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CHAPTER 0

Introduction and notation

§0.1. Introduction

For a Tychonov space X, C (X) is the set of all real-valued continuous functions on
X. The set C (X) endowed with the topology of pointwise convergence will be denoted
C,(X) (for more precise definitions see section 1.1). The spaces C,(X) are of interest to
topologists and functional analysts for various reasons.

One can consider C,(X) as a topological ring (with the usual addition and multipli-
cation of functions). In [40], J. Nagata proved the following

0.1.1 THEOREM: Let X and Y be Tychonov spaces. The spaces Cp(X) and C,(Y)

are topologically isomorphic as topological rings if and only if X and Y are
homeomorphic.

In this theorem it is essential to consider topological isomorphisms. There are non-
homeomorphic spaces X and Y sﬁch that the rings C (X) and C (Y) are algebraically iso-
morphic (see [25]). Once we have J. Nagata’s result it is natural to consider Cp(X)asa
topological vector space (with the usual addition and scalar multiplication) or just as a
topological space. In view of this we can state two general problems.

0.1.2 PROBLEM: Let X and Y be Tychonov spaces and suppose that C p(X) and
Cp(Y) are linearly homeomorphic or just homeomorphic. Which topological properties

P satisfy: X has property P if and only Y has property P?

0.1.3 PROBLEM: Ler X and Y be Tychonov spaces. Under what conditions on X
and Y are Cp(X) and C,(Y) linearly homeomorphic or just homeomorphic?

Many topologists have worked on both problems. We will mention a few results that



6 Introduction and notation

are in the same spirit as the ones that will be derived in this monograph. (for a survey
of recently obtained results we refer to [2]).

For example, concerning problem 0.1.2 we have for linear homeomorphisms a posi-
tive answer for pseudocompactness, compactness, c-compactness (Arhangelskii [1]),
and dimension (Pestov [44]). A negative answer can be obtained for local compactness,
first countability, second countability, metrizability, weight and character (cf. example
2.4.10 in this monograph). A useful strategy is to find pairs (?, 2) of topological pro-
perties such that a Tychonov space X satisfies 2 if and only if C,(X) satisfies 2. In this
way it is proved that for density (Guthrie [29]) and cardinality (Arhangelskii [2]) prob-
lem 0.1.2 has a positive answer. On the other hand there exist a compact space X and a
non-compact space Y such that C,(X) and C,(Y) are homeomorphic (cf. chapter 3 in
this monograph).

In this monograph we present our contributions to problems 0.1.2 and 0.1.3 and re-
lated problems. We do not restrict ourselves to the topology of pointwise convergence.
We also consider other topologies on C(X) (mainly the compact-open topology on
C(X)) and on C*(X ), the set of all bounded real-valued continuous functions. Our
results depend strongly on the results obtained by Arhangelskii in [1]. We discuss [1] in
detail in section 1.2.

In chapter 1 we mainly develop tools that will be important in later chapters. How-
ever, we also present some new results. In section 1.5 we prove for normal first count-
able spaces X and Y such that Cp(X) and C, p(Y ) are linearly homeomorphic, that the set
of accumulation points of X is countably compact if and only if the set of accumulation
points of Y is countably compact. The first countability assumption is essential. This
result is joint work with J. van Mill [5]. Furthermore we prove in this section for metric
spaces X and Y such that there is a continuous linear surjection from Cp(X) onto C,,(Y),
that Y is completely metrizable whenever X is. This result is joint work with J. Pelant
[7], and answers a well-known research problem of Arhangelskii.

In chapter 2 we deal with function spaces of locally compact spaces. We give a
complete isomorphical classification of the function spaces C,(X) and C(X) (as topo-
logical vector spaces) where X is a member of one of the following classes:

(a) compact zero-dimensional metric spaces  (section 2.4)
(b) compact ordinals (section 2.5)
(c) o-compact ordinals (section 2.6)
(d) separable metric zero-dimensional

locally compact spaces (section 2.7).

The isomorphical classification of the function spaces C(X), for X an element of class
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(a) or (b) is an old result (cf. [10] and [34]). The first three sections contain prelim-
inaries which are of particular importance in this chapter. They deal with ordinals (in
particular the for us important notion of a prime component), scattered spaces and fac-
torizing lemmas on function spaces.

After the results in chapter 2, it is natural to consider non-locally compact spaces. In
chapter 3 we prove for non-locally compact countable metric spaces X and Y that C,(X)
and C,(Y) are homeomorphic. This result is joint work with J. van Mill and J. Pelant
[6]. It was later extended to non-discrete countable metric spaces (see [16] or [20]), by
different techniques.

In chapter 4 we consider linear homeomorphisms between function spaces C,(X) for
metric spaces X. A new tool is developed there, namely the notion of {,-equivalent pair.
This notion provides us with many properties for which problem 0.1.2 can be positively
answered in the class of zero-dimensional separable metric spaces (sections 4.1 and
4.3). A complete isomorphical classification will be given for function spaces C,(X)
(as topological vector spaces) of countable metric spaces X with scattered height less
than or equal to ® (section 4.2). We indicate in section 4.4 that an isomorphical
classification for function spaces C '»(X) for all countable metric spaces X seems beyond
reach. Finally in this chapter some results will be given concerning the compact-open
topology (section 4.5) and concerning the set of bounded continuous real-valued func-
tions (section 4.6). We construct locally compact countable metric spaces X and Y such
that Cp(X) and C,(Y) are linearly homeomorphic, while C;(X) and C;(Y) are not
linearly homeomorphic.

AMS Subject Classification: 54C35, 57N17, 57N20.
Acknowledgments: We would like to thank J. van Mill and J. Pelant for the
pleasant cooperation and their valuable contributions. We also would like to thank F.

van Engelen and A.B. Paalman-de Miranda for their careful reading of the manuscript
and their valuable comments.

§0.2. Notation

For all undefined notions and results on general topology without explicit reference
we refer to [23] and [24].
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Introduction and notation

Meaning

the set of natural numbers

the set of ratinnal numbers

the set of real numbers

the Cantor set

X and Y are homeomorphic

X and Y are linearly homeomorphic

the closure of A in X

the interior of A in X

the minimum of A

the maximum of A

the supremum of A

the infimum of A

{[yeX:d(xy)<e}

sup {d(x,y):x,ye A}

the density of X

the cardinality of X

the power set of X

the topological sum of the spaces X and Y
the topological sum of the spacesX;

the composition of two functions fand g
the identity function of X

the projection on the i-th coordinate

the characteristic function of A

the norm on a Banach space

the kernel of a linear function F

the linear span of{v, ..., v,}

the convex hull of{v, ..., v,}

the unit sphere in R"*!

the unit ball in R"*!

the set of all ordinals smaller than o

the space of ordinals{3:1 < <o} with the order topology
the space of ordinals{B:1 <3 < o} with the order topology
the first infinite ordinal

the first uncountable ordinal

the cardinality of @



CHAPTER 1

Tools and first applications

All spaces considered in this chapter are Tychonov.

In this chapter we introduce function spaces endowed with several topologies. Our
main interest will be the topology of pointwise convergence and the compact open to-
pology. In section 2 we present important results of Arhangelskii [1] which are among
the main tools in this monograph. Section 3 deals with the topological dual of a func-
tion space endowed with the topology of pointwise convergence, and section 4 gives
some more details about the results of section 2, when dealing with the topology of
pointwise convergence. Finally in section 5 we give some first applications. We
present topological properties which are preserved by ¢,, { or {,-equivalence (resp. o,
lo or {,-equivalence), and properties which are not preserved by &y, L Or {y-equivalence
(resp. l;, {y or l;-equivalence). For definitions of these notions see section 1.5.

§1.1. Topologies on function spaces

For a space X we define C (X) to be the set of all real-valued continuous functions on
Xand C *(X ) to be the set of all bounded real-valued continuous functions on X. C (X)
and C"(X) are vector spaces with the natural addition and scalar multiplication. For a
covering X of X we define a topology on C (X) by taking the family of all sets

<f,K,e>={ge C(X): 1f(x)—g(x)| <eforevery xe K},

where fe C(X), Ke X and €> 0, as a subbase. If X is a covering of X consisting of
compacta, C(X) endowed with this topology is easily seen to be a topological group,
whence in this case it generally suffices to consider open sets <0, K, €>, where K € X
and £> 0.

A subset A of a space X is said to be bounded whenever for every fe C(X), f(A) is
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bounded in IR. Note that if A is a bounded subset of X, then A is also a bounded subset
of X. If X consists of all finite, compact or bounded subsets of X, respectively, we
denote C (X) endowed with this topology by C,(X), Co(X) or C,(X), respectively. The
topology on C,(X) or Co(X), respectively, is often called the topology of pointwise
convergence or the compact-open topology, respectively. We have that C,(X) and
Co(X) are topological vector spaces.

For spaces X and Y, the notation X <Y means that X and Y have the same underlying
set and the topology on Y is finer than or equal to the topology on X. With this notation
we have

Cp(X)<Co(X) S Cp(X).

1.1.1 LEMMA: Let X be a space and let X be a covering of X consisting of com-
pacta. Let Ay,...,A,eX, f1,...,[,€eC(X) and €,...,€,>0. Then for every

feMoi1<fi Air &>, there is 8> 0 such that <f, U A;, 8> M- <f;, Aj, €.

PROOF: For i <n, let y;=max{ |f (x)-fi(x)| :xe A;}. Then vy; <g;. Let §;=¢;-7;,
and d=min{§; : i <n}. We claim that this & suffices. Let g € <f, U:‘:lA,v, 6>, i<nand
x e A;. Then .
lg ()= fi(x)IS1g ()= f ()1 +1f ()= fi(x) |
<d+7; <g,

hence g € <f;, A;, €>.0

1.1.2 COROLLARY: Let X be a space and let X be the covering of X consisting of
all finite or compact subsets. Then
(a) {<f, K, e>:fe C(X), Ke X, and € >0} is a base for C (X), and
) {<f, K, €>:K e X, and € >0} is a neighborhoodbase at f for fe C(X).g

1.1.3 EXAMPLE: Lemma 1.1.1, and corollary 1.1.2, do not hold if X consists of
all bounded subsets of X.

For example let X =IR. Consider the identity id: R — IR. Note that [0, 1) is bounded
in R and that Oe <id, [0, 1), 1>. Suppose there are a bounded A cIR and € >0 such
that <0, A, e>c<id, [0,1),1>. Let feC(R) be defined by f=-€/2. Then
fe<0,A,e>,but lf(1-€/2)—(1-¢€/2)| =1, so f¢<id, [0, 1), 1>. Contradiction.

For a covering X of X, a topology on C(X) can also be generated by the subbase
consisting of all sets
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AK, U)={geCX):g(K)cU},

where K € X and U is open in IR.

1.1.4 LEMMA: Let X be a space and let X be the covering of all finite (resp. com-
pact) subsets of X. Then

{AK, U):K e X and U open in R}

is a subbase for C,,(X) (resp. Co(X)).

PROOF: First let Ke X, U open in R and fe A(K, U). For every x e K, there is a
neighborhood U, of x and €, > 0 such that

f(Ux)c(f(x)—%"—,f(x)+52‘—)c(f(x)—ex,f(x)+£x)cU.

Since K is compact, there aré X{,...,X, €K such that Kc U,’-‘zl U,,. Let
e=min{g,, :i <n}. We claim that <f, K, €/2>cA(K, U). Indeed let g € <f, K, €/2>,
and let x € K. There is i <n such that x € U,,. Then obviously g (x)-f (x;)| <&. So
g (x)e U. This implies g € A(K, U).

Second let feC(X), KeX and €>0. For every xeK Ilet
U, =f((f (x)—€/3, f (x)+&/3)) and let Cx=anK. Then each C, is compact. Let
Vi=(f (x)—€/2, f (x)+€/2). There are xi,..., x,e K such that KCU,'-;IUXI.. We
claim  that fe Mo A(Cy,V,)C<f, K, e>. Indeed, for every i<n,
f(C)cf WU, )CV,,. For ge M A(Cy,V,,) and xeK, there is i<n such that
x € Cy,, Then obviously |f (x)—g(x)| <€ Soge <f, K, €>.g

1.1.5 EXAMPLE: Lemma 1.1.4 does not hold in case X consists of all bounded
subsets. As in example 1.1.3 consider <id, [0, 1), 1>. Let Ky, ..., K, be bounded sub-

sets of IR and let Uy, ..., U, be open subsets of R such that Oe ﬁ?zlA (K;, Up).
There is € > 0 such that (¢, £)cﬂ?=1 U;. Again let f=—€/2. Then fe ﬂ:;lA(K,-, Uy
and as in example 1.1.3, f¢<id, [0, 1), 1>.

When dealing with the topology of pointwise convergence or the compact-open to-
pology we will use corollary 1.1.2 and lemma 1.1.4 without explicitly referring to it.

1.1.6 LEMMA: C,(X) is a dense subspace of RX with the product topology.
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PROOF: That C,(X) is a subspace of R” is easily seen. Let fe RY xi,....x,eX
and € > 0. We have to show that for

U={geR":1f(x)-g(x)! <eforeveryi<n)

we have UnC,,(X);tQ. For i<n, let f;e C(X) be a Urysohn function such that
fix)=f(x;) and fi(x;)=0 for j<n and j#i. Let g=X[.f;. Then for every i<n,
g)=f(x),s0ge UnCy(X).o

We define C,(X), Co(X) and Cy(X) similar to C,(X), Co(X) and C,(X) using
C *(X ) instead of C (X). All the observation made above for C (X) endowed with one
of the defined topologies are also valid for C *(X) endowed with this topology.

On C*(X), we define the topology of uniform convergence by the metric

d(f, g)=sup{If(x)-gx)l:xe X},

where f, g e C"(X). We denote C*(X) endowed with this topology by Cy(X). It is
well-known that C:(X ) is a Banach space ([47, Prop. 4.1.2 ]). It is easily seen that
Co(X)<C(X). For a compact space X the topology of uniform convergence and the
compact-open topology coincide ([24, Th. 4.2.17]).

All results in this section are well-known. The easy examples 1.1.3 and 1.1.5 were
constructed by us. For more information about topologies on function spaces we refer
to [24], [37] and [47].

§1.2. Linear functions between function spaces

In this section we present results which are of fundamental importance in this mono-
graph. In particular we present results of Arhangelskii [1] (corollaries 1.2.15 and
1.2.21).

Let X and Y be spaces and let ¢: C (X) — C (Y) (resp. ¢: cC'X)—> C*(Y)) be a linear
function. For every y e Y, the support of y in X with respect to ¢ is defined to be the set
supp (y) of all x e X satisfying the condition that for every neighborhood U of x, there is
feC(X) (resp. fe C*(X)) such that fX\U)c {0} and ¢(f)(y)#0. Note that it
suffices that the condition holds for arbitrarily small neighborhoods of x. For a subset A
of ¥ we denote \U{supp(y):ye A} by suppA. Whenever ¢ is a linear bijection we can
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consider the support of a point in Y with respect to ¢ and the support of a point in X
with respect to ¢~'. It will always be clear from the context which support we mean.
The following lemma is obvious, and is stated for reference purposes.

121 LEMMA: Let X and Y be spaces and let ¢:C(X)—>C(Y) (resp.
o: C*(X) > C*(Y)) be a linear function. Let y € Y. Then
(a) x ¢supp (y) if and only if x has a neighborhood U such that for fe C(X)
(resp. fe C™(X)) with f (X \U)c {0} we have ¢(f )(y)=0, and
(b) supp(y) is closed in X. g

1.2.2 EXAMPLES: (1) Let X be a space. Define ¢: C(X) — C (X) by $=0. Obvi-
ously ¢ is linear. By lemma 1.2.1 (a), supp (x) =@, for every x e X.

(2) Let X be a space and let Ae IR\ {0}. Define ¢: C (X) = C (X) by ¢(f)=Af for
every fe C(X). Obviously ¢ is linear. We claim that for every x € X, supp (x)={x}.
First let U be any neighborhood of x. Let fe C(X) be a Urysohn function such that
f&x)=1and f(X\U)c< {0}. Then ¢(f)(x)=A#0, hence x e supp (x). Second for y #x
let U be a neighborhood of y missing x. Then for fe C(X) with f(X\U)c {0}, we
have ¢(f )(x)=0. By lemma 1.2.1 (a), y ¢supp (x).

(3) Let X be a space and let xge X be fixed. Define ¢: C(X)—>C(X) by
O(f)=f+f (xq) for every fe C(X). Obviously ¢ is linear. We claim that for every
x € X, supp (x) = {x, xg}. Let U be any neighborhood of .x. Let V c U be a neighborhood
of x such that if x #x¢, x¢ ¢ V. Find a Urysohn function fe C (X) such that f (x)=1 and
fX\V)c {0}. Then f(X\U)c {0} and ¢(f)(x)#0. Hence x € supp (x). In a similar
way one can prove that xg e supp(x). As in (2) one can prove that for y ¢ {x, xo},
y ¢supp (x).

Each linear function above can also be defined from C” X)toC * ).

The following definitions are due to Arhangelskii [1]. Let X and Y be spaces. We
say that a linear function ¢: C (X) — C(Y) (resp. ¢: C*"X)->C"()) is effective if for
every f, ge C(X) (resp. f, g e C*(X)) and y e Y such that fand g coincide on a neigh-
borhood of supp (y), ®(f)(y) =d(g)(y). The linear function ¢ is of bounded type if ¢ is
effective and for every y e Y, supp (v) is bounded in X.

1.23LEMMA: Let X and Y be spaces and let ¢:C(X)—>C(Y) (resp.
o:C *(X )—>C *(Y)) be a linear function which is not effective. Then there are ye Y, a
neighborhood U of supp (y) and fe C(X) (resp. fe C “(X)) such that f (U)={0} and
o)) #0.
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PROOF: Since ¢ is not effective, there are y e Y, a neighborhood U of supp(y) and
f1.f2e C(X) (resp. fy,far€ C™(X)) such that f1 and f, coincide on U and
O 1)) #0(f2)(y). Let f=f| — f. Then fe C(X) (resp. fe C”(X)). For x e U we have
f )=f1(x)=f2(x)=0and by linearity of ¢, 6(f)(y) =0(f1)(») = ¢(f2)(») #0. o

1.2.4 EXAMPLES: (1) The linear functions in example 1.2.2 have the property that
for every xe X and for every f, g e C(X) such that f and g coincide on supp (x),
o(f )(x) =d(g)(x), hence they are effective.

(2) Let X=[1, ®;) and let Y =[1, w;]. Since every fe C(X) is eventually constant,
i.e., there is o < m; such that for each B>a, f ()= (B) [24, example 3.1.27], f has a
natural extension f e C (). The function ¢: C (X) — C (Y) defined by o(f) = f is easily
seen to be linear. We claim that ¢ is not effective. It is enough to show that
supp (®;) =@, since in this situation any two functions in C (X) coincide on a neighbor-
hood of supp (®;). Let x e X. then U =[1, x] is a neighborhood of x. Let fe C(X) be
any mapping satisfying f (X \U)c {0}. Then ¢(f)(®w;)=0, hence by lemma 1.2.1 (a),
x ¢supp ().

Note that in this situation we have C (X)=C"(X) and C (Y)=C*(¥).

We will now give some general properties of effective linear functions between
function spaces.

1.25LEMMA: Let X and Y be spaces and let ¢:C(X)—>C(Y) (resp.
o: C*(X) —-)C*(Y)) be an effective linear injection. Then suppY =X.

PROOF: Suppose there is x ¢W. Then there is O open in X such that WCO
and x ¢0. Find a Urysohn function f e C*(X) such that f(x)=1and f (6) < {0}. Since
O is a neighborhood of supp Y and ¢ is effective we then have ¢(f)(Y) < {0}. This im-
plies f#0 and ¢(f) =0, contradicting the injectivity of ¢. g

1.2.6 LEMMA: Let X and Y be spaces and let ¢.C(X)—>C(Y) (resp.
o:C *(X)-—)C *(Y)) be an effective linear function. Then for AcCY we have
suppA C suppA.

PROOF: Suppose there is x € suppZ\s—u—[;p—A. Suppose x e supp (y) for y e A. Find O
open in X such that xcO cO CX\;EEP—.Z. Since x e supp (y) there is fe C(X) (resp.
fe C* (X)) with f(X\O)c {0} and ¢(f)(y)#0. Since X\O is a neighborhood of supp A
and f=0 on X\O, by effectiveness of ¢, ¢(f)=0 on A. But this implies ¢(f)(y)=0.
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Contradiction. g

Let X and Y be spaces. A set-valued function F: X — P(Y)\ {@} such that for every
xe X, F(x) is closed in Y is said to be Lower Semi Continuous (abbreviated LSC)
whenever for every open U Y the set {xe X :F(x)nU #@} is open in X. Conse-
quently F is LSC if and only if for every closed A Y the set (xe X:F(x)cA} is
closed in X. Furthermore F is said to be Upper Semi Continuous (abbreviated USC)
whenever for every open U Y the set {x e X : F(x)c U} is open in X. Consequently F
is USC if and only if for every closed A Y the set {xe X : F(x) nA #@} is closed in
X.

If o: C(X)>C(Y) (resp. ¢: C*(X)——)C*(Y)) is a linear function we can consider
supp: ¥ — P(X) as a set-valued function. We have

1.2.7LEMMA: Let X and Y be spaces and let ¢:C(X)—>C(Y) (resp.
o:C *X)y=C *(Y)) be an effective linear function such that for each yeY,
supp (y) #9D. Then supp is LSC.

PROOF: By lemma 1.2.1 (b), supp(y) is closed in X for every y e Y. Let U be an open
subset of X. Put O={yeY:supp(y)nU=@}, and let ye O. Then there is
xesupp(y)nU. Let V be open in X such that xe VcVcU. Let fe C(X) (resp.
fe C*(X)) be such that £ (X\V)c {0} and ¢(f)(y)#0. Let W={ze Y:0(f)(z)#0}.
Then W is an open neighborhood of y. We claim that W c O. Suppose there is
ze W\O, ie., 0(f)z)#0 and supp(z)nU=@. Then X\V is a neighborhood of
supp(z) and f (X \V)c {0}, so ¢(f)(z)=0. Contradiction. So W <O and hence the
lemma is proved. g

REMARK: If the function ¢ in lemma 1.2.7 is surjective, then surely supp (y) =@
for every y € Y. Indeed, if supp(y)=@ for some ye Y, then let fe C*(Y) be such that
f(y)#0. Choose g e C(X) (resp. g € C*(X)), such that ¢(g)=f. We have that g =0 on
a neighborhood of supp (y), so by effectiveness of ¢, f (y)=0. This gives a contradic-
tion. We conclude that for any effective linear surjection, supp is LSC.

In section 2.4 we will give an example of an effective linear surjection
0: C(X) — C(Y), such that supp is not USC.

1.2.8 PROPOSITION ([1]): Let X and Y be spaces and ¢: C (X)— C (Y) a linear
Sfunction of bounded type. Let A be a bounded subset of Y. Then supp A is bounded in X.
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PROOF: Suppose to the contrary that suppA is not bounded in X. Then there is
fe C(X) such that f(suppA) is unbounded in IR, so there is {.x, :n e IN} CsuppA such
that {f (x,):ne IN} is closed and discrete in IR. Hence we can find an open family
{V,:ne N} in X such that x, e V, for each ne IN and {f (V,):ne IN} is a discrete
family in R. Then obviously {V, : n e IN} is a discrete family in X.

By induction we construct a subset {y;:k e IN} of A, a subfamily {U;:ke N} of
{V,:ne N}, and a subset {f; : k e IN} of C (X) such that

(1) frX\Uy)c {0} for every k € IN,
(2) fori#jwehave U;2U;,
(3) supp{yi1s---sYe-1} ~U,=@ forevery k > 1, and
@) 0(fi)ve)=k+ lhyl forevery ke IN,
where by =%; ., 0(f;)(y;) for k> 1and h; =0.

Let y; € A be such that x; e supp(y;). Let U1 =V . Since U is a neighborhood of
x1, and x| e supp(y,), there'is h e C(X) such that A(X\U ;)< {0} and ¢(k)(y;)=0.
Let

y—
OO

Let fi=Ah. Then fie C(X) and f1(X\U,)c {0}. Furthermore by linearity of ¢,
oD 1=y )=1.

Let k£ >1 and suppose we found yi,..., y4-1, Uy,..., Ugy and fy1,..., fi-1-
Let Py =supp {y1,..., Yk-1}. Since ¢ is of bounded type, P, is bounded in X. So there
is n e IN such that f(V,) nf (P) =@ and hence V, nP, =@. Since x, e supp A, there is
yr € A such that x, e supp (y). Let U, =V,. Since Uy is a neighborhood of x, and
Xy, € supp (yx), there is h e C (X) with A (X \U,) < {0} and ¢(h)(y;)#0. Let

_k+ 1R
o)

and fy=Ah. Then fi,(X\U;)< {0} and by linearity of ¢, d(fy)(yx)=k + | h;|. To com-
plete the inductive construction we observe that by (3) and the fact that
Xpesupp () Uy, Uiz Uj fori # .

Since {U; : k € IN} is a subfamily of {V,:n e IN} we have by (2) that {U; :k e IN}
is a discrete open family in X. Let f=X;7,f;. For xe X we have a neighborhood U,
which intersects at most one member of {U,:k e IN}. Then by (1) f IU, is a finite
sum, hence fe C(X). Forevery ke IN, let g =3k fi and

Wi=X\ ukf;‘(lk\ Q)
Jj>
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By (1) we have for every je N, f;'(R\{0))cU;. So {fj'(R\{0}):je N} is a
discréte family, hence W, is open in X. By (3), we have for j >k, supp (yk)ml_/j=@.
This implies supp (yk)mfj_-l(]R\ {0})=@. We conclude that supp (y;) c Wy, so W, is a
neighborhood of supp (yx). For j >k, and x e Wy, f;(x)=0, hence f and g; coincide on
Wi. Since ¢ is effective, we then have O )(yi)=0(ge)(ve). But
0(@K)k) = hic + 0(fi )y ), so that by (4),

10(g) ) | Z0UF)0w) = Vel =k + The | = L | =k.

We conclude that | ¢(f )(y¢) | 2k for every k « IN. But this implies that A is not bound-
ed in Y. Contradiction. g

1.2.9 COROLLARY: Let X and Y be spaces and let ¢: C(X)—> C(Y) be a linear
injection of bounded type. If Y is pseudocompact, then X is pseudocompact.

PROOF: If Y is pseudocompact it is bounded, hence by proposition 1.2.8, supp?Y is
bounded. By lemma 1.2.5, supp Y =X. This implies that X is pseudocompact. g

We will now give two other applications of proposition 1.2.8. The first one will be a
very important tool in chapter 4. The second one will be used in section 1.5.

1.2.10 LEMMA: Let X and Y be normal spaces. Let K be compact and non-empty
in 'Y and suppose {V, :n e IN} is a decreasing base at K inY. Let {A;:s€ S} be a lo-
cally finite family in X. Furthermore let ¢: C (X) — C (Y) be a linear function of bound-
ed type. Then there are meIN and sy,...,5,€S such that
supp Vi) " Us g 51,51 As = D.

PROOF: If S is finite the lemma is obvious. Suppose the lemma is false for infinite S.
Then there are distinct 5; € S (i € IN) and points x; € supp V; " Ag,. Suppose x; € supp y;
with y;eV;. Since (A :ieIN} is locally finite, {x;:ieIN} is infinite. Let
L={y;:ie N} UK and let & be an open cover of L. Then there are Uy, ..., U, in U
such that KCU:L,U,-. Since {V,,:ne IN} is a base at K in Y, there is m € IN such that
VimC U,'-lzl U;. SoKuly:izm}c U,'-lzl U;. We conclude that L is compact.

By proposition 1.2.8, supp L is bounded. It follows that {x; :i € IN} is also bounded.
However since {Ay,:i e IN} is locally finite, {x;:ie IN} is a closed and discrete set.

Contradiction. g
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Let X and Y be metric spaces and ¢: C (X)— C(Y) a linear surjection of bounded
type. ForUc X, let Ty={ye Y :supp(y)nU #@}. For a family U of subsets of X, let
Tu={TU:UE u}

1.2.11 LEMMA: [f U is a locally finite open cover of X, then Ty is a locally finite

open cover of Y.

PROOF: By the remark following lemma 1.2.7, we have for each y € Y, supp (y) #@.
So Ty covers Y. Furthermore by lemma 1.2.7, supp is LSC, so for U € U, Ty is open in
Y. If Ty is not locally finite there are y € Y, a sequence y, =y (n — o), and distinct
U,’s in U such that y, € Ty, . Let x, € supp (y,) " U,. Since {y, :n e IN} is bounded, by
proposition 1.2.8, supp {y, : n € IN} is bounded. Hence {x, :n e IN} is bounded. Since
X is metric we then obtain that {r,,n—elN] is compact. Since U is locally finite,
m intersects only finitely many elements of U. Contradiction. This proves
the lemma. g

Proposition 1.2.8, corollary 1.2.9, lemmas 1.2.10 and 1.2.11 are the first results in
this section which are only formulated for linear functions from C (X) to C(Y) and
which are not formulated for linear functions from C”(X) to C”(Y). In the following
example we show that proposition 1.2.8, lemmas 1.2.10 and 1.2.11 are not true for
linear functions between function spaces C *(X ).

1.2.12 EXAMPLE: Let (x,),.n be a convergent sequence, say x, —>x (n— o).
LetY={x,:ne N} u{x}, andlet X =Y @ IN. Define ¢: C*(X) = C"(¥) by

f(xn)+%f (n) if z=x, for some n € N,

o)) = fx) ifz=x.

We first show that ¢ is well-defined. It suffices to show that ¢(f) is continuous at x.
Let £€> 0. Since f is bounded there is ¢ € R such that f (X) c (¢, ¢). Find m € IN such
that forn2m, 1 f (x,)-f (x)| <€/2 and 1/m <&/(2c). Then for n 2m we have

10U )0 =G 1 = 1f (k) +~f (1) = £ ()]

S If )= 0l 42 1f ()]
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<filoce
2 n

So ¢(f) is continuous at x. Note that since Y is compact, ¢(f) e C™(Y). Obviously ¢ is
linear. As in example 1.2.2 we can show that for each n e IN, supp(x,)={n, x,} and
supp (x) = {x}. Furthermore for any two functions f, ge C *(X) which coincide on
supp (z) for some z e Y, we have ¢(f)(z)=0(g)(z). Hence ¢ is a linear function of
bounded type.

Since Y is compact, Y is bounded. However supp Y =X is not bounded. This implies
that proposition 1.2.8 is not true when dealing with bounded functions. Note also that if
U={Y}u{{n}:ne N}, then U is a locally finite open cover of X. However Ty is not
locally finite, hence lemma 1.2.11 is also not valid when dealing with bounded func-
tions. Similarly lemma 1.2.10 does not hold. The question remains whether corollary
1.2.9 holds. The above example does not give a counterexample since ¢ is not injective.

We will now search for linear functions of bounded type.

1.2.13 LEMMA: Let X and Y be spaces. Suppose ¢:Co(X)—C,(Y) (resp.
o: CE X )—-)C;(Y )) is a continuous linear function. Then for every ye Y, supp (y) is
compact.

PROOF: Since ¢ is continuous at 0, there are a compact B cX and € >0 such that
0(<0, B, e5)c <0, {y}, 1>. Suppose there is x € supp (y)\B. In this situation X \B is a
neighborhood of x, so there is fe C(X) (resp. fe C (X)) satisfying f (B)c {0} and
O(f )(y)#0. By linearity of ¢ we may assume ¢(f)(y) > 1. Obviously fe <0, B, €>,
hence ¢(f)e <0, {y}, 1>. This implies ¢(f)(y) < 1. Contradiction. We conclude that
supp (y) € B. By lemma 1.2.1 (b) supp (y) is closed and hence compact. g

1.2.14 PROPOSITION ([1]): Let X and Y be spaces. Suppose §: CO(X)—>CP(Y)
(resp. ¢: Co(X) — C;(Y)) is a continuous linear function. Then ¢ is of bounded type.

PROOF: By lemma 1.2.13, supp (y) is bounded for every y € Y, so it remains to prove
that ¢ is effective. If ¢ is not effective, then by lemma 1.2.3 there are y € Y, a neighbor-
hood U of supp (y) and fe C(X) (resp. f e C*(X)) with f(U)={0} and ¢(f)(y) #0. Let
d=1¢(f)(y)!. Since ¢ is continuous, there are a compact subset A of X and € > 0 such
that ¢(<f, A, €>)c<¢(f), {y}, 8>. Then for every g e C (X) (resp. g € C* (X)) which
coincides with fon A, ¢(g)(y)#0.

Let B=A\U.If B=@, A cU. Since f (U)= {0}, 0 coincides with fon A. This gives
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¢(0)(y) #0. Contradiction, so B is a non-empty compactum and B n supp (y) =@. Then
by lemma 1.2.1 (a), there are opensets U, ..., U,, V1, ..., V, such that

) U,—cU,—cVi forevery i <n

() Bc U, U;, and

(3)ifge C(X) (resp. g € C*(X)) with g (X \V;)={0} for some i <n, then
d(g)(»)=0.

Since B is compact, there are al,...,a,,eC*(X) such that for every i<n,
a,-(l_/,-nB)=l and (X,(X\V,)C{O] [24, Th. 3.1.7]. Let a:max(Z,’-‘=1 (X,,',l) and
h; =o;/a. Then we have

4 hi(X\V;)= {0}, and
n

®)) _Zlhi(x)zl forevery x e B
i=

Let h; =h;f and h"=Z!_;h;. By (4) we have h;(X\V;)={0} so that by (3),
o(h; )(y)=0. This means ¢(h")(y)=0.

By (5), for every x € B we have h*(x)=f (x). Furthermore for every x e U we have
h*(x)=0=f(x), so " and f coincide on A. But then ¢(h")(y)#0. Contradiction. We
conclude that ¢ is effective. g

1.2.15 COROLLARY ([1]): Let X and Y be spaces. Suppose ¢: Cp(X)—> Cp(Y) or
o:C O(X )= Co(Y) is a continuous linear function. Then
(a) ¢ is of bounded type, and
(b) if A is bounded in Y, then supp A is bounded in X.
If moreover in X every closed and bounded subset is compact, then -su—pﬁ is
compact.

PROOF: Since C,,(X)SCO(X), any linear mapping ¢: Cp(X)—>Cu(Y) or
0: Co(X)—Co(Y) is also continuous considered as a function from C((X) to C,,(Y).
Now apply propositions 1.2.8 and 1.2.14. g

By example 1.2.12 we have for bounded functions only the following corollary the
proof of which is similar to the one of corollary 1.2.15 (a).

1.2.16 COROLLARY: Let X and Y be spaces. Suppose ¢:Cp(X)—C,(Y) or
¢:Co(X)—>C 6 (Y) is a continuous linear function. Then ¢ is of bounded type. o
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1.2.17 REMARK: The question remains whether a result such as corollary 1.2.15
holds for continuous linear functions between the function spaces C,(X). In example
1.2.4 (2) we found spaces X and Y and a linear function ¢: C (X) — C(Y) which is not
effective. From corollary 1.2.15 we have that ¢ considered as a function from C p(X) to
CP(Y) (resp. from C(X) to C(Y)) is not continuous (this can also be verified directly).
Unfortunately ¢ considered as a function from C,(X) to C(Y) is also not continuous.

Corollary 1.2.15 will be one of the main tools in this monograph. Another important
tool will be corollary 1.2.21. Before we can prove this corollary we need some other

lemmas.

1.2.18 LEMMA ([1]): Let X and Y be spaces, and suppose §: C:(X)—éCP(Y) isa
continuous linear function. Then ¢ considered as a function from C,(X) to Cy(Y) is
also continuous.

PROOF: By linearity of ¢ and since C(Y) is a topological vector space it suffices to
prove continuity at 0, i.e., we have to prove for a compact AcY and €>0 that
¢71(<0, A, €>) is a neighborhood of 0 in C};(X). We will show that for

V={ge C*(X): [d(g)(x) | <e/2 foreveryxe A}

we have Oe Int V.
Since ¢: C:(X)—>CP(Y) is continuous, {g e Cc*(X): lo(g)(x) | <€/2} is closed in
Cy(X) for every x e X. This means that

V=Nige C™(X): 16(g)(x) | <e2)

is closed in C)(X).
CLAIM: C*"(X)=\U n'V.
nelN

Lethe C*(X). Since A is compact, there is nge IN such that ¢(h)(A) < [-ng, ngl-
Find n € IN such that n, 22n/e. Then for every x € A we have

l¢(n—1lh)(x) | = n‘—l lo(h(x)) | < :—° <.

1

This means & € n;-V and hence the claim is proved.

Since for every n e IN, n-V is closed in C,(X) and C,(X) is a Banach space, there is
n = IN such that Int (n-V) #@. This means IntV #@. Take an arbitrary g € IntV. Since
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0: C;(X)—>CZ(X) defined by 6(%)=-h is a homeomorphism such that 8(V)=V, we
have —g e IntV. Since y: C,(X) — C,(X) defined by y(h)=(g +h)/2 is a homeomor-
phism such that y(Int V) c Int V we have y(-g)=0e IntV.g

1.2.19 PROPOSITION ([1]): Let X and Y be spaces such that in X every closed
and bounded subset is compact. Let ¢: C o(X) — C,(Y) be a continuous linear function.
Then ¢ considered as a function from Cy(X) to Cy(Y) is also continuous.

