

CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CW!, Amsterdam)
J.K. Lenstra (Eindhoven University of Technology)

Editorial Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.C. Backhouse (Eindhoven)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
H.J. Sips (Delft)
M.N. Spijker (Leiden)
H.C. Tijms (Amsterdam)

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Telephone 31 - 20 592 9333, telex 12571 (mactr nl),
telefax 31 - 20 592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

CWI Tract 81

A parallel object-oriented language:
design and semantic foundations
P.H.M. America
J.J.M.M. Rutten

{)
cw,
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 68055, 68010.
1987 Computing Reviews Categories: 0.1.3, D.3.1, F.1.2, F.3.2.
ISBN 90 6196 402 4
NUGl-code: 811

Copyright© 1991, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Acknowledgement
The present text is an unaltered version of our Ph. D. thesis, written under the guidance
of Prof. Jaco de Bakker, who was the promotor. Prof. Gordon Plotkin was the referee.
The thesis was defended at the Free University (Amsterdam) on May 17, 1989.

Contents
1 Introduction

2 Issues in the design of a parallel object-oriented language

3 Solving reflexive domain equations in a category of complete metric

1

5

spaces 67

4 Denotational semantics of a parallel object-oriented language 97

5 Designing equivalent semantic models for process creation 139

6 Contractions in comparing concurrency semantics 207

7 Semantic correctness for a parallel object-oriented language 247

8 A semantic approach to fairness 291

1

Introduction
The work described in this tract has been inspired by the parallel object-oriented language
POOL. The tract describes the design of the language itself and the techniques that have
been used to give it a formal semantics. The language POOL, or more precisely, this
family of languages, has been developed as a vehicle for writing application programs for
a parallel computer. Programming such a parallel machine is considerably more difficult
than programming a sequential machine, but if it works, a parallel machine can do the
job faster and cheaper than a sequential one.

POOL is directed towards symbolic applications, in contrast to numerical ones. Due
to their irregularity, symbolic applications are more difficult to implement correctly and
efficiently on a parallel machine. POOL tries to alleviate these problems by supporting
an object-oriented programming style, which is currently the best available technique to
structure large and complex software systems. In an object, pieces of data are closely
integrated with the operations that can be applied to them and together they are
protected from the outside world by an explicit interface: The internals of an object
can only be reached by sending it messages of a precisely determined kind. In POOL,
such an object also contains a local process, so that it can ·operate in parallel with the
other objects in the system. The same message interface protects the sequential inside
of an object against the parallel outside world.

This tract consists of a collection of papers, all of which have been, or soon will be
published elsewhere:

• Pierre America.
Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, Vol. 1, No. 2, 1989, pp. 366-411.

• Pierre America and Jan Rutten.
Solving reflexive domain equations in a category of complete metric spaces.
Journal of Computer and System Sciences, Vol 39, No. 3, 1989, pp. 343-37.5.

• Pierre America, Jaco de Bakker, Joost Kok and Jan Rutten.
Denotational semantics of a parallel object-oriented language.
Information and Computation, Vol. 83, No. 2, 1989, pp. 152-205.

• Pierre America and Jaco de Bakker.
Designing equivalent semantic models for process creation.
Theoretical Computer Science, Vol. 60, No. 2, September 1988, pp. 109-176.

• Joost Kok and Jan Rutten.
Contractions in comparing concurrency semantics.
Report CS-R8755, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, November 1987. An extended abstract appeared in T. Lepisto
and A. Salomaa, editors, Proceedings of the 15th International Colloquium on
Automata, Languages and Programming, pp. 317-332, Lecture Notes in Computer
Science 317, Springer-Verlag, 1988. (To appear in Theoretical Computer Science.)

2

• Jan Rutten.
Semantic correctness for a parallel object-oriented language.
SIAM Journal on Computing, Vol. 19, No. 3, 1990, pp. 341-383.

• Jan Rutten and Jeffery Zucker.
A semantic approach to fairness.
Report CS-R87.59, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, November 1987. (To appear in Fundamenta Informaticae.)

The first paper, "Issues in the design of a parallel object-oriented language", gives a
more extensive introduction to the language POOL2, the member of the POOL family
that is currently being used in subproject A of ESPRIT Project 41.5. It also discusses
the factors that have influenced the most important decisions in the design of this
language. Among others, it presents the basic principles of object-oriented programming,
it compares several alternative ways of integrating parallelism into an object-oriented
language, and it explains the viewpoint taken in POOL towards typing and inheritance.
It also gives an overview of the studies on formal aspects of POOL.

The rest of the papers are concerned with formal semantic models for parallel languages,
in particular POOL. Object-oriented programming has grown out of an intuitive understanding
of what are the important issues in the organization of large software systems. The
development of a formal basis for this programming style has been somewhat neglected
for a long time. Recently it has become clearer and clearer that such a formal understanding
is indispensable in order to make the right choices in the complex process of designing
object-oriented systems. This is even more important in parallel systems, where we can
rely even less on our intuition.

In this tract we discuss two styles of formal semantics that have been developed for
POOL: operational semantics and drnotational semantics. The operational formalism
describes the execution of a POOL program in terms of a sequence of transitions between
states. The possible transitions are described by a transition relation, which is defined
inductively by axioms and rules, corresponding to the syntactic structure of the language.
For POOL, an operational semantics along these lines was first described in the paper
"Operational Semantics of a Parallel Object-Oriented Language", by Pierre America,
.Jaco de Bakker, Joost Kok, and Jan Rutten, which appeared in the Conference Record of
the 13th Symposium on Principles of Programming Languages, St. Petersburg, Florida,
January 13-1.5, 1986, pp. 194-208. Chapter 7 of this tract also defines such an operational
semantics for POOL.

The denotational semantics works by defining for each syntactic category (e.g., statements,
expressions) a meaning function that maps a syntactic construct to an element of some
mathematical domain. Here the main point is the principle of compositionality: the
meaning of a composite construct only depends on the meaning of its constituent parts,
not on their actual form. This denotational semantics is described in the third paper
included here, "Denotational semantics of a parallel object-oriented language". The
mathematical domain used here is a complete metric space, which is obtained as a solution
of a reflexive domain equation. The second paper in this collection, "'Solving reflexive
domain equations in a category of complete metric spaces", develops a category-theoretic

3

technique by which a large class of these domain equations can be solved (uniquely up
to isomorphism).

The next three papers are devoted to establishing the relationship between operational
and denotational semantics. The paper entitled "Designing equivalent semantic models
for process creation" investigates this relationship in the context of four languages,
ranging from a very simple language with uninterpreted atomic action and a static
process structure to a language where the individual processes can store and communicate
data and where new processes can be created dynamically. For each of these languages it
is proved that the operational semantics and the denotational semantics are equivalent, or
in other words, that the denotational semantics is correct with respect to the operational
semantics. This means that there exists an abstraction operator that takes the denotational
semantics of a program and, by stripping away the structure necessary for compositionality,
produces exactly the operational semantics.

The technique used to prove this is essentially based on the introduction of semantic
operators that replace the so-called continuations used in the denotational semantics.
Unfortunately this leads to long and complicated proofs. Therefore, in the next paper,
"Contractions in comparing concurrency semantics", a different technique is developed,
which defines the semantic functions themselves as fixed point of some higher-order
operators and relates these operators to each other. In the sixth paper, "Semantic
correctness for a parallel object-oriented language", this technique is applied to the
language POOL, with all its semantically essential constructs, thereby establishing the
correctness of the denotational semantics with respect to the operational semantics.

The last paper in this collection, "A semantic approach to fairness", deals with
fair processes and fair operations on processes, in the same context of complete metric
spaces as the preceding papers. For a simple semantic model, which can be used for the
denotational semantics of languages with uninterpreted atomic actions, it is shown how
to derive from any process a fair version, which does not postpone certain alternatives
forever when repeatly choices must be made. Moreover, it shows how a fair version of
the infinite iteration of a single process can be constructed.

Issues in the design of a
parallel object-oriented language

Pierre America

Abstract

This document discusses the considerations that have played a role in the de-
sign of the language POOL2. This language integrates the structuring techniques
of object-oriented programming with mechanisms for expressing parallelism. We
introduce the basic principles of object-oriented programming and its significance
for program development methodologies. Several approaches for integrating ob-
jects and parallelism are compared and arguments for the choices made in POOL2
are presented. We also explain why inheritance is not yet included in POOL2.
A brief overview of the research in formal aspects of POOL is given. Finally we
indicate some directions for future developments.

Note: A revised version of this article appeared in Formal Aspects of Computing. The ori-
ginal wrsion is reproduced in this tract with kind permission of the British Informatics
Society Ltd.

5

6

1 Introduction
It is generally accepted that the speed of computers that are organized according to
the traditional Von Neumann model is approaching its physical limits. In this model,
instructions and data are transported back and forth between processor and memory
through the famous "Von Neumann bottleneck" and as memories become larger and
processors faster, we come closer and closer to the limit that the speed of light imposes
on the bandwidth of this bottleneck. A large number of solutions to this problem
have been proposed, ranging in radicality from caches [Smi82], which serve as a kind
of "impedance adapters" between a fast processor and a slow memory, to completely
different computer organizations that are to be combined with revolutionary models
of computations (see, e.g., [FFGL88,TBH82]).

An approach in between these extremes proposes the use of a number of traditional
processors, each with its own private memory and connected together by a network
by which they can exchange information. Provided the network is designed carefully,
this organization is scalable to a very large number (several thousands) of processors.
Several concrete architectures are based on this general principle [Hil85,Odi87,Sei85].

A problem at least as difficult as designing such parallel machines is how to program
them. Traditional programming languages such as Fortran and Pascal are closely
related to the von Neumann architecture: they describe a single sequence of actions that
the computer should perform. It is not at aH an easy task to transform such a program
automatically to an equivalent program that makes efficient use of the opportunities
for parallelism provided by the hardware. Only for numeric applications, which often
have a simple control structure that is largely independent of the actual values of the
data, attempts in this direction have been successful, first for vector computers [Ken80]
and more recently also for MIMD computers [ACK87]. For symbolic computations,
with their more irregular and data-dependent structure, the automatic exploitation of
parallelism in traditional programming languages is much more difficult and it has not
yet lead to results that are useful in practice.

A drastic approach to this problem is to use pure functional [Bac78,Tur85] or logic
[Kow79] programming languages. The idea is that a program in these languages only
expresses what information the programmer wants, not how this should be obtained.
By only giving the essential dependencies between input and output, this should leave
enough freedom for the implementation to detect and exploit the parallelism automat-
ically. And in fact, the detection of potential parallelism in these languages is quite
easy. However, its exploitation has turned out a much more difficult task than it had
been initially assumed. Despite the advances made in the last years, the use of implicit
parallelism in purely functional and logic languages is not yet understood well enough
to be able to base a complete system exclusively on this kind of languages. Therefore
it remains necessary to use languages that provide explicit mechanisms for expressing
and controlling parallelism.

Dealing with parallelism is not the only problem in programming symbolic appli-
cations for parallel machines. The organization of the software itself, data structures,
algorithms, etc., for large and complex applications is often a very difficult matter,

7

where reliability, flexibility, and user-friendliness are important issues. This establishes
a real challenge for software technology. A promising approach to meet this challenge is
object-oriented programming [Cox86,Mey88]. Object-oriented programming languages
offer excellent support for modularity and encapsulation. Object-oriented software
development methods provide a relatively high degree of flexibility and reusability.

In this paper we discuss the most important issues that have played a role in the
design of the programming language POOL2 [Ame88a]. This language integrates the
structuring principles of object-oriented programming with mechanisms for expressing
parallelism. It is intended for formulating applications in the area of symbolic comput-
ing such that they can be executed on a parallel machine called DOOM (Decentralized
Object-Oriented Machine) [Odi87]. The language POOL2 is developed from earlier
languages in the POOL family, in particular POOL-T [Ame85b,Ame87a].

Section 2 explains the basic principles of object-oriented programming and briefly
discusses its impact on software technology. In section 3 we introduce and compare
several different ways in which object-oriented programming can be integrated with
mechanisms for expressing parallelism. Section 4 then gives an overview of several
new language concepts in POOL2 and section 5 explains why inheritance is not one of
them. Then in section 6 an overview is given of the formal studies related to POOL.
Finally, section 7 presents some conclusions and indicates some possible directions for
future developments.

8

2 Object-oriented programming

2.1 Basic principles
In the object-oriented programming style a system is described as a collection of objects
(see figure 1). An object is best defined as an integrated unit of data and procedures
acting on these data. One can think of it as a box that stores some data and has the
possibility to act on these data. The data in an object are stored in variables. The
contents of a variable can be changed by executing an assignment statement.

(var2)

Figure 1: A POOL object

A very important principle is that one object's variables are not accessible to other
objects: they are strictly private. In other words, the box has a thick wall around
it, which separates the inside from the outside. The only way in which objects can
interact is by sending messages to each other (see figure 2). Such a message is in
fact a request from the sender for the receiver to execute a procedure. This kind of
procedures, which are executed in response to messages, are called methods in POOL.
The receiver decides whether and when it executes such a method, and in some cases it
even depends on the receiver which method is executed (see section 5). In general, the
sender of the message can include some parameters to be passed to the method and the
method can return a result, which is passed back to the receiver. In this way objects
can cooperate and communicate. It is important to note that this interaction between
objects can only occur according to this precisely determined message interface. Thus
every object has the possibility and the responsibility to maintain its own local data
in a consistent state.

Objects are entities of a dynamic nature. At any point in the execution of a program
a new object can be created, so that an arbitrarily large number of objects can come
into existence. (Objects are never destroyed explicitly. However, they can be removed
by garbage collection if it is certain that this will not influence the correct execution
of the program.) In order to describe such systems with many objects, the objects are
grouped in classes. All the elements (the instances) of a class have the same names
and types for their variables (although each object has its own set of variables) and
they all execute the same code for their methods. In this way, a class can serve as a
blueprint for the creation of its instances.

Several object-oriented programming langu11,ges use different 'mechanisms to de-

9

Parameters
Sender Receiver

Result

Ge)
v2

vl := v2 !math2 (v3)

Figure 2: Sending a message

scribe object creation. In general it is agreed upon that creating new objects is not a
natural task for the existing instances of the same class (where would the first instance
come from?) but rather for the class itself. In Smalltalk-SO [GR83] classes are con-
sidered to be objects themselves: they can also be created and changed dynamically.
Therefore it is natural to describe object creation in class methods: a new object can
be created by sending an appropriate message to the class. In POOL it is not natural
to consider classes as objects, because we do not want them to change during program
execution (see also section 5). Therefore in POOL the creation of new objects is done
by routines, a kind of procedures different from methods. Routines are not associated
with certain objects and they do not have direct access to any object's variables. In-
stead, in general (but see section 4.1) a routine is associated with a class, and it can
be executed by any object that knows it. By encapsulating the creation of new objects
in routines, it can be ensured that such a new object is properly initialized before it is
used.

It is interesting to discuss the nature of the data that is stored and manipulated
in the objects. In general, a variable contains a re/ ere nee to some object. Also in
parameters and results of methods, references are transferred. Some languages, like
Objective-C [Cox86] and Eiffel [Mey87], in addition have some other built-in data
types, like integers and characters, that can be manipulated by the objects. These
languages are sometimes called hybrid object-oriented languages. By contrast, in pure
object-oriented languages, like Smalltalk-SO [GR83] and POOL, every data item is
represented by (a reference to) an object. In these languages, even very simple things
like integers are conceptually modelled as objects. For example the addition 3+4 is
performed by sending to the object 3 a message mentioning the method add and having
(a reference to) the object 4 as a parameter. In response to this message, the object 3
somehow knows how to add itself to the parameter object and it returns the result,
a reference to the object 7, to the sender of this message. Of course, this is just

the conceptual view: in an actual implementation some optimizations will take place
so that these operations can be performed much more efficiently using the hardware
facilities for integer addition.

2.2 A simple example

Window

50 100 150 200

Figure 3: A few objects

Let us illustrate the concepts mentioned above by means of an example. Figure 3 shows
a few objects in a certain state during the execution of a program. We see an instance
of the class Window, which has three variables, contents, position, and size. The
variable contents refers to an unspecified other object (drawn as a "black box"). The
variables position and size each refer to an object of the class Vector. Instances of
the class Vector have two variables, x and y. Both x and y refer to integers, which
are also objects, instances of the class Integer. Integers are drawn as small "black"
boxes. Note that these small black boxes do not represent objects in which integers
are stored. Rather, they themselves are the integers. This is also illustrated by the
fact that whenever two different variables, possibly in different objects, have the same
integer value (e.g., 50) then they refer to the same integer object, instead of storing
each a separate copy of the integer or referring to different objects that store the same

11

integer.
In this section we shall concentrate on the class Window. The following piece of

POOL2 code sketches how it could be described.

CLASS Window

VAR contents Object
position, size Vector

METHOD move (to : Vector) Window
BEGIN

position := to;
display_contents O ; %% a method call
RESULT SELF

END move

METHOD display_contents ()
%% only for internal use!
BEGIN

Window

%% actual text not relevant here
RESULT SELF

END display_contents

METHOD where() : Vector
BEGIN

RESULT position
END where

ROUTINE create (cont
TEMP w : Window
BEGIN

Object, pos, siz Vector)

w :=Window.new();%% the standard routine new
w ! init (cont, pos, siz);
RESULT w

END create

Window

METHOD init (cont : Object, pos, siz Vector) Window
%% for internal use only!
BEGIN

contents := cont;
position := pos;
size := siz;
display_contents ();
RESULT SELF

END init

12

END Window

A little explanation is appropriate here. First the variables are declared, each with its
type. A variable may only refer to instances of the class that is indicated by the type of
this variable. Then the methods and routines are defined. In the method move another
method, display_contents, is called directly (without sending a message). In some
other object-oriented languages this is done by sending a message to the expression
SELF, which always indicates the object executing this expression.

We see that for every access to the internal variables of an object, a method is
needed: the method where simply reads the value of the variable position, whereas
the method move essentially assigns a new value to this variable. In the latter case the
method also ensures that the internal consistency is maintained, which here means that
the window is actually displayed at the point indicated by the variable position. This
illustrates how methods can be used to provide the outside world with a controlled
access to the internal variables of an object.

Note that methods and routines can have temporary variables, which only exist
during the invocation of the method/routine. To distinguish them from the variables
that exist from the object's creation onward, the latter are also called instance variables.
Within a method or routine, the parameters can also occur as expressions, just like
the temporary and instance variables, but parameters are not allowed as the left-hand
side of an assignment.

This example also illustrates the typical use of routines for the creation and initial-
ization of new objects. The routine create takes care of this. The creation of a new
object is done by calling the routine new, which is automatically provided for the class
Window by the language. Then the routine create immediately sends an initializing
message to the newly created object. In our example this is indicated by a sc~called
send statement:

w ! init (cont, pos, siz)

which sends a message to the object referred to by the variable w, specifying the method
ini t and as parameters the values of the expressions cont, pos, and siz. In response
to this message, the object initializes its variables with the information contained in
these parameters and brings itself into a consistent state (by executing the method
display_contents). Only then the routine create returns the new object to its caller.
(In fact, the language POOL2 provides a more convenient notation to make sure that
newly created objects are properly initialized. We have not used this here in order to
illustrate clearly the basic principles.)

Let us finally give a small example of code that uses this class Window. This code
could appear, for instance, in the definition of another class. We assume that w is a
variable of type Window and that v, vl, and v2 are variables of type Vector that have
already been initialized. Finally something should refer to an arbitrary object that
can be displayed in our window. In these circumstances, the following piece of code
creates a new window, moves it around and asks its new position:

w := Window.create (something, v1, v2);
w ! move (v);
vl := w ! where()

13

Note that to the users of the class Window we would like to grant only the routine
create and the methods move and where, and to hide the routine new and the methods
init and display_contents. In POOL, this is made possible by the unit mechanism,
explained in section 3.3.

2.3 Relationship with modules and abstract data types
One may argue that object-oriented programming as introduced above is just a formu-
lation of well-known principles in new terminology: One can compare an object with
a record and sending a message with a procedure call (in fact, this comes very close
to the way in which many object-oriented languages are implemented). For structur-
ing software there are already concepts like modules and_ abstract data types. Let
us therefore first look at the relationship between modules, abstract data types, and
objects.

First we consider the notion of modules, as it appears in, e.g., Modula-2 [Wir82] and
Ada [ANS83] (where the name package is used). Such a module is nothing more than
a collection of declarations of data types, variables, procedures, etc., provided with
an interface that specifies which of these declarations can be used outside the module.
The programmer has a large amount of freedom in choosing what to put in one module
and where to place the boundaries between modules. It is intended that the grouping
of declarations into modules is a meaningful one [Mey82], but the language does not
enforce this in any way. It only enforces that the interfaces, once made explicit, are
observed.

In programming with abstract data types, as exemplified by the notions of 'cluster'
in CLU [LAB*81] and 'form' in Alphard [Sha81], there is a clear notion of what is
contained in a "module", a data type definition, and what i~ is about: Such a definition
should describe one data type, its internal representation and the operations that can
be performed on its instances. The interface with the outside world consists of the
names of those operations that are to be available outside the data type definition,
together with some specification of their behaviour (which is mostly limited to the
types of the parameters and results). The internal representation is not accessible from
outside the data type definition. With respect to modular programming, abstract data
types are much more restrictive in the choice of the boundaries between program units,
but on the other hand they offer a much clearer conceptual view of the meaning of
these units.

Note that both modules and abstract rlata types only offer the guarantee that
the facilities defined in a program unit are used correctly (that the interfaces are
observed) in a statically typed language (a language where for every expression it is
possible to determine the type of the object it denotes from the program text alone,
see section 5.2). In other languages, the use of modules and abstract data types is not

14

completely useless, because it can give a clearer structure to the program, but it does
not offer such a high degree of security as in statically typed languages.

Object-oriented programming is even more restrictive than abstract data types
about the allowed constructs in a class definition. In the definition of an abstract data
type A, the operations performed on the type ca.n access the internal details of all their
arguments tha.t a.re of type A, and there may be more than one of these. In object-
oriented programming, however, a method can only access the variables of the object
it is associated with {the destination of the corresponding message). So the internal
details of only one object at a time can be accessed.

Let us illustrate this with an example. Below is the definition of an abstract data
type of complex numbers with addition as its only operation (we use an imaginary
syntax):

TYPE Complex
VAR re, im: Float

OP add (x, y : Complex) : Complex
TEMP z : Complex
BEGIN z : = Complex. new O ;

z.re := x.re + y.re;
z.im := x.im + y.im;
RESULT z

END add

We see that the code of the operation add has access to the re and im variables of
both its arguments plus the new object that is to be the result. The difference will be
clear with the following corresponding class definition in an object-oriented style:

CLASS Complex
VAR re, im: Float

METHOD add (y: Complex) : Complex
1% the first operand is the destination of the message
TEMP z : Complex
BEGIN z Complex. new O ;

z ! put_re (re+ y get_re ());
z ! put_im (im + y ! get_im ());
RESULT z

END add

METHOD put_re (new_re
BEGIN re := new_re;

RESULT SELF'
END put._re

METHOD. get_H 0 Float

Float) Complex

BEGIN RESULT re
END get_re

METHOD put_im (new_im Float)
BEGIN im := new_im;

RESULT SELF
END put_im

METHOD get_im ()
BEGIN RESULT im
END get_im

Float

15

Complex

Here the code of the method add only has direct access to the variables re and im of
its destination object. Messages must be sent to obtain the real and imaginary part of
the second operand y and to fill the variables of the resulting object z.

One can express this difference between modules and abst.ract data types on the one
hand and object-oriented programming on the other hand by saying that with modules
and abstract data types, protection takes place at a syntactic level (each module is
protected against the other modules), whereas with object-oriented programming the
protection is at a semantic level (each object is protected against the other objects).
This results in a finer granularity, because different object are protected against each
other even if they are described by the same class definition.

2.4 Impact on software development
The most important contribution of object-oriented programming in the direction of
better software development methods stems from the fact that it is a refinement of
programming with abstract data types: It encourages the grouping together of all the
information pertinent to a certain kind of entities and it enforces the encapsulation of
this information according to an explicit interface with the outside world. For the user
of a certain class, the set of available methods and routines, together with a description
of their behaviour (including at least the types of the parameters and results), is all
that is relevant. The inside of the objects, the variables and the code of methods and
routines, is completely inaccessible to him.

Two important quality aspects of software are addressed by this technique: The
first one is adaptability: If a piece of software must be modified (a frequently occurring
phenomenon), it is very often the case that many of the relevant pieces of code are
inside one class definition instead of spread out over the whole program. Moreover, if
the interface of such a class is unchanged or only extended (new methods are added,
but the old ones retain their functionality), it is clear that the rest of the program
will not be affected by the change. Another aspect is reusability: A class that is well-
designed and validated by testing or verification can be used over and over again in
different programs. In order to be able to use a class, one need only consider the
external interface; the internal details are irrelevant.

It is true that modules already provide the possibility of encapsulating pieces of

16

software. However, they do not give guidelines about which definition should be placed
together in a module. By choosing a wrong subdivision of a system into modules, it
is very well possible to arrive at a collection of modules that not easily adaptable or
reusable. The extra value of abstract data types and object-oriented programming is
that in addition these techniques give an idea about what belongs in one "module": A
class definition describes one class of entities, together with all the operations that can
be performed on them. It has turned out in practice that this indeed leads to a better
system structure.

Object-oriented programming also leads to a different way of designing software.
The common technique of top-down functional design starts from the required end-to-
end functionality of a complete program and divides this iteratively into subfunctions
until basic language primitives are obtained. The resulting software is not very adapt-
able to changing requirements, because in practice the changes mostly pertain exactly
to this end-to-end functionality. Moreover it is very unlikely that the subfunctions into
which the program is divided coincide precisely with subfunctions in another program,
which would allow reuse of software, because these subfunctions are obtained in an
ad hoc way for each program separately. By contrast, object-oriented design initially
focuses on the basic entities (objects) manipulated by the program and it grows to-
wards the required end-to-end functionality in a rather bottom-up way. The resulting
software is often easier to adapt to changing circumstances, because these basic entities
are not very likely to change. Moreover, this way of designing software leads more often
to meaningful software components that can be re-used. (A more extensive discussion
of these issues can be found in [Mey88].)

In a strongly typed, sequential environment the extra protection offered by object-
oriented programming when compared with abstract data types does not seem very
important. Indeed, it may even be a nuisance, as in the above example about complex
numbers. One of the reasons nevertheless to choose an object-oriented language in this
situation might be that good object-oriented languages are available [Mey87,Str86],
whereas languages that directly support abstract data types are not so widely available.

However, as soon as we leave this safe environment, the extra protection becomes
really useful. As an example we mention dynamically typed languages, i.e., languages
in which every data item has a well-defined type but where it is in general not possible
to determine this type from the program text only. A well-known example is Lisp
[MAE*80,Ste84]. This kind of languages are often used for rapid prototyping, a tech-
nique where a "quick and dirty" preliminary version of a program is produced in order
to experiment with certain aspects, in particular the user interface. Since the resulting
prototype program will not be used for production purposes (it is to be hoped!), relia-
bility is not such an important issue, but flexibility is important, because a prototype
program must be changed often and quickly. Therefore the use of a dynamically typed
language is justified.

Some of the problems with programming in such a language are that it is in general
not very well possible to make the structure of the data explicit (everything is coded
in lists) and that errors are detected too late and at too low a level (a common error
message in Lisp says that you have tried to extract the first element of an empty

17

list). Object-oriented programming can help here: A class describes the organization
of a certain kind of data very clearly: it gives the internal representation and the
available operations. Furthermore the object-against-object protection mechanism,
unlike the type-against-type protection of abstract data types, also functions in a
dynamically typed situation. Therefore errors can be caught earlier: the most common
error message in a dynamically typed object-oriented language is that a message has
been sent to an object that does not have an appropriate method, which occurs as soon
as a data entity is being used in a wrong way.

Object-oriented programming in dynamically typed languages does not stand in
the way of flexibility, but it cari help in making the structure of a system explicit.
This is probably an important reason why object-oriented languages like Smalltalk-
80 [GR83] and object-oriented extensions of Lisp [WM80,BDG*87] are so popular for
rapid prototyping. Another reason is the support for reusability: If a prototype must
be made from scratch, the amount of work this costs can be prohibitive. If however
one can make use of a good collection of well-organized software for recurring tasks (for
example, handling windows and menus on a bit-mapped <lisplay) then sophisticated
systems can be constructed very quickly because one only has to take care of the
essentials.

Another area in which an object-oriented approach has proved to be valuable is
operating systems [Jon78,MT86,WLH81]. Here, again, it is impossible to check stati-
cally whether certain operations are permitted and the object-oriented approach gives
a good model along which the dynamic checks can be organized. In these systems,
the object-oriented principles are often complemented by using capabilities instead of
just object references. Such a capability not only indicates the identity of an object,
but it also explicitly determines the set of operations that may be performed on the
object by the holder of the capability. This set may be smaller that the set of all the
operations that the object itself admits. It must be admitted that the techniques used
in these kinds of operating systems are often quite expensive, so that objects should be
fairly large and message should not be sent too often in order to maintain a reasonable
performance. Often traditional mechanisms are used to describe the actions of the
system on a lower level.

Apart from dynamically typed systems, also parallel programming constitutes an
area where the more fine-grained protection of object-oriented programming presents
a clear advantage above abstract data types. This is the subject of section 3. Further-
more, even in statically typed systems, there is a structuring mechanism, inheritance,
which can be used with object-oriented programming but not in general with abstract
data types. This mechanism is discussed in detail in section 5.1.

18

3 Parallelism

3.1 Integrating parallelism in an object-oriented language
Despite the terminology of "message passing", most existing object-oriented languages
are sequential in nature. This can be explained by the fact that they observe the
following restrictions:

1. Execution starts with exactly one object being active.

2. Whenever an object sends a message, it does not do anything before the result
of that message has arrived.

3. An object is only active when it is executing a method in response to an incoming
message.

Under these conditions we can see that at any moment there is exactly one active
object, although control is transferred very often from one object to another.

Now one can think of several ways to introduce parallelism to object-oriented lan-
guages. One possibility is to add processes as an orthogonal concept to the language.
In some sense this can be seen as eliminating restriction 1. Several processes can be
active at the same time, each one executing an object-oriented program in the way de-
scribed in section 2.1. These processes act on the same collection of objects; it is even
possible that they are executing the same method in the same object at the same time.
This way of dealing with parallelism has been adopted by some languages that were
initially meant to be purely sequential, such as Smalltalk-SO [GR83] and Trellis/Owl
[SCB*86,MK87].

While this approach seems appealing theoretically, it is not so attractive in practice.
The point is that it does not at all solve the problems associated with parallelism (we
shall come back to this point later). There are still extra facilities needed for synchro-
nization and mutual exclusion. To that end, the above languages provide some built-in
classes, for example, semaphores. Even then, the facilities for parallel programming
remain rather primitive.

The second approach can be clearly described as relaxing restriction 2 above: In-
stead of letting an object wait for the result after sending a message, one allows the
sender to go on immediately with its own activities. This is called asynchronous com-
munication. In this way the sender can execute in parallel with the receiver of the
message. It is possible to obtain a large degree of parallelism after a number of mes-
sages have been sent. This scheme has been adopted most notably by the family of
actor languages [Hew77,Lie81,The83,Agh86] but also in [Lan82].

A quite different scheme can be obtained by relaxing the last restriction. Now an
object does not always wait quietly until it receives a message, but has an activity of its
own, which we shall call its body. Execution of the body is started as soon as the object
is created, and it takes place in parallel with the other objects in the system. At certain
explicitly indicated points the body can be interrupted in order to answer a message.
This takes place in the form of a rendez-vous: the sender and the receiver synchronize

19

(the one that is first willing to. communicate waits until the other is ready, too), the
parameters are passed to the receiver's method, which is then executed, and finally the
result is passed back to the sender (not necessarily at the end of the method execution),
after which both objects again pursue their own computations independently. This is
called synchronous communication. In this approach, too, a large degree of parallelism
can be obtained, by creating a sufficient number of objects whose bodies can execute
in parallel. The languages from the POOL family use bodies as their main mechanism
to describe parallelism.

3.2 Comparing different approaches
Let us first compare the above approaches with respect to the criterion of how they help
to solve the problems of parallel programming. The key to parallel programming is
handling the nondeterminism that results from the unknown relative execution speed
of the processes: This nondeterminism should be reduced as much as possible, but
a certain amount of it is necessary to make effective use of the parallelism. Now
the degree of nondeterminism is increasing very quickly not only with the number of
processes, but also with the number of atomic actions in each process, or otherwise
stated, with the number of places in each process where it may interact with other
processes1 .

Now the disadvantages of the first approach (processes as orthogonal concepts)
become very clear: In this approach, a process must expect interaction (perhaps we
should call it interference here) from other processes at every point of its execution.
Therefore the number of different execution sequences of which the programmer has
to take care is very large. The extra mechanisms [MK87] added in order to restrict
this nondeterminism, for example semaphores, require a disciplined use, which is not
enforced by the language. Therefore it is clear that this approach is not suitable for
extensive parallel programming.

In fact this issue also plays a role in the traditional dichotomy in parallel program-
ming between shared variables and message passing (see also [AS83]). How cumber-
some it is to work with shared variables, when compared with message passing, can
also be seen by considering the formalisms for verifying such programs: The classical
system to formally verify shared-variable programs [OG76] requires that every asser-
tion in any of the processes is left invariant by every action in every other process. For
n processes having each m actions with m + 1 assertions around them, this requires
n(m + l)mn-l checks. Reducing n would reduce the degree of parallelism. Reducing
m could be done by increasing the size of atomic actions, and this is precisely what
happens with message passing. Moreover, because the communication partner is often
indicated explicitly, the checks can be restricted to the set of pairs of corresponding
communication statements, which in general leads to a much smaller number of checks.
This has been formalized in [AFR80].

1 For example, if we have m processes that do not influence each other's behaviour, and the ith
process has n; atomic actions, then the number of possible interleavings is equal to the multinomial
coefficient (n;n1 1 ••• ,nm) = n!/(n1! ·· •nm!) where n = n1 +···+nm,

20

Of course, the choice between shared variables and message passing is also influ-
ence by the underlying machine architecture. In machines with a shared memory
between processors (or sequential machines, where the parallelism is virtual) imple-
menting shared variables is trivial, while message passing requires some work. On
the other hand, in machines without a shared memory, where the processors exchange
information over a communication network, message passing can be mapped directly
to the architecture. In these machines it is possible, but very cumbersome and ineffi-
cient to implement shared variables. This seems to indicate that even if the machine
architecture is not fixed in advanced, it is best to choose message passing instead of
shared variables. (DOOM [Odi87], the machine for which POOL2 was developed, does
not have shared memory between processors; they communicate via a packet-switching
network.)

All these arguments imply that for integrating parallelism in object-oriented lan-
guages the two other approaches (asynchronous communication or bodies) are superior:
Here the concepts of object and process are effectively unified into one concept, so that
the terms 'object' and 'process' have become synonymous. Processes now only interact
at clearly defined points: only where messages are sent or answered. Moreover, the
possible ways of interaction are limited: only parameters or results may be passed.
The variables of each object are protected from access by other objects. If a certain
piece of data must be shared among different processes, it can be put in an object of
its own. The way in which it can be accessed is then clearly defined by the available
methods (and possibly its own body). The language supports to a large degree the
discipline necessary in using these mechanisms. Note that inside an object everything
happens sequentially. This sequential, deterministic inside is protected from the paral-
lel, nondeterministic outside world by the message interface. Allowing multiple parallel
processes to be active inside the same object (as is done, e.g., in Emerald [BHJ*87])
would spoil this comfortable situation.

The choice between asynchronous message passing and the use of bodies for achieving
parallelism is much less obvious than the choice against the first approach. Asyn-
chronous communication leads to more flexibility, because the sender does not need
to synchronize with the receiver in order to communicate. In this way it is easier in
certain cases to keep the available processors in a system busy. On the other hand,
asynchronous communication has certain problems associated with it:

For the programmer it is important to realize that the lack of synchronization with
asynchronous communication not only increases the system's flexibility in exploiting its
resources, but it also increases the degree of nondeterminism: there are more possible
executions of such a program than for synchronous communication, and the program-
mer must ensure that all of these lead to a correct result. Furthermore, the set of
messages that have been sent but not yet received constitutes a component of the
system's state that does not occur explicitly in the program but is nevertheless very
important. (Most formal techniques for asynchronous communication, e.g. [BKT84]
explicitly represent these travelling messages; the notable exception is temporal logic
[KVR83].)

The most important problem for the implementation is the buffering of messages

21

that have been sent but not yet received. In principle, it is not admissible just to
reserve a fixed buffer space and to block a sender if it tries to send more messages than
fit in this buffer, because it would lead to deadlock in programs that are semantically
correct. For example, if the sender transmits n messages labelled a and then a message
labelled b whereas the receiver first wants to get a b message before answering the
a messages, then a deadlock will occur if n is larger than the number of messages that
fits in the buffer. On the other hand, in most cases the communication pattern is
simpler that this (the receiver does not require such a peculiar order of messages) and
in these circumstances one would like to slow down the sender when it gets too far
ahead of the receiver. It does not seem possible to solve this problem in general.

Another issue is whether to guarantee that messages travelling from the same sender
to the same receiver should arrive in the order in which they were sent. This can be
ensured by either using an end-to-end protocol, or by employing a fixed routing between
every pair of nodes in a network and making sure that messages are kept in order at
each stage of their transmission. In both cases this decreases the performance of the
communication system and this penalty would have to be paid even by programs that
do not need order preservation.

Let us remark here that it is easy to implement asynchronous communication in
a language that has only bodies and synchronous communication: For every message
that is to be sent asyn~hronously, a buffer object is created. The message is sent
(synchronously) to the buffer and later the buffer will send it (again synchronously)
to the destination. The other way around, implementing synchronous communication
with asynchronous communication is also possible, but in certain systems, including
actor languages, this is quite cumbersome. The problem is here that an actor cannot
selectively wait for messages of a certain kind. Therefore, after a message has been
sent and the sender is waiting for the result, it must accept every message that arrives
and determine whether it is indeed the expected answer. If not, the message must be
stored for later use, or the actor can send it to itself (which would result in some kind
of busy waiting).

In POOL we have chosen to use bodies and synchronous communication as the
basic mechanism to express parallelism. In most cases, this turns out to be the most
natural way to program an application. If the programmer does not explicitly indicate
a body, a default body is taken, which continuously answers one message after the
other in the order in which they arrive. A method may return its result to the sender
of the message before it actually terminates. In this way parallelism can arise with
synchronous communication and the default body (this is illustrated by the example
in section 3.3). However, in some case an explicit body is needed because it allows to
answer messages selectively, indicating the specific kind of messages that are welcome.
For example, a buffer might wish to answer only insert messages while it is empty, only
extract messages if it is full, and both kinds of messages otherwise. In other cases, the
use of a body is not strictly necessary but just more natural, especially in objects that
are really active and not just waiting for a request to arrive.

Receiving a message is done in an answer statement, which contains a list of method
names. This indicates that exactly one message is to be answered, in principle the first

22

message that mentions a method occurring in the list. Note that the sender is not
indicated (whereas in sending a message the destination is given explicitly). This
gives the answering object to react flexibly on the supply of messages, taking the one
that comes first without having to commit itself to a specific communication partner.
If such a commitment is nevertheless desired, it is often possible to revert the roles
of sender and receiver, because synchronous communication transmits information in
both directions anyway.

POOL2 also provides a conditional answer statement, that specifies that a message
should be answered if a suitable one has already arrived. If no such message is available
at the moment, the conditional answer statement will not wait for one but terminate
immediately. Again this contributes to an object's flexibility in reacting on the other
objects. It would be possible to increase this flexibility even more by allowing · an
object to indicate a collection of send and receive actions with the intention that one
of these actions is performed, preferably the first that can take place. This could be
expressed by a generalization of an Ada-like select statement [FY85]. A mechanism to
implement this in a POOL context has been developed [Wou88]. Whether this will be
incorporated in a future version of the languages will depend on actual performance
figures.

In POOL2, asynchronous communication is provided in addition to synchronous
communication. Conceptually it is considered as an abbreviation for the mechanism
that creates a buffer object for each asynchronous message. This also means that
preservation of message ordering is not guaranteed, because the buffer objects may
proceed with unknown relative speed. Of course, an implementation is encouraged to
use more efficient mechanisms, as long as they have the same semantics. In principle,
the programmer is responsible to ensure that a sender of asynchronous messages does
not get too far ahead of the receiver.

If we compare POOL with traditional parallel programming languages [AS83] we can
easily classify it with respect to criteria like the following:

1. Shared variables or message passing? (POOL: message passing.)

2. Value passing or remote procedure call? (POOL: remote procedure call.)

3. Synchronous or asynchronous message passing? (POOL2: both.)

4. Channels or direct naming of communication partner? (POOL: direct naming of
receiver by sender, no naming of sender by receiver.)

5. Static or dynamic process structure? (POOL: dynamic.)

Most of these choices follow directly from the wish to change as little as possible in
the mechanisms as we know them from sequential object-oriented programming. The
others have been discussed above. The most obvious way in which POOL distinguishes
itself from traditional parallel programming languages is by unifying data structures
and processes in a single concept of object. This gives rise to a typical style of pro-
gramming, which is illustrated by the example in the next section.

23

Finally, let us make some remarks on another issue that is always important in
concurrent systems: fairness. In POOL there are two requirements on the execution
of a program that ensure a certain kind of fairness: The first is the fact that the
execution "speed" of any object is arbitrary, but positive. This means that whenever
an object can proceed with its execution without having to wait for a message or a
message result, it will eventually do so. Clearly this is a very natural and necessary
requirement to be imposed on the implementation of a concurrent language. Requiring
more precise guarantees about the relative execution speeds of different objects would
necessitate a way of measuring those speeds, and even in languages specifically meant
for real-time applications (for example Ada [ANS83]) those guarantees are considered
too involved to be included in a language definition.

The second requirement on the execution of a POOL program is the condition
that all messages sent to a certain object will be stored there in one queue in the
order in which they arrive. When that object executes an answer statement, the first
appropriate message in the queue will be answered (here 'appropriate' means that the
message mentions a method occurring in the answer statement). This condition ensures
that it is impossible that an object is sent a message and it executes infinitely many
answer statements in which the message could have been answered, without answering
this one message. In fact, it is not difficult to see that the latter condition (a message
will eventually be answered) is exactly equivalent to the first one (messages are stored
in a queue), when one takes the arbitrary but positive speed of the sending object into
account.

Note the contrast here with the situation in, e.g., Ada. In Ada, each entry (in this
situation corresponding with a method name in POOL) has its own queue, and fairness
is not guaranteed between different queues. Then it is possible that infinitely many
messages with one name are answered without answering a message with another name,
even when these messages are answered in a select statement where there is always
another open branch for answering the second message. We consider this situation
definitely undesirable. In POOL, it may be a little more difficult to implement the
de-queuing operation efficiently, but the mechanism is much more convenient for the
programmer.

Of course, fairness is only a worst-case guarantee from the language, in a situation
where better, quantitative guarantees cannot be given. In practice, it is intended that
an object that does not have to wait for another one proceeds as quickly as possible,
that messages travel as fast as possible from the sender to the receiver, and that they
are answered in an order that approximates as well as possible the first-come-first-
serve principle. This is also the reason why message-answering fairness in the language
definition is formulated in terms of queues instead of infinite neglection.

3.3 An example: parallel symbol tables
In this section we present a small programming example that shows a typical way of
programming in POOL. In this example we implement a parallel version of a symbol
table, a data structure that can associate keys with other pieces of information. We

24

also illustrate the use of a few other elements of the language POOL2, units and generic
classes.

Units are the largest pieces of a POOL2 program. They come in two kinds: imple-
mentation units and specification units. An implementation unit contains a collection
of class definitions, giving the full details of each class. The corresponding specification
unit indicates the interface it other units: it lists the classes that can be used outside
of the· current unit and for each of these it gives the headers of the available methods
and routines. Another unit can import these facilities by mentioning the first unit in
its so-called use list.

Below is a specification unit that describes the class ST, each instance of which
represents a symbol table.
SPEC UNIT Symbol_Table

CLASS ST (Info)
ll Each i~stance is a symbol table containing
ll pairs of a string and an instance of the class Info.

ROUTINE new() : ST (Info)
U Delivers a new, empty symbol table

METHOD insert (key : String, i: Info) : ST (Info)
U Inserts a new pair into the destination symbol table.
%1 key must not be NIL.
%% If the key is already present, the old Info ia overwritten.

ROUTINE search (st : ST (Info), key: String) : Info
U Retrieves the info stored with this key.
U If this key is not present in the symbol table, NIL ia returned.

END ST
The class ST is generic, that is, it has a class parameter Info, for which an arbitrary

class can be filled in when the class ST is used. This allows us to define the class in such
a general way that it can be used in many different circumstances without modifying
the text. (It would also be possible to make the type of the key a parameter of the
class definition. However, in the implementation unit we shall need the fact that keys
are ordered. In section 4.1 it is explained how the ordering on keys can be made known
to the symbol tables, such that the type of the keys can indeed become a parameter
of the class ST,)

The class ST provides its users with two routines and a method. The routine new
creates and returns a new symbol table object, which is empty initially. The method
insert adds a new piece of information to the symbol table, consisting of a key, which
is an object of type String, and an instanee of the class Info. Finally we have the
routine search, which tries to lo.ok up the Infn associated with a given key in a symbol
table. We shall see below why aear.ch is a routine instead ofa method.

Now here is the first part of the corresponding implementation unit:

IMPL UNIT Symbol_Table

CLASS ST (Info)

VAR my_key
my_info
left
right

String
Info
ST (Info)
ST (Info)

%% key stored here
%% Info stored here
%% all pairs with key< my_key
%% all pairs with key> my_key

%% new is a standard routine

METHOD insert (key
BEGIN

String, i : Info) : ST (Info)

RESULT SELF; %% rendez-vous ends here
IF my_key == NIL %% I am empty
THEN my_key := key; my_info := i;

left :=new(); right :=new()
ELSIF key= my_key %% the key is stored here
THEN my_info := i
ELSIF key< my_key
THEN left insert (key, i)
ELSE right ! insert (key, i)
FI

END insert

25

Now we see that a symbol table is internally organized as a tree. Each node in
the tree can contain a single key and its associated Info. Furthermore it contains
references to the left and right subtrees, which contain the other symbol table entries.
The routine new need not be described explicitly. A routine with this name is supplied
automatically by the language. It creates and delivers a new object of the associated
class, with all the variables initialized to NIL (a reference to no object). In our example,
this is exactly what an empty symbol table looks like.

The method insert returns its result to the sender of the message right at the
beginning. In this way, the sender and the receiver are synchronized, but the sender
need not wait until the execution of the method is completed. Instead, the rest of
the method can execute in parallel with the sender. The actual value returned by
the method is not important. Therefore the convention is followed that the object
executing the method returns a reference to itself. This is indicated by the expression
SELF, which denotes the object that is executing the expression.

After having returned the result, the method insert determines what to do with
the new piece of information. If the symbol table is empty, the new information is
stored locally. Otherwise, if the new key happens to be the same as the key already
stored here, the local Info is simply overwritten. In all other cases, the new key /Info

26

pair is sent to one of the subtrees. In the program text, the operators '=' and '<' are
a short-hand notation for message sending operations. For example, key < my ...key is
an abbreviation for the send expression key ! less (my...key), which sends a message
to the object referred to by key, requesting the execution of the method less with
parameter my...key. The operator '==', however, is an abbreviation for a call of the
routine id, which is available for every class. This routine checks whether its two
parameters refer to the same object.

One can now ask where the parallelism comes into this example. We have already
seen that the sender of an insert message does not have to wait until the new infor-
mation is actually stored in the symbol table. The sender can proceed with its own
activities after having handed over the information to the symbol table, and the symbol
table will process it in parallel with the sender's activities. The same holds, of course,
for a symbol table object that inserts a key /Info pair into one of its subtrees; again it
can proceed with a new request immediately after it has given the pair to the subtree .
. This means that every node in the tree, in particular the top node, needs only a fixed
amount of time to process an insertion, independent of the actual size of the symbol
table. By contrast, in a sequential system such an insertion would cost an amount of
time that in the best case increases logarithmically with the size of the symbol table.
To put it otherwise, our parallel symbol table is able to process insertion requests
with a constant throughput, whereas in a corresponding sequential symbol table, the
throughput rate would decrease as the symbol tables grows.

