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CHAPTERO 

Introduction and notation 

§0.1. Introduction 

For a Tychonov space X, C (X) is the set of all real-valued continuous functions on 
X. The set C (X) endowed with the _topology of pointwise convergence will be denoted 
Cp(X) (for more precise definitions see section 1.1 ). The spaces Cp(X) are of interest to 
topologists and functional analysts for various reasons. 

One can consider Cp(X) as a topological ring (with the usual addition and multipli-
cation of functions). In [40], J. Nagata proved the following 

0.1.1 THEOREM: Let X and Y be Tychonov spaces. The spaces Cp(X) and Cp(Y) 
are topologically isomorphic as topological rings if and only if X and Y are 
homeomorphic. 

In this theorem it is essential to consider topological isomorphisms. There are non-
homeomorphic spaces X and Y such that the rings C (X) and C (Y) are algebraically iso-
morphic (see [25]). Once we have J. Nagata's result it is natural to consider Cp(X) as a 
topological vector space (with the usual addition and scalar multiplication) or just as a 
topological space. In view of this we can state two general problems. 

0.1.2 PROBLEM: Let X and Y be Tychonov spaces and suppose that Cp(X) and 
Cp(Y) are linearly homeomorphic or just homeomorphic. Which topological properties 
;P satisfy: X has property ;P if and only Y has property ;P? 

0.1.3 PROBLEM: Let X and Y be Tychonov spaces. Under what conditions on X 
and Y are Cp(X) and Cp(Y) linearly homeomorphic or just homeomorphic? 

Many topologists have worked on both problems. We will mention a few results that 
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are in the same spirit as the ones that will be derived in this monograph. (for a survey 
of recently obtained results we refer to [2]). 

For example, concerning problem 0.1.2 we have for linear homeomorphisms a posi-
tive answer for pseudocompactness, compactness, a-compactness (Arhangelskii [ 1 ]), 
and dimension (Pestov [44]). A negative answer can be obtained for local compactness, 
first countability, second countability, metrizability, weight and character (cf. example 
2.4. 10 in this monograph). A useful strategy is to find pairs (:P, ,,2) of topological pro-
perties such that a Tychonov space X satisfies :P if and only if Cp(X) satisfies .2. In this 
way it is proved that for density (Guthrie [29]) and cardinality (Arhangelskii [2]) prob-
lem 0.1.2 has a positive answer. On the other hand there exist a compact space X and a 
non-compact space Y such that Cp(X) and Cp(Y) are homeomorphic (cf. chapter 3 in 
this monograph). 

In this monograph we present our contributions to problems 0.1.2 and 0.1.3 and re-
lated problems. We do not restrict ourselves to the topology of pointwise convergence. 
We also consider other topologies on C (X) (mainly the compact-open topology on 
C (X)) and on C • (X), the set of all bounded real-valued continuous functions. Our 
results depend strongly on the results obtained by Arhangclskii in [l]. We discuss [1] in 
detail in section 1.2. 

In chapter 1 we mainly develop tools that will be important in later chapters. How-
ever, we also present some new results. In section 1.5 we prove for normal first count-
able spaces X and Y such that Cp(X) and Cp(Y) are linearly homeomorphic, that the set 
of accumulation points of X is countably compact if and only if the set of accumulation 
points of Y is countably compact. The first countability assumption is essential. This 
result is joint work with J. van Mill [5]. Furthermore we prove in this section for metric 
spaces X and Y such that there is a continuous linear surjection from Cp(X) onto Cp(Y), 

that Y is completely metrizable whenever X is. This result is joint work with J. Pclant 
[7], and answers a well-known research problem of Arhangelskii. 

In chapter 2 we deal with function spaces of locally compact spaces. We give a 
complete isomorphic al classification of the function spaces CP (X) and C 0 (X) (as topo-
logical vector spaces) where Xis a member of one of the following classes: 

(a) compact zero-dimensional metric spaces (section 2.4) 
(b) compact ordinals (section 2.5) 
(c) a-compact ordinals (section 2.6) 
(d) separable metric zero-dimensional 

locally compact spaces (section 2.7). 

The isomorphical classification of the function spaces C 0(X), for X an element of class 
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(a) or (b) is an old result (cf. [IO] and [34)). The first three sections contain prelim-
inaries which are of particular importance in this chapter. They deal with ordinals (in 
particular the for us important notion of a prime component), scattered spaces and fac-
torizing lemmas on function spaces. 

After the results in chapter 2, it is natural to consider non-locally compact spaces. In 
chapter 3 we prove for non-locally compact countable metric spaces X and Y that Cp(X) 
and Cp(Y) are homeomorphic. This result is joint work with J. van Mill and J. Pelant 
[6]. It was later extended to non-discrete countable metric spaces (see [16) or [20)), by 
different techniques. 

In chapter 4 we consider linear homeomorphisms between function spaces Cp(X) for 
metric spaces X. A new tool is developed there, namely the notion of ip-equivalent pair. 
This notion provides us with many properties for which problem 0.1.2 can be positively 
answered in the class of zero-dimensional separable metric spaces (sections 4.1 and 
4.3). A complete isomorphical classification will be given for function spaces Cp(X) 

(as topological vector spaces) of countable metric spaces X with scattered height less 
than or equal to co (section 4.2). We indicate in section 4.4 that an isomorphical 
classification for function spaces Cp(X) for all countable metric spaces X seems beyond 
reach. Finally in this chapter some results will be given concerning the compact-open 
topology (section 4.5) and concerning the set of bounded continuous real-valued func-
tions (section 4.6). We construct locally compact countable metric spaces X and Y such 
that Cp(X) and Cp(Y) are linearly homeomorphic, while c;(X) and c;(Y) are not 
linearly homeomorphic. 

AMS Subject Classification: 54C35, 57Nl7, 57N20. 

Acknowledgments: We would like to thank J. van Mill and J. Pelant for the 
pleasant cooperation and their valuable contributions. We also would like to thank F. 
van Engelen and A.B. Paalman-de Miranda for their careful reading of the manuscript 
and their valuable comments. 

§0.2. Notation 

For all undefined notions and results on general topology without explicit reference 
we refer to [23) and [24). 
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Notation 

lN 

Q 
JR 
C 
X"' y 
X-Y 
A 
lntA 
minA 
maxA 
supA 
inf A 
B (x, e) 

diamA 
d(X) 

IXI 
;/'(X) 

XEBY 
EBr: 1x1 

fog 

idx,lx, 1 
1t1: nielxi 

XA 
II.II 
KerF 
span { v 1, ... , Vn) 

conv {v 1, .•. , vn) 
sn 
8 n+I 

W(a) 

[1, a] 
[1, a) 

0) 

ro, 
~o 

Meaning 

the set of natural numbers 
the set of rational numbers 
the set of real numbers 
the Cantor set 
X and Y are homeomorphic 
X and Y are linearly homeomorphic 
the closure of A in X 
the interior of A in X 
the minimum of A 
the maximum of A 
the supremum of A 

the infimum of A 
{y EX :d(x,y) < e} 

sup { d (x,y) : x, y E A ) 

the density of X 
the cardinality of X 

the power set of X 

Introduction and notation 

the topological sum of the spaces X and Y 
the topological sum of the spacesX1 

the composition of two functions f and g 
the identity function of X 
the projection on the i-th coordinate 
the characteristic function of A 
the nonn on a Banach space 
the kernel of a linear function F 
the linear span of{ v 1, ••• , Vn) 

the convex hull of{ v 1, ... , Vn} 
the unit sphere in IRn+l 

the unit ball in IRn+I 

the set of all ordinals smaller than a 
the space of ordinals { 13: 1 :S: 13 :S: a} with the order topology 
the space of ordinals { 13: I :S: 13 < a} with the order topology 
the first infinite ordinal 
the first uncountable ordinal 
the cardinality of oo 



CHAPTER 1 

Tools and first applications 

All spaces considered in this chapter are Tychonov. 
In this chapter we introduce function spaces endowed with several topologies. Our 

main interest will be the topology of pointwise convergence and the compact open to-
pology. In section 2 we present important results of Arhangelskii [ l] which are among 
the main tools in this monograph. Section 3 deals with the topological dual of a func-
tion space endowed with the topology of pointwise convergence, and section 4 gives 
some more details about the results of section 2, when dealing with the topology of 
pointwise convergence. Finally in section 5 we give some first applications. We 
present topological properties which are preserved by Lp, lo or Lb-equivalence (resp. L;, 
L~ or t;-equivalence), and properties which are not preserved by tp, lo or Lb-equivalence 
(resp. t;, /,~ or ,;-equivalence). For definitions of these notions see section 1.5. 

§ 1.1. Topologies on function spaces 

For a space X we define C (X) to be the set of all real-valued continuous functions on 
X and c* (X) to be the set of all bounded real-valued continuous functions on X. C (X) 
and C * (X) are vector spaces with the natural addition and scalar multiplication. For a 
covering X of X we define a topology on C (X) by taking the family of all sets 

<f, K, £>= (g E C(X): 1/(x)-g(x) I< E for every x E Kl, 

where f E C (X), KE X and E > 0, as a subbase. If X is a covering of X consisting of 
compacta, C (X) endowed with this topology is easily seen to be a topological group, 
whence in this case it generally suffices to consider open sets <0, K, £>, where KE X 

ande>0. 
A subset A of a space X is said to be bounded whenever for every f E C (X), f (A) is 
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bounded in IR. Note that if A is a bounded subset of X, then A is also a bounded subset 
of X. If X consists of all finite, compact or bounded subsets of X, respectively, we 
denote C (X) endowed with this topology by Cp(X), C 0 (X) or Cb(X), respectively. The 
topology on Cp(X) or C 0(X), respectively, is often called the topology of pointwise 
convergence or the compact-open topology, respectively. We have that Cp(X) and 
C o(X) are topological vector spaces. 

For spaces X and Y, the notation X $. Y means that X and Y have the same underlying 
set and the topology on Y is finer than or equal to the topology on X. With this notation 
we have 

1.1.1 LEMMA: let X be a space and let X be a covering of X consisting of com-
pacta. let A,, ... ,AneX, /,, ... ,/neC(X) and £1, ... ,en>O. Then/or every 

/ E n7=1 <J;, Ai, Ej>, there is()> 0 such that</, u7=1A;, O> C n7=1 <J;, A;, ei>-

PROOF: For i S.n, let 'Y; =max{ 1/ (x)-J;(x) I : x e A;). Then 'Y; < e;. Let oi =e; -Yi, 

and O=min{ O;: i S.n ). We claim that this o suffices. Let g e </, u7=1A;, 0>, iS.n and 
xe A;. Then 

lg(x)-J;(x)IS. lg(x)-/(x)I + 1/(x)-/;(x)I 
<O+y; S.e;, 

hence g e </;, A;, e;>. 

1.1.2 COROLLARY: let X be a space and let X be the covering of X consisting of 
al/finite or compact subsets. Then 

(a) { </, K, e> :/ e C(X), Ke X, and e > 0) is a base/or C(X), and 
(b) { </, K, e>: Ke X, and e > OJ is a neighborhoodbase at f for f e C(X). 

1.1.3 EXAMPLE: Lemma 1. 1. I, and corollary 1.1.2, do not hold if X consists of 
all bounded subsets of X. 

For example let X = IR. Consider the identity id: IR. Note that [O, I) is bounded 
in IR and that O e <id, [O, I), I>. Suppose there are a bounded A c IR and e > 0 such 
that <0,A, e>c<id, [O, l), l>. Let /e C(IR) be defined by /=-e/2. Then 
/ e <0, A, e>, but I/ (l -e/2)-(1-e/2) I= I, so/¢ <id, [O, l), l>. Contradiction. 

For a covering X of X, a topology on C (X) can also be generated by the subbase 
consisting of all sets 
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A (K, U)= {g E C(X): g(K)c U), 

where K E X and U is open in JR. 

1.1.4 LEMMA: Let X be a space and let X be the covering of all finite (resp. com-
pact) subsets of X. Then 

{A(K, U):KEXandUopeninJR} 

is a subbase for Cp(X) (resp. C o(X)). 

PROOF: First let KE X, U open in JR and f E A (K, U). For every x E K, there is a 
neighborhood Ux of x and Ex > 0 such that 

Ex Ex f (Ux) c (f (x)- 2 ,f (x) + 2 ) c (f (x)-Ex.f (x) +ex) c U. 

Since K is compact, there are x 1, .•• , Xn EK such that Kc U~=l Ux;. Let 
e= min{Ex; : i :5 n ). We claim that <f, K, e/2> cA (K, U). Indeed let g E <f, K, e/2>, 

and let x EK. There is i :5 n such that x E Ux;. Then obviously I g (x)- f (xi) I <Ex;. So 
g (x) E U. This implies g EA (K, U). 

Second let f E C (X), KE X and e > 0. For every x E K let 
Ux=r'((f(x)-e/3,f(x)+e/3)) and let Cx=UxnK. Then each Cx is compact. Let 

n 
Vx=(/(x)-e/2,f(x)+e/2). There are x,, ... ,XnEK such that KcUi=IUx;• We 

n '< claim that fE(')i=IA(Cx;•Vx;)c<J,K,e>. Indeed, for every 1_n, 
-- n 

f(Cx)cf(Ux,)cVx;• For ge(')i=IA(Cx;,Vx) and XEK, there is i:5n such that 
x E Cx;, Then obviously 1/ (x)- g (x) I <£.So g E </, K, e>. 0 

1.1.S EXAMPLE: Lemma 1. l .4 does not hold in case X consists of all bounded 
subsets. As in example 1.1.3 consider <id, [O, 1), l>. Let K 1, ••. , Kn be bounded sub-

n 
sets of JR and let U1, ... , Un be open subsets of JR such that OE ni=iA(Ki, U;). 

There is e > 0 such that(-£, e) c n7=, U;. Again let f =-£12. Then J E n7=1A (K;, U;) 
and as in example 1.1.3,f ¢ <id, [O, 1 ), 1 >. 

When dealing with the topology of pointwise convergence or the compact-open to-
pology we will use corollary 1.1.2 and lemma 1.1.4 without explicitly referring to it. 

1.1.6 LEMMA: Cp(X) is a dense subspace oflRx with the product topology. 
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PROOF: That Cµ(X) is a subspace of IRx is easily seen. Let f E IRx, x 1, ... , Xn EX 

and£> 0. We have to show that for 

U = I g E IRx : I/ (x;)- g (x;) I < £ for every i $ n) 

we have UnCp(X);t0. For i$n, let /;EC(X) be a Urysohn function such that 
J;(x;)=/(x;) and /;(x1)=0 for j$n and j;ti. Let g="i:.'/=1li- Then for every i$n, 
g (x;) = f (x;), so g E U nCµ(X). 

We define c;(X), C~ (X) and c;(X) similar to Cµ(X), C 0 (X) and Cb(X) using 
C • (X) instead of C (X). All the observation made above for C (X) endowed with one 
of the defined topologies are also valid for C*(X) endowed with this topology. 

On C • (X), we define the topology of uniform convergence by the metric 

d (f, g) = sup { If (x)-:-- g (x) I : x EX), 

where f, g E C*(X). We denote c*(X) endowed with this topology by c:(X). It is 
well-known that c:(X) is a Banach space ([47, Prop. 4.1.2 ]). It is easily seen that 
C~ (X) $ c:(X). For a compact space X the topology of uniform convergence and the 
compact-open topology coincide ([24, Th. 4.2.17]). 

All results in this section are well-known. The easy examples 1.1.3 and 1.1.5 were 
constructed by us. For more information about topologies on function spaces we refer 
to [24], [37] and [47]. 

§1.2. Linear functions between function spaces 

In this section we present results which are of fundamental importance in this mono-
graph. In particular we present results of Arhangelskii [l] (corollaries 1.2.15 and 
1.2.21). 

Let X and Y be spaces and let q>: C (X) (Y) (resp. q>: c* (X) c* (Y)) be a linear 
function. For every y E Y, the support of y in X with respect to q> is defined to be the set 
supp (y) of all x E X satisfying the condition that for every neighborhood U of x, there is 
/E C(X) (resp. /E c*(X)) such that f (X\U)c (0) and <j>(f)(y);tO. Note that it 
suffices that the condition holds for arbitrarily small neighborhoods of x. For a subset A 

of Y we denote U { supp (y): y E A ) by supp A. Whenever q> is a linear bijection we can 
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consider the support of a point in Y with respect to <jJ and the support of a point in X 
with respect to <j>- 1• It will always be clear from the context which support we mean. 
The following lemma is obvious, and is stated for reference purposes. 

1.2.1 LEMMA: let X and Y be spaces and let <j>: C (X) C (Y) (resp. 
<j>: C • (X) C • (Y)) be a linear function. let y E Y. Then 

(a) x rt supp (y) if and only if x has a neighborhood U such that for f E C (X) 
(resp. f E c* (X)) with f (X \ U) c {0} we have q>(/)(y) =0, and 

(h) supp (y) is closed in X. 

1.2.2 EXAMPLES: (1) Let X be a space. Define <j>: by <1>=0. Obvi-
ously <jJ is linear. By lemma 1.2.1 (a), supp (x) = 0, for every x E X. 

(2) Let X be a space and let /\.E IR\ (0). Define <j>: by <j>(/)=Affor 
every f E C(X). Obviously <jJ is linear. We claim that for every x EX, supp(x)= {x}. 
First let Ube any neighborhood of x. Let f E C(X) be a Urysohn function such that 
f (x) = 1 and f (X \ U) c { 0}. Then <j>(/)(x) = /\. ;t 0, hence x E supp (x). Second for y ;tx 

let U be a neighborhood of y missing x. Then for f E C (X) with f (X \ U) c { 0}, we 
have <j>(/)(x) =0. By lemma 1.2.1 (a), y rt supp (x). 

(3) Let X be a space and' let x 0 EX be fixed. Define <j>: C (X) C (X) by 
<j>(f)=f +f (x 0) for every f E C(X). Obviously <jJ is linear. We claim that for every 
x E X, supp (x) = (x, x O}. Let U be any neighborhood of x. Let V c U be a neighborhood 
of x such that if x ;tx0 , x 0 rt V. Find a Urysohn function f E C (X) such that f (x) = I and 
f (X \ V) c {OJ. Then f (X \ U) c (0} and <j>(/)(x) ;t0. Hence x E supp (x). In a similar 
way one can prove that x 0 E supp (x). As in (2) one can prove that for y rt {x, x 0 }, 

yrtsupp(x). 
Each linear function above can also be defined from c* (X) to c* (Y). 

The following definitions are due to Arhangelskii [!]. Let X and Y be spaces. We 
say that a linear function <j>: C (X) C (Y) (resp. <j>: C *(X) C * (Y)) is effective if for 
every f, g E C (X) (resp. J, g EC• (X)) and y E Y such that f and g coincide on a neigh-
borhood of supp (y ), qi(/ )(y) = <j>(g )(y ). The linear function qi is of bounded type if qi is 
effective and for every y E Y, supp (y) is bounded in X. 

1.2.3 LEMMA: let X and Y be spaces and let <j>: C (X) C (Y) (resp. 
<j>: c* (X) c*(Y)) be a linear function which is not effective. Then there are y E Y, a 
neighborhood U of supp (y) and f E C (X) (resp. f E C • (X)) such that f ( U) = { 0} and 
q>(f )(y) ;t 0. 
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PROOF: Since <I> is not effective, there are y E Y, a neighborhood U of supp (y) and 
/ 1,h E C(X) (resp. / 1,h e c*(X)) such that / 1 and h coincide on U and 
<j>(/1 )(y) ;eq>(/z)(y). Let/= f 1 - h- Then f e C (X) (resp. f e c* (X)). For x e U we have 
f (x) = f 1 (x)- fz(x) = 0 and by linearity of <I>, <j>(f )(y) =<!>(/1 )(y)-<!>(f 2)(y) ;eO. 

1.2.4 EXAMPLES: (1) The linear functions in example 1.2.2 have the property that 
for every x E X and for every f, g e C (X) such that f and g coincide on supp (x ), 

<j>(f)(x)=<!>(g)(x), hence they are effective. 
(2) Let X=[l, 001) and let Y=[l, ooi]. Since every f e C(X) is eventually constant, 

i.e., there is a< 001 such that for each ~;::: a, f (a)= f (~) (24, example 3.1.27], f has a 
natural extension J e C(Y). The function q>: C (X) C (Y) defined by<!>(/)= J is easily 
seen to be linear. We claim that <I> is not effective. It is enough to show that 
supp ( 001) = 0, since in this situation any two functions in C (X) coincide on a neighbor-
hood of supp (oo1 ). Let x e X. then U = [I, x] is a neighborhood of x. Let f e C (X) be 
any mapping satisfying f (X\U)c {O}. Then <!>(f)(oo1)=0, hence by lemma 1.2.1 (a), 
x ¢. supp (001 ). 

Note that in this situation we have C (X) = C • (X) and C (Y) = C • (Y). 

We will now give some, general properties of effective linear functions between 
function spaces. 

1.2.5 LEMMA: let X and Y be spaces and let q>: C (X) C (Y) (resp. 
q>: c* (X) (Y)) be an effective linear injection. Then supp Y =X. 

PROOF: Suppose there is x ¢. supp Y. Then there is O open in X such that supp Y c 0 

and x ,{Q. Find a Urysohn function f e c* (X) such that/ (x) = I and/ (0) c (0). Since 
0 is a neighborhood of supp Y and <I> is effective we then have q>(f )(Y) c { 0}. This im-
plies /;e0 and <j>(f) =0, contradicting the injectivity of <j>. 

1.2.6 LEMMA: let X and Y be spaces and let q>: C (X) C (Y) (resp. 
<j>: C • (X) C * ( Y)) be an effective linear function. Then for A c Y we have 
supp Ac supp A. 

PROOF: Suppose there is x e suppA\suppA. Suppose x E supp(y) for y EA. Find 0 
open in X such that x c O c O cX\suppA. Since x e supp (y) there is f e C (X) (resp. 
/ e c• (X)) with f (X\O) c {0} and q>(f)(y);e0. Since X\O is a neighborhood of supp A 

and f=O on X\O, by effectiveness of <I>, q>(/)=0 on A. But this implies qi(f)(y)=O. 
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Contradiction. 0 

Let X and Y be spaces. A set-valued function F: X 5'(Y) \ { 0] such that for every 
x e X, F (x) is closed in Y is said to be Lower Semi Continuous (abbreviated LSC) 
whenever for every open Uc Y the set {x e X: F (x) n U ;t 0} is open in X. Conse-
quently F is LSC if and only if for every closed Ac Y the set (x e X: F(x) cA) is 
closed in X. Furthermore F is said to be Upper Semi Continuous (abbreviated USC) 
whenever for every open Uc Y the set (x e X: F (x) c U} is open in X. Consequently F 
is USC if and only if for every closed Ac Y the set {x e X: F (x) nA ;c0} is closed in 
X. 

If q,: C (X) C (Y) (resp. q,: C*(X) c• (Y)) is a linear function we can consider 
supp: Y 5'(X) as a set-valued function. We have 

1.2.7 LEMMA: let X and Y be spaces and let (jl: C (X) C (Y) (resp. 
(jl: be an effective linear function such that for each ye Y, 
supp(y);c0.Thensupp isLSC. 

PROOF: By lemma 1.2.1 (b), supp (y) is closed in X for every y e Y. Let U be an open 
subset of X. Put 0=(yeY:supp(y)nU;t0}, and let yeO. Then there is 
x e supp (y) n U. Let V be open in X such that x e V c V c U. Let f e C (X) (resp. 
fe c*(X)) be such that f (X\ V)c (0} and <j>(f)(y);cO. Let W= {z e Y:(jl(f)(z);cO}. 
Then W is an open neighborhood of y. We claim that W c 0. Suppose there is 
zeW\O, i.e., (jl(f)(z);cO and supp(z)nU=0. Then X\V is a neighborhood of 
supp (z) and f (X \ V) c { 0}, so q,(f )(z) = 0. Contradiction. So W c O and hence the 
lemma is proved. 0 

REMARK: If the function q, in lemma 1.2.7 is surjective, then surely supp(y);c0 
for every ye Y. Indeed, if supp (y) = 0 for some ye Y, then let f e c• (Y) be such that 
f (y) ;c 0. Choose g e C (X) (resp. g e C °(X)), such that (jl(g) = f. We have that g = 0 on 
a neighborhood of supp (y ), so by effectiveness of (jl, f (y) = 0. This gives a contradic-
tion. We conclude that for any effective linear surjection, supp is LSC. 

In section 2.4 we will give an example of an effective linear surjection 
q,: C (X) C (Y), such that supp is not USC. 

l.2.8PROPOSITION ([l]): let X and Y be spaces and <j>: a linear 
function of bounded type. let A be a bounded subset ofY. Then suppA is bounded in X. 
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PROOF: Suppose to the contrary that suppA is not bounded in X. Then there is 
/E C(X) such that/(suppA) is unbounded in JR, so there is {xn :n E IN} csuppA such 
that [/ (xn) : n E IN} is closed and discrete in JR. Hence we can find an open family 
( Vn: n e IN} in X such that Xn E Vn for each n E IN and (/ <Vn): n E IN} is a discrete 
family in JR. Then obviously !Vn: n E IN) is a discrete family in X. 

By induction we construct a subset (Yk: k E IN) of A, a subfamily {Uk: k E IN} of 
{ Vn: n e IN), and a subset (fk: k E IN} of C (X) such that 

(I) fk(X \ Uk) c {O} for every k e IN, 
(2) for i "# j we have Vi"# U1, 

(3) supp {y 1, ... , y k-l ) n Uk = 0 for every k > I, and 
(4) qi(fk)(yk)=k+lhkl foreverykEIN, 

where hk = :Ei <kq>({;)(yk) fork> I and h 1 = 0. 

Let y I E A be such that x I E supp (y 1 ). Let U 1 = V 1• Since U I is a neighborhood of 
x 1, and x I E supp (y 1 ), there is h e C (X) such that h (X \ U 1) c { 0} and q>(h )(y 1 )-# 0. 
Let 

Let f 1 = M. Then Ji E C (X) and f 1 (X \ U i) c { 0). Furthermore by linearity of qi, 
qi(! I )(y I ) = Aqi( h )(y I ) = 1. 

Let k > I and suppose we found YI, ... , Yk-1, U 1, ... , Uk-I and Ji, ... , fk-1· 
Let Pk= supp {y 1, ••• , Yk-l ) . Since qi is of bounded type, Pk is bounded in X. So there 
is n E IN such that f(Vn) nf (Pk) =0 and hence i:\ nPk =0. Since xn E supp A, there is 
Yk e A such that Xn E supp (yk). Let Uk= Vn. Since Uk is a neighborhood of Xn and 
Xn E supp {yk), there is h E C (X) with h (X \ Uk) c {0} and qi(h)(yk) "# 0. Let 

and fk =A.h. Then fk(X \ Uk) c {OJ and by linearity of qi, qi(fk)(yk) =k + I hk I. To com-
plete the inductive construction we observe that by (3) and the fact that 
Xn E supp (Yk) n Uk, vi"# uj for i "# j. 

Since {Uk: k E IN} is a subfamily of !Vn: n E IN) we have by (2) that {Uk :k E IN} 
is a discrete open family in X. Let /=:E'['= 1/;. For x EX we have a neighborhood Ux 
which intersects at most one member of {Uk : k E IN}. Then by ( 1) / I U x is a finite 
sum, hence f e C (X). For every k E IN, let gk =:Ef =I Ji and 

Wk=X\Ufi\JR\{O}) 
j>k 
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By (l) we have for every jelN, J71(lR.\{O})cUj, So {.f71(lR.\{O)):jelN} is a 
discrete family, hence Wk is open in X. By (3), we have for j > k, supp (Yk) n Ui =0. 
This implies supp(yk)n.f71(IR.\ {0})=0. We conclude that supp(yk)cWk, so Wk is a 
neighborhood of supp()•k). For j >k, and xe Wk, Jj(x)==O, hence /and gk coincide on 
Wk. Since q> is effective, we then have q>(/)(yk) = q>(gk)(Vk). But 
q>(gk)(yk) == hk +q>(fk)(yk), so that by (4), 

I q>(gk)(yk) I q>(/k)(Yk) - I hk I = k + I hk I - I hk I = k. 

We conclude that I q>(/)(yk) I ~k for every k e IN. But this implies that A is not bound-
ed in Y. Contradiction. 

1.2.9 COROLLARY: Let X and Y be spaces and let cj>: be a linear 
injection of bounded type. If Y is pseudocompact, then Xis pseudocompact. 

PROOF: If Y is pseudocompact it is bounded, hence by proposition 1.2.8, supp Y is 
bounded. By lemma 1.2.5, supp Y =X. This implies that Xis pseudocompact. 

We will now give two other applications of proposition 1.2.8. The first one will be a 
very important tool in chapter 4. The second one will be used in section 1.5. 

1.2.10 LEMMA: Let X and Y be normal spaces. Let K be compact and non-empty 
in Y and suppose {Vn: n e IN} is a decreasing base at Kin Y. Let {As: s e S} be a lo-
cally finite family in X. Furthermore let cj>: C (X) C (Y) be a linear function of bound-
ed type. Then there are m e IN and s 1 , ... , Sm e S such that 
(supp V m)n Us, (s1, .. ,,smJAs =0. 

PROOF: If S is finite the lemma is obvious. Suppose the lemma is false for infinite S. 
Then there are distinct si e S (i e IN) and points xi e supp V; nAs;• Suppose xi e suppy; 

with Yi e Vi. Since {As; : i e IN} is locally finite, {x; : i e IN} is infinite. Let 
L == {y;: i e IN} uK and let Ube an open cover of L. Then there are U 1, •••• Un in U 

such that K cU7=, Ui. Since !Vn: n e IN} is a base at Kin Y, there ism e IN such that 

V m c U7=1 U;. So Ku {y;: i ~m) c u7=1 U;. We conclude that Lis compact. 
By proposition 1.2.8, suppl is bounded. It follows that {x;: i e IN} is also bounded. 

However since {As; : i e IN} is locally finite, {xi : i e IN} is a closed and discrete set. 

Contradiction. 



18 Tools and first applications 

Let X and Y be metric spaces and qi: C (X) C (Y) a linear surjection of bounded 
type. For U cX, let Tu= {ye Y: supp (y) n U :;t:0). For a family U of subsets of X, let 
Tu={Tu:UeU). 

1.2.11 LEMMA: If U is a locally finite open cover of X, then Tu is a locally finite 
open cover of Y. 

PROOF: By the remark following lemma 1.2.7, we have for each ye Y, supp(y):;t:0. 
So Tu covers Y. Furthermore by lemma 1.2.7, supp is LSC, so for U e U, Tu is open in 
Y. If Tu is not locally finite there are ye Y, a sequence Yn y (n 00), and distinct 
Un 'sin U such that Yn e Tu •. Let Xn e supp (Yn)n Un. Since {Yn: n e IN) is bounded, by 
proposition 1.2.8, supp {Yn: n e IN) is bounded. Hence {xn: n e IN} is bounded. Since 
X is metric we then obtain that {xn: n e IN) is compact. Since U is locally finite, 
{x11 : 11 e IN) intersects only finitely many elements of U. Contradiction. This proves 
the 

ProposiLion 1.2.8, corollary 1.2.9, lemmas 1.2.10 and l.2.11 are the first results in 
this section which are only formulated for linear functions from C (X) to C (Y) and 
which are not formulated for linear functions from c*(X) to c*(Y). In the following 
example we show that proposition 1.2.8, lemmas 1.2.10 and 1.2.11 are not true for 
linear functions between function spaces C * (X). 

1.2.12 EXAMPLE: Let (x11 )nelN be a convergent sequence, say Xn (n 00). 

Let y = {Xn: n E IN) u {x ), and letX =YEE) IN. Define qi: c*(X) by 

I f (x11 )+-f (n) if z =xn for some n e IN, 
n 

qi(f)(z)= f (x) if z =x. 

We first show that qi is well-defined. It suffices to show that qi(!) is continuous at x. 
Let E > 0. Since f is bounded there is c e lR such that f (X) c (-c, c ). Find me IN such 
that for n ?.m, If (x11)- f (x) I < E/2 and llm < E/(2c). Then for n ?.m we have 

I lqi(f)(Xn)-qi(f)(x)I = lf(xn)+-f(n)-f(x)I 
n 
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So (p(j) is continuous at x. Note that since Y is compact, (p(j) E C • (Y). Obviously (p is 
linear. As in example 1.2.2 we can show that for each n E JN, supp(xn)= (n, Xn) and 
supp (x) = {x J. Furthermore for any two functions f, g E c• (X) which coincide on 
supp(z) for some z E Y, we have (p(j)(z)=q>(g)(z). Hence q> is a linear function of 
bounded type. 

Since Y is compact, Y is bounded. However supp Y =Xis not bounded. This implies 
that proposition 1.2.8 is not true when dealing with bounded functions. Note also that if 
U = ( Y) u { ( n ) : n E IN}, then U is a locally finite open cover of X. However Tu is not 
locally finite, hence lemma 1.2.11 is also not valid when dealing with bounded func-
tions. Similarly lemma 1.2.10 does not hold. The question remains whether corollary 
1.2.9 holds. The above example does not give a counterexample since q> is not injective. 

We will now search for linear functions of bounded type. 

1.2.13 LEMMA: Let X and Y be spaces. Suppose q>: C 0(X) Cp(Y) (resp. 
q>: C~ (X) c; ( Y)) is a continuous linear function. Then for every y E Y, supp (y) is 
compact. 

PROOF: Since q> is continuous at 0, there are a compact B cX and E > 0 such that 
q>( <0, B, E>) c <0, {y}, I>. Suppose there is x E supp (y) \ B. In this situation X \ B is a 
neighborhood of x, so there is f E C (X) (resp. f E C • (X)) satisfying f (B) c { 0 J and 
q>(j)(y) ;t: 0. By linearity of q> we may assume q>(j)(y) > 1. Obviously f E <0, B, E>, 
hence q>(j) E <0, {y }, I>. This implies q>(j)(y) < 1. Contradiction. We conclude that 
supp (y) c B. By lemma 1.2.1 (b) supp (y) is closed and hence compact. 

1.2.14 PROPOSITION ([I]): Let X and Y be spaces. Suppose q>: C 0(X) Cp(Y) 

(resp. q>: C~ (X) c;(Y)) is a continuous linear function. Then q> is of bounded type. 

PROOF: By lemma 1.2.13, supp (y) is bounded for every y E Y, so it remains to prove 
that q> is effective. If q> is not effective, then by lemma 1.2.3 there are y E Y, a neighbor-
hood U of supp (y) and/EC (X) (resp. f E c*(X)) with/ (U) = (0} and q>(j)(y) ;t:O. Let 
c5 = I q>(j )(y) I . Since q> is continuous, there are a compact subset A of X and E > 0 such 
that q>( <f, A, E>) c <(p(j), {y}, O>. Then for every g EC (X) (resp. g E c• (X)) which 
coincides with f on A, q>(g )(y) ;t: 0. 

Let B =A\ U. If B =0, Ac U. Since f (U) = {OJ, 0 coincides with f on A. This gives 
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q>(O)(y) * 0. Contradiction, so B is a non-empty compactum and B n supp (y) = 0. Then 
by lemma 1.2.1 (a), there are open sets U 1, .•• , Un, V 1, ••• , Vn such that 

(I) U; c U; c V; for every i ~n 
n 

(2) 8 c Ui=I U;, and 
(3) if g E C (X) (resp. g E C * (X)) with g (X \ V;) = { 0 l for some i n, then 

q>(g )(y) = 0. 

Since B is compact, there are a 1, •.. , an E C • (X) such that for every i n, 
a;(U;riB)=l and a;(X\V;)c{0) [24, Th. 3.1.7]. Let a=max(Lf=1 a;,l) and 
h; = a;la. Then we have 

(4) h;(X \ V;) ={OJ, and ,. 
(5) L h;(x) = I for every x EB 

i=l 

Let h>hd and h*=L7=1h;. By (4) we have h7(X\V;)={0} so that by (3), 
q>(h7 )(y)=O. This means q>(h*)(y)=O. 

By (5), for every x EB we have h • (x) = f (x). Furthermore for every x E U we have 
h*(x)=0=f(x), so h* and/coincide on A. But then q>(h*)(y)*O. Contradiction. We 
conclude that q> is effective. 

1.2.15 COROLLARY ([l]): let X and Y be spaces. Suppose q>: or 
q>: C o(X) C 0(Y) is a continuous linear function. Then 

(a) q> is of bounded type, and 
(b) if A is bounded in Y, then suppA is bounded in X. 

If moreover in X every closed and bounded subset is compact, then supp A is 
compact. 

PROOF: Since Cp(X):s;C 0(X), any linear mapping q>: or 
q>: C 0(X) C 0 (Y) is also continuous considered as a function from C 0(X) to Cp(Y). 

Now apply propositions 1.2.8 and 1.2.14. 0 

By example 1.2.12 we have for bounded functions only the following corollary the 
proof of which is similar to the one of corollary 1.2.15 (a). 

1.2.16 COROLLARY: let X and Y be spaces. Suppose q>: c;(X) c;(Y) or 
q>: Co (X) Co (Y) is a continuous linear function. Then q> is of bounded 
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1.2.17 REMARK: The question remains whether a result such as corollary 1.2.15 
holds for continuous linear functions between the function spaces Cb(X). In example 
1.2.4 (2) we found spaces X and Y and a linear fun,tion q>: C (X) C (Y) which is not 
effective. From corollary 1.2.15 we have that <j> considered as a function from Cp(X) to 
Cp(Y) (resp. from C 0 (X) to C 0 (Y)) is not continuous (this can also be verified directly). 
Unfortunately <j> considered as a function from Cb(X) to Cb(Y) is also not continuous. 

Corollary 1.2.15 will be one of the main tools in this monograph. Another important 
tool will be corollary 1.2.21. Before we can prove this corollary we need some other 
lemmas. 

1.2.18 LEMMA ([l]): Let X and Y be spaces, and suppose <j>: c:(X) Cp(Y) is a 
continuous linear function. Then <j> considered as a function from c:(X) to C 0(Y) is 
also continuous. 

PROOF: By linearity of <j> and since C 0(Y) is a topological vector space it suffices to 
prove continuity at 0, i.e., we have to prove for a compact A c Y and E > 0 that 
<j>-1 ( <0, A, E>) is a neighborhood of O in c:(X). We will show that for 

V = { g e C • (X) : I <j>(g )(x) I $. E/2 for every x E A ) 

we have O e Int V. 
Since is continuous, {geC*(X): l<j>(g)(x)I S.E/2} is closed in 

c:(X) for every x e X. This means that 

V=rl{geC*(X): l<j>(g)(x)I S.E/2) 
xeA 

is closed in c:(X). 

CLAIM: c*(X)= U n-V. 
nelN 

Let he c• (X). Since A is compact, there is n O e IN such that <j>(h)(A) c [-n 0 , n 0 ]. 

Find n I e IN such that n 1 ;::: 2n 0 /E. Then for every x e A we have 

This means hen 1 ·V and hence the claim is proved. 

Since for every n e IN, n-V is closed in c:(X) and c:(X) is a Banach space, there is 
n : IN such that Int (n · \') ;t 0. This means Int V =t 0. Take an arbitrary g e Int V. Since 
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0: defined by 0(h)=-h is a homeomorphism such that 0(V)=V, we 
have -g E Int V. Since \/f: c:(X) c:(X) defined by \/f(h) = (g +h)/2 is a homeomor-
phism such that \/f(lnt V) c Int V we have \/f(-g) = 0 E Int V. 

1.2.19 PROPOSITION ([l]): Let X and Y be spaces such that in X every closed 
and bounded subset is compact. Let qi: C o(X) Cp(Y) be a continuous linear function. 
Then qi considered as a function from C o(X) to C 0 (Y) is also continuous. 

PROOF: Let qi• be the restriction of qi to the set of bounded functions. Since 
C~ (X) :5 c:(X), qi* considered as a function from c:cx) to Cp(Y) is continuous. Then 
by lemma l.2.18, qi* considered as a map from c:(X) to C 0(Y) is continuous. To prove 
continuity of qi considered as a map from C 0(X) to C 0(Y) it is by linearity of qi enough 
to prove continuity at 0. To this end let A be a compact subset of Y and let E > 0. By 
propositions 1.2.8 and 1.2.14 and the assumption on the space X, B = supp A is a com-
pact subset of X. By the above there is o > 0 such that for every f E C (X) with 
If (x) I < o for every x EX we have qi(/) E <0, A, £>. We claim that 

qi( <0, 8, o/2>) c <0, A, £>. To this end let g EC (X) with I g (x) I < o/2 for every 
XE B. 

Define g 1 : X IR by 

g(x) if lg(x)I < f 

15 
2 

if g(x)~ 
2 

if g (x) :5-~. 
2 

Then g I E C (X) and g I coincides on a neighborhood of B with g. By proposition 
1.2.14, qi is effective, and hence qi(g) = qi(g 1 ) on A. Furthermore for every x E X, 

lg 1(x)I <o, so qi(g 1)E <0,A, £>. This means qi(g)E <0,A, £>. This proves that qi is 
continuous at 0. 0 

As with proposition 1.2.8 we have that proposition 1.2.19 does not hold for linear 
functions between function spaces C*(X). We have the following 

1.2.20 EXAMPLE: Consider X, Y and qi: c• (X) c* (Y) as in example 1.2.12. We 
claim that qi considered as a function from c;(X) to c;(Y) is continuous and con-
sidered as a function from c;(X) to c;(Y) is not continuous. 
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First let P c Y be finite, e > 0 and put Q = supp P. Then 

Second consider the open subset <0, Y, I> of Co (Y). If cp considered as a function 
from Co (X) to Co (Y) is continuous, there is a compact subset A of X and e > 0 such 
that 

cp(<O,A, E>)c<O, Y, l>. 

Find n e X \A. Let J=nXn, where Xn denotes the characteristic function of the set {n }. 
Then/ e <0, A, E> and cp(f )(xn) =I. But this implies that cp(f) ¢ <0, Y, 1 >. 

From proposition 1.2.19 we have the following important 

1.2.21 COROLLARY ([l]): Let X and Y be spaces in which every closed and 
bounded subset is compact, and suppose cp: Cp(X) Cp(Y) is a linear homeomor-
phism. Then <I> considered as a Junction from C 0(X) to C o(Y) is also a linear 
homeomorphism. 

The converse implication in corollary 1.2.21 is not true. By Miljutin's theorem (for 
any two uncountable metrizable compact spaces we have that C o(X) and C o(Y) are 
linearly homeomorphic, [47, Th. 21.5.10]), C 0(1) and C 0 (12) are linearly homeomorph-
ic (here I denotes the unit interval). However Cp(I) and Cp(I2) are not linearly 
homeomorphic, since Pestov proved in [44) that whenever Cp(X) and Cp(Y) are linear-
ly homeomorphic then dim X = dim Y. 

REMARK: Note that in a compact or metric space the closed and bounded subsets 
are exactly the compacta. It is not clear to us how this property is related to other topo-
logical properties. 

For linear mappings between function spaces C * (X) we can derive a result in the 
spirit of proposition 1.2.19. This result (corollary 1.2.23) is a consequence of 

1.2.22 THE CLOSED GRAPH THEOREM: Let E and F be Banach spaces and 
let cp: E F be a linear function such that the set { (x, cp(x)) : x e E} is closed in E x F. 
Then <I> is continuous. 
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For a proof of The Closed Graph Theorem we refer to [26]. 

1.2.23 COROLLARY: Let X and Y be spaces and let 4>: c;cx) c;(Y) be a con-
tinuous linear function. Then <I> ronsidered as a jimrtion from c:(X) to c:cn is also 
continuous. 

PROOF: Since c;cx) S c:cx) and c;cn S c:(Y), it follows directly from The Closed 
Graph Theorem. 0 

In corollary 1.2.23 we can replace the topology of pointwise convergence by other 
topologies. However as stated above it is the only corollary we need in the sequel of 
this monograph. 

REMARK: The results in this section due to Arhangelskii are not formulated in the 
most general form as they are in [l]. We adjusted these results and their proofs to the 
form in which we need them in this monograph. The original proof of lemma 1.2.18 
used notions like absorbing, convex, circled and balanced spaces (for definitions see 
[45]). For us these notions are of no importance. Arhangelskii did not define supports 
for linear functions betwee~ function spaces c* (X). We do not know whether all other 
results in this section were already known to Arhangelskii. 

* §1.3. The dual of Cp(X) and Cp (X) 

For a space X let L (X) be the dual of Cp(X), i.e., the set of all continuous linear 
functionals on Cp(X). For x e X we define ~x: Cp(X) JR the evaluation mapping at x 
by ~xlf) = f (x). 

1.3.l LEMMA: For every x e X, ~x EL (X). 

PROOF: It is easily seen that ~x is linear. To prove that ~x is continuous let Uc JR be 
open and let fe ~.:; 1(U). Then ~xif)=f(x)e U. Find £>0 such that 
(f(x)-E,j(x)+E)cU. We claim that <J, (x),£>c~.:;1(U). Indeed for 
ge <f, (x),£>, lg(x)-j(x)I <£, sothatg(x)=~x(g)e U.o 

By identifying x and Sx we regard X as a subset of L (X) (notice that for x -:t y, 
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~x :t ~Y ). As L (X) is a vector space we are interested in a Hamel basis for L (X) (i.e., a 
maximal independent subset). It turns out that Xis a Hamel basis for L (X), i.e., 

(HB 1) X is an independent subset of L (X) and 
(HB2) for every F e L (X) there are x 1, ... , Xn e X and "-1, ..• , "-n e JR 

such that F = Li =1. "-iXi. 

To verify (HBI) suppose I:i=l"-i-''i =0 for x 1, ... , Xn e X and "-1, ... , "-n e JR. Then for 
every fe C(X), I:f=1AJ(x;)=0. For every i~n let/; be a Urysohn function such that 
J;(xj)=l and J;(x,)=0 for i:tj. So 0=I:i=1A.,Ji(x;)=A;, which proves (HBl). For 
(HB2) we have to do some more work. 

1.3.2 LEMMA ([45, p. 124]): Let V be a vector space and a, a 1, •.• , an linear 
functionals on V. Then the following statements are equivalent: 

(2) a e span ( a 1, ... , a 11 }. 

PROOF: The implication is a triviality. We prove the implication by 
induction on n. First suppose n = I. If a 1 = 0, a= 0 so we certainly have a e span { a 1 } . 

So suppose there is x 0 e V such that a 1 (xo) :t 0. Let t.. 1 = a(x0 )/a1 (xo), We claim that 
a= t..1 a 1• To prove this, let x e V. If a 1 (x) =0 we are done, so suppose a 1 (x) -:t 0. Then 

so 

This gives 

So a(x) =t..1 a 1 (x). This finishes the case n = I. 
Suppose we proved the implication for every n < m with m > I. 

Case 1: there is j m with nKer a; c Ker a. 
i,;,j 

Then by the inductive hypothesis, a e span ( a 1, ••• , am}. 

Case 2: for every j :'.5: m, nKer a; ct. Ker a. 
i,;,j 
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Then for every j 5, m there is x:1 E V such that a;(.t'j) = 0 for i ct- j and aj(x1) ct- 0. Let 
11.1=a.(x1)ta./x1 ). We claim that a.=rf=111.;a.;. To prove this let XE V. For j5'm we 
have 

This gives 
m a;(x) m 

X - r --X; E r'tKer a; C Ker a. 
i=l a;tx,) i=l 

Hence 
m a;(x) m 

a(x- r --x;)=a.(x)- I: 11.;a.;(x)=0. 
i=l a;(x,) i=l 

This finishes the proof of this lemma. 

1.3.3 THEOREM: Xis a Hamel basis for L (X). 

PROOF: As mentioned above it is enough to prove condition (HB2). So let 
F: Cp(X) 1R be a continlJOUS linear functional. There is a finite subset P of X and 
cbO such that F(<O,P,O>)c(-1,1). Suppose P={x 1, ... ,xn}. We claim that 

n7=i Ker ~x; c Ker F. Indeed let f E n7=1Ker~v Then for every i 5'n, f (x;) =0. Let 
£>0. Clearly (1/E)'[E <0,P, O>, so that F((l/E)'/)c(-1, 1) or, equivalently 
F(/)c(-E, £).Since£ was arbitrary we have F(/)=0 which implies fE KerF. Now 
by lemma l.3.2, FE span { ~x 1 , ••• , ~x. }. 

We can define a topology on L (X) as follows. For f E C (X) let L (/): L (X) 1R be 

defined by L(f)(F)=F(f). The topology on L(X) is the weakest topology which 
makes all L (f) (f E Cp(X)) continuous, i.e., the topology which has as a subbase the 
family, 

{L(f)- 1(U) :f E C(X) and U open in JR}. 

With this topology, L (X) is called the topological dual of Cp(X). Clearly L (X) is then 
a locally convex topological vector space. 

1.3.4 LEMMA: Let f E Cp(X). Then L (/): L (X) 1R is the unique continuous 
linear functional that extends f 

PROOF: That L (f) is a continuous linear functional is obvious. For x EX we have 
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L (j )(x) = x (j) = f (x ), so that L (j) extends f. Since X is a Hamel basis for L (X) it fol-
lows that L (j) is unique. 0 

In theorem 1.3.3 we derived that X is algebraically a special subset of L (X). Topo-
logically we have 

1.3.5 PROPOSITION: Xis homeomorphic to X as subspace of L (X), and X as a 
subspace of L (X) is closed in L (X). 

PROOF: First of all we show that X is homeomorphic to X as subspace of L (X). Let U 
be open in X and x e U. Let f e C (X) be a Urysohn function such that f (x) = I and 
f(X\U)={0). By lemma 1.3.4, f extends to a continuous linear functional 
L (j): L (X) R Let V =L (j)-1 (0, 00). Then V is open in L (X) and x e V nX c U. 
Now let V be open in L (X) and let x e V nX. There are Ji, ... , fn e Cp(X) and 

U I, ... , Un open in JR with XE n':=1L(JS1(U;) CV. Then XE n'/=1fT1(U;) CV nX. 
We conclude that X is a subspace of L (X). 

Second we show that X as subspace of L (X) is closed in L (X). To this end let 
Fe L (X)\X. By theorem 1.3.3 there are x 1, ••• , Xn e X and A.1, ••• , "-n e JR such that 
F = r.7 =I A.;x; with x; ;tx1 for i ;c j. 

Case I: n 2 and A; ;c0 for all i 5on. 

For each i 5, n find V; open in X and U; open in JR such that V; n V1 = 0 (i ;c j), x; e V;, 

A; e U; and 0 ¢ U;. For each i 5o n there is a Urysohn function /;: X IR such that 
J;(x;) = 1 and J;(X\ V;) = 0. By lemma 1.3.4, /; has a continuous linear extension 

L (J;): L (X) claim that Fe n';=1L (J;)-1 (U;) cL (X)\X. Indeed for each i 5on, 

n n 
L (J; )(F) = .r. "-JL (J;)(Xj) = r. A.j/;(Xj) = A; E U; 

J=I J=I 

and for x e X there is i 5o n with x ¢ V; (since n 2) so that L (J; )(x) = J;(x) = 0 ¢ U;. This 

implies X n n;'=1L (J;)-1 (U;) =0, which proves case I. 

Case 2: F =A.ix 1 • 

Since F ¢X, t..1 ;c 1. Hence there is U open in IR with t..1 e U and 1 ¢U. Let f= 1 and 
L (f ): L (X) IR be its continuous linear extension. We claim that 
Fe L (j)-1(U) c L (X)\X. Indeed 
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and for x E X we have L (j )(x) = f (.r) = I ¢ U. This proves case 2 and the proposition. 

The following proposition will be of importance in the last section of this chapter. 

1.3.6 PROPOSITION: Let X and Y be spaces. Then Cp(X)-Cp(Y) if and only if 
L(X)-L(Y). 

PROOF: First suppose <j>: Cp(X) Cp(Y) is a linear homeomorphism. Define 
\jl: L (X) L (Y) by \jl(F) = F O <j>- 1• Then \j/ is obviously a well-defined linear function. 
To see that \j/ is continuous notice that for/ E Cp(Y) and Uc IR open we have 

is open in L (X). 
Define 0: L (Y) L (X) by 0(G) = G O <j>. In the same way we can prove that 0 is a 

well-defined linear mapping: As is easily seen 0 = \j/-l, so that 'I' is a linear homeomor-
phism. 