PROOF: Let ¢" be the restriction of ¢ to the set of bounded functions. Since
CS X) SC:(X ), ¢* considered as a function from C:(X ) to Cp(Y) is continuous. Then
by lemma 1.2.18, cp* considered as a map from C +(X) to Cy(Y) is continuous. To prove
continuity of ¢ considered as a map from Cy(X) to C(Y) it is by linearity of ¢ enough
to prove continuity at 0. To this end let A be a compact subset of ¥ and let € >0. By
propositions 1.2.8 and 1.2.14 and the assumption on the space X, B =W is a com-
pact subset of X. By the above there is >0 such that for every fe C(X) with
If(x)I <& for every xeX we have oO(f)e<0,A,e>. We claim that
(<0, B, 8/2>)c <0, A, €>. To this end let ge C(X) with lg(x)| <&/2 for every
xeB.
Define g;: X - R by

g(r) if Ig(0)! <§

w|o

g10=12  ifgw02

) . 3
—? lfg(x)S—?

Then g, e C(X) and g, coincides on a neighborhood of B with g. By proposition
1.2.14, ¢ is effective, and hence ¢(g)=¢(g;) on A. Furthermore for every xe X,
lg1(x)! <8, so ¢(g)e <0, A, €>. This means ¢(g) e <0, A, €>. This proves that ¢ is
continuous at 0. g

As with proposition 1.2.8 we have that proposition 1.2.19 does not hold for linear
functions between function spaces C *(X). We have the following

1.2.20 EXAMPLE: Consider X, Y and ¢: C*(X) —C*(Y)asin example 1.2.12. We
claim that ¢ considered as a function from C;(X ) to C;(Y) is continuous and con-
sidered as a function from C 6 (X)to C 6( Y) is not continuous.
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First let P Y be finite, € > 0 and put Q =supp P. Then

o(<0, O, %>) c<0, P, e>

Second consider the open subset <0, Y, 1> of C(Y). If ¢ considered as a function
from Cg(X) to Co(Y) is continuous, there is a compact subset A of X and € >0 such
that

0(<0,4, e>)c<0,Y, 1>.

Find n e X \A. Let f=nX,, where X, denotes the characteristic function of the set {n}.
Then fe <0, A, €> and ¢(f )(x,,) = 1. But this implies that ¢(f) ¢ <0, ¥, 1>.

From proposition 1.2.19 we have the following important

1.2.21 COROLLARY ([1]): Let X and Y be spaces in which every closed and
bounded subset is compact, and suppose ¢: Cp,(X)— C,(Y) is a linear homeomor-
phism. Then ¢ considered as a function from Cy(X) to Cy(Y) is also a linear
homeomorphism.

The converse implication in corollary 1.2.21 is not true. By Miljutin’s theorem (for
any two uncountable metrizable compact spaces we have that C(X) and Cy(Y) are
linearly homeomorphic, [47, Th. 21.5.10]), Cy(I) and C 0(12) are linearly homeomorph-
ic (here I denotes the unit interval). However Cp(I) and C,,(Iz) are not ﬁnearly
homeomorphic, since Pestov proved in [44] that whenever Cp(X) and C,(Y) are linear-
ly homeomorphic then dim X =dim Y.

REMARK: Note that in a compact or metric space the closed and bounded subsets
are exactly the compacta. It is not clear to us how this property is related to other topo-
logical properties.

For linear mappings between function spaces C “(X) we can derive a result in the
spirit of proposition 1.2.19. This result (corollary 1.2.23) is a consequence of

1.2.22 THE CLOSED GRAPH THEOREM: Let E and F be Banach spaces and
let 9: E — F be a linear function such that the set {(x, ¢(x)):x € E} is closed in E XF.
Then ¢ is continuous.
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For a proof of The Closed Graph Theorem we refer to [26].

1.2.23 COROLLARY: Let X and Y be spaces and let ¢: C;(X) —-)C;(Y) be a con-
tinuous linear function. Then ¢ considered as a function from C :(X yto C ;(Y ) is also

continuous.

PROOF: Since C,(X)<C,(X) and C,(Y)<C,(Y), it follows directly from The Closed
Graph Theorem.

In corollary 1.2.23 we can replace the topology of pointwise convergence by other
topologies. However as stated above it is the only corollary we need in the sequel of
this monograph.

REMARK: The results in this section due to Arhangelskii are not formulated in the
most general form as they are in [1]. We adjusted these results and their proofs to the
form in which we need them in this monograph. The original proof of lemma 1.2.18
used notions like absorbing, convex, circled and balanced spaces (for definitions see
[45]). For us these notions are of no importance. Arhangelskii did not define supports
for linear functions between function spaces C *(X ). We do not know whether all other
results in this section were already known to Arhangelskii.

§1.3. The dual of C,(X) and C, (X)

For a space X let L (X) be the dual of Cp(X), ie., the set of all continuous linear
functionals on C, ,,(X ). For x e X we define &,: C,,(X ) — IR the evaluation mapping at x

by &:(f) =1 (x).

1.3.1 LEMMA: Foreveryxe X, &, e L(X).
PROOF: It is easily seen that &, is linear. To prove that &, is continuous let U c IR be
open and let fe&;'(U). Then &.(f)=f(x)eU. Find e>0 such that

fx)-&, f(x)+e)cU. We claim that <f, {x},e>c§;1(U). Indeed for
ge<f,{x),e>, lgx)-f(x)l <g sothat g(x)=&,(g)e U.g

By identifying x and &, we regard X as a subset of L(X) (notice that for x#y,
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Ex ¢§y). As L (X) is a vector space we are interested in a Hamel basis for L (X) (i.e., a
maximal independent subset). It turns out that X is a Hamel basis for L (X), i.e.,

(HB1) X is an independent subset of L (X) and
(HB2) forevery FeL(X)therearex,...,x,eXandAy,..., A, eR
such that F =%, Aix;.

To verify (HB1) suppose /- Ajx; =0 for xy,..., x,e Xand Ay, ..., A, € R. Then for
every fe C(X), -1 A;f (x;)=0. For every i <n let f; be a Urysohn function such that
fix)=1 and fi(x;)=0 for i#j. So 0=X}_ A4fi(x;)=A;, which proves (HB1). For
(HB2) we have to do some more work.

1.3.2 LEMMA ([45, p. 124]): Let V be a vector space and ., 0.y, ..., O, linear
functionals on V. Then the following statements are equivalent:
(1) r'\;;chrai cKera.

(2) aespan{og,..., o).

PROOF: The implication (2)=>(1), is a triviality. We prove the implication (1)=(2) by
induction on n. First suppose n =1. If o) =0, a=0 so we certainly have o e span {Q; }.
So suppose there is xg e V such that ot; (xg)#0. Let A =a(xg)/a; (xg). We claim that
a=A 0. To prove this, let x e V. If o} (x) =0 we are done, so suppose & (x) #0. Then

oy (x) oy (x)
ap(x— = - =0,
1 oll(v’fo)x()) o (x) o (xp) @1(xo)
so
_ xg € Kera; cKera.
oy (xo)
This gives
_ _ a(x) _ _ oy (x) _ N
0=0u(x al(XO)xo)—(x(x) P oxg)=o(x) — Aoty (x).

So o(x) =A;aq(x). This finishes the case n=1.
Suppose we proved the implication for every n <m with m > 1.

Case 1. there is j <m with (MKer a; c Ker a..
i#j

Then by the inductive hypothesis, cte span {Q, ..., &,].

Case 2: for every j <m, (MKer o; ¢ Kera..

1#]
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Then for every j <m there is x; e V such that a;(x;)=0 for i #; and o;(x;) #0. Let
lj=0z(x/-)/aj(xj). We claim that a=X}_;A;a;. To prove this let xe V. For j<m we

have
T o;(x) _
ocj(x _ié:lm ,-)—ocj(x)— Waj(x,)—-o.
This gives
7 ooyx) "
x-X x; e MKero; cKera.
i=1 ai(xl) i=1
Hence
m m
ar— 3 29 = a(x) - Z Aoy(x) =O0.
i=10(x;) i=l

This finishes the proof of this lemma. o
1.3.3 THEOREM: X is a Hamel basis for L (X).

PROOF: As mentioned above it is enough to prove condition (HB2). So let
F:Cp(X)— R be a continuous linear functional. There is a finite subset P of X and
8>0 such that F(<0, P, 8>)c(-1,1). Suppose P={xy,..., x,}. We claim that
f'\LlKer €, cKer F. Indeed let fe f\:‘=lKer§xi. Then for every i <n, f (x;)=0. Let
€>0. Clearly (l/e);fe<0,P, 8>, so that F((1/€)'f/)c(-1,1) or, equivalently
F (f)c (-¢, €). Since € was arbitrary we have F (f)=0 which implies fe Ker F. Now
by lemma 1.3.2, Fe span {§;,,..., & }. o

We can define a topology on L (X) as follows. For fe C(X)letL(f): L(X)—>R be
defined by L (f)(F)=F(f). The topology on L(X) is the weakest topology which
makes all L(f) (fe C,(X)) continuous, i.e., the topology which has as a subbase the
family,

{L(f)""(U):fe C(X)and U open in R}.
With this topology, L (X) is called the topological dual of C,,(X). Clearly L (X) is then

a locally convex topological vector space.

1.34 LEMMA: Let fe Cp(X). Then L(f): L(X)—> IR is the unique continuous
linear functional that extends f.

PROOF: That L(f) is a continuous linear functional is obvious. For x € X we have
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L(f)x)=x(f)=f(x), so that L (f) extends f. Since X is a Hamel basis for L (X) it fol-
lows that L (f) is unique. g

In theorem 1.3.3 we derived that X is algebraically a special subset of L (X). Topo-
logically we have

1.3.5 PROPOSITION: X is homeomorphic to X as subspace of L(X), and X as a
subspace of L (X) is closed in L (X).

PROOF: First of all we show that X is homeomorphic to X as subspace of L (X). Let U
be open in X and xe U. Let fe C(X) be a Urysohn function such that f (x)=1 and
fX\U)={0}. By lemma 1.3.4, f extends to a continuous linear functional
L(f):L(X)—R. Let V=L(f)(0, ). Then V is open in L(X) and xe VnXcU.
Now let V be open in L(X) and let xe VnX. There are fi,..., fe C,(X) and
Ui, ..., Uy,openin R with xe ML (£)" (U)cV. Thenxe M fi1(U)cVnX.
We conclude that X is a subspace of L (X).

Second we show that X as subspace of L(X) is closed in L(X). To this end let
F e L(X)\X. By theorem 1.3.3 there are x;,...,x,e X and A, ..., A, € R such that
F=XZ \x; with x; #x; for i #j.

Case I1:n22and A; #0 for all { <n.

For each i <n find V; open in X and U; open in R such that V;nV;=@ (i # ), x;e V;,
A;je U; and 0¢U;. For each i <n there is a Urysohn function f;: X — IR such that
filx))=1 and f;(X\V;)=0. By lemma 1.3.4, f; has a continuous linear extension

L({f;): L(X)—>R. We claim that F € ﬁ,’-;]L (f)™N(U;) cL (X)\X. Indeed for each i <n,
n n
L(fi)(F)=j§17\-jL (ﬂ)(xj)=j§1;‘jﬂ(xj)=}\'i e U;
and for x e X there is i <n with x ¢V; (since n 22) so that L (f;)(x)=f;(x)=0¢U;. This
implies X n f\;’zlL (f;)"1(U;) =@, which proves case 1.
Case2: F=A\jx;.

Since F ¢X, A; # 1. Hence there is U open in R with A; e U and 1¢U. Let f=1 and
L(f)>LX)>IR be its continuous linear extension. We claim that
FeL(f)y"(U)cLX)\X. Indeed

LOE)=ML()x)=Mf(x1)=h el
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and for x € X we have L (f)(x)=f (x)=1¢U. This proves case 2 and the proposition. g
The following proposition will be of importance in the last section of this chapter.

1.3.6 PROPOSITION: Let X and Y be spaces. Then Cp(X)~C,(Y) if and only if
L(X)~L(Y).

PROOF: First suppose ¢: C,(X)—C,(Y) is a linear homeomorphism. Define
y: L(X)=>L(Y) by y(F)=F «¢~!. Then y is obviously a well-defined linear function.
To see that y is continuous notice that for fe C[,(Y) and U c R open we have

VIO =LE) v W)=C ot ¢n W)

is open in L (X).

Define 6: L(Y) > L (X) by 8(G)=G -¢. In the same way we can prove that 0 is a
well-defined linear mapping: As is easily seen =y, so that  is a linear homeomor-
phism.

Second, suppose W:L(X)—L(Y) is a linear homeomorphism. Define
9: Cp(X) > Cp(Y) by 0(f)=(L(f) - w’l) |'Y. Then ¢ is obviously a well-defined linear
function. In order to prove that ¢ is continuous at O let P Y be finite and £ > 0. For
every ye Ythereare xi, ..., xﬁy eXandAi,..., ?\{;y e IR\{0} such that

ny
V)= Z M.

Let N=max{Z/2;IA!I:yeP}, let 3=¢/N and let Q={x/:ye P and i<ny}. We
claim that ¢(<0, Q, 8>) = <0, P, €>. Indeed, if f e <0, O, 8> we have fory e P

ny ny
10O =1L =W HI = ILENEMaDI =1 ZAF (D)
sg_’l I TLF () <zs,>_51 Yl <e

By linearity of ¢ we conclude that ¢ is continuous.

Define 6: Cp(Y) —> C,(X) by 6(g)=(L(g) - W) |X. In the same way we can prove
that 8 is a well-defined linear mapping and as is easily seen, 8=¢"' so that ¢ is a linear
homeomorphism. g

We define L*(X) similar to L (X) using C;(X) instead of C,(X). All observations
made above for L (X) are also valid for L*(X ).
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REMARK: The results in this section are often used in the literature on function
spaces with the topology of pointwise convergence (for example [41] and [44]). We
were not able to find an explicit reference for their proofs, so we provided them our-
selves. For more information on dual spaces of topological vector spaces we refer to
[45].

§1.4. Supports and the topology of pointwise convergence

When dealing with continuous linear functions between function spaces endowed
with the topology of pointwise convergence, it is possible to give a precise description
of supports (cf. lemma 1.4.1).

Let X and Y be spaces, let ¢: Cp(X)-—>Cp(Y) (resp. ¢: C;(X)—ac;(Y)) be a con-
tinuous linear function and let y € Y be fixed. Notice that the function y,: C,(X) > R
(resp. yy: C;(X ) > R) defined by y, =&, -¢ is continuous and linear. So y, e L (X)
(resp. y, e L*(X)), the dual of Cp(X) (resp. C;(X)). For every fe C(X) (resp.
feC"(X)) we have v, (f)=0(f)(y). By theorem 1.3.3 there are for y,=#0,
X1y...s XpeXand Ay, ..., A, € R\ {0} such that y, =2/, A;x; (notice that whenever
¢ is a bijection, y, #0 for every ye Y). This means that for every fe C(X) (resp.
feC (X)), 0(F)y) =Z- Aif (x). Then

1.41 LEMMA: supp(y)={x1,..., x,}.

PROOF: Let x € supp (y) and suppose that x ¢ {x{, ..., x,}. Since X\ {x,..., x,} is
open, there is fe C(X) (resp. fe C*(X)) such that f(x;)=0 for every i<n and
O(f)(»)=0. But 0(f)(y)=Z"_; A;f (x;)=0. Contradiction.

Now let i<n be fixed and U an open neighborhood of x; such that
Un{xj:j<nandj#i} =@. Let fe C*(X) be a Urysohn function with f(X\U)=0
and f (x;)=1. Then 6(f )(») = £/ Aif (%) =4 #0. g

From lemma 1.4.1 we have the following corollary of which part (b) simplifies the
notion of effectiveness in the case of the topology of pointwise convergence

1.4.2 COROLLARY: Let X and Y be spaces, and let ¢: Cp(X)— Cp(Y) (resp.
o: C;(X) - C;(Y)), be a continuous linear function. Then for y € Y,
(a) for every z e supp(y), there is A, e R such that ¢(f )(¥)=Z,qupp () Aof (2),
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for every fe C(X) (resp. fe C*(X)), and
B)if f.geCX) (resp. f,ge C* (X)), coincide on supp(y), then
o)) =0(g)(y).

Another useful property of supports with respect to the topology of pointwise con-
vergence is given in the following:

1.4.3 PROPOSITION: Let X and Y be spaces and let ¢: Cp(X)— Cp(Y) (resp.
o: C;(X )—)C;(Y)) be a linear homeomorphism. Then for every xe X we have
x e suppsupp (x) (in other words, for every x e X there is y e supp(x) such that
x € supp (y)). In particular supp Y =X.

PROOF: Let x € X and suppose x ¢ supp supp (x). Since supp supp (x) is finite (lemma
1.4.1), there is a Urysohn function fe C*(X) such that f(x)=1 and
f (supp supp (x)) =0. By corollary 1.4.2 (b) it follows that ¢(f)=0 on supp(x) and
again by corollary 1.4.2 (b) it then follows that f x)=0""(0(f))(x) =0, and we arrived
at a contradiction. g

1.4.4 PROPOSITION: Let X and Y be spaces and let ¢: Cp(X)— Cp(Y) ( resp.
o: C;(X)—>CP*Y ) be a continuous linear surjection. Then supp:Y — P(X)\ {@} is
LSC.

PROOF: This follows from corollary 1.2.15 (a) (resp. corollary 1.2.16), lemma 1.2.7
and the remark following lemma 1.2.7. o

In section 1.5 we need the following

1.4.5 LEMMA: Let X and Y be normal spaces, and let ¢: Cp(X) > Cy(Y) be a con-
tinuous linear surjection. Then for each closed and bounded K cX, the set
L={yeY:supp(y)cK} is closed and bounded in Y.

PROOF: By proposition 1.4.4, supp is LSC hence L is closed. If L is not bounded, L
contains a closed discrete subset {y,:neIN}. For each nelN, let
th=n"Z;csupp(y,) | Az 1. Then 1, >0. Let g e C(Y) be such that g(v,)=t,. Since ¢ is a
surjection, there is fe C (X) such that ¢(f)=g. Since K is bounded, there is ¢ € R such
that f (K)c [—c, c].

Let n e IN be such that n > c. Then



§1.5. First applications 31

LOU )Y | = 1Zcsupp gy Aaf (2)]
< Bresuppiom e 11 D)1
< Trenppny 1|
<t,.

Contradiction. This proves the lemma. g
If we consider function spaces C ;(X ) we have the weaker

1.4.6 LEMMA: Let X and Y be metric spaces and let ¢: C; (X) —)C;(Y) be a con-
tinuous  linear  surjection. Then for each compact KcX, the set
L={yeY:supp(y)cK} is compact.

PROOF: By proposition 1.4.4, supp is LSC, hence L is closed in Y. For fe C"(K), let
F e C*(X) be an extension of f. Define

0: C,(K) = C,(L) by 6(f)=¢(/) I L.

If ge C*(X) is another extension of £, then f and g coincides on suppL, hence by
corollary 1.4.2 (b) ¢(f) =d(g) on L. This implies that 6 is well-defined. It follows that ©
is a continuous linear function. By corollary 1.2.23 we then have that 8 considered as a
function from Cj,(K) to C},(L) is also continuous. We claim that 0 is surjective. Let
ge C*(L) and let ge C*(Y) be an extension of g. Since ¢ is surjective, there is
he C*(X) with ¢(h)= 5. Let f=h |K. Since h exicnds f, B8(f) =g, so O is a surjection.
By [47, Prop. 7.6.2] we have for a space Z that Cy(Z) is separable if and only if Z is
compact and metrizable. This implies that C,(K) is separable and hence C:(L) is
separable. So L is compact. g

The proofs of lemma 1.4.5 and lemma 1.4.6 are different and not reversible.
REMARK: Jan Pelant provided us with the description of supports when dealing

with the topology of pointwise convergence. We were informed that Arhangelskii
knew of this description of supports.

§1.5. First applications

Let X and Y be spaces. We define X and Y to be /,. { or {,-equivalent whenever
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C,,(X) and C,,(Y), Co(X) and Cy(Y) or Cp(X) and Cp(Y) are linearly homeomorphic.
We say that a topological property 2 is preserved by (,, { or {,-equivalence (resp. é;,
{o or ly-equivalence) if for {p» 4y OT {y-equivalent (resp. [,*,, {o or {,-equivalent) spaces X
and Y we have X has property 2 iff Y has property #. In this section we give some to-
pological properties which are or which are not preserved by ¢,, { or {,-equivalence

resp. {,, Ly or {,-equivalence) and we state some questions.
P- ¢ps €0 b-€q q

1.5.1 THEOREM [1]: The following topological properties are preserved by (,-
equivalence:
(a) pseudocompactness,
(b) compactness, and
(¢) o-compactness.

PROOF: Let X and Y be ¢,-equivalent spaces.

By corollary 1.2.9 and 1:2.15 (a) we have that pseudocompactness is preserved by
{p-equivalence.

For (b) and (c) we use that by proposition 1.3.6 L(X) and L(Y) are linearly
homeomorphic. For every n € IN define h,: X" x[-n, n]* = L(X) by

n
h,,(xl, e Xy Oy e, (x,,)=.Zl(x,~x1.
i=

By proposition 1.3.5, X is homeomorphic to X as subspace of the topological vector
space L(X), hence h, is continuous. Furthermore L(X)=UT=1 h, (X, x[-n, n]").
Suppose X is 6-compact. Then we have that L (X) is 6-compact, and hence that L (Y) is
o-compact. By proposition 1.3.5, Y is closed in L (Y) so Y is 6-compact. This finishes
the proof of (c). When X is compact we again have that Y is 6-compact and hence
Lindelof. Furthermore by (a) we have that Y is pseudocompact. Since each Lindelof
space is normal, and each normal pseudocompact space is countably compact, we have

that Y is a Lindelof countably compact space, hence Y is compact. g

This theorem and the proof of (b) and (c) are due to Arhangelskii. It follows that for
normal spaces countable compactness is preserved by {,-equivalence. Whether this is
true for all spaces is still an open question. By the observations in section 1.2 it was
possible to give an easier proof of (a), than the original one. For (b) and (c) this is not
possible unless we assume that in X and Y every closed and bounded subset is compact.
For such spaces we will now derive in theorem 1.5.2 a result in the same spirit as the
previous one.
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For a space X let X(X) be the family of all compact subsets of X. We regard X(X) as
a poset under inclusion. Then a subset 3 is cofinal in X(X) whenever for each K € X(X)
there is B € B with K < B. The cofinality of X(X) is the cardinal defined by

cof X(X)=min{ 1B : B is cofinal in X(X)}

(cf. [21]). A space X is said to be hemicompact whenever cof X(X) <.

1.5.2 THEOREM: The cofinality of the family of compact subsets of a space is
preserved by {,-equivalence in the class of spaces in which every closed and bounded

subset is compact.

PROOF: Let X and Y be {,-equivalent spaces in which every closed and bounded sub-
set is compact and let ¢: C,(X) — C,(Y) be a linear homeomorphism. Without loss of
generality we assume cof X(X) <cof X(Y). Let {K;:i e/} be cofinal in X(X) such that
11| =cof X(X). By corollary 1.2.15 (b) and the assumption on Y we have that s—u_ﬁl—)‘l?, is
compact for every i e /. It suffices to prove that {m :i e l} is cofinal in X(Y). For
this let AcY be compact. Again by corollary 1.2.15 (b) and the assumption on X,

supp A is compact in X. So there is i € I with suppA cK;. Then by proposition 1.4.3,
A csuppsuppA csuppK;. g

It remains open whether in general the cofinality of the family of compact subsets is
preserved by {,-equivalence. The results in section 1.4 allow us to obtain stronger
results for an even more restricted class of spaces.

1.5.3 THEOREM: Let X and Y be normal spaces and let 0: Cp(X)— Cp(Y) be a
continuous linear surjection.
(a) If X is pseudocompact, then Y is pseudocompact.
If moreover in Y every closed and bounded subset is compact, then
(b) if X is compact, then Y is compact,
(c) if X is 6-compact, then Y is G-compact, and
(d) cof X(Y) £ cof X(X).

PROOF: For part (a) we have by lemma 1.4.5 that the set {ye Y :supp(y)cX}=Y is
pseudocompact whenever X is pseudocompact. Part (b) follows from part (a) and the
assumption on Y.

For (c) let X=U:=1X,, with for each ne N, X, X, ;; and X, compact. Let
Y,={yeY:supp(y)cX,}. By lemma 1.4.5 and the assumption on Y we have that ¥,
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is compact. Since for each y € Y, supp () is finite we also have that Y=U:=1 Y,.

For (d) let ({K;:iel} be cofinal in X(X). For each iel let
Li={yeY:supp(y)<K;}. Then L; is compact. We claim that {L;:i e/} is cofinal in
X(Y). Let A cY be compact. Then by corollary 1.2.15 (b), s_u;;p—x is compact. Hence
suppA K, for some i e /. This implies A € L;. g

By using lemma 1.4.6 instead of lemma 1.4.5 we obtain for metric spaces the fol-

lowing

1.5.4 THEOREM: Let X and Y be metric spaces and let ¢: C;(X)—)C;(Y) be a
continuous linear surjection. Then
(a) if X is compact, then Y is compact, and
(b) if X is 6-compact, then Y is G-compact. o

1.5.5 COROLLARY: Compactness and o-compactness are preserved by l;-

equivalence in the class of metric spaces. g

The proof of theorem 1.5.3 (d) makes use of corollary 1.2.15 (b). Since we do not
have such a result for continuous linear functions between function spaces C;(X ) we
cannot copy the proof of theorem 1.5.3 (d) to this case.

Now that we have the above theorems for 4, and l;-equivalence, we become in-
terested whether the same result hold for 4 and /y-equivalence (resp. ¢, and ly-
equivalence). First we deal with ¢ and {;-equivalence.

1.5,6 LEMMA: Let X and Y be spaces and let ¢:Cy(X)—>Co(Y) (resp.
0:C 6 X)—>C 3 (Y)) a continuous linear function. Then for every compact B Y, supp B

is compact.

PROQOF: There are non-empty compacta C,...,C,inXandopenUy,..., U, inY
such that

n

0e NA(C;, UD o™ (A B, (-1, D).

Let C =U:’=]C,-. Then C is compact. We claim that suppB c C. To the contrary sup-
pose there are ye B and xe supp(y)\C. Since X\C is a neighborhood of x and
x € supp (y) there is fe C(X) (resp. fe C*(X)) such that £ (C)=0 and ¢(f)(y)#0. By

linearity of ¢ we may assume ¢(f)(y)=1. Since Oe ﬂ?:lA(C,-, U;) we have
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Oe ﬂ;’:lUi, so fe ﬁ?zlA (C;, Uj). This gives 0(f) e A (B, (-1, 1)) which implies that
o(f)(y) e (-1, 1). Contradiction. We now have suppB cC, so that suppB cC, which
implies that supp B is compact. g

1.5.7 THEOREM: Pseudocompactness is preserved by ly-equivalence. Compact-
ness is preserved by ly and ly-equivalence.

PROOF: Let X and Y be {y-equivalent spaces By corollary 1.2.9 and 1.2.15 (a) we have
that pseudocompactness is preserved by {y-equivalence.

Let ¢: Co(X) = Co(Y) (resp. ¢: CS X) -—-)CS(Y)) be a lincar homeomorphism. Sup-
pose X is compact. By lemma 1.2.5 and corollary 1.2.15 (a) (resp. corollary 1.2.16),
ELTp—p—)—( =Y, and hence by lemma 1.5.6, Y is compact. o

The proof that pseudocompactness is preserved by {-equivalence cannot be copied
for {g-equivalence since the proof of corollary 1.2.9 makes use of corollary 1.2.15 (b).
From theorem 1.5.7 and corollary 1.2.21, theorem 1.5.1 (a) and (b) follow for the class
of spaces in which every closed and bounded subset is compact.

For {, and {;-equivalence we have
1.5.8 THEOREM: Pseudocompactness is preserved by &, and {y-equivalence.

PROOF: Let X and Y be {,-equivalent (resp. {,-equivalent) spaces and let
0: Cp(X) = Cp(Y) (resp. ¢: CZ(X) —)CZ(Y)) be a linear homeomorphism. Suppose Y is
pseudocompact and X is not pseudocompact. Since <0, ¥, 1> is open in Cp(Y) (resp.
C,(Y)) there are fi,..., f, in C(X) (resp. C*(X)), bounded Ay, ..., A, in X and
€1,...,€,>0 such that Oe M}, <f, A;, &> and O(io<f, Ajr €>)C<0,Y, 1>,
Let A =U,’~'=1A,~. Then A is bounded. Since X is not pseudocompact there is x € X \A.
Let fe C*(X) be a Urysohn function such that f(A)=0 and f(x)=1. Since f#0,
®(f)#0. Let y e Y be such that ¢(f)(y)#0. Define g: X > IR by g =f/¢(f )(y). Since
g(A)=({0}, g€ ﬁ7=1<f;, A;, €>, 50 ¢(g)e <0, 7, 1>. However ¢(g)(y)=1. Contrad-
iction. g

Question 1: Is pseudocompactness preserved by {-equivalence? Is compactness
preserved by ¢, or {,-equivalence? Are o-compactness or the cofinality of the family of
compact subsets of a space preserved by {, {9, 4 or t;-equivalence?
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From now on in this section we only deal with function spaces endowed with the to-
pology of pointwise convergence.

It is well-known that cardinality and density are preserved by ¢,-equivalence [2]. By
the above techniques, we can give an alternative proof which is also valid for é;-

equivalence:

1.5.9 THEOREM: The following cardinal invariants are preserved by (,-
equivalence (resp. l; -equivalence),
(a) cardinality, and
(b) density.

PROOF: Let X and Y be ¢,-equivalent (resp. l;-equivalent) spaces and let
9: Cp(X) — Cp(Y) (resp ¢: C,*,(X)—)C;(Y)) be a linear homeomorphism. For (a), no-
tice that if 1X | =n, the algebraic dimension of C,,(X) is equal to n, hence we have that
'Y | =n. So without loss of generality we assume X< |X|<|Y|. By lemma 1.4.1,
IsuppX | < 1X |, so by proposition 1.4.3, |1Y | <1X |. We conclude that | X | = 1Y |.
For (b) notice that if d(X) is finite, then since cardinality is preserved by ¢,-
equivalence, d(X)=1X1=1Y1=d(Y). So without loss of generality we assume
Ro<dX)<d(Y). LetD C X be such that D =X and ID | =d(X). Let E =suppD. By
lemma 1.4.1, |E | < |1D |. To prove that d(X)=d(Y) it suffices to prove that E=Y. By
proposition 1.4.3, lemma 1.2.6 and corollary 1.2.15 (a) (resp. corollary 1.2.16),

Y =supp X =supp5 CsuppD =ECY.
We conclude that density is preserved by {,-equivalence. g

As a corollary we see that separability is preserved by ¢, and t;-equivalence )
Lindel6fness is preserved by ¢, and l;-equivalence in the class of metric spaces.

Question 2: Are density or cardinality preserved by { or {-equivalence (resp. ¢, or
lz-equivalence)?

1.5.10 THEOREM: Local compactness is preserved by {,-equivalence in the class
of paracompact first countable spaces.

PROOF: Let X and Y be {,-equivalent paracompact first countable spaces. Suppose X
is locally compact and Y is not locally compact. Since X is a locally compact paracom-
pact space, there is a locally finite open cover {X;:se S} of X such that for each s e §,
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/?: is compact. Let y € Y be a point without compact neighborhood and let (U, : n € IN}
be a decreasing neighborhood base at y. Then for each n € IN, U, is not compact.

By lemma 1.2.10 and corollary 1.2.15 (a) there is ke IN and {s;,..., s} €S such
that supp Uy Uf=1Xsl.. LetL =Uf=1Xx,.. Then L is compact.

We now have by lemma 1.2.6 and corollary 1.2.15 (a), supp l7k C.S_l:l—p-p_Uk.CL so by
proposition 1.4.3, Uy supp supp Uyc suppL. Since each countably compact
paracompact space is compact [24, Th 5.1.20], we have that U, is not countably com-
pact. Since each paracompact space is normal [24, Th 5.1.18], Y is normal, and since
each pseudocompact normal space is countably compact [24, Th. 3.10.21], Ek is not
pseudocompact. Hence by normality of Y, Uk is not bounded in Y. However L is com-
pact so by corollary 1.2.15 (b), supp L is bounded in Y. Contradiction. g

Theorem 1.5.10 is due to S.P. Gulko and O.G. Okunev [2]. Their proof was by dif-
ferent methods than ours. In section 2.4 we show that the first countability assumption
is essential in this result. '

Question 3: Is paracompactness essential in theorem 1.5.10?

Question 4: Does theorem 1.5.10 hold for { or {,-equivalence? Does it hold for ¢,
{o or l;-equivalence?

Before we state our next theorem we first need the following

1.5.11 LEMMA: Let X and Y be spaces and ¢: C, p(X) > C,(Y) a homeomorphism.
Suppose that (fy)n N is a sequence in C,(X) such that f, converges pointwise to a
discontinuous function fe RX. Suppose g: Y =R is an accumulation point of the set
{0(f,) | ne IN}. Then g is not continuous.

PROOF: Since {f, | n e IN} is closed and discrete in Cp(X) we have {0(f,) | ne N} is
closed and discrete in C,(Y). o

For a space X let X") = {x e X : x is an accumulation point of X }. We have the fol-
lowing

1.5.12 THEOREM: Let X and Y be {,-equivalent spaces which are both normal
and first countable. Then XV is countably compact if and only if YO js countably
compact.
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PROOF: Suppose X is not countably compact and Y is countably compact. Since
X is not sequentially compact, there exists a closed discrete set F ={x, | ne IN} in
XM, For every ne N let {U} 1 jeIN} be a decreasing open base at x, and f] a
Urysohn function such that f}(x,)=1 and f}(X\U})=0. Then f} —>X, pointwise,
where X is the characteristic function of x,. Notice that X, is discontinuous. Further-

more let ¢: C,(X) — C,(Y) be a linear homeomorphism and let g}’ =¢(fj~‘).
CLAIM: Forevery ye Y and n e N, the set {g}}(y) | j € IN} is bounded in R.

Suppose not. Then there are y € Y and n e IN, such that without loss of generality for
every k e IN there is j; € IN, with gj, (v)22*. The function f=):}('°=12"‘f;‘k e Cp(X), so
¢(f)=22°=12"‘g}'k eCp(Y). But then we have a contradiction since
O =712 8], () =eo.

For every yeY, let A, be compact in IR such that {g}(y)|je IN}cA,. Then
I,.yA, is a compact subset.of R”. Since {gj | je N}cIl,.yAy, {g] | j€ N} has an
accumulation point ¢,. By lemma 1.5.11, 6, is discontinuous, say at y,. Notice that
yne Y® . Since Y is sequentially compact, without loss of generality we may assume
that there is y € Y such that>y,, —y. Let {V, | ne IN} be a decreasing open base at y.
Without loss of generality y, e V.

Since Y is first countable, for every n e IN there is a sequence (y}); in V, such that
Yk — yn and

6,(y%) 1 6, (¥p)- *)

Let K=, n e {Vns Y} U {y ). Then K is compact. Indeed, let I be an open cov-
er of K. There is VeV with ye V. There is npe IN such that ye V, V. Then
Unzno ke ns el ulyl eV, Since U, oo U {yn, Y&} is compact, we are

done.

Since K is compact, we have by corollary 1.2.15 (b) that ;JEp—f( is bounded in X.
Since F is closed and discrete and X is normal, F is not bounded. This implies that there
is n € IN such that x, ¢ supp K. Then there is jo € IN such that U”, ~suppK =@. So for
every ze K and j 2 jo, f} and the zero function on X are equal on supp (z). Then by
corollary 1.4.2, we have that g}}(z)=0 for every j >/, and z € K. But then for every
ke IN we have that 6,(y{)=0 and 6,(y,)=0, which gives a contradiction with (*).
This completes the proof of the theorem. g

In section 2.4 we show that the first countability assumption in theorem 1.5.12 is

essential. The question remains whether normality is essential.
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Our last result in this section deals with the class of metric spaces. Let X be a metric
space and ¥ a family of subsets of X. We define diam U to be sup {diam U : U € U}.
We first need the following

1.5.13 LEMMA: Let X be a metric space which is not completely metrizable and
let {U,:neIN} be a collection of open covers of X such that for each ne NN,
diam U, < 1/n. Then there is a strictly increasing sequence (i,),. N Of natural numbers

— ©o
and for each n e IN, there is U, € U; such that U, cU,, and moreover (M, U, =0.

PROOF: Let X be the completion of X. For each U e U,, there is Vi open in X such
that diam Vy <3/n and VynX=U. Let V,=U{Vy :U € U, ). Then V,, is open in X

and X cV,. So V=ﬁ:=1 V, is a G g-subset of X such that X < V. Since X is not com-
pletely metrizable and V is completely metrizable ([24, Th. 4.3.23]), there isx e V\X.

CLAIM: There is a strictly increasing sequence (i,),. of natural numbers and there
are foreachne N, U, e U; such thatx e Vy, and VUM cVy,.