We would like to maintain this advantage even when look-up requests are sent to
the symbol table. However, here it is not possible just to hand over some information
to the symbol table, but a reply is desired. Determining this reply will cost an amount
of time that increases with the size of the symbol table. So an individual user of the
symbol table will inevitably have to wait longer for a reply to his look-up request.
What we can do, however, is to maintain the constant throughput rate of the symbol
table when there are several, parallel users. This is done as follows: A look-up request
is sent to the top node of the tree. This top node returns a result, which just indicates
that the request is received. The actual reply will be sent later. If the top node does
not store the requested information itself, it delegates the request to one of its subtrees,
and so on. When finally the information is found, it is sent directly to the sender of
the initial request, without passing via the higher nodes in the tree. In this way we
can retain the constant throughput property of the symbol table.

There is one problem here: The reply must be sent to the object that sent the
initial look-up request to the top node, and it cannot be the result of this request
message. Therefore it must be sent in a separate message from some node in the tree
to the requesting object. However, we want to make our symbol table available to an
object of any arbitrary class, and we cannot make sure that such an object has an
appropriate method to handle the message. To solve this, we introduce a new class,
called Searcher (this class is hidden from the users of the unit SymboLTable). The
instances of the class Searcher serve as intermediaries to help other objects in doing
look-ups in symbol tables. For each look-up request, a dedicated Searcher object is
created, it is sent a message (with method go) specifying the symbol table and the key

27

of the requested information. The method go in the Searcher object sends a request
to the symbol table and starts waiting for the reply. When this reply has arrived, the
requested information can be passed back to the requesting object as a result of the
method go.

Here is the code:

ROUTINE search (st : ST (Info), key String) Info
TEMP s : Searcher (Info)
BEGIN

s := Searcher(Info).new ();
RESULT s ! go (st, key)

END search

METHOD look_up (key : String, client : Searcher (Info))
%% Not in SPEC UNIT; used by class Searcher
BEGIN

RESULT SELF; %% rendez-vous ends here
IF my_key == NIL
THEN client !! reply (NIL)
ELSIF key= my_key
THEN client !! reply (my_info)
ELSIF key< my_key
THEN left look_up (key. client)
ELSE right ! look_up (key, client)
FI

END look_up

%% Class ST needs no explicit body:
%% Incoming messages are anwered in order of arrival
%% by the default body.

END ST

CLASS Searcher (Info) %% Note: not in SPEC UNIT!

VAR info : Info

%% new is standard routine

METHOD go (st : ST (Info), key String) Info
BEGIN

st ! look_up (key, SELF);
ANSWER (reply); %% now the result is in info
RESULT info

END go

ST (Info)

28

METHOD reply (new_info : Info)
%% invoked asynchronously
BEGIN info := new_info
END reply

BODY ANSWER (go)
YDOB
END Searcher

%% each Searcher is used only once!

What we see in this example is a programming style that is different from traditional
parallel programming: We do not have a collection of processes on the one hand, .and
a collection of data structures on the other hand, such that the processes act on the
data structure, and where we must ensure that it will not happen that two processes
are accessing the same data structure at the same time. Instead, the processes and
data structt..res are closely integrated. One could say that each data structure performs
the necessary operations on itself. In this way, synchronization and mutual exclusion
are much easier to handle. In addition, the advantages of sequential object-oriented
programming (section 2.4) are maintained.

29

4 More details about POOL2
The language POOL2 is based on the principles explained in sections 2 and 3. Briefly
summarized, these principles amount to describing a system as a collection of objects,
each having variables, methods, and a body, where the objects can be created dy-
namically, are grouped in classes, and interact exclusively by sending messages to each
other. However, POOL2 is not the simplest possible language based on these principles
(this predicate would be more appropriate for POOL-T [Ame85b] or even better for
POOL-S [Ame85a], an early language that was never implemented). While such a sim-
ple language has a surprising expressive power, it is nevertheless more convenient for
a language used for complex and realistic applications to provide some more facilities.

4.1 Special language elements
The additional language constructs of POOL2 are all based on the idea of "syntactic
sugar", a special notation, intended to be more convenient and more natural, for
something that is already expressible in the language by other means. As an example, in
section 3.3 we have already seen how operators in expressions can be used to abbreviate
send expressions. E.g., the expression 3+4 is an abbreviation for 3 ! add(4). POOL2
takes this idea rather far. For some kinds of syntactic sugar the language definition
states explicitly into which more primitive form the sugared notation is expanded.
In this way the programmer can make the new notation available for one of his own
classes by defining a suitable method for this class. For example, the operator + can
be used for any class that has a synchronous method add with one parameter. Let us
call this explicit syntactic sugar. In other cases the actual expansion is hidden from
the programmer, so that he can only access these features using the special notation
(implicit syntactic sugar). This applies, for example, to the notions of globals and
routine objects, which are discussed below.

The extra facilities provided by POOL2 in addition to the basic primitives of parallel
object-oriented programming include the following:

• a lot of explicit syntactic sugar

• implementation and specification units

• generic classes

• asynchronous communication

• new-parameters

• global names for objects

• routines being considered as objects

• enumeration classes

• a collection of standard classes and standard units

30

We have already encountered several of these constructs in the previous sections.
The others are briefly discussed below. A more extensive discussion can be found
in [Ame88d], where it is also indicated how the functionality of the constructs can be
obtained using only the basic primitives.

For the creation and initialization of new objects, POOL2 provides the built-
in routine new, which is automatically included for each programmer-defined class.
The parameters of this routine can be specified by the programmer. These so-called
new-parameters are passed to the newly created object, where they remain available
throughout the lifetime of this object. Before the new object is handed over to the
caller of the routine new, it first initializes its variables, according to expressions in
the variable declarations and/or by executing explicit initialization statements. In this
way, the designer of a class can make sure that all the existing instances of the class
are properly initialized. Of course, this can also be done by sending every new object
an initializing message, as was illustrated in section 2.2, but since some form of explicit
initialization is needed for almost every class, it seems more than justified to introduce
some more convenient syntax for it.

In POOL2 it is possible to define a global name to be bound to a specific object.
Any other object in the system can then refer to this object by this name. Such globals
are defined in global definitions:

GLOBAL my_name : String := "Pierre"
n: Int := (3+4) * (first ! get_number ())
first := Big_0bject.new()

Conceptually, what happens here is that for each global implicitly an object is cre-
ated, which we shall call a global manager. This global manager starts to evaluate the
expression in the global definition. As soon as this terminates, it stores the resulting
value, and from that moment on this value is available for any other object in the
system. If an object tries to determine the value of the global before this is known, the
object becomes blocked until the global manager has finished evaluating the global.
This mechanism ensures that even dependencies among globals (as in the above exam-
ple, where n depends on first) are handled correctly, as long as they remain acyclic;
otherwise a deadlock occurs.

The manner in which the execution of a system is initiated is also based on globals:
A few objects are created by declaring them to be globals. These objects may create
other ones and so on until the desired degree of parallelism is reached. In the above
example, the class Big_0bj ect might be defined in such a way that it sets the whole
system running.

We have already seen that POOL distinguishes between methods, a kind of procedures
that are associated with individual objects, and routines, which are in general associ-
ated with a class. Because of the fact that a method can directly access the variables
of the object it is associated with, it is not possible to consider it as an object itself:
If a method could be stored in variables, passed around in messages and executed by
any object that had access to it, the protection of the original object that owned the

31

method could not be guaranteed. (Note that we are talking about the method itself,
not the program text that defines it.) However, no such restriction applies to routines,
because these are not associated with individual objects and have no direct access to
any object's variables. Therefore, POOL2 takes the point of view that routines can be
considered as objects. That is, they can be stored in variables, passed as parameters
or results of messages, and even new ones can be created dynamically: In addition to
the routines associated with a class (we call them class routines), it is possible to write
routine expressions, which indicate the creation of a new routine object. For example,
the expression

ROUTINE (p: Int)
BEGIN RESULT p **
END

Int
2 - 3

creates a routine that represents the function mapping any integer z to z2 - 3. This
routine will be an instance of the class ROUTINE (Int) : Int. It is even possible to
pass a kind of new-parameters to such a newly created routine object. For example,
we can write the expression

ROUTINE (p: Int) Int
TEMP i : Int
BEGIN

i := P**2 - t;
IF i < 0 THEN RESULT O ELSE RESULT i

END

where t is an integer variable of the object executing this routine expression. At the
moment this expression is evaluated, the value of t is determined and this is stored
with the routine object. This value will be the one that is used whenever the routine
is called, even if the original variable t changes its value. In this way the routine does
not need and does not have access to the variable t after its creation.

Such a routine object can be called by any other object that has a reference to it.
For example, if the variable f is of type ROUTINE (Int) : Int, then the expression

f(3) + f(6 - f(2))

will lead to three calls of the routine object to which f refers.
Note that the possibility to pass routines as parameters considerably enhances the

usefulness of generic classes. For example, in section 3.3 we could have made the type
of the keys into a parameter of the class ST. The desired ordering on these keys could
be passed as a new-parameter to every symbol table object. The class specification
would then look like this:

CLASS ST (Key, Info)
ROUTINE new (less : ROUTINE (Key, Key) Bool) ST (Key, Info)

END ST

32

Now a symbol table that stores pairs of integers could be created by the expression

ST (Int, Int).new (ROUTINE (n, m: Int) : Bool BEGIN RESULT n < m END)

In addition to powerful mechanisms for defining classes, POOL2 also provides a num-
ber of standard classes [Ame88b]. These are available in every program unit without
explicit importation via a use list. For standard classes more efficient implementations
are provided than would have been possible if they were defined by the programmer.
Moreover, for some of these classes, e.g., Int and String, a special notation is available
so that the instances can be represented in a program in a natural way.

The collection of standard classes comprises classes of small, fixed-size entities:
booleans, characters, integers, and floating point numbers, but also of potentially large
objects: strings and (multidimensional) arrays. In addition, there are generic standard
classes for tuples and unions: A tuple contains a fixed number of components, possibly
of different types, whereas a union contains one object reference out of a fixed number
of possible types (a tuple can be compared with a fixed record in Pascal [BSl82], a
union to a variant record).

All these classes, with the exception of arrays, have been defined in such a way
that their instances are immutable objects, i.e., once they are created, their contents
cannot be changed any more. The advantage of this is that an implementation may
freely make multiple copies of such an object without changing the behaviour of the
system. In a machine like DOOM, without shared memory, it is much more efficient
sending a copy of a small object than sending a reference so that the receiver must
send several more messages to determine the contents of the object. For objects like
strings or tuples, it is even possible to include a copy in a message that travels from
one processor to another but to include a reference if the message is local.

On the other hand, the arrays in POOL2 are even more dynamic than in most other
programming languages: they can even change their size at run-time. The rationale
behind this is that the language implementation can do this much cheaper than a
POOL programmer could (for example, by dealing cleverly with pages in a virtual
memory system, it can be avoided to copy a complete large array that must grow a
little more). If these facilities are not used, they do not cost anything extra.

A number of other facilities, which are not so basic to the language, are included
in standard units [Ame88c]. The facilities of these units can be imported without the
programmer having to define them. Currently POOL2 provides standard units for
doing input/output on files, for communicating with the Unix operating system on a
host machine, and for controlling the allocation of objects to processors in DOOM.

The latter brings us to another issue: the mapping of a POOL program to a machine
like DOOM [Odi87]. This machine consists of a number of processors (called nodes),
each with its own private memory, which communicate via a message passing network.
There is a very natural way of implementing POOL on such a machine: every object
is allocated to a certain node, where its data are stored and its body and methods
are executed. In general, there are many objects on each node, sharing the processor.
These objects must be scheduled one after another, so that they cannot really run in

33

parallel. On the other hand, having multiple objects on a node makes it possible for
the processor to do useful work even if many of these objects are waiting for messages
or method results.

At the creation of a new object, the programmer can influence the choice of the node
by allocation pragmas. These can serve as annotations to calls of the standard routine
new, and they indicate possible choices for the new object's location. For example, in
the expression

C.new (par) (* ALLOC HERE, WITH obj, setl t set2 *)

it is indicated that the new object is to be allocated preferably on the same node as
its creator. If that is not possible, the object should be placed at the same node as the
object in the variable/parameter obj. If even that is not possible, it should be placed
on a node that is in the intersection of setl and set2, which are variables/parameters
of type Node..Set, representing sets of nodes. Whenever there are several possibilities
for the allocation of the new object, the intention is that the least occupied node is
chosen.

If a message must be sent between two objects on the same node, this can be han-
dled locally, without involvement of the communication network. Only if a message is
transmitted between different nodes this network is used. In general, nonlocal com-
munication is more expensive than local communication, because the data must be
copied several times and larger messages must be split up in packets and reassembled
again. Note that the same POOL send and answer constructs are used for both local
and nonlocal communication.

In DOOM, the communication network has been implemented in such a way that
the distance between two nodes in the network is not very important for the cost of
communication between them. Therefore the most important decision in allocating
objects is whether they should be on the same node or on different nodes. If they are
on the same node, communication between them is cheap, but they cannot actually run
in parallel. If they are on different nodes, they can run in parallel, but communication
is more expensive. A thorough understanding of a program is necessary to make the
optimal decision. Therefore advice from the programmer is invaluable. Fortunately, in
most cases this advice can be limited to allocation pragmas of the form HERE, - HERE,
WITH obj, or - WITH obj.

The general idea is that allocation decisions are made by the programmer and
the run-time system together, where the programmer supplies the knowledge of the
program, and the run-time system the knowledge of the current situation with respect
to node occupation.

4.2 Another example program
We shall illustrate some of the abovementioned language constructs in the following
example. It implements a parallel version of priority queues. Such a priority queue
can store a collection of items; when these are retrieved from the queue the one with
the highest priority is output first. Items with the same priority are treated in a
first-in-first-out way. Here is the specification unit:

34

SPEC UNIT Prio_Queue

CLASS PQ (Item)
%% Instances of this class are priority queues that store
%% elements of the class Item.

ROUTINE new (higher : ROUTINE (Item, Item) : Bool) : PQ (Item)
%% Creates and returns a new, empty priority queue.
%% The routine higher determines the priority ordering.
%% If it returns TRUE, the first argument is assumed to
%% have a higher priority than the second.

METHOD put (i : Item) : PQ (Item)
U Stores the item i in the queue; returns SELF.
%% The argument i should not be NIL.

METHOD get() : Item
%% Deletes and returns the item with the highest priority.
%% This method will not be answered when the queue is empty.

END PQ

We see that the class PQ is defined in a generic way and that the priority criterion,
the routine higher, is passed as a new-parameter to every instance. The corresponding
implementation unit is somewhat more interesting. The same technique is used as in
section 3.3: Every PQ object only stores one item and delegates the rest to another
priority queue. Here is the code:

IMPL UNIT Prio_Queue

CLASS PQ (Item)

NEWPAR (higher: ROUTINE (Item, Item) : Bool)
%% The routine new, which creates and returns a new, empty priority
%% queue, is defined automatically with the above parameter list.

VAR max : Item %% the highest-priority element in the queue
rest : PQ (Item) %% a PQ that stores all the other elements
%% Both variables are automatically initialized to NIL.

%% Invariant: max== NIL <==> queue is empty
%% max-== NIL==> rest-== NIL

METHOD put (i : Item) : PQ (Item)
%% Stores the item i in the queue; returns SELF.

BEGIN
RESULT SELF; tt end of rendez-vous: sender can continue
IF max== NIL tt queue is empty
THEN max:= i;

IF rest== NIL
THEN rest := PQ (Item).new (higher)
FI

ELSIF higher(i, max)
THEN rest ! put (max);

max:= i
ELSE rest ! put (i)
FI

END put

METHOD get() : Item

tt only if i has a higher priority
tt we replace max by i

ll Deletes and returns the item with the highest priority.
ll This method will not be answered if the queue is empty.
tt Therefore we know that max-== NIL, so rest-== NIL.
BEGIN

RESULT max; tt end of rendez-vous: sender can continue
max:= rest get_largest_or_NIL ()

END get

METHOD get_largest_or_NIL () : Item
ll Returns NIL if the queue is empty. Otherwise it deletes
tt the item with the highest priority and returns it.
BEGIN

RESULT max; tt end of rendez-vous: sender can continue
IF max-== NIL
THEN max:= rest ! get_largest_or_NIL ()
FI

END get_largest_or_NIL

BODY
DO tt forever

OD
YDOB

END PQ

IF max== NIL
THEN ANSWER (put, get_largest_or_NIL)
ELSE ANSWER (put, get, get_largest_or_NIL)
FI

35

36

The class PQ has an explicit body, which makes sure that messages asking for the
method get are only answered when the queue is not empty. In this way an object that
asks for a new element from the queue is automatically delayed until such an element is
actually available. For internal purposes an additional method get_largest_or _NIL
is needed, which is always answered but returns NIL if the queue is empty. (This
method might be useful even for users of the class PQ, so it could be mentioned in the
specification unit, too.)

The above unit is used by the following program. This will sort pairs of integers
and strings, which it reads from the standard input file:

IMPL UNIT Sorting

USE File_IO Prio_Queue

GLOBAL root := Sorter.new()

CLASS Sorter
%% An instance of this class will read pairs of integers and strings
o/.% from the standard input file until a negative integer is found.
Y.% Then it will print the preceding pairs in ascending order of the
%% integers. Pairs with the same integer will be printed in the order
%% in which they were input.

ALIAS Pair= [Int, String]

VAR compare := ROUTINE (pi, p2 Pair) : Bool
BEGIN RESULT pi~ 1 < p2 1
END

pq := PQ (Pair).new (compare)
n Int := standard_in ! read_Int ()
s : String

BODY
WHILE n >= 0
DO s := standard_in read_String ();

pq ! put ([n, s]);
n := standard_in ! read_Int ()

OD;

DO U until
[n, s] := pq
standard_out

OD
YDOB

deadlock occurs
get ();
write_Int (n, 10)
write_String (s + "\n")

37

END Sorter

The use list of this unit mentions the above unit Prio_Queue in addition to the
standard unit File_IO. The system is started by the definition of the global root,
which is made to refer to a new object of the class Sorter. In the definition of the
class Sorter first an alias is defined, a synonym for the class name [Int, String],
which in turn is an abbreviation for Tuple2 (Int, String). Each instance of this
standard class stores a pair containing an integer and a string. We shall insert this
type of objects into our priority queue.

The routine that determines the priority criterion on pairs is defined in the initial-
ization of the variable compare. (It is possible to use this routine expression directly
as an argument for the routine new below, but this is not so readable.) In this routine;
the expression pl Cl 1 is a piece of explicit syntactic sugar, which stands for the send
expression pl ! get_l (), extracting the first component from the tuple pl.

The standard input and output files are denoted by the globals standard_in and
standard_out respectively, which are exported by the standard unit File_IO. These
globals are referring to elements of the classes Read_File and Write_File. More
instances of these classes can be created by calling the appropriate routines, which
either create new files or associate POOL objects to existing files. Actual input and
output can then be performed by sending messages to these objects.

The expression [n, a] is syntactic sugar for the routine call

Tuple2 (Int, String).new (n, a)

which creates a new tuple object with n as the first component and a as the second.
However, when [n, s] appears at the left-hand side of the assignment, it makes sure
that the tuple yielded by the right-hand side is analyzed, storing its first component
in n and the second component in s.

The operator + for strings denotes concatenation: it delivers a new string containing
the characters in the first operand followed by the characters in the second operand.
The string "\n" contains a single character, a line feed.

To illustrate the function of the program, consider the following sample input:

1 jumps over
0 the quick brown fox
1 the lazy black dog

-100000

The corresponding output will be as follows:

0 the quick brown fox
1 jumps over
1 the lazy black dog

38

5 Inheritance and typing
In this section we deal with two issues that seem quite independent at first, but at a
closer look turn out to be closely related. We explain the concept of inheritance and
indicate the problems associated with it, which justify that inheritance is not included
in POOL2. We also sketch some directions along which solutions to these problems
could be found. This requires a careful analysis of the relationship between inheritance
and typing.

For the largest part, this section is quite independent of the specific properties of
POOL. It is applicable to a large class of object-oriented languages. Therefore we shall,
for the moment, forget about the peculiarities of POOL, such as bodies and routines.

5.1 Inheritance
The concept of inheritance was already present in the first object-oriented languages,
like Simula [DN66] and Smalltalk-SO [GR83]. The basic idea is that in defining a new
class it is often very convenient to start with all the variables and methods of an existing
class and only to add some more in order to get the desired new class. The new class
is said to inherit the variables and methods of the old one. (Note that inheritance is a
relationship between classes, not between instances.)

This inheritance mechanism constitutes a very successful way of i11corporating fa-
cilities for code sharing in a programming language. Both the programmer and the
implementor can take advantage of it. For the programmer the most important thing
is not that he need not write the inherited code several times: for this task a text edi-
tor can offer enough help. It is important, however, that the sharing of code has been
made explicit. In reading a program, it is not necessary to compare pieces of code in
order to see whether they are the same or in what aspects they differ: all this is clearly
indicated in the code itself. Moreover, if the program is changed, the changes automat-
ically apply to all the classes inheriting the code. Therefore consistency is guaranteed.
The implementation can profit from code sharing by producing more compact code,
occupying less computer memory. Especially in systems without shared memory, where
code must often be duplicated over many nodes, this is a considerable advantage.

As an example, the piece of code below shows how a class Bordered_Window could
be described as a subclass of the class Window, defined in section 2.2. The new class
represents windows that have been adorned with a border of a certain width and colour.
Note that it is only necessary to indicate the things that have changed. We can add
new variables and methods, we can override the existing methods, and all the time we
have access to the features of the superclass (even to the overridden method move).

CLASS Bordered_Window
INHERIT Window

VAR border_width
border_colour

Integer
Colour

Integer, METHOD change_border (new~width
new_colour Colour) : Bordered_Window

BEGIN
border_width := new_width;
border_colour := new_colour;
display_border ();
RESULT SELF

END change_border

METHOD move (to : Vector)
BEGIN

Bordered_Window %% redefined

Window.move(to);
display_border ();
RESULT SELF

%% the method of the superclass!

END move

METHOD display_border ()
%% only for internal use
BEGIN

Bordered_Window

%% actual text not relevant here
RESULT SELF

END display_border

ROUTINE create (cont
pos, siz
border_width
border_colour

TEMP w : Bordered_Window
BEGIN

Object,
Vector,
Integer,
Colour) : Bordered_Window

w := Bordered_Window.new (); %% standard routine new
w ! init (cont, pos, siz);
w ! change_border (border_width, border_colour);
RESULT w

END create

39

But there is more to inheritance than only code sharing: Suppose that the class B
has inherited all the variables and methods from the class A. Then, in a way, we can
consider every instance of B equally well as an object of class A: At any point where an
object of A is expected (because certain messages are sent to it), any object of class B
will satisfy our needs, because it will accept all the messages that an object of class A
would accept. Therefore the instances of B can be considered as specialized versions
of the ones in class A. This can be expressed by calling the class B a subclass of A
and A a superclass of B (note the correspondence with the terminology of subset and
superset in set theory).

40

Conceptually, if we consider objects in a program as representations of entities in
the real world (for example in a database or simulation system) and if we use them
mainly as collections of variables in which attributes can be stored, then this makes
good sense. For example, if we have defined a class Vehicle with variables to store the
owner and the maximum speed, it is convenient to define the class Car as a subclass of
Vehicle so that we only have to add a variable to store the licence number. An instance
of class Car is then automatically considered as an element of the type associated with
class Vehicle.

Of course, this procedure can be repeated several times. For instance, we can define
a class Truck as a subclass of Car, with an extra variable to store the load capacity, we
can define Bus as another subclass of the class Car, with a variable for the number of
seats, and we can define Bike to be a subclass of Vehicle, adding a variable containing
the number of speeds. In this way we can get a whole hierarchy of classes, which has
the form of a tree:

Vehicle

Car Bike

Bus Truck

Moreover, it is possible to allow a new class to inherit from more than one existing
class. This mechanism is called multiple inheritance, in contrast to linear inheritance.
For example, a horse can be considered as an animal (having, for example, a father and
a mother) and as a vehicle, and therefore the class Horse can be defined conveniently
as a subclass of both Animal and Vehicle. In the case of multiple inheritance, the
class hierarchy is not a tree any more; it becomes an acyclic directed graph:

Vehicle Animal

Horse

A mechanism like the one described above is included in most object-oriented pro-
gramming languages. In those languages that are statically typed, like Trellis/Owl
[SCB*86] and Eiffel [Mey87], this mechanism is linked with typing in a way that is
discussed below. In dynamically typed languages, like Smalltalk-SO [GR83], the con-
notation of specialization, associated with inheritance, is nowhere enforced explicitly by
the language. The organization of classes into such a hierarchy based on specialization
is only formulated in some informal advice to the programmer [HO87].

Even in these dynamically typed languages, there are some problems with inheri-
tance. The most difficult one is the phenomenon nf name clashes in multiple inheri-
tance. Such a class occurs when a class tries to inherit from two superclasses that both

41

have a variable or method with the same name, so that they cannot both be included in
the new class. A large variety of solutions to this problem has been proposed, ranging
from mandatory explicit renaming by the programmer [Mey88] to imposing a priority
ordering on all the superclasses, often tog.ether with mechanisms describing how several
methods should be combined [BDG*87].

5.2 Relationship with typing
In a language that have a notion of static typing, in the sense that for each expression
it is possible to determine from the program text the type of object it denotes, it
is possible to make the implications of the specialization in subclasses explicit. For
example, if B is a subclass of A, then it should be allowed to use an expression having
type B wherever an object of type A is expected. For example, such an expression may
be assigned to a variable of type A and a message mentioning a method of class A can
be sent to it.

A few extra conditions are necessary to make this absolutely safe: In particular,
suppose that the class A has a method m and that B redefines this method. If in
class A the method m has parameter types Pf, ... , Pf and result type RA, while in
class B it has parameter types Pf, ... , P1B and result type RB then we must require
that the number of parameters are equal (n = l), that Pf ::S P1B, • •• , Pf ::S P;;, and
that RB ::s RA, where X :s Y expresses that Xis either equal to Y or it is a subclass
of Y (possible via a number of other subclasses).

We can see that this is necessary if we consider the situation where we send a
message listing the method m to an object contained in a variable of type A. Then we
expect that the method takes n parameters of types Pf, ... , P:. However, the actual
object stored in the variable may be an instance of class B. Therefore, the number of
the parameters must be the same: n = l. Furthermore this object expects parameters
of types Pf, ... , P;; and it may apply to them all the operations allowed by these
classes. For, e.g., the first parameter this will not lead to problems, provided that
Pf ::s Pf, because under this condition the actual parameter (of type Pt) will indeed
admit all the operations defined for Pf. This is called the contravariant parameter
type rule, because for parameters the inclusion sign ::s point in the other direction
than for the classes A and B themselves. For the result types we have a covariant rule,
because the method m of the class B may return any result of type RB, and because
this will be treated as an object of type RA, we must require RB ::s RA.

These rules have been studied in their purest form in [Car88]. They are incorporated
in the language Trellis/Owl [SCW85]. Whereas in Eiffel [Mey87] it is not explicitly
stated that these rules are enforced (and [Mey88] even gives an example that does
not obey the contravariant parameter type rule), circumstantial evidence nevertheless
indicates that these rules are intended to be satisfied.

While a statically typed language that enforces the above rules is indeed completely safe
with respect to type checking (in the sense that never a message will be sent to an object
that does not have a method for it), there are still some problems. For example, the
simplest solution to name clashes in multiple inheritance, explicit renaming of inherited

42

variables and methods, cannot be applied: With renaming it cannot be guaranteed
that if class A has a method m, every subclass will also have a method m, because
the subclass could have renamed it. (In Eiffel this problem is attacked by nevertheless
taking the renamed method in such a case, which is at least confusing.)

A more serious problem that in some cases we want code sharing without subtyping
or subtyping without code sharing. For example, in implementing a class Stack, it
might be convenient to inherit the code from the class Array, in order to be able to
store stack elements. However, we do not want Stack to be a subtype of Array, because
we do not want all the array operations (storing and retrieving elements at arbitrary
places) to be applicable to stacks, too. In another case, adding a new method to a
number of existing ones may violate an invariant on which the correct functioning of
the old methods is based. In this case, an object of the new class will not behave as a
specialized version of the old one.

The other way around, we can think of several different ways in which a stack can
be implemented. While these implementations have completely different code, we do
not want to consider them as different types, because they have the same behaviour.
As another example, we would like to be able to consider the class Int as a subtype of
a class Ordering, where the latter only specifies that a method less should be present
that gives rise to a total ordering on the elements. This should be possible even though
Int is a built-in class and Ordering a programmer-defined one, so that code sharing
is utterly impossible.

Therefore we propose, for a future object-oriented language, to make a clear distinc-
tion between inheritance and subtyping. Inheritance deals with the internal structure
of the objects: their variables and the code they execute for their methods. Subtyp-
ing, on the other hand, deals with the externally observable behaviour of the objects:
the messages that they accept (in particular the method names and parameter types)
and the results they return. Note that this distinction is analogous to the separa-
tion between the implementation of an abstract data type (or class) and its interface
to the outside world. By separating these concepts, many of the problems currently
associated with inheritance can be solved easily [Ame87b].

In this context, it is useful to distinguish between the notions of class and type. Let
us continue to consider a class as a collection of objects that have the same internal
structure: the same variables, methods, and body. Then we can use the term 'type'
for a collection of objects that have certain common properties with respect to their
behaviour. In other words, whereas a class groups together the objects that have been
built in the same way, a type comprises a collection of objects that can be used in a
certain way.

With these definitions, inheritance can take place without the connotations of sub-
typing. Pieces of code can be imported under the only condition that they perform
some useful function. Redefinition and renaming is never a problem, because the new
class is in principle unrelated to the existing ones. Subtyping can now be done a pos-
teriori: after a class has been defined it can be determined whether or not its instances
belong to a certain type, and for any two types it can be determined whether one is
a subtype of the other. This should be done on the basis of a specification of the ex-

43

ternally observable behaviour of the class's instances, without regarding their internal
implementation.

At this point it is not so easy to see how this notion of subtyping can be formalized.
In any case, a specification formalism should be devised that considers the behaviour of
an object, but not its internal structure. It is not at all trivial to devise such a formalism
(see also section 6). However, suppose that we have an appropriate formalism available.
Then we can associate each type r with a specification 1>(x), by which we mean that
the type r consists of all the objects /3 for which 1>(/3) holds. Now we can say that a
class A belongs to r (or rather, that all the instances of A belong to r) precisely if
V/3 E A1>(/3). Moreover, if the type <1 is characterized by the specification it,(x), then
we can say that a is a subtype of r, or <1 :s r, precisely if V/3 it,(/3) -+ 1>(/3).

As an example, we can consider the specifications associated with the types Bag
and Stack. Elements of both these types can store integers. They have a method
put to insert a new integer and a method get to retrieve an integer. The difference
between the two is that the type Stack requires that the integers are retrieved in a
last-in-first-out order, while the type Bag does not specify a certain order. Now it
can be seen that Stack is a subtype of Bag, because every object that satisfies the
specification associated with Stack will automatically satisfy the specification of the
type Bag. For a concrete class that implements stacks, e.g., using arrays, it can be
established that the instances are members of the type Stack by verifying that they
satisfy the specification of Stack. In that case it is clear that they also belong to the
type Bag. (In [Ame89] it is shown how these specifications can be given in a formal
way using techniques from abstract data types.)

5.3 Integrating it into POOL
Once we have decided that inheritance and subtyping are separate things, we can deal
with them separately. In order to introduce inheritance into POOL, we can imagine
the concept of inheritance package, a set of variables and methods, which may or may
not comprise all the variables and methods of a given class, as long as it is complete: if
a method in the package accesses a variable, this is also in the package. It might even
be useful to give an explicit inheritance inter/ ace to such a package, which only lists
a number of variables with their types and method headers. The advantage of this is
that, in addition to making the interface explicit and easier to read, it is possible to
hide certain variables and methods so that they cannot be used in a wrong way.

Inheriting routines does not make sense, because these can anyway called from any
point in the system. Bodies, however, require some special attention. Unfortunately
there seems to be no natural way of inheriting bodies, especially in the case of multiple
inheritance. The only part of the body that is a natural candidate for inheritance is
the initialization of the variables. By including this in such an inheritance package, it
can be ensured that all variables, even the hidden ones, are correctly initialized.

For objects where the body plays an important role, inheritance might not be a very
useful mechanism. But for other objects, with a more server-like role, which wait for
messages and then process them, it might be just as useful as in sequential languages.

44

Also remember that the programming style advocated for POOL consists of letting
the objects themselves perform the operations on them. If many classes of objects
have a different parallel behaviour, but similar operations, sharing the code of these
operations might be very useful.

For the integration of subtyping withing POOL we propose the same approach as
sketched broadly above. However, for a parallel language it seems even more difficult
to develop an appropriate specification formalism, which is based exclusively on the
external behaviour of the objects, without depending on their internal structure (work
in this direction is briefly sketched in section 6). Moreover, it is highly improbable
that such a formalism would be suitable in practice, i.e., that it would be possible to
specify formally every type in every program, and that a compiler could verify the
relationships between classes and types. Therefore it would probably be best, for a
practical language, to leave a part of these specifications informal. But at the very
least it would be possible to formalize the requirements on the availability of methods
and the restrictions on their types (e.g., the contravariant parameter type rule).

45

6 Formal aspects
The POOL family of languages has been the subject of extensive research in the area
of formal techniques. Several frameworks have been employed to give a formal descrip-
tion of the semantics of POOL and the relationships between these semantic models
have been investigated. Furthermore, significant progress has been made to develop a
formalism in which the correctness of a program with respect to a certain specification
can be verified. In this section, we give a brief overview of these studies. For more
details, the reader is referred to the original documents.

In order not to obscure the semantic essentials of the language with many syntac-
tical details, the syntax has been simplified considerably in these formal studies. All
the syntactic sugar present in POOL2 has been removed, and even several important
facilities of POOL-T (e.g., units and routines) have disappeared. Furthermore the
types of variables, parameters, and method results are no longer explicitly mentioned
in the program. In this way we arrive at a language with a very simple syntax. Nev-
ertheless it is straightforward to translate an arbitrary POOL2 program to this simple
language: For the special POOL2 elements, it is indicated in [Ame88d] how they can
be reformulated in POOL-T terms. Translating POOL-T into this simple language
is also easy: Units are merged together (taking care of name clashes between hidden
classes), each routine definitions is transferred into method definitions in the classes
where the routine is called, and finally all the typing information is omitted. Via these
translation steps we can say that we have given a formal description of POOL2.

6.1 Semantics
6.1.1 Operational Semantics

The simplest semantic technique is the use of transition systems to define an op-
erational semantics. This technique has been introduced by Hennessy and Plotkin
[HP79,Plo81,Plo83]. It describes the behaviour of a system in terms of sequences of
transitions between configurations. A configuration describes the system at one par-
ticular moment during the execution. Apart from a component describing the values
of the variables, it typically contains as a component that part of the program that is
still to be executed. The possible transitions are described by a transition relation, a
binary relation between configurations (by having a relation instead of a function, it
is possible to model nondeterminism). This transition relation is defined by a number
of axioms and rules. Because of the presence of (the rest of) the program itself in the
configurations, it is possible to describe the transition relation in a way that is closely
related to the syntactic structure of the language.

The term "operational" can now be understood as follows: The set of configurations
defines a (very abstract) model of a machine, and the transition relation describes how
this machine operates: each transition corresponds to an action that the machine can
perform. The fact that the semantic description follows the syntactic structure of the
language so closely (as we shall see below) is a definite advantage of the transition
system approach to operational semantics.

46

The operational semantics of POOL [ABKR86] uses configurations having four
components:

Con/ = Pfin(LStat) x E x Type x Unit

The first component is a finite set of labelled statements:

Here each o:; is an object name and the corresponding s; is the statement (or sequence
of statements) that the object is about to execute. This models the fact that the objects
o:1 , ••• , O:n are executing in parallel. The second component is a state u E E, which
records the values of the instance variables and temporary variables of all the objects
in the system. The third component is a typing function r E Type, assigning to each
object name the class of which the object is an instance. Finally, the last component
is the complete POOL program or unit, which is used for looking up the declarations
of methods (whenever a message is sent) and bodies (when new objects are created).

The transition relation -+ between configurations is defined by axioms and rules.
In general, an axiom describes the essential operation of a certain kind of statement
or expression in the language. For example, the axiom describing the assignment
statement has the following form:

(xu {(o:,x := (J)},u,r,U)-+ (xu {(o:,(J)},u{(J/o:,x},r,U)

Here, X is a set of labelled statements, which are not active in this transition, o: is
the name of the object that executes the assignment, (J is another object name, a
special case of the expression that can in general appear at the right-hand side of an
assignment, and u{(J / o:, x} denotes the state that results from changing in the state a
the value of the variable x of the object o: into the object name (J.

Rules are generally used to describe how to evaluate the components of a composite
statement or expression. For example, the following rule describes how the (general)
expression at the right-hand side of an assignment is to be evaluated:

(xu {(o:,e)},a,r,U)-+ (X' u {(a,e')},a',r',U)
(xu {(o:,x := e)},a,r,U)-+ (X' u {(o:,x := e')},a',r',U)

According to this rule, if the transition above the line is a member of the transition
relation, then so is the transition below the line. In this way the rule reduces the
problem of evaluating the expression in an assignment to evaluating the expression
on its own. The latter is described by specific axioms and rules dealing with the
several kinds of expressions in the language. Note that as soon as the right-hand side
expression has been evaluated completely, so that an concrete object name (J results,
the assignment axiom above applies and the assignment proper can be performed.

The semantics of a whole program can now be defined as the set of all maximal
sequences of configurations (ci, c2, c3, ...) that satisfy c; -+ ci+I · Each of these sequences
represents a possible execution of the program.

47

6.1.2 Denotational semantics

The second form of semantic description that has been used to describe POOL is
denotational semantics. Whereas operational semantics uses an abstract machine that
can perform certain actions, denotational semantics assigns a mathematical value, a
"meaning", to each individual language construct. Here, the most important issue is
compositionality: the meaning of a composite construct can be described in terms of
only the meanings of its syntactic constituents.

For sequential languages, it is very natural that the value associated with a state-
ment is a function from states to states: when applied to the state before the execu-
tion of the statement, this function delivers the state after the execution. However,
for parallel languages, this is no longer appropriate. The first problem is that parallel
languages are in general nondeterministic: it is no longer possible to predict a single
output state for each given input state. In general, there is a set of possible output
states.

The second problem is that describing the set of possible output states for each
input states does not provide enough information to be able to compose a statement in
parallel with other statements: information on the intermediate states is also required.
This leads us to the concept of resumptions (introduced by Plotkin [Plo76]). Instead
of delivering the final state after the execution of the statement has completed, we
divide the execution of the statement into its atomic (indivisible) parts, and we deliver
a pair (u', r), where u' is the state after the execution of the first atomic action and
r is the resumption, which describes the execution from this point on. In this way,
it is possible to put another statement in parallel with this one: the execution of the
second statement can be interleaved with the original one in such a way that between
each pair of subsequent atomic actions of the first statement an arbitrary number of
atomic actions of the second one can be executed. Each atomic action can inspect the
state at the beginning of its execution and possibly modify it.

For a very simple language (not yet having the power of POOL) we get the following
equation for the set (the domain) in which the values reside that we want to assign to
our statements:

P :::'. {po} U (E--> P(E x P)). (1)
The intended interpretation of this equation is the following: Let us call the elements
of the set P processes and denote them with letters p, q, and r. Then a process p
can either be the terminated process p0 , which cannot perform any action, or it is a
function that, when provided with an input state u, delivers a set X of possible actions.
Each element of this set Xis a pair (u',q), where u' is the state after this action and
q is a process that describes the rest of the execution.

It is clear that equation (1) cannot be solved in the framework of sets, because the
cardinality of the right-hand side would always be larger than that of the left-hand side.
In contrast to many other workers in the field of denotational semantics of parallelism,
who use the framework of complete partial orders (CPOs) to solve this kind of equations
(see, e.g., [Plo76]), we have chosen to use the framework of complete metric spaces.
(Readers unfamiliar with this part of mathematics are referred to standard topology

48

texts like [Dug66,Eng77] or to [BZ82].) The most important reason for this choice is
the possibility to uses Banach's fixed point theorem:

Let M be a complete metric space with distance function d and let /
M -+ M be a function that is contracting, Le., there is a real number £
with O < £ < 1 such that for all z,y EM we have d(/(z),/(11)) :5 £.d(z,y).
Then / has a unique fixed point.

This ensures that whenever we can establish the contractivity of a function we have a
unique fixed point, whereas i:ii CPO theory mostly we can only guarantee the existence
of a least fixed point.

Another reason for using complete metric spaces is the naturalness of the power
domain construction. Whereas in CPO theory there are several competing definitions
(see, e.g., [Plo76,Smy78]) all of which are somewhat hard to understand, in complete
metric spaces there is a very natural definition:

HM is a metric space with distanced, then we define P(M) to be the set
of all closed subsets of M, provided with the so-called Hausdorff distance
dH, which is defined as follows:

dH(X, Y) = max{sup{d(z, Y)},sup{d(y,X)}}
zEX 11EY

where d(z,Z) = inf,.ez{d(z,z)} (with the convention that sup0 = 0 and
inf0 = 1).

(A few variations on this definition are sometimes useful, such as taking only the
nonempty subsets of Mor only the compact ones. The metric is the same in all cases.)

The domain equation that we use for the denotational semantics of POOL (see
[ABKR88]) is somewhat more complicated than equation (1), because it also has to
accommodate for communication among objects. For POOL, the domain P of processes
is defined as follows:

P {Po} U (E-+ P(Stepp))

where the set Stepp of steps is given by

Stepp= (Ex P) U Sendp U Answerp,

with
Sendp = Obj x MName x Obj* x (Obj -+ P) x P

and
Answerp = Obj x MName x (Obj*-+ (Obj-+ P) -+ 1 P).

The interpretation of these equations (actually, they can be merged into one large
equation) is as follows: As in the first example, a process can either terminate directly,
or it can take one out of a set of steps, where this set depends on the state. But
in addition to internal steps, which are represented by giving the new state plus a
resumption process, we now also have communication steps. A send step gives the

49

destination object, the method name, a sequence of parameters, and two resumptions.
The first one, the dependent resumption, is a function from object names to processes.
It describes what should happen after the message has been answered and the result
has been returned to the sender. To do that, this function should be applied to the
name of the result object, so that it delivers a process that describes the processing
of that result in the sending object. The other resumption, called the independent
resumption, describes the actions that can take place in parallel with the sending and
processing of the message. These actions do not have to wait until the message has
been answered by the destination object. (Note that for a single object the independent
resumption will always be p0 , because a sending object cannot do anything before the
result has arrived. However, for the correct parallel composition of more objects, the
independent resumption is necessary to describe the actions of the objects that are not
sending messages.) Finally we have an answer step: This consists of the name of the
destination object and the method name, plus an even more complicated resumption.
This resumption takes as input the sequence of parameters in the message plus the
dependent resumption of the sender. Then it returns a process describing the further
execution of the receiver and the sender together.

Equations like (1) can be solved by a technique explained in [BZ82]: An increasing
sequence of metric spaces is constructed, its union is taken and then the metric comple-
tion of the union space satisfies the equation. The equation for POOL processes cannot
be solved in this way, because the domain variable P occurs at the left-hand side of the
arrow in the definition of answer steps. A more general, category-theoretic technique
for solving this kind of domain equations has been developed to solve this problem. It is
described in [AR88]. Let us only remark here that it is necessary to restrict ourselves to
the set of non-distance-increasing functions (satisfying d(f (x), f (y)) ::; d(x, y)), which
is denoted by -+ 1 in the above equation.

Let us now give more details about the semantics of statements and expressions. These
are described by the following two functions:

[... Ils : Stat-> Env-> A Obj-+ Cont 8 -> 1 P

[...]E : Exp-+ Env-+ A Obj-> ContE -+1 P.

The first argument of each of these function is a statement (from the set Stat) or an
expression (from Exp), respectively. The second argument is an environment, which
contains the necessary semantic information about the declarations of methods and
bodies in the program (for more details, see [ABKR88]). The third argument is the
name of the (active) object executing the statement/expression. The last argument
is a continuation. This certainly deserves some explanation. It seems natural that
the semantic function of a statement returns a process describing just the execution
of that statement. However, we would get into trouble then, because in defining the
semantics of the sequential composition s 1; 8 2 of two statements we would have to
determine the sequential composition of the corresponding processes. This turns out
to be impossible, the main source of trouble being the fact that 8 1 can create a new
object which should execute in parallel not only with the rest of 8 1 , but also with 8 2• In

50

the same way, one would expect that the semantic function for expressions just returns
a value (an object name) as its result. This approach, however, would leave us with
the problem of describing the possible side-effects of expression evaluation, which can
be quite complicated, e.g., involving message sending.

Continuations form the most convenient and elegant solution to these problems.
(For a nice introduction to the use of continuations in a sequential setting, see [Gor79].)
The semantic function for statements is provided with a continuation, which is just
a process (Conts = P), describing the execution of all the statements following the
current one. The semantic func::tion then delivers a process that describes the execution
of the current statement plus the following ones. Analogously, the semantic function
for expressions is fed with a continuation, which in this case is a function that maps
object names to processes (ContE = Obj -+ P). This function, when applied to the
name of the object that is the result of the expression, gives a process describing
everything that should happen in the current object after the expression evaluation.
Again, the semantic function delivers a process describing the expression evaluation
plus the following actions. ·

Now we are ready to give some examples of clauses that appear in the definition
of the semantic functions [... Bs and [...)8 • Let us start with a relatively simple
example, the assignment statement:

This equation says that if the statement :,; := e is to be executed in an environment 'Y
(recording the effect of the declarations), by the object a, and with continuation p (de-
scribing the actions to be performed after this assignment), then first the expression e
is to be evaluated, with the same environment 'Y and by the same object a, but its
resulting object is to be fed into an expression continuation A,8.{ (u', p}} that delivers
a process of which the first action is an internal one leading to the new state u' and
having the original continuation p as its resumption. Here, of course, the new state u'
is equal to u{,8 /a,:,;}, only different from u in that the value of the variable :,; in the
object a is now equal to ,8.

The semantic definition of sequential composition is easy with continuations:

Here the process describing the execution of the second statement s 2 just serves as the
continuation for the first statement s1 •

As a simple example of a semantic definition of an expression let us take an instance
variable:

[z)8 ('Y)(a)(f) = AU.{ (u, f(u(a)(z))} }.
Evaluating the expression :,; takes a single step, in which the value u(a)(z) of the
variable is looked up in the state u. The resumption of this first step is obtained by
feeding this value into the expression continuation / (which is a function that maps
object names into processes).

51

As a final example of a semantic definition, let us take object creation: The expres-
sion new(C) creates a new object of class C and its value is the name of this object.
Its semantics is defined as follows:

[new(C)IlE('r)(o:)(J) = >.a.{(a',,(C)(,B) II /(,B))}.

Here ,B is a. fresh object name, determined from a in a way that does not really interest
us here, and a' differs from a only in that the variables of the new object ,B are
initialized to NIL. We see that execution of this new-expression takes a single step, of
which the resumption consists of the parallel composition of the body ,(C)(,B) of the
new object with the execution of the creator, where the latter is obtained by applying
the expression continuation / to the name of the new object ,B (which is, after all,
the value of the new-expression). The parallel composition operator II is a function in
P x P -+ P, which can be defined as the unique fixed point of a suitable contracting
higher-order function ~Pc: (P x P-+ P) -+ (P x P-+ P) (an application of Banach's
fixed point theorem).

From the above few equations it can already be seen how the use of continuations
provides an elegant solution to the problems that we have mentioned.

There are a number of further steps necessary before we arrive at the semantics
of a complete program. One interesting detail is that in the denotational semantics,
sending messages to standard objects is treated in exactly the same way as sending
messages to programmer-defined objects. The standard objects themselves (note that
there are infinitely many of them!) are represented by a (huge) process PsT, which is
able to answer all the messages sent to standard objects and immediately returning
the correct results. This process PsT is composed in parallel with the process Pu,
which describes the execution of the user-defined objects in order to give the process
describing the execution of the whole system. From this process it is possible to derive
a set of possible execution sequences that resemble the ones that we had with the
operational semantics.

