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Introduction: Model Building 

Practical and Mathematical Aspects 

The analysis of images of two dimensional cross sections of human organs is one of the fields 
of interest in diagnostic medicine. The techniques of obtaining these images are referred 
to as tomography, which literally means 'writing in slices'. We only mention three such 
methods: Ultrasound Tomography, X-ray Computed Tomography (CT) and Magnetic 
Resonance Imaging (MRI). Any medical image, produced with the aid of ultrasonic waves, 
X-rays (CT) or electromagnetic waves (MRI), is the result of the interaction between the 
radiation employed and the tissue to be displayed. The reconstruction process consists of 
converting the information in the measured signals to images of cross sections of the human 
body. The reconstruction, processing and analysis of tomographic pictures constitutes an 
important area of research for mathematicians. 

This tract is concerned with mathematical and computational aspects of reconstruction 
techniques by means of magnetic resonance imaging, in particular for the time-dependent 
case, referred to as dynamic MRI. 
The main subjects of this tract are: 

a mathematical framework for dynamic MRI reconstruction; 
analytic solutions, numerical algorithms and 
development of reconstruction techniques; 
stability analysis of the reconstruction algorithms; 
comparison between these algorithms. 

In the first section of this introduction we briefly present the physical aspects of magnetic 
resonance imaging. The second section discusses practical aspects and limitations of MRI. 
Some historical remarks are given in Section 3. An introduction to dynamic MRI is given 
in Section 4. In Section 5 we give the mathematical problem definition for dynamic MRI 
reconstruction and illustrate the solution method. The main results and conclusions of 
this dissertation are stated in the last section uf this introduction. 
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1. Physical aspects of MRI 

As we will see in this section the spatial Fourier coeflidents of a spin density of the tissue 
in the cross section can be measured in MRI. It is the aim of MRI to reconstruct this 
density from the measured Fourier coefficients and to display its amplitude on a computer 
screen. In this section we explain how measurements are performed, how reconstructions 
are obtained and. how they are displayed. 

A spin density of tissue in a cross section of the human body is represented by a function 
F : D -+ <C. The set D represents the cross section of the human body. For simplicity 
we assume that D := (-ir, ir]2 := [-ir, ir] x (-ir, ir]. The amplitude IF(r)I is the proton 
density at position r E D, i.e. it is a measure for the 'number' of protons in the tissue per 
unit area. For example, for muscle and fat tissue the value of JF(r)I is large and for bone 
or lung tissue smaller. This is because the density of hydrogen atoms, which are built 
up from elementary particles such as protons, is higher for muscle tissue than for lung or 
bone tissue. 

The measurements are performed by means of magnetic fiel<ls and a radio frequency pulse, 
called rf-pulse, such that the spins of hydrogen protons in the human body are excited. 
This induces a signal in the detection coil of the MR-machine (see Chapter VI for more 
details), 

(0.1) 

Here j2 = -1, 'Y is the gyromagnetic ratio and G := (G,,,G 11 ) is the magnetic gradient 
field. In practice time dependent magnetic gradient fields are used, which are not taken 
into account in formula (0.1). We refer to Part II of this tract for a generalization of (0.1) 
to the case of time dependent gradient fields. 

Now formula (0.1) will be derived in an intuitive manner. Since the human body consists 
mainly of water, there is an abundance of hydrogen atoms, which in their turn are built 
up from elementary particles like electrons and protons. A proton is a particle which 
posseses a spin, a magnetic dipole. The density of the spins of the protons in the tissue 
at position r and time t is called the magnetization M(r, t). If the tissue is positioned 
in a homogeneous magnetic field with magnitude B and direction parallel to the z-axis, 
then the magnetization is also parallel to the z-axis. This magnetization can be forced to 
precess around the z-axis at the Larmor frequency 'Y B, by applying an rf-pulse. This is 
a rotating magnetic field in the plane orthogonal to the z-direction (the xy-plane), which 
has frequency 'Y B. Denote the magnetization vector M( r, t) in three coordinates as 

M(r, t) = (M,,(r, t), M11 (r, t), M,(r, t)). 

Write the xy-component as a complex number, 

Mi(r, t) := Mr.(r, t) + jM11 (r, t). 

The precession around the z-axis of the magnetization vector can be described as 
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where w is the Larmor frequency I B. 
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Figure 0.1. Precession of the magnetization vector around the direction of the homo-
geneous field. 

A changing magnetic field induces a current in a coil. So, the xy-component of the mag
netization induces a signal S(t) in the receiver coil of the MR-machine, which is the sum 
of the contributions MJ_(r)e-j"'1dr of all the volume elements dr. This results in 

S(t) ~ canst J MJ_(r) e-j"'1dr, (0.2) 

where w = 1B. 

We now discuss the effect of the magnetic gradient field on the magnetization vector. 
Suppose that an object is positioned in a strong homogeneous magnetic field with mag
nitude B. Then apply a gradient field G which results in a position dependent magnetic 
field. That is, the magnetic gradient field has magnitude G.r at position r. The combi
nation of these two fields yield the magnitude (B + G.r) at position r. If an rf-pulse is 
applied to excite the magnetization, the precession frequency is ,(B + G.r). By putting 
w = 1(8 + G.r) in formula (0.2) it follows that the induced signal is 

S(t) ~ canst J MJ_(r)e-h<R+G.r)tdr. 

The contribution due to the homogeneous field can be discarded by modulation, which 
results in 

S(t) ~ canst J MJ_(r)e-rrG.rtdr. 

Formula (0.1) follows by putting F(r) := MJ_(r). 

In the following we discuss how the information in the signal S(t) from formula (0.1) is 
used in MRI reconstruction. By putting k,, := ,G,,t and ky := ,Gyt in formula (0.1), 
for t fixed, it follows that S(t) is the Fourier coefficient of F at the frequency pair (or 
wave vector) (k,,, ky), denoted by F(k,,, ky)- In practice one can only measure the Fourier 
transform at a finite number of frequencies, where k,, and ky run from -N up to N - 1, 
say. The Fourier coefficients are obtained by measuring for each value of ky, called the 
kyth phase encoding step, the corresponding sequence 

{F(-N, ky), F(-N + 1, ky), ... , F(N - 2, ky), F(N - 1, ky)}. 

Such a sequence is called a profile. Here ky runs form -N up to N - 1. This scanning 
geometry is illustrated in Figure 0.2. 
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Figure 0.2. Scanning geometry for MRI along horizontal lines on a rectangular grid 

For notational convenience we write the pair (kx, ky) ask and we define the index set 

In this manner one obtains the data 

Uk := F(k), k EI<. 

The reconstruction problem of MRI is to recover the proton density F from the data {Uk}
That is, we want to find a function F : D -+ (]; which satisfies 

F'(k) = Uk, k El{. (0.3) 

Since there are a finite number of Fourier coefficients of the spin density F available, it is 
not possible to reconstruct F uniquely. In general a solution f : D -> (]; which is called 
reconstruction, will not be equal to the spin density F. One possible solution to problem 
(0.3) can be obtained by partial Fourier inversion: 

/(r) = L Ukejk.r_ 
kET< 

The amplitude of the reconstruction is then displayed on a computer screen represented 
here as the square (0, 2ir]2. The screen is divided up into pixels (picture elements). Assume 
here that there are 2N pixels both in the horizontal and the vertical direction. Digital 
images are obtained by assigning grey values to pixels. An image of the function I/I is then 
obtained by assigning the grey value lf(iir/N,jir/N)I to the i,jth pixel, i,j = 0, ... , 2N -1. 

2. Practical notes on MRI 

In this section we discuss image resolution and signal to noise ratio. 

In the previous section we saw that a digital image on a computer screen is built up from 
pixels. The resolution of an image is defined as the number of pixels per unit area. Since 
the image is assumed to be of a standard size, resolution will in the sequel be identified 
with the number of pixels. In the case of MRI the reconstructed image 1/1, which has to 
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be displayed, is obtained from 2N x 2N Fourier coefficients. From sampling theory it is 
known that in this case the resolution equals the number of Fourier coefficients: 4N2 . 

The spatial resolution cannot become arbitrarily high in the practice of MRI for phys
ical reasons. If the signal S(t) of formula (0.1) is sampled at time r, then the Fourier 
coefficient of Fat the wave vector ('YGxr,yGyr) is obtained (see Section 1). In practice 
this signal decays within a few milliseconds, so it can only be sampled within a certain 
time period .0.T. Therefore, the highest frequency for which a Fourier coefficient can be 
measured is (-yG,,.6.r, -yGy.6.r). The resolution is then -y2 .6.r2Gx x Gy. It follows that the 
amplitude (G,,, Gy) of the magnetic gradient field has to be increased, to obtain higher 
resolution images. On the other hand, in magnetic resonance imaging thermal noise plays 
an important role, which is explained in the next paragraph. 

Divide each pixel into two smaller pixels. That is, the resolution is doubled and the 
magnetic gradient field is chosen correspondingly. Now, for the sake of argument, consider 
one large pixel containing the two smaller ones. The signal amplitude coming from each 
of these parts is half of the amplitude that would have come from the large pixel. But the 
amplitude of the thermal noise only depends on .6.r and is independent of the gradient 
field. This means that the signal to noise mtio is decreased by a factor two when doubling 
the resolution. 

One important thermal noise source is the human body within the MRI-scanner. This 
means that the noise cannot completely be removed by improving the quality of the magnet 
coils. In practice the magnitude of the gradient field is chosen such that the signal to noise 
ratio is at least one, which determines the spatial resolution of the reconstructed images. 
In practice the resolution is often 1282 or 2562 . 

This yields the following behaviour of the relative error in the data. The amplitude of 
Fourier coefficients of any L2-function decreases as the frequency increases. If a noise term 
which is independent from the frequency, is added to these coefficients, the relative error 
in the coefficients increases with the frequency. In the practice of MRI, the noise in the 
signal depends on .0.T which is fixed after the data collection strategy is chosen. So the 
noise is constant, while the amplitude of the Fourier coefficients is decreasing. Hence, the 
relative error in the data increases with the frequency. 

3. Historical notes on MRI 

The subject of magnetic resonance (MR) has grown rapidly from its beginning in 1946 into 
a very sophisticated technique with very wide applications in physics, organic chemistry 
and biological medicine. The principle of magnetic resonance was discovered by Purcell 
and Bloch, who received for their work the Nobel Prize for physics in 1952. 

At first magnetic resonance was used for spectroscopy. An object or tissue was placed in 
a strong homogeneous magnetic field. By means of an rf-pulse a signal was induced in the 
receiver coil, cf. formula (0.2). From the spectrum of this signal, information about the 
chemical elements in the tissue or object can be obtained. 

Later, around 1970, one became interested in imaging cross sections of human organs. In 
1973 it was discovered ( cf. [39] p. 5-6) by Lauterbur and independently by Mansfield and 
Granell that the MR principle could be used to provide spatially encoded signals, enabling 
the study of inhomogeneous objects, like cross sections of human organs. This gave rise to 
magnetic resonance imaging for diagnostic purposes. The choice of the magnetic gradient 
fields at this stage was such that the Fourier coefficients of F were obtained on a polar grid 
(see Figure 0.3). The reconstruction of the spin density could be done by first interpolating 
the data to a rectangular grid and then performing a Fourier inversion. Lauterbur called his 
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i~aging technique zeugmatography, which comes from the Greek word 'zeugma', meaning 
yoke ('that which is used. for joining'). That is, the information about the spin density 
along the lines through the origin (see Figure 0.3) has to be 'joined' to reconstruct an 
image. 

y-o•ls 

Figure 0.3. The polar grid proposed by Lauterbur 

However, it turned out in 1975 that the Fourier coefficients can be obtained directly on a 
rectangular grid as in Figure 0.2, by means of an appropriate choice of magnetic gradient 
fields. This scanning geometry was proposed by Kumar, Welti and Ernst [31] and is 
used in current practice.· By 1983, systems capable of obtaining images of cross sections 
of the human body had been developed as a result of continuing improvements in MRI 
techniques. 

4. Model building and principles of dynamic MRI 

In this section we explain the data collection strategy for MRI-reconstruction of a cross 
section of the beating human heart. We explain one of the reconstruction methods which is 
currently used in practice. Part Two, Chapter VI, considers this subject more extensively. 
Previously we described how the measurements are made in the case of an object which 
does not move. It turned out that the Fourier coefficients of a function r _, F(r) can 
be obtained in MRI. If MRI is used to measure and display cross sections of 'dynamic' 
organs, like the heart, then a function F depending on both the spatial parameter rand the 
temporal parameter r has to be considered. In the following the spin density of the beating 
human heart is represented by the function (r, r) -, F(r, r). MRI reconstruction in this 
time dependent case is referred to as dynamic MRI. This dynamic case is more complicated 
than the time independent case. In the practice of dynamic MRI the electrocardiogram 
is recorded, while the measurements are being obtained. The following terminology is 
commonly used in this context. 

R-pulse: the electric pulse in the electrocardiogram that marks the beginning of a heart
beat. The ECG is recorded simultaneously with the measuremements. 

RR-interval: the duration (in seconds) between two consecutive R-pulses. 

Unit RR-interval: an RR-interval of unit length which will be used as a reference interval. 
This interval is called J := [0, 1]. 

Heart phase: a phase in the (approximately) periodic motion of the heart. 

The main idea of dynamic MRI schematically is as follows: 

a collection of Fourier coefficients at various time markers of the function F 1s 
obtained; 
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information from the ECG signal is recorded; 
the measurements are related to a model heartbeat, by means of rescaling of the time 
markers, using the information from the ECG; 
the function to be reconstructed from these data is this model heartbeat. 

In the remainder of this section the principles of dynamic MRI reconstruction are ex
plained. 

Acquisition method. 

We explain the data-acquisition method retrospective triggering for dynamic MRI recon
struction, which was proposed by Bohning [8]. 

The profile which is measured in the kyth phase encoding step at the time T., is denoted 

by { F(k.,,, ky, r;}kz=-N, ... ,N-1. In order to reconstruct the function F at time T; with the 
partial Fourier inversion formula, 2N profiles (i.e. for ky = -N, ... , N - 1) at the time r, 
should be measured. In practice one cannot measure fast enough with MRI to obtain all 
these profiles at one time instant. Instead they are obtained during several RR-intervals 
as follows. Fix ky and measure the profile at time r 1 , 

{F( k.,,, ky, TJ )hz=-N, ... ,N-1, 

briefly denoted as {F(k.,,, ky, T1 )}. After some time, denoted by AT, (this may be from 10 
up to 100 msec) the next profi.le is measured for this value of ky, at time r2, etc; the time 
at which the measurements take place is recorded. After obtaining a fixed number Np, 
of profiles (in practice this may be up to 200) the value of ky is increased. If an R-pulse 
has occurred, it is registered, so that, afterwards, the measured profile can be assigned 
to the corresponding phase on the unit RR-interval. For an example of how the data are 
obtained, see Figure 0.4. 

The total amount of data which is thus obtained is 4N2 x Npr, which implies that the 
data collection time depends on N, AT and Npr· In the practice of MRI it is required 
that data collection can be done quickly. On the other hand, for diagnostic purposes, it 
is important to have high resolution images, i.e. the value of 2N is desired to be 128 or 
256. So, the values of Np, and AT have to be chosen small in order to reduce the data 
collection time. However, there is a lower bound for the parameter AT, due to physical 
reasons (see Mansfield and Morris [39]) and from the point of view of image quality, the 
value of Npr cannot become too small. The value of Np, is empirically determined. In 
practice one often takes Np, = 25 or Np, = 50. 

Figure 0.4. 
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The data collection strategy for dynamic MRI 
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Tlie data {F(k, r;)} will be related to the model heartbeat by model assumptions as 
expained in the next paragraph. 

Model assumptions. 

We presuppose the existence of a density function g: R,2 x J ...... (];, which is referred to as the 
model heartbeat. J is the unit RR-interval. The model heartbeat depends on the spatial 
parameter rand the temporal parameter t E J, called phase, denoted as (r,t) ...... g(r,t). 
We emphasize that g is only an artificial construction and not a physical reality. 

This model heartbeat is such that a copy of g which is rescaled in time to an arbitrary 
RR-interval is a realistic approximation of the the function F; this rescaling should be 
based on a biological model of the motion of the heart. In current practice the rescaling 
is assumed to be linear on each RR-interval. For example, suppose the k-th R-pulse is 
measured at the time rk, fork= 1, 2, ... , then 

T- rk 
g(r, ---):::::: F(r, r), 

rk+l - rk 

where r E (rk,rk+1). 

We want to relate the data { .F(k, r;) }k,; to the model heartbeat g, using the idea that 
scaled copies of g are approximately equal to F on each RR-interval. First, the relative 
positions of time markers { r;} on the RR-intervals are computed, i.e. the time markers 
{r;} are mapped onto the unit RR-interval J by the following rule. Let r; be lying in 
[rk, rk+l ), then the corresponding time marker t, on the unit heart interval is defined as 

(0.4) 

The conversion from T; tot; is called rescaling. In this case the rescaling is linear on each 
heart interval, which is the first model assumption. The second assumption is that the 
Fourier coefficients of the model heartbeat at the time t; are equal to the data: 

g(k, t,) := .F(k, r,), k, i. (0.5) 

The aim of dynamic MRI is to reconstruct the model heartbeat g from the data obtained 
by formula (0.5). After the reconstruction, images of the model heartbeat are displayed 
at consecutive phases in a movie loop. Denote the equidistant phases on the unit RR
interval as t/J1 := // L, I = 0, ... , L - 1. An image at the phase ,p1 is then obtained taking 
lg(irr/N,jrr/N,,/J1)I as grey value for the i,jth pixel, i,j = 0, ... ,2N - 1. The 'movie' 
of the model heartbeat is obtained by displaying the images at the consecutive phases 
,Po, ,P1, ... , ,P r.-1. This procedure is illustrated in Figure 0.5. 

phose t 0 phose +1 phose ♦ 2 

Figure 0.5. Illustration of a 'movie' of the model heartbeat at four phases. 



Section 4: Model building and principles of dynamic MRI IX 

We explicitly state the model assumptions: 
the scaling method is linear scaling on each RR-interval; 
there exists a model heartbeat such that its Fourier coefficients at the rescaled time 
markers are equal to the data. 

How these assumptions are used in dynamic MRI reconstruction is explained in the next 
paragraph. 

Used reconstruction method, 

Here we explain how the reconstruction is currently done in practice. This method, pro
posed by Bohning [8], is called retrospective triggering. In order to do this we refer to 
Figures 0.4 and 0.6. In the example in Figure 0.4 the value of ky is increased after 
seven profiles are measured. It is illustrated there that the profiles {F(k,,, ky, r;)} for 
ku = -N, ... , N - I, are measured during different RR-intervals. The rescaling is done as 
follows. 

- The length of the heartbeat (i.e. the RR-interval) is determined from the ECG
signal, in which the measurement under consideration occurred. The time of a mear 
surement, relative to the unit RR-interval is computed, e.g. in the case of linear rescal
ing by formula (0.4). For example, (cf. Figure 0.4) for ky = -N we have measured 
the consecutive profiles {F(k,,,ky,r1 )}, {F(k,,,ky,r2 )}, {F(k,,,ky,r3 )}, {F(k,,,ky,r4 )}, 

{F(k,,,ky,r.~)}, {F(k,,,ky,r6 )} and {F(k,,,ky,r1)}. After rescaling the time markers r; to 
the unit RR-interval (Figure 0.6), these profiles become reordered by formulas (0.4) and 
(0.5) as {g(k,,, ky, t 5 )}, {g(k,,, ky, ti)}, {g(k,,, ky, t 2 )}, {g(k,,, ky, t 6 )}, {g(k,,, ky, t 3 )}, 

{g(k,,,ky,t1)}, {g(k,,,ky,t4 )}, respectively. Note that the t;'s depend on the value of ky, 
in the sense that other values for ky will give rise to another arrangement on the unit 
RR-interval. To express this dependence this time marker is denoted as t;(ky); in the 
above case this should be t;(-N), for i = 1, ... , 7. 

ky= -N ky= -N +I 

~ ,-------A-----. 
R-pulse 

I I 
T T 1' 1' T T TIT 1' T 1' 'l' T T 1T 
123456712345671 \;&\ "'~,,,.: 

I , 1 1 1 1 1 1 unit heort Interval 

Figure 0.6. The measurements are rescaled to the unit heart interval. 
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To display the model heartbeat at various phases, the unit RR-interval is divided 
into several parts (see Figure 0.7, for the case that the model he;i.rtbeat is displayed ;i.t 
four phases). All profiles on the unit RR-interval between phase </J1 and phase </J2 are, in 
practice, considered to be measured at phase </J 1. All measurements between phase </J2 and 
phase </J3 are considered to be measured at phase </J2, etc. If several measurements belong 
to phase <Pn, then the average of these is assigned to phase <Pn-

In order to reconstruct the image of the model heartbeat at e.g. phase </J1, the profiles 
belonging to ky = 0, .. , 255 are collected, as far as they were measured. It may happen 
that there are no data at all at some phases (see Figure 0.7), because the position of the 
rescaled time markers in the unit heart interval cannot be controlled. In the c;i.se of Figure 
0.7 the profiles for the phases </Jo and </J4 are missing, for ky = -N. 

phase o t, t 2 t,t4t5t6t7 untt n•ert 
\i ✓ Interval 

.I I I I I 111 II 

•o •1 \ •2 l . ~ 

relative ttme morl<ers 

Figure 0. 7. Missing data at phase </Jo and phase </)4 

In practice it may be the case that there are missing profiles for several values of ky. In 
the reconstruction method proposed by Bohning [8] the missing values are then set to zero 
whereafter the Fourier inversion formula is applied to obtain images at the desired phase. 

In this section we described how in current practice the time markers are rescaled to the 
unit RR-interval and how measurements between phase <Pn and phase <Pn+l are assigned 
to phase <Pn· This last operation will cause a time jitter error in the image. To reduce this 
error the use of interpolation techniques is proposed in this tract to obtain more accurate 
data at the desired phases. 
The next section presents the mathematical problem definition. 

5. Mathematicc1I problem definition 

The central theme of this trs1,ct is to formulate the reconstruction problem for dynamic 
MRI in the mathematical setting of Hilbert spaces. Solution methods will be given and 
proved to be optimal in terms of a sensible criterion. 
First we introduce some notation. Let D C R2 be the square D = [-rr, rr]2. J is the 
unit RR-interval. Suppose the object to be measured has support in this interval D. The 
function g : D x J 3 (r, t) _.. IR is the model heartbeat. The Fourier transform of g, taken 
with respect to the variable r , is defined by 

The profile {g(kr,ky,f;(ky))h,=-N, ... ,N-1 is obtained, for fixed ky, at the rescaled time 
markers ti(ky), for i = 1, ... , Npr· The rescaled time markers only depend on the variable 
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ky. This assertion holds because the time needed to measure a profile was, until now, not 
taken into account. For later purposes we want to distinguish the measurement times of 
samples within a profile. Therefore we want to express the dependence of the time markers 
on both variables k,, and ky. Denoting the pair (k,,, ky) ask, the notation {tk,;} is used 
for the rescaled time markers. Define the index set I by I := {l, 2, ... , Npr }. 

The problem formulation for dynamic MRI is as follows. Define the sequence {9k,;} by 

9k,i := g(k, tk,i), k EI{, i EI. (0.6) 

Determine a function f : D x J -> IR such that 

i(k, tk,i) = 9k;i, k E ff{, i E ff. (0.7) 

The sequence {9k,i} is called data. In general, a solution f to problem (0.7) is not unique 
and will not be equal to the function g from which the data have been derived, because g 
is not uniquely determined by a finite number of Fourier coefficients sampled at rescaled 
time markers. A solution f to (0.7) is called a reconstruction. The inversion problem (0.7) 
is called mixed Fourier interpolation problem. 

In the remainder of this section we give the intuitive idea how problem (0.7) can be solved. 
It is important to note that in general the rescaled time markers do not coincide with 
the phases at which the reconstructed images of the model heartbeat are desired. These 
phases are ,j,1 := 1/ L for I = 0, · ... , L - 1. The following picture illustrates the distribution 
of the relative time markers in the unit heart interval J and the corresponding profiles for 
two different values of ky. The positions of the relative time markers are indicated by tick 
marks, the phases by bold tick marks and the data by '•'-marks. Note that one'•' in the 
picture denotes a profile. 

Figure 0.8. 

Olslrlbullon for 

i 
k = k I 

dot• I 
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pheses 

·. 

Ja ... I _~• 1-1•~-..... •uiul _ _._l '.,____.; ... : lui,___.,.1.._i ~1 lul,___ 

lime markers 

Distribution for 

Distribution of relative time markers and data for two distinct values of ky. 

For a fixed value of ky a sequence of profiles at relative time markers is available. By 
means of interpolation techniques the profile at the desired phase ef,1 can be approximated, 
Figure (0.9). This procedure is repeated for ky from -N up to N - 1. In this manner an 
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array of N x N Fourier coefficients is filled at each phase 1/J, in the unit RR-interval. The 
images at the phases to be displayed are obtained by Fourier inversion. 

In this tract we will use interpolation by spline functions of order 1, order 3 and bandlimited 
functions and we prove that these methods are optimal. The use of bandlimited functions 
is motivated by the assumption that the motion of the heart does not contain arbitrarily 
high frequencies. The practical importance of splines is the motivation for their use . 

.J.~ 
f time morkers ~ 

phases 

Figure 0.9. Evaluation of interpolation curve at the phases 1/J, 

Note that the algorithm to solve problem (0.7) is in this form well-suited for implementa
tion on a parallel computer. For each value of ky one has to evaluate the corresponding 
interpolation curve, which can be done separately by the different processors. 

6. Guide for the reader 

This tract consists of two parts. The first part covers the mathematics of dynamic MRI, 
giving a Hilbert space setting for the reconstruction problem, finding solutions reconstruc
tion techniques, and proving stability of the solutions under perturbation of the data and 
time markers. The second part can be read independently of the first part. It covers 
the physical aspects of MRI, presents simulations for reconstruction from test-data and 
MR-data, and states conclusions about the performance of the different reconstruction 
methods. 
Since the mathematical problem under consideration is a model for dynamic MRI- recon
struction, the relevant mathematical questions arise from criteria which are important in 
practice. Section 5 in this introduction discusses the choice of the values of the parameters 
N and Npr· The performance between the several reconstruction algorithms is compared 
for fixed values of N and Npr· 

About Part One 

The intuitive idea for solving the mixed Fourier interpolation problem is given m the 
previous section, but there are still many unsolved questions. 

Does a solution always exist? 
Is this solution unique? 
If not, is it possible to select an optimal solution? 
Does it make sense to use interpolation in the Fourier domain? 

It is clear that these questions can only be answered after an appropriate mathematical 
setting has been chosen. 
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The mixed Fourier interpolation problem (0.7) is studied within the theoreLical framework 
of Hilbert spaces in Part One of this tract. One of the most important examples of a Hilbert 
space is the space of L2-functions. For purposes of image analysis this may be a suitable 
space, because the difference of two digital images on a computer display can be expressed 
as the sum over all pixels of the squares of the grey value-differences. The motivation for 
choosing Hilbert spaces is that on one hand it allows a theoretical framework to answer 
the questions above, whereas on the other hand the results of this setting are still concrete 
enough for practical purposes. 

The mixed Fourier interpolation problem (0.7) is considered in the setting of the L2-space 
of vector valued functions: L2 (D,1i). Here (D,µ) is a finite measure space and 1i is a 
Hilbert space with inner product ( , ) . A vector valued function is a function that maps 
elements x of D into the space 1i, i.e. f(x) E 'Ji. For our purposes it is assumed that 1i 
consists of time dependent functions. So, f(x) is a function of time denoted as t -> J(x, t). 
The inner product of the Hilbert space L2 (D, 1i) is denoted by (( , )). 
The main theme is to find a solution f E L2 (D, 'Ii) of the mixed Fourier interpolation 
problem (0.7) and to analyze stability of this solution. In this dissertation we solve the 
mixed Fourier interpolation problem in the case of both finite and infinite index sets JI{ 
and JI. For 1i we either take the space of bandlimited functions IPr or the space of odd 
order polynomial splines K.2n-l. In this manner the model heartbeat is mathematically 
represented as a vector valued function. 

The organization of this part is as follows. Chapter I defines the notions of Riesz-Fischer 
system, Riesz basis and Bessel° system in terms of an orthonormal basis { hi} for a Hilbert 
space 'Ji. Furthermore, it gives relevant subjects from Hilbert space theory, such as linear 
operators, the inverse of an operator, direct sums of Hilbert spaces and Tychonov-Phillips 
regularization. 

Chapter II introduces the L2-space of 1i valued functions L2 ( D, 'Ji). It provides criteria 
such that a system of the form { ek\Ok,;} is a Riesz-Fischer system, a Riesz basis or a 
Bessel system in L 2 (D, 'Ji). Here {ek} is an orthonormal basis for L2(D) and {\Ok,i} is 
a sequence of elements of 'Ji. By the notation ek\Ok,i we denote the 'Ji-valued function 
x -> ek(x) \Ok,i E 'Ji, for x E D. In this chapter an 'Ji-valued integral, called Pettis 
integral, is introduced. 

Chapter III deals with conditions for existence, unicity or minimum norm property of 
solutions of moment problems in Hilbert space. Given are the data {g;} and a system of 
vectors { c,o;} C 1i. A moment problem consists in finding an element / of a Hilbert space 
1i such that 

(/, \Oi)Ji = g;, i E JI. 

We give necessary and sufficient conditions for the existence and unicity of a solution of 
the moment problem. 

