


CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (Eindhoven University of Technology)

Editorial Board

W. Albers (Enschede)

P.C. Baayen (Amsterdam)
R.C. Backhouse (Eindhoven)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)

H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)

H.J. Sips (Delft)

M.N. Spijker (Leiden)

H.C. Tijms (Amsterdam)

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Telephone 31-20592 9333, telex 12571 (mactr nl),
telefax 31-20592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.



CWI Tract 83

Convergence properties of
recurrence sequences

R.J. Kooman

6
(7]

Centrum voor Wiskunde en informatica
Centre for Mathematics and Computer Science



1980 Mathematics Subject Classification: 11B37, 30B70, 40A15, 39A10.
ISBN 90 6196 401 6
NUGI-code: 811

Copyright © 1991, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands



CONTENTS.

INTRODUCTION. . it iiiee et iieieeiinenedenanasocssnossansas 5
CHAPTER 1:  PRELIMINARY CONCEPTS AND RESULTS.......... 12
CHAPTER 2:  RATIONAL OPERATORS.......ccviiiinneeennnnn 24
CHAPTER 3: A FACTORIZATION THEOREM................... 31
CHAPTER 4:  FAST CONVERGENCE...........ccovviiivnnennns 56
CHAPTER 5:  SECOND-ORDER RECURRENCES (1)

(with two equal eigenvalues).............. 67
CHAPTER 6:  SECOND-ORDER RECURRENCES (2)

(with two distinct eigenvalues having

equal moduli)...oieniinnniinnennnnnnnnns 97
CHAPTER 7:  APPLICATION TO CONTINUED FRACTIONS....... 104
REFERENCES . . ittet ittt iiiiereanaeeeennnaeanns 108
REGISTER OF TERMS. ..o itiiir ittt iieeinneenancaannnass 109

INDEX OF SYMBOLS. ...ttt iiiiiiiiiiineennnns 111






INTRODUCTION

In this monograph we study the asymptotic behaviour of certain linear
recurrence sequences. We recall that a linear recurrence sequence is a
sequence {xn}n>N satisfying a recurrence relation of the form

(0.1)  p(n)x_ +p_(n)x  + ... +p(n)x =0 (n 2 N)

where (pk(n))nZN’""{po(n))nZN are sequences with terms belonging to some
number field K. We call (0.1) a linear recurrence. If po(n)pk(n) # 0 for all
n > N, then (0.1) has k solutions {x:”)nZN (i =1,...,k) which are linearly
independent over the field K, and are each uniquely determined by any k sub-
sequent values xi”,...,xiﬁh where r € Z, r > N. We call k the order of

(0.1). In this work, we only consider recurrences for which po(n)pk(n) # 0 and
we take for K either of the fields Q,R or C supplied with the usual absolute
value as metric.

If no= lim pi(n) exists for i € {0,...,k} with n € C, the characteristic
polynomial P of (0.1) is defined as P(X) = ﬁka + ... 4+ xlx + 7. The zeros of
P give an indication about the asymptotic behaviour of the solutions of the
linear recurrence. For example, if {Xn}n>N is a solution of (0.1) and if a =

X
lim —§1l exists, then clearly P(a) =0. On the other hand, one might wonder

n
whether for every recurrence of type (0.1) having a characteristic polynomial

X
P e C[X], it is true that lim ;+l exists for every non-trivial solution

{xn)nZN of the recurrence. This przblem was first stated and partly solved by
H.Poincaré, who proved that if all zeros of P have distinct absolute values,
xn+1
xn
rence. As an extension of this result, it was proved by O.Perron [Pel] that in

this case for every zero a of P the recurrence has a solution (yn}n>N such

then lim exists for all non-trivial solutions {xn) of the recur-

n2N

y
that lim ;+1 = @. This result is known as the Theorem of Poincaré and

n
Perron. We state it below in its complete form:

Theorem 1. Suppose we have a linear recurrence of the form (0.1) with
po(n),...,p(n) € € and pk(n)po(n) # 0 for all n > N. If the characteristic
polynomial of (0.1) exists and has zeros a,...a With |al| < ... < |ak|, then
(i) :
X

: n+l N
such that 1;@ e =a (i =1,...,k).
n

k

the recurrence has solutions {xn}

n2N



The. next problem was to describe the behaviour of the solutions in case the
characteristic polynomial has zeros with equal moduli. At first it was con-
Jjectured that similar results as Theorem 1 would hold in this case. However,
Perron was able to give a few counterexamples for some second-order recur-
rences whose characteristic polynomial has two zeros with equal moduli, thus
showing that the result of Theorem 1 is not generally valid if we omit the
condition on the absolute values of the zeros of P ([Pe2]). Nevertheless, if
we impose some additional conditions on the behaviour of the coefficients of
the recurrence, we can obtain results similar to Theorem 1. As an example we
state the following result by O.Perron [Pe2]:

Theorem 2. Consider the second-order linear recurrence
(0.2)  upy - (2 + m(n)) upy + (1 + np(n))-u, =0 (n > N)

where ny(n),n,(n) are Z>N-va1ued functions such that lim ng(n) = lim m(n) =

= 0 and such that nl(n)—z 0 and ny(n) - ng(n) > 0 for sufficiently large
X
n+l _

ra 1 for all non-trivial solutions {xn}nZN of (0.2).

n

values of n. Then lim
n->®©

On the other hand, Perron formulated and proved a result of a slightly
different type which does not suffer from the restriction on the moduli of the
zeros of the characteristic polynomial. We state it here:

Theorem 3. Suppose we have a linear recurrence of the type (0.1) with py(n),
...»Pc(n) € € and py(n)pc(n) # 0. If the characteristic polynomial of (0.1)
exists and has zeros a@;,...q (counted according to their multiplicities),

then the recurrence has linearly independent solutions (xf‘l)}n”,...,(xf\k)}n)N

such that Timsup Vluﬁi)| = |ai| (i =1,...,k).

After that, the attention was restricted to special types of linear recur-
rences, which have rational functions as coefficients or where the coeffic-

ients can be developed in factorial series. (a factorial series is a series of
© a -i!

the form J ! with 2g,a,,... complex numbers.) If the coef-
i=0

n(n+1)...(n+i)
ficients of the recurrence satisfy certain conditions (for details, see [N]),
the solutions can be developed into convergent factorial series. In this way,
extensions of the Poincaré-Perron Theorem may be obtained for this special
type of recurrences. We state one important result, in order to give an
impression of the kind of results occurring in this context:



Theorem 4. Suppose we have a linear recurrence of type (0.1) with

@
pi(X) =YX+ i)(X+i+1)-...-(X+i+s-1) and CopCip * 0

s=0

k :
(i =0,...,k). Put f;(X) =‘ZocU.Xl (j = 0,...,p). Suppose that a is a zero

i=
of multipicity {-j of fo-j(X) for j = 0,...,L-1. Then the recurrence has {
linearly independent solutions (x'(‘”}n>N such that

u(i)

Tim .. =
n->o a"-nﬁ(‘)-(log n)" (1)

for i = 1,...,4 and certain explicitly calculable numbers B(i) € C, r(i) € Z,
0 < r(i) <.

The proof of this theorem can be found in [N], page 324-6. In the same work a
more extensive treatment of this type of recurrences can be found as well.

For several decades there was no activity in this area, but new interest
arose when it appeared that linear recurrence sequences play an important role
in irrationality proofs (compare Apéry’s proof of the irrationality of ¢(3)).
Moreover, linear recurrences of order two occur in the theory of orthogonal
polynomials (see e.g. [M1],[M2]).

In this work, we resume the investigation of linear recurrences of more
general type, with coefficients in some subfield of € and having a character-
istic polynomial, and we derive some generalizations of Theorem 1. Hereafter
we outline the contents of this study.

Chapter 1. Here the concept of a shift (or recurrence) operator is intro-
duced and some algebraic properties are derived. We also introduce matrix
recurrences, i.e. recurrences of the type Mx, = x,,; (n € N), where the M,
are non-singular k x k-matrices with entries in some number field K and the x,
are k-dimensional vectors with entries in the same field K. This appears to be
a somewhat more general concept than linear recurrences and some of the
results can be formulated more elegantly in terms of matrix recurrences.

Chapter 2. This chapter stands somewhat apart from the rest of the work. It
is dedicated to linear recurrences with coefficients in @Q[X] and whose

solutions are sequences of rational numbers. To every so-called rational

u
n

v
n
and {vn)n>" of the recurrence with u, and v, rational

recurrence we can adjoin the set of real numbers a such that a = lig for

two solutions {un)nzn



numbers for all n. We shall prove the following two results:

(i) The union of such sets taken over all rational recurrences is a
countable subfield of R, containing e.g. the numbers e,n,log k (for k € @),
(k) (for k eZ, k > 2).

(ii) The union of such sets taken over all rational recurrences with constant
coefficients is equal to the set of real algebraic numbers.

Chapter 3. The aim of this chapter is to provide a decomposition of matrix
recurrences into smaller-sized matrix recurrences whose limit matrices have
only eigenvalues with equal moduli. Indeed, the following result follows

immediately from Theorem 3.2: Suppose that M is a matrix in €%* of the form

Ry
R,

R,
where R;,...,R, are square matrices such that all eigenvalues of R; have
smaller moduli than those of Ry,; (i = 1,...,1-1). Let (M)} be a sequences of
k x k-matrices converging (entrywise) to M. Then there exist matrices §S,,S,,..
in €%k such that S, converges (entrywise) to the identity matrix and a
matrix

'R1n
such that R;, converges to R; (for i = 1,...,1) and M, = SWH-M:-S;R
From this result it is easy to prove the following generalization of Theorem 1
(which is an easy consequence of Theorem 3.3):

Theorem 5. Let

(0.3) P(n)Xpu + - + po(n)x, = 0

be a linear recurrence with complex coefficients such that py(n)pc(n) # 0

(n € N) and let P be its characteristic polynomial. Suppose that P has zeros
a,...,0 (counted according to multiplicities) and that |oy| = ... = |ey| and
|a;] # |a] for j = 1+41,...,k. Then there exist 1 linearly independent

; (1) (1 .
solutions (xn )nzn""’(xn )nZN of (0.3) and a linear recurrence of order 1

(0.4) qi(n)Xpey + ... + qQo(n)x, = 0

such that (x:”)n>u,...,{x:”}n>n constitute a basis of solutions of (0.4) and
such that (0.4) has characteristic polynomial Q(X) = (X - ¢;)-...-(X - @}).



Note that the case 1 = 1 immediately yields the Poincaré-Perron Theorem. The
last part of the chapter consists of a quantitative refinement of this result
and implies that the order of convergence of M, - M and the order of converg-
ence of M: - M are the same.

(In fact, Theorem 3 now also follows immediately from Theorem 5, as can be
easily seen.)

Chapter 4. This chapter is dedicated to linear recurrences with fast con-
verging coefficients. Since Theoremll is valid for recurrences with constant
coefficients, even without the restriction on the absolute values of the zeros
of the characteristic polynomial, one would expect the same result to hold if
the coefficients are not constants, but converge fast enough. In fact, the
next result is a direct consequence of Theorem 3.15 and Corollary 4.2:

Theorem 6. Consider the linear recurrence

(0'5) pk(n)xn+k ... F pO(n)xn =0
with llm pi(n) = =, (1)= 0,...,k), m-my # 0 and pg(n)pe(n) # 0 for n > N,
where, in addition, Y n'"'.| p;(n) - n; | converges for all i, where L is

n=N
the maximum of the multiplicities of the zeros of the characteristic poly-
nomial of (0.5). Let a be a zero of P with multiplicity 1. Then (0.5) has 1
. . : (1) (1
linearly independent solutions (xn }HZN,...,(x" )nZN such that
(1)
X

: n - s

lmW—l f0r1~l,...,].

Chapter 4 gives, in addition, a quantitative result, where the rate of
[

convergence of the series ¥ n'™'.| p;(n) - 1, | is related to the rates of
n=N .

x(1)
— 1 - 1fori=1,...,1.

convergence of the differences
an.ni-l

Chapters 5 and 6. These chapters deal with linear second-order recurrences

where the characteristic polynomial has two zeros with equal moduli. Results

similar to Theorems 2 and 4 of this introduction are derived for case where

the coefficients behave neatly. For such recurrences, we meet largely two

types of behaviour of the solutions:

(i) For each zero a; of the characteristic polynomial there exists a solu-
, X(l)

s i) s n+l _ i oo _
tion (xn }nZN of the recurrence such that llm e =a (i =1,2). More
n




X(2) X
! exists for all non-trivial solutions

over, 13@ = 0, so that lim

_n_ n+

X:l) xn

(x"}“ZN of the recurrence. Recurrences of this type can be called ’hyper-

bolic’, in accordance with the terminology for sequences of fractional linear

maps, where hyperbolicity implies the existence of two limit points, one of

which is stable, whereas the other is unstable.

(ii) For each zero a; there is a solution {xr(‘”}nZN of the recurrence such
x(1) x(2) x(1)

that 1im —=% = @ (i =1,2), but now lim u and lim —— do not exist,

n->® x(i) 1) n->o x(z)
n n

x
3"~

x(Z)
n

whereas lim [——
n->o X(l)
n

X
does exist. In particular, 13@ —%11 does not exist for
n

any solution {xn) of the recurrence that is not linearly dependent of

n2N

: (1) (2) .
either (xn )nZN or (xn )nzu' Recurrences of this type can be called
‘elliptic’.
For example, the linear recurrence
(0.6) Xpsg = 2-Xpep + (1 - n(n))x, = 0
with n(n) € R, 11@ n(n) = 0, has two linearly independent solutions {xﬁ”}n>N
(2) NG X )
and (xn }nZN such that X X" € R (n eN), 1lg ey =0 and
. n
x(1)
11@ ?:; =1 for i =1,2 if n(n) > 0 for n large enough. On the other hand,

X
n
if n(n) < 0 and n?-|n(n)| > 1/4 + ¢ for some € > 0 and n large enough, then

n+l

11@ does not exist for any solution (xn} of (0.6) with x, € R

n2N
n
(n € N). Further, if {(n(n)} satisfies suitable regularity conditions, then
there exist linearly independent solutions (y:”) and {yﬁ”) of (0.6)
(i)
. (i) s . n+l _ s .
with y, € € (i = 1,2) such that l;m y(i) =1 for i =1,2 and with
n

n2N n2N

(l)l -

(2)
ly, I

ly
n
If the coefficients behave more irregularly, however, then it may occur

for all n > N.

X
. n+1l . .
that 11m -~ does not exist for any solution (xn}nZN of the recurrence or

that it exis;s for only one solution (xn)nZN of the recurrence (up to multi-

plication by a scalar in C). Some counterexamples are given in Chapters 5 and
6. In Chapter 5, the case that the zeros of the characteristic polynomial are
equal is treated, in Chapter 6 the zeros are not equal, but have equal moduli.

10



Chapter 7. This chapter contains the solution of a problem posed by 0.Perron
([Pe3]), about the convergence of a certain type of continued fractions. A
simple application of the results of the preceding chapters provides necessary
and sufficient convergence conditions. It will be seen that the continued
fractions which converge, are exactly those which are related (in the manner
described in Chapter 7) to linear recurrences of hyperbolic type.

A more extensive survey of this study with a special emphasis to application
of the results to recurrences with coefficients in R[X], can be found in [K1].

11



CHAPTER ONE

PRELIMINARY CONCEPTS AND RESULTS

§1. Recurrence operators.

Let K be some field with characteristic zero. For m € Z, we consider
sequences (un)n>m with u € K (n > m) and with the following addition and

multiplication: {un)nzm + (vn)nzm = (un + vn)nzm, (un)nzm‘(vn)nzm = (unvn}an.

Multiplication of a sequence by a number in K is defined by

A-{un)an = {A-un}n>m. We define an equivalence relation on this set by
{un)n>m ~ {vn)nzm' if and only if there exists some number M > m,m’ such that

u =v for n > M. Let #(K) be the set of equivalence classes with respect to
this equivalence relation. The addition and multiplication defined above can
be extended into #(K) in the obvious manner. In this way, #(K) becomes a ring.
An element of #(K) will be denoted by {un),{vn), etc. and we shall refer to
them simply by the word sequence, instead of equivalence class of sequences.
(In order to indicate that a certain fact is true for all members of a sequ-
ence (un) we shall simply write "for n € N" or something alike).

In #(K) we can consider certain subsets of sequences. By K[X] and K(X) we
refer to the sets of sequences {u(n)}, where u € K[X] and K(X), respectively.
Clearly, K(X) is a field with the above addition and multiplication. More in
general, we shall denote by 0 = O(K) any field of sequences in #(K) with the
addition and multiplication defined above. If (un} € 0(K) for some field
0(K), then the inverse of {un} is clearly (u:}.

We define shift operators onto sequences in #(K) as follows:

(i) The elementary shift operator T is defined by T({un}) = (unﬂ).
(ii)  For P sPyre2Py € #(K) the shift operator

R = kak + pk_lT"'l + ... +p, maps (un} € #(K) into

(pk(n)un+k + pk_l(n)umk_1 + ...+ po(n)un) € £(K).

For T°, the identity operator, we shall also write I. If R is some shift
operator and (un) a sequence in #(K), we shall often write R(un) instead of
R({u,)).

In the sequel we shall restrict our attention to the set of shift operators
of the form R = ka“ + ... 4P, With p,...,p = #(K) (k 2 0) such that
either R = 0 or pk(n)po(n) # 0 for all n. We denote this set by ®(K). We call
k the order of R and denote it by ord(R). The order of the zero-operator is
not defined.

12



If 0 is a field of sequences such that T(0) < 0, we consider the set O[T]
of shift operators with coefficients in 0. We define an addition and multi-
plication of operators as follows: If RI,R2 € O[T], then Rl + R2 and
RlR2 = Rl-R2 are defined by (Rl + Rz)(un) = Rl(un) + Rz(un) and
Rl-Rz(un) = Rl(Rz(un)) for any sequence {un) in £(K). (Note that this defini-
tion determines their form uniquely). It is obvious that O[T] becomes a ring
in this way. We shall denote this ring of operators by %(0,K). Note that, if
Rl,R2 € 8(0,K), and RI’RZ # 0, then ord(Rl.Rz) = ord(Rl) + ord(Rz).

For R € 8(K) we consider the set Z(R) of sequences (un} in #(K) such that
R(un) = 0. In this case, we call {un} a zero of R. Clearly, {0} € Z(R) for all
R € &(K), and if {un),{vn} € Z(R), then Af{un) € Z(R) for any X € K and
(un} + (vn} € Z(R). Hence, Z(R) is a vector space over K.

Remark 1.1.1. If R € ®(K) and {un} € Z(R), then
(1.1) pk(n)un+k + pk_l(n)unﬂ(_1 + ...+ po(n)un =0 (n € N).

obtain that there exist sequences Qgo -G, in £(K) such that qo(n) # 0 for
all n and

Let r be a positive integer with r > k. By applying (1.1) repeatedly, we

u, = qk_l(n)umk_1 + ... 4 qo(n)un (n € N).

Hence we see that the values of u are uniquely determined by k subsequent
values UpsoooslUo (e Moreover, if we define {uﬁ”) (3 =1,...,k) by

o 8ij (i =1,...k), (uﬁ”},...,{uf’) are linearly independent over

k-

m+i-1
K. So we find that dimKZ(R) = ord(R), and {ui”},...,(uﬁ”) constitutes a
basis of Z(R).

Remark 1.1.2. If {uﬁl)),...,{uin} is a basis of Z(R), then we can write
(1.1) in the form of a sequence of determinants

(1) (k)
Uifpoeeee UL U
(1.2) = 0 (n € N).
a1 etk
n n n

Indeed if (un} is a solution of (1.1), then {un) is a linear combination of
the basis sequences {u:”),...,{uﬁk)} with coefficients in K, hence (un)
satisfies (1.2). Conversely, if the {ui”) (i=1,...,k) form a basis of

solutions of a linear recurrence,then

13



(1)
n+k-1

(1)

(i) _
u = rk_l(n)u N

" +..4 ro(n)u

for i=1,2,...,k, and sequences {rj(n)} € #(K) (3 =0,...,k-1). Since the

{ui”):q‘are linearly independent (i = 1,2,...,k), the coefficients
rkd(n),...,ro(n) can be determined by Cramer’s rule from expression (1.2).

The coefficients are uniquely determined, since otherwise {un) would satisfy a
recurrence of lower order, which would contradict the fact that there are k
Tinearly independent solutions.

By (1.1) we see that the zeros of R satisfy a linear recurrence of order k.
Because of this fact, we shall often refer to shift operators in &(K) as
recurrence operators. From now on, we shall denote a recurrence operator by
a capital letter (I,T,P,Q,R,S,V,W,...). Note that it follows immediately from
Remark 1.1.2 that a recurrence operator in &(K) is, up to (left) multiplica-
tion, uniquely defined by its set of zeros.

It is evident that the set %(K) is not closed under addition of operators,
as defined above. On the other hand, it is closed under multiplication, and,
if RI’RZ € R(K) and RI,R2 # 0, then ord(R1~Rz) = ord(Rl) + ord(Rz).

Let R € &(K). Write R = kak +...4 pOI. Suppose that pi(n) converges to
some number T in the metrical completion K of K (with respect to some metric
on K). for i =1,...,k. We define the characteristic polynomial XR of R as
follows:

xR(X) = zkxk LERERE

§2. The algebra R(0,K).

It is clear from §1 that for K and 0 = O(K) given, the set R®(0,K) is an
algebra over O with the addition and multiplication of operators as defined
above. We recall that we consider only fields 0 such that T(0) < 0. Note that
if R € 8(0,K), then certainly R € &(K), so that the concepts defined for
recurrence operators in R(K) are also valid for operators in 8(0,K). It is not
difficult to see that multiplication in R(0,K) is not commutative in general.
However, multiplication and addition are both associative and the distributive
law holds between them. Note that multiplication on the left side by a func-
tion p € 0 is the same as multiplication on the left side by the operator pl
and that for p # 0 the sets Z(R) and Z(pR) are equal. We now define a divisor
of an operator as follows:

If R,S,V € 8(0,K) and R = S-V we call V a (right) divisor of R and write V|R.

14



S is then called a left divisor of R. Note that V|R implies Z(V) < Z(R).
Conversely, if R,V € R(0,K), and Z(V) < Z(R), then V|R. For we can find
P,Q € R(0,K) such that R = P.V + Q, where ord(Q) < ord(V) if Q # 0. Then
Z(V) < Z(Q). However, if Q # 0, then dim Z(V) < dim Z(Q), which is impos-
sible. Hence Q = 0 and V|R. v

For R,S € 8(0,K) we define the greatest common divisor (R,S) of R and S as
the monic operator V € %(0,K) of largest order such that V|R and V|S.

Proposition 1.1. Let R,S € R(0,K). The following statements are valid:
1. (R,S) exists and is uniquely determined.
Moreover, the Euclidean algorithm can be applied in R(0,K) to find (R,S).
2. There exist P,Q € R(0,K) such that P-R + Q-S = (R,S).
3. Z((R,S)) = Z(R) n Z(S). Conversely,if V € 8(0,K), and Z(V) = Z(R) n Z(S),
then there exists apeQ, p# 0, such that pv = (R,S).

Proof: (1). The Euclidian algorithm can be applied to linear operators in the
same way as with polynomials in some domain K[X] (with K some field). We ob-
tain that for two operators R and S in R(0,K) there exist operators P and Q
in R(0,K) such that R =Q-S + P and either ord(P) < ord(S) or P = 0. The
existence of the greatest common divisor (R,S) follows from the Euclidian
algorithm. For uniqueness, see (3).

(2). This follows immediately from the Euclidian algorithm. We leave the
details of (1) and (2) to the reader.

(3) Put V = (R,S). Then there exist R1 and R2 in 8(0,K) such that R = Rl-V and
S = Sl-V, and (R1’Sx) = 1. So Z(V) < Z(R) n Z(S). :

Let (un} € Z(R) n Z(S). Then {V(un)) € Z(Rl) n Z(Sl) = {{0}}, which implies
(un} € Z(V). For the converse, we use that a monic operator is uniquely
determined by its set of zeros. o

§3. Reducible operators.

Suppose R € R(0,K). R is called reducible if R = Rl-szhere R1’Rz € R(0,K)
and ord(Rl) > 1, ord(Rz) > 1. Otherwise, R is called irreducible.