Leti;=1andletUje U; be suchthat xe Vi . Let m > 1 and suppose iy, . . ., i1
and Uy,..., U,_; are found. Let §=d(x, )?\Vum_l) and let i, >i,_; be such that
/iy <8/3. There is UneU; such that xeVy . Since diam Vy, <3/i, <8 and

xeVy,, VU,,, cVy,_,- This proves the claim.

Since diam Vyy, —0 (m —> ), M, 1 Vyy, = {x). This implies

NUn=NVy, nX=0.

m=1

Furthermore for m € IN, we have

Uns1=Vy,,, nXcVy, nX=Up.

This proves the lemma. g

Recall from section 1.2 that for metric spaces X and Y and a linear function
¢0: C(X)—> C(Y) we defined for U c X, the set Ty ={ye Y :supp(y)nU #@}, and for
a family U of subsets of X the collection Ty ={Ty:U e U}. We now state our last
theorem in this section.
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1.5.14 THEOREM: Let X and Y be metric spaces and let §: Cp(X) = C,(Y) be a
continuous linear surjection. If X is completely metrizable, then Y is completely metriz-
able.

PROOF: Suppose X is completely metrizable and Y is not completely metrizable.
Since X and Y are metric spaces, by lemma 1.2.11 there are locally finite open covers
U, of X and V¥, of Y, (n e IN), such that

(1) diam U, < i diam ¥, < l, U, + refines U, and
n n

(2) each V e 1, intersects only finitely many elements of Ty, .

By lemma 1.5.13, we may assume that for each ne IN, there is V, e 1}, such that

r\::,v,, =@ and for each ne N, V,,; V,. By (2), for each n e IN, there is a finite
subset {UT, ..., Uy, } of U, such that

@) forUel,,V,nTy=Difandonlyif Ue {UT,..., U} }.

We claim that for each n € IN,

Mp 41 mp -

@ VUt cuus.
j=1 j=1

Indeed, since U,,, refines U,, there are for each j<m, ), U;elU, such that
UT*' cU;. Since Vy 4y €V, and Vyyy ATy #@, we have V, n Ty, #@. So by (3),
Uje (U%,..., U ). This gives U oy U <\Uj2 Ul This proves (4).

Notice that by (3), for every ne IN, supp V,, U;":, Uj}.Foreachne N, lety, e V,.
Then

mp

(5) supp(yn)cngU;’.
j=

oo

Let K=, _;supp (¥,). Since K is a closed subset of X, K is complete.
CLAIM: X is compact.

Since K is complete, it remains to prove that K is totally bounded. To this end it
suffices to prove that U:;l supp (y,) is totally bounded. Let € >0 and let j € IN be such
that 1/j <&/2. For k Smj, let z; € U{. Since diam U{ < 1/j, Uf c B (z, €). Then by (4)
and (5), U:=jsupp (yn) UTLIB (z4, €). Since U{,=1 supp (v,) is finite, we are done.
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By lemma 1.4.5, L={ye Y :supp(y)cK} is a closed and bounded subset of Y,

hence L is compact. Since (M), V=0, ()N L is a sequence without convergent
subsequence. Contradiction. This proves the theorem. g

1.5.15 COROLLARY: Complete metrizability is preserved by (,-equivalence in

the class of metric spaces. o

In [52], Uspenskil proved that for {,-equivalent spaces X and Y, we have that if X is
metric, then Y is a 6-metrizable paracompact space, where c-metrizable means a count-
able union of closed metrizable subspaces. In view of theorem 1.5.14, one could con-
jecture that if X is moreover completely metrizable, then Y is also éech—complete. This
is however not the case. In example 2.4.10 we give two {,-equivalent spaces X and Y
with X countable metric locally compact and Y paracompact G-metrizable but not
éech-complete.

In general if ¢: C ;(X )—> C;(Y)' is a continuous linear surjection, for metric spaces X
and Y, the proof of theorem 1.5.14 does not work. By example 1.2.12 we cannot make
use of a lemma such as lemma 1.2.11.

Most of the proofs in this section concerning the topology of pointwise convergence
depend strongly on corollary 1.2.15 (b). Since we do not have such a result for continu-
ous linear functions between function spaces C;(X ), we cannot copy these proofs. The
question remains whether the results for {,-equivalence are also valid for t;-
equivalence. Of course there are many more questions to ask. We made a selection in
this section and we did not have the intention to be complete.

REMARK: For a recent survey on results obtained for {,-equivalence we refer to
[2]. Theorem 1.5.12 can be found in [5] and theorem 1.5.14 can be found in [7]. As far
as we know all other results in this section (except for theorems 1.5.1, 1.5.9 and 1.5.10)
are new.






CHAPTER 2

On the 4, and {y-equivalence of locally compact spaces

The purpose of this chapter is to present isomorphical classifications of function
spaces of some locally compact spaces endowed with the topology of pointwise con-
vergence and with the compact open topology. Since ordinals play an important role in
the proofs of these classifications, in section 1 we derive some (well-known) properties
of ordinals. Other important notions are derivatives of spaces and scatteredness. In sec-
tion 2 we will give the relevant definitions and present some preliminary results, for ex-
ample the theorems of Cantor-Bendixson and Sierpifiski-Mazurkiewicz. In section 3 we
prove some rather general results concerning linear homeomorphisms between certain
function spaces.

After these three sections we are in a position to present the first isomorphical
classification. In section 4 we present a complete classification of the function spaces
C,(X) for separable metric zero-dimensional compact spaces X. It turns out that this
classification is similar to the one Bessaga and Pelczyfski gave in [10] for the spaces
Co(X). In section 5 we present a complete isomorphical classification of the function
spaces Cp(X), for compact ordinal spaces. This classification is also similar to one for
the spaces Cy(X) (viz. the one Kislyakov gave in [34]). In a sense, it is an extension of
the classification found in section 4. In section 6 we present a classification of the
spaces Co(X) and C,(X) for non-compact 6-compact ordinal spaces X. Finally in sec-
tion 7 we present a complete isomorphical classification of the spaces C(X) and C,(X)
for separable metric zero-dimensional locally compact spaces X. This result uses the
classifications found in sections 4 and 6.

We already proved that for spaces X and Y having the property that each closed and
bounded subset is compact, Cp(X)~Cp(Y) implies C(X)~Co(Y). It turns out that in
each of the classes mentioned above we also have the converse implication. Recall that
the converse implication does not hold in general (cf. page 29).
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§2.1. Ordinals

Ordinals play an important role in this monograph, in particular prime components.
In this section we will present some facts about ordinals, we will give the definitions of
initial, regular and singular ordinals and of prime components, and we prove some
(well-known) results. Most of these can be found in [48] and [35]. For definitions of or-
dinals, cardinals and related topics which are not defined or proved in this section, we
refer to [48], [35] and [32]. In this section, every greek letter denotes an ordinal, and
finite ordinals will be denoted by #n or m occasionally.

We begin with stating some basic properties of addition, multiplication and ex-
ponentation of ordinals. Recall that addition of ordinals is associative but not commuta-
tive. If o and B are ordinals, then oo+ = and if o > 0, then B+ o > . Observe that not
always o+ > B3 because 1+ ®= . Another important property of addition is the fol-
lowing: If o>, then there is exactly one ordinal y such that o.=p+7y. We denote this
number y by o — 3. With these properties one can easily derive the following

2.1.1 PROPOSITION: Let «, B, Yand 8 be ordinals. Then
(a) B<yimplies a+B <+,
(b) B<yimplies B+o<y+a, and
(c) a<yandP<3implies a+p<y+8.g

Like addition, multiplication is associative but not commutative (for example
20=w#w0?2). Now let o, B, and Y be ordinals. Then o-(B+7Y)=0o-B+a-y, but in gen-
eral (B+7)-a#PB-a+ya (for example (1+1)w=0z02=1-w+1'0). One can now
easily deduce that if a>0 and B>, then o > oy, however, if B>y then Bra2ya
(notice that 2-0=1-w).

We also have the following important

2.1.2 PROPOSITION: Let o and B be ordinals. If o> 0 then there are ordinals |\
and v such that B=o-w+v withv < 0.

2.1.3 COROLLARY: Ler o, B and y be ordinals such that B<a-y. If a.>0 then
there are ordinals W and v such that B=o-u+v with Lt <yand v < 0.

PROOF: By proposition 2.1.2 there are ordinals W and v such that B=o-u+v with
v < o. By proposition 2.1.1 (a) B> ol. So if w2y, then B2 oy >0y, which is a con-
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tradiction. Hence pu<7y.g

Exponentation of ordinals o and B is defined by transfinite induction as follows:

a)If p=0then P =1,
b) if B is a successor, say B=y+1, then o =a¥ e,
¢) if B is a limit ordinal, then o =sup {aY:y<B}.

With this definition one can easily prove the following

2.1.4 PROPOSITION: Ler o, B and 'y be ordinals. Then
(a) ifa>1and P <y, then of <o,
(b) ifo.>1 then oP 2B, and
(c)aPrY=ab-o¥. g

The following lemma will be used in section 2.5.

2.1.5 LEMMA: Let o.> 1 and B21 be ordinals. Then there are Y<P, 1 <A< o and
8 <o such that =oAL +38.

PROOF: By proposition 2.1.4 (a) and (b), B<aP <aPf*!, so the set A= (v:a¥ >B) is
non-empty. Let p=minA. Notice that 1<u<f+1. If p is a limit ordinal, then
B<o*=sup{a’:v<p} implies there is v < with B <a". This is a contradiction, so
u=y+1 for some 7. Since u<P+1, y<P.

Since B < oY -a, by corollary 2.1.3, there is 8 < o and A < o such that B=a¥-A+3. If
A=0, then B=5 < af which is impossible, so A2 1.

Let o be an ordinal. By & we denote the cardinality of o (i.e., 0= |W (o) ) and we
call o the power of a. An ordinal ¢ > is called an initial ordinal if ¢ is the smallest
ordinal  such that §=$, i.e., Y< ¢ implies ¥ < 0. To every initial ordinal ¢ we assign
the index i (¢) of ¢ as the ordertype of the set P(¢)={y < ¢: Wy is initial }. For example
i(w)=0and i (w;)=1. Notice that for every initial ordinal ¢, i (¢) <¢.

The following theorem easily follows from the above definitions.

2.1.6 THEOREM ([35, Th. 3, p273]): If v and ¢ are initial ordinals with y < ¢,
then i (y) <i($).g

As a direct consequence of this theorem we remark that to distinct initial ordinals



46 On the , and Ly-equivalence of locally compact spaces

correspond distinct indices. So we may denote the initial ordinal ¢ with index o by ®,.
Since i (¢) < ¢, it follows that a<w,. The following theorem states that @, is defined
for every ordinal o.

2.1.7 THEOREM ([35, Th. 5, p273]): Every ordinal is the index of some initial or-
dinal.

An a-sequence is a function ¢ with domain W (o), whose values are ordinals. If
Y<B<oa implies ¢(y)<d(B), then ¢ is an increasing o-sequence. The limit
limg < o §(§) of an increasing o-sequence ¢ is the ordinal sup {¢(§):§ <a}. We say
that an ordinal A is cofinal with a limit ordinal o, if A is the limit of an increasing o
sequence 0, i.e., A= lim ¢(&).

E<a

2.1.8 THEOREM ([35, Th. 8, p274]): If A is a limit ordinal, then @, =éini .
<

2.1.9 THEOREM ([35, Th. 10, p274]): Let A >0 be a limit ordinal. The smallest
ordinal o such that A is cofinal with o is an initial ordinal.

If we now define for every limit ordinal A, the ordinal ¢f (A) as the smallest o such
that A is cofinal with @, then by theorem 2.1.9, ¢f (A) is an initial ordinal. For example
of (W)=, of (0)=0y, ¢f (0y) = and cf (W, )=0;. Since A=limg . B, A is cofinal
with itself, hence ¢f (A) <A

This observation leads us to the following definition. If ¢f (0g) =g, we call ®y a
regular initial ordinal or shortly regular. Otherwise it is called a singular initial ordi-
nal or shortly singular. For example, ® and ®; are regular and ®y, is singular. This is
standard terminology of course.

We are going to prove that if wy is singular, then vy is a limit ordinal (cf. theorem
2.1.10). For that we first recall the following well-known fact: If m and n are cardinals
which are not both finite, then m +n=max(m, n) =m-n. This allows us to derive some
important corollaries.

2.1.10 THEOREM ([35, Th. 9, p278]): If o is a successor, then Wy is regular.

PROOF: Let a=B+1 and @y =cf (0y). That means there is an increasing -
sequence ¢ such that lim§<m¥¢(§)=ma. But then W(mq)cu“(‘,yW(q)(é)). Notice

that | W (¢(&))! S(T)E . So we have by the above remark and theorem 2.1.6
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e
9
|

= IW(og)! < |U§<w,w(¢(é))| SZ‘«‘§<wy W (&)

2§<wy“T!3 = By 0 = Oax B, -

IN

It follows by theorem 2.1.6 that o.<max(B, y), so <Y. Since wy=cf (0y) <0, by
theorem 2.1.6 Y< o and thus y=0a.. g

2.1.11 COROLLARY: If wy is singular, then o. is a limit ordinal. g
The next two results are going to be used in section 2.5.
2.1.12 PROPOSITION: a-wp =g for every 0 < o < (.

PROOF: By the remark on page 52, m=m_g, so we are done if we prove that o-og
is initial. To this end, let 8 < cwg. By corollary 2.1.3 there are 1 < wg and v < & such
that S=ap+v. So d=0-fI+V=max({Q, I, V}). Since o, L, V< wp it follows that
8< E)E and therefore o-wg is initial. o

Notice that proposition 2.1.12 is not true for a=wg. For example, 0?20
2.1.13 PROPOSITION: Let 0.2 be an ordinal. IfY<@. then o = Q.

PROOF: We prove this by induction on . If y=1 then it is a tr1v1ahty, so lety>1 and
suppose the proposition is true for every d <.
Case 1: Yis a successor, say Y=0+1.

Then by the the remark on page 52, o' =o®-G=q-a =
Case 2: vy is a limit ordinal.

Then
o7 = limsy0®= 1Ug <yW (0®) | SZg oy IW (0P)]
= $5.400 =F0=0

(by the fact that Y< ). g
Notice that o need not be equal to @'. For example, a° > ®, but @® = .

2.1.14 EXAMPLE: There is a singular ordinal wy such that o.=®,. Indeed, define
the sequence (B,) of ordinals inductively as follows: Byo=0 and B,,;=wp,. Let

o=sup {B, :n e IN}. Then ©y =lim, . ,B,, hence ¢f (wy) =w. Furthermore o= (.
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We now come to the following definition. An ordinal p is a prime component if it
satisfies the following condition:

If p =P+ for some ordinals B and v, then y=0 or y=p.

Examples of prime components are ® and ;. The ordinals 3, ®+ 1 and @2 are exam-
ples of ordinals which are not prime components. Furthermore, O and 1 are the only
finite prime components. Since prime components play a very important role in this
monograph and since their properties are not well-known, we prove all the properties

that we need.

2.1.15 THEOREM ([48, Th. 1, p279]): An ordinal p is a prime component if and
only if for every ordinal B<p, p=p+p.

PROOF: Suppose that the ordinal p is a prime component, and let B < p. There is an
ordinal v such that p=[B+7v (see page 50). From the definition of prime component it
follows that Y=0 or y=p. Since B < p, we have y=p.

Now suppose that p satisfies the condition mentioned and that p=B+7y. Assume
v> 0. By proposition 2.1.1 (a) it follows that B < +y=p. But then p=B+p and we
may conclude that y=p and so p is a prime component. g

The next theorem plays an important role in section 2.6.

2.1.16 THEOREM ([48, Th. 2, p278]): For every ordinal o.> 0, there is an ordinal
B and a prime component p >0 such that =P +p, where B=0 or B=p.

PROOF: Let o >0 be an ordinal and A = {1 > 0: there is B such that a=p+1}. Notice
that Te A implies T< o (because by proposition 2.1.1 (b) a=pB+121). Let p=minA
(which exists because A is a non-empty subset of W (o) and the last set is well-ordered)
and pick B such that a=f +p.

We prove that p is a prime component. Indeed, suppose that p=p+v, with v>0.
Then ao=B+(u+Vv)=(B+H)+V, so Ve A and thus v=p. Since L+V2V (proposition
2.1.1 (b)) we have v <p, so v=p and hence p is a prime component.

Finally, if B < p, then by theorem 2.1.15, =+ p=p, so in that case we can choose

B=0. g

2.1.17 LEMMA ([48, lemma p282]): Let P be a set of prime components. Then
sup P is a prime component.
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PROOF: Let B=sup P. We prove that B is a prime component. Let y<f3. Then there
is a prime component p e P with y< p < . Let 8=B - p (see page 50). Then by theorem
2.1.15,

Y+B=v+(p+d)=(y+p)+d=p+5=p.

So by theorem 2.1.15, B is a prime component. g

By applying this lemma to the set P ={p<o.:p is a prime component}, we get the
following important

2.1.18 COROLLARY ([48, lemma p282]): Let a be an ordinal. Then there is a
largest prime component which is less than or equal to .. o

In the sequel we denote the largest prime component which is less than or equal to a
given ordinal o by o’.

2.1.19 LEMMA ([48, Cor. p305]): If a.>0 is an ordinal, then aw is the smallest

prime component larger than q.

PROOF: We first prove that ow is a prime component. So suppose W= +V with
v#0 and v#ow. By proposition 2.1.1 (a) and (b) it then follows that y, v < aw. By
corollary 2.1.3 there are ordinals m, n, ¥; and ¥, such that p=am+vy,, v=0n+7Y,,
m, n <, and y;, Y2 <O.

From proposition 2.1.1 (a) it follows that p <oam +a and v<on +0o. Now with
proposition 2.1.1 (c) it follows that cw=u+V < m + L+ 0n + A, so by the remark on
page 50, aw < o(m +n +2) < aw. This is a contradiction and we conclude that o is a
prime component. '

Now suppose that there is a prime component p such that a < p < «w. By corollary
2.1.3 there are ordinals n and y with # finite and y < o such that p=on +7v. Since p is a
prime component, Yy=0 and it follows that p=on. Since a<p, n>1, so
p=a(n-1)+a. Since p is a prime component and 0 < o0 < p we arrived at a contradic-
tion. o

2.1.20 COROLLARY: Let o be an ordinal. Then there is ne IN and y< o such
that a=o’n +7.

PROOF: Since o is the smallest prime component larger than o (lemma 2.1.19),
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o’'<a<a’®w. So by corollary 2.1.3 there are ordinals n <® and y< o such that
a=a'n+Yy. Since o=’ we have n#0, hence n e IN.

The following theorem will often be used in this monograph.

2.1.21 THEOREM ([48, Th. 1, p320]): An ordinal p >0 is a prime component if
and only if there is an ordinal |\ such that p =",

PROOF: Let p > 0 be a prime component.
CLAIM: There is o such that ®* <p < 0**!.

Indeed, by lemma 2.1.5 there are a.<p, 1 <A < ® and 8 < ®* such that p=@*-A+8.
Thus ©* <p < @**!, and the claim is proved.

Since p is a prime component and since the smallest prime component larger than
o is 0* ®=0**! (lemma 2.1.19), it follows by the claim that p = ©®

For the converse implication suppose there is v such that ®" is not a prime com-
ponent. Let u be the smallest among them. Suppose that p=v+1. Then by lemma
2119 ot =w''wis a primq component, which is not true, hence p is a limit ordinal.

\

But then w* =sup {®w":v<pu}. Since for v<p, ®" is a prime component, by lemma

2.1.17, ¥ is a prime component. Contradiction. g
The next lemma will be used in section 2.4.

2.1.22 LEMMA: Let o and B be ordinals such that 0.2 and o<p<a®. Then
o <P < ().

PROOF: Since a<pP<a®, there is ne IN such that a<p <a”. Furthermore by
theorem 2.1.21 (oc')2 is a prime component, from which we may conclude that
a’<o< (o). Since o< (a')?, it is easily seen that a” < (o')** (by induction and the
remarks on page 50). Whence (by proposition 2.1.4 (a)) o’ <B < (a)*" < (a)®. o

2.1.23 THEOREM ([35, Th. 9, p274]): Every initial ordinal is a prime component.

PROOF: Let ¢ be an initial ordinal. By corollary 2.1.20 there are n eIN and Y< ¢’ such
that ¢ =¢"n +7. So by proposition 2.1.1 (a), "< ¢ < ¢"(n + 1). By theorem 2.1.21, there

is an ordinal [ such that ¢’=w*. Notice that L= 1 (since ¢ =), so there is J, such that

1+8

p=1+8. By proposition 2.1.4 (c), ® =o-o® and therefore
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¢ (n+1) =o'+ =(n+ D o®=0'*? =¢.

It follows that ¢ =4 and since ¢ is initial, ¢’ =¢. g
2.1.24 COROLLARY: If ' is initial then 7 is a prime component.

PROOF: Let v < 1. Then @’ < w" (proposition 2.1.4 (a)), so @’-@' =" (proposition
2.1.12). So by proposition 2.1.4 (c), v+1=1, hence by theorem 2.1.15 7 is a prime
component. g

Finally we remark that the proofs of proposition 2.1.12, corollary 2.1.13 and propo-
sition 2.1.24 are due to us and were included because we could not find a reference.

§2.2. Derivatives and scattered spaces

In this section we briefly discuss some properties of derivatives of sets and scat-
teredness. Furthermore we formulate the well-known theorems of Cantor-Bendixson
and Sierpinski-Mazurkiewicz and we present some results which we need in section 2.3
and in chapter 4.

Let X be a topological space and let A  X. The derived set A4 of Ain X is defined to
be the set of all x e X satisfying the condition that for every neighborhood U of x (in X),
UnA\{x}#0 (ie., the set of all accumulation points of A in X). Notice that not
necessarily AdcA: for example let X =IR and A =(0, 1). It is well-known that AlcA
and that A4 is closed in X. Now for every ordinal o we define X (“), the o-th derivative,
by transfinite induction as follows:

a) X0 =x,
b) if o is a successor, say o=p+ 1, then X @ = (x ®))d,
¢) if o is a limit ordinal then X (@ = . x®.
<a
Notice that X" is the derived set of X in X. Furthermore we get XD from X by
"throwing away" all isolated points of X. The above is standard notation of course.

2.2.1 REMARK: If A is a subspace of a topological space X, then AV is the
derived set of A in A (so AV cA) and we put A? the derived set of A in X. Since not
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necessarily A4 C A it follows that in general A #A¢. We claim that AV =49 A, In
particular, if A is closed, then A1) = A€,

Indeed, let xe AV, Since AY) A, xe A. Let U be a neighborhood of x in X. Then
U nA is a neighborhood of xin A. Since xe AV, @2 U NAnA\{x)=UnA\{x} and
hence x € A%. For the reverse inclusion let xe A nA9 and let U be a neighborhood of x
in A. Let V be a neighborhood of x in X such that VAA=U. Since xeA¢
B2VAaA\(x})=UnA\{x},soxeAD,

2.2.2 PROPOSITION: Let X be a space. Then for every ordinal o. and B with o<
@) X9 js closed in X, and
1)) X(B) Cx(ﬂ).

PROOF: We prove (a) by transfinite induction. For =0 it is trivial. So let o0 >0 and
suppose (a) is proved for every P<a. If a is a successor, say a=B+1, then
X@ =(x®)4 is closed in X. If a is a limit ordinal then by the inductive hypothesis,
X®=MpoX® is closed in X, and (a) is proved.

We prove (b) by transfinite induction an . Notice that (b) is obviously true if B=qa,
so suppose that § > o and (b) is proved for every y with o<y < B. If B=y+1 for some
ordinal v, then by the inductive hypothesis X ® =xw )’jc)_(TYT cX@ Since by (a),
X© g closed, we have the desired result.

If B is a limit ordinal, then X® =M, pX® <X @ g

From remark 2.2.1 and proposition 2.2.2 (a) we easily get the following

2.2.3 COROLLARY: Let X be a space and o. an ordinal.
Then X@+D =(x®)M

2.2.4 PROPOSITION: Let X be a space and A a subspace of X. Then for each or-
dinal a,
@A® cXx® gnd
(b) if A is open then A =A A X®,

PROOF: We prove this proposition by transfinite induction on a. If =0, the proposi-
tion is obviously true, so suppose that o > 0 and that the proposition is proved for every
B < o.. First suppose that o is a successor, say o=+ 1.

For (a), since by the inductive hypothesis A® cX® by [24, Th. 1.3.4 (ii)]
A@ =(A (B))d C(X(B))d =x(®
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For (b) let xe A nX® and let U be a neighborhood of x in A. Since A is open, U is
a neighborhood of x in X, hence UnAnX®\{x}=U~XP\(x}20 (because
x e X®). So by the inductive hypothesis 32U nA X P\ (x} cU AP\ (x}, hence
xe A®, The reverse inclusion follows directly from (a).

If o is a limit ordinal (a) and (b) easily follow from the inductive hypothesis and the
definitions of A‘® and X' . g

2.2.5 PROPOSITION: Let o be an ordinal and X =[1, ®*]. Then X ® = {@®}.

PROOF: If ae=0 the proposition is obviously true, so suppose that o0 >0 and that the
proposition has been proved for every B < o. First suppose that o is a successor, say
a=B+1.If forie Nu {0}, X; =[P +1, ®B-( +1)], then

oo

X=UX;u{0%),
i=0

X; is open in X and X; =[1, o], so by the inductive hypothesis (Xi)(ﬁ)= {mB-(i+1)}.
By proposition 2.2.4 (b), X;nX® =(X;)®_ Since w* is an accumulation point of
{(oB-(i +1):i20}, we conclude that x® = {(oﬁ-(i +1):i20}u{®w®*} and so
X®={0*).

Now suppose o is a limit ordinal. Fix p < o and let B<y< a. Let A =[1, 0']. By the
inductive hypothesis and propositions 2.2.4 (a) and 2.2.2 (a), {0¥}=AY cX¥ cX ®,
Since ©® is an accumulation point of {®':B<y<a], it follows that 0® e X® c X @,
For the reverse inclusion let &e X \ {®w®}. Then there is B < o such that & < P, Then
Ee [1,wP], which is open in X, so by proposition 2.2.4 (b) and the inductive hypothesis
we have (0P} =[1, 0P]® =1, @P]~XP®. S0 E¢X® and hence £¢X @ . g

Let A be a subspace of X. A is dense in itself if AcCA“ or equivalently A=A1,
This means that A contains no isolated points. A is scattered if A contains no dense in
itself subsets, i.e., every subset of A contains isolated points. Again this is standard ter-
minology.

After these definitions we can state the theorem of Cantor-Bendixson (cf. [24, p85]
or [47, p148]).

2.2.6 THEOREM (Cantor-Bendixson): Let X be a topological space. Then there
exists an ordinal o such that X® =X@*Y_ For this a, X'® is closed and dense in it-
self and S =X\X'® js scattered. In particular, X is scattered if and only if X* =@,
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Furthermore, if X is second countable then S is countable.

Let X be a scattered space. By theorem 2.2.6, there is an ordinal a such that
X©® =@. Now the scattered height x(X) of X is defined to be the smallest ordinal o
such that X® =@, It is easy to see that if X is compact and scattered, then x(X) is a
successor, say 0.+ 1 and X® contains only finitely many points. If X is second count-
able and scattered then x(X) is countable. Notice that by proposition 2.2.5,
k([1, 0*)=0+1.

2.2.7 REMARK: Every countable compact Hausdorff space is scattered. Indeed,
let X be a countable compact Hausdorff space. Then X is second countable ([24, th
3.1.21]) and regular, hence X is metrizable ([24, th 4.2.9]). So since X is countable, it is
also zero-dimensional. Now suppose X is not scattered. Then by theorem 2.2.6 there is
PcX closed, non-empty and dense in itself. Then P is separable metric zero-
dimensional and compact without isolated points. Thus X =C [15], so P is uncountable,
which is a contradiction.

We can now formulate the theorem of Sierpinski-Mazurkiewicz (cf. [47, p155] or
[36]). ’

2.2.8 THEOREM (Sierpinski-Mazurkiewicz): Let X be a countable compact Haus-
dorff space. If k(X)=0.+1 and X'® contains m points (m finite), then X =[1, @*-m].

Notice that by proposition 2.2.5 it easily follows that if X =[1, ®*+m], with a count-
able and m € IN, then k(X)=a+1 and X ¥ = {@* 1, ..., 0% m}.

Now we will prove some simple results, which we will need in section 2.3. Let X be
a topological space and A a nonempty closed subset of X. Let X/A be the quotient
space obtained from X by identifying A to a single point, say o and let p: X — X/A be
the quotient map. Notice that p is closed.

The next lemma gives some results on the derivatives of X/A in terms of the deriva-
tives of X, if A is of a special form.

2.2.9 LEMMA: Let X be a space, 0. an ordinal such that A=X® =@, and Y =X/A.
Then
(a) for every B<a, andp(X(B))= Y® and
6) Y@ = (o).
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PROOF: We first prove (a). Notice that by propositions 2.2.4 (b) and 2.2.2 (b),
X®=xBAx\A)vXP® ~a)=x\4)P U4,

for every PB<a. In the same way y® =Y\ {w})(B) u(Y(B) N {o0}). Since
pIX\A:X\A—Y\ (s} is a homeomorphism, p((X\A)®)=(¥\{cc})® for every
B=<a.

We prove (a) by induction on 8. For B=0 this is a triviality, so let 0 < B< o and as-
sume it is true for every y< 3.
Case 1: B is a successor, say B=7+1.

Suppose e ¢ Y® By the inductive hypothesis and since A c X, coe YO thus {eo}
is open in Y. But then A is open in X, so by proposition 2.2.4 (b) and corollary
223

AD=A A (X(Y))(l) =An~X® =A,
which gives a contradiction. Hence e Y®, so by the above remarks

pXP)=px\4)P LA)
=Y\ {eo )P U (o0}
=N\ ()P G P (oo}
=y®,
Case 2: B is a limit ordinal.
Then
Y®=y®W= XMy=p(NXP)=p xX®),
Y<B 7<ﬂp Y<B
This finishes the proof of (a).
By (a) we have Y@ =p (X @) =p(A) = {eo}, which proves (b). g

With this lemma we can give a classification of X/A, for X a countable compact

space.

2.2.10 COROLLARY: Let X be a countable compact space and let A=X® for
some o< K(X). Then X/A =[1, ®*]. In other words, if X =[1, ®*n] for certain ne N
anda<@; (50 A=X®= (0% 1,...,0%n}) then X/A =[1, ©*].

PROOF: The first part follows from theorem 2.2.8 and lemma 2.2.9 (b). From propo-
sition 2.2.5 it follows that if X =[1, @*n ], then X ® = {@®:1,..., ®*n}, which proves
the second part. g
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We finish this section with the remark that the second statement of corollary 2.2.10
is not true if we take a>®,. For example take X =[1, o” 2], ie., a=m;. We first
show that @™ =w,. By proposition 2.1.4 (b), o, <w®. Since w, is a prime com-
ponent (theorem 2.1.23) there is u such that 0; =@*. If ©; < ' then by proposition
2.1.4 (a), 4 < @, hence w" < w; and we arrived at a contradiction.

Now put A=XY={w,, w2}, We prove that X/A and [1, mm‘]=[1,m1] are not
homeomorphic. To this end, notice that (X/A)\ {ee} contains two disjoint closed sub-
sets £ and F (namely E =p([1, ®,)) and F =p ([®; + 1, ©,-2))), such that the closures E
and F in X/A have non-empty intersection. In [1, w;] for every pair E and F of disjoint
closed subsets of [1, w;), the closures Eand F in [1, w,] are disjoint ([24, Ex. 3.1.27]).
Hence X/A and [1, w,] are not homeomorphic (see also [8, Ex. 1]).

§2.3. Factorizing function spaces

In this section we prove some results, which will be important tools later on. First
we fix some notation and give some definitions. Let X be a space and A — X closed. By
Cp, A(X) we denote the subspace of C,(X) of all functions vanishing on A. Whenever
A={a) for some g€ A, Cp, (a)(X) will be denoted by Cp, ,(X), so Cp, «(X/A) is the
subspace of C,(X/A) of all functions vanishing at e. For this kind of subspaces of
C;(X) we use a similar notation. Furthermore, let {X;:7e T} and {Y;:s€e S} be two
families of spaces. For each e T and s € § let E, be a linear subspace of C,(X;) and let
F; be a linear subspace of C,(Y;) and let ke IN. We call a linear function
0: I, . 7E, >l . sFs a linear k-mapping if for all (f});,.7ell,.7E, with

f,(X,)c(—%, —;;) for every t e T we have (7, - 0)((f;); 7)(¥s) © (=1, 1) for every s e S.

We define ¢ to be a linear k-homeomorphism whenever ¢ is a homeomorphism such
that both ¢ and ¢~' are linear k-mappings. Whenever there is a linear k-

homeomorphism between I1, 7E, and Il gF; we write l’[,ETE,!stest. Notice
that the composition of a linear k-homeomorphism and a linear /-homeomorphism is a
linear kiI-homeomorphism. The definition of linear k-mapping and linear k-
homeomorphism can be found in [3] and can also be given for spaces of bounded con-
tinuous functions.

We now prove the following well-known theorem which will be used in the proof of

proposition 2.3.2 and which will also be useful in chapter 4.
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2.3.1 THEOREM (Dugundji [22]): Let X be a metric space and A a closed sub-
space of X. Then there is a continuous linear function ¢: C,(A) — Cp(X) such that for
each fe C(A), 0(f)IA=fand ¢(f )(X)cconv (f (A)).

PROOF: First suppose X \A contains more than one point. Then for every x e X \A,
there is a neighborhood V, of x such that diam V, < 1/2d(x, A) and V, #X \A. Let U be
a locally finite open refinement of the covering (V,:xe X\A} of X \A. Notice that by
construction (X \A)\U #@.

CLAIM: If a € A and V is a neighborhood of a, then there exists a neighborhood W of a
such that if U nW #@ for some U e U, then U V.

Let €e=d(a, X\V) and let W =B (a, €/2). Suppose that U "W =@ for some U e U,
say ze UnW. Choose x e X\A suchthat U cV, and lety e U. Now

d(x, a)<d(x, 2)+d(z, a) < %d(x, A)+d(z, a)S%a’(x, a)+d(z, a),
hence d(x, a) < 2d(z, a). This implies
d(y, a)<d(y, z)+d(z, a)y< %d(x, a)+d(z, a)<2d(z, a) <,

hence y € V. This proves the claim.
For each U e U, define Ay: X\A — R by

dx, X\A)\U)

M= S s AN

First notice that d(x, (X\A)\U) is defined for every U e U, because (X\A)\U)#@.
Second for each x € X \ A, there is a neighborhood W of x which intersects only finitely
many elements of U. Hence if we restrict Ay to W, the sum in the denominator is finite,
and since U covers X \ A, this sum is non-zero. We conclude that A; is a well-defined
continuous function. Notice that Xy Ay =1.

For each Ue U, let xye U and ay e A be such that d(xy, ay) <2d(xy,A). Let
fe C(A). Define f: X > R by

- Spcury)f (ay) ifxe X\A
FO=1 1) ifxeA
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By similar arguments as above it is easily seen that f is well-defined and that f1X\A is
continuous. So continuity of f need only be verified at points of A. Let x € A and € > 0.
There is 8 >0 such that for y e A with d(x, y) <8, we have |f (x)—f(y)| <e&. By the
claim, there is a neighborhood W < B (x, 8) of x such that if U nW # @ for some U € U,
then U c B (x, 8/3). We claim that for ye W, | f(x) - f(y)| <e&. For y € A, this is clear.
Solet ye WnX\A. Find Uy, ..., U,e U such that for U e U we have ye U if and
only if Ue {Uy,..., Uy,}. Then f(y)=E7_1Ay,(y)f (ay,). Fori <n, U;nW #@, hence
d(xy,, x) < 6/3. This implies

d(x, ay,)<d(x, xy,)+d(xy,, ay,)
Sd(x, xy,)+2d(xy,, A)

<3d(x, xy,) < 0.
Hence |f (x)-f (ay,)| <€, so

| F) = Fo) = 1f () =Zl Ay, 0)f (ap,)!
= 1Z Ay, ) )= f (ay,))
SZLAy, I @)= f (ay, )|

<Zio Ay, (y)e=e.

We conclude that f is continuous. Obviously F(X)cconv (f (A)) and fIA =f.

Define ¢: Cp(A) = Cp(X) by 6(f) = f. By the above we have that ¢ is a well-defined
function with the property that for each feC(A), ¢(f)IA=f and
O )X) cconv (f (A)). The linearity of ¢ is a triviality. To prove that ¢ is continuous,
it suffices to prove continuity at 0. Let PcX be finite and €>0. Let
O0=(PnA)ufay:UelU, UnP=@). Then Q is a finite subset of A. It is easily seen
that ¢(<0, Q, £>)c <0, P, £>.

Now assume X \ A is empty or contains only one point. If it is empty, the theorem is
obvious, so suppose X \ A contains only one point x. Since A is closed, x is isolated in
X. Fix x;eA and define ¢: Co(A)—>Cp(X) by o(f)x)=f(x) if x#xo and
O(f )xg)=f (x1). Then ¢ is a well-defined linear function. In addition ¢(f)!A =f and
o(f ) X)cconv(f (A)). We prove that ¢ is continuous. Take P c X finite, €>0 and
feCA). If welet Q=(P nA)u (x}, then d(<f, O, €>) c<d(f), P, €>. g

We now come to the important
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2.3.2 PROPOSITION: Let X be a metric space and let A be a closed subset of X.
Then Cp(X) 2 Cp, 4(X) X Cp(A).

