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Preface 

This monograph contains the first three chapters of my thesis: The solu

tion of a class of Stefan problems . The existence and uniqueness of the 

solution of a one-dimensional moving boundary problem (Stefan problem) 

are proved. Since all the existence results are proved in a constructive way, 

numerical approximation schemes are easily obtained from the theoretical 

results. 
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Chapter 0 

Introduction and summary 

1. The origin of the Stefan problem 

In this monograph we study some classes of Stefan problems. 

An example of a Stefan problem is the melting of ice in water. In a mathematical 

model the temperature of the water satisfies the heat equation. Remark that initially 

the configuration of the water is known. However after some time part of the ice is 

melted and so the domain whereon the heat equation must be satisfied, is 

transformed. The domain can be found using the assumption that the heat 

disappeared from the water has been used to melt the ice. 

More generally a Stefan problem is a problem where the domain, on which a parabolic 

partial differential equation should be satisfied, is unknown and must be found as part 

of the solution. 

This class of problems is named after J. Stefan (who is also known from the Stefan 

Boltzmann constant). In 1891 Stefan has written a paper on the formation of ice in 

the polar seas [Stefan, 1891]. He gives ::. mathematical model which describes the 

formation of ice and compares the solution of this model with measurements obtained 
from polar expeditions. 

Many more phenomena can be described by a Stefan problem. Some examples are: the 

freezing of wet soil, the freezing of food, the production of iron in a blast furnace, the 

decrease of oxygen in a muscle in the vicinity of a clotted bloodvessel and the etching 

techniques used for the production of microelectronic devices. 
After 1940 there is a considerable increase of publications on the Stefan problem. This 

is illustrated by Table 1, which is obtained from the list of publications given in 

[Cannon, 1984]. 

period 1931-1940 1941-1950 1951-1960 1961-1970 1971-1980 1981-1982 

~apers 0.1 1.8 4 7.8 23.3 54.4 

Table 1. Average number of papers published in one year. 

2. Historical survey 

We first discuss some classes of Stefan problems for which existence and uniqueness 

results are known from the literature. Subsequently we mention the class of problems 
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we are going to study and compare these with the earlier ones. 

We remark that an elaborate historical survey until 1960 can be found in [Rubinstein, 

1971] and that a list of publications on the Stefan problem is given in [Cannon, 1984]. 

An existence theorem related to the following Stefan problem was published in 

[Evans, 1951]: 

Problem 1 

Given the constants T,a,B > 0, find functions Sand C such that 

(2.1) ~_a2cJx,t) 
x2 =0 , x f (0,S(t)), t E (0,T), 

(2.2) S(0) =0 

(2.3) ac (o t) ox ' = -a , t E (0,T), 

(2.4) C(S( t ), t) =0 I t f (0,T), 

(2.5) - ~ (S(t),t) ~ = B I t E(0,T). 

Boundary condition (2.5) is also known as the Stefan condition. In [Douglas, 1957), 

uniqueness of the solution of Problem 1 is shown. 

Existence and uniqueness for a more general class of Stefan problems was shown in 

[Kyner, 1959]. In this paper, the Stefan condition is: 

(2.6) -f(S(t),t, ~ (S(t),t)) ~ (S(t),t) + b = dSa\t), t E (0,T), 

where f is a given positive function with continuous second order derivatives and b is 

a non-negative constant. In the sequel Problem 1 with (2.5) replaced by (2.6) will be 

referred to as Problem 2. 

The most general existence and uniqueness results given in the literature arc proved 

in [Rubinstein, 1971] and [Fasano & Primicerio, 1977]. The Stefan problem 

investigated in [Fasano & Primiccrio, 1977] is: 

Problem 3 

Given the functions C0,g,B andµ, and the constants T,b > 0 find Sand C such that 

(2. 7) 

(2.8) 

8C(x,t) _ a2cJx,t) 
~ x2 

C(x,0) 

= 0 , x E (0,S(t)), t E (0,T), 

= Co(x), x E [0,bj, S(0) = b, 
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ac ox (0,t) 

C(S(t),t) 

:i: (S(t),t) 

= g(C(O,t),t) , t £ (O,T), 

= 0 , t £ (O,T), 

= B(S(t),t) dSd(tt) + µ(S(t),t), t £ (O,T). 

They assume that I B(x,t) I ~ B0 > 0, B has a continuous first order derivatives andµ 

is a Lipschitz continuous function. Since we are mainly interested in a comparison of 

the different Stefan conditions we omit the assumptions on Co and g. 

Comparing Problem 3 with Problem 2 we note the following differences: 

- since S(O) > 0 in Problem 3 the function C satisfies initial condition (2.8), 

- the constant a in (2.3) is replaced by the function g, 

- there is an extra term µ(S(t),t) in the Stefan condition {2.11), 
- the functions in the Stefan condition satisfy weaker smoothness conditions, 

- the absence of sign conditions imposed on the constants and functions. 

In [Fasano & Primicerio, 1977] it was shown that if T is small enough then Problem 3 

has a unique solution. Subsequently they specify a subclass of these Stefan problems 

such that the unique solution exists for every T > 0. Finally they give an example 

such that the assumptions of Problem 3 hold but there is no solution for T large 

enough. 

In this monograph we consider the following Stefan problem: 

Problem 4 

Given T > 0, the function Co, the multifunction B and the functional G, find 

functions S and C such that: 

(2.12) 

(2.13) 

(2.14) 

8C(x,t) _ a2cJx,t) 
~ x2 =0 , x l (- oo, S(t)), t £ (O,T], 

C(x,O) = Co(x) , x f (- oo, OJ, S{O) = 0, 

C(S(t),t) =0 , t l (O,T], 

{2.15) G(S,f,t) ( B(S(t)), t ( [O,T], 

00 

where f(t) = J [Co(x) - C(x,t)] dx, t £ [O,T], 
-00 

(for easy notation, we define C(x,t) = 0, x £ (S(t),oo), t £ [O,T] and C0(x) =·o, 
x £ (O,oo )). We prove existence and uniqueness of the solution of Problem 4 under 

certain conditions imposed on Co, Band G. 
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The main differences between Problem 4 (and given results) and Problem 3 (and 

given results) are: 

Domain 

In Problem 4 the diffusion equation is posed on an unbounded domain. In the 

literature (see [Fasano & Primicerio, 1977; p. 697]) there are conjectures that results 

shown for a bounded domain can also be shown for an unbounded domain. 

Stefan condition 

In Problem 1, 2 and 3 the Stefan condition is a differential equation. In Problem 4 the 

Stefan condition is a functional integral equation. So Problem 4 can be used to 

describe a more general class of Stefan conditions than the class described with 

Problem 1, 2 or 3 (compare [Va; p. 32, Example 31). Furthermore it follows from a 

comparison between Problems 3 and 4 given in [Ve; p. 28, Remark 6.2 ii)] that the 

smoothness conditions imposed on the functions in the Stefan condition (2.15) are 

weaker than the smoothness conditions in [Fasano & Primicerio, 1977]. 

Existence 

In contrast with the existence results given in the literature we prove existence in a 

constructive way. So our existence proof suggests a numerical solution method. In a 

numerical simulation properties of the numerical iterates are in agreement with those 

of the analytical iterates as given in the theory. Another difference is that our 

conditions are such that the solution exists for every T > 0. 

Uniqueness 

It is known that on an unbounded domain the solution of the diffusion equation is 

unique only if it is an element of a certain function class. In order to prove uniqueness 

we will assume that the function C is bounded. In the literature uniqueness of the 

solution is shown under the assumption that S is a differentiable function. We prove 

uniqueness under the assumption that S is a continuous function. 

3. Summary of this monograph 

§ 3.1 Introduction 

In this monograph we prove existence aiid uniqueness of the solution of the Stefan 

problem as described by Problem 4 ((2.12), ... ,(2.15)). In the Chapters 1, 2 and 3 some 

of the conditions on G are different. 

Our work was motivated by an etching technique which is used for the production of 
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microelectronic devices [Notten, 1989; Chapter 8]. We use this application to 

illustrate our theory. In this case, the function C describes the concentration of the 
etching agent whereas S(t) denotes the time-dependent position of the interface 

between solid and liquid. In most etching problems the vessel containing the liquid is 

very large with respect to the area wherein the etching agent shows a noticeable 

decrease. This is one of our reasons to pose the Stefan problem on an unbounded 

domain. 

We start with a discussion of our Stefan condition (2.15). Integrating Condition (2.5): 

(3.1) 
8C dS(t) - ox (S(t),t) = B cit I t f (0,T], 

in the time direction and using the diffusion equation (2.12) and the equation 

~ (- oo,t) = 0 yields 

00 

(3.2) f [C(x,t) - Co(x)] dx = B S(t), t E [0,T], 
-00 

which is of the form (2.15) with G(S,f,t) = f(t) and 13(x) = Bx. 

The Stefan condition (3.2) has the following features: 

- Condition (3.2) is the mass balance in integral form. This means that the loss of 

etching agent is proportional to the loss of solid. The proportionality constant B is 

given by the chemical properties of the etching agent and the solid. 

- The function Sin (3.1) should be differentiable whereas in (3.2) it is sufficient that 

S be continuous. This is attractive from a physical point of view. Furthermore it 

suggests that the smoothness conditions in (2.15) are weaker than in (2.11). This 

suggestion is proved in [Ve; p. 28, Remark 6.2 ii)]. 

Obviously Condition (2.15) is a generalization of Condition (3.2). Since (2.15) does 

not look very natural we note that it was obtained by first proving some existence 

results for a Stefan problem using Condition (3.2) and then trying to find the most 

general condition under which such kinds of proof could still be given. 

In this monograph we impose the following conditions upon the function Co, the 

multifunction 13 and the functional G. The function Co should be a monotone 

decreasing Lipschitz continuous function with C0(0) = 0 and Ii m C0(x) = 1. The 
X➔ -00 

multifunction 13 should be the inverse of a nondecreasing Lipschitz continuous 

function. The Lipschitz constant is denoted by i· The functional G should be 
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Lipschitz continuous in its first and second argument with respect to the sup-norm. 

The Lipschitz constants are denoted by G 1 and G2. 

Now we shall discuss the chapters seperately. In every chapter we impose some extra 

conditions upon G. 

§ 3.2 Chapter 1 

In this chapter we assume in addition that G is an increasing Lipschitz continuous 

function in its third argument (time). 

The main result of this chapter is the following: introduce the operator.1, operating 

on a function S as follows 

5(S) (t) = B-l(G(S,fs,t)), t f [O,T]. 

(X) 

In this formula the function fs is defined by f5(t) = J [Co(x) - C5(x,t)] dx, t f [O,T] 
-00 

where Cs satisfies the equations (2.12), (2.13) and (2.14) for the given function S. 

Then it is proved that 

SUJ? l.;(S1)(t)-.;(S2)(t)l 5~SUJ? IS1(t)-S2(t)l-
tqO,T] 1 tqO,T] 

Hence, if Gg-1G2 < 1 then Banach's fixed point theorem implies that there is a unique 

function S such that S = .;(S). We show that (S,C;;) is the unique solution of 

Problem 4. Furthermore Banach's theorem implies that for every initial function So 

the iterates given by S; = 5(S;-1), i = 1,2, .. converge to the function S. The given 

numerical solution method is based on this property. 

Applications 

1. Define B(x) = B1x and G(S,f,t) = f(t), t f [0,1] (see [Va; p. 30, Remark 6.3 i)]). 

Remark that in this case (2.15) is equivalent to (3.2). The inverse :s-1 is an increasing 

Lipschitz continuous function with Lipschitz constant Ji and G is Lipschitz continu

ous in its first and second argument with G 1 = 0 and G2 = 1. For every B 1 > 1, the 

inequality Glf1G2 < 1 holds, which implies that there is a unique solution of this 

Stefan problem. This Stefan problem describes an etching technique where the etching 

properties are constant. For B 1 = 2 the numerically calculated iterates are given in 

[Va; p. 42, Figure 1]. Note that the iterates converge and alternate. It can be proved 
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for this example that the iterates form an alternating sequence (see [Va; p. 30, 

Theorem 4.11 i)]). 

~ 
2x , X f (0,0.02) 

2. Define B(x) = [0.04,0.07] x = 0.02 

O.Q7 + 3(x-0.02), x f (0.02,oo) 

, (see Figure 1 for the 

_ _ ~ f(t) It f (o,½J 
graph of B) and G(S,f,t)= 3 1 1 1 ([Va; p.31, Example 1]). 

2" f(t) - 2" f(i), t f (i,ll 

Using an etching problem the following interpretation 

of B and G may be given (where, in fact, B describes 

the properties of the solid whereas G describes the 

properties of the etching agent). 

Interpretation of B From the definition of i3 it follows 

that the solid in [O,oo) can be divided into three parts. 

In the first part (0,0.02) the proportionality constant B 1 

is 2 whereas in the third part (0.02,oo) B I equals 3. 

This means that the solid in [0,0.02) has a larger 

etching rate than the solid in (0.02,oo ). These parts are 

separated by the second part in 0.02. The solid in 0.02 

can be seen as a limit situation: there is a finite amount 

of solid in an infinitely thin layer (in a heat problem 

this phenomenon is known as a "heat capacity"). 

• 10 ~~...-l~I~~~ 

.08 

.06 

.04 

t .02 

X 

,;;; 

.00 
.01 .03 .-Figure 1. The multifunction B. 

Interpretation of G At t = ½ the proportionality constant jumps from 1 to~- A reason 

can be that before t = ½ there is a different chemical reaction at the interface S then 

1 after t = 1. 

The numerically calculated iterates are given in (Va; p. 43, Figure 2]. The iterates 

converge and alternate. Assuming that the third iterate is a good approximation of 

the solution we compare its properties with the given interpretation of B and G. In 

[0,0.02) the interface moves with a certain speed. In 0.02 the boundary halts until the 

infinitely thin layer is etched away. Thereafter the boundary moves again but with a 

lower speed than in [0,0.02). At t = ½ w.: otserve a sudden change in speed 
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(~ (½ + h) ~ ! ~ (t - h)). Note that these properties show a close correspondence 

with the given interpretations. Further we note that the function t H S(t) is not 

differentiable. Thus the existence results shown in the literature (eq. [Fasano & 

Primicerio, 1977]) can not be applied. 

3. As a final application of Chapter 1 we consider the following "optimal control" 

problem. Suppose a layer of ice of 0° is immersed in hot water. After a given time the 

ice should be melted. If the heat of the water is insufficient to achieve this result, then 

one uses a heat source with a given strength. To minimize energy costs the heat 

source is turned on as late as possible. 

A mathematical model for this application is given by Problem 4 if 13 and G are 

defined as follows: 13(x) = 2x and 

g(f,t) 

t 
G(S,f,t) = f(t) + f g(f,r)dr, t f [0,1] where 

0 t O , t f [0,1 + (f(l)-0.48)/0.75] 
= ([Va; p. 32, Example 3]). 

0.75, t f (1 + (f(l) -0.48)/0.75, oo) . 

In this model, C is the temperature of the water and S(t) is the interface between ice 

and water. 

Interpretation of 13 13 describes the amount of heat needed to melt a certain amount 

of ice. 

Interpretation of G The first term in G models the heat released from the water up 

to time t, whereas the second term models the heat obtained from the heat source. 

The quantities in the functional g can be interpreted as follows: the thickness of the 

ice layer is 0.24, the amount of heat needed to melt this layer is 0.48 = 13(0.24), the 

ice should have melted at t = 1 and the strength of the heat source equals 0. 75. We 

note that the heat source is not turned on (g(f,t) = 0, t f [0,1]) if the amount of heat 

(f(l)) released from the water at t = 1 is greater than the heat (B(0.24)) which is 

needed to melt the ice layer. On the other hand if f(l) S 13(0.24) then the heat source 

is turned on at t 1 = 1 + (f(l) - 0.48)/0.75. In this case suppose {S,C;;} is the solution 

of Problem 4. It now follows from G(S,f,t) f B(S(t)), t f [0,1] and 
-- 1 - 1--
G(S,f,1) = f(l) + f 0.75 dr = f(l) - (f(l)-0.48) = 0.48 that S(l) = :Y, G(S,f,l) = 0.24. 

t 1 

So the ice layer will have melted just in time. 

Remark that for this choice of G, G(S,f,t) depends on f(l) for every t f [O,l]. Hence 
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this application can not be described with Problem 3. 

The numerically calculated iterates are given in [Va; p. 45, Figure 4]. The iterates 
converge but do not alternate. Assuming that the third iterate is a good approxi

mation of the solution S we note that S{l) = 0.24. Furthermore the calculation yields 
that the heat source should be turned on at t 1 = 0.84. As a result of this the slope of 

the graph of S shows a sudden increase at t 1 = 0.84. 

§ 3.3 Chapter 2 

In this chapter we assume in addition that G is an increasing Lipschitz continuous 

function in its third argument and that G{S,f,t) only depends on SI [0,t] and fl [0,t]· 

An interpretation of this condition is that G{S,f,t) depends on the history and the 

present. This suggests that in many physical applications the condition is satisfied. 

In Chapter 1 we prove existence and uniqueness if the inequality Gh+1G2 < 1 holds. In 

many numerical experiments however we observe that the iterates converge even if 

GjfiG 2 > 1. So we expect that existence and uniqueness can be proved under a 

weaker condition on B1; G1 and G2. We ~rst note that weakened conditions on B1, G1 
and G2 may not permit that ~ could be greater than or equal to one since, as appears 

from the following example in that case uniqueness can not, in general, be shown. 

Define B{x) = x and G{S,f,t) = S{t), t E [0,1]. Since B1 = 1, G1 = 1 and G2 = 0 it 
follows that ~ = 1. However every function S satisfies G{S,f,t) E B{S{t)), so 

uniqueness is lost. Secondly we note that in most numerical experiments iterates 

converge faster for small t than for large t (compare [Va; p. 42, Figure 11). This 
observation leads to the following strategy: prove existence for small t and repeat this 
argument until existence is proved on [0,T]. This explains tJ,e extra condition on G 

because restricting the problem to [0,t 1] with t 1 < T is only possible if the problem 

does not depend on Sl(t1,T] or f(ti,T]· 

In this chapter we prove existence and uniqueness assuming that the extra conditions 

on G and the inequality~ < 1 hold. 

In the existence proof the interval [0,T] is divided into subintervals with length h. It 
is proved that 

G1+2G2 L ffi 
sup I ~S1) (t) - ~S2) (t) I $ 8 1r sup I S,(t) - S2(t) I, 

tE[ 0,h] 1 tE[ 0,h] 

where L is a Lipschitz constant of C0• This estimate depends on h. For small h this 
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estimate is better than the estimate given in Chapter 1. In [Vb; p. 25, Corollary 5.6] 

it is shown that this estimate is optimal for small h. Since ~ < 1 we can take h 

sufficiently small such that Banach's theorem implies that there is a unique function S 
which satisfies the equation S(t) = .5(S(t)), t f [0,h]. Repeating this procedure on 

every subinterval we prove existence and uniqueness of the solution of Problem 4. The 

given numerical solution method is equivalent to the method given in Chapter 1. 

Applications 

1. Define B(x) = B 1x and G(S,f,t) = f(t), t t [0,1] (compare§ 3.2, Application 1 and 

[Vb; p. 20, Remark 5.2i)l). Note that G(S,f,t) only depends on f(t) so the extra 

conditions on G are also satisfied. Since G 1 = 0 and G2 = 1 it follows that for every 

B 1 > 0 there is a unique solution. For B 1 = 0.25, L = 0.25 and L = 2 the numerically 

calculated iterates are given in [Vb; p. 34 and 35, Figures 2 and 3]. The figures 

suggest that the rate of convergence depends on L. This corresponds to the fact that 

the estimate also depends on L, but it is in contrast with Chapter 1 where the rate of 

convergence only depends on B 1. Another illustration of the different convergence 

behaviour for B1 > 1 and B1 S 1 is the example given in [Vb; § 5.4, p. 27, .. ,31]. In this 

example we take C0(x) = 1, x f (- oo,0]. This function Co does not satisfy our 

conditions, however Co can be seen as the limit function of the sequence { C~} n ~ 1 

where the functions C~ are given by C~(x) = min {1,-nx}, x t (- oo,0]. For these 

functions our conditions are satisfied. For the initial function Co we observe a fast 

convergence of the iterates for B 1 = 10, whereas for B 1 = 0.28 the iterates are 

divergent. To explain this we note that for B 1 = 0.28 the rate of convergence for every 

C~ depends on Ln = n. Since Ln goes to infinity for n ... oo we expect that the rate of 

convergence goes to zero. This corresponds to the fact that for B 1 = 0.28 the iterates 

are divergent. On the other hand for B 1 = 10 the rate of convergence does not depend 

on Ln. So we are not surprised that for this C0 and B 1 = 10 the iterates converge. 

2. In [Vb; p. 21, Example 3] we show that the results of Chapter 1 are not contained in 

Chapter 2. 

3. In [Vb; p. 20, Remark 5.2 ii)] we compare our results with the results given in [Fasano 

& Primicerio, 1977]. It appears that the class of Stefan conditions considered in 

[Fasano & Primicerio, 1977] is a subclass of the Stefan conditions considered in our 

work. Furthermore it appears that in our results the smoothness conditions are 

weaker. 

§ 3.4 Chapter 3 

In this chapter we prove existence and uniqueness of the solution of a Stefan problem 
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without the condition that G is an increasing function of its third argument. This has 

consequences for both the existence proof and the applications. A typical application 
is the freezing of supercooled water. It is known that this physical phenomenon can be 

instable. There are examples where the speed of the interface (S(t)) between ice and 
water goes to infinity. This is known as "blow up" of the speed of S. We impose an 
additional condition on G (compare [Ve; p. 5, Condition 2.31) such that "blow up" 

does not occur. An interpretation of this condition is: the function t H G{S,f,t) should 

be Lipschitz continuous for every S and f which are element of a certain function 

class. 

The main part of Chapter 3 consists of the proof that if the conditions are satisfied 

then there is no "blow up". Furthermore the estimates given in the Chapters 1 and 2 

are adapted. Using these estimates we prove existence and uniqueness of a solution of 

Problem 4 in a constructive way. The existence proof and the numerical solution 
method show a strong resemblance with the proofs and solution methods given in the 

Chapters 1 and 2. 

Applications 

1. Characteristic phenomena that can be described with a Stefan problem are: the solidi

fication of a liquid with a temperature below its melting temperature (as we already 

noticed), and the formation of a crystal from a supersaturated solution. Problem 4 

with B{x) = B1x and G(S,f,t) = - f(t), t E [0,1] is a mathematical model for crystal 

growth [Ve; p. 29, Remark 6.2 i)]. In this application, C is the concentration of the 

solute, S is the interface between the liquid and the crystal and B 1 is the ratio 
between the loss of solute and the growth of the crystal. Assuming that B 1 > 1 our 

conditions are satisfied and existence and uniqueness follow from our existence theo

rem. For B1 = 2 the numerically calculated iterates are given in [Ve; p. 37, Figure 2]. 

Note that the iterates converge and are monotone decreasing. It can be proved for this 
example that the iterates form a monotone decreasing sequence 

(see [Va; p. 30, Theorem 4.11 i)]). Furthermore we show that if B1 < 1 then after 
some time "blow up" occurs [Ve; p. 29, Example 2]. 

Note that in the first applications in Sections 3.2, 3.3 and 3.4 we consider the same 
00 

Stefan condition J [Co(x) - C(x,t)jdx = B S(t), t E [O,Tj 
-00 

for different values of B. In Chapter 1 we prove existence assuming that B > 1. In 

Chapter 2 this condition is weakened and we show existence for B > O. Finally in 
Chapter 3 we prove existence for B < -1 and show with an example that if 

-1 < B < 0 then for T large enough tl1';! Stefan problem has no solution (i.e. the speed 
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of S blows up). 

-f{t) , t f [0,0.25] 
2. Define B(x) = 2x and G{S,f,t) = 

-2f{0.25) + f{t), t f {0.25,1] · 

A possible interpretation is: a solute precipitates until t = 0.25. Thereafter the solute 
behaves itself as an etching agent. The numerically calculated iterates are given in 

[Ve; p. 38, Figure 3]. The iterates are convergent. Note that the iterates do not form 

an alternating nor a monotone sequence. Assuming that the third iterate is a good 

approximation of the solution it follows that the crystal increases for t f [0,0.25] and 

decreases fort E {0.25,1). In t = 0.25 the function Sis not' differentiable. 

3. In [Ve; p. 28, Remark 6.2 ii)] we compare our results with the results given in [Fasano 

& Primicerio, 1977]. They prove existence and uniqueness for T small enough without 

a condition' which implies that "blow up" does not occur. An advantage is that they 

can also prove existence for problems where after some time "blow up" does occur. A 

disadvantage is, however, that even if the solution exists for every T > 0 the existence 

proof holds for T small enough only. 

4. In [Ve; p. 30, Example 3] we show that the results of Chapters 1 and 2 are not 

contained in Chapter 3. 
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Chapter I 

The solution of a one-dimensional Stefan problem I 

1. Introduction 

This work was motivated by an etching technique which is used for the 

production of microelectronic devices. A mathematical model of this etching 

technique is equivalent to a Stefan problem ([Kuiken,1984], [Vuik & 

Cuvelier, 1985]). This model is the subject of this paper. 

Let x e R be the space co-ordinate and t the time co-ordinate. For 

the time t--0 we suppose the region x ~ 0 to consist of a solid and the 

region x < 0 to be filled by an etching liquid. We denote by S(t) the 

position of the time-dependent boundary between solid and liquid. The 

function C describes the concentration of the etching agent. 

In dimensionless form the problem is: given T > 0, B > 0 and 

C0 : (-"' ,O] ➔ [0,1], find sufficiently smooth functions S: [0,T] ➔ R and 

C:((x,t)lte[O,T], xe(-oo,S(t)]}➔ R such that 

{ ac(x,,) a2c(x, t) 
- 0 for xe(-"' ,S(t)) ,te(O,T], at ax2 

(1.1) 
C(x,0) C0 (x) for xe(-«>, OJ, 

C(S(t),t) - 0 for te[O,T], 

1 ., 
(1.2) -8 f [C(x,t)-C0 (x)]dx-S(t) for te[O,T]. 

Remark 1.3. For easy notation, we define C(x,t)-0 for xe(S(t),"'),te[O,T] 

and C0 (x)-O for xe(O,"'). 

Physical interpretation 

The transport of the etching agent is described by the diffusion equation. 

The concentration for t-0 is a given function C0 with Q,g;0 (x)~l 

for xe(-«>,0]. The condition C(S(t),t)-0 for te[O,T] corresponds to a 

fast chemical reaction on the moving boundary (see[Kuiken, 1984], [Vuik & 

Cuvelier, 1985]). The boundary condition (1.2) is the Stefan condition in 

integral form. This condition reflects the assumption that the loss of 
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etching agent is proportional to the loss of solid. The proportionality 

constant Bis given by the chemical properties of the etching agent and the 

solid. In practice, B>>l for an etching problem, see [Kuiken,Kelly,Notten, 

1986; p.1220, Table l], where this quantity is called p, which in all 

their examples is at least 100. We use the· property B>l in our existence 

theorem. 