If R is of first order, we can solve the equation
(1.3) R(u) = 0
Put R = pT - q, where p,q € O(K). Then, for (un) € Z(R), and m large enough,

15



u,, q(n) n-1 q
0 0] (n2m), so u = kkgmr(k) for X eKand r = 5

If R is the product of first order operators, (1.3) can be solved by
subsequently solving first order operator equations. For example, if R = S.V,
where S and V are of first order, we can first find {vn} by solving S(vn) =0,
as described above, and then solve the inhomogeneous recurrence equation

(1.4) V(u) = v .

Put V = p(T - r), where p,r € 0(K). Then we have
vn
u, - r(n)un OR
Hence,
n-1 V‘L
u = Xx-t(n) +t(n)- § ———
n L=m p(L)t(L+1)

n-1
where A € K and t(n) = 1r({).

=m
§4. Derived operators; The lowest common multiple of two operators.

In this section, we fix K and 0 = 0(K) and write & for R(0,K). We define
the concept of a derived operator:
Let R,S € R, S # 0. The S-derived of R is the monic operator W such that Z(W)
= ((S(un))l{un} € Z(R))}. We denote W by R/S.

Proposition 1.2. Let R,S e R, S+ 0. Then R/S € & and
ord((R,S)) + ord(R/S) = ord(R).

Proof: S induces a homomorphism o from Z(R) onto S(Z(R)). Clearly,

Ker o0 = Z((R,S)). Hence, ord(R) = dim Z(R) = dim Z((R,S)) + dim S(Z(R)).

Let V € 8(K) be the monic operator such that Z(V) = S(Z(R)). By Remark 1.1.2,
such an operator exists. We prove that V € 8. Put { = ord(V) = ord(R) -
ord((R,5)). Then v = T+ q,_ T 4 ... + q with g, ,...,q, € #(K). Put R

= Rl-(R,S), S = Sl-(R,S). There exist Ho,...,HL € %(0,K) such that

Rll(T‘Sl - wi), ord(wi) < ord(Rl) (i =0,...,L). Since Z(Rl) c Z(V-Sl), the
operator HL + qu'de + ...+ qo‘wo is identica]]i zero on Z(Rl). But then

-1
it must be identically zero on #(K). We have Hj =y wjh~Th with W, € O(K) for

{-1 3=0
all j,h. Hence, W, = ¥ qujh for all h. From this we obtain that
i=0
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Qp >---3q, € 0(K). So, V € 8(0,K) and, by definition, V = R/S. The second
assertion now follows immediately from Z(R/S) = S{Z(R)). o

Remark 1.4.1. It follows from the proof above that if R = Rl-V, S = Sl-V for
R,S,V,RI,S1 € R, then R/S = Rl/Sl. '

Remark 1.4.2. Clearly, R/I = R for all R € &. Hence, by Remark 1.4.1, if

R = Rl-V, then R/V = Rf

Remark 1.4.3. Since Z(I) = {{0}}, we have I/R =1 for al1 Re &, R # 0.

Remark 1.4.4. From Remark 1.4.1 and 1.4.2 it follows that, if R,S,V €&, V # 0
and R-V = S.V, then R = S.

Suppose R,S € &. The monic operator V € 8 of smallest order such that

Z(V) > Z(R) u Z(S) is the operator that has as zeros the linear combinations
of zeros of R and zeros of S. (Notation: Z(V) = Z(R) + Z(S).). It is evident
that an operator V with Z(V) > Z(R) + Z(S) exists. On the other hand, that
there exists a V € & with Z(V) = Z(R) + Z(S) is made clear by the following
proposition.

Proposition 1.3. Let R,S € R, R,S # 0, and R,S monic. Then
(R/S)-S = (S/R)-R and Z((R/S)-S) = Z(S) + Z(R).

Proof: Z((R/S)-S) = Z(S) v ({un}l (S(un)) € Z(R/S)} =

{{u)}] {S(u)} = {S(v )} for some (v} e Z(R)} =

((un}l {un} = (vn) + (tn} for {vn) € Z(R),{tn) € Z(S)} = Z(R) + Z(S). The
alleged identity follows since the expression on the right-hand side is
symmetrical in R and S. o

We define the Towest common multiple [R,S] of R,S € & as the monic operator V
such that Z(V) = Z(R) + Z(S).

By Proposition 1.3, [R,S] = (R/S)-S if S # 0, and [R,0] = 0. Clearly,

[R,S] = [S,R], and,if R,S € %, then also [R,S] € R.

Remark 1.4.5. We have the following identity:

ord(R) + ord(S) = ord((R,S)) + ord([R,S]).
Remark 1.4.6. [R,S] is the unique monic operator of smallest order such that
both R|[R,S] and S|[R,S].

A further property is the following:
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Proposition 1.4. If A,S,R e &, and S,R # 0, then the following identity
holds:  A/SR = (A/R)/S.

Proof: Z(A/SR) = ({(S-R)(u)}| {u} e Z(A)} = {{S(v)}| {v) € Z(A/R)} =
Z((A/R)/S).

Remark 1.4.7. If R,Se€ & S # 0, and P and Q in & are such that S = Q-R + P,
P # 0, then R/S = R/P. In particular, it is no restriction of generality if
we assume ord(S) < ord(R) when dealing with R/S.

Remark 1.4.8. If R,Se®, (R,S) =1 and S # 0, so that R/S € & is well-
defined and ord(R/S) = ord(R), we can find a V € & such that (R/S)/V = R.
Proof: By Proposition 1.1(c), there exist P,Q € & such that P-R + Q-S = I.
We show that we can take Q for the operator V. If (un} € Z(R), then

(Q-5)(u,) = u, hence Z((R/S)/Q) = Z(R/QS) = ({(Q-S)(v )| (v} € Z(R)) =
({vn}l (vn) € Z(R)} = Z(R). But then it follows that (R/S)/Q = R. o

Finally, we show that if R,S € &8 S # 0, then a factorization of R in
irreducible factors induces a factorization of R/S in irreducible factors.

Proposition 1.5. Let R,S € 8, S # 0, and suppose R = Rl-...-Rk where
Rl""’Rk are irreducibie over R. Then

R/S = (Rl/SI)-...-(Rk/Sk)
Sj/Rj (3 =2,...,k) and Rl/Sl,...,Rk/Sk lie in & and are

where S =S, qu
irreducible over R.
Moreover, if (R,S)

I, then ord(Rj/Sj) = ord(Rj) for j =1,...,k.
We prove a Temma before proving the proposition.

Lemma 1.6. Suppose R,S € 8, S # 0 and R irreducible over R. Then
R/S is irreducible over R.

Proof: Suppose R/S = VI-VZ, Vl,V2 € R and r:= ord(vz) > 0. Then (VZS)|[R,S]
and ord(V2~S) > r. If R|S, then [R,S] = q-S for some q € 0, hence r = 0, which
yields a contradiction. If RtS, then (R,S) = I. In that case,

Z(VZS) = Z(S) + M, where M c Z(R) and r = dim(M) > 0. Then, Z((VZS,R)) = M.
Since (VZS,R)]R and R is irreducible, we obtain r = ord(R). a]

Proof of Proposition 1.5.: Put R = RI-R*, where Rl,R* € % and Rlis irreduc-
ible. We proceed by induction on k. For k = 1 the assertion follows immediate-
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1y from Lemma 1.5. Suppose the assertion is true for £ < k-1. Then
J . .
R/S = (RZ/SZ)-..-(Rk/Sk), where § =S, Sj_1 = Sj/RJ, (J = 3,...,k). We shall

prove that R/S = (RI/SI)-R*/S. Firstly,it is clear that R*/S divides R/S. Put
R/S = R-(R'/S). We calculate R. Put S = S/R". Using Propositions 1.3 and
1.4 we obtain: R -(R'/S)-S = (R/S)-S = (S/R)-R = ((S/R)/R)-R R =
= (S/R)-RR = (R/S)-S R = (R/S)-(S/R')-R" = (R/S)-(R/S)-S.

E ] *
Hence, by Remark 1.4.4, R1 = Rl/S]. So we see S1 € & and S1 =S/R =
= Sk/Rz...Rk = (Sk/Rk)/Rz...Rk_1 = Sk_l/Rz...Rk_1 = Sk_z/Rz...Rk_2 =...=
= Sz/Rz'
Moreover, since S1 € R and R1 irreducible, RI/S1 is irreducible by Lemma 1.5.
Furthermore, if (R,S) = I, then ord(R/S) = ord(R). Since for j = 1,...,k,

ord(Rj/SJ_) < ord(Rj)
we have that ord(Rj/Sj) = ord(Rj) for all j.

We can determine the lTowest common multiple [R,S] of two operators
R,S € & in the following way:

Suppose that application of the Euclidian algorithm gives the following
chain of equalities:

R=Q-S+R,S=0QR +R,..., R =QR +R,R =0QR,

n-1 n
where Rn = (R,S), ord(Rn) < ord(Rn_l) < ... < ord(Rl) < ord(S) and Q,QJ,,Rj €R
for j=1,...,n. Pt R=R , S=R.

Clearly, [Rn’Rn-l] = R"_l = Q-Rn. If we have that [Rj,Rjﬂ] = Vj-Rj =
= wj-Rj+l for Vj,\'lj € % and some j € {0,...,n-1}, we can find [Rj’Rj-ll as

follows: Since Rj_1 = (Q -Rj + RH, we have that VJ,-Rj = \rlj(Rj_l - qu'Rj)’

il

hence (Vj + \dj-(]J_ﬂ)-Rj + Nj-RJ,_l. We claim that wj-Rj_l = q-[Rj,RJ__I] for

some q € 0. Suppose this this not so. It is evident that both wj and

V. +W-Q . lie in &, so that both R, and R, divide W -R, .. Hence

J j it i-1 h] i i

[Rj,Rj_1]|Nj-Rj_l. So there must be some W € ® of order > 1 such that W is a

left divisor of both wj and Vj + Hj-QJ_H. Then W is a left divisor of Vj.

Hence there exist operators V: and H: such that Vj = H-V:, Hj = w.w’;. From

V-R = W_-R,

j o i oinl
*

contradiction with ord(Vj-Rj) < ord(Vj-Rj) = ord([Rj,Rj”]). So, by

we derive V.-R. = W -R__, so [R,R. ] divides V' -R, in
J J J J+1 J7 i+l J J
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subsequently lowering the value of j, we finally obtain [R,S] in this way.

The derived operator R/S can now be obtained by simply dividing [R,S] by S
and by left multiplication with a suitable factor in 0. Note that the assert-
ions of Proposition 1.2 also follow from the above construction.

§5. Some properties of operators in &(K).

In this section, we study a few properties of the set R(K), which we will
need in later chapters. '
(i) Let q = (qn} € #(K), q # 0 for all n. Put S = q-1. Then S € #(K),
ord(S) = 0. Let R € 8(K), ord(R) = k. As in §4, we define R/S as the monic
operator such that S(Z(R)) = Z(R/S). Then R/S € R(K), and ord(R/S) = k. More

explicitly, let R=1p Tk+...+p0. Then R/S = r;I(rﬁTk+...+ro),
p.(X)
i

q(X+j)
In later chapters we shall apply this procedure quite often and refer to it as

(i =0,...,k).

where rj(X) =

a zeroth-order transformation of the operator R. (R/S is called a zeroth-order
transform of R). Note that if 1ig q(x) = q and X exists, X, € K[X], then
q(X+1)
Ta(x)
xR/S(X) = xR(X/L). If (un) € Z(R) and u # 0 for all n, we may take q = (u;l).
In that case, (1} € Z(R/S).

(ii) If S,V,R € &(K), ord(S) > 0, ord(V) > 0 and S-V = R, then we call V a
(formal) divisor of R, and S-V a (formal) factorization of R. As in §4, we

X5 = Xq for some ¢ € K. On the other hand, if 11@ = {, then

write R/V for the monic operator q-S (q € #(K)). For instance, if R € R(K),

(un} € Z(R) and u # 0 for all n, R admits of a formal factorization of the
u

form R =S-(T - —2*1), for some S € &(K).

u
n

Remark 1.5.1. With the extension of the definition of a derived operator to
the set &(K), Proposition 1.4 remains valid for A,S,R € R(K).

§6. Matrix Recurrences.

It often appears convenient to study recurrences not in the form (1.1), but
as matrix recurrences, that is, recurrences of the type
(1.5) Mnxn =X (n>m)

where Mm,ﬂm4,... is a sequence of non-singular matrices in K where K is
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some number field and X X is a sequence of vectors in K~.

We shall further identify two matrix recurrences defined by sequences
(Mi”} and {Mﬁ”}, respectively, if Mn:= Mﬁ” = Miﬂ for all n larger than
some number N, and we shall indicate them by [Mn]. Similarly, we identify two
sequences of matrices, or vectors, if their members are equal from a certain
index N on, and we shall write (Mn),(xn}, etc. (Compare §1.1, where we did
something similar for sequences of numbers). In practice, we shall often
assume n > 0 or 1, if this does not affect our conclusions.

By A(K) we denote the set of matrix recurrences where the matrices have
coefficients in the field K, and the solutions are sequences of numbers in K
as well.

From now on, we suppose that K is a subfield of the field of complex
numbers. A recurrence operator R € ®(K) corresponds to a matrix recurrence in
A(K) in the following way: Let R = p(T - q_T' -...- q), with
P»Qy,---»q,_, sequences in #(K). We define a sequence of matrices (Mﬁ), where

q._,(n q_,(n) .... q(n) q/n)

R 1 0 .... 0 0

(1.6) M = 0 1 c
: : 00

0 0 ... 1 0

Clearly, M: is non-singular for all n. We call [Mﬁ] the matrix recurrence
associate to R. The sequences (xn) that satisfy (1.5) for Mn = Mﬁ are
precisely those for which x: = (u, o---u) where (u} e Z(R). (By X' we
denote the transpose of the vector x).

If Re R and X exists, then the sequence (M:) converges (entrywise) to a
matrix M, where [MR] is the (constant) matrix recurrence associate to the
(constant) operator xR(T) =T+ ﬂkAqu o4, which can be obtained
by replacing X in the expression for xh(X) by the shift operator T. It is a
well-known fact from linear algebra that the eigenvalues of the matrix MR are
precisely the zeros of xR(X), whereas each eigenvalue has geometric multi-
plicity one and the algebraic multiplicity of each eigenvalue is equal to the
multiplicity of the corresponding zero in Xp: (Thus, the characteristic poly-
nomial of the matrix M' is C-Xps where ¢ is some non-zero complex number.)

In the sequel we shall denote the 1imit matrix of a sequence of matrices
(Mn) by Tim Mn.

It sometimes appears useful not to consider the matrix recurrence (1.5),
but a matrix recurrence

-1 _
(1.7) (v MnU)yn =Y
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where U is an invertible matrix in K. Note that (1.7) is essentially the
same matrix recurrence as (1.5), with X = Uyn for all n. We call (1.7) a
conjugate matrix recurrence of (1.5). Note that

Tim UM U = U™ (1im M )U
if 1im Mn exists.

A procedure we shall often apply is to consider instead of (1.5) a conjug-
ate matrix recurrence such that the limit matrix is in so-called Jordan
normal form. We shall shortly recall the definition of a (complex or real)
Jordan normal form.(See any text .on linear algebra for a more extensive
exposition.)

Let M € €“*. Then there exists an invertible matrix U e €% such that
U™MU is of the form

B(al’ml) b ]
B(a,
(1.8) (@, mz).

B(ay,m)
where @,...,0 are the eigenvalues of M, repeated according to geometric

multiplicity, and B(a,l) = @-1 + J, where I is the identity matrix in Ctl
and J is the matrix in CLL such that

010 ...... 0
001 ...... 0
(1.9) J = ) )
: © 1
000 ...... 0

(In the sequel, we shall denote all matrices of this form by J, if it is clear
what the dimension is.)
The form (1.8) is uniquely determined up to permutation of the matrices B(a,{)
and is called the (complex) Jordan normal form of the matrix M.
In the same way, if K = R, to every matrix M can be found a real-valued
matrix U, such that U'MU is of the following form:
C(a,,m)

1’71
C(a
(1.10) 272
0 ..
C(aL,mL)
Here @ are the real eigenvalues of M (q<f), and aqd,...,aL,

“¢u""’&L are the non-real eigenvalues of M, counted according to their
geometric multiplicities, and C(a,f) = B(a,t) if a € R. If @ ¢ R, and

a = B + iy (where B,y € R), then C(a,{) € RLJ and has the form
22



Al@)I 0...0
(1.11) Cla,t) = 0 Afa) I P o

O |
0 0 0. . Aa)
where I is the identity matrix in R%?, and A(a) is the matrix

(1.12) Ale) = {5 Z]

The form (1.10) is called the real Jordan normal form of the matrix M and is
uniquely determined up to permutation of the matrices C(aj,mj).

Lemma 1.7. If R € &(K) for K =C or K = R, and X exists, then the eigenvalues
of the 1imit matrix Tim M: are the zeros of Xq and each eigenvalue has
geometric multiplicity one.

Proof: This follows from a simple calculation. o

It follows immediately from the above considerations that not each matrix
recurrence is the conjugate of a matrix recurrence [Mz] corresponding to a
Tinear recurrence operator R. In particular, if Tim Mn has eigenvalues with
geometric multiplicity greater than one, there is no such R.

Suppose R,S € R(K) for some field K. We derive the matrix corresponding to
R/S. In the first place, note that we can assume without loss of generality
that ord(S) < ord(R), and (R,S) = I (by Remark 1.4.7). Let {M:} be the
sequence of matrices, corresponding to R. Since r = ord(R) > ord(S), there
exist invertible matrices Sn € K" (n € N) such that

n+r-1 S(un+r—l)
(1.13) Sn : = :
u S(un)

Then, M/ =5 Mst (nen).

n+l n n
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CHAPTER TWO

RATIONAL OPERATORS

§1. Introduction.

In this chapter, we take K = @ and O(K) the field of sequences of the form
{r(n))} with r € Q(X). Put Rat = R(0(X),0). If R € Rat, we call R a rational
operator. If R is a rational operator of order k, and a zero {un} of R has k
initial values Ups ool | in @, then u € Q for all n > L.

Let R € Rat. For (q1),(%1) € Z(R), we consider the sequence of quotients
u

Vﬂ for n > £. If its limit exists, it is a real number .We define the set L(R)
n
by U
L(R) = {a €R| a = lim Vﬂ for {u},{v} € Z(R)}.

Since Z(R) is a vector space over Q, itnis clear that @ < L(R) < R if
ord(R) > 0. We define £ as the union of all sets L(R), where R € Rat.

The aim of this chapter is to prove the following two facts:
(1) £ is a field.
(2) The union of the sets L(R) where R runs through the set of rational
operators with constant coefficients is equal to the set of real algebraic
numbers @ n R.
Hence, in particular, we have that 8 nR < Z < R. That £ #+ R follows
immediately from the following lemma.

Lemma 2.1. £ is a countable set.

Proof: For R € Rat, the set Z(R) is a k-dimensional vector space over Q, so

[

that L(R) is countable. Since Rat c U Q(X)k, the set Rat is a countable set,
k=0

hence the union £ of the sets L(R) for R € Rat is also countable.

On the other hand, £ contains real transcendental numbers. It can be shown
without any effort that the numbers of the form

® N-1

Y 1 q(n)  for q€Q(X) and q(n) # 0, q(n)! # 0 for n > 0,

N=0 n=0
if the sum converges, lie in some L(R) where R is some reducible rational

operator of order 2. Namely, R = (T-q)(T-1). So we obtain for instance the
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numbers e* (k € @), log k (k € @, k>1), arctan k (k € @, |k| < 1) if we take
_ k _ k-1 n+l __2n+l 2 :
q(n) = ) q(n) = el q(n) = - 23;3-k , respectively (n € N).

As announced above, the following result is valid:
Theorem 2.2. £ is a field.
We shall use the following lemma.

Lemma 2.3. Let R,S € Rat. There exists an operator V € Rat such that
Z(v) » ({unvn}l {u} e Z(R) and (v} € I(S)) and ord(V) < ord(R) -ord(S).

Proof:  Put r = ord(R) and s = ord(S). For k,L € Z, there exist
L RN ZWEL SR IREREL WA Q(X) such that

{un+k} = pr-l,k{u YAt po,k{un)

n+r-1

and
(vn%} = qs-l,L(vn+s-1) oot qO,L(Vn}

for all (un} € Z(R) and {vn) € Z(S) respectively. Hence, each of the rs+l
sequences {unvn},...,(unﬂ%vnﬂs} can be written as a linear combination of
the rs sequences (umﬁqu} (0 < ig<r-1, 0 < j<s-1) with coefficients in
Q(X) depending only on R and S. Thus, the rs+l sequences (uwﬁvwd}

(0 < j < rs) are linearly dependent over @(X). So we can find a number t < rs

and rational functions r,...,r = such that

t t-1 _
(T + rt_{r + ...+ ro)(unvn) =0

for all {u) e Z(R) and (v} € Z(S). Put V. = T* 4+ r T+ ...+ r . Then
ord(V) =t < rs and V is the desired operator.

Proof of Theorem 2.2.: Suppose a,8 € . Then there exist R,S € Rat and
My, () e 7(r), (v'"),(v'?) € 1(s) such that

Uﬁl) ”£2)
i —5-o lin ME B.
n

<
3 —~

gt
n

(1)
n

(1) = 13
Also, (-un } € Z(R), hence -a = 1$m e, and for a # O,

v
v
- 3 n
1/a = 13& ;TTT €l.
n

Finally, we show that aB and a+B lie in . By Lemma 2.3, there exists a
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V € Rt such that (u:”vf‘j)} e Z(V) for i,j € {1,2). Hence
e
aﬂ = l])mw € L(V) c Z,
n n
and

WDy (2) 4 (20, (1)

_ 1 n n n n
atf = llﬂ MEYMEY € L(V) < L.

n n

§2. Rational operators with consfant coefficients.

In this section we shall consider the set of rational operators with
constant coefficients. Thus, the field O(K) is the field of constant sequences
with terms in @, which we shall, by abuse of notation, denote by Q. We shall
prove that the union of the sets L(R) where R runs through the set %(Q,Q) is
the set of real algebraic numbers. Note that for R € %(0,0), the characteris-
tic polynomial Xq of R exists and is irreducible if and only if R is irreduc-
ible in Q[X]. (In fact, R = xR(T).)

We first prove a lemma about the form of a (rational) root.

L e
Proposition 2.4. Let R € R(Q,Q) be of order k. Write xR(X) =1 Pj(X) ’
d i=1

where Pj(X) =‘Ez(x-aﬁ) € Q[X] are distinct irreducible polynomials in Q[X].
Then, for (un) € Z(R),
AL TRCH
(2.1) u =j§1 m§1 1Elqmj(aji).a'j'i.nm-l
where Qmj € Q[X] and deg(Qmj) < dj-l m=1,...,e; j=1,...,1).

Proof: A basis of the zeros of R over C is
n _m-1 _ e i= . § =
{ {aji-n Y m= 1,...,ej, i 1,...,dj, i=1,...,t).
d

J
Put V;? =3 a??'l (s = 1,...,dj; j=1,...,4). We claim that
i=1

( (vgj’.n"‘“n m=1,...,e5s=1...,d; 3 =1,...,L ) is a basis of Z(R).

Firstly, v§? € @, since it is an elementary symmétrica] form in the zeros of
P.(X), so that (v§?~nmq) € Z(R). Since there are exactly k different zeros
of this form, it remains to be shown that they are linearly independent.
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Suppose

d.
b

m-1 _n+s-1y _
§1 Amsj{n "y, ) =

©=TFIA VY -T13
ms j ms j

i

d.

J s-1p,.n m-1
Y A .a {a -n ).
=1

=§§§s msi 41 gi
Since the sequences {agi-n""l} (m= 1,...,ej; i= 1,...,dj; i=1,...,4) form
4
a basis of zeros over C, we obtain that szl)‘"'“'a;l =0 for all m,j,i. Thus,

d,

J
A X s a polynomial of degree smaller than d. with roots
msj J

s=1
ajl,...,ajdj
m,s,j. Hence, for {un} € Z(R),

(u)=Lryc, v

s ms)
ms j

wheve Cmsj € @ for all m,s,j. So we obtain

, S0 it must be identically zero, which implies Amsj = 0 for all

d,
J s-1, m-1 n
Y C «a (n -a)-=

ms j 1 msj ji Ji

{nﬂr—l.a;:s-l} - E Z z
moi

s

) N
m j i=1 mea N
dJ'
- s-1 _
where Qmj(X) s§1 Cmst € Q[X] and deg(Qm,) < dj 1. o

We use this result to investigate the set L(R). First we treat the case that R
is irreducible over Q.

