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1 Introduction 
This monograph consists of six articles, mainly on one-dependent processes, with connec-
tions to combinatorics, analysis, functional analysis, dynamical systems, matrix theory 
and variational problems. Before describing the articles in this introduction, a survey 
is given of the theory of m-dependence (a generalization of one-dependence) with its 
applications to renormalization theory and other fields of statistical physics (section 3). 
In section 4 we introduce (m + 1)-block-factors of i.i.d. sequences as examples of m-
dependent processes and we give a counterexample of a one-dependent process that is 
not a block-factor at all. In section 5 we prove that all one-dependent renewal processes 
are two-block-factors. In section 6 we consider one-dependent Markov processes. We 
show that a one-dependent Markov process with no more than 4 states is a two-block-
factor of an i.i.d. sequence. The main part of this section is devoted to a counterexample 
of a one-dependent Markov process with 5 states that is no, a two-block-factor. In section 
7 we discuss the problem under which conditions a one-dependent process necessarily is 
a two-block-factor. m-dependent processes can be described in terms of Hilbert spaces, 
operators and vectors. These Hilbert space representations seem to be the right way to 
investigate m-dependent processes. Section 8 deals with two-correlations that play an 
important role in the problem which one-dependent processes are two-block-factors. In 
section 9 some applications are given of the results on two-correlations. The six articles 
are summarized in section 11 and in section 12 we give a list of open problems and 
conjectures, to which this monograph gives rise. 

2 m-dependent processes 

Discrete time stochastic processes (XN )NeZ have been studied thoroughly by prob-
abilists. An important class of these processes are the independent processes. The 
class of independent processes can be considered as a part of a wider class, such as 
the Markov processes. Another way of generalizing the notion of independence is by 
defining m-dependence. An independent process has the property that two events are 
independent whenever they are separated by a time-interval with positive length, and an 
m-dependent process has the property that two events are independent whenever they 
are separated by a time-interval with length more than m. To be more precise: at each 
(discrete) time t the future (XN)N>t+m is independent of the past (XN)N<t· Although 
"almost everything" is known abo-;:;_t Markov processes, not so much is known about 
m-dependent processes; the theory is young but growing. We give a survey in the next 
sections. 

3 Renormalization theory and statistical physics 

Many models in statistical physics have rescaling-properties for critical values ( e.g. crit-
ical temperature) of their parameters, as is conjectured by physicists. This means that 
these models are invariant under rescaling-operations (as e.g. fractals). So several ran-
dom fields in statistical physics ( concerning e.g. magnetization, Ising model etc.) with 
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the place as parameter should typically be one-dependent, in contrast to processes in 
many other applications of probability theory with the time as parameter that are typ-
ically Markovian. Nevertheless sometimes we will consider the parameter of a one-
dependent process as the time and then we write about "past" and "future". We will 
show that one-dependent processes occur as limits of rescaling operations in renormal-
ization theory (see e.g.(O'Br.]). Let the process x<0) be O - 1 valued, let r be an integer 
greater than one, and let 

</>:{0,lY->{0,1} 
be a function. We define a new process x<1) by 

xp> := <p ( x;? >,,,,, x;?!r-1) , i E Z. 

We can iterate this procedure, obtaining a sequence of processes X(N). When we assume 
x<0) to be stationary, then it is trivial that x(N) is also stationary. Because xIN) 

(o) (o) (N) (0) (o) . . h depends on xrN, ..... ,x2rN-1 and x_l depends on x_rN• .... , X_1, 1t JS easy to see t at 
if (X(N)m=l has a subsequence that converges (in distribution) to some limit, then 
this limit is one-dependent, assuming that x(o) satisfies the following mixing condition. 
O'Brien assumes that there exists a decreasing sequence (g(K))K=O converging to zero, 
such that 

IP(A n B) - P(A) • P(B)I g(K) 
for all events A depending on{ ... , -3,-2,-1} and all events B depending on {K, K +l, 
K +2, ... }. (Pis the underlying probability measure corresponding to the process X(0).) 

4 m-block-factors 

In addition to being limits of rescaling operations, m-dependent processes can be ob-
tained in a simpler way: as an m + l-block-factor of an i.i.d. sequence (YN )Nel· Let 
the process X be defined by 

XN := f(YN,YN+i, .. ,,YN+m) (NEZ) 

for some function f. Obviously X is an m-dependent process. For an m-block-factor 
X it is no restriction to assume that the underlying sequence (Y N) N el is identically 
uniformly distributed over the unit interval. 
In this section we will show that not all m-dependent processes are m + !-block-factors 
by giving a counterexample of a one-dependent process that is not an m + 1-block-factor 
for any m EN. 

Theorem 4.1 (Burton, Goulet and Meester, see [B.G.M.], Theorem 1) There 
exists a stationary, one-dependent process with 4 states that is not a K -block-factor of 
an i.i.d. sequence for any KEN. 

Proof. 
The process has state space {O, 1, (2, 0), (2, 1)}. We start the construction with an i.i.d. 
sequence for (Zn)nel such that P[Z1 = x] = 1/3 for x E {O, 1, 2}. Define the random 
number r( n) by 

r(n):=max{mEZ:Zm=2, m<n} 
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for n E Z and let d( n) := n - r( n) - 1 be the number of elements strictly between Zn 
and the previous 2. Let S := {n2 : n EN}. We define now 

Xn := { Zn,_ if ~n E {O, 1} 

(2, ln), if Zn = 2 

where the second coordinate in is defined by 

{ r:;1;;:;(n)+t Z; mod 2 

in := 1 + "z.:;7';;:;(n)+l Z; mod 2 

if d(n) (/. S 

if d(n) ES 

We call r:;1;;:;(n)+l Z; mod 2 the parity of the elements ( all zeroes and ones) between 
r(n) and n.It is trivial that (Xn)neZ is stationary, because (Zn)neZ is stationary. 
First we prove the one-dependence and then that the process is not a K-block-factor. 

Claim 1. 
(Xn)neZ is one-dependent. 

Proof of Claim 1. 
Let A:= {X; = a;, j = -1, ... ,-m} and B := {X; = b;, j = 1, ... , n} be two events 
with positive probability, where m,n EN. We will prove P(BIA) = P(B) what implies 
one-dependence. 
If all b; are O or 1, it is trivial that A and B are clearly independent by construction. 
So, assume that b; ¢ {O, 1} for some j. Let 

A := min{l j n : b; ¢ {O, 1}}. 

By construction only the second coordinate of b>. can depend on A. To exploit this 
observation we define the events 

We have 

D .- {Xi + · · · + X>.-i = bi+···+ b>.-i mod 2} 

P(BIA) = P(BIA,Xo ¢ {O,l})P(Xo ¢ {O,l}IA)+ 
+ P(BIA,Xo E {O,l})P(Xo E {O,l}IA) = 
= (1/ar-iP(B>.IA,D,Xo ¢ {O, l})P(Xo ¢ {O, l}IA) + 
+ (1/ar-i P(B>.IA,D,Xo E {O, l})P(Xo E {O, l}IA). 

We want to remove the A from the above formula's. Clearly by construction 

P(Xo ¢ {O, l}IA) = P(Xo ¢ {O, 1} ), 
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P(Xo E {0, l}IA) = P(Xo E {0, 1}) and 

P(B.xlA,D,Xo </. {0,1}) = P(B.xlD,Xo </. {0,1}). 
Finally, the symmetry of even and odd parities implies that the probability of seeing a 
one ( or a zero) as second coordinate of a given 2 given any event which does not specify 
all coordinates back to the previous 2 is 1/2, independent of the exact form of the event. 
Because {A, D,Xo E {0, 1}} and {D,X0 E {0, 1}} both fall in this category we have 

which completes the proof of the Claim. 

Claim 2. 
(Xn)nEZ is not a K-block-factor of an i.i.d. sequence. 

Proof of Claim 2. 
Assume that the process is a K-block-factor for some KEN. Let 

for some measurable function f and some i.i.d. sequence Yn, We define the codec of a 
sequence of symbols y = (Y1, ... , Ym)( m K) by 

We will write [o]nfor a sequence of n zeroes. Because (n + 1)2 - n2 -> oo for n-> oo it 
is possible to choose i,j, n E N such that 

(i) K < i < j < n2 

(ii) n2 - i + l ¢ S for all l = 1, ... , K 

(iii) j - l </. S for all l = 1, ... , K 

(iv) j - i + l ¢ S for all/= -K + 1, ... , K - 1. 

Let m := n2 + K + 1. We define for every m-tuple i1 < i2 < ... < im the event 

E(i1, i2, ... , im) := { c(Y;,, Y;2 , ••• , Yim)= (2, l)[Of (2, 1)} 

From the construction of the process follows that P[E( i1, i2, ... , im)] > 0 for all i1 < 
i2 < ... < im, For every K-tuple i1 < ... < iK we define the event 

The idea of the proof is to start with the event E(l, 2, ... , m ), then "pull this event apart" 
and insert a 2 in two different places and then show that this results in an impossible 
event having positive probability. We define 

D1 := E(l, 2, ... , i, i + K + I, ... , m + K) n F( i + 1, i + 2, ... , i + K). 
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In comparison with the event E(l, 2, ... , m), K -l zeroes in X1 , ••• , Xn2+2 are replaced 
by 2K - 1 new symbols, at least one of which is not in {O, 1} by construction. 
On the event D1 we have a.s. 

X1X2 .. . Xn2+K+2 :c: (2, l)[O]i-K L:.,;.:...!, [of-i+1(2, 1), 
2K-1 times 

where the stars are unspecified but at least one of them (the middle one) is not a zero 
or a one. We write (2, *) for a symbol in this sequence that is not a zero or a one. 
We consider the rightmost (2, *) among the stars, at a random position. Condition ( ii) 
implies that the number of elements between this (2, *) and the final (2, 1) is not a 
square. Hence, the parity of the stars between the rightmost (2, *) and the final (2, 1) is 
necessarily 1 on the event D1. 
Consider the event D2 ; 

D2 := E(l, 2, ... ,j, j + K + 1, ... , m + K) n F(j + 1, j + 2, ... ,j + K). 

Comparable with D1 we have on D2 a.s. 

X1X2 ... Xn2+K+2 = (2, l)[O]i-K L:.,;.:...!, [of-i+1(2, 1). 
2K-1 times 

This time we consider the leftmost (2, *) among the stars. Its (random) second coordinate 
is denoted by l. Condition (iii) implies that the parity of the stars to the left of this 
(2, l) must be l. 
We will now derive a contradiction by combining D1 and D2 : 

D3 := E(l,2, ... ,i,i + K + 1, ... ,j + K,j + 2k + l,j + 2K + 2, ... ,m + 2K) 

nF( i + 1, i + 2, ... , i + K) n F(j + K + 1,j + K + 2, ... , j + 2K). 
By construction we have obviously P(D3) > 0. On D3 we have a.s. 

X1X2, · ,Xn2+2K+2 = 
(2, 1 )[O]i-K * · · · * (2, *) * · · · *[o]i-i-K +i * · · · * (2, l) * · · · *[of-i+l (2, 1 ), 

2K-1 elements 2K-1 elements 
where the stars are not specified and l is random. Combining the observations of D1 
and D2 above, we see that the parity of all elements between the designated (2, *) and 
(2, l) must be 1 + l. Condition (iv) implies that the number of elements between the 
designated (2, *) and (2, l) is not a square, hence (2, l) has the wrong second coordinate 
and we conclude that P(D3 ) = O, which is the contradiction. 

D 
Remark. The above counterexample is slightly generalized in [B.G.M.] to a coun-
terexample of a stationary, one-dependent process with finite energy which is not a 
K-block-factor of an i.i.d. sequence for any KEN. 
A stationary process ( Xn)neZ with finite state space S satisfies the finite energy condition 
of Newman and Schulman if for any s E S and for any event A that is measurable with 
respect to the a-field generated by {Xn : n =JO} and with positive probability 

P[Xo = s I A] > 0 

holds (see [N.S.]). 
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5 One-dependent renewal processes 
In this section we prove the result by Aaronson, Gilat and Keane ([A.G.K.]) that every 
stationary one-dependent renewal process is a two-block-factor of an i.i.d. sequence. Let 
(Wn)~=O be a renewal process; i.e. 

P { !l[Wn; = 1]} = P{Wno = 1} ft Un;-n;-1 

J=O J=l 

for O :5 no :5 n1 :5 n2 :5 · · · :5 nK, where the sequence ( un)~=O 

Un:= P[Wn = 11 Wo = 1] (n OJ 
is called the renewal sequence (see [C.]) of (Wn)~=O· The sequence clearly satisfies 
u2 u~ because 

We define 

fn := P[Wn = 1, WK = 0, 1 :5 K :5 n - 11 Wo = 1] 

We have the renewal equation 
n 

Un = fKUn-K 
K=l 

(n 1). 

(n 1). 

It follows trivially from the definition of Un that a stationary renewal process is one-
dependent if and only if 

Un = P[Wo = 1] =: b for all n 2. 

Further we define a:= u1, After these definitions we can prove 

Theorem 5.1 ([A.G.K.], Theorem 1) Any stationary, one-dependent renewal pro-
cess is a two-block-factor of an i.i.d. sequence. 

Proof. 
Let (Wn)~=O be a stationary, one-dependent renewal process with renewal sequence 
( Un}~=O and with (/n)~=l • a, b as defined above. 

Claim. 
We claim that 

0 < a < 1 a2 < b < ( 1 + a )2 • 
- - ' - -. 4 (1) 

Proof of the Claim. 
We have b = u2 ui = a2 as was shown above. A straightforward computation shows 
that 

(lzl < 1) (2) 
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where U(x) := :E:'=o unx" = 1 +ax+ :::., and c,, := :EK=n+l fK ;:;: 0. 
Writing 

(1- x)U(x) = 1- (1-a)x + (b-a)x2 = (1- r+x)(l - r_x) 

we have that if b > <1~">2
, then 

r± = re±iB where O < (J < ,r, r > 0. 

Expanding into partial fractions gives us 

1 dei6+ deiL oo 

(1- x)U(x) = 1- rei9z + 1- re-iBx = ;nx" 

where d > O, D± E (0,2,r), so we obtain 

which cannot be nonnegative for all n;:;: 1. Hence b <1~">2 which proves the Claim. 

Let (Yn):'=o be .an i.i.d. sequence of random variables each uniformly distributed over 
the unit interval. Let A, B be two measurable subsets of the unit interval. It is easy to 
see that the two-block-factor 

(n;:;: 0) (3) 

is a stationary, one-dependent renewal process. It is easily checked that for this renewal 
process 

a= IB n Al and b = IAI · IBI =(a+ IA\Bl)(a + IB\AI), 
where I· I denotes the Lebesgue measure. Using 1 + a ;:;: IAI + IBI it follows that we have 
once more (see (1)). 

0 < a< 1 a2 < b < (l + a)2 
- - ' - - 4 

One checks easily that this is the parametrization of the set of two-block-factors of the 
type as in (3). This proves the Theorem. D 

6 One-dependent Markov processes 

In the sixth article of this monograph (Proposition 7 [R.V.]) is proved that a stationary, 
one-dependent Markov process with only 2 states is an i.i.d. sequence. This does not 
hold any more for more than 2 states. It is easy to check that 

[ 
1/2 1/2 o l 
1/6 1/6 2/3 
1/3 1/3 1/3 
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is a transition matrix of a stationary, one-dependent Markov process with 3 states. 
Clearly it is not an independent process. However, under the symmetry condition 
p(X,,X2 ) = p(X2 ,X1 ) in Proposition 10 [R.V.] is proved that a stationary, one-dependent 
Markov process is a i.i.d. sequence. Because every stationary, one-dependent Markov 
process with only 2 states satisfies this symmetry condition, Proposition 10 [R.V.] is a 
generalization of Proposition 7 [R.V.] mentioned above. 
We give here a sketch of the rather long technical proof of a theorem by Aaronson, Gilat 
and Keane. 

Theorem 6.1 ([A.G.K.], Corollary of Theorem 3) Every stationary, one-dependent 
Markov chain with at most 4 states is a two-block-factor of an i.i.d. sequence. 

Sketch of proof. 
Let P be the transition matrix and let S be the state space. The one-dependence implies 
that P2 = II where II is the matrix where each row is equal to the invariant measure ,r. 

We define the inner product 

< x, y >== L 1r.x.y •. 
sES 

One can prove the existence of vectors x, y such that 

Ps,t = 7rt(l + XaYt) Vs,t ES 

and such that { x, y, 1} is an orthogonal system, where 1 is the vector with all coordinates 
equal to 1. 
Define a := ma.xi Xt, f3 := ma.x1 -x1• Let n := {-/3, a} be a probability space with 
probabilities p(-/3) = ;,b, and p(a) = ~- Define the random variables a.,b.(s ES) 
on n by 

a.(w) := 7r8 (1 + wy.) 
( ) wx. 

b8 w := 1 + -;;j· 
We have Ea. = 1r8 , Eb. = 1, Eb.a1 = p8 ,t for all s,t E Sand I:.esa.(w)b.(w1) = 
1 V w,w1 En. 
Define X := n x s0 x 0 and let U = (U,u) be a random variable (on some probability 
space) with values in X and distribution 

for all St,••·,Sn E S,A C n,(w1,wl), ... ,(wn,w~) different points in il X n. 
Let Un = (Un,un)(n E N) be i.i.d. random variables, each distributed as U. 
Wn := Un(Un, Un+1). Wn is the desired two-block-factor. 

Define 

The number of 4 states in this Theorem is sharp, because there is ([A.G.K.], Theorem 
4) an example of stationary, one-dependent Markov process with 5 states that is not a 
two-block-factor of an i.i.d. sequence. 
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Theorem 6.2 ([A.G.K.], Theorem 4) Let 

[ 

2/5 1/5 0 
1/5 2/5 1/10 

P := 2/5 0 1/10 
0 2/5 3/10 
0 0 1/2 

1/10 3/10 l 0 3/10 
3/10 1/5 
1/10 1/5 
1/2 0 

be a transition matrix; its invariant measure is ,r = (1/5, 1/5, 1/5, 1/5, 1/5). The cor-
responding stationary Markov process is one-dependent, but is not a two-block-factor of 
an i.i.d. sequence. 

Sketch of proof. 
The proof consists of 10 steps that we will sketch briefly ( see Diagram 1). For a two-
block-factor we can assume without loss of generality that the underlying i.i.d. sequence 
is distributed uniformly over the unit interval. 
First we need some notation. 
Let {A(s)}!=1 be a measurable partition of the unit square Ix I, define (s, t E S = 
{1, ... ,5}) 

p(s, t) .- 11 11 11 lA(a)(x, y)lA(t)(Y, z)dxdydz (4) 

A., .- {y E J: (x,y) EA} 
All .- {x E J: (x,y) EA} (x,y E /) 

R(s) .- {y E J: IA(s)11 1 > O} 

We have A(s) CI x R(s) mod O and p(s,t) = f1 IA(s)11 1 • IA(t)11 ldy hence 

p(s, t) > 0 <=> l{Y E R(s): IA(t)11 1 > O}I > 0 (5) 

We denote both length and area by I· I• We prove a slightly stronger statement, namely: 
There is no measurable partition { A( s)} !=1 of the unit square such that 

( t) { = 0 for (s,t) E {(1,3),(2,4),(3,2),(4,1),(5,1),(5,2),(5,5)} 
p 8 ' > 0 for (s,t) E {(1,1),(1,2),(1,4),(2,3),(5,3),(5,4)} 

The proof is by contradiction; assume that such a partition exists, then 

IA(s)I > 0 for alls ES. 

Step 1. R(5) x I C A(3) U A(4) mod 0. This follows directly from (5) and from 
p(5,t) = 0 fort= 1,2,5. 

Step 2. (R(5)c x I)::> A(s) mod O for s = 1, 2. This follows immediately from Step 1. 

Step 3. l(B x R(5)c) n A(s)I > 0 for s = 3,4 and for all B c R(5) measurable with 
IBI > 0. If this is false e.g. for s = 3, then (Bx R(5)c) C A(s) for s = 4 (by Step 
1) and for some BC R(5), with IBI > 0. Using (4) and Step 2 this would lead 
to p( 4, 1) > 0. Analogously, if Step 3 does not hold for s = 4, this would imply 
p(3,2)>0.· 
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no 1,2 no 1,2,5 
R(5 ., step 4 step 1 

there are 
3 and 4 

no column step 6 
'--

with only 3 no 1,2,5 or 1 in with only 4 every step 1 
b step 5 row 

ofb 
L----

every column 

a 

'-- no column contains 
with only 1 1 in 3 and 4 

or every no 2 step 3 
with only 2 row no 4 

of a step 10 
'-- step 7 

1 in 2 in every every 
column column 
Remarl Remarl 

R(5)° no column 
with both 

1 and 2 4, but 4, but step 8 no no 
2,3,5 1,3,5 

step 9a step 9b 

a b R(5) 

Diagram 1 
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Step, 4;. A(s.) C: R(5Y x R(5Y for 8 == 1, 2. If this is faJse for e.g. A(l), then by 
Step. 2 we would haye. J(ll(5)c x R(5}) n A(l)J > 0. Using Step 3 this would lead 
to p(l,,4). > 0: Aiialogously,, if Step 4 is false for A(2) then we would obtain 
y(2.~} > o. 

Step,$. J(Bx ~S}")\A(s,)J > 0 for 8 == 3,4 and:for any measurable BC R(5}°, JBJ > 0. 
H this is failse e.g. for s == 3, then. 3B C R(5)q su,ch that JBI > 0 and A(3) :J 
JJ; x R,5)c m-0.d o~ Using S~p 2 this, leads to p(3-, 2} > 0; Analogously if Step 5 is 
~e &!rs :,;; 4,, we, would derive p(4, 1) > 0, 

Step,~. l(R(Sfx I)nA(8 JI > 0 for .8 == 3, 4. This foliows ( using Step. 4) from p(2, 3) > 0 
a.i;i.d p(l, 4) > 0, 

Step 7. l(B x. RG5.)"),\A(4)t > 0, for { 1,.2: ,;1,nd for a11y measurable B C R(5)°, 
l:BJ; > 0:. :U: this is f~e, for t = 1, then 3,8 C R(5)P measurable, IE.I > 0 such 
tb.:llit. B x. RG&}c c A(l}, mo!J. O. Vsing Stei>, 6 th.is w<>uld im,ply th.11,t p(l, 3) > 0 . 
..:\D,alogously if Step 7. is false for t == 2, we would d.erive p(2, 4;) > 0. 

Step:&. l'A~l~i'·l'Ae2>)11l! ~. 0,a.e. on R(5}R. If this is false, then 3B C R(5l measurable, 
!Bf; > 0, 3~. > 0:, s11;ch that 1:AW,A e Vy E B' for t == 1, 2. By Step 1 
l{B(5,} x lf!!),.l'L:4:{8,)ji > 0 for 8, == 3 or 4 (or both). This would lea.d to p(3, 2) > 0 or 
1t4,l>t> o. 
l\~JM;rlt. Be~0iuse p(1, 1). > 0 and p(l,.i) > 0, Step 4 implies that 3a, b C R(l) 
~~:vable sueh: that 

JA(1)11 [l R(5}°J > 0 a.e. on a 

l:A(2),yn R(5t1 > 0 a.e. on b 

~r.ther n.ot.e thJi.t .ll( 1) C: R( 5 )c by Step 4 a!ld I.A( 5 )11 n R( 5 YI == 0 a.e. because 
A(5) C J X R(t>,) mod\ Q. 

Step. 9a. IA(41,, n R(5}0 J > 0,, J:A~s)11 n .8(5tl == 0 (8 ::j:. 1, 4} for a.e. y E a. For a.e. 
y E (I, we have liA(2)11 l == 0 by Step, 8 an:d J'A(3}11J:;:: Q beca~se of p(l,3) == 0. Now 
JA(5)11 nR(5)0 1, == 0 together with Step 7 imi>lies IA(4)11 nR(5}"I > 0, for a.e. y Ea. 

Step Ob. JA(4)11 n R(5)"I > Q, JA(s.)11 n R(5YI == 0 (8 :f. 2,4) for a.e. y Eb. For a.e. 
y Eb we have JA(l)11 J == 0 by Step 8 and JA(3)11 J == 0 because of p(l,3) == 0. Now 
l:A(&)11 nR(5}cl "' 0 together v,.riith Step, 7 implies JA( 4)11 nR(5)°J > 0, for a.e. y E b. 

Step 10. The ~.cmtradi<;ti~n.. Ry Step 9b we have b x (L c A(2) u A(4). But if 
j(b x (I,) n A(Zi)l > 0, we wQul,d der\ve from Step 9a that p(2,4) > 0. Further if 
j(b x a) n A( 4 }l > 0, we wo,ul,d dei:tve fl;'om Step 9a that p( 4, 1) > 0. Once more a 
C<tntradiction. 

This completes the proof of the theorem. 
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Remark. According to Matus ([Ma.41) this theorem also holds if we take as transition 
matrix 

(
42013) (11111) 24103 11111 

\~/ 4 0 1 3 2 +i 1 1 1 1 1 
04312 11111 
00550 11111 

for O $ e < 10-6 • This implies that there exist stationary one-dependent Markov 
processes with only positive transition probabilitites that are not two-block-factors of 
i.i.d. sequences. 

7 A conjecture 

It is obvious to ask under which conditions m-dependent processes are m + 1-block-
factors. If the m-dependent process is a Gaussian process, then it is necessarily an 
m + 1-block-factor, because there is a one to one correspondence between Gaussian 
stationary processes (XN)Nel and autocovariance functions RN, Given such a process, 
there exists a positive definite function RN := E(XNXo), and given a positive definite 
function RN, there exists a unique Gaussian process with this autocovariance function. 
Now the notion of m-dependence means that RN = 0 for INI > m. These functions 
correspond to the set of m + 1-block-factors defined by 

where (UN)Nel is an i.i.d. sequence of Gaussian random variables. Although this was 
conjectured for quite a long time, a one-dependent process (XN)Nel is not necessar-
ily a two-block-factor if (XN)Nel is not a Gaussian process. This has been stated yet 
by lbragimov and Linnik ([lbr.Li.]) in 1971, but unfortunately they did not give a 
counterexample to this conjecture. This conjecture appeared also in several other pub-
lications; [Be.], [G.H.2], [Ja.1-2] and [O'Ci.]. Several authors used this conjecture as a 
hypothesis. Janson ([Ja.2]) studied runs of ones in m-dependent processes. He proved 
his results only form+ 1-block-factors and he remarked that this is sufficient under this 
hypothesis. Later Van den Berg ([Be.]) and O'Cinneide ([O'Ci.]) also studied runs of 
ones, and they proved some of their results only form+ 1-block-factors. Gotze and Hipp 
([G.H.31) and Heinrich ([He.5]) proved some of their local limit theorems and central 
limit theorems form-dependent random fields only for block-factors. The results in the 
articles [Be.], [G.H.1-3], [He.1-6], [Ja.1-2] and [O'Ci] are essentially different from those 
of this monograph. In 1987 Aaronson and Gilat ([A.G.]) found a one-parameter-family 
of counterexamples. Later, in collaboration with Keane and De Valle ([A.G.K.V.], the 
second article of this monograph), they found a two-parameter-family. These coun-
terexamples are all O - 1 valued one-dependent processes where a run of three ones has 
probability zero. 
In section 6 we showed a recent example (by Aaronson, Gilat and Keane, see [A.G.K.], 
1992) of a one-dependent Markov chain (assuming only 5 values) that is not a two-block-
factor. In section 4 we showed an even more recent example (by Burton, Goulet and 
Meester, see [B.G;M.]) of a 4-valued one-dependent process that is not a K-block-factor 
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for any K E N. In the fifth article of this monograph the construction of the coun-
terexamples from (A.G.K.V.] is generalized by representing one-dependent processes in 
terms of Hilbert spaces, vectors and bounded linear operators on Hilbert spaces. All m-
dependent processes admit a Hilbert space representation. The dimension of the smallest 
Hilbert space that represents a process is a measure for the complexity of the structure of 
the process. The difference between two-block-factors and non-two-block-factors seems 
to be determined by the geometry of cones that are invariant under certain operators. 

We summarize some facts in Diagram 2 (the definition of f(N)-dependence will be given 
in section 10). 

8 Two-correlations and the conjecture 

Although the conjecture does not hold generally, it is true under certain extremal con-
ditions on O - 1 valued one-dependent processes. 

Fix an a in the unit interval and consider the subclass of O - 1 valued one-dependent 
processes with probability of a one equal to a. In (G.K.V.] (the third article of this 
monograph) is proved that in this subclass the probability of a run of two ones (a 
two-correlation) has maximal value a½ (if a ½) and 2a - 1 + ( 1 - a)½ (if a ½). 
This supremum is attained uniquely if a is not equal to ½, and for a = ½ there ex-
ist exactly two processes with maximal two-correlation. The processes with maximal 
two-correlation are all two-block-factors. Further, a 0- 1 valued one-dependent process 
with minimal two-correlation (for fixed a) is necessarily a two-block-factor if a~ (¼, ¾) 
([G.K.V.]). 

9 More two-correlations and applications 

The maximal two-correlation of two-block-factors (translated to our terminology) was 
computed by Katz ([Ka.]) and later by Finke ((Fi.]), who interpreted Katz' mathematical 
objects as two-correlations in stochastic processes. The minimal two-correlation of two-
block-factors is computed in [V.1] (the first article in this monograph). A rather sharp 
lowerbound i( 4a-1) for the minimal two-correlation of two-block-factors was computed 
by Matus and Tuzar ([M.T.], see also [Tu.]) in a remarkable elementary way. Their 
lower bound is very close to the minimal two-correlation when a is close to ½- These 
two-correlations have applications to matrix theory and graph theory, when we restrict 
our attention to O - 1 valued one-dependent processes that are two-block-factors of an 
independent sequence of random variables, uniformly distributed over a finite number 
of values. The problem of the maximal or minimal value of a two-correlation in this 
discretized setting is equivalent to the problem of finding the maximal or minimal number 
of paths of length two in a directed graph ( as was remarked in [Fi.]) with a fixed number 
of edges and vertices. This problem is also equivalent to finding the maximal or minimal 
value of IIM2 II over the class of O - 1 valued N x N matrices M with K ones (for fixed 
N and K). This problem is solved in [V.3] (the fourth article of this monograph). 
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10 Other publications on m-dependence 

Although the following articles consider different problems than those dealt within 
this monograph, they are mentioned to give a survey over the field of m-dependence. 
Hoeffding and Robbins ([Ho.Ro.]) have studied /(N)-dependent processes, i.e. processes 
(XN )'N . .,;;1 such that · 

{X1, .... ,XKJ and {XK2 , •••• ,XN} are independent 

whenever K2 - K1 > f(N), for some function /. 

When f is constant, then we have m-dependence. They proved .entral limit theorems 
for these processes. 
There is a lot of literature on central limit theorems ( and related limit theorems) for m-
dependent processes and m-dependent random fields; by e.g. Diananda ([Di.1-3]), Gotze 
and Hipp ([G.H.1-3]), Guyoll and Richardson ([Gu.R.i.)), Heinrich ([He.1-6]), Petrov 
([Pe.]), Prakasa Rao ([P.R.]), Shergin ([Sh.]), Takahata ([Ta.]) and Tikhomirov ([Ti.]). 
Haiman ({Ha.1-2)), Newell ([Ne.]) and Watson ([W.]) wrote about extreme value theory 
for m-dependent processes. Janson studied renewal theory ([Ja.ll) and runs ([Ja.2]) 
in m-dependent processes. Smorodinsky ((Sm.]) proved that stationary m-dependent 
processes of the same entropy are finitarily isomorphic. 
Tsirelson ([Ts.]) wrote recently a paper on the connection between inequalities for 
quantum theory, for partition functions in statistical physics and for one-dependent 
processes (as in (A.G.K.V.) and [G.K.V.)). 
Recently Matus ([Ma.4]) proved that a stationary process (XN )NeN is equal in distri-
bution to a two-block-factor of an i.i.d. sequence if and only if there exists a jointly ex-
changeable and dissociated array ( Z N,M) N,MeN such that its superdiagonal ( Z N,N+t) NeN 
is equal in distribution to (XN)NeN· An array (ZN,M)N,MeN is called jointly exchange-
able if its distribution is equal to the distribution of (Z1r(N),1r(M))N,MeN for every per-
mutation 1r which moves only a finite number of positive integers. (ZN,M)N,MeN is 
called dissociated if (ZN,M)N,M<K is independent of (ZN,M)N,M?.K for every K > 1. 
As a consequence in [Ma.4] is proved that the class of two-block-factors is closed w.r.t. 
the weak topology, hence two-block-factors are not dense in the class of one-dependent 
processes. 

11 Comment on the six articles 

I. [V .1] "The ma:l!imal and minimal 2-correlation of a class of I-dependent O - 1 
valued processei' 

In this article we consider O - 1 valued two-block-factors (XN )Nel of an indepen-
dent sequence (UN )Nel of random variables that are uniformly distributed over 
the unit interval. Because such two-block-factors are completely determined by 
the indicator function of a subset A of the unit square, defining 
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these processes are also called indicator processes. The probability of a one is 
equal to the Lebesgue measure of A, and the probability of a run of two ones ( a 
two-correfotion) is equal to 

where HA and VA are the horizontal and vertical sections of A. The computation 
of the least possible two-correlation (for fixed probability of a one) over the class 
of O - 1 valued two-block-factors turns out to be a variational problem, equivalent 
to computing the minimal value of1A for fixed Lebesgue measure of A. This prob-
lem gives rise to some questions (see also section 12), some of which are solved in 
(G.K.V.]. The articles (G.K.V.] and (V.3] can be considered as continuations of 
this article. 

II. (A.G.K.V.) "An algebraic construction of a class of one-dependent processes" {with 
J. Aaronson, D. Gilat and M.S. Keane) 

In this article a rather old conjecture is disproved. The authors construct in an 
algebraic way a continuum number of O - 1 valued stationary one-dependent pro-
cesses that are not two-block-factors of i.i.d. sequences, and in this way they 
disprove the conjecture that each one-dependent process is a two-block-factor. All 
these counterexamples have the property that a run of three ones has probability 
zero. The class of counterexamples is parametrized by a (the probability of a one) 
and fJ (the probability of a run of two ones; a two-correlation). These parameters 
( together with the fact that a run of three ones has probability zero and the prop-
erty of one-dependence) uniquely determine the measure of all cylinder sets. To 
determine for which values of the parameters a process exists, it is enough to check 
whether the measures of all cylinder sets are non-negative. This turns out to be 
equivalent to the problem whether the orbit of (1, 1) under successive applications 
of certain mappings cp0 and cp1 : R2 -+ R2 in any order always remains in the 
unit square. It is known for which values of a and fJ a two-block-factor exists (by 
methods as in (V.1]) and it turns out that there exists a two-parameter-fainily of 
counterexamples to the conjecture. 
The construction of these counterexamples is generalized in [V.4], that is inspired 
by this article. 