PROOF: Define p: C,,(X )= C,(A) by p(f)=f IA. Notice that p is a continuous linear
function. Because X is metric, by theorem 2.3.1 there is a continuous linear function
€: C,(A) = Cp(X) such that for each fe Cp(A), E(f)IA =fand E(f )(X) cconv (f (A)).
Notice that p <& =idc,a)-
Now define ¢: C,(X) ——)Cp, A(X)XCP(A) by

o) =(f=E-p)f), pUf)).
We have to prove that ¢ is well-defined. Take an arbitrary fe Cp(X). It is obvious that
p(f)e Cyp(A) and that f— (& -p)(f) € C,(X). Furthermore

f=E-PYINIA=p(f =&)X N =p()=(P-&-P)f ) =p(f)-p(f)=0,

so f=(&-p)f)e Cp alX).
That ¢ is continuous and linear is a triviality. We show that ¢ is a linear homeomor-
phism. For that define y: C 4(X)xC,(A) - C,(X) by

V(. 8)=f+E(8).
It is trivial that y is well-defined, continuous and linear. Furthermore, as is easily seen,
Vb =idc,x). We show that ¢ =y =idc, ,xyxc,4)- Take fe Cp a(X) and g e C,(A).
Notice that p(f)=f 1A =0, hence by linearity of &, (§ -p)(f)=£(0)=0. So
@, &)=0(f+E(8))
=(f+&(8)~ G -P)F+E(®)), p(F+E(8))
=(f+8@)~E-P)F) - E-p-8)g), p(f) +(p-E)g)
=(f+8(8)-0-&(8), 0+g)
=, &)

i.e., ¢ is a linear homeomorphism.

The only thing left to prove is that ¢ and y are linear 2-mappings. We first prove it
for ¢. Let fe Cp(X) with | f(x)| <1/2 forevery x e X. Then p(f (A) c(~1/2, 1/2) and
hence (€ -p)(f }(X) cconv p(f ) A) = (-1/2, 1/2). Let x e X. Then

I 0 ) =1f ()= E-pP)FIX) S If () +1(E-p)H)I <1,

and fora e A,
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Iy -0(f )a)l =lp(f)a)l =1f(a)l <1/2,

so ¢ is a linear 2-mapping. Now take fe C, o(X) and ge C,(A) such that
f(X)c(=1/2,1/2) and f (A) < (-1/2,1/2). Then &(g)(X) cconv (g(A)) c(-1/2, 1/2),
soforxe X,

IW(f, g)) = 1f () +E@)) T S 1F )1+ 1E(@) )| < 1/2+1/2=1,

hence v is a linear 2-mapping. This completes the proof of the proposition. g

2.3.3 LEMMA: Let X be a space and let A be a closed subset of X. Then
Cp, 4(X)1Cp (XIA).

PROOF: For every function fe Cp 4(X) there is a unique function fe Cp, =(X/A)
such that f-p = [24, p124]. If we now define ¢: C, 4(X) = Cp, (X/A) by 0(f)=F,
then ¢ is a well-defined linear bijection. Since for fe Cp, aX), Y150y Yne XIA, £>0
and x; € p~!(y;) (i <n) it is easily seen that

¢<fv {xlv""’xn}'€>=<¢(f); {ylv--“’yn}v €>,

it follows that ¢ is a linear homeomorphism. That ¢ is a linear 1-homeomorphism is a
triviality. g

From the last lemma and proposition we have the useful

2.3.4 COROLLARY: Let X be a metric space and let A be a closed subset of X.
Then Cp(X) 2 C,, o (XIA)XC,(A). 1

The next three lemmas are used often in this monograph. The proofs are easy and
left to the reader.

2.3.5 LEMMA: If X and Y are homeomorphic spaces, then C,(X) e »(Y). o

236 LEMMA: If X and Y are spaces and A is a subspace of X, then
Cp, aX)XCp(N)LCp aX®Y). 0

Notice that all the given facts so far are also valid for spaces of bounded continuous
functions. In lemma 2.3.7, this is only the case for the second statement as is shown in
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section 4.6 (cf. example 4.6.6).

23 7LEMMA: If X=@;=1X; and Y=@%\Y; such that for every ieNN,
CP(X,-)-C,,(Y,-), then Cp(X)~Cp(Y). Moreover, if for every i e N Cp(Xi)—lpr(Yi), then
C,X)LC,).a

We now prove some properties of function spaces of ordinals. We use the following
notation. For an ordinal a we denote by C, o([1, a]) the subspace of Cp([1, a) of all
continuous functions vanishing at a (i.e., C,, o([1, a])=C), o([1, a])).

2.3.8 LEMMA: Let 0.2 1 and B2 1 be ordinals. Then

Cp([1, 0+ BN L G, (11, A X C, (11, BN 2 C, (1, B X Cp([1, ) 2 Cp([1, B+at])
and

Cp,o(l1, @+BD L C,([1, o) X Cp, o([1, BD.

PROOF: Since [1,a+B]=[1, a]®[1, B] (notice that A:[1,a+B]—- (1, a]@[1,B]
defined by A(y) =7 if Y<Sa and i (y)=y—a if Y> a, is a homeomorphism) we have by
lemmas 2.3.5 and 2.3.6

Co([1, o+ BN ~ Cp([1, ] ®[1, B~ C, ({1, ) X Cp([1, B])
and

Cp, oL, @+ BN L C,([1, al) X Cp, o([1, B).

2.3.9 LEMMA: Let 0.2 be an ordinal. Then Cp([l, al) 2 Cp, o([1, a]).

PROOF: Define ¢: C,([1, a]) = C, o([1, a]) by ¢(f )YB)=f B-D-f (o) if 1 <P<a
and ¢(f)(1)=f (o). Since B-1=P for P>, it easily follows that ¢ is well-defined.
That ¢ is linear is a triviality. Now take P c[1, ] finite, £€>0 and fe Cp([1, a]). Let
Q={B-1:BeP\{1}}u{a). It is easily seen that ¢(<f, Q, €/2>)c <d(f), P, €>,
hence ¢ is continuous.

Now define y: Cp o([L, a]) > Cp([1, a) by w(f)(B)=f(1+B)+f(1). An easy
verification shows that v is a well-defined continuous linear function.

We are done if we prove that y=0¢"". Let fe Cp, o([1, a]) and Be [1, a]. Notice that
1+(B-1)=PB,soif =1 then
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@ - WP =w(HHB-1)—w(f )
=fA+B-))+f (D -fA+)-f(1)
=fP).

Furthermore,

@ - WO =y N a)=fA+o)+f (1)=f(1),

which implies that ¢ °§=idcp_ o((1, apy- Now let fe Cp([1, a]) and Be [1, a]. Notice that
(1+B)-1=B, so

(W= OIPB) =0 )1 +B)+0(f )(1)
=f((1+B)-D-f () +f (@)
=f (@),

which proves that y ¢ = idcp(“_ o)) and the lemma is proved. g

Notice that [1, ] is a metric space if a < @;, so in that case lemma 2.3.9 is an easy
consequence of proposition 2.3.2 and lemma 2.3.8.

2.3.10 REMARK: All results stated in this section, are also valid for function
spaces endowed with the compact-open topology, with the exception of lemma 2.3.3
and corollary 2.3.4. They are true for function spaces endowed with the compact-open
topology under the additional assumption that A is compact.

§2.4. Separable metric zero-dimensional compact spaces

In [10] Bessaga and Pelczyiiski presented the following isomorphical classification
of the spaces Cy(X), for separable metric zero-dimensional compact spaces:

2.4.1 THEOREM (Bessaga and Pelczynski): Let X and Y be separable metric
zero-dimensional compact spaces. Then C y(X)~C o(Y) if and only if one of the follow-
ing holds:

(a) X and Y are finite and have the same number of elements.
(b) There are countable infinite ordinals o and B such that X =[1, al, Y =[1, B]
and max(a, B) < [min(a, B)]®.
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(c¢) X and Y are uncountable.

Notice that for a compact space X, we always have that X is finite, or is uncountable
or is homeomorphic to [1, a] for some countable infinite ordinal o (by theorem 2.2.8).
Also, case (c) is a direct consequence of Miljutin’s theorem ([47, page 379]). Bessaga
and Pelczyhfski’s proof of (c) is different, because they were not aware of Miljutin’s
result (see [47, page 380]).

In this section we prove that a similar classification can be derived if we replace
Co(X) by C,(X). We first need to prove some properties of function spaces of ordinals.

242 LEMMA: Let w<o<w, be a prime component and neIN. Then
Co([1, arn])~Cp([1, ).

PROOF: By theorem 2.1.21 there is an ordinal p such that o= ", so
Cp([1, an]) ~Cp([(x~1,...,'a-n NXCp o([1,a])  corollaries 2.2.10and 2.3.4
~Cp, 0([1, a]) lemma 2.3.8
~Cp([1, a) lemma 2.3.9. g

It is essential in this lemma that o < ®; (cf. the remark after corollary 2.2.10). In
section 2.5 we will show that C,([1, ®;-2]) and C,([1, @;]) are not linearly
homeomorphic (cf. theorem 2.5.13).

243 LEMMA: Let w<a < ®; be an ordinal. Then Cp([1, a) ~Cp([1, o’]).
PROOF: By corollary 2.1.20, ao=0a’-n +7y for some ne N and y<o’. By theorem
2.1.15 y+a’ =0, which implies that Y+ o’ n=y+a’+o*(n—-1) = n. So

Cp([1, al)=Cp([1, a"-n +7])
~Cp([1,y+0an])  lemma 2.3.8 for y#0
=C,((l, oan])

~Cp([1, &) lemma 2.4.2. g
We now come to the following result:

2.44 PROPOSITION: Let wsa<®; be an ordinal and let oSB<a®. Then
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PROOF: By lemma 2.1.22 and lemma 2.4.3 we may assume that & and B are prime
components. By theorem 2.1.21 there are ordinals [ and v such that o =" and B=w".
Since o< < a®, by proposition 2.1.10a, p <V < Q.

We prove the lemma by transfinite induction on v. If v= it is a triviality, so let
v > U and suppose the lemma is true for every ordinal y such that u<y<v.

Let X=[1,B]=[1, "] and A =X"®. By proposition 2.2.5 x(X)=v +1, so p < k(X).
Hence by corollary 2.2.10 X/A =[1, o*]=[1, a].

CLAIM: There are ordinals 1<y<v and n e IN such that A =[1, @''n].

Indeed, since p<v <p-®, there is ke IN\ {1} such that p-(k—1)<v<pk. So by
proposition 2.2.5 and proposition 2.2.4 (a),

AW&=1) :(X(u))(u~(k— D) = x k) — 1, wu-k](wk) - {(D“'k 1,
and
A(l) =X(u+1) ___)[1’ “?}L+l](u+l) ¢g’

hence 2<x(A)<p'(k—1)+1. Since K(A) is a successor, there is 1<y<p:(k-1)<v
such that K(A)=7y+ 1. So by theorem 2.2.8 there is n € IN such that A =[1, @'n], which
proves the claim.

By corollary 2.3.4, lemma 2.3.9 and the claim it follows that
C,o([1, B~ C,([1, @'n ) x Cp([1, o))
~C,,([1, o) ><C,,([l, al) (since Y21 and by lemma 2.4.3).
If Y < then by lemma 2.3.8 and theorem 2.1.15
Cp([1, BD ~Cp([1, o +a]) =Cp([1, ar)).

If Y2 then by the inductive hypothesis Cp([l, (1)7])~C,,([l, a]), so by lemma 2.3.8
and lemma 2.4.2

Cp([1, BN ~ Cp([1, a) X Cp([1, a]) ~ Cp([1, a2~ Cp([1, a]). o
We can now easily derive the following:

2.4.5 COROLLARY: Let wSa<P < w; be ordinals. Then
Cp([1, o)~ Cp([1, B]) if and only if P < a®.

(In particular if w=* and B=w" with W<V, then Cp([1, a]) ~Cp([1, B)) if and only if
V<pw).
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PROOF: If B <o then apply proposition 2.4.4. Suppose C,([1, a]) ~C,([1, B]). By
corollary 1.2.21, it follows that Cy([1, a]) ~ Co([1, B]). By theorem 2.4.1 this implies
B <o®. u]

2.4.6 REMARK: If X is a separable metric compact space and A is a closed subset
of X, then X/A is a separable metric compact space. This follows from the fact that the
quotient map p: X — X/A is perfect because X is compact.

We are now able to prove the classification we mentioned at the beginning of this

section.

2.4.7 THEOREM: Let X and Y be separable metric zero-dimensional compact
spaces. Then Cp(X)~Cp(Y) if and only if one of the following holds:
(a) X and Y are finite and have the same number of elements.
(b) There are countable infinite ordinals o. and B such that X =[1, al, Y =[1, B]
and max (o, B) < [min (o, B)1°.
(¢) X and Y are uncountable.

PROOF: If C,(X)~C,(Y) then by corollary 1.2.21 we have Co(X)~Co(Y). So by
theorem 2.4.1, (a), (b) or (c) holds.

Now suppose that (a), (b) or (c) holds.

Case 1. (a) holds.

Suppose X and Y both contain m points. Then Cp X)~R"™~ Cp(Y).
Case 2: (b) holds.

By corollary 2.4.5 we have the desired equivalence.

Case 3: (c) holds.

It is enough to prove that for every uncountable separable metric zero-dimensional
compact space X we have Cp(X )~ Cp(C) where C is the Cantor discontinuum. Let X be
such a space.

By the Cantor-Bendixson Theorem (theorem 2.2.6) and the fact that X is second
countable, X =D u S with D closed and dense in itself and S countable. Since X is un-
countable, D is non-empty, so by the fact that C is the unique non-empty separable
metric zero-dimensional compact space without isolated points ([15]), we have D =C.
By the same characterization of C, we also have that (X X[1, ®]) xC =C, so we can
find a closed copy E of X x[1, w] in D. Now

Cp(X)~Cp, p(X)XCp(D) by proposition 2.3.2
~Cp, p(X)XC,(D ®D) since D ®D=C®C=C=D
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~Cp, p(X)XCp(D)XCp(D) by lemma 2.3.6
~Cp(X) % C,,(D) by proposition 2.3.2
~Cp(X)XCp, (D)X CH(E) by proposition 2.3.2

~Cp(X®E)XCp (D) by lemma 2.3.6
~Cp(E)><Cp'E(D) since X @E =E
~Cp(D) by proposition 2.3.2. g

2.4.8 REMARK: From theorem 2.4.1 and theorem 2.4.7 it follows that the
classification is such that for any two separable metric compact zero-dimensional
spaces X and Y it follows that C,(X) is linearly homeomorphic to C,(Y) if and only if
Co(X) is linearly homeomorphic to Co(Y). In general this is not the case (see the re-
mark after corollary 1.2.21 on page 29).

One of the steps in the proof Bessaga and Pelczyfiski gave of theorem 2.4.1 is propo-
sition 2.4.4 for function spaces endowed with the compact-open topology (or the topol-
ogy of uniform convergence) (cf. lemma 1 in [10]). Their proof of this result is quite
different from ours. They used for example the fact that if a Banach space (and Cy(X)
is a Banach space if X is a compact ordinal) is the direct sum of two closed linear sub-
spaces E and F, then it is isomorphic to E X F. Recall that our spaces Cp(X) are not
Banach. Also, they did not use an inductive argument.

It is also possible to prove proposition 2.4.4 following the pattern of the proof of
Bessaga and Pelczyhski: They used the above property of Banach spaces to conclude,
that if B<o < ®; then Cy([1, o-B]) ~Cy([1, a]). However, for the topology of point-
wise convergence we can prove this directly by the method of corollary 2.3.4, using the
fact that (a-B)’=0a’-f’. All the other statements that Bessaga and Pelczyfski proved,
are also valid for function spaces endowed with the topology of pointwise convergence.
So then we are in a position from which we can derive proposition 2.4.4 with the same
arguments as the ones of Bessaga and Pelczynski.

We now give some examples which were already announced in chapter 1.

2.4.9 EXAMPLE: We show as announced on page 21 that in general for spaces X
and Y, and an effective linear function ¢: C (X)— C(Y) such that for each yeY,
supp (y) #@, supp: ¥ = P(X)\ {@} need not be USC.

Let X =[1, ®*] and Y =[1, @]. By theorem 2.4.7 there is a linear homeomorphism
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¢: Cp(X) — Cp(Y). By corollary 1.2.15 (a), ¢ is effective and by proposition 1.4.3, for
eachye Y, supp (y)#@. We claim that supp: Y — P(X)\ (@} is not USC.

Since supp () is finite (lemma 1.4.1), there is an infinite clopen subset U of X which
misses supp (w). Let V=X\U. Then supp(w)cV. If supp: ¥ - P(X)\ (@} is USC,
then there is n € IN such that supp [n, ] V. We now have by proposition 1.4.3,

X =suppY=supp{l,..,n}usupp[n, o]csupp{l, .., n}uV,

hence U csupp {1, ..., n}. Since U is infinite and supp {1, ..., n} is finite, we have a
contradiction. We conclude that supp: Y — 2(X)\ {@} is not USC.

2.4.10 EXAMPLE: In this example we show that the first countability condition in
theorems 1.5.10 and 1.5.12 is essential.

Let X =[1, o] xIN,A=X® = {0} xIN and ¥ =X/A. Then X is clearly first countable
and normal. Since the quotient map p between X and Y is closed (cf. page 60), Y is nor-
mal ([24, th 1.5.20]). The proof of the following claim is standard. For the sake of com-
pleteness it will be included.

CLAIM: Y is not first countable.

Indeed, suppose {U,:neIN} is a countable base at e in Y. Let ne IN. Then
p~1(U,) is open in X and {w} xINcp~!(U,). So for every i e IN there is & <® such
that [0}, 0]x {i}cp~'(U,). Now let U=\U;_[0i+1, w]x{i}. Since AcU,
coe p(U) and p‘l(p(U))=U, so p(U) is a neighborhood of o in Y. Hence there is
ne N such that U, cp(U), so p~'(U,) = U. Hence U,:l[af’, o] x {i} cU. But then
[oy, @] < [0 + 1, @], which is a contradiction.

Notice that for every space Z and for every z € Z, C,(Z)~ Cp, (Z) xR (It is easily
seen that the function ¢: C,(Z) > C, .(Z) xR defined by ¢(f)=f—f(z) is a linear
homeomorphism), so Cp, (Y) ><]R~C,,(Y). Hence

C,(X)~Cp([1, o] ®X) because X =[1, o] ® X
~Cp([1, 0]) X Cp(X) by lemma 2.3.6
~Cp([l, o]) xR x CP(X) by proposition 2.3.2 and lemma 2.3.9
~Cp(X)XR as above
~Cp aX)XR by lemma 2.3.7 and 2.3.9
~Cp, =(Y)XR by lemma 2.3.3

~Cy(Y).
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For theorem 1.5.12 notice that X! is not countably compact, and ¥V = {eo} is
countably compact. For theorem 1.5.10 notice that X and Y are paracompact (by [24, Th
5.1.3 and 5.1.33]), X is locally compact and Y is not locally compact.

Furthermore, notice that this example is a counterexample for the following state-
ment (see also section 0.1): If X and Y are {,-equivalent spaces, then X has property 2 if
and only if Y has property #, where 2 is one of the properties: local compactness, first
countability, second countability, metrizability, weight, or character.

2.4.11 EXAMPLE: In this example we show that theorem 1.5.12 is not true for the
o-th derivative if o is not a prime component.

Let a < m; be an ordinal which is not a prime component. Observe that in this situa-
tion 1S’ <o <o’ @ (lemma 2.1.19). Hence 0% <@® <(0*)® and so by theorem
247 Cp([1, @*D~C,o([1, @*]). So if we now let X=@{[l,0*]; and
Y =@ [1, ®*];, then Cp(X)~Cp(Y) (lemma 2.3.7). In addition, X and Y are normal
and first countabie, but ¥ ® =N (this follows easy from proposition 2.2.5) which is not
countably compact, and X % =@ which is countably compact.

This observation leads us to the following

Question: Let X and Y be ¢,-equivalent spaces which are both normal and first
countable. Let o> @ be a prime component. Is it true that X is countably compact if
and only if Y@ is countably compact?

Finally we remark that the first part of this section (until theorem 2.4.7) is taken
from [3]. The examples 2.4.10 and 2.4.11 can be found in [5].

§2.5. Compact ordinals

In this section we present an isomorphical classification of the function spaces
Cp(X ), where X =[1, a] for some ordinal o. We call such spaces compact ordinal
spaces. It turns out that this classification is similar to the one Kislyakov gave for the
spaces Co(X) (with X a compact ordinal space) in [34]. Our proof is similar to his, only
some modifications are necessary.

It turns out that Kislyakov made a mistake in his proof. In this section we will iden-
tify this mistake and correct it.

Let us first present the classification of Kislyakov. For that we need some
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definitions. Let X and Y be Banach spaces. We say that X and Y have the same linear
dimension, if each of them is isomorphic to a subspace of the other. X has smaller
linear dimension than Y if X is isomorphic to a subspace of Y, but Y is not isomorphic
to any subspace of X. Notice that isomorphic spaces have the same linear dimension.

2.5.1 THEOREM: Let o and B be ordinals.
If a.and P have different power, then
(a) Co([1, a]) and Cqy([1, B]) do not have the same linear dimension and so
they are not linearly homeomorphic.
If o. and B have the same power and & is the initial ordinal of that power, then
b)([34]) If E=w, or & is a singular ordinal or both «, BZE_,Z, then
Co([1, o) ~Co([1, B)) if and only if max(at, B) < [min(ct, B)]® if and only if
Co([1, a]) and Co([1, B)) have the same linear dimension.
(¢) ([34)) If € is an uncountable regular ordinal and o, Be [E, E2], fix ordinals
oy, B1<E and v, 8<E such that a=&o,+y and B=EPB,+3. Then
Co(l1, &) ~Co((1, BD if and only if o =By if and only Co((1, o)) and
Co([1, BD) have the same linear dimension.
(d) If & is an uncountable regular ordinal, o < &> and B=E?, then Cy([1, a])
and C([1, B]) are not linearly homeomorphic.

Notice that the case £=w in theorem 2.5.1 (b) is just Bessaga and Pelczyfski’s
result stated in theorem 2.4.1. Furthermore theorem 2.5.1 (c) was proved by Semadeni
in [46] for ordinals o and P satisfying @, <o, B< o, .

In fact Kislyakov only stated theorem 2.5.1 (b) and (c), so we will now prove part
(a) and part (d). Before being able to prove this, we need to formulate the following
lemma proved by Bessaga and Pelczyfski in [10].

2.52 LEMMA: Let o be an ordinal. If for every y<a, Co([1,7v]) has smaller
linear dimension than C([1, al), then C([l, a]) has smaller linear dimension than
Co([1, a®)).

The following corollary to lemma 2.5.2 is also useful in section 2.6, and is stated
without proof by Bessaga and Pelczynski in [10] and by Kislyakov in [34]. For the sake
of completeness, we will present its proof.
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2.5.3 COROLLARY ([34, lemma 1.3]): Let o and B be ordinals. If =0, then
Co(l1, 0) has smaller linear dimension than Cy([1, B]).

PROOF: Let o, be the smallest ordinal such that C([1, a,]) and Cy([1, a]) have the
same linear dimension. Then for every y< o, Co([1, Y]) has smaller linear dimension
than C([1, at;]). By lemma 2.5.2 it follows that C([1, a;]) has smaller linear dimen-
sion than C([1, af]). Since o, <a, it follows that a <a® <. But then it easily fol-
lows that Co([1, o]) has smaller linear dimension than C(([1, B]). g

We are now able to prove theorem 2.5.1 (a) and (d).

PROOF of theorem 2.5.1 (a): Without loss of generality we may assume that & < B.
First suppose a.2 . Since a® =0 (proposition 2.1.13), it follows that a® < f. So by
corollary 2.5.3 it follows that C([1, a]) has smaller linear dimension than C([1, B]),
which implies that C(([1, a]) is not linearly homeomorphic to Cy([1, B]).

Now suppose that o is finite. As is easily seen, the algebraic dimension of
Co([1, @]) is finite and smaller than the algebraic dimension of C([1, B]), hence
Co([1, a]) and Cy([1, B]) are not linearly homeomorphic. o

PROOF of theorem 2.5.1 (d): First suppose that B < &®. Since &2 <P < E®=(E?)®, by
theorem 2.5.1, Co([1, B]) ~Co([1, E2]). Let a=E-a; +y with y< & (proposition 2.1.2).
Notice that o; <&, so & <&, because & is initial. From theorem 2.5.1 (c) it now fol-
lows that C([1, a]) and C¢([1, §2]) are not linearly homeomorphic.

Now suppose B>E®. Since a<&Z, a®<(E2)®=EP<B. So by corollary 2.5.3,
Co([1, a]) has smaller linear dimension than C([1, B]), which implies that Co([1, a])
and C([1, B]) are not linearly homeomorphic. o

Now we are going to prove that the same classification holds for the spaces
Cp([l, a]). For that we first have to give some definitions.

For a compact space X and fe Cp(X), let lfl =sup ;. x If(x)|. Let {X,:teT} bea
family of compact spaces and for each € T, let E, be a linear subspace of C,(X;). By
I1;_ 7E, we denote the linear subspace of I1,. 7E, consisting of all points f=(f,);cT
such that for each € >0, the set {t e T:lf/ll=€} is finite. If E,=F for every te T, we
write TIE instead of TI; rE, where m=IT|. Notice that if T is finite, then
M. rE, = n;ke TE,.

The notion of linear k-mapping (cf. section 2.3) can also be defined for the spaces
I1;. 7E,. We then have the following
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2.54 LEMMA: Foreachiellet (X, ;:teT} and (Y ;:s€ S} be two families of
compact spaces and let for eachicl,teTandse S, E, ; and F ; be linear subspaces
of Cp(Xy ;) and Cy(Ys;), respectively. Suppose that for each iel,

I} 7B, i <15 sFy i Then TUg, iy xiEy i TN, iy sxiFs i
PROOF: For each ie/ let ¢;: ;. TE; i = ;. gF s,i be a linear k-homeomorphism.
Define ¢: T1(, jye 7x/Ey, i = (s, iye sxiFs, i by
O((f e, iy, iye Tx1) = (M5 200 (F e, iyt e Tis, iye Sxi-
We prove that ¢ is a linear k--homeomorphism.
CLAIM 1: ¢ is well-defined.

Indeed, let €>0 and (f¢, 1)) iyerxs € NG iyerxiEri- It is a triviality that
(s 20X (fr, iy)e 7)€ F (5, iy- Notice that J= (i e [ : (1 e T)(If,, hll=2€/k)} is finite. Let
ielI\J. Then for every teT, fq ;y(X, ;) <(—€/k, €/k). Since ¢; is a linear k-
homeomorphism, for every s € §

(s <0 (e, iy)re THY, i) © (=€, €).
So {iel:(3s e SHUms ¢ )(f, ,‘)’),E pl=¢€)} is finite. Since
0, e )€ Mie sFs,
forevery iel, {se S : (s ¢;)((f(,, i))ee T2 E} is finite. But this implies that
{(s, ) e S XTI I(ms =0 )((f(r, iy)ee TN 2E}
is finite as well, which proves the claim.
Since 7t and §; are linear and continuous, it is clear that ¢ is linear and continuous.
CLAIM 2: ¢ is a linear k-mapping.

Indeed, let (f(,’ i))(t. NeTxI€ l'[?,, i)eTxlEl,i be such that f(t, ,')(X,,,')C(—-l/k, 1/k)
for each pair (¢, i)e T xI. Then

(s, iy OIS, iy, iye Tt ¥e, )= (@5 20N (f o, )ee DYy, ) S(=1,1)

for each pair (s, i) e S X1, because ¢; is a linear k-homeomorphism. This proves claim
2.

Now define y: T, iy s x1Fs, i = [1(;, iye Tx1Er, i bY
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Y((g (s, i))is, iye sxr)=UT, °¢i_1)((g(x. i))se S))(x‘ iye TxlI-

The proof that y is a well-defined continuous linear k-mapping is exactly the same as
the proof for ¢. Furthermore it is easily seen that \u=¢", so ¢ is a linear &-
homeomorphism. g

In the sequel we denote ﬂ:,‘ iye TxsE; i also by ;. 1«er 1E, ; or by ;1. rE; ;.
Notice that this is not the same as IT;. (IT}. 1E; i), because the latter product is not
defined. Lemma 2.5.4 now gives us the following: If for eachi e /,

* k *
Hle TEt,i~HSESFS, i
then

* * k % *
;e (e rE, i~ T SES ;.

255 LEMMA: Let {X,:te T} be a family of compact spaces and let for each

te T, E, be a linear subspace of C,(X,). Let S < T. Then T} . 7E, ~ T}, sE, X T1}. 7 sE;.

PROOF: Define ¢: IT; rE, = 15 sEs X 1vsEr by 00 e 1)=((fdres: (reTs)-
It is a triviality that ¢ is a well-defined continuous linear 1-mapping as well. The in-
verse ¢“ of ¢ can also be defined canonically and is a continuous linear 1-mapping as
well. So ¢ is a linear 1-homeomorphism.

The next lemma is the main tool in this section.

2.5.6 LEMMA: Let y be a limit ordinal. Let (Ag)o< <y be a strictly increasing se-
quence such that
DAgy—Ag 20 Ee0,7),
2) A =limy <Ay (€ € (0, Y] a limit ordinal),
3) A =0.

Then Cp, o([1, A1) 2Cp, o([1, YD X TTE <Cp (1, Mgy 1 = A D).

PROOF: Let

X ={feCp o([1, 4] : f is constant on each interval e, Agy1] Ee [0,7)}
and

Y={feCpoll. ] :f (Ae)=0 e (O, Y]}

CLAIM 1: C, o([1, ) 2 X x Y.
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Indeed, define ¢;: Cp, o([1, Ay]) = X by

1)1y A1 ]=f (Rg 1) (€€ [0, V).
and

01(f)Az)=f (Ae) (e (0, ¥] a limit ordinal).

To prove that ¢; is well-defined, we need to show that ¢,(f) is continuous at Ag
with § e (0, v] a limit ordinal. So let € > 0. Since Ag =limy <Ay and since f is continu-
ous at A¢, there is 1 < € such that f (A, lg]) c(-e+f (kg), €+f (Ag)). But then also

01y, AgD (e +f (M), €+ f (Ag)).

That ¢; is linear is a triviality. We prove that ¢; is continuous. Let
P={a;:i<n}c[1,A] be finite, €>0, and fe C, o([1, \y]). For i<n, if a;=A¢ for
some &, put B; =a;, otherwise let A¢ be such that &; € (Ag, Ag 1] and put B; =Ag ;. Let
Q={B;:i<n). Then a simple calculation shows that ¢;(<f, Q, €>)c<¢;(f), P, €>,
which proves that ¢, is continuous.

Now define ¢2: C, o([1, AyD) =Y by ¢2(f)=f—6¢(f). It is easily seen that ¢ is
well-defined, continuous and linear. It follows that the map ¢: Cp, o([1, )\.Y])-——>X XY
defined by ¢(f) =(¢1(f), $2(f)) is also well-defined, linear and continuous .

We prove that ¢ is a linear 2-mapping. For that let fe Cp o([1,Ay]) with
f1, }\,Y])c:(—I/Z, 1/2). Letace [1 ,)\,Y]. Then 1¢;(f)(a)] < 1/2 and therefore

[o2(F ) =1f (@)= (N STf (@) +1o;(f N )| <1/2+1/2=1,

which proves that ¢ is a linear 2-mapping.

Now define y: X xY —C, o([1, Ay]) by w(f, g)=f+g. It is evident that y is a
well-defined continuous linear 2-mapping. Furthermore one can simply derive that
\|l=q>'1, and so we conclude that ¢ is a linear 2-homeomorphism, which proves claim 1.

CLAIM 2: X 1C, o([1, D).

Indeed, define ¢: X = C, o([1,7]) by ¢(f}E)=f (Ae). Since by (2) the function
€ —Ag is continuous, ¢ is well-defined. It is easily seen that ¢ is a continuous, linear
1-mapping. Define y: C, o([1,Y]) = X by w(f) (A, Ag1 1=/ (§+1) for Ee [0, ¥) and
Y()(Ae)=f (§) for € e (0, 7] a limit ordinal. It is a triviality that y is a well-defined,
continuous, linear 1-mapping, which is the inverse of ¢. Whence ¢ is a linear 1-
homeomorphism.

CLAIM 3: Y “TTg 4Cp, o([1, Ag 41 —Ag)).

Indeed, define ¢: ¥ —TT; yC, o((Ae, Ae+1]) by (e O(F)=f 1Ae, Ae 1] E <)
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To see that ¢ is well-defined, we assume there are fe Y, €>0and & <& < - <y
such that li(mg, -0)(f)I2¢ for each ne N. Let E=lim, . N&,. Then €<Y. For each
neNN find o, € (Ag,, Ag,+1] with |f (a,)| 2€. Then | f (Ag)| 2¢€, which is a contradic-
tion, because fe Y. It is easily seen that ¢ is a continuous linear 1-mapping.

Define y: g <,C,, o((Ag, Ae+1]) =Y by W(fe)e <y)(B)=/e(B) if Be (Mg, Ae 1] and
W((fede <y)(Ag) =0 if §e (0, y] is a limit ordinal. It is evident that y is a well-defined
continuous linear 1-mapping, which is the inverse of ¢. Thus ¢ is a linear 1-

homeomorphism. The claim is now proved since (lg, )\.§+ 11=11, 7\.5“ —7\5_'].

It is clear that the claims 1, 2, and 3 establish the proof of lemma 2.5.6. g

2.5.7 LEMMA: Let | be an infinite ordinal and 'y a limit ordinal such that Y=\ or
Y+R=p. Then Cp o([1, py) 2TC,, o([1, 1D

PROOF: By lemma 2.5.6, applied to the sequence Ag = -E for § <y, we have

Cp. 0([1 ’ l'l"‘Y]) Z’ Cp, O([l’ 'Y]) X nE<'YCP. 0([], “(g + 1)—’.1‘&_,])
=Cp, o1, V) X TI§C,p, o([1, p].

Now suppose y=p. Then by lemma 2.5.5 C, o([1, u-y})3n$c,,‘ o1, uh). If y+u=p,
then

Cp, o1, YD 2 G, o([1, YD X Cp, o([1, KD XTT;C,, o([1, k])  (lemma 2.5.5)
ECP, o1, kD) XT15C,, o([1, 1) (lemma 2.3.8, 2.3.9)
LI5C,, o[1, 1) (lemma 2.5.5). g

2.58 LEMMA: Let o be an initial ordinal and y a limit ordinal with Y<Q. Then

there exists a subset M of [2, y) consisting of successors such that
4 %
Cp. o1, YD 21T} 4Gy 0([1, 0H)).

PROOF: Let B=cf (y). Since B is initial, ¢f () <Y, and Y< @, we have B<a.

CLAIM: There is a strictly increasing sequence {pe : <P} in [2, 7] such that ¢ is a
successor for each successor & <, pg =limy, ¢y, for a limit ordinal §<f, and ug =7,

Indeed, let ¢ be an increasing B-sequence such that limg . g¢(€) =7y and ¢(1)21. Let
£ <P and take Mg =¢(&)+1if & is a limit ordinal, otherwise take He =limy <,§’¢(F,). Itisa
triviality that {jg : £ <B} is as required.
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Since o is a prime component (theorem 2.1.23), aM**! - ="' and
B+o! =o' (by theorem 2.1.15 and the facts that y, =2 and B<a). By applying lem-
ma 2.5.6 to the sequence Ag =0 for € e (0, B] and Ay =0, we get

Cp o1, a¥) 2 Gy o([1, B XTIE < pCp, o[1, 0! — 0 ])

=Cp, o([1, B XTTg <gCy, o([1, €471 ])

2¢, o1, B+a DX} <t < pCp. o([1, 071

=Cp, o([1, ' DX} cg < gCp, o([1, €5*1])
L10E Gy, o([1, 041,

We applied lemma 2.5.6 for the first equivalence, lemmas 2.5.5, 2.3.9 and 2.3.8 for the
third one and lemma 2.5.5 for the last one. Now take M = {pe.,1:§<B}.o

2.5.9 LEMMA: Let ®, be a singular ordinal. Then there exist B < y and a strictly
increasing B-sequence ¢ such that -

(@) limg . 3$(E) =7,
(b) o) 2B for every § < B,
(©) Cp, o[1, @) 2TIE < pCp, o([1, Do+ 1))-

PROOF: Since , is singular, y is a limit ordinal (corollary 2.1.11). Furthermore
Y.

CLAIM: There is an ordinal B and a strictly increasing B-sequence ¢ such that < @,
limg < g0(&) =7, Wy 2P for every & < B, and limg . ¢(€) =0(n) if N is a limit ordinal.

For the proof of the claim we consider two cases.
Case 1: y< @y.

Let & =min{§:y< o <®,) and notice that & <y. Put B=y-&; and ¢(§) =& +&.
Then B<y< oy, limg . g¢(€)=&o +B=7, and by the definition of ¢, wy) 2w, > Y2P.
That limg < (&) = ¢(n) if 7 is a limit ordinal is a triviality.

Case 2: y= .

