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INTRODUCTION 

In this monograph we study the asymptotic behaviour of certain linear 
recurrence sequences. We recall that a linear recurrence sequence is a 
sequence {xn}n~N satisfying a recurrence relation of the form 

(0.1) pk(n)xn+k + pk_1(n)\+k-l + ... + p0(n)\ = 0 (n N) 

where {pk(n)} > , ... ,{p (n)} > are sequences with terms belonging to some n_N O n_N · 
number field K. We call (0.1) a linear recurrence. If p0(n)pk(n) + 0 for all 
n N, then (0.1) has k solutions {x(il} (i = l, ... ,k) which are linearly n n>N 
independent over the field K, and are each uniquely determined by any k sub-
sequent values x(il, ... ,x (il where re Z, r N. We call k the order of 

r r+k-1 
(0.1). In this work, we only consider recurrences for which p0(n)pk(n) + 0 and 
we take for K either of the fields O,~ or C supplied with the usual absolute 
value as metric. 

If ff.= lim p_(n) exists for i e {O, ... ,k} with ff. e C, tht characteristic 
1 n-)<I) 1 1 

polynomial P of (0.1) is defined as P(X) = ffkXk + ... + ff 1X + w0 • The zeros of 
P give an indication about the asymptotic behaviour of the solutions of the 
linear recurrence. For example, if {x} > is a solution of (0.1) and if a= 

X n n_N 

lim xn+l exists, then clearly P(a) =0. On the other hand, one might wonder 
n -)<I) 

n 
whether for every recurrence of type (0.1) having a characteristic polynomial 

. X 
Pe C[X], it is true that lim exists for every non-trivial solution 

n-)<I) X 
n 

{xn}n~N of the recurrence. This problem was first stated and partly solved by 
H.Poincare, who proved that if all zeros of P have distinct absolute values, 

X 
then l. n+l n-UJ -X-

n 
exists for all non-trivial solutions {x} > of the recur-" n_N 

rence. As an extension of this result, it was proved by a.Perron [Pel] that in 
this case for every zero a of P the recurrence has a solution {y} > such n n_N 

• Y n+ 1 that l1m -y- = a. 
n-)<I) 

n 
This result is known as the Theorem of Poincare and 

Perron. We state it below in its complete form: 

Theorem 1. Suppose we have a linear recurrence of the form (0.1) with 
p0(n), ... ,pk(n) e & and pk(n)p0(n) + 0 for all n N. If the characteristic 
polynomial of (0.1) exists and has zeros a , ... ak with la I< ... < lakl, then 

1 X ( i) 1 

the recurrence has solutions {x} >M such that lim "<~ 1l = a. (i = l, ... ,k). 
n "-" n~ X 1 1 

n 
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The next problem was to describe the behaviour of the solutions in case the 
characteristic polynomial has zeros with equal moduli. At first it was con-
jectured that similar results as Theorem 1 would hold in this case. However, 
PerroA was able to give a few counterexamples for some second-order recur-
rences whose characteristic polynomial has two zeros with equal moduli, thus 
showing that the result of Theorem l is not generally valid if we omit the 
condition on the absolute values of the zeros of P ([Pe2]). Nevertheless, if 
we impose some additional conditions on the behaviour of the coefficients of 
the recurrence, we can obtain results similar to Theorem 1. As an example we 
state the following result by O.Perron [Pe2]: 

Theorem 2. Consider the second-order linear recurrence 

(n.?: N) 

where TJ0 (n),TJ1(n) are l> -valued functions such that lim T/o(n) = lim TJi(n) = _N n~ n~ 
= 0 and such that TJi(n) .?: 0 and TJi(n) - T/o(n) .?: 0 for sufficiently large 

X 
values of n. Then Um ;+ 1 = l for all non-trivial solutions {\}n.?:N of (0.2). 

n 

On the other hand, Perron formulated and proved a result of a slightly 
different type which does not suffer from the restriction on the moduli of the 
zeros of the characteristic polynomial. We state it here: 

Theorem 3. Suppose we have a linear recurrence of the type {0.1) with p0 (n), 
... ,pk(n) e C and p0(n)pk(n) + 0. If the characteristic polynomial of (0.1) 
exists and has zeros a1, ••• ak (counted according to their multiplicities), 
then the recurrence has linearly independent solutions {x' 11 } >N•···,{x(kl} > n n_ n n_N 
such that limsup = la.I (i = 1, ... ,k). 

n~ n 1 

After that, the attention was restricted to special types of linear recur-
rences, which have rational functions as coefficients or where the coeffic-
ients can be developed in factorial series. (a factorial series is a series of 

CD a • i ! 
the form L 1 . with a0 ,a1, ••• complex numbers.) If the coef-

1_0 n(n+l) ... (n+1) 
ficients of the recurrence satisfy certain conditions (for details, see [N]), 
the solutions can be developed into convergent factorial series. In this way, 
extensions of the Poinc.are-Perron Theorem may be obtained for this special 
type of recurrences. We state one important result, in order to give an 
impression of the kind of results occurring in this context: 
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Theorem 4. Suppose we have a linear recurrence of type (0.1) with 
GI) 

Pi(X) = LC1 5 (X + i)(X + i + 1)- .... (X + i + s - 1) and C0pCkp f- 0 
s=O 

k 
(i = O, ••. ,k). Put fJ(X) = l ciJ'X1 (j = O, ••. ,p). Suppose that a is a zero 

i=O 
of multipicity t-j of fp-J(X) for j = 0, ... ,t-1. Then the recurrence has t 
linearly independent solutions {x<il} > such that 

n n_N 

ul iJ 
l. " = 1 
n-Ul a"•n~(il.(log n)r(il 

for i = l, ... ,t and certain explicitly calculable numbers ~(i) e C, r(i) el, 
0 r( i) < t. 

The proof of this theorem can be found in [N], page 324-6. In the same work a 
more extensive treatment of this type of recurrences can be found as well. 

For several decades there was no activity in this area, but new interest 
arose when it appeared that linear recurrence sequences play an important role 
in irrationality proofs (compare Apery's proof of the irrationality of r(3)). 
Moreover, linear recurrences of order two occur in the theory of orthogonal 
polynomials (see e.g. [Ml],[M2]). 

In this work, we resume the investigation of linear recurrences of more 
general type, with coefficients in some subfield of C and having a character-
istic polynomial, and we derive some generalizations of Theorem 1. Hereafter 
we outline the contents of this study. 

Chapter 1. Here the concept of a shift (or recurrence) operator is intro-
duced and some algebraic properties are derived. We also introduce matrix 
recurrences, i.e. recurrences of the type M"x" = Xn+l (n e N), where the Mn 
are non-singular k x k-matrices with entries in some number field Kand the Xn 
are k-dimensional vectors with entries in the same field K. This appears to be 
a somewhat more general concept than linear recurrences and some of the 
results can be formulated more elegantly in terms of matrix recurrences. 

Chapter 2. This chapter stands somewhat apart from the rest of the work. It 
is dedicated to linear recurrences with coefficients in O[X] and whose 
solutions are sequences of rational numbers. To every so-called rational 

u 
recurrence we can adjoin the set of real numbers a such that a= l!m v" for 

n 
two solutions {un)n~N and {vn)n~N of the recurrence with Un and v" rational 

7 



numbers for a 11 n. We sha 11 prove the fo 11 owing two results: 
(i) The union of such sets taken over all rational recurrences is a 
countable subfield of R, containing e.g. the numbers e,w,log k (fork e 0), 
f(k) (fork el, k 2). 
(ii) The union of such sets taken over all rational recurrences with constant 
coefficients is equal to the set of real algebraic numbers. 

Chapter 3. The aim of this chapter is to provide a decomposition of matrix 
recurrences into smaller-sized matrix recurrences whose limit matrices have 
only eigenvalues with equal moduli. Indeed, the following result follows 
immediately from Theorem 3.2: Suppose that Mis a matrix in ck,k of the form 

where R1 , ••• ,R1 are square matrices such that all eigenvalues of R; have 
smaller moduli than those of R;+1 (i = 1, ... ,1-1). Let (Mn} be a sequences of 
k x k-matrices converging (entrywise) to M. Then there exist matrices S1,S2, •• 

in ck,k such that Sn converges (entrywise) to the identity matrix and a 
matrix 

[
Rln l * _ R2n 

Mn - .. 
·R,n 

. * -1 such that R;n converges to R; ( for 1 = 1, ... , l) and Mn = Sn+l · Mn · Sn . 
From this result it is easy to prove the following generalization of Theorem 1 
(which is an easy consequence of Theorem 3.3): 

Theorem 5. Let 

(0.3) Pk(n)xn+k + ... + p0(n)Xn = 0 
be a linear recurrence with complex coefficients such that p0(n)pk(n) + 0 
(n e N) and let P be its characteristic polynomial. Suppose that P has zeros 
a1, ••• ,ak (counted according to multiplicities) and that la11 = ••• = la,I and 
lajl + la11 for j = l+l, ... ,k. Then there exist 1 linearly independent 

!ll ( (ll f ( 3) d l. f d l solutions {xn }n~N•···• xn }n~N o 0. an a rnear recurrence o or er 

( 0 . 4) q 1 ( n) Xn+ 1 + . . . + q0 ( n) Xn = 0 

such that {x(l")} , ... ,{x'll} constitute a basis of solutions of (0.4) and 
n n~N n n~N 

such that (0.4) has characteristic polynomial Q(X) = (X - a1)· •••. (X - a1). 
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Note that the case l = 1 immediately yields the Poincare-Perron Theorem. The 
last part of the chapter consists of a quantitative refinement of this result 
and implies that the order of convergence of Mn - Mand the order of converg-

* ence of Mn - Mare the same. 
(In fact, Theorem 3 now also follows immediately from Theorem 5, as can be 
easily seen.) 

Chapter 4. This chapter is dedicated to linear recurrences with fast con-
verging coefficients. Since Theorem 1 is valid for recurrences with constant 
coefficients, even without the restriction on the absolute values of the zeros 
of the characteristic polynomial, one would expect the same result to hold if 
the coefficients are not constants, but converge fast enough. In fact, the 
next result is a direct consequence of Theorem 3.15 and Corollary 4.2: 

Theorem 6. Consider the linear recurrence 

(0.5) Pk(n)xn+k + ... + p0(n)xn = 0 
with ~.UJ Pi(n) = ffi (i = 0, ... ,k), ffk·ffo + 0 and p0(n)pk(n) + 0 for n N, 

110 

where, in addition, l nL-l. I Pi(n) - ffi I converges for all i, where Lis 
n=N 

the maximum of the multiplicities of the zeros of the characteristic poly-
nomial of (0.5). Let a be a zero of P with multiplicity l. Then (0.5) has l 
linearly independent solutions {x(ll} > , ... , {x(l)} > such that n n_N n n_N 

x' i l 
l im n = 1 for i = 1, ... , l. 
n~ a"•ni-1 

Chapter 4 gives, in addition, a quantitative result, where the rate of 
110 

convergence of the series l nL-l. I p1(n) - ff; I is related to the rates of 
n=N x' i l 

convergence of the differences--"-- - 1 for 
a"-n1-1 

1, ... ,1. 

Chapters 5 and 6. These chapters deal with linear second-order recurrences 
where the characteristic polynomial has two zeros with equal moduli. Results 
similar to Theorems 2 and 4 of this introduction are derived for case where 
the coefficients behave neatly. For such recurrences, we meet largely two 
types of behaviour of the solutions: 
(i) For each zero a 1 of the characteristic polynomial there exists a solu-

x'; l 
ti on {x' il} > of the recurrence such that 1 im = a ( i = 1, 2). More-

n n_N n~ X ( i ) i 
n 
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X( 2 ) X 

over, lim -"- = 0, so that l.!m exists for all non-trivial solutions n~ X(l) n Xn 
n 

{xn}n<":N of the recurrence. Recurrences of this type can be called 'hyper-
bolic', in accordance with the terminology for sequences of fractional linear 
maps, where hyperbolicity implies the existence of two limit points, one of 
which is stable, whereas the other is unstable. 
(ii) For each zero a; there is a solution {x1 il} > of the recurrence such n n_N x' 2 l xii l x'; l 
that lim ~=a 

n~ x(i) ; (i = 1,2), but now l.:iJll ~( l and lim ~( l do not exist, 
n X 1 n~ X 2 

n n 

n I-X~2)1 whereas lim 
n~ x(l) 

n 

X 
does exist. In particular, lim does not exist for 

n~ X 
n 

any solution {x0 } 0 <':N of the recurrence that is not linearly dependent of 

either {x 11 l} > or {x(2l} >N" Recurrences of this type can be called n n_N n n_ 
'elliptic'. 
For example, the linear recurrence 

( 0 . 6) Xn+2 - 2 · Xn+ 1 + (1 - T/ ( n)) X0 = 0 
with TJ(n) e ~. lim TJ(n) = 0, has two linearly 

n~ 

and {x(2l} such that x(ll x( 2l e (n e IN), n n<":N n ' n 
x(; l 

independent solutions {x(ll} n n<":N 
x( 2 l 

lim -"- = 0 and 
n~ X(l) 

n 

lim = 1 
n~ x(i) for i = 1,2 if TJ(n) <': 0 for n large enough. On the other hand, 

n 
if TJ(n) < 0 and n2-ITJ(n)I > 1/4 +£for some£> 0 and n large enough, then 

X 
lim does not exist for any solution {x} > of (0.6) with xn e n~ X n n_N 

n 
(n e IN). Further, if {TJ(n)} satisfies suitable regularity conditions, then 
there exist linearly independent solutions {y 11 l} > and {y12l} >N of (0.6) 

. Y ( i ) n n_N n n_ 
with y11 l e C (i = 1,2) such that lim "(~ 1) = 1 for i = 1,2 and with 

n n~ Y 1 
n 

IY(lll = 1/2>1 for all n <': N. 
n n 
If the coefficients behave more irregularly, however, then it may occur 

X 
that ~.:iJll ;+i does not exist for any solution {xn}n<":N of the recurrence or 

n 
that it exists for only one solution {x} > of the recurrence (up to multi-" n_N 
plication by a scalar in C). Some counterexamples are given in Chapters 5 and 
6. In Chapter 5, the case that the zeros of the characteristic polynomial are 
equal is treated, in Chapter 6 the zeros are not equal, but have equal moduli. 
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Chapter 7. This chapter contains the solution of a problem posed by O.Perron 
([Pe3]), about the convergence of a certain type of continued fractions. A 
simple application of the results of the preceding chapters provides necessary 
and sufficient convergence conditions. It will be seen that the continued 
fractions which converge, are exactly those which are related (in the manner 
described in Chapter 7) to linear recurrences of hyperbolic type. 

A more extensive survey of this study with a special emphasis to application 
of the results to recurrences with coefficients in ~[X], can be found in [Kl]. 
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CHAPTER ONE 

PRELIMINARY CONCEPTS AND RESULTS 

§1. Recurrence operators. 

Let K be some field with characteristic zero. Form e Z, we consider 
sequences {u} > with u e K (n m) and with the following addition and n n_m n 
multiplication: {u}> +{v}>.={u +v}>, {u} -{v} ={uv} . n n_m n n_m n n n_m n n,!:m n n,!:m n n n,!:m 
Multiplication of a sequence by a number in K is defined by 
A•{u} > = {A·U} >. We define an equivalence relation on this set by n n_m n n_m 
{u} > - {v} >" if and only if there exists some number M <!: m,m' such that n n_m n n_m 
u = v for n M. Let f(K) be the set of equivalence classes with respect to 

n n 
this equivalence relation. The addition and multiplication defined above can 
be extended into f(K) in the obvious manner. In this way, f(K) becomes a ring. 
An element of f(K) will be denoted by {u },{v }, etc. and we shall refer to 

n n 
them simply by the word sequence, instead of equivalence class of sequences. 
(In order to indicate that a certain fact is true for all members of a sequ-
ence {u} we shall simply write "for n e N" or something alike). 

n 
In f(K) we can consider certain subsets of sequences. By K[X] and K(X) we 

refer to the sets of sequences {u(n)}, where u e K[X] and K(X), respectively. 
Clearly, K(X) is a field with the above addition and multiplication. More in 
general, we shall denote by O = O(K) any field of sequences in f(K) with the 
addition and multiplication defined above. If {u} e O(K) for some field 

n 
O(K), then the inverse of {u} is clearly {u-1). 

n n 
We define shift operators onto sequences in f(K) as follows: 

(i) The elementary shift operator T is defined by T({un}) = {un+1}. 
(ii) For pk, pk , ... , p e f(K) the shift operator -1 0 

k k-1 R = P/ + pk_/ + ... + p0 maps {un} e f(K) into 
{pk(n)un+k + Pk-1 (n)un+k-1 + · · · + Po(n)un} E f(K) · 

For T0 , the identity operator, we shall also write I. If R is some shift 
operator and {u} a sequence in f(K), we shall often write R(u) instead of 

n n 
R({u}). 

n 
In the sequel we shall restrict our attention to the set of shift operators 

of the form R = pkTk + ... + p0, with p0, ••• ,pk = f(K) (k 0) such that 
either R = 0 or pk(n)p0(n) + 0 for all n. We denote this set by ~(K). We call 
k the order of Rand denote it by ord(R). The order of the zero-operator is 
not defined. 

12 



If O is a field of sequences such that T(O) 0, we consider the set O[T] 
of shift operators with coefficients in 0. We define an addition and multi-
plication of operators as follows: If R1,R2 e O[T], then R1 + R2 and 
R1R2 = R1 -R2 are defined by (R1 + R2)(un) = R1(un) + R2(un) and 
R1 -R2(u) = R (R (u)) for any sequence {u} in :l'(K). (Note that this defini-n 1 2 n n 
tion determines their form uniquely). It is obvious that O[T] becomes a ring 
in this way. We shall denote this ring of operators by ~(0,K). Note that, if 
R1,R2 e ~(O,K), and R1,R2 + 0, then ord(R1-R2) = ord(R1) + ord(R2). 

For Re ~(K) we consider the set Z(R) of sequences {u} in :l'(K) such that . n 

R(u) = 0. In this case, we call {u} a zero of R. Clearly, {O} e Z(R) for all 
n n 

RE ~{K), and if {u },{v} E Z{R), then l•{U} E Z(R) for any l EK and n n n 
{u} + {v} e Z(R). Hence, Z(R) is a vector space over K. 

n n 

Remark 1.1.1. If Re ~(K) and {u} e Z(R), then 
n 

{1.1) pk{n)un+k + pk_1(n)un+k-l + ... + p0(n)un = 0 (n e IN). 
Let r be a positive integer with r k. By applying (1.1) repeatedly, we 
obtain that there exist sequences q0, .•• ,qk-l in :l'(K) such that q0(n) + O for 
all n and 

u = qk 1(n)u k + .•. + q (n)u (n e IN). n+r - n+ -1 0 n 
Hence we see that the values of u are uniquely determined by k subsequent 

n 
values u , ... ,u k . Moreover, if we define {u(j)} (j = l, ... ,k) by m m+ -1 n 

u(jJ = 61j {i = l, ... k), {un(ll}, ... ,{un'kl} are linearly independent over 
m+i-1 

K. So we find that dimKZ(R) = ord{R), and {u(l)}, ... ,{u'kl} constitutes a 
n n 

basis of Z(R). 

Remark 1.1.2. If {u 11 >}, .•. ,{u(kl} is a basis of Z(R), then we can write 
n n 

(I.I) in the form of a sequence of determinants 

(1. 2) 

u 
n 

0 {n e IN). 

Indeed if {u} is a solution of (1.1), then {u} is a linear combination of 
n n 

the basis sequences {u11)}, ... , {u(kl} with coefficients in K, hence {u } n n ( .1 n 
satisfies (1.2). Conversely, if the {u 1 } (i=I, ... ,k) form a basis of 

n 
solutions of a linear recurrence,then 
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u'il = r (n)u(il + •. + r (n)u1il 
n+k k-1 n+k-1 O n 

for i=l,2, ... ,k, and sequences {rj{n)} e 1(K) {j = O, ... ,k-1). Since the 

{u1il}'0 are linearly independent (i = 1,2, ... ,k), the coefficients n n=m 
rk_1(n), ... ,r0(n) can be determined by Cramer's rule from expression (1.2). 
The coefficients are uniquely determined, since otherwise {u} would satisfy a 

n 
recurrence of lower order, which would contradict the fact that there are k 
linearly independent solutions. 

By {1.1) we see that the zeros of R satisfy a linear recurrence of order k. 
Because of this fact, we shall often refer to shift operators in 3l(K) as 
recurrence operators. From now on, we shall denote a recurrence operator by 
a capital letter {I,T,P,Q,R,S,V,W, ... ). Note that it follows immediately from 
Remark 1.1.2 that a recurrence operator in Jl(K) is, up to (left} multiplica-
tion, uniquely defined by its set of zeros. 

It is evident that the set Jl(K} is not closed under addition of operators, 
as defined above. On the other hand, it is closed under multiplication, and, 
if Rl,R2 E Jl(K) and Rl,R2 'F 0, then ord(Rl-R2} = ord(Rl} + ord(R2>· 

Let Re Jl(K). Write R = pkTk + ... + p0I. Suppose that pi(n} converges to 
some number w. in the metrical completion K of K {with respect to some metric 

1 

on K}. for i = l, ... ,k. We define the characteristic polynomial xR of Ras 
follows: 

§2. The algebra 31(0,K). 

It is clear from §1 that for Kand D = D(K) given, the set 31(0,K) is an 
algebra over O with the addition and multiplication of operators as defined 
above. We recall that we consider only fields D such that T(O) c 0. Note that 
if Re 31(0,K), then certainly Re Jl(K), so that the concepts defined for 
recurrence operators in !(K) are also valid for operators in !(O,K). It is not 
difficult to see that multiplication in !(O,K) is not commutative in general. 
However, multiplication and addition are both associative and the distributive 
law holds between them. Note that multiplication on the left side by a func-
tion p e O is the same as multiplication on the left side by the operator pl 
and that for p + 0 the sets Z(R) and Z(pR) are equal. We now define a divisor 
of an operator as follows: 
If R,S,V e 3l(O,K) and R = S-V we call Va (right) divisor of Rand write VIR. 
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Sis then.called a left djvjsor of R. Note that VIR implies Z(V) c Z(R). 
Conversely, if R,V e l(O,K), and Z(V) c Z(R), then VIR. For we can find 
P,Q e l(O,K) such that R = P-V + Q, where ord(Q) < ord(V) if Q # 0. Then 
Z(V) c Z(Q). However, if Q # 0, then dim Z(V) dim Z(Q), which is impos-
sible. Hence Q = 0 and VIR. 

For R,S e l(O,K) we define the greatest cownon djvjsor (R,S) of Rand Sas 
the monic operator Ve l(O,K) of largest order such that VIR and VIS. 

Proposition 1.1. let R,S e l(O,K). The fo11owjng statements are va]jd: 
1. (R,S) exjsts and js unjquely determjned. 

Moreover, the Euc]jdean algorjthm can be app]jed jn l(O,K) to fjnd (R,S). 
2. There exjst P,Q e l(O,K) such that P-R + Q-S = (R,S). 
3. Z((R,S)) = Z(R) n Z(S). Conversely,jf Ve l(O,K), and Z(V) = Z(R) n Z(S), 

then there exjsts ape Q, p, 0, such that pV = (R,S). 

Proof: (1). The Euclidian algorithm can be applied to linear operators in the 
same way as with polynomials in some domain K[X] (with K some field). We ob-
tain that for two operators Rand Sin l(O,K) there exist operators P and Q 
in l(O,K) such that R = Q-S + P and either ord(P) < ord(S) or P = 0. The 
existence of the greatest common divisor (R,S) follows from the Euclidian 
algorithm. For uniqueness, see (3). 
(2). This follows immediately from the Euclidian algorithm. We leave the 
details of (1) and (2) to the reader. 
(3) Put V = (R,S). Then there exist R1 and R2 in l(O,K) such that R = R1-V and 
S = S1-V, and (R1,S1) =I.So Z(V) c Z(R) n Z(S). 
let {un} e Z(R) n Z(S). Then {V(un)} e Z(R1) n Z(S1) = {{O}}, which implies 
{u} e Z(V). For the converse, we use that a monic operator is uniquely 

n 
determined by its set of zeros. a 

§3. Reducible operators. 

Suppose Re l(O,K). R is called reducjb]e if R = R1-R2where R1,R2 e l(O,K) 
and ord(R1) 1, ord(R2) 1. Otherwise, R is called jrreducjb]e. 

If R is of first order, we can solve the equation 

(1.3) R(u) • 0 
n 

Put R = pl - q, where p,q e O(K). Then, for {u} e Z(R), and m large enough, 
n 
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u . n+l 
u 

n 

q 
for A e Kand r = -. p 

If R is the product of first order operators, (1.3) can be solved by 
subsequently solving first order operator equations. For example, if R = S-V, 
where Sand V are of first order, we can first find {v} by solving S(v) = 0, 

n n 
as described above, and then solve the inhomogeneous recurrence equation 

(1.4) V(u ) = V • 
n n 

Put V = p(T - r), where p,r e O(K). Then we have 
V 

un+l - r(n)un = p(~). 
Hence, 

n-1 V l 
u = A•t(n) + t(n) · L ----
" l=m p(l)t(l+l) 
n -1 

where A e Kand t(n) = n r(l). 
l=m 

§4. Derived operators; The lowest coR111on multiple of two operators. 

In this section, we fix Kand O = O(K) and write~ for ~(O,K). We define 
the concept of a derived operator: 
Let R,S e ~. S; 0. The S-derived of R is the monic operator W such that Z(W) 
= {{S(u )}j{u} e Z(R)}. We denote W by R/S. 

n n 

Proposition 1.2. Let R,S e ~. S; 0. Then R/S e and 
ord((R,S)) + ord(R/S) = ord(R). 