6.1.3 Equivalence of operational and denotational semantics

Despite the fact that the two forms of semantics described above, the operational and
the denotational one, are formulated in widely different frameworks, it turns out that
it is possible to establish an important relationship between them:

0 = abstr o !),

which in some sense says that the different forms of semantics of POOL are equivalent.
Here 1) is the function that assigns a process to a POOL program according to the
denotational semantics and O assigns to each program a set of (finite or infinite) se-
quences of states, which can be extracted from the sequences of configurations obtained
from the operational semantics. Finally, abstr is an abstraction operator that takes a
process and maps it into the set of sequences of states to which the process gives rise.
The complete equivalence proof can be found in [Rut88]. In the present section we

52

shall give a rough sketch of this proof, which proceeds in several steps. We apologize
for sometimes being somewhat sloppy in our notation.

The first step leads to an operational semantics that delivers a process, instead
of a set of sequences of states. For this, it is most convenient to switch to a labelled
transition system, a transition system in which the transition relation is ternary, and
where the extra component gives some more information on the nature of the transition
(e.g., whether it is an internal step or a communication action). Now it is possible to
define another operational semantics O* as follows:

O*(X) = { ::.{ (u', 0*(X')) j (X,u) (X',u')} U .••
if X has terminated
otherwise

Here X and X' are finite sets of labelled statements (see section 6.1.1), (X,u) stands
for a configuration containing X and u, stands for a transition that is labelled as an
internal on,, and the dots (...) stand for additional, more complicated terms dealing
with communication actions. Note that this definition is a recursive one: O* also
occurs at the right-hand side. However, it can be made into a well-formed definition
by taking O* as the unique fixed point of a suitable contracting higher-order function.
Now it is possible to prove that

0 = abstr o O*,

which completes the first step of the equivalence proof.
The second step consists mainly of getting rid of the continuations. Two different

techniques have been developed for this. The first technique defines a number of addi-
tional semantic operators that allow a denotational (compositional) style of semantic
definitions without the use of continuations. The resulting semantics can be proved to
be equivalent both with O* and with the denotational semantics with continuations.
For a language slightly simpler than POOL (instead of methods it has a CSP-like value
communication) this approach has been explored in [AB88a]. For POOL itself, this
has not yet been tried, but it seems feasible. The advantage of this technique is that it
provides a clear intuitive idea of the proof, but unfortunately it leads to a large number
of tedious calculations (the advantages of using continuations become very clear when
one tries to avoid them).

The second technique describes the semantic functions themselves as fixed points of
suitable higher-order contractions over different domains, the one with and the other
without continuations. By defining mappings between these domains and showing that
they commute with the contractions, it can be shown that the two semantic functions
are equivalent. This technique has been introduced in [KR87] and it is used in [Rut88]
to prove the equivalence of POOL semantics. This technique is more difficult to explain,
but it definitely leads to a shorter proof.

The final step consists of dealing with a number of details in the semantic defini-
tions that are not yet solved by the above steps. For example, the standard objects
are described by special axioms in the operational semantics, but in the denotational
semantics there is a large process PsT to describe them. The problem is that the above

53

two steps only work if in the domain equation for P we take, in the power domain P (X),
only the compact subsets instead of all the closed ones. (This is because a continuous
function maps each compact set into a compact c,ne, which is not necessarily true for
closed sets.) However, the process PsT does not fit in this domain. The problem can
be solved by proving that if presides in the "compact" domain then abstr(p II PsT) is
compact. (For more details, see [Rut88]).

6.1.4 Other forms of semantics for POOL

In addition to the operational and denotational semantics described above, POOL has
been the subject of a number of other semantic studies. Let us first mention [Vaa86]. In
this paper, the semantics of POOL is defined by means of process algebra [BK84,BK85].
This is done as follows: with the help of an attribute grammar, each POOL program
is mapped unto a specification of a process in the ACP formalism with a number
of additional operators. This specification in turn can be interpreted in each of the
different semantic models that exist for ACP, e.g., bisimulation [BBK87] and failure
semantics [BKO86].

In addition to describing the semantics of POOL, [Vaa86] also studies a number
of related issues. One of them is the implementation of a fair (in a technical sense)
communication mechanism with the help of message queues. The analysis in [Vaa86]
detected a small error in the language manual. After this had been corrected, the
correctness of this implementation could not yet be proved, unfortunately. In bisim-
ulation semantics it can be shown that the process that results from using explicit
message queues is different from the process that does not use these queues. However,
this difference is due to the strict notion of equivalence in bisimulation semantics: all
we are interested in is that the two processes can not be distinguished by observation
from outside. This notion is captured by failure semantics (leading to some additional
axioms of equality in the formalism), but unfortunately [Vaa86] does not go as far as
giving the equivalence proof in this case, because of its expected complexity.

Another semantic technique, which is currently explored for its suitability to de-
scribe POOL, uses graph grammars. In [JR87], a special type of graph grammars, called
actor grammars, are used to describe the semantics of actor languages, a different type
of concurrent object-oriented languages [Agh86,Cli81,Hew77] (see also section 3.1). In
this model, the execution of a program can be seen as a sequence of rewritings of a
graph which represents the system. Production rules in the graph grammar describe
how these rewritings should take place. In [Lei88] an initial study is made of the
viability of such a technique for describing the semantics of POOL.

Finally, we should mention here some work which describes POOL on a different
level. In [DD86,DDH87] a description is given of an abstract POOL machine. In
contrast to the "abstract machine" employed in the operational semantics described
above, this abstract POOL machine is intended to be the first step in a sequence
of refinements which ultimately lead to an efficient implementation on real parallel
hardware (DOOM). This abstract POOL machine is described formally in AADL, an
Axiomatic Architecture Description Language.

54

6.2 Proof theory
Developing a formal proof system for verifying the correctness of POOL programs is
an even harder task than giving a formal semantics for this language. Therefore this
work has been done in several stages.

First the proof theory of SPOOL, a sequential version of POOL, has been studied
(see [Ame86]}. This language is obtained by omitting the bodies (and the possibility
to return a result before a method ends) from POOL, such that now at any moment
there is only one active object and we have a sequential object-oriented language. For
this language a Hoare-style [Apt81,Hoa69] proof system has been developed. The main
contribution from the proof theory of SPOOL was a formalism to deal with dynamically
evolving pointer structures. This reasoning should take place at an abstraction level
that is at least as high as that of the programming language. More concretely, this
means the following:

1. The only operations on "pointers" (references to objects) are

• testing for equality
• dereferencing (determining the value of ap instance variable of the referenced

object)

2. In a given state of the system, it is only possible to reason about the objects that
exist in that state, i.e., an object that does not exist (yet) cannot play a role.

Requirement 1 can be met by only admitting the indicated operations to the assertion
language (however, this excludes the approach where pointers are explicitly modelled as
indices in a large array that represents the "heap"). In order to satisfy requirement 2,
variables are forbidden to refer to nonexisting objects and the range of quantifiers is
restricted to the existing objects. (The consequence is that the range of quantification
depends on the state!)

It is somewhat surprising that even with these restrictions it is possible to describe,
e.g., the creation of a new object. The trick is that the reference to the new object
can be removed from the precondition of the new-statement if one takes the properties
of the new object into account. In fact, the SPOOL proof system has recently been
proved to be complete [AB88b], i.e., every correctness formula that is true can be
proved in this system. (The only addition with respect to "classical" proof systems
is the possibility to quantify over finite sequences of object references, which is not
uncommon in dealing with abstract data types [TZ88].)

Another contribution of the SPOOL proof system is a proof rule for message passing
and method invocation (in a sequential setting). In this rule the context switching
between sending and receiving object and the transmission of parameters and result
are representing by appropriate substitution operations.

Along a different track a proof theory was developed to deal with parallelism, in par-
ticular with dynamic process creation. In [Boe86] a proof system was given for a
language that essentially only differs from POOL in that message passing only consists

55

of transmitting a single value from the sender to the receiver (like in CSP [Hoa78]).
The approach in this proof system is similar to that in [AFR80]: It consists of a local
proof system, in which each process is verified separately, using assumptions on the
behaviour of the communication statements, and a global proof system, in which these
assumptions are proved, using a global invariant.

Whereas the proof system in [Boe86] uses an explicit coding of object references by
numbers, an integration with the work on SPOOL has lead to a more abstract proof
system for the same programming language [AB88c]. Again this proof system has been
proved to be sound and complete.

6.3 Future work
Especially in the area of formal aspects there remain many unsolved problems, so that
there is ample opportunity for future work. With respect to semantics, our next goal
is to define a semantics in which there is a clear notion of the behaviour of a single
object. Ideally, this semantics would be fully abstract, which means that it only leads
to different meanings for constructs that can actually be observed to be different. In
order to reach this ideal, the semantics must abstract away from the internal details
of the object, because these cannot be observed from outside.

Another interesting issue connected with semantics is formal verification of an im-
plementation of the language. In the case of the POOL2 implementation on DOOM,
this is utterly infeasible, if we exclude miracles. However, certain aspects may turn out
to be tractable. Some of these (e.g., message queues, see section 6.1.4) have already
been tackled. The most promising implementation aspects pertain to optimizations: If
a program satisfies certain syntactic conditions, objects of a certain class have a spe-
cific behaviour, which allows a simpler and more efficient implementation. Formally
proving this kind of properties can make sure that the optimized version of a program
indeed has the same semantics as the original one.

In the area of proof theory, the next goal is the development of a sound and complete
proof system for the full language POOL, i.e., with dynamic process creation and
rendez-vous communication. This is certainly not a trivial extension to the languages
that have already been dealt with. Rendez-vous communication is more complex than
simple value passing, especially if nested rendez-vous are possible (note that [GR84]
makes use of the fact that the nesting depth is statically bounded, which is not the
case in POOL).

Another goal, possibly for the more remote future, would be a compositional proof
system, which would allow the separate verification of a single class and the constr"Gc-
tion of a complete program on the basis of external specifications of the component
classes. Such compositional proof systems exist already (see, e.g., [ZREB85]), but
they rely on the fact that the interconnection structure of the processes is determined
statically. The dynamic structure of POOL systems will probably require totally new
techniques.

An issue where both semantics and proof theory could be of considerable help is
inheritance. Formalization of the approach sketched in section 5.3 would ideally consist

56

of a fully abstract semantics for POOL plus a specification/verification formalism that
respects this semantics. It is clear that a large effort will be required to reach these
goals.

57

7 Conclusions
In the design of POOL2 several aspects have played a role. In the first place, POOL2
should be a tool that allows a professional programmer to construct rather large and
complex applications that run correctly and efficiently on a parallel machine. Extensive
experience with POOL-T has shown that this language offers considerable help in this
respect, by providing adequate concepts that can be used in a flexible way. POOL2 is
certainly a more complex language, but once it is mastered it is even more convenient
for the programmer. Many small and several medium-sized applications have been
written in it with good results.

Implementing POOL efficiently on a parallel machine is not an easy task, due to
the quite luxurious facilities that the language offers to the programmer. Therefore
a considerable effort is needed in the construction of the compiler and the run-time
system. At the moment of this writing, the first POOL2 programs are running on
our parallel machine, DOOM. It is too early to give a realistic impression of the
performance.

A large research effort has been directed at the formal aspects of this language.
Especially developing a denotational semantics for a language is a quite severe test of
the soundness and validity of its concepts. In the semantic analysis of POOL we have
found no significant flaws in the language design. We hope that in the near future we
can develop a formalism for the verification of POOL programs. While it is unrealistic
to assume that large programs can be verified completely with such a formalism, it
might nevertheless give directions towards a better informal basis for software design.

The future developments in the POOL language family will depend to a large extent on
the experience with execution of POOL2 programs on a parallel machine. Experimental
data will become available in the near future. This can help us to discover where the
language or its implementation needs further improvement. Another possibility for the
future is the integration of inheritance/subtyping into the language. In order to do
this in the right way, more theoretical research is needed. New application areas may
also necessitate new language concepts. For example, we can think of the notion of
persistency in connection with advanced data and knowledge bases. The overall goal is
a clean and consistent combination of concepts in a language of moderate complexity.

58

References

[AB88a] Pierre America and Jaco de Bakker. Designing equivalent semantic mod-
els for process creation. Theoretical Computer Science, 60(2):109-176,
September 1988.

[AB88b] Pierre America and Frank de Boer. A proof theory for a sequential version
of POOL. ESPRIT Project 415 Document 188, Philips Research Labora-
tories, Eindhoven, the Netherlands, July 1988.

[AB88c] Pierre America and Frank de Boer. A proof system for a parallel language
with dynamic process creation. ESPRIT Project 415 Document 445, Philips
Research Laboratories, Eindhoven, the Netherlands, October 1988.

[ABKR86] Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten. Op-
erational semantics of a parallel object-oriented language. In Conference
Record of the 13th Symposium on Principles of Programming Languages,
St. Petersburg, Florida, January 13-15, 1986, 194-208.

[ABKR88] Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten. Deno-
tational semantics of a parallel object-oriented language. ESPRIT Project
415 Document 190, Philips Research Laboratories, Eindhoven, the Nether-
lands, January 1988. To appear in Information and Computation.

[ACK87] Randy Allen, David Callahan, and Ken Kennedy. Automatic decomposi-
tion of scientific programs for parallel execution. In Proceedings of 14th
POPL, Munich, West Germany, January 21-23, 1987, 63-76.

[AFR80] Krzysztof R. Apt, Nissim Francez, and Willem Paul de Roever. A proof
system for Communicating Sequential Processes. ACM Transactions on
f>!"eg,::..--::.Ting Langna[!P'1 lW-d S:,·;:;~-··=, :..(.>):ab\l---385, July 1980.

[Agh86] Gui Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[Ame85a] Pierre America. A sketch of POOL-S, a simplified version of POOLl. ES-
PRIT Project 415 Document 27, Philips Research Laboratories, Eindhoven,
the Netherlands, February 1985.

[Ame85b] Pierre America. Definition of the programming language POOL-T. ES-
PRIT Project 415 Document 91, Philips Research Laboratories, Eindhoven,
the Netherlands, September 1985.

[Ame86] Pierre America. A proof theory for a sequential version of POOL. ESPRIT
Project 415 Document 188, Philips Research Laboratories, Eindhoven, the
Netherlands, October 1986.

59

[Ame87a] Pierre America. POOL-T-a parallel object-oriented language. In Akinori
Yonezawa and Mario Tokoro, editors, Object-Oriented Concurrent Pro-
gramming, 19~220, MIT Press, 1987.

[Ame87b] Pierre America. Inheritance and subtyping in a parallel object-oriented
language. In Jean Bezivin, Jean-Marie Hullot, Pierre Cointe, and Henry
Lieberman, editors, ECOOP'87: European Conference on Object-Oriented
Programming, Paris, France, June 15-17, 1987, 234-242, Lecture Notes in
Computer Science 276, Springer-Verlag.

[Ame88a] Pierre America. Definition of POOL2, a parallel object-oriented language.
ESPRIT Project 415 Document 364, Philips Research Laboratories, Eind-
hoven, the Netherlands, April 1988.

[Ame88b] Pierre America. Standard classes for POOL2. ESPRIT Project 415 Doc-
ument 365, Philips Research Laboratories, Eindhoven, the Netherlands,
April 1988.

[Ame88c] Pierre America. Standard units for POOL2. ESPRIT Project 415 Doc-
ument 366, Philips Research Laboratories, Eindhoven, the Netherlands,
April 1988.

[Ame88d] Pierre America. Rationale for the design of POOL2. ESPRIT Project 415
Document 393, Philips Research Laboratories, Eindhoven, the Netherlands,
May 1988.

[Ame89] Pierre America. A behavioural approach to subtyping in object-oriented
programming languages. In Workshop on Inheritance Hierarchies in Knowl-
edge Representation and Programming Languages, Viareggio, Italy, Febru-
ary 6-8, 1989. Also to appear in Philips Journal of Research.

[ANS83] ANSI. The Programming Language Ada Reference Manual, ANSI/MIL-
STD-1815A-1983, approved 17 February 1983. Lecture Notes in Computer

. Science 155, Springer-Verlag, 1983.

[Apt81] Krzysztof R. Apt. Ten years of Hoare logic: a survey - part I. ACM
Transactions on Programming Languages and Systems, 3(4):431-483, Oc-
tober 1981.

[AR88] Pierre America and Jan Rutten. Solving reflexive domain equations in a
category of complete metric spaces. In M. Main, A. Melton, M. Mislove,
and D. Schmidt, editors, Mathematica/ Foundations of Programming Lan-
guage Semantics, 1988, 254-288, Lecture Notes in Computer.Science 298,
Springer-Verlag.

[AS83] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for
concurrent programming. ACM Computing Surveys, 15(1):3-43, March
1983.

60

[Bac78] John Backus. Can programming be liberated from the Von Neumann style?
- a functional style and its algebra of programs. Communications of the
ACM, 21(8):613-641, August 1978.

[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consistency
of Koomen's fair abstraction rule. Theoretical Computer Science, 51(1,
2):129-176, 1987.

[BDG*87] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. Keene, G. Kiczales, and
D. A. Moon. Common Lisp Object System specification. Technical Report,
ANSI Common Lisp, 1987.

[BHJ*87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry
Carter. Distribution and abstract types in Emerald. IEEE Transactions
on Software Engineering, SE-13(1):65-76, January 1987.

[BK84] -. A. Bergstra and J. W. Klop. Process algebra for synchronous communi-
cation. Information and Control, 60:109-137, 1984.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77-121, May 1985.

[BKO86] J. A. Bergstra, J. W. Klop, and E.-R. Olderog. Failures without chaos:
a new process semantics for fair abstraction. In Martin Wirsing, editor,
Formal Description of Programming Concepts III - Proceedings of the
Third IFIP WG 2.2 Working Conference, GI. Avernres, Ebberup, Denmark,
August 25-28, 1986, 77-102, North-Holland.

[BKT84] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asyn-
chronous communication mechanisms. Report CS-R8410, Centre fur Math-
ematics and Computer Science, Amsterdam, the Netherlands, 1984.

[Boe86] Frank S. de Boer. A proof rule for process creation. In Martin Wirsing,
editor, Formal Description of Programming Concepts III - Proceedings
of the Third IFIP WG 2.2 Working Conference, GI. Avernres, Ebberup,
Denmark, August 25-28, 1986, 23-50, North-Holland.

[BSl82] BSI. Specification for the computer programming language Pascal. Stan-
dard BS 6192, British Standards Institution, Herts, United Kingdom, 1982.

[BZ82] J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics
of concurrency. Information and Control, 54:70-120, 1982.

[Car88]

[Cli81]

Luca Cardelli. A semantics of multiple inheritance. Information and Com-
putation, 76:138-164, 1988.

William Douglas Clinger. Foundations of actor semantics. Technical Re-
port 633, Massachusetts Institute of Technology, Artificial Intelligence Lab-
oratory, May 1981.

[Cox86]

[DD86]

[DDH87]

[DN66]

[Dug66]

[Eng77]

[FFGL88]

[FY85]

[Gor79]

[GR83]

[GR84]

[Hew77]

[Hil85]

[HO87]

[Hoa69]

61

Brad J. Cox. Object-Oriented Programming. Addison-Wesley, 1986.

W. Damm and G. Dohmen. The POOL-machine: a top level specifica-
tion for a distributed object-oriented machine. ESPRIT Project 415 Docu-
ment 1, Lehrstuhl fiir Informatik, RWTH Aachen, Aachen, West Germany,
October 3, 1986.

W. Damm, G. Dohmen, and P. den Haan. Using AADL to specify dis-
tributed computer architectures - a case study. In J. W. de Bakker,
editor, Deliverable D3 of the Working Group on Semantics and Proof Tech-
niques, chapter 1.4, ESPRIT Project 415, Philips Research Laboratories,
Eindhoven, the Netherlands, October 1987.

Ole-Johan Dahl and Kristen Nygaard. Simula: an ALGOL-based simu-
lation language. Communications of the ACM, 9(9):671-678, September
1966.

J. Dugundji. Topology. Allyn and Bacon, Boston, Massachusetts, 1966.

R. Engelking. Genera/ Topology. Polish Scientific Publishers, 1977.

Jerome A. Feldman, Mark A. Fanty, Nigel H. Goddard, and Kenton J. Lyne.
Computing with structured connectionist networks. Communications of the
ACM, 170-187, February 1988.

Nissim Francez and Shaula A. Yemini. Symmetric intertask communi-
cation. ACM Transactions on Programming Languages and Systems,
7(4):622-636, October 1985.

Michael J. C. Gordon. The Denotational Description of Programming Lan-
guages: An Introduction. Springer-Verlag, 1979.

Adele Goldberg and David Robson. Smalltalk-BO, The Language and its
Implementation. Addison-Wesley, 1983.

Rob Gerth and Willem Paul de Roever. A proof system for concurrent Ada
programs. Science of Computer Programming, 4(2):159-204, August 1984.

Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8:323-364, 1977.

W. Daniel Hillis. The Connection Machine. M.I.T. Press, 1985.

Daniel C. Halbert and Patrick D. O'Brien. Using types and inheritance in
object-oriented programming. IEEE Software, 71-79, September 1987.

C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576-580,583, October 1969.

62

[Hoa78]

[HP79]

[Jon78]

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666-677, August 1978.

Matthew Hennessy and Gordon Plotkin. Full abstraction for a simple par-
allel programming language. In J. Befvaf, editor, Proceedings of the 8th
Symposium on Mathematical Foundations of Computer Science, 1979, 108-
120, Lecture Notes in Computer Science 74, Springer-Verlag.

Anita K. Jones. The object model: a conceptual tool for structuring soft-
ware. In R. Bayer, R. M. Graham, and G. Seegmiiller, editors, Operating
Systems - An Advanced Course, 1978, 7-16, Springer-Verlag.

[JR87] D. Janssens and G. Rozenberg. Basic notions of actor grammars: a graph
grammar model for actor computation. In H. Ehrig, M. Nagl, G. Rozen-
berg, and A. Rosenfeld, editors, Graph-Grammars and Their Application to
Computer Science, 1987, 280-298, Lecture Notes in Computer Science 291,
Springer-Verlag.

[Ken80] Ken Kennedy. Automatic translation of FORTRAN programs to vector
form. Technical Report 476-029-4, Rice University, October 1980.

[Kow79] Robert Kowalski. Logic for Problem Solving. North-Holland, 1979.

[KR87] Joost N. Kok and Jan J.M. M. Rutten. Contractions in comparing concur-
rency semantics. Report CS-R8755, Centre for Mathematics and Computer
Science, Amsterdam, the Netherlands, November 1987.

[KVR83] Ron Koymans, Jan Vytopil, and Willem P. de Roever. Real-time program-
ming and asynchronous message passing. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, Mon-
treal, Canada, August 1983.

[LAB*81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaf-
fert, Robert Scheifler, and Alan Snyder. CLU Reference Manual. Lecture
Notes in Computer Science 114, Springer-Verlag, 1981.

[Lan82] Charles Richard Lang, Jr. The extension of object-oriented languages to
a homogeneous, concurrent architecture. Ph.D. thesis, California Institute
of Technology, Computer Science Department, Pasadena, California, May
1982. Technical Report 5014:TR:82.

[Lei88j George Leih. Actor graph grammars and POOL2. PRISMA Project Docu-
ment 265, University of Leiden, Department of Computer Science, February
1986.

[Lie81] Henry Lieber-i. •. ~n.. A preview of Act 1. A.I. Memo 625, Massachusetts
Institute of Technolog,, rtificial Intelligence Laboratory, June 1981.

63

[MAE*80] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin. LISP 1.5 Programmer's Manual. The MIT Press,
1980.

[Mey82]

[Mey87]

[Mey88]

[MK87]

[MT86]

[Odi87]

[OG76]

[Plo76]

[Plo81]

[Plo83]

[Rut88]

Bertrand Meyer. Principles of package design. Communications of the
ACM, 25(7):419-428, July 1982.

Bertrand Meyer. Eiffel: programming for reusability and extendibility.
ACM SIGPLAN Notices, 22(2):85-99, February 1987.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
1988.

J. Eliot B. Moss and Walter H. Kohler. Concurrency features for the Trel-
lis/Owl language. In Jean Bezivin, Jean-Marie Hullot, Pierre Cointe, and
Henry Lieberman, editors, ECOOP'87: European Conference on Object-
Oriented Programming, Paris, France, June 15-17, 1987, 171-180, Lecture
Notes in Computer Science 276, Springer-Verlag.

Sape J. Mullender and Andrew S. Tanenbaum. The design of a capability-
based distributed operating system. The Computer Journal, 29:289-299,
August 1986.

Eddy A. M. Odijk. The DOOM system and its applications: a survey of
ESPRIT 415 subproject A. In J. W. de Bakker, A. J. Nijman, and P. C.
Treleaven, editors, Proceedings of PARLE: Parallel Architectures and Lan-
guages Europe. Volume I: Parallel Architectures, Eindhoven, the Nether-
lands, June 15-19, 1987, 461-479, Lecture Notes in Computer Science 258,
Springer-Verlag.

Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319--340, 1976.

Gordon D. Plotkin. A powerdomain construction. SIAM Journal on Com-
puting, 5(3):452-487, September 1976.

Gordon D. Plotkin. A structural approach to operational semantics. Re-
port DAIMI FN-19, Aarhus University, Computer Science Department,
Aarhus, Denmark, September 1981.

Gordon D. Plotkin. An operational semantics for CSP. In D. Bj~rner,
editor, Formal Description of Programming Concepts II, 1983, 199-223,
North-Holland.

Jan Rutten. Semantic correctness for a parallel object-oriented language.
Report CS-R8843, Centre for Mathematics and Computer Science, Ams-
terdam, the Netherlands, October 1988.

64

[SCB*86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie
Wilpolt. An introduction to Trellis/Owl. In Proceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Languages and Appli-
cations, Portland, Oregon, September 1986, 9-16.

[SCW85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis object-based
environment - language reference manual. Technical Report DEC-TR-
372, Digital Equipment Corporation, Eastern Research Lab, Hudson, Mas-
sachusetts, November 25, 1985.

[Sei85] Charles L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-
33, January 1985.

[Sha81] Mary Shaw, editor. ALPHARD: Form and Content. Springer-Verlag, 1981.

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473-
530, September 1982.

[Smy78] Michael B. Smyth. Power domains. Journal of Computer and System
Sciences, 16:23-36, 1978.

[Ste84] Guy L. Steele Jr. Common LISP: The Language. Digital Press, 1984.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

[TBH82] Philip C. Treleaven, David R. Brownbridge, and Richard P. Hopkins. Data
driven and demand driven computer architecture. ACM Computing Sur-
veys, 14(1):93-143, March 1982.

[The83] Daniel G. Theriault. Issues in the design and implementation of Act2.
Technical Report 728, Massachusetts Institute of Technology, Artificial In-
telligence Laboratory, June 1983.

[Tur85] D. A. Turner. Miranda: a non-strict functional language with polymorphic
types. In J.-P. Jouannaud, editor, Functional Programming Languages
and Computer Architecture, 1985, 1-16, Lecture Notes in Computer Sci-
ence 201, Springer-Verlag.

[TZ88] John V. Tucker and Jeffery I. Zucker. Program Correctnes over AbstracL
Data Types, with Error-State Semantics. CWI Monographs 6, North-
Holland, 1988.

[Vaa86] Frits W. Vaandrager. Process algebra semantics for POOL. Report CS-
R8629, Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, August 1986.

[Wir82] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

65

[WLH81] William A. Wulf, Roy Levin, and Samuel P. Harbison. HYDRA/C.mmp:
An Experimental Computer System. McGraw-Hill, 1981.

[WM80] Daniel Weinreb and David Moon. Flavors: message passing in the Lisp
machine. AI Memo 602, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, November 1980.

[Wou88] Rick Wouters. A generalized select statement for POOL. ESPRIT Project
415 Document 430, Philips Research Laboratories, Eindhoven, the Nether-
lands, August 1988.

[ZREB85] Job Zwiers, Willem Paul de Roever, and Peter van Emde Boas. Composi-
tionality and concurrent networks: soundness and completeness of a proof
system. In Proceedings of the 12th International Colloquium on Automata,
Languages and Programming {ICALP), Nafplion, Greece, July 15-19, 1985,
509-519, Lecture Notes in Computer Science 194, Springer-Verlag.

Solving Reflexive Domain Equations in a

Category of Complete Metric Spaces

Pierre America
Philips Research Laboratories

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands

Jan Rutten
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper presents a technique by which solutions to reflexive domain equations can be found in a certain
category of complete metric spaces. The objects in this category are the (non-empty) metric spaces and
the arrows consist of two maps: an isometric embedding and a non-distance-increasing left inverse to it.
The solution of the equation is constructed as a fixed point of a functor over this category associated with
the equation. The fixed point obtained is the direct limlt (colimit) of a convergent tower. This construction
works if the functor is contracting, which roughly amounts to the condition that it maps every embedding to
an even denser one. We also present two additional conditions, each of which is sufficient to ensure that
the functor has a unique fixed point (up to isomorphism). Finally, for a large class of functors, including
function space constructions, we show that these conditions are satisfied, so that they are guaranteed to
have a unique fixed point. The techniques we use are so reminiscent of Banach's fixed-point theorem that
we feel just~ied to speak of a category-theoretic version of it.

1980 Mathematical Subject classification: 68810, 68C01.
1986 Computing Reviews Categories: D.1.3, D.3.1, F.3.2.
Key words and phrases: domain equations, complete metric spaces, category theory, converging towers,
contracting functors, Banach's fixed-point theorem.

Note. This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages
for Advanced Information Processing - a VLSI-directed approach.

This paper appeared in Journal of Computer and System Science and is included in this
tract with kind permission of Academic Press, Inc.

I. INTRODUCTION

67

The framework of complete metric spaces has proved to be very useful for giving a denotational
semantics to programming languages, especially concurrent ones. For example, in the approach of De
Bakker and Zucker [BZ] a process is modelled as the element of a suitable metric space, where the
distance between two processes is defined in such a way that the smaller this distance is, the longer it
takes before the two processes show a different behaviour.

In order to construct a suitable metric space in which processes are to reside, we must solve a

68

reflexive domain equation. For example, a simple language, where a process is a fixed sequence of
uninterpreted atomic actions, gives rise to the equation

P {po} U (A XP).

(Here U denotes the disjoint union operation.) In [BZ] an elementary technique was developed to
solve such equations. Roughly, this consisted of starting with a small metric space, enriching it itera-
tively, and ta.king the metric completion of the union of all the obtained spaces.

In many cases this technique is sufficient to solve the equation at hand, but there are equations for
which it does not work: equations where the domain variable P occurs in the left-hand side of a func-
tion space construction, e.g.,

P {po} U
This kind of equation arises when the semantic description is based on continuations (see for example
(ABKR]). In this paper we present a technique by which these cases can also be solved, at least when
we restrict the function space at hand to the non-distance-increasing functions.

The structure of this report is as follows: In section 2 we list some mathematical preliminaries. In
section 3 we introduce our category e of complete metric spaces, we define the concepts of converging
tower and contracting functor. We show that a converging tower has a direct limit and that a con-
tracting functor preserves such a limit. Then we see how a contracting functor gives rise to a converg-
ing tower and that the limit of this tower is a fixed point of the functor.

Section 4 presents two cases in which we can show that the fixed point we construct is the unique
fixed point (up to isomorphism) of the contracting functor at hand. One case arises when we work in
a base-point category: a category where every space has a specially designated base-point and where
every map preserves this base-point. The other case is where the functor is not only contracting, but
also horn-contracting: it is a contraction on every function space.

Finally, in section 5, we present a large class of functors (including most of the ones we are interested
in), for which we can show that each of them has a unique fixed point.

Acknowledgements
We would like to thank Jaco de Bakker, Frank de Boer, Joost Kok, Frank van der Linden, John-Jules
Meyer and Erik de Vink for useful discussions on the contents of this paper. We are also grateful to
Marino Delusso and Eline Meijs, who have typed this report.

2. MATHEMATICAL PRELIMINARIES

In this section we collect some definitions and properties concerning metric spaces, in order to refresh
the reader's memory or to introduce him to this subject.

69

2.1. Metric spaces
DEFINITION 2.1 (Metric space)
A metric space is a pair (M,tf) with Ma non-empty set and d a mapping I] (a metric or
distance), which satisfies the following properties:
(a) \fx,yEM[d(x,y)=O <=> x =y]
(b) \fx,yEM[d(x,y)=d(y,x)]
(c) \fx,y,z EM [d(x,y)..;d(x,z)+d(z,y)].
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied:
(c') \fx,y,z EM [d(x,y)..;max{d(x,z),d(z,y)}].
Note that we consider only metric spaces with bounded diameter: the distance between two points
never exceeds 1.

Example
Let A be an arbitrary set. The discrete metric d,1. on A is defined as follows. Let x,y EA, then

{
Q if X =y

d,1.(x,y) = 1 if X'FY·

DEFINITION 2.2
Let (M,tf) be a metric space, let (x;); be a sequence in M.
(a) We say that (x;); is a Cauchy sequence whenever we have:

'v'£>0 3NEN \fn,m>N [d(x.,xm)<£].
(b) Let x EM. We say that (x;); converges to x and call x the limit of (x;); whenever we have:

'v'£>0 3N EN \fn>N [d(x,x.)<£].
Such a sequence we call convergent. Notation: =x.

(c) The metric space (M,tf) is called complete whenever each Cauchy sequence converges to an ele-
ment of M.

DEFINITION 2.3
Let (M1,d1),(M2,d2) be metric spaces.
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a such that:

\fx,yeM1 [d2(f(x),/(y))=d1(x,y)]. We then write M 1.;;;r,_M2. When/is not a bijection (but only
an injection), we call it an isometric embedding.

(b) Let f:M 1 2 be a function. We call f continuous whenever for each sequence (x;); with limit x
in M I we have that /(x).

(c) Let A ;;.Q. With M 1 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property:
\fx,yEM1 [d2(f(x),f~))..;A•d1(x,y)).
Functions f in M 1 M 2 we call non-distance-increasing (NDI), functions f in M 1 M 2 with
Q..;£< I we call contracting.

PROPOSITION 2.4
(a) Let (M1,d1),(M2,d2) be metric spaces. For every A ;;.Q and fEM 1 M2 we have: f is continuous.
(b) (Banach's fixed-point theorem)

Let (M,tf) be a complete metric space and f :M a contracting function. Then there exists an
x EM such that the following holds:
(1) f(x)=x (xis a fixed point of j),
(2) \fyeM lf(y)=y => y =x] (xis unique),
(3) 'v'xoEM 1 where J<• +l)(xo)= J(t<•)(xo)) and J<0l(xo)=xo.

DEFINITION 2.5 (Closed subsets)

70

A subset X of a metric space (M,d) is called closed whenever each Cauchy sequence in X converges to
an element of X.

DEFINITION 2.6
Let (M,d),(Mi,di), ... ,(M.,d.) be metric spaces.
(a) With we denote the set of all continuous functions from M 1 to M2. We define a

metric dF on M 1 2 as follows. For every f 1 ,h EM 1 2

dF(/1 ,fi)=supxeM, {d2(/1(x),/i(x))}.

For A ;.,,Q the set M 1 2 is a subset of M 1 2, and a metric on M 1 M2 can be obtained
by taking~e res!!!ction of the corresponding dF.

(b) With M 1 U · · · UM. we denote the disjoint union of Mi,.:....:.. ,M.!!1. which can be defined as
{l}XM1 U · · · U{n}XM •. We define a metric du on M 1 U ···UM. as follows. For every
x,yEM1U · · · uM.

_ {dj(x,y) if x,yELJ} XM1, 1E,;Jo:;;n
du(x,y) - I otherwise.

(c) We define a metric dp on M I X · · · X M. by the following clause.
For every (xi, ... ,x.), (yi, ... ,y.)EM1 X · · · XM.

dp((xi, ... ,x.),(y 1, ... ,y.))=max;{d;(x;,y;)}.

(d) Let 'il'c,(M)=def{XJXt;;MJX is closed and non-empty}. We define a metric dH on 'il'c,(M), called
the Hausdorff distance, as follows. For every X, YE 'il'c,(M)

dH(X, Y)=max{supxex{d(x, Y)},supyer{d(y,X)} },

where d(x,Z)=de/inf,,,2 { d(x,z)} for every Z t;;M, x EM.
An equivalent definition would be to set V,(X)={yEM l3xEX[d(x,y)<rl} for r>O,XCM,
and then to define

dH(X,Y) = inf{r>OJ XcV,(Y)I\ YCV,(X)}.

PROPOSITION 2.7
Let (M,d), (Mi,d1), ••• ,(M.,d.~ dF, du, dp and dH be as in definition 2.6 and suppose that (M,d),
(M1,d1), ... ,(M.,d.) are complete. We have that
(a) (M1=.M2,t!E), M2,dF),
(b) (M1 U · · · UM.,du),
(c) (M1 X · · · XM.,dp),
(d) (6J'c1(M),dH)
are complete metric spaces. If (M,d) and (M;,d;) are all ultra-metric spaces these composed spaces are
again ultra-metric. (Strictly spoken, for the completeness of M 1 2 and M 1 M 2 we do not need the
completeness of M 1• The same holds for the ultra-metric property.)

If in the sequel we write M 1 U ···UM., M 1 X · · · XM. or '1'c,(M), we mean
the metric space with the metric defined above.
The proofs of proposition 2.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can be
proved with the help of the following characterization of the completeness of (6J'c1(M),dH).

PROPOSITION 2.8
Let (6J'c1(M),du) be as in definition 2.6. Let (X;); be a Cauchy sequence in 6J'c1(M). We have:

= EX;, (x;); a Cauchy sequence in M}.

71

Proofs of proposition 2.7(d) and 2.8 can be found in (for instance) [Du) and [En). Proposition 2.8 is
due to Hahn [Ha]. The proofs are also repeated in [BZJ.

THEOREM 2.9 (Metric completion) _
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion of M)
toget'!!!! with an isometric embedding i :M such that:
(I) Mis complete
(2) For every complete !!'!!_ric space M' a!!_d isometric embedding j :M there exists a unique

isometric embedding j:M such that j 0 i = j.
PROOF
The space M is constructed by taking the set of all Cauchy sequences in M and dividing it out by the
equivalence relation = defined by

(x.),,=(Y.). =def lim.-"'d(x.,y.)=O.
The metric de on M is defined by

dc([(x.)]=,[(Y.)k) =def lim.-a,d(x.,y.)
and the embedding i will map every x eM to the equivalence class of the sequence of which all ele-
ments are equal to x:

i(x) = [(x).k.

It is easy to show that M and i satisfy the above properties.

3. A CATEGORY OF COMPLETE METRIC SPACES

In this section we want to generalize the technique of solving reflexive domain equations of De
Bakker and Zucker ([BZ]). We shall first give an example of their approach and then explain how it
can be extended.
Consider a domain equation

P ;;; {po} U (A X P) ,

with A an arbitrary set. In [BZ] a complete metric space that satisfies this equation is constructed as
follows. An increasing sequence A <0> ~A <1> • • · of metric spaces is defined by

(0) A <0> = {p0 } , do trivial ,

(n+l)A<•+I) = {po} UA xA<•>,
dn+I (po, q) = I if qeA<•+I), q =I= po,

d,,+1(<a1, Pi>, <a2, p2>) = I J_. d (pl) l 2 n I, P2

Note that for every i;;;.O, A(il is a subspace of A(i+I)_ Their union is defined as

A*= LJ A<•>,
• EN

and a domain A"' is defined as the metric completion of this union:

72

A 00 =A'.
It is then proved that A 00 satisfies the equation. (We observe that A • is isometric to the set of all
finite sequences of elements of A, while A 00 is isometric to the set of all finite and infinite sequences,
in both cases with a suitable metric.)
In order to extend this approach, we shall formulate a number of category-theoretic generalizations of
some of the concepts used in the construction described above.

First we shall define a converging tower to be the counterpart of an increasing sequence of metric
spaces; then the construction of a direct limit of such a tower will be the generalization of the metric
completion of the union of such a sequence. Finally we shall give a generalized version of Banach's
fixed-point theorem.
For this purpose we define a category e of complete metric spaces.

DEFINITION 3.1 (Category of complete metric spaces)
Let e denote the category that has complete metric spaces for its objects. The arrows I in e are
defined as follows. Let M 1,M2 be complete metric spaces. Then M 1---+'M2 denotes a pair of maps

I

M 1,.:zM2, satisfying the following properties:
1

(a) i is an isometric embedding,
(b) j is non-distance-increasing (NDI),
(c) j 0 i=idM,·
(We sometimes write <i,j > for 1.) Composition of the arrows is defined in the obvious way.

REMARK
For the basic definitions from category theory we refer the reader to [ML].

We can consider M 1 as an approximation of M 2 : in a sense the set M 2 contains more information
than M 1 , because M I can be isometrically embedded into M 2• Elements in M 2 are approximated by
elements in M 1. For an element m2 EM 2 its (best) approximation in M I is given by j(m2). (The rea-
son why j should be NDI is, at this point, difficult to motivate.)
When we informally rephrase clause (c), it states that the approximation in M I of the embedding of
an element m I EM I into M 2 is again m 1 • Or, in other words, that M 2 is a consistent extension of
M1.

DEFINITION 3.2
For every arrow M 1---+' M2 in e with 1= <i,j > we define

8(1) = (i 0j,idM,) (= SUPm,eM, { dM, (i 0j(m2),m2)}).

This number plays an important role in our theory. It can be regarded as a measure of the quality
with which M2 is approximated by M1: the smaller 8(1), the denser M 1 is embedded into M 2.
We next try to formalize a generalization of increasing sequences of metric spaces by the following
definition.

DEFINITION 3.3 (Converging tower)
(a) We call a sequence (D.,i,,). of complete metric spaces and arrows a tower whenever we have that

'lfneN [D ~D.+1E8].

73

(b) The sequence (Dn,&n),, is called a converging tower when furthermQre the following condition is
satisfied:
V£>0 3NeN \tm>n-;;,,N [8(1nm)<£), where &nm= &,,,- 1° · · · 0 &,,:

ExAMi'LE 3.4
A special case of a converging tower is a sequence (Dn,&n)n that satisfies the following conditions:
(a) \tneN ee),
(b) 3£ (0-.;£< 1 /\ \tn eN [8(&,, + i)..; £•8(1,,)]).
(Note that 8(1,,m)o;;;B(i,,)+ • · · +8<1m-1)o;;;£"•8(1o)+ · · · +~ -• ·8(1o)o;;; 1 ~£ ·8(1o).)

ExAMPLE 3.5
Let A<0> ~A<1l · · · be the sequence of metric spaces defined at the beginning of this chapter. We
show how it can be transformed into a converging tower, by defining a sequence of arrows (&n). (with
&,, = <i., j. >) with induction on n:

(0) io(po)=po, jo trivial,
(n + l)i. +1 : A<•+IJ A<•+2> , trivial (i.+ 1(p) = p),

j.+1 : A<•+2J A<•+IJ'

j.+1(po) =Po,
j.+1(<a, p>) = <a, j.(p)> for <a, p> e A<•+2>.

It is not difficult to see that we have obtained a tower
... '

which is converging.

3.1 The direct limit construction
In this subsection we show that in our category e every converging tower has an initial cone. The
construction of such an initial cone for a given tower (the direct limit construction) generalizes the
technique of forming the metric completion of the union of an increasing sequence of metric spaces.
Before we treat the inverse limit construction, we first give the definition of a cone and an initial cone
and then formulate a criterion for the initiality of a cone.

DEFINmON 3.6 (Cone)
Let (D.,i,,). be a tower. Let D be a complete metric space and (y.). a sequence of arrows. We call
(D,(r.)n) a cone for (D.,i,,). whenever the following condition holds:

\tneN = 'Yn+1°&nl

74

DEFINITION 3.7 (Initial cone)
A cone (D,(y.),,) of a tower (D.,i.,,). is called initial whenever for every other cone (D',(y~).) of
(D.,i.,,). there exists a unique arrow ,:D->D' in e such that:

'v'n EN [icy. = y~].

D -------> D'
L

LEMMA 3.8 (Initiality lemma)
Let (D.,i.,,). be a converging tower with a cone (D, (y.).). Let Yn = <a.,P. >. We have:

PROOF
<=

D is an initial cone~ =idD.

Suppose lim,,...,. 00 a. 0P.=idD. Let (D', (y~).), with y~=<a~, {1~>, be another cone for (D., i.,,) •. We
have to prove the existence of a unique arrow D->'D' Ee such that

'v'n EN [L O Yn = Y~] •

First we construct an embedding i:D->D', then a projection j:D'->D. Next, the arrow I will be
defined as i=<i, J>.
For every n EN we have

a~ 0 Pn ED->D'.

We show that (a~ 0P.). is a Cauchy sequence in D->D' and then use the completeness of this function
space to define i as the limit of that sequence.
Let m>n~O. We have

0 f1m , a~ 0 P.) =
0 Pm, a~ 0 inm 0}nm O f1m) =

SUPxeD{dD•(a~ 0 Pm(X), a~ 0 inm 0)nm O f1m(X))} =
[because a~ is isometric]

SUPxeD{dD.<Pm(X), inm O }nm O Pm(X))} =
[because Pm is surjective]

SUPxeD. {dD.(X, inm 0]nm(X))} =
inm 0]nm)) = li(t,m).

Let £>0. Because (D., 1,,). is a converging tower there is an N EN such that

\r/m>n;;itN [8(1,,m)<E].

Thus (a~ 0 /J.). is a Cauchy sequence. We define

i = lim,,_""a~o/Jn .

We prove that i is isometric by showing:

\r/x, JED [dD' (i(x), i(y)) = dD(x, y)]
Let x, y ED, we have

dD•(i(x), i(y)) =
dD•(lim,,_""a~ 0 fJ.(x), lim,,_00 a~o/J.(y)) =
lim,,_""dD,(a~ 0 fJ.(x), a~ofJ.(y)) =
[because a~ is isometric]

lim,,_""dD,<fJn(x), (/J.(y)) =
[because a. is isometric]

lim,,_0()dD(a. 0fJ.(x), a.ofJ.(y)) =
lim,,_O()a.ofJ.(y)) =

dD(x, y).

Thus i is isometric.

Similar to the definition of i we choose

J = lim,,_""a.ofJ~ .

We have that J is NDI, because, for x, y ED':

dD(j(x), J(y)) =
lim,,_""a. 0 /J~(y)) =

lim,,_""dD(a. 0 /J~(x), a.ofJ~(y)) =
[because a. is isometric]

lim,,_""dD, (/J~(x), (/J~(y)) .;;;

I because fJ~ is NDI l

75

76

y) =
dv•(x, y).

We also show: J O i =idv. Let xED, then

J O i(x) =
o /J.(x)) =

o a~ o {3.(x) =
o /j~ o a~ o fJ.(x) =

o /J~ o a~ o /3.(x) =
[because /J~ 0 a~ = idv.]

° fJ.(x) = x .

Now we can define

t = <i,j>'
of which we have so far proved : D--+'D'E8.

Next we have to verify that I satisfies the condition

itmEN [1"'(., = y~].

Tiris amounts to

itm EN [i o a., = a~ I\ /3., 0 J = {3~] .

Let m ;;,;, 0. We only prove the first part of the conjunction. We have

i o a., = a~ o /Jn) o a.,

= +m O /J. +m) 0 a.,
= lim,,-+ooa: +m O /Jn +m O am

= lim,,_ooa~ +m O /Jn +m O an +m O im, m+n

= Iim,,_ooa~ +m o idv,,+ ... o im, m+n

= Iim,,_oo a~ = a~ .

Finally we show that I is unique. Suppose D--+"D', with 1'=<i',j'>, is another arrow in C?., that
satisfies

itm EN [1' 0 Ym = Y~] .

We only show that i' = i, leaving the proof of j' = j to the reader:

i' = i' 0 idv

= a~ 0 /Jm
= i.

77

Suppose now that (D, (yn),,) is an initial cone of the converging tower (Dn, 1n)n- We have to prove
that

lim,,, ... 00 «n ° /Jn = idD •
By an argument similar to the proof for (a~ 0 /Jn),, above, we have that (an ° /Jn)n is a Cauchy
sequence. We define

f = lim,, ... 00 «n ° /Jn ,
D' = { x I xeD lf(x)=x }.