III. [G.K.V.] "Extremal two-correlations of two-valued stationary one-dependent pro-
cesses" (with A. Gandolfi and M.S. Keane) 

This article can be considered as a continuation of (V.l]. 
The authors compute the maximal value of a two-correlation (probability of a run 
of two ones) over the class of 0-1 valued, stationary, one-dependent processes. This 
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is a simplification and generalization of [Ka.], where the maximal two-correlation 
over the class of two-block-factors was computed. The authors prove that this 
supremum is uniquely attained when the fixed probability of a one is not equal to 
½, and that there exist exactly two processes with maximal two-correlation when 
the fixed probability of a one is equal to ½- The processes with maximal two-
correlation are all two-block-factors. · 

Further, the minimal two-correlation over the class of O - 1 valued, stationary, 
one-dependent processes is computed in the case that the fixed probability of a 
one is ::; ½ or 2'. l The computed lower hound is the same as the minimal two-
correlation over the class of two-block-factors ([V.11). In the case that the fixed 
probability of a one is ::; ¼ or 2'. ¾ it is proved that the inti.mum over the class 
of one-dependent processes is uniquely attained, and the corresponding processes 
are all two-block-factors. The upper- and lower- :.ounds for the two-correlation 
are computed by showing that the measure of some cylinder sets becomes negative 
when we assume that the two-correlation has a value greater than the upper-bound 
c.q. smaller than the lower-bound. So the computation is probabilistic, in contrast 
to the analytic and combinatoric computation in [V.1]. 

IV. [V.3] "A problem on O - 1 matrices" 

In terms of matrices the maximal and minimal value of IIM2 II is computed over 
the class of O - 1 valued N x N matrices M with K entries equal to one (for 
fixed N and K). In terms of one-dependent processes, the maximal and minimal 
value of the two-correlation over the class of O - 1 valued two-block-factors of the 
N-shift (for fixed N and fixed probability of a one) is computed. This article can 
be considered as a discretized version of [V .1 ]. In terms of graphs, this corresponds 
to the maximal and minimal number of different paths of length two in a directed 
graph with N vertices and K edges (for fixed N and K). The solution is found by 
means of analysis and combinatorics. 

V. [V.4] "Hilbert space representations of m-dependent processes" 

This article can he considered as a continuation of [A.G.K.V.]. The construction 
in (A.G.K.V.] of one-dependent processes that are not two-block-factors, is gener-
alized by a representation of one-dependent processes in terms of Hilbert spaces, 
vectors and bounded linear operators on Hilbert spaces. Moreover all m-dependent 
processes admit a representation. 

If there is in the Hilbert space a closed convex cone that is invariant under cer-
tain operators and that is spanned by a finite number of linearly independent 
vectors, then the corresponding process is a two-block-factor of an independent 
process. Apparently the geometry of invariant cones determines the difference be-
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tween two-block-factors and non-two-block-factors. The dimension of the smallest 
Hilbert space that represents a process is a measure for the complexity of the struc-
ture of the process. One-dependent processes, represented by a one-dimensional 
Hilbert space, are i.i.d. sequences. One-dependent processes, represented by a 
2-dimensional Hilbert space, are two-block-factors. The counterexamples from 
(A.G.K.V.] fit with a 3-dimensional Hilbert space. If a two-valued one-dependent 
process has a cylinder with measure equal to zero, then this process can be rep-
resented by a Hilbert space with dimension smaller than or equal to the length 
of this cylinder. In the two-valued case a cylinder (with measure equal to zero) 
whose length is minimal and $ 7, is symmetric. We.conjecture that all minimal 
zero-cylinders are symmetric and we give examples of minimal zero-cylinders. 

VI. [R.V.] "On regression representations of stochastic processes" (with L. Riischendorf} 

In this article we construct almost sure nonlinear regression representations of 
general stochastic processes (Xn)neN· Given a process X we construct an i.i.d. 
sequence (Un)neN and a sequence of functions (f,.)neN such that 

(i) X,. = f,.(X1, ... ,X,._1,Un) a.s. for all n EN 
and 

(ii) Un is independent of(X1, ... ,X,._i). 

We call ( i) the Markov Regression of X. 
In this paper we also present the Standard Representation X,. = g,.( U1, ... , U,.) of 
an arbitrary process by constructing functions (g,.)n and an i.i.d. sequence (Un)n 
for a given process (X,.),.. If Xis an m-Markov process, then the Markov Regres-
sion reduces to X,. = J,.(Xn-m,•••,Xn-1,Un)• Assume that Xis a generalized 
m-block-factor of U; i.e. X,. = Yn(Un-m+i, ... , U,.). We can ask the question 
whether the Standard Representation of X gives us (U,.),. and (g,.),. in return. If 
this would always be the case, then we would have a method to check whether a 
process is an m-block-factor or not. Unfortunately we can only prove this for a 
special case; namely the monotone block-factors. 

12 Open problems and conjectures 

In this section we give a list of open problems and conjectures, to which this monograph 
gives rise. 

On (V.1] and [G.K.V.]. 

1. Is the value of the minimal two-correlation (for fixed probability of a one) over 
the class of O - 1 valued two-block-factors (as in (V.1]) equal to the value of the 
minimal two-correlation over the class of O - 1 valued one-dependent processes? 
In [G.K.V.] this problem is solved in the case that the fixed probability of a one is 
$ ½or~ i- It seems that this problem becomes more and more complicated when 
the fixed probability of a one tends to ½-
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2. If the answer to question (1) is yes, are the one-dependent processes with minimal 
two-correlation all two-block-factors? In (G.K.V.] this problem is solved in the case 
that the fixed probability of a one is ¼ or ;?: ¾- Just as question (1), it seems 
that this problem becomes more and more complicated when the fixed probability 
of a one approaches ½- In particular we do not know whether the minimal two-
correlation is equal to ¼ when the fixed probability of a one is ½ ( question ( 1)), 
and if the answer to this question is yes, we do not know whether this minimum is 
uniquely attained in the following process (XN)Nel (question (2)). Let (YN)Nel 
be an i.i.d. sequence of random variables, uniformly distributed over the unit 
interval. Let XN := 0 if YN < YN+l and XN := 1 if YN ;?: YN+I· This problem 
seems to be interesting in the theory of order-statistics. 

3. Can the computation of the minimal two-correlation in (V.1] be Rimplified, just 
as the computation of the maximal two-correlation in [Ka.] is simplified (and 
generalized) in (G.K.V.]? The elementary computation of the lower bound in [M.T.] 
seems to be a first step in the direction of a simplified proof. The lower bound in 
[M.T.] is very close to the minimal two-correlation when the fixed probability of a 
one is close to ½-

4. The computation in (V.1] is not probabilistic but analytic and combinatoric. Can 
the computation in [V.1] be "probabilized", just as [Ka.] is probabilized by 
[G.K.V.]? 

5. What extremal conditions on N -correlations ( the probability of a run of N ones) 
are needed to assure that two-valued m-dependent processes are always m + 1-
block-factors? 
On (A.G.K.V.]. 

6. The counterexamples of one-dependent processes that are not two-block-factors are 
constructed in an algebraic way. Can they be constructed in a probabilistic way, 
such that their structure becomes more natural and clear ( can the counterexamples 
be probabilized)? 

7. Are these counterexamples m-block-factors of i.i.d. sequences for some m;?: 3? 

8. Do there exist two-valued counterexamples, not having the property that a run of 
three ones has probability zero, or even having the property that each cylinder set 
has positive measure? 

9. For which values of the parameters a and f3 do there exist processes in the "un-
explored area"? It seems that this problem becomes more and more complicated 
when (a,/3) approaches(½, f,f), 

10. Can the counterexamples be described as limits of a rescaling operation ( see 
[O'Br.]) of a mixing process? 

11. Are the counterexamples functions of Markov processes, or even functions of m-
dependent Markov processes? 
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12. Do there exist m-dependent processes (for some m 2) that are not m + 1-block-
factors, and that are not m - !-dependent? 
On [V.3]. 

13. Can the computation of Max(N,K) and Min(N,K) be more straightforward? 
Methods as used in the computation of the lower bound in [M. T .] might be of some 
help. There exist values of N and K such that int{N3-Max(K/N2)} >Max(N, K) 
and other values such that l+int{N3 -Min(K/N2)} '<Min(N,K) (int(x) is the 
integer part of x ), and therefore it is not possible to prove the maximality or 
minimality of some matrix M by stating that IM (an integer) is in this case 
the best integer approximation (the entier) to N 3-Max(K/N2) (in the maximum 
case), c.q. the best integer approximation (one+ the entier) to N 3•Min(K/N2) 

(in the minimum case). Note that always: N3•Max(K/N2) ~Max(N,K) and 
N 3-Min(K/N2) ~Min(N,K). 
On[V.4]. 

14. The essential difference between two-block-factors and one-dependent processes 
that are not two-block-factors seems to be determined by the geometry of the 
invariant cone. What are the crucial aspects of the geometry of the invariant cone 
that determine this difference? 

15. Can a 0 - 1 valued one-dependent process have no other minimal zero-cylinders 
than [101], (010], [1 NJ, and [ON] ( N E N)? The minimal dimensions are 2, 2, N and 
N respectively. 

16. Do there exist for any N E N(N 3) a one-dependent process, that is not a 
two-block-factor, with minimal dimension equal to N, and without zero-cyll.tders? 

17. Do there exist for any NE N(N 3) a one-dependent process, that is not a two-
block-factor, with minimal dimension equal to N, and with a minimal zero-cylinder 
with length N? 

18. Do there exist for any NE N(N 1) a two-block-factor with minimal dimension 
equal to N, and without zero-cylinders? 

19. Do there exist for any NE N(N 1) a two-block-factor with minimal dimension 
equal to N, and with a minimal zero-cylinder with length N? 

20. Are one-dependent processes always functions of Markov processes, or even func-
tions of m-dependent Markov processes? 

21. Do there exist one-dependent m-block-factors (m 3) that can not be written as 
a two-block-factor? 

22. Is a one-dependent process with an m-dimensional Hilbert space representation 
always an m-block-factor (m 3)? 

23. Under which conditions is a one-dependent Markov process necessarily a two-block-
factor? 
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24. Are the two-block-factors extreme points of the set of one-dependent processes? 

25. Do there exist two-dependent processes that are not two-block-factors of one-
dependent processes? 
On [R.V.]. 

26. Is an m-dependent process (XN)Nel always a finitary-block-factor of an i.i.d. 
sequence (YN)Neli i.e. XN = /N(YN, ... , YN+KN) for some sequence of integers 
(KN)Nel and some sequence of functions (/N)Nez? 

27. Under which conditions on an m-block-factor does the Standard Representation 
construction return the m-block-factor representation? 

28. How restrictive is the condition of monotonicity of a two-block-factor? 
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14 Summary 

This monograph consists of six articles on one-dependent processes. Therefore, the sub-
ject is in the first place probability theory, although the methods and applications not 
only appear in probability theory, but also in statistical physics, analysis, functional 
analysis, dynamical systems, variational problems, matrix theory and combinatorics. 
One-dependent processes are stationary, discrete time processes (XN) NEZ with the prop-
erty that at each time t the future (XN)N>t is independent of the past (XN)N<t• Such 
processes can be constructed as a two-block-factor of an i.i.d. sequence (YN )NEZ by 
defining XN := f(YN, YN+i) for some function f. Although it was conjectured for quite 
a long time that each one-dependent process is a two-block-factor, in the second article 
of this monograph we construct a continuum number of counterexamples of O - 1 valued 
one-dependent processes that are not two-block-factors. In section 6 of this Introduction 
we show a counterexample (by Aaronson, Gilat and Keane) of a one-dependent Markov 
process (assuming only 5 values) that is not a two-block-factor. 

In the third article of this monograph is proved that under certain extremal conditions on 
the two-correlations ( the probability of a run of two ones) a O - 1 valued one-dependent 
process is a two-block-factor. The maximal value of a two-correlation over the class of 
0 - 1 valued one-dependent processes (for fixed probability of a one) is computed and it 
turns out that the processes where this maximum is attained, are all two-block-factors. 
If the fixed probability of a one is not equal to ½, this maximum is uniquely attained 
and there exist exactly two processes with maximal two-correlation in the case that 
the fixed probability of a one equals ½• Further partial results are proved on minimal 
two-correlations. The third article of this monograph is also a simplification and a gen-
eralization of (Ka.], where the maximal two-correlation over the class of O - 1 valued 
two-block-factors is computed (for fixed probability of a one). 
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In the first article of this monograph the minimal two-correlation over the class of O - 1 
valued two-block-factors is computed (for fixed probability of a one). In the fourth article 
of this monograph the maximal and minimal value of IIM2II is computed over the class 
of O - 1 valued N x N matrices M with K ones (for fixed N and K). In terms of two-
correlations this corresponds to the maximal and minimal value of the two-correlation 
over the class of O - 1 valued two-block-factors of an i.i.d. sequence of random variables 
that are all uniformly distributed over N values (for fixed N and fixed probability of a 
one). 

In the fifth article of this monograph the construction (in the second article) of coun-
terexamples of one-dependent processes that are not two-block-factors is generalized by 
a representation in terms of Hilbert spaces, vectors and bounded linear operators on 
Hilbert spaces. All one-dependent processes admit a representation. The difference 
between two-block-factors and non-two-block-factors is determined by the geometry of 
a closed convex cone that is invariant under certain operators. The dimension of the 
smallest Hilbert space that represents a process is a measure for the complexity of the 
structure of the process. 

In the sixth article of this monograph we construct for an arbitrary process (Xn)neN a 
nonlinear autoregression representation Xn = fn(X1, ... , Xn-1, Un) and a representation 
Xn = Yn(U1, ... , Un), where (Un)neNis an i.i.d. sequence with the property that Un and 
(Xi, ... , Xn-d are independent. 
For a special class of processes this provides a method to check whether a process is an 
m-block-factor of an i.i.d. process. 

15 Errata 
Article I, page 46, line 3 from below. "reduces by one." should be "reduces by one ( or 
two in Case I n Case II)." 

Article I, page 53, line 12 "with d; = d for all i =/:- io (for some i0)" should be "with 
d; = d for all i =/:- io (for some io) and d; 0 :5 d." 

Article VI, page 171, lines 3 and 4 from below. interchange the formula's Xn 
fn(X1, ... ,Xn-1, Un) and Xn = Yn(U1, .. . , Un)-
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ABSTRACT 
We compute the maximal and minimal value of P[XN = XN+i = I] for fixed 
P[XN = I], where (XN)Nez is a 0-1 valued I-dependent process obtained by a 
coding of an i.i.d.-sequence of uniformly [O, I] distributed random variables 
with a subset of the unit square. 

1. Introduction 

A stationary, 0-1 valued, stochastic process (XN)Nez is I-dependent if 

for all N 1 and for all i_N, ... , Li, ii, ... , iNE {O, 1 }. 
For quite a long time it seemed to be folklore to conjecture that each 1-

dependent process is an indicator process (we will define that), but recently 
Aaronson and Gilat ([AG]) found a counterexample of a 1-dependent process 
that is not an indicator process. A paper by Aaronson, Gilat, Keane and De Valk 
[AGKV] on a two-parameter family of such counterexamples has been written. 

Let Jbe the unit interval, J2 the unit square, let landµ be Lebesgue measure 
on J and J2 resp. and let A be the collection of µ-measurable sets in J2. 

t This research was supported by the Netherlands Foundation for Mathematics (S.M.C.) with 
financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO). 
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Let (,UN )Nez be an i.i.d. sequence of random variables uniformly distributed 
over J. Define for each A EA the corresponding indicator process (XN )Nez: 

XN := {O, if(UN, UN+1)f/:.A, 

1, if(UN, UN+1)EA. 

It is easy to see that each indicator process is a I-dependent process and that 

From now on we reserve a for the Lebesgue measure of A (thus a= µ(A) is the 
probability of a one). 

In 1971 Katz [Ka] computed (translated to our terminology) the maximal 
value of a 2-correlation P[XN = XN + 1 = 1] over the class ofindicator processes 
for fixed a. 

Finke [F] ( 1982) was the first to interpret Katz's mathematical objects as 
correlations in stochastic processes. 

Recently Gandolfi, Keane and De Valk [GKV] proved a more general result 
about the maximal value of a 2-correlation over the class of I-dependent 
processes. They computed that the 2-correlation (for fixed probability of a one) 
has the same upper bound over the class of 1-dependent processes as over the 
class of indicator processes. 

Further, they proved that there exists a unique I-dependent process with 
this 2-correlation if the probability of a one is not½. If the probability of a one is 
½, there exist exactly two I-dependent processes with this 2-correlation (and 
both are indicator processes). So, the conjecture mentioned in the beginning of 
this section does not hold in general, but is true for these extremal cases. 

In this paper we will compute the minimal 2-correlation for all indicator 
processes. For a${½, i) we have been able to compute the minimal 2-correla-
tion for I-dependent processes; finding the same lower bound ([GKV]). 

For a$.(¼, ¾) we know that there exists a unique process with this 2-
correlation ([GKV]). 

2. Basic properties 

For A EA we define the horizontal and vertical sections HA and VA: 

HA(Y) := .il{xEJ: (x, y)EA }, 

VA(x) := .il{y EJ: (x, y)EA}, 
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and we define IA: 

LEMMA 1. The 2-correlation P[XN = XN+t = 1] of an indicator process is 
equal to IA. 

PROOF. Directly from the definitions, 

We define the maximal and minimal 2-correlations of an indicator process 
by 

Max(a) := sup{IA: A EA ,µ(A)= a}, 

Min(a) := inf{IA: A EA,µ(A) = a}, aEJ. 

Before we describe the sets for which these extremal values are attained, we 
state three simple lemmas. 

Let Ac : = J2 \A be the complement of A. 

LEMMA 2 (Complement Lemma). For A EA with µ(A)= a we have 

and therefore (for a E J) 

Min(a) = Min(l - a)+ 2a - 1 and Max(a) = Max(l - a)+ 2a - 1. 

PROOF. We have HA'(x) = 1 - HA(x) and VA'(x) = 1 - VA(x) which 
implies 
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IA'= ,C (1 - HA(x))(l - VA(x))dA(x) 

= fo1 {1-HA(x)- VA(x)+HA(x)VA(x)}dA(x) 

= 1-2a +IA. 

Note that the supremum (infimum) is attained in A for a iff the supremum 
(in!fi.tnum) is attained in Ac for 1 - a, so that we may assume a ½. 

We call the'sets {(x,x)EJ2:xEJ}, {(~, 1-x)EJ2:xEJ} the diagonal, 
the cross diagonal, resp. 

Let Rd, resp. Re be reflection w.r.t. these diagonals. We call a transformation 

(TXT):J2 -J2 

a product isomotphism if T: J - J is measurable, measure preserving and 
almost everywhere 1-1. 

LEMMA 3 (Reflection and Invariance Lemma). For A EA and for a product 
isomorphism T X T we have 

IA= IR,iA = IR,_,A = I(TXT)A• 

PROOF. We have HR.iA = VA, HR,,,4(X) = VA(l - x) and H<TxTJA(x) = 
HA(T- 1x) (and similar formulas for VA) which imply the statement. 

We will identify two sets A and B if µ(A.6B) = 0, and we introduce the 
habitual metric d: 

d(A, B) : = µ(A.6B), A,BEA. 

LEMMA 4 (Continuity Lemma). For A, BEA we have 

and therefore (for a, p EJ) 

IMax(a)- Max(P)I 21a -p I and !Min(a)-Min(P)I 21a -p I, 
PROOF. The first inequality follows from 

IIA-lol = II HA(VA -Vo)+ Vo(HA-Ho)dAI 

~JI VA - VoidA + f 1nA -HoldA 

2µ(A.6B). 
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The second inequality follows by choosing for a > p a set A with measure a 
such that IA is close to Max(a), and a subset B of A with measure p. Then 
µ(Al:c:,.B) = a - P, and application of the first inequality yields the second 
inequality. 

The third inequality follows analogously. 

3. The sets where the maximal and minimal 2-correlations are attained 

We define the following sets for O a ½: 

A::'3x := ([0, 1 - ~] X [O, 11) U ([1 - ~. 1] X [O, 1 - ~]). 

For a<½, let 

where 

is such that 

Now let 

or equivalently 

s := ---------
N+ 1 

N:=int(-1 ) 
1-2a 

1 1 l 1 ---~a<-----
2 2N - 2 2(N + 1) 

A::'in := {(x, y)EJ2: y s • int(xls)} 

N-1 

A::'in := U ([is, (i + l)s] X [O, is]) U ([Ns, 1] X [O, Ns]). 
i-1 

Finally we define 
AV!0 := {(x, y)EJ2: y x}. 

We call A::'in a staircase set. 
Straightforward computations show that both A::'ax and A::'in have measure a 

(seeFigs.1-11). 
We call a set A with µ(A)= a<½ a disturbed staircase set if A is not a 

staircase set and if there exists a set B such that (N and s as above) 

N-1 

A= BU U ([x1, X;+iJ X [0, x;]) 
i-1 
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Fig. 1. A;'° (0 ¼). 
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Fig. 6. A:»"(½- l/(2N) ;:;i a<¼- l/(2(N + 1))). 
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:•·.-: 
Ns .. ::::: 

0 0 s Ns 1 

Fig. 7. Al'Jr. Fig. 8. RiCA~«>' (½ + l/(2(N + 1)) <a~ f + l/2N). 
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with 0( = xo) <x1 < · · · <xN-I <xN = l, and for some i0 E{0, 1, ... , N - 1} 

{
l. - (N - l)s, 

X;+r-X; = 
s, 

if i = i0 

if i =p io, i E {O, 1, ... , N - I} 

an:d, for some O < y < x;.+ 1 - x;0, B is a s:ubset of 

See Figs. 12-15. 

Fig. 12. Two disturbed staircase sets 
and the complements of the reflected 
(w.r.t. the diagonal) sets of two disturbed 
staircase sets. 

Fig. 14. 

X;,,+Y 

X;,, 

X;,, X;,,+1 

Fig. 13. 

Fig. 15. 
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4. Results 

THEOREM 1. 

2-CORRELATION OF 0-1 VALUED PROCESSES 

{
2a- l +(1-a) 312, O~a~ ½ 

Max(a) = 
a 312, ½~a 1. 

PROPOSITION 1. This supremum is attained in the sets A::'ax for O a ½ 
and in (A~)c for½~ a~ 1. 

Conversely, each set A with measure a and IA= Max(a) is product isomor-
phic to one of the above-mentioned sets. 

For the proof of Theorem l we refer to Katz [Ka] or Finke [F] or Gandolfi, 
Keane and de Valk [GKV]. 

Proposition 1 is proved in [GKV]. 

THEOREM 2. 

Min(a) = 

with 

(N - l)N (1 - 2c5)(1 + c5)2, ifO ~a<½, 
6(N + 1)2 

2a - 1 + Min(l - a), 

if a=½, 

if½<a~ 1, 

REMARK. For½- l/(2N) ~a<½- l/(2(N + 1)) we have 1/N c5 > 0, so 
c5-0 if a-½. Note that if 1/(1 - 2a) is an integer we have 

Min(a) =Min(! ±-1 ) = (N ± l)(N ± 2) 
2 2N 6N2 

a(4a - 1) 

3 

and in these points the function Min has a left derivative which is smaller than 
the right derivative. For the function Max this phenomenon only occurs at 
a=½. (See Fig. 16.) 

Note further that Min(a) a(4a - 1)/3 for all aEJ. 
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0 ¥'----.---.--..--.....---r"'----r--r--,---r---i--r--r---r---ir---r--r---r--i-.--, 
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. I 6. The functions Max and Min. 

PROPOSITION 2. The infimum is attained in the staircase sets A::'in for 
0 ½, (A l"~"«Y for½~ a~ I, and it is also attained in the disturbed staircase 
sets for a < ½.and in the complements of these for a> !. 

Conversely, when 1/(l - 2a) is an integer ora = if the infimum is attained 
in some set A EA with measure a, then A is product isomorphic to a staircase set 
(a~½), or to the complement of a staircase set (a>½). 

When a '=I' ½ and 1/(1 - 2a) is not an integer, if the infimum is attained in 
some set A EA with measure a, then A is product isomorphic to a staircase set or 
to a disturbed staircase set (a<½) or to the complement of one of these sets 
(a>½). 

We prove Theorem 2 in Section 5 and we prove Proposition 2 in Section 6. 
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5. Proof of Theorem 2 

Let a > 0 be fixed. In six steps we will, by various rearrangement procedures, 
gradually diminish the size of the collection of sets A for which IA = Min(a), 
until we reach the staircase sets, so proving the statement of Theorem 2. 

Step I. Standardization 
By the continuity lemma we may approximate a set A (µ(A)= a) by a finite 

union of squares of the form [x, x + o) X [y, y + o) with x, y EJ, where o > 0 
is the reciprocal of an integer. 

Then HA and VA are constant on intervals. We rearrange J with a transforma-
tion T (a permutation of intervals) such that HcrxTJA is non-increasing (see 
Figs. 17 and 18). We use the notation r :=TX T. 

The Invariance Lemma implies that ItA = IA. 
We say that a set is in standard form if it is the set under (the graph of) a non-

decreasing function. We will obtain from rA a set A' in standard form with 
IA, l 1A. This is accomplished by moving squares horizontally to the right. 

If rA is not in standard form, then there exist squares S 1 and S2 such that 

S1 := [Xi, X1 + o) X [y, y + o) is a subset of rA, 

S2 := [X2, X2 + o) X [y, y + o) is disjoint with .A, 

for some x1 < x2• Define the set mA (Fig. 19): 

::::: :::::: ?: ITTW 
::::: :;:;: :::::: :::::: ::/I::::{\::·::::: T = T X T (1 

--+ ,...::::...,.:: _..,. 

y+oY =:=:-. 
t++::::+H:: .+H-!'!+I=-""'=-

y + o m .... ..+,. -~ r-;c:,!='1,:,:1:,i;;,;,;j 

y ·/ ........ ,:,:•:•:•:•: ........... ,:·:·:· 
::::::::::::. ::::::::::::: 

Fig. 17. A. Fig. 18. rA. Fig. 19. <TTA. 

then µ(arA) = µ('l"A) and we will prove that It1tA ItA. 
We have HmA = HtA =:Hand 
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{ 
VrAx)- O, if xE[xi, X1 + o), 

VtnA(x)= Vr,1(x)+o, ifxE[X2,X2+0), 

V r,1 (x ), else. . 

Isr. J. Math. 

Note that we have equality iff H is constant on [x1, x2 + o). The set A' (in 
standard form) is obtained from A by applying r (once) and a finite number of 
shifts of the type <J. Using these facts we obtain the next claim, in which we 
introduce the notation IA and A1 (to stress the correspondence between a 
non-decreasing function f and a set A in standard form that is the set under/). 

CLAIM 1 (Standardization). 

Min(a) = inf{ /,4 : µ(A) = a, A = A 1EA in standard form, 
IA finite valued} (aEJ). 

REMARK. From Helly's selection principle ([Luk] par. 3.5) it follows that 
the infimum is actually attained in some set in standard form. 

Step 2. ( Under the diagonal) 
Because of the Complement Lemma we assume that a < ½. It is easy to see 

that Min(a) = 0 for a ;;;a¼; take e.g. A= [l -v'a, 1) X [O, v'a]. 
Therefore we assume further in this proof that ¼ < a < ½. 
Take a set A in standard form with measure a and such that IA is finite 

valued. Assume that A does not lie under the diagonal (a set A lies under the 
diagonal if A is a subset of Affl°). We will transform A to a set lying under the 
diagonal such that 1 ... does not increase. 

Let A be a union of o X o squares. We choose 

S1 : = [Xi, X1 + o) X [Yi, y 1 + o) subset of A 
and 

such that S1 lies above the diagonal and S2 lies under the diagonal (by passing 
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from ,5 to ½J we may assume that there exist such squares entirely above or 
under the diagonal), and such that 

(these conditions guarantee that the transformed set will be in standard form). 
Let g be such that 

We will prove that IA,< IA,. 
We say that a rectangle [x', x 11 ) X [y', y 11 ) (disjoint with the diagonal and a 

subset of a set A in standard form) interferes with the horizontal sections HA (x) 
with x' x < x II and with the vertical sections VA (y) with y' y < y 11 • 

We introduce this definition because the removal of this rectangle from A 
decreases IA by the amount (as follows from the computation in this step) 

( II ') ( II ') { rx• HA(x)dx fy' VA(y)dy} y -y · X -X • Jx, + y' , 

(x 11 - x') (y 11 - y') 

i.e., the change in IA equals the area of the rectangle times the average value of 
the sections with which the rectangle interferes. 

The intuitive idea behind the inequality IA,< IA1 is the fact that the square S1 

interferes with the sections marked with a - sign and the square S2 interferes 
with the sections marked with a + sign (in Fig. 20); the first total is larger than 
the second. We have 

and analogously 

which implies 

IA, - IA,~ '52{Y1 - Xi+ X2 - Y2 + 2'5} 4,53 > 0 

since x1 + ,5 y 1 and X2 Y2 + '5. 
We write our conclusions in the next claim: 
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g 

Yi +o 

Fig. 20. 

CLAIM 2 (Under the diagonal). For¼< a<½ we have 

Min(a) = inf{/A: A EA, µ(A)= a, A in standard form, 
A under the diagonal, IA finite valued}. 

Isr. J. Math. 

LEMMA 5 (Windowing). Let IA : J - J be a non-decreasing Junction such 
thatlA(a) = a,IA(b) = bfor some O ~a< b 1. De.fine 

Aw:=A n([a,b]X[a,b]) 

and let Hw and V"' be the corresponding sections on [a, b] (Fig. 21), 

Hw: = HA - (1 - b) and V"' : = VA - a. 
Let aw:= µ(Aw) and 
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b 

a 

0 a b 

Fig. 21. 

then 
l,4 = l,4• + f H,4(x)V,4(x)dx + (1 - b + a)aw + (b - a)(l - b)a. J [0,a)U[b,l) 

PROOF. We have 

l,4 - f H,4(X)VAx)dx= rb (HW(x)+ 1-b)(VW(x)+a)dx J [O,a)U[b,IJ J a 

= ib Hw(x)VW(x)dx + (1-b) ib VW(x)dx 

+ a ib Hw(x)dx + (b - a)(l - b)a 

= l,4• + (1 - b + a)aw + (b - a)(l - b)a. 

COROLLARY. Assume£. isas in this lemma, and we change£. on (a, b)area 
preservingly to Is (i.e. µ(A) = µ(B)). Then /,4 will change by the same amount as 
l,4•. 

Step 3. (Moving to the diagonal) 
Let A be a set in standard form, lying under the diagonal, such that for some 

positive integer N 
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N 

h = i Yi• l1x,,x1+1l 
i-1 

wi.th €);=; x0 <x, < · · · <xN+1 = 1. 

Isr. J. Math. 

Let d; := xi - xi-i and ci :=; Yi - Yi-i (i = 1, ... , N + l}. Assume that 

U{fA.}: = card{ i : y1 < xi} > 0, 

thea we will, ];),fove the eJlis~ence of a set B h1 standard form., lying under the 
diagonal:, with the same measure as A, and with a finite• val:ued :function.fn such 
that 18 IA and U(/8 )< U(fA). 

We first give an intuitive sketch of our procedure ( cf. Figs. 22 and 23). Let i 
be the irst index s.Ych that Yi < xi.• We will cbange./A, on [x1 _ 1, X; + 1). Because of 
the. Windowing Lemma we may restrict our attention to the square (xi-t, l] X 
(Xi-h l}. 

We transfonn: the rectangle txi, x1+ 1) X [Y;-i, Yi) (with area d1+ 1 •ci) such 
that U(fA) reduces by one. We challge it to a rectangle with height ci + C;+i• 

This. is, possiole if (Case I, Figs. 22 and 23) 

0 

Y1 
>-...-,--~~......,. ...... '-----,,-~-,-----1 Y1-1 

Fig. 22. Case I. Before the transform11tion. 
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Yi+I 

Yi-I 

0 Xt-1 X; X;+1 

X;+1-a 

Fig. 23. Case I. After the transformation. 

Yi+I 

Yt 

X;-1 

0 X; 

Fig. 24. Case II. Before the transformation. 

Otherwise (Case II, Figs. 24 and 25) we transform it to a rectangle that has one 
comer on the diagonal and lies as far as possible to the right. The rectangle with 
area di+ 1 • ci interferes before the transformation with the set of horizontal 
sections HA (x ), xi x <xi+ 1 and after the transformation it interferes with 
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X;-1 

0 

Fig. 25. Case II. After the transformation. 

the subset of horizontal sections HAx ), X; + 1 - a x <Xi+ 1 (in Case I, 
a : = d; +i • c;l(ci + C; -1r 1); in Case II, choose O < a < dH I such that 
a ·(d, + di+, - a)= di+r•C;). 

Because the first set contains some large sections, which are not contained in 
the subset, this subset has a smaller average value (s.ee definition of inter-
ference). This crucial observation implies that IA wiHdecrease. (Note that 
the vertical sections r' with which the described rectangles interfere, have 
length zero.) 

Case I. (d;+ 1 •c; (X;+1 - Yi+1)•(c; + C;+1)) 
Replacing [X;, X;+ 1) X [Y;-i, Y;) by [X;+ 1 - a, X;+ 1) X [Y;-i, Y;+ 1) we have 

rxl+I-Q rXl+I 
= Jx, Hw(x)e;dx - Jx,+,-a HW(x)C;+idx 

(d;+1 -a)•Hw(X;+i -a)•C; - a ,Hw(Xi+I -a)•Ci+I 

=0. 

Case II. (d;+1Ci (xi+1 - Y;+1)•(c; + C;+ 1}) 

Replacing [X;,X;+1)X[Y;-i,Y;) by [X;+1-aiXi+1)X[Yi-1,X;+1-a) we 
have 
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l.4,-IB= rxl+IHW(x)c,ax- rxl+I HW(x)(X;+1-a-Y;-1)dx J X1 J X1+1-a 

= rx,+,-a Hw(x)c,ax - rx,+1 Hw(x)(X;+1 - a - Yi-I - C;)dx 
J X1 J X1+1-a 

(d;+ 1 - a)•Hw(X;+ 1 - a)•c; 
-a •Hw(X;+1 -a)•(X;+1 - a -Yi-I - C;) 

=0. 
It is easy to see that we can reduce U(f..) to zero, while l.4 does not increase, and 
we conclude 

CLAIM 3 (Moving to the diagonal). For ¼ < a < ½ we have 

Min(a) = inf{/,4 :A EA,µ(A) = a, for some NEN,f.. = f X; • l1xbX1+1), 
i-1 

0 =x0<x1 < • • • <xN <xN+i = 1}. 
Step 4. (Rearra'!gement) 
We will prove that we may assume that (d;)f-i I is a non-increasing sequence. 

Let A be a set as in Claim 3 and assume that for some i E { 1, ... , N} we have 
d;<d;+1• 

We will changef.. on [x;, X;+ 1) area-preservingly such that for the new function 
g we have d[ > d[ + 1 and /A.J = l.41 • 

The intuitive idea behind this equality is the fact that both rectangles with 
area d; + 1 • d; interfere with horizontal sections of the same constant length (see 
Fig. 26). Because of the Windowing Lemma we may restrict our attention to 

X; 

X;-1 

0 

r-------
1 
I 
I 
I 
I 
I 

I I 
I h I 
I I __ .....,_ ____ _. 

X;-1 X; X;+1 
X;-1 +d;+1 

Fig. 26. 
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[~;.,..i,X/+1) X [x;-i,,X;+1>- We replace [X;-1 + d;,.X;+1) X [X;-1,,X1-1 + d;) by 
[X1-1 +tdr'+.i.Xrul X-.[~r-1~ x1,.,..., + <4+1) anditistrivial that. 