Proof: S induces a homomorphism u from Z(R) onto S(Z(R)). Clearly, 
Ker u = Z((R,S)). Hence, ord(R) = dim Z(R) = dim Z((R,S)) + dim S(Z(R)). 
Let Ve ~(K) be the monic operator such that Z(V) = S(Z(R)). By Remark 1.1.2, 
such an operator exists. We prove that Ve~- Put l • ord(V) = ord(R) -
ord( (R,S)). Then V = Tl + ql-1 · Tl-1 + ..• + q0 with ql-1, ••• ,q0 e :P(K). Put R 
= R1 -(R,S), S = S1-(R,S). There exist W0 , ••• ,Wl e ~(O,K) such that 
R1i(T 1S1 - Wi), ord(Wi) < ord(R1) (i = O, ... ,l). Since Z(R1) c Z(V-S1), the 
operator Wl + q, -W, + ... + q -W is identically zero on Z(R). But then 

1rl 1rl O O l-1 1 

it must be identically zero on :P(K). We have W. = L w.h·Th with w.h e O(K) for 
J j=O J J 

l-1 
all j,h. Hence, -wlh = L qJ.w.h for all h. From this we obtain that 

j=O J 
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qt-1, .•• ;q0 e O(K). So, Ve !(O,K) and, by definition, V = R/S. The second 

assertion now follows inmediately from Z(R/S) = S(Z(R)). 

Remark 1.4.1. It follows from the proof above that if R = R1-V, S = S1-V for 
R,S,V,Rl,sl EX, then R/S = R/S1. 
Remark 1.4.2. Clearly, R/1 = R for all Re X. Hence, by Remark 1.4.1, if 
R = Rl. V, then R/V = Rl. 
Remark 1.4.3. Since Z(I) = {{O}}, we have 1/R = I for all Re X, R; 0. 
Remark 1.4.4. From Remark 1.4.1 and 1.4.2 it follows that, if R,S,V e X, V; 0 
and R-V • S-V, then R = S. 

Suppose R,S e X. The monic operator Ve X of smallest order such that 
Z(V) Z(R) u Z(S) is the operator that has as zeros the linear combinations 
of zeros of Rand zeros of S. (Notation: Z(V) = Z(R) + Z(S).). It is evident 
that an operator V with Z(V) Z(R) + Z(S) exists. On the other hand, that 
there exists a Ve X with Z(V) = Z(R) + Z(S) is made clear by the following 
proposition. 

Proposition 1.3. let R,S e X, R,S; O, and R,S manic. Then 
(R/S)·S = (S/R)·R and Z((R/S)·S) = Z(S) + Z(R). 

Proof: Z((R/S)-S) = Z(S) u {{u }I {S(u)} e Z(R/S)} = 
n n 

{{u }I {S(u )} = {S(v )} for some {v} e Z(R)} = n n n n 
{{un}I {un} = {vn} + {tn} for {vn} e Z(R),{tn} e Z(S)} = Z(R) + Z(S). The 
alleged identity follows since the expression on the right-hand side is 
symmetrical in Rand S. 

We define the lowest common multiple [R,S] of R,S e X as the monic operator V 
such that Z(V) = Z(R) + Z(S). 

D 

By Proposition 1.3, [R,S] = (R/S)·S if S; 0, and [R,O] = 0. Clearly, 
[R,S] = [S,R], and,if R,S e X, then also [R,S] e X. 

Remark 1.4.5. We have the following identity: 
ord(R) + ord(S) • ord((R,S)) + ord([R,S]). 

Remark 1.4.6. [R,S] is the unique monic operator of smallest order such that 
both Rl[R,S] and Sl[R,S]. 

A further property is the following: 
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Proposition 1.4. If A,S,R e !, and S,R + 0, then the following identity 
holds: A/SR= (A/R)/S. 

Proof: Z(A/SR) = {{(S·R)(u )}I {u} e Z(A)} = {{S(v )}I {v} e Z{A/R)} 
n n n n 

Z( (A/R)/S). 

Remark 1.4.7. If R,S e !, S + 0, and P and Qin! are such that S = Q-R + P, 
P + 0, then R/S = R/P. In particular, it is no restriction of generality if 
we assume ord(S) < ord(R) when dealing with R/S. 
Remark 1.4.8. If R,S e !, (R,S) = I and S + 0, so that R/S e ! is well-
defined and ord(R/S) = ord(R), we can find a Ve! such that (R/S)/V = R. 
Proof: By Proposition l.l(c), there exist P,Q e ! such that P-R + Q-S = I. 
We show that we can take Q for the operator V. If {u} e Z(R), then 

n 
(Q-S){u) = u, hence Z((R/S)/Q) = Z(R/QS) = {{(Q-S)(v )}I {v} e Z(R)} 

n n n n 
{{v }I {v) e Z(R)) = Z(R). But then it follows that (R/S)/Q = R. 

n n 

Finally, we show that if R,S e !, S + 0, then a factorization of R in 
irreducible factors induces a factorization of R/S in irreducible factors. 

Proposition 1.5. Let R,S e !, S + 0, and suppose R = R1 - ••• -Rk where 
R1, ••• ,Rk are irreducible over!. Then 

R/S = (R/S1) · ••• · (R/\) 
where Sk = S, S = S./R. (j = 2, ... ,k) and R/S , ... ,Rk/Sk lie in! and are 

J-1 J J 1 1 
irreducible over!. 
Moreover, if (R,S) = I, then ord(R./S.) = ord(R.) for j = l, ... ,k. 

J J J 

We prove a lemma before proving the proposition. 

Le11111a 1.6. Suppose R,S e !, S + 0 and R irreducible over!. Then 
R/S is irreducible over!. 

Proof: Suppose R/S = V1 -V2, V1,V2 e ! and r:= ord(V2) > 0. Then (V2S)l[R,S] 
and ord(V2-S) > r. If RIS, then [R,S] = q-S for some q e 0, hence r = 0, which 
yields a contradiction. If RtS, then (R,S) = I. In that case, 
Z{V2S) = Z{S) + M, where Mc Z{R) and r = dim(M) > 0. Then, Z{{V2S,R)) = M. 
Since {V2S,R)IR and R is irreducible, we obtain r = ord{R). 

* * Proof of Proposition 1.5.: Put R = R -R, where R1,R e ! and R is irreduc-
1 1 · 

ible. We proceed by induction on k. Fork= 1 the assertion follows immediate-
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ly from Lemma 1.5. Suppose the assertion is true forts k-1. Then 
* R /S .. (R/S2)· .. ·(R/Sk), where sk = s, sj-1 = S/Rj (j = 3, ... ,k). We shall 

* * prove that R/S = (R1/S1)-R /S. Firstly,it is clear that R /S divides R/S. Put 
* * * * R/S = R1 -(R /S). We calculate R1. Put S1 = S/R. Using Propositions 1.3 and 

* * . * * 1.4 we obtain: R1 ·(R /S)·S = (R/S)-S = (S/R)-R = ((S/R )/R1)-R1-R = 

* * * * * = (S/R1)-R1-R = (R/S)·\·R = {R/S1)-{S/R )·R = {R/S1)-{R /S)-S. 
* * Hence, by Remark 1.4.4, R1 = R1/S1. So we see S1 el and S1 = S/R = 

= S/R2 ... Rk = {S/Rk)/R2 .•. Rk-1 = sk_/R2 ... Rk-1 = sk_/R2 .. -~-2 = ••. = 

= S/R2 • 

Moreover, since S1 el and R1 irreducible, R1/S1 is irreducible by Lemma 1.5. 
Furthermore, if {R,S) = I, then ord{R/S) = ord{R). Since for j = l, ... ,k, 

ord{R./S.) s ord{R.) J J J 
we have that ord{RJ/SJ) = ord{RJ) for all j. 

We can determine the lowest common multiple [R,S] of two operators 
R,S e X in the following way: 

Suppose that application of the Euclidian algorithm gives the following 
chain of equalities: 

R = Ql · S + Rl, S = Q2 • Rl + R2, ... , R 2 = Q · R l + R , R l = Q · R , n- n n- n n- n 

where R = {R,S), ord{R) < ord{R ·1) < •.• < ord{R1) < ord{S) and Q,Q.,R. e :R 
n n n- J J 

for j = l, ... ,n. Put R = R_1, S = R0• 

Clearly, [R ,R 1] = R 1 = Q-R. If we have that [R.,R. 1] = V.-R. = 
n n- n- n J J+ J J 

= WJ•R. 1 for VJ,WJ e X and some j e {O, ••• ,n-1}, we can find [R ,R ] as J+ j j-1 

follows: Since RH= QJ+l-RJ + RJ+l' we have that VJ-RJ = WJ{RJ-l - QJ+l-RJ), 

hence {VJ+ WJ-QJ+1)-RJ + WJ-RJ_1• We claim that WJ-RJ-l = q-[RJ,RJ_1] for 
some q e 0. Suppose this this not so. It is evident that both W. and 

J 

VJ+ WJ-QJ+l lie in X, so that both RJ-l and RJ divide WJ-RJ_1• Hence 

[RJ, RJ-l l I W J · RJ-l. So there must be some W e X of order :!: 1 such that W is a 
left divisor of both W and V + W -Q . Then Wis a left divisor of V. 

j j j j+l j 

* * * * Hence there exist operators V and W such that V • W-V, W = W-W. From 
j j j j j j 

* * * VJ-RJ .. W.-R. 1 we derive V.-R. = WJ-RJ 1, so [R.,RJ 1] divides V -R, in JJ+ JJ + J+ jj 

* contradiction with ord{VJ-RJ) < ord{VJ-RJ) = ord([RJ,RJ+l]). So, by 
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subsequently lowering the value of j, we finally obtain [R,S] in this way. 

The derived operator R/S can now be obtained by simply dividing [R,S] by S 
and by left multiplication with a suitable factor in 0. Note that the assert-
ions of Proposition 1.2 also follow from the above construction. 

§5. Some properties of operators in i(K). 

In this section, we study a few properties of the set i(K), which we will 
need in later chapters. 
(i) Let q = {q} e f(K), q + 0 for all n. Put S = q-I. Then Se f(K), 

n n 
ord(S) = 0. Let Re i(K), ord(R) = k. As in §4, we define R/S as the manic 
operator such that S(Z(R)) = Z(R/S). Then R/S e i(K), and ord(R/S) = k. More 
explicitly, let R = pkTk+ ... +p0 • Then R/S = r:1(r" Tk+ ... +r0), 

p. ( X) 
where r.(X) = _(_J __ l (j = O, •.. ,k). 

J q X+J 

In later chapters we shall apply this procedure quite often and refer to it as 
a zeroth-order transformation of the operator R. (R/S is called a zeroth-order 
transform of R). Note that if 1.iJll q(x) = q and xR exists, xR e K[X], then 

q(X+l) 
XR/S = cxR for some c e K. On the other hand, if 1.iJll q(X) = l, then 

XR/S(X) = XR(X/l). If {Un} E Z(R) and Un + 0 for all n, we may take q = {u~ 1}. 

In that case, {l} e Z(R/S). 
(ii) If S,V,R e i(K), ord(S) > 0, ord(V) > 0 and S-V = R, then we call Va 
(formal) divisor of R, and S-V a (formal) factorization of R. As in §4, we 
write R/V for the monic operator q-S (q e f(K)). For instance, if Re i(K), 
{u} e Z(R) and u + 0 for all n, R admits of a formal factorization of the 

n n 
u 

form R = S-(T - ~+ 1 ), for some Se i(K). 
n 

Remark 1.5.1. With the extension of the definition of a derived operator to 
the set i(K), Proposition 1.4 remains valid for A,S,R e i(K). 

§6. Matrix Recurrences. 

It often appears convenient to study recurrences not in the form (1.1), but 
as matrix recurrences, that is, recurrences of the type 
(1.5) M x = x (n~m) 

n n n+l 
where M ,M , ... is a sequence of non-singular matrices in Kk,k where K is 

m m+l 
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some number field and x , x , . . . is a sequence of vectors in Kk. 
m m+l 

We shall further identify two matrix recurrences defined by sequences 
{M(ll} and {M'2'}, respectively, if M := M' ll = M' 2' for all n larger than 

n n n n n 
some number N, and we shall indicate them by [M ]. Similarly, we identify two 

n 
sequences of matrices, or vectors, if their members are equal from a certain 
index Non, and we shall write {M },{x }, etc. (Compare §1.1, where we did 

n n 
something similar for sequences of numbers). In practice, we shall often 
assume n 0 or 1, if this does not affect our conclusions. 

By M(K) we denote the set of matrix recurrences where the matrices have 
coefficients in the field K, and the solutions are sequences of numbers in K 
as well. 

From now on, we suppose that K is a subfield of the field of complex 
numbers. A recurrence operator Re ~(K) corresponds to a matrix recurrence in 
M(K) in the fol lowing way: Let R = p(Tk - qk_/-1 - ••• - q0), with 
p,q , ... ,q sequences in f(K). We define a sequence of matrices {MR}, where 

0 k-1 n 

qk-1 (n) qk-2 (n) 
1 0 
0 1 

0 0 
0 
1 

0 
0 

Clearly, MR is non-singular for all n. We call [MR] the matrix recurrence 
n n 

associate to R. The sequences {x} that satisfy (1.5) for M = MR are 
n n n 

precisely those for which xT = (u , ... ,u) where {u} e Z(R). (By xT we 
n n+k-1 n n 

denote the transpose of the vector x). 
If Re~ and xR exists, then the sequence {M~} converges (entrywise) to a 

matrix MR, where [MR] is the (constant) matrix recurrence associate to the 
(constant) operator xR(T) = Tk + ,rk_1Tk-l + ... + ,r0 , which can be obtained 
by replacing X in the expression for xR(X) by the shift operator T. It is a 
well-known fact from linear algebra that the eigenvalues of the matrix MR are 
precisely the zeros of xR(X), whereas each eigenvalue has geometric multi-
plicity one and the algebraic multiplicity of each eigenvalue is equal to the 
multiplicity of the corresponding zero in XR· (Thus, the characteristic poly-
nomial of the matrix MR is C·XR, where c is some non-zero complex number.) 

In the sequel we shall denote the limit matrix of a sequence of matrices 
{M } by 1 im M . 

n n 
It sometimes appears useful not to consider the matrix recurrence (1.5), 

but a matrix recurrence 
(1. 7) 

21 



where.LI is an invertible matrix in Kk,k_ Note that (1.7) is essentially the 
same matrix recurrence as (1.5), with x = Uy for all n. We call (1.7) a 

n n 
conjugate matrix recurrence of (1.5). Note that 

l im u-1M u = u-1(1 im M )U 
n n 

if lim M exists. n 
A procedure we shall often apply is to consider instead of (1.5) a conjug-

ate matrix recurrence such that the limit matrix is in so-called Jordan 
normal form. We shall shortly recall the definition of a (complex or real) 
Jordan normal form.(See any text on linear algebra for a more extensive 
expos it ion.) 

Let Me tk.k. Then there exists an invertible matrix U e tk,k such that 
u-1MU is of the form 

0 
( 1.8) 

0 
B(al'ml) 

where a1, ... ,al are the eigenvalues of M, repeated according to geometric 
multiplicity, and B(a,l} =a-I+ J, where I is the identity matrix in tl,l 
and J is the matrix in tl.l such that 

0 1 0 0 
0 0 1 0 

( 1. 9) J 
1 

0 0 0 0 
(In the sequel, we shall denote all matrices of this form by J, if it is clear 
what the dimension is.) 
The form (1.8} is uniquely determined up to permutation of the matrices B(a,t) 
and is called the (complex) Jordan normal form of the matrix M. 

In the same way, if K = R, to every matrix M can be found a real-valued 
matrix U, such that u-1MU is of the following form: 

C(a1,m1) 
C(a2,m2) 

(1. 10) 
0 

0 
C(al,ml} 

Here a1, ... ,aq are the real eigenvalues of M (q~l}, and aq+i•···,at, 
a , ... ,al are the non-real eigenvalues of M, counted according to their 

q+l 
geometric multiplicities, and C(a,l) = B(a,l) if a e R. If a~ R, and 
a= p + ir (where P,r e R), then C(a,l} e Rl.l and has the form 
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A(a) I 0 

(1.11) C(a,t) 0 A(a) I 

. 
0 0 0 

0 
0 . 
I 

:A(a) 
where I is the identity matrix in R2•2, and A(a) is the matrix 

( 1.12) A(a) • [ p -"( ) ., p . 
The form (1.10) is called the real Jordan normal form of the matrix Mand is 
uniquely determined up to permutation of the matrices C(a.,m.). 

J J 

Len111a 1.7. If Re !(K) for K = C or K = R, and xR exists, then the eigenvalues 
of the limit matrix lim M~ are the zeros of xR and each eigenvalue has 
geometric multiplicity one. 

Proof: This follows from a simple calculation. 

It follows immediately from the above considerations that not each matrix 
recurrence is the conjugate of a matrix recurrence [MR] corresponding to a 

m 
linear recurrence operator R. In particular, if lim M has eigenvalues with 

n 
geometric multiplicity greater than one, there is no such R. 

Suppose R,S e !(K) for some field K. We derive the matrix corresponding to 
R/S. In the first place, note that we can assume without loss of generality 
that ord(S) < ord(R), and (R,S) = I (by Remark 1.4.7). Let {MR} be the n 
sequence of matrices, corresponding to R. Since r = ord(R) > ord(S), there 
exist invertible matrices S e Kr,r (n e IN) such that 

n 

( 1.13) 

Then, i 15 = S MR s-1 
n n+l n n (nelN). 
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CHAPTER TWO 

RATIONAL OPERATORS 

§1. Introduction. 

In this chapter, we take K = 0 and O(K) the field of sequences of the form 
{r(n)} with re O(X). Put !at =-!(O(X),O). If Re !at, we call Ra rational 
operator. If Risa rational operator of order k, and a zero {u} of R has k 

n 
initial values ut•···•u,_ in 0, then u e O for all n l. t,t-k-1 n 

Let Re !at. For {u },{v} e Z(R), we consider the sequence of quotients 
U n n 

f for n l. If its limit exists, it is a real number .We define the set L(R) 
n 

by u 
L(R) = {a e RI a= lim v" for {u },{v} e Z(R)}. 

n~ n n 
n 

Since Z(R) is a vector space over 0, it is clear that O c L(R) c R if 
ord(R) > O. We define las the union of all sets L(R), where Re !at. 

The aim of this chapter is to prove the following two facts: 
(1) r is a field. 
(2) The union of the sets L(R) where R runs through the set of rational 
operators with constant coefficients is equal to the set of real algebraic 
numbers U n R. 
Hence, in particular, we have that n n R c r c R. That r + R follows 
immediately from the following lemma. 

lellllla 2.1. r is a countable set. 

Proof: For Re !at, the set Z(R) is a k-dimensional vector space over 0, so 
GO 

that L(R) is countable. Since !at c U O(X)k, the set !at is a countable set, 
k=O 

hence the union r of the sets L(R) for Re !at is also countable. 

On the other hand, r contains real transcendental numbers. It can be shown 
without any effort that the numbers of the form 

GO N -1 
L TT q(n) for q e O(X) and q(n) + 0, q(nr1 + 0 for n 0, 

N=O n=O 
if the sum converges, lie in some L(R) where R is some reducible rational 
operator of order 2. Namely, R = (T-q)(T-1). So we obtain for instance the 
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numbers .ek (k e 0), log k (k e 0, k>l), arctan k (k e 0, lkl s 1) if we take 
( ) k k-1 n+l 2n+l 2 . ) q n = n+T• q(n) = T'ii+Z• q(n) = - rn+l'k, respect1vely (n e N. 

As announced above, the following result is valid: 

Theorem 2.2. l is a field. 

We shall use the following lemma. 

Lemma 2.3. Let R,S e Jlat. There exists an operator Ve !at such that 
Z(V) => { {u v } I {u } e Z(R) and {v } e Z(S)} and ord(V) s ord(R)-ord(S). n n n n 

Proof: Put r = ord(R) ands= ord(S). For k,t e Z~0 there exist 
Pr-1.k' · · · ,P0,k,qs-l,t' • .• ,qo,t e O(X) such that 

and 

for all {u} e Z(R) and {v} e Z(S) respectively. Hence, each of the rs+l 
n n 

sequences {u v }, ••. ,{u v } can be written as a linear combination of n n n+rs n+rs 
the rs sequences {un+ivn+J} (0 sis r-1, 0 s j s s-1) with coefficients in 
O(X) depending only on R and S. Thus, the rs+l sequences {u .v } n+J n+j 
(0 s j s rs) are linearly dependent over O(X). So we can find a number ts rs 
and rational functions r0 , ••• ,rt-l such that 

(Tt + r 1Tt-i + ... + r0)( u v ) = O 
t- n n 

for all {u } e Z(R) and {v } e Z(S). Put V = Tt + r 1Tt-l + .•. + r0• Then 
n n t-

ord(V) =ts rs and Vis the desired operator. o 

Proof of Theorem 2.2.: Suppose a,~ el. Then there exist R,S e Jlat and 
{u~ll}, {u~21 } e Z(R), {v~ll}, {v~21} e Z(S) such that 

u<2J 
Ulllv~21 =~. 

n 

-u<ll 
Also, {-u~11} e Z(R), hence -a= l!lll v~ 11 el, and for a; O, 

n 
v< 1 I 

1/a = Um u~ 11 el. 
n 

Finally, we show that a~ and a+~ lie in l. By Lemma 2.3, there exists a 
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Ve Ji(l,l such that {u(ilv(j)} e Z(V) for i ,j e {1,2}. Hence 
n n 

and 

u ( l) u ( 2) 

aft= lim " " e L(V) cl, 
n~ v(llv(2l 

n n 

§2. Rational operators with constant coefficients. 

In this section we shall consider the set of rational operators with 
constant coefficients. Thus, the field O(K) is the field of constant sequences 
with terms in O, which we shall, by abuse of notation, denote by 0. We shall 
prove that the union of the sets L(R) where R runs through the set Ji(O,O) is 
the set of real algebraic numbers. Note that for Re Ji(O,O), the characteris-
tic polynomial xR of R exists and is irreducible if and only if R is irreduc-
ible in O[X]. (In fact, R = XR(T).) 

We first prove a lemma about the form of a (rational) root. 

l e. 
Proposition 2.4. 

d. 

Let RE Ji(O,O) be of order k. Write XR(X) = n P.(X) J, 
j=l J 

J 
where P.(X) = n (X-a .. ) e O[X] are distinct irreducible polynomials in ID[X]. 

J i = l J 1 

Then, for {u} e Z(R), 
n 

l ej dj 
U = l l l Q .(a .. )•a~_.nm-l 

n j=l m=l i=l mJ Jl Jl 
(2.1) 

where Q. e O[X] and deg(Q .) s d.-1 (m = l, ... ,e_; j l, ... ,l). mJ mJ J J 

Proof: A basis of the zeros of Rover C is 

{ {a~_-nm-1}1 m = l, ... ,e_; i = l, ... ,d_; j l, ... ,l }. J 1 J J 
d. 

Put v~sl = lJa~~s-t (s = l, ... ,d_; j = l, ... ,l). We claim that 
Jn 1 = 1 J 1 J 

{ { v s l . nm- l} I m = 1, ... , e . ; s = 1, ... , d . ; j = 1, ... , l } i s a bas i s of Z ( R) . 
Jn J J 

Firstly, v(sl e 0, since it is an elementary symmetrical form in the zeros of 
Jn 

P.(X), so that {v~sl.nm-l} e Z(R). Since there are exactly k different zeros 
J Jn 

of this form, it remains to be shown that they are linearly independent. 
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Suppose 

dj 

=rrr LA .•Q~~1(a~.-nm-l}. 
m j i s = 1 msJ J 1 J 1 

Since the sequences (a".•nm-l} ( m = 
J 1 

l, ... ,ej; i = l, ... ,dj; j = l, ... ,l) form 

dj 

a basis of zeros over C, we obtain that }: ). .a~~1 = 0 for all m,j, i. Thus, 
. s=l msJ Jl 

dj 

}: ). _xs-l is a polynomial of degree smaller than dJ. with roots 
s = 1 msJ 
a. , ... ,a.d, so it must be identically zero, which implies). j = 0 for all 

JI J . ms 
J 

m,s,j. Hence, for (u} e Z(R), 
n 

whe~e C . e O for all m,s,j. msJ 

(u } = L L L L C .(nm-1.Q~~s-1} 
n . . msJ J 1 

m s J 1 

dj 

=LL L Q .(a .. ){a".•nm-1}, 
m j i = I mJ J 1 J 1 

So we obtain 

dj 
where Q .(X) = }: C .xs-l e O[X] and deg(Q .) 5 d.-1. mJ 5 = 1 msJ mJ J 0 

We use this result to investigate the set L(R). First we treat the case that R 
is irreducible over 0. 

Proposition 2.5. Suppose Re ~(0,0) is irreducible. Put 
k 

XR(X) = c-n (X-a.), where c e 0, a .... ,Qk e C. 
j=l J I 

(a). If la1 I= ... =lall > lajl for j > l, then L(R) c O(a1) n ... n O(al) n JR. 
(b). If la11 > lajl for j > 1, then L(R) c O(a1) c JR. 

Proof: Suppose la I = ... = la,I > la I for j l. Let (u },(v} e Z(R). By 1 t, j n n 
Proposition 2.4, there exist ,r1,,r2 e O[X] of degree 5 k-1 such that 

k k 
u = }: ,r (a.)-a\ v = }: ,r2(a.)-a~. 

n i=l 1 1 1 n i=l 1 1 

Suppose (v0}; {O}. Note that ,ri(aj) = 0 implies ,r1 = 0 (i e {1,2}). Then 
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k l 
I w1 (a.)-a~ I w1 (a 1 )·7~ 

1. = 1 1 1 . 1 lim lim ~1=~----
"~ k n~ 

_I w2 (a 1)•a~ I w2(a 1)·7~ 
1 = 1 i = 1 

where 7. = a./a1, hence IT I = I for l, ... ,l. Since the denominator in 
1 1 j 

the rightmost quotient is bounded from above, we have that, if the limit 
exists and is L, then 

l 
l im I p(a) -7~ = 0, 
n~ 1 1 

j = 1 
where p = w1-L-w2 • We show that this implies p(aj) = 0 for j = l, ... ,l. 
Since all 1. are distinct, there exists a 6 > 0 such that 11. - 1.I > 6 for 

J J 1 

i + j. Let£> 0. Choose N so large that for n > N 
l 0l-1 

I I p(a1)·T~I < £·:r:-i"· 
i=l 2 

Then 
l l l ,::f.-1 

I 1 ~/<a 1 > -1~ · < 1 1 - 11 > I s I 1 ~/<a 1 > -1~+ 1 I + I 1 ~/<a 1 > · 1~ · 11 I < 2 · £ · ; t- 1 . 
Proceeding in this way, we obtain 

l- l-1 l-
1 p(al)·1t·<1t - 71)· .... (Tl - Tt-1> I< 2 i·£·!t-1 < £-o i 

for n > N. Since ITt - 1.I > 6 and IT.I = I for i = l, ... l-1, this yields 
1 1 

IP(al)I <£.Since £ can be chosen arbitrarily small, we obtain that 
p(al) = 0. In the same way we prove that p(a1) = 0 for i = l, ... ,l. But 
then, by the definition of p, 

ffl(ai) 
L = i7'a' for i = 1, ... ,l. 

ll 2 \"' i I 
Hence, if L exists, it lies in O(a1) n ... n O(al). Also, Le R, for if none 
of the a. (i = l, ... ,l) is real, then there is an me {2, ... ,l} such that 

1 

a = a. Then, 
m 1 

which implies Le R. 
If l = 1, then clearly a1 e R, hence O(a1) c R. Moreover, let Le O(a1). 

k 
Then L = w(a1) for some we O[X] with deg w s k-1.Take u = I w(a.)-a~ and 

n 1 1 
i = 1 

k u 
v =Ia" for n = 0,1, .... Then 

n i 
i = 1 

lim = w(a) = L, so that indeed 
n~ V 1 

n 
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Finally, we consider the case that R is reducible. 