We set out to prove that D' = D.
The set D' is a closed subset of D, so it again constitutes a complete metric space. For each n el\l we
have

because of the following argument. Let deDn, then:

flan(d)) =
lim,,, ... ao«m 0 /Jm(«n(d)) =
limm ... ao«n +m 0 /Jn +m O (an(d)) =
lim,,, ... ao«n+m 0 /Jn+m O «n+m O in. n+m(d) =
lim,,, ... ao«n +m O in, n+m(d) =
I: :n,,, ... 00 «n(d) =
«n(d).

So f(an(d)) = «n(d), and thus «n(d) E D'.
Next we define, for each n el\l:

/J~ = /Jn1D' (/Jn restricted to D'),

y~ = <a~, {J~>.
It is clear that (D', (y~)n) is another cone for (Dn, ln)n- Because (D, (Yn)n) is initial, there exists a
unique arrow D-+'' D' ee with 11 = <i 1, j 1 > such that

"In el\l [11 ° Yn = Y~] •

The set D' can also be embedded into D: let D, with ,2 = <i2,Ji>, be defined by

i2 = idD',

h = i1 ·
Then Dee. For i2 1s isometric, h is NDI and the following argument shows that
h O i2 = idD'· Let deD'. Then

h o i2(d) = Ji(d)
= ii(d)

= [because d e D', we have /(d) = d ;

in other words, (lim,, ... 00 «n ° /JnXd) = d]

78

(i I o (lim,,'-'ooan o /J.)Xd)
= 1 ° a. 0 P.Xd)
= (a~ 0 P.Xd)
= 0 P.Xd) = d .

Now we are able to define by

I = 12 o It

= <i2oi1,}t oJi>.
It is easy to verify that

'lfn EN [1 ° Yn = Yn] .

By the initiality of D we have that

I = <idD ' idD > .
Thus i 2 ° i 1 = idD, This implies D = D'.
Conclusion:

lim a. a {J. = idD .

The initiality lemma will appear to be very useful in the sequel, where we shall construct a cone for
an arbitrary converging tower and prove that it is initial.

DEFINITION 3.9 (Direct limit construction)
Let (D.,i,,)., with i,, =<i.,J. >, be a converging tower. The direct limit of (D.,,.). is a cone (D,(r.).),
with y.=<a.,/J.>, that is defined as follows:

D ="'I {(x.).l'lfn;;;.O[x.ED. /\J.(x.+ 1) = x.l}
is equipped with a metric such that for all (x.).,(y.).ED:
d((x.).,(y.).) = sup{ dD. (x.,y.)};
a.:D.->D is defined by a.(x)=(xk)b where l}k.(x) if k <n

xk = x if k =n
ink(x) if k >n;

is defined by IJ.((xk)k)=x •.

LEMMA 3.10
Let (D,d) be as defined above. We have:

(D,tf) is a complete metric space.
PROOF
Let (x.)., (y.). ED. Let m >n ;..o, then

do.(x., y.) = do.<Jnm(Xm), jnm(ym))

o;;; I because j.m is NDI]

do.(Xm, Ym) •

79

Thus (d0 .(x.,y.)). is an increasing sequence. It is bounded by I, thus its supremum exists, and is
equal to the limit. It is not difficult to show that d is a metric. . .
We shall prove the completeness of D with respect to this metric. Let (x\, with x' =(xb, x\, x~ •.. .)
be a Cauchy sequence in D. Because for all k and for all n and m:

do,<xZ, xf) o;;; supkeN{do,<xZ, xf)}

= d (x", xm)

and <x\ is a Cauchy sequence, we have, for all kEN, that (xDi is a Cauchy sequence in Dk, For
every k we set

Xk = illllj_.ooxi ,
We have jk(Xk+ i)=xk, since

jk(xk+i) = A(illllj ooXi+i)

= limi ooA(xi + 1)

= lim;_.00 Xi

= Xk.

Thus (xk)k is an element of D.
Because the convergence of the sequences (xl:)i fork EN was uniform, we have

V<>O 3NEN VkEN \fn>N [do,(xi, xk)<<].

This fact implies that (xk)k is the limit of (x\, since, for <>0,

d((xk)k, x") = SUPkeN{do,(Xk, xV}

for n bigger than a suitable N.

RELATION BE1WEEN THE DIRECT LIMIT CONSTRUCTION AND METRIC COMPLETION
We can look upon the construction of the direct limit for a tower (D.,i.). as a generalization of tak-
ing the metric completion of the union of a sequence of metric spaces. We define

Do = {O}XDo

D~+I = {n +l}X(D.+ 1 \i.(D.)) U D~.

and take l.:D.-+D~ as follows:

/ 0(d) = <0,d> for dEDo,

{
l.(d') ifd=i.(d')ED.+ 1 withd'ED.

l.+i(ti) = <n+l,d> ifdei.(D.).

80

Because each ;. is an injection, this construction worlcs, and we see that each '• is a bijection. There-
fore, we can use (I.). in the obvious way to define a metric d. on each D~ and suitable
andj.:D~+ 1
Now we have an isomorphic copy of our original tower, which satisfies the condition that each
i~ + 1 is a subset embedding. From now on we leave out the primes, and just suppose that
i. :D. + 1 satisfies this condition.
If we define U as the union of (D.)., and by

d(x,y) = dD, (x,y),

whenever xED.,yeDm and k-_.m,n, we have that (U,d) is a metric space. Generally, it will not be
complete. The direct limit of (D.,i.). can be regarded as the completion of (U,d) in the following
sense.
In U we consider only such sequences (x.)., for which:

"In eN[x. eD.]
and

"In eN[x. = j.(x. + 1)i
It follows tha, (x.). is a Cauchy sequence. For m >n we have

d(xm,Xn) = dD.(Xm,i-(x.))

= dD. (Xm,inm 0jnm(Xm))

._;

This number is small for large n and m, because (D.,i.). is a converging tower.
For every (x.). and (Y.). in U, that both satisfy (1) and (2), we have:

if (x.,y.) = 0, then (x,.). = (Y.).,

because of:

dD, (x,,,y.) = dD, (j.(x. + i),j.(Y. + i))

-.; dD,.,(Xn+hYn+1)

(2)

(expressing that (dD,(x.,y.)). is a monotonic, non-decreasing sequence with limit 0, so all its elements
are 0).
Of course it is not the case that every Cauchy sequence satisfies (l) and (2), but we can find in each
class of Cauchy sequences that will have the same limit a representative sequence, which satisfies (1)
and (2), and which by the above is unique. Let (x.). be an arbitrary Cauchy sequence in U. As a
representative of the class of Cauchy sequences with the same limit as (x.)., we take the sequence
(Y.)., defined by

Yn =
with

{
Xm if XmEDn

x::, = jn1c(Xm) if Xm !i!D., and k >n is the least number with Xm eDk

(Remember that k >n~Dk ":JD.). It is not very difficult to show, that we have indeed:

dD, (x.,y.) = 0,

81

and that (y.). satisfies()) and (2). Finally we remark that the direct limit D of (D.,i,,). consists of
exactly those sequences in U, that satisfy (l) and (2), and thus can be viewed as the metric completion
of (U,d).

Remember from theorem 2.9 that the metric completion M of a metric space M is the sma:!!_est com-
plete metric space, into which M can be isometrically embedded, in the following sense: M can be
isometrically embedded into every other complete metric space with that property.
For the direct limit of a converging tower, we have a similar initiality property:

LEMMA 3.11
The direct limit of a converging tower (as.defined in definition 3.9) is an initial cone for that tower.

PROOF
Let (D., i,,). and (D, (y.).) be as defined in definition 3.9. According to the initiality lemma (3.8), it
suffices to prove

"• o /1. = ido '
which is equivalent to

V£>0 3NeN Vn>N [d(a. 0 /1., id0)<£]
Let £>0. Because (D., i,,). is a converging tower, we can choose N eN such that

Vm>n;;;.N [d(inm O jnm, ido.)<£].

Let n>N. Let (xm)mED, we define
<Ym)m = IXn ° /Jn((Xm)m),

For every m>n we have

Therefore

do.<Ym, Xm) = do_(i.m(x.), Xm)

= do.(inm O jnm (xm), Xm)

,,;;; d(inm 0jnm, ido.)

<£.

do((ym),,,, (xm)m) = sup{do.<Ym, Xm)} ,,;;;(.

Because (x.). eD was arbitrary, we have
d(a. 0 fJ.,ido)<£

for all n>N.

3.2 A fixed-point theorem
As a category-theoretic equivalent of a contracting function on a metric space, we have the following
notion of a contracting functor on e.
DEFIN1110N 3.12 (Contracting functor)
We call a functor F:e-.+e contracting whenever the following holds: there exists an£, with O.r;;;£<1,
such that for all D-+' E ee we have:

82

A contracting function on a complete metric space is continuous, so it preserves Cauchy sequences
and their limits. Similarly, a contracting functor preserves converging towers and their initial cones:

LEMMA 3.13
Let F:<3--+e be a contracting functor, let (Dn,&n),, be a converging tower with an initial cone (D,(yn)n}
Then (FDn,F&,,),, is again a converging tower with (FD,(Fyn)n) as an initial cone.

The proof, which may use the initiality lemma, is left to the reader.

THEOREM 3.14 (Fixed-point theorem)
Let Cat be a category and let be a functor. Let FDoeCat. Let the tower (Dn,&n)n be
defined by Dn+I =FD. and i,. +I =F&,, for all n;;;.O. If this tower has an initial cone (D,(yn)n) and if this
tower and its cone are preserved under F, that is, if (FDn,F&,,),, has (FD,(Fyn)n) as an initial cone, then
we have: Dr;;;r,FD.

PROOF
We have that

(FDn, F&,,),, = (Dn+I, ln+l)n-

This implies that (D, (Yn)n) and (FD, (Fyn)n) are both initial cones of (Dn + 1, i,, + i) •. It follows from
the definition of an initial cone that D and FD are isomorphic.

D.+1 =FD.

Yn+V '--[r.
D ------- FD

CoROLLARY 3.15 Let F be a contracting functor F:<3--+e and let FDee. Then F has a fixed point,
that is, there exist a Dee with D r;;;r,FD.

PROOF Consider the tower (D.,&n). defined by Dn+I =FD. and ln+I =Fi,. for all n;..O. This tower
can be seen to be converging in the same way as in example 3.4. Thus it has a direct limit (D,(y.).),
which is (according to lemma 3.11) an initial cone for this tower. According to lemma 3.13, F
preserves towers and their initial cones. Now we can apply theorem 3.14, which yields: Dr;;;r,FD.

REMARK
It is always possible to find an arrow Take D0 ={p0 }; because FD0 is non-empty we
can choose an arbitrary p1 eFDo, and put io=<io,Jo> with i(po)=p1 andj(x)=po, for xeFDo.

4. UNIQ~ OF FIXED POINTS

We know that a contracting function f :M on a complete metric space M, has a unique fixed
point. We would like to prove a similar property for contracting functors one.
Let us consider a contracting functor F on the category of complete metric spaces e. By corollary

3.15 we know that F has a fixed point, that is there exists D Ee! and an isometry K such that

Suppose we have another fixed point D' with an isometry A, such that
>.

""

83

We know by the construction of D that it is the direct limit of the converging tower (Dn,Ln)n, where
FDoEc!is a given embedding and Dn+I =FDn, t.,,+1 =Fi,,.

If we have that D' is also (the endpoint of) a cone for that tower, the initiality of D implies that there
exists an isometric embedding If we moreover can demonstrate that this I is an isometry,
then we can conclude that the functor F has a unique fixed point, which would be quite satisfactory.
A proof for , being an isometry might look like:

8(1) = (?)IJ(_F1)

._; t·ll{_ I),

implying (once the question-mark has been eliminated) that 8(1)=0, thus I is an isometry.
It turns out that we can guarantee that the second fixed point D' is also a cone for the converging
tower (Dn,Ln)n in one of two ways. Firstly, we can restrict our functor F to the base-point category of
complete metric spaces (to be defined in a moment). Secondly, we can require F to be contracting in
yet another sense, to be called horn-contracting below.
We shall proceed in both directions, first exploring the unicity of fixed points of contracting functors
on the base-point category, then focusing on functors on e that are contracting and horn-contracting.
In both cases it appears to be possible to prove the equality marked by (?) above. Unfortunately (for
good mathematicians, who are.said to be lazy), this takes some serious effort, to which the proof of
the following theorem bears witness.
First we give the definition of the base-point category:

DEFINITION 4.1 (Base-point category of complete metric spaces)
Let f! denote the base-point category of complete metric spaces, which has triples

<M,d,m>

for its objects. Here (M,d) is a complete metric space and m is an arbitrary element of M, called the
base-point of M. The arrows in f! are as in e (see definition 3.1), but for the constraint that they
map base-points onto base-points, i.e. for we also require that
i(m)=m', andj(m')=m.

REMARK
The definitions of cone, functor etcetera can be adapted straightforwardly. Moreover, lemmas 3.8,
3.11, 3.13 and corollary 3.15 still hold.

THEOREM 4.2 (Uniqueness of fixed points)
Let F be a contracting functor F: f! Then F has a unique fixed point up to isometry, that is to say:
there exists a D E f! such that

(1) FD ~D, and

(2) VD'Ef! [FD'~D'=>D~D'].

PROOF

84

We define a converging tower (D., i,,). by

Do = <(po}, d(p,), po> ,

D.+ 1 =FD.for all n;;a,,O,
'<l : Do-+D1, trivial,

t.,,+1 = Fi,, for all n;;a,,O.
Let (D, (y.).) be the direct limit of this tower. As in theorem 3.14, we have that both (D, (y.).) and
(FD, (Fy0) 0) are initial cones of (D0 , i,,) •. The initiality of (D., (y0) 0) implies the existence of a
unique arrow D-+" FD, such that for n ;;.,o,

*
D FD

I(

FIGURE 1
Because also (FD, (Fy0))0 is initial, we know that K must be isometric.

Now let D'e<? be another fixed point of F, say D'-;;:FD' for an isometry A. We define {y.). such that

(D', {y0) 0) is a cone for (D., i,,)0 :

Yo : Do-+D' is the unique arrow, which maps base-point to base-point,

Yn+l =A-I° Fyn.
We have that (D', (y0) 0) is indeed a cone for (D., i,,). because of the commutativity of the following
diagram, for all n EN:

D.
,.,,

:,, FD0 = D0 +1

,. l * !FY.

D' EA FD'

We prove it by induction on n :
(0) Because the arrows in(? map base-points onto base-points, we have that (;\- 1°Fy0°'<))i(p0)

and {y0) 1(p0) are both equal to the base-point of D', and for any xeD', that
(;\-loFyoo'<l)i(x)= (yoh(x)=po.

Note that this is the only riai:e, whe~e we make use of the base-point structure of I?.
(n + l) Suppose that we have,\.- °Fy.oi.,, =y •. Then

A-1 0 Fr.+1 0 '-+I = A-1 0 F6.+1 0 "'>
= .\.-1 o F(.\.-1 o Fy. o i,,)

= .\.-1 oF-y.
= Yn+I ·

Again by the initiality of (D, (y.).) there is a unique arrow D' such that, for all n eN :

*
D D'

- - - - - - ->
I

FIGURE 2

85

As indicated above, we now set out to prove that I is an isometry. When we apply F to figure 2, we
get

FD FD'

which leads to:

Dn+I

FY

FD * D'

FD'

(because Yn + 1 = .\. - I ° Fy., so Fy. =>.. 0 Yn + 1), or, replacing .\. by .\. - 1 and reversing the corresponding

86

arrow:

D.+1 Fyn, FD _f.!_ FD' x-i D'

Yn+I

Substituting IC O Yn + 1 for Fy. (figure 1) yields:

D.+!.!!..±.! D FD ..f..!:..FD'~ D'

or: (A-I O Fi O IC) 0 Yn+I =rn+I (this equality also holds for Yo and Yo). But according to figure 2, I is
the only arrow with: 'vn EN [, O Yn = r.). Thus

,=x-10F101C,

or, in other words:

D IC FD

D' FD'.

This commutativity, together with the fact that IC and;\ are isometries implies:

6(,) = 8(Fi).

(For the definition of 8 see definition 3.2.)
Now the proof can be concluded, following the train of thought indicated above:

8(,) = 8(Fi)
,;;;; (. 8(1),

for some O.;;;;i< l, since Fis a contraction. This implies

8(,) = 0,

so (if'= <i, j>)
i O j = id0 ,.

At last we can draw the desired conclusion:

87

Now we return again to our original category e of complete metric spaces and provide for, as prom-
ised above, another criterion for functors on e, that, together with contractivity, will appear to be
sufficient to ensure uniqueness of their fixed points.

DEFINITION 4.3 (Hom-contractivity)
We call a functor F:~e horn-contracting, whenever

'!IP ee '!IQ ee 3(< I IFP.Q :(P FQ)]

where

REMARKS
Because arrows in e are pairs, we have on the standard metric for the Cartesian product. So
let 11, 11 = <i1,j1 > and 12 = <i2,ji>. Then their distance is defined by

d(11,12) =

It is not the case that every horn-contracting functor is also contracting, which follows from the fol-
lowing example.
Let A ={O} and B ={1,2} be discrete metric spaces. We define a functor F:~e as follows. For
every complete metric space Pee let

_ {A if P contains exactly I element
FP - B otherwise.

For we define F,:

11..i if FP =FQ =A
F,= Is if FP=FQ=B

lo if FP =A and FQ =B,

where io=<i0,j0 >, with i0 :0....I, j 0 :l,2....0. Note that there is no if FP =Band FQ =A. It
is not difficult to verify that F is a functor, which is horn-contracting. The following argument shows
that it is not contracting. Let C={3,4} with d(3,4)=t, and let with 1e=<k,I> be defined
by k:O..-.3 and /:3,41-+O. Then we have 6(1e)=i, but is (as defined above), for
which 6(1o)= 1.

THEOREM 4.4
Let F be a contracting and horn-contracting fwictor F:~e. Then F has a unique fixed point up to
isometry, that is to s'o/: there exists a Dee such that

(I) FD ;;;;.D and

(2) '!ID'e<! [FD' ;;;;.D' D ;;;;.D').

PROOF
The proof of this theorem differs from that of theorem 4.2 only in the definition of y0 . There we
could take for Yo the trivial embedding of D0 into D', mappingp0 onto the base-point of D'. Here we
have no base-points. But we can use the fact that F is horn-contracting by taking for y0 the unique
fixed point of the function that we define by: G(y) = X- 10Fy0io, for

88

ye(D 0-iD'). (Note that G is contracting because Fis horn-contracting.) It follows that Yo, thus
defined, satisfies A- 1 °Fy0°1o = Yo, which serves our purposes.

5. A CLASS OF DOMAIN EQUATIONS WITH UNIQUE SOLUTIONS

In this section we present a class of domain equations over the category e that have unique solutions.
For this purpose we first define a set Fune of functors on e and formulate a condition for its elements
that implies contractivity and hom~contractivity. It then follows that every domain equation over e
induced by a functor that satisfies this condition, has a unique solution.

DEFINITION 5.1 (Functors)
The class Fune, with typical elements F, is defined by:

F ::= FMI id'I F1UFil F1XFil 'il'c1(F)I F1°Fi
where Mis an arbitrary complete metric space and (>0. Every FeFune is to be interpreted as a
functor

as follows. Let (P,dp), (Q,dQ)ee be complete metric spaces. Let with i=<i,J>. For the
definition of each FeFune we have to specify:

(a) F=FM:

(1) the image of P under F: FP,
(2) the image of d under F: Fd,
(3) the image of, under F: Fi (=<Fi,FJ>).

(1) FP = M,

(2) Fd = dM (the metric of M),

(3) Ft= <idM,idM>-
We sometimes use just a set A instead of a metric space M. In this case we provide A with the
discrete metric (definition 2.1).
(b) F=id':

(1) FP = P,
(2) Fd = A(x,y)·min(I, (•d(x,y)),
(3) Ft= l

Next we define functors that are composed. Let F1, Fi eFune, such that

(1) F1P = Pi, FiP = Pi, F1 Q = Qi, FiQ = Q2,

(2) F1d = di, F2d = d2,
(3) F11= <i1,J1>, F2t= <i2,Ji>.

(c)

(1) FP =

(2) Fd = dF (see definition 2.6(a)),

(3) F, = <"AJ-(i2°/oi1), Ag·(J2°g0i1)>.
(F =F1 F2 is defined similarly.)
(d) F=F1 UF2:

(1) FP = P1 UP2,
(2) Fd = du (see definition 2.6(b)),

(3) F, = <Ap· if pe{O} XP 1 then i1((ph) else i2((ph) fi,
Aq· if qe{O}XQ1 thenj1((qh) else}2((qh) fi>.

(e) F=F1 XF2:
(I) FP = P1 XP2,
(2) Fd = dp (see definition 2.6(c)),

(3) Fi= <A<p1,p2>·<i1(p1),i2(p2)>,'A<q1,q2>·<J1(qi),}2(q2)>>.
(f) F=~c1(F1):

(I) FP = ~c1(P1),
(2) Fd = d8 (see definition 2.6(d)),

(3) F, = <AX·{i1(x)lxeX},AY·c/osure U1<Y)lyeY}>.
(g) F = F 1 °F 2: the usual composition of functors on e..

REMAllx

89

The set Fune contains elements of various form. We give an example. Let Fi, F2 eFune. The follow-
ing functor is an element of the set Fune, as can be deduced from its definition.

I
F1 F2 =rkf °F2)), for A >0.

LEMMA 5.2
For all FeFune we have: F is a well definedfunetor one.

PROOF
We treat only one case by way of example, being (lazy and) confident that it shows the reader how to
proceed in the other cases.
Let F = and suppose F1 and F2 are well defined. Let (P,dp),(Q.~) and with
, = <i,j>; furthermore, let fork = 1,2:

FkP = Pk, FkQ = Qk,
FkdP = dp,, FkdQ = dQ.,

Fk, = <ik,)k>.
The functor F is defined by

(I) FP =
(2) Fdp = dF,

90

(3) Fi = <Fi,Fj> = <"A.j-(i2°/oj1),"A.g·(J2°g0ii)>.
p Pi-+1 P2

l 1 j F~ Jo "A.j-(i2ojoj1)=Fi l 1 Fj="A.g•(J2°g0 ii) Fi-+ F2

Q Q1-+1Q2
It follows from proposition 2. 7, that (P 1-+ 1 P 2 ,dF) is a complete metric space, which leaves us to
prove:

(a) Fi is isometric,

(b) Fj is NDI and

(c) Fj°Fi = idFP·
Part(a): Let/i,fieP1-+1P2. Wewanttoshow

dFp(/1 ,h) = dFQ(Fi(/1),Fi(/2)).
We have

sup9.Q, {dQ,(i2•/1•j1(q), i2°/i0j1(q))} = [because i2 is i~metric]

SUPqeQ, {dp,(J1oji(q),Jioji(q))}

= [because j I is surjective]

sup,.,, { dp, (/1 (p), fi(p)) }

Part (b): Let g1,g2 eQ 1-+1 Q2. We want to show:

d£p(Fj(g1),Fj(g2)) ,i;;; dFQ(g1,g2).
Let peP1; we have:

=

d,,(Fj(g1)(p),Fj(g2)(p)) = d,,(J2°g1 °i 1 (p),ji0g2°i 1(p))

-.; U2 is NDI]
dQ,(g1•i1(p),g2°i 1(p))

Part (c): Let /eP1-+1 P 2. We have
Fj•Fi(f) = jioi20Joj1oi1

=f.

,i;;; dFQ(g1,g2).

DEFINmON 5.3 (Contraction coefficient)
For each FeFunc we define its so-called contraction coefficient (notation: c(F), with c(F)e[O,oo)),
using induction on the complexity of the structure of F.

(a) If F=FM, then c(F)=O.
(b) If F=id', then c(F)=(.

Let F1, F2eFunc, with coefficients c(F1) and c(F2). Then we set:

(c) If F =F1-+F2, then c(F)=max{ oo·c(F1), c(F2)},

(d) If F =F1-+1 F 2, then c(F)=c(F1)+c(F2).

(If we would restrict ourselves to ultra-metric spaces, we could write max{ c(F i),c (F 2)} here.)

(e) If F=F1 UF2, then c(F)=max{c(Fi),c(F2)}.

(f) If F=F1 XF2, then c(F)=max{c(F1),c(F2)}.

(g) If F=~c1(F1), then c(F)=c(Fi)-

(h) If F=F1°F2, then c(F)=c(F1)·c(F2),

(With oo we compute as follows: oo·0 = 0·oo = 0, oo·c = c·oo = oo, if c >0.)

THEOREM 5.4
For every functor FeFunc we have

(I) "IP-+'Qee [8(Fi),e;;;c(F)·8(1)],

(2) VP,Qee [Fp,Q:(P-+8Q)-+c<F)(FP-+eFQ)].

PROOF
Let P,Qee, ,,,'eP-+eQ, with,= <i,j>,1' = <i',j'>.
Case (a) F = FM:
Part (al)

part (a2)

8(Fi) =
=
= 0 = c(F)-8(1).

= = 0 =

Case (b) F = id':
part (bl)

Part (b2)

8(F1) =
= supqEQ{dFQ(i0j(q),q)}

= supqEQ{(·dQ(i0j(q),q)}

= (·8(1)

= c(F)·8(1).

=
=

91

Now let F 1 ,F2 E Fune and suppose the theorem holds for these functors. Fork = 1,2 we use the fol-
lowing notation:

Fk, = lk ' Fk,' = lk ' FkP =pk' FkQ = Qk'
Fki = ik , Fki' = ;k ,
Fkj = A, Fkf = ·'

}k '

92

We only treat the cases that F = F 1 Fi and F = F 1 XFi.
Case (d) F = F 1 Fi:
Part (di)

li(F1) = dFQ--+FQ(Fi°F},idFQ)

= SUPgeFQ{ dFQ(iioJiogoi I o}I ,g) }.

LetgeFQ For q1 EQ 1 we have

dQ, (iio}iogoi I oJ I (qi),g(q i)) dQ, (iio}iogoi I o}I(q1),goj I 0j I (qi))+

dQ, {g0 i I 0} I (q I),g(q I)).

(This"+" could be replaced by "inax" in the case of ultra-metric spaces.)
For the first term we have

dQ, (iioJiogoi I o}I (q 1),goi I oJ I (q I)) supq,eQ, { dQ, (iio}i(qi),qi)}

= li(Fii).

For the second

We see

Part (d2)

dQ,(g0 i1°}1(q1),g(q1))

dQ, (i 1 °}I (q 1),q1)

= li(F11).

li(Fi) li(F11)+li(Fi1)

[induction]

(c(F1)+c(Fi))-li(,)

= c(F)·/i(1).

dFP EFQ(Fi,Fi') = max{dFP-FQ(Fi,Fi'),dFQ-FP(FJ,Fj')}.

For the first component, we have

dFP FQ(Fi,Fi') = SUPJeFP.qeQ, { dQ, (Fi(fXq),Fi'(f)(q)) }.

LetfeFP,qeQ 1. Then

dQ,(Fi(fXq),Fi'(fXq)) = dQ,(ii 0Joi 1(q),i2°/0/ 1 (q))

dQ,(ii 0Joi1(q),i20Jo}I(q)) + dQ,(i20Joi1(q),i20Jo/1(q))

dP,-Q,(ii,i2) + dQ,(i2°/0}1(q),i2°/0/1(q))

[because i2 is isometric ,f E P 1 1 Pi)

dp, Q,(ii,ii) + dQ, P,(}1./1)-

(Again, in the case of ultra-metric spaces, we would have "max" here.)
Likewise, we have for the second component

dFQ--+FQ(Fj,Fj') dp, Q, (i I J1) + dQ, P,(Ji,/i).

Together this implies

< +
< (induction)

=
Case (f) F = F1 XF2:
Part (fl)

Part (f2)

8(_F1) =
= SUJ)qeFQ{dp12(FioFj@,q)}

= SUP<q,.q,>eFQ{dFQ(<i1 °ji(q1),i2°h(q2)>, <q1 ,q2 >)}

= SUP<q,.q,>eFQ{max{dQ, (i 1°j1(q1),q1),dQ,(i2°h(q2),q2)}}

= max{supq,eQ, {dQ1(i1°j1(q1),q1)},sup9,eQ, {dQ,(i2°h(q2),q2)}}

= max{8(F11),8{_F21)}
< (induction)

(c(F 1)+c(F2))·8(1)

= c(F)·8(1~

= SUJ)peFP { dFQ(Fi(p),Fi'(p))}
= SUP<p,,p,>eFP{dFQ(<i1(pi),i2(p1)>, <ii (p2),i2(p2)>)}

= max{ SUP,,,eP, {'421 (i1(p1),ij (p1))},supp,eP, {dQ,(i2(p2),i2(p2))}}

=
Similarly, we have

=
Thus we obtain

=
< (induction)

=

CoR.OLI.AllY 5.5
For e-,ery Fe Fune, with O<c(F)< l, we have

(l) Fis a contracting functor, and
(2) F is a hom-contracting functor.

CoR.OLI.AllY 5.6
Every reflexive domain equation over e of the form

93

94

P;;;;;;FP,

for which FeFunc and c(F)< l, has a unique solution (up to isomorphism).

6. CoNCLUSIONS

We have presented a te.chnique for constructing fixed points of certain functors over a category of
complete metric spaces. This enables us to solve the reflexive domain equations associated with these
functors. The te.chnique is an adaptation of the limit construction that was first used in the context of
certain partial orders (continuous lattices, complete lattices, complete partial orders). Nevertheless,
we have encountered some nice metric phenomena in our metric framework. To begin with, the con-
cept of a converging tower is an analogue to the concept of a Cauchy sequence in a complete metric
space, and indeed, both have a limit. Furthermore, a contracting functor on our category of metric
spaces is a concept analogous to that of a contracting function on a complete metric space, and both
are guaranteed to have a fixed point. If we strengthen our requirements on the functor to include
hom-contractivity (also analogous to contractivity of a function), we even know that the fixed point is
unique (as is the case with a contracting function). Therefore the whole situation looks very much
like Banach's theorem in a category-theoretic disguise.

A few questions remain open, however. We are still looking for a functor that is contracting but not
horn-contracting, or even better for a functor that is contracting but has several non-isomorphic fixed
points. Another point is what can be said about functors where the argument occurs at the left hand
side of a general function space construction (all continuous functions, not just the NDI ones).

In any case, the class of functors (and, thus, domain equations) that we can handle is large enough, so
that our te.chnique is a useful tool in the construction of domains for the denotational semantics of
concurrent programming languages.

RELATED WORK

The subje.ct of solving reflexive domain equations is not new. Various solutions of the kind of equa-
tions mentioned above already exist. We shall not try to give an extensive and complete bibliography
on this matter and confine ourselves to the following remarks.
We mention the work of Scott ([Sc]), who uses inverse limit constructions for solving domain equa-
tions. Our method of generalizing metric notions in terms of category-theoretical notions shows a
clear analogy to the work D. Lehmann ([Le]) did in the context of partial orderings. In fact, there is
a clear similarity between the metric and the order-theoretic cases: Both are based on theorem 3.14
and in both cases the main part of the work is showing that the premisses of this theorem are
satisfied. Of course, the details of these proofs are quite different. It is interesting to notice that in the
order-theoretic case one can often prove that there is an initial fixed point of the functor: a fixed
point that can be embedded in every other fixed point (see, e.g., [SP]), whereas in the metric case we
can prove the existence of a unique fixed point (up to isomorphism). This is a nice parallel to what
happens at the elementary level: in order theory one can prove that certain functions have a least
fixed point, whereas in complete metric spaces we have unique fixed points of contracting functions.
Our work is also related to the general method of solving reflexive equations of Smyth and Plotkin
([SP]). In the terminology used there, we show that our category e is w-complete in the limited sense,
that all converging towers have direct lir:rits. Further we show that a certain type of w-continuous
functors (called contracting) has a fixed point. (Without having investigated the precise relationship,
we also mention here the anology between their notion of an O-category, and the fact that in our
category e the horn-sets are complete metric spaces.)

95

7. REFERENCES

[ABKR] P. AMERICA, J. DE BAKKEll, J. KOK, J. RUTIEN, A Denotational Semantics of a Parallel
Object-Oriented Language, Technical Report (CS-R8626), Centre for Mathematics and
Computer Science, Amsterdam, 1986. (To appear in Information and Computation.)

[BZ] J.W. DE BAKKEll, J.I. ZUCKER, Processes and the Denotational Semantics of Concurrency,
Information and Control 54 (1982), pp. 70-120.

[Du] J. DuoUNDn, Topology, Allyn and Bacon, inc., Boston, 1966.
[En] R. ENGELKING, General Topology, Polish Scientific Publishers, 1977.
[Ha] H. HAHN, Ree/le Funktionen, Chelsea, New York, 1948.
[Le] D. LEHMANN, Categories for Mathematical Semantics, in: Proc. 17th IEEE Symposium on

Foundations of Computer Science, 1976.
[ML] S. MAc LANE, Categories for the Working Mathematician, Graduate Texts in Mathematics

5, Springer-Verlag, 1971.
[Sc] D.S. ScoTI, Contimwus Lattices, in: Toposes, Algebraic Geometry and Logic, Lecture

Notes in Mathematics 274, Springer-Verlag, 1972, pp. 97-136.
[SP] M.B. SMYTII, G.D. PLOTKIN, The Category-Theoretic Solution of Recursive Domain Equa-

tions, SIAM J. Comput, Vol. 11, No. 4, 1982, pp.761-783.

Denotational Semantics of a

Parallel Object-Oriented Language*

Pierre America
Philips Research Laboratories

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands

Jaco de Bakker

Joost N. Kok

Jan Rutten
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A denotational model is presented for the language POOL, · a parallel object-oriented language. It is a syn-
tactically simplified version of POOL-T, a language that is actually used to write programs for a parallel
machine. The most important aspect of this language is that it describes a system as a collection of com-
municating objects that all have internal activities which are executed in parallel. To describe the semantics
of this language we construct a mathematical domain of processes. This domain is obtained as a solution
of a reflexive domain equation over a category of complete metric spaces. A new technique is developed
to solve a wide class of such equations, including function space constructions. The desired domain is
obtained as the fixed point of a contracting functor implicit in the equation.. The domain is sufficiently rich
to allow a fully compositional definition of the language constructs in POOL, including concepts such as
object creation and method invocation by messages. The semantic equations give a meaning to each syn-
tactic construct depending on the POOL object executing the construct, the environment constituted by the
declarations and a continuation, representing the actions to be performed after the execution of the current
construct. After the process representing the execution of an entire program is constructed, a yield func-
tion can extract the set of possible execution sequences from it. A preliminary discussion is provided on
how to deal with fairness. Full mathematical details are supplied, with the exception of the general domain
construction which is described elsewhere

Note: This paper appeared in Information and Computation and is included in this tract
with kind permission of Academic Press, Inc.

1. INTRODUCTION

97

In this paper we give a formal semantics of a language called POOL (Parallel Object-Oriented
Language). It is a syntactically simplified version of the language POOL-T, which is defined in
(America, 1985) and for which (America, 1986) and (America, 1987) give an account of the design
considerations. POOL-Twas designed in subproject A of ESPRIT project 415 with the purpose of
programming a highly parallel machine which is also being developed in this project (see (Odijk,
1987) for an overview). The language provides all the facilities needed to program reasonably large

(0) This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages for AIP - a VLSI-
directed approach.

-98

parallel systems and many small and several large applications have been written in it.
The language POOL for which we shall give a formal semantics is described in detail in section 3.

In this language, a system is viewed as a collection of objects. These are dynamic entities containing
data (stored in variables) and methods (a kind of procedures). Objects can be created dynamically
during the execution of a program and each of them has an internal activity (its body) in which it can
execute expressions and statements. While inside an object everything proceeds sequentially, the con-
current execution of the bodies of all the objects can give rise to a large amount of parallelism.
Objects can interact by sending messages to each other. Acceptance of a message gives rise to a
rendez-vous between sender and receiver, during which an appropriate method is executed.

The relationship between POOL (as described in section 3) and POOL-T is such that there is a
straightforward translation from valid POOL-T programs to valid POOL programs. This translation
merely performs some syntactic simplifications and it omits some context information (POOL-T is a
statically typed language, POOL is not). At no point does this translation replace any semantic prim-
itive by another one. The sole reason for using two languages and translating between them is that
POOL-Tis a practical programming language, where readability, among others, is much more impor-
tant than syntactic simplicity. In order not to overload the present paper, we shall not describe
POOL-T and the above translation, but take as a starting point the language POOL as described in
section 3.

After having defined an operational semantics for POOL in (America et al., 1986), in this paper we
set out to develop a denotational semantics. In general, denotational semantics assigns to every con-
struct in the language a meaning, which is a value from a suitably chosen mathematical domain. The
most important principle in denotational semantics is compositionality: The meaning of a composite
construct is determined solely on the basis of the meanings of its components, which means that the
actual form of these components is irrelevant.

An important choice we have made is to use the 'mathematical framework of complete metric spaces
for our semantic description. In this we follow and generalize the approach of (De Bakker and
Zucker, 1982). (For other applications of this type of semantic framework see (De Bakker et al.,
1986).) First, we construct a suitable domain P of processes, which is a set of mathematical objects
that will be used as meanings. It will satisfy a reflexive domain equation, which will be solved by
deriving from it a functor on a certain category of complete metric spaces and then constructing a
fixed point for this functor. The mathematical techniques to do this are sketched in section 2 and
presented in detail in (America and Rutten, 1988). They are not necessary for an understanding of
the rest of the paper.

After having constructed the domain P, we want to define a mapping from the set of POOL pro-
grams (also called units) to P. Before we assign a semantic value to the unit as a whole, we first
define the semantics of statements and expressions. This semantics will be given by functions of the
following type:

(· · · IE :
(· · · 1s:

where

ContE =
Conts =P.

We give the formal description of the type of these semantic functions here because we want to stress
three of their characteristics: the use of environments, objects and continuations.

The environments (elements of the set Env) are used to store the meanings of declarations (of
classes and methods). With the help of I · · · IE and [· · · Is we can define for each unit U a suitable
en~ironment Yu, which contains the meanings of the classes and methods as they are defined in U. It
will be constructed as the unique fixed point of a contracting operator on the complete metric space

99

of environments. The semantic domain Obj stands for the set of object names. Its appearance in the
defining equations reflects the fact that in POOL each expression or statement is evaluated by a cer-
tain object. Finally, a continuation will be given as an argument to the semantic functions. This
describes what will happen after the execution of the current expression or statement. As the con-
tinuation of an expression generally depends upon the result of this expression (an object name), its
type is whereas the type of continuations of statements is simply P. This use of continua-
tions makes it possible to define the semantics, especially of object creation, in a convenient and con-
cise way. (For more examples of the use of continuations in semantics, see (De Bruin, 1986) and
(Gordon, 1979).)

The denotational semantics proper for POOL is presented in section 4. It first discusses the details
of the process domain P. Next, it defines an auxiliary operator for parallel composition, which is
used, e.g., in the equation for the creation of a new object. (POOL itself does not have a syntactic
operator for parallel execution: parallelism occurs implicitly as a consequence of object creation.)
Then the core of the semantic definitions, in terms of the various semantic equations for the respective
classes of expressions and statements, is displayed. Once the reader has understood (or taken for
granted) the underlying mathematical foundations he will appreciate, we hope, that the framework
allows a concise, rigorous, and compositional (the touchstone of a denotational model) definition of
intricate notions such as the creation of a new object or the passing of messages leading to the invoca-
tion of the appropriate method. Section 4 then continues with the discussion of the standard process
Pm which describes the standard objects (integers, booleans, and nil) of the language. Next, the
definition of the environment Yu corresponding to a unit U is given and used to define a process Pu•
In a last step we show how the set of all possible sequences of computation steps can be obtained
from the process resulting from the parallel composition of Pu and PST·

In section 5 the semantic model is adapted to provide the possibility to formulate requirements that
distinguish between fair and unfair executions of the program. The ideas in this section are not in
their final form and will probably be developed further in subsequent work. Section 6 presents some
conclusions and gives some directions for further research.

As related work concerning the semantics of POOL, we first refer to (America et al., 1986), where
we describe the semantics in an operational way, using a transition system in the style of (Hennessy
and Plotkin, 1979). In (Vaandrager, 1986), the semantics of the language is described by translating it
into process algebra and using the several kinds of semantics that had already been developed for the
latter (see, e.g., (Bergstra and K.lop, 1984)). In order to do this, some extra process algebra operators
are introduced. The advantage of this approach is that it uses an existing framework which admits
algebraic calculations with meanings of programs, and furthermore that it can deal with fairness in a
natural way. However, due to the extra translation step, the meaning of an individual construct is
quite hard to understand.

Semantic treatments of parallel object-oriented languages in general are scarce; we only know
(Clinger, 1981), which gives a detailed mathematical model for an actor language. This is done by
defining a set of so-called augmented actor event diagrams, each of which is a fairly complicated
structure representing (the beginning of) a single computation. In order to deal with nondeterminism,
a novel power domain construction is used. This technique deals very well with fairness, but the
event diagrams seem a rather ad hoc construction.

As to the material in section 2, there is a vast amount of literature on order-theoretic domain
theory (see, for instance, (Gierz et al., 1980)). Our approach, in which a category of metric spaces
and (generalizations of) Banach's theorem are central, may be an attractive alternative that can be
used in a situation where the contractivity of the various functions encountered is a natural
phenomenon.

Acknowledgements: We are indebted to the members of the Working Group on Semantics of
ESPRIT project 415, especially to Werner Damm who stressed the importance of using continuations
at a moment we had given up on them (at that time the approach in (America and Rutten, 1988) had

not yet been conceived, and continuations did not fit into the process domain). We also wish to
thank the following persons for their contribution to the discussions of many of the preliminary ideas
on which this report is based: Frank de Boer, Anton Eliens, Hans Jonkers, Frank van der Linden,
John-Jules Meyer, Marly Roncken, and Erik de Vink. Finally we are grateful to the anonymous
referees, whose comments on an earlier version of this paper have led to considerable improvements.

2. METRIC SPACES AND DOMAIN EQUATIONS

In this section we first collect some definitions and properties concerning metric spaces. Then we
show how the well-known direct limit construction can be used as a means to produce a solution of a
recursive domain equation in a category of complete metric spaces.

It is not absolutely necessary to read this section in order to understand the rest of this paper. It
mainly gives a mathematical justification for the constructions used in sections 4 and 5.

2.1. Metric spLces

DEFINITION 2.1 (Metric space)
A metric space is a pair (M,tl) with M a non-empty set and d a mapping d:M X M->[0, I) (a metric or
distance), which satisfies the following properties: ·
(a) v'x,yEM[d(x,y)=O x =y]
(b) v'x,yEM[d(x,y)=d(y,x)]
(c) v'x,y,z EM [d(x,y).;;;d(x,z)+d(z,y)].
We call (M,tl) an ultra-metric space if the following stronger version of property (c) is satisfied:
(c') v'x,y,z EM [d(x,y).;;;max{d(x,z),d(z,y)}].

REMARK
In our definition the distance between two elements of a metric space is always bounded by I.

ExAMPLE
Let A be an arbitrary set. The discrete metric d,1 on A is defined as follows: Let x,y EA, then

{o ifx=y
d,1 (x,y) = I if x=j:y.

Now (A,d,1) is a metric, even an ultra-metric, space.

DEFINITION 2.2
Let (M,d) be a metric space, let (x;); be a sequence in M.
(a) We say that (x;); is a Cauchy sequence whenever we have:

v'£>0 3NEN v'n,m>N [d(xn,Xm)<4
(b) Let xEM. We say that (x;); converges to x (denoted by x=lim;-ooX;) and call x the limit of (x;);

whenever we have:
v'£>0 3NEN v'n>N [d(x,x.)<£].
Such a sequence we call convergent.

(c) The metric space (M,tl) is called complete whenever each Cauchy sequence converges to an ele-
mentof.M.

(d) A subset X of a metric space (M,tl) is called closed whenever each Cauchy sequence in X con-
verges to an element of X.

101

DEFINITION 2.3
Let (M 1,di),(M2,d2) be metric spaces.
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a such that:

'rlx,yeM1 [d2(/(x),fty))=d1(x,y)). We then write M 1~M2. When/is not a bijection (but only
an injection), we call it an isometric embedding.

(b) Let f:M 1 be a function. We call f continuous whenever for each sequence (x;); with limit x
in MI we have that f (x).

(c) Let £;;;.O. With we denote the set of functions/from M 1 to M2, that satisfy the fol-
lowing property: 'rlx,y eM 1 [d2(/ (x),f (y)),;;;E-d 1 (x,y)].
Functions fin M M2 we call non-distance-increasing (NDI), functions fin M 1 with
Q.;;;£<1, we call contracting.

PROPOSITION 2.4 Let (M1,d1),(M2,d2) be metric spaces. For every £;;;.O and we have: f is
continuous.

THEOREM 2.5 (Banach's fixed point theorem)
Let (M,d) be a complete metric space and f :M a contracting function. Then there exists an x eM
such that the following holds:
(1) f(x)=x (xis a fixed point of j),
(2) 'rlyeM [f(y)=y y =xi (xis unique),
(3) 'rlxoEM where r+ 1(xo)=f(f"(xo)) and J0(xo)=xo.

REMARK: This theorem will be the main mathematical tool that we shall use: Contracting functions
and their unique fixed points play an important role throughout this paper.

DEFINITION 2.6
Let (M,d),(M 1,di), ... ,(M.,d.) be metric spaces.
(a) With we denote the set of all functions from M 1 to M 2• We define a metric dF on

as follows: For every we put

dF(/1,h)=supxeM, {d2(/1(x),fi(x))}.

This supremum always exists since the codomain of our metrics is always [O, l). For £;;;.O the set
is a subset of and a metric on can be obtained by taking the res-

triction of the corresponding dF-
(b) With M IU · · · UM. we denote the dis joint union of M 1 , ••• , M., which can be defined as

{l}XM~ · · ·_!:J{n}XM •. We define a metric du on M 1U ···UM. as follows: For every
x,yeM1 U · · · UM.,

-{dj(x,y) if x,yeLJ}XMj, I.;;;J.;;;n
du(x,y) - I otherwise.

If no confusion is possible we shall often write U rather than U.
(c) We define a metric dp on the Cartesian product M I X · · · XM. by the following clause:

For every (x1, ... ,x.), (y 1, ••• ,y.)eM1 X · · · XM.,
dp((x1, ... ,x.),(y1, ... ,y.))=max;{d;(x;,y;)}.

(d) Let 'iPc1(M)= {X:X!:;;M /\Xis closed}. We define a metric dn on 'iPc1(M), called the Hausdorff dis-
tance, as follows: For every X, Y e'iPc1(M),

dn(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} },

where d(x,Z)=inf,ez{d(x,z)} for every Z!:;;M, xeM. (We use the convention that sup0 =O
and inf0 = 1.)

102

(e) For any real number t with tE[O, I] we define

id,((M,d)) = (M,d'),

where d'(x,y)=t·d(x,y), for every x andy in M.

PROPOSITION 2. 7
Let (M,d), (Mi,d1), ••• ,(M.,d.), dF, du, dp and dH be as in definition 2.6 and suppose that (M,d),
(Mi,d 1), ... ,(M.,d.) are complete. We have that

(a) (M1-+M2,dF), (M1-+'M2,dF),

(b) (M 1U · · · uM.,du),

(c) (M1 X · · · XM0 ,dp),

(d) ('?!'c1(M),dH),

(e) id,((M,d)),

are complete metric spaces. If (M, d) and (M;, d;) are all ultra-metric spaces, then so are these composed
spaces. (Strictly spoken.for the completeness of M1-+M2 and M 1-'M2 we do not need the complete-
ness of M 1• The same holds for the ultra-metric property.)

Whenever in the sequel we write M 1-+M2, M 1-+'M2, M 1U ···UM,, M 1 X · · · XM., 'iJ',iM), or
id,(M), we mean the metric space with the metric defined above.
The proofs of proposition 2.7 (a), (b), (c), and (e) are straightforward. Part (d) is more involved. It
can be proved with the help of the following characterization of the completeness of (6Yc1(M),dH)-

PROPOSITION 2.8
Let ('?!'c1(M),dH) be as in definition 2.6. Let (X;); be a Cauchy sequence in 'iI'c1(M). We have:

1im;_00 X; = {lim;_00 x;jx; EX;, (x;); a Cauchy sequence in M}.