In Chapter IV it is shown that the mixed Fourier interpolation problem (0.7) is a special 
type of moment problem in L2 (D, 1i), called mixed Fourier moment problem. This problem 
consists of finding an element / E L2 (D, 'Ji) such that 

{i(k), \Ok,i) = 9k,., k E JI{, i E Jl, (0.8) 

where the system of point evaluation functionals { \Ok,;} C 1i is such that 

f(k, tk,d = (f(k), \Ok,i). (0.9) 

By this relation it follows that a solution of problem (0.8) is also a solution of the mixed 
Fourier interpolation problem (0.7). 
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The notion of Fourier coefficient of / is more general here than in Section 5. Here it is 
defined as 

!(k) := fr, f(x)ek(x)dµ(x), (0.10) 

where {ek(x)} is an orthonormal basis for L2(D). The integral m (0.10) 1s the Pettis 
integral which is defined in Chapter II. 

It is shown that problem (0.8) is equivalent to the following moment problem: find a 
function f E L2 (D, 'H.) such that 

(0.11) 

The theory of moment problems from Chapter III can then be used to solve the mixed 
Fourier interpolation problem. 

Chapter V considers various errors encountered in practice, e.g. the aliasing error, the 
time jitter error and the amplitude error. In practice, a reconstruction method is only 
useful if small errors in the data or in the time markers yield small errors in the solution. 
It turns out in Chapter V that the the mixed problem is stable for perturbation of the 
data and the time markers in this sense. 

The truncation error is not considered in this tract. The truncation error is caused by 
reconstructing a function from a finite data set instead of a required countable data set. 
Theorem III.2.2 shows that under certain conditions the minimum norm solution corre
sponding to a finite data set of any moment problem in a Hilbert space converges to the 
unique solution corresponding to a countable data set. In practice however, physical and 
not mathematical arguments determine the optimal choice of the parameters Npr and N. 
So, the value of these parameters cannot be chosen arbitrarily high. 

About Part Two 

The organization of Part Two is as follows. Chapter VI explains the principles and 
acquisition methods of dynamic MRI. Examples showing how to compute a solution of 
the mixed Fourier interpolation problem (0.7) by various reconstruction algorithms are 
followed by a comparison between these methods. In order to test the performance of 
different algorithms, the structure and motion of the beating human heart are simulated 
by a sequence of test images at consecutive phases. These images consist of several solid 
ellipses, displayed on a computer screen. In this manner the bone structures of the chest 
and spine are imitated. Ellipses varying in time are taken to imitate a heart-like structure. 
Then the MRI-data collection strategy is simulated for these test images, followed by 
application of the several reconstruction methods. Finally the reconstructed images are 
compared with the original test image at the corresponding phases. We also compute the 
L2-difference of the reconstructions with the original. The conclusion is that reconstruction 
by means of first order and third order splines compared to the other methods perform 
best in this test situation. 

The performance of these methods in practice is shown by reconstruction of MR-data 
obtained by the Gyroscan S-15, an MR-scanner of Philips Medical Systems. Conclusions 
about the image quality of the reconstructions of the beating human heart are given at 
the end of Chapter VI. It. turns out that no reconstruction method prevails over the other 
methods in practice. 

In the practice of MRI many error sources exist perturbing the measurements. In Section 2 
we mentioned the most important sources. For example, the measured Fourier coefficients 



Section 6: Guide for the reader xv 

are perturbed by thermal noise (see Section 2). Another error is due to the assumption 
that the rescaling is linear on each RR-interval. Since the time-stretching algorithm is 
in general only an approximation of the real situation, the positions of the rescaled time 
markers are likely to be incorrect. The performance of the reconstruction algorithms 
when applied to perturbed Fourier coefficients and incorrectly rescaled time markers is 
the subject of Chapter VII. 

These effects are simulated by perturbation of the data and rescaled time markers of 
the test images followed by application of the several reconstruction techniques. The 
theoretical conclusions of the error estimates of Chapter V are in this manner illustrated 
by reconstructions of test images in the case of perturbed Fourier coefficients and perturbed 
rescaled time markers. The effect of the different kinds of perturbations on the images is 
discussed. One of the conclusions of Chapter VII is that the reconstruction by means of 
order 3 reconstruction is ill-conditioned for perturbation of the relative time markers. 

A final, short Section, puts the conclusions presented in Chapters VI and VII together 
and contains some suggestions for possible future directions for improving the quality of 
the reconstructions. 
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Part One 

Moment Problems m Hilbert Space 

This part consists of five chapters and deals with solvability conditions and stability of 
several moment problems in a Hilbert space. 

Chapters one and two are of a preliminary nature introducing basic theory, notation and 
terminology. 
The subject of chapter one is Hilbert spaces, linear operators, systems of vectors and 
Tychonov-Phillips regularization. References for Hilbert spaces and linear operators are 
Conway [15], Gohberg and Krein [19], Gohberg and Goldberg [18], Goldberg [20] and 
Rudin [45] [46). For a treatment of regularization see Groetsch [22], Morozov [41] and 
Louis [38]. Riesz bases, Bessel systems and Riesz-Fischer systems are introduced in Young 
[55], Higgins [23] and Gohberg and Krein [19]. 

The second chapter deals with the L2 space of vector-valued functions L2 ( D, 'H), see Hille 
and Phillips [24), Balakrishnan [3] and Sz-Nagy and Foias [53]. The results in the section 
II.2 about Bessel systems, Riesz-Fischer systems and Riesz bases in the space L2 (D, 'H) 
appear to be new. 

Existence and uniqueness of a solution of the moment problem is the subject of Chapter 
three. If the moment problem lacks a solution, then a generalized notion of solution is 
introduced, which may be stabilized by a regularization technique, where we use Tychonov
Phillips regularization. 
The theory of moment problems is dealt with in the following books. Akhiezer [2] gives an 
overview of several types of moment problems. The theory of the generalized (minimum 
norm) solution corresponding to the moment problem in a Hilbert space is applied by 
Bertero, de Mol and Pike [5] [6]. Young [55] applies the theory of Riesz bases and Riesz
Fischer systems to the moment problem in a Hilbert space. The moment problem in 
Hilbert spaces with reproducing kernel is considered by Shapiro [48] and Landau [32] gives 
an overview of applications and of the theory of moment problems. 

The results from section III.1 can mainly be found in Young [55], except for regularization 
of the moment problem in the case of Bessel systems, Formula's (III.1.5) and (III.1.6) and 
Theorem III.1.5. The results of section III.2 appear to be new. However, the technique 
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applied there has been used earlier by Natterer in [43] to approximate a solution of an 
operator equation. The mixed type of moment problem in section III.3 has not been 
considered before. The results obtained there are derived by means of the theory of 
section III.l and of Chapter II. 

It turns out that a moment problem of mixed type, called the mixed Fourier moment 
problem, is important for practical applications (as is explained in Part two). Chapters 
four and five deal with existence, uniqueness and stability of solutions of the mixed Fourier 
interpolation problem, after restating it as mixed Fourier moment problem. The results 
developed in these chapters are used in Part two. 

The material of sections IV. l and IV .2 can be found in Young [55], except for the estimates 
of the norms of the operators R ancl T in Theorems IV.2.4 and IV.2.6. The result of 
Theorem IV.2.2 follows directly from Lemma IV.2.1, but it seems to be new. The main 
idea of section IV .3 is to be found in Bertero, de Moland Pike [5], but here slightly different 
definitions are used. The estimates (IV.3.2) and (IV.3.3) appear to be new. Section IV.5 
is an application of Chapter III. 

As far as I know error estimates (Chapter V) for the moment problem and the mixed 
Fourier interpolation problem have never been considered upto this extent. The proofs of 
Lemma's V.2.2 and V.2.6 are standard. 
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Chapter I 

Basic Properties of Hilbert Spaces 

This chapter gives a survey of that part of the theory of Hilbert spaces which is relevant 
for our purposes. 

The first section deals with linear operators between Hilbert spaces. The inverse and 
Moore-Penrose inverse are introduced in the second section. In section three we consider 
direct sums of Hilbert spaces and in the fourth section we study systems of vectors. The 
last section pays attention to Bessel systems, Riesz-Fischer systems and Riesz bases. 
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1.1. Linear Operators 

Let g and 'H. be Hilbert spaces over the complex numbers (C with corresponding inner 
products { , )q and { , )'H,- We will drop the subscripts if this does not cause confusion. 
The domain of definition of an operator T from g into 'H. is denoted by D(T). Note that 
D(T) C g. Most of the time, however, we will consider bounded linear operators. In that 
case we can extend the operator T to the closure of its domain, which is itself a Hilbert 
space. Without loss of generality we then assume that D(T) = g. 

The null space of T is 
N(T) := {g E D(T) I Tg = 0}, 

and its range is 
~(T) := {Tg I g E D(T)}. 

The norm of a bounded linear operator T is defined by 

IITII := sup{ IITgll'H. I g E D(T), llgllg = l}. 

Let T : D(T) --- 'H. be a one-to-one linear operator. The inverse of T, written as T- 1 , 

is the mapping from the subspace ~(T) into g given by T-1 (Tg) = g, for g E D(T). A 
bounded linear operator T : g --- 'H. is called invertible if the inverse T-1 : 'H. --- g exists 
and is a bounded linear operator. 

The adjoint of a bounded linear operator T : g --- 'H. is a bounded linear operator T* : 
'H. --- g which satisfies 

{Tg,h)'H, = (g,T*h)g, g E Q,h E 'H.. 

Moreover (T*)* = T and IITII = IIT*II• If T is a bounded linear invertible operator, then 
T* is invertible and 

The operator T* T has norm IIT* TII = IITll2 • For, 

IITglln = {Tg, Tg)'H, = (T* Tg, g)g ~ 

~ IIT* Tllllgllg ~ IIT*II IITllllgllg = IITll2119llg• 

The result follows by taking the supremum over g E g such that ligllg = 1. 

We have the following relations, 

N(T*) = ~(T).1. 

N(T*).1. = ~(T) 

Here M denotes the norm closure of a subspace M of a Hilbert space 'H. and M ..l. denotes 
the annihilator, 

M.1. := {h E 'H. I {m,h)'H. = 0, m EM}. 

A useful property is closedness of an operator. 

Definition 1.1 ·. A linear operator T: D(T) --- 'H. is called closed if for all sequences 
{gn} E D(T) such that limn-oo gn = g and limn-oo Tgn = h it follows that g E D(T) and 
Tg = h. 
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Theorem 1.2 Closed graph theorem . 
IfT: g-+ 1i is closed, then T is bounded. 

For any fixed g E 1i, the operator T: 1i-+ <C given by 

Th:= (h,g)1[, h E 1i 
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defines a bounded linear functional, with IITII = llgll1t • The converse is also true ( cf. 
Goldberg (20). Theorem 1.7.18, p. 38): 

Theorem 1.3 Riesz representation theorem . 
IfT is a bounded linear functional on a Hilbert space 1i, then there exists a unique element 
g E 1i such that 

Th= (h,g)1[, h E 1i. 

Moreover IITII = llgll1t-

An application of the Riesz representation theorem is found in Hilbert spaces with re
producing kernel. A Hilbert space 1i of functions f : R -. ([: is a Hilbert space with 
reproducing kernel (also called reproducing kernel Hilbert space), if there exists a function 
k : R,2 -. (C such that 

(i) k(t, .) E 1i, for all t E R. 
(ii) f(t) = (/(.), k(t, .))1[, for all/ E 1i. 

It follows from the definition that the reproducing kernel k is unique. Namely, if k and h 
are two reproducing kernels, then 

h(t, s) = (h(t, ·), k(s, ·)} = (k(s, ·), h(t, ·)} = k(s, t) = 

(k(s, ·), k(t, ·) = (k(t, ·), k(s, ·)} = k(t, s). 

If 1i has the property that for each t ER there exists a C1 ER,+ such that for all/ E 1i, 

1/(t)I ~ C,ll/ll1t, (1.1) 

then 1i is a Hilbert space with reproducing kernel. For, the point evaluation functional 
t:,f := f(t) is bounded by estimate (1.1). By the Riesz representation theorem it follows 

that (for fixed t E R) there exists a unique g1 E 1i such that 

The reproducing kernel is 
k(t, s) := (g 1,g.,)1[-

The converse statement is also true: if 1i has a reproducing kernel, then by the Cauchy
Schwarz inequality (1.1) is satisfied. 
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1.2. lnvertibility of linear operators and regularization 

Let T : 1i -> 1i be a linear operator. The following theorem provides a condition for T 
to be invertible. I is the identity operator on 'H.. 

Theorem 2.1 . T is invertible if III - TII < 1. Moreover, 

1 1 
11r- II :s 1 - III - TII 

An operator T on 'H. is called positive (strictly positive) if (Th, h}'H, :::: 0 (> 0), for all 
h E 'H., h # O. Note that a strictly positive operator always is invertible. 

Before introducing the generalized inverse, we define the direct sum of two (not necessarily 
closed) linear subspaces M, N C 1i with Mn N = {O} as 

M ffi N := {m + n Im EM, n EN }. 

The following result gives a direct-sum decomposition of a Hilbert space. 

Theorem 2.2. If M is a closed linear subspace of a Hilbert space 'H., then 

1i=MEBM1-. 

Let T : (]-> 1i be a bounded linear operator. Suppose we want to find g E (] satisfying 

Tg = h, 

where h E 'H. is given. If T is invertible, then this problem is solvable, and the solution 
depends continuously on the data h. In this case the problem is called well-posed (in the 
sense of Hadamard). Otherwise it is called ill-posed, i.e. if the inverse of T either is not 
defined on the whole space, or is not continuous. We circumvent the difficulties of an ill 
posed problem as follows. First we define a substitute for a solution (if there is none) by 
taking the minimizer of IITg - hll- This makes sense if h E a?(T) Ef) (R(T) )1-. Then we 
dispose of a possible non-uniqueness by choosing among all minimizers the one with the 
smallest norm (i.e. we choose the solution lying in N(T)1- ). This well-defined element of'H. 
is called the Moore Penrose solution of the problem, denoted by r+ h. The linear operator 
r+ : D(T+)-> (] is called the Moore-Penrose inverse, where D(T+) := R(T)€BR(T)1- C 'H.. 
It follows by Theorem 2.2 that D(T+) lies dense in 1i, i.e. r+ is called a densely defined 
operator. 

We summarize some results on the generalized inverse ( cf. Groetsch [22)). 

Proposition 2.3 . Let T : (]-> 1i be a bounded linear operator. Then the following 
holds. 

(i) For h E D(T+), j+ .- T+h is the unique element in N(T)1- which satisfies the 
normal equations: 

T*Tf = T*h. 

(ii) r+ is a closed linear operator. 
(iii) r+ is a bounded linear operator, if and only if R(T) is closed. 
(iv) R(T+) = N(T)1-. 
(v) N(T+) = R(T)1-. 

In general r+ is not a bounded linear operator. To redore the boundedness, we introduce 
the notion of regularization of r+. 
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Definition 2.4 . A family {T-Y},.>o of bounded linear operators from 1i to g is called 
a regularization of r+ if 

1imY-Yh = r+h, h E D(r+). 
-yJO 

In the sequel we use Tychonov-Phillips regularization: 

Note that for 1 > 0, the operator T*T + 1 I is invertible, since it is strictly positive. 

Proposition 2.5 . f-Y := T-Yh is the unique minimizer of the expression 

l!Tf - hll11 + ,II/Ilg, for f E g. 

Proof: 

(2.1) 

(2.2) 

Fix 1 > 0 and define C := T*T + ,I. C is a strictly positive operator, so C* = C and C 
is invertible. From the definition it follows that C f-Y = T* h. Hence 

IIT/ - hll?i +,II/Ilg= (T*Tf, f)g - (T*h, f)g - (f, T*h)g - llhll11 - ,II/Ilg= 

= (C /, f)g - (C Ji', f)g - (f, T* h)g + llhll1t = 

= (C(f- f-Y),f)g- ((C-1 )*C/, T*h)g + llhll?i = 

= (C(f - /i'),f - Ji')g - (C ,...., Ji')g + llhllk 
Since C is a positive operator (2.2) attains its unique minimum for f = f-Y. □ 

That {T-Y} as given by (2.1) is indeed a regularization is proved in Natterer (42] pp. 88-89: 

Proposition 2.6 . 

1.3. Direct products 

Let K{ be a countable index set. Let 1{,, be a collection of Hilbert spaces and let for each 
k EK{, M" be a (not necessarily closed) linear subspace of1i,,. 

Definition 3.1 . The direct product 0"E', M" is the collection of sequences h := 

{h"}"ET<, where h" EM", satisfying llhlli := L,,El( llh,,llk < =· 
Vector addition and scalar multiplication on 0M" are defined componentwise. The direct 
product 0,,E "1i" is a Hilbert space with inner product, 

(f, h)0 := L (f.,, h.,)1i, 
HE,,~ 

for/, h E 0nET<1i,,. 
If all the spaces 1i" are the same, we define the following. 

Definition 3.2 . 
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Note that the direct product of two spaces 1[1 and 1[2 can be identified with the direct 
sum (cf. Section 2). For, define M := {{h,O} I h E 1i1 } and N := {{O,h} I h E 1i2 }. 
Then 1i1 © 1i2 = M $ N. 

Suppose {Q,.}.,EK and {1t,.},.EK are families of Hilbert spaces. Introduce g := ®"e1,g" 
and 1i := ©,.eK1i". We want to consider linear operators between g and 1t. Suppose 
{T,.},.EK is a family of bounded linear operators, where T" : g"-+ 1i". Assume that {T"} 
is a uniformly hounded family, i.e. 

sup"EKIIT"II < oo. (3.1) 

Define T : g -+ 1i by 
T g := {T"g"}"e1,, g E g. (3.2) 

We denote (3.2) symbolically by 
(3.3) 

The adjoint of such an operator T is 

There exists a criterion to check the boundedness of a linear operator T : g-+ 1i of the 
form (3.3), see Conway [15] p. 30 Exercise 12. 

Theorem 3.3 . Let {T"}"E" be a family of bounded linear operators, where for 
each KE ff(, T" acts from g" to 1i".· Let g := 0g"· and 1i := ©1i". The linear operator 
T : g -+ 1i given by (3.3) is bounded if and only if {T.J is uniformly bounded. In this 
case 

IITII = sup"e,,IIT"II• 

We want to express the null space and the range of an operator T of the form (3.3) in 
terms of the null spaces and ranges of the operators T". If T is of the form (3.3) and 
satisfies the conditions of Theorem 3.3, then 

Namely, g E N(T) if and only if I,:"El' Ilg,, Ilg_ < oo and T"g" = 0 for arbitrary K E ff<.. 

This is the case if and only if g E ®"e1,N(T"). 
For the range of T such a statement is not true. If T satisfies the conditions of Theorem 
3.3 we have the strict inclustion 3?(T) C 0"e1,R(T,J. 

Example 3.4 . 

We give an example of a linear operator T of the form (3.3) such that the inclusion 
3?(T) C ®"e KR(T") is strict. Let the index set Jl{ = IN. The operator T., on a Hilbert 
space 1i is given by 

T"h := (l/11:) h, for h E 1i, 

where KE Jl{. Then the linear operator T := {T"}.,e 1, on £2 (Jl{, 1i) satisfies the conditions 
of Theorem 3.3. We have that 

a?(T) = {g E e2 (ll<., 1i) I L K2 llg,.112 < oo }. 
K.Ef( 

3?(T) "# f 2 (ll{, 1i), because if we fix h E 1i with 11h11 = 1, then the sequence {(1/K)h}"E" 
lies in f2(K<., 1i) but does not lie in R(T ). It is clear that R(T") = 1i and by definition 
0,,Ef,3?(T") = £2 (8{, 1i). Now we have shown that the inclusion is strict. 
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If 7 satisfies the conditions of Theorem 3.3, then we have 

For, by Section I, 

To characterize N(7).l.. we prove the following lemma. 

Lemma 3.5 . Let M" be a collection of linear subspaces of Hilbert spaces 1i", i.e. 
for r;, EK, M,,_ C 1i". Then 

Proof: 

C Take h E (®"e"M").1... So L llh"ll2 < oo and O = (h, m')0 for all m' E ®M". Fix 
r;, El{. Take m EM" arbitrarily and define m' := {m.S",\hET(• m' is the sequence with 
zero's everywhere, except at the r;,th coordinate which is m. Then 

0 = (h, m')0 = L (h,\, m~)1f, = (h", m)1f •. 
,\Ef• 

Hence h,,_ EM;-, for all r;, EK<, so h E ®"e"(M;:). 
:J Suppose h E ®"ET<(M;:). So, L11.E1( IJh,,_111{. < oo and h,,_ EM;: for all KE K<. 

Hence for g E ©11.eKM" we obtain 

(g, h)0 = L (g"' h")1f, = 0. 

It follows that h E (®"e1,M").1... 

It is now clear that 

We summarize the results: 

1<EK 

□ 

Proposition 3.6 . Let 7 be of the form 7 = {T"}, where {T"} is a uniformly 
bounded family. For r;, EH< fixed T": g" -. Ji". Then 

(i) ~(T) C ®"E"~(T.,). 
(ii) ~(T).1.. = ©.,e1,·(~(T").1..). 

(iii) N(T) = ®"ET,N(T"). 
(iv) N(T).1.. = ®"e1,(N(T").1..). 

We now want to consider the invertibility of operators 7 of the form (3.3). It is clear 
by Theorem 3.3 that. a bounded linear operator 7 of the form (3.3) is invertible if all 
the operators T" are invertible and if {T,;- 1 } is a uniformly bounded family. Moreover 
7-1 : 1i --. g is 

7-1 = {T;l }KET\· 

So, if 7 is of the form (3.3), its inverse 7-1 can be found by computing for each r;, E ff{ the 
inverse of T"·. This decomposition for the inverse of 7 is important for practical purposes, 
since it implies that we only need the ,-,;th component T"-l and h •. of the operator 7 
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and of the data h to compute the Kth component of T-1 h. For the same reason we are 
interested in the decomposition of the Moore-Penrose inverse and of the Tychonov-Phillips 
regularization, which will be applied in Sections III.3 and IV.5. 

Theorem 3.7 Let {T"} be a uniformly bounded family, where T" : g" -> 1t". Let 
g := ©g" and 1t := ©1t". IfT : g-> 1t is a bounded linear operator of the form (3.3) 
then D(T+) C ®"El' D(T,1°). If in addition, 

L IIT,:'"h"ll 2 < oo, h E D(T+), (3.4) 

then T+ : D(T+) -> g, is of the form 

T+ = {T,;},.ET<· 

Proof: 

First we prove that D(T)+) is a subset of ©,.El\D(T,1"). D(T+) := a?(T) EI, a?(T)..L and 
for K E K{ fixed, D(T:} = a?(T,.) EI, a?(T,. )..l. By Proposition 3.6 and by the distributivity 
of© and EI, it follows that 

D(T+) C ( ©at(T" )) 4l ( ©(at(T,. )..L)) = ©(a?(T") $ a?(T,. )..L) = 0D(T.,). 

Note that the operator U := {T,;} is well defined on D(T+). Namely, let h E D(T+) be 
arbitrary, then by (3.4) 

IIUhll1t = E 11r: h.,llk < oo. 
"ET< 

Next we prove that T+ is of the desired form. Leth E D(T+). For all KE lf{, the term 
T';th,. is the unique element of N(T")..L C g" that minimizes 

IIT"f - h"llk, for f E g". 
Since T is of the form (3.3), we have 

IIT g - hll1t = L IIT"g" - h"llk, g E g. 
,.~e T< 

It follows that {T,7 h"}"Ef' minimizes IIT g - hll1t · Furthermore, by Proposition 3.6, 
{T,7h,.}"E" lies in ®"ET<(N(T,,)..L) = N(T)..L. But, by definition, T+h is the unique 
minimizer of IIT g - hll1t which lies in N(T )..L, whence T+ = {T,;}. D 

We now give an example of a Moore-Penrose inverse which is of the form T+ = {T;;+-}. 

Example 3.8 . 

Let T be defined as in Example 3.4: 

T := {T.J, 
where T" := (1/K)h for h E 1t. In Example 3.4 we showed that 

at(T) = {h E 1'2 (/K,?t) I L K2 llh"ll 2 < 00 }. 

a?(T)..L = {O}, because by the results of Section l, a?(T)..L = N(T*) = {O}. So, D(T+) = 
a?(T). It then follows from Example 3.4 that D(T+) is strictly included in 0.,E1,D(T;). 
It is clear that for f E 1t", r;: 1 f = Kf = r: f, so 

T-1 h = {T,;- 1 h"}"Ef,, for h E a?(T). 

Note that the linear operator T-1 is not bounded on its domain, i.e. T is not invertible. 
We now have that T+ is equal to T-1 on D(T+), whence T+ is of the desired form. 
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The following theorem gives a decomposition of the Tychonov-Phillips regularization. Its 
proof is analogous to that of Theorem 3.7. 

Theorem 3.9 . Let g := 0,.eK!I" and 1i := 0K.ET<1i,.. Assume that {T,.} 1s a 
uniformly bounded family of operators and suppose T : g -+ 1i is of the form 

T = {T,.}. 

{TJl-r>O denotes a family of Tychonov-Phillips regularizations, where (for each 1 > 0 and 
for each K E I{) TJ : 1{,, _. g,, is the Tychonov-Phillips regularizer of T;t. If for each 
,>0 

E IITJh,.112 < oo, h E Ji, 
t<ET< 

then the Tychonov-Phillips regularization T 'Y : 7i _. g of T + is of the form 

Proof: 

Without loss of generality, we assume that JI{ = IN. Denote the Tychonov-Phillips reg
ularization of 7+ and T;t by {T-Y},->o and {TJl-r>O, respectively. Then by Proposition 
2.5, T-Yh with h E 1i minimizes 

IIT / - hll1t + ,II/Ilg, for / E g 

and for KE JI{ fixed, TJh with h E Ji" minimizes 

The result follows by the relation 

IIT I - hll1t + 111/llg = L IIT,,J,, - h.,llk + ,11/,,llg_ · 
t..ET{ 

□ 

The following result summarizes Theorems 3.7, 3.8 and Proposition 2.6: 

Theorem 3.10 . Let {T,.} be a uniformly bounded family of linear operators with 
T,. : g"-+ Ji,.. Denote g := 0"El(g,, and Ji:= 0.,E[,1i., and suppose that T : g _. 1i is 
of the form 

Iffor all h E D(T+) 

E IIT,;h"llk < oo, 
Ii.El,· 

then 
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1.4. Bases and biorthogonal systems 

In this section we examine properties of systems of vectors in a Hilbert space. 

Let {ip;};Ef be a system of vectors lying in a Hilbert space 1l, where I= IN. 

Definition 4.1 . The span of a system {,p;};Ef denoted by span{,p;},ET is the set of 
finite linear combinations of the 'Pi· 
A system { ,p;};et is called complete if span{ip;};Ef = 1{. Here the bar denotes the norm 
closure. 

Complete systems are characterized by the following result: 

Proposition 4.2 . The following statements are equivalent. 
(i) { ip; }iET is complete 

(ii) lf(h,,p;)1f = 0 for all i E ff., then h = 0. 

Definition 4 .. 3 . 
written as 

{ ,p,}iET is a basis for 1l if any element h E 1l can uniquely be 

h = L c;<p;, 
iEf 

for certain complex numbers c;, i El. Here (4.1) converges in norm. 

( 4.1) 

If in addition ('Pj, ,p;)1{, = li;j for all i,j E ff., where li is the Kronecker delta, then {,p;} is 
an orthonormal basis. 

Theorem 4.4 
represented as 

If {,p;};e1 is an orthonormal basis for 1l, then any h E 1l can be 

h = L(h,,p;)ip;. 
iEf 

Moreover 
llhll2 = L l(h, ip;) 12 . 

iEf 

From the last equality it follows that for any h E 1l 

.lim (h, ,p;) = 0. (4.2) 
•-= 

A system { ,p;} is called independent if for each i E ff. the vector <p; is not contained in the 
closed linear span of the others. 
If a system { ,p;};Ef is a basis, then it is complete and independent. The converse is not 
true. 

Example 4.5 . 

Here we give an example of a system { ,p;};Ef which is complete and independent, but 
which is not a basis. Let {hi}iET be an orthonormal basis for 1{. Define 

'Pi:= h1 + hi+1, i = 1,2,3, .... 

We show that {'Pi} is complete. Suppose that for g E 1l holds that (g, ,p;) 
i EK. So, (g,h1) = -(g,hi+1), for all i El. Since, by (4.2), 

lim (g, h;) = 0, ,.-CX) 

0 for all 

it follows that (g,h;) = 0 for all i E l. Hence g = 0. Next we prove that {,p;} is 
independent. Suppose { ,p,} were not independent, say <p1 lies in 1l 1 := span{ <p2, <pJ, ... } . 
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Now define the bounded linear functional Ton 1{ by Tg := (g, h2} for g E 1{. By definition 
we have T,p 1 = 1 and r11{, = 0, which contradicts the boundedness of T. So, {,p;} must 
be independent. Finally we show that { ,p;} cannot be a basis. Suppose it were a basis, 
then we could represent any element of?-{ in the form (4.1), in particular 

h1 = LCj,Pj, 

iET 

Compute, for i > I, the inner products (h1 ,h;}. 

0 = (h1,h,} = LCj ('Pj,h;} = 
jEf 

= Lei (h1 + hj+1,h;} = c;_ 1, 
jEf 

Hence c; = 0 for all i E /l, so h1 = 0. This is impossible, because {h;};er is a basis. 

(Another example is found in Singer [49] Example 11.3, p. 359) 

For orthonormal bases, however, such a counterexample cannot be found ( cf. Gohberg 
(18] Theorem 11.3, p. 27): 

Theorem 4.6 . Let { ,p, },er be an orthonormal system. { ,p;};er is a basis if and only 
if {,p;};er is complete. 

Hilbert spaces with orthonormal bases are called sepamble Hilbert spaces. Important 
examples of such spaces are the following. 

Example 4. 7 . 