Existence and uniqueness results of the solution for a one-dimensional 

Stefan problem are reported in [Evans, 1951] ,[Douglas, 1957], [Kyner, 1959], 

[Friedman, 1964], [Rubinstein, 1971], [Cannon & Primicerio, 1971], 

[Hill & Kotlow,1972] and [Fasano & Primicerio, 1977]. 

This paper is organized as follows. In Section 2 we give some definitions 

and basic lemmas. The section also includes known results about the 

solution of the diffusion equation. 

In Section 3 we specify the Stefan problem. The problem has the following 

features. First of all, the problem is defined on an unbounded one-dimensional 

space-domain. Secondly, the Stefan condition (1.2) on the time-dependent 

boundary is given in a generalized form. 

Several existence theorems for the solution of the diffusion equation are 

given in Section 4. Also in Section 4, we compare the losses of etching 

agent for two different time-dependent boundaries (Lemma 4.2, Theorem 4.11). 

Finally we prove some properties of the loss of etching agent seen 

as a function of time. 

In Section 5, Theorem 5.11 we prove by a contraction argument the existence 

and uniqueness of a solution for the Stefan problem where SeC[0,T] and 

the function eec2· 1 (Q5 )nC(Q5 ) is bounded. 

In section 6 we give some examples of the Stefan problem specified in 

Section 3. Furthermore, we compute numerical solutions for these examples. 



-16-

2. Preliminaries 

In this section we summarize known results about the solution of the 

diffusion equation. After that we give some basic lemmas. 

2 .1 Definitions 

For a given T>O we define the following function spaces: 

0-(SeC[O,T]JS(O)-OJ, 

P-(SeOJS is monotone non-decreasing}, 

and for K >O, MK - {SePJS(t+h)-S(t)~ Kh,h ~;t+h,te[O,T]J, 

I\ - MK n c2 [0,TJ. 

We use the norm JJs JL - sup IS ( t) I on these spaces. At the end 
te[O,T] 

of this section, Corollary 2.8 states that MK is the closure of I\ in 

C(O,T) with respect to the ~-norm. 

For a given function SeC(O,T) the set Q5cR2 is defined by 

Q5-{(x,t)Jxe(-~,S(t)), te(O,T)J. For a given constant R such that 

-R< min0 ] S(t) we define the set cfs c R2 
te[ ,T 

by Q: - {(x,t)Jxe(-R,S(t)),te(O,T)J. The closure of a 

set Q c R2 is denoted by Q. 

2.2 The function spaces cl,li 2 (Q5 ),C2 • 1 (Q5 ) and c'[a,b] 

We use the following function spaces defined in [Lady~enskaja, Solonnikov, 

+ l,l1 2 -Ural'ceva, 1968; p. 7]. For a given leR '1'J,C (Q5 ) 

is the Banach space of continuous functions f on Q5 , having 

r+pf 
continuous derivatives½ for 2r+p<l and a finite norm 

at JK 

JJffl/Z. Here the norm Jlffliz is defined by: let [l] be 

the largest integer less than t, 

t-2r-p 
+ :E < fPf >-2-

0<l-2r-p<2 atraxP t 

and<f>"'-sup(lf(x',t) - f(x",t)! I (x',t),(x",t)eQ-5 ;Jx'-x"J~1}, 
• Ix' -x" I"' 
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<f>a - su (lf(x,t')-f(x,t")I J (x,t'),(x,t")eQ5 ;1t'-t"lsl} for ae(0,l). 
t P lt'-t"la 

c2· 1 (Q5 ) is the set of continuous functions f on Q5 , having 

. af a2f af continuous derivatives ax , ax2 and at· 

For a given leR+\N and [a,b] c R, cl[a,b] is the Banach space of 

continuous functions f on [a,b], having continuous derivatives dp~ 
dx 

for p<t, and a finite norm liff Here the norm llfl~ is 

defined by: 

+ <dlllf><l-Clll and 
dxlll 

<f>a - sup {lf(x')-f(x")I Jx• x"e[a b]·lx'-x"l<l} 
lx'-x"la: ' ' ' -

2.3 Existence theorems and a maximum principle 

for ae(0,l). 

The following definitions are given in [Lady~enskaja e.a., 1968;p.317-320]. 

For S0 (t)-O, te[0,T] we suppose that the functions &i,a1 ,a0 : 

Q5 ➔ R are given and that there is a constant a>O such that 
0 

&i(x,t) ~ a for (x,t)e Q5 • The opera:or Lis defined by 
0 

< aa au «tu au L x,t,ax'at) - at - &i(x,t)ax2 + a1 (x,t)ax + a0 (x,t)u. 

The following equations are considered: 

{ 
a a L(x,t,""'at)u(x,t)-f(x,t),xe(-... ,0)te(0,T] , 

(2.1) UA 

u(x, 0)"""(x).xe(-"' ,OJ. u(0, t)-4(t), te[0, T]. 

To obtain a smooth solution u of these equations, it is necessary that 

L,f,~ and~ satisfy certain compatibility conditions in (0,0). To this 

end we introduce the operator 

and define the function uC 0 > (x)""" (x), xe( -a>, 0] . Furthermore, we define 

the functions uCk>: (-"' ,0] ➔ R,k-1,2, .. by the following recursion: 

u<k+l>(x) - ~ (k)ACJ>(x,o,.1..)u<k-J>(x) a'f(x,t) I 
j•O j ax + atk t•O • 

wh A(J) ( a ) aJa2 (x, t) rf-u aJa1 (X, t) au aJa0 (x, t) 
ere x,t,ax u - atj ax_2 - atj ax - atj u. 

We say that compatibility conditions of order m ~ 0 are fulfilled if 
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uCltl (0) - dk!(O) for k-0,1, .. ,m. 
dt 

Theorem 2.2 [Ladyfenskaja e.a., 1968; p.320, Theorem 5.2]. 

Suppose le R+\N is given and the coefficients of the operator L 

belong to cl,ltz(Q5 ) • Then for any fec'·' 12 (Q5 ) , ,pecl+z( . .., ,0], 
0 0 

l+z 
c»eC2 [0,T] satisfying the compatibility conditions of 

l+z t+z.T -
order [ l/2]+1 there is a unique bounded function ueC (Q50 ) 

that satisfies the equations given in (2.1). 

Lemma 2.3 [Friedman, 1964; p.80]. 

For SeC(0,T] and -R < m1·n S(t), suppose that u,. is a sequence 
te 0,T] 

au.,(x, t) a2u,.(x, t) 
of functions satisfying: at - axz - 0, xe(-R,S(t)),te(0,T], 

u,.(x,0)-.pm(x), xe[-R,S(0)], u,.(-R,t)- ~m(t), u,.(S(t),t)➔m(t), te(0,T], 

If q,m➔ ,p uniformly on [-R,S(0)] and ~m➔~. \\Im➔\\\ uniformly on [0,T], 

then the sequence u,. is uniformly convergent on o.: to a function u, 

the derivatives~. :;; and~ converge uniformly on closed 

subsets of {(x,t)jxe(-R,S(t)),te(0,T]J to the corresponding derivatives 

of u and 

au(x,t) a2u(x,t) _a_t_ · axz - 0, XE(-R,S(t)), te(0,T], 

u(x,0)-.p(x), XE[-R,S(0)], u(-R,t)~(t), u(S(t),t)➔(t), te[0,T]. 

Lemma 2.4 (maximum principle). 

Suppose SeC[0,T]. If the bounded function .uec2 •1 (Q5 ) n C(Q5 ) 

satisfies: 

au(x, t) a2u(x, t) __ a_t_ - axz - 0, XE(-a,,S(t)), te(0,T], 

then min{ inf u(x, 0), min u(S(t), t) } ,s u(x, t) ,s 
xe(-a, ,S(0)] te[0,T] 

max {sup u(x,0), max u(S(t),t)} for (x,t)EQ5 • 
xe( •"', S(0)] te[0, T] 

Proof. First of all we consider the right-hand inequality. Since u is 

bounded there is a constant p such that lu(x,t)l:S,8, (x,t)EQ5 • 

Defineµ - max{ sup u(x,0), max u(S(t),t)}, a1- min S(t) 
XE(-a,,S(0)] te[0,T] te[0,T] 
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and u2-~~.T]S(t). 

Suppose there is a point (e,r)EQ5 such that u(e,r)>µ. Then we 

define an auxiliary function ~:R➔ R by 

-R The function h:Q5➔ R given by h(x,t)~(x) - u(x,t) satisfies 

ah(x, t) - a2h(x, t) - 0 xe(R S(t)) te(O T] at ax.2 , ,., ,, 

h(x,O).!:O, xerR,O), h(R,t).!:O, h(S(t),t).!:O, te[O,T). 

The inequalities follow from the inequality S(t)s u2 , te[O,T] and 

the definition of~ and R. 

According to the minimum principle for bounded domains (see[Protter & 

-R Weinberger, 1967; p.168, Theorem 2)) it follows that h(x,t).!:O, (x,t)EQ5 • 

Since (e,r)~ we obtain 

u(e,r)-µ 
0 s h(e,r)-µ + 2 (e-u2) Ce-u2)-u(e,r), 

which implies u(e,r) s µ.This is a contradiction. 

The left-hand inequality can be derived from the right-hand inequality by 

using the function -u. 

Lemma 2.5 

For SeC[O,T] suppose u., is a sequence of bounded functions such that 

u.,ec2 • 1 (Q8 ) n C(Q5 ) and 

au,.(x, t) a2u.,(x, t) 
at ax2 - o, xe(-.. ,S(t)), te(O,T]. 

u.,(x,O) - ~m(x), xe(-.. ,S(O)), u.,(S(t),t)- ~m(t), te[O,T]. 

If ~m➔ ~ uniformly on (-.. ,S(O)) and ~m➔ ~ uniformly on [0,T) 

then the function u:Q5➔ R defined by u(x,t)-lim u.,(x,t), (x,t)eQ5 
Jn➔ GO 

is bounded, u e C2•1 (Q5 ) n C(Q8 ) and satisfies 

au(x,t) - a2u(x,t) - o xe(-.. S(t)) te(O T) at ax2, •, ,, 

u(x,O) - ~(x), xe(-.. ,S(O)), u(S(t),t) - ~(t), te[O,T]. 

Proof. With the maximlDD principle we deduce 

• 
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lu,,,(x,t) - Ui.(x,t)j ➔ O for m,k➔ 00 uniformly for _(x,t)EQ5 • 

Thus, for an arbitrary constant R such that - R < min S(t) 
te[O,TJ 

sup lu,,,(-R,t)-Ui.(-R,t)j ➔ O for m,k➔ 00. 
te[O,TJ 

Define ,t,(t)-lM100 u,,,(-R,t), te[O,TJ. Since u,,,eC2 ' 1 (cfs) n C(Q:) we 

find from Lemma 2.3 that the function given by u(x,t)-lirn u,,,(x,t), 
Ill➔ 00 

(x,t)E Q: is an element of C2 ' 1 (cfs) n C(Q:) and satisfies 

au(x, t) a2u(x, t) _a_t_ - ax2 - 0, XE(-R,S(t)), te(O,T], 

u(x,O) - ~(x), XE[-R,S(O)J ,u(-R,t) - ,t,(t), u(S(t),t) - w(t), te(O,TJ. 

Furthermore it follows that 

iu(x,t)I :S sup { sup 1~ Cx)I, rnax lw .. Ct)I }• Cx,t)EQ:, 
m XE(-00,0J m te(O,TJ 

thus u is bounded on QR5 • This proves the lemma because R is arbitrary. ■ 

2.4 Approximation results 

i) 

ii) 

iii) 

iv) 

Lemma 2.6. 

Suppose the function ~:(-00,0J ➔ [O,lJ is such that ~(0)-0, lim ~(x)-1 
X➔ -a, 

and there is a constant K > 0 such that -Kh :S ~(x+h) - ~(x):sO, l20; x+h E(-00,0J. 

Then there is a sequence of functions (~n}~1 such that 

~ (x) 
~neC"'(-00 ,OJ , 0 :S--ix- :SK, XE(-00 ,OJ, 

~n_ 1(x) :S ~n(x) S ~(x), XE(-00 ,OJ , n-2,3, ... , 

0 

lim J [~ (x) - ~ (x) ]dx-0, lim sup [~(x) -~ (x) ]-0, 
n->00 -<0 n n->00 XE(-00 ,OJ n 

lim ~ (x) _ 1. 
X-+ -a:, n 

Furthermore there is a function ~+:(-00,0J➔ [O,lJ such that ~+ec'"(-00,0], 
0 

.,,(x)~+(x), XE(-00,0] and J[~+(x)-~(x)Jdx < "'· 

Proof. Suppose geC"'(R) is a function with the following 

properties g(x) - g(-x)2:0, XE[-½,½J, g(x)-0, xER\[-½,½J and 
.. £ g(x)dx - 1. Define g,,:R➔ (0,00) by g,,(x)-ng(nx), xER, ~(x)-0, xe(0,00), 

~,(x) - ~ex~). XER and ~/x) - l ~n(,)g,,(x-,)dr,XE(-oo ,OJ. 

Since ~:(-00 ,OJ ➔ (O,lJ the definition of ~n yields ~n:(-oo ,OJ ➔ (O,lJ. 
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i) It is easily seen that fnec•(-m,OJ. This together with 

f (x+h) - f (it) - J [op (,.+h) - op (r)Jg,.(it-,.)d1', it,it+he(-m ,OJ 
n n -• n n 

~ (lt) 
implies -K :S-½- :S 0, xe(-m ,OJ. 

ii) From the definition it follows that 

f (x) - J f(~)(n-l)g((n-l)(x-,-))d1' - j f(nh-(y+l))g((n-l)x-y)dy, 
n-1 -• n• -ao 

fn (x) - j f (1'+fi)ng(n(x-,-))d,- - J f(fi(y+x+l))g((n-l)x-y)dy. 
-a, -• 

Since g(x) ~ 0,XE:R, g((n-l)x-y)-0, y :S(n-l)x-½ and 

f(~(y+l)) :S f(!(y+x+l)), ~(n-l)x-1 it follows 

that fn-l (x) :S fn (x), xe(-m ,OJ. The inequality f/x)~(x), xe(-m ,OJ 

holds because g(n(x-,-))-0, 1' :S x - fn and f(1'~) :S f(x),,..!::X-~ 

iii)From the inequality f(x+~)~n(x)~(x), xe(-m,OJ we deduce 

that 
0 0 

0:SJ [f(x)-f (x) Jdx :S lim f [f(x) - f(x+ii) Jdx 
-• n N-+ao ... 1 

-N ' 0 

- lim J f(x+ii)dx-ii, thus lir, f[f(x)-f (x)Jdx-0. 
N-t-a:a n n-,ao -• n 

-N-:z 

Since f is Lipschitz-continuous it follows that 

2K 2 f(x) - -rr :S f(x+n) :S fn(x) :S f(x), xe(-m,OJ thus 

lim ,,... sup [f(x)-f (x)J-0. 
xE(--,OJ n 

iv) It is easily seen that fn(x)-0, xe[-ifi,O]. This combined with 

~ dzf 
fnec•(-m,OJ yields fn(O) - air(O) - di'T(0)-0. The inequality 

f(x+~) :Sf (x) S f(x),xe(-m,OJ implies lim fn(x)-1. 
n X➔ -a:, .. 

The function f+: (-m ,OJ ➔ [0,lJ defined by f+(x) - f f(r-l)g(x-,-)d1" 

has the required properties. 

Lemma 2.7. 

-• 

i) For E>O and SeP there is a function s-ePnC2 [0,TJ such that 

S-(t)sS(t). te[O,TJ and 11s-s-1L<E. 

ii) For E>O, K>0 and SeMK, there are functions s+,S-EM,c such that 

s-(t)sS(t):SS+(t), te[O,TJ and lls+-s-lL<2E. 

• 
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i) Proof. From SeC(O,T] we know Sis uniformly continuous. 

Hence, for ,>O there is an NEN such that if Jt-,J1 and t,,e[O,T] 

then JS(t)-S(,) J<f . Take h-T/N and t 1-ih for i-0, ... ,N. Define the 

function S:(O,T]➔ R as follows: SEC(O,T], S(t1)-S(t1), i-0, ... ,N 

and S is a linear function on [t1 ,t1+1 1, i-0, ... ,N-1. It is easily seen 

that 11s-s1L < ¾· 
The function S: (0, T] ➔ R is given by S (t)-max { 0, S (t)-f}, te[O, T] . 

There exists a strictly increasing sequence , 1e[O,T], i-0, ... ,m+l with 

m :SN such that, , 0-0, , ..... 1-T and SeC2 ([0,T]\U (,1 )). 
i•l 

From the definition of S we obtain: for i-0, ... ,m there are 

is defined by: 

- { S(,~-µ)+(t-(,i-µ))(ai_rai) - ~ ti-;i-l) cos((t-,i)j;,) ,tE[,i-µ,,i+µ] ,i-1, ... ,m 
s (t)-

S (t) , tE[O,T]\ u [,1-µ,, 1+µ] · 
i•l 

Forµ small enough the functions- has the required properties. 

ii) The function S- is constructed in the same way as in part i). Since Sis 

Lipschitz continuous the inequalities O :S a1 :SK hold for i-0, ... ,m. This together 

with part i) implies S-E Mic· 

We use the auxiliary function ~:[0,T] ➔ R given by ~(t)-Kt-S(t) for 

tE(O,T]. From the above it is clear that there is a function ~-E'1ic 

such that ~-(t) :S ~(t) :S ~-(t)+,, te[O,T]. Define S+Et1ic 

by s+(t)-Kt - ~-(t), te[O,T]. It is easily seen that S+(t)~(t)~S+(t)-,, 

tE[O,T]. C'3 

Corollary 2.8. MK is the closure of Mic in C(O,T] with respect to 

the "'-norm. 



3. Statement of the problem 

In this section we specify the Stefan problem. This will appear to be a 

more general problem than the problem mentioned in Section 1. 

We shall always impose Condition 3.1: 

Condition 3.1. 

The function Ca in (1.1) should be an element of the set Cond.3.1:

(.p:(-oo,O] ➔ Rl.p is a monotone decreasing Lipschitz continuous 

function with .p(0)-0 and lim .p(x)-1). 
X➔ -co 

Let L be a Lipschitz constant of the function Ca. 

Occasionally we shall impose the following stronger condition: 

Condition 3.2. 

The function Ca in (1.1) should be an element of the set Cond 3.2:-

d.p dz 
{.peC3+"(-«> ,O] for an ae(O,l) l.peCond 3.1 and dx(O) - dx~(0)-0). 

In the sequel, B:[O,oo)➔ [O,"') will denote a multifunction (see (Smithson,1972]) 

and, G:Pxt\x[O,T]➔ [O,oo) will denote a functional, both subject to 

the following condition, which will always be imposed: 

Condition 3.3. 

The multifunction B should be surjective and there should be a Be(O,«>) 

so that for xe[O,"'), h >O, y1eB(x) and y2eB(x+h) the inequality 

y2 -y 1~ Sh holds. 

The functional G should be such that: 

i) G(S,f,0)-0 for SeP, feML. 

ii) There is a 7E R such that 0:SG(S,f,t+h)-G(S,f,t)~7h for 

~0; t+h, te[O,T], SeP and feML. 

iii)There are constants G1 ,G2e R so that 
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In order to state a Stefan problem, we first state a reduced problem: for 

a given function SeO, find a bounded function C5eC2 ' 1 (Q5) n C(Q5) 

that satisfies the equations in (1.1) for this function S. 

For any SeO, for which the reduced problem has a solution C5 , we 

define C5(x,t)-O, x>S(t), te[O,T]. Let the function f 5: [O,T]➔ R be defined 

.. 
by f 5 (t)- • f [C5 (x, t) · C0 (x) ]dx . ... 
The Stefan problem can be stated as follows: find a function SeP and a 

solution C5 of the reduced problem such that 

(3.4) G(S,f5,t) E B(S(t)) , te[O,T]. 

In Section 6 we give some examples of the Stefan problem defined above. 

Definition 3.5. 

We define the function spaces M-M~/B and M-M~/B. 
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4. Properties of the reduced problem 

In this section we study the properties of solutions of the reduced 

problem. These properties are used in Section S to prove an existence 

theorem for the solution of the Stefan problem. Some properties are stated 

for their own sake. 

4.1 Existence theorem for Cs if SeC2 [0,T] and Condition 3.2 holds 

Theorem 4. 1. 

Suppose Condition 3.2 holds. Then for any SeC2 [0,T] with S(0)-0, the 

reduced problem has a unique solution Cs and it satisfies 

3 .... , !!!! -
CseC 2 (Qs) with the same a as in Condition 3. 2. 

Proof. 

Our proof is based on Theorem 2.2. First of all, the reduced problem is 

transformed into a stationary domain problem. Define the following 

transformation: 

(!) - F(x,t)-cx-St(t)) for x e R , te[0,T]. 

Since the Jacobian det(DF(x,t)) -1; -d~{-t2.I _ 1,. 0, Fis a c2 -diffeomorphism. 

Define S0 (t)-O, te[0,T]. It is easily seen that Cs is a solution of (1.1) if and 

only if the function C, defined by C(y,r)- Cs o F-1 (y,r)-Cs(x,t), (y,r)eQs 
0 

solves the problem: 

iJC(y,r) a2C(y,r) _ dS(r) ac(y,r) _ 0 _a_r_ - ay2 dr ay , ye(-co ,0), re(0, T], 

c(y,O) C0 (y) , ye(-co,0] C(O,r)-0 ,re[0,T]. 

For this problem we check the conditions of Theorem 2.2 for the same a as 

in Condition 3.2. 

1) Since SeC2 [0,T], the coefficients of the parabolic equation belong to 

ii) The parabolic equation is homogeneous and the boundary function is Cm[0,T]; 

Condition 3. 2. says that C0eC3+" ( -co , 0] . 
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dC d2C 
· iii}Since Condition 3.2 states that C0 (0} - - 0 (0} - --0 (0} - 0, 

dx c1x2 

the compatibility conditions of order 1 are fulfilled. So there is a 
3+.. 

unique bounded solution C of this problem and CeC3...,.'2 (Qs0 }. 

3+.. ~ 
'nleorem 4.1 now follows, since the components of Fare in C ' 2 (Rx[0,T]}. ■ 

ac 
4. 2 Estimation of 7it 

Lemma 4.2. 

Suppose Condition 3.2 holds. Let S1 ,S2eC2 [0,T], S1(0} - S2(0) - 0 

dS (t} dS (t} 
and-½- s 7c for te[0,T], then the inequality 

8Cs 8Cs 
- ax2 (S2(t},t} s - ax1 (S1(t},t} holds for te[0,T]. 

Proof. 

Choose te[O,T] and define 6-S2(t}-S1(t} and C(x,t}-Cs2 (x+6,t}-C51(x,t}, 

xe(-~,s2(t}-6], te[O,t). It is easily seen that C is a 

bounded solution of: 

ac<;/> - a2ct;t> -o, xe(-~,s2 (t)-6}. te(O,t]. 

C(x,0) - C0 (x+6}-C0 (x}, xe(-~,-6], C(S2(t}-6,t}--C51 (S2(t)-6,t}, te[0,t]. 

'nle maximum principle applied to C5 gives Cs (x, t};?:0, (x, t}eQ5 • 
1 l l 

dS (t} dS (t} 
'nle condition-½- s 7c implies S2(t}-6 s S1(t} 

and hence ·Cs (S2(t}-6,t} s 0 for te[0,t]. From Condition 3.2 we know 
l 

dC0 (x) ----ax- S 0, xe(-~,0J and so C0 (x+6}-C0 (x} s 0. Combination of 

these inequalities with the maximum principle yields C(x,t} s 0 for 

xe(-~ ,S2(t) - 6] , te[0,t]. 

'nlis together with C(S2(t)-6,t} - C52 (S2(t),t) - C51 (S1(t},t}-O 

implies 

ac • · ax(S2 (t}-6,t} ~ 0. 

Substitution of C(x,t}-C52 (x+6,t} - C51 (x,t} gives the result 

8Csl • • 8Cs2 • • 
- °'"ax"(S1(t},t} ~ · °'"ax"(S2(t},t}. • 
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Lenuna 4.3. 

Suppose Condition 3.2 holds and SeP n C2 [0,T]. Then the solution 

C5 of the reduced problem has the property 

aG5 (x, t) dC0 _ -
0 s - ax s sup - dx (x) , (x,t)EQ5 • 

ie(-<D,0] 

Proof. 

Define S0 (t)-0, te[O,T] and the functions 

{
c0 (x), xe(-..,,0] ~ {C50 (x,t), xe(-..,,0],te[O,T] 

c':g(x)- ,C(x,t)- ·Cs(-x,t), ·Co(-x), xe(O,"') O xe(O,"'), te[O,T] 

where C50 is the solution of the reduced problem, 

acs 
The boundary condition C50 (0,t)-O, te[O,T] yields aF"(O,t)-0. 

acs a2cs ;f-cs 
Together with aF"(O,t)- ax2°(0,t)-0 we obtain ax2°(0,t)-O, 

so ;re(~ t) is a continuous function. 
ax 

Since C is an odd function of x 

u a<:(x,t) - lim a<:(x,t) and Um a3c(x,t) - Um a3C(x,t). 
xtB ax x+O 8x xtO ax3 x+O ax3 

~ 3+cx, 3+cx 
Hence CeC 2 (Rx(O, T]) and C is a solution of 

a<:(x,t) - ;f-c(x,t) - 0 R t (0 T] at axz ,xe,e,, 

G(x,0) - G0 (x) , xe R. 

The maximum principle for this Cauchy problem [Ladyzenskaja e.a., 1968; 

p.18, Theorem 2.5] yields: 

inf dGo - s ac (x. t) < sup dGo (x) 
xe R dx (x) ax - xe R dx ' xe R, te[O,T]. 

dG0 It is sufficient to consider the infimum of dx on (-..,,OJ, because 

dG 0 dx is an even function. From Condition 3.2 we know 

dC 0 (x) acs (x, t) dC 
-dx s 0, xe R so Os - 0ax s _sup -dx0 (x), (x,t)eQ5 • 

xe(-..,,0] o 

ac 
For an arbitrary SePnC2 [0,T], the bounded function d satisfies: 

a ac.<x, t) 
at ax 

L acs<x,t) -o < sc >> co TJ axz 8x ,XE•"', t ,tE,, 

acs ax (x,0) 
dC0 (x) 

- ~, xe(-<0,0]. 
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Since dS(t) > dSo(t) -0 te[O,T], we obtain from Lemma 4.2 
dt-dt ' 

ac acs 
- ;;cs(t),t) :S - ax0 (0,t) , te[O,T]. 

. ~ -Furthermore O:S - ax<S(t),t) , te[O,T] because C5 (x,t)~. (x,t)eQ5 

and C5 (S(t), t)-0, te[O, T]. These inequalities together with the maximum 

principle yield 

0 :S - acs(x,t) :S sup _ddxCo(x.) ' (x,t)eQs· 
ax xe(-.., ,OJ 

t ac 
4.3 The relation f8(t)- - J ;;cs(r),r)dr, te[O,T] 

0 

The function f 5 is defined in Section 3 after the formulation of the 

reduced problem. 