Proposition 2.6. If Re !(0,0), then L(R) c n n ~-

l e 
Proof: Put R ., n R. (T) j, where 

j=l J 

d. 
J 

R.(X) ., TT (X-a .. ) 
. J j = 1 J 1 

is irreducible over 

O[X] and the R. (j., l, ... ,l) are distinct. By Proposition 2.4, for any 
J 

{un},{vn} e Z(R), there exist Pmj'Qmj in O[X] (j = l, ... ,l; m., l, ... ,ej) 
such that 

d. l ej 

u ., r r J n m-1 LP j(a .. )-a .. -n , n j=l m=l i=lm Jl Jl 

Letµ be the smallest integer such that P . ., Q . ., 0 form>µ and 
mJ mJ 

u 
j., l, ... ,l. Then, if lim exists and is equal to L, say, then 

n~ V 
n 

l dj 

Um } i j / /lj < a j j > . -r; j = o 
a .. 

where p ., P - L-Q (j = 1, ... ,7) and 'Y.j = -f, where a is max la .. l /lj /lj /lj 1 j • j J 1 

taken over all j such that not both Pµj and Qµj are identically zero. Hence 
1-r .. l s I for all i and j such that not P,,. = Qµ·., 0, and for at least one 

J 1 ,,.J J 
pair i,j the number 'Y .. has absolute value one. We then proceed as in the 

Jl 
proof of Proposition 2.5. and obtain 

. Pµ}aJ 1 ) 
L - l1m-~~ - n~ Qµ}aJ 1 } 

for some J e {l, ... ,t}, I e {l, .. ,,d) such that laJ11 = a. 

In particular, Len. The fact that Le~ follows by the same argument as in 
the proof of Proposition 2.5. 

Now we come to the final result. 

29 



Theorem 2.7. L = n n R 

Proof: By Proposition 2.6, for every Re ~(0,0), the set l(R) is a subset of 
n n R. Conversely, take a en n R. We prove that a e l(R) for some Re ~(0,0). 
In §2.1 we saw that for any Re ~(0,0) with ord(R) > 0, the set of rational 
numbers is a subset of l(R). So we can suppose a E 0. Choose q e Osuch that 
a+ q is smaller in absolute value than all of its conjugates. Since 
a+ q + 0, the number a! q is larger in absolute value than all its 

conjugates. let P be the minimal polynomial of a! q over O[X] and choose 

Re ~(0,0) such that P = XR· By Proposition 2.S(b), l(R) = 0( a! q ). Since 
a e 0( a! q ), we obtain that a e l(R). o 
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CHAPTER THREE 

A FACTORIZATION THEOREM 

§1. Introduction. 

Suppose [M] e M(C) is a matrix recurrence and 
n 

l im M = M, where M e ck,k 
n 

and M has eigenvalues 0 1, ••• ,ok with ~o11 < lo2 1 < ... < lokl. Then for each 
x( j.J 

j e {1,2, ... ,k} there is a solution {x(jJ} of [M] such that -"(-.l- converges 
n n IX J I 

n 
to an eigenvector of M, corresponding to the eigenvalue o .. Conversely, for 

J 
X 

each non-trivial solution {xn} of the matrix recurrence the quotient "fiCT 
n 

converges to an eigenvector of M. The above facts were proved by O.Perron 
[Pel] and H.Poincare [Po], respectively. (In fact, Poincare stated his result 
not for matrix recurrences, but only for ordinary linear recurrences.) 

If we apply the above result to recurrence operators, we obtain a result 
that is known as 'Poincare's theorem for difference equations'. It reads as 
follows: 

k 
Suppose Re i(C) and xR(X) = c-rr (X-o.), where c,o , ... ,o e C, c + O, and 

j=l J 1 k 

lo11 < lo2 1 < ... < lokl• Then R has divisors S1, ••• ,Sk e i(C) such that 

x5 (X) = X-o. for j = 1, ... ,k. (Or, which is equivalent, R has zeros {u(jJ} 
j J n 

u 
such that lim = oJ. (j = 1, ... ,k)). 

n~ U 
n U 

(Note that, if lim exists for {u} e Z(R), it must be equal to a root 
n~ U n 

n 
of XR). 

If the limit matrix M has several eigenvalues with the same absolute value, 
or, which amounts to the same, the characteristic polynomial has several roots 

with the same absolute value, it is in general not true that 
u 

lim exists 
n~ U 

n 
X 

for {u} e Z(R) or that for a solution {x} of [M] the quotient r.;--rx" con-
n n n , ,.,_ I 

n 
verges to an eigenvector of M. For counterexamples, see for instance [Pe2], 
Remark 3.1.1, Proposition 5.3 and §6.1. However, if a recurrence operator R 
can be factorized in such a way that each factor of R has a characteristic 
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polynomial where all roots have distinct absolute values, the behaviour of the 
zeros of R can be derived from the behaviour of the zeros of the factors. In 
particular, for second-order operators we have the following result, of which 
we shall make use in a later chapter. 

Proposition 3.1. 2 Suppose Re ~(R) with xR(X) = (X-a) for a e R, a+ 0, has 
u 

a (real) zero {u} e Z(R) such that lim ~=a. 
n n~ U 

n w 
Then lim ~=a for all zeros {w} + {O} in Z(R). 

n~ W n 
n 

u 
Proof: R can be factorized as R = cn•(T - p)-(T - ~+ 1 ), where t:im p(n) a 

n 
and c ,p(n) e R (n e N). Without loss of generality we may assume c = 1 

n n 
u 

for all n. Put S = u- 1 .1. Then R/S = (T - q)-(T - 1) where q = p(n)•un+i, 
n n n+2 

hence lim q = 1 and q e R (n e N). For {v} e Z(R/S), we have 
n~ n n n 

vn+l - v = )..ql .... -q for l so large that q > 0 for n ~land ). e C. 
n n-1 n 

n - 1 V 
Then v = µ + ).. E ql•··•·Q 

n m=l m-1 (n l). If).= 0, then ~= 1 
V 

for a 11 
n 

co 
n l. If).+ 0 and E ql•···•q diverges, then 

m=l m-1 

co co 
If >. + 0 and m~l qC ... -qm-l converges, then V = µ' - A. E ql ..... q ' 

n m-1 

so that 

and 

V 1 ql•·••·Qn-1 
lim ~=I+ >.-lim ---------
n~ V n~ co 

n µ, + A. L ql ..... qm - I 
m=n 

1. Vn+l QC•••·Qn-1 
n~ -v- = I - Um _co _____ _ 

n L ql•··•·Q m-1 m=n 

m=n 

ifµ' + 0 

ifµ' 0. 

We show that,if {p} is a sequence of positive numbers, for which 
n 
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p 
lim ~-= 1, then n~ pn 

and 

CIO 

if l pk converges 
k•O 

CIO 

if l pk diverges. 
k=O 

First suppose that the sum diverges. Choose£> 0. Take N so large that 
pn+l -- < 1 + £ for n > N. Then, for n > N, pn 

Hence, 

ao p n+l If r pk converges, we choose N so large that -- > 1 - £ for n > N. Then, 
k=O p n 

for n > N, 

l (P/Pn) > l (1 - £)J = ½· 
V k=n j=O 

Thus, lim vn+l = 1 for {v} ; {O}, {v} e Z(R/S). n~ n n 
n W 

For {wn} e Z(R), we have { u:} e Z(R/S), so that, if {wn}; {O} 

. wn+l Un l1m--•--= 1, which implies n~ Wn Un+l 
w 

lim ~=a 
n~ W · 

n 

Remark 3.1.1. If Re !(C), the assertion of Proposition 3.1 is not general-
ly true. In order to see this, consider the following example: 

Let N1 ,N2 , ••• be a monotonically increasing sequence of positive integers 
such that N ao as n ao. Let R .. (T - exp(i; ))-(T - 1) where 

n n 

;n = for n 0 and N1 + N2 + ... + Nj-l n < N1 + N2 + ... + Nj (j e IN). 
j n-1 

Clearly, X (X) = X2 - 2X + 1 and R has a zero {l}. Put v = l exp(itk) 
R n k=O 
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(n 0), where tn =~mod 2,r for n = N1 + ... + N + k (0 s ks N.). 
11 j-1 J 

V 
Then {v} e Z(R), {v} + {O}. Further, for all j, v = 0. So lim ~+l n n Nt ... +Nj n~ n 
does not exist. For a zero {un} e Z(R), we have {un} = A•{vn} + J.&·(1}. If 

u 
lim un+l exists, it must be equal to 1. On the other hand, if we take 
n~ 

n 
. u n + 1 • A• exp (it n) + µ A + µ 

n = N1 + ... + Nj, then ].Ul -u- = ~.Ul µ =-µ-·Hence, A must 
n U 

be zero. So only for {un} = {µ} + {O} does lim un+l exist. 
n~ 

n 

In this chapter we shall derive a factorization theorem for matrix recur-
rences. This result will enable us to derive a generalization of Poincare's 
theorem for the solutions of a matrix recurrence and, consequently, for the 
zeros of a recurrence operator. 

Theorem 3.2. Put 

M = 

k .• k. 

0 

0 

Rt 
l 

where R. e K J J 
J 

(j = 1, ... ,l), l k. = k 
j=l J 

,and all e;genvalues ;n C of R. 
J 

have smaller absolute values than all e;genvalues ;n C of Rj+l 

(j = 1, •.. ,l-1). Further, let [M ] e Al{K), where M e Kie.·\ M ;nverUble and n n n 
lim M = M. Then there exists a sequence of matr;ces {B} w;th Be Kk.k, B n n n n 
;nvertible {n e N), such that 
{3.1) lim B = I 

n 

{3.2) B -M -8-1 
n+l n n 

k .,k. 
where Rjn e K J J 

0 

0 

and lim RJ = R. 
n J 

{j = 1, ... ,l). 

Applying Theorem 3.2 yields the following result for the zeros of recurrence 
operators: 
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Theorem 3.3. 
l 

Suppose Re X(K), where K = R or K = C, and XR(X) = c- TI P.(X), 
j= 1 J 

dj 

with c e C, c + 0, and P .(X) = TI (X - a .. ) such that a .. e C 
J i=l Jl Jl 

(j = 1, ... , l; 

i = 1, ... ,d.), a.= la I= ... = la I and a1, ••• ,al are distinct non-
J J jl jd. 

J 

negative real numbers. Then R = c-S1 -S2 - ••• -Sl where S1 ,S2 , ... ,sl e X(K) 

P (i = 1,2, ... ,l). 

k 
Corollary 3.4. If Re l(K) for K = R or C, and XR = c- TI (X - a.) and 

j = 1 J 

la11 + lajl for j = 2, ... ,k, then R has a zero {un} such that 

(Note that u e K by definition). 
n 

. Un+l llm -u- = a . n~ I 
n 

Proof: By Theorem 3.3, R = V-S, where x5(X) = X - a. Hence, S = q-(T 
1 V 

- r), 

with lim r(n) =a. For 
n~ 1 

{v} e Z(S), {v} + {O}, we have vn+l = r(n) 
n n 

V 
n 

(n e l~m>• so that lim ~+l = a1 • Further, since Z(S) c Z(R), {v"} is also a 

zero of R. 

Note that taking d1 = d2 = ... = dl = 1 in Theorem 3.3 yields Poincare's 
Theorem. 

D 

Before we prove Theorem 3.2 and Theorem 3.3, we need some more definitions 
and facts. This will be the subject of the next section. 

§2. Some more facts about matrix recurrences. 

Unless stated otherwise, we take for the field K either R or C. Let 
[Mn] e M(K). (M0,M1, ••• are non-singular k x k matrices by definition). If 

{x01 }, .•• ,{x(kl} are solutions of the matrix recurrence, we can write 
n n 

(3.3) 

where x111 
n 

M -X = X 
n n n+l 
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{i = 1, ... ,k). 
If we choose the k solutions such that x~1', ... ,x~kl are linearly independent 

over K, we see by {3.3) that then (x'll}, ... ,{xckl} are linearly independent. 
n n 

In the sequel we shall need to speak about minors of the matrices M ,X, n n 
and M = lim M and we shall introduce a simple notation for them. 

n 
Let I= {i 1, ... ,i} and J = (j , ... ,j} be subsets of {l, ... ,k} with m 

m 1 m 
elements, such that i1 < i2 < ... < i and j < j < ... < j. We denote the 

m 1 2 m 
minor determinant 

of the matrix 

a ••••-a 
i j i j m 1 mm 

all al2 .... alk 
A = a21 a22 · · · · a2k 

a a ... -a kl k2 kk 
by oCml {A). 
Let 1:'.\, ... Iµ { µ = (:l ) be the µ subsets with m elements of (1, ... ,k}, 
ordered in such a way t~at, if i < ..• < i and j 1 < ... < j, then 

1 m m 
{i 1, ... ,im} < {j1, ... ,jm} if it= jl for Isl S L-1 and iL < jL for some 

Le (l, ... ,m}. Theµ x µ-matrix {bij)i,j=l, .... m with b;J = o:m\.<A) is 
denoted by A(ml. Note that A(kl = det A. 

1 J 

Le11111a 3.5. Let A,B,C e ck,k {k e N) such that A-B = C and let le N, l S k. 
Then A(ll.5!ll = c!ll and det A(ll = {det A) 11 where 11 = (Z~)· 
Proof: See for instance [KJ, page 321. 

The following lemma applies to the matrix recurrences [M(ml]. 
n 

Le11111a 3.6. Let [M] e Al{K) and {x1ll}, ... ,{x1kl} a basis of solutions. A 
n n n 

basis of solutions of [M~ml] is given by the (:) column vectors of x~ml, 
(1) (kl) where X = { x , ... , x . 

n n n 
{ls ms k). 
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Proof: · M -X = X and det X t- 0 (n 0). By Lemma 3.5, n n n+l n 

M(ml -X(ml = X(ml and det X(ml t- 0 (n 0). Moreover, the matrix X(ml has 
n n n+l n n 

the required dimension. 

Remark 3.2.1. If A has eigenvalues a1, ••• ,ak (written according to multi-
plicities), then A(ml has as its eigenvalues all numbers of the form 
a. • ••• -a. , where 1 s i 1 < ••. < i s k. 

'1 lm m 

Finally, we introduce the norm of a matrix. Let A e Kk,l (K = IR or K = C), 
k,l e IN. The norm II A II of the matrix A is defined as 

(3.4) II A II = 'f~I · 
The norm has the following properties. Let A e Kk,l,B e Km·". 

1. ~A~= 0 if and only if A= 0. 
2. For.>. e K, II >.A II= l>-1 ·II A 11-

3 • II A + B II s II A II + II B II if k = m, l = n. 
4. II A- B II s II A 11 · 11 B II if l = m. 
5. If k =land a is an eigenvalue of A, then~ lal. 

It is in general not true that~ A~= max lal, where the maximum is taken 
over the eigenvalues of A. Nevertheless, the following fact is true: 

Le11111a 3.7. Let£> 0 and A e Kk,k. Let a be one of the complex eigenvalues 
of A with the greatest absolute value. Then there exists a matrix U e Kk,k 
such that u-1AU s lal + £. 

Proof: By §1.6, we can find a matrix V e Kk,k such that v- 1AV = D + j, 
where Dis a diagonal matrix of the form 

Dl 

D = 

Dl 
where Dj e C if K = C and D. e IR or D. e IR2' 2 if K = IR (see §1.6 for details) 

J J 
and 
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0 Jl 0 0 
0 0 J2 

3 = 
Jl-1 

0 0 

where J j = 0 or I if D j e IR and J j = ( ) or ( 6 ) if DJ e IR2.2. 

Further, we can find a diagonal matrix W such that w-1JW = £·3• In fact, take 
W as follows: 

w = 

El 
where EJ = £j-l or Ej = £H•I, where I is the 2x2 identity matrix 
(1 s j s l), the choice between Ej e IR and EJ e IR2'2 depending on the fact 
whether D. e IR or D. e IR2.2. (If K = C, then obviously E. e IR for all j.) 

J J J 

Take U = V-W. Then U-1AU = D + £-J. For j = l, ... ,l, 
I (U-1AUx) .I s la!· Ix.I + £· lx.+1 1 

J J J 

where xis a vector such that xT = ( x1 x2 ... xl) with x; e C if K = t 

and, if K = IR, then x1 e IR if D1 e IR and xi e IR2 if Die IR2.2. 
Thus, 

2 2 2 l- 1 2 2 
IU- 1AUxl 2 s lal •lxl + £ •lxl 2 + 2lal•£· L Ix.I-Ix. 1 1 s (lal + £) •lxl • 

j= 1 J J+ 

Le11111a 3.8. Let A,B e Kk,k such that A is non-singular and II B II < II A- 11!-1 • 

Then A+ Bis non-singular and 

ll(A + B)-111 < 1 
- II A-!11- 1 - II B II 

Proof: Take x e Kk, x t 0. Then 

IAxl = !Ax! > _1_ and 1r~, s II B ,,. 
TxT IA- 1 (Ax)I - II A- 111 

Hence, 

and 
l(A + B)xl IIAxl - IBxll > 0, 

so that A+ B is non-singular. Moreover, 
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Remark 3.2.2. If Re ~(K) and R = pkTk + .•• + p1T + p0, we define the norm 
N (R) of Ras N (R) = max{lp.(n)II 0 i k }. n n 1 

§3. The main theorem. 

Now we are ready to prove the main result of this chapter. Again, let K be 
either R or C. For a matrix A e Kk,k we denote the entry in the i-th row and 
the j-th column by A .. (i,j e {1, ... ,k}). We shall prove the theorem in 

lJ 
several steps. 

Lemna 3.9. Let {A)"' be a sequence of invertible matrices in Kk,k such 
n n=O 

that lim A-1 -A = A and A has only eigenvalues in C with absolute values n n+l 
smaller than one. 

!I) 

Then the series L Al converges (entrywise) and 
l=O 

Proof: First suppose that A is in complex Jordan normal form. Put 
E = A-1 -A - A. let B be the matrix that is obtained from A by 

n n n+l 
replacing the elements on the diagonal by their absolute values. For N large 
enough there exists a matrix E such that, for all i,j e {1, ... ,k} and n N, 
l(E ) .. I E .. and such that B + E has still eigenvalues in C with absolute 

n 1 J 1 J 
values smaller than one. Then, for p e N, n N, we define 

and 

_1 p p l-1 
G = A . r A +l - < 1 - Ar1 = r rr <A + E > - o - Ar1 

np " l=O n l=O m=O n+m 

H = f (B + E)l - (I - Br1 • 
p l=O 

Hence H converges to a matrix Hasp - '°· p 

Now choose£> 0. Put £'=max fH .. I· Since lim En= 0, 
i • j 1 J 

I (E) .. I < £' -E.. for n large enough, i ,j e {l, ... ,k}. 
n lJ lJ 

Hence, 
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I (G ) I < £' -H < £ for all p, i ,j and n large enough. 
np ij ij 

If A is not in complex Jordan normal form, then there is a matrix U e ck,k 

such that u-1AU is in complex Jordan normal form. By what has been proved 
above, 

Cl 

lim u-lA-1 , }:A+l,U = (I - u-1AUf1 = (U-1(1 - A)Uf1 
n l=O n 

so that 
Cl 

U-1,(lim A-1 - L A+l)·U = U-1(1 - Af1U 
n_ l=O n 

and the result follows. 

lenma 3.10. Let {An}:=o be a sequence of matrices in Kk,k, converging to 

some matrix A. Let {tn}:=o be a sequence of vectors in Kk with t.im £n = 0. 
Then the following assertion holds: 

If A has only eigenvalues in C with absolute values smaller than one, every 
sequence {x} satisfying the following inhomogeneous recurrence relation 

n 
X 1 = A X + £ (n E IN) n+ n n n 

converges to zero. 

Proof: Let p be an eigenvalue of A with maximal absolute value. Let£> 0 be 
such that IPI + 4£ <I.We can find a matrix U e Kk,k such that 
u-1AU = D + £•J, where II D II = IPI and II J II s I. Put u-1A U = D + c-J. Then n n 
{Dn}:=o is a sequence of matrices converging to D. Further, let for n 0, 

y = u-1x • 
n n 

Then {y} satisfies the equation 
n 

Y 1 = ( D + £ • J) y + u-1 £ ( n o) . n+ n n n 
Let N be so large that for n N 

Dn S IPI + £. 
Then, 

IYn+ll S (IPI + 2£)·1Ynl + &n (n N), 

where & = IU-1£ I- Hence, & 0 as n ~.,_Consider the recurrence n n n 
relation 

Z 1 = (IPI + 2£)Z + & 
M n n 

(n N) 

and take ZN= IYNI as the initial value. Then IYnl s zn for n N. Moreover, 

z s max {(IPI + 2£)(1 + t)z, & (I+ -£1)} n+l n n 
for n N. Since (IPI + 2£)(1 +£)<I, we obtain that zn~ 0, from which it 
follows that x~ 0 as n .,, irrespective of the initial value. 

n 
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Leoma 3.11. Let A be a matrix of the form [ ~), where Re KU, and 

Se Km,m (m = k-t) such that a11 eigenvalues of R in C have sma11er moduli 
than a11 eigenvalues of Sin C. Further, let {D }"" be a sequence of matrices n n=O 
in Kk.k, such that lim D = 0 and A+ D invertible for a11 n. Then there 

n n 
exists a sequence {B }'° of matrices in Kk.k with n n=O 

Bn = [ ~n ] 

where e e Kt.m (n 0) and 1 im e = 0, such that 
n n 

(B ·(A+D)·B-1)_ =0 n+l n n 1j 

for all n large enough and for i e {1, ... ,t} and j e {l+l, ... ,k}, and 

II B - I II 6 · 11 B - I II + C • 11 D II n+l n n 
for some 6 < 1, c e R, c > 0 and for a11 n large enough. 

Proof: Note that it is sufficient to prove the lemma for any conjugate 
matrix of A. So we may suppose that 

A + D = [ R~ Q~ l 
n p S 

n n 

with R: e Kt.t (n 0) and 11 R 11 IPI + £, 11 s-1 11 111 1 _ £ where P is an 
eigenvalue of R with greatest absolute value and 1 an eigenvalue of S with 
smallest absolute value, and£ is such that O < £ < (111 - IPl)/6. Then, for 
n N, 

II R: II < IPI + 2£, 11cs:r1II < hi 2£ , II pn II < £, II Qn II < £. 

Now choose e = 0 and define {e} in the following way: 
N n n>N 

* * 1 (3.5) en+l = (Rn .en - Qn). (Sn - pn .enr . 
We show that s* - P .e is indeed invertible for n N. Suppose that 

n n n 
e , ... ,e are well-defined and that II e 11 < I for N m n. Then 

N n m 

II P -e II < c < hi - 2c < 11cs*r111-1 • n n n 
Hence, by Lemma 3.8, s* - P .e is non-singular, and n n n 

II (s* p e )-111 < -----,,---1 ___ < 1 
n n n 11cs*r 1 11-l II p .e II 111 - Jc· 

n n n 
Thus, e is well~defined, and n+l 

II en+! ii~ ( II en 11-11 R: II+ II Qn II )·lies: - pn.enr1II < l~I < 1. 
Moreover, we have the following inequality 
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(3.6} 

Let {yn}n~N be the sequence of positive real numbers such that 

(3 .7} Yn+l = Yn·l~I: ~~+II Qn 11·111 3£ 
and yN = 0. Then II cJ 5 y" for n N. Further, we can apply Lemma 3.10 to 

(3.7}, with K =Rand k = 1, since 

and 
II Q II 

lim " - 0 "~ 1-rl - 3c -
and find that limy = 0, so that lim C = 0 as well. n~ n n~ n 
Put 

(n 2:: N}. 

Then 

and 1 im B = I. 
n 

Also, 

[
R +C .p O l B ·(A+D}·B-1= n n+l n 

n+l n n p S _ p . C · 
n n n n 

The last assertion of the theorem follows from (3.6} and the fact that 
II Q" II<< II on 11. 

Lellllla 3.12. Let {A}, {B} be sequences of non-singular matrices in Kk.k and 
Kl,l, respectively, a~d linm A = A, 1 im B = B, while a11 eigenvalues in t 

n n 
of A have smaller absolute values than all eigenvalues int of B. Further, let 
{D} be a sequence of matrices in Kl,k converging to the zero matrix. Then the 

n 
recurrence relation 

(3.8} \+1 •An = Bn ,Xn + On (n e l2::0) 

has a solution {C }, C e Kl·\ such that lim C = 0 and 
n n n 

GO 

II C n II S C 1 • L II Dk 11 · c5k-n 
k=n 

for some number O < cS < 1 and some constant c' independent of n. 

Proof: Solving (3.8), we find 

(3.9) (B .... -B0r1-C ·(A · .... A}= n-1 n n-1 0 
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n-1 
=C +l:(B- .... Br1-D-(A ..... A). 

