
Numerical methods for the 
.three-dimensional shallow water equations 

on supercomputers 

E.D. de Goede 



1991 Mathematics Subject Classification: 65M06, 65M12, 65M20. 
ISBN 906196 417 2 
NUGl-code: 811 

Copyright© 1993, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



Preface 

The subject of this tract is the development of an accurate and efficient numerical 
method for the three-dimensional shallow water equations. In order to develop such a 
method, we started in 1988 the VECPARCOMP-project at the CWI (Centre for 
Mathematics and Computer Science). This research project was supported by 
Rijkswaterstaat (Dutch Water Control and Public Works Department) and was 
carried out in co-operation with the Tidal Waters Division ofRijkswaterstaat, Delft 
Hydraulics and ICIM (Informatics Centre for Civil Engineering and Environment). 
The project was supervised by a committee with the following members: 

Prof. dr. ir. A.W. Heemink (Rijkswaterstaat, University of Delft) 
Prof. dr. P.J. van der Houwen (CWI, University of Amsterdam) 
Prof. dr. ir. G.S. Stelling (Delft Hydraulics, University of Delft) 
Dr. ir. Th.L. van Stijn (ICIM) 
Dr. ir. F.W. Wubs (University of Groningen). 

I want to thank all those who contributed in some way to the realization of this 
tract. I like to mention some of them explicitly. In particular, I thank 
Prof. dr. P.J. van der Houwen for his guidance and for the stimulating 
discussions during this project. I am grateful to Dr. ir. Th.L. van Stijn and 
Prof. dr. ir. A.W. Heemink for their useful advices and for acquainting me with the 
Rijkswaterstaat. Further, the constructive remarks and the careful reading of the 
papers by Dr. B.P. Sommeijer have significantly contributed to the 
successful completion of this research project. Prof. dr. ir. G.S. Stelling and 
Dr. ir. F.W. Wubs are also thanked. Their assistance and insight in shallow water 
models has been very valuable. 

I like to express my great appreciation to Joke Blom, Walter Lioen, Margreet 
Louter-Nool, Herman te Riele and Dik Winter for their support during the many 
numerical experiments. Owing to the rapid changes in hardware and software, their 
help was indispensable. 

Finally, I want to thank the Stichting Mathematisch Centrum for publishing this 
research as a CWI Tract. 

Ilpendam, October 1992 E.D. de Goede 



. 



Contents 

1. IN1RODUCIION 1 

1.1. Shallow water models 1 
1.2. Space discretization 2 
1.3. Time discretization 2 
1.4. Implementation on vector and parallel computers 3 

References 4 

2. 1lffi 1HREE-DIMENSIONALSHAI1.DWWATER EQUATIONS 5 

2.1. Mathematical model in Cartesian co-ordinates 5 
2.2. Mathematical model in sigma co-ordinates 8 

References 9 

3. ExPucrr AND SEMI-IMPLlCIT METIIODS FOR THE THREE-DIMENSIONAL 
SHAil.DWWATER EQUATIONS 10 

3.1. Introduction 10 
3.2. Mathematical model 11 
3.3. Space discretization 11 
3.4. Time integration 15 
3.5. Solution of the tridiagonal systems 17 
3.6. Numerical experiments 19 
3.7. Stability analysis 22 
3.8. Conclusions 26 

References 26 

4. STABILTZA TION OF A TIME INTEGRATOR FOR THE 3D SHALLOW WATER 
EQUATIONS BY SMOOTIIlNG TECHNIQUES 27 

4.1. Introduction 27 
4.2. Right-hand side smoothing 28 

4.2.1. Smoothing based on operator splitting 30 
4.2.2. Smoothing operators for general vector functions 31 

4.2.2.1. Explicit smoothing operators 32 
4.2.2.2. Implicit smoothing operators 33 

4.3. Mathematical model 34 
4.3.1. Space discretization 35 
4.3.2. Time integration 36 

4.4. Smoothing 37 



4.5. Implementation of the smoothing operators 39 
4.6. Nwnerical experiments 39 
4.7. Conclusions 43 

References 44 

5. A TIME SPUITING ME11IOD FOR 11IE 11IREE-DIMENSIONAL SHALLOW 
WATER.EQUATIONS 46 

5.1. Introduction 46 
5.2. Mathematical model 47 
5.3. Space discretization 48 
5.4. Time integration 49 
5.5. Stability 52 
5.6. Solving the linear systems 54 

5.6.1. The smoothed Jacobi method 56 
5.6.2. The smoothed CG method 57 

5.7. Nwnerical experiments 58 
5.8. Conclusions 63 

References 64 

6. NUMERICAL METHODS FOR 11IE 3D SHALLOW WA 1ER EQUATIONS ON 
VECTOR AND PARALLEL COMPUTERS 65 

6.1. Introduction 65 
6.2. Mathematical model 66 
6.3. Space discretization 67 
6.4. Time integration 68 

6.4.1. The conditionally stable method 68 
6.4.2. The unconditionally stable method 70 

6.5. Solving the linear systems 72 
6.5.1. The smoothed Jacobi method 72 
6.5.2. The smoothed CG method 73 

6.6. Numerical experiments 74 
6.7. Conclusions 80 

References 81 

7. ON 11IE NUMERICAL TREATMENT OF 11IE ADVECTIVE TERMS IN 3D SHALLOW 
WATER.MODELS 82 

7.1. Introduction 82 
7.2. Mathematical model 83 
7.3. Numerical discretization 84 
7.4. Solving the systems 86 
7.5. Nwnerical experiments 89 

References 92 
Appendix: Finite differences 92 



8. 3D SHALLOW WATER MODEL ON TIIE CRAY Y-MP4/464 95 

8.1. Introduction 95 
8.2. Mathematical model 96 
8.3. Implementation 97 
8.4. Scalar and vector performance 97 
8.5. Parallelism 98 
8.6. Numerical experiments 99 
8.7. Conclusions 101 

References 101 

9. A NUMERICAL MODEL OF THE NORTIIWEST EUROPEAN CONTINENT AL SHELF 
ON THE CRAY Y-MP2E 103 

9.1. Introduction 103 
9.2. Mathematical model 104 
9.3. Numerical discretization 106 
9.4. Implementation on vector computers 107 
9.5. Application 107 

References 111 

10. OVERVIEW AND CONCLUSIONS 118 

10.1. Conditionally stable methods 118 
10.2. Unconditionally stable methods 119 
10.3. Overview of time splitting methods 121 

References 123 

INDEx 124 





C 
d 
f 
g 
h 
nx,ny 
ns 
p 

Pa 
R 
q 
t 
u,v 
ud,vd 
w 
Wf 
x,y 
~x.~y 
z 

'Y 
A 
µ 
p 
O' 

~CJ 

't 

'txx• 'txy•··· 
<I> 
co 
roe 
X, <p 
~x. ~cp 

' 

Notation 

Chezy coefficient 
undisturbed depth of water 
Coriolis coefficient 
acceleration due to gravity 
total depth ( = d + C) 
nwnber of grid points in the x- and y-direction, respectively 
number of grid points in the vertical direction 
pressure 
atmospheric pressure 
radius of the Earth 
number of smoothing factors 

(mlfls-1) 
(m) 
(s-1) 

(ms-2) 

(m) 

(kgm-ls-2) 
(kgm-ls-2) 

(m) 

time (s) 
velocity components in the x- and y-direction, respectively (ms-1) 
velocity components at some depth near the bottom (ms-1) 
vertical velocity component in the x-y-z co-ordinate system (ms·1) 
wind stress (kgm-1s-2) 
horizontal spatial co-ordinates (m) 
mesh sizes in the x- and y-direction, respectively (m) 
vertical spatial co-ordinate in the x-y-z co-ordinate system (m) 
relaxation parameter for the SCG method 
eddy viscosity coefficient in the horizontal direction 
eddy viscosity coefficient in the o--direction 
water density 
vertical spatial co-ordinate in the sigma-transformed system 
mesh size in the vertical direction 

(m2s-1) 
(m2s-1) 

(kgm-3) 

time step (s) 
components of the stress tensor (kgm-1s-2) 
angle between wind direction and the positive x-axis (0 ) 

vertical velocity component in the x-y-0' co-ordinate system (s-1) 
angular speed of the Earth's rotation (s-1) 
polar co-ordinates in east longitude and north latitude, respectively {°) 
mesh sizes in the polar co-ordinate system (0 ) 

water elevation above undisturbed depth (m) 
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Chapter 1 

Introduction 

1.1. SHALLOWWATERMODELS 

The shallow water equations describe a mathematical model for flows in which the 
length of the free surface waves is significantly larger than the water depth. 
Examples are flows in rivers, estuaries and shallow seas. From a mathematical 
point of view, these hydrodynamic models are complex, because they involve effects 
of e.g., the wind, the earth's rotation and the geometry of the water system. 
Numerical models have become established for predicting water flows. By the 
advances in numerical mathematics and in computer performance, simulations of 
water flows can be performed accurately. Nowadays, numerical models are much 
cheaper and flexible than scale models, which have frequently been used in the past. 

It is more than 60 years ago that numerical models were introduced for the 
simulation of water flows. For the purpose of predicting the effect of the closure of 
the Zuiderzee in the Netherlands, numerical computations were performed in 1926 
by the Dutch physicist Lorentz [13). It appeared that the tidal elevations agreed well 
with the numerical predictions. A more recent application was made for the storm 
surge barrier in the mouth of the Oosterschelde (Eastern Scheidt), which is in the 
south-western part of the Netherlands. A numerical tidal model was developed for 
the accurate prediction of the water level to ensure that the barrier will be closed in 
time in case of extremely high water. 

In the past, many numerical methods were developed for the two-dimensional 
shallow water equations. In the Netherlands well-known methods for these (depth­
averaged) equations are the ADI-method of Leendertse [11), the ADI-method of 
Stelling [16), the finite element method of Praagman [15) and the stabilized Runge­
Kutta method of Wubs [19). The main goal of two-dimensional models is the 
accurate prediction of water levels. Presently, a two-dimensional model of the 
Continental Shelf is operational at KNMI (Royal Dutch Meteorological Institute). 
Using wind and atmospheric pressure data from a numerical model of the 
atmosphere, the water elevations in the North Sea and especially along the Dutch 
coast are computed four times a day [10). 

In the last decennium computing power has increased significantly. As a 
consequence, more physics could be included in numerical models. There has been a 
major research effort in developing three-dimensional models, which yield 
information about the vertical structure of the water. The ability to accurately 
predict these vertical structures is particularly important in a wide range of pollution 
problems. With two-dimensional models such information can not be obtained. 

The application of three-dimensional models requires a great computational effort, 
especially when a high resolution is needed. Therefore, it is necessary to construct 
methods that are able to fully exploit the facilities of fast computers, such as vector 
and parallel computers. So far, the numerical methods used in the Netherlands for 
the three-dimensional shallow water equations (see e.g., [12) and [17]), were not 
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developed with vector and parallel computers in mind. In order to develop a 
computationally efficient three-dimensional shallow water model on such 
computers, the VECPARCOMP project was started four years ago. This project is a 
co-operation between the Rijkswaterstaat (Dutch Water Control and Public Works 
department) and the CWI (Centre for Mathematics and Computer Science). In this 
tract the results of the VECPARCOMP project are presented. 

This tract deals with the development of numerical methods for the three­
dimensional shallow water equations on vector and parallel computers. The three­
dimensional shallow water equations and their derivation will be discussed in 
Chapter 2. The subsequent chapters are devoted to the numerical discretization of 
these equations by means of the method of lines approach. This approach first 
discretizes in space, followed by the discretization in time. 

1.2. SPACE DISCRETIZATION 

For the space discretization we use the staggered grid that is known as the 
Arakawa C-grid [1). This is the most commonly used and the most successfully 
used grid for shallow water models. In the vertical direction the shallow water 
equations were transformed into (depth-following) sigma co-ordinates to obtain the 
same vertical resolution in the whole water system [14]. 

On this staggered grid the spatial derivatives were replaced by finite differences. It 
is well-known that finite differences can be implemented efficiently on vector and 
parallel computers. We examined various discretizations for the advective terms. It 
appears that the finite differences developed by Stelling [16] perform best. Both the 
special discretization near the boundaries and the introduction of some dissipation by 
the upwind discretization of the mixed advective terms, which are described in [16], 
turns out to be essential (see Chapter 7). The discretization of the other terms will 
be discussed in Chapter 3. 

1.3. T!MEINTEGRATION 

At CWI time integration methods for two-dimensional shallow water models were 
developed by Wubs in 1983-1987 [19]. Our project may be considered as a follow­
up of this research. In three-dimensional models there is a multi-layer approach in 
the vertical direction, instead of one (depth-averaged) layer in the two-dimensional 
case. As a first introduction to three-dimensional models we investigated the 
influence of the vertical diffusion term. For a model without advective terms, we 
examined time integrators that were explicit, semi-implicit or implicit in the 
vertical. Chapter 3 is devoted to this topic. 

It appears that the vertically implicit methods of Chapter 3 perform best. 
However, for these methods we are still faced with a CPL condition that depends on 
the water depth and on the horizontal mesh sizes. This implies that for small values 
of the horizontal mesh sizes or for very deep water, this time step restriction is 
more severe than necessary for accuracy considerations. In order to increase the 
stability we applied so-called right-hand side smoothing. Right-hand side smoothing 
has originally been developed by Wubs [19]. By this technique, the computation 
time for our three-dimensional shallow water models reduces considerably while the 
accuracy remains acceptable (see Chapter 4). 

Next, we constructed a two-stage time splitting method that is unconditionally 
stable (see Chapter 5). For two-dimensional shallow water models, this method is 



3 

very similar to the one described in [18), where its feasibility for practical 
computations has been shown. It appears that the efficiency of our method is even 
higher for three-dimensional models than for two-dimensional ones. 

For the model without advective terms, we compared the unconditionally stable 
method with the vertically implicit method stabilized by right-hand side smoothing 
of Chapter 4. The results will be presented in Chapter 6. The unconditionally stable 
method is the most accurate one. This method is also more efficient, because large 
time steps can be used. 

So far, the advective terms were omitted. We incorporated the advective terms in 
the aforementioned unconditionally stable method, which will be described in 
Chapter 7. The discretizations developed by Stelling [16) are applied. The 
introduction of the advective terms results in a· hardly more complicated system of 
equations. 

1.4. IMPLEMENTATION ON VECTOR AND PARALLEL OOMPUTERS 

As mentioned earlier, the application of three-dimensional shallow water models 
requires the use of fast computers, such as vector and parallel computers. At the end 
of 1988 an Alliant FX/4 was installed at CWI. The Alliant FX/4 was used to 
investigate parallel methods for our shallow water equations. The numerical 
experiments described in Chapters 3-8 were carried out on this mini-supercomputer. 
Both the vector and the parallel optimization of the Alliant FX/4 were utilized. 

During our four-year project, we investigated test problems of an increasing degree 
of complexity. The most realistic experiments were carried out on CRAY 
supercomputers. A river problem in which a jetty was situated, was simulated on a 
CRAY Y-MP4/464 (see Chapter 8). Since December 1990 this supercomputer is 
operational at the Academic Computing Services Amsterdam (SARA). Chapter 9 
deals with the implementation of a northwest European Continental Shelf model on 
the CRAY Y-MP2E installed at ICIM (Informatics Centre for Civil Engineering 
and Environment). The CRAY Y-MP2E was recently installed in the Netherlands 
for the simulation of large scale models of rivers and seas. 

In this tract, Chapters 3-9 are based on papers that have been published or have been 
accepted for publication. In order to obtain a uniform notation, the chapters slightly 
differ from the papers. Chapter 3 contains parts of the papers [2] and [3). 
Chapters 4-8 correspond with the papers in [4, 5, 6, 7 and 8], respectively. The 
paper described in Chapter 9 has been accepted for publication [9]. 

REFERENCES 
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Chapter 2 

The Three-Dimensional Shallow Water 
Equations 

2.1. MA TIIEMA TICAL MODEL IN CARTESIAN CO-ORDINATES 

5 

In this chapter we will derive a mathematical model for three-dimensional shallow 
water flows. We will only consider homogeneous flows. The mathematical 
description of homogeneous water flows consists of a system of differential 
equations that are physically based on the conservation laws for mass and 
momentum. These equations are a simplification of the well-known Navier Stokes 
equations. 

The time-dependent, incompressible Navier Stokes equations may be written in 
Cartesian co-ordinates as (see [2,5]) 

aw = -iw - vaw - waw - f + 1{-212.+ atzx + atzy +-atzz }- g (1.3) 
at ax oy in z p az ax ay az 

au+ av + aw = O , (1.4) 
ax oy in 

where the Coriolis term is defined by 

fx = 2 ( ~ V - 02 W ) 

fy = 2 ( 0 1 w - ~u) 

fz =2 ( 0 2u-01v), 

(1.5) 

with O = (01, 0 2, 0 3) denoting the earth rotation vector. For latitudes that are 
not too close to the equator we may simplify equation (1.5) to [3] 

fx=2~v 

fy=-203u 

fz = 2 ( o2u - 0 1 v) . 

(1.5') 
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The equations (1.1)-(1.3) are the equations of motion and (1.4) is the continuity 
equation. In system (l.1)-(1.4) the curvature effects of the earth are neglected. The 
earth's rotation is modelled by the Coriolis tenn. 

In shallow water flows the fluid motions are predominantly horizontal. The 
vertical acceleration of the large scale motion is very small, particularly if compared 
with the acceleration due to gravity. Therefore, neglecting the vertical acceleration 
and advection is justified [2]. For the same reason the Coriolis term and the 
components of the stress tensor may be neglected in (1.3). Then, equation (1.3) 
reduces to the hydrostatic equation 

~=-pg. (1.6) 

The internal pressure distribution in the flow can be derived by vertical integration 
of equation (1.6), which leads to 

The variations of the atmospheric pressure pa are small compared to the variations 
of pg(~-z) and are neglected. This yields 

(1.7) 

The components of the stress tensor in (1.1) and (1.2) may be expressed as 
gradients of Reynolds stresses [2], through the relationships 

(1.8) 

By the requirement that at the moving water surface a particle must follow the 
motion of that surface, we obtain for z=~(x,y,t) 

(1.9) 

Similarly, at the bottom z==--0(x,y) the boundary condition reads 

W = u o(-d) + a(-d) 
OX V oy . (1.10) 

Integrating the continuity equation (1.4) from the bottom to the surface, yields 
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~ ~ 
r J au J av w(x,y,.,,,t) - w(x,y,-d,t) = - -a dz- -a dz . 

--d X --d y 
(1.11) 

Then, applying Leibniz' rule and combination of (1.11) with (1.9) and (1.10), leads 
to 

~ ~ 
a, a J a J -=--( udz)--( vdz). 
at ax --d ay --d 

(1.12) 

The change of the water elevation , is related to the vertically integrated flow. Note 
that equation (1.12) also occurs in two-dimensional shallow water models. 

By integrating from the bottom to a certain level z=h1, we obtain the following 
relationship for the vertical velocity w: 

(1.13) 

This expression for w allows a non-zero vertical velocity at the bottom (see (1.10)). 
Using the relations (1.1), (1.2), (1.5'), (1.7), (1.8) and (1.12) the three­

dimensional shallow water equations equations in Cartesian co-ordinates read 

(1.14) 

(1.16) 

~ ~ 
a, a J a J -= --( udz)- -( vdz) 
at ax ay 

(1.17) 

with -d $; h1 $; ,. 

In (1.14)-(1.15) we have used the oceanographic notation 

f = 2 IOI sin(<p) , 

where <p denotes the earth's latitude. 
The boundary conditions have not been specified yet. At the sea surface z = , the 

boundary conditions are given by 
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(1.18) 

Similarly, at the boundary conditions at the bottom z = -d(x,y) we prescribe 

( µ ov)· = kgvd • 

az z=-d c2 
(1.19) 

with k an appropriate coefficient of bottom friction. Equation (1.19) represents a 
linear law of bottom friction. An alternative to (1.19) is the quadratic law of bottom 
friction, of the form 

(1.20) 

2.2. MA TIIEMA TICAL MODEL IN SIGMA CO-ORDINATES 

In the vertical direction the domain is bounded by the bottom topography and the 
time-dependent water elevation ,. To ensure that the three-dimensional domain is 
constant in time, the equations have to be transformed in the vertical direction into 
depth-following (sigma) co-ordinates. Transforming equations (1.14)-(1.17) from the 
interval -d ~ z ~ , into the constant interval 1 ~ c; ~ 0, by the so-called sigma 
transformation [4] 

leads to 

av = -u°v -v°v -~- fu-g°' + A a2v + A a2v + .!.. .£.. (µ av) (2_2) ot ox oy ocr oy ox2 0y2 h2 c)c; c)c; 

1 1 1 1 

ffi = ¼ { -(1--cr) (Jx (h J udcr) +: (h J vdcr)) + l_ (h J udcr) +: (h J vdcr)} (2.3) 
0 y O ax <T Y <T 

1 1 

a, = - .2... (h J udcr) - .2... (h J vdcr) . at ax O ay O 
(2.4) 

The relation between the new vertical velocity ffi and the untransformed (physical) 
velocity w is given by [1,6] 
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Transformation of the surface and sea-bed boundary conditions into sigma co­
ordinates, yields at the sea surface 

( au) h ( av) h . µ ocr = - -Wf cos(q>) , µ ocr = - -WfSm(q>). 
a=O p a=O p 

(2.5) 

At the bottom z = -d(x,y) the quadratic law of bottom friction (cf. (1.20)) leads to 

(µ :) = -h g :d ✓u~ +v~. (2.6) 
a=l C 

Furthermore, for the transformed vertical velocity ro we have 

ro(x,y,0,t) = o and ro(x,y,l,t) = o. 

System (2.1)-(2.4) together with its boundary conditions (2.5)-(2.6) will be the 
starting point for our mathematical shallow water model. In the following chapters 
we will sometimes use a simplified model. For example, in several chapters the 
advective terms will be omitted. In Chapter 9 a complete model in polar co­
ordinates will be used. 

For a detailed description of three-dimensional shallow water equations we refer 
to [2,5]. 
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Chapter 3 

Explicit and Semi-Implicit Methods for the 
Three-Dimensional Shallow Water Equations 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

For a linear three-dimensional hydrodynamic sea model the stability 
and efficiency on vector and parallel computers of various time 
integrators is compared for a wind induced flow in a rectangular basin. 
Owing to stability, it appears to be necessary to treat the vertical 
terms in an implicit way. We show that the so-called vertically 
implicit methods can be computed efficiently on vector and parallel 
computers. 

3.1. lNIRODUCTION 

In this paper one-step time integrators for the three-dimensional hydrodynamic 
equations are developed and compared with each other with respect to stability and 
efficiency on vector and parallel computers. Section 3.2 provides the simplified 
hydrodynamic equations in depth-following (sigma) co-ordinates. These equations 
describe the motion and the elevation of water. 

For the numerical discretization of the shallow water equations we follow the 
method of lines approach. This approach first converts the system of partial 
differential equations (PDEs) into a system of ordinary differential equations (ODEs) 
by discretization of the space derivatives. We use second-order finite differences (see 
Section 3.3). Then, in Section 3.4 various time integrators are developed for this 
system of ODEs. Application of time integrators for a three-dimensional model 
requires a great computational effort Especially for fully implicit methods, this is a 
severe disadvantage. If an explicit method is used, then besides the CFL stability 
condition there is also a condition imposed by the vertical diffusion term [l]. In 
many problems the last condition is more restrictive. To investigate the influence of 
this stability condition, we examine time integrators that are explicit, semi-implicit 
or implicit in the vertical direction. 

In the numerical experiments, which are described in Section 3.6, a wind induced 
test model is examined. This model has been used by others [1,3] and is therefore an 
ideal case for comparing the results. It appears that the time integrators in which the 
vertical diffusion is treated implicitly perform best in our experiments. Section 3.7 
deals with a stability analysis for one of these so-called vertically implicit methods. 
For this time integrator the stability condition does not depend on the vertical mesh 
size. Thus, the time step is only limited in terms of the horizontal mesh sizes. 
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The vertically implicit methods require the solution of a large number of 
tridiagonal systems. In Section 3.5 we will investigate two algorithms for the 
solution of these systems. The numerical results will be shown on a vector 
computer (viz., a 2-pipe CDC CYBER 205) and on a vector-parallel computer (viz., 
an Alliant FX/4). 

3.2. MA TI-IEMATICAL MODEL 

In this section a simplified three-dimensional hydrodynamic sea model will be 
presented. For a detailed description of the hydrodynamic sea model we refer to [2]. 
The simplified three-dimensional hydrodynamic equations, of continuity and 
motion, may be written in sigma co-ordinates as [1,2] 

au= fv - g a, + l.. .2... (µ au) 
at ax h2 ao, ao, 

(2.1) 

av =-fu-ga, + l.. .2... (µ av) 
at ay h2 ao- \ ao- (2.2) 

1 1 

a, a f a f -= --(h udo)--(h vdcr). 
at ax O ay O 

(2.3) 

To ensure that the domain in which the equations (2.1)-(2.3) are solved, is 
constant in time, the equations have been transformed in the vertical direction into 
depth-following (sigma) co-ordinates by the so-called sigma transformation [6] 

,-z cr=-. 

d +' 
The boundary conditions at the sea surface ( cr = 0) are given by 

( au) h ( av) h . µ ao- =-PWf cos((j>), µ ao- =-PWf sm((j>). 

cr=O cr=O 

(2.4) 

Similarly, the boundary conditions at the bottom (cr = 1) read 

(2.5) 

3.3. SPACE DISCRETIZATION 

Following the method of lines approach, we first replace the spatial operators in 
(2.1)-(2.3) by finite differences. For the finite differences there are essentially two 
approaches in the vertical. In a model with Cartesian co-ordinates (see e.g., in [5]), a 
fixed grid is used in the vertical, through which the fluid is free to move. This can 
be visualized by considering the fluid in horizontal slices, in which only the upper 
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layer has a time-variable height. Since this model is fixed in the vertical, the 
number of grid layers increases as the depth increases, hut reduces in shallow 
regions. This problem of reduced vertical resolution in the shallow regions can be 
overcome by using the depth-following (sigma) co-ordinates of the previous section. 
Then, a constant number of grid layers is used in the vertical at each horizontal grid 
point. Moreover, there are no 'zig-zag boundaries' in the vertical in the case of an 
irregular bottom. From a computational point of view, it is also advantageous to 
have a constant number of grid layers, especially on vector and parallel computers. 
Therefore, we have chosen the sigma co-ordinate model (2.1)-(2.3). 

The computational domain is covered by an nx·ny•ns rectangular grid. The 
notation used for the velocities is Ui,j,k and V i,j,k, where i,j refers to the horizontal 
grid point and k to the vertical layer. The surface elevation points are denoted by 
Zi,j and are computed at the sea surface only. The vertical diffusion coefficient is 
assumed to vary only through the vertical. Hence, µk denotes the coefficient at 
layer k. In both the horizontal and vertical direction a staggered grid is used. 
Figure 1 shows the horizontal grid spacing. In the vertical a varying mesh of 
thickness Acrk, where k refers to the k-th grid layer from the surface, is used. Hence, 
it is possible to increase the resolution near the surface and the bottom. For the 
structure of the vertical grid spacing we refer to [2]. 

D. V 
I ' J i ,j, k 

• 0 • 0 • 0 • FJ X 
X II X II X II X 0 • • 0 • 0 • 0 • u z 

i ,j, k i 'j 

Figure 1. The staggered grid in the (x,y)-plane. 

