;:X; > X, NX, be the gate function (i=1,2).
Then there is one and only one geometric interval operator I on X | UX, that extends I, and I,
with the property that an I-interval that meets X and X, also meets X, NX,. If aeX, and
beX,, then | is given by

I(a,b)=11(a,p2(b)) W 11(pi(a).b). (1.1.1)

Proof: Let / be the extension of /,,/, satisfying formula (1.1.1). Then / is at least a
(well-defined) interval operator on X;UX,. Let x;eX; and let <! denote the (original)
basepoint order of (X;,/;) (i=1,2). The basepoint relation of / shall be denoted by <,
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(xeX, UX,). The following formula describes the compatibility of < and <‘. IfaeX, beX,
and xe X |, then

x<b © x<lp,y (b). @)
A similar formula holds for xe X,. The implication from right to left in (2) is evident. Let

x <, b. In view of the definition of / we only have to consider the situation that xel,(p(a),b)
(see Figure 1.1).

XlnXZ
X PI() ) ob

B e lrpl(a)

X,

Fig. 1.1: extending matching interval spaces

As x is a member of the connector we have p,(b) <% x by definition of a gate. By the geometric
property of I, we conclude xel,(p,(a),p,(b)), i.e. xel(p(a),p2(b)). By the geometric proper-
ty of I, the last set is contained in 7 {(a,p,(b)).
For a proof that / is geometric we use (I: 3.2). To this end, let a,b,x,yeX; UX, and
y<,band x<,y. We have to show that
x<pa, y<px. “)
We may assume that a,xe X, and b,y €X,, since by formula (2) other situations reduce to the

original interval spaces. With the aid of formula (2) and the definition of gate we obtain the
following implications:

x <4 p1(®) <hpa(y) () b1 ST ARSI ACINC!
< cy <
TR 2 piw e L1 @.p20) (%) 7 =97 T | pa0y) € L(pa(b).p1(@) (+)
Combining (**) and (+) yields y < p;(x), i.e. y <, x by formula (2). We obtain p,(y)<} p,(b) by
using the definition of the gate p;(a) on (++). Combining this with formula (*) yields

x<!p,(b), ie. x<,b by formula (2). This completes the proof of (4), showing that I is
geometric.

One can readily verify that an interval / (a,b) meeting X; and X, will meet X; nX, in the
gate of a (or b) in X| N X,.
For a proof of unicity, suppose that I is another geometric extension of /,,/, onto
X UX, as described. LetaeX; and be X,, and let zel(a,b)nX | N X,. Then
pi(a)el (a,z)=I(a,z) cI(a,b).
Hence the point p(a) is the gate of a irle. Similarly the point p,(b) is the gate of b in X ;. By
the assumed geometrical property of / we obtain that the sets /(a,p,(b)) and I,(p,(a),b) are
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subsets of /(a,b), i.e. I(a,b) is contained in I(a,b). Let xel(a,b), say xe X ;. We established ear-
lier that p,(b) is the gate of b in X, so in particular p,(b)e i(b,x). By the assumed geometric
property of I we deduce that xel(py(b),a), that is xeI(a,b). As acX, and beX, were arbitrary
we conclude that 7 =1. ]

The geometric interval space (X, UX,,l) described in the previous theorem, is called the
(geometric) amalgamation of (X,1,) and (X,,/,). We remark that if we do not require the
intersection-property of intervals appearing in the previous theorem, then there may be more
than one extension on X; UX,. See Theorem 1.4 below for an affirmative result on modular
spaces.

The following result, which is easily verified, provides us with a different description of
the geometric amalgamation.

1.2 Proposition. Let (X,I) be a geometric interval space and let X |, X, be subsets of X
such that X, UX,=X and X, "X, is gated in X. Then following are equivalent.
(1) Every I-interval meeting X | and X , also meets X | NX,.
(2) The subsets X |, X, are gated in X.
In the above situation, the gate maps X - X | and X, - X N X, coincide on X ;. ]

1.3 Matching modular spaces. For modular interval spaces there is a simpler descrip-
tion of the geometric amalgamation.

1.4 Theorem. Suppose that (X ,1,) and (X,,1,) are matching modular interval spaces
with a commonly gated connector. Then,
(1)  The amalgamation interval operator I of X |,X, is the unique modular interval operator
on X, UX, that extends 1, and I ,.
(2) IfaeX; andb,ceX, then,
M (a,b,c)=M,(p(a),b,c).

In particular, if (X,,1,) and (X 1,1,) are median then so is the amalgamation.

Proof: The validity of statement (2) follows from the description of the amalgamation
interval operator (Formula 1.1.1) and Formula (2) appearing ‘n the proof of Theorem 1.1.