Let B=cf (wy). Since w, is singular, B<®,. Let ¢; be a strictly increasing B-
sequence such that lim§<B¢1(§)=(uY='y. As in the proof of lemma 2.5.8, we may as-
sume that limg ¢ $(§) =¢(n) if N is a limit ordinal. Now put ¢(§)=B+¢,(&) for £ <.
Then limg . g¢(E) =B+ @y =wy (theorem 2.1.15 and 2.1.23) and Wy 2p 2B. This
proves the claim.
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For the following notice that Wy +1) — We&) = We( + 1) (theorems 2.1.15 and 2.1.23)
and that B+wg;) =gy (because B<wyq) < Wy(1)). By applying lemma 2.5.6 to the
sequence Ag =Wy for Ee (0, B] and A9 =0 and by lemmas 2.5.6, 2.3.8 and 2.3.9 we
obtain

.ol Q)YDECP'O(“’ BD XTIz < gCp, o([1, @ocz-+ 1)~ Woce) 1)

= Cp.o(lL, BDXCp (L1, @ay D X Mi <t <Gy, (1, @pcg1y)
: p. 0([1, B+ 0oy DX <. sCp, 0([ 1, Ogce+ 1))
=Cp, o([1, 0oy ) XM < < Cp, ([ 1, Wz 1)])
=TI <pCp, o([1, Wpig+ 1))

We applied lemma 2.5.5 to get the second and fifth equivalence and lemmas 2.3.8 and
2.3.9 for the third one. g

2.5.10 LEMMA: Let o be an initial ordinal and y an ordinal such that Y<@, y22.

Then C,, o([1, o) £ T13C,, o((1, ).

PROOF: First suppose that 7 is a successor, say Y=+ 1. By lemmas 2.5.6 (applied to
the sequence Xg=aB'§, e [0, ), 2.5.5, 2.3.8, 2.3.9 and the fact that a+aP =aP if
B=2 (because o is a prime component larger than o), we have

Cp, 0([1, @] hd HECP, o([1, aP]). By lemma 2.5.4 we now have
3G, o([L, o) 2 METI5C,, (1, &P =TT52C, o((1, ).

- 2 * . .
Since a=a (page 52), it follows that C, o([1, o)) l~f’l'1aC,,,0([1, o’]), which is as
desired.
Now let y be a limit ordinal. Find M c [2, ) as in lemma 2.5.8. Then

Cp. oL, DT 41 Cp. o([1, & ]) (lemma 2.5.8)
1~6H;E MH&CP' o([1, a*])  (by the above and lemma 2.5.4)
=g, yCp, o([1, a*])

2 M5C,, o([1, o)) (lemma 2.5.8). o

5 *
2.5.11 LEMMA: Let o be a singular ordinal. Then C, o([1, o) = T5C,, o([1, t)).
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PROOF: Put o.=wm,. By lemma 2.5.9, there are B<a and a strictly increasing B-
sequence ¢ with limit ¥, such that wy¢) 2B for every § <8 and

Cpo[1, A 2TIE pC,p o([L, Woe+1) D) *)

Fix & < B. Notice that W +1)°0. =0 (proposition 2.1.12). By lemma 2.5.6, applied to
the sequence A;) = Wy N (1N < @), we obtain

Cp. o1, 0D 2 Cp o([1, a) XTI < C ([ 1, Wpce 4 1y"(M+1) = Wi+ 1) M

=Cp, o([1, al) xT15C, o([1, Wy +1yD)-
We now have

* 2 % * *
T5C,, o([1, o) 2TTE < pTT5 < 0 Cp. o([1, @pce 4 1)) X TTEC, o((1, @)
=15 < oT15 < C)p, o([1, Wyt +1) ) X TTFC, o([1, @)
4 % *
~Ih <aCp, o1, a) XTIRC, o([1, a])
1 %
~gCp, o((1, a).
We applied lemma 2.5.4 to get the first equivalence, and (*) and lemma 2.5.4 to get the
third one. The last equivalence follows from lemma 2.5.5 and the fact that B < Q.
Let B={&<P:&is a limit ordinal} u {0}. Notice that for every ie IN and &e B,
Wy +i-1)B= W +i-1) <WgE+i (by the choice of the sequence ¢), hence

Op+i-1)B < WpE+i)s 50 Op+i-1)'B+Dpe+i)=Wee+i) (by theorems 2.1.23 and
2.1.15). Then

Cp.o(l1, &) 2T <3 Cp, o([1, Wecg + 1))

=Ti 5, i NCp, 0([1, Wg+ 1))

L1 5Cy, 001, W+ DX T ¢ 5. 132Cp, o([1, Wpce+iy])

=Tz 3Cp, o([1, Wz + 1y DXz 5, i22Cp, 0([1, g4 i—1)B+ Do +)])

2 Mz 5Cp, o([1, W+ 1y D XTI 5. i52Cp, 0([1, Wt 4 - 1)"B]) X
XTIz g, i>2Cp, o([1, Op 1))

2 g 5Cp, o([1, Wp+ 1)) XTIz 5, i 22TTEC), o([1, Wge+i—1)]) X
XT1g. g, i52Cp, o([1, Wgce+iy])

=g 8Cp, o([1, Woz+ 1) DX TTEME 5, i NCp, 0([1, V(g +y]) X

Xz g, i52C), o([1, @pe +iy])
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ST 5.1 NGy, o([1, Oacee ) DXTTHTTE 5, i o[, Dpce )
=TIgMz . 5, ie NCp, o[1, W +1y])

=TT51Tg < pCp, o((1, g+ 1))

A5Gy, o((1, 1)),

Here we applied (*) for the first equivalence, lemma 2.5.5 for the third, lemmas 2.3.8,
2.3.9, 2.5.4 and 2.5.5 for the fifth, and lemmas 2.5.4 and 2.5.7 for the sixth, respective-
ly. To get the eighth and ninth equivalence we used lemma 2.5.5. Finally we used (*)

5 *
for the last equivalence. We conclude that Cp‘ o([1, a]) pa Han, o1, aD. g

2.5.12 LEMMA: Let & be an initial ordinal, ae [E,E%], say a=Eay +B with
1oy s&and B <& ThenCp o((1, al)~Tg; Cp, o([1, ED.

PROOF: First notice that by lemmas 2.3.8 and 2.3.9
Cp, o([1, a])~Cp o([1, &0y +B])~Cp o([1, B+E-01 ) ~Cp o([1, &) D).

Then by lemma 2.5.7 we have Cp, 0([1,ﬁ'al])~n;—le_o([l,§]). This finishes the

proof of the lemma. g

At this moment we are able to prove the announced classification. The following
theorem states it. The reader should compare it with theorem 2.5.1.

2.5.13 THEOREM: Let o and B be ordinals.
If o and B have different power, then
(@) Cp([1, a]) and Cp([1, BY) are not linearly homeomorphic.
If 0. and B have the same power and & is the initial ordinal of that power, then
(b)If &=, or & is a singular ordinal or both o, B2E2, then
Cp([1, a]) ~C,([1, B)) if and only if max(a, B) < [min(a, B)1e.
(c)¥f & is an uncouniable regular ordinal and o, Be (&, €], fix ordinals
o, B1<E and v, 8<& such that o=%o+y and B=E&P+08. Then
Co([1, )~ Cp((1, BY) if and only if ay =P
(@) If € is an uncountable regular ordinal, o.< E_,z and [32&2, then Cy([1, a])
and C,([1, B]) are not linearly homeomorphic.

PROOF: Suppose (a) or (d) does not hold for some ordinals o and B. Then by corol-
lary 1.2.21 it also does not hold for Cy([1, a]) and C([1, B]). This contradicts theorem
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2.5.1 (a) or (d).

We now prove (b). If C,([1, a]) ~C,([1, B]), then Co([1, a]) ~Co([1, B]) (corollary
1.2.21). So by theorem 2.5.1 max(a, B) < [min(a, B)]®.

We now prove the converse implication. Without loss of generality we may assume
that o < B, so suppose that § < a®.

Case 1: £=w.

Then we can apply theorem 2.4.7 (b).
Case 2: a, B2E2.

By lemma 2.1.5 a=£Y-A +8 for some Y22 with y<o, 1<A <& and & <&Y. Notice
that then Y<@=E and o< EY*!, thus B <a® <EV+ DO =EY (lemma 2.1.19). This im-
plies that B=EY-u +& for some i e IN, p < &Y with p>0 and e <E¥ (corollary 2.1.3).
Thus

Cp([1, aD) ~Cp o([1, EY'A+8])  (lemma 2.3.9)
~Cp o([1, 8+ET'A])  (lemma 2.3.8)
=Cp, o([1, EVAD (& is a prime component and A# 0)
In the same way |
Cp([1, B)~Cp, o([1, EY ).
CLAIM 1: For every p € IN and 1<v <& we have C,, o([1, £¥-v]) ~TTEC,, o([1, £"]).

First suppose p € IN and v=1. We prove by induction on p that

+3 .
Cp. o(l1, EPD Y2 TIEC, o(11, EYD. *)

The case p =1 follows from lemma 2.5.10. So let p > 1. We then have

Cp, o1, EP]) = Cp, o([1, EMP~DEY])

MEC, o([1, %~ V])  (lemma 2.5.7)

1ES

H;';Cp, o([1, =Dy (proposition 2.1.13)

+2 * .
¥ l'Igl'IéCp‘ o([1, &YD (by induction and lemma 2.5.4)

= TEC,, o([1, §"D) (page 52).
Now suppose p € IN and 1 < v < @. Then by induction on v,
Cp. o([1, EPV]) ~Cp, o(([1, EP(v—= DD XCp o([1, EP])  (lemmas 2.3.8 and 2.3.9)
~MEC,, o([1, &) (by induction).
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Finally suppose p e IN and v=pu +n with p#0 a limit ordinal and  finite. Then
Cp,o([1, EP-VY) ~Cp, o([1, EP-UDXCp o([1,EPn])  (lemmas 2.3.8 and 2.3.9)
~T5Cp o([1, EPD X Cp o([1, EP-n])  (lemma 2.5.7)
~TTECp, o([1, §71)
~TIEIEC,, o([1, &) (lemma 2.5.4 and (¥))
=T£Cy, o([1, §1) E=D),
and the claim is proved.

By the claim we immediately get

Cp, o([1, B ~Cp, o([1, EF ) ~TIEC, o([1, &)
and

Cp, o(([1, a]) ~ Cp, o([1, §AD ~TIEC,, o([1, E'D),

which proves case 2.
Case 3: & is singular and a e [€, E2].

CLAIM 2: If ace [, E2], then C,, o([1, a]) ~Cp, o([1, ED.
Indeed, by lemma 2.5.12 we have

Cp, o1, o) ~ T Cp o([1, ED)
with m<E. By lemma 2.5.11, Cp, o([1, 2::,])‘f l'lng,o([l, D), so

Cp, o([1, o) ~TTCp, o([1, &)
~MuEC, o([1,E])  (lemma 2.5.4)
=IT¢C,, o([1, £]) (mE=8)
~Cp, o([1, &)
This proves claim 2.

CLAIM 3: If B2E2 then C, o((1, B)~C), o([1, ED).

Indeed, notice that B < a® < (£2)®. So by case 2, Cp, o([1, BD~Cp, o([1, £2]). But by
claim 2, C,, o([1, §2])~C,,, o([1, €]), which proves claim 3.

By claims 2 and 3 we finished the proof of case 3, and therefore also the proof of (b).
For (c) first suppose that C,([1, a])~C,([1, B]). Then Cq([1, a])~Co([1, B])
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(corollary 1.2.21) and thus o; =B, (theorem 2.5.1 (c)).
Now suppose o = ;. By lemma 2.5.12

Cp. o1, o)) ~TIg;C,, o([1, ED) =T15;C,, o([1, ED) ~Cp, o([1, B

and (c) is proved. g

The last theorem gives a complete isomorphical classification of the spaces Cp(X),
where X is a compact ordinal space. As announced in the introduction of this section,
Kislyakov gave the same classification for the spaces Cy(X) (with X a compact ordinal
space). However, he made a mistake in his proof. We now will point out his mistake,
and indicate how it can be corrected.

Kislyakov states the following: "Let o= y. Since « is singular, it follows that y< a
and ...." (cf. [34, lemma 3.3]). But in example 2.1.14 we gave an example of a singular
ordinal @, such that y=w,.

An examination of our proofs tells us that if lemmas 2.5.4, 2.5.5 and 2.5.6 hold for
function spaces endowed with the topology of uniform convergence, then all the other
lemmas and theorems also hold for function spaces with this topology. Kislyakov
proved lemmas 2.5.4 and 2.5.6 for those function spaces (cf. resp. lemma 1.2 and lem-
ma 3.1 in [34]). In addition, lemma 2.5.5 is very easy to prove for function spaces en-
dowed with the topology of uniform convergence. So our proof can be copied to get a
correct proof of the classification of Kislyakov. It turns out that the proof one gets in
this way differs from the proof of Kislyakov at two places. First of all corollary 3.3 in
[34] has to be stated in a more general form (it becomes our lemma 2.5.9 for function
spaces endowed with the topology of uniform convergence) and second, the proof of
lemma 3.3 of [34] (which is our lemma 2.5.11 for function spaces endowed with the to-
pology of uniform convergence) has to be fixed (the proof for the case Y < w, remains
the same but the case Y=, has to be added).

Finally we remark that Gulko and Oskin also proved theorem 2.5.1 (b) and (d) (in

[28]), independently from Kislyakov. We were inspired by [34] because [28] contains
no proofs. The other results in this section are new and were never published.

§2.6. c-compact ordinals

In this section we give a complete isomorphical classification of the spaces Cp,(X)
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and Cy(X) where X =[1, a), for ordinals o cofinal with w. Notice that these spaces are
exactly the non-compact spaces which are a countable union of compact ordinal spaces.
Therefore we call such an ordinal a G-ordinal. If a. is also a prime component or an in-
itial ordinal, we call it a G-prime component or a c-initial ordinal, respectively.

2.6.1 LEMMA: If o is a 6-ordinal, then every closed and bounded subset of [1, o)
is compact.

PROOF: Let (a,), be a strictly increasing sequence of ordinals with limit o. Let A be
a closed and bounded subset of [1, o). Then there is #n € IN such that A c[1, a,]. For if
not, then A would contain a closed discrete subset, which is not possible because A is
bounded. Since A is closed in [1, a,] it is compact. g

2.6.2 REMARK: From lemma 2.6.1 and corollary 1.2.21 we have for G-ordinals o
and P that a linear homeomorphism ¢: Cp([l, a)) = Cp([1, B)) considered as a map
from Cy([1, o)) to Cy([1, B)) is also a linear homeomorphism.

Furthermore, let B be an ordinal with ¢f (B) > w. By the methods of [24, Ex 3.1.27]
it easily follows that every continuous function f: [1, B) > R is eventually constant.
But this implies that [1, B) is pseudocompact. By this observation it follows that lemma
2.6.1 does not hold for B and that « is a o-ordinal if and only if [1, ) is a non-compact
non-pseudocompact space

The following lemma is the key lemma in the proof of the classification mentioned
above.

263LEMMA: Let X and Y be spaces such that X=X, ®X,®X3 and
Y=Y,®Y,®Y;. Suppose ¢: Cy(X)—>Co(Y) is a linear homeomorphism such that
suppX;cY, and suppY,cX,®X,. Then there is a linear embedding
0: Co(Y3) > Co(X3).

PROOF: For each fe C((Y;) we define f“ e Co(Y) by f(»)=f () if ye ¥, and
f"(»)=0 elsewhere. In a similar way we define for every g € Co(X3), gt e Co(X).
Define 0: Co(Y2) >Co(X2) by O(f)=07'(f)I1X, and y:Co(X3)—>Co(Y2) by
w(g)=0(g")Y,.

Then 6 and  are continuous linear functions. Furthermore for every h e C(Y3), we
have y(8(h))=h. Indeed, assume to the contrary that ¢(6(h)*)1Y, #h*lY 2. Then
(M) (X, ®X,) %07 (h™)I(X; ®X,) since X, @ X, is a neighborhood of suppY,
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and ¢ is effective (corollary 1.2.15 (a)). Now h*=0on Yy, so ¢“ (h*)=0o0n X1, since
Y, is a neighborhood of supp X and ¢! is effective. Furthermore 8(4)* =0 on X, so
that 8(h)* =¢"'(h") on X ,. This implies 8(h)* | X, #¢~ (k") 1X,, which is impossible
because both the left-hand side and the right-hand side are equal to 6(h). This is a con-
tradiction and we conclude that 8 is a linear embedding. o

2.6.4 COROLLARY: Let X and Y be spaces such that X=X,®X, and
Y=Y ,®Y,. Suppose 0:Cy(X)—>Co(Y) is a linear homeomorphism such that
suppY | X . Then there is a linear embedding ©: C (Y |) > Co(X ).

PROOF: Take X =Y ;=0 in lemma 2.6.3. g

Notice that lemma 2.6.3 and corollary 2.6.4 also hold for the spaces C,(X) and
Cp(Y).

The strategy of the proof of the classification is as follows: First we define a class of
spaces, and we prove that for every c-ordinal a there is a space Y in this class such that
Cp([1, a)) ~ Cp(Y) (lemma 2.6.6). Then we prove that if X and Y are two spaces in this
class, then C,(X)~C,(Y) if and only if Co(X)~C(Y) if and only if X =Y (corollary
2.6.15 and lemma 2.6.16). From these results we then easily derive our classification
(theorem 2.6.17).

For initial ordinals o and B with 0.2 > @ we define the following classes of spaces:
Case 1: If o is singular or  and B is singular or ® then
4@ = {[1, ?*]®[1,0%): 1 a prime component, T a G-prime component or
t=1,u2121, 0" =a, o' =P},
Case 2: If o is uncountable regular and B is singular or @ then
A@B = ([1, 0*]®[1,0%): 1 a prime component, T a G-prime component or
=1, 0" > 02, OF =&, ©* =B}
v {[1, a-€] ®[1,0%) : T a 6-prime component or T= 1, § initial, 1 <{<a,
o' =B).
Case 3: If o is singular or  and P is uncountable regular then
A%® = {[1, @*]®[1,0%): 1 a prime component, T a O-prime component,
" >p%, oF =0, o' =B}
v {[1,0"]1®[1,Bn):u a prime component, | =p-® with p initial or 7
o-initial, <N <P, W =0}
Case 4. If o and B are uncountable regular then
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AP = ([1, 0*]®[1,0%):p a prime component, T a G-prime component,

u2't,m“>a2,co’>B2,<T)F=&,a_f=[_3}

u ([, €] @[1,0"):T a o-prime component, & initial, 1<&<a,
at2 0% o > B2, o' =P}

v {[1,0*]®[1,Bn):u a prime component, =p-® with p initial or 1
o-initial, <N <P, 0* 2B, F =@}

U {[1,E]1@[1,BM):& initial, n=p-w with p initial or M o-initial,
1<€<a, o< <P, w&2Pm}.

Now let B> be an initial ordinal.
Case 5: If B is singular or = then
B® = ([1,0%): 1T a 6—prime component or T=1, @° =p}.
Case 6: If B is uncountable regular then
3® = ([1,0"): 1T a c—prime component, ®* > B?, ©° =B}
U {[1, BN): n=p-® with p initial or N c—initial, ®<n <p}.
Now let

A=U{LP :(a, B) as in case 1,2, 3 or 4},
and I
B=U{3® :B as in case 5 or 6}.

The class of spaces that we are currently interested in is £ U%. Notice that whenever
X=[1, ¢]D[1, y)e A, then o2 y.

For every space X € £ U3 we need to fix a certain decomposition. First we will as-
sign to certain ordinals | a fixed sequence (l;); of ordinals. If u=1, put y; =0 for each
ieIN. If u=1- for some 7, put u; =7-i for each i e IN, and if | is a 6-ordinal not of
the form T, let (W;); be a strictly increasing sequence of ordinals such that p; — p and
1<p; < for each i e IN. We now define the desired decompositions:

If X=[1,9]®([l, ®")e «, then X=[1,0]®[1, 0" 1®[1,®?]® -+ (this is true be-
cause for every i, " is a prime component).

IfX=[1,0]®[1,BN)e L, then X =[1,¢]S[1, pN;]1S[1, 1] - -~

IfX=[l,0"e B, thenX=[1,0" 1®[1, ®?]® - -

IfX=[1,Bn)e B, then X =[1, N ][, fN2]® -~

If for Xe L UB we write X =@;~;X;, then we implicitly mean that the X; are as
above.

Now we are going to prove that for every c-ordinal ¢ there is a space ¥ € L UB and
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a decomposition @;= 1 X; of [1, ¢) such that C,(X;)~C,(Y;). We first need the follow-
ing

2.6.5 LEMMA: Let 2w be an initial ordinal and T a successor or a G-ordinal,
such that ®° =p.
(a) If B=w, B is singular, or o 2B? and if T is not a prime component, then
there is a decomposition @i=1X; of [1,®"), such that for every i,
Cp(X))~Cp([1, &F 1) In particular Cp([1, @) ~ C,([1, @F ®)).
(b) If B is uncountable regular and o ¢ [B, B) then one of the following holds:
(i) ©°=Pn withn o-initial and 0N <P, or
(ii) there is an initial ordinal M such that ® <1 <P and there is a decompo-
sition @i~ X; of [1, "), such that for every i, Cp(X))~Cp([1, Bmi]). In
particular Cp([1, @*)) ~Cp([1, BN w)). Furthermore pn-w<w’.

PROOF: First notice that [1, ") =@2;[1, ®"], where 1,=V if tT=v+1 and (1;); is a
strictly increasing sequence (not necessary equal to the fixed sequence associated with
T) with limit 1 if T is a ¢-ordinal. Both in (a) and (b)(ii) we will get X; =[1, " 1.

We first prove (a). Since T is not a prime component, we have ' < T < 10 (lemma
2.1.19), and we can assume T <71; for each i. Now @' 0" < @' < (0")®. With the
help of proposition 2.1.13 it now easily follows that (1—)E =(—x)_?=[—3. Since B=w, B is
singular, or o° 2B, we can apply theorem 2.5.13 (b) to obtain

Cp([1, 0" ~Cp([1, @"])
By a similar argument
Cp([1, 0¥ D~ Cp([1, 07 ),

whence by lemma 2.3.7,
Cp(l1, ) =Cp(@ [1, 0" D~ Cp(@[1, 0" D=Cp([1, 07 ).

For (b) we distinguish two cases.
Case I: @ > 2.

Since P is initial, it is a prime component, so by theorem 2.1.21 B=wP for some or-
dinal p. Then p-2<7T and we can assume that p-2<7; for each i. We conclude that
" >B2. Since @¥ <P? we have T <p2<T, s0 T<p® by lemma 2.1.19. Thus
B?<w" < (B*)®. By proposition 2.1.13 it now easily follows that O_JT—’=[§, so by
theorem 2.5.13 (b)
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Cp([1, @" D ~Cp([1, B?])
and similarly

Cp([1, B*D ~Cp([1, Bi].
Consequently,

Cp([1, ") ~Cp([1, B2)).

Since B%-w is the smallest prime component larger than p? (lemma 2.1.19), @* > B,
and so we have established (ii) for n=p. ‘
Case 2: @* <Pp°.

If o° =p?, 0* satisfies (i), so we may assume ®° < B?. There are ordinals 8, < B
such that @* =" +8. Since 8 < ®® and w® is a prime component, §=0. In addition,
since P is regular and ¢f (0*) =0, 1" 2 0. Ifn* is initial we are done, so suppose 1" is
not initial. Let 1) be the initial ordinal of the same power as n*. Then @<m <n", hence
BN <P =w’, so we can assume BN<w" for each i. Write @" =Bm;+8; with
Mi» 8; <P. Then §;=0 since ®" is a prime component, and B <Bm; <Pm", whence
N=;. Since "=Bmn;,Bnel[B,B?], it follows by theorem 2.5.13 (c) that
C,p([1, ®%]) ~C,([1, BnD. Since C,([1, BN ~C,([1, B1:i]), (ii) can be established as
incase 1.

2.6.6 LEMMA: Let ¢ be a G-ordinal. Then there is a decomposition @;=1X; of
[1, ) and a space Y € 4 U3B such that C,(X;)~C,(Y;) (Where Y; is the i™ term in the
fixed decomposition of Y). In particular Cp([l , 0))~Cp(Y) and Co([1, 9)) ~Co(Y).

PROOF: By theorems 2.1.16 and 2.1.21 there are ordinals y and T such that
0=y +®", with 7>0 and y=0 or y=w". Notice that T is a successor or a ¢-ordinal.
Let o and P be initial such that &=V and B=". Notice that w* #p?, because if not
then @ =p? =wP? for some prime component p which implies that T'=p-2 is not a
prime component.

Case 1: y=0,7=1.

If B is singular, B= or o* > B?, we have [1, §)=[1, ®%) e B.

If B is uncountable regular and ®° e [B, B?), then by lemma 2.6.5 we have either
[1, ®%) e B or there is Y € B such that Cp[1, 0)) =Cp([1, (0’))~C,,(Y) with the desired
decomposition and such that if Y =[1, 8) then d< »°.

Case2: y=0,1T#1.

If B is singular, B=0 or @ > P?, we have by lemma 2.6.5 (a) that there exists a

space ¥ e & such that C,([1, 9))=C,([1, (0’))~C,,(Y) with the desired decomposition
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(Y € B because Y =[1, mT""’) and 7" is a G-prime component).

If B is uncountable regular and ©° < B2, by lemma 2.6.5 (b) there is a space ¥ € B
such that C,([1, ¢)) ~C,(Y) and which has the desired decomposition.
Case3:yz20', v=1.

There is an ordinal p>7 such that Y =@". Notice that T <p. By case 1, there is a
space Y'=[1,8)e B with d<w’, such that Cp([1, %)) ~Cp(Y') and which has the
desired decomposition.

If o is singular, o= or 0¥ > a?, by theorem 2.5.13 (b) C,((1, ¥ 1) ~C,([1, ¥])
(because W* oM <y < oMt! < (@F)?). Since ¥ 20" =@t 23,

1, *1®[1, 8)=[1, 0¥ 1@Y e «.

If o is uncountable regular and o* < 02 we have to consider two subcases
Subcase 3.1: y2>o2.

Then o Sy < (0*)®<(a?)®, so by theorem 2.5.13 (b), Cp([1, W) ~C,p([1, &2]).
Since o > 0" 20" 2§, the space Y=[1,02]®Y e« and C,((1,$))~C,(¥) and
moreover has the desired decomposition.

Subcase 3.2: y < o2

Then y=0-&" +8 with 1 <E" < o and 3 < a. If we let & the initial ordinal with the
same power as &', then by theorem 2.5.13 (c), Cp([1, yD) ~Cp([1, ovE]). Now let
Y=[1, ) ®Y’. It is easily seen that if a-§ < 8, then Y =Y’ B and otherwise Y € 4.
Case4: Y20, T#1.

This is a combination of the cases 2 and 3.

Notice that the last remark in the lemma easily follows from lemma 2.3.7 and corol-
lary 1.2.21. g

Now we are going to prove that for every X, Y e 4 UB we have C,(X)~Cp(Y) if
and only if Cy(X)~C(Y) if and only if X =Y. For that we first have to do some pre-
patory work.

2.6.7 LEMMA:
(@) If 8: Co([1, 0*]) = Co([1, @) is a linear embedding with i, v 21, then
(i) <V, hence W* < (w")®, and
(i) if W is a prime component, then W<V, hence W* <"
(b) Let o be an uncountable regular ordinal and &, n e [1, al.
If0: Co([1, a-€]) = Co([1, an)) is a linear embedding, then Esﬁ.

PROOF: We first prove (a). Suppose 2 v-®. Then o* 2 (w")®, so by corollary 2.5.3
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Co([1, ®"]) has smaller linear dimension than C([1, w"]), which contradicts the fact
that 8: Co([1, @*]) = Co([1, @")) is a linear embedding. This proves (i). For (ii) let u
be a prime component. Since U < v-®, by lemma 2.1.19, u<v’<v.

For (b) suppose M< E Then m<§&, so there is a linear embedding
¢: Co([1, am]) = Co([1, a-E}). This gives that Co([1, an]) and Cy([1, o-E]) have the
same linear dimension, so by theorem 2.5.1 (¢) ) =E. Contradiction. g

2.6.8 LEMMA:

(a) Let X =Z ®[1, w) with Z a compact space, and Y =@;~Z; where each Z; is
an infinite compact space. Then Cy(X) and Cy(Y) are not linearly
homeomorphic.

(b)Let X=2,®Z, with Z| an infinite compact space. Then Cy(X) is not
linearly homeomorphic to Cy([1, m)).

PROOF: For (a) suppose that C(X) is linearly homeomorphic to Cy(Y). Then by
corollary 1.2.15 (b) there is ne IN such that suppZ c @?-1Z;. Again by corollary"
1.2.15 (b) there is m € IN such that suppZ,,; <Z ®[1, m]. By lemma 2.6.3, there is a
linear embedding 6: Co(Zp+1) > Co((1, m])=IR"™. Since Z,,; is infinite we have a
contradiction, because the algebraic dimension of C ¢(Z, ;) is infinite.

For (b) suppose that Cy(X) is linearly homeomorphic to Cy([1, ®)). Then by corol-
lary 1.2.15 (b), there is m € IN such that suppZ, c[1, m]. By corollary 2.6.4, there is a
linear embedding 8: C(Z ;) — Cy[1, m]=IR™. Again we have a contradiction. g

2.6.9 LEMMA: Let X=[1,£,1®[1,&) and Y =[1, ;1 ®[1, Ny) where &, and 1,
are G-prime components, & 2&, and W; 2M,. Then Cy(X)~Co(Y) implies &, =1,
and & =n;.

PROOF: Suppose &, <1 and Co(X)~Co(Y). By corollary 1.2.15 (b) there is 8 < &,
such that supp[1,n;1<(l, & +8], which implies by corollary 2.6.4 that there is a
linear embedding 6: Co([1, ;1) = Co([1, &; +8]). Since E +0=E,& +d<n; and so
€ +8 <M. But then there is also a linear embedding ¢: C([1,&; +8]) = Co([1, M ])
and we conclude that C([1, &; +8]) and C¢([1, 1,]) have the same linear dimension.
This contradicts theorem 2.5.1 (a). By symmetry we conclude that E =7,

Now suppose §_2 < ﬁ; By corollary 1.2.15 (b) there is &<my such that
supp[l, ;1< [1, n; +8]. Since 1, is a prime component, Y =[1, 1, +8] ®[1, 1,).

CLAIM: There is an ordinal T <1, such that 7> £,.
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Indeed, choose wy and wg such that &, =g and TE:Z‘)E Notice that a+1<f
(theorem 2.1.6). If a.+1 <, then T=0q 4 satisfies the claim. If a+ 1=, then wg is
regular (theorem 2.1.10). Since 1 is a ¢-ordinal, it follows that wg <73, so let T= .

Now choose ¢ <&, such that supp[1,T]c[1, §;]1@[1, o]. By lemma 2.6.3, there is
a linear embedding 6: C([1, t]) = Cy([1, ©]). Since GSE; < T, 6 <7T. But then there is
also a linear embedding ¢: Cy([1, 6]) > Cy([1,7]) and we may conclude that
Co([1, o]) and Cy([1, t]) have the same linear dimension. This contradicts theorem
2.5.1 (a). By symmetry we conclude that &, =1,. g

2.6.10 LEMMA: Let o be an initial ordinal.
(@)Let X=[1,0*]1®[1,B) and Y =[1, w®]®[1,7), where 1 SU<O are prime
components, ® 2B and w° 27. Then Cy(X)~Cy(Y), implies L=0.
(b)Let X=[1, ] ®[1,PB) and Y=[1,an]®[1,Y) where o is uncountable
regular, 1<&<n<a, & and M are initial, 0-&2P, and an=y. Then
Co(X)~Co(Y) implies E=n.

PROOF: For (a), by corollary 1.2.15 (b) there is &8<P such that
supp[l, ®°]c[1, w*]®[1,8]. .Since " is a prime component, we have
[1,0*]1®[1, 8]=[1, w*]. Hence by corollary 2.6.4, there is a linear embedding
0: Co([1, @°]) = Co([1, @*]). Then by lemma 2.6.7 (a) we have 6<p. Since by as-
sumption G2, G=|.

For the proof of (b), let 8 < be such that supp[l, an]<[l, a-§]@[1, 8]. Since
S <€ we have d+orE=a-§ and so [1, a-§] D[1, 8] =[1, oE]. But then by corollary
2.6.4 there is a linear embedding 8: Co([1, an])— [1, a-§]). Hence by lemma 2.6.7
(b), 1 <E. Since M and & are initial, n <& and so 1 =& (because by assumption 12 &). g

2.6.11 LEMMA: Let o be an initial ordinal.

(@Let X=Z,®[1,0%) and Y=Z, ®[1, 0®), where Z, and Z, are compact
spaces, 8,7 are prime components, =1 or 8 is a 6-ordinal, 1<3<1, and
0° =@'=@. If o is singular, =0 or ®®>0?, then Cy(X) and Cy(Y) are
not linearly homeomorphic.

(b)Let X=2,®@[l,aE) and Y=Z, ®[1, 0N w), where Z| and Z, are com-
pact spaces, & is G-initial, 1 is initial, and 0 <E<m <. If o is uncountable
regular, then C o(X) and C ((Y) are not linearly homeomorphic.

PROOF: For (a) suppose the C(X)~Co(Y). Then by lemma 2.6.8 (a), 6> 1. By
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corollary 1.2.15 (b) there is n € IN such that suppZ, cZ, ®[1, ®*"]. Again by corol-
lary 1.2.15 (b) there is §; in the fixed sequence associated with & such that
supp[l, ©*"*D]cZ, @[l,msi]. By lemma 2.63 and the fact that
Co([1, "D~ Cy([1, ®*]) (theorem 2.5.13 (b)), there is a linear embedding
0: Co([1, ' ]) = Co([1, (08‘]). Then by lemma 2.6.7 (a), T<9; <, which is a contrad-
iction.

For (b) suppose Cy(X)~Co(Y). There is n e IN such that suppZ; cZ, ®[1, oonn]
and & in the fixed sequence associated with & such that
supp[l,on(n+1)]cZ, ®[1, w§;]. By lemma 2.63 and the fact that
Co([1, o (n+1)])~Co([1, vn] (theorem 2.5.13 (c)), there is a linear embedding
8: Co([1, an]) = Co([1, a-E;]), so by lemma 2.6.7 (b), 1 <; <&, which is a contrad-
iction. g

2.6.12 LEMMA: Let o be an initial ordinal.

(@)Let X=Z,®[1,0%) and Y=Z, ®[1, 0°), where Z, and Z, are compact
spaces, 8, T are G-prime components or 1, 1 £3<1, and o® =@’ =3q. Ifais
singular, a=0 or 0® 202, then Co(X)~Co(Y) implies d=n1.

b)Let X=2, @[l{, o) and Y=Z, ®[1, am), where Z and Z, are compact
spaces, & and W are G-initial or of the form T with T initial, and
w<&n<a. If o is uncountable regular, then Cy(X)~Co(Y) implies
g=n.

PROOF: For (a) suppose 8 <1. By lemma 2.6.8 (a), > 1. By corollary 1.2.15 (b),
there is 7; in the fixed sequence associated with T such that suppZ; cZ, ®[1, O)Ti].
Now let j > i. Again by corollary 1.2.15 (b), there is J; in the fixed sequence associated
with & such that supp[1, 0] cZ,®]1, 0)8" ]. By lemma 2.6.3 there is a linear embed-
ding 8: Co([1, ®"]) > Co((1, 0)5"]). So by lemma 2.6.7 (a), we have 1; < §;"0<é-w,
which implies 8 < T<8'®. So since d and T are prime components, we have T=56.
But this contradicts lemma 2.6.11.

For (b) suppose & <. There is m; 21 in the fixed sequence associated with 1 such
that suppZ; cZ, ®[1, an;]. For j >, there is &, 21 in the fixed sequence associated
with & such that supp[1, am;]cZ, ®[1, 0-§]. By lemma 2.6.3, there is a linear
embedding 6: Co([1, an;]) = Co([1, a-&]). By lemma 2.6.7 (b), n;<E <E. So
7 <E <7 and hence 1 =E. Now we have four cases:

Case 1: &, m are initial.

Since & < 1, we then have € < 7]. Contradiction.

Case 2: & is initial, =10 with 7 initial.
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Then E=ﬁ =T, so T=&. But then we have a contradiction with lemma 2.6.11 (b).
Case 3: &=1'0 with 7T initial and 7 is initial.

By the same arguments as in case 3 we can derive a contradiction.
Case 4: £E=1-0 and 1 = §-® with T and J initial.

Then T=3§ and so T=8, so & =", which is a contradiction. g

2.6.13 LEMMA: Let & be an uncountable regular ordinal, and X =[1, o*]1 @ [1, B),
where | is a prime component, BSo*, B a G-ordinal, o* >0o? and WF=3q. Let
Y=[1, &]®[1,7), where & is initial, 1 <E<a, Y a 6-ordinal and YSo-E. Then Cy(X)
and Cy(Y) are not linearly homeomorphic.