The use of a staggered grid has the following advantages: 
a) For the system of equations (2.1)-(2.3) the storage requirements decrease with a 

factor 4 (the mesh sizes of the staggered grid in Figure l are twice the mesh 
sizes of the unstaggered grid). However, components that are not available in a 
particular grid point, have to be obtained by averaging. 

h) It simplifies the boundary conditions (e.g., in U-boundary points no conditions 
for the V-velocity have to be prescribed). 

c) It reduces the possibility of spurious "2Ax-waves" [7]. 

For the approximation of the spatial derivatives, second-order central differences 
are used in both the horizontal and vertical direction. The horizontal mesh sizes are 
denoted by Ax and Ay. For the equations of motion (2.1) and (2.2), we now obtain 



au .. k 1,J, 

at (z .. - z. 1 •) fV .. -g 1,J 1- ,1 
1,J,k ~ 

l 1 
{

µk 1(U .. k 1 - u. · k) µk(U .. k - U .. k-1)} + -- + 1,], + 1,], _ 1,J, 1,), 

.,.-,2. Acrk 0.5 (Acrk+l + Acrk) 0.5 (Acrk + Acrk-1) 
°i,J 

av. 'k 1,), 

at 

where 

t:\,j,k = 0.25·(Ui,j,k + ui+l,j,k + ui,j+l,k + ui+l,j+l,k) • 

y .. k = 0.25·(V .. k + y. '-1 k + y._1. k + y._1 ·-1 k) • 1,J, 1,J, 1,J , 1 ,J, 1 ,J , 

- 1( ) ~ 1( ) H . = z .. + -2 D .. + D .. 1 and H .. = z .. + -2 D, . + D. 1 . . 1,J 1,J 1,J 1,J- 1,J 1,J 1,J 1 + ,J 

13 

(3.1) 

Considering equation (2.3), we have to approximate an integral which ranges from 
the bottom to the surface. The vertical direction has been divided into a number of 
grid layers. Let 8k denote the interfaces between the layers, defined by 

k 
sk = L Acrq, k=l, ... ,ns . 

q=l 

Then, for the integral in equation (2.3) we may write 

which leads to 

az.. 1 { ns ns } .::..::11. - -
':It =-- J..J.+1 -~ AcrkU. 1. k - H.-~ AcrkU .. k a ~ ~"'i. ,J4J 1+ ,J, 1,J4.1 1,J, 

k=l k=l 

1 { ns ns } 
-- ~-~Acrkv''k-il'_l~Acrkv .. _lk. Ay ,J "-' 1,J, 1,J "-' 1,J , 

k=l k=l 

Now, the semi-discretized system (3.1)-(3.3) can be written in the form 

(3.3) 
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F 

JG} (3.4) 

where U, V and Z are grid functions approximating the velocities u, v and , , 
respectively. The components Uij,k , Vij,k and Zi,j are numbered lexicographically. 
A00 is a tridiagonal matrix approximating the vertical diffusion term, including the 
discretization of the term l/h2. 8 1 is a (nx•ny-ns)·(nx·ny) matrix (a row of ns 
diagonal matrices with L10'k on the diagonal of the k-th matrix). 82 is a 
(nx•ny)•(nx-ny•ns) matrix (a column of ns identity matrices). F is a four diagonal 
matrix (due to the grid staggering) of order nx•ny·ns approximating the Coriolis 
term. Dx and Dy are lower bidiagonal matrices of order nx-ny approximating the 
diffe~ntial ?perators cJ/cJ~ and cJ/cJy, res~tively. Ex and Ey are upper b~diagonal 
matrices with Ex = -Dx and Ey = -Dr Both Dx and Ex are matrices that 
approximate the differential operator a;ax. However, the matrices differ slightly 
because of the grid staggering. 

For example, in the case of ns = 4, the structure of system (3.4), in which the 
four diagonal matrix F is replaced by a diagonal matrix, is given in Figure 2. 

d 

dt 

u 

V 

z 

u 

V 

z 

Figure 2. The structure of the semi-discretized system (3.4). 
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3.4. TIME INTEGRAilON 

In this section one-step time integrators for the semi-discretized system (3.4) are 
described. We will introduce time integrators that are explicit, semi-implicit or 
implicit in the vertical direction. 

Considering explicit methods, we do not use the Forward Euler method, because 
the stability region of this method does not contain any part of the imaginary axis. 
Therefore, we apply the one-step, explicit, 3-stage, second-order Runge-Kutta 
method which has an imaginary stability boundary ~ = 2. Let the system of ODEs 

dS = F(t,S(t)) 
dt 

represent the semi-discretized system (3.4), with S = (U,V,z)T and F(t,S(t)) 
denoting the right-hand side of (3.4). Then, the Runge-Kutta method can be written 
in the form 

Sl = Sn 

S2 =Sn+ 0.5t F(tn, S 1) 

S3 = Sn + 0.5t F(1n +0.5t, Sz) 

sn+l =Sn+ t F(tn+0.5t, S3) , 

(4.1) 

where n denotes the time level nt, with t the time step. It is known that the 
imaginary stability boundary of method (4.1) is optimal for explicit, 3-stage, 
second-order Runge-Kutta methods [ 4]. 

On the other hand, the (first-order) Backward Euler method for system (3.4) reads 

(4.2) 

where the approximations at the time level (n+l)t are denoted by an asterisk. This 
method requires extensive computation, since at each time step a linear system of 
order nx-ny-(2ns+l) has to be solved. In order to reduce the computational 
complexity, we may uncouple the computation of the Z-component from the 
computation of the U- and V-components. This leads to 

orto 
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(4.4) 

Owing to the coupling of the velocity components, we do not use methods (4.3) 
and (4.4) in our experiments. A further simplification can be made by uncoupling 
the computation of the U-component from the V-component. By transferring the 
Coriolis term of the U -component to the right-hand side, we obtain for 
method (4.3) 

and for method (4.4) 

The methods can be made more symmetric in various ways. In the experiments 
we have observed that symmetrization of the Z-component deteriorates the stability 
considerably. Therefore, we will only symmetrize the velocity components. The 
symmetrical variant of method (4.6) reads 

I-ri\,cr O 0 

An explicit treatment of the Coriolis term can be achieved by transferring the 
Coriolis term of the V-component to the right-hand side. For method (4.5) we then 
obtain 

Splitting of the vertical diffusion term Acrcr into A1+Au, with A1 a lower 
bidiagonal matrix and ¾ an upper bidiagonal matrix, leads to 
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At the next time step the matrices A1 and 1\i are interchanged. Thus, the direction of 
the sweep is alternated every time step to avoid any bias in the method. This 
method has been developed in [ 1]. It requires the solution of bidiagonal systems. 

Considering methods (4.5)-(4.8), nx-ny tridiagonal linear systems (of order ns) 
have to be solved at each time step. In the next section we will discuss efficient 
methods for the solution of the tridiagonal systems. 

3.5. SOLUTION OF TIIE TRIDIAGONAL SYSIBMS 

Here, we consider two methods for the solution of the tridiagonal systems. First we 
use the Gaussian Elimination (double sweep) method. Since this is a recursive 
method, it seems to be unattractive on vector and parallel computers. However, in 
our case we have a large number of independent tridiagonal systems. Therefore, the 
systems can be solved in a vector-parallel mode on e.g., the Alliant FX/4. This 
means that each processor is executing vector instructions to compute a certain 
operation of the Gaussian Elimination method for all tridiagonal systems. This 
method, which we denote by method GE, can be described schematically by 

Method GE (Gaussian Elimination method) 
for k= 1, ... ,ns do (in scalar mode) 

for j=l, ... ,ny d (" II I od ) 
ti ·-l n o m vector-para e m e or 1- , ••• , x 
perform some step of the GE method at layer k and point (i,j). 

The loops with indices i and j can be collapsed into a single DO-loop to obtain a 
more efficient code. These iterations are executed in vector-parallel mode. For 
example, on a 4-pipe CYBER 205 and on a four-processor Alliant FX/4 this results 
in a comparable form of parallelism. The iterations of DO-loops are distributed 
across the pipes/processors until the entire DO-loop has been executed. 

On vector computers method GE vectorizes well and also requires a minimal 
number of operations. However, on parallel computers parallelism at a higher level 
than at the innermost DO-loop level may be preferred. Especially, for short DO­
loops the overhead due to vectorization and parallelization may be considerable. In 
our case, the loop with index k is recursive and is therefore not suited for parallel 
execution. In the literature several methods have been developed to reduce this 
recursion problem to smaller recursion problems. Here, we use a variant of Wang's 
method that has been developed in [8]. We now briefly describe this method. 

Let us assume that ns can be factorized as ns = pq. The tridiagonal system is 
written as a p by p block matrix, in which each block is a q by q matrix. Then, the 
off-diagonal elements on the p diagonal blocks are eliminated in parallel. This 
method, which we denote by method WANG, can be considered as a method in 
which the Gaussian Elimination method is applied in parallel for all p diagonal 
blocks. This method reads 
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Method WANG (variant of Wang's method) 
for kl=l, ... ,p do (in parallel mode) 

for k2=1, ... ,q do (in scalar mode) 
for j=l, ... ,nyd (. d ) 
for i=l, ... ,nx o m vector mo e 
perform some step of the WANG method at layer 
k2+(kl-l)q and point (ij). 

Here, the loop with index k:2 is recursive. The parallelism is at a higher level than 
for method GE. On the other hand, method WANG requires more operations than 
method GE (about 2.5 times as many). 

We now give the results for the wind driven test problem that is described in more 
detail in the next section. The computations have been performed on a grid with 
nx=lO, ny=18 and ns=24. In this case, 180 tridiagonal systems of dimension 24 
have to be solved. In Table 5.1 we list the computation times for the solution of 
the tridiagonal systems on the Alliant FX/4 for various optimizations 
(-=no optimization, G=Global, V=Vector and P=Parallel). This mini-supercomputer 
has four vector processors. For method WANG we have divided the 24 vertical 
layers into four blocks (i.e., p = 4 and q = 6). Thus, the computations for each 
block have been performed on a different processor. 

# PROC. (-) (G) (GV) (GVP) 

METHOD GE I 37.2 9.6 2.47 2.59 
2 1.36 
3 1.00 
4 9.6 2.47 0.87 

METHOD WANG 1 87.7 17.3 4.91 4.95 
2 2.64 
3 2.47 
4 17.3 4.91 1.60 

Table 5.1. Computation times on the Alliant FX/4 (ins). 

Without any optimization, method GE is about a factor 2.4 faster, which is in 
accordance with the number of operations. Also in vector mode, method GE is more 
efficient. The vectorization properties of both methods are comparable. Although 
method WANG requires about 2.5 times as many operations, the number of divi­
sions is equal for both methods. Since divisions are more expensive than additions 
and multiplications we obtain a gain factor of 1.8 for method GE. 

In parallel mode, we expected the smallest computation time for method WANG. 
Although method WANG requires more operations, we expected the parallelization 
overhead for method GE to be relatively larger. However, it turns out that even for 
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our relatively small test problem method GE is faster. On four processors we 
obtain a speed-up of about three for method GE. It should be noted that method 
WANG is superior when e.g., one large tridiagonal system has to be solved [8]. 

We conclude that it is not worthwhile to develop a method that contains 
parallelism at a higher level (as in method WANG), because a large number of 
independent tridiagonal systems has to be solved. Thus, on both vector and parallel 
computers method GE is the most efficient method for the solution of a large 
number of tridiagonal systems. Moreover, method GE requires a minimal number of 
operations. In the numerical experiments method GE will be used. It should be 
noted that on vector computers method GE is the only possibility. 

3.6. NUMERICAL EXPERIMENTS 
To compare the various time integrators we choose a test problem that has been 
used by others [1,3]. In this experiment the water is initially at rest and the motion 
in the basin is generated by a constant wind stress. The closed rectangular basin has 
dimensions representative of the North Sea. Thus, a wind driven circulation is 
gradually developed and finally reaches a steady state. In this experiment the total 
depth h in system (2.1)-(2.3) is replaced by d, which leads to a linear system of 
equations (cf. [1]). The following parameters are used in this experiment: 

L =400km 
Llx = 400/9 km 
B =800km 
Lly = 800/17 km 
f = l.22e-4 s-1 

g = 9.81 m/s2 
d =65m 
µ = 0.065 m2/s 
C = 70 m112/s 
W f = 1.5 kg/ms2 
p = 1025 kg/m3 

qi =90°. 

We integrate over a period of 24 hours, with time steps of 3, 10, 20 and 30 
minutes. The experiments have been carried out on a (2-pipe) CDC CYBER 205. 
Tables 6.1 and 6.2 show the water elevation computed at the south-western comer 
of the basin for two different vertical resolutions, namely Llcr=l/ns, with ns=5 and 
ns=25. Overflow is denoted by ***. 

The methods used in this experiment are: 

the 3-stage Runge-Kutta method (4.1) 
the vertically implicit method (4.5) 
the vertically implicit method (4.6) 
the symmetrized, vertically implicit method (4.7) 
the vertically implicit method (4.8) 
the vertically semi-implicit method (4.9). 
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method ~t 'max time 'min time comp. time 

(min) (cm) (hrs) (cm) (hrs) (s) 

(4.1) 3 172.6 8.7 45.8 18.3 4.36 
10 172.3 8.7 45.9 18.3 1.31 
20 171.6 8.7 46.6 18.3 0.65 
30 *** 

(4.5) 3 173.0 8.8 45.5 18.3 1.26 
10 173.7 8.7 44.8 18.5 0.38 
20 175.0 9.0 44.0 18.7 0.19 
30 *** 

(4.6) 3 173.0 8.7 45.5 18.3 1.26 
10 174.1 8.7 44.8 18.3 0.38 
20 176.1 8.7 43.2 18.3 0.19 
30 *** 

(4.7) 3 172.9 8.7 45.6 18.3 1.53 
10 173.8 8.7 45.1 18.3 0.46 
20 175.7 8.7 44.0 18.3 0.23 
30 *** 

(4.8) 3 172.7 8.7 45.5 18.3 1.26 
10 172.9 8.8 44.8 18.3 0.38 
20 174.0 9.0 42.6 18.3 0.19 
30 *** 

(4.9) 3 172.5 8.7 45.8 18.3 1.34 
10 172.5 8.8 45.6 18.3 0.40 
20 173.4 8.7 44.4 18.3 0.20 
30 *** 

Table 6.1. Surface elevations with nS=5. 

Table 6.1 shows that the results are comparable for all methods when ns=5. 
However, in the case of 25 layers the methods behave differently (see Table 6.2). 
The RK3 method becomes unstable for already the smallest time step used in this 
experiment. Method (4.9), in which bidiagonal systems have to be solved, yields 
accurate solutions for time steps of maximally five minutes. However, the 
vertically implicit methods (4.5)-(4.8) behave as in the case of five layers. In both 
experiments the maximally stable time step is about 20 minutes. It seems that for 
these methods the maximally stable time step is independent of the vertical mesh 
size. In the next section we will carry out a stability analysis for one of the 
vertically implicit methods, viz., method (4.6). 
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method Llt 'max time 'min time comp. time 

(min) (cm) (hrs) (cm) (hrs) (s) 

(4.1) 3 *** 

(4.5) 3 173.8 8.8 41.0 18.3 4.31 
10 174.8 8.8 40.3 18.5 1.29 
20 176.9 9.0 38.7 18.7 0.65 
30 *** 

(4.6) 3 173.8 8.7 41.0 18.3 4.30 
10 174.8 8.7 40.3 18.3 1.29 
20 176.9 8.7 38.7 18.3 0.65 
30 *** 

(4.7) 3 173.7 8.7 41.1 18.3 5.79 
10 174.7 8.7 40.6 18.3 1.74 
20 176.5 8.7 39.4 18.3 0.87 
30 *** 

(4.8) 3 173.4 8.8 41.0 18.3 4.36 
10 173.7 8.7 40.2 18.3 1.29 
20 174.7 9.0 37.9 18.3 0.65 
30 *** 

(4.9) 3 173.5 8.6 41.1 18.2 5.05 
10 179.4 8.3 34.1 17.8 1.51 
20 212.1 8.0 -3.1 18.3 0.76 
30 *** 

Table 6.2. Surface elevations with ns=25. 

The numerical results show that the vertically implicit methods are more robust 
than the other two methods. Thus, an implicit treatment for the vertical diffusion 
term is beneficial because of stability considerations. For the vertically implicit 
methods, the U-, V- and Z-component are computed after each other. This is 
advantageous for the both the stability and the storage requirements. 

Concerning computation time, it is evident that the vertically implicit 
methods (4.5)-(4.8) can be computed efficiently on vector and parallel computers. It 
is surprising that the vertically implicit methods are slightly more efficient than 
method (4.9), in which bidiagonal systems have to be solved. This is due to the 
way of programming. The tridiagonal systems are build up and solved at the same 
time. This leads to a smaller number of divisions. In general, the efficiency of both 
methods will be comparable. 

We conclude this section with an overview of computation times on various 
computers, ranging from supercomputers to personal computers. This could easily 
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be done, because the code was written in the ANSI FORTRAN 77 programming 
language. We have applied method (4.6) to the test problem with ns=25 and 
t=1200 s (see Table 6.2). In Table 6.3 we list the results (* = 32 bits precision, 
otherwise 64 bits precision). 

OPTIMIZATION 
COMPUTER (-) (G) (GV) (GVP) 

MACINTOSH PLUS * 6110 
VAX-11n80* 508 178 
ALLIANT FX/4 * 125.9 30.9 8.4 2.82 
ALLIANT FX/4 3.67 
CDC CYBER 990 53.3 10.6 
CDC CYBER 205 11.9 5.8 0.65 
CRAY X-MP/28 0.236 
NEC SX/2 * 0.088 

Table 6.3. Computation times (in s). 

For this test problem the CDC CYBER 205 is about 6 times faster than the 
Alliant FX/4, and the NEC SX/2 supercomputer is about 70.000 times faster than 
the Macintosh Plus ! This clearly illustrates the need of supercomputers. 

3.7. STABIUTY ANALYSIS 

In this section the stability of method (4.6) is examined. For that purpose we 
introduce the eigenvalues i<5x, i<>y and Yaa o~ the difference operators Dx, Dy and 
Aaa, corresponding to the eigenvectors e1<a.1£\x+a.2£\y+a.3£\a). The following 
assumptions are made: 

a) the total depth his constant 
ns 

b) L LlO'kt(hx+hDX)Ui,j,k = t(hx+hDX) ui,j 
k=l 

c) Vk : 1 s; k s; ns : Llcrk = 1/ns . 

Although assumption b) reduces the analysis to a two-dimensional stability 
analysis, the results are in agreement with our three-dimensional experiments. We 
now construct for method (4.6) the so-called amplification matrix. This 
amplification matrix may be written in the form 

G = K 1 B, 
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where 

c•Yaa 0 0 

} B= (: 

tF -i'Cg~x 

} A= tF 1 - 'C'Yaa 0 I -itg~y 

ith~x itMY I 
0 I 

where 

sin(a.1 0.5Ax) sin(a.2 0.5Ay) _ -2+cos((½A<J) µ (?.l) 
ox=-----, ay = ----- , 'Yaa - ----- 2 

0.5Ax 0.5Ay (Acr)2 h 

and a.1, a.2 and a.3 are constants. Stability in the sense of O'Brien-Hyman­

Kaplan [10] is ensured if IIGII ~ 1. To study the stability we write 

G=q q-1 A -1 q q-1 B q q-1 <=> 
G = q (q-1 A q)-1 (q-1 B q) q-1 <=> 

G=q A -1 B q-1 

where 

1 0 0 

0 1 0 
q= 

0 0 {f 
Im 

[-n .. 0 0 

Jmd B= 

I tF -i-co X 

A= 'CF 1 - 'C'Yaa 0 
0 I -i-co 

i'COX i'COY 
y 

I 
0 0 I 

with 

Toh sin(a.1 0.5Ax) Toh sin(a.2 0.5Ay) o = gh iiy = gh . 
x 0.5Ax ' 0.5Ay 

In the remainder of the section we will omit the tildes. Suppose that A denotes the 
eigenvalues of G. Then, the eigenvalues satisfy 



24 

dedA-1B - Ail= 0 ~ 

detlK11 • det IB - A.Al= 0. 

Assuming that A is invertible, we find 

-ito 
X 

det IB - lAI = det -AtF =0. (7.2) 

I-A 

The eigenvalue equation for G is 

where 

22 22 22 3 s: (ty00 - 3 + t 6x + t oy)(ty00 - 1) - t F + t oxoyF 

(1-'t'Yaa)2 

2t')'. - 3 + t 2o2 + t 2F 2 + t 2o2 - -c3 6 o F aa y x x y 

Note that the coefficients are real, whereas the matrix in (7 .2) is complex. 
Therefore, we can apply the Hurwitz-criterion [9] to ensure that the eigenvalues of 
the amplification matrix G are within the unit circle. Thus, we must require 

1 + a1 + az + ¾ > 0 

1 - a1 + az - ¾ > 0 

3 + a1 - az - 3a3 > 0 
2 

1 - az + a1 a3 - a3 > 0 . 

We then obtain the following inequalities: 

3 2 2 
(a) 't 'Yaa (6x + <>y) < 0 

(b) 't2'Y!a - 4't'Yaa + 4 + t2(o; + o~) (0.5t'Ycra - 1) + t3oxoyF - t2p2 > 0 



25 

(c) -r2-1!0 + -t2-(<5~ + <>~ (2 - 'ty00) - 2't3<>x<>yF + 2't2F2 > 0 

(d) 't3l _ 2't2r,2 + 't'Y, ('t2()2 +'t2()2 -'t3() <> F + 't2F2) _ 2't2F2 
O"O" O"O" 0"0" X y X 'f" 

From (7.1) it can be easily seen that 'Ycrcr < 0. Thus, inequality (a) can not be 
satisfied if <>x = <>y = 0. However, in that case the amplification matrix is of the 
simple form 

(

I+A( 't'Ycrcr-1) 'tF 

G = -A'tF I+A( 'ty00-1) : J· 
0 0 I-A 

with the eigenvalues 

A,= 1, 
-'t2F2 - 2('t'Ycrcr - 1) ± 'tF✓ 't2F2 + 4('t'Yacr - 1) 

2('t'Yacr - 1)2 

Thus, inequality (a) can be rewritten to 

(a') 
-'t2F2 - 2('t'Ycrcr - 1) ± 't2F✓ 't2F2 + 4('t'Ycrcr - 1) 
---------------------- $ 1 . 

2('t'Yacr - 1)2 

The inequalities (a'), (b), (c) and (d) are too complicated to derive stability 
conditions. Therefore, we neglect the influence of the Coriolis term. Then, it can 
easily be verified that inequalities (a'), (c) and (d) are always satisfied. For the second 
inequality we obtain 

't<-1- 1 

-vgh ✓ 1 1 
(.1.x)2 + (.1.y)2 

(7.3) 

This condition shows that the maximally stable time step is independent of Acr. For 
the parameters used in our experiment, stability condition (7.3) yields a maximally 
stable time step of about 1300 seconds, which is in agreement with the numerical 
results. Experimentally, we have observed that the maximal stable time step is of 
the same order when the Coriolis term is not neglected. 
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3.8. CONCLUSIONS 
In this paper we have investigated the stability and efficiency of one-step time 
integrators for the three-dimensional hydrodynamic equations. From our linear test 
problem, it appears to be necessary to treat the vertical diffusion term in an implicit 
or semi-implicit way. The vertically implicit methods (4.5)-(4.8) perform better 
than the semi-implicit method (4.9). For both the stability and the storage 
requirements it is advantageous to compute the U-, V - and Z-component 
sequentially. The vertically implicit methods satisfy this condition. 

For these methods a large number of tridiagonal systems have to be solved. We 
have considered two methods for the solution of these systems. The method in 
which the tridiagonal systems are solved by the Gaussian Elimination method 
appears to be the most efficient one. Because of the large number of tridiagonal 
systems, these systems are solved in a vector-parallel mode, resulting in a high 
performance on vector and parallel computers. Moreover, this method requires a 
minimal number of operations. 
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Chapter 4 

Stabilization of a Time Integrator 
for the 3D Shallow Water Equations 

by Smoothing Techniques 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

A smoothing technique is applied to improve the stability of a semi­
implicit time integrator for the three-dimensional shallow water 
equations. In this method the terms involving the vertical direction are 
treated implicitly. The stability condition for the time step only 
depends on the horizontal mesh sizes. Therefore, in the horizontal 
direction a smoothing operator is added. Owing to the smoothing, the 
maximally stable time step increases considerably, while the accuracy 
is hardly affected. Moreover, it turns out that the smoothing operator 
is efficient on vector and parallel computers. 

4.1. INIRODUCITON 

27 

In numerical analysis, we distinguish explicit and implicit time integrators for 
partial differential equations. It is well-known that implicit methods are in general 
stable for any time step, but cannot exploit the facilities of vector and parallel 
computers as well as explicit methods do. On the other hand, explicit methods 
impose a severe restriction on the time step and therefore the time step is not 
dictated by accuracy considerations. To improve the stability of explicit methods, 
we will use smoothing techniques. 

Smoothing techniques are frequently applied in numerical methods. Usually, the 
smoothing technique consists in applying a matrix S to some vector F. The aim is 
to reduce the magnitude of the high frequencies occurring in the Fourier expansion 
of the vector to be smoothed, without affecting the lower frequencies too much. A 
simple example of an m x m smoothing matrix S is given by G = SF, where 

Gl =F1 

1 
Gi = 4 ( Fi-l + 2Fi + Fi+l), i=2, ... ,m-1, 

Gm=Fm 

with Fi and Gi denoting the components of the vectors F and G, respectively. 

(1.1) 

In this paper our starting point is the semi-implicit time integrator that has been 
developed for the linearized three-dimensional shallow water equations (SWEs) 



28 

in [3]. In this method only the vertical terms are treated implicitly. For this method 
we are faced with a CFL stability condition that depends on the horizontal mesh 
sizes l!.x and tly. For small values of l!.x and l!.y this time step restriction may be 
more severe than necessary for accuracy considerations. Therefore, we will add a 
smoothing operator in the horizontal direction to make the stability condition due to 
the horizontal mesh sizes less restrictive. 

The time integrator described in [3] can be considered as a method in which an 
implicit smoothing operator already appears in the vertical direction. The smoothing 
in both the horizontal and the vertical direction may be interpreted as a 
preconditioning of the right-hand side of the semi-discrete shallow water equations. 
It will be shown that the maximally stable time step increases considerably when 
the smoothing operator in the horizontal direction is applied. The time step for the 
stabilized time integrator is now dictated by accuracy considerations, as it applies to 
implicit methods. Moreover, the stabilized time integrator can be implemented 
efficiently, as will be shown in the experiments. The' efficiency of this method will 
be tested on various domains. In the experiments we will use a rectangular domain 
representing the North Sea and an irregular domain representing the Usselmeer. The 
U sselmeer is the largest lake in the Netherlands. 

The technique of stabilizing explicit time integrators by right-hand side 
smoothing has been applied by Wubs for the numerical solution of the two­
dimensional shallow water equations [10]. For an overview of various smoothing 
techniques we refer to [4]. 

Section 4.2 provides the theory for the smoothing. In Section 4.3 we describe the 
semi-implicit time integrator for the shallow water equations. In Section 4.4 the 
smoothing is applied to stabilize this time integrator. Section 4.5 is devoted to the 
implementation of the smoothing matrices. Finally, in Section 4.6 we show by a 
number of experiments that application of the smoothing operators leads to a 
considerable reduction of the computation time, while the accuracy remains 
acceptable. The numerical solution is compared with a solution computed with a 
very small time step on the domain used in the experiments. This reference solution 
may therefore be considered as an almost exact solution on this domain. The 
reduction of the computation time is more or less independent of the domain. When 
the solution tends to a steady state, we even obtain a reduction factor of about 10. 