Second, suppose \j/: L (X) L (Y) is a linear homeomorphism. Define 
<j>: by <j>(j)=:(L(/) 0 'l'-1)/Y. Then <I> is obviously a well-defined linear 
function. In order to prove that <I> is continuous at 0 let P c Y be finite and E > 0. For 
every y E Y there are x{, •.. , x;',Y E X and 11.{, ..• , 11.{Y E JR\ ( 0} such that 

Let N=max(:E1i:,1 1A.;l:yEP}, let O=EIN and let Q=(x;:yEPand i:5:ny), We 
claim that<!>( <0, Q, O>) c <0, P, E>. Indeed, if f E <0, Q, O> we have for y E P 

ny ny 

I <j>(/)(y) I = I (L (/) 0 'l'-l )(y) I = IL(/)( :EA; x{) I = I LA.{/ (x{) I 
i=I i=l 

ny ny 

::;; L IA.;11/(x;')I <OL IA.{I :5:E 
i=I i=I 

By linearity of <I> we conclude that <I> is continuous. 
Define 0: by 0(g)=(L(g) 0 \j/)IX. In the same way we can prove 

that 0 is a well-defined linear mapping and as is easily seen, 0 = <j>- 1 so that <I> is a linear 
homeomorphism. 0 

We define L • (X) similar to L (X) using c;(X) instead of Cp(X). All observations 
made above for L (X) are also valid for L • (X). 
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REMARK: The results in this section are often used in the literature on function 
spaces with the topology of pointwise convergence (for example [41] and [44]). We 
were not able to find an explicit reference for their proofs, so we provided them our-
selves. For more information on dual spaces of topological vector spaces we refer to 
[45]. 

§1.4. Supports and the topology of pointwise convergence 

When dealing with continuous linear functions between function spaces endowed 
with the topology of pointwise convergence, it is possible to give a precise description 
of supports (cf. lemma l.4.1). 

Let X and Y be spaces, let (j>: Cp(X) Cp(Y) (resp. (j>: c;(X) c;(Y)) be a con-
tinuous linear function and let ye Y be fixed. Notice that the function 'lfy: Cp(X) JR 
(resp. 'lfy: c;(X) JR) defined by 'l'y =Sy 0 <p is continuous and linear. So 'l'y e L(X) 
(resp. 'lfy e L * (X)), the dual of Cp(X) (resp. c;(X)). For every f e C (Y) (resp. 
/ e C*(X)) we have 'lfy(f)=<l>(f)(y). By theorem 1.3.3 there are for 'l'y ;t0, 
x 1, ... , Xn e X and A.1, •.. , A.n e JR\ {0} such that 'l'y = I:f =I A.;x; (notice that whenever 
<I> is a bijection, 'lfy ;t 0 for every y e Y). This means that for every f e C (X) (resp. 
/ e C*(X)), (j>(/)(y)=I:f=1A.;/(x;). Then 

1.4.1 LEMMA: supp(y)= {x1, ... , Xn}. 

PROOF: Let x e supp (y) and suppose that x ¢ {x 1, ... , x,. ). Since X \ {x 1, ... , Xn} is 
open, there is /e C(X) (resp. /e C\X)) such that /(x;)=0 for every i~n and 
(j>(/)(y) ;t0. But (j>(/)(y) =I:? =I A.;/ (x;) =0. Contradiction. 

Now let i n be fixed and U an open neighborhood of x; such that 
Un{x1:j~nandj;ti}=0. Let/eC*(X) be a Urysohn function with/(X\U)=0 
and f (x;) = 1. Then <p(/)(y) = I:? =I A.;/ (x;) = A.; ;t0. 

From lemma l.4.1 we have the following corollary of which part (b) simplifies the 
notion of effectiveness in the case of the topology of pointwise convergence 

1.4.2 COROLLARY: Let X and Y be spaces, and let (j>: (resp. 
<p: c;(x) c;(Y)), be a continuous linear function. Then for y E r, 

(a)Jor every ze supp(y), there is A.2 e JR such that <p(/)(y)=I:2.supp(y)Azf(z), 
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for every fE C(X) (resp.f E c*(X)), and 
(b) if f,g E C(X) (resp. f, g E C'(X)), coincide on supp(y), then 

<P<f )(y) = !p(g )(y). 

Another useful property of supports with respect to the topology of pointwise con-
vergence is given in the following: 

1.4.3 PROPOSITION: Let X and Y be spaces and let !p: Cp(X) Cp(Y) (resp. 
!p: c;(X) c;(Y)) be a linear homeomorphism. Then for every x EX we have 
XEsuppsupp(x) (in other words, for every xEX there is yEsupp(x) such that 
x E supp (y)). In particular supp Y =X. 

PROOF: Let x E X and suppose x ¢ supp supp (x). Since supp supp (x) is finite (lemma 
1.4.1), there is a Urysohn function fEC*(X) such that f(x)=l and 
f (suppsupp(x))=O. By corollary 1.4.2 (b) it follows that !p(f)=O on supp(x) and 
again by corollary 1.4.2 (b) it then follows thatf(x)=!p-1(!p(f))(x)=0, and we arrived 
at a contradiction. 

1.4.4 PROPOSITION: Let X and Y be spaces and let !p: Cp(X) Cp(Y) ( resp. 
!p: be a continuous linear surjection. Then supp: Y {0} is 
LSC. 

PROOF: This follows from corollary 1.2.15 (a) (resp. corollary 1.2.16), lemma 1.2.7 
and the remark following lemma 1.2.7. 

In section 1.5 we need the following 

1.4.5 LEMMA: Let X and Y be normal spaces, and let !p: Cp(X) Cp(Y) be a con-
tinuous linear surjection. Then for each closed and bounded K cX, the set 
L = {y E Y : supp (y) c K) is closed and bounded in Y. 

PROOF: By proposition 1 .4.4, supp is LSC hence L is closed. If L is not bounded, L 
contains a closed discrete subset lYn: n E 1N}. For each n E JN, let 
tn = n-:E,esupp(y.) I A.2 I. Then tn > 0. Let g EC (Y) be such that g <..vn) = tn. Since <P is a 
surjection, there is f E C (X) such that !p(f) = g. Since K is bounded, there is c E IR such 
thatf(K)c[-c, c]. 

Let n e JN be such that n > c. Then 
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I <J>(f)(y11 ) I= I Lzesupp(y.)"-zf (z) I 

Lze supp (y.) I "-z I · If (z) I 

C'Lzesupp(_v.) I A.z I 
< tn. 

Contradiction. This proves the lemma. 0 

If we consider function spaces c;(X) we have the weaker 
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1.4.6 LEMMA: let X and Y be metric spaces and let <j>: c;(X) c;(Y) be a con-
tinuous linear surjection. Then for each compact K cX, the set 
l={yE Y:supp(y)cK} is compact. 

PROOF: By proposition 1 .4.4, supp is LSC, hence L is closed in Y. For f E c* (K), let 
J e c* (X) be an extension off. Define 

If g E C\X) is another extension off, then J and g coincides on suppl, hence by 
corollary 1.4.2 (b) <'?(!) = <j>(g) on L. This implies that 8 is well-defined. It follows that 8 
is a continuous linear function. By corollary 1.2.23 we then have that 0 considered as a 
function from c:(K) to c:(l) is also continuous. We claim that 8 is surjective. Let 
g E c*(l) and let g E c*(Y) be an extension of g. Since <j> is surjective, there is 
h E c* (X) with <j>(h) = g. Let J=h IK. Since h ext...nds f, 8([) =g, so 8 is a surjection. 
By [47, Prop. 7.6.2] we have for a space Z that c:(Z) is separable if and only if Z is 
compact and metrizable. This implies that c:(K) is separable and hence c:(l) is 
separable. Sol is compact. 

The proofs of lemma 1.4.5 and lemma 1.4.6 are different and not reversible. 

REMARK: Jan Pelant provided us with the description of supports when dealing 
with the topology of pointwise convergence. We were informed that Arhangelskii 
knew of this description of supports. 

§1.5. First applications 

Let X and Y be spaces. We define X and Y to be LP. ID or lb-equivalent whenever 



32 Tools and first applications 

Cp(X) and Cp(Y), C 0(X) and C 0(Y) or C&(X) and C&(Y) are linearly homeomorphic. 
We say that a topological property :Pis preserved by lp, l,o or lb-equivalence (resp. t;, 
lo or t;-equivalence) if for lp, l,o or lb-equivalent (resp. 1;, lo or ,;-equivalent) spaces X 
and Y we have X has property :P iff Y has property :P. In this section we give some to-
pological properties which are or which are not preserved by Ip, l,o or lb-equivalence 
(resp.,;, lo or ,;-equivalence) and we state some questions. 

1.5.l THEOREM [l]: The following topological properties are preserved by Ip-

equivalence: 
(a) pseudocompactness, 
(b) compactness, and 
(c) a-compactness. 

PROOF: Let X and Y be Ip-equivalent spaces. 
By corollary 1.2.9 and L2.15 (a) we have that pseudocompactness is preserved by 

Ip-equivalence. 
For (b) and (c) we use that by proposition 1.3.6 L (X) and L (Y) are linearly 

homeomorphic. For every n e IN define hn: xn x [-n, n in (X) by 

n 
hn(X1, ... , X,r, a,,, .. , U,r)= _r a;x;. 

1=! 

By proposition 1.3.5, X is homeomorphic to X as subspace of the topological vector 

space L(X), hence hn is continuous. Furthermore L(X)=U~=l hn(Xnx[-n, nt). 
Suppose X is a-compact. Then we have that L (X) is a-compact, and hence that L (Y) is 
a-compact. By proposition 1.3.5, Y is closed in L (Y) so Y is a-compact. This finishes 
the proof of (c). When X is compact we again have that Y is a-compact and hence 
Lindelof. Furthermore by (a) we have that Y is pseudocompact. Since each Lindelof 
space is normal, and each normal pseudocompact space is countably compact, we have 
that Y is a Lindelof countably compact space, hence Y is compact. 

This theorem and the proof of (b) and (c) are due to Arhangelskii. It follows that for 
normal spaces countable compactness is preserved by LP-equivalence. Whether this is 
true for all spaces is still an open question. By the observations in section 1.2 it was 
possible to give an easier proof of (a), than the original one. For (b) and (c) this is not 
possible unless we assume that in X and Y every closed and bounded subset is compact. 
For such spaces we will now derive in theorem 1.5.2 a result in the same spirit as the 
previous one. 
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For a space X let X(X) be the family of all compact subsets of X. We regard X(X) as 
a poset under inclusion. Then a subset ;J3 is cofinal in X(X) whenever for each Ke X(X) 
there is Be 53 with K cB. The cofinality of X(X) is the cardinal defined by 

cof X(X) = min { 153 I : 53 is cofinal in X(X)} 

(cf. [21 ]). A space Xis said to be hemicompact whenever cof X(X) ro. 

1.5.2 THEOREM: The cofinality of the family of compact subsets of a space is 
preserved by ip-equivalence in the class of spaces in which every closed and bounded 
subset is compact. 

PROOF: Let X and Y be Ip-equivalent spaces in which every closed and bounded sub-
set is compact and let q>: Cp(X) Cp(Y) be a linear homeomorphism. Without loss of 
generality we assume cof X(X) ~cof X(Y). Let {K;: i e /} be cofinal in X(X) such that 
II I =cofX(X). By corollary 1.2.15 (b) and the assumption on Ywe have that suppK; is 
compact for every i e I. It suffices to prove that {suppK;: i e I} is cofinal in X(Y). For 
this let Ac Y be compact. Again by corollary 1.2.15 (b) and the assumption on X, 
suppA is compact in X. So there is i e I with suppA cK;. Then by proposition 1.4.3, 
Ac supp supp Ac suppK;. 

It remains open whether in general the cofinality of the family of compact subsets is 
preserved by ip-equivalence. The results in section l .4 allow us to obtain stronger 
results for an even more restricted class of spaces. 

1.5.3 THEOREM: Let X and Y be normal spaces and let (j): Cp(X) Cp(Y) be a 
continuous linear surjection. 

(a) If Xis pseudocompact, then Y is pseudocompact. 
If moreover in Y every closed and bounded subset is compact, then 

(b) if Xis compact, then Y is compact, 
(c) if Xis CI-compact, then Y is CI-compact, and 
(d) cof X(Y) cof JC(X). 

PROOF: For part (a) we have by lemma 1.4.5 that the set {y e Y : supp (y) c X} = Y is 
pseudocompact whenever X is pseudocompact. Part (b) follows from part (a) and the 
assumption on Y. 

For (c) let X=U;=!Xn with for each nelN, XncXn+l and Xn compact. Let 
Yn ={ye Y: supp (y) cXn). By lemma 1.4.5 and the assumption on Y we have that Yn 
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is compact. Since foreachy E Y, supp(y) is finite we also have that Y=U;; 1Yn-
For (d) let {Ki: i E /) be cofinal m X(X). For each i E / let 

Li= {y E Y: supp (y) c Ki). Then Li is compact. We claim that {L;: i E /) is cofinal in 
X(Y). Let Ac Y be compact. Then by corollary 1.2.15 (b), suppA is compact. Hence 
supp Ac Ki for some i E /. This implies A 

By using lemma 1.4.6 instead of lemma 1.4.5 we obtain for metric spaces the fol-
lowing 

l.5.4THEOREM: Let X and Y be metric spaces and let <j>: be a 
continuous linear surjection. Then 

(a) if Xis compact, then Y is compact, and 
(b) if Xis a-compact, then Y is a-compact. 

1.5.5 COROLLARY: Compactness and a-compactness are preserved by /,;-
equivalence in the class of metric spaces. 

The proof of theorem 1.5.3 (d) makes use of corollary l.2.15 (b). Since we do not 
have such a result for continuous linear functions between function spaces c;(X) we 
cannot copy the proof of theorem 1.5.3 (d) to this case. 

Now that we have the above theorems for ip and /,;-equivalence, we become in-
terested whether the same result hold for "° and /,~-equivalence (resp. /,b and /,;-
equivalence). First we deal with"° and /,~-equivalence. 

1.5.6 LEMMA: Let X and Y be spaces and let <j>: C 0 (X) C 0(Y) (resp. 
<j>: C~ (X) C~ (Y)) a continuous linear function. Then for every compact B c Y, suppB 
is compact. 

PROOF: There are non-empty compacta C 1, •.. , C11 in X and open U 1, •.• , U11 in Y 
such that 

n 

OE f\A(Ci, U;)c<j>-1(A(B, (-1, I))). 
i;l 

Let C=U;;1C;. Then C is compact. We claim that suppB cC. To the contrary sup-
pose there are y E B and x E supp (y )\C. Since X\C is a neighborhood of x and 
x E supp (y) there is f E C (X) (resp. f E c* (X)) such that f (C) = 0 and <j>(f )(y) ;tQ. By 

linearity of (jl we may assume (jl(f)(y)= I. Since OE ,<1=1A(C1, U;) we have 
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Oe n~=1U;, so/e n~=1A(C;, Vi). This gives <l>(f)eA(B, (-1, 1)) which implies that 
<p(/)(y) e (-1, I). Contradiction. We now have suppB c C, so that suppB c C, which 

implies that supp B is compact. o 

1.5.7 THEOREM: Pseudocompactness is preserved by Lo-equivalence. Compact-
ness is preserved by lo and Lo-equivalence. 

PROOF: Let X and Y be Lo-e4uivalent spaces By corollary 1.2.9 and 1.2.15 (a) we have 
that pseudocompactness is preserved by Lo-equivalence. 

Let <p: C o(X) C 0 (Y) (resp. <p: Co (X) Co (Y)) be a linear homeomorphism. Sup-
pose Xis compact. By lemma 1.2.5 and corollary 1.2.15 (a) (resp. corollary 1.2.16), 

supp X = Y, and hence by lemma 1.5.6, Y is compact. 0 

The proof that pseudocompactness is preserved by Lo-equivalence cannot be copied 
for Lo-equivalence since the proof of corollary 1.2.9 makes use of corollary 1.2.15 (b). 
From theorem 1.5.7 and corollary 1.2.21, theorem 1.5.1 (a) and (b) follow for the class 
of spaces in which every closed and bounded subset is compact. 

For tb and Lb-equivalence we ·have 

1.5.8 THEOREM: Pseudocompactness is preserved by Lb and Lb-equivalence. 

PROOF: Let X and Y be Lb-equivalent (resp. Lb-equivalent) spaces and Jet 
<1>: Cb(X) Cb(Y) (resp. <p: Cb(X) c;(Y)) be a linear homeomorphism. Suppose Y is 
pseudocompact and X is not pseudocompact. Since <0, Y, 1 > is open in Cb(Y) (resp. 
Cb(Y)) there are fi, ... , fn in C (X) (resp. c* (X)), bounded A 1, ••. , An in X and 

n -
Let A =U;=1A1. Then A is bounded. Since Xis not pseudocompact there is x e X \A. 
Let/ e c*(X) be a Urysohn function such that /(A)=O and /(x)= 1. Since f*0, 
<l>(f) * 0. Let y e f be such that <p(/ )(y) * 0. Define g: X JR by g = fl<l><f )(y ). Since 

n 
g (A)= {0 }, g e ni=l </;,A;,£;>, so <l>(g) e <0, Y, I>. However <l>(g)(y) = 1. Contrad-
iction. o 

Question 1: Is pseudocompactness preserved by Lo-equivalence? Is compactness 
preserved by tb or ,;-equivalence? Are a-compactness or the cofinality of the family of 

compact subsets of a space preserved by lo, lo, tb or 1;;-equivalence? 
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From now on in this section we only deal with function spaces endowed with the to-
pology of pointwise convergence. 

It is well-known that cardinality and density are preserved by LP-equivalence [2]. By 
the above techniques, we can give an alternative proof which is also valid for ,;-
equivalence: 

1.5.9 THEOREM: The following cardinal invariants are preserved by LP-

equivalence (resp. ,;-equivalence), 
(a) cardinality, and 
(b) density. 

PROOF: Let X and Y be LP-equivalent (resp. ,;-equivalent) spaces and let 
qi: Cp(X) Cp(Y) (resp qi: c;cx) be a linear homeomorphism. For (a), no-
tice that if IX I =n, the algebraic dimension of Cp(X) is equal ton, hence we have that 
I YI =n. So without loss of generality we assume No$ IX I$ I YI. By lemma 1.4.l, 
I suppX I~ IX I, so by proposition 1.4.3, I YI~ IX I. We conclude that IX I= I YI. 

For (b) notice that if d (X) is finite, then since cardinality is preserved by Lp-

equivalence, d(X)= IX I= I YI =d(Y). So without loss of generality we assume 
No $d(X) $d(Y). Let D cX be such that D =X and ID I =d(X). Let E =suppD. By 
lemma 1 .4.1, I£ I ID I. To prove that d (X) = d (Y) it suffices to prove that E = Y. By 
proposition 1.4.3, lemma 1.2.6 and corollary 1.2.15 (a) (resp. corollary 1.2.16), 

Y = supp X = supp D c supp D = E c Y. 

We conclude that density is preserved by LP-equivalence. 

As a corollary we see that separability is preserved by Lp and ,;-equivalence so 
Lindelofness is preserved by LP and ,;-equivalence in the class of metric spaces. 

Question 2: Are density or cardinality preserved by f-o or ,;-equivalence (resp. Lb or 
,;-equivalence)? 

1.5.10 THEOREM: Local compactness is preserved by iµ•equivalence in the class 
of paracompact first countable spaces. 

PROOF: Let X and Y be LP-equivalent paracompact first countable spaces. Suppose X 
is locally compact and Y is not locally compact. Since Xis a locally compact paracom-
pact space, there is a locally finite open cover {X5 : s ES) of X such that for each s ES, 
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Xs is compact. Let y e Y be a point without compact neighborhood and let [Un : n E IN) 
be a decreasing neighborhood base at y. Then for each 11 E IN, U11 is not compact. 

By lemma 1.2.10 and corollary 1.2. 15 (a) there is k E IN and ( s 1, ... , sd c S such 

that supp Uk cU1=iXs;. Let l =U1=iXs;· Then l is compact. 
We now have by lemma 1.2.6 and corollary 1.2. 15 (a), supp Uk c supp Uk cl so by 

proposition 1.4.3, Uk c supp supp Uk c suppl. Since each countably compact 
paracompact space is compact [24, Th 5.1.20], we have that Uk is not countably com-
pact. Since each paracompact space is normal [24, Th 5.1.18], Y is normal, and since 
each pseudocompact normal space is countably compact [24, Th. 3.10.21], Uk is not 
pseudocompact. Hence by normality of Y, Uk is not bounded in Y. However l is com-
pact so by corollary 1.2.15 (b), suppl is bounded in Y. 

Theorem 1.5.10 is due to S.P. Gulko and O.G. Okunev [2]. Their proof was by dif-
ferent methods than ours. In section 2.4 we show that the first countability assumption 
is essential in this result. 

Question 3: ls paracompactness essential in theorem 1.5. 10? 

Question 4: Does theorem 1.5. 10 hold for 4J or th-equivalence? Does it hold for,;, 
t~ ort;-equivalence? 

Before we state our next theorem we first need the following 

1.5.11 LEMMA: Let X and Y be spaces and <j>: Cµ(X) Cp(Y) a homeomorphism. 
Suppose that <Jn)n • IN is a sequence in Cµ(X) such that f 11 converges pointwise to a 
discontinuous function f E IRX. Suppose g: Y JR is an accumulation point of the set 
{ <l>lfn) I n E IN}. Then g is not continuous. 

PROOF: Since Un In E IN) is closed and discrete in Cµ(X) we have {<l>(fn) In E IN} is 
closed and discrete in Cµ(Y). 0 

For a space X let x< 1> = {x e X: x is an accumulation point of X). We have the fol-
lowing 

1.5.12 THEOREM: let X and Y be Ip-equivalent spaces which are both normal 
and first countable. Then x<O is countably compact if and only if yO> is countably 
compact. 
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PROOF: Suppose xO) is not countably compact and y(ll is countably compact. Since 
x<IJ is not sequentially compact, there exists a closed discrete set F = {xn I n E IN} in 
x<1J. For every n E IN let { U'J I j E IN} be a decreasing open base at Xn and fJ a 
Urysohn function such that fJ(x,i) = I and fJ(X \ UJ) = 0. Then fJ--') Xx. pointwise, 

where Xx. is the characteristic function of Xn· Notice that Xx,, is discontinuous. Further-

more let <p: Cp(X)--') Cp(Y) be a linear homeomorphism and let gJ = <l>(fJ). 

CLAIM: For every y E Y and n E IN, the set {gJ(y) I j E IN} is bounded in JR. 

Suppose not. Then there are y E Y and n E IN, such that without loss of generality for 
every k E IN there is h E IN, with g'}k (y)~2k. The function J=I.'f=1Tkf'jk E Cµ(X), so 

<p(/)=I.'f=1Tkg'}k E Cp(Y). But then we have a contradiction since 

q>(/ )(y) = I.'f =I Tk g'}k (y) = oo. 

For every y E Y, let Ay be compact in JR such that {g'}(y) I j E IN} cAy, Then 
TTyeYAy isacompactsubsetofJRr. Since {gJ ljEIN)cTTyeYAy, {gJ ljEIN} has an 
accumulation point ern. By lemma 1.5.11, an is discontinuous, say at Yn. Notice that 
Yn E yO). Since yO) is sequentially compact, without loss of generality we may assume 
that there is ye Y such that Yn--') y. Let { Vn I n e IN} be a decreasing open base at y. 
Without loss of generality Yn e Vn. 

Since Y is first countable, for every n e IN there is a sequence (yVk in Vn such that 
yf--') Yn and 

(*) 

Let K =UnelN UkelN {Yn, yf) u {y }. Then K is compact. Indeed, let 1J be an open cov-

er of K. There is Ve 1J with ye V. There is no E IN such that ye Vn 0 c V. Then 

Un2'no ukeJN!Yn, Yn u {y} cV. Since Un<no ukeJNlYn, YZ) is compact, we are 

done. 
Since K is compact, we have by corollary 1.2.15 (b) that suppK is bounded in X. 

Since F is closed and discrete and X is normal, F is not bounded. This implies that there 
is n e IN such that Xn ¢ supp K. Then there is j o e IN such that UJ O n supp K = 0. So for 
every z e Kand j ~j0 , fJ and the zero function on X are equal on supp(z). Then by 
corollary 1.4.2, we have that gJ( z) = 0 for every j ~j O and z E K. But then for every 
k e IN we have that CTn(yZ) =0 and CTn(Yn) =0, which gives a contradiction with (*). 
This completes the proof of the theorem. 

In section 2.4 we show that the first countability assumption in theorem 1.5.12 is 
essential. The question remains whether normality is essential. 
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Our last result in this section deals with the class of metric spaces. Let X be a metric 
space and U a family of subsets of X. We define diam U to be sup {diam U: U e U}. 
We first need the following 

1.5.13 LEMMA: Let X be a metric space which is not completely metrizable and 
let (Un: n e JN} be a collection of open covers of X such that for each n e JN, 
diam Un < l / n. Then there is a .strictly increasing sequence Un>nelN of natural numbers 

and for each n e JN, there is Un e U;. such that Un+I c U,i, and moreover n;=l Un =0. 

- -PROOF: Let X be the completion of X. For each U e Un, there is Vu open in X such 
that diam Vu< 3/n and Vu r.X= U. Let Vn =U(Vu: U e Un). Then Vn is open in X 

and X c Vn. So V = n;=I Vn is a G6-subset of X such that X c V. Since Xis not com-
pletely metrizable and Vis completely metrizable ([24, Th. 4.3.23]), there is x e V \X. 

CLAIM: There is a strictly increasing sequence Un)ne!N of natural numbers and there 
are for each II e JN, Un e U;. such that x e Vu. and Vun+i c Vu •. 

Let i 1 = I and let U I e U1 be such that x e Vu 1 • Let m > 1 and suppose i 1, ••• , im-1 

and V,, ... , Um-I are found. Let 6=d(x,X\Vum_1 ) and let im>im-1 be such that 

llim<613. There is UmeU;m such that xeVum• Since diamVum~3lim<6 and 

XE Vum' Vum C Vum-1" This proves the claim. 

Since diam Vum (m n:=l Vum = (x). This implies 

("')Um= nvu r.X=0. 
m=I m=I m 

Furthermore for m e 1N, we have 

This proves the lemma. 

Recall from section 1.2 that for metric spaces X and Y and a linear function 
cp: C (X) C (Y) we defined for U cX, the· set Tu= (ye Y: supp (y) ri U :1:-0}, and for 
a family U of subsets of X the collection Tu= [Tu: U e U}. We now state our last 
theorem in this section. 
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1.5.14 THEOREM: Let X and Y be metric spaces and let <j>: Cp(X) Cp(Y) be a 
continuous linear surjection. If X is completely metri::.able, then Y is completely metri::.-

able. 

PROOF: Suppose X is completely metrizable and Y is not completely metrizable. 
Since X and Y are metric spaces, by lemma 1.2.11 there are locally finite open covers 
Un of X and 1J11 of Y, (n E IN), such that 

(1) diam Un< l, diam 1Jn < l, U11 +1 refines U,,, and 
n n 

(2) each VE 1J11 intersects only finitely many elements of Tu". 

By lemma 1.5.13, we may assume that for each n E IN, there is Vn E Vn such that 

n;=I V,, =0 and for each n E IN, Vn+I c V11 • By (2), for each n E IN, there is a finite 
subset { Uf, ... , U'/n" J of U,, such that 

(3) for U EU,,, V,, n Tu :;t:0 if and only if U E {U't, ... , U'/n" }. 

We claim that for each n E IN, 
mn+l mn , 

(4) U U"+l c UV". 
}=I 1 )=I 1 

Indeed, since Un+I refines U,,, there are for each j-5,m11 +1, U1E U,, such that ur1 cU1. Since Vn+I cV,,, and Vn+l nTur1 :;t:0, we have V,,nTuj:;t:0. So by (3), 
m 1 m 

U1 e {U7, ... , U'/nn ). This gives U ,:~ U'J+I c U ,:1 U'J. This proves (4). 
11ln 

Notice that by (3), for every n E IN, supp V,, cUJ=I UJ. For each n e IN, lety11 E V11 • 

Then 

(5) supp(y11 )cUUJ. 
}=I 

Let K = u;=1 supp (y11 ). Since K is a closed subset of X, K is complete. 

CLAIM: K is compact. 

Since K is complete, it remains to prove that K is totally bounded. To this end it 

suffices to prove that u;=l supp (y11 ) is totally bounded. Let e > 0 and let j E IN be such 
that 1/j < e/2. Fork $m1, let zk EU{. Since diam U{ < 1/j, U{ cB(::.k, e). Then by (4) 

and (5), u;=,supp(yn)cu:~1B(zk, £). Since u~=lsupp(y,.) is finite, we are done. 
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By lemma 1.4.5, L == {y E Y: supp (y) c K) is a closed and bounded subset of Y, 

hence L is compact. Since n; =Ii:\== 0, (y11 )nelN c L is a sequence without convergent 
subsequence. Contradiction. This proves the theorem. 0 

1.S.1S COROLLARY: Complete metrizability is preserved by lp-equivalence in 
the class of metric 

In [52), Uspenskii proved that for lp-equivalent spaces X and Y, we have that if Xis 
metric, then Y is a O"-metrizable paracompact space, where cr-metrizable means a count-
able union of closed metrizable subspaces. In view of theorem 1.5.14, one could con-
jecture that if X is moreover completely metrizable, then Y is also Cech-complete. This 
is however not the case. In example 2.4.10 we give two Ip-equivalent spaces X and Y 
with X countable metric locally compact and Y paracompact cr-metrizable but not 
Cech-complete. 

In general if <p: c;(X) c;(Y) is a continuous linear surjection, for metric spaces X 
and Y, the proof of theorem 1.5. I 4 does not work. By example 1.2.12 we cannot make 
use of a lemma such as lemma 1.2.11. 

Most of the proofs in this section concerning the topology of pointwise convergence 
depend strongly on corollary 1.2.15 (b). Since we do not have such a result for continu-
ous linear functions between function spaces c;(X), we cannot copy these proofs. The 
question remains whether the results for lp-equivalence are also valid for t;-
equivalence. Of course there are many more questions to ask. We made a selection in 
this section and we did not have the intention to be complete. 

REMARK: For a recent survey on results obtained for lp-equivalence we refer to 
[2]. Theorem 1.5.12 can be found in [5] and theorem 1.5.14 can be found in [7]. As far 
as we know all other results in this section (except for theorems 1.5.1, 1.5.9 and 1.5.10) 
are new. 





CHAPTER2 

On the lp and to-equivalence of locally compact spaces 

The purpose of this chapter is to present isomorphical classifications of function 
spaces of some locally compact spaces endowed with the topology of pointwise con-
vergence and with the compact open topology. Since ordinals play an important role in 
the proofs of these classifications, in section 1 we derive some (well-known) properties 
of ordinals. Other important notions are derivatives of spaces and scatteredness. In sec-
tion 2 we will give the relevant definitions and present some preliminary results, for ex-
ample the theorems of Cantor-Bendixson and Sierpinski-Mazurkiewicz. In section 3 we 
prove some rather general results concerning linear homeomorphisms between certain 
function spaces. 

After these three sections we are in a position to present the first isomorphical 
classification. In section 4 we present a complete classification of the function spaces 
Cp(X) for separable metric zero-dimensional compact spaces X. It turns out that this 
classification is similar to the one Bessaga and Pelczynski gave in [IO] for the spaces 
C o(X). In section 5 we present a complete isomorphical classification of the function 
spaces Cp(X), for compact ordinal spaces. This classification is also similar to one for 
the spaces C 0(X) (viz. the one Kislyakov gave in [34)). In a sense, it is an extension of 
the classification found in section 4. In section 6 we present a classification of the 
spaces C o(X) and Cp(X) for non-compact cr-compact ordinal spaces X. Finally in sec-
tion 7 we present a complete isomorphical classification of the spaces C o(X) and Cp(X) 

for separable metric zero-dimensional locally compact spaces X. This result uses the 
classifications found in sections 4 and 6. 

We already proved that for spaces X and Y having the property that each closed and 
bounded subset is compact, Cp(X)-Cp(Y) implies C 0(X)-C 0 (Y). It turns out that in 
each of the classes mentioned above we also have the converse implication. Recall that 
the converse implication does not hold in general (cf. page 29). 
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§2.1. Ordinals 

Ordinals play an important role in this monograph, in particular prime components. 
In this section we will present some facts about ordinals, we will give the definitions of 
initial, regular and singular ordinals and of prime components, and we prove some 
(well-known) results. Most of these can be found in (48) and (35). For definitions of or-
dinals, cardinals and related topics which are not defined or proved in this section, we 
refer to (48), (35] and [32]. In this section, every greek letter denotes an ordinal, and 
finite ordinals will be denoted by norm occasionally. 

We begin with stating some basic properties of addition, multiplication and ex-
ponentation of ordinals. Recall that addition of ordinals is associative but not commuta-
tive. If a and 13 are ordinals, then a+ 13 <'! 13 and if a > 0, then 13 + a > l3. Observe that not 
always a+ 13 > 13 because 1 + ro = ro. Another important property of addition is the fol-
lowing: If a<'!l3, then there is exactly one ordinal y such that a=l3+y. We denote this 
number y by a - l3. With these properties one can easily derive the following 

2.1.1 PROPOSITION: Let a, l3, y and o be ordinals. Then 
(a) 13<yimplies a+l3< a+y, 
(b) 13<yimplies P+a~y+a, and 
(c) a <yand p < o implies a+p <y+o. 

Like addition, multiplication is associative but not commutative (for example 
2·ro=ro;t:ro·2). Now let a, 13, and y be ordinals. Then a·(l3+y)=a·P+a·y, but in gen-
eral (l3+y)·a;t:p•a+y·a (for example (l+l)·ro=ro;t:ro·2=l·ro+l·ro). One can now 
easily deduce that if a> 0 and p > y, then a·l3 > a·y, however, if p > y then P·a ;?!y·a 
(notice that 2·ro = l ·ro). 

We also have the following important 

2.1.2 PROPOSITION: Let a and P be ordinals. If a> 0 then there are ordinalsµ 
andv such that P=a·µ+v with v < a. 

2.1.3 COROLLARY: Let a, 13 and y be ordinals such that p < a·y. If a> 0 then 
there are ordinals µ and v such that 13 =a·µ+ v with µ < y and v < a. 

PROOF: By proposition 2.1.2 there are ordinalsµ and v such that P=a·µ+v with 
v < a. By proposition 2.1.1 (a) a·µ. So if µ y, then ~~a·µ~ a ·y, which is a con-
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tradiction. Hence µ < y. 

Exponentation of ordinals a and p is defined by transfinite induction as follows: 

a) If P=O then aP = I, 
b) if pis a successor, say p =y+ I, then aP =aY-a, 
c) if pis a limit ordinal, then aP = sup { aY: y < p). 

With this definition one can easily prove the following 

2.1.4 PROPOSITION: Let a, p andy be ordinals. Then 
(a) if a> 1 and p < y, then aP < aY, 
(b) if a> I then aP e:: p, and 
(c) aP+y =aP-aY. 

The following lemma will be used in section 2.5. 

45 

2.1.S LEMMA: Let a> I and p e:: I be ordinals. Then there are y$. p, I$. A.< a and 
O< a1 such that P=a1·A.+O. 

PROOF: By proposition 2.1.4 (a) and (b), p $.aP < aP+ 1, so the set A= {v: av> Pl is 
non-empty. Let µ = minA. Notice that 1 $. µ $. p + I. If µ is a limit ordinal, then 
p < aµ = sup {av : v < µ] implies there is v < µ with p < av. This is a contradiction, so 
µ =y+ I for some y. Since µ $. p + 1, y$. p. 

Since p <aY·a, by corollary 2.1.3, there is O< aY and A.< a such that P=a1·A.+O. If 
A.= 0, then p = o < a Y which is impossible, so A. e:: I. 

Let a be an ordinal. By a we denote the cardinality of ex. (i.e., a= I W (a) I) and we 
call a the power of a. An ordinal qi e:: ro is called an initial ordinal if qi is the smallest 
ordinal p such that = iji, i.e., y < qi implies y < iji. To every initial ordinal qi we assign 
the index i (qi) of qi as the ordertype of the set P (qi)= { 'JI < qi : 'JI is initial}. For example 
i(ro)=O and i(ro1)= I. Notice that for every initial ordinal qi, i(q>)$.q>. 

The following theorem easily follows from the above definitions. 

2.1.6 THEOREM ([35, Th. 3, p273]): If 'JI and qi are initial ordinals with 'JI< qi, 
then i ('JI)< i (<)>). 

As a direct consequence of this theorem we remark that to distinct initial ordinals 
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correspond distinct indices. So we may denote the initial ordinal <I> with index a by roa. 
Since i (<I>) <J>, it follows that a~ roa. The following theorem states that roa is defined 
for every ordinal a. 

2.1.7 THEOREM ([35, Th. 5, p273]): Every ordinal is the index of some initial or-
dinal. 

An a-sequence is a function <I> with domain W ( a), whose values are ordinals. If 
y < 13 < a implies <l>(Y) < <!>(13), then <I> is an increasing a-sequence. The limit 
lim1; < a<l>(/;J of an increasing a-sequence <I> is the ordinal sup {<!>(I;): I;< a}. We say 
that an ordinal A. is cofinal with a limit ordinal a, if A. is the limit of an increasing a.-
sequence <!>, i.e., A.= Jim<!>(/;). 

!; < a 

2.1.8 THEOREM ([35, Th. 8, p274]): /fA. is a limit ordinal, then~= limro1;. 
. !;<l 

2.1.9 THEOREM ([35, Th. 10, p274]): let A.> 0 be a limit ordinal. The smallest 
ordinal a such that A. is cofinal with a is an initial ordinal. 

If we now define for every limit ordinal A., the ordinal cf (A.) as the smallest a such 
that A. is cofinal with a, then by theorem 2.1.9, cf (A.) is an initial ordinal. For example 
cf (ro)=ro, cf (ro1)=ro1, cf (ro00)=ro and cf (ro001 )=ro1• Since A.=limpdl3, A. is cofinal 

with itself, hence cf (A.)~ A. 
This observation leads us to the following definition. If cf (roa) = roa, we call roa a 

regular initial ordinal or shortly regular. Otherwise it is called a singular initial ordi-
nal or shortly singular. For example, ro and ro 1 are regular and row is singular. This is 
standard terminology of course. 

We are going to prove that if roy is singular, then y is a limit ordinal (cf. theorem 
2.1.10). For that we first recall the following well-known fact: If m and n are cardinals 
which are not both finite, then m+n=max(m, n)=m·n. This allows us to derive some 
important corollaries. 

2.1.10 THEOREM ([35, Th. 9, p278]): If a is a successor, then roa is regular. 

PROOF: Let a=J3+1 and roy=cf(roa), That means there is an increasing roy-
sequence <I> such that lim1;«,>y<l>(/;)=roa, But then W(roo,)cU1;<0>yW(<J>(I;)). Notice 

that I W(<!>(I;)) I ~rop. So we have by the above remark and theorem 2.1.6 
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Wa = I W (Wa) I ::; I Us«•)y W (qi(~)) I ::;:Es< cay I W (qi(~)) I 

::; Ls< eoyWp = w.y·wp = Wmax(P. y) · 
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It follows by theorem 2.l.6 that a,::;max(j3,y), so a,::;y. Since roy=cf(Wa):;;wa, by 
theorem 2.1.6 y::; a and thus y= a. 

2.1.11 COROLLARY: If Wais singular, then a is a limit 

The next two results are going to be used in section 2.5. 

2.1.12 PROPOSITION: a.·wp =wpfor every O <a< wp. 

PROOF: By the remark on page 52, a.·wp =Wp, so we are done if we prove that a.·wp 
is initial. To this end, let o < a.·wp. By corollary 2.1.3 there are µ < wp and v < a such 
that o=a.·µ+v. So S=a·µ+v=max{a., µ, v}. Since a,µ, V < Wp it follows that 
S < Wp, and therefore a.·wp is initial. 

Notice that proposition 2.1.12 is not true for a.=wp. For example, w2 ;tW. 

2.1.13 PROPOSITION: Let a~ w be an ordinal. /Jy:;; a then al= a. 

PROOF: We prove this by induction on y. If y= 1 then it is a triviality, so let y > 1 and 
suppose the proposition is true for every o < y. 
Case I: y is a successor, say y= o + 1. 

Then by the the remark on page 52, al= a° ·a= a·a = a. 
Case 2: y is a limit ordinal. 

Then 

af = lim1l<ya.8 = IU1l<yW(a.6)i ::;rl)qlW(a.6 )1 

= r 6 qa°=fa=a 

(by the fact that y::; 

Notice that al need not be equal to a1. For example, o-}> > ro, but oiID = ro. 

2.1.14 EXAMPLE: There is a singular ordinal Wa such that a.=Wa. Indeed, define 
the sequence (13n) of ordinals inductively as follows: J3o=O and 13n+I =co~.· Let 

a= sup ( 13n : n E IN}. Then COa =limn< rol3n, hence cf ( COa) = co. Furthermore a= COa. 
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We now come to the following definition. An ordinal p is a prime component if it 
satisfies the following condition: 

If p = P +y for some ordinals Pandy, then y=0 or y= p. 

Examples of prime components are w and w1• The ordinals 3, w + I and w·2 are exam-
ples of ordinals which are not prime components. Furthermore, 0 and l are the only 
finite prime components. Since prime components play a very important role in this 
monograph and since their properties are not well-known, we prove all the properties 
that we need. 

2.1.15 THEOREM ([ 48, Th. I, p279]): An ordinal p is a prime component if and 
only if for every ordinal P < p, p = p + p. 

PROOF: Suppose that the ordinal p is a prime component, and let P < p. There is an 
ordinal y such that p=P+y(see page 50). From the definition of prime component it 
follows that y=0 or y= p. Since p < p, we have y= p. 

Now suppose that p satisfies the condition mentioned and that p = p +y. Assume 
y>0. By proposition 2.1.l (a) it follows that P<P+y=p. But then p=P+P and we 
may conclude th..it y= p and so p is a prime component. 0 

The next theorem plays an important role in section 2.6. 

2.1.16 THEOREM ([48, Th. 2, p278]): For every ordinal a> 0, there is an ordinal 
Panda prime component p >0 such that a=P+p, where P=0 or p:2:p. 

PROOF: Let a> 0 be an ordinal and A = { 't > 0: there is p such that a= p + 't}. Notice 
that -re A implies -r::;;a (because by proposition 2.1.1 (b) a=P+-r:2:t). Let p=minA 
(which exists because A is a non-empty subset of W (a) and the last set is well-ordered) 
and pick p such that a= p + p. 

We prove that pis a prime component. Indeed, suppose that p=µ+v, with v>0. 
Then a=P+(µ+v)=(P+µ)+v, so veA and thus v:2:p. Since µ+v:2:v (proposition 
2.1.1 (b)) we have v::;; p, so v = p and hence p is a prime component. 

Finally, if p < p, then by theorem 2.1.15, a = p + p = p, so in that case we can choose 
P=0. 

2.1.17 LEMMA ([48, lemma p282]): Let P be a set of prime components. Then 
supP is a prime component. 
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PROOF: Let 13=supP. We prove that 13 is a prime component. Let y< l3. Then there 
is a prime component p E P with y < p < 13. Let <> = 13 - p (see page 50). Then by theorem 
2.1.15, 

y+ 13 =y+(p + <>) = (y+ p) + <>= P +<>= 13. 

So by theorem 2.1.15, 13 is a prime component. 

By applying this lemma to the set P = { p a : p is a prime component}, we get the 
following important 

2.1.18 COROLLARY ([48, lemma p282]): let a be an ordinal. Then there is a 
largest prime component which is less than or equal to a. 

In the sequel we denote the largest prime component which is less than or equal to a 
given ordinal a by a'. 

2.1.19 LEMMA ([48, Cor. p305]): If a> 0 is an ordinal, then aco is the smallest 
prime component larger than a. 

PROOF: We first prove that aco is a prime component. So suppose aco=µ+v with 
V;,!:0 and V:;1!:aco. By proposition 2.1.l (a) and (b) it then follows thatµ, v < aco. By 
corollary 2.1.3 there are ordinals m, n, Yi and y2 such that µ=am +Yi, v=an +Y2, 
m, n < co, and Yi , Y2 < a. 

From proposition 2.1.1 (a) it follows that µ<am+ a and v <an+ a. Now with 
proposition 2.1.1 (c) it follows that aco=µ+v < am +a+an +a, so by the remark on 
page 50, aco < a(m + n + 2) < aco. This is a contradiction and we conclude that aco is a 
prime component. 

Now suppose that there is a prime component p such that a< p < aco. By corollary 
2.1.3 there are ordinals n and y with n finite and y < a such that p = an + y. Since p is a 
prime component, y= 0 and it follows that p = an. Since a< p, n > 1, so 
p = a(n - I)+ a. Since p is a prime component and O <a< p we arrived at a contradic-

2.1.20 COROLLARY: let a be an ordinal. Then there is n E IN and y< a' such 
that a=a'·n +y. 

PROOF: Since a'·w is the smallest prime component larger than a' (lemma 2.1.19), 
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o.' :5 o. < o.' ro. So by corollary 2.1.3 there are ordinals n < ro and y < o.' such that 
o.=o.'n +y. Since o.;,,:o.' we haven ;tQ, hence n e JN. 

The following theorem will often be used in this monograph. 

2.1.21 THEOREM ([ 48, Th. 1, p320]): An ordinal p > 0 is a prime component if 
and only if there is an ordinal µ such that p = c#. 

PROOF: Let p > 0 be a prime component. 

CLAIM: There is o. such that roa :5 p < roa+ 1 • 

Indeed, by lemma 2.1.5 there are o. :5 p, I :5 A.< ro and & < roa. such that p = roa.·A. + &. 
Thus roa. :5 p < roa.+ 1, and the claim is proved. 

Since p is a prime component and since the smallest prime component larger than 
roa. is roa. ·ro = roa. + 1 (lemma 2.1.19), it follows by the claim that p = roa. 

For the converse implication suppose there is v such that rov is not a prime com-
ponent. Let µ be the smallest among them. Suppose that µ = v + l. Then by lemma 
2.1.19 c# = ro v ·ro is a prime_ component, which is not true, hence µ is a limit ordinal. 
But then c#=sup{rov:v<µ}. Since for v<µ, rov is a prime component, by lemma 
2.1.17, c# is a prime component. Contradiction. 0 

The next lemma will be used in section 2.4. 

2.1.22 LEMMA: let a and j3 be ordinals such that a;;:: ro and a :5 j3 < o.ro. Then 
o.' :5 j3 < (o.')(JJ. 

PROOF: Since o. :5 j3 < o.ro, there is II e 1N such that o. :5 j3 <an. Furthermore by 
theorem 2.1.21 (o.')2 is a prime component, from which we may conclude that 
o.' :5 o. < (o.')2. Since o. < (o.')2, it is easily seen that o." < (o.')2" (by induction and the 
remarks on page 50). Whence (by proposition 2. I .4 (a)) o.' :5 j3 < ( o.')2n < ( o.')ro. 0 

2.1.23 THEOREM ([35, Th. 9, p274]): Every initial ordinal is a prime component. 

PROOF: Let qi be an initial ordinal. By corollary 2.1.20 there are n e 1N and y < qi' such 
that qi= qi' ·n + y. So by proposition 2.1.1 (a), qi' :5 qi < q>'·(n + l ). By theorem 2.1.21, there 
is an ordinal µ such that qi'= c#. Notice that µ;;:: I (since qi;;:: ro), so there is &, such that 
µ=I+&. By proposition 2.1.4 (c), ro1 +o = ro·ro6 and therefore 



§2.2. Derivatives and scattered spaces 51 

It follows that~= cj{ and since qi is initial, qi'= 

2.1.24 COROLLARY: //rot is initial then 'tis a prime component. 

PROOF: Let v < 't. Then rov < rot (proposition 2.1.4 (a)), so rov ·rot= rot (proposition 
2.1.12). So by proposition 2.1.4 (c), v+'t='t, hence by theorem 2.l.15 'tis a prime 
component. 0 

Finally we remark that the proofs of proposition 2.1.12, corollary 2.1.13 and propo-
sition 2.1.24 are due to us and were included because we could not find a reference. 

§2.2. Derivatives and scattered spaces 

In this section we briefly discuss some properties of derivatives of sets and scat-
teredness. Furthermore we formulate the well-known theorems of Cantor-Bendixson 
and Sierpinski-Mazurkiewicz and we present some results which we need in section 2.3 
and in chapter 4. 

Let X be a topological space and let A c X. The derived set Ad of A in X is defined to 
be the set of all x e X satisfying the condition that for every neighborhood U of x (in X), 
U nA \ {x} # 0 (i.e., the set of all accumulation points of A in X). Notice that not 
necessarily Ad cA: for example let X =IR and A =(0, 1). It is well-known that Ad cA 
and that Ad is closed in X. Now for every ordinal a we define x<cx), the a-th derivative, 
by transfinite induction as follows: 

a) x<0> =X, 

b) if a is a successor, say a= J3 + 1, then x<cx> = (X 03> )d, 

c) if a is a limit ordinal then x<cx> = r'I x<~>. 
~<Cl 

Notice that x<I) is the derived set of X in X. Furthermore we get x<O from X by 
"throwing away" all isolated points of X. The above is standard notation of course. 

2.2.1 REMARK: If A is a subspace of a topological space X, then A (I) is the 
derived set of A in A (so A (I) cA) and we put Ad the derived set of A in X. Since not 
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necessarily Ad cA it follows that in general A (I) *Ad. We claim that A (I) =Ad r.A. In 
particular, if A is closed, then AO> =Ad, 

Indeed, let x e A (I). Since AO) cA, x e A. Let Ube a neighborhood of x in X. Then 
Ur.A is a neighborhood of x in A. Since x e A (I), 0:;t: Ur.Ar.A\ {x} =Ur.A\ {x} and 
hence x e Ad. For the reverse inclusion let x e A nA d and let Ube a neighborhood of x 
in A. Let V be a neighborhood of x in X such that V r.A = U. Since x e Ad, 
0:;t:Vr.A\{x}=Ur.A\{x},soxeAOl, 

2.2.2 PROPOSITION: Let X be a space. Then for every ordinal a. and 13 with a.Sl3 
(a) x<a) is closed in X, and 
(b) x<l3l c x<a). 

PROOF: We prove (a) by transfinite induction. For a.= 0 it is trivial. So let a.> 0 and 
suppose (a) is proved for every 13<a.. If a. is a successor, say a.=j3+1, then 
x<al = (x<P>i is closed in X. If a is a limit ordinal then by the inductive hypothesis, 
x<a) =("'\13<aXll3) is closed inX, and (a) is proved. 

We prove (b) by transfinite induction an 13. Notice that (b) is obviously true if 13 = a., 
so suppose that 13 >a.and (b) is proved for every y with a.Sy< 13. If j3=y+ 1 for some 
ordinal y, then by the inductive hypothesis x<l3l =(X('y)i cx<Y> cx<aJ. Since by (a), 
x<a) is closed, we have the desired result 

If 13 is a limit ordinal, then x<l3> = riy< 13x<Yl cx<a>. 

From remark 2.2.1 and proposition 2.2.2 (a) we easily get the following 

2.2.3 COROLLARY: Let X be a space and a. an ordinal. 
Then x<a+ I)= (X(a))'l). 

2.2.4 PROPOSITION: Let X be a space and A a subspace of X. Then for each or-
dinal a., 

(a) A (a) cx<al, and 
(b) if A is open then A <al =A ,-,x<a>. 

PROOF: We prove this proposition by transfinite induction on a.. If a.=O, the proposi-
tion is obviously true, so suppose that a. > 0 and that the proposition is proved for every 
13 < a.. First suppose that a. is a successor, say a= 13 + l. 

For (a), since by the inductive hypothesis A <13) cx<l3l, by [24, Th. l.3.4 (ii)] 
A (a) =(A <13))d c(X(l3))d =X(a). 
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For (b) let x e A nx<cx> and let Ube a neighborhood of x in A. Since A is open, U is 
a neighborhood of x in X, hence UnAnx<P>\{x}=Unx<Pl\{x};t:0 (because 
x e x<cxJ ). So by the inductive hypothesis 0 ;1: Un A nx<Pl \ {x} c U nA <P> \ {x}, hence 
x e A (a). The reverse inclusion follows directly from (a). 

If a is a limit ordinal (a) and (b) easily follow from the inductive hypothesis and the 
definitions of A <a> and x<a>. 

2.2.5 PROPOSITION: Let a be an ordinal and X = [l, rocx]. Then x<a> = (rocx }. 

PROOF: If a= 0 the proposition is obviously true, so suppose that a > 0 and that the 
proposition has been proved for every 13 < a. First suppose that a is a successor, say 
a= 13+ I. If for i e IN u {OJ, Xi= [J·i + 1, coP·(i + 1)], then 

Xi is open in X and Xi"' [1, roP], so by the inductive hypothesis (XdP> = ( roP·(i + 1)}. 
By proposition 2.2.4 (b ), Xi n X <P> = (Xi )<Pl. Since coa is an accumulation point of 
{J•(i+l):i~O}, we conclude that x<P>=tcoP·(i+l):i~O}u(cocx} and so 
x<cx) = ( O)(l}. 

Now suppose a is a limit ordinal. Fix 13 < a and let l3~y< a. Let A= [1, ro'Y]. By the 
inductive hypothesis and propositions 2.2.4 (a) and 2.2.2 (a), (co'Y} =A <1> cx<1> cx<Pl. 
Since co a is an accumulation point of { ro 'Y : 13 y < a), it follows that coa e X <P> c X <a). 
For the reverse inclusion let e X \ ( coa}. Then there is 13 < a such that < coP. Then 
~e [t,roP], which is open inX, so by proposition 2.2.4 (b) and the inductive hypothesis 
we have {coP} =[l, coP]<P> =[l, coP]nx<P>. So ~¢x<P> and hence ~¢x<a>. 