It immediately follows from (2) that the geometric amalgamation of (X,/,) and (X,,/,) is
modular. We are left with the unicity part of (2). To this end, let I be another interval operator
as described in the theorem. Aiming at the use of Theorem 1.1, Let aeX, and beX,. Let
p1(a) be the gate of a in X; N X,. By assumption there is a point

xel(ap(@)NI(a,b)NI(b,p(a)).
As I extends /,/, we conclude that xel(a,p(a))ni,(b,pi(a)), ie. xeX;NX,. Hence, T(a,b)
meets X, N X,. We can now apply Theorem 1.1 to obtain / =J. n
1.5 Matching metric interval spaces. A collection {(X;,p;)|i=1,2, ‘" ,n} of metric

spaces is said to be matching provided the metric functions ate matching, and all connectors
X;nX; are closed in X; (1<i#j<n).
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Let (X,,p;) and (X;,p,) be two matching metric spaces with a non-empty connector. We
construct an extension p of p;, p, on X, UX, as follows.

p(xi,xz)= inf pi(xy,c)+pa(exy)  (x1€X),x2€6X>5)
ceX\NX,

It is easy to see that p is a metric on X UX,. This metric is called the path-metric with respect
to p;, p2. In general the path-metric is not the only extension of p; and p,, but it is the largest
metric extension on X; UX,. The induced topology on X UX, is independent of the extension
and equals the “Whitehead topology”, see below.

1.6 Theorem. Let (X,,I,) and (X,,I;) be matching interval spaces with a commonly
gated connector. Suppose that I,1, are derived from matching metrics p, and p, on X, and
X, respectively. Then the following hold.

(1) The path-metric p w.r.t. p;,p, is the unique metric on X, UX, extending p, and p, and
inducing the amalgamation interval operator I.
(2) ForaeX, and beX, we have:

p(a,b)=pi(a,pi(a))+p2(pi(a)b).
Moreover, if the metrics py, p, are convex then so is p.

Proof: First, we will show equality (2). To this end, let aeX; and beX,. For each
CEX[ ﬂXz,

pi(a.pi(a)+p2(p1(a),b)<pi(a,p1(a)) +p2(p1(a).c) +pa(c,b)
=pi(a,p1(a))+p1(P1(a),c)+pa(c,b)=p1(a,c) +p2(c,b).
The inequality is the triangle inequality of p,. The first equality is due to compatibility of the

metrics. p;,p, on X; N X5, and the second equality only invokes the definition of the gate p(a).
By virtue of the definition of a path-metric we conclude to equality (2).

Secondly, from the equality in (2) it follows that the metric interval operator of p
equals /. Finally, for a proof of the unicity part of statement (1), note that a metric extending
p; and p, and inducing / must have the form as described in (2). ]

1.7 Repeated matchings; topological properties. The following result describes the
convex and gated sets of the geometric amalgamation.

1.8 Proposition. A non-empty subset C of a geometric amalgamation (X, UX,,I) is
convex (resp. gated) if and only if
() CnNX; is convex (resp. gated or empty) in (X;,1I;).
(i) IfC meets X, and X , then it meets X | N X 5.

Proof: By Proposition 1.2 X; is a gated subset of the amalgamation (i=1,2). If Cis a
convex subset of the amalgamation meeting X, (say in x;) and X, (say in x,), then the gate of
x; onto X, is a member of /(x,,x;)cC. The subset C nX; is evidently convex in (X;,/;)
(i=1,2). If C is gated in the amalgamation, then the intersection of gated sets C NX; is either
empty or gated by (I: 3.4.4).
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Conversely, let C be a subset as deseribed in (i), (if) with respect to “convex”. If C is
contained in either X or X3, then C is evidently convex in the amalgamation. Otherwise C
meets X, N X, say inz. Forany x;eX; and.x,eX, we have

LiGer,pa(x2)) (e, 2) €C 5 Laxg,pi(x)) €lalxa,z) cC.

Hence in view of Theorem 1.1 I(x,,x,) cC. Whence C is a convex subset of the amalgamation.
Suppose C is as described in (i), (ii) with respect to “gated”. If C meets X; N X, then the.
gate of x;eX; in C mX; is the gate of x; in the: whole of C (i=1,2). Indeed, assume i=1, and let
zeCnNX,. Then p,(z)eC nX,. Hence the gate of x; in CnX, is contained in I(x;,p,(z))
which is a subset of /(x,z). If C is contained in X, or X,, then we can apply (I: 3.4.3) to obtain
that C is gated in the amalgamation. L 3

We are interested in topologies on geometric interval space such that convex sets: are
connected and gated sets are closed. Such topologies arise frequently, cf. Theorem II: 2.14 and
Proposition 1I: 4.1. These topologies enable. us to formulate condition (ii) of Proposition1.8
in terms of (topological) closure and connectedness. We work towards-such a description for
convex and gated subsets for an arbitrary finite sequence of matchings.

First we introduce some notions. A collection of topological spaces (X;,T;){-; is said.to
be matching provided for all 1<i,j<n the relative topologies induced on the connector X; N.X;.
by X; and X; coincide and the subset X;nX; is closed in X;. The Whitehead topology on
U{X; | i=1,2,---,n} is defined as follows. A subset F of the union is closed if and only if
A NX; is closed in (X;,7;) for all i. There is a similar description for open sets.

