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Chapter 1 

Preliminaries 

1. 1 INTRODUCTION AND SUMMARY 

This monograph deals with two-person stochastic games with finite state and 
action spaces. The theory of stochastic games started by a paper of Shapley 
[1953]: 'Stochastic games'. In this fundamental article Shapley combined the 
dynamic programming model of Bellman [1952, 1957] with the matrix games 
considered by Von Neumann [1928] and Von Neumann & Morgenstern [1944]. 

In the dynamic programming model problems of the following type are con-
sidered. At a discrete number of stages in time, a person has to choose one of 
finitely many actions; that choice will determine an immediate payoff as well 
as a probability vector according to which a new state is appointed, where an 
action has to be chosen at the next stage. There are finitely many states, each 
with its own finite action space. The person faces the problem to decide which 
action choices give the highest income. Here the income is determined by 
discounting, averaging or, in some special cases, by simply adding all immedi-
ate payoffs. 

In matrix games two persons, usually called players, face an m X n-matrix 
with real entries. Simultaneously and independently player I has to choose a 
row and player 2 has to choose a column. The real number in the chosen entry 
is the amount player 2 has to pay to player I. Of course, the assumption is 
made that player I wants to maximize the expected payoff and, at the same 
time, player 2 wants to minimize the expected payoff. 

Shapley [1953] combined the features of dynamic programming with those 
of a matrix game. Thus a stochastic game can be seen as a finite collection of 
matrix games, one to be played at each stage, where the motion among the 
matrix games depends at each stage on the current state and on the actions 
chosen. The collection of stages is assumed to be 1\1 = {I, 2, 3, ... } . The stochas-
tic game is a non-cooperative game, meaning that the players are not allowed 
to make binding agreements. These stochastic games as examined by Shapley 
[1953] are zero-sum stochastic games, i.e. one player is paying the other player 
and the gain of one player is the loss of the other player. In zero-sum games 
the two players have strictly opposite interests. The question in such games is 
whether there is a certain amount which player I can guarantee to receive (in 
expectation) regardless of the choices of player 2, while player 2 has a strategy 
such that he will not need to pay more than that amount (in expectation), 
regardless of the choices of player I. Whenever it exists, this unique amount is 
called the value of the game and the strategies used by the players to guaran-
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tee this value are called optimal strategies. If the players can only achieve 
near-optimality we speak of £-optimal strategies. 

If it is not required that one player is paying the other player, then the game 
is called a general-sum stochastic game. For such a game the states no longer 
correspond with matrix games but with bimatrix games: in each entry of the 
matrix there are two real numbers, the first indicating the payoff to row-player 
1, the second indicating the payoff to column-player 2. Now the players need 
no longer have strictly opposite interests and hence the notions 'value' and 
'optimality' lose their meaning. In general-sum stochastic games the usual solu-
tion concept is that of (t:-)equilibria. An (t:-)equilibrium is a pair of strategies 
with the property that neither player can gain (more than £ (£>0)) by unila-
teral deviation. This concept of equilibrium was introduced by Nash [1951] for 
bimatrix games, and it is therefore known as Nash-equilibrium. Fink [1964] 
combined Shapley's (zero-sum) stochastic game model with Nash's (general-
sum) solution concept to examine general-sum stochastic games. 

In this monograph we shall deal with the general-sum stochastic game model 
as well as with the zero-sum stochastic game model. The existence of £-
equilibria, or of the value and £-optimal strategies, may depend on the initial 
state. It should be clear that any of the states in a stochastic game can func-
tion as the starting state. Just as in dynamic programming it is often useful to 
consider the problems for the different initial states simultaneously. Thus the 
value of a stochastic game is in fact a value-vector, where coordinates 
correspond with the starting states. Likewise an £-equilibrium is a pair of stra-
tegies which is an £-equilibrium for all initial states. A further remark to be 
made is that both the zero-sum and general-sum solution concept depend on 
the criterion that is used to evaluate the incomes of the players. As in dynamic 
programming models this criterion can lead to the discounted incomes, the 
limiting average incomes or the total incomes, where the latter may be quite 
meaningless if the stochastic game has no specific properties. 

In his stochastic game model Shapley required that in each state, for any 
pair of actions chosen, there is a strictly positive probability that the play ter-
minates. Hence Shapley could derive his results with respect to the total 
income, since any play would ever terminate with probability 1. If, in such a 
terminating stochastic game all stopping probabilities are equal to each other, 
then examining total incomes in such a game, is equivalent to examining 
discounted incomes in a related non-terminating stochastic game (cf. Shapley 
[1953]). Gillette [1957] was the first to examine limiting average incomes in 
(non-terminating) stochastic games. 

In this monograph we consider non-terminating stochastic games. We will 
deal with all three evaluation criteria. The emphasis however is on stochastic 
games with respect .to the limiting average reward criterion since they have 
turned out to be quite hard to solve and since the existence of limiting average 
£-equilibria can be seen as the major open problem in stochastic game theory 
nowadays. For stochastic games fine solutions are known to exist with respect 
to the P-discounted reward criterion, whereas with respect to the total reward 
criterion similar problems as for the limiting average reward criterion occur. 
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More precisely: for the discounted reward criterion solutions exist in terms of 
stationary strategies, i.e. strategies for which the action choices of the players 
only depend on the state that is currently visited (cf. Shapley [1953] and Fink 
[1964]). For the limiting average reward criterion this need not be; the players 
may have to take into account which actions their opponent has used in the 
past. This was illustrated by an example in Gillette [1957] which has been 
solved by Blackwell & Ferguson [1968] using history dependent strategies (cf. 
example 1.7.4 below). For the total reward criterion history dependent stra-
tegies may be required as well (cf. section 5.4). In the example of Gillette 
[1957], which became known as 'the big match', player 1 has no history 
independent limiting average £-optimal strategies. So the solution by Blackwell 
& Ferguson [1968] of this big match clearly showed that for the limiting aver-
age reward criterion history dependent strategies are really indispensable. 
Unfortunately history dependent strategies have a rather complex structure 
and often lead to computational difficulties. Stationary strategies can be seen 
as the most simple strategies in stochastic games. Any pair of stationary stra-
tegies is related with a Markov process on the set of states. This implies, as 
will be clear in the sequel of this chapter, that for stationary strategies rewards 
can be computed rather straightforwardly. Hence from the point of view of 
computations, and hence of potential applications of stochastic games, the 
class of stationary strategies is particularly interesting. Therefore in literature, 
as in this monograph, a lot of attention is given to stationary strategies. 

Now, knowing that for the limiting average reward criterion, as well as for 
the total reward criterion, solutions (t:-optimal strategieslf-equilibria) may fail 
to exist if the players are restricted to stationary strategies, it is of special 
interest to find out what characterizes stochastic games which do have station-
ary solutions. For the limiting average criterion such a characterization, by 
means of a system of equations, is presented in chapter 5, due to Vrieze 
[1987-a]. We present a similar characterization for the existence of stationary 
total optimal strategies in chapter 5. In chapter 6, which is based on Filar et 
al. [1991], we completely characterize the existence of stationary solutions by 
means of global optima of suitably constructed non-linear mathematical pro-
grams. This is done for each of the three evaluation criteria and for zero-sum 
as well as for general-sum stochastic games. Previously characterizations for 
the existence of stationary solutions have also been reported in Sobel [1971], 
Bewley & Kohlberg [1978], Filar & Schultz [1986] and Schultz [1987]. So far 
these characterizations are formulated for zero-sum or general-sum stochastic 
games with finite state and action spaces without some specific extra structure. 
Besides, several classes of stochastic games, i.e. stochastic games with a special 
condition on the payoff and/ or transition structure, have been examined for 
which stationary solutions exist. We mention: unichain/irreducible stochastic 
games (cf. Gillette [1957], Hoffman & Karp [1966], Rogers [1969], Sobel [1971], 
Federgruen [1978]); recursive games (cf. Everett [1957], Orkin [1972], Thuijs-
man & Vrieze [1990-b]); single controller stochastic games (cf. Stem [1975], 
Parthasarathy & Raghavan [1981], Hordijk & Kallenberg [1981-b], Filar [1984, 
1986], Filar & Raghavan [1984], Vrieze [1987-a]); stochastic games with perfect 
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information (cf. Gillette [1957], Liggett & Lippman [1969]); switching control 
stochastic games (cf. Filar [1981-b], Filar & Schultz [1987], Vrieze [1987-a], 
Vrieze et al. [1983]); stochastic games with state independent transitions and 
separable rewards (cf. Sobel [1981], Parthasarathy et al. [1984]); stochastic 
games with additive rewards and additive transitions (cf. Raghavan et al. 
[1985], Filar & Schultz [ 1987]). 
For many of these classes there are algorithms known to solve such games. For 
a survey on algorithms we refer to Raghavan & Filar [1989]. 

Although apparently for many classes of stochastic games stationary solu-
tions exist, in general they do not, as was illustrated by the big match. 
Kohlberg [1974] extended the work of Blackwell & Ferguson [1968] by show-
ing that for any zero-sum repeated game with absorbing states (cf. section 4.4) 
the limiting average value exists. Based on techniques of these papers and 
using results of Bewley & Kohlberg [1976] on asymptotic properties of 
discounted solutions for zero-sum stochastic games, Mertens & Neyman [1981] 
derived that for any zero-sum stochastic game the limiting average value exists. 

However, as mentioned before, history dependent strategies will be needed 
to achieve £-optimality. Since we would prefer stationary solutions, it is for-
tunate to know that in any zero-sum stochastic game there is, for each player, 
a non-empty set of initial states for which this player has a stationary limiting 
average optimal strategy. A first proof for this result is given by Tijs & Vrieze 
[1986]. In chapter 2 of this monograph we present a new, and more elemen-
tary, proof for this result. Besides we give a sufficient condition for player 1 to 
have stationary limiting average £-optimal strategies for all initial states with 
maximal or minimal limiting average value. 

For the general-sum case a similar result is presented in chapter 2: there is 
always a non-empty set of initial states for which an 'almost-stationary' limit-
ing average £-equilibrium exists. In chapter 3 this result is extended by formu-
lating sufficient conditions for the existence of an 'almost-stationary' limiting 
average £-equilibrium in any general-sum stochastic game. The existence of 
limiting average £-equilibria is one of the major remaining problems in stochas-
tic game theory. 

The history of general-sum stochastic games started with Fink [1964], who 
proved the existence of stationary ,8-discounted equilibria. Other proofs for 
this result have been given by Takahashi [1964], Rogers [1969] and Sobel 
[1971]. The existence of stationary limiting average equilibria has been shown 
for several classes of stochastic games, most of those mentioned above. 
Inspired by Sorin [1986] (cf. example 1.8.6 in this chapter), the existence of 
(history dependent) limiting average £-equilibria for general-sum repeated 
games with absorbing states was shown by Vrieze & Thuijsman [1989] using 
Kohlberg [1974]. In chapter 4 we give a slightly modified proof for this result. 

Although stochastic games with just one state, better known as 'repeated 
games', are part of the model we discuss in this monograph, the theory on 
such games developed in a rather specific direction. Therefore we do not dis-
cuss repeated games in particular in this monograph. For surveys on repeated 
games we refer to Aumann [1981], Mertens [1986] and Sorin [1988]. 
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Closing this brief introduction to stochastic game theory, we wish to refer to 
the surveys on stochastic games by Parthasarathy & Stern [ 1977], Raghavan & 
Pilar [1989], Vrieze [1987-b] and Thuijsman [1987]. 

We now describe the set up of this monograph. 
In the remainder of this chapter we give formal definitions of the stochastic 

game model with its solution concepts. Furthermore we formulate the major 
historic results in this field, in view of the topics in this monograph, and we 
derive several preliminary lemmas and discuss some examples. 

In chapter 2 we show that for any general-sum stochastic game there is a 
non-empty set of initial states for which there exists an almost stationary limit-
ing average £-equilibrium, i.e. a limiting average £-equilibrium consisting of sta-
tionary strategies amplified with threat-strategies. For zero-sum stochastic 
games we give an elementary proof for the existence of easy initial states for 
each player, i.e. starting states for which this player has a stationary limiting 
average optimal strategy. Tijs & Vrieze [1986] already proved this result, but 
our proof is significantly simpler. For the set of initial states with maximal or 
minimal limiting average value, we give a sufficient condition for each player 
to have stationary limiting average £-optimal strategies. We also show that 
there may be states which are neither (£-)easy for player I nor for player 2. 

In chapter 3 we extend the general-sum results of chapter 2 to formulate 
sufficient conditions for the existence of a limiting average £-equilibrium (for 
all starting states). These sufficient conditions are formulated in terms of pro-
perties of an arbitrary sequence of stationary P-discounted equilibria, which 
without loss of generality can be assumed to converge for P going to I. 

In chapter 4 we show that our results of chapters 2 and 3 imply the 
existence of limiting average (£)-equilibria for several subclasses: unichain sto-
chastic games (which includes irreducible stochastic games), stochastic games 
with state independent transitions (SIT), repeated games with absorbing states. 

Chapter 5 is devoted to zero-sum stochastic games with the total reward cri-
terion. We show that the total value may fail to exist, even on the condition 
that the limiting average value is 0. On the stronger condition of limiting aver-
age value O and both players possessing stationary limiting average optimal 
strategies, history dependent behavior strategies may still be indispensable for 
the players to achieve total £-optimality. This is illustrated by an example: 'the 
bad match'. We give characterizations for the existence of stationary total 
optimal strategies (as well as for stationary P-discounted optimal and station-
ary limiting average optimal strategies). We relate this total reward criterion 
with the P-discounted and the limiting average reward criterion. 

Chapter 6 deals with mathematical programs connected to stochastic games. 
With respect to all three evaluation criteria non-linear programs are given that 
completely characterize the existence of stationary equilibria / (£-)optimal stra-
tegies. Our characterization with respect to the total reward criterion is res-
tricted by the assumption that the limiting average reward is O for all pairs of 
stationary strategies. 
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1.2 THE STOCHASTIC GAME MODEL 

1.2.1 DEFINITION 
A stochastic gamer is a 6-tuple <S, {As :sES}, {Bs :sES}, r 1, r 2,p>, where: 
S: = {1,2, ... , z }, z Ef\l, is the set of states, or state space; 
As:= { 1,2, ... , ms}, ms Er\l, is the action space of player 1 in states ES; 
Bs: = { 1,2, ... , ns }, ns Er\l, is the action space of player 2 in states ES; 
rk: LJ {s} XAs XBs - is the payoff function for player k E{l,2}; 

SES 

p: LJ {s} XAs XBs -l'J.Z is the transition probability map, with 
SES 

p(s,i,J)= (p(lls,i,J), p(2ls,i,J), ... , p(zls,i,J)). 
n 

Here!ln:= {aE~n:a;;..O, a;= l},foranynEf\i. 
i=l 

1.2.2 NOTATION 
In the examples in this monograph stochastic games will be given as a collection 
of matrices {matrix(]), matrix(2), ... , matrix(z)}, where matrix(s) has size msXns 
and entry (i,J) of matrix(s) is given as 

I( · ') 2( · ') r S,l,j 'r S,l,] 

p (s,i,J) 

or, in case for some t ES we have p(tls,i,j)= 1, as 

I ( · ') 2( · ') r S,l,j 'r S,l,J . 

A play of the stochastic game , a 'round' of the game, develops in the follow-
ing way. At each stage n Ef\l play is in precisely one of the states in S. Play 
starts at stage 1 in some states I ES, the initial state. If at stage n EN play is in 
state Sn ES, then simultaneously and independently, without making binding 
agreements, player 1 has to choose some in EAs. and player 2 has to choose 
some}nEBs.· Once these choices are made, player 1 receives r 1(sn,in,}n), player 
2 receives r 2(sn,in,}n) and next play moves with probability p (sn + 1 lsn,in,}n) to 
state Sn+ 1 ES, where the players choose actions at stage n +I. 
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The players are allowed to randomize over their actions, i.e. in state s player 
1 (for example) can use some 'mixed action' x = (x(l), x(2), ... , x(ms)) Edm, 
which is to be interpreted as choosing 'pure action' i EAs with probability x (i). 
At each stage n E~ both players know r as well as the 'history' 
hn = (s 1 ,i 1 ,j 1, Sz,i 2,)2, ... , Sn - 1 ,in -I ,jn - 1 ,sn) but neither player knows the 
mixed actions his opponent has used in the past. Each of the players is 
interested in maximizing his individual income, which is some kind of evalua-
tion of the payoffs over all stages. Both players are assumed to use the same 
evaluation criterion (cf. 1.4 below). 

Here we already make two remarks: 
First, notice that once a play is started, it never stops, although some 
stopping-like things may happen as we will see in the sequel. Second, it should 
be observed that with any stochastic game situation there are in fact z games 
to be considered, one for each starting state. It is often useful to treat these z 
games simultaneously. 

1.3 STRATEGIES 

Any plan a player uses to play a stochastic game, is called a strategy. So a 
strategy tells a player at all stages, in any state and for any history, what 
mixed action to use. Within the set of all these strategies one can discern 
several classes with different complexities. The most simple class of strategies is 
that of the stationary strategies. A player who uses a stationary strategy has 
fixed a mixed action for each state, which he uses at any stage the play is in 
that state, no matter what history preceded. 

1.3.1 DEFINITION 
z 

A stationary strategy for player 1 is given as an element x EX: = X /:). m,. 
s=l 

z 
A stationary strategy for player 2 is given as an element y E Y: = X /:). n.,. 

s=l 

These stationary strategies are of fundamental importance in the analysis of 
stochastic games. 

A class of slightly more complex strategies, is that of Markov strategies. A 
player who uses a Markov strategy, has fixed a mixed action for each state and 
stage, to be used at that stage regardless of the history that preceded. 

1.3.2 DEFINITION 
A Markov strategy for player 1 is given as a function f: - X 
A Markov strategy for player 2 is given as a function g: - Y. 
The class of Markov strategies for player 1 (2) is denoted by F ( G). 

Observe that stationary strategies are stage independent Markov strategies. 



Chapter 1 

The most complex strategies to be considered in this monograph, are 
behavior strategies. A player who uses a behavior strategy will consider the 
history of the play, in any state and at any stage, to decide what mixed action 
is to be used. Since this type of strategies is the most general to be considered 
(cf. Aumann [1964]), we will often leave out the word behavior. 

1.3.3 DEFINITION 
For n EN let hn: = (s 1,i 1 ,j 1, s 2,i2,Jz, ... , Sn -I ,in -I ,Jn -I ,sn) be the history up to 
stage n, i.e. hn is the sequence of states and actions that occurred up to appear-
ance in some state Sn at stage n. 
Let Hn:={(s1,i1,)1,S2,i2,J2,---,Sn-l,in-l,)n-l,sn):skES, ikEA5,,]kE BsJ be 
the set of histories up to stage n. 

00 

A (behavior) strategy for player 1 is given as a function 7T: U Hn X 
n =I 

00 

A (behavior) strategy for player 2 is given as a function u: U Hn Y. 
n=I 

The class of (behavior) strategies for player 1 (2) is denoted by II (L). 

So we have X CFC II and Y CG CL. Although at each stage the current state 
is part of the history up to that stage, we say that Markov strategies are his-
tory independent strategies. 

In the above definitions for strategies the players use mixed actions. The 
sets of mixed actions contain pure actions, i.e. choosing some row or column 
with probability I. Therefore we can also define pure strategies. 

1.3.4 DEFINITION 
A pure strategy is a strategy for which, for all states, stages and histories, pure 
actions are used. The set of pure strategies for player 1 is denoted by IIP; his set 
of pure Markov strategies (pure stationary strategies) is denoted by FP (XP). For 
player 2 the notations "21', GP and YP have a similar meaning. 

1.4 EVALUATION CRITERIA 

As in other game theoretic models the assumption in stochastic games is, that 
each player wants to maximize his individual income. However, a play of a 
stochastic game never ends and payoffs occur at all stages. Therefore the 
players should use some kind of criterion to evaluate those sequences of 
payoffs in order to decide what strategy they prefer to use. More precisely, 
each player wants to be able to compare the expected income for several pairs 
of strategies in order to choose a good strategy. In this monograph we look at 
the expected income because of the stochastic element caused by the transition 
probabilities and by the use of mixed actions. 
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1.4.1 DEFINITION 
Let ('IT,a)eITX~ be given and let seS be the initial state. Define Rk(n) as the 
random variable representing the payoff at stage n to player k. Define 
E8 ,,.0 [Rk(n)] as the expected payoff at stage n to player k conditional on s,'IT,a. 

The above definition is possible because a play starting in state s, with the 
players using 'IT and a, leads to a well-defined stochastic process on the set of 
states. For: at stage 1 both 'IT and a prescribe some mixed action to be used in 
state s; hence an expected payoff at stage 1 is well-defined for both players, 
just as are the transitions to the next state. In any new state, at stage 2, stra-
tegies 'IT and a again prescribe mixed actions to be used, which determines an 
expected payoff for stage 2, etc. 

In this monograph we consider three evaluation criteria: the ,8-discounted 
reward criterion, the limiting average reward criterion and the total reward cri-
terion. Thus a reward to a player for a pair of strategies and an initial state is 
the evaluated worth to this player of a corresponding sequence of expected 
payoffs over the stages. We use the word 'reward' for an income for some pair 
of strategies for a whole play, while 'payoff' is always something for just one 
stage of a play. 

A lot of literature in stochastic game theory is on the ,8-discounted reward 
criterion. For the ,8-discounted reward criterion stochastic games turn out to 
have very fine properties and the results for the ,8-discounted reward criterion 
are of fundamental importance for deriving results on the other two criteria. 
For stochastic games the ,8-discounted reward criterion is first mentioned as a 
remark in Shapley [1953]. 

1.4.2 DEFINITION 
Let ,Be[O, 1). The ,8-discounted reward to player k for initial state s under 
('IT,a) E rrx~ is given by 

00 

ri(s,'IT,a):= (1-,8) pn-l E8 ,,.0 [Rk(n)]. 
n=I 

We also use r%('1T,a): = (r% (l,'IT,a), ri (2,'IT,a), ... , ri (z,'IT,a)). 

In this definition the factor (1- ,8) is used to normalize the ,8-discounted 
rewards, because in the sequel we want to relate ,8-discounted rewards with 
limiting average rewards. 
Observe that, by the finiteness of the state and action spaces, E8,,.0 [Rk(n)] 
e[-M,M] for all s,'IT,a,k,n, where M:= max {lrk(s,i,j)l:ke{l,2}, 
iEA8 ,jEB8 ,sES}. Hence ri(s,'IT,a)e[-M,M] for all s,'IT,a,k,,8. Discounting 
with a factor ,Be(O, 1) reflects an interest rate (1-,8)/ ,8, because an amount 
pn - I a at stage 1 grows to an amount a at stage n under this interest rate. 
Discounting with factor ,8 can also be interpreted as having at each stage pro-
bability 1 - ,8 that the play stops and probability ,8 that play continues. 

A second important evaluation criterion is the limiting average reward 
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criterion introduced by Gillette [1957]. Most of the results in this monograph 
are on stochastic games with respect to this criterion. 

1.4.3 DEFINITION 
The limiting average reward to player k for initial states under ('11',a)EIIX~ is 
given by 

We also use Y"('IT,a): = (i'(l,'17',a), 1"'(2,'17',a), ... , i"(z,'IT,a)). 

In this definition we use 'lim inf because 'lim' may fail to exist. The 'lim inf 
can be interpreted as a pessimistic view of player k: in the long run his average 
income will be at least 'lim inf. We could also have chosen 'lim sup' or some 
Banach limit in the above definition. Of course one can find strategies in a sto-
chastic game such that the limiting average reward for those strategies is 
different for 'lim inf and 'lim sup'. However, for stationary strategies 'lim inf 
and 'lim sup' lead to the same average reward. 

The third evaluation criterion to be considered in this monograph is that of 
total rewards, introduced according to the following definition in Thuijsman & 
Vrieze [1987] and Vrieze & Thuijsman [1987]. 

1.4.4 DEFINITION 
The total reward to player kfor initial states under ('11',a)E TIX~ is given by 

1 N m 
y}(s,'17',0'):= lim inf N Eswa [Rk(n)]. 

N->oo m=I n=I 

We also use y}('IT,a): = (y}(l,'17',a), y}(2,'IT,O'), ... , y}(z,'17',a)). 

The use of 'lim inf in this definition will be clear. 
00 

N,,tice thRt if .2. E,'lTa [~\n)j exists, liu;;u i •• :~'.'':'~• .. A•ilv eouals -v~-, .. ,<,-
n=I 

For a general stochastic game however, the total rewards will often be - oo or 
+ oo. The total reward criterion is of particular interest in stochastic games 
for which the limiting average reward is O for all, or certain, pairs of stationary 
strategies. In chapter 5 we discuss this total reward criterion in detail and we 
examine relations among the three above evaluation criteria. 

Observe that the above definitions are all based on the expected payoffs at 
the stages. This is possible because the triple (s, '17',a) determines for each his-
tory hn, n;;;;.2, a probability of occurrence Prob;wa(hn)-

However, by the K9lmogorov extension theorem (cf. Kolmogorov [19331) 
this sequence of probability measures Prob;.,,0 (.), Prob;.,,0 (.), ••• can be extended 
to a probability measure Prob':.,0 (.) on the set of infinite histories, i.e. on the 
set consisting of sequences (s 1,i 1,}i,s2,ii,h,····)· Therefore, instead of the 
above definitions, we could have used alternative criteria defined by 
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-k( ) E [(l D) an-I Rk(n)]·, y /j S, 'IT,<J : = S'TT<J - JJ JJ 
n=I 

-k ·- Jim inf_!_ k( )]· y (s, 'IT,<1). - Es.,u [ N n"':1 R n ' 

y~(s, 'IT,<1): = Es.,u [lim inf Nl f f Rk(n)]. 
m=ln=I 

For the /3-discounted reward criterion it holds that r%(s, '17,a) = y~(s, 'IT,a) for all 
s, 1T,<1; hence also for the solution concepts we will use (cf. section 1.7 and 1.8) 
r%0 and y~(.) will give the same results. For the limiting average reward cri-
terion l(s, 'IT,<1) not necessarily equals / (s, '17,a); however for stationary stra-
tegies lO and / (.) give the same reward. For the total reward criterion 
y}(s,x,y) is not necessarily equal to y~(s,x,y) for stationary strategies x,y; 
moreover, as will be pointed out in chapter 5, it is not clear whether or not 
-k 
y rO makes any sense at all. 

1.5 REWARDS FOR STATIONARY STRATEGIES 

As is mentioned above, stationary strategies are the least complex strategies. 
This is reflected in the fact that for stationary strategies there are fine expres-
sions for the rewards. In this section we introduce those expressions and we 
give some elementary results needed in the sequel of this monograph. 

1.5.1 DEFINITION 
For a pair of stationary strategies (x,y)EXX Y we define: 

z 
a) Carz(x): = X Car(xs) with Car(xs): = {i EAs: xs(i)>O}, the carrier of x 

s=I 
and Xs respectively. Carz~) and Car(ys) are defined similarly. 

b) r\x,y ): =(rk(l,x 1 ,y i),r (2,x 2,Y2), ... ,rk(z,xz,Yz)), 
ms ns 

with rk(s,xs,Ys): = xs(i)rk(s,i,J)Ys(i) being the direct expected payoff 
i=l j=I 

to player k in state s. 
c) P(x,y) is the transition matrix of size z Xz. Entry (s,t) of P(x,y) is 

ms ns 
p (tls,xs,Ys): = xs(i)p(tls,i,j)ys(i), which is the probability of a direct 

i=l j=I 
transition from s to t if in state s the players use Xs and Ys· 

d) 

P(x,y )s denotes row sf P (x,y ). 

Q(x,y): = lim _!_ pn(x,y), where Pn(x,y) denotes the nfold matrix 
N n=I 

product of P (x,y) with itself. Q(x,y )s denotes row s of Q(x,y ). 

Observe that P(x,y), for each (x,y)EXX Y, determines a stochastic process, or 
Markov chain, on the state space. It is obvious that the (strategy dependent) 
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ergodic structure of such a chain has its impact on the rewards. 