Proposition 2.5. Suppose R € R(Q,Q) 7s irreducible. Put
k

xR(X) =cq (X-aj), where c € Q, a ,

j=1
(a). IF |°’1|="’=|°‘L| > Iajl for j > L, then L(R) < @(a)) n ... nQ(q) NR.
(b). If |all > Iajl for j > 1, then L(R) < @(a ) < R.

Proof: Suppose Iall = ., = lﬁd > |aj| for j > 4. Let {u},{v} € Z(R). By
Proposition 2.4, there exist n .M, € Q[X] of degree < k-1 such that

k k
- n _ n
u -El le)-al, v —igl 7, (a)-a],
Suppose {vn) # {0). Note that 'ni(aj) = 0 implies L 0 (i€ (1,2}). Then
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k {
n
‘glﬂl(ai) a iglxl(ai)-yi
Tim — = lim —
n->o k n->o A n
i§l”z(ai) a, igl”z(ai)'7i
where 1, = ai/al, hence Iyil =1 fori=1,...,4. Since the denominator in

the rightmost quotient is bounded from above, we have that, if the limit

exists and is L, then
{

a3 (a1, -
where p = "1'L'"z' We show that this implies p(aj) =0 for j=1,...,L.
Since all 7j are distinct, there exists a § > 0 such that ]7j - 7i| > § for
i#+ Jj. Let £ > 0. Choose N so 1arge that for n > N

L 1
|2p(a)1|<e—r

i=1
Then

{ oL-1
| §pla)2-(r, - 1) | < IZp(a)v"+1 I +|Ep(a)7 A |<“T
i=2

i=

Proceeding in this way, we obtain

" bt =

[ olag)vp-Cvg - v)eeelyy -7 ) | < AR —[—< €8

for n > N. Since |7L - 7i| > § and l1i] =1 for i =1,...4-1, this yields
|p(aL)| < €. Since ¢ can be chosen arbitrarily small, we obtain that
p(aL) = 0. In the same way we prove that p(ai) =0 fori-=1,...,0L. But
then, by the definition of p,

L = ﬁ:ﬁ for i =1,...,L.
Hence, if L exists, it lies in 0(a1) n...n Q(ac). Also, L € R, for if none
of the a, (i =1,...,0) is real, then there is an m € (2,...,L} such that
a = E:. Then,

l’l(al) nl(a:) ﬂlial]

) "2(01) ) ﬁZ(E:) ) lea )

which implies L € R.
If L = 1, then clearly @ € R, hence Q(al) c R. Moreover, let L € Q(al).

k
Then L = n(a ) for some n € Q[X] with deg # < k-1.Take u =3 n(ai)'a? and
i=1

=

k
n = i _n = = i
v, =.§ a for n =0,1,.... Then 11m v ﬁ(al) L, so that indeed

3
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L(R) = Q(al).

Finally, we consider the case that R is reducible.

Proposition 2.6. If R € ®(Q,0), then L(R) < T nR.

{ e dj
Proof: Put R =1 Rj(T)j, where Rj(X) =1 (X-a“) is irreducible over
i=1 ' i=1

Q[X] and the Rj (j =1,...,L) are distinct. By Proposition 2.4, for any

(un},(vn} € Z(R), there exist ij,Qmj inQX] (3 =1,...,4; m= 1,...,ej)
such that

L eJ dj ) o
h =j§1 m§1 iglpmj(aji)'aji'n ’
v f: ;_1 ;jo (@,)-o] "
A A
Let p be the smallest integer such that P;j = Qmj =0 form> g and
u

R . s n s .
J=1,...,4. Then, if llm V: exists and is equal to L, say, then
. L dJ n
Vg X X oyla) v -0
j=1 i=1 a
= - . i = = —ji i
where Py; ij L Q”j (3 =1,...,1) and Ty , where a is max IajJ

taken over all j such that not both Pﬂi and Qui are identically ze;éf Hence
|1ji| <1 for all i and j such that not Pﬂi = Q”j = 0, and for at least one
pair i,j the number yﬁ has absolute value one. We then proceed as in the
proof of Proposition 2.5. and obtain
L = lim ua%1)
Lt PRACED

for some J € {1,...,1}), I € (1,...,dj) such that I“bx' = a.

In particular, L € U. The fact that L € R follows by the same argument as in
the proof of Proposition 2.5.

Now we come to the final result.
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Theorem 2.7. L=0nR

Proof: By Proposition 2.6, for every R € 8(Q,0), the set L(R) is a subset of
@ n R. Conversely, take @ € @ n R. We prove that a € L(R) for some R € %(0,0).
In §2.1 we saw that for any R € #(Q,Q) with ord(R) > 0, the set of rational
numbers is a subset of L(R). So we can suppose a ¢ Q. Choose q € @ such that
a + q is smaller in absolute value than all of its conjugates. Since

a + q # 0, the number a i g is larger in absolute value than all its
1

@ +q
R € 8(Q,0) such that P = Xq- By Proposition 2.5(b), L(R) = QE_E_%_E_J‘ Since

@ € 0(—55)» We obtain that @ € L(R). o

conjugates. Let P be the minimal polynomial of over Q[X] and choose
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CHAPTER THREE

A FACTORIZATION THEOREM

§1. Introduction.

Suppose [Mn] € A(C) is a matrix recurrence and 1im Mn = M, where M e [l
and M has eigenvalues @ ,...,a with 1&1[ < |azl < ... < |ak|. Then for each
(3)
X

Jj e {1,2,...,k) there is a solution (xi”} of [Mn] such that ?j)l converges
X

n

to an eigenvector of M, corresponding to the eigenvalue a,. Conversely, for
X

each non-trivial solution {x } of the matrix recurrence the quotient T—ﬂT

X
n

converges to an eigenvector of M. The above facts were proved by 0.Perron
[Pel] and H.Poincaré [Po], respectively. (In fact, Poincaré stated his result
not for matrix recurrences, but only for ordinary linear recurrences.)

If we apply the above result to recurrence operators, we obtain a result
that is known as ‘Poincaré’s theorem for difference equations’. It reads as
follows:

Suppose R € R(C) and xR(X) = c~; (X-aj), where C,a,...,0 € €, c#0, and

i=1
|a1| < |azl < ... < |ak|. Then R has divisors S ,...,S € R(C) such that

Xq (X) = X-aj for j = 1,...,k. (Or, which is equivalent, R has zeros {ui“}
b

u
. n+l _ ° s
such that 1;@ U = q (J=1,...,k)).
u
(Note that, if lim 3’1 exists for {u } € Z(R), it must be equal to a root

n
of x.).
If the T1imit matrix M has several eigenvalues with the same absolute value,
or, which amounts to the same, the characteristic polynomial has several roots

n+1l

with the same absolute value, it is in general not true that 1im m exists
n
. . xn
for {un) € Z(R) or that for a solution (xn) of [Mn] the quotient T con-

n
verges to an eigenvector of M. For counterexamples, see for instance [Pe2],

Remark 3.1.1, Proposition 5.3 and §6.1. However, if a recurrence operator R
can be factorized in such a way that each factor of R has a characteristic
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polynomial where all roots have distinct absolute values, the behaviour of the
zeros of R can be derived from the behaviour of the zeros of the factors. In
particular, for second-order operators we have the following result, of which
we shall make use in a later chapter.

Proposition 3.1. Suppose R € R(R) with xR(X) = (X—a)2 for aeR, a # 0, has
u

. n+l _
a (real) zero {un) € Z(R) such that 13@ T

n

w
Then 1im ;;’ = a for all zeros (w} + {0} in Z(R).

u
Proof: R can be factorized as R = cn-(T -p)(T - 3*1), where llg p(n) = a
n

and cn,p(n) € R (n € N). Without loss of generality we may assume c = 1

u
for all n. Put S = u;l-I. Then R/S = (T - q)-(T - 1) where q, = p(n)-alii,

n+2

hence lig q, = 1 and q, € R (n e N). For {vn} € Z(R/S), we have
x-Q,-

vn+l ) vn =

Q----Q for £ so large that q > 0 forn>{ and X € C.
n-1 v
= = n+l o _
Then Vo= 4 A-mg Q:----Q (n>4). If X =0, then —V:— =1 for all

«©
n>{. If A#0and } Q-9 diverges, then
m=

L
v qp-----Q Qp-...-q
R L
n
R A TAREEIL A
<] «©
If A # 0 and mé:l‘q{l-...-qm_1 converges, then v,o= b - A'mgnqﬁ"".qmﬂ’
so that
v Q-...-qQ _
lig L =14 1 qg —— ! =1 ifu #0
n ’
B+ A~m§n Q-
and
v Qp-----Q
gt g e i o
n
D) R/ AREERL MY
m=n

We show that,if (pn) is a sequence of positive numbers, for which
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lim —*1 = 1, then
n pn
s pn .f o
llg E : =0 i kgopk converges
k=n k
and
. pn : ° s
lim—-=0 if Y p, diverges.
Z k=0
Py
k=0

First suppose that the sum diverges. Choose ¢ > 0. Take N so large that

pn+1
D <1+ ¢ forn>N. Then, for n > N,
n
n-1 N-1 n-1
Lp rp +tLp
e 8L e T > L )’
P Py ke €T g1 1*E
Hence,
n-1 © s 1
Hm L (p/p) 2 L(1+e)7 = <
k=0 j=1
© p
If ¥ P, converges, we choose N so large that —%li >1 - ¢ for n > N. Then,
k=0 n
for n > N,
© © . )
J
Lsr) > L (- = ¢
v k=n j=0
. n+l _
Thus, llm v = 1 for {vn) # (0}, (vn} € Z(R/S).

n
W
For {wn) € Z(R), we have { Eﬂ } € Z(R/S), so that, if {wn) # {0)
n
1im Por 1, which implies 1lim ISR a ' o
e W un”_ ’ P e W -

Remark 3.1.1. If R € R(C), the assertion of Proposition 3.1 is not general-
1y true. In order to see this, consider the following example:
Let NI’NZ"" be a monotonically increasing sequence of positive integers
such that Nn —wasn— o, LetR=(T- exp(i¢n))-(T - 1) where
. on .
¢n = N; for n > 0 and N1 + N2 + ... 4 qu <£n« Nl + N2 + ...+ Nj (j e N).
n-1

Clearly, xR(X) X! - 2X + 1 and R has a zero {1}. Put v = Y exp(iék)
k=0

33



_ 2nk _
(n > 0), where §n =9 mod 2x for n = N1 + ...+ Nj_1 +k (0<kcg Nj).

n+l
N1+...+N Vn

J
does not exist. For a zero {u,)} € Z(R), we have {u,} = X-{v,} + p-{1}. If
u

Then (vn) € Z(R), {vn} ¢ {0}. Further, for all j, v = 0. So lim

: 1
] n+
n-]am u

exists, it must be equal to 1. On the other hand, if we take
u.,, ) X-exp(i@n) + 4
= lim
u n-o 1’3
n

u
n+1

u
n

n

n=N+... +N

then lim A4 L} Hence, X must
1@ m

J?

exist.

be zero. So only for {u,} = {(p} # {0} does 13@

In this chapter we shall derive a factorization theorem for matrix recur-
rences. This result will enable us to derive a generalization of Poincaré’s
theorem for the solutions of a matrix recurrence and, consequently, for the
zeros of a recurrence operator.

Theorem 3.2. Put

1 0
M= &
0
Ry
k {

k. .k,
where Rj ek’ (j=1,...,0), ¥ kj = k ,and all eigenvalues in C of Rj
i=1

have smaller absolute values than all eigenvalues in C of RJH

(3 = 1,...,4-1). Further, Tet [M] € A(K), where M e K*, M invertible and
1im Mn = M. Then there exists a sequence of matrices {Bn) with Bn e K<, Bn
invertible (n € N), such that

(3.1) Tim Bn =1

-1 _ 2n
(3.2) B M.B'- _
k..k,
where R. €K’ % and 1imR_ =R, (j=1,...,1).
jn Jn J

Applying Theorem 3.2 yields the following result for the zeros of recurrence
operators:
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L

Theorem 3.3.  Suppose R € R(K), where K =R or K = C, and xR(X) =c-q P.(X),
d i1
3
with c e €, ¢ # 0, and Pj(X) =1 (X - aﬁ) such that @, € cC (j=1,...,4;
i=1
i-= l,...,dj), @ = |ajll = ... = Iajd'| and @,...,0 are distinct non-

J
negative real numbers. Then R = c-Sl-Sz-...-SL where Sl’sz""'SL € R(K)

and X = Pi (i =1,2,...,1).

1

k
Corollary 3.4. If Re &(K) for K =R or C, and Xg=¢ 1 (X - aj) and
j=1

u
. . +1
lall # |ajl for j = 2,...,k, then R has a zero {u } such that 1im an =a.

(Note that u € K by definition).

Proof: By Theorem 3.3, R = V.S, where xs(X) =X - @ . Hence, S = q-(T - r),
v

s . n+1l _
with 13@ r(n) = @ . For {vn} € Z(S), (vn) # {0}, we have v = r(n)

v
(n e Z>m), so that 1lim —%11 =a. Further, since Z(S) < Z(R), (vn} is also a
- n
zero of R. m]
Note that taking dx = d2 = ... = dL =1 in Theorem 3.3 yields Poincaré’s

Theorem.
Before we prove Theorem 3.2 and Theorem 3.3, we need some more definitions
and facts. This will be the subject of the next section.

§2. Some more facts about matrix recurrences.

Unless stated otherwise, we take for the field K either R or C. Let
[Mn] € A(K). (Mo’Ml"" are non-singular k x k matrices by definition). If

(xi”},...,(xﬁ”} are solutions of the matrix recurrence, we can write

(3.3) Mn'xn = Xn+1

(1)

an

where x'1 = i

n (i)
X

nk

ek and X = (x“) x? x“"] e Kok
n n n n

35



(i=1,...,k.

If we choose the k solutions such that x!!! (k)

o reeeaXy are linearly independent

over K, we see by (3.3) that then (xﬁ”},...,(xi”) are linearly independent.
In the sequel we shall need to speak about minors of the matrices Mn,Xn,
and M = Tim Mn and we shall introduce a simple notation for them.
let I = {il,...,im) and J = (j1""’jm} be subsets of {1,...,k) with m
elements, such that il < 12 < ... < im and jl < jz < ... < jm. We denote the
minor determinant

of the matrix

by Dm(A).

Let Il,Iz,...I” (p= Ea ) be the u subsets with m elements of (1,...,k},
ordered in such a way that, if 11 < ... < im and j1 < ... < jm, then
(il,...,im} < (jl,...,jm) if iL = jL for 1 <€ < L-1 and iL < jL for some

ijhi,9=1, ...,

Le(l,...,m}. The g x p-matrix (b ) . . With b” = Dimn () is
i3
denoted by A™. Note that A™) - det A.

Lemma 3.5. Let A,B,C € C“* (k € N) such that A-B = C and let L e N, ¢ < k.
Then AD .8 - ¢ ang det AV - (det A)Y where v = ["‘,r}]

Proof: See for instance [K], page 321.
The following lemma applies to the matrix recurrences [M:”].

Lemma 3.6. Let [Mn] € A(K) and (xﬁ”},...,(x?’) a basis of solutions. A
basis of solutions of [MS”] is given by the ﬁJ column vectors of XS“,

_ () (k)
where Xn = (xn yeees X ). (1 <mg<k).
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Proof: -P‘I“-X’1 = Xml and det Xn #0 (n>0). By Lemma 3.5,

Mim)-xﬁm) = Xﬁfi and det Xﬁm) #0 (n > 0). Moreover, the matrix Xﬁ”) has
the required dimension.

Remark 3.2.1. If A has eigenvalues @,....0 (written according to multi-

plicities), then A™ has as its eigenvalues all numbers of the form

a -...-a,, where 1 < i < ... <i <k.
11 Im 1 m

Finally, we introduce the norm of a matrix. Let A € KKL (K=RorK==C),
k,{ € N. The norm || A | of the matrix A is defined as

(3.4) A 0= may 1951

The norm has the following properties. Let A € KKL

,B e K",

1. | A =0 if and only if A = 0.
2. For xeK, | 2| =r-]A]
3.|Aa+B|<|Al+]B] ifk=m t=n.
s lasl<lallel ife=m
5. If k =1 and @ is an eigenvalue of A, then | A || > |e].
It is in general not true that | A | = max |e|, where the maximum is taken

over the eigenvalues of A. Nevertheless, the following fact is true:
Lemma 3.7. Let £ > 0 and A € K*. Let a be one of the complex eigenvalues
of A with the greatest absolute value. Then there exists a matrix U € KK-*

such that || U'AU || < |a] + ¢.

Proof: By §1.6, we can find a matrix V € K** such that VAV = D + ¥,
where D is a diagonal matrix of the form

where Dj eC ifK=C and Dj €R or Dj eR*? if K = R (see §1.6 for details)
and
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Jl
1-: ]
0 - .- .0

{-1

_ : _foo0 10) . 2,2
where Jj =0orl if Dj € R and Jj = [ 00 ] or [ 01 ] if Dj € R°.

Further, we can find a diagonal matrix W such that Wlw = e-J. In fact, take
W as follows:

where Ej = ¢l or Ej = ¢8I, where I is the 2x2 identity matrix
(1 <j<t), the choice between EJ € R and Ej e R¥? depending on the fact

whether D € R or D, € R%'2. (If K = C, then obviously E, €R for all j.)

Take U =V.W. Then U'AU =D+ ¢.J. For j = 1,...,L,
-1
[(U7AUX) | < lef-Ix |+ e-]x, |

where x is a vector such that x' = ( X, X,
and, if K =R, then x €R if D € R and x, € R’ if D e R**.

Thus,

e X ) with X, € CifK=C¢C

L-1
[U'AUX|? < |e)? |x|? + €% |x|? + 2]a|-€- § |xj|-|x
=1

l € Uel + 0% 1x% o

Lemma 3.8. Let A,B € K** such that A is non-singular and | B | < | AY[™.
Then A + B is non-singular and

la+8)7Y <

1
I A8
Proof: Take x € Kk, x # 0. Then

Ax Ax 1 Bx
<1 = __|Ax] > and lT?+ <8l

A" tax)] | AT
Hence,
mjg IAXL= 1Bl a i B >0
and

[(A+B)x| > ||Ax] - [Bx|| > O,
so that A + B is non-singular. Moreover,
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- A+ B)!
I+ &) - gy HALE - gy sy
1 1
< .
R e L2 Ry TP RN

Remark 3.2.2. If Re &(K) and R = kak + ...+ plT + P, We define the norm
N (R) of R as N (R) = max{lpi(n)|| 0<ic<k}.

IA

§3. The main theorem.

Now we are ready to prove the main result of this chapter. Again, let K be
either R or C. For a matrix A € K“* we denote the entry in the i-th row and
the j-th column by A” (i,j € {1,...,k}). We shall prove the theorem in
several steps.

Lemma 3.9. Let (An):=0 be a sequence of invertible matrices in K* such
that 1im A:.Anﬂ = A and A has only eigenvalues in C with absolute values

smaller than one.
]

Then the series 7§ AL converges (entrywise) and
L-=0

©
s a1 _ _ -l
1im An-LgoAmL = (I - A)".

Proof: First suppose that A is in complex Jordan normal form. Put

En = A:'Anu - A. Let B be the matrix that is obtained from A by

replacing the elements on the diagonal by their absolute values. For N large
enough there exists a matrix E such that, for all i,j € (1,...,k) and n > N,
l(En)U‘ < Eij and such that B + E has still eigenvalues in € with absolute

values smaller than one. Then, for p € N, n > N, we define

-1 & 4 b b -1
an=An-LZAML-(I-A) =Y MA+E_)-(I-A)
=0 =0 m=0
and

H=F@+E)b-(1-8)"
L )

Hence Hp converges to a matrix H as p — o.

Now choose ¢ > 0. Put ¢’ = ﬁii—%ﬂ_"T' Since lim En =0,

N 1)
i.d
l(En)ul < e'-E for n large enough, i,j € (1,...,k).
Hence,
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l(an)Ul < e'-Hij < ¢ for all p,i,j and n large enough.

If A is not in complex Jordan normal form, then there is a matrix U e [l
such that U'AU is in complex Jordan normal form. By what has been proved
above,

<]
RS s _ ottt - ot - -1
Tim U An -L)EOAM-U = (I - UAU) (U (I - A))
so that

©

1 s pcl TS PR
Ut (Vim An'-LgoAn%)-U—U (1 - A

and the result follows. o

Lemma 3.10. Let {An):=0 be a sequence of matrices in K%’k, converging to

some matrix A. Let (en}:=o be a sequence of vectors in K* with lim £ = 0.
Then the following assertion holds:
If A has only eigenvalues in C with absolute values smaller than one, every
sequence (xn) satisfying the following inhomogeneous recurrence relation
X = Anxn +E (n € N)
converges to zero.

Proof: Let B be an eigenvalue of A with maximal absolute value. Let ¢ > 0 be
such that |B| + 4c < 1. We can find a matrix U e K** such that
UMAU = D + €-J, where || D || = || and | 9 | < 1. Put UTAU =D + €-J. Then
{Dn}:=o is a sequence of matrices converging to D. Further, let for n > O,
y, = U'lxn.
Then {yn} satisfies the equation
y, = +edy +Ule  (n20).

Let N be so large that for n > N
o, |l <18l +e.
Then,
1Y, | < Bl +2e)-ly | +6  (n2N),

where 6n = |U*sn|. Hence, Sn — 0 as n — o. Consider the recurrence
relation
z, = (18] + 2e)z_+ 8 (n >N)

and take z, = |yN| as the initial value. Then |ynl <z for n > N. Moreover,

z < max (|8 +2e)(1 +€)z, 6 (1+1))

. n+l
for n > N. Since (|B] + 2¢)(1 + €) < 1, we obtain that z — 0, from which it

follows that X — 0 as n — o, irrespective of the initial value. o
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R 0
0 S

S € K"" (m = k-1) such that all eigenvalues of R in € have smaller moduli
than all eigenvalues of S in C. Further, let (Dn}:=0 be a sequence of matrices
in K, such that 1im D = 0 and A + D_invertible for all n. Then there
exists a sequence (Bn}:=o of matrices in K with

B =1 C
n o1

(n>0) and Tlim Ch = 0, such that

Lemma 3.11. Let A be a matrix of the form [ ], where R € KLL and

where C € KLem

-1
(Bn+1-(A + Dn)-Bn )iJ =0
for all n large enough and for i € {(1,...,4) and j € {{+1,...,k}, and
Ie,-1l<élB -1]+cfo |

for some § < 1, c € R, ¢ > 0 and for all n large enough.

Proof: Note that it is sufficient to prove the 1emma for any conjugate
matrix of A. So we may suppose that

R™ Q
A+D =| " 1
n P S
n n
1

. * Ll -1
with R € K“" (n > 0) and || R || < |B] +¢, | s [ < T
eigenvalue of R with greatest absolute value and v an eigenvalue of S with
smallest absolute value, and ¢ is such that 0 < ¢ < (|y| - |B|)/6. Then, for
n >N,

where B is an

IR < 18] + 2e, (s < miz; e l<e o l<e
Now choose CN = 0 and define (Cn)n>N in the following way:

(3.5) C. = (R-C -0Q)(s -P.C)"

We show that S: - Pn-Cn is indeed invertible for n > N. Suppose that
Cy»---»C are well-defined and that | C || < 1 for N.<m < n. Then

N
* -1-1
I p,c, 0 <e<lal - 2e < D)

Hence, by Lemma 3.8, S: - Pn-Cn is non-singular, and

TN [Py — <
non lesH0t - e c | - 3e

Thus, CMl is well-defined, and

1 * * - 3
e b che BIR T+ T 1), - pec)™l < B3¢ < 1.