(1.9) The Whitehead topology is the unique topology on U{X;|i=1,2, - --,n} such:that:the
spaces (X;,T;) occur as closed subspaces (i=1,2, - - ,n).

From (1.9) it follows that any extension of two matching metric spaces with a non-
empty closed connector induces the Whitehead topology. Unless stated to the contrary we take
the Whitehead topology on the union of matching topological spaces.

1.10 Lemma. Let (X,/,) and (X,,I;) be matching geometric interval spaces. Let 5;
(i=1,2) be a cover of X; consisting of gated sets endowed with a.topology. such. that:b; is-
matching and
(i) A subset C cX; is convex iff C is connected and for each Ge ; the set C NG is convex.
(ii) A non-empty subset C  X; is gated iff C is connected and for each.G € b, the set C NG is:
gated or empty.

Then with respect to the Whitehead topology on the geometric amalgamation,

(iii) A subset C =X, UX, is convex iff C is connected and for each Ge b, U5, the set.C " G.
is.convex..

(iv). A non-empty subset C c X', UX, is gated: iff C is connected. and. for each Ge 5,5, the
set'C M G-is gated'or empty.

Proof:: Note that:the coverrd; w¥, is matching: Let:C X, UX;, be a convex.subset of:
the amalgamation; meeting:both-X:;. and X,. Then C meets X m X, By Propoesition:1.8. Hénce
C=(CnX,)uU(€nX,)is a connected subset of X.; UX,. Next let C X, UX, be connected
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and for all Ge &, U, the set C NG is convex. Let i=1,2. As all intersections of type C NG
with Ge b; are connected by assumption, the subset C nX; splits into a finite number of com-
ponents, which by virtue of (i) are convex in X;. Let C; denote the collection of such com-
ponents.

Assume that K,L are distinct cdmponents in C;. As C is connected in X; UX, there exists a
sequence of successively intersecting members C; U (C,, starting with K and ending with L.
Note that the members of this chain must alternate between C; and C,. In particular, there ex-
ists a member L’e C, different from K, and a member Me C,, that meets both K and L’. But
then M nX | N X, is a convex set, hence connected, subset in C "X, meeting K and L. That is
K =L’, a contradiction.

We conclude that the set C X, (i=1,2) is connected and hence convex in (X,/,) by
assumption (i). Similarly we obtain that the set C nX, is convex in (X,,/;). As C meets the
connector by connectivity, we obtain that C is convex in the amalgamation by Proposition 1.8.
We have shown statement (iii). The proof of statement (iv) is similar. ]

Let {(X;,1;,T;) | i=1,2, - - - ,n} be a finite collection of geometric interval spaces and topo-
logies such that for all i=1,2, - - - ,n, convex subsets in X; are connected, and gated subsets in X;
are closed. From the previous lemma we conclude that if there is a matching procedure yield-
ing a geometric interval operator on the union U {(X;,/;,T;) | i=1,2, - - - ,n}, then:

a non-empty subset of the union is convex (gated) iff it is connected and intersects each
.X; in a convex (gated or empty) part. @)

In particular, the convexity on the union is independent of the matching procedure. If all
(X;,1;) are modular, then so is the interval operator on the union obtained by matching (use in-
duction and Theorem 1.4). As a median interval between two points equals the convex hull of
these points, we deduce that the median interval operator is independent of the matching pro-
cedure. We don’t know whether this holds for general modular spaces.

There is a special type of space where the matching techniques are applicable, the con-
nected cubical polyhedra. See section 3. Van de Vel has shown that if there is a median con-
vexity on a cubical polyhedron (which need not come from a matching procedure!) that ex-
tends the interval operators on the cubes, then the convexity must be of type (*).

If (X;,1;,7;) are as above, and if the /; are derived from matching (convex) metrics p; that
induce the topology t; (i=1,2, - - - ,n), then an interval operator on U {(X;,[;,7;) | i=1,2, - - - ,n}
obtained by a matching procedure is also induced by a (convex) metric. This follows by induc-
tion and Theorem 1.6. Somewhat surprisingly it turns out that this metric is independent of
the matching procedure. In fact something stronger holds.

The following notions are well-known. Let A c X be sets and let Q be a cover of X. A
chain of Q on A is a finite sequence Uy, - -,U,eQ such that U;nU;,;nA=@ for all
i=1,2, --,n-1. Two points a,beA are connected on A by a chain of Q if there is a chain of Q
on A such that ee U and be U,,.
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1.11 Lemma. Let neN and let Q={(X;,p;) | i=1, - ,n} be a collection of matching
metric spaces. There is at most one metric p on X =U}. X; such that
(i) pextends p; for eachi=1,2, - ,n.
(ii) Each a,be X can be connected by a chain of Q on I ,(a,b).