0 k = O k O k k-1 0 

By multiplying A, A, B, B, D (n 0) by a suitable constant c e K*, we can, n n n l l by Len111a 3.7, find numbers £ > 0, me N and matrices U e Kk,k, Ve K · , such 
that 
(3.10) II c-u-\u 11 < I - £ and II c-1.v-1B;1v I < I - £ for j m. 

Using the properties of the matrix norm, we obtain that the sum 
ao . 1 L (Bk· •... Bmr ·Dk·(Ak-1·····Am) 

k•m 
converges to some matrix in Kl,k for any me N. Now choose 

ao 
C0 = - L (Bk· •... B0r 1-Dk·(Ak-l·····A0) 

k=O 
as the initial value for the recurrence sequence defined by (3.8). Then, 
since all A (n e N) are invertible, 

n 
ao 

(3.11) Cn = L (Bk· ... ·Bnr1-Dk·(\_1· .... An). 
k=n 

Since {D} converges to zero, {C} converges to zero as well. The last 
n n 

inequality now follows easily from (3.10) and (3.11). 

We now come to the proof of Theorem 3.2. 

Proof: We proceed by induction to l. For l = 1, take B = I for all n. 
n 

Suppose the assertion is true for l = l, ... ,L-1. Put 
R2 0 

s = 
R3 

0 RL 
Then 

M = [ ~1 ~] 
and all eigenvalues in C of R have smaller absolute values than all eigen-
values in C of S. By Len111a 3.11, there exists a sequence {B~}, B~ e Kk.k, 
such that 
(3.12) 

(3.13) 
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k-k ,k 
where Q• e K 1 1 Since R• ands• are non-singular and lim R• = R, 

n n n n 1 

lim s• = S, lim Q* = 0, Lemma 3.12 yields that the recurrence equation 
n n 

X • R* = s* · X - Q* 
n+l n n n n 

(n 0) 

has a solution {C} such that lim C = 0. 
n n 

Put s* 
n [~ ~) (neN).Then 

n 

(3.14) s* ·B' -M . (B.,B' r 1 
n+l n+l n n n 

(3 .15) 
k-k ,k-k 

By the induction hypothesis, there exist matrices F e K 1 1 
n 

lim B•·B' = I. 
n n 

(n e N) 

such that 
lim F = I, 

n 

0 

0 R 
Ln 

where l im R• = R 
Jn j 

(j = 2, ... ,n). 

Put B = [ O ]·B•·B' (n e N). Then B E Kk,k and 
n F n n n 

n 

(3.16) l im B = I, 
n 

* ] · ( ~- 1) (3.17) B ,M -B-1 [ n+J · [ ~n 

0 . n+l n n s 
n n . 

R 0 n 

R2n 

0 R 
Ln 

The following theorem prepares the proof of Theorem 3.3. 

Theorem 3.13. Let I s ls k. Let [M] e Al(K) and lim M = M. Suppose M 
n n 

has the form 
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(3.18) 

where R e Kl.l and S e Kk-l.k-l, R and S have eigenvalues a1, •• • al and 
al,,.1, •• ak respectively (counted according to their multiplicities) and 
la.I + la.I if i e {l, •.• ,l} and j e {l+l, ... ,k}. Then there are l linearly 

1 J 

independent solutions {x<ll}, ... , {x(ll} of [M ] such that, for 
l n n n 

X = (x 0 l, ... ,x< 1), 
n n n 

(3.19) 

(3.20) 
D(ll(X) 

lim J,I "=0, 
x~ D(ll(X) 

I, I n 
where I= {1, ... ,l} 
different from I. 

and J is any subset of {l, ... ,k} with l elements, 

Proof: First suppose that 

0 

M 

0 R 
m 

where all eigenvalues of R. have smaller absolute values than all eigenvalues 
J k ,k. m 

of R. 1 (j = 1, ... ,m-1), and R. e KJ J, I k. = k. By Theorem 3.2, there 
J+ J j = 1 J 

exists a sequence {B } , B e Kk.k such that 
n n ' 

1 im B = I 
n 

and 
R 

In 0 

B M B-1 
n+l n n 

R2n {n E IN) 

0 
R mn 

k .,k. 
where R. E K J J andl im R. R {" 1, ... ,m). Suppose that each of the 

Jn Jn j J 

Rj takes either all of its eigenvalues from the set {a1, ••• ,am} or from the 
set {a , ... ,a}. For j = 1, ..• ,l, the matrix recurrence [R.] e M(K) has k. 

m+l k Jn J 
linearly ind~pendent solutions {y<Pl}, with 

n 
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p - l. 
J 

where 

Put X 
n 

j-1 
p - Ek. e {l, ... ,k.}, and, for p-l. e {l, ... ,k.}, 

i=l 1 J J J 

x(Pl 
n,l.+l 

J = ylPl and x1Pl = 0 if i-l f {l, ... ,k.}. 
n n i J J 

(n e IN). Then, 

8 -M -B-1-X = X (n E IN) n+l n n n n+l 
and, for I. {l.+l, ... ,l } and J e {l, ... ,k}, with IJI J J J+l 

(3.21) 

(3.22) 

( k . ) 
D J (X ) 

I . , I . n + 1 
J J 
( k . ) 

DI JI (Xn) 
j • j 

(k .) 

det R. , Jn 

DJ.~_(\) = 0. 
J 

Note that O + det R - det R. as n - co, and det R. = Ql +l · ... •Qt , jn J J j j+ 1 

where Ql+i•···•Qt are the eigenvalues of R. in C, counted according to 
j j+l J 

their multiplicities. A basis of solutions for [M] is given by the columns of 
n 

B-1-X. Then, by Lemma 3.5, with J some subset of {l, ... ,k} with l elements 
n n 

and j e {l, ... ,m}, 
(k.) {k.) (k.) (k.) (k.) 

D J (B-1,X) = l D J (B-1)-D J (X} = D J (B-1)-D J (X ). 
J,Ij n n K J,K n K,lj n J,lj n lj'I j n 

So, taking into account that B - I and hence that g[mJ - I (where I is 
n n 

the identity matrix in Kk.k and Kµ.,µ. with µ. = (:), respectively), 

( k . ) ( k . ) { k.) 
D J (B- 1 -X ) D J (B- 1 ) D J (X ) 

1. lj,Ij n+l n+l Ij,Ij n+l Ij,lj n+l 
1m _:;...._....:;_____ 1 im ------• ln im ------

"~ { k . ) n~ { k . ) 4«I ( k ) 
D1_\_(B~1-Xn) DI_\_(B~l) D1_\_(Xn) 

J J J J J J 

= Qt +1····•Ql 
j j+l 

and, for J + IJ, 
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In the general case 

M = 

there exist U e Kt.t and U e Kk-t,1c-t such that for U = lo1 O ] , we have 
1 2 - ' o u2 

0 

0 
RO(m) 

where o(l), •.. ,o(m) is some permutation of the numbers l, ..• ,m and R1, ••• ,Rm 
are as above. Further, there exists a matrix Pe Kk,k which permutes the 
matrices R0 Cll' ••• ,Ro(ml in such a way that 

0 

0 R 
m 

By Theorem 3.2, there exists a sequence {B } , B e Kk,k such that for n n , 
n e IN, we have l im B = I and n 

RI n 0 

8 p-V1M UPB-1 R2n (n e N). n+l n n 

0 R 
F = UPB (UPr1, 

mn 
Hence, for n n 

F M F-1 = ( oR" Os ] n+l n n 
n 

where l im R = R, l im S = S, and l im F .. l im UPB (UPr1 = I. Applying the n n n n 
result obtained in the first part of the proof, we find that there exist 
linearly independent solutions {x01}, ••• ,{x<t>} such that the assertions of 

n n 
the theorem hold. 

Corollary 3.14. Let [M] e M(K) and lim M = M. Suppose that M has 
n n 

eigenvalues a1, ••• ak (counted according to their multiplicities) where 
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la11 s la21 s ... s lakl, If hand mare such that Os h <ms k and 
lahl < lah I or h = 0, la I< la I or m = k, then [M] has m-h linearly m Ml n 

independent solutions {x(h+IJ}, ... , {x(m)} such that for each sequence {x }, n n n 
where {x} = A1•{X(h+l)} + ... +). h·{X(ml}, {x} t- {0},). , ... >. h EK, we n n m- n n 1 m-
have 

(n-) m), 

Proof: A transformation matrix U can be found such that u-1MU is in (real 
or complex) Jordan normal form. U is determined up to permutation of the block 
matrices ca,j and Ba.j respectively (see §1.6 for the notation). Then we can 
choose U such that 

U-1MU = ( ] 

where R has eigenvalues ah , ... a and S has eigenvalues a, ... a and +l m 1 h 
a , ... ,ak. Applying Theorem 3.13, we find that the matrix recurrence 

Ml 

[U- 1M U] has l = m-h linearly independent solutions {y(ll}, ... ,{y(ll} such 
n (I ) (k) n n that, for Y = (y , ... ,y ), I= {l, ... ,l}, and Jany subset of {l, ... ,k} n n n 

with l elements, J + I, 

(3.23) 

Hence it follows that, 

y( i) 
lim _n_j _ = 0 
n~ IY(i)I 

n 

- 0 

(i l, ... ,l), 

(j = l+l, ... ,k). 

To show this, take Jqj I u {j}\{q} for j = l+l, ... k; q = 1, ... ,l. Then 
o(ll (Y) 

J q j, I n 

D(ll (Y ) 
I , I n 

- ± z qjn, 

where z. , ... ,zl. are the solutions of the set of linear equations lJn Jn 
(3.24) Y(il .z + + y(;J .z = y(il (1' 1 l) nl ljn · ' ' nl ljn nj • ' · · ' ' · 
By (3.23), z. e K and lim z = 0 for all q,j. Hence, by (3.24), qJn n~ qjn 
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(; l y . 
lim _n_J_ = 0 for i = l, ... ,l, j = l+l, ... ,k. 
n~ IY(i)I 

n 
Since (R - ah+ 1)- ... -(R - a I) is the zero matrix, l m 

-1 Y n U (M-ah+1)- ••• -(M-aml)-UITT - 0 (n-co), 
n 

with {yn} = \ · {y~ll} + ... + At· {y~ll} and {yn} ; 0, A1, ... Al e K. Put 
Uy = x. Then {x} is a root of [M ]. By the properties of the matrix norm, 

n n n n 

Ix I n 

where II u-111 ; o. Thus, 
X 

( M - ah+ 11 ) ... ( M - am I ) TxJ" - 0 ( n - co) , 
n 

as asserted. 

We apply Theorem 3.13 to linear recurrence operators in order to obtain 
Theorem 3.3. 

Proof of Theorem 3.3: We prove the following statement, from which we can 
easily prove the theorem by induction. 

Let Re ~(K), K = R or C. Let XR(X) = P(X)·Q(X), with P,Q e K[X] manic 
polynomials and all zeros in C of P have larger absolute values than all zeros 
of Q. Then R = sl.s2 = R2-Rl, where 5i,s2,R1,R2 E ~(K) and XR = X = P, 

1 5i 
XR = Xs = Q. 

2 2 
We shall only prove that R has a divisor S with Xs = Q. The other result 

goes similarly. Put m = deg Q. Let p , ... ,p be the zeros of Q and 
1 m 

p , ... ,p those of P. Let [MR] be the matrix recurrence associated with R. m+l k n 
Finally, let MR= lim MR. Consider the constant recurrence operator 

n 
xR(T) e ~(K) which is formed by replacing all instances of X in the expression 
for xR(X) by the shift operator T. In the same way we define the operators 
P(T) and Q(T). Note that P(T),Q(T) e ~(K) and XR(T) = P(T)-Q(T) = Q(T)-P(T). 
Let {u(ll}, ... ,{u(ml} be a basis of Z(Q(T)) and {u(m+ll}, ... ,{u(kl} be a basis n n n n 
of Z(P(T)). It is easy to see that such bases exist: If K = C, the matter is 
quite trivial. If K = R, we first choose a basis of complex roots. This can be 
chosen in such a way that for each basis sequence {x }, also {x} is a basis 

n n 
sequence. If {x} is not a sequence of real numbers, then we choose {x + x} 
and {x - x} in"stead of {x} and {x }. Clearly, {u(ll}, ... ,{u(kl} is a basis" 

n n n n n n 
of Z(XR(T)). Further, let 
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U = (u'll, ... ,u'k1), where u1il = [~!':] 
ulil 

0 

(i 1, ... ,k). 

From the construction of U it follows that U e Kk,k and that U is non-singu-
lar. Moreover, 

U- 1 -MR·U=[~l ~
2

) 

with N1 e Km,m and N2 e Kk-m,k-m and N1 , N2 have characteristic polynomials Q 

and P, respectively. By Theorem 3.13, the matrix recurrence [U- 1 -MR•U] has m 
n 

linearly independent solutions {x(ll}, ... ,{x1ml} such that, for 
(I) (ml n n X = (x , ... ,x ), I= {1, ... ,m} and J some other subset of {l, ... ,k) with 

n n n 
m elements, 

(3.25) 

(3.26) 

Put, for 1, ... ,m, 

o!ml (X ) 
lim J,I " = 0. 
n4«> D(ml(X) 

I, I n 

z1il = Ux1il 
n n 

(n E IN). 

Then, {z(ll}, ••• ,{z(ml} are linearly independent solutions of [MR]. Hence, for 
n n n 

y ( 1 l . y ( m l Tm 
n+m n+m 

s = 

[ 
y(i) l n+k-1 

where z~il = : 

y(i) 
n 

(i l, ... ,k), 

we have Se ~(K), ord(S) = m and SIR. It remains to prove that x5 = Q. Let 
I= {l, ... ,m} and, for q = 0,1, ... ,m, define J := {k-m, ... ,k-1,k}\{k-q). 

q 

Put Y = (2 111 , ••• ,z(ml). Then Y e Kk,m (n e IN). It follows from the 
n n n n 

definition of S that 
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Note that o(ml (Y) + O for n large enough. We calculate x5 • 
J , I n 
m 

Since U-X = Y, we have 
n n 

L o(m) (U)-D(m)(X) = o(m) (Y) for j = o, ... ,m 
K Jj'K K,I n Jj,I n 

where the sum is taken over all subsets K of {l, .•• ,k} with m elements. Since 
D~m\(U) + 0, which follows from the definition of U, we have, by (3.26), 

m 

D(ml (Y ) 
J . , I n 

olml (U) 
J . , I 

l im J J 
n~ D(ml (Y ) olml (U) 

J , I n J ' I m m 
Hence, 

u ( l). u(m) xm 

D(ml (U) 
m m 

m J., I 
. (o(ml (U)rl = Q(X) X5(X) L (-l)m-j_ J .xj 

D(ml (U) ( 1 l . ~(ml J • I j=O X m J • I m I I 
u ( 1). 

0 
u(m} 

0 
1 

by the definition of {u(j)} (j l, •.. ,m). D 
n 
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§4. Order of convergence of the solutions. 

In the last section we derived that for a solution {x} of a matrix 
n X 

recurrence, the quotient Vf tends to the union of generalized eigenspaces 
n 

corresponding to the eigenvalues of the limit matrix having some common 
absolute value. In this section we shall derive a result about the order of 
convergence of the solutions, which appears to follow fairly easily from the 
results of §3.3. 

Remark 3.4.1. If [M] e M(K) and M = lim M exists, we call an eigenvalue 
n n 

o of M simple, if it has (algebraic) multiplicity one and if M has no other 
eigenvalues with the same absolute value as o. Similarly, if Re i(K), we call 
a zero o of xR simple, if it has multiplicity one and if xR has no other zeros 
with the same absolute value as o. If M (or xR) has only simple eigenvalues 
(zeros), we call [M] (or R) simple. On the other hand, if M = 1 im M (or x ) 

n n R 
exists and has not only simple eigenvalues, we call [M] (or R) non-simple. 

n 

Theorem 3.15. Let 
such that ~.im f(n) 

f:~ IR+ be a monotonically non-increasing function 
= 0 and lim f(n + l) = 1. 

n~ f(n) 
Let [M ] e M(K) (K = IR or C) 

n 
with lim M = M. Suppose that Mis of the form 

n 

M = [~ ~] 

where all eigenvalues of R have distinct absolute values from all eigenvalues 
of S and suppose that II M - M II = 0( f(n)). 

n 
Then there exists a sequence {B } , B e Kk.k, such that 

n n 

( i ) l i m B = I and II I - B II = 0 ( f ( n) ) n n 

( i i) B M B-1 = [ Rn O ] 
n+l n n O S 

n 

(iii) 
where lim R = R, 

n 
II R- R II =O(f(n)) n 

lim S = S. 
n 

and II S - S II= O(f(n)), 
n . 

converges for some j e IR, then both l nJ · II 
and if l nj • 11 M - M II 

. n 
R - R II and l nJ · II S - S II n n 

converge. 

Proof: (i) and (ii) follow from Theorem 3.2. We only have to prove (iii). 
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Let H0 a [ :: :: ] 
n n 

By Lemma 3.11 there exists a sequence {B'}, B' e Kk,k, such that 
n n 

(i) lim B' = I 
n 

(ii) B' M (B'r 1= [ Rn O ] n+l n n p S 
n n 

where limR =R, limS =Sand limP =0. 
n n n 

(iii) II B:~- I II S II s:- I 11·6 + c-11 Mn - M S B:- I 11·6 + c1f(n) 
where 0 < 6 < l and c, c e IR • 

1 >O 
By (iii) , 

Hence, 
n II B:- I II S C2 · L f(k)-6"-k. 

k= 0 
Let N be so large that, for n N, 

Then, for n N, 

I f(n + 1) _ 1 I < 1 
2
- 6 

f(n) 

1 n l N n (l r]-n+k n ·L f(k)-6n-k S n ·L f(k)-6n-k + L T -6n-k 
ffnTk=O ffnTk=O k=N+l 
f(0) 6n-N 1 + 6 

s TTnT"r:o + r:o· 
Using the fact that 6"-(f(n))-1 - 0 as n - m, we obtain 

II B' - I II= O(f(n)). 
n 

Hence 

(3.27) II M - B:+1Mn(B~r 1II s II (I - B:+1)•M II 
+ II B' M-(B'r 1 -(B'- I) II+ II B' -(M - M)-(B'r1II = O(f(n)) n+l n n n+l n n 

and, by ( i i i ) , 
N N n 
L nj-11 (B'- I) II << L L nj-11 M - M ll-6~k 

n=O n n=O k=O k 
N m m 

= L L nj. II Mk - M 11 · 6n-k « L kj. II Mk - M II, 
k=O n=k k=O 

converges, and 
n=O 

m m m m 
L nj-6n-k = kj• L (n/k)j-6n-k = kj• L (1 + n/k)j·6" « kj• L nj•6" 

n=k n=k n=O n=O 
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so that, by the first inequality of (3.27), l nj• 11 M - B' IM (B' r 1 II 
n+ n n 

converges. By Lemma 3.12, we can choose a sequence of matrices {C} in such a 
n 

way that 
co 

C - 0 and C · R = S · C - P , II C II « · l II P 11 · Ok-n 
n n+I n n n n n • k=n k 

for some number O < o < 1. Since II P 11 = O(f(n)) we have, by the properties 
n 

off, that II C II= O(f(n)). Put 
n 

s: [ ) 
n 

* and B = B -B'. 
n n n 

Then 

n+l n n O S B M B-1 = [ Rn O ] 
n 

and 
II B - I II= O(f(n)) (for n - co). n 

Furthermore, it follows from (3.27) and (ii) that 
II M - B M ( B r 1 11 = 0 ( f ( n)) ( n - co) • n+l n n 

Moreover, if l nj-11 M - M II converges, then l nj-11 M - B M (B )- 1 11 
n n+l n n 

converges as well. D 

Corollary 3.16. Let [M ] e At(K), with 1 im M = M and let a t O be a simple 
n n 

eigenvalue of M. Further, suppose that l II M - M II converges. Then there 
n 

X 
exists a solution (x} of [M] such that _n_ converges to an eigenvector of 

n n a" 
M that corresponds to the eigenvalue a. 

Proof: From Theorem 3.15, it follows that there exists a permutation matrix 
U and a sequence of matrices {B} such that 

n 
(a) limB = I 

n 

(b) B UM U- 1B-1 = [ a + 0n O ] 
n+l n n O S 

n 
where l lo I< co. n 
Put N = B UM u- 1 B-1• The matrix recurrence [N ] has a so 1 ut ion {x } with 

n n+I n n n n 

XT = (x ,o,o, ... ,o), such that n nl 

Then 
n-1 

X = a"· X • TT ( 1 + O /a) 
nl 01 k =O k 
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X 
so that l.!!Jl -"- = A•e 

n a" 1 
* T for some A e K (with e1 = (1,0, ... ,0)). Then 

{U- 18- 1x} is a solution of [M) and (8 ur1x = U- 1(x + {) where 
nn n n n n n 

en ~.tm rn = o , so 
n 

(B ur 1x 
lim n n = A-U-1e 
n~ a" 1 

and u-1e1 is the eigenvector of M corresponding to the eigenvalue a. 

Corollary 3.17. Let Re ~(K) be simple and such that l N"( R - xR(T) ) 

converges. Then for a11 zeros a+ 0 of xR, R has a zero {v"} such that 
V 

lim-" = 1. 
n~ a" 

Proof: Apply Corollary 3.16 to [MR]. Each solution {x} of this matrix 
n n 

recurrence is of the form 
T X = (u k , ••• ,U ,U) 
n n+ -1 n+l n 

with {u} E Z(R) and MR_ MR << N (x (T) - R). 
n n n R 

X 
Since -"- converges to the eigenvector of lim MR corresponding to the 

a" n 
u 

eigenvalue a (see Ch.l,§6), we have that A= lim -" exists and A+ 0. 
a" 

Dividing u by A yields the desired result. 
n 

55 



CHAPTER FOUR 

FAST CONVERGENCE 

§1. Introduction. 

From Corollary 3.16 it follows that for a simple matrix recurrence [M] the 
n 

solutions behave very much like the solutions of the constant matrix recur-
rence [lim M] if I~ M - lim M converges. In this chapter we investigate 

n n n 
the case that [M] is non-simple. We shall derive a condition on the converg-

n 
ence rate of the sequence {M ,M , ... } in order that the solutions of [M] 

0 1 n 
'behave like' the solutions of [lim M ]. First of all, however, we must define 

n 
more precisely what we mean by similar behaviour of solutions. 

We can interpret Corollary 3.16 in the following way: For each solution 
{x} of a simple matrix recurrence [M] there is a solution {y} of the 

n n n 
constant matrix recurrence [lim M] such that 

n 

(4.1) 
X - y 

l . n n l . 
n-UJ !Y ! = n~ 

n 

xn - yn 
Ix I n 

= 0. 

Condition (4.1) seems to be a good definition of similar behaviour of two 
solutions {x} and {y }. We write {x} - {y} if {x} and {y} satisfy (4.1). 

n n n n n n 
X -y X -y 

Note that ~,im "IY ," = 0 implies ~,im "ix ," = 0 and conversely. 
n n 

It should be clear that, if we want to generalize the results of Corol-
laries 3.16 and 3.17, we have to exclude the case that the limit matrix M 
of the sequence {M} has eigenvalues zero. For if M has an eigenvalue zero 
with multiplicity l, then [M] has(, solutions {x(ll}, ... ,{x(lJ} with 
x~11 , ... , x~lJ 1 i nearly independent and x~11 = .. = x~ll = Cl for n l, so 
that definition (4.1) does not make sense. (With the aid of Theorem 3.8 one 
can show that in this case [M] has l linearly independent solutions 

(1J (lJ 1o . {y }, ... , {y } such that y - 0 as n - m (1 = l, ... ,l)). n n n 
We now state the results of this chapter first for matrix recurrences and 

after that for recurrence operators. We define the minimal po1ynomia1 of a 
matrix Me ck,k as the monic polynomial of smallest degree> O in C[X] such 
that P(M) = 0. Further, we denote by M the set of equivalence classes of 
bounded monotonic functions f:N - R>0 under the same equivalence relation as 
the one defined in Chapter I, §1, i.e. f - g - f(n) • g(n) for n large 
enough. 
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Theorem 4.1. Let [M] e M(C) and M lim M. Let Pe C[X] be the minimal 
n n 

polynomial of Mand let L be the maximum of the multiplicities of the zeros of 
P. Suppose that M has no eigenvalue zero and that L nL-l.f(~l·II M"-M II 
converges for some f e M. 
Then there is a bijection between the solutions {x } of [M] and {y } of [M] 

n n n 
such that {x } - {y } • Moreover, we have 

n n 

= o(f(n)) (n -+ ao). 

Applying Theorem 4.1 to recurrence operators yields the following result: 

Corollary 4.2. Let Re !(C), ord(R) = k, such that xR exists and xR(O); 0, 
and let L be the maximum of the multiplicities of XR· Suppose that 

L nL-l.f(~l-Nn(XR(T) - R) converges for some f e M. Then for each basis of 
v<; l 

zeros {v 11 l}, ... , {vlkl} of xR(T) such that l im "1 1> exists ( i = 1, ... , k) 
n n n~ V 1 

n 

there exists a basis of zeros {u1ll}, ••• ,{ulkl} of R such that 
n n 

ul I l 
-"- - l = o(f(n)) (n-+ ao; i = l, ... ,k). vi I l 

n 

Before proving Theorem 4.1 and Corollary 4.2 it will be useful to recall 
some properties of the solutions of the constant matrix recurrence [M]. This 
will be the subject of the next section. On account of the second assertion 
of Theorem 3.lS(iii) it will be sufficient to assume that M has only eigen-
values with the same absolute value. Since M has no eigenvalue zero, we can 
normalize such that all eigenvalues have absolute value one. 

§2. The constant matrix recurrence. 

We assume that Me ck,k has only eigenvalues with absolute value one. There 
exists a conjugate matrix A such that 

0 

where B(g) is a g x g-matrix of the form I+ J, with Jasin (1.9). 
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It is clear that, ~f {{x~i,j)}; I s j s g1} is a basis of solutions for 
[er;•B(gi)J, then {{z~ 1·J1}; 1 s i s l, I s j s 9) constitutes a basis of 
solutions of [RJ, where 

Z:'·" • [ X::·" ] and 
R-z(i,Jl = [ er. -B(g.~ -x(i,Jl ] · 

n 1 1 n 

0 
We determine a basis {{x(i.Jl}}. For {x} a solution of [er-B(g)J, 

n n 

X I = er-(I + J)x (n E IN). n+ n 

Put x(i,Jl = e., where e. is the j-th unit vector. Form e Z 
0 J J 

Hence, 

(4.2) x (; · j l = er~• B ( g.)" • e . = er"• ( e . + (") • e + . . . + ( " ) • e ) 
n 1 1 J 1 J I j-1 g-1 j-g+l 

where e; = 0 for is 0. 