Let A be a subspace of X. A is dense in itself if A cA d or equivalently A =A (I). 
This means that A contains no isolated points. A is scattered if A contains no dense in 
itself subsets, i.e., every subset of A contains isolated points. Again this is standard ter-
minology. 

After these definitions we can state the theorem of Cantor-Bendixson (cf. [24, p85] 
or [47, p148]). 

2.2.6 THEOREM (Cantor-Bendixson): Let X be a topological space. Then there 
exists an ordinal a such that x<a) =X(cx+ I). For this a, x<a) is closed and dense in it-
self and S =X ,x<a) is scattered. In particular, Xis scattered if and only if x<a> =0. 
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Furthermore, if Xis second countable then Sis countable. 

Let X be a scattered space. By theorem 2.2.6, there is an ordinal a such that 
x<a) =0. Now the scattered height K(X) of Xis defined to be the smallest ordinal a 
such that x<a) = 0. It is easy to see that if X is compact and scattered, then 1<(X) is a 
successor, say a+ I and x<a) contains only finitely many points. If X is second count-
able and scattered then K(X) is countable. Notice that by proposition 2.2.5, 
1<([1, roa]) =a+ 1. 

2.2.7 REMARK: Every countable compact Hausdorff space is scattered. Indeed, 
let X be a countable compact Hausdorff space. Then X is second countable ([24, th 
3.1.21)) and regular, hence Xis metrizable ([24, th 4.2.9]). So since Xis countable, it is 
also zero-dimensional. Now suppose X is not scattered. Then by theorem 2.2.6 there is 
P c X closed, non-empty and dense in itself. Then P is separable metric zero-
dimensional and compact without isolated points. Thus X ==C [15], so Pis uncountable, 
which is a contradiction. 

We can now formulate the theorem of Sierpinski-Mazurkiewicz (cf. [47, pl55] or 
[36)). 

2.2.8 THEOREM (Sierpinski-Mazurkiewicz): let X be a countable compact Haus-
dorff space. If K(X) =a+ I and x<a) contains m points (mfinite), then X == [I, wa·m ]. 

Notice that by proposition 2.2.5 it easily follows that if X = [I, wa·m ], with a count-
able and me IN, then 1<(X) = a+ 1 and x<aJ = { roa· l, ... , wa·m). 

Now we will prove some simple results, which we will need in section 2.3. Let X be 
a topological space and A a nonempty closed subset of X. Let XI A be the quotient 
space obtained from X by identifying A to a single point, say oo and let p : X A be 
the quotient map. Notice that p is closed. 

The next lemma gives some results on the derivatives of XI A in terms of the deriva-
tives of X, if A is of a special form. 

2.2.9 LEMMA: let X be a space, a an ordinal such that A =X(a) ;t0, and Y=XIA. 

Then 
(a) for every ~:<;;;a, and p (x<l3>) = y<l3>, and 
(b) y(a) = (oo}. 
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PROOF: We first prove (a). Notice that by propositions 2.2.4 (b) and 2.2.2 (b), 

x<PJ = (x<Pl n (X \A)) u (x<Pl nA) =(X \A)<Pl uA, 

for every 13 $ a. In the same way y<Pl = (Y\ { 00 ) )'Pl u (r<Pl n { oo )). Since 
is a homeomorphism, p((X\A)'Pl)=(Y\(ooj)<Pl for every 

l3Sa. 
We prove (a) by induction on 13. For 13 = 0 this is a triviality, so let O < 13 $ a and as-

sume it is true for every y < l3. 
Case 1: 13 is a successor, say 13=y+I. 

Suppose oo ¢ y<Pl. By the inductive hypothesis and since Ac x<Yl, oo e y<Yl, thus { oo} 
is open in y(Yl. But then A is open in x<YJ, so by proposition 2.2.4 (b) and corollary 
2.2.3 

which gives a contradiction. Hence oo e y<Pl, so by the above remarks 

p(x<Pl)=p((X\A)'Pl uA) 
= (Y \ { oo) /Pl u ( oo) 
=(Y\ (oo))<Pl u(r<Pl n (oo)) 
=r<Pl. 

Case 2: 13 is a limit ordinal. 
Then 

This finishes the proof of (a). 
By (a) we have y(cx) =p(X(cx))=p(A)= (oo), which proves (b). 

With this lemma we can give a classification of XI A, for X a countable compact 
space. 

2.2.10 COROLLARY: let X be a countable compact space and let A =X(cx) for 
some a< K(X). Then XIA ""[1, rocx]. in other words, if X=[l, wcx·n]for certain n e IN 
and a< ro, (so A =X(cx) = {rocx·l, .... , rocx·n)) then XIA"" [1, rocx]. 

PROOF: The first part follows from theorem 2.2.8 and lemma 2.2.9 (b). From propo-
sition 2.2.5 it follows that if X = (1, rocx ·n ], then x<cxl = { rocx · l, ... , rocx ·n), which proves 
the second part. 
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We finish this section with the remark that the second statement of corollary 2.2.10 
is not true if we take a~ro1• For example take X=[l,row'·2], i.e., a=ro1• We first 
show that row' = ro 1• By proposition 2.1.4 (b), ro1 5, ww'. Since w1 is a prime com-
ponent (theorem 2.1.23) there is µ such that w1 = c#. If w1 < ww' then by proposition 
2.1.4 (a), µ < ro 1, hence c# < w1 and we arrived at a contradiction. 

Now put A=x<aJ={w1,w1·2}, We prove that XIA and [l,ww1 ]=[l,wi] are not 
homeomorphic. To this end, notice that (XI A)\ { 00 } contains two disjoint closed sub-
sets E and F (namely E =p([l, ro 1)) and F =p([ro1 + I, ro1 ·2))), such that the closures E 
and F in XI A have non-empty intersection. In [ 1, w1] for every pair E and F of disjoint 
closed subsets of [I, w1), the closures E and Fin [I, w1] are disjoint ([24, Ex. 3.1.27]). 
Hence XIA and [l, wi] are not homeomorphic (see also [8, Ex. I]). 

§2.3. Factorizing function spaces 

In this section we prove some results, which will be important tools later on. First 
we fix some notation and gjve some definitions. Let X be a space and A cX closed. By 
Cp,A(X) we denote the subspace of Cp(X) of all functions vanishing on A. Whenever 
A={a) for some a EA, Cp, [a)(X) will be denoted by Cp,a(X), so Cp,=(XIA) is the 
subspace of Cp(XIA) of all functions vanishing at 00 • For this kind of subspaces of 
c;cx) we use a similar notation, Furthermore, let {X1; f E T} and { Ys; SES) be two 
families of spaces. For each t ET ands ES let Er be a linear subspace of Cp(X1) and let 
F5 be a linear subspace of Cp(Y5 ) and let k E IN. We call a linear function 
q>: a linear k-mapping if for all (fr)1.TE ITreTEt with 

.fr(X,) c (-f, T) for every t E T we have (7t5 •<l>)((fr)1 e T )(Y5 ) c (-1, 1) for every s E S. 

We define <I> to be a linear k-homeomorphism whenever <I> is a homeomorphism such 
that both <I> and q>- 1 are linear k-mappings. Whenever there is a linear k-

homeomorphism between rr, ·• TEI and fls e sFs we write n, e rE1 !5_ ns e sFs, Notice 
that the composition of a linear k-homeomorphism and a linear /-homeomorphism is a 
linear kl-homeomorphism. The definition of linear k-rnapping and linear k-

homeomorphism can be found in [3] and can also be given for spaces of bounded con-
tinuous functions. 

We now prove the following well-known theorem which will be used in the proof of 
proposition 2.3.2 and which will also be useful in chapter 4. 
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2.3.1 THEOREM (Dugundji [22]): let X he a metric space and A a closed sub-
space of X. Then there is a continuous linear function <j>: Cp(A) Cp(X) such that for 
eachfe C(A), <j>(/) IA =f and<j>(/)(X)cconv(/(A)). 

PROOF: First suppose X \A contains more than one point. Then for every x e X \A, 

there is a neighborhood Vx of x such that diam Vx < l/2d(x, A) and Vx :;t:X \A. Let Ube 
a locally finite open refinement of the covering { Vx :x e X \A) of X \A. Notice that by 
construction (X \A)\ U :;t: 0. 

CLAIM: If a e A and V is a neighborhood of a, then there exists a neighborhood W of a 
such that if U r, W :;t: 0 for some U e U, then U c V. 

Let £=d(a, X \ V) and let W =B (a, £12). Suppose that Ur, W :;t:0 for some U e U, 
say z e Ur, W. Choose x e X \A such that Uc Vx and let ye U. Now 

I I d(x, a)~d(x, z)+d(z, a)< 2 d(x, A)+d(z, a)~ 2 d(x, a)+d(z, a), 

hence d(x, a)< 2d(z, a). This implies 

I d(y, a)~d(y, z)+d(z, a)·< 2 d(x, a)+d(z, a)< 2d(z, a)<£, 

hence y e V. This proves the claim. 

For each U e U, define Au: X JR by 

Au(x)= d(x, (X\A)\U) 
I.veud(x, (X\A)\ V) 

First notice that d(x, (X \A)\ U) is defined for every U e U, because (X \A)\ U) :;t: 0. 
Second for each x e X \A, there is a neighborhood W of x which intersects only finitely 
many elements of U. Hence if we restrict Au to W, the sum in the denominator is finite, 
and since U covers X \A, this sum is non-zero. We conclude that Au is a well-defined 
continuous function. Notice that I.ueuAu = I. 

For each U e U, let xu e U and au e A be such that d(xu, au)< 2d(xu, A). Let 
f e C (A). Define J: X IR by 

~ lI.ueuAu(x)f (au) 
f(x) = f (x) 

if XE X \A 

if XEA 
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By similar arguments as above it is easily seen that J is well-defined and that J IX \A is 
continuous. So continuity of J need only be verified at points of A. Let x EA and e > 0. 
There is 6 > 0 such that for y EA with d(x, y) < 6, we have If (x)- f (y) I < e. By the 
claim, there is a neighborhood W c B (x, 6) of x such that if U n W -::/:- 0 for some U E U, 
then U cB (x, o/3). We claim that for y E W, I /(x)- /(y) I < e. For y EA, this is clear. 

So let y E W r, X \ A. Find U 1, .•• , Un E U such that for U E U we have y E U if and 
only if U E {U 1, .•• , Un). Then /(y)=I.7=1A.u1 (y)f (au,)- For i $n, U; n W-::f-0, hence 

d(xu;, x) < o/3. This implies 

d(x, au)$d(x, xu,)+d(xu;, au) 

$d(x, xu,)+2d(xu,,A) 

$ 3d(x, xu,) < o. 
Hence If (x)- f (au) I <£,so 

lf(x)-/(y) I= If (x)-I.?=1Au;(Y)f (au)I 

= l:E?=1Au1(y)(f(x)-f(au))I 

$I.7=1Au;(y) If (x)-J (au)) I 

We conclude that J is continuous. Obviously f(X) c conv (f (A)) and f IA= J. 
Define q>: by <j>(f)=f. By the above we have that <j> is a well-defined 

function with the property that for each f E C (A), <j>(f) I A = f and 
<j>(f )(X) c conv (f (A)). The linearity of <j> is a triviality. To prove that <j> is continuous, 
it suffices to prove continuity at 0. Let P c X be finite and e > 0. Let 
Q =(P nA) u {au: U EU, U nP -::f-0). Then Q is a finite subset of A. It is easily seen 
that <j>( <0, Q, £>) c <0, P, £>. 

Now assume X \A is empty or contains only one point. If it is empty, the theorem is 

obvious, so suppose X \A contains only one point x 0 . Since A is closed, x 0 is isolated in 
X. Fix x 1EA and define by q>(f)(x)=f(x) if x-::f.x0 and 
<j>(f)(xo) = f (x 1 ). Then <I> is a well-defined linear function. In addition <j>(f) IA= J and 
<j>(f)(X) c conv (f (A)). We prove that q> is continuous. Take P cX finite, £ > 0 and 
/E C(A). If we let Q =(P nA)u {x 1), then <j>(</, Q, £>) c <<j>(f), P, £>. 

We now come to the important 
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2.3.2 PROPOSITION: Let X be a metric space and let A be a closed subset of X. 
2 Then Cp(X)-Cp. A (X) xCp(A). 

PROOF: Define p: Cp(X) Cp(A) by p(/) = / I A. Notice that p is a continuous linear 
function. Because X is metric, by theorem 2.3.1 there is a continuous linear function 
s: Cp(A) Cp(X) such that for each f E Cp(A), S(/) IA= f and s(f )(X) C conv (/ (A)). 
Notice that p •s=idcp(AJ· 

Now define qi: Cp(X) Cp, A (X) x Cp(A) by 

qi(/)=U-<s•p)(/). p(/)). 

We have to prove that qi is well-defined. Take an arbitrary J e Cp(X). It is obvious that 
p(/) E Cp(A) and that /-(s Op)(/) E Cp(X). Furthermore 

(f-<s • p)(/)) 1A = p(f-<s. p)(/)) = p(/)-<P. s • p)(/)) = p(/)- p(/) =o, 

so/-(s•p)(/)e Cp,A(X). 
That qi is continuous and linear is a triviality. We show that qi is a linear homeomor-
phism. For that define \jl: Cp. A(X) xCp(A) Cp(X) by 

It is trivial that \jl is well-defined, continuous and linear. Furthermore, as is easily seen, 
\jl•qi=idcp(X)· We show that <p•\jl=idcp,A(X)xCp(A)· Take /e Cp,A(X) and g e Cp(A). 

Notice that p(/)=/ IA =0, hence by linearity ofs, (s·p)(/)=s(0)=0. So 

<<1> • w)(f. g) = <I>(/ +s<g n 
= (/ + s<g )-<s • p)(/ +s<g )). p(/ +sci?))) 

= (/ +s<g )-<s • p)(/)-<s • P •s)<g ). p(/) + <P ·s)<g )) 

= (/ +s(g)-0-s<g ). o+ g) 

=(/, g), 

i.e., <I> is a linear homeomorphism. 
The only thing left to prove is that <I> and 'I' are linear 2-mappings. We first prove it 

for (j>. Let f e Cp(X) with I/ (x) I < 1/2 for every x e X. Then p(/)(A) c (-l /2, 1 /2) and 
hence (s ·p)(/)(X) c conv p(/)(A) c (-l /2, 1/2). Let x e X. Then 

l1t1 ·<l>(/)(x)I = 1/(x)-(s•p)(/)(x)I 1/(x)I + l(s·p)(/)(x)I < 1, 

and for a e A, 
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l1t2 °<)>(/)(a)I = lp(f)(a)I = lf(a)I < 1/2, 

so q> is a linear 2-mapping. Now take feCp,A(X) and geCp(A) such that 
f (X) c (-1/2, 1/2) and f (A) c (-1/2, 1/2). Then l;(g )(X) c conv (g (A)) c (-1 /2, 1/2), 
so for x e X, 

I 'If(/, g)(x) I = If (x) +l;(g)(x) I :5 If (x) I + 1 l;(g)(x) I < 1/2+ 112= 1, 

hence 'If is a linear 2-mapping. This completes the proof of the proposition. o 

2.3.3 LEMMA: Let X be a space and let A be a closed subset of X. Then 

PROOF: For every function feCp,A(X) there is a unique function JeCp,oo(XIA) 
such that J 0 p=f[24, p124]. If we now define q>: Cp,A(X)~Cp,oo(XIA) by q>(f)=J, 
then <1> is a well-defined linear bijection. Since for f E cp, A (X), y 1 ' .... , Yn EX I A, E > 0 
andx; e p-1(y;) (i $;n) it is easily seen that 

it follows that <1> is a linear homeomorphism. That q> is a linear I-homeomorphism is a 
triviality. 

From the last lemma and proposition we have the useful 

2.3.4 COROLLARY: Let X be a metric space and let A be a closed subset of X. 
2 Then Cp(X)-Cp, oo(X!A) xCp(A). 

The next three lemma~ are used often in this monograph. The proofs are easy and 
left to the reader. 

2.3.5 LEMMA: If X and Y are homeomorphic spaces, then Cp(X) 2..cp(Y). 

2.3.6 LEMMA: If X and Y are spaces and A is a subspace of X, then 
I Cp, A (X) xCp(Y)-Cp, A (X Ef> Y). 

Notice that all the given facts so far are also valid for spaces of bounded continuous 
functions. In lemma 2.3.7, this is only the case for the second statement as is shown in 
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section 4.6 (cf. example 4.6.6). 

2.3.7LEMMA: If X=Ef>t=IXi and Y=Ef>t=lyi such that for every ielN, 

Cp(X;)-Cp(Y;), then Cp(X)-Cp(Y). Moreover, if/or every i e IN Cp(X;)!:.Cp(Y;), then 
k Cp(X)-Cp(Y). 

We now prove some properties of function spaces of ordinals. We use the following 
notation. For an ordinal a we denote by CP, 0([1, a]) the subspace of Cp([l, a]) of all 
continuous functions vanishing at a (i.e., Cp. 0([1, a])= Cp, a([I, a])). 

2.3.8 LEMMA: Let a 2: 1 and p 1 be ordinals. Then 

and 

PROOF: Since [1,a+PJ==[l,a]EB[I,PJ (notice that 
defined by h (y) =y if ys:a and h(y) =y-a if y> a, is a homeomorphism) we have by 
lemmas 2.3.5 and 2.3.6 

and 

2.3.9 LEMMA: Let a.::ro be an ordinal. Then Cp([l, a])~ Cp, 0([1, a]). 

PROOF: Define q,: Cp([l, Cp, o([l, a]) by q,(/)(P) = / <P-1)- f (a) if I< psa 
and q,(/)(1)=/(a). Since P-I=P for P.::ro, it easily follows that q, is well-defined. 
That q, is linear is a triviality. Now take Pc [1, a] finite, e > 0 and f e Cp([l, a]). Let 
Q={P-1:PeP\{l}}v{a}. It is easily seen that q>(</,Q,e/2>)c<q>(/),P,e>, 
hence q, is continuous. 

Now define \j/: Cp,o([l, a]) by 'lf(/)(P)=f (l +P)+/(1). An easy 
verification shows that 'I' is a well-defined continuous linear function. 

We are done if we prove that \j/= ci,-1• Let f e Cp, 0((1, a]) and p e [1, a]. Notice that 
1 + (P- 1) = p, so if p ;t: 1 then 



62 On the IP and l;i-equiva/ena of locally compact spaces 

( <I> 0 'Jl)(J )(P) = 'Jl<f )(P - I) -1jl(j )( a) 

=fO+<P-O)+fO)-f(l+a)-f(I) 

= f <P). 

Furthermore, 

(<I> 0 1j1)(f )(I) ='Jl(f )(a)= f ( I +a)+ f (I)= f (I), 

which implies that <I> 0 ~ = idcP, o([l. u])• Now let f e Cp([l, a]) and PE [I, a]. Notice that 
o +P)-1 =P, so 

('JI '<l>)<J)(P) = <l><f )(1 + P) + q>(f )(l) 

=f((I +P)-1)-f(a)+f(a) 

=f <P>, 

which proves that 'JI O <I>= idcp([l, u]) and the lemma is proved. 

Notice that [ 1, a] is a metric space if a< roi, so in that case lemma 2.3.9 is an easy 
consequence of proposition 2.3.2 and lemma 2.3.8. 

2.3.10 REMARK: All results stated in this section, are also valid for function 
spaces endowed with the compact-open topology, with the exception of lemma 2.3.3 
and corollary 2.3.4. They are true for function spaces endowed with the compact-open 
topology under the additional assumption that A is compact. 

§2.4. Separable metric zero-dimensional compact spaces 

In [IO] Bessaga and Pelczynski presented the following isomorphical classification 
of the spaces C 0(X), for separable metric zero-dimensional compact spaces: 

2.4.1 THEOREM (Bessaga and Pelczynski): Let X and Y be separable metric 
zero-dimensional compact spaces. Then C 0(X)- C 0(Y) if and only if one of the follow-
ing holds: 

(a) X and Y are finite and have the same number of elements. 
(b) There are countable infinite ordinals a and p such that X "'[I, a], Y"" [1, Pl 

and max(a, P) < [min(a, P)r. 
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(c) X and Y are uncountable. 

Notice that for a compact space X, we always have that X is finite, or is uncountable 
or is homeomorphic to [ 1, a] for some countable infinite ordinal a (by theorem 2.2.8). 
Also, case (c) is a direct consequence of Miljutin's theorem ((47, page 379)). Bessaga 
and Pelczyfiski's proof of (c) is different, because they were not aware of Miljutin's 
result (see (47, page 380]). 

In this section we prove that a similar classification can be derived if we replace 
C 0(X) by Cp(X). We first need to prove some properties of function spaces of ordinals. 

2.4.2 LEMMA: Let ro s a< co1 be a prime component and n e IN. Then 
Cp([l, a.·n])-Cp([l, a]). 

PROOF: By theorem 2.1.21 there is an ordinalµ such that a.=ofl, so 

Cp([I, a·n ])- Cp( I a• 1, ... , a•n)) x Cp, 0((1, a]) corollaries 2.2.10 and 2.3.4 

-CP, 0([1, a]) lemma 2.3.8 

- Cp([l, a]) lemma 2.3.9. 

It is essential in this lemma that a< co1 (cf. the remark after corollary 2.2.10). In 
section 2.5 we will show that Cp([l, ro 1 ·2]) and Cp([l, roi]) are not linearly 
homeomorphic (cf. theorem 2.5.13). 

2.4.3 LEMMA: Let cos a< ro 1 be an ordinal. Then Cp([l, a])-Cp([l, a']). 

PROOF: By corollary 2.1.20, a=a'•n +y for some n e IN and y< a'. By theorem 
2.1.15 y+a' =a', which implies that y+ a'·n =y+a' + a'·(n-1) =a'·n. So 

Cp([l, a])= Cp([l, a'•n +y]) 

-Cp([l, y+a.'·n]) lemma 2.3.8 for y:;t0 

=Cp([l, a'•n]) 

-Cp([l, a']) lemma 2.4.2. 

We now come to the following result: 

2.4.4 PROPOSITION: Let c.o s; a< w1 be an ordinal and let as;~ <ell). Then 
Cp([l, a])-Cp([l, ~]). 
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PROOF: By lemma 2.1.22 and lemma 2.4.3 we may assume that a and p are prime 
components. By theorem 2.1.21 there are ordinalsµ and v such that a==c# and P=wv. 
Since a :5 p <aw, by proposition 2.1. IOa, µ :5 v < µ-w. 

We prove the lemma by transfinite induction on v. If v == µ it is a triviality, so let 
v > µ and suppose the lemma is true for every ordinal y such that µ :5 y < v. 

Let X == [ 1, PJ == (1, wv] and A ==X(µ). By proposition 2.2.5 K(X) ==v + 1, so µ < K(X). 
Hence by corollary 2.2.10 XI A "'[l, wµ] == [ 1, a]. 

CLAIM: There are ordinals 1 :5 y < v and n e IN such that A "' [ 1, w'Y-n ]. 

Indeed, since µ < v < µ-w, there is k e IN\ { I } such that µ-(k - 1) < v :5 µ-k. So by 
proposition 2.2.5 and proposition 2.2.4 (a), 

A (µ-(k- I})== (X(µ) )<µ·(k-1)) ==X(Jl·k) C [I, w·ki(µ·k) == ( w·k)' 

and 

hence 2 :5 K(A) :5 µ-(k -1) + I. Since K(A) is a successor, there is 1 :5 y:5 µ-(k - 1) < v 
such that K(A) == y+ 1. So by theorem 2.2.8 there is n e IN such that A "" [I, w'Y·n ], which 
proves the claim. 

By corollary 2.3.4, lemma 2.3.9 and the claim it follows that 

Cp([I, PD -Cp([l, w'Y-n]) x Cp([l, al) 

-Cp([l, w'Y])xCp([l, al) 

If y <µthen by lemma 2.3.8 and theorem 2.1.15 

(since y?. I and by lemma 2.4.3). 

If y?.µ then by the inductive hypothesis Cp([l, w'Y])-Cp([l, al), so by lemma 2.3.8 
and lemma 2.4.2 

We can now easily derive the following: 

2.4.5 COROLLARY: Let w :5 a :5 p < w1 be ordinals. Then 

Cp([l, a])-Cp([l, PD if and only if P < aw. 

(In particular if a==~ and P== wv with µ:5v, then Cp([l, a])-Cp([ I, PD if and only if 
V < µ·m). 
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PROOF: If p«x<0 then apply proposition 2.4.4. Suppose Cp([l, a.])-Cp([l, PD. By 
corollary 1.2.21, it follows that Co([l, a.])-Co([l, PD. By theorem 2.4.1 this implies 
P< 

2.4.6 REMARK: If X is a separable metric compact space and A is a closed subset 
of X, then XI A is a separable metric compact space. This follows from the fact that the 
quotient map p : X A is perfect because X is compact. 

We are now able to prove the classification we mentioned at the beginning of this 
section. 

2.4.7 THEOREM: Let X and Y be separable metric zero-dimensional compact 
spaces. Then Cp(X)- Cp(Y) if and only if one of the following holds: 

(a) X and Y are finite and have the same number of elements. 
(b) There are countable infinite ordinals a and P such that X = fl, a.], Y = [l, Pl 

and max(a, P) < [min (a, P)]w. 
(c) X and Y are uncountable. 

PROOF: If Cp(X)-Cp(Y) then'by corollary 1.2.21 we have C 0(X)-C 0(Y). So by 
theorem 2.4.1, (a), (b) or (c) holds. 

Now suppose that (a), (b) or (c) holds. 
Case 1: (a) holds. 

Suppose X and Y both contain m points. Then Cp(X)-IR.m -Cp(Y). 
Case 2: (b) holds. 

By corollary 2.4.5 we have the desired equivalence. 
Case 3: (c) holds. 

It is enough to prove that for every uncountable separable metric zero-dimensional 
compact space X we have Cp(X)- Cp(C) where C is the Cantor discontinuum. Let X be 
such a space. 

By the Cantor-Bendixson Theorem (theorem 2.2.6) and the fact that X is second 
countable, X = D u S with D closed and dense in itself and S countable. Since X is un-
countable, D is non-empty, so by the fact that C is the unique non-empty separable 
metric zero-dimensional compact space without isolated points ([15]), we have D .. c_ 
By the same characterization of C, we also have that (Xx[l, ro])xC=C, so we can 
find a closed copy E of Xx [1, ro] in D. Now 

Cp(X)-Cp, 0 (X)xCp(D) 

-Cp,o(X)xCp(D ff;D) 

by proposition 2.3.2 

since D ff; D "' C ff; C .., C .., D 
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-Cp, D(X)xCp(D)xCp(D) by lemma 2.3.6 

-Cp(X)xCp(D) byproposition2.3.2 

- Cp(X) xcp, E(D) x Cp(E) by proposition 2,3.2 

-Cp(XffiE)xCp,E(D) by lemma 2.3.6 

-Cp(E)xCp,E(D) sinceXffi£z£ 

-Cp(D) by proposition 2.3.2. 

2.4.8 REMARK: From theorem 2.4.1 and theorem 2.4.7 it follows that the 
classification is such that for any two separable metric compact zero-dimensional 
spaces X and Y it follows that Cp(X) is linearly homeomorphic to Cp(Y) if and only if 
C o(X) is linearly homeomorphic to C 0(Y). In general this is not the case (see the re-
mark after corollary 1.2.21 on page 29). 

One of the steps in the proof Bessaga and Pelczyhski gave of theorem 2.4.1 is propo-
sition 2.4.4 for function spaces endowed with the compact-open topology (or the topol-
ogy of uniform convergence) (cf. lemma 1 in [IO]). Their proof of this result is quite 
different from ours. They used for example the fact that if a Banach space (and C o(X) 
is a Banach space if X is a compact ordinal) is the direct sum of two closed linear sub-
spaces E and F, then it is isomorphic to E xF. Recall that our spaces Cp(X) are not 
Banach. Also, they did not use an inductive argument. 

It is also possible to prove proposition 2.4.4 following the pattern of the proof of 
Bessaga and Pelczyhski: They used the above property of Banach spaces to conclude, 
that if 13 $a< ffi1 then C 0 (( I, a-j3]) - C 0 (( I, a]). However, for the topology of point-
wise convergence we can prove this directly by the method of corollary 2.3.4, using the 
fact that (a·j3)'=a'·j3'. All the other statements that Bessaga and Pelczyhski proved, 
are also valid for function spaces endowed with the topology of pointwise convergence. 
So then we are in a position from which we can derive proposition 2.4.4 with the same 
arguments as the ones of Bessaga and Pelczyhski. 

We now give some examples which were already announced in chapter I. 

2.4.9 EXAMPLE: We show as announced on page 21 that in general for spaces X 
and Y, and an effective linear function qi: C (X) C (Y) such that for each ye Y, 
supp (y) ,,t 0, supp: Y J'(X) \ { 0} need not be USC. 

Let X = [I, w2 ] and Y = [I, w]. By theorem 2.4. 7 there is a linear homeomorphism 
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qi: Cµ(X)-'> Cp(Y). By corollary 1.2.15 (a), qi is effective and by proposition 1.4.3, for 
each y E Y, supp (y) :;t 0. We claim that supp: Y-'> P(X) \ { 0} is not USC. 

Since supp (co) is finite (lemma 1.4.1 ), there is an infinite cl open subset U of X which 
misses supp (co). Let V =X \ U. Then supp (co) c V. If supp: Y-'> P(X) \ (0) is USC, 
then there is n E IN such that supp [n, co] c V. We now have by proposition 1.4.3, 

X=supp Y=supp { 1, ... , n) usupp[n, co] csupp { 1, ... , n) uV, 

hence Uc supp ( 1, ... , n}. Since U is infinite and supp { l, ... , n) is finite, we have a 
contradiction. We conclude that supp: Y-'> P(X) \ { 0} is not USC. 

2.4.10 EXAMPLE: In this example we show that the first countability condition in 
theorems 1.5.10 and 1.5.12 is essential. 

Let X = [1, co] x IN, A =X(I) = {co} x IN and Y =XI A. Then Xis clearly first countable 
and normal. Since the quotient map p between X and Y is closed (cf. page 60), Y is nor-
mal ([24, th 1.5.20]). The proof of the following claim is standard. For the sake of com-
pleteness it will be included. 

CLAIM: Y is not first countable. 

Indeed, suppose {Un : n E IN}· is a countable base at 00 in Y. Let n E IN. Then 
p-1 (Un) is open in X and {co} x IN cp-1 (U,,). So for every i E IN there is a? < co such 

that [a?,co]x{i}cp-1(Un). Now let U=U~=i[a/+1,co]x{i}. Since AcU, 
00 Ep(U) and p-1(p(U))=U, so p(U) is a neighborhood of 00 in Y. Hence there is 

n E IN such that Un cp (U), so p-1 <Un) c U. Hence U~= i[a?, co] x {i} c U. But then 
[a~, co] c [a~+ 1, co], which is a contradiction. 

Notice that for every space Zand for every z E Z, Cµ(Z)- Cp, ,(Z) x IR (It is easily 
seen that the function qi: Cµ(Z)-'> CP, ,(Z) x IR defined by qi(j) = f-f (z) is a linear 
homeomorphism), so CP, =(Y)xIR-Cp(Y). Hence 

Cµ(X)- Cp([l, co] Ef>X) because X"' [1, co] Ef>X 

-Cp([l, co])xCµ(X) by lemma 2.3.6 

-Cp([l, co]) x IRxCµ(X) by proposition 2.3.2 and lemma 2.3.9 

- Cµ(X) x IR as above 

- Cp, A (X) x IR by lemma 2.3.7 and 2.3.9 

- Cp, =(Y) x IR by lemma 2.3.3 

-Cp(Y). 
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For theorem 1.5.12 notice that x 0 > is not countably compact, and yO) = {00 ) is 
countably compact. For theorem 1.5.10 notice that X and Y are paracompact (by [24, Th 
5.1.3 and 5.1.33]), Xis locally compact and Y is not locally compact. 

Furthermore, notice that this example is a counterexample for the following state-
ment (see also section 0.1 ): If X and Y are LP-equivalent spaces, then X has property ;P if 
and only if Y has property ;/1, where ;P is one of the properties: local compactness, first 
countability, second countability, metrizability, weight, or character. 

2.4.11 EXAMPLE: In this example we show that theorem 1.5.12 is not true for the 
a-th derivative if a is not a prime component. 

Let a< C01 be an ordinal which is not a prime component. Observe that in this situa-
tion 1 ~a'< a< a'·co (lemma 2.1.19). Hence coa' < coa < (coa')w and so by theorem 
2.4.7 Cp([l, coa'])-Cp([l, coal). So if we now let X=EBi"=1[l, coa']; and 
Y=EB1=dl, wa];, then Cp(X)-Cp(Y) (lemma 2.3.7). In addition, X and Y are normal 
and first countable, but y(aJ "'IN (this follows easy from proposition 2.2.5) which is not 
countably compact, and x<aJ =0 which is countably compact. 

This observation leads us to the following 

Question: Let X and Y be LP-equivalent spaces which are both normal and first 
countable. Let a~co be a prime component. Is it true that x<a) is countably compact if 
and only if y(a) is countably compact? 

Finally we remark that the first part of this section (until theorem 2.4.7) is taken 
from [3]. The examples 2.4.10 and 2.4.11 can be found in [5]. 

§2.5. Compact ordinals 

In this section we present an isomorphical classification of the function spaces 
Cp(X), where X = (1, a] for some ordinal a. We call such spaces compact ordinal 
spaces. It turns out that this classification is similar to the one Kislyakov gave for the 
spaces C o(X) (with X a compact ordinal space) in [34 ]. Our proof is similar to his, only 
some modifications are necessary. 

It turns out that Kislyakov made a mistake in his proof. In this section we will iden-
tify this mistake and correct it. 

Let us first present the classification of Kislyakov. For that we need some 
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definitions. Let X and Y be Banach spaces. We say that X and Y have the same linear 
dimension, if each of them is isomorphic to a subspace of the other. X has smaller 
linear dimension than Y if X is isomorphic to a subspace of Y, but Y is not isomorphic 
to any subspace of X. Notice that isomorphic spaces have the same linear dimension. 

2.5.1 THEOREM: Let a and p be ordinals. 
If a and P have different power, then 

(a) Co([l, al) and C 0([1, PD do not have the same linear dimension and so 
they are not linearly homeomorphic. 

If a and p have the same power and S is the initial ordinal of that power, then 
(b) ([34]) If S = w, or S is a singular ordinal or both a, p s2 , then 

C o([l, a])-C o([l, PD if and only if max(a, P) < [min(a, P)l0 if and only if 
C o([l, al) and C o([l, PD have the same linear dimension. 

(c) ([34]) Ifs is an uncountable regular ordinal and a, PE[~. s2 ],.fix ordinals 
a1, P1 ~s and 'Y, O<S such that a=s·a1 +y and P=s·P1 +&. Then 
Co([l, a])-Co([l, PD if and only if a, =P1 if and only Co([l, a]) and 
Co([ 1, PD have the same linear dimension. 

(d) If S is an uncountable regular ordinal, a< s2 and p s2 , then C o([l, a]) 
and Co ([ l, P]) are not linearly homeomorphic. 

Notice that the case s = w in theorem 2.5.1 (b) is just Bessaga and Pelczyftski's 
result stated in theorem 2.4.1. Furthermore theorem 2.5.1 (c) was proved by Semadeni 
in [ 46] for ordinals a and P satisfying w1 a, p w1 ·w. 

In fact Kislyakov only stated theorem 2.5.1 (b) and (c), so we will now prove part 
(a) and part (d). Before being able to prove this, we need to formulate the following 
lemma proved by Bessaga and Pelczyftski in [10]. 

2.5.2 LEMMA: Let a be an ordinal. If for every y< a, Co([l, y]) has smaller 
linear dimension than C 0 ([1, a]), then C 0 ([ 1, al) has smaller linear dimension than 
Co([ 1, aw]). 

The following corollary to lemma 2.5.2 is also useful in section 2.6, and is stated 
without proof by Bessaga and Pelczyftski in [10] and by Kislyakov in [34]. For the sake 
of completeness, we will present its proof. 
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2.5.3 COROLLARY ([34, lemma 1.3]): let a and 13 be ordinals. If l3:2'.aro, then 
C 0([1, al) has smaller linear dimension than C o([l, l3]). 

PROOF: Let a 1 be the smallest ordinal such that C 0 ([ I, a 1]) and C 0 ([1, al) have the 
same linear dimension. Then for every y < a 1, C 0 ([1, y]) has smaller linear dimension 
than C o([l, a 1 ]). By lemma 2.5.2 it follows that C 0([ I, a 1]) has smaller linear dimen-
sion than C 0 ([1, af ]). Since a 1 :;; a, it follows that af:;; aro:;; l3. But then it easily fol-
lows that C o([l, a]) has smaller linear dimension than C o([l, l3]). 

We are now able to prove theorem 2.5.1 (a) and (d). 

PROOF of theorem 2.5.1 (a): Without loss of generality we may assume that a.<~-

First suppose a :2'. m. Since <i°1 = a. (proposition 2.1.13 ), it follows that aro < 13. So by 
corollary 2.5.3 it follows that C 0 ([1, a]) has smaller linear dimension than C 0([1, l3]), 
which implies that C 0([1, a]) is not linearly homeomorphic to C 0([1, l3]). 

Now suppose that a is finite. As is easily seen, the algebraic dimension of 
Co([l, al) is finite and smaller than the algebraic dimension of Co([l, l3]), hence 
C 0([1, a]) and C 0 ([1, PD are not linearly homeomorphic. 

PROOF of theorem 2.5.1 (d): First suppose that 13 < ~ro. Since ~2 :;; 13 < ~ro = (~2)ro, by 
theorem 2.5.1, C 0([1, l3])-C o([l, ~2 ]). Let a=~·a1 +y with y< (proposition 2.1.2). 
Notice that a 1 < ~. so a 1 < ~. because is initial. From theorem 2.5.1 (c) it now fol-
lows that C 0([1, al) and C 0 ([1, ~2 ]) are not linearly homeomorphic. 

Now suppose 13 :2'. ~ro. Since a< ~2 , aro:;; (~2 )ro = ~ro:;; 13. So by corollary 2.5.3, 
Co([l, al) has smaller linear dimension than C 0 ([1, l3]), which implies that C 0([1, a]) 
and Co([l, l3]) are not linearly 

Now we are going to prove that the same classification holds for the spaces 
Cp([I, al). For that we first have to give some definitions. 

For a compact space X and/ E Cp(X), let 11/11 = sup xeX If (x) I. Let {X1 : t ET) be a 
family ,of compact spaces and for each t ET, let E1 be a linear subspace of Cp(X1). By 
n;eTEr we denote the linear subspace of TireTEr consisting of all points f=(ft) 1eT 
such that for each E > 0, the set { t E T : IIJ; II :2'. E} is finite. If E1 = E for every t E T, we 
write n:E instead of n;e TEc, where m = IT I. Notice that if T is finite, then 

TIie TEr=n;e TEI. 
The notion of linear k-mapping (cf. section 2.3) can also be defined for the spaces 

n;e TE1• We then have the following 
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2.5.4 LEMMA: For each i e / let (X,, i : t e T} and ( Ys, i : s e S} be two families of 
compact spaces and let for each i e /, t e T ands e S, E,, i and Fs, i be linear subspaces 
of Cp(X,, ;) and Cp(Ys, ;), respectively. Suppose that for each i e /, 

PROOF: For each i e / let cl>;: n; e rE,, ; n; e sFs,; be a linear k-homeomorphism. 
Define cp: TTc,. i)e rx1E,, i i)eSx1Fs,; by 

We prove that cp is a linear k-homeomorphism. 

CLAIM 1: cp is well-defined. 

Indeed, let E>O and (/(t,i))(t,i)eTx/ETTc,,i)eTx/E,,;. It is a triviality that 
(7t5 •cl>;)((/(,, i)),e r) e F (s, i)· Notice thatJ = (i e /: (3 t e T)(II/(,, i)II ~e/ k)} is finite. Let 
iel\J. Then for every teT, f(t,i)(X,,;)c(-e/k,e/k). Since cl>; is a linear k-
homeomorphism, for every s e S 

(7ts •cl>;)((/(,, i)),. r)(Ys, ;)c(-E, E). 

So (i e /: (3s e S)(ll(7t5 •cl>;)((/(,, ;))re r)ll~e)} is finite. Since 

for every i e /, (s e S: ll(7t5 •cl>;)((/(t, 0 ),e 7 )11 E} is finite. But this implies that 

is finite as well, which proves the claim. 

Since 7t5 and cl>; are linear and continuous, it is clear that cp is linear and continuous. 

CLAIM 2: cp is a linear k-mapping. 

Indeed, let <f(t, i))(t, i)e Txl e TTc,, i)e rx1E1,; be such that f(t, i)(X,. ;) c (-1 / k, 11 k) 
for each pair (t, i) e Tx/. Then 

for each pair (s, i) e S xi, because cl>; is a linear k-homeomorphism. This proves claim 
2. 

Now define 'If: TTcs, i)e sx1Fs, i Ile,. iJe rx1E,,; by 
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The proof that \jf is a well-defined continuous linear k-mapping is exactly the same as 
the proof for cj>. Furthermore it is easily seen that \jf = cj>- 1, so cj> is a linear k-
homeomorphism. 0 

In the sequel we denote n(t. i) e Tx/Et, i also by n; e rn; e1Et, j or by n; e1n: e rEr, i· 

Notice that this is not the same as n; e r(TT7 e 1E1, i ), because the latter product is not 
defined. Lemma 2.5.4 now gives us the following: If for each i e /, 

then 

2.5.5 LEMMA: Let {X1 : t e T} be a family of compact spaces and let for each 

' * 1 * * t ET, Er be a linear subspace of Cp(X1), Let SC T. Then flt e rE1-n1e sE1 X nte nsE1, 

PROOF: Define cj>: n;E rEr n; E sEs X n;. nsEr by <l>lfr>r Er) =((fr)/ e S, (fr), ens), 
It is a triviality that cj> is a· well-defined continuous linear I-mapping as well. The in-
verse cj>- 1 of cj> can also be defined canonically and is a continuous linear I-mapping as 
well. So cj> is a linear I-homeomorphism. 0 

The next lemma is the main tool in this section. 

2.5.6 LEMMA: Let y be a limit ordinal. Let 0,1;)os:1;s:y be a strictly increasing se-
quence such that 

l)A.1;+1-A.1;~w(~e [0,y)), 
2) A.1; = lim11 < 1; Ai, (~ e (0, y] a limit ordinal), 
3) Ao =0. 

Then Cp, o([l, A-y]) ~Cp. o([ l, y)) X n~ qCp, o([l, A1;+ 1 - A1)). 

PROOF: Let 

X = {f e Cp, o([ l, Ay]): f is constant on each interval (A.1;, A-1;+ i] (~ e [0, y))} 

and 

2 CLAIM l:Cµ,o([l,Ay])-XxY. 
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Indeed, define q, 1: Cp, o([l, A.y]) by 

q>1 (/) I (Ai;, A;+ iJ =/(Ai;+ 1) (~ e [0, y)). 
and 

q>J (/)(Ai;)= f (Ai;) (~ e (0, y] a limit ordinal). 
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To prove that q,1 is well-defined, we need to show that q>1 (j) is continuous at A!; 
with e (0, y] a limit ordinal. So let E > 0. Since Ai; = lim11 < 1; "'Tl and since f is continu-
ous at A;, there is 11 <~such that/((¾, ¾D c (-E + f (Ai;), E+ f (A;)). But then also 

q>J (/)((¾, Ai;]) C (-E+ f (A1;), E+ f (A1;)). 

That q,1 is linear is a triviality. We prove that q>1 is continuous. Let 
P ={ex;: i Sn) c [1, A.y] be finite, E > 0, and f e Cp, 0 ([1, A.y]), For i Sn, if ex; =Ai; for 
some ~. put ~i =ex;, otherwise let Ai; be such that ex; e (Ai;, A;+ 1] and put ~i =Ai;+ 1 . Let 
Q={~;:iSn}. Then a simple calculation shows that q, 1(</, Q, E>)c<q,1(f),P, £>, 
which proves that q,1 is continuous. 

Now define by q>2(/)=/-q>1(f). It is easily seen that q>2 is 
well-defined, continuous and linear. It follows that the map q,: Cp, o([l, A.y]) Y 
defined by q,(/) = (q,1 (/), q,2(/)) is also well-defined, linear and continuous . 

We prove that q, is a lifiear 2-mapping. For that let f e Cp, o([l, A.y]) with 
f ([l, A.y]) c (-1 /2, l /2). Let ex e [l ,A.y], Then I q, 1 (/)(ex) I < l /2 and therefore 

lq,2(/)(ex)I = 1/(ex)-q,1(/)(ex)I S 1/(ex)I + lq,1(j)(ex)I <1/2+1/2=1, 

which proves that q, is a linear 2-mapping. 
Now define by \jl(/, g)=f+g. It is evident that \j1 is a 

well-defined continuous linear 2-mapping. Furthermore one can simply derive that 
\jl=q>-1, and so we conclude that q, is a linear 2-homeomorphism, which proves claim 1. 

I CLAIM 2: X -Cp, o([l, y]). 

Indeed, define q,: X Cp, 0((1, y]) by q,(/)(~) = f (A;), Since by (2) the function 
is continuous, q, is well-defined. It is easily seen that q, is a continuous, linear 

I-mapping. Define \jl: Cp, 0((1, y]) X by \jl(/) I (Ai;, A!;+ 1] = / (~ + l) for e [0, y) and 
\jl(/)(A1;) = f@ for e (0, y] a limit ordinal. It is a triviality that \j1 is a well-defined, 
continuous, linear I-mapping, which is the inverse of q,. Whence q> is a linear 1-
homeomorphism. 

I * CLAIM 3: Y-Tii;qCp, o([l, Ai;+ 1 -Ai;]), 

Indeed, define by (1t1; 0 q>)(/)=/l(A1;,A1;+d (~<y). 



74 On the lp and f;i-equivalence of locally compact spaces 

To see that qi is well-defined, we assume there are f E Y, E > 0 and SI < S2 < · · · < y 
such that II( 1t1;. 0 qi )(f )II :2'. E for each n E IN. Let ~=limn e IN~n. Then S $ y. For each 

n E IN find an E 01.1;., "-1;. + i] with If (a,,) I :2'. E. Then If (A.1;) I :2'. E, which is a contradic-

tion, because f E Y. It is easily seen that qi is a continuous linear I-mapping. 
Define \j/: IT~< yC p. 0 ((1..1;, A.1;+ 1]) Y by \j/((f 1; )1; < 1)([3) = f 1; ([3) if f3 E (A.1;, "-1; + 1 ] and 

\j/((f 1;)1; q)(A.1;) = 0 ifs E (0, y] is a limit ordinal. It is evident that \j/ is a well-defined 
continuous linear I-mapping, which is the inverse of qi. Thus qi is a linear I-
homeomorphism. The claim is now proved since (A.1;, "-1; + i] "" [ l, "-I;+ 1 -As]. 

It is clear that the claims I, 2, and 3 establish the proof of lemma 2.5.6. 

2.5.7 LEMMA: Letµ be an infinite ordinal and ya limit ordinal such that y= µ or 

4 * y+ µ=µ. Then Cp, o([I, µ·y])- ITyCp, o([I, µ]). 

PROOF: By lemma 2.5.6, applied to the sequence A.1; = µ-~ for~$ y, we have 

Cp, o([l, µ·y]) !. Cp, o([l, y]) x IT~ <YCP, o([l, µ(~+I )-µ-s]) 

=Cp, o,([1, y]) x IT~Cp, o([l, µ]). 
2 * Now suppose y= µ. Then by lemma 2.5.5 CP, 0([1, µ-y])- flyCp, o([l, µ]). lf y+ µ = µ, 

then 
2 * CP, 0 ([ I, µ-y])-Cp, 0((1, y]) x CP, 0((1, µ]) x TiyCp, 0 ((1, µ]) (lemma 2.5.5) 
2 * - Cp, o([I, µ]) x flyCp, 0((1, µ]) (lemma 2.3.8, 2.3.9) 

l * -TiyCp, 0 ([1, µ]) (lemma 2.5.5). 

2.5.8 LEMMA: Let a be an initial ordinal and ya limit ordinal with y$a. Then 
there exists a subset M of [2, y) consisting of successors such that 

PROOF: Let f3 = cf (y). Since f3 is initial, cf (y) $ y, and y$ a, we have f3 $ a. 

CLAIM: There is a strictly increasing sequence { µ1; : $ f3} in [2, y] such that µ1; is a 
successor for each successor~$ [3, µ1; = lim11 < 1;~ for a limit ordinal $ [3, and µ13 = y, 

Indeed, let qi be an increasing [3-sequence such that lim1; < 13<!>(S) = y and qi( 1) :2'. 1. Let 
S $ and take µs = q>(s) + I if S is a limit ordinal, otherwise take µ1; = lim11 < 1; <l>(s). It is a 
triviality that { µ1; : s $ f3} is as required. 



§2.5. Compact ordinals 75 

Since a is a prime component (theorem 2.1.23), aµ~+i -aµ~ =aµ~+i and 

p+aµ1 =aµ1 (by theorem 2.1.15 and the facts that µ 1 ~2 and p:s;a). By applying lem-

ma 2.5.6 to the sequence A.I; =a~ for~ e (0, Pl and A{) =O, we get 

CP, 0 ((1, aY]) 1. Cp. 0 ([ 1, PD x IT~< pCp, 0 ((1, aµ~+i - a~]) 

=Cp, 0 ((1, PDxIT~<PCP, 0((1, a~+i]) 

I Cp, 0([1, P+aµ1 ]) x rri 51; < pCp, o([I, a~+i]) 

= CP, 0 ((1, aµ1 ]) x rr; 51; < pCp, 0 ((1, a~+i]) 

.!.rr~<Pcp.o([l, a~+ 1 ]). 

We applied lemma 2.5.6 for the first equivalence, lemmas 2.5.5, 2.3.9 and 2.3.8 for the 
third one and lemma 2.5.5 for the last one. Now take M = {µ1;+ 1: < P}. 

2.5.9 LEMMA: Let my be a singular ordinal. Then there exist P < ffiy and a strictly 
increasing P-sequence qi such that · 

(a) lim1;<pqi@=y, 

(b) COq,(1;) Pfor every~< p, 
4 • • 

(c) Cp,o([l, roy])-f11;<PCµ,o([l, roq,(1;+llD-

PROOF: Since roy is singular, y is a limit ordinal (corollary 2.1.11). Furthermore 
y:s; roy. 

CLAIM: There is an ordinal p and a strictly increasing P-sequence qi such that P < ffiy, 
lim1;<pqi@=y, COq,(1;) ~13 for every~< 13, and lim1;qqi(~)=qi(T\) ifT\ is a limit ordinal. 

For the proof of the claim we consider two cases. 
Case 1: y< roy. 

Let ~o =min{~: y< ro1; < ffiy} and notice that ~o < y. Put 13=y- ~o and qi@=~o +~. 
Then p:s;y< roy, lim1;< pqi(l;)=~o + P=Y, and by the definition of qi, roq,(1;) ~ro1;o > y~ 13. 

That lim1;qq>(~)=q>(T\) ifrt is a limit ordinal is a triviality. 
Case 2: y= roy. 

Let p = cf (roy). Since roy is singular, p < roy. Let q, 1 be a strictly increasing P-
sequence such that lim1;<pq, 1(~)=roy=y. As in the proof of lemma 2.5.8, we may as-
sume that lim1;q$(~) =q>(T\) if T\ is a limit ordinal. Now put q,(~) = p+q, 1@ for~< p. 
Then lim1;<pqi@=P+roy=roy (theorem 2.1.15 and 2.1.23) and COq,(1;)~rop~P- This 
proves the claim. 
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For the following notice that roqi(!; + 1 J - rocf>l/;J = roq,(1; + IJ (theorems 2.1.15 and 2.1.23) 
and that P+roqi(IJ =roq,(IJ (because pscoq,(O) < roqiriJ), By applying lemma 2.5.6 to the 
sequence As= COq,(l;J for~ E (0, Pl and Ao =0 and by lemmas 2.5.6, 2.3.8 and 2.3.9 we 
obtain 

I • - CP, 0 ([ l, PD x CP, 0 ([1, coqir1JD x TT 1 s1; < pep. 0 ([ 1, roqi(I;+ IJD 
2 * - cp. o([l, p + COqi(l)]) X IT I SI;< pCp, o([l, COqi(I:,+ I)]) 

= CP, 0([1, roqi(l)]) x n; s1; < pep. 0 ([1, coqirl;+ iJD 

We applied lemma 2.5.5 to get the second and fifth equivalence and lemmas 2.3.8 and 
2.3.9 for the third 

2.5.10 LEMMA: Let a be an initial ordinal and y an ordinal such that yS a, y?. 2. 

Then CP, o([l, a'Y]) ITiiCP, o([l, a-Y]). 