Let M be a finite or countable index set. £2 ( M) consists of sequences of complex numbers 
9 := {gm}m.EM such that 

IIYlli2 (M) := L l9ml2 < 00. 

m.EM 

Note that £2 (M) is equal to £2 (M, 1{) if 1{ = (J;. It is a Hilbert si.,ace with inner product 

(/, 9)t2 (/t.1) := L fm9m, 
m.El\1 

where the bar denotes complex conjugation. The canonical orthonormal basis for £2 (M) 
is {e,},eM, with (form EM) 

{ 
0 if m f. i 

(e;)m := 1 'f .. 
I m=1 

Example 4.8 . 

£2 ([-11', 11')") consists of square integrable functions on the set [-11', 11']" in !Rn. We some
times write it as L2([-11', 11']", (£). It is a Hilbert space with inner product 

(f,g),.2 := 1 f(x)g(x)dµ(x). 
[-.-,.-]" 
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µ is the Lebesgue measure on (-,r, ,r]". Define (for ,r, E zn) e,. E £ 2 ((-,r, ,r]") by 

e"(:r) := (1/21r)"l2 ei,u,, 

then {e"}"e zn is the canonical orthonormal basis for £ 2([-,r,,rjR). The Kth Fourier 
coefficient of a function f E £ 2 ([-,r, ,r]") is defined as 

By Theorem 4.4 we obtain the Fourier inversion formula 

f = L f(1r.)e,., 
KE zn 

and Parseval's relation 
lltllt2 = L ll(1r.)l2 -

"e zn 

In the preceding paragraphs we represented elements of Hilbert spaces in terms of or
thonormal bases. Next we consider bases that are not (necessarily) orthonormal. For our 
purpose biorthogonal systems are important. 

Definition 4. 9 . Two systems {'!';};er and {IJ,;};er are called biorthogona/ if 

We often say that {IJ,;} is a biorthogonal system of {'!';}. If {'!';};er is a basis, with 
biorthogonal system { IJ,; };er, then any f E 1i can be written in the form 

I= L(f,1J,;)1i'Pi· (4.3) 
iEr 

The following theorem shows that in this case { IJ,;};e r is a basis too. 

Theorem 4.10 . If {'!';};er is a basis, with biorthogonal system {IJ,;};er, then {IJ,;} 
is a basis and for any f E 1i, 

I= E<f,'P;)IJ,;. ( 4.4) 
iEr 

Proof: 

We first show that any f E span{ 1/;;} can be written as ( 4.4). Introduce the linear operator 

n 

Tnf := L(/,1P;)1J,;. 
i=l 

Then 
n 

r:1 := :EU,1Pi)'Pi• 
i=l 
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Since {'PdiET is a basis, we have 

Jim r:J = f. 
n,-(X) 

15 

By the uniform boundedness principle ( cf. Goh berg [18) Theorem 4.4, p. 223) it follows 
that 

Take f E span{'Pd arbitrarily. We must show that limn-co IITnf - /II= 0. For arbitrary 
c > 0, there exist an m E K and a sequence { c; }i=l , ... ,m such that for g := I::'.:,1 c;tp;, 

f 
II/ - gll < ---

supnETIIT.,11 + 1 

For n ~ m, we have Tng = g. So, 

IITnf- /II~ IITnJ- gjj + jjg - /II~ (supnE/NIITnll + 1)11/ - gjj < f. 

Next we show that { iJ,;};Ef is complete. Take f E 1-l and suppose {/, t/;;) = 0 for all i EI. 
By (4.3) we then have that/= 0. So {t/;;};er is complete. □ 

If { 'PdiET is not a basis, this result need not holds, i.e. if { 'P,} is not a basis but if it is 
complete, then its biorthogonal system {t/;;} need not even be complete. 

Example 4.11 . 

Let {h;};er be an orthonormal basis for ?-t. Define 'f'i := h1 +h;+1 for i E JI, as in Example 
4.5. We have already shown that this is a complete independent system which is not a 
basis. Its biorthogonal system {t/;;} is given by 

which is obviously not complete. 

1.5. Bessel systems, Riesz-Fischer systems and Riesz bases 

We assume that 1t is a separable Hilbert space with orthonormal basis { h;};Ef, where 
the index set K = IN. 

Definition 5.1 . 
(i) {'P;};Ef is a Bessel system. if there exists a bounded linear operator Ron 1t such 

that 

Rh, = 'f'i, i E JI. 

(ii) { 'P;};Ef is a Riesz-Fischer system. if there exists a bounded linear operator To,, 1t 
such that 

T'f'; = h;, i E JI. 

(iii) { 'Pi LET is a Riesz basis if there exists a bounded linear invertible operator Ton 1-l 
such that 

Tip; = h;, i E JI. 
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That {ip;} of Definition 5.1 (iii) is indeed a basis is proved as follows. For any/ E 1t we 
have 

Tf = Lc;h; 
iET 

because { h;} is a basis. By the boundedness of r-1 and by Definition 5.1 ( iii) it follows 
that 

f = Lc;ip;. 
iET 

The following result summarizes Young [55] pp. 154-157 and Young [55] Theorem 9, p.32. 
First introduce the Gram matrix G of a system {ip;};er by 

The matrix G generates a linear operator, which we also denote by G, on 1'2 (l) as follows. 
Define 

for all {g;} E 1'2(l) such that 

Proposition 5.2 

Gg := {L G,j 9j}iET 
jET 

LILGij 9jl2 < 00. 

iET jET 

(i) The following statements are equivalent. 
(a) {<,o}iET is a Bessel system. 
(b) 

LIU, <,o;}l 2 < 00 , f E '}f. 
iET 

(c) There exists a positive constant M such that 

LIU, ip;}l2 ::; Mll/112, I E '}f. 
iET 

(ii) The following statements are equivalent. 
(a) {ip},ET is a Riesz-Fischer system. 
(b) There is a positive constant m such that for all n E Jl and {c,};=1, ... ,n 

n n 

m L jc;l2 ::; II L c;ip;ll2. 
i=l i=l 

(5.1) 

(c) For each g E 1'2 (Jl) there exists an f E 1t (which is not necessarily unique) 
such that 

(f,ip;}=g;, iED. 

(iii) The following statements are equivalent. 
(a) {ip};er is a Riesz basis. 
(b) {\O,LET is complete and its Gram matrix G generates a bounded linear in

vertible operator on £2 ( D). 

It follows that the notions of Bessel system, Riesz-Fischer system and Riesz basis are 
independent of the choice of the orthonormal basis. 
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If { ip;} is a Bessel system, its Gram matrix G is the matrix representation of the operator 
R* R in terms of the basis { h;}. Here R is given by Definition 5.1 ( i). For, 

G;J = ('PJ,'Pi} = (RhJ,Rh;}7t = (R*RhJ,h;}7t-

Hence G generates a positive operator on £2(.l). Similarly, if {ip;} is a Riesz basis, its 
Gram matrix G is the matrix representation of (TT*)- 1 , where T is given by Definiton 
5.1 (iii). Hence, by Section 1, 

(5.2) 

In the case that { ip;} is a Riesz basis, its biorthogonal system { ip;} is also a Riesz basis, 
and 

ij,; = T*h;, i E /I. (5.3) 

The Gram matrix F of this system is 

F;J := (1P;,1P;}, i,j E /I. 

Fis the matrix representation of the operator TT*. So, F = c-1 . By ( 4.3) we can express 
ip; in terms of the basis { cp;}, 

Hence, 

Ip;= L(1Pi, 1Pj}Jt'Pj, i EI. 
JEf 

ip;=I:cc- 1 );j'P1, iEJI. 
jE f 

(5.4) 

It may be hard to check whether a system is a Riesz basis. The next result provides a 
criterion. 

Theorem 5.3. Paley-Wiener theorem . 
Suppose { cp;};e r is a system in 1t far which there exists a positive number). < 1 such that 
for al/ n E IN and complex numbers c;, i = 1, ... , n, 

n n 

II L c;( h; - 'P;)llrt s:; ). (L lc;l2 ) 112 . 

Then there exists a bounded linear invertible operator T on 1t such that 

Tcp;=h;, iEl. 

Moreover, 

Proof: 

Let {h;};er be an orthonormal basis for rt. Define the linear operator U on 1t by 

U(L c;h;) := L c,(h; - cp,). 
iEf iEf 

By assumption, we have IIUII s:; ). < l. Hence, by Theorem 2.1, (I - U) is an invertible 
operator and 

(I - U)h; = cp;, i E ff. 

The result follows by taking T := (I - U)- 1 . D 
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Chapter II 

L 2-Spaces of Vector Valued Functions 

Let (D,µ) be a finite measure space and X an arbitrary Banach space. In this chapter 
we consider the space L2(D, X) of vector-valued functions f: D-> X. Most of the time, 
however, we will assume that X is a Hilbert space, which is then denoted by ?i. 

In section one we consider the Pettis integral and the Fourier transform. Bessel systems, 
Riesz-Fischer systems and Riesz bases are the subject of the second section. These notions 
are used in Section 111.3 and in Chapter IV to solve the mixed Fourier moment problem 
in the space L2 (D, 'Ii). 

The notational convention throughout this chapter is as follows. X is a Banach space 
with norm 1111 and 1i is a Hilbert space with inner product (, ). If?i is separable, then 
{h;};er denotes an orthonormal basis. l and I( are countable index sets. We assume 
that L 2 ( D, <C) has orthonormal basis { e ,.J "e ,, . 
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11.1. Definition of L2(D,X) 

In this section we consider the L2-space L2 (D, X) of vector-valued functions, mainly 
following Balakrishnan [3], and Hille and Phillips (24]. 

A function that maps D into X is called a vector-valued function. 

Definition 1.1 . A function / : D ---, X is called simple, if it is of the form f = 
Lj=l Cj x F:;, where the Ej are disjoint measurable subsets of D and c i E X, for j = 1, ... , n. 

Definition 1.2 . A vector-valued function f : D---> X is called strongly measurable if 
it is the limit almost everywhere of a sequence of simple functions. 

If/ is strongly measurable, then D ', x ....:... 11/(x)II is a measurable function. In this case 
the integral 

j ll/(x)ll2dµ(x), 
T) 

(1.1) 

is well-defined in R,+ U { oo}. 

Definition 1.3 . L2 (D, X) is the space of strongly measurable functions for which 
(1.1) is finite (identifying functions that are equal up to a set of measure zero). 

L2 (D, X) is a Banach space. The norm off E L2 (D, X) is defined by 

111/111 2 := ln llf(x)!i2dµ(x). 

Definition 1.4 . A vector-valued function f : D ...... X, is called almost separably 
valued, if there is a set E C D of measure zero, such that the set f ( D \ E) is separable in 
X. 

A function f : D ---> X, is called weakly measurable, if for each bounded linear functional 
h* on X, the scalar-valued function x ---> (f(x ), h*) is measurable. (Here the brackets 
denote the action of the functional h* on /( x) E X.) 
The following result relates the notions of strong and weak measurability, cf. Hille and 
Phillips (24] Theorem 3.5.3. 

Theorem 1.5 . A vector-valued function is strongly measurable if and only if it is 
weakly measurable and almost separably valued. 

From this it follows that for separable spaces X weak and strong measurability are equiv
alent notions (Hille and Phillips (24] Corollary 2, p.73). 

For the remainder of this section we take for X the Hilbert space ?i. In that case L2 ( D, ?i) 
is a Hilbert space with the inner product (( , )) , defined by 

((/,g)) := j (!(x),g(x))dµ(x). 
T) 

If ?i is separable, then L2(D, ?i) is separable with orthonormal basis { e0 hi} hcET<,iET, where 
e0 h; denotes the Ji-valued function x ...... e0 (x)h; E ?i. The orthonormality is established 
as follows. 

((e 0h;,e>.hj)) = jn(eh,(x)h.,e>.(x)hj)dµ(x) = 

= j (h;, hj)e 0 (x)e>.(x)dµ(x) = O;;O,,>.-
n 
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For functions/ E L2 (D,?t) the Ji-valued integral, denoted by 

('P) fnf(x)dµ(x), 

can be defined by its action on h E 7t 

(('P) lt(x)dµ(x),h} := fnucx),h}dµ(x). 

It is called the Pettis integral. The generalized Fourier coefficient of/ at K E I< can then 
be defined by 

l(K) := ('P) ln f(x)e"(x)dµ(x). 

By definition of the Pettis integral we have for arbitrary h E 7t, 

Or, equivalently, 
(l(K), h} = ((/, e"h)). (1.2) 

Parseval's relation and the inversion formula for the generalized Fourier transform are the 
contents of the following theorem. 

Theorem 1.6 . Let 1t be a separable Hilbert space. For any f E L2 (D, 'Ji) the 
following identities hold: 

KEf< 

I= L l(K)e". 

Here (1.4) converges in the norm topology of L2(D, ?t). 

Proof: 

Let/ E L2 (D, 'Ji) be arbitrary. Then 

111/1112 = Ll((/,e"h;)}l 2 = L(Ll(l(K),h;)l2) = Llll(K)ll2. 
1,:,i. Ii. i Ii. 

which proves (1.3). Furthermore 

f = L(L((/,e"h;}}e.,h;) = L(L(l(K), h;}h;)e,, = L l(K)e". 
h'. i. ,;. l h~ 

Another proof of this theorem can be found in Sz-Nagy and Foias [53) pp.183-184. 

Theorem 1.6 shows that J: L2 (D, 'Ji)_. £2 (1{, 'Ji), 

(1.3) 

(1.4) 

D 

is an isometric isomorphism. So, L2 (D, ?t) and £2(1!{, 'Ji) are isometrically isomorphic, 
denoted by, 
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Let {T;.} be a uniformly bounded family of linear operators on 'Ji. The operator U on 
£2 (ll(,1i), which is of the form U = {TK} corresponds to an operator Ton L2 (D,1i) as 
follows: 

T f = L T"[[(11:)] e", for f E L2(D, 'Ji). 
t<El{ 

11.2. Bessel systems, Riesz-Fischer systems 
and Riesz bases in L2 (D, 'Ji) 

In this section we present necessary and sufficient conditions for 

(1.5) 

(2.1) 

to be a Bessel system, Riesz-Fischer system, or Riesz basis in L2 (D, 'Ji), where cp",i E 1i 
for K E ll(, i E /l. The results from this section will be used in Sections III.3 and IV.5 to 
give solvability conditions for the mixed Fourier moment problem of mixed type, which 
also occurs in Part two. 

Let 11: EK( be fixed. Assume that the sequence {cpK,;}iET is a Bessel system in 'Ji. Then, 
by Definition I.5.1 ( i) there exists a bounded linear operator R" on 1i such that 

RKhi = 'P"," i E JI. (2.2) 

If we want to prove that (2.1) is a Bessel system, we have to find a bounded linear operator 
'R, on L2 (D, 'Ji) such that 

'R( e"h;) = e"cp",i, K E /l(, i E JI. (2.3) 

The following theorem provides a useful criterion. 

Theorem 2.1 . A bounded linear operator 'R, on L2 (D, 'Ji) satisfies (2.3) if and only 
if there is a uniformly bounded family of linear operators { R,J,.E" on 1i satisfying (2.2). 
Moreover, 

Proof: 

We prove the result in the space £2 (JK,1i) instead of L2(D,1i). If {R"} is a uniformly 
bounded family, we have by Theorem I.3.5 that 

is bounded. By (1.5) we associate with U a bounded linear operator 'R, on L2 (D,1i). We 
show that 'R, satisfies (2.3), if R,. satisfies (2.2). Fix 11: E K( and i E JI. Note that the >.th 
Fourier coefficient of the function eKh; is h;DK>,.· Hence by (1.5) and (2.2) 

'R(e"h;) = L R>,.(h;D">,.)e>,. = cpK,;e". 
AET, 

By Theorem I.3.-5 it follows that 'R. is bounded and that ll'RII = supKET,IIR"II-
On the other hand, assume that there exists a bounded linear operator 'R, on L2 (D, 'Ji) 
satisfying (2.3). Fix K E /l( and define R,. on 1i by 
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('R./)(x:) denotes the x:th Fourier coefficient of Rf, where f E L2 (D, ?i). We show that 
R,,_ satisfies (2.2). By definition 

- -
R,.h; := ('R.(h;e"))(x:) = (cp,,_,;e")(K) = 'P1<,i· 

Next we prove that {R"} is uniformly bounded. Choose h E ?i and K E l/{ arbitrarily. 
Then by Theorem 1.6 

IIR,.hll = ll(R(he,,_))(x:)11 ~ IIIR(he,.)111 ~ IIRlllllhe,.111 = IIRllllhll-

Hence 

Finally we prove that 

Take/ E L2(D,?i). Since {h;e,} is an orthonormal basis, there exists a sequence {sn} C 
L2 (D, ?i) such that 

where for each n, sn is a finite series of the form 

We prove that for each n 

Sn. := L c,.,,;.hr,e,... 
n.,i 

The desired result then follows by the continuity of R. By (2.3) and by the definition of 

whence 

111Rsnlll 2 = L ll('R.sn){A)ll2 = L II L C,\,,R,\(h,)11 2 ~ 
,\ffl" ,\ 

~ (sup,.E,,IIR,.11)2 L ic..,,12 = (sup,.EKIIR,ll)2 llls,,lll 2 · 

>.,t 

□ 

Analogous results hold if for each KE l/{ the sequence {cp,,,},Ef is a Riesz-Fischer system 
or a Riesz basis. If {cp,.,;};u is a Riesz-Fischer system (Riesz basis) for each x: Elf{, then 
there exists a family of bounded linear (invertible) operators {T,},,El,, such that 

(2.4) 

In the case of Riesz-Fischer systems, the following result holds. 
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Theorem 2.2. Let 'P",' E 1i, for KE Jf(,i E Jf. The coJlection {cp",;e"}"EK,iET is 
a Riesz-Fisher system in L2 (D, 1i) if and only if there exists a uniformly bounded family 
{T"} of linear operators on 1i, such that 

T",p",,=h;, iEll. (2.5) 

There exists a bounded linear operator T such that 

(2.6) 

and 

Proof: 

Assume that the family {T"} satisfies (2.5) and is uniformly bounded. That there exists 
a bounded linear operator T on L2 (D, 1i) which satisfies (2.6) is proved similarly as in 
Theorem 2.1. Now we prove the if-part. Suppose { 'P",;e"} is a Riesz-Fischer system 
in L 2 (D, 1i). Then, by Definition 1.5.l ( ii) there exists a bounded linear operator U on 
L 2 (D, 1i) such that 

U(cp",;e") = h;e.,. 

Now define an associated bounded linear operator Ton L 2 (D,1i) by 

It is clear by definition that T satisfies (2.6). Fix 1,, E lf( and choose h E ?i. Define the 
linear operator T" on 1i by 

In the same manner as in the proof of Theorem 2.1, we show that T" satisfies (2.5) and 

sup"E1,IIT.,II S IITII-

To prove IIT II S supllT"II' choose f E span{,p.,,;e"}. (Since T is the zero operator on 
(span{ cp",'e"}).L the inequality trivially holds on this subspace.) The system { 'P",;} need 
not be a basis, but by definition of closed linear span, we can find a sequence {sn.} C 
span { 'P",;e"} such that 

lim lllsn. - JIii = 0, 
n.-oc, 

where for each n, Sn. is a finite series of the form I:",i c",i'P",;e". We prove that for each n 

The desired result then follows by the continuity of T. By (2.5) and by the definition of 

T", 

whence 

IIITsn.111 2 = L ll(Ts.,)(,\)112 = LIILc.x,,T,x(<p,\,,)112 S 
,\El( ,\ 

S (sup"EKIIT.,11)2 L II L c,x,;'f',\,;112 = (sup"E1,IIT"ll)2 111s,,lll2 -

" 
□ 
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In the case of Riesz bases, we have the following result. 

Theorem 2.3 . Let tp,.,; E 'H, for KE I< and i E l. The collection {ip,.,;e,.},.eK,iET 
is a Riesz basis for L2 (D, 1-1,) if and only if there exists a family {T,.} of linear operators 
such that 

T,.tp,,,,; = h;, i El, 

and {T"} and {T,;-1 } are uniformly bounded. The bounded linear invertible operator T 
given by · 

T(ip",;e") = h;e,., KE K<, i El 

satisfies 

The above theorems completely characterize Bessel systems, Riesz-Fischer systems and 
Riesz bases of the form { e,.tp,,,;} in the space L2(D, 1-1,). 

We want to compute the biorthogonal system of {e,.ip",;} in L2 (D, 1-1,). If for each K E K< 
{ip,,,,;}ie1 and {1/>",i};Ef are biorthogonal systems in 1-l, then {e"tp",i} and {e"1J,,.,;} are 
biorthogonal systems in L2 (D, 1-1,). For, 

((e,.ip",;,e,.1J,,.,j)) = fn (e"(z)ip",;,e,.(z)l/>,.,j)dµ(z) = 

= ((ip,.,;,1/>,.,j)) fn e"(z)e,.(z)d1,1(z) = 6,.,.6ij· 

If {tp,.,;} satisfies the conditions of Theorem 2.3, then we can compute this system in terms 
of the Gram matrix, (for K E I() 

By Section 1.5 we obtain for fixed K E I(, 

V'1<,i := E (G(K)-1);j'P1<,j, i El. 
jEf 

(2.7) 

(2.8) 



25 

Chapter Ill 

Moment Problems m Hilbert Space 

In this chapter we consider a moment problem in a Hilbert space, which consists in finding 
an element f E 'Ji such that 

· (/, 'Pi)'}f == g;, i E ff. (0.1) 

Here {g;} E £2 (.l) and {ip;};e, C '}f is a given system. The index set K is equal to IN in 
this chapter. 

In Section one we discuss conditions on the system { ip;} in order that the moment problem 
has a solution. At the end of this section the Tychonov-Phillips regularization correspond
ing to the moment problem is considered. An approximation scheme for computing the 
solution is found in the second section and in the last section we give solvability conditions 
for a mixed Fourier moment problem in L2 (D, 'Ji). 
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ill.l. 

Chapter III: Moment Problems 

Solutions of the moment problem 

Without conditions on {<p;}, problem (0.1) need not have a solution; even if {<p;};Ef is a 
Bessel system and a basis. 

Example 1.1. 

Let 1l be a Hilbert space with orthonormal basis {h;};ET• {<p;} defined by 'Pi := (1/i)h, 
for i E E, is a Bessel system and a basis for 1l. Take g; = l/i, for i E ll. Suppose f is a 
solution of the moment problem 

(/, 'Pi)Jt = g,, i E l. 

/ can be represented in terms of the <p;, 

f = Lc;<p,. 
iET 

Since(/, 'Pi)Jl = c;/(i2 ), we obtain c; = (i2 )g,. Hence 

f = Lig;h, = Lhi, 
iET iET 

(1.1) 

which does not converge in 1l. This is a contradiciton, so there does not exist a solution 
of the moment problem (1.1) in ?t. 

A necessary and sufficient condition for (0.l) to have a solution is that {<p;};Ef is a Riesz
Fischer system (Proposition I.5.2 (ii)). The solution f of problem (0.l) is unique if and 
only if {cp;} is complete. If this is not the case, then other solutions of (0.1) are obtained 

. by adding elements lying in (span{<p,}).L to f. The solution which has smallest norm 
among all solutions is called minimum norm solution. 

Proposition 1.2 . If the moment problem admits a solution, then there exists a 
unique minimum norm solution, which lies in the subspace span{<p;}. 

Proof: 

First we prove uniqueness of the solution in the subspace g := span{<p,}. Let/ and g be 
solutions of the moment problem (0.1 ), both lying in Q. Then also f - g E 9, because 
both/ and g are solutions of problem (0.1), 

(f-g,<p;)Jt = O, i E JI. 

So, f - g E g.L. This can only be the case if f - g = 0. 
Next we prove that the minimum norm solution lies in Q. Suppose h is an arbitrary 
solution of problem (0.1). By Theorem 1.2.2 we write h as h = h 1 + h2 with h 1 E g and 
h2 E g.L_ It is clear that h1 is a solution of the moment problem. Furthermore, 

So, h1 E g is minimum norm solution. □ 

By Proposition I.5.2 ( ii) and Proposition 1.2 we obtain the following result. 

Theorem 1.3 . If { <p,} is a Riesz-Fiscl1er system, then the moment problem has a 
unique minimum norm solution which lies in the subspace span{<p,}. 
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If { cp;} i_s a Riesz basis, then we obtain a stronger result, by the representation (I.4.4). 

Theorem 1.4. If { cp;} is a Riesz basis, then 

I= LUi1Pi (1.2) 
ier 

is the unique solution. of the moment problem. 

Here {1/J;};Ef is the biorthogonal system of {cp;};er, which can be computed by (I.5.4). 
Formula (1.2) can then be rewritten as 

I= L L(G-l)ji g; 'Pj, 
JET ,er 

where G is the Gram matrix of the system { cp,}. 

We rewrite the moment problem as an equation: 

Af = g, 

where A : 1t ...... £2(1) is given by 

Note that the inverse A- 1 is given by (1.3) if {cp,} is a Riesz basis. 

( 1.3) 

(1.4) 

Assume for the remainder of the section that { cp; };Ef is a Bessel system. In this case A 
need not have an inverse (cf. Example 1.1). We give a formula for the Tychonov-Phillips 
regularization in terms of the Bessel system ( cf. Section I.2) ). The regularization {T•},>o 
of the Moore-Penrose inverse A+ (see section I.2) is of the form 

( 1.5) 

Obviously, A*g = LiET g;cp;, for g E £2 (1). So, AA*g = {L;Ef G 1;g;}jEf, and by straight
forward computation one finds that 

r•u = L L((c + ,n-1 )jiu, 'Pj, (1.6) 
JET ,er 

which is the generalization of formula ( 1.3) in the case of Bessel systems. We have obtained 
the following result. 

Theorem 1.5 . Let { cp;} is a Bessel system for 1t and define its Gram matrix G by 

G;J := ('PJ, cp;), i,j E JI. 

Denote the identity operator on £2 (1) as I. Then (for g E £2 (JI)) 

T~g = L L((G + ,I)-1 )jig, 'P1, 
1e r ;er 

is the Tychonov-Phillips regularization corresponding to the moment problem. 
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lli.2. 

Chapter III: Moment Problems 

Approximation of the solution of the moment problem 

The results of Section 1 are still not in a practical form, as formulae (1.2) and ( 1.3) deal 
with an infinite sum and the inverse of an infinite matrix. Therefore we look for solutions 
of the truncated moment problem 

(/n, 'Pi}?f = g;, i = 1, ... , n, 

where n E JI is fixed. It is clear from the previous section that 

n 

tn:=Eg;i/J'( 
i=l 

is a solution of problem (2.1). Here {lf'iLE{l, ... ,n) is the biorthogonal system of 
{ 'PdiE{l , ... ,n) in the subspace 

?in:= span{cp;};E{l, ... ,n)· 

(2.1) 

(2.2) 

By Propositon 1.2 it follows that fn (which lies in ?i.,) is the unique mmmmm norm 
solution of the truncated problem. By repeating this procedure for all n E JI., we obtain 
a sequence {/n}nET· The aim of this section is to prove that II/ - fnll-+ 0, (for n-+ oo) 
where f E 1i is the unique solution of problem (0.1). 

First we construct an orthonormal basis {h,};Ef for 1i, e.g. by Gram-Schmidt orthog
onalization, such that (for n E JI) {h;}iE{l, ... ,n) is an orthonormal basis for ?in. In this 
case the operator T from Definition I.5.1 ( iii) which satisfies 

Tep; = h;, i E JI 

leaves all the subspaces ?in invariant. However, the adjoint of T need not to leave the 
subspaces ?in invariant. Denoting the restriction of T to ?in by Tn and its adjoint in ?in 
by r;, the system { 1Pi}1 , ... ,n C ?in is given by formula (I.5.3) 

(2.3) 

which is the unique biorthogonal system of { cp;} 1 , ... ,n in ?in.· An alternative formula for 
l/.•'( is ( cf. formula (I.5.4)) 

If''/= Ecc;;-1),j'P;, 
j=l 

where Gn is the truncated Gram matrix, 

We define the projection operator P,, : 1i-+ ?in, as 

P»f = EU,'P,)1t1/J?. 
1:=1 

(2.4) 

Pn is a normal operator ( P,: P,, = P,,P;) from 1i onto ?i,, and it reduces to the identity 
operator on ?in, i.e. P,,g = g for g E 1tn- If/ E 1i is the solution of problem (0.1), then 
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it follows by substitution that the minimum norm solution of problem (2.1) is fn = Pnf• 
For any g E 1tn we have 

f - In = (I - Pn)f = (I - Pn)U - g). 

Hence 

II(! - Pn)/11 ~ III - Pnlldist(f, 1tn)- (2.5) 

Here the distance between an element / lying in 1i and a subspace M C 1i is 

dist(f, M) := inf {II/ - ml! Im EM}. 

We know that for all f E 1i 
lim dist(f, 1tn) = 0. 

n.-()Q 
(2.6) 

The next lemma proves that III - Pnll ~ c, where c is a constant independent of n. 

Lemma 2.1. Let {cp;};Ef be a Riesz basis for 1i, and let Pn be given by (2.4). Then 

III - Pnll ~ I+ rna- 1 11 IIGII) 112 , n E IN. (2.7) 

Proof: 

Using Ip; = T*h;, and (2.3), we obtain 

n n 

IIPnfll = II 2)/, cp;)1/Jill = II 2)/, \Oi)1fT:hdl ~ 
i=l 

n 

~ IITnllll 2)1, \Oi)1fhill ~ IITIIII I:(/, cp,)1tT*_, iJ,;II ~ 11r1111r- 1 1111111. 
i=l iE ]l 

Hence, by (I.5.2), 

III - Pnll ~ 1 + (IIGIIIIG- 1 11)112 < oo, n El. 

This proves the estimate. □ 

By (2.5) and (2.7) it follows that 

(2.8) 

Hence, by (2.6), for all / E 1i, 

lim II(! - Pn)/11 = 0. 
n.-oo 

(2.9) 

We have proved the following result. 