4.2. RIGHT-HAND SIDE SMOOTIIING 

Consider the partial differential equation 

aw = Lw(t,x) + c(t,x), 
at 

(2.1) 

where L is a linear differential operator with respect to the space variable x and c is 
a given function. This equation, together with its boundary conditions, can be semi­
discretized into a system of ordinary differential equations (OD Es) of the fonn 

fil:Y= J W(t) + C(t), 
et 

(2.2) 
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with J the Jacobian matrix, Can approximation to c and Wan approximation tow 
at the grid points used for the semi-discretization. We shall always assume that this 
system is stable in the sense that the eigenvalues of J are in the nonpositive half 
plane. In Section 4.3 we shall see that the linearized 3D shallow water equations can 
be semi-discretized into this form. 

If the system (2.2) is integrated by an explicit time integrator, then its maximally 
stable time step is limited owing to the usually extremely large magnitude of the 
spectral radius of J. Therefore, the time step has to be unrealistically small in order 
to achieve stability. This restriction is a drawback if the variation of the solution in 
time is so small that accuracy considerations would allow a larger time step. To 
obtain a better conditioned right-hand side function, we premultiply the right-hand 
side of the original semi-discretization (2.2), or some part of it, by a smoothing 
operator S. Thus, we replace (2.2) either by 

dW = S { JW(t) + C(t)}, 
ck 

orby 

fil!= SJ W(t) + C(t). 
ck 

(2.3a) 

(2.3b) 

In (2.3b) a part of the right-hand side is smoothed. The semi-discretization (2.3a) 
is particularly attractive in problems where it is known that the time derivative of 
the exact solution, i.e,, aw/iJt is a smooth function of the space variable x (e.g., in 
problems where a steady state is to be approximated). In such cases the right-hand 
side function of the semi-discretization (2.2) is also a 'smooth' grid function, so that 
it may be premultiplied by the smoothing operator S without much loss of 
accuracy. 

The maximally stable time step may increase considerably when the explicit time 
integrator is applied to (2.3) instead of to (2.2). To achieve that the condition of SJ 
is better than that of J, the operator S should strongly damp the high frequencies 
(stiff components) in the Fourier expansion of the vector JW, so that the spectral 
radius of SJ is substantially less than that of J. One may consider the 
equations (2.3) as 'smoothed' or 'preconditioned' semi-discretizations of the original 
equation (2.1). 

We emphasize that, in this paper, the right-hand side function is smoothed, 
instead of the grid function W(t) itself. The latter type of smoothing is often used. 
However, it may only be applied, without considerable loss of accuracy, if W(t) 
itself is a 'smooth' grid function for a fixed value of t. This is in general not the 
case. An example of this latter type of smoothing is the well-known Lax-Wendroff 
method [8]. 

To characterize the effect of right-hand side smoothing on the accuracy of the 
initial semi-discretization (2.2), we introduce the order of consistency of smoothing 
operators. Let ~ be the mesh size, then the smoothing operator S is said to be 
consistent of order p if S=I+O(~P) as ~ tends to zero. Hence, S converges to the 
identity operator I if the grid is refined. 
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We remark that the application of right-hand side smoothing is not restricted to 
linear ODEs. Right-hand side smoothing can also be applied to more general 
systems of the form 

dW = F(t,W(t)), 
ci 

by replacing it by the smoothed system 

Q.l!= S F(t,W(t)). 
ci 

(2.2') 

(2.3') 

Summarizing, the smoothing operator S should satisfy the following 
requirements: 

(A) S is consistent of order p ~ 1 
(B) the smoothed system is again stable 
(C) the spectral radius of SJ is considerably smaller than that of J 
(D) the application of the operator S does not require much 

computational effort. 

In the following subsections it will be shown that, instead of looking for highly 
stable integration methods, one may equally well apply methods in which the right­
hand side function of the system of ODEs (2.2) is premultiplied by a smoothing 
operator S such that the magnitude of the spectral radius associated with the right­
hand side function reduces considerably. We distinguish smoothing that is dependent 
on and smoothing that is largely independent of the right-hand side function. The 
former type of smoothing is based on operator splitting and will be discussed in 
Section 4.2.1. Smoothing operators that are to a large degree independent of the 
right-hand side function will be discussed in Section 4.2.2. 

4.2.1. SMOOTHJNG OPERATORS BASED ON OPERATOR SPI.ITI1NG 

Smoothing operators based on operator splitting are suggested by considering 
splitting methods developed for the time integration of partial differential equations. 
Our starting point is the forward Euler method applied to the semi­
discretization (2.2), which can be described by 

(2.4) 

where 't is the time step and wn and en denote approximations to W(m) and C(m), 
respectively. Let us split the matrix J into 

and let us replace the forward Euler method (2.4) by the splitting method 
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or, equivalently, 

(2.5) 

This method can be rewritten as 

(2.6) 

with 

(2.7) 

The splitting method (2.6)-(2. 7) may be interpreted as the forward Euler method 
applied to the system of ODEs (2.3a), which is a 'smoothed' version of the initial 
semi-discretization (2.2), with a smoothing operator S defined by (2.7). By an 
appropriate choice of the matrix J2, this splitting method has much better stability 
characteristics than the forward Euler method (2.4). For example, the choices J2=J 
and J2=J/2 lead to the A-stable methods of Laasonen (backward Euler) and Crank­
Nicolson (trapezoidal rule), respectively. Another possibility is to choose J2 equal 
to a lower (or upper) triangular matrix. For the two-dimensional shallow water 
equations such an approach has been followed by Fischer [2] and Sielecki [9]. In 
fact, the method developed in [3] for the linearized shallow water equations may be 
interpreted as a combination of the Crank-Nicolson method and the approach of 
Sielecki and Fischer. In that paper it was shown that the stability of the resulting 
numerical method improves considerably, whereas the computations can be 
performed efficiently. 

4.2.2. SMOOTIIING OPERATORS FOR GENERAL VECIOR FUNCTIONS 

The smoothing operators considered in the previous subsection strongly depend on 
the specific form of the right-hand side function. In this subsection we summarize 
the main properties of the family of smoothing operators developed in [4,6]. These 
operators are largely independent of the particular form of the vector function to 
which they are applied and therefore we shall present the results for the general 
equation (2.3'). We will again assume that the eigenvalues of the Jacobian matrix 
J:=oF/i)W are in the nonpositive half plane. 

The smoothing operator S will be chosen of the form S=P(D), where D is a 
difference matrix and the smoothing function P(z) is a polynomial or a rational 
function, yielding explicit or implicit smoothing operators, respectively. First we 
discuss the choice of the matrix D. In our theoretical considerations we assume that 
Dis equal to the Jacobian J, normalized by its spectral radius, i.e., 

D=-J-. 
p(J) 

(2.8) 
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We emphasize that in practice it is generally not attractive to choose D according 
to (2.8) and we shall employ some cheap approximation to the normalized Jacobian 
matrix. If D is defined according to (2.8), then the eigenvalues of SJ=P(D)J are 
given by p(J)zP(z), where z runs through the spectrum of D. 

4.2.2.1. EXPLICIT SMOOTHING OPERATORS 

In the case of explicit smoothing we are looking for a polynomial P(z) such that the 
magnitude of zP(z) is sufficiently small with P(0)=l and z either in [-1,0] or in 
[-i,i]. Moreover, the polynomial P(z) will be chosen such that zP(z) remains in the 
nonpositive half plane. It was shown in [4,6] that polynomials of the fonn 

P(z) = U21c( ✓ 1 + z2) , U (x) := sin((2k+l) arccos(x)) , 
2k + 1 2k sin(arccos(x)) 

(2.9) 

minimize the magnitude of zP(z) on the purely imaginary interval [-i,i]. However, 
if z has negative real parts, then it may happen that Re { zP(z)} > 0 causing unstable 
behaviour. Since we shall apply smoothing to vector functions whose Jacobian 
matrices possess eigenvalues with negative real parts (caused by the vertical 
diffusion and the bottom friction in the SWEs), we require that Re {zP(z)} SO for 
all values with Re {z} SO (see condition (B)). For this case the following theorem 
defines a family of nearly optimum polynomials [4,6]. 

THEOREM 2.1. Let D be defined by (2.8), let S=P(D) with P(z) defined by 

Tk(1+2z2)-1 
P(z) = 2 2 , Tk(x) = cos(k arccos(x)) . 

2k z 

Then the following assertions hold: 
(a) //Re {z} SO then Re {zP(z)} S 0. 

(2.10) 

(b) If z is purely imaginary, then zP(z) is again purely imaginary and for 
sufficiently large k its maximum is approximately 

2 
xk. 

PROOF. For a proof of (a) we refer to [4,6]. 
(b) We have to find the maximum of lzP(z)I on [-i,i], or, equivalently, 

max I {T]c(1+2z2)- l} -i:2z I . 

(2.11) 

(2.12) 

The range of { 1 + 2z2} in (2.12) is [-1, 1]. On this interval the Chebyshev 
polynomial Tt(1+2z2) satisfies the 'so-called' equal ripple property [5], which 
means that it alternatingly assumes equal maximum and minimum values. Because 
of the factor l/(2k2z), let us now assume that the value in (2.12) can be 
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approximated at the smallest value of lzl for which Tk(l +2z2) reaches its minimum. 
Thus, we require that 

for lzl as small as possible, which yields 

_ + . ✓ 1-cos( 1t/k) 
Z --1 -v2 

For these values of z we obtain that (2.12) is bounded by 

{z 2 

k2✓ 1-cos(ni.k) "" 1tk ' 
(2.13) 

for k sufficiently large. For many values of k we verified numerically that the 
reduction factor is close to 2/1tk. Therefore, we conclude that the approximation 
applied in this theorem is justified. O 

An extremely efficient implementation of the smoothing operator of Theorem 2.1 
can be obtained by using the following factorization theorem (see also Section 4.5), 
which justifies the application of these smoothing operators. 

THEOREM 2.2. Let the matrix D be defined by (2.8), let S=P(D) with P(z) defined by 
(2.10), let the factor matrices Fj be generated by 

F 1 =I+ D2, Fj+l = (I - 2F)2 , j > 0, 

and let k = 24. Then, S can be factorized by 

For a proof of Theorem 2.2 we refer to [4,6]. [] 

4.2.2.2. lMPUCIT SMOOTIIlNG OPERATORS 

(2.14) 

In this subsection we will discuss implicit smoothing, i.e., if F is the vector to be 
smoothed, then the smoothed vector G is obtained by solving G = s-1F, where s-1 

is a smoothing operator (see (1.1)). Implicit smoothing has been applied in [7,10]. 

THEOREM 2.3. Let s-1=P(D) with D a difference matrix and P(z) defined by 

P(z) = 1 , with a > 0 . 
1 - La2 z2 

4 

(2.15) 
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Then the following assertion holds: 
/fz is purely imaginary, then 

I zP(z) I~ l. 
a. 

PROOF. This follows immediately from elementary analysis. D 

As mentioned before, in practice we shall choose D equal to some cheap 
approximation of the normalized Jacobian which satisfies condition (B). In choosing 
a difference matrix D the boundary conditions have to be incorporated in D. This is 
important to preserve conservation of mass. In this paper we shall choose 
smoothing operators of the form 

D2 = ¼ (? -2 ~ . . 0 ] . 
1 -2 1 

0 0 

(2.16) 

The implicit smoothing operator described in Theorem 2.3 with D2 as in (2.16) 
results in the solution of a tridiagonal system. Therefore, this implicit smoothing 
operator does not require much computational effort. In practice, the value of a. 
in (2.15) depends on the time step and on the mesh sizes. 

Let us now discuss the order of consistency of the smoothing operator S with D2 

defined in (2.16). We assume that D2 and P(z) satisfy the conditions 

D2 = O(A8) as A ➔ 0, P(z) = 1 + O(z2r) as z ➔ 0, (2.17) 

where A denotes the mesh size, r and s are positive integers. Hence, S is consistent 
of order p=rs. For example, the smoothing matrix defined in (1.1) can be generated 
by P(z)=l+z2 with o2 defined by (2.16) and is second-order consistent (S=2, r=l). 
When P(z) is defined by (2.10) and o2 by (2.16), then it can be easily verified that 
S is also second-order consistent 

Summarizing, if we choose the matrix o2 defined by (2.16), then the smoothing 
matrix S=P(D), with P(z) the polynomial (2.10) or the rational function (2.15), 
reduces the magnitude of the spectrum associated with the right-hand side function 
considerably, whereas the spectrum remains in the nonpositive half plane. For this 
choice of D2, the smoothing matrix S is independent of the right-hand side 
function. 

In Section 4.4 we shall use both smoothing based on operator splitting and 
smoothing of general vector functions based on the theorems in Section 4.2.2. 

4.3. MA1HEMATICAL MODEL 

In this section we will describe the mathematical model and the time integrator to 
which the smoothing will be applied. We will use a three-dimensional model in 
sigma co-ordinates in which the advective terms have been omitted. This model is 
described by 



1 1 

ac = - l._ (h J udcr) _ l_, (h J vdcr) , 
at ax O ay 0 

with boundaries 

0~x~L 
0~y~B 
1~0'~0. 
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(3.1) 

(3.2) 

(3.3) 

Thus, the domain is a rectangular basin. Owing to the sigma transformation in the 
vertical, the domain is constant in time. We have the closed boundary conditions 

u(0,y,O',t) = 0, u(L,y,o-,t) = 0, 

v(x,0,0',t) = 0, v(x,B,O',t) = 0. 

The boundary conditions at the sea surface (o- = 0) are given by 

( µ av) =-h.wrsin(cj,). 
dO' cr=O p 

At the bottom ( O' = 1) we have a linear law of bottom friction of the form 

(µ au~ =-h g:d , 

\ dO' Jcr=l C 

(µav~ =-hg:d, 

\ ao-Jcr=l C 

with ud and v d representing the components of the current at some depth near the 
bottom. 

4.3.1. SPACE DISCRETJZATION 

For the space discretization of the equations (3.1)-(3.3) the computational domain is 
covered by an nx-ny-ns rectangular staggered grid (see [3]). For the approximation 
of the spatial derivatives, second-order central finite differences are used in both the 
horizontal and vertical direction. 

We use the following notation: U, V and Z are grid functions approximating u, v 
and C, respectively. The Z-points are only specified at the sea surface. Furthermore, 
Acrcr is a tridiagonal matrix approximating the vertical diffusion term, including the 
discretization of the term l/h2. 01 is an (nx·ny·ns)·(nx·ny) matrix (a row of ns 
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diagonal matrices of order nx•ny with £\O'Ic on the diagonal of the k-th submatrix). 
92 is an (nx·ny)·(nx·ny·ns) matrix (a column of ns identity matrices of order 
nx-ny). Fis a four-diagonal matrix (due to the grid staggering) of order nx-ny-ns, 
approximating the Coriolis term. Dx and Dy are bidiagonal matrices (one diagonal 
and one lower diagonal) of order nx-ny, approximating the differential operators 
arax and atay, respectively. Ex and Ey are bidia9'onal matrices (one diagonal and 
one upper diagonal) with Ex= - D~ and Ey = - Dy, The matrices Dx and Ex differ 
because of the grid staggering. 

Now, the semi-discretized system can be written in the form 

! w = F(W) = (A + B) w + C , with w = (; l 
md 

(3.4) 

The reason for this splitting will become clear in the next sections. The vector C 
contains the components of the wind stress. Note that the integrals in (3.3) are 
approximated by 9 1 U and 0 1 V, respectively. 

4.3.2. TIME JNfEGRATION 

We start with the time integrator for (3.4)-(3.5) developed in [3]: 

or, equivalently, 

This method can be written in the form 

(3.6) 

In terms of method (2.6)-(2.7), we have that S = (I - -rAr1. Thus, this time 
integrator can be considered as a method in which the right-hand side function is 
preconditioned by the implicit smoothing operator (I - -rAf1. It can easily be seen 
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that the components are calculated sequentially (first U, then V and finally Z). This 
is advantageous for both the stability and storage requirements. For the two­
dimensional shallow water equations a similar approach has been followed by e.g., 
Fischer [2] and Sielecki [9]. The time step restriction for method (3.6) is given by 

1 1 
't < -- ----;::=;====::::::::;::::: ' 

_r7h ✓ 1 1 "\lgll --+--
(/.1x)2 (Ay)2 

(3.7) 

where Ax and Ay denote the horizontal mesh sizes. This condition is slightly more 
restrictive than the condition derived in [3]. We remark that the time step in (3.7) 
does not depend on the vertical mesh size Acr. However, the condition imposed by 
the horizontal mesh sizes is still rather restrictive. Therefore, we will add a 
smoothing operator in the horizontal direction. This smoothing operator will be 
described in the next section. 

4.4. SMOOTIIING 
In this section the stability of method (3.6) will be improved by a smoothing of 
general vector functions (see Section 4.2.2). 

Method (3.6) can be written in the form 

(4.1) 

where A1 + ~ = A (see (3.5)) with 

Method (4.1) may therefore be interpreted as the forward Euler method in which the 
right-hand side function is smoothed by the matrix (I - t{A1+A2Jr1. The vertical 
terms are treated implicitly, because the matrix Ai contains the discretization of the 
vertical diffusion term. The stability condition for this time integrator does not 
depend on the vertical mesh size Acr. However, the condition imposed by the 
horizontal mesh sizes is still rather restrictive (see (3.7)). The horizontal terms are 
treated partly implicitly (A2wn+l in (4.1)) and partly explicitly (BWn in (3.6)). 
Hence, we add another preconditioning of the right-hand side function, i.e., a 
smoothing of general vector functions described in Section 4.2.2. 

The right-hand side function of the U-component only contains derivatives in 
the x-direction and will therefore be smoothed in the x-direction only. Similarly, the 
V-component is only smoothed in the y-direction. The Z-component is smoothed 
in both directions. However, the smoothing of the right-hand side function in two 
directions is complicated. The precomputation of the cheap factor matrices (see 
Theorem 2.2) is only feasible in one-dimensional cases. Therefore, we apply one­
dimensional smoothing in the x- and y-direction, successively. 
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In the x-direction the smoothing matrix has the simple structure 

where Su and Sz denote the smoothing matrices for the right-hand side function of 
the U- and Z-component, respectively. Here, Su=P(Du) and Sz=P(Dz) with P(z) 
defined by (2.10) and 

0 0 -1 1 0 
1 -2 l 1 -2 1 

D2 =1 2 1 (4.2) and D =-
u 4 z 4 

1 -2 1 1 -2 1 
0 0 0 -1 1 

In the y-direction the smoothing matrix has a similar simple structure. Note that 
Du and Dz only differ in the first and last row, which is due to the grid staggering 
and to the boundary conditions. The number of different boundary conditions is very 
limited (open or closed boundaries, u- or C-boundaries). The smoothing matrices, 
including the values in the first and last row, are therefore computed in advance. 

The time integration method in which the smoothing based on general vector 
function has been added, can be written in the fonn 

(4.3) 

with the matrices A1 and A2 defined in (4.1) and the smoothing operator S defined 
in Theorem 2.1. The smoothing operator S appears twice in (4.3). The first 
operator S is a result . of the fact that the components of W are computed 
sequentially. The second operator S in (4.3) is clearly a smoothing of the right-hand 
side function. In cases where the solution becomes stationary (thus F(W) = 0), it is 
evident that methods (4.1) and (4.3) obtain the same stationary solution. 

The stability condition for method (4.3) reads (see (2.13) and (3.7)) 

't < 
7tk I 1 -----:====-
2 -vgh ✓ 1 1 

(th)2 + (!ly)2 

(4.4) 

Hence, the gain factor obtained by the smoothing of general vector functions is 
nk/2. 
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4.5. IMPLEMENTATION OF TIIE SMOOTIIING OPERATORS 

In this section we discuss the implementation of the smoothing matrices (I- tAr1 

and S (see (4.3)). For the U- and V-component the smoothing matrix (I-tAr1 

requires the solution of nx-ny tridiagonal systems of order ns, which can be 
computed efficiently [3]. The smoothing operator Scan be computed in various 
ways. The most efficient implementation is based on the factorization property 
presented in Theorem 2.2. If the factor matrices of (2.14) are computed in advance, 
then the evaluation of P(D) only requires q (= 2log(k1) matrix-vector operations. 

For example, applying Theorem 2.2 for matrix Du (see (4.2)), we find the factor 
matrices 

4 0 4 0 
1 2 1 2 1 0 1 

1 2 1 

l 1 0 2 0 1 F2 = 4 , etc. 

1 0 2 0 1 
0 4 

Evidently, the matrix-vector multiplications with these essentially tridiagonal factor 
matrices are extremely cheap, especially on vector computers. For example, on the 
CDC CYBER 205 the operations can be performed in two linked triad instructions 
(except near the boundaries). 

Since the smoothing operator Sis applied in the x- and y-direction, successively, 
it consists of a sequence of one-dimensional operators. Therefore, the smoothing 
operator can be implemented on irregular domains too. However, the bandwidth of 
the factor matrices F4 is 24+1. In practice, the value of q is at most five. In 
experiments with irregular domains it might happen that there are not enough grid 
points in the x- or y-direction. In this case we apply the implicit smoothing 
operator defined in Theorem 2.3 with D2 as in (4.2), instead of the explicit 
smoothing operator. Thus, the application of the smoothing operator is hardly 
complicated when the domain is irregular. 

The implicit smoothing operator requires the solution of a small tridiagonal 
system with a dimension of at most 24. For the solution of the tridiagonal systems 
we use the Gaussian Elimination method. Since these systems are small and the 
implicit smoothing is only applied in narrow regions (where the number of grid 
points is less than or equal to 24), the computation time for the sequential Gaussian 
Elimination method is very limited, also on vector and parallel computers. 

4.6. NUMERICAL EXPERIMENTS 

In this section we show for a number of test problems (see [1,3]) the effects of 
smoothing on the stability and on the accuracy. In the test problems the water is 
initially at rest and the motion in the basin is generated by a wind stress. Thus, a 
wind driven circulation is gradually developed. We carry out two experiments with a 
constant wind stress and one with a time-dependent wind stress. In the experiments 
with a constant wind stress we use a rectangular basin with dimensions 
representative of the North Sea and an irregular basin representing the Usselmeer. 
The U sselmeer is the largest lake in the Netherlands. 
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The following parameter values are used in all experiments: 

f = 1.22e-4 s-1 

g = 9.81 m/s2 
µ = 0.065 m2/s 
C = 70 m112/s 
p = 1025 kg/m3 

<1>=45°. 

For the time integration we use method (4.3). In the experiments we vary the 
number of smoothing factors in the factorized smoothing operator (see (2.14)) to 
investigate the effects of smoothing on the stability and on the accuracy. The 
experiments have been carried out on an Alliant FX/4. This mini-supercomputer is 
equipped with four vector processors. On such a computer we can investigate the 
effect of the smoothing on both vector-parallel computers and scalar computers. 

To represent the results, we use the following notation: 

: number of smoothing factors q 
ERROR-C 
10TVP/S 
SMOyp/S 

: maximal global error for the water elevation at the end point t=T 
: total computation time 
: computation time for the smoothing operator 

The indices VP and S indicate Vector-Parallel optimization and Scalar optimization, 
respectively. Thus, the experiment is carried out on one processor if only the scalar 
optimization is used. At the end of the integration process the numerical solution 
for the C-component is compared with a reference solution computed on the same 
grid with 't=30 s. The reference solution may be considered as an almost exact 
solution of our semi-discretized system (3.4). Thus, the accuracy results listed in 
this section represent the error due to the time integration. We experimentally 
determined the maximally stable time step for each value of q. These time steps are 
in agreement with (4.4) (see Table 6.2). 

In the first two experiments we use a rectangular basin of 400 by 800 km with 
Ax=IO km, Ay=lO km, Acr=0.25 and h=65 m. Thus, the computations are 
performed on a grid with nx=41, ny=81 and ns=4. 

In the first experiment we integrate over a period of five days with the constant 
wind stress 

Wf = 1.5 kg/ms2. (6.1) 

At that time, the steady state has already been reached. 
In this experiment the maximal value for the water elevation is about 1.07 m. 

The results show that the time integration can be performed with much larger time 
steps when the smoothing technique is applied. In this experiment, in which the 
solution becomes stationary, the accuracy is hardly reduced by the smoothing 
procedure. Only for large q some errors occur. This is due to the fact that for these 
values of q the steady state has not been reached yet. If the time integration is 
performed over a longer period, we obtain the same results for large values of q as 
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for the case q=O. This is in agreement with the theory that a stationary solution 
should be independent of the number of smoothing factors (see Section 4.4). 

q 't ERROR-C TOTVP SMOVP TOTS SMOS 

(s) (m) (s) (s) (s) (s) 

0 270 0.001 345.0 0.0 2600.1 0.0 
1 800 0.002 173.1 20.5 1463.8 243.1 
2 1800 0.008 85.6 17.6 767.3 219.7 
3 3600 0.022 46.9 12.8 446.3 169.6 
4 7200 0.055 25.9 8.7 255.8 116.8 
5 14400 0.152 13.7 5.1 142.8 75.0 

Table 6.1. Test problem with a constant wind stress. 

In Table 6.2 we list the gain factors of the maximally stable time steps compared 
with the case q=0 ('tmax=277 s), and we compare them with the theoretical gain 
factors. Moreover, we list the gain factors in computation times. 

q=l q=2 q=3 q=4 q=5 

theoretically(= 2q-l1t for q > 0) 3.1 6.3 12.6 25.1 50.3 
experimentally (see Table 6.1) 2.9 6.5 13.0 25.9 51.9 

in computation time (VP) 2.0 4.0 7.4 13.3 25.2 
in computation time (S) 1.8 3.4 5.8 10.2 18.2 

Table 6.2. Gain factors. 

The theoretical gain factor 2q-l1t (see (4.4) with k=2q) is in agreement with the 
experimental results. The results show a significant reduction in computation time, 
especially when the vector and parallel optimization is used. The overhead due to the 
smoothing operator is less than a factor of two, even for large values of q. In the 
case of the vector and parallel optimization, the computation time is reduced by 
about a factor of three due to the vectorization, and by an additional factor of three 
due to the parallel optimization. 

It is interesting to investigate the effect of smoothing when the solution of a test 
problem does not become stationary. Therefore, in the second experiment we 
introduce a time-dependent wind stress (cf. (6.1)) 
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Wr= 1.5 * ( 1 + 0.5 * sin 24 ;~600 ) kg/ms2 (6.2) 

Now, we have a periodically varying wind with a period of 24 hours. We integrate 
over a period of five days. At that time the solution is almost periodic. In the case 
without smoothing in the horizontal we obtain the following maximal water 
elevations at the south-west comer of the basin: 

C = 2.106 m at t = 7.3 + iP hours 

with period P = 24 hours and i a positive integer. When smoothing is applied we 
have observed that about the same maximal and minimal water elevations are 
reached as in the case without smoothing in the horizontal. It seems that the 
smoothing operator hardly introduces a dissipation error. However, some errors in 
the phase of the periodic solution appear. In Table 6.3 we list the maximal global 
error in the numerical solution for the water elevation measured at the end point 
T=l20 hours compared with a reference solution computed with t=30 s. 

q 't ERROR-C 't ERROR-C 
(s) (m) (s) (m) 

0 270 0.008 
1 270 0.008 720 0.014 
2 270 0.023 1800 0.052 
3 270 0.067 3600 0.139 
4 270 0.193 7200 0.463 

Table 6.3. Test problem with a time-dependent wind stress. 