PROOF: To the contrary suppose Cg(X)~Co(Y). There is d<7y such that
supp (1, @*]1c[1, wE] D[1, 8]=[1, wE]. By corollary 2.6.4, there is a linear embed-
ding 8: Co([1, @*]) > Co([1, a-&]). But then by lemma 2.6.7 (a), @* <a-E <a?, which
contradicts the fact that o* > o®. g -

2.6.14 LEMMA: Let o be an uncountable regular ordinal, and X=Z, ®[1, a-£)
and Y =7, ®[1, "), where Z| and Z, are compact spaces, &< . is o-initial or of the
form T-® with T initial, |\ is a G-prime component, O > a? and @ =a. Then Cy(X)
and C ((Y) are not linearly homeomorphic.

PROGQOF: To the contrary suppose Cy(X)~Co(Y). By corollary 1.2.15 (b) there is y; in
the fixed sequence associated with [ such that suppZ; cZ, ®[1, ®"/]. Let j >i such
that " >a?. By corollary 1.2.15 (b) there is keIN such that
supp[1, 0]cZ, ®[1, a-E;]. Notice that & <& <o. By lemma 2.6.3 there is a linear
embedding from Co([1, @ ]) into Co([1, o-E;]). Since o < "/, there is also a linear
embedding from Cg([1, a2]) into Co([1, ot 1), thus there is a linear embedding
8: Co([1, a2]) > Co([1, w&]). So by lemma 2.6.7 (b), & <&, and hence o.< ;. Con-
tradiction. g

We now come to the announced

2.6.15 COROLLARY:
(a)Let Xed and Y e 4. Then Cp(X)~Cp(Y) if and only if Co(X)~Co(Y) if
andonly if X =Y.
(b)Let Xe Band Ye B. Then Cp(X)~Cp(Y) if and only if Co(X)~Co(Y) if
andonly ifX =Y.
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PROOF: If Cp(X)~Cy(Y), then by remark 2.6.2, Co(X)~Co(Y). Now suppose
Co(X)~Co(Y). Let o and B be ordinals such that X e 4 B . But then by lemma 2.6.9,
Yeld@h, By lemmas 2.6.10, 2.6.12, 2.6.13 and 2.6.14 it then follows that X =Y. If
X =Y, then evidently Cp(X) ~C,(Y) and (a) is proved.

Similarly (b) follows from lemmas 2.6.9, 2,6,12 and 2.6.14.

2.6.16 LEMMA: Let Xed and Y € B. Then Cy(X) is not linearly homeomorphic
to Co(Y)

PROOF: X =[1,0]®[l, y) and Y =[1, &) with ¢ a prime component, ¥ and & o-
ordinals and ¢ =y. Suppose C(X)~Co(Y). By theorem 2.5.1 (a), X =Y and therefore
\TISE. As in lemma 2.6.9 we can derive Y =E. Let a be the initial ordinal such that
W=E= o. By lemma 2.6.14 we have to consider two cases:

Case 1: a is singular, a = or y, £ > o®.

Then y=o" and =" with U and T 6-prime components or 1. By lemma 2.6.12
(a), u=1 and by lemma 2.6.8 (b) T> 1. There is T; < T such that supp[1, ¢]c[1, (ot‘].
So there is a linear embedding 6: Cy([1, ¢]) = Co((1, ®"]) (corollary 2.6.4). By lem-
ma2.6.7, ¢ <" ® <o’ =y. Contradiction.

Case 2: a. is uncountable and regular.

Then y=a-n and & =a-T with | and T o-initial or of the form initial'-w, ®<7n, T<a.
By lemma 2.6.12 (b), n=1. There is i e IN such that supp[l, ¢]c[1, an;]. So by
corollary 2.6.4, there is a linear embedding 6: Cy([1, ¢]) = Co([1, an;]). Since
oan; <an=y<¢, there is a linear embedding 0": C([1, am;]) = Co([1, $]). This
means that Co([l, an;]) and Cqy([1, §]) have the same linear dimension. So by
theorem 2.5.1 (c) o =0y+ & for some Y<« and & < o with ¥=",. But then <7, so
Y <1, which implies ¢ < a1 =wy. Contradiction. g

The following theorem gives the classification announced in the introduction of this
section.

2.6.17 THEOREM: Let a and B be G-ordinals Then the following statements are
equivalent:
(1) Cp([1, ) ~Cp([1, BY)
(2) Co([1, a)) ~Co([1, B
(3) There are compacta X; and Y; (ieIN) such that [1,0)=@;1X;,
[1, B)=@iZY; and for every i e IN, C,(X;)~C,(Y)).
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(4) There are compacta X; and Y; (ie N) such that [1,0)=@®{21X;,
[1, By=@®;Z,Y; and for every i e N, Co(X;) ~ Co(Y).
(In fact the X; and the Y; are compact ordinal spaces.)

PROOF: For (1) = (2) apply corollary 1.2.21. Furthermore (2) = (4) easily follows
from lemma 2.6.6, corollary 2.6.15 and lemma 2.6.16. For (4) = (3) notice that for
compact ordinals we have the same isomorphical classification for the topology of
pointwise convergence and the compact-open topology (section 2.5), so
Co(X;)~ Cy(Y;) implies Cp(X;) ~ Cp(Y)). Finally (3) = (1) follows from lemma 2.3.7,
and the theorem is proved. g

2.6.18 EXAMPLE: Notice that [1, ®°)=@®:%,[1, ®"] and [1, 0*)=@: (1, @].
By theorem 2.4.7, C,([1, @"]) ~ Cp([1, ®]) for each ne IN (because @< ®" < 0®). So
by theorem 2.6.17, C,,([1, 0?)) ~ C,([1, @®)).

With the next lemma and theorems 2.6.17, 2.4.1 and 2.4.7, we have obtained a com-
plete isomorphical classification for the spaces C »(X) and Co(X) for o-compact ordinal
spaces X. Notice that from the classification it follows that for these spaces
Cp(X) ~C,(Y) if and only if Co(X) ~Co(Y).

2.6.19 LEMMA: Let o and B be ordinals such that Cy([1, o)) ~Co([1, B)). Then
(a) a is a successor if and only if B is a successor, and
(b) o is a 6-ordinal if and only if B is a G-ordinal.

PROOF: For (a), if o is a successor, then [1, a) is compact. So by theorem 1.5.7
[1, B) is compact and thus B is a successor.

For (b), let a be a c-ordinal. By remark 2.6.2 [1,a) is a non-compact non-
pseudocompact space, so by theorem 1.5.7 [1, B) is a non-compact non-pseudocompact
space. But then by remark 2.6.2, B is a G-ordinal. g

By the obtained classification theorems we conclude that for locally compact spaces
X and Y and their respective one-point compactifications wX and ®Y, the fact that
Cp(X)~C,(Y) does not necessarily imply that Cp(wX)~C,(0Y), and vica versa. For
example, Cp([1, ®®)) is linearly homeomorphic to Cp (1, 0)2)) (example 2.6.18), how-
ever Cp([l, ©®]) is not linearly homeomorphic to Cp([1, ®?]). Furthermore, Cp([1, o))
is linearly homeomorphic to C,([1, 0)2]), but C,([1, 0)) is not linearly homeomorphic
to Cp([1, @*)) (lemma 2.6.8).
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The same remark applies to the compact-open topology.

The question now arises whether we can derive a similar classification for the spaces
of bounded continuous functions. This seems impossible by the methods of this sec-
tion. Simply observe that corollary 1.2.15 (b) plays a fundamental role, and that it does
not hold for spaces of bounded continuous functions (example 1.2.12). In section 4.6
we will come back to this and we will show there that for c-ordinals a., theorem 2.6.17
does not hold for the spaces C;([l, a)).

Another question is whether a similar classification can be derived for arbitrary ordi-
nal spaces. Again it seems that this is impossible by the methods of this section, be-
cause we essentially used that every closed and bounded subset of [1, &) is compact
(with o a ¢-ordinal), and by remark 2.6.2 this is not true for the spaces [1, ) if o is an
ordinal with ¢f () > .

Finally we remark that the results in this section are new. They are extensions of the
results in [3] for the countable case.

§2.7. Separable metric zero-dimensional locally compact
spaces

In this section we will give a complete isomorphical classification of the function
spaces C »(X) and C(X) with X a separable metric zero-dimensional locally compact
space. Notice that for separable metric zero-dimensional compact spaces X we already
have a complete classification of the spaces Co(X) (cf. theorem 2.4.1) and Cp(X) (cf.
theorem 2.4.7). This classification is such that for two spaces X and Y it follows that
Cp(X) is linearly homeomorphic to Cp,(Y) if and only if Co(X) is linearly
homeomorphic to C(Y) (cf. remark 2.4.8). By theorems 1.5.1 and 1.5.4 it remains to
present a complete classification of the spaces Co(X) and C,(X) with X separable
metric. zero-dimensional locally compact but not compact. For convenience in this sec-
tion every space is separable metric.

2.7.1 LEMMA: Let X be a countable space which is locally compact but not com-
pact. Then there is a 6-limit ordinal o such that X =(1, o).

PROOF: Let wX be the Alexandroff one-point compactification of X. By proposition
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2.2.7 and theorem 2.2.8, there is a limit ordinal A such that wX =[1, A]. So X is a dense
subset of [1, A] such that [1, A]\ X contains only one point, say W. Since X is dense in
[1, A], w is a limit ordinal. So

X=[LAN{pu}=[L, WS [u+L,Al=[u+LA]®[L, W=[u+1,A+W)=[1, o)

for some limit ordinal .. Since a is countable, o is a ¢-limit ordinal. g

By lemma 2.7.1 countable spaces which are locally compact but not compact are
homeomorphic to ordinal spaces. Since these ordinals are ¢-ordinals we already have a
complete classification for their function spaces CP(X ) and C((X) (cf. theorem 2.6.17).
We shall now consider the case of uncountable locally compact spaces which are not
compact. The proof of their classification is similar to the one in section 2.6. We define
a class of spaces such that for every uncountable zero-dimensional space X which is lo-
cally compact but not compact, Cp,(X) is linearly homeomorphic to a space in this
class. After that, we prove that two different spaces in this class are not linearly
homeomorphic, which gives the classification.

2.7.2 LEMMA: Let X be an uncountable zero-dimensional space which is locally
compact but not compact. Then there is a decomposition @;~,X; of X consisting of
compacta such that either every X; is uncountable or X; is uncountable iff i =1.

PROOF: Let X =@;Z,Z; be a decomposition of X consisting of compacta (this is pos-
sible because X is zero-dimensional).
Case 1: Only finitely many Z; are uncountable.

Let n=max{ i :Z;is uncountable}. LetX=Z,@® - ®Z, and X;=Z, ,;_; (i 22).
Case 2: Infinitely many Z; are uncountable.

Suppose Z; ,Z;,,... are uncountable. Let X, =Z; .1 ® - ®Z; (ip=0). Since

X, is compact and uncountable we are done. g

We now define the class 6 U2 of spaces as follows:

€={C ®[1, w*):C is the Cantor set and 1 <7 < @, is a prime component},
D ={@®;=C;:C; is a copy of the Cantor set}.

Observe the following:
If Xe8, say X=C®[1,®), then X=C®[1, 0" |®[1, ®>]D.... where (1;); is the
fixed sequence cofinal with T which was chosen on page 90. If for X € € we write
X =@;%,X;, then we implicitly mean that the X; are as above. If X e 2 then we consid-
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er the fixed decomposition @;=,C;.

2.7.3 LEMMA: Let X be an uncountable zero-dimensional space which is locally
compact but not compact. Then there is a decomposition @;=X; of X and a space
Y e 60D such that Cp(X;) ~C,(Y;) (where Y; is the i-th component of the decomposi-
tion of Y stated as above). In particular Cp(X)~C,(Y) and Co(X)~Co(Y).

PROOF: By lemma 2.7.2 there is a decomposition @;~; X/ of X consisting of compac-
ta, such that either every X is uncountable or X is uncountable iff i =1.
Case 1: X[ is uncountable iff i = 1.

Since X'=@[22X/ is a countable space which is locally compact but not compact,
by lemma 2.7.1 and lemma 2.6.6 there is a decomposition @;z;Z; of X’ and a space
Y’ e £ UB such that Cp(Z;) ~C,(Y{). By lemma 2.6.9 Y'e 4@ ® LB ®, because X’
is countable.

IfYed®® then V' =[1, o*]®[1, ), where u and T are prime components such
that 1<u,T<®;. Then C,(Z)~Cp([1,w"]). Let X =X{®Z, and for i22 let
X;=2;. Since X; is zero-dimensional, uncountable and compact, by theorem 2.4.7
Cp(X1)~Cp(C). Soif weletY=C ®[1, w*) we are done.

If Ve B3@® say Y'=[1, ®%) with T a prime component, 1 <T<®;, then let
Y=C®[l,®"),X=X{andfori2>2,X,=Z,.

Case 2: Every X/ is uncountable.
Define Y = @;%,C;. By theorem 2.4.7 C,(X;) ~C,(C}), so let X;=X/.g

2.7.4 LEMMA:
@IfX,Ye$, then Co(X)~Cy(Y) if and only if Co(X)~Co(Y) if and only if
X=Y.
B)IfXeBandY e D, then Co(X) and Cy(Y) are not linearly homeomorphic.

PROOF: Part (a) follows directly from lemma 2.6.12 (a).

For (b), suppose that X =C @[1,®%) and Y=@i%;C;. Assume Cy(X)~Cq(Y).
There is ne IN such that suppCcC{® -+ ®&C, (corollary 1.2.15 (b)). There is
i € IN such that suppC,,.; cC ®[1, ©"“]. So by lemma 2.6.3, there is an embedding
¢: Co(C)— Co([1, @" D). Since by theorem  2.4.1 (c) we have
Co(C)~Co(C @[, @*™)), we have a linear embedding
0: Co([1, @"®]) = Cy([1, ®“]). But then by lemma 2.6.7 (a), T:® < T;-o. This is a con-
tradiction. g
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2.7.5 THEOREM: Let X and Y be uncountable zero-dimensional spaces which are
both locally compact but not compact. Then the following statements are equivalent:
(1) Cp(X) ~Cp(Y)
(2) Co(X)~Cy(Y)
(3) There are compacta X; and Y; (i € N) such that X =@~ X;, Y =®i~,Y; and
Cp(X;i)~ Cp(Yy).
(4) There are compacta X; and Y; (i € N) such that X =@ X;, Y =@, Y; and
Co(X;))~Co(Y)).

PROOF: For (1) = (2) apply corollary 1.2.21. Furthermore (2) = (4) follows easily
from lemmas 2.7.3 and 2.7.4. For (4) = (3) notice that for compact zero-dimensional
spaces we have the same isomorphical classification for the topology of pointwise con-
vergence and the compact-open topology (section 2.5), so Co(X;)~Co(Y;) implies
Cp(X,-)~Cp(Y,~). Finally (3) = (1) follows from lemma 2.3.7. g

REMARK: In view of the remark after theorem 2.6.17 we have the following: Let
X and Y be spaces such as in theorem 2.7.5 and let wX and wY be their respective one
point compactifications. By theorem 2.4.7, C,(®wX) is linearly homeomorphic to
Cp(®Y), irrespective of whether Cp(X) and C,(Y) are linearly homeomorphic.

Again, the same remark applies to the compact-open topology.

We almost completed the isomorphical classification of the function spaces CP(X )
and Cy(X) of locally compact zero-dimensional spaces X. It remains to distinguish
between "countable” and "uncountable”. For the pointwise topology, if C,(X) and
Cp(Y) are linearly homeomorphic, we have that X is countable if and only if Y is count-
able (by theorem 1.5.9). The same holds for the compact open topology as is shown by
the following

2.7.6 PROPOSITION: Let X and Y be locally compact zero-dimensional spaces
such that Cy(X) and Cy(Y) are linearly homeomorphic. Then X is countable if and
only if Y is countable.

PROOF: Suppose that X is countable and Y is uncountable. By theorem 1.5.4b and
theorem 2.4.1 we may assume that X and Y are not compact. By lemma 2.6.6 and lem-
ma 2.7.3 we may assume that X e L UB and Y € 8 U2. There is a clopen copy of C in
Y. Then supp C is contained in a clopen copy of [1, a] in X for some countable ordinal
o. So by corollary 2.6.4 there is a linear embedding from C ((C) into Co([1, a]). Since
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Co(C®[1,0®])~Co(C) (theorem 2.4.1) we then have a linear embedding
8: Co([1, a®]) = Cy([1, a]). But this is impossible by corollary 2.5.3. g

Notice that by lemma 1.4.1, proposition 1.4.3, theorems 1.5.1, 1.5.4, 2.4.1, 2.4.7,
2.6.17, 2.7.5 and proposition 2.7.6 we have as announced in the introduction of this
chapter that for locally compact zero-dimensional spaces X and Y, C,(X) is linearly
homeomorphic to C,(Y) if and only if Co(X) is linearly homeomorphic to C(Y).

Finally we remark that the main results of this section were published in [3].



CHAPTER 3

On topological equivalence of function spaces

All spaces considered in this chapter are separable and metrizable.

Let 4 be a homeomorphism between IR and (-1, 1). Then for each space X and each
bounded f: X — R, there is m € IN such that (& -f)X)c[-1+1/m, 1-1/m]. This al-
lows us to identify Cp(X) and the subspace

{f:X —> (-1, 1):f is continuous}

of (-1, l)X ; similarly we can identify C ;(X ) and
{fe Cp(X): there is m e IN such that f (X)  [-1 + ‘:; 1- %]}.

In particular if X is countable, C,,(X) and C;(X ) can be regarded as subspaces of the
Hilbert cube.

Let X = {xg, X1, X3,...} be a countable space, C,, o(X)={fe Cp(X):f (x¢)=0} and
C;' 0X)={fe C;(X ): f(xg)=0}. In this chapter we mainly consider non-locally com-
pact countable spaces. For X = {xg, x1, X2,...} not locally compact, we assume that X is
not locally compact at x.

In [38], van Mill showed that for a non-locally compact countable space X, C; (X) is
homeomorphic to G, where

Ow =(t})°° and tf = {x e £ :x; =0 for all but finitely many i }

(£ denotes separable Hilbert space).

One of our main results in this chapter is that for a non-locally compact countable
space X, C,(X) is homeomorphic to Gg,. We will give two proofs. The first proof in
section 3.2 is quite technical: Among other things we prove that whenever Y is any oth-
er non-locally compact countable space, then there exists a homeomorphism from the
Hilbert cube onto itself arbitrary close to the identity which maps Cp,O(X ) onto
Cp,0(Y). The second proof in section 3.3 is in the spirit of van Mill’s proof that C ;(X )
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and O, are homeomorphic [38]. The strategy followed depends strongly on results of
Torunczyk [50], [51]. It is less technical than the proof in section 3.2, but it gives only
that C,(X) and G, are homeomorphic.

Section 3.1 contains preliminaries from infinite-dimensional topology which will be
used to prove our main results. In that section we also present some results on Q-
matrices

The question remains whether for non-locally compact countable spaces X and Y,
there is a homeomorphism from the Hilbert cube onto itself arbitrary close to the iden-
tity which maps C;,O(X) onto C;‘ 0(Y). In section 3.2 we give a positive answer to this
question.

In section 3.4 we give some final remarks. We state recent theorems of Dobrowol-
ski, Gulko and Mogilski [20] and Cauty [16] from which can be concluded that for a
non-discrete countable space X, C, »(X) and C;(X ) are homeomorphic to G,. Since for
any countable discrete space X, C,(X) is homeomorphic to IR", where ne INU {e} is
the cardinality of X, we obtain a complete topological classification of the spaces
Cp(X), for countable spaces X. Furthermore in that section we state the uniform
classification derived by Gulko [27] of the uniform spaces C,,(X), for countable infinite

compact spaces X.

§3.1. Preliminaries and Q-matrices

In this chapter we consider products of spaces at several places. It will be con-
venient to explicitly define an admissible metric on such a product. For every i € IN, let
P; be a space with an admissible metric d; such that each d; is bounded by c for a fixed
¢ € R. If we have a finite product of spaces P =IT/_;P; then the specific admissible
metric d on P is defined by d=max{d;,..., d,}, and if we have a countable infinite
product of spaces P =TII;~, P; then the specific admissible metric d on P is defined by

dex, y)= Z 27 diCx;, ),

where x =(x;);c N, ¥ =(i)ie N € P. Whenever for each i e IN, P; =X for some space X,
we denote P by X

Consider the Hilbert cube Q =117, [-1, 1];, where [-1, 1];=[-1, 1] for every i ¢ IN.
Then the topology of Q is given by the metric

d(x, y)= -212_1 Ix;—y; 1,
=
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where v=(x)icn, Yy =0i)iene @. The subset s=I17Z,(-1,1); of Q, where
(-1, 1);=(-1,1) for every i e N, is called the pseudo-interior of Q. B(Q)=0\s is
called the pseudo-boundary of Q. A space which is homeomorphic to Q is called a
Hilbert cube.

A subspace A of separable Hilbert space ¢ will be called a Keller space whenever it
is compact, convex and infinite dimensional. In [33] it is proved that a Keller space is a
Hilbert cube (see also [39]). Since there is an affine embedding from Q into £, we ob-
tain the following

3.1.1 THEOREM: A Keller space in Q is a Hilbert cube.

For spaces X and Y let

CX,Y)={f:X->Y:fiscontinuous}
and
HX, Y)={f:X—>Y:fisahomeomorphism}.

Whenever X =Y we write #(X) for #(X, X). For f, g e C(X, Y) we define
d(f, g)=sup {d(f (x), g (1)) :x e X} € [0, o],

where d is an admissible metric on Y. As is easily seen we have the following

3.1.2 LEMMA: Let X, Y and Z be spaces. Let f, ge C(Y,Z) and he C(X,Y).
Then d(f <h, g <h) <d(f, g). If moreover h is surjective, then d(f-h, g -h)=d(f, g).

Let X be a compact space and let A be a closed subspace of X. Then A is a Z-set in X
if and only if for every fe C(Q, X) and for every € >0, there is a g e C(Q, X) such
that

(a) d(f, g) <&, and
(b) g(Q)nA=0.

The definition of a Z-set is independent from the chosen metric on X. By Z(X) we
denote the family of all Z-sets in X. A countable union of Z-sets is called a 6Z-set. The
family of all 6Z-sets in X is denoted by Z5(X). An embedding f: X —Y, where Y is
another compact space, is called a Z-embedding whenever f (X) e Z(Y).

3.1.3 LEMMA ([39, Lemma 6.2.2)): Let X be a space. Then
(@)IfA e Z(X)and B cAis closed, then B € 9(X).
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(b)If A € 4(X), then A has empty interior in X.

PROOF: (a) follows directly from the definition of a Z-set. For (b) suppose that
IntA#@. Let x e IntA and put e=d(x, X\IntA). Let fe C(Q, X) be the constant func-
tion with value x. If g € C(Q, X) satisfies a(f, g) <¢€/2, then obviously g(Q)nA #@.
Hence A is not a Z-set in X. g

3.1.4 LEMMA ([39, Lemma 6.2.3]): Let P =I1{2P; be a countable infinite product
of compact spaces. Let A C P be closed such that Tj(A)# P; for infinitely many j. Then
Ae I(P).

PROOF: Let f=(f1, f2,..)€ C(Q, P) and € > 0. For each i € N, let d; be an admissi-
ble metric on P; bounded by 1. Find j e IN such that 27/ < &. By assumption there are
k>jandte Py\mi(A). Define g e C(Q, P) by

2= 1), -+ femt (O by fia1 (0.0

Then g (Q)nA =@ and

d(f, g)=sup (d(f (@), 2(@)):q € O}
=sup {27227 di(fi(q), 8i(9)) : g € O}
=sup (27 (fi(q), ) :q € Q)
<2*<27V<eg

3.1.5 THEOREM ([39, Th. 6.4.6]): Let E, Fe 2(Q) and let f:E—F be a
homeomorphism such that d(f, 1g) <€. Then f can be extended to a homeomorphism
F: QO — Q such that &(f, I)<e.

3.1.6 THEOREM ([39, Th. 6.4.8]): Let X be a compact space, let A C X be closed
and let f: X — Q be continuous such that f |A is a -embedding. Then for every € >0
there is a I-embedding g: X — Q such that d(f, g) <eand g 1A =f |A.

Let {A, },.n be an increasing family of Z-sets in a compact space X. Then
{Ap }ueN is a skeleton in X whenever for every € >0, ne IN and Z e Z(X), there are
h e #(X) and m € IN such that

(@ deh, 1)<,
(b)hlA,=1, and
©)h(Z)cA,,.



§3.1. Preliminaries and Q-matrices 103

The definition of a skeleton is independent from the chosen metric on X. A subset A of
X is called a skeletoid in X if there is a skeleton {A,},.N in X such that A =U:=1A,,.
Note that if A is a skeletoid in X and h e #(X, Y), then h(A) is a skeletoid in Y. In the
following theorem sufficient conditions are given for an increasing sequence of Z-sets
in a Keller space to be a skeleton.

3.1.7 THEOREM: If { A; };ciN is an increasing family of Z-sets in a Keller space P
such that,
(a)for everyie IN, A;je Z(A;41),
(b) for every i e IN, A; is convex and infinite-dimensional, and
(c) U:-:lAi is dense in P,
then ( A; }; . N is a skeleton in P.

PROOF: Let Ze J(P), ne N and € > 0. Since P is a Hilbert cube, there is by theorem
3.1.5, >0 such that if E, Fe 2(P) and if f: E —>F is a homeomorphism with
a(f , 1) <8, then f can be extended to a homeomorphism f:P — P such that
a(f, 1) < € (we use that a homeomorphism between P and Q is uniformly continuous).

Find {x,..., x4} <P such that P =Uj=]B(xj, 8/4). There is m 2n such that for
each j <k, B(xj, 8/4) n A, #@. By [39, Cor. 8.2.2] there is a retraction r: P — A,, such
that for each x € P, d(x, r(x))=d(x, A,;). We claim that a(r, 1) < &/2. Indeed let x € P.
Let j <k be such that x € B (xj, 8/4). Find y € B (xj, 8/4) nA,. Then

d(x, r (x))=d(x, Ap) Sd(x, y) <d(x, x;)+dx;, y) < %

Let r'=r (ZUA,):ZUA, > A,. Then r'IA, is a Z-embedding. Note that A, is a
Keller space, hence a Hilbert cube. So by theorem 3.1.6 there is a Z-embedding
s:ZUA, > Ap suchthat s 1A, =r"1A, =1, and a(s, r’) < 8/2. Hence a(s, 1) < 3. Note
that ZUA, e Z(P) and s(ZUA,)e Z(P) and s: ZUA, > s(ZuUA,) is a homeomor-
phism. Hence there is h e #(P) with a(h, 1)<e and A |ZUA,=s. This implies that
h(Z)cA,and hlA,=1.g

3.18 EXAMPLE: For every nelN, let X,=[-1+1/n,1-1/n]", and let
Z=U:=1):,,. By lemma 3.1.4 we have for ie N, X, e Z(Q) and Z; e Z(Z;,;). Since
each Z; is convex and infinite-dimensional and X is dense in Q it follows from theorem
3.1.7 that (X, },.N is a skeleton in Q, so that X is a skeletoid in Q.

Another well-known example of a skeletoid in Q is B (Q).
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There are interesting theorems on skeletoids. We mention a few which we will use

in the sequel.

3.1.9 THEOREM ([17, Lemma 4.3]): Let A and B be skeletoids in a Hilbert cube
P. Let Z € I(P) such that Z ~n(A UB)=@. Then for every € >0, there is h € #(P) such
that

(@) h(A)=8B,
(bYh1Z=1,and
(c)d(h, 1)<k

3.1.10 THEOREM ([17, Th. 6.7; 39, Th. 6.5.3 (2)]): Let A be a skeletoid in a Hil-
bert cube P, B € Z(P) and C € 5(P). Then A\B and A L C are skeletoids in P.

3.1.11 COROLLARY: Let A be a skeletoid in Q, B e Z(Q) and C € Z5(Q) such
that C c B. Then for every € > 0 there is h € #(Q) such that
(@) d(h, 1) <€, and
(b)Yh(B)YNA=h(C).

PROOF: By theorem 3.i.10, (A\B)uUC is a skeletoid. By theorem 3.1.9 there is
h e #(Q) such that

(1) d(h, 1) <e, and
(2) h((A\B)uUC)=A.

Then we have

h(BYnA=h(B)nh(A\B)uLC)
=h(Bn((A\B)u())
=h(BnC)
=h(C).g

We now present the notions of a Z-matrix and a Q-matrix. These notions were intro-
duced by van Mill in [38].
A J-matrix in a compact space X is a collection 4 ={ A}, : n, m e IN} of Z-sets in X

such that for every m, ne IN,
(a) AT =0,
(b) Ap, cAp 4y, and
(c) ARt c AL,
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Define the kernel of « by kerﬂ=ﬁ:=1 U:=1Af§,. Then clearly ker« is an Fg5-
subset of X.

Let 4 ={A} :n, me N} be a Z-matrix in a compact space X. Then 4 is a Q-matrix
if and only if 4 has the following properties:

(a) Forevery ne IN, { A}, },n 51 is a skeleton in X,

and foreveryn; < *-+ <nyeNandi,,...,i,e IN\(1},

(b) M=t Af¥ is a Hilbert cube,
(c) for every p e IN, { M= Af¥ A AP ) is a skeleton in My Aj¥, and
(d) for every s, t € IN such that M- A™ & AS we have

k
M1 AlE AAS € TN AT).

Note that if £={A}:n,me N} is a Q-matrix in X and he #(X,Y), then
h(L)={h(A%):n, me IN} is a Q-matrix in Y (we use that 4 is uniformly continuous).

Let £={A}:n, me N} be a -matrix and let A:’n‘l and A",,,z2 be in « such that
ny<n, and my2my. Then Ayl cA,| so Ay nApl =AzL. So for
ny< - <nypelNandi,,...,i,eIN\{1} we may assume i < *** <i, if we are

. . m
interested in M _;A[Y.

3.1.12 THEOREM ([38]): Ifd and B are Q-matrices in Q, then
(a) ker A is homeomorphic to Oy, and
(b) for every € >0 there is h € #(Q) such that d(h, 1) <€ and h(ker 4) =ker B.

3.1.13 COROLLARY: Let P and P, be Hilbert cubes and let 4 and B be Q-
matrices in P | resp. P,. Then
(a) kerd is homeomorphic to Gy, and
(b) for every he #(P,,P,) and €>0, there is ge H(P,P;) such that
a(h, g)<eand g (kerd)=ker B.

PROOF: Observe that (a) is a triviality. For (b), let 4: @ — P, be a homeomorphism.
Then €=h7!(4) and D=(h-h )" (B) are Q-matrices in Q. Since h -k, is uniformly
continuous, there is 8> 0 such that if d(x, y) <9, then d((h <& )(x), (h -h{)(y)) <&/2.
By theorem 3.1.12 (b) there is oce #(Q) such that a(a, 1) < 8 and o(ker 8)=ker D. Let
g=heh;-o-hi'. Theng: P >P;isa homeomorphism and g (ker &) =ker 8. Furth-
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ermore by lemma 3.1.2 and the choice of §,

d(h, g) =d(h, h<hy -o-h7")
=dh-h;,h-h;-0)<€. g

Van Mill used theorem 3.1.12 to prove that if X is a non-locally compact countable
space, then C; (X) is homeomorphic to O,. The strategy of the proof is the following:
First a test space T of X is constructed and a Q-matrix $B is found such that
ker B =C;(T). So by theorem 3.1.12 (a) it follows that C;(T) is homeomorphic to Oy,.
Then by applying strong results of Torunczyk [50], [51] he derives that C;(X ) is
homeomorphic to Oy,. In section 3.3 we will use the same strategy to prove that C,(X)
is homeomorphic to G,.

3.1.14 EXAMPLE: Let X, and X be as in example 3.1.8. Let P =II;Z; Q;, where
0;=0 for every i e IN. Clearly P is a Hilbert cube. For every n, m e IN define Ay, C P

as follows

(1) A} =@ for every n e IN and
Q) AL=(Z,)"xXOxQXQ X"+ forevery ne IN and m >2.

We claim that 4={A),:n, me N} is a Q-matrix in P. By lemma 3.1.4 for each
n,meN, Ay, e Z(P) and A, € Z(Ap 41 ). For each ne IN, A}, is convex and infinite-
dimensional, and U:=1A;‘n is dense in P, so by theorem 3.1.7 we have that {A},},,>] is
a skeleton in P for every ne IN. Now letn; < '+ <ny,eINandi,..., i,e N\{1}.

By the observation made above we may assume /| < *** <i,. Then
m
’QIAZ(" =(E) T X(E )T X X ()T X QXX QX

is a product of Hilbert cubes and hence a Hilbert cube itself.
Forpe Nandi2i,,

m
kr_\]Af’: AAPP =(Z ) X X (Z )T X (P XQXQ XX

and for pe IN and i <y, f\:lﬂA,"L" AA"P = A}"*? By the above formulas and by

lemma 3.1.4, for each i € IN,

m

m m m
IQ]A:’[ NAP"? e 3(QA,'-L* ) and kr)lAf‘* NAP?P € 3([31,4;’; AT,

3

m
Furthermore we have that M, _; A}*

Nyt . . . . .
i DA™ P is convex and infinite-dimensional, and
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Ui (Myg=1Al nAJ™*) is dense in Mi=1A}%. So again by theorem 3.1.7, for every

pe N, (Mo Al AAT™* ;5 is a skeleton in My Af¥.
Finally let s, € IN be such that m}(';,A;jf & A$. Then by the above formulas we can
write for t > 1

m

m ©o o0
MA}* =T1E; and NA} nA]=TIF;,
k=1 i=1 k=1 i=1

where all but finitely many E;’s and F;’s are equal to Q and the remaining finitely many
E;’s and F;’s are elements of the family {X,},-. Since I1;Z{F; is a proper subset of
IT;Z, E;, there is i e IN such that F; is a proper subset of E;. Since F; =X, for some
ne N or Q and F; also, it follows that each factor space of F; is a proper subset of the
corresponding factor space of E;. Hence by lemma 3.1.4 it follows that
I Fi e ZAT4 Ey).

It is easily seen that ker.d =X, so that by theorem 3.1.12 (a) % is homeomorphic
to Og.

COROLLARY 3.1.15: Let {P;:ieIN} be a family of Hilbert cubes, and
P =T11{2,P;. Then ,

(a) if B and € are Q-matrices in P\ resp. P, then there is a Q-matrix 4 in
P X P, such that ker 4 =ker B xker €,

(b) if for each i e N, d; is a Q-matrix in P;, then there is a Q-matrix A in P
such that ker £ =T172  ker 4,

(c) iffor each i € IN, A; is a skeletoid in P;, then there is a Q-matrix 4 in P such
that ker 4 =T1;21A;,

(d) if B is a Q-matrix in P | and A is a skeletoid in P ,, then there is a Q-matrix
A in Py X Py such that ker 4 =ker B XA, and

(e) if B is a Q-matrix in P |, then there is a Q-matrix 4 in [-1, 11X Py such that
kerd =(-1, 1) xker 3.

PROOF: If 4 is a Q-matrix in a Hilbert cube Q, there is by corollary 3.1.13 (b) and
example 3.1.14, a homeomorphism h: Q% — Q; such that A (X~)=kerd. Moreover
by theorem 3.1.9 and example 3.1.8, there is for each skeletoid A in a Hilbert cube Q
a homeomorphism g: Q — @ such that g (£)=A. It is easily seen that

(1) there is a homeomorphism 4 1: Q= — (@)% such that h;(£%) =(Z*)?,
(2) there is a homeomorphism A,: O~ — (Q %)™ such that £,(Z7)=(Z")%,
(3) there is a homeomorphism 43: Q* — 0 x Q% such that h3(X7)=Xx X",
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and
(4) there is a homeomorphism h4: O — [-1, 1]xXQ such that
ha(Z¥)=(-1, I)xZ>=.

Taking the right combinations of the obtained homeomorphisms one can prove (a)
through (e). We outline (e). The other proofs are similar.

Let h:Q”—P; be a homeomorphism such that h(Z”)=ker®. Define
a:Py—[-1,1]xP| by a=(1><h)°h4eh'l. Then « is clearly a well-defined

homeomorphism. Furthermore

aker B)=((1xh)hyh')(ker B)
=((1xh) -hy)(Z7)
=(IxXh)(-1, I)xX™)
=(~1, 1) xker B.

Then 4 = 0ou(B) is a Q-matrix in [-1, 17X P such that ker (4) =(~1, 1) Xker 8. g

In contrast to the theory of skeletoids, the theory of Q-matrices is hardly developed.
In view of theorem 3.1.10, a first question to ask, is whether for a Q-matrix « in a Hil-
bert cube P and F e Z(P), there is a Q-matrix B such that ker B =ker 4\ F. We were
not able to prove this straight from the definition of a Q-matrix. However we can prove
the weaker statement that ker.d and ker.« \ F are homeomorphic (theorem 3.1.21). As
will be clear in the sequel, the proof of this statement unfortunately has nothing to do
with Q-matrices. Before the proof can be given we have to present some more
definitions and known theorems.

A space X is said to be a Gy -manifold if there is an open cover of X consisting of
sets homeomorphic to open subsets of O,. Two spaces X and Y have the same homo-
topy type whenever there are fe C(X, Y) and g e C (Y, X) such that f-g is homotopic
to 1y and g - f is homotopic to 1y. We have the following theorem of Henderson.

