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Chapter 1

Preliminaries

1.1 INTRODUCTION AND SUMMARY

This monograph deals with two-person stochastic games with finite state and
action spaces. The theory of stochastic games started by a paper of Shapley
[1953]: ‘Stochastic games’. In this fundamental article Shapley combined the
dynamic programming model of Bellman [1952, 1957] with the matrix games
considered by Von Neumann [1928] and Von Neumann & Morgenstern [1944].

In the dynamic programming model problems of the following type are con-
sidered. At a discrete number of stages in time, a person has to choose one of
finitely many actions; that choice will determine an immediate payoff as well
as a probability vector according to which a new state is appointed, where an
action has to be chosen at the next stage. There are finitely many states, each
with its own finite action space. The person faces the problem to decide which
action choices give the highest income. Here the income is determined by
discounting, averaging or, in some special cases, by simply adding all immedi-
ate payofs.

In matrix games two persons, usually called players, face an mXn-matrix
with real entries. Simultaneously and independently player 1 has to choose a
row and player 2 has to choose a column. The real number in the chosen entry
is the amount player 2 has to pay to player 1. Of course, the assumption is
made that player 1 wants to maximize the expected payoff and, at the same
time, player 2 wants to minimize the expected payoff.

Shapley [1953] combined the features of dynamic programming with those
of a matrix game. Thus a stochastic game can be seen as a finite collection of
matrix games, one to be played at each stage, where the motion among the
matrix games depends at each stage on the current state and on the actions
chosen. The collection of stages is assumed to be N= {1,2,3,...}. The stochas-
tic game is a non-cooperative game, meaning that the players are not allowed
to make binding agreements. These stochastic games as examined by Shapley
[1953] are zero-sum stochastic games, i.e. one player is paying the other player
and the gain of one player is the loss of the other player. In zero-sum games
the two players have strictly opposite interests. The question in such games is
whether there is a certain amount which player 1 can guarantee to receive (in
expectation) regardless of the choices of player 2, while player 2 has a strategy
such that he will not need to pay more than that amount (in expectation),
regardless of the choices of player 1. Whenever it exists, this unique amount is
called the value of the game and the strategies used by the players to guaran-
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tee this value are called optimal strategies. If the players can only achieve
near-optimality we speak of e-optimal strategies.

If it is not required that one player is paying the other player, then the game
is called a general-sum stochastic game. For such a game the states no longer
correspond with matrix games but with bimatrix games: in each entry of the
matrix there are two real numbers, the first indicating the payoff to row-player
1, the second indicating the payoff to column-player 2. Now the players need
no longer have strictly opposite interests and hence the notions ‘value’ and
‘optimality’ lose their meaning. In general-sum stochastic games the usual solu-
tion concept is that of (e-)equilibria. An (e-)equilibrium is a pair of strategies
with the property that neither player can gain (more than € (¢>>0)) by unila-
teral deviation. This concept of equilibrium was introduced by Nash [1951] for
bimatrix games, and it is therefore known as Nash-equilibrium. Fink [1964]
combined Shapley’s (zero-sum) stochastic game model with Nash’s (general-
sum) solution concept to examine general-sum stochastic games.

In this monograph we shall deal with the general-sum stochastic game model
as well as with the zero-sum stochastic game model. The existence of e-
equilibria, or of the value and e-optimal strategies, may depend on the initial
state. It should be clear that any of the states in a stochastic game can func-
tion as the starting state. Just as in dynamic programming it is often useful to
consider the problems for the different initial states simultaneously. Thus the
value of a stochastic game is in fact a value-vector, where coordinates
correspond with the starting states. Likewise an e-equilibrium is a pair of stra-
tegies which is an e-equilibrium for all initial states. A further remark to be
made is that both the zero-sum and general-sum solution concept depend on
the criterion that is used to evaluate the incomes of the players. As in dynamic
programming models this criterion can lead to the discounted incomes, the
limiting average incomes or the total incomes, where the latter may be quite
meaningless if the stochastic game has no specific properties.

In his stochastic game model Shapley required that in each state, for any
pair of actions chosen, there is a strictly positive probability that the play ter-
minates. Hence Shapley could derive his results with respect to the total
income, since any play would ever terminate with probability 1. If, in such a
terminating stochastic game all stopping probabilities are equal to each other,
then examining total incomes in such a game, is equivalent to examining
discounted incomes in a related non-terminating stochastic game (cf. Shapley
[1953]). Gillette [1957] was the first to examine limiting average incomes in
(non-terminating) stochastic games.

In this monograph we consider non-terminating stochastic games. We will
deal with all three evaluation criteria. The emphasis however is on stochastic
games with respect to the limiting average reward criterion since they have
turned out to be quite hard to solve and since the existence of limiting average
e-equilibria can be seen as the major open problem in stochastic game theory
nowadays. For stochastic games fine solutions are known to exist with respect
to the B-discounted reward criterion, whereas with respect to the total reward
criterion similar problems as for the limiting average reward criterion occur.
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More precisely: for the discounted reward criterion solutions exist in terms of
stationary strategies, i.e. strategies for which the action choices of the players
only depend on the state that is currently visited (cf. Shapley [1953] and Fink
[1964]). For the limiting average reward criterion this need not be; the players
may have to take into account which actions their opponent has used in the
past. This was illustrated by an example in Gillette [1957] which has been
solved by Blackwell & Ferguson [1968] using history dependent strategies (cf.
example 1.7.4 below). For the total reward criterion history dependent stra-
tegies may be required as well (cf. section 5.4). In the example of Gillette
[1957], which became known as ‘the big match’, player 1 has no history
independent limiting average e-optimal strategies. So the solution by Blackwell
& Ferguson [1968] of this big match clearly showed that for the limiting aver-
age reward criterion history dependent strategies are really indispensable.
Unfortunately history dependent strategies have a rather complex structure
and often lead to computational difficulties. Stationary strategies can be seen
as the most simple strategies in stochastic games. Any pair of stationary stra-
tegies is related with a Markov process on the set of states. This implies, as
will be clear in the sequel of this chapter, that for stationary strategies rewards
can be computed rather straightforwardly. Hence from the point of view of
computations, and hence of potential applications of stochastic games, the
class of stationary strategies is particularly interesting. Therefore in literature,
as in this monograph, a lot of attention is given to stationary strategies.

Now, knowing that for the limiting average reward criterion, as well as for
the total reward criterion, solutions (e-optimal strategies/e-equilibria) may fail
to exist if the players are restricted to stationary strategies, it is of special
interest to find out what characterizes stochastic games which do have station-
ary solutions. For the limiting average criterion such a characterization, by
means of a system of equations, is presented in chapter 5, due to Vrieze
[1987-a]. We present a similar characterization for the existence of stationary
total optimal strategies in chapter 5. In chapter 6, which is based on Filar et
al. [1991], we completely characterize the existence of stationary solutions by
means of global optima of suitably constructed non-linear mathematical pro-
grams. This is done for each of the three evaluation criteria and for zero-sum
as well as for general-sum stochastic games. Previously characterizations for
the existence of stationary solutions have also been reported in Sobel [1971],
Bewley & Kohlberg [1978], Filar & Schultz [1986] and Schultz [1987]. So far
these characterizations are formulated for zero-sum or general-sum stochastic
games with finite state and action spaces without some specific extra structure.
Besides, several classes of stochastic games, i.e. stochastic games with a special
condition on the payoff and/or transition structure, have been examined for
which stationary solutions exist. We mention: unichain/irreducible stochastic
games (cf. Gillette [1957], Hoffman & Karp [1966], Rogers [1969], Sobel [1971],
Federgruen [1978]); recursive games (cf. Everett [1957], Orkin [1972], Thuijs-
man & Vrieze [1990-b]); single controller stochastic games (cf. Stern [1975],
Parthasarathy & Raghavan [1981], Hordijk & Kallenberg [1981-b], Filar [1984,
1986], Filar & Raghavan [1984], Vrieze [1987-a]); stochastic games with perfect
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information (cf. Gillette [1957], Liggett & Lippman [1969]); switching control
stochastic games (cf. Filar [1981-b], Filar & Schultz [1987], Vrieze [1987-a],
Vrieze et al. [1983]); stochastic games with state independent transitions and
separable rewards (cf. Sobel [1981], Parthasarathy et al. [1984]); stochastic
games with additive rewards and additive transitions (cf. Raghavan et al
[1985], Filar & Schultz [1987]).

For many of these classes there are algorithms known to solve such games. For
a survey on algorithms we refer to Raghavan & Filar [1989].

Although apparently for many classes of stochastic games stationary solu-
tions exist, in general they do not, as was illustrated by the big match.
Kohlberg [1974] extended the work of Blackwell & Ferguson [1968] by show-
ing that for any zero-sum repeated game with absorbing states (cf. section 4.4)
the limiting average value exists. Based on techniques of these papers and
using results of Bewley & Kohlberg [1976] on asymptotic properties of
discounted solutions for zero-sum stochastic games, Mertens & Neyman [1981]
derived that for any zero-sum stochastic game the limiting average value exists.

However, as mentioned before, history dependent strategies will be needed
to achieve e-optimality. Since we would prefer stationary solutions, it is for-
tunate to know that in any zero-sum stochastic game there is, for each player,
a non-empty set of initial states for which this player has a stationary limiting
average optimal strategy. A first proof for this result is given by Tijs & Vrieze
[1986]. In chapter 2 of this monograph we present a new, and more elemen-
tary, proof for this result. Besides we give a sufficient condition for player 1 to
have stationary limiting average e-optimal strategies for all initial states with
maximal or minimal limiting average value.

For the general-sum case a similar result is presented in chapter 2: there is
always a non-empty set of initial states for which an ‘almost-stationary’ limit-
ing average e-equilibrium exists. In chapter 3 this result is extended by formu-
lating sufficient conditions for the existence of an ‘almost-stationary’ limiting
average e-equilibrium in any general-sum stochastic game. The existence of
limiting average e-equilibria is one of the major remaining problems in stochas-
tic game theory.

The history of general-sum stochastic games started with Fink [1964], who
proved the existence of stationary B-discounted equilibria. Other proofs for
this result have been given by Takahashi [1964], Rogers [1969] and Sobel
[1971]. The existence of stationary limiting average equilibria has been shown
for several classes of stochastic games, most of those mentioned above.
Inspired by Sorin [1986] (cf. example 1.8.6 in this chapter), the existence of
(history dependent) limiting average e-equilibria for general-sum repeated
games with absorbing states was shown by Vrieze & Thuijsman [1989] using
Kohlberg [1974]. In chapter 4 we give a slightly modified proof for this result.

Although stochastic games with just one state, better known as ‘repeated
games’, are part of the model we discuss in this monograph, the theory on
such games developed in a rather specific direction. Therefore we do not dis-
cuss repeated games in particular in this monograph. For surveys on repeated
games we refer to Aumann [1981], Mertens [1986] and Sorin [1988].
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Closing this brief introduction to stochastic game theory, we wish to refer to
the surveys on stochastic games by Parthasarathy & Stern [1977], Raghavan &
Filar [1989], Vrieze [1987-b] and Thuijsman [1987].

We now describe the set up of this monograph.

In the remainder of this chapter we give formal definitions of the stochastic
game model with its solution concepts. Furthermore we formulate the major
historic results in this field, in view of the topics in this monograph, and we
derive several preliminary lemmas and discuss some examples.

In chapter 2 we show that for any general-sum stochastic game there is a
non-empty set of initial states for which there exists an almost stationary limit-
ing average e-equilibrium, i.e. a limiting average e-equilibrium consisting of sta-
tionary strategies amplified with threat-strategies. For zero-sum stochastic
games we give an elementary proof for the existence of easy initial states for
each player, i.e. starting states for which this player has a stationary limiting
average optimal strategy. Tijs & Vrieze [1986] already proved this result, but
our proof is significantly simpler. For the set of initial states with maximal or
minimal limiting average value, we give a sufficient condition for each player
to have stationary limiting average e-optimal strategies. We also show that
there may be states which are neither (e-)easy for player 1 nor for player 2.

In chapter 3 we extend the general-sum results of chapter 2 to formulate
sufficient conditions for the existence of a limiting average e-equilibrium (for
all starting states). These sufficient conditions are formulated in terms of pro-
perties of an arbitrary sequence of stationary B-discounted equilibria, which
without loss of generality can be assumed to converge for 8 going to 1.

In chapter 4 we show that our results of chapters 2 and 3 imply the
existence of limiting average (¢)-equilibria for several subclasses: unichain sto-
chastic games (which includes irreducible stochastic games), stochastic games
with state independent transitions (SIT), repeated games with absorbing states.

Chapter 5 is devoted to zero-sum stochastic games with the total reward cri-
terion. We show that the total value may fail to exist, even on the condition
that the limiting average value is 0. On the stronger condition of limiting aver-
age value 0 and both players possessing stationary limiting average optimal
strategies, history dependent behavior strategies may still be indispensable for
the players to achieve total e-optimality. This is illustrated by an example: ‘the
bad match’. We give characterizations for the existence of stationary total
optimal strategies (as well as for stationary B-discounted optimal and station-
ary limiting average optimal strategies). We relate this total reward criterion
with the B-discounted and the limiting average reward criterion.

Chapter 6 deals with mathematical programs connected to stochastic games.
With respect to all three evaluation criteria non-linear programs are given that
completely characterize the existence of stationary equilibria / (e-)optimal stra-
tegies. Our characterization with respect to the total reward criterion is res-
tricted by the assumption that the limiting average reward is 0 for all pairs of
stationary strategies.
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1.2 THE STOCHASTIC GAME MODEL

1.2.1 DEFINITION
A stochastic game T is a 6-tuple <S, {A;:s€S), {By:seS}), r',r? p>, where:
S:=1{1,2,..,z}, zeN, is the set of states, or state space;
A;:={1,2,...,m;}, mgeN, is the action space of player 1 in state s€S;
B;:=(1,2,...,n,}, n,eN, is the action space of player 2 in state s €S;
rko U {s)}X4;XB;—R is the payoff function for player k €{1,2);
seS

p: U {8} XA, XB;— A’ is the transition probability map, with

seS

p(s,0,))= (p(l]s,i,)), p2|8,i,)),..., p(z]s,i,))).

Here A":= {aeR":a=0, 3 a;= 1}, for any neN.

i=1

1.2.2 NOTATION

In the examples in this monograph stochastic games will be given as a collection
of matrices {matrix(1), matrix(2),..., matrix(z)}, where matrix(s) has size m; Xn
and entry (i,j) of matrix(s) is given as

rl(s,i,j), rz(s,i,j)

P (s$,4,))

or, in case for some t €S we have p(ts,i,j)= 1, as

r‘(s,i,j), rz(s,i,j).

A play of the stochastic game , a ‘round’ of the game, develops in the follow-
ing way. At each stage neN play is in precisely one of the states in S. Play
starts at stage 1 in some state s €S, the initial state. If at stage n eN play is in
state s,€S, then simultaneously and independently, without making binding
agreements, player 1 has to choose some i, €4, and player 2 has to choose
some j, € B, . Once these choices are made, player 1 receives ' (Spsin, Jjn), player
2 receives r2(s,,ip, Jn) and next play moves with probability p (s, +1|S,,ix,jn) to
state s, .1 €S, where the players choose actions at stage n + 1.
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The players are allowed to randomize over their actions, i.e. in state s player
1 (for example) can use some ‘mixed action’ x = (x(1), x(2),..., x(my)) eA™
which is to be interpreted as choosing ‘pure action’ i €4, with probability x (i).
At each stage neN both players know I' as well as the ‘history’
hy=(515015J 15525025 25-+s Sn—1>In—1,jn—1-S,) but neither player knows the
mixed actions his opponent has used in the past. Each of the players is
interested in maximizing his individual income, which is some kind of evalua-
tion of the payoffs over all stages. Both players are assumed to use the same
evaluation criterion (cf. 1.4 below).

Here we already make two remarks:

First, notice that once a play is started, it never stops, although some
stopping-like things may happen as we will see in the sequel. Second, it should
be observed that with any stochastic game situation there are in fact z games
to be considered, one for each starting state. It is often useful to treat these z
games simultaneously.

1.3 STRATEGIES

Any plan a player uses to play a stochastic game, is called a strategy. So a
strategy tells a player at all stages, in any state and for any history, what
mixed action to use. Within the set of all these strategies one can discern
several classes with different complexities. The most simple class of strategies is
that of the stationary strategies. A player who uses a stationary strategy has
fixed a mixed action for each state, which he uses at any stage the play is in
that state, no matter what history preceded.

1.3.1 DEFINITION

A stationary strategy for player 1 is given as an element x € X: = .
N s

1
A"
1

X N X w

A stationary strategy for player 2 is given as an element yeY: =
S

These stationary strategies are of fundamental importance in the analysis of
stochastic games.

A class of slightly more complex strategies, is that of Markov strategies. A
player who uses a Markov strategy, has fixed a mixed action for each state and
stage, to be used at that stage regardless of the history that preceded.

1.3.2 DEFINITION

A Markov strategy for player 1 is given as a function f:N — X.

A Markov strategy for player 2 is given as a function g :N — Y.
The class of Markov strategies for player 1 (2) is denoted by F (G).

Observe that stationary strategies are stage independent Markov strategies.
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The most complex strategies to be considered in this monograph, are
behavior strategies. A player who uses a behavior strategy will consider the
history of the play, in any state and at any stage, to decide what mixed action
is to be used. Since this type of strategies is the most general to be considered
(cf. Aumann [1964]), we will often leave out the word behavior.

1.3.3 DEFINITION

For neN let h,:= (51,i1,]1,52,82,] 255 Sn—15in —15Jn—1,51) be the history up to
stage n, i.e. h, is the sequence of states and actions that occurred up to appear-
ance in some Sstate s, at stage n. ,

Let H,,Z:{(S],il,jl,Sz,l.z,jz,.‘., Sn—lain—l’jn—l’sn):skesa ikEAsks .kE Bsk} be
the set of histories up to stage n.

00
A (behavior) strategy for player 1 is given as a function w: \ ) H, — X.
n=1
[>]
A (behavior) strategy for player 2 is given as a function o: | J H, - Y.

n=1

The class of (behavior) strategies for player 1 (2) is denoted by 11 (2).

So we have X CFCII and Y CG CZ. Although at each stage the current state
is part of the history up to that stage, we say that Markov strategies are his-
tory independent strategies.

In the above definitions for strategies the players use mixed actions. The
sets of mixed actions contain pure actions, i.e. choosing some row or column
with probability 1. Therefore we can also define pure strategies.

1.3.4 DEFINITION

A pure strategy is a strategy for which, for all states, stages and histories, pure
actions are used. The set of pure strategies for player 1 is denoted by 1V, his set
of pure Markov strategies (pure stationary strategies) is denoted by FP (X?). For
player 2 the notations 2F, G? and Y? have a similar meaning.

1.4 EVALUATION CRITERIA

As in other game theoretic models the assumption in stochastic games is, that
each player wants to maximize his individual income. However, a play of a
stochastic game never ends and payoffs occur at all stages. Therefore the
players should use some kind of criterion to evaluate those sequences of
payoffs in order to decide what strategy they prefer to use. More precisely,
each player wants to be able to compare the expected income for several pairs
of strategies in order to choose a good strategy. In this monograph we look at
the expected income because of the stochastic element caused by the transition
probabilities and by the use of mixed actions.
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1.4.1 DEFINITION

Let (m,0)e IIXZ be given and let s€S be the initial state. Define R¥(n) as the
random variable representing the payoff at stage n to player k. Define
E,.[R¥(n)] as the expected payoff at stage n to player k conditional on s,m,o0.

The above definition is possible because a play starting in state s, with the
players using 7 and o, leads to a well-defined stochastic process on the set of
states. For: at stage 1 both 7 and ¢ prescribe some mixed action to be used in
state s; hence an expected payoff at stage 1 is well-defined for both players,
just as are the transitions to the next state. In any new state, at stage 2, stra-
tegies 7 and o again prescribe mixed actions to be used, which determines an
expected payoff for stage 2, etc.

In this monograph we consider three evaluation criteria: the B-discounted
reward criterion, the limiting average reward criterion and the total reward cri-
terion. Thus a reward to a player for a pair of strategies and an initial state is
the evaluated worth to this player of a corresponding sequence of expected
payoffs over the stages. We use the word ‘reward’ for an income for some pair
of strategies for a whole play, while ‘payoff’ is always something for just one
stage of a play.

A lot of literature in stochastic game theory is on the B-discounted reward
criterion. For the B-discounted reward criterion stochastic games turn out to
have very fine properties and the results for the B-discounted reward criterion
are of fundamental importance for deriving results on the other two criteria.
For stochastic games the S-discounted reward criterion is first mentioned as a
remark in Shapley [1953].

1.4.2 DEFINITION
Let Be[0,1). The B-discounted reward to player k for initial state s under
(m,0) e II XX is given by

Ys@moy= (1-B) 3 B~ Eypo [REM)]

n=1

We also use Yj(m,0):= (v (1,7,0), v§ 2.7,0)...., v} (z.7,0)).

In this definition the factor (1—p) is used to normalize the B-discounted
rewards, because in the sequel we want to relate S-discounted rewards with
limiting average rewards.
Observe that, by the finiteness of the state and action spaces, Ej,, [R¥(n)]
e[—M,M] for all s,7,0,kn where M:= max {|rk(s,i,j)| tke(1,2},
i€A;, jeBs,s€S}. Hence y’[‘;(s,vr,o)e[—M,M] for all s,m,0,k,B. Discounting
with a factor Be(0,1) reflects an interest rate (1—)/8, because an amount
B" 'a at stage 1 grows to an amount a at stage n under this interest rate.
Discounting with factor 8 can also be interpreted as having at each stage pro-
bability 1— 8 that the play stops and probability 8 that play continues.

A second important evaluation criterion is the limiting average reward



10 Chapter 1

criterion introduced by Gillette [1957]. Most of the results in this monograph
are on stochastic games with respect to this criterion.

1.4.3 DEFINITION
The limiting average reward to player k for initial state s under (m,6)eIl X2 is

given by

N
Y (5m0):= lim inf — 3 By [RK())

n=1

We also use y*(m,0): = (yk(l,w,oj, Y*(2,7,0)...., Y*(z,7,0)).

In this definition we use ‘lim inf’ because ‘lim’ may fail to exist. The lim inf’
can be interpreted as a pessimistic view of player k: in the long run his average
income will be at least ‘lim inf’. We could also have chosen ‘lim sup’ or some
Banach limit in the above definition. Of course one can find strategies in a sto-
chastic game such that the limiting average reward for those strategies is
different for ‘lim inf" and ‘lim sup’. However, for stationary strategies ‘lim inf’
and ‘lim sup’ lead to the same average reward.

The third evaluation criterion to be considered in this monograph is that of
total rewards, introduced according to the following definition in Thuijsman &
Vrieze [1987] and Vrieze & Thuijsman [1987].

1.4.4 DEFINITION
The total reward to player k for initial state s under (w,0)€ I1 XX is given by

RSP LA
'YITC" (S, 7T,O)2 = lim inf —N— 2 2 Esvra [Rk(n)]~
N-ow m=1n=1

We also use y5(m,0):= (Y§(1,7,0), Y4(2,7,0),..., Y(z,7,0)).

The use of ‘lim inf” in this definition will be clear.
[ee]

Notice that it > & IR "(n)j €exists, licu it azeccvarilv eguals VO~ L)
n=1
For a general stochastic game however, the total rewards will often be —co or
+o00. The total reward criterion is of particular interest in stochastic games
for which the limiting average reward is O for all, or certain, pairs of stationary
strategies. In chapter 5 we discuss this total reward criterion in detail and we
examine relations among the three above evaluation criteria.

Observe that the above definitions are all based on the expected payoffs at
the stages. This is possible because the triple (s,7,0) determines for each his-
tory h,, n=2, a probability of occurrence Probg,,(h,).

However, by the Kolmogorov extension theorem (cf. Kolmogorov [1933])
this sequence of probability measures Probl,,(.), Prob%,(.),... can be extended
to a probability measure Prob;,,(.) on the set of infinite histories, i.e. on the
set consisting of sequences (§i,i1,j1,52,i2,j2,....). Therefore, instead of the
above definitions, we could have used alternative criteria defined by
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0

755 7,0):= B [1—B) S B~ RKm)];

n=1

k ... 1 X
Y (5,m,0):= Eyp[lim inf — 3 R¥(n)];
Now N n=1

N m
P (s, m0)= Eplliminf = S S REm)]
N-w N m=1n=1
For the B-discounted reward criterion it holds that y’f;(s, 7,0)= ?Z(s, a,0) for all
s,m,0; hence also for the solution concepts we will use (cf. section 1.7 and 1.8)
y’,§(.) and yg(.) will give the same results, For the limiting average reward cri-
terion y*(s,7,0) not necessarily equals y (s,m,0); however for stationary stra-
tegies ¥4() and ¥ () give the same reward. For the total reward criterion
y’%(s,x,y) is not necessarily equal to yr(s,x,y) for stationary strategies x,y;
moreover, as will be pointed out in chapter 5, it is not clear whether or not
¥7(.) makes any sense at all.

1.5 REWARDS FOR STATIONARY STRATEGIES

As is mentioned above, stationary strategies are the least complex strategies.
This is reflected in the fact that for stationary strategies there are fine expres-
sions for the rewards. In this section we introduce those expressions and we
give some elementary results needed in the sequel of this monograph.