I,i,::= IA~ (beeause .. Hw- = o· or VW = 0). 
W:e,coulnd,e; 

Cl,;1'\JlM r4(Rtarrang,emem).1 Rod:« a<;½ we.-bave·· 

~}F>~iipjf,[: A-6"4.,, µ,(it} ;=,,a, fQJ;,soae,N\E:l!+;;f}.=, f X; • ljx,,x,+Ll• 11 ;.,..,,. 
Q~x6 <: X't:-< . ,. ·• <:;X.Nt,<:, XN+I ,""" 1;. 

d1i~.:d{?;, ." • • ·~dJV·~~dN+l·. 
8Jep1.' 5-:,. (J:}ql!fMflY.,of DIJferences): 
Let.A1be.as in.(!laim4,1.We.will prove;-th~;w,e,_niay,assl;lme:tha:t: 

d,f=d.J.= ., ..• =dN ~-dN•+I•, 

Assume-.t®f;for:-some:i .eu; , .. , N, - l} we: have. 
d/> dr+1 ~.df+2'. 

We-wi•Dlciwl&~/J\area .. presemngl,y to g-0n [x,, ... i, x1+ 2)(cf. Fig. 27). Because 

r---------- -

X1+1 +'5,I 1. 

X1+1 

g 

IAI 
I 

I 
I 
I 
I 
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of the Windowing Lemma we may restrict our attention to [X;-i, X;+2) X 
[x; _" X; + 2). We will obtain I,,, < I,,1 •.•. 

Let O < e < d; - d; + 1• Since d1 > d; + 1 i;:;; d; + 2 we can find o > 0 such that 

e(d1 - e) + o(d;+2 - o) = ed1+1 + od;+1 + eo. 

Define 

and let g be the changed version of /(corresponding to d[, d[+i, df +2), then 

I,,, -I,,,= d1+1 ·d1 •d;+2 - d[+1 ·d[ ·df+2 (use(•)) 

and this is positive if e is small enough (o -o if e -O). We conclude 

CLAIM 5 (Equality of Differences). For¼< a<½ we have 

Min(a) = inf{/,, :A EA,µ(A) = a, forsomeNEN,f,, = f X;• 11x,,x,+,i, 
i-1 

Step 6. (Conclusion) 
These computations will prove Theorem 2. Let A be as in Claim 5, and set 

s := d1 = • • • = dN. We have 1/(N + 1) s 1/N and (see e.g. Fig. 6) 

N-1 N(N + l)s2 
a=µ(A)= I s•is +(1-Ns)•Ns =Ns----, 

1-1 2 

this implies 

1+ \/1-2a(N;l) 
s =---------

N+l 

Further, for I,, we have 
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= (N - l)N·(l - 2<5)(1 + <>)2 
6(N + 1)2 ' 

whenwewrite 

This is the formula forMin(a)in Theorem 2~ We have computed Min(a} for 
a<½. The continuity of 'Min(a) leads to. Min(D. =•¼.,(use; co and <> - 0 
ifa-½). 

The Complement Lemma leads· to the formula··for,a >a½, 

6. Proof of Proposition 2' 

In Step 6· of Section· 5 we pFoved that the infimum isi attained in the 
staircase sets. A straightforward computation shows that the.infimum is also 
attained in the disturbed staircase sets ... Observe tllat the subset B (in the 
defirution of a disturbed staircase set in Section 3) interferes with sections of 
the same size as a rectangle. 

Let A EA be a set with measure a<½, where the, infimum is altained. We can 
generalize Steps l-,5 of the pr.oof of Theorem 2 to A with·,IA = Minta). Two 
integrable functions!, g: [O, co) -·[O, co) are called equimeasurable-(see [HLP] 
par. 10.12) if' 

J{x: f(x)~y} =X{x: g(x)'~Y}' for all'y>O. 

Let/: [O, co)-{0, co) 1be an,imegrnlillefonction. 1t,is.a1well.,known fa€t that 
there exists·anon-inoreasing function g{theso-called >equimeasurable decreas-
ing rearrangement off) suclNHat fand g are equimeasuralile;, 

Let Hlbe the eqµimeasurable ,decreasing rearrangement ·of! HA. We define 

Then·, A1 is" a· set' in standard,' form aoo' tins, method I offstamiardization 
generalizes SteP' 1. N simple' approxiinaiion· aTg\lment' yields I.!t, ~·IA, but 
/Ar:,= /A .. because the iilfimum is attained 'in A. 

If A 1. does .. not Jie · under the. diagonal,. th'.en. we ... can,strictly, reduce IA,, ( and 
obtain a set A2) by moving.a part ofA I lying above tlie diagonal to a place under 
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the diagonal, as a slight modification of Step 2 shows ( consider the interference 
in Fig. 20). Therefore we may assume A1 = A2, and this set lies under the 
diagonal. 

A modification of Step 3 (approximation by stepfunctions) transformsA2 to 
a set of the type in Claim 3, such that IA3 IA, (but again IA3 = IA,). 

Application of Steps 4 and 5 (unmodified) leads to sets A4 and As of the type 
in Claim 4, Claim 5, resp. with IA3 = IA,= IA,• 

We consider As and go backwards to determine what A can be. If A4 is not of 
the type in Claim 5, then the computation in Step 5 would imply that IA, < IA,· 
SoA4=As. 

Because rearrangement does not change IA, we conclude thatA3 is of the type 
in Claim 3 with d; = d for all i + i0 (for some i0}. Because IA, = IA3, the set A2 

( = A1) is a staircase set or a disturbed staircase set in standard form (see the 
interference in Figs. 24 and 25). Note that the edgepoints (x;, X;) (i + i0 - 1) 
cannot be removed from the diagonal without changing the measure of the set. 
We consider the effect of moving some subset of A1 horizontally to the left. If 
the new set is still a staircase set or a disturbed staircase set, then IA, will not 
change. But if the new set is no longer of this type, then IA, will change as a 
step-1-type computation shows (consider the interference with the horizontal 
sections). So before the process of moving rectangles to the right (as in Step 1 ), 
we already had a staircase set or a disturbed one. So A is product isomorphic to 
a set of this type. This proves Proposition 2 for the case a < ½. 

The case a=½ can be proved analogously. The case a>½ follows from the 
case a<½ (use the Complement Lemma). 

7. Remarks 

(1) Katz proved a kind of symmetrization theorem ([Ka], Th. 3, p. 66) for 
the maximum case; for each set A, which is the set under (the graph of) a non-
increasing function£ (standard form in maximum case) and which is not 
symmetric (w.r.t. the diagonal), there exists a symmetric setAsvM (in standard 
form with the same measure as A) such that 

AsvM is obtained in the following way. Let 

x0 := sup{xEJ: £(x)>x}, 

let f ~<A> be the function corresponding to RiA ), let 
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g:= Kf.t + fa.<A>)· l10,XoJ• 

let Cg be the set under g, define A5™ as 

A5™ := Cg u RiCg)•. 

Isr. J. Math. 

(See Fig. 28.) This symmetrization method does not work in the minimum 
case; i.e., given a set A (set under a non~decreasing function) we can construct a 
set A ,sYM (symmetric w.r. t. the cross diagonal) in an analogous way, but we will 
not always have /A.m& IA, as the next counterexample shows. 

Let f = i· l121s,4/sJ + !• lc41s,1J, then a= /5 and IA,= 0.032 = Min(a), but 
[A.m& = 0.036. The inti.mum is attained in A, but not in A ,SYM, which does not 
touch the diagonal in each step (terminology from Step 3). 

(2) Extension of the problem from J 2 to R2 is not possible. Given a set 
Ac R2 with measure a we can define HA and VA in the usual way, but the 
problem is that J+oo 

_
00 

HA.Cx) VA(x)dx 

can diverge. So the supremum is infinite. Further, the inti.mum is zero (take e.g. 
A C (0, ex:,) X ( - ex:,, 0)). 

(3) In the minimum case there exists a continuous (w.r.t. d) mapping 

such that 
IF(a) = Min(a) 

Xo 
Fig. 28. 
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In the maximum case such a mapping is discontinuous in a = ½. For a<½ we 
have (independent of the choice of the set A) 

Range{H.4)= {1-~, 1} 
and for a>½ 

If F could be chosen to be continuous, then the range of HA would depend 
continuously on a. 

In other words: in the maximum case the sections of ArJf and (ArJfY have 
different ranges and in the minimum case the sections of Arlt and (Amny have 
the same range. 
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A special class of stationary one-dependent two-valued stochastic processes 
is defined. We associate to each member of this class two parameter values, 
whereby different members receive different parameter values. For any given 
values of the parameters, we show how to determine whether: 

1. a process exists having the given parameter values, and if so, 
2. this process can be obtained as a two-block factor from an independent 

process. 

This determines a two-parameter subfamily of the class of stationary one-de-
pendent two-valued stochastic processes which are not two-block factors of 
independent processes. 

Introduction. A discrete time stochastic process X = (Xn) is one-dependent 
if at any given time n, its past (Xkh <n is independent of its future (Xkh > n· In 
contrast to the Markovian concept, a weakening of independence which has been 
investigated thoroughly, no knowledge of the present value Xn is assumed. 
One-dependent processes arise naturally as limits of rescaling operations in 
renormalization theory (see, e.g., O'Brien [8]). In an analogous manner m-depen-
dence (m 1) can be defined, considering the present to be given by m succes-
sive observations. The works [2], [ 4]-[7] and [10] deal with various aspects of 
m-dependent processes. 

Examples of m-dependent processes are given by so-called (m + 1)-block 
factors: Let Y = (Yn) be an independent process and f a function of m + I 
variables. If we define 

xn = f(Yn, ... ' Yn+mL 
then the (m + 1)-block factor X = (Xn) is an m-dependent process. 

In this article we restrict our attention to one-dependent processes X which 
are stationary and assume two values only, denoted in the following by O and 1. 
It is not difficult to see that if X is a two-block factor, then it may be assumed 
that the underlying independent sequence Y is identically distributed with the 
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uniform distribution on the unit interval as the common distribution, and that / 
can be identified with the subset A of the unit square on which it assumes one of 
the values, say 1. Hence the distribution of a two-block factor is completely 
described by a measurable subset A of the unit square, which we call an 
indicator of the two-block factor. Of course, different A's may give rise to 
two-block factors having the same distributions. · 

It is natural to ask ([6], [7], [9]) whether all one-dependent processes arise as 
two-block factors. Under certain extremal conditions, this is true ([3]). However, 
in the following we produce a two-parameter family of stationary 0-=1-valued 
one-dependent processes which are not two-block factors. This extends a one-
parameter family of such examples recently obtained by two of us [1] based on 
unpublished results of the other two of us. 

The plan of the article is as follows. In Section 1 we show that every 
one-dependent process can be parametrized by the collection of probabilities it 
associates to runs of l's. Here we define cylinder functions for arbitrary parame-
ter values and note that a one-dependent process exists if and only if the 
corresponding one-dependent cylinder function assumes only nonnegative values. 

In general, it seems to be difficult to decide whether a given set of parameter 
values yields a positive cylinder function and thus a process. However, if we 
restrict our attention to a class of cylinder functions which we call special (for 
lack of a better name), defined by requiring that three or more l's in a row have 
probability 0, then an effective algorithm can be given to decide whether a 
one-dependent process, with prescribed values of the probabilities a of a single 1 
and /3 of two successive l's, exists. In Section 2 we present the basis for this 
algorithm. 

Section 3 contains a classification of those pairs ( a, /3) corresponding to 
special two-block factors. This section is essentially independent of the other 
results. 

In Section 4 we continue the development of our algorithm, which has the 
following form. Two mappings c/>o and c/>1, depending on a and /3, are defined on 
R2, and a special one-dependent process exists for (a, /3) if and only if the orbit 
of (1, 1) under successive applications of c/>o and c/>1 in any order always remains 
in the unit square. Section 4 is devoted to dynamical properties of the more 
complicated mapping cp0 • 

Theorem 5 of Section 5 contains the final form of our algorithm, and the 
remainder of this section is devoted to the determination of those ( a, /3) giving 
rise to special one-dependent processes. Although we have an effective decision 
procedure for any given pair (a, /3), the time needed for decision grows as (a, /3) 
approaches ( ½, i,) and no closed form expression for the admissible set of 
parameters in a neighborhood of this point has been found. Away from this 
point, things become easier, and several results are given. For example, if 
0 a ¼, then a special one-dependent process exists for every O /3 {a 
(and no other /3), whereas a two-block factor requires (for O a i) 

0 /3 ¼(1 + ,/1 - 4a )a. 
The sum of our investigations is recorded in Figure 2 of Section 5. 
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It is the opinion of the authors that this paper raises more questions than it 
resolves. We mention two such questions. First of all, our methods are algebraic 
in nature and seem to give no probabilistic mechanism to produce the processes 
which we have discovered. In particular, we have not been able to determine if 
they are m-block factors for some m 3. Second, our methods for studying cp0 

and cp1 are at best amateuristic, and a more canonical approach is desirable. 

1. Cylinder functions. Let W be the set of all finite sequences of O's and 
l's. An element of Wis called a word. The empty word will be denoted bye and 
the word consisting of n l's by 1n. If w1, ... , wn E W, then w = w1 · · · wn E W 
is the concatenation of the words w1, ••• , wn, and the wi are subwords of w. 

DEFINITION. A (normalized) cylinder function is a mapping 
µ: w-

such that 
(i) 

(ii) 
(iii) 

µ(e)=l, 

µ(w) =µ(Ow)+ µ(lw), 
µ(w) = µ(wO) + µ(wl), 

WE W, 
wEW. 

The cylinder function µ is positive if 
µ(w)~O, wEW, 

and one-dependent if 
µ(v)µ(w) =µ(vow)+ µ(vlw), V,WE W. 

By elementary measure theory, the set of positive cylinder functions is in 
one-to-one correspondence with the set of distributions of stationary 0-1-valued 
discrete time stochastic processes, µ( w) being the probability of "seeing" the 
word w. Moreover, such a process is one-dependent if and only if its correspond-
ing cylinder function is one-dependent. 

THEOREM 1. Let y = ( y1, y2 , •.• ) be any sequence of real numbers. Then 
there exists a unique one-dependent cylinder function µ,Y such that 

µY(ln) = Yn, n l. 

PROOF. In the proof of this theorem and the next theorem, we denote the 
number of zeroes in a word w by no( w ). Set y0 = 1. The requirement, together 
with (i) of the definition of a cylinder function, defines µy(w) for all w E W with 
n 0(w) = 0. We now proceed by induction on n 0(w), as follows. If w E W with 
no( w) > 0, then clearly 

for some n 0 and v E W, and 

no( v) = no( w) - 1. 
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One-dependence now dictates that 

µy(ln)µy(v) = µy(w) + µy(1n+1v), 

and since n 0(1n+1v) = n 0(v) < n 0(w), the formula 

µy(w) =ynµ/v)-µy(1n+ 1v). 

defines µr inductively on all of W. Straightforward induction arguments now 
show that µY is a one-dependent cylinder function, whose uniqueness is obvious 
from the inductive definition. 

THEOREM 2. If for some m ;::,: 1 we have 

Ym = Ym+ 1 = · · · = 0, 
and if 1 m is a subword of w E W, then 

µy(w) = 0. 

PROOF. The hypothesis states that µy(w) = 0 if n 0(w) = 0 and if 1m is a 
subword of w. Now proceed by induction: If no(w) > 0, write as above 

w = 1nov, 
with 

µy(w) = Ynµ/v) - µy(1n+ 1v). 

If 1m is a subword of w, then either n 2". m and Yn = 0 or n < m and 1 m is a 
subword of v. In both cases, 1m is a subword of 1n+ 1v, and hence µ/w) = 0 by 
induction. 

In the sequel we restrict our attention exclusively to one-dependent cylinder 
functions µ = fLr for which y3 = y4 = · · · = 0. For the sake of brevity (and in 
want of a more suitable name), such µ are called special. By Theorem 2, ifµ is 
special and if 111 is a subword of w, then µ(w) = 0. Hence positive special 
cylinder functions correspond bijectively to stationary 0-1-valued one-dependent 
processes for which the probability of three l's in a row is O; we refer to these as 
special processes. 

REMARK 1. Suppose that µ is a one-dependent cylinder function such that 
µ(w) = 0 whenever 101 is a subword of w. Set a= µ(1) and /3 = µ(11). Then 

but also 
µ(11111) = µ(11) · µ(11) - µ(11011) = /3 2 , 

µ(11111) = µ(111) · µ(1) - µ(11101) 
= µ(1)(µ(1) · µ(1) - µ(101)) 

= µ(1) · µ(1) · µ(1) = a3 • 

Hence /3 2 = a3• This remark is intended to persuade the reader to examine the 
induction arguments of the above proofs carefully. 
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REMARK 2. Theorem 1 can be viewed as a parametrization result for one-
dependent cylinder functions with parameter y: Each cylinder function yields a 
parameter, different cylinder functions possess different parameters and y is the 
parameter of a process if and only if µ-r is positive. In the sequel, we set 

Y1 = a, Y2 = /3, Ya= Y4 = · · · = 0 
and discuss the admissib/,e pairs ( a, /3) yielding special processes. 

2. Positivity of special cylinder functions. In this section we derive a 
necessary and sufficient condition for the positivity of the special cylinder 
function defined by · 

µ{1) = a, µ{11) = /3, µ(ln) = 0, n 3. 
By Theorem 2, we need only examine words not ha,ing 111 as a subword. Let V 
be the set of all such words and denote by Vn those words of V having exactly n 
O's. Then 

Yo= {e,1,11}, 
and if we define the set of words 

U = {O, 10,110}, 
then for each n 0 the set of words Vn can be identified with 

un X V0 • 

That is, each v E Vn has a unique representation 

with v0 E Yo and uk E U, 1 :$; k :$; n. 
We now describe an algorithm for calculating the values of µ( v ), v E V. For 

each v E V, define the column vector v E R 3 by 

( 
x{ v) l 

V = y( v) 
z(v) 

with 
x(v) = µ(Ov), y(v) = µ(lOv), z(v) = µ(llOv). 

Also set 

f = µ(1) = a . ( µ(e)l (ll 
µ(11) /3 

Finally, define the 3 X 3 matrices 

M, ( i -i -[ l · M,. rn 
indexed by elements of U. 
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THEOREM 3. If v E vn, then 

v = Mu Mu · · · MuMv 0f. n n-1 l 0 

PRooF. The case n = 0 is easily checked from the definitions. Now use 
induction on n, together with the following formulas: 

{
µ.( v) - µ.(lOv'), 

x( V) = µ(Ov) = µ.( V) - µ.(lv) = µ.( V) - µ.(llOv'), 
µ.( V)' 

ifv=Ov', 
if V = 10v', 
if V = 110v', 

( ) _ ( ) _ ( ) _ ( ) _ { aµ.( v) - µ.(110v'), if v = Ov', 
y v - µ. 10v - aµ. v µ. llv - ( ) "f ( ) , aµ. v , 1 v = 1 10v , 

z( V) = µ.(llOv) = pµ.( V) - µ.(lllv) = !Jµ.( V). 
The formula for x( v) shows that the first rows of the matrices M are correct, 
and those for y( v) and z( v) verify the second and third row, respectively. 

COROLLARY. For (x, y) E R 2 \ {(x, y): xy = O} set 

cf>0(x,y)=(l- a;,1-!), 

cf>1(X, y) = (1 - :y,1). 
Then the pair ( a, P) is admissibk if and only if either a = P = 0 or O < a ::;; 1, 
0 ::;; P ::;; a, and all iterates of the point (1, 1) under successive applications of cf>o 
and cf>1 in any order remain in the unit square S = {(x, y): 0 < x ::;; 1, 0 < y ::;; 1 }. 

PROOF. Theorem 3 yields all values µ.( v ), v E V, as iterates of f under the 
three M-matrices. In testing positivity we can disregard M110 since it brings us 
back to a multiple off. Next, reduce the dimension by normalizing such that the 
third coordinate is always equal to P, i.e., set 

and then drop P to obtain 

<l\( x, y) = ( 1 - f, a - ~), 

4\(x, y) = (1 - f ,a), 
with initial value (1, a). Clearly a = µ.(1) must lie in the unit interval, and 
0 s; P = µ.(11) s; a is also necessary. The case a = P = 0 yields the special 
process which is given by all O's, and if a > 0, then we can replace y by ay, 
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which results in the given </>o and </>1, with initial value (1, 1). Noting now that if 
(x, y), cp0(x, y), cpi(x, y) have positive coordinates, then </>0(x, y) and cpi(x, y) 
cannot have a coordinate greater than 1 and that x = 0 or y = 0 leads to a 
negative coordinate, we see that the proof is finished. 

3. Determination of the parameter set corresponding to two-block 
factors. Let µA be the cylinder function corresponding to a two-block factor 
with indicator A, such that µA(lll) = 0. In this section we determine the range 
of possible values for a = µA(l) and /3 = µA(ll). By the definition, we have for 
any n 1, 

µA(ln) = f ... f1A{Xo, X1) ... lA{xn-1• xn) dxo ... dxn. 

Moreover, if T: [0, 1] [0, 1] preserves Lebesgue measure, then A and 
(TX T)- 1(A) give rise to the same process. 

Examples of sets A for which µA(lll) = 0 can be obtained in the following 
manner. Let a, b E [0, 1] with a b and define 

F(a, b) = ([a, b) x[o, a)) u ([b,1] x [o, b)). 
If A~ F(a, b) and if (x0, x1) EA, (x1, x2) EA, then clearly x 1 < b and hence 
x 2 < a, so that no choice of x3 permits (x2, x 3) E A. That is, 

A~ F(a, b) = µA(lll) = 0. 

The following lemma shows that, up to a measure preserving transformation 
T, the reverse implication is valid. 

LEMMA. If µA(lll) = 0, then there exists a transformation T: [0, 1] [0, 1] 
preserving Lebesgue measure and a, b E [O, 1] with a~ b such that 

( T x T) - i A F( a, b) 
rrwdulo Lebesgue measure on the unit square. 

PROOF. Define 

A2 = {x2 E [o, 1]: f1A{x2, X3) dx3 > o}' 

Al= {xl E [0,1]: l/A(x1,X2) dx2 > o}, 
A 0 = {x0 E [O, 1]: l

1
1A{x0, x1) dx1 > 0} · 

Then A 2 ;;2 A1 A 0 , and the formula 

0 = µA{lll) = f (! lA(xo, X1)(J 1A(x1, X2)(f 1A(x2, X3) dxa) dx2) dx1) dxo 
A 0 A 1 A 2 0 
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allows us to conclude that the Lebesgue measure of A 0 is 0. Choosing 
a = 1 - Lebesgue measure( A 2 ), 

b = 1 - Lebesgue measure( A1 ) 

and T measure preserving with 

T((a,l]) =A2 , 

T(( b, 1]) = Al 
yields the desired result. 

In accordance with our previous usage, a set A such that µ,A(lll) = 0 will be 
called special. In order to calculate a and /3, note that the first formula of this 
section for n = 1 and n = 2 reduces to 

a = µ, A ( 1) = Lebesgue measure( A) 
and 

/3 = µ,A(ll) = f HA(x )VA(x) dx, 

where HA(x) and VA(x) denote the Lebesgue measures of the horizontal and 
vertical sections of A at x, respectively. In particular, if A F(a, b}, the part of 
A lying in the lower right rectangle [b, l] X [O, a) does not contribute to 
/3 = µ,A(ll). A simple but tedious calculation (which we omit) now shows that for 
fixed a, the minimal value of /3 occurs when A= F(a, b) for suitable a and b, 
and the maximal value of /3 (for Os a s 2/9) occurs when 

A = G (a, b) := F( a, b) \ ( [ b, 1] x [ 0, a)), 
again for suitable a and b. Further reduction eventually produces 

THEOREM 4. Let µ, be a cylinder function with a = µ,(l), /3 = µ,(11) and 
0 = µ,(l n) for n 3. Then µ, is the cylinder function of a two-block factor if and 
only if 

(i) 0 s a s ½ and 
(ii) m(a) s /3 s M(a), where 

( 
0, 

m(a) = ½a - i{l + (1 - 3a)3/2}, 
and 

M(a) = ( ~l + /1 - 4a )a, 
27' 

0 s as%, 
f s as½-

For related results and similar calculation we refer to de Valk [2]. In the next 
sections we shall need the following observation. 
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LEMMA. If A = F(a, b) and a= µA(l), /3 = µA(ll), then the equation 

x 3 - x 2 + ax - /3 = 0 
has the three real roots r1 = a, r2 = b - a and r3 = 1 - b. 

PROOF. One easily calculates 
a= a(b- a)+ (1 - b)b = r1r2 + r2r3 + r1r3 

and 

4. A study of cf,0 • Before using the corollary of Section 2 to determine 
admissible pairs ( a, /3), we investigate the mapping cf,0 • Recall that for fixed 
0 < a s 1 and O s /3 s a, 

( ay /3 ) <{>o(x, y) = 1 - -,1 - - . 
x ax 

4.1. Fixed points. These are given by solutions to the equations 
ay 

x= 1- -

and 

eliminating y results in 

X 

/3 
y = l - -; 

ax 

p(x) •= x 3 - x 2 + ax - /3 = 0. 
This equation can have either one real root and two complex roots, or three real 
roots. As p(O) = -/3 s O and p(l) = a - /3 2 0, one root must lie in the unit 
interval. The sum of the roots is 1, so that if the other two are also real, they also 
lie in the unit interval, because they have the same sign. If we denote these roots 
by r1, r2 , r3 and set a = r1, b = r1 + r2 , then it follows from the lemma at the 
end of Section 3 that the cylinder function µ corresponding to the pair ( a, /3) is 
equal to µ A• with A = F( a, b ). Hence we have proved the 

PROPOSITION. If x 3 - x 2 + ax - /3 = 0 has three real roots and if O < a s 1, 
0 s /3 s a, then the pair (a, /3) is admissible and corresponds to a two-block 
factor with indicator A = F( a, b) for suitable a and b. 

Having discovered the situation for three real roots, we now restrict our 
attention to those ( a, /3) for which 

x 3 - x 2 + ax - /3 = 0 
has only one real root x 0 E [O, l]. If now x 0 = 0, then we have /3 = 0 and a > ¼, 
and a simple application of the corollary of Section 2 shows that ( a, /3) cannot be 
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admissible. Hence we may also assume that P > 0 and x 0 > 0. Now set 
p 

Yo= 1- -. 
axo 

By the foregoing, cf,0(x0 , Yo) = (xo, Yo)-

4.2. Regions of increase and decrease. Recall that 
S= {{x,y):O<x:S::l,O<y:S::1} 

and define 

X+={{x,y)ES:1-a; ~x}, 
X_={{x,y)ES:1- a: :S::x}, 

Y+= {(x, y) ES: 1- ! ~Y}, 
Y_={{x,y)ES:1- ! :S::y}, 

I=X_nY_, 

II= X+n Y_, 

III= X+n Y+, 

IV= X_n Y+, 

thus dividing S into four regions whose boundaries are segments of the parabola 
1 

and/or the hyperbola 

P: y = -x(l - x) 
a 

p 
H: y = 1- -. 

ax 
Figure 1 has two parts, according to whether a ;S; ¼ or a > ¼. 
By definition: 

(i) If (x, y) E I, then cJ,0(x, y) is to the left and below (x, y). 
(ii) If (x, y) E II, then cf,0(x, y) is to the right and below (x, y). 

(iii) If (x, y) E III, then cJ,0(x, y) is to the right and above (x, y). 
(iv) If (x, y) E IV, then cf,0(x, y) is to the left and above (x, y). 

4.3. Line segments. It is trivial to check that if L is a straight line segment 
in S, then cf,0( L) is a straight line segment. 

4.4. Image of P. It is trivial to check that cJ,0(P) H. 
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II 

(a) 

(b) 

FIG. 1. (a) a ¼; (b) o: > ¼ [e = (x0 , Yo)]. 

4.5. Inwges of regions. It follows from Sections 4.3, 4.4 and the definitions 
that 

cp0(I) n S I u II, 

cp0(Il) n S III, 

cpo(III) n S III u IV, 

cp0(IV) n S I. 

4.6. Entering region II. We now show that our hypothesis of one real root 
( = one point of intersection of P and H) implies that for each (x, y) E I, there 
exists n such that 

i.e., either 
ct,b"l(x, y) E II 

or it leaves S. Assume the contrary. Then Sections 4.2 and 4.3 imply that some 
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line through (x 0 , y0 ) must be taken into itself by </>0 • If L is such a line then 
either 

(i) L is vertical or 
(ii) L is tangent to Pat (x 0 , y0 ) or 

(iii) L intersects P (not necessarily in S) at some point (x1, y1) =I= (x 0 , y0 ). 

Now (i) is impossible because 1 - (ay)/x 0 cannot be equal to x 0 for more 
than one value of y and (ii) implies (by Section 4.4) that P and Hare tangent at 
(x 0 , y0 ), which says that x 0 is a root of multiplicity three of p(x) = 0 and is 
excluded by hypothesis. But (iii) also is impossible, since </>o maps (x1, y1) E P to 
a point (x1, y{) E H (by Section 4.4) with y{ =I= y1. 

4.7. Invariant polygons. Let O < t < 1 and set x 1 = t, y1 = 1. Suppose that 
we successively apply </>o to (x1, y1), obtaining a sequence (xn, Yn) which remains 
in S. Then by Sections 4.6 and 4.2 there is an n ?:: 1 such that 

(xk, Yk) E Ifor 1 s k < n, 

(xn, Yn) E II 
and 

(xn+l• Yn+l) E III. 
We now claim that thP, points 

(1, 1), (x1, Y1), • • •, (xn+l• Yn+l), (1, Yn+l) 

are the vertices of a convex polygon C(t), and that <f>0(C(t)) C(t). By the 
properties in Section 4.2, connecting the given points in the given order forms a 
nonself-intersecting polygon, and the inclusion is obvious if one notes that 
</>0(1, 1) lies on the line segment joining (1, 1) and (x 2 , y2 ) and that </>0(1, Yn+ 1) lies 
on the line segment joining </>0(1, 1) and (1, 1 - /3/a) = </>0(1, 0). The convexity of 
C(t) is also easy to show, but we omit the calculation as it is not needed in the 
sequel. 

5. Determination of admissibility. Now we can use the results of the 
previous section, together with the corollary of Section 2, to determine the 
admissibility of a given pair (a, /3). Suppose first that (a, /3) is admissible; if C 
denotes the convex hull of the orbit closure of (1, 1) under </>o and </> 1, then 
</>0(C) C, </>i{C) C and C S. Now set 

y* = min{y: (x, y) EC}, 

/3 
t* = 1 - --

ay*' 

L * = { ( x, 1) : t* s x s 1 } . 

Then </> 1(x, y*) = (t*, 1) implies that L* C. If we set 

t = min{x: (x, 1) E C}, 
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then t =s;; t* and the cf>o invariant polygon C( t) of the previous section is also 
contained in C and hence (/>1-invariant. Conversely, if for some O < t < 1 the 
polygon C(t) is also cf>i-invariant, then dearly (a, /J) is admissible, since the orbit 
of (1, 1) i.s contained in C(t). We have shown 

THEOREM 5. The pair ( a, /J) is admissible if and only if 

(i) 0 =:;; a =s;; 1, 0 =:;; P a and either 
(ii) the equation 

x 3 - x 2 + ax - fJ = 0 
has three ( rwt necessarily distinct) real roots or 

(ii') the equation 
x 3 - x 2 + ax - P = 0 

has exactly one real root, and there exists t E (0, 1) such that C(t) is well defined 
[i.e., the (/>0-orbit of (1, 1) enters region III witlwut previously leaving S] and 
such that 

where 

fJ 
1- -* t, ay 

y* = min{y: (x, y) E C(t)}. 

A computer program has been written which decides, within the limits of 
machine accuracy, whether for given (a, /J) the conditions of the above theorem 
are verified or not, and a copy is available on request. Moreover, we have the 
following rigorous results concerning admissibility. 

1. If (a, /3) is admissible, then O =:;;a=:;; ½ and O =:;; /3 =:;; a/4. 
2. If O =:;; a =s;; ¼ and O =:;; /3 =s;; a/4, then (a, /3) is admissible. 
3. If ¼ < a < ½ and 2a312 - a =s;; fJ =s;; ½( a - a 312 ), then ( a, /3) is admissible. 
4. In the following ranges, ( a, /J) is not admissible: 

(i) ¼ =s;; a =s;; ½ and 27/3 < 9a - 2(1 - 3a )312 - 2, 
(ii) ½ =:;; a =s;; ½ and 27/3 < 9a - 2 and 

(iii) ¼<a =s;; ½ and /J > ½(a - a 312). 

These results, together with the two-block factor region, are summarized in 
Figure 2. 

Finally, we sketch our proofs of results 1-4. 
1. If a > ½, then either the x-coordinate of cf>o</>1(1, 1), 

1 - a - {3/a 
1 - /3/a ' 

is negative, or if this is nonnegative, the x-coordinate of (/>~1(1, 1), 
(1 - 2a)(l - {3/a) 

1 - a - {3/a 
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FIG. 2. T, one-dependent processes which are two-b/,ock factors, P, one-dependent processes which 
are not two-b/,ock factors, N, no one-dependent processes, U, unexp/,ored. 

is negative. If /J > a/4, then ( cf>1cf>0r(l, 1) becomes negative in its x-coordinate 
for some n, since 

with 

fJ 
g(t) = 1 - at' 

and g 2n(l) is eventually negative iff t = g(t) has no real root, leading to 
fJ > a/4. 

2. This is the simplest polygon case, corresponding to a ¼ in Figure 1. Here 
( ½, 1) belongs to region II, so 

cf>o( ¼, 1) = ( 1 -2a, 1 - 2:) E III. 
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The quadrilateral with vertices 

(1, 1), 

has lowest y-coordinate 

with 

2/3 
y* = l -

0: 

/3 1 
1--->-o:y* - 2 

and is thus invariant under </>0 and </> 1• 

3. This is the next polygon case. For t E (0, 1 ), C( t) is a pentagon [i.e., 
</>o{ t, l) E II] if t satisfies 

o:t2 - ( o: + /3) t + a2 0, 

and </>i-invariance holds if 

{o: - P)t2 - (a2 + o: - 2P)t + o:(o: - /3) o. 
Discriminant calculation and elementary considerations lead to the bounds given 
in result 3. 

4(i) and 4(ii). Here one can show directly that µ,(On) = zn is negative for some 
n. By one-dependence one easily derives the recurrence 

Zn= Zn-1 - o:zn-2 + Pzn-3• 

whose characteristic equation is 

p(x) = x 3 - x2 + ax - P = 0. 
In the ranges indicated, there is one real root and two complex roots whose real 
part is larger than the real root, and it follows that zn becomes negative. 

4(iii). Here we have (similar result to 1) 

{ </> 1</>~)\1, 1) = (gn(l), 1) 
with 

(o: - 2p)t- a(o: -P) 
g(t)= (a-/3)t-o:2 

Hence if g(t) = t has no real root, then gn(l) becomes negative for some n. A 
discriminant calculation leads to the given bound. 
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Summary. The maximal value of the two-correlation for two-valued station-
ary one-dependent processes with fixed probability a of a single symbol 
is determined. We show that the process attaining this bound is unique 
except when a= 1/2, when there are exactly two different processes. The 
analogous problem for minimal two-correlation is discussed, and partial 
results are obtained. 

Introduction 
Let µ be the distribution on sequence space of a discrete time, stationary, 0-1-
valued one-dependent stochastic process. Suppose that the probability of a one 
is IX. Then, generalizing and simplifying a result of M. Katz ([3], see also L. 
Finke [2]), we show that the probability of two ones in a row is at most 

a312 if 1/2~a~ 1 
and 

(2a-1)+(1-a)312 if O~a~ 1/2. 
Moreover, if equality holds we show that there is a unique process with this 
two-correlation for a=!= 1/2, and exactly two processes when a= 1/2. These extre-
mal processes are identified as two-block factors of two-state Bernoulli processes. 