Proof: Suppose that 4 is another metric on U}, X; with properties (i) and (ii). We verify
the following statement by induction on k > 1:

If a,be X are connected by a chain (X; )_; on /,(a,b), then p(a,b) 2d(a,b). *)

Formula (*) trivially holds for k=1. Assume that (*) holds for some keIN. Let a,beX and let

(X,»l)f;*l‘ be a chain of Q only(a,b). Fix xel,(a,b)nX; nX, . Then p(a,x)=d(e,x) and

p(x,b)>d(x,b) by the induction hypotheses. As xel,(a,b) we obtain
p(a,b)=p(a,x)+p(x,b)>d(a,x)+d(x,b)>d (a,b).

This concludes the induction. By permuting the roles of p and d we obtain d(a,b)2p(a,b).

Whence d(a,b)=p(a,b). |

1.12 Corollary. If (X;,p;)i-; are matching metric spaces (n€IN), then there is at most
one metric p on U{X; | i=1,2, - - ,n} with connected intervals and extending all p;. ]

1.13 Corollary. Let (X;,p;)-, be a finite collection of matching modular metric spaces.
(1) If for all i <n the metric p; is convex, then there is at most one convex modular metric p
onU{X;|i=1,2, - ,n} extending all p;.
(2) Ifthe set U{X;|i=1,2,- - ,n} is connected, then there is at most one modular metric p
on this union extending all p;.

Proof: If all (X;,p;) are complete, then so is the metric p on the union. By Theorem
II: 2.14 p has connected intervals in both circumstances (1) and (2). Hence we can apply
Corollary 1.12. The proof of the general case follows by taking completions (by Theorem
II: 3.1 the completion of a modular metric space is modular). n

1.14 Problem. Does there exist a metric as in 1.11 or 1.12 or 1.13?

§ 2 Matching adapted metrics
The following theorem, which is formulated in a general setting, states that two compatible
metrics on the summands of a geometric amalgation can be extended to the amalgamation:

2.1 Theorem. Let (X,I,); and (X,,1,) be matching geometric interval spaces with: a
commonly gated connector, and let d|, d, be convex compatible metrics on'(X,l1), (X;15)
respectively, that'match. If all balls of type

Dy (xi, di(xi, X' N X))

for i=1,2 and x;e X; are gated, then-there is one and only one convex metric don:X, VX, ex-
tending d,d, that is compatible with (X | UX,,I). The metric d equals the path-metric w.r.t:
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Proof: Let d denote the path-metric w.r.t. d,,d,. The closed balls of d,,d;,d are denoted
by, respectively D;,D,,D. By p; (i=1,2) we denote the gate function X; > X; NX.
Assertion: Let ac X |,beX, and t=d(a,X| N X,). Then there exists a ceX; NX, with
d(a,b)=d(a,c)+dy(c,b) ; di(a,c)=t 1)
In particular, c realizes the infimum appearing in the definition of path-metric.
To this end, by Lemma IV: 3.4(1) the convex set D(a,f) meets X; NX, (e.g. in p;(a)).
Hence, the subset D, (a,t)nX,;NX, is gated in X;NX,. Let ¢ be the gate of b in
D (a,t)nX; NX,. We claim that c satisfies (1). See the figure below.

Pz(b) - b
Pm
e
b'””

....... t“L pia)

Dl(ﬂ,l) X] ﬁXz

By Lemma IV:3.4(1), c realizes the distance of b to D (a,t)nX;NX,. Now let
meX,NX,. Asd, is convex we can find m’e X, with

di(a,m)=d(a,m’)+d(m’,m), and d |(a,m’)=1.

That is,

m’eD (a,t), m’eD(m,d(a,m)-t). @)
Let m” be the gate of m” in X; nX,. Then by virtue of formula (2) and (I: 3.4.1):

m”eD (a,t)NX,NX,, m”"eD(m,d(a,m)-1). 3)

Note that m’ and m” lie in the boundaries of the balls that occur in (2), (3). In particular, we
have d,(a,m”)=t=d(a,c). Hence we have the following inequality:

di(a,c)+dy(c,b)<d (a,m”)+dy(m",b). 4
From (3) we also obtain the following equalities:

d(a,m)=d(a,m’)y+d(m',m)=d (a,m”)+d(m",m).
That is

d(a,m”)=d(a,m)—d(m",m). )
Now, the triangle inequality of d and formula (5) give

dy(a,m”)+dy(m”,b)<d (a,m”)+d(m”,m)+d,(m,b)<d (a,m)+d,(m,b).
Whence, d(a,c)+d;(c,b)<d(a,m)+d,(m,b), by formula (4). As meX, NX, was arbitrary we
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conclude to formula (1) by invoking the definition of d.
From formula (1) one can easily deduce that 4 is convex. Next, let C be a convex subset of
the amalgamation and r > 0. We consider two cases.
Case (i): CnX;nX,#D. In this situation we claim that the following formula holds for
i=1,2:
D(C,r)NX;=D{(C NX,,r). ©
We may assume that i =1. The inclusion from right to left is evident. For a proof of the other
inclusion, let y be a member of the left-hand side of (6). We shall show the following:
For all € > 0 there exists a ce C n X such that d,(y,c) <r+e. @)
Take € > 0. By definition of distance to the subset C, there exists a ce C such that d(y,c) <r+e.
If ce X, we are done. Otherwise, by the Assertion there exists an me X; N X, such that
di(y,m)+d,(m,c)=d(y,c)<r+e
Now let s =d,(m,c). Then the ball D,(m,s) contains c and, being convex, it also contains the
gate p,(c) of c. Hence we have d(y,m)+d,(m,p,(c)<r+g, so d(y,ps(c) <r+¢e. This finishes
the proof of (7). From (7) we conclude that d(y,C nX)<r, i.e. y is a member of the right-hand
side in (6). '
By applying Proposition 1.8 to formula (1) we conclude that D(C,r) is convex in the amalga-
mation.
Case (ii): C "X, nX,=4. By Proposition 1.8 this means that the subset C is exclusively con-
tained in X, or X,. We may assume that C cX,. Lett=d,(C,X,nX,). Then,
D(C,s)=D(C,s) (0<s<i). 8)
To this end, as the inclusion from right to left in (8) is evident, let x be a member of the left-
hand side of (8). Suppose that xeX,. As X, is d-closed there exists an & >0 such that D(x,€)
avoids X;. Also there is a ceC with d(c,x)<s+e. Now by the Assertion there is a point
yeX;NX,, with d(c,x)=d(c,y)+d(y,x). Whence d(c,y) < s, a contradiction.
From formula (8) we conclude that D (C,s) is convex for each s<t. As d is a convex metric,
we have the following equality for s > ¢,
D(C,s)=D(D(C,t),s —t). )
By (8) we have D(C,t)=D,(C,t)cX,, whereas Lemma IV:3.4(1) implies that
D,(C,t)nX | nX,#J. Hence, we can apply case (i) to the right-hand side of (9), which yields
that D(C,r) is convex in the amalgamation.

Finally, let 4’ be another metric as described, and let the closed balls of ¢’ be denoted
by D’. Asd’extendsd;,d, we haved’<d. LetaeX,,beX, and lett=d,(a,X,nX;). Then,

D (a,t)=D"(a,1). (10)
As the inclusion from left to right in (10) is evident, let y be a member of the right-hand side of

(10). By Proposition 1.2 the gate p,(a) of a in X, N X is also the gate of a in the whole of X,.
So we obtain from Lemma IV: 3.4(1) that

d'@X)=d"@ X, "X;)=d@p, (@)=t an
Now observe that each point different from y in the d’-interval /,-(a,y) must lie in X, and that y
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is the limit of such points by the metrical convexity of d’. As the gated set X, is d’-closed
(Lemma IV: 3.4(1)), we obtain that ye X ;. Whence y is contained in the left-hand side of (10).
We also conclude from formula (11) that d’(a,b)>¢. As the metric d’ is convex we can find
meX, UX, with v
d'(a,m)+d’'(m,b)=d’(a,b) ; d'(a,m)=1
In view of formula (10), me D (a,t) =X, hence the gate m’ of m in X| N X, is also contained in
D (a,t). Similarly, m’eD’(b,d’(a,b)—t) as meD’(b,d’(a,b)—t). Whence,
di(a,m")+dy(m’,b)<t+d'(a,b)—t=d"(a,b).
By invoking the definition of the path-metric d, we conclude d(a,b)<d’(a,b). As acX, and
be X, were arbitrary we have shown d =d". ]

2.2 Theorem. Let (X;,p;) and (X,,p;) be complete modular metric spaces such that the
connector is gated in both spaces and let d; (i=1,2) be convex adapted metrics on X; that
match. Then the path-metric of d,d, is the unique convex metric on the union of X |, X, that is
adapted to the path-metric of py,p,-

Proof: Closed balls around points in (X;,d;) are p;-convex and closed, hence they are gat-
ed by virtue of Theorem II: 5.7. Hence by Theorem 2.1 the path-metric d of d,,d, is the
unique convex compatible metric on the geometric amalgamation of the X; and X,. Using
Theorem 1.6 we obtain that 4 is adapted to the path-metric of p,,p,. ]

§ 3 Application: special metrics on collapsible polyhedra

We recall the following definitions of Mai and Tang [53]. Let K be a cubical complex.
A subset Y of |K | is called a generalized cuboid, abbreviated GC, if Y is connected and for
every cube I* the subset ¥ NI* is either empty or takes the form
(3.1) {(yl,"',yk)|.s‘iSy,~St,-,i=1,2,"',k},
for certain s;<t; (i=1,2, -+ ,k) in I. Alternatively, if we equip all cubes of K with the sum-
metric then Y is connected and meets every cube in a gated subset.