1.5.1 DEFINITION
For a pair of stationary strategies (x,y)eX XY we define:
z

a) Car*(x):= >_<1 Car(x;) with Car(x;):={i€A;: x;(i)>0}, the carrier of x

and x; respectively. Carzgz) and Car(y;) are defined similarly.
b) "k(x,}’): :(rk(l’x“'r)n)l),’;l (2,x2,)’2),--~,rk(2,xz,)’z)),

with r*(s,x3,y,):= > S x,(i)r*(s,i,))ys(j) being the direct expected payoff
i=1j=1
to player k in state s.
c) P(x,y) is the transition matrix of size zXz. Entry (s,t) of P(x,y) is

Pl xeys): =D > x,(0)p(t]s,i,))ys(j), which is the probability of a direct
i=1j=1

transition from s to t if in state s the players use x; and y;.

P(x,y), denotes row sl\?fP(x,y).

d) QOxy):= Nlim —;V >, P"(x,y), where P"(x,y) denotes the n-fold matrix
=Yy

product of P (x,y) with itself. Q(x,y); denotes row s of Q(x,y).

Observe that P(x,y), for each (x,y)e XX Y, determines a stochastic process, or
Markov chain, on the state space. It is obvious that the (strategy dependent)
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ergodic structure of such a chain has its impact on the rewards.

1.5.2 LEMMA

Let (x,y)e X XY and let I denote the z Xz identity matrix.

a) Entry (s,t) of P" " !(x,y) equals the probability that at stage n play is in state
t if the players use (x,y) and the initial state is s. Here P%(x,y)=1.

b)  Eyy [REXm)] =P (x,0), r*(x).

c) Entry (s,t) of Q(x,y) is the expected average number of visits to state t if
play starts in state s and the players use (x,y).

d) O(x,y)s equals the unique stationary distribution of the Markov chain which
starts in s and is related with (x,y).

& Q(xy) P(ry)= 0(x)

f) (T—BP(xy)) and (I —P(x,y) + Q(x,y)) are non-singular matrices for all
B€[0,1). Hence (I—BP(x,y) + Q(x,p)) is non-singular for B close to 1.

9 Q)= lim(1=B) U=BP(sy)

PROOF:
(a) - (d) follow directly from the definitions; (e) - (g) can be found in Kemeny
& Snell [1960] or in Blackwell [1962]. |

Observe that (c) and (d) of the above lemma imply that, if s and ¢ are in the
same ergodic set of the Markov chain related with P(x,y), then
0(x,y)s = Q(x,y), and entry (s,7) of Q(x,y) is strictly positive. For s,z €S with
t transient with respect to P (x,y), entry (s,2) of Q(x,y) equals 0.

1.5.3 LEMMA
Let (x,y)eX XY and Be[0,1). Then the following statements hold.
0

a) Yhp)=(1-B) 3 B P T xp) k).

n=1

b)  Yixy)= (1—=B) I —BP(xy) ' r¥(x.p).
c) vg(x,p) is the unique o eR? satisfying o= (1 —,B)rk(x,y) + ,BP(x,y)a".

PRrROOF:
By definition v§(s,x,y)=(1—8) 3 B"~' Ey, [R*(n)] for all s€S. By lemma
n=1
1.5.2 (b) this implies y§(xp)=(1—8) 3 B 'P" (xp) rk(x,p). Since
n=1

(1-p) gl B 1P Y (x,y)= (1—B)(I—BP(x,y))"! for any stochastic matrix
P(x,y), we have vyk(x,p)=(1—B)I—BP(xp) 'rk(x,y). This implies
(I=BP(xy)vk(xy)= (1—B)r¥(x,y) and hence yj(x,y) is a solution of
of = (1—B)yrk(x,y) + BP(x,p)a*. By the non-singularity of (I —BP(x,y)) this
solution is unique. |
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1.5.4 LEMMA

Let (x,y)eX XY, Be[0,1) and acR’.

a) Ifa< (1l —,B)rk(x,y) + B P(x,y)a, then a<yﬁ(x,y)

b) Ifas (1—B)yr‘(xy) + B P(x.p)e, then s YEGP).

c) Similar statements hold when reversing the inequality signs.

PRrOOF:

If ass (1) ¥(ey) + BP(xy)a, then (I —BP(xya s (1~ Pri(ry). Since
(I—BP(x,y))”" is non-negative and each column has at least one positive
entry, it follows that a =S (A—=B) I —BP(x,y) 'rk(x,p)= yB(x,y) |

1.5.5 LEMMA
Let (x,y)eXXY. Then the foIlowmg statements hold.

a) yk(x,y)— hm — 2 P 1(xy)rk(x,y)

b) Yk(x,)’)— Q(%)’)"k(x’)’)

) yk(x,y)—— o for any]{)azr (ak Sk)eIRz XR? satisfying
ok = P(x,y)ak and of 48k = rk(x,y) + P(x,p)6".

d) Yxp)= 15?11 YE(x,p).

PRrOOF: N
By definition ¥(5,x,»)= lim inf % S B,y [R*()] for all seS. Lemma
—>00 n=1
N
1.5.2(b) implies v*(x,y)= lim inf% > P e p)rk(x,p). Tt is well-known
—® n=1
N
(cf. Kemeny & Snell [1960]) that Nlim % > P""!(x,y) exists, and equals
-® n=1
Q(x,y). Hence (a) and (b) hold.
If (o*,85)eR? XR? and of = P (x,y)a* as well as af + 8 = k(x,y)+P(x,y)8
then multiplying the second equatlon with Q(x,y), using lemma 1.5.2 (e), glves
Qe + Qe =" Q(ep)ri(ey) + Oy, Hence Q(xy)at=
Q(x,y)r (x )= y"(x,y) by (b). Furthermore of=P(x, y)a implies
o= Q(x,y)e*, so we have of= y"(x,y). Finally (d) follows directly from
lemma 1.5.2 (g) and from lemma 1.5.3 (b). |

1.5.6 LEMMA.

Let (x,y)e X XY and let a,6R*.

a) Ifa<P(x,y)a and a+8< rk(x,y) + P(x,p)8, then a<<v*(x,p).
b) A similar statement holds, when reversing the inequality signs.

PROOF:
a<< P(x,py)a unplles a<s Q(x,y)a and likewise a+dé<r (x,y)+P(x,y)8 implies
Q (x,y)a< Q(x,p)r*(x,y). Hence a<< Q (x,p)r*(x,y)= v*(x,). L

The condition a+8<< r*(x,y)+ P (x,y)d in lemma 1.5.6 can be weakened to:
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o, +8,<rk(s,x5,y,) + 3 p(t|s,xs,p,)8; for all states s that are recurrent with
teS
respect to (the Markov chain related with) P (x,y).

This is possible because, by the fact that for all s€S and any transient state ¢
entry (s,?) of Q(x,y) equals 0, we could still derive Q (x,y)a < Q(x,y)r (x,»).

1.5.7 LEMMA
Let (x,y)eX XY and assume yk(x,y)ZO for k=1,2. Then the following state-
ments hold.

a) Yh(xy)= fim 2 2 P eIy,

m=1n=1

b vi(xy)= (1 P (x,y) + 0 (xy) ' (x,p).

o) Y&(x,p)= o for any pair (¢*,8*)eR* X R? satisfying
af= rk(x,y) + P(x,y)ak and o + 8= P(x,y)ak.

d) Yi(xy)= 11%111 (=B 7" vh(x,p).

PROOF:
By definition y%(s, x,y)— hm mf % > 2 Eg,, [R¥(n)] for all seS. Hence

m=1n=1

Yh(xy)= lim inf — 2 2 P" Y(x,p)r¥(x,y). Recall that by lemma 1.5.5
m=1n=1

(b) we have O—yk (x, y)= Q(x, y)rk (x,y). Observe that for each N eN:

(I—P(x,p)+ Q(X,y))(—~ Z 2 P ep)rt(x,p))

m1n1

S [P ) ) — PPy (e)]
=1

[ ()= P (xp)rk (x,p)]

3

2|~ 2{-

ﬁMZ I M=

—

= ) -~ S Py

m=1

Again using v*(x,y)=0 and using lemma 1.5.2 (f) for the non-singularity of
(= P(sy)+ Q(xy)), we derive that lim —1— S P ) k()

m=1n=1
exists and equals (I —P (x,y) + Q(x,y)) " "(x, V), Wthh proves (a) and (b)
As for (c), suppose that af and & solve of=r¥(x,y)+ P(x,p)a*
of + 8 = P(x,y)8*. Multiplying both sides of the last equation with Q(x,y)
gives Q(x,y)a* =0 by lemma 1.5.2 (¢). Combining this with the first equation
gives that o —P(x,y)a*+ Q(x,y)a* =r*(x,y). Finally the non-singularity of
(I —P(x,y)+Q(x,p)) implies =T —P(x,y)+Q(x,y))~" r¥(x,y) and hence
we have o =y%(x,y) by (b).
In order to show (d) notice that Q(x,y)yf;(x,y)zo because Q(x,y)y'f;(x,y)z
Q(x)I(1—A) 2 B P T eyt ey)l= (1-B) E B! Q(xp)rf(xy)=0

n=1
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by vY¥(x,y)=0. Hence by lemma 1.5.3 (c) we have y(x,y)=(1—B)r*(x,y) +
BP(x,y)Yh(x,y)—Q(x,p)vk(x,y). By the non-singularity of I—BP(x,y)+
Q(x,p) we have v§(x,))=(1—B) (I —BP(xy)+ Q(xy)~" r¥(x,). Since
I—P(x,y)+ Q(x,y) is also non-singular we get 1%111 (I—B)_lyﬁ(x,y)z

(I —P(xy) + Qxp)~'r*(xp)= Y¥(x.y) by (b). u

1.5.8 LEMMA

Let (x,y)eX XY, a,0eR? and assume yk(x,y)z 0.

a) Ifa<r®(x,p) + P(x,p)a and a+8< P(x,p), then a<y%(x,y).
b) A similar statement holds, when one reverses all inequality signs.

PROOF:

From a+0<<P(x,y)d we derive Q(x,y)a+ Q(x,y)0< Q(x,y)0 and hence
Q(x,y)a<0. From a — P (x,p)a< r¥(x,y) we derive P" ~!(x,y)a — P"(x,p)a<<
P" " 1(x,y)rk(x,y) for all neN. This implies that for all m eN we have:

a—P(xy "a= §‘(P"_1.(x,y)a—P"(x,y)a)< ﬁ P" N xy) ré(x,p).

n=1 n=1

N N m
Hence a—%,— > P’"(x,y)a<% > 3 P xy)rk(x,p) for all NeN.
m=1 m=1n=1

Letting N tend to infinity and using Q(x,y)a<<0 we obtain a < y’%(x,y). |

1.6 PLAYING AGAINST A FIXED STATIONARY STRATEGY

In any stochastic game both players want to maximize their individual
rewards. Since they cannot make binding agreements they do not know what
strategy there opponent is going to use. Nevertheless each player should hope
that the strategy he chose is a best reply against the strategy of his opponent,
otherwise a better strategy could have been used. Therefore it is of interest to
examine what happens if the opponent fixes a strategy. For the objectives in
this monograph it is sufficient to consider what happens if the opponent fixes a
stationary strategy.

1.6.1 DEFINITION

Let y €Y and B€e[0,1).

A B-discounted best reply for player 1 against y is a strategy @ €Il for which
yh(w",y) = yj(m,y) for all m€Il. Limiting average best reply and total best reply
are defined analogously.
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The next lemma follows from Hordijk et al. [1983] and from Blackwell [1962]
and we will often use it for our analysis of stochastic games.

1.6.2 LEMMA

Let y €Y and Be[0,1).

There exists a pure stationary strategy x" €X' such that yp(x",y) = yj(m,y) for
all well. Similarly, there exists a pure stationary limiting average best reply for
player 1 against y.

Hordijk et al. [1983] show that player 1 cannot do better in the stochastic
game against y than to play optimal in the related Markov decision process,
which we call MDP(y).

1.6.3 DEFINITION

A Markov decision process is a stochastic game where one player has only one
action available in all states. For a stationary strategy y in a stochastic game T,
the Markov decision process MDP(y) is the stochastic game T" with S™:=S,
Ag:=A,, Bg:={1}, r’(s,i, 1):=r(s,i,p,), p (t|s,i, 1):=p(t|s,i,ys) for all i€A;,
seS”.

For Markov decision processes Blackwell [1962] has shown the existence of
pure stationary optimal strategies for the S-discounted reward criterion as well
as for the limiting average reward criterion. Combining this with the result of
Hordijk et al. [1983] gives lemma 1.6.2.

1.6.4 LEMMA
Let yeY and B€[0,1).
Let x™ €X be a stationary B-discounted best reply against y. Then:
a) v p)=(1=Byr ")+ BPE ) Yh(x"y)
=(1 —,B)rl(x,y) + ,BP(x,y)y}g(x*,y) for all xeX.
b) v )= (1—B)r'(x.y) + BP(XF y)yh(x",y) for all x?eX?
with Car®*(xF) C Car’(x’).
o) vp(x'Y)=vh(x,y) for all xeX with Car*(Xx) C Car*(x").

PrOOF:

The equality sign in (a) follows from lemma 1.5.3 (c).

The inequality sign in (a) follows from the fact that x~ is a B-discounted best
reply against y (cf. lemma 1.5.4).

From (a) it follows that for each s€S:

Yb(S’X*’y): (1 —B)rl(S,X;,)’s) + :3 2 P(tls,x;,ys) Y};(l,x:y)
=1

= S X OA=Br iy + B pltlsivy) vhex" »)]
=1

ied,

< 3 x0) vp(s,x",y) = vh(s,x",p).
ieA,
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Hence yp(s,x )= (1=B)ras,ip) +B8 2 p(lsiys) vptx y) for all
t=

ieCar(x,), which proves (b).
Now (c) follows from (a), (b) and from lemma 1.5.3 (c). |

An analogue of lemma 1.6.4 (c) does not hold for the limiting average case.
Consider for instance the following example, where player 2 has only one
(trivial) strategy: y. We show that a stationary strategy within the carrier of a
stationary limiting average best reply against y, does not need to be a limiting
average best reply against y itself.

1.6.5 EXAMPLE

0,0

1,0 1,0

State 1 State 2

Stationary strategies for player 1 in the above game, are fully determined by
the mixed action which player 1 uses in state 1. So X={(p, 1—p):p€[0,13}. It
is easy to see that (%,%) is a stationary limiting average best reply against y,
giving player 1 limiting average reward (1,1). Although the pure stationary
strategy (1,0) is clearly contained in the carrier of (/5,%), it is not a limiting
average best reply against y, for yl((l,O),y)Z (0,1).

1.7 ZERO-SUM STOCHASTIC GAMES

Shapley [1953] started the theory of stochastic games. In his model the payoffs
to player 1 are the losses of player 2, i.e. r(s,i,j)= —r!(s,i,j) for all s,i and j.
A stochastic game with this property is called a zero-sum stochastic game.
Since in a zero-sum stochastic game the players have strictly opposite interests,
player 1, who wants to maximize his reward, can expect that player 2 wants to
minimize that same reward. We assume that player 1 is interested in maximiz-
ing his guaranteed expected reward, i.e. player 1 would prefer to use a strategy
7 such that inf y};(w*,o) = inf 'Y/lg(’lT,O) for all w€Il, in the B-discounted case

(or similarly for the other criteria). So player 1 is interested in sup inf y(,0).

Likewise we assume that player 2 wants to minimize the reward to player 1
and is interested in inf sup y };(w, o), the coordinatewise minimal level for which
[y ™

player 2 can guarantee that the reward to player 1 will not be greater (up to
some €>0). It is easy to see that ‘sup inf’ < ‘inf sup’ because: inf yj(7",0)<
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yp('rr o) for all vr ,0, unphes that sup 1nf ‘)’ﬂ('l‘l’,d’)< sup yﬁ(frr o) for all &
and hence sup mf Yh(m,0) < mf sup yB(vr a) If < sup mf’ ‘inf sup’ then we
call this number the value'of the stochastic game. ot
1.7.1 DEFINITION '

a)  If for a'zero-sum stochastzc game there exists, for' B E[O 1), a vheR? such
that sup mf y,g('zr 0)= "B 1nf sup yﬁ('/r,or) then vﬁ is called the B-

dlscounted vaIue of the stochasttc game ‘
b) If the value 1s vh, then player 1 has, for each €>0, a strategy such that
Yh(m,0)=vh —el, for all 0€=. Such a strategy m, is called a B-discounted
e-optimal strategy for player 1. A B-discounted optimal strategy for player 1
is a strategy m for which yj(w" ,0)=v} for all o.
A similar definition holds for B-discounted (e-)optimal strategies of player 2.
c) For the limiting average reward case and the total reward case (e-)optimal
strategies and value, v' resp. vY, are defined analogously.

In zero-sum stochastic games the players at each stage face a kind of matrix
game. Therefore it is not surprising that the following theorem by Von Neu-
mann [1928], presented here without proof, is very valuable for stochastic
games.

1.7.2 THEOREM -

For any real matrix A= [a;]/% ,1‘1 there exist x “eA™ and y” A" such that for
all xeA™ andyeA" x Ay =x Ay =xAy”.

The mixed actions x* and y" are called optimal mixed actions, for player 1 and
player 2 respectively, in the matrix game A. The number x" Ay” is called the
value of A, denoted by val(A) or by valla;;]. This value of A is uniquely deter-
mined.

The importance of this theorem for stochastic games already occurs in the
seminal paper on stochastic games by Shapley [1953], who examined stopping
stochastic games. For stochastic games with the B-discounted reward criterion
Shapley’s results imply the following:

1.7.3 THEOREM

For any B€[0,1) and any zero-sum stochastic game:

a) The P-discounted value vj exists and both players have stationary PB-
discounted optimal strategies.

b) v }; is the unique solution aeIRz of the ‘Shapley-equation’:

= val[(l—,B)r (s,5,)) + B Ep(tls l,j)d,],=1]~1 = val(A F(0), sES.

c) 4 Stationary strategy x (y ) for player 1 (2) is B-discounted optzmal lf xs
(ys) is an optimal mixed action for player 1 (2) in the matrix game A S (v /g)
for each s€S.
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It is well known that (c) of the above theorem is also valid when we replace ‘if’
by ‘if and only if’. This follows for example from the results of Vrieze & Tijs
[1980], who showed that for each player the set of stationary B-discounted
optimal strategies is the Cartesian product of the sets of optimal mixed actions
in the matrix games A}f (v}; ), sES.

Gillette [1957] introduced the limiting average reward criterion for stochastic
games. With respect to this criterion stochastic games turned out to have a
more difficult nature than for the B-discounted reward criterion. Gillette [1957]
gave the following example for which it was not clear for several years,
whether or not it had a limiting average value.

1.7.4 EXAMPLE (the big match)

1 0
1 1
0 1 : 0 1
2 3 2 3
State 1 State 2 State 3

In this zero-sum stochastic ganfe, only player 1’s payoffs are given (cf. 1.2.2).
Of course state 1 is the interesting initial state in this stochastic game and for
both players strategies are determined by the mixed actions used in state 1.
The remarks below illustrate the beauty of this big match, which was solved by
Blackwell & Ferguson [1968].
a) With resplect to Markov strategies (cf. 1.?.2) one finds that:
. _ . _

?lélg ;ggy (l,f,g.) 0, whereas ;1612 Jsflelg v (1,f.8)= %.

Hence the limiting average value would not exist if the players were res-

tricted to Markov strategies.
b) Allowing all strategies one finds that:

sup in£ y'(1,7m,0)= in£ sup Y'(1,m,0)= %.

So the limiting average value v' = (44,0, 1).
c) For player 2 the stationary strategy determined by using the mixed action
(%4,%) in state 1, is limiting average optimal. Player 1 has no limiting aver-
age optimal strategy and only history dependent limiting average e-
optimal strategies.
If we consider the-above stochastic game with respect to the B-discounted
reward criterion then we find by solving the Shapley-equation (cf. 1.7.3), that
vh = (%,0,1) (=v') for all B€[0,1), while the unique stationary B-discounted
optimal strategies are xF=@1/2—B),1—B)/@2—B)) and yB = (%,%) for
player 1 and player 2 respectively.
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It should be observed that, with respect to P(xP,yP) state 1 is transient,
whereas state 1 is recurrent with Trespect to P(x',y!), with
x1,y1):= lim (x#,y#).

ey )= T (x7p )

Bewley & Kohlberg [1976] made a thorough study of asymgtotic properties of
vk and of stationary B-discounted optimal strategies x”,y? as B tends to 1.
Using Tarski’s principle on real closed fields (cf. Tarski [1951]) they derived
the following remarkable theorem, which we give without proof.

1.7.5 THEOREM
For any zero-sum stochastic game situation there exist N eN, {a,eR’: neNg},

z z
(e X R™: neNg}, {yn€ XIR"‘: neNgy)} such that for all B close to 1:
§= 5=

0
a) V/Ii =3 a,( —B)"'N is the B-discounted value;
n=0
0
b) xP= > x,(1=B)"N is a stationary B-discounted optimal strategy for
n=0
player 1; - -
0
<) y" = > y(1- BN is a stationary B-discounted optimal strategy for
n=0
player 2.

Two remarks should directly be made about this theorem. First of all it follows
that lénll vh exists and equals . Second, it follows that %gl x# exists and

equals x, which is therefore a stationary strategy.

As an illustration of the above theorem observe that for the big match,
example 1.7.4, we have vy =v! for all B€[0,1) and for player 1 the unique sta-
tionary optimal strategies are given by xf=(1/2—-PB), 1—B)/(2—B)). Hence
we have:

=[]+ (a-p+ (L a-sr+ [Fa-gr+ (L Ja-pt...
For player 2 we have yf = [Z] for all 8.

To give another illustration we examine one more example, where payoffs
are again given only for player 1.
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1.7.6 EXAMPLE
1 0 0 1
1 1 1 5
0 1 0
1 ) 1 State 2
0 0 1 0
1 3 2 3
State 1 State 3

For this example, solving the Shapley-equation (cf. 1.7.3) leads to the g-
discounted value v} and to the unique stationary optimal strategies x# and y#
given, for initial state 1, by:

1-(1=8)" . " 0
h= AP (1) (1B (=B + (=== .
1 —1 1 0 2 1 -1 4 0 N
xF=10|+| 1 ](1—/3)/3+ —1](1-—/8)’3+ 0 ](1—,8)+ 1 ](1—3)”+ —1](1—3)’3+ .....

0 0 1 -1 0 1
NS , 0 . 1 -1 ) 0 ;
= 8 + (1)](1—3)’3+ 11](1—3)’3+ —01](1—/3)+ (1)](1—[3)’3+ 1 ](1—ﬁ)’3+ .....

The work of Blackwell & Ferguson [1968] on the big match was generalized by
Kohlberg [1974] for zero-sum repeated games with absorbing states (cf. section
4.4). These papers, together with the above result of Bewley & Kohlberg [1976]
for the asymptotic properties of the S-discounted solutions, were important for
the derivation of the following result by Mertens & Neyman [1981].

1.7.7 THEOREM
For any zero-sum stochastic game the limiting average value v' exists, and it is
related to the B-discounted values by v' = %Hll vh.

: 1

Observe that this theorem implies that v! = ay, the leading term of the power
series, for B close to 1, in theorem 1.7.5. In chapter 5 on stochastic games with
respect to the total reward criterion we will see that if the total value v} exists
in R’ and if both players have stationary total optimal strategies, then
ag,ay,...,ay —; are all equal to 0 and vh=ay= %1111 a-p! v};. However, for

stochastic games with respect to the total reward criterion little is known and
in general the total value v} will not exist. Even on the condition that the lim-
iting average value is O (for all starting states), the total value is not necessarily
finite. For a further discussion on stochastic games with respect to the total
reward criterion we refer to chapter 5, where it is also shown that, like for the
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limiting average case, history dependent strategies may be indispensable to
achieve total e-optimality.

1.8 GENERAL-SUM STOCHASTIC GAMES

Fink [1964] started the study of general-sum stochastic games, as they are
defined in definition 1.2.1. Since in a general-sum stochastic game the players
not necessarily have strictly opposite interests, the solution concepts ‘value’
and ‘optimality’ become meaningless. For non-zero-sum stochastic games an
alternative solution concept is required. Nash [1951] showed the applicability
of the concept ‘equilibrium’ for bimatrix games by proving the following
theorem.

1.8.1 THEOREM
Let A" and A? be real m X n-matrices.
Then there exist x” €A™ and y” € A" such that:

x Ay =x4"'y" for all xeA™ and
x"A%" =x"A% for all yeA".
The pair (x",y") is called a (Nash-)equilibrium for the bimatrix game (4',4%).

So this theorem guarantees the existence of equilibria for bimatrix games. Fink
[1964] extended the definition of equilibrium to stochastic games. Here we give
a more general definition.

1.8.2 DEFINITION
Let €>0. A pair of strategies (n.,0.)€Il X2 is called a B-discounted e-equilibrium
for initial state s if:

Y}? (S,WE,O()> Y,lli (3,77,05)_5 fO" all well and
y%,» (s, 7,0,) = y% (s,7,0)—¢ for all €.

If (m.,0.) is a B-discounted e-equilibrium for all s €S, then (7.,0,) is called a B-
discounted e-equilibrium. If € can be taken 0 in the inequalities, then we speak of
an equilibrium. Similar definitions hold for limiting average e-equilibrium and for
total e-equilibrium.