1.5.2 LEMMA 
Let (x,y)EXX Y and let I denote the z Xz identity matrix. 
a) Ent,y (s, t) of pn - I (x,y) equals the probability that at stage n play is in state 

t if the players use (x,y) and the initial state is s. Here P 0(x,y)=I. 
b) Esxy [Rk(n)J = pn-l (x,y)s rk(x,y). 
c) Entry (s,t) of Q(x,y) is the expected average number of visits to state t if 

play starts in state s and the players use (x,y). 
d) Q(x,y)s equals the unique stationary distribution of the Markov chain which 

starts in s and is related with (x,y ). 
e) Q(x,y) P(x,y)= Q(x,y). 
f) (J -/3P(x,y)) and (I -P(x,y) + Q(x,y)) are non-singular matrices for all 

/3E[0, 1). Hence (I-/3P(x,y) + Q(x,y)) is non-singular for /3 close to 1. 
g) Q(x,y)= lim (1-/3) (I-/3P(x,y))- 1• 

pt! 

PROOF: 
(a) - (d) follow directly from the definitions; (e) - (g) can be found in Kemeny 
& Snell [1960] or in Blackwell [1962]. 

Observe that (c) and (d) of the above lemma imply that, ifs and t are in the 
same ergodic set of the Markov chain related with P (x,y ), then 
Q(x,y)s = Q(x,y)1 and entry (s,t) of Q(x,y) is strictly positive. For s,tES with 
t transient with respect to P(x,y), entry (s,t) of Q(x,y) equals 0. 

1.5.3 LEMMA 
Let (x,y)EXX Y and /3E[0, 1). Then the following statements hold. 

00 

a) Yi(x,y)= (1-/3) pn-l pn- 1(x,y)rk(x,y). 
n=I 

b) Yf(x,y)= (1-/3) (J-f3P(x,y))- 1 rk(x,y). 
c) Yp(x,y) is the unique ak E~z satisfying ak = (1-f3)r\x,y) + f3P(x,y)ak. 

PROOF: 
00 

By definition Yi(s,x,y)=(l-/3) pn-l Esxy[Rk(n)J for all sES. By lemma 
n=I 

00 

1.5.2 (b) this implies Yi(x,y)=(l-/3) pn-l pn-l(x,y) rk(x,y). Since 
n=I 

00 

(1-/3) pn-l pn-l(x,y)= (1-/3)(1-/3P(x,y))- 1 for any stochastic matrix 
n=I 

P(x,y), we have Yi(x,y)= (1 -/3)(1 -/3P(x,y))- 1rk(x,y). This implies 
(I - /3 P (x,y )hi(x,y) = (I - /3)r\x,y) and hence Yi(x,y) is a solution of 
ak=(1-/3)r\x,y)+/3P(x,y)ak. By the non-singularity of (I-f3P(x,y)) this 
solution is unique. 
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1.5.4 LEMMA 
Let (x,y)EXX Y, ,BE[O, 1) and aE~z. 
a) If a,;;; (1- ,B)rk(x,y) + ,8 P(x,y )a, then a,;;;y%(x,y ). 
b) If ai (1 - ,B)rk(x,y) + ,8 P(x,y )a, then a~ r%(x,y ). 
c) Similar statements hold when reversing the inequality signs. 

PROOF: 
If a~ (1-,B)rk(x,y) + ,BP(x,y)a, then (J-,BP(x,y))a (1-,B)rk(x,y). Since 
(I -/3 P (x,y ))- 1 is non-negative and each column has at least one positive 
entry, it follows that a~ (1-,8) (I -,BP(x,y))- 1rk(x,y)= r%(x,y). 

1.5.5 LEMMA 
Let (x,y)EXX Y. Then the following statements hold 

a) y\x,y)= lim NI f pn- 1(x,y)r\x,y). 
n=I 

b) y\x,y)= Q(x,y)rk(x,y). 
c) l(x,y)= ak for any fair (ak,8k)E~z x~z satis.fiing 

ak = P(x,y )ak and a + 8k = rk(x,y) + P(x,y )8 . 
d) yk(x,y)= lim r%(x,y). 

,Btl 

PROOF: 

By definition yk(s,x,y)= lim inf_!_ f Esxy [Rk(n)] for all sES. Lemma 
N n=I 

l.5.2(b) implies y\x,y)= lim inf_!_ f pn- 1(x,y)rk(x,y). It is well-known 
N n=I 

(cf. Kemeny & Snell [1960]) that lim _!_ f pn- 1(x,y) exists, and equals 
N n=I 

Q(x,y). Hence (a) and (b) hold. 
If (ak,8k)E~zx~z and ak= P(x,y)ak as well as ak + 8k= rk(x,y)+P(x,y)8k, 
then multiplying the second equation with Q(x,y), using lemma 1.5.2 (e), gives 
Q(x,y)ak + Q(x,y)8k= Q(x,y)rk(x,y) + Q(x,y)8k. Hence Q(x,y)ak= 
Q(x,y)r\x,y)= yk(x,y) by (b). Furthermore ak= P(x,y)ak implies 
ak= Q(x,y)ak, so we have ak= yk(x,y). Finally (d) follows directly from 
lemma 1.5.2 (g) and from lemma 1.5.3 (b). 

1.5.6 LEMMA. 
Let (x,y)EXX Y and let a,8E~ 2 • 

a) If a,;;;P(x,y)a and a+8,;;; rk(x,y) + P(x,y)8, then a,;;; l(x,y). 
b) A similar statement holds, when reversing the inequality signs. 

PROOF: 
a,;;; P(x,y)a implies a,;;; Q(x,y)a and likewise a+8,;;; rk(x,y)+ P(x,y)8 implies 
Q(x,y)a,;;; Q(x,y)rk(x,y). Hence a,;;; Q(x,y)r\x,y)= l(x,y). 

The condition a+8,;;; rk(x,y)+ P(x,y)8 in lemma 1.5.6 can be weakened to: 
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as +8so;;;; r\s,Xs,Ys) + p(tls,xs,Ys)81 for all states s that are recurrent with 
/ES 

respect to (the Markov chain related with) P(x,y). 
This is possible because, by the fact that for all s ES and any transient state t 
entry (s,t) of Q(x,y) equals 0, we could still derive Q(x,y)a.;;;; Q(x,y)rk(x,y). 

1.5.7 LEMMA 
Let (x,y)EXX Y and assume y'(x,y)=O for k = 1,2. Then the following state-
ments hold. 

I N m 
a) y}(x,y)= lim - pn- 1(x,y)r\x,y). 

N->oo N m=ln=I 
b) y}(x,y)= (I- P(x,y) + Q(x,y))- 1rk(x,y). 
c) y}(x,y)= ak for any pair (ak,8k)EIRz XIRz satisfying 

ak= rk(x,y) + P(x,y)ak and ak + 8k= P(x,y)8k_ 
d) y}(x,y)= lim (1-/3)- 1 ri(x,y). 

/:Iii 

PROOF: 
I N m 

By definition y}(s,x,y)= liminf- Esxy[Rk(n)] for all SES. Hence 
N m=I n=I 

y}(x,y)= lim inf J_ f f pn- 1(x,y)rk(x,y). Recall that by lemma 1.5.5 
N m=I n=I 

(b) we have O=y'(x,y)= Q(x,y)r\x,y). Observe that for each NE~: 
I N m 

(I-P(x,y)+ Q(x,y))( N pn- 1(x,y)rk(x,y)) 
m=ln=I 

I N m = - [Pn 1(x,y)r\x,y)-Pn(x,y)rk(x,y)] 
N m=ln=I 
I N = N m~I [rk(x,y)- pm(x,y)r\x,y)] 

I N . = rk(x,y)- - pm(x,y)rk(x,y). 
N m=I 

Again using y'(x,y)=O and using lemma 1.5.2 (f) for the non-singularity of 
I N m 

(I - P(x,y) + Q(x,y)), we derive that lim - pn-l(x,y)rk(x,y) 
N->oo Nm=ln=I 

exists and equals (l -P(x,y) + Q(x,y))- 1r\x,y), which proves (a) and (b). 
As for (c), suppose that ak and «5k solve ak= r\x,y) + P(x,y)ak and 
ak + «5k = P (x,y )8k. Multiplying both sides of the last equation with Q (x,y) 
gives Q(x,y)ak= 0 by lemma 1.5.2 (e). Combining this with the first equation 
gives that ak _ P(x,y)ak + Q(x,y)ak =rk(x,y). Finally the non-singularity of 
(I - P(x,y)+Q(x,y)) implies ak =(I - P(x,y)+Q(x,y))- 1 rk(x,y) and hence 
we have ak=y}(x,y) by (b). 
In order to show (d) notice that Q(x,y)r%(x,y)=O because Q(x,y)yi(x,y)= 

00 00 

Q(x,y)[(l-,8) .an-I pn-l(x,y)rk(x,y)]= (l-,8) 13n-1 Q(x,y)rk(x,y)=O 
n=l n=l 



Preliminaries 15 

by y'(x,y)=O. Hence by lemma 1.5.3 (c) we have r%(x,y)=(l -,8)rk(x,y) + 
/3 P (x,y )r%(x,y )- Q (x,y )r%(x,y ). By the non-singularity of I - /3 P (x,y) + 
Q(x,y) we have r%(x,y)=(l-/3) (I-/3P(x,y)+ Q(x,y))- 1 rk(x,y). Since 
I - P (x,y) + Q (x,y) is also non-singular we get lim (I - /3)- 1 r%(x,y) = 

.Bil 
(I-P(x,y) + Q(x,y))- 1rk(x,y)= y}(x,y) by (b). 

1.5.8 LEMMA 
Let (x,y)EXX Y, a,BE~z and assume yk(x,y)= 0. 
a) If a~r\x,y) + P(x,y)a and a+B~ P(x,y)B, then a~y}(x,y). 
b) A similar statement holds, when one reverses all inequality signs. 

PROOF: 
From a+B~ P(x,y)B we derive Q(x,y)a + Q(x,y)B~ Q(x,y)B and hence 
Q(x,y)a~O. From a - P(x,y)a~ rk(x,y) we derive pn- 1(x,y)a - pn(x,y)a~ 
pn- 1(x,y)rk(x,y) for all n EN. This implies that for all m EN we have: 

m m 
a - P(x,yra = (Pn-l(x,y)a-Pn(x,y)a)~ pn-l(x,y)rk(x,y). 

n =l n =I 

1 N 1 N m 
Henceo:-- pm(x,y)a~- pn-l(x,y)rk(x,y)forallNEN. 

N m=I N m=I n=I 
Letting N tend to infinity and using Q(x,y )a~O we obtain a y}(x,y ). 

1.6 PLAYING AGAINST A FIXED STATIONARY STRATEGY 

In any stochastic game both players want to maximize their individual 
rewards. Since they cannot make binding agreements they do not know what 
strategy there opponent is going to use. Nevertheless each player should hope 
that the strategy he chose is a best reply against the strategy of his opponent, 
otherwise a better strategy could have been used. Therefore it is of interest to 
examine what happens if the opponent fixes a strategy. For the objectives in 
this monograph it is sufficient to consider what happens if the opponent fixes a 
stationary strategy. 

1.6.1 DEFINITION 
Let y E Y and /3E[O, 1). 
A /3-discounted best reply for player I against y is a strategy 1r• Ell for which 
Yb( 7T • ,y) ;;;,, y b( 1r,y) for all 7T E II. Limiting average best reply and total best reply 
are defined analogously. 
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The next lemma follows from Hordijk et al. [1983] and from Blackwell [1962] 
and we will often use it for our analysis of stochastic games. 

l.6.2 LEMMA 
Let y E Y and ,8E[0, 1). 
There exists a pure stationary strategy x • EXP such that y 1(x • ,y) ;;;. y 1( 'lT,Y) for 
all w E II. Similarly, there exists a pure stationary limiting average best reply for 
player I against y. 

Hordijk et al. [1983] show that player 1 cannot do better in the stochastic 
game against y than to play optimal in the related Markov decision process, 
which we call MDP(y). 

1.6.3 DEFINITION 
A Markov decision process is a stochastic game where one player has only one 
action available in all states. For a stationary strategy y in a stochastic game r, 
the Markov decision process MDP(y) is the stochastic game r• with s•: =S, 
A;:=As, B;:={l}, .r(s,i, 1):=r(s,i,ys), p'(tls,i, 1):=p(tls,i,ys) for all iEA;, 
SES*. 

For Markov decision processes Blackwell [1962] has shown the existence of 
pure stationary optimal strategies for the ,8-discounted reward criterion as well 
a~ for the limiting average reward criterion. Combining this with the result of 
Hordijk et al. [1983] gives lemma 1.6.2. 

1.6.4 LEMMA 
Let y E Y and ,8E[0, 1). 
Let x • EX be a stationary ,8-discounted best reply against y. Then: 
a) r1(x*,y)= (1-,8)r1(x*,y) + ,BP(x*,y)yb(x*,y) 

;;:. (1-,B)r 1(x,y) + ,BP(x,y)yb(x* ,y) for all x EX. 
b) r1(x',y)= (1-,B)r 1(xP,y) + ,BP(xP,y)yb(x',y) for all xPEXP 

with Carz(xP) C Carz(x *). 
c) r1(x*,y)= r1(.x,y) for all .xEX with Carz(.x) C Carz(x*). 

PROOF: 
The equality sign in (a) follows from lemma 1.5.3 (c). 
The inequality sign in (a) follows from the fact that x * is a ,8-discounted best 
reply againsty (cf. lemma 1.5.4). 
From (a) it follows that for each s ES: 

r1(s,x',y)= (1-,8)r 1(s,x;,ys) + ,8 :± p(tls,x;,ys) rb(t,x*,y) 
t=I 

z 
= x;(i)[(1-,B)r 1(s,i,ys) + ,8 p(tls,i,ys) r1(t,x',y)] 

t=I 

:,;::::°"*·I * _J • - xs(1) Y11(s,x ,y) - Y11(s,x ,y). 
iEA., 
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z 
Hence r1(s,x•,y)= (1-P)r1(s,i,ys)+P p(tls,i,ys) r1(t,x*,y) for all 

I =I 
i ECar(x;), which proves (b). 
Now (c) follows from (a), (b) and from lemma 1.5.3 (c). 

An analogue of lemma 1.6.4 (c) does not hold for the limiting average case. 
Consider for instance the following example, where player 2 has only one 
(trivial) strategy: y. We show that a stationary strategy within the carrier of a 
stationary limiting average best reply against y, does not need to be a limiting 
average best reply against y itself. 

1.6.5 EXAMPLE 

State 1 State 2 

Stationary strategies for player 1 in the above game, are fully determined by 
the mixed action which player 1 uses in state I. So X = { (p, 1 - p) : p E[0, 1 D. It 
is easy to see that (½, ½) is a stationary limiting average best reply against y, 
giving player 1 limiting average reward (1,1). Although the pure stationary 
strategy (1,0) is clearly contained in the carrier of ( ½, ½), it is not a limiting 
average best reply againsty, for y1((1,0),y)= (0,1). 

1. 7 ZERO-SUM STOCHASTIC GAMES 

Shapley [1953] started the theory of stochastic games. In his model the payoffs 
to player 1 are the losses of player 2, i.e. r2(s,i,j)= -r 1(s,i,j) for all s,i andj. 
A stochastic game with this property is called a zero-sum stochastic game. 
Since in a zero-sum stochastic game the players have strictly opposite interests, 
player 1, who wants to maximize his reward, can expect that player 2 wants to 
minimize that same reward. We assume that player 1 is interested in maximiz-
ing his guaranteed expected reward, i.e. player 1 would prefer to use a strategy 
1r such that inf rb(7T*,1J);;,,, inf Yb(7T,1J) for all 7TEil, in the P-discounted case 

(] (] 

(or similarly for the other criteria). So player 1 is interested in sup inf r1(7T,1J). 
'1T (] 

Likewise we assume that player 2 wants to minimize the reward to player 1 
and is interested in inf sup y1(7T,1J), the coordinatewise minimal level for which 

(] '1T 

player 2 can guarantee that the reward to player 1 will not be greater (up to 
some £>0). It is easy to see that 'sup inf ,;;;; 'inf sup' because: inf r1(7T* ,1J),;;;; 

(] 
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rr}(n* ,,/) for all, 11;• ,a*, ip,.pfo;:s that §Up .inf yb('ll",a)~ sup y}(n,q*} for all,,* 
, ' ' ,. . 'TT O 7T 

and hence sup inf y}('ll",a) ,;;;; inf sup rb(n,a). If '&up inf ,= 'inf sup' then we 
'TT O (J 7T 

call this number the value. of the stochastic game; 

1.7:l DEFINITION 
a) If for a,zeroJsutn stochastic game there exists, for {JE[O, 1), a vb Elliz itich 

that sup inf rb(n,cr)= vb= inf sup y}('ll",d), thert vb is called the /3~ 
w o ,a 'TT 

discounted value of the stochastic game. 
b) If the value is vb, then player I has, for each t:>0, a strategy n, such that 

rb(n.,a);;a. v}-t:1 2 for all aE~. Such a strategy n, is called a /3-discounted 
t:-optimal strategy for player I. A /3-discounted optimal strategy for player I 
is a strategy n• for which rb(n*,a);;a.v}for all a. 
A similar definition holds for {J-discounted (t:-)optimal strategies of player 2. 

c) For the limiting average reward case and the total reward case (t:-)optimal 
strategies and value, v I resp. vh are defined analogously. 

In zero-sum stochastic games the players at each stage face a kind of matrix 
game. Therefore it is not surprising that the following theorem by Von Neu-
mann [ 1928], presented here without proof, is very valuable for stochastic 
games. 

1.7.2 THEOREM 
For any real matrix A = [aij]/~ u~ 1 there exist x • Edm and y • Edn such that for 

Am A * 1; * * all XE~ andyE~n.- x Ay ;;a.x Ay ;;a.xAy. 
The mixed actions x • and y • are called optimal mixed actions, for player I and 
player 2 respectively, in the matrix game A. The number x • Ay • is called the 
value of A, denoted by val(A) or by val[a;;]- This value of A is uniquely deter-
mined 

The importance of this theorem for stochastic games already occurs in the 
seminal paper on stochastic games by Shapley [1953), who examined stopping 
stochastic games: For stochastic games with the /J-discounted reward criterion 
Shapley's results imply the following: 

1.7.3 THEOREM 
For any /JE[O, I) and any zero-sum stochastic game: 
a) The /3-discounted value vb exists and both players have stationary {J-

discounted optimal strategies. 
b) vb is the unique solution aER 2 of the 'Shapley-equation': 

z 

as= val[(1-{J)r 1(s,i,J) + fJ p(tls,i,j)ar]/~1,J ~I= : val(A}f (a)), s ES. 
t=I 

c) A stationary strategy x • (y *) for player I (2) is {J-discounted optimal if x; 
(y;) is an optimal mixed action for player I (2) in the matrix game A }t (vb) 
for each s ES. 
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It is well known that (c) of the above theorem is also valid when we replace 'if 
by 'if and only if. This follows for example from the results of Vrieze & Tijs 
[1980], who showed that for each player the set of stationary ,8-discounted 
optimal strategies is the Cartesian product of the sets of optimal mixed actions 
in the matrix games At (vb), s ES. 

Gillette [1957] introduced the limiting average reward criterion for stochastic 
games. With respect to this criterion stochastic games turned out to have a 
more difficult nature than for the ,8-discounted reward criterion. Gillette [ 1957] 
gave the following example for which it was not clear for several years, 
whether or not it had a limiting average value. 

1.7.4 ExAMPLE (the big match) 

zz 
State I State 2 State 3 

In this zero-sum stochastic game, only player l's payoffs are given (cf. 1.2.2). 
Of course state 1 is the interesting initial state in this stochastic game and for 
both players strategies are determined by the mixed actions used in state 1. 
The remarks below illustrate the beauty of this big match, which was solved by 
Blackwell & Ferguson [1968]. 
a) With respect to Markov strategies (cf. 1.3.2) one finds that: 

sup inf y1(1,J,g)= 0, whereas inf sup y1(1,f,g)= ½. 
fEF gEG gEG fEF 
Hence the limiting average value would not exist if the players were res-
tricted to Markov strategies. 

b) Allowing all strategies one finds that: 

sup inf y1(1,?T,a)= inf sup y1(1,?T,a)= ½. 
'lTEn <>E~ (1E~ 'lTEn 

So the limiting average value v 1 = (½,0, 1). 
c) For player 2 the stationary strategy determined by using the mixed action 

(½,½)in state 1, is limiting average optimal. Player 1 has no limiting aver-
age optimal strategy and only history dependent limiting average £-

optimal strategies. 
If we consider the above stochastic game with respect to the ,8-discounted 
reward criterion then we find by solving the Shapley-equation (cf. 1.7.3), that 
vb= (½,0, I) (=v 1) for all ,8E[0, 1), while the unique stationary ,8-discounted 
optimal strategies are x/3=(1/(2-,8),(1-,8)/(2-,8)) and y 13 =(½,½) for 
player 1 and player 2 respectively. 
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It should be observed that, with respect to P(xf3,yf3) state I is transient, 
whereas state I is recurrent with respect to P (x 1 ,y 1 ), with 
(x 1 ,y 1 ): = fun (x/3' v/3). 

. /3fl V 

Bewley & Kohlberg (1976] made a thorough study of asymtotic properties of 
vb and of stationary /3-discounted optimal strategies x 13,y as /3 tends to 1. 
Using Tarski's principle on real closed fields (cf. Tarski [19511) they derived 
the following remarkable theorem, which we give without proof. 

1.7.5 THEOREM 
For any zero-sum stochastic game situation there exist NEN, {anER 2 : nENo}, 

z z 
{ Xn E X Rm,: n ENo }, {yn E X Rn,: n ENo} such that for all /3 close to 1: 

s=I s=I 
00 

a) vb = an (1 -f3)ntN is the /3-discounted value; 
n=O 

00 

b) x 13 = Xn (1-/3Y1N is a stationary /3-discounted optimal strategy for 
n=O 

player l; 
00 

c) y 13 = Yn (I -pytN is a stationary /3-discounted optimal strategy for 
n=O 

player 2. 

Two remarks should directly be made about this theorem. First of all it follows 
that lim vb exists and equals a0 • Second, it follows that fun x/3 exists and 

Ml W 
equals x 0 , which is therefore a stationary strategy. 

As an illustration of the above theorem observe that for the big match, 
example 1.7.4, we have vb= v 1 for all /3E[0, I) and for player I the unique sta-
tionary optimal strategies are given by x/3=(11(2-/3), (l-/3)/(2-/3)). Hence 
we have: 

x 13 = [l]+ C1 1](1-/3)+ [-\]o-/3)2+ [1 1]0-/3)3+ [-\]o-/3)4+ ..... 
For player 2 we have y 13 = [ ~] for all /3. 

To give another illustration we examine one more example, where payoffs 
are again given only for player I. 
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1.7.6 Ex.AMPLE 

z 
State 2 

z 
State 1 State 3 

For this example, solving the Shapley-equation (cf. 1.7.3) leads to the /J-
discounted value vb and to the unique stationary optimal strategies xP and yP 
given, for initial state 1, by: 

I/ 

vp= l-(1-fJ)' l-(l-fJ)11'+(l-{J)-(l-fJ)41'+(1-fJ)2 -(l-fJ)11'+ ..... 
fJ 

xP= [g]+ [T](l-jj)"'+ [~1)(1-jj)21'+ [Ji](l-/j)+ [~1]<1-/j)41'+ [~1)(1-jj)"'+ .... . 
yP= [g)+ [T](l-jj)"'+ [JJ1-p)"'+ [~1)(1-jj)+ [T](l-/j)41'+ [JJ1-p)"'+ .... . 
The work of Blackwell & Ferguson [1968] on the big match was generalized by 
Kohlberg [1974] for zero-sum repeated games with absorbing states (cf. section 
4.4). These papers, together with the above result of Bewley & Kohlberg [1976] 
for the asymptotic properties of the /J-discounted solutions, were important for 
the derivation of the following result by Mertens & Neyman [1981]. 

1.7.7 THEOREM 
For any zero-sum stochastic game the limiting average value v 1 exists, and it is 
related to the fJ-discounted values by v 1 = lim v p. 

· Pf! 

Observe that this theorem implies that v 1 = a0 , the leading term of the power 
series, for fJ close to 1, in theorem 1.7.5. In chapter 5 on stochastic games with 
respect to the total reward criterion we will see that if the total value vt exists 
in Rz and if both players have stationary total optimal strategies, then 
ao,a1,••·,aN-I are all equal to O and vt= aN= 1im (l-fJ)- 1 vp. However, for 

Pf! 
stochastic games with respect to the total reward criterion little is known and 
in general the total value vt will not exist. Even on the condition that the lim-
iting average value is O (for all starting states), the total value is not necessarily 
finite. For a further discussion on stochastic games with respect to the total 
reward criterion we refer to chapter 5, where it is also shown that, like for the 
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limiting average case, history dependent strategies may be indispensable to 
achieve total €-optimality. 

1.8 GENERAL-SUM STOCHASTIC GAMES 

Fink [1964) started the study of general-sum stochastic games, as they are 
defined in definition 1.2.1. Since in a general-sum stochastic game the players 
not necessarily have strictly opposite interests, the solution concepts 'value' 
and 'optimality' become meaningless. For non-zero-sum stochastic games an 
alternative solution concept is required. Nash [1951] showed the applicability 
of the concept 'equilibrium' for bimatrix games by proving the following 
theorem. 

1.8.1 THEOREM 
Let A 1 and A 2 be real m X n-matrices. 
Then there exist x • ED.m and y • ED.n such that: 

x'A 1y* ;,;xA 1y* for all XED.m and 

x'A 2y* ;;,.x'A 2y for allyED.n. 

The pair (x • ,y *) is called a (Nash-)equilibrium for the bimatrix game (A 1 ,A 2). 

So this theorem guarantees the existence of equilibria for bimatrix games. Fink 
[1964) extended the definition of equilibrium to stochastic games. Here we give 
a more general definition. 

1.8.2 DEFINITION 
Let E>O. A pair of strategies ('17,,a,)EIIX~ is called a /3-discounted €-equilibrium 
for initial state s if: 

rb(s,'IT,,a,);;,. Yh (s,'IT,a,)-Efor all 'ITEII and 

y~(s,'IT,,a,);;,. y~(s,'IT,,a)-Efor all aE~. 

If ('IT,,a,) is a /3-discounted €-equilibrium for alls ES, then ('IT,,a,) is called a /3-
discounted €-equilibrium. If E can be taken O in the inequalities, then we speak of 
an equilibrium. Similar definitions hold for limiting average €-equilibrium and for 
total €-equilibrium. 

The idea behind the concept 'E-equilibrium' is the following. Once the players 
have, somehow, come to use a pair of strategies ('17,,a,), which is an €-
equilibrium, then ne\ther player 1 nor player 2 can gain more that E by unila-
teraly deviating from his strategy. So, for small E, each player will remain play-
ing his equilibrium strategy. Hence, an €-equilibrium is 'self-enforcing'. 

Shapley [1953) connected the /3-discounted value and optimality in zero-sum 
stochastic games with the value and optimal mixed actions of related matrix 
games. Fink [1964] derived a similar result for general-sum stochastic games. 
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1.8.3 THEOREM 
Let ,BE[O, 1). 
a) For any stochastic game there exists a stationary ,8-discounted equilibrium. 

23 

b) A pair of stationary strategies (x*,y*) is a ,8-discounted equilibrium if for 
each s ES, the pair of mixed actions (x; ,y;) is an equilibrium in the bimatrix 

ls I • * 2s 2 • • game (Ap (yp(x ,y )), Ap (yp(x ,y ))), where (cf 1.7.3) 
z 

A%s(Y%(x*,y*))= [(1-,B)rk(s,i,j) + ,8~ p(tls,i,})Y%(t,x•,y*)];'~1,J~I 
I= I 

Other proofs for this theorem have been given by Takahashi [1964], Rogers 
[1969] and Sobel [1971]. 

In the previous section we have seen that for zero-sum stochastic games the 
existence of the limiting average value and of limiting average £-optimal stra-
tegies remained a problem until 1980. The existence of limiting average £-
equilibria is even a tougher problem, for it is still open. One should observe 
that the existence of £-equilibria (?T.,a,), for all t:>0, in a zero-sum stochastic 
game implies that the value exists and that the strategies ?T, and a, are £-
optimal for the respective players. 