The results show that the error due to the smoothing operator is even smaller than 
the error due to the larger time steps. For example, in the case q=2 the error due to 
the larger time steps (i.e., 0.029 m.) is larger than the error due to the smoothing 
(i.e., ~0.023 m). Thus, when a fully implicit method had been used, the accuracy 
would also decrease for large time steps. 

In the third experiment we investigate the efficiency of the smoothing operators 
on an irregular basin, i.e., a geometry of the IJsselmeer. Figure 1 shows the 
geometry of the IJsselmeer used in this experiment. We choose Ax=Ay=l.0 km and 
h=6.5 m. The IJsselmeer is represented by about 1100 grid points in the horizontal 
direction. The vertical representation is made by five layers of the same depth. We 
integrate over a period of one day with the same constant wind stress as in the first 
experiment (see (6.1)). At the end point T=24 hours we compare the numerical 
solution for the C-component with a reference solution computed with t=lO s. 
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Without smoothing the maximally stable time step is about 87 s. In Table 6.4 we 
list the results. 

q 't ERROR-~ TOTyp SMOyp 
(s) (m) (s) (s) 

0 80 0.000 200.3 0.0 
1 80 0.001 280.4 22.1 
2 80 0.009 305.4 48.9 
3 80 0.021 339.4 77.5 

1 270 0.001 86.0 6.6 
2 600 0.009 44.4 9.4 
3 1200 0.030 24.8 6.9 

Table 6.4. IJsselmeer problem with a constant wind stress. 

In this experiment the maximal value for the water elevation is about 0.79 m. 
The results in this experiment are comparable with the results on a rectangular 
domain (see Table 6.1). The accuracy is hardly reduced by the smoothing procedure. 
Moreover, the overhead due to the smoothing operator is even less than in the 
experiment with a rectangular domain. This is due to the fact that the smoothing 
matrix has been computed on the irregular domain representing the IJsselmeer, 
whereas the computations that do not involve the smoothing, have been performed 
on a surrounding rectangular domain. On vector and parallel computers this is in 
general an efficient approach, because direct addressing can be used in most cases. 
The efficiency depends on the number of dummy grid points in the surrounding 
rectangle compared with the number of grid points in the irregular (physical) 
domain. However, regardless of the implementation used, it may be concluded that 
the smoothing operator can be implemented efficiently on both regular and irregular 
domains. 

4.7. CONCLUSIONS 

In this paper we have applied right-hand side smoothing to improve the stability of 
a time integrator for the linearized 3D shallow water equations. We started with the 
semi-implicit time integrator developed in [3]. It turns out that this method may be 
considered as a method in which the right-hand side function is premultiplied by an 
implicit smoothing operator. The vertical terms are treated implicitly. Since the 
number of points in vertical direction may be very small, explicit smoothing can 
not be applied. Moreover, the stability condition imposed by the vertical terms is 
often the most restrictive one. Therefore, we prefer an implicit treatment of the 
vertical terms. 
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In the horizontal direction we may choose between explicit and implicit 
smoothing of vector functions. In this paper we have applied explicit smoothing 
whenever possible. Only in cases where explicit smoothing can not be applied (i.e., 
in narrow regions), we have used implicit smoothing. It turns out that this approach 
is efficient, especially on vector and parallel computers. 

Owing to the smoothing in the horizontal direction, the maximally stable time 
step increases considerably, while the accuracy decreases only slightly. In our wind 
driven test problems the maximally stable time step increases by a factor of more 
than 10 (in the case q=3), while the accuracy is still acceptable. In this case the 
overhead in computation time due to the smoothing is only about 30%. Moreover, 
the error due to the large time steps is more or less comparable with the error 
introduced by the smoothing. Thus, also for fully implicit methods the accuracy 
will decrease for such large time steps. 

REF'ERENCF.S 
1. A.M. DAvms, Application of the DuFort-Frankel and Saul'ev methods with 

time splitting to the formulation of a three dimensional hydrodynamic sea 
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985). 

2. G. F'IscHER, Ein numerisch verfahren zur errechnung von windstau und gezeiten 
in randmeeren, Tellus, 11, 60-76 (1959). 

3. E.D. DE GoEDE, Finite difference methods for the three-dimensional 
hydrodynamic equations, Report NM-R8813, CWI, Amsterdam, 1988. 

4. P J. v AN DER Ho UWEN, Stabilization of explicit difference schemes by 
smoothing techniques , in K. Strehmel (ed.): Numerical Treatment of 
Differential Equations, (Proc. Fourth Seminar Halle: NUMDIFF-4), Teubner­
Texte zur Mathematik 104, BSB B.G. Teubner Verlaggesellschaft, Leipzig, 
205-215 (1987). 

5. P.J. VAN DER HOUWEN, Construction of integrationformulasfor initial value 
problems, North-Holland, Amsterdam, 1977. 

6. P.J. VAN DER HOUWEN, c. BOON AND F.W. WUBS, Analysis of smoothing 
matrices for the preconditioning of elliptic difference equations, Z. Angew. 
Math. Mech., 68, 3-10 (1988). 

7. A. JAMESON, The evolution of computational methods in aerodynamics, J. 
Appl Mech., 50, 1052-1076 (1983). 

8. R.D. RICHTMYER AND K.W. MORTON, Difference methods for initial value 
problems, lnterscience Publishers, Wiley, New York, London, 1967. 

9. A. SIELECKI, An energy conserving difference scheme for storm surge 
equations, Monthly Weather Review, 96, 150-156 (1968). 

10. F.W. WUBs, Stabilization of explicit methods for hyperbolic partial differential 
equations, Int. J. Numer. Meth. in Fluids, 6, 641-657 (1986). 



45 

(AFSLU ITD IJK) 

LEMMER 

0 

URK 

Q LELYSTAD 

Fig. 1. The geometry of the Usselmeer. 
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Chapter 5 

A Time Splitting Method for the Three­
Dimensional Shallow Water Equations 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

In this paper we describe a time splitting method for the three­
dimensional shallow water equations. The stability of this method 
neither depends on the vertical diffusion term nor on the terms 
describing the propagation of the surface waves. The method consists 
of two stages and requires the solution of a sequence of linear systems. 
For the solution of these systems we apply a Jacobi-type iteration 
method and a conjugate gradient iteration method. The performance of 
both methods is accelerated by a technique based on smoothing. The 
resulting method is mass conservative and efficient on vector and 
parallel computers. The accuracy, stability and computational efficiency 
of this method are demonstrated for wind induced problems in a 
rectangular basin. 

5.1. INTRODUCTION 

In this paper a time splitting method for the three-dimensional shallow water 
equations (SWEs) will be described. The aim of splitting methods is always to split 
the solution of a large and complicated system, which arises when applying fully 
implicit methods to multi-dimensional problems, into a few less complicated 
systems. Well-known splitting methods are alternating direction implicit (ADI) 
methods, locally one-dimensional (LOD) methods and Hopscotch methods [6]. 

For the two-dimensional shallow water equations several of the existing numerical 
methods have been based on the ADI method (see e.g., [10,12]). These ADI 
methods are unconditionally stable and therefore allow the use of large time steps. 
However, for large time steps these methods suffer from inaccuracies when dealing 
with complex geometries [13]. In [15] a two-stage time splitting method has been 
developed in which these inaccuracies are absent, even for large time steps. 

In this paper we will present a two-stage time splitting method for the three­
dimensional shallow water equations which has a strong resemblance to the method 
in [15]. We will use a model for the shallow water equations in which the advective 
terms have been omitted. The stability of a numerical method for this model 
depends on the conditions imposed by the vertical diffusion term and by the terms 
describing the propagation of the surface waves (the CFL condition). In two­
dimensional models many methods are known in which the terms describing the 
propagation of the surface waves are treated implicitly (see e.g., [1,2,15]). In 
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addition to that, in three-dimensional models, where a vertical diffusion term is 
involved, we have to treat this vertical diffusion term implicitly to avoid the 
maximally stable time step becoming too small [3]. In this paper we will develop a 
two-stage method in which the vertical diffusion is treated implicitly at the first 
stage, whereas the terms concerning the propagation of surface waves are treated 
implicitly at the second stage. It will be shown that the stability of this time 
splitting method neither depends on the vertical diffusion nor on the propagation of 
the surface waves. For computational efficiency the Coriolis term will be treated in 
a semi-implicit way. The Coriolis term hardly affects the stability, which justifies 
this simplification. 

At the first stage our time integration method requires the solution of a large 
number of tridiagonal systems, all of the same dimension. Since the tridiagonal 
systems are independent of each other, the solution of these systems can be 
computed in parallel [4]. 

At the second stage a linearization process is used to iteratively solve the 
nonlinear system. The linearization is done in such a way that conservation of mass 
remains guaranteed. Then at each iteration step a linear, symmetric, positive definite 
system has to be solved. In the literature a large number of iteration methods have 
been proposed for such systems. In this paper we apply a Jacobi-type iteration 
method and a conjugate gradient iteration method for the solution of this system. 
Both iteration methods will be accelerated by a technique based on smoothing. 
Application of the smoothing matrices reduces the number of iterations 
considerably. Moreover, the smoothing matrices are very simple to implement and 
are highly suited for vector and parallel computers. 

In [15] a two-stage time splitting method has been developed for the two­
dimensional shallow water equations. It was reported that this time splitting method 
is feasible for practical computations. For this method a major part of the 
computation is involved in the nonlinear system at the second stage. Since in our 
time splitting method the water elevation is the only unknown in the system at the 
second stage, this system is of the same (two-dimensional) structure and thus of the 
same computational complexity for both two-dimensional and three-dimensional 
models. The computation time required by the other parts of our method, i.e., the 
computation of the three-dimensional velocity components, is proportional to the 
number of grid layers in the vertical direction. Therefore, the efficiency of the time 
splitting method developed in this paper is even higher for three-dimensional models 
than for two-dimensional models. 

The accuracy, stability and computational efficiency of our time splitting method 
will be illustrated in the numerical experiments. 

5.2. MAIBEMATICALMODEL 

In this section we will describe a mathematical model for the three-dimensional 
shallow water equations. We will use a three-dimensional model in sigma 
co-ordinates in which the advective terms have been omitted. In this paper we focus 
on stability conditions imposed by the vertical diffusion term and by the terms 
describing the propagation of the surface waves. In future we will develop a 
numerical method for a mathematical model in which the advective terms are 
present. 
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The mathematical model used in this paper is described by 

1 1 a, = - .2... (h f udcr) - .2... (h f vdcr) , 
at ax O ay o 

with boundaries 

0S:xS:L 
0S:yS:B 
l~er~0. 

(2.1) 

(2.2) 

(2.3) 

Thus, the domain is a rectangular basin. Owing to the sigma transformation in the 
vertical, the domain is constant in time [3,5]. We have the closed boundary 
conditions 

u(0,y,cr,t) = 0, u(L,y,er,t) = 0, 
v(x,0,er,t) = 0, v(x,B,cr,t) = 0. 

The boundary conditions at the sea surface (er= 0) are given by 

and at the bottom (er= 1) we have a linear law of bottom friction of the form 

( µav) =-hg:d. 
acr cr=l C 

with ud and v d the components of the velocity at some depth near the bottom. 

5.3. SPACE DISCRETIZATION 

For the space discretization of the equations (2.1 )-(2.3) the computational domain is 
covered by an nx-ny-ns rectangular staggered grid. Figure 1 shows the horizontal 
grid spacing. Owing to the sigma transformation, we have a constant number of 
grid layers in the vertical direction. In what follows, U(t) is a grid function whose 
components Ui,j,k(t) approximate the velocity u(t). The components Ui,j,k(t) are 
numbered lexicographically. Likewise V, Z, D and Hare grid functions for v, ,. d 
and h, respectively. Note that D, Hand Z are only computed at the upper layer. 
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Furthennore, A00 is a tridiagonal matrix approximating the vertical diffusion tenn, 
including the discretization of the tenn l/h2. 01 is an (nx·ny-ns)·(nx-ny) matrix 
(a row of ns diagonal matrices of order nx-ny with A<Jk on the diagonal of the k-th 
submatrix), 02 is an (nx·ny)·(nx-ny•ns) matrix (a column of ns identity matrices 
of order nx-ny). Fis a four-diagonal matrix (due to the grid staggering) of order 
nx-ny-ns, approximating the Coriolis term. Dx and Dy are bidiagonal matrices 
(one diagonal and one lower diagonal) of order nx-ny, approximating the differential 
operators <J/<Jx and <J/<ly, respectively. Ex and Ey are bidiagonal matrices (one 
diagonal and one upper diagonal) with Ex= - o; and Ey = - D~. The matrices Dx 
and Ex differ because of the grid staggering. 

D. V 
1,J i ,j, k 

• 0 • 0 • 0 • Ill X 
X II X Ja X JI X 0 • • 0 • 0 (I 0 • u z 

i ,j, k i 'j 

Figure 1. The staggered grid in the (x,y)-plane. 

For the approximation of the spatial derivatives, second-order central finite 
differences are used in both the horizontal and vertical direction. Now, the semi­
discretized system can be written in the fonn 

F 

(3.1) 

where W=(U,v,z? and (Fu,Fv,o? contains the components of the wind stress. 
Note that the integrals in (2.3) are approximated by 0 1 U and 0 1 V, respectively. 

5.4. TIME INTEGRATION 

In this section we develop a time integration method for the semi-discretized 
system (3.1). We apply a two-stage time splitting method of the form 

wn+l/2 = wn + r't { Fl(Wn+l/2) + Gl(Wn) + cn+l/2} (4.l) 

wn+l = wn+l/2 + !''t { F2(Wn+l/2) + G2(Wn+l) + cn+l/2 } , 
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where C=(Fu,Fv,o?, 't denotes the time step and wn is a numerical approximation 
to W(t) of (3.1) at t=n't. Several well-known splitting methods, e.g., ADI methods, 
can be written in this form. In this paper we choose 

F 

0 

F O ] ~ O wn+l/2, 
0 0 

(4.2) 

Apart from the Coriolis term F, all terms are treated in a symmetrical way. When 
we neglect the Coriolis term, the time splitting method (4.1)-(4.2) is second-order 
accurate in time. 

The structure of the resulting systems at both stages determines the efficiency of 
this time splitting method. At the first stage we have to solve the system 

( 
I - L-cA O O J(un+l/2] 

z'tF <HJ I - L-cA O vn+l/2 = Bn 
2 2 Ocr ' 

0 O I zn+ln 
(4.3) 

where Bn contains the discretizations at time level t=n't. It is evident that the 
Z-component can be computed straightforwardly. For the U- and V-component the 
implicit treatment of the vertical diffusion term requires the solution of nx-ny 
tridiagonal systems of order ns [4]. For computational efficiency the Coriolis term 
is treated in a semi-implicit way. Although an implicit treatment of the Coriolis 
term for the V-component (see (4.3)) prohibits the U- and V-component from being 
computed in parallel, we prefer this choice because of accuracy considerations. The 
results are more accurate than in the case of a fully explicit treatment of the Coriolis 
term, especially when large time steps are used. 

At the second stage the terms describing the propagation of the surface waves are 
treated implicitly. This system reads 
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1 
2 t82gEY vn+l = Bn+l/2 , (4 .4) 

J(

un+lJ 

I zn+l 

where Bn+l/Z contains the discretizations at time level t=(n+l/2)t. The equations 
for the U- and V-component are linear and are not coupled with each other. They are 
only coupled with the equation for the Z-component. Therefore, the components 
un+l and vn+l can easily be eliminated from (4.4) and a system merely in the 
unknown zn+ 1 results. Thus, at the second stage the continuity equation (2.3) and 
the water elevation gradient in the momentum equations (2.1)-(2.2) are treated 
implicitly. This approach was originally proposed in [8] and has been applied by 
many others (e.g., [1,2,15]). 

We now describe this system for each cell (ij) of component Z. The grid sizes in 
the x- and y-direction are denoted by Ax and Ay, respectively. Then, the system for 
Zi.j reads 

z~:1 _ -1:L { fi:1+1. ( 21;1+1. _ z1:1:1 ) _ if1:1:1 ( z1:1:1 _ z1+1. ) } 
1,J 4(Ax)2 i+l,J i+l,J l,J 1,J 1,J 1-l,J 

for i=l , ... ,nx 
j=l, ... ,ny' 

where 

iifJ· = z?, + _21 ( D .. + D .. 1 ) , ,J l,J l,J-
and fr.1. = z?'. + _21 (D .. + D. 1.). 

l,J 1,J 1,J 1 + ,J 

Note that Hand H differ because of the grid staggering. System (4.5) is a nonlinear 
equation, because Hi,j contains the component Zi,j- When system (4.5) has been 
solved, the values for the components un+l and vn+l can be computed by back 
substitution. 

System (4.5) can be written in the form 

(4.6) 

where :o;+l/2 contains the discretizations at t=(n+l/2)t for the Z-component. For 
its linearization we introduce the process 

(4.7) 

with z(O)=zn+l/2. In (4.7) the upper index (m) denotes the iteration index. The 
matrix A(z(m)) is a symmetric and strictly diagonal dominant matrix with positive 
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values on the main diagonal and negative ones elsewhere because we require that 
D+z(m) (=H(m)) >0. Thus, system (4.7) is positive definite. In Section 5.6 we 
will discuss iteration methods for the solution of system (4.7). 

It should be noted that the water elevation is the only unknown in system (4.7). 
Thus, this system is of the same (two-dimensional) structure and computational 
complexity for both two-dimensional and three-dimensional models. This is an 
important feature of the time integration method (4.1)-(4.2), because for two­
dimensional problems a major part of the computation is required for the solution of 
this system. 

The linearization process (4.7) was first used by Leendertse [10]. Conservation of 
mass remains guaranteed by this process. A slightly different linearization process 
was introduced in [15]. In our numerical experiments (see Section 7) we obtained 
comparable results for both linearization processes. 

5.5. STABILTIY 

We will now analyze the stability of method (4.1)-(4.2) with the matrix method. In 
this section we will omit the Coriolis force and the inhomogeneous term. It is well­
known that the Coriolis force hardly affects the stability. We will make plausible 
that the simplified method is unconditionally stable. The stability analysis used here 
is similar to the one described in [14]. That paper was devoted to a study of the 
stability and convergence properties of the Peaceman-Rachford ADI method when 
applied to initial-boundary value problems, including nonlinear ones. 

Since we have omitted the Coriolis force and the inhomogeneous term, we 
have that (cf. (4.2)) 

F 1(Wn) = F2(Wn) = An Wn and G1(Wn) = G2(Wn) = Bn Wn, 

with 

Then, method (4.1)-(4.2) can be written in the form 

Let us now define the amplification matrix 

n-1 • 

In order to guarantee that method (5.1) is stable we have to require llfI C1II to 
remain uniformly bounded for all values of n and t, such that i=O 



n-1 • 

II IIC1 II < K, for 0 < nt < T and K constant [9]. 
i=O 

Let us now verify this condition for the numerical method (5.1). Then, 

n-1 

II II d II~ II (I- rtBn r 1 II II (I+ rtAn-l/2 ) (I- rtAn-l/2 r 1 II 
i=O 
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(5.2) 

TT II (I+ rtBi+l) (I - rtBi+lrl (I+ rtAi+l/2) (I - rtAi+l/2rl II 
1=0 

11 I+ rtB O 11 . 

It can be verified that both the matrix An and the matrix Bn have their eigenvalues 
in the left half plane. The eigenvalues of the matrix An are even real nonpositive. 
Therefore, we have that 

II (I+ rtBi+l) (I- rtBi+lrl II~ 1 and 

II (I+ rtAi+l/2) (I - rtAi+lt2r 1 II ~ 1 , for i=0, ... ,n-1 . 

Using these relations, we obtain 

It is evident that only the explicit part (I+ rtBO) may cause problems. In general, 
it is not possible to find an upper bound for II (I + r 'tB 0) 11. In such a situation we 
may stabilize our integration method by computing the first approximation W1 by 
the backward Euler-LOD method, and apply method (5.1) for n~l. This technique 
has been proposed in [14]. We thus consider the method with for the first time step 

(5.3a) 

andforn~l 

On a fixed space grid the LOD method (5.3a) is only first-order accurate in time, 
but since we only perform one LOD step, method (5.3) is still second-order accurate 
on fixed space grids. Using method (5.3), we obtain 

n-1 

II II d II ~ II (l - rtBn r1 II II (I+ rtA 112 r 1 II . 
i=O 

Now, condition (5.2) is satisfied. We have no practical experience with 
method (5.3). In the numerical experiments no large errors were found for the 
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original method (5.1), even for very large time steps. Thus, there was no need for 
stabilization. In [14] the authors advise the use of one or more LOD steps in 
situations where the initial values contain large errors. This might occur when 
experimental data with significant errors are used as initial values. 

5.6. SOLVING IBE LINEAR SYS1EMS 

In this section we describe how the linear systems at both stages, i.e., system (4.3) 
and system (4.7), are solved. At the first stage we apply the Gaussian Elimination 
(double sweep) method for the solution of the tridiagonal systems. Since this is a 
recursive method, it is an unattractive method on vector and parallel computers. 
However, we make use of the fact that a large number of tridiagonal systems of the 
same dimension have to be solved. In [4] the computational efficiency of this 
approach has been demonstrated on vector and parallel computers. Moreover, this 
method requires a minimal number of operations. 

At the second stage we have to solve the linear, symmetric system (4.7). In the 
literature a large number of iteration methods have been proposed for such systems. 
Here, we will apply a Jacobi-type method and a conjugate gradient (CG) method. 
Both methods will be accelerated by a preconditioning technique. Before discussing 
the iteration methods, we first consider the preconditioning. 

The essence of preconditioning is the determination of a matrix S such that the 
system 

SA z(m+l) =SB, 

has a much smaller condition number than the original system Az(m+l)=B. For the 
preconditioning of system (4.7) we will use a smoothing matrix S of the form 
S=P(D) where P(z) is a polynomial and D is some matrix. The matrix D will be a 
difference matrix of which the eigenvalues are assumed to be in the interval [-1,0] 
(see [7]). The polynomial P(z) will be chosen such that P(0)=l and the eigenvalues 
of S are in the interval [0,1]. First we discuss the choice of the matrix D. In our 
theoretical considerations we assume that D is equal to the normalized matrix A, 
i.e., 

D=L, 
p(A) 

(6.1) 

where p(·) denotes the spectral radius. We emphasize that in practice it is generally 
not attractive to choose D according to (6.1) and we shall employ some cheap 
approximation to the normalized matrix. If Dis defined according to (6.1), then the 
eigenvalues of SA=P(D)A are given by p(A)zP(z), where z runs through the 
spectrum of D. Now, we are looking for a polynomial such that the magnitude of 
zP(z) on [-1,0] is sufficiently small. In this paper we choose the polynomial [16] 
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In [7] it has been proved that the spectral radius of the matrix SA is minimized by 
the polynomial (6.2) when the matrix A has real nonpositive eigenvalues and "(=1. 

For y=l we have that (6.2) is equal to 

1 -. (6.3) 

The factorization in (6.2) makes it possible to implement the smoothing operator S 
in a very efficient way. This is stated in the following theorem. 

THEOREM 6.1. Let S=P(D) with P(z) defined by (6.2) and let the factor matrices~ 
be defined by 

Then, S =P 2q_ 1 (D) can be factorized according to 

S = FqFq-l ... F1 . □ (6.5) 

Thus, the smoothing matrix S consists of q factor matrices. For a proof of 
Theorem 6.1 we refer to [16]. 

The most efficient implementation of S is based on the factorization property in 
Theorem 6.1. However, in two or more dimensions the precomputation of the factor 
matrices Fj defined by (6.4) is not attractive. Therefore, we consider an alternative 
smoothing matrix S which only consists of one-dimensional operators. For our 
two-dimensional problem (4.7) we apply one-dimensional smoothing in the 
x- and y-direction, successively. An extra advantage of the splitting in one­
dimensional operators is that the application of the smoothing operator S is now 
hardly complicated when the domain is irregular [5]. 

As mentioned before, in practice we shall choose D equal to some cheap 
approximation of (6.1). Since the smoothing matrix S consists of one-dimensional 
operators, we choose 

-1 1 0 
l -2 l 

1 (6.6) D=-
4 

1 -2 1 
0 1 -1 

If the factor matrices of (6.5) are computed in advance, then the evaluation of P(D) 
only requires q matrix-vector operations. Moreover, the factor matrices exhibit a 
regular pattern which can be exploited for an efficient implementation. For example, 
applying Theorem 6.1 for matrix D in (6.6) yields the factor matrices 
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3 1 0 2 1 1 0 
1 2 1 1 2 0 1 

1 I I 0 2 0 I (6.7) F1 =4 F2 = 4 , etc. 

1 2 1 1 0 2 0 l 
0 1 3 .. 

Evidently, the matrix-vector multiplications with these essentially tridiagonal factor 
matrices are extremely cheap, especially on vector computers. 

We shall now discuss the application of the Jacobi-type iteration method and the 
CG iteration method to system ( 4.7). 

5.6.1. 1im SMOOTIIED JACOBI METHOD 

For the solution of system (4.7) we apply the smoothed Jacobi method [7] 

k=l,2,3, ... , (6.8) 

where Zk is the k-th iterate, ro is a relaxation parameter and S is the smoothing 
matrix described in Theorem 6.1 with D as in (6.6). For the smoothed Jacobi 
method we choose ')'=l (see (6.4)). As mentioned in the previous section, the 
smoothing matrix S consists of q smoothing factors. In [7] it has been demonstrated 
that one should not iterate with a fixed value of q. Therefore, we choose the number 
of smoothing factors at the k-th iteration step equal to k modulo(q+ 1), which yields 
the cyclic sequence of 1,2, ... ,q,O,l,2, ... ,q,0,l,2, ... ,q, .. smoothing factors. 

Let us now examine how the relaxation parameter ro should be chosen. For the 
spectral radius of A we have 

{ 't2 't2 
p(A) = 1 + gHmax --2 + --J , with Hmax = max { Hi,j} . 

(L\x) (.6.y) lSiSnx 
lSjSny 

Similarly, for the spectral radius of SA we have that 

1 { 't2 't2 
p(SA) = 1 +-gHmax --2 +--2} 

44 (L\x) (.6.y) 

Following the analysis in [7], we obtain 

2 ro=-. 
p(SA) 

(6.9) 

However, in our case, we do not choose ro fixed for each component Zi,j• We make 
ro dependent on the local depth, i.e., 

(I} .. = ______ 2 _____ _ 

l,J 1 { 't2 't2 . 
l +-gH·· --+-} 

44 i,J (.o.x)2 (Ay)2 

(6.10) 
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In the case of a fixed relaxation parameter, we have observed in our experiments that 
(6.9) is the optimum relaxation parameter. However, we obtain much better results 
with the relaxation parameter in (6.10) when an irregular bottom topography is 
used. 

5.6.2. THE SMOOTIIED CG MEIBOD 

The second iteration method that we applied for the solution of system (4.7) is a 
preconditioned CG method. The preconditioned CG method can be formulated as 
follows: 

Let z0 be an initial guess for z(m+l) and 

Ro = B - AZo , PO = SRo 
For k=0,1,2, .... , until convergence 

RkT(SRk) 
ak= T 

Pk (APk) 

zk+l = zk + a.k Pk 

Rk+l = Rk - a.k APk 
T 

Rk+l (SRk+l) 
~k T 

Rk (SRk) 

pk+l = S Rk+l +~k Pk· 

(6.11) 

In (6.11) the matrix S denotes the preconditioning matrix. It is well-known that 
the unpreconditioned CG method can be implemented efficiently on vector and 
parallel computers, but in general the preconditioned version is much more 
troublesome. In the literature various techniques for the construction of a suitable 
preconditioning matrix have been proposed (see [11] for a survey). Here, we choose 
a positive definite matrix S of the form S=P(D), where D is the difference matrix 
in (6.6) and P(z) the polynomial (6.2). By choosing y E [0,1) we obtain that S is 
positive definite. This preconditioning matrix can be implemented efficiently on 
vector and parallel computers, because only matrix-vector operations are involved. 
The convergence is improved by this preconditioning matrix since the condition 
number of SA is much smaller than that of A. It should be noted that this 
preconditioning matrix S is independent of A, whereas in general the 
preconditioning matrix S is some approximation to the inverse of A. 
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5.7. NUMERICAL EXPERIMENTS 

In this section we illustrate for a number of test problems the accuracy and the 
computational aspects of the time integration method (4.1)-(4.2). In the test 
problems the water is initially at rest and the motion in the closed basin is generated 
by a periodic wind stress. Thus, a wind driven circulation is gradually developed. 