So, (x~i,Jl ,el) -;. 0 if and only if le {j-g+l, ... ,j}, and it becomes clear 

that {{x(i,j)}; I s j 5 g_} is a basis of solutions of [er.-B(g.)J. Then, 
n 1 1 1 

{{z(i,j)}; 1 5 i 5 l, I 5 j s g_} is a basis of solutions of [A]. Moreover, 
n 1 

for j = 1, ... , g. -1, 
1 

- 0 as n - co 

and 

if j < j' 

and the latter quotient is bounded for all i,i' if j = j'. 
If {z} is an arbitrary non-trivial solution of [A], then 

n 

{z} = L >. .. •{z1i.Jl} 
n . . lJ n 

1 • J 

with ).ij e C (1 5 

(4.3) 

s l; 1 s j s g_), not all>. .. being zero. Then 
1 lJ 

o < lz(i.j)I < c-lz I 
n n 

with c e IR depending only on the>. .. for (i,j) such that not ).iJ'., 0 for 
>0 lJ 

i E {l, ... ,g.,} and j' j. 
J 
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LeR111a 4.3. 

n t- 0. Put l 
m 

Let R be as above, and 1et x e Ck, xT = (x1, ••• ,xk), 
m-1 
lg_ form= O, ••• ,t. Then, for l < j st , 

i = 1 1 m m+l 

(, -j 

I (R"x)jl s c0 - lnl m+l - lxl 

where c0 is some constant, depending only on R. 

Proof: Put q = j - t. Note that 
m 

t 1 - j = g - q. By (4.2), 
. m+ m 

k 
(, 

m+l 
(4.4) (R"x). = l x. -(R"e.). = 

J i = 1 1 1 J 
l x. · (a"· B ( g ) "· e. l ) 

i=l +l 1 m m ,- m q 
m 

gm i-1 gm 
= a"- LX+l, ·( l fnl.e.) = a"•L x.+l.f.n1J. m i = 1 1 m p = O LP J ,-p q mi = 1 1 m L 1 -q 

Hence, for n large enough, 

l(R"x).I S g ·I[" ]l•lxl Sc •lxl-lnlgm-q 
J m gm-q 1 

where c1 depends only on R. For small n, we use the inequality 

I (R"x) . I s II R" 11 · Ix I • 
J 

Hence, 
g -q 

l(R"x)jl S c0 -lxl-lnl m 
for n t- 0 and c0 depending only on R. 

§3. The proof of Theorem 4.1. 

and n e 1., 

D 

We introduce the notation l: Let {x }~ be a sequence of numbers, vectors or (n) n n=N 
matrices, x e C: (or C:k, c:k,m respectively, for some numbers k and m). 

n 

If l xk converges, then l \:= l \· 
( n) k =n 

n-1 
If l xk diverges, then l xk:= l xk. 

( n) k = N 

The proof of Theorem 4.1 goes in two steps. 

Proposition 4.4.: Let Me C:k,k be such that M has only eigenvalues with 
absolute value one. Let L be the maximum of the multiplicities of the zeros of 
the minimal polynomial of M. Further, let {D} be a sequence of matrices in 

n 
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ck,k_ Fina11y, 1et {x} be a sequence of vectors in Ck. Then the inhomo-
" geneous matrix recurrence 

(4.5) y = M-y + D ·X 
n+l n n n 

has a so1uUon {y< 0l} such that 
n 

IY~0)1 s c- r ni-l•O: kl-i·l\1·11 DJ> 
i = l ( n) 

with c depending on1y on M. 

Proof: If {y} is a solution of (4.5), then 
n 

n - l 
Y = M". (y + r wk-1 . o x > . 

n O k=O k k 

Put 

M 

m-1 
as in §4.2, and put l =Lg_ form= 1,2, ... ,l+l. Then, by Lemma 4.3, for 

m 1 
i = l 

j = l, ... ,k, 
l -j 

l(Wk-1-Dk\)jl S c0 -k m+l ·11 Dkll·I\I (keZ,kiO). 
"' l -J 

If L k m+l ·11 Dkll· Ix I converges, we choose 
k=O k 

co 
yo<oJ_l = - L (Wk-1.Dx ) .. 

k=O k k J 

"' l -j 
If L k m+l · 11 D 11 · Ix I diverges, we choose y~0J_l = 0. 

k= 0 k k 

(n e IN) where y<o) 
0 

= 
[ 

y~:~) l · 
y(O) 

Ok 
l -j 

lz' 0ll s c · L km+1 •Ix 1·11 D II (n 0) 

Then 

nJ 2 ( n) k k 

with c depending only on M. Finally, put y(Ol = M"-z'0l (n 0). Then 2 n n 
{y(0l} is a solution of (4.5), and by (4.4) with l < j s l and n m m+l 
q = j - l, we have that, for some constant c only depending on M, 

m 3 
gm 

IY(~ll s l(M"-z'0l).I s L lz'0! 1·[") 
nJ n J i=l n,1+lm i-q 
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9m g -1 L . 
s C. r ni-q_ r km •Ix 1·11 D II s C. r ni-q_ r kl- 1 •lxkl·II Dkll 

3 icl (n) k k 3 i=l (n) 
since l 
Hence, 

is the maximum of the numbers g (m = l, ... ,t). 
m 

IY(O)I s c · r ni-1 r kl-i·IX 1·11 o 11. 
n 4 i=l (n) k k 

with c4 some constant depending only on M. D 

Le11111a 4.5. let {dk} be a sequence of non-negative real numbers and me R ., 
such that r dk•km converges. Then, for f:N-+ R>O monotonic, 

k=0 

Proof: 

- 1--}: d -km•f(k) -+ 0 as n -+ .,_ 
f(n) (n) k 

., 
If f is bounded, then }: d -km•f(k) converges and 

k=0 k 
}: dk-km•f(k) << f(n)• }: dk•km. 

( n) ( n) ., 
If lim f(n) =.,,then if }: dk-km•f(k) converges, clearly 

n~ k=0 
}: dk-km•f(k)-+ 0 

( n) 

as n-+ .,, hence f(~)-}: dk-km•f(k)-+ 0 as n-+ .,_ 
., (n) ., 

Suppose that }: dk•km•f(k) diverges. Choose£> 0. let R =I}: dk-kml and 
k=0 k=0 

let NE N be such that Ir dk•kml < £ for n N. Then, for n N, 
( n) 

N- l n - l 
}: dk•km•f(k) S f(N)•}: dk•km + f(n)•}: dk•km S R-f(N) + £•f(n). 

(n) k•0 k=N 

Hence, 
_1.}: d •km•f(k) < R-f(N) + £ < 2£ 
f(n) (n) k - t'fri"} 

for n large enough. Since£> 0 can be chosen arbitrarily small, the assertion 
follows. 

Proof of Theorem 4.1. We may assume, without loss of generality, that M has 
only eigenvalues with absolute value one. let {x} be a non-trivial solution 

., n 

of [M]. Put D = M - M. Then }: nL-l ·r-, 1 l • 11 D II converges. Consider the 
n n n=O n n 

inhomogeneous matrix recurrence 
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( 4. 6) . y = M-y + 0 ·X 
n+l n n n 

(n e IN). 

According to §4.2 (and (4.2) in particular), Ix I - c-nq for some c e R, 
n 

c + 0 and Os q s L-1. By Lemma 4.5, 

L km, lxkl ·11 Dkll = Ix I •nm•O(f(n)} form e R. 
( n) n 

By Proposition 4.4, the recurrence (4.6) has a solution {y101 } such that 
n 

L 
IY 101 I s c · L ni-l_L kL-i•lx 1·11 D II= Ix I·0 (f(n)) 

n O i=l (n) k k n 

with c depending only on M. Define t such that for n e IN 
0 n 

L 
t · f ( n) · I x I = c · L n i-1 · L kl - i · I x I · 11 D II -

" n O i•l (n) k k 

Then Umtn=O and IY~01 Istn•f(n)-lxnl,Wemayassumethat \s½ for 

n O. We show that a sequence {y1ll}, {y121 }, ..• can be found such that 
n n 

( i) 

(ii ) 

ylil = M,ylil + D .yli-ll 
n+l n n n 

IY (ills 2-i.t -f(n)-lx I n n n 
We proceed by induction. 

( i I) 

(i 0). 

Suppose that {y1ll}, ... ,{y1Hl} exist such that (i) and (ii) hold for 
n n 

is j-1. Consider the inhomogeneous matrix recurrence 

(4.7) y = M-y + 0 ,ylHl (n e IN}. 
n+l n n n 

Since IY(Hll s 2H.t -f(n)-lx I for n e IN, we can rewrite (4.7) as 
n n n 

(4.8) y = M-y + D(jl,x n+l n n n 

where II o(jl II s 2-j · II D 11-
" n 

Applying Proposition 4.4, we find that (4.B) has a solution {y(jJ} such that 
n 

L 
IY(j}I s c · L n1- 1·L kL-i•lx 1·11 D(j]II s 2-j,t -f(n)-lx I (n e IN). 

n O i•l (n] k k n n 

Since {y (j)} is also a solution of (4.7), it satisfies conditions (i) and 
n 

(ii) for j = i. Put 
co 

w =ry<il (nelN). 
n i =o n 

Clearly, the sum converges for n 0, and 
co 

lw Is L IY10 1 s 2-t -f(n}-lx I-n i=0 n n n 

Hence, 
lw I 

and rn = o(f(n}). 
n 
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Moreover, .since 
y(l+l) • M-y(l+l) + D .yll) n+l n n n (i 0) 

and 
y<O} • M-y(O} + D ·X n+l n n n (n e N), 

{w} satisfies 
n 

w = M-w + D -w + D -x . n+l n n n n n 
Further, 

x . • M-x n+l n 

so that, if we define z • w + x (n e N), n n n 
z • M-z + D .z .. M .z 

n+l n n n n n 
and 

Z - X 
"ix," o(f(n)). 

n 

In particular, for any non-trivial solution {x} of [M] there exists a 
n 

sol~tion {z} of [M] such that {x} - {z }. n n n n 

Now let {x111 }, ••• ,{x(kl} be a basis of solutions of [M] such that for 
n n ( I) 

{x"} .. A1{x! 11 } + ... + Ak{x!kl} the quotient I:: I C if A1 ; 0. (C 

depending only on Mand the coefficients A1, ... Ak but independent of i and n). 
That such a basis exists, has been shown in §4. 2 (cf. { 4. 3)). {A 1 though it 
has been shown only for Min Jordan normal form, the result generalizes easily 
for general M). Let {z111 }, ••. ,{zCkl} be solutions of [M] such that n n n 

z< i l - x< i l 
" " • o(f(n)) 

1x<n1 
n 

(1 sis k). 

We show that {z< 1>}, .• ,,{zCk)} form a basis of solutions of [M J. Suppose this n n n 
is not so. Then there exist A1, •.. ,Ak e C, not all zero, such that 

{ 0}. A1•<z! 1 >} + •.. + Ak•<z!k>}. 
Then, for {x} • A1•{x111 } + ••• + Ak•{X(kl}, 

n n n 

x" k I z! 1 l - x! 1 l 11 x! 1 l I 1 - 1-x-l s r lAI I· ( I) • -x- --+ 0 (n _. 411)' 
n l•l X n n 

which yields a contradiction. 
Now let {z } be an arbitrary solution of [M J. Then 

n n 

{z} • P1·{Z(l)} + ••• + Pk·{Z(kl}. n n n 
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Put 

= o(f(n)) 

Proof of Corollary 4.2. let [MR} be the matrix recurrence associate to R. 
n 

Put = lim ~- Since all eigenvalues of MR have geometric multiplicity one, 
n 

the minimal polynomial of~ is xR (up to a non-zero factor). Hence, 

r nL-1--,11>·11 MR- MR II converges. let {u 111 }, ••• ,{u<kl} be a basis of 
n n n n 

Z(xR(T)) such that 
u< ii 

lim ~=a 
n~ ulil i 

n 
It is clear from §4.2 that such a basis exists. Put 

x~il = [ u~~!-1 l 
uli l 

n 

(i 1, ... ,k; n e IN). 

{u 111 }, ••• ,{u 1k1} is a basis of solutions of [M]. By Theorem 4.1 there exist 
n n 

solutions {y< 11 }, ••• ,{y1k1} of [MR} such that 
n n n 

(4.9) I y~i)- x~i)I 
= o(f(n)), xii l 

n 

where ylil is of the form 
n 

Yli) = [ v~;_!-1 l (i = 1, ... ,k; n e z,m) 
n v< i l i<. 

n 

with {v1il} e Z(R) (i = l, ... ,k}. Since {y 111 }, ••• ,{ylkl} is a basis of 
n n n 

solutions of[~], {v< 11 }, ••• ,{v 1k 1} is a basis of Z(R). Moreover, by (4.9) we 
n n n 

have that 

Since 

I ul I l vii l I 
n xiii" = o(f(n}} 

n 
U( I) 

lim ~=a and oi; 0, we find that 
n~ U( i) I 

( i = 1, ... k} . 

n 
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u< il 
-"- - 1 = o(f(n)) 
v< tl 

n 

( i = 1, ••. , k) 

If {M} converges very fast, we can easily derive a factorization theorem 
n 

for {M }, like in Chapter 3. n 

Theora 4.6~ Let [M] e M(C), M • lim M. Let Pe C[X] be the minimal 
n n 

polynomial of M, and let L be the maximum of the multiplicities of the zeros 

of P. Suppose that M has no eigenvalue zero and that l: n2L-z • f( ! 1 • II M - M"II 

converges for some f e M. Then there exists a sequence of k x k-matrices {S} 
n 

such that 
(i) II S - I II = o(f(n)) n 

(n ao) 

(ii) M=S •M•S-1 (nelN). 
n n+l n 

Proof: Without loss of generality we may suppose that M has only eigenvalues 
with absolute value one and is in Jordan normal form. Then, using the notation 
introduced in §4.2, we may assume that M = A, whence II M"II « max Ix<;· Jl I s 

i • j n 
s c-lnlL-l, where c is independent of n (n e Z). Put D = M - M. Consider the 

n n 
inhomogeneous recurrence equation 

(4. 10) Y = M-Y + D -M" n+l n n 
where Y e ck,k (n e ti). The solution of (4.10) is 

n 

(n e IN). 

Since 

II "i:1M-k-l.ok-~ II« "i:1
11 Dkll·II 11 2 « "i:1

11 Dkll•k2L-Z I k•0 k•0 k•0 
ao 

and s i nee the latter sum converges, we have that l: M-k-t •Dk•~ converges. 
k•0 

ao 
Choose ylDl = - l: M-k-t.Qk.Mk and let {Y(Ol} be a solution of (4.10). Then 

0 k•0 . n 
ao ao 

y~O) = -M"• r M-k-1.ok-~ (n e ti). Put tn•f(n) .. r II M-k-1,Dk-~ 11. Then 
k•n k•n 

Um tn • 0 and II y~Dl,M-n II S tn•f(n) (n e N). Without loss of generality we 

may assume that t s 1/2 for n e N. We show that a sequence cv<ll}, {Y'21 }, ••• n n n 
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can be found such that 

(i) 

{ii) 

yCil = H.yCil + D . yCHl 
n+l n n n (i 1, n E IN), 

(i ~o, ne!N). 

We proceed by induction. Suppose that {YCll}, ••. , {Y(j-IJ} exist such that 
n n 

(i) and (ii) hold for is j-1. Consider the recurrence equation 

(4.11) Y = M-Y + D .y(j-1). 
n+l n n n 

Since II ylHl.M-" II s z-I+j.t -f(n) for n e IN, we can rewrite (4.11) as 
n n 

(4.12) Y = M-Y + o(jl·M" n+l n n ' 
where II D(j)II s 2-j· II D 11- As above, and by the definition of t , we find that n n n 
(4.12) has a solution {Y(j)} with 11 y(jl.wn 11 s 2-J.t -f(n) (n e IN). As 

n n n 

{v<Jl} is also a solution of (4.11) it satisfies conditions (i) and (ii) for 
n GO 

i = j. Put W .. L y<il (n e IN). Clearly, the sum converges for all n and 
n i =O n 

GIi 

II W -M-n II S L II ylilM-n II S 2-t -f(n). 
n i =O n n 

Hence, W -M-n = o(f(n)). Moreover, since 
n 

ylil = M-v<il + D · ylHl 
n+l n n n ( i I) 

and 

y(Ol = M. y(Ol + D -M" 
n+l n n for n e IN, 

we obtain that 
W = M-W + D -W + D -M" • M •W + D -M" n+l n n n n n n n ' 

so that 
Z := Mn+l + W = M · (M" + W) = M -Z (n e IN) n+l n+l n n n n 

and II Z -M-" - I II = o(f(n)) as n GO. Put S = Z -M-n (n e N). Then n n n 

for all n, and 

S - I I• o(f(n)) n 
(n ao) .a 
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CHAPTER FIVE 

SECOND-ORDER RECURRENCES (1) 

§1. Introduction. 

In both this and the following chapter we shall study the behaviour of the 
solutions of operators in !(C) of order two which have a monic characteristic 
polynomial. It will be useful to introduce the concept of an eigenvalue of an 
operator. 

Let Re !(C), xR e C[X]. If xR(a) = 0, we call a an eigenvalue of R. 
We distinguish three cases: 
(1). The eigenvalues have distinct absolute values. 
(2). The eigenvalues are equal. 
(3). The eigenvalues have the same absolute value, but are not equal. 
The 1ast case will be treated in chapter six. 

Let Re ~(C), xR(X) = (X-a)(X-P), The associated matrix recurrence [M~] has 

limit matrix MR= [0 rP-gPJ, which has eigenvalues Q and p, The geometric 

multiplicity of a is one. Conversely, let [M] be some matrix recurrence of 
n 

order two where M = lim M exists and has no eigenvalues with geometric multi-
" plicity two (which amounts to saying that the minimal polynomial of M has 

degree two). By linear algebra, there exists a conjugate matrix recurrence 

[N"] with N = lim N" = ( g } ), where a and Pare the eigenvalues of M. For 

a solution {x} of [N] we have: 
n n 

(5.1) (xn+l)l = (a + 611 (n))- (xn)l + (1 + cS 12 (n)), (xn) 2 

(xn+1>2 = 621 (n) · (xn)l + (P + 622(n)) · (xn)2 

where (cS .. (n)) = N - N (n e IN). Hence, 
lJ n 

(xn+2>1 = (a + cSll (n+l))- (xn+1>1 + (1 + cS12(n+l)) •cS21 (n)-(xn)l 

(x ) - (a+ cS (n))·(X) 
+ (1 +cS (n+l))-(P+cS (n))- n+l 1 11 n 1, 

12 22 1 + cS ( n) 
1 2 

so that {(x") 1} is a root of a recurrence operator Re l(C) with character-
istic polynomial XR(X) = (X-a)(X-P), Since {x"} is completely determined by 
((x") 1} (by (5.1)) and dim Z(R) is equal to the number of linearly independ-
ent solutions of [N ], it follows that for each zero (y} e Z(R) there exists 

n n 
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a corresponding solution [:j of [1\l, where 

Zn•{l + 612(n)) = Yn+l - (a+ 6ll{n))•Yn· 

It thus follows that it is no restriction of generality to study second-order 
operators instead of second order matrix recurrences, if the limit matrix has 
only eigenvalues with geometric multiplicity one. (So we exclude the case that 
the limit matrix is a-I for a e C and I the identity matrix). 

Let R be as above. If we want to investigate the behaviour of the zeros of 
R, it is sufficient to study the behaviour of the zeros of one of the zeroth-
order transforms of R. We shall normalize the operators in the following way: 
Put R = T2 - p . T - q . Suppose that p , q t O for n N. {If p = 0 for a 11 

n n n n n 
n e N, then it is easy to calculate the zeros of R). Put 

n-2 
S = TT ( 2/pk) · I 

k=N 
s . I. 

n 

Then 
2 1 2 Sn+ 2 S 2 2 R/S=s •(T -p-T-q)--=T -p•-·T-q-~=T -2-T 

n+2 n n Sn n Sn + 1 n Sn 

4-q 

for n N + 1. 

Remark 5.1.1. Note that the normalized operators do not always have a 
characteristic polynomial. If Re !(C), xR(X) = X2 - a2 for a e c*, and 
R/S = T2 - 2-T + Q is a zeroth-order transform of R, then lim IQ I = m. 

n n 

§2. Simple operators of order two. 

This case has been treated in Chapter 3. We shall state the result of 
Theorem 3.15 for recurrence operators. 

n 

Theorem 5.1. let Re !(K), K = R or C, ord(R) = 2 and XR(X) = (X-a)(X-P), 
where a,P e Kand !al+ IPI- Suppose that f:N ~>o is a monotonica11y 
non-increasing function such that l!m f(n) = 0 and l!m f}c~J> = 1 and such 
that N {R - X (T)) = O(f(n)). Then R = (T - p )(T - a) with a ,p e K for 

n R n n n n 
a77 n and a - a= O(f(n)), P - P = O(f(n)). Moreover, if L N (R - x (T)) < 

n n n R 
< m, then R has zeros {u11l}, {u12l} such that 

n n 
u111 u121 

1 . n 1· n 1 1m- = 1m- = 
n4'D a" n~ p" 

(unless a or Pis zero, in which case one of the limits is not defined). 
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Proof: let U e K2•2 such that u-1i1u • (~ i). Put H~ • u-1~u. By Theorem 
3.15, there exists a sequence of matrices {B }, B e K2•2 , with n n I B - II• O(f(n)) such that n 

B H'B-1 • [a~ ~] n+l n n O /J n 

where a',/J' e Kand a - a'= O(f(n)), /J - fJ' = O(f(n)). n n- n n 
The solutions of [B 1H'B-1] are of the form {B u-1[uun•1]} for {u} e Z(R). n+ n n n n 

n 

Let V e !(K) be such that ord(V) = I and V(un) = (Bnu-1[u~:1]) 1 for 

{u} e Z(R). Then {V(u )} e Z(T - a'). Hence, R = r •(T - a')•V for some {r }, n n n n n * n 
r e K. The operator V is of the form V = c-b (T - /J ) , where c e K , and n _ n n 
b ,/J e K for all n, and b - I= O(f(n)). Moreover, since a - a'= O(f(n)) n n b _ n n 
and /J 1- /J + a'•-" - a= O(f(n)), we have that /J - fJ = O(f(n)) and 

M n b n 
b n+l b 

a'•-"- - a = O(f(n)). Put a:= a'•-"-. This yields the desired result. n b n n b 
n+l n+l 

The second assertion follows immediately from Corollary 3.17. a 

§3. Non-simple operators with two equal eigenvalues: Fast convergence. 

Let Re !(K), ord(R) = 2, xR(X) = (X - a) 2• We suppose that a+ 0. If a= 0 
and the coefficients of R behave neatly, there is in many cases a zeroth-order 
transform of R with eigenvalues that are not both zero. The following result 
follows from Corollary 4.2: 

Corollary 5.2. Let Re !(K), ord(R) • 2, and XR(X) • (X-a) 2, a+ 0. Suppose 

that r n,N (R - XR(T)) < ID, Then R has zeros {u(l)} and {u<2>} such that n n n 
u< 1 l u< 2 l 

1-UI -"- = I and 1-UI -"- '" I. 
n n-a" n a" 

Proof: For K = C the result follows immediately from Corollary 4.2. For 
K = R the result follows from the complex case by replacing {u<JJ} by 

n 
{(u<Jl+ u<Jl)/2} for j = 1,2. a 

n n 

If the coefficients of R converge more slowly, the result of Corollary 5.2 
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is no longer valid. There are even cases in which there are no zeros 
u 

{un} e Z(R) such that ~+l converges to an eigenvalue of R. The following case 
n 

is an example of such a result. 

Proposition 5.3. Let Re!(~}, R = T2 - 2-T + 1-C, where n(n+l}-C = 
n n 

a, 

= - 1/4 - d 
n 

(n e ~} with lim d = 0 and L d /n = +co. Then R has no (real) n~ n n n=l u 
zeros {un} such that ~+l converges. 

n 

Proof: Let {u} e Z(R). Note that if the limit exists, then it is equal to 
U n 

1. Put g = - 1. Then {g} satisfies 
n U n 

n 

(5.2} gn+l = g 
n 

+ C 
+ 1 . 

Without loss of generality we may assume that -d < 1/4 for all n. Then it is 
n 

clear that g < g as long as g > -1 and if g < -1, then g > 0. n+l n n n n+l 
Hence, the sequence {g} decreases monotonically in the neighbourhood of 0. 

n 
So, if lim g = 0, we have that O < g < 1 for n > N. Then O < ng < n for n n n 
n > N and 

ng - (n+l)g n n+l 
(ngn) 2 - ngn - n(n+l)Cn 

n + ngn 
(ng - 1/2) 2 + d d 

n n n > ---~2n ____ ----zn--· 

Then, by 1 d /n = +co, we see that ng < 0 for some n > 
n n 

N, which yields a 
u 

contradiction. Hence, {g} does not converge and 
n 

therefore ~+t does not 
n 

converge either. 

The aim of the rest of this chapter is to investigate some other cases for 
which the behaviour of the coefficients is regular. We shall see that in many 

u 
of these cases the operator Re i(C) has a zero {un} such that - ~+l converges. 

n 
First we make some preparations. 

For the rest of this chapter we suppose that the recurrence operator is 
normalized in the way described in §5.1, unless stated otherwise. Hence we put 
R = T2 - 2-T + Q(n}, where Q(n) = 1 - C, lim C = 0. If {u} is a non-trivial 

U n n~ n n 
zero of R, we put g = un+l - 1. Then {g} satisfies (5.2). Further, if 

n n 
1 n 

S = -u-· I, then {l} e Z(R/S) and 
n 
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u u 1-g 
(5.3) R/S = T2 - 2-~-T + _n ·Q(n) = (T - ~) · (T - 1). 

Un+2 Un+2 i+gn+l 
We first investigate the case that n2-C converges to some non-zero complex 

n 
number. 