If in a general-sum stochastic game an £-equilibrium (?T.,a,) exists, then 
player 1 would have a reward which is at least the value, possibly up to t:, of 
the zero-sum stochastic game obtained by assuming that the payoffs to player 
1 have to be paid by player 2. This is due to the fact that, given a 8-optimal 
strategy ?T13 for player 1 in that zero-sum game, we can derive 
y1(?T.,a,);;,,, y1(?T13 ,a,)-t:;;,,, v 1 -8-t:. Letting 8 tend to O gives the result: 

1.8.4 REMARK 
If (?T.,a,) is a limiting average £-equilibrium, then yk(?T.,a,);;,,, vk -£, where vk is 
the limiting average value of the zero-sum stochastic game obtained by assuming 
that the payoffs to player k have to be paid by player (3 - k ): 'the k-zero-sum sto-
chastic game'. Of course a similar statement holds for the ,8-discounted reward 
case and for the total reward case. 

Another interesting fact concerning these k-zero-sum stochastic games is that 
player (3-k) has for each t:>0 a strategy to keep player k's reward below 
v k + £. This allows player (3 - k) to punish player k if such is required, and 
therefore player (3 - k) can threaten to punish player k if player k deviates 
from a certain strategy. Punishment arguments to establish equilibria are quite 
common in the theory of repeated games (cf. Aumann [1981]). In the next 
chapter this will also become meaningful for general stochastic games. 

1.8.5 DEFINITION 
For a general-sum stochastic game (v 1, v2) is called the limiting average threat-
point. A retaliation strategy '1T; for player I is a strategy for which 
y2('1T;,a),;;;; v2 +t: for all a. Similarly we have a retaliation strategy a; for player 2. 
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For zero-sum stochastic games we have vk = fun vt (cf. 1.7.7). For general-
Ptl 

sum stochastic games we can take (bl theorem 1.8.3), for each ,8E[0, 1), a sta-
tionary ,8-discounted equilibrium (x ,yP) and, without loss of generality, we 
can assume that fun (x/J ,yP) and fun r%(xP ,yP) exist and are equal to (x 1 ,y 1) 

Ptl Ptl 
and Vk respectively (cf. section 2.2). Now one could hope that Vk is related 
with a funiting average 1:-equilibrium and one could even think that (x 1 ,y 1) 
may be a limiting average 1:-equilibrium. Unfortunately this will not be true in 
general, as is illustrated by the next example which has been examined by 
Sorin [ 1986]. 

1.8.6 EXAMPLE 

1,0 

3 

State I State 2 State 3 

The I-zero-sum stochastic game of 1.8.6 is exactly 1.7.4, the big match. The 
2-zero-sum stochastic game is also a kind of big match. 
The unique stationary ,8-discounted equilibria (xP,yP) for this example are 
given by (the mixed actions in state I): 

(xP,yP) = ((2/(3-,8), (1-,8)/(3-,8)), (½, ½)). 

So we have y}(I,xP,yP) = ½ = v1(1) and ri(I,xP,yP) = ½ = v2(1) for all 
,8E[0, I). Then we find that for (x 1 ,y 1)= fun(xP,yP)= ((1,0),(½,½)) the limit-

PtI 
ing average rewards are: 

y1(1,x 1 ,y 1)= ½= v 1(1) and y2(1,x 1 ,y 1)= ½ < ½= v2(1). 

It is obvious that (x 1 ,y 1) is no limiting average 1:-equilibrium, because against 
x 1 player 2 could improve by playing (0, I). Sorin [ 1986] shows that for this 
example the limiting average rewards corresponding with limiting average 1:-

equilibria for state 1 are all in the convex hull L of {(½,1),(½,½)}. So 
L= {(a,2-2a):aE[½,½]}. 
It is important to observe that for x • = (0, I) we find: 

y1(I,xP,y1)= y1(I,x*,y1)= ½= vl(I) and 

y2(I,xP,y 1)= y2(1,x*,y 1)= 1 > ½= v2(1). 

The importance of this observation will become clear in chapter 3 ( cf. exam-
ple 3.2.4). In graph we have the following situation: 
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(0,2) 

(0,1) ----~- (y1(1,x•,y1), y(1,x•,y1)) 
________ L 

,------ (v 1(1), v2(1)) 
-------- (y1(1,x1,y1), Y(l,x',yl)) 

(1,0) 
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In this graph the area in the triangle ((1,0), (0,1), (0,2)) is the set of feasible 
rewards for this stochastic game, i.e. those rewards that can occur for some 
pair of strategies. The feasible rewards which are larger than the threat-point 
are called individually rational. The set L consists of the feasible, individually 
rationa!. Pareto optimal rewards, where the Pareto optimal rewards are those 
rewards that cannot be improved simultaneously for both players. 

Although the above example suggests a gap between general-sum /3-
discounted solutions and limiting average solutions, we exhibit in the next 
chapters that limiting average t:-equilibria may, under some condition, be 
derived from sequences of stationary /3-discounted equilibria. 
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Chapter 2 

Particular initial states in stochastic games 

2.1 INTRODUCTION 

In chapter 1 we have seen that for any zero-sum stochastic game the /3-
discounted value exists and that both players have stationary /3-discounted 
optimal strategies; in the general-sum case there exist stationary /3-discounted 
equilibria. We have also seen in chapter 1 that for any zero-sum stochastic 
game the limiting average value exists, which however does not guarantee the 
existence of optimal strategies or stationary £-optimal strategies; in the 
general-sum case the existence of limiting average £-equilibria is still an open 
problem. As discussed in chapter 1, for the limiting average reward criterion 
more complex strategies are required to play £-optimal or to form an £-
equilibrium. There may be however, starting states for which a solution exists 
in terms of stationary strategies. Consider for instance the initial states 2 and 3 
of the big match (example 1.7.4). This idea, of examining particular starting 
states, first occurred in Tijs & Vrieze [1986]. They showed that for each player 
there are, in any zero-sum stochastic game, 'easy initial states', i.e. starting 
states for which this player has a stationary limiting average optimal strategy. 
Their proof however is rather technical. In this chapter we give an alternative 
and straightforward proof for their theorem in section 2.4. There we also 
examine other initial states where both players can achieve £-optimality, with 
respect to the limiting average reward criterion, by using stationary strategies. 

In section 2.3 we examine special initial states in general-sum stochastic 
games, and we show that for certain 'strong initial states' limiting average £-
equilibria exist which consist of 'almost stationary strategies'. The latter are 
stationary strategies which are amplified with some threat to prevent profitable 
deviations of the opponent. So if both players stick to their £-equilibrium stra-
tegies, then with probability close to 1 they will use stationary strategies 
throughout the whole game. 

In section 2.2 we derive some basic results, which are of fundamental impor-
tance for the chapters 3 and 4 as well. Our techniques are based on properties 
of sequences of stationary strategies {(x13,y.B):/3E[0,l)}, converging for f3 tend-
ing to I. 

The results of this chapter have been derived from Thuijsman & Vrieze 
[1990-a, 1991]. 
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2.2 LIMIT PROPERTIES FOR SEQUENCES OF STRATEGY PAIRS 

By the expression 
'let ((xP,yP)EXX Y: ,8E[0, I)} be a (converging) sequence with 
lim (xP,yP) = (xi ,yl)' 
Ptl 

we mean: 

Chapter 2 

'for some sequence (Pn E[O, I): n EN}, with lim Pn = 1, it holds 

that lim (xP',y,8')= (x 1,y 1)EXXY.' 

Observe that XX Y is compact, which implies that any sequence in XX Y has 
a converging subsequence. 

2.2.1 DEFINITION 
Let ((xP,yP)EXX Y: ,8E[0, I)} be a sequence with 1im (xP,yP)= 

Ptl 
(x 1,y 1)EXXY. Without loss of generality we may assume that Car2 (xP) and 
Car2 (yP) are independent of ,8< I. By compactness arguments we can also 
assume that the followin!( limits exist and we can define: 
a) Vk:=Iimyi(xP,yP) E[-M,MY, fork=l,2. 

Ptl 
b) Z 1:=limz.B, wherezP:= (l-,8)(1-,8P(xP,yP))- 1• 

,Bjl 
c) Tis the set of states which are transient with respect to (x 1 ,y 1 ). 

S 1 ,s2, ... ,sn are the ergodic sets with respect to (x 1 ,y 1 ). 

For each h E{l,2, ... ,H} let l/ ELilS'I be .the unique stationary distribution of 
P (x 1 ,y Ii, the restriction of P (x 1 ,y 1) to sh,- let qh ELi2 be the related sta-
tionary distribution (for initial states in Sh) of P(x1,y 1) on S, i.e. q~= q: 
for s ESh and q~ = 0 for s ti.Sh. 

Observe that for all ,8E[0, I) all row sums of z.B are equal to I and all entries 
of zP are non-negative. Hence zP,,8E[0, I), and Z 1 are stochastic matrices. 
In this section {(xP,yP): ,8E[0, I)} is a sequence as in definition 2.2.1. 

2.2.2 REMARK 
Let Q(x 1,y 1i denote the restriction of Q(x 1,y 1) to sh and let sESh_ Then the 
s -th row of Q (x 1 ,y 1 i equals q h and is strictly positive. Furthermore the s -th row 
of Q(x 1 ,y 1) equals qh. 

By ordening the states, the matrices P (x 1 ,y 1) and Q (x 1 ,y 1) will have the fol-
lowing shape: 

P(x',yl)I 0 0 0 
0 P(x 1 ,y 1)2 

P(x 1,y 1)= 0 
0 0 P(x 1 ,y 1)H 0 

P(xl,ylfl P(x',xlf2 P(xl,ylfH P(xl,ylf 
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Q(xl,yl)I Q 

0 Q(x1,y 1)2 

0 0 

0 0 

0 
Q(xl,yl)H 0 
Q(xl,ylfH 0 

29 

Here P(x1,y 1)1'" and Q(x 1,y 1)1'" are restrictions of P(x 1,y 1), resp. Q(x1,y 1), 

to rows in T and columns in sh; similarly P (x 1,y 1 )7' is the restriction of 
P (x 1 ,y 1) to rows and columns in T. 
It is well-known (cf. Kemeny & Snell [1960]) that for h E{l,2, ... ,H}: 

Q(xl,ylfh= (IT -P(xl,y1)1')-I P(xl,ylfh Q(xl,yl)"_ 

Observe that (IT - P(x 1,y 1)1')- 1 P(x1,y 1)1'" has ITI rows and IS"I columns. 
For sET and tES" entry (s,t) of (IT -P(x 1,y 1)1')- 1 P(x 1,y 1)1'" gives the 
probability that a. stochastic process which starts in s will ever enter the 
ergodic set S" through state t. 

2.2.3 LEMMA 
a) ·l(s,x1,y 1)=·l(t,x 1,y 1)=:·l"(x 1,y 1)for s,tES", hE{l,2, ... ,H} and for 

k=l,2. 
b) Vk= P(x 1,y 1)Vk fork=l,2. 
c) ~= V}=: Vkh fors,tES", hE{l,2, ... ,H} andfork=l,2. 

PROOF: 
By lemma 1.5.5 it holds that ·l(s,x 1,y 1)= Q(x 1,y 1)sr\x 1,y 1). Now (a) fol-
lows from remark 2.2.2. 
(b) follows from Yi(xP,yP)= (1-/3)rk(xP,yP) + /3P(xP,yP)yi(xP,yP) (cf. 
lemma 1.5.3 (c)). Taking limits and afplying definition 2.2.1 gives the result. 
Now (b) implies that Vk= Q(x 1 ,y 1)V, which by remark 2.2.2 gives (c). 

Although its proof is rather simple, the next lemma turns out to be of great 
importance in the sequel. 

2.2.4 LEMMA 
2 1 P(x1,y 1) = 2 1• 

PROOF: 
By definition 2.2.1 we have zP(I-/3P(xP,yP)) = (l-/3)I for all /3E[0,l). 
Taking limits for /3 going to 1 completes the proof. 

The strength of this lemma becomes clear in the lemmas below. 
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2.2.5 LEMMA 
Let sES and let z; be the s-th row of Z 1. 

H 
a) There exists µs = (µ;,µ;, ... ,µf)Efi.H such that z; = µ~qh. 

h =I 
b) If for the Markov chain related with P (xP ,yP) the probability of ever reach-

ing Sh is O when starting ins fl.Sh, thenµ~ =O. 

PROOF: 
a) By lemma 2.2.4 it holds that z; is a stationary distribution of the Markov 

chain related with P (x 1 ,y 1 ). Since the set of all stationary distributions 
for P(x 1,y 1) is the convex hull of {q 1,q1 , ... ,qn}, there is µsEt,.H as 
desired. 

b) If under (xP ,yP) the set Sh cannot be reached when starting in s, then it 
follows that entry (s,t) of pn(xP,yP) is O for all nEI\I and all tESh. 
Hence for all t ESh we have that entry (s,t) of 

00 

zP= (1-/3) pn-I pn- 1(xf1,yP) is 0. But then entry (s,t) of Z 1 is also 
n=I 

0 for all t f=Sh, which implies thatµ~ =O. 

The next lemma says: 'the limit of discounted rewards equals a convex combi-
nation of the limiting average rewards for the limit strategies.' 

2.2.6 LEMMA 
Lets ES and let µs Efi.H be as in lemma 2.2.5. 

H 
Then V}= µ~·l\x 1,y 1)fork=l,2. 

h=I 

PROOF: 
Let (, ) denote the inner product. 
By definition 2.2.1, remark 2.2.2 and lemmas 2.2.3 and 2.2.5 we have: 

V: = Iim r%(s,xP,yP)= 1im (Zf' rk(xP,yP)> = (Z;' rk(x 1,y I)) 
/Jjl /Jjl 
H H 

= µ~ (qh,rk(x1,yl)) = µ~l\x',y1). 
h=I h=I 

2.2.7 COROLLARY 
There exist h 1,h 1 E{l,2, ... ,H} such that: 
y1h 1 (x1,y 1);;;. max V; andy1h'(x 1,y 1);;;. max V;. 

SES SES 

2.3 STRONG INITIAL STATES IN THE GENERAL-SUM CASE 

• 

We show that, in any stochastic game, there are some starting states for which 
there exists an almost stationary limiting average t:-equilibrium. 
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2.3.1 DEFINITION 
An almost stationary limiting average £-equilibrium for initial states is a pair of 
strategies ( '17' •,a•) such that ( '17' *,a•) is a limiting avera~e £-equilibrium for initial 
state s and ( '17' •,a*) consists of stationary strategies (x ,y *) and retaliation stra-
tegies (w",cf). Player 1 uses x• unless he detects a deviation of player 2 from a•, 
in which case he immediately turns to using w". For player 2 strategy a• is simi-
lar. 
A strong initial state is an initial state for which there exists an almost stationary 
limiting average £-equilibrium, for all £>0. 

Since a strategy may consist of mixed actions for all stages, the phrase 'unless 
he detects a deviation of player 2 from a•• should be interpreted as: 'unless 
player 1 knows that the probability of player 2 playing a• is close to O.' 

2.3.2 REMARK 
In this section let {(xP,yP):,BE[0,1)} be a sequence of stationary .fl-discounted 
equilibria with lim(xP,yP)= (x 1,y 1) and which furthermore suits definition 2.2.1. 

PtI 

In addition. to the results developed in the previous section for such a sequence 
{(xP,yP): ,BE[O, 1)}, the fact that we are dealing with stationary .fl-discounted 
equilibria allows us to conclude the following. 

2.3.3 LEMMA 
a) For each X EX with Carz(x) C Carz(xb) and for all X EX: 

vi= P(xl,yl)VI = P(x,yl)VI;;;;. P(x,yl)VI. 

b) For eachyEYwith Carz(y) C Carz(y}) and for allyEY: 

V2 = P(x1,y 1)V2 = P(x 1,y)V2 ;;;;. P(x1,y)V2• 

c) Vk;;;;. vk for k= 1,2. 

PROOF: 
By lemma 1.6.4 we have for all ,BE[O, 1): 

y}(xP,yP)= (1-,B)rl(xP,yP) + ,BP(xP,yP)y}(xP,yP) 

= (1-,B)rl(i,yP) + /3P(x,yP)y}(xP,yP) 

;;;;. (1-P)rl(x,yP) + /3P(x,yP)y}(xP,yP). 

Taking limits for /3 to 1 proves (a). The proof of (b) is similar. By remark 
1.8.4 we have y~(xP,yP);;;;. v~ for all /3E[O, 1), hence (c) follows by taking limits 
(cf. definition 2.2.1 ahd theorem 1.7.7). 

Lemma 2.3.3 implies that, if yk(x 1 ,y 1) ;;;;. Vk for both players and if each of 
them can check whether or not his opponent is actually using y I or x 1, then 
one could construct a limiting average £-equilibrium. This is possible by using 
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a threat to retaliate, giving less than vk +t: in case of a detected deviation. This 
is worked out more precisely in the next lemma. 

2.3.4 LEMMA 
If for hE{l,2, ... ,H} it holds that ykh(x 1,y 1);~ Vkh for k=l as well as for 
k =2, then a limiting average £-equilibrium for initial states in sh can be made 
by supplementing x I and y I with suitable retaliation threats. 

PROOF: 
Lett:>0 and let h E{l,2, ... ,H} be such that yk\x 1 ,y 1) ;;;a, Vkh fork= 1 and for 
k =2. We divide the proof in three parts: in part I we show that each player 
can detect deviations of his opponent with probability close to I; in part 2 we 
show that each player can retaliate if he detects a deviation; in part 3 we show 
that (x 1 ,y 1) supplemented with retaliation threats is a limiting average £-

equilibrium on S . 

PART I: Player 1 can detect deviations of player 2 with probability close to 1. 
Suppose player I uses x 1• 
It is clear that if player 2 at some stage chooses an action outside Carz (Y 1 ), 

then player I immediately knows that player 2 is not using y 1• 
As long as player 2 chooses actions within Carz (Y 1 ), the play will remain 

within sh and player I can count the number of times that player 2 chooses 
action j in state s ESh for all j and s. Hence at each stage n EN player I 
knows the action frequency y~n)(j) of action j in states. If player 2 really uses 
y 1, then y~n)(j) should converge toy 1 (j) as n goes to infinity. 
Let Jin)(}) be the random variable which denotes the action frequency of 
action j in state s. So y~n)(j) is a realization of Jin)(}). It is well-known (cf. 
Billingsley [1979]) that for every a,8>0 there exists N a.5 EN such that: 

Probx1,y' {IIJin) -y1 II> a for any sESh and any n;;.,Na8}< 8. 

If for all n ;;;e,N a.5 and all s ESh it holds that l[y~n) - y1 II ..;; a then, by con-
tinuity arguments, the limiting average reward to player k is at most 
l\x 1,y 1)+aK and at least ykh(x 1,y 1)-aK for some constant KEN. So if 
player 1 does not detect a deviation of player 2, then the limiting average 
reward to player 2 is at most y2\x 1 ,y 1) + aK. 

PART 2: Player 1 can retaliate if he detects a deviation of player 2. 
Suppose at some stage n player I detects a deviation of player 2, i.e. player 2 
chooses j at that stage in state s and either j fl_ Car (Y;) or n ;;;a, N a.5 and 
l[y~n) - y; II> a. 
If, from stage n + 1 on, player 1 now uses a retaliation strategy '1T~12 ( cf. 
definition 1.8.5) then the limiting average reward to player 2 will be at most 

z 
p(tls, x;,j) (vl+t:12). 

t=I 
By lemma 2.3.3 we have: 



Particular initial states in stochastic games 33 

z z 
L p(tls,x;,j)(vf +t:12),,;;;; L p(tls,x;,j)(Vf +t:12),,;;;; V; +t:!2. 
t=I t=I 

Since -?"(x 1 ,y 1) ;;.. V2h = V; ( cf. lemma 2.2.3), we conclude that the limiting 
average reward to player 2 will be at most y2h(x 1 ,y 1 )+E/2. 

PART 3: (x 1 ,y 1) can be supplemented with retaliation threats to become a limiting 
average E0equilibrium for all starting states in Sh. 
Let aE(0,E/4K) and take 8>0 such that 

(I-8)2(/\x 1 ,y 1)-aK) - (l-(I-8)2)M;;.. /\x1,y 1)-t:/2 fork= 1,2. 

Now player I can try to keep player 2 from deviating from y I by using the 
almost stationary strategy 7T; defined by: 
a) use x I unless: 

i) player 2 chooses an action outside Car2 (Y 1 ), or 
ii) for some n;;..Nas and somesESh: l[yin) -y]ll>a. 

b) if (i) or (ii) occurs, start retaliation by using 1r~12 from that stage on. 
For player 2 the almost stationary strategy a; is defined analogously. 

From these definitions it follows that: 

/\1r;,a;);;.. (l-8)2(/\x 1 ,y 1)-aK)-(l-(I-8)2)M;;.. yk\x 1 ,y 1)-t:/2. 

From parts I and 2 we conclude that for all aE~: 

y2h(1r;,a),,;;;; y2\x 1,y 1) + t:/2. 

Similarly one can derive that for all 1rEII: 

y1h(1r,a;),,;;;; y1\x 1 ,y 1) + t:/2. 

Hence (1r;,a;) is an almost stationary limiting average E-equilibrium for all 
starting states in Sh. 

2.3.5 'THEOREM 
For any general-sum stochastic game there exist strong initial states. 

It is clear that this theorem follows directly from lemma 2.3.6 below, which 
tells that the condition of lemma 2.3.4 is automatically fulfilled for some h. 

2.3.6 LEMMA 
There exists h * E {I, 2, ... , H} such that: 

y1h0 (x 1,y 1);;.. max V 1h;;.. V 1h. andy2h·(x1,y 1);;.. V 2h·_ 
h 

PROOF: 
For non-empty EC{l,2, ... ,H} let SE:= U sh_ 

hEE 
Let E 1:= {hE{l,2, ... ,H}: y1\x 1,y 1);;.. max V]}. Then by corollary 2.2.7 we 

s 
have that E 1 =I= 0 . 
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Now let T 1 be the set of transient states for which plays started there lead to 
SE' under (x 1,y 1) with probability I. So T 1:= {sET: entry (s,t) of Q(x 1,y 1) 

is 0 for all t ft.SE'}. 
Now take a stationa?, strategy x * for player I such that for f3 E io, 1): 
x; = x; for alls ft_S 'U T 1 and Car(x;) = Car(xf) for alls ES 'U T1. 
Remember that Car(xf) is independent of /3E[0, I) (cf. definition 2.2.1). 
Observe that each ergodic set with respect to (x * ,y 1) is either one of the sets 
Sh with h ft_E I or it is a subset of T 1 USE'. 
In order to prove that for some h • EE 1 it holds that y2h • (x 1,y 1);;;;,, V 2h · we 
make use of the following observation: There are E 2 and T 2 with 0 =j=.E 2 CE 1 
and T 2 CT I such that T 2 USE' is an ergodic set with respect to (x • ,y 1 ). 

To show the correctness of this statement, suppose that it is not true. 
Then the ergodic sets with respect to (x • ,y 1) are necessarily the sets sh 
with hft_E 1, and 0=/=-{l,2, ... ,H}\E 1. But then, using lemma 1.6.4, 
lemma 2.2.3 and analogues of lemmas 2.2.5 and 2.2.6 we conclude that for 
each s ES there is µs Elin such that: 

V1 = limy}(s,xfl,yfl)= 1im y}(s,x•,yfl)= µ~y1\x*,y 1) 
/Jtl /Jtl h ff_E, 

= µ~y1\x1,y 1)<max V{ 
hff_E, /ES 

Since this is clearly a contradiction, our statement is correct. 

So there are 0=/=-E2 CE 1 and T 2 CT1 as desired. By definition of x• and by 
the fact that Car2 (xfl) is independent of /3E[0, I) it follows that T 2 USE' is an 
ergodic set with respect to (xfl,y 1) for all /3E[0,l). Once more applying lemma 
1.6.4, lemma 2.2.3 and analogues of lemmas 2.2.5 and 2.2.6 we obtain that for 
each s ESE' there is µs Elin such that: 

V; = limp. ri(s,xfl,yfl)= limyi(s,xfl,y 1)= µ~y2\x 1,y 1),;;;; max y2\x 1 ,y 1). 
ti flt! hEE, hEE, 

Hence there is h • EE 2 and s ESh • such that y21i • (x 1 ,y 1);;;;,, v; = V 2h •. 

2.3.7 REMARK 
Observe that for the almost stationary limiting average f.-equilibria, as constructed 
for some sh in the proof of lemma 2.3.4, the property holds that a play started in 
sh will remain in sh with probability close to 1. 
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2.3.8 ExAMPLE 

State 1 State 2 State 3 
Notice that this is again the big match (cf. example 1.7.4). For this stochastic 
game the unique stationary ,8-discounted equilibria are given by 
(xP,yfJ)=((l/(2-,8),(1-,8)1(2-,8)), (½,½)) (for starting state 1). It is clear 
that (x1,y 1) = ((1,0),(½,½)) is not a limitin~ average £-equilibrium for starting 
state 1. However, y1(1,x 1,y 1)= ½= V1 = vl and ·y2(1,x1,y 1)= -½= 
Vt = vt. So by lemma 2.3.4 the pair of strategies (x 1 ,y 1) can be supplemented 
with retaliation threats to become a limiting l!,Verage £-equilibrium (player 1 
has to check whether or not player 2's action-frequencies for state 1 are close 
to ( ½, ½) in the long run; player 1 cannot gain by deviating against y 1 ). 
So state 1 is a strong initial state for this stochastic game. It is also clear that 
state 2 and state 3 are strong initial states. Hence we have an almost station-
ary limiting average £-equilibrium for this stochastic game. Moreover for some 
starting states (2 and 3) we even have a stationary limiting average equili-
brium. The next example shows that in general there need not be initial states 
for which there is a stationary limiting average equilibrium. 

2.3.9 EXAMPLE 

State 1 

State 2 State 3 
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For this stochastic game v 1 = (0, - 1, 1) and v 2 = (0, 1, - 1 ). Since this stochas-
tic game is in fact a zero-sum stochastic game, any limiting average reward for 
an equilibrium for initial state s should be equal to the threat-point ( v.:, v; ). 
For this stochastic game there is no stationary limiting average equilibrium for 
any of the initial states. We discuss the initial states one by one. 
a) Suppose that (x,y) is a stationary limiting average equilibrium for initial 

state 1. If x 1 =(1,0) then y 1 =(0, 1) since y is a best reply against x for 
player 2. But then y1(l,x,y)= -2 < vi, contradiction. 
If x 1::f=(l,0) then y 1 =(1,0) and y2(l,x,y) ;a,, 1 since y is a best reply 
against x. Hence y1(l,x,y) ,;;;;- I< vi, contradiction. 

b) Suppose that (x,y) is a stationary limiting average equilibrium for initial 
state 2. If y 2 = (1,0) then x 2 = (1,0) and y2(2,x,y)= 1 since x is a best 
reply against y for player 1. But then y is no best reply against x for 
player 2, contradiction. 
If Y2=f=(l,0) then player 1 can achieve a limiting average reward at least 1 
by playing (0, 1) in state 2, playing (1,0) in state 3 and by playing in state 
1 the action (1,0) if y 1(l);;a,,¾ or (0,1) if y 1(1)<¾. Hence 
y2(2,x,y},;;;; - 1 < vt contradiction. 

c) Suppose that (x,y) is a stationary limiting average equilibrium for initial 
state 3. If x 3 =(1,0), thenY3=(l,0) and y1(3,x,y)= 1 sincey is a best 
reply against x for player 2. But then x is no best reply for player 1 
against y, for by playing (0, 1) against y in starting state 3 player 1 could 
get limiting average reward 2, contradiction. 
If x 3::f=(l,0) then player 2 can get limiting average reward at least 0 by 
playing ( 1,0) in state 2, (0, 1) in state 3 and ( ½, ½) in state 1. Hence 
y1(3,x,y),;;;; 0< vL contradiction. 

However, although for none of the initial states there is a stationary limiting 
average equilibrium, an almost stationary limiting average 1:-equilibrium exists 
(for all initial states). 
This follows from lemma 2.3.4, because it can be verified that for each ,BE[0,l) 
the pair (xP ,yP) defined below is a stationary ,B-discounted equilibrium and 
(x 1,y 1) = lim (x.B ,y8) satisfies the condition of lemma 2.3.4 . 