Proofs of proposition 2.7(d) and 2.8 can be found in (for instance) (Dugundji, 1966) and (Engelking,
1977). Proposition 2.8 is due to Hahn (Hahn, 1948). The proofs are also repeated in (De Bakker and
Zucker, 1982).

2.2. Solving reflexive domain equations
We shall use as a mathematical domain for our denotational semantics a complete metric space satis-
fying a so-called reflexive domain equation of the following form:

P~F(P).

Here F(P) is an expression composed of P and some given fixed spaces by applying one or more of
the constructions introduced in definition 2.6. A few examples are:

(I) P ~A Uid,.,(BXP)

(2) P~AU'?!'c1(BXid,.,(P))

(3) P A U (B-+id ½(P)),

where A and B are given fixed complete metric spaces. De Bakker and Zucker have first described (in
(De Bakker and Zucker, 1982)) how to solve these equations in a metric setting (see also (De Bakker
et al. (1986)) for many examples).

103

Roughly, their approach amounts to the following: In order to solve P~F(P) they define a
sequence of complete metric spaces (P.). by: P0 =A and P.+1=F(P.), for n>O, su~h that Po!:
P 1 \;;; • • • • Then they take the metric completion of the union of these spaces P., say P, and show:
P~F(P). In this way they are able to solve the equations (1), (2), and (3) above.

For our denotational semantics we shall have to solve a domain equation of yet another type,
namely

(4) P ~A Uidv.,(P-+1G(P)),

in which P occurs at the left side of a function space arrow, and G(P) is an expression possibly con-
taining P. Here, the method of (De Bakker and Zucker, 1982) fails, since, with Fas in (4), it is not
always the case that P. \;;;F(P.).

In (America and Rutten, 1988) the approach is generalized in order to overcome this problem. The
family of complete metric spaces is made into a category e by providing some additional structure.
(For an extensive introduction to category theory we refer the reader to (Mac Lane, 1971).) Then the
expression Fis interpreted as a functor F:e-e which is (in a sense) contracting. It is proved that a
generalized version of Banach's theorem holds, i.e., that contracting functors have a fixed point (up to
isometry). Such a fixed point, satisfying P~F(P), is a solution of the domain equation.

We shall now give a quick overview of these results, omitting many details and all proofs. For a full
treatment we refer the reader to (America and Rutten, 1988).

DEFINITION 2.9 (Category of complete metric spaces)
Let e denote the category that has complete metric spaces for its objects. The arrows , in e are
defined as follows: Let M j ,M 2 be complete metric spaces. Then M 1 -+' M 2 denotes a pair of maps

I

M1~M2, satisfying the following properties:
)

(a) i is an isometric embedding,
(b) j is non-distance-increasing (NDI),
(c) j 0 i=idM,·
(We sometimes write <i,j > for,.) Composition of the arrows is defined in the obvious way.

We can consider M 1 as an approximation of M 2 : In a sense, the set M 2 contains more information
than M 1 , because MI can be isometrically embedded into M 2• Elements in M 2 are approximated by
elements in M 1• For an element m2 eM 2 its (best) approximation in M I is given by J(m 2). Clause
(c) states that M2 is a consistent extension of M 1•

DEFINITION 2.10
For every arrow M 1-+' M2 in e with,= <i,j > we define

8(1) = dM,--,M, (i 0j,idM,) (= SUPm,eM, { dM,(i0j(m2)1m2)}),

This number can be regarded as a measure of the quality with which M 2 is approximated by M 1 : the
smaller 8(,), the better M 2 is approximated by M 1 •
Increasing sequences of metric spaces are generalized in the following

DEFINITION 2.11 (Converging tower)
(a) We call a sequence (D.,i,,),, of complete metric spaces and arrows a tower whenever we have that

VneN [D.-+'-D.+1ee].
(b) The sequence (D.,i,,). is called a converging tower when furthermore the following condition is

satisfied:
VE>O 3NeN Vm >n-;;,,N [8(1nm)<E], where 'nm= i,,,_ 1° · · · 0 i,,: Dn-+Dm.

104

ExAMl'LE
A special case of a converging tower is a tower (D.,,.). satisfying, for some£ with O.;;;;£< I,

VnEN [8(t,,+1),;;;;di(t,,)].

(Pleasenotethat8(t,,m),;;;;8(i,,)+ · · · +8(t,,,-1),;;;;£"-8(1o)+ · · · +~- 1-8(1o),;;;; J~c-8(1o).)

We shall now generalize the technique of forming the metric completion of the union of an increasing
sequence of metric spaces by proving that, in e, every converging tower has an initial cone. The con-
struction of such an initial cone for a given tower is called the direct limit construction. Before we
treat this direct limit construction, we first give the definition of a cone and an initial cone.

DEFINITION 2.12 (Cone)
Let (D.,i,,). be a tower. Let D be a complete metric space and (y.). a sequence of arrows. We call
(D,(y.).) a cone for (D.,i,,). whenever the following condition holds:

Vn EN [D 1• D Eel\ "Yn = "Yn + I 0 t,,].

DEFINITIO!'. 7 13 (Initial cone)
A cone (D,(y.).) for a t0wer (D.,i,,). is called initial whenever for every other cone (D',(y~).) for
(D.,i,,). there exists a unique arrow 1:D-->D' in e such that:

'vn EN (1°y. = y~].

DEFINITION 2.14 (Diiect limit construction)
Let (D.,i,,)., with'•= <i.,J. >, be a converging tower. The direct limit of (D.,,.). is a cone (D,(y.).),
with "Yn = <g. ,h. >, that is defined as follows:

D = ((x.).IVn;;;;.O(x. EDn I\ J.(x. +1) = x.l}

is equipped with a metric d:D XD-->(O, I] defined by: d((x.).,(y.).)= sup(dvJx.,y.)}, for all (x.).
and (y.). ED.
g.:D D is defined by g.(x)=(xk)k, where l)k.(x) if k <n

xk = x if k =n
i.k(x) if k >n;

h.:D-->un is defined by h.((xdk)=x •.

LEMMA 2.15
The direct limit of a converging tower (as defined in definition 2.14) is an initial cone for that tower,

As a category-theoretic equivalent of a contracting function on a metric space, we have the following
notion of a contracting functor on e.
DEFINITION 2.16 (Contracting functor)
We call a functor F:e-+e contracting whenever the following holds: There exists an£, with O.;;;;£<1,
such that, for all D-->' EE(?,

8(F(1)),;;;; £•8(1).

105

A contracting function on a complete metric space is continuous, so it preserves Cauchy sequences
and their limits. Similarly, a contracting functor preserves converging towers and their initial cones:

LEMMA 2.17
Let F:e.-.+e be a contracting functor, let (D.,1.n). be a converging tower with an initial cone (D, (y.).).
Then (F(D0),F(1n)). is again a converging tower with (F(D),(F(y.)).) as an initial cone.

THEOREM 2.18 (Fixed-point theorem)
Let F be a contracting functor F:e.-.+e and let Do->" F(D0)e<2. Let the tower (D.,1.n). be defined by
Dn+l =F(D.) and &n+l =F(i,,)for all n;;;,,0. This tower is converging, so it has a direct limit (D,(y.).).
We have: D;;;;fF(Di

REMARK: In (America and Rutten, 1988) it is shown that contracting functors that are moreover con-
tracting on all hom-sets (the sets of arrows in e between any two given complete metric spaces) have
unique fixed points (up to isometry). It is also possible to impose certain restrictions upon the
category e such that every contracting functor on e has a unique fixed point.

Let us now indicate how this theorem can be used to solve the equations (I) through (4) above. We
define

(1) F 1(P)=AUid*(BXP)

(2) F 2(P) = A U '?Pc1(B X id *(P))

(3) F3(P) = A U(B->id*(P)).

If the expression G(P) in equation (4) is, for example, equal to P, then we define F4 by

(4) F4(P) = A Uid*(P->1 P).

(Please note that the definitions of these functors specify, for each metric space (P,dp), the metric on
F(P) implicitly (see definition 2.6).) Now it is easily verified that F 1, F2, F3, and F4 are contracting
functors on e. Intuitively, this is a consequence of the fact that in the definitions above each
occurrence of P is preceded by a factor id*. Thus these functors have a fixed point, according to
theorem 2.18, which is a solution for the corresponding equation.

REMARKS
(1) In (America and Rutten, 1988) it is shown that functors like F 1 through F4 are also contracting

on horn-sets, which guarantees that they have unique fixed points (up to isometry).
(2) The results above hold for complete ultra-metric spaces too, which can be easily verified. The

domain we shall use for our denotational semantics is an ultra-metric space.

3. THE LANGUAGE POOL

3.1 An informal introduction to the language
The language POOL makes use of the principles of object-oriented programming in order to give
structure to parallel systems. Object-oriented programming (of which the language Smalltalk-SO
(Goldberg and Robson, 1983) is a representative example) offers a way to structure large systems.
Originally it was only used in sequential systems, but it offers excellent possibilities for a very advan-
tageous integration with parallelism. (This was already proposed in (Hewitt, 1977), using an

106

approach quite different from ours.).
A POOL program describes the behaviour of a whole system in terms of its constituents, objects.

Objects contain some internal data, and some procedures that act on these data (these are called
methods in the object-oriented jargon). Objects are entities of a dynamic nature: they can be created
dynamically, their internal data can be modified, and they have an internal activity of their own. At
the same time they are units of protection: the internal data of one object are not directly accessible
for other objects.

An object uses variables (more specifically: instance variables) to store its internal data. Each vari-
able can contain the name of an object (another object, or, possibly, the object under consideration
itself). An assignment to a variable can make it refer to a different object than before. The variables
of one object cannot be accessed directly by other objects. They can only be read and changed by
the object itself.

Objects can interact by sending messages to each other. A message is a request for the receiver to
execute a certain method. Messages are sent and received explicitly. In sending a message, the
sender mentions the destination object, the method to be executed, and possibly some parameters
(which are again object names) to be passed to this method. After this its activity is suspended. The
receiver can specify the set of methods that will be accepted, but it can place no restrictions on the
identity of the sender or on the parameters of messages. If a message arrives specifying an appropri-
ate method, the method is executed with the parameters contained in the message. Upon termination,
this method delivers a result (an object name), which is returned to the sender of the message. The
latter then resumes its own execution. Note that this form of communication strongly resembles the
rendez-vous mechanism of Ada (ANSI, 1983).

A method can access the variables of the object that executes it (the receiver of a message). Furth-
ermore it can have some temporary variables, which exist only during the execution of the method.
In addition to answering a message, an object can execute a method of its own simply by calling it.
Because of this, and because answering a message within a method is also allowed, recursive invoca-
tions of methods are possible. Each of these invocations has its own set of parameters and temporary
variables.

When an object is created, a local activity is started: the object's body. When several objects have
been created, their bodies execute in parallel. This is the way parallelism is introduced into the
language. Synchronization and communication takes places by sending messages, as described above.

Objects are grouped into classes. All objects in one class (the instances of that class) use the same
names for their variables, they have the same methods for answering messages, and execute the same
body. In creating an object, only its desired class must be specified. In this way a class serves as a
blueprint for the creation of its instances.

There are a few standard classes predefined in the language. In this semantic description we will
only incorporate the classes Boolean and Integer. On these objects the usual operations can be per-
formed, but they must be formulated by sending messages. For example, the addition 2+4 is indi-
cated by the expression 2!add(4), sending a message with method name add and parameter 4 to the
object 2.

There is a special standard object, nil, which can be considered to be an element of every class.
Upon the creation of a new object, its instance variables are initialized to nil, and when a method is
invoked, its temporary variables are also initialized to nil. If a message is sent to this object, an error
occurs. In general, whenever a run-time error occurs, the whole system will halt immediately.

At this point it is useful to emphasize the distinction between an object and its name. Objects are
intuitive entities as described above. In this paper there will appear no mathematical construction that
directly models a single object with all its dynamic properties (although it would be interesting to see
a semantics which does this). Object names, on the other hand, are modeled explicitly as elements of
some abstract set Obj. Object names are only references to objects. On its own, an object name gives
little information about the object it refers to. In fact, object names are just sufficient to distinguish
the individual objects from each other. Note that variables and parameters contain object names, and

107

that expressions result in object names, not objects. Only for standard objects: integers, booleans, and
nil, it does not seem to make sense to distinguish between an object and its name. However, even for
these objects a separate description of their behaviour is necessary (see section 4.4). If in the sequel we
speak, for example, of "the object a", we hope that the reader understands that the object with name
a is meant.

3.2 Syntax of POOL
In this section the (abstract) syntax of the language POOL is described. We assume that the follow-
ing sets of syntactic elements are given:

!Var (instance variables) with typical element x,
TVar (temporary variables) with typical element u,
CName ·(class names) with typical element C,
MName (method names) with typical element m.

We define the set SObj of standard objects, with typical element rf,, by

SObj = l U {tt,.ff} U {nil}.

(Z is the set of all integers.) Note that for standard objects, we do not distinguish between object
names and the objects themselves.

We now define the set Exp of expressions, with typical element e:
e ::= X

u
e ! m (e 1, ••• ,e.)
m (e 1, ••• ,e.)
new (C)
eJ=e2
s ; e
self
rf,

The set Stat of statements, with typical elements s, ... :

S ::= X+-e
u +- e
answer V
e
SJ ; S2

(Vr;;;,MName, V'i60)

if e then SJ else s2 fi
doe thens od
sel KJ or · · · or g. les

The set GCom of guarded commands, with typical elements g, . . . :

g :: = e answer V thens (Vr;;;,MName).

(Note that V= 0 is allowed.)

The set Unit of units, with typical elements U, . . . :

(n ;.. I).

108

The set ClassDef of class definitions, with typical elements d, . . . :

d : : = < (m 1 <= /J,1, ••. , m. <= µ.,,) , s >
And finally the set MethDef of method definitions, with typical elements µ., ... :

µ. ::= < (U1, ... , Un), e >.

3.2.1 Informal explanation

Expressions
An instance variable or a temporary variable used as an expression will yield as its value the object
name that is currently stored in that variable.

The next kind of expression is a send expression. Here, e is the destination object, to which the
message will be sent, m is the method to be invoked, and e I through e. are the parameters. When a
send expression is evaluated, first the destination expression is evaluated, then the parameters are
evaluated from left to right and then the message is sent to the destination object. When this object
answers the message, the corresponding method is executed, that is, the formal parameters are initial-
ized to the u · jects names in the message, the temporary variables are initialized to nil, and the expres-
sion in the method definition is evaluated. The value which results from this evaluation is sent back
to the sender of the message and this will be the value of the send expression.

A method call simply means that the corresponding method is executed (after the evaluation of the
parameters from left to right). The result of this execution will be the value of the method call.

A new-expression indicates that a new object is to be created, an instance of the indicated class.
The instance variables of this object are initialized to nil and the body starts executing in parallel with
all other objects in the system. The result of tl1e new-expression is (the name of) this newly created
object.

The next type of expression checks whether e I and e2 result in the same object. If so, It is returned,
otherwise ff.

An expression may also be preceded by a statement. In this case the statement is executed before
the expression is evaluated.

The expression self always results in the name of the object that is executing this expression.
The evaluation of a standard object cf, results in that object itself. For instance, the value of the

expression 23 will be the natural number 23.

Statements
The first two kinds of statements are assignments, to an instance variable and to a temporary vari-
able, respectively. An assignment is executed by first evaluating the expression on the right, and then
making the variable on the left refer to the resulting object.

The next kind of statement is an answer statement. This indicates that a message is to be
answered. The object executing the answer statement waits until a message arrives with a method
name that is contained in the set V. Then it executes the method (after initializing the formal param-
eters and temporary variables). The result of the method is sent back to the sender of the message,
and the answer statement terminates.

Next it is indicated that any expression may also occur as a statement. Upon execution, the
expression is evaluated and the result is discarded. So only the side effects of the expression evalua-
tion (e.g., the sending of a message) are important.

Sequential composition, conditionals and loops have the usual meaning.
A select statement is executed as follows: First all the expressions (called guards) in the guarded

commands are evaluated from left to right. They must all result in an object of class Boolean, other-
wise an error occurs and the system is halted immediately. The guarded commands of which the

109

guards have resulted in ff are discarded (they do not play a role in the further execution of the state-
ment). Now one of the remaining guarded commands is chosen. For this there are two possibilities:
One possibility is that the (textually) first guarded command is chosen in which the answer statement
contains no method names (if there such a guarded command). In this case the statement after then
is executed and the select statement terminates. The second possibility is that a guarded command
with a nonempty answer set is chosen. For this the following requirements must be satisfied:
- A message has arrived specifying a method in this answer set.
- This guarded command must be the (textually) first one that contains this method in its answer set
and for which the guard resulted in tt.
- There must be no guarded command with an empty answer set and a true guard occurring before
this one.
If this case applies, the above message is answered (by executing the specified method and returning
the result), the statement after then is executed, and then the select statement terminates.

Guarded commands
These are sufficiently described in the treatment of the select statement.

Units
These are the programs of POOL. A unit consists of a number of bindings of class names to class
definitions. If a unit is to be executed, a single new instance of the last class defined in the unit is
created and execution of its body is started. This object has the task to start the whole system, by
creating new objects and putting them to work.

Class definitions
A class definition describes how instances of the specified class behave. It indicates the methods and
the body each instance of the class will have. The set of instance variables is implicit here: it consists
of all the elements of /Var that occur in the methods or in the body.

Method definitions
A method definition describes a method. Here u I through u,, are the formal parameters and e is the
expression to be evaluated when the method is invoked. The set of temporary variables is again
implicit: it consists of all the elements of TVar that occur in the expression e, with the exception of
the formal parameters.

3.2.2 Context conditions
For a POOL program to be valid there are a few more conditions to be satisfied. We assume in the
semantic treatment that the underlying program is valid.
These context conditions are the following:
- All class names in a unit are different.
- All method names in a class definition are different.
- All parameters in a method definition are different.

Any POOL program that is a translation of a valid POOL-T program will automatically satisfy these
conditions. POOL-Tis even more restrictive. For example, it requires that the type of every expres-
sion conforms with its use, and it forbids assignments to formal parameters. However, the conditions
above are sufficient to ensure that the program will have a well-defined semantics.

110

3.3 An example program
As an illustration of programs that can be written in POOL, we present an example. In the following
program (unit) U, a parallel implementation of Eratosthenes' sieve for generating prime numbers is
given. An object of the class Primes (the "root" object) generates an infinite ascending stream of
integers, which it feeds into a chain of instances of the class Sieve. Each of those remembers in its
variable p the first number it gets (always a prime), and from the rest passes on only those numbers
that are not divisible by p. The computation proceeds in a pipelined way:

where

with

Primes

1
i=23
first

Sieve

P=2
q=22
next

Sieve

P=3
q=21
next

U = <Sieve<==dSieve, Primes<=dp,;mes >

Sieve

p=5
q=19
next

ds;f/fl/fl = <(input~/ltnput, create~/lc,eate), SSieve>,

/ltnput = <(n), q-n; self>,

/lcreate = <(), new(Sieve)>,

sSieve = answer(input);

p-q;

next-create();

do It

then answer(input);

if q!mod(p)!equal(O)!not()

then next!input(q)

fi
od,

and

with
dPrimes = <(), Spnmes>,

sPnmes = first-new(Sieve);

i-2;
do It

then first!input(i); i-i!add(l)

od.
(It is assumed that {P, q, next, i, first} C/Var and neTVar.)

111

4. DENOTATIONAL SEMANTICS

This section constitutes the heart of our paper. First, the sets of objects and states are introduced and
the mathematical domain P of processes is defined which we use for our denotational semantics.
Secondly, an auxiliary semantic operator for parallel composition is defined, followed by the
definition of environments. Then the semantics of expressions and statements is defined, with the
use of the notion of continuations, some familiarity with which may be helpful for the reader. (For an
extensive treatment of continuations and so-called expression continuations, which we shall also use,
we refer to (Gordon, 1979).) Next, the semantics for the standard objects (integers and booleans) of
POOL is given. The section culminates in the definition of the semantics of a unit (a POOL program).
This involves in particular the definition of the environment corresponding to it. Finally, the notions
of paths and yield of a process are introduced.

4. 1 Domain definitions
Before we can give the definition of our process domain we have to define the sets of objects and the
set of states.

DEFINITION 4.1 (Objects)
We assume given a set A Obj of names for active objects together with a function

T:

which assigns to each object aeAObj the class to which it belongs. Furthermore, we assume a func-
tion

p; 'ift,.(AObj) X CName A Obj,

such that P(X,C)G!X and 'T(P(X,C))=C, for finite Xc;;,AObj and CeCName. The function" gives for a
finite set X of object names and a class name Ca new name of class C, not in X. The set AObj and
the set of standard objects SObj together form the set Obj of object names, with typical elements a
and /j:

Obj = AObjUSObj

= AObjUZU{tt,.ff}U{ni/}.

REMARK: A possible example of such a set A Obj and functions 'T and" could be obtained by setting:

AObj = CNameXN,

'T(<C,n >) = C, and

P(X,C)=<C, max{n:<C,n>eX}+l>.

DEFINITION 4.2 (States)
The set of states I, with typical element a, is defined by

I =
X

X 'ift,.(AObj).

REMARKS

112

(I) We denote the three components of oEl: by o = <01,02,03>.
(2) The first and the second component of a state store the values of the instance variables and the

temporary variables of each active object. The third component contains the object names
currently in use. We need it in order to give unique names to newly created objects.

In order to give a meaning to expressions, statements, and units we shall define a mathematical
domain P, the elements of which we shall from now on call processes.

DEFINmON 4.3 (Semantic process domain P)
Let P, with typical elements p and q, be a complete ultra-metric space satisfying the following
reflexive domain equation:

P ~{po} U id)),
where Stepp, with typical elements 'IT and p, is

Stepp= (IXP)U Sendp U Answerp,
with

Sendp = ObJX MNameX Obj' X P,

Answerp = ObjX MNameX (Obj'

Here Obj', with typical elements a and /J, is the set of finite sequences of object names. (The sets
{p0 }, l:, Obj, MName, and Obj' become complete ultra-metric spaces by supplying them with the
discrete metric (see the example preceding definition 2.2).)

In section 2 it is described how to solve such ari equation. Let us try to explain intuitively the
intended interpretation of .the domain P. First, we observe that in the equation above the subexpres-
sion id,,,, is necessary only to guarantee that the equation is solvable by defining a contracting functor
on the category e (see section 2). For a, say, more operational understanding of the equation it does
not matter.

A process pEP is either p0 or a function from l: to 'ii'c1(Stepp). The process po is the terminated
process. For p-:l=p0 , the process p has the choice, depending on the current state o, among the steps in
the set p(o). If p(o)= 0, then no further action is possible, which is interpreted as abnormal termina-
tion. For p(o)#:0, each step 'ITEp(o) consists of some action (for instance, a change of the state o or
the registration of an attempt at communication) and a resumption of this action, that is to say the
remaining actions to be taken after this action. There are three different types of steps 'ITE Stepp.

First, a step may be an element of l:XP, say

.,,= <o',p'>.
The only action is a change of state: o' is the new state. Here the process p' is the resumption, indi-
cating the remaining actions process p can do. (When p'=p0 no steps can be taken after this step 'IT.)

Secondly,.,, might be a send step, 'ITE Sendp. In this case we have, say

'IT = <a,m,/J,f,p >,
with aEObj,mEMName,/JEObj', and pEP. The action involved here consists of the
registration of an attempt at communicatio_E., in which a message is sent to the object a, specifying the
method m..!. together with the parameters /1 This is the interpretation of the first three components
a,m, and /1 The fourth component f, called the dependent resumption of this send step, indicates the
steps that will be taken after the sender has received the result of the message. These actions will
depend on the result, which is modeled by f being a function that yields a process when it is applied
to an object name (the result of the message). The last component p, called the independent

113

resumption of this send step, represents the steps to be taken after this send step that need not wait
for the result of the method execution.

Finally, w might be an element of Answerp, say

w= <a,m,g>
with aeObj, meMName, and P). It is then called an answer step. The first
two components of w express that the object a is willing to accept a message that specifies the method
m. The last component g, the resumption of this answer step, specifies what should happen when an
appropriate message actually arrives. The function g is then applied to the parameters in this message
and to the dependent resumption of the sender (specified in its corresponding send step). It then
delivers a process which is the resumption of the sender and the receiver together, which is to be com-
posed in parallel with the independent resumption of the send step.

We now define a semantic operator for the parallel composition (or merge) of two processes, for which
we shall use the symbol II. It is auxiliary in the sense that it does not correspond to a syntactic opera-
tor in the language POOL.

DEFINITION 4.4 (Parallel composition)
Let

II :PXP->P
be such that it satisfies the following equation:

pllq = .\a.({wllq :wep(a)Aq(a):;60} U {wllp :weq(a)Ap(a)=f,0} U

U { wl.P: wep(a),peq(a)})

for all p,qeP \ {p0 }, and such that p0 llq=qllpo =p0 . Here, wllq is defined by

<a',p'>llq = <a',p'llq>,
<a,m, P,f ,p > fiq = <a,m, "fJ,J,p liq>, and

<a,m,g>llq = <a,m,.\P·M·(g("iJ)(h)llq)>,

and wl0 p by

.,,,.p =

REMARKS

l{ <a, g{"iJXf)llp >}

0

if w= <a,m,"fJ,J,p > and p= <a,m,g >
orp=<a,m,"fJ,f,p> andw=<a,m,g>
otherwise.

(I) We observe that this definition is self-referential, since the merge operator occurs at the righthand
side of the definition. For a formal justification of this definition see the appendix (A. I), where
the merge operator is given as the unique fixed point of a contraction
iPpc:(P P).

(2) Since we intend to model parallel composition by interleaving, the merge of two processes p and
q consists of three parts. The first part contains all possible first steps of p followed by the paral-
lel composition of their respective resumptions with q. The second part contains similarly the
first steps of q. The last part contains the communication steps that result from two matching
communication steps taken simultaneously by process p and q. For weStepp the definition of
wllq is straightforward. The definition of wl.P is more inyolved. It is the empty set if w and p do
not match. Now suppose they do match, say w=<a,m,{J,f,p> and p=<a,m,g>. Then w is a

114

send step, denoting a request to object a to execute the method m, and p is an answer step,
denoting that the object a is willing to accept a message that requests the execution of the
method m. In w I aP, the state a remains unaltered. Since g, the third CO_!Ilponent of p, represents
the meaning of the execution of the method m, it needs the parameters /3 that are specified by a.
Moreover, g depends on the dependent resumption/ of the send step w. This explains whJ both
/J and / are supplied as arguments to the function g. Now it can be seen that g(/JXJ)llp
represents the resumption of the sender and the receiver together. In order to get more insight in
this definition it is advisable to return to it after having seen the definition of the semantics of an
answer statement.

(3) If, for a given state a, either p(a) or q(a) is empty, then (pllqXa) is the empty set. Since the
empty set is used to model abnormal termination, this can be understood as follows: If abnormal
termination occurs in one of the two components of a parallel composition, then the entire com-
position is considered to terminate abnormally.

(4) The merge operator is associative, which can easily be proved as follows. Define

f = SUPp.q.reP {dp((pllq)llr,pll(qllr))}

Then, using the fact that the operator II satisfies the equation above, one can show that f.;;; ½·f.
Therefore f=O, and II is associative.

Next, environments are introduced in the following

DEFINITION 4.5 (Environments)
The set of environments is defined as follows:

Env =
P).

REMARKS
(1) We denote the first and the second component of y by y1 and y2•
(2) When we are going to compute the semantics of a certain unit U, we shall define an environment

Yu such that it contains all information about the definitions that are present in U. It will be
needed in the computation of the semantics of U. The first component y1 of an environment y is
a function that, supplied with an object name a, gives the process representing the execution of
a's body. Note that this body depends on the class of a, which can, however, be determined from
the object name by applying the function T. We shall need this first component when we want to
define the semantics of a new-expression.
The second component y2 gives the meaning of method executions and is used to define the
semantics of an answer statement, a method call, and a select statement. When we supply y2
with arguments m and a we get the meaning of the execution of the method m by the object a.
It depends on the parameters that are passed to the method, so /J is a third argument. The final
argument is the expression continuation/, which, applied to the object resulting from the execu-
tion of the method, yields a process that represents the steps to be taken next. The result
y2(mXaX/J)(/) EP is a process expressing the meaning of the execution of the method m by the
object a with parameters /J and expression continuation f

115

4.2 Semantics of statements and expressions
In this section we define the semantics of statements by specifying a function [· · · 1s of the following
type:

[· · · Js: P
where Conts = P, the set of continuations of statements. Let seStat,yeEnv,aeAObj, and pEP. The
semantic value of s is the process given by

[sJs(YXa)(p).

The environment y contains information about class definitions (needed to evaluate new-expressions)
and method definitions (needed to evaluate answer statements, select statements, and method calls).
The second parameter of [sJs, the object name a, represents the object that executes the statements.
The semantic value of s finally depends on its so-called continuation: the semantic value of everything
that will happen after the execution of s. The main advantage of the use of continuations is that it
enables us to describe the semantics of expressions, in particular the new-expression, in a concise and
elegant way. For that purpose, we shall specify a function

[· · · 1£: P
where ContE = the set of expression continuations. Let e eExp, yeEnv, a EA Obj, and

The semantic value of e is the process given by

[el£(y)(a)(/)
The environment y, the object a and the continuation f serve the same purpose as in the semantics of
a statement s. However, there is one important difference: the type of the continuation. The evalua-
tion of expressions always results in a value (an element of Obj), upon which the continuation of such
an expression generally depends. The function f, when applied to the result fJ of the expression, will
yield the process f ({J) that is to be executed after the evaluation of the expression.

REMARK
Please note the difference between the notions of resumption and continuation. A resumption is a part
of a semantic step weStepp, indicating the remaining steps to be taken after the current one (see the
explanation following definition 4.3 above). A continuation is one of the arguments that we give to
our semantic functions. Such a continuation, when supplied as an argument to [s)5 (y)(a), for a state-
ment s, an environment y, and an object a, indicates the actions that should be taken after the state-
ment s has been executed. It may appear as a resumption in the result. A good example of this is
the definition of [x~eJs (in definition 4.7, Sl) below.

DEFINITION 4.6 (Semantics of expressions)
We define a function

(· · · 1£: P.
where

by the following clauses. Let

(El, instance variable)

[xl£(y)(a)(f) = Ao·{ <o,f(o1(a)(x))> }.

The value of the instance variable x is looked up in the first component of the state o supplied with
the name a of the object that is evaluating the expression. The continuation f is applied to the

116

resulting value.

(E2, temporary variable)

[u)E('yXa)(f) = Xa·{ <o,f(o2(a)(u))> }.

(E3, send expression)

[e!m(e1, ... , e.)h(rXa)(f) =
[e)e(y)(a)(

VJ- ((e 11£(y)(a)(

X/11 · ([e2JE(y)(a)(

X/1.-1 · ([e.)E('y)(a)(

X{l.·Xo·{ <{1,m,fl,J,po>})) · · ·)))))
where

fl= </11, ... ,{1.>.
The expressions e, e 1, ••• , e. are evaluated from left to right. Their results correspond to the formal
parameters {1,{11, ••• , {1. of their respective continuations. Finally a send step is performed. The
object name f1 refers to the object to which the message is sent. The sequence < /11 , ••• , fl.>
represents the parameters for the execution of the· method m. Besides these values and the method
name m the final step <{1,m,fl,f,p0 > also contains the expression continuation/of the send expres-
sion as the dependent resumption. If the attempt at communication succeeds, this continuation will
be supplied with the result of the method execution (see section 4.1). The independent resumption of
this send step is initialized at p 0 .

(E4, method call)

where

[m(ei, ... ,en)]E(y)(a)(f) =
le1h<rXa:X

X/11 · ([e21£(y)(a)(

X/1. -1 · ([e.]E(Y)(a)(

X/1.·Xo-{ <o, Y2(m)(a}{fl)(j)> })) · · ·)))

fl= </11, · · · ,{1.>.
Here the final step is not a communication step. It represents the execution of the method m by the
object a with the parameters fl and the continuation f

(E5, new-expression)

[new(C)]E(Y)(a)(f) = Xo·{ <o', Y1(/1)ll/({1)>}

where

a'= <o1{Ax·ni//fi}, 02, 03U{P}>, and

p = 11(03,C).

117

A new object of class C is created. It is called 11(03,C): the function 11, supplied with the set of all
object names currently in use and the class name C as an argument yields a name of class C that is
not yet being used. The state a is changed by initializing the values of the instance variables of the
new object to nil and by expanding the set o3 with the new name p. The process y1 (/J), representing
the body of the new object, is composed in parallel with the process resulting from the application of
the continuation/ to P, which is the value of the evaluation of this new-expression. We are able to
perform this parallel composition because we know from/ what should happen after the evaluation of
this new-expression, so here the use of continuations is essential.

(E6, identity checking)

[e 1 =e21E<r)(a)(f) = [e 11£(y)(a)(

(E7, sequential composition)

XP1 · [e2lE(Y)(a)(

XPi· if P1 =Pi
then/ (tt)

else /(ff)
ft)).

[s;el£(y)(a)(f) = [s]s(r)(a)((el£(y)(a)(f)).

The definition of [· · · ls is given below in definition 4.7. Lemma 4.8 states that [· · · JE and
[· · · ls are well defined, although their definitions refer to each other.

(ES, self)

[selt1£{y)(a)(f) = /(a).

The continuation/ is supplied with the value of the expression self, that is the name of the object exe-
cuting this expression. We use /(a) instead of Xo·{ <o,/(a)>} in this definition, wishing to express
that the value of self is immediately present: it does not take a step to evaluate it. A similar remark
applies to definition E9:

(E9, standard objects)

[</>)E(Y)(a}(f) = /(</>).

DEFINITION 4.7 (Semantics of statements)
The function

(···ls: P,
where

Cont5 =P,

is defined by the following clauses. Let yeEnv,aeAObj,p eP.

(SI, assignment to an instance variable)

118

[x..-e]s(y)(a)(p) = [eh(y)(a)(i\.,B·i\.o·{ <o',p> })
where

a'= <01 {(01(a){,8/x})/a}, 02,03>.

The expression e is evaluated and the result .B is assigned to x.

(S2, assignment to a temporary variable)

[u..-e]s(y)(a)(p) = (e]E("Y)(a)(i\.,B·i\.o·{ <o',p>})
where

(S3, answer statement)

[answer VJs(y)(a)(p) = i\.o·{ <a,m,Km >: m EV}

where for m E V

Km= i\{JeObj'· i\feObj P· Y2(m) (a) (/J) (i\.,8·(((.B)llp)).

For each method m the function Km represents its execution followed by its continuation. In the
definition of Km the second com_ponent of environment y is supplied with arguments m and a. This
function Km expects parameters .B and a continuation f, both to be received from an object sending a
message specifying the method m. After the execution of the method both the continuation of the
sending object and the given continuation p are to be executed in parallel. So the final argument y2 is
supplied with is

i\.,B·(f(.B)llp).

REMARK
Now that we have defined the semantics of send expressions and answer statements let us briefly
return to the definition of wJ.p (definition 4.4). Let w= <a,m,{J,f,q> (the result from the elaboration
of a send expression) and p= <a,m,K > (resulting from an answer statement). Then wl.P is defined as

wJ0 p = { <o,K(/J)(/)llq> }.
We see that the execution of the method m proceeds in parallel with the independent resumption q of
the sender. Now that we know how K is defined we have

K(fJ)(f) = "Y2(m)(a)(/J)(i\.,8·(((.B)llp)).
The continuation of the execution of m is given by i\.,8·(((.B)llp), the parallel composition of the con-
tinuations f and p. This represents the fact that after the rendez-vous, during which the method is
executed, the sender and the receiver of the message can proceed in parallel again. (Of course, the
independent resumption q may still be executing at this point.) Moreover, the result .B of the method
execution is passed on to the continuation f of the send expression.

(S4, expressions as statements)

(e1s(y)(a)(p) = (e)e{y)(a)(i\.,8-p).

If an expression occurs as a statement, only its side effects are important. The resulting value is
neglected.

119

(S5, sequential composition)

ls1 ;s2Js(y)(a)(p) = [s1ls(Y)(a)([s2J(y)(a)(p)).

The continuation of s 1 is the execution of s 2 followed by p. We observe that a semantic operator for
sequential composition is absent. The use of continuations has made it superfluous.

(S6, conditional)

[if e then s 1 else s2 fi)s(y)(a)(p) =
[eh(y)(a)(A/l·(if P=tt

then [s I ls(r)(a)(p)

elseif p = ff
then [s2ls(y)(a)(p)
else Ao·0

fi)).

If /lfl.{tt,ff}, then the result is Ao·0, indicating abnormal termination due to the occurrence of an
error.

(S7, loop statement)

[doe thens od)s(y)(a)(p) = Fixed Point (<I>)

where <1>:p....,p is defined by

<l>(q) = [e]E(y)(a)(A/l·Ao·{ <o, if P=tt
then [sls(r)(a)(q)

elseif P= ff
thenp

else Ao· 0

fi>}).

We shall show below (lemma 4.S(b)) that <I> is contracting.

(SS, select statement)

(sel (e1 answer V1 then s 1) or··· or (e. answer v. thens.) les)s(y)(a)(p) =
[e I IE(y)(a)(

A/11 · if P1 fl. { tt,ff} then Ao· 0

else [e2IE(y)(a)(

A/ln · if P. 11. { tt ,ff} then Ao· 0

else Ao·

({<o, foJs(y)(a)(p)>: Pk=tt I\ Vk=0 I\ Vi<k[/l;=tt=>V;,f,01} U

{ <a,m,gm_k>: Pk =tt I\ m E vk I\ Vi <k [.B; =tt=>(m fl. V;I\ V;,f,0)1})

120

fi ...)

fi),

where

Km.k = '}JJEObj' ·

-Y2(m) (a) (ft) (>../1-(J(ft) II lsds(-YXa)(p))).

The reader is entitled to some explanation. First the guards are evaluated from left to right. If any of
them evaluates to something different from tt or ff, then an error occurs immediately, indicated by
Ao· 0 . After the evaluation of the guards we have two sets of possible steps:

The first set is empty or contains a step corresponding with a guarded command that has a true
guard and an empty answer set, and for which there does not occur any empty answer set to its left.

The second set contains those steps that result from the selection of a method in one of those
guarded commands that have a non-empty answer set Vk. A message specifying the method m E Vi
can be answered if to the left of the k-th guarded command there occur no guarded commands with
an empty answer set nor with an answer set containing m. This expresses exactly the priority order of
the methods as explained in section 3.2. l. The function Km,k expresses the execution of the method m
in the k-th L'1arded command. The only difference with the function Km used in the definition of the
answer statem.:nt (S3 above) is that the continuation of the receiving object a (which executes the
select statements) in this case is: [sds(-YXa)(p). It represents the execution of the statement sk of the
k-th guarded command, followed by p, the continuation of the entire select statement.

Note that a guarded command for which the guard evaluates to ff can never be selected. If all
guards in the select statement evaluate to ff, the result is >..a· 0, denoting abnormal termination.

LEMMA 4.8
The semantic functions I · · · h and (· · · Js of definitions 4. 6 and 4. 7 are well defined:
(a) For all eEExp,sEStat,-yEEnv,aEAObj:

[eh(-yXa)E(Obj->P)->1 P and [s]s(-y)(a)EP->1 P.

(b) The function (J):P->P used in definition 4.7 (S7) is contracting.

For the proof see the appendix (A.2).

4.3 Standard objects

DEFINITION 4.9 (Integers)
Let the process PINT, which represents the activity of all integer objects, be such that is satisfies the
following equation:

PINT= "A.a· ({<n,add,g,;>:nEZ} U {<n,sub,g;>:nEZ} U · • •),
where

g,; = >..°[JEOb/·>..fEObj->P·

(if /JEZ then f(n + fJ)llpINT else >..o- 0 fi),

g; = A/JEOb/ ·>..f EObj->P·

(if /JEZ then f(n - fJ)llpINT else "Ao· 0 fi),

and where the dots stand for similar terms representing the other operations on integers.

121

REMARKs
(!) This definition is self-referential since PINr occurs at the righthand side of the definition. For-

mally, PINr can be defined as the fixed point of a suitably defined contraction on P, similar to
the definition of the merge operator II as the fixed point of the contraction 4lpc (see A. I in the
appendix).

(2) We observe that PINr is an infinitely branching process. Such a process fits naturally into our
domain. This is the reason why we have chosen '8'c1(• • ·) (closed subsets) in our domain equa-
tion rather than '8'cony,(• • ·) (compact subsets).

(3) The operational intuition behind the definition of p INf is the following: For every n e Z the set
PINr(u) contains, among others, two elements, namely <n,add,g;; > and <n,sub,g,;- >. These
steps indicate that the integer object n is willing to execute its methods add and sub. If, for
example by evaluating n !add(n'), a certain active object sends a request to integer object n to
execute the method add with parameter n', then g;;, supplied with n' and the continuation f of
the active object, is executed. We have that g;; (n'Xf) is, by definition, the parallel composition
off supplied with the immediate result of the execution of the method add, namely n +n', and
the process PINr, which remains unaltered: g;; (n'Xf)= f (n +n')llpJNr. If, by mistake, a request
for the execution of the method add arrives that specifies the wrong type or number of parame-
ters, then AG· 0 is the result: the system deadlocks.

DEFINITION 4.10 (Booleans)
Let the process PsooL, which represents the behaviour of the booleans tt and ff, be such that it
satisfies the following equation:

where

REMARK

PsooL = 'll.u· ({ <b,and,gt >: be{tt,ff}} U { <b, or,gt >: be{tt,ff}} U

{ <b, nol,gb' >:be { tt,ff}})

gt = f{JeObj' ·'ll.feObj-->P· (il {Je {tt,ff} then /(b/\fJ)llp800L else 'll.u· 0 fi)

gt= 'll.fJeObJ'·'ll.feObj-->P· (il {Je{tt,ff} thenf(bv{J)llp800L else 'll.u·0 fi)

gb' = 'll.{JeObj' ·'ll.feObj-->P· (il fJ = <> thenf(...,b)llp800L else '/1.u· 0 fl)

As with PINT, the definition of PBOOL is self-referential. It can be formally justified along the lines of
remark (I) above. The intuition for this definition is very similar to that of the definition of PINr (see
remark (3) above).

DEFINmoN 4.11 (Standard object nil)
The process PNIL, representing the behaviour of the standard object nil, is given by:

PNIL = AG· { <ni/,m, 'JI.fl· 'll.f- 'll.u· 0 > :m eMName }.

REMARK
The process PNIL, representing the behaviour of the object nil, is willing to execute any method
m eMName. The execution of a method consists of immediate (abnormal) termination, indicated by
AG· 0. In this way, we model that sending messages to nil leads to abnormal termination of the entire
system.

DEFINITION 4.12 (Standard objects)
We define one process for all our standard objects:

122

ExAMPI.ll
The standard objects are assumed to be present at the execution of every POOL statements. There-
fore the process representing the semantic value of s will be put into parallel with Psr• An example
may illustrate how communication with a standard object proceeds. We determine

(x+-(2!add(3)))s('rXa)(po)llpsr
for a given xelvar, -yeEnv, and aeAObj. First we compute the semantic value of the assignment:

(x+-(21add(3)))s('YXa)(po)
= (2!add(3))E('YXa)(f)

[where/= A/Hd·{ <a'',po>} with a''= <a'1 {(a'1(a){,8/x}/a},a'2,a'3>)

= 121E('YXaX A/J1-((3M1X«X A/Ji·>.a-(<.81,add,/h.,J,po>})))
= (3)E('YX«XA/Ji·Aa·{ <2,add,/h.,J,po >})
= >.a·{ <2,add,3,/,po> }.

Now the parallel composition:

>.a·{ <2,add,3,f,p0 > }llpsr
= Aa·{<2,add,3,f,p0 >}11>.a'·{ ... ,<2,add,g2>, ... }llpeooLllpN1L

[where g2 = ~ez thenft.2 + mllP1NT else °Jl.a·0 fi))

= Ao·{ <2,add,3,J,po>la<2,add,g2>, ... }llpeooLllpN1L
[where all steps have been omitted but for the successful communication step]

= Ao·{ <a,g2(3)(/)>, ... } llpeooLilpN1L
= Aa·{<a,/(5)11pINT>, ... }llpeooLllpN1L
= Ao·{ <a,(>.a'·{ <a'',po> })llpINT>, ... }llpeooLilpN1L

where a'' is as above but with ,8=5.

4.4 Semantics of a unit

4.5.l Environments
If we want to define the semantics of a unit U we obviously need an environment 'Yu that contains
information about the class definitions and the method definitions of U. It will be defined as the fixed
point of a contracting function.

DEFINmON 4.13
Let Env be the set of environments as defined in definition 4.5. Thus

Env =
P).

For every Ue Unit, we define a function Let -yeEnv, 1=<11,12>. Now 4.>u('Y},
denoted by y, is given as follows: First we determine y1: Let «eAObj and C =7(«). If U specifies a

definition for the class C, then we put

Yi (a) = lsJs(y)(a)(po),

where
U=< ... ,C~ •... >, d=< ... ,s>,

otherwise:
y,(a) = Aa·0.

123

Now we define y2• Let m eMName, aeAObj, Pe_Ob/, f eObj-+P, and put C ='!(a). If U specifies
a definition for C in which m occurs and length(/:l) is equal to the number of formal parameters of
m, then we put

where
y2(m)(a)(p)(/) = Ao· { <a',(e)E(Y)(a)(A,B·Aa·{ <a',f(P)> })> },

u = < ...• c~ •... >,
d = < ... ,(... ,m.,,1', ...), ... >,
/J = <(u1, ... ,u,,),e>,

a'= <01,02(hla},a3>,

p =</Ji, ... ,/Jn>,
h(Ui) = /J1 for i = 1, ... ,n,
h(u) = nil for uf(u,, ... ,Un},

a'= <a,,'a2{02(a)/a},a3>.

Otherwise, we put

Y2(m)(aXPXf) = Ao· 0.

Rmwuc
If y1 is applied to an object name of which the class is not defined in the unit U, then the empty pro-
cess, Ao· 0, is the result, indicating that an error has occurred. The same happens when y2 is supplied
with incorrect arguments. The definition of y1 is straightforward. It provides a process representing
the body of the appropriate object. If y2 is applied to a method m and object a, we get as a result
the semantic value of the expression e that is used in the definition /J of m, preceded by a state
transformation in which the temporary variables of a are initialized. After the execution of e these
temporary variables are set back to their old values again, and the continuation / is supplied with the
resulting value of e. (Here we use the fact that, although evaluation of a method by an object might
lead to a nested invocation, this always proceeds in a "last in, first out" fashion.)

LEMMA4.14
I.et UeUnit and let «l>u be defined as in 4.13. Then «l>u is a contraction.

For the proof see the appendix (A.3).

DEFINITION 4.15
Let UeUnit, let cI>u be as in 4.13. We define

Yu= Fixed Point («l>u).

124

4.5.2 Semantics of a unit
The execution of a unit U with U = < C 1 <=d 1 , .•• , c. <=d" > consists of the creation of an object of
class c. and the execution of its body.

DEFINITION 4.16 (Semantics of a unit)
We define a function

6D: Unit-'>P

as follows: Let U e Unit. Then

6i'f U] = Pu llpsr
where

Pu= [s]s(yu)(P(0 ,C.))(po),

with

U = < ... ,C.<=< ... ,s>>,

and Yu as given in definition 4.15.

REMARK
The function [s]s is supplied with the environment Yu, which contains information about the class
and method definitions in U, the name 11(0,C.) of the first object, and withp0 , denoting the empty
continuation. The standard objects are represented by PST· They are assumed to be present at the
execution of every unit U. Therefore they are composed in parallel together with Pu•

4.5.3 Paths and yield
The semantics of the statement x<-1; x<-x + I executed by object a, and with the continuation p 0 is:

Ao·{ <o', Ao·{ <o',p0 >} > },

where in a' the value of o(a)(x) is set to I, and in o' the value of o(a)(x) is set to o(a)(x)+ I. This
process consists of two successive state transformations that are not yet composed. The reason for
this is that in our semantics parallelism is modeled by interleaving. If, however, we know that the
statement above is the entire POOL program we want to consider, then no further parallel composi-
tion, and thus no further interleaving, will take place. Then we are able to compose the two state
transformations into one that accumulates their respective effects. For that purpose we introduce the
notion of paths. Given a process p I and a state o1, we want to consider computation sequences start-
ing from <o1 ,p 1 >.