The idea behind the concept ‘e-equilibrium’ is the following. Once the players
have, somehow, come to use a pair of strategies (w0.), which is an e-
equilibrium, then neither player 1 nor player 2 can gain more that € by unila-
teraly deviating from his strategy. So, for small ¢, each player will remain play-
ing his equilibrium strategy. Hence, an e-equilibrium is ‘self-enforcing’.

Shapley [1953] connected the B-discounted value and optimality in zero-sum
stochastic games with the value and optimal mixed actions of related matrix
games. Fink [1964] derived a similar result for general-sum stochastic games.
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1.8.3 THEOREM

Let B<[0,1).

a) For any stochastic game there exists a stationary B-discounted equilibrium.

b) A pair of stationary strategies (x,y") is a B-discounted equilibrium if for
each s €S, the pair of mixed actions (x;,y;) is an equilibrium in the bimatrix
game (A};s (y};(x*,y*)), A%Y(yf;(x*,y*)))z, where (cf. 1.7.3)

Alés(ylé(X*’y*)): [(1 —,B)rk(s,i,j) + BZ P(tlsaia/.)ylé(trx*’y*)]i'i:l,j le

=1

Other proofs for this theorem have been given by Takahashi [1964], Rogers
[1969] and Sobel [1971].

In the previous section we have seen that for zero-sum stochastic games the
existence of the limiting average value and of limiting average e-optimal stra-
tegies remained a problem until 1980. The existence of limiting average e-
equilibria is even a tougher problem, for it is still open. One should observe
that the existence of e-equilibria (7,,0.), for all €0, in a zero-sum stochastic
game implies that the value exists and that the strategies 7. and o, are e-
optimal for the respective players.

If in a general-sum stochastic game an e-equilibrium (7.,0.) exists, then
player 1 would have a reward which is at least the value, possibly up to €, of
the zero-sum stochastic game obtained by assuming that the payoffs to player
1 have to be paid by player 2. This is due to the fact that, given a §-optimal
strategy w5 for player 1 in that zero-sum game, we can derive
Y (7,00 = v' (m5,6)—€e =v! —8—e. Letting & tend to O gives the result:

1.8.4 REMARK

If (m.,0.) is a limiting average e-equilibrium, then Y¢(m,0.) = vk —¢, where v is
the limiting average value of the zero-sum stochastic game obtained by assuming
that the payoffs to player k have to be paid by player (3—k): ‘the k-zero-sum sto-
chastic game’. Of course a similar statement holds for the B-discounted reward
case and for the total reward case.

vk

Another interesting fact concerning these k-zero-sum stochastic games is that
player (3—k) has for each ¢>0 a strategy to keep player k’s reward below
vk +e. This allows player (3—k) to punish player k if such is required, and
therefore player (3—k) can threaten to punish player k if player k deviates
from a certain strategy. Punishment arguments to establish equilibria are quite
common in the theory of repeated games (cf. Aumann [1981]). In the next
chapter this will also become meaningful for general stochastic games.

1.8.5 DEFINITION

For a general-sum stochastic game (v',v?) is called the limiting average threat-
point. A retaliation strategy w, for player 1 is a strategy for which
YA(l,0) <v%+e for all 0. Similarly we have a retaliation strategy o. for player 2.



24 Chapter 1

For zero-sum stochastic games we have v* = hnlx v’é (cf. 1.7.7). For general-

sum stochastic games we can take (b By theorem 1.8.3), for each Be[0,1), a sta-
tionary B-discounted e(l&mhbnum (x?,y#) and, without loss of generahty, we
can assume that hm (x B) and h{n yﬁ(xﬁ B) exist and are equal to (! 2y h

and V* respectlvely (cf. section 2.2). Now one could hope that V* is related
with a limiting average e-equilibrium and one could even think that (x',y')
may be a limiting average e-equilibrium. Unfortunately this will not be true in
general, as is illustrated by the next example which has been examined by
Sorin [1986].

1.8.6 EXAMPLE

1,0 0,1
1
0,2 1,0 0,2 1,0
2
State 1 State 2 State 3

The 1-zero-sum stochastic game of 1.8.6 is exactly 1.7.4, the big match. The
2-zero-sum stochastic game is also a kind of big match.

The unique stationary B-discounted equilibria (x#,y#) for this example are
given by (the mixed actions in state 1):

&P yP) = (/3= B), 1=B)/(=B)), (%, ).
So we have yh(LxPyPy=14=yv (1) and v3(1,xP,yf)=%=v2(1) for all
B<[0,1). Then we find that for (x!,yl)= hm(xﬁ ﬁ)_ ((1,0),(%,%)) the limit-
ing average rewards are:

Y'(L,x'yh=%=v(1) and Y*(1,x' y )= 5 < %= v2(1).

It is obvious that (x',y") is no limiting average e-equilibrium, because against
x! player 2 could improve by playing (0,1). Sorin [1986] shows that for this
example the limiting average rewards corresponding with limiting average -
equilibria for state 1 are all in the convex hull L of {(%,1),(%,%)}. So
L= {(a,2—2a): ae[%,%]}.

It is important to observe that for x“= (0,1) we find:

Y'(LxPyH=+'(1,x" p")= %=v'(1) and
PLxPyh=y(1x"y)=1> %=v2(1).

The importance of this observation will become clear in chapter 3 (cf. exam-
ple 3.2.4). In graph we have the following situation:
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©2)
©,1) [ (2 ( SR D R S (S D))
L
® v1(1),v3(1))

G'(Lxtyh, Y(xy)

(1,0)

In this graph the area in the triangle ((1,0), (0,1), (0,2)) is the set of feasible
rewards for this stochastic game, i.e. those rewards that can occur for some
pair of strategies. The feasible rewards which are larger than the threat-point
are called individually rational. The set L consists of the feasible, individually
rationa! Pareto optimal rewards, where the Pareto optimal rewards are those
rewards that cannot be improved simultaneously for both players.

Although the above example suggests a gap between general-sum pS-
discounted solutions and limiting average solutions, we exhibit in the next
chapters that limiting average e-equilibria may, under some condition, be
derived from sequences of stationary B-discounted equilibria.
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Chapter 2

Particular initial states in stochastic games

2.1 INTRODUCTION

In chapter 1 we have seen that for any zero-sum stochastic game the B-
discounted value exists and that both players have stationary B-discounted
optimal strategies; in the general-sum case there exist stationary B-discounted
equilibria. We have also seen in chapter 1 that for any zero-sum stochastic
game the limiting average value exists, which however does not guarantee the
existence of optimal strategies or stationary e-optimal strategies; in the
general-sum case the existence of limiting average e-equilibria is still an open
problem. As discussed in chapter 1, for the limiting average reward criterion
more complex strategies are required to play e-optimal or to form an e-
equilibrium. There may be however, starting states for which a solution exists
in terms of stationary strategies. Consider for instance the initial states 2 and 3
of the big match (example 1.7.4). This idea, of examining particular starting
states, first occurred in Tijs & Vrieze [1986]. They showed that for each player
there are, in any zero-sum stochastic game, ‘easy initial states’, i.e. starting
states for which this player has a stationary limiting average optimal strategy.
Their proof however is rather technical. In this chapter we give an alternative
and straightforward proof for their theorem in section 2.4. There we also
examine other initial states where both players can achieve e-optimality, with
respect to the limiting average reward criterion, by using stationary strategies.

In section 2.3 we examine special initial states in general-sum stochastic
games, and we show that for certain ‘strong initial states’ limiting average e-
equilibria exist which consist of ‘almost stationary strategies’. The latter are
stationary strategies which are amplified with some threat to prevent profitable
deviations of the opponent. So if both players stick to their e-equilibrium stra-
tegies, then with probability close to 1 they will use stationary strategies
throughout the whole game.

In section 2.2 we derive some basic results, which are of fundamental impor-
tance for the chapters 3 and 4 as well. Our techniques are based on properties
of sequences of stationary strategies {(x?,y#):8€[0,1)}, converging for 8 tend-
ing to 1.

The results of this chapter have been derived from Thuijsman & Vrieze
[1990-a, 1991].
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2.2 LIMIT PROPERTIES FOR SEQUENCES OF STRATEGY PAIRS

By the expression
‘let {(xP,y B)eX XY ,Be[O, 1)} be a (converging) sequence with

h‘ﬂl X S, x 3

‘for some sequence {B,€[0,1):neN}, with 11m B.=1, it holds
thathm(x )'"(x yHexxy’

Observe that X XY is compact, which implies that any sequence in X XY has
a converging subsequence.

2.2.1 DEFINITION
Let {(xﬁ Byex XY :Belo, 1)} be a sequence with h?l (xB,y‘B)—

'y )eX X Y. Without loss of generality we may assume that Car®(xP) and
Car*(yP) are independent of B<1. By compactness arguments we can also
assume that the followm§ limits exist and we can define:

a) V* —h;nyﬁ(xﬁ ) E[—M,MY, for k=1,

b Z': —hmzﬁ where ZP:= (1—B) (I —BP(xP,yP))~ 1.

¢c) Tis the set states which are transient with respect to (x!, y h.
S1,82,...,8" are the ergodic sets with respect to (x',y").
For each he{l,2,.,H} let q eA'S | be the unique statzonary distribution of
P(x' .y, the restriction of P(x',y') to S; let g" €A? be the related sta-
tionary distribution (for initial states in S*) of P(x',y') on S, ie q'=g,
for seS" and ¢" =0 for s & S".

Observe that for all B€[0,1) all row sums of Z# are equal to 1 and all entries
of ZP are non-negatlve Hence Z?,8¢€[0,1), and Z! are stochastic matrices.
In this section {(x#,y#): B€[0,1)} is a sequence as in definition 2.2.1.

222 REMARK
Let Q(x',p")! denote the restriction of Q(x',y") to S" and let s€S". Then the
S-th row of Q@xly )" equals q and is strictly positive. Furthermore the s -th row

of Q(x',y") equals q".

By ordening the states, the matrices P (x',y') and Q(x',y') will have the fol-
lowing shape:

[P(x'ph)! 0 0 0
0 P(x'y'y
1,1y —
P(x'y)= 0
0 0 P! yhf 0
P(Xl,yl)T] P(x],xl)TZ P(xl,yl)TH P(xl’yl)T
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(o' ph! 0 0 0]
0 Q(x'yhy?
o(x'yhH= 0
0 0 ox'yhH" 0
LQ(x‘,y‘)“ O(x',xhHT? .. o(x'yH™ o

Here P(xl,yl)"’ and Q(x',y')T" are restrictions of P(x‘,y‘), resp. Q(xl,yl),
to rows in T and columns in S"; similarly P(x',y')" is the restriction of
P(x‘,yl) to rows and columns in 7.

It is well-known (cf. Kemeny & Snell [1960]) that for he{1,2,....H}:

Q@ yH™= ("= P'yHN T PELYH™ 06Ty
Observe that (I7 — P(x',y)T)~! P(x!,y")™ has |T| rows and |S*| columns.
For seT and teS" entry (s,¢) of T — P(x',y")")™! P(x'y")™ gives the
probability that a stochastic process which starts in s will ever enter the
ergodic set S* through state .

2.2.3 LEMMA

a) Yix'yhH=v@ex' yH=:¥"(x'y") for s,teS", he{l,2,..H} and for
k=12

b) VE= Pyt for k=12

) VE=Vi=:V* fors,teSh he{l,2,...H) and for k=1,2.

PROOF:

By lemma 1.5.5 it holds that y*(s,x',y1)=Q(x',y 1), r*(x',y'). Now (a) fol-
lows from remark 2.2.2.

(b) follows from yk(xP,yP)=(1—B)yr*xP yP)+ BP(xP yP)vh(xP yP) (cf.
lemma 1.5.3 (c)). Taking limits and applying definition 2.2.1 gives the result.
Now (b) implies that V*= Q(x!,y!)V'*, which by remark 2.2.2 gives (c). W

Although its proof is rather simple, the next lemma turns out to be of great
importance in the sequel.

2.2.4 LEMMA

Z'P(x'yhH=2z

PrOOEF:

By definition 2.2.1 we have Z#(I —B P (x# y#)) = (1—B)I for all B[0,1).
Taking limits for B going to 1 completes the proof. u

The strength of this lemma becomes clear in the lemmas below.
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2.2.5 LEMMA
Let seS and let Z! be the s-th row of Z'.

H
a) There exists py = (u},p2,...,n ) eAH such that Z! = > uﬁ'qh.

h=1
b) If for the Markov chain related with P (x?,y*) the probability of ever reach-
ing S" is O when starting in s & S*, then p!=0.

ProOF:

a) By lemma 2.2.4 it holds that Z! is a stationary distribution of the Markov
chain related with P(x',y"). Since the set of all stationary distributions
for P(x',p') is the convex hull of {q',¢?%..,q""}, there is p,eA? as
desired.

b) If under (x?,yP) the set S* cannot be reached when starting in s, then it
follows that entry (s,¢) of P"(xB,yB) is 0 for all neN and all reS”.

Hence for all eS”* we have that entry (s,) of

o0

ZB=(1—-B) X B 1 P"!(xP,yP) is 0. But then entry (s,z) of Z! is also
n=1

0 for all t&S”, which implies that u?=0. [ ]

The next lemma says: ‘the limit of discounted rewards equals a convex combi-
nation of the limiting average rewards for the limit strategies.’

2.2.6 LemMA
Let seS andHlet us €A be as in lemma 2.2.5.
Then V¢= > ph (L y Y for k=1,2.

h=1

PRrROOF:
Let (,) denote the inner product.
By definition 2.2.1, remark 2.2.2 and lemmas 2.2.3 and 2.2.5 we have:

VE= lim Yh(s,xB yB)= lim (ZB, r¥(xB yByy = (Z1, rF(xyh))
& h h ke, 1 1 g h khe 1 1
= > g r Ty N = D Yt(x ). u
h=1 h=1
2.2.7 COROLLARY

There exist h',n? €{1,2,...H} such that:
Y (xl,y1)> ma}gx V! and v (xl,y1)> ma:gx V2,
SE se

2.3 STRONG INITIAL STATES IN THE GENERAL-SUM CASE

We show that, in any stochastic game, there are some starting states for which
there exists an almost stationary limiting average e-equilibrium.
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2.3.1 DEFINITION

An almost stationary limiting average e- equilibrium for initial state s is a pair of
strategies (1,0 ) such that (v ,0") is a limiting average - equilibrium for initial
state s and (7" ,0") consists of stationary strategies (x ,y") and retaliation stra-
tegies (m’,0"). Player 1 uses x unless he detects a deviation of player 2 from o,
in which case he immediately turns to using 7. For player 2 strategy o is simi-
lar.

A strong initial state is an initial state for which there exists an almost stationary
limiting average e-equilibrium, for all 0.

Since a strategy may consist of mixed actions for all stages, the phrase ‘unless
he detects a deviation of player 2 from o should be interpreted as: ‘unless
player 1 knows that the probability of player 2 playing ¢ is close to 0.’

2.3.2 REMARK
In this section let {(xB By: Be 0 [0,1)} be a sequence of stationary B-discounted
equilibria with hm (B y By= (x ') and which furthermore suits definition 2.2.1.

In addition to the results developed in the previous section for such a sequence
{(x®,»P): Be[0,1)}, the fact that we are dealing with stationary B-discounted
equilibria allows us to conclude the following.

2.3.3 LEMMA
a) For each x € X with Car*(x) CCarz(x};) and for all x e X:
V=P yYW!' =PGEy W' = P(xy"yvh
b) For each y €Y with Car*(y) C Car*(y}) and for all y€Y:
V2=P@E'yYW?r =P J)V: = P(x' y)V2
o Vk=vk for k=1,2.
PROOF:
By lemma 1.6.4 we have for all 8<[0,1):
vhxPyPy= (1= Br'(xP yP) + BP(xP yP)yp(xP pP)
= (1-Byr'xyP) + BPEyP)vp(xP yP)
= (1=Byr' (ep?) + BPOeyP) vh(x »P).

Taking limits for 8 to 1 proves (a). The proof of (b) is similar. By remark
1.8.4 we have yﬂ(xﬁ,yﬁ)> vg for all B€[0,1), hence (c) follows by taking limits
(cf. definition 2.2.1 and theorem 1.7.7). |

Lemma 2.3.3 implies that, if y*(x',y') = V* for both players and if each of
them can check whether or not his opponent is actually using y' or x', then
one could construct a limiting average e-equilibrium. This is possible by using
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a threat to retaliate, giving less than v*+e¢ in case of a detected deviation. This
is worked out more precisely in the next lemma.

2.3.4 LEMMA

If for he{1,2,...,H} it holds that Y*"(x',y")=V* for k=1 as well as for
k=2, then a limiting average e-equilibrium for initial states in S* can be made
by supplementing x' and y' with suitable retaliation threats.

PROOF:

Let €0 and let he{1,2,...,H)} be such that Y (x',y!) = V'* for k =1 and for
k =2. We divide the proof in three parts: in part 1 we show that each player
can detect deviations of his opponent with probability close to 1; in part 2 we
show that each player can retaliate if he detects a deviation; in part 3 we show
that (x!,y") supl)lemented with retaliation threats is a limiting average e-
equilibrium on §”.

PART 1: Player 1 can detect deviations of player 2 with probability close to 1.
Suppose player 1 uses x'.

It is clear that if player 2 at some stage chooses an action outside Car’(y'),
then player 1 immediately knows that player 2 is not using y'.

As long as player 2 chooses actions within Car?(y'), the play will remain
within S* and player 1 can count the number of times that player 2 chooses
action j in state seS" for all j and s. Hence at each stage neN player 1
knows the action frequency y{"(j) of action j in state s. If player 2 really uses
»!, then y{(j) should converge to y!(j) as n goes to infinity.

Let Y{(j) be the random variable which denotes the action frequency of
action j in state 5. So y{(j) is a realization of Y{(j). It is well-known (cf.
Billingsley [1979]) that for every a,6>>0 there exists N ,5 €N such that:

Prob, ' (1Y — yilI>a for any s€S* and any n=>N 5} <é.

If for all n=>N,; and all seS" it holds that [[y{ — y!||<a then, by con-
tinuity arguments, the limiting average reward to player k is at most
}/‘h(xl,yl) + aK and at least yk”(x',yl)—aK for some constant KeN. So if
player 1 does not detect a deviation of player 2, then the limiting average
reward to player 2 is at most Y (x',p!) + aK.

PART 2: Player 1 can retaliate if he detects a deviation of player 2.

Suppose at some stage n player 1 detects a deviation of player 2, i.e. player 2

chooses j at that stage in state s and either j& Car(p!) or =N, and
ly§” = ys 1> a.

If, from stage n+1 on, player 1 now uses a retaliation strategy =, (cf.

definition 1.8.5) then the limiting average reward to player 2 will be at most
z

> pls, x4,)) (vF +e/2).

1=1

By lemma 2.3.3 we have:
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z z
S p@ls,xL, e +e/2)< D p(tls,xl,j)Vi+e/2) < V2+e/2.
(=1 (=1

Since y*(x!,y') = V% = V2 (cf. lemma 2.2.3), we conclude that the limiting
average reward to player 2 will be at most y?*(x',p!)+e/2.

PART 3: (x',p") can be supplemented with retaltatzon threats to become a limiting
average e-equilibrium for all starting states in S*.
Let ae(0,e/4K) and take 6>0 such that

(1—-82(Y*(x' yH—aK) — 1—(1—8)M = v (x! y)—e/2 for k =1,2.

Now player 1 can try to keep player 2 from deviating from y' by using the
almost stationary strategy =, defined by:
a) use x! unless:
i) player 2 chooses an action outside Car*(y' ) or
ii) for some n=N 5 and some s€S" : Ily(") —Js N> a
b) if (i) or (ii) occurs, start retaliation by using ¢/, from that stage on.
For player 2 the almost stationary strategy o; is defined analogously.

From these definitions it follows that:
Vi@ 00) = (18 (x' yH—aK)—(1-(1-)M =v"(x' y)—e/2.
From parts 1 and 2 we conclude that for all 6€Z:
Y (7 ,0) < yzh(xl,yl) +e/2.
Similarly one can derive that for all 7eIl:
Yo < Yy +e2.
Hence (7;,0;) is an almost stationary limiting average e-equlhbnum for all

starting states in S*. n

2.3.5 THEOREM
For any general-sum stochastic game there exist strong initial states.

It is clear that this theorem follows directly from lemma 2.3.6 below, which
tells that the condition of lemma 2.3.4 is automatically fulfilled for some .

2.3.6 LEmMma
There exists h” €{1,2,...,H} such that:

y”'.(xl,yl)Z max plh = i and ,Y2h'(xl,yl)> yH
PRrROOF:
For non-empty E C{1,2,..,.H} let S¥:= | J S".

heE
Let E,:= {he{1,2,...,H}: y"(x',y') = max V}}. Then by corollary 2.2.7 we
s

have that E |5~ 2.
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Now let T'; be the set of transient states for which plays started there lead to
S under (x',y!) with probability 1. So T,:= {seT: entry (s,¢) of Q(x',p")
is 0 for all r&S"").

Now take a stationarby strategy x " for player 1 such that for BELO, 1):

x; =x! for all s¢S“ UT, and Car(x;) = Car(x®) for all seS™' UT;.
Remember that Car(x?) is independent of B€[0,1) (cf. definition 2.2.1).
Observe that each ergodic set with respect to (x,y') is either one of the sets
S* with h  E, or it is a subset of T, us®. . .

In order to prove that for some &”€E, it holds that y* (x',y")=V? we
make use of the following observation: There are E, and T, with @#F, CE,
and T, C T, such that T, US™ is an ergodic set with respect to (x",y").

To show the correctness of this statement, suppose that it is not true.
Then the ergodic sets with respect to (x”,y') are necessarily the sets S*
with h&E;, and @5{1,2,...,H}\ E,. But then, using lemma 1.6.4,
lemma 2.2.3 and analogues of lemmas 2.2.5 and 2.2.6 we conclude that for
each seS there is p, eA¥ such that:
Vi=limyh(s,xP yP)=lim yhs,x"p)= 3 mye"p")
Bl B heE,
= 3 phy(x!,y") <max V..
h&E, teS

Since this is clearly a contradiction, our statement is correct.

So there are @5<E, CE, and T, CT,; as desired. By definition of x* and by
the fact that Car?(x?) is independent of B€[0,1) it follows that T, US E: is an
ergodic set with respect to (x”,y!) for all B€[0,1). Once more applying lemma
1.6.4, lemma 2.2.3 and analogues of lemmas 2.2.5 and 2.2.6 we obtain that for
each seS”* there is pseA¥ such that:

Vi=limyz(s,x?,yP)=limy}(s,xPy )= 3 phy*(x'p!) < max y(x'p").
A1 Bt hek, hek,

Hence there is h* €E, and seS" such that yz”'(xl,y') > 2= & |

2.3.7 REMARK

Observe that for the almost stationary limiting average e-equilibria, as constructed
for some S" in the proof of lemma 2.3.4, the property holds that a play started in
S" will remain in S* with probability close to 1.



Particular initial states in stochastic games 35

2.3.8 EXAMPLE
1,—1 0,0
1| 1
0,0 1,—1 0,0 1,—1
2 3 2 3
State 1 State 2 State 3

Notice that this is again the big match (cf. example 1.7.4). For this stochastic
game the unique stationary p-discounted equilibria are given by
PP = ((172—B), 1—B)/(2—B)), (4,%)) (for starting state 1). It is clear
that (x!,y") = ((1,0),(%,%)) is not a limiting average e-equilibrium for starting
state 1. However, yl(l,xl,yl)z k="vi=vl and yz(l,x',y‘)Z — =
V2 =v3. So by lemma 2.3.4 the pair of strategies (x',y') can be supplemented
with retaliation threats to become a limiting average e-equilibrium (player 1
has to check whether or not player 2’s action-frequencies for state 1 are close
to (%,%) in the long run; player 1 cannot gain by deviating against y').

So state 1 is a strong initial state for this stochastic game. It is also clear that
state 2 and state 3 are strong initial states. Hence we have an almost station-
ary limiting average e-equilibrium for this stochastic game. Moreover for some
starting states (2 and 3) we even have a stationary limiting average equili-
brium. The next example shows that in general there need not be initial states
for which there is a stationary limiting average equilibrium.

2.3.9 EXAMPLE

2,—-2 -2,2
1 1
-11 1,—1
2 3
State 1
-1,1 —-2,2 1,—1 2,-2
2 3
—-2,2 0,0 2,—-2 0,0
2 3
State 2 State 3
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For this stochastic game v! =(0,—1,1) and v2= (0,1, —1). Since this stochas-
tic game is in fact a zero-sum stochastic game, any limiting average reward for
an equilibrium for initial state s should be equal to the threat-point (v 1)

For this stochastic game there is no stationary limiting average equilibrium for

any of the initial states. We discuss the initial states one by one.

a) Suppose that (x,y) is a stationary limiting average equilibrium for initial
state 1. If x;=(1,0) then y;=(0,1) since y is a best reply against x for

- player 2. But then y'(1,x,y)= —2 < v}, contradiction.
If x,5(1,0) then y,=(1,0) and 'yz(l,x,y)>1 since y is a best reply
against x. Hence yl(l,x,y) <—1<v}, contradiction.

b) Suppose that (x,y) is a stationary limiting average equilibrium for initial

state 2. If y,=(1,0) then x,=(1,0) and y2(2,x,y)= 1 since x is a best
reply against y for player 1. But then y is no best reply against x for
player 2, contradiction.
If y,54(1,0) then player 1 can achieve a limiting average reward at least 1
by playing (0,1) in state 2, playing (1,0) in state 3 and by playing in state
1 the action (1,00 if y(1)=% or (0,1) if y;(1)<¥%. Hence
72(2,x,y)_< —1 < v}, contradiction.

c) Suppose that (x,y) is a stationary limiting average equilibrium for initial
state 3. If x3=(1,0), then y;=(1,0) and y'(3,x,y)=1 since y is a best
reply against x for player 2. But then x is no best reply for player 1
against y, for by playing (0,1) against y in starting state 3 player 1 could
get limiting average reward 2, contradiction.