PROOF: First suppose that y is a successor, say y= p + 1. By lemmas 2.5.6 (applied to 
the sequence 11.1; =aP-~, E [0, al), 2.5.5, 2.3.8, 2.3.9 and the fact that a+aP = aP if 
p?. 2 (because aP is a prime component larger than a), we have 

Cp, 0([1, a'Y])~ITfxCp, 0 ([1, aP]). By lemma 2.5.4 we now have 

IT • C [ 'YJ 4 n* • p * z p a: p,o( l,a )- a:TTa:Cp.o([l,a ])=TTa: cp.o([l,a ]). 

Since a=a2 (page 52), it follows that CP, 0([1, a'Y]) nfxcp. 0([1, a'Y]), which is as 
desired. 

Now let y be a limit ordinal. Find Mc [2, y) as in lemma 2.5.8. Then 

(lemma 2.5.8) 

~TT~e M TTfxCp. o([l, aµ]) (by the above and lemma 2.5.4) 

IT·n· µ = a: µeMCp,o([l, a]) 

i nfxcp. 0 ((1, a-Y]) (lemma 2.5.8). 

2.5.11 LEMMA: Let a he a singular ordinal. Then CP, 0 ([ l, al)~ TTfxCp, 0([1, al). 
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PROOF: Put a== my. By lemma 2.5.9, there are ~<a and a strictly increasing ~-
sequence q, with limit y, such that c.o$(!;) 2'. for every < and 

(*) 

Fix < ~- Notice that c.o$(!;+I)"<X == a (proposition 2.1.12). By lemma 2.5.6, applied to 
the sequence A.ii == c.o$(!;) ·11 (11 < a), we obtain 

2 * Cp, o([l, a])-Cp, o([l, a]) X nll < aCp, o([l, C.0$(!;+ 1)'(11 + 1)-C.0$(!;+ I)'llD 

==Cp, o([l, a])xITaCp, o([l, c.o$(!;+1>D· 
We now have 

* 2 * * * ITpCp, o([I, a])-IT1;<13nll <aCp, o([l, C.0$(!;+ I)]) x ITpCp, o([l, a]) 

== n~ < a IT~< 13Cp, 0((1, c.o$<!;+ 1>]) x n~cP, 0((1, a]) 
4 • * -IT 11 <aCp, 0 ((1, a])xITpCp. 0((1, a]) 
I * - ITaCp, 0((1, a]). 

We applied lemma 2.5.4 to get the first equivalence, and(*) and lemma 2.5.4 to get the 
third one. The last equivalence follows from lemma 2.5.5 and the fact that~< ci. 

Let B ==I~<~:~ is a limit ordinal} u (0}. Notice that for every i e 1N and e B, 

c.o$(!;+i-1) -~ == ~(!;+i- I) < c.o$(!;+il (by the choice of the sequence q>), hence 
c.o,c!;+i-I}'~<C.Oq,(!;+i), so c.o,<!;+i-l)'~+c.o$(!;+i)==c.oq,(!;+i) (by theorems 2.1.23 and 
2.1.15). Then 

4 • 
Cp, o([l, a])- IT1; < 13Cp, o([l, c.o$(!;+ t)D 

== n~. B, j e INCp, o([l, C.0$(!;+i)D 
I * * - ITi; e Bcp. o([ I, C.0$(!;+ !) ]) X n1; e B, i ~2C p, o([l, C.0$(!;+i)D 

== IT~ e BCp, o([l, C.0$(!;+ !) ])x IT~. B, i 2C p, o([l, C.0$(!;+i - I)'~+ C.0$(!;+0]) 
2 * • - IT1;. sCp, o([l, C.0$(!;+ I)]) X IT1;. B, i ~2Cp, o([l, C.0$(!;+i -1) ·~]) X 

x n~. s,; ~2Cp, o([I, c.o$<!;+oD 
4 * * * - n1;. BCp, o([l, C.0$(!;+ I)]) X n1;. B, i ~2ITpCp, o([l, C.0$(!;+i- I)]) X 

xn~eB, i~2cp, o([l, C.Oq,(!;+i)D 

== TI~ e Bcp, o([l, C.0$(!;+ I)]) X n~n~ EB, j E INCp, o([l, C.0$(!;+i)D X 

xn~. B,; :1: 2Cp, 0([1, roq,<!;+il]) 
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l * * * - nse B, i E !Ncp, o([l, (J)Cl>(!;+i)]) X TTp TT!; EB, i E INCp, o([ I, (J)¢,(!;+i)D 

= n;n~E s.; e INcp. o<[ 1, wCl><!;+n D 
= n~n~< pep. 0((1, wCI>(!;+ 1JD 
4 * -TipCp. 0((1, al). 

Here we applied (*) for the first equivalence, lemma 2.5.5 for the third, lemmas 2.3.8, 

2.3.9, 2.5.4 and 2.5.5 for the fifth, and lemmas 2.5.4 and 2.5.7 for the sixth, respective-
ly. To get the eighth and ninth equivalence we used lemma 2.5.5. Finally we used (*) 

45 * 
for the last equivalence. We conclude that Cp, 0((1, a]) - Tia:Cp, o([l, 

2.5.12 LEMMA: Let be an initial ordinal, exe [~, ~2], say a=s·ex1 +13 with 
I :5 a1 :5 sand 13 < ~- Then CP, o([l, ex])- ntcP, o([l, ~]). 

PROOF: First notice that by lemmas 2.3.8 and 2.3.9 

Cp, o([l, al)- Cp, o([l, s·ex1 + l3])- Cp, o([l, 13 +s·exi])-Cp, o([ 1, s·exi]). 

Then by lemma 2.5.7 we ~ave Cp,o([I,s·ex1])-Titcp,o([l,SD- This finishes the 

proof of the lemma. 

At this moment we are able to prove the announced classification. The following 
theorem states it. The reader should compare it with theorem 2.5. I. 

2.5.13 THEOREM: Let ex and 13 be ordinals. 
If a and 13 have different power, then 

(a) Cp([l, ex]) and Cp([l, l3]) are not linearly homeomorphic. 
If a and 13 have the same power and~ is the initial ordinal of that power, then 

(b) If S = w, or S is a singular ordinal or both a, 13 s2 , then 
Cp([ 1, ex])-Cp([ 1, l3]) if and only if max(ex, 13) < [min(a, l3)]ro. 

(c)/f ·s is an uncountable regular ordinal and ex, l3e [S, s2 ], fix ordinals 
a1, 131 :5S and y, O<S such that a=s·ex1 +y and 13=~·131 +6. Then 
Cp([ 1, ex])- Cp([I, l3]) if and only if ex1 = 131. 

(d) Ifs is an uncountable regular ordinal, a< s2 and 13~s2 , then Cp([I, ex]) 
and Cp([1, 13D are not linearly homeomorphic. 

PROOF: Suppose (a) or (d) does not hold for some ordinals a and ~- Then by corol-
lary 1.2.21 it also does not hold for C 0([1, a]) and Co([l, l3]). This contradicts theorem 
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2.5.1 (a) or (d). 
We now prove (b). If Cp([l, a])-Cp([l, PD, then C o([l, aD-C o([I, PD (corollary 

1.2.21). So by theorem 2.5.l max(a, P) < [min(a, p)]w. 
We now prove the converse implication. Without loss of generality we may assume 

that a S p, so suppose that P < aw. 
Case 1: !;=ro. 

Then we can apply theorem 2.4.7 (b). 
Case 2: a, P~!;2• 

By lemma 2.1.5 a=!;Y•)..+6 for some y~2 with ysa, ISA.<!; and 6<!;Y. Notice 
that then ySa=~ and a<!;Y+ 1, thus p«xwsi;<y+t)w=!;Y<O (lemma 2.1.19). This im-
plies that P=!;yi·µ+e for some i e JN, µ < !;Y with µ > 0 and e < !;yi (corollary 2.1.3). 
Thus 

Cp([l, a])-Cp, 0([1, !;Y•)..+6]) (lemma 2.3.9) 

-Cp, 0([1, 6+!;Y•)..]) (lemma 2.3.8) 

=Cp, o([l, !;Y•)..]) (!;Y is a prime component and A.~0) 

In the same way 

Cp([l, PD-Cp,o([l, !;yi·µ]). 

CLAIM I: For every p e 1N and I sv < !;Y we have Cp, 0([1, !;YP·v])-n!Cp, 0([1, !;YD. 

First suppose p e 1N and v = 1. We prove by induction on p that 

The case p =1 follows from lemma 2.5.10. So letp > 1. We then have 

Cp, o([l, !;YPD = Cp, o([l, i;y(J,-1).!;YD 

4 TT~Cp, o([l, !;y(J,- t)]) (lemma 2.5.7) 

= n!cP, 0([1, i;y(J,-l)D (proposition 2.l.13) 
4P+2 * * - n~n~cP, 0([1, !;Y]) (by induction and lemma 2.5.4) 

= TT!Cp, o([l, !;Y]) (page 52). 

Now suppose p e 1N and I< v < ro. Then by induction on v, 

(*) 

Cp, o([l, !;YP·vD-Cp, o([l, !;YP·(v-1)]) x Cp, o([l, !;YP]) (lemmas 2.3.8 and 2.3.9) 

-n!cp,o([l, !;YD (by induction). 
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Finally suppose p e IN and v = µ + n with µ-,;, 0 a limit ordinal and n finite. Then 

Cp, o([l, ~YP-v])-Cp, 0([1, ~YP-µ]) x Cp, 0([1, ~'YP-n]) (lemmas 2.3.8 and 2.3.9) 

- n~cP, 0 ([1, ~YP]) x CP, 0 ((1, ~YP-n]) (lemma 2.5.7) 

- n~cP, o([l, ~wD 
- TT~TT!Cp, 0((1, ~'Y]) (lemma 2.5.4 and(*)) 

=IT!Cp, o([l, ~'Y]) (ii~=~). 

and the claim is proved. 

By the claim we immediately get 

and 

which proves case 2. 
Case 3: is singular and a e [~. ~2]. 

2 , 
CLAIM 2: If a e [~, ], then Cp, 0((1, a])-Cp, 0((1, ~]). 

Indeed, by lemma 2.5.12 we have 

. - 45 • 
with m$~. By lemma 2.5.11, Cp, o([l, ~])- TTsCp, o([l, 1;]), so 

Cp, 0((1, a])-n:cP, 0 ((1, ~]) 

-n:n!cP, 0((1, ~D 

=TT!Cp, o([l, ~]) 

-CP, o([l, SD 
This proves claim 2. 

(lemma 2.5.4) 

(m·~=~) 

CLAIM 3: If p:2:~2 then CP, 0((1, PD-Cp, 0 ((1, 1;]). 

Indeed, notice that p < aro $ (1;2)ro. So by case 2, Cp, 0((1, PD- Cp, o([l, s2]). But by 
claim 2, Cp, o([l, 1;2 ))-CP, 0 ((1, SD, which proves claim 3. 

By claims 2 and 3 we finished the proof of case 3, and therefore also the proof of (b), 
For (c) first suppose that Cp([l, a])-Cp([l, PD- Then Co([!, a])-Co([l, PD 
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(corollary 1.2.21) and thus a 1 =~, (theorem 2.5.1 (c)). 
Now suppose a 1 = ~1• By lemma 2.5.12 

and (c) is proved. 0 

The last theorem gives a complete isomorphical classification of the spaces Cp(X), 

where X is a compact ordinal space. As announced in the introduction of this section, 
Kislyakov gave the same classification for the spaces C 0(X) (with X a compact ordinal 
space). However, he made a mistake in his proof. We now will point out his mistake, 
and indicate how it can be corrected. 

Kislyakov states the following: "Let a= roy. Since a is singular, it follows that y < a 
and .... " (cf. [34, lemma 3.3]). But in example 2.1.14 we gave an example ofa singular 
ordinal roy such that y= roy. 

An examination of our proofs tells us that if lemmas 2.5.4, 2.5.5 and 2.5.6 hold for 
function spaces endowed with the topology of uniform convergence, then all the other 
lemmas and theorems also hold for function spaces with this topology. Kislyakov 
proved lemmas 2.5.4 and 2.5.6 for those function spaces (cf. resp. lemma 1.2 and lem-
ma 3.1 in [34]). In addition, lemma 2.5.5 is very easy to prove for function spaces en-
dowed with the topology of uniform convergence. So our proof can be copied to get a 
correct proof of the classification of Kislyakov. It turns out that the proof one gets in 
this way differs from the proof of Kislyakov at two places. First of all corollary 3.3 in 
[34] has to be stated in a more general form (it becomes our lemma 2.5.9 for function 
spaces endowed with the topology of uniform convergence) and second, the proof of 
lemma 3.3 of [34] (which is our lemma 2.5.11 for function spaces endowed with the to-
pology of uniform convergence) has to be fixed ( the proof for the case y < roy remains 
the same but the case y= roy has to be added). 

Finally we remark that Gulko and Oskin also proved theorem 2.5.1 (b) and (d) (in 
[28]), independently from Kislyakov. We were inspired by [34] because [28] contains 
no proofs. The other results in this section are new and were never published. 

§2.6. a-compact ordinals 

In this section we give a complete isomorphical classification of the spaces Cp(X) 
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and C o(X) where X = [ l, a), for ordinals a cofinal with w. Notice that these spaces are 
exactly the non-compact spaces which are a countable union of compact ordinal spaces. 
Therefore we call such an ordinal a a-ordinal. If a is also a prime component or an in-
itial ordinal, we call it a a-prime component or a a-initial ordinal, respectively. 

2.6.1 LEMMA: If a is a a-ordinal, then every closed and bounded subset of [I, a) 
is compact. 

PROOF: Let (an)n be a strictly increasing sequence of ordinals with limit a. Let A be 
a closed and bounded subset of [I, a). Then there is n e IN such that A c [I, anl• For if 
not, then A would contain a closed discrete subset, which is not possible because A is 
bounded. Since A is closed in [I, an] it is 

2.6.2 REMARK: From lemma 2.6.1 and corollary 1.2.21 we have for a-ordinals a 
and~ that a linear homeomorphism qi: Cp([l, ~)) considered as a map 
from C 0([1, a)) toC0 ([1, ~)) is also a linear homeomorphism. 

Furthermore, let be an ordinal with cf(~)> w. By the methods of [24, Ex 3.1.27] 
it easily follows that every continuous function f : [I, ~) JR is eventually constant. 
But this implies that [I,~) is pseudocompact. By this observation it follows that lemma 
2.6.1 does not hold for(! and that a is a a-ordinal if and only if [I, a) is a non-compact 
non-pseudocompactspace 

The following lemma is the key lemma in the proof of the classification mentioned 
above. 

2.6.3 LEMMA: Let X and Y be spaces such that X=X I EBX2 EBX 3 and 
Y =YI EBY 2 EBY 3. Suppose qi: C o(X) C 0(Y) is a linear homeomorphism such that 
suppX I c Y I and supp Y 2 cX 1 €BX 2• Then there is a linear embedding 
9: 

PROOF: For each f e Co(Y2) we define le Co(Y) by f\y)=f(y) if ye Y2 and 
f*(y) =0 elsewhere. In a similar way we define for every g e C 0 (X 2), g+ e C 0 (X). 
Define 9: by 9(f)=qi-1(/')IX2 and \j/: by 
\j/(g) =qi(g+) I y 2· 

Then 9 and \j/ are continuous linear functions. Furthermore for every he C 0(Y 2), we 
have \j/(9(h))=h. Indeed, assume to the contrary that qi(9(ht)IYz;,!=h* IY2. Then 
8(htl(X1 EBX2);eqi-1(h*)l(X1 EBX2) since X 1 EBX2 is a neighborhood of suppY2 
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and <l> is effective (corollary 1.2.15 (a)). Now h * = 0 on Y 1, so <j>- 1 (h •) = 0 on X 1, since 
Y 1 is a neighborhood of suppX 1 and <j>- 1 is effective. Furthermore 0(/zt =0 on X 1, so 
that 0(ht=<J>-1(h*) on X 1• This implies 0(ht IX 2 ;t<j>-1(h*) IX 2, which is impossible 
because both the left-hand side and the right-hand side are equal to 0(h ). This is a con-
tradiction and we conclude that 0 is a linear embedding. 

2.6.4 COROLLARY: Let X and Y be spaces such that X =X 1 EBX 2 and 
Y = Y 1 EBY 2. Suppose <j>: C o(X) C o(Y) is a linear homeomorphism such that 
supp Y 1 c X 1. Then there is a linear embedding 0: C 0(Y 1) C o(X 1 ). 

PROOF: Take X 1 = Y 1 = 0 in lemma 2.6.3. 

Notice that lemma 2.6.3 and corollary 2.6.4 also hold for the spaces Cp(X) and 
Cp(Y). 

The strategy of the proof of the classification is as follows: First we define a class of 
spaces, and we prove that for every a-ordinal a there is a space Y in this class such that 
Cp([l, a))- Cp(Y) (lemma 2.6.6). Then we prove that if X and Y are two spaces in this 
class, then Cp(X)-Cp(Y) if and ohly if C 0(X)-C 0(Y) if and only if X = Y (corollary 
2.6.15 and lemma 2.6.16). From these results we then easily derive our classification 
(theorem 2.6.17). 

For initial ordinals a and p with a~ p?. ro we define the following classes of spaces: 
Case 1: If a is singular or ro and p is singular or ro then 

..4(a, ~) = { [l, c#] EB [l,ro'): µ a prime component, 't a a-prime component or 

-r = 1, µ 2: -r 1, roJI = a, w = ~}. 
Case 2: If a is uncountable regular and pis singular or ro then 

..4 ( a, ~) = {[ 1, c#] EB [ 1, ro') : µ a prime component, 't a cr-prime component or 

't = 1, c# > a 2 , roJI = a, W = ~) 
u {[l, a·~] EB [l,ro'): 'ta a-prime component or 't= 1, initial, 1 s;~s;a, 

ro'" =~}. 
Case 3: If a is singular or ro and P is uncountable regular then 

..4<a. ~l = {[1, c#] EB [l,ro'): µ a prime component, 't a a-prime component, 

ro' > p2 • roJI = a, w = J 
u { [I, c#] EB [ 1, P·ri) : µ a prime component, TJ = p·ro with p initial or TJ 

a-initial, co S: 11 S: p, roJI =a). 
Case 4: If a and Pare uncountable regular then 
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,,4<a,PJ = {[l,of]EB[l,w'):µ a prime component,, a a-prime component, 

µ~,,of> a 2 , w' > 132, ~=ii, wr =Pl 
u {[l,a·~]EB[l,w'):, a a-prime component,~ initial, l:5~:5a, 

a-~~w•, w' > 132 , wr =Pl 
u { [ 1, of] EB [ 1, 13·TJ) : µ a prime component, 11 = p·w with p initial or 11 

a-initial, w:517:513, of~ 13·TJ, ~=ii) 
u {[l,a·~] EB [l,l3·17): initial, 11 =p·w with p initial or 11 a-initial, 

l :5~:5a, w:517:513, a-~~l3-17). 

Now let 13 w be an initial ordinal. 
Case 5: If 13 is singular or 13 = w then 

$<Pl= { [l, wt):, a a-prime component or 't = 1, wr = p). 
Case 6: If 13 is uncountable regular then 

jj>(Pl = { [ 1, (l)') : 't a a-prime component, (J)' > 132 , wr =pl 

u { [ 1, l3·17): T] = p·m with p initial or 11 a-initial, m:517 :513). 
Now let 

,,4 =U{A(a,Pl: (a, 13) as in case 1, 2, 3 or 4), 

and 
$ =U{2i'<Pl: 13 as in case 5 or 6 }. 

The class of spaces that we are currently interested in is ,,4 u $. Notice that whenever 
X =[ 1, qi] $ [I, \j/) E ,,4, then qi~ \j/. 

For every space X E ,,4 u $ we need to fix a certain decomposition. First we will as-
sign to certain ordinals µ a fixed sequence (µ; ); of ordinals. Ifµ= 1, put µ; = 0 for each 
i E JN. Ifµ ='t • W for some 't, putµ; ='t • i for each i E JN, and ifµ is a a-ordinal not of 
the form 't·m, let(µ;); be a strictly increasing sequence of ordinals such and 
1 :5 µ; <µfor each i E 1N. We now define the desired decompositions: 
If X=[l,qi]EB[l,w'')EA, then X=[l,qi]EB[l,w'1 ]EB[l,mt2 ]EB ··· (this is true be-
cause for every i, mt; is a prime component). 

If X =[I, qi] EB [I, l3·17) EA, then X = [I, qi] EB [l, 13·TJ iJ EB (1, l3·112J EB · · · 
IfX=[l,wt)E2i',thenX=[l,w'1)$[l,mt2 JEB •·· 

If X = [l ,l3·11) E $, then X = (1, l3·11 iJ EB (1, 13·112] EB · · · 
If for XE ,,4 u$ we write X =EBT'=1X;, then we implicitly mean that the X; are as 

above. 

Now we are going to prove that for every a-ordinal qi there is a space YE ,,4 u $ and 
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a decomposition Etlt=iX; of [I, <j>) such that Cp(X;)-Cp(Y;). We first need the follow-
ing 

2.6.5 LEMMA: Let p 2:: ro be an initial ordinal and 't a successor or a a-ordinal, 

such that iil = ~-
(a) If P = ro, Pis singular, or rot';;:::p2 and ift is not a prime component, then 

there is a decomposition EBt=1X; of [1, rot), such that for every i, 
Cp(X; )- Cp([l, rot'·1]). In particular Cp([l, rot))- Cp([l, rot'·co)). 

(b) If Pis uncountable regular and rot' E [P, P2) then one of the following holds: 
(i) rot= P·11 with 11 a-initial and ros11 Sp, or 
(ii) there is an initial ordinal 11 such that ro S 11 SP and there is a decompo-

sition EB;': 1X; of[ I, rot), such that for every i, Cp(X1)- Cp([l, ll11·i ]). In 
particular Cp([1, rot)) - Cp([l, P·11·ro)). Furthermore P·11·ro S rot. 

PROOF: First notice that [1, rot)= EBt=l [l, rot;], where -r1 = v if 't =v + 1 and (t1)1 is a 
strictly increasing sequence (not necessary equal to the fixed sequence associated with 
t) with limit 't if't is a a-ordinal. Both in (a) and (b)(ii) we will getX1=[1, rot;]. 

We first prove (a). Since 't is not a prime component, we have t' < 't < -r'·ro (lemma 
2.1.19), and we can assume -r'i-r1 for each i. Now rot' Srot; <rot< (rot')w. With the 

help of proposition 2.1.13 it now easily follows that rot; =rot'=~- Since p = ro, p is 
singular, or rot' 2:: P2 , we can apply theorem 2.5. 13 (b) to obtain 

By a similar argument 

whence by lemma 2.3.7, 

= = 
Cp([l, rot))= Cp(.EB [l, ro•; ])- Cp(Etl [1, rot'·i]) = Cp([ I, rot'·co)). 

1 = 1 1 =I 

For (b) we distinguish two cases. 
Case 1: rot> p2 . 

Since P is initial, it is a prime component, so by theorem 2.1.21 P = roP for some or-
dinal p. Then p·2 < 't and we can assume that p·2 S -r1 for each i. We conclude that 
ro'i;;:::p2 . Since rot' <P2 we have t'<p·2<t, so t<p·ro by lemma 2.1.19. Thus 

p2 S rot; < (P2 )co. By proposition 2.1.13 it now easily follows that rot; = ~. so by 
theorem 2.5.13 (b) 
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and similarly 

Consequently, 

Cp([l, w'))-Cp([l, f}2 ·w)). 

Since 1}2 ·w is the smallest prime component larger than 1}2 (lemma 2.1.19), W' 2:". 1}2 ·w, 
and so we have established (ii) for TJ = fl. 
Case 2: w' :51}2 • 

If w' = 1}2 , w' satisfies (i), so we may assume w' < 1}2 • There are ordinals o, TJ • < p 
such that w' = P·ri* +o. Since o < w' and w' is a prime component, 8=0. In addition, 
since p is regular and cf (w') = w, TJ • 2:". w. If TJ • is initial we are done, so suppose TJ • is 
not initial. Let TJ be the initial ordinal of the same power as TJ •. Then w :5 TJ < TJ •, hence 
P·ri<P·ri•=w', so we can assume P·TJ:5W'1 for each i. Write w'1 =P·TJi+oi with 
TJi, oi < p. Then oi = 0 since w'1 is a prime component, and P·TJ :5 P·TJi < P·TJ *, whence 
Ti =lli• Since w'1 = P·TJi, P·TJ e [fl, 1}2 ], it follows by theorem 2.5.13 (c) that 
Cp([l, w'1 ])- Cp([l, P·TJ]). -Since Cp([ 1, P·TJ])-Cp([l, P·TJ·i]), (ii) can be established as 
in case I. o 

2.6.6 LEMMA: let qi be a a-ordinal. Then there is a decomposition EBt=IXi of 
[l, qi) and a space Ye .,4 u:JJ such that Cp(Xi)-Cp(Yi) (where Yi is the i th term in the 
fixed decomposition of Y). In particular Cp([l, qi))- Cp(Y) and C 0 ((1, qi))- C 0 (Y). 

PROOF: By theorems 2.1.16 and 2.1.21 there are ordinals 'I' and 't such that 
qi= 'If+ w', with 't > 0 and \j/ = 0 or 'I'~ w'. Notice that 't is a successor or a a-ordinal. 
Let a and p be initial such that ii==iji and ~=w'. Notice that w•' ;tfj2 , because if not 
then w•' =P2 =wP·2 for some prime component p which implies that ,:'=p·2 is not a 
prime component. 
Case 1: \jl=O, 't1 ='t. 

If pis singular, P=w or w' > 1}2 , we have [1, qi)= [l, w') e :JJ. 
If P is uncountable regular and w' e [P, 1}2 ), then by lemma 2.6.5 we have either 

[l, W') e :JJ or there is Ye :H such that Cp([l, qi))= Cp([l, w'))-Cp(Y) with the desired 
decomposition and such that if Y = [I, O) then o :5 w'. 
Case 2: \jl=O, ,:' ;t,:. 

If is singular, = w or w•' > ~2, we have by lemma 2.6.5 (a) that there exists a 
space Ye :B such that Cp([l, qi)) =Cp([I, w'))-Cp(Y) with the desired decomposition 
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(YE ;J3 because Y = [l, co•'·w) and ,'·co is a a-prime component). 
If 13 is uncountable regular and co•' < 132 , by lemma 2.6.5 (b) there is a space Ye ;J3 

such that Cp([l, <!>))-Cp(Y) and which has the desired decomposition. 
Case 3: \jl~co•, ,'=,. 

There is an ordinal µ , such that \j/1 = col1. Notice that ,' $ µ. By case 1, there is a 
space Y'=[l, O)E ;J3 with o::,co', such that Cp([l, co''))-Cp(Y') and which has the 
desired decomposition. 

If a is singular, a= co or col1' > a 2 , by theorem 2.5.13 (b) Cp([l, col1'])-Cp([l, \j/]) 
(because col1' :=, col1 :=; lj/ < co11+ 1 < (col1' )w). Since col1' ~co•'= co'~ o, 

If a is uncountable regular and col1' < a 2 we have to consider two subcases 
Subcase 3.1: \jl~ a2 . 

Then a 2 $1j1<(wl1')w::,(a2 )w, so by theorem 2.5.13 (b), Cp([l,\j/])-Cp([l,a2 ]). 

Since a 2 > col1' ~co•'~ o, the space Y = [I, a 2 ] EBY' E .A and Cp([l, <!>))- Cp(Y) and 
moreover has the desired decomposition. 
Subcase 3 .2: \jl < a2 • 

Then lj/ =a·~* + o with 1 :=, * < a and o < a. If we let the initial ordinal with the 
same power as ~*, then by theorem 2.5.13 (c), Cp([l, \j/])-Cp([l, a·~]). Now let 
Y = [l, a·~] EBY'. It is easily seen that if a·~< o, then Y = Y' E ;J3 and otherwise YE .A. 
Case 4: \jl ~co',,' :;t: ,. 

This is a combination of the cases 2 and 3. 
Notice that the last remark in the lemma easily follows from lemma 2.3.7 and corol-

lary 1.2.21. o 

Now we are going to prove that for every X, YE .Au ;J3 we have Cp(X)-Cp(Y) if 
and only if C 0(X)-C 0 (Y) if and only if X = Y. For that we first have to do some pre-
patory work. 

2.6.7 LEMMA: 
(a) lf 0: Co([l, col1]) C 0([1, cov]) is a linear embedding withµ, v I, then 

(i) µ < v·co, hence wl1 < (cov)w, and 
(ii) ifµ is a prime component, thenµ $v, hence wl1 $ cov. 

(b) Let a be an uncountable regular ordinal and~. Tl E [1, a]. 
lf0: Co([!, a·~]) a·ri]) is a linear embedding, then ~:=,ij. 

PROOF: We first prove (a). Suppose µ~v·ro. Then roµ~(rov)oo, so by corollary 2.5.3 
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C 0 ([1, wv]) has smaller linear dimension than C 0 ([1, wµ]), which contradicts the fact 
that 0: C 0(( I, cJ1]) C 0(( I, wv]) is a linear embedding. This proves (i). For (ii) let µ 
be a prime component. Since µ < v·w, by lemma 2.1. I 9, µ::; v'::; v. 

For (b) suppose rj < ~- Then T] < S, so there is a linear embedding 
<1>: C o([I, a·ri]) C o([I, a·~]). This gives that C o([I, a·riD and C o([I, a·~]) have the 
same linear dimension, so by theorem 2.5.1 (c) rj = t Contradiction. 0 

2.6.8 LEMMA: 
(a)Let X=ZEB[I, ro) with Z a compact space, and Y=Ef);:1Z; where each Z; is 

an infinite compact space. Then C o(X) and C o(Y) are not linearly 
homeomorphic. 

(b)Let X=Z 1 EBZ2 with Z 1 an infinite compact space. Then Co(X) is not 
linearly homeomorphic to C 0([1, W)). 

PROOF: For (a) suppose that C o(X) is linearly homeomorphic to C 0 (Y). Then by 
corollary 1.2.15 (b) there is ne IN such that suppZcE97=1Z;. Again by corollary 
1.2.15 (b) there ism e IN such that suppZ,,+1 cZ EB [I, m ]. By lemma 2.6.3, there is a 
linear embedding 0: C 0(Z11 +1) m ])=!Rm. Since Zn+I is infinite we have a 
contradiction, because the algebraic dimension of C o(Z,, +I) is infinite. 

For (b) suppose that C 0(X) is linearly homeomorphic to C 0([1, W)). Then by corol-
lary 1.2.15 (b ), there is m e IN such that supp Z 1 c [ l, m ] . By corollary 2.6.4, there is a 
linear embedding 0: C 0 (Z 1) C 0 [ I, m] = IR.m. Again we have a contradiction. 0 

2.6.9 LEMMA: Let X = [I, Sil EB [I, ~2) and Y =[I, Tlil EB (1, TJ2) where ~2 and Tl2 
are a-prime components, s 1 ~s2 and T] 1 ~T]2. Then C 0(X)-C 0(Y) implies SI ='Tl7 
and ~2 =T]2. 

PROOF: Suppose SI < i,7 and C o(X)-C 0(Y). By corollary 1.2. 15 (b) there is ck s 2 

such that supp [I, T] il c [I, s 1 + o], which implies by corollary 2.6.4 that there is a 
linear embedding 0: C o([I, C o([I, S1 + o]). Since SI+ o=s1, SI +o < i,7 and so 
~I +o <Tl!. But then there is also a linear embedding <J>: C o([I. SI +o)) C o((l, Tl!]) 
and we conclude that C 0 ([1, s 1 +o]) and C 0([1, T] 1]) have the same linear dimension. 
This contradicts theorem 2.5.1 (a). By symmetry we conclude that Si =T] 1. 

Now suppose S2 < T]2, By corollary 1.2.15 (b) there is o < ri 2 such that 
supp [I, Sil c [I, T] 1 + o]. Since ri 2 is a prime component, Y"" [I, TJ 1 + o] EB [I, T] 2). 

CLAIM: There is an ordinal "t < 112, such that 1 > ~2. 
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Indeed, choose roa and rop such that s 2 = roa and 11 2 = rop. Notice that a+ 1 $ p 
(theorem 2.1.6). If a+ 1 < p, then 't = roa+ 1 satisfies the claim. If a+ I = p, then rop is 
regular (theorem 2.1.10). Since 11 2 is a cr-ordinal, it follows that rop < 11 2 , so let 't = rop. 

Now choose O'<S2 such that supp[l, 't]c[l, siJEB[l, cr]. By lemma 2.6.3, there is 

a linear embedding 0: C 0 ([1, 't]) C o([l, cr]). Since cr $ s 2 < 1, cr < 't. But then there is 
also a linear embedding qi: C 0 ([1, cr]) C 0 ([1, 't]) and we may conclude that 
Co([ 1, cr]) and Co ([I, 't]) have the same linear dimension. This contradicts theorem 

2.5.1 (a). By symmetry we conclude that S2 =112-

2.6.10 LEMMA: Let a be an initial ordinal. 
(a) Let X = [l, c#] EB [I, P) and Y = [I, ro0 ] EB [I, y), where I $µ$cr are prime 

components, c# 2:p and ro0 2:y. Then C 0(X)-C0 (Y), implies µ=cr. 
(b) Let X =[I, a·s] EB [l, P) and Y =[I, a·riJ EB [I, y) where a is uncountable 

regular, 1 $ S $Tl< a, S and Tl are initial, a·s 2: p, and a·TJ 2:y. Then 
Co(X)-Co(Y) implies s=TJ. 

PROOF: For (a), by corollary 1.2.15 (b) there is 8 < P such that 
supp [l, ro0 ] c [l, c#J EB [l, 8]. . Since c# is a prime component, we have 
[l, c#J EB [I, 8] = [I, c#J. Hence by corollary 2.6.4, there is a linear embedding 
0: C 0([1, c#]). Then by lemma 2.6.7 (a) we have cr$µ. Since by as-
sumption cr 2: µ, cr = µ. 

For the proof of (b), let 8 < p be such that supp [I, a·TJ] c [l, a·s] EB [I, 8]. Since 
8 < a·s we have 8+a·s = a·s and so [l, a·s] EB [l, 8] = [l, a·s]. But then by corollary 
2.6.4 there is a linear embedding 0: C 0 ([1, a·TJD [I, a·s]). Hence by lemma 2.6.7 

(b), fi $ t Since Tl and S are initial, Tl $ S and so Tl= S (because by assumption TJ 2: s). 

2.6.11 LEMMA: Let a be an initial ordinal. 
(a) Let X =Z I EB [l, ro6 ) and Y =Z2 EB [I, ro1·ro), where Z I and Z 2 are compact 

spaces, 8, 'tare prime components, 8= I or 6 is a a-ordinal, 1 $8$'t, and 

co° =ro' = a. If a is singular, a= ro or ro6 2: a 2 , then C 0(X) and C 0(Y) are 
not linearly homeomorphic. 

(b) Let X =Z I EB [I, a·s) and Y =Z2 EB [l, a·TJ·ro), where Z I and Z2 are com-
pact spaces, Sis a-initial, Tl is initial, and ro $ s $ TJ $ a. If a is uncountable 
regular, then C o(X) and C o(Y) are not linearly homeomorphic. 

PROOF: For (a) suppose the C 0(X)-C 0(Y). Then by lemma 2.6.8 (a), o > 1. By 
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corollary 1.2.15 (b) there is n e IN such that suppZ 1 cZ 2 EB [I, wt·n]. Again by corol-
lary 1.2.15 (b) there is O; in the fixed sequence associated with o such that 
supp[l,wt·(n+l)]cZ 1 EB[I,w6;]. By lemma 2.6.3 and the fact that 
C 0([1, wt·(n+l)])-C0([1, wt]) (theorem 2.5.13 (b)), there is a linear embedding 
0: C 0 ((1, C 0((1, w6; ]). Then by lemma 2.6.7 (a), 't $ O; < o, which is a contrad-
iction. 

For (b) suppose C 0 (X)-C 0 (Y). There is n e IN such that suppZ I cZ2 EB [l, cnJ·n] 
and ~; in the fixed sequence associated with such that 
supp[l,a·11·(n+l)]cZ1 EB[l,a:~;). By lemma 2.6.3 and the fact that 
C 0 ([1, a·11·(n + 1)])-C0([1, a·11] (theorem 2.5.13 (c)), there is a linear embedding 
0: C 0([1, a·~;]), so by lemma 2.6.7 (b), fi$~ <~, which is a contrad-

2.6.12 LEMMA: Let a be an initial ordinal. 
(a)Let X=Z 1 EB[I,w6 ) and Y=Z2EB[l, wt), where Z 1 and Z2 are compact 

spaces, o, ,: are a-prime components or I, 1 s; o s; ,:, and w° =w'-' = a. If a is 
singular, a= w or w0 2 a 2 , then C 0(X)-C 0 (Y) implies O='t. 

(b) Let X =Z I EB [1_, a·~) and Y =Z 2 EB [1, a·11), where Z I and Z2 are compact 
spaces, and 11 are a-initial or of the form 't·W with 't initial, and 
roS:~$11$a. If a is uncountable regular, then C 0(X)-C0 (Y) implies 

~=11. 

PROOF: For (a) suppose o < 't. By lemma 2.6.8 (a), o > 1. By corollary 1.2.15 (b), 
there is,; in the fixed sequence associated with 't such that suppZ 1 cZ2 EB[l, wt;]. 
Now let j > i. Again by corollary 1.2.15 (b), there is ok in the fixed sequence associated 
with o such that supp [1, wt1] cZ I EB [1, w0k ]. By lemma 2.6.3 there is a linear embed-

s t· Ok s: s: ding : Co([ 1, w 1 ]) C 0([ 1, ro ]). So by lemma 2.6.7 (a), we have 'tj < uk ·w $ u·w, 
which implies o < 't $ o·w. So since o and 't are prime components, we have , = o·ro. 
But this contradicts lemma 2.6.11. 

For (b) suppose < 11· There is 11; 2 1 in the fixed sequence associated with 11 such 
that suppZ I cZ 2 EB [1, a·11;]. For j > i, there is ~k 2 l in the fixed sequence associated 
with such that supp [l, CX'lljl c Z 2 EB [l, a·~kl• By lemma 2.6.3, there is a linear 
embedding 0: Co([l, a·11j]) a·~k]). By lemma 2.6.7 (b), llj s;~k $~. So 
fi $ $ fi and hence fi = ~- Now we have four cases: 
Case 1: ~. 11 are initial. 

Since~< 11, we then have~< fi. Contradiction. 
Case 2: is initial, 11 = 't·ro with 't initial. 
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Then~= 11 = t, so,:= S· But then we have a contradiction with lemma 2.6.11 (b). 
Case 3: s = ,:·ro with 't initial and rJ is initial. 

By the same arguments as in case 3 we can derive a contradiction. 
Case 4: s = ,:·ro and ri = 6·ro with 't and 6 initial. 

Then t = 8 and so 't = 6, so s = rJ, which is a contradiction. 

2.6.13 LEMMA: Let a be an uncountable regular ordinal, and X = [1, of-] EB [1, ~), 

where µ is a prime component, s; of-, a a-ordinal, of- > a2 and wl1" = a. Let 
Y = [1, a·s] EB [l, y), where~ is initial, 1 s; S s; a, ya a-ordinal and ys. a-~- Then C o(X) 
and C 0(Y) are not linearly homeomorphic. 

PROOF: To the contrary suppose C 0(X)- C 0 (Y). There is 6 < y such that 
supp [1, of-] c [1, a·s] EB [1, 6]"" [1, a·s]. By corollary 2.6.4, there is a linear embed-
ding 0: C 0 ([1, C 0 ([1, a·s]). But then by lemma 2.6.7 (a), of- s;a.•s s; a 2 , which 
contradicts the fact that of- > a2 . 0 · 

2.6.14 LEMMA: Let a be an uncountable regular ordinal, and X = Z 1 EB [1, a·s) 
and Y=Z2 EB[l, of-), where Z 1 and Z2 are compact spaces, ss;a is a-initial or of the 
form 1:·ro with ,: initial, µ is a cr-;rime component, of- > a2 and wl1" = a. Then C 0(X) 

and C 0(Y) are not linearly homeomorphic. 

PROOF: To the contrary suppose C 0(X)-C0 (Y). By corollary 1.2.15 (b) there is µi in 
the fixed sequence associated with µ such that supp Z 1 c Z 2 EB [ 1, roµ;]. Let j > i such 
that roµ1 > a2 • By corollary 1.2.15 (b) there is k E IN such that 
supp [1, roµ1] cZ 1 EB [1, a·skl- Notice that Sk < S $;a. By lemma 2.6.3 there is a linear 
embedding from C 0([1, roµ1]) into Co([l, a·skD- Since a 2 < roµ1, there is also a linear 
embedding from Co([l, a2 ]) into Co([l, roµ1]), thus there is a linear embedding 
0: Co([l, a·skD- So by lemma 2.6.7 (b), <is;Sk and hence o;s;Sk· Con-
tradiction. 0 

We now come to the announced 

2.6.15 COROLLARY: 
(a)Let XE .4 and YE .4. Then Cp(X)-Cp(Y) if and only if Co(X)-Co(Y) if 

and only if X = Y. 
(b )Let XE ;JJ and YE ;JJ. Then Cp(X)- Cp(Y) if and only if C o(X)-C o(Y) if 

and only if X = Y. 
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PROOF: If Cp(X)-Cp(Y), then by remark 2.6.2, C 0 (X)-Co(Y). Now suppose 
C o(X)- C 0 (Y). Let a and 13 be ordinals such that XE .,4(a, ~). But then by lemma 2.6.9, 
YE .,1<a. ~J. By lemmas 2.6.10, 2.6.12, 2.6.13 and 2.6.14 it then follows that X = Y. If 
X = Y, then evidently Cp(X)-Cp(Y) and (a) is proved. 

Similarly (b) follows from lemmas 2.6.9, 2,6,12 and 2.6.14. 

2.6.16 LEMMA: Let XE ,,4 and YE :/3. Then C 0 (X) is not linearly homeomorphic 
to Co(Y). 

PROOF: X = [1, ¢,] $ [l, 'I') and Y = [l, ~) with ¢, a prime component, 'I' and Ci-

ordinals and ¢, '1'· Suppose C 0(X)-C o(Y). By theorem 2.5.l (a), X = Y and therefore 
W S ~- As in lemma 2.6.9 we can derive W = ~- Let a be the initial ordinal such that 
\ji=~=a. By lemma 2.6.14 we have to consider two cases: 
Case I: a is singular, a= ci) or 'I', > a 2 . 

Then \jf=O>' and ~=c# withµ and, a-prime components or I. By lemma 2.6.12 
(a), µ =, and by lemma 2.6.8 (b) , > I. There is 'i <, such that supp [I,¢,] c [I, w'i ]. 
So there is a linear embedding 0: C 0 ([1, ¢,]) C 0([1, w'i]) (corollary 2.6.4). By lem-
ma 2.6.7, ¢, < w t;•(J) s; wt= 'If. Contradiction. 
Case 2: a is uncountable and regular. 

Then ljl= a·11 and~= a·, with 11 and, a-initial or of the form initial·w, ws:11,, Sa. 
By lemma 2.6.12 (b), 11=,. There is iEIN such that supp[l,¢,]c[I,a·11;]. So by 
corollary 2.6.4, there is a linear embedding 0: Co([l, a·rtiJ). Since 
a·11;<a·rt='lfS¢>, there is a linear embedding This 
means that C 0 ([1, a·11;]) and C 0 ([1, ¢,]) have the same linear dimension. So by 
theorem 2.5.l (c) ¢,=a·y+o for some ysa and O<a with y=ri;. But then Y<ll, so 
y < 11, which implies¢,< a·11 ='If.Contradiction. 0 

The following theorem gives the classification announced in the introduction of this 
section. 

2.6.17 THEOREM: Let a and 13 he a-ordinals Then the following statements are 
equivalent: 

(I) Cp([l, a))-Cp([l, l3)) 

(2) Co([l, CX))-Co([l, 13)) 

(3) There are compacta X; and Y; (i E IN) such that [I, a)=Eflt=JX;, 
[l, l3) = $1=1 Yi and for every i E IN, Cp(X;)-Cp(Y;). 
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(4) There are compacta X; and Y; (i e IN) such that [I, cx.)=EBr'=1X;, 
[I, 13)= EBi=l Y; and for every i e IN, C o(X;)-C o(Y;). 

(In fact the X; and the Y; are compact ordinal spaces.) 

PROOF: For (1) => (2) apply corollary 1.2.21. Furthermore (2) => (4) easily follows 
from lemma 2.6.6, corollary 2.6.15 and lemma 2.6.16. For (4) => (3) notice that for 
compact ordinals we have the same isomorphical classification for the topology of 
pointwise convergence and the compact-open topology (section 2.5), so 
C 0(X;)-C0(Y;) implies Cp(X;)-Cp(Y;). Finally (3) => (I) follows from lemma 2.3.7, 
and the theorem is proved. 

2.6.18EXAMPLE: Notice that [l,c.oro)=EB7°= 1[1,c.on] and [I,c.o2 )=EBr'= 1[1,c.o]. 
By theorem 2.4.7, Cp([l, c.on])-Cp([l, c.o]) for each ne IN (because c.o:S;c.on <C.Oro). So 
by theorem 2.6.17, Cp([l, c.o2))- Cp([l, c.oro)). 

With the next lemma and theorems 2.6.17, 2.4.1 and 2.4.7, we have obtained a com-
plete isomorphical classification for the spaces Cp(X) and C 0(X) for a-compact ordinal 
spaces X. Notice that from the classification it follows that for these spaces 
Cp(X)-Cp(Y) if and only ifC0(X-)-Co(Y). 

2.6.19 LEMMA: Let a and 13 be ordinals such that C o([l, a))-C o([l, l3)). Then 
(a) a is a successor if and only if 13 is a successor, and 
(b) a is a a-ordinal if and only ifl3 is a a-ordinal. 

PROOF: For (a), if a is a successor, then [l, a) is compact. So by theorem 1.5.7 
[1, 13) is compact and thus 13 is a successor. 

For (b), let a be a a-ordinal. By remark 2.6.2 [1, a) is a non-compact non-
pseudocompact space, so by theorem 1.5.7 [I, 13) is a non-compact non-pseudocompact 
space. But then by remark 2.6.2, 13 is a a-ordinal. 

By the obtained classification theorems we conclude that for locally compact spaces 
X and Y and their respective one-point compactifications c.oX and c.oY, the fact that 
Cp(X)-Cp(Y) does not necessarily imply that Cp(c.oX)-Cp(c.oY), and vica versa. For 
example, Cp([l, c.oro)) is linearly homeomorphic to Cp([l, c.o2)) (example 2.6.18), how-
ever Cp([l, c.oro]) is not linearly homeomorphic to Cp([l, c.o2 ]). Furthermore, Cp([l, c.o]) 
is linearly homeomorphic to Cp([l, 002]), but Cp([l, oo)) is not linearly homeomorphic 
to Cp([l, 002)) (lemma 2.6.8). 
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The same remark applies to the compact-open topology. 

The question now arises whether we can derive a similar classification for the spaces 
of bounded continuous functions. This seems impossible by the methods of this sec-
tion. Simply observe that corollary 1.2.15 (b) plays a fundamental role, and that it does 
not hold for spaces of bounded continuous functions (example 1.2.12). In section 4.6 
we will come back to this and we will show there that for er-ordinals o., theorem 2.6.17 
does not hold for the spaces c;([ I, a)). 

Another question is whether a similar classification can be derived for arbitrary ordi-
nal spaces. Again it seems that this is impossible by the methods of this section, be-
cause we essentially used that every closed and bounded subset of [I, a) is compact 
(with a a er-ordinal), and by remark 2.6.2 this is not true for the spaces [I, o.) if a is an 
ordinal with cf ( o.) > w. 

Finally we remark that the results in this section are new. They are extensions of the 
results in [3] for the countable case. 

§2.7. Separable metric zero-dimensional locally compact 
spaces 

In this section we will give a complete isomorphical classification of the function 
spaces Cp(X) and C 0(X) with X a separable metric zero-dimensional locally compact 
space. Notice that for separable metric zero-dimensional compact spaces X we already 
have a complete classification of the spaces C 0(X) (cf. theorem 2.4.1) and Cp(X) (cf. 
theorem 2.4.7). This classification is such that for two spaces X and Y it follows that 
Cp(X) is linearly homeomorphic to Cp(Y) if and only if C 0(X) is linearly 
homeomorphic to C 0(Y) (cf. remark 2.4.8). By theorems 1.5.1 and 1.5.4 it remains to 
present a complete classification of the spaces C 0(X) and Cp(X) with X separable 
metric zero-dimensional locally compact but not compact. For convenience in this sec-
tion every space is separable metric. 

2.7.1 LEMMA: let X be a countable space which is locally compact but not com-
pact. Then there is a a-limit ordinal a such that X"" [I, o.). 

PROOF: Let coX be the Alexandroff one-point compactification of X. By proposition 
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2.2.7 and theorem 2.2.8, there is a limit ordinal A such that c.oX = [l, A]. So Xis a dense 
subset of [l, A] such that [l, A] \X contains only one point, sayµ. Since Xis dense in 
[ 1, A], µ is a limit ordinal. So 

X = [l, A]\ {µ} = [l, µ)EB[µ+ 1, A]=[µ+ 1, A] EB [1, µ) = [µ + 1, A+µ)= [1, a) 

for some limit ordinal a. Since a is countable, a is a a-limit ordinal. 

By lemma 2.7.1 countable spaces which are locally compact but not compact are 
homeomorphic to ordinal spaces. Since these ordinals are a-ordinals we already have a 
complete classification for their function spaces Cp(X) and C 0(X) (cf. theorem 2.6.17). 
We shall now consider the case of uncountable locally compact spaces which are not 
compact. The proof of their classification is similar to the one in section 2.6. We define 
a class of spaces such that for every uncountable zero-dimensional space X which is lo-
cally compact but not compact, Cp(X) is linearly homeomorphic to a space in this 
class. After that, we prove that two different spaces in this class are not linearly 
homeomorphic, which gives the classification. 

2.7.2 LEMMA: Let X be an uncountable zero-dimensional space which is locally 
compact but not compact. Then there is a decomposition EB1=1Xi of X consisting of 
compacta such that either every X1 is uncountable or X1 is uncountable ijf i = I. 

PROOF: Let X = EE))"'= 1Z; be a decomposition of X consisting of compacta (this is pos-
sible because Xis zero-dimensional). 
Case I: Only finitely many Zi are uncountable. 

Let n =max{ i: Z; is uncountable}. Let X 1 =Z I EB · · · EB Zn and Xi =Zn+i-l (i ~2). 
Case 2: Infinitely many Z; are uncountable. 

Suppose Zi 1 , Z; 2 , ... are uncountable. Let Xn =Z;"_ 1+1 EB ···EB Zin Uo =0). Since 
Xn is compact and uncountable we are 

We now define the class '6 u ;JJ of spaces as follows: 

'f5 = { C EB [ 1, rot) : C is the Cantor set and l 't < ro1 is a prime component}, 
;JJ = { EEli=l C;: Ci is a copy of the Cantor set}. 

Observe the following: 
If Xe 'f5, say X = C EB [l, rot), then X =C EB [l, rot1 ] EB [l, rot2 ] EB .... where ('t;)i is the 
fixed sequence cofinal with 't which was chosen on page 90. If for Xe 'f5 we write 
X = EB1=1X1, then we implicitly mean that the X; are as above. If Xe :IJ then we consid-
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er the fixed decomposition EBi=l Ci. 

2.7.3 LEMMA: let X be an uncountable zero-dimensional space which is locally 
compact hut not compact. Then there is a decompnsition EBi=lXi of X and a space 
YE 'f5 u ;/J such that Cp(Xi)-Cp(Y;) (where Yi is the i-th component of the decomposi-
tion ofY stated as above). In particular Cp(X)-Cp(Y) andC0(X)-C 0(Y). 

PROOF: By lemma 2.7.2 there is a decomposition EBi= 1X f of X consisting of compac-
ta, such that either every X [ is uncountable or X [ is uncountable iff i = 1. 
Case I: X f is uncountable iff i = I. 

Since X' = EBi=2X [ is a countable space which is locally compact but not compact, 
by lemma 2.7.1 and lemma 2.6.6 there is a decomposition EBi=lzi of X' and a space 
Y' E ..rJ. u:/3 such that Cp(Zi)-Cp(Y[). By lemma 2.6.9 Y' E .,4(w.w) uSi'<w,wJ, because X' 

is countable. 
If Y' E .,4(0J. OJ), then Y' = [ 1, c#] EB (1, cot), where µ and 't are prime components such 

that l:5:µ,-r<co1• Then Cp(Z 1)-Cp([l,c#]). Let X 1 =X 1EBZ 1 and for i~2 let 
Xi =Zi. Since X 1 is zero-dimensional, uncountable and compact, by theorem 2.4.7 
Cp(X 1 )-Cp(C). So if we let Y =C EB [I, cot) we are done. 