.Bil 
For ,BE[0, 1) define (xP,yP) by: 

fl_ 3-,B-~ -3+2,B+~ 
X) - ( ,8 ' ,8 ), 

fl_ 3-~ -3+2,B+~ 
x2 - ( 2,8 ' 2,8 ), 

fl_ 3-~ -3+2,B+~ 
X3 - ( 2,8 ' 2,8 ), 

yf = (½,½), 

fl_ 3-~ -3+2,B+~ 
Y2 - ( 2,8 ' 2,8 ), 
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fl_ 3-~ -3+2/3+~ 
Y3 - ( 2/3 ' 2/3 ). 

It follows that x 1 = ((l,0),(1,0),(1,0)) and y 1 = ((½, ½), (l,0),(1,0)). Further-
more we derive that: 

'( p p)=(0 3-4/3-~ -3+4/3+~) 
'( p X ,y ' 2/3 ' 2/3 ' 

2( p p)= (0 -3+4/3+ 3-4/3-~) 
'( p X ,y ' 2/3 ' 2/3 ' 
y1(x 1 ,y 1)= (0,-1, I)= lim rb(xP,yP) = v1, 

Ptl 
y2(x 1 ,y 1)= (0, 1, -1) = lim r!(xP,yP) = V 2. 

Ptl 
Since the states I, 2 and 3 are each ergodic sets with respect to (x 1 ,y 1 ), we can 
apply lemma 2.3.4 for each state. 

2.4 (€-)EASY INITIAL STATES IN THE ZERO-SUM CASE 

In this section we show that for each player there are easy states in any zero-
sum stochastic game. For all states with minimal limiting average value, 
player 1 has a stationary limiting average £-optimal strategy. For the states 
with maximal limiting average value we give a sufficient condition for player I 
to have a stationary limiting average £-optimal strategy. Similar results hold for 
player 2. 

2.4.1 DEFINITION 
A states is called an (£-)easy initial state for player k if player k has a stationary 
limiting average (£-)optimal strategy for the game starting ins. 

It is clear that the set of £-easy initial states for player k contains the set of 
easy initial states for this player. However, there need not be states which are 
easy for both players, whereas all states may be £-easy for both players. Hence 
the set of £-easy states for a player is generally larger than the set of easy states 
for this same player. The following theorem is due to Tijs & Vrieze [1986]. 

2.4.2 THEOREM 
For any zero-sum stochastic game each player has at least one easy initial state. 

The proof presented by Tijs & Vrieze [1986] for this theorem is based on the 
result of Bewley & Kohlberg [1976] who showed that there are solutions for 
the /3-discounted zero-sum case which can be written as power series in frac-
tional powers of (1-/3) (cf. theorem 1.7.5). We give a new proof for theorem 
2.4.2 based on the results derived in section 2.2. 
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2.4.3 REMARK 
In this section {x.B :/3E[0,I)} is a sequence of stationary {3-discounted optimal 
strategies for player 1, which converges to x 1• Likewise we have {y.B:[3E[0, I)} for 
player 2 converging toy 1• 

PROOF OF THEOREM 2.4.2: 
We prove the existence of easy initial states for player I. Let y • be a stationary 
limiting average best reply against x 1 ( cf. remark 2.4.3 and lemma 1.6.2). 
Let z.B, vk,S 1 , ••• ,SH etc. be as in definition 2.2.1 for the sequence 

,8 • 11 {(x ,y ):,-,E[0,1)}. 
By corollary 2.2.7 there is h I E { 1,2, ... ,H} with y 1h' (x 1 ,y *);;;,. max V1. For all 

SES 

s ES we also have, using theorem 1.7.7, that: 

V1 = lim y}(s,x.B,y *);;;;. lim v}(s) = v1. 
,Bfl ,Bf! 

Hence for alls ESh' and all aE~ we have: 

y 1(s,x 1,a);;;;. y1(s,x 1,y*);;;;. max Vf;;;;. max vJ. 
. /ES /ES 

We conclude that x I is limiting average optimal for alls ESh'. • 
Observe that by the above proof it follows that any limit of stationary /3-
discounted strategies (/3 tending to I) is limiting average optimal for some 
starting states. Moreover, for player I we found that among those easy initial 
states there are states for which the limiting average value is maximal. Simi-
larly we conclude that for player 2 the strategy y I is limiting average optimal 
for some initial states for which the limiting average value is minimal. 
The converse is not true: if for a state the limiting average value is maximal 
(or minimal), then this does not imply that player 1 (2) has a stationary limit-
ing average optimal strategy. This is demonstrated by the next example. 

2.4.4 EXAMPLE 

State 1 State 2 

Payoffs are again those to player 1 to be paid by player 2. It is easy to verify 
that for this stochastic game the limiting average value v 1 = (0,0). For player I 
(2) a stationary limiting average £-optimal strategy is x' = ((1,0),(1-£,£)) (resp. 
y' = ((1-£,£), (1,0))). 
It is clear that for initial state 2 (I) player 1 (resp. 2) has no stationary limiting 
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average optimal strategy. So, although the value is maximal as well as minimal 
for both starting states, each player has a stationary limiting average optimal 
strategy for just one of them. 

As we have just remarked, there are easy states for player 1 among the states 
with maximal limiting average value. The next example illustrates that there 
need not be easy initial states for player 1 among the states with minimal lim-
iting average value. 

2.4.5 ExAMPLE 

z 
State 1 · State 2 

Payoffs are again those to player 1 to be paid by player 2. 
For this stochastic game the limiting average value v 1 equals (1,2). For player 
1 a stationary limiting average £-optimal strategy is given by x' = (1-E,E), the 
mixed action to be used in state 1. For player 2 a stationary limiting average 
optimal strategy is y • = (1,0). 
It is easy to see that for state 1, the state with minimal limiting average value, 
player 1 has no stationary limiting average optimal strategy. 
Nevertheless, states for which the limiting average value is maximal or minimal 
are special, as is illustrated in the following two theorems. 

2.4.6 THEOREM 
Let vmin:= min v1 and let smin := {sES: v1 = vmi0 }. 

SES . 

All states in smin are £-easy for player 1. 

PROOF: 
Let y E Y be arbitrary. 
Using that r1(x 13 ,y);,,, v1 (cf. remark 2.4.3) and using theorem 1.7.3 we have: 

(1-P)r 1 (x 13,y) + PP (x 13 ,y) v 1 ;,,, v1 for all PE[O, 1). 

Multiplying this inequality with Q(x/3 ,y) gives that: 

Q(x 13 ,y)r 1(x 13 ,y);,,, Q(x 13 ,y)v1 for all PE[O, 1). 

Hence for P such that llv1-v 1 ll<E (cf. theorem 1.7.7) we have, by lemma 
1.5.5: 

y 1(x 13 ,y)= Q(x 13 ,y)r1(x13 ,y);,,, Q(x 13 ,y)v1 

;,,, Q(x 13 ,y)v 1-d 2 ;,,, (vmin -E)l 2 • 
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Thus xP, with /3 such that llv}-v 1 11<£, is a statio_nary limiting average£-
optimal strategy for player 1 for all initial states in snun. 

Recall that by theorem 1.7.5 (Bewley & Kohlberg [1976]) we may assume that 
z z 

there are N el\l, x 0 E X lim,, x 1,x 2 , ••• E X ~m,, such that: 
s=I s=I 

00 

xP = xn(l -f3)n!N for all /3 close to I. 
n=O 

m, 
Since x 13 EX, it holds that: x 1 = x 0 ; xn,(i)=O for all n;;,, 1 and for alls ES; 

i=I 
if xo,(i)=x 11(i)= ... =xn-1s(i)=O for SES and n;;,,1 then Xn1(i);;.O; 

I 
xn(l -f3)ntN EX for each l El\!. We use these facts to examine limiting aver-

n =O 
age £-optimality for player I in states with maximal limiting average value. 

2.4.7 DEFINITION 
Let vmax: = max v; and let smax: = {s ES: v; = vmax }. 

SES 

Let s*: = { s ES max: x 1 is limiting average optimal for intial states}. 
N-1 

Define :l EX by i: = x; for s ES* and x~: = Xn(l-f3)n/N for s ES\ s·. 
n=O 

Let y E Y be a stationary limiting average best reply against x13, for all /3 
sufficiently close to 1. 
Defines**:= s* U {E csmax \ s•: E ergodic with respect to (x13,y)}. 
Define A:= smax \S**. 

2.4.8 THEOREM 
a) s· =/=-0. 
b) x13 is limiting average £-optimal for initial states in s•• for /3 close to 1. 
c) If lim (l -/3)(JA - f3P(x 13 ,yt )-1 = 0, then x 13 is limiting average £-optimal 

Pt I 
for all initial states in smax for /3 close to 1. (Here the superscript A denotes 
the restriction to rows and columns corresponding with states in A) 

PROOF: 
a) In the above we noticed that, by the proof of theorem 2.4.2, there are states 
in smax which are easy for player I, i.e. for which x 1 is limiting average 
optimal. Hence S • =I=- 0. 

b) We already noticed that: 

(l-j3)r1(x 13 ,y) + f3P(x 13 ,y)v};;,,v} for allyEY. 

Letting /3 tend to 1, this gives us that P(x 1,y)v 1 ;;,, v 1 for ally E Y. 
Hence, if player I uses x 1 in smax, then play will remain in smax with proba-
bility l, no matter what strategy is used by player 2. 
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From the fact that for initial states in s* the strategy x I is limiting average 
optimal, one can conclude that, if player 1 uses x I for initial states ins*, then 
play will remain withins• with probability 1. Again this does not depend on 
the strategy used by player 2. 
We define (cf. theorem 1.7.5): 

N-1 oo 
xf\N): = Xn(I -f3)n!N and ~.B(N): = Xn(I -f3)n!N_ 

n=0 n=N+I 

Notice that lim (1-/3)- 1 xf1(N)=O and that xf(N)= x~ for s ES\ s* . 
.Btl -

We show: 
For any set E ~/max\ s*, such that Eis ergodic with respect to (x\y), we 
have that y1(s,x ,y);;.. vmax -£.for any initial states EE and /3 close to I. 

For f3 close to 1 we have vb ,;,;; (1-f3)r 1(xf1,y) + {JP(x.B ,y) and hence: 

vb ,;,;;(l -{J)r 1(x.B(N),y) + {JP(x.B(N),.Y)vb 

+ (l -{3)2 r 1(xN,y) + /3 (l -{J)P(xN,.Y)vb 

+ (l -f3)r 1(~/J(N),y) + {JP(~.B(N),.Y)vb. 

Let Qi denote the restriction of Q(x.B(N),y) to rows corresponding with states 
in E. Hence Qi has size IEIXz. Multiplying the above inequality by Qi yields 
(cf. lemma 1.5.2 (e)): 

Hence: 

Qivb ,;,;;(l -f3)Qi r 1(x.B(N),y) + /3 Qivb 

+ (1-[3)2Qi r 1(xN,y) + /3(1-/3) QiP(xN,y)vb 

+ (1- {J)Qi r 1 (t_.B(N),y) + fJQiP(~.B(N),.Y)vb. 

Qiv 1 ,;,;; Qi r 1 (x.B(N),y) 

+ (1-{J)Qi r 1(xN,y) + fJQiP(xN,.Y)vb 

+ Qi r 1(t_.B(N),y) + {J(l -/3)- 1QiP(~.B(N),y)vb. 

It can be verified that: 

lim (1-{J)Qi r1(xN,y)= 0, lim fJQiP(xN,.Y)vb,;,;; 0 
Ml Ml 
lim Qi r 1(x.B(N),y)= 0, lim {3(1-/3)- 1QiP(xf1(N),y)v1 = 0. 
Ml - .Btl -

To show that lim fJQiP(xN,y)v 1,;:;;; 0, take 8>0. Fors EE we have: 
,Btl 

z z 
p(tls,XNs,Ys)vb(t) = XNs(i)p(tls,i,ys)vb(t). 

t=I i=lt=I 

For f3 close to 1 we have: 
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z 
p(tls,i,.Ys)v}(t),;;;; vmax + 8 for all i E{l,2, ... ,ms}-

t=I 

For i with XNs(i)<0, we have i E Car(xf(N)), as remarked above, and hence 
for those i and /3 close to I : 

z 
~p(tls,i,.Ys)v}(t) = ~p(tls,i,.Ys)v}(t);;;,, vmax_5_ 
t=I (EE 

Combining these inequalities yields: 
m, z 

XNs(i)p(tls,i,.Ys)v}(t),;;;; xNs(i)(vmax_8) + XNs(i)(vmax+8) 
i = I t = I i,xN,(i)<O i,xN,(i);;a,O 

= 28 XNs(i). 
i,xN,(i);;a,O 

Since 8>0 was arbitrary, we conclude that lim {JP(xN,y)v},;;;; 0, and hence that 
.Btl 

lim fJQiP(xN,y)v},;;;; 0 . 
.Bil 
Altogether we have: 

vmax IE= lim Q11 v 1 ,;;;; lim Qi r 1 (x.B(N),y) 
.Bil E _B .Bil 

+ lim (1-{J)Qi r 1(xN,.Y) + lim /3QiP(xN,y)v} 
.Bil .Bil 

+ lim Qi r 1 (x.B(N),y) + lim /3(1- /3)- 1 QiP(x.B(N),,y)v 1 
.Bil - .Bil -

,;;;;lim Qir 1(x.B(N),y) = lim y 1(x.B,y)E . 
.Bil .Bil 

Because y is a limiting average best reply against x.B, for all /3 close to I, this 
implies that x.B is a limiting average €-optimal strategy for all initial states in 
E, for /3 close to I. This result together with (a) shows that x.B is limiting aver-
age E-optimal for all initial states in s••, for /3 close to I. 

c) We show: 
Iflim(l-/3)(IA-/3P(x.B,y)A)- 1=0, then x.B is limiting average €-optimal 

.Bil 
for all initial states in A, for /3 close to I. 

Let vt,r 1(x.B,Jt,1A (etc.) denote the restriction of v}, r 1(x.B,y) and I to 
coordinates in A. Let v}Ac (etc.) denote the restriction to coordinates in 
Ac: = S \A. Also let P (x .B ,yr (etc.) denote the restriction of P(x .B ,y) to rows 
and columns corresponding with states in A; let P(x.B,y)A (etc.) denote restric-
tion of P(x.B,y) only to rows corresponding with states in A. 
As above we start off with: 

v},;;;; (1-/3)r 1(x.B,y) + {JP(x.B,y)v}. 

This time we derive: 
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vt ,;;;;; (l-P)r 1(x 11,Jt + PP(x 11(N),Jrvt + PP(x 11(N),yfcv}Ac 

+ P(l-P)P(xN,y)Av} + PP(~11(N),y)Av}. 

Subtracting PP(x 11(N),yf v}A from both sides, multiplying both sides with 
(IA-PP(xf1(N),yf)- 1, which exists because xf1(N)EX, and by talcing limits 
we obtain: 

vmax1A = 1;m1vbA ,;;;;; 1;}WP(IA-pP(xf1(N),yf)-IP(xf1(N),yfcvrc 

+ lim(l-P)(IA-PP(x 11(N),yf)- 1[r 1(x 11,y)'4 +PP(xN,y)Av} 
/Jtl 

+ PO - P)- 1 P (~ 11(N),y)Av b ]. 

Observe that each term within the square brackets is bounded uniformly in p. 
Hence the condition in (c) gives: 

vmax1A o;;;;; lim P(IA-PP(xf1(N),yf)-I P(xf1(N),yfcvrc 
/Jtl 

= lim11· (IA-PP(x 11(N),yf)- 1 P(xf1(N),yfcv IAC 
tt 

Now we will use the following relation, which holds for any square matrix P 
such that (I -P)- 1 exists: 

(I - PP)- I = (I - P)- 1 - (1- P)(I - PP)- I P(I - P)- I. 

This can easily be verified by (left-) multiplying both sides with (I - PP). 
Applying this for P = P (xf1(N),yf, using that 
P(xf1(N),yf (IA -P (xf1(N),yf)- 1 P(xf1(N),yfc is bounded and that 
lim (l-P)(IA-PP(x 11(N),yf)- 1 = 0, yields: 
/Jtl 

vmax1A o;;;;; lim (IA - P(xf1(N),yf)-I P(xf1(N),yfcv IAC_ 
/Jtl 

Since v 1AC,;;;;;vmax1Ac, the inequality sign in the above inequality can be 
replaced by an equality sign. Next observe that entry (s,t) of matrix 
(IA -P(xf1(N),yf)- 1 P(xf1(N),y)Ac denotes the total probability of ever enter-
ing Ac at state t when starting in s EA. Hence the probability of entering s•• 
when starting in A is clos5 to 1 for P sufficiently near 1. 
Thus we have that y1(s,x ,y);;;.. vmax _£ for each s EA, for p close to I. 

2.4.9 COROLLARY 
If for a zero-sum stochastic game we have that S = srmn = smax, then both 
players have stationary limiting average £-optimal strategies. 

This result can also be found in Bewley & Kohlberg [1978] or Vrieze [1987-a]. 

2.4.10 REMARK 
Observe that each entry of(IA-pP(x11 ,y)A)- 1 can be written as f cn(I-PYIN 

n =I 
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with I EZ and Cn Eihl. Then the condition in theorem 2.4.8 (c) is fulfilled if and 
only if I> - N for each entry. This holds for instance if,, all states A are transient 
with respect to (x 1 ,y), since in this case lim (IA - f3P(/3 ,~ )- 1 exists. 

_p /Jtl 
If P(x ,y)ic=l=Ofor each sEA, then the condition of theorem 2.4.8 (c) automati-
cally holds because l!Pn(x/J,y)A II :,;;;;(l -c(l -/3)11Nt for some constant c Eihl. 

One might think by now, that maybe all states in smax are always £-easy for 
player I. The following example however illustrates that in smax there can be 
states that are neither easy nor £-easy for player I. 

2.4.11 EXAMPLE 

State I State 2 

State 3 State 4 

In this example v=(l,1,1,0). It is not hard to verify that for any stationary 
strategy x player 2 has a best reply y with y1(1,j,Y)=y1(2,x,y)=0. To see that 
v = (1, l .J.,_Q}_ examine the station~ stratey x given by the mixed action 
((1- VI -/3)/ /3,(-1 + /3+ ~)/ /3) for states I and 2, and find that: 

I = limy}(s,.x/J,y),;:;; lim v}(s) = v1(s).;;;;I 
pt! /Jtl 

for s = 1,2 and any pure stationary /3-discounted best reply y. We do not claim 
that x/J is /3-discounted optimal, we just use it to provide a lower bound for 
vP. 

The next example shows that there may be states which are neither £-easy for 
player I nor for player 2 and that for each player Smin U smax may be the set 
of all his £-easy initial states. 
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2.4.12 ExAMPLE 

State 2 

State 1 State 3 

Payoffs are again those to player 1 to be paid by player 2. 
The unique stationary /3-discounted optimal strategies for this stochastic game 
are (for starting state 1) given by: 

xP = yP = (1/(4--,2/3), 1/(4-2/3), (1-/3)/(2-/3)). 

For all /3E[0, 1) we have v} = (0, 1, -1), hence also v 1 = (0, 1, -1). 
So smax= {2} and smin= {3}. 
State 1 is neither t:-easy for player 1 nor for player 2, since each of them faces 
a 'kind of big match' for starting state 1 (cf. example 1.7.4). 

2.4.13 REMARK 
For a zero-sum stochastic game a strong initial state is not-necessarily an t:-easy 
initial state. 

This remark is illustrated by the examples 1.7.4 and 2.3.8. In these examples 
state 1 is a strong initial state but state 1 is not t:-easy for player 1. 
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Chapter 3 

Existence of limiting average t:-equilibria 

3.1 INTRODUCTION 

Since Mertens & Neyman [1981) showed that the limiting average value exists 
for any zero-sum stochastic game, the major remaining problem in stochastic 
game theory is that of existence of limiting average £-equilibria for the 
general-sum case. 

By putting extra conditions on the payoffs and/ or transition structure of the 
stochastic game, several authors have shown that limiting average (r-)equilibria 
exist for subclasses of stochastic games ( cf. chapter 4). In this chapter we 
present sufficient conditions for the existence of (almost stationary) limiting 
average £-equilibria. However, our conditions are of a more general nature. We 
do not put conditions on the payoff/transition structure from the start, but our 
conditions are formulated in terms of asymptotic properties of sequences of 
stationary ,8-discounted equilibria. Remember that stationary ,8-discounted 
equilibria exist for any general-s~ stochastic game. In chapter 4 we show that 
our conditions are automatically' fulfilled for several of the subclasses that have 
been examined in literature. It is not clear whether our conditions hold for 
any general-sum stochastic game. Nevertheless our approach shows that in 
general the set of strong initial states is larger than the union of ergodic sets 
for which '/\x 1 ,y 1) ;;a,, Vkh fork= 1,2' (cf. lemma 2.3.4). 

3.2 FINDING MORE STRONG INITIAL STATES 

3.2.1 REMARK 
In this section let { (x.B ,y.B) : .B E[O, 1)} be a sequence of stationary ,8-discounted 
equilibria with lim(x.B,yP) = (x 1,y 1) and which furthermore suits definition 2.2.1 . 

.Btl 

Observe that all results in section 2.3 were derived for such a sequence, so we 
can use those results here. We introduce some more notations. 

3.2.2 DEFINITION 
For our sequence {(x~,y.B): ,8E[0, l)} we define: 

I:= {h E{l,2, ... ,H}: y1\x1,y 1) ;;a,, V 1h and y2h(x 1 ,y 1) ;;a,, V2h}, 

10 := {h E{l,2, ... ,H}: y1\x 1 ,y 1) = V 1h and y2h(x 1 ,y 1) = V2h}, 

11:= {hE{l,2, ... ,H}:yl\xl,yl)< vlh}, 
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12 := {hE{l,2, ... ,H}:y1\x 1,y 1):;;;,, V 1h and y2\x 1,y 1)< V2h}, 

E: = {s ES: for initial states limiting average £-equilibra exist, for all £>0}. 

Observe that l=/=-0 by lemma 2.3.6 and I O c I CE by lemma 2.3.4, hence 
E=/=- 0 ( cf. theorem 2.3.5). Furthermore notice that I, I I and I 2 have empty 
intersections and S = TU S 1 U S 1' U S 1'. Recall that T is the set of states that 
are transient with respect to (x 1 ,y 1) and that SA = U sh for any 

hEA 
A C{I,2, ... ,H}. The following example shows that T, 1 1 and / 2 may all be 
empty, whereas I O does not need to be equal to I. 

3.2.3 EXAMPLE 

State I State 2 State 3 

For this example the unique stationary /3-discounted equilibria are given by 
(the mixed actions in state I): (xP,yP)= (((2-2/3)/(3-2/3), 1/(3-2/3)), (½,½)) 
and the corresponding /3-discounted rewards are given by: 

y1(I,xP,yP) = ½= v}(l), r!(I,xP,yP)= ½= v!(I) for all /JE[O, 1). 

Hence (x 1 ,y 1) = ((0, I),(½,½)), 

y1(1,x 1 ,y 1) =½= vj = vl and y2(1,x 1 ,y 1)= 1 >·½=Vy = VT-
For (x 1,y 1) there are three ergodic classes: S 1 = {I}, S 2 = {2}, S 3 = {3}. It is 
easy to see that T= 0, /= {1,2,3}, 10 = {2,3}, 11 = 12 = 0. 
Since for all ergodic sets in this example the condition in lemma 2.3.4 holds, 
the proof of that lemma supplies a limiting average £-equilibrium for this sto-
chastic game. 

It is clear that for any stochastic game for which TUS1' US1' = 0 for some 
sequence of stationary /3-discounted equilibria (xP,yP), we can apply lemma 
2.3.4 to conclude the existence of a limiting average £-equilibrium (for each 
starting state). But how to proceed our search for a limiting average £-
equilibrium if Tu S 1' u S 1' =I= 0? We deal with these matters in this section. 
We start by examining one more example and then we return to the general 
problem of existence. The objective of the discussion on next example is to 
create intuitive understanding for the lemmas that follow. 
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3.2.4 ExAMPLE 

State 1 State 2 State 3 

We already gave a brief discussion of this stochastic game ( due to Sorin [ 1986]) 
in example 1.8.6. There however, we did not actually give a limiting average £-

equilibrium for this stochastic game. Recapitulate that the unique stationary 
,8-discounted equilibria were given by: 
(xl\yP) = ((2/(3-,8), (1-,8)/(3-,8)), (½,½)). 
The corresponding ,8-discounted rewards for starting state 1 were given by: 
y}(t,xP,yff)= ½= v}(I) and _yj(I,xP,yP)= ½= v}(l) for all ,8e[0, 1). 
Hence (x 1,y 1)=((1,0),(½,½)), V1 =v 1 =(½,0,1) and V2 =v 2 =(½,2,0). So 
there are three ergodic sets with respect to (x1,y 1): S 1 ={1}, S 2 ={2} and 
S3 ={3}. It is clear that / 0 ={2,3}, T=0, / 1=0 and Ji={l}, because 
y1(1,x1,y 1)= ½;;;.i:VI andy2(1,x1,y 1)= ½< Vy. 
Now observe that state 1 is transient with respect to (xP,yP) for all ,8e[0, 1), 
whereas state 1 is recurrent with respect to (x 1 ,y 1 ). This means that for all 
,8e[0, 1) the payoffs in states 2 and 3 may partly determine the ,8-discounted 
rewards for state 1 and hence the payoffs in states 2 and 3 may have their 
impact on lim y~(t,xP,yP) = M for k = 1 and 2. Next observe that with PV respect to (x ,y 1) any play will remain in state 1 and hence i'(I,x 1,y 1) is 
determined only by the payoffs in state 1; moreo¥er i'(I,x 1 i()= rk(I,x1,y 1). 

Let us examine Iimy~(I,xP,yP), which equals Iimy~(I,xP,y) sinceyP=y 1 for 
Ml Ml I 2 3 

all ,8e!0, 1). By lemma 2.2.5 3and lemma 2.2.6 there are µ 1, µ 1, µ 1 e[0, 1] such 

that µ1 = 1 and M = µ7 /\x 1,y 1) for k = 1,2. Furthermore those 
h=I h=l 

lemmas state that, if under (xP ,y 1) there are no transitions possible from state 
1 to sh, h e{l,2,3}, then µ1 =0. For this example we have that 
y21(x1,y 1)= ½ < ½= V21 • Recall that y21(x 1 ,y 1) and V21 are respectively the 
worth of y2(x1,y 1) and V2 for ergodic set S 1 ={1}. Hence it follows that 
µI< 1. This implies, as will be worked out below in a more general setting: 

3 3 
~p(tll,(0,1),y 1)>0 and ~p(tll,(0,1),y 1)V; ;;;.i: Vy= v21 • 
t=2 t=l 

Since y22(x 1 ,y 1) ;;;.i: V22 and y23 (x 1,y 1) ;;;a. V23 we conclude that if, a~ainst y 1, 
player 1 uses the pure stationary strategy (0, 1) in state 1 and x I in S and S 3 , 

then with probability 1 a transition to S 2 U S 3 will occur and hence 
y2(1,x*,y 1) ;;;a. Vy, where x• is strategy (0,1) for player 1 (cf. example 1.8.6). 



50 Chapter 3 

3 
By lemma 1.6.4 (b) we also have that }_; p(tjl,x*,y 1) VJ= VI, which follows 

t=I 
by taking limits for /3 to 1 in 

3 
I p I - I * I - - I * I /3 """ I * I I * I) Yp(I,x ,y )- yp(l,x ,y )- (1 /3)r (l,x ,y ) + ""'p(t I,x ,y )yp(t,x ,y . 

t=I 

Since y 12{x 1,y 1)~ V12 and y 13(x 1,y 1)~ V 13 we can also conclude that 
y 1(1,x*,y 1)~ Vl = V11 (cf. example 1.8.6). 
Hence we have that -/(s,x • ,y 1) for all s ES and for k = 1,2. So both 
players should be rather satisfied with these limiting average rewards. By 
lemma 1.5.5 and lemma 1.6.4 we even have that y 1(1,x*,y 1)= y 1(1,x1,y 1) so 
player 1 has no profitable deviations against y 1• Unfortunately y I is not a best 
reply for player 2 against x *. Hence (x * ,y 1) is not a limiting average equili-
brium. However it should be observed that if player I uses the stationary stra-
tegy x;i.: = (l->..)x 1 + >..x* (= (1->..,>..) for this example) then, for any AE(0, 1] 
we still have that for (x\y 1) a transition from state 1 to S 2 U S 3 will occur 
with probability I. Moreover -/(s,x\y 1) = -/(s,x*,y 1) for all sES, all AE(0,1] 
and k = 1,2. · 
Now we can construct an almost stationary limiting average £-equilibrium. 
Let £>0 and let y(n) and y<n> be as in the proof of theorem 2.3.4. Let x<n) be 
the random variable denoting the action frequencies of player 1 within 
Car(x 1) up to stage n; let x<n) be a realization of x(n)_ Then, pretending that 
absorption does not take place, for each a>0 and 8>0 there is N a/3 El\! such 
that: 

Probx',y' { 11x(n) - X 1 11 > a for any n N a/3} < 8 and 

Probx',y' {IIY(n) -y 1 II> a for any n~ Na13}< 8. 