Theorem 5.4. Let R e !(C), R = T2 - 2-T + 1-C , with 
n 

l im n2 • C = -y for 
n~ n 

-ye C, -y fl. {re IR I r s -1/4 }. Then R has zeros {u1ll} 
n 

uc I l ul 2 l 
limn-(~ - 1) = a and limn-(~ - 1) = 1-a, n~ U(l) · n~ U(2) 

and {u121 } such that 
n 

( i) 
n n 

where a is the root of X2 - X - -y with Re a> 1/2. 
(ii) If L ln-C - 1/nl converges, then R has zeros {v1ll} and {v 121 } such 

n n n 
that 

Corollary 5.4. Under the conditions of the first part of Theorem 5.4, 
u 

1 im un+l = I for every non-trivial zero {u} of R. If C e IR (n e IN), then we 
n~ n n 

n 
can find {u1ll}, {u 121 } {v01 } {v' 21 } such that u01 u<2l v111 v121 e IR 

n n'n'n n'n'n'n 
(nelN). 

Proof of Corollary: Let {u} e Z(R), {u} + {O}. Then 
n n 

{u } = .l.-{u01 } + µ-{u121 } with ).,µ e 0::, not both zero. By Theorem 5.4( i), n ( 2 ) n n 
u 

lim __!!__( 1 = 0. Hence, if).+ 0, then 
n~ U l 

n 

and if).= 0, the result follows immediately from Theorem 5.4(i). If C e IR, 
n 

uc21 
{u 121 } e Z{R). Since lim _un = 0 for all {u} e Z{R) linearly independent 

n n~ n 
n 

with {u121 }, we must have that {u} and {u} are linearly dependent. So, by n n n 
multiplication with a suitable constant, we can take u e IR (n e N). Since for 

n 

{u111 } we can take any zero linearly independent with {u 121 }, we can choose 
n n 

u01 e IR (n e IN) as well. The same argument applies to {v01}, {v'21 }. o n n n 
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For the proof of Theorem 5.4 we need some lemmas. 

LeD1Da 5.5. 

(5.4) 

Let {a} be a sequence of real numbers satisfying 
n 

a =(1-e)-a+e' n+l n n n 
Cl) 

where e , e' e IR, e > 0, l i m e = 0, n n n n~ n Ee diverges and 
n 

n = 1 
Then {a } converges to zero. 

n 

Proof: Note that 
e' 

(5.5) a < a - ~< a . n+l n e n n 

Choose 0 < £. < 1/2. Let N be so large that e < £. and I e' I < e · c. n n n 

as n - co. 

for n N. 

c. - le' I 
If lan+ll >£.for some n N, then la0 I > 1 _ e" £.. Hence, either la0 i > £. 

n 
for all n N, or la I c. for n N' N. In the former case, we have by 

n 
(5.3) and (5.4) that la I< la I for n N. Then {la I} converges to some n+l n n 
number a~ c.. On the other hand, by lim e'/e = 0, 

n~ n n 

2 · e · a > I a - a I = I e • a - e' I > e · a/2 
n n+l n n n n n 

for n large enough. Since lime = 0, Le diverges and {a} is monotonic 
n~ n n n 

for n N, this yields a contradiction. Thus, la I c. for n ~N'.As c. is 
n 

arbitrary, we have that lim a = 0. 
n~ n 

LeDIDa 5.6. Let {A} be a sequence of non-zero complex numbers such that 
n 

A y = 1 + o(n-1). Let a e C, Re a> 1. Then 
n 

Ill 

l im 
n~ 

LA -k-Q 
k=n k 1 

' 1-Q = a=T· 
I\ • n 

n 

Proof: Put~= 1 + ;", where "fn EC, "fn - 0 (n - co). Choose£.> 0. 
n 

Let N' N be so large that 11 I<£ for n ~N'.Then 
n 

I \+k I ln+k-1 "ft I £,k -X:: - 1 = l~ n ( 1 + T) - 1 n' 
since the evaluation of the expression in the second term gives a sum of terms 
such that each of their moduli are smaller than c. times the corresponding 
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term that appears on evaluating the expression 

equal to k/n. Hence, 

n+k -1 l 
TT (1 + t> - 1, which is 

l=n 

00 ). 

L +-k-Q 
k=n n 

00 00 £ •k 1 1-Q _ k-Q 1 1-Q + n k - a=rn - l.. - a=rn l.. n 
k=n k•n 

k-Q . , 

where l£ 0kl < £ (n N', k n). By the formula of Euler-Maclaurin, 

Moreover, 
00 £ • k I r nk -k-Q I< E:·C(a) 

k = n n - Ina- 1 I ' 
with c(a) some positive number depending only on a. So we have 

00 ). 

~-k-a 1 1-a 
l.. A ~-n 

k=n n 

where c1 (a) is some positive number depending only on a. Since£ can be chosen 
arbitrarily small, we obtain the desired result. 

Le11111a 5.7. If Re a - 1/2 = r for a et, then 
Um <In + a I - In + 1 - a I> = 2r. 

Proof: Put a= r +is+ 1/2. Then 
lim (In+ r +is+ 1/21 - In - r +is+ 1/21) n~ 

= lim (n + r + 1/2) 2 + s 2 - fn - r + 1/2) 2 - s2 
n~ In+ r +is+ 1/21 +n - r + 1s + l/21 

4rn + o(n) ~.im 2n + o{n) = 2r. 

u 
Proof of Theorem 5.4: Put h = n(~ - 1) - a for {u} e Z(R). Then 

n U n 
n 

(5.6) 
(1 + l-a)•h + d n n n h n+l h /n + 1 + a/n 

n 
(n E IN) 

with d = (n + 1)-C 
n n 

- 1/n = o(n-1). So, if lh I< In+ al, 
n 

II+ l~al •lh I + Id I 
lhn+ll II + a/nl : lh I/~ 

n 

We show that lim h = 0 for some solution {h} of (5.6). (Note that this n~ n n 
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u 
implies 1 im n-(~ - 1) = o: for some zero {u} of R). Choose 0 < r. < r/4, 

n~ U n 
n 

r. < 1 for r = Re o: - 1/2 > 0. Choose N so large that for n N 

n- Id I < rr./2, In + o:I - In + 1 - o:I > r, and N > 2lo:I. n 

Take some sequence {u} E Z(R) such that 
n U 

3r./4 I N-( ~+l - 1) - o: I f.. 
N 

Then, with {h } as defined above, I h I £ < In + o:l/2 (n N) implies 
n n 

I h I In + 1 - o: 1 · £ + rr./2 < £. n+l In + 0: - f. 

So lh I < r. for all n N. Then 
n 

( - In+ o:I +In+ 1 - o:l)•lh I+ n-ld I+ lh 12 n n n 
< lh I ·(lh I - r) + rr./2 < 3r.-(r. - r)/4 + rr./2 < -r.2/4, 

n n 
so that 

- f. 2 
lhn+ll - lhnl < 41n + o:I < 0 

as long as lh I > 3r./4. By subsequently changing the value of r. properly, we 
n 

lh I 
find that lim h = 0. Further, if L Id I converges, then L -n" converges as n~ n n 
well. For by (5.6) we have 

1 - 2o: - h 
h h (1 + -----"-) + d' n+ 1 n. n n 

where L Id' I< oo. Putting 
n 

for n N we obtain 

1 - 2o: - h 

n-1 1 - 2o: - h 
r = n (1 + --~-k-> n k=N 

n-1 d' 
k h = r . h + rn. L ,.,------. 

n n N 1 k=N k+l 

Since I l + -----"-I < 1 - 6' /n for some 6' > 0 and n N' N, we have n 
00 1r I 

that r 0 as n oo and that L -"- < oo, so that 
n k=N n 

00 lh I 00 1r I 00 1r I N'-1 Id'! 00 1r I n-1 Id'! 
L -" L _n •lhNI + L _n · L + L _n · L ~T 

k=N' n k=N' n n=N' n k=N 1'k+1 1 n=N' n k=N· 1"k+l 
00 00 00 

< c + c · L Id' I· kf. · L n-H < c + c · L Id' I < 00 , 
1 2k=N'k n=k 1 3k=N'k 

where c2,c3 are constants depending only on r.,r.' and o:, and c1 is a constant 
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depending on {h} and {d'}. Then L 19 - a/nl converges, so that 
n n n 

u 
= ( I + a/ n )( 1 + c ) ( n N) 

U n 

with L le I < 00 , which u * implies lim -"-=).Et 
n~ na Now choose {v(ll} 

n 

Then {v Ol} E Z(R) and 
n 

v< I) 

lim-"-=l. 
n~ no. 

n 

For the second part of the proof, put S = _!__( 1-I. Then, as in (5.3), 
. U I 

1-g n 1-g 
R/S = (T - ~)(T - 1) for some {gn}. Let {wn) E Z(T - l+g"+ 1), {wn} {O}. 

+gn+I n+I 

Since g - a/n and Re a> 1/2 we obtain 
n 

n - I 

). 

w = ). · IT (1 - 2a/k) (n N), 
n n k=N 

h n+ I were --X-- = 1 + o(n-1) and if L ldkl converges, then L lgk - a/kl converges, 

* n - I 
as we saw above, so that lim). Et . Since 

n~ n 
n20 . IT (1 - 2o./k) = c(o.)-f(2a) 

k=N 
* for some c(a) EC depending only on a and N (see e.g. [W],page 237), we have 

* and lim >.'EC if I Jdkl < 00 • 
n~ n 

Hence, 
00 

I w n n=N 
converges absolutely. Put v 

{v } E Z(R) and 
n 

00 

n 
u . I w 

n k k= n 
(n N). Then 

V 
limn-(~ - 1) 

U U 00 

n~ V 
lirn n-(~ - 1) - lim n-~-w ·( l w r1 
n~ Un n~ Un n k=n k 

provided that both limits exist. Using Lemma 5.6 and the fact that 

• Un+ 1 t:ull n-(-u- - 1) = a we find 
n V 

limn-(~ - l) = a - lim (1 + a/n + o(n-1))·(-1 + 2a + o(I))= 1-a. 
n~ V n~ 

n 
V 

Note that lim = 0. Further, if I Id I converges, 
n~ U n 

n 
, , -2a d a w = A . n an u = µ, . n , 

n n n n 

where lim ).' and lim µ, exist and are unequal to zero, so that 
n~ n n~ n 
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Now put D 

We now investigate the case that lim n2-C is real ands -1/4. We have 
n-,<0 n 
u 

already seen that, for RE!(~), lim does not exist for any zero (u} of n-,<0 U n 
n 

R if lim n2 -C < -1/4. For RE l(E) the situation is different, however. The n-,<0 n 

following result is true: 

Theorem 5.8. Let RE 1l(C), R = T2 - 2-T + l - C, where lim n2 -C = -y and 
n n-,<0 n 

-y E ~. -y s -1/4. Put d = (n + l)C - r/n. 
n n 

The following assertions hold: 
00 

( i ) Suppose there exists a sequence {d'} such that Id I s d', Id' con-
n n n n n=N 

[ 
oo 2 

verges and k~nd~] s nd~/4. If a2 - a - -y = 0, R has a zero (un} such that 
u 

limn-(~ - 1) = a. 
n-¥0 U 

n 

( i i ) If moreover 
00 00 I [Id') . .!. converges, then R has zeros {u(ll} and {u( 2l} 

n=l k=n k n n n 
such that 

and 

if -y < -1/4, where a, a' are the roots of X2 - X - -y, and 

if -y = -1/ 4. 

U( I) 

lim-n-= 
n-,«> nl/2 

We prove the following lemma: 

and 

lemma 5.9. Let {d} be a sequence of non-negative real numbers such that 
n 

00 (00 )2 
n~id" converges and k~ndk s nd/4 for n ;:,: N. Then the following assertions 

are val id: 
( i) The recurrence 
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(5. 7) X = n+l 

X - d 
n n 

1 + X /n n 

has a solution {x<0l} such that lim x< 0l n n-i«I n = 0 and {x101 } is a monotoni ca 11 y 
n 

decreasing sequence for n N. 
(ii} There exists a sequence {d~}, where dn d~ for a11 n, such that 

l im d' n-i«I n 

(5.8) 

GO 

= 0 and {2· L dk} is a solution of 
k=n X - d' 

X = n n 
n+l 1 + X /n 

n 

GO 

Proof: (i). Put Dn = L dk (n N). If n N and xn 2D", then 
k=n 

2D - d 
X > n " > 2D 

n+l - 1 + 2D /n - n+l 
n 

Hence, if x~0l 2DN, then x~01 2D" for n N, where {x~01 } is defined by 
(5.7). On the other hand, 

- d - (x 101 ) 2/n 
X(O) _ X(O) = n n < O, 

n+l n l + X ( O l /n 
n 

so that {x 101 } converges to some limit x 0. If x > 0, then 
n 

x - x « - x2/n, so that {x} cannot converge. So x = 0. ~l n n 

(ii). Note that d':= 2D - 2D (1 + 2D/n} d for all n. 
n n n+l n n 

Proof of Theorem 5.8: Let {0}, {u} e Z(R) and put 
U n 

h = n• (~ - 1) - 1/2 - i/J 
n U 

n 

where /J e R, 1 = -1/4 - JJ2• Then {h} satisfies (5.6) 
n 

{k} be a sequence of positive numbers satisfying 
n 

k - d' 
n n (5.9) 

1 + k /n n 

k 
n+l 

with o = 1/2 + i/J. Let 

and k tends monotonically to zero. The existence of such a sequence is 
n 

guaranteed by Lemma 5.9. Let N' N be such that k N' and d' 1 for 
n n 

n N' . Define U = {z e CI I z I k } for n N' . Then U is a compact set 
n n n 

GO 

and n U = {O}. We show that for each m N' a sequence {hlml} exists such 
n n n=N' 

that h(ml e U for N' n m and such that {h(ml} satisfies (5.6). Indeed, 
n n n 

by (5.6), 
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h = 
n 

h (n + 1/2 + ifl)/n - d 
n + 1 n 

1 + (1/2 - ifl - h )/n n+l 
Take h(m) EU. Then lh(mll 5 km< kN, 5 N' and, for N' 5 n < m, if m m m 

< N', then 

(5.10) 
( l lh(m)ll(n + 1/2 + ifl)/nl + Id I lh(m)I + d' lh m I = n+l n < __ n_+l ___ n_ 
" II+ (1/2 - ifl)/nl - lh(m)l/n - 1 - lh{mll/n n+l n+l 

so that from h{ml EU it follows that h{m) EU. Note that this implies n+l n+l n n 
I h(ml I < N' for N' 5 n < m. Now consider the sequences H = {h(n+j)} ·>o· All 

n n n J_ 
elements of HN, lie in UN'' which is a compact set, so that HN, has at least 
one limit point, 1 ., say. Let {1} >, be a solution of (5.9). By continuity, N n n_N 
1 is a limit point of U for n N', so that, in particular, 1 EU 

n n n n 
(n N'). Hence, lim 1 = 0. Let {u( 0l} be such that, for n N, 

n~ n n 
u ( 0) 

= n-(~ - 1) - 1/2 - ifl. 
n U ( 0) 

n 
Then {u(O)} E Z(R) and 

n u ( 0) 

limn-(~ - 1) = 1/2 + ifl. 
n~ U(O) 

If fl r 0, we can in the 
n 

same way find a zero {v' 0 l} of "R such that 
n 

V ( 0) 

limn-(~ - 1) = 1/2 - ifl. 
n~ V(O) 

n 
"' Put D' 

n L dk'. Note that if we substitute f := 2d' - 4D'D' /n for d' in n n n n+l n k=n 
"' 

(5.9), we have fn d~, Um fn = 0 and kn:= 2- L d~ is a solution of (5.9). 
k= n 

Further, suppose that L D'/n converges. Let {v( 1l} E Z(R) such that 
n n 

v( 1 l 
ln•(v~;\ - 1) - 1/2 - ifll 5 2D~ (n N). 

n 

By the first part of the proof and the above remark, such a {v(ll} exists. We 
n 

have 
V ( l) 

v~;~ = (1 + (1/2 + ifl)/n)•(l + 6n/n) 
n 

where 16 I« D'. Hence, v(ll_n- 112-;fl ).1 E «:* as n "'· n n n 
Choose. u(ll = v0 l;). . Similarly, if fl r 0, we can find {u( 2l} such that 

n n 1 n 
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Now suppose /J = 0. Put S (u(llr1-I. Then, by (5.3), 
n 

1-g / n+l RS= (T - ~)-(T - 1), where +gn+l 
w 

Let {O}; {wn} e Z(R/(S(T-1))). Then :• 1 = (1 - 1/n)(l + 6"/n), where 
n 

16 I « D'. So w = ). -n-1, where ). -+ ). e c* as n -+ co. Without loss of n n n n n 
· n-1 

generality we may assume that ). = 1. Put u( 2l = u(ll. L wk. Then {u(2l} e Z(R) 
n n k= 1 n 

since {w} e Z(R/(S(T-1))). Moreover, n-w -+ 1 (n-+ co). We prove that 
n n 

n - I 
L wk 

lim k=l n~ log n 

Choose£> 0. Let N0 be so large that ln-wn - II < £ for n N0 • Then 

n - 1 
(log nr1 -1 L (wk - 1/k) 

k=l 

c-N 0 1 n-1 c-N 
< -- + --· L £/k < --0 + 2£ < 3£ -1ogn lognk=N logn 

0 
u(2l 

for n large enough. Hence, --"---+ 1 as n -+ co. 1/2 
n 1 og n 

Remark 5.3.1. That the condition 4D2 nd is not far from best possible 
n n 

can be seen from the following example: 
02 

Take dn (n-log2n)-1. Then ~-+ 1 as n-+ co. Consider the recurrence 

(*) X n+l 

n 
X - d 

n n 
I + x /n n 

If lim x(oJ O for some solution {x( 0l}, then x(oJ > O for n N. n~ n n n co 
Hence, x < x - dn, so that xn(oJ > L dk for n N. Then, n+l n k=n 

x( oJ - d 
X(O) < n n 

n+l - 1 + D /n 
n-1 n n-1 

Then O < x~01 -rn x~01 .- L dk .fk, where rn = TT (1 + D/k) for n N. 
k=N k=N co 

Hence, L d -r must converge. On the other hand, n n n=N 
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o:) co n - 1 
I d .r > I ---· TT (1 + ---k-) 

n • N n n n • N n · ] og 2 n k • N k . l o g 

n - I 
> " exp ( 1 

£ 2 · TT k· log k 
n = N n • l og n k • N 

o:) 

o:) o:) 

» l 1 2 • e loglogn-2/n » l -n-, ~1 o_g_n_ 
n=N n-log n n•N 

o:J. 

Remark 5.3.2. The number 4 in the inequality 4D~ 5 ndn cannot be improved, 
as we shall show below: Let (dn} be some sequence of non-negative real numbers 
such that I dn converges and such that C•ndn < DnDn+t for some number c > 0, 

CXl 

where Dn = I dk (n E ~). Consider the recurrence(*} of Remark 5.3.1. If(*) 
k=n 

has some real solution (x~0)} such that Um x~O) = 0, then x~O) > 0 for n 2 N. 
By 
(**} x(O) _ x(O) (0) (0)/ d n n+l = Xn 'Xn+l n + n 
we infer that x~o) - x~~l > dn, so that x~o) > Dn for n 2 N. Using that 
DnDn+ifn > C·dn we obtain by (**} that x~o) - x~~1 > (1 + c) •dn, so that 
x~0 l > (1 + c)•Dn for n 2 N. Continuing in the same way, by repeatedly 
applying (**) and the inequality DnDn+ifn > C·dn, we obtain a sequence (ch}~.0 

of positive real numbers ch (h 2 0) defined by c0 = c and ch= C•(l + ch_ 1) 2 

for h 2 1, and such that x~0 l > (1 + ch)·Dn for n 2 N and all h. Since obvi-
ously £ 1 > c0 ,we have that ch> ch-t for all h > 0. Now suppose that c > 1/4. 
Put E = lim ch. If EE~, it satisfies the equation E = C•(l + E) 2 • However, h-,<Xl 
since c > 1/4, the equation X = c-(1 + X) 2 has no real solutions. Hence E = ro 

and, consequently, the recurrence(*) cannot have a real solution that 
converges. 
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§4. Non-simple operators with two equal eigenvalues: Slow convergence 
(hyperbolic case). 

In [Pe2] Perron showed the following fact: 

If R = T2 - (2 - n1(n)}·T + (1 - n0(n)), where n0 (n),n1 (n) e for all n and 
u 

lim n0 (n) =limn (n) = 0, then lim un+l = 1 for all {u} e Z(R), n~ n~ 1 n~ n 
n 

{u"} t {0} if n1(n) 0 and n0(n) - ~1(n) 0 for n N. In fact, it can be 
shown that the condi~ion n1(n) 0 can be omitted. Let {v"} e Z(R), 
{v} t {O}. Put g = vn+l - 1. Then 

n n 
n 

(1 - n1 (n))•gn + n0 (n) - n1 (n) 
gn+l = + g 

n 

Let N' N be so large that ln1(n)I < 1/2 for n N. Let gN' 0. Then, since 
n0(n) - n1(n) 0, we have g" 0 for n N'. Let r(n) be the largest root of 

X2 - ln1(n)l·X + n1(n)-n0(n). Then r(n) o. Put €(n) = max(g", max r{n)) 
m~n-1 

(n e N). Clearly, €(n) 0 for n ~N'.We show that {€{n)}n~N' is a monotonic-

ally non-increasing sequence. For if g r(n), then g 1 g, so that 
n n+ n 

€(n+l) €(n). If g < r(n), then g < r(n) as well, so that again n " n+l 
€(n+l) €(n). Since r(n) tends to zero as n - m, we have that either 

1 im g = 0 or g > max r(m) for n large enough. In the latter case, {g } 
n~ n n m~n-l n 

decreases monotonically for n N0 , so that {g"} converges to some number 
V 

g 0. Then l:iJll ~+l = l+g, so that g + 0 is impossible. Hence, by Proposition 
n 

. Un+l 3.1, l1m -u- = 1 for all zeros {u} + {O} of R. 
n~ n 

n 

Remark: It can moreover be shown that there is a unique zero {v"} (up to a 
V 

multiplicative constant) such that ~+l - 1 0 for all n. By symmetry, {v"} 
n u 

can be taken real-valued. Furthermore, we have lim v" = 0 for all {un} e " n~ 
n 

Z(R) linearly independent with (v"}. (See [K2]). 

In the sequel, we shall generalize Perren's result in several directions. 
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instance, if n and n converge fast to zero, or if their behaviour is in 
. 0 l 

~ame other way regular (whatever we may mean by this rather vague term does 
:at concern us here yet), it will appear this similar statements about the 
~ehaviour of the zeros can be made as in the case above. As in the preceding 

tions, we consider the normalized operator R = T2 - 2-T + l - C, RE .'R(t). 
n 

does not converge so fast that the conditions of Corollary 5.2 are 
satisfied, it will be necessary to impose additional conditions on the behav-

our of {C }. For example, Theorem 5.10 holds if larg Cnl < n - £ for some 
n 

positive real number£ and n large enough, and lim (.fc:1- .;fl)= 0, where 
n~ n n+ 1 

we define rz for z Et such that -n/2 < arg rz < n/2 if z + 0 and z is not a 

negative real number. Note that this condition implies that lim n2 IC I = w. 
n~ n 

Indeed we have for any£> 0 that 1£- ,;fll <£for n N(£), which im-" n+l 
plies 1£1 < 2m for n large enough, so that n2 - IC I > (4/r1 for n large 

n n 

enough. Since£ can be chosen arbitrarily small, we have lim n2 IC I = ro. In 
n~ n 

particular, I lv'LI diverges (see Remark 5.4.1). With a view to later appli-
n 

cations, we shall impose even weaker conditions on {Cn}: 

Theorem 5.10. LetRe.'R(t), R=T2 -2-T+l-C,where limC -dfor n n~ n 
some non-negatjve real number d, and moreover I Re .;r;; = +ro and 

Cn+i/Cn - l = o(Re .;r;;). Then R has zeros {u(ll} and {u( 2l) such that 
n n 

lim .fc:1( 
u ( 1 ) 

n+l - l) n~ n u ( 1) 
n 

and, i'n addHfon, 

l im £ ( = l and n~ n 

u ( 2) 

lim-n-=0. 
n~ u< 1) 

n 

u ( 2) 
n+l I) = -1. u<2J 
n 

u 
Corollary 5.10. Let R be as in Theorem 5.10. Then lim un+l exists for 

n~ 

non-trivial zeros {u) of R. Moreover, if C E IR (n E IR), then we can 
n n 

find 7ineariy independent zeros {u(l)),{u( 2l} E Z(R) such that u( 1l ,u(2l E IR 
n n n n 

for n E IN. 

of Coronary: Let {u} e Z(R), {u} # (O}. Apply Theorem 5.10. Since 
n n 
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{u<ll} and {u< 21 } are linearly independent, there exist >..,µ e C, not both 
n n ( 2 ) 

u 
zero, such that {u } = >..-{u1ll} + /J• {u 121 }. Further, since lim _!!_( 11 = 0, n n n n~ U 

n 
we have 

and 

For the proof of the second assertion, compare Corollary 5.4. 