The following parameter values are used in all experiments: 

f = l.22e-4 s-1 

g = 9.81 m/s2 

µ = 0.065 m2/s 
C = 70 m112/s 
p = 1025 kg/m3 

<!>=45°. 

The experiments have been carried out on the Alliant FX/4. This mm1-
supercomputer has four vector processors. In all experiments we have used both the 
vector optimization and the parallel optimization. 

At the end of the integration process the numerical solution has been compared 
with a reference solution computed on the same grid with t=60 s. The reference 
solution may be considered as an almost exact solution of our semi-discretized 
system (3.1). Thus, the accuracy results listed in this section represent the error due 
to the time integration. 

In the experiments we have used a rectangular basin of 400 by 800 km with 
different bottom topographies. For the grid sizes we have chosen Ax=lO km, 
Ay=lO km and Acr=0.2. Thus, the computations have been performed on a grid with 
nx=41, ny=81 and ns=5. We have integrated over a period of five days with the 
time-dependent wind stress 

W f = 1.5 * ( l + 0.5 * sin 24 ;;600 ) kg/ms2 (7.1) 

Thus, we have a periodically varying wind with a period of 24 hours. To measure 
the obtained accuracy, we define 

ERR-· : maximal global error of either u, v or, at T = 120 hours. (7.2) 

In the first experiment we have a plane bottom with a depth of 45 m, except for a 
deeper channel in a diagonal direction (depth 65 m). This is shown in Figure 2. In 
the second experiment we use a basin with an inclined bottom of a depth of 20 m at 
one end and 340 m at the other end (see Figure 3). 

In Table 7.1 we list the maximal global errors for the test problem with a channel 
in a diagonal direction. In this experiment the maximal values for u, v and , are 
about 0.4 m/s, 1.1 m/s and 2.6 m, respectively. We have observed that after a few 
days the solution becomes periodic with a period of 24 hours for any time step -r. 
For the largest time steps the accuracy results seem to be unacceptable. However, a 
careful examination of the integration process shows that, even in the case of large 
time steps, the maximal and minimal values of the periodic numerical solution are 
very close to the extreme values of the reference solution. The differences are in the 
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size of a few centimetres. Thus, our integration method hardly introduces a 
dissipation error. However, for the large time steps, errors in the phase of the 
periodic solution appear. For example, in the case of t=4800 s the phase error is 
about one hour. When we compare the numerical solution computed with t=4800 s 
at T=121.33 hours with the reference solution at T=120 hours, the maximal global 
errors for the three components are 0.050 m/s, 0.054 m/s and 0.124 m, 
respectively. This is significantly less than in Table 7.1. 

't ERR-u ERR-v ERR-, 
(s) (m/s) (m/s) (m) 

600 0.006 0.018 0.038 
1200 0.014 0.041 0.087 
2400 0.035 0.103 0.212 
4800 0.088 0.269 0.549 

Table 7 .1. Test problem with a channel in a diagonal direction. 

We now discuss the computational efficiency of the time integration 
method (4.1)-(4.2). To represent the results, we use the following notation: 

q 
'Y 
TOTAL 
ITER 
PREC 
#ITER 
CONY 

: number of smoothing factors (see (6.5)) 
: smoothing coefficient (see (6.2)) 
: total computation time 
: computation time for the iteration process 
: computation time for the preconditioning 
: number of iterations averaged over the integration steps 
: convergence factor averaged over the integration steps. 

At each integration step the convergence factor is defined by (r(k:))1/k, where k is the 
smallest value for which the residue (cf. (4.6)) 

drops below a certain tolerance. In the experiments we require that r(k:)$;10-3. 
In Table 7 .2 we list the computation times and the convergence results for the 

time integration method (4.1)-(4.2) in which either the smoothed Jacobi (SJAC) 
method or the smoothed CG (SCG) method has been applied. For both iteration 
methods we vary the number of smoothing factors. The case q=0 corresponds to the 
unpreconditioned case. For the parameter y in the preconditioning matrix of the 
SCG method we have experimentally derived an optimum value. As mentioned in 
Section 6.1, for the SJAC method we have y.=l. 
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't method q µ TOTAL I1ER PREC #I1ER CONV 
(s) (s) (s) (s) 

600 SCG 0 395.6 70.3 0. 3.0 0.23 
SJAC 1 473.0 148.8 21.5 8.4 0.56 

1200 SCG 0 233.5 69.8 0. 9.2 0.60 
SJAC 2 318.2 154.7 47.7 17.0 0.72 

2400 SCG 0 169.5 87.5 0. 26.0 0.81 
1 0.9 156.8 75.1 25.4 14.1 0.68 
2 0.75 161.3 79.5 37.9 11.4 0.61 

SJAC 3 220.1 137.7 50.9 26.3 0.81 

4800 SCG 0 155.3 114.7 0. 75.4 0.91 
1 0.925 118.9 77.9 28.2 31.2 0.80 
2 0.85 109.9 69.5 35.8 21.9 0.74 

SJAC 0 827.1 786.7 0. 869.6 0.99 
1 517.3 477.3 100.2 297.2 0.98 
2 279.0 238.2 75.0 115.8 0.94 
3 193.l 151.8 64.1 55.0 0.88 
4 184.2 143.8 62.1 48.6 0.86 

Table7.2. Computation times for the channel problem. 

In the case of a time step of 4800 s, we have listed the results for various values 
of q. When no preconditioning is applied, the Jacobi method converges extremely 
slow in this case. However, by applying four smoothing factors, the number of 
iterations is reduced by a factor of 18, whereas the computation time for the 
iteration process is reduced by a factor of 5.5. 

When no preconditioning is applied, the CG method has a much better 
convergence behaviour than the Jacobi method. For the CG method it is even better 
to apply no preconditioning in the case of small time steps, since the number of 
iterations is already very limited. However, for large time steps both the number of 
iterations and the computation time are reduced when the preconditioning is applied. 

In Table 7.2 we list the optimum values for y. For values in the neighbourhood 
of the optimum value the number of iterations hardly increases. Thus, the choice of 
the parameter y in the preconditioning matrix S of the SCG method is not critical. 
In this experiment the SCG method requires less computation time than the SJAC 
method. 

In Table 7 .3 we list the maximal global errors for the test problem with the 
inclined bottom (see Figure 3). In this experiment the maximal values for u, v and 
C are about 0.7 m/s, 1.4 m/s and 1.2 m, respectively. The results are comparable 
with the results in the first experiment After a few days the numerical solution also 
becomes periodic with a period of 24 hours for any time step 't. However, in this 
experiment the phase errors are much smaller. 
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't ERR-u ERR-v ERR-, 
(s) (m/s) (m/s) (m) 

600 0.005 0.003 0.016 
1200 0.008 0.005 0.018 
1800 0.012 0.009 0.035 
3600 0.032 0.034 0.122 

Table 7.3. Test problem with an inclined bottom. 

The computational results in this experiment, which are listed in Table 7.4, are 
also comparable with the results of the first experiment. Both the number of 
iterations and the computation time for the iteration process are reduced when the 
preconditioning is applied. As in the first experiment, the SCG method requires less 
computation time than the SJAC method. 

't method q µ TOTAL ITER PREC #ITER CONY 
(s) (s) (s) (s) 

600 SCG 0 432.2 108.1 0. 7.4 0.49 
SJAC 1 570.4 241.2 41.4 15.8 0.68 

1200 SCG 0 326.6 163.9 0. 24.4 0.75 
SJAC 2 413.5 248.3 71.9 28.2 0.77 

1800 SCG 0 271.5 160.0 0. 39.7 0.84 
1 0.85 253.7 143.9 48.1 22.7 0.73 

SJAC 3 357.5 247.9 100.3 38.4 0.81 

3600 SCG 0 276.1 221.3 0. 109.9 0.92 
1 0.9 193.8 141.2 51.6 47.3 0.82 
2 0.8 240.2 186.4 91.9 45.0 0.82 

SJAC 4 257.5 203.0 91.4 48.6 0.82 

Table 7.4. Computation times for the problem with an inclined bottom. 
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In the experiments we have used. both the vector and the parallel optimization of 
the Alliant FX/4. For both iteration methods the computation time is reduced by 
about a factor of three by vectorization, and by an additional factor of three by the 
parallel optimization. However, not only the computation time for both iteration 
methods, but also the computation time for our integration method (4.1)-(4.2) is 
reduced by the above-mentioned. factors. This shows that our integration method 
(4.1)-(4.2), in which either the SCG method or the SJAC method has been applied, 
can be implemented efficiently on vector and parallel computers. 

ns TOTAL ITER PREC #ITER CONV 
(s) (s) (s) 

1 84.7 76.5 26.0 28.5 0.79 
2 94.2 77.1 27.2 30.2 0.80 
5 118.9 77.9 28.2 31.2 0.80 
10 160.1 80.5 28.5 31.6 0.80 
25 278.5 81.3 29.0 31.9 0.80 

Table 7.5. Computation times for different numbers of vertical layers. 

We now carry out an experiment in which we vary the number of layers in the 
vertical direction. Our aim is to illustrate the efficiency of the time integration 
method (4.1)-(4.2) for three-dimensional shallow water problems. We have chosen 
the bottom topography of the first experiment (i.e., a plane bottom with a deeper 
diagonal channel) and a time step of 4800 s. The SCG method is used with q=l and 
y=0.925 (see Table 7.2). Table 7.5 presents the computation times and the 
convergence results for different numbers of grid layers in the vertical direction. The 
number of vertical grid layers is denoted by ns. 

Since the system that we have to solve at the second stage, is of the same 
computational complexity for both two-dimensional and three-dimensional 
problems, the results in the last four columns are more or less constant. Thus, the 
computation time required for the solution of this system is independent of the 
number of vertical grid layers. In the two-dimensional case (i.e., ns=l) a major part 
of the computation time is required for the solution of the system at the second 
stage (about 90%). However, for three-dimensional experiments the computation 
time for the solution of the system at the second stage becomes relatively less. For 
example, in the case of ns=lO, about half the computation time is required for the 
solution of this system. This percentage depends on the time step used.. In this 
experiment we have used a rather large time step. For smaller time steps the 
percentage of computation time required for the solution of the system is 
significantly less. In conclusion, the time integration method (4.1)-(4.2) is very 
suited for three-dimensional problems, especially when large time steps are used. 
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20 m. 

800 km. 

400 km. 

Figure 2. Figure 3. 
The plane bottom with a diagonal channel. The inclined bottom. 

5.8. CONCLUSIONS 

In this paper we have presented a two-stage time splitting method for the three­
dimensional shallow water equations. The method has been developed in such a way 
that its stability neither depends on the vertical diffusion term nor on the terms 
describing the propagation of the surface waves. At the first stage a large number of 
tridiagonal systems of the same dimension have to be solved. At the second stage 
the system to be solved is symmetric, five-diagonal and positive definite. For the 
solution of the latter system we have developed a smoothed Jacobi (SJ AC) method 
and a smoothed CG (SCG) method. Both methods have been accelerated by a 
technique based on smoothing. The smoothing matrices have been chosen in such a 
way that the number of iterations is moderate in all cases. Moreover, the smoothing 
matrices can be implemented efficiently on vector and parallel computers, because 
only matrix-vector operations are involved. It should be noted that the smoothing 
matrices for the CG method are independent of the system to be solved. In the 
experiments the SCG method requires less computation time than the SJAC 
method. 

It has been shown that the time integration method presented in this paper is 
suited for three-dimensional problems. When we apply our method to two­
dimensional problems, the system to be solved at the second stage is the most time 
consuming part. In three-dimensional models the same amount of computation time 
is required, because this system is independent of the number of grid layers in the 
vertical direction. The computation time for the other parts of the method is 
proportional to the number of vertical grid layers. Therefore, the time splitting 
method is more efficient for three-dimensional problems than for two-dimensional 
problems. In [15] it was reported that a time splitting method of this form is already 
feasible for practical computations of two-dimensional problems. 

Finally, the method is mass conservative and can be implemented efficiently on 
vector and parallel computers. 
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Chapter 6 

Numerical Methods for the 3D Shallow Water 
Equations on Vector and Parallel Computers 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

In this paper numerical methods for the three-dimensional shallow 
water equations are examined. Since three-dimensional models require a 
gn~at computational effort, it is important to construct methods that are 
not only accurate, but also efficient on vector and parallel computers. 
We compare the accuracy and efficiency of a conditionally stable and 
an unconditionally stable method on the Alliant FX/4. 
The unconditionally stable method consists of two stages and requires 
the solution of a sequence of linear systems. For the solution of these 
systems, we apply a Jacobi-type iteration method and a conjugate 
gradient iteration method. The performance of both iteration methods 
is accelerated by a technique based on smoothing. Both explicit and 
implicit smoothing is examined. It turns out that the unconditionally 
stable method is more efficient than the conditionally stable method. 

6.1. IN1RODUCTION 

In numerical analysis, we distinguish explicit and implicit time integrators for 
partial differential equations. It is well-known that implicit methods are in general 
unconditionally stable, but cannot exploit the facilities of vector and parallel 
computers as well as explicit methods do. On the other hand, explicit methods 
impose a severe restriction on the time step and therefore the time step is not 
dictated by accuracy considerations. 

In this paper we will compare the efficiency and accuracy of a conditionally stable 
and an unconditionally stable method for the three-dimensional shallow water 
equations. These methods have been described in [4] and [5], respectively. Since 
three-dimensional models require a great computational effort, we will pay attention 
to the efficiency of these numerical methods on vector and parallel computers. The 
experiments will be carried out on the Alliant FX/4 (a mini-supercomputer with 
four vector processors). 

A mathematical model for the three-dimensional shallow water equations will be 
used in which the advective terms have been omitted. We will focus on the stability 
conditions imposed by the vertical diffusion term and by the terms describing the 
propagation of the surface waves. In three-dimensional models the vertical diffusion 
term has to be treated implicitly to avoid the maximally stable time step becoming 
too small. (see e.g., [1,5]). Therefore, the numerical methods described in this paper 
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treat this term in an implicit way. This requires the solution of a large number of 
tridiagonal systems, all of the same dimension. Since the tridiagonal systems are 
independent of each other, the solution of these systems can be computed efficiently 
in a vector-parallel mode [3]. 

The terms concerning the propagation of surface waves are integrated differently. 
For the conditionally stable method these terms are treated partly explicitly, which 
results in a CFL stability condition that depends on the water depth and on the 
horizontal mesh sizes~ and ll.y. 

The unconditionally stable method consists of two stages. At the first stage the 
vertical diffusion term is treated implicitly, whereas at the second stage the terms 
concerning the propagation of the surface waves are treated implicitly. At the second 
stage a linearization process is used to iteratively solve the nonlinear system. The 
linearization is chosen in such a way that conservation of mass is guaranteed. Then, 
at each iteration step, a linear, symmetric, positive definite system has to be solved. 
In the literature a large number of iteration methods have been proposed for such a 
system {see e.g., [17]). In this paper we will apply a Jacobi-type iteration method 
and a conjugate gradient iteration method for the solution of this system. The 
iteration methods will be accelerated by a technique based on smoothing. Both 
explicit and implicit smoothing will be examined. It appears that especially explicit 
smoothing is suitable on vector and parallel computers. 

6.2. MA1HEMATICAL MODEL 
In this section we will describe a mathematical model for the three-dimensional 
shallow water equations. We will use a three-dimensional model in sigma 
co-ordinates in which the advective terms have been omitted. The mathematical 
model used in this paper is described by 

Owing to the sigma transformation [13] 

~ a= ,. , where-dSzSC and 1 ~a~0. 
d +.,, 

the domain is constant in time. We have the closed boundary conditions 

u{0,y,a,t) = 0, u(L,y,a,t) = 0, 

v{x,0,a,t) = 0, v{x,B,a,t) = 0. 

{2.1) 

{2.2) 

{2.3) 
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The boundary conditions at the sea surface (er= 0) are given by 

(2.4) 

Similarly, at the bottom ( er = 1) we have a linear law of bottom friction of the form 

where ud and v d represent components of the velocity at some depth near the 
bottom. 

6.3. SPACE DISCRETIZATION 

For the space discretization of the equations (2.1)-(2.3), the computational domain 
is covered by an nx-ny·ns rectangular staggered grid (see [3,4,5]). Owing to the 
sigma transformation, we have a constant number of grid layers in the vertical 
direction. In what follows, U(t) is a grid function whose components Uij,k(t) 
approximate the velocity u(t). The components Ui,j,k(t) are numbered 
lexicographically. Likewise, V, Z, D and Hare grid functions approximating v, ,. 
d and h, respectively. Note that D, Hand Z are only computed at the upper layer. 
Furthermore, A00 is a tridiagonal matrix approximating the vertical diffusion term, 
including the discretization of the term l/h2. We remark that A00 does not contain 
the discretization of the wind stress, because this term is independent of the velocity 
components (see (2.4)). 01 is an (nx-ny•ns)·(nx·ny) matrix (a row of ns diagonal 
matrices of order nx-ny with Acric on the diagonal of the k-th submatrix). 02 is an 
(nx-ny)·(nx-ny-ns) matrix (a column of ns identity matrices of order nx-ny. Fis a 
four-diagonal matrix (due to the grid staggering) of order nx-ny-ns, approximating 
the Coriolis term. Dx and Dy are bidiagonal matrices (one diagonal and one lower 
diagonal) of order nx·ny, approximating the differential operators atax and 'i:J/ay, 
respectively. Ex and E~ are bidiagonal matrices (one diagonal and one upper 
diagonal) with Ex= -D; and Ey = -D~. The matrices Dx and Ex differ because of 
the grid staggering. 

For the approximation of the spatial derivatives, second-order central finite 
differences are used in both the horizontal and the vertical direction. Now, the semi­
discretized system can be written in the form 

F 

(3.1) 

where W=(U,V,Z)T and (Fu,Fv,O)T contains the components of the wind stress. 
Note that the integrals in (2.3) are approximated by 0 1 U and 0 1 V, respectively. 
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6.4. TIME INTEGRATION 
In this section we will describe time integration methods for the semi-discretized 
system (3.1). Both a conditionally stable and an unconditionally stable method will 
be discussed. 

6.4.1. THE CONDIDONALLY STABLE :ME1HOD 

First we consider the conditionally stable method that has been described in [3]. 
This method reads 

where 't denotes the time step and Wn=(Un,vn,Zn)T is a numerical approximation 
to the solution W(t) of (3.1) at t=Il't. This Vertically Implicit Method (VIM) can be 
written in the form 

(4.1) 

with 

and n 
The stability condition for method (4.1) is given by 

(4.2) 

where 8x and 8y denote the horizontal mesh sizes. 
Method (4.1) is first-order accurate in time. For the U- and V-component, the 

implicit treatment of the vertical diffusion term requires the solution of nx-ny 
tridiagonal systems of dimension ns [3,4]. For large values of h (i.e., very deep 
water) or for small values of the horizontal mesh sizes, the time step restriction for 
method (4.1) may be more severe than necessary for accuracy considerations. In 
order to increase the stability of method (4.1), right-hand side smoothing has been 
applied in [4]. The application of right-hand side smoothing in more than one 
direction is complicated. Therefore, we have constructed one-dimensional smoothing 
matrices in x- and y-direction, successively. In the x-direction the smoothing matrix 
has the structure 
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where Su and Sz denote the smoothing matrices for the right-hand side function of 
the U- and Z-component, respectively. These smoothing matrices are of the form 
Su=P(Du) and Sz=P(Dz) with P(z) defined by [7 ,8] 

T q(1+2z)- 1 
P(z) = 2 l. , T k(x) = cos(k arccos(x)) 

2z 4q 
(4.3) 

0 0 -1 1 0 
1 -2 1 1 -2 1 

1 1 (4.4) Du=- Dz=-
4 4 

1 -2 1 1 -2 1 
0 0 0 -1 l 

In they-direction the smoothing matrix has a similar structure (see [4]). Note that 
Du and Dz only differ in the first and last row, which is due to the grid staggering 
and to the boundary conditions. The number of different boundary conditions is very 
limited (open or closed boundaries, u- or ,-boundaries). The smoothing matrices, 
including the values in the first and last row, are therefore computed in advance. 

The application of right-hand side smoothing to method (4.1) leads to the 
Stabilized Vertically Implicit Method (SVIM) 

wn+l = Wn + 't (I-'t{A1+SA2Jr1 S F(Wn), (4.5) 

with the matrices A1 and Ai as in (4.1). The stability condition for method (4.5) is 
given by 

't < 1t 2q-1 _1 _ l 

{gh ✓ 1 1 
(L\x.)2 + (l:ly)2 

(4.6) 

where the gain factor obtained by right-hand side smoothing is 1t2q-l (cf. (4.2)). 
Right-hand side smoothing is particularly attractive in problems where it is 

known that the time derivative of the exact solution (in our case, aw/at with 
w=(u,v,,f) is a smooth function of the space variable. For example, this occurs in 
problems where the solution is close to a steady state. In such cases, the right-hand 
side function of the semi-discretized system (see e.g., in (3.1)) is also a smooth grid 
function. Thus, it can be multiplied by the smoothing operator S without much 
loss of accuracy. 

In order to prevent large errors, it is therefore important to smooth the complete 
right-hand side function. In [1] a fractional step method has been developed which 
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has a comparable accuracy and computational efficiency as method (4.1). However, 
for the method in [1] right-hand side smoothing is less attractive, because it can 
only be applied to a part of the right-hand side function. 

We emphasize again that in method (4.5) the right-hand side function is 
smoothed, instead of the grid function W(t) itself. Both types of smoothing may be 
considered as a technique in which horizontal diffusion is added. The latter type of 
smoothing is often used (e.g., in the well-known Lax-Wendroff method [14]). 
However, it may only be applied, without considerable loss of accuracy, if W(t) 
itself is a smooth grid function for a fixed value of t. This is, in general, not the 
case. In [15] very high-order smoothing operators have been developed to restrict the 
decrease in accuracy. 

Method (4.5) can be made more accurate by applying a technique in which the 
water elevation and the velocity components are computed at different time levels. 
This technique has been introduced in [6]. For method (4.5) this yields 

(4.7) 

with wn = (Un-l/2, vn-l/2, znl and s the smoothing operator in (4.5). The 
Coriolis term and the vertical diffusion term are still treated first-order accurate in 
time. However, the terms describing the propagation of the surfaces waves are now 
treated second-order accurate in time. The stability condition (4.6) is also valid for 
method (4.7). 

6.4.2. THE UNCONDITIONALLY STABLE METHOD 
In [5] the two-stage Time Splitting Method (TSM) 

wn+l/2 = wn + rt { F\Wn+l/2) + Gl(Wn) + cn+l/2} (4.8) 

wn+l = wn+l/2 + rt { F2(Wn+l/2) + G2(Wn+l) + cn+l/2 } , 

with 

Fl(Wn+l~:( ~ 
0 

~ )wn+1n, ~ 
0 

G'(W")-( ~ 
F -82gDX 

}n, 0 -82gEY 

-81HnEx -81HnDY 0 

(4.9) 

( Aro 
F 

~ )wn+tn, F2(Wn+l/2) = : ~ 
0 
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and C=(Fu,Fv,O)T has been developed. When we neglect the Coriolis term, this 
method is second-order accurate in time. For two-dimensional problems, this time 
splitting method is very similar to the method described in [16]. In [4] it has been 
shown that this method is unconditionally stable. 

At both stages a system of equations has to be solved. The structure of these 
systems determines the efficiency of method (4.8)-(4.9). At the first stage we have 
to solve 

( 
I -

1
rtAaa 

ztF 

0 

0 
o )(un+l/2) 
0 yn+l/2 = Bn' 

I zn+l/2 

(4.10) 

where Bn contains the discretizations at time level t=nt. This system is very similar 
to the system that has to be solved for the SVIM method (cf. (4.1)). 

At the second stage the terms describing the propagation of the surface waves are 
treated implicitly. This system reads 

1 
rt02gDx 
1 
zt02gEY 

I 

where Bn+l/2 contains the discretizations at time level t=(n+l/2)t. The equations 
for the U- and V-component are linear and are not coupled with each other. They are 
only coupled with the equation for the Z-component. Therefore, the components 
un+l and vn+l can easily be eliminated from (4.11) and a nonlinear system in the 
unknown zn+l results. A linearization process is used to iteratively solve this 
nonlinear system. Then, at each iteration step, we obtain a linear, symmetric, 
positive definite system of the form 

(4.12) 

h Z (O) zn+l/2 Bn+l/2 . th d' . . ( ) , th w ere = , z contams e 1scret1zations at t= n+l/2 t 1or e 
Z-component and (m) denotes the iteration index. For a detailed description of (4.12) 
we refer to [5]. 

We emphasize that the water elevation is the only unknown in system (4.12). 
Thus, this system is of the same (two-dimensional) structure and thus of the same 
computational complexity for both two-dimensional and three-dimensional test 
problems. The computation time for the other parts of method (4.8)-(4.9) is 
proportional to the number of vertical grid layers. Therefore, this time splitting 



72 

method is more efficient for three-dimensional than for two-dimensional problems. 
In [16] it was reported that a time splitting method of this form is already feasible 
for two-dimensional problems. 

6.5. SOLVING TIIE LINEAR SYSTEMS 

In this section we will describe how the linear systems (4.10) and (4.12) are solved. 
For system (4.10), which requires for both velocity components the solution of 
nx-ny tridiagonal systems of dimension ns, we apply the Gaussian Elimination 
(double sweep) method. Since this method is recursive, it is an unattractive method 
on vector and parallel computers. However, we make use of the fact that a large 
number of tridiagonal systems of the same dimension has to be solved. Therefore, 
the systems can be solved efficiently in a vector-parallel mode [3]. Moreover, this 
method requires a minimal number of operations. 

In the literature a large number of iteration methods have been proposed for linear, 
symmetric systems such as system (4.12). Here, we will apply a Jacobi-type 
method and a conjugate gradient (CG) method. 

6.5.1. THE SMOOTIIED JACOBI METIIOD 

For the solution of system (4.12), written as AZ=B, we apply the smoothed Jacobi 
method [8] 

k=l,2,3, ... , (5.1) 

where Zk denotes the k-th iterate, co is a relaxation parameter and S is a smoothing 
operator. We only consider smoothing operators S that consist of one-dimensional 
operators in x- and y-direction, successively. This will be explained later. The one­
dimensional smoothing operators are chosen of the form P(D), where D is a 
difference matrix and the smoothing function P(z) is a polynomial or rational 
function, yielding explicit or implicit smoothing, respectively. Here, we choose 

{ 
P(D) 

s-
- (I - aDf 1 ' 

(5.2a) 

(5.2b) 

with P(z) as defined in (4.3), D as in (4.4) and a some parameter. The implicit 
smoothing operator (5.2b) requires the solution of a tridiagonal system. On the 
other hand, the explicit smoothing operator (5.2a) requires q (tridiagonal) 
matrix-vector operations, because 

(5.3) 

For this choice of P(z) with D as in (4.4), the q factor matrices of the explicit 
operator exhibit a regular pattern, which has been exploited for an efficient 
implementation [4,5]. The precomputation of these factor matrices is only feasible 
in one-dimensional cases. Therefore, we apply one-dimensional smoothing in the x-
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and y-direction, successively. This enables an efficient implementation of the 
smoothing operator on both regular and irregular domains [4). 