Choose aE(0,£/4M) and 8>0 such that: 

(1-8)4(-/(x*,y 1)-aM)-(1- (l-8)4)M -/(x 1 ,y 1)- €/2 fork= 1,2. 

Choose AE(0,€/4M) such that: 

Pro bx• ,y 1 { absorption before stage N a/3} < 8. 

Choose N;i. EN, N;i. > N a/3 such that: 

Probx',y' { absorption before stage N ;i.} ;;.. 1 - 8. 

Define 7T; by: 
a) use x;i. unless: 

i) player 2 chooses j <:£_ Car(y 1) 
ii) l[y(n)_y 111>aforsomen~Na/3 
iii) at stage N ;i.' play is still in the initial state 

b) if (i), (ii) or (iii) occurs, then use some retaliation strategy 7T~12 . 
Define 11; analogously. 
Now it can be verified that (7r;,a;) is an almost stationary limiting average£-
equilibrium. 
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In order to generalize these ideas we introduce the following notations. 

3.2.5 DEFINITION 

51 

For a non-empty A CS, A=/=S, a pair of stationary strategies (x,y) and ,8E[0, 1) 
we define: 
a) P(x,yf is the restriction of P(x,y) to rows and columns corresponding with 

A. 
b) P (x,y r4c is the restriction of P (x,y) to rows corresponding with A and 

.columns corresponding with Ac = S \ A. 
c) For any aERz the restriction of a to coordinates corresponding with A (Ac) 

is denoted as «4 («4c). 
d) JA is the identity matrix of size IA IX IA l-
e) M1;= [m~JseA,teA:= (1-,B)(P - ,8P(x/J,y 1f)- 1 and 

M1: = fun M1, which limit we assume to exist without loss of generality. 
/Jtl 

f) N1;= [n~1seA,teA':= ,B(IA -,8P(xP,y 1f)- 1 P(xP,y 1)'4c and 
N1: = fun N1, which limit we may also assume to exist. 

/J'tl 

Using this definition the next lemma follows from elementary calculations. We 
therefore omit the proof. 

3.2.6 LEMMA 
Notations as above. Then: 
a) m~ ;;,Ofor all sEA,tEA and ,8E[0,l); 

n~ ;;,o for alls EA,t EA c and ,Be[O, 1). 
b) m~ + n~= I for all sEA and ,8E[0,l). 

teA teA' 
c) r}(xP,y 1)'4 =M1r2(xP,y 1)'4 +N1r}(xP,y 1)'4c forall,BE[O,I). 
d) vu= M1 r2(x1 ,y1r4 + N1 vuc_ 

p _ __j}_"'"' i /J. /J.(,*) (I•·* l.)fi h A Ac e) ns,- l-,8 s~A /~'i mss Xs l p ts ,l ,Ys oreac SE, IE . 

3.2.7 LEMMA 
Notations as above. 
Let A= sh' u sh' u ... u sh' and lets EA. Then there is P.s E!:,,.0 such that: 

a 
m1, r2(t,xLy!)= As µ,;· y2h" (x 1 ,y 1), where As= m1, E[O, I]. 

teA a=I teA 

PROOF: 
By definition 3.2.5 we have that M1(IA-,BP(xP,y 1f)=(I-,B)IA for all 
,8E[0,l). Hence M}=M1P(x1,y 1)'4, which implies that for each sEA the 
s -th row of M1 is a multiple As of a stationary distribution for P (x 1 ,y Ir. 
Remember that qh"A is the restriction of the unique stationary distribution qh" 
of P(x1,y1) on sh" to coordinates corresponding with states in A (cf. 
definition 2.2.1). So we have that for some P.sE!:,,.0 : 
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a '2. m;1r 2(t,xJ,yJ)= °2.As '2. µf qfA r 2(t,xJ,yJ) 
IEA IEA a=I 

a 
= As '2. µ;· '2. qf A r 2(t,xJ,yJ) 

a=I tEA 
a 

= As °2. µf y2"" (x 1 ,y 1) 
a=I 

and 
a a a 

°2. m;, = °2. As °2. µf qfA = As °2. µf °2. q':"A = As °2. µ;·=As E[O, l] 
IEA IEA a=I a=I IEA a=I 
by lemma 3.2.6 (a) and (b). 

3.2.8 LEMMA 
Notations as above. 
For s • EA and i • E Car( xf ) with '2. p (t Is•, i • ,y ;· ) > 0 define: 

IEA' 

'\ ( * • *)· _ 1: _ __f1_ /J. /J. ( · *) "'"' ( I * '* I.) l\s S ,I . - lllll l r., mss Xs I ,,::_, p t S ,I ,Ys . 
/Jtl -/> tEA' 

Suppose that there is at least one pair (s • ,;*) with this property. Then: 

"'"' i v2= "'"' '\ ( • ·*) "'"' [ p(tls',i',y;·)V; l d ,,::_, ns1 1 ,,::_, l\s s ,1 ,,::_, • • .• 1 an 
tEA' s",i" tEA' '2. p(t Is ,l ,Ys") 

I _ * ·* _ ,• eA' '2. nst- '2. As{s ,1 ) - 1-As 
IEA' s",;" 

PROOF: 

1 . /3 - _{3_ "'"' i /3. /3. • • I • . • I. By emma 3.2.6 (e). ns1 - l-{3 s~Ai"':'I mss Xs (1 )p(t S ,1 ,Ys ). 

m· 
H I -1: __ {3_ "'"' /3. P.(-*) ( I * ·* I.) ence ns, - lllU 1- r., mss Xs I p ts ,I ,Ys 

/Jtl f> s EAi =I 

="'"' '\ (. ·*) p(tjs*,i*,y;·) 
,,::_, l\s S ,I • • ·* I 

s",;" '2. p(t Is ,1 ,Ys") 
t 0 EA' 

for s EA and t EA C, which proves this lemma ( cf. lemma 3.2.6 (b) and lemma 
3.2.7). 

3.2.9 LEMMA 
a 

Let A = LJ sh" and 0 =/=A =/=S. Suppose V; = V; =: V~ for all s,t EA. 
a=I 

If V~ > y2h" (x 1 ,y 1)Jor a= 1,2, ... ,a, then there is s• EA and i* E Car(xf) 
such that: '2. p (tis•,;* ,y;·) > 0 and '2.p(tls • ,;* ,y;·) V; ;;;a, V~ = V;·. 

IEA' /ES 
Furthermore: °2.p(tls',;*,y;·)VJ= V;·. 

IES 
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PROOF: 
Takes EA. By lemma 3.2.6 (d): V; = m;1 r2(t,x},y}) + n1, V;. 

IEA /EA' 
Applying lemmas 3.2.7 and 3.2.8 we derive: 

for certain As E[0, 1], /J,s ED,.° and As{s *,i*)E[0, 1], and it holds that: 

As+ i. As(s*,;*)= 1. 
s ,i 

Since y2h" (x 1,y 1) < V; for all aE { 1,2, ... ,a }, we conclude that As< 1 and for at 
least one (s •,;*)with As(s * ,;*) > 0 we have: 

I • ·* I 2 • . * I p ( t S , l ,y s' ) Vi :::;;, 2 _ 2 
~p(tls ,1 ,y )>0 and """ ••. • 1 ,,__ Vs - V-1-

tEA' tEA' p(t Is ,1 ,Ys') 
t"EA' 

Since V~ = V;i for all t EA, it follows that p (tis•,;* ,y;·) V~;;,,, V;i. 
/ES 

By lemma 2.3.3 we also have ~p(tls*,;*,y;-)V} = V;·. 
/ES 

The following lemma can be proved analogously. 

3.2.10 LEMMA 
a 

Let A = U sh" and 0 =f=A =f=S. Suppose V; = VJ=: V} for all s,t EA. 
a=I 

If V} > y1h" (x 1,y 1) for a= 1,2, ... ,a, then there is s • EA and/ E Car(yf) 
such that: p(tls•,x;·,/)> 0 and~ p(tls*,x;-,/)V};;,,, V} = V1·. 

IEA' /ES 
Furthermore:~ p(tls*,x},/) V~= V;·. 

/ES 

Observe that in the above lemmas i* E Car(xf) \ Car(x1·) and 
/ E Car(yf ) \ Car(y 1· ), since p (t Is* ,x 1· ,y ;· ) = 0. 

IEA' 

3.2.11 THEOREM 
Let (x • ,y *) be a pair of stationary strategies with the following properties. 
a) For each h El I there is sh ESh and i E Car(y') with y;, = i such that: 

p(tls\x},i) > 0, 
I fl_S' 

p(tlsh,x},i)V~ = V;• and~ p(tls\x},i)V};;,,, V} = V 1h_ 
IES IES 
Also y; = y; for alls ES\ LJ {sh}. 

hE/1 

b) For each h El 2 there is sh ESh and ih E Car(x') with x;, = ih such that: 
p(tlsh,ih,y}) > 0, 

I fl.S' 
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p(tish,ih,y;, )V! = V;, and~ p(tjsh,ih,y;, )VT;;;,, V;, = V 2h. 
teS teS 
Also x; = x; for alls ES\ U {sh}. 

hel, 
c) Each s ES\ S 1 is transient with respect to (x • ,y *). 
Then P(x *,y *)vk;;;,, vk and y'(x * ,y *);;;,, vk fork= 1,2. 

PROOF: 

Chapter 3 

By lemma 2.3.3 and by (a) and (b) it follows that P(x*,y*)Vk;;;,, vk, which 
also implies that Q(x*,y*)Vk;;;,, Vk. For sES1 we have by definition that 
y'(s,x • ,y *) = y'(s,x 1 ,y 1);;;,, vk. 
Since all states in S \ S1 are transient with respect to (x • ,y *) it holds that (cf. 
lemma 1.5.2 (e) and lemma 1.5.5): 

·l(x*,y*)= Q(x*,y*)r\x*,/) = Q(x*,y*)Q(x*,y*)rk(x*,y*)= 

3.2.12 LEMMA 
For (x • ,y *) as in theorem 3.2.11 and AE(O, I) define: 
x~: = (1-A)x; + Ax; and y~: = (1-A)y; + Ay; for alls ES. 
Then the following statements hold: 
a) Each s ES 1 is recurrent with respect to (x\/') and 

each s ES\ S 1 is transient with respect to (x\/'). 
b) P(x\y>..)Vk;;;;,, Vk and y'(x\y>..);;;;,, Vk fork= 1,2. 

PROOF: 
For all SES\ U {sh} we have (x~,y~) = (x;,y;) and hence it follows that 

hel,UI, 
p(tls,x~,y~)= p(tls,x;,y;) for thoses and for all tES. 
Fors ESh,h El 1 U/2, we have that p(tls,x~,y~)= Ap(tls,x;,y;) for all t ft.Sh. 
Since A>O the ergodic sets for (x\y;,..) are precisely the same as those for 
(x*,y*). By lemma 2.3.3 and theorem 3.2.11 we have that P(x\y;,..)Vk;;;,, Vk 
fork= 1,2. Using arguments as in the proof of theorem 3.2.11 we derive that 
yk(x\yl..);;;;,, Vk fork= 1,2. 

Now we can formulate the main theorem of this section. 

3.2.13 THEOREM 
Let (x\yl..) be as in lemma 3.2.12. 
If p(tls,x~'{})=O for alls ET and t ES\ (S 10 UT), 
then (x;,.. ,y ) can be supplemented with suitable retaliation threats to achieve an 
almost stationary £-equilibrium, for AE(O, I) sufficiently small. 

PROOF: 
Let £>0. For each 1JE(0,l) there is N'IEl\l such that, with probability at least 
1-1/, the expected number of transitions among elements of the set 
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{ Sh : h El 1 U Ii} UT will be at most N 11 with respect to (x\yi>.) for any initial 
states ES\ S 1• Furthermore N 11 does not depend on AE(0, 1). 
Now choose 11,8E(0,l) such that for all sES\S1 : 

(1-11)(1-8)4 (-/(s,x\yl.)-t:/4) - (l-(l-11)(1-8)4)M ;;a, -/(s,x\yl.)-t:/2. 

Let Jin) (X}n)) be random variables denoting the action frequencies for player 2 
(1) after n stages in states, and lety}n)(x}n)) denote realizations of these. 
Let KEN be a constant such that for a>0: 
if for alls and for all n sufficiently large [y}n)_y;l~a and lxinl-x;l~a, then 
for each ergodic set Sh the limiting average reward to player k is between 
-/\x 1,y 1)-aK and-/\x 1,y 1)+aK. 
Next choose aE(0,t:!4KN11 ) and NasEN such that 
Probx',/ {IIJin) -y;II >a for any n;;e,Nas and any sES}<8 and 
Probx',/ {IIX}n) - x; II> a for any n;;e,Na8 and any sES}<8. 
Observe that N as is independent of the initial state. 
Choose A E(0,d 4K) and N;,. ;;a, N a8 such that: 
Probx',/ { transition from sh to S \ sh within N as stages, with h El I U l 2 } <8, 
Probx',/ ftransition from sh to S\Sh within N;,. stages, with hEl 1 Ul2 } 

;;a, (l -8)1l N,. 
Define strategy 'IT; for player 1 by: 
a) use strategy xi'< unless (i), (ii) or (iii) below occurs: 

i) for some s ES and some n ;;e,N aS: l[y}n) - y; II >a, where y}n) is a reali-
zation of Jin). 

ii) player 2 chooses an action outside Carz(l). 
iii) after N 11 transitions among elements of {Sh :hEl1 Ul2}UT, play is 

still ins\ s1 . 

iv) play remains in a set Sh, h El 1 U l 2 for more than N;,. stages. 
b) if (i), (ii), (iii) or (iv) occurs, then use some retaliation strategy 'IT;14 , from 

that moment on. 
For player 2 the strategy (J; is defined analogously. 

If the players use ('IT;,(J;) then with probability at most (l-(l-11)(1-8)4) 
some player may start using his retaliation strategy and with probability at 
least (l -11)(1-8)4 the players remain using (x\y;,.) forever. 
Hence, by choice of A,1J,a and 8, we have -/('IT;,(J;) ;;a, y<(x\yl.)-1:/2 for 
k=l,2. 
Now suppose player 1 uses 'IT; and player 2 uses some arbitrary (1. 

If player 1 detects a deviation at stage n, where player 2's action was j in 
states, then with probability at least (1-A) player I was using x; at that stage 
and with probability at most A player 1 was using some ih, where s =sh. 
Hence by lemma 2.3,3, player l's retaliation in that case gives that the limiting 
average reward wi1l be at most (1-A)(V; +t:14) +AM~ V; + £./2 

yk(s,x\yi>.) + E/2. 
If player I does not detect any deviation, then at each transition among ele-

ments of {Sh:hEl 1 Ul2 }UT player 2 can gain at most aK~t:!2N11 • Since 
there are at most N 11 transitions without player 1 starting retaliation, we find 
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that the limiting average reward to player 2 will be at most -/(x'\y,\) + f./2. 
Here it should be noticed that we use the condition of the theorem to con-

clude that player 2 cannot deviate in T ( and neither can player I). This is due 
to the following argument. 

If player 2 chooses an action outside Car(y,\) in T, then player I will 
retaliate directly according to the definition of ,,, ; . Retaliation is possible 
because by lemma 2.3.3 we have P (x 1 ,y) V2 ..;; V2 for all stationary stra-
tegies y. By lemma 1.6.2 it is sufficient to consider deviations by stationary 
strategies. 
Now suppose that the play is in T and player 2 uses a stationary strategy 
y with Car(ys) C Car(y~) for alls ET and Ys = y; for s ES10 • 
We denote restrictions of r 2(, ), y2(, ), P(, ), Q(, ) to coordinates, 
respecti~ely ro~s and columns, corresponding with TUS10 by r\, ), 
f ( , ), P( , ), Q( , ). If the condition of this theorem holds, then any play 
which is in Tat some stage, will remain in TUS10 forever, in case the 
players use (x 1 ,y) from that stage on. If some state t ET is recurrent with 
respect to (x 1 ,y ), then player I using ,,, ; would start, with probability I, 
to retaliate player 2. By lemma 2.3.3 this would give player 2 a limiting 
average reward of at most Vf + f./2. On the other hand, if all states in T 
are transient with respect to (x 1 ,y) then we have by lemma 2.3.3: 

- - -Y (xi ,y)= Q(x1 ,y)r (xi ,y} = Q(xl ,y) Q(xl ,y)r (xi ,y) 
- - 2 = Q(x1,y) Q(x1,y 1)r (x1,y 1) 
- -2 = Q(x 1,y) V 
-2 ..;;v. 

Since we know that, once the play is in S1 neither player 1 nor player 2 
can gain more that f. by deviating from (,,,;,cr;), the above implies that 
against 'TT; player I has no profitable deviations while the play is in T. 

3.2.14 REMARK 
If tor any converging sequence of stationary /3-discounted equilibria 
{(x ,Y'8):/3E[0, I)} one can choose sh,ih,jh, for h El1 U/2, such that the condi-
tions of theorem 3.2.13 hold, then (x'\y,\) can be supplemented with retaliation 
threats to achieve an almost stationary limiting average f.-equilibrium for ;\ 
sufficiently small. 

Let us now consider an example to clarify the condition in theorem 3.2.13. 
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3.2.15 EXAMPLE 

State 1 State 2 State 3 

z 
State 4 State 5 

Observe that we have simply added states 4 and 5 to example 3.2.3. 
A ,8-discounted equilibrium (x1\yP) is given by: 
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xP: = (((2-2/3)/ (3-2,8), 1/(3-2,8)), 1, 1, 1, 1) and yP: = ((½, ½), 1, l,(½, ½), 1). 
Then rb(xP,yP)= (½,0,1,½,½) and y}(xP,yP)= (½,1,0,½,½) for the respec-
tive initial states. Hence V1 =(½,0,l,½,½) and V2=(½,l,0,½,½). Also: 
y1(x 1,y 1)= (½,0,1,½,½) and r2(x1,y 1)= (1,1,0,516,½). Hence 1 1 = 12= 0, 
s1 = {1,2,3,5}, s10 = {2,3,5}, T= { 4}. 
Notice that p (114,xa,y})= ½=f=O, so the condition of theorem 3.2.13 is not 
fulfilled. Although for initial states in {l,2,3,5} the strategies (x 1,y 1) can be 
supplemented to achieve an almost stationary limiting average £-equilibrium 
(cf. example 3.2.3), this is impossible for initial state 4, since player 2 could 
gain 1/6 by usingy*= ((½,½),l,l,(1,0),l) against x 1, for initial state 4. Player 1 
cannot check in state 4 whether player 2 is usingy • or y 1• 
If however we had started with yf = (0, 1), then the condition of theorem 
3.2.13 would have been fulfilled. If we had started with yf = (1,0), then the 
condition of theorem 3.2.13 would not have been fulfilled, but since player 2 
has no profitable deviations within Car(yf) we could also in this case establish 
an £-equilibrium by supplementing (x 1 ,y 1) with retaliation threats. 

So if the condition of theorem 3.2.13 is not fulfilled, then this does not neces-
sarily mean that it is impossible to achieve a limiting average £-equilibrium 
from (x 1 ,y 1 ). All one really needs is that neither player 1 nor player 2 has 
profitable deviations from x1, respectively y;, in any s ET, that cannot be 
detected by the opponent (with probability near 1). Hence we can make the 
following remarkable observation: · 
If after each stage both players were told what mixed actions have been used 
at that stage, then the condition of theorem 3.2.11 would be sufficient to 
achieve an almost stationary limiting average £-equilibrium. Any deviation 
could be detected immediately and hence retaliation threats could be used for 
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all states. Notice that for zero-sum stochastic games the limiting average value 
and limiting average £-optimal strategies are independent of this information. 

In the above construction we used just one sequence {(x.B,y.B): ,8E[0, I)} of sta-
tionary ,8-discounted equilibria. One could also use an iteration argument: 
start with an arbitrary sequence {(x.B,y.B):,8E[0, I)} of stationary ,8-discounted 
equilibria; find all strong initial states that can be found by the above tech-
niques; replace those initial states s by absorbing states s, i.e. each player has 
just one action ins and p(sls, I, l)= I, with rk(s, 1, I)= l(s,x\/'); in this new 
stochastic game again take a sequence of stationary ,8-discounted equilibria 
and try to find more strong initial states; repeat this procedure. In certain 
cases it may lead to an e-equilibrium for all initial states. If however the sta-
tionary ,8-discounted equilibria are chosen arbitrary at each iterative step, then 
one does not necessarily find new strong initial states. We give two examples 
to illustrate these ideas. 

Suppose in example 3.2.15 we had indeed started with (x.B,y.B)= 
((((2-2,8)/(3-2,8), 1/(3-2,8)), I, I, 1, 1), ((½, ½), I, 1,(½, ½), I)). Then in the first 
step we would have found the strong initial states 1,2,3 and 5. Replacing these 
by absorbing states gives the following stochastic game. 

z z 
State 1 State 2 State 3 

½,½ 

State 4 State 5 
The unique stationary ,8-discounted equilibria for this stochastic game are 
given by y9 = (1,0). So for this new stochastic game S 10 = {1,2,3,5} and 
T = { 4} and the condition of theorem 3.2.13 is fulfilled; hence we can achieve 
a limiting average £-equilibrium for this stochastic game. This £-equilibrium 
induces an e-equilibrium for the original stochastic game. 
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3.2.16 Ex.AMPLE 

zz 
State 1 State 2 State 3 

5 

State 4 State 5 
It can be verified that for this stochastic game stationary ,8-discounted equili-
bria are for instance: 

(xP,yP) = ((((2- /3)/(3-2,8),(1- ,8)/(3-2,8)), 1, 1, 1, 1 ), ((½, ½), 1, 1,( ½, ½), 1)). 

We find: 

Yb(xf:l,yP) = (½,0, l,½,½) and y~(xP,yP)= (½,2,0,½,½) for all ,BE[0, 1). 

So V 1 = (½,0,1,½,½) and V 2 = (½,2,0,½,½). 
Furthermore 
y1(x 1 ,y 1)= (½,0, l,½,½)= V 1 and y2(x 1 ,y 1)= (½,2,0,7/12,½) V2 • 

Hence SI'= SI= {2,3,5}, SI'= {1}, T= {4} and / 1 = 0. Clearly the condi-
tion of theorem 3.2.13 is not fulfilled. The strong initial states we find are 
{2,3,5}. By the techniques in the proof of theorem 3.2.13 it is not possible to 
achieve an €-equilibrium for initial state J. 
Iteration does not work either; replacing the strong initial states {2,3,5} by 
absorbing states does not change the stochastic game situation, so in the 
second step we could again choose (xP,yP) the same as above. 
Of course, by choosing y9 = (1, 0) or (0, 1) one could establish an €-equilibrium. 





61 

Chapter 4 

Special classes of stochastic games 

4.1 INTRODUCTION 

In this chapter we discuss the impact of the results from the previous chapters 
on several special classes of stochastic games. Special classes of stochastic 
games are stochastic games with an additional property on the payoff and/ or 
the transition structure. 
The special classes we consider are: unichain stochastic games (section 4.2), 
stochastic games with state independent transitions (section 4.3) and repeated 
games with absorbing states (section 4.4). 

4.2 UNICHAIN STOCHASTIC GAMES 

4.2.1 DEFINITION 
A unichain stochastic game is a stochastic game with the property that, for any 
pair of stationary strategies (x,y ), there is just one irreducible set of states. 

Unichain stochastic games were considered by Gillette [1957] and by Hoffman 
& Karp [1966] who proved that in the zero-sum case both players have station-
ary limiting average optimal strategies. Later Rogers [1969], Sobel [1971] and 
Federgruen [1978] independently showed that in the general-sum case there 
exist stationary limiting average equilibria. Those proofs are all based· on con-
tinuity properties of yk(x,y) on XX Y and they all use some fixed point 
theorem. Using results of chapter 2 we give new proofs for these facts. 

4.2.2 THEOREM 
Let {(x.B,y.B): ,BE[O, l)} be a sequence of stationary ,8-discounted equilibria in a 
general-sum unichain stochastic game and let (x 1,y 1)= lim(x.B,y.B). 

.Bil 
Then (x 1 ,y 1) is a stationary limiting average equilibrium. 

PROOF: 
Since we are dealing with a unichain stochastic game, there is just one ergodic 
set for any pair of stationary strategies (x,y ). Hence each row of Q (x,y) is 
equal to the unique stationary distribution for the related Markov chain. In 
view of lemma 1.5.5 (b) we conclude that l(s,x,y)= l(t,x,y) for all s,tES 
and k = 1,2. Now suppose player 2 is using y E Y against x 1• By lemma 2.2.6 
we have that y(s,x1,y)= limy1(s,x.B,y),;;;; lim Y1(s,x.B,y.B)= y(s,x1,y 1), for 

.Bil .Bil 
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all s ES. From lemma 1.6.2 it now follows that y I is a limiting average best 
reply for player 2 against x 1• Similarly it can be shown that x I is a limiting 
average best reply for player 1 against y 1• 

The above theorem implies that for zero-sum unichain stochastic games the 
limiting avetage value exists and equals the limit of /3-discounted values; more-
over it follows that the limiting average value for initial states s and t is the 
same for all s,t ES. Furthermore both players have stationary limiting average 
optimal strategies. This is formulated in the next theorem. 

4.2.3 THEOREM 
For a zero-sum unichain stochastic game the limiting average value v I exists and 
v 1 = lim v }. Furthermore v; = v} for all s, t ES. 

Pil 
Let {xP:f3E[0, l)} ({yP:f3E[0, l)}) be a sequence of stationary /3-discounted 
optimal strategies for player 1 (2) and let x 1 = IimxP (y 1 = limyP). 

Pil Pil 
Then x 1 (y 1) is a stationary limiting average optimal strategy for player 1 (2). 

PROOF: 
It is easy to verify that for a zero-sum stochastic game a pair of stationary 
strategies (x,y) is an equilibrium if and only if x is optimal for player I and y 
is optimal for player 2. Since by theorem 4.2.3 the pair of strategies (x 1 ,y 1) is 
a fu:niting average equilibrium and since y1 (x 1 ,y 1) = lim y }J(xP ,yP) = lim vb is 

Pil Pil 
independent of the initial state, the proof is complete. 

4.3 STOCHASTIC GAMES WITH STATE INDEPENDENT TRANSITIONS 

4.3.1 DEFINITION 
A stochastic game with state independent transitions (SIT) is a stochastic game 
for which there are m,n EN such that fns =m and ns =n for all s ES and for 
which furthermore p(s,i,j) = p(t,i,j)for all s,tES and all i,j. 
A stochastic game with state independent transitions and separable rewards 
(SER-SIT) is a SIT stochastic game with the additional property that there are 
ck:s-iR and ak:{1,2, ... ,m}X{l,2, ... ,n}-IR, for k=l,2, such that 
r\s,i,J)= ck(s) + ak(i,j) for all s,i,j and k = 1,2. 

An early appearance of the SER-SIT conditions can be found in Sobel [1981]. 
As a class of games, SER-SIT stochastic games were introduced by 
Parthasarathy et al. [1984]. They showed, among other results, that for this 
class of stochastic games: in the zero-sum case the limiting average value is 
independent of the initial state and both players have state independent sta-
tionary limiting average optimal strategies; in the general-sum case there exists 
a state independent stationary limiting average equilibrium. In this section we 
derive some results for SIT stochastic games, without using the SER-property. 
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4.3.2 'THEOREM 
For any zero-sum SIT stochastic game the limiting average value v I is indepen-
dent of the initial state: v1 = v} for all s,teS. 
Furthermore both players have stationary limiting average optimal strategies. 

PROOF: 
Let {x,8 :.Be[O,l)} be a sequence of stationary ,8-discounted optimal strategies 
for player I and let x 1 = limxP. 