3.1.16 THEOREM ([30]): If X and Y are Oy -manifolds, then X is homeomorphic
toY if and only if X and Y have the same homotopy type.

A space X is an absolute retract (abbreviated AR), resp. an absolute neigborhood
retract (abbreviated ANR), whenever for every space Y and for every closed subspace
A of Y, every continuous function f: A — X has an extension f: ¥ — X, resp. an exten-
sion f: U — X over a neigborhood U of A in Y. By the Dugundji Extension Theorem,
O is an AR. A space X which admits an open cover consisting of ANR'’s, is itself an
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ANR ([39, Th. 5.4.5]). A space X is contractible whenever the identity 1y is homotopic
to a constant mapping. Note that two contractible spaces have the same homotopy type.
A space X is homotopically trivial whenever for every ne IN and every continuous
f:S" =X, there is a continuous extension g: B"*! — X. The above notions are related
by the following

3.1.17 THEOREM ([39, Th. 5.2.15]): For a space X are equivalent
(1) X isan AR,
(2) X is an ANR and contractible, and
(3) X is an ANR and homotopically trivial.

We proceed by proving the announced statement from the previous page (cf.
Theorem 3.1.21). We start with three lemmas.

3.1.18 LEMMA: Let K cZ be compact. Then for every € >0, there is an embed-
ding f : Q — Z such that
(a)f |K=1,and
®) d(f, D<e

PROOF: By lemma 3.1.4, K € Z(Q) and by example 3.1.8, {X,},.n is a skeleton in Q,
so there are n € IN and h € #(Q) such that

(1) h(K)cZ,, and
2) d(h, 1) <e/6.

By lemma 3.1.4, h(K)e 9(Q). By theorem 3.1.10, \ £ (K) is a skeletoid in Q. Further-
more h(Z\K) is a skeletoid in Q and & (K) misses Z\Ah(K) and A(Z\K) so that by
theorem 3.1.9, there is ot e #(Q) such that

(3) a(h (E\K)) =\ h (K),
(4) alh(K)=1, and
(5) d(at, 1) < /6.

Since h(K)cX, we have by (3) and (4) that o has the additional property that
o(h(Z))=Z. Let B=a-h. Find m ¢ IN and a homeomorphism &: Q — X, such that

(6)EIZ, =1, and
(7) d(E, 1) < /3.

Let f=B7! <&<B: Q — Z. Then fis clearly a well-defined embedding. Furthermore for
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xek,
F@=@"geach)x)
=B &-h)x) by
=(h~" ot <h)(x) by (1) and (6)
=x by (4),

and by (2), (5), (7), and lemma 3.1.2,

d(f, D<AB™ B, &) +d(E-B, B)+d(B, 1)
<d@!, 1)+d(E, 1)+d(B, 1)
=2d(B, 1) +d(E, 1)
<2d(a, 1)+2d(h, ) +d(E, 1) <€ g

3.1.19 LEMMA: Let K cX™ be compact. Then for every € >0, there is an embed-
ding f: Q% = X% such that
(@)fIK=1,and
(b)d(f, 1) <e.

PROOF: For every ne N, n,(K)cZX, so by lemma 3.1.18, there is an embedding
fn:Q@—ZX such that f,In,(K)=1 and d(f,,1)<e. Define f:0%—>X" by
f=({1,f2,...) Then fis easily seen to be as required. o

3.1.20 LEMMA: Let K cX* be compact and Z € 4(Q ) such that K nZ =@. Then
for every € >0 there is an embedding f : Q% — X~ such that
@fIK=1,
b)) fO")NZ=0, and
(©)d(f, ) <e.

PROOF: There is a continuous h: Q%  —Q% such that h(Q”)nZ=0 and
a(h1,1)<€/8. Let n=d(h;(Q%),Z). By theorem 3.1.6 there is a Z-embedding
hy: Q¥ - Q% such that a(hg,hl)<min{r|,s/8}. Then h,(Q%)e Z(Q~) and
hy(Q™)NZ=0.

Define g: hy(K)uZ - K uZ by

h3'(x) if xe hy(K)

8=, ifxez
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Then g is a homeomorphism between Z-sets in @ such that a(g, Ly, k)0z) <E€/4, so by

theorem 3.1.5, g extends to a homeomorphism g: 0 — Q® such that &(g, 1) <e/4. Let
h=g -h,. Then h satisfies

(W hIK=1,
2)h(Q")NZ =0, and
(3) d(h, 1) <e/2.

Let E=d(h(Q*), Z). By lemma 3.1.19, there is an embedding o: Q*° — £ such that
olK=1and d(a, 1) <min(e/2, E}. Let f=a -h. Then fis easily seen to be as required.
o

We are now in a position to prove the announced

3.1.21 THEOREM: Let 4={A), :n, me N} be a Q-matrix in a Hilbert cube P
andZ € (P). Then ker 4 and ker 4\ Z are homeomorphic.

PROOF: By corollary 3.1.13 (b) and example 3.1.14, there is a homeomorphism
h: P — Q% such that h(ker4)=X". It suffices to prove that for Ze Z(Q%), £*\Z is
homeomorphic to Z*.

By corollary 3.1.13 (a), £ is homeomorphic to G, so X% is an AR. Obviously
X% \Zis a Oy-manifold and hence an ANR.

CLAIM: Z*\Z is homotopically trivial.

Let f: S" — X \Z be a continuous function. Then since £ is an AR, fextends to a
continuous function g;: B”"*! — X, Then f(§") is a compact subset of Z* such that
f(S")nZ=@. By lemma 3.1.20 we then have an embedding g,: 0 — X such that
g21f(8™=1 and g,(Q~)nZ=D. Let g=g,-g;: B"*' 5 E°\Z. Then g is easily
seen to be an extension of f.

By theorem 3.1.17 and the claim we now have that 2= and X% \Z are both contracti-
ble and hence they have the same homotopy type. By theorem 3.1.16 we then have that
Z* is homeomorphic to X~ \Z. g

We finish this section with the remark that we did not prove all results in this sec-
tion. Their proofs are beyond the scope of this monograph. For more information on
infinite-dimensional topology we refer to [11], [17], [18] and [39]. For more informa-
tion on AR theory we refer to [14], [31] and [39].
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§3.2. Homeomorphic function spaces part 1

Let X = {xg, x|, x2,...} be a countable space which fails to be locally compact at x.
We shall prove that C,, ((X) can be written as the kernel of a Q-matrix in some Hilbert
cube.

Let y: N—>X xIN be a bijection and define ¢: IN—X by ¢=m -y, where
nt;: X XIN — X is the projection. The following lemma is of fundamental importance in
the process of describing C,, o(X) as the kernel of a Q-matrix.

3.2.1 LEMMA: There exists a decreasing clopen base {U{° };.v at xy and for
each x #x there exists a clopen neighborhood U™ of x such that for every n e IN,
(@) if 0(n) #xq, then U™ AU’ =@, and
(b) for s, ne N, we have U3° \[ U353, o\J (U®D :j<n, 0(j)#xg) | is infinite.

PROOF: Since no neighborhood of x( is compact, there exists a decreasing clopen
base {V;}icw at xo such that for every i e N, V/°\ VI contains an infinite closed
discrete subset D;.

We construct inductively a strictly increasing sequence (i,),.n of natural numbers
and for each n e IN such that ¢(n) # x( a clopen neighborhood V,, of ¢(n) satisfying

() V,nVi’ =@, and

(2) Vi n\Us ;, Dy contains at most one point.

Suppose we found for ne N, iy,..., i,_| and V; for j <n such that ¢(j)#x. If
o(n)=xq let i, >i,_; be arbitrary. If ¢(n)=0(j)#x( for some j<n, let V,=V; and
iy >, arbitrary. Since we deal with a decreasing base at x(y we have v,lmv,-‘n‘) =0
and V, musz,-jDs =@, hence also V,n\U;; D, contains at most one point. If
On)¢{0(j):j<n, 0(j)#xg}u{xy}, we can find a clopen neighborhood U of ¢(n) and
i, >i,_1 such that Uann" =0. Since U, ; Dy is closed and discrete we can find a

clopen neighborhood V,, of ¢(n) contained in U such that V, n\U,; D, contains at
most one point. This completes the inductive construction.
For ne N, let U,° =V;°. For x #x0, let k(x)=min ¢~'(x), and let U*=Vj,). Let

ne IN with ¢(n) # xo. Then k (¢(n)) <n, so by (1), U™ A U;" =@. In addition we have
that for s2i,, U ~D,=@. Hence by (2) we have for s5,neN that
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U\ [ Ufﬁ’,l v U U j<n, 0(j)#xq}]is infinite. This proves the lemma. g

As mentioned in the introduction of this chapter, C,,(X) = {f:X—>(-1,1):fis con-
tinuous}. Recall that CpoX)=1{fe Cp(X): f (xg)=0}. We look at these spaces as sub-
spaces of [-1, l]x endowed with the product topology. [-1, l]x is obviously a Hilbert
cube. Recall that on [-1, 1] we use the metric

d(f, g)=i§02" If () -g ()1,

for f, g e [-1, 11X,

We will now give another description of the space C,, ¢(X), in terms of the kernel of
a Q-matrix. Let Y=X\{xg} and P={0} x[-1, 1. Evidently there is a convexity
preserving homeomorphism between P and Q. Hence by theorem 3.1.1 each Keller
space in P is a Hilbert cube. Let {U;°},. and {U*:x#x,} be as in lemma 3.2.1. For

x#xg let {Uy},.n be a clopen decreasing base at x such that U =U*. For every
xe X and n, m e IN, we define

(A)BEM =(gePigUhclg)-— g+ ).

Furthermore for every n, m e IN we define
(B) Cly=BG" AN B,

(C)L;:{O}x[—n—;n’-, 1-%1{"’ """ %) (=1, 1]%[~1, 1]x - - -, and

(D) A} =@,and A}, =Cp, AL} form>2.
It will turn out that the family 4 = {A}, :n, me IN, n > 1} is a Q-matrix in P such that

ker.d =C,, o(X).

3.2.2 LEMMA: For every n, m e N, we have
(a) Ay, is closed in P,
(b) A} cAl L1, and
(c) ALY c AL

PROOF: It is easily seen that for every x e X and for every n, m e IN we have,

(1) B®™ and L%, are closed in [-1, 1]%,
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) By ™ B BE " B,
(3) Ly Ly and Ly* c L.
Now the lemma follows from (1), (2) and (3). g

We first prove that kerd =C, o(X) (lemma 3.2.4). Define F={fe[-I, 11%:fis
continuous and f (xg)=0}. Then F c P. Observe that by the definition of continuity,

F=Myx My U BE ™ (see [19]).

oo oo

3.23LEMMA: F=M UCy,.

n=2m=1

PROOF: First suppose that fe F and n>2. Then fe P. Because f is continuous, there
exists m e IN such that for each j <n,
- ) 1 .
f WD) L @U) = f @D +],
and

X 1 1
f(Umo)C[_’n—, —n—]'

This implies fe BY*™ f\;:leﬂ,’U)"‘) =C". We conclude that fe M, ,\U, _,CP,.

Secondly suppose fe m:=2 U:=1Cf‘,,. Let x e X and n e IN. Because V is a bijec-
tion, there exists 7, € IN such that k =y~ (x, n,) > n. Then ¢(k) = x. There exists m e N
such that fe C¥,, hence

feChcBGP B,
Sofe M,.x ﬁ:ZIU:ﬂBﬁ;f' ™) = F. This completes the proof of the lemma. g

oo oo

324 LEMMA: C,, o(X)= ) U4},
n=2m=1

PROOF: First suppose f e Cp, o(X) and n 22. There exists k 22 such that

(f @D f oS-+ 1=

hence fe L}. Since f e F, there exists m 2k such that fe C%. So fe Ch L} =A%. We
conclude that fe ﬂ:;zU::]A;',,.
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Secondly suppose fe ﬁ:zl U:zlAﬁ. Since for every n,me N, A, cCj, we
have by lemma 3.2.3, fe F. Since for every ne IN there is me IN such that
feAn Ly, we have that { f(xy),... f(x,)} (=1, 1). So fe Cp, o(X). This proves
the lemma. g

325 LEMMA: For every ni< - <npeN and iy,...,i,e N\ (1} we have

that ﬁ:l:lAZ‘" is a Keller space in P, hence a Hilbert cube.

PROOF: To prove that f\Z;lAf;" is a Keller space, we have to verify that ﬁ:;lA,'-l" is
compact, convex and infinite-dimensional.

By lemma 3.2.2 (a), f\f:]A,-"k" is closed in P, hence it is compact. To prove that
ﬁ:;,A,';" is convex we first claim that for every x e X and for every n, me IN, B¥ ™ is

convex. Indeed, let f, ge B ™, Ae [0, 1] and h=Af+(1-A)g. Since P is convex, we
have h € P. Furthermore if y € U7,, then

lh(x)=h WM SAfO)-f I+ -V Igx)-g ()]

< x%+(1 —k)%:%.

So he BF™, so BS™ is convex. It is easily seen that for every n, m e N, L%, is con-
vex. Since the intersection of convex sets is again convex, ('\Zl:lAf:" is convex.

Finally, to see that (\T=1A,'-'k" is infinite-dimensional notice that for every x € X and

for every n, me N,

L eBGEm,

(0} [_21_n' 2n

and forevery ne Nand me IN\ {1}, [O}X[—%, %]YCL',;,SO

m
L Ly e
(0} x (=5 52— 1 e DA,
We conclude that ﬂ;(n:lAZ‘" is a Keller space in P, hence by theorem 3.1.1 ('\T=1A?k‘ is
a Hilbert cube. g

For every i, k e IN we define 4 (i, k): P — P by

fx) ifx#x

h(, D)) =1
i ifx=x;
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Notice that since x; Z.xg, h (i, k) is well-defined.

3.2.6 LEMMA: Leti, ke IN. Then
(a) h(i, k) is continuous and a(h «, k), l)S2“'+| , and
(b)ifi>1,k<p<iandse N aresuch that
X UL\ [UGS o DU 2 j<p, 0(j)#x0) 1. then
({) forn<kandme N, h(i, k)(Ap) A,
(ii) forn<pandm >s, h(i, k)(A)) Ay, and
(iit) forn >k, h (i, k)(P)n A} =@.

PROOF: For every xe X, let m,: P —[~1, 1] be the projection onto the x-th coordi-
nate. Then for x #x;, we have n, -h (i, k)=, and for x =x;, we have w, -h (i, k)= 1/k,
so that for each x € X, &, </ (i, k) is continuous. So we have that 4 (i, k) is continuous.
Furthermore we have

d(h (i, k), 1)=sup {d(h (i, K)(f), f): fe P)
=sup {Z72 27 1A (i, ) = () x)) i fe P)
=sup {27 11/k=f (x;)| :f e P}
<27z

We prove (b)(i) and (b)(ii) simultaneously. Let n, m e IN be such that n <k and
m e IN or such that n <p and m >s. If m =1 there is nothing to prove, so let m > 1 and
feAp,. We have to prove that 4 (i, k)(f) e Ap, =L} nCh,.

Since fe Ly, and n<p <i, we have for j<n

h(i, F))=f () e [1+-, 1= 1],
m m

Hence h(i, k)(f)eLy,. To prove that h(i, k}fye C,. we take y< UL, where
xe {xg}u{®():j<n}. Notice that x #x; because

X U O UUY @ j<p, 0()#xp),

and n <p.
If y #x;, then since fe B ™,

L, XD =h G @O =1f () =f (01 S

Now assume that y =x;. If x #x(, then x =¢(j) for some j <n with ¢(j) #x(. Then

xi=ye U c UV,
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which is a contradiction. Hence x=xg. If m > s, then U;? c U3, so x; ¢ U,,Y. But this
means that y ¢ Uy,, which gives a contradiction. So n <k and we get

Lh (i, k)= h G, )] = %—m 2{75 L

n
We conclude that & (i, k)(f) € BS* ™, hence
h(, k)(f)e Bf;:o'n) r\ﬁ}l:]Bﬁﬂl’U), n) .__C;tn'

So h(i, k)(f)e Cp, n Ly, =Ap,. This proves (b)(i) and (b)(ii).
For (b)(iii), let n > k. Since x; e U;°, we have for fe P,

1
-

kG, @) = h Gy D )xo) | = 4>
We conclude that A (i, k)(f) ¢B§x°‘ "), hence & (i, k)(f) ¢ AY. This proves the lemma. g

3.2.7 COROLLARY: For every n, me N with n > 1 we have that Ay, € Z(P) and
Al e AL ).

PROOF: By lemma 3.2.2, we have that A}, is closed in P and A}, A}, .1, hence A%, is
closed in A} ..
Let fe C(Q, P)or fe C(Q, Aj,41) and let € > 0. By lemma 3.2.1 (b),

U \[U 0 USY :j<n, 0(j)#x0) ]

is infinite so we can choose x; in this set such that i > n, and 27 < €/2. Define g: 0 — P
by g =h(i, 1) - f. Then g is well-defined. By lemma 3.2.6 (a), g is continuous and

d(g, f)<d(h(, 1), 1)<27* <&,
If fe C(Q, Ap,.1), we have by lemma 3.2.6 (b)(ii),
g(@)ch(, )AR+1)CAp-
Furthermore because n > 1, we have by lemma 3.2.6 (b)(ii), g(Q)nAn, =@. We con-

clude that A, e Z(P) and A}, e (A% 41).0

3.28 COROLLARY: For every ni < -+ <nmeIN, iy,..., ime N\{1}, pe N
and i € IN we have that

Mi=1Af AAT™P e OV AT

ik
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and
N Al AT e TNV AfF AATTP).

PROOF: By lemma 3.2.2, we have that M- A% A A]"*” is closed in M-, A/* and
y k=1 k=144
Mo 1A AT is closed in My AR AP
Letf:Q —)ﬁk=1A,- orf:0 —>ﬁk 1A"" AA!"? be continuous and let € > 0. By
lemma 3.2.1 (b),

UPPA\[U U :j Sny+p, 0()#x0) ]

is infinite, so we can choose x;, in this set, such that ig > ny,+p, and 27° <&/2. Define
g:0—>P by g=h(ig,n,)-f. Then g is a well-defined continuous function and
dg, fr<e

Smcef(Q)c:f\k ,A,k , we have by lemma 3.2.6 (b)(i), g(Q)Cﬂ:‘:lAf:". Further-
more if f(Q)cA?, then by lemma 3.2.6 (b)(ii), g(Q)cA/7{?. By lemma 3.2.6
(b)(iii), g(Q)NA"*"=@. We conclude that My Af* nA]"P € Z(M;_A%) and
M=t Al AP € 22 lA"" nAM?Y.

3.2.9 LEMMA: Foreveryn>1: { Ay }m>1 is a skeleton in P.

PROOF: Observe that P is a Keller space. To prove the lemma we shall verify the
conditions in theorem 3.1.7. By corollary 3.2.7 and lemma 3.2.2, { A}, },,>1 is an in-
creasing family of Z-sets in P. Again by corollary 3.2.7, we have for every me IN,
Ap e 9(Ap,+1). By lemma 3.2.5, Ay, is convex and infinite-dimensional. So we only
have to verify that U,,,=2A,,, is dense in P. Notice that C, o(X) is dense in
{0} x (-1, I)Y which is dense in P, hence C,,_O(X) is dense in P. Since
U:=2A',',, 2Cp,0(X), U:;:ZA;’,, is dense in P. We obtain that {A},},, > is a skeleton in
P.g

3.2.10 LEMMA: Foreveryn; < -+ <npeIN,iy,..., ine N\ {1} andp e N we
have that { ﬂ:‘ﬂA,'-l" ~AP ),y is a skeleton in f\:;lAZf.

PROOF: By lemma 3.2.5, ﬁTﬂA,'-;" is a Keller space. To prove the lemma we again
shall verify the conditions in theorem 3.1.7. As mentioned in section 3.1 we may as-

sume i) < * - <iy. By corollary 3.2.8, we have for every i e IN,
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m

kmlAf‘; AAI™? e IV ATK),

and
m

m
kr_\lAf‘; NA]P e ANV ALE AATHT).

k

By lemma 3.2.5, My~ Aj* AA{"*” is convex and infinite dimensional, so we only have

to verify that ‘QA?"'J"’ A kf’:\lAf:" is dense in éA,’-:". To this end we have to prove that

for arbitrary g e ﬁfﬂAﬁ",yl, ..., yn€ X and € >0, we have for
U={feP:1f(y)—-gl)| <eforevery I<n}

that (U nM AP ) A\ U2 AJ"P 2@, Since we deal with decreasing clopen bases it
is possible to find i > n,, +p such that 1/iy < € and

W UIIY AU =@ if 0G1) #0(2) and j1, j2 <y tp,

@ ULI? AU =@ if (o) ¢ UV, k <m, j<nm and jo <ny +p,

R UIO AU =@ if 0(jo) ¢ UL, k <mand jo <ny +p,

4) forae {0():j<ny+p}u{xo} and y, #a we have y, ¢ U (I <n), and

(5) for ¢(j) ¢ { X0, .., Xy, } We have USD A {xg, .., X, } =@ (j Snputp).

Now define f: X —[-1, 1] by

(1-%)g(¢(j)) ifxe\Uje, U,

ig»

f(x)=10 ifxeUT°

(l—il)g (x)  elsewhere.
0

By lemma 3.2.1 (a) and (1) there is for every xeX at most one
ae{0():jSnytp)u{xg) withxe U?O, and since g(X)c[-1, 1], fX)c[-1, 1], so
we conclude that fis a well-defined mapping. Furthermore f (xg)=0, hence fe P. To
prove the claim we will show that fe (U ﬂ;(":lAZ‘k)nU:o:lA?’"‘Lp . For that we first
prove fe U. To this end let / <n. If y; ¢ { 0(j):j<nu+p)u{xg) then by (4) and by

definition of f, f (y;)=(1-1/iy)g () so
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f-gml=—"lgyplst<e
) 1)

If yye {0():j<npu+p}u{xg) then by the definition of f,
IfOn-gml < :L <&.
0

So we indeed have fe U.

To prove that fe ﬂr:l/l,'-;", we first show that fe ﬁ;(n=1C,'-2". To this end let k <m
and be {¢(j):j<m}u{xg}. Notice that be Uf’o, hence f (b)=(1-1/ip)g(b). Let
Xe Uf’k. First suppose there is a e { ¢(/):/<n,+p}u{xg) such that xe U{. In this

b

case f(x)=(1-1/ip)g(a). If a=x( then by lemma 3.2.1 (a), a=be U}, and if a #xg
then by (2) and (3), a € U,. Since

ge Cf;" CB,(-kb‘ ™
we now have

If)=f(B)=(1--)lg@)-gB) (=)<
-y Lo Mg ng
Secondly suppose for every ae { ¢(/):/<n,,+p} U {xo} we have x ¢ Uf . Then

If ()=f (b1 =(1--1)1g(x)-g(b)l S(1- ) < L
lg Ly Ny

Ny
We conclude that fe ﬁz;]Cf:". Now let k <m and j <n;. By (5) we have

f 1 =101=-2)g () S lg (gl 1=
0 ’k

S0 fe Mp=iCit AN LIt =M A,
Finally we have to prove that fe UT:]A:'”'W . In fact we show that fe A,'-l(’)"w . Let

ae{0():j<n,+pluixg},andletxe U?O.Thenf(.\')z(l -1/ig)g(a)=f (a), so

1
N tp

If(x)=f(a)l =0<

So fe C?g‘ﬂ’. Since for every xe X, 1f(x)| £1-1/iy we have fe A;’:*”. This proves

the lemma. g



§3.2. Homeomorphic function spaces part 1 121

3.2.11 LEMMA: For everyny < '+ <nyeIN,ij...., ine N\{1} and s, te N
such that s > 1 and (M- A ¢ A3, we have M=  Al* AAS € (M= ALK).
PROOF: Let n) < -+ <nyeN, iy,...,i,eIN\{1} and suppose ﬁ:’ﬂA,’i" ¢ Af.
As mentioned in section 3.1 we may assume /| < *** <Iy.

If s > n,, we have by corollary 3.2.8,

m

m
kf\lAZf NnAje g(kmlAf’: ).

So from now on we assume that s <n,,. If there exists / <m such that s <n; and ¢ 2ij,
then by lemma 3.2.2,

m
ng n; Ky
kink CA,'I CA,

and we have a contradiction. So for every kK <m, s > n; or t <i;. There exists r <m
such that n,_; <s<n,.(Let ng=1).
Let f:Q — M- Al and & > 0. By lemma 3.2.1 (b),
U\ LU 0 DU 2 j Sy, 0()# X0} ]

is infinite. Choose x; in this set, such that i>n,, 27i <g/2. Notice that
x;¢{0():j<n,}. Define g: Q ->P by g=h(i, n,_;)f. Then g is well-defined and
d(f, g) <& We claim that g (Q) =My A/, To this end let k <m. If n, <n,_,, then by
lemma 3.2.6 (b)(i),

h(i, ny_ YA A,

If n,_y <ng<n,,, thens<n.<n;. Sot <i;. Then by lemma 3.2.6 (b)(ii),
h(i, no_ AR AR,

S0 g(Q)e My Al

To finish the proof of this lemma, notice that by lemma 3.2.6 (b)(iii), g (Q)nA; =0

m
(because s > n,_;), so that ﬁk=1Af’k" nAje f](ﬁzl:lA,'-i" )-a

3.2.12 THEOREM: « is a Q-matrix in P.

PROOF: By lemma 3.2.2 and corollary 3.2.7, « is a Z-matrix. The theorem now fol-
lows directly from the lemmas 3.2.5, 3.2.9, 3.2.10 and 3.2.11.
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We now come to the main result of this section.

3.2.13 THEOREM: Let X be a non-locally compact countable space. Then
(a)C p(X ) is homeomorphic to O, and
(b) If Y is another non-locally compact countable space, then for every €>0
there is h € #(Q) such that h (Cp, o(X))=C,, o(Y) and d(h, 1) <.

PROOF: By lemma 3.2.2 and lemma 3.2.4 it follows that C,, o(X)=ker 4, so by corol-
lary 3.1.13 (a), Cp,0(X) is homeomorphic to Gg. By proposition 2.3.2, C,,(X) is
homeomorphic to Cp_ 0o(X) xR, hence

Cp(X)=Cp,o(X) X R =Gy X R ~GCy,.

Now let Y be another non-locally compact countable space and let € > 0. Then by corol-
lary 3.1.13 (b), there is h € #(Q) such that 4 (Cp,O(X)) =Cp‘ oY)Yand d(h, 1)<e.g

In [38] it was proved that for a non-locally compact countable space X, C;(X ) is
homeomorphic to G,. He did not prove theorem 3.2.13 (b) for C,*,'O(X ). To show that
in this case theorem 3.2.13 (b) is also valid we will give, for a non-locally compact
countable space X, a Q-matrix .« such that C;YO(X )=kerd. Since the calculations are
more or less the same as in the case of C, o(X) we will be brief.

Let X be a countable space which fails to be locally compact at some point x( € X.
Again let X ={xg,x,x2,....}, Y={x1,x3, ...}, P={0} x[-1, 11 and let ¢ be the
map m; - y: IN — X. We consider the same clopen bases as above. As mentioned in the
introduction, C, o(X) = {fe Cp o(X): f (X)c[~1+1/m, 1-1/m] for some m € IN}.

For every x € X and n, m € IN, define

B ={ge (0)x[-14-, 1-—1 1 (Uh) Clg ()=, g (¥)+ 1)

For every n, m e IN, define A} =@, and for m > 1,

n
AL=B3"" A NBYM,
j=1

As in lemma 3.2.4 we have the following:

o0 o

3.2.14 LEMMA: C;,O(X)=ﬁl UIA". o
n=lm=
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One can prove that 4 ={ Ay, :n, me IN} is a Q-matrix in P. The proof is more or
less the same as the proof of theorem 3.2.12 and we will only give some remarks.

It is not necessary to copy the proof of corollary 3.2.7. We have Ay, € Z(P) because
of lemma 3.1.4. Furthermore we can simplify the proof of the claim in lemma 3.2.10:
The condition in (5) can be skipped but we need iy > iy, to prove fe A;™". The func-
tion f can be defined as follows:

g@()) if xe UMY (j <nytp),
fx)=40 ifxe U°

g

gx) elsewhere.

As in theorem 3.2.13, we have

3.2.15 THEOREM: Let X be a non-locally compact countable space. Then
(a) C;(X ) is homeomorphic to O, and
) If Y is another non-locally compact countable space, then for every €>0
there is h € #(Q) such that h (C;, 0 (X)) =C;, oY) and a(h, I)<e.

The question remains whether for non-locally compact countable spaces X and Y
there is a homeomorphism from the Hilbert cube onto itself arbitrary close to the iden-
tity which maps C,,(X) onto C,(Y) resp. C,(X) onto C,(Y). By theorem 3.2.13, we
have for € >0, h  #([-1, 1]xP) such that d(k, 1) <&, and

(=1, )X Cp oK) = (=1, 1)XCp, o(¥).

By proposition 2.3.2, (-1, 1) XCp, ¢(X) is homeomorphic to C,(X). This is not what we
need to solve the above question. We actually need a homeomorphism from [-1, 1]XQ
to Q which maps (-1, 1) xCp, 0o(X) onto C, p(X ). Whether such a homeomorphism exists
remains unsolved.

§3.3. Homeomorphic function spaces part 2

In this section we give another proof of the statement that for a non-locally compact
countable space X the function space C,(X) is homeomorphic to Gg,. We first compare
the strategies followed in this section and section 3.2. In section 3.2 we found a Q-
matrix 4 such that kerd =C,, o(X). Using corollary 3.1.13, it was then easily deduced
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that C,(X) and O, are homeomorphic. The Q-matrix involved asked for a lot of techn-
ical calculations. However this was not a waste of time, since this strategy also gives
the result stated in theorem 3.2.13 (b). The strategy in this section starts with a test
space T. One could say that T is the "simplest” non-locally compact countable space:
moreover T is a closed subspace of any non-locally compact countable space (lemma
3.3.1). Next a Q-matrix B will be given such that ker 8 =C, o(7T). This Q-matrix is
much easier to deal with than the one in section 3.2. It follows that Cp(T) is
homeomorphic to G,. To get this also for arbitrary non-locally compact spaces X we
use strong results of Torunczyk [50], [51], which gives the necessary connection
between C,(X) and C,(T). The method of this section was used by van Mill in [38],
where he proved that C ;(X ) is homeomorphic to Og,.

We first define the test space T. The underlying set of T is IN? U {co}. Each point of
IN? is isolated and {({n, n+1, -+ } xIN)u {eo} }n e w is a local open base at eo, Then T
is obviously a countable space which is not locally compact at eo. Among the non-
locally compact countable spaces, T is a special one as is shown in the following

3.3.1 LEMMA: Let X be a non-locally compact space. Then X contains a closed
copy of T

PROOF: Let x( be a point where X fails to be locally compact. Let {U,:ne IN} be a
decreasing open base at x(. Since no U,, is compact we may assume that for each
nelN, (_J,, \ U, +) contains an infinite closed discrete subset D,. Let S ={x} uU:;lD,,.
Then S is obviously closed in X and homeomorphic to 7. g

Recall from the introduction that C,,(T) ={f:T—(-1,1):fis continuous} and
Cp,o(T) = (fe Cp(T): f (=2)=0}.
For convenience let I=[-1, 1], I,,=[-1+1/m, 1 —1/m] for every m e IN and

B(e)= ,I'll[—e, g]; for every €>0.
i=

For every i e IN, let Q; =T17_,1;;, where I;;=1 for every je IN. Let P =IT;Z; Q;, where
Q; =0 for every i e IN. Observe that there is a convexity preserving homeomorphism
between P and Q, hence by theorem 3.1.1 each Keller space in P is a Hilbert cube.
Define ¢: Cp, o(T)— P by

()= ((i,))))je, for every i e IN.
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Then ¢ is easily seen to be an embedding.
For every n, m € IN define A}, c P by

(1) A} =@ for every n e IN and
m oo

(2 Ay = .I"ll((I,,,)" xIxIx -+ );x 11 1B,<(2_") for every ne IN and m 22.
= 1=m+

It will turn out that £ = { A}, : n, m € IN} is a Q-matrix in P such that its kernel is equal
to ¢(Cp, o(T)). As will be clear in the sequel the calculations involved are not so
comprehensive as the ones in section 3.2.

3.3.2 LEMMA: A isa Z-matrix in P.

PROOF: By lemma 3.1.4 we have for every n, m e IN, that A, € Z(P). It is clear that
for every n, me N, A%, c A%, and A% c Al

333 LEMMA: kerd =0(C,, o(T)).

PROOF: Let f=(f;j)i e ckerd and (i, j)e N°. Define f:T—(-1,1) by
F(G, j»=f; for (i, j)e N* and -f(e)=0. Since fe U, Ak, there is me N with
fe Al If i<mthen fje 1, (-1, 1) and if i >m then f;j e [-27/,27/]< (-1, 1), hence
f is well-defined. We will prove that f is continuous. To this end we only have to
prove that f is continuous at e, Let €>0 and n e IN such that 27" <¢e. Let me IN be
such that feAp. Then If;1<2™<e for i>m and jeIN. So
Fm+1,m+2, -+ }xIN)U {eo}) c (€, &), hence fe C, o(T). Obviously ¢(f)=1,
so fe §(Cp, o(T)).

Conversely let fe Cp, o(T) and ne IN. Since f is continuous at o, there is m; e IN
with 1f (i, j)I <27 for i >m and je IN. There is m 2m such that for every i <m
and j<n we have If(i, j)I<1-1/m. Then o(f)e A, and we conclude that
0(f)ekerd.g

3.34 LEMMA: A isa Q-matrix in P.

PROOF: By lemma 3.3.2 { is a Z-matrix in P. Notice that by lemma 3.1.4 we have for
every €>0 and d<e that B (8) € (B (g)).
CLAIM 1: For every ne IN, {A}},},, 1 is a skeleton in P,

Notice that P is a Keller space. To prove this claim we verify the conditions in
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theorem 3.1.7. By lemma 3.1.4 we have for every n, me IN that A}, e 9(P) and
Al e 4(A% +1). Because each A}, (m > 1) is a product of non-degenerate intervals, it is

convex and infinite-dimensional. To prove that for every n e IN, U,n:IA;',, is dense in
P,let fe P and U =TIl ;). N2U;; a standard neighborhood of fin P. There is m; e IN
such that i > m implies U;; =1 for every j e IN. Therc is m 2m such that U;; N1, #@
for every i, je IN. We claim that U nAj, #@. Indeed, let (i, j)e IN2. If i <m then
(U nAn)DUjjnl,2@. If i >m then m;j(UnAp)=1nB(2™")#@. We conclude
that {A;},, > is a skeleton in P.

Nowletn; < - <myelNandiy,...,i,eIN\{l}. As mentioned in section 3.1
we may assume /| < - <l

m
CLAIM 2: kf\lAf:" is is a Keller space in P, hence a Hilbert cube.

. . . m . .
Since each A,-'L" is a product of closed intervals, M kzlAf;" is a product of closed in-
m . . m .
tervals. Hence (M, _;jAj! is compact and convex. Since A;™ cM_Ajf and iy #1,
m C o . m . .
ﬁk=1A:': is infinite-dimensional. We conclude that ﬁk=lA,'-:"‘ is a Keller space in P.

Hence by theorem 3.1.1, M- A/* is a Hilbert cube.

m

m
CLAIM 3: For every pe N, {kf\lAf:" AA!PY. . | is a skeleton in /ﬂAg‘k

By claim 2, ﬁZ;lA,'-;" is a Keller space in P. We prove this claim by verifying the
conditions in theorem 3.1.7. Let pe IN and ie IN\{1}. Let j be greater than
max(i, ip,). The j-th factor space of f'\:' 1A'-"‘ is B(2™") and the Jj-th factor space of
MNi=1ALE AAP™ is B2 ), so we have M- LA AAP™ € IV -, ATY) (by lem-
ma 3.1.4).

If i 2i,,, then the (i +1)-th factor space of M- AL AA!P is B(2™"P) and the
(i + 1)-th factor space of My A[* A A7 is B(2™"). Hence by lemma 3.1.4 we have
for every iy, M=t Af AT € SOV AT AATTP). Since

1>;,,.(mk 1A¥ NA]™?) is dense in M-1A%, we have by theorem 3.1.7 that

I ?
{('\k ,A"" mA"”'+p},>, is a skeleton in f\:l:lAf;". Hence by the definition of skele-

. . m
tons, {ﬂk IA"" AAP™P}, . | is a skeleton in ﬁk=1AZ"‘.

CLAIM 4: For every se IN and for every te IN such that ﬁk 1A ¢ Aj we have
mk lAl/, ﬂASEg(mk 1/\ ).
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If s > n,,, then by claim 3, f\?:lAfL" NAje 3((\:1:1/4,'-2" ). If s<n,,, there is p<m

. e . . . m
such that n, ) <s<n, (let ng=0). This implies ¢ < iy, otherwise ﬁk=1Af'k" CAZ’ cAj.

So there is r <p such that i,_; <t+1<i, (let ip=0). The (¢ +1)-th factor space of

Mi=1Al¥ is B(27") and the (¢ + 1)-th factor space of mZ’ZIA;‘; NAS is B(27%). Be-

cause s > n,_; 2n,_;, by lemma 3.1.4 ﬁﬁmﬁ" nAje fl(ﬁ;n:lA,'-z" ).