Theorem 2.2 . If {cp;};Ef is a Riesz basis and if f n (formula (2.4)) is the minimum 
norm solution of the truncated problem (2.1), then Un}nEliV converges to the solution of 
problem (0.1 ). 
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Equation (2.9) applies in particular to biorthogonal sequences { tf,,;};e 1 of a Riesz basis. It 
follows by definition of Pn that t/ir = Pnt/i;, for i E {l, ... , n }. Hence by (2.9) 

(2.10) 

for i EI. 

111.3. Mixed Fourier moment problems in L2 (D, 1-l) 

In this section we consider the mixed Fourier moment problem, which consists in finding 
a function f E L2 (D, 1-l) such that 

(f(,r,), r.p,.,;)1[ = g",;' KE K, i EK. (3.1) 

Here Kand I are countable index sets, {g,.,;} lies in f.2 (1< x I) and {\O .. ,;} is a sequence 
of vectors lying in 1l. The Fourier transform f(,r,) off is defined in Section II.l. 

In Chapter IV we shall see that the mixed Fourier moment problem is related to the 
mixed Fourier interpolation problem, which is a mathematical model for reconstructing 
magnetic resonance images. Magnetic resonance imaging (MRI) is a diagnostic method 
to measure and display cross sections of human organs (cf. Part two). The theory of this 
chapter forms the basis for Chapter IV and for Part two, where we explain how to solve 
the mixed Fourier interpolation problem. 

The idea for solving (3.i) is as follows. First, find for K E K fixed, a solution c,. of the 
moment problem in 1l 

(c,., \0,.,;)1[ = g,.,;, i E JI. 

Next, putting f(,r,) := c", we obtain 

I= L c,.e,.. 
1<E1( 

(3.2) 

(3.3) 

Problem (3.1) can also be solved directly. Using identity (II.1.2), we see that the mixed 
Fourier moment problem amounts to finding an element / E L2 (D, 1-l) such that 

((/, e,.\OK,;)) = g,.,;, KE l<, i El. (3.4) 

So, if {e"lp",;} is a Riesz-Fischer system then (3.4) has a unique minimum norm solution. 

Theorem 3.1 . If {e,.\O,.,i} is a Riesz-Fischer system, then the unique minimum norm 
solution f of problem (3.4) is of the form 

I= L_ c"e", 
1<El( 

where for each K E I(, c" is the unique minimum norm solution of (3.2) 

Proof: 

The existence of a solution f is guaranteed by ·Theorem 1.3. If/ is a solution of problem 
(3.4), then for each K E l( its Fourier coefficient cK. is a solution of 

(c",\O",;)=g,.,;, iED.. 

By Theorem Il.1.6 we have that 

111/1112 = L llc,.IJ2 · 
t<EI< 

So, f is the minimum norm solution of problem (3.4) in L2(D, 1-l) if and only if all the 
c" 's are minimum norm solutions of (3.2) in 1l. □ 
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If { e"<p",;} is a Riesz basis then we have the following stronger result. 

Theorem 3.2 . If {e"<p",;} is a Riesz basis, then (3.4) has the unique solution 

where 

and 

The Gram matrix is given by 

I= L C,cf,c, 

icEK 

C,c· = L 9ic,i'Pic,i 
iET 

'P1<,i = L(G(11:)-1 );j'P1<,j· 
jET 
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For the remainder of this section we assume that { e,,<p,,,;} is a Bessel system ( cf. Section 
1). Then (3.4) need not have a solution (cf. Example 1.1). We give an explicit formula of 
the Tychonov-Phillips regularization corresponding to the mixed Fourier moment problem. 
We rewrite (3.4) as an operat.or equation: 

AJ=g. 

First define for KE 1( the family of operators {A,,},,eK from 1i to £2 (1), 

Finally, identifying £2 (I(, £2 ( .l)) with £2 ( I{ x .l), let the operator 
A : £2 (K, ?i)-+ £2(1( x I) be given by 

Suppose {TJ};,>O and {Ti'};,>O are the Tychonov-Phillips regularizations of At and A+ 
respectively. By Theorem I.3.9 we have the following result. 

Theorem 3.3 . Let {e"cp",;} be a Bessel system. If 

L IIT,Jgicll2 < oo, g E £2 (1( X I), 
icET< 

then the Tychonov-Phillips regularization corresponding to the mixed Fourier moment 
problem is 

Here for K E .l( fixed, 

T,Jg = LL((G(11:) + "Y/)-1 );j g; 'P1<,j, g E £2(K) 
jET iET 
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Chapter IV 

Mixed Fourier Interpolation Problem 

Let (D,µ) be a finite measure space and assume that {e,J"ET< is an orthonormal basis 
for L2 (D,<C), where l( is a countable index set. 1t is assumed to be a Hilbert space of 
functions which has a reproducing kernel. Then L2 (D, 1t) consists of functions f such that 
f ( x) lies in 1t, for almost all x E D. In our application the functions in 1t depend on the 
time-parameter t. So, /(x) is a time-dependent function, which we denote as t---> f(x,t). 
The Fourier coefficient with respect to the parameter x is defined by 

/(,-;,,t) := l,J(x,t)e"(x)dµ(x), KE Jl(. 

In this chapter we consider a mixed Fourier interpolation problem which consists in finding 
a function f lying in L 2 ( D, 1t) such that 

( #) /(,-;,, t",;1r/r) = 91<,i, KE l(, i E l. (0.1) 

Here {g",;} E £2(Jl( x Jl) and {t"·,;}"ET<,iET is a sequence of real numbers. 

The mixed Fourier interpolation problem is a mathematical model for a reconstruction 
problem in magnetic resonance imaging (MRI), a diagnostic method to measure and dis
play cross sections of human organs. In Part two we are particularly interested in re
constructing cross sections of the beating human heart at consecutive time instants. The 
function f serves as a model for such a cross section, where the temporal parameter takes 
account of the motion of the heart. 

The idea for solving (0.1) is as follows. For fixed KE ff( problem (0.1) is an interpolation 
problem with respect to the temporal parameter, i.e. we have to find a Fourier coefficient 
c" which lies in 1t such that 

In a Hilbert space 1t with reproducing kernel, we can always write this interpolation 
problem as a moment problem, because then there exists a system of vectors { (f",;} such 
that 

(h, (f.-,;} = ( #) h(t",;rr/r), for h E 1t. 

We consider two such Hilbert spaces with reproducing kernel: the space of bandlimited 
functions IP, and the space of odd degree splines K, 2"-1 . 

The solution of problem (0.1) is then obtained by the Fourier inversion formula: / = 
~KEl,.cKe,... 
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It is shown in this chapter that an equivalent manner to obtain a solution of problem (0.1) 
is to reformulate it as the mixed Fourier moment problem in the space L2 (D, 1i): 

which was solved in Section 111.3. 

In the first section we introduce the Hilbert space Pr, which is also called Paley-Wiener 
space. Section 2 gives examples of Bessel systems, Riesz-Fischer systems and Riesz bases 
in Pr. The Hilbert space ,;,2n-l is introduced in section 3. In section 4 we illustrate 
interpolation by bandlimited functions and odd degree splines and give a motivation for 
using Tychonov-Phillips regularization. The mixed Fourier interpolation problem is solved 
in section 5. Section 6 gives examples of solutions of the mixed problem in the space 
L 2 (D, Pr)- Some historical remarks about Riesz bases are given in the last section. 
The notational convention during this chapter is that the index set I is the finite set 
{1, ... , I} in the case of spline functions and 7l. in the case of bandlimited functions. 
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IV.1. Interpolation in the Paley-Wiener Space 

We denote the support of a function / by supp(f). The Fourier transform of a function 
/ E L1(R) n L2 {R) is defined by 

Since L1(R) n L2 (R) lies dense in L2 (R) it follows by Rudin (45] Theorem 9.13 that the 
Fourier transform can be extended to L2-functions; which is then also denoted by f. 

Definition 1. 1. The Paley- Wiener space is defined as 

Pr := { / E L2(R) I supp (i) C [-r, r] }. 

Pr is a Hilbert space with inner product 

and with orthonormal basis, { h; };El, given by 

h;(t) := .;;r; sincr(t - i 'IT/r), i EK. 

Here the sine-function is defined by 

{ 
sin(rt) t f:. 0 

sincr(t) := -rt-, 

1, t = 0 

(1.1) 

By the Theorem of Paley-Wiener (see Young (55] Theorem 18, p. 101) any element / E Pr 
can be extended to an entire function / : <E-> (E which satisfies 

1/(z)I::; 11/IIP,erl Im =I 

for all z E <E. 

Define for fixed t E R, 

ip(s) := .;;r; sincr(s - t 'IT/r), s ER. 

Then for any / E Pr 
(1.2) 

Hence Pr is a Hilbert space with reproducing kernel 

k(s, t) = (r/'IT) sincr(t - s). 

Representing / E Pr in terms of the orthonormal basis {h.;} we obtain by (1.2) 

f = ~ f(i'IT/r) sincr(· - i'IT/r). 
iEI 
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This expansion is called the Shannon sampling series, which shows that any function 
/ E !Pr can be reconstructed from its values at the equidistant points i.,../r, for i E l. 
In the following we are concerned with the problem of reconstructing f E IPr, given its 
values at non-equidistant points {t;}. Corresponding to a given sequence of increasing real 
numbers {t;};Ef we define the vector system { cp;} in IP, by 

We obtain by (1.2) the formula for the Gram matrix G corresponding to the system {cp;}, 

G,j = sinc,..(t; - tj), i,j E JI. ( 1.3) 

Now consider the interpolation problem in IP, which consists in finding an element flying 
in IP, such that 

( #) /(t,.,../r) = g;, i E JI, ( 1.4) 

where {g;} E f'l(I) is given. It follows from (1.2) that the interpolation problem (1.4) is 
a special type of moment problem in IP,. That is, we want to find a function / which lies 
in IP, such that 

(/,cp;}p,=g;, iEII. (1.5) 

The properties of the solution and regularization of this problem are discussed in Section 
III.I in the case that { cp;} is a Bessel system, a Riesz-Fischer system or a Riesz basis. 

Our next objective is to obtain norm estimates for elements of IP,. These estimates are 
used in section V.l, where we derive stability results for interpolation in the space IP,. 
If/ lies in Pr, then by the Fourier inversion formula 

where j 2 = -1. By Jensen's inequality it follows that 

lf(t)l2 ~ -2
1 Jr ll(e}j2 d~ = 2_ j lf(t}l2dt. 
T( -r 27( R 

Denoting 11/llco := sup 1ERl/(t)I, we obtain 

11/lloo ~ (1//'f;) 11/IIP,, f E IP,. ( 1.6) 

In the same manner we derive the Bernstein inequality. 

(1.7) 

IV.2. Bessel Systems, Riesz-Fischer Systems and Riesz bases in P, 

Let {t;};e1 be a sequence of increasing real numbers. As above, we define for i El 

In this section we give conditions on the time points t; such that { cp;} is a Bessel system, 
Riesz-Fischer system or a Riesz basis in IP,. 
First we prove a useful lemma. 
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Lemma 2.1. 

Chapter IV: Mixed Fourier Interpolation Problem 

Let {s;};er be a sequence of real numbers such that 

(rr/r) L lf(s,rr/r)l2 ~ B211/11°}.,, f E Pr, 
iET 

where B is a positive constant. If {p;};er is a sequence of real numbers satisfying 

ls;-p;I~;, iEl 

then for all f E Pr, 

Proof: 

(rr/r) L 1/(s;rr/r) - f(p;rr/r)l 2 ~ B 2 (e"'Y - 1)211/llh
iET 

The space Pr is closed under differentiation. The Bernstein inequality (1.7) yields 
11(8/&t)fll ~ rllfllr,. Let Is, - p,I ~ ;. Denote the kth derivative as (8/ot)"f(t). For 
any real number p -:p O we obtain by the Taylor series expansion and the Cauchy Schwarz 
inequality, 

1/(s,rr/r) - f(p,rr/r)l2 = I L (8/ot)"{,(s;rr/r) ((s; - p,)rr/r)kl2 ~ 
kETN 

('°' l(8/8t)kf(s;rr/r)l2)('°' l(s;-p;)rr/rl 2kp2k) < 
L, k!p2k L, k! -

kE TN . kETN 

( (.-'p'-r'/r') - l) ('°' l(8/&t)"f(s;ir/r)l2) 
e L, k!p2k . 

kETN 

It follows by assumption and the Bernstein inequality that 

L L l(8/8t):,~:;ir/r)l2 ~ (B211/llj,J(L k~;:k) = B211/ll}..(/r'/p') -1). 
kETN •ET KETN 

Interchanging the order of summation, we obtain 

(rr/r) L lf(s;rr/r)- f(p,rr/r)l 2 ~ B2 11/11°}., (e<.-'t>'-r'/r') - l)(e<r'/p') - 1). 
iET 

The result follows with 
r 

p=--. 
,.ffe 

□ 

In order to prove that { cp;} is a Bessel system, we have to find a bounded linear operator 
Ron Pr (cf. Definition I.5.1 (i)) such that 

Rh,=cp;, iEl. 

Theorem 2.2 . If, for some positive constant ; , 

It, - ii ~ i, i E JI, 

then { cp;}, given by formula (2. I), is a Bessel system in IPr. In that case, the operator R 
which is given by 

Rh; = cp., i E JI 

satisfies 

IIRII ~ e"-Y. 
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Proof: 

Since {h.} is an orthonormal basis for IPr we have by (1.2) and Theorem I.4.4 

('11'/r) Llf(i11'/r}l2 = Ll{f,h;}l2 = 11/112-
iEf 

We puts;= i, p; = t; and B = l in Lemma 2.1 and obtain by (1.2) 

L 1(1, h; - <p;} 12 s; (e"-Y - 1)211/11}, •. 
iEf 

Define the linear operator W on IPr by the following expression 

Wf := L(/,h; - <p;)h;, 
iEf 
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for f E !Pr, It follows from the above estimate that W is a bounded operator: IIWII s; 
(e"-Y - 1). Its adjoint has the property that W*h; = h; - <p; for i E II, since 

(I, W*h;} = (W /, h;) = {/, h; - cp;), 

for arbitrary / E !Pr, The result follows from the fact that IIWII = IIW*II and by taking 
R := I- W*. □ 

Let {h;} and {,p;} be given by formula (2.1). In order to prove that {,p;} is a Riesz-Fischer 
system, we first formulate a lemma, which is proved in Young [55] Theorem 5, p. 162. 

Lemma 2.3. Let {t;};e r be a sequence of increasing real numbers such that 

Then for al/ n E IN and for all sequences of complex numbers {c;}:';,._n, we have 

where j 2 = -1 and 

Theorem 2.4. 

m t lc;l2 s; 1-: I t ( J1/(2'11')c;ejt;x l2dx, 
,.=-n t=-n 

2 1 
m = C-;;:)(1 - ,2 ). 

If {t;} is a sequence of increasing real numbers such that 

t;+1 - t; 2'. 1 > 1, i E II, 

then { <p;} is a Riesz-Fischer system. Moreover, there exists a bounded linear operator T 
on IPr such that 

T<p; = h;, i EI, 

and 
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Proof: 

We have the following relation between sine functions and the exponentials, 

Here x is the characteristic function of the unit interval [-1, I]. Choose n E IN and a 
sequence of complex numbers {c;}:'=-n arbitrarily. Then 

n n 

II L c; JrJ; sincr(t- (ir/r)t;)!lh = II L c; (1/v'2r) x(f./r) e-j(,r/r)t,{11},. 
i=-n i=-n 

After the change of variables ( = -f,,r/r, we have 

n n. 

II L c; JrJ; sincr(t- (ir/r)t;)llh = \I L c; (1/..fI;) x((/ir) e11 '(11}.,. 
i=-n 

By Lemma 2.3 it follows that 
n. n 

L ic;l2 ~ 1/mll L c; JrJ; sincr(t - (ir/r)t;)II}.,, 
i=-n 

where 
2 1 

m = (; )( 1 - 12 ). 

Then, by Theorem 1.5.2 (ii) bit follows that {cp;} is a Riesz Fischer system for IPr. Hence 
there exists a bounded linear operator U such that U cp; = h; for i E 1l. By the above 
estimate it follows that for any h E span{cp;} we have that 

IIUhll ~ (~)llhll-

Now define T := U on span{cp;} and T := 0 on (span{cp;})J_. □ 

Let {h;} and {cp;} be given by formula (2.1). To provide a condition for {cp;} to be a Riesz 
basis, we formulate the following result (cf. Young [55] Theorem 14, p.42). 

Theorem 2.5 Kadec's 1/4 theorem 
Let {t;} be a sequence of real numbers such that 

It; - ii ~ a < 1/4, i E 1l. 

Then for all n E IN and for an arbitrary sequence {c;}:'~-n. we have 

(1/2ir) LI L c;(eiix - eJt;x)l2dx ~ >.2( t lc,12). 
iEl 1.=-n 

Here j 2 = -1 and,\= (1 - cos ira + sin 1m) < 1. 

Theorem 2.6 . If 

it, - ii ~ a < 1/4, i E 1l, 

then {cp;};er is a Riesz basis in IPr. The bounded linear invertible operator Ton IPr, given 
by 

Tcp,=h,, iEl, 

satisfies 
1 

IIT\I ~ 1 _ >., 11r-1 11 ~ 1 + >.. 

Here>. = (I - cos iret + sin ira) < I. 
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Proof: 

We prove that there is a ). < 1 such that for all m E IN and for complex numbers 
c;, i = -m, ... , m, that satisfy I:::-m lc;l2 ~ 1, the following estimate holds 

11 f: c; ( # sincr(· -(1r/r)t;)- # sincr(· -(1r/r)i))IIP. ~ A. (2.3) 
1::.-=-m 

By identity (2.2) we have that the left hand side of (2.3) is equal to 

II f: c; (1/,h";=) x(f./r) (e-j(.-/r)t;{ - e-i(.-/r)i{)llr.'(-.-,.-)· 
i=-m 

After the change of variables ( = -f.1r/r, and by Theorem 2.5 this expansion reduces to 

II t c; (1/.;,;;;) x((/1r) ( eJt;( - eJi() II '-'[-ir,ir] ~ 
t=-m 

~ (1 - cos 1ra- + sin 1ra-) =: A. 

If a-< 1/4, then ). < 1. Then from Theorem I.5.3 it follows that {<,o;} is a Riesz basis for 
Pr and there exists an operator Ton !Pr such that T<p; = h;, that satisfies 

1 
IITII~ 1_).' 11r-111~1+).. 

□ 

The results of Theorem 2.5 and Lemma 2.3 are sharp in the sense that if 

{ 
i - 1/4, if i > 0 

t; := 0, if i = 0 , 
i + 1/4, if i < 0 

then {ejt;(·l};Ef is neither a Riesz basis nor a Riesz-Fischer system for L2 ([-1r,1r]) (cf. 
Young [55) p. 44, p. 164). 

IV.3. Spline functions of odd degree 

In this section we consider interpolation by polynomial spline functions of odd degree and 
we show that the interpolation problem is a special type of moment problem in the space 
K2 "'- 1 . Accounts of spline theory are given in Ahlberg et al. [l), de Boor [9), Schoenberg 
[47), and Greville [21). Here we follow mainly Greville [21]. 

Given an interval [a, b] we define the mesh ~ as a division of this interval. 

Definition 3.1 . The mesh ~ of [a, b] is a sequence of increasing real num
bers {t,1r/r, ... ,t,1r/r} such that a= t11r/1· < t 21r/r < ... < t,1r/1· = b. The intervals 
(t;1r/r, t;+11r/r) are called (open) mesh intervals. 

The space x:,m is defined as follows (cf. de Boor [9]). 

Definition 3.2 . Km := {/ E cm-l [a, b] I / is a polynomial of degree m or less, 
on each mesh interval } . 
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The set K,2"-1 consists of the so called polynomial spline functions of odd degree. The 
linear space K,2n-l has the inner product ( cf. de Boor [9]) 

n-1 
(f,g},c2n-1 := L fk(a)gk(a) + (f",g"}r. 2 (n,h]· 

k=O 

Here fk denotes the kth derivative of/ and (f, uh•[n,h] := frn,h] f(t)g(t)dt. The space 

K,2"-1 is characterized by (cf. Greville [21]) 

/ E ,c2n-l ~ there exists a polynomial p2n-l and complex numbers c;, (i E .l) 

such that / = P2n-1 + L c;(. - t,1r/r);_"- 1 . 

•Ef 

Here p2n-1 is a polynomial of degree 2n - 1 or less and for any t E JR 

k { tk, t 2'. 0 Ct>+ := . 
0, t < 0 

Since ,c2n-l is a finite dimensional inner product space, it is complete, i.e. K2n.-l is a 
separable Hilbert space. Moreover K,2"-1 is a Hilbert space with reproducing kernel ( cf. 
section I.2): 

(3.1) 

Define the system of independent vectors {ip;},ET in K,2n.-l, corresponding to the mesh Li 
as 

<p; := a'(-, t,1r/r) 

For any function / E K,2"-1 Taylor's formula holds, 

n.-1 fk( )( )k 1 1 
f = L a · - a + -- (- - tf-1 f"(t)dt. 

k=O (k!) (n - l)! [•,(·) 1 

Using this formula, the point evaluation can be written as the inner product ( cf. Bertero 
[5)) 

(3.2) 

So the interpolation problem is a special type of moment problem for functions in the 
space K,2"-1 . 

One can derive from Taylor's formula the estimate ( cf. formula ( 1.6)) 

11/lloo ::S CII/I/K,2n.-1, (3.3) 

where 

C = su { (n.-1 (b - a)2!·) 1/2 (b - a)n.-1/2 } 
p ~ k!2 '(n - l)! y'2n=-I . 

k-0 

(3.4) 
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Interpolation and regularization 
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In this section we discuss examples of sine- and spline-interpolation curves and illustrate 
the necessity of a regularization method. 

Let {t;};ET and {g;};ET be sequences of real and complex numbers, respectively. The 
interpolation problem consists in finding a function / lying in 1{ such that 

( #)/(t;1r/r) = g;, i El. ( 4.1) 

Here 1{ can be the Hilbert space of bandlimited functions Pr or the space of odd degree 
splines /C 2"'- 1 . 

If 1{ = Pr, then we define 

and if 1{ = /C2n.-l, we put 
cp; := u(•, t;1r/r). 

The function u is given by formula (3.1 ). In either case, by ( 1.2) and (3.2) the interpolation 
problem is a moment problem. It consists in finding / E 1{ such that 

(/, cp;) = g;, i E I. ( 4.2) 

By substitution in ( 4.2) and from Proposition III.1.2 it follows that the unique minimum 
norm solution of problem ( 4.2) is 

where 

I= LYi1Pi, 
iET 

1/); := I:cc-1 ),; 'Pj· 
jET 

The Gram matrix G is given by 

G;J := ('P;, cp;), i,j E II. 

If 1{ = Pr the elements of the Gram matrix are (formula (1.3)) 

G;j = sinc1r(t, - tj), i,j EI. 

If 1{ = JC 2n-l, then from formula's (3.1) and (3.2) 

( 4.3) 

( 4.4) 

If the time points {t;} are positioned equidistantly, we call it uniform sampling, otherwise 
non-uniform sampling. In Figure 4.1 the function h(t) = cos(71rt) is plotted fort E [0, 1]. 
It is sampled at the uniform time markers t, = i/10 for i = 0, 1, ... , 10. The interpolation 
curves in the case of sine, degree 0, degree 1 and degree 3 spline functions are illustrated 
in Figures 4.2 - 4.5. If h(t) is sampled at nonuniform time markers, the behaviour of 
the interpolating sine functions in Figure 4.7 changes drastically. The main reason for 
this behaviour is that the interpolation problem can be ill-conditioned for nonuniform 
sampling, as we will see in Section V.1. 
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Figure 4.6 is a plot of the interpolating spline of degree 3 for nonuniform sampling. If the 
degree of the spline is hrgh then the interpolating function tends to oscillate quickly. 

One way to avoid this oscillating behavioW' of the interpolating functions in the case of 
nonuniform sampling can be by applying Tychonov-Phillips regularization. By Theorem 
111.1.5 we know that this regularization {T'Y} corresponding to the moment problem ( 4.2) 
is given by 

T"Yg := EE((G + 11)-1);, g; 1./'j· 
jET iEf 

(4.5) 

In Figure 4.9 formula ( 4.5) is applied in the case ofsinc i-nterpolation in Pr with parameter 
value 1' = 10-4 • The regularization f~r third degree spline interpolation is illustrated in 
Figure 4.8 with regularization parameter 1' = 10-s. 

, ...... 

·l.s.+o 

Figure 4.1. Original function: cos(7,rx) with uniform sampling points. 

2.2..0 ·--
,.,...., 

7.S.-1 

a 

·7:llrl 

-•-
-2.2..+0 

-
0.25 --- a. 

-
-- --

0.7'5 

-

Figure 4.2. Uniform samples; interpolation by a spline of degree 0 
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2:..+cl ·--·-
7 llo-1 

0 

-7llo-l 

-U•+o 

-2:..+cl 

Figure 4.3. Uniform samples; interpolation by a spline of degree 1 

2.2.+o ·--

7llo-1 

-2.2.+o 

Figure 4.4. Uniform samples; interpolation by a spline of degree 3 
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-1.lh+O 

Figure 4.5. Uniform samples; interpolation by sine functions 

1.lh+O 

7.S.~1 

0 

-2.2e+O 

Figure 4.6. Non uniform samples; interpolation by splines of degree 3 
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7.5,,-1 

0 

•7.Sr-1 

-2.2.+0 

Figure 4. 7. Non uniform samples; interpolation by sine functions 

, ... .., 
a 

Figure 4.8. Non uniform samples; regularized interpolation by splines of degree 3 
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1.s.+o 

-1.s.+o 

Figure 4.9. Non uniform samples; regularized interpolation by sine functions 

IV.5. Solution and regularization of the mixed 
Fourier interpolation problem 

In this section we characterize the solution f of problem (0.1). We demand f to lie in 
the space L2 (D,'H.). Since in practice the data set will always be finite, we assume only 
for this section that the index set l is also finite in the case of bandlimited functions, say 
K = {l, ... , I}. (Because the results which are presented here are automatically valid if JI( 
is finite, it is for theoretical purposes still assumed that the index set JI( = 'll.. ) 

In the case of the mixed problem, we have measured a sequence of complex values {g,,.,;} E 
£2 (Jl( x .l) at the time points {t",;ir/r}"Efi,iEf• Assume that for each KE Jl(, the sequence 
{t",diEf consists of distinct time points. f E L2 (D, 'H.) is called a solution of the mixed 
problem if it satisfies, 

(5 .1) 

In the case that 1i = Pr, we define 

(5.2) 

lf1i=K2n-l, then 
(5.3) 

The function a is given by formula (3.1). In either case, it follows from t.he results of 
Section 1 and Section 3, that the mixed problem (5.1) can be solved by finding a function 
J E L2(D,'H.), which satisfies 

(l(i-), ,p,,,;) = g •. ,,, "El(, i E ]I. 

In order to compute the solution we define 

G;j(K) := ('P",j, ,p,,,,)1f, 

t/;.,,, := L (G(,;)-1 );;'Pn,J 
JET 

(5.4) 

(5.5) 
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C,c := L Y",i1P,c,i• 
iET 
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(5.6) 

Note that for each KE l{, the Gram matrix G(i.) is invertible, since {t",i}iET is a finite 
sequence consisting of distinct time points. 

For fixed K E K(, c" is the minimum norm solution of the interpolation problem: 

( #)c"(t,.,;-,r/r) = g,.,;, i EK. 

The following theorem guarantees existence of a solution / of the mixed problem. 

(5.7) 

Theorem 5.1 . Let the sequence {c"}"ET' C ?i be given by (5.6), where ?i 1s a 
separable Hilbert space. If 

then 

L llcKll1t < oo, 
KET< 

f = L c"eK. 
t<E T( 

is the unique minimum norm solution of problem (0.1) in the space L2 ( D, ?i). 

Proof: 

For K E K( fixed, cK. is the mi_nimum norm solution of the problem 

(c", <p",;) = Yt<,i, i E Jl. 

(5.8) 

(5.9) 

By Parseval 's relation from Theorem II.1.6, 111/1112 = L"E r, ll!(i.)112, for / E L2 (D, ?i), 
and by putting !(i.) := c" it follows that f := LKET<' c"eK. is unique minimum norm 
solution of the problem 

D 

From Theorem 5.1 it follows that the minimum norm solution of (0.1) is obtained by 
interpolation in time followed by Fourier inversion. It is not required to perform an 
interpolation in the Fourier domain. This result is of practical importance because for 
each K E K( one can solve the partial problem (5.7) and then obtain a solution of the 
entire problem (0.1) by Fourier inversion. This implies that, when solving (0.1) on a 
computer, one only has to store (for certain KE ff{) the partial data set {Y",;};Ef and find 
the corresponding minimum norm solution c". Repeating this procedure for each K E ff{ 
independently we then find the minimum norm solution f of the mixed problem by Fourier 
inversion. We can also formulate this result in another manner: the information contained 
in the data {g",i}iET is used only once for different values of KE ff{. 

If, however, the system {e"} is not an orthonormal basis for L2 (D,(C), then we have to 
perform an interpolation in the Fourier domain as well. 

The Tychonov-Phillips regularization {T •} corresponding to the mixed Fourier interpo
lation problem is given by Theorem III.3.3, 7-1 := {TJ}, where for g E C2 (ff) 

TJg := L Ecca(K) + 1n-1 ),; g, 'P",J· 
jE T iE T 

From this result it follows that the Tychonov-Phillips regularization is obtained by regu
larizing for each K E D{ independently. 
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Examples of solutions of the mixed 
Fourier interpolation problem 

We now give examples of solutions of the mixed problem in the Hilbert space L2 (D, Pr)
Let the sequence of time points {t",;}"El<,iET and the sequence of complex numbers 
{g",;} E fl(K x H) be given. The mixed Fourier interpolation problem in L2 (D, Pr) 
consists in finding an element/ lying in L2 (D, Pr) such that 

#i(,..,t",i1r/r) = 9",i' "E K<,i EI. 
In the following we give examples such that the conditions of Theorems III.3.2. and 111.3.3 
are satisfied. 