,8tl 
Let y • be a stationary limiting average best reply for player 2 against x 1• 

Lets• be the set of states s with y 1(s,x 1 ,y *)= v1 = max v}. 
/ES 

By the proof of theorem 2.4.2 we have that S • =I= 0. 
Now observe thatp(tls,x1,ys)=0 for all ses•,teS\S* and any yeY. This 
can be seen by the following argument. Suppose there were s eS*, t eS \ s• 
andyeY such thatp(tls,x1,ys)>0; let g be the Markov strategy (definition 
1.3.2) defined by using y at stage 1 and y • at all stages n ;;;;.2; then it follows 
that y1(s,x 1,g) < v1, which contradicts the optimality of x I ins. 
Hence, if player 1 uses x I then the play will never leave the set of states S •, 
once it has been reached. 
Takes• es• and define x • by x;: = x1 for s es• and x;: = x1· for s eS \ s•. 
Now, for any initial state, if player 1 uses x •, then after 1 stage the play will 
be in S • with probability 1 because we have state independent transitions. 
Since for s ES• the strategies x I and x • are equal, the play will remain in S • 
forever. Hence we have that for any initial state s and any y E Y: 

y1(s,x*,y);;;;,: y1(s*,x 1 ,y 0 )= v1· = maxv}. 
IES 

This implies that v1 =v} for all s,t eS and x • is limiting average optimal. A 
limiting average optimal strategy for player 2 can be derived analogously. 

4.3.3 THEOREM 
For every general-sum SIT stochastic game there exists an almost stationary lim-
iting average £-equilibrium. 

PROOF: 
Let {(xP,yP): .8e[O, l)} be a sequence of stationary .8-discounted equilibria, 
converging to (x 1 ,y 1 ). 

By lermpa 2.3.6 there exists h* e{l,2, ... ,H1. (defined as in.definition 2.2.1) such 
that y1h (x 1 ,y 1);;;,, max V 1h;;;,, V 1h and 'Yi/, (x 1,y 1);;;;,: V2h . 

• h • 
Take some s•esh. Thenp(tls,x1·,y1·)=0 for seS,~eS\Sh, by the state 
independ~nt transitions and by the irre~ucibility of sh . Define x • by x;: =x1 
for Sf?-Sh and x;:,:,;x1· for seS.\Sh. Similarly define{,• by y;:=y1 for 
seSh andy;:=y1· for seS\Sh. Then Y'(s,x*,y*);;;;. Vk for k=l as well 
as for k .= 2 and for any initial state s, since for any initial state the play will 
be in sh after at most one stage. 
Now using the fact that the limiting average value is independent of the initial 
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state and using arguments similar to those in the proof of lemma 2.3.4, one 
can obtain an almost stationary limiting average t:-equilibrium (t:>0). 

4.4 REPEATED GAMES WITH ABSORBING STATES 

4.4. l DEFINITION 
In a stochastic game a states ES is called an absorbing state if p (sls,i,j)= 1 for 
all iE{l,2, ... ,ms} and all JE{l,2, ... ,ns}- A repeated game with absorbing states 
is a stochastic game for which all states except one are absorbing states. 

In this monograph we have already seen several examples of repeated games 
with absorbing states: 1.6.5, 1.7.4, 1.7.6, 1.8.6, 2.3.8, 1.4.5, 2.4.12, 3.2.3, 3.2.4. 
The class of zero-sum repeated games with absorbing states was first examined 
by Kohlberg [1974), who extended the work of Blackwell & Ferguson [1968) on 
the big match (cf. example 1.7.4). 

Kohlberg [1974] showed that the limiting average value exists for any zero-
sum repeated game. with absorbing states. Using the techniques of Kohlberg 
[1974] and inspired by Sorin [1986), example 1.8.6, Vrieze & Thuijsman [1989) 
showed the existence of t:-equilibria for general-sum repeated games with 
absorbing states. In their proof Vrieze & Thuijsman construct £-equilibrium 
strategies for which it may occur that one of the players has to adjust the 
mixed action he uses in the non-absorbing state at all stages. Since for a 
repeated game with absorbing states the condition of theorem 3.2.13 is neces-
sarily fulfilled, the next theorem follows immediately. 

4.4.2 THEOREM 
For arry general-sum repeated game with absorbing states there exists an almost 
stationary limiting average £-equilibrium for each t:>0. 

Observe that this theorem provides £-equilibrium strategies which are different 
from those in Vrieze & Thuijsman [1989). Observe also that for several other 
classes of stochastic games, e.g. unichain stochastic games, single-loop stochas-
tic games (cf. Filar [1981-a]), the condition of theorem 3.2.13 is automatically 
fulfilled, which immediately provides the existence of almost stationary limiting 
average equilibria for such games. However, as for the unichain stochastic 
games, several results can be derived more explicitly for repeated games with 
absorbing states. 

In this section we make the assumption that all absorbing states are of size 
I X I. With respect to the existence of limiting average £-equilibria this assump-
tion can be made without loss of generality, since for each of the absorbing 
states the existence of a stationary limiting average equilibrium is obvious ( cf. 
theorem 1.8.1). Hence each of the absorbing states can be contracted to a 
I X I absorbing state with payoffs according to some equilibrium. 
We introduce the following notation. 
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4.4.3 NOTATION 
A repeated game with absorbing states can be given by one m X n-matrix of which 
entry (i,j) is 

The interpretation of the above notation is the following. If in the initial state, 
the non-absorbing one, player I chooses action i and player 2 chooses action j, 
then player 1 (2) receives au (bu) and with probability Pu a transition takes 
place to an absorbing state where the players get aij, bij from that stage on; 
with probability I -piJ the play remains in the initial state, at least until next 
stage. In this framework a stationary strategy for player I is simply some 
x EAm; for player 2 stationary strategies are elements y EAn. 

4.4.4 LEMMA 
For a pair of stationary strategies (x,y) we have: 

(I - /3) xiaiJYJ + /3 xipiJaijyJ 
a) y}(x,y)= i J i J for /3E[0, I). 

1 - /3 + /3 XiPiJYJ 
i j * 

(1- /3) xiaiJYJ + /3 xipiJaiJYJ . 
b) YI (x,y)= lim i J i J 

Pt! I - /3 + /3 XiPiJYJ 
i j 

c) Similar statements hold for player 2's rewards. 

PROOF: 
It is clear that (b) follows from (a) by lemma 1.5.5 (d) and that (c) needs no 
further comment. 
The formula in (a) follows directly from (cf. lemma 1.5.3 (c)): 

y}(x,y)= (1-/3)~ ~xiaiJYJ + /3~ ~xipiJaijyJ + /3~ ~xl1-pu)y1-y}(x,y). 
i j i j i j 

4.4.5 DEFINITION 
A pair of stationary strategies (x,y) is called absorbing if~~ XiPiJYJ > 0. 

i j 

The next two lemmas can be derived directly from lemma 4.4.4. 
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4.4.6 LEMMA 
a) If (x,y) ED.m X t::,.n is absorbing, then: 

xipiJaijyJ xipiJbijyJ 
y1(x,y)= i i and l(x,y)= _i ~1----

XiPiJYJ XiPiJYJ 
i j i j 

b) If (x,y)ED.m XD.n is non-absorbing, then: 

y1 (x,y) = xiaiJYJ and l(x,y) = xibiJYJ-
i j i j 

4.4.7 LEMMA 
Let {(xP,yP)ED.m XD.n: ftE[O, l)} be a converging sequence with 
(x 1 ,y 1)= lim (xP,yP) and with Car(xP) and Car(yP) independent of ftE[0,1). 

flt) 
a) If (x 1,y 1) is absorbing, then (xP,yP) is absorbing for ftE[0,1) and 

/(x 1 ,y 1)= lim ri(xP,y"P)for k = 1,2. 
/Jjl 

b) If (xP ,yP) is non-absorbing for ft E[O, 1 ), then (x 1 ,y 1) is non-absorbing and 
/(x 1,y 1 )= lim r%(xP,yP) fork= 1,2. 

/Jjl 

4.4.8 REMARK 
For the remainder of this section let {(xP,yP)ED.m XD.n: ftE[O, 1)} be a converg-
ing sequence of stationary ft-discounted equilibria with (x 1 ,y 1) = lim (xP ,yP) and 

Pil 
with Car(xP) and Car(vP) independent of ftE[O, 1). 
Let Vk = 1im yk(xP,y.B) fork= 1,2. 

/Jjl 

By lemma 1.6.4 we have the following fact. 

4.4.9 LEMMA 
a) IfxED.m and Car(x) C Car(xP), ftE[O, 1), 

then r1(x,yP)= r1(x1,yp)= r1(xP,yP). 
b) If y ED.n and Car(y) C Car(yP), ftE[O, 1), 

then y~(xfl,y)= y~(xP,y 1)= y~(xP,yP). 

4.4.10 LEMMA 
a) If x ED.m and either (x,y 1) is absorbing or (x,yP) is non-absorbing, 

then y1(x,y 1),;;;; V 1. 
b) If y ED.n and either (x 1 ,y) is absorbing or (xP ,y) is non-absorbing, 

then l(x 1,y),;;;; V 2• 

PROOF: 
Using lemma 4.4.7 and using that the pairs of strategies (xP,yP) are ft-
discounted equilibria, we have (a) by: 

y 1(x,y 1)=1imy1(x,yP),;;;; limy1(xP,yP)= V 1• Ill 
/Jjl p /Jjl p 
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4.4.11 LEMMA 
If Y'(x 1 ,y 1);;;;. Vk fork= 1,2, then (x 1 ,y 1) can be supplemented with retaliation 
threats to obtain an almost stationary £-equilibrium 

PROOF: 
Observe that by lemma 4.4.10 neither player 1 nor player 2 can profit by an 
absorbing deviation from (x 1 ,y 1 ). Hence retaliation threats are only needed to 
counter non-absorbing deviations. As in the proof of lemma 2.3.4, let y(n) be 
the random variable (ve,ctor) denoting the action frequencies of player 2 in the 
initial state up to stage n and let y<n> be a realization of y(n). Let x<n> and x<n) 
be defined similarly for the action frequencies of player 1. 
Let t:>0. Then, pretending absorption does not take place, for each a>O there 
is 8>0 and N a11EN such that: 

Probx1,y1 {IIX(n) - x 1 II> a for any n;;;;. Na11} < 8 and 

Probx1,/ {IIY(n) - y 1 II> a for any n;;;;. N al!}< 8. 

Choose ae(0,t:/8M) and choose 8>0 such that: 

(l-8)2(y'<(x 1 ,y 1)-2aM)- (1-(l-8)2)M;;;;. y'<(x 1 ,y 1) - t:/2 fork= 1,2. 

Define .,, ; by: 
a) use x I unless 

i) player 2 chooses j fl_ Car(y 1 ), or 
ii) l[y(n) - y 1 11 > a for some n;;;;. Nall 

b) if (i) or (ii) occurs, use some retaliation strategy w~12 from that stage on. 
Define o; analogously. 
It can be verified that (w;,o;) is an almost stationary limiting average £-

equilibrium. 

The next lemma follows directly from lemma 4.4.7 and lemma 4.4.9. 

4.4.12 LEMMA 
Ijy2(xl ,yl) < V2, 
then (x 1,y 1) is non-absorbing whereas (xf1,y 1) is absorbing for all {3e[0, 1). 

4.4.13 DEFINITION 

If r2(xp1 ,y 1) 5y2, th:n we ~efine: 
a) x andx e R by(ze{l,2, ... ,m}): 

_p {xf if (i,y 1) is non-absorbing 
X; : = 0 if (i,y 1) is absorbing 

_. p {() · if (i,y 1) is non-absorbing 
X; : = xf if (i,y 1) is absorbing 

-P -•P 
b) xP andx*P e Am by(ie{l,2, ... ,m}):xf:= x;_p andx;P:= X; •p· 

- - - X; - X; 
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c) x •: = lim x •p (which limit exists without loss of generality). 
ptJ-

d) µP: = 1 - /3 p I and µ 1 : = lim µP (without loss of generality). 
1-/3+ /3~~ X;PiJYj pt! 

i j 

Opserve that by these cJ5finitions w5 have that xP='i./ +x•p; both xp ~O and 
x P ~O for all /3; lim x =O; lim .x = lim xP = lim xP = x 1• 

Ptl Pt! pt! - pt! 
It is also clear that for all /3 we have µP E[O, I] and µ1 E[O, 1]. 

4.4.14 LEMMA 
If y2(x 1 ,y 1) < V2 and µ1 and x • are as above, 
then V2= µ1y2(x 1,y 1) + (1-µ1)y2(x*,y 1) and hence y2(x*,y 1);;;. V2. 

PROOF: 

From definition 4.4.13 observe that ~~xf PuY) = ~~x?piJy) and 
•p i j i j 

~~xfpiJbijy) = ~~x; piJbijy). Using this, definition 4.4.13, lemma 4.4.9 
i j i j 

and lemma 4.4.4 we obtain: 

V2= Jim y2(xP,yl) PP p 

- I "' "' I I · J!L "' "' p • I - µ ~X; bijyj + lim 1-/3 ~X;pijbijyj 
i j Pt1 i j 

"'"' -*P • I p X; pijbijYj 
= µI y2(xl yl) + lim .J1J!!:..._ ("' "'xfip .. vl) I * 

' "ti 1-/3 1 l]J 1 "' "' - P 1 ,., ; j X; PiJYj 
i j 

i j 

= µI y2(xl ,y') + (1-µ')y2(x*,yl). 

Since y2(x 1 ,y 1) < V2 and µ1 E[O, 1] we have that y2(x • ,y 1);;,. V2. 

4.4.15 LEMMA 
If r2(x1,y 1)< V2 and €>0, then (x\y 1), with x":=(1-i\)x 1 +;\x* and 
i\E(O, 1), can be supplemented with retaliation threats to yield an almost station-
ary limiting average €-equilibrium for i\ sufficiently small. 

PROOF: 
For each AE(0,1) we have y2(x\y 1)= y2(x',y 1);;,. V2 and by lemmas 4.4.7 
and 4.4.9: y1(x\y 1)= y1(x*,y 1)= lim y 1(x*,yP)= lim y 1(xP,yP)= V 1 • 

Ptl Pt! 
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Let again y(n) be the random variable denoting the action frequencies of 
player 2 in the initial state up to stage n and let y<n> be a realization of y(n). 
Let x<n> be the random variable denoting the action frequencies of player 1 
within Car(x 1) in the initial state up to stage n. Let x<n> be a realization of 
x<n>. Let t:>0. Then, pretending absorption does not take place, for each a>0 
and 6>0 there is N 08 EN such that: 

Probx\y' {IIX(n)_xl II> a for any n ~NaB} < 6 and 

Probx\y' {IIY(n)_y 1 11 >a for any n ~NaB} <6. 
Choose ae(0,t:/8M) and choose 6 such that fork= 1,2: 

(I-6)4(/(x*,y 1) -2aM) - (l-(l-6)4)M 1'(x1,y 1)- t:/2. 

Choose ;\e(0,t:/8M) such that Probx\y' { absorption before stage N aB} < 6. 
Choose NA EN, NA> N 08 , such that 
Probx\y' .{ absorption before stage NA}~ 1-6. 
Define '" ( by: 
a) use xA unless 

i) player 2 chooses j .f:£ Car(y 1 ), or 
ii) l[y(n) _y 1 11 > a for some n ~N a8 
iii) at stage NA play is still in the initial state 

b) if (i), (ii) or (iii) occurs, then use some retaliation strategy '"~12 ( cf. 1.8.5). 
Define a; in a similar way. 
Now ('TT;,a;) is an almost stationary limiting average t:-equilibrium. 

Observe that example 3.2.4 is an illustration of the lemmas 4.4.14 and 4.4.15; 
in that example µ, 1 = ½. The next example illustrates that one may also have 
r(xl,yl)< v2 andµ,I=o. . 

4.4.16 ExAMPLE 

z 
State 1 State 2 

For this example stationary ,8-discounted equilibria are for instance given by 
(xP,yP)= (( l-r, -l +,8; vi=/f ), (0,1)), with ,8e[0, 1). · 

Nowr(x1,y 1)= -1, whereas V2 =1imy2(xP,yP)= lim l-,8-~ 0 
Ptl p Pil ,8 . 

Hence x• = (0, 1) and y2(x*,y 1)= 0; µ,1 = 0. 
Examples that illustrate lemma 4.4.11 are for instance 2.3.8 and 3.2.3. 
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Chapter 5 

The total reward criterion in zero-sum stochastic 
games 

5.1 INTRODUCTION 

In chapter 1 we briefly dealt with the total reward criterion. This criterion has 
been introduced in Thuijsman & Vrieze [1987) and Vrieze & Thuijsman [1987). 
Based on these papers, we examine this criterion as well as its relations with 
the /3-discounted reward criterion and with the limiting average reward cri-
terion for the zero-sum case. 

In section 5.2 we give several examples to support our choice for defining 
total rewards by liminf NI· f f Es.,11 [R 1(n)], as is done in definition 

m=I n=I 
1.4.4. Furthermore these examples lead to the conclusion that a certain pro-
perty should be fulfilled if we want that the total value, whenever it exists, is 
finite. This property is that the limiting average value should be O (for all ini-
tial states) and both players should have stationary limiting average optimal 
strategies. 

For the existence of stationary limiting average optimal strategies, several 
characterizations have been given (cf. Sobel [1971), Bewley & Kohlberg [1978), 
Pilar & Schultz [1986), Schultz [1987), Vrieze [1987-a]). Several of these charac-
terizations are by means of mathematical programs (see chapter 6). By means 
of equations similar to the Shapley-equation (cf. 1.7.3), existence of stationary 
limiting average optimal strategies has been characterized by Vrieze [1987-a]. 

In section 5.3 we extend Vrieze's result by characterizing existence of sta-
tionary total optimal strategies for stochastic games with above property. 

In section 5.4 we give an example to illustrate that, even with above pro-
perty, history dependent strategies are indispensable for total £-optimal play. 
This indicates that the total reward criterion and the limiting average criterion 
have similar features. 

In section 5.5 we show that examining total rewards in a stochastic game is 
equivalent to examining limiting average rewards in a related stochastic game 
with countable state space. 

5.2 THE TOTAL REWARD CRITERION 

For the /3-discounted reward criterion the emphasis is on near-future payoffs, 
while for the limiting average reward criterion the emphasis is on far-future 
payoffs. In certain situations however, it would be more appropriate to use an 
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intermediate criterion, where both near-future and far-future payoffs are 
equally important. There are several ways of defining such an intermediate 
criterion. Recently Krass et al. [1987] and Pilar & Vrieze [1989] examined a 
criterion which is a 'weighted combination' of the ,8-discounted reward cri-
terion and the limiting average reward criterion. In this chapter however we 
look at the total reward criterion, which is also an intermediate criterion. To 
see why this total reward criterion is interesting, think for instance of stopping 
stochastic games, as introduced in Shapley [1953], where for all s,i and j there 
is a small probability of stopping, or equivalently, a small probability of mov-
ing to an absorbing state where the payoffs are 0. In such games the limiting 
average reward is necessarily equal to 0 for any pair of strategies and hence 
the limiting average criterion does not seem to be a suitable criterion to exam-
ine the game. Instead of discounting with some factor ,8E[0, I) one would sim-
ply like to take the sum of all payoffs for any play in such a game. The same 
holds for the next example although it is no stopping stochastic game. 

5.2.J EXAMPLE 

State 1 State 2 State 3 
The payoffs in this example, like those in the other examples in this section, 
are the payoffs to player 1 to be paid by player 2. 
For this example it is clear that the limiting average reward (for the unique 
strategies) is O for all initial states. However, it seems reasonable that player 1 
would prefer to start in state I, whereas player 2 would prefer initial state 2. 

In the following example we can also imagine that player 1 would prefer to 
start in state 1 while player 2 would prefer to start in state 2. The limiting 
average reward is again O for both initial states. 

5.2.2 EXAMPLE 

zz 
State 1 State 2 

For the play starting in state 1 the sequence of partial sums of payoffs would 
be (2,0,2,0,2, .... ). Thus, on the average, player 1 owns 1, whereas it is clear 
that the limiting average reward is 0 for initial state I. Similarly, for the play 
starting in state 2, player I would own - I on the average. The ,8-discounted 

00 

reward for initial state I is 2(1-,8) ( -,Bt- 1 = 2(1-,8)/(1 + ,8). Leaving 
n=l 
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out normalization by 1-/3 gives 2/(1 + P), which converges to 1 as /3 goes to 1. 

00 

These examples and the fact that, if L Esm,[R 1(n)] exists in !fl U { - oo, + oo} 
n =I 1 N m 

then it is equal to lim inf - L L Es,,-a[R 1(n)], lead us to define total 
N m=ln=l 

rewards by the latter expression (cf. definition 1.4.4). Here we use 'lim inf 
since for non-stationary strategies 'lim' may fail to exist in !fl U { - oo, + oo }. 
We chose 'lim inf since, like for the limiting average criterion, this reflects a 
kind of 'worst case view' of player 1. However we could also have chosen 
'lim sup' or any convex combination of 'lim inf and 'lim sup'. 

In lemma 1.5.7 we have shown that for any pair of stationary strategies 

N~ ! mt! n~l Esxy[R1(n)] is finite on condition that y1(x,y)=O. It does not 

seem to make sense to define a total reward evaluation by Es,,-a 

! mtl n~I R 1(n)], since the following example, which was communi-

cated to us by Neyman [1986], shows that this alternative definition does not 
express what we would like to call a total reward. 

5.2.3 EXAMPLE 

(½,½) 

State 1 State 2 

For this example we have that E[lim inf J_ f i R 1(n)]= oo for both 
N m=l n=I 

initial states, since with probability 1, for any realization of the random walk, 
lim . 1 I I · N m~I /;;1 r (n)= -oo. Observe that y (x,y)=O for all x,y. 

We now turn to some properties of the total reward criterion. 

5.2.4 THEOREM 
For any pair of strategies ('1T,a)E IIX~ we have: 

liminf(l-/3)- 1 yb('7T,a);;,,, y~('7T,a). 
Pt! 

PROOF: 
Let {an Eifl: n EN} and CEN such that Ian +I -anl<C for all n EN. Then: 

oo 1 N 
lim inf ( 1 - /3) L pm - 1 am ;;,,, lim inf - L am . 

pt! m=I N m=I 
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We now prove this inequality using that for each ,8E[0, 1): 
oo oo m 

( 1 - ,8)- I ,em - I am = ,em - I an 
m=I m=I n =I 

(this is easy to verify, cf. page 37 in Kallenberg [1983]). 
From this equation we derive 

oo oo m oo 1 m 
(1-,8) ,em-Iam = (1-,8)2 ~,em-I~ an = (1-,8)2 m,Bm-1(- an)-

m=I m=-1 n=I m=I mn=I 

First, notice that Second, if either 
m=I 

liminf l h h . al" - kJ am= - oo, t en t e mequ 1ty 
N->oo Nm=I 

1 N I-~ aml~CN for all NEN. If 
N m=I 

liminf_!_ f am:;;;.LE~, then let t:>0 and N* EN such that_!_ f an:;;;.L-t: for 
N->oo Nm=! • mn=I 

N 

00 

lim inf(l - ,8) ,em - I am = oo or 
Ptl m=I · 

holds. Third, notice that 

all m:;;;.N*. Now take ,8*E(0,l) such that C(l-/3)2 m2(1-,Br- 1 ~t: and 
m=I 

00 

(L-t:)(1-,8)2 m,Bm -I :;;;.L-2t: for all ,BE(,8*, 1). Then for all ,8E(,8*, 1): 
m=N·+1 

oo N' 1 m 
(1-,8) ~,em-lam= (l-/3)2 m,Bm-1(- ~an) 

m=I m=l m n=I 

oo 1 m + (1-/3)2 m,Bm-l(_ an) 
m=N·+1 mn=I 

N° oo 
:;;,. -C(l-,8)2 m2,em-I + (L-t:)(1-,8)2 m,Bm-1 

m=I m=N· +I 

:;;;. L-3t:. 

Since this can be done for any t:>0, and since C and L are independent of t:, it 
00 

follows that liminf(l - ,8) ,em - 1 am:;;;. L. This completes the proof of 
ptl m=I 

oo 1 N 
liminf(l - ,8) ,em - I am:;;;. liminf- am. From this inequality we conclude 

Ptl m=I N m=I 
that for all sES and ali 'IT,o-EIIX~: 

00 

liminf(l-,8)- 1 y}(s,'IT,o-)=liminf ,en-I E5,,,,[R 1(n)] 
ptl · Ptl n=I 

oo m 
= lim inf (1-,8) ,em-I E5 ,,0 [R 1(n)] 

Ptl m=I n=I 

1 N m :;;,.1w_,,~ N m~ I n;I Eswa[R 1(n )] = y}(s, 'IT,O"). 
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5.2.5 THEOREM 
For a zero-sum stochastic game with limiting average value O (for all initial 
states) let y • E Y be a stationary limiting average optimal strate~. 
Then there exists a pure stationary total best reply against y for player 1 and 
y}(s,.,,,y.)<oo for all 'ITEIT and all sES. 

PROOF: 
Since there are only finitely many pure stationary strategies, we can assume 
(by talcing some subsequence) that there is a pure stationary strategy x • such 
that x • is a P-discounted best reply against y • for all P close to 1. 
By lemma 1.5.5 and by theorem 1.7.7 we have o;;;. y1(x • ,y *)= lim yb(x • ,y *);;;. 

I I I • • Ptl 
lim vp = v = 0, and hence y (x ,y )= 0. 
PtI 
Now let 'ITEil. Then by theorem 5.2.4 and lemma 1.5.7, we have for alls ES: 

y}(s,.,,,y•)~ lim inf (l-P)- 1 rb(s,.,,,y•) 
PtI 

lim inf (l-P)- 1 yb{s,x•,y•) 
· Ptl 
= lim(l-P)- 1 rb(s,x•,y•) 

Ptl · 

Closely related to theorem 5.2.5 is the next theorem. 

5.2.6 THEOREM 
If for a zero-sum stochastic game with limiting average value O there are stra-
tegies x • EX and y • E Y which are uniform P-discounted optimal (i.e. P-
discounted optimal for all P close to 1), then the total value exists in IRz, x • and 
y* aretotaloptimalandv}= lim(l-PF 1vb. 

Ptl 

PROOF: 
From lemmas 1.5.5, 1.6.2 and from theorem 1.7.7 it follows that stationary 
uniform P-discounted optimal strategies are also limiting average optimal. Pre-
viously this result has been shown by Bewley & Kohlberg [1978]. Hence x • 
andy* are limiting average optimal and y1(x*,y*)= 0. Now the result follows 
from the proof of theorem 5.2.5, since x • is and y • are P-discounted best 
replies against each other for all P close to I. 

5.2.7 THEOREM 
If for a zero-sum stochastic fame both players have stationary total optimal stra-
tegies and v} is finite, then v r = lim (1 - P) - 1 vb-

Pt I 

PROOF: 
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Let x • be a stationary total optimal strategy for player I. Since there are only 
finitely many pure stationary strategies, there is, using lemma 1.6.2, a pure sta-
tionary strategy yP which is a ,8-discounted best reply for player 2 against x • 
for all /3 close to I. 
Now let t:>0. Then for /3 close to I we have, using theorem 5.2.4: 
(1-/3)- 1 vb;;;;,, (1-/3)- 1 rb(x*,yP);;;;,, Yt(x*,yP) - dz;;;;,, Vt - dz. 
Similarly one can show that ( I - /3)- 1 vb y}. + t: I z for /3 close to 1. 

Observe that the above theorems imply that, under the condions in the 
theorems, v}. equals a.N, the coefficient for (1-/3) in the power series expansion 
of vb in fractional powers of (I - /3). So both the limiting average value and the 
total value appear in this expansion (cf. theorem 1.7.5). 

It is evident that, if for a zero-sum stochastic game the limiting average value 
is not equal to O for some initial states, then the total value vt(s) will either 
be + oo or - oo. However, the existence of the total value in U { - oo, + oo} 
for some initial state is not guaranteed by the limiting average value equalling 
0 for that initial state. Take for instance the next example. 