If Y' E :13(0J. OJ), say Y' = (1, cot) with 't a prime component, 1 $ 't < co1, then let 
Y =C EB [1, cot), X 1 =X1 and for i ~2. Xi =Zi. 
Case 2: Every X [ is uncountable. 

Define Y = EBi=l C;. By theorem 2.4.7 Cp(Xi)-Cp(C;), so let Xi =X [. 

2.7.4 LEMMA: 
(a) If X, YE 'f5, then Cp(X)- Cp(Y) if and only if C 0(X)- C 0 (Y) if and only if 

X=Y. 
(h) If XE 'f5 and YE ;JJ, then C o(X) and C o(Y) are not linearly homeomorphic. 

PROOF: Part (a) follows directly from lemma 2.6.12 (a). 
For (b), suppose that X=CEB[l,co') and Y=EB;"= 1C;. Assume C 0(X)-C 0(Y). 

There is nE1N such that suppCcC 1 EB ··· EBCn (corollary 1.2.15 (b)). There is 
i E 1N such that supp C n + 1 c C EB [I, cot;]. So by lemma 2.6.3, there is an embedding 

Since by theorem 2.4.1 (c) we have 
Co(C)-Co(CEB[l,cot•OJ]), we have a linear embedding 
0: C o([l, cot•OJ]) C 0 ((1, co'•]). But then by lemma 2.6.7 (a), -r·co < -r;-co. This is a con-
tradiction. 
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2.7.5 THEOREM: Let X and Y be uncountable zero-dimensional spaces which are 
both locally compact but not compact. Then the following statements are equivalent: 

(1) Cp(X)-Cp(Y) 
(2) C 0(X)- C o(Y) 
(3) There are compacta X; and Y; (i e JN) such that X =EB7°=1X;, Y =$1=1 Y; and 

Cp(X;)-Cp(Y;). 
(4) There are compacta X; and Y; (i e JN) such that X =$1=1X;, Y =$1=1 Y; and 

Co(X;)-Co(Y;). 

PROOF: For (1) => (2) apply corollary 1.2.21. Furthermore (2) => (4) follows easily 
from lemmas 2.7.3 and 2.7.4. For (4) => (3) notice that for compact zero-dimensional 
spaces we have the same isomorphical classification for the topology of pointwise con-
vergence and the compact-open topology (section 2.5), so C o(X; )- C o(Y;) implies 
Cp(X;)-Cp(Y;). Finally (3) => (1) follows from lemma 2.3.7. 

REMARK: In view of the remark after theorem 2.6.17 we have the following: Let 
X and Y be spaces such as in theorem 2.7.5 and let roX and mY be their respective one 
point compactifications. By theorem 2.4.7, Cp(roX) is linearly homeomorphic to 
Cp(ffiY), irrespective of whether Cp(X) and Cp(Y) are linearly homeomorphic. 

Again, the same remark applies to the compact-open topology. 

We almost completed the isomorphical classification of the function spaces Cp(X) 
and C o(X) of locally compact zero-dimensional spaces X. It remains to distinguish 
between "countable" and "uncountable". For the pointwise topology, if Cp(X) and 
Cp(Y) are linearly homeomorphic, we have that Xis countable if and only if Y is count-
able (by theorem 1.5.9). The same holds for the compact open topology as is shown by 
the following 

2.7.6 PROPOSITION: Let X and Y be locally compact zero-dimensional spaces 
such that C 0 (X) and C 0 (Y) are linearly homeomorphic. Then X is countable if and 
only if Y is countable. 

PROOF: Suppose that X is countable and Y is uncountable. By theorem l .5.4b and 
theorem 2.4.1 we may assume that X and Y are not compact. By lemma 2.6.6 and lem-
ma 2. 7 .3 we may assume that X e ...4 u 93 and Ye 'fJ u ;/J. There is a clopen copy of C in 
Y. Then suppC is contained in a clopen copy of (1, a] in X for some countable ordinal 
a. So by corollary 2.6.4 there is a linear embedding from C 0(C) into C 0([1, a]). Since 
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C 0 (CEB[l,aco])-C 0(C) (theorem 2.4.1) we then have a linear embedding 
0: C 0([1, aco]) C 0((1, a]). But this is impossible by corollary 2.5.3. 

Notice that by lemma 1.4.1, proposition 1.4.3, theorems 1.5.1, 1.5.4, 2.4.1, 2.4.7, 
2.6.17, 2.7.5 and proposition 2.7.6 we have as announced in the introduction of this 
chapter that for locally compact zero-dimensional spaces X and Y, Cp(X) is linearly 
homeomorphic to Cp(Y) if and only if C 0(X) is linearly homeomorphic to C 0(Y). 

Finally we remark that the main results of this section were published in [3]. 



CHAPTER3 

On topological equivalence of function spaces 

All spaces considered in this chapter are separable and metrizable. 
Leth be a homeomorphism between IR and (-1, 1). Then for each space X and each 

bounded f: X IR, there is m e IN such that (h O /)(X) c [-1 + l / m, 1-1/ m ]. This al-
lows us to identify Cp(X) and the subspace 

{/: X (-1, l) :/ is continuous} 

of (-1, l )x; similarly we can identify c; (X) and 

{/ e Cp(X): there ism e IN such that/ (X) c [-1 + 2-, 1- 2-n. m m 

In particular if X is countable, Cp(X) and c;(X) can be regarded as subspaces of the 
Hilbert cube. 

Let X = [xo, x 1, x2, ... ) be a countable space, CP, o(X) = [/ e Cp(X) :/ (xo) =0} and 
c;, 0 (X) = {/ e c;(X) :/(x0) = 0}. In this chapter we mainly consider non-locally com-
pact countable spaces. For X = {x0 , x 1, x 2 , ... ) not locally compact, we assume that Xis 
not locally compact at x 0 • 

In [38], van Mill showed that for a non-locally compact countable space X, c;(X) is 
homeomorphic to Oro, where 

O'ro = (tJ)"° and t} = {x e t2: x; =0 for all but finitely many i} 

(t2 denotes separable Hilbert space). 
One of our main results in this chapter is that for a non-locally compact countable 

space X, Cp(X) is homeomorphic to Oro, We will give two proofs. The first proof in 
section 3.2 is quite technical: Among other things we prove that whenever Y is any oth-
er non-locally compact countable space, then there exists a homeomorphism from the 
Hilbert cube onto itself arbitrary close to the identity which maps CP, 0(X) onto 
Cp, o(Y). The second proof in section 3.3 is in the spirit of van Mill's proof that c;(X) 
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and <iw are homeomorphic [38]. The strategy followed depends strongly on results of 
Toruflczyk [50], [5 I]. It is less technical than the proof in section 3.2, but it gives only 
that Cp(X) and <iw are homeomorphic. 

Section 3.1 contains preliminaries from infinite-dimensional topology which will be 
used to prove our main results. In that section we also present some results on Q-
matrices 

The question remains whether for non-locally compact countable spaces X and Y, 
there is a homeomorphism from the Hilbert cube onto itself arbitrary close to the iden-
tity which maps c;, 0 (X) onto c;, 0 (Y). In section 3.2 we give a positive answer to this 
question. 

In section 3.4 we give some final remarks. We state recent theorems of Dobrowol-
ski, Gulko and Mogilski [20] and Cauty [16] from which can be concluded that for a 
non-discrete countable space X, Cp(X) and c;(X) are homeomorphic to O'ro, Since for 
any countable discrete space X, Cp(X) is homeomorphic to IR.n, where n E IN u { 00 ] is 
the cardinality of X, we obtain a complete topological classification of the spaces 
Cp(X), for countable spaces X. Furthermore in that section we state the uniform 
classification derived by Gulko [27] of the uniform spaces Cp(X), for countable infinite 
compact spaces X. 

§3.1. Preliminaries and Q-matrices 

In this chapter we consider products of spaces at several places. It will be con-
venient to explicitly define an admissible metric on such a product. For every i E IN, let 
Pi be a space with an admissible metric di such that each di is bounded by c for a fixed 
c E IR. If we have a finite product of spaces P = IT? =I Pi then the specific admissible 
metric d on P is defined by d = max { d 1, ••. , dn), and if we have a countable infinite 
product of spaces P = IT~1 Pi then the specific admissible metric don Pis defined by 

where x =(xi)ielN, y =(yi)ielN E P. Whenever for each i E IN, P; =X for some space X, 

we denote P by X 00
• 

Consider the Hilbert cube Q = Ilf=I [-1, 1 ]; , where [-1, 1]; = [-1, 1] for every i E IN. 
Then the topology of Q is given by the metric 

d(x, y) = L ri I xi - Yi I , 
i=I 
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where x=(xi)j.JN,y=(yi)i.JNEQ. The subset s=fli=1(-1, l)i of Q, where 
(-1, l)i=(-1, 1) for every ie IN, is called the pseudo-interior of Q. B(Q)=Q\s is 
called the pseudo-boundary of Q. A space which is homeomorphic to Q is called a 
Hilbert cube. 

A subspace A of separable Hilbert space t2 will be called a Keller space whenever it 
is compact, convex and infinite dimensional. 1n [33] it is proved that a Keller space is a 
Hilbert cube (see also [39]). Since there is an affine embedding from Q into t2 , we ob-
tain the following 

3.1.1 THEOREM: A Keller space in Q is a Hilbert cube. 

For spaces X and Y let 

C(X, Y)= { /: X Y :/ is continuous} 
and 

Jl(X, Y) = { /: X Y : / is a homeomorphism}. 

Whenever X = Y we write Jl(X) for Jl(X, X). For J, g e C (X, Y) we define 
A 

d(f, g) =sup { d(/ (x), g (x)): x e X} e [O, 00], 

where d is an admissible metric on Y. As is easily seen we have the following 

3.1.2 LEMMA: Let X, Y and Z be spaces. Let f, g e C (Y, Z) and he C (X, Y). 
A A A A 

Then d(f •h, g •h) ~d(f, g). lf moreover his surjective, then d(f •h, g •h)=d(f, g). 

Let X be a compact space and let A be a closed subspace of X. Then A is a Z-set in X 
if and only if for every / e C (Q, X) and for every E > 0, there is a g e C (Q, X) such 
that 

(a) d(/, g) < E, and 
(b) g(Q)nA =0. 

The definition of a Z-set is independent from the chosen metric on X. By .:l(X) we 
denote the family of all Z-sets in X. A countable union of Z-sets is called a aZ-set. The 
family of all crZ-sets in X is denoted by .:l0 (X). An embedding J: X Y, where Y is 
another compact space, is called a .:I-embedding whenever/ (X) e .:l(Y). 

3.1.3 LEMMA ([39, Lemma 6.2.2]): Let X be a space. Then 
(a) If A e .:l(X) and B cA is closed, then Be .:l(X). 
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(b) If A E .:l(X), then A has empty interior in X. 

PROOF: (a) follows directly from the definition of a Z-set. For (b) suppose that 
Int A ;t: 0. Let x e Int A and put E= d(x, X\IntA). Let f e C (Q, X) be the constant func-

tion with value x. If g e C (Q, X) satisfies d(f, g) < E/2, then obviously g (Q) n A ;t:0. 
Hence A is not a Z-set in X. 

3.1.4 LEMMA ([39, Lemma 6.2.3]): Let P = Il1=1P; be a countable infinite product 
of compact spaces. Let A c P be closed such that 1t/A) ;t: P1 for infinitely many j. Then 
A E .:l(P). 

PROOF: Let f = (/1, h, ... )EC (Q, P) and E > 0. For each i E JN, let d; be an admissi-
ble metric on P; bounded by 1. Find j e lN such that z-i < E. By assumption there are 
k > j and t e Pk \1tk(A). Define g e C(Q, P) by 

g (x) = (f, (x), ... .fk-1 (x), t.fk+I (x), ... ) 

Then g (Q) nA = 0 and 

d(f, g)=sup {d(f (q), g(q)) :q E Q} 
= sup {L/=l z-id;(fi(q), gj(q)): q e Q) 
= sup {Tkdk(fk(q), t): q E Q) 
~z-k < z-i < £. 

3.1.5 THEOREM ([39, Th. 6.4.6]): Let E, Fe .:l(Q) and let f: E be a 
homeomorphism such that d(f, lE) < E. Then f can be extended to a homeomorphism 
J: Q Q such that d(J, l) < E. 

3.1.6 THEOREM ([39, Th. 6.4.8]): Let X be a compact space, let A cX be closed 
and let f: X Q be continuous such that f I A is a :I-embedding. Then for every E > 0 
there is a :I-embedding g : X Q such that d(f, g) < E and g I A = f I A. 

Let { An lne!N be an increasing family of Z-sets in a compact space X. Then 
{ An } ne IN is a skeleton in X whenever for every E > 0, n e lN and Z e .:l(X), there are 
h E Jf(X) and m E lN such that 

(a) d(h, 1) < E, 

(b) h I An= 1, and 
(c) h(Z)cAm. 
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The definition of a skeleton is independent from the chosen metric on X. A subset A of 

Xis called a skeletoid in X if there is a skeleton {A 11 } 11 e1N in X such that A =U;=1A 11 • 

Note that if A is a skeletoid in X and h e Je(X, Y), then h (A) is a skeletoid in Y. In the 
following theorem sufficient conditions are given for an increasing sequence of Z-sets 
in a Keller space to be a skeleton. 

3.1.7 THEOREM: If { Ai Le IN is an increasing family of Z-sets in a Keller space P 
such that, 

(a)for every i e IN, A; e 2(Ai+J), 
(b) for every i e IN, Ai is convex and infinite-dimensional, and 

(c) U~=!Ai is dense in P, 
then { Ai ); e IN is a skeleton in P. 

PROOF: Let Z e 2(P), n e IN and e > 0. Since P is a Hilbert cube, there is by theorem 
3.1.5, o > 0 such that if E, Fe 2(P) and if f: E F is a homeomorphism with 
d(/, 1£) < o, then f can be extended to a homeomorphism J: P P such that 
d(J, 1) < e (we use that a homeomorphism between P and Q is uniformly continuous). 

Find {x1, ... , xd cP such that p = u;=IB (Xj, o/4). There ism 2=n such that for 
eachj~k,B(xj, o/4)nAm*0. By [39, Cor. 8.2.2] there is a retraction r: P such 
that foreachxe P, d(x, r(x))=d(x, Am). We claim that d(r, 1) <0/2. Indeed letxe P. 
Let j ~k be such that x e B (xj, 0/4). Find ye B (Xj, o/4) nAm. Then 

Let r' = r I (Z u A 11 ): Z u A11 Then r' I A11 is a 2-embedding. Note that Am is a 
Keller space, hence a Hilbert cube. So by theorem 3.1.6 there is a 2-embedding 
s: Z uA11 such thats IA11 =r' IA 11 = IA" and d(s, r') < 0/2. Hence d(s, 1) < 0. Note 
that ZuA11 e2(P) and s(ZuA11 )e2(P) and is a homeomor-
phism. Hence there is he Je(P) with d(h, 1) < e and h IZ uA11 =s. This implies that 
h(Z)cAm andh 

3.l.8EXAMPLE: For every nelN, let :E11 =[-l+l/n, 1-1/nr, and let 

l:=U;=1:E11 • By lemma 3.1.4 we have for ielN, l:ie2(Q) and l:;e2(l:i+t)- Since 
each I:; is convex and infinite-dimensional and :E is dense in Q it follows from theorem 
3.1. 7 that { l:11 } ne IN is a skeleton in Q, so that I: is a skeletoid in Q. 

Another well-known example of a skeletoid in Q is B (Q). 
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There are interesting theorems on skeletoids. We mention a few which we will use 
in the sequel. 

3.1.9 THEOREM ((17, Lemma 4.31): Let A and B be skeletoids in a Hilbert cube 
P. Let Z e 2(P) such that Zn (A u B) = 0. Then for every£> 0, there is h E Jt(P) such 
that 

(a) h(A)=B, 
(b) h I Z = 1, and 
(c)d(h, l)<E. 

3.1.10 THEOREM ((17, Th. 6.7; 39, Th. 6.5.3 (2)]): Let A be a skeletoid in a Hil-
bert cube P, Be 2(P) and Ce 2 0 (P). Then A \Band Au Care skeletoids in P. 

3.1.11 COROLLARY: Let A be a skeletoid in Q, Be 2(Q) and Ce 2 0 (Q) such 
that C cB. Then for every t > 0 there is he X(Q) such that 

(a)d(h, 1)<£,and 
(b)h(B)nA=h(C). 

PROOF: By theorem 3.1.10, (A \B)uC is a skeletoid. By theorem 3.1.9 there is 
h e Jt(Q) such that 

(1) d(h, 1) < E, and 
(2) h((A \B)uC)=A. 

Then we have 

h(B)nA=h(B)nh((A \B)uC) 

=h(B n((A \B)uC)) 

=h(BnC) 
=h(C).o 

We now present the notions of a 2-matrix and a Q-matrix. These notions were intro-
duced by van Mill in [38]. 

A 2-matrix in a compact space Xis a collection .d = { A::i: n, me IN} of Z-sets in X 
such that for every m, n e IN, 

(a)A7 =0, 

(b) A::i cA::i+i, and 
(c) A!+I cA;:i. 
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Define the kernel of A by ker A= n;=l u:=1A:!,. Then clearly ker A is an F 00 -
subset of X. 

Let A= { A:!, : n, m E IN) be a 2-matrix in a compact space X. Then A is a Q-matrix 
if and only if A has the following properties: 

(a) For every n E IN, ( A~1 ) m > 1 is a skeleton in X, 

and for every n 1 < · · · < nm E IN and i l, ... , im E IN\ ( 1 ). 

(b) n;=1A:• is a Hilbert cube, 

(c) for every p E IN, { n;=I A;~k nA':m+p ); >I is a skeleton in n;=I A7:, and 

(d) for every s, t E IN such that n;=I A7: ct. A{ we have 

n m nk S n"' n; k=IAi, nA 1 E 2( k=IA;, ). 

Note that if A= {A::,: n, m E IN} is a Q-matrix in X and h E Jt(X, Y), then 
h (A)= {h (A~n): n, m E IN} is a Q-matrix in Y (we use that his uniformly continuous). 

Let A= {A::,: n, m E IN) be a 2-matrix and let A~\ and A~22 be in A such that 
d > Th An2 An1 An1 An2 An2 S .-n1 <n2 an mi -mz. en mi c mi so m 1 n m2 = mi· o 1or 

n 1 < · · · < nm E IN and i 1, ... , im E IN\ { 1 } we may assume i 1 < · · · < im if we are 
. d. nm An' mtereste m k=I ;k. 

3.1.12 THEOREM ([38]): If A and 53 are Q-matrices in Q, then 
(a) kerA is homeomorphic to O"w, and 
(b )for every E > 0 there is h E Jt(Q) such that d(h, 1) < E and h (ker A)= ker 53. 

3.1.13 COROLLARY: let P 1 and P 2 be Hilbert cubes and let A and 53 be Q-
matrices in P 1 resp. P 2. Then 

(a) kerA is homeomorphic to O"w, and 
(b)for every hEJt(P1,P2) and E>O, there is gEJt(P1,P2) such that 

d(h, g) < E and g (ker A)= ker 53. 

PROOF: Observe that (a) is a triviality. For (b), let h 1: Q P 1 be a homeomorphism. 
Then 'G=hi1 (A) and ;JJ=(h 0 h 1)-1(;B) are Q-matrices in Q. Since h 0 h 1 is uniformly 
continuous, there is O > 0 such that if d(x, y) < o, then d( (h O h 1 )(x ), (h O h 1 )(y)) < El 2. 

By theorem 3.1.12 (b) there is a E Jt(Q) such that d( a, 1) < o and a(ker 'G) = ker XI. Let 
g =h 0 h 1 °a 0 h11. Then g: P 1 P2 is a homeomorphism and g (ker A) =ker 53. Furth-
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enuore by lemma 3.1.2 and the choice of ii, 
A A I 
d(h, g) =d(h, h 0 h 1 °a 0 h1 ) 

=d(h 0 h 1,h 0 h 1 °a)<E. o 

Van Mill used theorem 3.1.12 to prove that if Xis a non-locally compact countable 
space, then c;(X) is homeomorphic to O"co. The strategy of the proof is the following: 
First a test space T of X is constructed and a Q-matrix 53 is found such that 
ker:1J =C;(T). So by theorem 3.1.12 (a) it follows that c;(T) is homeomorphic to 0"00 . 

Then by applying strong results of Toruflczyk [50], [51] he derives that c;(X) is 
homeomorphic to cr00 . In section 3.3 we will use the same strategy to prove that Cp(X) 

is homeomorphic to 0"00 . 

3.1.14 EXAMPLE: Let I:n and I: be as in example 3.1.8. Let P =Il1=1Q1, where 
Q; = Q for every i e lN. Clearly P is a Hilbert cube. For every n, me lN define A::Z c P 
as follows 

(1) A1 =0 for every n e lN and 
(2) A::Z =(I:mt xQ xQ xQ x · · · for every n e lN and m ~2. 

We claim that ..4 = { A::Z: n, me lN) is a Q-matrix in P. By lemma 3.1.4 for each 
n, me lN, A::Z e 2(P) and A::Z e 2(A::Z+1 ). For each n e lN, A::Z is convex and infinite-

dimensional, and u:=iA::Z is dense in P, so by theorem 3.1.7 we have that {A;;, lm>I is 
a skeleton in P for every n e lN. Now let n 1 < · · · < nm e lN and i 1, ••• , im e lN \ {l ). 

By the observation made above we may assume i 1 < · · · < im. Then 
m 

("'\A'!• =(I:· )n1 x(I:· )n2-n1 X ..• X(2.· )nm-llm-1 xQ xQ xQ X ... 
k=l lk II lz Im 

is a product of Hilbert cubes and hence a Hilbert cube itself. 
For p e lN and i ~im, 

d ti lN d · · r--.m An• Anm+P -A"m+P B th b ti I d b an or p e an 1 < Im, , 'k=I ;. n ; - ; . y e a ove onuu as an y 
lemma 3.1.4, for each i e lN, 

m m m m 
r--.A~• Anm+P CT( r-,.Ank) d r--.A"k Allm+P er( r--.A~k Anm+P) 
I I lk r, I E I I 'k an I I '• f\ 1 E .J-' I I lk r, 1+! • 
k=I k=I k=I k=I 

Furthenuore we have that n;= 1r1;~• nA?m+P is convex and infinite-dimensional, and 
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u~=l cn;=IA~k nA7m+P) is dense in n;=IA;:k. So again by theorem 3.1.7, for every 
{ ,,-...m nk nm+P) . k 1 . ,,-...m Ank p e IN, , 'k=iA;k nA; i>l 1s as e eton m, 'k=l ;k. 

Finally lets, t e IN be such that n;=l A~ ct. Af. Then by the above formulas we can 

write for t > 1 

m oo m oo 

nA~k = IT E; and nA~k nAf = IT F;, 
k=l i=I k=I i=I 

where all but finitely many E; 'sand F; 's are equal to Q and the remaining finitely many 
E;'s and F;'s are elements of the family {1:11 }n>l· Since IT1=1F; is a proper subset of 
ITi=l Ei, there is i e IN such that Fi is a proper subset of E;. Since Fi= ln for some 
n e 1N or Q and Fi also, it follows that each factor space of Fi is a proper subset of the 
corresponding factor space of Ei. Hence by lemma 3.1.4 it follows that 
ITi=JFj e 2(TTi=1EJ. 

It is easily seen that ker ...4 = 1:00
, so that by theorem 3.1.12 (a) 1:00 is homeomorphic 

to O'ro, 

COROLLARY 3.1.15: Let {P;: i e JN} be a family of Hilbert cubes, and 
P=ITi=tPi. Then 

(a) if :JJ and 'f5 are Q-matrices in PI resp. P 2, then there is a Q-matrix ...4 in 
P I x P 2 such that ker ...4 = ker :JJ x ker 'f5, 

(b) if for each i e IN, ...4; is a Q-matrix in P;, then there is a Q-matrix ...4 in P 
such that ker...4 =ITi=1ker...4j, 

(c) if for each i e 1N, Ai is a skeletoid in Pi, then there is a Q-matrix ...4 in P such 
that ker ...4 = IT1=l A;, 

(d) if :JJ is a Q-matrix in P I and A is a skeletoid in P 2, then there is a Q-matrix 
...4 in PI xP2 such that ker ...4 =ker :JJ xA, and 

(e) if 9J is a Q-matrix in P 1, then there is a Q-matrix ...4 in [-1, l] x P I such that 
ker ...4 = ( -1, 1) x ker :JJ. 

PROOF: If ...4 is a Q-matrix in a Hilbert cube Q 1, there is by corollary 3.1.13 (b) and 
example 3.1.14, a homeomorphism h: such that h(l:"")=ker...4. Moreover 
by theorem 3.1.9 and example 3.1.8, there is for each skeletoid A in a Hilbert cube Q 1 

a homeomorphism g: Q such that g (1:) =A. It is easily seen that 

(1) there is a homeomorphism h 1 : Q 00 (Q "")2 such that h 1 (1:"") = (1:"" )2, 
(2) there is a homeomorphism h2: Q"" (Q"")"" such that h 2(1:"") = (1:"")"", 
(3) there is a homeomorphism h3: such that h 3(l:"")=l:x1:00

, 
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( 4) there is a homeomorphism h 4 : Q = (-1, 1] x Q = such that 
h4(L=)=(-l, l)xr=. 

Taking the right combinations of the obtained homeomorphisms one can prove (a) 
through (e). We outline (e). The other proofs are similar. 

Let be a homeomorphism such that h(r=)=ker2i'. Define 
a:P 1 l]xP 1 by a=(lxh) 0 h4 °h- 1• Then a is clearly a well-defined 
homeomorphism. Furthermore 

a(ker $) = (( 1 x h) •h 4 • h- 1 )(ker $) 

=((I xh) 0 h4)(l:=) 
= (I x h )( ( - I , I) x r=) 
= (-1, I ) x ker 2i'. 

Then ..d = a(2i') is a Q-matrix in (-1, I] xP 1 such that ker (A)= (-1, I) x ker 2i'. 

In contrast to the theory of skeletoids, the theory of Q-matrices is hardly developed. 
In view of theorem 3.1.10, a first question to ask, is whether for a Q-matrix ..d in a Hil-
bert cube P and Fe 3(P), there is a Q-matrix 2i' such that ker 2i' =ker A \F. We were 
not able to prove this straight from the definition of a Q-matrix. However we can prove 
the weaker statement that ker .A and ker .A \ F are homeomorphic (theorem 3.1.21 ). As 
will be clear in the sequel, the proof of this statement unfortunately has nothing to do 
with Q-matrices. Before the proof can be given we have to present some more 
definitions and known theorems. 

A space Xis said to be a aw-manifold if there is an open cover of X consisting of 
sets homeomorphic to open subsets of aw. Two spaces X and Y have the same homo-
topy type whenever there are / e C (X, Y) and g e C ( Y, X) such that / • g is homotopic 
to ly and g •/is homotopic to Ix. We have the following theorem of Henderson. 

3.1.16 THEOREM ((30]): If X and Y are aw-manifolds, then Xis homeomorphic 
to Y if and only if X and Y have the same homotopy type. 

A space X is an absolute retract (abbreviated AR), resp. an absolute neigborhood 
retract (abbreviated ANR), whenever for every space Y and for every closed subspace 
A of Y, every continuous function f : A X has an extension J: Y X, resp. an exten-
sion /: U X over a neigborhood U of A in Y. By the Dugundji Extension Theorem, 
O"w is an AR. A space X which admits an open cover consisting of ANR's, is itself an 
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ANR ([39, Th. 5.4.5]). A space Xis contractible whenever the identity Ix is homotopic 
to a constant mapping. Note that two contractible spaces have the same homotopy type. 
A space X is homotopically trivial whenever for every n E IN and every continuous 
f: Sn X, there is a continuous extension g: B n + 1 X. The above notions are related 
by the following 

3.1.17 THEOREM ([39, Th. 5.2.15]): For a space X are equivalent 
(1) Xis an AR, 
(2) Xis an ANR and contractible, and 
(3) Xis an ANR and homotopically trivial. 

We proceed by proving the announced statement from the previous page (cf. 
Theorem 3.1.21). We start with three lemmas. 

3.1.18 LEMMA: Let Kc I: be compact. Then for every £ > 0, there is an embed-
ding f : Q I: such that 

(a)/ IK= 1, and 
(b)d(f, 1)<£ 

PROOF: By lemma 3.1.4, KE 2(Q) and by example 3.1.8, II:n lne1N is a skeleton in Q, 
so there are n E IN and h e Je(Q) such that 

(1) h(K)cI:n, and 
(2) d(h, 1) < £16. 

By lemma 3.1.4, h (K) e 2(Q ). By theorem 3.1.10, I:\ h (K) is a skeletoid in Q. Further-
more h (I:\ K) is a skeletoid in Q and h (K) misses I:\ h (K) and h (I:\ K) so that by 
theorem 3.1.9, there is ae Je(Q) such that 

(3) a(h (I:\ K)) =I:\ h (K), 
(4) alh(K)= 1, and 
(5) d(a, 1) < e/6. 

Since h(K)cI:, we have by (3) and (4) that a has the additional property that 
a.(h (I:))= L Let~= a O h. Find m E IN and a homeomorphism ~: Q Lm such that 

( 6) I I:n = 1, and 
c1) ct<~, t) < e13. 

Let f = ~-I O 0 ~: Q :E. Then J is clearly a well-defined embedding. Furthermore for 
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xeK, 
f(x)=(f3-l 0 ~ 0 a 0 h)(x) 

=([3-1 0 ~ 0 h)(x) by (4) 
=(h-1 0 a- 1 0 h)(x) by (I) and (6) 
=x by (4), 

and by (2), (5), (7), and lemma 3.1.2, 

d(f, 1)$d([3-[ 0 ~ 0 [3, ~•[3)+d(~•f3, [3)+d([3, I) 
$ d([3-1, I)+ d(~, l) + d([3, 1) 

=2d([3, l)+d(~, I) 
$2d(a, 1)+2d(h, l)+d(~, I)< E. 

3.1.19 LEMMA: Let Kc I:00 be compact. Then for every E > 0, there is an embed-

ding f : Q 00 I:00 such that 
(a)f IK= 1, and 
(b)d(f, l)<E. 

PROOF: For every n e IN, 1tn(K)cI:, so by lemma 3.1.18, there is an embedding 
such that fn11tn(K)=I and d<fn,l)<E. Define by 

f=(f 1,fz, ... ) Thenfis easily seen to be as 

3.1.20 LEMMA: Let K c I:00 be compact and Z e 2(Q 00
) such that Kn Z = 0. Then 

for every E > 0 there is an embedding f: Q 00 I:00 such that 
(a)JIK=I, 
(b)f (Q 00 )nZ=0, and 
(c) d(f, I)< E. 

PROOF: There is a continuous such that h 1(Q"")nZ=0 and 
d(h 1, l)<E/8. Let T]=d(h 1(Q 00 ),Z). By theorem 3.1.6 there is a Z-embedding 

such that d(h 2,h 1)<min{T],E/8}. Then h 2(Q"")e2(Q 00
) and 

h2(Q"")nZ=0. 
Define g: h2(K) uZ uZ by 

x =lh21(x) '.fxeh2(K) 
g() x 1fxeZ · 
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Then g is a homeomorphism between Z-sets in Q 00 such that d(g, lhi(K)uZ) < £14, so by 

theorem 3 .1.5, g extends to a homeomorphism g: Q 00 Q 00 such that d(g, 1) < £14. Let 
h = g , h 2. Then h satisfies 

(l)hlK=l, 
(2) h(Q 00 )nZ=0, and 
(3) d(h, 1) < £/2. 

Let ~=d(h(Q 00 ),Z). By lemma 3.1.19, there is an embedding ex: such that 
ex I K = 1 and d(ex, 1) < min { f./2, ~}. Let/= ex 0 h. Then/ is easily seen to be as required. 

We are now in a position to prove the announced 

3.1.21 THEOREM: Let .Jd = { A:!i: n, me IN} be a Q-matrix in a Hilbert cube P 
and Z E .:J(P). Then ker .;d and ker A \Z are homeomorphic. 

PROOF: By corollary 3.1.13 (b) and example 3.1.14, there is a homeomorphism 
h: P Q 00 such that h (ker .Jd) = t".'. It suffices to prove that for Z e .:J(Q 00

), t 00 
\ Z is 

homeomorphic to L00
• 

By corollary 3.1.13 (a), L00 is homeomorphic to CTm, so L 00 is an AR. Obviously 
L00 \Z is a aw-manifold and hence an ANR. 

CLAIM: t"" \ Z is homotopically trivial. 

Let f: Sn L00 
\ Z be a continuous function. Then since L 00 is an AR,/ extends to a 

continuous function g 1: Bn+I L00 • Then/ (Sn) is a compact subset of L00 such that 
/(Sn)nZ=0. By lemma 3.1.20 we then have an embedding g2: Q"" such that 
g2l/(Sn)=l and g2(Q 00 )nZ=0. Let Then g is easily 
seen to be an extension off. 

By theorem 3.1.17 and the claim we now have that L00 and L 00 \Z are both contracti-
ble and hence they have the same homotopy type. By theorem 3.1.16 we then have that 
L 00 is homeomorphic to L 00 

\ Z. 

We finish this section with the remark that we did not prove all results in this sec-
tion. Their proofs are beyond the scope of this monograph. For more information on 
infinite-dimensional topology we refer to [ 11 ], [I 7], [ 18] and [39]. For more informa-
tion on AR theory we refer to [ 14], [31] and [39]. 
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§3.2. Homeomorphic function spaces part 1 

Let X == { x O, x 1 , x 2, ... } be a countable space which fails to be locally compact at x O• 

We shall prove that Cp. o(X) can be written as the kernel of a Q-matrix in some Hilbert 
cube. 

Let be a bijection and define by q,==1t 1 °\jl, where 
1t1: Xx lN X is the projection. The following lemma is of fundamental importance in 
the process of describing CP, 0 (X) as the kernel of a Q-matrix. 

3.2.l LEMMA: There exists a decreasing clopen base { Vt° lie IN at x 0 and for 
each x ;t;x0 there exists a clopen neighborhood ux ofx such that for every n e IN, 

(a) ifq,(n);t:xo, then u<1><nJ nU~ 0 ==0, and 

(b) for s, n e IN, we have U~ 0 \ [ u~i, u U ( u<1>UJ : j 5. n, q,(j) ;t;x0 ) ] is infinite. 

PROOF: Since no neighborhood of x 0 is compact, there exists a decreasing clopen 
base tv? );.IN at x 0 suc!J that for every i e IN, Vt°\ Vf~1 contains an infinite closed 
discrete subset D;. 

We construct inductively a strictly increasing sequence Un)n.IN of natural numbers 
and for each n e IN such that q,(n) ;,<; x 0 a clopen neighborhood Vn of q,(n) satisfying 

( 1) V n yxo ==0 and n l,i ' 

(2) Vn nU,<;.Ds contains at most one point. 

Suppose we found for n e IN, i 1, ... , in-l and v1 for j < n such that q,(j) ;t;x0 . If 
QJ(n)=xo let in >in-I be arbitrary. If QJ(n)=QJ(j);t;xo for some j<n, let Vn=V1 and 
in> in-1 arbitrary. Since we deal with a decreasing base at x 0 we have Vn n Vf.0 ==0 

and VnnU 5 ~;1D.=0, hence also VnnUs<i.D.,. contains at most one point. If 

QJ(n)¢ {QJ(j) :j < n, q,(j);t;x 0 ) u {x 0 ), we can find a clopen neighborhood U of q,(n) and 

in> in-I such that Un Vf/ ==0. Since Us<i.Ds is closed and discrete we can find a 

clopen neighborhood Vn of QJ(n) contained in U such that Vn nu. <i.Ds contains at 

most one point. This completes the inductive construction. 

For n E IN, let U~ 0 = vf.0 • For X ;t;xo, let k (x) ==min q,- 1 (x), and let ux = vk(x)· Let 

n e IN with q,(n) ;t;x0 . Then k (q,(n )) $. n, so by ( I), u<1><nJ n u;~ 0 = 0. In addition we have 
that for s?.in, u<1><11 JnDs==0. Hence by (2) we have for s,neIN that 
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U~ 0 \ [ u~ii uU {U4>0) :) 5'n, <j>(j),tx 0 )] is infinite. This proves the 

As mentioned in the introduction of this chapter, Cp(X) = {/: X (-1, I) :f is con-
tinuous). Recall that C p, 0(X) = {f E C P (X) : f (x O) = 0}. We look at these spaces as sub-
spaces of [-1, Il endowed with the product topology. [-1, Il is obviously a Hilbert 
cube. Recall that on [-1, 1 ]x we use the metric 

d(j, g) = I Ti If (x;) - g (x;) I , 
; =() 

for f, g E [-1, ll. 

We will now give another description of the space Cp, 0(X), in terms of the kernel of 
a Q-matrix. Let Y=X\{x 0 ) and P={0}x[-1, If. Evidently there is a convexity 
preserving homeomorphism between P and Q. Hence by theorem 3.1.1 each Keller 
space in Pis a Hilbert cube. Let { U~0 ) nelN and { ux: x ;t:x0 ) be as in lemma 3.2.1. For 
x i"Xo let { U~) nelN be a clopen decreasing base at x such that Uf = ux. For every 
x EX and n, m E IN, we define 

Furthermore for every n, m E IN we define 

(B) en =B<xo, n) n n~ s<4><Jl, nl m m J=l m , 

(D) A1 =0, and A;:, =C:!i nl:!i form 2:2. 

It will turn out that the family .4 = {A:!i : n, m E IN, n > 1} is a Q-matrix in P such that 
ker.4 =Cp,o(X). 

3.2.2 LEMMA: For every n, m E IN, we have 

(a) A:!i is closed in P, 
(b) A;:, cA;:,+1, and 
(c) A;:,+1 cA;:,. 

PROOF: It is easily seen that for every x E X and for every n, m E IN we have, 

(1) B~· n) andl::Z are closed in [-1, l]x, 
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Now the lemma follows from (1), (2) and (3). 0 

We first prove that kerA=ep,o(X) (lemma 3.2.4). Define F={fe [-1, Jf:Jis 
continuous and f (x 0 ) =0). Then F cP. Observe that by the definition of continuity, 

F = r\.x n; =l u:=l Bl:· n) (see [ 19]). 

3.2.3 LEMMA: F = n u e~I. 
n=2m=l 

PROOF: First suppose that f e F and n 2. Then f e P. Because f is continuous, there 
exists m e 1N such that for each j :5: n, 

and 

Th. . 1· f a<xo,n) ,,......n a<'i>UJ,,,l -en W I d h f ,,...... 00 U 00 en 1s imp 1es E m n, 'i=l m - m· e cone u et at E, 'n=2 m=l m· 

Secondly suppose f E n:=2 u:=l e;;,. Let XE X and n E JN. Because \jf is a bijec-
tion, there exists nx e 1N such that k = \jf- 1 (x, n x) > n. Then (j>(k) = x. There exists m e 1N 
such that f e C~, hence 

So/ E r'lxeX n;=l u:=1B~· n) =F. This completes the proof of the 

3.2.4 LEMMA: cp,o(X)= r'I UA:!,. 
11=2m=l 

PROOF: First suppose f e CP, o(X) and n 2. There exists k 2 such that 

hence f e LZ. Since f e F, there exists m k such that/ e c;;,. So f e c;;, nL;;, =A;;,. We 

conclude that/ E n:=2u:=1A:!,. 
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Secondly suppose f E n;=l u:=1A::.. Since for every n, m E IN, A;;, cc;;,, we 
have by lemma 3.2.3, f e F. Since for every n e IN there is me IN such that 
f e A;;, cl;;,, we have that {f (x 1), ... ,J(xn)l c(-1, I). So f e Cp,o(X). This proves 
the 

3.2.5 LEMMA: For every n 1 < · · · < nm e IN and i 1, ... , im e IN\ ( 1} we have 

that n;=1A4k is a Keller space in P, hence a Hilbert cube. 

PROOF: To prove that n;=1A4k is a Keller space, we have to verify that n;=1A?/ is 

compact, convex and infinite-dimensional. 

By lemma 3.2.2 (a), n;=1A4k is closed in P, hence it is compact. To prove that 

n;=1A4k is convex we first claim that for every x e X and for every n, me IN, B~· nl is 

convex. Indeed, let J, g e B~· nJ_ A e [O, I] and h = A..j + (1-1,,,)g. Since P is convex, we 
have he P. Furthermore if ye U7n, then 

I h (x)-h (y) I $1,,, If (x)- f (y) I + (1 -1,,,) I g (x)- g (y) I 

$ 1,,,l.+(1-1,,,)l.=l.. 
n n n 

So he B~·n), so B~·n) is convex. It is easily seen that for every n, me IN, l;;, is con-

vex. Since the intersection of convex sets is again convex, n;=1A4k is convex. 

Finally, to see that n;=1A?kk is infinite-dimensional notice that for every x e X and 

for every n, m e lN, 

(OJ X [-_!_ _!_ ]Y cB(x, n) 
2n'2n m · 

and for every n e IN and me lN\ (I}, [OJ x [-_!_, _!_ ]Y cl;;,, so 
2n 2n 

m 
(OJ x r--1-, - 1- f c nA4k. 

2nm 2nm k=I 

We conclude that n;=1A4k is a Keller space in P, hence by theorem 3.1.1 n;=1A;1: is 
a Hilbert cube. 0 

For every i, k e lN we define h (i, k): P P by 

!J (x) 
h(i, k)(f)(x)= T 

if x=x; 
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Notice that since xi ;,exo, h (i, k) is well-defined. 

3.2.6 LEMMA: let i, k E IN. Then 

(a) h (i, k) is continuous and d(h (i, k ), l) $. Ti +I , and 

(h) if i > I, k $. p < i ands E IN are such that 

x;E u;0 \[U;~ 1 uU{Uflil :j-5.p, <j>(j):;iexo)], then 

(i) forn5.kandmEIN,h(i,k)(A;!1)cA'),,, 

(ii) for11$.pa11dm >s,h(i, k)(A~JcA'),,,a11d 
(iii)for 11 > k, h (i, k)(P) nAJ =0. 

PROOF: For every x EX, let 7tx: P [-I, I] be the projection onto the x-th coordi-
nate. Then for x ;iexi, we have 1tx , h (i, k) = 1tx and for x =xi, we have 1tx, h (i, k) = 1/ k, 
so that for each x E X, 1tx O h (i, k) is continuous. So we have that h (i, k) is continuous. 
Furthermore we have 

d(h (i, k), 1) = sup { d(h (i, k)(/), /) :/ E P) 

=sup{:Ej=1Tl/h(i, k)(/)(x1)-(f)(x1)1 :JEP) 
= sup (2-i 11/ k - f (x;) I :/ E P) 
::; Ti ·2 = ri +1 

We prove (b)(i) and (b)(ii) simultaneously. Let 11, m E IN be such that n 5.k and 
m E IN or such that n 5.p and m > s. If m = I there is nothing to prove, so let m > I and 

/ e A';,,. We have to prove that h (i, k)(/) EA';,, =l~1 n C7n• 
Since/El';,, and n 5.p < i, we have for j '5. n 

Hence h(i, k)(/)E l';,,. To prove that h(i, k)(f)c= c;;1 , 

x E {x0 } u {<j>(j) :j 5.n ). Notice thatx:;iex; because 

and n '5.p. 
If y ;iexi, then since f EB~~- n), 

I h (i, k)(/)(y)-h (i, k)(/)(x) I = I/ (y)- / (x) I 5. _!__ 
n 

r,Y Y t: Vm, where 

Now assume thaty =xi. Ifx;,ex 0 , thenx=<j>(j) for some j 5.n with <j>(j);cx 0. Then 

X; = y E utJ) C uf()>, 
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which is a contradiction. Hence x =x 0 • If m > s, then U~no c u;i1, so x; ¢ U~?. But this 
means that y ¢ U~,, which gives a contradiction. So n s k and we get 

lh(i, k)(j)(v)-h(i, k)(j)(.x)I = 1_!__-01 =-1-sJ-. 
' k k n 

We conclude that h (i, k)(j) EB~;· n), hence 

So h (i, k)(j) E c;;. nL;;. =Ai,. This proves (b)(i) and (b)(ii). 
For (b)(iii), let n > k. Since x; E u; 0 , we have for f E P, 

We conclude that h (i, k)(j) ¢8~'0 • "J, hence h (i, k)(j) ¢A~. This proves the lemma. 0 

3.2.7 COROLLARY: For every n, m E IN with n > 1 we have that A;;. E 2(P) and 
A;;. E 2(A;;.+l ). 

PROOF: By lemma 3.2.2, we have that A~1 is closed in P and A;;. cA;;.+1, hence A:!i is 

closed in A:!i+i • 
Let/E C(Q, P) or /E C(Q, A;;.+1 ) and let€ >0. By lemma 3.2.1 (b), 

U~0 \ [ U~0+1 u U{ufvl :j Sn, q>(j):;cxol] 

is infinite so we can choose x; in this set such that i > n, and Ti < £12. Define g: Q P 

by g = h (i, 1) 0 /. Then g is well-defined. By lemma 3.2.6 (a), g is continuous and 

d(g,f)sd(h(i, 1), l)sr;+i <£. 

If J E C (Q, A:!z+i ), we have by lemma 3.2.6 (b)(ii), 

Furthermore because n > 1, we have by lemma 3.2.6 (b)(ii), g (Q) n A;;.= 0. We con-
clude that A;;. E 2(P) and A:!z E 2(A~i+I ). 

3.2.8 COROLLARY: For every n 1 < · · · < nm E IN, i 1, ... , im E IN\ { 1 } , p E IN 
and i E IN we have that 
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and 

,-,.m nk llm+P . . ,-,.m "* PROOF: By lemma 3.2.2, we have that, 'k=lAh nA; 1s closed m, 'k=IAi* and 
,-,. m nk nm+P . d . ,-.. m A"* A"m+P , 'k=IAi* nAi 1s close m, 'k=l ;* n i+l . 

,,...._m Ilk f Q ,-,.m "* Anm+P be . d I O B Let f: Q 'k=IAik or : 'k=lAi* n i+l continuous an et E > . y 
lemma 3.2.1 (b), 

is infinite, so we can choose x; 0 in this set, such that io > nm+P, ~d 2-io < e/2. Define 

g: Q P by g = h (i 0 , nm) 0 f Then g is a well-defined continuous function and 
d(g, f) < E 

Since f (Q) c n;=1A7.k, we have by lemma 3.2.6 (b)(i), g(Q) c n;=1A7.k. Further-

more if j(Q)cA7-;i.?, then by lemma 3.2.6 (b)(ii), g(Q)cA7-;i.?. By lemma 3.2.6 
n +p 0 ,-,. m Ilk llm+P ,-.. m Ilk (b)(iii), g(Q)nA;m = . We conclude that, 'k=IAik nA; e2(, 'k=IAik) and 

,-,. m nk nm+P ,-,. m Ilk nm+P 
, 'k=tAik nAi e 2(, 'k=lAik nAi+l ). 

3.2.9 LEMMA: For every n > 1: { A~, lm>l is a skeleton in P. 

PROOF: Observe that P is a Keller space. To prove the lemma we shall verify the 
conditions in theorem 3.1.7. By corollary 3.2.7 and lemma 3.2.2, { A:!i lm>l is an in-
creasing family of Z-sets in P. Again by corollary 3.2.7, we have for every me JN, 
A::i e 2(A:!i+t ). By lemma 3.2.5, A:!i is convex and infinite-dimensional. So we only 

have to verify that u:=2A::i is dense in P. Notice that Cp,o(X) is dense in 
{OJ x(-1, tl which is dense in P, hence Cp,o(X) is dense in P. Since 

u:=2A:!i :::iCP, 0 (X), u:=2A::i is dense in P. We obtain that {A::i lm > 1 is a skeleton in 

3.2.10 LEMMA: For every n 1 < · · · < 11m e IN, i 1, ... , im e IN\ { 1 ) and p e IN we 
h h { ,-,. m "k nm+P ) . k / . ,-,. m Ilk ave t at , 'k=tA;k nA; i>I 1s as e eton 111, 1k=IAik. 

PROOF: By lemma 3.2.5, n;=1A:k is a Keller space. To prove the lemma we again 

shall verify the conditions in theorem 3.1.7. As mentioned in section 3.1 we may as-

sume i 1 < · · · < im, By corollary 3.2.8, we have for every i e JN, 
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and 

By lemma 3.2.5, n;=1A4k nA;m+P is convex and infinite dimensional, so we only have 
= m m 

to verify that UA;m+P ri nA::k is dense in nA~. To this end we have to prove that 
i=I k=I k=I 

for arbitrary g e n;=,A::·, y 1, ... , Yn e X and e > 0, we have for 

V={feP: l/(y1)-g(y1)1 <eforevery /Sn) 

that (U rin;=,A~ )riU~=1A1m+P :;t0. Since we deal with decreasing clopen bases it 

is possible to find i o > nm + p such that 1 / i o < e and 

(1) U$U1l u$U2) 0 ·f,1,(j· ) ,1,(j· ) d · · < io ri io = I 'I' 1 :;t.., 2 an )1,)2-nm+P, 

(2) Vf~ol ri utUl = 0 if q>(jo) ¢ utU>, k Sm, j $ nk and j o $ nm +p, 

(3) Vf0Uo> ri U4° =0 if <!>UoHV1t0 , k Sm and jo Snm + p, 

(4) for a e { q>(j) :jSnm+P) u { xo} andy1 ;ta we have Yi ¢Uf0 (I Sn), and 

(5) for q>(j)¢ { XQ,--,Xnm) we have Ufi)) ri { XQ, .. , Xnm) =0 (j$nm+p). 

Now define f: X [-1, l] by 

f ( ) 0 'f uxo X = I XE io, 

( 1-~ )g (x) elsewhere. 
lo 

By lemma 3.2.1 (a) and (1) there is for every x e X at most one 
a e { q>(j) : j $ nm +p ) u { x o} with x e Uf O, and since g (X) c [-1, 1 ],J (X) c [-1, 1 ], so 

we conclude that f is a well-defined mapping. Furthermore J (xo) =O, hence J e P. To 

prove the claim we will show that f E (Uri n:=1A4•) ri u~=1A?m+P. For that we first 

prove J e U. To this end let I'!: n. If YI¢ { q>(j): j $ nm+P) u { xo) then by (4) and by 
definition off, f (y1) = ( 1 - 1 / i 0)g (y1) so 
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If Yt E { q>(j): j $ nm+P) v ( xo) then by the definition off, 

So we indeed have f EU. 
m nt ,.....m nk . k To prove that/E nk=IAik, we first show that/E, 'k=Icik. To this end let $m 

and bE {q>(j):j$ndv{xol- Notice that bEV70 , hence f(b)=(l-l/io)g(b). Let 

x E ut. First suppose there is a E { q>(/): l $ nm +p) v { x o) such that x E Uf0 • In this 

case f (x) =(1-1 /i 0 )g (a). If a =x 0 then by lemma 3.2.1 (a), a= b E ut, and if a ;t:xo 

then by (2) and (3), a E ut. Since 

we now have 

I I I I 1/(x)-f(b)I =(1--:--)lg(a)-g(b)I $(!--:-)- < -. 
, Io lo Ilk Ilk 

Secondly suppose for every a E { q>(/): / $n111+p) v ( x 0 ) we have x ¢. Uf0 • Then 

I I I I 1/(x)-/(b)I =0--:--)1,?(x)-g(b)I $(1--:--)- <--
10 lo Ilk Ilk 

We conclude that f E n;=I c:•. Now let k $ m and j $ nk. By (5) we have 

S f r-,. m cllk r-,. m Ilk r-,. m Ilk o E, 'k=l ;. n, 'k=1L;. =, 'k=1A;k. 

Finally we have to prove that J E U ~= 1 A 7m+P. In fact we show that f E A ?;+p. Let 

a E {q>(j): j $nm +p) v {xo}, and letx E Uf0 • Then/ (x) =(1-1/io)g(a)= f (a), so 

1/(x)-/(a)I =0$-1-
nm+P 

So f E c?;+p. Since for every x EX, If (x) I $ l -1 Ii O we have f E A;'tP. This proves 

the 
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3.2.11 LEMMA: For every n 1 < · · · <nme IN, i1 .... , ime IN\ {l} ands, te IN 
m nk s ,,...,_ m nk As ,,...,_ m Ank) such thats> 1 and nk=iA;k <t. A1 , we have, 'k=IAik n I e .:1(, 'k=I ;k . 