DEFINITION 4.17 (Paths)
A finite or infinite sequence (<o;,p;>); with o;e"i:.,p;EP is called a path (starting from <oi,p 1 >)
whenever
(a) Vj;;:.I U<length((<o;,p;>);) <oj+hPj+I >epj(oj)]
(b) The sequence satisfies one of the following conditions:

(I) It is infinite. (This represents an infinite computation.)
(2) The sequence terminates with the pair <o.,p.>, wherep.=p0 • (This represents normal ter-

mination of all the objects in the system.)
(3) The sequence terminates with the pair <o.,p.>, where p.(o.)= 0. (This represents abnor-

mal termination.)
(4) The sequence terminates with the pair <o.,p. >, where p.(a.)CSendp UAnswerp. (This

represents termination by deadlock.)
The set of all paths we shall call Path.

REMARKs

125

(1) A path (<p;,a;>); represents a particular execution of the process p 1 starting from the state a1•

In every component <a;,p;> of a path starting in <a1,p 1>, the state a. is passed on to the
resumption process Pn.

(2) In general a set p;(a;) may contain elements of Sendp or Answerp, besides elements of "2.XP.
Since we consider paths of only those processes that represent total (POOL) systems that are not
expected to communicate with any environment, we view such elements as unsuccessful attempts
at communication. Therefore we do not want to incorporate them in our definition of paths.
Note that if p;(a;) contains only elements of Sendp and Answerp, then the paths ends, and we
have the termination by deadlock of case (4) above.

(3) Note that for paths representing the execution of an entire unit case (2) above never arises due to
the fact that at least the standard objects are always ready to answer messages. This means that
"normal termination" of a POOL program is an instance of case (4) above.

Next we define the function yield It presents us, given a process p and a state a, with the set of all
possible paths that start from <a,p>.

DEFINITION 4.18 (Yield)
The functionyield:P--+"2.--+<5'(,Path) is defined as follows. LetpeP,ae:i.. Then

yield(pXa) = {(<a;,p;>);: (<a;,p;>); a path such that <a1,p 1 >= <a,p>}

If we want to have all computation sequences of the denotational meaning of a given unit U, we can
apply this function yield to the semantics of U as given in definition 4.16:

yield (61{ U])(au).

The state au we start with must be such that

a1 = Aa·'Ju:·ni/,
a2 = Aa·Au ·nil,
03 = {11(0,C.)},

(where U = < ... ,c.~d.>) in which all variables are initialized to nil, and the set of object names
that are currently in use consists of the name of the first active object.

5. FAIRNESS

We shall now introduce the notion of fairness. A path will be called fair if it does not represent a
situation in which an object is infinitely often enabled to take a step but never does so.
To determine whether a path is fair or not, for each step that occurs in the path we have to identify
the object that takes it. It appears that the semantics of statements as we have defined it offers too
little information to make the desired identification. Therefore a small adaptation of our semantic
domain P, the merge operator II and the semantic functions (· · · 1£ and [· · · Is is required.
In our new domain, which we shall still call P, we label every step with the name of the object that
takes it. We give the adapted equation that must be satisfied and forget about the details of how to

126

solve it.

DEFINITION 5.l (Adapted domain P)
Let P be such that it satisfies the following equation:

P;;; {po}

where

Stepp = Compp U Sendp U Answerp,

Compp = AX ~X P (the set of computation steps),

Sendp = ObJX ObjX MNameX Obj' X P,

Answerp =
The set of labels A, with typical elements re, is defined by

A= ObJU(ObjXObj).

The set Answerp is as before, because answer steps were already labeled: their first component indi-
cates the object that is willing to answer the method specified by the second component. The first
component of a send step denotes the object that is sending a message; the second indicates the
object to which this message is sent. The first component of a computation step (i.e., an element of
Compp) is an element of A. It is either an object, indicating the object that is taking an (internal)
computation step, or it is a pair of objects, indicating the two participants in a successful communica-
tion step (see the definition of the merge operator below).

The definition of the merge operator has to be adapted to this new definition of the domain P.

DEFINITION 5.2
Let be such that it satisfies, forp,qEP:

p
q

if q =po
ifp=po

pllq = Arr ({wllq :wEp(o)/\q(o),tc0}U otherwise.
{ wllp : wEq(o)Ap(o~ 0} U
U { wl0 p: wEp(o),pEq(o)})

For wEStepp w11 distinguish three cases.
(i) <rc,o',p'=::llq= <,_rc,o',p'llq> _
(ii) <a,/J,m, /J,J,p >liq= <_!!,/3,m, ftf ,p liq>
(iii) <a,m,g > liq= <a,m,}t./J•M·(g(/JXh)llq)>.
Finally the set of successful communications between two processes is defined as follows. Let
w,pEStepp. We have -!{ <(a,/J),o, g(P)(/)llp>} if w=_ <a,{3,m,~f,p > and p=_ <{3,m,g>

wl0 p - or p- <a,/J,m,/3,f,p > and 'IT- </1,m,g >
0 otherwise.

The definition of a path (as given in definition 4.17) has to be altered straightforwardly: A path now

127

contains triples <rc;,a;,p;>. Finally the definition of [· · · h and [· · · Js ought to be changed. We
give one example of a clause of the definition of [· · · 1£.

DEFINITION 5.3
Let [• • • h and [• · · Js be as given in definitions 4.6 and 4.7, but adapted straightforwardly as is
illustrated by the following clause. Let We define

[x)E(yXa)(f) = >.a·{ <a,a,J(a1(aXx))> }.

As fairness is a negative constraint let us define which paths are to be excluded.

DEFINITION 5.4 (Unfairness)
A path (<rc;,a;,p;>); is called unfair whenever one of the following conditions holds:
(i)

3rc 3i0 ;;;.Q Vn;;;.io

[3p 3a [<rc,a,p > ep.(a.)]/\,qcrc. + 1].
(ii)

(iii)

REMARK

3a 3<i0 ,i1, ... > 3/J 3m 3P
[Vk;;;.Q [1-.;ik<ik+i]

l\'vn;;;.io 3/ 3p [<a,/J,m,P,f,p>ep.(a.))

I\Vk;;;.1 3g [</J,m,g>ep;,(a;.)]

I\ Vn >io [rc.,f,<a,/l>]].

3a 3<io,i1, ... > 3m
[Vk;;;.Q [J,.;jk<ik+d

I\ Vn ;;;.;0 3g [<a,m,g> ep.(a.)]

/\'vk;;;.J 3/l 3P 3/3p [</J,a,m,P,f,p>ep;,(a;,)]

/\Vn>io -,3/l [rc.=</l,a>]].

The unfairness of a path satisfying condition (i) is interesting only when rceObj. Let rc=a, for an
object aeObj. When condition (i) is infonnally rephrased, it states that from a certain moment i0 on,
object a is continuously willing to take a step (namely <a,a,p>, where a and p depend on the
moment n) but in this path never does so.
If a path satisfies condition (ii) it is unfair with respect to an object a because this object is neglected
in too rude a manner. It tries, from a certain moment i0 on, to communicate with object /J in order
to have method m executed. But although there are infinitely many moments ik at which object P is
willing to execute this method m our object a is never chosen as a matching communication partner.
Condition (iii) concerns the academic case that an object a wants to execute method m from moment
i0 on but never does so, although infinitely many matching partners present themselves one after
another. (They might all be the same object.) Whenever the first component of a path results from the
evaluation of a POOL program, condition (iii) implies condition (ii). For, once an object is willing to
send a request to object a for the execution of method m, it is unable to do anything else until a

128

agrees to the request.

DEFINITION 5.5 (Fairness)
A path (<ic;,a;,p; >); is called fair if it is not unfair.

We define a functionfairyield, which presents us, given a process p, a state a, and a label ic, with the
set of all possible fair paths that start from <ic,a,p>.

DEFINITION 5.6 (Fairvield)
The functionfairyield: P-+'2.-+A-+GJ(__Path) is defined as follows. LetpeP, ae'f., iceA, then

fairyield(pXa)(ic) = {(<ic;,a;,p; >); : <ic1,a1,p1 > = <ic,a,p> and

(<ic;,a;,p;>); is a fair path}.

(Formally the choice of a label ,c is necessary, but of no importance for the result of
fairyield(p)(a)(ic).)

The fair computation sequences for a unit U are now given by

J<.:;'1'ield(6il U))(au)(a),

where 6il[VJ is as in definition 4.16, au as defined at the end of subsection 4.5.3, and a is an arbitrary
label.

6. CONCLUSIONS

Now that we have given a semantics for the language POOL, it is time to evaluate our efforts. The
first thing to note is that we have succeeded in giving a semantics that is really denotational: It con-
stitutes a rigorously defined mapping from the syntactically correct constructs of the language to a
mathematical domain suitable for expressing the behaviour of these constructs. Furthermore, this
mapping is defined in a compositional way, in the sense that the semantics of a composite construct is
defined in terms of the semantics of its constituents. We think we have given a satisfactory semantics
to a parallel language with very powerful constructs: dynamic process (object) creation (the new-
expression) and flexible communication primitives (send, answer and select).

The techniques we have used are quite general. We are confident that they can also be used to give
a denotational semantics to other parallel languages, such as Ada or Occam.

Giving a denotational semantics to a language is an excellent way of reviewing the language design
itself. In doing this for POOL, a simplified version of POOL-T, we have encountered no major
semantic anomalies. A minor point is the semantics of the select statement, which appears to be
overly complex and difficult to understand. In the design of POOL2, a new member of the POOL
family, we have decided not to change the basic semantic primitives of the language, and to introduce
only some syntactic 'sugar' to enhance its ease of use. The select statement, however, is omitted and
its functionality is obtained by the use of a conditional answer, which accepts an appropriate message
if there is any and otherwise continues without waiting.

Let us now review some of the details of the present work: Why did we use the metric framework
instead of the more common order-theoretic framework? We did this because it was possible. One
should realize that the main reason to use structured domains instead of plain sets is that we want to
be able to.solve equations describing the required semantic objects in a recursive way. An equivalent
formulation is that we want to construct fixed points of certain operations. Now the order-theoretic
approach has turned out to be very valuable in the situation that the operations under consideration

129

may have many fixed points. Taking the least fixed point of a continuous operation on a complete
partial order amounts to taking the solution that makes the fewest arbitrary assumptions. In other
words, it takes the solution that is only defined insofar as it is defined explicitly by the equation. In
contrast, the metric approach is very useful if the equation has only one solution. If the equation is
characterized by a contracting operation on a complete metric space, then this implies that the equa-
tion has exactly one solution, and that this solution can be approximated by repeatedly applying the
corresponding operation, starting from an arbitrary point. In a situation with unique fixed points, we
think that the metric approach is more appropriate because it makes this situation manifest.

One could argue that our paper is not very concise, because we have to justify our constructions
with proofs that are sometimes very lengthy. But if we compare this with the order-theoretic
approach, we see that such proofs are also required there. They are, however, frequently omitted.
This is justified on the one hand by the fact that order theory has become rather standard, so that the
reader can be assumed to be able to provide the proofs himself, and on the other hand by the
existence of very general theorems stating that functions (or functors) constructed in certain ways
from certain basic building blocks are guaranteed to have fixed points. The metric approach is not
yet so well known, so we thought it advisable to include the relevant proofs, but on the other hand,
corresponding general theorems about the existence of fixed points for large classes of functors have
been developed (see for example (America and Rutten, 1988)). A remarkable point is that the
mathematical techniques used to solve reflexive domain equations, which in (De Bakker and Zucker,
1982) differed greatly from the ones used in the order-theoretic approac;h, have again converged to the
latter in our work.

An important issue is the choice of the concrete mathematical domain in which the meanings of our
program fragments reside, the space P of processes. It is certainly complex enough to accommodate
all the different constructs in the language. However, in certain respects it appears to be too complex.
For example, in the definition of fairness we had to deal extensively with unrealistic situations,
processes that could never turn up as the meaning of a program. Intuitively it is clear that if we want
to use a single domain of processes to describe the semantics of different constructs like expressions,
statements, and units, then this domain cannot be made simpler. So if we want simpler (smaller)
domains, we shall have to use different ones for different syntactic categories. Actually there are good
reasons for trying to develop another semantics with smaller domains:

First, the semantics given here does not provide a clear view of the basic concept of the language,
the concept of an object. It would be nice to have a semantics in which the objects appear as building
blocks of the system and in which their fundamental properties, e.g. with respect to protection, are
already clear from the domain used for their semantics.

Secondly, there is the notion of full abstractness. A semantics is called fully abstract if any two pro-
gram fragments that behave the same in all possible contexts are assigned equal semantic values.
Intuitively speaking, a semantics is fully abstract if it does not provide unnecessary details. This is
certainly a pleasant property of a semantics. Now full abstractness assumes a notion of observable
behaviour of a program and in the language as we have presented it, programs do not interact at all
with the outside world. Therefore such a notion of observability still has to be developed for POOL.
Nevertheless it seems extremely unlikely that for any reasonable choice of observable behaviour a
semantics along the lines of the current paper will turn out to be fully abstract.

Another unsatisfactory point is the treatment of fairness. The way this is defined here, by first gen-
erating all execution paths and then excluding the unfair ones, has a definite non-compositional
flavor. It would be much more elegant if processes exhibiting unfair behaviour did not even arise in
the whole construction. The most important ingredient would be a fair merge operator, merging two
fair processes into one fair process. However, in our framework such a fair merge is impossible,
because in some situations the resulting process would give rise to non-closed subsets of steps (con-
taining a whole Cauchy sequence, but not its limit). To solve this problem we shall probably need a
more general theory of fairness, if possible in the metric framework.

A final point of further work to be done is the comparison of this denotational semantics with the

130

operational one given in (America et al., 1986). An equivalence proof would, of course, be very desir-
able. For a language that is only slightly simpler than POOL (instead of the rendez-vous mechanism it
uses simple value transmission) this has already been achieved (see (America and De Bakker, 1988)).
Proving the equivalence of the operational and denotational semantics for the full language POOL is
the subject of current research.

7. REFERENCES

AMERICA, P. (1985), Definition of the programming language POOL-T, ESPRIT project 415, Doc.
No. 0091, Philips Research Laboratories, Eindhoven.

AMERICA, P. (1986), Rationale for the design of POOL, ESPRIT project 415, Doc. No. 0053, Phi-
lips Research Laboratories, Eindhoven.

AMERICA, P. (1987), POOL-T - A parallel object-oriented language, in: "Object-Oriented Con-
current Systems" (A. Yonezawa and M. Tokoro, Eds.), MIT Press.

AMERICA, P., AND DE BAKKER, J. W. (1988), Designing equivalent semantic models for process
creation, Theoretical Computer Science 60, pp. 109-176.

AMERICA, P., DE BAKKER, J. W., KOK, J. N., AND RUTIEN, J. J. M. M. (1986), Operational seman-
tics of a parallel object-oriented language, in: "Conference Record of the 13th Symposium on Princi-
ples of Programming Languages, St. Petersburg, Florida," pp. 194-208.

AMERICA, P., AND RUTIEN, J. J. M. M. (1988), Solving reflexive domain equations in a category of
complete metric spaces, in: "Proc. Third Workshop on Mathematical Foundations of Programming
Language Semantics, New Orleans, 1987" (M. Main, A. Melton, M. Mislove, D. Schmidt, Eds.),
LNCS 298, Springer-Verlag, pp. 254-288. (To appear in the Journal of Computer and System Sci-
ences.)

ANSI (1983), Reference manual for the Ada programming language, ANSI / MIL-STD 1815 A,
United States Department of Defense, Washington D. C..

BERGSTRA, J., AND KLoP, J. W. (1984), Process algebra for synchronous communication, Informa-
tion and Control 60, pp. 109-137.

DE BAKKER, J. W., KOK, J. N., MEYER, J.-J. CH., OwEROG, E.-R., AND ZUCKER, J. I. (1986), Con-
trasting themes in the semantics of imperative concurrency, in: "Current Trends in Concurrency,
Overviews and Tutorials" (J. W. de Bakker, W. P. de Roever, G. Rozenberg, Eds.), Springer-Verlag,
LNCS 224, pp. 51-121.

DE BAKKER, J. W., AND ZUCKER, J. I. (1982), Processes and the denotational semantics of con-
currency, Information and Control 54, pp. 70-120.

DE BRUIN, A. (1986), Experiments with continuation semantics: Jumps, backtracking, dynamic net-
works, Ph. D. thesis, Free University of Amsterdam.

Cl.INGER, W. D. (1981), Foundations of actor semantics, Ph. D. thesis, Massachusetts Institute of
Technology (AI-TR-633).

DuGUNDn, J. (1966), "Topology," Allen and Bacon, Rockleigh, N. J..
ENGELKING, R. (1977), "General Topology," Polish Scientific Publishers.
GIERZ, G., HOFMANN, K. H., KEJMEL, K., LAWSON, J. D., MISLOVE, M., AND Scorr, D.S. (1980),

"A Compendium of Continuous Lattices," Springer-Verlag.
GoWBERG, A., AND ROBSON, D. (1983), "Smalltalk-SO, The Language and its Implementation,"

Addison-Wesley.
GoRDON, M. J. C. (1979), "The Denotational Description of Programming Languages," Springer-

Verlag.
HAHN, H. (1948), "Reelle Funktionen", Chelsea, New York.
HENNESSY, M., AND PLOTKIN, G. D. (1979), Full abstraction for a simple parallel programming

language, in: "Proceedings of the 8th Symposium on the Mathematical Foundations of Computer

131

Science", LNCS 74, Springer-Verlag; pp. 108-120.
HEwrrr, C. (1977), Viewing control structures as patterns of passing messages, Artificial Intelligence

8, pp. 323-364.
MAc LANE, S. (1971), "Categories for the Working Mathematician," Springer-Verlag.
0DIJK:, E. A. M. (1987), The DOOM system and its applications: a survey of ESPRIT 415 subpro-

ject A, in: "Parallel Architectures and Languages Europe, Volume I" (J. W. de Bakker, A. J. Nijman,
and P. C. Treleaven, Eds.), LNCS 258, Springer-Verlag, pp. 461-479.

V AANDRAGER, F. W. (1986), Process algebra semantics of POOL, Technical Report (CS-R8629).
Centre for Mathematics and Computer Science, Amsterdam.

APPENDIX
In definition 4.4 we ~ave an equation for the merge operator II. Here we show that there is exactly one
operator in P XP--> P satisfying that equation. Let 4>pc: (P XP-->~ P)-->(P XP--> 1 P) be defined as
follows: For O EP XP-->1 P we define 4>pc(0), which we denote by O, by:

p 0q = >..o.((w0q: wEp(o)/\q(o),t,0} U {w0p: wEq(o)/\p(o),t, 0} U

U {wl.P: wEp(o),pEq(o)})

for allp,qEP\ {po}, and by p0 0q=q0p0 =p0 . Here, w0q is defined by

<o',p'>Oq = <o',p'Oq>,
<a,m,/1,f,p>Oq = <a,m,/1,f,pOq>, and

<a,m,g>Oq = <a,m,>..{1)J1·(g(/1)(h)Oq)>,
and wl.P by l{ <o, g({l)(j)Op>}

wl.P =
0

LEMMA A.I
(a) 4>pc is well defined, that is:

ifw=<a,m,{1,f,p> and p=<a,m,g>
or p= <a,m,/1,f,p > and w= <a,m,g >
otherwise.

VO EP XP-->1 P(4>pc(0)EP XP-->1 P1
(b) 4> PC is a contraction.

PROOF
(a) 4> PC is well defined:
Let 0EPXP-->1P; we show

Vp, ,p2,q,q2 EP(dp(p, Oq, ,p2 Oq2),;;;max(dp(p1 ,p2),dp(q1 ,q2)}]

where 0 =4>pc(O).
Let p1,p2,q1,q2 EP. We have (recall that Pis an ultra-metric space) - - - - - -dp(p, Oq, ,p2 Oq2),;;;max(dp(p1 Oq, ,p, Oq2),dp(p, Oq2,P2 Oq2)}.

It suffices to show that

(I) dp(p, Oq,,p, Oq2)..;;dp(q,,q2),
(2) dp(p, Oq2,P2 Oq2)..;;dp(p, ,p2).

132

We treat only the first case, the second being symmetric to it.
If one of p 1,qi,q2 is equal to p0, the result is trivial, so suppose p1,q1,q2,;=p0 • Let ael: and let for
i=l,2

X; = {,r0q,l,rep1(o)Aq1(a)#:0)},

Y; = {,r0pd,req,(o)Ap1(a)#:0 },

z, = U {,rlop:,rep1(a).peq1(a)},

sop 10q1(a)=X1 UY; UZ1• Because a is arbitrary it suffices to show that

½•d9,<s,.,,,>(X1 U Y1 UZ1,X2 U Y2 UZ2),s;.dp(q1,q2).

The factor ½ is due to the occurrence of id* in the domain equation for P (see definition 4.3). We
have

d9,<St.,,,>(X1 U Y1 UZ1,X2 U Y2 UZ2),s;;;

max{ d9,<s1.,,,>(X1 ,X2),d9..<s,.,,,i(Y 1, Y 2),d9,<s1.,,,>(Z 1,Z2) }.

This is a consequence of the fact that the union operator is NDI, which is quite easy to prove. We
show: d9,(Siq,,)(Z 1 ,Z2)<&;;;2•dp(q 1 ,q2). (The proofs for X1 and Y; are straightforward.) By the
definition of the Hausdorff distance we have ·

d9,(St.,,,)(Z 1 ,Z2) = max{ sup,,.z, { d(z1 ,Z2)},sup,,.z, { d(z2,Z 1)} }.

We consider only the first supremum:

sup,,.z, {d(z1,Z2)} = sup,,.z.inf,,.z; {ds,.,,,(z1,z2)}.

Let z I e Z 1 . There are seve_!al possibilities: _
1. Suppose {zi}= <a,m,/J,f,p > l0 <a,m,g1 > with <a,m,fJ,f,p>ep1(0), <J1,m,g1 >eq1(0).
l.(a) If there is a <a,m,g2 > eq2(a), then we can take z2 eZ2 such that

{z2}=<a,m,fJ,f,p> l 0 <a,m,g2>
Then we have

ds,.,,,(z1,z2) = ds,.,,,(<a,g1(/JXf)0p>,<a,g2<fJXf)0p>)

= dp(g1(/JXJ)0p, g2(/JX/)0p)

< [since
d(g1,g2)

= ds,.,,,(<a,m,g1 >,<a,m,g2>).

Now for any (>0 we can choose <a,m,g2 > eq2(o) such that

ds,.,,,(<a,m,g1 >, <a,m,g2>)<&;;;d9,(s1.,,,)(q1 (a),q2(0))+(

<d,: ... 9,(S1,p,)(q 1,q2) +(

,s;.2•d(q1 ,q2)+(.

Therefore

d(z1 ,Z2)<&;;;2·d(q1,q2}+(

for arbitrary (, so

d(z 1,Z2)<2·d(q1 ,q2).

l.(b) If there is no g2 such that <a,m,g2 > eq2(a), then

d9.,(Stq,,)(q1 (a),q2(a)) _. d(<a,m,g1 > ,q2(a)) = 1.

Therefore

Now

d(z1,Z2)..;I =2·d,(q1,q2),

2. The second possibility is that {z1 }=<a,m,g> lo<a,m,fl,/1,p>,
with <a,m,g>ep1(a), <a,m,IJ,fi,p>eq1(a). This case can be treated similarly to the first case.

From 1. and 2. we know that for arbitrary z I e Z 1 :

d(z 1,Z2)..;2•d,(q1 ,q2),

Symmetrically we have

'1fz2 eZ2 [d(z2,Z1)..;2•dp(q1,q2)].

Therefore we can conclude

d9..<s1-,,)(Z 1,Z2)..;2•d,(q1 ,q2).

(b) 41,c is a contraction:
Let 0;=def4i,c(0;). Weshowthat

We have
- -

= supp,qeP{d,(p01q,p02q)}.

Let p,q },aeI. Let for i = 1,2

X; =def { ,;0;ql'll'Ep(a) },

Y; =def {'11'0;pl'll'Eq(a)},

Z; =def U {'ll'loP:'ll'Ep(a},peq(a)},

sop0;q(a)=X1UY;UZ;. Wehave

d9..<si-,,>(X1 U Y1 UZ1,X2 U Y2 UZ2)<

max{ d9..<s1-,,)(X 1,X2},d9..<s1-,,J(Y1, Y 2),d9.(s1-,,J(Z 1,Z2) }.

We consider d9,(Stq,,)(X1,X2). By definition of the Hausdorff distance we have

d9.(s1-,,J(X1,X2) = max{sup,,,ex, {d('ll'1,X2)},sup,,,ex, {d('ll'2,X1)}}

Let '11'1 eX1. We show

d('ll'1,X2) = inf..,ex, {ds,-,,('11'1,'11'2)}..;

We treat one of the three possible cases for 'll'J eXi, say '11'1 = <a',p'01q >, where p'ep(a):

inf..,ex, {ds,-,,(<a',p'01q>,'ll'2)}..;

ds,-,,(<a',p'01q>,<a',p'02q>) =

133

134

d'J:xp(<a',p'01q>,<a',p'02q>) =
dp(p'01q,p'02q)"-

Thus we have

SUP,.,ex, {d(w1,X2)}"-dpxp 1p(01, 02).

Similarly

So

d~.,(step,>(X 1,X2)<dpxp ... ' p(01, 02),

And analogously

d~.,(Sup,)(Y1' Y2)"-dPXp ... 1p(01' 02).

We have, according to the definition of Z;, that Z 1 =Z2. So

d~.,(s1-,,)(p01q(o),p02q(o))=d,.,(s1q,,l(X1 U Y1 UZ1,X2 U Y2 UZ2)

..;dpxp ... •p(01,02).

This holds for every oeI. Therefore

dp(p01q,p02q)=½·d'l:-+~.(S1-,,)(p01q,p02q)

<,½·dPXp ... •p(01,02)

and thus

LEMMA A.2 (Lemma 4.8)
For every expression e, statement s, environment y, and active object a we have:
(i) P
(ii) P
(iii)
where 4>,,,,p: is defined.for qeP, by

PROOF

4>,,..,(q) = (elE(y)(a)(

A/l·Nr { <a, if /J = tt then lsls(y)(a)(q)

elseif /J= ff then p

else Ao- .0

fi> }).

We prove this lemma using induction on the complexity of the structure of statements and expres-
sions. The proof consists of two parts. Let yeEnv,aeAObj. We show the following:
(a) For all simple (see below) expressions e and statements s we have

P and P.
(b) Suppose we have proved part (i) and (ii) of the lemma for statements s; and expressions ej. lf

135

seStat and eeExp are compos«ld of the the statements s; and expressions ei the lemma holds for
e ands.

Part (a)
Simple expressions are of the form x, u, new(e), self or 4>, the only type of simple statement is of the
form answerV.
Let e be a simple expression. We have to show that

V/1,/z (dp((elE(rXa)(fi),(elE(YXaXf2)) ..;; d0bj-.P<!1 ,h)l
Let / 1 ,/z For every simple expression e that is not a standard object nor the expression
self, we even have:

dp((e)E(YXaXf1),(elE(yXaXf2))E.½·do,,i ... P<f1,h).
Intuitively the decrease of distance follows from the fact that the evaluation of these expressions
always takes at least one step. In this step the state may be changed and the value of the expression is
passed on to the continuation/;. This may be illustrated by the general form of the semantics of such
expressions e:

(e)E(yXa)(fi) = Ao·{ <a', · · · f;(/J) · · · >}
for some a'el:, {JeObj. As an example let us treat one such type of expression.
We show that P:

dp((new(C)IE(yXaXf1),(new(C)IE(YXaXf2)) =

",(Ao·{ <a', 'Y1 (/J)ll/1 (/J)> },Ao·{ <a', 'Y1 (/J)ll/i(/J)>} =
½·SUPoel: {ds,q,,(<a', r1(/J)ll/1(/J)>, <a', Y1(/J)ll/i(/J)>)} =
½·SUPoel: { dp('Y1 (/J)ll/1 (/J), 'YI (/J)ll/i(/J))}..;;
(because II is NDIJ
½·SUPoel: { dp(f1 (/J),/i(/J))} E.

½·do,,j-.P<f 1 ,fz).
Here a' and /J are as in definition 4.6, part ES.
For the standard objects we have the following: Let 4>eSObj, then

dp((4>)E(YXaXf1),(1j,IE(y)laXf2)) =
dp(f1 (1/1),h(I/I))..;;

fio,,j_.p(f 1 ,Ji),
and analogously for self.
For the only simple statement answerV, we have, for given processes p1,p2 eP,

dp((answerVls(rXa'/.p1),(answerVls(YXa'/.p2))=
dp(Aa·{ <a,m,g<,,\> >:me V},>.a·{ <a,m,g<,;> >:me V})

where forj=l,2 and meV,

g'J,> = >."[JeOb/ y2(mXaXPX>./J·(f(/J)llpi)).
The desired result is straightforward from

<iob/--(Obj-.P}-.P(t,,\> ,~>).,;

136

Part (b)

[because P]

{ J },X/1·(/(ft)llp2))) =
SUPpeP{ dp(p llpJ ,p llp2)} ,s;;;
[because II is NDI]

dp(pJ,P2)-

Composite expressions are of the form e!m(eJ, ... ,e.), m(eJ, ... ,e.), eJ::=e2, or s;e. Composite
statements are of the form x+-e, u+-e, e, SJ ;s2, if e then SJ else s2 fi, doe thens od or
set g 1 or · · · or g. les. Suppose that we have proved part (i) and (ii) of the lemma for expressions
e,eJ, ... ,e.eExp and for seStat. We shall treat one composite expression and one composite state-
ment.
We show that [e!m(eJ, ... , P. Let /1,/z We have:

dp(le!m(ei, ... ,e.)JE(y)(a)(JJ), (e!m(eJ, ... ,e.))e(y)(a)(f2)) =
t.i, '.leJE(y)(a)(···Xu·{ <{1,m,/1,fi,po>} · · ·),

[e]e(y)(a)(···Xu·{ <{1,m,/J.f2,po>} · · ·)) ,s;;;

(by the induction hypothesis for e]

d(· · · Xa·{ <{J,m,/1,f1,po>} · · ·, ···Xu·{ </J,m,/J.f2,po>} · · ·) ,s;;;
[by the induction hypotheses for e 1, ••• , e.]

dp(Xa·{ <{J,m,fJ,fJ ,po> },Xu·{ </J,m,{J,fz,po> }) ,s;;;

,Ji).
The most interesting example of a composite statement is the do-statement. We have that

[doe thens P

by the following argument, which at the same time proves part (iii) of the lemma.
First, we show that

'rip eP[«P,,s,p P}.

Let qJ,q2 eP. We have:

dp(«Pe,s,p(q J }, «P,,s,p(q2)} =
dp((e]e(y)(a)(X{J · · · qJ · · ·), [e)E(y)(a)(X/3 · · · qi · · ·)),s;;;
[by the induction hypothesis for e]

· · · qJ · · · }, X{J-Xu·{ · · · qi · · · }) ,s;;;
½·dp((s]s(y)(a)(q J),(s ls(Y)(a)(q2)),s;;;
[by the induction hypothesis for s]

½·dp(qJ ,qz).

Secondly, let p J ,p2 eP. We define

q J = def Fixed Point («Pe,s,p,),

We have

We see:

qi = thf Fixed Point (4>,,,,p,),

dp([do e thens od)s(y)(a)(p1),[do e thens od]s(y)(a)(p2)) =
[by definition] dp(q1,q2) =
dp(4>,,,,p, (q1), 4>,,,,p, (q2)).,;;

(by the same kind of calculation as above, using the induction hypothesis for e]

½·max{ dp([s ls(y)(a)(q 1),[sls(y)(a)(q2)),dp(p 1,p2)}.,;;

[using the induction hypothesis for s]

½·max{ dp(q 1,q2),dp(p 1,P2) }.

LEMMA A.3 (Lemma 4.14)
Let/or a unit UeUnit 4>u be defined as in definition 4.13. Then 4>u is a contraction.

PROOF
We shall show

'<Jy,8 eEnv[dEnv(y,8)-.;; ½·dEn,(y,8)],

where y=4>u(Y)~ 8=4>u{8), by proving for y,8eEnv the following two inequalities:
(a) dEn,, ((y)1 ,(8)1).,;; ½·dEnv(y,8)
(b) dEn,, ((y)i,(8)i).,;; ½·dEnv(y,8).
We have

dEn,, {(y)1 ,(8)1) =
SUPaeAObJ { dp({y)1 {a),(8)1 {a))}.,;;

sup,.s101,aeAObJ{ dp([sls{y)(a)(po),[s ls(8)(a)(po)) }.

Now it is easy to prove (in the same way as in lemma 4.8) that, for every seStat and eeExp,
[sJs E P),
[el£ E P).

137

Intuitively this can be explained by the fact that whenever the environment occurs in the semantic
equations (the cases E4, E5, S3, and S8), it is "guarded" by Aa·< · · · >. From this observation it
follows that

sup,.s101,aeAObJ{ dp([sls(y)(a)(po).ls ls(8)(a)(pa)} .,;; ½·dEnv(y,8),
which concludes the proof of part (a).
The proof of part (b) is similar to that of part (a) and therefore we omit it.

Theoretical Computer Science 60 (1988) 109-176
North-Holland

DESIGNING EQUIVALENT SEMANTIC MODELS FOR
PROCESS CREATION*

Pierre AMERICA
Philips Research Laboratories, P.O. Box 80.000, 5600JA Eindhoven, The Netherlands

Jaco DE BAKKER

139

Centre for Mathematics and Computer Science, P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

Communicated by M. Nivat
Received September 1987

Abstract. Operational and denotational semantic models are designed for languages with process
creation, and the relationships between the two semantics are investigated. The presentation is
organized in four sections dealing with a uniform and static, a uniform and dynamic, a nonuniform
and static, and a nonuniform and dynamic language respectively. Here uniform/nonuniform
refers to a language with uninterpreted/interpreted elementary actions, and static/dynamic to the
distinction between languages with a fixed/ growing number of parallel processes. The contrast
between uniform and nonuniform is reflected in the use of linear time versus branching time
models, the latter employing a version of Plotkin's resumptions. The operational semantics make
use of Hennessy's and Plotkin's transition systems. All models are built on metric structures, and
involve continuations in an essential way. The languages studied are abstractions of the parallel
object-oriented language POOL for which we have designed separate operational and denotational
semantics in earlier work. The paper provides a full analysis of the relationship between the two
semantics for these abstractions. Technically, a key role is played by a new operator which is
able to decide dynamicallv whether it should act as sequential or narallel composition.

Note: This paper appeared in Theoretical Computer Science and is included in this tract
with kind permission of Bsevier Science Publishers B.V. (North-Holland).

Contents
I. Introduction I 10
2. Mathematical preliminaries . 114

2.1. Notation... 114
2.2. Metric spaces . 114
2.3. Resumptions and domain equations . 118

3. A uniform and static language . 121
3.1. Syntax and preliminary definitions... 121
3.2. Operational semantics.. 123
3.3. Denotational semantics . 125
3.4. Equivalence of operational and denotational semantics............................. 129

4. A uniform and dynamic language . 132

* Most of this work has been carried out in the context of ESPRIT Project 415: Parallel Architectures
and Languages for Advanced Information Processing: A VLSI-directed Approach.

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

140 P. America, J. De Bakker

4.1. Syntax and intuitive explanation . 132
4.2. Operational and denotational semantics . 133
4.3. Equivalence of operational and denotational semantics............................. 135

5. A nonuniform and static language . 141
5. I. Syntax . 141
5.2. Operational semantics.. 142
5.3. Denotational semantics . 148
5.4. Equivalence of operational and denotational semantics. 149

6. A nonuniform and dynamic language . 153
6.1. Informal introduction and syntax.. 153
6.2. Operational semantics. 154
6.3. Denotational semantics . 158
6.4. Equivalence of operational a_nd denotational semantics............................. 161
Acknowledgment.. 174
References . 175

1. Introduction

Process creation is an important programming concept which appears in a variety
of forms in many contemporary programming styles. In imperative programming
one finds it in languages such as Ada [1], NIL [43] and many others. In the context
of functional or dataflow languages we refer to [22] for a semantic study dealing
with process creation. For logic programming many recent references can be found
in [42]. Object-oriented programming (see [5] for a general introduction from a
theoretician's point of view) has the family of actor languages (see, e.g., [2, 23, 30])
as examples. The present study was inspired by the language POOL, an acronym
for Parallel Object-Oriented Language, described in [3, 4].

In two previous investigations we have developed operational (0) and denota-
tional (~) semantics for POOL [6, 7]. These two semantic models were designed
independently of each other, and the investigation reported below constitutes the
first step towards the goal of settling the relationship between the two models. For
this purpose we concentrate on the programming notion of process creation together
with a simple version of process communication, and leave a number of further key
notions in POOL for later study. More specifically, we treat communication in the
sense-approximately-as exemplified by CSP [31, 32] and do not treat message
passing and method invocation-notions which should be situated at the same level
as remote procedure call or Ada's rendez-vous. A similar combination of process
creation with CSP-like communication was first described in [19], a paper which
provides a proof-theoretic treatment of these concepts taken together.

Before going into the characteristics of the languages we shall deal with, let us
say something about the terms "operational" and "denotational". Operational
semantics gives a model of computation by constructing from a given program a
kind of "abstract machine" having a set of "states" (which we shall call configur-
ations), and describing the transitions this abstract machine can make from one
state to another. Denotational semantics works by assigning a meaning, which is a

Equiralen1 ",emantic models for process creation 141

mathematical entity, to each fragment of a program, in such a way that the meaning
of a composite piece of program can be inferred by looking only at the meanings
of its parts, not at their internal structure. We say that denotational semantics
describes the meaning of programs in a compositional way. Fortunately, the technique
we use for our operational semantics, transition systems in the style of Hennessy's
and Plotkin's Structured Operational Semantics (SOS) [29, 38, 39] describes the
abstract machine and its state transitions in a way that is directly related to the
syntactic structure of the original program. Due to the explicit presence of this
abstract machine, the transition systems employed have, we feel, a strong operational
intuition.

The emphasis in our semantics design is very much on a systematic development
of the tools for both the operational and denotational models. We have therefore
structured the presentation in four sections, dealing with four languages of increasing
complexity. Using some terminology which will be explained in a moment, we shall
successively present operational and denotational semantics for

(1) a uniform and static language 5£ us;
(2) a uniform and dynamic language 2uct;
(3) a nonuniform and static language 5£nus;
(4) a nonuniform and dynamic language 5£nuct.

These languages are conceptually ordered according to the following diagram:

In this classification, a uniform language is one which has uninterpreted elementary
actions. In other words, the indivisible or atomic unit of such a language is just a
symbol from some alphabet, and the meanings assigned to programs in a uniform
language bear strong resemblance to formal languages (here with finite and infinite
words). A nonuniform language has interpreted elementary actions, in our case
assignments and communications. Thus, (individual) variables appear on the scene,
and as a consequence we find in our semantics the notion of a state, i.e., of a
mapping from variables to values. Programs now transform states, and we shall
develop a mathematical structure with entities which combine the flavour of state-
transforming functions with that of a record of the computational history. In Section
5, we shall provide evidence that the latter notion is necessary in view of the parallel
execution operator.

The second distinction in the above diagram concerns that of static versus dynamic
languages. In the former, we have a fixed number of parallel processes, in the latter
a dynamically growing number of processes: each time a new process is created,

142 P. America, J. De Bakker

the total number of active processes increases by one. (We shall not investigate in
our paper any notion of process destruction, a concept not present in the language
POOL.)

The simplest element in the partial order is ,;£us, to be treated in Section 3. It is
extended in two directions: one adds the notion of process creation (,;fud), dealt
with in Section 4, and the other adds the notion of interpreted elementary actions,
described in Section 5. Finally, in Section 6, both extensions are brought together,
and the full complexity of a nonuniform dynamic language is confronted.

In Sections 3 and 4, the languages are uniform and the semantic models are of
the so-called "linear time" variety (see, e.g., [11] or [40]), i.e., they consist of sets
of (finite or infinite) sequences over a certain alphabet. The operational semantics
is a uniform version of the Structured Operational Semantics (SOS) of Hennessy
and Plotkin [29, 38, 39]. The denotational semantics is built on metric foundations
(apart from the above diagram, no partial order is employed in our paper); this
remains true for later (nonuniform) sections. A distance between two sequences or
sets of sequences is readily defined, and most of the _tools of metric topology we
use are quite standard. In particular, we shall make heavy use of Banach's fixed
point theorem for contracting functions on a complete metric space. Accordingly,
our (denotational) semantics will be defined, when dealing with recursive constructs,
only when the recursion is guarded. In formal languages, one would say that the
grammar concerned satisfies a Greibach condition. (In the nonuniform setting we
shall take an approach where guardedness is automatically satisfied.)

In each of the Sections 3 to 6 we shall, after having presented the two semantic
models, go on to investigate their equivalence. In Sections 3 and 4 we actually prove
that the two semantics yield the same result, i.e., that for t E ,;£us or t E .;fud we have
O[tD = flJ[tD, For .;fu" this is a result which was already obtained earlier (and
presented in [16]). Below, we repeat certain parts of the proof as a first step towards
the equivalence theorem for ,;£ ud, a result which we believe to be new. In the analysis
of .;fud we make essential use of the notion of continuation, both of a syntactic and
of a semantic kind. Since we develop the semantics of ,;£us as preparatory for .;fud,

we have adapted accordingly the treatment of[16], which does not employ continu-
ations. The equivalence proofs for .;fu, and .;fud have strong similarities. On the
other hand, there is also a fundamental difference having to do with the following
consequence of process creation: in a statement with a syntactic sequential composi-
tion(";"), say s1 ;s2 , we do not know whether to model the syntactic";" by semantic
concatenation("·") or by parallel execution (" II"). To see this, contrast the statement
a; b yielding the singleton set {ab} as its meaning, with the statement new(a); b.
The intended meaning of the latter equals that of a II b, which in turn equals the set
{ab, ba}. To overcome this problem we introduce an auxiliary semantic operator
":" which is able, somewhat surprisingly, as it were dynamically to make the decision
whether to opt for"·" or" II". We consider the introduction of this operator, together
with the derivation of its basic technical properties (such as associativity) as a main
contribution of our paper.

Equivalent semantic models for process creation 143

In Sections 5 and 6 we investigate the nonuniform case. !£nus has simple communi-
cation commands which are syntactic variations on CS P's P; ?x and !e constructs.
We stress that our mentioning CSP here is only to indicate the type of communication
we have in our language. Partial, let alone full, modelling of CSP is not our aim
here. The mathematical structures used to model !£nus and .:£nud are Plotkin's
resumptions [37], presented in a fully metric framework as first described in [17]
and subsequently extended and put in a category-theoretic perspective in [8]. We
use the terminology of process domains P, satisfying certain (reflexive) domain
equations of the form

and we shall design the semantics of programs in !£nus and .:£nud such that the
meaning of a program is a process p E P. Processes are objects which have a branching
structure, and the models for !£nus and .:£nud are called branching time [11, 40].

The operational models for !£nus and .:£nud once more use SOS style transitions.
An important new feature is that, in defining the operation<1,l meaning of a program,
we collect the information from the induced transition steps into a process. In other
words, we assemble the information in successive transition steps into a branching
time object. Denotationally, we also use processes as meanings, obtained in the
usual manner by a compositional system of defining equations. For the nonuniform
languages, we do not have that (} and qi) yield the same function: In order to allow
a compositional definition of qi) for the communication constructs, we include in
qjJ[sD more information than in O[sD (here s is a nonuniform, static or dynamic,
statement). We therefore introduce a natural extension O* of l!J, which preserves
one-sided communication information, and then on the one hand establish that
O* = qi), and on the other hand settle the relationship between l!J and (!J* in terms
of an abstraction operator abs, resulting in the equivalence (!J = abs O fl'*.

In Section 6, we combine the techniques designed for .:£ud and !£nus to deal with
all of .:£nud • In this way, the reader may obtain a better understanding of this
somewhat complicated case: The concepts of process creation and value communica-
tion have first been treated in isolation, and now a synthesis of the methods from
Sections 4 and 5 is made. In .:£nud we have classes (ultimately stemming from Simula
[24]), and creation of a process amounts to the creation of a new instance of a class
(in the world of object-oriented programming, this instance would be called a (new)
object). Such an instance has a name which is (just) another value-in addition to
values such as integers or truth-values-and which may be assigned to a variable.
In .:£nud we encounter for the first time expressions with nontrivial semantics.
Consequently, the syntactic and semantic statement continuations used in previous
sections are now extended with (syntactic and semantic) expression continuations.
Operational and denotational semantics for 2'nud are without major surprises once
one has digested Sections 4 and 5. At various points, the definitions owe much to
similar definitions in [6, 7], though a systematic redesign has been applied in order
to allow the final equivalence proof. Again, techniques of Sections 4 and 5 are

144 P. America, J. De Bakker

brought together, in particular leading to a nonuniform generalization of the ":"
operator. Also, an additional argument is necessary to deal with the two forms of
recursion now present, one in recursive procedures and the other in recursively
defined classes.

This concludes our overview of the contents of the paper. We also mention that
in Section 2 we collect some mathematical preliminaries. We list elementary
definitions and some useful theorems in metric topology, and provide a brief sketch
of the intuition and mathematical basis for (our way of) solving process domain
equations.

Detailed semantic models of process creation are scarce in the literature. Semantic
studies are reported in a few of the already cited papers [2, 23, 42, 43], but these
are all focused on very different problems and techniques. Our work shares with
[22] the central role played by continuations. However, that paper investigates
process creation in a (deterministic) dataflow setting, and does not address semantic
equivalence issues.

Our debt to Plotkin's seminal work in semantics should be clear from the above.
To Nivat we are indebted for stimulating our interest in metric techniques going
back to his lectures in [35]. Without the detailed semantic analysis of POOL described
in [6, 7], the present paper would have been impossible. Many of our semantic
definitions can be traced back to concepts and techniques first developed in these
two papers.

2. Mathematical preliminaries

2.1. Notation

If X is a set, we denote with g}l(X) the power set of X, i.e., the collection of all
subsets of X. g; ,,.(X) denotes the collection of all subsets of X which have property
Tr. A sequence x0 , x 1 , ••• of elements of X is usually denoted by (x;) ~o or, briefly,
(X;);. The notation f: X Y expresses thatf is a function with domain X and range
Y. We use the notation f{y / x}, with x EX and y E Y, for a variant off, i.e., for the
function which is defined by

f{y/x}(x') = {;(x') if x=x',
otherwise.

If f: X X and f(x) = x, we call x a fixed point off

2.2. Metric spaces

Metric spaces are the mathematical structures in which we carry out our semantic
work. We give only the facts most needed in this paper. For more details, the reader
is referred to [25, 26].

Equivalent semantic models for process creation 145

2.1. Definition. A metric space is a pair (M, d) where M is a nonempty set and d
is a mapping M x M [O, l] having the following properties:

(1) 't/x, y EM [d(x, y) = O~x = y],
(2) 't/x,yEM[d(x,y)=d(y,x)],
(3) 't/x, y, z EM [d(x, y)-,;;_ d(x, z) + d(z, y)].

(d is called a metric or distance.)

Examples. (1) Let A be an arbitrary set. The discrete metric on A is defined as
follows: Let x, y EA

{ 0 if X = y,
d(x v) = '. 1 if X;: y.

(2) Let A be an alphabet, and let Ax:=A*uAw denote the set of all finite and
infinite words over A Let, for x E A oc, x(n) denote the prefix of x of length n, in
case length(x) n, and x, otherwise. We put

d(x, y) = 2-sup{njxln)-yln)}

with the convention that rx = 0. Then (Acx, d) is a metric space.

2.2. Definition. Let (M, d) be a metric space and let (x;); be a sequence in M.
(1) We say that (x;); is a Cauchy sequence whenever we have

(2) Let x EM. We say that (x;); converges to x, and call x the limit of (x;);
whenever we have

We call the sequence (x;); convergent and write x = Jim; X;.

(3) (M, d) is called complete whenever each Cauchy sequence in M converges
to an element of M.