Lemma 4.4. 
For Sal suppose there is a solution C6 of the reduced problem, then 

Itim_.., C5 (x, t)-1 for te[O, T]. 

Proof. 

The maximum principle together with Condition 3.1 yields 

O:SC5 (x,t):Sl, (x,t)eQ5 • Since lim C0 (x)-l, there is for E>O an 
X➔ •CIO 

N1 < ~t8,T] S(t) such that l - C0 (x)<f, xe(-..,,N1]. 

The function ,p:(-... ,NiJx[O,T]➔ R given by 

,p(x, t)- - (1-f)erf( 2x~) is a bounded solution of 

8,p(x, t) a209 (x, t) - 0 , xe(-... ,N1), te(O, T], __ a_t_ - axz 

E x-N1 ,p(x,O) - -(l-2)erf(-2-), xe(-... ,N1], ,p(N1,t) - 0, te[O,T]. 

x-N 
Since -1:S erf(T) :SO for xe(- ... ,N1) the maximum principle yields 

Cs(x,t) ~ ,p(x,t) , xe(-... ,N1], te[O,T]. 

Furthermore there is an N2<0 such that erf(y)s-l+f for ye(-... ,N2 ), 

because lim erf(y)--1. This implies 
y➔ -<O 

l.;:s(x,t) ~ ,p(x,t)~(l-f)(l-f)>l-E for xe(-<0,N1+2Nz.Jfil), te[O,T]. 

■ 

Thus l-t_im_.., C5 (x,t)-l for te[O,T]. ■ 

3+a 

Remark 4.5. If C5eC3+•,·2 (Q5 ) and lim C5 (x,t)-l, te[O,T] then it is easily seen 
X_. •oo 

that lim 
X-t -co 

ac. (x, t) 
ax 0, te[O,T]. 
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Lemma 4.6. 

Suppose Condition 3.2 holds. Then for any SeC2 [0,T] with S(0)-0, the 

solution of the reduced problem satisfies: 

• ; ac 
J(C5(x,t)-C0 (x)]dx - f a:(S(t),t)dt ,te[O,TJ. 
- 0 

tac Thus f5(t)-- 0 ax5(S(r),r)dr, te[O,T]. 

Proof. 

Choose te[O,T] and R such that -R< min0 ) S(t), We define 
te[ ,T 

L -{(x,t)lx-S(t), te(O,t)J and Q-{(x,t)lxe(-R,S(t)),te(O,t)J. 

3+«.~ -
According to Theorem 4. l C5eC 2 {Q5). 

With the divergence theorem of Gauss [Hayman & Kennedy, 1976; p.22, 

Theorem 1.9] we obtain: 

( 
8C8 (x,t) J 

If div Bx dxdt - f 
Q -C8 (x,t) aQ 

where ( ~) is the outward pointing un·~t normal and 

div(•) - (a• a•)r ax • at · 
This is equivalent to 

ac ( t) 0 S(t) 
• Sa:· ]dxdt - J Co(X)dx - J C5(X, t)dx 

-R -R 

f[ aGs(x,t) t ac5 
+ 8x Il,. ~ C5(x,t),{\]ds - f ax:<-R,t)dt. 

L O 
The left-hand side is zero because C5 is a solution of (1.1). 

Since C5(x,t)-O, (x,t)EL the integral over L reduces to 

I 8C5 (x, t) ax .n,.ds. Substitution of the parametrization 
L 

x-S(r), t-r of Land using (~)( ~{ )-o, n,..:: 0, n;+~-1 yields 
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Thus, 
. . 

"'s . t acs t acs [C5(x,t)-Co(X)]dx - J ax<S(t),t)dt + J iJK (-R,t)dt-0. 
-R O 0 

3¼,1!:g _ ac 3 ..... ~ 
Since C5eC 2 (Q5), the inequality I a:_(-R, t) I ~ JJcsJI 2 

holds for te[O,T]. From Remark 4.5 and the Lebesgue dominated 

convergence theorem it now follows that 

t acs t acs 
lim J ,,.,_ (-R,t)dt - J lim ,,.,_ (-R,t)dt-0. 
R➔"' 0 Uh O R➔"' Uh 

This yields Um 
R➔"' 

"' J t ac 
[C5 (x,t) - C0 (x)]dx - J a:_(s(t),t)dt. 

-R 0 

4.4 Existence theorem for Cs if Se C2 [0,T] 

Definition 4.7. We apply Lemma 2.6 to C0 and define a sequence 

(C0 Jn;;:i_ and a function c+ as given in this lemma. 

The function c::Qs➔ R for reel, if it exists, is defined 

as a solution of the reduced problem, with initial condition 

~(x,0)-Cn(x), xe(-..,,0]. 

Lemma 4.8. 

Ill 

For every A> 0, o > 0 there is an N > 0 such that if SeO, S(t)e[-A,A],te[O,T], 

and the functions C~ and C5 exist, then C~(x,t)~5 (x,t) , (x,t)eQs, n-1,2, ... 

-N 
and J [Cs(x,t) - C~(x,t)]dx < 6, n-1,2, .. 

-<O 

Proof. Take S-(t)--A and S+(t)-A, te[O,T]. Define the functions 

31 31 
C~e C 2 (-a,, -A] and c;e C 2 (-a, ,A] with the 

following properties: the functions x➔ c;(x ± A) are elements 

of Cond 3. 2, C~(x)~1 (x) , xe( _.., , -A], C0 (x)~; (x) , xe( -a, , 0] 

and f [c;(x)-C~(x)]dx<"'. It is easy to see that c; can be such 
-a, 

that c; (x)-c+ (x) , xe( _.., , O] . 

An application of Theorem 4.1 proves that there are unique solutions 

1 1~ 
C3z· • -Cs± E (Q5±) of the reduced problem, 
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with initial conditions C5±(x,O) - c;(x), xe(-ro,±A]. 

According to the definition of C~,c; and Lemma 4.6 there is an 

N>O large enough such that 

-N + 6 -N + 6 
I J (Co(X)•Co(x)]dxl < 4 and I J (C5±(x,T)-Co(X)]dxl < 4 -~ -~ 

-N t ac + 
Since J [C5±(x,t)·C~(x)]dx - f ~-(-N,T)dT and Lemma 4.3 

""' 0 
ac +(x, t) 

yields s-ax :s O, (x, t)~5± we obtain: 

-N -N + -N + 6 
I J [C5±(x,t)·Co(X)]dxl :SI J (Cs±<x,T) - Co(X)]dxl + I J (Co(X)-Co(x)]dxl < 2' te[O,T] -~ -~ -~ 
From the maximum principle we obtain 

C5 -(x,t) :S <;(x,t) :S C5 (x,t) :S C5+(x,t),(x,t)~5+, n-1,2, ... 

This implies for Re R, R>N 

-N -N 
J (C5(x,t)-<;(x,t)]dx :S J (C5+(x,t)-C5-(x,t)]dx :S 6, te[O,T], n-1,2, .... 
-R ·«> 

-N 
Thus J [Cg(x,t)-C~(x,t)]dx exists and is less than 6. 

-«> 

Theorem 4.9. 

For a given functiom SeOnC2 [0,T] there is a unique solution C5 of 

the reduced problem, and f5eP (for f 5 see Section 3). 

2 aG5(X, t) 
If SeP n C (O,T], then f5EML, and O :S - ax :SL for (x,t)eQ5 . 

Proof. 

The functions Cn of Definition 4.7 are elements ff Cond.3.2 with a i 
According to Theorem 4.1 the unique functions C~ exist and 

3½, 1¾ . n _ 
<; e C (Q5). Since C5 :Q5➔ (0,1], Cn➔ C0 uniformly on (-«> ,OJ 

ll;l 

and C~(S(t),t)-0, te(O,T], n-1,2, ... we deduce from Lemma 2.5 and the 

maximum principle that the function C5 (x,t) - ~m"' C~(x,t},(x,t)~5 

is the unique solution of the reduced problem. 

Define f~(t)--J [<;(x,t)·Cn(x)]dx, te[O,T], n-1,2, ... 
-«> 

An application of the maximum principle yields: 

0 :S ~(x,t) :S C~(x,t), (x,t)~5 , 1 :s k :s n. 

Since C~(S(t),t) - C~(S(t),t)-0, te(O,T] the inequalities 
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a~ acn ~- ax. (S(t),t) s- a:(S(t),t) hold for te[O,T]. 

According to Lemma 4.6 this implies f~(t) s t's(t), te[O,T], 1 s k s n. 

On the other hand we know that 

f~(t) - ~(t) s J [Cn(x)-<;,(x)]clx s J [C0 (x)-<;,(x)]dx. 
-~ -oo 

Thus, (4.10) !It's - f~IL S J [C0(x) - <;,(x)]dx. 
-00 

acn 3.! 1~ 
The inequalities Os- a:<s(t), t) s IIC~ll 2' 4 combined with 

Lemma 4.6 yield t'seP , n-1,2, .... This together with inequality 

(4.10) and Lemma 2.6 iii) demonstrates that {f~} is a Cauchy 
n2:l 

sequence in the complete space (P, 11-!Ll. Thus, lim t's(t)-f5 (t), te[O,T] 
n-+ 00 

exists and is an element of P. 

Given o>O, Lemma 4.8 demonstrates that there is an N>O such that 

-N 
I J [C5 (x,t)-C~(x,t)]dxl<5. It is easy to see that 

f 5 (t)-f~(t) + f[C~(x,t) - C5 (x,t)]dx 
-N 

00 -N 
+ J [C0 (x) - Cn(x)]dx + J [C~(x,t)-C5 (x,t]dx. 

This implies that f 5 exists and 
00 00 

Jf5 (t)-t's(t) I S I J [C~(x,t) - C5 (x,t)]dxl + I J [C0 (x) - Cn(x)]dxl + 5, 
-N -00 

te[O,T], n-1,2, .... Since C~ converges uniformly to C5 for n-+00, 

we obtain with Definition 4.7 

Because o can be chosen arbitrarily small, we conclude f~(t)-f5 (t), te[O,T] and thus 

f 5eP. 

acn 
For SePnC2 [0,T], the Lemmas 4.3 and 2.6 i) yield OS- a:(S(t),t)sL, 

te[O,T], n-1,2, .... Thus, f~EML, n-1,2, .... Since (ML, 11-!L) 

is a complete space, we conclude that for SeP the function f 5 exists 

and is an element of ML. 

Furthermore for SeP, the Lemmas 4.3 and 2.6 i) yield 

_ac~(x,t) _ 
Os ax. s L, (x, t)eQ5 • According to Lemma 2. 5 it 

follows that Os_acs~:,t) sL, (x,t)eQ5 • Ill 
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4.5 f5 depends continuously on S 

Theorem 4.11. 

i) If S1 , S2 e 0, S1(t):s52(t), te[O,T] and there are 

solutions Ci;1 , Cs2 of the reduced problem, then 

i) 

.. 
reduced problem, then flCs (x,t)-C5 (x,t)ldx :S IJS 1 -S2 JL, te[O,T]. 

-• 2 1 

If f51 , f 5 exist, this implies 1Jf5 -f5 IL :S IJS 1 -S2 JL-z l 2 

Proof. 

Define 6-JJS1 -S2 IL and the function C by C(x,t)-C5 (x+6,t) 
2 

for xe(-oo,S2 (t)-6], te[O,T]. 

aG(x, t) _ a2c(x, t) _ o 

This function C satisfies 

at ax2 , xe(-oo ,S2 (t)-6), te(O,T], 

C(x,0)-C0 (x+6), xe(-oo,-6], C(S2 (t)-6,t)-O , te[O,T]. 

Since C0 is a monotone decreasing fun:tion and S2 (t)-5:s5 1(t), 

te[O,T], application of the maximU111 principle yields: 

C(x, t) :S Cs (x, t) :S Cs (x, t) , (x, t)EQs . 
l 2 2 

Thus, for NeR, we have the following estimation 
.. .. 
f[Cs (x,t)-Cs (x,t)]dx :S f[C5 (x,t)-C5 (x+5,t)]dx 
N 2 l N 2 2 

N 

Sz(t) 

f Cs2 (x,t)dx -
N 

Sz(t)-6 

J 
N-6 

- f C5 (x+o,t)dx :S 6 - JJS 1 -S2 JL because 
N-6 2 

.. 

N 

J cs (x+o, t) ::Ix 
N-6 2 

C52 (x+6,t)sl, xeR, te[O,T]. Thus, J[C5 (x,t)-C5 (x,t)]dx 
-• 2 1 

exists and is less than JJS 1 -S2 IL for te[O,T]. 

ii) Suppose there is an ,>Osuch that 

max[O ] jjcs (x, t) - Cs (x, t)jdx ::: JJsi-SzJL + •· 
tE , T ...., 2 l 

Define the functions S, ~eMK as follows S(t)-max(S1(t),S2(t)] 
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and ~(t)-min{S 1(t),S2(t)J, te[O,T]. According to Lemma 2.7 ii) 

there are functions s+,S-EMic such that S(t)s,+(t):$S(t)+t: and 

~(t)-~-(t)~(t) for te[O,T]. Since s+,S-EMK Theorem 4.9 

says that there are solutions Cs+ and Cs- of the reduced problem. 

Application of the maximum principle yields: 

Cs-(x,t) :S Cs1(x,t), Cs/x,t) :S C5+(x,t), (x,t)EQ5+ 

and thus 

for NER: J ICs2 (x,t) - Cs (x,t)jdx :S J [Cs+<x,t) - Cs-(x,t)]dx. 
N 1 N 

<O 

With part i) of this theorem it follows that J ICs/x,t)-C5/x,t)jdx 

for te[O,T]. This is a contradiction. 

4.6 Properties of the function f 5 

Theorem 4.12. 

i) If SeP and there is a solution Cs of the reduced problem then f 5eML. 

ii) If SEO and there is a solution C5 of the reduced problem then fsEP. 

Proof. 

Ill 

i) According to Lemma 2.7 i) there is a sequence of functions SnePnC2 (0,T], n=l,2, ... 

such that lJ➔~ 11S-SnlL-O and Sn(t)sl(t), te(O,T]. Theorem 4.9 says that there 

are unique solutions C5n, n-1,2, ... and f 5neML. 

With Theorem 4.11 ii) we obtain llfsn -f5i,;IL :S IISn-sklL-

This implies that {fsnlll<':1 is a Cauchy sequence in the complete 

space (l\,ll•IU· Hence, lJ➔~ f 5n(t)-fs(t),te(O,T] exists and f 5EML. 

Application of Theorem 4.11 i) yields 

11s-snlL 2: lni_.~ sup 11 (Csn (x, t)-Cs(X, t) ]dxl-
tE[O, T] -co 

sup 1- j (Cs(x, t)-C0 (x) ]dx + J (Cs (x, t) - C0 (x) ]dxl - llfs-fslL-
tE[O, TJ -oo -co n 

Thus, fs exists and is an element of ML. 
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ii) Take SneOnC2 [0,T] such that 11s-snlL :S 2~ • n-1,2, ... 

Define Sn(t)-Sn(t)-#, s:(t)-Sn(t) + #, te[O,T] and Cn:(-oo,-½J➔ [O,l] 

by Cn(x)- min(C0 (x), - (x+#)LJ, xe(-oo,-#], n-1,2, .... 

According to Theorem 4.9 the equations 

8C(x,t) _ ,rC(x,t) -0, xe(-oo,Sn(t)), te(O,T]. 
at ax2 

C(x,O)-C0 (x), xe(-"',-#J. C(Sn(t),t)-0, te[O,T], 

have unique bounded solutions Cs eC2 ' 1 (Qs )nC(Qs ) , n-1, 2, ... 
n n n 

Furthermore the functions fs (t)-- "'J [Cs (x, t)-Cn(x) ]dx 
n n _.., 

exist and f 5neJ?. 

An application of the maximum principle yields 

Cs (x, t) :S Cs (x, t) :S Cs (x-f(, t) , (x, t)eQ +. This implies that 
n . n Sn 

I j [Csn(x,t)-Cs(x,t)]dxl exists and is less than 2/n for te[O,T] _.., 
and n-1,2, ... see the proof of Theorem 4.11 i). It is easy to see that 

fs(t)-fsn(t) + j [Csn(x,t)-Cs(x,t)]dx + f [C0 (x)-Cn(x)]dx, te[O,T] and 
_.., _.., 

n-1,2, .... This implies that fs exists and llfs-fs IL :S fi, n-1,2, ... 
n 

Since fs eP and the space (P, 11· IL> is complete if follows that fsEP. Ill 
n 

4.7 Existence theorem for Cs if SeM 

Theorem 4. 13. 

For a given function SeM, there is a unique solution Cs of the 

-aCs(X, t) 
reduced problem, O:s ax .sL, (x, t)EQs and fseML. 

Froof. 

According to Lemma 2.7 ii) there is a sequence of functions S0 eM, 

n-1,2, ... such that 

Applying Theorem 4.9 yields that there are unique solutions Cs
0

, n-1,2, ... 

of the reduced problem. 

Define cf?0 (t)-Cs0 (S(t),t) and cf?(t)-0, te[O,T]. We know Cs eC2 ' 1 (Qs )nC(Qs) 
n n n 

hence, 
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acs (x, t) 
From Theorem 4. 9 it follows that 0,s- n ax :SL, (x, t)~sn, 

uniformly on [0,T] we obtain from Lemma 2.5 and the maximum principle that 

the function Cs(x, t)-lim Cs (x, t), (x, t)eQs is the 
n ... a1 n 

-acs (x, t) 
unique solution of the reduced problem. Since O< ax :SL,(x,t)~s• 

-ac (x, t) 
Lemma 2.5 yields O:,; sax .sL, (x,t)~s· 

It follows from Theorem 4.12 i) that fs exists and fsEML. Ill 
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5. +be solution of the Stefan problem 

In this section we prove existence and uniqueness of a solution for the 

Stefan problem. To prove the existence theorem we use the results of 

Section 4, particularly Theorem 4.11. Since the existence theorem is 

proved in a constructive way, the proof suggests an.approximation scheme 

by which the Stefan problem can be solved numerically. 

5.1 Definition of the operator~ 

Definition 5 .1. 

' --1 -
For B as in Condition 3.3, we define B (y)-(xe[O,•) lyeB(x)}. 

Remark 5.2. 

Using condition 3.3 it is easy to see that B-1 : [O,•)➔ [0,•) is 

a function with the properties B-1(0)-0 and ~-1 (y+h)-B-1(y)i, ~;ye[O,•). 

Lemma 5.3. 

The expression B-1(G(S,f8 ,t)) is properly defined for SeK,te[O,T]. 

:Furthermore it defines a function oft which is an element of M. 
Proof. 

For SEK, Theorem 4.13 states that f 8 exists and f8et\. 

This together with Condition 3.3 implies that G(S,f8 ,t) exists for 

te[O,T] and G(S,f8 ,t)e[O,•). Using Remark 5.2 it follows that 

--1 - -
B (G(S,f8 , t)) is properly defined for SeM and te[O, T]. 

Condition 3.3 combined with Remark 5.2 yields B-1(G(S,f8 ,0))-0. 

Since SEK and f 8eML we know from Condition 3.3 that 

O.s';(S,f8 ,t+h)-G(S,f8 ,t)S7h, ~; t+h, te[O,T]. 

According to Remark 5.2 we obtain 

0 s B-1 (G(S,f8 ,t+h)) - B-1 (G(S,f8 ,t)) s E(G(S,f8 ,t+h) - G(S,f8 ,t)) s }h, 

h ~ O; t+h,te[O,T]. Thus, with Definition 3.5 it is proved that 

- -1 - - -
B (G(S,f5 ,t)) ,SeM is a function oft, which is an element of M. • 
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Definition 5.4. 

The operator :T:M➔M is defined as follows: 

5.2 Existence and uniqueness of the solution for the Stefan problem 

Lemma 5.5. 

Proof. 

From Condition 3.3, Definition 5.4 and Remark 5.2 we obtain 

::s sup .,.. G(S1 ,f8 ,t) - G(S2 ,f8 ,t) 1 1· - I te(O, TI D 1 2 

::S i 1151·S2IL + °; llfs1 •fs21L-

This together with Theorem 4.11 ii) yields 

Theorem 5.6. 

If G1+G2 < B, then there is a unique function SeM, such that :T(S)-S. 

Proof. 

We know that (M,l•l) is a complete metric space and M,,,. 

From Lemma 5.5 it follows that :r is a contraction on M for G1+G2 < B. 

Thus, we can apply the Banach fixed point theorem to prove the existence 

and uniqueness of the function SeM such that :T(S)-S. 
Now we are able to state one of our main theorems: 

Main Theorem 5.7. 

■ 

■ 

The Stefan problem: "to find a function SeP and a solution C8 of the reduced 

problem such that G(S,f5 ,t)eB(S(t)), te[O,T)", has a unique solution 
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If we denote the solution of the Stefan problem by the pair (S,C5) 

then SeM. 

Existence. If conditions 3.1 and 3.3 hold and G1+G2 < B, then Theorem 5.6 

states that there is a fixed point SeM of the operator 1:M➔ M. 

This implies that there is a unique solution C5 of the reduced 

- - -1 - -problem and S(t)-B (G(S,f5,t)), te[O,T]. With Definition 5.1, 

the last equation is equivalent to G(S,f5,t)eB(S(t)), te[O,T]. 

Thus, the pair (S,C5) is a solution of the Stefan problem, and 

S is an element of M. 

Uniqueness. Suppose the pair (S,C5 ) satisfies the Stefan problem. Since 

SeP, Lemma 4.12 i) implies that G(S~f5 ,t) exists for te[O,T]. 

From G(S,f5 ,t)eB(S(t)), te[O,T], we obtain S(t)-B-1(G(S,f5 ,t)), te[O,T]. 

Condition 3.3 combined with Remark 5.2 yields SeM. This implies that 

1(S) is defined and 1(S)-S. Since the fixed point S of 1 is unique 

the theorem is proved. 

1 Remember that our convention is to impose Conditions 3.1 and 3.3. 

Ill 
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5.3 Further tmiqueness results 

In the sequel, B:R➔ R will denote a multifunction and 

G:OxPx[O,T]➔ [0,w) will denote a ftmctional, both subject to the 

following condition: 

Condition 5.8. 

The restriction of B to [0,w) and the restriction of G to PxMLx[O,T) 

satisfy the requirements of Section 3. Furthermore, the multifunction B 

should be such that for xeR,h>O, y1eB(x), y2eB(x+h) the 

inequality y2 -y1>0 holds. 

The functional G should be such that G(S,f,0)-0, SeO,feP, and 

OsG(S,f,t+h) - G(S,f,t), ha(); t+h, te[O,T], SeO,feP. 

Definition 5.9. 

Define B01 (y)-{XER yeB(x)}, and I-B(R). 

Remark 5.10. 

Using Conditions 3.3 and 5.8 it is easy to see that s· 1 :I➔ R is a 

function with the properties 8°1(0)-0 and 

0 ~ B01 (y+h) - s·1 (y), haO; yeI. 

Our second main theorem can be stated as follows: 

Main Theorem 5.11. 

The Stefan problem: "to find a ftmction SeO and a solution C5 of the 

reduced problem such that G(S,f5 ,t)eB(S(t)). te[O,T]", has a tmique 

solution if Condition 5.8 holds and G1+G2 < B. 2 

If we denote the solution of the Stefan problem by the pair (S,C5) 

then SEM. 

2 Remember that our convention is to impose Condition 3.1. 
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Proof. 

Existence. Using Conditions 3.1, 5.8, G1+G2 <Band McO it follows 

from Theorem 5.6 that there is a fixed point SeM of the operator 

1:M➔ M, This implies that there is a Wlique solution C5. of the 

- - -l - -reduced problem and S(t)-B (G(S,f5,t)), te(O,T]. With definition 5.9, 

the last equation is equivalent to G(S,f5,t)eB(S(t)), te[O,T]. 

Thus, the pair (S,C5) is a solution of the Stefan problem, and S is 

an element of M. 

Uniqueness. Suppose the pair (S,C8 ) satisfies the Stefan problem. Since 

SeO, Lel!DDa 4.12 ii) implies that G(S,f8 ,t) exists for te[O,T]. 

From G(S,f8 ,t)eii(S(t)), te[O,T] and [O,~)cI we obtain 

S(t)-B-1 (G(S,f8 ,t)), te[O,T]. Condition 5.8 combined with Remark 5.10 

yields SeP. Applying Lemma 4.12 i) yields f 5eML. With Condition 

3.3 and Remark 5.2, this implies that SeM. Thus,1(S) is defined and 

1(S)-S. Since the fixed point S of 1 is Wlique the theorem is proved. ■ 

Remark 5.12. 

In order to compare Theorems 5.7 and 5.11 we note the following. Both 

theorems state the existence of a solution of the Stefan problem in M 

(a set of Lipschitz continuous monotone increasing functions). However 

they differ with respect to uniqueness: Theorem 5.7 imposes weaker 

conditions on Band G than Theorem 5.11, but proves only uniqueness 

of the solution in the set P, which contains monotone increasing functions 

only, whereas Theorem 5.11 even proves Wliqueness in the set 0, which also 

contains non-monotone fWlctions. 
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6 .. Applications of our main theorems 

In this section we first consider the Stefan problem mentioned in Section 1. 

After that we look at some other examples. Finally we give a scheme by 

which the Stefan problem is solved numerically. 

6.1 The classical Stefan problem 

In the sequel we suppose that T>O and C0 (-~,0]➔ [0,l] are given. 

Furthermore, Condition 3.1 holds for this function C0 • 

For a given bounded integrable function b:R➔ [B1 ,~) with B1>0 we 

X 

define B:R➔R by B(x)-fb(r)dr, xeR. 
0 

This function B satisfies Condition 5.6. 

Suppose that the bounded continuous functions g,h: Rx[0,T]➔ [0,~) 

are given and that there are g1 ,Sz,h1ER such that: 

I g(x1 , t) - g(itz, t) I :S g1 I x1 -x2 I 

lg(x,t1 ) - g(x,t2 )1 :S g2 1t1-t2 1 

lh(x1 ,t) - h(itz,t)I :S h1 1x1-x2 1 

xe[0,~), 

Xi,XzE[0,~). te[0,T]. 

For given G.!.O and SeO we define s,:[-6,T]➔ R by 

S t - and { o , te I - 6 , o > 
,( ) S(t),te(0,T] 

t t 

G(S,f,t)-fg(S(r),r)df(r) + fh(S 1 (r-6),r)dr, SeO, feP,te[0,T]. 
0 0 

The first integral is a Lebesgue-Stieltjes integral. 

Remark 6.1. 

For SeP, feML, te[0,T] we know that f is absolutely continuous 

- t df( r) t and thus: G(S,f,t)-f g(S(r) ,r) d dr + f h(S6 (r-6) ,r)dr. 
0 r 0 

Lemma 6.2. 

The functional G satisfies Condition 5.8. 

Proof. 

It is easily seen that G(S,f,0)-0, SeO,feP. Since feP and 

g(S(t),t) ~ 0, h(S6 (t-6),t) ~ 0, te[0,T] we have 



0 s G(S,f,t+e) - G(S,f,t), e ~ O; t+e, te[O,T], SeO, feP. 