PROOF: Let n1< ... <nmelN, i1,••·•imelN\{I} and suppose n;=IA~k<t.Af. 
As mentioned in section 3.1 we may assume i 1 < · · · < i 111 • 

Ifs > nm we have by corollary 3.2.8, 
m m 

So from now on we assume that s S nm. If there exists / Sm such that s Sn, and t ~i,, 
then by lemma 3.2.2, 

m 
,,...,_Ank An' As 
I l jk C ii C I k=I 

and we have a contradiction. So for every k Sm, s > nk or t < ik. There exists r Sm 
such that nr-1 < s Snr. (Let no= 1). 

Let/: Q n;=1Aik and£> 0. By lemma 3.2.1 (b), 

u:0 \[ u:~1 uU {Uf<Jl :j'Snm, q>(j):;txo}] 

is infinite. Choose x; in this set, such that i > nm, ri < £12. Notice that 
X; ¢ { q>(j) :j Snm }. Define g: Q by g =h (i, nr-l) 0 f Then g is well-defined and 

d(f, g) <£.We claim that g (Q) c n;'=1A~k. To this end let k Sm. If nk Snr-l, then by 
lemma 3.2.6 (b)(i), 

If nr-1 < nk Snm, thens Snr Snk. Sot< ik. Then by lemma 3.2.6 (b)(ii), 

So g (Q) E n:=1A~k. 
To finish the proof of this lemma, notice that by lemma 3.2.6 (b)(iii), g (Q) nA: =0 

(be ,,...,_ m nk s ,,...,_ m nk causes> nr-1), so that, 'k=!Ait nA 1 e .:/(, 'k=IAit ). 

3.2.12 THEOREM: ..1. is a Q-matrix in P. 

PROOF: By lemma 3.2.2 and corollary 3.2.7, ..1. is a .:I-matrix. The theorem now fol-
lows directly from the lemmas 3.2.5, 3.2.9, 3.2.10 and 3.2.11. 
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We now come to the main result of this section. 

3.2.13 THEOREM: Let X be a non-locally compact countable space. Then 
(a) Cp(X) is homeomorphic to 0"00 , and 
(b) If Y is another non-locally compact countable space, then for every £ > 0 

there is h e Jf(Q) such that h (Cp, 0 (X)) = Cp, 0 (Y) and d(h, 1) < £. 

PROOF: By lemma 3.2.2 and lemma 3.2.4 it follows that Cp, 0(X) = ker A, so by corol-
lary 3.l.13 (a), Cp,o(X) is homeomorphic to cr00 • By proposition 2.3.2, Cµ(X) is 
homeomorphic to Cp. 0(X) x JR, hence 

Now let Y be another non-locally compact countable space and let E > 0. Then by corol-
lary 3.1.13 (b), there is he J-e(Q) such that h(Cp,o(X))=Cp,o(Y) and d(h, 1) < £. o 

In [38] it was proved that for a non-locally compact countable space X, c;(X) is 
homeomorphic to cr00 • He did not prove theorem 3.2.13 (b) for c;,o(X). To show that 
in this case theorem 3.2.13 (b) is also valid we will give, for a non-locally compact 
countable space X, a Q-matrix A such that c;_o(X)=kerA. Since the calculations are 
more or less the same as in the case of Cp, o(X) we will be brief. 

Let X be a countable space which fails to be locally compact at some point x 0 e X. 

Again let X={xo,x 1,x2, .... ), Y={x1,x2, .... ), P={O}x[-1,lf and let q> be the 
map 1t1 •'If: IN ~x. We consider the same clopen bases as above. As mentioned in the 
introduction, c;, 0 (X) = {/ e Cp, 0(X) :f (X) c [-1 + I Im, 1-1 Im] for some me IN}. 

For every x e X and n, me IN, define 

( ) I I y I I B:i·n =(ge {O)x[-1+-, 1--] :g(U;,)c[g(x)--,g(x)+-]}. 
m m n n 

For every n, me IN, define A? =0, and form> 1, 
n 

A! =B~0 • nl n l'IB~()). nl. 
j=I 

As in lemma 3.2.4 we have the following: 

3.2.14 LEMMA: c;_o(X)= n UA~1-
n"-1111"'1 
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One can prove that ..rt1 = { A:!i : n, me 1N} is a Q-matrix in P. The proof is more or 
less the same as the proof of theorem 3.2. l 2 and we will only give some remarks. 

It is not necessary to copy the proof of corollary 3.2.7. We have A:!i e S(P) because 
of lemma 3.1.4. Furthermore we can simplify the proof of the claim in lemma 3.2.10: 
The condition in (5) can be skipped but we need io > im to prove f e Af;+P. The func-

tion f can be defined as follows: 

g(cpU)) ifxe uff>u~nm+P), 
f ( ) 0 ·r ux0 X = l XE io, 

g(x) elsewhere. 

As in theorem 3.2.13, we have 

3.2.15 THEOREM: Let X be a non-locally compact countable space. Then 
(a) c;(X) is homeomorphic t~ O'ro, and 
(b) If Y is another non-locally compact countable space, then for every e > 0 

there is he X(Q) such that h (C;, o (X)) =C;, o (Y) and d(h, 1) < £. 

The question remains whether for non-locally compact countable spaces X and Y 
there is a homeomorphism from the Hilbert cube onto itself arbitrary close to the iden-
tity which maps Cp(X) onto Cp(Y) resp. ~;(X) onto c;(Y). By theorem 3.2.13, we 
have for £>0, he X([-1, l]xP) such that d(h, 1) <£,and 

h((-1, l)xCp,o(X))=(-1, l)xCp,o(Y). 

By proposition 2.3.2, (-1, l)XCp,o(X) is homeomorphic to Cp(X). This is not what we 
need to solve the above question. We actually need a homeomorphism from [-1, l]xQ 
to Q which maps (-1, l)xCp,o(X) onto Cp(X). Whether such a homeomorphism exists 
remains unsolved. 

§3.3. Homeomorphic function spaces part 2 

In this section we give another proof of the statement that for a non-locally compact 
countable space X the function space Cp(X) is homeomorphic to O'ro. We first compare 
the strategies followed in this section and section 3.2. In section 3.2 we found a Q-
matrix ..rt1 such that ker ..rt1 =Cp, o(X). Using corollary 3. l.13, it was then easily deduced 
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that Cp(X) and crw are homeomorphic. The Q-matrix involved asked for a lot of techn-
ical calculations. However this was not a waste of time, since this strategy also gives 
the result stated in theorem 3.2.13 (b). The strategy in this section starts with a test 
space T. One could say that T is the "simplest" non-locally compact countable space: 
moreover T is a closed subspace of any non-locally compact countable space (lemma 
3.3.1 ). Next a Q-matrix ;Jj will be given such that ker .:B = Cp, o(T). This Q-matrix is 
much easier to deal with than the one in section 3.2. It follows that Cp(T) is 
homeomorphic to crw. To get this also for arbitrary non-locally compact spaces X we 
use strong results of Torunczyk (50], (51 ), which gives the necessary connection 
between Cp(X) and Cp(T). The method of this section was used by van Mill in [38], 

where he proved that c;(X) is homeomorphic to crw. 

We first define the test space T. The underlying set of Tis JN2 u { 00 }. Each point of 
JN2 is isolated and { ( { 11, n + 1, · · · } x lN) u { 00 }} n e IN is a local open base at 00 • Then T 
is obviously a countable space which is not locally compact at 00• Among the non-
locally compact countable spaces, Tis a special one as is shown in the following 

3.3.1 LEMMA: let X be a non-locally compact space. Then X comains a closed 
copy o/T 

PROOF: Let x o be a point where X fails to be locally compact. Let {Un : 11 E lN} be a 
decreasing open base at x 0 . Since no Un is compact we may assume that for each 

11 E JN, Un \Un+I contains an infinite closed discrete subset Dn. Let S = (x) uu;=IDn. 
Then S is obviously closed in X and homeomorphic to T. 

Recall from the introduction that C P (T) = { / : T (-1, 1) : / is continuous} and 
cp, o(T) = {/ E Cp(T) :/ (00) =0}. 

For convenience let I= [-1, 1 ], Im= [-1 + I/ m, I - I/ m] for every m E IN and 

8 (E) = _Il [-E, E); for every E > 0. 
1=! 

For every i E JN, let Q; = n;: 1 l1"), where I;1 = I for every j E JN. Let P = ni=I Q;, where 
Q; =Q for every i E JN. Observe that there is a convexity preserving homeomorphism 
between P and Q, hence by theorem 3.1.1 each Keller space in P is a Hilbert cube. 
Define <p: Cp, 0(T) P by 

<!>(/); = (/ ((i,j)))je!N• for every i E JN. 
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Then cp is easily seen to be an embedding. 
For every n, m e IN define A:!, c P by 

(1) A 1 = 0 for every n e IN and 
m 

(2) A:!,= .n ((lml xi xix · · · )j x. TI B;(rn) for every n e IN and m ~2. 
1=1 1=m+l 

It will tum out that .Jl1 = (A:!,: n, me IN} is a Q-matrix in P such that its kernel is equal 
to q,(Cp, o(T)). As will be clear in the sequel the calculations involved are not so 
comprehensive as the ones in section 3.2. 

3.3.2 LEMMA: .Jl1 is a 9-matrix in P. 

PROOF: By lemma 3.1.4 we have for every n, me IN, that A:!, e :l(P). It is clear that 
for every n, me IN, A:!, cA:!,+1 and A:!,+1 cA~1• 

3.3.3 LEMMA: ker .Jl1 = q,(Cp, o(T)). 

PROOF: Let /=(fiJ)(i.J)elN2eker.Jl1 and (i,j)elN2 • Define by 

/((i,j))=/u for (i,j)elN2 and,/(oo)=O. Since /e u:=1At there is me IN with 
/ e At If i S. m then fi1 e Im c (-1, 1) and if i > m then fiJ e [-2-J, r J] c (-1, 1 ), hence 
J is well-defined. We will prove that J is continuous. To this end we only have to 
prove that J is continuous at oo. Let £ > 0 and n e IN such that rn < £. Let m e IN be 
such that feA'/n. Then lf;11s.rn<£ for i>m and jelN. So 
J(([m+l,m+2, ··· }xlN)v(oo))c(-E,£), hence JeCp,o(T). Obviously cp(/)=/, 
so/ e cp(Cp,o(T)). 

Conversely let f e CP, o(T) and n e IN. Since f is continuous at 00, there is m I e IN 
with If (i, j) I < rn for i > m I and j e IN. There ism ~m I such that for every i S.m 
and jS.n we have 1/(i,j)IS.l-l/m. Then cp(f)eA~1 and we conclude that 
cp(f) e ker J/1. 

3.3.4 LEMMA: .Jl1 is a Q-matrix in P. 

PROOF: By lemma 3.3.2 .Jl1 is a 9-matrix in P. Notice that by lemma 3.1.4 we have for 
every £>0 and 0<£ that B (O) e 9(8 (£)). 

CLAIM 1: For every n e IN, (A:!, Im> 1 is a skeleton in P. 

Notice that P is a Keller space. To prove this claim we verify the conditions in 
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theorem 3.1.7. By lemma 3.1.4 we have for every n, m E IN that A~1 E 2(P) and 
A~, E 2(A~z+I ). Because each A;:., (m > 1) is a product of non-degenerate intervals, it is 

convex and infinite-dimensional. To prove that for every n E IN, u:= 1A;:., is dense in 
P, let f E P and U = flu. jJ e IN2 Uij a standard neighborhood off in P. There is m 1 E IN 
such that i > m I implies Uij = l for every j E IN. There ism~ m I such that Uij n Im 'cf-0 
for every i,jEIN. We claim that UnA:!i'cf-0. Indeed, let (i,j)EIN2 • If i-5.m then 
1tij(U nA;:.,)::) Uij n lm ;t 0. If i > m then 7t;/U nA;:.,) = I nB (Z-n) 'cf-0. We conclude 
that {A;:.,} m > 1 is a skeleton in P. 

Now let n 1 < · · · < nm E IN and i 1, ••• , im E IN\ { 1}. As mentioned in section 3.1 
we may assume i 1 < · · · < im 

m 
CLAIM 2: nA;~ is is a Keller space in P, hence a Hilbert cube. 

k=I 

Since each A 4k is a product of closed intervals, n;=1A4• is a product of closed in-

tervals. Hence n;=1A?: is compact and convex. Since A?~ cn;=1A'/: and i 1 'cf- 1, 

n;=1A 4• is infinite-dimensional. We conclude that n;=1A 4' is a Keller space in P. 

Hence by theorem 3.1.1, n,;=1A;~• is a Hilbert cube. 

m m 
CLAIM 3: For every p E IN, ( r'lA4k nA?m+P); > I is a skeleton in nA:k. 

k=l k=I 

By claim 2, n;=1A4k is a Keller space in P. We prove this claim by verifying the 

conditions in theorem 3.1.7. Let p E IN and i E IN\ { 1 }. Let j be greater than 

max(i, im). The j-th factor space of n;=1A 4• is B(2-nm) and the j-th factor space of 
,-..m An; Anm+p. B(2-nm-P) h ,-..m Ank Anm+P CT(,-..m An')(b I 
I 'k=I ;k 11 ; lS , so we ave r 'k=l ;k 11 ; E oJ. r 'k=l ik y em-
ma 3.1.4). 

If i i m' then the (i + 1 )-th factor space of n; =IA 4k n A 7m+P is 8 (Z-"m-P) and the 

(i + 1)-th factor space of n;=1Atk nA'/1::? is B (2-nm ). Hence by lemma 3.1.4 we have 
C '>' ,-..m n; nm+P ,-..m Ank nm+P s· 1or every 1 -lm, , 'k=IA;. nA; E 2(, 'k=I ;k nA;+i ). mce 

U (,-..m Ank Anm+P , • ,-..m nk 3 7 i?.im , 'k=I ;k n ; ) 1s dense m , 'k=IAh, we have by theorem .1. that 

rn:=1Atk nA?m+P );?.;m is a skeleton in n;=,Atk. Hence by the definition of skele-

t ( ,-..m Ank Anm+P) , k I , ,-..m Ank ons, I 'k=l ;k n ; i > I IS as e eton m I 'k=I ;k . 
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Ifs> nm, then by claim 3, n:=1A4k nAf E .:J(("'\;=IA4k ). Ifs $,nm, there is p Sm 

such that np-l < s $,np (let n0 =0). This implies t < ip, otherwise n;=1A4k cAZ' cAf. 

So there is r Sp such that ir-1 < t + 1 Sir (let io =0). The (t + 1)-th factor space of 

n:=1A4k is B (2-nr-l) and the (t + 1)-th factor space of n:=1A4k nAf is B (Z-5 ). Be-
3 ,,-... m nk s ,,-... m nk causes> np-l ~nr-l, by lemma .1.4 1 'k=IAik nAt e 2(, 'k=IAik ). 

By claims 1-4 we have that .A is a Q-matrix in P. 

3.3.5 COROLLARY: Cp(T) is homeomorphic to a00 . 

PROOF: By lemmas 3.3.3, 3.3.4 and corollary 3.1.13 (a), we have that Cp. 0 (T) is 
homeomorphic to cr00 . As in theorem 3.2.13 we can prove that Cp(T) is homeomorphic 
to cr00 . 

In [38] van Mill constructed a Q~matrix .A such that c;, 0 (T) = keu1, hence c;(T) 
and cr00 are homeomorphic. From this result he derived for an arbitrary non-locally 
compact countable space X, that c;cx) and cr00 are homeomorphic. We proceed in the 
same way to derive that Cp(X) an4 cr00 are homeomorphic. We first need results of 
Toruficzyk (cf. theorem 3.3.6). 

For a linear space Ewe define "f.£ = {x e £"": x; =0 for all but finitely many i). 

3.3.6 THEOREM: Let Ebe a locally convex linear space. Then 
(a) ([50]) for a closed AR X in Ewe have Xx 'I.E """f.E, and 
(b) ([51]) 'I.(£"").,,'I.IRxE"". 

This theorem will be used in the proof of theorem 3.3.9, which formulates in a sense 
the connection between Cp(T) and Cp(X) for an arbitrary non-locally compact space X. 
Before we come to this theorem we have to prove some lemmas. Recall from exam-
ples 3.1.8 and 3.1.14 that 'I.= {x e Q: 3 n e INV i e IN, Ix; I $, l -1 / n) is a skeletoid in 
Q and that 'I.°" is homeomorphic to cr00 . 

3.3.7 LEMMA: Let X be a a-compact space. Then 'I. contains a closed copy of X. 

PROOF: Since every space admits an embedding in the Hilbert cube, and 
[-I/ 2, l / 2]"" is a Hilbert cube, X has a compactification ax c Q such that ax e .:I(Q) 

(cf. lemma 3.1.4). Since Xis a-compact we then have by lemma 3.1.3 (a), Xe 2 0 (Q). 

Then by corollary 3.1.11, there is a homeomorphism h: Q Q such that 
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h (aX) n I.= h (X). Consequently h (X) is a closed copy of X in 

A space X is called an absolute F 00 if X is an F crli in Y, for every space Y in which X 
is embedded. It is well-known that a space X is an absolute F 00 whenever it is an F crli 

in some completely metrizable space. 

3.3.8 COROLLARY: let X be an absolute F crli· Then Ow contains a closed copy 
ofX. 

PROOF: We may assume that Xis a subspace of Q. Let X = n~=l F;, where each F; is 
a F 0 -subspace of Q. Then each F; is a-compact. So by lemma 3.3.7 there exists for 
every i e IN a closed embedding J;: F; I.. Now define f: X r..= by 
f (x) = (f 1 (x), h(x), · · · ). It is easily seen that f is a continuous injection. 

Define q>: X ITi=l F; by q>(x) = (x, x, · · · ) and g: ITi=l F; r.,= by 
g((x;);.JN)=([;(x;));.JN. Then f=g 0 q> and g is easily seen to be a closed embedding. 
Hence to prove that f is a closed embedding it suffices to prove that q>(X) is closed in 
rrr=1F;. Let)' =(y;);.IN e rrr=1F;\q>(X). Then there are i, j E IN with)'; *Yj· There are 
U open in F; and V open in Fj such that Y; e U and Yj e V and Un V = 0. Let 

Then ye O and O nq>(X)=0. We conclude that/is a closed embedding. Since r..= and 
Oro are homeomorphic, we are done. 0 

3.3.9 THEOREM: let X be an absolute F 00 which moreover is an AR. Then 
Xx Oro is homeomorphic to Oro. 

PROOF: By corollary 3.3.8, we may assume that Xis closed in Oro- Then by theorem 
3.3.6 (a), Xx I.Oro and I.Oro are homeomorphic. By theorem 3.3.6 (b) we have 

So we conclude Xx Oro is homeomorphic to Oro. 0 

In the proof of theorem 3.3.11 it will be clear how this theorem connects Cp(T) with 
Cp(X), for arbitrary non-locally compact countable spaces X. We need one more lem-
ma. 

3.3.10 LEMMA ((19]): If Xis a countable space, then Cp(X) is an absolute F 00 . 
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PROOF: For every x E X, let { U~) nE IN be a decreasing clopen base at x. Then by the 
definition of continuity, 

Since each set {g E IR.x: g (U~) c [g (x)- _!_, g (x) + _!_]) is closed in IR.x, Cp(X) is an 
n n 

F ao in IR.x and hence an absolute F ao• 

3.3.11 THEOREM: Let X be a non-locally compact countable space. Then Cp(X) 

is homeomorphic to 0'00 . 

PROOF: By lemma 3.3.1 we may assume that Tis a closed subspace of X. Then by 
proposition 2.3.2, Cp(X) and CP, r(X) x Cp(T) are homeomorphic. Since Cp, r(X) is a 
linear subspace of the locally convex space Cp(X) it is locally convex as well. By The 
Dugundji Extension Theorem [39, Th. 1.4.13], Cp, r(X) is an AR. It is easily seen that 
Cp, r(X) is closed in Cp(X), hence by lemma 3.3.10, CP, r(X) is an absolute F ao· So by 
theorem 3.3.9, Cp, r(X) x cr00 and cr00 are homeomorphic. We conclude that by corol-
lary 3.3.5 

Theorem 3.3.11 can be found in [6]. 

§3.4. Remarks 

Van Mill conjectured in [38] that for a non-discrete countable space X, c;(X) and 
cr00 are homeomorphic. In the preceding sections, it became clear that Q-matrices were 
a handy tool to prove for non-locally compact countable spaces X, that Cp(X) and 
c;(X) are homeomorphic to cr00 . The question remains whether this also holds for ar-
bitrary non-discrete countable spaces. Recently Dobrowolski, Gulko and Mogilski in 
[20] and Cauty in [ 16] independently answered this question in the affirmative. In this 
section we shortly discuss both papers. 

In section 3.3 the test space T plays an important role. It is the "simplest" non-
locally compact countable space, which is a closed subspace of any non-locally com-
pact countable space. In the class of non-discrete countable spaces, the role of T is 
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played by [I, w] because any non-discrete countable space contains a closed copy of 
[!, w]. Following the strategy in section 3.3, we have to prove that Cp([l, w]) is 
homeomorphic to cr00 , to obtain for arbitrary non-discrete countable spaces X, that 
Cp(X) and c;(X) are homeomorphic to cr00 • Both in [16] and [20] it is proved that 
Cp,o([l, w])= {fe Cp([I, w]) :/(w)=0} is homeomorphic to cr00 (hence Cp([l, w]) is 
homeomorphic to cr00 ). The approaches in both papers are in a sense the same: they 
both rely on theorems of Bestvina and Mogilski [13]. 

First we discuss the proof in [20]. For a space X and x e X, let 

W (X, x) = (x e X"" : Xn =x for all but finitely many n ) . 

We have the following characterization of cr00 , 

3.4.1 THEOREM ([20]): An AR Xis homeomorphic to 0"00 ijf the following condi-
tions are satisfied, 

(a) X = u7=1x1, where each x1 is an absolute F 00 and a Z-set in X, 
(b) there is x e X and there is a copy Y of X such that W (X, x) c Y cX"" and, 
(c) X contains a closed copy of X"". 

The proof of this theorem depends strongly on results derived by Bestvina and 
Mogilski in [13]. In [20] it is proved that Cp,o([l, w]) satisfies the conditions in 
theorem 3.4.1, so that Cp,o([l, w]) is homeomorphic to cr00 • Hence following the stra-
tegy of section 3.3, for non-discrete countable spaces X, Cp(X) and c;(X) are 
homeomorphic to 0'00 • 

The proof in [16] depends on a theorem derived by Bestvina and Mogilski in [13]. 
Before we can formulate this theorem we have to give some definitions. 

Let X and Y be spaces and let U be an open cover of Y. Two functions 
f, g e C (X, Y) are said to be U-close if for every x e X, there is U e U such that 
{f (x ), g (x)} c U. We have to extend the definition of a Z-set to arbitrary spaces. A 
closed subspace A of X is called a Z-set in X, whenever for every open cover U of X and 
for every f e C(Q, X), there is g e C(Q, X) U-close to /and g(Q)nA =0. For com-
pact spaces, this definition coincides with the one given in section 3.1. For an ANR X, 
we have by [39, Th. 7.2.5]: 

A closed subset A of X is a Z-set in X iff for every open cover U of X there ex-
ists/ e C(X, X) such that/and Ix are U-close and/(X)nA =0. 
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For an ANR X, a closed subset A of Xis said to be a strong Z-set if for every open cov-
er U of X there exists a continuous function f: X X such that/ and lx are U-close 
and f (X) n A = 0. AZ-set need not to be a strong Z-set (an example is given in [ 12]). 

A space Xis strongly :Jcr0 -universal if for every/ e C (A, X), where A is an absolute 
:Jcro, for every B cA closed such that / I B: B X is a Z-embedding, and for every 
open cover U of X, there exists a Z-embedding h: A X such that h I B = f I B and f 
and h are U-close. 

We can now state the announced theorem of Bestvina and Mogilski, 

3.4.2 THEOREM ([13]): An AR X which is an absolute F cro is homeomorphic to 
0-w if! the foil owing conditions are satisfied 

(a) Xis strongly F cr0 -universal, and 

(b) X = u;=IXn, where each Xn is a strong Z-set in X. 

In [16] it is proved that Cp, 0([1, ro]) satisfies the conditions of theorem 3.4.2 and 
hence Cp,o([l, ro]) is homeomorphic to 0-w. So again we have that for non-discrete 
countable spaces X, Cp(X) and c;(X) are homeomorphic to 0-w. 

Let X = {x0 , x 1, x 2 , • • • } be a countable space which is not discrete at x 0 • Now that 
we have that Cp(X) and c;cx) are homeomorphic to 0-w, the question remains whether 
theorem 3.2.13 (b) also holds for this X. That is if Y is another non-discrete countable 
space, is it true then that there is h e Jf(Q) arbitrary close to the identity which maps 
Cp, o(X) onto Cp, o(Y). For this purpose we actually would like to write Cp, 0 (X) as the 
kernel of a Q-matrix. The Q-matrix in section 3.2 essentially uses the non-locally com-
pactness of X, and as far as we see it cannot be used for non-discrete countable spaces. 
A weaker question is whether CP, 0([1, ro]) can be written as the kernel of a Q-matrix. 
As with the test space T, there is a natural candidate. However this candidate unfor-
tunately is not a Q-matrix. We shall present it and prove that it is not a Q-matrix. 

We identify Cµ,o([l, ro]) with the following subspace ofQ, 

{(xn)nelN ES: Iimxn =0). 

For convenience for every n, m e IN, let 

For every n, m e IN, let 
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(I) A'/ =0, and 

(2) A! =Omt' ximn ximn XImn X ···,if m ~2. 

Let A= ( A! : n, m e IN}. By lemma 3.1.4 it is easily seen that A is a 2-matrix in Q. 
Again by lemma 3.1.4 we have for every n, me IN that A::i e 2(A!+i ). Since each A;;. 
is convex and infinite-dimensional and since UmcJNA! is dense in Q, we have by 

theorem 3.1.7, that (A;;. l m >l is a skeleton in Q. 
Now fix n 1 < · · · < nm e IN and i 1, ••• , im e .IN\ ( I J. By the observation in section 

3.1 we assume i 1 < · · · < im. Then it is easily seen that 
m 

11A?kk=B1X···XB; Xl;n XI;n XI; 11 X k=l m m m m m m m 

where each B; is a non-degenerate closed subinterval of Im. So n;1=1A:k is a Keller 

space, hence a Hilbert cube. Furthermore for p e .IN and i ~im, 
m 
nAnk nA"m+P =B X 
k=l lk I I 

By lemma 3.1.4 · we have and 
,,...._m A"k Anm+P nm nk nm+P . nm nk A"m+P . d , 'k=I ;k n ; e 2( k=iA;k nA;+1 ). Smee k=iA;k n ; 1s convex an 
. fl . d' . al d U 00 (nm Ank Anm+P) . d . nm Ank h b m mte- 1mens1on , an i=I k=l ;k n ; 1s ense m k=l it, we ave y 

theorem 3.1.7 that 1n:=1A:k nA;'m+P) is a skeleton in n;=,A:k. 
It seems that we are on the right way to prove that A is a Q-matrix. Unfortunately 

condition (d) in the definition of a Q-matrix is not satisfied. Indeed for 

and 

we have 

Furthermore Aj ct At However by lemma 3.1.3 (b), A1 nAj ¢2(Aj). So this natural 
description of Cp,o([l, w]) fails to be a Q-matrix, hence the question remains open 
whether C p, 0([ I, w]) can be described as the kernel of a Q-matrix. 

Our last remark in this section concerns uniform spaces. At this moment there ex-
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ists a topological classification of function spaces Cp(X), for countable non-discrete 
spaces X and an isomorphical classification of function spaces Cµ(X), for countable 
infinite compact spaces X (cf. chapter 2). We can also consider Cµ(X) as a uniform 
space. The uniformity on Cµ(X) is given by the subbase {U(P, €): P cX finite, £>0}, 
where 

U (P, £) = ((f, g) e Cµ(X) xCµ(X): If (x)-g (x) I < e for every x e P ). 

Since every linear homeomorphism is a uniform homeomorphism and every uniform 
homeomorphism is a homeomorphism, it is interesting to find a uniform classification 
of the function spaces Cµ(X), for countable infinite compact spaces X. In [27], Gulko 
derived the following 

3.4.3 THEOREM ([27]): Let X be a countable infinite compact space. Then Cµ(X) 
is uniformly homeomorphic to Cµ([l, w]). 

So for countable infinite compact spaces the topological and uniform classification 
coincide. As a corollary we also have that there are spaces X and Y such that Cµ(X) and 
Cµ(Y) are uniformly homeomorphic but not linearly homeomorphic. In [27] Gulko an-
nounces a complete uniform classification of Cµ(X) for all countable metric spaces. 





CHAPTER4 

On the ip •equivalence of metric spaces 

All spaces considered in this chapter are Tychonov. 
In chapter 3 we stated a topological classification result for the spaces Cp(X), where 

X is any countable metric space. In the light of this result the question naturally arises 
which of these function spaces are in fact linearly homeomorphic, i.e., isomorphic as 
linear spaces. In chapter 2, we already obtained an isomorphical classification of the 
spaces Cp(X), where Xis any locally compact zero-dimensional separable metric space. 
In this chapter we also consider non-locally compact zero-dimensional separable metric 
spaces. 

In section 4.1, we introduce the notion of LP-equivalent pairs, which is a useful tool 
in deriving topological properties of metric spaces which are preserved by ",,-
equivalence. In section 4.2 we show that the topological properties preserved by ip-

equivalence, found in section 4.1, are sufficient to give an isomorphical classification of 
the function spaces Cp(X), where Xis any countable metric space with scattered height 
less than or equal tow. Unfortunately these properties are not sufficient to give a com-
plete isomorphical classification for the class of all countable metric spaces X. The 
results in sections 4.1 and 4.2 can be found in [ 4 ]. In section 4.3, we present other to-
pological properties preserved by LP-equivalence. In section 4.4, we state a conjecture 
on a complete isomorphical classification for the function spaces considered. Some re-
marks are made concerning the difficulties one encounters when one attempts to prove 
the conjecture. Finally, some partial results are given on Lo-equivalence (section 4.5) 
and t;-equivalence (section 4.6). 

§4.1. ip•equivalent properties of metric spaces 

In this section we present LP-equivalent properties of metric spaces. The notion of 
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LP-equivalent pairs provides us with these properties. Before we give the definition of 
LP-equivalent pairs, we first need the following: 

Let X be a space and X O e X. For every ordinal we define the set X ( a) with respect 
to the pair (X, X 0 ) by transfinite induction as follows: 

(l)X(OJ=Xo. 

(2) If a is a successor, say a= 13 + l, then x E X ( aJ if and only if for every 
neighborhood U of x, U nx(PJ is not compact. 

(3) If a is a limit ordinal, then X (aJ = (")X (Pl. 
P<a 

The construction of the sets X {a} is a special case of a construction in [49]. Note 
that, whereas taking the derivative of a space means "throwing away all isolated 
points", the above procedure throws away all points with a compact neighborhood. 
There are also some similarities between both operations which are formulated in the 
following two lemmas. They will be used frequently but will not always be mentioned. 
For a subset U of X, we define as above for every ordinal a, the set u{a) with respect 
to the pair (U, U 0), where U O = U nX 0 • Compare the following two lemmas with pro-
position 2.2.2, corollary 2.7.3 and proposition 2.2.4. 

4.1.1 LEMMA: Let X be a space and X o a closed subspace of X. Then for every 
ordinal a, 

(a)X{aJ isclosedinX, 
(b) x!aJ ex<aJ, 

(c)/or 13 < a, X ta) eX WI, and 
(d)X(a+IJ =(X(aJ){ll_ 

PROOF: We prove each case by transfinite induction on a. 
For (a), the case a=O is a triviality. First suppose that a>O is a successor, say 

a= 13 + 1. Let x E X \ X ! a I . Then there is an open neighborhood U of x such that 
U nxlPI is compact. So U nx(aJ =0, hence xtaJ is closed. Secondly, if a is a limit 
ordinal, then X I al = np < a X ! Pl, so by our inductive hypothesis, X {al is closed in X. 

For (b), the case a= 0 is a triviality. If a> 0 is a successor, say a= 13 +I, then for no 
neighborhood U of a point x E X ! a 1 , U n X ! PI is compact. By the inductive hypothesis 
we have U nx<PJ is not compact, hence U nx<Pl \ {x} t:0. We conclude that x E x<a). 
For a a limit ordinal, part (b) is clear. 

For (c), first let a= I. If x ¢X 0, there is a neighborhood U of x such that U nX O =0, 
hence x ¢XI IJ. So X (I I eX IOI. If a> 1 is a successor, say a =y+ l, then for every 
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x e x(cxl and for every neighborhood U of x, U nX 1Yl is not compact. Hence U nxlPl 
is not compact and so x e X !Pl. For a a limit ordinal part (c) is a triviality. 

For (d), let x e X (cx+I l _ Then for each neighborhood U of x, U nX (ex} is not compact 
if and only if U nX (ex! nX o is not compact if and only if x e (X (ex})( 1 l. 

One can now easily see that if X O and Yo are closed in X and Yo cX o, then for each 
ordinal a the set X (ex} with respect to the pair (X, Yo) is a subset of the set X tu] with 
respect to the pair (X, X o.'. 

4.1.2 LEMMA: Let X be a space and U a subset of X, and X o a closed subset of X. 

Then/or each ordinal a, 
(a) if U is closed, then u(cx} Cu nx(cx}' and 
(b) if U is open, then u nx(cx} C utcx}. 

PROOF: We prove this proposition by transfinite induction on a. If a=O, the lemma 
is obviously true, so suppose that a> 0 and that for each 13 < a the lemma has been 
proved. First suppose that a is a successor, say a= 13 + 1. 

For (a), suppose U is closed, let x e U I cxJ and let V be a neighborhood of x. Then by 
the inductive hypothesis 

By lemma 4.1.1, V n U !Pl is a closed subset of U and because U is closed in X, 
V n U IP I is a closed subset of V n X f P 1 . Since V n U f PI is not compact, we then have 
that V nxf Pl is not compact. Sox e xfcxl n U. 

For (b), suppose U is open and let x e U nX (ex}. Let V be a neighborhood of x in X 
such that V c U. Then V nX f Pl is not compact. So by the inductive hypothesis 

hence V n U (Pl is not compact. We conclude that x e U fcxJ. 

If a is a limit ordinal, then by the inductive hypothesis we have for closed U that 

ufcxJ = nulPJ c t'i(U nXlPl)=U n nxlPI =U nxtcxl, 
P<cx P<cx P<cx 

and for open U 

U nX fcxJ =Un (') X f Pl=(') (U nX !Pl) c (') U IPI = U fcxJ. 
P<cx P<cx P<cx 

This completes the proof of the lemma. 
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This lemma implies that whenever U is a clopen subset of a space X, then for each 
ordinal a, U nX (a}= Uta!; furthermore by proposition 2.2.4, uCa) = U nX(a). We 
will use this frequently without explicit reference. 

4.1.3 LEMMA: Let X be a paracompact space, X O closed in X and a~ 1 an ordi-
nal. Let V c X be open such that V nX {a} = 0. Then there is a locally finite family 
[ Vs : s E S} consisting of open sets such that V =Uses Vs and for every s E S, there is 

P < a with Vs nxtPl compact. 

PROOF: Case 1: a is a successor, say a=P+ l. 
Since VnX(aJ=0, for every xeV, there is a neighborhood Ux of x such that 

lfx nX !Pl is compact. Since [ Ux: x e V} u {X \ V} is an open cover of X, there is a lo-
cally finite open refinement {Os: s ES) of it. For every s ES, let Vs =Os n V. Then 
{ Vs : s E S} is a locally finite family consisting of open sets such that V = U seS Vs. In 

addition, ifs ES and Vs ;t0 there is x e V with Vs c Ux. Then Vs nX1~1 c Ux nX {~!. 

So V5 nX 1~l is compact. 
Case 2: a is a limit ordinal. 

Then U= [X \Xf~J: p <a] u [X \ V} is an open cover of X, so there is a locally 
finite open covering { 0 s : s E S ) of X such that ( 0 s : s E S } refines U. For every s E S 
put Vs= V n Os. Then lVs: s ES} is a locally finite family of open sets such that 
V = Uses V5 • Now fix s E S and suppose Vs ;t 0. Then there is P < a such that 

Vs ex \XI~!, which implies Vs nxt~I =0. 

Let X be a space. There are several possibilities to combine the two operations x<a) 
and xtaJ. The one that is important for our purposes is the case where Xo=X(a) for 
some ordinal a. In the sequel the set X {Pl with respect to X O = X (a) will be denoted by 
x<a, ~). Another subset of X we need in section 4.3 is x-~a, ~> defined for limit ordinals 
a by 

x«a, P> = nx<Y, P). 
"(<Cl 

Note that the sets x<a, P) and x«a, ~> are closed in X, and if p = 0, then 
x«a, ~> =X(a). As in lemma 4.1.2 one can prove that for U clopen in X, 
U nx<a, ~) = u<a, ~), and U nx«a, P> = u«a, P>. 

In this chapter it will be made clear that the isomorphical classification of Cp(X) for 
countable metric X depends upon the behaviour of X with respect to the above opera-
tions and that neither of the operations is redundant. We need the following lemma in 
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this section and also in section 4.3. 

4.1.4 LEMMA: Let X be a zero-dimensional separable metric space. Let a<:: I and 
be ordinals and let V be an open subset of X. Suppose that 

(a) V r.x<a> =0, or 
(b) v r. x<P,a) = 0, or 
(c) a is a limit ordinal and V r.x<a, P> =0. 

Then there is a discrete clopen family {A;: i e IN} such that V c UielNAi and/or each 

i e IN, there is y < a such that 
if (a) holds, then AfY> is /mite and if moreover a is a limit, then Af1> = 0; 
if (b) holds, then A)P;y) is compact and if moreover a is a limit, then A)P;y) = 0; 
if (c) holds, then A)Y, P> = 0. 

PROOF: The proof is almost the same as the proof of lemma 4.1.3, hence we will be 
brief and present a proof of case (a) only. 

If cx.=y+ 1 is a successor, there is for each x e Va clopen neighborhood Ux of x such 
that UiYJ is finite. The open cover { U x : x e VI u X \ V of X has a cl open disjoint 
refinement {A; : i e IN}. Put / = (i e_IN: A; r. V :;t0}. Then {A;: i e /} is a discrete clo-
pen family which is as required. 

If a. is a limit ordinal, then U = {X \ X <P> : < a) u { X \ V) is an open cover of X. Let 
{A;: i e IN) be a disjoint clopen refinement of U, and put/= (i e IN :A; r. V :;t0). Then 
(A; : i e /) is a discrete clopen family which satisfies the desired 

4.1.5 COROLLARY: Let X be a zero-dimensional separable metric space. Let 
a.<:: I and be ordinals and let V be an clopen subset of X. Suppose that 

(a) y(a) =0, or 
(b) v<P.aJ =0, or 
(c) a is a limit ordinal and y<a, P> = 0. 

Then there is a discrete clopen family {A;: i e IN) such that V = UielNAi and/or each 

i e IN, there is y < a such that 
if (a) holds, then A}Y) is/mite and if moreover a is a limit, then A}Y) =0; 
if (b) holds, then Af P,YJ is compact and if moreover a is a limit, then A}P,y) = 0; 
if (c) holds, then AfY, Pl =0. a 

We now define some additional notions. Let X and Y be spaces. Let XO be closed in 
X and Yo be closed in Y. Let <j>: Cp(X) Cp(Y) be a linear bijection and a an ordinal. 
We define the pair (X, X 0 ) to be (<1>, a)-relative to the pair (Y, Y 0 ) if the following 
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If U and V are open in X and W is open in Y such that (supp U) n W = 0 and 
supp W c U u V, then W n ylal :;t0 implies V nxta} :;t0. 

We define (X, X 0 ) and (Y, Y 0 ) to be ip•equivalent pairs if there is a linear homeomor-
phism qi: Cp(X) Cp(Y) such that (X, X 0) is (qi, 0)-relative to (Y, Yo) and (Y, Yo) is 
(qi-1, 0)-relative to (X, X 0). Note that two spaces X and Y are ip-equivalent if and only 
if (X, 0) and (Y, 0) are ip-equivalent pairs. 

The importance of ip-equivalent pairs will become clear in proposition 4.1.9 and 
proposition 4. I . I 2. 

4.1.6 LEMMA: let X and Y be metric spaces, X o closed in X and Yo closed in Y. 

let qi: Cp(X) Cp(Y) be a continuous linear bijection such that (X, X o) is (qi, 0)-
relative to (Y, Y 0). Then/or every ordinal a, (X, X 0) is (qi, a)-relative to (Y, Y 0). 

PROOF: We prove the lemma by transfinite induction on a. Since (X, X o) is (qi, 0)-
relative to (Y, Y 0 ), the case a= 0 is clear. So assume the lemma to be true for every or-
dinal p < a with a~ I. Suppose that the lemma is false for a. Then there are U and V 
open in X and W open in Y such that (supp U)n W =0, supp W c U u V, W n y[a} -:t:-0 
and V nx[a} =0. By lemma 4.1.3, there is a locally finite family Ws: s e S) consist-
ing of open sets such that V =Us .s V,5 and for every s e S there is P < a such that 

Vs nX 113} is compact. Choose ye W n Y {a] and a neighborhoodbase (Wm: me IN} at y 

in W such that for every me IN, W m+l c Wm. By corollary 1.2. 15 (a) and lemma 1.2. IO, 
there are me IN and s 1, ••• , Sm e S with 

(I) 

Now let A= U;".,1 Vs,. Fix p < a such that A nX l13I is compact. Also, notice the 

following: A and U are open in X, Wm is open in Y, (supp V) n Wm= 0 (because 
Wm c W and (supp U) n W = 0) and supp Wm c U uA (by (I) and the fact that 
supp W c U u V). Since ye Wm n y{l3l, our inductive hypothesis implies that 
A nx113l :;t0. We have that Xis a metric space, so there is an open neighborhoodbase 
(As: s e IN} at A nx!l3/ in X such that As+I cAs for every s e IN. Since ye yla/ and 

Wm+l is a neighborhood of y, Wm+! nY 113l is not compact, so in Y there is a closed 
discrete subset ( y s : s e IN) contained in Wm n Y {J3 l . Let { 0 s : s e IN) be an open 

discrete family in Wm such that Ys E Os· Then by corollary 1.2.15 (a) and lemma 1.2.10, 
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there is s e IN with 

supp As II UO; =0. 
i2:s 
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(2) 

Now put U'=UuA 5 , V'=A \As+t and W'=Os. Then U' and V' are open in X and 
W' is open in Y. We also have 

(supp U') 11 W' =(supp U u suppA5 )1105 =0 (by 2) 
and 

suppW'csuppWm cU uA cU'uV'. 

Furthennore, Ys e W' 11 ylPI and 

This contradicts our inductive 

4.1.7 THEOREM: Let X and Y be metric spaces, X O closed in X and Yo closed in 
Y. Suppose that (X, X 0) and (Y, Y 0) are lp•equivalent pairs. Then for every ordinal a 
we have 

(a) xlaJ =0 if and only if Ylal =0, 
(b) xlaJ is compact if and only ifYlal is compact, and 
(c) X fa} is locally compact if and only if Yla) is locally compact. 

PROOF: Let q>: Cp(X) Cp(Y) be a linear homeomorphism such that (X, X o) is 
(cp, 0)-relative to (Y, Y 0) and (Y, Y 0) is (cp-1, 0)-relative to (X, X o), For (a), by apply-
ing lemma 4.1.6 and the definition of (cp, cx.)-relativeness to U = 0, V =X and W = Y, we 
getXlaJ =0 ifylal =0. 

For (b) suppose that y!aJ is compact and xlaJ is not. Since xlal :;1:0, by (a) we 
have YI a} :;1: 0. Let {Wm : m e IN} be an open decreasing base in Y at YI a} such that for 
every m e IN, Wm+ 1 c Wm. Furthermore, let { .tm : m e IN} be closed and discrete in 
xlal. Let {Om: me IN} be an open discrete family in X such that Xm e Om, Then by 
corollary 1.2.15 (a) and lemma 1.2.10, there ism e IN such that 

Now let U=Wm, V=Y\Wm+I and W=Om. Then U and V are open, Wis open, 
(supp U) 11 W = 0 and supp W c Y = U u V. In addition 

VII yla) = y \ Wm+I II y[a} =0 
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and 

This contradicts lemma 4.1.6. 
For (c) notice that X la/ is locally compact if and only if X fa+! l = 0. So (c) follows 

directly from (a). 

Theorem 4.1.7 is a useful theorem. In the remaining part of this section we give 
some applications of it. We will prove for lp-equivalent spaces X and Y that if a. is a 
finite prime component, then (X, x<a)) and (Y, y(a)) are LP-equivalent pairs (proposi-
tion 4.1.9), and if a. is an infinite countable prime component and X and Y are zero-
dimensional separable metric spaces, then (X, x<a)) and (Y, y(a)) are tp-equivalent 
pairs (proposition 4.1.12). We will distinguish between the cases of finite and infinite 
prime components. Although the result for finite prime components is much stronger 
than the result for countable infinite prime components, the latter case requires most of 
the work. We first need the following 

4.1.8 LEMMA: Let X be a first countable space and a.< ro1 an ordinal such that 
x<a) ;t:0. Then there is K cX such that K"' [I, roa]. 

PROOF: We prove the lemma by transfinite induction on a.. For a.=0, it is a triviality. 
Now suppose the lemma is true for every ordinal p < a., with a.:2:: I. Fix x e x<a). 
Case 1: a. is a successor, say a.=P+ 1. 

Choose a sequence (xn)nelN in x<l3) such that Xn and a decreasing open base 
{Un: n e IN} at x such that for each n e IN, Xn e Vn =Un\ Un+I. Notice that Vn is open, 
so v1) = vii nx<l3). Hence, Xn E v~l3). So by the inductive hypothesis, there are KIi c vii 
such that Kn"'[l,rol3]. Notice that for every n;t:m, KnnKm=0. Let 

K=U;=,Kn v {x }. Then by theorem 2.2.8, K"' [l,roa). 
Case 2: a. is a limit ordinal. 

Let <Pn)11 be an increasing sequence converging to a.. Since x e x<a), there is a de-
creasing open base {Un: 11 E IN} at x such that if Vn =Un\ Un+I • then v~•) ;t:0. By the 
inductive hypothesis there are Kn c Vn such that Kn "' [ 1, ro13• ). Then by theorem 2.2.8, 

K =U;=,Kn v {x} is as 

In [9), J.W. Baker gives conditions for a space to have an ordinal interval as a sub-
space. 
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We first deal with finite prime components, i.e., the numbers O and 1. 

4.1.9 PROPOSITION: Let ae {O, 1} and let X and Y be Ip-equivalent metric 
spaces. Then (X, X(aJ) and (Y, y<a>) are ip-equivalent pairs. 

PROOF: By proposition 2.2.2 (a), x<a) is closed in X. Let cj>: Cp(X) Cp(Y) be a 
linear homeomorphism. It suffices to prove that (X, x<a)) is (q>, O)-relative to (Y, y(a)). 

To this end let U and V be open disjoint in X and W open in Y such that 

(supp U) n W = 0, and 
suppW cU uV. 

Suppose that W n y(aJ *0 and V nx<a) =0. 
Case 1: a=O. 

Since V = 0, we have supp W c U. So by proposition 1.4.3, 

W c supp supp W c supp U. 

Since (supp U) n W = 0 this gives W = 0, hence we arrived at a contradiction. 
Case 2: a= 1. 

Since V nxOJ = 0, V = V consists of isolated points, say V = {xs: s e S}. Choose 
ye W n yOJ and let {Wm : m e IN} be a decreasing open base at y in W. By corollary 
1.2.15 (a) and lemma 1.2.10, there ism e IN and s 1, ... , Sm e S such that 

Now let V' = (x51 , ••• , x5m}. Since supp Wm c U u V', it follows that 

Wm c supp supp Wm c supp(U u V')=supp U u supp V'. 

Since Wm n supp U = 0, we have Wm c supp V'. Because V' is finite, we have by lemma 
I .4.1 that Wm is finite. This contradicts the fact that y e wW. 

4.1.10 THEOREM: Let X and Y be LP-equivalent metric spaces, let ae (0, I}, and 
let 13 be an ordinal. Then 

(a) x<a, Pl =0 if and only if Y(a. Pl =0, 
(b) x<a. Pl is compact if and only ifY(a. P> is compact, and 
(c) X (a, Pl is locally compact if and only if y(a, PJ is locally compact. 

PROOF: This follows directly from proposition 4.1.9 and theorem 4.1.7. 
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In section 4.2, we prove that the conditions (a) and (b) are sufficient to obtain an iso-
morphical classification for countable metric spaces with scattered height less than or 
equal to ro, i.e., if two such spaces satisfy conditions (a) and (b) in theorem 4.1.10 for 
all ordinals a E { 0, I } and 13, then they are Ip-equivalent. 

In our search for ip-equivalent pairs we now consider pairs (X, x<al) for infinite 
countable prime components a. We start with the following 

4.1.11 LEMMA: Let X be a metric space and A a closed subspace of X. Let 0 be 
an open neighborhood of A in X. Then there is a continuous linear function 
cj>: C o(A) C o(X) such that for each f E C (A), 

cj>(f) I A= f, cj>(f )(X) c conv (f (A) u {OJ), and cj>(f )(X \ 0) = (0}. 

PROOF: We will construct a continuous linear function q>: Cp(A) Cp(X) with the re-
quired properties. Then by proposition 1.2.19, cj> considered as a function from 
C 0 (A) C 0 (X) is also continuous, and hence is as required. 

Since A u (X \ 0) is a closed subset of X, there is by theorem 2.3.1, a continuous 
linear function \/f: Cp(A u (X \ 0)) Cp(X) such that for each f E C(A u (X \ 0 )) we 
have \/f(f) I (A u (X \ 0 )) = f and \/f(f )(X) c conv f (A u (XI 0)). 

For each f EC (A), define f*: A u(X \ 0) IR by 

* rt (x) if.tE A 
f (x) = fo if x EX\ 0 

' 
Then f* is a well-defined continuous function. Define 8: u(X\0)) by 
8(/) = f*. Then 8 is a well-defined continuous linear function. Finally define 

cj>: Cp(A) Cp(X) by cj> = 'I' 0 8. Then <)> is a continuous linear function, and we claim 
that it is as required. Let f E C (A). Then 

cj>(f) IA =\/f(8(f)) IA =8(/) IA= f, 
q>(f )(X) = \/f(8(/))(X) c conv (8(/)(A u X \ 0 )) = conv (f (A) u { 0 )), and 
cj>(f )(X \ 0) = \/f(8(f ))(X \ 0) = 8(/)(X \ 0) = { 0}. 

This proves the lemma. 

4.1.12 PROPOSITION: Let a< ro 1 be a prime component and let X and Y be Ip-
equivalent zero-dimensional separable metric spaces. Then (X, x<a)) and (Y, y(a)) are 
Ip-equivalent pairs. 

PROOF: By proposition 2.2.2 (a), x<aJ is closed in X. Let cj>: Cp(X) Cp(Y) be a 
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linear homeomorphism. Then by corollary 1.2.21, <P considered as a function from 
Co(X) to C 0 (Y) is also a linear homeomorphism. It suffices to prove that (X, x(cx)) is 
($, 0)-relative to (Y, y(cxJ). To this end let U and V be open in X and W open in Y such 
that 

(supp U) n W = 0, and 
suppW cUuV. 

Suppose that W n y(cx) ;c0 and V nx<cx) =0. By proposition 4.1.9 we must have a.~co. 
Let ye W n y<a) and let {Wm : m e IN} be a decreasing clopen base at y in W. By lem-
ma 4.1.4 (a), there is a discrete clopen family { V m : me IN} such that V c Um.INV m 

and for each me IN, there is p < a such that (V m)(Pl = 0. By corollary 1.2.15 (a) and 
lemma 1.2.10, there is m e IN such that 

Let V' = U~=I Vs; Notice that V is clopen and supp Wm c U u V'. Fix p < a such that 
(V'iPl = 0. Since w~> =Wm n y(cx) ;c 0, by lemma 4.1.8 there is a set Kc Wm such that 
K = [ l, cocx ]. Let L = supp Kn V'. Then by corollary 1.2.15 (b), L is compact. Further-
more LcV'. We also have that Lis non-empty. Indeed, if (suppK)nV'=0, then 
supp Kc U, and so by proposition 1.4.3, 

Kc supp supp Kc supp U. 

Since (supp U) n K = 0, we then have K = 0. Contradiction. 
By lemma 4.1.11, there is a continuous linear function \j/ 1: C 0(K) C 0(Y) such 

that for each f e C (K), 

Again by lemma 4.1.11, there is a continuous linear function \j/2: C o(L) C o(X) such 
that for each f e C (L ), 

Define 
'1'2<J) IL= f and '1'2<f )(X \ V') = { 0}. 

'If: C o(K) C o(L) by \lf<f) =$-1 (\If 1 (f)) IL, and 
0: C o(L) C o(K) by 0(!) ='1>('1'2<f )) I K. 

Observe that 'I' and 0 are linear. 

CLAIM: For each/ e C (K), 0(\j/(/)) = /. 