If x354(1,0) then player 2 can get limiting average reward at least 0 by
playing (1,0) in state 2, (0,1) in state 3 and (%,%) in state 1. Hence
y‘(3,x,y) <0< v}, contradiction.

However, although for none of the initial states there is a stationary limiting
average equilibrium, an almost stationary limiting average e-equilibrium exists
(for all initial states). '

This follows from lemma 2.3.4, because it can be verified that for each 8<[0,1)
the pair (x5, yB) defined below is a stationary B-discounted equilibrium and
(xl,y1)= lénll (x? ,yB) satisfies the condition of lemma 2.3.4.

For B€[0,1) define (xB,yB) by:

_ 3-p-VO8E —3128+V9 8
X?—( ,B ’ B ),

_3—-V9—88 —3+28+V9—88
Xg_( 2B s 2B ))
x§‘—‘(3_ V9—88 —3+2B8+ V9—8,B)

28 28 ’

W= (4%),
y§=(3_ V9—88 —3+28+ v9—8,8)

28 28
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§:(3— V9—88 —3+28+V9—88 )
y 2B b ZB .

It follows that x!= ((1,0),(1,0),(1,0)) and yl‘—‘((’/z,f/z),(l,O),(l,O)). Further-
more we derive that:

3-48—V9—88 —3+48+ \/9‘—3?5)

vp(xPyP)= (0,

28 ’ 28
BB yh= (0, —3+4B;,~B\/9—8,B ’ 3——4,8;3\/9—8[3 )

Yx'yH=(0,—-11) =1;gv}g(x",y’*) =V,
Y(x'yhH=(0,1,—-1)= lgglﬁa(xﬁ,yﬁ) =V

Since the states 1, 2 and 3 are each ergodic sets with respect to (x',y!), we can
apply lemma 2.3.4 for each state.

2.4 (e-)BASY INITIAL STATES IN THE ZERO-SUM CASE

In this section we show that for each player there are easy states in any zero-
sum stochastic game. For all states with minimal limiting average value,
player 1 has a stationary limiting average e-optimal strategy. For the states
with maximal limiting average value we give a sufficient condition for player 1
to have a stationary limiting average e-optimal strategy. Similar results hold for
player 2.

2.4.1 DEFINITION
A state s is called an (e-)easy initial state for player k zf player k has a statzonaty
limiting average (e-)optimal strategy for the game starting in s.

It is clear that the set of e-easy initial states for player k contains the set-of
easy initial states for this player. However, there need not be states which are
easy for both players, whereas all states may be e-easy for both players. Hence
the set of e-easy states for a player is generally larger than the set of easy states
for this same player. The following theorem is due to Tijs & Vrieze [1986].

2.4.2 THEOREM
For any zero-sum stochastic game each player has at least one easy initial state.

The proof presented by Tijs & Vrieze [1986] for this theorem is based on the
result of Bewley & Kohlberg [1976] who showed that there are solutions for
the B-discounted zero-sum case which can be written as power series in frac-
tional powers of (1—p) (cf. theorem 1.7.5). We give a new proof for theorem
2.4.2 based on the results derived in section 2.2.



38 Chapter 2

2.4.3 REMARK

In this section {xP:Be[0,1)} is a sequence of stationary B-discounted optimal
strategies for player I, which converges to x'. Likewise we have {y*:B€[0,1)} for
player 2 converging to y'.

PROOF OF THEOREM 2.4.2:

We prove the existence of easy initial states for player 1. Let y* be a stationary
limiting average best reply against x' (cf. remark 2.4.3 and lemma 1.6.2).

Let ZB, vk S' .. SH etc. be as in definition 2.2.1 for the sequence
{((xA.y"): B[O, 1)}). ‘

By corollary 2.2.7 there is h'€({1,2,....H} with y"* (x!,y") > max V}. For all

s €S we also have, using theorem 1.7.7, that:

V= lim vh(s,x8,y") = lim v (s) = v.
5= myp(sxy ) = lim v(o) = v;

Hence for all seS"l and all 02X we have:

*
v'(s5,x!,0)= yl(s,xl,y )= max V! = max v).
. . teS teS

! is limiting average optimal for all s€S" | |

We conclude that x
Observe that by the above proof it follows that any limit of stationary (-
discounted strategies (8 tending to 1) is limiting average optimal for some
starting states. Moreover, for player 1 we found that among those easy initial
states there are states for which the limiting average value is maximal. Simi-
larly we conclude that for player 2 the strategy ! is limiting average optimal
for some initial states for which the limiting average value is minimal.

The converse is not true: if for a state the limiting average value is maximal
(or minimal), then this does not imply that player 1 (2) has a stationary limit-
ing average optimal strategy. This is demonstrated by the next example.

2.4.4 EXAMPLE

0 1 0 -1
1 1 2 2
1 0 -1 0
1 2 2 1
State 1 State 2

Payoffs are again those to player 1 to be paid by player 2. It is easy to verify
that for this stochastic game the limiting average value v' = (0,0). For player 1
(2) a stationary limiting average e-optimal strategy is x= ((1,0),(1—¢,¢€)) (resp.
y = ((1~¢¢), (1,0)).

It is clear that for initial state 2 (1) player 1 (resp. 2) has no stationary limiting
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average optimal strategy. So, although the value is maximal as well as minimal
for both starting states, each player has a stationary limiting average optimal
strategy for just one of them.

As we have just remarked, there are easy states for player 1 among the states
with maximal limiting average value. The next example illustrates that there
need not be easy initial states for player 1 among the states with minimal lim-
iting average value.

2.4.5 EXAMPLE
1 0
1 1
0 2 2
1 2 2
State 1 - State 2

Payoffs are again those to player 1 to be paid by player 2.

For this stochastic game the limiting average value v! equals (1,2). For player
1 a stationary limiting average e-optimal strategy is given by x= (1—¢,e), the
mixed action to be used in state 1. For player 2 a stationary limiting average
optimal strategy is y* = (1,0).

It is easy to see that for state 1, the state with minimal limiting average value,
player 1 has no stationary limiting average optimal strategy.

Nevertheless, states for which the limiting average value is maximal or minimal
are special, as is illustrated in the following two theorems.

2.4.6 THEOREM _ .
Let y™:= mlg vl and let S™ ;= {seS§ vl =ymin),
seS :

All states in S™" are e-easy for player 1.
PROOF:

Let y €Y be arbitrary.
Using that y};(xﬂ Y)=v }; (cf. remark 2.4.3) and using theorem 1.7.3 we have:

(1=PB)r'(xPy) + BP(xP,y)vh = v} for all Be[0,1).
Multiplying this inequality with Q(x?,y) gives that:
Q(xPyyrl(xP.y) = Q(xP,y)v} for all Be[0,1).

Hence for B8 such that Ilv};—vlll<c (cf. theorem 1.7.7) we have, by lemma
1.5.5:

Y P y)= 0P y)ri(xBy)= QP yw)

= Q0P ypw!—el, =™ —e)l,.
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Thus x?, with B such that [lvp—v'lI<e is a statlonary limiting average e-
optimal strategy for player 1 for all initial states in S™". |

Recall that by theorem 1.7.5 (Bewley & Kohlberg [1976]) we may assume that
z z
there are NeN, xg e ><1 A™, x1,X5,...€ XlRm‘, such that:
§= §=

o0
xB="3 x,(1—B)"" for all B close to 1.

n=0

. m

Since x? X, it holds that: x'= x,; >} Xns(1)=0 for all n=>1 and for all s€S;
i=1

ifl x0s())=x15())=...=x,_15({))=0 for se€S and n=1 then x,(i)=0;

> x,(1— B)""NeX for each /eN. We use these facts to examine limiting aver-
n=0
age e-optimality for player 1 in states with maximal limiting average value.

2.4.7 DEFINITION
Let y™:= maxvs and let S™:= {seS:v;=vyM*},

Let S™: {s eS max: x 1 is limiting average opttmal for intial state s}.
Define x Pex by X xs =x] forseS” and xf Z x,(1=B)"N for seS\ S".
n=0

Let yeY be a stationary limiting average best reply against )_cﬁ, for all B
suﬁ?czently close 10 1L

Define S™:=8"U {E CS™*\ S": E ergodic with respect to (x ,ﬂ}

Define A:= S“‘a" \S™.

2.4.8 THEOREM

a) S F#9.

b) X' is limiting average e-optimal for initial states in S™" for B close to 1.

c) If hm 1-BI*—- ,BP(xB,jDA) '=0, then X' is limiting average e-optimal

Sfor all mmal states in S™ for B close to 1. (Here the superscript A denotes
the restriction to rows and columns corresponding with states in A)

PRrOOF:

a) In the above we noticed that, by the proof of theorem 2.4.2, there are states
in §™> which are easy for player 1, i.e. for which x' is limiting average
optimal. Hence S5~ @ .

b) We already noticed that:
(1=PByr'(xP.y)+ BP(xP,y)vp=v} for all yeY.

Letting 8 tend to 1, this gives us that P(x',y)v! =v! for all yeY.
Hence, if player 1 uses x' in $™*, then play will remain in S™* with proba-
bility 1, no matter what strategy is used by player 2.
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From the fact that for initial states in S* the strategy x! is limiting average
optimal, one can conclude that, if player 1 uses x' for initial states in S~, then
play will remain within S* with probability 1. Again this does not depend on
the strategy used by player 2.
We define (cf. theorem 1.7.5):

xB(N):= Nz_lx,,(l —By/N and xB(NY:= S x,(1— By,
n=0 - n=N+1

Notice that lim (1 B! xP(N)=0 and that xB(N)=X, for seS\ S".

We show:
For any set E CS™\ S”, such that E is ergodic with respect to (Eﬂ,ﬁ, we
have that v' (s, X y) = v" —e¢ for any initial state s €E and B close to 1.
For B close to 1 we have vp < (1—B)r!(xA,y) + BP(x*,y) and hence:

vh <(1—Byr'xPW).y) + BP(xP(N).yvp
+(1=B)r'(xn.p) + B A= B)P(xn.y v}
+(1=B)r' xPW),p) + BPPWN).y .

Let Q% denote the restriction of Q(x?(N),y) to rows corresponding with states
in E. Hence Q% has size |E|Xz. Multiplying the above inequality by 0% yields
(cf. lemma 1.5.2 (e)):

Qfvp <(1—B)QE r'(xP(N).y) + B Q)
+(=BY QR r'(xn,p) + B(1—B) QFP (xy,y)v}
+(1=BQE r' xPM).y) + BQEP(xF(N).y)vh:
Hence:
Qfvp <QEr'(xF(N).y)
+(1=B)QE r'(xn.p) + BQEP(xy.y )V}
+ QEr' (xB(V).y) + B1—B) "' QP (xP(N),p)v.
It can be verified that:

lim (1 —B0E rl(xy,)=0, lim BOEP (xu,p)vp <0

lim QE r' (xR, y)=0, lim A(1 —B) ' QEP (xF(N),y)vh = 0.
To show that %ﬁl BQ%P(xN,f)v}g < 0, take 6>0. For s € E we have:

z m,

S s O = S S xn@)p UlsiF ).

t=1 i=lt=1

For B close to 1 we have:
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S p s, iy vp(r) <v™™ + 8 for all i €{1,2,...,m}.

t=1

For i with x,(i)<0, we have i Car(x(N)), as remarked above, and hence
for those i and B close to 1:

> pUs,iyvp(®) = 3 p(ls,iyvp(t) = v 8.
t=1 teE
Combining these inequalities yields:
> D an@plsipIvp< 3 xp@QO™ =8+ T xn(HE™+8)

i=lt=1 i,x,(1)<0 i,%,(1)=0

=26 3 xn0).

i, x5, (1)=0
Since 6>0 was arbitrary, we conclude that %ﬁl BP(xy,y)v }; < 0, and hence that

lim BOEP(xn.yvp<0.
Altogether we have:

mx1F = lim OBy} <lim Q8 r' (xP(V),
’ i Ceve < Qe 0TADY)
+lim (1=B)0f r' (xw.y) + lim BOEPCxwyvh
+lim Of r' P (N),p) + lim B =B~ QEP (P (V)Y
<1lim 08 r'(xA(V).7) = lim y' &" 7)E.
iy Q8 TN =iy )

Because y is a limiting average best reply against )_cﬁ, for all B8 close to 1, this
implies that X~ is a limiting average e-optimal strategy for all initial states in
E, for B close to 1. This result together with (a) shows that X is limiting aver-
age e-optimal for all initial states in ™, for B close to 1.

c) We show: 8 )
If lgﬂl(l— BUIA—BP(x ,yy) '=0, then X~ is limiting average e-optimal

for all initial states in A, for B close to 1.
Let vj', r'(xA,y)",1 (etc.) denote the restriction of v, r'(xA,y) and 1 to
coordinates in 4. Let vj'C (etc.) denote the restriction to coordinates in
A°:= S\ A. Also let P(x? ) (etc.) denote the restriction of P(x?,y) to rows
and columns corresponding with states in A4; let P(x? V)4 (etc.) denote restric-
tion of P(x”,y) only to rows corresponding with states in 4.
As above we start off with:

v <(1—=B)r'(x.y) + BP (xP.y)vh.

This time we derive:
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v <(A=B)r'xPpyt + BPPW).yY'vE! + BP(xB(N)yy viic
+ BA—B)P(xy,7)avh + BPPIN).Y) 47}

Subtracting BP(x#(N),yy? vk! from both sides, multiplying both sides with
(I* —BP(xP(N),y)*)™!, which exists because x#(N)eX, and by taking limits
we obtain:

ymax 4 = %vk“’ <lim BUA —BP (xB(N),3)*) ™' P (xB(N), 7)A€
+lim(1 =B = BP (P p)y) ' [r' (B p)* +BP (xn.y)avh
+B(1=B) ' P(xP(N).Y)avh].

Observe that each term within the square brackets is bounded uniformly in 8.
Hence the condition in (c) gives:

v <lim BT —BP (PN TP (PN i
= lim (11 =BRGP 7Y T PPN,y O €

Now we will use the following relation, which holds for any square matrix P
such that (I —P)! exists:

I—BP)"'=U—P)' —(1-PU—-BP)'PU—P)"".
This can easily be verified by (left-) multiplying both sides with (I —8P).
Applying this for P= P (xP(N),y)*, using that
PA) Y IA—P (xBN),p)Y)™! P(xP(N),p)C is bounded and that
lim (1= B)(I" = BPGF(N)y)") ™' = 0, yields:

ymax A < 1;?11 I — P(xB(N),p)) ! P (xP(V),y A A€,

Since v'4€<y™*14C, the inequality sign in the above inequality can be
replaced by an equality sign. Next observe that entry (s,#) of matrix
I —PxAN) ) P(xP(N ), € denotes the total probability of ever enter-
ing A° at state 7 when starting in s€4. Hence the probability of entering S™"
when starting in A4 is close to 1 for B sufficiently near 1.

Thus we have that y!(s,x",y) = v™* —e for each s €4, for 8 close to 1. |

2.4.9 COROLLARY .
If for a zero-sum stochastic game we have that S= S™" = S™*, then both
players have stationary limiting average e-optimal strategies.

This result can also be found in Bewley & Kohlberg [1978] or Vrieze [1987-a].

2.4.10 REMARK
o0
Observe that each entry of (I — ,BP(EB,)_/)“‘)_1 can be written as > c,(1—B)"'"

n=I
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with leZ and c,€R. Then the condition in theorem 2.4.8 (c) is fulfilled if and
only if I>—N for each entry. This holds for instance th all states A are transient
with respect to (x',), since in this case hm I —BP(x ,y)y*") ! exists.

IfP(x ,})AC;&O for eacth €A, then the condztton of theorem 2.4.8 (c) automati-
cally holds because ||P"(x" ,y)*I<(1—c(1—B)"N)" for some constant c eR.

One might think by now, that maybe all states in S™* are always e-easy for
player 1. The following example however illustrates that in S™ there can be
states that are neither easy nor e-easy for player 1.

2.4.11 EXAMPLE
0 0 0 2
1 2 2 2
1 0 1 0
3 3
State 1 State 2
1
4

State 3

State 4

In this example v=(1,1,1,0). It is not hard to verify that for any stationary
strategy x player 2 has a best reply y with y (1,?3, »)=7'(2,x,9)=0. To see that
v=(1,1,1,0) examine the stationary stratey x given by the mixed action
(=V1=8)/B,(—1+B+V1—B)/B) for states 1 and 2, and find that:

. ~B . .
1 = limy(s,x ,y)< im v}(s) = v!(s)<1
limyh(s, )< lim vhs) = v'(s)

for s =1,2 and any pure stationary B-discounted best reply y. We do not claim

that X~ is B-discounted optimal, we just use it to provide a lower bound for
8

v,

The next example shows that there may be states which are neither e-easy for
player 1 nor for player 2 and that for each player S™" US™ may be the set
of all his e-easy initial states.
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2.4.12 EXAMPLE
0 ) 1 1
1 1 2 9
2 0 —1
1 1 3 State 2
—1 1 0 =1
3 2 1 3
State 1 State 3

Payoffs are again those to player 1 to be paid by player 2.
The unique stationary B-discounted optimal strategies for this stochastic game
are (for starting state 1) given by:

xf=yP=(1/(4=28),1/(4=28), 1= B)/C=B)).
For all B€[0,1) we have vg = (0,1, — 1), hence also vi=(0,1,—1).
So §™* = {2} and S™" = {3}.
State 1 is neither e-easy for player 1 nor for player 2, since each of them faces
a ‘kind of big match’ for starting state 1 (cf. example 1.7.4).

2.4.13 REMARK
For a zero-sum stochastic game a strong initial state is not-necessarily an e-easy
initial state.

This remark is illustrated by the examples 1.7.4 and 2.3.8. In these examples
state 1 is a strong initial state but state 1 is not e-easy for player 1.
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Chapter 3

Existence of limiting average e-equilibria

3.1 INTRODUCTION

Since Mertens & Neyman [1981] showed that the limiting average value exists
for any zero-sum stochastic game, the major remaining problem in stochastic
game theory is that of existence of limiting average e-equilibria for the
general-sum case.

By putting extra conditions on the payoffs and/or transition structure of the
stochastic game, several authors have shown that limiting average (e-)equilibria
exist for subclasses of stochastic games (cf. chapter 4). In this chapter we
present sufficient conditions for the existence of (almost stationary) limiting
average e-equilibria. However, our conditions are of a more general nature. We
do not put conditions on the payoff/transition structure from the start, but our
conditions are formulated in terms of asymptotic properties of sequences of
stationary B-discounted equilibria. Remember that stationary B-discounted
equilibria exist for any general-sum stochastic game. In chapter 4 we show that
our conditions are automatically fulfilled for several of the subclasses that have
been examined in literature. It is not clear whether our conditions hold for
any general-sum stochastic game. Nevertheless our approach shows that in
general the set of strong initial states is larger than the union of ergodic sets
for which ‘Y**(x!,y1)y = V** for k =1,2’ (cf. lemma 2.3.4).

3.2 FINDING MORE STRONG INITIAL STATES

3.2.1 REMARK
In this section let {(xP,y?):Be[0,1)} be a sequence of stationary B-discounted
equilibria with llgrll(xﬁ JP) = (x',p') and which _furthermore suits definition 2.2.1.

Observe that all results in section 2.3 were derived for such a sequence, so we
can use those results here. We introduce some more notations.

3.2.2 DEFINITION

For our sequence {(x{’,)_)ﬁ) : B€[0,1)} we define:
I:={he(l,2,. . H}:y"*(x',yH=V" and YAy = vy,
Iy:={he{1,2,. . H}:y*(x',y)= V" and Yyl = vy,
I:={he{1,2,. . H}:y*x! yH< v},
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Iy:={he{1,2,. . H}:y"(x' y)= V" and ¥ (x' y') < V?},
E:= {se€S: for initial state s limiting average e-equilibra exist, for all ¢=>0}.

Observe that /%@ by lemma 2.3.6 and /o CICE by lemma 2.3.4, hence
E+#@ (cf. theorem 2.3.5). Furthermore notice that I, 7, and I, have empty
intersections and S = TUSTUS" US". Recall that T is the set of states that
are transient with rtespect to (x!,y') and that S$4= hUAS" for any

A C{1,2,..,H}. The following example shows that 7, I, and /, may all be
empty, whereas I, does not need to be equal to 1.

3.2.3 EXAMPLE

1,0 0,1
3 2
0,2 I,Q 0,1 1,0
| 1 1 2 3
State 1 State 2 State 3

For this example the unique stationary B-discounted equilibria are given by
(the mixed actions in state 1): (x?,y#)= ((2—2B)/(3—28B), 1/(3—2B)), (%, %))
and the corresponding B-discounted rewards are given by:

vh(LxByP)y = %= vh(1), v3(1,xB yP)= %=v}(1) for all B€[0,1).
Hence (x',p") = ((0,1), (%, %)),
Y'Lx'yH)=4=r=v] and Y(L,x' y)=1>%= Vi =i

For (x',p!) there are three ergodic classes: S'= {1}, §2= {2}, §° = {3}. It is
easy to see that T= @, I = {1,2,3}, Iy = {2,3}, [, = I,= &@.

Since for all ergodic sets in this example the condition in lemma 2.3.4 holds,
the proof of that lemma supplies a limiting average e-equilibrium for this sto-
chastic game.

It is clear that for any stochastic game for which TUS" US"*= @ for some
sequence of stationary B-discounted equilibria (x#,y#), we can apply lemma
2.3.4 to conclude the existence of a limiting average e-equilibrium (for each
starting state). But how to proceed our search for a limiting average e-
equilibrium if TUS" US"£@? We deal with these matters in this section.
We start by examining one more example and then we return to the general
problem of existence. The objective of the discussion on next example is to
create intuitive understanding for the lemmas that follow.
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3.2.4 EXAMPLE
1,0 0,1
1 1
0,2 _ 1,0 0,2 1,0
2| 3 2 3
State 1 | State 2 State 3

We already gave a brief discussion of this stochastic game (due to Sorin [1986])

in example 1.8.6. There however, we did not actually give a limiting average -

equilibrium for this stochastic game. Recapitulate that the unique stationary

B-discounted equilibria were given by:

PP =(2/B3—B), (1-B)/(3—B), (4,1)).

The corres ondmg ,B d1scounted rewards for startmg state 1 were given by:

vh(1,xB yF)= 4= v} (1) and v3(1,x#,y#)= %= v}(1) for all B€[0,1).

Hence (x ,yl) ((1,0),(%, %)), V= ‘ = (1/2,0 1) and V2=y2=(%,2,0). So

there are three ergodic sets with respect to (x',p!): S'=(1), $?={2} and

S3—{3} It is clear that Io—{2 3} T=®, I,=2 and I,={1}, because
Y'(L,x'yH= %=V} and y*(1,x' y )= < V3.

Now observe that state 1 is transient with respect to (xB,yﬁ) for all B€[0,1),

whereas state 1 is recurrent with respect to (x!,y'). This means that for all

B€[0,1) the payoffs in states 2 and 3 may partly determine the B-discounted

rewards for state 1 and hence the payoffs in states 2 and 3 may have their

impact on lnn yB(l xB,y )= V% for k=1 and 2. Next observe that with

respect to (x ,y ') any play will remain in state 1 and hence yk(l x ,y ) is
determined only by the payoifs in state 1; moreover yk(l x! 1y k(l x! o4 h.
Let us examine hrnyp(l ,xP.yP), which equals hmyﬁ(l xA,y1y since y=y! for

all ,Be!O 1). By lemma 2253and lemma 226 there are pl, u?, u3 €[0,1] such

that 3 ph=1 and V¥= 2 phy¥(x!,p!) for k=1,2. Furthermore those
h=1
lemmas state that, if under (xB % ) there are no transitions possible from state

1 to Sh he{1,2,3}, then p'=0. For th1s example we have that
Plixlyh=45< 2/3 V2!, Recall that y*!(x!,y!) and V2! are respectively the
worth of Y¥’(x',y") and V? for ergodic set S'={1}. Hence it follows that
pl<1. This unphes as will be worked out below in a more general setting:

Ep(tll (0,1),y")>0 and Zp(tll oDy =Vi=v?.