It remains to be shown that G satisfies Condition 3.3 ii),iii). 

Since g(x,t),h(x,t)~. xER, te[O,T] we obtain 

t+, 
~(S,f,t+e)-G(S,f,t) s sup g(x,t) J dfd(r)dr + sup h(x,t)e 

xe[O,m) t r xe[O,m) 
te[O,T] te[O,T] 

s { sup Lg(x,t) + sup h(x,t)} e, ~; t+e, te[O,T], SeP, feML. 
xe[O,m) xe[O,m) 
te[O,T] te[O,T] 

Thus Condition 3.3 ii) holds. 

For G1-(g1L+h1)T it is easy to verify that the inequality 

sup IG(S1 ,f,t) - G(S2 ,f,t)I s G1 ljs1-S2 IL holds for S1 , S2eM, feML. 
te[O,T] 

If SeM then g(S(t),t) is a Lipschitz continuous function oft and 

the Lipschitz constant equals g1 ~ + g2 . With integration 

by parts we obtain 

f g(S(r).r)dfJr)dr - g(S(t), t)f(t) - ff(,-) dg(Sdr) ,r) dr, te[O, T]. SeM, feML" 
o r o r 

From this we derive the following inequalities: 

su[pO IG(S,f1 ,t) - G(S,f2 ,t)1 s { sup g(x,t) + f ldg(Sd;),r) ldr} llf1-f2 IL 
te ,T] xe[O,m) o 

te[O,T] 

Thus Condition 3. 3 iii) holds for G2-{ sup g(x, t) + T(~g1+g2 ) } • II 
xe[O,m) 
te[O,T] 

Remark 6.3. 

i) The problem mentioned in Section 1 equivalent to the Stefan problem 

specified in Section 3 if we choose b(x)-B1 , xER and g(x,t)-1, h(x,t)-0, 

XER, te[O,T]. 

ii) Suppose the problem defined above is a mathematical model of an etching 

technique. Then the functions band g reflect the ratio between the loss 
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of etching agent and the loss of solid. This ratio depends on the time and 

the position of the moving boundary. Furthermore, if the function his not 

identically zero, then there is also a loss of solid independent of the 

loss of etching agent. 

Theorem 5.11 yields that there is a unique solution of the Stefan problem 

if G1+G2< B. This inequality holds if 

(g1 (L+j-)+g2+h1 )T + sup g(x,t)<B1 with--, - sup Lg(x,t) + sup h(x,t). 
1 xe[O,"') xe[O,"') xe[O,"') 

te[O,T] te[O,T] te[O,T] 
Lemma 6.4. 

If sup g(x, t)<B1 then there is a unique 
xe[O,"') 
te[O,T] 

solution of this Stefan problem for te[O,T]. 

Proof. 

Existence and uniqueness on [O,T1 ] follow from Theorem 5.11. 

If T1-T the lemma is proved. 

In the other case denote the unique solution for te[O,T1 ] by (S,G5). 

-1 - - -l -
Define M -(SEMIS(t)-S(t), te[O,T1 ]J and M1-(feM1 1f(t)-f8(t),te[O,T1 ]J. 

The following inequalities are easily verified, 

and sup IG(S,fl't) 
te[O,T] 

G(S,f2 ,t)1 

SEM1 , f 1 , f 2EM~. 
For T2 - min(T,2T1 ), Theorem 5.11 yields that there is a unique 

solution for the Stefan problem on [0,T2 ]. Repetition of this procedure 

using Tn - min(T,nT1 ) until Tn-T proves the lemma. 

6.2 Other examples 

Example 1. 

Given B1 , B3>0, B22:0 and k-0 , de fine B : R➔ R by 

{
Bx xe(-..,,l) 

B(x)- [~1l,B1l+B2 ] : x - l 

B1l+Bz+B3(X·t) , xe(l,"'). 
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Furthermore, for given constants g1 ,g2>0 and t 1e(O,T) define 

Condition 5.8 is satisfied and B-min(B1 ,B3 ), -y-L max(g1 ,g2 ), G1-0 

and G2-g2+1g1-Szl. If g2+1g1-Szl< min(B1 ,B3 } then Theorem 5.11 

yields that there is a unique solution of the Stefan problem. 

Remark 6.5. 

This example can be a mathematical model of an etching technique, where 

the etching properties discontinuously depend on the time and the 

position of the time-dependent boundary. 

Example 2. 

Given B1>0 define ii:R➔ R by ii(x)-B1x, XER. 

Given 6 >O and g6 :R-+ [0,00). which is an integrable function such that supp(g6 )c[0,6) 

.. {o , te[-6,0) 
and J g/r)d("-1. Define f 6 (t)-

-m f(t) , te[O, T] 

G(S,f,t) - f f 6 (r)g6 (t-r)dr, te[O,T], SeO, feP. 
-m 

Condition 5.8 is satisfied and B-B1 , -y-L, G1-0 and G2-l. 

Theorem 5.11 yields that there is a unique solution of the Stefan problem 

if B1>1. 

Remark 6.6. 

A physical interpretation of this example is: it lasts some time before a 

loss of etching agent results in a loss of solid. 

Example 3. 

Given B1>0 define ii:R➔ R by R(x)-B1x, xeR. Given g1>0 and s 1ER 

such that 0:SS1:Sl'g1/B1 we define the functional 

g:PxR-+ [0,00) by g(f,t) - { O 
gl 

t 

, te[O, T + (f(T) - B1s 1 )/g1 ] 

, te(T + (f(T) - B1s 1)/g1 ,oa). 

Define G(S,f,t)-f(t) + fg(f,r)dr, te[O,T], SEO, feP. 

It is easy to see that 

t+h 
0:SG(S,f,t+h) - G(S,f,t):Sf(t+h) - f(t) + f g(f,r)dr:S(L+g1 )h , 120; t+h, te[O,T], 

t 
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SEP, feML and 

sup IG(S,f1 ,t) 
te(0,T] 

SEM, feML. 

Thus Condition 5.8 holds with B-B1 , -y-L+g1 , G1-0 and G2-2. 

Theorem 5.11 yields that there is a unique solution of the Stefan problem 

if B1>2. 

Remark 6.7. 

t 

For the solution (S,Ci) we know that B1S(t)-f5(t) + Jg(f5,r)dr, te[0,T]. 
0 

Thus, T+(f5(T) - B1s 1)/g1 can be seen as the point in time at which 

a source with strength g1 is turned on so that S(T)~s 1 . 

Remark 6.8. 

In these examples the multifunctions Band the functionals G 

satisfy Condition 5.8. Thus, we can always apply Theorem 5.11. Now, we 

shall consider a mathematical model of a physical problem, such that 

Condition 5.8 does not hold. 

For a given constant t>O we suppose that for the time t-0, the region x<0 

is filled with an etching liquid, the region Osx<l is filled with a 

solid and the region~ is filled with another solid. Furthermore, we 

suppose that the two solids have different etching properties. 

If we assume beforehand that the time-dependent boundary S is a monotone 

increasing function oft, then a possible mathematical model could be a 

Stefan problem as in Section 3 with Band G given by: 

B(x)- 1 with B1 ,B2>0 and {
Bx xe[0,O 

B1t + B2 (x-t) xe[t,"') 

G(S,f,t)-f(t), te(0,T], SeP, feML (see Example 1). The proportionality 

constants B1 and B2 are determined by the chemical properties of the 
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etching agent and the solids. 

However, if for some reason or other it cannot be ruled out beforehand 

that the boundary moves backwards, then it is not at all certain that the 

same model will still apply since in that case the two solids should 

precipitate in the reverse of the order in which they were etched away. 

In this model Condition 3.3 holds. If B1>1 and B2>1, existence and 

uniqueness of the solution in P follow from Theorem 5.7. 

Example 4. 

Suppose the positive constants a, T and B1 are given. The given 

function llo; [a,oo)➔ (O,oo) is such that the function R➔ (-R+a)u0 (-R+a) 

is an element of Cond 3.1. With R-~xf + aj + x~ we define a 

3-dimensional rotation-symmetrical Stefan problem as follows (see also 

[Friedman, 1964; p.234-236]): 

iiu(:~t) _ a2u;:;t) _ j au(:at) - o RE(S(t),oo), te(O,T], 

u(R,O) - t1o(R), RE[a,oo), u(S(t),t) - 0, te[O,T], 

1 au - dS (t) -- 51 aR(S(t),t) - dt , tE(O,T] , S(O) - a. 

Define x- -R+a, C(x,t)- Ru(R,t), RE(S(t),oo), te[O,T], C0 (x)- Ru0 (R), RE[a,oo) 

and S(t)- - S(t)+a, tE[O,T]. 

It can be shown that S,C satisfy the following equations: 

aG(x, t) a2c(x, t) . 
_8_t_ - axz - 0 , XE(-oo ,S(t)), te(O,T], 

C(x,O) - C0 (x), XE(-oo ,OJ, C(S(t),t) - 0, te(O,T], 

~ ~ (S(t),t) - (-S(t)+a)( _dSdtt) ), te[O,T], S(0)-0. 

Integration tot of the last equation gives 

• 1 ac 1 { Bi ax<S(T) ,r)dr - 2 (-S(t)+a) 2 - ½a2 , te[O,T]. 

This is equivalent to S(t) - a -

tac 
Since f 5 (t) - - f d(S(r),r)dr the 

0 . 

2 • ac a2 + - f ""(S(r),r)dr, te[O,T]. 
Bl O UA 

Stefan problem is equivalent to the Stefan problem specified in Section 3 
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if the inequality 2TL<B1a2 holds and we choose B(x)-x, xe[O,~), 

- . I 2 2f't' -G(S,f,t) - a-'\Ja - ~• SeP, feML, te[O,T]. 

With the definition of C0 it follows that C0 satisfies Condition 3.1. 

It is easy to prove that Condition 3.3 holds with B-1, 

-, - RL • G1 - 0 and G2 - Rl . 
B B a2.2TL 1 1 B1 

Thus Theorem 5.7 yields that there is a unique solution of the Stefan 

problem if B1~a2-2i~ > 1. 

Remark 6.9. 

i) This example can be a mathematical model of the following etching 

problem. An etching liquid contains a solid ball with radius a, and the 

initial concentration of the etching agent is rotation-symmetric. 

ii) In this example the functional G satisfies Condition 3.3 so we can 

apply Theorem 5.7 to obtain existence and uniqueness of solution. However 

the conditions of Theorem 5.11 are not fulfilled because for every T>O 

there is a function feP such that a2-2f(T) < 0 which implies 
B1 • 

that G (S, f, T) - a - . la2 - 2f(T) is not defined in R. 
'\J B1 

6.3 Numerical experiments 

In this subsection we present some numerical results to illustrate the 

existence theorems of Section 5. We first consider a Stefan problem which 

can be solved analytically. Then we compare a numerical solution of this 

problem with the analytical one. After that we give some numerical 

solutions of the examples considered in Section 6.2. 

It is easy to see that for Be[l,~) there is a unique constant k such 

that k - B.r,;' k e 2 • We find an approximation of k by 2 ( 1 ) -(!;)
2 

,.. l+erf(2) 

the successive substitution process 

k1+1 - B~c l k )e·<f>2, i-0,1, ... 
l+erf(-,:) 

and ku-0. 

Take C0(x)•l • (l+erf(~))/(l+erf(l)), xe(-ao ,OJ, 
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Then the functions S(t)-k(.Ji:+I - 1), te[O,l] and 

C(x,t) - 1-( l+erf( 2~) J;(l+~rf(l)) , xe(-m,S(t)], te[O,l] 

satisfy 

ac(x, t) a2c(x, t) 
- 8-t- - axz - 0, xe(-m,S(t)), te(O,l]. 

C(x,O) - C0 (x) , xe(-m,O], C(S(t),t)-0 , te[O,l] and 

l S(t) 

S(t) - - - f (C(x,t) - C0 (x)]dx, te[O,l]. 
B -• 

Choose B-2. Since for this choice of Band C0 the conditions of The,rem 5.11 

are fulfilled (compare Section 6.1), there is a unique solution (S,C6) 

of the Stefan problem. Furthermore, the operator :T:M➔ M is a 

contraction and it is known that for a given function S0e M the 

sequence of functions s,+1-:T(Se) , l-0,1, ... is convergent and 

lim s,-s. 
f.• " 

With this in mind we compute a numerical solution as follows. 

Take M-100, N-200, Ax-0.1, At-0.005, eps-10-5 and k as given above. 

a) Set e-o and st>-o, j-0,1, ... ,N. 

b) Compute cf~~, which is an approximation of C(-lO+iAx+s~l>, jAt) 

for i-0, ... ,M and j-0, ... ,N as follows: 

cf~~ - l-(l+erf((-lO+iAx+k)/2))/(l+erf(l)), i-0, ... ,M, 

eel> - 1 eel> - 0 . 1 N d o,J , H,J , J- , ... , an 
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If max I sjl+1> - s~l> I < eps go to d) 
JE(O, ... ,N) 

otherwise l:-l + 1 go to b). 

d) l:-t+l. 

Define scl> e C[0,l], -t-0, ... ,l as follows scl>(jt.t)-sjl>, j-0, ... ,N 

and sCl> is a linear function on [jt.t, (j+l)t.t], j-0, ... ,N-1. 

Remark 6'. 10. 

In b) we compute a numerical solution of the diffusion equation with 

initial and boundary conditions. In the computation of c;~~ the 

convective term reflects the fact that at every time-step the grid is 

translated to the right over a distance s3l> - S~~i. 
Since 1-C(-lO+k,l) < 10-• , we consider the numerical solution C;~; 

of the diffusion equation on the domain 

l(x,t)jxe[-10 + scl>(t), s<l>(t)]. te[0,l]J. 

The numerical solution turns out to satisfy: 

rnax 
JE(O, ... , N) 

S(jt.t) - s~l> I :$ ().0014 for l-6 and 

rnax 
iE{O, ... ,H) 

C( -lO+it.t+s~l> , 1) - c;~~ I :$ 0. 0005. Thus the 

numerical approximation shows good agreement with the exact solution of 

the Stefan problem. 

In Figure l we have plotted s<l>, -t-1,2,3. In this case the 

iterates, form an alternating sequence. It follows from Lemma 5.5 that 

JJ:T(S 1) - :T(S 2)JL :$ 0.5 JJs 1 - S2 JL , S1,S2e M. 

Table 1 shows the distances JJscl> - s<l-l> JL for -t-1, ... , 6. 

It appears that 

JJs <l+1 > - s cl> IL 
rnax , , :$ 0 .13. 

le!l .... ,5! JJs'•> - s'•-1>1L 

l JJs''>-scl-1> IL 

l 0.2051 

2 0.268 X 10-l 

3 0.2932 X 10-z 

4 'l.2914 X 10-3 

5 0.2644 X 10-• 

6 0.2217 X 10-5 

Table 1. 
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Remark 6.11. 

We also report numerical results for the examples of Section 6.2. 

Obviously, in these examples we use another relation to obtain s~l+1> 

in step c). This relation is a numerical analogue of the relation 

l Jlsm-s<i-i> IL 

1 0.1657 0.2037 0.24 0.232 

2 O .1804xl0-1 0. 2625xl0-1 0.211 xl0-1 0. 3717xl0-1 

3 0 .1655xl0-2 0. 2809xl0-2 O. 2148xl0-2 0.4673xl0-2 

4 0 .13 77xl0-3 0. 2706xl0-3 0 .1980xl0-3 0. 5288xl0-3 

5 0 . 104 7xl0-4 0. 2359xl0-4 0 .1688xl0-4 0. 5405xl0-4 

6 O. 7349xl0-6 0 .1884xl0-5 0 .1313xl0-5 0. 5074xl0-5 

Table 2. 

Figure 2 and the first column of Table 2 show the results of the 

numerical solution for Example 1. We choose B1-2, B2-0.03, B3-3, 

t-0.02, g1-l, g2-l.5 and t 1-0.5. Table 2 shows that lls< 5 >_5< 5 >IL :S 10-5 

IJs <l+l> - s <t> IL 
max l l :S 0.11. 

!Ell, ... ,51 11s< >_s< -i>IL 
and 

Th . . . L 5 5 . 1 l~<S2)-!T(S1)IL O 75 
e est1.mat1.on 1.n emma . y1.e ds ns2-S1IL :S , . 

Figure 3 and the second column of Table 2 show the results of the 

numerical solution for Example 2. We choose 

Table 2 shows that \\s< 5 > -s< 5> IL :S 10-5 and 

lls<l+i> _s<l> IL 
l l :S 0.13. 

!Ell, ... ,s1 11s< >_s< -iilL 
max 

. . . . ll!T<S2)-!T(S1) IL 
The estimation in Lemma 5.5 yields 11S2-siJL :S 0.5. 

Figure 4 and the third column of Table 2 show the results of the 

numerical solution for Example 3. We choose B1-2, g1-0.75 and s 1-0.24. 
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It follows from Figure 4 that in this example the iterates do not form an 

alternating sequence. The numerical approximation of the quantity 

Figure 5 and the fourth column of Table 2 show the results of the 

numerical solution for Example 4. We choose B1-2 and a-1. Table 2 shows 
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Chapter 2 

The solution of a one-dimensional Stefan problem II 

1. Introduction 

In this paper we. study a one-dimensional Stefan problem. An example of such 

a problem is: given T > 0, B > 0 and C0 : (·"' ,O] ➔ [0,1], find sufficiently 

smooth functions S:[O,T]➔ R and C:{(x,t)!xe(·"',S(t)]. te[O,T])➔ R 

such that: 

(1.1) 

(1. 2) 

{ 
ac(x,t) _ a2c(x,t) _ 0 xe,'·"' S(t)) 

at axz . ' ' ' 
C(x,O)-C0 (x),xe(·"',O], C(S(t),t)-0, 

-½ j (C(x,t)-C0 (x)]dx-S(t) ,te[O,T]. 

te(O, T], 

te[O,T], 

For easy notation, we define C(x,t)-0 for xe(S(t),"'), te[O,T] and 

C0 (x)-O for xe(O,"'). 

An existence and uniqueness theorem for this Stefan problem, if B > 1 and 

certain conditions on C0 are imposed, is given in (Vuik, 1987]. 

Furthermore it follows from (Vuik, 1987] that this Stefan problem can be 

seen as a mathematical model for an etching technique. The function C 

describes the concentration of the etching agent and S(t) denotes the 

position of the time dependent boundary between the solid and the etching 

liquid. The proportionality constant B which is determined by the chemical 

properties of the etching agent and the solid appears to be greater than 

one. In the existence and uniqueness theorem of [Vuik, 1987] we have used 

the fact that Bis greater than one. 

In this paper we prove an existence and uniqueness theorem which is also 

valid for O < B ~ 1. In (Schulze, Beckett, Howarth and Poots, 1983] the 

solidification of steel is described. They use a mathematical model which 

is equivalent to the given Stefan problem. In this case for t-0 the region 

x ~ 0 consists of liquid steel and the region x<O consists of solid steel. 

The normalized melting temperature of steel is equal to zero. The 

temperature of the liquid steel e~uals zero, and the temperature of the 
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soiid steel is described by the function -C. The position of the time 

dependent boundary between solid and liquid is denoted by S(t). The 

proportionality constant Bin this example is 0.28 (see [Schulze e.a., 

1983;p.336, Table 1], where this quantity is called p .(Stefan number)). 

Thus a Stefan problem with O < B ~ 1 is also interesting from a physical and 

technical point of view. 

This paper is organized as follows. In Section 2 we give some definitions 

and specify the Stefan problem. Ye need some results from [Vuik, 1987], 

these are summarized in Section 3. 

In Section 4 we prove an estimate for the solution of the diffusion 

equation (Theorem 4.1) and show that this estimate is sharp. Thereafter we 

define an operator r. From the estimate given in Theorem 4.1 it follows 

that rm is a contra.ction for m large enough. Using this property of 

the operator 1 we prove in our Main Theorem 4.17 the existence and the 

uniqueness of a solution for the Stefan problem for every B > 0, where 

StC[O,T] and the function CtC2 •1 (Q5 ) n C(Q5 ) is bounded. 

In Section 5 we give some examples of the Stefan problem specified in 

Section 2, and compute numerical solutions for 1!hese examples. Furthermore 

we give some invariance properties of the estimate given in Theorem 4.1 and 

the Stefan problem. From this it follows that the estimate given in Theorem 

4.1 is optimal in a certain sense. Finally we give an example where the 

function C0 is such that li~ C0 (x)>O. It appears that our results (e.g. rm 
xtU 

is a contraction form large enough) do not hold for this example. 
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2. Statement of the problem 

In this section we give some definitions and specify a Stefan problem. 

2.1 Definitions 

For a given T > 0 we define the following function spaces: 

0 - (S • C(O,T] I S(0)-0), 

P - (S • o:s is monotone non-decreasing), 

and for K > 0, MK - (S,PIS(t+h)-S(t)~ Kh, h ~ O; t+h,t,[0,T]), 

Mg - Mx n C2 (0,TJ. 

We define jjfJb - sup_ lf(t) I, t<(O,T] and llflL-llfllr,"'· 
t,"' t<(O,t] 

It follows from (Vuik, 1987; Corollary 2.8] that MK is the closure of 

Mx in C(O,T] with respect to the ~-norm. 

For a given function S<C(O,T] the set Q5 c R2 is defined by 

Q5-((x,t)lxe(-~,s(t)), t,(O,T)). The closure of a set Q c R2 

is denoted by Q. 

We use the following function spaces defined in (Lady~enskaja, 

Solonnikov, Ural'ceva, 1968; p. 7]. For a given l•R+'1-J,c'·l12 (Q5 ) 

is the Banach space of continuous functions f on Q5 , having continuous 

r+pf 
derivatives b for 2r+p<t and a finite norm llffli2 • Here the norm 

at ax 
llffU 2 is defined by : let [l] be the largest integer less than -e, 

and 

<f>a-sup ' ' l(x' t) (x" t)<Q ·lx'-x"l<l ( lf(x' t)-f(x" t) I - } 
X IX, -x" I a ' I ' s' - I 

<f>a-sup( lf(x,t')-f(x,t")l l(x t') (x t") E Q- •it'-t"i~l} for a<(0,1). 
t it'-t"ia • ' ' s• 
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c2 •1·(Q5 ) is the set of continuous functions f on Q5 , having 

continuous derivatives af a2f and af ax · axz at· 

For a given ltR+\N and [a,b) c R, c'[a,b) is the Ranach 

space of continuous functions f on [a,b], having continuous derivatives dp! 
dx 

for p<l, and a finite norm llff Here the norm llfl~ is 

defined by llfl~- lfl max ldJfl+ <d1' 1f>l-cl1 
j-O[a,b) dxJ dxcl1 

and <f>"-sup{lf(x')-f(x")lj x' x"t[a b]·lx'-x"I ::s:l} and at(O,l). 
1x•-x• I" ' ' ' 

2.3 Statement of the problem 

Suppose C0 :(-~,oJ➔ (0,1) is a given function. We shall always impose 

Condition 2.1: 

Condition 2.1. 

The function C0 should be an element of the set Cond 2.1:- (~:(-~,oJ➔ RI 

~ is a monotone decreasing Lipschitz continuous function with ~(0)-0 and 

xli.!11~ ~(x)-11. Let L be a Lipschitz constant of the function C0 • 

Occasionally we shall impose the following stronger condition: 

Condition 2.2. 

The function C0 should be an element of the set Cond 2.2:-(~tC3+cz(-~,OJ 

for an at(O,l)l~tCond 2.1 and ~(O) ~t(0)-0). 

In the sequel, B:R➔ R will denote a multifunction (see(Smithson, 1972)) 

and G:OxPx[O,T]➔ [O,~) will denote a functional, both subject to the 

following condition, which will always be imposed: 

Condition 2.3. 

The multifunction B should be such that: 

ii) For xtR, h>O,y1tB(x) and y2tB(x+h) the inequality 
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y2 -y1>0 holds. There is a B,(O ,'°) such that for x,[O ,'°), h>O, 

iii) The restriction of B to (0,"') should be surjective on (0,..,). 

The functional G should be such that: 

iv) G(S,f,0)-0, s,o, f,P. 

v) 0 s G(S,f,t+h)-G(S,f,t), ~; t+h,t,(O,T], s,o,f,P. There 

is a ~•[0,"') such that G(S,f,t+h)-G(S,f,t)s ~h for~; 

t+h, t,[O,T]. s,p and fJi:L. 

vi) There are constant's Gl' G2 ,R so that 

sup I G(S, f 1 , t)-G (S, f 2 , t) Is G2 Jjf1 -f2 IL, sJi:1 ,B, fl' f 2 Ji:L. 
t<[O,T] 

vii) For every t,[O,T]. Sd111B and fJi:L, G(S,f,t) 

should only depend on Slco,tJ and flro,tJ" 

In order to state our Stefan problem, we first state a reduced problem: 

for a given function S,O, find a bounded solution Cs,C2 •1 (Q5 ) n C(Q5 ) 

of the equations in (1.1) for this function S. 

For any S,O, for which the reduced problem has a solution Cs, we define 

Cs(x,t)-0, x > S(t), te[O,T]. Let the function fs:[O,TJ➔ R be defined 

"' by fs(t)-- f (C5 (x,t)-C0 (x)]dx. 
-<O 

A Stefan problem can be stated as follows: find a function S,O and a 

solution Cs of the reduced problem· such that 

G(S,fs,t),B(S(t)). t,[0,T]. 
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3. Preliminaries 

In this section we summarize known results about the solution of the 

diffusion equation and quote some basic lemmas. 

Lemma 3.1 (maximum principle) (Vuik, 1987; Lemma 2.4]. 

Suppose SiC(O,T]. If the bounded function uiC2•1 (Q5) n C(Q5) 

satisfies: 

then 

au<;;t) - a2ut;t) -0,xi(-a,,S(t)),tE(O,T], 

min (xE(-!~f(O)]u(x,O),tEf3~T]u(S(t),t)ls u(x,t)s 

max( (- sup(O)]u(x,O), max10 1u(S(t),t)) for (x,t)(Q5 • 
XE a, ,s tE 'T 

Lemma 3.2 (Vuik, 1987; Lemma 2.6]. 

Suppose the function 9:(-a,,O]➔ (0,1] is an element of Cond 2.1. For every 

E>O there is a function ;-:(-a,,Q] ➔ (0,1] which is an element of Cond 2.2, 

0 
;·(x)s 9(x), XE(-a, ,O] and f [9(x)-9"(x)]dx<E, and 

•a) 

a Lipschitz constant of; is also a Lipschitz constant of;·. 

In the same way it can be shown that there is a function ;•:(•a>,E]➔ (0,1] 

such that x➔ ;•(x+,) is an element of Cond 2.2, ;(x)s ;•(x).xE(•a> ,OJ and 

0 E 
f [9•(x)-9(x)]dx+f ;•(x)dx<E, and a Lipschitz constant of; 
-a, 0 

is also a Lipschitz constant of;•. 

Lemma 3.3 (Vuik, 1987; Lemma 2.7]. 