Define {h;} by formula (2.1) and {y:,",;} by formula (5.2). {h;};Ef is an orthonormal basis 
for Pr (cf. Section 1). From Section 5 we know that the mixed Fourier interpolation 
problem can be solved, by finding a solution of the mixed Fourier moment problem in 
L2(D, Pr): 

(J(K), Y:,",,) = 9",i' KE I{, i E ff.. 
To solve the mixed Fourier moment problem, we use the results of Section IIl.3. 

Example 6.1 . 

Assume that {t",;} satisfies 

lt",;-il~'Y, t.EI<,iEff.. 

Then by Theorem 2.2 the sequence { y:>",,},e r is a Bessel system in Pr for all " E H<. 
Moreover for each " E ll< there exists a bounded linear invertible operator R. such that 

R"h; = y:, •. ,;, i E ff.. 

The norm of R" satisfies the uniform estimate K E Jl(, 

IIR"II ~ e .. -Y, 

hence { R"} "EK is a uniformly bounded family of linear operators. By Theorem 11.2.1 
{e"y:,",;} is a Bessel system in L2 (D, !Pr) and there exists a bounded linear operator 1l on 
L2(D,Pr) such that 

Moreover 
l!RII ~ e"-Y. 

Introduce the linear operator A: L2 (D,Pr)-> £2(ll< x Jl), by 

A/ := { ((/, e"y:,",;}}} "El<,iE r, 
That A is a bounded linear operator can be seen as follows. 

IIA/11;,(l,xT) = L 1((/,e"y:,",;}}12 ~ L l((/,R(e.h,)))12 ~ 
"E r,,,e r 

L l((R* f, e"h,))1 2 = IIIR* 1111 2 ~ 11n112 111/1112 -

The mixed Fourier interpolation problem can now be written as an equation: 

At= g 

By Theorem 111.3.3 we have that the Tychonov-Phillips regularization {T-Y}-y>O of A+ has 
the decomposition 

where 
TJh = L L((G(i.:) + 'Y/)- 1 ),jh;Y:,.,j, h E £2 (ll). 

jEI iEI 
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In the cai,e of a Riesz-Fischer system in L2 (D, IPr) we have the following situation. 

Example 6.2 . 

Assume that for each fixed 1,, E K( the sequence {t",;};Ef is increasing and satisfies 

t",i+l - t",i 2 'Y > 1, i E K. 
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Then by Section 1 there exists for each 1,, E I( a bounded linear operator T,, on IPr such 
that 

T"'Pt<,i = h;, i EI. 

Moreover by Theorem 2.4 the norm of T 0 . can be estimated uniformly in 1,, E JI(, 

Hence {T"} is a uniformly bounded family of operators. By Theorem II.2.2 { et<ip,,,;} is 
a Riesz-Fischer system in L2 (D, IPr) and there existst a bounded linear operator T on 
L2 (D, 1Pr) such that 

Moreover 

IITII::; J2 _~h2 -

For a Riesz basis in L2 (D, 1Pr) we have the following example. 

Example 6.3 . 

Assume that for each fixed 1,, E JI( the sequence {t.,,;}iET satisfies 

lt",i - ii ::; a< 1/4, i E JI.. 

Let 1,, El( be fixed. By Theorem 2.6 there exists a bounded linear invertible operator T" 
on IPr such that 

Th:iph',l = h;, i E JI.. 

Moreover the norms of T0 . and T0-
1 can be estimated uniformly in 1,, E l{, 

1 
!IT"!!::; l - ). and l!T0~

1 l1::; 1 + )., ). := 1- cosim + sinrn. 

Hence {T"} and {T0~
1 } are uniformly bounded families of operators. By Theorem II.2.3 

{ e"<p",;} is a Riesz basis in L2 (D, IPr) and there existst a bounded linear invertible operator 
Ton L2 (D, 1Pr) such that 

Moreover 

The solution of the mixed Fourier interpolation problem is given by Theorem III.3.2. 
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Historical remarks 

In this section we give a brief sketch of the historical development behind the theory on 
the nonharmonic exponentials {ejt;(·)}, where {t;};e 1 is a sequence of real numbers and 
I= Z. 

The study of nonharmonic Fourier expansions was initiated by Paley and Wiener (1934), 
who discovered the possibility of representing a function / E L2 (-ir, ir] as a series of the 
form 

f = Ec;ejt;(·)_ 

iET 

Here the c; are complex numbers. In_ 1942, Duffin and Eachus showed that {ejt;(·l) is a 
Riesz basis for L2 [-ir, ir] if 

. log2 
It; - zl ~ 0 < --, j EI. 

1T 

This result also holds for a sequence of complex numbers. Ultimately it was Kadec (28] 
who showed (cf. Theorem 2.5) that for real {t;} the bound on the differences It; - ii could 
be improved to 1/4: 

It; - ii ~ 0 < 1/4, i E l. 

That 1/4 is in fact the "best possible" constant was already proved by Levinson (36] in 
1940. 

Since then the result of Kadec has been generalized, e.g. by Katznelson (1971 in (29]): If 
{t;} is a sequence of complex numbers, such that 

SUP;e 11Re t; - ii < 1/4, and sup;Eflim t;I < oo, 

then {eit;(•)} is a Riesz basis for L2 (-ir, ir]. (In fact, Katznelson proved a stronger result, 
which we do not state here.) 

There remain many open problems in this area; we only mention one. Every Schauder 
basis for L2 (-ir,ir] (Definition I.4.3) of the form {ejt;(·)} encountered so far was proved 
to be a Riesz basis. Open problem: Are there ba<;es of complex exponentials that are not 
Riesz bases? 
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Chapter V 

Stability of the Mixed Fourier Interpolation Problem 

The mixed Fourier-interpolation problem consists in finding a function 
/ E L2 (D, 1i) such that 

( a)f(K, t",,11:/r) = 9",'' KE II(, i E II. (01) 

We refer to this problem as the unperturbed problem. Here the data {9",,} E £.2 (Jl( x I) 
and the time points {t",;} are given. 

In this chapter we prove three types of error estimates. The first one is the aliasing 
error. Suppose the original function which is to be reconstructed is g. The data {g",;} are 
associated with this function g by the following relation 

g,,,, := (#)g(K,t",,11:/r), KE ll(,i E JI. 

Suppose that g lies in the function space L2(D,g) and not in L2 (D,1i), where the 
Banach space g contains the subspace 1i. (Note that then L2 (D,Q) contains L2 (D,1i)). 
The solution f of problem (0.1), however, is required to be an element of L2 (D,1i). This 
causes an error, 

1f ·- (j 2 )1/2 Ea! .- n llg(x, .) - f(x, .)llgdµ(x) , 

which we call the aliasing error. (A precise definition is given in Section 2.) 

The second error estimate is the amplitude error. Suppose the data {9",;} are perturbed 
to {g~,,}. The solution which corresponds to the perturbed data is called /' and satisfies 

(#) l'(K,t",,11:/r) = 9~,, KE ll{,i E JI. (0.2) 

The amplitude error is defined as the difference between f and /' in L 2 ( D, 1i )-norm: 

The third error estimate is called the time jitter error. Suppose the time points {t",,} 
are perturbed to { t~ ;} . The solution that corresponds to the perturbed problem is again 
denoted by f' and s~tisfies 

( #) l'(K, (,; 11:/1·) = g,,,; i EI. (0.3) 
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The time jitter error is the difference between f and J' in L2 ( D, 1i)-norm and is denoted 
1i as Etj. 

In section one we prove error estimates for sine interpolation in the Paley-Wiener space Pr. 
These error estimates will be used in section two to prove the stability of the mixed Fourier 
interpolation problem in the case of reconstruction by sine functions. There we also prove 
error estimates for the mixed problem in the case of spline functions. Conclusions which 
can be drawn from the error analysis of section two are presented in the third section. 

The notational convention in this chapter is as follows. JI{ is a countable index set and I is 
the finite index set { 1, ... , /} in the case of spline functions and Z in the case of bandlimited 
functions. Define D := (-ir, ir]" and let {e"}KET< be the canonical orthonormal basis for 
L2(D,~, . 

eK(x) := (1/..;'2;) e;""', 

where x ED. 
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V.1. Stability of Sine Interpolation 

In this section we consider stability and error estimates for the following interpolation 
problem. Given are data {g;} E £2 (1) and time markers {t;};er. The problem is to find a 
function f in Pr such that 

# f(t; rr/r) = g; i El. (1.1) 

The definitions of aliasing error, amplitude error and time jitter error for the time depen
dent problem (1.1) are given below. These errors are denoted as eal• eamp and etj to 
emphasize the distinction between the errors for the mixed problem (0.1). 

The first error estimate is the aliasing error, which we define as follows. (A precise 
formulation is given in Section 1. 1.) Suppose g is the original function which has to be 
reconstructed from the data {g;}, where g; := g(t;rr/r), for i E ff. Suppose g lies outside 
the Hilbert space P,-. Since the solution of problem (1.1) is required to lie in !Pr, we make 
an error, 

which is called the aliasing error. Here the supremum norm of a function f : lR -+ <C is 
defined as 

11/lloo := supfERlf(t)I-

The second error estimate we compute is the amplitude error, which is defined as follows. 
Suppose the data {g;} are perturbed to {g:}. The solution which corresponds to the 
perturbed data denoted as f' and satisfies 

# f'(t; rr/r) = g: i Ell. ( 1.2) 

The amplitude error is defined as the difference between f and f' in norm, 

A third error estimate, called the time jitter error, is defined as follows. Suppose the mea
surement times {t;} are perturbed to {t\}. The solution that corresponds to the perturbed 
problem is again denoted by f' and satisfies 

# J'(t\ rr/r) = g; i E ff. (1.3) 

The time jitter error is the difference between f and f' in norm, 

etj = II/ - J'II Pr· 

In subsections 1. 1, 1.2 and 1.3 estimates for the aliasing error, the amplitude error and 
the time jitter error, are given. 
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1.1. The aliasing error 

Here we give an estimate for the aliasing error. We restrict ourselves to the case of uniform 
sampling, i.e. t; = i for i El. First, define the operator P : S-. !Pr by 

Ph := L) #) h(i1r/r) sincr(- - irr/r), (1.4) 
iET 

for h E S. Here Sis the linear space of rapidly decreasing functions, cf. Hormander [26] 
Definition 7.1.2. p. 160, which is defined as the collection of all C00 ( JR)-functions / such 
that 

SUPxERlx" (d/dxt f(x)I < oo, 

for all positive integers a and /3. L""'(JR) is the space of bounded measurable functions 
with norm 1111=· L"°(JR) is a Banach space. Note that Sand !Pr are subspaces of L00 (R). 
So, we can define the aliasing error as 

ea! := llh - Philco
Note that this definition coincides with the previous one. 
To prove an estimate for the aliasing error, we use the Poisson summation formula, which 
we state as a Lemma. 

Lemma 1.1. For any function h E S the Poisson summation formula holds, that is 

L h(~ - 2k/r) = ( J;Ti)(l/r) L h(i1r/r)e-J{i1r/r_ 
k=-co 

Here j 2 = -1. 

The next lemma provides a bound for the aliasing error. 

Lemma 1.2 . For h ES, 

( 1.5) 

Proof: 

For h E S we have the relation 

ih(t)I = I ~ J.h(Oeit{~I '.S ~ j lh(Ol~-
v21r n v21r n 

So, 
1 -llhllco '.S J2; llhllr 1 (R)· 

We recall the relation between sine functions and the complex exponentials ( cf. Section 
IV.2), 

( sinC7•(- - i1r/r))CO = ( J;Ti)(l/r) x(ai·)e-J{nr/r_ 

Here x is the indicator function of the interval [-1, 1]. Now it follows by Lemma I .1 and 
the two relations above that 

1 - -llh - Phil= '.S J2; llh - (Ph)llr1cnJ = 

1 j - oc, J2-; R lh(O - if= ( J;Ti)(l/r) h(i1r/r)x(~/r)e-i{,1r/rld~ = 

1 j_ l(I - x(~/r))h.(0- I: h(~ - 2k/r)I '.S /3; f lh(~)ld( 
J2; [ r,r] k=-oo,!-#O }R\[-,,r] 

□ 
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A proof of a similar statement can be found in Natterer [42] Theorem 1.3, pp. 57-59. 

1.2. The amplitude error 

55 

Let {g;};Ef, {g:},Ef E £2 (.H) be the data corresponding to problem (1.1), and the per
turbed data corresponding to (1.2) respectively. 
The following proposition holds in the case of a separable Hilbert spaces 1-i with orthonor
mal basis {h;};Ef, 

Proposition 1.3 . Let {ip;};Ef be a Riesz basis in a Hilbert space 1-i, with biorthogonal 
system {iJ,;};Ef, and suppose {g,}, {g:} E £2 (1). The Following estimate holds, 

II ~)g, - g:)iJ,;111-t s; 11c-1 ll 112 Ilg - g'II,,, 
iE/ 

where G is the Gram matrix given by 

Proof: 

By (I.5.3) and (I.5.2) we obtain 

II L(g, - g:)iJ,,111-t = 
iE/ 

iE/ iE/ 

This proves the proposition. □ 

Now take 1-i = IPr and let {h;} and {<p;} be given by formula (IV.2.1). The biorthogonal 
system {ij,;} of {<p;} is computed by (I.5.4). The solution of problem (1.1) is called /, 
the solution of the perturbed problem ( 1.2) is denoted by / 1 , which are L,;e I g,ij,, and 
L,;Ef g:ij,, respectively ( cf. Theorem III.1.4). By Proposition 1.3 we obtain, 

(1.6) 

where the Gram matrix G is 

From this estimate it follows that the solution is stable for perturbation of the data, since 
c-1 is a bounded operator on £2 (1) if It, - ii < o: < 1/4, for i E l. By Theorem IV .2.6 and 
(I.5.2) the normofG- 1 is estimated by 110-1 11 112 :::: 1~,\' where.\:= 1- cos1ro:+sin1rn. 

We see that the norm of c-1 in the case of uniform sampling is equal to 1. In the case of 
nonuniform sampling the norm of c- 1 may become larger if a tends to 1/4. The problem 
(1.1) is called well-conditioned if IIG- 1 11 is close to 1, otherwise it is called ill-conditioned. 
In the case of uniform sampling ( o: = 0) the problem is well-conditioned under perturbation 
of the data and the problem is ill conditioned if a is close to 1/4. 
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1.3. The time jitter error 

Let { t;};Ef and {t:};Ef be the sequences of exact, respectively perturbed time markers. 
The solution of the exact problem ( 1. 1) is written as / and the solution of the perturbed 
problem ( 1.3) as /'. Recall formula (IV .2.1: 

h; := ( Jr-r;) sincr(, - i7r/r) and ip; := ( Jr-r;) sincr(· - t;7r/r). 

The system corresponding to the perturbed time points is defined as 

Suppose 

Then, by Theorem IV.2.6, {ip:};ef is a Riesz basis for Pr. So, there exists a bounded 
linear invertible operator T', satisfying 

(1.7) 

Moreover 

IIT'II < 1 IIT'-1 II _< 1 + .X', - 1- .X'' 

where 
.X' := 1 - cos 7rc,' + sin 7rCL1• (1.9) 

The biorthogonal system of { ip:} is denoted by { v,:}, which can be computed by 

i,1,: = E (G'-' );j'Pj, i E I. (1.10) 
jET 

Here G' is the Gram matrix of the system { ip~}, 

(1.11) 

Again we have a relation between T' and G', 

IIG'_, 11 112 = IIT'II- (1.12) 

The solutions / of problem (1.1) and /' to problem (1.3) are / = L,ET g;ip,, and /' = 
L;e, g;ip:. { ip;} can be computed by (I.5 .4): 

1/J; = E(G-l)ij'Pj, 
jeT 

the Gram matrix G is given by (IV .1.3). 

In order to find a.n estimate for the time jitter error, we choose the following approach. 
We look for a. perturbation operator V, such that V ip; = ip:, for a.II ; E JI. If such a.n 
operator and unique biorthogonal sequences exist, then we have the relation ip, = V*v,:. 
The following proposition expresses the difference between / and /' in terms of the norm 
of the operators T' and / - V. Note that this proposition holds for arbitrary separable 
Hilbert spaces 1i. 
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Proposition 1.4 Let { cp;} C 1i, where 1i is a separable Hilbert space. Define 
cp: := Vcp; for i Elf, where Vis a bounded linear operator. If {cp:};Ef is a Riesz basis for 
Ji, then 

II L 9i1Pi - L g;l/>:1111. s; III - VII IIT'II IIYIJ,,. 
iEf iEf 

Here {1/;:};Ef is the unique biorthogonal system corresponding to {cp:}; {1/;;} is given by 
1/;; := V*l/;: and {g;} E £2(1). 

Proof: 

iET iET iET 

III - VII II L g;T'*hdl11. s; III - VII IIT'll 11 L g;hdl11. = III - VII IIT'II IIYll,2 -

iEf 

which proves the estimate. □ 

In the following we give conditions under which such an operator V exists, and in addition, 
we obtain an estimate for the norm of I - V in terms of the differences oft; and t:. First 
we prove a lemma. 

Lemma 1.5 . Let { cp; LET be a Riesz basis for a separable Hilbert space 1i. Suppose 
{ cp:};Ef satisfies 

iE T 

where C is a constant. Then there exists a bounded linear operator V on 1i such that 

and III - VII s; IITJjC. 
Proof: 

Let {cp;} be a Riesz basis for Ji, then Tep;= h; and 1/;; := T*h; is its biorthogonal system. 
Define the bounded linear operator W on 1i by 

Wf = L{/,cp; - cp:)11. 1/;;. 
iET 

Then, 

IIW 1112 = II LU, cp; - cp\)11. l/Jdl¾ s; 
iET 

iET 

So IIWII s; CIITII. The adjoint of W is 

W* I= LU, 1/;;)11. (cp; - cp;), 
iET 

and 

(I - W*)cp; = cp\. 

The result follows by taking V = I - W*. □ 



58 Chapter V: Stability of the Mixed Fourier Interpolation Problem 

Lemma 1.5 is a slight generalization of Scha.t'ke's Theorem( cf. Young [55]) where the 
system {<p;}iEI is assumed to be an orthonormal basis. 

An estimate for the time jitter error can now be derived, by means of a norm estimate 
for I - V. The Gram matrices G and G' are given by formula's (IV.1.3) and (1.11), 
respectively. 

Theorem 1.6. Let {t;}ie1 and {tD;e1 be sequences of real numbers which satisfy, 

it; - ii ~ o < 1/4, i E l, 

it: - ii~ o' < 1/4, i El. 

The time jitter error can be estimated by 

where 

Proof: 

( 1.13) 

(1.14) 

(1.15) 

If {t;} satisfies the estimate of Theorem 1.6, then { <p;} is a Riesz basis for Pr. Let/ E Pr, 
then 

(7r/r) L l/(t;7r/r)l2 = II# L /(t;'ll'/r)h;llh = 
iEJ 

iET iE1 

So, the conditions of Lemma IV .2.1 are satisfied with B = IIT-1 11- After putting s, = t; 
and p; = t: in Lemma IV.2.1, it follows that 

iET iE1 

Hence the sequences { <p;} and { <p:} satisfy the conditions of Lemma 1.5, with C = 
IIT-111( e"'-r -1). This implies the existence of a linear operator Von Pr such that V <p; = <p: 
and 

III - VII~ IITII 11r-1 ll(e"'-Y - 1). 

Since the {t:};e1 satisfy (1.14), the system {<p:};EI is by Theorem IV.2.6 a Riesz basis. 
By Proposition 1.4 we have that 

/and/' are solutions of (1.1) and (1.3) respectively. D 
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A few- remarks are in order. From this estimate we see that problem ( 1. 1) is stable for 
perturbation of the time markers. Theorem IV.2.6 and the norm estimates (I.5.2), (1.12) 
yield 

and 

Here 

and 

11011 112 ~ 1 + A, 

110-1111/2 ~ 1 ~ A 

A := 1 - cos ira + sin ira 

A1 := 1 - cos ira' + sin ira1 . 

In the case of uniform sampling ( a is zero and a 1 is close to zero) the problem ( 1.1) is well
conditioned for perturbation of the time markers. If we sample nonuniformly, especially 
when a or a 1 is close to 1/4, the problem may become ill-conditioned for perturbation of 
the time markers. 

There is an alternative way to obtain an estimate for the time jitter error. Suppose we did 
measure the data {g;};Ef at the time markers {t;_ir/r},Ef- But somehow, the sequence of 
measurement times is re~ered by our device as {t:ir/r };Ef. The function we sampled is 
denoted by/, so g; = -..jir/r f(t;ir/r). The situation which is registered by our measuring 
device is false, since it says that the value of/ at t:ir/r is equal tog;. However, the true 
value of/ at t:ir/r is g: := ( #) /(t:ir/r). So we should consider {g:};Ef as the exact 
data and {g;};er as the perturbed data at {t:ir/r};Ef- With the above notation, we have 

I= L 9i1Pi = L g:1:, (1.16) 
•ET iET 

and we define f' = I:;;Ef g;ip:. The time jitter error is given by 

The estimate in Theorem 1.6 can now be derived from estimate (1.6) of the amplitude 
error. Let {t;} and { t:} satisfy the conditions of Theorem 1.6. By applying (1.6) with 1: 
and O' in the role of 1/J; and O respectively, we find 

eij = II/ - I'll},, = II L(g; - g:)1/J:II},, ~ 
iE T 

iET iET 

From the proof of Theorem 1.6, we know that the sequence { t;} iEf satisfies the condition 
of Lemma IV.2.1, with B = IIT-1 11- Hence 

The desired estimate now follows from the formula's (1.16), (I.5.3) and (I.5.2). This shows 
that the estimate of Theorem 1.6 can be proved by using formula (1.6). 
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V:2. Error Estimates for the Mixed Problem 

The previous estimates are used to derive conclusions for the stability of the solution 
of the mixed problem in practical situations. The different types of error estimates are 
derived throughout several subsections. 

2.1. The aliasing error for the mixed problem in the case of sine-interpolation 

We give a bound for the aliasing error for the mixed problem in the case of sine
interpolation for uniform sampling only. Let 1i = Pr and t,,.,; = i, for all K E l( and 
i E .l. 

The aliasing error is due to the fact that the solution of the mixed problem is not lying in 
the same function space as the sampled function. 

Define the operator U from L2 (D, S) into L2 (D, Pr), as 

Ug(x, .) := L P[g(K, .)]e,,(x), 
"-ET< 

where P is the operator defined in Section 1.1. Note that L2 (D,S) and L2 (D,Pr) are 
subspaces of L2 (D, L 00 {R)). The definition of the aliasing error is 

1i ·- (j 2 )1/2 Ea! .- llg(x, .) -Ug(x, .)jj 00 dµ(x) . 
TI 

(2.1) 

Definition (2.1) is motivated as follows. Let g E L2 (D, S) and suppose g(K, .) E S for 

arbitrary KE I<, then by definition (Ug)(K,.) = P(g(K,.)). Ifit is evaluated at the time 
marker t,,,;1r/r, we obtain the equality, 

So the term Ug is a solution to the mixed problem lying in L2(D, 1i), if g E L2 (D,S). 

We now give a bound for the aliasing error. The Fourier transform of a function g E 
L2(D,S) which is taken with respect tot, is denoted by g(x,O. 

Theorem 2.1 . 

Proof: 

E"' < al - (2.2) 

By definition of U and by Theorem II.1.6, we obtain Ug(x, .) = P[g(x, •)],µ.almost every
where. The estimate follows by Lemma 1.2. 
D 

2.2. The aliasing error for the mixed problem in the case of 
spline interpolation 

The aliasing error for the mixed problem in the case of spline functions is as follows. Let 
1i = K2n-l, and assume that for each K E /[( the sequence {t,,,;},E/ consists of distinct 
real numbers. Define the operator P,, by 

P,,h := L( J;T;-)h(t •. ,,1r/r) tj,,,,,, h ES. 
iET 
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Here 1/J~,i is given by (IV.5.5). Assume that for arbitrary g E L2(D,S), the Fourier 
transform g(K, .) lies ins, for KE II< and suppose L1<EK IIP,,(g(K, ·)lllk2n-1 < 00, for all 

g E L2 (D,S). Define U by 

Ug := L P"(g(K, .))e", g E L2(D,S). 

U is an operator from L2(D, S) into L2 ( D, x:.2n-l ). The aliasing error for the case of odd 
degree splines is defined as 

Before estimating the aliasing error, we give a lemma. 

Lemma 2.2. For any h ES and for KE II{ fixed, 

llh - P"hllr.'([n,h])::; IIA"ll 112 lld/dt h- d/dt (P"h)llr.'[n,h], (2.3) 

where IIA"II = I:{,:~(l/2)(t",i+1ir/r - t",;ir/r)2. 

Proof: 

By the Cauchy-Schwarz and Taylor's formula (Section IV .3) it follows that for 
t E (t,.,;ir/r, t",i+l ir/r) 

lh(t) - P,..h(t)I::; { ld/ds h(s) - d/ds (P"h)(s)lds::; 
J[1 •. ;1r/r,t] 

(t - t,..,,ir/r)1l 2 lld/ds h - d/ds (P,..h)llr.'[a,h]· 

So 

{ lh(t) - P"(h(t))l2 ::; (I: ft•,'+' 1r/r (t - t",;ir/r)dt) II( d/ds)h - ( d/ds)P"hll},[n,h] = 
J[n.,h] i=O t.,;1r/r 

T-1 

(1/2) L((t",i+l - t",;)ir/r)2ll(d/ds)h - (d/ds)P"hll},[n,h]· 

This proves the result. 

Theorem 2.3. 

~2n-1 . l/2 ( 11~- _ ~ - 112 )1/2 al ::; (sup1<ET, IIA .. II) L_ {)tg(K, .) ot (U g)(K, .) T.'[n,h] . 
K.El\ 

Proof: 

It follows from Lemma 2.2 that 

/(,2n-1 ( )1/2 
Eal = L 11(1- P,..)g(K, -)117.'([n,h]) ::; 

K,E ,,~ 

□ 

(2.4) 

□ 
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2.3. The amplitude error for the mixed problem in the case of 
sine- and spline- interpolation 

We consider the amplitude error for the mixed problem in the case of sine- and spline
interpolation. Let 1i = Pr or 1i = l(,2n-l. In this subsection we take for Jl{ a finite 
index set and assume (for each K E Jl{) that the time points {t",;};Ef are increasing real 
numbers. Suppose the data {g",;}"El<,iET are perturbed to {g~,;},,EK,,EI· The solution 
of the unperturbed problem is given by (Example IV.6.3) / = I:;,,Ef,c"e", where c" = 
I:;;Ef g,,,;t/!,c.,i• The solution of the perturbed problem (0.2) is given by /' = I:"EI< c~e", 
where c~ := I:;;Ef g~,,t/!",i· 

Theorem 2.4. 
(2.5) 

Proof: 

By Theorem II.1.6 

'Ji2j I 2 '"'~ ~, 2 (Eamp) = 11/(x, .) - / (x, .)111idµ(x) = L., 11/(K) - f (K)ll'Ji· 
"ET< 

By Proposition 1.3, it follows that 

□ 

2.4. The time jitter error for the mixed problem in the case of 
sine- and spline-interpolation 

Let 1i = 1Pr or 1i = K}"- 1 . In this subsection we take for II< a finite index set. Assume 
(for each KE /K) that the time points {t,,,;};e1 are sequence of increasing real numbers. 
Now suppose the time points t,,,; are perturbed to(,,, such that 

jt,,,,-t~_,I:::;,, KEl{,iEll. 

The solution of the unperturbed problem is (Example IV.6.3) / = I:;,,E 11. c"e", where 
c" = I;;Ef9",i1P",;. The solution of the perturbed problem (0.3) is/'= I:;,,EKc~e", 
where in this case 

Here 
1P~,, := L(G'(K)-l)ij\O~,j, 

jET 

where for K E JI{ fixed, the Gram matrix is 

(G'(K));J := (\O~,J' \O~,.)'Ji, 

and \O~,J is defined by (IV.5.2) and (IV.5.3) if1i = 1Pr and if1i = l(,2"- 1 , respectively. 

Before giving an estimate for the time jitter error, we prove two lemma's. We denote the 
sequence {t",;};e1 by t,., for KE JI{ and {g",;}iET by g". (For the perturbed time points 
and data analogous notation is used.) 
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Lemma 2.5. If 1i = P,, then for fixed K E II{, 

This is an application of Theorem 1.6. The following lemma deals with the case that 
1i = K2n-1. 

Lemma 2.6. If 1i = K,2n-l , then for fixed K E II{, 

llc,. - c~)IIK,2n-l ~ 

( 2IIG(K)-1 ll112 + ( ir/r}312 IIG'(K )-1111 12 lit" - t~llt2 (T)) (lld/dt c"lloo + 119"11,,c T)) · 

Proof: 

The inequality will be proved using (1.5), as follows. Define, for K E II{ fixed, h,. := 

L,,€1 9",,1P",' and h~ := L,;e, g,.,,1/'~,i• (Note that h"· = c" and h~ = c~.) Let g~., := 
( #)h,.(t~,;ir/r). Define /,. = L,,Ef g~.,1P:,,,· Then /" satisfies ( #) /".(t~,,ir/r) = 
9~,i = .._f;F,h,.(t~,,ir/r). By the minimum norm property we have 
ll/"IIK,2n-l ~ llh,.IIK,211-1, So, 

II L 9",i(1P,.,i - 1P:,,)IIK,2n-l = llh,. - h~IIK,211-l ~ llh" - /,.IIK2n-l + II/" - h:,11K,2n-l ~ 
iET . 