K is called collapsible if there is a sequence of subcomplexes K¢,K, - -+ ,K, of K, and
non-empty subcomplexes L; of K; (i=1,2,---,n), such that K, is a point, K,=K, and
K;,1=K; UL;xI, where

LixI={cx{0},cxl,cx{1} | ceL;} (i=0,1,"--,n—1).
K is called regular if each L; is a GC of K;

The following is easily verified.
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3.2 Lemma. Let (X,I,), (X,,1,) be geometric interval spaces with compatible metrics
d\, d, respectively. Then the max-metric d,, on'X ; XX, given by

dm((xlvxz)v(yI!yl))=max(dl(xl7yl)7d2(y 1 ,}’2)),
for x|,y,€X, and x,,y,€ X, is compatible with (X | xX,,I| xI,). Moreover, d,, is convex if d,
and d, are. ]

3.3 Theorem. Let K be a regular collapsible cubical polyhedron. Then the following
hold.
(1) There exists a unique convex median metric p on K such that the restriction of p to each
cube of K is the sum-metric. Moreover, a subset C of K is gated precisely if C is a GC.
(2) There exists a unique convex metric d adapted to p such that d restricted to each cube of
K yields the max-metric.

Proof: The unicity of statements (1) and (2) follow from Corollary 1.13. For a proof of
existence of these metrics, let K;,L; be as in the definition of collapsible cubical polyhedron.
We shall show that (1) and (2) hold for K; with induction on i. For i=0 this is obvious. Let
i >0, and let d;,p; be metrics satisfying (1) and (2) for K;. By the induction hypotheses, L; is a
gated subset of K;. Hence the restriction of p; to L; yields a convex, median metric. So the
sum-metric p, on L; x/ is also a convex median metric. Moreover the subset L; occurs as a gat-
ed subset of L; xI. Hence we can apply Theorem 1.6 to obtain a convex median metric p;,; on
K;UL;xI=K;,,. First, the restriction of p;,; to cubes of K;,, is the sum-metric. Next, the
description of gated sets of K;,, is as desired by Lemma 1.10. This concludes the induction
step for statement (1).

By the induction hypotheses (K;,d;) is a convex metric adapted to p;. Using Proposition
IV: 3.6 we obtain that the restriction of d; to L; is a convex metric, adapted to the restriction of
p; to L;. Hence the max-metric d,, on L; x/ yields a convex metric adapted to d, —see Lemma
3.2. We can now apply Theorem 2.2 to obtain an adapted metric of p;,; that extends 4; and
d,. This adapted metric evidently satisfies (2). This concludes the induction step for state-
ments (1), (2). u

In [53, Lemma 1] it is shown that a collapsible polyhedron S (see [78]) can be subdivid-
ed to a regular collapsible cubical complex K such that the polyhedron of any subcomplex of S
is exactly the polyhedron of the corresponding subcomplex of K. Hence, from Theorem 3.3 we
obtain the following.

3.4 Theorem. IfS is a collapsible polyhedron, then there are metrically-convex metrics
p,d on S, such that (S, p) is a median metric space, and d is adapted to p. ]

3.5 Corollary. ([53, p.336])A collapsible polyhedron admits a hyperconvex metric. m

It is an open problem whether the converses of Theorem 3.4 or Corollary 3.5, hold.



CHAPTER VII

’

MEDIANS VERSUS STEINER TREES

The theory of Steiner trees deals with the following type of problem. How can you design
a network connecting all consumers and minimizing the quantity of material used? This
type of problem arises in the design of telephone networks, oil pipelines, and electrical cir-
cuitry. The main result of this chapter is that in general median metric space such trees
exist and can be found in a finite number of steps. This generalizes and strengthens a result
of M. Hanan [35] in the plane. The method employed by Hanan is rather technical and
ad-hoc as it involves highly specific constructions in the plane. In contrast, we have based
our methods on a fairly well developed geometry of median metric spaces. In particular,
there is no need to restrict to two dimensions. (*)

.§ 1 Introduction

Let (X,p) be a metric space. Let G=(V,E) be a graph in X, i.e. VcX. The length of an
edge is the distance between its vertices and the length of G is the sum of all edge lengths.
Let C={cy, - ,c,} be a subset of X. The graph G is connecting C if G is connected and
C cVcX. In this circumstance vertices in V\C are called additional. Suppose that we have a
graph of minimal length connecting C. By minimality, removing an edge must result in a
disconnected graph. Hence the connecting graph must be a tree (see for instance [24, Theorem
2.1]). From now on, a graph connecting C of minimal length will be called a Steiner tree of C,
after J. Steiner who considered the case n=3. In this case at most one additional point is re-
quired (see below), i.e. the Steiner point as encountered in section 4 of Chapter I.

In general a Steiner tree will contain several additional points, however the number of
such points can be restricted. To show this we recall the following (well-known) formula for a
tree (T,E) (cf. [24, pp. 22-24]):

#End(T)—2=Zdeg(p)23deg(p)—2, *)
in which the degree, deg(p), of a point peT is the number of neighbors of p, and End(T)
denotes the endpoints of 7, i.e. the points of degree 1.