Since y2(x!,y") = V22 and y?(x',y')= ¥ we conclude that if, a§a1'nst ¥,
player 1 uses the pure stationary strategy (0,1) in state 1 and x' in S* and S°,
then with probability 1 a transition to S?US> will occur and hence
yZ(I,x*,yl) = V2, where x" is strategy (0,1) for player 1 (cf. example 1.8.6).
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3
By lemma 1.6.4 (b) we also have that >} p(t|L,x",y") V= V], which follows

=1
by taking limits for 8 to 1 in

3
ve(LxPy ) =vp(Lx"p) = A=Br'Q,x"y) + B I p@|Lx" p ) vpex"ph).
=1
Since y2(x!,y')=V"? and yB(x',p!)=V" we can also conclude that
Y'(,x"y)= V] = V" (cf. example 1.8.6).
Hence we have that y*(s,x",y') = V¥ for all seS and for k =1,2. So both
players should be rather satisfied with these limiting average rewards. By
lemma 1.5.5 and lemma 1.6.4 we even have that yl(l,x*,yl)Zyl(l,xl,yl) SO
player 1 has no profitable deviations against y'. Unfortunately y' is not a best
reply for player 2 against x*. Hence (x",y') is not a limiting average equili-
brium. However it should be observed that if player 1 uses the stationary stra-
tegy xM:=(1—=Mx! + A" (= (1 —\,)) for this example) then, for any Ae(0,1]
we still have that for (x*,y!) a transition from state 1 to S?US> will occur
with probability 1. Moreover v*(s,x*,y!) = v*(s,x",y!) for all s€S, all Ae(0,1]
and k =1,2. '
Now we can construct an almost stationary limiting average e-equilibrium.
Let €0 and let Y™ and y™ be as in the proof of theorem 2.3.4. Let X™ be
the random variable denoting the action frequencies of player 1 within
Car(x") up to stage n; let x™ be a realization of X™. Then, pretending that
absorption does not take place, for each >0 and §>0 there is N ,5€N such
that:

Prob, , {1 X™ —x'l| > a for any n= N} <8 and
Prob, ,+ {ll Y® -yl > a for any n=> N5} <6
Choose ae(0,e/4M) and 6>0 such that:
A=)*Gre" pH—aM)—(1— 1 —8)HM = Yi(x',p!) — /2 for k =1,2.
Choose Ae(0,e/4M) such that: '
Prob,» ,» {absorption before stage N ,5}<<8.
Choose N)eN, Ny > N, such that:
Prob,» ;' {absorption before stage N} =1-4.

Define 7, by:
a) use x* unless:
i) player 2 chooses j & Car(y')
i) Ily® —p!lI>a for some n=N 4
iil) at stage N, play is still in the initial state
b) if (i), (ii) or (iii) occurs, then use some retaliation strategy ;.
Define o; analogously.
Now it can be verified that (7.,0,) is an almost stationary limiting average e-
equilibrium.
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In order to generalize these ideas we introduce the following notations.

3.2.5 DEFINITION
For a non-empty A C S AZ£S, a pair of stationary strategies (x,y) and B<[0,1)
we define:

a)
b)
©)

d)
€)

f

P(x,p)! is the restriction of P(x,y) to rows and columns corresponding with
A.

P(x,y)iC is the restriction of P(x,y) to rows corresponding with A and
columns corresponding with A° = S \ A.

For any a€R’ the restriction of a to coordinates corresponding with A (A°)
is denoted as o (o).

I 4 zs the zdentzty matrix of size |A|X|A|.

[ms,]seA,eA = (1-BU* —BPEFyY) 'a

M h{n M, which limit we assume to exist wzthout loss of generality.
Ni:= il cqiens= BU'—BP(xPy'y") "' PGPy YIC and
N 11m NB, which limit we may also assume to exist.

Using this definition the next lemma follows from elementary calculations. We
therefore omit the proof.

3.2.6 LEMMA
Notations us above. Then:

a) mb =0 for all seA,teA and Be[0,1);
nb >Ofor all seA,teA° and B€[0,1).
b) 2 mb + E ny=1 for all s€A and B<[0,1).
c) yﬁ(xﬂ )A MEP2(xBy ’)A + Nﬁ Y3(xP,y YA€ for all Be[0,1).
d ™ —M1 2(x ,yl)A + Ny v
e) nﬁ— .3 2 2 mB- xB (" )p(t]s i",yk) for each seA, teA®.
sedi=1
3.2.7 LEMMA

Notations as above. .
Let A=S" US¥ U...US" and let scA. Then there is p,eA® such that:

a a a
2 m;t r2(taxz!=ytl):>\s 2 .uu’v' YZh (xl,)’l), Where }\s: 2 m},e[O,l].

ted

a=1 ted

PrOOF:

By definition 3.2.5 we have that M4(I1—BP(xPy'Y)=(1—B)I* for all

Be[0,1). Hence M} 4 =M, Y P(x',y"y, which implies that for each s€A the
s -th tow of M} 1s a multlple A, of a stationary distribution for P (x!,y'Y!.

Remember that q"™ is the restriction of the unique stationary distribution ¢""

of P(x',p") on S* to coordinates corresponding with states in A (cf.

definition 2.2.1). So we have that for some p, €A®:
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a a a
S myr*exlyh)= SA S wt g r2exlpl)

teAd ted a=1
a a a
=N D w3 g exiyl)
a=1 teAd
a a a
=A 3w ey
. a=1
and :
a a «
> my = 2’\ Sk g Z TS =S = €l0,1]
teAd a=1 a=1 teAd a=1
by lemma 3 2.6 (a) and (b). |
3.2.8 LEMMA

Notations as above.
Fors* €A and i’ € Car(xE) with 3 p(t|s”,i",pl) > 0 define:

ted®
A(GsT,iT)= ——gﬁ— mB- xB (") S p(lst,ity).

ted’
Suppose that there is at least one pair (s”,i") with this property. Then:
pQls™,i s )i

nk V= AT, *)2 —— and
15 t 2 e | D sy
* * EA[
zns, Ehs(sz)—l —A, '
ted’ 8,0
PrROOF:

me
By lemma 3.2.6 (¢): nf = —'B—B E 2 mB: xP (i')p(t|s itk

Hence ns,“hm—lzﬁ— 2 2 mb- xBpt|s”,i"yl)
sedi =1
_ 2 5% plls™,i"ys)
2 P i%ys)

t'ed’

for seA and teA°, which proves this lemma (cf. lemma 3.2.6 (b) and lemma
3.2.7). |

3.2.9 Lemma
Let A= U S" and BH#AF#S. Suppose V2= V?=:V} for all s,teA.

If V4 >yz" (x Wy )for a—l »2,...,a, then there is s EA and i’ € Car(x%)

such that: 3 p(t|s”,i",y})>0and 2p(t|s Ty =vi=17%
ted’
Furthermore: 3 p(t|s”,i" y:)Vi=
teS
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PROOF:

Take s€A. By lemma 3.2.6 (d): V2= 3 mL ri(@tx} y})+ 3 nk V2
ted ted’

Applying lemmas 3.2.7 and 3.2.8 we derive:

a . . . s p(t|s*,i",ysl')V,2
V_%:AS F‘h ‘Y.}Yl (xl,}"l)+ A (s ’l ) * * Lk
P=h 2k s2, ’ P S pEls i)

t ed
for certain A, €[0,1], p,€A® and A (s",i ")€[0,1], and it holds that:
A+ D ANGLITD=1
s

Since Y (x',y') < V2 for all a€{1,2,...,a}, we conclude that A,<1 and for at
least one (s”,i") with A(s*,i ") > 0 we have:

* * ts"'*, ;‘ V2
Splsti'y')>0 and 3 Pl i s )Vi =>V2=72

* * % 1
ted’ teAd’ 2 P(t |S 51 ays')

ted’
Since V? = V3 for all 14, it follows that 3 p(¢|s™,i* )V =V3.

teS
By lemma 2.3.3 we also have Ep(t|s',i*,ys]')V,1 =V} -
teS

The following lemma can be proved analogously.

3.2.10 LemMaA
a « .
Let A= \J S" and @~A=S. Suppose Vi=V}=:V} for all s,teA.

a=1 . .
IfV,I, >yl (x' 1) for a=1,2,...,a, then there is s" €A and j" € Car(yg‘)
such that: > p(t|s",xk,j)>0and 3 p(tls” xt,j W =Vi=VE
ted’ teS
Furthermore: > p(t|s”,x},j ) Vi= V%
teS

Observe that in the above lemmas i"e Car(x%)\ Car(x)) and
j € Car(yB)\ Car(y}), since 3 p(t)s”,x},yl)=0.

ted’

3.2.11 THEOREM
Let (x",y") be a pair of stationary strategies with the following properties.
a) For each hel, there is s"eS" and j"e Car(yB) with y;» = j* such that:

Ehp(t|sh,xs1~,jh) >0,
t§sp(ﬂsh,x}~, JVE=VE and I p(tlst,xh, "V =Vh =V
:;;soy; =yl forallseS\ U t{fﬁ'}

b) For each hel, there is s" eh:ES'I'l' and i" € Car(xB) with x;» = i" such that:
Eh p(tlsh,i" yly >0,

t&S
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S p@)sh ity yWi=Vhoand S p(tlst, ity Vi = VE =P
teS teS
Also x; = x! forall seS\ | {s"}.
hel,
¢) Each seS\ S! is transient with respect to (", y*).

Then P(x",y W =V* and v*(x",y")=V* for k =1,2.

PROOF:

By lemma 2.3.3 and by (a) and (b) it follows that P(x",y")V* = V¥, which
also implies that Q(x ,y")V* = V*. For seS’ we have by definition that
Yi@s,x"p") = Yi@s,x !y = vk,

Since all states in S \ S’ are transient with respect to (x,y") it holds that (cf.
lemma 1.5.2 (e) and lemma 1.5.5):

Y yH= 0y pH = (" y ) oGy ) rk(x " y )=
:Q(x*,}’*)Yk(x*,)’*)>Q(x*,y*)V"> Vk. ]

3.2.12 LEMMA - :

For (x",y") as in theorem 3.2.11 and A&(0,1) define:

xd=1=Nx! + Ax; and y}:= (1 — Ayl + Ny; for all s€S.

Then the following statements hold:

a) Each seS! is recurrent with respect to ey and
each seS \ S! is transient with respect to (x*, y}‘).

b) P yMVE =V and Y (P pM) =V for k=1,2.

PRrROOF:

For all seS\ (U {sh} we have (xi.‘,yi‘) = (x;,y;) and hence it follows that
hel,UI,

p(tls,x},yM)= p(t]s,x;,y;) for those s and for all z€S.

For seS* hel, UI,, we have that p (¢]s,x},y})= Ap (t|s,x;,y;) for all 1 &S*.

Since A>0 the ergodic sets for (x*,y*) are precisely the same as those for

(x",»"). By lemma 2.3.3 and theorem 3.2.11 we have that P(x",y}‘)V" > pk

for k =1,2. Using arguments as in the proof of theorem 3.2.11 we derive that

YA pM) = P for k=1,2. [ ]

Now we can formulate the main theorem of this section.

3.2.13 THEOREM

Let (x",y)‘) be as in lemma 3.2.12.

pr(tls,xi‘,g/?)ZOfor allseTandteS \ (SI0 um,

then (x*,y") can be supplemented with suitable retaliation threats to achieve an

almost stationary e-equilibrium, for Ae(0,1) sufficiently small.

PROOF:
Let €>0. For each n€(0,1) there is N, €N such that, with probability at least
1—m, the expected number of transitions among elements of the set
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{S*:hel,UI,}UT will be at most N, with respect to (x*,y*) for any initial
state seS \ S’. Furthermore N, does not depend on Ae(0,1).
Now choose 1,6 €(0,1) such that for all seS \ S7:

(1=n)(1—=8)* (¥*(s,x* yM) —e/4) — A=A =1 =) M = v*(s,x* y*)—e/2.

Let Y™ (X{) be random variables denoting the action frequencies for player 2
(1) after n stages in state s, and let y{(x{") denote realizations of these.
Let KeN be a constant such that for a>0:
if for all s and for all n sufficiently large [y{ —y!|<a and |x(")—x}|<a, then
for each ergodlc set S* the ]nmtmg average reward to player k is between
Y (x!,y1)—aK and yY*(x!,y")+akK.
Next choose ae(0, e/4KN ) and N s €N such that
Prob, » {I Y —ys | >« for any n=N,; and any se€S}<<6 and
Prob,» A (IX{ — x!|| > & for any n=>N 5 and any s €S} <.
Observe that N 5 is independent of the initial state.
Choose Ae(0,e/4K) and N =N .5 such that:
Prob,» ,» {transition from S* to §\ S" within N .5 stages, with hel; UI,}<§,
Prob,» ,» Ltransmon from S to $\ S* within Ny stages, with hel,UI,}
>(1-8)"
Define strategy 7, for player 1 by:
a) use strategy x" unless (i), (i) or (iii) below occurs
i) for some s€S and some n=N 45 : ||y —p!l|>a, where y{" is a reali-
zation of Y{.
ii) player 2 chooses an action outside Car*(y*).
iii) after N, transitions among elements of {S":hel,UI,}UT, play is
still in \ st
iv) play remains in a set S*, hel,UI, for more than N stages.
b) if (i), (i), (iii) or (iv) occurs, then use some retaliation strategy ¢4, from
that moment on.
For player 2 the strategy o, is defined analogously.

If the players use (7,,0;) then with probability at most (1—(1—n)(1— M)
some player may start using his retaliation strategy and with probability at
least (1—n)(1—98)* the players remain using (x", y") forever.

Hence, by choice of A,n,a and 8, we have y*(7.,0.) =y (x*y*)—e/2 for
k=1.2.

Now suppose player 1 uses 7, and player 2 uses some arbitrary o.

If player 1 detects a deviation at stage n, where player 2’s action was j in
state s, then with probability at least (1—A) player 1 was using x! at that stage
and with probability at most A player 1 was using some i, where s =s".
Hence by lemma 2.3.3, player 1’s retaliation in that case gives that the limiting
average reward will be at most (1—A)(V?+e/4)+AM <V? +e/2
< Y5, x* yM) + /2.

If player 1 does not detect any deviation, then at each transition among ele-
ments of {S*:hel ,UI,}UT player 2 can gain at most aK <¢€/2N,. Since
there are at most N, transitions without player 1 starting retaliation, we find



- 56 Chapter 3

that the limiting average reward to player 2 will be at most Y¥(x*,y*) + €/2.
Here it should be noticed that we use the condition of the theorem to con-

clude that player 2 cannot deviate in T (and neither can player 1). This is due

to the following argument.
If player 2 chooses an action outside Car(y) m T, then player 1 will
retaliate directly according to the definition of =, . Retaliation is possible
because by lemma 2.3.3 we have P(x',y)V? < V2 for all stationary stra-
tegies y. By lemma 1.6.2 it is sufficient to consider deviations by stationary
strategies.
Now suppose that the play is in T and player 2 uses a statlonary strategy
y with Car(y,) C Car(y}) for all seT and y,= y} for seS To
We denote restrictions of 2(, ), ¥*(, ), P(,), Q(,) to coordinates,
respectively rows and columns, corresponding with TUus’ by 7 (,),
Yy(,), P(,) Q( ). If the condition of this theorem holds, then any play
which is in T at some stage, will remain in TUS " forever, in case the
players use (x',y) from that stage on. If some state T is recurrent with
respect to (x',p), then player 1 using 7, would start, with probability 1,
to retaliate player 2. By lemma 2.3.3 this would give player 2 a limiting
average reward of at most ¥? + /2. On the other hand, if all states in T
are transient with respect to (x',y) then we have by lemma 2.3.3:

Y1 p)= 0" )T (x' ) = C(x' ) 0(x' )T (x' )
= 0" ) QG YHF (' p)
=o' )V’
<7

Since we know that, once the play is in S7 neither player 1 nor player 2
can gain more that ¢ by deviating from (7, ,0,), the above implies that
against 7, player 1 has no profitable deviations while the play isin 7. M

3 2.14 REMARK

I[ any converging sequence of stationary B-discounted equzlzbrta
{(x*,yP): Be[0,1)} one can choose s",i*,j*, for hel, UI,, such that the condi-
tions of theorem 3.2.13 hold, then (x*,y*) can be supplemented with retaliation
threats to achieve an almost stationary limiting average e-equilibrium for A
sufficiently small.

Let us now consider an example to clarify the condition in theorem 3.2.13.
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3.2.15 EXAMPLE

1,0 0,1

3 2
0,2 1,0 0,1 1,0

1 1 2

State 1 State 2 State 3
1%,% 1%,% Y.%
1 5 5
State 4 State 5

Observe that we have simply added states 4 and 5 to example 3.2.3.
A B-discounted equilibrium (x?,y#) is given by:
xPi= ((2—2B)/ 3~2f), 1/3=2h)), L, 1,1, 1) andy = ((*549),1,1,(%,%),1).
Then y,;(x ,yﬁ) = (%,0,1,%,%) and yﬂ(x Wy )— (%,1,0,%,%) for the respec-
t1ve 1mt1a1 states. Hence V'= (1/2 0,1,1/2, ) and V?*=(%,1,0,%,%). Also:
Yixlyh= (’/z,O,l,‘Vz,%») and y*(x',y")=(1,1,0,5/6,%). Hence I,=1,=2
S’—{1235} S°—{235} T={4).
Notice that p(1|4,x},y})= %50, so the condition of theorem 3.2.13 is not
fulfilled. Although for initial states in {1,2,3,5} the strategies (x',y') can be
supplemented to achieve an almost stationary limiting average e-equilibrium
(cf. example 3.2.3), this is impossible for initial state 4, since player 2 could
gain /s by using y " = ((%,%),1,1,(1,0),1) agamst x!, for mmal state 4. Player 1
cannot check in state 4 whether player 2 is using y" or y!.
If however we had started with y§ = (0,1), then the condition of theorem
3.2.13 would have been fulfilled. If we had started with yff = (1,0), then the
condition of theorem 3.2.13 would not have been fulfilled, but since player 2
has no profitable deviations within Car(y§) we could also in this case establish
an e-equilibrium by supplementing (x',y ') with retaliation threats.

So if the condition of theorem 3.2.13 is not fulfilled, then this does not neces-
sarily mean that it is impossible to achieve a limiting average e-equilibrium
from (x',y'). All one really needs is that ne1ther player 1 nor player 2 has
profitable deviations from x!, respectively y!, in any seT, that cannot be
detected by the opponent (with probability near 1). Hence we can make the
following remarkable observation: '

If after each stage both players were told what mixed actions have been used
at that stage, then the condition of theorem 3.2.11 would be sufficient to
achieve an almost stationary limiting average e-equilibrium. Any deviation
could be detected immediately and hence retaliation threats could be used for
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all states. Notice that for zero-sum stochastic games the limiting average value
and limiting average e-optimal strategies are independent of this information.

In the above construction we used just one sequence {(x?,y#): B€[0,1)} of sta-
tionary B-discounted equilibria. One could also use an iteration argument:
start with an arbitrary sequence {(x*,y?):8€[0,1)} of stationary B-discounted
equilibria; find all strong initial states that can be found by the above tech-
niques; replace those initial states s by absorbing states s, i.e. each player has
just one action in s and p(s|s,1,1)= 1, with ré(s, 1,1)= y"(s,x",y)‘); in this new
stochastic game again take a sequence of stationary B-discounted equilibria
and try to find more strong initial states; repeat this procedure. In certain
cases it may lead to an e-equilibrium for all initial states. If however the sta-
tionary B-discounted equilibria are chosen arbitrary at each iterative step, then
one does not necessarily find new strong initial states. We give two examples
to illustrate these ideas.

Suppose in example 3.2.15 we had indeed started with (xf,yf)=
((2—2B)/(3—2B),1/(3—2B)),1,1,1,1), (42, %), 1,1,(4,%),1)). Then in the first
step we would have found the strong initial states 1,2,3 and 5. Replacing these
by absorbing states gives the following stochastic game.

4,1

0,1

1,0

State 1

State 2

State 3

4,%

1,%

1

1,%

State 4

State 5

The unique stationary B-discounted equilibria for this stochastic game are
given by yf=(1,0). So for this new stochastic game sh= {1,2,3,5} and
T= {4} and the condition of theorem 3.2.13 is fulfilled; hence we can achieve
a limiting average e-equilibrium for this stochastic game. This e-equilibrium
induces an e-equilibrium for the original stochastic game.
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3.2.16 EXAMPLE
1,0 0,1
1 1
0,2 1,0 0,2 1,0
,%,0,%,0) ,0,%,%,0) 2
State 1 State 2 State 3
1,% 1,% 1,%
1 5 5
State 4 State 5

It can be verified that for this stochastic game stationary B-discounted equili-
bria are for instance:

P y?) = ((@—B)/(3—2B),(1—B)/(3—2B)),1,1,1,1), ((4,%),1,1,(4, %), 1)).
We find:
Yh(xPyP) = (%,0,1,%,%) and v(x,yP)= (%,2,0,%,%) for all Be[0,1).

So V'=(%,0,1,%,%) and V?= (%,2,0,%,%).

Furthermore

Yy =(%,0,1,%,%)= V"' and y*(x',p")= (4,2,0,7/12,%) < V.

Hence $"= §'= {2,3,5}, sh= {1}, T= {4} and I, = &. Clearly the condi-
tion of theorem 3.2.13 is not fulfilled. The strong initial states we find are
{2,3,5}. By the techniques in the proof of theorem 3.2.13 it is not possible to
achieve an e-equilibrium for initial state 1.

Iteration does not work either; replacing the strong initial states {2,3,5} by
absorbing states does not change the stochastic game situation, so in the
second step we could again choose (x#,y#) the same as above.

Of course, by choosing y§ = (1,0) or (0,1) one could establish an e-equilibrium.






61

Chapter 4

Special classes of stochastic games

4.1 INTRODUCTION

In this chapter we discuss the impact of the results from the previous chapters
on several special classes of stochastic games. Special classes of stochastic
games are stochastic games with an additional property on the payoff and/or
the transition structure.

The special classes we consider are: unichain stochastic games (section 4.2),
stochastic games with state independent transitions (section 4.3) and repeated
games with absorbing states (section 4.4).

4.2 UNICHAIN STOCHASTIC GAMES

4.2.1 DEFINITION
A unichain stochastic game is a stochastic game with the property that, for any
pair of stationary strategies (x,y), there is just one irreducible set of states.

Unichain stochastic games were considered by Gillette [1957] and by Hoffman
& Karp [1966] who proved that in the zero-sum case both players have station-
ary limiting average optimal strategies. Later Rogers [1969], Sobel [1971] and
Federgruen [1978] independently showed that in the general-sum case there
exist stationary limiting average equilibria. Those proofs are all based-on con-
tinuity properties of y*(x,y) on XXY and they all use some fixed point
theorem. Using results of chapter 2 we give new proofs for these facts.

4.2.2 THEOREM '
Let {(xP,yP): B€[0,1)} be a sequence of stationary B-discounted equilibria in a
general-sum unichain stochastic game and let (x',y')= llgr]l (B yP).

Then (x',y') is a stationary limiting average equilibrium.

PROOF:

Since we are dealing with a unichain stochastic game, there is just one ergodic
set for any pair of stationary strategies (x,y). Hence each row of Q(x,y) is
equal to the unique stationary distribution for the related Markov chain. In
view of lemma 1.5.5 (b) we conclude that yk(s,x,y)= yk(t,x,y) for all s,zeS
and k =1,2. Now suppose player 2 is using y €Y against x'. By lemma 2.2.6
we have that yz(s,xl,y)Z ]tl;?ll y,zg(s,xﬁ,y)< llli‘?il yfg(s,xﬁ,yﬂ): yz(s,xl,yl), for
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all seS. From lemma 1.6.2 it now follows that y' is a limiting average best
reply for player 2 against x'. Similarly it can be shown that x! is a limiting
average best reply for player 1 against y'. ®

The above theorem implies that for zero-sum unichain stochastic games the
limiting average value exists and equals the limit of B-discounted values; more-
over it follows that the limiting average value for initial states s and ¢ is the
same for all s,z €S. Furthermore both players have stationary limiting average
optimal strategies. This is formulated in the next theorem.

4.2.3 THEOREM
For a zero-sum unichain stochastzc game the limiting average value v' exists and
%mvﬂ Furthermore v = v! for all s,tS.

Let {xﬁ Bel0,1)} ({y#:B€[0,1)}) be a sequence of statzonaty B-discounted
optimal strategtes for player 1 (2) and let x' = hmx’g o'= ]Jm 0y By,

Then x' (') is a stattonaiy limiting average opttmal strategy for player 1 (2).

PROOF:

It is easy to verify that for a zero-sum stochastic game a pair of stationary
strategies (x,p) is an equilibrium if and only if x is optimal for player 1 and y
is optimal for player 2. Since by theorem 4 2.3 the pair of strategies (x',y ) is
a Limiting average equilibrium and since y'(x',y') = hm Yh(xPyP) = hmv,; is

independent of the initial state, the proof is complete

4.3 STOCHASTIC GAMES WITH STATE INDEPENDENT TRANSITIONS

4.3.1 DEFINITION

A stochastic game with state independent transitions (SIT) is a stochastic game

for which there are m,neN such that m;=m and n;=n for all s€S and for

which furthermore p (s,i,j) = p (8,i,j) for all s,t €S and all i,}.

A stochastic game with state independent transitions and separable rewards

(SER -SIT) is a ST T stochastic game with the additional property that there are
(SR and a*:{1,2,..,m}X{1,2,..,n} >R, for k=12, such that

k(s i,j)=ck(s) + ak(z,j)for all s,i,j and k =1,2.