For t>O, K >0 and Sdfic, there are functions s•, s· E ~ such 

Theorem 3.4 (Vuik, 1987; Theorems 4.1, 4.13]. 

i) Suppose Condition 2.2 holds. Then for any SEC2 [0,T] with S(0)-0, 

the reduced problem has a unique solution C5 and it satisfies 

3+«.!!:!! • 
C5 ,C 2 (Q5 ) with the same Q as in Condition 2.2. 
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ii) For a given function SJ!115 , there is a unique solution 

-acs (x, t) 
Cs of the reduced problem, O:s ox. :SL,(x,t)<Os and fsd1L. 

Lemma 3.5 [Vuik, 1987; Lemma 4.6]. 

Suppose Condition 2.2 holds. Then for any SeC2 [0,T] with S(0)-0, the 

solution Cs of the reduced problem satisfies: 

Lemma 3.6 [Vuik, 1987; Theorem 4.11, 4.12]. 

i) If S1 , S2eO, S1 (t):sS2(t), te[O,T] and there are solutions 

and 

j [Cs (x,t)-Cs (x,t)]dx :sllS 1 -S2 II- , 
2 1 t,(O 

-a, 

te[O, t], t:e[O,T]. 

ii) If SeP and there is a solution Cs of the reduced problem then fsel\. 

iii) If s,o and there is a solution Cs of the reduced problem then fseP. 
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4 The solution of the Stefan problem 

In this section we prove an important property of solutions of the reduced 

problem. After that we use this property to prove the existence and 

uniqueness of a solution of the Stefan problem. 

4.1 An estimation of the quantity llf51 -f52 11e,., 

In this subsection we give in Theorem 4.1 an overestimate of llf5 -f5 II •. 
1 2 1,,,ID 

After that we illustrate this estimate with a numerical example. Finally we 

prove an underestimate for the quantity llf5 -f5 II. . 
l 2 ..,,a, 

Theorem 4.1. 

Suppose S1 ,S2 ,11718 , t 1 ,t2 €(0,T] and t 1:St2 then 

the following inequality holds: 

Define S(t)-max(S1 \t),S2 (t)J and ~(t)-min(S1(t),S2 (t)J, t,[O,T]. 

It is easily seen that S ,2di,18 and 11s1 -s2 t .. -\ls-211t,,., te(O,T]. 

From Theorem 3.4 ii) follows that C5,C~ exist and f 5,f~,ML. 

Application of the maximum principle yields 

(4.2) 

If t,[O,t1 ] then Lemma 3.6 i) states that 

In this case the theorem is proved. 

Now we suppose that t,(t1 ,t2 ]. According to Lemma 3.3 for every 

,>O there is an s-,C2 [t1 ,t] such that S-(t1)-2(t1), 

~(t)-< :S S-(t) :S ~(t), t,[t1 , t] and O :S dS~~t) :S i,t,[t1 ,t]. 

Define S-(t)-~(t), te[O,tl), s+(t)-S-(t)+l\s-2llt .. +,, t<[O,t] 

and 
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With The_orem 3 .4 ii) it is easily seen that the functions X➔ C1/x+S (t1), t 1) 

and X➔ C~(x+~(t1 ),t1 ) are elements of Cond 2.1. Thus it follows 

from Lemma 3.2 that there are functions c$:(-a,,S±(t1 )] ➔ [0,1] such that 

the functions x➔ C~(x+S±(t1 )) are elements of Cond 2.2, 

C~(x):S C~(x,t1). xe(-"', S-(t1)]. 

S-(t1 ) _ 

f [C~(x, t 1)-C0 (x) ]dx<e 
-a, 

and 
S+(t1) + 
J [Co (x)-Cs(x, tl) 1 dx<e. 
-a, 

3+a: ~ + 
It follows from Theorem 3.4 i) that there are functions c±ec ' 2 (Q-) 

such that 

+ ..2 + 
ac-'"(x • t) _ o-C-(x • t) - o x•(-"' s±(t)) t•(t t] 

at axz ' • ' ' • 1 ' ' 

c±(x,t1)-ct(x),xe(-a,,S±(t1)l, c±cs±(t),t)-0, te[t1,tl. 

According to the maximum principle we have 

Cl0 ... ... Cl0 + ... - ... J [C-(x,t)-C8 (x,t)]dx :Sf [C (x,t)-C (x,t)]dx. 
-co s - -co 

Application of Lemma ·3.5 yields 

"' . 
+ • - • "' + - t ac+ + ac- -I [C (x,t)-C (x,t)]dx-J [Co(X)-Co(x)]dx+J lax (S (r),r)-ax(S (r),r)]dr. 

- - s 
Furthermore we deduce from the definition of c;, C~ and Lemma 3.6 i): 

Cl0 + - 00 J [C0 (x)-C0 (x)]dx :S J (C1/x,t1)-C~(x,t1)]dx+2e 
-a:> -a:> 

:S 11s-~11 +2.-11s1-Szll +2e. 
t.1,«1 t1,ai • 

This together with inequality (4.2) yields 

(4.3) 
t ac+ ac- -

llfsl -fs)ltz,'° :S 11s1 -Szllt .. + I [ ax<s+ ( r) 'r) ax (S ( r) 'r) 1 dr+2c 
!• tl 

t + 

It remains to estimate the quantity: J (~ (S+ ( r), r) 
t1 

For this purpose we introduce the function C given by 

C(x,t)-C+(x+lls•-s-11. ,t)-C-(x,t), (x,t)eR x[t1,t] which satisfies: 
t, .. 

C.(S-( ) t) 0 [ .] and -L< ac(x,t) < L t , - , te t 1 , t _ 8x _ 
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We deduce from the maximum principle: 

0 :S c+(x,t) - C-(x,t), (x,t)EQ-. 

Since Theorem 3.4 ii) states that the function X➔ C+(x,t) is Lipschitz 

continuous the inequality 

-qs+ -s-lb :S c+(x+lls+ -s-lb , t)-c+(x, t) 
t.,• t,• 

holds for (x,t}EQ-. Addition of these inequalities yields 

(4.4) 

Choose 61 > 0. Since lim erf(x) - -1, there is a 62 > 0 such 
X➔ .. CIO 

that 

(1+61)erf( -lls+ -s-1~./2 .[&z> < -1. 

Furthermore we chooser e(t1,t] and define 

C(x, t)-(1+61)Lils+-s-lb erf( ~), (x, t),(-a, ,S-(r) ]x[t1,r]. 
t,• 2 t-t1+62 

The function C satisfies: 

a{; (x, t) _a_t_ -

Since S-(t)-S-(r) :S 0, t,[t1,r] it follows that C(S-(t),t) :SO - C(S-(t),t),t,[t1,r]. 

From the definition of C and inequality (4.4) we obtain 

C(x,t1) :S -L!ls+-s-lb :S C(x,t1), x,(-..,,S-(t1)-lls+-q. ]. t..• t,• 

Since the function X➔ C(x,t1 ) is convex and the function x➔ C(x,t1 ) 

is Lipschitz continuous, these inequalities imply 

C(x,t1) :S L(x-S-(t1)) :S C(x,t1)-C(S-(t1),t1)-C(x,t1),x-s·(t1) e 1-lls+-s-11- ,OJ. 
t,• 

Application of the maximum principle yields: 

C(x,t) :S C(x,t), x,(-..,,S-(t)], t,[t1,r]. 

With C(S-(r),r) - C(S-(r),r)-0 we deduce the following: 

ac - a{; - (l+61)Li1s+ ·s-iJt,• 
ax<S (T) ,r) :S ax<S (r) ,r)- r:::-;:-.:r 

.Jif ~r-t1+62 

This inequality holds for every 61 > 0 and r,(t1,t]. Since the 

function t➔ ~(S-(t),t) is continuous, the inequality 

• qs+-s·1~ 
~(S 0 (r),r) :S ~• holds for r • (t1,t]. 

,r r-t1 
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Using this estimate in (4.3) yields 

Since, is arbitrary it follows that 

llfs1 -fs2 llt2, .. ~ ll51 -S2llt1, .. + 2L ~t2 ~ ti IIS1 · 52llt2, .. • 181 

To obtain a better insight into the results of Theorem 4.1 we perform the 

following numerical experiment. Take Ca(X) - min(-¼x,l}, x ,(-oo ,OJ, 

S1(t) - 0, t ,[O,l], S2(t) - min{t,0.01}, t ,[O,l] and compute a 

numerical approximation for C51 and C52 . The inequality 

follows from Theorem 4.1 with t 1-0 and t 2-t. Figure 1 shows the 

function t ➔ 2L~ IIS 1-S211e,,. and the numerical 

approximation for llf51-f52 11e,,. as a function of t. The figure 

suggests that with this choice of Ca, S1 and S2 the estimate given in 

Theorem 4.1 is sharp. 

This numerical experiment suggests a proof of the sharpness of the estimate 

of Theorem 4.1. To this end we formulate Lemma 4.5. The remainder of this 

paper can be read without studying this lemma and its proof. 

Lemma 4.5. 

Given,> 0 we can find t 1 and functions Ca, S1 and S2 such that 

Proof. 

Define Ca(x) - min{-x,l}, x, (-oo,O]. L - 1, T - i16 . Choose t 1<[0,T] and 

5 • (O,t1), and define S1(t)-0, t, [0,T] anc S2 (t)-min(t,5}, t, [O,T]. 

From Theorem 3.4 i) it follows that there are functions C51 and C52 

which are solutions of the reduced problem. 

In the first part of the proof we define two auxiliary functions ~1 and ~2 , 

which are solutions of the diffusion equation. Using the maximum principle 
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and some known inequalities for the erf. function we prove that the differences 

between the functions x -+C52 (x,t) and x -+~:~ are small for x • [0,6]. 

Define q,/x,t) - 6""+1 - erfc (;1e),x • [-l,S2 (t)]. t e [0,T]. 

The function q,1 satisfies: 

aq,1 (x, t) ;rq,1 (x, t) 
at axz - o. x • < -1, S~(t))t • < o . T J , 

f>1(x,0) - 6°"+1· X e(-1,0], f>1(·l,t) - i/r., f>1(Sz(t),t) :S 0, t e[0,T]. 

From [Abramowitz & Steg\ln, 1972;p.298, inequality 7.1.13] we have 

2 -y2 -y2 
erfc(y) s ~ : c;:-1. s e ,y ~ 0. 

,r y+~y24 

This inequality and the maximum principle yield 
-1 

-x 1n1 ( ) 1 (4.6) fil · e :S q,1 (x,t) :S C52 x,t, x e[-2 , S2 (t)]. t e(0,tiJ. 

·l 

Define 6(t1) - e16~1 and the function q,2 :[-½,6Jx(6,ti)-+R 

by 

( ) 6-x ) ) f( -x+6 ) 1 q,2 x, t - fil - 2(6(t1 +6 er 2 ,[t;:"6 ,xe[ -2 ,6], t e[6, tiJ. 

The function q,2 satisfies the diffusion equation for x •<·½,6), t e(6,t1 ]. 

From the definitions it follows that 

C52(6,t) · q,2 (6,t) -0, t e(6,tiJ. 

Since ( ½+6 ) 1. 1 erf 2,[t;:"6 ~ erf(l) ~ 2, t e(6, 16 J 

we obtain, using (4.6) the following inequalities: 

and 

Cg2 (x,6) - q,z<x,6) ~ 6""+1 - 6(t1)·(!:~ -2(6(t1)+6)) 

- 6(t1) + 26 - 6f1 ~ 0,x e[-½,6). 

Application of the maximum principle yields 

(4.7) C5/x,t) - q,2 (x,t) .!: 0, X e(-½,6]. t e(6,ti). 

. d erf(y) 2 
Choose t 0 • (6, t 1). Si.nee dy :S ~•Y • R 

it follows with inequality (4.7) that 
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(4.8) C52 (0,t) 2: \62 (0,t) - 0!1 - 2(c5(t1)+c5)erf( 2~) 

2: f+r - 2(o(t1)+6) ~. t <[t0 ,t1J • 
.r,;: 4,1t0 -6 

Inequality (4.8) combined with C51 (0,t) - 0, t E [O,t1] yields an 

underestimate of the difference C52(0,t),-C51 (0,t), t E[t0 ,t1]. This enables 

us to define an auxiliary function \6 such that jjf5 -f5 lit 2: JO \63(x, t 1)dx. 
3 1 2 1•(0 

-<X> 
After choosing 6, t 0 and t 1 in an appropriate way the lemma is proved. 

The mentioned function \63 is given by: 

\63(x,t) - ( 6!1 -2(o(t1)+o) ~)erfi:( ~)• x E(-"',O], t ,[t0 ,t1] 
.[ii'4,1t0 -o l 24,1t-t0 

and satisfies the following equations: 

&f,3 (x, t) ir\6/x, t) 
8t axz -0, X E(-<X>,0), t E(t0 ,t1). 

\63(x,to)-O, X E(-<X>,0) and \63(0,t) - o+ol -2(o(t1)+6) --0- t dto,t1l
.r,;: ~to-•• 

Furthermore for every µ > 0 it follows from the maximum principle and 

inequality (4.8) that 

C5/x,t) • C51(x,t) 2: \6/x-µ,t), x E(•<0,0]. t E[t0 ,t1]. 

thus 

This implies 

(4.9) 

From [Abramowitz & Stegun, 1972;p.299, 7.2.1 and 7.2.5] it follows that 

This implies 

"' J erfc(y)dy - i,;· 
0 

Combination with inequality (4.9) yields 

( 
Ii 6 ) 2~t1·to 

llfs •fs llt .. 2: o+l -2(o(t1)+0) r;:--;: 
l 2 1• ../ir4,1t0 -o ../ii' 
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there is an t 1 • (0,T] such that 

l\fs •fs lit ~ (1-,)2L ~11S1-Szllt ... 
1 2 1,ca 1 1 

This proves the lemma. 

4.2 Definition of the operator 1 

Definition 4.10. 

We define B- 1 (y) - {x • Rly • B(x)) and I - B(R). 

Remark 4.11. 

Using Condition 2.3 it is easy to see that B- 1 :I➔ R is a 

function with the properties B-\O) - 0, 0 :s B-\y+h)-B-\y),h ~ 0, y,y+h, l 
--1 --1 h 

and B (y+h) - B (y) :s B' h <!: 0, y • [0,ao). 

Lemma 4.12. 

For S • M11B the function t ➔ B-\G(S,f5 ,t)) is an element of M11B. 

Proof. 

For S • M11s, Theorem 3.4 ii) states that f 5 exists and f 5 • ML. 

This together with Condition 2.3 implies that G(S,f5 ,t) exists fort• [0,T] 

and G(S,f5 ,t) • [0, .. ). Since [0,"') c I it follows from Remark 4.11 

- -1 - -
that B (G(S,f5 ,t)) is properly defined for S • M11B and t • [0,T]. 

Condition 2.3 combined with Remark 4.11 yields B01 (G(S,f5 ,0))-0. 

Since S • M11B and f5 • ML we know from Condition 2.3 that 

0 :s G(S,f5 ,t+h) - G(S,f5 ,t) :s 1h, h ~ 0;t+h, t ,[0,T]. 
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According to Remark 4.11 we obtain that B-1(G(S,fs,t)) is a 

function of t which is an element of M718 . I);! 

Definition 4.13. 

The operator :r: M718➔ M718 is defined as follows: 

:T(S)(t) - B-\G(S,f5 ,t)), t < [O,T]. 

4.3 Existence and uniqueness of the solution of the Stefan problem 

Lemma 4.14. 

Conditions 2.3 vi), vii) hold if and only if 

Proof. 

,. : For t: <[O,T] and S1 ,S2 • 1\18 we define S1 , S2 • M718 

as follows: Si(t)-Si(t), t ,[O,t:], Si(t)-Si(t), t ,(t,T], i - 1,2. 

From Condition 2.3 vi), vii) it follows that 

sup. IG(S 1 ,f,t)-G(S2 ,f,t) I 
te[O,t] 

:S Gl ll51-S2\L - G1IIS1-S2ll· · t, .. 

The inequality 

sup. JG(S,f1 ,t) - G(S,f2 ,t)I :S G2 \\f1 -f2 \\. 
t,[O,t] t, .. 

can be shown in the same way. 

~: For t-T the inequalities are equivalent with the inequalities 

mentioned in Condition 2.3 vi). 

Suppose S • M718 , f • ML and t • (O,T] are given. For all 

S < M718 and f < ML with S(r)-S(r), f(r)-f(r), r • [O,t] the 

inequalities imply G(S,f,r)-G(S,f,r), r • [O,t]. Thus G(S,f,t), t • [0,T] 

depends only on Slco,tJ and flco.tJ" 
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Theorem 4.15. 

If G1 < B, then there is a unique function S t M718 such that :T(S)-S. 

T G1 2LGz • lh 
Define h - N' N t N and choose N large enough such that p1 :- B + -B- ·~,r < 1. 

G 
Define p2 - B2 and tJ-jh, j-0, ... ,N. 

For given S1,S2 t M718 we define at1-lj:r"'(S1)-:r"'(S2)1l ,j-0,1, ... ,N, m ~ 0. 
tJ,• 

From the definitions it follows that afm> :S ajm>, i :S j , m ~ 0. 

Application of Lemma 4.14 and Theorem 4.1 yields 

With induction ton we shall show that the inequality 

(4.16) a<m> :S tf. n·;/( mp2 )J a<0> holds for n ~ 1 and m > 0 
n 1 j-0 p1 n - · 

Since a~m>-o, m ~ 0 it is easily seen that ai'"1 :S il;'."1 ai11 , m ~ 0, i-O, ... ,m 

and thus aim> :S ,ii;ai01 ,m ~ 0. 

Suppose that for an n ~ 1 inequality (4.16) holds for every m ~ O. 

Using the inequality a!:1 :S p2a!m-1) + p1a!:i11 yields 

< > m-1 C7 m :S P. I: .JD•l-1 a<1) + .,. a<0J < 
n+l z i-0 "1 n 1'1 n+l -

m-1 n·l( ip )J 
:S P. I; tr.·1-1 ,}; I; _.! a<OJ + ti'}l a~~Jl :S 

2 i-0 1 1 j-0 p1 n 

:S P. tr.·1 m n;/ ( mpz )J a<O> + tr. a<O> :S t1'} ~ ( mpz )J a<OJ + /1'}1 an<O+l>' m ~ 1. 
2 1 j-0 p1 n 1 n+l l j-1 p1 n 

Since a~0 > :S a<0> we deduce a<m> < t1'} ~ ( mp2 )J a<0> m > O n+l n+l - l j-0 p1 n+l." - . 

This shows that inequality (4.16) holds for n ~ 1 and m ~ 0. 

Since p1 < 1 we know that 
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N-1 
L 

j-0 
( 

mp2 )J 
p - 0. 

1 

N-1 J 

Choose in large enough such that p3 :- ): j :0 ( m~z ) < 1. 

With inequality (4.16) it follows that 

We know that (11718 , 11- IL) is a complete metric space and 11718 ,.. if,. 

Furthermore we have just shown that rm is a conctraction on 11718 and r 

is a continuous operator on M71B. According to the Banach fixed 

point theorem there is a unique function S , M71B such that r(S) - S. ~ 

Now we are able to state our main theorem. 

Main Theorem 4.17. 

The Stefan problem :"to find a function S , 0 and a solution C5 of the 

reduced problem such that G(S,f5 ,t) , B(S(t)), t, [O,T]", has a unique solution if 

G1 < B.• 

If we denote the solution of the Stefan problem by the pair (S,C8) then S , 11718 . 

Proof. 

Existence. Using Conditions 2.1 and 2.3, G1 <Band M71 B C 0 

it follows from Theorem 4.15 that there is a fixed point S f M71B of 

the operator r. This implies that there is a unique solution C5 of 

- -1 - -the reduced problem and S(t) - B (G(S,f5,t)), t, [O,T]. 

With definition 4.10, the last equation is equivalent to G(S,f5,t) , B(S(t)), t ,(O,T]. 

Thus the pair (S,C5) is a solution of the Stefan problem, and 

S is an element of M71B. 

Uniqueness. Suppose the pair (S,C5 ) satisfies the Stefan problem. Since 

S , 0, Lemma 3.6 iii) implies that G(S,f5 ,t) exists fort, [O,T]. 

From G(S,f5 ,t) , B(S(t)), t ,(O,T] and [O,~)c I we obtain 

S(t) - B- 1(G(S,f5 ,t)),t, [O,T]. Condition 2.3 combined with 

* Remember that our convention is to impose Conditions 2.1 and 2.3 . 



-77-

Remark 4.11 yields SEP. Application of Lemma 3.6 ii) yields f 3 E ML. 

With Condition 2.3 and Remark 4.11 this implies that SE M718 • 

Thus 1(S) is defined and 1(S) - S. Since the fixed point S of 1 

is unique the theorem is proved. 

Remark 4.18. 

i) We compare Theorem 4.17 of the present paper with Theorem 5.11 of 

[Vuik,1987) and note the following. Both theorems state the existence of a 

solution for the Stefan problem in M718 and the uniqueness of the 

solution in the set 0. However they impose different conditions. Theorem 5.11 

from [Vuik,1987) is proved for G1 + G2 < B, whereas we prove Theorem 4.17 

if the inequality G1 < B holds and the additional Condition 2.3 vii) 

is satisfied. An interpretation of Condition 2.3 vii) is that the expres• 

sion G(S,f,t) only depends on the ristory and the present and does not 

depend on the future. With this i~,terpretation it is easy to see that in 

many physical applications Condition 2.3 vii) is satisfied. 

ii) One may prove an analogue of Theorem 5.7 of [Vuik, 1987] where the 

condition G1 + G2 <Bis replaced by Condition 2.3 vii) and G1 < B. 
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5 ·Applications of the main theorem 

In this section we give multifunctions Band functionals G which 

satisfy Condition 2.3 and for which the corresponding Stefan problem can be 

seen as a mathematical model of a physical problem. After that we give 

invariance properties of the reduced and Stefan problem, and present some 

numerical results. Finally we state an example wherein the function C0 

is not an element of Cond 2.1. It appears that in some cases the sequence 

given by S1+1 - :T(S1), i .!:: 0 does not converge. 

5 .l Examples 

In this subsection we suppose that T > 0 and C0 :(-m,OJ➔ [0,1] are given. 

Furthermore C0 is an element of Cond 2.1. 

Example 1. 

For a given bounded integrable function b:R➔ [B1 ,m) with B1 > 0 we 

X 

define B:R-+R by B(x) - J b(()~. x • R. It is easy to see that 
0 

this function B satisfies Conditions 2.3 i),ii),iii) and B - B1 • 

Suppose that the bounded continuous functions g,h:Rx[O,T]➔ [0,m) are 

given and that for every k > 0 there are g1 ,~,h1 • R such that 

lg(xi,t)-g(itz,t)I :S g1 1x1-x2 1;xi,x2 • [O,k}. t • [0,T}. 

lg(x,t1 )-g(x,t2 ) I :S ~1t1-t2 1 ;x • [O,k], t 1 ,t2 • [0,T], 

lh(xi,t)-h(itz,t) I :S h1 1x1-Xzl ;x1 ,x2 • [O,k], t • [O,T]. 

For given 6 .!:: 0 and S •Owe define S4 :(-6,T]➔ R by 

S6 (t) - {g(t)'J •• 11-J:~~ and 

t t 
G(S,f,t) - Jg(S(r),r)df(r) + J h(S6 (r-6),r}d,-, S • 0, f • P, t <[0,T]. 

0 0 

The first integral is a Lebesgue-Stieltjes integral. 

It can be shown that Conditions 2.3 iv), v), vi) hold for this functional G 

with 7 - ~s0up? Lg(x,t) + ~s0up? h(x,t), k - 78T 
XE ,co XE ,co 1 
t, O,T t, O,T 

G1 - (g1L+h1)T and G2 - { ~!rtT? g(x, t) + T( ~g1 + ~) } 

(compare [Vuik,1987; Lemma 6.2]). Furthermore it is easy to see that for 
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t, [O,T]. S < 11115 and f, ML, G(S,f,t) only depends 

on Sl[D,tl. and fl[O,tJ" Thus Condition 2.3 vii) holds. 

Theorem 5.1. 

If the functions b,g and h satisfy the conditions mentioned in Example 1 

then the corresponding Stefan problem has a unique solution. 

sup I G (S1, f, t) - G (S2 , f, t) l.:S G1 lls1 -S2 II + (g1 L+h1)( t 2 -t1) IIS 1 -S2 llt =. 
t<[O,t2 ] t1,= z, 

Application of Theorem 4.1 and Lemma 4.14 yields 

With this inequality it can be shown that ~m is a contraction form 

large enough. This implies that the Stefan problem has a unique solution 

(compare the proofs of Theorem 4.15, 4.17). 

Remark 5.2. 

i) The problem given in Section 1 is equivalent to the Stefan problem 

specified in Section 2 if we choose b(x) - B1, x, R where B1 > 0, 

g(x,t) - 1 and h(x,t) - 0, x < R, t, (O,T]. It follows from Theorem 5.1 

that there is a unique solution of the Stefan problem for every B1 > 0. 

ii) Most Stefan problems considered in the literature are of the following 

form: to find a function S , 0 n C1[0,T] and a solution C5 of the 

reduced problem such that 

dS(t) acs dt - -g(S(t),t) ax (S(t),t) + h(S(t),t), t, [O,T], 

where the bounded continuous function (x,t) ➔ g(x,t) has continuous derivatives 

~. :~ and the bounded continuous function (x,t)➔ h(x,t) 

is Lipschitz continuous in x (see [Fasano & Primicerio, 1977]). We will refer 

to this problem as Problem 1. 

Since 
t 8Cs 

f 5 (t) - -{ ax(S(T) ,r)dr if C0 , Cond 2.2, S , C2 (0,T] and S(O) - 0, 
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a more general formulation of the problem is the following: to find S e 0 

and a solution C5 of the reduced problem such that 

t t 
S(t) - J g(S(r).r) df5 (r) + J h(S(r) ,r)dr, t e[O,T]. 

0 0 

We will refer to this problem as Problem 2. Remark that Problem 2 is equivalent 

to the Stefan problem considered in Example 1 with 6 - 0. If we make the 

additional assumption that g,h:Rx[O,T]➔ [O,o:,) then it follows from 

Theorem 5.1 that Problem 2 has a unique solution. 

Remark that the differential equation in Problem 1 is transformed to an integral 

equation in Problem 2. This enables us to impose weaker conditions on the 

smoothness of the functions g and h. To prove existence and uniqueness for 

a solution of Problem 1 it is supposed that the function g has continuous 

derivatives~ and~ whereas to prove existence and uniqueness for a 

solution of Problem 2 it is sufficient that the function g is Lipschitz continuous. 

See also Example 1 of [Vuik,1987] where we analyse a discontinuous function g. 

Example 2. 

Given B1 > 0 define B:R➔ R by B(x) - B1x, x < R. Given 6 > 0 

and an integrable function g6 :R➔ [0,"') such that supp(g6 ) c [0,6) and j g/E)dE - 1. 
-a, 

D fi f (t) Co ,t<[-6,0) 
e ne 6 - f(t) ,t,[O,T] • 

G(S,f,t) - j f 6 (r)g6 (t-r)dr, t e[O,T], S e 0, f < P. _., 

Conditions 2.3 i), ... ,vi) are satisfied for B - B1 , ~ - L, G1 - 0 and G2 - 1. 