5.2.8 ExAMPLE 

State I State 2 State 3 

This example is essentially the big match of Blackwell & Ferguson [1968], 
example 1.7.4. The limiting average value for initial state I is O in this exam-
ple. For this stochastic game player I has no limiting average optimal strategy 
(cf. 1.7.4. (c)). Hence for each strategy 'ITEil there is some aEL such that 

lim inf NI f E 1771,[R 1(n)] < 0 and thus for those strategies we find 
n=I 

~~!mt! n~I E "'" [R 1(n)] = - oo. It is easy to verify that with 

y • = (½, ½) we have that yt(l,'IT,Y *)= 0 for all 'ITEIL Consequently, the total 
value does not exist for initial state I since we have 
sup inf rt(l,'IT,a) = - oo < 0 = inf sup rt(l,'IT,a) . 

w cr a '1T 

The next example illustrates a curious phenomenon: even if the limiting aver-
age value equals O for all initial states and both players have limiting average 
optimal strategies, then the total value may still be infinite. 



The total reward criterion in zero-sum stochastic games 77 

5.2.9 ExAMPLE 

State I State 2 

For this stochastic game the limiting average value is O for both initial states. 
For player I all strategies are limiting average optimal; for player 2 the sta-
tionary strategy (1-e,e), with eE(O, 1), is limiting average £-optimal. However 
here, as for any other stochastic game with a state independent value, player 2 
possesses a Markov strategy (cf. definition 1.3.2) that is limiting average 
optimal. Such a limiting average optimal Markov strategy can for instance be 
obtained by using: 

a one-stage optimal strategy at the first stage, followed by 
a two-stage optimal strategy at the next two stages, followed by 
a three-stage optimal strategy at the next three stages, etc. 

V(N) 
That such a strategy is optimal can be shown by using that lim Ns = v; is 

independent of s ES, where vt> denotes the value of the N-stage game starting 
in s (cf. Mertens & Neyman [1981), Bewley & Kohlberg [1976, 1978) and 
Vrieze [1987-a]). 

To show that the total value for initial state I is + oo, observe that by using 
the stationary strategy (1-e,t:), with eE(O, 1), player l's total reward will be at 
least 1/ e against any strategy of player 2. Hence, letting e tend to O we find 
that, although player 2 can keep the limiting average reward at 0, ~he total 
reward value is + oo. 

It can even be verified for this example that player I can guarantee a total 
reward + oo by using the Markov strategy f defined by: if at stage n the play 
is still in state 1, then use the mixed action (11/(n + 1), 1/(n + 1)), for all n E~. 
Now y},(I,f ,o')= +oo for any strategy o-E~. 

The above examples illustrate that only with the following property (P) we can 
expect the total value, if it exists, to be finite. 

5.2.10 DEFINITION 
We say that the stochastic game has property P if the limiting average value is 0 
(for all initial states) and if, moreover, both players have stationary limiting aver-
age optimal strategies. 

For a zero-sum stochastic game with property P, the total reward criterion can 
be seen as a refinement of the limiting average reward criterion, since it is 
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obvious that for such a game a total (€-)optimal strategy is necessarily limiting 
average optimal. 

For the remainder of this chapter we focus on zero-sum stochastic games 
with property P. 

5.3 STOCHASTIC GAMES AND OPTIMAL STATIONARY STRATEGIES 

It is well-known that in any zero-sum stochastic game there exist stationary /3-
discounted optimal strategies (cf. theorem 1.7.3). Furthermore it is well-known 
that stationary limiting average optimal strategies do not always exist ( cf. 
example 1. 7.4). Vrieze [1987-a] gives the following characterization for the 
existence of stationary limiting average optimal strategies. 

5.3.1 THEOREM 
For any zero-sum stochastic game both players have stationary limiting average 
optimal strategies if and only if there exist a, 81, 82 Elli 2 such that for alls ES: 

z 
a) as= val [~ p(tls,i,j)a1] 

A,XB, t=I 
z 

b) as+81s= val [r1(s,i,J) + ~p(tls,i,j)811] 
O,.XB, t=I 

z 
c) as+82s= val [r1(s,i,j) + ~p(tjs,i,j)821]. 

A,XO,, t=I 

Here As= {l,2, ... ,ms}, Bs= {1,2, ... ,ns} and 0 1s (resp. 02s) is the set of optimal 
z 

mixed actions for player 1 (resp. 2) in the matrix game [ p(tjs,i,j)0:1]r~ 1./~ I· 
t=I 

Shapley & Snow [ 1950] showed that for each player the set of optimal mixed 
actions of a matrix game is a bounded polyhedron, with a finite number of 

z 
extreme points. In view of this result val [r 1(s,i,J) + p(tjs,i,))811 ] is the 

O,,XB, t=I 

value of a polyhedral game (cf. Wolfe [1956]), where for (x,y)E0 1s XBs the 
z 

payoff equals x;(r 1(s,i,j) + p(tjs,i,j)81t)YJ· 
i=l j=I ~=I 

The expression val [r 1(s,i,j) + p(tjs,i,j)821 ] should be interpreted in a 
A,xo,, t=I 

similar way. 
For every solution (a,81,82) of the equations in theorem 5.3.1 it can be 

verified that a = v 1, the limiting average value of the stochastic game. Further-
more, given such a solution (a,81 ,82), a stationary limiting average optimal 
strategy x • for player I can be constructed by letting x; be an optimal mixed 

z 
action for player 1 in the polyhedral game [r 1(s,i,j) + p(tjs,i,})811 ]0 1,xB,, 

t=I 
for each s ES. A stationary limiting average optimal strategy y • for player 2 
can be found in a similar way. An example in Vrieze [1987-a] shows that there 
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may be stationary limiting average optimal strategies which cannot be found 
from any solution (a,81 ,82)-

Observe that theorem 5.3.1 implies that a zero-sum stochastic game has pro-
perty P (cf. definition 5.2.10) if and only if there exists 8ERz such that: 

z 
8s = val [r 1(s,i,j) + p(tJs,i,})81], for each s ES. 

A,XB, t=I 

We now give an analogue of theorem 5.3.1 for the existence of stationary total 
optimal strategies for stochastic games with property P. 

5.3.2 THEOREM 
For any zero-sum stochastic game with property P the total value exists in Rz and 
both players have stationary tptal optimal strategies if and only if there exist 
a,81,82ERz and'l\;;;,,0 such that for all sES: 

z 
a) as= val [r 1(s,i,j) + p(tJs,i,J)a1] 

A,XB, t=I 
z 

b) as+ 81s= ya/ [w 1(s,i,j) + p(tls,i,})811] 
01,XB,· t=I 

z 

c) as+ 8-is= val. [w 1(s,i,j) + p(tls,i,})82,]-
A,XO,. t=I 

Here Dis and o; are the sets of optimal mixed actions for the respective players 
for the matrix game in (a), and the games in (b) and (c) are again polyhedral 
games. 

PROOF: 
THE 'IF'-PART: 
Suppose there are a,81 ,82 ERz and ')\;;;,,0 such that for each s ES the state-
ments (a), (b) and (c) hold. Let x; be an optimal mixed action for player I in 

z 
the polyhedral game ['l\r 1(s,i,j) + ~p(tls,i,j)8l]o;,xn,, for each sES and let 

t=I 
yEY. 
From (a) we conclude that a:,;;;; r 1(x *,y) + P(x* ,y)a and hence it follows that 
0 :,;;;; Q (x • ,y )r 1 (x • ,y) = y1 (x • ,y ), so x • is limiting average optimal. 
It is clear that if y1(s,x *,y) > 0 then yt,(s,x • ,y)= oo > as. 
So let A c S be the set of states with y 1 (s,x • ,y) = 0. 
Thenp(tls,x•,y)= 0 for all tEAc and sEA. Let~. 81, r 1(x*,y)A, P(x*,y)A, 
Q (x • ,y t be restrictions to states in A. 
We have 0= y1(x*,yf = Q(x*,yf r1(x*,yf. 
From (b) we conclude that + 81 ..;;; 'l\r 1 (x • ,y t + P (x • ,y t 81 and hence it 
follows that Q(x*,yf~..;;; 'l\Q(x*,yf r 1(x*,y)A = 0. 
From ( a) we have ~- :,;;;; r 1 (x • ,y t + P (x • ,y t which implies that: 

m 
~:,;;;; ( (P(x*,yft-l r 1(x*,yf) + (P(x*,yfr~ for all m El'\!. 

n=I 

This implies: 



·so Chapter 5 

«4 ,;;;;(J_ f f (P(x*,yfl- I r I(x*,yy4) + J_ f (P(x*,yy4)"'«4 
N m=ln=l N m=l 

for all NE~. Letting N tend to infinity and using that Q(x*,yy4 «4,;;;;0 we 
get: «4 ,;;;; y}(x. ,yr. 
By theorem 5.2.5 we derive inf y}(x*,o);;;;,, infy}(x*,y);;;;.a and hence 

sup inf yt(7T,o);;;;,, a. 
0 y 

'fr 0 

Similarly we can show inf sup Yt(7T,o),;;;; a, and thus vt= aE~z and both 
0 'fr 

players have stationary total optimal strategies. 

THE 'ONLY IF'-PART: 
Suppose that the total value vt exists in ~z and that both players have station-
ary total optimal strategies x • EX and y • E Y. 
Then vt= r 1(x*,y*) + P(x*,y*)vt in view of lemma 1.5.7 (b), since 
Q(x*,y*)r 1(x*,y*)= 0. By the optimality of x• andy*: 
Vt,;;;; r 1 (x • ,y) + P (x *,y) Vt for ally E Y, as well as 
Vt;;;;,, r l (x,y *) + p (x,y *) Vt for all X EX. 

. z 
Hence vt(s)= val [r 1(s,i,j) + p(tjs,i,j)vt(t)] and x; and y; are optimal 

A,XB, t=l 

mixed actions in this matrix game for each s ES. 
Now letyEY. 
Since Yt(x • ,y);;;;,, vt > - oo it follows that y1 (x • ,y) = Q (x • ,y )r 1 (x • ,y );;;;.O. Let 
again A be the set of states s with y1 (s,x • ,y) = 0, and let B = S \A. Then 
p(tjs,x;,ys)= 0 for all sEA, tEB. Using similar notations as above we have 
(using lemma 1.5.2 and using Q(x*,y)Ar 1(x*,yy4 = 0): 

1 N m 
Q(x*,yy4 Yt(x*,y)A= lim - Q(x*,yy4r 1(x*,y)A= 0. 

N-">oo N m=l n=l 
Because vtA ,;;;; Yt(x* ,yy4 we derive Q(x* ,y)Av!,1,;;;; 0, or equivalently: 

Q(x *,yr (Ar I (x. ,y )A - v!,1) ;;;;.o for all AE~. 

Let Q(x*,y)n denote the restriction of Q(x*,y) to rows in B. 
Since Q (x • ,y )nr 1 (x • ,y) > 0 we also have that: 

Q (x • ,y )n(Ar 1 (x * ,y) - v});;;;,, 0 for A sufficiently large. 

Hence Q (x • ,y )(Ar 1 (x • ,y) - Vt);;;;,, 0 for A sufficiently large. 
Then for A sufficiently large: 

Q(x • ,y)(Ar 1(x • ,y) - vt);;;;,, 0 for ally E YP. 

Likewise it can be shown that for all A sufficiently large: 

Q (x,y ')(Ar 1(x,y *) - vt),;;;; 0 for all x EXP. 

~~nc~, _i~ ~or su~_cientl( large we !ook _a~ stoch_a~tic game r•_ ~efined by 
r (s,1,;). - Ar (s,1,;) - vT(s) and p (tjs,1,;). - p(tjs,1,;) for all s,1,;, then we 
find that the limiting average value of r• equals O and x • and y • are station-
ary limiting average optimal strategies in r*. Now observe that the limiting 
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average value of r• is also O if player I is restricted to mixed actions in Ois for 
each s ES, or if player 2 is restricted to mixed actions in o; for each s ES. 
Applying theorem 5.3.1 gives the existence of 81 and 82 ERz with: 

z 
81s= Yal [Ar 1(s,i,J)-v},(s) + ~p(tls,i,j)811 ] for each sES, 

01,XB, t=I 

z 
82s = Val. [Ar 1(s,i,J)-v}.(s) + p(tls,i,})821 ] for each s ES. 

A,xo,., t=I 

Using the fact that for any matrix [aij] and constant c ER it holds that 
val[aij+c]= c+val[a;j], completes the proof. 

The following example and the next remark illustrate that one cannot in 
general take A= 0 in the above theorem. 

5.3.3 EXAMPLE 

State I State 2 State 3 

For this stochastic game v}.= (I, 1, -1). Now consider the stochastic gamer• 
as defined in the proof of above theorem. It is easy to verify that the limiting 
average value of r•, with A= 0, is not equal to O for state 1 ; in fact it equals 
- 1. Hence for the proof of the 'only if' -part one cannot take A= 0 from the 
start. One has to take l,.;;;.,2. 

5.3.4 REMARK 
It should be observed that for a zero-sum stochastic game with the property that 
y 1(x,y)=0 for all (x,y)EXX Y, one can take l>.=0 in theorem 5.3.2. 

5.4 THE BAD MATCH 

In this section we examine a zero-sum stochastic game with property P for 
which the total value does exist but for which one of the players has no history 
independent total t:-optimal strategy. We have called this specific stochastic 
game 'the bad match' in analogy with 'the big match' of Blackwell & Ferguson 
[1968] (cf. example 1.7.4). 



82 Chapter 5 

5.4.1 EXAMPLE (the bad match) 

State 1 

State 2 State 3 State 4 

The interesting initial states are 1, 3 and 4. However, by the structure of the 
game it is clear that if we know how the players should play total (£-)optimal 
for initial state 1, then the same strategies are total (£-)optimal for initial states 
3 and 4. Therefore we focus on state 1 as initial state. 
Observe that if the play starts in state 1, then the players will only have to 
take (non-trivial) decisions at the odd stages. Those stages we call decision 
epochs and strategies are determined by the mixed actions that are to be 
chosen on those decision epochs in state 1. Notice that as soon as player I 
chooses action 2, then the play will move to state 2 with probability 1. 
It can be verified that the limiting average reward is O for any pair of strategies 
and for all initial states. Hence property P holds for this stochastic game. 

We now define history dependent strategies for player 1 that will tum out to 
be total £-optimal for player 1 (for specific £>0). 

5.4.2 DEFINITION 
Let p(m)= (m + 1)-2 form E{0, 1,2, ... } and let NEl'\J. 
We define the history dependent strategy for player I by: 
having observed the action choices of player 2 at the first n decision epochs, say 
}1,Ji, ... ,JnE{l,2}, n;;,,,0, calculate the excess kn of 2's over l's among 
U 1 ,Ji, ... ,Jn} and choose, at decision epoch n + 1, action 2 with probability 
p(kn+N). 

5.4.3 THEOREM 
a) The total value of the bad match exists and equals 0 (for initial state I). 
b) For player 2 a stationary total optimal strategy is to use the mixed action 

(½,½)in state I at all decision epochs. 
c) The strategy~ is total (N + 1)- 1-optimal for player I, for all N Er\J. 
d) Player I has no history independent total £-optimal strategy for £>0 
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sufficiently small. 
e) Player I has no total optimal strategy. 

This theorem follows directly from 5.4.4 - 5.4.15 below. 

5.4.4 LEMMA 
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Let y • be the stationary strategy for player 2 defined by using ( ½, ½) in state I at 
all decision epochs. Then y}(l,w,y*)=0for each wEII. 

PROOF: 
Whatever actions player 1 chooses, at each stage the expected payoff will be 0 
if player 2 uses y •. Namely, in state 1 at each decision epoch the expected 
payoff is O; at other stages the play is either in state 2 with payoff O or the 
play is in state 3 or state 4 with the same probability, giving also expected 
payoff 0. 

The following corollary is immediate. 

5.4.5 COROLLARY 

inf sup y}(l,w,a) :s;;;; 0. 
0 ,,, 

5.4.6 LEMMA 
With Markov strategies player I cannot guarantee a total reward larger than -1. 

PROOF: 
Let /be a Markov strategy for player 1. We consider two cases: 
a) Suppose that the probability that player 1 will ever choose action 2 is 0. 

Then player 1 chooses action 1 at all decision epochs with probability 1. 
The stationary strategy y 1: = (1,0) for player 2 leads to y}(l,f,y 1 )= -1. 

b) Suppose that the probability that ·player 1 will ever choose action 2 is 
t:>0. Then for each 8 E(0,t:) there is an N 6 EN such that the probability of 
player 1 choosing action 2 before stage N 6, is larger that t:-8. For each 
8E(0,t:) define strategy g6 for player 2 by: at decision epochs I,2, ... ,N6 
choose action 2 and at all other decision epochs choose action 1. Then we 
have that: 

y}(l,J,g6) :s;;;; (t:-8)·(- l) + 8·(1) + (l -t:)·(-1)= -1 + 28. 

Since player 2 can choose 8 arbitrarily small, the proof is complete. 

The next lemma says that player 1 has no limiting average optimal strategy. 

5.4.7 LEMMA 
For any strategy w for player I there is some a such that y}(l,w,a) < 0. 
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PROOF: 
Let w be a strategy for player 1. If there is no sequence of action choices of 
player 2, such that player 1 chooses action 2 with positive probability, then it 
is clear that rt(l,w,y 1)= -1 for the stationary strategy y 1 :=(1,0). 
So suppose there is some sequence of action choices (j 1 ,h,--·,jm) such that at 
decision epoch m + 1 player 1 will, for the first time, choose action 2 with posi-
tive probability t:>0. Now define gm for player 2 by: at decision epochs n ~m 
choose jn with probability 1, at decision epoch m + 1 choose action 2 with pro-
bability 1, at decision epochs n >m + 1 use the mixed action(½,½). It can be 
verified that Yt(l,w,gm)= -t:<0. 

We will now show that rt(l,?,u);;;. -(N + 1)- 1 for all uE~, where? is the 
strategy as defined in definition 5.4.2. 
To prove this, we fix an arbitrary strategy uE~ and we define several random 
variables which are supposed to correspond to the pair of strategies (?,u): 

5.4.8 DEFINITION 
Let uE~. Suppose that the players use (?,u)for some NEI\I. 
Let B (Bottom) be the random variable denoting the number of decision epochs 
before player 1 chooses action 2. 
For each m El\! define the event K(m) by: 
K(m):= {B;;;. m, or B < m andjs+ 1 =l}. 
Let PN{K(m)} be the probability that K(m) occurs. 

Notice that K(m) is the event that at decision epoch m player 1 either has not 
yet chosen action 2, or he did choose action 2 and was lucky in receiving 1. In 
other words we have that K(m) is the event that the total reward up to deci-
sion epoch m is non-negative. 

5.4.9 REMARK 

PN{K(m + l)}= PN{B= 0 and j 1 = l} 

5.4.10 LEMMA 

+ PN{B;;;.m+l, or 1~B<m+1 andjB+i= ll/1=1} 

+ PN{B;;;.m+l, or 1~B<m+1 andjs+ 1= 11/ 1 =2}. 

a) PN{B;;;.m+l, or 1~B<m+1 andjs+ 1= ll/1=1} 
= (1-p(N))PN-l {K(m)}. 

b) P N { B;;;. m + 1, or 1 B < m + 1 and js + 1 = 1 li 1 = 2} 
= (1-p(N))PN+l {K(m)}. 

PROOF: 
We only prove (a) since the proof of (b) is similar. 
Notice that in the left-hand side of (a) the event B =O is excluded. Given that 
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j 1 = 1, the mixed action to be used according to Tl' at decision epoch n + I, 
with some history (l,h,h,---,jn), is equal to the mixed action used according 
to ?-1 at decision epoch n with history (h,h,---,jn)-
At decision epoch 1 player 1 using Tl' chooses action 1 with probability 
I-p(N). 
Hence, given that j 1 = 1, using Tl' yields the same stochastic process as initially 
choosing action I with probability 1 - p (N) and using ?-1 thereafter. 

Consequently, we have that 

PN{K(m + l)}= PN{B=O andji = l} 

+ (l-p(N))PN-I {K(m)} + (l-p(N))PN+I {K(m)}. 

The next lemma states that for all m and N the probability that the total 
reward up to decision epoch mis non-negative, is at least N /2(N + I). 

5.4.11 LEMMA 

PN{K(m)} ;a,, N /2(N + I) for all m, N El\!. 

PROOF: 
We use induction to m. 
a) Let m = I and let N El\!. 

Ifj1 =1, then: 
PN{B;;a,, l[ii = 1} = 1-p(N) and PN{B < I andjn+ 1 = 11/ 1 = 1}= p(N). 
SoPN{K(l)l/1=1}= 1 ;a,, N/2(N+I). 
If ji = 2, then: 
PN{K(l)l/1 =2}= PN{B ;a,, 11/1 =2}= l-p(N);;..N/2(N+I). 
Let q be the probability that player 2 chooses action 1 at decisiqn epoch 
1, then: 

PN{K(l)} = q PN{K(l)l/1 = 1} + (1-q) PN{K(l)l/1 =2} 

;a,, q N /2(N +I)+ (1-q) N !2(N + I)= N /2(N + I). 

b) Suppose P N { K (m)} ;a,, N /2(N + I) for some m E 1\1 and all NE 1\1. 
Then, in view of remark 5.4.9 and lemma 5.4.10, we have: 
PN{K(m + 1)1/ 1 = l}= PN{B=O andj 1 = 11/1 = 1} 

+ PN{ B ;a,, m + I, or I.;;;; B < m + I 
and jn + 1 = 1 li 1 = 1} 

= p(N) + (l-p(N)) PN-1 {K(m)} 
;a,, p(N) + (l-p(N))(N - I)/2N = N /2(N + I). 

Also in view oflemma 5.4.10 we have: 
PN{K(m + l)li 1 =2} =PN{B =O and ji = 11/ 1 =2} 

+ PN{B ;a,, m + I, or I.;;;; B < m + I 
and jn +I= l[i 1 =2} 

=0 + (l-p(N))PN+I {K(m)} 
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~(1-p(N))(N + 1)/2(N +2)= N l2(N + 1). 
Hence PN{K(m + 1)}= q PN{K(m + l)[i 1 = 1} 

+ (1-q)PN{K(m + l)[i 1 =2} N l2(N + 1), 
which shows the induction step. 

The following lemma demonstrates that •n.N guarantees a total reward of at 
least -(N + 1)- 1 if the probability that player I will ever choose action 2, 
using? against a, is I. 

5.4.12 LEMMA 
If lim PN{B ~m}=O, then y}(l,?,a)~ -(N+l)- 1. 

PROOF: 
Since by definition PN{K(m)}=PN{B~m} +PN{B<m andJn+ 1 =1}, we 
derive from lemma 5.4.11, in view of the assumption of this lemma, that: 

lim PN{K(m)}= PNUB+I =I}~ N/2(N+l). 

With probability I player I will choose action 2 at some decision epoch and, 
since the sum of payoffs until that decision epoch equals 0, the total reward is 
determined by the action which player 2 chooses at that moment. So we have: 

y}(l,?,a)= PNUB+I = 1} - PNUB+I = 2} 

= 2PNUB+I = I} - I 

~N/(N+l)-1 = -(N+l)- 1• 

Notice that, if for a certain n we have kn= - N, then player I will choose 
action 2 with probability I at decision epoch n + I. Hence, as long as no tran-
sition to state 2 has occurred, we have kn - N. 

5.4.13 LEMMA 
For a,ry realization of the stochastic process associated to ? and a, for which 
player I never chooses action 2, it holds that the corresponding total reward is at 
least 0. 

PROOF: 
Let (r 1,r2, ••• ) be the sequence of payoffs (to player ii th:t occurs. 
Since in this case kn > - N for all n EN, we have rn > - 2N for every 

t=ln=I I T / 
TEN. It follows that llm inf - rn ~0. 

T -.ao T t = I n = I 

5.4.14 LEMMA 
If lim PN{B m} > 0, then yt(l,?,a) -(N + 1)- 1• 
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PROOF: 
For m EN let >..(m): = PN{B < m and }B +I= 1} and let µ.(_m): = PN{B < m 
and }B+ 1 =2}. Since {>..(m):mEN} and {µ.(_m):mEN} are bounded mono-
tone increasing sequences, we can define>..:= lim >..(m) andµ:= lim µ.(_m). 

Now the probability that player 1 will ever choose action 2, equals A+µ and 
hence 1 ->.. - µ is the probability that the play never reaches state 2. By lemma 
5.4.13 and by the definitions of A and µ we have: 

y}(l,~,a);;;. >..·l + µ,-(-1) + (l ->..-µ)-0 = >..-µ. 

So if we can prove that A - µ ;;;. -(N + 1 )- 1, then the proof is finished. 
For each m EN define strategy a"' by: up to decision epoch m use a, at all 

other decision epochs use the mixed action ( ½, ½). Then a"' will give rise to 
sequences (} 1,}2, ... ) for which [kn=-N for some nEN] with probability 1. 
Hence for the strategies a"' the condition of lemma 5.4.12 applies (where PN 
now refers to (~,a"')). Hence y}(l,~,a"') ;;;.,:-(N + 1)- 1 for all m EN. 

On the other hand, with respect to (~,a"'), if player 1 chooses action 2 
before decision epoch m, then this contributes A(m )-1 + µ.(_m )·( - 1) to 
y}(l,~,a"'), and choosing action 2 later contributes (1->..(m) - µ.(_m))·O (cf. 
lemma 5.4.4). 
Hence y}(l,~,a"')=>..(m)-µ.(_m);;;.,:-(N+l)- 1 for all mEN. Taking limits 
for m to oo gives >..- µ;;;.,: -(N + 1)-1, which completes this proof. 

An immediate consequence of lemma 5.4.12 and lemma 5.4.14 is the following. 

5.4.15 COROLLARY 

sup inf y}(l,'1T,a);;;. 0 . 
., a 

It should be remarked that the above proofs for the bad match are along the 
same lines as proofs by Blackwell & Ferguson [1968] for the big match. 

5.5 CONCLUSIONS 
The bad match illustrates that there is an analogy between the total reward cri-
terion and the limiting average reward criterion. For both criteria history 
dependent strategies are indispensable for playing t:-optimal, which distin-
guishes these criteria from the ,8-discounted reward criterion. The relation 
between the total reward criterion and the limiting average reward criterion is 
even narrowed by the fact that with any stochastic game r we can relate 
another stochastic game r• with an infinite state space, such that for all stra-
tegies the total reward in r equals the related limiting average reward in r•. 
To show this, let r be a zero-sum stochastic game as in definition 1.2.1 and let 
Hm n EN, be as defined in definition 1.3.3. We use asterisks to definer•. 

00 

Lets•:= U Hn be the state space of r•. 
n=I 

For s•= hn =(s1,i1,}1,s2,i2,J2,••·,sn-1,in-I,]n-l,sn) let A;• :=As, and 
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B;•: = Bs,, be the action spaces in r•. 
n-1 

For s • =hn and i* EAs·, j* EBs· let r I* (s • ,i' ,/): = r 1(sk,ik,]k) 
k=I 

+ r 1(sn,i*,/) and let p*(t*js*/,/):= p(tjsn,;*,/) for 1•= (hn,;*,/,t) and 
p t s , 1 ,J . : = or ot er t E . *( *j * ·* ·*) 0 f h * s• 
Hence we have translated histories of r into states in r•. Notice that in r• 
every state s • can be reached along precisely one history path, and there is a 
one-to-one relation between strategies in r and strategy classes in r•. 
Furthermore we have that at each stage N El\!, for strategies 7T,a and initial 
state s • = s, it holds that: 

N N m N m 
E/,,,,[R 1*(m)]= Es,,,,[~ R 1(n)]= Es,,,,[R 1(n)]. 

m=I m=I n =I m=ln=I 

Hence y1* (s • ,7T,a) = y},(s, 'lT,a) for alls• =s, and all strategies 7T and a. 
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Chapter 6 

Stochastic games and mathematical programming 

6.1 INTRODUCTION 

Mangasarian & Stone [1964] proved the following theorem which relates equili-
bria of a bimatrix game with solutions of an associated non-linear program, 
with quadratic objective function and with linear constraints. 

6.1.1 THEOREM 
For a bimatrix game (A 1,A 2) a pair of mixed actions (x • ,y *) is an equilibrium 
with payoffs (a1*,a2*) if and only if(x•,y•,a1•,a2•) is a global minimum in the 
following non-linear program, with objective value 0. 
NLP 6.1.1: 
variables x Ell?m ,y Ell?n ,a1 ,a2 Ell? 
minimize a 1 - xA 1y + a 2 - xA 2y 
subject to a 1 lm - A 1y ;;. 0 and a2 1n - xA 2 ;;. 0 

m n 
X; = l and y1 = l 

i=I j=I 

x ;;. 0 and y ;;. 0. 