For the explicit smoothing operator (5.2a), a good choice of the relaxation 
parameter co in (5.1) has been derived in [5]. In the case of implicit smoothing, the 
smoothed Jacobi method reads 

k=l,2,3, ... , (5.4) 

where o:> and D~> denote the matrix Dz in (4.4) applied in the x- and y-direction, 

respectively. Ifwe choose 

_ 2ex@+ex2 
CO-- 2 , 

~ 

't2 
with the constant ~ = A 2 g8max , Hmax = ~ax {Hi) 

Ll lS1Snx 
lSjSny 

and A= Ax= Ay, then method (5.4) may be written in the form 

where C¾ =~/ex. Using the relation A=I+~D~x) +~D~), it can be verified that (5.4') 
is equivalent to 

(ADz(x) - ex2I) z~ (AD(x) I) Z { B AZ } 
I-' = I-' z - ex2 k + - k (5.5) 

Method (5.5) may be considered as an ADI iteration method written in residual 
form. For such methods the derivation of parameter values has been described 
extensively in [17). In our case this results in an optimum value of ex2 = 1t {ii, 
which yields ex= {ii/ 1t. We emphasize, however, that this only applies if we 
compute the solution sufficiently accurate. For moderately accurate computations, 
this ex-value may not be the best possible. In our numerical experiments the value 
of ex is determined experimentally. 

6.5.2. THE SMOOTIIED CG METIIOD 

The second iteration method that we apply for the solution of system (4.12), is a 
preconditioned CG method. The preconditioned CG method can be formulated as 
follows (see e.g., [10)): 
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Let z 0 be an initial guess for z(m+l) and 

Ro = B - AZo , Po = SRo 

For k=0,1,2, .... , until convergence 
T 

Rk (SRk) 
a.1c= T 

Pk (APk) 

zk+l = zk + a.k Pk 

Rk+l = Rk- a.k APk 
T 

Rk+l (SRk+l) 
P1c------

- RkT(SRk) 

pk+l = s Rk+l +P1c Pk ' 

(5.6) 

where Rk denotes the k-th residual vector and Pk the k-th search direction. In (5.6) 
the matrix S denotes the preconditioning matrix. It is well-known that the 
unpreconditioned CG method can be implemented efficiently on vector and parallel 
computers, but in general the preconditioned version is much more troublesome. In 
the literature various techniques for the construction of a suitable preconditioning 
matrix have been proposed (see [12] for a survey). Here, we again use an explicit 
and an implicit smoothing operator. In the explicit case we choose a positive 
definite matrix S of the form S=P(D), where Dis the difference matrix in (4.4) and 

q ·T2i-1(1+2z)-l 
P(z)= TI ( 1 +"(-----), 

i=l 2 
(5.7) 

where we have to choose y E [0,1) in order to obtain a positive definite matrix S. If 
rl, then the polynomial P(z) in (5.7) is identical to the polynomial in (4.3). This 
smoothing operator can be implemented efficiently on vector and parallel 
computers, because only matrix-vector operations are involved [5]. In the case of 
implicit preconditioning we apply the incomplete Cholesky factorization [11]. This 
leads to the well-known ICCG method. 

6.6. NUMERICAL EXPERIMENTS 

In this section we compare the accuracy and computational efficiency of the 
conditionally stable methods (4.5) and (4.7) and the unconditionally stable method 
(4.8)-(4.9). The experiments have been carried out on the Alliant FX./4, which is a 
mini-supercomputer with four vector processors. In all experiments we have used 
both the vector and the parallel optimization of the Alliant FX/4. 

The water is initially at rest and the motion in the closed basin is generated by a 
periodic wind stress. Thus, a wind driven circulation is gradually developed. The 
following parameter values have been used in all experiments: 
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C = 70 m112/s 
f = l.22e-4 s-1 

g = 9.81 m/s2 

µ = 0.065 m2/s 
cj> = 90° 
p = 1025 kg/m3. 

We have used a rectangular basin of 400 by 800 km with different bottom 
topographies. For the horizontal grid sizes we have chosen L\x= 10 km and 
L\y=lO km. The computations have been performed on a grid with nx=41, ny=81 
and ns=5. We have integrated over a period of five days with a periodically varying 
wind stress of 

5 0 5 * . 21t t k 2 
1. + ·7 sm 24 * 3600 g/ms · 

The following numerical methods have been used: 

SVIM : the Stabilized Vertically Implicit Method (4.5) 
SVIM2 : the Hansen-type Stabilized Vertically Implicit Method (4.7) (6.1) 
TSM : the unconditionally stable Time Splitting Method (4.8)-(4.9). 

At the end of the integration process the numerical solution has been compared 
with a reference solution computed on the same grid with 't=30 s. The reference 
solution may be considered as an almost exact solution of our semi-discretized 
system (3.1). Thus, the accuracy results listed in this section represent the error due 
to the time integration. 

To represent the results we defme: 

q : number of smoothing factors (see (4.3)) 
ERR-· : maximal global error of either u, v or, at the end point T = 5 days 
COMP : computation time on the Alliant FX/4. 

For the TSM method we require that the residue II B:+l/2 - AZk ll 00 drops 
below the tolerance 10-3 (see (4.12)). This value is a good compromise between the 
accuracy and the computational costs. 

In the first experiment we choose a plane bottom of 45 m with a deeper channel 
in a diagonal direction (depth 65 m). This is shown in Figure 1. For this test 
problem the results are presented in Table 6.1. 

In this experiment the maximal values for u, v and , are about 0.4 m/s, 1.1 m/s 
and 2.6 m, respectively. We have observed that after a few days the solution 
becomes periodic with a period of 24 hours for any time step. As expected, the 
SVIM2 method is more accurate than the SVIM method. The results for the SVIM­
type methods clearly show that one should not apply more smoothing factors than 
needed. In the case 't=1800 sand q=3, the results are much less accurate than for q=2, 
which is sufficient for stability. For a fixed time step 't, the TSM method roughly 
requires twice as much computation time as the SVIM methods. However, when we 
consider the accuracy, the TSM method is more accurate. 
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method 't q ERR-u ERR-v ERR-C COMP 
(s) (m/s) (m/s) (m) (s) 

SVIM 270 0 0.005 0.012 0.015 442.3 
800 1 0.031 0.044 0.063 222.5 

1800 2 0.090 0.132 0.194 111.5 
1800 3 0.134 0.250 0.344 121.1 
3600 3 0.154 0.308 0.457 60.0 

SVIM2 270 0 0.004 0.005 0.015 444.4 
800 1 0.027 0.023 0.063 225.4 

1800 2 0.071 0.087 0.194 112.2 
1800 3 0.119 0.184 0.349 123.6 
3600 3 0.142 0.233 0.457 61.0 

TSM 270 0.002 0.005 0.015 817.3 
800 0.008 0.024 0.054 319.3 

1800 0.024 0.070 0.146 183.6 
3600 0.061 0.180 0.367 160.4 

Table 6.1. Test problem with a channel in a diagonal direction. 

In the second experiment we use a basin with an inclined bottom of a depth of 
20 m at the one end and 340 m at the other end (see Figure 2). The results are listed 
in Table 6.2a. Here, the maximal values for the three components are about 
0.7 m/s, 1.4 m/s and 1.2 m, respectively. For the SVIM2 method, large errors for 
the velocity components occur if smoothing is applied. On the other hand, the 
accuracy of the TSM method is very satisfactory, even for large time steps. The 
experiment with the diagonal channel is the only one in which some inaccuracies 
occur for the TSM method. This is possibly due to the discontinuous bottom 
topography. In all other experiments (see also [5]), the errors for the TSM method 
are very small. The results show that the TSM method is a more suitable method 
for the three-dimensional shallow water equations than the SVIM-type methods. 

In the experiments the SVIM-type methods perform less satisfactory for three­
dimensional test problems than for the corresponding two-dimensional ones. As an 
illustration, for the second test problem we list in Table 6.2b the results for the 
SVIM2 method when only one grid layer in the vertical direction is used 
(i.e., ns=l). In this experiment the errors for the velocity components are about ten 
times smaller, whereas the maximal values for the velocities are only about four 
times smaller (see Table 6.2a). The TSM method does in general not encounter any 
accuracy problems for both two- and three-dimensional test problems. 

In the three-dimensional experiments the large errors occur near the boundaries. 
Since we apply smoothing of the right-hand side function, its smoothness plays an 
important role. We have observed that in the two-dimensional experiments the 
right-hand side function is smoother near the boundaries than in the three-
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method 't q ERR-u ERR-v ERR-C COMP 
(s) (m/s) (m/s) (m) (s) 

SVIM2 100 0 0.001 0.001 0.001 1182.1 
300 1 0.055 0.061 0.003 541.4 
(>()() 2 0.288 0.319 0.019 330.3 

1200 3 0.485 0.563 0.067 180.3 

TSM 100 0.001 0.001 0.001 2181.6 
300 0.002 0.002 0.004 773.4 
(>()() 0.005 0.003 0.016 437.1 

1200 0.008 0.005 0.018 315.7 
2400 0.018 0.014 0.046 237.3 

Table 6.2a. Test problem with an inclined bottom. 

dimensional experiments. This results in a smaller decrease of the accuracy when 
smoothing is applied. Thus, we conclude that the smoothing technique is more 
suitable for two-dimensional experiments than for three-dimensional ones. In three­
dimensional experiments, one should be more careful with the application of right­
hand side smoothing. 

method 't q ERR-u ERR-v ERR-C COMP 
(s) (m/s) (m/s) (m) (s) 

SVIM2 100 0 0.001 0.001 0.001 196.4 
300 1 0.005 0.008 0.003 109.4 
(>()() 2 0.031 0.045 0.015 68.2 

1200 3 0.053 0.082 0.060 37.5 

Table 6.2b. Test problem with an inclined bottom and ns= 1. 

In the literature various numerical methods have been constructed that are implicit 
in the vertical direction and explicit in the horizontal direction (see e.g., [1,9]). 
These methods yield an accuracy and efficiency which is more or less similar to the 
SVIM method without smoothing (i.e., SVIM with q=0). When right-hand side 
smoothing is used, we can in general apply two or three smoothing factors while 
the accuracy remains acceptable. In these cases, the SVIM method is about a factor 
of five more efficient that the aforementioned methods (see also [4]). However, the 
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TSM method yields more accurate results and in many cases also more efficient 
results. Therefore, we conclude that the TSM method is a very suitable method for 
the three-dimensional shallow water equations. 

In the experiments we have used both the vector and the parallel optimization of 
the Alliant FX/4. For all numerical methods described in this paper (see (6.1)), the 
computation time reduces by about a factor of three due to the vectorization and by 
an additional factor of three due to the parallel optimization. This shows that these 
methods can be implemented efficiently on vector and parallel computers. 

Below, we will discuss the performance of the iteration methods used for the 
solution of system (4.12). To represent the results we use the following notation: 

q 

'Y 
I1ER 
PREC 
#ITER 

: number of smoothing factors (see (4.3)) 
: smoothing coefficient (see (5.7)) 
: computation time for the iteration process 
: computation time for the preconditioning (PREC is a part of ITER) 
: number of iterations averaged over the integration steps. 

In Table 6.3 we list the results for the smoothed Jacobi method. Here the bottom 
topography with the diagonal channel has been used. In this experiment only 
twenty-five time steps have been performed. We have varied the number of 
smoothing factors q. The case q=0 corresponds to the unpreconditioned case, whereas 
implicit smoothing is denoted by IMP. 

't = 800 s 't = 3600 s 

q ITER PREC #ITER ITER PREC #ITER 
(s) (s) (s) (s) 

0 41.3 0.0 110 368.2 0.0 982 
1 26.2 3.6 42 279.3 43.9 438 
2 10.0 2.8 14 104.0 29.2 146 
3 7.4 2.6 9 41.0 14.7 49 
4 8.2 3.4 10 12.1 4.8 15 

IMP 20.5 14.1 12 75.6 51.8 45 
(a.=0.8) (a.=20.6) 

Table 6.3. Smoothed Jacobi method for the problem with a diagonal channel. 

When no preconditioning is applied, the Jacobi method converges extremely slow. 
When we apply explicit smoothing, both the number of iterations and the 
computation time are reduced considerably. For example, in the case 't=3600 s and 
q=4, the computation time for the iteration process is even reduced by a factor of 30. 
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For the best choice of q, the explicit smoothing operator requires less iterations than 
the implicit smoothing operator. Moreover, since the implicit smoothing can not 
be implemented as efficiently as the explicit smoothing, the reduction in 
computation time is less for implicit smoothing. 

In Table 6.4 we list the results for the smoothed CG method. The value of a. is in 
the neighbourhood of the optimum theoretical value given in Section 6.5.1. 
Moreover, this value is not critical. Here, we use the basin with an inclined bottom. 
For the implicit preconditioner, viz., the incomplete Cholesky factorization, we 
only list the number of iterations, because it has not been implemented in an 
efficient way. An efficient implementation of the Cholesky factorization has been 
described in [2]. 

For the parameter y in the explicit smoothing operator, we have derived 
experimentally an optimum value. In Table 6.4 these optimum values are presented. 
For y-values in the neighbourhood of the optimum value, the number of iterations 
hardly increases. Thus, the choice of the parameter yin the preconditioning matrix S 
of the SCG method is not critical. 

In the case of the smallest time step of 800 s, it is better to apply no 
preconditioning, because the number of iterations is already very limited. For larger 
time steps both the number of iterations and the computation time reduces when the 
explicit smoothing operator is applied. The results show that the number of 
iterations for the ICCG method is slightly less compared with the explicit 
preconditioning. We expect that the explicit smoothing operators can be 
implemented more efficiently than the implicit ones, especially on irregular 
domains. Therefore, the explicit smoothing operators seem to be a good choice for 
our shallow water problems. 

't q y ITER PREC #ITER 
(s) (s) (s) 

800 0 123.4 0.0 11 

1800 0 160.0 0.0 40 
1 0.85 143.9 48.1 23 

ICCG 17 

3600 0 221.3 0.0 110 
1 0.9 141.2 51.6 47 
2 0.8 186.4 91.9 45 

ICCG 34 

Table 6.4. Results for the CG method. 
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6. 7. CONCLUSIONS 

In this paper we have compared the accuracy and computational efficiency of 
numerical methods for the three-dimensional shallow water equations. Both a 
conditionally stable and an unconditionally stable method have been examined. The 
experiments show that both methods can be implemented efficiently on vector and 
parallel computers. In [4] the stability of the conditionally stable method has been 
increased by right-hand side smoothing. In general, the application of right-hand side 
smoothing results in a reduction of the computation time of about a factor of five, 
while the accuracy is still acceptable [4]. 

This smoothing technique performs relatively better for two-dimensional 
problems. In three-dimensional cases, we encounter in some cases large errors for 
the velocity components. On the other hand, the unconditionally stable method 
yields very accurate results, even for large time steps. Since three-dimensional 
models are applied to test problems where the vertical structure of the velocities is 
needed, especially the accuracy for the velocity components should be emphasized. 
For the largest time step with an acceptable accuracy, the unconditionally stable 
method requires in many cases less computation time than the smoothed 
conditionally stable method. Therefore, we conclude that the unconditionally stable 
method is a suitable method for the three-dimensional shallow water models. 

For the unconditionally stable method a symmetric, pentadiagonal and positive 
definite system has to be solved. We have examined a Jacobi-type iteration method 
and a CG iteration method for the solution of this system.These iteration methods 
have been accelerated by both an explicit and an implicit preconditioning operator. 
For our shallow water problems the explicit preconditioner seems to be more 
efficient. In [5] it has been shown that the smoothed CG method requires less 
computation time than the smoothed Jacobi-type method. 

20 m. 

800 km. 

400 km. 

Figure 1. Figure 2. 
The plane bottom with a diagonal channel. The inclined bottom. 
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Chapter 7 

On the Numerical Treatment of the Advective 
Terms in 3D Shallow Water Models 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

In this paper we present a numerical method for the three-dimensional 
shallow water equations. These equations describe flows in e.g., 
shallow seas, rivers and estuaries. Since three-dimensional models 
require a great computational effort, the method is constructed in such a 
way that it fully exploits the facilities of vector and parallel 
computers. This two-stage method, which is unconditionally stable, is 
applied to a problem involving the development of a circulation in a 
rectangular basin and to a river problem in which a jetty has been 
situated. 

7 .1. INTRODUCTION 

In the past, many numerical methods for the simulation of water flows were based 
on the so-called two-dimensional shallow water equations. These equations can be 
obtained from the three-dimensional equations by averaging over the vertical co­
ordinate. They only yield the water elevation and the depth-averaged velocities. 
However, there are many cases in which the vertical structure of the flow is required. 
For example, when the dispersion of a pollutant is desired. In this paper we will 
develop a numerical method for the three-dimensional shallow water equations. The 
three-dimensional models are an order of magnitude more expensive than the two­
dimensional models and it is therefore important to construct methods that are not 
only robust and accurate, but also able to fully exploit the facilities of vector and 
parallel computers. 

In [3] we developed an unconditionally stable two-stage method for the three­
dimensional shallow water equations in which the advective terms were omitted. We 
focussed on the stability conditions imposed by the vertical diffusion and by the 
terms describing the propagation of the surface waves. In this paper we will 
incorporate the advective terms into this method. 

For the model without advective terms, the unconditionally stable method has 
been compared with conditionally stable methods [4]. The unconditionally stable 
method yields the most accurate results. The method is also more efficient, because 
large time steps can be used. For two-dimensional models, this approach is very 
similar to the one described in [11], where its feasibility for practical computations 
has been shown. For three-dimensional models the efficiency of our method is even 
higher than for two-dimensional models [3]. 
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For the numerical treatment of the advective terms, we will follow the approach 
developed in [9]. The introduction of the advective terms results in a hardly more 
complicated system. At the first stage the implicit treatment of the advective terms 
yields a large, non-symmetric, linear system. For its solution we will develop a 
Jacobi-type iteration method. When only one iteration is performed, this 
corresponds with an explicit treatment of the advective terms. Thus, the method 
offers the facility of both an explicit and an implicit treatment of the advective 
terms. 

At the second stage the method is comparable with the method developed for the 
model without the advective terms [3]. Again, a sequence of linear systems has to 
be solved at this stage. This system is solved by a conjugate gradient method in 
which a preconditioner based on smoothing is used [3]. It appears that this iteration 
method is highly suitable for vector and parallel computers. 

In order to facilitate the comparison with existing numerical methods, we will 
apply our method to test problems from the literature. In the first experiment we 
will examine the development of a circulation in a rectangular basin with 
dimensions representative of the North Sea [1,6]. In the second test problem we will 
study a river flow past a jetty [9]. 

7 .2. MA TIIEMA TICAL MODEL 

In this section we will describe a mathematical model for the three-dimensional 
shallow water equations. The three-dimensional model in sigma co-ordinates is 
given by [1,10] 

au= -u°u-vau _ ro2!!.+ fv-i' + A a2u + A a2u + j_ 2... ( au) (2.1) 
at ax ay ocr ax ax2 0y2 h2 ocr µ ocr 

av = _ uav _ v°v _ ~- fu - i' + A a2v + A a2v + j_ 2... ( µ av) (2.2) 
at ox ay ocr ay ax2 oy2 h2 ocr \ ocr 

1 1 1 1 

co={; {-(1-<J) (:x (h f udcr) +; (h f vdcr)) + l..(h f udcr) +; (h f vdcr)} (2.3) 
o Yo ox 0 Y 0 

1 1 

a,= -2-(h f udcr) -2-(h f vdcr). 
at ax O ay O 

(2.4) 

The equations (2.1)-(2.3) are the momentum equations and (2.4) denotes the 
continuity equation. In our model the accelerations in the vertical direction have 
been neglected, because they are very small, particularly when compared with the 
acceleration due to gravity. This is known as the so-called shallow water 
approximation. 

In the vertical, the domain is bounded by the bottom topography and the time­
dependent water elevation. To ensure that the three-dimensional domain is constant 
in the vertical direction, system (2.1)-(2.4) has been transformed into the constant 
interval [0,1] by the sigma transformation [8] 
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(2.5) 

The relation between the untransformed (physical) vertical velocity w and the 
transformed velocity ro is given by [1,10] 

The domain is defined by 

0 ~ x ~ L , 0 ~ y ~ B and 1 ~ er ~ 0 , 

i.e., a rectangular basin. Owing to the sigma transformation in the vertical, the 
domain is constant in time. The boundary conditions at the sea surface ( er = 0) are 
given by [1] 

(µ :) =-!!..WfCOS(q>), (µ :) =-!!..WfSin(cj>) and ro(x,y,0,t)=0. 
cr=O P cr=O p 

Similarly, at the bottom (er= 1) we have 

and ro(x,y,l,t) = o , 

where the first two conditions represent a quadratic law of bottom friction. 

7.3. NUMERICAL DISCRETIZA TION 
To discretize system (2.1)-(2.4), we first apply a finite difference space discretization 
on a spatial grid that is staggered in both the horizontal and the vertical direction 
(see [2,3]). Figure 1 shows the horizontal grid spacing. The computational domain 
is covered by an nx·ny-ns rectangular grid. On this grid the spatial derivatives are 
replaced by second-order finite differences, which results into a semi-discretized 
system of dimension nx-ny-(3ns+l). Owing to the sigma transformation (2.5), we 
have a constant number of grid layers in the vertical direction. In what follows, U(t) 
is a grid function whose components Ui,j,k(t) approximate the velocity u(t). The 
components Ui,j,k(t) are numbered lexicographically. Likewise, V, Q, Z, D and H 
are grid functions approximating v, ro, C, d and h, respectively. Note that Z, D and 
Hare two-dimensional unknowns. The grid sizes in x- and y-direction are denoted 
by 8x and 8y, respectively. In the vertical direction, we choose a varying grid of 
thickness 8erk, where k refers to the k-th grid layer from the surface. Hence, it is 
possible to increase the resolution near the surface and the bottom. 
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I ' J i ,j, k 
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X FI X II X It X 0 • • 0 • 0 • 0 • u z 

i ,j, k i ' j 

Figure 1. The staggered grid in the horizontal direction. 

We now describe the time integrator for the semi-discretized system. Our method 
consists of two stages. At the first stage we compute intermediate approximations, 
indicated by an asterisk. The upper indices denote the time level, whereas the lower 
indices refer to the discretization in space. The first stage reads 

* n 
U -U 

1/21: 

* n 
V -V 

l/2t 

1 1 

o.* =-¼{ -(1-<:r)((H* Ju*dcr) +(H* Jv*dcr) ) 
H o fu o Oy 

1 1 

+ (H* Ju* dcr) + (H* Jv* dcr) } 
cr fu cr Oy 

(3.la) 

1 1 

1/21: 
-(Hn Jundcr) -(Hn Jvndcr) , 

o Ox o 0y 

where t denotes the time step. Next, we perform the second stage to arrive at the 
new time level. 
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n+l * 
U -U 

1/2t 

n+l * 
V -V * * n+l * * * * n+l * * µ * 

-U Vx -V Vy--0 V 0 -fU -gZoy + AVxx+ AVyy+2 V ocr 
l/2t H 

1 1 

0 n+l=_l_{-(l-cr)((Hn+tJun+ldcr) +(Hn+lJvn+ldcr) ) 
Hn+l o Ox o Oy 

1 1 

+ (Hn+l Jun+ldo) + (Hn+l Jvn+ldcr) } 
a fu a Oy 

(3.lb) 

1 1 

1 J n+l 1 J n+l 
_ (Hn+ U dcr) _ (Hn+ V jcr) . 

o Ox o Oy l/2't 

In the Appendix a detailed description of the space discretization is given. When 
applied to two-dimensional problems, this method is very similar to the method 
developed in [11]. 

In [3] it has been proved that method (3.1) is unconditionally stable for a model in 
which the advective terms and the Coriolis term have been omitted. For a model 
including the Coriolis term and the advective terms, method (3.1) has the same good 
stability properties. 

Method (3.1) is first-order accurate in time. To obtain second-order accuracy, the 
Coriolis term, the mixed advective terms and the bottom friction term should be 
adjusted. However, a second-order treatment of these terms would decrease the 
computational efficiency of our time splitting method dramatically. This will be 
explained in the next section. It should be noted that the diffusion terms and the 
terms describing the propagation of the surface waves are second-order accurate in 
time. 

Almost all spatial derivatives are discretized in a symmetric and therefore non­
dissipative way. However, at the first stage, the mixed advective terms vautay and 
uavtax are approximated by an upwind discretization. This approach has been 
developed in [9]. In the numerical experiments the resulting dissipation is just 
enough to suppress spurious oscillations. The dissipation, which is of fourth-order 
magnitude, does not lead to an undesirable damping of the solution. 

At the first stage our time splitting method requires the successive solution of 
two large, non-symmetric, linear systems (first a system for the U-component, next 
a system for the V-component). At the second stage a nonlinear system has to be 
solved. These systems and the iteration methods for its solution will be discussed in 
the next section. 

7.4. SOLVING TIIE SYSTEMS 

The structure of the systems at both stages determines the efficiency of our 
unconditionally stable method. At the first stage the 0.- and Z-component can be 
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computed straightforwardly. For the U- and V-component. the method requires the 
successive solution of two non-symmetric, linear systems of dimension nx•ny-ns. 
The system for the U-component may be written in the form 

*1 {n* n* n* * * µ *} n 
U + 2 -c U Ux+V Uy+.Q Ucr-lUxx-lUYY- H2 Ucrcr =B, (4.1) 

where Bn contains the terms at t=m. For the V-component, we have a similar 
system. The matrix at the left-hand side of system (4.1) contains nine non-zero 
diagonals. Seven diagonals are due to the discretizations in the horizontal direction 
and three are due to the vertical derivatives, with one overlapping (main) diagonal. 
Some of these diagonals contain zero elements. System ( 4.1) may be written as 

(4.1') 

where the matrix Dv represents the discretizations in the vertical direction and the 
contribution on the main diagonal of the discretizations in the horizontal direction. 
The remaining (six) diagonals resulting from the horizontal derivatives are 
represented by the matrix Dii• 

For the solution of system (4.1'), we apply the preconditioned Jacobi-type method 

Uk+l =Uk+ a (I+ r-rDv r1 { B: - (I+ rt0ii + ytDv) Uk} , k=l,2, .. (4.2) 

where a is a relaxation parameter and Uk denotes the k-th iterate with Uo=Un. The 
term a (I+ r-rDv )-1 represents the preconditioning. Method (4.2) can be written 
in the more efficient form 

(4.2') 

At each iteration step the implicit operator (I + r-rDvf 1 requires the solution of 
nx•ny tridiagonal systems of dimension ns. For its solution we apply the Gaussian 
Elimination (double sweep) method, which requires a minimal number of 
operations. Since this is a recursive method, it is an unattractive method on vector 
and parallel computers. However, we make use of the fact that a large number of 
tridiagonal systems of the same dimension has to be solved. Therefore, the systems 
can be solved efficiently in a vector-parallel mode [2]. 