Since supp(g6 ) c [0,6), G(S,f,t) only depends on Sic and fl . 
0, t] [O, t] 

Thus Condition 2.3 vii) is also satisfied. Theorem 4.17 states that there is 

a unique solution of the Stefan problem for every B1 > 0. 

Example 3. 

Given B1 > 0 define B:R➔ R by B(x) - B1x, x < R. Given 

g1 > 0 and s 1 e R such that O ~ s 1 ~ Tg1/B1 we define 

the functional g: PxR➔ [ 0,"' ) by 

t e[O,T+(f(T)-B1s 1)/g1 ], 

t <(T+(f(T)-B1s 1 )/g1 ,"') · 
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t 
Define G(S,f,t) - f(t) + f g(f,r)dr, t <[O,T], S e O and f e P. 

0 

Conditions 2.3 i), ... ,vi) are satisfied for B - B1 , ~ - L+g1 , G1 - 0 

and G2 - 2. However it is easily seen from the definition of g and G 

that Condition 2.3 vii) does not hold. Thus we can not apply Theorem 4.17. 

If B1 > 2 the existence and the uniqueness of the solution of this Stefan 

problem are given by Theorem 5.11 of [Vuik, 1987] (compare Remark 4.l8i)). 

Remark 5.3. 

i) Since Theorem 4.17 can not be applied to the Stefan problem of Example 3, 

we use Theorem 4.1 to obtain the following. Application of Theorem 4.1 

If B1 > 2G2L~ then the operator 'J is a contraction on t\,B· 

This implies that the Stefan problem h ,s a unique solution for B1 > 2G2L ~ 

(compare the proof of Theorem 4.17). 

ii) From Theorem 4.17 it follows that there is a unique solution of a 

Stefan problem if the Conditions 2.1, 2.3 and G1 - 0 are satisfied. For a 

Stefan problem where the Conditions 2.1, 2.3 i), ... ,vi) and G1 - 0 hold 

we can prove that there is a unique solution only if T is sufficiently 

small (see Remark 5.3 i)). With the interpretation of Condition 2.3 vii) 

given in Remark 4.18 i) we note an analogy between these results and the 

existence and uniqueness results for a Volterra respectively Fredholm 

integral equation given, e.g., in [Mikhlin, l957;p.l-l9]. 

5.2 Invariance properties of the reduced and Stefan problem 

From [Effros & Kazdan, 1971;§3] it follows that the diffusion equation 

is only invariant under transformations of the form 

(x,t)➔ (ax+y0 ,a2t+r0 ), a.-0. 

Without loss of generality we can restrict ourselves to the case y0 - 0, 
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r 0 - 0 and a> 0. First of all we analyse the estimate given in Theorem 4.1 

and show that the ratio between the left- and right-hand side is invariant 

under these transformations. From this it follows that the estimate of 

Theorem 4.1 is optimal in a certain class of estimates. After that we formulate 

a condition such that the Stefan problem has an invariance property and illustrate 

this with an example. 

Suppose C0 E Cond 2.1, T, SEO are given and C5 :Q5➔ (0,1] is a 

solution of the reduced problem. Define for a> 0 the following transformation 

(x,t)➔ (y,r) where y - ax and r - a2 t, and the functions 

and 

It is easy to see that if Lis a Lipschitz constant of C0 then L" - 1f 
is a Lipschitz constant of c;. Furthermore c; satisfies the 

transformed reduced problem: 

a2c;(y, r) 
ay2 - 0, y E (-«> ,S"(r)), re (O,a2T], 

c;(y,O) - C~(y), y E (-«>,OJ, c;(s"(r) ,r) - 0, re [O,a2T]. 

Define f;(r) --j (c;(y,r) - C~(y)]dy, re (O,a2T]. It follows that 

f;(r) - a f 5 (~). re [O,a2T]. Using Theorem 4.1 the following lemma is obvious: 
a 

Lemma 5.4. 

Suppose S1 ,S2 e M,/B• rl'r2 E (O,a2T] and r 1 :S r 2 then 

the following inequality holds: 

and the ratio of the left- and right-hand side is invariant. 



In the following lennna we define a class of estimates for \\f51 - f 52 \\,1 ,,., 

and prove some properties of these estimates. From this lemma it follows 

that the estimate given in Theorem 4.1 is optimal in a certain sense. 

Lemma 5.5. 

Suppose A: [O,"') x [O,oo) ➔ [0,oo) is such that for every K,T,L > 0, t 1 E [O,T] 

and S1 , S2 e MK the following inequality holds: 

Then there is a function A:[O,oo) ➔ [0,~) with the properties: 

i) 

ii) 

iii) 

Proof. 

for every E > 0 there is a 6 > 0 such that A(x) 

Define the function Ainf: [O,oo) x [O,"') ➔ [Q,a,) by 

2:: (l-E) 2x for x < 6. 
.J,r 

Hence the function A:[O,oo) ➔ [Q,a,) given by A(X) - Ainf(l,x2), x e [Q,a,) 

satisfies i) and ii). This together with Lemma 4.5 yields that for every<> 0 

there is a 6 > 0 such that 

A(X) 2:: (1-<) ~ for X < 6. 

Since the estimate with A(X) - 1x, x e [O,"') is shown in 

Theorem 4.1 we obtain from Lemma 5.5 the following corollary: 
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Corollary 5.6. 

In the class of estimates given in Lemma 5.5 there is no estimate which is 

asymptotically better for L.Js ➔ 0 then the estimate given in Theorem 4.1. 

Suppose the multifunction B: R ➔ Rand the functional G: OxPx[O,T] ➔ R 

are given for every T > 0. We define a class f(B,G) which consists of Stefan 

problems of the form:"given T > 0 and a function x ➔ C0 (x), x e (-o:,,O]. find a 

function Se O and a solution C8 of the reduced problem such that 

G(S,fg,t) e B(S(t)), t e [0,T]". 

We now formulate a sufficient condition on Band G such that the class 

f(B,G) is invariant under transformations of the form (x,t) ➔ (ax,a2 t), a> 0. 

Condition 5.7. 

Band G should be such that B satisfies Condition 2.3 i),ii),iii) and 

for every a> 0, Se 0, f e P and t e [0,T]. 

By straightforward computation it follows that if a Stefan problem of f(B,G) 

has a solution (S,C8 ) and Condition 5.7 holds then the pair (s•,c;) 

is also a solution of a Stefan problem of the class f(B,G). 

From this we conclude: 

Theorem 5. 8 . 

If Condition 5.7 holds then the class f(B,G) is invariant under 

transformations of the form (x,t) ➔ (ax,a2t), a> 0. 

Example 5.9. 

Suppose that B1 > 0 and the bounded functions g,h: Rx[Q,.,) ➔ R which 

are continuous on Rx (Q,.,), are given. Define B(x) - B1x, x e Rand 

t t 

G(S,f,t) - f g(S(µ),µ)df(µ) + Jh(s(µ),µ)dµ, SE 0, f e P , t e [O,T], 

(compare Example 5.1). If there are functions g,h: R ➔ R such that 



-85-

g(S(t), t) - s( S~)) and h(S(t), t) - }e ti( S~)) 

then Band G satisfies Condition 5.7. 

5.3 Numerical experiments 

The proof of Theorem 4.15 suggests that if½ or L increase then the 

convergence slows down. We have no proof for that. However, the following 

numerical example suggests that this is really the case. 

Define for a given B1 > 0 B: R -+ R by B(x) - B1x, x e R, 

T - l, G(S,f,t) - f(t), t e (0,1), Se O, f e P and for L > 0 given 

we define C0 (x) - min(-Lx,l), x e (•m,OJ. 

Conditions 2.1 and 2.3 are satisfied for B - B1, 7 - L, G1 - 0 and G2 - 1. 

Since B > G1, Theorem 4.17 yields that there is a unique solution (S,C) 

of the Stefan problem. 

We compute a n\DDerical solution for this problem as follows. 

Take M - 100, N - 200, ti.x - 0.1, At - 0.005 and eps - 10·2 • 

a) Set , - 0 and s1°1 - 0, j - 0, .•. ,N. 

b) Compute cf!1 , which is an app~~ximation of C(-lO+iti.x+s1'1,jAt) 

for i - 0, ... ,Mand j - 0, .•• ,N as follows: 

cf ~! - Co (-lo+iti.x). i-0 •... ,M, 

c"1 - l, r.<'>- 0 j l N and 0,J ""M,J ' - ••• ' 

<l> c,1 At ( <l> 2 c,1 (ll ) 
c1J - c1,J-1 + (ti.x)z c1-1,J-1 • c1,J-1 + C1+1,J-1 

+ 2!x ( 51'1 • s1~~) ( cf!LJ-1 • cf~LJ-1) 

for i - 2, ... ,M-1, j - l, ... ,N. 

l N b i ct+11 1 f<l> j - , ... , , we o ta n SJ - 8 J , 
1 

j - 0, ... ,N. 

If max 1s1t+11 • s1'11 < eps go to d) or else,:- l + l go to b). 
JE{O, •• ,H} 

d) l :- l + l. 
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For several choices of B1 and L we compute the number of iterates l which 

is needed to obtain max I scl> - s'l-ll I < eps. 
jE{O,l,..,N) J J 

The results of these computations are given in the Tables 1 and 2. 

B1 t 
1 5 

0.5 8 

0.25 13 

0 .125 21 

0.0625 33 

Table 1. The number of 
iterates for L - 1. 

L t 
0.25 6 

0.5 9 

1 13 

2 17 

4 21 

Table 2. The number of iterates 
for B1 - 0. 25. 

From the Tables 1 and 2 it appears indeed that the convergence of the 

sequence of numerical approximations Si slows down if if" or L increases. 
1 

In the Figures 2 and 3 we have plotted some iterates for B1 - 0.25, L - 0.25 and 

L - 2. In the figures we observe that at first the iterates converge fast 

on a small time interval but slow on the whole time interval. In the end 

the iterates converge fast on the whole time interval (compare the proof of 

Theorem 4.15). Remark that in this example the iterates form an alternating 

sequence. Furthermore the odd numbered iterates form a monotone decreasing 

sequence whereas the even numbered iterates form a monotone increasing 

sequence. 

5.4 Example where C0 is such that ;t~ C0 (x) > 0 

In this subsection we consider an example with an initial function C0 which 

is not an element of Cond 2.1. It appears that for a given function S0 E P 

the sequence Si given by S1+1 - 1(S1 ), i 2: 0 does not converge. 
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Define C0(x) - l, x E (-,o,0), B(x) - B1x, B1 > 0, X ER and 

G(S,f,t) - f(t), t e [0,T]. It follows from Subsection 5.1 that Condition 2.3 

is satisfied for this choice of Band G with B - B1, G1 - 0 and G2 - 1. 

Fork~ 0 we define the function Se Oby S(t) - k.Jt, t e [O,T] and 

It is easily seen that the function C8 satisfies: 

, x E (-,o,S(t)). t E (0,T], 

Cs(X,0) - Co(X), x e (-,o,O) and Cs(S(t),t) - 0, t e (0,T]. 

From the definitions it follows that 

1 • 2 exp(. <l>z) 
1"(S)(t) - .B f [C8(x,t) • C0 (x)]dx - ---"'--- .Jt, t e [O,T). 

1 - B1.r,;(l+erf(l)) 

For a given ko ~ 0 we define S0 (t) - ko.Jt, t e [O,T] and S1+1 - :T(S1), i ~ 0. 

It follows that S1+1(t) - kl+1.Jt, t e [O,T) with 

lt1 2 
2 exp(·<z>) 

k1+1 - -B- It ' i ~ 0. 
1.r,; (l+erf(..!.)) 

2 

The first column of Table 3 shows the computed iterates for ko - 0 and B1 - 10. 

The table suggests that the sequence {k1 ) converges very fast. The second 

column of Table 3 shows the results for B1 - 0.28 and ko - 0 (the value 

of B1 is motivated·by the example of the solidification of steel 

mentioned in the introduction), whereas the third column shows the results 

for B1 - 0.28 and ko - 2. In both cases the sequence {k1 ) seems to be 

divergent. 
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I~ 10 0.28 0.28 

0 .OOOOOOOOOOOOOOE+oO .OOOOOOOOOOOOOOE+oO .20000000000000£+01 
1 .11283791670955E+o0 .40299255967697E+ol .80454015224521E+OO 
2 .10575394486570E+OO .34829757729564£-0l .23961218545097E+ol 
3 .10619274629613E+o0 .39510705880979E+Ol .50227994826367£+00 
4 .10616554230449E+o0 .40781319185908E-Ol .29616443267558E+Ol 
5 .10616722875706E+o0 .39376636196297E+ol .22901993883374E+o0 
6 .10616712420874E+o0 .41877248584397E-Ol .35240638226608E+Ol 
7 .10616713069001E+o0 .39351969976127£+01 .90919372991648E-01 
8 .10616713028822E+o0. .42081660394389E-Ol .38255087236915E+ol 
9 .10616713031312E+o0 . 39347369996965E+ol .52099084807601E-Ol 

10 . 10616713031158E+o0 .42119877347319E-Ol .39122229620512£+01 
11 .10616713031167E+o0 .39346510008064E+ol .44027842204842E-Ol 
12 .10616713031167E+o0 .42127025562986£-01 .39303585818360E+Ol 
13 .10616713031167E+OO .39346349154019£+01 .42485161526590E-Ol 
14 .10616713031167E+OO .42128362697328E-Ol .39338290499032£+01 
15 .10616713031167E+OO .39346319064937E+Ol .42195399553968E-Ol 
16 .10616713031167E+OO .42128612823503E-Ol .39344810570076E+Ol 
17 .10616713031167E+OO .39346313436434£+01 .42141154387612E-Ol 
18 .10616713031167E+OO .42128659612578E-Ol .39346031218370E+Ol 
19 .10616713031167E+OO .39346312383556E+Ol .42131005715959E-01 
20 .10616713031167E+OO .42128668365037E-Ol .39346259590014£+01 
21 .10616713031167E+OO .39346312186602E+Ol .42129107233743£-01 
22 .10616713031167E+OO .42128670002290E-Ol .39346302310891E+Ol 
23 .10616713031167E+OO .39346312149760E+Ol .42128752098024E-Ol 
24 .10616713031167E+OO .42128670308557E-Ol .39346310302388E+Ol 
25 .10616713031167E+OO .39346312142868E+Ol .42128685665552E-01 

Table 3 The computed values of k1 for i - 0, ... ,25. 

We make a further investigation for the case k0 - 2 and B1 - 0.28. 

exp(- (!!.)Z) 
Since the function fB : k ➔ s1- 2 k 

1 1"" (l+erf(2)) 

is monotone decreasing, the inequalities 

kz1+3 S kz1+1 S kz1 S kzHz • i :!:: 0 

hold for the sequence {k1 J in the third column of Table 3. Thus the 

sequence (k1 ) with k0 - 2 and B1 - 0.28 is divergent. 

In Section 4 we have proven the existence and the uniqueness of the 

solution of a Stefan p·roblem using the convergent sequence (S1 ) given by 

S1+1 - :T(S1). In this example we have shown that there are values 

of B1 such that the sequence (S1 J is divergent. Nevertheless, a further 

analysis yields that for every B1 > 0 there is a solution of this Stefan 
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problem in the set 

(Se OIS(t) - k.Jt, t e [O,T), k ~ OJ 

which is unique in this set. Denote this solution by S(t) - I<ii1.ft, t e [O,T]. 

Since f 81 is monotone decreasing it can be shown that if ko - 2 and 

B1 - 0.28 then k+,k- e R given by lim kz1 - k+ and lim kz1+1 - k-
l ... • i ... • 

satisfy the inequalities k- < 't<ii < k+. Since there is a unique solution 
1 

of the Stefan problem of the form S(t) - k.ft, t e [O,T), the 

functions s•,s- given by s•(t) - k+.Jt, S(t) - k-.Jt, t e [O,T) 

are no solutions of the Stefan problem. 

Remark 5.10. 

In this remark we compare the results on the convergence of the iterates in 

this example with the results obtained in the proof of Theorem 4.15 of the 

present paper and in Lemma 5.5 of (Vuik, 1987). 

For this comparison we approximate the initial function C0 given by 

C0 (x) - l, x e (•m,O) with the sequence of functions 

IC::I= where C::, n ~ 1 is defined by C~(x) - min(l,-nx), x e (•m,O). 

Since C~ satisfies Condition 2.1 it follows from (Vuik, 1987; Lemma 5.5) 

This yields an overestimate of the contraction factor which does not depend on n. 

Thus if B > G1 + G2 we would not be surprised if the sequence (S1 ) 1~ 

belonging to the initial function C0 , converges. The first column of Table 3 

suggests indeed that for B1 - 10, where the inequality B > G1 + G2 holds, 

the sequence (S1 )~ is convergent. 

On the other hand if Be (G1 ,G2+G2) then the proof of Theorem 4.15 

and the numerical experiments suggest that the speed of convergence of the 

sequence (S~J~ depends on the Lipschitz constant Ln - n of c:;. 
Since Ln goes to infinity for n ➔ m we expect that the speed of 

convergence goes to zero. Thus if Be (G1 ,G1+G2) it seems possible 
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that the sequence (S1 ) 1~ is divergent. For B1 - 0.28 the constant Bis an 

element of (G1 ,G1+G2 ) and it follows indeed from Table 3 that the 

sequence (S 1 ) 1~ is divergent. 
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The solution of a one-dimensional Stefan problem III 

1. Introduction 

The subject of this paper is a more general one-dimensional Stefan 

problem then the one considered in (Va] and (Vb]. In Section 2 we 

specify the Stefan problem. In (Va] and (Vb] we have shown existence 

and uniqueness of the solution of a Stefan problem under certain 

conditions. From these conditions it follows that a solution of the 

Stefan problem is a monotone increasing function. Some of these 

conditions are weakened in this paper. A consequence of this is that a 

solution of the Stefan problem can be a non-monotone function. Another 

consequence is that there are Stefan problems such that the existence 

of the solution follows from theorems shown in this paper, whereas the 

existence theorems of [Va] or (Vb] are not applicable. Examples of 

such problems are: 

i) a mathematical model which describes the freezing of a supercooled 

liquid (reported in (Carslaw & Jaeger, 1959; p.287], [Parker, 1970; p.175] 

and (Moerbecke, 1974; Section 4.1]), 

ii) a mathematical model which describes the growth of a crystal in a 

supersaturated solution (reported in [Parker, 1970; p.178]). 

We now describe this model ii). 

Let x ER be the space co-ordinate and t the time co-ordinate. 

For the tune t - 0 we suppose the region x ~ 0 to consi~t of a 

crystal and the region x < 0 to consist of a supersaturated solution. 

The position of the time dependent boundary between the liquid and the 

crystal is denoted by S(t). The function C describes the concentration 

of the solute. In dimensionless form the problem is: given T > 0, 

B > 0 and C0 : (·«>,0] ➔ [0,1]. find sufficiently smooth functions 
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S: [0,T] ➔ Rand C: ((x,t)ix E (-<0,S(t)]. t E [0,T]J ➔ R 

such that 

(1.1) { 
ac(x,t) _ a2c(x;t) -o, xe (-«>,S(t)), t 

at ax 
C(x,0) - C0 (x), x E (-<0,0] C(S(t),t) - 0, 

E (0,T], 

t e [0,T], 

(1. 2) 
1 .. 
:sf (C(x,t) - C0 (x)]dx-S(t), tE [0,T]. _,. 

For easy notation, we define C(x,t) - 0, x E (S(t),"'), t E [0,T] 

and C0 (x) - 0, x E (0,"'). 

Existence and uniqueness results for the solution of a Stefan problem 

which can be applied to the given example are reported in [Rubinstein, 1971], 

[Sherman, 1971], [Moerbecke, 1974] and [Fasano & Primicerio, 1977]. In 

Section 6 we compare the existence and uniqueness theorem of the 

present paper with the results given in the literature. In (Va] and 

[Vb] we have shown existence and uniqueness for the solution of a 

Stefan problem with the following condition 

- ½ j (C(x,t) - C0 (x)]dx - S(t), t E (0,T] _,. 

instead of (1.2). 

We now give a short description of the contents of the present paper. 

In Section 2 we state several definitions and conditions and we 

specify a Stefan problem which is more general then (1.1) a.nd (1. 2). 

Some results from [Va] and [Vb] are summarized in Section 3 which also 

includes an approximation result. In Section 4 we estimate the 

function~- After that we give existence theorems 

for the solution of the diffusion equation. Finally given two time 

dependent boundaries we compare the solutions of the equations given 

in (1.1). In Section 5 we define an operator 1 and state two fixed 

point theorems for this operator. Using these theorems we prove 

existence and uniqueness for a solution of the Stefan problem and give 

a comparison with the results given in [Va), [Vb). 
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Finally in Section 6 we give some examples of the Stefan problem 

specified in Section 2. In one of these examples Condition 2.3v) which 

is used in the proof of our Main Theorem, is not satisfied and there 

is no solution of the given Stefan problem. For some examples we 

compute a numerical solution. 

2. Statement of the problem 

In this section we give some definitions and specify a Stefan problem. 

2.1 Definitions 

For a given T > 0 we define the following function spaces: 

0 - {Se C[O,T)IS(O) - OJ, P - {Se OIS is monotone non-decreasing), 

and for K10 ~ e R ; K1, ~ 2:: 0, t 1 > 0 

M11:1,11:2 ,t1 - IS e OI- ~ s S(t+h) - S(t) s ~. h 2:: O; t+h, t e [O,T)J 
2,t+t1 2,t+t1 

and Mg r_ t - M.. r_ t n C2 [0,T), where we use the conventions: 
1''"2' 1 "1•-z• 1 

. .., < a, a <.., for every a e R, . .., <..,, Q,.., - .., .0 -: 0, 

..,a - a.., - .., and a,(-a) - (-a).., .. (-... )a - a(-a,) - . .., for a e R, a> 0. 

M denotes the set of lower Li~schitz continuous functions: Se O and 

there is an L 2:: 0 such that -Lh s S(t+h) - S(t), h 2:: O; t+h, t e [O,T]. 

Note that for every t 1 > 0 M - u ii • t nG •"It, • l' 

We define 11ft. - sup lf(t)l,t e [0,T] and llflL- llfllr,.· 
tE(O,t] 

In Section 3 we prove that Mg1,Ez,ti is the closure of Mg1,Ez,ti 

in C[O,T) with respect to the a,-norm. 

For a given function Se C[O,T) the set Qs c R2 is defined by 

Qs - ((x,t)lx e (-... ,S(t)), t e (0,T)J. The closure of a set Q c R2 

is denoted by Q. 

2.2 The function spaces cl,tiz (Q8 ). c2 •1(Q8 ) and c' [a,b) 

We use the following function spaces defined in [Lady~enskaja, 
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Solonnikov, Ural'ceva, 1968; p.7]. For a given l E R+\N, cl,lt 2 (Q5 ) 

is the Banach space of continuous functions f on Q5 , having 

continuous derivatives a"+pfP for 2r+p < l and a finite norm llff lt2 • 
at"ax 

Here the norm llffli2 is defined by: let [l] be the largest integer less than l, 

l-2r-p 

ll fltl,l/2 _ t ( l: m;ixl if'Pf I ) + l: < ar+pr f >!-lll + l: < if'Pf >-2-
r J•b 2r+p-J Qs 8tr8xp 2r+p-lll 8t axP o<l-2r-p<2 at"axP t ' 

and <f>~ - sup (lf(x',t)-f(x",t)I I (x' t) (x" t) E Q · lx'-x"I < 1} 
jx'-x"la , I ' S' - I 

( lf(x,t')-f(x,t")I I (x t') (x t") E q· · lt'-t"I 1} f (0 1) 
lt'-t"la ' ' ' s• :S oraE ' . 

C2 •1 (~) is the set of continuous functions f on Q5 , having 

continuous derivatives:,~; and~~-

For a given l E R'\N and [a,b] c R, d[a,b] is the 

Banach space of continuous functions f on [a,b], having continuous 

derivatives dp~ for p < l, and a finite norm llflf. Here the 
dx 

norm llflf is defined by !lfjf - lfl max ldJfl + <dlllf>l-1!1 and 
j•O (a,bl, dxj dx[l1 

<f>a - sup (lf(x')-f(x")j Ix' x• E [a b]· jx'-x"I < 1} and a E (0,1). 
lx'-x"la: , ' ' -

2.3 Conditions 

Suppose C0 : (-m ,OJ ➔ [0,1] is a given function. We shall always 

impose Condition 2.1: 

Condit ion 2. 1. 

The func.,tion C0 should be an element of the set Cond 2.1:- {.p: (-m,O] ➔ Rl<P 

is a monotone decreasing Lipschitz continuous function with .p(O) - 0 and 

,l:.~ .p(x) - 1). Let L be a Lipschitz constant of the function C0 • 

Occasionally we shall impose the following stronger condition: 

Condition 2. 2. 

The function C0 should be an element of the set Cond 2.2:- {.p E C3+a(-m,O] 

d.p d2 
for an a E (0,l)l<P E Cond 2.1 and dx(O) - dx~(O) - 0). 

In the sequel, B: R ➔ R will denote a multifunction (see 



-99-

[Smithson, 1972]) and G: 0 x P x [0,T] ➔ R will denote a 

functional, both subject to the following condition, which will always 

be imposed: 

Condition 2.3. 

The multifunction ii should be such that: 

i) 0 E ii(O). 

ii) There is a BE (O,~) such that for x ER, h > 0, y1 E ii(x) and 

y2 e ii(x+h) the inequality y2 - y1 ~ Bh holds. 

iii) ii is surjective. 

The functional G should be such that: 

iv) G(S,f,0) - 0, Se 0, f E P. 

v) There are constants 71 , 72 , 73 ~ 0 and t > 0 such that for every 

t 1 E (0, t:]. K1 , J.S ~ 0 the inequality 

7 K1ry J.Sry 
JG(S,f,t+h) - G(S,f,t) I s 1 2 3 h holds for 

2~t+t1 

h ~ O; t+h, t e [O,T], Se MK1 , .. ,,1 , f e M0.~·•i 

with 7 1 + 72 < B and 72 > 0. 

To motivate the formulation of Lemmas 2.4, 2.7 and Definitions 2.6 and 

2.9 we remark the following: using ii and G we shall define in 

Section 5 an operator 1 and a function space as in [Vb] such that 

1 maps the function space into itself. In [Vb] it follows from 

[Vb; Condition 2.3] that the function t ~ G(S,f,t) is an element 

of P which implies that 1: P ➔ P. However an important difference 

between the Condition 2.3 of [Vb] and the Condition 2.3 of the present 

paper is that in the latter the function t ~ G(S,f,t) is not 

necessarily an element of P. Thus it is possible that Se P but 

1(S) i P. From this it follows that we look for a function 

space which includes non-monotone functions and is mapped into itself 
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by the operator r. With an appropriate choice of K1 , Ki and 

t 1 (Definitions 2.6 and 2.9) we shall show in Section 5 that 

r: MK1.Kz.t1 ➔ MK1.Kz.t1" 

Lemma 2.4. 

For B, 11 , 12 and 13 as in Condition 2.3 there is a unique 

Proof. 