An early appearance of the SER-SIT conditions can be found in Sobel [1981].
As a class of games, SER-SIT stochastic games were introduced by
Parthasarathy et al. [1984]. They showed, among other results, that for this
class of stochastic games: in the zero-sum case the limiting average value is
independent of the initial state and both players have state independent sta-
tionary limiting average optimal strategies; in the general-sum case there exists
a state independent stationary limiting average equilibrium. In this section we
derive some results for SIT stochastic games, without using the SER-property.
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4.3.2 THEOREM

For any zero-sum SIT stochastic game the limiting average value v' is indepen-
dent of the initial state: vi= v} for all 5,t€S.

Furthermore both players have stationary limiting average optimal strategies.

PrOOF:
Let {x”:Be[0,1)} be a sequence of stationary B-discounted optimal strategies

for player 1 and let x' = h{nxﬁ
Let y” be a stationary limiting average best reply for player 2 against x'

Let S be the set of states s with y!(s,x!,y")=v!= magx v;.
te

By the proof of theorem 2.4.2 we have that S" 4 @.

Now observe that p(¢|s,x},y;)=0 for all seS",teS\S" and any yeY. This
can be seen by the following argument. Suppose there were seS”,reS\ S”
and yeY such that p(¢]s,x),p,) > 0; let g, be the Markov strategy (definition
1.3.2) deﬁned by usmg y at stage 1 and y~ at all stages n>2 then it follows
that y'(s,x',g) <vl, whlch contradicts the optimality of x' in s.

Hence, if player 1 uses x' then the play will never leave the set of states S”,
once it has been reached.

Take s €S” and define x* by x;:=x]} for seS” and x;:= x}- for seS\ S".
Now, for any initial state, if player 1 uses x", then after 1 stage the play will
be in S* with probability 1 because we have state independent transitions.
Since for seS” the strategies x' and x" are equal, the play will remain in S”
forever. Hence we have that for any initial state s and any yeY:

Yiox" ) = y(s7x !y )= vy = maxyy,

This implies that v} =v; for all 5s,¢€S and x" is limiting average optimal. A
limiting average optimal strategy for player 2 can be derived analogously. M

4.3.3 THEOREM
For every general-sum SIT stochastic game there exists an almost stationary lim-
iting average e-equilibrium.

PRrOOF:

Let {(xﬁ,yﬁ): B<[0,1)} be a sequence of stationary B-discounted equilibria,
converging to (x!,y").

By lemma 2.3. 6 there exists &~ €{1,2,....H } (deﬁned as in _definition 2.2.1) such
that y”’ (x'y )>max Vit=ph and y* (x1,yh) = yH

Take some s*eS* . Then p(tls,xk,yl)=0 for ses, teS\S by the state
independent transmons and by the irreducibility of S” - Define x by Xy —xsl
for seSh and xs =x! for seS\S" Sumlarly deﬁney by ys —ys for
seS" and ys:=pi for seS\ S" . Then y*(s,x",y") = V*" for k=1 as well
as for k=2 and for any initial state s, since for any initial state the play will
bein S” after at most one stage.

Now using the fact that the limiting average value is independent of the initial
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state and using arguments similar to those in the proof of lemma 2.3.4, one
can obtain an almost stationary limiting average e-equilibrium (e>0). ]

4.4 REPEATED GAMES WITH ABSORBING STATES

4.4.1 DEFINITION

In a stochastic game a state s €S is called an absorbing state if p(s|s,i,j)=1 for
all ie{1,2,...m} and all je{1,2,...,n;}. A repeated game with absorbing states
is a stochastic game for which all states except one are absorbing states.

In this monograph we have already seen several examples of repeated games
with absorbing states: 1.6.5, 1.7.4, 1.7.6, 1.8.6, 2.3.8, 2.4.5, 2.4.12, 3.2.3, 3.2.4.
The class of zero-sum repeated games with absorbing states was first examined
by Kohlberg [1974], who extended the work of Blackwell & Ferguson [1968] on
the big match (cf. example 1.7.4).

Kohlberg [1974] showed that the limiting average value exists for any zero-
sum repeated game with absorbing states. Using the techniques of Kohlberg
[1974] and inspired by Sorin [1986], example 1.8.6, Vrieze & Thuijsman [1989]
showed the existence of e-equilibria for general-sum repeated games with
absorbing states. In their proof Vrieze & Thuijsman construct e-equilibrium
strategies for which it may occur that one of the players has to adjust the
mixed action he uses in the non-absorbing state at all stages. Since for a
repeated game with absorbing states the condition of theorem 3.2.13 is neces-
sarily fulfilled, the next theorem follows immediately.

4.4.2 THEOREM
For any general-sum repeated game with absorbing states there exists an almost
stationary limiting average e-equilibrium for each ¢>0.

Observe that this theorem provides e-equilibrium strategies which are different
from those in Vrieze & Thuijsman [1989]. Observe also that for several other
classes of stochastic games, e.g. unichain stochastic games, single-loop stochas-
tic games (cf. Filar [1981-a]), the condition of theorem 3.2.13 is automatically
fulfilled, which immediately provides the existence of almost stationary limiting
average equilibria for such games. However, as for the unichain stochastic
games, several results can be derived more explicitly for repeated games with
absorbing states.

In this section we make the assumption that all absorbing states are of size
1X1. With respect to the existence of limiting average e-equilibria this assump-
tion can be made without loss of generality, since for each of the absorbing
states the existence of a stationary limiting average equilibrium is obvious (cf.
theorem 1.8.1). Hence each of the absorbing states can be contracted to a
1X1 absorbing state with payoffs according to some equilibrium.

We introduce the following notation.
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4.4.3 NOTATION
A repeated game with absorbing states can be given by one m Xn-matrix of which

entry (i,j) is

a;j,byj

* *
Pij"’aij’bij

where a;j, b, a,j, b €R and p;;€[0,1]

The interpretation of the above notation is the following. If in the initial state,
the non-absorbing one, player 1 chooses action i and player 2 chooses action j,
then player 1 (2) receives a;; (b;) and with probablllty Py 2 transition takes
place to an absorbing state where the players get a,J, b from that stage on;
with probability 1—p;; the play remains in the initial state at least until next
stage. In this framework a stationary strategy for player 1 is simply some
x €A™; for player 2 stationary strategies are elements y eA”".

4.4.4 LEMMA
For a pair of stationary strategies (x,y) we have:

¢ _:8)2 Exlaljyj + 'BE Exng ']yl
a) Yh(x,p)= 1 i B+ BZ lepyyj for B€[0,1).
(1 —B)Z szay)’] + BE Exlplj ljy]
1 —,3+:322xxl’u)’1

J
c) Similar statements hold for player 2 s rewards.

b) v! (x,y)=lim

PRrROOF:

It is clear that (b) follows from (a) by lemma 1.5.5 (d) and that (c) needs no
further comment.

The formula in (a) follows directly from (cf. lemma 1.5.3 (c)):

1) = 1=BZ Zxiayy; + BZ S xipyayy; + B S xi(1=pyyvp(x.y). W
i g i g i

4.4.5 DEFINITION
A pair of stationary strategies (x,y) is called absorbing if >, >, x;p;;y; > 0.
i

The next two lemmas can be derived directly from lemma 4.4.4.



66 Chapter 4

4.4.6 LEMMA
a) If (x,y)eA™ XA" is absorbing, then:

22 Xipiyaiy S22 xipibiyj
TN S Sy T S
ij
b) If (x,y)eA™ XA" is non-absorbmg, then:
YI(X,)’): 2 2 xiaijy]' and YZ(X,)’): 2 ?xibijyj'
L | 1

447 LEMMA
Let {(xﬁ B)EA'” XA": B€[0,1)} be a converging sequence with
x'yh= hm (xB,yP) and with Car(xP) and Car(y*) independent of B€[0,1).

a) If (x ,y N is absorbm% then (xPyP) is absorbing for Bel0,1) and
Yl yh= hmy/g(x ) for k =1,2.

b) If (x’g,yﬂ) zs non- absorbmg for Be[0,1), then (x',yp"') is non-absorbing and
Y(xlyh= hmyﬂ(x yB) for k=1,2.

4.4.8 REMARK
For the remainder of this section let {(xP,yP)eA™ X A" : ,BE[O 1)} be a converg-
ing sequence of stationary B-discounted equilibria with (x',y")= hm (xB.yP) and

with Car(x*) and Carlgyﬂ) independent of B€[0,1).
Let Vk—hmyk(x ) for k =1,2.

By lemma 1.6.4 we have the following fact.

4.4.9 LEMMA

a) IfxelA™ and Car(x) C Car(xﬁ) ,BE[O 1),
then yj(x,pP)= yh(x',y*)= 'Y,B(x 5.

b) Ifyed” and Car(y) C Car(y ) ,BE 0, 1)
then Yp(x* y)= v3(x*.y")= vh(x" ).

4.4.10 LEMMA

a) Ifx eA’” and either (x,y") is absorbing or (x,y®) is non-absorbing,
then y (x,y <Vl

b) IfyeA" and either (x',y) is absorbing or (x®,y) is non-absorbing,
then v*(x! ,y)< V2.

PROOF:
Using lemma 4.4.7 and using that the pairs of strategies (x?,yf) are g-
discounted equilibria, we have (a) by:

Y Gey)= lim vpCey) < m ypoef pf)= v e
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4.4.11 LEMMA
If Y (x'y)y=V* for k =1,2, then (x',y") can be supplemented with retaliation
threats to obtain an almost stationary e-equilibrium.

PROOF: :

Observe that by lemma 4.4.10 neither player 1 nor player 2 can profit by an
absorbing deviation from (x!,y'). Hence retaliation threats are only needed to
counter non-absorbing deviations. As in the proof of lemma 2.3.4, let Y™ be
the random variable (vector) denoting the action frequencies of player 2 in the
initial state up to stage n and let y™ be a realization of Y. Let X® and x™
be defined similarly for the action frequencies of player 1.

Let €>0. Then, pretending absorption does not take place, for each a>0 there
is >0 and N €N such that:

Prob, , {IIX™ — x'|l > a for any n=> N5} <& and

Prob,! (Y™ — p1|| > a for any n= N5} <.
Choose a€(0,e/8M) and choose §>0 such that:
A=8(Yrx'yH—2aM) — 1—(1—8*)M = y¥(x!,y') — /2 for k=1,2.

Define 7, by:
a) use x! unless

i) player 2 chooses j & Car(y'), or

i) lly™ —y!ll > « for some n= N 4
b) if (i) or (ii) occurs, use some retaliation strategy ¢, from that stage on.
Define o, analogously. '
It can be verified that (7;,0;) is an almost stationary limiting average e-
equilibrium. |

The next lemma follows directly from lemma 4.4.7 and lemma 4.4.9.

4.4.12 LEMMA
IFy@xlyh<vd
then (x',y") is non-absorbing whereas (x#,y") is absorbing for all B€[0,1).

4.4.13 DEFINITION

If Y*(x!,p') < V%, then we define:

a) Xx andx € R™ by (ie{l,2,...,m)):

B {x{g if (i,p") is non-absorbing

X; =

0 if (i,y") is absorbing

2B, 0 - if (i,y") is non-absorbing
a xBif (y") is absorbing

b2 A
l~l? and Z‘_;B:: i

~*ﬁ .
Xj in

b) fﬁ andf*ﬁ e A" by (i€{1,2,...m}): f'ﬁ::
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¢) x":= lim x"? (which limit exists without loss of generality).

811

d) pf:= and p':= lim p* (without loss of generality).
1-B+BZ3 xfpyy] A

i

Observe that by these dgﬁmtlons we have that x#=3%" +%*; both J?B#O and

X ﬁ#Oforall,B hmx =0; %nlxx _]}s}ﬁIXB hmxﬁzx
It is also clear that for all B we have pfelo,1] and u Telo,1].

4.4.14 LEMMA
IfY*(x',y"Y< V? and p! and x" are as above,
then V?= u'yz(xl,yl) + (1 —u])yz(x*,yl) and hence 72(x*,y1) = p2

PrOOF:

~*B
From definition 4.4.13 observe that sz Py} = 22 X; pyyj and
S xBpbiy) = sz p,] iy} Using thls definition 4413 lemma 4.4.9
i j :
and lemma 4.4.4 we obtam.

V2: lim 2 B, 1
i Yp(x".y")

=p! EZX}%}’} ZEXPU W)
i
~*B * 1
22 Xi Pijbij)’j
= p! YP(xly )"‘11 (22 Py} = ~*B
A 1 ; 22 X Pi]y}
J

A1 1

zle plj xj)’/
12,01 1 . BN i
= p y(x',p’) + lim (1-p%)
At EZx, iy

= p ey + A=Yy,
Since y*(x',y') < V% and p! €[0,1] we have that y*(x",y') = V2. [ |

4.4.15 LEMMA

If Y(x'yH<V? and €0, then (x*y'), with x*:=(1—Mx'+ A" and
A€(0,1), can be supplemented with retaliation threats to yield an almost station-
ary limiting average e-equilibrium for A sufficiently small.

PrOOF:
For each ?\E(O 1) we have Y (x yhH= 'y (x 1) =V? and by lemmas 4.4.7
and 4.4.9: y'(x* yH= y(xy)—hmy(x B)—hmy(x'g By=p'.
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Let again Y™ be the random variable denoting the action frequencies of
player 2 in the initial state up to stage n and let y® be a realization of Y.
Let X™ be the random variable denoting the action frequencies of player 1
within Car(x') in the initial state up to stage n. Let x™ be a realization of
X™_ Let €>0. Then, pretending absorption does not take place, for each a>0
and 6>0 there is N 5N such that:

Prob, ,» {IIX®™ —x'||> a for any n =N} <& and
Proby ,» {IIY®™ —p'|l > a for any n =N} <.
Choose ae(0,e/8M) and choose é such that for k =1,2:
(1=8)* (" ") —2aM) — (1—(1-HHM =¥ (x' y') — e/2.

Choose Ae(0,e/8M) such that Prob,» ' {absorption before stage N,s} <<&.
Choose N\ € N, N > N 43, such that
Prob,» ' { absorption before stage Ny} = 1-46.
Define 7, by:
a) use x unless .
i) player 2 chooses j& Car(y'), or
i) lly™ —p!ll >« for some n=N .
iii) at stage N, play is still in the initial state
b) if (i), (i) or (iii) occurs, then use some retaliation strategy ¢/, (cf. 1.8.5).
Define o, in a similar way.
Now (7.,0,) is an almost stationary limiting average e-equilibrium. =

Observe that example 3.2.4 is an illustration of the lemmas 4.4.14 and 4.4.15;
in that example p' =%. The next example illustrates that one may also have
Y2(x',p1) < V? and p! =0.

4.4.16 EXAMPLE

0,0 0,—1
1 1
0,—1 0,0 0,0
1 2 2
State 1 State 2

For this example stationary B-discounted equilibria are for instance given by
g . 1= VI—B —1+B+VI— .
(X :.y )_ (( f ’ ): (O’ 1)), Wlth ﬁE[O, 1)
B B . =
Now yz(xl,yl)——— —1, whereas V2= %nll yf;(xﬂ,yﬂ)z lim M=

. . A1l B
Hence x" = (0,1) and y*(x",y1)=0; p' =0.
Examples that illustrate lemma 4.4.11 are for instance 2.3.8 and 3.2.3.

0.
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Chapter 5

The total reward criterion in zero-sum stochastic
games

5.1 INTRODUCTION

In chapter 1 we briefly dealt with the total reward criterion. This criterion has
been introduced in Thuijsman & Vrieze [1987] and Vrieze & Thuijsman [1987].
Based on these papers, we examine this criterion as well as its relations with
the B-discounted reward criterion and with the limiting average reward cri-
terion for the zero-sum case.

In section 5.2 we give severa;}, exainples to support our choice for defining
total rewards by li]{]n gf —]1—[— > 3 E, [R'(n)], as is done in definition

- m=1 n=1
1.4.4. Furthermore these examples lead to the conclusion that a certain pro-
perty should be fulfilled if we want that the total value, whenever it exists, is
finite. This property is that the limiting average value should be 0 (for all ini-
tial states) and both players should have stationary limiting average optimal
strategies.

For the existence of stationary limiting average optimal strategies, several
characterizations have been given (cf. Sobel [1971], Bewley & Kohlberg [1978],
Filar & Schultz [1986], Schultz [1987], Vrieze [1987-a]). Several of these charac-
terizations are by means of mathematical programs (see chapter 6). By means
of equations similar to the Shapley-equation (cf. 1.7.3), existence of stationary
limiting average optimal strategies has been characterized by Vrieze [1987-a].

In section 5.3 we extend Vrieze’s result by characterizing existence of sta-
tionary total optimal strategies for stochastic games with above property.

In section 5.4 we give an example to illustrate that, even with above pro-
perty, history dependent strategies are indispensable for total e-optimal play.
This indicates that the total reward criterion and the limiting average criterion
have similar features.

In section 5.5 we show that examining total rewards in a stochastic game is
equivalent to examining limiting average rewards in a related stochastic game
with countable state space.

5.2 THE TOTAL REWARD CRITERION
For the B-discounted reward criterion the emphasis is on near-future payoffs,

while for the limiting average reward criterion the emphasis is on far-future
payoffs. In certain situations however, it would be more appropriate to use an
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intermediate criterion, where both near-future and far-future payoffs are
equally important. There are several ways of defining such an intermediate
criterion. Recently Krass et al. [1987] and Filar & Vrieze [1989] examined a
criterion which is a ‘weighted combination’ of the B-discounted reward cri-
terion and the limiting average reward criterion. In this chapter however we
look at the total reward criterion, which is also an intermediate criterion. To
see why this total reward criterion is interesting, think for instance of stopping
stochastic games, as introduced in Shapley [1953], where for all s,i and j there
is a small probability of stopping, or equivalently, a small probability of mov-
ing to an absorbing state where the payoffs are 0. In such games the limiting
average reward is necessarily equal to O for any pair of strategies and hence
the limiting average criterion does not seem to be a suitable criterion to exam-
ine the game. Instead of discounting with some factor S€[0,1) one would sim-
ply like to take the sum of all payoffs for any play in such a game. The same
holds for the next example although it is no stopping stochastic game.

5.2.1 EXAMPLE

2 —1 0

State 1 State 2 State 3

The payoffs in this example, like those in the other examples in this section,
are the payoffs to player 1 to be paid by player 2.

For this example it is clear that the limiting average reward (for the unique
strategies) is 0 for all initial states. However, it seems reasonable that player 1
would prefer to start in state 1, whereas player 2 would prefer initial state 2.

In the following example we can also imagine that player 1 would prefer to
start in state 1 while player 2 would prefer to start in state 2. The limiting

average reward is again 0 for both initial states.

5.2.2 EXAMPLE

State 1 State 2

For the play starting in state 1 the sequence of partial sums of payoffs would

be (2,0,2,0,2,....). Thus, on the average, player 1 owns 1, whereas it is clear

that the limiting average reward is O for initial state 1. Similarly, for the play

starting in state 2, player 1 would own —1 on the average. The B-discounted
00

reward for initial state 1 is 2(1—B8) > (—B)" "' =2(1—B)/(1+p). Leaving

n=1
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out normalization by 1— 8 gives 2/(1+ ), which converges to 1 as 8 goes to 1.

[oe]
These examples and the fact that, if 3 E,,,[R'(n)] exists in RU{— 00, + 00}

n—l

then it is equal to hm mf F 2 E E,..[R'(n)], lead us to define total
m=1n=1

rewards by the latter expression (cf. definition 1.4.4). Here we use ‘lim inf’
since for non-stationary strategies lim’ may fail to exist in RU{—oc,+o0}.
We chose ‘lim inf’ since, like for the limiting average criterion, this reflects a
kind of ‘worst case view’ of player 1. However we could also have chosen
‘lim sup’ or any convex combination of ‘lim inf’ and ‘lim sup’.
In lemma 15 7 we have shown that for any pair of stationary strategies
p ]1\’ > 2 Esxy[R (n)] is finite on condition that y!(x,y)=0. It does not
2% N m=1n=1
seem to make sense to define a total reward evaluation by E,

[hm mf 2 2 R'(n)), since the following example, which was communi-
m=1n=1

cated to us by Neyman [1986], shows that this alternative definition does not

express what we would like to call a total reward.

5.2.3 EXAMPLE

(%5,%) (2,%)

State 1 State 2

For this example we have that E [11m 1nf F 2 2 Ri(n)]=—o0 for both
m=1n=1

initial states smce with probability 1, for any realization of the random walk,

hmmf— 2 2 r!(n)= — 0. Observe that y'(x,y)=0 for all X,p.
N—ow N m=1n=1

We now turn to some properties of the total reward criterion.

5.2.4 THEOREM
For any pair of strategies (m,6)€ I1 X2 we have:

lim inf (1 —B) ' v4(m,0) = yi(m,0).
PROOF:
Let {a,eR :neN} and CeN such that |a, 4, —a,,|<C for all neN. Then:

hmmf(l—p)z ,B"‘_lam>hmmf 2 ay -
=1
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We now prove this inequality using that for each S<[0,1):
0 00 m
a=-p"' 3 7 a,= 3 B 3 a,
m=1 m=1 n=1

(this is easy to verify, cf. page 37 in Kallenberg [1983]).
From this equation we derive

A-p 3 p 0, = A=pF 367' Za, = -7 S mb"'(, S
m=1

m=1 n=1

First, notice  that (1—pB) 2 mpB” '=1.  Second, if either

m=1

111[131T11nf(1——ﬁ) 2 8" la,=o or lumnf-— 2 a,=—oo, then the inequality
N—-oo m 1
N
holds. Third, notice that 71\,- > au|<CN for all NeN. If

m=1

lumnf— 2 am>LeR then let €0 and N~ eN such that — 2 a,=L—e¢ for

N-oo m=1 ) n=1

all m=N". Now take 8" (0,1) such that C(1—B) 2 m*(1—B)" ~'<e and

m=1

(L—e)(1—B) § mpB™ 1 =L —2¢ for all B(B",1). Then for all Be(B",1):

m=N +1

A8 3 B gy = 1-pF S mpm- ‘(—za,.>
m=1

m=

1
+a-p7 3 mel S
m=N + n=1

—CA-BE S M 4 LR S mpn
m=1

m=N +1

= L—3e

Since this can be done for any €>0, and since C and L are independent of e, it
follows that hmmf(] ) 2 B" 'a,=L. This completes the proof of

m=1

hmmf(l ) 2 B" la, >hmmf— 2 a,. From this inequality we conclude
m=1 m=1

that for all s €S and all W,OEHXE

h%%nf (1—3) : YB(SaW 0)= hmmf 2 B! EqnolR' ()]

—hmmf(l B) 2 pr! 2 Eo[R ()]
m=1

Sliminf - 3 3 B [R'm]= vhs,mo. W

N—oo m=1n=1
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5.2.5 THEOREM

For a zero-sum stochastic game with limiting average value 0 (for all initial
states) let y” €Y be a stationary limiting average optimal strategy.

Then there exists a pure stationary total best reply against y~ for player 1 and
Y45,y )<oo for all w€Il and all s€S.

PROOF:

Since there are only finitely many pure stationary strategies, we can assume
(by taking some subsequence) that there is a pure stationary strategy x~ such
that x* is a B-discounted best reply against y " for all 8 close to 1.

By lemma 1.5.5 and by theorem 1.7.7 we have 0=y!(x",y")= %ﬁyb(x*,y*) =
lim v}; =y!=0, and hence yl(x*,y*): 0.

B11
Now let 7ell. Then by theorem 5.2.4 and lemma 1.5.7, we have for all sS:

Yh(s,my )< lim inf (1=B)~" vjp(smy")
< lim inf (1-8)™" va(sx"y ")
=lim(1—8)"'yh@s,x",y"

/m-( B vplsxy)

= Y%‘(&xiy*)
= —PG"y)+OE" ), i (x"y <o u

Closely related to theorem 5.2.5 is the next theorem.

5.2.6 THEOREM

If for a zero-sum stochastic game with limiting average value 0 there are stra-
tegies x €X and y"€Y which are uniform PB-discounted optimal (ie. B-
discounted optimal for all B close to 1), then the total value exists in R, x" and
y* are total optimal and vh= 1/;3%111 (1 —,B)»_lv}g.

PrOOF:

From lemmas 1.5.5, 1.6.2 and from theorem 1.7.7 it follows that stationary
uniform B-discounted optimal strategies are also limiting average optimal. Pre-
viously this result has been shown by Bewley & Kohlberg [1978]. Hence x”
and y~ are limiting average optimal and y'(x",y")= 0. Now the result follows
from the proof of theorem 5.2.5, since x* is and y* are B-discounted best
replies against each other for all B close to 1. |

5.2.7 THEOREM

If for a zero-sum stochastic game both players have stationary total optimal stra-
tegies and v' is finite, then vy = %I? (1 ——B)_lv};.
1

PRrROOF:
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Let x” be a stationary total optimal strategy for player 1. Since there are only
finitely many pure stationary strategies, there is, using lemma 1.6.2, a pure sta-
tionary strategy y” which is a B-discounted best reply for player 2 against x"
for all B close to 1.

Now let €=0. Then for 8 close to 1 we have, using theorem 5.2.4:

a _B)*l vll? = (1 _B)_l 'Ylli'(x*’yp) = 'Y]T(x*a.yp) —€l, = V;* —el,.