2.3. Definition. Let (M,, d,) and (M2 , d2) be metric spaces.
(1) We say that (M,, d 1) and (M2 , d2) are isometric if there is a mappingf: M,

M2 such that
{a) f is a bijection,
(b) 't/x, y EM, [di(J(x),f(y)) = d,(x, y)].

We then write M 1 = M2 . If we have a function f satisfying only condition (1)(b),
we call it an isometric embedding.

(2) Let f: M 1 M 2 • We call f continuous whenever, for each sequence (x;); with
limit x in M 1 , we have that limJ(x;) = f(x). We shall denote the set of all continuous
functions from M, by M, M2 •

146 P. America, J. De Bakker

(3) We call a function f: M 1 M 2 contracting if there exists a real number c with
0 c < 1 such that

Vx, y E M 1 [di(f(x),f(y)) c d 1(x, y)].

(4) A function f: M 1 M2 is called non-distance-increasing if

We shall denote the set of all non-distance-increasing functions from M 1 to M2 by
M1 M2.

2.4. Lemma. Let (M1, d 1) and (M2, d2) be metric spaces, and let f: M 1 M 2 be a
contracting function. 111en f is continuous. 111e same holds for non-distance-increasing
functions.

2.5. Theorem (Banach). Let (M, d) be a complete metric space. Each contracting
function f: M M has a unique fixed point which equals limJ'(x0) for arbitrary
x0 E M. (Here f 0(xo) = Xo and f;+ 1(xo) = f(F(xo)).)

Proof. Since f is contracting, the sequence (F (x0)); is a Cauchy sequence. By the
completeness of (M, d), the limit x = limJ; (x0) exists. By the continuity off (Lemma
2.4),f(x) = f(lim;r (xo)) = limJi+ 1 (xo) = X. If, for some y E M,f(y) = y then, by the
contractivity off, d(x, y) = d (f(x),f(y)) c d(x, y). Hence, since c < 1 we conclude
that d (x, y) = 0, and x = y follows.

2.6. Definition. Let (M, d) be a metric space.
(1) A subset X of M is called closed whenever each converging sequence with

elements in X has its limit in X.
(2) A subset X of M is called compact whenever each sequence in X has a

subsequence which converges to an element of X.

Remarks. (1) The definition of compactness given here is in fact what is called
sequential compactness in general topology. In a metric space this is equivalent to
compactness.

(2) Taking, in Definition 2.6(2), X equal to M defines when the space (M, d) is
called compact.

(3) In a metric space every compact set is closed.

2.7. Definition. Let (M, d), (M1, d1), and (M2 , d2) be metric spaces.
(1) We define a metric dF on the set M 1 M2 of all functions from M 1 to M 2 as

follows: For every f 1 ,f2 E M 1 M2 we put

dFU1JJ = sup dif1(x),J2(x)).
xEM1

(2) We define a metric dp on the Cartesian product M 1 x M 2 by

dp((x1,y1),(x2,Y2))= max d;(x;,y;).
iE{ 1,2}

Equiva/en, semantic models for process creation 147

(3) With M 1 LJ M 2 we denote the disjoint union of M 1 and M 2 , which may be
defined as ({ 1} x M 1) u ({2} x M 2). We define a metric du on M 1 LJ M 2 as follows:

if x, y E { i} x M; for i = 1 or i = 2,
otherwise.

In the sequel we shall often write M 1 u M 2 instead of M 1 LJ M 2 , implicitly assuming
that M 1 and M 2 are already disjoint.

(4) Let [J/'c1(M) ={XIX s; M, X closed}. We define a metric dH on [J/'c1(M), called
the Hausdorff distance, as follows:

dH(X, Y) = max {:~f d(x, Y), :.~e d(y, X)}

where d (x, Z) = inCEz d (x, z) (here we use the convention that sup 0 = 0 and inf 0 =
1, so that the empty set will have distance 1 to every other set).

2.8. Theorem. Let (M, d), (M1 , d1), (M2 , d2), dF, dp, du, and dH be as in Definition
2.7, and suppose in addition that (M, d), (M1 , d1), and (M2 , d2) are complete. We
have that

(1) (M1 M 2 , dF) (together with (M1 M 2 , dF) and (M1 NDJ M 2 , dF)),
(2) (M1 x M 2 , dp),
(3) (M1 LJ M2, du),
(4) ([J/'c1(M), dH)

are complete metric spaces. (Strictly speaking, for the completeness of M 1 M 2 , the
completeness of M 1 is not required.)

In the sequel we shall often write M 1 xM2 , M 1 LJM2 , [J/'c1(M), etc.,
when we mean the metric spaces with the metrics just defined.

The proofs of parts (1), (2), and (3) of Theorem 2.8 are straightforward. Part (4)
is more involved. It can be proved with the help of the following characterization
of completeness of ([J/'c1(M), dH)-

2.9. Theorem. Let ([J/'c1(M), dH) be as in Definition 2.7. Let (X;); be a Cauchy sequence
in [J/'c1(M). We have

lim; X; = {lim; X; Ix; EX;, (x;); a Cauchy sequence in M}.

Theorem 2.9 is due to Hahn [28). Proofs of Theorems 2.8 and 2.9 can be found,
e.g., in [25] or [26]. The proofs are also .repeated in [17].

2.10. Theorem (Metric completion). Let M be an arbitrary metric space. Then there
exists a metric space M (called the completion of M) together with an isometric
embedding i: M M such that

(1) M is complete,
(2) for every complete metric space M' and isometric embedding j: M M' there

exists a unique isometric embedding J: M M' such that JO i = j.

148 P. America, 1. De Bakker

Proof. Standard topology.

Finally, we have the following result from Rounds [41].

2.11. Theorem. Let f: M 1 M2 be an arbitrary function, where M 1 and M2 are
compact metric spaces, and define]: (J\1(M1) :1J>(M2) by f(X) = {f(x) Ix EX}. Then
the following statements are equivalent:

(1) f is continuous.
(2) For every XE :1/>c1(M1) we have](X) E :1f>c1(M2), and]is continuous with respect

to the Hausdorff metrics.
(3) For every XE :1/>ci(M1) we have f(X) E :1f>c1(M2), and,for each decreasing chain

(X;); (i.e., X; 2 X;+ 1 for all i) of elements in :1f>c1(M1) we have

2.3. Resumptions and domain equations

We begin with a brief intuitive introduction of the notion of resumption (due to
Plotkin [37]). We use the terminology of processes p, q, which are elements of a
process domain P We emphasize that we are concerned here with semantics rather
than with syntax: processes are elements of mathematical structures rather than
(pieces of) program texts. Process domains are obtained as solutions of domain
equations. In this informal introduction we let A and B stand for arbitrary (fixed)
sets (where necessary provided with the discrete metric) and we shall denote by p0

an arbitrary mathematical object which shall play the role of a nil process. A very
simple equation is

(2.1)

We can read this equation as follows: a process p E P is either Po, which cannot
take any action, or it is a pair (a, q) EA x P, where a is the first action taken and q
is the resumption, describing the rest of p's actions. Clearly, (2.1) has as a solution
the set of all finite sequences (a 1 , a2 , • •• , a 11 , p0), with n 0 and a; EA for all i. The
set of all these finite sequences plus all infinite sequences (a 1, a 2 , •••) is another
solution.

We next consider

(2.2)

This is already a much more interesting equation: each process p is either p0 or a
function which, when supplied with an argument a, yields a pair p(a) = (b, p'). We
see that p maps a to b, at the same time turning itself into the resumption p'. We
can say that p determines its first step b and the resumption p' on the basis of a.

The following equation we consider is

(2.3)

Equivalent semantic models for process creation 149

Now, if we feed a process p -'I: p0 with some a EA, a whole set X of possible pairs
(b, q) results, among which the process can choose freely. For reasons of cardinality,
(2.3) has no solution when we take all subsets, rather than all closed subsets of
Bx P. Moreover, we should be more precise about the metrics involved. We should
have written (2.3) like this:

(2.3')

where, for any positive real number c, id,. maps a metric space (M, d) into (M, d')
with d'(x, y) = c d (x, y). We shall adopt the convention that in domain equations
like (2.1), (2.2) and (2.3) every occurrence of the defined space Pon the right-hand
side is implicitly surrounded by id,12 • (Note that (2.1) and (2.2) can be solved even
without this convention, resulting in a set of sequences or trees respectively, with.
the discrete metric.)

It will turn out that (2.3) is the right type of domain equation for our purposes.
We shall, in Sections 5 and 6, specialize A and B to certain sets which have the
appropriate semantic connotations. As we shall see later, an important advantage
of processes as in (2.3) is that they allow a natural definition of their merge, which
combines interleaving and communication steps in a way which is quite familiar in
concurrency semantics (for one example, see ACP [18]).

We next discuss how one may solve equations as exemplified by (2.1) to (2.3).
These equations are special cases of domain equations as studied in depth in the
domain theory initiated by Scott and developed further by many researchers (includ-
ing Plotkin's [37], see, e.g., [27] for a comprehensive reference). We shall here
briefly sketch an approach to the solution of such domain equations which is fully
couched in the setting of (complete) metric spaces (first described in [17]) and, in
this way, avoids any mention of order-theoretic structures. We thus obtain a unified
mathematical foundation for our semantics since we exclusively base ourselves on
metric techniques. We present a somewhat streamlined version of the results in [17].
There is an important class of domain equations not covered in that paper, viz.
equations of the form

(2.4)

i.e., involving functional domains with the "unknown" domain on the left-hand
side Recently, a fuller treatment of the metric approach has been described
by America and Rutten [8]. There, equations P = [!f(P) are solved in a category of
metric spaces, also catering for situations as in (2.4). For the purpose of the present
paper, the restricted case to be described below suffices, and we thus avoid the
introduction of various category-theoretic notions which are not essential for the
applications at hand.

We consider a domain equation

(2.5)

where [!f is a function (technically, a functor on the category of complete metric
spaces, but we do not have to be aware of this) which is constructed according to

150 P. America, J. De Bakker

the following syntax (where c is a real number, 0< c< l, and M an arbitrary
complete metric space with metric dM):

(2.6)

The above definition of ;ffe ,hould be understood as follows. For each complete
metric space (Q, d) we define the complete metric space (::ffe(Q), ::ffe(d)) to which ;ffe

maps (Q, d):
(1) ::ffeM (Q) = M, ::ffe111 (d) = d111 • Thus, ::ffeM is the constant function, yielding

(M, d111) for every Q. In various applications, we just give some arbitrary set A and
assume for A the discrete metric.

(2) idc(Q)=Q, id,.(d)(x,y)=cd(x,y).
(3) If ;ffe = ::ffe1 x ::ffe2 , assume that ::ffe;(Q) = Q; and ::ffe;(d) = d; for i = 1, 2. Then we

put ::ffe(Q)=Q1 xQ2 and ::ffe(d)=dp (see Definition 2.7).
(4) If fffe = fffe1 LJ F2 , assume again that ::ffe;(Q) = Q; and ::ffe,(d) = d; for i = 1, 2. Then

we put fffe(Q) = Q1 LJ Q2 and ::ffe(d) = du (see Definition 2.7).
(5) If [Ji= g\,(::ffe'), assume that ::ffe'(Q) = Q' and ::ffe'(d) = d'. Now we put ::ffe(Q) =

g\i(Q') and ::ffe(d)=(d')H (see Definition 2.7).
(6) If we already know that ::ffe111 (Q)=M and ::ffeM(d)=dM. Now

assume that ::ffe'(Q) = Q' and ::ffe'(d) = d'. We put .'Ji(Q) = M Q' and ::ffe(d) = (d')h
where (d')F is the function metric on M Q' derived from d' (see Definition 2.7).

According to [17], for ;ffe as just given we can solve (2.5) by the following scheme:
Define inductively

Po= ({ p0}, d0) d0 the discrete metric,

Pn+I = ::ffe(Pn).

Observe that-ignoring the obvious identification of P with { i} x P for i = 1, 2 in
case ::ffe involves a disjoint union-we have for all n

(2.7)

Now we put (Pw, dw) = (U 11 P,,, U II dn) (with the obvious interpretation of Un d,,)
and we define (P, d) as the completion (see Theorem 2.10) of (Pw, dw). Then we
have the following theorem.

2.12. Theorem. For ::ffe and Pas above, we have P = ::ffe(P).

Proof. A nonessential variation of the results of [17]. 0

Remark. The scope of the techniques applied in the proof of Theorem 2.12 was not
fully understood in [17], and substantial clarification was provided by [8]. In
addition, [8] brings an essential generalization: The clause ;J,M .'Ji' in (2.6) is
replaced by ::ffe1 ::ffe2 , thus dropping the restriction that only constants appear on
the left-hand side A precise analysis is provided of the ensuing situation,
involving the notion of contraction coefficient c;,, 0 of a functor fffe, and culminating

Equivalent semantic models for process creation 151

in the result that, for c < 1, (2.5) has a unique solution (up to isometry). A key step
in this analysis is a generalization of (2.7): in the presence of general functional
domains we can no longer gloss over the need for a precise embedding of P" into
Pn+i, and a rigorous definition of an arrow,: Pn Pn+ 1 is needed. For arbitrary
complete metric spaces (M1 , d 1) and (M2 , d2), such an arrow i: M 1 M2 is a pair
(i, j) with i: M 1 M2 an isometric embedding and j: M2 M 1 a non-distance-
increasing function such that j O i is equal to the identity function on M 1 •

3. A uniform and static language

We begin with a detailed study of 5£us, a uniform and static language. First we
present its syntax, and its operational semantics in the style of Hennessy and Plotkin
[29, 38, 39]. Next, we develop the metric framework to define the denotational
semantics for 5£us · Finally, we discuss the relationship between the two semantics
and outline an equivalence proof. Most of this section can- already be found in [16,
Section 2]; we repeat this material here to make the present paper self-contained
and to prepare the way for the treatment of the dynamic case in the next section.
There are a few new points in the development presented below as well, partly due
to the fact that 5£us has only one level of parallelism, partly caused by our wish to
achieve a smooth transition to the definitions for 5£ud, the language with dynamic
parallelism (a notion not treated in [16]). The latter aim has in particular motivated
our use below of the technique of continuations.

3.1. Syntax and preliminary definitions

Let A be a finite alphabet of elementary actions, with typical elements a, b, c (by
this we mean that the letters a, b, and c, possibly adorned with primes or subscripts,
will be used to range over elements of A) and let Stm V be an infinite set of statement
variables, with typical elements x, y. Statement variables are used in the syntactic
construct for recursion, as we shall see in a moment.

3.1. Definition (Syntax.for statements and programs). (1) The set Y'u, of (uniform
and static) statements, with typical element s, is defined by

s ::= a Ix I s1 ;s2 I s1 u Sz I µx[s']

The prefix µx in the construct µx[s'] binds occurrences of x in s' in the usual way.
We call a statement s closed if it contains no free occurrences of statement variables.

(2) The set 5£us of (uniform and static) programs, with typical element t, is defined
by

Here we require that s 1 , ••• , s" are all closed (so that programs are always closed).

152 P. America, J. De Bakker

Examples. (1) Statements: a;b, µx[(a;x) u b], µx[(a;x) u (x;b) u c],
µx[(a 1 ;x;aJ u µy[(y;b) u c]], a;y;b (only the last example is not closed).

(2) Programs: Each of the closed statements listed under (1), and, in addition,
(a;b) II µx[(a;x) u b] II µx[(x;b) u c], µx[a;x] II µy[b;y].

A statement s is of one of the following forms:
• an elementary action a,
• the sequential composition s 1 ;s2 of statements s1 and s2 ,

• the nondeterministic choice s1 u s2 (also known as local or internal nondetermin-
ism): s1 u s2 is executed by executing either s 1 or s2 , where the choice is made
nondeterministically.

• a statement variable x, which is (primarily) used in:
• the recursive construct µx[s]: its execution amounts to execution of s, where

occurrences of x in s are executed by (recursively) executing µx[s]. For example,
with the ~emantic definitions to be proposed presently, the intended meaning of
µx[(a;x)ub] is the set a*· bu{aw}.
A program t = s 1 11 · · · II s,, consists of n ;;;, 1 statements which are to be executed

in parallel. Since n remains fixed throughout the execution oft, we call the language
!i'us static to distinguish it from the dynamic language 5£'ud studied in Section 4.

!i'us has no synchronization or communication. The issues which arise when such
notions are added to it are studied in detail in (later sections of) [16]. We do not
want to complicate our treatment of !i'u,-which plays only a preliminary role in
the present context-by including such ramifications.

Substitution of a statement for a statement variable is defined in the familiar way:
s[s'/x] denotes the result of substituting s' for all free occurrences of x in s, with
the usual precaution of renaming bound variables when necessary to avoid clashes.

In both operational and denotational models we shall use the universe of streams,
defined as follows.

3.2. Definition (Streams, cf. [20, 21]). We assume that ..L fl'. A The set A st of all
streams over A is defined by

Ast =A*uAwu(A*x{..L})

where A* (A"') is the set of all finite (infinite) words over A

We shall use u, v, w to range over A st and use E for the empty stream. Streams
of the form (u, ..L) will be written as u · ..L or simply u..L. We shall abbreviate (e, ..L)
to 1-. The use of ..L is motivated, in an operational setting, by our wish to produce
some visible result as the outcome of an infinite computation that does not produce
an infinite sequence of elementary actions. For example, we shall organize the
definitions such that both µx[x] and µx[(x;b) u c] deliver ..L as an outcome (in the
latter case together with cb*).

Equivalent semantic models for process creation 153

We shall use aw for the infinite sequence of a's. length(u) yields the number of
symbol occurrences (from Au {.L}) in u. In particular, for u E Aw, length(u) = co,
and for u=u'.L, u'EA*, we have length(u)=length(u')+l. we use",,,;" for the
prefix ordering on A st , i.e., we put u,,,; v whenever u = v or u EA* and, for some
w EA", u · w = v (the reader who wants to see a precise definition of the concatena-
tion "·" of streams is referred to Definition 3.12). For example, we have ab,,,; abc,
an,,,; aw, ab,,,; ab.L, but a.L ,t;, ab.L. We recall that each ,,,;.chain (u;);, with U;,,,; U;+ 1 ,

i = 0, 1, ... , has a least upper bound u = tub; U; in A'', where (U;); is either infinitely
often increasing (U; ¥- ui+ 1 for infinitely many i) and then u E Aw, or (u;); stabilizes
in some u4, (u; = u4, for all i ;;a: i0), and then u = u4,. We conclude this list of definitions
with the notation u(n), which denotes the ,,,;.prefix of u of length n in case this
exists, and which equals u otherwise.

In both this and all subsequent sections we shall make extensive use of so-called
continuations, both of syntactic and semantic variety. In defining the semantics of
a statement, we shall use a continuation to indicate the "actions" which remain to
be done after this statement. Syntactically, this is done b_y a piece of program text,
a syntactic continuation, to be defined below. Semantic continuations will be
introduced in Section 3.3. The use of continuations in the context of 2u, is not
necessary or especially helpful, but it introduces the techniques which will be applied
fruitfully in the following sections.

We shall denote the empty syntactic continuation by E (note that E is not itself
a statement) and then define the following sets.

3.3. Definition (Syntactic continuations). (1) The set SyCo of syntactic continuations,
with typical element r, is defined by

r ::= EI s;r'

Here we require that each statement s occurring in a syntactic continuation r is
closed (so that syntactic continuations are always closed).

(2) We define the set PSyCo of parallel syntactic continuations, with typical element
p, as follows:

3.2. Operational semantics

We now proceed with the operational semantics for Y'u, and 2u,· We apply the
technique of transition systems, introduced by Hennessy and Plotkin [29, 38, 39),
and proven to be quite fruitful in a variety of concurrency semantics. The particular
version employed below is close to the style of definition in [9, 10), though these
papers deal in fact with interpreted rather than with uninterpreted languages (cf.,
for example, the discussion in [12) of the distinction between uniform and nonuni-
form). In [16) we also discuss the relationships between our version of the transition
formalism and other variants one may encounter in the literature.

154 P. America, J. De Bakker

A configuration is either a pair (p, w), with w EA* x {.1}, or simply a stream w,
with w EA*. A transition is a pair of configurations of the form

or

(where w, w' EA* x {.1}, w" EA*). In order to understand such transitions, we first
mention-anticipating later precise definitions-that a program t = s1 II · · · II sn will
correspond to a parallel continuation p = s 1 ; E, ... , sn ; E. For each configuration
(p, w), we view pas the program currently to be executed, and was an (unfinished)
stream of elementary actions collected so far. The relation as given above either
reflects a one-step transition to a new such pair (p', w'), or a one-step transition to
a (finished) stream w". The transition system to be defined in a moment provides
the information necessary to deduce transitions of the given form. More precisely,
we shall define the relation between configurations as the smallest (with respect
to set inclusion) relation which satisfies the axioms given in the following definition.

3.4. Definition (Transition system for .:t'u,). The system .'1u, for ,;£us consists of the
following five axioms (in a self-explanatory notation):

(... ,a;r, ... •.. ,r, ... ,wa.1), Elem

(... ,(s 1 ;s2);r, ... , ••• ,s1 ;(s2 ;r), ... , w), SeqComp

(here X YIZ is short for X Y and X Z),

(... , µx[s];r, ... , ... , s[µx[s]/x];r, ... , w),

(£, ... , E, w.

Rec

Term

(Note that, by our conventions, in the first and fifth axiom w EA*, and in the
remaining ones w EA* x {1.}.)

Our next step is the definition of a semantic function C[· D, yielding, when applied
to some p, a subset of Ast •

3.5. Definition. We define the function

O[· D: PSyCo 2P(Ast)

as follows. Let p E PSyCo. We put a stream w into O[p D whenever one of the following
conditions is satisfied:

(1) There is a finite sequence of configurations ((p;, w;))~ 0 such that (p,,
(p;+J, W;+1) for i=O, ... ' n -1, Po= p, Wo= .1, and <Pn, w.

(2) There is an infinite sequence of configurations ((p;, w,)) t 0 , such that (p,, w,)
(p;+ 1 , W;+ 1) for i = 0, I, ... , p0 = p, w0 = 1-, W; = w'.l., and w = (lub, w;).1.

Equivalent semantic models for process creation 155

Remark. In clause (2) we use the obvious fact that if(p, w'l.), then ws w'.
Note that, for (w;J, infinitely often increasing, w' =cterlub; w; belongs to A"', so from
the definition w = w' l. we infer that w = w' (by Definition 3.12, concatenating any
stream to the right of some infinite stream has no effect). For (w;); stabilizing in
w;,,, we obtain w = w;01..

Examples. (1) <'7[µx[(a;x) u b];Ell= { aw} u a*b, O[µx[(x;a) u b];Ell= { l.} u ba*.
(2) O[(cu (a;b));E,d;Ell = {cd, de, dab, adb, abd}.

We conclude the operational semantics definitions with the definition of O[tll for
t E ::£us;

3.6. Definition. The mapping O[· ll: :t:u, 9P(A st) 1s defined as follows. Let t =
s,11 · · · llsnE:i:u,• Then

O[tD = O[s 1 ;E, ... , Sn ;El

Remark. There is a natural connection between the notions discussed above when
restricted to programs without parallelism (t = s1) and the languages with finite or
infinite words produced by context-free grammars in the sense of, e.g., Nivat [35].
For example, the grammar X aXblc produces {aw} u {a"cb" In ;a: 1}, and so does
O[µx[(a ;x;b) u c]Il. A difference arises in the presence of unguarded recursion (cf.
Definition 3.14 below); for example, O[µx[(x;b)uc]ll equals {l.}ucb*, whereas
X Xblc would, by Nivat's definitions, produce only cb*. Briefly, the role of l. in
our style(s) of semantics has no counterpart in traditional formal language theory.
Fixed point considerations for infinitary languages generated by grammars which
may be left recursive (in other words, which do not satisfy the Greibach condition)
are discussed for instance by Niwinski [36].

A number of elementary properties of O[· Il are collected in the following lemma.

3.7. Lemma. (1) O[Ell = {E}.
(2) O[a;rll = a·O[rll.
(3) O[(s1 ;si);rll = O'[s, ;(s2 ;r)].
(4) O[(s1 us2);rll=O'[s,;r]uO[s2 ;rll.
(5) O[µx[s];r] = O[s[µx[s]/x];r].

Remark. This lemma presupposes the formal definition of operations on (sets of)
streams to be given in Definition 3.12.

Proof of Lemma 3.7. Obvious from the definitions.

3.3. Denotational semantics

By way of preparation for the denotational semantics for :.tu,, we present some
basic definitions which introduce the metric setting we apply for this purpose.

156 P. America, J. De Bakker

3.8. Definition. We define the distance 1] by

where T"'=O.

3.9. Lemma. (1) (A st , d) is a complete metric space.
(2) For finite A, (A'', d) is compact.

Proof. See, e.g., [35].

Let 9Jl nc(A st) denote the collection of all nonempty closed subsets of A5'. We
usually abbreviate :?Jl0 c(A't) to Snc· Let X, Y range over Snc· We put X(n) =
{u(n)juEX}. Now we also define a distanced on Snc·

3.10. Definition. The distance J: Snc x Snc [O, 1] is defined by

where, again, r·X) = 0.

We have the following important theorem.

3.11. Theorem. (1) (Snc, J) is a complete metric space, and if A is finite, this space
is compact.

(2) J coincides with the Hausdorff distance (cf Definition 2.7) induced on Snc by
the distance d on streams.

Proof. Part (2) is easy from the definitions, and part (1) then follows from Theorem
2.8 (together with a theorem that says that compactness also carries over from any
M to :?Jlci(M), see [25, 26]). The omission of the empty subset, which has distance
1 to every other subset does not disturb closedness or compactness. D

Remark. As a consequence of part (1) of Theorem 3.11, each Cauchy sequence
(X")" in (S0 c, J) has a limit limn Xn in (S0 c, J), a fact we shall employ several
times below.

Next we introduce three semantic operators "· ", "u ", and "II", which are counter-
parts of the syntactic operators of sequential composition, choice and parallel
execution. The first two are well-known; the II-operator (when applied to two sets)
consists of the shujjle of all streams in the two operands. As remarked before, no
operations involving synchronization or communication are considered for this
language. The precise definition of the semantic operators proceeds in stages.

Equivalent semantic models for process creation 157

3.12. Definition (Semantic operators). (1) We assume as known the operation "·"
of prefixing an element a EA to a finite stream u EA*, yielding as a result a· u
(also written as au). Moreover, we put a· (u, ..L) = (au, ..L) for u EA*.

(2) Assume X, Ys;;;A*u(A*x{..L}). We define
(a) a·X={auluEX};
(b) for uEA*u(A*x{..L}), we define u· X by induction on the length of u, as

follows: E · X=X, ..L · X ={..L}, (au)· X=a· (u· X);
(c) X· Y=LJ{u· YiuEX};
(d) Xu Y is (indeed) the set-theoretic union of X and Y;
(e) u[l W (which will be used in (2)(f) is defined by induction on the length of

u, as follows: E[LX=X, i[LX={..L}, (au)[LX=a· ({u}IIX);
(f) XII Y=(X[l Y)u(Y[LX), where X[l Y=U{u[LXluEX}.
(3) Assume that X and Y are arbitrary elements of Snc, and let opE { ·, u, II}.

Then we put
X op Y = limn(X(n) op Y(n)).

3.13. Lemma. (1) The operators op from { ·, u, II} are well-defined. In particular.for
each X, YE Snc, (X(n) op Y(n))" is a Cauchy sequence.

(2) Each op is a continuous mapping: Snc x Snc Snc.

Proof. Either by combining results from [11] with Rounds's theorem (Theorem
2.11), or by appropriately modifying the proof as given in [17, Appendix B]. D

We need one last step before we can give the definition for the denotational
semantic function 0J[·]. We shall restrict the definition of 0J[· D to statements
involving only guarded recursion defined as follows.

3.14. Definition. (1) A statement variable x may occur exposed in a statement s.
This notion is inductively defined as follows:

(a) x occurs exposed in x;
(b) if x occurs exposed ins, then x occurs exposed in s;s', sus', s'us, and

µy[s] for y x.
(2) A statement s is called guarded when for each of its recursive substatements

of the form µx[s'] we have that x does not occur exposed in s'. A program
t = s, II · · · llsn is called guarded if all its constituents S; are guarded.

Examples. The statements µx[a;x] and µx[µy[b;y];x] are guarded, whereas
µx[(x;b) u c] and µy[µx[y];b] are unguarded.

Let 9'~. denote the sets of guarded statements and 2~. the set of guarded programs.
We shall now define the mappings 0J:

NDI
0J[· (SeCo - Snc))

and

158 P. America, J. De Bakker

where r is the set of environments and SeCo the set of semantic continuations, both
to be defined below. (Recall from Definition 2.3 that Noi stands for the set of all
non-distance-increa~ing functions.) We take y to range over r and cp to range over
SeCo NDI Snc· The type of especially the first iJlJ might require some explanation;
it means that we apply the function iJlJ to a guarded statement, an environment, and
a continuation in order to get an element from Snc, i.e., a nonempty, closed set of
streams.

The definition of the set SeCo of semantic continuations is simple: We just take

SeCo = S0 c,

and use X, Y to range over· SeCo as well. A semantic continuation denotes the
semantics of the statements to be executed after the one to which iJJJ[· TI is applied.
To be more precise, when iJlJ is applied to a (guarded) statements and an environment
y, we get a function cp: SeCo NDI Snc· The interpretation of this function is as
follows: if XE SeCo = S 0 c is the semantics of a statement, say s', to be executed
after s, then the semantics of s and s' together is given by cp(X) (this is illustrated
very well by part (1)(b) of Definition 3.15 below). At this point continuations may
seem a complicated way of doing a simple thing (concatenating sequences), but in
later sections we shall see that the technique of continuations enables denotational
semantics to do in a simple way things that otherwise require quite an effort.

There are two reasons to require the function cp to be non-distance-increasing:
The technical reason is that we want Lemma 3.16 below to hold. The intuitive reason
has to do with the fact that such a function cp will not have the opportunity to
analyse its argument in detail and make decisive choices based on that analysis,
but it will just concatenate the argument to the end of some set of streams, possibly
(in later sections) interleaving it with yet another set of streams. This kind of
operation will "shift" the argument "to the future", and due to the nature of the
metric on S 0 c, this means that the distance between cp(X) and cp(Y) will possibly
be smaller than the distance between X and Y, but definitely not greater.

For the set of environments we use

NDI
I'= StmV (SeCo - S0 c).

An environment gives a meaning to each statement variable. In more conventional
languages, which use procedure declarations where we use the µ-construct, the
meaning of such a set of declarations would be recorded in an environment y, which
is subsequently used to interpret the procedure calls in the statements after the
declarations. Our recursive construct effectively combines a declaration and a call
of a "procedure", named with a statement variable. Therefore the statements within
the recursive construct µx[s] will be interpreted with respect to an environment
different from the one used in interpreting the recursive construct, where the
difference lies in the meaning assigned to the statement variable x (see equation
(3.1) below).

We are now sufficiently prepared for the following definition.

Equivalent semantic models for process creation 159

3.15. Definition (Denotational semantics for Y'us and 5t'uJ- (I) Assume that s E Y'us
is guarded. We define 0J[s] by structural induction on s:

(a) 0J[a](-y)(X) =a· X,
(b) 0J[s1 ;s2](y)(X) = 0J[s1](y)(0J[s2](y)(X)),
(c) 0J[s1 u s2](y)(X) = 0J[s1](y)(X) u 0J[s2](y)(X),
(d) 0J[x](y)(X) = y(x)(X),
(e) 0J[µx[s]](y)(X) = q,00(X) where q,00 is the unique fixed point of the operator

(/): (SeCo NDI Snc) (SeCo NDI S0c) given by t:P(<p) = 0J[s](y{ <p/ x}). (We
use the variant notation y{ r,o / x} introduced in Section 2.1.)

(2) For t=s1II · · · llsn, t guarded, we put

0J[t] = 0J[s1](y)({E})II · · · ll@[sn](y)({E})

where y is arbitrary (and we assume the obvious associativity of "II").

The definition in clause (I)(e) is justified by the following lemma.

3.16. Lemma. Ifs is guarded and x does not occur exposed in s, then we have that
the operator tP defined by t:P=Aip.@[s](y{ip/x}) is contracting.

Proof. Induction on the complexity of s, using the condition on x.

By Banach's theorem (Theorem 2.5), the operator tP in Definition 3.15(1)(e)
indeed has a unique fixed point 'Poc• In particular, for the meaning of µx[s] we
have the familiar fixed point relation (for each y):

<p00 = 0J[µx[s]](')') = @[s](y{ 'Pool X}). (3.1)

Note furthermore that 'Poc, = limi 'Pi, where <p0 can be chosen arbitrarily and the rest
of the sequence is given by 'Pi+i =@[s](y{q,Jx}).

3.4. Equivalence of operational and denotational semantics

After having defined both eJ and @ for (guarded elements of) Y'u, and 5t'us, we
next discuss the relationship between the two semantics. We shall in fact establish
that, for t guarded,

eJ[!] = @[t]. (3.2)

We need some technical properties of fJ which will play a role in the inductive
argument to prove (3.2). A very detailed treatment of variants of these results can
be found in [16] (variants stemming from the fact that the latter deals with nested
parallelism as well). Therefore, we state the results here without proof.

3.17. Lemma. (1) fJ[s;r] = fJ[s;E] · fJ[r].
(2) fJ[r1, r2] = eJ[r1] II eJ[r2],

For the statement of the next theorem we need some further notation: Consider
a recursive construct µx[s]. Let n be a new elementary action, i.e., n t A (This is

160 P. America, J. De Bakker

the only place where we find it convenient to distinguish a syntactic elementary
action (fl) from the corresponding semantic one (..L).) fl will play a role only in
connection with Theorem 3.18 below. We first introduce a corresponding axiom
(extending the list of transition axioms in Definition 3.4):

(... , fl;r, ... , w. Undef

(Recall that w EA* x {..L}. Thus, Undef is an axiom which terminates the computation
with an unfinished stream.) Moreover, for each n 0, s, and x, we introduce the
notation s~n > given by

s~ = fl,

The following theorem is proved in [16].

3.18. Theorem. Assume that µx[s] is closed and guarded. Then we have

fi'ffµx[s];r] = limn O[s~•>;r].

Proof. See the argument in [16], which involves an elaborate development of
auxiliary tools. D

Theorem 3.18 is in fact crucial for the proof of (3.2). We shall prove (3.2) in a
way that anticipates the strategy followed in the next section where we deal with
2ud· Our reason for doing this is our wish to pinpoint the places where the proof
of the dynamic case is essentially more involved than that of the static case.

In order to prove (3.2), we first prove a more general result, and then obtain (3.2)
as a direct corollary.

3.19. Theorem. Let s be guarded but not necessarily closed, and let the set of free
statement variables of s be contained in {x 1 , •• • , Xm }, m 0. Let s 1 , • •• , s,,, be closed
and guarded statements, let s = s[s;/ X;];"=1, and let, for any r, m[r] be short for
AX(O'[r] · X). Let furthermore

cp; = m[s; ;E]

for i = I, ... , m, and let y = y{ cp;/ X;}: 1• Then we have

m[s;E] = ~[s](-y).

Proof. Induction on the complexity of s. We treat three representative cases:
Case 1: s = X;. Then m[s;E] = m[s; ;E] = cp; = ~[x;](-y).
Case 2: s = s';s". Now the free statement variables of s' and s" are also among

{x1 , ••• , Xm}. We can write s' = s'[s;/ X;];"= 1 and similarly for s". Then we get

m[s;E] = m[(s';s");E]

= m[s';(s";E)D (Lemma 3.7)

Equivalenr semantic models for process creation 161

= AX.O[s';(s";E)ll • x
= AX.(O[s';ED · (O[s";ED · X)) (Lemma 3.17 and associativity of"·")

= AX.(l'J[s';ED(l'J[s";ED(X)))

= AX.(!?il[s'll(,ji)(!?il[s"D(,ji)(X))) (twice the induction hypothesis)

= !?il[s';s"D(,ji).

Case 3: s = µy[s']. Let us first remark that from the conditions on sand s1, ... , Sm

it follows that sis guarded. We define s' = s'[s;/ X;];': 1 (note that y may still be free
in s'). Now we have on the one hand

l'J[s;ED = AX.(O[s;ED. x)

= AX.limn(O[st\ED · X) (Theorem 3.18 and continuity of"·")

= limn(l'J[s_:.<n);ED).

On the other hand, we have !?il[sll(,ji) = limn ifin, where 1/10 .can be chosen freely and
o/n+1 = !?il[s'D(Hifin/y}). Our choice for 1/10 will be I/Jo= AX.{..L}. We prove, by induction
on n, that

l'J[st\ED = ifin•

The case n = 0 is clear. Now assume (3.3) as induction hypothesis. Then

(I)[s:.(n+ I \E] = l'J[s'[s;/ X;] ;"= I u:.(n) I y]; ED

= !?il[s'D(y{.-p;/x;}:"=1{1/Jnf Y}) = !?il[s'D(y{ifin/y}) = o/n+I ·

(3.3)

Here we have used the main induction hypothesis withs'. replacing s, m + I replacing
m, and s,, ... ' Sm, s_:.<n) replacing s,, ... , Sm. In order for the main induction
hypothesis to apply we have to establish that l'J[,;)n\ED = ifin, which is nothing but
our nested induction hypothesis (3.3).

Now that we have proved (3.3) for all n, it is evident that (l)[s;Ell = !?il[sD(,ji),
which proves the most difficult part of the theorem.

3.20. Corollary. For guarded t we have O'[tll = !?il[tD.

Proof. For any closed and guarded s, and any -y, we have, by the previous theorem,
that <D[s;ED=!?il[sll(-y). Hence, O'[s;Ell=l'J[s;Ell({1,})=!?il[sD(-y)({1,}). If t=
s, II · · · II sn, we therefore obtain

O'[tll = O'[s1 ;E, ... , Sn ;Ell= O'[s1 ;Ell II··· IIO'[sn ;Ell

= !?il[s1D(-y)({E})II · · · ll!?il[snD(-y)({E}) = !?il[tD. D

We conclude this section with a remark on possible other models for :£us. Besides
the operational and metric denotational (linear time) models for :£us, we have also
developed several other models which have been described elsewhere:

162 P. America, J. De Bakker

(1) A denotational semantics based on a cpo structure on (certain) sets of streams
equipped with the Smyth order [12, 14, 33, 34].

(2) A denotational semantics based on a cpo structure on (certain) sets of so-called
finite observations equipped with the order of reverse set inclusion [12, 14].

(3) A branching time denotational semantics based on a process domain of the
kind described in Section 2.3 [11].

The equivalence of the models in (1) and (2) has been established in [14], the
equivalence of the model in (1) and the denotational metric model is proved in
[13], and the relationship between the branching time model and (any of) the linear
time models is settled in [11].

4. A uniform and dynamic language

We now turn our attention to a language with process creation. In this section we
study the uniform version of this phenomenon as couched in the language 2 ud. In
Section 5 we shall investigate a nonuniform generalization.

A substantial part of the semantic theory for !:fu, can be carried over to the present
case. Thus, we can be much shorter in our definitions. The main equivalence result
also closely follows the approach from Section 3, but for one important new problem
which requires nontrivial additional analysis.

4.1. Syntax and intuitive explanation

We start with the following definition.

4.1. Definition (Syntax for statements and programs). (l) Let s range over the set
:f'ud of (uniform and dynamic) statements:

s ::= a Ix I s1 ;s2 I s1 u s2 I µx[s'] I new(s').

(2) Let t range over the set 5fud of (uniform and dynamic) programs:

t ::= s

Here we require again that s is closed. Thus, a program in 5fud is simply a closed
statement from :f'ud.

The intuitive operational semantics for t or s may be described in terms of a
dynamically growing number of processes which execute statements in parallel in
the following manner:

(1) Set an auxiliary variable i to 1, and set s1 to s, the program to be executed.
A process, numbered 1, is created to execute this s,.

(2) Processes 1 to i are executed in parallel. Process j executes si (1 j i) in
the usual way (see Section 3) if si begins with an elementary action, sequential
composition, choice, or a recursive construct. For example, if s1 begins with an
elementary action a, then this a is appended to the output word, and sj is set to its
(syntactic) continuation (the part after this atomic action).

Equivalent semantic models for process creation 163

(3) If some process j (1 ~j i) has to execute a statement of the form new(s'),
then the following happens: The variable i is set to i + 1, then s; is set to s', and a
new process, with number i, is created to execute s,. Process j will continue to
execute the part after the new-statement (sj is set to its continuation). Go back to
step (2).

(4) Execution terminates when there is no process left with a nonempty continu-
ation.

Examples. (1) The statement a;new(b;c);d determines the execution as suggested
by the following picture (where the arrow denotes creation of a new process):

(2) The statement a;new(b;new(c;d);e);f determines the execution as suggested
by the diagram:

a

f b

e ; I
4.2. Operational and denotational semantics

The above intuitive explanation would clearly benefit from a more formal descrip-
tion, and this will be the main content of the present section.

We first develop the operational semantics for Y:uu. We profit from the preparatory
work in Section 3, and assume the general framework as described there. Also,
configurations (p, w) or simply w' (with w EA* x {l.}, w' EA*) are as before, except
that the statements sin such a parallel syntactic continuation p (see Definition 3.3)
should now belong to 9'uct instead of 9'u,· The transition is now defined
as the smallest relation satisfying the axioms in the following definition.

4.2. Definition (Transition system for 2uct). The transition system .'Juct for 2uct consists

164 P. America, J. De Bakker

of all the axioms of Definition 3.4 (i.e., of all of flu,), and in addition the axiom

(... , new(s);r, ... , ••• , r, ... , s;E, w). New

Here on the left-hand side we have a parallel syntactic continuation p with, say,
n;;;, 1 components and new(s);r as the ith component (for some i, 1:,;;; ;:,;;; n). On
the right-hand side we have the parallel syntactic continuation p' with n + 1 com-
ponents, r as the ith component and s;E as the (n + l)st component (and no changes
with respect to p in the remaining components).

The definition of O'[p D is as before, but now with respect to transition system ffud.

Also, since each t E .;fud equals some s E Y'ud, we simply put, fort= s, O'[tll = O'[s;Eil.

Example. Take t = a;new(b;new(c);e);f Then 0'[t] = {afbce, abfce, abcfe, ab(:ef,
afbec, abfec, abefc, abecf}.

The elementary properties of O' listed in Lemma 3.7 remain valid. In addition,
we have the following lemma.

4.3. Lemma. O'[new(s);rD = O'[r, s;ED.

Proof. Clear from the definitions. D

We proceed with the definitions for the denotational semantics for Y'ud and .;fud•

A complication which arises is that the notion of a statement being guarded has to
be refined. A typical case concerns a recursive construct such as µx[new(a);x],
where the elementary action a does not fulfil the duties of a guard: this construct
may choose to start execution with the recursive call x. The precise definition of
guardedness requires an amended definition of"x is exposed ins", and this involves,
in turn, a notion of generalized new-statement.

4.4. Definition. (1) A generalized new statement g is defined by

g ::= new(s) \ g 1 ;gz \ g' us\ s u g' \ µx[g']

(2) When a statement variable x occurs exposed in a statements E Y'ud is defined
inductively as follows:

(a) x occurs exposed in x;
(b) if x occurs exposed ins, then x occurs exposed in s;s', sus', s'us, µy[s]

(if y;i,x), new(s), and in g;s.
(3) A statements E Y'ud is called guarded if, for all its recursive substatements of

the form µx[s'], s' contains no exposed occurrences of x.

We shall now give a denotational semantics for .;fud by defining

Equivalent semantic models for process creation 165

where we use r, SeCo, and S0 c as in Section 3.3. (Analogously to Section 3.3, Y'~d
denotes the set of guarded statements, and :t~d the set of guarded programs.)

4.5. Definition. (I) For guarded s E Y'ud, s not of the form new(s'), we take over
the clauses from Definition 3.15.

(2) For guarded s of the form new(s') we put

£il[new(s')](y)(X) = £il[s'](y)({ E}) II X.

(3) For guarded tEXud, t=s, we put £il[t]=£il[s](y)({E}), where y is arbitrary.

We see that the meaning of a new-construct new(s') in a situation that X remains
to be done (i.e., with a semantic continuation X) is given by the result of putting
X in parallel with the meaning of s' where nothing remains to be done after it
(continuation {E}).

Remark. It has been proved that the expressive power of Xud is essentially greater
than that of Xu,, in the sense that for each t E Xus there is a t' E Xud such that
O'[t] = O'[t'] (indeed, take t' = t), but not the other way around. (IJ.J. Aalbersberg
and P. America, personal communication.)

4.3. Equivalence of operational and denotational semantics

We now address the question as to whether, for guarded t, O'[t] = £il[t]. We follow
the line of reasoning as in Section 3. First, we again have this lemma.

4.6. Lemma. (1) For all r1 , r2 E SyCo we have O[r1 , r2] = O[r1] II O'[r2].

(2) If µx[s] is closed and guarded, then O[µx[s];r] = lim 0 O[s~"';r].

Proof. See the sources given with Lemma 3.17 and Theorem 3.18. D

The next step in the argument concerns the analogue of Lemma 3.17(1) (and,
somewhat more hidden, the way in which <D[·] is defined, cf. Theorem 3.19). Let
us see whether we may expect that O[s;r] = O[s;E] · O'[r]. It is easy to see that this
is not the case by taking, for example, s = new(a) and r = b;E. Then the left-hand
side equals {ab, ba} and the right-hand side equals {ab}. On the other hand, taking
s = a, r = b;E, we see that neither is it true in general that O[s;r] = O'[s;E] II O[r].
What we need here (and in the definition of <D[•]) is an operator which, as it were,
is able to decide dynamically whether the operation at hand is of a sequential or
of a parallel character.

Having pinpointed the problem which distinguishes the situation in the current
section from that in Section 3, we develop some additional tools and associated
lemmas in such a way that eventually we shall be able to adopt the same style of
argument for the main equivalence result as used in Section 3.

166 P. America, J. De Bakker

We shall introduce the semantic operator":", which should clearly be distinguished
from both"·" and" II". The de.finition of":" requires the introduction of an auxiliary
elementary action, not belonging to Au {.l}, and denoted Its intuitive function
is to mark the termination of a local process and (thus) to indicate where a
continuation should start. We shall put A'= and introduce the extended
stream set A est as

A eSt = A st U { W I W E A* W E A st} I 2 I , 2 •

We now define the operator":" as follows.

4.7. Definition. We shall put S~c=fiJl0 c(Aes1) (recall that S 0 c=fiJl0 c(Ast)).

(1) The operator ":" : A eS t x A eSI S~c is given by

w·w'={ w1 • (w2 llw') ifw=w1Jw2,
· { w} otherwise.

(Note that w' could again contain an occurrence of .J, which will behave as an
ordinary elementary action with respect to "II".)

(2) For X, YE S~c, X and Y with finite streams only, we put

X:Y=U{u:vluEX,vE Y}.

(3) For arbitrary X, YE S~c, we put

X: Y = limn(X(n): Y(n)).

An important tf'-:hnical lemma concerning the operator ":" is the following one.

4.8. Lemma. (1) ":" is continuous as a mapping and as a mapping
S~cX S~c·

(2) Restricting the domain of":" to S~c X S 0 c will restrict its range to S0 c, or in
other words,":": S~c X Snc•

(3) (X: Y):Z = X: (Y:Z), for X, Y, Z E S~c•
(4) XES~c-
(5) (Xu Y):Z = (X:Z) u (Y:Z),for X, Y, Z E S~c-
(6) {XII Y):Z = XII{ Y:Z), for XE S 0 c, Y, Z E S~c•

Proof. We only prove part (3). Below, we shall prove that (u:v):w = u:(v:w) for
u, v, w EA est. Then we obtain, for X, Y, Z with finite streams only,

= U U U (u1 :(u2 :w)) = X:(Y:Z).
u1€X u2e Y weZ

For general X, Y, Z, we take the limit of X(n): Y(n):Z(n).

Equivalent semantic models for process creation 167

We now prove that (u: v): w == u:(v: w). If u E A st (so that u has no occurrence of
then (u: v): w == {u} = u:(v: w), and if v E A st then (u: v): w == u: v == u:(v:w). Now

suppose that u == and v == We prove two inclusions:
(1) (u: V): w<;; U: (V: w). Wehaveu: V == Ui · (u2II V),so(u: V): W == Uw'E(u2llv)(U1 w'): w.