In the second section we discuss the minimal possible two-correlations for 
one-dependent processes. For O 1/4 the corresponding results holds trivially 
and for 1/4<a~ 1/3 we can produce a bound which is attained, but we do 
not know whether uniqueness holds at the bound. We conjecture a value for 
the lower bound for all IX, and also that uniqueness holds at this value. 

1. Maximal Two-Correlations 
of Two-Valued Stationary One-Dependent Processes 
The distribution of a stationary 0-1-valued stochastic process is given by a 
shift-invariant probability measure on the space X of doubly infinite sequences 
* Supported by C.N.R., Italy 

** Supported by Z.W.O., The Netherlands 
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of zeroes and ones. As we shall only be interested in distributional properties 
of such objects, such a measure will be called a process. If w is a finite sequence 
of zeroes and ones, then the probability of "seeing" w starting from a given 
time t does not depend upon t. We denote this probability by [w], suppressing 
the measure. 

Definition 1. A stationary 0-1-valued stochastic process is said to be one-depen-
dent if for any finite sequences u and v, 

[U*V]=[u]-[v], 
where [u*v] is defined by 

[u* v] = [uOv] + [ul v]. 

Example. Fix O ~ix~ 1. Define the mapping 

q,: X --+X 
by setting 

for x=(x1)EX. Let µa be the image under <p of the product (Bernoulli) measure 
on X which assigns the probability to the symbol one in each coordinate. 
Clearly µa is one-dependent, with 

[1] = IX 

and 
[11] =IX3/2_ 

Theorem 1. Let µ be one-dependent with [ 1 J = ix and 1/2 <ix~ 1. Then 

[11] IX3/2_ 

Moreover, if [11] =ix312 then µ=µa. 

Proof Set ix=[l] and P=[ll]. By one-dependence and linearity we have 

[11010] = [11] · [10] - [11110] 
= P(ix-P)-[111] -[OJ+ [11100] 
= P(ix-P)-([lJ -[lJ-[lOlJ) (1-ix)+ [lJ -[100J-[10100J 
= P(ix-P)-ix2 (1-ix)+ [101] (1-ix)+ ix([lOJ-[101])-[10100] 
= P(ix-P)-ix2 (1-ix)+ix(ix-P)+(l -2ix) [lOlJ-[10100] 
= + ix 3 - P2 +(1-2ix) [101]-[10100]. 

From [11010] ~O and ix> 1/2 we conclude that 

which proves the first assertion. Moreover, if p2 = ix3 then it follows that [101 J 
=0. This implies that there is at most one one-dependent process with [1] =ix 
and [11] = P, since the knowledge of the measure of one cylinder set of length 
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n for each n ;=;; 1 clearly fixes the measure of each cylinder set by a simple calcula-
tion using one-dependence, and [101] =0 implies [w] =0 for any w containing 
101. But the measure µ0 of the example satisfies [101] =0, so that we must 
have µ=µa.. 

Definition 2. Denote by fi0 the measure on X which is the image of µ0 under 
the map from X to X which interchanges all zeroes and ones. 

Theorem 2. Letµ be one-dependent with [1] = a. 
Then 

{ a312 if 1/2~a~ 1 
[ll] 2a-1 +(1-a)312 if 0~a~ 1/2. 

Moreover, [l equality holds, then 

µ={~a. 
if 1/2<a~ 1 

µa. if 0~a< 1/2 
either µ112 if a= 1/2 
or fl 1/2 

Proof If a> 1/2, then this is just Theorem 1, and for a< 1/2 the statement follows 
by interchanging zeroes and ones, since then [1] > 1/2 and 

[00] = -1 +2· [0J + [11]. 

For the case a= 1/2, return to the calculation of Theorem 1, which shows that 
the inequality holds, and also that if equality holds, then 

[10100] =0. 
But then 

[1010] · [00] = [1010 * 00] = [1010000] + [1010100] = 0. 

which shows that [1010] =0, since [00] = l;-12/4. Similarly, 

[101] · [010] = [101 *010] = [1010010] + [1011010] =0, 

so that either [101] = 0 and fl= µ 112 or [010] = 0 and fl= P- 112 . 

Remarks. 1. In particular, Theorem 2 applies to those one-dependent processes 
which are two-block factors. That is, the results of [2] and [3] are corollaries 
of Theorem 2, which is both more general (see [1]) and easier to prove. 

2. A solution for the discrete version of the question raised in [3] is contained 
in [5]. Unfortunately, the above method does not seem to be applicable. 
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2. Minimal Two-Correlations 
of Two-Valued Stationary One Dependent Processes 

We are not able to prove as much as in section one, although we suspect 
that similar results are valid. Our notation is the same as in the first paragraph. 

Case 1. Suppose pis one-dependent with rx = [1] and O rx 1/4. Then clearly 

c11J ~o 

and zero is the best lower bound. The map ijJ: X---+ X with 

carries the Bernoulli measure with parameter y (=probability of one) to a one-
dependent measure with [ 11 J = 0 and 

[1] =y(l-y); 

for O~rx~ 1/4 we can choose}' such that rx=y(l-y). 

Case 2. Let p be one-dependent with rx=[l] and l/4<rx~l/3. Then we can 
show that 

[ ll]~(l-2~)(1+~)2 
- 27 ' 

and exhibit a measure p with equality, but we do not know whether this measure 
1s umque. 1 

In general, we suspect that if N =[---j (in Case 1, N = 1 and in Case 2, 
1-2rx 

N =2), then 
N(N-1) 2 

[l1]~6(N+1)2(1- 2c5)(l+c5)' 
with 

Particularly intriguing is the Case infinity, when rx = 1/2; here we conjecture 
that 

[11]~1/6 

with uniqueness at equality. The article [ 4] shows that the bounds given above 
are attained and unique in the class of two-block factors. 

We now prove the result stated above in Case 2. The proof will be divided 
into two parts. 
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Part 1. Assume that 11 is one-dependent with 

and 
[111] =0. 

(The assumption [111] = 0 will be removed in Part 2.) 
Setting f(n):=[On], we shall derive a recurrence relation for f(n) and show 

that under the above conditions, there exists 11 such that f(n)<0, yielding a 
contradiction. We have for n~4 

f(n)=[On]=[On-1]-[0n-l 1] 
= f(n- l)-[0n- 2]. [1] + [on-Z 11] 
= f (n-1)-af (n-2) + [0"- 3] · [11]. 

Since [O"- 3 111 J = 0 by assumption. Hence 

f (n)= f(n-1)-af(n-2)+ /3 f(n-3). 

A simple calculation now shows that the characteristic polynomial 

for f (n) has one real root .:i. 1 and two complex roots .:i. 2 and Jc 3 = .:i. 2 , and that 

for a given bound on /3. This implies that for some n, f(n)<0, since f(n) is 
a linear combination of the .:i.;•, l i 3, with non-zero coefficients. 

Part 2. The assumptions are as in Part 1 except that [111] > 0. Now let 

We claim that for each n 4, 

n-4 

g(n)= f(n)- I f(n-k-4)· [0k l 3]-[0"- 3 13 ]. 
k=O 

where f (n) is as in part 1. For small n, we have 

g(l)= f(l) 
g(2)=f(2) 
g(3)= f(3)-[l 3], 
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and ( *) follows easily by induction for n 4. Now Part 1 implies that there 
is a first n for which f(n)<O, so that for this n, we also have g(n)<O by the 
above. This concludes the proof of Case 2. 
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Abstract. We compute the maximal and the minimal value of II M 2 II over the class of 0-1 valued 
N x N matrices M with K entries equal to one for fixed K and N, where II • II denotes the sum of 
the entries. This result has applications to graph theory and probability theory. 

1. Introduction 

1.0. A despotic problem 

A country has 38 airports. Between these airports exist 639 direct flights. The 
despot of this country wants to get more control over the population by 
diminishing the interlocal traffic. Because of the public opinion in the rest of the 
world, he can not change the number of airports or the number of direct flights. 

How should the despot distribute the 639 direct flights over the (ordered) pairs 
of airports, such that the number of different flights with one transit is 
minimized? 

This problem can be solved by applying Theorem 2 of this paper. The minimal 
number of flights with one transit is 6239. 

1.1. The matrix problem 

Let II M II denote the sum of the absolute values of the entries of a matrix M. Let 
.,It N,K be the set of 0-1 valued N x N matrices with II M II = K. 

In this paper we compute the maximal and minimal value of II M 2 II over 
.,HN,K for fixed N and K(O::::; K::::; N 2 ). So we are looking for 

max(N, K) == max{IIM 2 II: ME.,HN,K} 

AMS 1980 classification 
primary 05B20 
secondary 60G10, 28D05, 15A36, 15A45, 26D15, 28A 75 
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and 

min(N, K)•= min{ II M 2 II: M E..i N,K}-

We give an application of this problem to graph theory and to stochastic 
processes. 

1.2. The problem in terms of graphs 

Let G be a directed graph consisting of N vertices and K edges. Solving the matrix 
problem is equivalent (as [F.J remarks) to solving the problem of finding for 
fixed N and K the maximal and minimal number of paths of length two, i.e. 
pairs of edges a= (v, v'), b = (v', v"). 

1.3. The problem in terms of two-correlations of stochastic processes 

Let (Y..)nez be an i.i.d. sequence of random variables. A two-block factor (X n)n of 
this sequence is defined by 

for some function f. 
The process (X n)n has the property of one-dependence, i.e. for each integer time 

t tt.~ future (Xn)n>t is independent of the past (Xn)n<t, as is easily checked. 
[A.G.] and [A.G.K.V.] have shown that not all one-dependent two-state 
processes are two-block factors (this was conjectured for several years). 

We return to our matrices by restricting our attention to two-block factors of 
an i.i.d. sequence (Dn)n, each Dn uniformly distributed over a finite set {l, ... , N}. 
A matrix ME .A N,K yields a two-block factor as follows 

P[Xn = 1] = K/N 2 

and for the two-correlation P[Xn = Xn+i = 1] we have 

N 

= L HY; =•IM. 
i= 1 
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We conclude that the matrix problem above is equivalent to the problem of 
computing the maximal and minimal two-correlation, for fixed probability of 
a one, over the class of two-block factors of i.i.d. sequences (Dn)n, where Dn is 
uniformly distributed over {1, ... ,N}. 

Let (Y,,)n be an i.i.d. sequence, each Y,, uniformly distributed over the unit 
interval. Given a Lebesgue-measurable set A in the unit square we construct 
a two-block factor (the corresponding indicator process) (X n)n by taking f equal 
to the indicator function of A (see [V.J for more details). 

Let max(ix) and min(ix) be the maximal, minimal resp., two-correlation over the 
class of indicator processes for fixed probability ix of a one. An approximation 
argument (approximation of the uniform distribution by discrete distributions) 
shows that the connection between max(ix) and max(N, K), min(ix) and min(N, K) 
resp., is 

{ max(N,K) } max(ix) = Sup 3 : ix K/ N 2 
N,K N 

and 

. {min(N, K) 2 } mm(ix) = Inf 3 : ix~ K/N . 
N,K .N 

The discretization of the variational problems max(ix) and min(ix) was the 
motivation for this research. 

We associate to a matrix ME .A N,K a subset AM of [O, NJ x [O, NJ by setting 

AM•= U (i - 1, i]x(j - 1,j]. 
{(i,j):M,,J= 1} 

We remark that the class of two-block factors of an i.i.d. sequence (Dn)n (each Dn 
uniformly distributed over {1, ... , N}) is a subclass of the class of indicator 
processes, by taking A= (1/N)AM for the associated matrix M e.Jt N,K· 

1 .4. Previous results 

For the class of two-block factors the problem of the maximal two-correlation 
(max(ix)) was solved in [Ka.] and [F.J and the problem of the minimal 
two-correlation min(ix)) was solved in [V.J (ix denotes the fixed probability of 
a one). The results are 

_ {21X - 1 + (1 - 1X)312, 0 IX ½ max(ix) - 312 
IX ' ½~ix~l 
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and 

. 6(m + l)2 (1-215)(1 + 15) , 
{ 

m(m - 1) 2 

mm(oc) = .l 
6' 

2oc - 1 + min(l - oc), 

with m •= int(l/(1 - 2oc)) and 15 •= J1 - 2oc((m + 1)/m). (Here int(x) is the integer 
part of x). 

The upper bound max(oc) also holds for the wider class of one-dependent 
processes. For oc =/a½ there is a unique one-dependent process with two-correlation 
max(oc), and for IX = ½ there are exactly two such processes. These processes are all 
two-block factors, determined by the sets 

A = [0, 1 - ~] x [0, l] u [l - ~, l] x [0, 1 - ~] 

for O ~IX~½, 

and 

For proofs see [G.K.V.]. 

1.5. Introductory remarks 

Let l be the N x N matrix with all entries equal to one. 
The following lemma shows that we may restrict our attention to the case 

K ½N2 and that the maximum (c.q. minimum)is attained in M (for K) iffit is 
attained in l - M (for N 2 - K). 

We will use this observation in Theorem 2. 

COMPLEMENT LEMMA. For a matrix ME ..i N,K we have 

We omit the straightforward proof. (see also the Complement Lemma in [V.]) 

REFLECTION LEMMA. Let Me..iN,K· Let M',M"e..iN,K be the matrices 
obtained by reflecting M with respect to the diagonal, the cross-diagonal resp., i.e., 
M,,1 = M 1,i and M7,1 = MN+l-J,N+l-i· Then IM,= IM"= IM. 

We omit the straightforward proof. 
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2. The results 

THEOREM 1 (Maximum). Let .It N,K be the class of 0-1 valued N x N matrices 
with K entries equal to one. Then IM = II M 2 II attains its maximal value max(N, K) 
over .It N,K in (at least) one of the types I, II, III and IV. 

THEOREM 2 (Minimum). Let .It N,K be the class of 0-1 valued N x N matrices 
with K entries equal to one. The following table gives the possible types where 
IM = II M 2 II can attain its minimal value min(N, K) over .It N,K for the correspond-
ing ranges of K. 

Range of K 

(a) 0 K ¼N2 

(b) ¼N2 < K < ½N(N - 1) 
(c) ½N(N - 1) K ½N(N + 1) 
(d) ½N(N + 1) < K < ¾N2 

(e) ¾N 2 K N 2 

Type 

V 
VI, VII or VHI 

IX 
complement of VI, VII or VIII 

complement of V 

In each matrix of these types IM = min(N, K) and for each pair (N, K) there 
exists a matrix of these types. In case (c) there exists a unique matrix of the 
described type. In cases (b) and (d) there exists exactly one or exactly two matrices 
of the corresponding types. 

The solution to the despotic problem is found by computing the corresponding 
parameters of the type VI, VII and VIII. It turns out that only type VIII is suitable 
for the despotic problem. We shall give the solution in the Appendix. 

The types of matrices where IM attains its maximal and minimal value 

N.----------, 

N 

Figure I 

Type I: (Maximum) 

0 s t m1 N, 

t - s 1, 

K =my+ s + t, 
IM=mf +s(m 1 + l)+tm1 +st. 
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N..-----------,, 

zl !!/!/!/!!!i!!i!i!!!!!!!!!!!!!1!!!!!!!!!!!!!!! ::::::::::::: 
::;:;:;:::::::::::::;:;:::::::::::•·.•:•:•: •:-:-:,;,:,:: 
::;:::;:::::;:;:;:::::::::::=·:.::::;::::::: :;:;:;::!::;: 
············ ·•············· •,•,•········ 

ITlz ···::::·::.::::::::-:·•w· ......... .. 
' :-·.•:•:-:-:-:-:-:-:-:-:-:,:-:-:-:-:-:-:,:-::-:-:-:•:•:•: 

Type II: (Maximum) 

K = (m2 + 2)2 - 4, 

IM= mz(m~ + 6m2 + 4). 

2 N Figure II 

L1 1 ----

0 N 

0 N 

0 N 

Type III: (Maximum) 

This type is the complement of type I reflected 
in the diagonal through (0, N). 

Figure Ill 

Type V: (Minimum) 

This type is the complement of type II reflected 
in the diagonal through (0, N). 

Figure IV 

Type V: (Minimum) 

Figure V 

AM c [int(½N), NJ x [0, int(½N)], 

IM= min(N,K) = 0. 

AM is as in Figure V. 
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d d d d d d 

Figure VI 

A problem on 0-1 matrices 

Type VI: (Minimum) 

3d, 1 d < N, 

d divides N such that 

½N(N - d) - Ke{O, l}. 

AM is as in Figure VI. 

t and R are defined by N = (t + 2)d and N 2 - 2K = (t + 4)d2 - 2R. This 
implies Re{d2 - 1,d2 }. 

There are R ones within the d x d square with corners at (d, 0) and (2d, d). 
Further V;d+i =jd for 2 ~j t + 1 and 1 i d. 

N 

d3 
IM= min(N,K) = Rtd + 6 t(t- 1)(t + 4). 

~-;:;::j d -d -d 

Figure VII 
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Type VII: (Minimum) 

3d, 1 d < N, 
3s, 0 s d - 1, 

such that 

N= (t + 1)d + s 

for some integer t and 

½N(N - d) + ½s(d - s) - K - 1 e 

{-d + s, ... ,min(d- s,sd - 2)}. 

AM is as in Figure VII. 



V. de Valk 

R is defined by N 2 - 2K = td 2 + (d + s)2 - 2R. 
This implies 1 R and (s - l)(d + 1) R (s + l)(d - 1). 
There are Rones within the (s + 1) x (d -1) rectangle with corners at (d - 1,0) 
and (d + s,d -1). 
Further V•+id+i = s + jd for 1 ~j t and 1 i d. 

a2 
IM= min(N, K) = Rtd + 6 t(t - l){(t + l)d + 3s}. 

Type VIII: (Minimum) 

3d, 1 d < N, 

3s, 1 s d, 

3p,q 1, 

such that 

N = (p + l)d + q(d + 1) + s 

N,-------------------, 

d+ 1 d + 1 ~-----...... ----pxd q x(d+1) 

Figure VIII 
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and 

½N(N - d) + ½d(s - q) - ½s2 - ½q - K - 1 e { - 1, ... , min(d - s, sd - 2)}. 

AM is as in Figure VIII. 

R is defined by N 2 - 2K = q(d + 1)2 + pd2 + (d + s)2 - 2R. 
This implies 1 R and (s - l)(d + 1) R sd. 
There are R ones within the s x d rectangle with comers at (d, 0) and (d + s, d). 
Further V,+Jd+t = s + jd for 1 ~j p and 1 i d, and V,+(p+t)d+J(d+t)+i = 
s + (p + l)d + j(d + 1) for O ~j q - 1 and 1 i d + 1. 

d2 
IM =min(N,K)= R{pd + q(d + 1)} +6 p(p + l){(p- l)d + 3q(d + 1)- 3s} + 

(d + 1)3 
+ sdp(pd + q(d + 1)) + 6 q(q - l)(q + 1) + 

(d + 1)2 + 2 q(q - l)(pd + s - 1). 

Type IX: (Minimum) 

V; = i for 1 i K - ½N(N - 1) 

N...--------------. 

Figure IX 
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and 

V; = i - 1 for K - ½N(N - 1) < i N. 

AM is as in Figure IX. 

IM= min(N, K) = NK - }N(N - l)(N + 1). 

3. Proof of Theorem 1 

Fix natural numbers N and K. 
In several steps we will show that solutions to the problem belong to smaller 
and smaller subclasses of the class .A N,K· To facilitate reading we refer to the 
appendix for technical details. 

3.1. PERMUTATION LEMMA. Let Me.AN,K• let T be a permutation of 
{ 1, ... , N}. Then IM is invariant under T x T. 

We omit the easy proof. 

Step 1. Permutation. By taking T such that { H TJf= 1 is a non-increasing 
sequence, we may assume that M is such that (H;)f= 1 is non-increasing. 

3.2. STANDARDIZATION LEMMA. Let ME .A N,K be a matrix such that 
(H1)f= 1 is non-increasing. Then there exists a matrix M' E .A N,K in standard form, 
i.e., 

such that IM' IM· 
Proof. Let M be a matrix, M not in standard form, such that the horizontal 

sections are non-increasing. Then there exist indices i1 < i2 ,j such that 

Let M' be the matrix obtained by interchanging this O and 1. We claim that 
IM'~ IM. We have 

IM' - IM= H;,(V;, + 1) + H;2(V;2 -1)- H;, V;, - H12Vi2 
= H 1, - H;, 0. 

By repeating this argument (moving squares horizontally to the left) we obtain 
a matrix in standard form, while IM does not decrease. 

87 



A problem on 0-1 matrices 

· Step 2. Standardization. We conclude that we may assume that ME A N,K is in 
standard form. 

3.3. SYMMETRIZATION LEMMA. Let M EA N,x be a matrix in standard 
form. Then there exists a matrix M' Evf!N,K in standardform that is symmetric or 
nearly-symmetric, i.e., 

M;,i = M1,; for all (i,j) except one pair (i,j), 

such that IM';;;::: IM. 
Proof Assume that M is not of this kind. Then there exit a, b, c, d such that 

Ma,b = Mc,d = 1 and Mb,a = Md,c = 0. Let M' be the matrix obtained by inter-
changing Mc,d and Mb,a· We claim that IM'> IM. (See Appendix 1.) D 

Step 3. Symmetrization. We conclude that we may assume that ME A N,K is in 
standard form and symmetric or nearly-symmetric. 

With a matrix M in standard form we associate a left-continuous function 
f M: [0, NJ --+ [0, NJ given by 

This implies that 

Assume fM(a);;;::: d,fM(b);;;::: c,fM(c);;;::: b,fM(d);;;::: a,b::;; c. 
Let Hw and vw be the sections corresponding to the set 

So,Hw = H - con (a, bJ, Hw = H - aon (c, dJ andHw = 0else, the same holds 
for vw. 

Let IMw:= LHrvr. 
i 

3.4. WINDOWING LEMMA. When we rearrange ones (preserving K that is the 
total number of ones) within (a, bJ x (c, dJ u (c, dJ x (a, bJ (obtaining M') then 

Conclusion. So, when we compute the influence of this rearrangement on IM• 
we can pass over from Hand V to Hw and vw. (Proof' see Appendix 2.) 
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a 

,.,:_:·::: :: __ :}Jt::::?it::::::::::::::> ... , 
a b C d 

Figure X 

3.5. LOCAL REFLECTION LEMMA. Assume that: 

and also that b - a = d - c. 

When we (obtaining M') reflect AM n <a, b] x <c, d] with respect to the line 
y = x + c - a and AMn <c,d] x <a,b] with respect to the line y = x + a - c, 
then IM is invariant. (See fig. XI). (Proof: see Appendix 3). 

d 

C 
b 

a 

a b C 
Figure XI 

d 

3.6. CONTRIBUTION OF A SQUARE LEMMA. Let M E..i N,K be in standard 
form and symmetric or nearly-symmetric. Let (a, b )(a, b E { 1, ... , N}) be a corner 
point of M, i.e., f M(a) = b and fM(a + 1) < b or a = N. Let M' be the matrix 
obtained from M by removing (a, b)(M1,i = M;,i - Ja,i • Jb,i). Then 

{
a+b 

IM-IM,= a+b-2 

a+a-1 

Proof See Appendix 4. 

if a =f. b, Mb,a = 1 
if a =f. b, Mb,a = 0 
if a= b. 
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From now on all rearrangements of ones in M will be done such that M remains 
in standard form and (nearly-)symmetric. This means that a rearrangement of 
ones within (a, b] x (c, d] (above the diagonal) is attended with a (in some sense 
reflected rearrangement within (c, d] x (a, b] (under the diagonal). 

This will not lead to confusion. 

Spreading out 

We will consider quasi-blocks and we will decrease the number of these 
quasi-blocks and so we will diminish the class of matrices. 
Let 

m 

fM = LY;' l(x,-1,xd 
i= 1 

be the function associated with Mas defined in step 3 (0 = x0 < x1 < · · · < xm = N). 
We call a rectangle (xk_ 1,xk] x <Yk+i,Yk] a block if it is disjoint with the 
diagonal. Note that the points (xk, yk) are corner points. 

We call a set (xk_ 1 ,xk] x (Yk+ 2 ,yk]u(xk,xk+ 1] x (yk+ 2 ,yk+ 1] (disjoint 
with the diagonal) a quasi-block if Yk - Yk+ 1 = 1 or xk+ 1 - xk = 1. We call in 
these cases xk - xk- 1 c.q. Yk+ 1 - Yk + 2 the remainder of the quasi-block. 

/ 

xk-1 xk xk+1 
Figure XII. A quasi-block with Yt - Yk+ 1 = 1. 

We consider blocks as special quasi-blocks (with remainder equal to zero). 
We shall spread out a quasi-block along the longest segment ((xK-i,xK+ 2 ] or 
(YK+ 2, YK- 1]), using the Local Reflection Lemma and the Contribution of 
a Square Lemma. 
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3.7. SPREADING-OUT LEMMA. Let fM = ~1"= 1 Y;· l<x,-ix,J, assume that 

is a quasi-block. Assume YK+z xK+ 2 • Then this quasi-block can be replaced by 
a quasi-block of the type 

or by a quasi-block of the type 

such that IM does not decrease. 
Proof See Appendix 5. 

3.8. TWO QUASI-BLOCKS LEMMA. Let fM = ~1"= 1 Y;' l<x,_ 1,x,J, assume 
that 

I,.____.., I 

I 

7 

-
I 

-

Figure XII a-d (4 cases) 
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and 

are quasi-blocks. Assume YK+ 4 xK+ 4 • Then these two quasi-blocks can be joined 
to one quasi-block, preserving standard form and (near-)symmetry, such that IM 
does not decrease. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3 7 3 1 ..----... --------------- _....._ _,.,,... 
I 

I 

F 
17 

.., 

I 

Figure XIII 

5 
17 

5 8 1 --------

I 
I 
I 
I 
L--------

+ Figure XIV 

----1L---1-1-

-

-
I 
I 
I -I 
I 
I 
I 
I 
I -

Figure XVI (EXAMPLE) Figure XV 
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We use the Spreading-out Lemma and the Local Reflection Lemma. There are 
4 cases (see Fig. XII), depending whether the two remainders are horizontal or 
vertical strips. 

To avoid a long and detailed list of cases and subcases, we restrict ourselves to 
the case of a quasi-block with horizontal remainder with at its right lower side 
a quasi-block with vertical remainder. 

The given example is typical for this case. Just as in Appendix 5 we may 
assume that the remainder of a quasi-block is a horizontal strip if xK + 1 - xK- i 

YK - YK+ 2 and a vertical strip if xK+i - xK-l < YK - YK+ 2 -

First we spread out horizontally the left upper quasi-block (Fig. XIII). Then, by 
a reflection, we obtain one quasi-block consisting of one strip and a remainder 
(Fig. XIV). We spread out this quasi-block and we are finished (Fig. XV). 

We spread out the quasi-blocks marked with __ . (thin lines before the 
transformation, thick lines after the transformation) (Computation: see 
Appendix 6). 

COROLLARY. Let M E..iN,K be a matrix in standard form and (nearly-)sym-
metric. Then there exists a matrix M' E..iN,K of type A or B such that IM,~ IM. 

Proof Apply Lemma 3.8 iteratively. D 

b 1 9 Type A: 

a C 
Figure XVIIC 

Type B: 

le - di~ 1. 

----------- ------..., a b 1 
Figure XVIIC 
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3.9. Last Step. To complete the Proof of Theorem 1 we will reduce this class of 
matrices to the types I, II, III, IV. (see Appendix 7). D 

REMARK. If K = m2 > ½N2 for some integer m, then the maximal value of IM is 
attained when we take AM equal tom x m square of ones, and if K = N 2 - m2 < 
½N2 for some integer m, then we obtain the maximal value of IM by taking the 
complement of a m x m square. This directly follows from the fact that in these 
cases IM assumes the value N 3 •max(a) (with°'= K/N2 ). 

In other cases IM is strictly less than N 3 • max(a). 
Generally, ifo = K/N 2 > ½the maximal value of IM is attained in type I or II, 

and if a< ½in type III or IV, because in these types (1/N)AM is an approximation 
of the corresponding Ja x Ja square (the solution of the continuous version for 
°' > ½) c.q. the complement of a x square (the solution of the 
continuous version for °' < ½). However, for °' ½ this can be different, as the 
following example shows. (See also the table at the end of this paper, before the 
appendix.) 

EXAMPLE. Take N = 10 and K = 49, then°' = 0.49 < ½. The maximal value of 
IM is attained in type I (see Figure 1) where IM = 7 x 7 x 7 = 343, and not in type 
III (see Figure 2) where IM = 339. 

2 

7 :! :i··,·11'!: 
--r-

Figure 1 Figure 2 

EXAMPLE. We show the existence of three sequences (N 1)r'= 1, (KJr'= 1, (v;)t'= 1 

(each tending to infinity) such that 

(1) K 1 = ½Nl - v1 and 
(2) IM attains its maximal value max(N1, K1) in type I and not in type III or IV. 

From the theory of continued fractions follows the existence of increasing integer 
sequences (p1)r'= 1, (q1)r'= 1 such that 

and all q1 are odd. 

94 



V. de Valk 

This implies 

(3) O < ½q} - pf < ,Ji. 
Now (3) implies ½qf - pf = ½. 

We define 

Defining v1 by 

we have 

So we have 

So, for p1 sufficiently large we have 

TakingM1 oftypel(a(p1 + 2) x (p1 + 2)squareof 
ones) we have 

P,•2) :;~ 
~+2 

Taking M 2 of type III (see figure) we have 
(by the Complement Lemma) 

IM2 = v1(p1 + 3)2 + (p1 + 2 - vi) 
X (p1 + 2)2 + vf + 2(q, + 3) 

X (Pi + 2)2 - (q, + 3)3 

=(pi+ 2)3 - v1(2pi - q1) < IM,· 

This proves the statement of the example. 
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4. Proof of Theorem 2 

Fu naturai numbers N and K. The case K ¼N2 is trivial because IM = 0. In 
several steps we will show that solutions to the problem exist in smaller and 
smalier subclasses of .A N,K· After the third 'Step we will discriminate the cases 
¼N2 < K < ½N(N - 1) and ½N(N - 1) K ½N2 • To facilitate reading we 
refer to the Appendix for technical details. 

4.1. STEP 1. PERMUTATION. Using Lemma 3.1 (Permutation Lemma) we 
may assume that (H;) is a non-increasing sequence. 

We define a new standard form; M is in standard form when 

4.2. STANDARDIZATION LEMMA. Let Me .A N,K be a matrix such that 
(H1)f= 1 is a non-increasing sequence. Then there exists a matrix M' e .A N,K in 
standard form such that IM' IM· 

Proof Analogous to the proof of Lemma 3.2 (Standardization Lemma). 

Step 2. Standardization. We conclude that we may assume that Me .A N,K is in 
standard form. 

We associate with the matrix Min standard form a right-continuous function 
f M: [0, N] -+ [0, N] given by 

We redefine AM equal to 

AM •= U [i - 1, i) X (j - l,J1. 
{(l,J):M1,J= 1) 

This implies that AM= {(x,y)e [0,N] x [0,N]: y ~fM(x)}. Except the right-
continuity,f Mis the same as in the proof of Theorem 1. We call (a, b) a corner point 
of Miff M(a - 1) = b andfM(a - 2) < b. 

4.3. UNDER THE DIAGONAL LEMMA. Let Me .A N,K be a matrix in 
standard form. If ¼N2 < K < ½N(N - 1), then there exists a matrix M' e .A N,K 

such that IM' IM and M' lies under the diagonal, i.e., 

If ½N(N - 1) K ½N2, then there exists a matrix M' e.AN,K such that 
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M1,1 = 1 if j < i. 

Proof. Assume that M has some comer point (i,J) not lying unde the diagonal 
U i),andassumethatthereexistsapoint(i1j 1)underthediagonal(i1 ~j1 + 1) 
such that M1i.1i = 0 and f M(i1) i1 + 1. 

We move the one from (i,J) to (i1,j1) and we consider two cases. In both cases 
IM will decrease (see Appendix 8). 

Step 3. Under the diagonal. We conclude that we may assume that in the case 
¼N2 < K < ½N(N - 1), M lies under the diagonal and that in the case 
½N(N - 1) K ½N2 ,M1,1 = 1 if j < i. 

Now we consider the CASE ¼N2 < K < ½N(N - 1). 

4.4. REMARK: Changing of IM by a comer point. We consider the influence on 
IM of removing a square from a comer point (i,J) of M to obtain a matrix M'. 

We have 

We say that the comer point (i,J) changes IM by the sections H1 and V1. 

4.5. WINDOWING LEMMA. Assume f M(a) = a,JM(b) = b for some 
0~ a <b~N. 

Let Hw and vw be the sections of AM(') [a, b] x [a, b], and let 

When we rea"ange ones (preserving K that is the total number of ones) within 
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[a, b] ~. [a, b] (obtatntn!( Mi) we ~ave 

The J?EOO;~ili,cl~j!,)ogQU~; ~9, th13 pi:oof: of I,,enima 3A. So, when we reat~ange. within 
[a, b]1 x [a, b]; we can compu~e, theinjjluence cm IM by passing. over from H; and 
Vi to, lrl:fi anp' Vf. 

4.6. LQ,Ct\L REJj<LECTION LEMMA. Assume again f M(a) = a, fM(b) = 
b (a,< b), Then IM is inpariant under reflecting AMn [a, b] x [a, b] with respect to 
the li,ne y = - x + q + b, · 

We leave. the straightforward proof to the rea.der (use the Windowing Lemma). 

We say that a corner (i,j) ~es stdctly under the diagonal resp. on the diagpnal if 

i j + 2 resp. i =j + \. 

4.7. MOVING TO THE DIAQONAL LEI\:fMA. Let ME .A N,K (for ¼N2 < 
K < ½N(N - 1)) be a matrix in standard form, lying under the diagonal. Then there 
exists a matrix M' EA N,,K in standard form, lying u.nder thr d,iaQ,onal, such that 
IM. :s;; fM, and sllch that M' has at most two corners (i 1 ,j1) and (i2 ,h) (i 1 < i2 and 
j 2 < ii) strict,y und,fr thf diagonal. 

Propf See. Appendix 9. 

Note thatj2 < i1 means that the corner point (i 1 ,j1 ) cha11ges IM by horizontal 
sections at a higher level thanj2 a11d that (h,j2 ) changes IM by vertical sections 
lyi11g more t0, the left tha.n i1 (see pictµre bel0,w). 

Step 4, M()ving to the dia,gonal, We conclude that we may assume that in the 
case ¼N2 < K < ½MN - 1),, }ef has at most N'P corner points (i 1,j1),(i2 ,j2 ) 

(i 1 < h anclj2 < i1 ) lying strictly unper tlie diagonal. 
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j2~,_--. I 
J. I I 
1 I 

I 
I 

Using some local reflections (shown above), that leave IM invariant, we can 
assume that M is the following type: 

and there are R ones (1 R ¼ x t) within some rectangle which is a subset of 
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Ni= Xi:+ L d;, 
i= 1 

(' 

N 2 - 2K = :r dr + xf -2R. 
i aa 1 

We call R the remainder. 

A problem on 0-1 matriC!!S 

Note that we, can interchan~ the d/s, by the, tocal. Re.flec.tiQn, Lemma,. 