By claims 1-4 we have that « is a Q-matrix in P. g
3.3.5 COROLLARY: C,(T) is homeomorphic to C,.

PROOF: By lemmas 3.3.3, 3.3.4 and corollary 3.1.13 (a), we have that Cp,o(T) is
homeomorphic to Gg,. As in theorem 3.2.13 we can prove that C,(T) is homeomorphic
to Gm. a

In [38] van Mill constructed a Q?matrix A such that C;'O(T)=ker.x4, hence C;(T)
and O are homeomorphic. From this result he derived for an arbitrary non-locally
compact countable space X, that C;(X ) and G, are homeomorphic. We proceed in the
same way to derive that C,(X) and G, are homeomorphic. We first need results of
Torunczyk (cf. theorem 3.3.6).

For a linear space E we define ZF = {x € E* : x; =0 for all but finitely many i }.

3.3.6 THEOREM: Let E be a locally convex linear space. Then
(a) ([50]) for a closed AR X in E we have X XXE =XFE, and
(b) ([51]) X(E”)=XIRXE®.

This theorem will be used in the proof of theorem 3.3.9, which formulates in a sense
the connection between C,(T) and C,,(X) for an arbitrary non-locally compact space X.
Before we come to this theorem we have to prove some lemmas. Recall from exam-
ples 3.1.8 and 3.1.14 that X={xe Q:IneINVie N, lx;| £1-1/n} is a skeletoid in
Q and that Z* is homeomorphic to O,.

3.3.7 LEMMA: Let X be a 6-compact space. Then X contains a closed copy of X.

PROOF: Since every space admits an embedding in the Hilbert cube, and
[-1/2,1/2]% is a Hilbert cube, X has a compactification aX < Q such that oX € Z(Q)
(cf. lemma 3.1.4). Since X is 6-compact we then have by lemma 3.1.3 (a), X € Z5(Q).
Then by corollary 3.1.11, there is a homeomorphism h:Q —Q such that
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h(aX)nZ=h(X). Consequently & (X) is a closed copy of X in Z. g

A space X is called an absolute F g5 if X is an F 5 in Y, for every space Y in which X
is embedded. It is well-known that a space X is an absolute F 55 whenever it is an F g5
in some completely metrizable space.

3.3.8 COROLLARY: Let X be an absolute F 55. Then O, contains a closed copy
of X.

PROOF: We may assume that X is a subspace of Q. Let X = ﬂlei, where each F; is
a F g-subspace of Q. Then each F; is 6-compact. So by lemma 3.3.7 there exists for
every ieIN a closed embedding f;:F;—>X. Now define f:X—>X" by
f)=(f1(x), fa(x), -+ +). Itis easily seen that fis a continuous injection.

Define ¢: X >IILF; by ox)=(@x, --+) and g:II;721F,>X" by
g((x)ieN)=(fi(x;)ien. Then f=g ¢ and g is easily seen to be a closed embedding.
Hence to prove that f is a closed embedding it suffices to prove that ¢(X) is closed in
M2 Fi. Let y =(yi)ien € II7Z1 F\@(X). Then there are i, j e IN with y;#y;. There are
U open in F; and V open in F; such that y;e Uand yje Vand U nV =0. Let

O=Fx o FiagXUXFip oo XFj_]XVXFJ_HX .
Then y e O and O n¢(X)=@. We conclude that fis a closed embedding. Since £~ and

O, are homeomorphic, we are done. g

3.3.9 THEOREM: Let X be an absolute F g5 which moreover is an AR. Then
X X Oy, is homeomorphic to Og,.

PROOF: By corollary 3.3.8, we may assume that X is closed in G,. Then by theorem
3.3.6 (a), X XXO, and X0, are homeomorphic. By theorem 3.3.6 (b) we have
20 =Z(0)” =ZRX(Cy)™ ={} X (Cg)™ =O).
So we conclude X x G, is homeomorphic to G,. g
In the proof of theorem 3.3.11 it will be clear how this theorem connects C,,(T) with

C,(X), for arbitrary non-locally compact countable spaces X. We need one more lem-
ma.

3.3.10 LEMMA ([19]): If X is a countable space, then C,(X) is an absolute F 5.
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PROOF: For every x € X, let {U}, },.n be a decreasing clopen base at x. Then by the
definition of continuity,

oo oo

C,0=N N U(ge R gL clg() -1 g+ 1)

xeXn=lm=1

Since each set {g e lRX:g(U;‘,,)C[g (x)—%,g(x)+ L 1} is closed in RX, Cp(X) is an

n

F g5 in RX and hence an absolute F g5. g

3.3.11 THEOREM: Let X be a non-locally compact countable space. Then C,(X)

is homeomorphic to O.

PROOF: By lemma 3.3.1 we may assume that 7T is a closed subspace of X. Then by
proposition 2.3.2, C,,(X) and C, 7(X)XCp(T) are homeomorphic. Since C,, r(X) is a
linear subspace of the locally convex space C,(X) it is locally convex as well. By The
Dugundji Extension Theorem [39, Th. 1.4.13], C, 7(X) is an AR. It is easily seen that
Cp, 7(X) is closed in C,(X), hence by lemma 3.3.10, C, 7(X) is an absolute F 55- So by
theorem 3.3.9, C, 1{(X)X G, and G, are homeomorphic. We conclude that by corol-
lary 3.3.5

Cp(X)sz, 17(X) X0y =0gp. 0

Theorem 3.3.11 can be found in [6].

§3.4. Remarks

Van Mill conjectured in [38] that for a non-discrete countable space X, C;(X ) and
O, are homeomorphic. In the preceding sections, it became clear that Q-matrices were
a handy tool to prove for non-locally compact countable spaces X, that Cp(X) and
C;(X ) are homeomorphic to Gg,. The question remains whether this also holds for ar-
bitrary non-discrete countable spaces. Recently Dobrowolski, Gulko and Mogilski in
[20] and Cauty in [16] independently answered this question in the affirmative. In this
section we shortly discuss both papers.

In section 3.3 the test space T plays an important role. It is the "simplest” non-
locally compact countable space, which is a closed subspace of any non-locally com-
pact countable space. In the class of non-discrete countable spaces, the role of T is
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played by [1, w] because any non-discrete countable space contains a closed copy of
[1, ®]. Following the strategy in section 3.3, we have to prove that Cp([l, w]) is
homeomorphic to G, to obtain for arbitrary non-discrete countable spaces X, that
Cp(X) and C;(X ) are homeomorphic to Og,. Both in [16] and [20] it is proved that
Cp,o([l, o)=({fe Cp([l, o]): f (w)=0} is homeomorphic to G, (hence Cp([l, w]) is
homeomorphic to Gg). The approaches in both papers are in a sense the same: they
both rely on theorems of Bestvina and Mogilski [13].

First we discuss the proof in [20]. For a space X and x € X, let
W (X, x)={xe X~ :x,=x for all but finitely many n}.

We have the following characterization of O,

3.4.1 THEOREM ([20]): An AR X is homeomorphic to Oy, iff the following condi-
tions are satisfied,
(a)X= U;IX-, where each X is an absolute F g5 and a Z-set in X,
(b) there is x € X and there is a copy Y of X such that W (X, x)cY cX* and,
(¢) X contains a closed copy of X .

The proof of this theorem depends strongly on results derived by Bestvina and
Mogilski in [13]. In [20] it is proved that C, o([1, ®]) satisfies the conditions in
theorem 3.4.1, so that C,, o([1, ®]) is homeomorphic to Gg,. Hence following the stra-
tegy of section 3.3, for non-discrete countable spaces X, C,(X) and C;(X ) are
homeomorphic to C,.

The proof in [16] depends on a theorem derived by Bestvina and Mogilski in [13].
Before we can formulate this theorem we have to give some definitions.

Let X and Y be spaces and let U be an open cover of Y. Two functions
f,8e€C(X,Y) are said to be U-close if for every x e X, there is U e U such that
{f (x), g(x)} cU. We have to extend the definition of a Z-set to arbitrary spaces. A
closed subspace A of X is called a Z-set in X, whenever for every open cover U of X and
for every fe C(Q, X), there is g e C(Q, X) U-close to fand g(Q)nA=@. For com-
pact spaces, this definition coincides with the one given in section 3.1. For an ANR X,
we have by [39, Th. 7.2.5]:

A closed subset A of X is a Z-set in X iff for every open cover U of X there ex-
ists fe C(X, X) such that fand 1y are U-close and f (X)nA=0.
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For an ANR X, a closed subset A of X is said to be a strong Z-set if for every open cov-
er U of X there exists a continuous function f: X — X such that f and 1y are U-close
andmnA =@. A Z-set need not to be a strong Z-set (an example is given in [12]).

A space X is strongly Fs5-universal if for every fe C (A, X), where A is an absolute
F o5, for every B c A closed such that f 1B: B — X is a Z-embedding, and for every
open cover U of X, there exists a Z-embedding #: A — X such that A |1B=f |B and f
and h are U-close.

We can now state the announced theorem of Bestvina and Mogilski,

3.4.2 THEOREM ([13]): An AR X which is an absolute F &5 is homeomorphic to
Oy, iff the following conditions are satisfied
(a) X is strongly F s5-universal, and

oo

) X=\U,_1X,, where each X,, is a strong Z-set in X.

In [16] it is proved that C,, o([1, ]) satisfies the conditions of theorem 3.4.2 and
hence Cp,o([l, w]) is homeomorphic to G,. So again we have that for non-discrete
countable spaces X, C,(X) and C; (X) are homeomorphic to Gy,.

Let X ={xg,xy, x5, -+ } be alcountable space which is not discrete at xy. Now that
we have that Cp(X Yand C ; (X) are homeomorphic to G, the question remains whether
theorem 3.2.13 (b) also holds for this X. That is if Y is another non-discrete countable
space, is it true then that there is h e #(Q) arbitrary close to the identity which maps
Cp,0(X) onto Cp,0(Y). For this purpose we actually would like to write Cp,0(X) as the
kernel of a Q-matrix. The O-matrix in section 3.2 essentially uses the non-locally com-
pactness of X, and as far as we see it cannot be used for non-discrete countable spaces.
A weaker question is whether C, o([1, ®]) can be written as the kernel of a Q-matrix.
As with the test space 7, there is a natural candidate. However this candidate unfor-
tunately is not a Q-matrix. We shall present it and prove that it is not a Q-matrix.

We identify C,, o([1, ®]) with the following subspace of Q,

{(Xp)neN € §: limx, =0}.
n—oo
For convenience for every n, m e IN, let

=[-1+-L 1-1L =1—(1=Ly-n (11 yon
Ln=(-1+-1, 1= Lyand 1, =0 - L, a- Ly,

1
m

For every n, me IN, let
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(1) A1 =0, and
Q) An =) Xy X Ly XLy X o0 if m 22,
Letd={A} :n, me N}. By lemma 3.1.4 it is easily seen that « is a Z-matrix in Q.

Again by lemma 3.1.4 we have for every n, m € IN that A, e (A}, ;). Since each A},

is convex and infinite-dimensional and since \U,, Ay, is dense in Q, we have by

theorem 3.1.7, that {A},},, -1 is a skeleton in Q.

Now fixn; < -+ <nyeNandiy,...,i,eN\{1}. By the observation in section
3.1 weassume i| < *** <ip. Then it is easily seen that
m
QA;:" =B X+ xB; XL p XL o XI; , X -

where each B; is a non-degenerate closed subinterval of I,,. So ﬁ;":IA,'-:" is a Keller

space, hence a Hilbert cube. Furthermore forp e N and i 2y,

m
N AnmtP _ o i E
/QAi" NA;" " =B X XBj XU _n Y " XLin sp X Lig 4p Xlin, 1p X

By lemma 314 -we have (A A" e (M AlY)  and

k

m + m + . m +) .
MNi=1ALF NAPT € IV ALF nATTP). Since My A nA{™P is convex and

. . . . oo m . . m
infinite-dimensional, and U,-=1(ﬁk=1A,'-2" NA*P) is dense in ﬁk=1A;2", we have by

theorem 3.1.7 that (M= A7¥ AAJ"*™} is a skeleton in M- A¥.
It seems that we are on the right way to prove that . is a Q-matrix. Unfortunately

condition (d) in the definition of a Q-matrix is not satisfied. Indeed for

bo=b Lyser=l Lysp= b Ly L=l Ly e
A} =[5, 31xl5 2 IxE1 Lixi-4, Lyx-d, Ly

and
2or-L L=t L=t L=t Lyl Lyx -
A3_[ 3, 3]X[ 3,3])([ 37 3]X[ 676]x[ 67 6]X

we have
L aa2 =-L Lyx=d Lysp=d Lysp= L Lyxp=L Ly
AZmA:;_[ 3a 3])([ 3’ 3])([ 4,4])([ 69 6]X[ 6, ]X

Furthermore A% ¢ A}. However by lemma 3.1.3 (b), A} nA} ¢2(A%). So this natural
description of C, o([1, w]) fails to be a Q-matrix, hence the question remains open
whether Cp_ o([1, ®]) can be described as the kernel of a Q-matrix.

Our last remark in this section concerns uniform spaces. At this moment there ex-
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ists a topological classification of function spaces C,(X), for countable non-discrete
spaces X and an isomorphical classification of function spaces C,,(X ), for countable
infinite compact spaces X (cf. chapter 2). We can also consider C,(X) as a uniform
space. The uniformity on C,(X) is given by the subbase {U (P, €): P X finite, £ > 0},

where
UP, e)={(f, g)e C,(X)XCp(X): I f (x)—g(x)I <¢eforeveryxe P}.

Since every linear homeomorphism is a uniform homeomorphism and every uniform
homeomorphism is a homeomorphism, it is interesting to find a uniform classification
of the function spaces C,(X), for countable infinite compact spaces X. In [27], Gulko
derived the following

3.4.3 THEOREM ([27]): Let X be a countable infinite compact space. Then C,(X)
is uniformly homeomorphic to Cp([1, ®)).

So for countable infinite compact spaces the topological and uniform classification
coincide. As a corollary we also have that there are spaces X and Y such that C »(X) and
Cp(Y) are uniformly homeomorphic but not linearly homeomorphic. In [27] Gulko an-
nounces a complete uniform classification of C,(X) for all countable metric spaces.






CHAPTER 4

On the /,-equivalence of metric spaces

All spaces considered in this chapter are Tychonov.

In chapter 3 we stated a topological classification result for the spaces C, p(X ), where
X is any countable metric space. In the light of this result the question naturally arises
which of these function spaces are in fact linearly homeomorphic, i.e., isomorphic as
linear spaces. In chapter 2, we already obtained an isomorphical classification of the
spaces Cp,(X), where X is any locally compact zero-dimensional separable metric space.
In this chapter we also consider non-locally compact zero-dimensional separable metric
spaces.

In section 4.1, we introduce the notion of /,-equivalent pairs, which is a useful tool
in deriving topological properties of metric spaces which are preserved by /,-
equivalence. In section 4.2 we show that the topological properties preserved by (-
equivalence, found in section 4.1, are sufficient to give an isomorphical classification of
the function spaces C,(X), where X is any countable metric space with scattered height
less than or equal to ®. Unfortunately these properties are not sufficient to give a com-
plete isomorphical classification for the class of all countable metric spaces X. The
results in sections 4.1 and 4.2 can be found in [4]. In section 4.3, we present other to-
pological properties preserved by ¢,-equivalence. In section 4.4, we state a conjecture
on a complete isomorphical classification for the function spaces considered. Some re-
marks are made concerning the difficulties one encounters when one attempts to prove
the conjecture. Finally, some partial results are given on {y-equivalence (section 4.5)
and l; -equivalence (section 4.6).

§4.1. {,-equivalent properties of metric spaces

In this section we present {,-equivalent properties of metric spaces. The notion of
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{,-equivalent pairs provides us with these properties. Before we give the definition of
{p-equivalent pairs, we first need the following:
Let X be a space and Xy c X. For every ordinal we define the set X (@) with respect

to the pair (X, X ) by transfinite induction as follows:

() x10 =x,.

(2) If o is a successor, say o= +1, then x e X if and only if for every
neighborhood U of x, U ~ X () is not compact.

(3) If o is a limit ordinal, then X (= M X (B},

B<a

The construction of the sets X'® is a special case of a construction in [49]. Note
that, whereas taking the derivative of a space means "throwing away all isolated
points", the above procedure throws away all points with a compact neighborhood.
There are also some similarities between both operations which are formulated in the
following two lemmas. They will be used frequently but will not always be mentioned.
For a subset U of X, we define as above for every ordinal o, the set U with respect
to the pair (U, Ug), where Ug=U nX(. Compare the following two lemmas with pro-
position 2.2.2, corollary 2.2.3 and proposition 2.2.4.

4.1.1 LEMMA: Let X be a space and X a closed subspace of X. Then for every
ordinal o,
(@) X' js closed in X,
b) x (o} CX(‘X)'
() for B<a, X' <« x B ang
(d)X{aH] =(X[<ll)l”.

PROOF: We prove each case by transfinite induction on c.

For (a), the case a=0 is a triviality. First suppose that a >0 is a successor, say
a=B+1. Let xe X\X'®, Then there is an open neighborhood U of x such that
UnX B is compact. So U X' =@, hence X is closed. Secondly, if o is a limit
ordinal, then X (* =Mp<q X B} 50 by our inductive hypothesis, X (% is closed in X.
For (b), the case a.=0 is a triviality. If o> 0 is a successor, say a.=[+ 1, then for no
neighborhood U of a point x e X!, U ~AXB) s compact. By the inductive hypothesis
we have U nX® is not compact, hence UnXx® {x}#@. We conclude that x € X,
For o a limit ordinal, part (b) is clear.

For (c), first let a=1. If x ¢ X, there is a neighborhood U of x such that U nXo=9,
hence x ¢X 1. So XV =X If o> 1 is a successor, say a=y+1, then for every
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x e X(® and for every neighborhood U of x, U nX ") is not compact. Hence U ~ X ()
is not compact and so x € X (B}, For o a limit ordinal part (c) is a triviality.

For (d), let x € X (@) Then for each neighborhood U of x, U nX *} is not compact
if and only if Unx!® N Xy is not compact if and only if x € xlehtl 4

One can now easily see that if X and Y are closed in X and Yo c X, then for each
ordinal o the set X (%} with respect to the pair (X, Y) is a subset of the set X () with
respect to the pair (X, X¢).

4.1.2 LEMMA: Let X be a space and U a subset of X, and X a closed subset of X.
Then for each ordinal a.,
(@) if U is closed, then U cU ~n X% and
(b) if U is open, then U n X% c U},

PROOF: We prove this proposition by transfinite induction on a. If a=0, the lemma
is obviously true, so suppose that o >0 and that for each B < o the lemma has been
proved. First suppose that a is a successor, say .= + 1.

For (a), suppose U is closed, let x e U () and let V be a neighborhood of x. Then by
the inductive hypothesis

‘_/r\U(B)CVﬁ(UhX(B])C‘—/ﬁX(B].

By lemma 4.1.1, VAU s a closed subset of U and because U is closed in X,
VAU is a closed subset of VX!, Since VAU P! is not compact, we then have
that V ~ X (B! is not compact. Sox e X% A U.

For (b), suppose U is open and let xe U nX*), Let V be a neighborhood of x in X
such that V c U. Then V A X B is not compact. So by the inductive hypothesis

VaxB =y runx® CVﬁU(B],

hence V AU B} is not compact. We conclude that x e U (*),
If a is a limit ordinal, then by the inductive hypothesis we have for closed U that

US=NUPB cnU~XBY=U~rNXP =y ~x,
B<a B<a

B<a
and for open U

Unx@W=UrnNxB=NwnxPBycnubl=yle,
B<a B<a B<a

This completes the proof of the lemma. g
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This lemma implies that whenever U is a clopen subset of a space X, then for each
ordinal o, UnX!% =¢!®*); furthermore by proposition 2.2.4, U@ =U~X®, We
will use this frequently without explicit reference.

4.1.3 LEMMA: Let X be a paracompact space, X closed in X and a2 1 an ordi-
nal. Let V c X be open such that VAX® =@ Then there is a locally finite family
{Vs:s eS8} consisting of open sets such that V =\U_¢V; and for every s € S, there is

B < o with V ~X B} compact.

PROOF: Case I: o is a successor, say o=+ 1.

Since VX =@, for every xe V, there is a neighborhood U, of x such that
l7x ~X B s compact. Since {U,:x e \7} U {X\V} is an open cover of X, there is a lo-
cally finite open refinement {O;:se S} of it. For every se S, let V;=0;nV. Then
{Vs:5€ S} is a locally finite family consisting of open sets such that V =\, _¢V;. In

addition, if se S and V, #@ there is xe V with V, cU,. Then V,nX B c U, ~x®,
So V; ~x B g compact.
Case 2: o is a limit ordinal.

Then U= {X\X ¥ :B<a}u{X\V} is an open cover of X, so there is a locally
finite open covering {O,:se S} of X such that {O,:se S} refines U. For every se §
put Vo=V nO;. Then {V;:se S} is a locally finite family of open sets such that
V=UisVs. Now fix seS and suppose Vi #@. Then there is B<a such that

VX \X B which implies V;n X (B =3,

Let X be a space. There are several possibilities to combine the two operations X (%)
and X *!. The one that is important for our purposes is the case where Xo=X® for
some ordinal o. In the sequel the set X B} with respect to Xo=X @ will be denoted by
X @B Another subset of X we need in section 4.3 is X *® P> defined for limit ordinals
o by

X Ny W B

<o
Note that the sets X®® and X*®%P> are closed in X, and if B=0, then
X<%P>-x@ A5 in lemma 4.1.2 one can prove that for U clopen in X,
UnX@P=y©@P and U nx<eb>=py<a.b>
In this chapter it will be made clear that the isomorphical classification of Cp(X ) for
countable metric X depends upon the behaviour of X with respect to the above opera-
tions and that neither of the operations is redundant. We need the following lemma in
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this section and also in section 4.3.

4.1.4 LEMMA: Let X be a zero-dimensional separable metric space. Let 0.2 1 and
B be ordinals and let V be an open subset of X. Suppose that
@ VnX@=0,or
B VAXBPY=g o
(¢) & is a limit ordinal and V ~ X <% P> =@

Then there is a discrete clopen family {A;:i e IN} such that V c\U; .NA; and for each

i € N, there isy < o such that
if (@) holds, then A is finite and if moreover o is a limit, then AY =@,
if (b) holds, then APV is compact and if moreover o is a limit, then APY =@;
if (c) holds, then AP =@

PROOF: The proof is almost the same as the proof of lemma 4.1.3, hence we will be
brief and present a proof of case (a) only.

If o=7y+1 is a successor, there is for eachxe V a clopen neighborhood U, of x such
that USY is finite. The open cover {U,:xe V}UX\V of X has a clopen disjoint
refinement {A;:ie IN}. Put I={ie IN:A;nV#@). Then {A;:iel} is a discrete clo-
pen family which is as required.

If a is a limit ordinal, then U = {X \X® . B<a}u{X\ \7} is an open cover of X. Let
{A;:i e IN} be a disjoint clopen refinement of &, and put / ={i e IN:A; nV #@}. Then
{A;:iel} is adiscrete clopen family which satisfies the desired conditions. g

4.1.5 COROLLARY: Let X be a zero-dimensional separable metric space. Let
o 21 and B be ordinals and let V be an clopen subset of X. Suppose that
(@) V® =@, or
b)) VED =@, or
(c) o is a limit ordinal and V<% P> =@,

Then there is a discrete clopen family {A;:i e IN} such that V =\U;.NA; and for each

i € N, there isy < o such that
if (@) holds, then AV is finite and if moreover o is a limit, then AY =@;
if (b) holds, then ASB'Y) is compact and if moreover o. is a limit, then A,(B‘Y) =@,
if (c) holds, then AS*P =@

We now define some additional notions. Let X and Y be spaces. Let X be closed in
X and Y be closed in Y. Let ¢: C;(X) — Cp(Y) be a linear bijection and o an ordinal.
We define the pair (X, X)) to be (¢, o)-relative to the pair (Y, Yg) if the following
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holds:

If U and V are open in X and W is open in Y such that (supp U)W =@ and
suppW cU UV, then W A Y% 2@ implies V A X1 2.

We define (X, X¢) and (Y, Y¢) to be ,-equivalent pairs if there is a linear homeomor-
phism ¢: C,(X) — C,(Y) such that (X, X¢) is (¢, 0)-relative to (Y, Y) and (Y, Yy) is
(qr‘ , 0)-relative to (X, X(). Note that two spaces X and Y are {, -equivalent if and only
if (X, @) and (Y, @) are {,-equivalent pairs.

The importance of /,-equivalent pairs will become clear in proposition 4.1.9 and
proposition 4.1.12.

4.1.6 LEMMA: Let X and Y be metric spaces, X closed in X and Y closed in'Y.
Let ¢: Cp(X) > C,(Y) be a continuous linear bijection such that (X, Xo) is (¢, 0)-
relative to (Y, Y). Then for every ordinal o, (X, X ) is (9, o)-relative to (Y, Y ).

PROOF: We prove the lemma by transfinite induction on a. Since (X, Xg) is (9, 0)-
relative to (Y, Y), the case a=0 is clear. So assume the lemma to be true for every or-
dinal B < o with >1. Suppose that the lemma is false for o. Then there are U and V
open in X and W open in Y such that (suppU) "W =@, suppW cU LV, WY (™ 20
and VA X (® =@, By lemma 4.1.3, there is a locally finite family {V,:se S} consist-
ing of open sets such that V= sV, and for every s e S there is B <o such that

l—/s ~X B} s compact. Choose y € W A Y (%} and a neighborhoodbase {W,, :m e IN} at y

in W such that for every m e IN, W,,,H cW,,. By corollary 1.2.15 (a) and lemma 1.2.10,
thereare me Nand sy, ..., s, e S with

suppWp, n Uy s, Vi=0. 1

Now let A =U:"=1VSI,. Fix B <o such that Anx Bl compact. Also, notice the
following: A and U are open in X, W,, is open in Y, (suppU)nW, =@ (because
WncW and (suppU)nW=@) and suppW,,cUuA (by (1) and the fact that
suppWcUuV). Since yeW, n Y® our inductive hypothesis implies that
An~X'B) 2@ We have that X is a metric space, so there is an open neighborhoodbase
{A;:s e IN} at A X in X such that /TH] c A, for every se IN. Since y e Y () and
W,,,H is a neighborhood of y, V_Vm+1 ~Y®) s not compact, so in Y there is a closed
discrete subset {y;:se IN} contained in W,,,mY{B" Let {O;:s€IN} be an open
discrete family in W,, such that y; € O,. Then by corollary 1.2.15 (a) and lemma 1.2.10,
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there is s e IN with

suppA; "0, =0. 2)
i2s

Now put U'=U UA,, V'=A \A,,; and W' =0,. Then U’ and V’ are open in X and
W’ is openin Y. We also have

(supp U)n W' =(supp U usuppA;) O, =@ (by 2)
and
suppW csuppW,,cUuvAcU LV

Furthermore, y; € W ~Y (# and
VAX® =(A\A,, )X B @A, ) nx B =@

This contradicts our inductive assumption. g

4.1.7 THEOREM: Let X and Y be metric spaces, X closed in X and Y closed in
Y. Suppose that (X, Xq) and (Y, Y) are {,-equivalent pairs. Then for every ordinal a.
we have
(@) X'® =@ ifand only if ¥* =@,
(b) X is compact if and only if Y'*) is compact, and
(¢) XY is locally compact if and only if Y% is locally compact.

PROOF: Let ¢: C,(X) > C,(Y) be a linear homeomorphism such that (X, Xo) is
(6, 0)-relative to (Y, Y) and (Y, Yo) is (07!, 0)-relative to (X, Xo). For (a), by apply-
ing lemma 4.1.6 and the definition of (¢, ot)-relativeness to U =@, V=X and W =Y, we
getX(® =g ify® =@

For (b) suppose that ¥ (%! is compact and X (® is not. Since X!* 2@, by (a) we
have Y £@. Let {W,,:m e IN} be an open decreasing base in Y at Y% such that for
every me N, W,,,H cW,,. Furthermore, let {x,,:m e IN} be closed and discrete in
Xx!@) Let {0,,:m e IN} be an open discrete family in X such that x,, € O,,. Then by
corollary 1.2.15 (a) and lemma 1.2.10, there is m € IN such that

suppW,, n\U;5,,0; =90.

Now let U=W,,, V=Y\W,,,; and W=0,,. Then U and V are open, W is open,
(suppU)nW =@ and suppW c Y =U UV. In addition

VAar® =y\w,, nrY® =0
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and
Wnx'®=0,nx1% 20

This contradicts lemma 4.1.6.
For (c) notice that X '*! is locally compact if and only if X le+1) =5 S0 (c) follows
directly from (a). g

Theorem 4.1.7 is a useful theorem. In the remaining part of this section we give
some applications of it. We will prove for {,-equivalent spaces X and Y that if o is a
finite prime component, then (X, X®) and (¥, Y®) are ¢,-equivalent pairs (proposi-
tion 4.1.9), and if a is an infinite countable prime component and X and Y are zero-
dimensional separable metric spaces, then (X, X‘®) and (Y, Y®) are {,-equivalent
pairs (proposition 4.1.12). We will distinguish between the cases of finite and infinite
prime components. Although the result for finite prime components is much stronger
than the result for countable infinite prime components, the latter case requires most of
the work. We first need the following

4.1.8 LEMMA: Let X be a first countable space and o< @, an ordinal such that
X@ @ Then there is K < X such that K =[1, @*].

PROOF: We prove the lemma by transfinite induction on . For a=0, it is a triviality.
Now suppose the lemma is true for every ordinal B < a, with @ >1. Fix xe X @,
Case I: o is a successor, say o=+ 1.

Choose a sequence (x,),cN in X ® such that x, — x, and a decreasing open base
{U, :n e IN} at x such that for each ne N, x, e V, =U,,\(7,,+1. Notice that V), is open,
so VS,B) =V, nX ® ., Hence, Xy € Vf,B’. So by the inductive hypothesis, there are K, 'V,
such that K, =[l, a)B]. Notice that for every n#m, K,nK,=0. Let
K=\, K, {x}. Then by theorem 2.2.8, K =[1,0%].

Case 2: o is a limit ordinal.

Let (B,), be an increasing sequence converging to o. Since x e X(®, there is a de-
creasing open base {U, :n e IN} at x such that if V,,=U,,\ Uy 41, then Vf,ﬁ") #@. By the
inductive hypothesis there are K,,  V,, such that K, =[1, mﬁ"]. Then by theorem 2.2.8, -

K =U:=]K,, U {x} is as required. g

In [9], J.W. Baker gives conditions for a space to have an ordinal interval as a sub-
space.
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We first deal with finite prime components, i.e., the numbers 0 and 1.

4.1.9 PROPOSITION: Let oe {0,1} and let X and Y be (,-equivalent metric
spaces. Then (X, X'®) and (Y, Y'*)) are {,-equivalent pairs.

PROOF: By proposition 2.2.2 (a), X'® is closed in X. Let ¢: C,(X) > C,(Y) be a
linear homeomorphism. It suffices to prove that (X, X ) is (¢, 0)-relative to (¥, ¥®).
To this end let U and V be open disjoint in X and W open in Y such that

(suppU)nW =@, and
suppWcUUV.

Suppose that W nY @ 2@ and VA X @ =@,
Case 1: a.=0.
Since V =@, we have supp W < U. So by proposition 1.4.3,

W < supp supp W csupp U. 7

Since (supp U) n W =@ this gives W =@, hence we arrived at a contradiction.
Case 2: o.=1.

Since VXM =@, V=V consists of isolated points, say V = {x;:se S}. Choose
ye WAYW and let {W,,:m e IN} be a decreasing open base at y in W. By corollary

1.2.15 (a) and lemma 1.2.10, there isme N and 51, . . ., §,; € S such that
suppW,, n{x;:s¢{s1,...,5,})=0.
Now let V'=(x,,, ..., x;, }. Since supp W,, cU uV’, it follows that

W, < supp supp W,,, = supp (U u V") =supp U u supp V".

Since W,, nsupp U =@, we have W,, c supp V’. Because V’ is finite, we have by lemma
1.4.1 that W, is finite. This contradicts the fact that y e W{). o

4.1.10 THEOREM: Let X and Y be {p-equivalent metric spaces, let ooe {0, 1}, and
let B be an ordinal. Then
(@)X“P® =g ifand only if Y *P =@,
(b) X @B s compact if and only if Y @ P is compact, and
(c) X @B js locally compact if and only if Y B s locally compact.

PROOF: This follows directly from proposition 4.1.9 and theorem 4.1.7. g
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In section 4.2, we prove that the conditions (a) and (b) are sufficient to obtain an iso-
morphical classification for countable metric spaces with scattered height less than or
equal to w, i.e., if two such spaces satisfy conditions (a) and (b) in theorem 4.1.10 for
all ordinals oce {0, 1} and B, then they are {,-equivalent.

In our search for {,-equivalent pairs we now consider pairs (X, X @)Y for infinite
countable prime components o.. We start with the following

4.1.11 LEMMA: Let X be a metric space and A a closed subspace of X. Let O be
an open neighborhood of A in X. Then there is a continuous linear function
0: Co(A) = Co(X) such that for each fe C(A),

OFIIA =F, o(f ) X) cconv (f (A)u {0}), and ¢(f XX \O0)={0}.

PROOF: We will construct a continuous linear function ¢: C,(A) — C,(X) with the re-
quired properties. Then by proposition 1.2.19, ¢ considered as a function from
Co(A) — Cy(X) is also continuous, and hence is as required.

Since A U(X\O0) is a closed subset of X, there is by theorem 2.3.1, a continuous
linear function y: Cp(A U (X\0)) > Cy(X) such that for each fe C(AU(X\0)) we
have y(f) 1 (A u(X\0))=fand y(f)(X)cconvf (A u(X\0)).

For each fe C (A), define f*: A U(X\0) = R by

. {f (x) ifxeA
F®=10  ifxex\o
Then f* is a well-defined continuous function. Define 0: Cp(A) > Cr(Au(X\0)) by
O(f)=f". Then 6 is a well-defined continuous linear function. Finally define
9: Cp(A) > Cp(X) by =y -0. Then ¢ is a continuous linear function, and we claim
that it is as required. Let fe C (A). Then

O(f)IA=yO(f))IA=08(f)IA=f,
O ) X)=y(OB(f ))(X)cconv(B(f A UX10))=conv (f (A)u {0}), and
O IX\NO)=y(O( NX\0)=8(f )X \0)={0}.

This proves the lemma. g

4.1.12 PROPOSITION: Let o< ; be a prime component and let X and Y be (,-
equivalent zero-dimensional separable metric spaces. Then (X, X @) and (Y, Y'9) are

{p-equivalent pairs.

PROOF: By proposition 2.2.2 (a), X® is closed in X. Let ¢: Cr(X) > Ch(Y) be a
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linear homeomorphism. Then by corollary 1.2.21, ¢ considered as a function from
Co(X) to Cy(Y) is also a linear homeomorphism. It suffices to prove that (X, X®) is
(¢, 0)-relative to (¥, Y®). To this end let U and V be open in X and W open in Y such
that

(suppU)nW =@, and
suppWcUuV.

Suppose that W A Y@ £3 and V ~ X ® =@, By proposition 4.1.9 we must have o> .
Letye WY@ and let {W,, :m e IN} be a decreasing clopen base at y in W. By lem-
ma 4.1.4 (a), there is a discrete clopen family {V,, :m e IN} such that Vc U, . NV

and for each m e IN, there is P < o such that (V,,)® =@. By corollary 1.2.15 (a) and
lemma 1.2.10, there is m € IN such that

suppW,, "5 Vi = 0.

Let V’=U:"=1 V,, Notice that V' is clopen and supp W, cU u V’. Fix B < o such that
(vV)® =@, Since W@ =W, ~Y® «@, by lemma 4.1.8 there is a set K W, such that
K =[1, ®*]. Let L =suppK nV’. Then by corollary 1.2.15 (b), L is compact. Further-
more LcV’. We also have that L is non-empty. Indeed, if (suppK)nV’'=@, then
supp K c U, and so by proposition 1.4.3,

K csuppsuppK csupp U.

Since (suppU) n K =@, we then have K =@. Contradiction.
By lemma 4.1.11, there is a continuous linear function y;: Cy(K)— Co(Y) such
that for each fe C (K),

Vi) K =fand y,(f )(Y\Wp,) = {0}.

Again by lemma 4.1.11, there is a continuous linear function y,: Co(L) — Co(X) such
that for each fe C (L),

Yo (f)IL =fand W (f )X \V)={0}.
Define

y: Co(K) > Co(L) by w(f)=¢""(y,(f)) IL, and
8: Co(L) - Co(K) by 8(f)=0(y2(f) I K.

Observe that y and 0 are linear.
CLAIM: For each fe C(K), 0(y(f))=f.

Suppose there is fe C (K) such that 8(y(f)) #f. Then
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(W (WM K==y (f)IK.
So by corollary 1.4.2 (b),

v2(W(f)) I supp K 67 (y; () I supp K.

Since y;(f }Y\W,,)={0} and suppU cY\W,,, it follows from corollary 1.4.2 (b),
that ™' (y; (f))(U) = {0}. Since U\ V' c X\ V', w>(y(f))((supp K \ V’) = {0}. Hence

VO =W IL 2™ (Wi IL=y().
Contradiction and the claim is proved.
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