Suppose there is/ e C(K) such that 0(\lf(f));cf Then 
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q>(\j/2(\j/(/))) I K * J= \j/1 (f) I K. 

So by corollary 1.4.2 (b), 

\j/2(\j/(f)) I supp K *q>-1 (\j/ 1 (/)) I suppK. 

Since \j/1(/)(Y\Wm)={0} and suppUcY\Wm, it follows from corollary 1.4.2 (b), 
that q>-1 (\j/1 (f ))(U) = (0}. Since U \ V' cX \ V', \j/2 (\JI(/ ))((supp K \ V') = (0}. Hence 

Contradiction and the claim is proved. 

From the claim we conclude that \j/ is a linear embedding. Since l c V', we have 
l <Pl = 0. Since L is separable metric, it is countable by the Cantor-Bendixson theorem 
and so by theorem 2.2.8, there is y< and n e IN such that l =- [1, 01Y-n ]. Since by 
theorem 2.4.1 C 0 ([1, co"Y·n])-C0 ([1, co"Y]), we have a linear embedding 

By lemma 2.6.7 and the fact that a is a prime com-
ponent it follows that a:::;; y. This gives a contradiction since y < < a. 

REMARK: a) For a< co1 not a prime component, there are tr-equivalent countable 
metric spaces X and Y such that x<al =0, y<al *0- So (X, x<al) and (Y, y(al) are not 
lp -equivalent pairs. For example let X = [ 1, coa'] and let Y = [ 1, coa]. Then by theorem 
2.4.7, X and Y are lp-equivalent. Since a is not a prime component, a'< a hence 
x<al =0. However y(al *0. 

b) The question arises whether "being lp-equivalent pairs" is independent from the 
choice of the linear homeomorphism. From the proof of proposition 4.1.12 it follows 
that for any linear homeomorphism cj> between Cp(X) and Cp(Y) we have that (X, x<a)) 
and (Y, y(al) are tr-equivalent pairs. 

4.1.13 THEOREM: let X and Y be lp-equivalent zero-dimensional separable 
metric spaces and let a, be ordinals with a< co1 a prime component. Then 

(a) x<a,Pl =0 if and only if Y(a, Pl =0, 
(b) x<a. Pl is compact if and only if y(a, Pl is compact, and 
(c) X (a, Pl is locally compact if and only if y(a, Pl is locally compact. 

PROOF: This follows directly from proposition 4.1.12 and theorem 4.1.7. 

4.1.14 COROLLARY: let X and Y be lp-equivalent zero-dimensional separable 
metric spaces and let a< co1 he a prime component. Then 
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(a) x<u) =0 if and only if Y(a) =0, 
(b) x<u) is compact if and only if y(a) is compact, and 
(c) X (u) is locally compact if and only if y(a) is locally compact. 

PROOF: This is an application of theorem 4.1.13: take 13 = 0. 

The strength of theorem 4.1.7 has now become clear. Once we have tp-equivalent 
pairs such as in propositions 4.1-9 and 4.1.12, we immediately get ro1 tp-equivalent pro-
perties. 

Although we were not able to prove proposition 4.1.12 for arbitrary metric spaces, 
we can give for this class of spaces a direct proof of corollary 4.1.14 (a). 

4.1.15 THEOREM: Let X and Y be tp-equivalent metric spaces and let ex< ro1 be a 
prime component. Then x<a) =0 if and only if Y(a) =0. 

PROOF: By theorem 4.1.10 we may assume that ex~ro. Suppose x<u) =0 and 
y(u) ;e 0. Choose y e y(u) and let ( Wn : n e 1N} be an open decreasing base at y. 

CLAIM 1: There is a locally finite open covering ( Vs : s e S} of X such that for each 
s e S, there is 13 < ex such that i's n x<l3> = 0. 

Since x<u) = 0, U = (X ,x<l3J : 13 < ex} is an open covering of X. Let !Vs: s e S) be a 
locally finite open covering of X such that ( i\ : s e S ) refines U. Then for s e S there is 
13 < ex such that Vs cX ,x<l3>. Hence Vs nx<l3> =0. 

Fix 13 as in the claim. Let !Fs: s e S) be a closed covering of X such that for each 
s e S, Fs c Vs. By corollary 1.2.15 (a) and lemma 1.2.10, there are me 1N and 
( s 1 , ••• , Sm ) c S such that 

Let V'=U;=I Vs; and F'=U;=IFs;• Then V' is open, F' is closed and F'cV'. Find a 
copy K of [I, rou] in Wm (lemma 4.1.8). Let L =suppK. Note that suppK cF', hence 
L c V'. Furthermore L is compact. If L = 0, then supp K = 0, hence K = 0. This gives a 
contradiction, so L;e0. Let 
\jl: C o(K) C o(L) and 0: C 0(L) C 0(K) be continuous linear functions such as in 
the proof of proposition 4.1.12. 

CLAIM 2: For each f e C (K), 0(\jl(f)) = f. 



148 On the IP-equivalence of metric spaces 

Suppose there is f e C (K) such that 0(\/f(f )) * f. Then 

so by corollary 1.4.2 (b), 

'1'2 (\/f(f )) I supp K * <j>- 1 (\/f 1 (f )) I supp K. 

This implies that 

\/f(f) = '1'2 (\/f(f )) IL * <j>- 1 ('1'1 (f )) IL = \/f(f ). 
Contradiction, and the claim is proved. 

From the claim we conclude that 'I' is a linear embedding. Since L c V', we have by 
proposition 2.2.4, 

L tP> cL n v~> cL n V ,-,xtP> = 0. 

As in proposition 4.1.12, we arrive at a contradiction. o 

By the Cantor-Bendixson theorem, each scattered separable metric space has scat-
tered height less than ro1• Hence we have the following 

4.1.16 COROLLARY: Let X and Y be ip-equivalent separable metric spaces. Then 
X is scattered if and only if Y is scattered. 

The question arises whether corollary 4.1.16 holds in the class of metric spaces, or 
whether theorem 4.1.15 holds for all prime components. In the proof of theorem 4.1.15 
we used the isomorphical classification of function spaces of countable compact spaces 
(cf. section 2.4). For prime components larger than or equal to ro1 we cannot use this 
result. Moreover, we are not able to use larger compact ordinal intervals (cf. section 
2.6) because they are not metric. There is one case in which we can overcome these 
technical problems. 

4.1.17 THEOREM: Let X and Y help-equivalent metric spaces. Then 
x<coiJ =0 if and only if Y<coi> =0. 

PROOF: The proof is almost the same as the proof of theorem 4.1.15. Replace a in 
the proof of theorem 4.l.15 by ro 1• Copy this proof until the set K is introduced. We 
have V nx<~) = 0 for some < w1• Find a prime component a< w1, such that ~<a. 
Find a copy K of [I, wa] in Wm and let L = supp K. As in theorem 4.1.15 we obtain a 
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contradiction. 

We finish this section by posing the following 

Question: Let X and Y be Ip-equivalent metric spaces. For which ordinals a is 
theorem 4.1.15 true? Is it true for prime components? Is it only true for prime com-
ponents? Is it true for co1 ·2? 

§4.2. An isomorphical classification 

In this section we present an isomorphical classification of function spaces of count-
able metric spaces which have scattered height less than or equal to co. In chapter 2 we 
have considered finite spaces. We will assume in this section that all spaces are 
in.finite. 

Let X be a space. For ordinals a and ~. we define the following: 

X(a, ~)=0 if and only if x<a. ~) =0, 
X (a, ~) = 1 if and only if x<a. ~) is non-empty and compact, and 
X (a, ~) = 2 if and only if x<a. ~) is not compact. 

With this notation, part of the results in section 4.1 can be reformulated as follows: 

(I) Let X and Y be Ip-equivalent spaces zero-dimensional separable metric 
spaces. Then for every pair of ordinals a, with a< co1 a prime component, 
we have X (a,~)= Y (a,~). 

As mentioned above we restrict ourselves in this section to countable metric spaces X 
which have scattered height less than or equal to co. In this class of spaces, (1) takes the 
following form (note that for such X, we have x<ro) = 0, so the ordinals we have to con-
sider here are the finite ordinals): 

(II) Let X and Y be Ip-equivalent countable metric spaces which have scattered 
height less than or equal to co. Then for every n E IN u { 0}, X (0, n) = Y (0, n) 
andX(l, n)=Y(I, 11). 

In this section we will show that the necessary conditions in (II) are also sufficient, i.e., 
if for two infinite countable metric spaces X and Y which have scattered height less than 
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or equal to ro, X (0, n) = Y (0, n) and X (1, n) = Y (1, n) for every n E IN u { 0}, then X and 
Y are tp -equivalent. 

Before we consider function spaces of countable metric spaces, we first deal with 
the countable metric spaces itself. Some of the next lemmas are formulated in a more 
general form in case their proofs do not use special properties of countable metric 
spaces. 

4.2.1 LEMMA: Let X be a space. Then for every n E IN, 
x<O, n) cX(I, n-1) cX(O, n-lJ. 

PROOF: It is easily seen that 

X(O, l) cxO> cX =X(0), 

from which it follows that for every n e IN, 

This completes the proof of this lemma. 

4.2.2 COROLLARY: Let X be a space, such that there is n E IN with X(O, n)=O. 
Let n0 = min {n: X (0, n) =0}. Then n 1 =min {n : X (I, n) =0} is well-defined and 
no = n I or no = n 1 + I. 

PROOF: By lemma 4.2.1, XO.no) cX(O,nol, so that n 1 ~n 0 • Again by lemma 4.2.1, 
X(0,n1+l) x(l, n1) th t < + l c ,so ano-n1 

We can distinguish the spaces X with scattered height less than or equal to ro into 
two types. The first type consists of those X such that for each n E IN, X (0, n) = 2; then 
also X (1, n) = 2 for each n E IN, by lemma 4.2.1. For the other spaces, there is n E IN 
such that X (0, n) = 1 or X (0, n) = O; if X (0, n) = 1, then X (0, n + 1) = 0, so in both cases 
X (0, n) = 0 for some n E IN. For spaces of the second type we have 

4:2.3 LEMMA: Let X be a space such that there ism e IN with X(0, m)=0. Then 
there is n e IN such that X satisfies one of the following conditions: 

(a )n X (0, n) = 0, X (0, n - 1) = 1, and X (1, n - I)= I, 
(b )n X (0, n) = 0, X (0, n - 1) = 2, and X (1, n - 1) = 1, 
(c )n X (0, n) = 0, X (0, n - 1) = 2, and X (I, n - 1) = 2, 

(d)n X ( 1, n) = 0, X (I, n - 1) = 1, and X (0, n) = 1, 
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(e)n X (l, n)=O, X(l, n -1)=2, and X(O, n)= 1, 
(j)n X(I, n)=O,X(I, n-1)=2, andX(0, n)=2, or 
(g) X(0, 1)=0,X(O, 0)=2, andX(l, 0)=0, 

(i.e., Xis an infinite discrete space). 

PROOF: As in corollary 4.2.2, let 

n0 =min{n :X (0, n)=O}, and n 1 =min{n: X (l, n) =0}. 

Then no =n I or no =n 1 + 1. Since X :;t:0, n 0 e IN. 
case I: no = n 1 • 
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In this case X(O,no)=X(l,n 0 )=0, X(O,no-1):;t:0 and X(l,no-1):;t:0. If 
X(O,no-1)=1, then by lemma 4.2.1, X(l,no-1)=1, so X satisfies (a)no· If 

X (0, no -1) = 2, then X satisfies (b )n 0 or (c )no· 

case 2: no =n 1 + I, where n I e IN. 
In this case X(O,n1+l)=X(l,n 1)=0, X(O,n 1):;t:0 and XO,n1-l):;t:O. If 

X(I,n,-1)=1, then by lemma 4.2.1, X(O,n 1)=1, so X satisfies (d)n 1 - If 
X (1, n 1 -1) =2, then X satisfies (e)n 1 or (j)n 1 • 

case 3: n 1 =0, and no= 1. 
Since X (1, 0) = 0, X has no accumulation points, so in this case, X is an infinite 

discrete space. 

At the end of this section we will show that for each case, there exist countable 
metric spaces with scattered height less than or equal to c.o satisfying the corresponding 
conditions. We will now present a special decomposition of the spaces of interest in 
this section. (cf. corollaries 4.2.5, 4.2.7 and 4.2.9). We restrict ourselves to countable 
metric spaces. 

4.2.4 LEMMA: Let X be a countable metric space. Let A and B be closed in X with 
A c B and suppose that A (0, 1) = B (0, I)= I. Then there is a decreasing clopen base 
{Un: n e IN) at n<0, I) in X such that U 1 =X and (Un\ Un+I) nA is not compact for 
every n e IN. 

PROOF: Since n<0, l) is compact, there is a decreasing clopen base lVn: n e IN} at 
n<0, l) in X. We now inductively find the Un. Let U 1 =X and suppose we have chosen 
U 1, ... , Un for some n e IN. Since A (O, l) cn<0, IJ, Un is a neighborhood of A (O, I). 

But then Un nA is not compact, from which it follows that there is an infinite closed 
discrete set E in Un nA. Since B (O, IJ is compact, without loss of generality we may as-
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sume that£ nB(O. I) =0, so there is i > n such that V; cX \£. If we now let Un+I = V;, 

then£ c (Un\ Un+i)nA. 

4.2.5 COROLLARY: Let X be a coumable metric space, and let me IN. 
(a) If X(0, m)=X(l, m)= I, then there is a clopen decreasing base 

!Un: n e IN) at x<O,m) in X, such that U I =X and (Un \Un+1)0, m-1)=2 

for every n e IN. 
(b) If X (I, m) = X (0, m +I)= I, then there is a cl open decreasing base 

{Un: n e IN) at x(l, m) in X, such that U 1 =X and <Un\ Un+I )(0, m)=2Jor 
every n e IN. 

PROOF: This is a direct consequence of lemmas 4.2.1 and 4.2.4. 

4.2.6 LEMMA: Let X be a countable metric space. Let A and B be closed in X with 
A cB. If A and Bare locally compact but not compact, then X can be written as a clo-

pen disjoint union X =U~=1X; such that for each i, X; nA and X; nB are compact and 
non-empty. 

PROOF: Since B is locally compact but not compact and X is zero-dimensional, we 

can write X as a clopen disjoint union X =U:_1K; such that for every i e IN, K; nB is 
compact. Since A cB, for every i e IN, A nK; is compact as well. Since A is not com-
pact we can find a strictly increasing sequence (i11 )ne1N such that for each n e IN, 

AnK;. is not empty. Taking Xn=U)"=;._ 1K; (where io=l) we obtain the desired 
decomposition. 0 

4.2.7 COROLLARY: let X be a countable metric space and let me IN. 
(a) If X (0, m) = 0 and X (I, m - I)= 2, then X can be written as a clopen disjoint 

union X = U~=1A; such that for every i e IN, A;(0, m-1) =A;(l, m-1) = I . 
(b) If X (I, m) = 0 and X (0, m) = 2, then X can be written as a cl open disjoint 

union X = u:_1A; such that for every i e IN, A;(0, m) =Aj(l, m-1) = I. 

PROOF: This a direct consequence of lemmas 4.2. l and 4.2.6. 

4.2.8 LEMMA: Let X be a countable metric space. let A and B be closed in X with 
A cB. If A is compact and non-empty and Bis locally compact but not compact, then X 
can be written as a clopen disjoint union X =X I uX 2 such that 
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(I) X 1 r, B is compact and non-empty and 
(2) X2 nA =0. 
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PROOF: As in the proof of lemma 4.2.6, X can be written as a clopen disjoint union 

X = U~=1K; with for each i e JN, K; nB is compact and non-empty. Since A is compact, 
io 

there is io such that An Ui>;0 K; =0. Now let X 1 = U;=1K; and X2 =U;>;0 K;. 

4.2.9 COROLLARY: Let X be a countable metric space and let m e 1N u { 0}. 
(a) If X(0, m)=2, X(0, m+l)=0 and X(l, m)= I, then X can be written as a 

clopen disjoint union X =X I u X 2 such that X 1 (0, m) = 1 and X 2 (1, m) = 0. 
(b) If X (I, m) =2, X(l, m +I) =0 and X (0, m +I)= 1, then X can be written as a 

clopen disjoint union X =X I u X 2 such that X 1 (1, m) = I and 
X2(0,m+l)=0. 

PROOF: This is a direct consequence of lemmas 4.2.1 and 4.2.8. 

REMARK: Notice that in corollary 4.2.9 (a) we also have that X 1 (I, m) = I be-
cause x<I,m) =X\l,m) uX~l,m)_ Similarly we have X2(0, m+l)=0, X2(0, m)=2 and if 

m:;t0, X 2(1,m-1)=2. In addition, in corollary 4.2.9 (b) we have X 1(0,m+l)=l, 
X2(1, m+l)=0, X2(1, m)=2 andX 2(0, m)=2. 

We return to the subject of function spaces. The following lemma together with the 
"decomposition" lemmas above will play a fundamental role in proving the announced 
isomorphical classification of function spaces of infinite countable metric spaces which 
have scattered height less than or equal to 0>. 

4.2.10 LEMMA: Let X be a countable metric space, A a non-empty compact sub-
space of X, and {Un : n e 1N} a clopen decreasing base at A in X such that U 1 =X. Let 
Y be a countable metric space, B a non-empty compact subspace of Y, and { V n : n e 1N} 
a clopen decreasing base at Bin Y such that V 1 =X. let k e JN. 

neJN, is a linear 
cj>: Cp,A(X) B(Y) by 

$(/) I Vn \ Vn+I =$,,(f IUn \Un+!) and$(/) I B =0. 

Suppose that for every 
k-mapping. Define 

Then <I> is a well-defined linear k-mapping. If moreover each «l>n is a linear k-
homeomorphism, then cl> is a linear k-homeomorphism. 
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PROOF: To prove that <I> is well-defined it suffices to prove that q>(f) is continuous at 
points of B. Let E>O. Since f(A)=O, there is an open neighborhood W of A with 

f (W)c(-~. ~). There is n0 e IN such that A cU110 c W, so 
k k 

Then it easily follows by k-linearity of <l>n for every n, that q>(f )(Vn 0 ) c (-E, E), so that 

q>(f) is continuous at points of B. 
To prove continuity of <I>, it suffices to prove that <I> is continuous at 0. Let P c Y be 

finite and E>O. For each nelN, let Pn=Pn(Vn\Vn+ 1). Since Pis finite, there is 
n0 e IN such that for each n > n0 , Pn =0. Let n $.n 0 • Since <l>n is continuous, there are a 
finite Q,. c Un\ Un+I and 011 > 0 such that 

Let Q = u:~1 Q,. and o = min { O; : 1 $. i $. n O). Then it is easily seen that 

<I>( <0, Q, O>) c <0, P, £>. 

The k-linearity of <I> is an easy exercise. 
Now suppose each <l>n is a linear k-homeomorphism. Define 'lj/: CP, 8 (Y) CP, A (X) 

by 

'JI(/) I Un \Un+I =qi;1(f I V11 \ Vn+1) and 'JI(/) IA =0. 

Then 'JI is a well-defined linear k-mapping which is easily seen to be equal to <1>- 1, 

hence <I> is a linear k-homeomorphism. 

We are now in a position to prove an isomorphical classification of function spaces 
of countable metric spaces which have scattered height less than or equal to oo. First we 
consider the case of countable metric spaces which have scattered height strictly less 
than oo. The proof will be an inductive one. In the following two lemmas we deal with 
spaces at a "low level". The space Tin lemma 4.2.12 is the one defined in section 3.3. 

4.2.11 LEMMA: Let q e IN. There is kq e IN such that if X and Y are irifmite count-

able compact spaces with K(X), K(Y) $.q, then Cp(X) "-2 Cp(Y). 

PROOF: Let X be an infinite countable compact metric space with K(X) :5 q. By 
theorem 2.2.8, there are 1 :5 m :5 q and n e IN such that X"' [ 1, wm ·n ]. Let a= wm and 
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A=X(ml. Notice that A= (wm·i: l '5.i-5.n}. Then 

Cp(X)'l:.cp. a([I, wm])xCp(A) (corollaries 2.2.10 and 2.3.4) 

2.cp,a(AEB[l,wm]) (lemma2.3.6) 

2.cp. a([l, wm]) (lemma 2.3.5) 

'::.cp([l, wm]) (lemma 2.3.9). 
4 So that Cp(X)-Cp([l, wm]). 

To finish the lemma it suffices to prove the following 

CLAIM: There is I e IN such that for every 1 $ r -5. q we have 

Cp([l,w'])!.cp([l, w]). 

Let 1 Sr Sq. By theorem 2.4.7, there is a linear homeomorphism 
q>: Cp([l,w']) w]). Then by corollary 1.2.21, q>: Co([l,w']) w]) is 
also a linear homeomorphism. Since these two function spaces are Banach spaces, 
there is I (r) e IN such that for every J e C 0((1, w']) we have 

- 1-lljll < liq>(/ )II < I (r )11/ll. 
I (r) 

Then I = max {I (r) : r $ q ) is as required. a 

From now on we fix for each q e IN, kq as in lemma 4.2.11. 

4.2.12 LEMMA: let q e IN. There is lq '?:.kq such that if X and Y are countable 
metric spaces with K(X), K(Y)-5. q, X (0, 1) = Y (0, 1) = 1 and X (1, 0) = Y (1, 0) = 1, then 

lq 
Cp(X)-Cp(Y). 

PROOF: Let X be a countable metric space with K(X) -5.q and X (0, 1) =X (1, 0) = 1. Let 
A =x<1>. Then by assumption A is compact. Since XI A is a perfect image of X, and Xis 
not locally compact, we have that X I A is a non-locally compact countable metric 
space with exactly one non-isolated point. It then easily follows that XI A is 
homeomorphic to the space T. Then by corollary 2.3.4, 

If A is finite, then T EBA is homeomorphic to T, so Cp(X) ?:.cp, 00 (T). Now suppose that 

A is infinite. We have by lemma 4.2.11, Cp(A) Cp([l, w]). Note that by the above ar-
2 4·k ) gument Cp(T)-CP,°"(T), so that Cp(X) -qCp(TEB[l,w]). Since (TEB[l,w])<1 is 
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2 finite, the same argument gives Cp(TEB[l,co])-CP,""(T). We conclude that 

Cp(X) B!q Cp(T). Then lq = (8·kq)2 is as 

From now on we fix for each q E IN, lq as in lemma 4.2.12. 
The isomorphical classification for countable metric spaces with scattered height 

less than co will be given after the following lemma, in which all the tools developed in 
this section are used. 

4.2.13 LEMMA: For every q E IN, there is r q E IN, such that if X and Y are infinite 

countable metric spaces with K(X):;;; q, K(Y) :;;;q and for every n E IN, X (0, n) = Y(O, n), 

and X (1, n) = Y (1, n), then Cµ(X) ':! Cp(Y). 

PROOF: Let q E IN and for every m $.q, let Sm =4m·lq. Let X and Y be infinite count-
able metric spaces with K(X):;;;q, K(Y)$.q and for every n E IN, X(O, n)=Y(O, n), and 
X (1, n) = Y (1, n). Since Xlq) = y(q) =0, X (0, q) = Y(O, q) =0, hence X and Y both satis-
fy the condition in lemma 4.2.3. If X and Y do not satisfy (g ), find m E IN such that X 
and Y both satisfy one of the cases (a)m through (/)m. Notice that I $.m $.q. We will 

s 
prove that Cµ(X) Cp(Y) by induction on m. Then rq =sq is as required. The induc-
tive proof is organized as follows: We prove case (a)m form= 1 and form> I we use 
(c )m-1 · The proof of case (b )m makes use of case (a)m and for m > I it makes use of 
case (/)m-l · We prove case (c)m using case (a)m. We prove case (d)m form= 1 and 
form> I we use (/)m-1 For case (e)m we use (d)m and if m > I we use (c)m. Finally 
in case (f)m we use (d)m. 

case (a)m: X (0, m) = Y (0, m) =0, X (0, m-1) = Y(O, m-1) = 1, and 
X(l, m-1)= Y(l, m-1)= 1. 

Notice that in this case we have X(I, m)= Y(l, m)=O. Form= I we have that X 

and Y are infinite countable compact spaces, so by lemma 4.2.11, CpCX) Cp(Y). Note 
that kq:;;; lq :;;;s 1. Form> I, let A =X(O, m-l) and B = y<O. m-IJ. By proposition 2.3.2, 

2 2 
Cµ(X)-Cp. A (X) x Cµ(A) and Cp(Y)-Cp. 8 (Y) x Cp(B). (1) 

Define Z 1 =X EBA and Z 2 = Y EBB. Notice that since m > I, 

Z\0,m-l) =X(O,m-l),z\l,m-1) =X(l,m-1), 

zfm-1) =Y(O,m-1),andZ~l,m-1) =Y(l,m-l)_ 
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Let C =Z1°· m-I) and D =Z~o. m-l). Then by (1) and by lemma 2.3.6, 
2 

Cp(X):::. Cp, c(Z 1) and Cp(Y)- Cp, D(Z2), 

By corollary 4.2.5 (a), there are clopen decreasing bases { Un : n E IN} and 
IVn: n E IN} at C and D, respectively such that U 1 =Z 1, V 1 =Z2, 

Notice that then also 

It is easily seen that 

Then (c)m-I gives Cp(Un \ Un+I )°'~ 1 Cµ<Vn \ Vn+I) for every n E IN, whence by lemma 

4.2.10, Cp, c(Z 1) s~i Cµ, D(Z2 ). In conclusion we have Cp(X) Cp(Y). This completes 
the proof of case (a )m. 

case (b)m: X (0, m) = Y(0, m) =0, (0, m-1) = Y(0, m-1) =2, and 
X(l, m-l)=Y(l, m-1)= I. 

Again in this case we have X(l,m)=Y(l,m)=0. By corollary 4.2.9 (a), X and Y 
can be written as clopen disjoint unions, X=AuB and Y=CuD such that 
A (0, m-1) =C(0, m-1) = I and B (I, m-1) =D (I, m-1) =0. By the remark following 

Sm corollary 4.2.9 we now have by case (a)m, Cµ(A) - Cp(C) and form> I, by (f)m-1, 

Cp(B) s'~1 Cp(D). If m = 1 then Band Dare infinite discrete and so Cp(B)}_Cp(D). 

With lemma 2.3.7 it now follows that Cp(X) :'.'.' Cp(Y). This completes the proof of case 
(b )m. 

case (c)m: X(0, m)=Y(0, m)=0, X(0, m-l)=Y(0, m-1)=2, and 
X(l, m-l)=Y(l, m-1)=2. 

Again X (1, m) = Y(l, m) =0. We have by corollary 4.2.7 (a), X and Y can be written 

as clopen disjoint unions, X = U~=l Ai and Y = U~=l Bi such that for each i e IN, 
Ai(0, m-l)=Bi(0, m-l)=Ai(l, m-l)=Bi(l, m-1)= I. By case (a)m, we then have 

Cp(Ai) 5-!:: Cp(Bi), so that by lemma 2.3.7, Cp(X) :'.'.' Cp(Y). This completes the proof of 
case (c )m. 
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case (d)m: X(I, m)= Y(I, m)=0, X(l, m-I)=Y(I, m-1)= 1, and 
X (0, m) = Y (0, m) = 1. 

The proof of this case is almost the same as the proof of case (a)m. Instead of (c )m-1 

we use (f)m-I, instead of lemma 4.2.11, we use lemma 4.2.12 and instead of corollary 
4.2.5 (a), we use corollary 4.2.5 (b). 

case (e)m: X(I, m)=Y(l, m)=0,X(I, m-l)=Y(I, m-1)=2, and 
X (0, m) = Y (0, m) = 1. 

The proof is almost the same as the proof of case (b )m. Instead of corollary 4.2.9 (a), 
we use corollary 4.2.9 (b), instead of (a)m we use (d)m and instead of (j)m-I we use 
(c)m. 

case <J)m: X (1, m) = Y(I, m) =0, X (I, m-1) = Y(I, m-1) =2, and 
X(0, m) = Y(0, m)=2. 

The proof is almost the same as the proof of case (c )m- Instead of corollary 4.2.7 (a), 
we use corollary 4.2.7 (b), and instead of(a)m we use (d)m-

case (g ): X and Y are infinite discrete spaces. 

Since X and Y are countable we have that X and Y are both homeomomorphic to JN. 
Now apply lemma 2.3.5. 

This completes the proof of this lemma. 0 

4.2.14 THEOREM: let X and Y be infinite countable metric spaces with 
JC(X), JC(Y) < w such that for every n e JN, X (0, 11) = Y (0, n) and X (I, n) = Y (I, n ). Then 
Cp(X)-Cp(Y). 

PROOF: Let q =max(K(X), JC(Y)) and apply lemma 4.2.13. o 

We have completed the case of countable metric spaces with scattered height less 
than c.o, so from now on we consider spaces with scattered height equal to w. So let X 
be a countable metric space with JC(X) = w. As mentioned in the beginning of this sec-
tion, there are two cases: 

(a) there is n e IN, such that X (0, n) =0, 
(b) for every n e IN, X(0, n)=2. 

Note that if a space X satisfies condition (b), then JC(X) :2'. w. 
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We will first deal with spaces for which case (a) holds. We need another decomposi-
tion lemma. 

4.2.15 LEMMA: Let X and Y be countable metric spaces such that K(X) = ro, 
lC(Y) ~ro. X (0, n) = Y(0, n) and X(l, n) = Y(l, n) for every n e 1N v {0} and such that 
case (a) holds for X. Then X and Y can be written as c/open disjoint unions, 

X=U~=1X; and Y=U~=1Y; such that 1C(X;),1C(Y;)<ro and for every i,neJN, 
X;(O, n)= Y;(0, n) and X;(l, n)= Y;(l, n). 

PROOF: Since X satisfies (a), and lC(X) = ro, there is by lemma 4.2.3, k e 1N such that X 
and Y both satisfy one of the cases (ah through (/)k. We prove the lemma by induction 
on k and the inductive proof is organized as the inductive proof in lemma 4.2.13. 

case (a)m: X(O, m)=Y(O, m)=O, X(O, m-l)=Y(O, m-1)= 1, and 
X(l, m-l)=Y(l, m-1)= 1. 

Since K(X) = ro, X is not compact. This implies m > 1. By corollary 4.2.5 (a), there 
are clopen decreasing bases {Un: n e 1N} and { Vn: n e IN} at x<0, m-l) and y(O, m-l) 

respectively, such that U 1 =X and V 1 = Y, 

(Un \Un+1)(l, m-2)=2 and Wn \ Vn+dO, m-2)=2. 

CLAIM: There is I e 1N such that 1C(U1) < ro. 

Since K(X)=ro, U= {X ,x<n>: n e JN} is an open cover of X without finite subcover. 
Since X is zero-dimensional, there is a disjoint clopen refinement {A;: i e JN} of U. 
Since x<0, m-l) is compact, there is n such that x<0, m-l) C u7=1A;. There is/ E 1N such 

that U1 c u7=1A;, and this I satisfies the claim. 

Without loss of generality we may assume that also 1C(V1) < ro. Now let X 1 = U1 and 
Y 1 = v,. Notice that 

X 1 (0, n)=Y 1 (0, n) and X 1 (1, n)= Y 1 (1, n) for every n e IN, 
(X\ U1)(1, m-2)=(Y\ V1)(1, m-2)=2 and 
(X \ U1)(0, m-1)= (Y\ V1)(0, m-1)=0. 

So by (c)m-1 we have that X and Y can be written as clopen disjoint unions, 

X\U1=U~=2X; and Y\Vk=U~=2Y; such that for every i2!2 and neJN, 
X;(O, n)= Y;(0, n) andX;(l, n)= Y;(l, n) and the lemma has been proved in this case. 

case (b)m: X(O, m)=Y(O, m)=O, X (0, m-l)=Y(O, m-1)=2, and 
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X(l, m-1)= Y(I, m-1)= I. 

By corollary 4.2.9 (a), X and Y can be written as clopen disjoint unions X =A uB 
and Y=CuD such that A(0,m-l)=C(0,m-1)=1 and B(l,m-I)=D(l,m-1)=0. 
By the remark following corollary 4.2.9 we now have in cases of scattered height w by 
case (a)m or by case (j),,,_ 1, the desired decomposition of X and Y. 

case (c)m: X(0, m) = Y(0, m) =0, X (0, m-1) = Y(0, m-1) =2, and 
X ( 1, m - 1) = Y (I , m -1) = 2. 

We have by corollary 4.2.7 (a), X and Y are clopen disjoint unions X=U~=1A, and 

Y=U~=1B, such that A,(0, m-l)=Bi(0, m-l)=A,(l, m-l)=B;(I, m-1)= I. By case 
(a)m (applied in cases where Ai or B; has scattered height w), we have the desired 
decomposition of X and Y. 

case (d)m: X(l, m)=Y(I, m)=0,X(l, m-l)=Y(l, m-1)= I, and 
X(0, m) = Y(0, m) = I. 

The proof of this case is almost the same as the proof of case (a )m. Instead of corol-
lary 4.2.5 (a), we use corollary 4.2.5 (b), and instead of (c)m-l we use lf>m-1 · 

case (e)m: X(l, m)=Y(I, m)=0,X(l, m-l)=Y(l, m-1)=2, and 
X(0, m) = Y(0, m) = 1. 

The proof is almost the same as the proof of case (b >m. Instead of corollary 4.2.9 (a), 
we use corollary 4.2.9 (b), instead of (a)m we use (d)m and instead of (j)m-l we use 
(C)m, 

case (j)m: X (1, m) = Y(l, m) =0, X (1, m-1) = Y (I, m-1) =2, and 
X(0, m) = Y(O, m) =2. 

The proof is almost the same as the proof of case (c)m. Instead of corollary 4.2.7 (a), 
we use corollary 4.2.7 (b) and instead of(a)m we use (d)m. 

This completes the proof of this lemma. 

4.2.16 THEOREM: Let X and Y be countable metric spaces such that K(X) = w, 
K(Y)$;W and for every n E INu {0}, X(0, n)=Y(O, n) and X(l, n)=Y(l, n). If Xis a 
space satisfying (a), then X and Y are /,P-equivalent. 

PROOF: This follows directly from theorem 4.2.14, lemmas 2.3.7 and 4.2.15. 0 
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This theorem completes the case for spaces satisfying (a). So now we only have to 
consider spaces satisfying (b). Again a decomposition of these spaces is needed. This 
will be given in a claim in the following: 

4,2,17 THEOREM: Let X and Y be countable metric spaces such that 
K(X) = K(Y) = ro and both satisfying (b). Then X and Y are tp-equivalent. 

PROOF: We begin with the following: 

CLAIM: We can write X = U~=l Xi and Y = U~=l Yi as clopen disjoint unions, such that 
there are sequences (ni)ielN and (mi)ielN such that ni+l<mi, mi+l<ni+l• 
Xi(l, ni):;t0, Xi(l, ni+1)=0, Yi(l, m;) :;t0 and Yi(l, m;+1) =0. 

It is easily seen that {X \X(l, n) : n e IN} is an open cover of X without finite subcov-
er. Since X is countable, there is a clopen disjoint refinement {Ai : i e IN} of this cover. 
We may assume that there exists a strictly increasing sequence (ki)ielN of natural 
numbers such that for each i e IN, Ai(l, ki) :;t0 and Ai(l, ki + 1) =0 (note that X satisfies 
condition (b), so take unions of the A/s). In the same way Y can be written as a clopen 

disjoint union Y=U~=IBi such that there are / 1 </2 · ·· with Bi(l,/i):;t0 and 
Bi(l,/i+l)=0 for each ielN. Now let (ni)ielN and (mi)ielN be subsequences of 
(ki)i e IN and (li)i. IN• respectively, such that n; + 1 <mi, mi+ 1 < ni+l · By letting Xi be a 
appropriate finite union of the A J's and the same for the Yi' s, we are done. 

Let Z = X 1 $ Y 1 $ X 2 $ Y 2 $ · · · , 
Because ni + 1 < mi, (Xi$ Yi)(0, n)= Yi(0, n) and (Xi$ Yi)(l, n)= Y;(l, n) for every 
n e Nu {0}. Both Xi $Yi and Yi satisfy (a), so by theorem 4.2.14 or theorem 4.2.16, 
Cp(X; $ Yi)-Cp(Yi), so that Cp(Z)-Cp(Y). By interchanging the role of X and Y we 
also have Cp(Z)-Cp(X). We conclude that Cp(X)-Cp(Y). 

Since we have considered all possible cases we can now formally state the result an-
nounced at the beginning of this section. 

4.2.18 THEOREM: Let X and Y be infinite countable metric spaces, such that 
K(X), K(Y) S ro. Then X and Y are tp-equivalent if and only if for every n e IN v { 0}, 
X (0, n) = Y(0, n) and X (1, n) = Y (1, n). 

PROOF: This follows immediately from theorems 4.2.14, 4.2.16, 4.2.17 and 4.l.13. 
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The question naturally arises whether theorem 4.2. I 8 can be generalized to all 
countable metric spaces. One is tempted to conjecture the following: 

Let X and Y be countable metric spaces. Then X and Y are LP-equivalent if and 
only if for every prime component a and ordinal j3 we have X (a, j3) = Y(a, j3). 

In section 4.3 we will show that this conjecture is false. 

In this section we saw that an infinite countable metric space X, with scattered 
height less than or equal to m, satisfies one of the conditions in lemma 4.2.3 or for 
every n e IN, X(0, n)=X(l, n)=2. The question remains whether each of the con-
sidered classes is non-empty. We will prove that in each case there are m-many spaces 
satisfying the given conditions (except for case (g) in lemma 4.2.3 of course). 

For convenience, for every n e IN define Sn= [I, wn]. Let X be a space. We define 
T(X) to be the space obtained from T by replacing each isolated point of T by a copy of 
X. Each copy of X will then be clopen in T(X). Inductively we define 
Tk(X)=T(Tk-l(X)) fork> l, and let r 0 (X)=X. Similarly Sk(X) will be the space ob-
tained from Sk by replacing each isolated point of Sk by a copy of X. 

4.2.19 LEMMA: Let X be a non-discrete space. Then for every n e IN and 
me IN v {OJ, Sn(X)(0, m) =X (0, m) and Sn(X)(l, m) =X (I, m). 

PROOF: Since Xis non-empty we have for every n e IN, (Sn(X))O) =Sn(X(ll). Since 
X is non-discrete, we have 

Sn(X)(0, 0) =X (0, 0) and Sn(X)(l, 0) =X (l, 0). 

Since Sn is compact, we also have for every me IN, 

Sn(X)(0, m)=X(0, m) and Sn(X)(l, m)=X(l, m). 

If X is a scattered space we have for n ~m that S11 (X) and Sm(X) are not 
homeomorphic. So this lemma implies that we only have to give one countable metric 
space for each of the cases mentioned above, since the lemma then immediately gives 
m-many. For every n e IN define X n = T" -I (T), and Y n = T 11 -1<s 1 ). Let X O be any one-
point space. 

4.2.20 PROPOSITION: For every n e IN, we have 
(a) Y11 satisfies the conditions in lemma 4.23 (a)11 , 
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(b) Yn EB (Xn-1 X IN) satisfies the conditions in lemma 4.2 .3 (b)n, 
(c) Yn x IN satisfies the conditions in lemma 4.2.3 (c )n, 
(d) Xn satisfies the conditions in lemma 4.2 .3 (d)n, 
(e) Xn EB (Yn X IN) satisfies the conditions in lemma 4.2 .3 (e )n, 
(j) Xn x IN satisfies the conditions in lemma 4.2 .3 (j)n, and 
(g) Y = EB;;'=I Yn satisfies Y (0, m) = Y (1, m) = 2for each me IN. 

PROOF: We start this proof with the following 
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CLAIM: Let X be a non-discrete space, and let m e IN u [ 0}. If X (0, m) = 1, then 
T(X)(0, m + 1)= 1, and if X(l, m)= 1, then T(X)(l, m + 1)= 1. 

Notice that since X is non-empty, T(X)<O, m) = T(X(O, ml). Furthermore because 
x<0, m) is compact and non-empty, T (X)<0, m+l) contains only one point, hence 
T(X)(0, m + 1) = I. Since X is a non-discrete space, T(X)<'l =T(X(I)), so the second 
part follows from the fist part. This proves the claim. 

Since Y 1 = S 1 satisfies the conditions in lemma 4.2.3 (a) 1, we have by the claim that 
Yn satisfies the conditions in lemma 4.2.3 (a)n. We can prove (d) similarly. Case (c) 
follows easily from (a) and case .(f) easily follows from (d). It is easily seen that 
Y I EB (X O x IN) satisfies the conditions in lemma 4.2.3 (b) 1• For n > 1, case (b) follows 
from (a) and (f). Case (e) is a combination of (d) and (c). Finally (g) follows from (d) 
since for each n > 2, Yn(0, n -2)=Yn(l, n-2)=2. 

Of course the spaces constructed above are not the only possible ones. In fact one 
can replace isolated points in T by other countable metric spaces to obtain more exam-
ples. 

§4.3. More lp •equivalent properties of metric spaces 

The ip-equivalent pairs found in section 4.1 do not provide a complete isomorphical 
classification for the function spaces Cp(X), with X countable and metric. In this sec-
tion we present two different types of ip-equivalent properties which show that an iso-
morphical classification for these function spaces must be more complicated than the 
one derived in section 4.2, where we dealt with countable metric spaces of scattered 
height less than or equal to ro. 
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Let a~ w be a countable prime component and let P be a countable ordinal. Recall 
from section 4.1 that for any space X, 

x<a. 13> = (')X(Y, 13l. 
y<a 

Let a~ w be a countable prime component and let y, P be countable ordinals. By 
x<a. 13, r> we denote the set X [yl with respect to the pair (X, x«a. 13>). Notice that if y 
is a successor, say y= o + 1, then we have x«a, 13, r> = (X<a, 13, 0>)<0, I). 

The numbers X <a, p, r,t, are defined for ordinals a, P and y similarly to the 
numbers X(a, P) as follows: 

X «a, p, r,t, = 0 if and only if x«a. 13, r> = 0, 
X <a, p, r,t, = 1 if and only if x«a. 13, Y> is non-empty and compact, and 
X <a, p, r,t, = 2 if and only if x<a, 13, r> is not compact. 

For a subset A of a space X we will denote by C o,A (X) the subspace 
{JE C(X) :f (A)= {0)) ofCo(X). 

4.3.1 PROPOSITION: let X and Y be zero-dimensional separable metric ip-

equivalent spaces and a~ w a countable prime component. Then (X, x«a, I>) and 
(Y, y<a, I>) are iµ-equivalent pairs. 

PROOF: Let qi: Cµ(X) Cp(Y) be a linear homeomorphism. It suffices to prove that 
(X, x«a, I>) is (<I>, 0)-relative to (Y, y«a, 1>). Let U and V be open subsets of X and W 

an open subset of Y, such that 

(supp U) n W = 0, and 
suppWcUuV, 

Suppose W n y«a. I> ;c0 and V nx<a, I> =0. 
Let (Y,,)neIN be a strictly increasing sequence of ordinals such that y,, a (n 00). 

Let y E W ,.y«a. I> and let {W,, In E IN) be a clopen decreasing base at yin W. For 
each n E IN, y E w~Yn,ll, hence we may assume that for each n E IN we can find a closed 
copy of [ 1, wYn] X IN in W,, \ W11 +t · By lemma 4.1 .4, there is a discrete clopen family 

{A;: i E IN) such that V c u;:1 A; and such that for every i E IN, there is Y; < a with 
A)Y;, I)= 0. By corollary 1.2.15 (a) and lemma 1.2.10, there is p E IN such that 

supp WP n UA; =0. 
1>p 

Let A =Uf=1A;. Then there is y< a such that A ry.ll =0. By corollary 4.1.5, there is a 
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discrete clopen family { B; : i E IN} such that A = U ;~= 1 B; and such that for every i E IN, 
B}Yl is compact. By corollary 1.2.15 (a) and lemma 1.2.10 there is k > p such that 

supp wk n UB; =0. 
i>k 

Let B =U:=1B;. Then B("f) is compact. We now have 

(supp U) n Wk= 0, and 
supp wk Cu uB, 

Since wfl -:/= 0, we have by proposition 4.1.12, that B (a) -:/= 0, so that B <Yl -:/= 0. This im-

plies that supp B (y) is a non-empty compactum in Y. 

Since supp B <Yl is compact, this implies that there exists a closed copy Ln of [ 1, o/"] 
in W n such that supp B (y) n L11 = 0. If supp L11 n B = 0, then supp L11 c U hence by pro-
position 1.4.3, l 11 c supp supp l 11 c supp U. This implies L 11 = 0, contradiction. Hence 
suppl11 nB -:t=0. Let 

M =(suppB<Y) n Wk) u {y}, 

la=Un>klnu{y). 

L=l 0 uM, and 
K=(suppL nB)uB<Y). 

By lemma 4.1.11, there is a continuous linear function rt 1: C o(L) C 0 (Y) such that 
for each/EC (L), 

ll1 (/)IL= f and ll1 (/)(Y \Wk)= (0). 

Again by lemma 4.1.11, there is a continuous linear function rt2: C o(K) C o(X) such 
that for each/ E C (K), 

Define 
rtz(/) IK =/and T12(/)(X\B)= {0}. 

0: C o,M(l) C o,B<ml (K) by 0(f)=cj>-1 (1"11 (/)) I K, and 
'If: C o(K) C o(L) by 'If(/)= cj>(T12(/)) IL. 

Let / E C o,M(l). Then Tl 1 (/)(Y \Wk)= (0}. Since suppB (Yl n Wk c M, we have that 
Tli(/)(suppB<Yl)= (0). So by corollary 1.4.2, cj>- 1(rt 1(/))(B(Yl)= (0), hence 
0(/)(B(Y))= {0}. Now it is easily seen that both 0 and 'I' are well-defined continuous 
linear functions. 

CLAIM: 0 is a linear embedding. 
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It suffices to prove that for jE Co,M(L), we have \j/(0(f))=f. Suppose to the con-
trary that for some f E C o.M(L ), we have \j/(0(! )) * f. This implies that 

Then by corollary 1.4.2, 

Now T1 2(0(f))=O on X \B, and Tl, (f )=O on Y\ Wk, Since suppU c Y\ Wk, we have by 
corollary 1.4.2 that qi-1(TJ 1 (f )) sO on U. Since suppl c U uB, we have 

Hence 0(1) * 0(1). Contradiction. This proves the claim. 

Since La nM = {y) it follows that Co,M(L) is linearly homeomorphic to 
Co,{y}(La), Note that La==[!, coa]. By lemma 2.3.9 and remark 2.3.10, Co,{yJ(La) is 
linearly homeomorphic to C 0(La), By lemma 2.2.9, the space B/B("f) obtained from B 
by identifying B(Y) to a single point a has scattered height y+ 1. Let Z =KIB(y). Then 
K(Z) $y+ I. so there are J3$y and m E JN such that Z == [l, coP·m ]. By lemma 2.3.3 and 
remark 2.3.10, C o.{aJ (Z) is linearly homeomorphic to C 0,8 <1> (K). Furthermore by lem-
ma 2.3.9 and remark 2.3.10, Co,[aJ(Z) is linearly homeomorphic to C 0(Z). Now the 
claim implies that we have a linear embedding from C o(La) to C o(Z), or equivalently 
a linear embedding from C 0 [1, coal to C 0 [1, co"f]. Since y< a we have a contradiction 
by lemma 2.6.7. 

4.3.2 COROLLARY: Let X and Y be lp-equivalent zero-dimensional separable 
metric spaces, let a;?:co be a countable prime component and let y be a countable ordi-
nal. Then 

(a) x<a, l,y,> =0 if and only ifY<.a, I,"(> =0, 
(b) x<a, 1, r> is compact if and only ifY<a, 1• r> is compact, and 
(c) x<a, 1. 'Y> is locally compact if and only if y<a, 1• r> is locally compact. 

PROOF: This follows directly from proposition 4.3.1 and theorem 4.1.7. 

We will now give an example of two countable metric metric spaces X and Y such 
that for every pair of ordinals a, J3 with a a countable prime component, 
X ( a, 13) = Y ( a, 13 ), and such that X and Y are not lp -equivalent. 

Let X be the space obtained from T by replacing each (i, j) ET by [l, coi] (i, j E JN) 
and let Y=T([l, co])EB[l, cow] (for definitions see section 4.2). Let p be any point. 
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Then 

x<I) ==X and y(I) == T EB [1, co(O], 
x<O, I)== {p} and y(O, I)== {p}, 

xo, I)== {p} and y(l, I)== {p}, and 
x<w) == {pl and y<w) ==(pl. 
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So for every pair of ordinals a, p with a a countable prime component, we have 
X (a, P) = Y (a, P). However by corollary 4.3.2, X and Y are not LP-equivalent since 

x<w, I>== {pl and y«w, I> =0. 

Note that the scattered height of X and Y is co+ 1, so a classification such as in section 
4.2 does not hold when we consider countable metric spaces with scattered height one 
higher than co. In this example only a=0, a= 1, a=co, P=0 and P= 1 are necessary. It 
is possible to build more complex examples in which higher ordinals are involved. 

Question 1: Let a~co be a countable prime component, and let X and Y be lp-
equivalent zero-dimensional separable metric spaces. For which ordinals p do we have 
that (X, x«a., ~>) and (Y, y«a., ~>) are t,,-equivalent pairs? 

By propositions 4.1.12 and 4.3.1 we have a positive answer to this question for P=0 
and P = I. We conjecture that this question has a positive answer for all ordinals p. 

By corollary 4.3.2 and question 1 one could think that for two countable metric 
spaces X and Y which satisfy X (a, P)= Y (a, P) and X «a, p, y»= Y«a, p, y», for all 
ordinals a, Pandy with a a prime component, we have that X and Y are LP-equivalent. 
In the sequel we will give an example which shows that this is not the case. We first 
need a new notion which will be used in proposition 4.3.7. We present it in a general 
setting since it seems to be interesting in itself. 

Let X and Y be spaces and let <p: Cp(X) Cp(Y) be a linear function. Let A be a 
non-empty closed subset of X and U a neighborhood of A in X. Let B be a non-empty 
closed subset of Y and Va neighborhood of B in Y. Finally let me IN. We say that the 
triple (U, V, m) is relatively bounded with respect to the triple (A, B, <p) whenever for 
each g e C (X) satisfying 

(a) g((X\U)uA)= (0), 
(b) g (U) c (-1 Im, 1 Im), and 
(c) cp(g)(B) = (0), 

we have 
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(d) qi(g)(V) c(-1, 1). 

4.3.3 LEMMA: Let X and Y be spaces and let qi: Cp(X) be a continuous 
linear function. Let A be a non-empty closed subset of X and U a neighborhood of A in 
X. Let B be a non-empty closed subset of Y and Va neighborhood of B in Y. Let m e IN. 
Suppose (U, V, m) is relatively bounded with respect to (A, B, qi). If U I is a neighbor-
hood of A such that U I c U, V I is a neighborhood of B such that V I c V and k ?.m, 
then ( U 1, V 1, k) is also relatively bounded with respect to (A, B, qi). 

PROOF: Let geC(X) be such that g((X\U 1)uA)={0), g(U 1)c(-1!k, Ilk), and 
qi(g)(B)={O}. Then obviously g((X\U)uA)={O). For ze U\U 1, g(z)=O, hence 
g (U) c (-1/m, 1/m). So qi(g)(V) c (-1, 1), hence qi(g )(V 1) c (-1, 1). 

4.3.4 LEMMA: Let X and Y be metric spaces and let qi: Cp(X) Cp(Y) be a con-
tinuous linear function. Let A he a non-empty compact subset of X and let B be a non-
empty compact subset of Y. Then there are a neighborhood U of A in X, a neighborhood 
V of B in Y and me IN such that (U, V, m) is relatively bounded with respect to 
(A, B, qi). 

PROOF: Suppose the lemma is false. Let {Un) ne IN be an open base at A in X such that 

for each n e IN, Un+I c Un. Let {Vn lnelN be an open decreasing base at Bin Y. By in-
duction we construct (ki:ieIN}cIN, {gi:ieIN}cC(X) and {yi:ieIN}cY such 
that 

and for every i e IN, 

(2) g;((X \ Uk) uA) = (0}, 

(3) for every j 5. i, gj(Uk ) c (-~, -A-), 
1 l .. l 

(4) <)>(gi)(B)= (0), 

(5) Yi e Vk; and I qi(g; )(Yi) I ?. 1, 

(6) for every j < i, q>(g)(Vk ) c (--.1-, -.1-), and 
I 2(, - I) 2(1 - I) 

(7) for every j < i, q>(gi )(yj) =0. 