4.8. LESS INEQUALITY BETWEEN DfFFE'RENeES: With various re-
arrangements we will prove that we may assume that 

(8a) x1 d; Vi 
(8b) Xi 2d; Vi, 
(8c) R~(s-l)(d+l) (d==min{d1:i~t}, 
(8d) d d; d + 1 Vi, 
(8e) R sd if d; = d + 1 for some i, 
(8f) R (s + l)(d - 1) or R = d2 • 

See Appendix 10. 
We have now reached the class of matrices of the types VT, VII, VIII. 
We will prove that in each of these types IM attains its minimal value 

min(N, K), and that for eaeh pair (N, K) there exist at most two matrices of 
these types. 

Our method is a lexicographical ordering « on the class of matrices of the 
types VI, VII, VIII. We will prove that if M 1 « M 2 then K 1 < K 2 or K 1 = K 2 

and /M1 = IM,· Further we prove that if M 1 « M 2 « M 3 then K 1 < K 3 . These 
facts imply the theorem for the case ¼N 2 < K < ½N(N - 1} (See Appendix 11). 

CASE ½N(N - 1) K ½N 2• 

Assume that M is not of type IX. Then, by Step 3, we can move a one from 
a corner point (i,j) above the diagonal (j > i) to a place (ii, ii) at the diagonal. 
We obtain a matrix M'. 
This transformation yields 

IM -IM'= H;V; + HjV; + Hit V;l -H;(V;-1)-(Hj- l)Yi -
- (H;l + l)(V;l + 1) = Hi + V; - H;l - 't - 1 ~- (N - i + 1) + 
+ j - (il - 1) - (N - ii) - 1 = J - i + 1 2. 

These last considerations prove Theorem 2. 
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REMARK. The two-correlation in the discrete case attains the infimum of the 
continuous case (min(1X)) only in the following cases: 

- case IX ¼ (type V), 

1 N - 1 
- case¼< IX<-·-- and R = d2 (type VI), 2 N 

1 N-1 
- case¼< a<-·-- and R = ds (type VII), 

2 N 

and of course (by the Complement Lemma) in the complements of these 
configurations. In the other cases the (discrete) two-correlation will be strictly 
greater than min(IX). 

EXAMPLE 

We give in a table the solutions of the minimality and maximality problem for 
N = 10 and 26 K 55. 

MINIMUM MAXIMUM 

K Type d p R min(lO, K) Type max(10,K) 

26 VII 5 1 1 5 III 142 
27 VII 5 1 2 10 III 148 
28 VII 5 1 3 15 III 156 
29 VII 5 1 4 20 III 163 
29 VII 4 1 5 20 
30 VII 4 1 6 24 III 172 
31 VII 4 1 7 28 III 180 
32 VII 4 1 8 32 III 190 
33 VII 4 1 9 36 III 199 
34 VII 3 2 1 42 III 210 
35 VII 3 2 2 48 III 220 
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MINIMUM MAXIMUM 

K Type d p R min(lO, K) Type max(lO,K) 

36 VII 3 2 3 54 III 232 
37 VII 3 2 4 60 III 237 
38 VIII 2 2 1 67 III 242 
39 VIII 2 2 2 74 III 249 
39 VI 2 3 3 74 
40 VI 2 3 4 80 IV 256 
41 VII 2 4 1 88 III 263 
42 VIII 1 2 1 96 III 270 
43 VIII 1 4 1 104 III 279 
44 VIII 1 6 1 112 III 287 
45 IX 120 III 297 
46 IX 130 III 306 
46 I 306 
47 IX 140 III 317 
47 I 317 
48 IX 150 I 330 
49 IX 160 I 343 
50 IX 170 III 350 
50 I 350 
51 IX 180 III 363 
52 IX 190 III 370 
53 IX 200 III 377 
53 I 377 
54 IX 210 III 386 
54 I 386 
55 IX 220 I 397 

Appendix 1. (3.3. Symmetrization Lemma, Theorem 1) 

We consider two cases: 

b ----;-. -
d 
C 

-------. 
I I 

t a 
T 

a c d b 

Case I. a, b, c, dare all different. By permuting a, b, c, d it is no 
restriction to assume that 

We have: 

IM' - IM= (H. + l)V. + HiVb + 1) + H,(V.,- 1) + 
+(Hd - l)V.,- H.V.- HbV,,- H,V,,-HdV., 

= V. + Hb - H, - V., ;i, V. + Hb - (V.: - 1)-

- (Hd - 1) ;i, 2. 
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Case 2. a = c (case b = d analogously). We have: 

d --, IM' - IM= (H. + l)(V,, - 1) + Hb(V,, + 1) + 
I 

b 1 
I 

t 
+ (Hd - l)Y.i - H. V. - Hb v,, - Hd v.i 

= V,, - H. - 1 + Hb - J".i ;;., 

a ;;., d - (b - 1) - 1 + a - (a - 1);;., 2, 

a b d 

Oearly this symmetrization can be done such ·that standard form is preserved. 

Appendix 2. (3.4. Windowing Lemma, Theorem 1) 

Proof 

i=a+ 1, ... ,b 
i=c+t, ... ,d 

L {(H;w + c)(V;w + c) - (H)" + c)(V)" + c)} + 
i=a+t, ... ,b 

+ {(H;w + a)(v;w + a) - (H)" + a)(V)" + a)} 
i=c+ 1, ... ,d 

i=a+ t, ... ,b i=a+ 1, ... ,b 
i=c+ 1, ... ,d 

+ a• L (H;w + v;w - H)" - Vl") = I M'w - I MW• 
i=c+ 1, .. . ,d 

The last equality holds because the rearrangement preserves the number of ones ( = K). 

Appendix 3. (3.5. Local Reflection Lemma, Theorem 1). 

Using the windowing principle we have 

i=a+ 1, ... ,b i=c+ 1, ... ,d 

V)"H)"- H)"V)"+ V)"H)"-
i=c+ 1, ... ,d i=a+ 1, ... ,b i=a+ 1, ... ,b 

Appendix 4. (3.6. Contribution of a Square Lemma, Theorem 1) 

We consider three cases in the (nearly-)symmetric situation: 

:~ 
0 a b N 

Case I. a # b, M b,a = 1. 

IM - IM'= b2 + a2 - {b(b - 1) + a(a - l)} 

=a+b. 
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Case 2. a# b,Mb.a = 0. 

IM - JM, = b(b - 1) + a(a - 1) - {(b - 1)2 + (a - 1)2 } 

=a+b-2, 

Case 3. a= b. 

IM - IM'= a2 - (a - 1)2 =a+ a - 1. 

Note that removing both (a, b) and (b, a) leads to a decreasing of IM by 2(a + b - 1). So, the average 
decreasing of IM per square is the sum of the coordinates minus 1, just as in case 3. 

Appendix S. (3.7. Spreading-out Lemma, Theorem 1) 

First we rearrange M such that the quasi-block lays with its longest side along the longest segment, 
i.e. if Xk+2 - xk-1 > Yk-1 - Yk+2 and Yk - Yk+2 > xk+, - xk-1 or if xk+2 - xk-1 < Yk-1 - Yk+2 
and Yk - Yk+ 2 < xk+ 1 - xk- 1 , then we reflect the quasi-block with respect to the line y = x - xk- 1 + 
Yk+2· 

By the Local Reflection Lemma IM is then invariant. 
Weconsiderthecasexk+ 2 - xk- t ;;, Yk- 1 - Yk+i (the other case goes analogously). We spread out 

the quasi-block from (xk_ 1,xk+ 1] over (xk-i,Xu 1 + 1]. 

Yk+2.._ ___ --t _________ _._ __ -..i 

xk-1 

If xk + 1 - xk = 1, we add the ones from (xk + 1 - h + yk + 1 , xk] x (yk - 1, yk] to the remainder 
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<xt,xk+i] x (Yui,Yk -1]. So we obtain Yt -Yut = 1, while IM is invariant by the Local 
Reflection Lemma. 

. Yk ....-----"T",-----, 

Yk+1 
Yk+2'----------+--'---

x k-1 

Now we have two cases: 

So we may assume that 

Case I. If the remainder xk - xk- 1 is larger than ( or equal to) Yk+ 1 - h + 2 , then we spread out by 
moving <xk - Yk+ 1 + Yu 2, xk] x (yk+ 1, Yt] to (xk+ 1,Xk+ 1 + 1] x (Yu 2, Yk+ 1J. 

Case 2. lf xk - xk_ 1 < yk+ 1 - yk+ 2, then we move <xk_ I' xk] x ( yk+ I' yk] and (xu 1 - yk+ 1 + 1 + 
Yk+ 2 + xk-xk_ 1,xk+ 1] x (Yk+i - l,h+1] to <xk+1'xk+ 1 + 1] x (yk+ 2 ,YHt -1]. 

Yk17 
Yk+1-------------....,,.--_, 

Yk+2.__--+ ___________ .......,..___ 
xk-1 xk 

Considering the contributions of the various squares it is easy to see that in both cases IM does not 
decrease. 

Iterating this procedure we obtain a quasi-block of the form (xk- i, t] x 2 , r + 1] u (t, xk+ 2] x 
( yk+ 2 , r] (for some r and t). In the case xk+ 2 - xk_ 1 < Yu 1 - yk+ 2 we spread out the quasi-block 
vertically from <Yk+i•Yk] over (yk+ 2 ,Yk-t]. 
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Appendix 6. (3.8. Two Quasi-Blocks Lemma, Theorem 1) 

In the symmetric case I Mw is in these four cases 

3 .192 + 1 • 182 + 3 • 102 + l • 62 + 6 • 142 + 4• 132 + 8-102 + 32 = 6348, 

5·172 + 8• 162 + 1•62 + 6· 142 + 10· 132 + 1·52 = 6420, 

12 • 172 + l · 92 + l · 62 + 6 · 142 + 3 · 132 + 8 · 122 = 6420, and 

12· 172 + l · 152 + 15• 132 + 2· 122 = 6516. 

So first IM increases by 72, then J M is constant, and finally IM increases by 96. 

Appendix 7. (3.9. Last Step, Theorem l) 

Assume that Mis of type A or B, but not of type I, II, III, IV. 
We consider several cases and subcases. 

Type A 

Case I. a,;;;·N/2andd=c=0. 
We move 2g ones from (a -g,a] x (a -1,a] u (a- 2,a] x (a-2,a-1] u (a -1,a] x 
(a -g,a - 2] to (b,b + 1] x (a,a + g] u(a,a + g] x (b,b + 1]. 

CASE 1. b 

X 
X g x---
x 

xxxx 

With the principle of the contribution of a square it is easy to see that IM increases. 

Case 2. a ,;;; N /2 and (d > 0 or c > 0). 
We move ones from the ath row and the ath column to the b + 1th row and the b + 1th column and 
(when there is no place enough in the b + 1th row and the b + 1th column) also to the b + 2th row and 
the b + 2th column. 

In detail we have 4 subcases (whether or not the matrix is symmetric or nearly-symmetric and 
whether the b + 2th row and column are needed). 
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XXX ------g-1 

Subcase 2-1. M is symmetric and 

a+d+g ~N. 

Subcase 2-3. M is symmetric and 

a+d+g> N. 

b 

b 

d 

g 
xxxx ----a d-t 

Subcase 2-2. M is nearly-symmetric and 

a +d+g-1 ~N. 

d 

b 

xx 
b 

Subcase 2-4. M is nearly-symmetric and 

a +d+g-1 > N. 

The squares marked with O are moved to squares marked with x . 
From the principle of the contribution of a square follows that IM increases under these 

transformations. 

Case 3. a > N /2 and N - a ;;;,. b + 1. 
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b -----
/ 

/ d _ ... 

/ 

/ 

!d 
/ 

/ 
/ bl 

-----, 
'--

N-a , 
I 

C / I 
/ I.. 

/ N-a 
/ b / 

/ 

N-a b 

First we reflect the quasi-blocks with size (N - a)b + d, (N - a)b + c resp. with respect to the lines 
y = x + a, y = x - a resp. Then we spread out the quasi-blocks horizontally over [O, a], vertically 
over [O, a] resp. 

Now we consider the complement of the obtained set AM. This complement is of the type as in case 
l or 2. By the Complement Lemma 11 _ M inc~eases when IM does. So, with the methods of cases l and 
2 (applied to I - M) we can transform M to another matrix and in this way we prove that the 
maximum was not attained in M. 

Case 4. a > N /2 and N - a < b + l. 

First we reflect two quasi-blocks of size (N - a)(N - a - l) + d, (N - a)(N - a - 1) + c resp. with 
respect to the lines y = x - (b + l) + N, y = x - N + b + 1 resp., then we spread out the two 
quasi-blocks of size (N - a - 1)(b + 1) + b + 1 - (N - a - d), (N - a - l)(b + 1) + b + 1 -
(N - a - c) resp., horizontally over [O, a], vertically over [O, a] resp. 

Now we consider its complement and by an argument as in case 3 we are finished. 
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b 

b ,. 

TypeB 

C 

/ 

--, ,. ,., 
/ I 

/ L ,. 

N-a 

The complement of type B is of type A. 

--+-

Again by the Complement Lemma we consider its complement and we deal with it as described 
above. 

Now we have reached the matrices of the types I, II, Ill, IV and so we have proved Theorem 1. 

Appendix 8. (4.3. Under the diagonal Lemma, Theorem 2) 

Casel.j>i. 

IM - IM'= H, V, + H, Yi+ H;, v,, + HJ, Yi, 
- Hi(V, - 1) - (H1 - 1)J1i- H11 (V,1 + 1) j1 
- (Hit + l)J1i, j 

= H1 + J1i - H1, - J1i, (N - i + 1) + 
+ j - (N - i1) - (j1 -1) 

= j - i + i, - j, + 2 3. 

Case 2. j = i. 

IM-IM,=H,V,+H,,V,, +Hit Yi, J 

- (H1 - l)(V, -1) - H 11(V, 1 + 1) 

- (Hit + 1)J1i1 

= H 1 + J1i - 1 - H 11 - J1i, 
(N - i + 1) + i - 1 - (N - i 1)- (j1 - 1) 

= jl - j 1 + 1 2, 

The conclusion follows directly. 
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Appendix 9. (4.7. Moving to the diagonal Lemma, Theorem 2). 

Assume that Mis not ofthis kind. Take the first comer strictly under the diagonal (i1 ,j1) and the last 
one (i2 ,j2 ) (so i1 minimal and i2 maximal). 

We first prove that we may assume that if (i1,ji) is a corner strictly under the diagonal then 
(i1 + 1, i1 - 1) or (i1 + 1, ii) is a comer. 

If this is not the case, then we can move ones from the i1 th column to the j 1 + 1th row (or, when 
M11 + t,Ji + 1 = 1 to a row at higher level) and so on, until the second comer (i,j) strictly under the 
diagonal (with i > i1 minimal) has the desired form. When the i1 th column is exhausted, we continue 
with moving ones from the i1 + 1th column etc. We make the crucial observation that after the 
moving of ones to columns to the right these ones changes J M by horizontal sections on a higher 
level; thus with smaller sections. So IM_ does not increase. 

Analogously we can assume that if (i2 ,j2 ) is the last corner strictly under the diagonal (with i2 
maximal) then (j2 + l,j2 - 1) or (j2,j2 - 1) is a corner point. 

XX X j2 

i2 

We now consider two cases: 

Case I. i1 = j 2 • 

We use the Windowing Lemma. Therearej1 ones in the i1th column. Assume there are tones in the 
j 2th row (windowed). 
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Moving a one from (i1 ,j1 ) to (i2 - l,j2 ) yields 

and moving a one from (i2 ,j2 ) to (i1,j1 + 1) yields 

At least one of these transformations decreases IM, so the minimum was not attained. 

Case 2. i1 <j2 • 

Assume there are tones in thej2th row. Moving a one from (i1 ,ji) to (i2 - l,j2 ) now yields 

and moving a one from (i2,j2 ) to (i1,j1 + 1) yields 

If Hr, ¢ Vj,, then clearly the minimum was not attained. 
If Hr,= Vj,, then we can move ones from the i1th column to thej2th row (while IM is invariant) 

until the column is exhausted or the row is full (i.e. the diagonal is reached); in both cases we have 
one comer less lying strictly under the diagonal. 

We conclude that we may assume that M has at most 2 comers lying strictly under the diagonal, 
and that in this case the first comer changes IM by horizontal sections at a higher level than the 
second comer. 
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Appendix 10. (4.8. Less inequality between differences, Theorem 2). 

First we prove that we may assume that x1 di for all i. 
Assume that x 1 < di for some i, then we can move a one from R to (xi+ 1 , Xi+ l)whileJMdecreases 

(consider the changing of IM) by (N - x1 ) - (N - di)= di - x1 > 0, so the minimum was not 
attained. 

We now give an upper bound for x1 • 

I -------··-' I 
I 
I 

Assume that the R ones lie in a a x b rectangle 

{(i,j):a+ 1 ~i~a+b,1 ~j~a}. 

Because of local reflection it is no restriction to assume that a b. 
After a rearrangement we have the situation as in the picture. 

a b d· I 

First assume R < a· b and b 2 (the case b = 1 is left as an exercise to the :reader, use 8c). Then it is 
possible to move. a one from (x1 + 1, x 1 ) to (a + 1, a). This gives a decreasing of J M by a - di (con-
sider the changing of J M ). 

So we can assume that di~ a~ b, which implies x 1 =a+ b 2di. 
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When R = a• b we can reach the situation x1 2d1 by local reflecting 

8c. R (s - l)(d + 1). 

In this substep we give a lower bound for R. Because 

(d + s - 1)2 (d - s + 1)2 ( l)(d l) s-1+---------=s- + 4 4 

we may assume that R - s + 1 < (d + s - 1)2 /4 (otherwise the statement is trivially true). 

After local reflections we obtain the situation as in the first above picture and by the Windowing 
Lemma we restrict our attention to the R + (d + s)d ones in that picture. Because 

R + (d + s)d = (R - s + 1) + (d + s - l)(d + 1) 

we can transform the matrix and obtain the second picture with R' = R - s + 1. This is possible 
because R - s + 1 < (d + s - 1)2 /4. 

Note that R 1 > 0, else IM. is trivially smaller than IM. We have 

IM' - IM= (R - s + l)(d + 1)- Rd 

= R - (s - l)(d + 1) 

and the statement follows, 

8d, d d1 d + 1 Yi. 
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We will prove that the d/s cannot diff'er more than 1 from each other. Assume that d1 = d· + v for 
some i and some v ;;;,, 2. 

This implies s = x1 - d ;;;,, di. - d = v and R ;;;,, (s - l)(d + 1) ;;;,, v - 1. 
After the usual' local reftl:ctions and rearrangements and windowing we obtain the next situation 

(see figure below}. 
We decrease di by ooe, and we add that tod, in practice this means the following. We moved.ones 

from. the x2th row and v - 1 ones from• R to the x2th: coll.!Qlll. and w,e obtajn a matrix with 
R' = R - v + 1. We ha~e 

IM-lM' = R(d+ di)+ x 1d1,d'-(R-v + l)(d + d;}-x1(d1 - l)(d+ 1) 

= (v - l)(d + d1 - x1) > 0. 

So the minmwn was not attained, and the statement is proved 

Se. R sd if di = 4 + 1 for, soin, i. 

This. time we ti;ansfonn as follows: 

.-,,...,.,,,..,.,....,,.._._..,_. 

i~ii1 
From 

follows 

R' =R + s. 
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The second configuration is possible because 

(xi + 1)2 xf Xi 1 , ---=-+-+->R+s=R. 
4 4 2 4 

We have 

and the minimality of IM implies 

R,:;; sd. 

Sf. R ,:;; (s + l)(d - 1) or R = d2 • 

To prove this we consider some cases: 

Case I. s = d. Because R,:;; ¼xt = d2 and (s + l)(d - 1) = d2 - 1 in this case, the statement is 
clear! y true. 

Case 2. s = d - 1. Because R ,:;; (xi + 1)/2 · (xi - 1)/2 = (s + l)(d - 1) in this case it is trivially 
true. 

Case 3. s ,:;; d - 2. 

d 
XrL_____ 

d-1 

This last time we transform the first configuration with R + Xi d ones to the second with 
R' + (xi + l)(d - 1) ones (R' = R + s + 1). This last configuration is possible because 

(xi + 1)2 xf Xi 1 2s + 2 1 ---=-+-+->-R +--+->R +s+ 1. 
4 4 2 4"' 2 4 

We have 

IM. - IM= (R + s + l)(d - 1) - Rd= (s + l)(d - 1) - R 

and the statement follows from the minimality of M. 
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Appendix 11. (4.9, 4.10, 4.11, Theorem 2) 

4.9. Representation by a triple 

We repi;esent a N x N matrix M of types VI, VII and' WII by a triple-

(d.,p, R). 

If M is of type VI or VII we define p •= (. We '"'tend the parameter s to type VI, where we define 
s •= d and we extend the parameter q to types VI and· VII, where we define q •= 0. 

We prove· that (for fixed N) there corresponds at most one matrix M- orthe types \ll, V'Pl, VIII to 
a tciple (d, p, R).. 

LEMMA. Let N, d, p, R be integers. Then there exists at most one N x N matl'ix M of types VI, Vll, 
Vlll with the triple (d, p, R). 

Proof. We have 

s + q(d + t) = N - (p + l)d 

with O s d. This implies 

. (N - (p + l)d) q=mt 
d+l 

and 

s = N - (p + l)d - q(d + 1). 

Furthe~,. K follows now from 

N 2 - 2K = pd2 + q(d + 1)2 + (d + s)2 - 2R. 

REMARK. The solution of the problem of the despot is represented by the triple (4,4, 11). The 
other parameters are N. = 38, K = 63.9, q = 3, s = 3. 

Let .Ht.a: c .H N,K be the subclass. of matrices M with M1•1 = 0 for all i. It is more realistic to 
consider this problem over .H;,1: instead of .H 11,1:• 

The-orem 2 shows that this makes no difference fut these values. of the parameters. 

4.m tndering em the triples 

Let M1 , M2 be N x N matrices of types VI, VII~ VIII with triples(d1 ,p1 , R1)and(d2 ,p2 ,R2 ). We 
write 

if (d1 = d2 and P1 = p2 and R 1 < R2) or if (d1 = d2 and p1 < p2) or if d1 > it2 • 

We call M 2 the successor of M 1 if 

and if there ex.is.ts. no matrix M3 such that 
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4.11. Thi! successor 

LEMMA. Let M be a N x N matrix of types VI, VII or VIII with K ones and with triple (d, p, R). 
The successor M2 of M is (distinguishing 16 cases) listed below. Let K 2 be the number of ones 
of the successor. 

No. Type M Description case Triple Type K2 
successor successor 

1 VI R < d2 (d,p,R + 1) VI K+ 1 
2 VII R < (s + l)(d - 1) (d,p,R + 1) VII K + 1 
3 VIII R <s·d (d,p,R + 1) VIII K + 1 
4 VI R =d2 (d,p + 1, 1) VII K + 1 
5 VII R = (s + l)(d - 1), p = 1, s = d - 3 (d - 1, l,d2 - 2d) VI K 
6 VII R = (s + l)(d - 1), p = 1, s = d - 2 (d- 1,2, 1) VII K + 1 
7 VII R = (s + l)(d - 1),p = 1, s = d - 1 (d - 1, 1, 1) VIII K + 1 
8 VII R = (s + l)(d-1),p 2,s = d-2 (d - 1, 2, 1) VIII K + 1 
9 VII R = (s + l)(d - 1), p 2, s = d - 1 (d - 1, 1, 1) VIII K + 1 

10 VII R = (s + l)(d - 1), p = 1, s,;;; d - 4 (d - 1, 1,(s + l)d) VII K 
11 VII R = (s + l)(d-1),p 2,s,;;; d-3 (d - 1, 1,(s + l)d) VIII K 
12 VIII R = sd, q = 1, s = d - 1 (d,p + 1,d2 -1) VI K 
13 VIII R = sd, q = 1, s = d (d,p + 2, 1) VII K + 1 
14 VIII R=sd,q~2,s=d (d,p + 2, 1) VIII K + 1 
15 VIII R = sd, q = 1, s ,;;; d - 2 (d,p + 1,s(d + 1)) VII K 
16 VIII R=sd,q~2,s,;;;d-1 (d,p + 1,s(d + 1)) VIII K 

We leave the proof as an exercise to the reader. 
In the cases 5, 10, 11, 12, 15 and 16 we have K 2 = K. Some easy calculations show that in these 

cases we also have IM2 =IM.It is also easy to verify that if M 1 « M 2 « M 3 then K 1 < K 3 • 

These facts prove our next lemma. 

LEMMA. Let M 1,M2 ,M3 beN x N matrices of types VI, VII or VIII, withK 1 ,K2,K3 resp.ones. 
If M 1 « M 2 then K 2 = K1 + 1 or K 2 = K 1 and IM 2 = IM,· 
If M 1 « M 2 « M 3 then K3 > K 1 • 

Now the theorem follows in the case ¼N 2 < K < ½N(N - 1). 
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Abstract 
A representation of one-dependent processes is given in terms of Hilbert 

spaces, vectors and bounded linear operators on Hilbert spaces. This gen-
eralizes a construction of one-dependent processes that are not two-block-
factors. We show that all one-dependent processes admit a representation. 
We prove that if there is in the Hilbert space a closed convex cone that is 
invariant under certain operators and that is spanned by a finite number of 
linearly independent vectors, then the corresponding process is a two-block-
factor of an independent process. 
Apparently the difference between two-block-factors and non-two-block-fact0,·s 
is determined by the geometry of invariant cones. The dimension of the 
smallest Hilbert space that represents a process is a measure for the com-
plexity of the structure of the process. 
For two-valued one-dependent processes we prove that if there is a cylinder 
with measure equal to zero, then this process can be represented by a Hilbert 
space with dimension smaller than or equal to the length of this cylinder. 
In the two-valued case we show that a cylinder (with measure equal to zero) 
whose length is minimal and:::; 7, is symmetric, and we give some examples 
of cylinders with measure equal to zero. 
We generalize the concept of Hilbert space representation to m-dependent 
processes and it turns out that all m-dependent processes admit a represen-
tation. Several theorems are generalized to m-dependent processes. 

Keywords: one-dependence, block-factors, Hilbert space representations, 
stationary process, m-dependence, dynamical systems, zero-cylinders, in-
variant cones. 
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1 Introduction 
In this paper we consider one-dependent processes, which are discrete time station-
ary stochastic processes (XN )NeZ with the property that for any given time t the 
past (XN )N<t is independent of the future (XN )N>t• 
Just like Markov proc~sses, one-dependent processes are a weakening of indepen-
dence, but in contrast to these we assume no knowledge about the present value 
Xt, Although Markov processes have been investigated thoroughly for a long time 
the theory of one-dependence is still young but growing. 
This paper is the first that uses· Hilbert space techniques to investigate one-
dependent processes. The concept of Hilbert space representations was initiated 
by Mike Keane. 
One-dependent processes arise in renormalization theory as limits of rescaling op-
erations (see (O'Br.]). In statistical physics many models have rescaling-properties 
for critical values ( e.g. critical temperature) of their parameters ( as is conjectured 
by physicists). This means that the model is invariant under rescaling operations 
(as e.g. fractals). Such random fields should therefore typically be one-dependent. 
The notion of one-dependence can be generalized tom-dependence (m EN); which 
means that for any given time t (XN )N<t and (XN )N>t+m are independent. 
Examples of m-dependent processes are m + l-block-factors ; let (YN )Nez be an 
i.i.d. sequence and fa function of m + 1 variables. If we define 

XN := f(YN, • • •, YN+m) 

then them+ I-block-factor (XN)NeZ is an m-dependent process, as follows im-
mediately from the definition. It is easily checked that for m + I-block-factors it 
is no restriction to assume that the underlying sequence (YN)NeZ is identically 
distributed with the uniform distribution over the unit interval. 
Although for quite a time probabilists conjectured ((Be.], (G.H.l], [Ibr.Li.], [Ja.I-
2], [O'Ci.]) that all m-dependent processes are m + 1-block-factors, in (A.G.K.V.] 
a two-parameter family is shown of counterexamples of one-dependent processes 
(assuming only two values) that are not two-block-factors. Recently Jon Aaron-
son, David Gilat and Mike Keane found an example of a five-state one-dependent 
Markov chain that is not a two-block-factor (a paper is in preparation). More 
recently Burton, Goulet and Meester found a counter example of a four-state one-
dependent process that is not an m,block-factor for any m E N (a paper is in 
preparation). Several authors ([Be.], [G.H.2], [He.2], [Ja.2], (O'Ci.]) used this con-
jecture as hypothesis and therefore some of their results on m-dependence are only 
valid for m + 1-block-factors. 
In this article we generalize the construction of the counterexamples from (A.G. K. V.] 
by representing one-dependent processes in terms of Hilbert spaces, vectors and 
bounded linear operators on Hilbert spaces. 
A crucial difference between the operators in Hilbert space representations (HSR) 
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and operators in quantum probability is that the HSR operators are defined on 
the whole space and are in general not self-adjoint and not even normal, while the 
quantum probability operators are defined on a subspace and are self adjoint. 
These Hilbert space representations can supply new tools to investigate the struc-
ture of one-dependent processes and especially the essential difference between two-
block-factors and non-two-block-factors. The dimension of the smallest Hilbert 
space that represents a process is a measure of the complexity of the structure of 
the process. 
One-dependent processes, represented by a one-dimensional Hilbert space, are 
i.i.d. sequences. One-dependent processes, represented by a 2-dimensional Hilbert 
space, are two-block-factors. The counterexamples from [A.G.K.V.) fit with a 
3-dimensional Hilbert space. 
The plan of this article is as follows. 
In section 2 we describe the Hilbert space representation and we show that it ac-
tually represents a consistent probability measure that is one-dependent. 
In section 3 we show that each one-dependent process (Theorem 3.2) admits a 
Hilbert space representation. We give some examples. 
In section 4 we introduce closed convex cones that are invariant under certain 
operators. We prove that if there is an invariant cone that is spanned by a fi-
nite number of linearly independent vectors, then the one-dependent process is a 
two-block-factor (Theorem 4.4). This implies that one-dependent processes with a 
two-dimensional Hilbert space representation are two-block-factors (Theorem 4.3). 
It seems that the difference between two-block-factors and non-two-block-factors 
is determined by the geometry of invariant cones. 
In section 5 we consider cylinders with measure equal to zero. Zero-cylinders play 
an important role in one-dependent processes. Extremal values of so called two-
correlations are attained in processes with zero-cylinders ([G.K.V.], [V.1)) and the 
basis of the construction of the counterexamples in [A.G.K.V.] is the fact that [111] 
is a zero-cylinder. It turns out that if a two-valued one-dependent process has a 
cylinder with measure equal to zero; i.e. P[X1 = i1, ... , XN = iN] = 0 for some 
ii, ... , iN, then this one-dependent process can be represented by a Hilbert space 
with dimension smaller than or equal to N (Theorem 5.1). Further we give some 
examples of zero-cylinders in the two-valued case. We prove in the two-valued case 
that a zero-cylinder whose length is minimal and 7 is symmetric (Theorem 5.2). 
Finally we prove that [1001] can not 'appear as zero-cylinder with minimal length 
(Theorem 5.4). We conjecture th~t all zero-cylinders with minimal length are 
symmetric in the two-valued case. Actually we conjecture that only runs of ones, 
runs of zero's, [101) and [010] can appear as zero-cylinder with minimal length of 
a O - 1 valued one-dependent process. 
In section 6 we generalize the concept of Hilbert space representation to m-
dependent processes and we prove that all m-dependent processes admit a rep-
resentation (Theorem 6.2). 
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Several theorems on one-dependent processes are generalized to m-dependent pro-
cesses. 
In section 7 we give a contribution to the perpetuation of mathematics by a list 
of conjectures and open problems. 
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2 The Representation. 
In this section we describe the Hilbert space representation and we show that it 
actually gives rise to a consistent probability measure that is one-dependent. 
Let H be a real Hilbert space, let K 2:: 2 be an integer, let A1 , ... , AK: H-+ H be 
linear, continuous operators, let x, y EH be two fixed vectors with < x; y > = l. 
We assume that 

( A1 + ... + AK )h = < h; x > y for all h E H 

(so A1 + ... +AK has rank one). 
Further we assume that 

for all NE N and for all i1 , . .. ,iN E {l, ... ,K}. 
We call (H, x, y, Ai, ... , AK) a Hilbert space representation (HSR) of the one-
dependent process (XN )NeZ (with state space {1, ... , K}) that is defined by 

(for NE N and i1, .. ,,iN E {1, ... ,K}). 
First we have to check that the innerproduct defines consistently a probability 
measure on {1, ... , K }z. We have (using the definitions) 

K K LP [X1 = i1, .. . ,XN = iN] = L < A;1 ••• A;Ny;x > = 

and 
K K 

LP[X1 = i1, .. ,,XN = iN] = L < A;, ... A;Ny;x > = 
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We see that 
K 

LP[X1 = i] = < (A1 + ... + AK)y;x > = 
i=l 

= < < y; X > y; X > = < Yi X >< y; X > = l 

and we conclude that the innerproduct (which was required to be non-negative) 
consistently defines a probability measure. 
From 

K 

LP [X1 = i1,,,, ,XN-1 = iN-1,XN = i,XN+t = iN+t,,,, ,XN+M = iN+Ml = 
i=l 

we conclude that (XN )NeZ is a one-dependent process. 

124 



3 Examples of Hilbert Space Representations. 
In this section we show that every one-dependent process admits a Hilbert space 
representation and we give some examples of representations. First we need a 
technical theorem. 

Theorem 3.1 Let (XN)NeZ be a one-dependent process over {l, ... ,K}z. Let 
H0 be a Hilbert space, let x E Ho be a vector with < x; x >= 1, let Ai, ... , AK : 
Ho --+ H0 be linear, continuous operators such that ( Ai + ... + AK )x = x. 
Assume that 

for all NE N and allii, .. ,,iN E {1, ... ,K}. 
Then there exists a closed separable subspace H C Ho with x E H, such that 
(H,x,x,PAi, ... ,PAK) is a HSR of(XN)NeZ, where P: Ho--+ His the orthog-
onal projection from Ho on H. 

Proof. We define the collection 1{ of those closed subspaces H of Ho with the 
properties that x E H and that for the orthogonal projection P : H0 --+ H holds 

< PAii ···PA;Nx;x > = P[Xi = ii,,,,,XN = iN] 

for all N E N and all ii, ... , iN E {l, ... , K}. We define a partial ordering on 1i 
by 

Hi :5 H2 if Hi ::) H2, 

Note that 1{-:/- 0 because Ho EH. D 

Claim 1. We claim that every totally ordered subset of 1{ has an upper bound. 
Proof of Claim 1. Let Hi = {Ho : 0 E 0} be a totally ordered subset of H. 
Define Hi := n Ho. We will show that Hi is an '-1pper bound of Hi. First we 

0E0 
prove the following claim. 
Claim 2. Hi E H. 
Proof of Claim 2. 
Because Hi C Ho for all 0, we have, Ht ::) Ht for all 0. So Ht ::) U(Ht), and 

0 

Ht ::) ~(Ht). Assume that there exists a h E Ht such that h E (~(Ht)/. 