Now consider a tree (T,E) connecting C. We can discard any additional point of degree < 3
to obtain a Steiner tree connecting C where all additional vertices have degree > 3. In particu-

! The results of this chapter were obtained by van de Vel and the author.
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lar, endpoints of the tree must be members of C. It then follows from formula (*) that the
number of additional vertices does not exceed #C - 2. Hence without loss of generality we may
assume that any tree connecting C is a tree- with at most #C —2 additional points. This observa-
tion implies the existence of a Steiner tree in situations where the set.of (potential) additional
points can be taken compact, e.g. when closed balls are compact.

Most research on Steiner trees-is done in the context of the Euclidean plane. For a sur-
vey see [29], a less technical survey can be found in the January 1989 edition of Scientific
American [14].

In a 1961 paper Z.A. Melzak [54] gave a finite algorithm for finding Steiner-trees in the
Euclidean plane — see also the book of Melzak [55]. Fifteen years later it was shown by
Garey, Graham and Johnson [27] that the computation of Steiner trees in the Euclidean plane
is “NP-hard”. The NP-hard problems — NP stands for Non-deterministic Polynomial — are a
wide class of problems with the following important property:

- No NP-hard problem is known to be solvable by a polynomial time-bounded algorithm. If
any NP-hard problem can be solved in such a fashion then all NP-hard problems can be solved
in such a fashion.

In contrast, finding a tree of minimal length without introducing extra points can be
solved in polynomial time, see [24, p. 26]. The class of NP-hard problems includes many
problems notorious for their computational difficulty, such as the traveling salesman problem,
the graph chromatic number problem, tautology testing, and clique finding. It is widely be-
lieved (though not yet proved) that no NP-hard problem can be solved in polynomial time.
Hence, NP-hardness is a very strong indication for inherent intractability.

As an example of this, calculating a Steiner tree in the Euclidean plane on 29 points was
close to the limit of computing capabilities in 1989 ([14]). The following is quoted from [68].
When the Long Lines Department of the Telephone Company establishes a communications
hookup for a customer, federal tariffs require that the billing rate is proportional to the length
of a Steiner tree connecting the customers termini. In light of the previous this kind of billing.
is not attainable.

Sometimes other metrics than the Euclidean are considered. Most notably is the Steiner
tree problem for points in the plane endowed with sum metric, which has an important applica-
tion in printed circuitry. Here n points on an insulated plate are to be electrically connected.
For important technical reasons the nozzle that sprays the thin metal lines onto the plate can
only move vertically or horizontally.

It was shown by M. Hanan in 1966 [35] that in these circumstances a Steiner tree can be
found'in the lattice generated by the original points. Hence, such trees can be found'in:a finite
number of steps. Unfortunately, just as in the Euclidean case the complexity of the problem:is
NP-hard; as-is shown by Garey and:Johnson [26].

As-medians are Steiner points-(Corollary II: 1.12), and!as-the sum metric onthe-plane. is
one of thie most prominent examples of a median: metric, the question arises: whether there: are
general results on Steiner trees for median metric' spaces. The answer; which: is- affirmative,
shall be the topic of the next section.
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§ 2 The main result

In this section we will prove that in general median metric space a Steiner tree exists and
can be found in the (finite!) median stabilization of the original points. Hence, also these trees
can be found in a finite number of steps. We mention that two methods to compute the median
stabilization were described at the end of section 2 in Chapter 1.

From now on we let (X, p) be a median metric space and C c X.

2.1 Lemma. Let G cX be gated with gate function p, and let xeX. If yeco(Gu{x})
then p(G,y) < p(G,x).

Proof: By JHC there exists a ce G with yel(x,c). On the one hand p(x,c) equals

PO6Y)+p(,0) =p(y) +p(p YN +PP (),€)-
On the other hand p(x,c) equals

p(x.p (x)) +p(p (x),¢) =p(x,p (X)) + PP (x).p () +P(p (). €)-
Comparing these expressions yields

PP () =p(.p (X)) +p(p (x),p () — P(x,y) < p(x,p (x)).
The latter inequality holds by contractivity of p. ]

The following result is fundamental.

/ 2.2 Theorem. There exist Steiner trees connecting C. In fact, there is a Steiner tree
with vertices in the median stabilization of C.

Proof: It suffices to prove the result for finite median metric spaces X. Indeed, start with
any tree connecting C, say with vertices in V. Then the median stabilization of V is a finite
median metric space, hence by assumption there exists a tree in med (C) whose length does not
exceed the original one. This then shows the theorem for general X.

If X is finite then the first statement is evident. For a proof of the second; let S =(T,E) be
a Steiner tree connecting C such that the number points in med (T) is minimal. Suppose that
med (T)# med (C). From now on, we consider med (T) as the ambient median metric space. By
Theorem I: 2.19 there exist halfspaces H |, H, in med (T) such that

H,NnH,#D ; HinH,NnC=@.