Similarly one can show that (1—8)"' v} <y} + €l, for B close to 1. [ |

Observe that the above theorems imply that, under the condions in the
theorems, v} equals ay, the coefficient for (1—p) in the power series expansion
of v} in fractional powers of (1— ). So both the limiting average value and the
total value appear in this expansion (cf. theorem 1.7.5).

It is evident that, if for a zero-sum stochastic game the limiting average value
is not equal to 0 for some initial state s, then the total value v}(s) will either
be + o0 or —oo. However, the existence of the total value in RU {— o0, + 00}
for some initial state is not guaranteed by the limiting average value equalling
0 for that initial state. Take for instance the next example.

5.2.8 EXAMPLE

1 -1
1 1
-1 1 -1 1
2 3 2 3
State 1 State 2 State 3

This example is essentially the big match of Blackwell & Ferguson [1968],
example 1.7.4. The limiting average value for initial state 1 is 0 in this exam-
ple. For this stochastic game player 1 has no limiting average optimal strategy
(cf. 1.7.4. (c)).N Hence for each strategy welIl there is some o€X such that

li]{/ninf % > E 1wslR' ()] <0 and thus for those strategies we find
—>00 n=1

N m
ﬁll\;n inf—]1\7 S S Eiw [R'(n)]=—oo. It is easy to verify that with
—® m=1n=1
»"= (%,%) we have that y}(1,7,y")=0 for all 7€II. Consequently, the total
value does mnot exist for initial state 1 since we have

sup inf y(1,7,0) = — o0 <0 = inf sup yi(1,7,0) .

The next example illustrates a curious phenomenon: even if the limiting aver-
age value equals 0 for all initial states and both players have limiting average
optimal strategies, then the total value may still be infinite.
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5.2.9 EXAMPLE

0 1
1 1
1 0 0
1 2 2
State 1 | State 2

For this stochastic game the limiting average value is 0 for both initial states.
For player 1 all strategies are limiting average optimal; for player 2 the sta-
tionary strategy (1—e,€), with e=(0,1), is limiting average e-optimal. However
here, as for any other stochastic game with a state independent value, player 2
possesses a Markov strategy (cf. definition 1.3.2) that is limiting average
optimal. Such a limiting average optimal Markov strategy can for instance be
obtained by using:

a one-stage optimal strategy at the first stage, followed by

a two-stage optimal strategy at the next two stages, followed by

a three-stage optimal strategy at the next three stages, etc. »
v
That such a strategy is optimal can be shown by using that N]im ST =v!is

—>00

independent of s €S, where v{") denotes the value of the N-stage game starting
in s (cf. Mertens & Neyman [1981], Bewley & Kohlberg [1976, 1978] and
Vrieze [1987-a)).

To show that the total value for initial state 1 is + co, observe that by using
the stationary strategy (1—e¢,e), with e€(0,1), player 1’s total reward will be at
least 1/¢ against any strategy of player 2. Hence, letting € tend to 0 we find
that, although player 2 can keep the limiting average reward at 0, the total
reward value is + oo.

It can even be verified for this example that player 1 can guarantee a total
reward +co by using the Markov strategy f~ defined by: if at stage n the play
is still in state 1, then use the mixed action (n/(n +1),1/(n +1)), for all neN.
Now y}(1,f",6)= + oo for any strategy o€ 3.

The above examples illustrate that only with the following property (P) we can
expect the total value, if it exists, to be finite.

5.2.10 DEFINITION

We say that the stochastic game has property P if the limiting average value is 0
(for all initial states) and if, moreover, both players have stationary limiting aver-
age optimal strategies.

For a zero-sum stochastic game with property P, the total reward criterion can
be seen as a refinement of the limiting average reward criterion, since it is
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obvious that for such a game a total (e-)optimal strategy is necessarily limiting
average optimal.

For the remainder of this chapter we focus on zero-sum stochastic games
with property P.

5.3 STOCHASTIC GAMES AND OPTIMAL STATIONARY STRATEGIES

It is well-known that in any zero-sum stochastic game there exist stationary (-
discounted optimal strategies (cf. theorem 1.7.3). Furthermore it is well-known
that stationary limiting average optimal strategies do not always exist (cf.
example 1.7.4). Vrieze [1987-a] gives the following characterization for the
existence of stationary limiting average optimal strategies.

5.3.1 THEOREM
For any zero-sum stochastic game both players have stationary limiting average
optimal strategies if and only if there exist a, 8, 8, €R’ such that for all s€S:
—_ ’ t P
) o= val [ 3 plsije]

s or=1

b) o +61.§': val [rl(s’iyj) + 2 P(tls’iaj)all]
0,,XB,

t=1

) a;,+8,= val [r‘(s,i,j)-l— > p(t]s,i,))8]
A, X0, =

t
Here A;= {1,2,...,m}, B;={1,2,....n;} and O\ (resp. Oo) is the set of optimal

mixed actions for player 1 (resp. 2) in the matrix game [ > p (ts,i,/)oy]i =, j'fél.
r=1

Shapley & Snow [1950] showed that for each player the set of optimal mixed

actions of a matrix game is a bounded polyhedron, with a finite number of

extreme points. In view of this result ch)z(lB [r'(s.i, J) + > p(t]s,i,j)dy] is the
1 X B, (=1

value of a polyhedral game (cf. Wolfe [1956]), where for (x,y)eO ;X B, the
payoff equals 3 > x,(r!(s,i,j) + D P (2]8,8,7)81,)y;-

i=1j=1 1=1

The expression Ag% [r'(s,i,j) + > p(t]s,i,7)8] should be interpreted in a
X0 1=1

similar way.

For every solution (a,0,,0,) of the equations in theorem 5.3.1 it can be
verified that & = v!, the limiting average value of the stochastic game. Further-
more, given such a solution (a,8;,8,), a stationary limiting average optimal
strategy x~ for player 1 can be constructed by letting x; be an optimal mixed
action for player 1 in the polyhedral game [r!(s,i,j) + 3 p(t|s.i, J)81do, %8,

r=1
for each s€S. A stationary limiting average optimal strategy y~ for player 2
can be found in a similar way. An example in Vrieze [1987-a] shows that there
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may be stationary limiting average optimal strategies which cannot be found
from any solution (a,8,6,).

Observe that theorem 5.3.1 implies that a zero-sum stochastic game has pro-
perty P (cf. definition 5.2.10) if and only if there exists § eR? such that:

8= val [r'(s,i,j)) + D p(t|s,i,j)8,], for each s€S.
A,XB, P

We now give an analogue of theorem 5.3.1 for the existence of stationary total
optimal strategies for stochastic games with property P.

5.3.2 THEOREM

For any zero-sum stochastic game with property P the total value exists in R* and
both players have stationary total optimal strategies if and only if there exist
a,81,0, R’ and A=0 such that for all s S:

a) o A,vff{ex [r (s,z,1)+t§1p(tls,t,1)az]

b) a+ 8= yal (i) 3 pltlsi o]

=1
) o +8= val Iri(sij)+ 3 pltlsij)dul
s 70 U2 t=1

Here O}, and Oy are the sets of optimal mixed actions for the respective players
for the matrix game in (a), and the games in (b) and (c) are again polyhedral
games.

Proor:

THE ‘IF’-PART:

Suppose there are a,6,,0,R* and A=0 such that for each seS the state-
ments (a), (b) and (c) hold. Let x, be an optimal mixed action for player 1 in

the polyhedral game [Ar'(s,i,j) + 3 p(t]s,i,j)8! 1o xp,, for each s€S and let
(=1

yeY. ‘

From (a) we conclude that a <r'(x",y) + P(x",y)a and hence it follows that

0< Q(x*,y)rl(x*,y) = yl(x*,y), so X is limiting average optimal.

It is clear that if y!(s,x",y) > 0 then y1(s,x",p)= 00 > a;.

So let A CS be the set of states with y!(s,x",y)= 0.

Then p(¢|s,x”,y)=0 for all te4 and seA. Let &/, 81, r'(x",p)!, P(x",p)!,

Q(x",p)* be restrictions to states in A.

We have 0= y'(x" p)Y1= Q(x" ) ri(x" y)..

From (b) we conclude that & +8{ <Ar!(x",y)* + P(x",y)"8{ and hence it

follows that Q(x",p)Y1a? <AQ(x" y)iri(x" y)Y1=0.

From (a) we have a* <r!(x",y) + P(x",y) ! which implies that:

ot <( g: PO T ) + (P )™t for all meN.

n=1

This implies:
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aAg(—ﬁ 2 2 (P(x ,)’)A)" ! l(x ,)’)A)+ vl 2 (P(x ,)’)A)m

m=1ln=1

for all NeN. Letting N tend to infinity and usmg that Q(x " y)! a?<0 we

get: o <yr(x”p)'.
By theorem. 5.2.5 we derive mf YH(x",0)= mfyT(x "J)=a and hence

sup 1nf Yi(m,0) = a.
Slmﬂarly we can show inf sup vYHm,0)<a, and thus vLh=acR’ and both
players have stationary total optimal strategies.

THE ‘ONLY IF’-PART:
Suppose that the total value v‘T exists in Rz and that both players have station-
ary total opt1mal strategles x eX and y eY.
Then vi=r (x o N+ Py vk in v1ew of lemma 1.5.7 (b), since
Q(x*,y yrlx®,yH=0. By the optimality of x* and y~:
vhr<r (x*,y) + P(x ,y)vT for all y €Y, as well as
viE=rl(xy") + P(x,y ) vk for all xeX.
Hence vi(s)= val [r (8,,7) + 2p(t|s i,))vi(?)] and x; and y; are optimal

r=1
mixed actions in thls matrix game for each s€S.

Now let yeY.

Since Y1(x",p) = v} > — oo it follows that y'(x",y)= Q(x",y)r'(x",y)=0. Let

again A be the set of states s with yl(s,x*,y)= 0, and let B= S\ 4. Then
p(t|s,x;,p)=0 for all sed, teB. Using similar notations as above we have

(using lemma 1.5.2 and using Q(x ,y)Arl(x 2)Yi=0):

Q(X ay)A 'YT(x ,)’)A hm EYl 2 2 Q(x ,)’)Arl(x 7)’)'4_
Because v <vl(x ,y)" we denve Q(x " Y} <0, or equivalently:
Q" Yt AWrl(x",py! —vi) =0 for all AeR.

Let Q(x",y)p denote the restriction of Q(x",y) to rows in B.
Since Q(x*,y)Brl(x*,y) > 0 we also have that:

Q(x",y)p(r'(x",y) — v}) =0 for A sufficiently large.

Hence Q (x”,y)(Ar!(x",y) — v}) = 0 for A sufficiently large.
Then for A sufficiently large:

Q" YArI(x",y) —vF) =0 for all y e Y?.
Likewise it can be shown that for all A sufficiently large:
Q¢ YAr (x,y™) — v}) <0 for all xeX?.

Hence, if for A sufﬁcient?l large we look at the stochastic game I"" defined by
rV(s,i,j): = Ar'(s,i,j) — vi(s) and p(t]s, 1,]) = p(t]s,i,)) for all s, l,], then we
find that the limiting average value of I'" equals 0 and x~ and y~ are station-
ary limiting average optimal strategies in I". Now observe that the limiting
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average value of T is also 0 if player 1 is restricted to mixed actions in O}, for
each seS, or if player 2 is restricted to mixed actions in O, for each s€S.
Applying theorem 5.3.1 gives the existence of §; and §, eR? with:

81, = Val \rl(si)) =vr(s) + 3 p(t]s,in)dy] for each s,
15 X By t=1
8= AI%, Al (s,5,))—vi(s) + D p(t]s,i,j)8y] for each s€S.
s 25 t=1
Using the fact that for any matrix [a;] and constant ceR it holds that
valla;; +c]= c+valla;j], completes the proof. ||

The following example and the next remark illustrate that one cannot in
general take A=0 in the above theorem.

5.3.3 EXAMPLE

0 ) , 2 -2
2 1 3 2

State 1 State 2 State 3

For this stochastic game v}= (1,1, —1). Now consider the stochastic game r
as defined in the proof of above theorem. It is easy to verify that the limiting
average value of I, with A=0, is not equal to O for state 1; in fact it equals
—1. Hence for the proof of the ‘only if’-part one cannot take A=0 from the
start. One has to take A=2.

5.3.4 REMARK
It should be observed that for a zero-sum stochastic game with the property that
¥'(x,y)=0 for all (x,y)€ X XY, one can take A=0 in theorem 5.3.2.

5.4 THE BAD MATCH

In this section we examine a zero-sum stochastic game with property P for
which the total value does exist but for which one of the players has no history
independent total e-optimal strategy. We have called this specific stochastic
game ‘the bad match’ in analogy with ‘the big match’ of Blackwell & Ferguson
[1968] (cf. example 1.7.4).
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5.4.1 EXAMPLE (the bad match)

-2 2
3 4
1 -1
2 2
State 1
0 2 -2
2 1 1
State 2 State 3 State 4

The interesting initial states are 1, 3 and 4. However, by the structure of the
game it is clear that if we know how the players should play total (e-joptimal
for initial state 1, then the same strategies are total (e-)optimal for initial states
3 and 4. Therefore we focus on state 1 as initial state.
Observe that if the play starts in state 1, then the players will only have to
take (non-trivial) decisions at the odd stages. Those stages we call decision
epochs and strategies are determined by the mixed actions that are to be
chosen on those decision epochs in state 1. Notice that as soon as player 1
chooses action 2, then the play will move to state 2 with probability 1.
It can be verified that the limiting average reward is O for any pair of strategies
and for all initial states. Hence property P holds for this stochastic game.

We now define history dependent strategies for player 1 that will turn out to
be total e-optimal for player 1 (for specific e=0).

5.4.2 DEFINITION

Let p(m)=(m+1)"% for me{0,1,2,...} and let N eN.

We define the history dependent strategy w" for player 1 by:

having observed the action choices of player 2 at the first n decision epochs, say
J1:j25-Jn€{1,2}, n=0, calculate the excess k, of 2’s over I’s among
{J1:J25--2jn} and choose, at decision epoch n+1, action 2 with probability
p(k,+N).

5.4.3 THEOREM .

a) The total value of the bad match exists and equals O (for initial state 1).

b) For player 2 a stationary total optimal strategy is to use the mixed action
(%,%) in state 1 at all decision epochs.

¢) The strategy 7" is total (N + 1) -optimal for player I, for all N eN.

d) Player 1 has no history independent total e-optimal strategy for €>0



The total reward criterion in zero-sum stochastic games 83

sufficiently small.
e) Player 1 has no total optimal strategy.

This theorem follows directly from 5.4.4 - 5.4.15 below.

5.4.4 LEMMA
Let y™ be the stationary strategy for player 2 defined by using (%,%) in state I at
all decision epochs. Then y}(1,m,y")=0 for each mll.

PRrOOF:

Whatever actions player 1 chooses, at each stage the expected payoff will be 0
if player 2 uses y . Namely, in state 1 at each decision epoch the expected
payoff is 0; at other stages the play is either in state 2 with payoff 0 or the
play is in state 3 or state 4 with the same probability, giving also expected
payoff 0.

The following corollary is immediate.

5.4.5 COROLLARY

inf sup y¥(1,7,0) <O.

5.4.6 LEMMA
With Markov strategies player 1 cannot guarantee a total reward larger than —1.

PrOOF:

Let f'be a Markov strategy for player 1. We consider two cases:

a) Suppose that the probability that player 1 will ever choose action 2 is 0.
Then player 1 chooses action 1 at all decision epochs with probability 1.
The stationary strategy y': = (1,0) for player 2 leads to y1(1,£,y")= —1.

b) Suppose that the probability that player 1 will ever choose action 2 is
€>0. Then for each d(0,¢) there is an NseN such that the probability of
player 1 choosing action 2 before stage N, is larger that e—4. For each
8€(0,¢€) define strategy g® for player 2 by: at decision epochs 1,2,...,N;
choose action 2 and at all other decision epochs choose action 1. Then we
have that:

YHLAED < (=8 (—1)+8(1) + 1—9(— D= —1 + 28,
Since player 2 can choose § arbitrarily small, the proof is complete. o

The next lemma says that player 1 has no limiting average optimal strategy.

5.4.7 LEMMA
For any strategy w for player I there is some o such that y'(1,7,06) <O.
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PROOF:

Let 7 be a strategy for player 1. If there is no sequence of action choices of
player 2, such that player 1 chooses action 2 with positive probability, then it
is clear that y1(1,7,y')= —1 for the stationary strategy y':=(1,0).

So suppose there is some sequence of action choices (ji,/7,---,jm) sSuch that at
decision epoch m +1 player 1 will, for the first time, choose action 2 with posi-
tive probability e=>0. Now define g™ for player 2 by: at decision epochs n<m
choose j, with probability 1, at decision epoch m +1 choose action 2 with pro-
bability 1, at decision epochs n>m +1 use the mixed action (4,%). It can be
verified that y1(1,7,g™)= —e<0. [ |

We will now show that y}(1,7",0) = —(N +1)"! for all €=, where 7" is the
strategy as defined in definition 5.4.2.

To prove this, we fix an arbitrary strategy o2 and we define several random
variables which are supposed to correspond to the pair of strategies (7",0):

5.4.8 DEFINITION

Let 0€3. Suppose that the players use (7" ,6) for some N eN.

Let B (Bottom) be the random variable denoting the number of decision epochs
before player 1 chooses action 2.

For each meN define the event K (m) by:

K(m):={B=m,or B<mand jg =1}

Let Py{K(m)} be the probability that K (m) occurs.

Notice that K (m) is the event that at decision epoch m player 1 either has not
yet chosen action 2, or he did choose action 2 and was lucky in receiving 1. In
other words we have that K(m) is the event that the total reward up to deci-
sion epoch m is non-negative.

5.4.9 REMARK

Py{K(m~+1)}= Py{B=0and j,= 1)
+ Py{(B=m+1,or 1ISB<m+1and jg, = 1|j; =1}
+ Py{B=Zm+1,or ISB<m+1and jp,1=1]j,;=2}.

5.4.10 LEMMA

a) Py{(B=Zm+l,or ISB<m+1and jg.1=1j,=1}
= (1=p(N) Py {K(m)).

b) Py{B=Zm+l1,or ISB<m+1and jg, 1= 1j,=2}
= (I=p(N)) Py +1{K(m)}.

PRrROOF:
We only prove (a) since the proof of (b) is similar.
Notice that in the left-hand side of (a) the event B =0 is excluded. Given that
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j1=1, the mixed action to be used according to 7" at decision epoch n +1,
with some history (1,j3,/3,...,jn), is €qual to the mixed action used according
to 7 ~! at decision epoch n with history (j2,/3.-,/n)-

At decision epoch 1 player 1 using 7" chooses action 1 with probability

1=p(@N).
Hence, given that j; =1, using 7" yields the same stochastic process as initially
choosing action 1 with probability 1—p(N) and using 7" ! thereafter. |

Consequently, we have that
Py{K(m+1)}=Py{B=0and j, =1}
T (A=pW) Py 1{K(m)} + (A —p(N)) Py +1{K(m)}.

The next lemma states that for all m and N the probability that the total
reward up to decision epoch m is non-negative, is at least N/2(N +1).

5.4.11 LEMmA
Py{K(m)} = N/2N +1) for all m, NeN.

PROOF:
We use induction to m.
a) Letm=1 and let NeN.
If j; =1, then:
Py{B=1]j;=1}=1—p(N)and Py{B <1 and jp,+;=1[j;=1}=p(N).
So Py{K(1)|j;=1}= 1= N/2(N +1).
If j, =2, then:
Py{K()|j;=2}= Py{B=1]j;=2}= 1—p(N)=N/2(N +1).
Let g be the probability that player 2 chooses action 1 at decision epoch
1, then:

Py{K(D)}=q Py{K(1)|j1=1} + (1—¢) Py{K(1)|j1 =2}
=g N/2(N+1)+ (1—q) N/2(N +1)= N/2(N +1),

b) Suppose Py{K(m)} = N/2(N +1) for some meN and all NeN.
Then, in view of remark 5.4.9 and lemma 5.4.10, we have:
+Py{B=m+1,or1I<sB<m+1
anij+1:1U]:1}
=pWN)+(A—pI)) Py_1{K(m)}
=pWN)+(A—pN)N —1)/2N = N/2(N +1).
Also in view of lemma 5.4.10 we have:
Py{K(m+1)|j;=2}=Py{B=0and j, =1|j; =2}
+Py{B=Zm+1l,orlI<sB<m+1
and jp 41 =1[j; =2}
=0+ (1—p(W)) Py +1 (K (m)}
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=(1—p(N))(N +1)/2(N +2)= N/2(N +1).
Hence Py{K(m +1)}= q Py{K(m +1)|j,=1}
+ (1—q)Py{K(m+1)|j,=2} =N/2(N +1),
which shows the induction step. |

The following lemma demonstrates that 7" guarantees a total reward of at
least —(N +1)~! if the probability that player 1 will ever choose action 2,
using 7" against o, is 1.

5.4.12 LEMMA
If lim Py{B=m}=0, then y}(1,7¥,0) = —(N +1)"".
m—0o0

PRrOOF: .
Since by definition Py{K(m)}= Py{B=m} + Py{B <m and jp; =1}, we
derive from lemma 5.4.11, in view of the assumption of this lemma, that:

With probability 1 player 1 will choose action 2 at some decision epoch and,
since the sum of payoffs until that decision epoch equals 0, the total reward is
determined by the action which player 2 chooses at that moment. So we have:

yr(1,7,0)= Py{jp+1=1} — Px{jp+1=2}
=2PN{jB+I: 1} —1
>N/(N+1)—1=—-WN+1)"L. [ |

Notice that, if for a certain n we have k,=—N, then player 1 will choose
action 2 with probability 1 at decision epoch n + 1. Hence, as long as no tran-
sition to state 2 has occurred, we have k,, = —N.

5.4.13 LEMMA

For any realization of the stochastic process associated to @ and o, for which
player 1 never chooses action 2, it holds that the corresponding total reward is at
least 0.

PRrOOF:
Let (ry,7,,...) be the sequence of payoffs (to player l; that occurs.
t
Since in this case k, > —N for all neN, we have > > r, > —2N for every
t=1n=1

T
TeN. It follows that lim inf L > > =0
T»w T t=1n=1 L

5.4.14 LEMMA
If im Py{B=m)}>0, then yy(1,7",0)= —(N +1)"L.
m—o0
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PROOF:

For meN let A(m):= Py{B <m and jp;,=1} and let pim):=Py{B <m

and jB+1—2} Since {A(m):meN} and {u(m): meN} are bounded mono-

tone increasing sequences, we can define A: = 11m A(m) and p: = ]1m wm).
—>00

Now the probablhty that player 1 will ever choose action 2, equals }\+ p and
hence 1 —A—p is the probability that the play never reaches state 2. By lemma
5.4.13 and by the definitions of A and p we have:

yr(,7,0)= A1+ p(—1) + (1=A—p)-0 = A—p.

So if we can prove that \—p= —(N +1)~!, then the proof is finished.

For each meN define strategy o™ by: up to decision epoch m use o, at all
other decision epochs use the mixed action (/,%5). Then ¢” will give rise to
sequences (ji,j2,...) for which [k,=—N for some neN] with probability 1.
Hence for the strategies ¢” the condition of lemma 5.4.12 applies (where Py
now refers to (7",6™)). Hence y(1,7",6™)=—(N +1)"! for all meN.

On the other hand, with respect to (7",0™), if player 1 chooses action 2
before decision epoch m, then this contributes A(m)-1-+ p(m)(—1) to
v4(1,7",6™), and choosing action 2 later contributes (1—A(m) — p(m))-0 (cf.
lemma 5.4.4).

Hence yr(1,7",0™)=A(m)—p(m)=—(N +1)"! for all meN. Taking limits
for m to oo gives \—p= —(N +1)~!, which completes this proof. |

An immediate consequence of lemma 5.4.12 and lemma 5.4.14 is the following.

5.4.15 COROLLARY
sup inf y}(1,7,0) = 0.

It should be remarked that the above proofs for the bad match are along the
same lines as proofs by Blackwell & Ferguson [1968] for the big match.

5.5 CONCLUSIONS

The bad match illustrates that there is an analogy between the total reward cri-
terion and the limiting average reward criterion. For both criteria history
dependent strategies are indispensable for playing e-optimal, which distin-
guishes these criteria from the B-discounted reward criterion. The relation
between the total reward criterion and the limiting average reward criterion is
even narrowed by the fact that with any stochastic game I' we can relate
another stochastic game I'" with an infinite state space, such that for all stra-
tegies the total reward in I' equals the related hmltlng average reward in I'".
To show this, let T be a zero-sum stochastic game as in definition 1.2.1 and let
H,, neN, be as defined in definition 1.3.3. We use asterisks to define I"".