Then h E (Ht)L = Ho for all 0, so h E nHo = Hi, But h E Ht and h E Hi 
0 

implies h = 0. We conclude that Ht= U(Ht). 
0 

Let Pi : Ho --+ Hi and Po : H0 --+ Ho (0 E 0) be the orthogonal projections. 
Let z E Ht. For any c > 0 we can approximate z by a vector h E U(Ht) such 

0 
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that llz-hll < e. So h E Ht for someOo. For He;?: He0 we have Peh E Hen Ht C 
Hen Ht = {O}. Therefore 

IIPezll = IIPez - Pehl! ::; IIPell • llz - hll < e 

if He ;?: He0 • 

Now let y E H0 • Take z E Hf- and w E Hi such that y = z + w. Let e > 0 be 
given. Take 00 as above. We have for He;?: He0 that 

ll(Pe - Pi)YII = IIPe(z + w) - Pi(z + w)II = 
= IIPez + w - 0 - wll = IIPezll < e. 

We conclude that Pey !+ Piy for all y E H0 • 

This implies that (for all ii) 

P[Xi =ii]=< PeA,1 x;x > !+< PiA,1 x;x >. 

Because 

and IIPell = 1, we derive that (for all ii, i2) 

By induction ( on N) we derive that 

P[Xi =ii, ... , XN = iN] = < PeA,1 ••• PeA,Nx; x >~< PiA,1 ••• PiA,Nx; x > 
(for all N E N and all ii, ... , iN E {1, ... , K}). 
Because x E He for all OE 0, we have x E Hi. We conclude that Hi satisfies the 
2 conditions in the definition of 1{,. Thus Hi E 1{,. This proves Claim 2. 
Because Hi C He for all 0, Hi is an upperbound of 1ti. This proves Claim 1. 
Now we have proved (Claim 1) that every totally ordered subset of 1{, has an 
upper bound, we can apply Zorn's Lemma that implies the existence of a maximal 
element. Let H be a maximal element in 1{,. Let P : Ho -+ H be the orthogonal 
projection on H. 
Claim 3. We claim that (H, x, x, P Ai, ... , PAK) is a HSR of (XN )NeZ• 
Proof of Claim 3. 
Consider the restricted operators PAi IH, ... , PAK IH from H to H. Let B; : 
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H-+ H be the adjoints of these restricted operators (i = 1, ... , K). We define the 
separable subspace 

HB := sp{Bii ... BjmX: m 0,j1, ... ,jm E {1, ... 'K} }. 

To prove Claim 3 we first have to prove the following Claim. 
Claim 4. We claim that H = HB. 

:> 
Assume that H -::/ HB. Apparently B,HB C HB for all i. Consider the restricted 
operators B, lnB (i = 1, ... , K). 
Let C; : HB -+ HB be the adjoints of these restricted operators ( i = 1, ... , K). 
Now we will show that HB E 1i and that HB > H, what contradicts the maximality 
of H. 
Let PB : Ho-+ HB be the orthogonal projection, let y, z E HB, then 

< PBA,y;z > = < PBPA;y;z > = 
= < PA;y;P8z >=<(PA; ln)y;PBz > = 
=<(PA; ln)y;z> = <y;B;z> = 
= < y; (B; lnB)z > = < C;y; z > . 

This implies that P8 A, = C; for all i = 1, ... , K. 
Further we have (for all N and for all ii, ... , iN) 

P[X1 = i1,••·,XN = iN] = < PA;1 ... PA;Nx;x > = 
= < (PA;1 In) ... (PA,N ln)x;x > = < x; B,N ... B;1x > = 

= < x; (B;N lnB) • • • (B,1 lnB)x > = < c,1 • • • c,Nx; X > • 

Together with x E HB (by definition of HB) this implies that HB E 1-i. Because 
C 

we assumed HB -::/ H, we have HB > H, what contradicts the maximality of H. 
We conclude that H = HB. This proves Claim 4. To prove Claim 3 we have to 
show that 

(P A1 + ... + p AK )h =< h; X > X 

for all h EH. 
This is equivalent to 

< (PA1 + ... + PAK)h;g >=< h;x >< x;g > 

for all g, h E H. 
Because 
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and 

H = sp{PA;1 •• .'PA;Nx: N 2:: O,i1 , ... ,iN E {l, ... ,K}} 

(if the right hand side is a proper rnbspace of H, then this would contradict 
the maximality of H) and because (*) is a linear equation in h and g, it is 
sufficient to check (*) for h = PA;1 ••• PA;Nx and g = Bj1 ••• Bimx (for all 
N,m E N,i1, ... ,iN,J1, ... ,jm E {l, ... ,K}). 
For this h and g we have 

K 

= LP[X-m = Jm,••· ,X-1 = ii, Xo = i, Xi= ii, .. . ,XN = iN] = 
i=l 

= < x; g > < h; x > . 

This proves (*) and the proof of Claim 3 is finished. Claim 3 implies the theorem. 

Remark. We restricted ourselves in Theorem 3.1 to H C Ho because in general 
(*) does not hold for all h,g E H0 (as is easy to see in the proof of Theorem 3.2, 
where we apply Theorem 3.1). 
Now we can prove the main theorem of this section. 

Theorem 3.2 Let (XN)NeZ be a K-valued (for some K E NJ one-dependent 
process. 
Then there exists a HSR of (XN )NeZ· 

Proof. Let (XN )NeZ be a one-dependent process over {1, ... , J<}Z. (XN )Nez 
induces a probability measure P on {l, ... , K}N. We define the Hilbert space 
Ho := L2(P). Let I E Ho be the function that is identically one. We have 
< I; I>= l. 
We define the operators A1, ... ,AK: Ho--+ Ho by (A;h)(w1,w2,w3, ... ) := 
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{ lifw=i 
l;(wi)h(w2 , w3 , ••• ) for h E Ho, where l;(w) := O if w 1' i · 
Apparently Ai, ... , AK are linear and continuous and they satisfy the equation 

for all NE N and all ii, ... , iN E {1, ... , K}. Further (A1 + ... +AK )I= I holds. 
Theorem 3.1 now implies the existence of a HSR of (XN)NeZ• 

The Hilbert space representation of a one-dependent process is not unique. In the 
Theorems 3.3, 3.4 and 3.5 we give some examples of HSR's. 

Theorem 3.3 Let (XN )NeZ be a one-dependent process over {O, l}z. 
Then there exists a HSR of (XN )NeZ with Hilbert space l 2 • 

Proof. In [A.G.K.V.] (Theorem 1) it is proved that the distribution of a O - 1 
valued one-dependent process is uniquely determined by its values 

[lN] := p [Xi= ... = XN = 1) (NE N). / 

1 1 
[1 l 0 
[11) 0 

Let H := £2,y := , X := 

[lN] 0 

1 -1 0 0 0 1 0 0 
[1) 0 -1 0 0 0 1 0 
[11) 0 0 -1 0 0 0 1 

Ao= ,Ai= 

[lN] 0 0 ' -1 ... 0 0 0 0 ... 1. .. . . . 

Because 

[1N+M+1] p [Xi= ... = XN = 1,XN+2 = ... = XN+M+i = 1) = 

= P[Xi = ... = XN = I]P[XN+2 = ... = XN+M+i = 1) = [1N]. [1M] 
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it is eai,y to see that actually x, y E f? and that Ao and A1 are continuous operators 
on e2 • 

:,:,:::: ::1h1i:l1} ~(~I:f: :N: :: :::h:: ;~::11 
of [iA.@:K.V.]w.tt com;Jude t}).at. (f?,x,y,AQ, A1) is aH:SR of (XN)NEZ· D D 

ltefilllla~k:. 'Fh<:! '1~pecial" p11ocess(;ls il). [A. G:K. \(. l are rep11eseµt(;ld by H = R3 , 

y = ( !, ).'., x = ( ci,,)\. Ao,=(.~ .. · ~l ~1 ):, A1 = ( ~·. ci ~.· )·•· The 
\ P \ 0 , \ (J O· o, · \ 0 0, 0 .· 

t~Y,Q-pjjJ1~eter (1W1ily-o;fi couµte:i;exam.p!es of one-<lepel).dent processes that are not 
t:w.Qrblocl<-f~toJill Goi;i;espm:ids with, I;ISR's oft}µ~ type, 

'l'h~QJ;(;lm; 3,4,; I,,.~ (¼,)w~~ be a, K,-vq,JJ.1.ed (for [iom,e K, E N) twq-bfock-faptor of 
a,n, i,.i, d,1. s,eqJJ,enpe. 
'IJ/;,en: the~ exi§ts a, [fSR of (XN)NE~ wit/,, Hilbert space Ii[O, 1). 

:Proel.. iet Xl;t =c .fi(¥M, ¥1V+1), £or som.e- £u;o,ctioµ I aµd sQme i .. i ... d. sequence ,:rw },¾~~ of JJ~on;i,, va.ri.ables that are uniformly distJJibuted over the unit interval. 
We <k,~e th~ sets ¼(i =, 1, ... , K); jµ the unit square; 

L.et H = .E,2 [0, 1}, let the operators A,, be defined hy 

(A.g.)(t) := f1 Iv,(t, s} g,(s) </;s A (i = 1, ... ,K) 

wliere Iv, is. the indicatorfunction, of V.. Let I E H be the {unctioJ;J. that is identically 
one. 
lt is an easy exercise to prove that (H, I, I, A1 , ... , AK) is a HSR of (XN )NeZ D D 

We gen.(;lral;i;ze this con,st11uctfon Ql a, HSR to on,e-depel;J,dent m-block,-fa,c~ors (for 
any m Ef N). Generally an m-block-Jia,ctor is (m..,., 1)-depend,ent, bt1t for special 
chokes of the functi~n f the m-blocl;(:-facto:r XN = f(YN, ... , YN+m-1) can be 
one-dependent. ~tis an open proble;m whether there exist one-dependent m-block-
factors (m 3) that can not be written as a two-block-factor. 

Theorern 3,!$ l,et (XN)l'{eZ ~e q, .K-vo,lued. one-d.epende1J,t m-block-.factor of an 
i.i .. d. s:equen,ce (for s:ame l(,m EN}. The.11, fi/,,er:e exists a HSR oj (XN)NeZ with 
a.s Hilbwrt space a s.ub.space of .f,~( jQ, l ]u;i-1). 
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Proof. Let XN = f(YN, ... , YN+m-i) for some function f of m variables and 
(YN )NeZ an i.i.d. sequence of random variables that are uniformly distributed over 
the unit interval. We define the sets V; in them-dimensional unit cube [0, l]m; 

V; := {(y1, ... 'Ym) : f(yi, ... 'Ym) = i} ( i = 1, ... 'K). 

Let Ho := L2((0, 1im-1 ). 

We define the operators A; : Ho -t Ho by 

where IV; is the indicator function of the set V; (i = l, ... ,K). Let I be the 
function on (0, 1 Jm-l that is identically one. ( A1 + ... + AK )I = I holds. We have 
( as is easily checked) that 

(A;l • • • A;NI) (Yi,•••, Ym-i) = 

= 11 IV;1 (Yi,•••, Ym) 11 IV;2 (Y2, • • •, Ym+1)(A;3 • • • A;NI)(y3, .. •, Ym+i) dym+l dym = • • • 

= 11 • • • 11 IV;, (Yi,•••, Ym)IV;2 {Y2, • • •, Ym+1) • •. IV;N(YN, • • •, YN+m-1) dyN+m-1 · · • dym 

and so we have 

Now Theorem 3.1 implies the existence of a HSR of (XN )NeZ• 

The reversed process of a one-dependent process is also one-dependent. The fol-
lowing theorem gives a HSR. 

Theorem 3.6. Let (H,x,y,A1, ... ,AK) be a HSR of a one-dependent process (XN)NeZ· 
Let (YN)NeZ be the reversed process; i.e. YN := X_N (NEZ). 
Then (H, y, x, Ai, ... , Ai<) is a HSR of (YN )NeZ· 
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Proof .. <(A;+ ... + Ai)h; g > = 

= <..h; (A:1 + ... + AK)g.> = < h; <g;,x > Yi>= 

= < h; y > < g; x > = < < h; y > x; g > 

for all h, g E H. This implies that 

(Ai+ ... + Ai<)fv = < li;y > x \:/h E.ltf. 

Further 

< A;, ... A;Nx;y > = 

= < x; A.N ... A;,y > = P[X1 = iN, ... ,XN = i1]= 

= P[Yi = i1, ... , YN = iN], 
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4 Finite Dimension and Invariant Cones. 
In this section we prove that a HSR with 2-dimensiona.I Hilbert space corresponds 
with a two-block-factor. Further we show that if there is an invariant (under 
A1, ... , AK) cone spanned by a finite number of linearly independent vectors, then 
the HSR corresponds with a two-block-factor. The first theorem is just a special 
case of the other one. 
We need a technical theorem to show that it is no restriction to assume that the 
vectors x and y a.re equal. 

Theorem 4.1 Let (H, x, y, A1, ... , AK) be a HSR of a one-dependent process (XN )NeZ· 
Then there exists a vector x0 EH and there exist operators B1 , ... , BK: H-+ H 
such that (H,xo,xo,B1, ... ,BK) is a HSR of(XN)NeZ· 

Proof. Case 1. If x and y a.re linearly dependent, then it is easy to see that 
( H, 11: 11 , 11: 11 , A1, ... , AK) is a HSR of (XN )NeZ· 
Case 2. If x and y a.re linearly independent, then we consider the 2-dimensional 
subspace Ho that is spanned by x and y; 

Ho:= sp{x,y} 

and its orthogonal complement Ht; 

H; := {h EH:< h;x > = < h;y > = O} 

Take some orthonormal ha.sis of H0 , and assume that x = ( :: ) , y = ( ~: ) 
with respect to this basis. 
We have 1 = < x; y > = X1Y1 + X2Y2• 

Let A E R, A =/ 0. We define the linear operator V : H -+ H by 

V IHo= ( Yt -AX2 ) 
Y2 AX1 

and V IH.L= identity. 
0 

It is easy to see that V is invertible and 

v-1 IHo= .!_ ( AX1 AX2 ) 
A -y2 Y1 

and v-1 IH.L= identity. 
0 

We claim that 

(H, ( ~) 1 ( ~), v-1A1V, ... , v-1AKV) 
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is a HSR of (XN )NeZ• It is clear that < ( ) ; ( ) > = 1. Further, let h E H. 

We have 

(V-1A1V + ... + v-1AKV)h = v-1(A1 + ... +AK)Vh = 

-= v-1 < Vh; x > y = < Vh; x > v-1y = < Vh; x > ( ) = 

= < h; V*x > ( ) = < h; ( ) > ( ) , 

and 

< v-1 A;1 v ... v-1 A;N v ( ) ; ( ) > = 

= < :y-1 A;l ... A;Ny; ( ~) > = < A;l ... A;NYi (V-1)* ( ~) > = 

which :pl"oves Theorem 4.1. D D 

Remark. The fact that any orthonormal basis of Ho and any ,\ # 0 can be 
chosen in the proof of Theorem 4.1 shows the non-uniqueness of the Hilbert Space 
Representations. 
In Theorem 4.3 we need the following Lemma. 

Lemma 4.2 . Let (H, x, x, A1, ••• , AK) be a HSR of a one-dependent process 
(XN )NeZ• Let 

T := co{aA,1 • .. A;Nx: a 2::: O,N E N,i1, .. ,,iN E {1, ... ,K}}. 

//3v E T, v # 0 with < v, x > = 0, then (XN )NeZ has a HSR with Hilbert space 

t 
Ho == { v E T :< v; x > = O}.L # H. 

Proof. 
Let V := sp{v ET:< v;x > = O}, then Ho= V.L. Note that x E H0 • Let P be 
the orthogonal projection on H0 • We show that 

(Ho,x,x,PA1, ... ,PAK) 

is a HSR of (XN )NeZ· 

134 



Let v E T with < v; x > = 0. Because A;T C T we have < A;v; x >2:'. 0 for a.11 
i = l, ... ,K. Thus 

K 

0 :5 L < A;v; x >=<(Ai+ ... + AK)v; x > = 
i=i 

= < < v; x > x; x > = < v; x > = 0, 

which implies that < A;v; x >= 0 for a.11 i = 1, ... , K, a.nd a.11 v E V. Hence 
AN c V for a.11 i = l, ... ,K. 
If h EH, then h- Ph EV, so< A;1 • •• A;m(h- Ph);x > = 0 for a.11 m EN a.nd 
a.11 ii, ... ' im E {1, ... 'K}, a.nd hence< A;l ... A;mPh; X > = < A;l ... A;mh; X >. 
Now we have (h E Ho) 

= P < h; x > x = < h; x > Px = < h; x > x, 

a.nd 

which proves our lemma.. 
Now we consider the case that the I_Iilbert space ha.s dimension one or two. 

Theorem 4.3 Let (H, x, y, Ai, ... , AK) be a HSR of a one-dependent process (XN )NeZ· 
{a) If dim(H) = 1, then (XN)NeZ is an i.i.d. sequence. 
(b) If dim(H) = 2, then (XN )NeZ is a two-block-factor of an i.i.d. sequence. 

Proof. (a.) If dimH = 1, then A;= (a;) (i = 1, ... , K). We have 

(b) Theorem 4.1 implies that we ma.y assume that x = y. 
If dimH = 2, then we consider the closed convex cone spanned by the orbit of x 
under the opera.tors Ai, ... , AK; 

T := co{aA;l .. . A;NX: a 2:: O,N E N,ii, ... ,iN E {1, ... ,K}}. 

Note that x ET, a.nd that A;T CT Vi= 1, ... , K. 
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We choose an orthonormal basis of R 2 s.uch that x = ( ) . 

The lemma implies that there exist vectors v = ( ~2 ) , w = ( ~2 ) such that 

v2-W2 > 0 and 

T = co{av,aw: a~ O}. 

Let A; = (. al1 ai2 ) be the matrix of A; with respect to the basis { v, w} (i = 
a21 a22 

1, ... , K). Because A,v, A;w E co{av, aw : a O} :it foHews that aL2 > 0 
Vi= 1, ... , K, Vj1,J2 E {1,2}. 
With respect to the standard basis we have 

On the other hand we have 
K 

(A1 + ... + AK)v = 2)a;1v + a;1w); 
i=l 

hence 
K 

l = < x;x > = < 2)a;1v +a;1w);x > = 
i=l 

K 

= 1 = I)a;1 + a;1 ). 

i=l 

Analogously ( considering ( A1 + ... + AK )w) we find that 

K 

2) af 2 + a;2) = 1. 
i=l 

Further we have 

K 

= 0 = L{a;1v2 + a;1w2)-
i=t 
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Analogously 

K 

I)a{2v2 + a;2w2) = 0. 
i=l 

K K K K 
(1), (2), (3), (4) imply that I: a{1 = I: a{2 and I: a~1 = I: a~2-

i=l i=l i=l i=l 

Let us define the matrix S = ( 1 1 ) then 
V2 W2 

( f a{1 "22'"'2 ) S-1 _ •=1 
- K I: i -1 a --. 21 "2-'"'2 

•=1 

as is easily checked. 
We note that A; has matrix 

s ( ai1 a!2 ) s-1 
a21 a22 

(4) 

with respect to the standard basis. So we have (with respect to the standard basis) 

By induction ( on N E N) it now follows that (XN )NeZ is a two-block-factor of an 
i.i.d. sequence (YN )NeZ of random variables that are uniformly distributed over 
the unit interval. We have XN = f(YN, YN+i) with 

f(t,s)=i {:} 
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or 

or 

or 

This corresponds with the values of f shown in Figure 1. D 

We generalize Theorem 4.3 to the case of more dimensions when there exists an 
invariant cone spanned by a finite number of linearly independent vectors. 

Theorem 4.4 Let (RN, x0 , x0 , A1 , ••• , Ax) be a HSR of a one-dependent process 
(XN)NeZ· 
Asaume that there exist N linearly independent vectors v1, ••• , VN E RN with < 
v;; Xo >> 0 for all i and such that the cone 

T := { a1v1 + ... + <lNVN : a1 0, ... , aN O} 

is invariant; i.e. 

A;T c T for all i = 1, ... , K. 

Assume further that x0 E T. 
Then (XN )NeZ is a two-block-factor of an i.i.d. sequence. 

Proof. Let Af0 = ( a~J) :=l be the matrix of A;0 with respect to { v1, ... , VN}. 
N . 

Because A;0 T CT, we have A;0 v; = :E a~v; ET (for all i0 , j). This implies that 
i=l 

a)~; 0 for all io, i,j. 

Let S be the matrix of { v1 , ••• , VN} with respect to the standard basis { x0 = 
e1, ... , eN }, so 

N 

S = (v;;)f:;=1 ; i.e. v; = LV;;e; Vj. 
i=l 
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Let R = s-1 be the matrix of coordinates of the standard basis with respect to 
{Vt, ... , V N}, SO 

N 

N 

e; = L t;;v; Vj. 
i=l 

Because e1 = x 0 = I: t;1 v; E T we have 
i=l 

t;1 0 for all i. 

Because< v;; x 0 >> 0 we can assume by multiplying the v; that 

vi;=< v;;x0 > = 1 for all i. 

We have for all j 
K N 

(A1 + ... + AK)v; =LL al1v; 
io=l i=l 

and (A1 + ... + AK)v; = < v;;xo > xo = x0 • 

This implies that for all j: 

K N K N 

1 = < xo; xo > = LL a!1 < v;; Xo >= LL a)i. 
io=l i=l io=l i=l 

Because apparently 

K N N 
Xo = LL a)1v; = L t;1v; 

io=l i=l i=l 

K . 
we have that t;1 = I: a:1 for all j and i (we make the crucial observation that 

io=l 
this sum is independent of j). 
Because A;0 has matrix representation SAf0 R with respect to the standardbasis, 
we have 
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= ( a{ 1 + . ; . + a{\ ) . ( ) < A,1 ... A,m . ' . 
a}.1 + ... + a~1 1 

>. 

By induction (on m) it is easy to show (just as in the proof of Theorem 4.3) that 
this corresponds with the two-block-factor shown in Figure 2 (where N is replaced 
by d). 
Remark. In section 3 we described the HSR of a class of counter-examples of 
one-dependent processes that are not two-block-factors. Their Hilbert space is 
3-dimensional. Theorem 4.3 states that a 2-dimensional HSR is always a two-
block-factor. From Theorem 4.4 follows that the crucial difference between 2 and 
3 dimensions is apparently the geometry of cones. A closed convex cone in 2 
dimensions is spanned by the convex hull of 2 linearly independent vectors. In 
3 dimensions closed convex cones exist that are not spanned by the convex hull 
of 3 vectors, but of more than 3 vectors (a finite or even infinite number). Note 
that these vectors are the extreme points of a convex set. It seems that the 
difference between two-block-factors and non-two-block-factors is determined by 
the geometry of the invariant cone. We generalize Theorem 4.3(a) by showing 
that a one-dependent process is an i.i.d.sequence if the operators commute. 
Theorem 4.5 Let (H, x, y, A1, ... , AK) be a HSR of a one-dependent process (XN )NEZ· 
If the operators A1, ... , AK commute (i.e. A;Aj = AjA; for all i,j), then (XN )NEZ 
is an i.i.d. sequence. 

Proof. We have 

P[X1 = i1, .. ,,XN = iN,XN+l =ji,,,,,XN+m =jm] = 
K 

= L P[X1 = i1, .. , ,XN = iN,XN+l = J1,,,, ,XN+m = jm,XN+m+1 = i] = 
i=1 

K 

= L < A;I ... A;NAi1 ... AimA;x; X > = 
i=l 

K 

= L < A;I ... A;NA;Aii ... A;mx;x > = 
i=l 

K 

= L P[X1 = i1, • • • ,XN = iN,XN+l = i,XN+2 =Ji,,,• ,XN+m+l = jm] = 
i=l 

and the theorem follows. D D 

Remark. We conclude from Theorem 4.5 that an exchangeable one-dependent 
process is an i.i.d. sequence. 
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5 Minimal Zero-Cylinders and Minimal Dimen-. 
SIOn. 

Let (XN)Nez be a one-dependent process over {1, ... ,K}z. We call the cylinder 
[ii, ... , iN] a minimal zero-cylinder if P[X1 = i1, ... , XN = iN] = 0 and if P[X1 = 
j1, ... , Xm = im] > 0 for all m < N and for all j1, ... ,jm E {1, ... , K}. We call 
N the length of the minimal zero-cylinder. 
Let (H, x, y, Ai, ... , AK) be a HSR of a one-dependent process (XN )NeZ• 
We call dim(H) the minimal dimension of (XN)NeZ if for all HSR (H', x', y', A~, ... , AK) 
of (XN)NeZ holds dim(H') 2: dim(H). 
We show for two-valued one-dependent processes that if there is a zero-cylinder 
then the length of the minimal zero-cylinder is greater than or equal to the minimal 
dimension. 

Theorem 5.1 Let (XN )NeZ be a one-dependent process over {0, 1 }z. Assume 
that [e:1 .. ,e;N0 ] is a minimal zero-cylinder with length N0 • Then there exists a 
HSR (H,x,x,Ao,A1) of(XN)NeZ with dim(H):::; No, 

Proof. Let (H, x, x, A0 , A1) be a HSR of (XN )NeZ• 
Just as in the proof of Theorem 4.3 we define the invariant cone T; 

T := co{aA,1 ••• A,Nx;a 2: 0,N E N,i1, .. ,,iN E {0,1}}. 

Because [e:1 ... cN0 ] is a zero-cylinder we have 

< Ae1 ••• AeNo x; X > = 0 

and 

for all NE N and all i1, .. ,,iN E {0,1}. 
Lemma 4.2 implies that we may assume that if v E T, < v; x > = 0 then v = 0 
(by passing over to subspace of H). 
So we conclude that 

and 

(Ae1 .. , AeNJ(A,1 ... A,Nx) = 0 

for all NE N and for all i1 , •.• , iN E {0, 1}. 
This implies that 
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We can assume that H = sp (T), because apparently sp (T) is a closed subspace 
that is invariant under Ao and A1 • By restricting Ao and A1 to sp (T) we have 
apparently a HSR of (XN)NeZ· 
Therefore we can assume that 

SO A,, ... A•No = 0. 
Now we need a lemma: 

Lemma. Let (H, x, x, A0 , A1 ) be a HSR of a one-dependent process. Let (c:1, ... , €N) E 
{0, l}N , for some n EN. Then 

(*) A{;"x Esp {x,Aox,~x, ... ,A;;,r-1x,A., ... AeNx}. 

Proof of the Lemma. 
We prove this by induction on N. 
For N = 1 we have to prove that 

Aox Esp {x,A,,x}, 

which is trivial if c:1 = 0. If c:1 = 1, we see that A0x = x - A1x. 
Assume that (*) holds for N. We will prove(*) for N + 1. 
If c:1 = 0, then 

A~l+1x E A0 (sp{x,Aox, ... ,A{;"-1x,A,2 ••• A,N+ix})= 
= sp{A0x,~x, ... ,A{;"x,AoA,2 ••• A,N+ix} C 
C sp{x,A0x, ... ,Afjx,A,1 ••• A.N+1 x}. 

If c:1 = 1, then 

A{;'+1x E sp {A0x,~x, ... ,Afjx,AoA,2 •• • A,N+1x} = 
= sp {A0 x, ... ,Afjx, < A,2 ••• A,N+1 x; x > x -A,,A,2 ••• A,N+1 x} C 
C sp {x,Aox, ... ,A{:x,A,, ... A•N+1 x} 

This proves the Lemma. 
We define 

Ho:= sp {x,Aox,A~x, ... ,A{;'0 - 1x}. 

The above Lemma implies that 

A{;'0 x E Ho. 

Apparently Ho is invariant under A0 • Because A1v = < v; x > x - Aov it follows 
that H0 is also invariant under A1 . 

By restricting Ao and A1 to H0 we have a HSR of (XN )NeZ• Because 

dim(Ho) ::; No, 

Theorem 5.1 follows. 
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Remark. Analogously to the Lemma we have 

and we obtain that 

Hi :=sp{x,A1x,Aix, ... ,Af0 - 1x} 

is invariant under Ao and A 1 • 

Therefore.we can assume that 

Examples. We know that the following minimal zero-cylinders of two-block-
factors exist: [101], [010], [IN]:= [11 ... l], [ON] := [00 ... OJ. ---- ..____.. N times N times 

Let Ai;J11 := [O, y'a ] x [O, y'a ] and 

N-1 

A[;t,1 := U ((is,(i+l)s] x [O,is])U([Ns,l] x [O,Ns]) 
i=l 

for N~l $ s < it· 
By taking f equal to the indicator-function of these sets, it is easy to check that 
XN := f(YN, YN+i) defines a two-block-factor (of the i.i.d. sequence (YN )NeZ, each 
YN uniformly distributed over the unit inverval) with the corresponding minimal 
zero-cylinders [101] and [lN]. By replacing f by 1 - f we obtain [010] and [ON] as 
minimal zero-cylinder. 
In [V.l] is proved that in these two-block-factors the two-correlation is extremal; 
i.e. the probability of a run of two ones is extremal over the class of two-block-
factors with fixed probability of a one. 
In [G.K.V.] it is shown that the maximal two-correlation over the class of one-
dependent processes is uniquely attained in two-block-factors corresponding with 
the set Atj11 and its complement in the unit square. 
If a is the fixed probability of a one and O :5 a :5 1/4 or 1/4 < a :5 1/3 then the 
minimal two-correlation over the class of one-dependent processes is attained in 
the two-block-factors corresponding with A[;;1 and A[;/11• 
The counterexamples in [A.G.K.V.] of one-dependent processes that are not two-
block-factors have minimal zero-cylinder [111]. 
We show that minimal zero-cylinders with length :5 7 are symmetric (in the O - 1 
valued case). 

Theorem 5.2 Let (XN)NeZ be a one-dependent process over {O,l}z. Assume 
that [c1 ••• cN0 ] is a minimal zero-cylinder with length No, 

1. If No 2 then €1 = cN0 
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2. If No 4 then e2 = eN0-1 

3. If No 6 then e3 = eN0-2 

4. If No :5 7 then e; = eNo+i-i for all i 

Proof. Assume tha.t No~ 2 a.nd tha.t e:1 -::/: eNo• Then 

P [X1 = e1, X2 = e2, • .. , XNo-1 = eN0 -1] P [XNo+i = e2, • • •, X2N0 -1 = eNo] = 

which implies tha.t there is a. zero-cylinder with length N0 -1. Contra.diction. This 
proves (1). 
Assume tha.t No~ 4. We ha.ve e1 = eNo• Assume tha.t e2-::/: eN0 -1, then if e1-::/: e2 
we ha.ve 

which implies that there is a zero-cylinder with length No -1 or No - 2. If e1 = e2 
then 
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which implies that there is a zero-cylinder with length No - 1 or No - 2. Contra-
diction. This proves (2). 
Assume No 2:: 6. We have e1 = eN0 and e2 = eNo-I• IT e1 = e2 = e3 -::/- eN0 -2 then 
we have 

= o+o = o, 
which implies that there is a zero-cylinder with length No - 3 or No - 1. The other 
cases of (3) go analogously and are left as an exercise to the reader. (4) follows 
immediately from (1), (2) and (3). D · D 

We conjecture that all minimal zero-cylinders (e1 ... eN0 ] are symmetric; i.e. e; = 
eNo+i-i for all i. However not all symmetric cylinders appear as minimal zero-
cylinder. 
First we show, without using any HSR-techniques, that (1001] can not be the 
minimal zero-cylinder of a O - 1 valued two-block-factor. 
Then we will show that a 0 - 1 valued one-dependent process with [1001] as 
minimal zero-cylinder has a 2-dimensional Hilbert Space Representation. But 
then by Theorem 4.3 this process should be a two-block-factor, and we conclude 
that (1001] can not be a minimal zero-cylinder of a O - 1 valued one-dependent 
process. 

Theorem 5.3 Let (XN)NeZ be a 0-1 valued two-block-factor of an i.i.d. sequence 
(YN )NeZ• Then (1001] can not be a minimal zero-cylinder of (XN )NeZ· 

Proof. Let (YN )NeZ be an i.i.d. sequence of random variables that are uniformly 
distributed over the unit interval. 
Let AC [0, 1] x (0, 1] be a Lebesgue-measurable set such that 

{NEZ). 

We define the functions V and H on the unit interval 

V(x) := P[(x,Yi) EA] ,x E (0,1] 

H(y) := P[(Yi,y) EA] ,y E (0,1] 

B1 := {x E [0,1]: V(x) = 0} 
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B2 := {y E [O, 1]: H(y) = O}. 

Finally we define the sets L(y). 

L(y) ::::: {z E [0,1]: (y,z) EA} ,YE [0,1]. 

Let ). andµ be Lebesgue-measure on the unit interval and the unit square respec-
tively. 
We will identify sets V and W if ).(VI:::. W) = 0 and we will identify functions that 
are equal almost everywhere. 
Assume that >.(B1 n B2 ) > 0, then 

0 = (1001] ::;:: P [(Yo, Yi) EA, (Yi, Yi) ¢ A, (Ya,½) ft A,(½, Y.i) EA] 2: 

2:: r r r r r 1A(Yo, Yi). h•(Yi, Ya). 1A•(Ya, ½)· 
}Bf f!,(Yo) JB,nB2 }Bf JL(Ys) 

Consider the fact that >.(Bf) > 0 (because if ).(Bf) ::;:: 0, then >.(B1) = 1 :::} 
B1 = [0, 1] = {y : P[(y, Y.i) E A]= 0} =>µ(A)= 0, contradiction). 
Further; if Yo E Bf= {y: P[(y,Yi) EA]> 0} then for L(Yo) = {z: (Y0 ,z) EA} 
we have ).(L(Yo)) > 0. 
Further >.(B1nB2 ) > 0 (as we assumed) and >.(Bf)> 0, and >.(L(Y3)) > 0 (because 
½ E Bf). 
So, we integrate over a set of strictly positive measure. 
Further IA(Yo, Yi)= 1 because Yi E L(Yo); 
lAc(Yi, Ya) = 1 because Ya E B1 n B2 C B2 ; 

IA 0 (Y2, ½) = 1 because Ya E B1 n B2 C B1; 
IA(Y3, Y.i) = 1 because Y.i E L(l:';). 
This implies that the integrand = 1 => 

o = r1001i 2:: r r r r r dY.id½dYadYidYo > o 
j Bf jL(Yo) jB1nB2 }Bf jL(Ys) 

Contradiction, so we conclude that 

Now we have 

0 = [1001] 2: 

f 1 f f 1 lA(Yo, Yi)lA•(Yi, Y2)lAc(Y2, Ys)JA(½, Y4)dY.idY3d}'idYidYo 
}Bf L(Yo) }B2 }B2 L(Ya) 
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Once more we have 

.X(BD > 0, 

.X(L(Yo)) > 0 for Yo E Bt, 

(If .X(B2 ) = 0 then H(Yi) > 0 for all Yi- Because [001] > 0 this would imply that 

[1001] = J J J J H(Yi)lA•(½, ½)IA•(Y2, Ya)h(Ya, Y.i)dY.idY3d};dYi > 0. 

Contradiction.) 

so, we integrate over a set of strictly positive measure, and 

IA(Yo, Yi) = 1 because Yi E L(Yo), 

h(Ya, Y.i) = 1 because Y.i E L(Ya), 

=> 0 = [1001] [ { [ [ [ dY.idYad½dYidYo > 0 
}Bf JL(Yo) }B2 }B2 JL(Ya) 

Contradiction. This proves Theorem 5.3. D 

Theorem 5.4 Let (XN )NeZ be a one-dependent process over {0, l}z. 
Then [1001] can not be a minimal zero-cylinder of (XN)NeZ· 

Proof. Let (H,x,x,A0,A1) be a HSRof (XN)NeZ· 

D 

The proof of Theorem 5.1 (last remark before the Lemma) shows that we can 
assume that A1A 0 A 0 A1 = 0. The Remark after Theorem 5.1 shows that we can 
assume that 

H = sp{x,Aox,Aix,Aix}= 
= sp{x,A1x,A~x,A~x}. 