Moreover, we have the following inequality :
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(3.6) I Dsle I-BHE3E + o, I prtee:

Let (yn)nZN be the sequence of positive real numbers such that

1
3.7) Yo = yn'*%f—g% o ==
and y, = 0. Then I Cnﬂ <y, forn>N. Further, we can apply Lemma 3.10 to

(3.7), with K =R and k = 1, since

Bl + 3¢ e -
+¥+—7'3E <1 - and lim =3¢ " 0

and find that limy =0, so that 1imC =0 as well.
n->® “n n>® n

Put
B =1 € (n > N).
" 0 I
Then
Bl = [T°C) and 1imB =1
n OI n
Also,
R +C _.P 0
B 1-(A + D)_B—l - n n+l n
" mon P S -P.C
n n n n

The last assertion of the theorem follows from (3.6) and the fact that
lo I <«1o |- 0

Lemma 3.12. Let (A}, {B ) be sequences of non-singular matrices in K% and
KLL, respectively, ;;d 1;% An = A, lim Bn = B, while all eigenvalues in C

of A have smaller absolute values than all eigenvalues in C of B. Further, let
(Dn) be a sequence of matrices in K{"k converging to the zero matrix. Then the
recurrence relation

(3.8) X A = Bn-xn + Dn (neZ

n1 n 20)
has a solution {Cn}, Cn € KL*, such that 1lim Cn =0 and

©
lel<c-xlo -6
k=n

for some number 0 < § < 1 and some constant ¢’ independent of n.

Proof: Solving (3.8), we find

(3.9) (B -....BD)'l-cn-(An_l-....A) =

n-1 0
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n-1

_ -1
= c0 +k§o(3k.,,_.go) 'Dk'(Ak-l""'Ao)'

By multiplying A, An, B, Bn, Dn (n > 0) by a suitable constant ¢ € K*, we can,

by Lemma 3.7, find numbers € > 0, m € N and matrices U € th, Ve KLL

that
(3.10) | c-U'lAjU | <1-¢ and | c".V'IB;v | <1-¢ forj>m.

Using the properties of the matrix norm, we obtain that the sum

©
-1
kEfB[.“-QJ -D{(Abf..wAJ
converges to some matrix in K“% for any m € N. Now choose
ot -1
Co = -kgo(Bk-...-Bo) 'Dk'(Akq""'Ao)
as the initial value for the recurrence sequence defined by (3.8). Then,

since all An (n € N) are invertible,

(3.11) C = E(Bk-...-Bn)'l-D (A
k=n

n k k-l'“'.An)'

Since (Dn} converges to zera, (Cn} converges to zero as well. The last
inequality now follows easily from (3.10) and (3.11).

We now come to the proof of Theorem 3.2.

Proof: We proceed by induction to {. For £ = 1, take Bn =1 for all n.
Suppose the assertion is true for L =1,...,L-1. Put

Then

M = R1 0

0 S
and all eigenvalues in € of R have smaller absolute values than all eigen-
values in € of S. By Lemma 3.11, there exists a sequence {B;}, B; € th,

such that
(3.12) ' Tim B; =1

' -1 R’r 0
(3.13) B, M .B [ : ]
Qn Sn
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-k .k
k1

where Q: € K !. Since R; and S; are non-singular and 1im R; =R,

1
Tim S: =S, lim Q: = 0, Lemma 3.12 yields that the recurrence equation

X, R =SX-0Q (n > 0)

n+l

has a solution (Cn} such that T1im Cn = 0.

Put B - [1 0] (n € N). Then
C 1
n

* ny in* -1 R 0
(3.14) B B, -M.(B-B/)" - [ " ]
n

(3.15) 1im B'-B’ = I.
non kek ke,
By the induction hypothesis, there exist matrices F" € K (n € N)

such that
1im Fn =1,

where Tim R;n = R, (3 =2,...,n).

n

J
Put B = [I 0 ].B’-B' (n € N). Then B_ € K** and
F n n n
n

0
(3.16) linB =1,
(3.17) B oM.gt =1 O ) fROLT0
mhenon 0 F 0 S 0 F
n+l n n
R, 0
- RZn
6 .
RLn

The following theorem prepares the proof of Theorem 3.3.

Theorem 3.13. let 1 < { < k. Let [Mn] € A(K) and 1lim Mn = M. Suppose M
has the form
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(3.18) M o= [g g]

where R e KLL and S € K“L*“L, R and S have eigenvalues @,...q and

LTRERR Y respectively (counted according to their multiplicities) and
lail # |aj| if ie (1l,...,0) and j € ({+1,...,k). Then there are { linearly

independent solutions (x:”),...,{xﬁn} of [Mn] such that, for
R G

. ot
. Dif:(xn+l)
(3.19) 11@ —Byz?z;—;— =a-...q
' n
» ot
(3.20) 1]){3 W =0,
where 1 = ({1,...,4) and J is an} sugset of (1,...,k} with L elements,
different from I.

Proof: First suppose that

where all eigenvalues of Rj have smaller absolute values than all eigenvalues

k..k m
of R, (i=1,...,m1), and R e K¥ 7, Tk = k. By Theorem 3.2, there

i=1
exists a sequence (Bn), Bn e K%, such that
1limB =1
n
and
Rln 0
R
-1 _ 2n
n+1Man - . (n € N)
0 R

k. .k,
where RJ,n e K*® 7 andlim RJ,n = Rj (3 =1,...,m). Suppose that each of the

Rj takes either all of its eigenvalues from the set {al,...,am) or from the
set {amd,...,ak}. For j = 1,...,4, the matrix recurrence [RyJ € A(K) has kj
linearly independent solutions (y:”), with
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x(p)

. i-1 nl
p-L =p-Lk e(l,....k}, and, for p-L, € (1,....k), P
=1 ).((p)
nk
(p)
g (p) (p) v
where < =ynp and xn‘: =0 if i-Ljé{l,...,kJ_).
Xm)
n, 41

Put X = (xi”,...,xﬁ”) (n € N). Then,

n

Bn+1.Mn.Br_11.Xn = Xn+1 (n € IN)

and, for Ij = {Lj+l,...,Ly4) and J € {1,...,k}, with |J| = kj, J ¢ Ij we have

D(kj) (X
(3.21) Sl " et w

D(kj) x) in’

IJ,.IJ. n
(3.22) D(kj)(X) = 0.
J,lj n

Note that 0 # det Rﬁl—» det Rj as n — o, and det Rj = QL,+1""'a 41,
where @ peee00y o are the eigenvalues of Rj in C, counted ;ccording %o

their mu1tip1icit?és. A basis of solutions for [Mn] is given by the columns of
B:-Xn. Then, by Lemma 3.5, with J some subset of (1,...,k} with £ elements
and j € (1,...,m},
0,3 (B a) =10 ()0 (K) =03 (B0 (x).
31 T AL I S 3.1, n 11
So, taking into account that Bn — I and hence that BS” — I (where I is

the identity matrix in K and K*# with b= Ej, respectively),

) (k) (k)
‘ DIJ,Ij(Bn+1' n+l) ) Dlj.lj(8n+l) ) ij.l,(xn+x
lim IV = lig ) ) gal (k)
DI.,I‘(Bn 'Xn) Dl_,x,(Bn ) DI,.I.(XH)
J J J J J J
a{,,-&l. al,,
J J+1

and, for J # IJ,

46



(k (k
J -1 J -1
DJ'I (B"-X) DJ'I (B ")
iz TR =i ), =0
DI 1 (Bn xn) DIJ Ij(Bn )

In the general case

M o= [ R0 ] (R € Kt and 5 € KRl
0 s

there exist U1 € KLL and U2 € Kbt*'tlsuch that, for U = [Ul 0 ], we have
0 U2
RU(I) 0
UMy = Yote)
0 .
Ro(m)

where o(1),...,0(m) is some permutation of the numbers 1,...,m and Rl,...,Rm
are as above. Further, there exists a matrix P € K% which permutes the

matrices Ra(n""’Rauw in such a way that
R1 0
R
PluMUP = ¢
0 R

m

By Theorem 3.2, there exists a sequence (Bn}, Bn € K** such that, for
n € N, we have 1lim Bn =1 and
Rln 0

R
B, PUTMUPB = e (neN).

mn

Hence, for F_= UPB (UP)~,

F MF"=[Rn 0
n+l non 0 S

n J

where 1lim Rn =R, lim Sn =S, and lim Fn = 1im UPBn(UP)'1 = I. Applying the
result obtained in the first part of the proof, we find that there exist

Tinearly independent solutions (xi”},...,{xﬁ"} such that the assertions of

the theorem hold.

Corollary 3.14. Let [Mn] € A(K) and 1lim Mn = M. Suppose that M has
eigenvalues @,...0 (counted according to their multiplicities) where
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la,| < || < ... < le |. If h and m are such that 0 < h <m < k and
la| < la, | orh =0, |a|<|a | orm=k, then [M] has m-h Tinearly

independent solutions (xg"”),...,(x;m) such that for each sequence (xn},

= ) . (x(M]) L)
where (xn} = Al {xn Y+ .0+ kmm (xn } (xn) # (0}, xl,...kmm € K, we
have

X
(M-aMI)-...-(M-amI)W:T — 0 (n — o).

Proof: A transformation matrix U can be found such that U'MU is in (real
or complex) Jordan normal form. U is determined up to permutation of the block
matrices Ca ; and Ba ; respectively (see §1.6 for the notation). Then we can

choose U suéh that
-1 _ R 0
UMU-[O s]

where R has eigenvalues @ e and S has eigenvalues a,...e and

L ERPRRRR Applying Theorem 3.13, we find that the matrix recurrence

[UdMnU] has £ = m-h linearly independent solutions (yi”),...,(yﬁm} such
that, for Yn = (yil),...,yim), I ={(1,...,0), and J any subset of (1,...,k}
with { elements, J # I,

0t ()
(3.23) By T
1,1 ( n)
(i)
‘ynl
Hence it follows that, for y;” = : (i=1,...,1)),
(1)
'ynk
" |
lim Iy(i)! =0 (J = 4+1,...,k).
n

To show this, take qu =Tu {§I\{q) for j=14+1,...k; q=1,...,4. Then
€9
DJ ,,I(Yn)
41 =tz ,
o9y e
where Zmn""’ztm are the solutions of the set of linear equations

(3.24) y:;)-zljn + ...+ _y'ﬁl).zlljn = yr(‘;) (i=1,...,1).

By (3.23), ijn € K and lim ijn =0 for all q,j. Hence, by (3.24),
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(i)

11”0' “) =0 fori=1,...,4, J=41,...,k.

Since (R - a (R - amI) is the zero matrix,

h+lI)
u“(M-azM)-...-(M-azx).u]-ylr — 0 (n — o),

with {y) =30 + o+ a0 and (v ) # 0, A, e K. Put
Uyn =X. Then (xn} is a root of [Mn] By the propert1es of the matrix norm,

Ix | = Uy | 2-—F
where || U] # 0. Thus,

X
M-o D)...4-al) 17':'[ —0 (n—> =),

as asserted. o

We apply Theorem 3.13 to linear recurrence operators in order to obtain
Theorem 3.3.

Proof of Theorem 3.3: We prove the following statement, from which we can
easily prove the theorem by induction.

Let R € &(K), K=R or C. Let xR(X) = P(X)-Q(X), with P,Q € K[X] monic
polynomials and all zeros in C of P have larger absolute values than all zeros

of Q. Then R = Sl-S2 = Rz'R1’ where Sl,SZ,Rl,R2 € R(K) and le = xSl =P,

We shall only prove that R has a divisor S with X, = Q. The other result
goes similarly. Put m = deg Q. Let ﬂ ye ,ﬂ be the zeros of Q and
B a1’ ,ﬂ those of P. Let [MR] be the matrix recurrence associated with R.
F1na11y, 1et M = 1im M Cons1der the constant recurrence operator
xR(T) € R(K) which is formed by replacing all instances of X in the expression
for xR(X) by the shift operator T. In the same way we define the operators
P(T) and Q(T). Note that P(T),Q(T) € R(K) and X (T) = P(T)-Q(T) = Q(T)-P(T).
tet (u')),...,(u™) be a basis of Z(Q(T)) and (u(""”},...,(ur"k)) be a basis
of Z(P(T)). It is easy to see that such bases exist: If K = €, the matter is
quite trivial. If K = R, we first choose a basis of complex roots. This can be
chosen in such a way that for each basis sequence (x }, also (i } is a basis
sequence. If (x } is not a sequence of real numbers, then we choose {x + X }
and (x - X } 1nstead of {x } and {x }. Clearly, (u(”},.. ,(u“)} is a bas1s
of Z(Xk(T)) Further, let
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(i)
U= (v‘”,...,v“)), where v'!) = : (i =1,...,k).
(1)
Y
From the construction of U it follows that U e K** and that U is non-singu-
lar. Moreover,
U LMR.y = N1 0
0 N2
with N € K™" and N, € K<™k and N,,N, have characteristic polynomials Q
and P, respect1ve1y By Theorem 3. 13 the matrix recurrence [U” ! MR U] has m
linearly independent solutions {x“)),.. ,{x“") such that, for
Xn = (x (”,.. (m)), = (1,...,m} and J some other subset of {1,...,k} with
m e]ements,

(3.25) 1 ng;(x %
.2 im———"_=8.....8,
n->o ng)(xn) 1 m
(3.26) lim 0,030, =0
y n D(m)(x )

Put, for i = 1,...,m,
21 = Uxﬁ” (n e N).

n

Then, {zﬁ”},...,(z:”} are linearly independent solutions of [Mﬁ]. Hence, for

(1) (m) m
yn+m. t yn+m T
S=1: : :
(1) (m)
nel yn+l T
(1) (m)
yn P yn 1
(1)
() ymkd
where zn‘ =1 (i=1,...,k),
J',(i)

n

we have S € &(K), ord(S)
I={1,...,m} and, for q

m and S|R. It remains to prove that X = Q. Let
0,1,...,m, define Jq:= {k-m,...,k-1,k}\{k-q}.

Put Y = (z:”,...,zr“""). Then Y € K" (n € N). It follows from the
definition of S that
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SO
X0 = 1ig T (-)™—d——x.
i=0 DJm.I(Yn)

Note that Dsmn(Yn) # 0 for n large enough. We calculate Xs-

m
Since U'Xn = Yn, we have
(m) (m) _ nim -
E DJfK(U)~DKJ(Xn) = DJYI(YH) for j =0,...,m
where the sum is taken over all subsets K of (1,...,k} with m elements. Since
DSMI(U) # 0, which follows from the definition of U, we have, by (3.26),
A

(m) (m)
D, (Y,) 0," (V)
lim (;) = (;) :
DJm,l(Yn) DJm.I(U)

Hence,
u;l)‘ o lj;m) X"
T my V5! § : : m ]
A O D e O S B N O) I 169
i=0 D; 'I(U) G gtm oy m
m 1 1
(1) (m)
ugt e s g 1
by the definition of (u:j)) (3=1,...,m. o
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§4. Order of convergence of the solutions.

In the last section we derived that for a solution {xn) of a matrix

X
recurrence, the quotient TYET tends to the union of generalized eigenspaces

n
corresponding to the eigenvalues of the limit matrix having some common

absolute value. In this section we shall derive a result about the order of
convergence of the solutions, which appears to follow fairly easily from the
results of §3.3.

Remark 3.4.1. If [Mn] € A(K) and M = Tim Mn exists, we call an eigenvalue
a of M simple, if it has (algebraic) multiplicity one and if M has no other
eigenvalues with the same absolute value as a. Similarly, if R € &(K), we call
a zero a of Xg simple, if it has multiplicity one and if Xq has no other zeros
with the same absolute value as a. If M (or xR) has only simple eigenvalues
(zeros), we call [Mn] (or R) simple. On the other hand, if M = 1im Mn (or xR)
exists and has not only simple eigenvalues, we call [Mn] (or R) non-simple.

Theorem 3.15. Let f:N — R* be a monotonically non-increasing function
such that 1im f(n) = 0 and 1lin figrgyll - 1.

Let [Mn] € AM(K) (K=R orC) with lim Mn = M. Suppose that M is of the form

- (59)

where all eigenvalues of R have distinct absolute values from all eigenvalues
of S and suppose that || M- M | = o(f(n)).
Then there exists a sequence (Bn}, Bn e K%, such that

(i) 1imB =1 and | I-B]|=0(f(n))

. -1_[(R O
(i1) %Aﬂ‘[; Sn]

where 1im Rn =R, 1lim Sn = S. .

(iii) | R-R | =0(f(n)) and | S-S | =0(f(n)), and if nJ-“ M- M
converges for some j € R, then both ¥ n'-| R- R | and En’|s-s |
converge.

Proof: (i) and (ii) follow from Theorem 3.2. We only have to prove (iii).
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Let Mn = Rn Qn
P S
n

n

By Lemma 3.11 there exists a sequence (B;), B; € Kk*, such that
(i) lim B; =1

‘s ' n-1_[R 0
(1) B’ M (B/)' [pn Sn]

n

where Tim R =R, Tim S =S and lim P = 0.

(i1i) [ B, -1 <lB-1]6+c|m -mf<]B-1]8+cfFn
where 0<§<1 andc, 'C, € R>o
By (iii),

I8,,,-tlls -1 I,

—n+1
6n+1 6" f(n)

Hence,
I8-1]<c, zf(k) sk,
Let N be so large that, for n > N,

1-6

l_f(_n_+_1)-1 <

f(n)

Then, for n > N,

1 N n-k z 1+46 ek n-k
ﬂ—)-k):of(k) i ﬂ—yz f(k)-6™ + 3 [_2—] 5

k=N+1
< f(0) 1+6
T(TISIS

Using the fact that §"-(f(n))" — 0 as n — o, we obtain
I8 - 1] =o0(f(n)).
Hence

(3.27) Im-8 M@ <] (1-8

n+l n

RN
+ | B, M-(B)T(BZ- 1) ||+ | By, -(M - M)-(B)H| = O(f(n))
and, by (iii),

N
ZnJ I -1 <« 3 I M- M6
n=0 k=0 ®
-1 3ot Im -mf6™ «pfm -mul,
® k=0 n=k k=0
since ¥ n’.8" converges, and
n=(; A . [ ] . . (-] .
): nd.6"* = z (n/k)3.6"% = k. ¥ (1 + n/k)d 6" << k¥ ¥ "
n=k n=k n=0 n=0
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so that, by the first inequality of (3.27), L n'-| M-8’ M (8))"|
converges. By Lemma 3.12, we can choose a sequence of matrices (Cn} in such a

way that

C -0 and C
n n+l

@©
K-
.Rn = Sn.cn B Pn’ " cn " <<-kz:n" Pk "8 "
for some number 0 < & < 1. Since | P | = 0(f(n)) we have, by the properties
of f, that | ¢ || = 0(f(n)). Put
* I 0 *
B=[ ] and B = BB’
n c I n n n

n

B mgl-[R O
n+tl n n 0 Sn

I8 - 1] =0(f(n) (for n— =),
Furthermore, it follows from (3.27) and (ii) that
| -8 M@ =0(f(n) (n— =)

Moreover, if § n'-| M- M| converges, then T n’.| M - BWﬂMn(Bn)"IH
converges as well. o

Then

and

Corollary 3.16. Let [Mn] € A(K), with lim Mn =M and Jet @« + 0 be a simple
eigenvalue of M. Further, suppose that ¥ | M- M | converges. Then there

X
exists a solution {x } of [M] such that ——%— converges to an eigenvector of
@
M that corresponds to the eigenvalue a.

Proof: From Theorem 3.15, it follows that there exists a permutation matrix
U and a sequence of matrices {Bn} such that
(a) lim Bn =1
(b) B UMU"B'1=[°'+5n 0 ]
n+l n n 0 Sn
where ¥ |6n[ < o,
Put Nn = BWﬂUMnU'lB;l. The matrix recurrence [Nn] has a solution (xn) with

T _
X = (xm,0,0,...,O), such that

Then
n-1

_ n
x =@ -xox-kgo(l + sk/a)
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X

‘qs n_ * . T _
so that llm —;;— = A-el for some A € K (with e = (1,0,...,0)). Then

“1n-1 : . -1y, _ gl
{u Bn xn) is a solution of [Mn] and (BnU) X = U (xn + £n) where

£
llm T};T =0, so
(B_U) 'x
lim _n’ o aule

-0 an 1

and U'le1 is the eigenvector of M corresponding to the eigenvalue a.

Corollary 3.17. Let R € &(K) be simple and such that 7} Nn( R - XR(T) )

converges. Then for all zeros a # 0 of Xps R has a zero (vn} such that

vﬂ
Mg — =1
a

Proof: Apply Corollary 3.16 to [M:]. Each solution {xn} of this matrix
recurrence is of the form

X, = (un+k_1,.. .,un+1,un)
. R R
with (u) € Z(R) and | M°- M' || << N (x,(T) - R).
X
Since ——%— converges to the eigenvector of 1im M: corresponding to the
a
u
eigenvalue a (see Ch.1,86), we have that X = 1im —  exists and X # 0.

al‘l
Dividing u by X yields the desired result.

55



CHAPTER FOUR

FAST CONVERGENCE

§1. Introduction.

From Corollary 3.16 it follows that for a simple matrix recurrence [Mn] the
solutions behave very much like the solutions of the constant matrix recur-
rence [1im Mn] if ¥ " Mn - lim Mn" converges. In this chapter we investigate
the case that [Mn] is non-simple. We shall derive a condition on the converg-
ence rate of the sequence (Mo’Ml""} in order that the solutions of [Mn]
‘behave like’ the solutions of [1im Mn]. First of all, however, we must define
more precisely what we mean by similar behaviour of solutions.

We can interpret Corollary 3.16 in the following way: For each solution
{xn} of a simple matrix recurrence [Mn] there is a solution {yn) of the
constant matrix recurrence [1lim Mn] such that

X -y X -y
(4.1) \ig nlynln =g n|xn|n = 0.
Condition (4.1) seems to be a good definition of similar behaviour of two
solutions (xn} and (yn). We write (xn) ~ {yn} if (xn) and {yn} satisfy (4.1).
. xn - 'yn . s . xn B ‘yn
Note that llm ———TY:T—— =0 implies 13@ ___TizT__ = 0 and conversely.

It should be clear that, if we want to generalize the results of Corol-
laries 3.16 and 3.17, we have to exclude the case that the lTimit matrix M
of the sequence (M } has eigenvalues zero. For if M has an e1genva1ue zero
with multiplicity L then [M] has { solutions (x(”},.. (x‘)) with

“) ,x(l" linearly independent and x(” — x(l’) = 0 forn> ¢, so
that def1n1t1on (4.1) does not make sense (Nlth the a1d of Theorem 3.8 one
can show that in this case [M ] has ¢ linearly independent solutions
(y(”), {y:”) such that ;E” — 0 asn—-owo (i=1,...,1)).

We now state the results of this chapter first for matrix recurrences and
after that for recurrence operators. We define the minimal polynomial of a
matrix M e €% as the monic polynomial of smallest degree > 0 in C[X] such
that P(M) = 0. Further, we denote by M the set of equivalence classes of
bounded monotonic functions f:N — R>o under the same equivalence relation as
the one defined in Chapter 1, §1, i.e. f ~ g & f(n) = g(n) for n large
enough.
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Theorem 4.1. Let [Mn] € A(C) and M = 1im Mn. Let P € C[X] be the minimal
polynomial of M and let L be the maximum of the multiplicities of the zeros of
P. Suppose that M has no eigenvalue zero and that Y nLd-;T%T-" Mn—M "
converges for some f € A.
Then there is a bijection between the solutions (xn}-of [Mn] and (yn) of [M]
such that (xn) ~ {yn}. Moreover, we have
X -
——317:Tﬂ—»= o(f(n)) (n > ).

Applying Theorem 4.1 to recurrence operators yields the following result:

Corollary 4.2. Let R € R(C), ord(R) = k, such that X exists and xR(O) $ 0,
and let L be the maximum of the multiplicities of P Suppose that

Y nLd-?T%T-Nn(xR(T) - R) converges for some f € M. Then for each basis of
(i)
v

zeros {v:”),..., {vr('k)} of X, (T) such that 1im v?‘i; exists (i =1,...,k)

n
there exists a basis of zeros (uﬁ”},...,(uﬁ”} of R such that
uli)
?i) - 1= o(f(n)) (n - o5 i =1,...,k).

n

Before proving Theorem 4.1 and Corollary 4.2 it will be useful to recall
some properties of the solutions of the constant matrix recurrence [M]. This
will be the subject of the next section. On account of the second assertion
of Theorem 3.15(iii) it will be sufficient to assume that M has only eigen-
values with the same absolute value. Since M has no eigenvalue zero, we can
normalize such that all eigenvalues have absolute value one.