Let k1=l. By assumption there is g 1eC(X) such that g1((X\Uk 1)uA)={O}, 

g,(Uk1)c(-[, 1), <)>(g,)(B)= (OJ and qi(g,)(Vk1 )ct. (-1, 1). Let YI E vk1 be such that 
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I <j>(g I )(y I ) I 2! 1. 
Let m 2! l and suppose we found k 1, ... , km, g 1, ... , gm and y 1, ... , Ym · For each 

j5.m we have g/A)=O and <j>(g 1)(B)={O}. By continuity of g 1, ... ,gm, there is 
km+I > km such that 

(8) for each j $, m, g1(U k 1 ) c (--1- 2 , - 1- 2 ), 
m+ (m+l) (m+l) 

(9) ukm+l nsupp {Y1, ... 'Yml cA, and 

(10) for eachj 5.m, <j>(g1-)(Vk 1 )c(--1-, -21 ). 
m+ 2m m 

Again by assumption there is gm+I EC (X) such that gm+I ((X \ U km+i) uA) = (0 }, 

<j>(gm+1)(B)= (0) and <j>(gm+1)(Vkm+l)ct (-1, l). Let Ym+I E vkm+I be such that 
I <j>(gm+l )(Ym+l) I 2! l. To complete the inductive construction we have to verify (7) for 
i=m+l. Since gm+1(supp(y1))={0) for j5.m, we have by corollary 1.4.2, 
<j>(gm + 1 )(y i) = 0. This completes the inductive construction. 

Now let g =I:1=1g;. We will show that g E C(X). For i E IN and z {i)ki+l' we have by 
(2), g(z)=I:)=Jgj(z). So g IX\A is well-defined and continuous. It remains to prove 
that g is continuous at points of A. Since g (A)= 0 this follows from the fact that for 
every i E IN, g (Uk) c (-1 / i, l / i). Indeed let z E Uk; \A. Then there is j 2! i such that 

z E Uk1 \ U kJ+i. Then by (2), g (z) = I:{=1gj(z), and hence by (3), 

j 1 I 
lg(z)I 5. I: lgk(z)I <j·--:i:-5.-:-. 

k=I J l 

We conclude that g E C (X). So <j>(g) = I:f=I <j>(g;) E C (Y). Since B is compact we may 
assume that for some bEB. By (4), <j>(g)(b)=O, hence 
(n 00). However for every i E IN, we have 

I <j>(g )(y;) I = I I:j:1 <j>(g1)(y;) I 

= I I:j;;;,\ <j>(g1)(y;) +<j>(g;)(y;) + I:J=i+I <j>(g1)(y;) I 

= I I:j;;;,\ <j>(g1 )(y;) + <j>(g; )(y;) I 

2! I <j>(g;)(y;) I -I:);;;,\ I <j>(g1)(y1) I 

2! l-(i- l)·-1-= _I_ 
2(i-l) 2 

by (7) 

by (5) and (6) 
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This contradiction proves the lemma. 

4.3.5 COROLLARY: let X and Y be metric spaces and let qi: Cµ(X) be a 
linear homeomorphism. let A be a non-empty compact subset of X and let B be a non-
empty compact subset of Y. Then there are a neighborhood U of A in X, a neighborhood 
V of B in Y and m E IN such that (U, V, m) is relatively bounded with respect to 
(A, B, qi) and (V, U, m) is relatively bounded with respect to (B, A, qi-I). 

PROOF: By lemma 4.3.4, there are neighborhoods U I and U 2 of A in X, neighbor-
hoods V I and V 2 of B in Y, and m 1, m 2 E IN such that ( U 1, V 1, m) is relatively bound-
ed with respect to (A, B, qi) and (V 1, U 1, m) is relatively bounded with respect to 
(B,A,qi-1). Let m=max(m 1,m 2), U=U 1 nU2 and V=V 1 nV2. Then by lemma 
4.3.3, this U, V and m satisfy the conditions in the lemma. 0 

Let X and Y be spaces. Let E and F be linear subspaces of C 0(X) resp. C 0(Y). Let 
me IN. A linear function qi: E F is said to be a linear m-embedding whenever qi is 
an embedding and 

(1) if f e E satisfies/ (X) c (-1 /m, 1 Im), then qi(/)(Y) c (-1, 1), and 
(2) if f e £ satisfies qi(/)(Y) c (-1/ m, 1 Im), then f (X) c (-1, 1). 

This definition is comparable with the notion of a linear k-mapping introduced in 
section 2.3. Since we need linear m-embeddings only in a very specific situation our 
definition is not in the most general form as was the case in section 2.3. 

4.3.6 LEMMA: let X and Y be compact spaces. let x e X and let {Un: n e IN} be a 
clopen decreasing base at x e X such that U 1 =X. let y E Y and let { V11 : n e IN} be a 
cl open decreasing base at y E Y such that V 1 = Y. let k e IN. Suppose that for every 
n e IN, 

is a linear k-embedding. Define qi: C o,[xJ(X) C o.(y i(Y) by 

Then qi is a well-defined linear k-embedding. 

PROOF: As in lemma 4.2.10, qi is well-defined and linear. To prove continuity of qi it 
suffices to prove that qi is continuous at 0. To this end let P c Y be compact, let E > 0 
and observe that by linearity of qi, 
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<1>(<0,X, Elk>)c<0,P, E>. 

To prove that <I> is an embedding, let P cX be compact, let E > 0 and observe that 

<0, Y, E/k>n<j>(Co,[xJ(X))c<j>(<0,P, E>).o 
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We will now give an example of two countable metric metric spaces X and Y such 
that for all ordinals a, p and y with a a countable prime component, we have 
X(a, P)= Y(a, P), X«a, p, y>= Y«a, p, y>, and X and Y are notlµ-equivalent. 

Let X be the space obtained from T by replacing each (i, j) e T by [l, oi] (i, j e lN). 
Let f=S([l, roro)). Let x be the unique point in x<roJ and y the unique point in y(ro)_ 

Then 

x 0 > =X and yO> = Y 
x<0, I)= {x} and y(O, I)= {y}, 

x<1, I)= {x} and yo, 1> = {y ), 

x<ro) = {x} and y(ro) = {y }, and 
x<ro, I>= {x} and y<ro. I>= {y }. 

However we have 

4.3.7 PROPOSITION: X and Y are not ip-equivalent. 

PROOF: Suppose <j>: is a linear homeomorphism. Let {Wn :n e lN} be 
a clopen decreasing base at yin Y such that for each n e lN, Wn \ Wn+I contains a do-
pen copy of [l, roro) and let !Vn: n e lN} be a clopen decreasing base at {x} v supp (y) 

in X. By corollary 4.3.5, there ism e lN such that 

(V m• Wm, m) is relatively bounded with respect to ( {x} v supp (y), {y }, <j>), 
and 

(Wm, V m. m) is relatively bounded with respect to ( { y ), {x} v supp (y ), 4>- 1 ), 

Notice that X \ V m is locally compact. So X \ V m = U ~=I Ai a clopen disjoint union such 
that for each i e lN, Ai is compact. By corollary 1.2.15 (a) and lemma 1.2.10, there is 
k 2! m such that 

Let A =U~=IAi. Then A is compact. Let K be a clopen copy of [1, roro) in Wk\ Wk+I · 

Write K = U~=l K; as a clopen disjoint union such that for each i e IN, K; = [l, oi ]. 
Since A v supp (y) is compact, there is by corollary 1.2.15 (a) and lemma 1.2.10, p > k 
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such that 

supp(VP uA u supp(y)) n U;>pK; =0. 

Note that the scattered height of X \ VP is less than w. Let s e IN be the scattered height 
ofX\VP. 

Fix i > p. We have 

supp (A u Vp) n K; = 0, and 
suppK; c(A u Vp)u(Vm \ Vp). 

Let L; = supp K; n (V m \ Vp). Then L; is compact. If L; = 0, then supp K; cA u Vp, so by 
proposition 1.4.3, 

K; c supp supp K; c supp (Au Vp), 

hence K; = 0. Contradiction. So L; is a non-empty compactum. 
By lemma 4.1. l l, there is a continuous linear embedding Tl 1: C o(K;) C o(Y) such 

that for each/ e C(K;) we have 

Tl 1 (/) I K; = f, 
T11(/)(Y)cconv(/'(K;)u {OJ), and 
1'11(/)(Y\K;)= (0). 

Again by lemma 4.1. I I there is a continuous linear function 11 2 : C 0(K;) C 0(X) such 
that for each f e C (L;) we have 

Define 

TJ2(/) IL;= J, 
TJ2(/)(X)cconv(/(L;)u (OJ), and 
TJ2(/)((X\ Vm)uVp)= {O}. 

0: C o(K;) C o(L;) by 0(/) =<1>-1 (TJ1 (/))IL;, and 
\jl: C o(L;) C o(K;) by 'JI(/)= <l>(TJ2(/)) I K;. 

Then 0 and 'JI are clearly well-defined continuous linear functions. 

CLAIM: 0 is a linear m-embedding. 

We first prove that 0 is an embedding. It suffices to prove that for each f e C (K;) we 
have \j/(0(/)) = f Suppose there is J e C (K;) such that \j/(0(/)) 1'- f. Then 

<l>(TJ2(0(/))) IK; i'-TJ1 (/) IK;. 

By corollary 1.4.2, we then have 
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T12(ev-)) I supp Ki ;tq>-1(T11 (j)) I supp Ki. 

Now n2(0(j))=0 on (X\Vm)uVP and Tli<f)=0 on X\Ki. Since 
supp(A uVp)cX\Ki, it follows from corollary 1.4.2, that q>-1(n 1(f))=0 on A uVp. 
So 

which implies that 0(j) ;t 0(j), contradiction. We conclude that 0 is a linear embed-
ding. 

To prove that 0 is a linear m-embedding, first let / e C (Ki) be such that 
/(Kj)C(-1/m, 1/m). Then 

T11 (j)(Y) c conv (j (Ki) u {0}) c (-1 /m, 1/m), and 
T11<J)((Y\ Wm)u [y})= {O). 

Since supp({x} u supp(y)) r,Ki =0, we have 

T11 (j)(supp ( {x} u supp (y ))) = {O }, 

so by corollary 1.4.2, q>-1 (T1 1 (j))( {x} u supp (y)) = [0}. Since (Wm• V m, m) is relatively 
bounded with respect to ({y}, {.r}usupp(y),q>-1), we have <1>-1<n 1(f))(Vm)c(-1, 1). 
Since L; c V m• we have 0(j)(L;) c (-1, 1). 

Secondly let/ e C (Ki) be such that 0(j )(L;) c (-1, I). Then 

T12(0(j))(X)cconv(0(j)(Li)u {0})c(-1/m, 1/m), and 
T12(8(j))((X\ Vm)u {x) usupp(y))= (0}. 

Since T12(8(j))(supp(y))= {0}, we have by corollary 1.4.2, <l>(T12(0(j)))(y)=0. Since 
<Vm,Wm,m) is relatively bounded with respect to ({x}usupp(y), {y},q>), we have 
q>(TJ2(8(j)))(Wm)c(-l, 1). Since K;cWm, we have '1j1(0(j))(K;)c(-l, 1). By the 
above \j/(8(j)) = f, so/ (K;) c (-1, 1). We conclude that 8 is a linear m-embedding. 

Since Li cX \ VP and K'.(X \ Vp) =s, there is a linear I-embedding from Co(Li) into 
C o([l, ros+t ]). By the claim we have for each i e IN a linear m-embedding from 
Co([l, roi]) into Co([l, ros+I]). then by lemma 4.3.6 we have a linear embedding from 
C o([l, roro]) into C o([l, ros+2]). This is a contradiction with lemma 2.6.7. We conclude 
that X and Y are notip-equivalent. 

If we look at the spaces X and Y we see that each neighborhood of y e Y contains a 
closed copy of [ l, roro) and that no neighborhood of x e X contains a closed copy of 
[1, roro). 
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For a space X, let 

X <a> = { x E X : each neighborhood of x contains a closed copy of [ 1, roa)}. 

Obviously x<a> is a closed subspace of X. If x<a> =0, then x<a) is locally compact. 
Indeed if x E X <a), then each neighborhood contains a closed copy of [ 1, uP] x 1N ( cf. 
lemma 4.1.8). But then each neighborhood also contains a closed copy of [l, roa). 

Let o. ro be a countable prime component and let 13 be a countable ordinal. By 
x<a, P> we denote the set X IP l with respect to the pair (X, X <a>). Notice that if 13 is a 
successor, say f3 = y+ 1, then we have X <a, P> = (X <a. Y> / 0• I). 

The numbers X <O., 13> are defined for ordinals a and 13 similarly to the numbers 
X(a, 13) as follows: 

X <o., 13> =0 if and only if x<a. P> =0, 
X <a, 13> = 1 if and only if X <a, P> is non-empty and compact, and 
X <a, 13> = 2 if and only if X <a, P> is not compact. 

Question 2: Let o. ro be a countable prime component and let X and Y be /,P-

equivalent separable metric zero-dimensional spaces. Are (X, x<a>) and (Y, y<a>) ip-
equivalent pairs? 

We conjecture that this question has a positive answer. 

§4.4. Remarks on a conjecture 

In sections 4.1 and 4.3 we found several ip-equivalent pairs. In this section we con-
jecture that these LP-equivalent pairs together with the conjectured ip-equivalent pairs in 
question I and 2 in section 4.3 are sufficient to obtain an isomorphical classification for 
the function spaces Cp(X), for countable metric X. In this section we indicate among 
other ;things difficulties that one encounters if one tries to prove the conjecture along 
the lines of the proof of theorem 4.2.18. 

4.4.l CONJECTURE: let X and Y be infinite countable metric spaces. Then X and 
Y are ip-equivalent if and only if for all countable ordinals o., 13 and y, where a is a 
prime component, we have 

(a) X (a, 13) = Y(a, 13), 
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(b) X<a, P> = Y<a, P>.for a~m. and 
(c) X«a, p, y»= Y«a, p, y».for a~m. 
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Note that conditions (b) and (c) are trivially true when X and Y are countable metric 
spaces with scattered height less than or equal to m, so the conjecture is in agreement 
with theorem 4.2.18 when we restrict ourselves to this class of spaces. 

Part of the proof of theorem 4.2. l 8 depends in a rough way on lemma 4.2.10 and on 
the decomposition theorems at the beginning of section 4.2. If we want to prove for 
countable metric spaces satisfying conditions (a), (b) and (c) in the above conjecture, 
that they are LP-equivalent, and we want to follow the same strategy as in section 4.2, 
some problems appear. For example, it is not clear how to decompose each countable 
metric space such that lemma 4.2. l O becomes applicable. Such a decomposition should 
have the property that between "building blocks" we have "linear k-homeomorphisms". 
A second problem is how we should start an inductive proof such as in the proof of 
lemma 4.2.13. We will try to show why these problems are real obstacles in the process 
of proving the conjecture. We first present a lemma which gives connections between 
the operations that are involved in the conjecture. One could say that this lemma is the 
"replacement" of lemma 4.2.1. 

4.4.2 LEMMA: Let X be a space. Let a, a 1, a2, P1 and P2 be ordinals with a, a1 
and a2 prime components. Then 

(a) X(a, I) cX<Cl> cX(u), 
(b)X(u1,uz-ui) cx<uz) cx<uil (a1 ~a2), 
(c) x<Cl, P1- Pz-P1> cx<Cl,P2> cx<Cl, P1> <P1 ~P2, a~m), and 
(d) x<a> cx<Cl, I> (a~ ffi). 

PROOF: For (a) let x e x<u. l). Then each neighborhood of x in X contains a closed 
copy of [ l, mu] x IN, hence a closed copy of [ l, mu). So x e X <a>. For x e X <a> each 
neighborhood of x contains a closed copy of [ l, mu), hence x e X (a). 

For (b) we have by proposition 2.2.2, x<ai) cx<ui l _ Furthermore 

x<u1, U2-Cl1) C (X(Cl1) /Clz-Cli) = (X(Cl1+(Clr<X1))) =X(Cl2). 

This completes the proof of (b). 
For (c), observe that the second inclusion is a triviality, so we only have to prove 

that for 6 < a, x<a, Pi, Pi-Pi> cx<o. Pzl. We will prove this by transfinite induction on 

P2- If P2 =0, P1 =0 and we are done. Suppose for all P < P2, the inclusion is true. If 

P1 = P2 there is nothing to prove, so suppose P1 < P1- If P2 is a successor, say 
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P2 = P + 1, we have P2 - P1 = ([3 - P1) + 1, so 

x«a, P1, Pz-P1» = (X«a, P1. P-P1» )<O, I) C (X(o, Pl )(0, ll C x<o, P2l. 

If p is a limit ordinal we have 

x<a, P1. P2-P1» _ ,-... x<a, P1. Y--P1» _ ,-... x<o, Yl cx<o, P2l 
- 1 1P1 <Y<P2 - 1 1P1 <Y<P2 . 

This completes the proof of case (c). 
For (d) we have to prove for o < a that x<a> cx<0, IJ. So let x E x<a>. Then each 

neighborhood Ux of x contains a closed copy of [ 1, o-P ). Hence u<_.,8J, cannot be com-
pact, so x E x<o. 11 . This completes the proof of (e) and hence the proof of this 

4.4.3 COROLLARY: let X be a space. let a, a 1, a 2 , p, [3 1 and [32 be ordinals 
with a, a.1 and a.2 prime components. Then 

(a)x<a. l+P) cx<a,P> cx<a,P), 
(b) x<a1,az-a1 +Pl cx<a2, PJ cx<a1. PJ (a.i '.5:a.z), 

(c) x<a. P1, Pz-P1 +P> cX«a. P2, p» cX<a, P1, P» (131 '.5:f32, o.2'.ro), and 
(d) x<a, P> C x<a, I, P> (a 2'. W). 

From the lemma it also follows that some of the inclusions are in fact equalities. For 
example we have the following 

4.4.4 COROLLARY: let X be a space and let a, p be countable ordinals with a a 
prime component and [32'.w. Then x<a. Pl =X<a, P>. 

PROOF: This follows directly from corollary 4.4.3 (a). 

Comparing corollary 4.4.3 with lemma 4.2.1, we see that the general situation 
(countable metric spaces) gives rise to many more cases than the specific situation in 
section 4.2 (countable metric spaces with scattered height less than or equal to w). Our 
next task is to find substitutes for corollary 4.2.2 and lemma 4.2.3. This is almost im-
possible. To make this clear we will restrict ourselves from now on to a specific class 
of spaces, which is the most natural one to consider after the results in section 4.2. We 
will consider countable metric spaces X with w < K(X) < w2• Many of the conditions in 
our conjecture become empty in this situation. The only ordinals we have to consider 
are a= 0, a.= I, a== wand p, y < w2 . If we reformulate corollary 4.4.3 we get 



§4.4. Remarks 011 a co11ject11re 

4.4.5 LEMMA: let X be a space. let p, p1, P2 < ro2 be ordinals. Then 
(a) x<w. l+P) ex«o. P> ex<w. P>' 
(b) (i) x<0, l+PJ ex(!, P> ex<0, P>. 

(ii) x<0. w+Pl ex<w. P> ex<O, P>' 
(iii) x<1, w+P> cx<w. P> ex<1, P>, 

(c) x<Cll, P1, Pi-P1+P> ex<(I), P2, P> ex<(I), P1, P> <P1 s P2), and 
(d) x<Cll, P> ex<w, I, P>. 

In analogy with corollary 4.2.2 we define 

7to =min{ 7t: X (0, 7t) =0}, 
1t1 =min{1t:X(l, 7t)=O}, 
'Yw = min ( y: X <CO, y> =0}, 
7tw = min{ 1t: X c:ro, 1t, O» =O}, 

and for every 7t S 7tw, 

Px =min(P: Xc:ro, 7t, P»=O}. 
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Of course all these ordinals are well-defined and less than or equal to ic(X). Note that 
7tro > 0 because of our choice of X. So P1 is well-defined. 

4.4.6 LEMMA: We have the following relations 
(a) 1t1 S7to SI +1t1, 
(b) 'Yro sp, S Po SI +Yro S1tw S1t1 S7to Sro+ Po, 
(c) 0= Pit"' S Pt S Pa S't-0'+ Pt (O' S't S 1tro), and 
(d)for al/ 1t < 1tw, Px I. 

PROOF: As in corollary 4.2.2, part (a) follows from lemma 4.4.5 (b)(i). For (b), notice 
that by lemma 4.4.5 (d), 

hence 'Yro S P1. That P1 S Po follows from (c) and will be proved there. By lemma 4.4.5 
(a), we have 

hence Po SI +Yw• Since 7tro > o, we have by lemma 4.4.5 (c) and (d), 
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hence Yw :5ltw-1. This implies 1 +Yeo :5ltw, Since 

X<W,1t1>_r-,. X(n,1t1) X(l,1t1)_0 
-1 ln<W C - , 
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we have ltw :5 it1• That it1 :5 lto was proved under (a). Finally by lemma 4.4.5 (b)(ii) we 
have 

hence Jto :s; ro + 13o. This completes the proof of (b ). 
For (c), we have by lemma 4.4.5 (c), 

hence 13cr :5 't' - cr + 13,, and 

hence 13, :s; l30 • Obviously f31t., = 0. This proves (c). 
Part (d) follows immediately by the definition of ltw, This completes the proof of 

this lemma. 

4.4.7 COROLLARY: If a< 1tw, then 
(a) l3cr+l :5 f3cr :s; I+ f3cr+l • and 
(b) 13cr :s;nw-0', 

Furthermore we have l3o I, and for 1t Jto, f31t = 0. 

PROOF: Part (a) and (b) are special cases of lemma 4.4.6 (c). By lemma 4.4.6 (b) we 
have 7tro I +Yw I > 0, hence by lemma 4.4.6 (d), 130 1. Since 7tw :s; Jto, we have for 
7t~Jto,f31t=O,o 

Comparing lemma 4.4.6 with corollary 4.2.2 we notice that lemma 4.4.6 covers 
more cases than corollary 4.2.2. If we want to follow the same strategy as in section 
4.2, our next step should be to find a substitute for lemma 4.2.3. In this lemma we had 
for each- natural number exactly six possible cases. This made the situation there suit-
able for the inductive proof in lemma 4.2.13. The role of that natural number is now 
played by 1t0. However if we increase Jto, the number of possibilities will also increase. 
This makes it difficult to find a suitable replacement for lemma 4.2.3. To make this 
clear we will now look at some specific values of 1t0. If Jto is fixed, Yw, 7tw, 1t1 and 131t 
for lt < 1to are the only defined ordinals that can possibly be non-zero (cf. lemma 4.4.6 
and corollary 4.4.7). 
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First let TCo =I.Then we have to consider Yro, 7tro, 1t1 and l30 . By lemma 4.4.6 (b) and 
corollary 4.4.7 we then have I= 130 I +Yro 7tro 1t1 1t0. This gives 

7to = I 

Yro 130 7tro 1t1 

0 I I I 

A space X satisfying this condition can be one of the following types (cf. lemma 
4.2.3). 

(I) X(O, 0)=X(l, 0)=X(w, 0)= l, 
(2) X(0, 0)=2, andX(l, 0)=X(w, 0)= l, 
(3) X (0, 0) =X (1, 0)= 2, and X (ro, 0) = 1, and 
(4) X (0, 0) =X (1, 0)=X (w, 0) =2, 

Spaces of each of these four types in fact exist. We will give the examples, but leave all 
calculations to the reader. For case (I) let X=[l, wro], and for case (2) let 
X=[l, wro]EE)IN. The space [I, wro]EE)([l, w]xJN) satisfies the conditions of (3) and 
[l, w00 ] x IN satisfies the conditions of (4). 

Let us now consider the case that TCo =2. We then have to consider Yro, 7tro, 1t1, 13 1 

and 130- Lemma 4.4.6 and corollary 4.4.7 give us the following possibilities 

TCo =2 

Yro 131 130 7tro 7t1 

I 0 0 I I I 

2 0 0 I l 2 

3 0 I 1 2 2 

4 I I I 2 2 

5 1 I 2 2 2 

Each possibility gives rise to several cases in the same way as for TCo = 1. The 
number of these possibilities increases since there is one more variable. We will not try 

to explicitly describe all these cases, but instead we shall give one example for each of 
the five cases in the above table, to make clear that the relations in lemma 4.4.6 are at 
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least in this case sharp. 
A space satisfying the conditions in (I) is TEE) [ 1, co0>] and a space satisfying the 

conditions in (2) is T([l, co]) EE) [ 1, cow]. Let X be the space obtained from T by replac-
ing each (i, j) E T by a copy of [I, coi ]. Then X satisfies the conditions in (3). For case 
(4) we can take X =S 1 ([I, cow)) and for case (5) we can take X = T([I, cow]). Again we 
leave all calculations to the reader. 

One can see that for n0 = 2, the situation involves a lot more possibilities then for 
7to = I. If we consider 7to = 3, we get another new variable p2 , and by lemma 4.4.6 and 
corollary 4.4.7 the following table: 

7to=3 

Yw P2 P1 Po 7tw 7t1 

1 0 0 0 I I 2 

2 0 0 1 1 2 2 

3 0 0 0 1 I 3 

4 0 0 I I 2 3 

5 0 I I 1 3 3 

6 1 0 1 1 2 2 

7 I 0 1 2 2 2 

8 1 0 I 1 2 3 

9 I 0 I 2 2 3 

10 I I 1 1 3 3 

11 I 1 I 2 3 3 

12 I I 2 2 3 3 

13 2 1 2 2 3 3 

14 2 I 2 3 3 3 

Hence 7to = 3 yields 14 possibilities and each of them can be dealt with as in the 
proof of lemma 4.2.3. It is also possible to describe for each of the above cases an ex-
ample of a space satisfying the corresponding conditions. It goes too far to present 
them here. 

For 7to = 4, the number of cases has increased to 32, and things get even worse if n:0 
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is infinite. Then there are infinitely many variables to consider, and the number of pos-
sibilities will also be infinite. But if we want to follow the same strategy as in section 
4.2, we need an explicit description of all possibilities and that is exactly the problem 
when one wants to find "decomposition lemmas" which can be used in a lemma such as 
lemma 4.2.13. It is also not obvious that the relations in lemma 4.4.6 are sharp. Can one 
find for each possibility a space satisfying the corresponding condition? 

Another problem in connection with lemma 4.2.13 is to find "linear k-
homeomorphisms". In section 4.2 we were in the pleasant situation that for each pair of 
tp-equivalent spaces both with scattered height less than oo, we actually had a linear k-
homeomorphism for some k e JN. That property is lost if we consider spaces X with 
oo < K(X) < 002 • This problem already occurs in the case of spaces satisfying 1to = 1. 
These spaces should be the "building blocks" for spaces with 1to = 2 (if we want to start 
a proof by induction on 7to). If we let X = [ 1, oow] EB ([l, w] x JN) and 
Y = [ 1, oow] EB [ 1, oow), then both spaces have scattered height oo + 1, and they both have 
1to = I. By theorem 2.6.17 they are. moreover lp-equivalent. However, we cannot use X 
and Y as building blocks for obtaining linear homeomorphisms between function spaces 
of spaces with 1to = 2 using lemma 4.2.10 because of the following 

4.4.8 LEMMA: There is no linear k-homeomorphism between Cp(X) and Cp(Y)for 
anykeJN. 

PROOF: Suppose there is k e 1N and a linear k-homeomorphism between Cp(X) and 
Cp(Y). Then by lemma 4.2.10, S 1 (X) and S 1 (Y) are tp-equivalent. However 
(S 1 (X))<w, I> =0 and (S 1 (Y))<w, I> ;t:0. This contradicts corollary 4.3.2. 

Comparing the situation here to the one in section 4.2, we see that if we want to 
"decompose" spaces into spaces of a "lower level", we are forced to avoid situations as 
above in order to make it possible to apply lemma 4.2.10. 

Summarizing we conclude that a proof of the conjecture, even in the case of the re-
latively simple spaces X with oo < K(X) < 002, will be a hard job and will certainly not 
be as "simple" as the proof given in section 4.2. 

We will finish this section by giving a relatively simple result concerning the tp-
equivalence of non-scattered countable metric spaces. 

4.4.9 PROPOSITION: Let X be a non-scattered countable metric space. Then X 
and Qare ip•equivalrnt. 
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PROOF: Since X is a non-scattered countable metric space, X contains a closed copy 
D of Q. Since Xis a countable metric space, Qcontains a closed copy E of Xx IN. Then 

Cp(X)- Cp.o(X) x Cp((Q) by proposition 2.3.2 

-Cp,o(X) x Cp((Q) x Cp((Q) Q"" QE!, Q 

-Cp(X) xcp,E((Q) x TT;'=, Cp(X) by proposition 2.3.2 

-Cp,E((Q) X TT;=! Cp(X) 

by proposition 2.3.2 a 

§4 . .5. Partial results on to-equivalence 

In the previous section we saw that a complete isomorphical classification for the 
function spaces Cp(X), for X countable and metric, seems beyond reach. Only for 
countable metric spaces with scattered height less than or equal to ro the situation is 
clear. In this section we deal with the compact-open topology instead of the topology 
of pointwise convergence and we try to make clear that an isomorphical classification 
for the function spaces C 0(X), where X is countable and metric, seems even more 
beyond reach. First we notice that from theorem 4.2. 18 and corollary 1.2.21 we have 
the following 

4.5.1 THEOREM: let X and Y be infinite countable metric spaces, such that 
K(X), K(Y)$;(l), and/or every n e IN, X(O, n)=Y(O, n) and X(l, n)=Y(l, n). Then X 
and Y are 

In the proof of the converse implication for tp-equivalence, we used the notion of 
tp-equivalent pairs. Of course we can define in a similar way the notion of to-equivalent 
pairs, and it is then possible to prove a theorem such as theorem 4.1.7. The problem 
however lies in propositions 4.1.9 and 4.1.12, where we used the precise description of 
supports obtained in section 1.4 for the topology of pointwise convergence. We were 
unable to derive such a precise description of supports in the case of the compact-open 
topology. This complicates the situation quite a bit. We will now derive two theorems 
that should be compared with corollary 4.1.14. 
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4.S.2 THEOREM: let X and Y be zero-dimensional separable metric 4)-equivalent 
spaces. Then 

(a) X =0 if and only ifY =0, 
(b) Xis compact if and only if Y is compact, and 
(c) Xis locally compact if and only if Y is locally compact. 

PROOF: Part (a) is a triviality. Part (b) follows from theorem 1.5.7. For (c) let 
qi: C o(X) C o(Y) be a linear homeomorphism and suppose that X is locally compact 
and Y is not locally compact. Then X can be written as a clopen disjoint union 

X=U;': 1A; such that for each i E IN, A; is compact. Let y E Y be such that y has no 
compact neighborhood and let (Un : n E IN} be a decreasing cl open base at y. By corol-
lary 1.2. l 5 (a) and lemma 1.2.10, there is n E IN such that 

(supp Un) n U; >nAi = 0. 

Let A=U7=1A;. Then A is compact. So suppA is compact as well. Since Un is not 
compact, there is a non-empty cl open O c Un\ supp A. Now let f * 0 be a Urysohn 
function such that f (Y\0) = (0}. Since Y \ 0 is a neighborhood of supp A, by corollary 
1.2.15 (a), qi-1 (f )(A)= (0}. Since A is a neighborhood of supp 0, we consequently have 
f (0)= {0}. But then f =0, which is a contradiction. This proves the 

4.S.3 THEOREM: let X and Y be zero-dimensional separable metric 4)-equivalent 
spaces. Then 

(a) xO) =0 if and only if yO) =0, 
(b) x 0 J is compact if and only if YO) is compact, and 
(c) X (I) is locally compact if and only if Y(I) is locally compact. 

PROOF: Let qi: C 0(X) C 0(Y) be a linear homeomorphism. For (a) suppose xOJ = 0 
and yOl ,:/:.0. Let K be a copy of [I, oo] in Y and let l =suppK. Then Lis non-empty 
and compact and hence is finite. By lemma 4.1.11, there is a continuous linear function 
111: C o(K) C o(Y) such that for each f EC (K), 11 1 (f) I K = f and there is a continuous 
linear function 112: C o(l) C 0(X) such that for each f E C (L ), 112 (f) I l = f Define 

0: C o(K) C o(l) by 0(/) =qi-1(11 1 (f )) 1 l, and 
\j/: Co(l) by \j/(g)=<1>(112(g)) IK. 

CLAIM: For every f EC (K), \j/(0(/)) = f. 

To the contrary suppose there is J e C (K) such that \j/(8(/))-:;: f. Then 
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</J(112(0(j))IK:;cT] 1(f)IK. Since Lis open, Lis a neighborhood of suppK. Hence by 
corollary 1.2.15 (a), T]z(S(f))IL:;c<j>- 1(11 1(f))IL, which gives 0(f):;c0(f). Contradic-
tion. This proves the claim. 

We conclude that 0 is a linear embedding. So we have a linear embedding from 
C 0 ([1, ro]) into some Rn for n E IN. This is not possible since the algebraic dimension 
of C 0([ 1, ro]) is infinite. This proves (a). 

For (b) suppose xO) is compact and y(I) is not compact. By (a) we have x<l) :;c0. 

Let {Yn : n E IN} be a closed discrete subset of Y consisting of non-isolated points. Let 
( 0 n : fl E IN} be a cl open discrete family such that for each fl E IN, y n E On. Let 
{Un: n E IN} be a clopen decreasing base at xOl in X. By corollary 1.2.15 (a) and lem-
ma 1.2.10, there is k E IN such that 

Find a copy K of [1, ro] in Ok containing Yk· Let L =suppK r-.X \Uk.Then Lis com-
pact, and hence is finite. If L = 0, then Uk is a neighborhood of supp K. Furthermore 
Y\ Ok is a neighborhood of supp Uk. Let f be a Urysohn function such that f (yk) = 1 
and f (Y\ Ok)= (0}. Since q>-1 is effective, <p-1 (f )(Uk)= ( 0}. By effectiveness of </J, we 
then have f (K) = ( 0}. But this gives a contradiction since y k E K. We conclude that 
L :;c 0. By lemma 4.1.11 and proposition 1.2.19, there is a continuous linear function 
111: C o(K) C o(Y) such that for each f EC (K), lli (f) I K = f and 111 (f )(Y\ Ok)= (0), 
and there is a continuous linear function 11 2 : C 0(L) C 0(X) such that for each 
jEC(L), 112(/)IL=/ and 112(/)(Uk)=(0}. Define by 
0(/) = </J-l (111 (j)) IL, and \j/: C o(L) C o(K) by \j/(g) = <l>(llz(g)) I K. 

CLAIM: For every f EC (K), \j/(0(/)) = f. 

To the contrary suppose there is J E C 0(K) such that \j/(0(/)) :;cf. Then 
</J(ll2(8(f))IK:;c11 1(f)IK. Since Ukul is a neighborhood of L, we have by effective-
ness of <l> that 112(8(/)) I (Uk uL) :;c <p- 1 (11 1 (/)) I (Uk u L ). Now 112(8(/)) =0 on Uk and 
ll1<f)=0 on Y\Ok, Since Y\Ok is a neighborhood of supp Uk we have by effective-
ness of qi-1, </l-1 (T] 1 (j)) =0 on Uk. We conclude that 11 2(0(/)) IL :;c qi-1(11 1 (/) 1 L, hence 
0(/):;cS(f). Contradiction. This proves the claim. 

From the claim it follows that 0 is a linear embedding. Again we have a linear 
embedding from C 0([1, ro]) into some Rn for fl E IN, which gives a contradiction. This 
proves case (b). 

For (c) suppose that x<l) is locally compact and yO) is not locally compact. By (b) 

we have that x0> is not compact. Hence X can be written as a clopen disjoint union 
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X = U~=l Ai such that for each i e IN, A)il is a non-empty compactum. Let ye yOl be a 
point and let {Un : n e IN} be a cl open decreasing base at y such that for each n e IN, 
U~1l is not compact. By corollary 1.2.15 (a) and lemma 1.2.10, there is k e IN such that 

supp Uk nUi>kAi =0. 

Let A =U1=tAi. Then A (l) is a non-empty compactum. Let IVn: n e IN} be a clopen 
decreasing base at A (l) in A. Let !Yn: n e IN} be a closed discrete set of non-isolated 
points in Uk and let ( 0 n : n e IN} be a cl open discrete family in Uk such that for each 
n e IN, Yn e On. By corollary 1.2.15 (a) and lemma 1.2.10, there is p e IN such that 

Find a copy K of [l, ro] in Ok containing Yk· Let L =suppK nX \VP.As under case (b) 
we can derive a contradiction. This proves the theorem. 0 

In the above theorems the proofs are similar to the proofs in section 4.1. The next 
prime component to consider is ro. The specific problems that we encounter when deal-
ing with the compact-open topology now become clear. We are able to prove the fol-
lowing theorem which is much weak.er than the result we have for ip-equivalence. It is 
a generalization of a result in [6]. 

4.5.4 THEOREM: Let X and Y be zero-dimensional separable metric spaces. Sup-
pose x<I) is discrete and y<ro) -:t- 0. Then X and Y are not ~-equivalent. 

PROOF: To the contrary suppose there is a linear homeomorphism 

<j>: C o(X) C o(Y). Write X as a clopen disjoint union X = U~=tXi such that for each 
i e IN, xpl contains at most one point. By theorem 4.5.3, there is at least one i e IN with 
xf'l -:t-0. Let K be a copy of [l, roro] in Yand let L =suppK. Then Lis compact, hence 

there is p e IN such that L c uf =!Xi. We may assume that for each i e IN, xpl -:t-0, and 
we let xi denote the unique point in xp>. 

CLAIM l: For every J, g e C 0 (Y) with f I K -:t- g I K it follows that 
<j>-1(!) IL-:t-<j>-1(g) IL. 

Let y e K be such that f (y )-:t- g (y) and let W O and W I be disjoint open neighbor-
hoods of J (y) and g (y) in JR, respectively. Then A ( (y}, W 0 ) and A ( {y}, W 1) are dis-
joint open neighborhoods of f and g in C 0 (Y). So <1>- 1 (A ( {y}, W 0 )) and 
<1>-1(A({y},W 1)) are disjoint open neighborhoods of<j>-1(!) and <j>- 1(g) in C 0(X). 



186 Ou the tP-equivalence of metric spaces 

There consequently exist compact subsets K 1, ... , Kn, L 1, ... , lm of X and open sub-
sets U 1, ••. , Un, V 1, •.• , V m of IR such that 

n 

ip-1(j)e nA(K;, U;)clj>-1(A({y), W0)) 
i=I 

and 
m 

q>- 1(g)e (JA(l;, V;)cqi-1(A({y), W1)). 
i=l 

We claim there is a ze supp(y)cl such that ip-1(j)(z)~lj>-1(g)(z) (and then we are 
done). Striving for a contradiction, assume the contrary. Let 
M=={k:5:p lxkesupp(y)). Then by assumption we have that for every keM, 

ip-1(j)(xk)==qi- 1(g)(xk)· For every k e M let h== { i:5:n I xk<I-K;), Jk== { i:5:m I xk <l-l;) 
and 

Pk== U(K; nXk) u U(l; nXk). 
ielk ieJk 

Then Pk is compact in Tk and xk <I-Pk, so Pk is finite. Let P ==UkeMPk, Then Pis finite 

andP n (xk :k e M) ==0. 
Define f': X IR by lqi-1 (j)(x) if x e Pu UX;, 

i,W 

/'(x) == ip-1 (j)(xk) if x e Xk \Pk fork e M 

and define g': X IR by lq>- 1(g)(x) ifxe Pu UX;, 
NM 

g'(x)== qi- 1(g)(xk) ifxeXk\PkforkeM. 

Then f' and g' are continuous since for each k e M, Xk \Pk is a neighborhood of xk. 

Let U == U keMXk \ Pk u supp (_v ). Then U is a neighborhood of supp (y) on which f' 

and g' coincide. Since qi is effective we have qi(j')(y) == q>(g')(y ). 

On the other hand f' E n~=IA (Ki, Uj), 

xePuU;¢MXi, then J'(x)==qi-1(j)(x)eU; 

Indeed let i :5:n and x e K;. If 

since qi-1(() e n~=1A(K;, Uj), If 

x</-PuUNMXi we have xeXk\Pk for some keM. Since xeKinXk and x¢Pk we 

have xk E K;, so f' (x) = qi-1 (f )(xk) E U;. Similarly one can prove that 
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g' E n7~1A(L;, V;). We then have $(f') E A({y }, Wo) and $(g')E A({y }, W 1). But this 
means $(f')(y) '/:. $(g')(y ), which gives a contradiction. This completes the proof of the 
claim. 

By lemma 4.1.11, there is a continuous linear function Tli: C o(K) C o(Y) such that 
for each f E C (K), Tl 1 (j) I K = f and there is a continuous linear function 
T12: C o(L) C o(X) such that for each f EC (L), T12(/) IL= f. Define 

8: C 0(K) C 0 (L) by 8(j) =$-1(Ttt (f )) IL, and 
\jl: by \jl(g)=$(T12(g)) IK. 

CLAIM 2: 8 is a linear embedding. 

It is easy to see that 8 and 8 are well-defined continuous functions. We claim that for 
every h E C 0(K) we have \j/(8(h))=h. To the contrary suppose 
$(Tt2(8(h)))IKi:-Ttt(h)IK. By claim I we have Tt2(8(h))lli:-$-1(Tt 1(h))IL. But this 
implies 8(h) '/:. 8(h ). Contradiction. Hence 8 is a linear embedding. 

By claim 2, we have a linear embedding from Co([!, coro]) into Co([l, a]), where 
a < co2 . However this contradicts theorem 2.4.1. This proves the theorem. o 

§4.6. Partial results on /,;-equivalence 

We would like to have classification results for the spaces c;(X) as we had for the 
spaces Cµ(X) in the previous sections of this chapter. The theory developed there 
depends strongly on results derived in chapter 1 (corollary 1.2.15 (b)). Example 1.2.12 
shows that the method for Cµ(X) cannot be used for c;(X), i.e., we cannot prove a 
theorem such as theorem 4.1.7 for "t;-equivalent pairs". We have to find another way 
to prove results for the function spaces c;(X). 

In this section we will prove for t;-equivalent metric spaces X and Y, that K(X) < co 
if and only if K(Y) < co. The proof of this result is a generalization of Pelant's proof 
that c;(T) and c;((Q) are not linearly homeomorphic (cf. [42]). The reader should com-
pare this result with theorem 4.1.15, which states that for Ip-equivalent metric spaces X 
and Y, K(X):::; co if and only if K(Y):::; co. 

We first need the following definition, which can be found in [23). A family 
Y. c C (X) is equicontinuous if for every x E X and e > 0, there is a neighborhood U of x 
in X such that for each f E Y. and y E U, If (x )- f (y) I < E. The following result is 
well-known. 
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4.6.1 PROPOSITION: If :I c C,,(X) is compact, then :I is equicontinuous. 

PROOF: Let x EX and£> 0. The family { </, X, £13> :f E :I} is an open cover of :I. 
Since :I is compact, there are f 1, ••• , fn E :I (n E IN) such that { </;, X, £13> : i $; n} 

covers :I. Since each J; is continuous, there is a neighborhood U of x such that for all 
ye U and for every i $;n, 1/;(y )-J;(x) I < £/3. Now let f E :I and ye U. There is i $; n 

such that/E <f;.X, £13>. This implies IJ;(x)-f(x)I <£13 and IJ;(y)-/(y)I <£/3. 
Since y EU, we now have 

1/(x)-/(y)I $ lf(x)-J;(x)I + IJ;(x)-J;(y)I + IJ;(y)-f(y)I <£.o 

4.6.2 THEOREM: Let X and Y be first countable ,;-equivalent spaces. Then 
(a) K(X) < 1 if and only if K( Y) < 1, 

(b) K(X) < 2 if and only if K(Y) < 2. 

PROOF: For (a) observe that K(X) < 1 if and only if X = 0. 
For (b) suppose K(X) < 2 and K(Y) 2. Then by (a), K(X) = 1, which gives that X is 

discrete. Since K(Y) 2 there is y E Y which is non-isolated. Let {Un : n E IN} be a de-
creasing open base at y in Y. For every n E IN let fn be a Urysohn function with 
fn(y)= 1 and fn(Y\ Un)=O. Then fn pointwise in JRY. Since X(yJ ¢C;(Y), 
Un: n E lN} is closed and discrete in c;cn. 

Now let <I>: c;(X) c;(Y) be a linear homeomorphism. Then by The Closed Graph 
Theorem, q>: c:(X) c:(Y) is also a linear homeomorphism. Since c:(X) and c:(Y) 
are Banach spaces, there is k E lN such that for every f E c* (X) we have 

Tll/11 $ ll<!>(f )11 $ klljll. 

Let gn = <l>-1 lfn). Then llgnll $ kllfn II= k. Hence {g11 : n E IN} c [-k, k ]x. Since [-k, kl is 
compact, {g 11 : n E IN} has an accumulation point g e [-k, k ]x. Since X is discrete 
[-k, kl cC;(X) and so g e c;(X). However, since {/11 : n e IN} is closed and discrete 
in c;cn. {gn: n E lN I is closed and discrete in c;cx). Contradiction. D 

Before we prove our announced result we need two fairly simple lemmas. One 
deals with function spaces and the other one deals with nets. 
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4.6.3 LEMMA: Let X be a metric space with K(X) < co. There is a metric space Y 
such that K(Y) = K(X) and c;(X)-c;, A (Y) where A= yo>. 

PROOF: We prove the lemma by induction on K(X). If K(X) = 1, let Y =X. So suppose 
the lemma has been proved for metric spaces X with K(X) < n (n > 1). Let X be a 
metric space with K(X) =n and let B =XO>. Then by proposition 2.3.2, the remark fol-
lowing lemma 2.3.6, and proposition 2.2.2 (a) c;(X)-C;(B)xc;, 8 (X). Since 
K(B) = n - 1 ( corollary 2.2.3), there is by the inductive hypothesis a metric space Z such 
that K(Z)=K(B) and c;(B)-c;,c(Z) where C=z<1>. Then 
c;(X)-c;,c(Z)xC;,B(X)=C;,Bvc<ZEBX). Let f=ZEBX. Then yO>=BuC and 
K(Y) = K(X). This finishes the proof of the lemma. 

4.6.4 LEMMA: Let X be a space and Ban infinite set. For every be B let lb e JRX 
such that for every x e X, { b e B : fb(x) ;t O) is /mite. Furthermore let :I= { S c B : S is 
finite) and define a relation on Y as follows: If S 1, S 2 e :I then S 1 S 2 if SI c S 2. 

For every S e :I define fs = r.b. sfb • Then {fs : S e :I) is a net in JR.x and 
lims e :1/s = "f.b e Bfb• 

PROOF: It is easily seen that :I fs directed by ::;, Since every Se :I is finite, /s e ]Rx, 
hence {/s: Se :I} is a net in ]Rx. 

Now let £>0 and PcX finite. For every peP let Sp={beB:fb(p);tO) and 
So =UpePSp. Then So E :I. Lets ~So,P E p andf="f.beBlb• Then 

Hence lims e :1/s = f 

We now come to the result announced in the introduction of this section, 

4.6.S THEOREM: Let X and Y be t;-equivalent metric spaces. Then K(X) < co if 
and only ifK(Y) < co. 

PROOF: Suppose K(X) < co and K(Y) ro. By lemma 4.6.3 we may assume 
c;. A (X)- c;(Y) where A =xO>. Let q,: c;, A (X) c;(Y) be a linear homeomorphism. 
Then by The Closed Graph Theorem, q,: is also a linear homeomor-
phism (C:. A (X) has its obvious meaning). So there is k e IN such that for every 
/ e c:. A (X) we have 
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Let B =X \A. Since every element of Bis an isolated point in X, we have for each x e B 
thatfx=Xix) e c;_A(X), where Xix) is the characteristic function of x. Notice that for 
each f E c;, A (X),f = "I.x e Baxfx, where ax= f (x). For each XE B, let gx = <l>ifx). 

For every yeY, let Cy={xeB:gx(y);t0}. Since Cycsupp(y), Cy is finite for 
every ye Y. Now define b: Y IR by b (y) = "I.x e 8 I gx(y) I. Notice that for every 
y e Y, b (y) = "I.x e Cy I gx(Y) I, hence b is well-defined. 

CLAIM I: llbl!:'.5:2k. 

For ye Y, let c; = {x e B: gx(Y) > 0) and c;; = {x e B: gx(y) < O}. Notice that 
ll"I.xec;gxll=llqi("I.xec;fx)ll:'.5:k·ll"I.xeC;fxll=k. Similarly we can prove that 

ll"I.xe Cy gxll :'.5:k. So 

which proves the claim. 

Now for PcB finite, let .AA,p={"I.xePaxfx: laxl :'.5:k for xeP}. Notice that 
,.,.Up=IlxeP[-k, k]xllxeX\P{0). 

CLAIM 2: For every y e Y, P c B finite and E > 0, there is a neighborhood U (y, P, E) of 
yin Y such that for each z e U (y, P, E) and J e (j>(,.,.Up ), If (y)- f (z) I < E. 

Notice that ,.,.Up is compact in c;, A (X). It is easily seen that for every J e ,.,.Up and 
E > 0, B (f, E) n,.,.Up = <J, P, E> n,.,.Up. Since P is finite it now follows that ,.,.Up is com-
pact in c:,A(X) and so (j>(,.,.Up) is compact in c:(Y). Hence by proposition 4.6.1, (j>(,.,.Up) 
is equicontinuous, from which the claim follows. 

Now find Ne IN such that l_(N + 1) 2k. 
4k 

CLAIM 3: There are Yo, ... , YNE Y, Po, ... , PNcB finite and U 0 , .•. , UN neigh-
borhoods of respectively Yo, ... , YN, such that 

(l) for every i :'.5:N: Cy; cPi, 

(2)PocP 1 c ··· cPN, 
(3) Uo=>U1 =>···=>UN, 
(4) for every i :'.5:N: Ui c U (Yi, Pi, l /4), and 
(5) for every i :'.5:N: Yi E y<N-i). 
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We will prove this claim by induction. Since K(Y) w, we can find Yoe y<Nl. Let 
Po =Cy 0 and U O = U (Yo, Po, 1/4). Suppose Yo, ... , y11 , Po, ... , P11 and U o, •.. , U,, 

are found for 0:5:n <N. Since y11 e y(N-n) and N-n 1, we can find 
Yn+ 1 e U,, \{Yi: i $n} n y(N-(n+ l)). Let Pn+ I =P,, uCYn+l and 

This completes the inductive construction and hence the proof of the claim. 

Now let g: Y [-1, 1] be a continuous function such that g (y;) = (-I/ for O 5, i 5'N. 
Then llgll=l, so llq>-1(g)ll:5:k. So q>- 1(g)=IxeBaxfx with laxl :5:k. Notice that 
IxeP;axfxe.M,p; forevery05oi5'N. 

Indeed, let Y= [S cB: S is finite} and for every Se Y let fs =Ix.saxfx• By lemma 
4.6.4 <1>- 1 (g) = lims E ::tfs and Ix E Baxgx = lims E ::,Ix e saxgx, So 

and the claim is proved. 

Let O $ i :5:N. Since Cy; c Pi (claim 3 (1)), we have by claim 4, 

By claim 3 (3) and (4), YN e U (y;, Pi, l /4). Furthermore Ix e P;axgx e q>(.;/A,p), so by 

claim 2, 

If i > 0, we have by claim 3 (2) 

I Ix e P;\P;_ 1 axgi.YN) I = I Ix e P; axgx(YN )-Ix e P;_ 1 axgx(yN) I 

If i =O and P _1 =0, then 

= I Ixe P;axgx(YN)-(-1/ + (-1/- I -Ixe P;-1 axgx<YN)±2 I 

~2- I Ix e P;axgx(YN)-Ixe P;axgx(Yi) I -
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So by claim 3 (2) 

hence 

which gives a contradiction. 0 

The isomorphical classification of the function spaces in section 2.6 and the first part 
of lemma 2.3.7 are not valid for the function spaces of bounded continuous functions as 
is shown in the following 

4.6.6 EXAMPLE: There are LP-equivalent countable metric locally compact spaces 
which are not L;-equivalent. 

PROOF: Let X = [ 1, o>2) and Y = [ 1, wco). Since X is an open subspace of [ 1, w2 ], 

x<a.) =X n [l, w2](a.) (proposition 2.2.4). Hence by proposition 2.2.5 K(X)=2. Similar-
ly, K(Y)=w, so by theore'm 4.6.5, X and Y are not L;-equivalent spaces. However, by 
example 2.6.18, X and Y are LP-equivalent. 0 

4.6.7 REMARK: Let 2 < n < w. By proposition 2.4.4 there is k E lN such that 

So by lemma 2.3.7 (and the remark just before lemma 2.3.7), 

00 00 

C* [ 2 c* k c* 11 * n p( l,w ))= µ(Etl[l,w])- p(Etl[l,w ))=Cp([l,w )). 
1=0 1=0 

This implies that the following is not true: If X and Y are L;-equivalent spaces and 
n > 2, then K(X) < n if and only if K(Y) < n. 

Motivated by theorems 4.6.2 and 4.6.5 and remark 4.6. 7 we state the following: 

4.6.8 CONJECTURE: Let X and Y be L;-equivalent metric spaces and let a be a 
prime component. Then 

(a) K(X) < a if and only if K(Y) < a, and 

(b) K(X) < a+ 1 if and only i/K(Y) < a+ l. 
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