We have A0 A1v = A 0 < v; x > x -Aiv; 

AoAoA1 v < v; x > Aix - Aiv; 
A1AoAoA1v = < v;x >< A~x;x > x- < v;x > Aix- < A~v;x > x + Aiv = 0. 
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This implies that (for all v E H) 

~v = < ~v;x > x- < v;x >< ~x;x > x+ < v;x > A~x. 

So 

We have 

~x = (< ~x;x > - < ~x;x >)x+~x = 

= (P [X1 = X2 = X3 = O] - P [X1 = X2 = O])x + ~x = 
= -P [X1 = X2 = 0, X3 = 1] x + ~x 

Because [1001] is minimal zero-cylinder P (X1 = X2 = 0, X3 = 1] f= 0. This implies 
that 

Agx - ~x _{ 3 4 } 
x = p [X1 = X2 = 0, X3 = 1] E sp Aox, Aox . 

So we have 

H = sp {x,Aox,~x,~x} C 
C sp {Aox,~x,~x,A~x} = 
= Aosp {x,Aox,~x,Agx} = 
= Ao(H). 

So Ao(H) = H and ~(H) = II. 
But AiH C sp { x, Agx} and we conclude that dim( H) :5 2. 

In Theorem 4.3 we proved that (XN )NeZ is a two-block-factor of an i.i.d. sequence 
if (XN )Nez has a HSR with dimension :5 2. 
Now Theorem 5.3 finishes the proof. 
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6 Generalization to m-dependent processes. 
In this section we generalize the concept of Hilbert space representation to m-
dependent processes. We will prove that all m-dependent processes admit a rep-
resentation. 

Let H be a real Hilbert space, let K 2, m 2 be integers, let A1 , ... , AK : 
H -t H be linear, continuous operators, let x, y E H be two fixed vectors with 
< x;y > = 1. 
We assume that 

for all h EH, so (A1 + ... + AKr has rank one. 
Further we assume that 

for all N 0, i1, ... ,iN E {l, ... ,K}. 
Also we assume that 

and 

Under this conditions we claim that 

P[X1 = i1, ... ,XN = iN] := < A;l ... A;Ny; X > 

(5) 

(6) 

(7) 

(8) 

defines an m-dependent probability measure on {1, ... , K}z. We call (H, x, y, A1 , ... , AK) 
the Hilbert space representation of them-dependent process (XN )NEZ· 
We have 

K L P[X1 = i1, ... , XN = iN] = 
iN=l 

K 

= L < A;1 ... A;Ny;x > = 
iN=l 
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and 

and 

and 

K 

l:P[X1 =i1,---,XN=iN]= 
i1=l 

K 

= L <A,, ... A;Ny;x > = < (A1 + ... +Ax)A,2 •• • A,Ny;x > = 
i1=l 

= < A;2 ... A;Ny;(A;:+ ... +AjJx > = 
= < A,2 ••• A,Ny;x > = P[X2 = i2, ... ,XN = iN]-

K L P[X1 = i] = < (A1 + ... + Ax)y; x > = < y; x >= 1 
i=l 

K L P[X1 = i1,,,,, XN = iN, XN+I = j1, • • •, XN+m = im, XN+m+I = iN+m+I, · · ·, 
ji,, .. ,im=l 

XN+m+t = iN+m+tJ = 
= < A,1 • • • A;N(A1 + • • • + AKr A;N+rn+1 • • • A,N+rn+tYi X > = 
= < A;, · · · A;N < A;N+rn+I · · · A;N+rn+tY; X > y; X > = 
= < A;l · · · A;Ny; X > < A;N+rn+l • • · A;N+rn+tYi X > = 
= P[X1 = i1,,,., XN = iN] • P[XN+m+I = iN+m+I,,,,, XN+m+t = iN+m+tJ 

for all N, t EN and all i1, ... , iN, iN+m+I, ... , iN+m+t E {l, ... , K}. 
We conclude that (H,x,y,A1 , ... ,AK) represents an m-dependent process over 
{1, ... , K)z. 

We generalize Theorem 3.1 tom-dependent processes. 

Theorem 6.1 Let (XN )NeZ be an m-dependent process over {1, ... , K}z for some 
m 2 2(m EN). 
Let Ho be a Hilbert space, let x E Ho be a vector with< x; x >= 1, let A1, ... , AK : 
Ho -+ Ho be linear, continuous operators such that ( A1 + ... + AK )x = x. 
Assume that 

< A;, ... AiNx; x > = P[X1 =ii, ... , XN = iN] 

for all NE N and all i1 , ... ,iN E {1, ... ,K}. 
Then there exists a closed subspace H C Ho with x E H, such that (H, x, x, PA1, ••• , PAK) 
is a HSR of (XN )NeZ, where P : Ho -+ H is the orthogonal projection from 
Ho-+ H. 
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Proof. We define the collection 1i of those closed subspaces H of Ho with the 
properties that x E H and that for the orthogonal projection P : H0 -+ H holds 

<PA;, ... PA;Nx;x > = P[X1 = i1,,,.,XN = iN] 

for all NE N and all i1, ... ,iN E {1, ... ,K}. 
We define a partial ordering on 1i by 

H1 :5 H2 if H1 :) H2. 

Note that 1i 1 0 because Ho E H. 

Just as in the proof of Theorem 3.1 we claim that every totally ordered subset of 
1i has an upper bound. 
The proof of this claim is exactly the same as in the proof of Theorem 3.1. Now 
Zorn's Lemma implies the existence of a maximal element H E H. Let P : Ho -+ H 
be the orthogonal projection from Ho on H. Consider the restricted operators 
P A1 IH, ... , PAK IH: H -+ H. Let B; : H -+ H be the adjoints of these operators 
(i = 1, ... , K). Just as in the proof of Theorem 3.1 we have that 

H = sp{Bi, ... Birx: r 2:: O,ji, ... ,jr E {1, ... , K}} 

and 

H = sp{PA;, ... PA;Nx: N 2:: 0, ii, ... , iN E {1, ... , K}}. 

We claim that (H, x, x, PAi, ... , PAK) is a HSR of the m-dependent process 
(XN)NeZ· We have to prove that 
(1) (PA1 + ... + PAK)X = x, 
(2) (B1 + ... +BK)x=xand 
(3) (PA1 + ... + PAKrh = < h;x > x for all h EH. 
(1) holds trivially and (2) and (3) are equivalent to 
(2') < ( B1 + ... + BK )x; h > = < x; h > for all h E H, 
(3') < (PA1 + ... + PAKrh;g > = < h;x > < x;g > for all g,h EH. 

Just as in the proof of Theorem 3.1 it is sufficient to check (2') and (3') for 
h = PA;, ... P A;Nx and g = Bj, ... BjrX. For this h and g we have: 

< (B1 + ... +BK )x; h > = < (B1 + ... +BK )x; PA;, ... P A;Nx > = 

= < x; (PA1 + ... + PAK)PA;, ... PA;Nx > = 
K 

= LP[X1 = i,X2 = i1,••·,XN+1 = iN] = 
i=l 
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and 

L P[X-r =jr,••·,X-1 =i1,Xo = so,,,,,Xm-1 = Sm-1, 
SQ, ... ,Bm-1 E{l, ... ,K} 

= < x; B;1 ••• B;.x > < h; x > = < x; g > < h; x > . 

So (2') and (3') hold, thus the claim is proved and the proof of Theorem 6.1 1s 
finished. D 
Now we can generalize Theorem 3.2. 

Theorem 6.2 Let (XN )NEZ be a K-valued m-dependent process (for some K, m E 
NJ. Then there exists a HSR of (XN)NEZ· 

Proof. Let (XN )NEZ be an m-dependent process over {l, ... , K}z. (XN )NEZ 
induces a probability measure P on {1, ... , K}N. We define the Hilbert space 
Ho := L2 ( {l, ... , K}N). Let I E H0 be the function that is identically one. We 
define the operators A1 , ... , AK : Ho - Ho in the same way as in the proof of 
Theorem 3.2. Analogously to that proof we observe that the conditions of Theorem 
6.1 are fulfilled. So Theorem 6.1 implies the existence of a HSR of (XN )NEZ· D D 

Many theorems on one-dependent processes can be generalized to m-dependent 
processes. We generalize the Theorems 3.5, 3.6, 4.1, 4.3 and 4.5. 

Theorem 6.3 Let (XN )NEZ be a K valued m-block-factor of an i.i.d. sequence 
(for some K,m E NJ. Then there exists a HSR of (XN)NEZ with as Hilbert space 
a subspace of £2((0, 1r-1 ). 

Proof. The same as the proof of Theorem 3.5. Observe that the conditions of 
Theorem 6.1 are fulfilled. D D 

Theorem 6.4 Let (H, x, y, A1, ... , AK) be a HSR of an m-dependent process (XN )NEZ· 
Let (YN)NeZ be the reversed process; i.e. YN := X_N(N E Z). 
Then (H,y,x,A;:, ... ,A'k) is a HSR of(YN)NEZ· 
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Proof. This is an easy exercise for the reader. Generalize the proof of Theorem 
3.6 to m-dependent processes. D 

Theorem 6.5 Let (H,x,y, Ai, ... ,AK) be a HSR of an m-dependent process (XN)NeZ• 
Then there exists a vector x0 EH and there exist operators Bi, ... , BK : H-+ H 
such that (H,xo,xo,Bi, .. ,,BK) is a HSR of(XN)NeZ• 

Proof. Generalize the proof of Theorem 4.1 tom-dependent processes. We leave 
this as an exercise for the reader. D 

Theorem 6.6 Let (H, x, y, Ai, ... , AK) be a HSR of an m-dependent process (XN )NeZ· 
(a) If dim(H) = 1, then (XN )NeZ is an i.i.d. sequence. 
(b) If dim(H) = 2, then (XN)NeZ is a two-block-factor of an i.i.d. sequence. 

Proof. (Ai+ ... + AKr has rank one. Because dim(H) :5 2, this implies that 
(Ai+ ... + AK) has rank one. But this means that (H, x, y, Ai, ... , AK) is a HSR 
of a one-dependent process. Now we can apply Theorem 4.3. to prove Theorem 
6.6. D 

Theorem 6. 7 Let (H, x, y, Ai, ... , AK) be a HSR of an m-dependent process (XN )NeZ• 
If the operators Ai, ... , AK commute (i.e. A;A; = A;A;for all i,j), then (XN)NeZ 
is an i.i.d. sequence. 

Proof. The proof is left as an easy exercise for the reader (generalize the proof of 
Theorem 4.5). D 

Remark. Wt: conclude from Theorem 6. 7 that exchangeable m-dependent pro-
cesses are i.i.d. sequences. There are more dependence structures (such as Markov, 
ergodicity, mixing and renewal) that can be translated to properties of operators 
in Hilbert space representations, see [V.4]. 
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7 Conjectures and open problems. 
1. The essential difference between two-block-factors and one-dependent pro-

cesses that are not two-block-factors is determined by the geometry of the 
invariant cone. 
More research is necessary to investigate this. 

2. A O - 1 valued one-dependent process can have no other minimal zero-
cylinders than [101], [010], [lN] and [ON] (NE N). The minimal dimensions 
are 2, 2, N and N respectively. 

3. For any N E N (N 2: 3) there exists a one-dependent process, that is 
not a two-block-factor, with minimal dimension equal to N, and without 
zero-cylinders. 

4. For any N E N (N 2: 3) there exist a one-dependent process, that is not a 
two-block-factor, with minimal dimension equal to N, and with a minimal 
zero-cylinder with length N. 

5. For any N E N (N 2: 1) there exists a two-block-factor with minimal 
dimension equal to N, and without zero-cylinders. 

6. For any N E N (N 2: 1) there exists a two-block-factor with minimal 
dimension equal to N, and with a minimal zero-cylinder with length N. 

7. Under which conditions is a one-dependent Markov process necessarily a 
two-block-factor? 

8. Are one-dependent processes always functions of Markov processes, or even 
functions of one-dependent Markov processes? 

9. Do there exist one-dependent m-block-factors (m 2: 3) that can not be writ-
ten as a two-block-factor? 

10. Is a one-dependent process with an m-dimensional HSR (m 2: 3) always an 
m-block-factor? 

11. Do there exist two-dependent processes that are not two-block-factors of 
one-dependent processes? 
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1. Markov regression and standard representation 

Let X = (Xn)neN be a stochastic, real-valued process. The aim of this section is to 
construct two types of a.s. regression representations of X by an i.i.d. sequence 
( Un). One representation is of the form Xn = fn(X1 , ••• , Xn-i, Un) a.s.; we call this 
representation 'Markov regression' ( on X). A second representation is of the form 
Xn = fn( U1 , ••• , Un) a.s.; we call this regression representation 'standard representa-
tion' (on U). These constructions are the counterpart for autoregressive representa-
tions in time series analysis. Here we obtain a nonlinear r•presentation of Xn of 
the past and of innovations Un (which are independent and not only orthogonal). 

We need a technical proposition about quantile transformations to construct 
standard representations. We write A for the Lebesgue measure and F_( t) := 
lims;, F(s). 
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Proposition 1 (Ferguson, [3, Lemma 1, p. 216]). Let X be a real random variable 
with distribution function F and let Ube independent of X, R(0, 1)-distributed (R(0, 1) 
is the uniform distribution over the interval ( 0, 1)). De.fine for a E ( 0, 1), 

Then 

and 

F(x, a):= P[X < x] + aP[X = x]. 

F( X, U) R( 0, 1) ( is equality in distribution), 

p- 1( U) X (F- 1(t) := inf{s: F(s) ;;et}) 

X = F- 1(F(X, U)) a.s. 

(1) 

(2) 

(3) 

(4) 

Since a proof of this result seems to be not easy accessible in the literature, we 
provide a proof of this well-known result. 

Proof. Let D c IR denote the set of discontinuities of F, then 

P[F(X, U) EA] 

=P[F(X, U)EA,XED] 

+ P[F(X, U) EA, XE Dc]P[F(X, U) EA, XE DJ 

= I P[F(x, U) E A]P[X = x] 
XED 

= I P[F_(x)+ U(F(x)- F_(x)) E A](F(x)- F_(x)) 
XED 

= I A(A n (F_(x), F(x)]) (F(x)- F_(x)) 
xED F(x)-F_(x) 

= I A(An(F_(x),F(x)])=A(An.D), 
xcD 

where D := U,cD (F_(x), F(x)]. Further (De is the complement of D) 

P[F(X, U) EA, XE De]= P[F(X) EA, XE De]= A(An De). 

In the proof we used that U and {X = x} are independent for all x E D. We conclude 
that 

P[F(X, U)EA]=A(An.D)+A(AnDc)=A(A) 

and this proves (2). 
From the definition of the pseudo-inverse follows 

P(F- 1( U) ,s; t) = P( U ,s; F(t)) = F(t) = P(X ,s; t) 

which proves (3) and 

{F- 1(F(X, U)),s;t}={F(X, U),s;F(t)}={X,s;t} a.s. 

which proves (4). 
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The a.s. representation in ( 4) has some useful applications in stochastic ordering 
[I I]. If Fis continuous, then F(X, U) = F(X). 

We next consider the multivariate generalization of Proposition 1. Let X = 
(X1 , ••• , X,J be a random vector in IR 11 and let F 1, F 211 , ... , F1111 , ... ,n-i denote the 
first marginal distribution function respectively the conditional distribution function 
of Xk given X 1, ••• , Xk-I · Let V1, ... , V,1 be i.i.d. R(O, })-distributed random vari-
ables and define the multivariate quantile transform 

Y1 := F1 1( Vi), 
(5) 

For this transformation see [8, 9, IO] and [11]. Note that Y=(Y,, ... , Y11 ) is 
of the form f( V) with V = (Vi, ... , V11 ), where the ith component j;( V) = 
f;(Vi, ... , V,). 

Proposition 2. (a) X Y. 
(b) There exists an i.i.d. R(O, })-sequence U=(U;)h;~ 11 such that 

X = f( U) a.s., as defined above. (6) 

Proof. (a) The proof of (a) in the case n = 2 is as follows: 

P( Yi ,,,:; a, Y2 ,,,:; b) = P( Yi ,,,:; a, V2 ,,,:; F211 ( b I Y,)) 

= f
00

P(V2 ,s;F211(bjt))dF1(t) 

= ra) F211(b It) dF,(t) 

The general case follows by induction. 
(b) Since f( V) X we obtain from Proposition I in [7] the existence of a measure 

preserving transformation cp : ( !2, .r) ( !2, .r) such that 

X = f( U) a.s. (7) 

where U; = V, 0 cp, 1,,,:: i,,,:: n, are again i.i.d. R(O, })-distributed random variables. D 

Skorohod (1976) proved for random variables X, Y with values in Borel spaces 
and a given R(O, })-distributed random variable V independent of X, Y the existence 
of a random variable U and measurable functions f, g such that 

X = f( Y, U) a.s., 

U = g(X, Y, V) is independent of Y. 
(8) 

The following theorem extends this result to stochastic processes. Furthermore, in 
the case of real stochastic processes we obtain an explicit representation. 
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Let X = (X1 , X 2 , •• • ) be a real valued stochastic process and let V = ( V1 , V2 , ••• ) 

be an i.i.d. sequence of R(0, 1)-distributed random variables, V independent of X. 
Define 

U1 := F1(X1, V1) (F1 as in (1), F1 distribution function of X 1), 

Z1 := F~ 1( U1), 

and let for k;;;,: 2, 

Fkll, ... ,k-1 (x, VI Z1, •.,, zk-1) :=_ P(Xk <XI Z1 = Z1, • • •, zk-1 = Zk-1) 

+ vP(Xk = X IZ1 = Z1, ... , zk-1 = Zk-1), 

uk := ftk11 .... ,k-1(Xk, vk IZ1, ... , zk-1), 

(9) 

(10) 

where Fkli .... ,k-i is the conditional distribution function of Xk given X1, ... , Xk-1 • 

Theorem 3. Let Z = (Z1 , Z 2 , ••• ) then: 
(a) Z=Xa.s. 
(b) U = ( U1, U2 , ••• ) is an i.i.d. R(0, 1)-distributed random sequence. 
(c) Uk and (X1 , ••• , Xk_ 1) are independent. 

We call the representation X 1 = f 1( U1), Xk = J,_(X1, ... , Xk-1, Uk) in (9), (10), 
Markov-regression representation of X. 

Proof. The equality Z 1 = X 1 follows from (4). We continue by induction on k. 
Assume that (Z1 , ••• , Zd = (X1 , ••• , Xd a.s. Since pW<+,lz,=z" .... z, ==,l is R(0, 1)-
distributed for all z1 , ••• , zk we have that Uk+i and (Z1 , ••• , Zk) = (X1 , ••• , Xk) a.s. 
are independent. 

From 

{Zk+I,;;; t} = {F;;l111, ... ,k( Uk+! I Z1' ... , Zd,;;; t} 

= { uk+1,;;; Fk+111 ..... k(tlZ1, ... , Zd} 

= {A+111, ... ,k(Xk+I' Vk+I IZ1' ... 'Zd,;;; Fk+111, ... ,k(tlZ1, ... 'Zd} 

= {Xk+1,;;; t} a.s. 

we conclude that Xk+i = Zk+ 1 a.s. Because Uk+ 1 and (X1 , ••• , Xd are independent, 
we have that uk+I and U1, ... , Uk (functions of X1, ... , xk, Vi, ... , vk) are 
independent. 

The existence of a Markov regression representation for processes with values in 
Borel spaces is immediate from Theorem 3 (but is nonconstructive). 
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In the case that (X11 ) 11 EN is an m-Markov chain (for some m EN), i.e. the condi-
tional distribution of X,,+m+i given the past {X1 , ••• , Xm+,J only depends on 
{X11 + 1 , ••• , X,,+,,,} the Markov regression representation in Theorem 3 specializes to: 

Corollary 4. Let X = (X,,) be an m-Markov chain. Then there exists an i.i.d. sequence 
U = ( U1 , U2 , ••• ) of R( 0, 1 )-distributed random variables and a sequence of measur-
able functions (f,,) such that 

U,, independent of (X1 , •.• , X 11 _1), 
(11) 

For the case of a Markov chain ( m = 1 ), see [ 6, p. 155]. By Theorem 3 the method 
of pathwise constructions of stochastic models is t,quivalent to constructions in 
distribution. One can characterize further distributional properties as in Corollary 
4. E.g. if (X,,) is a Markov chain and a martingale, then X,, has a representation 
X,, =f,,(X11 _ 1 , U11 ) with S:i.f.,(x, u) du= x for all x. 

The following alternative construction of a standardization sequence U = 
( U 1 , U2 , ••. ) of X = (X1 , X 2 , ••• ) will be of interest in connection with m-dependent 
sequences. This i.i.d. sequence U is a.s. equal to the sequence U in Theorem 3. We 
will explain this in Remark 16. 

Let V = ( V1 , V2 , •• • ) be an i.i.d. R(0, 1 )-distributed sequence independent of 
X = (X1 , X 2 , ••• ). Let 0 1 be the distribution function of X 1 and define 

U1 := G1(X1, Vi), 

uk := Gk11 .. ,k-1(Xk, vkj U1, ... , uk-1) (k? 2), 
(12) 

where Gkli, ... ,1<-i is the conditional distribution function of Xk given ( U1 , ••• , Uk-i ). 
The functions G are associated to G as in the proof of Theorem 3. Similarly to the 
proof of Theorem 3 we obtain: 

Theorem 5. (a) (Uk) is an i.i.d. R(0, })-sequence. 

(b) X 1 = G~'( U1), 

We call the representation in ( 13) the standard representation of X. 
If for some m EN, 

(13) 

i.e. the conditional distribution of Xk+m+i given U1 , ••• , Uk+m depends only on 
Uk+i, ... , Uk+n,, we say that X has m-Markov regression on U. 

Corollary 6. ff X has m-Markov regression on U, then Xis a generalized ( m + 1 )-block 
factor, i.e. (X,,) has the representation 

X" =_{,,( U11 _m, ••• , U,,_ 1 , U11 ) a.s., n? m + 1. (15) 
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An interesting problem in probability theory is to find simple sufficient conditions 
for the existence of an ( m + 1 )-block factor representation as in (15) ( cf. [ 13]). 

2. Markov chains and m-dependence 

A process (X11 ) is called m-dependent (m EN) if (Xn)n<; and (Xn)n;e,i+m are indepen-
dent for all t EN. It is trivial that a generalized ( m + 1 )-block factor (X,,) = 
(f,,( U11 , U,,+ 1 , ••• , U,,+m)) a.s. of an i.i.d. sequence ( Un) ism-dependent. 

For quite a time it was conjectured that every stationary m-dependent process 
has a representation as (m + 1)-block factor (.f( Un, ... , Un+m)) (here f,, is indepen-
dent of n !). In [2] a two-parameter family of counterexamples is given of stationary 
one-dependent processes, assuming only two values, which do not have a two-block 
factor representation (.f( U,,, Un+1)) of an i.i.d. sequence ( U,, ). It was shown in [ 4] 
that certain extremal 0-1 valued one-dependent stationary processes have a two-
block factor representation while in [ 1] it was shown that a stationary one-dependent 
Markov chain with not more than four states has a two-block factor representation. 
There is a counterexample for five states. 

In addition to the results on Markov chains in [ l] it is proved that one-dependent 
renewal processes are two-block factors. It will be shown next that a symmetry 
condition implies that one-dependent Markov chains are already independent. 

Proposition 7. Let (Xn) be a stationary, one-dependent 0-1 valued Markov chain. 
Then ( X,,) is an i. i.d. sequence. 

Proof. We use the short notation 

From [OJ= [00] + [01] = [00] + [10] follows that [01] = [10]. In our formulas we use 
the convention 0/0 = 0. By the stationarity, the one-dependence and the Markov 
property we have 

o _, [a"a;ad [a;ad [aka;] 2 

[ad-= L- [aka;a,J = L [ ·] [aka;]= I:-[-.-] [aka;]= I:-[-.]-. , , aka, , a, , a, 

Thus we obtain 

{ [aka;] 2 
7 } =; ~-2[ad[aka;]+[ad-[a;] 

= [a,J 2 -2[ad 2 +[a,J 2 = 0. 

This implies [a,,a;]/J["a] = [a,JJ[a] for all a;ak which is equivalent to [aka;]= 
[a,J[a;]. Combined with the Markov property this implies independence. D 
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Remark 8. From the proof it follows that the statement of the proposition also holds 
for one-dependent Markov chains with countable state space under the condition 

[a1a 2]=[a2a 1] for all a 1,a2. 

For any two-valued stationary one-dependent process we have a much stronger 
reversibility property: 

Proposition 9. Let (Xn)n be a stationary one-dependent 0-1 valued process. Then 

[a1 · ··an]= [an· · · a 1] for all n and all a 1 , ••• , an E {0, 1}. 

Proof. For n=2 the statement follows from [0]=[00]+[0l]=[00]+[lO], hence 
[01] = [10] as in the proof of Proposition 7. We use induction on n. We write 

[lm]:=[1···1] . .__,__, 
m times 

Assume that the statement holds for n, then for n + 1 we denote the number of 
zeroes in w=a 1 • • • anan+i by no(w). We continue by induction on n0(w). 

If no( w) = 0 then the statement is trivial. Assume that the statement holds for n0 k. 
If n0 ( w) = k + 1 > 0 then w = 1 mov for some m ;-;,, 0. Then 

[a1 · · · anan+1J = [lm0v] = [lm][v]-[1 m+lv] 

=[lm][am+2 ... an+1J-[1m+lam+2 ... an+tl 

=[an+!''' am+2J[lm)-[an+I '' 'am+2lm+I] 

which proves the proposition. D 

The statement of Proposition 9 does not hold for one-dependent processes that 
assume three or more values. If the condition [a1a 2 ] = [a2a 1] for all a 1 , a 2 does not 
hold, then the statement of Proposition 7 is no longer valid as the following example 
shows. 

Example 1. Let (Un)" be a Bernoulli sequence with P[ Un = 1] = p = 1 - P[ U,, = 0] 
for some p E (0, 1). Define the two-block factor (X,,),, by 

It is easily checked that (Xn )" is a one-dependent Markov chain with state space 
{0, 1, 2, 3} and transition matrix 

(
l~p l~p ~) 
1-p p 0 0 

0 0 1-p p 

and apparently (X,,),, is not an i.i.d. sequence. 
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Undet a-symmetry condition we prove a general version of Proposition 7. 

Proposition 10. Let (Xn)n be a stationary, one-dependent real Markov chain and 
assume that 

(16) 

Then (X,,)" is an i.i.d. sequence. 

Proof. Let f: (0, 1) be one to · one measurable, then Yn := f(X,,) also 
is a one-dependent Markov chain and (1EY1)2=1E(Y1 Y.1)=1E[IE(Y1 Y3 I Y2)]= 
IE[IE( Y1 I Y2 )1E( Y3 I Y2)]. Since E[ Y, I Y2 ] = g( Y2 ) for a measurable g we can continue 
by using the stationarity and (16), E(g( Y2)E[ Y3 I Y2 ]) = Eg( Y2) Y3 = Eg( Y1) Y2 = 
Eg( Y2) Y1 = E(g( Y2)E[ Y1 I Y2]) = EZ 2, where Z = E[ Y1 I Y2]. Therefore IEZ = IE Y1 
and (IEZ)2 = IE(Z2 ) imply that Z = IEZ a.s., i.e. 

1E(f(X1) lf(X2) = t) = 1Ef(X1) [Pnx21 a.s.] 

equivalently 

Since this holds for all f we obtain independence. 

We leave it as an exercise to the reader to prove that the assumption p<x,.xi, = 
p<Xi,x,> is equivalent to reversibility of the Markov chain, i.e. ptx" .... x.,> = PCx.,, ... ,x,> 
for all n. Of course X 11 could take also values in a Borel space. By a modification 
of the constructions in section one we next show that one-dependent Markov chains 
have a three-block factor representation. 

Theorem 11. Let (X11 )" be a real Markov chain. Then there exists an R(O, 1)-sequence 
( U")" and a sequence of functions g" such that U11 is independent of 
x., ... , Xn-1, Xn+I, ... and 

If (X11 ) 11 is additionally one-dependent, then there exists an independent sequence ( Y11 ) 11 

and a sequence of functions Un) n such that X11 is a three-block factor of ( Yn) n, 

Proof. Let F, be the distribution function of X 1 and let Fnln-i, 11 +1 (n;,,, 2) be the 
conditional distribution function of Xn given x,,_., Xn+I • Define u. := F.(x.' v.) 
and (n;s,,2) Un:=Fnln-i,11 +1((Xn, Vn)IX11 _ 1,Xn+1), where (Vn) is an i.i.d. R(0,1)-
sequence independent of (X,,)n-
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Because ( Un I x,,_l = Xn-1, X,,+1 = Xn+l) is R(O, !)-distributed for every Xn-1, Xn+l, 

the Markov property implies that U,, is independent of (X1 , ... , X,,_ 1 , X,,+ 1 , ... ). 

Analogously to Theorem 3 we have 

Define Y1 := X 1 , Y,1 := (X2,,_ 1 , U211 _2) (n 2) and we obtain 

n:;,,, 1. 

If (X,,) is one-dependent, then ( Y,,),, is an independent sequence. We can make a 
decent three-block factor out of this sequence by taking some i.i.d. R( 0, })-sequence 
(TN) N that is independent of X, Y and U. Define tl.e process (ZN) N by 

It is trivial that 

for measurable functions hN. 

Remark 12. From the last proof follows that every one-dependent Markov sequence 
of length 3 is a two-block factor of an i.i.d. sequence. 

3. Standard representation and m-dependence 

In this section we want to prove a partial converse of Corollary 6, namely if (under 
some assumptions) (X,,) has an (rn + 1)-block factor representation, then (X,,) has 
m-Markov regression on the standard representation U in (12). In this way we 
obtain a constructive method to check the possibility of an (rn + 1)-block factor 
representation for some subclasses of m-dependent sequences. This also justifies 
the notion of standard representation for (12), (13) and implies that the standardiz-
ation U in ( 12) is the right standardization for the ( rn + 1)-block factor representation 
problem. We shall deal explicitly with the case rn = 1. We begin with the following 
example. 

Example 2. Let V = ( V,1 ),, 0 N be an i.i.d. R(O, 1)-distributed sequence and define 
X 1 = Vi, X,,= V,1 _ 1 +V,1 (n:;,,,2). Then (X,,),,cN has a two-block factor represen-
tation on the standardization ( vn) neN • We consider the standardization ( u,,)" 
of (12). Obviously U1 = X 1 = V1. Furthermore, G211(x, v I v1) = P[X2 ,ec; x I V1 = v1] = 
P[V2 ,ec;x-v1]=x-v 1 , v1 ,ec;x,ec;v 1 +l. So U2 :=G2 11(X2 , V2 jU1)=X2 -V1 = V2 • By 
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induction we obtain in a similar way Un= Vn Vn, i.e. our standardi:aation (12) 
produces the right standardization leading to the two-block-factor representation 
Xi= Vi, Xn = Vn-i + Vn (n;;;, 2). 

Generalizing this example, we say that f 1( V1),fi( V1, V2),f1 ( V2, V3), ... is a 
monotone two-block factor, if f 1, f; ( v, ·) are monotonically nondecreasing for all i, v. 

Obviously the standard representation ( 13) has a monotonicity property as defined 
here; so this assumption is necessary if the two-block factor representation is identical 
to the standard representation. 

Theorem 13. Assume that X 1 = f 1( Vi) a.s., Xk = h( Vk-i, Vk) a.s. has a monotone 
two-block factor representation and assume that all ( conditional) distribution functions 
Gi, Gkli .... ,k-t in (13) are continuous, then the standardization U in (12) is identical 
to V and the standard representation ( 13) gives the two-block factor representation. 

Proof. Since G 1 = Gi and Gkli, ... ,k-t = Gklt, ... ,k-t we obtain from (12), (13), 

Ui = Gi(X1), 

where 

and, therefore, 

where 

Ui = g1 ° f1( Vi)= Vi a.s. 

U2= G211(X2I Vi), 

G21i(X I V1) = P(f2( Vi, V2) ,o;;;; XI V1 = Vi) 

= P(fi(v1, V2) :o;;;;x) = P( V2:o;;;; gi(v1, x)) 

= gi(V1, X) (gi(V1,.) = r;i(V1, ')), 

Therefore, 

U2 = gi(VI ,Ji( Vi, V2)) = V2, 

G31dxl Vi, V2) = P(h( V2, V3):,;;;; xi Vi= Vi, V2 = V2) 

=P(J;(v2, V3):o;;;;x)=g3(v2,x) 

implying that 

U3 = g3( V2J3( V2, V3)) = V3 a.s. 

The general case now follows from induction. So we obtain that our standardization 
yields the right standardization for the two-block factor representation, which is 
obtained by (13), since obviously using U = V a.s. 

Gk11 .... ,k-i( · I U1, ... , uk-1) = Gk1i ..... k-i< · I Vi, ... , vk-i) 

= oklk-1( · I vk-i). 
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If the conditional distribution functions Gkli, ... ,k-i are not continuous, it is not 
possible to reconstruct ( V;) from X = (X;). We next show that the standardization 
(12), (13) can be applied to a version X of X. 

Theorem 14. If X has a monotone two-block factor representation X = f( V) a.s., then 
there exists an i.i.d. R(0, 1)-sequence ( 0) = ( 0;) such that the standard representation 
of X := f( 0) reproduces O and X = f( 0). 

Proof. Let f,, fk ( vk-t, ·) be monotonically nondecreasing for all k, vk- i with X 1 = 
f,( V1), xk = fk( vk-,, Vd, k-;;;. 2. 

Let ( V;) be an i.i.d. R(0, 1 )-distributed sequence independent of ( V;) and consider 
the standard representation (12), with 0, := G1(X1 , ¥1), where 

G,(x, a)= P(X, <x)+aP(X, =x) 

= P(f,( V,) < x)+ aP(f,( V1) = x) 

= P( V, <f11(x))+ aP( V, Ef11{x}) 

= f 11(x) + aA (f11{x}); 

f;-'(x) = inf{y: f, (y) ?I< x }, f 11{x} = {y: f, (y) = x }. 
Therefore 

0, = f 11 0 f,( V1) + V1A(f11{f1( V,)}) = f 11(X1) + V1A(f11{X1}). (17) 

Define x;:=f1(01)=X1,x;:=fz(01 , V2) then (01 , V2 , V:,, ... ) are i.i.d., R(0, 1)-
distributed and 

x(') := (x;, x;, x3, x4, ... ) g, (X,, X2, x3, x4, ... ) = x. 
In the next step consider 

G211(x, a I ui) = P(X;<xl 0, = u,)+ aP(X; = xi 0, = u,) 

=P(fz(u 1 , V2)<x)+aP(fz(u,, V2)=x) 

= P( V2 <f21(u 1 , x)) + aP( V2 E {f21(u 1 , x)}) 

= f 21(u 1 , x) + a,\ ({f21(u 1 , x)}) 

the generalized inverse is taken w.r.t. the second component. Then our standard 
construction gives 

02 := O21,((X;, ¥2) I 0,) 
=f21(01J2(0,, V2))+ V2A({f-;1(0,,Jz(01, V2)}) 

= f 21( 0,, X~)+ V2A({f21( 0,, xm). (18) 

Since ( 0,, 02 ) are functions of ( V1 , V,, V2 , V2) the sequence ( 0,, 02, V3 , V4 , ••• ) 

is i.i.d., R(0, 1)-distributed. Define 

X( 2>:=(f,(0,),Jz(0,, 02),J,(02, V3),fiV3, V4), ... ) (19) 

then xr 2 l g, X. 
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We apply our standard construction to the third component x;:=f,(02, V3 ) of 
X( 2 ) to obtain 0 3:= G311,2((X;, i\)I 0 1, 02), where 

G3112(X, GI' I U1' U2) = P(/3( 02, V3) <XI 01 = U1' 02 = U2) 

+aP(/3(02, V3)=xl(01=U1, 02=u2) 

= P( V3 <j"; 1(u2, x)) + aP( V3 E {!; 1 ( U2, x)}). 