§2. The constant matrix recurrence.

We assume that M e €¥'* has only eigenvalues with absolute value one. There
exists a conjugate matrix M such that

al'B(gl) 0

.0 T
aL.B(gL)

where B(g) is a g x g-matrix of the form I + J , with J as in (1.9).
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It -is clear that, if {(xﬁ“j)); 1<
[o,-B(g))], then ((z""}; 1 <1<, 1
solutions of [M], where

gi} is a basis of solutions for
J < gi} constitutes a basis of

A A

0 0
PAMSLIPN IVOREY and M.z'"9 - | a .B(g ) -x!"Y
n n n 1 1 n

0 0

We determine a basis {{xitj)}}. For {xn} a solution of [a-B(g)],

x  =a(l+ J)xn (n e N).

n+l

Put xé“j) = ej, where ej is the j-th unit vector. For me Z

B(g)" = (I +J)"=1+ [T]-J + [';].JZ bk ['"].Jg‘l.

g-1
Hence,

(i,3) _ n n
(4.2) x 7 =«a-B(g) e

(]
R
E]
—~
®
+
TN
[
—
®
[}
)
—
-+

n
R [9-1] -ej_g+1)

where e = 0 for i < 0.
(i.3)

n

that {(xitj)}; 1<J«< gi} is a basis of solutions of [ai-B(gi)]. Then,

So, (x ,eL) # 0 if and only if { € {j-g+l1,...,j}, and it becomes clear

{{z:“j)); 1<ic<t,1<]< gi} is a basis of solutions of [M]. Moreover,
for j = 1,...,91-1,

Ix{ "]
T;TTTFTTTT — 0 as n—oow
n
and
Iz,

—_— — 0 if j<J
Iz(l »d )l
n

and the latter quotient is bounded for all i,i’ if j = j’.
If {zn} is an arbitrary non-trivial solution of [M], then
_ (i,3)
(2) = L2 (2,7

with Aij €eC (1<ic<t;1<jcg gi), not all Aij being zero. Then
(4.3) 0 < |z <cfz |

with c € R>o depending only on the xij for (i,Jj) such that not Aiy =0 for
ie {1,...,gj,) and j’ > j.
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Lemma 4.3. Let M be as above, and let x € Ck, X = (xl,...,xk), and n € Z,
m
n ¢ 0. Put Lm =

-1
glgi form=20,...,0. Then, for th <j< ﬁml’

i=
n ﬁwfi
[(x) | < cpeInl ™ - ||

where <, is some constant, depending only on B.

Proof: Put q=3j - lh' Note that ﬁml -J= g, - q By (4.2),

k m+1
(4.4) (M"x)j =5 xi~(M"ei)j = ¥ xi.(a:.s(gm)".eht )
i=1

i=t +1 m q
m

noom = oo n
=q - X . - =@ - X, b .

Hence, for n large enough,

[(Wx) | < g

n gm_q
AR IRERENERL
where < depends only on M. For small n, we use the inequality

L) | < | B - 1x].

Hence,
g -q
(%), | < g Ixl-{nl”

for n # 0 and <, depending only on M. o
§3. The proof of Theorem 4.1.

We introduce the notation § : Let (xn):_N be a sequence of numbers, vectors or
(n) h

matrices, X € C (or Ck, ckm respectively, for some numbers k and m).

©
If ¥ x converges, then ¥ x:=7F x .
k k k
(n) k=n
-1

If } x, diverges, then ¥ x:=1x
(n) k=N

e
The proof of Theorem 4.1 goes in two steps.

Proposition 4.4.: Llet M € ¢“* be such that M has only eigenvalues with
absolute value one. Let L be the maximum of the multiplicities of the zeros of

the minimal polynomial of M. Further, let {Dn} be a sequence of matrices in
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Ck"‘.‘FinaHy, let (xn) be a sequence of vectors in c*. Then the inhomo-
geneous matrix recurrence

(4.5) y

has a solution (yr(lo)} such that
(0)|

= M-yn + Dn-xn

n+l

[N oo Kad

ly n' (g kT x -o )
(n)

i=1

with ¢ depending only on M.

Proof: If {yn} is a solution of (4.5), then
n nelke
y = M -()’0 + Y M -Dkxk ).
k=0
Put

@,-B(g,) 0

m-1
as in §4.2, and put Lm =3 9. form=1,2,...,4+1. Then, by Lemma 4.3, for
i=1
J=1,...,k,
k-1 l’ml'j
(M%) | < ek A o l-1x,| (kez, k#0).

o £ -j
If $k™ -] ol-Ix| converges, we choose
k=0

(0) E (M'k l'Dka)J.-

o { L (0)
If Y k™ Dk||-|xk| diverges, we choose y, ' = 0.
k=0

(0)

y
n-1 01
Put Zr(IO) = _yéo) + ¥ M'"'I-Dkxk (n € N) where yéo) = : . Then
k=0 (0)
Yok
(0 t 1?
120 < Zk“" IXIIIDII (n20)

n)
with c, depending only on M. FmaHy, put y =M.z 0) (n > 0). Then

(y“”) 1s a solution of (4.5), and by (4.4) w1th l, < jst " and

q=3J - Lm, we have that, for some constant <, on]y depending on M,

g
(0) n _(0) "0
1< 1or2®) ] < 310, I (%)
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):n"" )Zk'" Ix1-l ol < Zn”‘ zk“ ENR RN
since L is the max1mum of the numbers g, (m = l L)
Hence, L
YOl <c,- Ta™ Lk Ux 1] ol
i=1 (n)
with c, some constant depending only on M. o

Lemma 4.5. Let {dk) be a sequence of non-negative real numbers and m € R
«©

such that } dk-km converges. Then, for f:N — R>o monotonic,
k=0

as n — o,
(n)

©
Proof: If f is bounded, then 2 dk-km-f(k) converges and

Zd K -f(k) << f(n)- Zd K",
(n) (n)

If lim f(n) = o, then if 2 dk-km-f(k) converges, clearly ¥ dk-km-f(k) -0
(n)

as n — o, hence

Zd k" f(k) >0 asn— o,

© (n)

Suppose that ) d .k"-f(k) diverges. Choose € > 0. Let R = Z d K"
k=0 k=0

Tet N € N be such that N. Then, for n > N,

f(

and

<g forn

(n)

¥ d K" f(k) < f(N)- Zldk-km + f(n).nildk~km < R-f(N) + ¢-f(n).
(n) k=0 k=N

Hence,

54 k"‘f(k)<B-i%(‘-';—)+e<2£
(n)

for n large enough. Since ¢ > 0 can be chosen arbitrarily small, the assertion
follows. o

-

(n

Proof of Theorem 4.1. We may assume, without loss of generality, that M has
only eigenvalues with absolute value one. Let (xn} be a non-trivial solution

©
of [M]. Put D =M- M. Then T o'
n=0

converges. Consider the

inhomogeneous matrix recurrence
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(4.6) Y, =My +D.x (n eN).

n+l
According to §4.2 (and (4.2) in particular), lxnl -~ c.n? for some c € R,
c#0and 0 < q< L-1. By Lemma 4.5,

LK Ix -] ol = Ix[-n"-0(f(n)) for meR.
(n) "

By Proposition 4.4, the recurrence (4.6) has a solution (yﬁm} such that

YO e, 3 “2 K x|l ol = 1x 1-o(f(n))

i=1 (n)
with <, depending only on M. Define t such that for n e N

n

L X
t-f(n)-Ix | =c-En" ;z)k““lxk!-ll D,

i=1 n

Then lim t =0 and |y(m| <t .f(n)-|x |. We may assume that tn < % for

n > 0. We show that a sequence (y(”} {y(”} . can be found such that
(i) y Myl p ytoy (i21)
(11) Iy, 1« 27t ) Ix ] (62 0).

We proceed by induction.
Suppose that {y(”), . ,(y?'”) exist such that (i) and (ii) hold for
i < j-1. Consider the inhomogeneous matrix recurrence

(4.7) Y, =My +0D y(Jl) (n e N).

n+l

Since Iy:rl)l < ij-tn-f(n)-lxnl for n € N, we can rewrite (4.7) as

= (3)
(4.8) y . = M-yn + Dn X

n+l

where || D(JH| <2 o].
Applying Proposition 4. 4 we find that (4.8) has a solution (y(”} such that

FAIE

[ o Kl
b=

Tk x ] 0 < 279t f(n)-Ix | (n e M).
1 (n)

Since {yn“)) is also a solution of (4.7), it satisfies conditions (i) and
(ii) for j = i. Put

i

E (n € N).
Yo,

Clearly, the sum converges for and

w | < z Iy < 2.t -f(n)-|x |

Hence,
Iw | Iw |

lim T7:T =0 and TiﬂT = o(f(n)).

n
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Moreover, since

(141) _ .y (140)

'ym-l ‘yn + Dn.yrﬁi) (i 2 0)
and
yﬁf} = M-y:°) + Dn-xn (n € N),
(wn} satisfies
W =Mw +D-w +D-x.
n+l n n n nn
Further,
n+l = M.xn
so that, if we define Z =W +X (n € N),
z =Mz +D.z =M.z
- n+l1 n n n n n
and
zZ - X

—-r-‘-lx—]-n— b o(f(n)) .

n
In particular, for any non-trivial solution (xn} of [M] there exists a
solution (zn} of [Mn] such that {xn} ~- (zn}.
Now let {xﬁl’),...,{xik)} be a basis of solutions of [M] such that for
(i)
X
n

X
n

depending only on M and the coefficients Al,...xk but independent of i and n).
That such a basis exists, has been shown in §4.2 (cf. (4.3)). (Although it
has been shown only for M in Jordan normal form, the result generalizes easily
for general M). Let (z:l)},...,{zik’} be solutions of [Mn] such that

20 (0

L1 =o¢(f(n)) (1 <ic<k).

- (1) (k) .
{xn) = Al{xn }+4 ... 04 Xk(xn } the quotient

< C if A # 0. (C

We show that (zﬁl)),...,{zﬁk)} form a basis of solutions of [M"]. Suppose this
is not so. Then there exist Al,...,xk € €, not all zero, such that

(1) (k)
{0} = Al-(zn Y+ ...+ ).k-(zn }.

(1) (k)
Then, for {xn) = xl-{xn Y+ o000+ Ak.(xn }s

200 (1)
n n

MY
n

x(i)
n

X
n

X k
e ] <3 | — 0w

which yields a contradiction.
Now let (zn} be an arbitrary solution of [Mn]. Then

o (D) (k)
(z}=m-{(z "} +...+p-(z").
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’ (1) (k)
Put (xn) = ul-(xn Y+ ...+ uk-(xn }. Then

L1 (1)

n n n n

X
n

Z -X
l n

X
n

x(i)l

= o(f(n)).o

K
<X lwl-
j=1 xﬁ’)

Proof of Corollary 4.2. Let [M:] be the matrix recurrence associate to R.
Put M = Tim Mﬁ. Since all eigenvalues of M have geometric multiplicity one,
the minimal polynomial of M is Xg (up to a non-zero factor). Hence,

¥ nbl'?T%T'" MR- M: | converges. Let {uil)},...,(uﬁk’) be a basis of

Z(xR(T)) such that
u(i)

lim ?:; =a (where a ,...,a
u

. are the zeros of xR).

n
It is clear from §4.2 that such a basis exists. Put

(i)

. n+k-1
x = .

n

: (i =1,...,k; neN).
uf?
n

(uﬁl)),...,(uﬁk)} is a basis of solutions of [M]. By Theorem 4.1 there exist

solutions (yil)),...,(yﬁk)) of [Mﬁ] such that
(1) (i)

yn n
(4.9) —m 1 o(f(n)),
xn

where y:i) is of the form

()

(1) Vn+k—1
y' = : (i =1,...,k; nelhﬁ
v(i) B

n

with (vﬁ”) €Z(R) (i =1,...,k). Since (y:'”),...,(y:k)) is a basis of

solutions of [M:], (vﬁl)),...,{vﬁk)) is a basis of Z(R). Moreover, by (4.9) we
have that
gy

_-£—~777£__| = o(f(n)) (i =1,...k).

X
ot "
Since 1im —~*L =a  and e # 0, we find that
n->© u(1) i i
n
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e
-1 =0(f(n)) (i=1,...,k).0
gy

n

If {Mn} converges very fast, we can easily derive a factorization theorem
for {Mn}, Tike in Chapter 3.

Theorem 4.6: Let [Mn] € A(C), M = 1lim Mn. Let P € C[X] be the minimal
polynomial of M, and let L be the maximum of the multiplicities of the zeros

of P. Suppose that M has no eigenvalue zero and that § nm"z-?T%T-ﬂ M- Mn"

converges for some f € M. Then there exists a sequence of k x k-matrices {Sn}
such that
(i) I's -1]=0fn) (n— =)

s _ -1
(i1) Mo=s MS' (neN).

Proof: Without loss of generality we may suppose that M has only eigenvalues
with absolute value one and is in Jordan normal form. Then, using the notation
introduced in §4.2, we may assume that M = M, whence || M| << max lxii'j)l <

1.1
< c-|n|*", where c is independent of n (n € Z). Put D =M - M. Consider the
inhomogeneous recurrence equation

= . on
(4.10) Yn+1 =M Yn + Dn M
where Yn e ckk (n € N). The solution of (4.10) is
Nkl K
Y = M.(Y + ¥ M.D .M (n € N).
n 0 k
k=0
Since

n

-1
M5Lp MK
=0 k

n-1 n-1
<« T lol-I <« glofx*
k k=0 k=0

©
and since the latter sum converges, we have that ¥ M'k"l-llvk-Mk converges.
k=0

©
Choose ng =-3 M'M-Dk-Mk and Tet (Y:m) be a solution of (4.10). Then
k=0 :

© «©
YO =W gD M (neN). Put t.f(n) = T M0 M. Then
k=n k=n

lin t =0 and I Y:"’)-M'n I < t -f(n) (n € N). Without Toss of generality we
may assume that tn < 1/2 for n € N. We show that a sequence {Y:”},(Yﬁn),...
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can be found such that

(i) IUEE B R (i21, neM),

<3 (i) y-n -1 s
(i) fy?w" [ <2t -f(n) (i 20, neN).

We proceed by induction. Suppose that (Y:”},...,(Yi}4)} exist such that

(i) and (ii) hold for i < j-1. Consider the recurrence equation
- M RYERY
(4.11) Yn+l M Yn + Dn Yn .
Since | Y£’4’~M'" | < 2.t -f(n) for neN, we can rewrite (4.11) as

(3) 0
(4.12) v =My o+l
where | Dﬁ“" <2 D ||. As above, and by the definition of t , we find that
(4.12) has a solution (YVy with [ Y.M™ || <270t .f(n) (neM). As
{Yi”) is also a solution of (4.11) it satisfies conditions (i) and (ii) for

@ :
i=Jj. Put Nn =7 Yi” (n € N). Clearly, the sum converges for all n and
i=0

@
fww™ < ]y | <2t fm).
i=0
Hence, " wn-M'“ " = o(f(n)). Moréover, since
(i) _ (1) (i-1) :
Ynll = M-Y" + Dn-Yn' (i>21)
and

Yo . M-Y'(“” +D .M forneN,

n+l
we obtain that
W =MW +D-W +D-M=M.W +D- M,
n+l n n n n n n n
so that
o= M1 =M. (M =M.
Z =M+ Hn*l M" (M" + w") Mn Zn (n € N)

n+l
and | Z-M"-1]=0(f(n) asn—e PutS =2 -M" (neN). Then
-1 -n -ny-1 -y
Snﬂ.M.sn = Zn«d-l'M '(Zn.M ) - Znﬂ'zn) Mn

for all n, and

I's, - 11 =o(fn) (n — ©).0
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CHAPTER FIVE

SECOND-ORDER RECURRENCES (1)

§1. Introduction.

In both this and the following chapter we shall study the behaviour of the
solutions of operators in R(C) of order two which have a monic characteristic
polynomial. It will be useful to introduce the concept of an eigenvalue of an
operator.

Let R € R(C), Xg € C[X]. If xR(a) = 0, we call a an eigenvalue of R.

We distinguish three cases:
(1). The eigenvalues have distinct absolute values.
(2). The eigenvalues are equal.
(3). The eigenvalues have the same absolute value, but are not equal.
The iast case will be treated in chapter six.
Let R € &(C), xR(X) = (X-a)(X-B). The associated matrix recurrence [Mz] has

limit matrix M® = [a;ﬂ-gﬁ]’ which has eigenvalues a and B. The geometric

multiplicity of a« is one. Conversely, let [Mn] be some matrix recurrence of
order two where M = lim Mn exists and has no eigenvalues with geometric multi-
plicity two (which amounts to saying that the minimal polynomial of M has
degree two). By linear algebra, there exists a conjugate matrix recurrence

[Nn] with N = Tim Nn = [ g ; ], where a and B are the eigenvalues of M. For
a solution (xn) of [Nn] we have: '
(5.1) (x,), = (@+8 (n)-(x) + (1+8,(n)(x),
(x ), = 5,/ (n)-(x) + (B +5,(n)(x),
where (8ij(n)) = Nn - N (n e N). Hence,
(x,,), = (@+8 (nt1))-(x ) + (1 +6,(n+1))-6, (n)-(x ),
| (x,), - (@+6 (n)-(x)

+ (1 + 612(n+1))-(ﬁ + Szz(n))- - 612(n)

so that ((Xn)l) is a.root of a recurrence operator R € R(C) with character-
istic polynomial X (X) = (X-a)(X-B). Since (xn) is completely determined by
((x")l) (by (5.1)) and dim Z(R) is equal to the number of linearly independ-
ent solutions of [Nn], it follows that for each zero (yn) € Z(R) there exists
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: Y
a corresponding solution [z:] of [Nn], where

zn-(l + Slz(n)) =Y - (e + 611("))'yn'

It thus follows that it is no restriction of generality to study second-order
operators instead of second order matrix recurrences, if the limit matrix has
only eigenvalues with geometric multiplicity one. (So we exclude the case that
the 1imit matrix is a-I for @ € € and I the identity matrix).

Let R be as above. If we want to investigate the behaviour of the zeros of
R, it is sufficient to study the behaviour of the zeros of one of the zeroth-
order transforms of R. We shall normalize the operators in the following way:
Put R = T2 - pn-T -q.- Suppose that Py q 0 for n > N. (If P, = 0 for all
n € N, then it is easy to calculate the zeros of R). Put

n-2
S=qn(2/p)-I=s"-I.
k=N k n

Then
- 2 1 _ T2 sn+2 Sn+2 _ T2 4“qn
R/S = Sn+z'(T - pn-T - qn)-—§: =T -p- T-q- =T - 27T - —

n S n S PP

n+1 n nn-1

forn >N+ 1.

Remark 5.1.1. Note that the normalized operators do not always have a
*

characteristic polynomial. If R € &(C), xR(X) =x*-a* foraeC, and

R/S = T2 - 2.T + Qn is a zeroth-order transform of R, then lim |0n[ = o,

§2. Simple operators of order two.

This case has been treated in Chapter 3. We shall state the result of
Theorem 3.15 for recurrence operators.

Theorem 5.1.  Let R € R(K), K = R or €, ord(R) = 2 and x,(X) = (X-a)(X-B),
where a,p € K and |a| # |B|. Suppose that f:N — R,y is a monotonically
non-increasing function such that 1im f(n) = 0 and 1im f ";l) =1 and such
that Nn(R - xR(T)) = 0(f(n)). Then R = (T - ﬂn)(T - an) with an,ﬂn € K for
all n and @ -a-= 0(f(n)), Bn - B = 0(f(n)). Moreover, if ¥ Nn(R - xR(T)) <
< o, then R has zeros (uﬁ”},(u:”} such that

u(1) (2)

lim — = lim *—— =1
nJ)O a" n-LD ﬁn

(unless @ or B is zero, in which case one of the limits is not defined).

u
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Proof: Let U e K*2 such that UM = [o p] Put W' = UMU. By Theoren

3.15, there exists a sequence of matrices (B%), Bn € Kzz’ with
I B - 1] = 0(f(n)) such that

SRR L
Bn*IMan = 0 B:‘
where a’,8’ € K and a - ¢/ = 0(f(n)), B - B/ = O(f(n)).

u
: rp-l -1 n+l
The solutions of [deMan] are of the form {BnU [ u ]) for (un) € Z(R).

n

u
Let V € R(K) be such that ord(V) = 1 and V(u ) = (Bnu“[ g”})l for

n
{u } € Z(R). Then {V(u )} eZ(T - a ) Hence, R = r (T - a ) v for some {r Y,
r € K. The operator V is of the form V=cb (T - B ) where c e K , and
bn,Bn € K for all n, and bn -1 =0(f(n)). Moreover, since @ - an = 0(f(n))
b .

and 8 = 0(f(n)), we have that B - B = 0(f(n)) and
n+l b
a’.._n._ - =
n
n+1 n+1l
The second assertion follows immediately from Corollary 3.17. u]

§3. Non-simple operators with two equal eigenvalues: Fast convergence.

Let R € &(K), ord(R) = 2, xR(X) = (X - a)z. We suppose that ¢ # 0. If a = 0
and the coefficients of R behave neatly, there is in many cases a zeroth-order
transform of R with eigenvalues that are not both zero. The following result
follows from Corollary 4.2:

Coroliary 5.2. Let R € &(K), ord(R) = 2, and xk(X) = (X-a)z, a + 0. Suppose

that ¥ n-Nn(R - xR(T)) < o, Then R has zeros {uﬁ”) and (uﬁ”} such that
u(l) (2)

=1 and 1;@ = 1.
n aﬂ

lig

Proof: For K = C the result follows immediately from Corollary 4.2. For
K = R the result follows from the complex case by replacing (u(”} by
((u“’+ u“))/Z} for j = 1,2. , a

If the coefficients of R converge more slowly, the result of Corollary 5.2
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is no longer valid. There are even cases in which there are no zeros
u
(un} € Z(R) such that 3‘1 converges to an eigenvalue of R. The following case

n
is an example of such a result.

Proposition 5.3. Let R € &(R), R = T? - 2.T + 1-C , where n(n+1)-C =

@«
=-1/4 - dn (n € N) with lim d" =0 and ¥ dn/n = +o, Then R has no (real)
n=1
n+l

u
n

zeros (un} such that converges.

Proof: Let (un) € Z(R). Note that if the 1imit exists, then it is equal to

u
1. Put g = —%1l - 1. Then {g ) satisfies
n

g + Cn
1 T g F T
Without loss of generality we may assume that -dn < 1/4 for all n. Then it is
clear that 9, <9, as long as g > -1 and if g < -1, then 9., > 0.
Hence, the sequence (gn) decreases monotonically in the neighbourhood of 0.
So, if Tim g = 0, we have that 0 < g, < 1 for n > N. Then 0 < ng <n for

n > N and

(5.2)

(ng )? - ng -n(nt1)C (ng - 1/2)° +d  d
ng, - (ntl)g , = n+ng > 2n 2 —n

Then, by ¥ dw/n = +o, we see that ng < 0 for some n > N, which yields a

n+1

contradiction. Hence, {gn} does not converge and therefore does not

n
converge either. o

The aim of the rest of this chapter is to investigate some other cases for
which the behaviour of the coefficients is regular. We shall see that in many
u
of these cases the operator R € &(C) has a zero (un} such that ~3+1

n

converges.

First we make some preparations.

For the rest of this chapter we suppose that the recurrence operator is
normalized in the way described in §5.1, unless stated otherwise. Hence we put
R=T2-2.T+ Q(n), where Q(n) =1 - Cn, lim Cn =0. If {un} is a non-trivial

zero of R, we put g = a*’
S = ul .1, then (1) € Z(R/S) and

n

- 1. Then {gn} satisfies (5.2). Further, if
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u u 1-g
- 12 _ . n+l. n_. - _ n+ly _
(5.3) : RIS = T° - 2 T T+ T Qn) = (T ﬁm) (T - 1).

We first investigate the case that nZ-Cn converges to some non-zero complex
number.