We may assume that H, and H, are minimal with this property. The convex hull of any point
in H; (i=1,2) and the whole of (H;) equals med(T), as otherwise we could contradict the
minimality of H;. So by Lemma 2.1 the distance p(s, (H;)") for seH;nH, and i=1,2 only
depends on i. We will denote these distances by p;. For i=1,2 we let p; denote the gate func-
tion X — (H;)'.

By adding extra points if necessary we may assume that if a point se H; "H, has a
neighbor in (H;) then this neighbor equals the gate of s in (H;)’. Let n, be the number of points
in H, nH, which have a neighbor in (H,)’, but not in (H,)’. Define n, analogously.
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Fori=1,2, let F;: T —(H, nH,) be the identity on points of (H, "H3)" and F;(s)=p;(s)
for points of Hy nH,. Consider the graph G; (i =1,2) with:vertex set equal to'the image of F;;
two vertices F;(u), F;(v) are neighbors iff « and v are.

One can easily show the following estimations:
length (G ()< length(S)+(n;—ny)p; ; length(G,)<length(S)+(ny—ny)p,
Hence n; must equal n, and both G, G, must be Steiner trees connecting C in (H; "H;)'.

Being the union of two convex sets, the set'(H; N H,)" is median stable. Moreover it is a
genuine subset of med(T), thus contradicting the minimality assumption on 7. Hence
T cmed(C). ]

The lattice generated by a set of points in the plane yields a median stable set, which is
generally larger than the median stabilization. Hence Theorem 2.2 is a strengthing of the result
of Hanan in the plane. Our result is moreover applicable to other spaces such as IR" with the
sum metric (neIN), or more general spaces of type L (1) or K () (e.g. probabilistic spaces).

With the use of the amalgamation technique we developed in Chapter VI, we can construct
“tailor-made” median metric spaces. As an illustration of this, one could say that Hanan was
designing a telephone network for Manhattan without taking the heights of the buildings in ac-
count — the consumers of the network are all supposed to be located on the ground floor.
There is a natural concept of distance between points of Manhattan. Inside a building the dis-
tance involved is the sum metric; the distance between points in different buildings is the dis-
tance between the projections on the ground floor plus the respective heights. This metric
space can be constructed by “repeated amalgamation of buildings with the plane”. In view of
Theorem VI: 1.6 this metric is median, hence Theorem 2.2 is applicable.

We observe that not every Steiner tree connecting C lies in the median stabilization as
simple examples in the plane show. However each Steiner system lies in the (median) convex
hull of C. This result is similar to the situation in the Euclidean plane. Each Steiner tree in the
Euclidean plane lies in the convex hull of the original points ([29, 3.5 ]). We need the follow-
ing result.

23 Lemma. Let G cX be gated with gate function p, and let x|, ,x,€X such that
x1€G. Then

3P0 xi 1) 2 PP (), %) + 277 PP (1), (xis1)-

Proof: By induction on n. For n=2 the result follows directly from definition of gate. As
to the step n—n +1, use that

p(xn rp(xn)) + p(xmxn +1 ) 2 p(xn+1 7P(xn)) = p(xn +1 ,P(x,, +1 ))+ p(p (x‘,,),p (xn+l )) [ ]

2.4 Proposition. Let G=(V,E) be a connecting graph of CcX let cyeC and let
p X —co(C\{cy}) be the gate map: Then the graph G'=p(G)u{p(cy)},E ") with:

E'={p)p ) | uweE} U {cop(co)}
connects C and its length does not exceed. that of G.
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Proof: Consider a path y from ¢, into co(C\{co}). Then, by Lemma 2.3 and the con-
tractivity of p we obtain:

z’uveEp(u’V) =Zuvsyp(u’ V) + Zweyp(u, V)
<ppcokco)+ X, PE@P (V) +Z

uvey

PP (), () .

uvey

2.5 Theorem. The vertices of a Steiner tree connecting C are contained in the convex
hull of C.

Proof: Suppose that T=(V,E) is a Steiner tree connecting C and that m is an additional
vertex. T is evidently also a Steiner tree of C U {m}. Consider the graph as constructed in Pro-
position 2.4 with respect to m. Suppose that me co (C). Let p be the gate of m in co(C). By re-
moving the vertex m and vertex mp(m) we obtain a graph connecting C of smaller length, a
contradiction. Hence me co (C). [
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norm-interval, 65

(0]

optimal embedding, 108

orthogonal complement, 68, 69

orthogonality, additivity of, 65, 73, 77, 78,
79

- Riesz, 65

- median, 65, 75, 77, 78, 79, 80

orthonormal collection, 72

P

path-metric, 117

pointed product, 34, 35
polytope, 4

Pompéiu metric, 35

poset, 1

problems, 71, 77, 80, 92, 95, 120

R
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