Lenna 5.11: Let {1 },(S },{£} be sequences of comp1ex numbers such that n n n 
Hm £ = lim "f = 0, II - S I 5 1 for a11 n large enough, lim II - SI = 1 and n~ n n~ n n n~ n 
m £ 
L (1 - II - Snl) = +m. Moreover, suppose that l.!Jll " = 0 and 

n• 1 1 - I I - S I 
l"fnl n 

that------ is bounded. Then the recurrence 
1-11-Snl 

(5.11) f 
n+l 

f ·(l - S) + £ n n n 
1 +-, .f 

n n 

has a solution {f101 } such that l im f(Ol = O. Moreover, if "( n n~ n 
lim " = 0, then lim fn = 0 for a11 so1utions {fn} of (5.11) but 
"~ 1 - 11 - S I "~ 

n 
one. For the remaining so1ution {f(m)} we have lim f(m) = m. n n~ n 

11" I Proof: Let M be such that------< M for all n. Let N be so large 
1-11-Snl 

that for n N both 4 • I£ I < 1 - I I - S I and I l - S I < 1. If ( f } n n n n 
satisfies (5.11) and lfml 5 f = for some m N, then 

If 1(1 - (1 - II - & I))+ 1£ I 
If I < m m m 5 

m+l - 1 - I"( I . f 
m 

lfl•O - o - 11 - & 1)/2) + 2·1£ I 5 f.(1- c1- II - & 1)/2) +2·1£ I< f, m m m m m 
since 11ml .f < 1/2 for all m N. 
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We now choose {f~01 } such that it satisfies (5.11) and such that lf~01 i s f. 
Then I f(o) I s f for a 11 n N and 

n 

lf' 01 1 s lf(O)l ·(I - (1 -II - 6 1)/2) + 2-1( 1. n+l n n n 

Application of Lemma 5.5 now yields that lim f(oJ = 0. 
n~ n 

Now suppose that in addition lim ~--1n ___ = 0. Put h = f - f(oJ for n~ n n n 
I-II-61 n 

all n E ~. Then {hn} satisfies the recurrent relation 
h ·(I - 6 - f(Ol.-y} 

n n n+l n 

I+ 'Y f(Ol + 'Y h 
n n n n 

(5.I2) h 
n+l 

(n E ~). 

Put 
I+ 'Y f(O) 

n n 

1 
I+-yf(O) 

n n 

so that lim ---"--- = 0. Consequently, (5.12) can be written as 
n~ I-II-61 n 

(5. 13) (n EN), 
I + 'Y -h n n 

* IX) * where ll - 6nl s 1 for almost every n EN and moreover, l (1 - 11 - 6nl} +00 , 

(5.I4) 

«> * 1-1 
since the sum E 11 · n (1 

l=l k=l 
co * 1-1 
E 1111· n II 

1=1 k=l 

n=l 

* - 6k} converges absolutely, by 

* co * 1-1 * 
ok I « E < I - I 1 - s 1 I>· n < I - 0k > = 1. 

l=l k=l 
Thus, if we take h1 Et, h1 + 0 or h1 = co, we find that hn -t Oas n -t 10 • On 
the other hand, if we take h1 = 0, then 

* 
-1 co * n-1 * I 'Y 1 

hn = - l 'Y1· TT (1 - od, so that lh~ I S '~*----~,while the latter 
l=n k=l I - ll - 6 I 1 

expression tends to zero as n -t «>, 

Remark 5.4.1. Since lonl 1 - II - onl in Lemma 5.11 the lemma is valid in 
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particular if lim r.Jon = 0, lim on= 0, larg onl < 'lf/2 - r. for some£ > 0 and 
n~ n~ 

n large enough, where Lon diverges and 1+1 is bounded. 
n 

Lemma 5.12. Let Re i(t), ord R = 2, such that R has non-trivial zeros 
{u(ll},{ul2l),{v} which are pairwise linearly independent and n n n 

(i = 1,2) 
V 

and Um an· [ t 1 - 1 ] = f3 
n 

n 
for some sequence of non-zero complex numbers {an} and complex numbers a and f3 
(a t- {3). Then 

V 

V 
lim-n-=0 (i 
n~ u(i) 

n 

1,2). 

Proof: Put rn = ¾i· Since {u~1l} and {vn} are linearly independent zeros 
u 

n 
of R, we may put (u( 2l} = >..-{u(ll} + µ.-{v }, where>..,µ. t- 0. Without loss of n n n 
generality we can assume that>..= 1. Then 

[ 
V - V 

a = l im a . f.L· n+l n + 
n~ n U(l)(l + f.L() 

n n 

a V - V 
l im 1 n . ( f.L( n. n + 1 V n 
n~ + /.L( n n 

u ( 1) - u ( l) 
] = n+l n 

u ( l) (1 + /.L( ) n n 
u(ll - u(ll 

] . + n+l n 
u ( 1) 
n 

V 
Subtracting f3 = tinJ an•( ~+l - I] yields 

n 

a V - V u ( 1) - u ( 1) 

. ( - ] l im n n+l n n+l n = a - f3 I 0. 1 + /.L( n + u ( 1) n~ V n n 
Moreover, by 

V - V u ( 1) - u ( 1) 

lima-(- n + 1 n + n+l n 
n~ n V u ( 1) n n 

we obtain, using that the numbers an are non-zero, 

1 l im ~-~- = 1, whence (by µ. + 0) 
n~ I + /1,( n 

lim(n=0. 
n~ 

] = a - f3 

Proof of Theorem 5.10: By the conditions on the behaviour of {C }, we have 
n 
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C 
that tl!ll T = 1. Let {u) e Z(R), {un} t- {O} and gn 

u n+l 
u - 1. Put 

n n 

f 
n 

(nelN). 

·11en {f} satisfies 
n 

(5.15) f n+l 
f -(1 - o) + c. n n n 

1 + -y .f 
n n 

I - le- le- - v'c--
where I - o = ---"-, c. = 

n l+lc- n 

. n n+ 1 and -y = c. . ( 1 - o ) . Si n c e n n n 
n 

le- + v'c--n n+l 
1 - 11 - onl - c-Re (for some c e R,0 depending only on d) we have, by 
the conditions on {C} that -y ,o and c. satisfy the conditions of Lemma 5.11, n n n n 

"fn 
including the condition that lim ------

n-)<Xl l - I I - 0 I 
n 

0. Hence, we have that 

(5.15) has a solution {f(m)} such that lim f(m) = m, whereas for the other n n-)<Xl n 
solutions {f"} of (5.I5) lim f 0 = 0. Let {u( 1l},{u( 2 l} be such that n-)<O n n 

U(l) 1 + f(0) U( 2) 1 + f(m) 
- 1 = le-, n - l = .;r. n 

U(l) - n 1 f(0) U(2) n 1 - f(m) 
n n n n 

where {f' 01 } is some solution of (5.15) for which lim f(o) = 0. n n-)<Xl n 

Then {u(il} e Z(R) (i = 1,2) and 
n 

1 u ( 1 ) 

l im -· ( "+ 1 - 1) = 1, 
n~ 

n n 

Moreover, 
1 u 

since lim le-· [ ~: 1 - 1) = 1 
n 

1 U ( 2 ) 

l i m - · [ - 1) = -1. n-)<Xl le- U ( 2 ) 
n n 

for all zeros {un} of R that are 

u ( 2) 

linearly independent with {u(2l}, Lemma 5.12 ensures that lim -"- = 0. (Note 
n n-)<O U(l) 

that for all non-trivial zeros {un} of R there 
1 + f 

such that - 1 = lc--
n 

n • ) 

1 - f 
n 
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§5. Non-simple operators with two equal eigenvalues: Slow convergence 
(elliptic case). 

Let R = T2 - 2-T + (I - e ). If the numbers en lie on the negative real 
n 

axis, or sufficiently close to it, the behaviour of the zeros of the 
recurrence is rather different from the behaviour in the cases treated above. 
For one thing, there is generally not a subdominant zero, i.e. a zero {vn} 

V 
such that Ulll u" = 0 for all zeros {un} linearly independent with {vn}- We 

n 
shall show that (provided that the {en} behave not too irregularly) the 
behaviour of the zeros is rather similar to the behaviour we encounter in the 

case that en= e < 0 (n e ~), where there are two linearly independent zeros 

u(ll ul2l lu1211 
{u1ll} and {u12l} such that lim n(• 11 and lim exist and lim ~111 = 1. n n n~ U 1 n~ U ( 2 ) n~ U 

n n n 
We define for z e C, z t 0, the principal value of the argument Arg z such 
that -ff< Arg z ff. 

Theorem 5.13. Let Rand {e} be as above. Suppose that lime = -d for n n~ n 
some de~. d 0, and 1-r:1- converges to 0 monotonically as n - ~-n n+l 
Moreover, suppose that the series LI f-cT - 2./-2 + f-cT I• n-1 n n+l 
LI .;cn+1/Cn - vCn/Cn-1 I· LI v'C";.:-t - vC";;- I, LI Im r-r;;- I and 

L I Im vCn+ifCn I converge. Then R has zeros {u111 } and {u 121 } such that 
n n 

lim - 1-[ u~!! - 1] = i and lim - 1-[ u~!! -1 ] = -i 
n~ v'=r U(l) n~ v'=r U(2) 
u(Z) n n u(2) n n 

and till! ,u~lll = 1, whereas t!lll u~ 11 does not exist. Further, if d = O, then 
n n 

for a11 zeros {un} of R which are not of the form {un} = A-{u~ 11 } + µ-{u~21 } 

with IAI 
u 

lµI, l!lll ~•l = 1. On the other hand, if {un} = A•{u~1l} + µ-{u~21 } 

with IAI lµI, then 

n 
u l . n+l 1m--n~ U 

n 

We use the following lemmas: 

does not exist (for a11 d}. 
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Le11111a 5.14. The recurrence relation 
fn•kn + E:n 

(5.16) k = -~-- (n E ~) n+l "fn•kn + I 
where {-Yn},{E:n},{fn} are complex-valued sequences such that both J

1
(1£nl + 1-Ynl) andJ

1
llrnl - 11 converge, has solutions {k~0l} and {k~.,J} 

such that l im k~ 0l = 0 and l i m k~.,l = .,_ Moreover, l im I kn I exists in IP 1 («:) n~ n~ n~ 
for a77 solutions {kn} of (5.16). 

0) 

Proof: First we assume that l lfn - 11 converges. Consider the matrix 
n=l 

[ fn-1 E:nl recurrence [I+ Dnl where On= 'Yn 1 . A sequence {kn} is a solution 
Xnl 

of (5.16) if and only if kn is of the form kn= - (n e ~) for some X Xn 2 
non-trivial solution {xn} (with Xn = [ nl)) of [I+ Dnl• Without loss of Xn2 ., 
generality we may assume that~ Dn < 1 for all n. Since l Dn converges, 

n=l 
it follows that the sequence {(I+ Dn)·(I + Dn_ 1)- ••• -(I + 01)}:=I converges 
to some non-singular limit matrix Fe C2·2. Obviously {Xn} = 
{(I + On)· (I + Dn_ 1) · ••• •(I + 01)-F-1} is a complete solution of [I + Dnl and 
lim xn =I.Put Xn = (x~l) x~ 2)) (n E ~,. Then x~l) - ei, x~ 2) - e2 (n - co) 
where ei is the i-th unit vector in C2 (i = 1,2). It now suffices to define 

( 1 ) ( 2 ) 
(O) Xnl (o>) Xnl . kn = (1) and kn = (2) (n E ~). Moreover, 1t is clear that Um Xn 

Xn2 Xn2 
exists in C2 for all solutions {xn} of [I+ Dnl• 

Now for the general case. We may assume that I lfnl - 11 < 1 for all n. Put 

the recurrence relation 
Ir n I . hn 

(5.17) (n E ~) 

the lemma for the case that L lfn - 11 <., to (5.17) yields the result. 
n=l 

(Remark: Note that the proof even yields that l im kn(en-i · ... -e1r 1 exists 
n~ 

for all solutions {kn} of (5.16) and, conversely, that for every a e Cu {a,} 
there exists a solution {kn} of (5.16) such that l im kn(en-i · ... -e1r 1 = a.) 

n~ 
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Lenvna 5.15. Consider the recurrence relation 
k + e -r 

n n n (5.18) k n+l k -r + e 
n n n 

where rn,en E IC (n E IN), Um e rn_ 1 = 0, nt11enl 11 converges and also 

r n+l 
1 - e 

n+2 

n+l 

converge. Then (5.15) has solutions {k10l} and {k(m)} with 
n n 

lim k(O) = 0, 
n~ n 

= m. 

Moreover, for all solutions {kn} of (5.15) the limit 
IP 1 (1C). 

1 im I k I exists in 
n~ n 

A A 
Proof: We define complex-valued sequences {h 0 },{Pn},{p0 },{£n},{s0 },{sn}, 

A 

{an}, {an} by 
A 

hn kn(en-1· ... -ei), Pn = rn(en•···•e1), Pn = rnCen• ... •e1r1, (n = enflenl, 

(n E IN) 

where F(z) = (-1 + v 1 + 4z)/2z (and F(0) = 1, in accordance with our conven-
tion in the choice of the branch of the square root). {h0 } satisfies the 
recurrent relation 

(5.19) h n+l 
h + p 

n n 

h ·P + 1 
n n 

{n E IN). 

ID 

Note that the conditions of the theorem imply that 2.: I En - En+! I ' 
n = 1 

co a:,/\/\ A 

L I Sn - Sn+1 I , and L I s0 - Sn+i I converge and that 
n=l n=l N N N 

1 i m Sn = 1 im Sn 0. n~ n~ 

Since L Pn = L Sn· {en - 1) •en-1 · ... •e1 = L (sn - Sn+d •en• ... •e1 - S1 
n=l n=l n=l 

ID 

+ s~1-eN•···•e1, it follows that L Pn converges and that for NE IN 
n =1 ID ID ID 

LPn = L (Sn - Sn+i>•en•···•e1 - SN-eH-1····•e1 =: Lan - SN-eH-1·····S1 
n=N n=N n=N 

ID <DA 

with L la0 I a converging series. A similar formula holds for L p0 , with 
n=l A n=l 

sn,en replaced by s0 ,e~1, respectively (n E IN). Further, since F'{z) is 
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bounded in the neighbourhood of z = 0 and 
2 

s £ I n+l n+2J F'(f)df << 
s2£ n n+l 

(D 

so that l Ian - an+il converges. In a similar manner we can show that 
n = 1 

(D A A A 

l Ian - an+il converges. If we define sequences {Yn},{Yn} by 
n=l 

Yn (nelN), 
we have that 

A 

/Jn := Yn+l - Yn - Pn + YnYn+!Pn = (an+l - an)·Sn+1•en+1····•e1 + (an - l)Pn 

Since 

and 

(5.20) 

- anan + anan+lSnSn+lrn(en+l ... • -ei). 

anan+lSnSn+lrn(en+l. • .. -ei) - an•Sn•rnE:n+1Cen• • · · -ei) = an(en• · · · •e1) · 

[ ( an+l - an) SnSn+l en+! + an ( Sn+l - Sn) Snen+l + ans~. ( en+! - E:n+l)] 

CX) 

< "', l lsn - 5 n+1I < "', 
n=l 

< "', 

(n E IN) 
CX) I\ 

that l im /Jn 
n~ 

0 and l I/Jnl converges. A corresponding result holds for {/3n} 
n=l A A A A A 

:= {Yn+l - Yn - Pn + YnYn+1Pn}. Put 
I\ I\ A/\ A /\ A 

an = 1 - Yn+!Pn + YnPn - YnYn+l • an = 1 - Yn+!Pn + YnPn - YnYn+l (n E IN)· 
(D 

Then, by I I/Jnl <"',we have for all n 
n=l A A I\ I\ 

(1 + PnYn)(l + PnYn) - (Pn + Yn) (Pn + Yn) 
(5.21) an + 'Yn, 

1 + PnYn A A A I\ 

I\ (1 + PnYn) (1 + PnYn) - (Pn + YnHPn + Yn) A 
an + 'Yn 

1 + PnYn 
A a, IXl A 

where {"Yn},{"Yn} are sequences such that l l"Ynl <"' and l l"Ynl <"'·With the 
n = I n=l 

aid of (5.20) we derive 
PAY = r (e · -e1)-1-a S (e -e) rnansn rn(l - an) 112 -(rn+1) 112 n n n n · · · n n n· · · · I c. 

and similarly 
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" " 1/2 1/2 PnYn = rn(l - an) · (ln+l) · 
Using (5.20) and the estimates 

r 
n 

e - 1 n+l 

« I Sn I · I Im r n I + I Sn;n I · I I en I - 1 I • 
" I -2 - > " " Ian - anl = F(Sn·ln+l - F{sn-£n+i> I « lsn - snl' 

we obtain that 

-e --l_r_n -1 I 
n+l 

Jll PJn -~I= jllrn(l - ;n) 112 - rn(l - an) 112 1 « 

"' "' I\ I\ 

« I lsnl · I Im rn I + I lrnl · lansn - ansnl 
n =I n =I 

"' "' I\ 

« I lsnl·I Im rn I+ I lrnl•lsn - snl 
n =I n=l 

"' {1n} being some sequence such that I l1nl converges. Now define for all 
n=l 

solutions {hn} of (5.19) a corresponding sequence {gn} by g n = ------,,---
1 + hnYn 

(n e N). Then the sequences {gn} are the solutions of the recurrence 

(5.22) (n EN). 
/Jngn + Ctn 

The recurrence (5.22) satisfies the conditions of Lemma 5.14 (note that 
lim an= lim ~n = 1), so that (5.22) has solutions {g~0l},{g~"'l} such that 
n"?'° n"?'° 

1 im g<ol = 0 1 im g<"'l = "' n"?'° n , n"?'° n , 

whereas lim lgnl exists for all solutions {gn} of (5.22) 
n"?'° 

Now define sequences {k~0l} and {k~"'l} by 
g~Ol+ Yn 

k(O) = ( )-1 d k("') n ( ) . en-1 ..... el an n 
1 + gn° Yn 

g~"'l+ Yn 
---~-·(en-I"·· · •e1r1 

1 + g~"'lyn "' 
for n e N. Then {k~0l} and {k~"'l} are solutions of (5.18) and, since n lenl 

n=l 
converges, we have that l im k~0l = O and 1 im k~"'l = "'· 

n"?'° n"?'° 

Finally, if {kn} is an arbitrary solution of (5.18), then it has the form 
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gn + Yn 
kn = ---~-· (en-1 · · · · •e1r1 (n E IN) 

so that indeed lim lknl exists. 
n~ 

If {kn} is a solution of (5.18) other than {k~0l} and {k~"')), then k = 
lim lknl exists and k e C\{O}. Hence, n~ 

(5.23) 
k + e r 

k k n n n arg n+l - arg n = arg -,-k_,(,_e-+__,.k-r~).--
n n n n 

+ e r k- 1 
arg ¼- + arg ___ n_n _n_ 

n 1 + e r k 
1 = arg e + O(rn). 

n n n 

n rn 
Since len - 11 = larg enl•(l + o(l)) + O(lenl - 1) for en - 1 and _ en+l 
- 0 (n - "'), it follows that 

1 (5.24) arg kn+! - arg kn= arg e·(l + o(l)) + O(lrn - rn+1I) + O(lenl - 1). 
n 

We have moreover that 

(-1 + en+d·( en+~"- 1 e:n~\ ] = (rn - rn-1) + e:n~l •(en - en+1l, 
a, 

so that I lrn - rn+tl converges. Now let arg }- = Arg ! and assume that 
n = I n n 

the sign of Arg }- is constant (i.e. independent of n e IN). It then follows by 
n 

(5.24) and j 1 lrn - rn+il < ai, j 1 I lenl - 11 < ai, that {arg kn} is a converging 

sequence if and only if E arg ! converges, i.e. if and only if ; en 
n=l n n=l 

converges. So we have the following lemma: 

Lemma 5.16. Consider the recurrence relation (5.18) of Lemma 5.15 and 
suppose in addition that either Arg en> 0 for all n E IN or Arg en< 0 for all 

a, 

n e IN. If TT en diverges, then the only converging solutions of (5.18) are 
n= 1 

{k~0l} and {k~ai)}. 

Proof of Theorem 5.13: Let {u} be a non-trivial zero of R. Put 
n 

(5.25) k = 
n 

u - (i-v-r + 1)-u 
n + 1 n n 

+ (i . .,r.:r - l) •U 
n n 

Then {k} satisfies the recurrence relation (5.18) where 
n 
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r-r - r-r- - r-r 
r n n+l and n = e = n r-r + r-r- n + r-r n n + 1 n 

Note that the conditions of Lemma 5.15 are satisfied, because I Im rn I -
I Im v'Cn+i/Cn I, lenl - 1 - c-Im Y-Ln for some c E IR, ct- 0, len - en+tl -
c'- I~ - v'C";;- I for some c' e IR>o, and r - (1 - v'C /C )/2, n n+l n 

(1 - e r1 - 2.__l __ Note that the condition that lim J-2_ = 0 n 2 y.:r n~ n n+l 
n 

implies that I v'C";;- I >> n. Since Re r-r,;- > 0 by definition, it follows that 
2-Re v'=r l Re = +m. Since tan arg en= " > 0 (n E ~), it thus follows 
1 + ICnl 

by Lemma 5.16 that all solutions of (5.18) except for {k~ 0 l} and {k~00 l} 
diverge. Now define {u~ 1 l} and {u~2 l} by 

U ( l) - (i-v'=r + 1) · u ( 1 l u ( 2) - (i-v'=r + l) · u ( 2 l k(0) n+l n n k(m) n+l n n 
U ( l) 1) · u ( 1 ) 

, u ( 2) l) · u ( 2 l n + (i-v'=r- n + (i-v'=r-n + 1 n n n+l n n 
u ( 2) u( i l /u( i l - 1 

Put n and r~ i) n+l n ( i 1,2; n E ~). Let {un} E Z(R), Tn = JTT = = 
n i · Y-Ln 

{un} = A•{u~ 1 l} + µ-(u~2 l}, with A-µ t- 0, and let {kn} be the corresponding 
solution of (5.18) (by (5.25)). Then 

(5.26) (J) r n r n ) . X/µ + r 

for all n, so that 
(kn - 1)((~ 1 ) - 1) + 2-kn 

1n = -Afµ----------- (n E ~). 
(kn - l){f~ 2 l + 1) + 2 

n 

Since {lknl} converges to some positive number k and r~1l - 1, r~2' - -1 as 
n - 00 , we conclude that lim lrnl/lknl = IA/µI. Moreover, since {kn} does not n~ 
converge, {rn} does not converge either. Clearly, lim lrnl = IA/µI -kt- 0, so 

n~ 

that, by tak;ng 11/al -k-{u(11 } ;nstead of {u(11 }, effect that !.ill! 1:i::1 • 1. 

Furthermore, if d = 0 and we choose {un} = A-{u~ 1 l} + µ-{u~ 2 l} with 1{1 t- lµI, 
then k = lim kn t- 1, so that {(l - kn)-1} is a bounded sequence and, by (5.26) 

n~ U 

we infer that lim nu+l = 1. Finally, let {un} = A-{u~ 1 l} + µ-{u~ 2 l} for some 
n~ 

n 
A,µ E t\{O} with IAI = lµI, and let d = 0. Let the curve en be defined by 
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A·U(l) + µ-u(Z) 
en= { Zn(>-,µ) = n+l n+l ' l>-1 = lµI = 1 }. en is a closed 

A · U ( l ) + IL. U ( 2 ) n ,.. n 

Jordan-curve in f 1(t) (it is the image of the unit circle under a fractional 
linear map) and t:illl en= Ru{~}. Hence, for every Me N, en has points z 

u 
with lzl M for all n NM. Put Zn= ~+l = 1 for {un} e Z(R). Then 

z + C " 
(5.27) Zn+l = Zn+ In (n EN). 

n 

So, if lzn+il m < 1/2, and ICnl m, we have that 
m + ICnl 

lznl 1 _ m 4m. Hence, if lznl M > 2, then lzn+il M/4 for all 

n ~NM.Consequently, for every solution {Zn(>-,µ)} of (5.27) with l>-1 = lµI 1 
u 

0, lzn(>-,µ)I becomes larger than 1/2 infinitely often. But then lim un+l can 
n~ n 

not exist for {un} = >.-{u~ 1 l} + µ-{u~2 l} with l>-1 = lµI. If d + 0, this is 

trivial. 

Remark 5.5.1. If {Cn} is a real sequence, then we have that {u~1 l} = {u~ 2 l}. 
If {un} = A•{u~ 1 l} + µ-{u~ 2 l} with l>-1 = lµI, then clearly un e R (up to some 

multiplicative factor). Since lim f-2- u1 = 0, we see that Cn < -l/n2 
n~ n n+l u 

for n large enough, and indeed, by Proposition 5.3 we have that lim un+l 
n~ 

n 
does not exist. This yields once more the last statement of Theorem 5.13. 

§5. Applications. 

We denote by Mm(K) the set of convergent Laurent series in 1/n with a 
finite principal part and whose coefficients lie in the field K, i.e. f E 

Mm(K) 9 f(n) = F(l/n) where F(z) is meromorphic in z = 0 (n e ~. large 
enough). We let K be either of the fields R or t. 

Let R = T2 - (2 + p(n))•T + (1 + q(n)), where p,q e Mm(K). We define the 
order of re Mm(R) or Mm(t) by ord r = d if lim r(x)-xd e c*. If r = 0, 

x~ 
we define ord r = ~. (So, the order is just the multiplicity of x =~as a 
zero of r, counted negative if x =~is a pole of r.) We suppose ord p > 0, 
ord q > 0. Put 

4(1 + q(X)) 
r(X) 1 - --------

(2 + p(X))(2 + p(X-1)) 
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Then re Akn{K), ord r > 0 and R* = T2 - 2-T + (1 - r(n)) is a zeroth-order 
transform of R. By Theorem 5.4(ii) and Corollary 5.4, Theorem 5.8(ii), Theorem 
5.10 and Theorem 5.13 we obtain the following facts: 

1. If ord r 2 and -y = l im r(x)-x2 + -1/4, then t has zeros {u(ll} and 
x~ n 

{u(2l} such that 
n 

u ( 1) 

lim -"- = 1, 
n~ na 

u(2l 
lim_.;,-=l, 
n~ n" 

where a and pare the roots of the polynomial X2 - X - -y, and moreover, 
u(2l 

lim -"- = 0 if -y 
n~ U(l) I u ( 2) I u ( 2) 

> -1/4 whereas lim -"- = I and lim -"- does not exist if 
n~ U( I) n~ U( 1) 

n n n 
-y < -1/4. 