II/" - h~IIK2n-l + IIJ,.11 + llh"IIK,2n-l ~ II/" - h~IIK,2n-l + 2llh"IIK2n-1 = 

II L(9~,i - g,.,,)IP~,,IIK,211-l + 2llha,IIK2n-1 · 
iET 

We have 9><,i = ( #) h,.(t,.,,ir/r) and 9~,i = ( #) h,.(t~.,ir/r). Using (1.5), with IP, 
and G replaced by IP:,, and G' ( K) and applying the mean value theorem to h,., we get 

llh., - h~IIK,211-l ~ IIG'(K)-l 11 112 Ilg" - lllt'(T) = 

IIG'(K)-1111/2 ( #)llh,.(t.,ir/r) - h"((ir/r)ll,,uJ ~ 

(ir/r)~12 IIG'(K)-1111 12 lld/dt h"lloo lit" - t~ll1 2 uJ-

Again by using formula (1.5) with V', replaced by 1P",;, G by G(K), g, by g"··' and with 
g: = 0 for all i E JI, we obtain the estimate 

llh"IIK,2n-l = II L 91<,i1Pe,,illK2n-l ~ IIG(K)-1 ll 112 ll9"lhn · 
iET 

□ 

Theorem 2. 7 . 

~r2n-1 
t:.t' < J -

(2.7) 
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Proof: 

Using Theorem II. 1.6 we obtain 

(E~)2 = f, IIJ(x, .) - f'(x, -)II~= L lll(K, .) - f'(K, -)Ilk 
n "ET( 

Note that (for KE I( fixed) l(K, .) = I:;;Ef g",i1P1<,i and l'(K, .) = I:;;Ef g",i1P~,;- The result 
follows by applying Lemma 2.5 and Lemma 2.6 in the case that 1{ = Pr and 1i = l(,2n-l, 

respectively. D 

V.3. Conclusions and Remarks 

In this section we make some additional remarks and state conclusions about the error 
estimates for the mixed problem. 

A problem is called stable, if small perturbations of the data yield small errors in the 
solution. From the estimates (2.5), (2.6) and (2.7) we conclude that problem (0.1) is 
stable for perturbation of the data and time points. The bounds for the amplitude error 
and aliasing error, depend on the norms of (G'(K))- 1 , G(K), or G(K)- 1 . Problem (0.1) is 
called well-conditioned if the norms of the matrices are close to one ( cf. Stoer and Bulirsch 
[52], p. 13). Otherwise it is called ill-conditioned. 

The aliasing error for sine-interpolation, formula (2.2), depends on the energy outside the 
band [-r, r]. If the measured function g is essentially bandlimited, i.e. for all x ED, 

J, lg(x,Oldedµ(x) :s: £, 

R\[-r,rl 

then ~al :S: ~ £. It follows that if g is bandlimited (i.e. £ = 0), then the aliasing 
error 1s zero. 
The aliasing error for spline-interpolation, formula (2.4), depends on the temporal deriva
tive. If the spline has a high degree, then it tends to oscillate quickly. So, if the measured 
function oscillates quickly in time, the degree of the interpolating splines should be high. 

The amplitude error for sine- and spline-interpolation, formula (2.5), depends on the 
norm of the Gram matrix G( K )- 1 . If for a certain K E JI( the norm of this matrix is large, 
the problem is ill-conditioned for perturbation of the data. 
In the case of sine functions, we can say more: If the time points {t",;};er (for all K E 
/l() are spaced uniformly, then IIG(K)-1 11 = 1, hence the problem is well-conditioned for 
perturbation of the data. 

The time jitter error for sine-interpolation, formula (2.6), depends on the norms of 
(G'(i.))-1, G(K), and G(i.)-1. If (for all i. E II{) the elements of the sequences {t",i};Ef 
and {t~ ;};ET are spaced uniformly, then these norms are equal to one, hence the problem 
is well-~onditioned for perturbation of the time points. If, however, for one KE Jl( this is 
not the case, the problem may become ill-conditioned. 
The time-jitter error for spline-interpolation, formula (2.7) depends on the inverses of 
Gram matrices (G'(K))- 1 and G( K)- 1 and on the temporal derivative of the reconstructed 
function. So, the problem becomes ill-conditioned for perturbation of the time points if 
(for a certain K E l{) the degree of the spline is too high or if the norms of the matrices 
are large. 

The conclusion is that the reconstruction algorithms for sine-interpolation are well
conditioned, if (for each K E II() the time points {tK,;}iET are sampled uniformly. The 
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reconstruction by spline interpolation is well-conditioned if the norms of the inverses of the 
Gram m~trices are small and if the degree of the interpolating spline is not too high. On 
the other hand, if the degree of the spline is too low, then the aliasing error may become 
large, which will also cause serious errors in the reconstruction. 

If the problem is ill-conditioned a regularization technique can be employed to compute 
the solution. In this chapter the Tychonov-Phillips regularization corresponding to the 
mixed Fourier interpolation problem is used (see section IV.5). 
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Part Two 

Dynamic MRI Reconstruction 

This part corisists of two chapters and deals with measuring and reconstruction techniques 
of magnetic resonance imaging (MRI) and with stability of the reconstruction methods. 
This part is self-contained and can be read independently of Part One. The emphasis lies 
on the practical aspects of MR-imaging and not on the underlying mathematical theory. 
For convenience, the results of Part One will be discussed briefly and consequences for the 
reconstruction problem are stated and illustrated by means of pictures. 

In chapter six we explain the measurement and reconstruction technique for magnetic 
resonance imaging in the case of the beating human heart. The measuring technique 
discussed here is called 'retrospective gating' ( also called retrospective triggering), see 
Bohning [8], Glover and Pelc [17] and Lenz et al. [35]. 
Good introductions to the physics of MR-imaging can be found in Hinshaw and Lent [25], 
Locher [37], King and Moran [30] and Mansfield and Morris [39]. Some references from by 
now classical literature about MR-imaging are Lauterbur [33] [34] and Kumar, Welti and 
Ernst [31]. References about imaging the beating human heart (with techniques differ
ent from retrospective gating) are McKinnon and Bates [40] in the case of computerized 
tomography (CT), and Van Dijk [16] for MRI. 

Chapter seven presents a discussion of the stability of the algorithms, which will be il
lustrated by reconstructions of test images from perturbed data. Here we use the results 
obtained in Chapter five. We also discuss the practical error sources, which are not taken 
into account in the reconstruction problem considered in Chapter six. 
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In this chapter we formulate and solve a reconstruction problem concerning Magnetic 
Resonance Imaging (MRI), which is a diagnostic technique to measure and display cross 
sections of human organs. In particular the problem how to reconstruct a cross section 
of the beating heart is considered. The general problem in dynamic MRI is that, due 
to physical limitations, the standard measurement technique is not suited to acquire all 
the necessary data for a single time frame, in a time period which is short enough to 
neglect the motion of the heart. The word 'dynamic' in dynamic MRI refers here to the 
motion which is involved, to make a distinction between MRI which only involves a spatial 
parameter. 

In the case of the beating heart one can make use of the (approximate) periodicity of 
the heart motion. That is, data corresponding to the same relative heart phase may be 
recorded at different heartbeats. This presupposes, of course, some degree of reproducibil
ity of the heart motion in successive cycles. There have been various ways to deal with 
this problem. McKinnon and Bates [40], who considered cardiac imaging in the context 
of computerized tomography (CT), assumed the number of cycles to be sufficiently small 
such that the heart motion during these cycles can be assumed to be 'quasi-stationary'. 
This led them to consider no more than 12 cycles, leading to a reconstruction problem 
with a considerable amount of missing data. 

Another alternative, which will be pursued in the following two chapters, is to assume 
that there is a simple rule to map heart intervals of different duration to a standard heart 
interval of unit length. Different rules can be imagined, the simplest one being to rescale 
linearly with time on each heart interval. In vl.3 to perform this synchronization of the 
data, the electrocardiogram (ECG) is simultaneously recorded and used as a. reference 
signal. 

In Section 1 we first review the data acquisition process of MRI in genera.I. Then we discuss 
the retrospective gating technique for cardiac imaging and explain how reconstructions at 
different heart phases can be obtained in principle. In Section 2 we describe the solution 
method which was obtained in Part one of this thesis. Section 3 contains reconstructions 
of test images and Section 4 contains reconstructions of MR-data. In Section 5 we state 
our conclusions. 
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Vl.1. 

Chapter VI: Problem Formulation and Solution 

Problem Definition of dynamic MRI 

In this section we give an introduction tci cardiac imaging by MRI techniques. In par
ticular we explain the data acquisition based upon the concept of 'retrospective gating', 
as compared to the more conventional technique of ECG-triggered cardiac imaging. To 
make this part self-contained we start with a brief discussion of the principles of MRI. 

1.1. The physics of magnetic resonance imaging. 

As we will show in this section, the Fourier coefficients of the spin density of tissue in a 
cross section can be measured. Here a spin density is represented by a function f : D -> <I', 
where D is a bounded set representing the cross section of the human body. For simplicity 
we assume that D = [0, 2ir]2 := [0, 2ir) x [0, 2ir). The amplitude lf(r)I is the proton density 
at position r, i.e. it is a measure for the 'number' of protons per unit area. For muscle 
and fat tissue 1/(r)I has a larger value than for bone or lung tissue. This is because the 
density of hydrogen atoms, which are built up from elementary particles like protons, is 
higher for muscle or fat tissue than for lung or bone tissue. 

The principle underlying MRI is to reconstruct this spin density from the measured Fourier 
coefficients and to display its amplitude I/I on a computer screen. In this section we explain 
the physics and the data collection strategy of MRI. 

The measurements are performed with the aid of magnetic fields by which the spins of 
hydrogen atoms in the human body are forced to emit radiation with a unique frequency 
at each point. 
This radiation is measured by the MR-device, in which (approximately) a signal given by 

( 1.1) 

is induced. Here j 2 = -1, f : D -> <I' is the spin density of the measured cross section, 
t is time, r := (x,y) is position, 'Y is the gyromagnetic ratio and G = (Gx,Gy) is the 
xy-component of the magnetic gradient vector, as explained in Hinshaw and Lent [25). 
The notational convention used in this chapter is to denote vectors and matrices in bold 
face. From formula (I.I) it is seen that S(t) is the Fourier transform of the spin density 
f : D -> <I', for fixed t. In the following we explain how formula ( 1. I) can be obtained. 

We distinguish the following four types of magnetic fields. The fields described in 1,3 and 
4 are parallel to the z-axis, and the radio frequency pulse, a rotating magnetic field in the 
xy-plane, is described in 2. 

l. A strong homogeneous field to align the spins in one direction, called the z-direction; 
this direction is the equilibrium direction of the spins. 

2. A radio frequency pulse ( rf-pulse), that is, a rotating electromagnetic field in the 
xy-plane, which is applied for a very short time to push the spins out of equilibrium. 

3. The z-component G, of the gradient vector, by which the cross section is selected, 
see for example Hinshaw and Lent [25]. We will not take this component into consid
eration, but we always assume that the spin density of a particular two dimensional 
object will be measured. 

4. The magnetic gradient field, (0, 0, G.r) 1 , which forces the protons at position r = 
(x, y) to resonate with a unique frequency. Here G = (Gx, Gy) is the xy-component 
of the gradient vector ( G,,, Gy, G,). 
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Figure Vl.1 
rf-pulse. 

A sketch of the homogeneous field, the magnetic gradient field and the 

A complete sequence of rf and magnetic gradient pulses is sketched in Figure VI.2. 
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Figure VI.2 . Sequences of gradient field, rf- pulse and echo S(t) 

In order to study the effect of magnetic fields on the protons in the selected cross section 
of a human organ, we consider the magnetization M(r, t), which is the spin density at 
position r and at time t. 
The three magnetic fields described in 1, 2 and 4, are here denoted, for computational 
convenience, as one magnetic field which is position and time dependent, 

B(r,t) =Bo+ dB(r) + B1(t). ( 1.2) 
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H~re Bo is the homogeneous field parallel to the z-axis, B 1 (t) is the rf-pulse which depends 
on the Lannor frequency w,. = 7B0 and AB is the magnetic gradient field, that is 

The magnetization M(r, t) satisfies the so called Bloch equation, 

8M(r t) ( -M,,(r, t)/T2(r) ) 
81 ' =1M(r,t)xB(r,t)+ -My(r,t)/T2(r) , 

(Mo - M,(r,t))/T,(r,t) 
(1.3) 

where T1(r) and T2(r) are relaxation times and M 0 is the equilibrium magnetization, 

M,=(JJ 
The relaxation times T1 and T2 represent the effect of the relaxation processes. T1 is 
the longitudinal or spin-lattice relaxation time which governs the evolution of M, towards 
its equilibrium value Mo; T2 is the transverse or spin-spin relaxation time which governs 
the evolution of the magnitude of the transverse magnetization ( M,,, My) towards its 
equilibrium value zero; in general T1 is much larger than T2. 

Dropping the variables rand t, we rewrite the equation (1.3) as (cf. Mansfield and Morris 
[39]) 

8M 8t = QM + Mo/T, , ( 1.4) 

where 
w 

-l/T2 
-1B1 coswr.t 

Here w = 1(Bo + G.r). 

Now consider (1.4) in a coordinate frame that rotates with the Larmor frequency wr. 
around the z-axis. We introduce the variable M = RM, where the rotation matrix R is 
given by 

- sinw,.t 
coswr.t 

0 

The tilde indicates that a variable is transformed to the rotating coordinate frame. Then 
the Bloch equation (1.4) reduces to 

aM -,;- = AM+ Mo/T,. 
ut 

( 1.5) 
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Here 

and w1 = 1B1, Llw = G.r. 

The unique solution of (1.5) with initial value M(O) is 

M(t) = eAt M(O) + A - 1 [eAt - Id]M0 /T1, 

where Id is the identity matrix. The inverse of A is 

1 ( r,\, +w12 

A -1 = det(A) (~w~:1 
with det(A) = -(r,h2 + W + (Li;,12 ). 

(1.6) 

It is convenient to decompose A as the sum of its symmetric part and its anti-symmetric 
part, T and F respectively. 

Aw 
0 

We now consider the effect of the three magnetic fields on the magnetization M. The 
homogeneous magnetic field is a constant magnetic field in time. The other fields, which 
are switched on and off now and then, are being used to influence the state of the magne
tization. 

1. Due to the homogeneous field B 0 we have that w = wr. f; 0, w 1 = 0 and Aw = O; 
hence A = T and (1.6) reduces to 

(1.7) 

If t is large, then M(t) ~ M 0 , parallel to the z-axis, i.e. M is approximately in the 
equilibrium state if t is large. 

2. The rf-pulse is a strong field which is applied for a very short time, while the 
magnetic gradient field is zero, so 

0 

and 
A -l [eAt - Id]Mo/T1 ~ 0 

and A~ F. Suppose M(O) = M 0 , then (1.6) becomes 

M(t) ~ e-FtMo, (1.8) 

which is a rotation around the x-axis with frequenty w 1 = 'Y B1 . Applying the rf
pulse for a time period of t"', = ½ ir /w 1 , we obtain the so called 90° pulse, which 
results in the following state for the magnetization, 



72 Chapter VI: Problem Formulation and Solution 

·3, The magnetic gradient field (AB) is considered, which is applied after the rf-pulse. 
The matrix element Aw # 0, but w1 = 0 (because the rf-pulse is off). Then equation 
(1.6) becomes 

(1.9) 

After some time the magnetization has returned to equilibrium: 

Note that the magnetization at position r depends on the frequency wr. + Aw 
(Aw= ,G.r). 

The receiver coil of the MR-machine measures the magnetization M(t + t..,, ), (that can 
be obtained by transforming formula (1.9) to the nonrotating coordinate frame) before it 
has returned to equilibrium and an output signal S(t) is generated. In Hinshaw and Lent 
[25) it is explained how in practice the magnetization M(t + t..,,) induces the signal S(t) 
in the receiver coils of the MR-machine, 

Here M 1_ is the transtierse magnetization defined as M 1_ := M x + j My where j2 = -1. 
Now let /(r) = M1_(r). With Aw= ,G.r, we have 

(1.10) 

This does not take into account that the relaxation time T2 depends on the position r. 
Because the time period during which the measurements are made is much smaller than 
T2, we have e-t/T, ~ 1 so (1.10) simplifies to formula (1.1): 

S(t) ~ canst J f(x, y)e-j-yt(a,x+a,y)dxdy. 

In the current practice of MRI one uses time dependent magnetic gradient fields: G(t). 
In that case formula ( 1. 1) generalizes to 

S(t) ~ t J f( ) -J-r<f: (!,(t')x+<•v(t')ydt')d d _cons x,ye xy. 

Writing kx := J; ,Gx(t')dt', ky := J; ,Gy(t')dt', we recognize S(t) as the Fourier coeffi

cient off at the frequency (kx,ky), denoted by !(kx,ky)-

In the practice of MRI it is only possible to measure a finite number of Fourier coefficients, 
say kx = -Nx, ... , Nx - 1 and ky = -Ny, ... , Ny - 1. In practice one often takes the values 

for Nx and Ny to be 64 or 128. The magnetic gradient fields are chosen such that f is 
sampled at a rectangular grid. The sampling strategy in practice is to scan on horizontal 
lines from left to right. That is, for ky running from -Ny to Ny - 1 the corresponding 

profile: !(-Nx, ky), ... , !(Nr - 1, ky) is measured. (In practice it may take from 2 to 
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10 msec to measure a profile.) For physical reasons there has to be a small time period 
between two consecutive profiles, which lasts in practice from 10 up to 100 msec. So, to 
obtain the desired Fourier coefficients for making an image, one needs at least 2Ny x 10 
msec. The scanning geometry is given in the figure below, where the horizontal lines 
denote the profiles and a tick mark denotes a sample within a profile. 
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Figure Vl.3 . Profiles in the Fourier plane 

For this reason Gx is called the readout or detection gradient and Gy the phase encoding 
or preparation gradient. 
An approximation of the spin density / is then obtained by Fourier inversion: 

1 
/(x,y):::::: 2ir 

1.2. Dynamic MRI 

For diagnostic purposes a sequence of images of the heart at consecutive phases, presented 
in a movie loop, will give useful information ( e.g. cardiac output, heartwall motion, leaking 
heart valves) which cannot easily be obtained from static pictures. In the previous section 
it turned out that the minimum time period needed for obtaining the desired information 
is 2Ny x 10 msec. If Ny = 64, then it takes 1.28 seconds to measure the needed profiles. 
One heartbeat lasts approximately 1 second. So, the data collection strategy explained 
in the previous section is not suited for reconstruction of the beating human heart. In 
this subsection we explain two data collection and reconstruction strategies, which are 
used in practice, to obtain images of the heart at the desired phases: ECG triggering and 
retrospective gating. Both methods use information from the electrocardiogram (ECG). 
For ea5y reference we repeat the terminology already given in Section 4 of the Introduction. 

R-pulse: the pulse in the ECG-signal which marks the beginning of a heartbeat. 
RR-interval: the duration in seconds between two consecutive R-pulses. 
Unit RR-interval: an RR-interval of unit length which will be used as reference 
interval. We denote this interval by J := [O, 1]. 
Heart phase: a phase in the approximately periodic motion of the heart. 
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I~. the conventional ECG-triggered technique [16], the same slice is excited with a fixed 
number of RF pulses following the R-pulse of the ECG. Subsequently, the phase encoding 
gradient is increased if the next R-.pulse occurs, see Figure VI.4. In the following figure 
short tick marks represent the time instants where profiles are measured; long tick marks 
represent R-pulses. 

'),• -Ny ky• ·Ny•1 ky• -N y•2 

~ ~ ,,.-----/'----

I...... I ...... J·_ .. _-~.. I 
'\ ? 

promos 

Figure VI.4 . ECG-triggered acquisition method: no measurements are available at the 
last part of the heartbeat. 

This means that no data are measured in the last portion of relatively long heartbeats. 
This is the main disadvantage of ECG-triggered data collection. Another undesirable effect 
is the lightening artefact. From formula (1.9) it can be seen that the magnetization has 
not fully returned to its equilibrium state at the time the next profile is measured. This 
results in a loss of signal intensity. So the last profile in a sequence of measurements does 
not have the same signal intensity as the first. In the last part of the heartbeat however, 
there are no profiles obtained. Thus the magnetization vector returns to its equilibrium 
state. The first profile in a new sequence of data then has higher signal intensity. This 
yields a higher intensity in the image at the first heartphase compared to the images at 
the other phases. This is the lightening artefact. 

The retrospective gating technique has been proposed [l 7),[8),[35] to overcome these diffi
culties. In this technique the data acquisition occurs continuously, independently of the 
position of the R-pulse. The ECG is simply recorded to enable a posteriori synchronization 
of the data to the correct heart phase. The main advantage is that now also measurements 
from the last part of the heartbeat are available, moreover the lightening artefact does not 
occur. 

Acquisition method of retrospective gating 

In the retrospective gating technique, one records an uninterrupted sequence of profiles 
which are measured at equidistant time intervals at distance AT, called repetition time. 
Recall that a profile is a sequence of measurements with ky fixed and k.r increasing from 
-N,, to N,, - 1. Simultaneously, but independently of the profile measurements, the ECG 
is recorded (see Figure VI.5 ). In Figure VI.5, the short tick marks represent the profiles 
and long tick marks R-pulses; the value of ky is increased after 15 measurements. 
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Figure Vl.5 . Acquisition method of retrospective gating: ky is incresed after Npr = 15 
profiles have been measured 

This enables one to assign the data a posteriori to corresponding phases on the unit RR
interval. In principle, the value k9 of the phase-encoding gradient ought to be increased 
immediately after each heartbeat. However, during the measuring process the information 
about the duration of the heartbeats is not available to influence the data acquisition. 
Therefore the value of the phase-encoding gradient Gy is increased after a fixed number 
Npr of profiles has been measured. To circumvent the problem that occurs in the case of 
ECG-triggering one chooses Npr such that at least one entire heartbeat occurs during one 
phase-encoding step. Assume for example that the RR-intervals of a patient scanned in the 
MR-machine are approximately one second. If one chooses Npr such that Npr x !:l.T 2'. 1.5 
seconds, then profiles both at the beginning as well as at the end of the heartbeat can be 
obtained within each phase encoding step. 

The total amount of data to be measured is 2N,, x 2Ny x Npr· For practical reasons 
the spatial resolution 2N,, x 2Ny is required to be high, in practice Nx = Ny = 64 or 
128. It is important that the data collection time, which is proportional to the value 
2Nx X 2N9 x Npr, is small. This means that the value of Npr cannot be too high, in 
practice Npr = 25, or Npr = 50. 
To sum up, the data acquisition process contains the following steps: 

(i) Initialize the phase encoding gradient: ky = -N9 . 

(ii) Measure profiles with a repetition time !:l.T until Npr profiles have been recorded. 
Each profile consists of 2N,, measurements (kx = -Nx, ... ,N,, - 1) of the Fourier 
transform of the cross-section, with ky fixed. 

(iii) Increase the phase-encoding gradient: ky -, ky + 1; if k9 = Ny then stop, otherwise 
go to (ii). 

(iv) Meanwhile measure the time markers { Rd of occurrence of the R-pulses in the 
ECG signal. 

1.3. Model building: a mathematical problem definition 

After data acquisition has been completed we want to reconstruct images of the heart at 
various phases during the unit heart interval. As we explain in this section, all one can do 
is to reconstruct a sort of average heartbeat. It is not possible to obtain a 'movie' of the 
actual situation. At the end of this section we present a mathematical inversion problem 
for dynamic MRI reconstruction. 
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The measurement times { T;} of the Fourier coefficients obtained by the acquisition method, 
wh.ich is described above, are in our model computed as follows. We remark that in practice 
the computation of these time markers is more complicated. 

Recall that the profiles are sampled equidistantly with consecutive distance 11T. Within 
each profile the measurements are also spaced uniformly in time, say with distance lit. 
Denote the measurement time for the k.,,th sample within the ith profile in the kyth phase 
encoding step by r;(kx,ky)- These measurement times r;(kx,ky) are called time markers. 
Since the data within a profile are sampled equidistantly at distance lit, we have 

(1.11) 

The number of profiles within each kyth encoding step is NP" so the first element of the 
ith profile is measured at 

(1.12) 

In the case of dynamic MRI the spin density of a cross section of the heart at position r 
and timer is denoted by F(r, r), r E JR. The Fourier coefficients of F with respect to the 
spatial parameter r can be obtained by means of the previously described data acquisition 
method, at time markers { r;( kx, ky)}, denoted as 

These Fourier coefficints ·are obtained during various RR-intervals. In order to make a 
reconstruction based on these data, we will make two model assumptions . 

The first assumption is the existence of a conversion ruler_. t(r), which maps a time 
marker r;(kx,ky) on an RR-interval to a corresponding phase t;(kx,ky) on the unit RR
interval, 

(1.13) 

This conversion is called rescaling; the t;(kx, ky)'s a.re called rescaled time markers. For 
clarity, we will refer to a time point on an RR-interval as 'time' r and to a time point on 
the unit RR-interval as 'phase' t. 

The simplest rule to rescale measurement times is linear stretching, where the total du
ration of a heartbeat is used. However, it is known that the variation in the duration af 
a heartbeat is mainly due to the variation in the second part of the heartbeat. The time 
interval corresponding to the first part of the kth heartbeat is denoted as [Rk, tr] and 
the time interval corresponding to the second part as [tr, Rk+i ). The point tr can be 
computed by the empirically established formula 

(1.14) 

The rescaling rule which takes this effect into account, called piecewise linear stretching, 
will also be considered. 

The second assumption is the existence of a model heartbeat g, depending on the position 
rand phase t, denoted by (r, t) _. g(r, t), such that its Fourier coefficients at the rescaled 
time markers are equal to the data, 

Here the Fourier transform is taken with respect to the spatial parameter r. We emphasize 
that the model heartbeat is only an artificial construction and not a physical reality. 
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Howeve.r, the model heartbeat can be considered as a realistic approximation of the spin 
density of the human heart F, when rescaled to an RR-interval, 

g(r, t( r)) ~ F(r, r), (1.15) 

for r lying in an RR-interval TE [Rk, Rk+i). 

We now pay attention to two rescaling algorithms: linear stretching and piecewise linear 
stretching. 
In the case of linear stretching on each RR-interval, the relation between r and t is 

(1.16) 

where Rk is the time at which the kth R-pulse in the ECG-signal occurs (k = l, 2, ... ). 
Piecewise linear stretching on each RR-interval corresponds to the empirically established 
conversion rule 

(1.17) 

for r E (RA:, Rk+1 ), where tr is given by (1.14). The two different scale transformations 
are sketched in Figure VI.6. 

Figure VI.6 . 
stretching. 
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time T 

Time-to-phase conversion. (a) linear stretching; (b) piecewise linear 

Note that as a result of the time-to-phase conversion, the data must be rearranged: when 
a new R-pulse occurs while the value of ky is still unchanged, the next profile is mapped 
to the beginning of the unit heart interval J, whereas the previous profile corresponds to 
the end of J (see Figure VI.7). Another problem is that the positions of the profiles on 
the unit heart interval J do not match with the desired phases, which ususally consist of 
a number of equally spaced positions. Furthermore, for each value of ky the pattern of 
rearranged phases is different. We use interpolation techniques to deal with this problem. 
The details will be given in the next section. 
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Figure VI. 7. Rearrangement of the profiles on the unit heart interval. 

Having obtained the time markers r;(kx, ky) and the corresponding Fourier coefficients of 

the spin density F( kx, ky, T;( kr, ky)) the time-to phase-conversion is performed. That is, 
the rescaled time markers are computed by formula (1.16) and we get, by assumption, 

Here the rescaling strategy is still arbitrary. In our examples we most of the time consider 
linear stretching on each RR-interval. 

For easy reference we explicitly state the model assumptions: 
The algorithm to obtain rescaled time markers on the unit RR-interval from time 
markers on an RR-interval is linear stretching. 
There exists a model heartbeat such that its Fourier coefficients at the rescaled time 
markers are equal to the measurements from the spin density of a beating human 
heart. 

This leads to the following problem formulation. Let the sequence {g,(kx, ky)} be defined 
as 

(1.18) 

fork,,= -Nx, ... , N,, - l; ky =-Ny, ... , Ny - 1 and i = 0, ... , Npr - l. Note that g;(k,,, ky) 
denotes the value of g( kr, ky, f;(kr, ky) ). Here the spatial Fourier transform of the function 
g is defined by 

g(k,,,ky,t) := -2
1 J g(x,y,t)e-j(k,x+kvYldxdy. 
7r D 

(1.19) 
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We will refer to the sequences {g;(kx, ky)} and {t;(kx, ky)} as the data and the rescaled time 
markers respectively. D is the rectangle (0, 2ir]2 and J = [O, 1] is the unit RR-interval. 
The problem then is: find the model heartbeat g : D x J ...... a: such that 

( 1.20) 

for kx = -Nx, ... ,N,, - 1; ky = -Ny, ... ,Ny - 1 and i = 0, ... ,Npr - 1. 

It is the aim in dynamic MRI to obtain the model heartbeat g. However, in general the 
model heartbeat is not uniquely determined by the data {Yk,;J- That is, any function f 
satisfying (1.20) will be an approximation of g and will not be identical to g. The topic 
of the next section is the construction of a solution of problem (1.20). 

Since the solution of problem (1.20) involves Fourier inversion in the spatial domain and 
interpolation in the time domain, we will refer to (1.20) as the mixed Fourier-interpolation 
problem, or simply, the mixed problem. 