For the relaxation parameter a we choose either 

where p(·) denotes the spectral radius. The Jacobi-type method (4.2') starts with 
a=l. As soon as the residue increases, we switch to the second choice. For this 
choice the iteration process always converges as opposed to the choice a= 1. If the 
method converges for a= 1, then this convergence is faster than for 

1 
a=l/(p( I+ z'CDh)). 
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At the second stage the equations for the U- and V-component are linear and are 
not coupled with each other. They are only coupled with the equation for the Q- and 
Z-component. If un+l, yn+l and zn+l have been computed, then the values for 
the 0-component are computed. Owing to our choice of the time splitting, the 
components un+l and vn+l can be eliminated and a system merely in the 
unknown zn+l results. In order to accomplish such an elimination, the Coriolis 
term, the mixed advective terms and the bottom friction term have been treated first­
order accurate in time. A second-order treatment of these terms would have resulted 
in a much more complicated system. In that case, the U- and V-component can not 
be eliminated easily. 

We will now describe the system for each cell (ij) of component Z. This system 
reads 

z~:1 _ --1 { R~+1. ( z~+1. - z~:1 ) - R~:1 ( z~:1 - z~+1.) } (4.3) 
1,J 4(~)2 1+1,J i+l,J 1,J 1,J 1,J 1-l,J 

t 2g { ~n+l ( ...,.n+l n+l) ~n+l ( n+l n+l ) } 
- 4(Ay)2 R, . L,, ·+1 - z. . - R . 1 z. . - z .. 1 

il l,J 1,J 1,J 1,J- l,J 1,J-

£ i=l, ... ,nx 
or j=l , ... ,ny , 

where 

-n+l { 1 ( n+l n+l ) 1 ( ) } 
Ri J' = -2 zi J' + zi-1 J' + -2 D .. + D. ·-1 , , , IJ lJ 

~n+l { 1 ( n+l n+l ) 1 ( ) } 
Ri J. = -2 zi J. + z1. J·+1 + -2 D .. + o. 1 . • • , l,J l+ ,J 

ns 
* "' I ( 1 ( n+ 112 ) ) 

k:'/crk l + 2't' Uy i,j,k · 

System (4.3) is a nonlinear equation, because Ri,j contains the component Zi,j­
This system may be written in the form 

A(Zn+l) zn+l = 8 n+l/2 • 

h Bn+l/2 . th ( ) F . 1· . . . d w ere contams e terms at t= n+l/2 't. or its meanzatlon we mtro uce 
the iteration process 

(4.4) 
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where z(O)=zn+l/2 and the upper index (m) denotes the iteration index. The matrix 
A(z(m)) is symmetric. For the solution of system (4.4) we developed a conjugate 
gradient method in which a preconditioner based on smoothing is used [3]. When 
this system has been solved, the values for the U- and V -component can be 
computed straightforwardly. 

It should be noted that ~e water elevation is the only unknown in system (4.4). 
This system is for both two-dimensional and three-dimensional models of the same 
(two-dimensional) structure and thus of the same computational complexity. 
Therefore, the time integration method (3.1) is relatively more efficient for three­
dimensional problems than for two-dimensional ones. 

7.5. NUMERICAL EXPERIMENTS 
In order to examine its accuracy and computational efficiency, method (3.1) has been 
applied to a problem with a closed basin and on a river problem in which a jetty has 
been situated. In the first experiment we have used a closed rectangular basin of 
400 km by 800 km with a constant depth of 65 m. The other parameters are 
f=l.22e-4 s·1, g=9.81 m/s2, p=1025 kg/m3, q,=90°, C=70 m112/s, 11.=0.0 m2/s and 
µ=0.065 m2/s. This experiment has also been carried out in [1,6]. The water 
is initially at rest and the motion in the closed basin is generated by a constant 
wind stress of 1.5 kg/ms2. The computations have been performed on a grid with 
nx=lO, ny=18 and ns=ll, which implies horizontal mesh sizes of 400/9 km 
and 800/17 km, respectively. In the vertical direction we have chosen for 
every k: dcrk=l/ns. We have integrated over a period of 100 hours. 

At the end of the integration process the numerical solution has been compared 
with a reference solution computed on the same grid with 't=30 s. The reference 
solution may be considered as an almost exact solution of our semi-discretized 
system. Thus, the accuracy results listed in this section represent the error due to the 
time integration. 

The experiments have been carried out on an Alliant FX/4, which is a mini­
supercomputer having four vector processors. In all experiments we have used both 
the vector optimization and the parallel optimization. 

To represent the results we use the following notation: 

ERR-· : maximal global error of either u, v or, at the end point T = 100 hours 
COMP : computation time on the Alliant FX/4. 

We require that the residue for the two iteration methods (viz., the Jacobi-type 
method (4.2') and the CG method) drops below the tolerance 10·3. By choosing this 
value, we obtain a good compromise between the accuracy and the computational 
costs. For this test problem the results are listed in Table 5.1. 

In this experiment the maximal values for u, v and , are about 0.2 m/s, 0.4 m/s 
and 1.0 m, respectively. In Table 5.1 no accuracy results have been listed for the 
vertical velocity w, because these velocities are are small. In this experiment the 
influence of the advective terms is very limited. Therefore, an explicit treatment of 
these terms (i.e., only one iteration of the Jacobi-type method (4.2')) is sufficient. It 
should be noted that one iteration of this method is sufficient to obtain an implicit 
treatment of the vertical diffusion term. Figures 2a-b show the vertical profiles of 
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the U- and V-component at the centre of the rectangular basin at T=lOO h. At that 
time the steady state has been reached for moderate values of the time step. 
Table 5.1 clearly shows that this is not the case for t=7200 sat T=lOO h. If we 
integrate over a longer period with a time step of 7200 s, then the solution becomes 
stationary too. The numerical results are in agreement with the results in [1,6]. 

t ERR-u ERR-v ERR-C COMP 
(s) (m/s) (m/s) (m) (s) 

360 0.004 0.002 0.005 147.3 
1800 0.006 0.005 0.009 30.6 
3600 0.009 0.006 0.013 15.5 
6000 0.011 0.022 0.035 10.0 
7200 0.029 0.031 0.135 8.7 

Table 5.1. Test problem with a rectangular basin. 

For several numerical methods developed for the 3D shallow water equations, the 
time step is restricted by the CFL condition t <A/ ✓ 2gh, where A=min(Ax,Ay). 
Examples of such conditionally stable methods are described in [l, 2, 6 and 7]. In 
our experiment this results in a maximally stable time step of about 1245 s. 
However, in [1,6] the time step was significantly below the CFL condition. In [6] a 
time step of 360 s was used. The method in [1] was carried out with t=720 s for the 
advective terms and with t=180 s for the terms describing the propagation of the 
surface waves. For method (3.1) much larger time steps are possible. Moreover, 
even for a large time step of 3600 s, the relative errors are still very small. 

-.30 -.15 o. 0.15 -.30 -.15 o. 0.15 

zo 

40 40 

Figure 2a. The vertical U-profile. Figure 2b. The vertical V-profile. 
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As mentioned earlier, the advective terms do not play an important role in this 
experiment. However, in the second experiment these terms play a crucial role. We 
examine a flow past a jetty [9]. A rectangular domain with a horizontal dimension 
of 1500 m by 300 m and a constant depth of 25 m has been used. At the left open 
boundary, we have prescribed an inflow condition of u=0.5 m/s and at the right 
boundary a uniform water level ,=0 m has been given. For a detailed description of 
the initial conditions and boundary conditions we refer to [9]. The horizontal mesh 
sizes are 25 m. 

Near the boundaries, the discretization of the advective terms have been chosen in 
a special way. Especially at inflow, the discretization of the advective terms may 
cause instabilities. To obtain a stable boundary treatment, we have applied the 
discretization developed in [9]. At the open boundaries, a stabilizing effect is often 
experienced when Riemann invariants are prescribed. In our experiment this would 
have resulted into the inflow condition 

u + 2-vgh = 0.5 + 2{gh;,, 

where the boundary value for his denoted by h0 • Since the Riemann invariants (i.e., 
u ± 2-vgh) are in general not known, we have used the following variant [9]: 

u + e it ( u + 2-vgh ) = 0.5 , (5.1) 

with e some parameter. The time derivative of the Riemann invariant in (5.1) has 
been discretized in a straightforward manner. For sufficiently small values of e, the 
boundary condition (5.1) is only a small perturbation of the original inflow 
condition u=0.5 m/s. The time-derivative of the Riemann invariant in (5.1) has been 
introduced to obtain a weakly reflective boundary condition for the short wave 
components. These components mainly originate from the initial values and the 
eigenfrequencies of the model. Without Riemann invariants, these components may 
disturb the solution for a long time, because there is, in general, little dissipation in 
the model. 

In this experiment we have varied the number of grid layers in the vertical 
direction. At first, we have only used one vertical grid layer. In this case, a 
comparison with the results in [9] is possible. Various flow patterns are shown in 
Figure 3. One clearly sees the development of eddies past the jetty. After three 
hours, the solution is almost stationary. The numerical results are in agreement 
with the results in [9]. 

The discretization of the advective terms, which was developed in [9], is very 
important in this experiment. Both the special discretization near the boundaries and 
the introduction of some dissipation by the upwind discretization of some advective 
terms are necessary in order to obtain stable results when a large number of time 
steps is performed. For example, a central discretization of the advective terms 
yields instabilities. 

We have also computed three-dimensional velocity profiles (e.g., with ns=5). The 
results are again in agreement with the reference solution. For realistic time steps 
the Jacobi-type method (4.2') requires less than ten iterations. We have observed that 
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the number of iterations hardly depends on the number of grid layers in the vertical 
direction and also hardly depends on the value of the vertical diffusion coefficient. 

In the experiments we have used both the vector and the parallel optimization of 
the Alliant FX/4. For our integration method (3.1) the computation time reduces by 
about a factor of three due to the vectorization, and by an additional factor of three 
due to the parallel optimization. This shows that this method can be implemented 
efficiently on vector and parallel computers. In [5] the computational efficiency of 
this method was demonstrated on the CRAY Y-MP4/464. On four processors we 
obtained a performance of more than 500 Mflops. 
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APPENDIX: FlNITE DIFFERENCES 
The operators used in this paper are of the following form: 

U. 1 ·k-U· 1 ·k { u u } . . = u. . 1+ ,), 1- ,], 
x 1,J,k 1,J,k 2~x 



{ U V1 }- . k = X l,J, 

{ 
U··k(3V--k -4V-_1 .k +V-_2 .k)/(2Ax) l,J, l,J, 1 ,J, 1 ,J, 

U··k(-3V--k+4V- 1 -k-v. 2 .k)/(2Ax) 1,J, 1,J, 1+ ,J, 1+ ,J, 

V- 1 · k - V- 1. k {UV }- · = U· . l+ ,l, l- ,J, 
x 1,J,k 1,J,k 2Ax 

U. 1 . k - 2U- . k + U- 1 . k { U } 1+ ,], 1,J, 1- ,], 
XX i,j,k = (Ax)2 ' 

where 

ui,j,k = 0-25 ( ui,j,k + ui+l,j,k + ui,j+l,k + ui+1,j+1,k) 

Hi,j = 0.5 ( 8i,j + Hi,j-1 ) · 
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if U· · k > 0 l,J, 

if U··k~0 1,J' 

The operators in they-direction are defined similarly. For the discretizations in the 
vertical dire.ction we define 

1 
{ 

Acrku .. k 1+Acrk lu .. k 
{ Q U }·. = -- ,Q· . l,J, + + 1,), 

0 1,J,k A 1,J,k+l A A 

ucrk ucrk+l + ucrk 

~ Acrk-1 u .. k + Acrku .. k-1 } _ g .. k 1,), l,J, 
l,J, Acr + Acr 

k k-1 

where 

fi. . = o.5 ( n .. + n. 1 . ) . 1,J 1,J 1- ,J 

Similarly, we define the operators for the V-component. 
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Figure 3. The flow patterns for the river problem with ns= 1. 
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Chapter 8 

A Three-Dimensional Shallow Water Model 
on the CRAY Y -MP4/464 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

Simulation of three-dimensional shallow water flows requires the use of 
fast computers, along with numerical methods that fully exploit the 
potential of vector and parallel facilities of these computers. In this 
paper we discuss the implementation of such a numerical method on the 
CRAY Y-MP4/464, which has recently been installed at the Academic 
Computing Services Amsterdam (SARA). 

8.1. INTRODUCTION 

In recent years, numerical modeling has become an important tool for computing 
shallow water models. For example, flows in rivers, estuaries and seas can be 
described by these numerical models. Whereas in the past it was necessary to use 
scale models, it is now possible to solve the three-dimensional shallow water 
equations using computers. The application of three-dimensional models requires a 
great computational effort, especially when a high resolution is needed. Therefore, it 
is necessary to construct numerical methods that are not only robust and accurate, 
but also efficient on vector and parallel computers. To obtain a computationally 
efficient method, the VECPARCOMP project has been started. This is a joint 
project ofRijkswaterstaat (Dutch Water Control and Public Works department) and 
CWI (Centre for Mathematics and Computer Science). 

In [3] we described an unconditionally stable method for the three-dimensional 
shallow water equations. In that paper it was reported that this method can be 
implemented efficiently on an Alliant FX/4 (a shared memory mini-supercomputer 
with four vector processors). In this paper we will describe the implementation of 
this method on a CRAY Y-MP. In December 1990 a CRAY Y-MP4/464 has been 
installed at the Academic Computing Services Amsterdam (SARA). Like the 
Alliant FX/4, this computer is a shared memory system with four vector 
processors. However, the CRAY Y-MP has a much smaller clock cycle time (6 ns 
versus 170 ns for the Alliant FX/4). The CRAY Y-MP4/464 replaces a (Control 
Data Corporation) CYBER 205 installed in 1983. 

Both vectorization and parallelism will be examined on the CRAY Y-MP4/464. 
We will implement several types of parallelism, viz., macrotasking, microtasking 
and autotasking. A comparison will be made with results on the Alliant FX/4. 
Since the code was written in the ANSI FORTRAN 77 programming language, the 
same code was used for both computers. 
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8.2. MATHEMA TICALMODEL 
A mathematical model for the three-dimensional shallow water equations is 
described by 

(2.1) 

av = -iv -vav _ cJ.J.__ fu-i~ + A (a2v + a2v) + ..!...£...(µ av) 
at ax ay ao, ay ax2 ay2 h2 ao, ao, 

(2.2) 

I I I I 

ro=l{-(l--0)(~ (hfudcr)+! (hfvdcr))+.£..(hfudcr)+~ (hfvdcr)} 
h ox O oy O ax CJ oy CJ 

(2.3) 

I I 

a~ = - .£... (h J udcr) - .£... (h J vdcr) . 
at ax O ay O 

(2.4) 

The equations (2.1)-(2.3) are the momentum equations and (2.4) denotes the 
continuity equation. In the vertical, the domain is bounded by the bottom 
topography and the time-dependent water elevation. To ensure that the three­
dimensional domain is also constant in the vertical direction, system (2.1)-(2.4) has 
been transformed in the vertical into depth-following (sigma) co-ordinates. 

In the experiments we will examine a three-dimensional flow past a jetty. The 
geometry and a velocity pattern are shown in Figure 1. The rectangular basin has a 
horizontal dimension of 1500 m by 300 m and a constant depth of 25 m. At the left 
boundary, we prescribe an inflow condition of u=0.5 m/s and at the right boundary a 
uniform water level ~=0 m is given. For a detailed description of the initial 
conditions and boundary conditions we refer to [3,6]. 

To obtain a discrete system representing (2.1)-(2.4), the equations are discretized 
in space and time. First we apply a finite difference space discretization on a spatial 
grid that is staggered in both the horizontal and the vertical direction. The 
computational domain is covered by an nx-ny-ns rectangular grid. On this grid the 
spatial derivatives are replaced by second-order finite differences, which leads to a 
semi-discretized system of dimension nx-ny·(3ns+ 1). 

The time discretization of this semi-discrete system is performed by the numerical 
method developed in [3]. Our time splitting method is unconditionally stable and 
consists of two stages. At both stages a system of equations has to be solved. The 
structure of these systems determines the efficiency of the numerical method. To 
solve these systems, a Jacobi-type iteration method is used at the first stage, 
whereas at the second stage a conjugate gradient method is used. The time splitting 
has been chosen in such a way that in the horizontal direction the computations are 
independent of each other. For example, the Jacobi-type iteration method requires 
the solution of nx-ny independent tridiagonal systems, all of dimension ns. In [3] 
it is reported that this method can be implemented efficiently on an Alliant FX/4. 
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8.3. IMPLEMENTATION 
We now discuss the implementation of this time splitting method on the 
CRAY Y-MP4/464. A DO-loop in our code may be of the form 

DO 100 K=2,NS 
DO 100 J=l,NY 

DO 100 I=l,NX 
100 A(I,J,K) = A(I,J,K) + A(I,J,K-1) * B(K) 

In this example, the I- and J-loop do not show any dependencies, but the K-loop 
does. The loops with indices I and J are collapsed into a single DO-loop to obtain a 
longer vector length. This yields 

DO 100 K=2,NS 
J=l 
DO 100 I=l,NX-NY 

100 A(I,J,K) = A(I,J,K) + A(I,J,K-1) * B(K) 
(3.1) 

On the CRAY Y-MP4/464, loop collapsing of simple operations is performed 
automatically by the compiler. However, for more complicated DO-loops this is not 
the case. Therefore, the code was collapsed by hand, instead of relying on the 
compiler. 

ALLIANT FX/4 CRAY Y-MP4/64 

Mflops speed-up Mflops speed-up 

no opt. 0.2 3.2 

> 3 > 5 

scalar opt. 0.7 15.0 

> 3 > 10 

vector opt. 2.0 148.9 

Table 4.1. Mflops rates and speed-ups. 

8.4. SCALAR AND VECTOR PERFORMANCE 

In Table 4.1 we list the scalar and vector performance of our code on the 
CRAY Y-MP4/464 and on the Alliant FX/4. The speed-up due to scalar 
optimization and vectorization is satisfactory on both computers. Both compilers 
have no problems with vectorizing the DO-loops. It should be noted that Table 4.1 
contains results for the complete code. The code not only consists of vectorizable 
instructions, but there are also non-vectorizable instructions like subroutine calls, 
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which decrease the performance. For the vectorized code, the computation time on 
the CRAY Y-MP4/464 is seventy-five times smaller than for the Alliant FX/4. 
Notice that the ratio of the clock cycle times is only twenty-eight. On the 
Alliant FX/4 we obtain 15% of the peak performance, whereas on 
CRAY Y-MP4/464 we obtain 40%. Taking into account the performance of 
elementary operations on both computers (see [4,5]), we are satisfied with the 
performance of our code. In [ 4] it is also reported that the Alliant FX/4 performs 
considerably below its maximum level (~0% of the theoretical maximum only). 
This is due to the insufficient bandwidth from memory to the functional units 
and/or from cache to the functional units. 

8.5. PARALLELISM 

On the CRAY Y-MP4/464, parallel processing can be accomplished by three 
techniques: macrotasking, microtasking and autotasking. Macrotasking allows a 
program to be partitioned into several tasks at the subroutine level. The programmer 
inserts library routine calls into the code to initiate and synchronize tasks that can 
be executed in parallel. Macrotasking works best when the amount of work to be 
partitioned over the processors is large. Microtasking, however, allows parallelism 
at the DO-loop level. The programmer identifies parallel regions in the code and 
inserts compiler directives accordingly. Then, at execution, the DO-loop iterations 
are spread over the processors, which is called strip-mining. Autotasking is a 
technique that shares the advantages of microtasking, while adding several new 
advantages. It identifies and exploits parallel regions in a program through the use 
of a preprocessor. This process may be completely automatic. However, the help of 
the programmer may be useful since not all types of parallelism can be detected by 
the compiler. 

When applying macrotasking to an existing code, a significant amount of code 
restructuring may be necessary, which can introduce new errors. It requires a careful 
partitioning in equal-sized parallel tasks to obtain a good load balancing. On the 
other hand, it is relatively easy to implement microtasking, which yields an 
automatic load balancing. The success of the microtasking strategy depends on the 
synchronization overhead. 

As mentioned earlier, the DO-loops in our code have been collapsed explicitly 
(see (3.1)). This maximizes the vector efficiency while it allows parallelism by the 
strip-mining technique. In our first experiment with parallelism on the 
CRAY Y-MP4/464 we implemented autotasking. We hoped that strip-mining of 
the innermost DO-loops was exploited automatically. However, for our code this is 
not the case. Thus, we did not obtain any speed-up by autotasking. It should be 
mentioned that on the Alliant FX/4 the collapsed DO-loops are automatically 
performed in a vector-parallel mode. 

In the second experiment we applied the microtasking technique. By inserting the 
CMIC$ DO GLOBAL LONG VECTOR directive the innermost DO-loops were 
strip-mined at execution. However, we obtained incorrect numerical results. Using 
the microtasking directives, it appears that parallel processing always starts at the 
first executable statement of the subroutine and always ends at the last executable 
statement of the subroutine. Consequently, not only the microtasked DO-loop, but 
the complete subroutine was performed in parallel. To circumvent this unpleasant 
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microtasking property, we implemented autotasking directives instead of 
micro tasking directives. Thus, we used autotasking but not in an automatic way. 
With the CMIC$ DO ALL VECTOR AUTOSCOPE autotasking directive we 
obtained a strip-mining of the innermost DO-loops, while the numerical results 
remained correct 

8.6. NUMERICALRESULTS 

In this section we present the results for two different test problems. In the first 
experiment the computations have been performed on a grid with nx=61, ny=13 and 
ns=lO. In this case, we have a vector length of about 800. In the second experiment 
we have used a grid with 121, 49 and 10 grid points in the three spatial directions, 
respectively, yielding a vector length of about' 6000. The main reason for the second 
experiment is to investigate the performance on the CRAY Y-MP4/464 for other 
vector lengths. In order to prevent many more iterations required by the iteration 
methods, we have increased in the latter experiment the dimensions of the geometry 
with a factor four. Consequently, in both experiments we obtain the same mesh 
sizes. In Table 6.1 we list the results for the experiments in which we introduced 
parallelism by strip-mining of the innermost DO-loops. 

problem size 61·13·10 121-49-10 

vector code 17.6 s 137.4 s 

parallel code 11.6 s 53.0 s 

speed-up 1.5 2.6 

Table 6.1. Computation times for the CRAY Y-MP4 by strip-mining. 

For the smallest test problem, we obtain a speed-up of 1.5 on four processors, 
which is disappointing. For the second and largest test problem, the speed-up of 2.6 
is still small despite of its large vector length. Thus, especially for small vector 
lengths the synchronization overhead on the CRAY Y-MP4/464 appears to be 
considerable. 

To obtain a higher efficiency on the CRAY Y-MP4/464, we have implemented a 
domain decomposition technique. In the x-direction our domain has been split into 
four subdomains. With the CMIC$ DO PARALLEL auto tasking directive the 
computations for the four subdomains have been performed in parallel. We have 
applied autotasking instead of macrotasking, because it requires less programming 
effort while the computation times are comparable. 

A decomposition in the x-direction has been chosen to minimize the restructuring 
of the code. A slightly more complicated decomposition would have been a 
decomposition of both the x- and y-direction into two parts, as used in [l]. 
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Furthermore, we mention that for a spectral method a domain decomposition in the 
vertical direction has been applied in [2]. 

In our opinion, a domain decomposition in the horizontal direction is a good 
choice for the numerical method used in this paper, because of the many independent 
computations in the horizontal direction. In time-consuming 3D shallow water 
models, the value of nx•ny is very large, whereas the value of ns may still be rather 
small. Moreover, the water elevation and the vertical velocity co are computed from 
vertical integrals (see (2.3)-(2.4)) and implicit relations, arising from an implicit 
treatment of the vertical diffusion term, have to be solved [3]. Therefore, it seems 
not a good idea to apply a domain decomposition in the vertical direction. This 
would lead to a lot of communication between the processors. 

In Table 6.2 we list for our two test problems the results for the domain 
decomposition approach. We now have vector lengths of 200 and 1500, 
respectively, which is one fourth of the vector lengths used in the former 
experiment. The overall speed-up is defined in the following way: 

time for the original vectorized code 

time for the parallel code with domain decomposition 

The computation time for the original vectorized code is listed in Table 6.1, whereas 
computation time for the domain decomposition technique is presented in Table 6.2. 

problem size 61-13·10 121-49-10 

vector code 20.7 s 141.2 s 

parallel code 5.6 s 38.1 s 

decomposition speed-up 3.7 3.7 

overall speed-up 3.1 3.6 

Table 6.2. Computation times for the CRAY Y-MP4 by domain decomposition. 

For both test problems, we now obtain a speed-up of 3.7 on four processors. 
Because of the synchronization overhead we do not obtain an optimum speed-up of 
four. The difference in overall and domain decomposition speed-up is due to the fact 
that vector lengths are now a factor of four smaller. In the case of very large vector 
lengths, this hardly yields a decrease in performance. For the smallest test problem, 
the reduction is about 20%. The results in Table 6.2 clearly show that the domain 
decomposition approach gives rise to larger speed-ups than the strip-mining 
technique. 
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8. 7. CONCLUSIONS 
In this paper we have investigated the performance of a numerical method for the 
three-dimensional shallow water equations on the CRAY Y-MP4/464. On one 
processor the highly vectorizable code yields a performance of about 150 Mflops, 
which is no fewer than seventy-five times faster than on the Alliant FX/4. To 
exploit parallelism, we have applied a domain decomposition approach, since in 
general the strip-mining of the innermost DO loops does not give satisfactory 
speed-ups, even in the case of large vector lengths. 

The experiments show that the CRAY Y-MP4/464 is very suitable for the time­
consuming simulation of three-dimensional shallow water flows. With such 
supercomputers it is possible to simulate realistic models, e.g., including equations 
for salinity, temperature and turbulence, with a fine resolution. The vector 
performance is very impressive. When the CRAY Y-MP4/464 is not heavily 
loaded, an acceptable speed-up due to parallelism can be obtained. 

-------------------------------------------------------- - . - .. - - - - .. - .. ---------............. -- -- - - - - - - - - - - - - - - - - -----------
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::::::::::::i::::;;;~~~~~~::::::::::::::::::::::::::::::::: --------···· .... ,, .... ,,., ............................................... -------
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::: t= 10 min. 

·-------------------------------------------------
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t= 180 min. 

Figure 1. Flow past a jetty. 
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Chapter 9 

A Numerical Model of the 
Northwest European Continental Shelf 

on the CRAY Y -MP2E 

E.D. de Goede 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009AB Amsterdam, The Netherlands 

A numerical model for the shallow water equations in polar co-ordinates 
is applied to the northwest European Continental Shelf. A three­
dimensional model of the Continental Shelf is presented. A simulation 
is carried out for the period of 9 to 12 February 1989. The same 
Continental Shelf problem has been examined by Leendertse. The 
numerical results are in good agreement with each other. It appears that 
the amplitude and phase errors are small. We also describe a 
comparison with a two-dimensional model of the Continental Shelf. 
The time splitting method used in this paper consists of two stages and 
is unconditionally stable. Moreover, it can fully exploit vector and 
parallel facilities of supercomputers. Three-dimensional shallow water 
models require a great computational effort and it is therefore necessary 
to use such fast computers. 
The numerical experiments are carried out on the one-processor 
CRAY Y-MP2E of ICIM (Informatics Centre for Civil Engineering and 
Environment). This supercomputer has recently been installed in the 
Netherlands for the simulation of large scale models of rivers and seas. 