Theorem 5.4. Let R € R(C), R = T2 - 2.T + 1-C, with lim n’.C =y for
YyeC, ye¢{reR | r<-1/4 }. Then R has zeros (ui”) and (ui”} such that

(1) (2)
(i) Tim n-( WIS 1) =a and lim n-( tnet 1) = 1-a
n>o MY - Copsm u(2) ’

n n
where @ is the root of X% - X - v with Re a > 1/2.
(ii) If Y |n-Cn - 9/n| converges, then R has zeros {vﬁ”) and (vi”} such
that

v(1) v(z)

. n . n
= = 1.
e —— - 1

Corollary 5.4. Under the conditions of the first part of Theorem 5.4,

lim —%13 =1 for every non-trivial zero {un) of R. If Cn €R (n € N), then we

n

. (1) (2) (1) (2) (1) (2) (1) (2)
can find {un },{un },(vn },(vn } such that usu LY e R
(n € N).

Proof of Corollary: Let (un} e Z(R), (un) # {0}. Then
(un) = x-(uﬁ”} + u-(uin} with A\,u € €, not both zero. By Theorem 5.4(i),

u(2)
. n — .
llg u(l) = 0. Hence, if A # 0, then
n
(2),,(1) (1)
1im un+l = 1i "'(un+l/un+l) +A X un+l =1
n->o Un n->® ﬂ'(u:“/ur(]”) £ ur(‘1)
and if A = 0, the result follows immediately from Theorem 5.4(i). If Cn e R,
(2)
u
(ﬁﬁ”} € Z(R). Since lig u" =0 for all {un} € Z(R) linearly independent

n
with (uﬁ”), we must have that {un) and (ﬁn} are linearly dependent. So, by
multiplication with a suitable constant, we can take u € R (n € N). Since for
(u:”} we can take any zero linearly independent with (uin}, we can choose

uﬁ” €R (n € N) as well. The same argument applies to (vi”},(v:”}. o
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For the proof of Theorem 5.4 we need some lemmas.

Lemma 5.5. Let (an) be a sequence of real numbers satisfying

(5.4) a., - (1 - en)-an + e;

o

«©
’ . o n
= — ._.)ﬂ)'
where e.e’ € R, e > 0, llm e o, g e diverges and e 0 asn

n=1 n

Then (an) converges to zero.

Proof: Note that

e
(5.5) a <a o EE <a.

Choose 0 < & < 1/2. Let N be so large that e < ¢ and ieél <e-e forn2xN.

e - |e’|
If |anﬂ| > ¢ for some n > N, then |anl > _T_T’Ef' > €. Hence, either |an| > €

for all n > N, or |an| < € for n > N’ > N. In the former case, we have by
(5.3) and (5.4) that Ianﬂ| < |an| for n > N. Then {[an|} converges to some
number a > €. On the other hand, by 13@ er’]/en =0,

= . - 4 .
2-e -a> | a . - a | = | e-a -e’ | > e -a/2

for n large enough. Since llm e = 0, } e diverges and (an} is monotonic
for n > N, this yields a contradiction. Thus, |an| <€ forn>N. As € is

arbitrary, we have that lima = 0. o
n>® n

Lemma 5.6. Let {kn} be a sequence of non-zero complex numbers such that

n+1

_ -1
_X:— =1+o0(n’). let ae€C, Rea > 1. Then
-a
. k nAk.k 1
\ig BN,

"8

Aok 1I

n+k-1 1L
n )-1

£-k
J U= <

’

since the evaluation of the expression in the second term gives- a sum of terms
such that each of their moduli are smaller than ¢ times the corresponding
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. n+k-1
term that appears on evaluating the expression n (1+ %) - 1, which is
{=n

equal to k/n. Hence,
e -k

° % ,a 1 1a_o.,a 1 1a. o Fak a
D e S ) K9,
k=n n (!—I k=n &_I k=n n

where Icnkl <€ (n2N, k>n). By the formula of Euler-MacLaurin,

(4
LK - gt = o((n ).
k=n

Moreover,
E €.k K| < Ecle)
K=n n - lna-ll
with c(a) some positive number depending only on a. So we have
E Xk KO 1 ol
k=n n o -
T < c.cl(a),
n

where cl(a) is some positive number depending only on a. Since & can be chosen
arbitrarily small, we obtain the desired result. m]

Lemma 5.7. If Rea - 1/2 =r for a €C, then
lim (In +a| - [n+1-a]) =2r.

Proof: Put @ =r + is + 1/2. Then

lim (In+r+is+1/2] - |n-r+is+ 1/2|)
= lim (n+r+ 1/2)2 + s - (n -r+ 1/2)2 - st
o [n+r+ s+ I/2] + [n-r+ s + 1/2]

4rn + o(n) _ 2

= lim —n3 o(n) ~

u
Proof of Theorem 5.4: Put hn = n( 3*1 -1) - a for (un} € Z(R). Then

(1+ 19 44

(5.6) o h7n+ 1 +a/n

L (n eN)

with d = (n+1).C - v/n=o(n™). So, if Ih | < In+al,

l-a
[T+ ==[-[h | + |d |

Ih | < —rFa7mr— h17m

We show that lim hn =0 for some solution (hn) of (5.6). (Note that this
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u
implies 1ig n-(—%ii - 1) =a for some zero {un} of R). Choose 0 < ¢ < r/4,

n
e<1forr=Rea-1/2>0. Choose N so large that for n > N

n-|dn| <rg/2, In+a|l - |n+1-e >r, and N > 2|a].

Take some sequence {un) € Z(R) such that
u
3e/4 < | N-( 3*‘ -1) -a| <e.

N
Then, with (h} as defined above, |hn| <e<|n+al/2 (n2N) implies

[h

So |hn| < ¢ for all n > N. Then
(-In+a]l +|n+1- a|)-|hn| +n-|d| + |hn|2

| < In+1 - a|-€+re/2

In +a] - ¢ < E-

n+l

<Ih [-(lh | - r) +re/2 < 3e-(e - r)/4 + re/2 < -€°/4,

so that
_82
bl - Il < gmer <0
as long as Ihnl > 3¢/4. By subsequently changing the value of ¢ properly, we

[h |
find that 1im h = 0. Further, if § |dn| converges, then ¥ —ﬁl— converges as

well. For by (5.6) we have

h =h-(1+ Lo, ) +d’
n+l n n n
where ¥ |d;| < . Putting
n-1 1 - 2a - hk

Fo=m (4 ———p—)
k=N

for n > N we obtain

h =T .h +T. 3% =
k=N~ k+l
1-2x-h
Since |1 + 5 | <1-6/n for some & >0 and n > N’ > N, we have
e |T |
that I — 0 as n — » and that J —— < =, so that
k=N N
L U U L
< . + .
k=N N k=N' N Yot Rt LYY . F L LU |

’ -i= ’
<c +c, ] !dkl-k - ¥n NI E) !dk{ < o,
k=N n=k k=N

where C,sC, are constants depending only on ¢,¢’ and a, and <, is a constant
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depending on (h } and (d’}. Then Y. Ign - a/n| converges, so that
u

i = (L+a/m)(l+e) (n > N)
n

ith ¥ |e | < o, which implies Ti T ec”. Now choose (v = (u/N)

with ¥ £ ®, which implies 1im 3 = X e C . Now choo N = {u/2}.
MEN)
(1) . n_
Then {vn } € Z(R) and llﬂ @ = 1.
For the second part of the proof, put S = —lTT-I. Then, as in (5.3),
' u

n

gn+1 1 gn+1
T—————)(T - 1) for some {gn}. Let (wn) e L(T -

R/S = (T - W W)» (Wn} + {0}.

Since g, ~ a/n and Re a > 1/2 we obtain

n-1
W= Xn-kn (1 - 2a/k) (n > N),

=N
+1 -1 .
where —%:— =1+o0(n) and if } |dk| converges, then ¥, lgk - a/k| converges,
n-1
as we saw above, so that llm Xn € C*. Since n®. m (1 - 2e/k) = c(a) -T(2a)
k=N

for some c(a) € G* depending only on a and N (see e.g. [W],page 237), we have

’

, - +1 - . , *
that wo= X, where —%;— =1+e¢(n") and 1;@ A eC if Y |dk| < w,

@ «©
Hence, ¥ W converges absolutely. Put Vo= Y W (n > N). Then
n=N k=n

{vn) € Z(R) and

v u u ©
: n+1 14 n+l 13 _n+l -1
MHpn = - D= lgn g - - g (1)

n n n k=n

provided that both limits exist. Using Lemma 5.6 and the fact that

u
lim n-(—— - 1)

im T =q we find
n n v
. n+1l _ _ . -1 - - _
1;@ n-( v -1) =« llg (1 +a/n +0(n’)) (-1 + 2a¢ + 0(l))= 1-a.
v
Note that lim Gﬂ = 0. Further, if § Idnl converges,

n

- a
w =M-n®andu = go-n,
n n n

n

where 1im X\’ and 1im p exist and are unequal to zero, so that
n>® n n->® " n
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n

-] ©
NN (U Sl N CYEED YD B Sl BRI L
k=n

k=n (2)
Now put v'? = ’n where p':= lim 4’ € ¢”. Then 1im i =1 o
n un * oo Tn : n->® nx-a :

We now investigate the case that 11& n2~Cn is real and < -1/4. We have

n+1

u
n
R if lim nZ-Cn < -1/4. For R € ®(C) the situation is different, however. The

already seen that, for R € &(R), lim
n—>%9

does not exist for any zero (un} of

following result is true:

Theorem 5.8. Let R e R(C), R = TP -2.T+1 - Cn, where 1im nz-Cn = v and
YyeR, v < -1/4. Put dn = (n + l)Cn - y/n.
The following assertions hold:
«©
(i) Suppose there exists a sequence {d'} such that |dn[ <d’, ¥d
n=N
© 2
verges and [ )X d;} < nd;/4. If ¢ - a - ¥ = 0, R has a zero (un) such that
k=n

u
lim n- ( 3” - 1) = a.
© [+e] n

(ii) If moreover Y [ ) d;]-% converges, then R has zeros {ui”} and (uﬁ”)
n=1%=n

such that
uﬁl) uiZ)
lim e =1 and lin N =1

if ¥y < -1/4, where a, a' are the roots of X2 - X - Y, and
ey (2)
n

. . n
llg 1/2 1 and 1lm nl/2

u
=1

b=}

log n
ify=-1/4.

We prove the following lemma:

Lemma 5.9. let {dn} be a sequence of non-negative real numbers such that

© © 2
Y dn converges and { ) dk} < ndn/4 for n > N. Then the following assertions
n=1 k=n

are valid:

(i)  The recurrence
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Xn-dn
(5.7) - X = —
R x_/n
has a solution {xim} such that 1i@ xﬁm =0 and {xﬁm) is a monotonically
decreasing sequence for n > N.

(i1) There exists a sequence {d;}, where dn < d; for all n, such that

(]
lig d; =0and (2.} dk } is a solution of
: k=n d’
(5.8) X . = %
AT X /n

@
Proof: (i). Put Dn =Y dk (n>N). If n >N and X 2 ZDn, then
k=n
20 - d
X, 2 —1 % 52D .
" 1+2D /n "

Hence, if x;m > ZDN, then xﬁw > ZDn for n > N, where (xﬁm} is defined by
(5.7). On the other hand,
-d - (x!)/n

(0) (0) n
- x = <0,
mbooon 1+ xio)/n
so that {xi”) converges to some limit x > 0. If x > 0, then
X - X << xz/n, so that {xn) cannot converge. So x = 0.

(ii). Note that d;:= ZDn - ZDnﬂ(l + ZDn/n) > dn for all n.

Proof of Theorem 5.8: Let (0} # (un} € Z(R) and put

u
_ n+l _ s
hn =n-( U 1) - 1/2 - iB

where B eR, v = -1/4 - ﬁz. Then {hn} satisfies (5.6) with a = 1/2 + iB. Let

(kn) be a sequence of positive numbers satisfying

k -d’

(5.9) k - S —
m 1+k/n

and kn tends monotonically to zero. The existence of such a sequence is

guaranteed by Lemma 5.9. Let N’ > N be such that kn < N’ and d; <1 for

n > N'. Define U = (z € €| |z] < k) forn>N. Then U is a compact set

o
and Un = {0}. We show that for each m > N’ a sequence {h:”) exists such
n=N"

that h:” € Un for N < n < m and such that {hﬁm)) satisfies (5.6). Indeed,
by (5.6),
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b2/,
" le(/2-iB-h )/n

Take h™ € U . Then lh(m| <k <k, <N and, for N < n<m, if
m m m m N

%hi”l < N’, then

(m) i (») '
{5.10) ™| - [ 10+ 172+ 38)/n| + |d | < Pl 4
n 11+ (/2 - i)/l - (W™ /m " 1 a{™

so that from hﬁﬁ €U it follows that h:” € U . Note that this implies
|h:”| < N’ for N < n < m. Now consider the sequences H = (hi””)}jzo. AT
elements of Hw lie in Uw’ which is a compact set, so that Hw has at least
g Say- Let (]n)nzw be a solution of (5.9). By continuity,
1n is a limit point of Un for n > N’, so that, in particular, 1n € Un

(n > N’). Hence, 1lim 1 = 0. Let {u(m) be such that, for n > N,
n>®© n n

one limit point, 1

MO)
_ . n+1 _ _ _ 3
1n =n (u(o) 1) - 1/2 - iB.
n
Then (u®) € Z(R) and
(0)
u
. n+l _ .
lgg n-(u(o) - 1) =1/2 + iB.
n
If B # 0, we can in the same way find a zero (vﬁm} of R such that
(0)
v
. n+1 _ o
llﬁ n-(v(o) -1) =1/2 - iB.

n

@
Put D’ = ) d’. Note that if we substitute f := 2d’ - 4D’D’ /n for d’ in
n K= k n n n n+l n

n

©
(5.9), we have f >d’, 1im f =0 and k := 2- § d’ is a solution of (5.9).
n - n N> n n k=k

n

Further, suppose that } D;/n converges. Let (vﬁ”} € Z(R) such that
n

V(1)
[n-( ';I; - 1) - 1/2 - i] < 2D’ (n > N).
v

n

By the first part of the proof and the above remark, such a (vi”) exists. We
have

v
n+1

V“)
n

=(1+ (1/2 + iB)/n)-(1 + 5n/n)

12 *
where |§ | << D’. Hence, vﬁ”.n veiB A €C as n—o.

Choose uﬁ” = vﬁ”/kl. Similarly, if B + 0, we can find (ui”} such that
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S e

i n-uznﬁ'u(n - 1.
->® n

Now suppose B = 0. Put S = (u'")'.1. Then, by (5.3),

n

=
——

(1
l1-g
n+l _ _n+l
T - Tiﬁ:;:)'(T - 1), where 9, =~ 1.

R/S = (

=

n

Let (0) # {wn) € Z(R/(S(T-1))). Then w:‘” = (1 - 1/n)(1 + 6n/n), where

|6n| <«<D'.So w = )‘n-n'l, where X — X € ¢ as n — ©. Without loss of
: n-1
generality we may assume that X = 1. Put ur(]z) = uﬁ”- Y W . Then (u'(lz)) € Z(R)
k=1

since {wn} € Z(R/(S(T-1))). Moreover, nw o — 1 (n — »). We prove that

n-1

k-lwk
1im = 1.
n>®© log n

Choose € > 0. Let N be so large that In-wrl -1l <e forn> N,- Then

a1 n-1 C-No 1 n-1 -N0
(log n) .;ki_jl(wk - 1/k) | < Tor + Tog n-ng e/k < Tog + 26 < 3¢
e °
for n large enough. Hence, ”—2"— —lasn— o
n log n

Remark 5.3.1. That the condition 4Dr21 < ndn is not far from best possible
can be seen from the following example:

n?
Take dn = (n-]ogzn)_l. Then —ﬁ: — 1 as n — . Consider the recurrence

x -d
(*) X ® TR
n+l + Xn n
If 1im x'® = 0 for some solution (x(o)}, then x'% > 0 for n > N.
n>® n n © n
Hence, x < x - d, so that x5 Yy d for n > N. Then,
n+1 n n n k=n k
x9 g
X(O) < n n
n+l T T+ Dn7n :
Then 0 < x¥.r < x@ - "y'q h .
en x T o<x™ - § o T,» where I =q (1 + Dk/k) for n > N.
° k=N k=N
Hence, ¥ dn-I‘n must converge. On the other hand,

n=N
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© @ l n-1 1
YydT >y ——— (1 + ———)
"™ as n-login kew kelog k

i 1 n-l 1 2
L ———— nexpl——r - I/K)
n=k n-logn k=n k-log k

v

- 1 Tog logn-2 s
5> Z —__Z_.e oglogn-2/n s> Z _
n=N n-logn n=H

Remark 5.3.2. The number 4 in the inequality 4Dﬁ < nd, cannot be improved,

as we shall show below: Let {d,} be some sequence of non-negative real numbers
such that } d, converges and such that ¢-nd, < D,D,,; for some number ¢ > 0,

©
where D, = ¥ d, (n € N). Consider the recurrence (*) of Remark 5.3.1. If (*)
k=n

has some real solution (xﬁ“} such that 1im xﬁm = 0, then xﬁm >0 for n > N.
By
0 0) (0
) " - xd = xl/n g,
we infer that xﬁm - xﬁﬂ > d,, so that xﬁm > D, for n > N. Using that

DD ,y/n > €-d, we obtain by (**) that xﬁm - xﬁ% > (1 + ¢)-d,, so that

xﬁm > (1 + ¢)-D, for n > N. Continuing in the same way, by repeatedly
applying (**) and the inequality DD,,/n > €-d,, we obtain a sequence (eh):=C
of positive real numbers g, (h > 0) defined by ¢, = ¢ and ¢, = £-(1 + ¢,,)°
for h > 1, and such that xﬁm > (1 + ¢,)-D, for n > N and all h. Since obvi-
ously €, > g;,we have that ¢, > ¢,; for all h > 0. Now suppose that £ > 1/4.
Put E = lim en. If E €R, it satisfies the equation E = ¢-(1 + E)?. However,
since £ > 1/4, the equation X = £-(1 + X)? has no real solutions. Hence E = o
and, consequently, the recurrence (*) cannot have a real solution that
converges.
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§4. Non-éimple operators with two equal eigenvalues: Slow convergence
(hyperbolic case).

In [Pe2] Perron showed the following fact:
IfFR=T- (2 - nl(n))-T + (1 - no(n)), where no(n),nl(n) € R for all n and

u
. - : _ . n+l _
11m no(n) = 11m nl(n) = 0, then llm TR 1 for all {un} € L(R),

shown that the condition nl(n) > 0 can be omitted. Let (vn} € Z(R),

\
(v} #{(0). Put g = 3” - 1. Then
n

n
{u} # (0) if n (n) > 0 and 7 (n) - hl(n) > 0 for n > N. In fact, it can be

(1-n./(n))-g +nyn)-mn(n)
9 = T+g :

Let N' > N be so large that |n1(n)| < 1/2 for n > N. Let 9, 2 0. Then, since

no(n) - nl(n) > 0, we have g 2 0 for n > N’. Let ¢(n) be the largest root of
X - In,(n)|-X + n (n)-n (n). Then ¢(n) > 0. Put €(n) = max(g , max ¢(n))
m2n-1

(n € N). Clearly, €(n) 2 0 for n > N’. We show that {E(n)}n>N, is a monotonic-

ally non-increasing sequence. For if g, 2 ¢(n), then 9., <9, SO that
E(n+l) < &(n). If g < ¢(n), then 9., < ¢(n) as well, so that again
€(n+l) < &(n). Since ¢(n) tends to zero as n — », we have that either

llm g, 0 or g, > max ¢(m) for n large enough. In the latter case, (gn}

m2n-1
decreases monotonically for n > No’ so that (gn} converges to some number

v
g > 0. Then 11@ 3+1 = 1+g, so that g # 0 is impossible. Hence, by Proposition
n
s un+l
3.1, 1$Q Tl 1 for all zeros {un} # {0} of R. a

n

Remark: It can moreover be shown that there is a unique zero {v,} (up to a

multiplicative constant) such that "l .1 <0 for all n. By symmetry, {v,}
n
u
can be taken real-valued. Furthermore, we have 11@ Vﬂ =0 for all {u,} €
n

Z(R) Tlinearly independent with {v.}. (See [K2]).

In the sequel, we shall generalize Perron’s result in several directions.
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‘or instance, if n, and n, converge fast to zero, or if their behaviour is in
some other way regular (whatever we may mean by this rather vague term does
sot concern us here yet), it will appear this similar statements about the
uehaviour of the zeros can be made as in the case above. As in the preceding
~zctions, we consider the normalized operator R = T2-2.T+1 - Cn, R € &(C).
{Cn} does not converge so fast that the conditions of Corollary 5.2 are
satisfied, it will be necessary to impose additional conditions on the behav-

tour of (C}. For example, Theorem 5.10 holds if larg C,| < w - ¢ for some
positive real number ¢ and n large enough, and 11@ (VéET- VE?E:) = 0, where
we define vz for z € € such that -x/2 < arg vZ < n/2 if z #+ 0 and z is not a
negative real number. Note that this condition implies that 11@ nZICn| = o,
Indeed we have for any € > 0 that |¢€:T— ¢€:3:| < ¢ for n > N(¢), which im-
plies |V€ET| < 2en for n large enough, so that n2~|Cn| > (4e8)™! for n large
enough. Since & can be chosen arbitrarily small, we have lim nZICnl = o, In

particular, ¥ |VC:1 diverges (see Remark 5.4.1). With a view to Tater appli-
cations, we shall impose even weaker conditions on (C,}:

Theorem 5.10. Let R € R(C), R = TP -2.T+1 - Cn, where llg Cn = -d for
some non-negative real number d, and moreover Y Re vC, = +o and

Cos1/Cy - 1 = o(Re VC,). Then R has zeros (uﬁ”) and (uﬁ”} such that
(1) u(Z)

u
: /-1 n+1 _ : /-1 n+l _
13@ Cn ( ) -1y =1 and llg Cn ( &2 - 1) = -1.
n n
and, in addition,
(2
lim ugl) = 0.

u
Corollary 5.10. Let R be as in Theorem 5.10. Then 1lm ! exists for

n

211 non-trivial zeros {un} of R. HMoreover, if Cn €R (n eR), then we can

find Tinearly independent zeros {ui“},{ui”} € Z(R) such that uﬁ”,ui” €R
for n € N.

svoof of Corollary: Let (un} € Z{R), {un} # {0). Apply Theorem 5.10. Since
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(uﬁ”} and {uim} are linearly independent, there exist A,s € €, not both

(2)
u
- ).yt Lyl : . n_
zero, such that {un) =) {un } + 1 {un }. Further, since llm ) 0,
n
we have
u +1 U(fi
1im —— = lim ——~ =1-1im vC, if XA =0,
n->® un n->® u(z) n->o
n
and
u ult ot u-u‘z’/u(l)

. n+l _ . n+1
1$¥ u = 1o Y

n

n+1’ n+1 . .
=1+ 1imvC, if X # 0.
PYRIEyAR) w8

For the proof of the second assertion, compare Corollary 5.4. o

Lemma 5.11: Let (1n},(8n},(sn} be sequences of complex numbers such that

lime =1limy =0, |1 - 6n| < 1 for all n large enough, 1im |1 - 8n| =1 and
© £
Y (1-|1-68])=+w. Moreover, suppose that lim — =0 and
n=1 | I“ U1 1- 8 |
v
that —— " js bounded. Then the recurrence
1-1-56|
n
f.(1-6)+c¢
(5.11) f == : .

n+l

L+ - f

has a solution (f(m} such that 1im ' = 0. Moreover, if
¥ n n->®© n

-
P11 - |
one. For the remaining solution {fﬁm)} we have lig fﬁm) = o,

= 0, then 1ig fo = 0 for all solutions {f,} of (5.11) but

[ |
Proof: Let M be such that ——"—— < M for all n. Let N be so large
1-11-6]|
n

that for n > N both 4-|£n| <1-]1- Gn( and |1 - 8n] < 1oIf (f }
satisfies (5.11) and lfﬁl <f= 2% for some m > N, then

IF - (1 - |1 -8 1)) + |e |
If .l < — <
| -y I-f
110 (1= 1-61/2) +2-]e | < £(1- (1-|1-61)/2) +2-]c| <f,

since Iyml-f < 1/2 for all m » N.
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We now choose (fgm) such that it satisfies (5.11) and such that If;mf < f.
Then |f£“| < f for all n > N and

|f(°)

n+l

< FO1 (- (1 -11 - 81)/2) + 2 e |.

Application of Lemma 5.5 now yields that lig fim = 0.