For matrix games A, where player 1 is the maximizing player, the non-linear 
factors in the objective function of NLP 6.1.1 disappear (since their sum is 0) 
and what remains is a linear program. It is easy to verify that for matrix games 
we have the following result. 

6.1.2 THEOREM 
For an m X n matrix game A the value, for player 1, is v and (x • ,y *) are optimal 
mixed actions for the players, if and only if ( x • ,y •, v, - v) is a global minimum in 
the following linear program, with objective value 0. 
LP 6.1.2: 
variables x Ell?m,yEll?n,a1,a2EII? 
minimize a 1 +a2 

subject to a 1 lm - Ay ;;. 0 and a 2 ln + xA ;;. 0 
m n 

X; = l and y1 = 1 
i=I j=I 

x ;;. 0 and y ;;. 0. 

In this chapter we will formulate analogues of the above theorems for 
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stochastic games. We consider both the general-sum and the zero-sum case for 
the ,8-discounted reward criterion, for the limiting average reward criterion and 
for the total reward criterion. For the last criterion we have restricted our 
attention to stochastic games with the property that the limiting average 
reward is O for all pairs of stationary strategies. For the ,fl-discounted criterion 
and the limiting average criterion, characterizations for stationary solutions by 
means of mathematical programs have been reported in Rogers [1969], Roth-
blum [1979], Hordijk & Kallenberg [1981], Vrieze [1981, 1983, 1987-a], Filar 
[1986], Filar & Schultz [1986, 1987], Schultz [1987]. However several of these 
characterizations are for special classes of stochastic games and/ or for the 
zero-sum case only. 

Since it is well-known that only with respect to the ,8-discounted reward cri-
terion stationary optimal strategies and stationary equilibria always exist, it is 
of interest to know, especially'for the other criteria, whether near-optimal solu-
tions of the programs correspond with t:-optimal strategies or t:-equilibria. For 
the ,fl-discounted reward criterion this is indeed the case. However for the lim-
iting average reward criterion and for the total reward criterion this correspon-
dence between near-optimal solutions not necessarily holds. N evertheless1 for 
the zero-sum case the program we formulate will for both players lead to sta-
tionary (t:-)optimal strategies, whenever they exist. If stationary t:-optimal stra-
tegies fail to exist, then our program finds 'e::-best' stationary strategies for both 
players. Here an 't:-best' stationary strategy for player 1 is a strategy x, such 
that inf ·y1(x.,y) + t:;;;;,, sup inf y 1(x,y). 

yeY xeX yeY 
The programs we present are based on the lemmas 1.5.3 to 1.5.8 and on 

lemma 1.6.2, as well as on theorems 1.7.3, 5.3.1 and 5.3.2. The results of the 
sections 6.2 and 6.3 can be found in Filar et al. [1991]. 

6.2 PROGRAMS FOR THE ,fl-DISCOUNTED REWARD CRITERION 

6.2.1 LEMMA 
For a general-sum stochastic game a pair of stationary strategies (x • ,y •) is a ,8-
discounted equilibrium with ,8-discounted rewards (a1*,a2*) if and only if for all 
sES and kE{l,2}: 

z 
) k* - (1 ,8) k( • *) + ,8 (ti • *) k* a <X- - - r S,Xs,Ys "'-p S,Xs,Ys a, 

t=I 
z 

b) a;* ;;;;,,(1-,B)r 1(s,i,y;) + ,8 ~p(tls,i,y;)a!* for all iEAs 
t=I 

z 
of;;;;,, (1-,B)r 2(s,x;,J) + ,8 p(tls,x;,J)af for all j EBs. 

1=1 

PROOF: 
This lemma follows directly from lemma 1.5.3, lemma 1.6.2 and lemma 1.6.4 .. 

From lemma 6.2.1 we immediately obtain the next theorem. 
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6.2.2 THEOREM 
For a general-sum stochastic game a pair of stationary strate~ies (x • ,y *) is a /3-
discounted e~uilibrium with /3-discounted rewards ( a 1 •, a2 ) if and only if 
(x • ,y * ,a1* ,a2 ) is a global minimum in the following non-linear program, with 
objective value 0. 
NLP 6.2.2: 

variables 

minimize 

subject to 
z 

a) a; ;;:.,, (I -/3)r 1(s,i,y8 ) + /3 p(tjs,i,y8 )a} for all i EA8 , s ES 
/=I 

z 
a;;;:.,, (1-f3)r 2(s,x8 ,j) + /3 p(tjs,x8 ,j)a; for all j EB8 , s ES 

t=I 
ms ns 

b) xs(i)=l and~ ys<J)=lfor all sES 
i=I j=I . 

c) X 8 ;;:.,, 0 and Ys ;;:.,, 0 for alls ES. 

An interesting feature of the above non-linear program is that feasible solu-
tions with objective value near O are directly related with stationary /3-
discounted £-equilibria. 

6.2.3 COROLLARY 
If (x • ,y *,aI• ,a2*) is a feasible solution of NLP 6.2.2 with objective value 8>0, 
then (x * ,y *) is a stationary /3-discounted 8(1- /3)- 1-equilibrium. 

PROOF: 
Constraints (b) and (c) give that x • EX and y • E Y. 
By the constraints (a) and by the objective value 8>0 for the solution 
(x • ,y *,aI* ,a2') we have for each s ES: · 

Or, equivalently, in vector notation: 

0,;;;; ak• - (1-/3)rk(x • ,y *) - /3P(x • ,y*)ak•,;;;; 81 2 • 

By the first inequality sign: ak• ;;:.,, r%(x • ,y *) (cf. lemma 1.5.4). 
The second inequality sign gives us: 

(I-f3P(?C- • ,y *))ak* ,;;;; (1-/3)rk(x * ,y *) + 81 2 , 

and hence ak* ,;;;; (1-/3)(1 -/3P(x • ,y *))- 1 rk(x • ,y *)+(I -/3P(x • ,y *))- 181 2 

= r%(x*,y*) + 8(1-/3)- 112 • 

Constraints (a) also imply: 
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y}(x,y *) :s;;;; a1* for all x EX and ri(x • ,y) :s;;;; a2* for ally E Y. 

Combining these results proves this corollary. • 
Of course, the reduction of NLP 6.2.2 to zero-sum stochastic games is a pro-
gram which finds the ,8-discounted value and stationary optimal strategies for 
both players. Rothblum [ 1979] proposed the following non-linear program to 
find the ,8-discounted value and a stationary fl-discounted optimal strategy for 
player 2. 

6.2.4 THEOREM 
For a zero-sum stochastic game with fl-discounted value v 1 a stationary strategy 
y • E Y is fl-discounted optimal for player 2 if and only if (y •, v 1) is a global 
minimum in the following non-linear program. 
NLP 6.2.4: 

z 
variables y E X Rn·, aERz 

s=I 
z 

minimize as 
s=I 

subject to 
z 

a) as ;;;;;,, (1-fl)r 1 (s,i,ys) + .B p (tjs,i,ys)a1 for all i EAs, s ES 
t =1 

n, 
b) ys<J)= 1 for alls ES 

j=I 
c) Ys;;;;;,, Ofor all sES. 

It is obvious that a similar program can be formulated to find stationary fl-
discounted optimal strategies for player I. 

6.3 PROGRAMS FOR THE LIMITING AVERAGE REW ARD CRITERION 

It is well-known that stationary limiting average equilibria may fail to exist. 
However, below we present a non-linear program which finds a stationary lim-
iting average equilibrium whenever one exists. Our program is based on the 
following lemma. 

6.3.1 LEMMA 
A pair of stationary strategies (x * ,y *) is a limiting average err,ilibrium with limit-
ing average rewards (a 1* ,a2*) if and only if there exist 81* ,82 , µ,1* ,µ,2* ERz with: 

z 

a) at= ~p(tjs,x;,y;)af for all sES, kE{l,2} 
t=I 

z 
b) a:*+ 8:'= rk(s,x;,y;) + ~p(tjs,x;,y;)8f for all sES, kE{l,2} 

t=I 
z 

c) a;';;;;;,, p(tjs,i,y;)aJ* for all i EAs, s ES 
t=I 
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z 
a;*;;.,, ~p(tls,x;,j)a;* foralljEBs, seS 

1=) 
z 

d) a;*+11J*;;.,,r 1(s,i,y;)+ ~p(tls,i,y;)11l°forallieAs,sES 
1=1 

z 
a;* + 11;* ;;.,, r2{s,x; ,j) + p (tls,x; ,j)11;* for all j eBs, s eS. 

1=1 

93 

This lemma follows from the fact that (x * ,y *) is a limiting average equilibrium 
if .and only if x * is limiting average optimal for player 1 in MDP(y *) and y * is 
limiting average optimal for player 2 in MDP(x *) ( cf. section 1.6). A station-
ary strate~ x • is limiting average optimal in MDP(y *) with limiting average 
reward a1 if and only if there exist 81* and 111• such.that (cf. Blackwell [1962), 
Hordijk & Kallenberg [1979)): 

z 
a) a;*= ~p(tls,x;,y;)al* for all seS 

t=1 
z 

b) 1•+~1• - I( * *)+ ( I * *)~ 1• f all S as us -r s,Xs,Ys ~p tS,Xs,Ys u1 or SE 
1=1 

z 
c) a;*;;.,, ~p(tls,i,y;)al° for all iEAs, seS 

1=) 
z 

d) a1* +111*;;.,, r 1(s,i,y;) + p(tls,i,y;)11l* for all i EAs, s es. 
1=1 

It is easy to verify that lemma 6.3.1 directly implies the following result. 

6.3.2 'THEOREM 
For a general-sum stochastic game a pair of stationary strate~ies (x • ,y *) is a lim-
iting average equilibrium with limiting average rewards (a1 ,a2*) if and only if 
there exist 81* ,82* ,111• ,l* eRz such that (x • ,y *,a1• ,a2• ,81* ,82* ,111• ,l*) is a glo-
bal minimum in the following non-linear program, with objective value 0. . 
NLP 6.3.2: 

z z 
variables x E X Rm, y E X Rn, a 1 a 2 81 ~2 11.1 u.2 eRz I :, , ' , ,u ,,- ,,-s = s=1 2 z z 
minimize [a} - p(tls,xs,ys)af] 

k=1s=1 1=1 
subject to 

z 

a) a1 ;;a,, p (tls,i,Ys)al for all i EAs, s ES 
t=1 

z 
a; ;;a,: p (tls,xs,j)a; for all j EBs, s ES 

t=1 
z 

b) a1 +81 = r 1(s,xs,Ys) + p(tls,xs,Ys)8f for alls ES 
t=1 

z 
a; +8; = r2(s,xs,Ys) + p (tls,xs,Ys)8; for alls ES 

t=1 
z 

c) a1 +111;;.,, r 1(s,i,ys) + p(tls,i,ys)11l for all i EAs, s ES 
1=) 
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z 
o:; + µ,; ;;. r2(s,xs,j) + L p (tls,xs,j)µ,f for all j EBs, s ES 

t=I 
m:r n:r 

d) L xs(i)= 1, LYsU)= 1 for alls ES 
i=I j=I 

e) Xs;;. 0, Ys ;;. 0 for alls ES. 

Observe that constraints (a) of NLP 6.3.2 imply that for any feasible solution 
the objective value is non-negative. 

For the ,8-discounted criterion feasible solutions with objective value near 0 
in NLP 6.2.2, turned out to correspond with ,8-discounted £-equilibria (for 
specific £>0). Unfortunately, feasible solutions with objective value near O in 
NLP 6.3.2 do not necessarily correspond with limiting average £-equilibria. 
This is illustrated in the next example. 

6.3.3 EXAMPLE 

State I State 2 

Let x = ((1-£,£), I), y = (1, I), o:1 = (1,0), 82 = (-11£,0) and o:2 = 81 = 
µ,1 = µ,2 = 0, where £>0. It is easy to verify that (x,y, o:1,o:2 ,81 ,82 ,µ,1,µ,2) is a 
feasible solution of NLP 6.3.2 with objective value £. 
It is clear that (x,y) is not a limiting average £-equilibrium for £E(0, I), because 
y1(1,x,y)= 0 <I= y1(1,x*,y) with x•= ((1,0),1). 

Since example 6.3.3 is a zero-sum stochastic game, it also demonstrates that 
the restriction of NLP 6.3.2 to zero-sum stochastic games does not yield a pro-
gram for which near-optimal solutions correspond with stationary limiting 
average £-optimal strategies. 

However for zero-sum stochastic games we present a powerful non-linear 
program for which feasible solutions with objective value near O do indeed 
correspond with stationary limiting average £-optimal strategies. The non-linear 
program NLP 6.3.4 (below) completely characterizes stochastic games with sta-
tionary limiting average (£-)optimal strategies. For any stochastic game NLP 
6.3.4 finds 'best' stationary strategies with respect to the 'distance measure' 
d( , ) defined by: . 

z 
d(x*,y*):= L [max y 1(s,x,y*)- min y1(s,x•,y)]. 

s=I x Y 

Thus d( , ) is a measure for the 'distance from optimality' of any pair of 
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stationary strategies (x • ,y *). 
Notice that for each sES it holds that maxy1(s,x,y*) - min y1(s,x*,y) is 

X J 
non-negative and: d(x • ,y *)= 0 if and only if x • and y • are stationary limiting 
average optimal strategies. If d (x • ,y *) > 0, then x • and y • are both limiting 
average £-optimal for some €E[0,d(x • ,y *)]. 

6.3.4 THEOREM 
For a zero-sum stochastic game the following results hold. 

z z 
If there exist x • E X llim', y • E X Iii\ a 1 • ,,x2*, 81* ,82* Elliz such that 

s=l s=l 
(x•,y•,a1•,a2•,81*,82*) is a feasible solution with objective value t:(;;a,,0) in NLP 
6.3.4 below, then x • and y • are stationary limiting average £.-optimal strategies 
for the respective players. . 
Conversely, if x • and y • are stationary~ limiting average £.-optimal strategies, then 
there exist a 1•,a2•,81*,82* Elliz such that (x•,y•,a 1•,a2•,81*,82*) is a feasible 
solution with objective value 2zt:, or less, in NLP 6.3.4. 
NLP 6.3.4: 

z z. 
variables x E X llim,, y E X llin, ,a1 ,a2 ,81 ,82 Elli 2 

s=J s=l 
z 

minimize (a1 + a;) 
s =I 

subject to 
z 

a) a1 ;;a,, p (tjs,i,y8 )a} for all i EA8 , s ES 
I =I 

z 
b) a1+81;;a,,r 1(s,i,ys)+ ~p(tjs,i,y8 )8}foralliEA8 ,SES 

I =I 
z 

c) a; ;;a,, p (tjs,x8 ,j)a; for all j EB8 , s ES 
t=I 

z 
d) a; +8; ;;a,, -r 1(s,x8 ,j) + p(tjs,x8 ,j)8; for all j EB8 , s ES 

I =I 
ms n:r 

e) xs(i)= 1, ys<J)= 1 for alls ES 
i=l j=I 

f) Xs ;;a,, 0, Ys ;;a,, 0 for alls ES. 

PROOF: 
Suppose that (x•,y•,a1•,a2•,81*,82*) is feasible in NLP 6.3.4 with objective 
value t:;;a,,0. 
By constraints (e) and (f) we have x• EX andy* EY. 
Constraints (a) and (b) imply a1* ;;a,, y1(s,x,y *) for all s ES, x EX by lemma 
1.5.6. Similarly (c) and (d) imply a;* ;;a,,y2(s,x*y)= -y1(s,x*,y) for all sES, 
yEY. . 
Hence a1 +a; ;;;;,,y1(s,x,y•)-y1(s,x•,y) for all xEX,yEY, sES. 
Especially a1 +a; ;;a,, y1(s,x * ,y *) - y1(s,x • ,y *)= 0 for alls ES. 

z 
Since (a1 +a;)=£, we conclude that a1 +a;,,;;;;£ for alls ES. 

s=J 
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It follows that for alls ES, x EX, y E Y we have: 
I* :>-,I **:>-,I * y (s,x ,y) + t: ,,__ y (s,x ,y ) ,.,_ y (s,x,y ) - t:. 

So the strategies x • and y * are limiting average t:-optimal. 
To prove the converse statement, suppose that we have stationary limiting 

average t:-optimal strategies x• EX, y" EY. Then constraints (e) and (f) are 
satisfied. 
By solving MDP(y*) with respect to the limiting average reward criterion (cf. 
Hordijk & Kallenberg [1979)) there exist a 1* and 81* such that (a) and (b) are 
satisfied. Moreover, we have that a1* = max y1(s,x,y *),;;;; y1 (s,x • ,y *) + t: for 

XEX 
each s ES. Similarly there exist a2* and 82* such that constraints (c) and (d) are 
satisfied and a;*= max (-y1(s,x • ,y)),;;;; -y1(s,x • ,y *) + t:. 

J.EY 
Hence (x • ,y *,a1• ,a2* ,81* ,82*) is a feasible solution of NLP 6.3.4 and the 

z 
corresponding objective value is (a;* +a;*),,;;;; 2zt:. 

s=I 

Theorem 6.3.4 implies that by solving NLP 6.3.4 'best' stationary strategies can 
be found, as can be seen from the following results. 

6.3.5 COROLLARY 
If (x*,y",a1•,a2•,81*,82*) is a global minimum in NLP 6.3.4 with objective value 
µ-;;i:O, thenµ= d(x • ,y *),,;;;; d(x,y) for all x EX, y E Y. 

PROOF: 
Let (x",y",a1",a2*,81*,82*) be a global minimum in NLP 6.3.4 with objective 
valueµ. By the constraints (a), (b), (c) and (d) it holds that: 

a1* -;;i: max y1 (s,x,y *) for all s ES, 
XEX 

a;* -;;i: max y2(s,x • ,y)= - min y1(s,x • ,y) for alls ES. 
yEY yEY 

Since (x*,y*,a1•,a2*,81*,82*) is a global minimum, equality must hold in all 
these inequalities. Otherwise, by solving MDP(x *) and MDP(y *) one could 
find variables a 1 ,a2,81 ,82 for which equality indeed holds, and hence 

z 
(a; +a;)<µ would contradict the minimality of (x *,y *,a1* ,a2* ,81* ,82*). 

s=I 
z 

We conclude thatµ= (a;* +a;*)= d(x",y*). 

For any Pl!IT _of stati~;~ strategies (x,y) one can find a:1 ,a2i ,s2 such that 
(.x,y,a1,a ,s1 ,s2) is feasible in NLP 6.3.4 and such that a;= max y1(s,x,y) and 

XEX 
-2 . I - -1 -2 a.= -mm y (s,x,y) for all SES. Thenµ,,;;;;""' (a.+a.)= d(x,y) by the 

yEY s=l 
minimality ofµ. 
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6.3.6 COROLLARY 
Suppose that the minimum in NLP 6.3.4 does not exist, but that the infimum 
equals µ(;;..O), then for every t:>0 there exist stationary limiting average (µ+t:)-
optimal strategies for both players. 

PROOF: 
For every t:>0 there exists (x*,y*,a1•,a2•,81*,82*) which is feasible in NLP 
6.3.4 with objective value less than µ+t:. From theorem 6.3.4 it follows that x • 
and y • are stationary limiting average (µ+t:)-optimal strategies. 

Without proof we state. 

6.3.7 COROLLARY 
For a zero-sum stochastic game there exist stationary limiting average £-optimal 
strategies for both players and for all t:>0, if and only if the infimum of NLP 
6. 3.4 is equal to 0. 

6.4 PROGRAMS FOR THE TOTAL REW ARD CRITERION 

From the bad match (section 5.4) it is clear that stationary total equilibria do 
not necessarily exist, not even in stochastic games for which the limiting aver-
age rewards are O for all pairs of stationary strategies. Nevertheless we can for-
mulate non-linear programs for which optimal solutions correspond with sta-
tionary total equilibria. We make use of the following lemma. 

6.4.1 LEMMA 
For a stochastic game with the property that l(x,y)=O for all stationary stra-
tegies x and y, we have: a stationary strategy x • is a total best reply against 
y * E Y if and only if there exist a•, 8* and µ * E Iii z such that 

z 
a) a;= r 1(s,x;,y;) + p(tls,x;,y;)a; for all sES 

t=I 
z a; ;;..r 1(s,i,y;) + ~p(tJs,i,y;)a; for all iEAs, sES 

I =I 
z 

b) a; +8; = p(tls,x;,y;)8; for alls ES 
t=I 

z 

c) a;+µ;;;.. ~p(tJs,i,y;)µ; for all iEAs, sES 
t=I 

PROOF: 
The 'if-part follows directly from the lemmas 1.5.7, 1.5.8 and theorem 5.2.5. 
The 'only-if-part can be shown in a similar way as the proof for the 'only-if 
part of theorem 5.3.2. 

Lemma 6.4.1 directly leads to the following theorem. 
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6.4.2 THEOREM 
For a general-sum stochastic game with Y'(x,y) = 0 for all x EX, y E Y, we have: 
a pair of stationary strategies (x • ,y*) EX X Y is a stationary total equilibrium 
with total reward (o:1* ,o:2*) if and only if there exist 81* ,82* ,µ1* ,µ2* Elliz such that 
(x • ,y • ,o:1* ,o:2* ,81* ,82* ,µ1* ,µ2*) is a global minimum in the following non-linear 
program with objective value 0. 
NLP 6.4.2: 

z z 
variables x E X Rm, ,y E X yn,, o:1 ,o:2 ,81 ,82 ,µ1 ,µ2 ERz 

s=I s=1 
2 z z 

minimize [a}-rk(s,Xs,Ys) - p (tls,xs,Ys)a~] 
k=1 s=I t=I 

subject to 
z 

a) o:1 ;;;. rk(s,i,ys) + p(t]s,i,Ys)a! for all i EA8 , s ES 
t=1 

z 
a;;;;. rk(S,X8 ,j) + p(tls,X8 ,j)a; for all j EBs, s ES 

t=1 
z 

b) a1 +8} = ~p(tls,xs,Ys)8J for all SES 
t=1 

z a; +8; = p (tls,xs,Ys)8; for alls ES 
t=I 

z 
c) o:} + µ1;;;. p (tls,i,y8 )µJ for all i EAs, s ES 

t=l 
z 

a;+µ;;;;. p(tls,x8 ,j)µ; for all jEB8 , s ES 
t=l 

m, ns 
d) xs(i)= 1, ys(J)= 1 for alls ES 

i=l j=l 
e) Xs ;;;. 0, Ys ;;;. 0 for alls ES. 

Like in the previous sections we wonder whether or not near-optimal solutions 
of NLP 6.4.2 correspond with total t:-equilibria. For the total reward criterion 
we find that, as for the limiting average criterion, there is no such correspon-
dence. This is illustrated by the next example. 

6.4.3 ExAMPLE 

State 1 State 2 State 3 

Let x=((l-t:,t:),1,1), 0<t:<l, y=(l,1,1), o:1 =(1,0,0), 81 ={1/t:,2/t:,l/t:), 
o:2 = (0,0, I), 82 = (I, 1/t:,0) and let µ1 = µ2 = (0,0,0). Furthermore let 
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x*=((l,0),1,1). Then (x,y,a1,,x2,81,82 ,µ,1,µ,2) is a feasible solution of NLP 
6.4.2 with objective value £. However y}(l,x,y)= 0 < ½= y}(I,x*,y) and 
hence (x,y) is no total £-equilibrium for fE(O,½). 

Since example 6.4.3 is a zero-sum stochastic game we conclude that the restric-
tion of NLP 6.4.2 to zero-sum stochastic games, does not yield a program for 
which near-optimal solutions correspond with stationary total £-optimal stra-
tegies. Nevertheless we present a non-linear program which has this property. 

6.4.4 THEOREM 
For a zero-sum stochastic game with i'(x,y) = 0 for all x e.X, ye Y, we have: 

z z 
If there exist x* E X Rm', y* E X R\ a 1*,a2*,81*,82* eRz such that 

s=I s=I 
(x*,y*,a1*,a2*,81*,82*) is a feasible solution with objective value £(;;.,O) in NLP 
6.4.4 below, then x * and y • are stationary total £-optimal strategies for the 
respective players. 
Conversely, if_ x * and y * are stationary total £-°f.timal strategies, then there exist 
a 1*,a2*,81*,82* eRz such that (x*,y*,a1*,a2*,8 *,82*) is a feasible solution with 
objective value less than 2u in N LP 6. 4.4. 
NLP 6.4.4: 

z z 
variables x E X Rm, ,y E X Rn,, a1 ,a2 ,81,82 eRz 

s=I s=I 
z 

minimize (a} +a;) 
s=I 

subject to 
z 

a) a} ;;., r 1(s,i,ys) + p(tls,i,ys)aJ for all i EAs, s eS 
t=I z a;;;., -r 1(s,xs,j) + ~p(tls,xs,j)a; for alljeBs, seS 

t=I 
z 

b) a} +81;;., ~p(tls,i,ys)8}forallieAs, seS 
t=I 

z a; + 8; ;;., p (tls,xs,j)8; for all j eBs, s eS 
t=I m, n, 

c) ~xs(i)= 1, ys<J)= I for all seS 
i=l j=I 

d) Xs ;;., 0, Ys ;;., 0 for alls ES. 

PROOF: 
Suppose that (x*,y*,a1*,a2*,81*,82*) is feasible in NLP 6.4.4 with objective 
value£. By constraints (c) and (d): x* eX,y* eY. By constraints (a) and (b) we 
have, using lemma 1.6.a, that: 
y}(s,x,y*)..;; a}* and -y}(s,x*,y)= y}(s,x*,y)..;; a;* for all xeX,yeY, seS. 
Hence y}(s,xy.7 *) - y}(s,x * ,y)..;; a}* +a;* for all x eX, y E Y, s eS. 
Especially as• +a;* ;;., y}(s,x * ,y *) - y}(s,x *,y *)= 0 for all s ES. Since 

z 
(a}* +a;*)=£ we conclude that£;;., a}* +a;* ;;., 0 for alls eS. 

s=I 
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Hence for alls ES, x EX and y E Y we have: 

y}(s,x • ,y) + £;;. y}(s,x • ,y *);;. y}(s,x,y *)- £, 

which means that x • and y • are stationary total £-optimal strategies. 
Conversely, if x • and y • are stationary total £-optimal strategies, then con-

straints (c) and (d) are satisfied. By solving MDP(x*) there exist a.2* and 82* 
such that (a) and (b) for player 2 are satisfied (cf. lemma 6.4.1). Similarly one 
can find a. 1* and 81* by solving MDP(Y *). Then (x *,y • ,a.1* ,a.2* ,81* ,82*) is feasi-
ble in NLP 6.4.4. By lemma 6.4.1 we have for all s ES: 

a.1* = max y}(s,x,y *)..;; y}(s,x • ,y *) + £ and 
XEX 

2• _ 2( • ) 2( • *) + - Lt • *) + as - max 'YT s,x ,y ..;; 'YT s,x ,y £-, -yT\s,x ,y £. 
yEY 

It should be observed that NLP 6.4.4 finds 'best' stationary strategies for the 
total reward criterion. 
Here a 'best' pair of stationary strategies is a pair (x • ,y *) such that 

z 
dr(x',y*):= ·~ [max y}(s,x,y*)- min y}(s,x•,y)] is (near-)minimal. 

s =l XEX yEY 

Without proofs we formulate some implications of theorem 6.4.4. They can 
be proved in a similar way as the corresponding results for the limiting average 
reward criterion were proved. 

6.4.5 COROLLARY 
If (x•,y•,a.1•,a.2•,81*,fP) is a global minimum in NLP 6.4.4 with objective value 
µ,;;;,,O, thenµ,= dT(x* ,y*)..;; dT(x,y)for all xEX, yEY. 

6.4.6 COROLLARY 
Suppose that the minimum in NLP 6.4.4 does not exist, but that the. infimum 
equals µ,(;;;,,0), then for every £>0 there exist stationary total (µ,+£)-optimal stra-
tegies for both players. 

6.4.7 COROLLARY 
For a zero-sum stochastic game both players have stationary total £-optimal stra-
tegies for all £>0, if and only if the infimum of NLP 6.4.4 is equal to 0. 
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