9 .1. IN'IRODUCTION 
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In the past, various two-dimensional numerical models have been developed for the 
northwest European Continental Shelf (e.g., in (3, 6, 12, 19)). Their main goal is 
the accurate prediction of the water levels. Presently, a two-dimensional model of 
the European Continental Shelf is being used for storm surge predictions along the 
Dutch coast. This model is operational at KNMI (Royal Dutch Meteorological 
Institute). Using wind and atmospheric pressure data from a numerical model of the 
atmosphere, the water elevations in the North Sea and especially along the Dutch 
coast are computed four times a day. Since these models are two-dimensional, they 
cannot be used to examine the vertical structure of the tidal currents. 

In recent years, there has been a shift towards three-dimensional models to obtain 
more detailed information about the tidal currents. Three-dimensional models for the 
Continental Shelf can be found in e.g., (1,4,16]. With such three-dimensional 
models the interaction between wind and tides can be computed more accurately. 
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In this paper the fully nonlinear three-dimensional shallow water equations in 
polar co-ordinates are used. These hydrodynamical equations are solved by the 
numerical method described in [9]. This two-stage time splitting method is 
unconditionally stable. For the discretization in space, finite differences are used in 
both the horizontal and the vertical direction. 

In [10] it was reported that this time splitting method can be implemented 
efficiently on a CRAY Y-MP4/464. In that paper a rectangular basin was 
investigated. Here, we examine the accuracy and computational efficiency of our 
method on an irregular domain. We use the geometry of the northwest European 
Continental Shelf with mesh sizes of about 16 km (the so-called CSM16 model). 
The input data (geometry, boundary conditions, depth values and Chezy coefficients) 
were supplied by the Tidal Waters Division of Rijkswaterstaat (Dutch Water 
Control and Public Works Department). The meteorological input (i.e., wind and 
atmospheric pressure) is neglected. Both a two-dimensional and a three-dimensional 
model are examined. A simulation is carried out for the period of 9 to 
12 February 1989. This test problem has been examined in [15] and therefore we 
can compare the numerical results. 

The numerical experiments are carried out on the CRAY Y-MP2E installed at 
ICIM (Informatics Centre for Civil Engineering and Environment). Since May 1991 
this supercomputer has been used in the Netherlands for the simulation of estuarine, 
river and sea models. This CRAY Y-MP2E has one (vector-)processor and a clock 
cycle time of 6 ns. On this supercomputer the performance of our highly 
vectorizable numerical method is about 140 Mflops (millions of floating point 
operations per second), which is very satisfying. The four day simulation of the 
three-dimensional model requires about 157 seconds. In [15] a similar experiment 
on a PC with a 80386 chip and a mathematical co-processor requires a computation 
time of about 12 hours. 

9.2. MA IBEMATICAL MODEL 

For the northwest European Continental Shelf model the three-dimensional shallow 
water equations are written in the form [4] 

£.!!..=_-1!,_au _:1,,_au -(J) au+ 2ro sincpv 
at Rcoscp ax R acp acr e 

+---'- _,,Q_-+-- 1-t::-UV tancp o- a~ 1 a ( dll) 
R Rcoscp dX h 2 c)cr c)cr 

(2.1) 

av U av V av av , 
-= - ------- ro - -2w smcp u 
at Rcoscp dX R acp c)cr e 

u2 tancp 
- 1L a~ + 1- l_ (~.) 

R acp h2 dCJ c)cr 
(2.2) 

R 

1 1 

w = k{ ~(1--cr)+-1 -.E...(hJudcr)+-1-1-(hJvdcrcoscp)} (2.3) 
at Rcoscp ax cr Rcoscp acp cr 
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I 1 

~ =--1 -2-(h fudcr)--1 -.2...(h f vdcr coscp). 
at Rcoscp i)x, o Rcoscp acp o 

(2.4) 

Since the Continental Shelf covers a wide area (see Figure 1), the equations have 
been transformed from Cartesian into polar co-ordinates. The equations (2.1)-(2.3) 
are the momentum equations and (2.4) denotes the continuity equation. In our model 
the accelerations in the vertical direction have been neglected, because they are very 
small, particularly when compared with the acceleration due to gravity. This is 
known as the so-called shallow water approximation. 

In the vertical, the domain is bounded by the bottom topography and the time­
dependent water elevation. To ensure that the three-dimensional domain is constant 
in the vertical direction, system (2.1)-(2.4) has been transformed into the constant 
interval [0,1) by the sigma transformation [17) 

,-z cr = --, where -d ~ z ~ , and 1 ~ cr ~ 0 . 

d +' (2.5) 

The relation between the untransformed (physical) vertical velocity w and the 
transformed velocity co is given by [4,20] 

which leads to [4) 
I I I 

1 a J 1 a J htancp J w = ----(h udcr) ---(h vdcr) +-- vdcr 
Rcoscp ax cr R acp cr R cr 

u a, ah v a, ah +--(--cr-) +-(--cr-). 
Rcoscp i}x, ax R acp a cp 

The boundary conditions at the sea surface (cr = 0) are given by 

Similarly, at the bottom (cr = 1) we have 

where ud and v d represent components of the velocity at some depth near the 
bottom. 
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9 .3. NUMERICAL DISCRETIZA TION 
To discretize system (2.1)-(2.4), we first apply a finite difference space discretization 
on a spatial grid that is staggered in both the horizontal and the vertical direction. 
Figure 2 shows the structure of the horizontal grid. The computational domain is 
covered by an nx-ny-ns rectangular grid. On this grid the spatial derivatives are 
replaced by second-order finite differences, which results into a semi-discretized 
system of dimension nx•ny-(3ns+l). Owing to the sigma transformation (2.5), we 
have a constant number of grid layers in the vertical direction. 

V d 
i,i,k i i 

9 0 @ 0 ti 0 • X I) 

X II X II X fl X • 0 

• 0 @ 0 G 0 • ~ u 
i,j i,j,k 

Figure 2. The staggered grid in the horizontal direction. 

We now briefly describe the time integration method for the semi-discrete system. 
For a detailed description we refer to [9]. The first stage of the two-stage time 
splitting method requires the successive solution of two non-symmetric, linear 
systems of dimension nx-ny-ns (for the u- and v-component, respectively). This 
system is solved by a Jacobi-type method, which offers the facility of both an 
explicit and an implicit treatment of the advective terms. At the second stage a 
nonlinear system has to be solved. A linearization process is introduced and the 
resulting linear systems are solved by a preconditioned conjugate gradient method. 

In (8] it has been proved that this method is unconditionally stable for a model in 
which the advective terms and the Coriolis term have been omitted. For a model 
including these terms, our method appears to have the same good stability 
properties [9]. 

The time integration method is first-order accurate in time. It is possible to obtain 
second-order accuracy by adjusting the discretization of the Coriolis term, the mixed 
advective terms and the bottom friction term. However, such a second-order 
treatment would decrease the computational efficiency dramatically. For the sake of 
efficiency we therefore decided to only use a first-order discretization. It should be 
noted that the diffusion terms and the terms describing the propagation of the swface 
waves are second-order accurate in time. 

Almost all spatial derivatives are discretized in a symmetric and therefore non­
dissipative way. However, following the approach of Stelling (18], at the first stage 
the mixed advective terms vau1(Raq>) and uav/(Rcosq> dX) are approximated by an 
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upwind discretization. The resulting dissipation is of fourth-order magnitude and 
does on the one hand not lead to an undesirable damping of the solution and is on 
the other hand just enough to suppress spurious oscillations. 

9 .4. lMPLEMENTA TION ON VECTOR COMPUTERS 

It is well-known that long vectors are crucial for an efficient use of vector 
computers. The time splitting method discussed in the previous section has been 
constructed in such a way that in the horizontal direction the computations are 
independent of each other [9]. For example, at the first stage the Jacobi-type method 
requires the solution of nx•ny independent tridiagonal systems, all of dimension ns. 
Thus, a long vector length of nx-ny is obtained by solving the tridiagonal systems 
at the same time. In [10] the computational efficiency of this method has been 
demonstrated on a CRAY Y-MP4/464 for a rectangular domain. 

We now discuss the implementation on vector computers for irregular domains. 
On such domains, we may perform the computations on a surrounding rectangular 
domain, which contains both sea and land regions. At the end of each time step, the 
values in the land regions should be neglected. Then, direct addressing can be used 
which again leads to vector operations over the whole domain. On the other hand, 
one may strip out the sea regions and only solve the shallow water equations in 
these regions (i.e., indirect addressing). Although this leads to shorter vectors, no 
additional operations are required in the land regions. 

We have chosen the direct addressing approach, because on many computers the 
performance for direct addressing is significantly higher. Obviously, as the land to 
sea ratio increases, then the indirect addressing technique will become more 
attractive. On such domains we propose a domain decomposition approach in the 
horizontal to obtain a better ratio of sea to land regions. 

9.5. APPLICATION 

In this section we examine both a two-dimensional and a three-dimensional model 
of the northwest European Continental Shelf. This model covers the same 
computational grid as the CSM16 model (average mesh size of about 16 km) of 
Rijkswaterstaat. The input data (geometry, boundary conditions, depth values and 
Chezy coefficients) were supplied by the Tidal Waters Division of Rijkswaterstaat. 
The boundaries of the model are parallel to the geographical co-ordinates 48° N, 
62°20' N, 12° W and 13° E. Along the north, west and south (open) boundaries, 
water elevations are prescribed (see Figure 1). A simulation is carried out for the 
period of 9 to 12 February 1989. 

For our model in polar co-ordinates (see (2.1)-(2.4)), we choose Llx=l/4° and 
Ll<p=l/6°, where ilX and tl<p denote the grid sizes in x- and <p-direction, respectively. 
This leads to a mesh size of 18553 m in the north-south direction and to mesh sizes 
ranging from 12922 m to 18621 m in the east-west direction. The other parameters 
are g=9.81 m/s2, WF0 kg/ms2 (thus, no wind), p=1025 kg/m3, roe=7.27e-5 s-1 and 
R=6378000 m. The water is initially at rest and the motion on the Continental 
Shelf is generated by the water elevations prescribed along the open boundaries. 
These (weakly reflective) boundary conditions allow disturbances from the interior 
of the model to propagate outwards. 
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The computations are performed on a grid with nx= 100 and ny=87. In the vertical 
direction we use various values for ns, ranging from 1 (thus, a two-dimensional 
experiment) to 25. In the two-dimensional case, the number of active grid cells, 
which represent sea regions, is about 5500. 

In the three-dimensional case, it is necessary to specify how the vertical diffusion 
coefficient µ varies with X, q>, cr and t. The horizontal variation of µ over the North 
Sea has been investigated in [13]. Using these results, an appropriate 
parametrization of the vertical eddy viscosity is 

1 1 

µ = c { ( J udcr )2 + ( f vdcr )2 } , 
0 0 

where c is some parameter. In our experiments we choose c=0.4 s, which is twice 
the value used in [4]. 

The numerical experiments are carried out on the one-processor CRAY Y-MP2E 
installed at ICIM. Since May 1991 this supercomputer has been operational for the 
simulation of large scale water models. 

Our unconditionally stable time splitting method offers the facility of both an 
explicit and implicit treatment of the advective terms. In this Continental Shelf test 
problem the influence of the advective terms is limited. An explicit treatment of 
these terms is sufficient. Therefore, in this paper we will only show results for the 
case in which an explicit treatment is used. 

We also compare the numerical solution with a reference solution computed on 
the same grid with a very small time step of 30 s. Thus, the difference between the 
reference solution and numerical solution computed with a larger time step 
represents the error due to the time integration. The spatial accuracy can not be 
examined, because the input data are only available for one fixed grid. 

The numerical results are examined in the following stations: Wick, Aberdeen, 
Cromer, Innerdowsing, Dover, Le Havre, Dieppe, Boulogne, Calais, Oostende, 
Zeebrugge, Hoek van Holland, IJmuiden, Den Helder and Borkum. These stations 
have been used in [15] too. 

To represent the results we define 

ERROR : absolute amplitude error for the water elevation C averaged over the 
time and over the stations 

COMP : computation time on the CRAY Y-MP2E. 

In Table 5.1 we list the amplitude errors and computation times for various values 
of the time step 't. Moreover, the computation time is subdivided into the time 
required by the (three-dimensional) velocities and the time required by the (two­
dimensional) water elevation C. 

Even for a large time step of 1200 s the amplitude errors are small. In the three­
dimensional experiment the errors are about twice as large. The numerical results 
show that the phase errors for our time integration method are also small. 

The computational complexity for the water elevation is the same for both two­
dimensional and three-dimensional models [8]. Therefore, the computation time for 
the water elevation in Table 5.1 (i.e., column COMP C) is more or less independent 
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of the number of layers in the vertical direction. The computational costs per time 
step increase when t increases, because of the larger number of iterations required by 
the conjugate gradient method (cf. Section 9.3). However, the larger the time step, 
the smaller the number of time steps to be carried out. As a result, the computation 
time for the water elevation hardly varies in Table 5.1. The computation time for 
the velocities (i.e., column COMP u,v,ro) is proportional to the number of vertical 
grid layers and is inversely proportional to the time step. 

t ns=lO (3D) ns=l (2D) 

ERROR COMP COMP COMP ERROR COMP COMP COMP 
total U,V,O) ' total U,V,O) ~ 

(m) (s) (s) (s) (m) (s) (s) (s) 

300 0.01 282.3 245.5 36.8 0.005 57.3 24.2 33.1 
600 0.02 157.2 121.4 35.8 0.01 44.6 12.2 32.4 
900 0.03 116.6 80.1 36.5 0.015 41.9 8.1 33.8 

1200 0.04 101.9 61.8 40.1 0.02 42.8 6.1 36.7 

Table 5.1. Amplitude errors and computation times. 

In Figures 3.1 to 3.15 we show the water elevations for the aforementioned 
stations during the fourth day of the simulation. Both two-dimensional (i.e., ns=l) 
and three-dimensional results (with ns=lO) are given. For the two-dimensional case, 
the same experiment has been carried out in [15]. The numerical results are in good 
agreement. In [15] the three-dimensional mathematical model contains an additional 
equation for the turbulent energy. Owing to this different parametrization of the 
vertical eddy viscosity, the numerical results can not be compared for the three­
dimensional case. 

Some oscillations have been observed at the station Wick (see Figure 3.1). These 
oscillations are due to the choice of the vertical diffusion coefficient. In the case of a 
constant value for the vertical diffusion we have not observed such oscillations. If 
we integrate over a longer period than four days, then these oscillations disappear. 

Figures 3.1 to 3.15 show small differences between the two-dimensional and the 
three-dimensional results. In the vertical direction we have observed only a small 
variation of the tidal currents. At the bottom the velocities are approximately ten 
percent smaller than at the water surface. For such test problems one may equally 
well apply two-dimensional models instead of three-dimensional ones in order to 
estimate the water elevations. However, in order to take into account more detailed 
physics (e.g., near the sea bottom) three-dimensional models are essential [5,16]. 

In the experiments we have used both the scalar and the vector optimization of the 
CRAY Y-MP2E. For our integration method the computation time reduces by 
about a factor of five due to the scalar optimization, and by an additional factor of 
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nine due to the vectorization. This again shows this method can be implemented 
efficiently on vector computers. The gain factor is more or less independent of the 
number of layers in the vertical direction. The performance of our time splitting 
method is approximately 140 Mflops. Owing to the direct addressing approach (see 
Section 9.4), which introduces operations in land regions, the Mflops rate is 
somewhat misleading. Therefore, we will consider computation times in the next 
paragraphs. 

The WAQUA system, which is a widely applied package in the Netherlands for 
the simulation of (two-dimensional) river and sea flows, has been implemented on 
vector-parallel computers too (see e.g., [19]). On the CRAY Y-MP2E a similar 
(two-dimensional) Continental Shelf experiment as in this paper (with a time step 
of 600 s) requires about 46 sand yields a performance of about 40 Mflops. Thus, 
our method has a higher performance on the CRAY Y-MP2E of about a factor of 
3.5. However, for this two-dimensional problem the computation times are 
comparable (46 s vs. 44.6 s), because our time splitting method requires about 3 to 
5 times more operations [21]. It should be noted that our numerical method has 
been developed for three-dimensional models and is relatively more efficient for 
three-dimensional than for two-dimensional models (see e.g., Table 5.1 and [8]). 

For our three-dimensional Continental Shelf experiment we could not find any 
computation times on vector-parallel computers in the literature. For example, 
in [15] the three-dimensional Continental Shelf experiment, which has been carried 
out on a PC with a 80386 chip, requires a computation time of about 12 hours. To 
illustrate the computational efficiency of our numerical method we therefore make a 
comparison with the conditionally stable method described in [7]. This method is 
representative for various numerical methods described in the literature (see e.g., 
[2,14]). We remark that the first stage of the (unconditionally stable) method used in 
this paper is very similar to the method in [7]. In Table 5.2 the computation times 
are presented for the unconditionally stable method in [9] and the conditionally 
stable method in [7]. 

TIME SPLITTING CONDillONALL Y STABIB 
METHOD METHOD 

(s) (s) 

nS=5 99.8 ('t=600) 425.5 (t=50) 

nS=lO 1532.0 (t=50) 
nS=lO 157.2 ('t=600) 836.2 (t=50) 
nS=lO 101.9 ('t=1200) 

nS=25 342.8 ('t=600) 2056.0 (t=50) 

Table 5.2. Computation times (ins). 
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In this experiment the accuracy of both methods is comparable. The computation 
times clearly show that the unconditionally stable method is much more efficient, 
because larger time steps can be used. For example in the case of ns=lO with 
't=1200 s, the ratio in computation time is about a factor of eight 

For the conditionally stable method the advective terms require a great 
computational effort, which is due to the time step restriction. For time steps 
larger than 50 s we already encounter stability problems for the conditionally stable 
method. Instabilities occur in the relatively deep inlet near Glasgow. 

In conclusion, the unconditionally stable time splitting method used in this paper 
turns out to be a robust and efficient method for the three-dimensional shallow water 
equations (see also [10,11]). 
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Figure 1. The finite difference grid of the Continental Shelf model. 
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Chapter 10 

Overview and Conclusions 

10.1. CoNDmONALLYSTABLEMETIIODS 

This thesis deals with the development of numerical methods for the three­
dimensional shallow water equations on vector and parallel computers. At first, we 
investigated the numerical discretization of the vertical diffusion term. If an explicit 
method is used for a three-dimensional model, then besides the CFL stability 
condition there is also a condition imposed by the vertical diffusion term [1]. In 
many problems the latter condition is more restrictive. To investigate the influence 
of this stability condition, we examined in Chapter 3 time integrators that were 
explicit, semi-implicit or implicit in the vertical. It appears to be necessary to treat 
the vertical diffusion term in an implicit way. The vertically implicit (VIM) method 
(i.e., method (4.6) on page 16) 

(10.1) 

satisfies this condition. The U-, V- and Z-components are computed sequentially 
in (10.1). This is advantageous for both the stability and the storage requirements. 
The stability condition for the VIM method reads 

(10.2) 

which shows that the maximally stable time step is independent of the vertical 
mesh size Acr. 

Method (10.1) may be written in the form 

'tF 

I+(l-<X)'tAcrcr 

(~-1)'t01 hD y 

(10.1 ') 
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where a.=l and P=l. In order to obtain an as large as possible stability region, we 
varied the values of a. and p. A similar stability analysis as in Chapter 3 (cf. 
pages 22-25) yielded the following conditions: 

(10.2') 

Thus, P=l is the optimum value. For P=l, the choices a.=1 and a.=l/2 lead to the 
vertically implicit methods (4.6) and (4.7), respectively, which are described on 
page 16. Both methods may be considered as a combination of the trapezoidal rule 
and the approach of Fischer [2] and Sielecki [8]. This has been explained in more 
detail in Chapter 4. 

The vertically implicit methods require the solution of tridiagonal systems. The 
tridiagonal system are solved by the well-known Gaussian Elimination method. We 
make use of the fact that a large number of independent tridiagonal systems of the 
same dimension have to be solved. Therefore, these systems can be solved in a 
vector-parallel mode. Moreover, this method requires a minimal number of 
operations. Its efficiency has been shown on a CDC CYBER 205 and on an 
Alliant FX/4. 

For large values of h (i.e., deep water) or for small values of the horizontal mesh 
sizes ~x and ~y, the time step restriction (10.2) or (10.2') may be more severe than 
necessary for accuracy considerations. To increase the stability we applied in 
Chapter 4 right-hand side smoothing. This technique was developed by Wubs [13]. 
The smoothing operators were constructed in such a way that they could be 
implemented efficiently on vector-parallel computers. 

Right-hand side smoothing is particularly attractive in problems where the time 
derivative of the exact solution is a smooth function of the space variable. This is 
the case for the shallow water equations. In our experiments the application of right­
hand side smoothing results in a reduction of the computation time of about a factor 
of five, while the accuracy remains acceptable. 

The resulting stabilized vertically implicit (SVIM) method (i.e., method (4.3) on 
page 38) was made more accurate by applying the technique in which the water 
elevation and the velocity components are computed at different time levels. This 
technique, which was developed by Hansen [4], leads to method (4.7) on page 70. 

10.2. UNCONDIDONALLY STABLE METIIODS 

We not only considered conditionally stable methods, but also numerical methods 
from the other end of the spectrum, viz., unconditionally stable methods. In 
Chapter 5 we constructed a two-stage time splitting (TSM) method. It was proved 
that this method is unconditionally stable. We remark that the first stage of this 
method is very similar to the vertically implicit method (10.1). It also requires the 
solution of a large number of tridiagonal systems. At the second stage the equations 
for the U- and V-component can easily be eliminated and yield a relatively small 
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system in which the water elevation Z is the only unknown. A conjugate gradient 
method was constructed in which a preconditioner based on the smoothing operator 
of Chapter 4 was used. It appears that the preconditioned CG method is highly 
suitable for vector and parallel computers. 

The TSM method is first-order accurate in time. It is possible to obtain second­
order accuracy by adjusting the discretization of the Coriolis term, the mixed 
advective terms and the bottom friction term. However, such a second-order 
treatment would decrease the computational efficiency dramatically. For the sake of 
efficiency we therefore decided to only construct a first-order accurate method. It 
should be noted that the propagation of the surface waves and the vertical diffusion 
are second-order accurate in time. 

In Chapter 6 we compared the conditionally stable SVIM method with the 
unconditionally stable TSM method. Both methods can be implemented efficiently 
on vector-parallel computers. When compared with various methods from the 
literature, the SVIM method is an efficient method. However, the TSM method 
requires even less computation time than the SVIM method. Concerning accuracy, 
we encountered in some cases large errors for the velocity components when the 
SVIM method was used. The TSM method yields accurate results in all 
experiments. Since three-dimensional models are applied to test problems where the 
vertical structure of the velocity is needed, the accuracy for the velocity is very 
important. Considering the accuracy, stability and computational efficiency, we 
concluded that our unconditionally stable method is a very suitable method for three­
dimensional shallow water models. 

So far, the advective terms were omitted. In Chapter 7 we incorporated the 
advective terms into the TSM method. The discretization of the advective terms 
appears to be crucial and therefore we have followed the approach of Stelling [9]. 
Both the special discretization near the boundaries and the upwind discretization of 
the mixed advective terms as developed in [9] are necessary for stability. For 
example, central discretizations yielded instabilities in realistic test problems. 

The introduction of the advective terms results in a hardly more complicated 
system. At the first stage two non-symmetric linear systems (for the u- and v­
component, respectively) have to be solved. For its solution we developed a Jacobi­
type iteration method. This method offers the facility of both an explicit and an 
implicit treatment of the advective terms. The choice between an explicit or implicit 
treatment depends on the test problem. At the second stage the system to be solved 
is very similar to the system without the advective terms (see Chapter 5). Therefore, 
the same preconditioned CG method is used. 

In Chapter 8 the computational efficiency of the TSM method was demonstrated 
on a CRAY Y-MP4/464 for a rectangular domain. To exploit parallelism on this 
four-processor supercomputer, we had to apply a domain decomposition approach in 
the horizontal direction. For the implementation on an irregular domain, we used 
the geometry of the northwest European Continental Shelf. This model covers the 
same computational grid as the CSM16 model of Rijkswaterstaat. In Chapter 9 its 
efficiency was shown on the CRAY Y-MP2E of ICIM (Informatics Centre for Civil 
Engineering and Environment). This supercomputer was recently installed in the 
Netherlands for the simulation of large scale water models of rivers and seas. 

So far, we only examined the stability and accuracy behaviour of various methods. 
However, other properties such as the dissipation and dispersion of numerical 
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methods are also important. To investigate these properties we carried out a similar 
analysis as described by Leendertse [6]. For the linear (one-dimensional) system 

(10.3) 

where 'Y denotes the bottom friction, we obtained for our TSM method that the 
modulus of the wave propagation reads 

B 

{ 't"( 2 't"( 't2y2 }2 { 't"( 2 't"( 
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and that the phase angle of the wave propagation is given by 
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with L denoting the wave length. For the time splitting methods examined in [6], 
the moduli of the amplitudes are larger than one, which is due to the presence of the 
bottom friction term. For unconditional stability the eigenvalues should be less 
than one. It was concluded that the approximation of the bottom friction term 
should be made with care to avoid instabilities. For our TSM method the modulus 
of the amplitudes is always smaller than unity. Moreover, the amplitude errors are 
about 7.5 times smaller than for the methods in [6]. However, the phase errors for 
the TSM method are slightly larger. 

10.3. OVERVIEW OF TIME SPLITTING METIIODS 

In the literature various time splitting methods have been developed for the shallow 
water equations. We now give an overview for some of these methods. For the two­
dimensional shallow water equations, well-known methods are the ADI methods of 
Leendertse [6] and Stelling [9]. The latter one is an improved version ofLeendertse's 
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method. The methods in [7] and [11] may be considered as three-dimensional 
extensions of the methods in [6] and [9], respectively. The vertical diffusion is 
treated in an implicit way. 

For large time steps all these methods suffer from inaccuracies when dealing with 
complex geometries. This is the so-called ADI-effect [10]. In [12] a two-stage time 
splitting method has been developed in which these inaccuracies are absent, even for 
large time steps. Our TSM method, which has been developed for three-dimensional 
models, does also not suffer from the ADI-effect. When applied to two-dimensional 
problems, this method is very similar to the method in [12]. In Table 1 an overview 
of the various methods is given. 

ADI-effect no ADI-effect 

2D models ADI-Stelling [9] Fully implicit 
ADI-Leendertse [6] splitting method [12] 

3D models ADI-TRISULA [11] TSM method [3] 
ADI-Leendertse [7] 

Table 1. Time splitting methods for the shallow water equations. 

It was reported that the method in [12] is more than acceptable for practical 
computations. Owing to the special treatment of the terms concerning the 
propagation of the surface waves, the method in [12] is about three to five times 
more expensive than the method in [9]. This ratio depends on the time step. For the 
methods in [3] and [12] a pentadiagonal system, which has a two-dimensional 
structure, has to be solved at the second stage. In [9] much smaller (tridiagonal) 
systems have to be solved. 

For two-dimensional models the solution of the pentadiagonal system involves a 
major part of the computation time. This system is of the same (two-dimensional) 
structure and thus of the same computational complexity for both two-dimensional 
and three-dimensional models. The computation time required by the other parts of 
our TSM method, i.e., the computation of the three-dimensional velocity 
components, is proportional to the number of grid layers in the vertical direction. 
The efficiency of our time splitting method is therefore higher for three-dimensional 
models than for two-dimensional ones. 

In conclusion, the unconditionally stable time splitting (TSM) method is an 
accurate and efficient method for three-dimensional shallow water models. This was 
illustrated both theoretically and experimentally. By comparing the numerical 
results with accurate reference solutions, it was possible to obtain detailed 
information about the accuracy of the TSM method. For realistic test problems such 
as for the IJsselmeer and the Continental Shelf, its computational efficiency was 
demonstrated on an Alliant FX/4 and on CRAY supercomputers. 
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