We define the function"': (0,.,) ➔ R by 

1 { 21,(l+,0 )exp(-(~J2) } 
"': k..., B 11k + (k) + 13 . 

.r,r erfc 2 

It is obvious that equation (2.5) is equivalent to k1 - <l>(ki)

First of all we show that there is a constant k1 e (Q,.,) such 

that k1 - <l)(k1). After that we show that this constant is unique. 

From the inequalities (see (Abramowitz & Stegun, 1972; p.298, 

inequality 7.1.13]) 

__ l __ < ek2 f e-yz dy :S --1--, k ~ 0, 

k+~k2+2 k k+~k2~ 

it follows that 

2 

.r,r (k + •'(k)z + ~) ,s exp<-n) l < .r,r (k + ·~) k O 
2k 2 'l 2 ,r k erfc (~) 2k 7 .'l'!' n l > 

exp(-(k) 2) +y (l+ ) ! .ffl "'(k) 11 z · •o and thus Um ----=:.....-- - ..,,.... This implies g~ --r.:- - -=---=,..----
k➔m k erfc (;) ,. r- " 

Using the definition of , 0 and the inequality 11+12 < B we deduce 

lim ~ < 1. On the other hand we have <l)(O) > 0 because 12 > 0. 
k ... a, K 

Since"' is a continuous function it follows that there is a constant 

k1 e (Q,.,) such that k1 - <l)(k1). 
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Using again inequality 7.1.13 of [Abramowitz & Stegun, 1972] it 

follows that cl.pt)> 0 and! <"'C:)) < 0, k E (0,oo), 

The last inequality combined with the fact that "'~1) - 1 yields 

k < <1>(k), k e [O,k1) and k > <1>(k), k e (k1 ,oo), Thus there is a 

unique constant k1 e (O,oo) such that equation (2.5) holds. 

Definition 2.6. 

B-7 -7 
Define e - --1- 2 , k1 such that (2.5) holds and 

0 272 

2(l+e0 )exp(-( ~ )\ 
k2 - -------- Furthemore we define the functions 

-Iii'(l+erf( -~ )> 
S: [O,TJ ➔ (-oo ,OJ and C: Qs ➔ (O,oo) by S(t) - -kl .J"t, t e [0,T] 

(l+e )(l+erf( ~r.::)) 
0 2-..t 

and C(x, t) - (l+eo) - ----~-k..---, (x, t) E Qs. 
(l+erf(T)) 

Le= 2.7. 

There is at> 0 such that for : e (0,t] the inequality 

(2.8) C0 (x) :S C (x+S ( t) , t) '.olds for x e ( -oo , 0] . 

Proof. 

Since lim C(--11 + S(t),t) - 1 +~there is at> 0 such that 
t-lo 

for t e (0,t], C(·f + S(t) ,t) 2: 1. The function x ... C(x+S(t) ,t), x e (-oo ,OJ 

is monotone decreasing thus C0 (x) :S 1 :S C(x+S(t) ,t), x E (- 00 ,-f], t e (O,t] 

Using the fact that the function x ... C(x+S(t),t), x e (-~,OJ is concave, 

together with C(-f+S(t) ,t) 2: 1 and C(S(t) ,t) - 0 we deduce 

C0 (x) :S -Lx :SC(x+S(t),t), x E [·f,OJ, t e (O,t]. 

This proves the lemma. 

Definition 2.9. 

Fort as in Condition 2.3v) and t as in Lemma 2.7 we define t 0 - min{t,t) 

and for Ki_,IS e R; K1,IS 2: 0 the following function spaces 

MK1,K2 - MK1,K2,to and 1\1,Kz - 1\1,Kz,to. 
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We shall always impose the following condition: 

Condition 2.10. 

The functional G should be· such that there are constants G1 ,G2 ER such that 

Occasionally we shall impose the fallowing condition: 

Condition 2 .11. 

For every t e [O,T]. Se Mlt1 ,k1 and f e M0 ,1c2 , G(S,f,t) should 

only depend on Slco,tJ and fl 1o,tJ' 

2. 4 Statement of a S.tefan problem 

In order to stata our Stefan problem, we fi.rst state a reduced problem: 

for a givan function S e 0, find a bounded solution Cs e C2 •1 (Qs) n C(Qs) 

of tha aquatfons in (1.1) for this function S. For any S e 0, for 

which tha reducad problem has a solution Cs, we define C8 (x,t) - 0, 

x > S(t), t e [O,T). Let the function f 8 :[0,T] ➔ R be defined 

by f 8 (t') - .j (C8 (x, t) - C0 (x) )dx. 

A Stefan problem can ba statad as follows: to find a lowar Lipschi.tz 

continuous function Sand a solution C5 0£ the reducad problem such 

that G(S,f8 ,t) e R(S(t)), t e (O,T). 

3. Preliminaries 

In this section we. swmnarize known results about the solution of the 

diffusion. equati.on and show that every function S e MK1 ,K2 ,t1 can be 

approximated by a function S. E Hir:1,K2 ,t1 • 
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3.1 Known results 

Lemma 3.1 (maximum principle) [Va; Lemma 2.4]. 

Suppose SE C[O,T]. If the bounded function u E C2' 1 (Qs) n C(Qs) satisfies: 

au(x,t) a2u(x2,t) - 0, x E (-a,,S(t)), t E (0,T], _a_t_ - ax 

then min{ inf u(x,O), min u(S(t), t) J s u(x, t) s 
xE<...,,SIC!JJ tE[O,TJ 

max{ sup u(x,0), max u(S(t),t)J for (x,t) E Qs· 
xE(...,,\;(O)] tE[O,TJ 

Le= 3.2 [Va; Lemma 2.6]. 

Suppose the function~: (-..,,OJ ➔ [0,1] is an element of Cond 2.1. 

For every,> 0 there is a function~-: (-a,,OJ ➔ [0,1] which 

is an element of Cond 2. 2, ~ -ex) s ~ (x), x E ( -a, , 0]. j [~ (x) -~-ex)] dx < < 

and a Lipschitz constant of~ is also a Lipschitz constant of~--

In the same way it can be shown that there is a function~+: (-"',<] ➔ [0,1], 

such that x ... ~+(x+,) is an element of Cond 2.2, ~(x) s ~+(x), x E (-a, ,OJ, 

0 • 

J [~+(x)-~(x)]dx + J ~+(x)dx <, and a Lipschitz constant of~ 
0 

is also a Lipschitz constant of~+. 

Lelllllla 3.3 [Va; Lelllllla 2.5]. 

For SE C[O,T] suppose u,,, is a sequence of bounded functions such that 

2 1 - a.....,(x,t) a2u,,,(x, t) 
U,,, EC' (~) n C(Qs) and __ a_t_ - axz - 0, x E (-a, ,S(t)), t E (0,T]. 

Define the functions~" and of/01 by ~01 (x) - u,,,(x,O), x E (-a,,S(O)] 

and ofl01 (t) - u,,,(S(t),t), t E [O,T]. 

If~" ➔ ~ uniformly on (-a,,S(O)] and of/01 ➔ of/ uniformly on [0,T] then the 

function u: Qs ➔ R defined by u(x,t) - ¼,!-~ u,,,(x,t), (x,t) E Qs is 

bounded, u E C2·1(Qs) n C(Qs) and satisfies 

au(x,t) - a2u(x,t) - O x e (-"' S(t)) t e at axz • ' • (0,T], 

u(x,0) - ~(x), x E (-a,,S(O)], u(S(t),t) - ofl(t), t E [0,T]. 
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Theorem 3.4 [Va; Theorem 4.1]. 

Suppose Condition 2.2 holds. Then for any Se On C2[0,T], the reduced 

3+a: ~ -
problem has a unique solution Cs and it satisfi.es Cs E C · z (Q5) with 

the same a as in Condition 2.2. 

Lemma 3.5 [Va; Lemma 4.2]. 

z dS 1 (t) dS2 (t) 
Suppose Condition 2.2 holds. Let S1,S2 e On C [O,T] and~ s ~ for 

8Cs2 
t e [0,T], then the inequality -'""iii< (S2(t),t) 

holds forte [O,T]. 

Lemma 3.6 [Va; Lemma 4.6]. 

Suppose Condition 2.2 holds. Then for any Se On C2[0,T], the solution Cs 

of the reduced problem satisfies: 

Lemma 3.7 [Va; Theorems 4.11, 4.12 ii)]. 

i) If S1,S2 E 0, S1(t) s S2(t), t E [O,T] and there are solutions 

C51 , Cs2 of the reduced problem, then Cs1(x,t) s C52(x,t), (x,t) E Q52 

and j [C5 (x,t) - Cs (x,t)]dx s Jjs1-S2JI- , t e (0,t]. t e [0,T]. 
-co 2 1 t,<:O 

ii) If S E O and there is a solution of the reduced problem then f 5 e P. 

Lemma 3.8 [Vb; Lemma 4.14]. 

Conditions 2.10, 2.11 hold if and only if 

sup IG(S1,f,t) - G(Sz,f,t) I S G1[ls1-S2ll;;,m, t E [O,T], S1,S2 E Mk1,k1' f E MO,kz' 
tE[O,t] 

3.2 Approximation results 

Lemma 3.9. 

For • > 0, K1,Kz ~ 0, t 1 > 0 and S E MK1,K2,t1 there are 

functions s+,s- e 11,;. K t such that S-(t) s S(t) s s+(t), t e [0,T] 
1• z, 1 
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Proof. 

The function S e M0 ,IC1+Jti,t1 is defined by S(t) - S(t) + K1~t+t1, t e [0,T]. 

Take Ne N, N > 4~ (K1+~). For h - j we define SK e P 
E'ltl 

as follows: 

{
S((i+2)h)-S(2h), i-0,1, ... ,N-2 

S.(ih) - • • 
S(T) - S(2h) ., i-N-1,N 

and Sa is a linear function on [ih, (i+l)h], i-0, ... ,N-l. It is easily seen 

that ~s-sJL < ¥-
If the function S e P is given by S(t) - max{0,SJt)-fl, t e (0,T] 

then there is a strictly increasing sequence r1 e [0,T], i-0, ... ,m+l, 

with m :SN s~h that r0 - 0, rm+1 - T and Se c:2([0,T]~u {r1)). 
l•l 

From the definition of Sit follows that there are a1 ,b1 e R such 

K1+~ 
that S(t) - a1t+b1, t e [r1,r1+1l and 0 :S a1 :S ~• 

2 r1+2+t1 

i-0, ... ,m-1 and .._-o. 
For µe (0, ¼ min (r1+1• r1)] the functions,. is defined by: 

i-0, •.•• 

S( r1 ·µ)+(t- ( r1 -µ)) (--2-)-ir(--r-)cos((t-r1)2 ), te( r1 -µ, r1+µ] , i-1, ... ,m, 
s (t)- ,. . { 

- a1-1+a1 2µ a1 •a1-1 ,,. 

,. - .. 
S (t), te(0, Tl\\11 [ r 1 ·µ, r 1+µ] • 

Forµ small enough s,. has the following properties: 

s,. e Mo,1t1+Jti,t1, s,.(t) :S S(t) :S s,.(t) + E, t e [0,T]. 

Define for this functions,. the functions· by S0 (t) - s,.(t) - K1~t+t1,t e [0,T]. 

It follows that s· e Hic1,Jti,t1 and s·(t) :S S(t) :S s·(t) + E, t e [0,T]. 

To find s• we note that the function t ... -S(t) is an element of ~ K • • 
2• 1• 1 

From the construction of s· it follows that there is a function S e ~.1t1,t 

such that S(t) :S -S(t) :S S(t) + E, t e [0,T], thus the functions+ given 

by s+(t) - -S(t), t e [0,T] has the required properties. 9 
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Corollary 3.10. 

MK1 ,K2 ,t1 is the closure of 1fx1 ,K2 ,t1 in C[O,T] with respect to the a,-norm. 

4. Properties of the reduced problem 

In this section we give some properties of solutions of the reduced 

problem. These properties are used in Section 5 to prove an existence 

theorem for the solution of the Stefan problem. 

4.1 Estimation of~ 

Theorem 4 .1. 

Suppose Condition 2.2 holds and SE f\ 1 ,m. Then the solution C5 

of the reduced problem has the properties: 

i) acs lei 0 s -ax (S(t),t) s =,:-• t e [O,T], 
2~t+t0 

ii) 

Proof. 

i) We use the functions s,·c which are defined in Definition 2.6. 

For t 0 as in Definition 2.9 the function S:[O,T] ➔ R defined by 

S(t) - S(t+t0) - S(t0), t e [O,T] is an element of On C2 (0,T]. 

Application of Theorem 3.4 yields: 

J+o:. 3+o: -
there is a unique solution Cs of the reduced problem and Cs e C 2 (Qs). 

It is easy to verify that the function (x,t) .... C(x+S(t0 ), t+t0 ) is a Solution 

of the reduced problem for the time-dependent boundary Sand the 

initial function x .... C(x+S(t0 ), t 0 ). 

Inequality (2.8) implies C0 (x) S C(x+S(t0 ),t0 ) for x E (-.,,0]. 

This combined with the maximum principle yields 

Cs(x,t) s C(x+S(to), t+to), (x,t) E Qs. 

Since Cs(S(t),t) - 0 and C(S(t)+S(to),t+to) - C(S(t+to),t+to) - 0, t E (0,T] 
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it follows that 

(4. 2) 
acs , ac -ax (S(t),t) s -ax (S(t)+S(to)• t+to)• t e [0,T]. 

From Definition 2.6 we know 

ac(x, t) 
~ - - X E (-a, ,S(t)]' t E (Q,a,)' 

thus -~ , t e [O,T]. 
2~t+t0 

This together with inequality (4. 2) yields 

acs , kz 
-Bx (S(t) ,t) S ~ ,t e [O,T]. 

2~t+t0 

(4.3) 

From the definition of S and 1\1 ,m we know that for every S e 1\1 ,m 

the inequality dSjtt) s dSjtt) holds forte [O,T]. 

Application of Lemma 3.5 yields 

acs acs A -ax (S(t),t) s - ax (S(t),t), t E [O,T]. 

From this and inequality (4.3) we deduce that 

ac5 kz 
-Bx (S(t),t) s ~ , t e [0,T]. 

. 2~t+t0 

On the other hand application of the maximum principle gives C5 (x,t) ~ 0, 

(x,t) e Q5 • Since C5 (S(t),t) - 0, t e [O,T] this implies 

acs 
0 S -Bx(S(t),t), t e [O,T]. 

ii) The bounded function~ satisfies 

.E... ( dCg(X, t)) _ L ( aGg(X, t)) _ O 
at a,c a,c2 a,c , X E (-a, ,S(t)), t E (O,T], 

acs(x 0) - dCO(x) 1 a,c , dx , X E (-a, ,0 . 

Using the inequalities O s - ~(S(t),t) s ~, t e [0,T] and 
2 ~t+t0 

the maximum principle we conclude: 

(4.4) aG8(x,t) { kz } -0 s ---ax-- s max L, 2 .jt;; , (x,t) e Q5 • 

From the proof of Lemma 2. 7 it follows that C ( -t;+s ( t 0 ) , t 0 ) ~ 1. 

This together with C(S(to) ,to) - 0 implies that there is a Ee (- f:,0) 

ac -such that - Bx ({ + S(t0 ),t0 ) ~ L. 

Since the function x ~ C(x+S(t0 ),t0 ) for x e ( "',OJ is concave 
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and - ac (S(t0 ),t0 ) - ~ the last inequality implies 21%--to ~ L. This combined 
ax 2.Jt: "l~o 

acs(X, t) ¾ 
with inequality (4.4) yields 0 :S - ---- < -- , (x, t) E <ls• l1il ax - 2.Jt: 

4.2 Existence results for Cs 

The proof of the following lemma is analogous to the proof of (Va; Theorem 4.9] 

if we use Theorem 4.1 of the present paper instead of (Va; Lemma 4.3]. 

Lemma 4.5. 

For a given function Se On C2 [O,T] there is a unique solution 

Cs of the reduced problem and fs E P. If S E ~l'm, then 

fs e M and O :S - acs(x,t) <~for (x,t) En. 
O,k2 ax - 2.Jt: '<S 

Theorem 4.6. 

For a given function S E Mk1,k1 there is a unique solution Cs 

of the reduced problem and 0 :S 

Proof. 

According to Lemma 3. 9 there is a sequence of functions Sn E ~ 1,k1 

n - 1,2, ... such that M!l' llsn-SIL - 0 and S(t) :S S0 (t), t E [0,T]. 

Application of Lemma 4.5 yields that there are unique solutions Cs
0

, n - 1,2, .. 

of the reduced problem. 

Define ~0 (t) - Cs
0
(S(t),t) and ~(t) - 0, t E [0,T]. We know that 

Cs e C2 •1 (Qs ) n C(Qs ) hence 
n n n 

S(t) aCs
0 

S(t) aCs
0 

Csn(S(t),t) - Cs0 (S0 (t),t) + J Bx (E,t)~ - J Bx (E,t)~, t E (0,T]. 
Sn(t) Sn(t) 

From Lemma 4.5 it follows that O :S 
aCsn(x,t) < ~ (x t) E Q 

ax - 2.Jt: ' • Sn' 

thus l~n -~ IL :S 1%-- !1s0 -SIL-
2 "lto 

Since Cs
0

: <ls ➔ (0,1], Cs
0
(x,0) - C0 (x), x E (-a,,0], n - 1,2, .. and 

~n ➔ ~ uniformly on (0,T] we obtain from Lemma 3.3 and the maximum 

principle that the function C8 (x,t) • 1!f c8n(x,t), (x,t) e Q8 is the unique 

acsn (x, t) < _¾ 
solution of the reduced problem. The inequalities C :S - ax _ 2.Jt:, 
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(x,t) e Q5 , together with Lenuna 3.3 yield 

8C5 (x, t) ~ 
0 :S - --- < -- , (x,t) e Q5 • llll 

ax - 2.ft: 

4.3 Properties of the function f 5 

Theorem 4.7. 

Proof. 

Define the functions s•, s- e Mk1 ,k1 as follows s•(t) - max(S1 (t),S2 (t)J 

and S-(t) - min(S1(t),S2 (t)}, t E [O,T]. Theorem 4.6 says that there are 

solutions Cs+ and C5- of the reduced problem. Application of the 

maxilllUIJl principle yields: 

C5 -(x, t) :S C51 (x, t), C5/x, t) :S C5+(x, t), (x, t) e Q5+, and 

thus for Ne R 

From Le1111Da 3.7i) it follows that j[c.(x,t)-C5-(x,t)]dx exist and 
-• s 

This inequality combined with the definition of f 5 given in 

Subsection 2.4 proves the theorem. 

Lemma 4. 8. 

If S E Mk1,• and there is a solution C5 of the reduced problem 

then f 5 e M0 ,kz. 

Proof. 

Take Sn e M,,1 ,. such that IIS-S0 IL :S 2~, n - l, 2,.. . 

llll 

Define S~(t) - S0 (t)-t s:(t) - S0 (t)+ ¼, t e [O,T] and C0 ; (-«>,-¼] ➔ [0,1] 

by C0 (x) - min(C0 (x), -(x+¼)L}, x e (-«>,-¼J. n - 1,2, ... 
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According to Lemma 4.5 the equations 

ac(x,t) _ a2c(x,t) - O e (-oo S-(t)) (0 ] at ax2 ,x 'n ,te ,T, 

C(x,O) -Cn(x), xe (-oo,-¾l, C(S~(t),t) -0, te [0,T], 

have a unique bounded solution C5 - e C2 ' 1 (Q5 -) n C(Q5-), for 
n n n 

n - 1,2, ... Furthermore the functions f 5-(t) - -J [C5-(x, t) - C0 (x) ]dx 
n -a, n 

exist and f 5- e 110 k . 
n ' Z 

Application of the maximum principle yields 

C5;(x,t) s C5 (x,t) s C5;(x-tt) ,· (x,t) e Qs:· 

This implies that 

0 S j [C5 (x,t)-C5-(x,t)]dx S ~fort E [0,T], n - 1,2, ... 
_., n 

Since the quantity f 5-(t) + J [C5-(x, t)-C5 (x, t) ]dx + J [C0 (x)-C0 (x) ]dx 
n -a, n -a, 

is finite and equals f 5 (t) forte [O,T], n - 1,2, ... , it follows that f 5 

exists and !if5 -f~IL s ~. n - 1, 2, ... From f 5~ e M0 ,k2 and the 

completeness of the space (110 .kz' 11-IL) we conclude that f 5 e M0 ,k2 . 

Theorem 4.9. 

Suppose S1'S2 e Mk1,k1 , t-,t+ e [0,T] and t- s t• then 

the following inequality holds: 

It is easily seen that S, ~ e Mk1 ,k1 and IIS 1 -S2 ilt," - llii-~llc, .. , t e [O,T]. 

From Theorems 4.6, 4.8 follows that C5 , C§ exist and f 5 , f§ e M0 ,k2 . 

Application of the maximum principle yields 

.. 
(4.10) llf51 -f52 llt+., s max+ lf5(t)-f§(t)1 - J_.,[C,/x,t) C§(x,t)]dx 

' tE{O,t J 

for some t e [O,t•]. 

If t e [◊,t-] then Theorem 4.7 states that 



In this case the theorem is proved. 

Now we suppose that t e (t-,t+]. According to Lemma 3.9 for every 

• > 0 there is an S- e c2 [t-,t] such that S-(t-) - §(t-), 

§(t) - • s s-(t) s §(t), t e [t-,t] and ldsd-t(t)I s ~ t e [t-,t]. 
2~t+t0 ' 

Define S-(t) - §(t). t e [0,t-), s+(t) - S-(t) + llii-§11,.,m + •• t e [O,t] 

and rf - ((x,t)lx e (-..,,s±(t)), t e (t-,t)J. 

From Theorem 4.6 we know that the functions x ... C5(x+S(t-),t-) 

A Lipschitz constant of these functions is~- Thus it follows from 
2,Jt,; 

Lennna 3.2 that there are functions c;: (-..,,s±(t-)] ➔ [0,1] such that 

the functions x ... C;(x+s±(t-)) are elements of Cond 2.2, c:(x) :S C§(x,t-), 

X E (-..,,S-(t-)], C5(x,t-) :S C!(x), X E (-..,,S+(t-)], 

s et l s•ct-l 
f [C§(x,t-)-c:(x)]dx <•and f [C!(x)-C5(x,t-)dx < •· 

3+a 3+a _+ 
It follows from Theorem 3.4 that there are functions c± e C ·T (Q-) 

such that 

ac±(x, t) 
at 

c±(x, t-) 

a2c±(x, t) ± - • - axz - 0, x e (-a>,S (t)), t e (t ,t], 

- C;(x), X E (-..,,S±(t-)], C±(S±(t),c) - 0, t E [t-,t]. 

According to the maximum principle we have 

j [C5(x,t)-C§(x,t)]dx :S j [C+(x,t)-C-(x,t)]dx. 
-co -co 

Application of Lenuna 3.6 yields 

a:, ell t + 
f [c•(x,t)-C-(x,t)]dx - f [C!(x)-c;(x)]dx + f [~ (S+(T) ,T) 
-<O -co t-

Furthemore we deduce from the definition of c:, c: and Lemma 3.7i) 

j [C!(x)-c:(x)]dx s j [C-(x,t-)-C5 (x,t-)]dx + 2, 
-G •COS -

s llii-§llt-,m + 2. - ll51- 52ile-,m + z.. 
This together with inequality (4.10) yields 



-112-

(4.11) 

It remains to estimate the quantity: 

i + - i ... 
(4.12) ~[~(S+(r),r) • ~(S-(r),r)]dr - ~ fcs"(r),r)dr, 

t t 

with C(x,t) - c+(x+lls+-s·1~ .•' t) - c·cx,t), (x,t) e Rx [t",t]. 

The function C satisfies: 

ac(x, t) _ a2c(x, t) _ O - · • 
at axz ' ·x E ( .... 's ( t)) ' t E ( t 't l ' 

• - - • ·kz ac(x,t) kz --C(S (t),t) - 0, t e [t ,t] and r,::- s ~ s r,::-' (x,t) e Q. 
2"lto 2"lt0 

Ye deduce from the maximum principle O s c+(x,t) - c·cx,t), (x,t) e Q-. 
Since Theorem 4.6 states that the function x ~ c+(x,t) is Lipschitz continuous, 

the inequality 

. -~ 1s+.5-~ s c+(x+!s+.5-~ ,t) - c+(x,t) holds for (x,t) E cf. 
21to •• •• 

Adding of these inequalities yi_elds 

(4.13) 
·kz + • . -

r,::- 11S .q. s C(x,t), (x,t) e Q. 
2"lto t,• 

Ye introduce an auxiliary function C to estimate fcs·(r),r). 

To this end we choose &1 > 0 and note that since i~~ erf(x) - -1, 

there is a 62 e (O,t0 ] such that 

(1+61 ) erf<-lls+-s·1~ .• /2~) < -1. 

Furthermore we chooser e (t",t] and with Sas in Definition 2.6 

we define 

Since C and Care solutions of the diffusion equation it follows 
from the maximum principle that if 

C(S"(t),t) s C(S 0 (t),t), t E [t",r] and C(x,t") s C(x,t"), X E (- ... ,s·(t")] 

then C(x,t) s C(x,t), X E (-... ,s·ct)], t E [t",r]. 

• -k -k -
From the inequalities £[.ill:!: --1 - > --1 - - dS (t-t"+6) 

dt 2~t+to - 2Jt+oz-·C dt z 

we know that S0 (r)-S 0 (t) :!: S(r-t0 +6z)·S(t-t"+oz), t E [t",r]. 

This implies that s"(t) s S(t-t"+&z) + S0 (r) - S(r-t"+oz), t E [t",r] 
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and thus C(S"(t),t) s O - C(S"(t),t), t e [t",r]. 

From the definition of C and inequality (4.13) we obtain 

C(x,t") s -~ 1s+-s·1~ sC(x,t"). xe (-oo,s"(t") - lls+.s·1~ •• J. 
2'jt0 •• 

Since the function x ... C(x, t") is convex and the function x ... C(x, t") 

is Lipschitz continuous, these inequalities imply 

C(x,t") s ~ (x-S"(t")) s C(x,t") - C(S"(t"),t") - C(x,t"), 
2'jt0 

.x e [s"(t")-ls+-s·1~ ••• s"(t")J. 

Thus the inequality C(x,t) s C(x,t) holds for x e (-oo ,S-(t)), t e [t-,r). 

This inequality combined with C(S0 (r),r) - C(S0 (r),r) - 0 rields 

ac . gf_ • (1+61)k:zi1S+-s·1~ •exp(-(~) ) 
ax<S (r),r) s ax<S (r).r) - -k • _ 2 _ 

2~(l+erf(-t>) ~r-t"+62 

This inequality holds for every 61 > 0 and re (t",t]. Since the 

function t ... ~(S"(t),t) is continuous the inequality 

• _ k:zlls+ -s·~ • _ • 
~(S (r)..-) s -k holds for re [t ,t). 

2~(l+erf(-i» 4.--t· 

Using this estimate in equation (b.L2) combined with inequality (4.11) yields 

llfs •fs I~+. s IIS1·S2lt-,• + k:z -k ~t-{ lls+-s·~. + 2• 
i 2 . l+erf(--l) ,r o . 