Vl.2. Solution to the Reconstruction Problem of dynamic MRI 

For notational convenience we write the pair (k,,,ky) ask. Denote 9k,i := g;(k,,,ky), 
tk,i := t;(kx, ky)- Define the set 1/( by 

JI(:= {(k,,, ky) I k,, = -N,,, ... , N,, - 1; ky =-Ny, ... , Ny - 1} 

and l := {i I i = 0, ... , Npr - l}. Note that these index sets are finite. In this section we 
will apply Theorems IV .5.1 and III.3.3 of Part One for the case of finite index sets. 

We now give a formal statement of the problem associated with dynamic MRI. 

Mixed Fourier Interpolation Problem 

Given a sequence of rescaled time markers {tk,;} and the data {9k,i}, find the model 
heartbeat g : D x R ...... a: such that 

g(k, tk,,) = 9k,i, k Ell(, i E Jl. (2.1) 

As we explained in the previous section this model heartbeat is in general not uniquely 
determined by the data {Yk,;}. Any function f satisfying (2.1) is an approximation of the 
model heartbeat. We will call f a reconstruction of the model heartbeat. 

Suppose we have found such a ( complex valued) function f. In practice a sequence of 
images at the time phases <Pm. (m = 0, ... , M - 1) of the amplitude of this function f 
is displayed on a computer screen. A computer screen, represented here as the square 
(0, 2ir]2, is divided up into pixels (picture elements). Assume that there are 2N,, x 2Ny 
pixels. Digital images are realized by assigning grey values to pixels. An image of the 
function I/I at µhase <Pm is then obtained by assigning the grey value 1/(i/ir,j/ir, <Pm)I to 
the i,jth pixel, i = 0, ... , 2Nx - 1 and j = 0, ... , 2Ny - 1. By displaying images of I/I at 
consecutive phases <Pm. ( m = 0, 1, ... , M - 1) one can simulate the motion of the heart. The 
larger M the better the dynamic character of the movie. (After the image of the Mth 
phase is shown, the image of phase </Jo is displayed again.) 

An idea to solve problem (2.1) is as follows. Interpolate the data {9k,diET at the phases 
<Pm. for each frequency vector k E U(. Using interpolated data for each of the phases, the 
reconstruction is then obtained by the Fourier inversion formula. Different interpolation 
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techniques are briefly considered here: spline interpolation and sine in.terpolation. For 
more details we refer to Section IV.I and IV.3 of Part One. 

Now we discuss our mathematical framework. We want to find a solution f of problem 
(2.1) such that the mapping t _. f(r, t) is an element of the Hilbert space 7-i for allr ED. 
This can be formalized in the following manner. 

Definition 2.1 . Let 1i be a Hilbert space of functions f : R _. <C, with inner product 
( , )7-i and norm 11117--{• Lh(D x R) is the space of functions f : D x lR _. <C such that 
for each r ED, the function t _. f(r, t) is an element of 1-i, and 

Here the '•' in the fomula above means that the norm is computed with respect to the 
time parameter t. 

In the course of this section two cases are distinguished: 
Case 1 1i is the space of bandlimited functions; 

- Case 2 1i is the space of polynomial spline functions of odd degree. 

Our approach is to give a solution of problem (2.1) for both cases at once in terms of the 
space Lh(D x JR). Then, we will pay attention to case 1 and 2 separately. 

We assume that 7-i possesses a system of point evaluation functionals { /Pk,;} ( cf. Section 
I.l) such that 

The Gram matrix corresponding to the sequence {1Pk,;};er is defined as 

(G(k))ij := (1Pk,j,/Pk,i)7-i, i,j E I,k EK<. 

From property (2.2) it follows that 

(G(k));j = /Pk,j(tk,;) i,j EI, k EK<. 

Define the system { 1/'k,;} lying in 7-i as 

1/'k,;(t) := L (G-1 (k));jlPk,j(t), 
JET 

(2.2) 

(2.3) 

(2.4) 

where the bar denotes the complex conjugate. A solution of problem (2.1) can be obtained 
in terms of the 1l'k/s. In Part One, Theorem IV .5.1 it is proved the solution thus obtained 
has smallest norm among all solutions: 

Solution of the Mixed Fourier Interpolation Problem 
If, for each k E l{, the sequence of rescaled time markers { tk,;};e, consists of distinct 
values, then the mixed problem (2.1) has the unique minimum norm solution 

Here ck is defined by 

Ck(t) := L Yk,i!/'k,i(t), k Ell{. 
iET 

(2.5) 

(2.6) 
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Note that this solution f is obtained in two steps, which has the practical advantage 
that for each k E K{ one only has to read and store the partial data vector {Yk,i};El, to 
compute the interpolating function Ck for this value of k. Then, after we have computed 
the ck 's for all values of k E K<, we compute the minimum norm solution by the Fast 
Fourier Transform. The reason why such a decomposition exists is that the system of 
exponentials {ejk.r}kET< is orthogonal in L2 (D). 

In the remainder of this section we consider the case that 1i is the space of bandlimited 
functions and the case that ?i is the space of odd degree polynomial splines. 

Case 1: interpolation by bandlimited functions. 

Introduce the Hilbert space of bandlimited functions Pr by 

Definition 2.2 . 

Pr:={/ E £ 2 (/R) 11(<) = 0 for< outside the interval [-r, r] }. 

Pr becomes a Hilbert space with the inner product: 

. (f,g),, := j f(t)g(t)dt, 

and norm 

llfllj> := (/, /} ,,, f E Pr. 

Let {tk,i}kE1<,iET be a sequence of real numbers. The set of point evaluation functionals 
is defined as 

'Pk,i(t) := (r/1r) sincr(t - tk,i), k E JI{, i E JI., 

where the sine-function is defined by ( cf. Papoulis [44]) 

{ 
sin(rt) ~ 

. --, trO 
smcr(t) := rt 

l, t = 0. 

In Part One it is shown (formula (IV.1.2)) that then condition (2.2) is satisfied. 

Case 2: interpolation by spline functions. 

(2.8) 

Accounts of spline theory are given in Ahlberg et al. [l], de Boor [9], Schoenberg [47], and 
Greville [21]. Here we mainly follow Greville [21]. 

Definition 2.3 . A mesh ~ of an interval [a, b] is a sequence of distinct real numbers 
{t,, ... ,tN} such that a= t, < t2 < ... < tN = b. The intervals (t,,t,+,) are called (open) 
mesh intervals. 

The space Km. of polynomial spline functions of degree m is defined as follows ( cf. de Boor 
[9]). 

Definition 2.4 . K"'· := {/ E cm-l [a, b] I on each mesh interval 
f is a polynomial of degree at most m } . 
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We are particularly interested in spline functions of odd degree. Any spline function f of 
degree 2n - I is of the form 

f(t) = P2n-1 (t) + L c;(t - i;Tr/r)in-l _ 
iET 

Here P2n-1 is a polynomial of degree 2n - I or less, the c; 's are complex numbers and (. )t 
is defined as 

(t)t := ' { 
tk t ~ 0 

0, t < o. 
x:, 2n-l is a Hilbert space with inner product 

Here J<k) denotes the kth derivative off. The norm of a spline function f is denoted by 

lltllx:,-
Introduce the function (1 by 

(-l)n ( )2n-1 t JR 
+(2n-l)!t-s+, ,sE. (2.9) 

The system of point evaluation functionals { 'Pk,i}iE, is defined by 

(2.10) 

fort E JR. Note that this system is linearly independent. In Part One is is shown (formula 
(IV.3.2)) that condition (2.2) is satisfied in this case. 

We now show how to transform our solution method into a concrete algorithm. 

Algorithm 
Given are the MR-data {Yk,i}kEK,iET, and the rescaled time markers {tk,ihEK,iET· Then 
the reconstruction, at the phases <Pm (m = 0, ... , M - I) is obtained in the following way: 

begin 
fork EI< do 

Fill the Gram matrix G(k) according to 

Invert the Gram matrix. 
for i E JI do 

Compute 1/'k,, by 

1/'k,, = I:CG(k)- 1 );j'Pk,;· 
jET 
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. done 
Evaluate ck at 4>m: ck(4>m) = L,;Ef9k,(1Pk,i(4'm)-

done 
Compute fat 4'm: /(r,4'm) = LkEf,ck(4>m)eik.r_ 
end 
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Note that this algorithm can be used for reconstruction by means of splines as well as 
by means of bandlimited functions. In this manner the algorithm above provides several 
reconstruction methods which we call sine, degree 1 and degree 3 reconstruction. These 
different kinds of methods are obtained by assigning a value to r in formula (2.8) for 
bandlimited functions and by assigning a value to 'n' in the case of formula (2.9) for spline 
functions of odd degree. The reconstruction method proposed by Bohning (8] (see Section 
4 of the Introduction) does not fit into this setting of spline functions of odd degree, but 
it is considered for practical purposes. In this reconstruction algorithm the approximation 
of the Fourier coefficients at the phase 4>m is not done by means of bandlimited, or spline 
functions, but it is obtained by averaging the measured Fourier coefficients in the interval 
[4>m, 1'm+1 ). If there are no data lying in this interval, then the Fourier coefficients at 
phase 4>m are set to the value zero. This reconstruction technique is referred to as degree 
0 reconstruction. 

A prerequisite for the existence of a minimum norm solution is that the time points 
{tk,i};Ef are distinct for each k E Jl{. In the case of cardiac MRI this condition may 
be violated, since the rescaled time points {tk,;} are obtained by means of the rescaling 
formulas (1.16), or (1.17). In other words, if for fixed k E Jl{ the time markers Tk,i and Tk,j 

are measured in distinct heart intervals, it can happen that after time-to-phase conversion 
the corresponding rescaled time markers tk,i and tk,J coincide. In such cases regularization 
techniques prove very useful. 
Define the operator T : L?i(D x JR)-> P.2(/l{ x JJ) by 

TI:= {J(k,tk,dhEK,iEf· 

Here 1i is K,2"-1 or Pr. The mixed problem (2.1) can now be reformulated: 
find / E L?i(D x JR) such that 

Tf = g, (2.11) 

where the data vector g is defined by g := {9k,ihEl(,iET· If the time points {tk,;}iEf are 
distinct fork Ell{, then the inverse ofT, denoted by 7-1 is (cf. formulas (2.5) and (2.6)) 

(T- 1g)(r,t) = L L9k,il/'k,i(t)eikr_ 
kEK iET 

If the time markers do not satisfy this condition, then there exists no inverse of T. In such 
cases we try to approximate a substitute for an inverse of T by a sequence of bounded 
linear operators {T-Y}-y>o acting from P.2 (JJ< x JJ) into L?i(D x R). 

Tychonov-Phillips regularization of the mixed problem 

Let {tk,i}kEK,iEf be rescaled time markers and Jet g E P.2 (/l{ x ll) be the data. The 
Tychonov-Phi/Jips regularization {T1} is defined as 

(T-Yg)(r,t) = L(TJgk)(t) ejkr_ 
kET, 

Here 9k denotes the sequence {9k,,},Ef and 

(TJgk)(t) := L L((G(k) + ,l)- 1 )j, 9k,i 'Pk,;(t), 
jE T iE T 
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where (!'k,i is given by formula (2.8) in the case of bandlimited and by (2.10) in the case 
of spline functions. The Gram matrix G(k) is given by formula (2.3). 

(The behaviour ofT-Yg when 1 -> 0 is discussed in Section I.2.) Note that the regulariza
tion can also be obtained in two steps. First, for fixed k E K, we compute the term r;: 9k 

from the partial data vector 9k := {9k,i}iEf • Next obtain the regularization by Fourier 
inversion: T-Y g = I:kE K TJ gkejk.r. So, the regularization has a decomposition similar 
to the minimum norm solution. Again this is useful for practical purposes. In Section 
VI.3 we give an example of regularization of the reconstruction by means of bandlimited 
functions. 

Vl.3. Reconstruction of the chest phantom 

[n this section we compare degree 0, degree 1, degree 3 and sine reconstruction discussed 
in the previous section. In the following we simulate the chest and beating heart by means 
of a continuous sequence of images which are built up from ellipses (see Section 3.1). Such 
a sequence of images is called chest phantom. 

The MRI-data collection strategy (retrospective gating) is simulated for this chest phan
tom (Section 3.1). Then, from these data, the several reconstructions are computed and 
displayed on a computer screen. These images are illustrated in Section 3.2. The perfor
mance of the methods is considered by comparing the differences of the reconstructions 
and the original chest phantom. The simulations are carried out on a Sun 4 Spare work
station. We emphasize that it is not our aim to improve the speed of the reconstruction 
algorithms. 

In the case of MR-imaging of the beating human heart it is difficult to find objective 
criteria for the quality of the reconstructions. The performance of the reconstruction 
algorithms then depends on the correctness of the model assumptions and the noise on 
the data. 

The reason for performing simulations by means of a chest phantom is that we can focus 
on a comparison of the quality of the reconstruction algorithms, since we do not have to 
bother about the validity of the model assumptions. 

3.1. Definition of the chest phantom 

[n this section we explain how the chest phantom is defined and how it is used to compare 
the several reconstruction techniques. 

The chest phantom we use (see Fig. VI.8) is built up from a number of solid ellipses 
with different shapes, sizes or orientations. The phantom is taken as in [40]. [t should be 
regarded as a 'model' for a cross section of the human chest, including the heart. For this 
reason the shape and size of three specific ellipses within the phantom are varying in time 
(Ellipses E2, En and E1 in Fig. VI.8). The ellipses E2, E6 and E 7 should be regarded as a 
simple representation of a cross section of the heart. The ellipses E6 and E7 imitate two 
heart chambers. The heart muscle is simulated by the second ellipse E2 which contracts 
and expands in time. E6 and E, do not only contract and expand, but they also change 
position. 

A solid ellipse is parametrized by five time dependent parameters. The centre is 
(a(t),/J(t)), the lengths of the major and minor half axes are p(t) and t7(t) and the angle 
of the ellipse with respect to the horizontal axis is 0( t). 
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Figure Vl.8 . The ellipses defining the chest phantom. 

The kth ellipse Ek is parametrized by 

To every ellipse is assigned a 'colour' or 'grey-value'. The values of the parameters and 
grey-values of the ellipses are given in the following table. The parameters a, /3, p and r; 

are given in pixel units, where we use a square of 256 x 256 pixels; 0 is given in radians 
and grey-values range from 0 (black) to 255 (white). 

a /3 p r; 0(1r/l6rad) grey - value 

Eo 128 128 120 80 0 200 
E1 128 128 110 70 0 128 
E2 112 105 P2(t) u2(t) 5 64 
£3 128 175 10 16 0 64 
£4 104 175 5 10 -5 64 
E,., 152 175 5 10 5 64 
E6 °'6 ( t) f36(t) P6(t) r;6(t) 0 255 
E1 °'7 ( t) f31(t) P1(t) r;7(t) -5 255 
ER 220 82 8 4 -4 255 
E9 36 82 8 4 4 255 
Em 128 52 8 4 0 255 
E11 220 174 8 4 4 255 
E12 36 174 8 4 -4 255 

Table VI.1 Parameters of the ellipses defining the chest phantom. 
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P2(t) = u2(t) = 35(1 + 0.3sin(2irt + ir/4)) 

a6(t) = P2(t) + (104 - P2(t))(l + 0.3sin(2irt + ir/4) + 0.2sin(4irt)) 

/36(t) = u2(t) + (116 - u2(t))(l + 0.3sin(2irt + ir/4) + 0.2sin(4irt)) 

P6(t) = u6(t) = 12(1 + 0.3sin(2irt + ir/4) + 0.2 sin(4irt)) 

a1(t) = P2(t) + (120-p2(t))(l + 0.2sin(2irt) + 0.lsin(4irt + ir/2)+ 

0.1 sin(6irt)) 

/31(t) = u2(t) + (90- u2(t))(l + 0.2sin(2irt) + 0.lsin(4irt + ir/2)+ 

0.1 sin(6irt)) 

P1(t) = 2u1(t)lO(l + 0.2sin(2irt) + O.lsin(4irt + ir/2) + O.lsin(6irt)). 

3.2. Generation of test-data 
In this section we explain how the MRI data collection strategy is simulated in the case 
of the chest phantom. 

In the case of MRI of the beating human heart the R-pulses from the ECG signal are 
recorded, which indicate the beginning of a heartbeat. Furthermore, the time markers 
{ Tk,i} are computed and the Fourier coefficients {9k,;} of spin density are measured. In 
the case of the chest phantom these sequences {Rd, {r1c,,} and {9k,;} are obtained in the 
following manner. 

Generation of time markers 

The generation of the time markers is done by formulas (1.11) and (1.12): 

Tk,i := (kyNpr + i)t!i.T + kxbt, (3.1) 

where k E ff{ is the vector (kx, ky), (Note that these time markers can be negative, since 
kx and ky run from -Nx and -Ny up to Nx - l and Ny - l respectively.) The index 
i EK:= {O, 1, ... , Np, - 1} and Npr is the number of profiles which are measured within 
one phase encoding step. t!i.T is the time between two consecutive profiles and M is the 
period of time between two samples within a profile. 

Generation of heart-interval times 

We assume that on the average a heartbeat lasts one second. The times { Rk} ( k = 0, ... , L) 
of R-pulses are such that {RH1 - Rd are uniformly distributed random numbers lying 
in the interval [1 - E, 1 + E], where he first R-pulse is given by (cf. Forumula (3.1)) 
Ro= -NyNp,t!i.T- Nxot, The case E = 0 corresponds to a perfectly regular heartbeat. 

Generation of Fourier coefficients 

We denote the function describing the chest phantom above by g(r,t). This function 
governs a single heartbeat with period one. We extend this function to a larger time 
interval [Ro, Rr.) C Dl by means of the linear stretching time-to-phase conversion described 
in Section 1. That is, given the sequence of times {Rd of R-pulses, Ro< R1 < R2 < ... < 
Rt, we define the extension F : D x Dl -> <I' of g to the larger time interval [Ro, Rr.) by 
( cf. formula 1.15) 

F(r,r) := g(r,t(r)), for TE [R;,RJ+d, (3.2) 

where the linear stretching time to-phase-conversion is given by formula (1.16): 

T-R 
t( T) = J 

R;+l - Rj 
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This function F simulates the beating human heart with varying RR-intervals. 
Our simulation requires Fourier coefficients of this function F with respect to the spatial 
parameter r, that is 

F(k r) ·- _!_ / F(r r)ej(k·r)dr 
, .- 21r Jn ' , 

fork E K< := {-N,,, .. , N,, - l} x {-Ny, .. , Ny - l}. Combining the formulas (3.1) and 
(3.2) we obtain 

(3.3) 

Therefore, the corresponding Fourier coefficients of the phantom can be computed after 
the rescaled times t( Tk,i) have been determined. The data 

gk,i := g(k, tk,;) k E II<, i E ff 

obtained in this way will be called test-data from now on. 

3.3. Reconstruction from test-data 

In the following we apply the reconstruction algorithms to the test data using sine, degree 
1 and degree 3 interpolation. We also implemented the reconstruction method proposed 
by Bohning [8], referred to as degree O reconstruction ( cf. Section 2). 

The object to be reconstructed is the phantom g. However, the reconstruction obtained will 
only be an approximation of the function g. The reconstructed images will be compared 
with the images of the phantom g at the phases <f;o, 4'2, q,4 and 4'6. The maximum number 
of phases is taken here as M = 8. We will give some intuitive criteria for the quality of 
the reconstructions, and we also use the L2-norm as a measure for the performance of the 
algorithms. 

In the next section we reconstruct the model heartbeat from MR-data instead of test
data. The motivation for the use of the chest phantom, besides the possibility to compare 
performance, is that the model assumptions are valid which do not, perhaps, hold true in 
practice. The advantage of the test situation over the practical situation is that we can 
focus on the performance of the reconstruction algorithms, without bothering about the 
validity of the model assumptions. In the practice of dynamic MRI reconstruction both 
assumptions will generally not be valid. This will be discussed in Sections VI.4 and VII.5. 

The quality of the reconstructions depends on the amount of data which are measured, that 
is 2N,, x 2Ny x Npr· A mathematically interesting question is whether the reconstruction 
f will converge to the original function g if N,,, Ny and Npr tend to infinity. Theorem 
III.2.2 gives an affirmative answer to this question in the case of bandlimited functions, 
under certain conditions. In practice however, the values of N,,, Ny and Npr cannot be 
taken arbitrarily large, due to physical limitations. The spatial resolution 2N,, x 2Ny is 
chosen as high as possible in practical situations Nr. = Ny = 64 or 128. This is because 
one wants to distinguish small details in the image for diagnostic purposes. For the use 
of MRI in practice it is important that a patient occupies the MR-scanner for as short a 
time as possible. So, the data collection time, which is proportional to N, x Ny x Npr 
is required to be short. This implies that the value of Npr has to be chosen small; in 
practice one often takes Npr = 25 or Npr = 50. Accordingly, the performance between the 
reconstruction algorithms is compared with fixed values for the parameters Nx, Ny and 
Npr· 

The time period {;t between two consecutive samples within a profile is neglected in the 
reconstruction algorithms for the purpose of computer implementation and the speed of 
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the· algorithms. (We want to emphasize that the parameter ot is taken into account in the 
generation of test-data.) 

The time markers { Ti<,;} are rescaled by the linear stretching time-to-phase conversion 
expressed by formula (1.16). It may occur that after rescaling time markers (numerically) 
coincide, though the corresponding profiles are distinct. In this case an interpolation curve 
cannot be computed. To remove this deficiency, the profiles with mutual distance smaller 
than 27 are averaged along with the associated rescaled time markers. This procedure is 
an ad hoe regularization technique, which is different from the Tychonov-Phillips regular
ization. In our algorithms the parameter-value 1' is taken as 0.005 for spline interpolation 
of degree 3 :;i.nd 0.04 for sine interpolation. Tychonov-Phillips regularization is imple
mented in the case of sine-interpolation, which is called tp - sine interpolation. In this 
case 1' = 0.01. 

The parameter values used in the generation of the test-data are: 

ot = 0.01 
2Nx 

and E = 0.25. 

This implies that the images are displayed on a grid of 128 x 128 pixels. The time period 
to measure one profile is 0.01 seconds. The maximum number M of phases is 8. 

In Figure VI.9 the original chest phantom is shown. Then, in Figures VI.10, VI.II, VI.12 
and VI.13 we show spline and sine reconstruction in the case Npr = 5. In Figure VI.10 we 
show degree 0 degree I degree 3 and sine reconstruction at the phase ,p0 . In Figure VI.11 
we show these reconstructions at the phase t/J2, etc. Then in Figure VI.14, VI.15, VI.16 
and VI.17 we apply the reconstructions in the case of Npr = 15. 

Before showing the reconstructions we briefly discuss the effects that can be expected 
in advance. Criteria for the reconstruction quality will be more extensively discussed in 
the next Section. Here we only point out that the main criterion for the quality of the 
reconstructions is that the time-varying ellipses in the reconstructed images have sharp 
contours. 

The quality of the reconstructions at phase ,Po = 0 with degree 0, and sine reconstruction 
will be worse than the reconstructions at the other phases. The reason for this is as 
follows. The rescaled time markers { tk,;} lie inside the interval J = [0, 1]. The curve 
which interpolates the profiles at these rescaled time markers is the·, evaluated at phase 
,Po = 0. Since there are no data at or before phase ,Po, we performed an extrapolation. 
This causes an error which is larger than that for interpolation of the data. The spline 
reconstructions are expected to behave better, because the implemented spline function 
was made periodic, see de Boor [9). 
The quality of the reconstructions for Npr = 5 can be expected to be worse than the 
reconstructions for Npr = 15. This is because the approximation of an interpolating 
function based on a small data set will be worse than in the case of a larger data set. This 
effect will occur predominantly for lower degree splines. 

For degree 0 reconstruction the following effect will occur in the case of small data sets. 
Recall that degree 0 reconstruction ( see Section 1.2) approximates the Fourier coefficient 
at phase <Pm by averaging the data in the interval (<Pm, <Pm+l ). If no data occur in this 
interval the value of the Fourier coefficient at phase <Pm is set to zero. It is likely that 
degree 0 reconstruction in the case of Npr = ,5 causes a ringing artefact, due to the Fourier 
coefficients which are set to zero. 

At phases where the motion of the time varying ellipses is fast, the algorithms will not be 
able to reconstruct this motion exactly. For, if there are high frequencies in the motion 
of the function to be reconstructed, the approximation of this function by a bandlimited, 
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or spline. function need not contain these high frequency components. This will result in 
a blurring of the time-varying ellipses within the reconstructed images. This effect can be 
seen at phase <p4. 
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Figure Vl.9 . Original chest phantom. 
Top left: phase </>o, Top right: phase </>2 , Bottom left: phase <p4 , Bottom right: phase </>r,. 
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Figure VI.JO . Reconstructions at phase </Jo for Npr = 5. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc reconstruction 
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Figure Vl.11. Reconstructions at phase ,p2 far Nw = 5. 
Top left,: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc 
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Figure Vl.12 . Reconstructions at phase ef,4 for Npr = 5. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure Vl.13 . Reconstructions at phase 4J6 for Npr = 5. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure Vl.14. Reconstructions at phase </Jo for N1,r = 15. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure VI.15. Reconstructions at phase </;2 for Npr = 15. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3 Middle right: sine Bottom: 
tp-sinc. 
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Figure Vl.16 . Reconstructions at phase </) 4 for Npr = 15. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure VI.17. Reconstructions at phase t/>6 for Npr = 15. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine Bottom: 
tp-sinc. · 
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In the reconstructions of Figures VI.9 up to VI.16 we see a vertical band of noise in the 
images localized at the position of the moving ellipses. This noise band, which also occurs 
in MR-images, is caused by the motion of the ellipses. Recall that the data collection 
strategy consists in measuring profiles which are horizontal lines in the Fourier domain 
(see Figure VI.I). The time period needed to measure such a profile can be neglected 
in practice. This implies that one horizontal line within the original image at that time 
point can be found by Fourier inversion of the profile. So, in the horizontal direction, the 
perturbation of the reconstruction due to the motion is negligible. But for the vertical 
direction this argument is not valid. After collecting all the data, the time markers of 
the profiles are rescaled by a time-to-phase conversion. Then, because the rescaled times 
do not coincide with the phases at which we want to make the reconstructions, we ap
ply interpolation techniques. That is, for each ky we estimate a profile at the desired 
phase by interpolation and rescaling. So, at every phase the motion causes errors in the 
reconstructed image in the vertical direction. 

We first make an intuitive comparison of the quality of the reconstructions. Later, we 
present the £ 2-differences of the reconstruction and the original chest phantom at the 
corresponding phases. 

The main criterion for the reconstruction quality is the vertical noise band. Other criteria 
stem from diagnostic practice and are discussed in Section 4. Here we only point out 
that it is important from a diagnostic point of view to reconstruct sharp contours of the 
time varying ellipses. We firs·t compare the several reconstructions in the case of Npr = 5. 
Degree O reconstruction performs worst. The ringing artefact in this image is caused by 
setting Fourier coefficients at phase cl>m to the value zero, if there are no data lying in 
the interval [c/>m, cf>m+i ). If Npr is taken larger than 5, say N1,r = 15, then it is less likely 
that this effect occurs. Intuitively, degree 1 and degree 3 perform best. The structures of 
the moving ellipses are reconstructed sufficiently sharp. The reconstructions by sine and 
tp-sinc interpolation perform better than degree 0, but worse than degree 1 and degree 3. 
For all methods the reconstructions get worse for phases where the motion of the ellipses 
in the phantom is fast. Degree O reconstruction turns out to be a quite useless method in 
the case of small data sets. 

First and third degree reconstructions appear to perform equally well for Npr = 15 and 
their performance is better than degree 0, sine and tp-sinc reconstruction. The first 
phase in the sine reconstruction is of low quality, which may be due to the intrinsic non
periodicity of the interpolating function. If we use Tychonov-Phillips regularization, the 
quality of this first phase improves. The reconstructions are much better in the case of 
Npr = 15 than for N 1,r = 5. 

To provide an objective quality measure, we also compared the differences of the original 
and the reconstructions (for Npr = 5 and Npr = 15 respectively) in £2-norm, i.e. we 
computed 

2N,-12N,-1 

error:= L L lg(x,y,cpi)-f(x,y,cpi)l2, (3.4) 
.r=O y=O 

where g and/ denote the original and the reconstructed image, respectively. Note that it 
is hard to interpret the £2-norm differences in terms of our intuitive criteria for quality of 
the images. 
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phaseO phase2 phase4 phase6 
degreeO 43.37 44.62 74.86 71.83 
degree I 9.20 7.84 8.37 5.65 
degree3 9.89 8.36 9.25 5.83 

smc 42.9 10.97 10.44 8.10 
tp-sinc 39.77 9.92 10.15 7.64 

Table Vl.2 The reconstruction error at four phases for various interpolation algorithms, 
with Npr = 5. Phase i corresponds to time i/ M, with M = 8. 

phaseO phase2 phase4 phase6 
degreeO 9.67 11.50 7.13 8.35 
degree l 5.33 4.57 4.69 2.78 
degree3 5.6,5 5.05 4.80 3.02 

smc 41.96 9.72 6.84 7 26 
tp--sinc 36.84 6.45 5.04 3.85 

Table VI.3 The r·econstruction error· ai four phases for various interpolation algorithms, 
with NP,.= 15. Phase i corresponds to time i/M, with M = 8. 

First, these tables illustrate that the performance of the reconstruction methods is im
proved when the value of Npr is increased from 5 to 15. If NP,. is increased from 1,5 to 25 
the gain is much smaller. 

These results confirm our· intuitive conclusions. We see that in the case of small data 
sets (Npr = 5) degree O is not suitable, while degree l, degree 3 and sine reconstruction 
perform relatively we!L 

If the data set is larger (Np,= 1.5), the quality of the reconstuction algorithms improve. 
For still larger values of Np, the quality of the reconstructions does not increase much 
more. 