2. If ord r = 2 and 1 im r(x) .x2 -1/4, then R* has zeros {u(ll} and 
x~ n 

{u(2l} such that 
n 

In particular, 

U (I) 

lim --"--
n~ Yri- log n 

u ( 2) 

lim -"- = 0. 
n~ U( I) 

n 

1, 
u( 2 l 

lim-"-=l. 
n~ rn 

* 3. If ord r = 1 and lim r(x)-x is not a negative real number, then R has 
x~ u(2) 

zeros {u(ll} and {u(2l} such that u(ll ,u(2l e K (n e IN), 1 im -"- = 0 and 
n n n n n~ U (I) 

n 

lim _l_[ u~!~ - 1] = 1, lim - 1-[ u~!~ - 1] = -1. 
n~ vrfnT U(l) n~ vrfnT U(2) 

n n 

4. If ord r = I and r = 1 im r(x)-x < 0, then R* has zeros {u( 1l} and {u(2l} 
x~ n n 

such that 

lim--1-[ u~!~ - 1] = i and lim --1-[ u~!i - 1] = -i. 
n~ Frfri"J U(l) n~ Frfri"J U(2) 

n n 

Moreover, if r1 = 1 im X· (r{x) - r) e IR, then we can choose {u(ll} and {u(2l} 
x~ n n 

such that lim lu~ 2ll = 1 
n~ U(l) 

n 

not a real number, then 

u(2J 
whereas lim -"- does not exist, whereas, if r1 is 

n~ u( 1) 

l-u~2) I n 
l im = 0 or infinity, as in 3. 
n~ u(l) 

n 
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(In fact, {u( 2l} = {u(ll} if K = IR.) Note that corresponding results for R 
n n * 

follow immediately from those of R. 
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CHAPTER SIX 

SECOND-ORDER RECURRENCES (2) 

§1. Introduct;on. 

In th;s chapter we shall treat non-s;mple operators with two distinct 
eigenvalues a and /J such that lal = I/JI, As in the previous chapter, we 
shall have to impose additional conditions on the behaviour of the operator 

u 
R - xR(T) in order to ensure convergence of ~+l for {un} e Z(R). 

n 
Indeed there exist operators of the above type such that for none of their 

u 
zeros {un} the quotient ~+l converges. For instance, take 

n 

R = T2 - (1 + (-nl)"). Let {u} e Z(R), {u} + {O}. Then 
n n 

luu 2 " I m as n m, unless u0 = 0. 

u 
0 u 2n 

and 

2n-l U 

There also exist operators R such that ~+l converges to only one of the 
n 

roots of x for all non-trivial zeros (u} of R. For instance, let 
R n 

R = (p -T + p )(T - 1), where p =I+ (-l)", hence x (X) = X2 - 1. A zero n n+l n. n R 
n-1 

{u} of R has th~ form u = ).. l (-l)k·P +µ.Hence, 
n n k=O k 

Un+l .>.-(-l)"•p 
--=l+-------"--u n-1 

n A· l (-l)k·P + µ 
k=O k 

1 as n m. 

We first treat the case that R - xR(T) converges fast. The result follows 
immediately from Theorem 4.1. 

Corollary 6.1. Let Re X(C), XR(T) = (X - a)(X - /J), where lal = I/JI, a+ /J. 
Suppose that l N (R - x (T)) < m, Then R has zeros {u111 } and {u121 } such 

n R n n 
that 

If R - x (T) converges more slowly, we shall have to investigate the matter 
R 

in more detail. The case that a+ -/J is covered by Theorems 5.10 and 5.13, 
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Corollary 6.1 and Theorem 6.2 below. Some of the results overlap. 

§2. R has two opposite non-zero eigenvalues. 

We present two results. One of them is a decomposition theorem for matrices 
as in Chapter 3. The second results uses the fact that the operator R' which 
has zeros {u2n}, where {un} e Z(R), has a characteristic polynomial with two 
equal non-zero eigenvalues, so that the results of Chapter 5 can be applied. 
In principle, a similar method can be applied whenever the ratios of the 
eigenvalues are roots of unity. 

Theorem 6.2. Let R = T2 + P(n)-T + Q(n), where lim P(n) = p, lim Q(n) = q, 
n~ n~ 

and X2 + pX + q = (X - a1)(X - a2) with la11 = la2 1, a1 + a2 • Suppose that 
w w 
I IP(n) - P(n+I)I < w, I IQ(n) - Q(n+I)I < w, and that there exists some 

n = 1 n = 1 w 

sequence of non-negative real numbers (dn}, I dn < w, such that 
n = 1 

Re PTnT-1 P(n) 2 - 4Q{n) is semi-definite for a fixed branch of the square root 
(0 s arg rz < ,r, say). Then R has zeros (u~1l}, (u~2l} such that 
u~i) = a;(n-1)- ... •a;{l)-{l + o(l)) where a1(n),a2(n) are the zeros of 1\(X) = 

X2 + P(n)-X + Q(n) such that a;(n) - a; (i = 1 ,2). 

We first give a 'matrix decomposition lemma': 

w 
Lellllla 6.3. Let {Mn} be a sequence of matrices in IC 2•2 with " II M M II I.. n - n+J 

n = I 
< w, and with Mn having eigenvalues an and Pn such that lim an= a, lim Pn = P 

n~ n~ 
where lal = IPI, a+ P, and such that there exists a sequence (dn} of non-

w 
negative real integers with lanl s IPnl + dn for all n and I dn < w. Then 

n=l 
there exist matrices Fn e GL(2,IC) which converge to some matrix Fe GL(2,IC) 
such that 

Proof: There exists a sequence {Un}, Un E GL(2,IC) such that 
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a, 

and lim U~ = U e GL(2,C). Furthermore, L IU(n) - U(n+l)I < ..,, so that 
n•l 

a, 

where L II Dn II converges. By the assumptions of the l enuna we can, by Lemma 
n=l 

5.14, find a sequence (Yn}, Yn e GL(2,C), such that lim Yn = I and 

D 

For the proof of Theorem 6.2 we simply apply Lemma 6.3 with M" = (n e N). 

Note that la1(n) 12 - la2(n) 12 = Re Jf(iiJ-1 P(n) 2 - 4Q(n) so that lai(n)/a2(n) I 

- 1 has constant sign for all n if and only if Re l"'{nJ-IP(n) 2 - 4Q(n) has. 

The matrix recurrence [Fn+lMnF~1] (with (Fn} as in Lemma 6.3) has solutions 

(F-1Fn· [~n+l:::~"]} where F-1Fn I as n ~.., and where (un} is a zero of R. 
n+l n U ( 1) _ a . U ( 1) 

Hence R has a zero {u~11 } such that Um ~;; 1 11 = o, and 
Un+l - <r2·Un 

u~!i - a2 -u~11 = a1(n-l)- ... -a1(l)•(l + o(l)), from which it can easily be 
deduced that u~11 = ).1-a1(n-l)- .... ai(l)-(l + o(l)) for ).1 = (a1 - a2r1 ;. O, 
and for all n. The corresponding fact for {u< 21 } goes, of course, similarly. o 

n 

Corollary 6.4. Let R be as in Theorem 6.2. If Ir Re l"'{nJ-IP(n) 2 - 4Q(n)I 
n=l I u< 2 l I u t 2 l 

converges, then tim uill exists, but l.UJ uill does not exist, where {u~11 } 
u 

and (u~21 } are as in Theorem 6.2. Moreover, lim un+l exists if and only if 
n~ 

n 
{un} is 1inear1y dependent of either of the {u<il} (i = 1,2). On the other 

hand, jf I,~, Re P{nJ-IP(nJ' • 4Q(n)I diverge:, then !.\iii 1:;::1 ;, e;ther 
u 

zero or infinity. In this case, ~.lm ~+l exists for a11 non-zero {un} in Z(R). 
n 

Proof: It suffices to note that 

Re l"'{nJ-IP(n) 2 - 4Q(n) = la1(n)l 2 - la2(n)l 2- D 
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Let R = T2 - P{n}-T - Q{n}. If XR{X} = X2 - a2 for some a; 0, and P{n}; 0 
for all n e IN, we can normalize Ras in Chapter 5, §1, thus obtaining 
R/S = T2 - 2-T + I - Cn for some S, where t!JD ICnl = m {see Remark 5.1.1}. If 

u - ~-u 
{un} e Z{R/S}, then {Zn}, with Zn= n+l n " {n e IN}, satisfies 

Un+l + «n·Un 

{6.1} 

where 

(1 - 6n}·Zn + E:n 
ln·Zn + I {nelN}, 

I-«n «n-~ 
{6.2} I - 6n = ----, £0 = -----, and 1n = E:n{l - 6n} 

l+«n «n+~ 
{n E IN}. 

We use the following lemma to investigate {6.1}. 

Lemma 6.5. Let {6n},{£n} be sequences of complex numbers wjth 
m 

Um 6n = 2, 11 - 6nl I {for all n N}' l (I - I I - 6nl} = m, and 
n = 1 

1£0£0-il + 1£n{l - on}+ £0-d = o{l - II - onl> {n - m}. Then the recur-
rence 

{6.3} Zn+ 1 = ( I - & n ) £ n . z n + I {n e IN} 

has so1uUons {z~01 } and {z~m)} such that l im z~01 = O, 
n~ 

l im z(m) = m. 
n~ n 

Further, jf {Zn}; {z~m)} js a solution of (6.3), then lim Zn= 0. n~ 

Proof: For all n e IN, we have 

(6 .4} Zn+2 = 
{l - 6n}{l - 0n+l + E:n£n+1}·Zn + (£n+l + £n(l - 0n+l} 

Application of Lemma 5.11 immediately yields the result for the sequences 
{z20}. Defining {Zn} for n odd by (6.3}, we obtain the result for all n. o 

The result of Lemma 6.5 allows us to conclude that 

Corollary 6.6. Let Re ~(C}, R = T2 - 2-T + l - en, where C0 e C, 
m 1 ,....----n.- ---- I l.illl ICnl = m, l Re - = m, (1Cn+1/Cn - l)•(YCn;cn-1 - l} = o(Re -}, 

n=.l «n «n 
I I I ,..---r,r- --- I -- - -- = o(Re -} , 1C0 + iJC 0 - v'Cn/4 0 _ 1 = o(Re -} . Then R has zeros 

«n «n 
{u(ll} and {u 12l} such that 

n n 
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. u(l) u(Z) u<Zl 
l , 1 n+ 1 l, 1 n+ 1 n 
n.ul · u ( 1l = 1 and n.ul · u ( 2 l = -1, and Um F> = 0. 

n n n n n 

Proof: Define sequences {6n} and {£n} by (6.2) and apply Lemma 6.5. Then 

{u01} and {u<21 } can be defined by 
n n 

ulll - ~-ulll 
z(O) = n+l n n and 
n ulll + _,,.-_u(ll n+l Yl..n n 

ul2l _ ~.ulZl 
2 (ao) = n+ 1 n n 
n u<2l + v'c:,u<2l n+ 1 n n 

Since for any {un} e Z(R) which is linearly independent with {u~21 }, we have 

. 1 [un+l l u< 2
> ~.ul ~· -u- - 1 = 1, Lemma 5.12 allows us to conclude that l!m u"0111 = 0. 

n n 

Remark 6.2.1. Direct application of Lemma 5.11 to R (where R is as in 
Corollary 6.6) would give as conditions on {C0 } (so that the statement of 
Cor.6.6 holds): 

GD I I llm ICnl = ao, l Re - = ao, vCn+1/Cn - 1 = o(Re -). 
n=l v't; v't; 

The conditions of Corollary 6.6 are obviously weaker. For example, if C" = 

C(l/n), where C(x) is a Laurent series at x = 0, C(x) = a-x-2(1 + O(x)) for 
a e C, a not a non-positive real number, then Corollary 6.6 may be applied, 

whereas ~C 0 +1/C 0 - 1 + o(Re - 1-). 
ve; 

Remark 6.2.2. A similar theorem for the elliptic case (where ~.!ID ICnl = ao, 

IRe - 1-1 < ao) can be derived from Lemma 5.15. Since, however, no new ideas 
n=l ve; 
are involved, and since for most interesting cases Theorem 6.2 suffices, we 
will not pursue this matter any further. 

§3. Applications. 

1. Let R = T2 - p(n)-T - (1 + q(n)), where p,q e Akn(C). Suppose that 
ord p > 0, ord q > 0, so that xR(X) = X2 - 1. We can apply a zeroth-order 
transformation onto R such that the resulting operator R' is of the form 
R' = T2 - p*(n)T - (1 + q*(n)), where ord p* = ord p and ord q* 2. In 
particular, we can take 
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p(n} 1 + q(n} 
R' = T2 - ----·T - -----------(6.12} 

1 + q(n)/2 (1 + q(n)/2)(1 + q(n-1)/2) 
We distinguish two cases: 

(i} ord p 2. We can apply Corollary 6.1 to R' and find that R has zeros 
{u(ll} and (u(2l} such that ufll u(2l e IR (n e IN} if p q e Awt(IR} and 

n n n ' n ' 
n-2 n-2 

lim u(l)_ TT (1 + q(k}/2r 1 = lim (-l}"-u(2l. TT (1 + q(k}/2r1 1. 
n-)<O n k=l n-)<O n k=l 

* 2 4(1 + q(n}} 
(ii} ord p = 1. Let R = T - 2-T - -----

p(n)p(n-1) 
If p(x} = i + O(x-2) with ai E IR, we may apply Corollary 6.6 to R* and find 
that it has zeros (u(ll} and (u(2l} with 

n n 

u(ll u(2l u(2J 
lim ff n+l 1 lim ff n+l -1, lim " 0 n-)<O Tn"JTT = ' n-)<O Tn.JIT = n-)<O JTT = ' 

n n n 
where ff is the square root of a with positive real part. 

Hence, R has zeros (v(ll}, {v(2l} such that 
n n 

v(ll v(2J v(2l 
lim ff_~= 1, lim ff_~= -1 and lim _n_· - = 0. n-)<O a v(l) n-)<O a v(2) n-¥> v(l) 

n n n 
The same conclusion can be reached if we apply Theorem 6.2 and Corollary 6.4. 

If p(x} = i + O(x-2) with ai e IR, at 0, we apply Theorem 6.2 and Corollary 

6.4 and obtain that R has zeros (v(l l}, (v( 2l} such that n n 
V (I) V ( 2) I'' , ' I l . n + 1 1, l . n + 1 -1 and Um )1i 1, ,m -- = ,m -- = n-)<O v(l) n-¥> V ( 2) 
n n n 

v( 2 l 
whereas lim TI n-)<O V 1 does not exist. 

n 

2. Let R = T2 - (-l}"•p(n}-T - (1 + q(n}), where p,q e Mfll,(IR}, ord p > 0, 
ord q > o, so that x (X) = X2 - 1. 
(i). If ord p 2, we can apply Corollary 6.1 and find that R has zeros 
{u(ll}, (u(2l} with u0 > ,u(2l e IR (n e IN) and 

n n n n 
n-2 n-2 

lim u(ll_ TT (1 + q(k)/2r1 = lim (-l}"-u(2l. TT (1 + q(k)/2r 1 1. 
n-)<O n k=l n-)<O n k=l 

* 4(1 + q(n}} 
(ii). If ord p = 1, we put R = T2 - 2-T + -----

p(n)p(n-1) 
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As in l(ii), we find that t has zeros {u~ll}, {u~2l} such that 
p(n) u(ll 

lim ---~ = i, 
n~ 2 U ( 1) 

p(n) u' 2 l 
lim ---~ = -i. 
n~ 2 u< 2 l 

n n 
\I ( j l 

Hence, R has zeros {v(ll} (v 12 l} such that lim (-1)"-~ = (-l)H-i 
n ' n n~ V( j l 

n 
(j 1,2). 

3. Let R = T2 - p(n)-T - q(n), where p,q e A!m(C) and XR(X) = (X-a)(X-P), 
with a,p e C, and lal = IPI, at P, at -p. Applying Theorem 6.2 and Corollary 
6.4 (or, alternatively, Theorems 5.10 and 5.13) to 

4-q(n) 
R* = T2 - 2-T - -----, we find that R has zeros 

p(n)p(n-1) 
u ( 1 l 

lim ~=a and 
n~ u(l) 

n 

4-q(n) 
and, moreover, 1~1 = ( 1 l · l if 

u 
n 

p(n)p(n-1) 

(note that a e IR in any case), whereas I U ( 2) I 
Um u~ 1, 

n 

In fact, 
u(2l 

lim -"(- = 0 if and only if b-~ < 0. n~ u tl 1m a 
n 
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CHAPTER SEVEN. 

APPLICATION TO CONTINUED FRACTIONS. 

We shall conclude with an application of the above results, which con-
stitutes an answer to the following problem, posed by Perron [Pe3]: 

Consider the continued fraction 
q(n) 

(7. 1) fp{TJ + Ti>f2J + ... + + ... 

q(l) q(2) 
where p,q e Mm(C), p,q; 0. If t:im wn1 + - + ... + exists or 

q(2) q(n) 
if lim p(l) + + ... + = 0, we say that the continued fraction 

n~ Ti>f2J 

{7.1) converges in a broad sense. The problem is to determine for which 

p,q; 0 the expression (7.1) converges in a broad sense. 
Consider the recurrence operator R = T2 - p(n)-T - q(n) (n e ~). Without 

loss of generality we may suppose p(n) ,q(n) ; 0 for n e ~- Let {u ) > , n-2 n_l 
{v } > be the zeros of R for which u = 1, u = 0 v = 0 v = l. It is n-2 n_l -1 0 ' -1 ' 0 

then clear that {u } and {v } are linearly independent. Moreover, n-2 n-2 
u n - q ( 2 ) I ___'l__(~)J v - + TPf2J + ... + (n e ~). 

n 
(7 .2) 

Therefore the continued fraction (7.1) converges in a broad sense if and only 

U V U 
if either lim exists or lim = 0. On the other hand, if lim = r, n~ V n~ U n~ V n n n 

u - r-v 
then Um n V n = 0 and {un-2 - r-vn-2} E Z(R). Thus, we have that (7 .1) 

n 
converges in a broad sense if and only if the corresponding recurrence 
operator R has linearly independent real zeros {u} and {w} such that 

n n 
w 

lim~=0. 
n~ U 

n * We consider the 'normalized' zeroth-order transform R of R: 

R* = T2 - 2-T -
4-q(n) 

p(n)p(n-1) 
* * (Note that p(n); 0 for n e ~. so that R is well defined). Since R is a 

zeroth-order transform of R, its zeros are of the form {p(n)x }, where 
n 
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* {x} e Z(R), p(n) e C for n 1 and p(n) depends only on {p(n)}. So the n . 
answer to our problem boils down to the answer of the problem for which p,q 

* the operator R has two linearly independent real zeros {u },{w }, such that 
n n 

w 4-q(n) 
lim = 0. Put r(n) =I+-----. Then re Akn(C), r(n) t 1 or~ for 
n~ U 

n p(n)p(n-1) 
n N. Put"'= !-Ul r(x). 
(i) By Poincare's theorem (or Chapter 3) we have that for"' e C, "'not a 
non-positive real number t has zeros {u~l)} and {u~2l} such that 

ulll u121 
l · n + 1 1 -'- d 1 · "+ 1 1 -'- H n4Ul JIT = + y'l, an n4Ul Fi = - V'l,. ence, 

n n 

u ( 2) 

lim-"-=0. 
n~ u( I l 

(ii) If"' e R, "'< 0, we can apply Application 3 of Chapter 6, §3 and obtain 
that R* has zeros {u~11 } and {u~21 } such that 

u ( 1) u ( 2) 
l . n + 1 1m -- = 
n~ U( I) 

1 + ..r,:;, and 1 , n + I 1m -- = 
n~ u(2) 1 - ..r,:;,. Moreover, if r(x) = "'+ + X 

n n 

O(x-2) and•< R, then ).ill 1:i::1 • 0 or infinity. On the other hand, if 

U ( 2) n 

e R, then lim ~! 1 does not exist. In the latter case, we can not find two 
n~ U I 

n * linearly independent zeros {un} and {wn} of R (so, neither of R) such that 

W U V 
lim = 0. Indeed, this would imply that lim = lim for all zeros n~ U n~ U n~ V n n n 

* {vn} of R that are linearly independent with {wn}, which is not possible. 
(iii) If"'= 0, we can apply the results of Chapter 5 to obtain that 

* (a) If ord r 2 and -y = ~-UI r(n)-n2 -1/4, then R has two zeros {u~l)} 

and {u 121 } such that n 

u ( 2) 

~-Ul U~l) = 0. 
n 

(b) If ord r 2 and -y < -1/4 (-y as in (b)), then R* has two zeros (u(l)} 
n 

u ( 1) u ( 2) 

and {u 121 } such that lim -"- = 0 and lim = 0, where a and~ are 
n n~ na n~ n/1 

u ( 2) 

the two zeros of the polynomial X2 - X - -y. It is clear that lim -"- can 
n~ U(l) 

n 
not exist. As in (ii), the conclusion is that there cannot be zeros (wn} and 
(un} of R such that the limit of their quotients is zero. 
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. If ord r = I and r(x} = + O(x-2), then R* has non-trivial zeros 
X ( 2) 

u 
and {u 12l} such that lim ~! l = 0 if and only if a i.s not a negative 

n n~ U 1 
n 

real number. 
(v) If~= +m or -m, we can apply the results of Chapter 6: 
(a) If ord r -3, we put R' = T2 - 2-T + (-l) 5 nd(l + t(n)) with t e Mm(C), 
and (-1) 5 = -1 or 1 if~= -m or +m, respectively. We consider the zeroth-
order transform R'' of R': 

2-(n + 1/2)-d/ 2 (1 - l/4n 2 )-d 12 -(l + t(n)) 
R'' = T2 - -------·T + (-1) 5•-----------

1 + t(n)/2 (l + t(n-1)/2)(1 + t(n)/2) 
Since (l + t(n)) = 1 + O(n-2) and d 3, we can apply 

(1 + t(n-1)/2)(1 + t(n)/2) 
Corollary 6.1 to R'' and find, as in (ii), that R'' can not have linearly 

w 
independent zeros {un} and {wn} for which lim _un = 0, so neither can R. 

n~ 
n 

(b) If d = - ord r = 1 or 2, we can reason as in §3 of Chapter 6 and 
obtain: 

* If r(x) = axd + O(xd- 1), a+ 0, then R has two linearly independent zeros 
w 

{un} and {wn} for which lim -u" = 0, if and only if a is not a negative real 
n~ 

n 
number. (One can apply Cor.6.6 or Th.6.2 and Cor.6.4 (Cor.6.6 only for a not 
negative real) to a suitable zeroth-order transform in the manner described 
for ord r -3.) 

If we apply these results to the continued fraction (7.1), we obtain the 
following result: 

Theorem 7.1: Consider the continued fraction 

c1.1) l:~~~I + l:~~~I + ... + l:~~~I + ... , 
4-q(x) 

where p,q e Mm(C), p,q + 0. Put r(x) = 1 + -----. The expression (7. 1) 
p(x)p(x-1) 

converges in a broad sense if and only if one of the following conditions is 
satisfied: 
(1) 
(2) 
(3) 
(4) 
(5) 

ord r 2 and 1.lm r(x)-x2 -1/4. 
ord r = 1 and lim r(x)-x is not a negative real number. 

x~ 
ord r = 0 unless both~= lim r(x) < 0 and lim (r(x) - ~J-x e ~-

x~ x~ 
ord r = -1 and lim r(x)-x-1 is not a negative real number. 

x~ 
ord r = -2 and lim r(x)-x-2 is not a negative real number. 

x~ 
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A final remark. Suppose that (7.1) converges in a broad sense. Put 
q(n) q(n+l) q(n) 

Yn = - + W+it- + . . . (n e IN). Then Yn = -----, which yields 
p(n) + Yn+l 

Yn·Yn+l + p(n) •Yn - q(n) = 0. So we find, if y;:1 ; 0, that {wn_2} = 

{ ( -1) n-l. Yn-l • Yn-z • ... • y1} n~l is a zero of the recurrence operator 
R = T2 - p(n)•T - q(n). We show that {wn-z} is a subdominant zero of R, in 

w 
other words: If {x0 } e Z(R) linearly independent with {wn}, then lim x" = 0. 

. n~ 
n 

Indeed, let {u0 } and {v0 } be as above. So, {u0 _2},{v0 _2} E Z(R) and u_1 = v0 = 
u 

1, Uo = V_1 = 0. Let r = lim ....':1.., Then Y1 = r, r EC. Hence W_1 = 1, Wo = -r, 
n~ V 

n w u - r-v 
so that {wn} = {u0 } - {'-{vn}, so lim v" = lim n v " = 0. Finally, if y;:1 

n~ n~ 
V n n 

; 0, then lim f = 0, and we define {wn_2} = {(-l)"·Yn-!·Yn-z·····Y2} >. n~ n n_2 
w 

Then w0 = 1, w1 = p(l). Hence, {wn} = {vn}, so that lim ....':1.. = 0. Thus, for 
n~ U 

w n 

{w"} as defined above, we have that lim ....':1.. = 0 for all {xn} e Z(R) linearly 
n~ X 

n 
independent with {wn}. 
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REGISTER OF TERMS 

Only the page where the terms are defined is indicated. 

characteristic polynomial 
convergence in a broad sense, 

of a continued fraction 
divisor 

right, left 
formal 

derived (see operator) 
eigenvalue 

of operator 
simple, non-simple 

factorization (of an operator) 
greatest common divisor (of operators) 
lowest common multiple (of operators) 
matrix recurrence 

associate 
conjugate 

minimal polynomial (of a matrix) 
norm 

of a matrix 
of an operator 

operator, 
derived 
identity 
irreducible 
rational 
recurrence 
reducible 
shift 
(non-)simple 

order (of a recurrence, of an operator) 
order (of a Laurent series) 
Poincare-Perron Theorem 
recurrence, 

109 
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14,15 
20 

67 
52 
20 
15 
17 
20 
21 
22 
56 

37 
39 

16 
12 
15 
24 
7,14 
15 
7,12 
52 
12 
94 
5 



elliptic 
hyperbolic 
linear 
rational 

sequence 
zero (of an operator) 
zeroth-order transform, - transformation 
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INDEX OF SYMBOLS 

Only symbols that are not conventional or have a specific meaning in this 
work are listed below; the number indicates the page where they are defined. 

{un}, {vn}, etc. 12 
T 12 
ord 12,94 
1!(K) ,:f(K) ,O(K) 12 
Z(R) 13 
31(0, K) 13 
XR 14 
RIS 14 
(R,S) 15 
R/S 16 
[R,S] 17 
[Mn] 21 
Al(K) 21 
MR 21 
l im Mn 21 
3!at 24 
L(R) 24 
l 24 
A(ml 36 
o(ml (A) 36 I J 
II ·11 37 
Nn 39 
-(in {Xn} - {Yn}) 56 
Al 56 
L 59 

(n) 
Ale,,( K) 94 
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