0
Let S":= |J H, be the state space of I"".
=1

* - . . . . . .
For s =h, =(51,01,1,52:02:]25sSn —1rin—1>jn—1,5,)  let Ay = A and
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Bg:= B, be the action spaces in I'"".
n—1
For s'=h, and i"€dy, j eBy let rU(s%i"j )= 3 r'(seici)
k=1
+rl(s,,i",j") and let p"(t"|s",i",j"):= p(t|sn,i ,j") for t* = (h,i",j",t) and
p (@ |s",i",j7):=0 for other t"€S".
Hence we have translated histories of T' into states in I"". Notice that in I'"
every state s~ can be reached along precisely one history path, and there is a
one-to-one relation between strategies in I and strategy classes in I"".
Furthermore we have that at each stage N €N, for strategies 7,6 and initial

state s~ =s, it holds that:

N N m N m
S EcnRU(M)= 3 Emol 3 R'MI= 3 3 EgmolR' ()]}
m=1

m=1 n=1 m=1n=1

Hence y!"(s",m,0) = y}(s, 7,0) for all s* =s, and all strategies 7 and o.
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Chapter 6

Stochastic games and mathematical programming

6.1 INTRODUCTION

Mangasarian & Stone [1964] proved the following theorem which relates equili-
bria of a bimatrix game with solutions of an associated non-linear program,
with quadratic objective function and with linear constraints.

6.1.1 THEOREM

For a bimatrix game (A',A%) a pair of mixed actions (x",y") is an equilibrium
with payoffs (o' ,&®") if and only if (x",y",a'",a*") is a global minimum in the
following non-linear program, with objective value 0.

NLP 6.1.1:

variables xcR™,y eR”,a!,e’ R
minimize o' — xA ly + a? — x4 2y
subject to a'l,, —A'y =0 and o*1, — xA> =0

m

> x=land 3 y;=1

i=1 j=1
x=0andy=0.

For matrix games 4, where player 1 is the maximizing player, the non-linear
factors in the objective function of NLP 6.1.1 disappear (since their sum is 0)
and what remains is a linear program. It is easy to verify that for matrix games
we have the following result.

6.1.2 THEOREM

For an mXn matrix game A the value, for player 1, is v and (x",y") are optimal
mixed actions for the players, if and only if (x",y",v, —v) is a global minimum in
the following linear program, with objective value 0.

LP6.1.2:

variables x € R™,yeR",a',a’eR

minimize o'+ a?

subject to a'1,, — Ay =0 and a*1,, + x4 =0
m n
2:1 x; =1 andjglyj =1
x=0and y=0.

In this chapter we will formulate analogues of the above theorems for



90 Chapter 6

stochastic games. We consider both the general-sum and the zero-sum case for
the B-discounted reward criterion, for the limiting average reward criterion and
for the total reward criterion. For the last criterion we have restricted our
attention to stochastic games with the property that the limiting average
reward is O for all pairs of stationary strategies. For the B-discounted criterion
and the limiting average criterion, characterizations for stationary solutions by
means of mathematical programs have been reported in Rogers [1969], Roth-
blum [1979], Hordijk & Kallenberg [1981], Vrieze [1981, 1983, 1987-a], Filar
[1986], Filar & Schultz [1986, 1987], Schultz [1987]. However several of these
characterizations are for special classes of stochastic games and/or for the
zero-sum case only.

Since it is well-known that only with respect to the S-discounted reward cri-
terion stationary optimal strategies and stationary equilibria always exist, it is
of interest to know, especially for the other criteria, whether near-optimal solu-
tions of the programs correspond with e-optimal strategies or e-equilibria. For
the B-discounted reward criterion this is indeed the case. However for the lim-
iting average reward criterion and for the total reward criterion this correspon-
dence between near-optimal solutions not necessarily holds. Nevertheless, for
the zero-sum case the program we formulate will for both players lead to sta-
tionary (e-)optimal strategies, whenever they exist. If stationary e-optimal stra-
tegies fail to exist, then our program finds ‘e-best’ stationary strategies for both
players. Here an ‘e-best’ stationary strategy for player 1 is a strategy x. such
that inf y!(x,,y) + €= sup inf y'(x,y).

yeY xeX yeY

The programs we present are based on the lemmas 1.5.3 to 1.5.8 and on
lemma 1.6.2, as well as on theorems 1.7.3, 5.3.1 and 5.3.2. The results of the
sections 6.2 and 6.3 can be found in Filar et al. [1991].

6.2 PROGRAMS FOR THE [3-DISCOUNTED REWARD CRITERION
6.2.1 LEMMA
For a general-sum stochastic game a pair of stationary strategies (x",y") is a B-

discounted equilibrium with B-discounted rewards (o' ,o?") if and only if for all
seS and ke{1,2}:

) o =(1-Brtx;y) + B3 pltlsx; el
t=1
z
b) & =(1—Byr'(siy) + B X pllsiy)al” for all icd,
t=1

aZ =1 —B)ri(s,x;,j) + B > p(tls,x;5,j)a?" for all jeB;.
. (=1

PROOF:
This lemma follows directly from lemma 1.5.3, lemma 1.6.2 and lemma 1.6.4.1

From lemma 6.2.1 we immediately obtain the next theorem.
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6.2.2 THEOREM

For a general-sum stochastic game a pair of stationary strategies (x",y") is a p-
discounted equilibrium with B-discounted rewards (a'*,a*) if and only if
(x",y",a'",a*) is a global minimum in the following non-linear program, with
objective value 0.

NLP 6.2.2:

z z
variables x¢& XlRm‘,ye XIR"‘, ol o’ eR?
2s=z 5= z
minimize ¥ ¥ (ak — A=Byrk(s,x5,p,) — B D p s xs,p5)af)
r=1

k=1s=1
subject to

a) al = (l—ﬁ)rl(s,i,ys) +B Ep(t|s,i,ys)¢x,l forallicA;, seS
t=1
a2 =(1 —,B)rz(s,xs,j) + B 2p(t|s,xs,j)oz,2 forall jeB; , seS
=1

mg R

b) > x,()=1and D y(j)=1 forall seS
i=1 ji=r

c) x,=0andy,=0 forall seS.

An interesting feature of the above non-linear program is that feasible solu-
tions with objective value near 0 are directly related with stationary pg-
discounted e-equilibria.

6.2.3 COROLLARY
If (x",p",a'",a®") is a feasible solution of NLP 6.2.2 with objective value >0,
then (x",y") is a stationary B-discounted 8(1— B)™'-equilibrium.

PrOOF:

Constraints (b) and (c) give that x €X and y " €Y.

By the constraints (a) and by the objective value §>0 for the solution
(x*,y*,a",az*) we have for each s€S§: -

0<af —(1=Bri@,x;.p:) — B plels,xs.yaf” <8.
=1

Or, equivalently, in vector notation:
0<o" —(1—PyrkE"p") — BP(x ",y )" <41,.

By the first inequality sign: &" = y%(x",y") (cf. lemma 1.5.4).
The second inequality sign gives us:

I—BPE "y ) <(A-Byrke"y") +81,,
and hence o*" <(1-B)I —BP(x",y") ' rk(x"p )+ T —BP(x",y")) 161,
=vh(x"y) +8(1-p7'1,.
Constraints (a) also imply:



- 92 Chapter 6

yh(x,y")<a'" for all xeX and y3(x",y) <a® forallyeY.
Combining these results proves this corollary. u

Of course, the reduction of NLP 6.2.2 to zero-sum stochastic games is a pro-
gram which finds the S-discounted value and stationary optimal strategies for
both players. Rothblum [1979] proposed the following non-linear program to
find the B-discounted value and a stationary B-discounted optimal strategy for
player 2.

6.2.4 THEOREM

For a zero-sum stochastic game with B-discounted value vj a statzonaty strategy
y" €Y is B-discounted optimal for player 2 if and only if (y*,v}) is a global
minimum in the following non-linear program.

NLP 6.2.4:

zZ
variables ye X R™, aeR*
.S =1
minimize ), a
s=1
subject to

a) a,=(1-pyr'(siy)+ B Ep(tls,i,ys)a,for allieA,, seS
=1

b) 2 ys()=1 for all seS
c) ys >Ofor all seS.

It is obvious that a similar program can be formulated to find stationary B-
discounted optimal strategies for player 1.

6.3 PROGRAMS FOR THE LIMITING AVERAGE REWARD CRITERION

It is well-known that stationary limiting average equilibria may fail to exist.
However, below we present a non-linear program which finds a stationary lim-
iting average equilibrium whenever one exists. Our program is based on the
following lemma.

6.3.1 LEMMA

A pair of stationary strategzes (x",p") is a limiting average egutl brzum with limit-
ing average rewards (a,a%") if and only if there exist 81 ,8%, p",u*" eR? with:

a) o = 2p(t|s,xs,ys)a, for all seS, ke{1,2}
t=1
b) af + 8% =rk(s,x;,p0) + D ptls,xs,y: )8 for all seS, ke{1,2)
t=1

z
o al'= S p(s,iy;)al” forall icd,, seS
=1
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2 ()5, x;,))a?" for all jeB,, s€S
1*
S

d) o' +pl" =rlsiy;) + 2p(t|s1,ys)p,, forallieA;, seS

o + p2 = r2(s,x;,j) + Zp(tls,xs JWZ for all jeB;, seS.

t=1

This lemma follows from the fact that (x”,y") is a limiting average equilibrium
if and only if x" is limiting average optimal for player 1 in MDP(y") and y" is
limiting average optlmal for player 2 in MDP(x") (cf. sectlon 1.6). A station-
ary strategy x  is limiting average optlmal m MDP(y ") with limiting average
reward a” if and only if there exist 8'" and p'* such that (cf. Blackwell [1962],
Hordijk & Kallenberg [1979]):

a) al’= > p(s,x;,p;)al” forall seS
(=1
b) al’+8 = rl(s,x;,y:) + 2p(t|s,x:,y:)8tl* for all seS
=1

, , 4
©) ai = X ps.iys)al forallied,, seS
r=1
V4
d) al"+pl"= rl(s,i,y:) + 2p(t|s,i,y:)p,,1* for all icA,, s€S.

=1
It is easy to verify that lemma 6.3.1 directly implies the following result.

6.3.2 THEOREM

For a general-sum stochastic game a pair of stationary strategies (x",y") is a lim-
iting average equilibrium with limiting average rewards (a' o) if and only if
there exist 8,87 u!*,p>" eR? such that (x*,y*,al*,az*,8’*,82*,u1*,,u2*) is a glo-
bal minimum in the following non-linear program, with objective value 0. .

NLP 6.3.2:

variables xe >< IR ,ye >< R , al,a?,8',8%, p 2 eR?
minimize 2 E [af — 2 p(t|s,xs,ys)af]

k=ls=1 (=1
subject to

a) al= 2p(t|s iye; forallieA;, seS
o= le(t|s,xs,])a, for all jeB;, seS
t=
b) al+8! =rl(s,x,y;) + ép(t[s,xs,ys)&l forall seS
(=1
aZ+62 = r2(s,%s,p5) + é P (2], %5,y5)8? for all s€S

t=1
z

) al+pul= rl(s,i,ys) + Ep(t|s,i,ys)p.,1 forallieA;, seS

t=1
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a2+ p2 =ri(s,x,)) + D p(ts,x,j)pl for all jeB;, seS

(=1
m, n,
d SxO=1 Dy()=1forall seS
i=1 =1

= J=
e) x,=0,y,=20 forallseS.

Observe that constraints (a) of NLP 6.3.2 imply that for any feasible solution
the objective value is non-negative.

For the B-discounted criterion feasible solutions with objective value near 0
in NLP 6.2.2, turned out to correspond with B-discounted e-equilibria (for
specific €>0). Unfortunately, feasible solutions with objective value near 0 in
NLP 6.3.2 do not necessarily correspond with limiting average e-equilibria.
This is illustrated in the next example.

6.3.3 EXAMPLE
L1
1
1,—-1 0,0
2 2
State 1 State 2

Let x=((1—¢¢),1), y=(1,1), a!=(1,0), &=(—1/¢0) and o*=8'=
p'=p?=0, where ¢>0. It is easy to verify that (x,y,a',a?,8',8%,p!,p?) is a
feasible solution of NLP 6.3.2 with objective value e.

It is clear that (x,y) is not a limiting average e-equilibrium for e€(0, 1), because
Y'(Lx,py)=0 <1 =7v!(1,x",y) with x" = ((1,0),1).

Since example 6.3.3 is a zero-sum stochastic game, it also demonstrates that
the restriction of NLP 6.3.2 to zero-sum stochastic games does not yield a pro-
gram for which near-optimal solutions correspond with stationary limiting
average e-optimal strategies.

However for zero-sum stochastic games we present a powerful non-linear
program for which feasible solutions with objective value near 0 do indeed
correspond with stationary limiting average e-optimal strategies. The non-linear
program NLP 6.3.4 (below) completely characterizes stochastic games with sta-
tionary limiting average (e-)optimal strategies. For any stochastic game NLP
6.3.4 finds ‘best’ stationary strategies with respect to the ‘distance measure’
d(, ) defined by:

d(x"y"):= 3 [max y'(s,xy") — min v'(sx"p))

s=1

Thus d(, ) is a measure for the ‘distance from optimality’ of any pair of
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stationary strategies (x",y ).
Notice that for each seS it holds that maxy (s, x,y ) — mm Yi(s,x ) is

non-negative and: d(x",y")= 0 if and only 1f x° and y" are stat1onary limiting
average optimal strategies. If d(x",y") >0, then x" and y~ are both limiting
average e-optimal for some e€[0,d(x",y")].

6.3.4 THEOREM
For a zero-sum stochastic game the following results hold.

If there exist x EXR .y EXIR‘ o', 8,8 eR® such that

=1
"y a,e?, 8" 82 ) is a feasible solutzon with objective value ¢(=0) in NLP
6.3.4 below, then x™ and y" are stationary limiting average e-optimal strategies
for the respective players
Conversely, lf X and y are statzonary llmztmg average - opttmal strategies, then
there exist a'",a®",8"",6% eR? such that (x",y",a'",a*,8"",8%") is a feasible
solution with ob]ectzve value 2z¢, or less, in NLP 6.3.4.
NLP 6.3.4:

Z .
variables xe€ X R™, ye XIR"’,al,a2,61,826Rz
s=1 s=

minimize 2 (a! + a?)
s=1
subject to

a) al= D p(siys)al forallicA,, seS
=1

b) al+8! =rl(s,iy) + D p(s.i,ys)8! forallied,, seS
(=1
o) 2= p(ts,xj)a? forall jeB;, seS
t=1
d) o2+62= —-rl(s,xs,j) + Ep(t|s,xs,j)8,2 forall jeBg, seS

t=1
m,

e) > x()=1, 2 ys(ND=1 for allseS

i=1

) x,=0y,= OforallseS

PROOF:
Suppose that (x",y",a!",a®",8'",8%") is feasible in NLP 6.3.4 with objective
value e=0.
By constraints (€) and (f) we have x” €X and y " €Y.
Constraints (a) and (b) imply al” >y (s, x,y*) for all seS xEX by lemma
1.5.6. Similarly (c) and (d) imply a* =v2(s,x y)= —7'(s,x",p) for all s€S,
yeY.
Hence a! +a? = v!(s, X,y ) Y s, x ,y) for all xeX, y Y, seS.
Especially al+a?=y'(sx" % ) —y(s,x ,y *)=0 for all seS.

z

Since > (a! +a?)=¢, we conclude that a! +a? < e for all s€S.
s=1
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It follows that for all s€S, x X, y Y we have:
Yex ) +e=vsx"y )=y sxyT) e
So the strategies x~ and y" are limiting average e-optimal.

To prove the converse statement, suppose that we have stationary limiting
average e-optimal strategies x  €X, y €Y. Then constraints (¢) and (f) are
satisfied.

By solving MDP(y") with respect to the ]imiting average reward criterion (cf.

Hordijk & Kallenberg [1979]) there ex15t ao! and o such that (a) and (b) are
satisfied. Moreover, we have that a! = max Y'(s, X,y < yl(s,x ,y') + € for

each seS. Sumlarly there emst o* and 82 such that constramts (c) and (d) are
satisfied and a?" = = max (—Y'Ex" < —v'ex"y) +e

1S
Hence (x",y",a!",a%, 81 ,6%) is a feasible solution of NLP 6.3.4 and the

corresponding objective value is 2 (@l + a?) < 2ze.
s=1

Theorem 6.3.4 implies that by solving NLP 6.3.4 ‘best’ stationary strategies can
be found, as can be seen from the following results.

6.3.5 COROLLARY
If (x"p",a!",a% 8" ,8%) is a global minimum in NLP 6.3.4 with objective value
p=0, then p= d(x*,y*) <d(x,y) forall xeX, yeY.

PROOF:
Let (x",y",a!",a%",8",6%") be a global minimum in NLP 6.3.4 with objective
value p. By the constraints (a), (b), (c) and (d) it holds that:

al’ = max Y'(s,x,y") for all s€S,
X€

o' = max y*(s,x",y)= — min y!(s,x",y) for all sS.
yeY yeY

Since (x",y",a'",a*",8"",6%") is a global minimum, equality must hold in all
these inequalities. Otherwise, by solving MDP(x") and MDP(y") one could
find variables o!,a?,6',6>° for which equality indeed holds, and hence

V4
> (al+a?) < p would contradict the minimality of (x*,y",a!'",a?",8"",6%").

We conclude that p= 3 (a!" +aZ)=d(x"p").

s=1 1.2

For any ?an of stationary strategies (x,y) one can find a ,a 8 8 such that

~ o~ o~

(x,y,a a,d 8 ) is feasible in NLP 6.3.4 and such that ozsl = max Y'(s,x,p) and

a = —mnyl Y'(s,x,y) for all s€S. Then p< 2 (as+as)= d(x,p) by the
ye s=1

minimality of p. L
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6.3.6 COROLLARY

Suppose that the minimum in NLP 6.3.4 does not exist, but that the infimum
equals n(=0), then for every €0 there exist stationary limiting average (p+€)-
optimal strategies for both players.

ProoOF:

For every e>0 there exists (x",y",a'",a?",8'",8%") which is feasible in NLP
6.3.4 w1th objective value less than p+e. From theorem 6.3.4 it follows that x
and y" are stationary limiting average (1+€)-optimal strategies. n

Without proof we state.

6.3.7 COROLLARY
For a zero-sum stochastic game there exist stationary limiting average e-optimal
strategies for both players and for all €0, if and only if the infimum of NLP
6.3.4 is equal to 0.

6.4 PROGRAMS FOR THE TOTAL REWARD CRITERION

From the bad match (section 5.4) it is clear that stationary total equilibria do
not necessarily exist, not even in stochastic games for which the limiting aver-
age rewards are O for all pairs of stationary strategies. Nevertheless we can for-
mulate non-linear programs for which optimal solutions correspond with sta-
tionary total equilibria. We make use of the following lemma.

6.4.1 LEMMA

For a stochastic game with the property that yk(x,y) 0 for all stationary stra-
tegies x and y, we have: a stationary strategy x  is a total best reply against
y €Y zf and only if there exzst o, 8 and p* R’ such that

a) a;=rl(s,x;,y;)+ 2 p(t)s,x;,ys)a; for all s€S
(=1

z
a; =rl(s,iy;) + D pt|siys)a; for all ied,, seS
f=1
b) a;+8; = 3 p(tls,xs,p;)8; for all s€S

t=1
z

o) a;tp; = D p(tsiys)u for all ied;, seS
=1

PROOF:

The ‘if’-part follows directly from the lemmas 1.5.7, 1.5.8 and theorem 5.2.5.
The ‘only-if’-part can be shown in a similar way as the proof for the ‘only-if’
part of theorem 5.3.2. |

Lemma 6.4.1 directly leads to the following theorem.
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6.4.2 THEOREM

For a general-sum stochastic game with Y*(x,y)= 0 for all xeX, y €Y, we have:
a pair of statlonaiy strategzes "y HEXXY is a statwnaty total equilibrium
wzth total reward (a!,a? ) zf and only if there exist 8'",6% ,u"" ,u*" €R? such that
("y",al",a? 81,87 0", u?") is a global minimum in the followmg non-linear

program with objective value 0.
NLP 64.2:

variables xe X1R ,ye >< Y™ a ,a2,8',8% p! u? eR?

z

minimize 2 > [aX ——rk(s Xg,Vs) — 2 p(ls, xs,yx)a,]
k=1s=1
subject to

V4
a) al =rk(s,iy) + 21)(t‘,]xs‘,i,ys)az,l forallicA;, seS
a? = rk(s,x,,j) + 2 p(t]s,x;,))a? for all jeB;, s€S
b) al+8l= _Zp(t[s,xs,ys)b‘, forallseS
{=1

a?4+82="3 p(t|s,xs,y;)8? for all seS
(=1

) al+pl= Zp(tls, Ly )ut forallied,, seS

t_

o +pl= Zp(tls,xs,])p,, forall jeB, seS
=1
m, n

H S xi)=1 2 y()=1 for all sS

i=1

e) x,=0, ys>0forallseS

Like in the previous sections we wonder whether or not near-optimal solutions
of NLP 6.4.2 correspond with total e-equilibria. For the total reward criterion
we find that, as for the limiting average criterion, there is no such correspon-
dence. This is illustrated by the next example.

6.4.3 EXAMPLE
1,—1
3
0,0 0,0 —-1,1
2 2 1
State 1 State 2 State 3

Let x=((1—¢¢),1,1), 0<e<l, y=(1,1,1), o' =(1,0,0), 8'=(1/¢,2/¢1/¢),
=(0,0,1), &=(1,1/,0) and let p'=p?>=(0,0,0). Furthermore let
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x"=((1,0),1,1). Then (x,y,a o?,8',8%, ! ,p) is a feasible solution of NLP
6.4.2 with ob_]ec’uve value e. However yi(l, xy)=0< 4= yr(1,x ,y) and
hence (x,y) is no total e-equilibrium for e=(0, %).

Since example 6.4.3 is a zero-sum stochastic game we conclude that the restric-
tion of NLP 6.4.2 to zero-sum stochastic games, does not yield a program for
which near-optimal solutions correspond with stationary total e-optimal stra-
tegies. Nevertheless we present a non-linear program which has this property.

6.4.4 THEOREM
For a zero-sum stochastic - game with yk(x, y)=0 for all xeX, y €Y, we have:

If there exist x" € XR y € ><IR a0 8,8 eR*  such that

" D al*, 0,81 82 ) zs a feaszble solutzon with objective value ¢(=0) in NLP
6.4.4 below then x" and y" are stationary total e-optimal strategies for the
respective players.

Conversely, if x* and y" are stationary total e-optimal strategies, then there exist
a0 81 ,6% eR? such that (x”,y",a'",a®",8",8%") is a feasible solution with
objective value less than 2ze in NLP 6.4.4.

NLP 6.4.4:

z V4
variables xe X R™,ye X R"™, a!,a%,8',8% eR?
s=1 s=1

z
minimize > (al+a?)
s=1
subject to

a) al=rl(s,iy,)+ Ep(t|s,i,ys)¢x,1 forallicA;, seS
a = —rl(s,x,,j) + 2p(t|s,xs,])a, for all jeB;, seS

b) al+8l= Ep(tls, i,y5)8; for alleAs, ses

t—l

a? +82= Ep(t{s,xs,j)at2 for all jeB,, seS

)] sz(z)—l 2 ys()=1 for all seS
d) xs>0 ys>0 forallseS

PrOOF:

Suppose that (x",p",a!",a®",8'",8%") is feasible in NLP 6.4.4 with objective
value €. By constraints (c) and (d): x“€X, y” €Y. By constraints (a) and (b) we
have, using lemma 1.5.8, that:

vi(s,x ,y*) < asl* and yT(s x*,y)— yT(s x*,y) <a? for all xeX, yeY,ses.
Hence y1(s, x,y - yT(s X ,y) < as *+a? for all xeX yeY, ses.

Espemally a+a? = yix'y)— yis,x",y")=0 for all seS. Since

2 (a)" +a?")= € we conclude that e = a!* +a2* =0 for all s€S.
s=1
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Hence for all seS, xeX and y €Y we have:

YHs,x"p) +e=visx y ) =visxy)— €

which means that x~ and y~ are stationary total e-optimal strategies.

Conversely, if x* and y" are stationary total e-optimal strategies, then con-
straints (c) and (d) are satisfied. By solving MDP(x") there exist o** and 8%
such that (a) and (b) for player 2 are satisfied (cf. lemma 6.4.1). Similarly one
can find ¢! and &' by solving MDP(y"). Then (x",y",a!",a*",8!",8%") is feasi-
ble in NLP 6.4.4. By lemma 6.4.1 we have for all s€S:

1* _

o' = max Yr(s,x,y") < ¥i(s,x",y") + € and

2* _

o l;ﬂgvzr(s,x*,y)svzr(s,x*,y*)+€:—ﬁ(s,x*,y*)ﬂ- u

It should be observed that NLP 6.4.4 finds ‘best’ stationary strategies for the
total reward criterion.
Here a “best’ pair of stationary strategies is.a pair (x ",y ") such that

dr(x"y"):= 3 [max yi(s,x,y") — min yi(s,x",y)] is (near-)minimal
s=1 X€ ye
Without proofs we formulate some implications of theorem 6.4.4. They can

be proved in a similar way as the corresponding results for the limiting average
reward criterion were proved.

6.4.5 COROLLARY
If (x"y",a",a%,8",8%") is a global minimum in NLP 6.4.4 with objective value
p=0, then p=dp(x",y") < dp(x,y) for all xeX, yeY.

6.4.6 COROLLARY

Suppose that the minimum in NLP 6.4.4 does not exist, but that the infimum
equals p.(=0), then for every €0 there exist stationary total (u+ €)-optimal stra-
tegies for both players.

6.4.7 COROLLARY

For a zero-sum stochastic game both players have stationary total e-optimal stra-
tegies for all €0, if and only if the infimum of NLP 6.4.4 is equal to 0.
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