Therefore, 

03=f; 1(02J,(02, VJ)+ \\A({f;1(02J3(02, V3))}). 
• - - - d Again ( U1, U2, U3, V4, V5 , V6 •• • ) = (V1 , V2, V3, .. . ) and 

(3) _ - - - - - - d 
X - U1( U1)Ji( U1, U2)J,( U2, UJ,f4( U3, V4),f,( V4, Vs), ... )= X 

and we can continue this process by induction. Thus we obtain that for a version 
X of X we have the two-block-factor representation 

X1 = /1( 01), X2 = /2( 01, 02), X3 = f,( 02, 03), ... , 
where the ( 0;) are obtained from our modified standardization process. 

Next we apply the standardization (12) to X to obtain 

U1:= G1(X1, \i\)=f,1(X1)+ V\A(f,1({X1})) 

= f, 1U1( 01)) + V\A(f, 1{/1( 01)}) 

= .f11(Xi)+ V\A(f11(X1)) = 01, 

i.e. the standardization reproduces 0 1 • In the next step 

U2 = G211((X1' Vi) I U1) = 02, 

U3 = G311,2((X3' V3) I U1' U2) = G311,i(X3, V3) I 01' 02) = 03, 
and so on. 

(20) 

So in general from the two-block factor representation X = f( V) we construct by 
a modification of the standardization procedure a version X of X with a two-block 
factor representation X = .f( 0). The standardization ( 12), applied to this representa-
tion reproduces O i.e. U = 0 and (13), our standard regression representation, 
reproduces this two-block factor representation of X. 

Remark 15. Obviously a result similar to Theorem 13, 14 also holds for (m + 1)-block 
factor representations. While Theorem 13 is constructive, Theorem 14 indicates the 
applicability of the standard construction to a (not known) version of X. 

Remark 16. The i.i.d. sequence U in Theorem 3 is a.s. equal to the i.i.d. 
sequence U in Theorem 5. The proof is essentially the same as the proof of 
Theorem 13. We leave it as an exercise to the reader. The consequence of this 
observation is that the Standard Representation X,, = f,,(X1, ... , X,,_1, U,,) can 
also be obtained by iterating the Markov Regression X,, = g,,( U 1 , ... , U,i); 
1.e. X 2 = fi(X 1, U 2 ) = fi(f1( Ui), U2) = g2( U1, UJ and X3 = f,(X1, X2, U3) = 
f3(f1(U1),.f2U1(U1), U2), U3)=g3(U1, U2, U,) etc. 
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The question now is: how restrictive is the assumption of a monotone two-block 
factor representation? 

Example J. (a) Let (V,} be an i.i.d. R(O, 1)-sequence and consider the two-block 
factor X1 V,, X 2 = V, -. V2 , X3 = V2 - V,, .... We obtain a mQnotone two-block 
factor representation by defining V, = V,, U; := 1 - V;, · i;:;. 2. Then 

X,=U,, X2=U,+U2-l, X3=U3-U2, X4=U4-U,, ... , (21) 

It is easy to check that ( U;) is an i.i.d. R(O, 1),~sequence and we oNain the monotone 
representation (in distribution) X of X, 

- x-.={(U;_ 1 -½)U; if U;_,;;,½, 1.>- 2_ 
X1 = U1, , I I -

(U;-1-2)(1-U;) ifU;-1<2, 
(22) 

(c) If more generally than in (b) X, = I,( V1), X; = f;( v,_,, V;), Iii' and for all 
V;_ 1 , i, f;( V;_ 1 , ·) is either monotonically nondecreasing or nonincreasing (i.e. 
f;( V;_,, ·) 1' for V;_, E V7 and f;( V;-,, · )t for v; 1 E V1) then define a sequence 

, U;:={ 1v~v .. if UHE v:, j;;, 2_ 
if LJ;_ 1 E V1, 

Then ( U;) is an i.i.d. R( 0, I )-sequence and with g 1 =I,, 
( ) { f;(v;-1, V;) if V;-1 E vt, 

g; t); _ I , V; = . _ 
f;(v;- 1 ,l-v;) 1fv;_ 1 EV;, 

the sequence g 1 ( U,), gz( U,, U2), ... has the same distribution as X. Therefore, X 
has a monotone two-block factor representation. 

For the general question we use the following proposition. 

Proposition 17. Let (V,,) be an U.d. R(0,1)-sequence and X,=l,(Yi), Xn= 
In ( vn- l, vn), n ;e 2, a generalized two-block factor. Furthermore, let ( i\) be an i. i. d. 
R(O, })-sequence independent of ( V~). Then there exist an i.i.d., R(O, 1)-sequence ( U,,), 
U11 = h11 ( Vn-,, V,,, V,,) independent of ( V,, ... , V,, , ) and functions (g11 ) such that 

and 

g,, g,,(v,,_,, ·) monotonically nondecreasing Vn, v,,_,. 
(23) 

Proof. Let G 1 be the distribution function of X, and let G,,ln-k, .. n _, be the conditional 
distribution function of xii given V,,-k, ... ' vn-t. Define 

u, := G,(X,' f\), 
(24) 
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Since the conditional distribution of Un given Vi= V1,,,,, vn-1 = Vn-1 is R(O, 1) for 
all V1,,,,, Vn-1 we have that Un is independent of ( V1,,,,, vn-1), Since Uk= 
hk( V1, ... , Vk, i\, ... , Vd, this implies that Un is independent of U1, ... , Un-t. 
From (4) we conclude that 

X1 = G~ 1( U1), Xn = o;;/1, ... ,11-1( Uk I V1' ... ' v,,_1), n;;:: 2. 

Actually, it11 .... ,11-t = G 11 111 - 1 since 

Gn11, .... n-1Cx I V1' ... ' Vn-1) = P(Xn:,;;; XI V1 = V1' ... ' v,,_I = Vn-1) 

= P(fn( vh-1, Vn):,;;; XI V1 = V1,,,,, v,,_I = v,,_1) 

= P(fn(Vn-1, V,,):s:;x) = Gnln-1Cxlvn-1) 

(and similarly for G,,11, ... ,n-1), So we have X,, = G;i'.,-1( U,, I V,,_ 1) = gn( Vn-t, U,,), 
where g,, ( v,, _ 1, ·) is nondecreasing. 

Obviously from (23) we obtain a monotone two-block factor representation if 
V,,_ 1 = h( Un_ 1) for some function h. In general we obtain the following weakened 
monotone representation property. 

Corollary 18. Let ( Wn) be an i.i.d. R(O, 1)-sequence independent of ( V,,), ( Vn) and 
let X 1 = f 1 ( V1), X; = f; ( v; _ i , V;), i ;;:: 2, be a generalized two-block factor. Then there 
exists an R(O, 1)-sequence U; = h;( U;, v;, W;) such that U; is independent of U; and 

I 

Xi= g1( Ui), X2 = gi( Ui, Vi, U2), X3 = gi U2, 0-2, U3), ... , (25) 

where g 1 , g;(u;, ii;,·) are monotonically nondecreasing. 

Proof. From Proposition 17 we have a monotone representation, X 1 == h1 ( U 1 ), Xn = 
hn( V,,_i, U,,), n;;:: 2. We apply (8) to obtain V; = g;( U;, U;) where U; = h;( U;, v;, W;) 
is independent of U;. Together we obtain (25). 

Generally, we can not assert that ( Un, Vn) is independent of (Vi, ... , V,,_ 1) (we 
only have separately the independence of U,, respectively Vn of (Vi, ... , V,,_i)). In 
the case that ( U,,, V,,) is independent of ( V1, ... , V,,_ 1) we obtain that in the 
representation (25) the sequence 

U1 , 0-i, U2, 0-2, ... is an i.i.d. R(O, 1)-sequence. (26) 

Example 4. Let ( V;) be an i.i.d. R(O, })-sequence and let X 1 = ( V1 -½)2, X; = 
v;_ 1 • ( v;-½)2, i;;:: 2 be a generalized two-block-factor. Then the construction of (25) 
is the following: Fx,(x) = 2vx, g1(y) = (½y)2 and Ui = 21 Vi -½I. Let e; be random 
signs defined by e; = + 1 if v; ;;:: ½ and e; = -1, else, and define U; = 2 I v; -½I- Then 
v; = ½+½s;U; (and we can formally write e; as function of an R(O, 1)-random variable 
0-;). Obviously, (s;, U;) is independent of Vi, ... , v;_ 1 and we obtain from (25) the 
weakened monotone representation 

(27) 
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Proposition 19. There exists a generalized two-block factor which does not have a 
monotone two-block factor representation. 

Proof. Let ( V;) be an i.i.d. R(O, 1)-sequence and let X 1 = I V1 -½I, X; = v;_ 1 V;, i 2. 
In order to show that (X;) does not admit a monotone two-block factor representation 
we apply Theorem 13. So we calculate the standardization ( U;) from (12) and we 
show that the standard representation is not a two-block factor. Since G 1 (x) = 
P(X1 ,s: x) = 2x, we obtain U 1 = 21 V1 -½I. Furthermore, 

i.e. 

With some calculations we obtain 

{
l [ X X ] -· rd+ 1'1 

= 2 x(l-ui)u2 (l+u 1)112 

---Al 
2u2 - l 

. J ,f u,,s:--, 
- 1 + U1 

. 1 If U,>--. 
- 1 + U 1 

From this we conclude that (X;) does not have a monotone two-block factor 
representation. 

References 

(I] J. Aaronson, D. Gilat and M. Keane, On the structure of one-dependent Markov shifts, preprint 
(1990). 

(2] J. Aaronson, D. Gilat, M.S. Keane and V. de Valk, An algebraic construction of a class of 
one-dependent processes, Ann. Probab. 17 (1989) 128-143. 

(3] T.S. Ferguson, Mathematical Statistics. A Decision Theoretic Approach (Academic Press, New 
York, 1967). 

( 4] A. Gandolfi, M. Keane and V. de Valk, Extremal two-correlations of two-valued stationary one-
dependent processes, Probab. Theory Rel. Fields 80 (1989) 475-480. 

(5] O.L. Hanson, On the representation problem for stationary stochastic processes with trivial tail 
field, J. Math. Mech. 12 (1963) 293-301. 

(6] D. Pfeiffer, Einfi.ihrung in die Extremwertstatistik (Teubner, Stuttgart, 1989). 
(7] S.T. Rachev arid L. Ri.ischendorf, A transformation property of minimal metrics, Theory Probab. 

Appl. 35 (1990) 131-137. 
(8] M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Statist. 23 (1953) 470-472. 
[9] M. Rosenblatt, Stationary Markov chains and independent random variables, J. Math. Mech. 9 

(I 960) 945-949. 

174 



L. Riischendorf, V. de Valk / Regression representations 

[IO] M. Rosenblatt, Addendum to: ··stationary Markov chains and independent random variables", 
J. Math. Mech. 11 (1962) 317. 

[I I] L. Riischendorf, Stochastically ordered distributions and monotonicity of the QC-function of 
sequential probability ratio tests, Math. Operationsforsch. Statist. Ser. Statist. 12 (1981) 327-338. 

(12] A.V. Skorohod, On a representation of random variables, Theory Probab. Appl. 21 (1976) 628-631. 
(13] V. de Valk, One-dependent processes, dissertation, Delft Univ. of Technology (Delft, 1988). 

175 



AUTHOR INDEX 

Aaronson, J. 3,9,11,12,15-17,19,20, Petz, D. 27 
22,24,31, 79,120,129,145 P6lya, G. 25,52 

Berg, J. van den 15,24 Pra.kasa Raso, B.L.S. 18,27 
Burton, R.M. 5,8,15,16,24 Rachev, S.T. 27,162 
Chung, K.L. 9,24 Richardson, S. 18,25 
Diananda, P.H. 18,24 Robbins, H. 18,26 
Fannes, M. 24 Rosenblatt, M. 27 
Finke, L. 17 ,24,32,39, 72, 79,80 Riischendorf, L. 3,10,11,16, 
Gandolfi, A. 3,16,17,19,21,22,25, 21,24,27,160 

32,39,72,81,121,145 Schulman, L.S. 8,26 
Gilat, D. 3,9,11,12,15-17,19,20, Shergin, V.V. 18,27 

22,24,31,79,120,129,145 Skorohod, A. V. 27,162 
Gotze, F. 15,18,25 Slegers, L. 24 
Goulet, M. 5,8,15,16,24,25 Smorodinsky, M. 18,27 
Guyon, X. 18,25 Ta.ka.hata, H. 18,27 
Haiman, M.G. 18,25,56 Tikhomirov, A.N. 18,27 
Hanson, D.L. 25 Tsirelson, B.S. 18,27 
Hardy, G.H. 25,52 Tuzar, A. 17 ,22,26,27 
Heinrich, L. 15,18,25 Valk, V. de 3,10,11,15-25,27 ,28,31,32, 
Hipp, C. 15,18,25 39,63,79,81,120,129,145 
Hoeffding, W. 18,26 Watson, G.S. 18,28 
Ibragimov, I.A. 15,26 Zygmund, A. 28 
Janson, S. 15,18,26 
Katz, M. 17,20,22,26,32,39,53, 72,80 
Keane, M.S. 3,9,ll,12,15-17,19-22,24, 

25,31,32,39, 79,81,120,129,145 
Khintchine, A. 26 
Linnik, Y.V. 15,26 
Littlewood, J.E. 25,52 
Lorentz, G.G. 26 
Luxemburg, W.A.J. 26 
Matus, F. 15,17,18,22,26 
Meester, R.W.J. 5,8,15,16,24 
Nachtergaele, B. 24 
Newell, G.F. 18,26 
Newman, C.M. 8,26 
O'Brien, G.L. 5,22,26,56,120 
O'Cinneide, C.A. 15,26 
Petrov, V.V. 18,26 

176 



SUBJECT INDEX 

admissible pair 
autocovariance function 

block 
block-factor 

Central Limit Theorem 
Complement Lemma 
conditional distribution function 

60,67 
15 

90 
5,15 

15,18 
33,81 

162,167,170 
cone 17,20,23,121,134,138 
contribution of a square 89 
corner point 96 
critical temperature 4,120 
critical value 4,120 
cross diagonal 34,81 
cylinder 21,121,166 
cylinder function 57,58 
cylinder function, po~itive 57,58 
cylinder, length of a 21,73,121,143 
cylinder set 19,22,73 
cylinder, zero- 21,23,121,143-147,149 

decreasing rearrangement 52 
despotic problem 78 
diagonal 34,81 
dimension, finite 21,23,133,135,140,155 
dimension, minimal 21,23,121,143 
dissociated 18 
distribution function 
disturbed staircase set 

entering region 
entropy 
equimeasurable 
exchangeable 

finitarily isomorphic 
finitary block-factor 

161 
35 

66 
18 
52 

18,140 

18 
24 

finite energy 
fixed point 
f(n)-dependent process 

8 
64 

16,18 

Gaussian process 
generalized inverse 
generalized m-block-factor 
generalized two-block-factor 
graphs 

15 
170 

21,164,165 
172,173 
17,20,79 

Hilbert space representation 17,20,23, 

independent process 

indicator function 
indicator process 
interference 
invariant measure 

Local Limit Theorem 
local reflection lemma 

120-123,151 

4,10,16, 
21,140,165 

18 
19,31,32,57,80 

43 
11 

15,18 
89,98 

Markov process 4,10,15,16, 
22,23,165-167 

Markov regression 21,160 
Markov regression representation 163,171 
matrix, 0-1 17,20,78 
m-block-factor 5,8,15,16,21-24,56, 

120,130,154,165,168 
m-block-factor representation 24,171 
m-dependent process 4,5,15,16,18,20, 

22-24,56,120,151,164,165,168 
measure preserving transformation 

62,162 
mixing process 
m-Markov chain 
m-Markov regression 
monotone two-block-factor 

177 

5,22 
21,164 

21,164,168 
21,24,169, 



170;172'-174 
mm:mtonit t;wo_., qJ9~" fa,i;tpr, 

rewE1se.ttta,tiPll. 168,.16~,171 
m~wing to the diagonal 45,98 
mll!tiva;rj4te quantile transformation 162 

nrcorrela.tion 
S)'.1Dmetrk 

nPrI)l, of/ Ill ma.t,ri~: 

on the, dia,gon11.t 
QJ)Qit. . 
01Jder !ltatj11.J;ics 
orthogonal projection 

pa.i:itr 
per:mutaJ;ion, 
prod;'.11c1t ii.omPI1f1ll:ism 
psewlQ, i».v,e11se 

4.~ tr~f~rm 
4.u~.11,b\l~~k 

random fields 
rEl/1,l'r.a.ngement 
R~ecti:on Le~a 
region of decrease 
region of increase 
regression representation 
remaincl.er 
re,newa.l equation. 
,en,ew<!J; pro,cEli,s 
11en.ew,a.l se~uence, 
resca.l:mg operation 
reXel,'s,eQ. process. 
runs. oi. ones 

s.eco.nd <;:oord;in..a.te 
sectlons 
s.ections, horizontal 
section,s, vertica.l 
s.p;edal process. 
sp~eadi~g out 
staircase set 

22 
88 

1'7;201~,78: 

4,5.,~1i<>,1J>r-24, 
3,l;,56,72, 7!ti.120 

9~; 
19,!?7,6;1; 

22 
125 

6 
8:7,96 

34 
HU 
160 
90 

1;5,18 
49; 
81 
65 
6,5 
:H 

9.@:,100, 
9· 

9,.1$: 
9 

4,~2,5$~:J.2-0 
1~1,lM 

15,l'l~ 19,22 

6 
~9,3.2 
W,32 
~9,.~2 

57 .~9,fi~,13.Q 
90,91 

35. 

standard form 
stand!lfdi~ation 
standard representa.tion 

sta.te BP.ace 
stationary process 
statistical: physics 
stooha.stk or<lE!r 
stocha.stic process 
strictly uq.qer the diagonal 
suJ:>wor,ds 
sitccessor 
syIIIJP.!')trjza,tion 

three-hlo~ -factor 

41 
41,87,96 

21.,24,Hl0,164, 
168-171,174 

5,8,11,16 
4 

4,18 
162 

4 
98 
58 

11.6 
53,88 

167 
transition matrix U,12,15 
tl'iple 116 
twQ:-hlock-factor 9,ll,15,16,.18:-24,56,72, 

79,120,13(),135,138,165,166,172 
twoacorr:elation. 16:-22,~2,72,79,121,145 
twosd~pendent process 24 
two-valu!Jd process 5,10,15-23 

und,ei; the diagonal 
l!D,!i!Xplpred area, 

wind9wing 
words · 

Zori:i;'s Len;un.a 

178 

42,96. 
22,69 

44,88,97 
58 

126 



CWITRACTS 
:9~:r.J. Epema. Surfaces with canonical hyperplane sections. 

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri-
zation'i of dimension in tem1s of negligibility. I 984. 
3 A.J. van der Schaft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoogcnboom. Intertwining functions on compact Lie 
groups. 1984. 
6 A.P.W. BOhm. Datajlow computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984."" 
8 M.H. van Hoom. Algorithms and approximations for queue-
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. 1984. 
IO C:G. van der Laan, N.M. Temme. Calculation of special 
fimctums: the gamma function, the exponential integrals and 
error-like/unctions. 1984. 
11 N.M. van Dijk. Controlled Markov processes; time-
discretization. 1984. 
12 W .H. Hundsdorfer. The numerical solution of nonlinear 
·?jf{/1itial value problems: an analysis of one step methods. 

13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic ,\JJaces and dynamic program-
ming: a measure theoretic (lpproach. 1985. · 
15 F.J. van der Linden. Euclidean rin}?s with two infinite 
primes. 1985. 
16 R.~.P. Groothuizen. Mixed elliptic-hyperbolic partial d(f-

fere11twl operators: a case-study in Fourier integral operators. 
1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Hamil-
tonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Monta(?ue f ~~g:nar, part I: Philosophy, fr~mework, computer ,\"Cier~ce. 

20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vecht. Inequalities for stopped Brownian 
motion. I 986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts mu/ idt!as in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Bacten. Filters and ultra.filters ova definable sub-
sets of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
~6 A.H: Veen. The misconstrued semicolon: Reconciling 
miperative languages and dataflow machines. 1986. 
27 A.J.M. van Engelen. Homogeneous zero-dimensional ab.w-
lute Borel sets. 1986. 
28 T.M.V. Janssen. Fmmdations and applications of Montague 
grammar, part 2: Applications to natural language. 1986. 
29 H.L. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. ' 
30 A.G. de Kok. Production-il11•ei11ory control models: 
approximations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs 
for factorial experiments. 1987. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. lnJlnUesimal symmetries: a computational 
approach. 1987. i~8~.L. Eaton. lectures on topics in probability inequalities. 

3~ A.H._P. v~n der Burgh, R.M.M. Mattheij (eds.). Proceedings 
oj the first mtemational conference on industrial and applied 
mathematics (IC/AM 87). 1987. 
37 L. Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 

regenerative processes. 1987. 
39 H.J.M. Peters, O.J. Vrieze (eds..). Surveys in game theory 
and related topics. 1987. 
40 J .L. Geluk., L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers 1984-1987. 1987. 
42 ~.R.J. Asveld, A. Nijholt (eds.). Essays 011 concepts, for-
malisms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexi(v. 1987. 
44 A.W. van der Vaart. Statistical estimation in large parame-
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 
4_6 S.P. Spekreijsc. Multigrid solution of the steady Euler equa-
tions. 1988. 
47 J.B. Dijkstra. Analysis of means in some mm-standard 
situations. 1988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness•of-fit tests. 1988. 
49 F.W. Wubs. Numerical solution of the shallow-water equa-
tions. 1988. 
50 F. de Kerf. Asymptotic analysis of a class of perturbed 
Korteweg-de Vries initial value problems. 1988. 
51 P.J.M. van Laarhoven. 171eoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous decoupling transfonn.ations for 
linear boundary value problems. 1988. 
53 K.C.P. Machielsen. Numerical solution of optimal control 
problems with state constrai1lls by sequential quadratic pro-
gramming injunction space. 1988. 
54 L.C.R.J. Willenborg. Computational aspects of survey data 
processing. 1988. 
55 G.J. van der Steen. A program generator for recognition, 
parsing and transduction with syntactic patterns. 1988. 
56 J.C. Ebergen. Translating programs into delav-insensitive 
circuits. 1989. · 
57 S.M. Verduyn Lunel. Exponential tvpe calculus f(,r linear 
delayequations. 1989. · · 
58 M.C.M. de Gunst. A random model for plant cell popula-
tion growth. 1989. 
;;;,~~gvi9. Characterizations of Banach spaces not con-

60 H.E. de Swart. Vacillation and predictability properties of 
low-order atmospheric spectral models. 1989. 
61 P. de Jong. Central limit theorems for generalized multil-
inear fonns. 1989. t~s~:J. de Jong. A specification system for statistical software. 

63 B. Hanzon. Identifiability, recursive idelltijication and 
spaces of linear dynamical systems, part I. 1989. 
64 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part II. 1989. 1~8tM.M. de Weger. Algorithms for diophantine equations. 

66 A. Jung. Cartesian closed categories of domains. 1989. 
67 J.W. Polderman. Adaptive comrol & identification: Conflict 
or confiw.:?. 1989. · 
68 H.J. Wocrdeman. Matrix and operator extensions. 1989. 
69 B.G. Hansen. Monotonicity properties of infinitely divisible 
distributions. 1989. 
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-five 
years of operations research in the Netherlands: Papers dedi-
cated to Gijs de Leve. 1990. 
71 P.J.C. Spreij. Counting process systems. Identification and 
stochastic realization. 1990. 
72 J.F. Kaashoek. Modeling one dimensional pattemformation 
by anti-dijfusion. 1990. 
73 A.M.H. Gerards. Graphs and polyhedra. Binarv spaces and 
cutting planes. 1990. • 
74 ~- Koren. Multigrid and defect correction for the steady 
Nawer-Stokes equations. Application to aerodynamics. 1991. 
75 M.W.P. Savelsbergh. Computer aided routing. 1992. 



76 O.E. Flippo. Stability, duality and decomposition in general 
mathematical programming. 1991. 
77 A.J. van Es. Aspects of nonparametric density estimation. 
1991. 
78 G.A.P. Kindervater. Exercises in parallel combinatorial 
computing. 1992. 
79 J.J. Lodder. Towards a symmetrical theor.v of generalized 
Junctions. 1991. 
80 S.A. Smuldcrs. Control of freeway traffic flow. 1993. 
81 P.H.M. America, J.J.M.M. Rutten. A parallel object-
oriented language: design and sema,uicfoundations. 1992. 
82 F. Thuijsrnan. Optimality and equilibria in stocha.'itic 
games. 1992. 
83 R.J. Kooman. Convergence properties of recurrence 
sequences. 1992. 
84 A.M. Cohen (ed.). Computational aspects of Lie g,:oup 
representations and related topics. Proceedings of the 1990 
Computational Al1:ebra Seminar at CW/, Amsterdam. 1991. 
85 V. de Valk. One-dependent processes. 1994. 
86 J.A. Baars, J.A.M. de Groot. On topological mu/ linear 
equivalence of certain function spaces. 1992. 
87 AF. Monna. The way of mathematics and mathematicians. 
1992. 
88 E.D. de Goede. Numerical methods for the three-
dimensional shallow water equations. 1993. 
89 M. Zwaan. Moment problems in llilbert space with app/ica• 
lions to magnetic resonance imaging. 1993. 
90 C. Vuik, The solution of a one.dimensional Stefan problem. 
1993. 
91 E.R. Verheul. Multimedians in metric and normed spaces. 
1993. 
92 J.L.M. Maubach. Iterative methods for non-linear partial 
differential equations. 1993. 
93 A,W. Ambergen, Statistical uncertainties in posterior pro• 
babilities. 1993. 
94 P.A. Zegeling. Moving-grid methods for time•dependellf 
partial differemial equations. 1993, 
95 M.J.C. van Pul. Statistical analysis of sojiware reliability 
models. 1993. 
96 J.K. Scholma. A lie algebraic study of some integrable sys-
tems associated with root systems. 1993. 
97 J.L. van den Berg. Sojourn times in feedback and processor 
sharing queues. 1993. 
98 A.J. Koning, Stochastic integrals and goodness•ofjit tests. 
1993. 
99 8.P. Sommcijcr. Parallelism in the numerical integration of 
initial value problems. 1993. 
100 J. Molenaar. Multigrid methods for semiconducror device 
simulation. 1993. 
IOI H.J.C. Huijbe1ts. Dynamic feedback in nonlinear synthesis 
problems. 1994. 
102 J.A.M. van der Weide. Stochastic processes and point 
pro<·esses of excursions. 1994. 



MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
l: model and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
Tl: probabilistic background 1964. 
5 G. de Leve. H.C. Tijms, P.J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transfonnations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
IO E.M. de Jager. Applications of distributions in mathematical 

physics. 1964. · 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. 1966. 
16 J.W. de Bakker. Formal definition t,,programminf; 
~~ges with an application to the de mition of AL OL 60. 

17 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riet. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P.J. van der Houwen. Finile difference methods for solving 
partial differenlial equations. 1968. 
21 E. Wauel. The compactness operator in set theory and 
topology. 1968. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part /. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J.W. de Bakker. Recursive procedures. 1971. 
2.5 E.R. Paerl. Repres,·ntalions of the Lorentz group and projec-
llve geometry. 1969. 
26 European Meeting 1968. Selected statistical papers, part I. 
1968. f l6~~ropean Meeting 1968. Selected statistical papers, parr / I. 

28 J. Oosterhoff. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoeff. Error detecting decimal codes. I 969. 
30 H. Brandt Corstius. Exercises in computational linguisrics 
1970. 
31 W. Molenaar. Approxima1ions to the Poisson, binomial and 
hypergeometric distribwion functions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibili~J.' under mix-
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func-
tions in topology. 1971. 
35 M.H. van Emden. An ana(vsis of complexi~y 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker. G.A. Blaauw. A.J.W. Duijvestijn, E.W. 
Dijkstra, P.J. van der Houwen. G.A.M. Kamsteeg-Kemper, 
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap-
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informal/ca 
Symposium. 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972. 
41 A. Verbeek. Superextensions of topological !>paces. 1972. 
42 W'. Vervaat. Success epochs in Bernoulli trialr (with applica-
tions m number theory). f972. 
43 F.H. Ruymgaart. A~vmptotic theory of rank tests for 
independence. f973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkema. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation system,;, part I: the language. 1973. 
47 R.P. van de Riel. ABC ALGOL. a portable language for 
formula manipulation systems, part 2: the compiler. 1973. 
48 F.E.J. Kruseman Ar~tz, P.J.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-XB. 1973. 
49 H. Kok. Connected orderable spaces. 1974. 
50 A. van Wijngaasden, B.J. Mailloux, J.E.L. Peck, CH.A. 
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Rf!Vised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
the01,·. 1974. 
52 P:c. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974. 
55 M. Hall, Jr .. J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations. partitions and combinatorial 
geometry. I 914. 
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part J: 
combinatorial group theory. 1974. 
58 w_. Alb~rs_. A~ymptotic expansions and the deficiency con-
cept m SlallStlCS. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gobel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological transformation groups, l: a categor-
ical approach. 1975. 
66 H.G.J. Pijls. Logically_ convex algebras in spectral theOI)' 
and eigenfunctwn expanswns. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non•periodic Lame 
functions and rheir applications in the 1heory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 
74 H.J.J. te Riele. A theoretical and compulationa/ study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected 1opo-
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. I 976. 
77 W.C.M. Kallenberg. Asymptotic optimaluy ~f' l,kelihood 
rallo tc>sts in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. lntroduclion to Riesz 
spaces. I 977. 
79 M.C.A. van Zuijlen. Emperical distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical stud}' of stiff two-poinr boundary 
problems. 1977. · · 
81 K.R. Apt. J.W. de Bakker (eds.). Founda11ons of computer 
science II, part J. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundatwns of computer 
science II, part 2. 1976. 
83 LS. van Benthem Jutting. Checking Landau's 
"Grundlagen" ,n theAUTOMATH svstem. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Latin ~J.' Hermann of Carinthia (?), hooks 
vir-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaas. 1977. 
86 S.G. van der Meulen. M. Veldhorst. Torrix I. a program-
ming svstem for oeeratinns on vectors and matrices over arbi-
trarv fields and oj variable s,::e. 1978. 
88 A. Schrijver. Matrmdr and linking .,ystems. 1977. 
89 J.W. de Roever. Complex Fourier transformation and 
ana{J.'tic funct10nals w11h unbounded carriers. 1978. 



90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. l98 I. 
91 J.M. GeyseJ. Transcendence infields of positive charal'teris~ 
tic. 1979. 
92 P.J. Weeda, Finite generalized Markov programming. 1979. r~N:c. Tijms, J. Wessels (eds.). Markov decision theory. 

94 A. Bijlsma. Simultaneous approximations in transcendemal 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. Vitallyi. Lindenmayer systems: structure, languages, 
and growth functions. 1980. 
97 A. Federgruen. Markovian control problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boa:; 
(eds.). Interfaces between computer science and operations 
research. 11}78. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
ings bicemennia/ congress of the Wiskundig Genootschap. part 
/. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. :g~s?· van DuJst. Reflexive and superrejlexive Banach spaces. 

103 K. van Harn. ~/ossifying infinitely divisible distribucions 
by functional equatwns. 1978. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri-
zahility. I 979. 
105 R. Helmers. Edgeworlh expansions for linear combinations 
of order statistics. 1 gsz. 
106 A. Schrijver (ed.). Packing and covering in combinatorics. 
1979. 
107 C. den Heijer. The numerical solution of nonlinear opera-
tor equations by imbedding methods. 1979. 
!08 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part/. l97i9' 
!09 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science III, part 2. 1979. 
l lO J.C. van Vliet. ALGOL 68 transput, part I: historical 
review and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part //: an implemen-
tation model. 1979. 
112 H.C.P. Berbee. Random walks with stallonary increments 
and renewal theory. 1979. · 
I I 3 T.A.B. Snijders. Asymptotic optimality theory for testing 

problems with restricted alternatives. 1979. 
l 14 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part/. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes with continuous 
state space. 1979. 
118 P. Groeneboom. large deviations and asymptotic efficien-
cies. 1980. 
119 F.J. Peters. SP'!rse matrices and substructures, with a novel 
implementation of.finite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis oflarge-
sca/e ocean circulation. 1980. 
121 W.H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solUlion of ~ystems of nonlinear 
equations. 1980. 
:~~0~. Yuhasz. Cardinal functions in topology . ten years later. 

124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G .. van der Hoek. Reduction methods in nonlinear pro-
gramming. 1980. 
127 J.W. Klop. Combinatory reduction system'>. 1980. 
128 A.J.J. Talman. Variable dimension fixed pomt algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicialfixedpoint algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Sint. A.H. Veen. /LP: intennediate language for pictures. 
1980. 

131 R.J .R. Back. Correc~ness preserving program refinements: 
proof theory and applicatwns. 1980. 
132 H.M. Mulder. The interval function ofa graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of location esti-
mators. 1981. 
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna-
tional conference on ALGOl 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part I. 1981. 
136 J.A.G. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematical models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming, succes• 
sive approximations and nearly optimal strategies for Markov 
deciswn processes and Markov games. 198 l. 
140 J.H. van Geldrop. A mathematical theory of pure 
exchange economies without the no-critical-point hypothesis. 
1981. 
141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano threefold,. 1981. 
142 H.R. Bennett, D.J. Lutz.er (eds.). Topolog)' and order 
structures. part I. 1981. 
143 J.M. Schumacher. Dynamic feedback m finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eijgenraam. The solution of initial ~alue proble~ using 
interval arithmetic; formulation and ana(ys1s of an algorllhm. 
1981. 
145 A.J. Brentjes. Multi-dimensional continued fraction a/go• 
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. 1981. 
147 H.H. Tigelaar. ldentificatwn and informative sample size. 
1982. 
148 L.C.M. Kallenberg. Linear programming and finite Mar-
kovian control problems. l 983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, 
W.K. Vietsch (eds.). From A to z. proceedings of a symposium 
m honour of A. C Zaanen. 1982. 
150 M. Veldhorst. An ana(ysis of sparse matrix s10rage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order asymptotics for simple linear 
rank statistics. 1982. 
152 G.F. van der Hoeven. Projections of lawless sequences. 
1982. 
153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the analysis of a queueing model with pmred ser-
vices. I 982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part I. I 982. 
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computational 
methods in number theory, part II. 1982. 
156 P.M.G. Apers. Query· processing and data al/ocatwn m 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification of two-
dimemional smooth commUlative formal groups over an alge-
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science JV, distributed systems, part I. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science JV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the meraplecuc group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in flwd mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processe'> 
with continuous rime parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specificarion and implemen· 

techmques, with an application Jo garbage col/ectwn. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program· 
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of so/ut1ons of 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 2. 1983. 