T
Now suppose that in addition 1im ——"—— = 0. Put h, = f, - f.¥ for
n-o

1-1-5|
n
all n € N, Then (h,} satisfies the recurrent relation

(0)
h(1-6 -Ff%9.9)
(5.12) h, = — 1 0 ntl n (n eN).
+9f + v h
nn nn

1-6 - fl0,y

Put . ?;; " =1-6,+7, (neN). Then

1+ 1nfn

_ .~ (0] (0)
T = (l 8n) Yn fn * fn+1 7n
’ 1+ £(0)
T nn

so that 1lim ——2— = 0. Consequently, (5.12) can be written as

Tl - |1 -6 |

*
(1 -6)-h ol
(5.13) Poer = — (neN),
1+9 -h
n n
* © *

where |1 - §,| <1 for almost every n € N and moreover, ¥ (1 - |1 - §.]) = +=,

* n=1

. 1n
lim —————%— = 0. Solving (5.13) explicitly yields
LGl N Y
" ® * ® 4 1-1 * 1.
(5.14) b= m-80-[h- I7na- 60 )
k= 1=n k=1

1
© o 1-1 -
since the sum } v,- 1 (1 - &) converges absolutely, by

1=1 k=1
© L 1-1 .
LIl mll - 8] <<
=1 k=1

© x -1 *
L 01-8]) n(-8) =1

1= k=1

Thus, if we take hy € €, h; # 0 or h; = », we find that h » 0 as n — =. On

the other hand, if we take h; = 0, then

1

*
-1 S * -1 T
hy = -XY 7 (1l - &), sothat |h'| < M@X ———————, while the latter
1=n k=1 11 -8,
expression tends to zero as n — w. o
Remark 5.4.1. Since |§,] > 1 - |1 - §,| in Lemma 5.11 the lemma is valid in
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particular if 1im £/, = 0, lim &, = 0, larg 6, < n/2 - € for some ¢ > 0 and

v
n large enough, where ¥ §, diverges and l—xl— is bounded.
n

Lemma 5.12. Let R € ®(C), ord R = 2, such that R has non-trivial zeros
(ui“),{uﬁ”},(vn} which are pairwise linearly independent and
(i)

u v
lman-[u?:;-l]=a (i =1,2) and 1man~[ 3:‘-1]=ﬂ
n

for some sequence of non-zero complex numbers {a,} and complex numbers a and B
(e # B). Then
v

. n — s
1&& o7 0 (i=1,2).
u
n
v
Proof: Put ¢, = (T). Since {u?’} and {v,)} are linearly independent zeros
u
n

of R, we may put {ug)} = X.{uy)} + p-{v ), where X,p # 0. Without loss of
generality we can assume that X = 1. Then

MERENEN Y

v -V u
a = lim an-[ . (1?+1 1 + (1?+1 0 =
" u (L) u ()
a v -V utt o)
. n n+l n n+l n
llm T+ 4t [ By v + (1) ]’
n Un
v ‘1
Subtracting B = lim an-[ 3 -1 ] yields
n
a v -V utt) ot
. n n+l n n+l n _ _
lm 1+Mn{ v (1) ]—a B +0.
n Un
Moreover, by
ligh a,- _V"+1'V"+"ﬁi'u§” —a- B
no N Vn u(l) -

n

we obtain, using that the numbers a, are non-zero,

. 1 i
lim T " 1, whence (by p #0) lim¢, = 0. o

Proof of Theorem 5.10: By the conditions on the behaviour of {Cn}, we have
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: c+ u+
that Tim = = 1. Let (u)} € Z(R), {u) # (0} and g = — L. 1. put
n

g -vU
f = —— —"  (n€eN).
g + VC;

‘hen {f ) satisfies
" fn-(l - 6n) +e

(5.18) fa = T+9 T
1- VT o
where 1 -6 = — " ¢ =" " and y =¢-(1 -6). Since
"1+ T " v+ VT noon "

1-|1-6,] ~c-RevC, (for some c € R,, depending only on d) we have, by
the conditions on (Cn} that 7n,5n and € satisfy the conditions of Lemma 5.11,
7

n

including the condition that 1im ——————— = 0. Hence, we have that
T - -6 |

(5.15) has a solution {fﬁm)} such that 1im fﬁm) = o, whereas for the other
. . _ (1) (2)
solutions (f,) of (5.15) 13& f, = 0. Let {u ) (un } be such that

£ e e
LA R T , -1 = — "
“-) n f(O) (2) n 1 f(“’)

where {f(m) 1s some solut1on of (5 15) for wh1ch 11m f(m

Then (uﬁ”) € Z(R) (i = 1,2) and

1 u't) 1 u'?)
1i ---[ n+l 1] -1, lim --.[ Tnel 1] - -1
v Lyl 0y Lyl?)
n n n n
1 u.,
Moreover, since lim — [ nto. 1] =1 for all zeros (u,} of R that are
voo U4,
n
u(2)
Tinearly independent with (u“)}, Lemma 5.12 ensures that lim —— = 0. (Note
n n->o u(l)
n
that for all non-trivial zeros (u,} of R there is some solution {f.,} of (5.15)
u., 1+f
such that = -1 =vC .—" ) u)
u n
n 1- fn
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§5. Non-simple operators with two equal eigenvalues: Slow convergence
(elliptic case).

let R=T¢-2.T+ (1 - Cn). If the numbers C, 1ie on the negative real
axis, or sufficiently close to it, the behaviour of the zeros of the
recurrence is rather different from the behaviour in the cases treated above.

For one thing, there is generally not a subdominant zero, i.e. a zero (v,)
v
such that 11@ ﬁﬁ = 0 for all zeros {u,} linearly independent with {v,}. We
R .
shall show that (provided that the {C,} behave not too irregularly) the

behaviour of the zeros is rather similar to the behaviour we encounter in the

case that C, = C < 0 (n € N), where there are two linearly independent zeros

u(1) u(2) u(2)
(1) (2) . n+l . n+1 . . n
{u'*’} and {u'“’} such that 1lim and 1im exist and lim |—| = 1.
n n n->® u“) n->® u(z) n->® u(1)
n n n

We define for z € €, z # 0, the principal value of the argument Arg z such
that -m < Arg z < 7.

Theorem 5.13. Let R and (Cn} be as above. Suppose that llg Cn = -d for
some d e R, d > 0, and V-C;l- V-C;il converges to 0 monotonically as n — .

Moreover, suppose that the series }. | V—C;}l - Z-V-C;1 + V-C;il l,
Z ”Cn+1;cn - ”cn;cn-l l’ E ' ”Cn+1 - ‘/t: ]’ Z I Im "cn I and

Y | ImvC [ ,/C. | converge. Then R has zeros {uﬁ”} and {uﬁ”} such that

. (1) ! (2)
: n+l s . n+l - i
lm —__[u(—l)- 1] =1 and .I!'_l)m '—j—‘—[ u(z) l] 1
u(z) n n u(z) n n
and 1im u?l’ = 1, whereas 1in ;%TT does not exist. Further, if d = 0, then
n n
for all zeros {u,} of R which are not of the form {u,} = A-(uﬁl)} + u.(uﬁz)}
u
with || = |ul, 1im == = 1. On the other hand, if {u,} = X-(u{'’} + p-(ui?))
n
with |\| = "*1 does not exist (for all d).

|6l then 1im :

We use the following lemmas:
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Lemma 5.14. The recurrence relation
(n‘kn + &,
(5.16) kn+1 = Tk—n—*‘l— (n € [N)
where {7,},{€,},{¢,)} are complex-valued sequences such that both

© ©
L (leal + [7al) and ¥
n=1 n=1

[¢al - 1' converge, has solutions {kr(“”) and (kf\"’))

such that ]‘m k,‘,o) =0 and ].J)L", k,(,‘n) = o. Moreover, 13«'"» |k,| exists in P'(C)
for all solutions (k,) of (5.16).

[
Proof: First we assume that J |¢, - 1| converges. Consider the matrix
n=1

¢, -1 €
recurrence [I + D,] where D, = [ "7 ln ] A sequence {k,} is a solution
n

Xn1
of (5.16) if and only if k, is of the form k, = XL (n € N) for some
X n2

non-trivial solution {x,} (with x, = [ ]) of [I + D,]. Without loss of

nl
Xn2 -
generality we may assume that | D, || < 1 for all n. Since Y| D, | converges,
it follows that the sequence {(I + D,)-(I + D,y)-...-(I + BI;)‘;
to some non-singular limit matrix F e €%%. Obviously (X,)} =

{((I +D,)-(I +Dyq)-..-(I+ Dl)-F'l} is a complete solution of [I + D,] and
Tim X, = I. Put X, = (x!*) x{2)y (n e N). Then x!!) — e, x!?) e, (n — =)

where e, is the i-th unit vector in €2 (i = 1,2). It now suffices to define

x(1) x(f)

n n

and k,(,m) =7 (n € N). Moreover, it is clear that lyg X,
X

2
¢? for all solutions {x,} of [I +D,].

1 converges

——

0
K =

x

(1
. nez
exists in

Now for the general case. We may assume that I|§‘n| - l| < 1 for all n. Put

¢/1¢al = e, (NeN). Then |e,| =1 and (h,) := {k,(e,--..-e)") satisfies

the recurrence relation

*
Ifnl'hn + &y
(5.17) Ry = —5——— (n eN)
Yo-hy +1
* *
where ¢, = ::n(en-...-el)'1 and 7, = v,(€nq--..-€;) (n € N). Application of

@©
the Temma for the case that J |¢, - 1| <o to (5.17) yields the result.

n=1

(Remark: Note that the proof even yields that },J)a'ﬂ kn(en_l-...-el)'l exists
for all solutions (k,} of (5.16) and, conversely, that for every a € C u (=)
there exists a solution (k,} of (5.16) such that }‘w Ko(€n-y--.--€)7" =a.)
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Lemma 5.15. Consider the recurrence relation

kn te.r
(5.18) k =
ml Kk .r +e
n n n
r ©
where r ,e €C (neN), lim ——— =0, ¥} ||e | - 1| converges and also
nn n->® n
e -1 n=1
n+1l
© r r ) © r ©
n n+ n
Z - ’ E - 'IImrnli zlen'enﬂ
n=1] 1 - e l1-e n=1| e - n=1
n+1 n+2 n+l

converge. Then (5.15) has solutions (k:m} and (kim)} with

Tim k'@ =0, 1im k'™ = .
n>®© n n>®© n

Moreover, for all solutions {k,) of (5.15) the limit 1im |knl exists in
Pl(C).

Proof: We define complex-valued sequences (hn),(pn},(sn},(cn},(sn},(gn},
A
{a,},{a,} by

A
-1
hy = Ky(€noy eoov€)y Py = Tolen-o-v-ey), py = roley-...-e) 7", €, = e/lenl,
l"n A l"n 2 A 2
Sp = ——» Sp = ———» 3 = F(sp-€ne1)> Ay = F(Sp-€n4y) (n € N)
e -1 e -1
n+l n+1l

where F(z) = (-1 + v T + 4z)/2z (and F(0) = 1, in accordance with our conven-
tion in the choice of the branch of the square root). {h,} satisfies the
recurrent relation

hn+pn

(5.19) h+1 = — (n e N).
" h -p +1

©
Note that the conditions of the theorem imply that § |e, - €.,
® @ A A ne A
LISy - spal» and ¥ |s, - sq,| converge and that lim s, = lim s, = 0.

n=1 n=1 > > "
N N N
Since Y p, = Ysp-(e,-1)-epq-v..cep = Y (S, - Spey) €yr----€ - S
n=1 n=1 © n=1
+ Syy-€y-...-ep, it follows that § p, converges and that for N e N
[+ «© n=l ©
an = Z (Sn - Sn+l)'en'...’e1 - SN‘eN_l'...'el =1 Eon - SN'eN_l'...'Sl
n=!‘§J n=N n=N ®
A
with Y |o,| a converging series. A similar formula holds for ¥ p,, with

n=1 A n=1
Sy»e, replaced by sn,e;I, respectively (n € N). Further, since F'(z) is
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bounded in the neighbourhood of z = 0 and

2

sn+l n+2

\ [ F/(¢)dg

£
Sn n+l

2 2
Ian - an+1| = I F(Sn"EnH) - F(sn+l'£n+2) | = <<

2 2
<« 'Sn+1£n+2 - Sn£n+1|’
©

so that ¥ |a, - a,,;| converges. In a similar manner we can show that
© An=1 A

¥ |la, - a,;| converges. If we define sequences (y,},{y,} by

n=1

A A A -1
Yo = a,Sp(eq-...-e;) and y, = a s (e,-...-eq) (n e N),
we have that

A
Bo i= Yoer = Yo = Pot Yn¥nerPn = (Bng - @) Spap€nugc.-.cep + (a8, - 1)p,
- a0, + a,3,41S,Sne1 n(Cneyc - -€1)
Since
3y8n41SnSnet n(Cnsrv e+« €1) - @Sy Toner(en: ... e)) = aj(e,-...-e)-

2
[ (an+l - an)snsnﬂeml + an(sn+1 - sn)snenﬂ + anSn'(eml - £n+1)]
and

© © ©
]\—Ug a = 1, E |an - an~4-1| < o, Z lan'onl < o, Z Isn - S‘n+ll < o,
=1 =1

n n=1 n
©

©
Ile - el = I |lel - 1] <o,
n=1 n=1
we have, by
(5.20) a, - 1+ aﬁ-sﬁ-cn+1 =0 (n eN)

[
that llm B, =0 and J |B,| converges. A corresponding result holds for {3n}

n=1
A

A A A A
o= (.yn+1 - Yn - P t ynyn+1pn)' Put
A A A A A A A
a, = 1 - Yne1Pn + YnPn = YoYnels @y = 1 - Yoe1Pn + YoPn = Yn¥nal (n € IN)
©

Then, by ¥ |B,| < », we have for all n

n=t A A A A
(1 + pnyn)(l + pnyn) - (pn + .Yn)(pn + .Yn)
(5.21) a, = x + Yn»
I+ poyn
A A A A
A (14 pnYn) (1 + pa¥n) - (Pn + ¥a)(Pn + ¥n) A
al'l = A + ‘Yn
1+ poy,
©

A ©
where {7,},{7,) are sequences such that ¥ |y,| < » and } ]$n| < o, With the
n=1 n=1

aid of (5.20) we derive

A

P¥n = Tolen-...-e))eass (e, ... e)) = raas, = ro(l - a,
and similarly

1/2 1/2
) .

(En+l)
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A A
. PrYn = ra(l - an)l/Z'(cnﬂ)I/z'
Using (5.20) and the estimates

r
n n

en+1 -1 € . - 1

_ A
lrn(sn - Sn)l < lrnl'

+ 'rnl'

n+l n+1

) |
<< Isyle ] Inry |+ [yl leal - 1),

_ A 2 — A _ A
Ian - anl = I F(Sn'Enﬂ) - F(Sn'£n+l)| « lSn - sn"
we obtain that )
ol A 7 ot A = —\1/2
Z Pr¥Yn = Pn¥n = E |rn(1 - an)/ - rn(l - an) I <«
n=1 n=1

© © A A L
<« Z |Sn|'| Im L4 l + Z lrn|'lansn - ansnl
n=1 n=1

© © A _
<« lenll Im L | + Xlrn"lsn - SnI

n=1 n=1
[+ [ ]

<« Tlsal-l vy [+ Ilegl - 1] <o,
n=1 n=1

so that, by (5.21),

A

@© an @© l+pn-yn ~

~ | -1 = ——— | - L+ Tl <o,

n=1| ! a, n=1|" 1 + p,y,

©
{¥,) being some sequence such that ¥ |y,| converges. Now define for all

n=1
hy -y
solutions {(h,} of (5.19) a corresponding sequence {g,} by g, = ! x

1+h
+ hyy
(n € N). Then the sequences {g,} are the solutions of the recurrence r

angn + Bn
(5.22) 9nep = A% — (n eN).
ﬂngn + aﬂ

The recurrence (5.22) satisfies the conditions of Lemma 5.14 (note that
A
1ig a, = llm a, = 1), so that (5.22) has solutions (gﬁm},(gﬁo)} such that

: (0) _ : (o) _
lpe =0 lipa” = e
whereas 1im |g,| exists for all solutions {g,} of (5.22)

Now define sequences {kﬁm} and (kﬁ”’) by
(o) ()

9n t Yn _ 9n t Yn -
k:,O) = ——(3—5-,(——‘ (en_1~...-el) ! and kr(,w) = W—'(en_l'...'el) !

1 +9g, 'Y, 1 +4g, 'y, ©
for n € N. Then {kﬁq)} and (kﬁm)) are solutions of (5.18) and, since 1 |e,|

n=1
converges, we have that 1lim kﬁm =0 and lim kﬁm) = o,
n->o n->o

Finally, if {k,} is an arbitrary solution of (5.18), then it has the form
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gn +yn

Ky = —x—-(epq-----€))" (neN)
1+ 9n Yn
so that indeed 1lim |k,| exists. =)
n->®o

If {k,} is a solution of (5.18) other than (k!”} and (k!*)}, then k =
lim |k,| exists and k € C\{0}. Hence,

kn ter 1 1+ enrnk;1
(5.23)  arg k,,; - arg k, = arg = arg — + arg .
m " kn(en + knrn) en l+erk
1 . nnn
= arg o~ + 0(ry).
n
r

n

Since |e, - 1| = |arg e,|-(1 + o(1)) + O(|e,] - 1) for e, — 1 and T

— 0 (n - =), it follows that

(5.24)  arg ky, - arg k, = arg 2 (1 + 0(1)) + O(|r, - roal) + 0(le, - 1).
n

We have moreover that
r, o1 r..

(-1 + en+1)'( e, - 1 - e, - 1 ] = (r, - rn—l) + Tr‘(en =€)

o]
so that ¥ [r, - r,,,| converges. Now let arg é— = Arg é~ and assume that
n=1 n n

the sign of Arg %— is constant (i.e. independent of n € N). It then follows by
n

o] [+ ]

(5.24) and ¥ |r, - roy] <o, ¥ ![en| - 1| < =, that {arg k,} is a converging
n=1 n=1

1

en

[oe]
converges, i.e. if and only if |y e,
n=1

©
sequence if and only if } arg

n=1
converges. So we have the following Temma:

Lemma 5.16. Consider the recurrence relation (5.18) of Lemma 5.15 and
suppose in addition that either Arg e, > 0 for all n € N or Arg e, < 0 for all

[

neN. If 1ye,diverges, then the only converging solutions of (5.18) are

n=1

k'?) and (k™).

Proof of Theorem 5.13: Let (un} be a non-trivial zero of R. Put

U, - (i-v-=C + 1)-u
(5.25) k = = 4 L
" u o+ (VT - 1)

Then {kn} satisfies the recurrence relation (5.18) where

92



} IREREYS! i-v- n
Y‘" = . and en = —
“n v n+l i+ n

Note that the conditions of Lemma 5.15 are satisfied, because | Imr | ~
| Im vC,.1/C, |, lea) - 1 ~ c-Im v=C, for some c €R, c #+ 0, |e, - e,y| ~
c’-] v€,,1 - vC, | for some ¢’ €R,;, and r -~ (1-vC "7C)/2,

(1-e)t- l-—l——. Note that the condition that 1im v-C!- v-c'! =
n 2 \/—_C_ n->o n n+1l
n
implies that | vC, | > n. Since Re V=C, > 0 by definition, it follows that
2-Re V-C
Y Re V=C, = +o. Since tan arg e, = _____T__Tﬂ_ >0 (neNlN), it thus follows
1+ |C,

by Lemma 5.16 that all solutions of (5.18) except for {kﬁo)} and {kﬁw’}
diverge. Now define (u(l)} and {u(z)} by

MESE (2
O _ Uy (i-v- C + 1) u , @ _ u - (i-v- C + 1) u
" uﬁii+(1-v/—_C:-l)-u ) " ifi+(1V—C——l)u
u(z) (1)/ (‘) -1
Put 7, = —(-1—) and ¢!V = U (i =1,2; neN). Let {u) € Z(R),
u w-*c:

{u,) = A-{uﬁl)} + u-(u£2)), with A-p # 0, and let (k,} be the corresponding
solution of (5.18) (by (5.25)). Then
u Ju -1
_ . _ -1 n+1” "n (1) (2) _ 1) .

(5.26) 1+2-(1 - k) ————;T—?—:-——— =&+ (¢ [N X?ﬁ‘?”?:
for all n, so that

(ko - DY - 1)+ 20k,

(ko - DSR2+ 1) + 2
Since {|k,|} converges to some positive number k and c(” {ﬁ“ -1 as
n — =, we conclude that 1im |7,|/|k,| = [X/u|. Moreover, since {k,} does not
converge, {7,} does not converge either. Clearly, lim [7.] = |XMu]-k #0, so
u(2)
n

Ty = =AU

(n e N).

= 1.

that, by taking |A/u[-k-(u£l)) instead of (uﬁl)}, effect that lim

A

n
Furthermore, if d = 0 and we choose {u,} = X- {u(l)} + 4 (u(Z)) with |X| # |u|,
then k = 11m k, # l, so that {(1 - k )1} is a bounded sequence and, by (5.26)

we infer that llm 8+1 = 1. Finally, let {u,} = X- (u(l)} + - (u(Z)} for some

n
X, p € C\{0} with |X| = |g|, and et d = 0. Let the curve €, be defined by
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ey

G = ( Zo(Ab) = —35
Aup”t o+ peu

(2

+Beu
T+ 1M = Il = 1). 6, is a closed

n

Jordan-curve in P!(C) (it is the image of the unit circle under a fractional
linear map) and 1im €, = R u {=}. Hence, for every M € N, G, has points z

u
with |z| > M for all n > Ny. Put z, = n*tl_ 1 for {u,} € Z(R). Then

u
z +C "
5.27 Zoy = neN).
(5.27) m = 75T )
So, if |z,y| € m< 1/2, and |C,| < m, we have that

m+ |Cp
|z,] < ——T—T—ﬁi—— < 4m. Hence, if |z,| > M > 2, then |z,,,| > M/4 for all

n > Ny. Consequently, for every solution {z,(X,px)} of (5.27) with |X| = |u| #

n+1l

0, |z,(A,u)| becomes larger than 1/2 infinitely often. But then li@ can

n

not exist for {u,} = A-(uﬁl)} + u-(uﬁz)) with |[X| = |g|. If d # 0, this is

trivial. O

Remark 5.5.1. If {C,} is a real sequence, then we have that (ﬂgl)} = (uﬁz)).
If {u,) = X~{u§1)) + u-(u£2)} with |X| = |pu|, then clearly u, € R (up to some

multiplicative factor). Since 11@ V-C;l- V-C;il = 0, we see that C, < -1/n®

n+1

for n large enough, and indeed, by Proposition 5.3 we have that 11&

n
does not exist. This yields once more the last statement of Theorem 5.13.

§5. Applications.

We denote by #en(K) the set of convergent Laurent series in 1/n with a
finite principal part and whose coefficients 1lie in the field K, i.e. f €
Ken(K) = f(n) = F(1/n) where F(z) is meromorphic in z = 0 (n € N, large
enough). We let K be either of the fields R or C.

Let R = T? - (2 + p(n))-T+ (1 + q(n)), where p,q € #en(K). We define the
order of r € Men(R) or #en(C) by ord r =d if 13@ r(x)-xd € C*. If r=0,
we define ord r = ». (So, the order is just the multiplicity of X = » as a
zero of r, counted negative if x = » is a pole of r.) We suppose ord p > 0,
ord q > 0. Put

4(1 + q(X))

r(Xx) =1 - .
(2 + p(X))(2 + p(X-1))
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Then r € Men(K), ord r > 0 and R* =T - 2.7+ (1 - r(n)) 1is a zeroth-order
transform of R. By Theorem 5.4(ii) and Corollary 5.4, Theorem 5.8(ii), Theorem
5.10 and Theorem 5.13 we obtain the following facts:

1. Ifordr>2andy-= llm r(x)-x2 # -1/4, then R*vhas zeros (uﬁ“) and

(u:”) such that
(1) u(2)

u
: n _ s n _
- = g -
where a and B are the roots of the polynomial X2 - X - v, and moreover,
ul®) u(2) ul2)
L - i =1 and lim
ng 0 =0 if ¥ > -1/4 whereas 11m Y 10
n n n
¥ < -1/4.

2. Ifordr =2 and 1ig r‘(x)-x2 = -1/4, then R* has zeros {uﬁ”} and
{u'?} such that

u(1) u(2)
13@ —lr =1, 13@ T =1.
"> vn-log n " n
u(?)
In particular, 11m —— = 0.