2 

s IS1·S2llt-,• + k:z_~ ✓t-r i1S1·S2il:. + (2+ k:z ki .II .. ~o) ,. 
l+erf(2 ) ,r O t, l+erf(T) '\J,rto 

Since• is arbitrary it follows that 

5. The solution of the Stefan problem 

In this section we define an operator :r: l\1,lt1 ➔ Mlt1,lt1 . Under ·certain 

conditions we can prove that there is a unique fixed point of the operator :r. 
Using this property of :r we prove in our main theorem that there is a 

unique solution of the Stefan problem. Finally we compare this theorem with 

the existence and uniqueness theorems given in [Va) and [Vb). 

5.1 Definition of the operator :r 
Definition 5 .1. 
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We define ir1(y) - {X E RIY E B(x) I. 

Remark 5.2. 

Using Condition 2.3i), ii), iii) it is easy to see that B-1: R ➔ R 

is a function with the properties B-1(0) - 0, 0 s a·1(y+h) • a·1(y) s ~. 

h ~ 0, ye R. 

Lemma 5.3. 

For Se f\1,lt1 the function_ t ... B-1(G(S,f5 ,t)) is an element of !\1,k1. 

Proof. 

For Se f\1,1<1, the Theorems 4.6, 4.8 yield that f 5 exists 

and fs e Mo,1tz· From Condition 2.3 and Remark 5.2 it 

-·1. • 
follows that S (G(S,f5 ,t)) is properly defined for Se Hi,1.t1 

and t e [O,T]. Condition 2.3iv) combined with Remark 5.2 yields 

a·1<c<s,f5 ,o» - o. 

Since S e Mk1.lt 1 and f 5 e M0 ,lt2 we deduce from 

Remark 5.2 and Condition 2.3v) the following inequality: 

1a·1<c<s,f8 ,t+h» • a·1<c<s,f,t» 1 s 11k1~+y3 h, h ~ o; t+h, t e [O,TJ. 
28 t+t0 

h "l1kl+y2kz+y3 1, 
From equation (2.5) and Definition 2.6 it follows tat 8 - ·-i• 

hence 

--1 • --1 • k1h 
IS (G(S,f5 ,t+h)) • S (G(S,f5 ,t)) I s --, h ~ O; t+h, t e [0,T]. 

2~t+t0 

--1 - • 
Thus the function t,.. S (G(S,f5 ,t)) is an element of Mlt1,lt1. all 

Definition 5.4. 

The operator 'J: Mlt1,lt1 ➔ !\1,k1 is defined as follows: 

--1 • 
'J(S)(t) - S (G(S,f5 ,t)) , t e [0,T]. 

5.2 Fixed point theorems for the operator 'J 

Theorem 5.5. 

If G1 + G2 < S then there is a unique function S e Mk1,k1 such that 'J (S) - S. 
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Proof. 

From Definition 5.4, Remark 5.2 and Condition 2.10 we obtain 

ll1<s1> - :r(Sz)II. ::s ~ IIS1·S2II. + ~ IIS1-Szll. for S1,S2 e 1\1,i,1 · 

Application of Theorem 4. 7 yields lfs1 •fs2 11. ::s IIS1 ·S211. thus 

ll1<S1> • 1(Sz) II. ::s G1:°2 IIS1 ·S2II., 

Since G1 + G2 < B this implies that the operator 1 is a contraction on 

the complete metric space (1\1,i,1, JI. II.>. According to 

the Banach fixed point theorem there is a unique function S E 1\1,i,1 

such that 1(5) - 5. l!il 

Theorem 5.6. 

If G1 <Band Condition 2.11 holds then there is a unique function 

5 E J\1,k1 such that 1(5) - 5. 

Proof. 

Define h - i, Ne N and choose N large enough such that 

G kzGz~ 
P1 :- --1 + o 

B B(l+erf(~)) 

Gz 
< 1. Define p2 - 8 and rJ - jh, j - 0, ... ,N. 

u}ml - lirm(S1) - ,-m(S2)l~J•'"' j - 0,1, ... ,N, m?:.O. 

From the definitions it follows that ufm> ::s u}m> i::sj, m?:.O. 

Application of Lemma 3.8 and Theorem 4.9 combined with Remark 5.2 yields 

11,-mcs ) ,-mes ) n Gl 11<rm-l(S )-,-m-1(S ) 11 + ~ llf -f II 
1 • 2 "'J•· ::SB I"' 1 2 "J•'" B 1m-l<S1> ,-m-1(Sz) 'J•'" 

From the definitions we conclude 
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Using this it can be proved with induction ton that the inequality 

(5.7) O(m) n-1 ( mpz Jj o(Ol 
n s iJ;'. }::o Pi n holds for ~l and o.eO 

(compare the proof of [Vb; Theorem 4.15]); 

Since p1 < 1 we know that 

- 0. 

[- )j - N-1 mp 
Choose m large enough such that p :- ~ :1:: -P 2 < 1. 

3 1 j•O l 

With inequality (5. 7) it follows that ll:J"'(S1)-:T"'(S2 ) IL s p3 jjS1 -S2 IL

We know that (Mk1 ,k1 , 11- IL> is a complete metric space and 

Mk1,k1 r /J. Furthermore we have just shown that :T"' is 

a contraction on Mk1,k1 and '.f is a continuous operator on 

Mk1,k1. According to the Banach fixed point theorem there 

is a unique function Se ~ 1,k1 such that '.f(S) - S. ll!I 

5.3 Existence and uniqueness of the solution of the Stefan problem 

In this subsection we prove our main theorem, and compare this theorem 

with the existence and uniqueness theorems given in (Va] and [Vb]. 

Main Theorem 5.8. 

If one of the following conditions holds: 

i) G1 + G2 < B, or 

ii) G1 <Band G is such that Condition 2.11 holds, or 

iii) G is such that Condition 2.11 holds and there is a function A e 0 

such that the inequality 

sup IG(S1,f,t)-G(Sz,f,t) I S G1IIS1-Szt .• + A(t+-t-)IIS1-szllt+ m 

tE[O,t+I ' 
(5.9) 

holds for Sl'Sz e Mk1,k1, f e M0 ,k2 ; t-,t+ e [O,T] and t- s t+, then 

the Stefan problem: "to find a lower Lipschitz continuous function Sin 

the sense of Subsection 2.1 and a solution C5 of the reduced problem 

such that G(S,f5 ,t) e ii(S(t)), t e [0,T]", has a unique solution. 
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Remember that our convention is to impose Conditions 2.1, 2.3 and 2.10. 

If we denote the solution of the Stefan problem by the pair (S,C8) 

then S e !\1,k1 • 

Proof. 

i) Existence. Since G1 + G2 <Bit follows from Theorem 5.5 that there 

is a fixed point S e !\ k of the operator 1'. This 
1• 1 

implies that there is a unique solution C8 of the reduced problem 

- - -1 - -and S(t) - B (G(S,f8,t)), t e [O,TJ. With Definition 5.1 

the last equation is equivalent to G(S,f8,t) e B(S(t)), t e [O,T]. 

Thus the pair (S,C8) is a solution of the Stefan problem and Sis an 

element of !\1,k1 • 

Uniqueness. Suppose the pair (S,C5 ) satisfies the Stefan problem. 

Since Se M and M - u Mg• there is a Ke [O,oo) ~. 
such that S e !\, •. This together wi~h Lemma 3. 7ii) yields 

f 9 e P. Thus G(S,f9 ,t) exists for•. e [O,T) and G(S,f5 ,t) e B(.S(t)), t e [O,T). 

Using Remark 5.2 it follows that 

(5.10) --1 -
S(t) - B (G(S,f8 ,t)), t e [O,T]. 

To show that S e !\1 ,k1 we distinguish the cases Ke [O,k1 ) 

and K e (ki , .. ) . In the first case it follows from Lemma 4. 8 that 

f 8 e M0 ,k2 • Equation (5.10) combined with Condition 2.3iv), v) 

and Remark 5.2 yields S(O) - 0 and 

IS(t+h)-S(t) I ::S 11k1~+y3 h, 11;&; t+h, t e [O, T). 
2B t+t0 

Using (2.5) and Definition 2.6 it follows that Se Mk1,k1 • 

In the second case Ke (k1 ,"') we define N1 - K, S(t) - -K{t, t e [O,T) 

and 
(l+,0 )( l+erf(~)) 

erfc <J> 
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From the maximum principle it follows with S, C as in Definition 2.6 

and t as in Lemma 2 • 7 that 

C(x+S(t},t} ~ C(x+S(t),t}, x e (•m,O]. 

Using this inequality it can be shown in the same way as in Lemma 4. 8 

. • 2(l+i0 )exp( · (J) 2) 
that fs e M • with K - K 

o,tc .r,r erfc('i') 

Define the function-,, as in the proof of Lemma 2.4: op: [0,m) ➔ R 

. 1 { 2-,2 (l+i0 )exp( · (~}2 } } 
-,,.k ... B -,lk+ k +-,3 • 

.r,r erfc('i') 

From f 8 e M ., (5.10), Remark 5.2 and Condition 2.Jiv), v} it 
O,IC 

follows that S e !\.2 ,82 with N2 - -,,(N1). Repetition of 

this argument yields S e Mll1,K1 with N1 - max {ki,-,,(N1• 1} l, I.a. 

Using the properties of-,, derived in the proof of LeDDDa 2.4 we 

obtain k1 - -,,(k1) < -,,(k} < k, k e (k1 ,m}. Thus the 

sequence {N1 ) 1~ is monotone decreasing and bounded from below 

which implies that there is an N e [k1 ,"'} such that lim N1 - N. 
1~• 

Since-,, is continuous we have N - ,p(N}. However, since there is 

a unique constant ki e (O,m} such that k1 - -,,(k1} it follows that 

N - ki and S e !\l'tl· 

With (5.10) and the fact that Se!\ k it follows that :r(S) 
1• 1 

is defined and 1(S) - S. Since the fixed point S of 1 is unique we 

conclude that the Stefan problem has a unique solution. 

ii) Using Theorem 5.6 instead of Theorem 5.5 the proof is analogous to the 

proof of part i). 

iii} Application of Lemma 3.8 and Theorem 4.9 combined with Remark 5.2 and 

inequality (5.9) yields 
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From this inequality and the fact that lim A(t) - 0 it can be 
~o 

shown that 'I"' is a contraction form large enough (compare the 

proof of Theorem 5.6). Using this property instead of Theorem 5.5 the 

proof is analogous to the proof of part i). ~ 

Remark 5.11. 

i) We compare the existence and uniqueness results of the present paper 

with the results given in [Va; Theorem 5.11] and [Vb; Theorem 4.17]. 

We note the following differences: in the present paper we show 

existence and uniqueness of the solution of the Stefan problem without 

the condition that the function t ~ G(S,f,t) is monotone increasing 

which was imposed in [Va; Condition 3.3ii)] and [Vb; Condition 2.3v)]. 

However in the present paper we impose the extra condition 

71 + 72 < B (Condition 2.3v)). 

Furthermore in (Va], (Vb] we have shown uniqueness of the solution in 

the set O whereas in the present paper we show uniqueness of the 

solution in the set M which consists of lower Lipschitz continuous 

functions. 

ii) In Section 6 we shall give an example where Condition 2.3v) does not 

hold whereas the conditions of [Va; Theorem 5.11] and [Vb; Theorem 4.17] 

are satisfied. This implies that the results of [Vaj, [Vb] are not 

contained in Theorem 5.8 of the present paper. 

6. Examples and numerical experiments 

In this section we give an example of the Stefan problem specified in 

Section 2. Using this example we compare our Main Theorem 5.8 with the 

results given in the literature. After that we give an example wherein 

the conditions of Theorem 5.8 are satisfied except for Condition 2.3v) 

and show that this example has no solution. Furthermore we show with 
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an example that the results of [Va], [Vb] are not contained in the 

present paper. Finally we give some numerical results. 

6.1 Examples 

In this subsection we suppose that T > 0 and C0 : (-m,O] ➔ [0,1] are given. 

Furthermore C0 is an element of Cond 2.1. 

Example 1. 

For a given bounded integrable function b: R ➔ [B1 ,~) with B1 > 0 

we define B: R ➔ R by B(x) - Jb(~)~. x ER. It is easy to see 
0 

that this function B satisfies Conditions 2.3i), ii), iii). 

Suppose that the bounded continuous functions g, h: Rx [O,T] ➔ R 

are given and that for every K > 0 there are g1 ,g2 ,h1 e R such that 

lg(x1 ,t)-g(Xz,t)I S g1 lx1-x2 1 

lg(x,t1 )-g(x,tz)I s Szlt1-t2 1 

lh(x1 ,t)-h(Xz,t)1 s h1 1x1-x2 1 

X1 ,x2 E [-K,K], t E [0,T], 

x E [-K,K], t 1,t2 E [0,T], 

x1 ,x2 E [-K,K], t E [0, T]. 

t t 
We define G(S,f,t) - J g(S(r),r)df(r) + f h(S(r),r)dr, SE 0, f E P, t E [O,T]. 

0 0 

The first integral is a Lebesgue Stieltjes integral. 

First of all we check Conditions 2.3iv), v). From the definition it 

follows that G(S,f,O) - 0, SE 0, f e P. Since f is a monotone 

increasing function we deduce 

t.+t" t+e: 
IG(S,f,t+e) - G(S,f,t)I - I J g(S(r),r)df(r) + J h(S(r),r)drl 

uup 

:S xER 
tE[O,T] 

t t 

sup 

lg(x,t)l(f(t+e)-f(t)) + e xER lh(x,t)I. 
tE[O,T] 

sup 

This implies that if B1 > xER I g(x, t) I then Condition 2. 3v) 
tE(O,TJ 

sup 

holds with -y - 0, -y - xER 
l z tE(O,TJ 

•up 
lg(x, t) I, -y3 - 2..JT+l xER 

tE[O,TJ 
lh(x,t)I 

and t - 1 (if g(x,t) - 0, x ER, t e [O,T] then we take -y2 - ½ B1). 
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Secondly we check Condition 2.10. With G1 - g1kz'fi' + h1T it follows 

that the inequality 

sup )G(S1,f,t)-G(S2,f,t)) :S G1IIS1-S2IL holds for S1,S2 e I\ ,lt 
tE(0 0 TJ 1 1 

and f e M0 ,lt2. If Se !\1.t1 then t ... g(S(t),t) is a Lipschitz continuous 

function and a Lipschitz constant is ~ g1+Sz-
21t0 

With integration by parts we obtain 

• • f g(S(r),r)df(r) - g(S(t),t)f(t) - ff(r)dg(S(r),r), t e [O,T]. Se !\1.lt1, f E M0 ,k2 • 

0 0 

■up lei 
Using this equation we derive with G2 - xeR I g(x, t) I + T( r► g1+Sz) 

tEIO,TJ 2'\lto 

the following inequalities: 

sup (G(S,f1,t)-G(S,f2,t)) :S { ~ )g(x,t)I + f
0
d)g(S(r),r)) }llf1-f2IL 

tE(O,TJ tEIO,TJ 

:S G2~f1 •f2IL, S e !\1,t1, f1, f2 e Mo,tz. 

Thirdly we remark that for every t e [O, T], S e !\1.lt1 and 

f e Ho.tz' G(S,f,t) only depends on 5) 10 ,,1 and flco,•i· 

Thus Condition 2.11 is also satisfied. 

Finally we show that inequality (5.9) holds. From the inequalities 

sup )G(S1,f,t) - G(S2,f,t)) :S 
teco.•+1 

sup {J
0 

lg(S1(r),r)-g(S2(r),r)ldf(r) + }
0

1h(S1(r),r)-h(S2(r),r)ldr} 
tEIO,t 0 J 

+ sup { }lg(S1(r).r)-g(S2(r).r)ldf(r) + }lh(S1(r),r)-h(S2(r),r)ldr} 
tee•· .•+1 •· •· 

:S G1IIS1-S2II.- .• + ( :~ + h1) (t+-n11s1-S2I~+ .• with 

it follows that inequality (5.9) holds with ~(t) -

Application of Theorem 5.8iii) yields: 

Theorem 6 .1. 

A Stefan problem which is described by a Band Gas given above 
sup 

such that xeR (g(x,t)( < B1 has a unique solution. 
tE(O,TJ 

If we denote the solution by the pair (S, C5 ) then S E !\1,k1. 
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Remark 6.2. 

i) The Stefan problem given in Section l is equivalent to the Stefan 

problem specified in Section 2 if we choose b(x) - B1 , x e R, where 

B1 > 0, g(x,t) - -1 and h(x,t) - 0, x e R, t e [0,Tj. It follows 

from Theorem 6.1 that there is a unique solution of the Stefan problem 

for every B1 > 1 . 

ii) We now compare Theorem 6.1 with the results obtained in the literature 

(see also [Vb; Remark S.2ii)]). Most Stefan problems considered in the 

literature are of the following form: to find a function Se On C1 (0,T) 

and a solution C5 of the reduced problem such that 

dSjtt) - -g(S(t),t) ~ (S(t),t) + h(S(t),t), t e (0,T), 

where the bounded continuous function (x,t) ~ g(x,t) has continuous 

derivatives:,~ and the bounded continuous function 

(x,t) ~ h(x,t) is Lipschitz continuous in x (see [Fasano & 

Primicerio, 1977]). We will refer to this problem as Problem 1. 

A more general formulation of the problem is: to find a lower 

Lipschitz continuous function Sand a solution C5 of the reduced 

problem such that 

t t 

S(t) - J g(S( r), r)df5 (r) + J h(S(r), r)dr, t E [O, T]. 
0 

We will refer to this problem as Problem 2. 

Remark that our smoothness conditions on the functions g and h (Theorem 6.1) 

are weaker than the conditions imposed in [Fasano & Primicerio, 1977]. 

With the additional condition: lg(x,t)I < 1, (x,t) e Rx [0,oo) it 

follows from Theorem 6.1 that Problem 2 has a unique solution for 

every Te (O,oo), If this condition is not imposed then there is an 

example which has no solution for every T > 0 (see the following example). 

Since the condition lg(x,t)I < 1, (x,t) e RX [0,oo) is not imposed in 
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[Fasano & Primicerio, 1977; Theorem 3) they show that if CD, g and h 

are given then there is a T* > 0 such that Problem l has a solution 

for Te (0,T*). In [Fasano & Primicerio, 1977; Theorem 5) it is 

shown that for Te (0,T*) the solution of Problem l is unique in 

the set (Se OIS is Lipschitz continuous in [O,T) and continuously 

differentiable in (0,T)). In [Fasano & Primicerio, 1977; Theorem 7) 

and [Fasano & Primicerio, 1981) sufficient conditions are given to 

ensure that T* - CD • 

Example 2. 

In this example we choose a function gas in Problem 2 such that the 

condition jg(x,t)I < l, (x,t) e Rx [O,T] does not hold and show that 

for a given function CD there is no solution of Problem 2 for T 

arbitrary large (compare [Fasano & Primicerio, 1981; Theorem 2.2)). 

Choose T e (0,CD) and define CD(x) - erf < ·J>, x e ( •CD ,OJ, B(x) - x, 

x e Rand G(S,f,t) - -2f(t), Se 0, f e P, t e [O,TJ. With B - l, 

-,1 - 0, -,2 - 2, -,3 - 0 and t - l it follows that B and G satisfy 

Condition 2.3 except for the inequality -,1+y2 < B. Suppose that 

the pair (S,Cs) is a solution of the Stefan problem. We shall prove 

the following inequalities: 

(6. 3) -4 ~ S(t) ~ -4 .Jt+i:+4 [O T) .r,r.., .., .r,r , t e , . 

These inequalities yield a contradiction fort> 3. This shows that 

the Stefan problem has no solution for T > 3. 

To prove the right-hand inequality of (6.3) we define the function 

SD(t) - 0, t e [O,T] and the solution of the reduced problem 

C5 (x,t) - erf ( -~)• x e (•CD ,OJ. t e [O,T). From 
0 2-,t+.1. 

[Abramowitz & Stegun, 1972; p.229, 7.2.l and 7.2.5) it follows that 
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j erfc(y)dy - ~- This implies: 
0 '" 

f 5 (t) - -j[c5 (x,t)-C0 (x)]dx -j erfc(-x-)dx - j erfc(x)dx - Z..fill-Z 
0 -• 0 0 2.ft+I O 2 .r,; . 

Since SEO we know from Lemma 3.7ii) that f5 E P. This combined with 

S(t) - -2f5 (t), t E (O,T] yields S(t) s O - S0 (t), t E [O,T]. 

From Lemma 3.7i) it follows that C5 (x,t) s C50 (x,t), (x,t) E Q50 and thus 

-4..fill+4 S(t) - -2f5 (t) S -2f5.(t) - .r,; , t E [O,T]. 

To prove the left-hand inequality of (6.3) we note that 

Cs(x,t) s C50 (x,t) S C0 (x), x E (-<t>,O], t E [O,T] and thus 

• 0 

S(t) - -2f5 (t) - 2f [C5 (x,t)-C0 (x)]dx S -2 f C0 (x)dx -
S(t) 

-S(t) 
-2-

-4 f [1-erfc(y) ]dy s 2S(t) + 4j erfc(y)dy - 2S(t) + .j,.• t E [O, T]. 
0 

From this we conclude S(t) ~ -.j,., t E [O,T]. 

Example 3. 

We shall give a Band G such that existence and uniqueness of 

the solution of the Stefan problem follows from [Va; Theorem 5.11] or 

[Vb; Theorem 4.17] but not from Main Theorem 5.8 of the present paper 

(see also Remark 5.11 ii)). 

Define B(x) - x, x ER and G(S,f,t) - (f(t)) 2 , SE 0, f E P, t E [O,T]. 

For f(t) - ~~t+2t1 and t - h - ½Tit follows that 

IG(S,f,t+h)-G(S,f,t)I - (f(t+h)-f(t))(f(t+h)+f(t)) ~ 

~ ~ ~t+h+2t - l~ ~T+2t _h __ 
2~t+h+2t1 1 ',(!_ 1 2~t+t1 

This implies that there is no constant 12 ~ 0 such that for 

every~~ 0 the inequality 

- - 1 Kl+,~+, 
IG(S,f,t+h)-G(S,f,t)i :s 1 ~ 3 h holds for h ~ O; t+h, t e [O,T], 

2 t+t1 

S E MK • t and f E 110 ~- t . 1••1 •·-z•l 

Thus Condition 2.3 of the present paper is not satisfied. 
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On the other hand, it is easy to check that Condition 5.8 of [Va] and 

Condition 2.3 of [Vb] hold for R - 1, 1 - 2L2T, G1 - 0 and G2 - 2LT. 

From [Vb; Theorem 4.17] we conclude that the Stefan problem has a 

unique solution. Moreover if 2LT < 1 then it follows from (Va; Theorem 5.11] 

too, that the Stefan problem has a unique solution. 

6.2 Numerical experiments 

In this subsection we present some numerical results to illustrate our 

Main Theorem 5.8. In the introduction we have noted that if the pair 

(S,C5 ) is a solution of a Stefan problem as given in Section 2, then 

Scan be a non-monotone function. In the following experiments we have 

chosen Sand G such that in the first experiment Sis a monotone 

increasing function, in the second experiment Sis a monotone decreasing 

function and in the third experiment Sis a non-monotone function oft. 

If Sand G satisfy the conditiors of Theorem 5.8 then the 

corresponding Stefan problem h:.s a unique solution which we denote by 

the pair (S,C5-). Furthermore for a given function S0 e I\ • 
l'Al 

it follows that the sequence of functions {Si}il!::O defined by 

With this in mind we compute a sequence of functions Si e 0, 

i - 0,1, .. using a numerical analogue of the relation Si+l - ~(Si) 

(the numerical scheme is the same as in [Va; Section 6.3]). In the 

following experiments we take C0 (x) - min(l,-x), x e (-~,OJ, 

T - 1 and S0 (t) - 0, t e [O,T]. 

For some choices of Sand G we can use the following remark to 

show that the sequence (Si)il!::O is monotone or alternating. 
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Remark 6.4. 

If S1 ,S2 e 0, S1(t) :S S2 (t). t e {O,T] and f 51 ,f52 exist 

then it follows from Lemma 3.7i) that f 51 (t) ~ f 52 (t), t e [O,T]. 

Experiment 1. We define B(x) - 2x, x e Rand G{S,f,t) - f(t), 

S e 0, f e P and t e [0,Tj,. This can be a mathematical model of an 

etching problem. Conditi.on 2.3 and 2.10 hold with B - 2, -,1 - 0, -,2 - l, 

-,3 - 0, t - l, G1 - 0 and Ga - l. Since G1 + G2 < B the conditions 

of Theor- 5.81) are fulfilled. Using Remark 6.4 it follows that if we 

choose S0 (t) - 0, t e [O,TJ then the sequence (S1J= is alternating. 

The numerical results are given in the first column of Tableland 

Figure l. Remark that the iterates in Figure l form an alternating sequence. 

i jsi - s1-1IL 
l 0.3596 0.3596 0.1238 

2 0.135 X 10-l 0.8431 X 10-l 0.4208 X 10-1 

3 0 .1281 X 10-1 0 .1967 X 10-l 0.2713 X 10-2 

4 0.2082 X 10-2 0.4344 X 10-2 0. 7184 X 10-3 

5 0.3117 X l0-3 0.9 X 10-3 0. 4264 X 10-4 

6 0.4343 X 10-4 0.1751 X 10-3 0. 8903 X 10-5 

7 0. 5667 X 10-5 0.3212 X 10-4 

f 8 0. 5579 X 10-5 

Table l. 

Experiment 2. We define B(x) - 2x, x e Rand G(S,f,t) - -f(t), 

Se 0, f e P, t e [O,T). This can be a mathematical model which 

describes the growth of a crystal in a supersaturated solution. 

Conditions 2.3 and 2.10 hold with B - 2, --,1 - 0, --,2 - 1, -y3 - 0, t - 1, 

G1 - 0 and G2 - 1. Since G1 + G2 < B the conditions of Theorem 5.8i) 
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are fulfilled. Using Remark 6.4 it follows that if we choose S0 (t) - 0, 

t e [0,T] then the sequence {S1 ) 1.!:0 is monotone decreasing. The numerical 

results are given in the second column of Table 1 and Figure 2. 

The iterates in Figure 2 form a monotone decreasing sequence. 

Experiment 3. We define B(x) 2x, x e Rand 

_ {-f(t) , t E [0,0.25] 
G(S,f,t) - -2f(0.25) + f(t), t E (0.25,T] ' SEO, f E P. 

The corresponding Stefan problem is a mixture of the two problems 

given above. Forte [O, 0.25] this problem describes the growth of 

a solid in a superaturated solution and forte (0.25,T] it describes 

the etching of a solid. Conditions 2.3, 2.10 and 2.11 hold with B - 2, 11 - 0, 

12 - 1, 13 - 0, t - 1, G1 - 0 and G2 - 3. Since G1 < B the conditions 

of Theorem 5.8ii) are fulfilled. The numerical results are given in the 

third column of Table 1 and Figure 3. The iterates in Figure 3 do not 

form an alternating nor a monotone sequence. 
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