Vl.4-. Reconstruction of MR-images 

In this section we reconstruct images from data which were obtained by the Philips Gy
roscan S-15 (an MR-scanner of Philips Medical Systems). We call this data MR-data to 
distinguish it from test-data. Just as in the case of test-data, the sequences { Rk} of R
pulses, { rk,,} of time markers, and {gk,,} of MR-data form the input for the reconstruction 

algorithms. The rescaled time markers {tk,;} are obtained from {rk,.} by means of linear 
stretching, see formula (1.16). For further details about the reconstruction techniques we 
refer to the previous section. 

The reconstructions from MR-data are displayed on a computer screen. The parameters 
N x, Ny, M and 'Y are the same as in the case of test-data. The parameter Npr has a 
different value, namely Npr = 50. Here we discuss the criteria that are important for 
diagnostic purposes and draw conclusions about the performance of the reconstructions. 

The interesting feature from a medical point of view is the contraction of the heart muscle. 
Sometimes, as a result of a myocardial infarct (a so-called heart attack), part of the muscle 
does not contract. In the case of a mild infarct a darker region can be spotted on the 
muscle-tissue in the MR image. Another disease that can be traced by MR imaging is the 
ventricular septa! defect which is a small hole in the tissue that separates the right and left 
ventricle (these are the 'big heart chambers'). A darker region, now and then appearing 
in the image sequence in the vincinity of the heart tissue indicates this deficiency. Thus, 
from a diagnostic point of view the quality of the reconstruction depends largely upon 
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how well the heart muscle is depicted, in particular on the sharpness of its contours. For 
this purpose, the vertical noise band is undesirable. 

In Figure Vl.18 we indicate the cross section of the chest, the heart muscle, and the 
ventricles· 

chest 

RIGHT 

r1t11t --.r1c1e 

lung 

left vantr1cla 

~~-9----tt--- heart muscle 
aorta 

spine 

LEFT 

Figure VI.JS . a) Reconstruction of a cross section of the chest; b) Some anatomic 
details in the cross section. 

The images presented here are cross sections of the human chest. The big oval (which 
appears rather dark in the image), is the bone-structure of the chest. The heart is located 
at the front side of the chest (in the picture it is located at the top on the right). The grey 
part of the heart-image is the muscle tissue. The light-coloured parts of the heart-image 
are the heart-chambers (left and right ventricles and the left and right atria). 
In Figures Vl.19, Vl.20, VI.21 and VI.22, we present reconstructions by means of the 
linear stretching time-to-phase conversion. 
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Figure Vl.19 . Reconstructions of MR images with linear stretching at phase </>0 • 

Top left: degree O Top right: degree 1, Middle left: degree 3, Middle right: sine Bottom: 
tp-sinc. 
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Figure Vl.20 . Reconstructions of MR images with linear stretching at phase </,2. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure Vl.21 . Reconstructions of MR images with linear stretching at phase q;4 . 

Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure Vl.22 . Reconstructions of MR images with linear stretching at phase </)6 . 

Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Comparing these reconstructions with the criteria stated above, we conclude that the 
degree 1 reconstruction performs worst of all, since the noise band is rather intense. The 
difference between the other reconstruction methods is rather small, but we point out 
some distinctions. Degree O and sine reconstruction provide images where the contours of 
the heart muscle are rather smooth. In the images of degree 3 and tp-sinc reconstruction 
the contours of the heart muscle are somewhat sharper. The conclusion is that degree 
1 reconstruction perfoms worst of all and the other methods perform equally well in the 
case of MRI of the beating human heart. 

We also obtained rescaled time markers times { tk,;} by means of piecewise linear stretching, 
see formula 1.17. We found the reconstructed images at all phases visually indistinguish
able from their counterparts obtained by means of linear stretching. So, we think that in 
practice linear and piecewise linear stretching perform the same. But, since the choice of 
time-to-phase conversion is an important factor in the reconstructions, it seems worth to 
go on looking for realistic rescaling formulas. 

Finally, we want to discuss the validity of the model assumptions (see Section VI.1.3), 
which we recall for convenience: 

The algorithm to obtain rescaled time markers on the unit RR-interval from time 
markers on an RR-interval is linear stretching. 
There exists a model heartbeat such that its Fourier coefficients at the rescaled time 
markers are equal to the measurements from the spin density of the beating human 
heart. 

Concerning the first assumption, any rule to rescale an RR-interval to the unit RR-interval 
is a simplification of the real situation, since the behaviour of the beating heart can be 
different to some degree in RR-intervals of equal length. In other words, given a rescaling 
algorithm, the model heartbeat g which is stretched to an RR-interval will be at best an 
apppoximation of the spin density F, where the rescaling rule plays a role in the accuracy 
of the approximation. (Note that this accuracy is not only determined by the rescaling 
rule, but also by e.g. the number of sampling points Nx, Ny and N 11r, the noise level in the 
signal, etc.) Now, assume the existence of a model heartbeat g with an accurate rescaling 
algorithm. If linear stretching is used in our model for reconstructing g, then the positions 
of the rescaled time markers will in this sense most likely be incorrect, causing a time-jitter 
error in the reconstructed images. 

The second model assumption concerns the Fourier coefficients of the model heartbeat g. 
It is assumed that Fourier coefficients of g over a two dimensional set D (the cross section) 
are equal to the data at the rescaled time markers. In practice, however, the heart not 
only contracts, but it also rotates, meaning that the part of the cross section of the heart 
which is measured at a given time, does not remain in one plane. Moreover the respiratory 
motion of the patient will also cause displacement of the heart outside the plane, sometimes 
causing a 'breathing artefact'. So, the assumption that Fourier coefficients of the model 
heartbeat over a two dimensional set are equal to the measurements is violated. 

The violation of the model assumptions will be considered in more detail in the next 
chapter which deals with error estimates. The next chapter also gives possible future 
directions for improving the reconstruction quality. 
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Vl.5. Conclusions and additional remarks 

The performance of the reconstruction methods in the case of test-data and MR-data has 
been compared for fixed parameters N,,, N 9 and Npr· 

The conclusions are that in the case of the chest phantom, for Npr = 5 and Npr = 15, that 
first and third degree reconstruction perform equally well and that they perform better 
than zeroth degree and sine reconstruction. The first two phases in the sine-reconstruction 
are of low quality. This may be due to the intrinsic nonperiodicity of the interpolating 
sine-function. If we use the regularized version of the sine-reconstruction, denoted as tp
sinc, the quality of the image at phase q,0 improves considerably. The conclusion is that 
degree 1 and degree 3 reconstruction are the best reconstruction techniques in the case of 
test-data. 

The reconstructed images obtained from MRI-data by using linear stretching and by using 
piecewise linear stretching are of the same quality in practice. 
In this case of MRI-data, the reconstruction algorithms based on linear stretching perform 
equally well, except for degree l. In this case the performance of degree 1 reconstruction 
is unsatisfactory. On the other hand, degree 1 and degree 3 reconstruction behave better 
that the other algorithms for test-data. That the performance of degree l and degree 3 
reconstruction is not as expected in the case of MRI-data, is probably due to the violation 
of the model assumptions in practice (cf. Section 4). 



108 

Chapter VII 

Stability Analysis of MRI Reconstruction 

In this Chapter we analyze the stability of the reconstruction methods under perturbation 
of the data or time markers. Stability means that small errors in the data or time markers 
yield small errors in the reconstruction. The aim of our analysis is to determine for which 
type of perturbation a reconstruction algorithm is sensitive. We will discuss and illustrate 
three types of errors: aliasing error, amplitude error and time jitter error, by applying the 
different reconstruction algorithms to the test data corresponding to the chest phantom. 

The first section defines three different kinds of errors and describes how stability of the 
reconstructions is tested. In the second section we explain the occurrence of these errors 
in practice and give bounds for the errors in the case of sine and spline reconstruction. 
The effects of perturbations of the test-data and the rescaled time markers is illustrated in 
Section 3. In Section 4 we formulate our conclusions and make some additional remarks. 
Section 5 finally, presents some suggestions for future directions to improve the quality of 
the reconstructed images. 
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Vll.1. Introduction 

In this section the aliasing error, amplitude error and the time jitter error are defined 
formally. The effect of these errors are illustrated in the next section using test-data and 
a chest phantom. There we also comment on the occurrence of these errors in practice. 

We refer to the notational conventions introduced in Chapter VI. Let g : D x J _. (C be a 
function depending on the spatial parameter r and the time parameter t. We can extend 
g to the larger domain D x R by putting g equal to zero outside D x J. We assume that 
g E L 2 (D x R) (g is square integrable with respect to the variables r and t) and such 
that for each r E D, the function t _. g(r, t) is a bounded function on JR. Denoting the 
rescaled time markers by {tk,;} the data are obtained by 

9k,i := g(k, tk,;), k E If{, i E If. 

Here the Fourier transform is taken with respect to the spatial parameter r. 
The inversion problem of MRI consists in finding a function f E L7t(D x JR) such that: 

l(k,tk,i) = 9k,i, k E ll{,i E If. (1.1) 

Because the function g is in general not uniquely determined by the data and rescaled 
time markers, a solution f of problem (1.1) is in general not equal to the original function 
g from which the data have been derived. 
The difference in norm betwee~ f and g is called aliasing error. 

A second error measure is the amplitude error. (For a discussion on the occurrence of the 
amplitude error in practice, we refer to Section 2 of the Introduction and to Section VI.4.) 
Suppose the data {9k,;} are perturbed by a sequence of random numbers { 1/k,;}: 

9~,i := 9k,i + 1/k,i, k E If{, i E If. (1.2) 

The sequence {g~ ;} is called the perturbed data. The solution of the mixed Fourier inter
polation problem 0from the perturbed data is denoted by f' and satisfies 

f (k, tk,;) = 9~,;, k E If{, i E If. 

The difference in norm between f and f' is called amplitude error: 

Eamp := ( / /, 1/(r, t) - /'(r, t}l2dtdr) 112
. Jn R 

The third error measure is called the time jitter error. (For an explanation of the occur
rence of the time jitter error in practice, we refer to Section VI.4, where the validity of 
the first model assumption is discussed.) Suppose the time markers {tk,;} are perturbed 
by a sequence of random numbers which we denote by {0k,;}: 

The solution that corresponds to the perturbed problem 

l'(k, t~,;) = 9k,, Vi E If 

(1.3) 

(1.4) 

is again denoted by f'. The time jitter error Etj is the difference in norm between f and 

f': 
Etj := ( / J, 1/(r, t) - f'(r, t)l2dtdr) 112

. Jn R 



110 Chapter VII: Stability Analysis of MRI Reconstruction 

A ·problem is called stable, if small perturbations yield small errors in the reconstruction. 
In the next section we derive the following bound for the amplitude error 

Eamp ~ Cjjg - g'll12 (1,xf)· 

Here 

This proves the stability of problem ( 1. 1) under perturbation of the data. The value of C 
is of numerical interest. Intuitively, if C is small, say close to one, then the error in the 
reconstruction is of the same magnitude as the error in the data. In that case the problem 
is called well-conditioned under pertui-bation of the data. However, if C is large, the error 
in the reconstructions may be much larger than the error in the data. Then the problem is 
called ill-conditioned. Well- or ill-conditionedness in the case of perturbation of the time 
markers is defined analogously. 
In section two we study the stability of the mixed Fourier interpolation problem in the 
case of reconstruction by sine and spline functions and we present conclusions which can 
be drawn from the error analysis. 

Vll.2. Error Estimates 

In this section we derive· bounds for the aliasing error, amplitude error and time jitter 
error. 

First, we consider the aliasing error. The classical analogy of this error is very illustrative. 
In the Western movies of the early days, stage-coaches were always hurrying forward on 
wheels rotating in a direction opposite to the direction corresponding to the motion. The 
explanation of this phenomenon is that the time resolution of the camera was too low for 
imaging the motion of the wheels realistically. A mathematical formulation of this aliasing 
error can be given in terms of bandlimited functions. Suppose a function g is an element 
of the space £ 2 (/R). Assume that this function is sampled at rate 7T/r. It is known from 
sampling theory (see e.g. Jerri [27]) that one can find a reconstruction of this function from 
its samples in the space !Pr. So, the frequencies higher than rare lost in the reconstruction 
process. (In the case of the Western movies, the high frequency components in the motion 
of the wheels could not be imaged by the camera, due to undersampling.) In other words, 
the aliasing error is due to the fact that the original function is an element of £ 2 (/R) 
whereas the reconstruction is within the smaller space !Pr. The last formulation is the 
motivation for our definition of aliasing error: in dynamic MRI we obtain data in terms 
of the model heartbeat g, which lies in L2 (D x /R); on the other hand the reconstruction 
f must belong to L'!li(D x IR). In general f will not be the same as g and the aliasing 
error is the difference between f and g. In view of the above discussion it can be expected 
that the aliasing error in the case of L'},(D x R) depends on the frequency band r. The 
following bounds for the aliasing error are proved in Theorems V.2.1 and V.2.3 of Part 
One for bandlimited and spline functions respectively. The estimates are not given in the 
general case that g E L2 (D x /R), but only for g lying in a subspace of L 2 (D x /R). For 
the details, we refer to Part One. The notation g(r, O denotes the Fourier transform of g 
taken with respect to the temporal parameter. 



The aliasing error 
For sine-interpolation: 

For spline interpolation: 
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f 1h 1/2 
Ea1:= (Jn" l/(r;t)-g(r,t)l2 dtdr) ~ 

N,,-1 

ll.6.kll2 := L (l/2)(tk,;+1 -tk,,)2, k E Jl(. 
i=O 
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(2.1) 

(2.2) 

The aliasing error for sine-interpolation, formula (2.1), depends on the frequencies outside 
the band [-r, r]; if for each r. E D, the function t -> g(r, t), is r-bandlimited, then the 
aliasing error is zero. 

The aliasing error for spline-interpolation, formula (2.2), depends on the temporal deriva
tive. So, if the motion of the chest phantom contains high frequencies, we should take 
care that the interpolating spline can oscillate quickly. This can be done by choosing the 
number Npr large. 

The amplitude error occurs in the case of data {Yk,i} perturbed by external noise. In the 
practice of MRI-reconstruction the measurements contain thermal noise, mainly caused 
by the human body lying within the MR-scanner. From Section VI.I we know that the 
amplitude of the Fourier coefficients of any L2-function decreases if the frequency increases. 
If a noise term which is independent from the frequency, is added to these coefficients, the 
relative erro/in the coefficients increases with the frequency. Since the thermal noise in 
the practice of MRI may be assumed to be of constant amplitude (see Section 2 of the 
introduction), it follows by reasoning analogously that the relative error in the coefficients 
Yk,i of the model heartbeat increases if lkl increases. There are many other error sources 
in practice, which we will not discuss here. For example, eddy currents in the magnet coils 
and errors caused by the bloodflow through the heart chambers. 

The foliowing error bound is proved in Theorem VI.5.2 of Part One. 

The amplitude error 

For sine- and spline reconstruction: 

(2.3) 

Here the Gram matrix G(k), for fixed k E l(, is given by 

(G(k)),j = (r/'rr) sincr(tk,i - tk,j), i,j E Jl, 
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in 'the case of sine functions and by 

in the case of spline functions, where u is given by formula (VI.2.4). In particular this 
formula shows how the amplitude error depends on the norm of G(k)- 1 . This means that 
the problem is ill-conditioned if this norm is large and well-conditioned if this norm is close 
to one. In the case of sine functions we can say more. If the time markers {tk,diET are 
spaced equidistantly for all k E K{, then IIG(k)- 1 II = 1 and the problem is well-conditioned 
for perturbation of the data. If for a certain k E K{ the distribution of the time markers 
is irregular, then IIG{k)- 1 11 may get large and the problem becomes ill-conditioned. 

Our third estimate concerns the time jitter error which occurs in the case of perturbation 
of the rescaled time markers {tk,i}, which were computed by the linear stretching time
to-phase conversion formula (VI.1.16). In the case of reconstruction from test-data, this 
time-to-phase conversion yields the correct positions for the rescaling of the time markers. 
However, in the case of MRI-data, this conversion formula is at best an approximation of 
the real situation, and yields incorrect positions of the rescaled time markers. (See Section 
VI.4 for a detailed discussion.) This causes a time jitter error in the reconstructed images. 

In the following example the sequence {tk,,} plays the role of exact time markers and the 
{tL,;} are the perturbed time markers. 

Denote the sequence {tk,i}iET by tk, fork E II{. The notation tL is used analogously for 
the perturbed time markers. The Gram matrices corresponding to the perturbed time 
markers are defined by 

in tlie case of bandlimited functions and by 

{G'(k)),j := u(tL,j,tL,;), i,j E J/, 

in the case of spline functions. The bound for the time jitter error is proved in Theorem 
V.2.7 of Part One. There we derived the estimate for the time jitter from the bound for 
the amplitude error. 

The time-jitter error 

For sine-reconstruction, 

Here 

For spline reconstruction, 

(2.5) 

Here the constant C depends on r only. 
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The ti~ejitter error for sine-interpolation, formula (2.4), depends on the norms of ( G'(k))- 1 

G(k), ~nd G(k)- 1 . If for all k E I< the elements of the sequences {tk,.},er or {t~)iET 
lie close to the uniform grid then the norms of G(k)-1 , G'(k)- 1 and G(k) are close to one 
and the problem is well-conditioned under perturbation of the time markers. Otherwise, 
if for one or more k E K< the distribution of the time markers is very irregular, then the 
norm of one of the Gram matrices may get large and the problem becomes ill-conditioned. 
The time-jitter error for spline-interpolation, given by formula (2.5) depends on (G'(k))- 1 , 

lltk - t~II and on the time derivative of the function /, corresponding to the unperturbed 
problem. So, the problem becomes well-conditioned under perturbation of the time points 
if (for all k E l{) IIG(k)-1 11 and the time derivative in supremum norm is small. If the 
degree of the spline is chosen smaller, then the norm of this time derivative gets smaller. 
The conclusion is that in the case of sine interpolation the reconstruction algorithm is well
conditioned, if (for each k E l<) the time points {tk,;}iET are sampled uniformly. The 
reconstruction by spline interpolation is well-conditioned if the degree of the interpolating 
spline is not too high. 

If the problem is ill-conditioned, it may be useful to approximate the solution by means 
of a regularization technique e.g. the Tychonov-Phillips regularization (see Section VI.2). 

Vll.3. Perturbations of Reconstructions of the chest phantom 

In this section we apply the reconstruction algorithms in the case of perturbations of 
test-data {g~.J and of rescaled time markers {t~ .• }. Afterwards we shall briefly discuss 
the results obtained here. The parameters of the reconstruction algorithms are the same 
as those used in Section Vl.3.3. 

The aliasing error will not be explicitly visualized in this chapter by means of a sequence 
of reconstructed images. The reason for this is that the aliasing error is already visible in 
the reconstructions of the chest phantom in the previous chapter ( cf. Section VI.3). The 
aliasing error in the case of test-data is the difference between the reconstructions and the 
chest phantom. It is predominantly illustrated by Figure VI.10: degree 0 reconstruction 
in the case of Npr = 5. The performance of degree O reconstruction has improved when 
Npr = 15, which also holds for the other reconstruction methods. This illustrates formula 
(2.3) which shows how the aliasing error for splines depends on Npr· Also, when Npr = 15 
the aliasing error occurs in the reconstructions. Comparing the reconstructions of Figures 
VI.10, VI.11, VI.12 and VI.13 between the chest phantom Figure VI.9 we see that a 
feature of the the aliasing error is the occurrence of the vertical noise band over the image 
(Section VI.3.3) and the smearing out of the moving ellipses. In the reconstructions from 
the MRI-data, Figures VI.19, VI.20, VI.21 and VI.22, we see this phenomenon too: the 
noise band and vague boundaries in the image of the heart muscle. The position of the 
noise band is fixed by the position of the moving ellipses in the phantom or by the heart 
in MR-images, as explained in Section VI.3. 

To illustrate the amplitude error, we apply the algorithms to perturbed test-data {g~ ;} 
which are obtained by formula (1.2). The complex numbers { 7Jk,;} are chosen rand011.;ly 
such that Re 7Jk,i and Im 7Jk,, lie in the interval [-4000, 4000]. To get an impression of 
the relative magnitude of the error we give the value of the test-data {Yk,;} for certain 
i E JI, 

Yn,1., = 16624, Yr.4,1,, = -3089, 912,,1,; = 494. 

The amplitude of the data {gk,;} decreases, if lkl increases. The maximum of the noise 
magnitude { 7Jk,;} is 4000, independent. of the frequency vector k. This means that the 
signal to noise ratio is decreasing when lkl is increasing. In the following Figures we show 
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degree 0, degree 1, degree 3, sine and tp-sinc reconstruction applied to perturbed test-data. 
In this case the maximum number of phases is <I> = 8 and Npr = 15. 
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Figure VII.1 . Reconstructions from perturbed data at phase <j, 0 . 

Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure Vll.2 . Reconstructions from perturbed data at phase </,2 

Top left: degree 0, Top right: degree I, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure VII. 3 . Reconstructions from perturbed data at p/iase rj; 4 

Top left: degree 0, Top right: degree 1, 1Hiddle left: degree 3, Middle rig/it: sine, Bottom: 
tp-sinc. 
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Figure Vll.4 . Reconstructions from perturbed data at phase </Jn 
at phase </Jn. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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The differences in L2-norm between the reconstructions (from perturbed test data) and 
the chest phantom are given in the following table. 

phase0 phase2 phase4 phase6 
degree0 20.05 21.20 19.39 71.83 
degree I 19.22 18.56 18.95 18.49 
degree3 22.68 23.14 22.57 22.35 

smc 133.91 27.67 20.46 25.20 
tp-sinc 38.13 8.49 7.46 6.79 

Table V/1,1 Reconstruction error at four phases from perturbed test data. 

When intuitively comparing the reconstru_ctions from the perturbed data we see that no 
drastic changes occur due to this perturbation. Comparing sine and tp-sinc reconstruction 
we clearly see the effect of the Tychonov-Phillips regularization. 

Finally we discuss the effect due to perturbation of the rescaled time markers by formula 
1.3. The random numbers {0k,;} are chosen uniformly and independently from the interval 
[-0.08, 0.08]. The spacing of the profiles on an RR-interval is approximately 0.067. This 
yields a relative perturbation of the time markers of about 100%. Note that this relatively 
big perturbation can have drastic effects on the reconstructions. The different reconstruc
tion algorithms for the perturbed rescaled time markers are illustrated in Figures VII.5, 
VII.6, VII.7 and VII.8. 
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Figure Vll.5. Reconstructions from perturbed time markers at phase q,0 . 

Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure VIJ.6. Reconstructions from perturbed time markers at phase c/,2. 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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Figure VII. 7 . Reconstructions from perturbed time markers at phase <p4 • 

Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. · 
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Figure Vll.8 . Reconstructions from perturbed time markers at phase <pfi, 
Top left: degree 0, Top right: degree 1, Middle left: degree 3, Middle right: sine, Bottom: 
tp-sinc. 
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The differences in L 2-norm of the reconstructions from perturbed time markers between 
the chest phantom are given in the following table. 

phase0 phase2 phase4 phase6 
degree0 16.65 3.65 12.52 18.18 
degree! 108.63 6.79 7.22 4.66 
degree3 417.45 13.78 10.89 13.43 

smc 33.56 9.64 6.95 9.41 
tp-sinc 25.99 6.79 7.07 5.01 

Table Vll.1 Reconstruction error at four phases from perturbed time markers. 

What we see is that degree three reconstruction does not behave well for the time jitter 
error. This illustrates formula (2.5). From this formula, we see that the bound on the time 
jitter error depends on the time derivative of the interpolating function. If one chooses 
the degree of the spline high (degree three appears to be high enough) then the supremum 
norm of the derivative of the spline is higher, compared to the norm of the derivative 
of lower degree splines. So, the bound on the time jitter error is probably higher for 
higher degree splines. This illustrates the conclusion at the end of Section 2 that higher 
degree spline reconstruction may be ill-conditioned for the time jitter error. The other 
reconstruction algorithms behave better. However, the quality at phase </Jo of degree one 
reconstruction is also poor. Regularized sine reconstruction behaves well in the case of 
perturbed measurement times. 

Finally we present our conclusions about the time jitter error. We see in Figures VII.5, 
VII.6, VII .7 and VII.8 that for degree l and degree 3 reconstruction the images of the first 
phases are of poor quality, while the images of the latter phases are better. It turns out 
that degree 3 reconstruction is sensitive for perturbation of the time markers. 

Vll.4. Conclusions and Remarks 

In this section we briefly review some of our results and conclusions of this dissertation. 

A model for dynamic MRI-reconstruction is presented in this thesis and an associated 
inversion problem is formulated. The model assumptions are that Fourier coefficients of 
the spin density of the heart observed at different time points and linear stretching as a 
time-to-phase conversion formula, can be used to reconstruct a model heartbeat. 

The inversion problem was solved in Part One in the setting of £ 2-spaces of vector valued 
functions, L2 (D, 1t), using Riesz-Fischer systems, Riesz bases and Bessel systems. We 
showed that the minimum norm solution has a natural decomposition. In the case that no 
solution exists, the use of a regularization technique was proposed, e.g Tychonov-Phillips 
regularization. These results were applied in the case that 1t is either 1Pr, the Hilbert 
space of bandlimited functions, or K2n-l which is the space of odd degree polynomial 
spline functions. We proved estimates for the aliasing error, the amplitude error and the 
time jitter error. It turned out that the solution is stable under perturbation of the data 
and time markers. 

In Part Two some of the mathematical results were reformulated within the practical 
context of MRI reconstruction. The reconstruction algorithms we considered are degree 
0, degree 1, degree 3, sine and tp-sinc reconstruction. These algorithms were applied to 
test-data. The reconstructed images were compared with the original chest phantom at 
corresponding phases. The conclusion is that degree 1 and degree 3 reconstruction perform 
better than the other methods in this test situation. We also showed that the quality of 
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the reconstructed images improves significantly when increasing the number of profiles 
Npr from 5 to 15. The image quality will not improve much when increasing Npr further. 

The stability of the algorithms is illustrated by applying the algorithms to perturbed test
data and perturbed time markers. We saw that the reconstruction methods are stable 
under perturbation of the data. It turned out that degree 3 reconstruction is ill-conditioned 
under perturbation of the time markers. 

The reconstruction algorithms were also applied to MR-data, using either linear or piece
wise linear time-to-phase conversion. We conclude that reconstruction by using linear 
stretching and piecewise linear stretching give the same results. 

Degree I and degree 3 reconstruction prevail over the other methods for test-data. On the 
other hand, in the case of MRI-data there is no essential difference between the reconstruc
tion methods, except for degree 1, which gives low quality images. That the reconstruction 
methods do not behave as expected for MRI-data is probably due to the violation of the 
model assumptions. We refer to section VI.4 for a discussion on the validity of these 
assumptions. 

Another point is the use of the £ 2-norm as an error criterion. This may not be the most 
natural choice from a perceptual point of view. In particular, even if the difference between 
the reconstruction and the original phantom is small, the result may still be degraded by 
undesired effects, such as the vertical noise bands, discussed above. 

The overal conclusion is that the performance of the reconstructions in practice will not 
get better by improving the interpolation techniques. (Note that the quality of the re
constructions is considered for fixed values of the spatial and temporal resolution. This 
resolution cannot be increased arbitrarily, as explained in Section 2 of the Introduction.) 
In other words, to improve the performance of the reconstruction algorithms we have to 
adapt our model assumptions. This is the subject of the following section. 

Vll.5. Future directions 

This section gives suggestions for future directions to improve the quality of the recon
structed images. 

Conclusion: The main quality improvement of dynamic MRI-reconstruction 
will be realized by refining the model. 

For convenience we recall the model assumptions: 
The algorithm to obtain rescaled time markers on the unit RR-interval from time 
markers on an RR-interval is linear stretching; 
There exists a model heartbeat such that its Fourier coefficients at the rescaled time 
markers are equal to the measurements from the spin density of the beating human 
heart. 

These assumptions are an approximation of the real situation. This modelling can be 
improved by taking into account more parameters concerning the motion of the heart. 

In practice, the exact motion of the heart in the plane of the me~sured cross section is 
unknown. One of the effects which can perhaps be taken into account is the respiratory 
motion. If the patient, lying in the MR-scanner, is breathing the chest is slightly moving 
in vertical direction, which causes a phase shift in the measured Fourier coefficients. This 
vertical displacement can be measured in practice, and could then be incorporated in the 
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model. A crucial question which would have to be answered first then, is whether this is a 
realistic approximation of the effect of the respiration on the heart motion. Another idea, 
is to take into account both the respiratory cycle and the heart cycle for rescaling the time 
markers. The first model assumption has to be adapted then, resulting in a model with 
two temporal parameters, one for the respiratory phase and one for the heartphase. The 
reconstruction algorithms as described in Section Vl.2 can then be used after adapting 
them to handle a two dimensional temporal parameter. 

This idea of taking into account the respiratory cycle was suggested by e.g. Bohning (8]. 
We propose to use the phantom of the model heartbeat to test whether these adaptions 
concerning the respiration will lead to a quality improvement of the reconstructions. 

The heart does not only contract, but it also rotates meaning that the part of the cross 
section of the heart which is measured at a given time does not remain in one plane, which 
violates the second model assumption. For diagnostic purposes it is interesting to image 
this motion. Then one has to obtain Fourier coefficients in three instead of two dimensions. 
The second model assumption can then be adapted for the case of a three dimensional 
spatial parameter. The reconstruction algorithms as described in Section VI.2 can also be 
used in this case. We suggest the use of the phantom and test-data to check whether this 
adaption will improve the reconstruction quality. 

The overal conclusion is that more parameters concerning the motion of the heart should 
be taken into account in order to improve the reconstruction algorithms. For example, us
ing information from the respiratory cycle and using three dimensional Fourier coefficients 
could be considered. 
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