>y

3. Ifordr=1 and 11m r(x)-x is not a negative real number, then R has
(2)

(1) (2) (2 U
zeros {un } and (un } such that u,u e K (neN), 1&» D =0 and

(
n

D

) (1) ) (2)
im mlo1) =1, Tlim oy o= -l
%m[ ur(‘l) n—)‘om—rﬂ' ur(\Z)
4, Ifordr=1andr = 11m r(x)-x < 0, then R has zeros (u(”} and {u(”}
such that

(1) u(2)
lim 1 "+1 =i and lin 1 —%%% -1 = -i.
"% v=r(n) u
Tim
X->0
2)

Moreover, if r; = lim x-(r(x) - r) € R, then we can choose (u()} and {u(”}

ol u(2)
n

= 1 whereas 1in _%TT does not exist, whereas, if r; is

u
n

such that T1im
n->o

g (0
n

(2)

not a real number, then 1

( I = 0 or infinity, as in 3.
n
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(In fact, (ur(‘z)) = {ﬁf}”} if K = R.) Note that corresponding results for R
*
follow immediately from those of R .
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CHAPTER SIX

SECOND-ORDER RECURRENCES (2)

§l1. Introduction.

In this chapter we shall treat non-simple operators with two distinct
eigenvalues a and B such that |a| = |B|. As in the previous chapter, we
shall have to impose additional conditions on the behaviour of the operator

u
R - xR(T) in order to ensure convergence of a*l for {un} € Z(R).

n
Indeed there exist operators of the above type such that for none of their
u
n+l

u
n

n u
R=T2 - (1+ i:%l_). Let (u) € Z(R), {u)} # {0). Then —2"*L 0 and

zeros (un} the quotient converges. For instance, take

u 2n
2n
0 — © as n — o, unless U, = 0.
2n-1
u
There also exist operators R such that G+1 converges to only one of the
n
roots of X for all non-trivial zeros {un} of R. For instance, let
n
R = (pn-T + pwd)(T - 1), where p =1+ (-1) , hence xR(X) = X% - 1. A zero

n n
n-1
{un} of R has the form u = A Y (-l)k-pk + . Hence,
k=0
u A (-1)"-p
;+1 =1+ —— 4 — 1 asn o> o
" LoD p, +p
k=0

We first treat the case that R - xR(T) converges fast. The result follows
immediately from Theorem 4.1.

Corollary 6.1. Let R € R(C), xR(T) = (X - a)(X - B), where |a| = |B], a # B.
Suppose that Y Nn(R - xR(T)) < o, Then R has zeros {u:”} and (uﬁ“) such
that

ur(]1) ur(‘2)
1im = 1im = 1.
n->o an n—>© ﬂn

If R - xR(T) converges more slowly, we shall have to investigate the matter
in more detail. The case that @ # -8 is covered by Theorems 5.10 and 5.13,
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Corollary 6.1 and Theorem 6.2 below. Some of the results overlap.
§2. R has two opposite non-zero eigenvalues.

We present two results. One of them is a decomposition theorem for matrices
as in Chapter 3. The second results uses the fact that the operator R’ which
has zeros {(u,,}, where {u,} € Z(R), has a characteristic polynomial with two
equal non-zero eigenvalues, so that the results of Chapter 5 can be applied.
In principle, a similar method can be applied whenever the ratios of the
eigenvalues are roots of unity.

Theorem 6.2. Let R = T2 + P(n)-T + Q(n), where lig P(n) = p, llg Q(n) = q,
and X2 + pX + q = (X - )(X - @) with |e;| = |a,|, @ # a,. Suppose that
®

©

Y |P(n) - P(n+l)]| < o, ¥ |Q(n) - Q(n+l)| < o, and that there exists some
=1

n=1 n

-]
sequence of non-negative real numbers {d,}, ¥ d, < o, such that

n=1
Re P(n)-v P(n)? - 4Q(n) is semi-definite for a fixed branch of the square root
(0 < arg vZ < m, say). Then R has zeros {uﬁ”},(uﬁ”) such that
uﬁ” = a;j(n-1)-...-0;(1)-(1 + o(1)) where a,(n),a,(n) are the zeros of P,(X) =
X2 + P(n)-X + Q(n) such that a;(n) — a; (i = 1,2).

We first give a ‘matrix decomposition Temma’:

[}
Lemma 6.3. Let (M) be a sequence of matrices in C%% with % | M, - M., |
n=1

< o, and with M, having eigenvalues a, and B, such that 11@ a, = a, llm B, =B
where |a| = |B|, @ # B, and such that there exists a sequence {d,} of non-

@

negative real integers with |a,| < |B,| + d, for all n and ¥ d, < =. Then
n=1

there exist matrices F, € GL(2,C) which converge to some matrix F € GL(2,C)

such that
" e, O
Fn_,,anFn = -
0 B.

Proof: There exists a sequence {U,}, U, € GL(2,C) such that
O a, O
UMU, =
0 B.
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-]
and 1im U, = U € GL(2,C). Furthermore, ¥ |U(n) - U(n+l)] < o, so that

n=1

9 a, O
UpM U, = + D,
0 B,

@
where ¥ | D, || converges. By the assumptions of the lemma we can, by Lemma
n=1

5.14, find a sequence {V.}, V, € GL(2,C), such that 1im V, = I and

lo-1 a, 0
VirtUneaMiUn Vi = .
0 B

Now let F, = V.U, (n € N). o

For the proof of Theorem 6.2 we simply apply Lemma 6.3 with M, = Mﬁ (n e N).
Note that |a;(n)|? - |ay(n)|? = Re P(n)-V P(n)? - 4Q(n) so that |e;(n)/e,(n)|
- 1 has constant sign for all n if and only if Re P(n)-v P(n)? - 4Q(n) has.

The matrix recurrence [F,, M,F.'] (with (F,} as in Lemma 6.3) has solutions

‘azu
(FIF,- umd—a u" )} where F!f, —» I as n — o and where {u,} is a zero of R.
el Ln ull) _ g g
(1) : n+l 1 'n _
Hence R has a zero {un } such that llm T T 0, and
Upep - Q@p-Uy

uﬁﬂ - az-uy’ = a(n-1)-...-(1)-(1 + o(1)), from which it can easily be

deduced that u{!) = X -a;(n-1)-....,(1)-(1 + o(1)) for A, = (e, - @) # 0,
and for all n. The corresponding fact for (ui”} goes, of course, similarly. o

@
Corollary 6.4. Let R be as in Theorem 6.2. If | ¥ Re P(n)-v P(n)? - 4Q(n)|
n=1
(2)
u

o7

o)
n

does not exist, where {u?)}

converges, then 13&

exists, but 1im
n->®

o

and {uﬂ”) are as in Theorem 6.2. Moreover, lim ~%ﬁl exists if and only if

A n
{u,} 7s linearly dependent of either of the {uﬁ”} (i = 1,2). On the other

© (2)
T ke LAYV P(n)? - aq(n) -
n=1

hand, if

diverges, then 1lim is either
n->o

n
oD

n+l
u
n

zero or infinity. In this case, 13@ exists for all non-zero {u,} in Z(R).

Proof: It suffices to note that

Re PTT-V P(n)? - 4Q(n) = |ey(n)|? - |ey(n) % o
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Let R = T2 - P(n)-T - Q(n). If xg(X) = X* - o for some @ # 0, and P(n) # O
for all n € N, we can normalize R as in Chapter 5, §l, thus obtaining
R/S=T¢-2.T+1-C, for some S, where lim |C,| = = (see Remark 5.1.1). If

U, - v -u
{u,) € Z(R/S), then {z,}, with z, i T " (neN), satisfies
Upey + Vt:'un

(1 -6,)-z, +¢
(6-1) Zon Yo Zp + T (n € N)a
where '
1 -G, Ve, - Yo
(6.2) 1-6§,= y €4 = , and v, = g,(1 - 5,) (ne€N).

1+vC, | VTG
We use the following lemma to investigate (6.1).

Lemma 6.5. Let (§,},{e,} be sequences of complex numbers with

©
11@ §,=2, 1 -6, <1 (forallnxN), ¥(1-|1-56,])=w, and
n=1
|€n€n1] + l€q(1 - 8,) + €0y] =0(1 - |1 - 6,]) (n — ). Then the recur-

rence
(1 - 6n)'zn t &y

(6.3) Znay T -5z, F1 (n € N)
has solutions {z(m} and (z()) such that 11m z(m =0, lam g”) = o,
Further, if {z,} # {z( )} is a solution of (6 3), then 14& = 0.

Proof: For all n € N, we have
(6.4) (1 - 6,)(1 - 8,401 + €p€q41) 20 + (Eqey + €4(1 - 6,44)
. z = .
2 (1 - 5n)(“:n + £n+1(1 - 6n+1))'zn + (1 + €n£n+l(1 - 8n+]))

Application of Lemma 5.11 immediately yields the result for the sequences
{z,,}. Defining {z,} for n odd by (6.3), we obtain the result for all n. o

The result of Lemma 6.5 allows us to conclude that

Corollary 6.6. Llet ReR(C), R=T2-2T+1 - C., where C, € C,

@

. 1 1
1im |Cy] = », Y Re — =o, (V{,,1/C, - 1)-(VCC,-; - 1) = o(Re —),
°°1° " [ T " Ve,
1

= vC,.1/C, - VC,/C. .| = o(Re —). Then R has zeros
I’cn+1 ‘Cn—l n Vt;
{uﬁ”} and (uﬁ”) such that
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utt) ut?) (2)

11 4. ?:; =1 and lip a1 fnel = -1, and lim
"l a7

n n

Proof: Define sequences {§,} and {¢,} by (6.2) and apply Lemma 6.5. Then
{uﬁ”} and {uin} can be defined by

(1) (1) (2) (2)
2(0) _ _n+l ) ‘/c:.u and z(lﬁ) _ un+1 B \/C:.un
n WD v (D n ) Ve u{® )
Upep + Uy Upep + u,

Since for any {(u,} € Z(R) which is 11near1y independent with (u(”}, we have

(2)
u
1im — 1 |onet 1| = 1, Lemma 5.12 allows us to conclude that 1lim =0. O
e )
n

n

Remark 6.2.1. Direct application of Lemma 5.11 to R (where R is as in
. Corollary 6.6) would give as conditions on {C,} (so that the statement of
Cor.6.6 holds):
®
. _ | B 1
1Lm |Cy| = =, n§1Re ;Ef =w, V( ,|/C, - 1 = o(Re ;Ef).

The conditions of Corollary 6.6 are obviously weaker. For example, if C,
C(1/n), where C(x) is a Laurent series at x = 0, C(x) = a-x%(1 + 0(x)) for
@ € C, a not a non-positive real number, then Corollary 6.6 may be applied,

whereas vC,,;/C, - 1 # o(Re —l—).
v,

n
Remark 6.2.2. A similar theorem for the elliptic case (where lim [C,| =

Y !Re ;%:I < ») can be derived from Lemma 5.15. Since, however, no new ideas

are involved, and since for most interesting cases Theorem 6.2 suffices, we
will not pursue this matter any further.

§3. Applications.

1. LletR=T- p(n)-T - (1 + q(n)), where p,q € #en(C). Suppose that
ord p >0, ord q > 0, so that xR(X) =X - 1. We can apply a zeroth-order
transformation onto R such that the resulting operator R’ is of the form
R = T - p*(n)T - (1 + q*(n)), where ord p* =ord p and ord q* > 2. In
particular, we can take
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2 p(n) 1 + q(n)
(6.12) R" = T° - T - .
1 + q(n)/2 (1 + q(n)/2)(1 + q(n-1)/2)

We distinguish two cases:

(i) ord p > 2. We can apply Corollary 6.1 to R’ and find that R has zeros
{u?)) and (uﬁ”) such that u:”,uﬁn €R (neNN) if p,q € #en(R) and

n-2 n-2
Mgt m (¢ e/ = 1 (DM (0 atk/2) -

4(1 + q(n))

p(n)p(n-1)
If p(x) = 2 + 0(x?) with ai ¢ R, we may apply Corollary 6.6 to R and find
that it has zeros (u(”) and {u(”} with

‘s B *_2 ‘
(ii)ordp=1. Let R =T - 2.T-

(1) (2) (2)

. va un+1 ;o va un+l : un

11m nu(l) -1, J‘m —zﬁ'a—m—'l, ]1m ( "‘0,
n n

where va® is the square root of a with p051t1ve real part.

_Hence, R has zeros {v(”),(vin} such that

(1) (2) (2)
7t v mt Y v
lim —- o, im 22 .2l - 1 and lim =~ = 0.
Vi Mz o w38 0

n
The same conclusion can be reached if we apply Theorem 6.2 and Corollary 6.4.
If p(x) = % + 0(x?) with ai € R, a # 0, we apply Theorem 6.2 and Corollary
6.4 and obtain that R has zeros {vi”},{vﬁ”} such that

(1) V(Z) V(Z)
n+1 _ . n+l - . n _
lim NIV L, lim MEY 1 and lim ey 1,
n n n
(2)
whereas 11 v does not exist.
v

2. let R=T%- (-1)"-p(n)-T - (1 + q(n)), where p,q € #er(R), ord p > 0,
ord q > 0, so that x (X) = Xt - 1.
(i). If ord p > 2, we can apply Corollary 6.1 and find that R has zeros
!y, (W) with u!,uf e R (n € N) and

n

Hp (s a(0/2)™ = 1 (1) nu+qun
k=1 K=

4(1 + q(n))
p(n)p(n-1)

(ii). Ifordp=1, weput R- = T2 - 2.7 +
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As in 1(ii), we find that R" has zeros (ur(‘”), (u:Z)} such that

1 2
o e ) uh
1im ——- =i, lim ———— = -i.
n->o 2 u(l) n-o 2 u(2)
n n

(3)

v

Hence, R has zeros {v"}, (v!?)} such that Tim (-1)"-—* = (-1)31.4

’ n 7? n n->o v(j)

n
(j = 1,2).
3. LletR=T - p(n)-T - g(n), where p,q € #en(C) and xR(X) = (X-a)(X-8),
with e, € C, and |a| = |B|, @ #+ B, a # -B. Applying Theorem 6.2 and Corollary
6.4 (or, alternatively, Theorems 5.10 and 5.13) to

« 4-q(n) (1y (2
R =T -2.T - —— we find that R has zeros (un },(un } such that
p(n)p(n-1)
Uy o
im =y =e and lip 5 =4,
u u
n n
uf\z) 4.q(n) b S
and, moreover, _1)@ -l = 1 if —— = a+ Tt O(n°) withbeR
u p(n)p(n-1)
u(2)

(note that a € R in any case), whereas l])g} 0

“—I = 0 or infinity if b ¢ R.

n

(2)
u
s ooon . Re a
In fact, lim i 0 if and only if b.yz7 < 0.
n
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CHAPTER SEVEN.

APPLICATION TO CONTINUED FRACTIONS.

We shall conclude with an application of the above results, which con-
stitutes an answer to the following problem, posed by Perron [Pe3]:
Consider the continued fraction
2

q(1) q(2) q(n)
(7.1) TBTTTl " TBTZTl PR TBT571 ..
q(1) q(2) q(n) )
where p,q € #en(C), p,q # 0. If lig TBTTTL + TBT?Tl + ...+ Tﬁ(ﬁyl exists or

o q(2) q(n) , ,
if llg p(l) + T5127l + ...+ TBTHTl = 0, we say that the continued fraction

(7.1) converges in a broad sense. The problem is to determine for which

p,q # 0 the expression (7.1) converges in a broad sense.
Consider the recurrence operator R = T - p(n)-T - g(n) (n € N). Without

loss of generality we may suppose p(n),q(n) # 0 for n € N. Let {un{}n>p

{v,,),5, be the zeros of R for which u_ =1, u =0, v =0,v =1 1Itis

then clear that (un{} and (an} are linearly independent. Moreover,

u q(1) a(2) q(n)
(7.2) - TETTTl + TﬁT?Tl bt TBTETl (n € N).

Therefore the continued fraction (7.1) converges in a broad sense if and only

=
<
=

if either 1lim exists or 1im —% = 0. On the other hand, if 1im -* = ¢,
n n n l]n n-o Vn

n no_ - .
— = 0 and (un_2 ¢ sz} € Z(R). Thus, we have that (7.1)

then 1im

n->o n
converges in a broad sense if and only if the corresponding recurrence
operator R has linearly independent real zeros (un) and (wn} such that

W

lim -~ = 0.
n->o Un
*
We consider the ‘normalized’ zeroth-order transform R of R:
* 2 4.q(n)
R =T-27T- ———— .
p(n)p(n-1)

(Note that p(n) # 0 for n € N, so that R* is well defined). Since R* is a
zeroth-order transform of R, its zeros are of the form (p(n)xn), where
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{xn} € Z(R), p(n) € C* for n > 1 and p(n) depends only on {p(n)}. So the

answer to our problem boils down to the answer of the problem for which p,q
*

the operator R has two linearly independent real zeros (un),(wn}, such that

4-q(n)

lim ﬁﬂ =0.Putr(n) =1+ ——— Then r € #en(C), r(n) # 1 or o for
n p(n)p(n-1)

n>N. Put 2 = 13@ r(x).

(i) By Poincaré’s theorem (or Chapter 3) we have that for » € C, 2 not a

non-positive real number R* has zeros (uﬁ”) and (uﬁ”) such that

=

ey (2 NEY
lim—t =1+v2 and 1lim 1 =1 - va. Hence, lim —— = 0.
n-o u(l) n->® u(2) n->® u(l)

n

n n
(ii) Ifare€eR, 2o <0, we can apply Application 3 of Chapter 6, §3 and obtain
*
that R has zeros (uﬁ”) and (uﬁ”) such that

1im uiii =1+va and 1lim uﬁi: =1 - va. Moreover, if r(x) =2 + >4
8 ) v 8 () T v ’ =vrR
n n
u(2)
0(x?) and 5 ¢ R, then Tlim |- = 0 or infinity. On the other hand, if
n->® u(l)
(2 "
» € R, then 11@ —%TT does not exist. In the latter case, we can not find two
u

. v
linearly independent zeros {u,} and {w,} of R* (so, neither of R) such that

z

u

lim 5~ = 0. Indeed, this would imply that 1im n+l

n
im un im— for all zeros
n

lim Yo
n->® VrI
{vy) of R* that are Tinearly independent with {w,}, which is not possible.
(iii) If 2 = 0, we can apply the results of Chapter 5 to obtain that
() Ifordr>2andy=lin r(n)-n® » -1/4, then R* has two zeros (ui”)
u(Z)

(2) : n -
and {un } such that 1lm 7 - 0.
n

=

(b) Ifordr>2and y< -1/4 (y as in (b)), then R* has two zeros (uﬁ”)

(1) (2)
u u
(2) . n _ . n _

and {un } such that 1lm & = 0 and llm _;B_ = 0, where « and B are

ul?)
the two zeros of the polynomial X2 - X - . It is clear that 1lim — can

n->® u(l)

n

not exist. As in (ii), the conclusion is that there cannot be zeros {(w,} and
{u,} of R such that the limit of their quotients is zero.
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(iv) Ifordr =1 and r(x) = ; + 0(x2), then R" has non-trivial zeros
L2
n
(1

(1) (2) ;
{un } and {un } such that 13@

7= 0 if and only if a is not a negative

U,

real number.

(v) If n = 4w or -o, we can apply the results of Chapter 6:

(a) Ifordr< -3, weput R” = T2 - 2.T + (-1)°n9(1 + t(n)) with t € #er(C),
and (-1)° = -1 or 1l if 2 = -o or +o, respectively. We consider the zeroth-
order transform R’’ of R’:

2-(n + 1/2)79/2 . (1 - 1/4n2)79/2.(1 + t(n))
R'' = TZ - T + (-l)s. .
1+ t(n)/2 (1 + t(n-1)/2)(1 + t(n)/2)

Since (1 +t(n)) =1+ 0(n?) and d > 3, we can apply

(1 + t(n-1)/2)(1 + t(n)/2)
Corollary 6.1 to R’ and find, as in (ii), that R’’ can not have linearly

W

independent zeros (u,)} and {w,} for which lim Gﬂ = 0, so neither can R.
n

(b) Ifd=-o0ordr=1or 2, we can reason as in §3 of Chapter 6 and

obtain:
If r(x) = ax + 0(x*!), a # 0, then R" has two linearly independent zeros

E

{u,} and {w,} for which 1lm Uﬂ = 0, if and only if a is not a negative real

n
number. (One can apply Cor.6.6 or Th.6.2 and Cor.6.4 (Cor.6.6 only for a not
negative real) to a suitable zeroth-order transform in the manner described
for ord r < -3.)
If we apply these results to the continued fraction (7.1), we obtain the
following result:

Theorem 7.1: Consider the continued fraction

71 q(1) q(2) q(n)
(-) W+W+...+W+...’
4-q(x)
where p,q € #en(C), p,q # 0. Put v(x) = 1 + —————————. The expression (7.1)

) p(x)p(x-1)
converges in a broad sense if and only if one of the following conditions is

satisfied:
: 2
(1) ordr >2 and 1;@ r(x)-x- > -1/4.

(2) ordr =1 and 13@ r(x)-x is not a negative real number.

(3) ord r =0 unless both n = 11m r(x) < 0 and 13& (r(x) - 2)-x €R.
(4) ordr = -1 and 11@ r(x)-x! is not a negative real number.

(5) ordr = -2 and 1im r(x)-x? is not a negative real number.
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A final remark. Suppose that (7.1) converges in a broad sense. Put

Yp = q(n)l + q(n+l)| + (neN). Then y, = ___—q(n) which yields
" (p(n) Ip(n+l) . ’ p(n) + .Yn+1’

Yo-Yni1 *+ P(n)-y, - q(n) = 0. So we find, if y{l # 0, that {w,,} =
((-1)""1-.\!“.1-)',..2-...-3/1)">1 is a zero of the recurrence operator

R=T2- p(n)-T - q(n). We show that {W,.,} is a subdominant zero of R, in

W
other words: If {x,} € Z(R) linearly independent with (w,}, then k)g x—" = 0.

n
Indeed, let (u,} and {v,} be as above. So, {u,_.},{v,;} € Z(R) and u_ = vy =
u

1, ug = v, =0. Let ¢ = 1_1)'@ . Theny, =¢, { €C. Hence w; = 1, w, = -¢{,

w u - g

so that (W)} = {u)} - ¢-(v,), so lim o* = lim ——" = 0. Finally, if y;'
v n n

_n
v
n

# 0, then lim a—"— = 0, and we define {W,,) = ((-1)"-¥p1-Yn2-----¥2)
n
W

2"

Then wy = 1, w; = p(1). Hence, {w,} = {v,}, so that ]‘im = 0. Thus, for

_n
o U
w n
{w,) as defined above, we have that 1im x—" =0 for all {x,} € Z(R) linearly

independent with {w,}.
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REGISTER OF TERMS

Only the page where the terms are defined is indicated.

characteristic polynomial 5,14
convergence in a broad sense,
of a continued fraction 104
divisor .
right,left 14,15
formal 20
derived (see operator)
eigenvalue
of operator 67
simple, non-simple 52
factorization (of an operator) 20
greatest common divisor (of operators) 15
lowest common multiple (of operators) 17
matrix recurrence 20
associate 21
conjugate 22
minimal polynomial (of a matrix) 56
norm
of a matrix 37
of an operator 39
operator,
derived 16
identity 12
irreducible 15
rational 24
recurrence 7,14
reducible 15
shift 7,12
(non-)simple 52
order (of a recurrence, of an operator) 12
order (of a Laurent series) 94
Poincaré-Perron Theorem 5
recurrence,
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elliptic
hyperbolic
linear
rational
sequence
zero (of an operator)
zeroth-order transform, - transformation
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Only symbols that are not conventional or have a specific meaning in this
work are listed below; the number indicates the page where they are defined.

{up},{v,),etc. 12
T 12 .
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R(K),#(K),0(K) 12
Z(R) 13
%(0,K) 13
Xr 14
R|S 14
(R,S) 15
R/S 16
[R,S] 17
(M,] 21
A(K) 21
MR 21
Tim M, 21
Rat 24
L(R) 24
z 24
A(m) 36
Dm(A) 36
Il 37
N, 39
~(in {x,} ~ {¥n}) 56
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(n)

Ken(K) 94
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