Let w' E u2llv. We distinguish two subcases:
(a) w'EAst • This is only possible (since if u2EAwu(A*x{j_}). Then

w'Eu2llv1, so w'Eu2ll(v1 ·(v2llw))==u2ll(v:w), and therefore (u 1w'):w==
{u1w'},;; u:(v:w).

(b) w' == w;. Now there are u21 , u22 such that u2 == u21 u22 , w; E u21 II v1, w; E
uzillv2 • We obtain

(U1 w'): w == U1 w;(w;II w) <;; u1(U21 II v1Hu22JI V2II w)

<;; u1(u2ll(v1(v2llw))) == u:(v;w).

(2) u:(v:w) <;; (u:v):w. We have u:(v:w) == u1 · (u2ll(v:w)) == Uu·cv:w U1 · (u2llu') ==
Uv'Ev,llw U1 · (u2ll(v1v')). Now let v'E v2llw and w'E u2ll(v1v'). There are u2i, u22 ,

w;, and w; such that w' == w; w;, w; E u21 II v1, w; E uzzll v'. We have that

(4.1)

(The inclusion holds since contains the set which in
turn contains We conclude that •

u1w'== u1w;w;E u1w;(uzillv2 llw),;; (u:v):w,

where the last inclusion follows from (4.1) by postfixing both sides with ": w".

We next show how the new operator ":" solves the problems described after
Lemma 4.6. First we extend-for the remainder of this section-the definition of
SyCo (cf. Definition 3.3), and now put

r ::= E I I s; r'

We emphasize that the "elementary occurs only in syntactic continuations;
the syntax for statements s E Y'ud is not modified. Before we can state and prove the
equivalent of Lemma 3.17(1), we discuss the induced amendment of the transition
system ?Jud· Firstly, all axioms of .°lud now refer to r (and p) which may involve

Secondly, we extend -'Yud with an axiom catering for J. In the present context,
we need this axiom only in a restricted version:

(... , ... , (... , E, ... , wJ j_) Elem'

where w EA* and none of the continuations appearing at the dots (...) involves
J. In other words, we restrict attention to parallel syntactic continuations p which
involve at most one constituent syntactic continuation r ending in This is no real
restriction since that property applies to all configurations in transition sequences
which interest us: It holds trivially for p containing only one component, and it is
preserved by applications of the axiom New, which creates new components.

168 P. America, J. De Bakker

We can now state the following lemma, which applies the technique of induction
loading to prove Corollary 4.10.

4.9. Lemma. Lets E Y'ud (not necessarily closed) and suppose that all the free variables
in s are in { x 1 , ••• , x,}. Now let s 1 , ••• , sk be closed and guarded and define s =
s[sJ x;] 7~ 1• Suppose further that for i = 1, ... , k and for any r we have

and that s is guarded. Then we have for any r

Proof. Induction on the complexity of s. We give full details of the proof, in order
to exhibit its dependence on Lemma 4.8.

(I) If s = a, then s = a, so we get

O[s;r] = O[a;r] =a· O[r]

=

= =

(Lemma 3.7)

(Lemma 4.8(4))

(2) Ifs= X;, then s = S; and the property follows from the assumption about S;.

(3) If s=s';s", then we get in an obvious way s=s';s", so

O[s;r] = O[(s';s");r]

= O[s';(s";r)] (Lemma 3.7)

= O[s";r] (ind. hyp. for s')

= (ind. hyp. for s")

= (O[r] (Lemma 4.8(3))

= (ind. hyp. for s')

=

=

(4) Ifs= s' us", then, again, s = s' us" and we get

O[;;r] = O[(s'u s");r]

= O[s';r] u O[s";r] (Lemma 3.7)

= u (ind. hyp. for s', s")

= (u (Lemma 4.8(5)

Equivalent semantic models for process creation

= O[(s'u s");J]:O[r]
= O[s;J]:O[r].

(5) Ifs= new(s'), we get s = new(s') and then

O[s; r] = O[new(s');r]

= O[s';E]I/O[r] (Lemmas 4.3 and 4.6(1))

= (*)

=

= O[new(s');J]:O[r]

= O[s;J]:O[r].

169

Here, at the place marked(*), we have used Z = XIIZ if XE S0 c, Z E S~c;
this is a special case of Lemma 4.8(6) together with Lemma 4.8(4).

(6) Lets= µx[s']. Suppose (without loss of generality) that x e {x1, ... , xd. Put
s' = s'[sJ x;t- 1, so that s = µx[s']. Then we have by Lemma 4.6(2)

O[s;r] = O[µx[s'];r] = Jim,, O[s~(ll>; r].

Now we shall prove in a minute that

(4.2)

for all n and for all r'. Once we have proved this, we can calculate

O[s;r] = lim,, O[s~(ll\r] (Lemma 4.6(2))

= lim,,(O[s~<"l;J]:O[r]) (property (4.2))

= (Jim,, (continuity of":")

= O[s;J]:O[r] (Lemma4.6(2)),

which is what we wanted.
We still have to do the proof of property (4.2), which runs by an induction on n

(nested within our original induction on the complexity of s). For the case n = 0,
we have s:(oi = f!, so O[s~'0 \r'] = l.. = l..:O[r'] =

For the induction step we assume that property (4.2) holds for a certain value of
n. Then we can apply the main induction hypothesis fork+ 1 to s' with x1, ... , xk+i =
X1, ... , xk, X and S1, ... , Sk+I = S1, ... , sk, s:(n) in order to get

O[s:(n+l>;r'] = O[s'[s:'")/x];r']

= O[s'[s,/x;]~:11;r']

= O[s'[sJ X;]}:1\JD:O[r']

=

170 P. America, J. De Bakker

4.10. Corollary. For closed and guarded s, O[s;r] = O[s;JE:O[rE,

We are, at last, sufficiently prepared for the main theorem of this section.

4.11. Theorem. Lets E Y'uct, not necessarily closed, and let the set of free statement
variables of s be contained in {x1 , ••• , Xm}, m;;,, 0. Let s1 , ••• , sm be closed and guarded
statements, let s = s[s;/ X;] 7: 1, and define (!)[r] by

m[ED = = AX.X, lll[s';r] = AX.(O[s';J]:lD[r](X)).

Let furthermore cp; = (!)[s;; E] for i = 1, ... , m, and let -y = y{ cp;/ x;};"= 1• Now ifs is also
guarded, we have

(!)[s;E] = Qo[s](-y).

Proof. Very similar to that of Theorem 3.19. We shall prove two cases of old
statements plus the case of the new statement.

Case 1: s = s';s"

(!)[s;E]

= (IJ[(s';s");E]

= AX.(O[:(l)[E](X))

= AX.(O[s'; (s";J)]:X) (Lemma 3.7)

= AX.(O[s";J]:X)) (Corollary 4.10 and Lemma 4.8(3))

= AX.(IJ[s';E](lD[s";E](X))

= AX.Qo[s'](-y)(Qo[s"](-y)(X)) (ind. hyp. for s' ands")

= Qo[s';s"](-ji) = Qo[s](-y).

Case 2: s = µy[s']. As in Theorem 3.19, let us defines'= s'[s;/ x;];"= 1 and calculate

(!)[s;E] = AX.(O[s;J]:X) = AX.limn(O[s','.nJ;J]:X) = limn (!)[st\£].

Here we have used Lemma 4.6(2) and the continuity of":". From this point on the
argument follows exactly the same lines as in Theorem 3.19.

Case 3: s = new(s').

lD[new(s');E]

= AX.(O[J,s';E]:X)

=
= AX.(O[s';E]IIX) (Lemma 4.8, parts (6) and (4))

= (Corollary 4.10)

= AX.((IJ[s';E]({E}) IIX) (Lemma 3.7 and def. of lD)

= AX.(Qo[s'](-y)({E}) II X) (induction hypothesis)

= ffi[new(s')](-y) (Definition 4.5).

Equivalent semantic models for process creation

4.12. Corollary. For guarded t E Xud we have O[t] = f0[t].

Proof. Clear from Theorem 4.11.

171

We have thus completed the semantic analysis of Xud, and are now ready for the
generalization to the nonuniform case.

5. A nonuniform and static language

This section is devoted to the semantic definitions for a nonuniform and static
language. The elementary actions are now interpreted, viz. as assignments and
communication actions. However, for the moment we return to a static framework,
and leave the treatment of the dynamic case to the next section.

5.1. Syntax

The nonuniform framework involves the introduction of three new syntactic
classes:
• The set IndV of individual variables, with typical elements x, y. For IndV we

take an infinite alphabet of variable names.
• The set Exp of expressions, with typical element e.
• The set Test of conditions, with typical element b.
We shall return to the syntax for expressions and conditions in a moment. Note
that we have changed the notation with respect to Sections 3 and 4 in that we now
use x, y for individual rather than statement variables. For the latter purpose we
here use variables v ranging over Stm V. (The nonuniform framework has no streams,
so we can freely use the letters u, v, w.)

In the static case, a program will again be composed of n components s1 , ••• , sn-
Contrary to the uniform case, we are also interested in the identity of, in general,
the ith statement (or process, in a terminology used, e.g., in CSP [31, 32]), and we
introduce for this purpose the set I = { 1, 2, ... } of indices, with i, j, k, I ranging over
I. Typically, indices i,j will be used in communication statements of the form i?x
or j !e, denoting communication of two sorts: The first occurs, in general, in some
process k and requires a value for the variable x from process i. The second occurs,
say, in a process I and sends the current value a of the expression e to process j.
In the case that k = j and I= i and, moreover, the communications synchronize in
the usual sense, then the "handshake" communication can indeed take place, and
the variable x takes the value a. Once more, this informal description requires
formal definition, to be elaborated in the sequel.

The last syntactic set we need to introduce is that of (individual) constants. We
shall not bother to make a distinction between syntactic constants and semantic
(basic) values, and use the set V, with typical elements a, /3, for both purposes.

We now define the syntax for Y'nus and Xnus (and for Exp).

172 P America, 1. De Bakker

5.1. Definition. (I) Let e range over the set Exp of expressions:

e ::= x I a I e1 op e2 I ope'

(Here op stands for an arbitrary binary or unary operator. We prefer not to take
the trouble to introduce general n-ary function symbols into our language.)

(2) We do not specify a syntax for the elements b of Test. We only require that
their evaluation terminates and takes place without complications such as side-
effects.

(3) Let s range over the set Ynus of nonuniform and static statements:

s ::= x := e Is,; s2 Iv I µv[s'] I if b then s1 else s2 fi I i?x I i!e

(4) Let t range over the set :£nus of nonuniform and static programs:

We require that the statements s 1 , ••• , sn are closed and furthermore that every
index i occu.ring in t actually corresponds to a component statement, i.e., i n.

We see :£nus is similar to (classical) CSP (as in [31]). There are also important
differences: the absence (in :£nu.> of guarded commands with communication in
guards or features such as the distributed termination convention. On the other
hand, :£nus has full recursion rather than only iteration. Compared with :£us, we
have simplified :£nus by dropping the "u" operator. Extension of the treatment
below to cover "u" is not difficult and we leave it to the reader.

5.2. Operational semantics

We proceed with the development of the framework for the operational semantics
for :£nus. Syntactic continuations r are, as before, defined by

r ::= Ejs;r'

wheres is closed. Instead of parallel syntactic continuations pin the form of n-tuples
r1 , ••• , rn, we now let p range over sets of the form

where all the indices i1 , ••• , in must be different. Thus, in the pair (i, r), we make
explicit the identity of the component r. We shall not require that every index i
occurring in a communication statement i !e or i?x within p also occurs as the first
component of a pair (i, r) E p.

We shall often use the notation p u {(i, r;)}, with the convention that pis supposed
not to contain an element of the form (i, r'). Such a condition also applies to the
notation p u {(i, r;), (j, r)}: here we suppose that i ,t=. j and that p does not contain
an element whose index is i or j.

The next step in the development of the semantic model is the introduction of
states, and of the meaning or evaluation function for expressions (and conditions).

Equivalent semantic models for process creation

5.2. Definition. (1) The set of states ..r, with typical element a, is defined by

...r (IndV V).

(2) We define the meaning function for expressions,

[· l (..r V)),

as follows:

[xTI(i)(a) = a(i)(x), [aTI(i)(a) = a,

[e, op e2TI(i)(a) = ([e,TI(i)(a)) OPsem([e2TI(i)(a)),

[op eTI(i)(a) =op,em([eTI(i)(a)).

Here we use OP,em for the semantic operator corresponding to op.

173

(3) We do not give a detailed definition of[bTI(i)(a), which yields an element of
the set of truth values {t, f}.

The operational semantics for Y'nus and 5£nus is again given through a transition
system. This time, configurations are of the form (p, a). Transitions are pairs of
configurations written in the form

(p, (p', a').

There is no special role here for (an equivalent of) the ..l-action.
Nonuniform transitions involve states rather than streams as the intermediate and

final results. Since states are entities which are not naturally amenable to the
operation of merging, we shall encounter below the necessity to resort to additional
means to formulate results which are counterparts of uniform facts such as O[r1 , r2TI =
O[r,n II O[r2TI-

We first give the transition system :Ynus for 2nus · Extending the formalism of the
uniform case, we also employ rules, written in the format

The meaning of such a rule is the following: In case a transition 1 2 is an element
of :Ynus, then the rule allows us to infer that 3 4 is a valid transition of :Ynus as well.

Remark. Our framework for the operational semantics gives us quite some freedom,
so that we can choose whether to use a rule or an axiom to express the semantics
of a certain construct. The intuitive meaning remains the same, but technically an
axiom needs a transition to perform a certain transformation, while a rule does not.
We could, in fact, formulate the operational semantics for 2nus in terms of axioms
only, but we prefer the version as adopted below. The reason for this is our wish
to stay as close as possible to the denotational semantics to be developed sub-
sequently. The denotational framework does not provide so much freedom, mainly
because of the necessity to arrive at contracting operators having unique fixed points.
We have chosen the denotational semantics with the least possible number of
computation steps, and tuned the operational semantics to match it.

174 P. America, J. De Bakker

5.3. Definition. The transition system :!Fnus specifies the relation between
configurations of the form (p, <;r) as the smallest relation which satisfies the following
axioms and rules:

(p u { (i, (x := e); r)}, (p u {(i, r)},er')

where er'= er{er(i){,8/x}/i} and ,8 = [e](i)(er).

(p u {(i, s1 ;(s2 ;r))}, (p', er')
(p u {(i, (s1 ;s2);r)}, (p', er')'

(p u {(i, µv[s];r)}, (p u {(i, s[µv[s]/ v];r) }, er),

(p u {(i, if b then s1 else s2 fi;r)}, (p u {(i, s1 ;r)}, er)

in case [b](i)(er) = t, and an analogous axiom for the case [b](i)(er) = f.

(p u {(i, (j?x);r1), (j, (i!e);r2)}, (p u {(i, r 1), (j, r2)}, er')

where er'=er{er(i){,8/x}/i}, and ,8 =[e](j)(er).

Ass

SeqComp

Rec

Cond

Comm

Remarks. (1) Observe that no transition is defined for a configuration (p u
{(i, (j?x);r)}, er) in the case that p does not contain the matching pair (j, (i!e);r')
(and a symmetric observation).

(2) The difference in treatment between SeqComp and Rec-the first as a rule,
the second as an axiom-is motivated by the corresponding definition in the
denotational semantics (which will be given in Definition 5.8). In operational terms,
replacing (s1 ;s2);r by s1 ;(s2 ;r) does not take a time step, whereas the replacement
of µv[s] by s[µv[s]/v] does take a (silent) time step, (i.e., a step that does not
change the state). In a uniform setting, the same effect would be obtained by
transforming each recursive construct µx[s] into µx[skip;s] where skip is a special
elementary action denoting the silent step. Accordingly, the automatic introduction
of silent steps obviates the need for the guardedness restriction.

(3) In the axioms Ass, Cond, and Comm we see how the evaluation of an expression
e or condition b is parameterized by the index of the statement which contains the
occurrence of the expression or condition involved. Effectively, this means that
different components are treated as if they had disjoint sets of variables.

The transition system :!Fnus is a natural generalization of the corresponding systems
:!Fus and flud. What is more difficult is the definition of O'[p] and O'[tl a formulation
which is a straightforward extension of the uniform approach is not feasible,
assuming that we want to express results which are variations on relationships such
as

(5.1)

Two problems arise when we consider (5.1). The first concerns the basic question
as to well-formedness of (5.1): we have as yet no outcome for O'[p] which allows

Equivalent semantic models for process creation 175

the operation of merging to be applied to two instances of it. The second may be
considered as a more "practical" one: In a situation where p 1 involves a send and
p2 a matching receive communication, p 1 u p2 will allow a matching transition by
the Comm axiom, whereas the components p1 and p2 separately do not allow the
corresponding send and receive actions to proceed. Thus, we expect that neither
O'[p1] nor O'[p2] will contain the necessary information enabling the communication
to take place through the semantic operator "II" (in whatever way the latter will be
defined).

In order to solve the principal problem, we apply a new method, which might
be considered somewhat drastic in an operational context: we choose to deliver a
process, now taken in the technical sense of Section 2.3, as the outcome of O'[p].
Thus, the outcome of O'[p] is an element of a certain process domain P obtained as
the solution of an appropriate recursive domain equation P = :Ji,(P), where the form
of :Ji, is to be determined in a moment. We intend to show that, by adopting this
approach, we achieve two goals: Firstly, we shall be in a position to define "II" as
an operation on processes and to apply it to O'[p1] and O'[p2] above. Secondly, since
we shall employ processes as well in our denotational model, we have a much
smaller distance to bridge between the operational and denotational definitions.

The domain equation we use to determine the appropriate process domain P
exploited below is described in the following definition.

5.4. Definition. (1) Let the set Comm of communications, with typical element T,

be given by

Comm= Ix (J?IndVu l!V).

(The delimiters"?" and "!" are used here to underline the connection with statements
of the form i !x and i !e. Properly speaking, they are cosmetic variants of the Cartesian
product operator "x".)

(2) Let the set Step of steps, with typical element T/, be given by

Step = 1: u Comm.

(3) Let the function :Ji, be given by

:Ji,(P) = {p0} u (1: {J}c1(Step x P)).

(4) Let P be the process domain solving the equation P = :Ji,(P). We shall use
p, q to range over P.

(5) Let P0 = {p0}, Pn+i = :Ji,(Pn). By the general theory (Section 2.3) we know that
each p E P is either an element of some Pn, in which case we shall call p finite, or
else p is called infinite and there is a Cauchy sequence (Pn)" with Pn E Pn such that
p = Jim" Pn· For finite p, we call the smallest n such that p E P" its degree.

(6) We shall use X, Y to range over {J}c1(Step x P) and 7r to range over Step x P.

176 P. America, J. De Bakker

Example. We have ((i,j?x), p)E Step x P. Below, we shall always adopt for this the
simpler notation (i,j?x, p).

We proceed with the semantic definitions for the familiar operators"·" and "II",
this time defined as mappings P x P P. We shall in fact propose two definitions.
The first one is probably simpler, and is based on an induction on the degree for
finite processes. The second one involves Banach's theorem and is given here to
familiarize the reader with its subsequent use in definitions where the simpler
inductive definition is less convenient.

5.5. Definition. Let p, q E P. We define p · q and Pllq as follows:
(1) (Definition by induction on the degree of p and q.) We first consider the case

that both p and q are finite. We put Po· p = PollP = PIIPo = p. If p is (or if p and q
are) different from p0 , we put

p · n = Au.(p(u) · q),

Pllq = Au.((p(u)llq) u (q(u)IIP) u (p(u)I,, q(d)))

where X · q = { 1r • q l1rE X}, Xllq ={1rljq I 1r EX}, (11, p') · q =(11, p' · q), and
(11, p')II q = < 11, p'II q) (note that, here, the degree of p' is less than the degree of p, or
the maximum of the degrees of p and q). Moreover,

Xl<T Y = LJ { 1T1la 1T2 I 1r1 EX, 1T2 E Y},

where 1r1 I" 1r2 is defined by

(i,j?x, P1)la- (j, i la, P2) = { (u', P1 IIP2)}

with u'=u{u(i){a/x}/i}, together with a symmetric clause, and 1r1l,,1r2=0 for
1r1, 1r2 not of the above form.

Finally, for p or q infinite, so that we have p = lim" Pn and q = Jim" q" with
p,,, q,, E P,,, we put p. q = limn(Pn. qn) and Pllq = limnCPn llqn)-

(2) (Definition with Banach's theorem.) We define "·" and "II" as the unique
fixed points of the contracting (higher-order) functions <P, 1Jf: (P x P P)

given in the following manner: Let be arbitrary. We
now define <P(cp) and 'IJf(ijJ). Let us abbreviate <P(cp)(p, q) to pcpq and 1fr(l/l)(p, q)
to p ,frq. Then we put

_ { q if p = Po,
pcpq = Au.(p(u) cpq) if p 7"c Po;

{
q ifp=po,

pl/Jq= P ifq=po,
Au.((p(u) Jq) u (q(u) Jp) u (p(u)la,t/J q(u))) otherwise;

where Xcpq={1r¢ql1rEX}, X$q={1rifrql1rEX}, (11,p')cpq=(11,p'cpq),
(11,p')ifrq=(11,p'I/Jq), and where

Xla.1/J Y = LJ { 1T1la.t/J '7Tz I 1r1 EX, 1T2 E Y}.

Equivalent semantic models for process creation 177

Here 1ril"·"' 7T'2 is given by

(i,j?x, Pi)I"·"' (j, i!a, P2) = {(a', Pi i/lP2)}

with a'= a{ a(i){ a/ x }/ i}, together with a symmetric clause, and 7T'i I.,.,"' 7T'2 = 0 for
7T'i, 7T'2 not of the above form.

Now we define"·" to be the unique fixed point of <P and "II" as the unique fixed
point of 'fr.

It should be clear from these definitions that they are variations on one theme:
in the second an appeal to Banach's theorem replaces the inductive argument of
the first. We omit the proof that the above definitions are justified (and that they
define the same operators). Details of a very similar proof are given in [7].

We are now ready for definition of the operational semantics of ::£nus·

5.6. Definition. (1) We define O'[· l PSyCo P as follows: Let p E PSyCo. If pr;;_
{(I, E), ... , (n, E)}, we put O'[p] = p0 • Otherwise,

O'[p] = Aa.{(a', O'[p'])l(P, a')}

where, of course, the transition relation is the one given by ff nus·

(2) The function O'[·]: ::£nus-~ Pis defined as follows. Let t = Si II · · · llsn. Then

O'[t] = O'[{(l, si;E), ... , (n, Sn;£)}].

It is not difficult to verify that()' as given in part (1) of this definition is well-defined.
Once more, we deduce this by the following reasoning: Let the (higher-order)
mapping F: (PSyCo P) (PSyCo P) be defined in the following manner:

F(,,tt)() = {Po if pr;;_ {(1, E), ... , (n, E)},
p Aa.{(a', .At(p'))l(P, a')} otherwise.

Then Fis a contracting mapping, and O' as given in Definition 5.6(1) is the unique
fixed point of F.

Remarks. (1) It is not difficult to establish that, for each (p, a), there are only finitely
many (p', a') such that (p, (p', a'). Hence, the set occurring in the Aa.{ ... }
clause in Definition 5.6(1) is finite and therefore closed.

(2) Note that O[p] = Aa.0 may well occur. For example, 0[{(1, (2?x);E)}] = Aa.0
since there are no transitions ({(1, (2?x);E)}, defined in ffnus· In general,
(} does not preserve information on one-sided attempts at communication.

(3) Processes p which equal O'[p] for some p are in fact elements of a process
domain P' which satisfies

This is the case since no steps in Comm x P are delivered by the transition relation
The more involved process domain Pis exploited in full only in the definitions

of O'* and of the denotational semantics r:!lJ, both of which we shall discuss presently.

178 P. America, J. De Bakker

Now that we have given a process interpretation for 0[p], yielding results in a
domain for which "II" is well-defined, we have a well-formed question to ask: is it
true that 0[p 1 up]= 0[p 1] II 0[p2]? The answer is negative-for the same reason as
already explained earlier. However, a not too far-fetched variation on this property,
which does indeed hold, will be presented soon. Rather than immediately getting
to this, we first develop the denotational semantics for :£nus. In this way, the reader
may acquire some additional appreciation for the way we utilize the process notion
in our framework. In fact, a combination of ideas involving:
• the tools of environments and semantic continuations as employed in Section 3,
• the operational semantics of :£nus, and
• the definition(s) of "II"
will altogether provide most of the background to understand the denotational
definition.

5.3. Denotational semantics

We introduce semantic continuations and environment-sin the following definition.

5.7. Definition. (1) The set of semantic continuations is given by SeCo =def P.
(2) We define the set of environments by r = def Stm V (SeCo NDt P)).

We shall use p, q to range over SeCo and -y to range over r.

The definition of 'liJ will be given for all s E gnus and all t E :£nus· Thus, the
restriction to statements with only guarded recursion is lifted. As remarked earlier,
this is explained by our definition of recursion which involves a treatment of recursive
calls such that always at least one initial "silent" step is made upon "procedure
entrance". That is, (the equivalent of) a transition is made which does not affect
the state but which does take (what may be seen as) one unit of time. For example,
execution of µv[v] will result in an infinite sequence of such silent steps (rather
than in just l. as in the uniform case). All this is a matter of taste rather than of
principle. One may disagree with our feeling that silent steps are more natural in a
nonuniform than in a uniform setting.

We now give the definitions of 'liJ[s] and of 'liJ[t]. We shall often suppress
parentheses around arguments of functions for easier readability.

5.8. Definition. (1) We define the function

NDI
'liJ[(SeCo - P)))

as follows:
(a) 'liJ[x := e]yip = Acr.{(cr', p)}, where cr' = cr{cr(i){ a/ x}/ i} and a= [e]icr;
(b) 'liJ[s1 ;s2hip = 'liJ[s1hi('liJ[s2hip);
(c) 'liJ[if b then s1 else s2 fi]yip

= Acr.{(cr, if [b]icr = t then 'liJ[s1]-yip else 'liJ[s2]-yip fi)};

Equivalent semantic models for process creation 179

(d) ~[v]yip = y(v)ip;
(e) ~[µ,v[s]]yip = 'Poc(i)(p) where 'Poc is the unique fixed point of the operator

<P, which maps the space (SeCo NDI P) to itself, and is given by

<P(cp) = Ai.Ap.Au.{ (u, ~[s]y{ cp / v }ip) };

(f) ~[j?x]yip = Au.{(i,j?x, p)};
~[j!e]yip = Au.{(i,j!a, p)}, where a= [elliu.

(2) We define the function ~[· Il: Y.'nus P as follows: Let t = s1 II · · · llsn and let
y be arbitrary. Then

Remark. The definition in clause (I)(e) above is justified by the fact that the function
<P is contracting. Note that its unique fixed point can again be obtained as 'Poc =
limk 'Pk, where 'Po is arbitrary and

'Pk+i = <P(rpk) = Ai.Ap.Au.{(u, ~[s]y{rpdv}ip)}.

Examples. (1) ~[µ,v[v]]yip=Au.{(u,Au.{(u, ...)})}.
(2) We have

~[(2?x)ll(l !3)Il = ~[2?x]ylpo II ~[I !3]y2po

def
=Au.{(l,2?x,po)}IIAu.{(2, 1!3,po)} = q1llq2

= Au.{(l, 2 ?x, q2), (2, I !3, q1), (u{ u(I){3/ x} /I}, Po)}.

The resulting process, say q, contains two steps resulting from one-sided (failing)
communication: (I, ...) and (2, ...). Moreover, there is one step resulting from
successful communication: (u{ ... }, p0), where 3 is assigned to x. We recall that the
latter step ultimately results from the definition of 1r1 j,, 1T-:. (or 1r1 I"·'' 1r2) given in
Definition 5.5. The operation of abstraction, to be introduced in a moment, will
simplify the result q to just Au.{(u{ ... }, p0)}, throwing away the unsuccessful parts
0, ...) and (2, ...).

5.4. Equivalence of operational and denotational semantics

We return to the question concerning the (non)compositionality of 0. We shall
introduce an extension of :Ynus to :Y~us, which induces an associated operational
semantics O*, and we then settle the relationship between 0, O*, and f/i.

5.9. Definition. (1) We expand the notion of configuration such that it includes
pairs of the form (p, TJ) (recall that T/ ranges over Step= 1: u Comm). Therefore, in
addition to configurations of the form (p, u), we also consider configurations of the
form (p, r). (Actually, the latter ones will only occur on the right-hand side of a
transition.)

180 P. America, J. De Bakker

(2) The transition system .'f;;\" extends the system .'Jnus of Definition 5.3 by adding
to it the axioms

(p u { (i, (j?x); r), u) (p u { (i, r)}, (i,j?x)),

(p u {(i, (j!e);r)}, (p u {(i, r)}, (i,j!a))

where a =[e]iu. Moreover, the rule SeqComp of .'Jnu,:

(p u {(i, s, ;(s2 ;r))}, (p', u')
(p u { (i, (s, ;s2);r)}, u) (p', u')

is replaced by

(pu{(i, s1 ;(s2 ;r))}, T) 1)

(p u {(i, (s, ;s2);r)}, u) (p', TJ'} ·

(3) The operational meaning eJ*: PSyCo P is defined by

lndComml

lndComm2

•*rr {Po if p {(1, E), ... , (n, E)},
O ~p]= otherwise.

(Here we as determined by .'J~us·)
(4) The operational meaning eJ*: 2'nus defined as follows: Lett= s, II · · · II Sn.

Then

eJ*[tD = eJ*[{(l, S1 ;E), ... , (n, Sn ;E)}].

Following the detailed analysis as in [16], it is not difficult to prove the following
theorem.

5.10. Theorem. eJ*[p, u P2] = eJ*[p,] II eJ*[p,].

For example,

eJ*[{(l, (2?x);E), (2, (1 !3);E)}]

= Au.{(1, 2?x, p 1), (2, 1 !3, p2), (u{ u(l){3/ x }/ 1}, Po)}

where p, = Au.{(2, 1 !3, p0)} and p2 = Au.{(1, 2?x, p0)}. Thus,

eJ*[{(l, (2?x);E), (2, (1 !3);E)}] = Au.{(1, 2?x, p0)} 11 Au.{(2, 1 !3, Po)}

= eJ*[{(l, (2?x);E)}] 110*[{(2, (1 !3);£)}].

The relationship between eJ and eJ* is settled by the introduction of an abstraction
operator abs: P P' (with P' as given in remark (3) after Definition 5.6). When
applied to some p E P, abs (p) deletes from p all pairs (7, p') which occur anywhere
"inside" p: all unsuccessful attempts at communication disappear, and only the
results of successful communications remain, together with the "normal" steps
caused by, e.g., assignments. Again (as was the case with any p), abs(p) may have
(inner) branches of the form Au.0-a phenomenon which is often called deadlock.

The abstraction operator is defined as follows.

Equivalent semantic models for process creation 181

5.11. Definition. For finite p we put abs(Pc>) = p0 , abs(AO".X) = AO".abs(X), and

(Note that a pair (r, p') EX will not contribute to abs(X).) For infinite p, with
p = limn Pn and p,, E Pn, we take abs(p) = limn abs(Pn).

Again relying on the general results in [16], we have the following theorem.

5. 12. Theorem. (J = abs O O*.

The final part of this section is devoted to the proof of the equality of O* and ~-

5.13. Theorem. For all t E 2nus, O*[til = ~[tE.

The proof closely follows the strategy applied for the uniform version of this
result described in Section 3. We first state a simple lemma on O* which we need
below.

5.14. Lemma. (I) O*[{(i, (x := e);r)}D = A0".{(0" 1 , O*[{(i, r)}Il)}, with 0" 1 as usual.
(2) O*[{(i, (s, ;s2);r)}Il = O*[{(i, s, ;(s2 ;r))}Il.
(3) O*[{(i, if b thens, else s2 fi; r)}Il

= AO".{(O", if[biliO" then O*[{(i, s 1 ;r)}Il else O*[{(i, s2 ;r)}Ilfi)}.
(4) O*[{(i, (J?x);r)}Il = AO".{(i,j?x, O*[{(i, r)}Il)}.
(5) O*[{(i, (j!e);r)}Il = AO".{(i,j!a, O*[{(i, r)}Il)} where a= [eiliO".
(6) O*[{(i, (j?x);r1), (j, (i!e);r2)}Il = AO".{(i,j?x, O*[{(i, r 1), (j, (i!e);r2)}Il),

(j, i!a, V*[{(i, (.i?x); r,), (j, r2)}Il), (0" 1
, O*[{(i, r 1), (j, r2)}D)} with a =[eiliO" and 0" 1 as

usual.

Proof. Easy from the definitions of gtus and O*.

Remark. Note that part (2) of this lemma would not hold in the form as given if
.:f,ws contained an axiom for SeqComp, rather than a rule. Conversely, part (3)
would not hold if we had a rule for Cond, instead of an axiom.

The next lemma applies some notation which is a slight variant of the one
introduced preceding Theorem 3.18. Let us, temporarily, add the statement skip to
our language, with an associated transition

(p u {(i, skip;r)}, O") (p u {(i, r)}, O") Skip

(note that we could take skip as another name for x := x). Let, for given s and v,
s~"l be defined by s~0 >=skip and s~"+ 11 =skip;s[s~"l/v]. We can then prove the
following lemma, once more using the framework of [16].

182 P. America, J. De Bakker

5.15. Lemma. For closed s:

We are now ready for the statement of the main step in the proof of Theorem 5.13.

5.16. Lemma. Lets E Y'nus be arbitrary (not necessarily closed) and let the set of free
statement variables in s be contained in { v1 , ••• , vk}, k;;, 0. Let s1 , ••• , sk be closed
statements, and lets= s[sh/ vh]~=i• Let, for any p, m[pil be short for Ap.(O'*[pil · p).
Let, furthermore, for h = 1, ... , k,

m[{(i, s;E)}Il = fiil[sil(-y)(i).

Proof. Induction on the complexity of s, following the argument as given in the
proof of Theorem 3.19, but for the addition of an extra parameter i, and replacement
of X by p (and using Lemmas 5.14 and 5.15 to deal with the individual cases). D

5.17. Corollary. For closed s:

m[{(i, s;E)}Il = fiil[sil(y)(i).

Now it is easy to prove Theorem 5.13.

Proof of Theorem 5.13. Take any t = s111 · · · llsn. Then

O'*[til = O'*[{(l, S1 ;E), ... , (n, Sn ;E)}Il

= O*[{(l, S1 ;E)}Il II • • • II C*[{(n, Sn ;E)}l

By Corollary 5. I 7, we have for each i that

O'*[{(i, S;; E) }Il = O'*[{ (i, S; ;E) }Il . Po= m[{ (i, S;; E)H(Po)= fiil[sJ('Y)(i)(Po).

Thus,

O'*[t] = O'*[{(l, S1 ;E)}Il II · · · IIO'*[{(n, Sn ;E)}Il

=fiil[s1Il(y)(l)(po)II · · · llfiil[snil(y)(n)(po)=fiil[til. D

Remark. Contrary to the situation for the uniform case, we have at present investi-
gated only metric (operational and denotational) models for 5t nu,. Therefore we
have no information on the feasibility of order-theoretic models for this purpose.

Equivalent semantic models for process creation 183

6. A nonuniform and dynamic language

We have, at last, arrived at the presentation of the semantic models of a nonuniform
and dynamic language. Not surprisingly, it brings a synthesis of the ideas of Sections
4 and 5; for the reader who has understood these sections, the present section
contains few surprises. Still, some technical difficulties which are not straightforward
from previous considerations remain to be overcome.

6.1. Informal introduction and syntax

As usual, we begin with the syntax. Statements are almost as before, but for the
fact that communications i?x or i !e (with static i, 1 i n) are now replaced by
communications e?x or e !e', in which the value of the expression e is (the name
of) a dynamically created process. The expression itself can be, for example, a
variable, in which this process name is stored. The syntax of expressions also contains
an essential new clause, viz. "new(c)". This expresses that a new process (of class
c) is to be created. Each program consists of a set of class declarations (ck¢:: sk) Z - 1,

and, assuming that c above equals ck for some k, the (side-)effect of new(c) is the
creation of a new process which will execute the statements= sk. Here we have the
counterpart of the construct new(s) in Section 4. In addition, this new process is
referred to by a (new) name, say a, and the value of the expression e will be this
name a. Therefore, in the (common) case that new(c) occurs in an assignment
x := new(c), the name a of the newly created process is assigned to x. In this way,
upon subsequent occurrences of x in, e.g., x !e, it is known that the value of e has
to be sent to process a.

We now give the formal syntactic definitions. Let CNam be the collection of class
names, with typical element c. Let IndV and Stm V be as before, and let a and f3
range over the set Obj of objects to be defined presently.

6.1. Definition. (1) The set Exp of expressions, with typical element e, is defined by

e ::= x I a I e10P e2 I ope' I new(c)

(Here, again, op stands for an arbitrary binary or unary operator.)
(2) We do not give a detailed syntactic definition for the set Test of conditions

(with typical element b) but we assume, for simplicity, that conditions (unlike
expressions) can be evaluated without side-effects.

(3) We define the set Ynud of statements, with typical element s, by

s ::= x:= e I s 1 ;s2 Iv I µv[s'] I if b then s 1 else s2 fi I e?x I e!e' I ?x I !e

(4) The set 2nud of programs, with typical element t is defined by

t ::= (c1¢::s1 , ••• ,cn¢::s,.) (n;e,1).

Here we require that all the si are closed, that all the c, are different, and that any
class name c occurring in any si (in the context new(c)) is one of c1 , ••• , c11 •

184 P. America, J. De Bakker

Remarks. (l) In Ynud we allow communications of the form ?x or !e which do not
name a corresponding process (they are, in fact, willing to communicate with any
other process). However, we shall require, in order that a match be established
between a pair of send and receive statements, that at least one of the two explicitly
identifies the process in which the other occurs. (Hence, no communication t'lkes
place between ?x and !e.)

(2) By convention, executing a program t = (ck ¢:=sk>Z-, is initiated by executing
the statement x := new(c,), for some fresh x (i.e., some individual variable not
occurring in t). In other words, a process of class c1 is created implicitly. (Its name
is stored nowhere, so this process cannot be addressed explicitly by other processes.)

(3) Note that we now have two forms of recursion, one in constructs of the form
µ v[s] and the other in case of a declaration such as c ¢= · · · c · · · .

The set Obj of objects replaces the set of values v which we encountered m
Section 5. It consists firstly of the so-called standard objects SObj. Here one may
think of the union of the set of values V and the truth-values {t, f} as employed in
Section 5. Moreover, we now also have the set of so-called active objects AObj,
which consists of the names of processes as mentioned in the introductory paragraph
of this section. In fact, we may see A Obj as the generalization of the set I of Section
5. We define AObj as

A Obj= CNam x N

where N is the set of nonnegative integers. At each moment an active object (c, /)
is the name of the /th process of class c, i.e., the process created by the Ith execution
of a new(c) construct.

From now on we shall use the term "object" in the above sense, i.e., for an
element of AObj, not to confuse it with the technical term "process" in the sense
of Section 2.3, the precise meaning of which we shall give in Definition 6.5.

6.2. Operational semantics

We proceed with the preparations for the operational semantics for Xnud. Firstly,
we refine the class of syntactic continuations, by distinguishing between statement
continuations and expression continuations.

6.2. Definition. (1) The class of syntactic statement continuations SyStCo, with
typical element r, is defined by

r ::= E I s; r' I e: g

wheres is closed. (The colon":" used here should not be confused with the semantic
operator ":" as introduced in Definition 4.7. Here it is simply a syntactic symbol,
comparable with";".)

Equivalent semantic models for process creation 185

(2) The class of syntactic expression continuations SyExCo, with typical element
g, is defined by

g ::= Az.r

where z E IndV. Here z may not occur as the left-hand side of an assignment in r.
(3) The class of parallel syntactic (statement) continuations PSyCo, with typical

element p, is defined as the collection of sets of the form

where the a; are different elements of AObj.

The intuitive meaning of a syntactic expression continuation g = Az.r is to describe
a computation which depends on some value. The variable z serves as a placeholder
for this value in r. When g is given a value, i.e., an object a E Obj, then it delivers
a syntactic statement continuation r[a/z] (where the value a'is put in the place of
z). A syntactic statement continuation r of the form e:g is executed by first evaluating
the expression e (which may or may not take some time steps or have some side-effect)
and then feeding its value into g in the way described above. This yields a syntactic
statement continuation which is executed subsequently.

We also extend the class of states by introducing a second component, as follows.

6.3. Definition. We define the set of states by 1: = 1:1 x 1:2 , with typical element
a= (a, 11 , a(2)). We put 1:1 = AObj (JndV Obj) and 1:2 = CNam

A state a has the following function:
• The first component a(I I is as a in Section 5, but for the replacement of I by

A Obj and of V by Obj. Thus, for any object a and individual variable x, u(l 1(a)(x)
is the value of a's x-variable.

• The second component a(2) records for each class name c the number I= a(21 (c)
of objects of that class that have been created up to this point.
We shall usually suppress indices and simply write a, also in cases where a(l) or

a(2) is meant.
In the transition system to be presented in a moment, we shall take into account

the fact that evaluation of expressions may now be more involved since they may
contain new-constructs. For reasons of simplicity, we shall not include a similar
extension in our treatment of conditions. We shall, just as in Section 5, assume that
evaluation of a condition b-expressed by the notation [b](a)(a)-is simple and
has no side-effects. (Of course, it is a minor exercise to adapt the treatment below
to cover the case of conditions which may include new-constructs.)

The operational semantics for ~'irnd is given in terms of a transition system Ynud

of axioms and rules for configurations (p, a). Throughout, Ynud assumes one fixed
program t=(ck¢sk)~=i, and we shall also assume that all class names occurring
in any statement are declared in this program t. (We might carry the information

186 P. America, J. De Bakker

contained in t along as an extra component of the configuration, but we find this
too cumbersome.)

6.4. Definition. The transition system ;J"nud is given by the following axioms and
rules:

(p u {(a, (x := {3);r)}, (p u {(a, r)}, u')

where u'=u{u(a){/3/x}/a}.

(p u {(a, e: Az.((x := z);r))}, u) (p', u')
(p u {(a, (x := e);r)}, (p', u')

Asst

Ass2

where z is a fresh variable, i.e., an individual variable not occurring in p, e, or r
(actually, it is sufficient to require that z does not occur in r). Note that this rule
is only useful if e is not itself a constant {3.

SeqComp, Rec, and Cond are as in Definition 5.3 (with a replacing i).

(p u {(a, e: Az.((z?x);r))}, (p', u')
(p u {(a, (e?x);r)}, u) (p', u')

with z fresh.

(p u {<a, e: Az.(e': Az'.((z !z'); r)))}, u) (p', u')
(pu{(a, (e!e');r)}, u')

with z and z' fresh.

(p u { (a, e: Az.((!z);r))}, u) (p', er')
(p u {(a, (!e);r)}, u) (p', u')

with z fresh.

Receivel

Sendl

Send2

(p u { (a, (f3 ?x);r1), (/3, (a !a');r2)}, u) (p u { (a, r1), (/3, r2)}, a') Comm I

where u' = u{a(a){a'/x}/ a}.

with u' as above.

with a' as above.

(p u {(a, x: g)}, (p u {(a, u(a)(x): g)}, u).

(pu{(a, r[/3/z])}, a')

(p U {(a, (/31 OPsem /32): g)}, (p', u')
(p u {(a, (/3 1 op /32): g)}, (p', u') ·

Comm2

Comm3

lndV

Obj

Binopl

Equivalent semantic models for process creation 187

Here, /3 1 OPsem /3 2 stands for the object /3 that results ifwe apply the semantic operator
OPsem corresponding to op to. the objects /3 1 and /3 2 •

(p u {(a, e1 : Az 1 .(e2 : Az2 .((z1 op z2): g) (p', a')
(p u {(a, (e 1 op e2): g)}, (p', a')

with z1 and z2 fresh.

(p U {(a, (OPsem /3): g)}, (p', a')
·

Binop2

Unopl

Again, OP,em /3 stands for the object /3 1 that results if we apply the semantic operator
OPsem corresponding to op to the object /3.

(p u {(a, e: Az.((op z): g))}, (p', a')
(pu{(a, (op e):g)}, a')

with z fresh.

(p u {(a, new(c): g)}, (p u {(a, f3: g), (/3, s;E)}, a')

where c¢:::s occurs in t,/3=(c,a(c)+l) and a'=a{a(c)+l/c}.

Unop2

New

Remarks. (1) In the New axiom, dealing with the case e = new(c), a new object
executing the statement s is created, and the name (3 = (c, a(c) + 1) is delivered as
the resulting value for e. As we already saw, (c, /) is the name of the /th object of
class c, and, for each c, a(c) stores the currently highest object number. This also
explains the update a' of a upon object creation.

(2) The general scheme to deal with expression evaluation is the following. If
the expression e occurs in a certain context, for example x := e;r, then an application
of a rule (in our example, Ass2) transforms the context to one of the form e:g (in
our case, e:Az.(x:= z;r)), indicating that first e is to be evaluated, after which its
value can be used. Because a rule is applied and not an axiom, this does not take
any time steps. Now the axioms IndV or New (which do take a time step) or rules
like Binopl and Unopl (which do not take time) will take care of the evaluation of
the expression. If necessary, the rules Binop2 or Unop2 will break the expression
further apart (again without taking time). After the expression has been evaluated,
the rule Obj will put the resulting object f3 back into the original context, and further
axioms or rules (in our example, Asst) will deal with this result f3 in an appropriate
way.

The step from .'fnud to the corresponding O' is very similar to the one described
in Section 5. We first introduce the relevant process domain.

6.5. Definition. (1) The set Comm of communications (with typical element T) is
defined by

Comm= AObj x (AObj?IndVu ?IndVu AObj!Obju !Obj).

188 P. America, J. De Bakker

(2) We define the set Step of steps (with typical element 7/) by

Step = 1: u Comm.

(3) The process domain P (typical elements p and q) is the solution of the
following domain quation:

6.6. Definition. (I) C'[·TI: PSyCo P is defined by

O[D={Po . ifp={(a1,E), ... ,(a",E)},
p Au.{(u', O[p'])j(p, u')} otherwise.

Remark. Although not specified here, the process p = O[tTI will of course be started
in a state a-0 , which satisfies uo(c,)=l and u 0(c)=O for c~c1 • The choice of this
a-0 and p above amounts to starting the computation with the first object of class
c1, while objects of other classes do not yet exist.

Anticipating the definition of Pllq, to be given in Definition 6.7, we again remark
that it is not the case that O[p 1 u p2] = O[p,TI II O[p2D, As before, we shall remedy this
by extending .'J nud to .'J~ud, and then introducing a corresponding extension of 0
to O*.

6.3. Denotational semantics

We proceed with the denotational semantic definitions. We first fill in the details
of the definition of the merge operator "II" (in this section, we do not use the
operator "· ").

6.7. Definition. Let 1/', 1/1, J;, J, J;, X, Y, and 1r be as in Definition 5.5(2), but with
P as in Definition 6.5. The only new element in the definition of "II" with respect
to Definition 5.5 concerns rr1 j ,,_,i, rr2 , which is here given by

(a, /3 ?x, P1) j,,_,i, (/3, a !a', P2) = {(u', Pi I/JP2)},

(a, ?x, p,) I"·"' (/3, a !a', P2) = {(u', Pi I/JP2)},

(a, /3 ?x, p,) l,,.,i, (/3, !a', P2) = {(u', Pi I/Jp2)}

with u' = u{ u(a){ a'/ x}/ a}, together with three symmetric clauses, and 1r1j,,_,1, rr2 = 0
for rr1 , rr2 not of the above form.

Equivalent semantic models for process creation 189

Corresponding to the distinction, for syntactic continuations, between statement
continuations r and expression continuations g, we have a similar distinction at the
semantic level: We have, besides the set of semantic statement continuations
SeStCo = def P (with typical element p), also a set of semantic expression continu-
ations SeExCo = def P, with typical element f.

Furthermore, corresponding to the two types of recursion, we accordingly have
two components of an environment, defined as follows.

6.8. Definition. The set of environments is defined by I'= I'1 x I'2 , with typical
element -y = (')'(1 >, 'Ym), where

NDI
I'1 = Stm V (A (SeStCo - P)) and I'2 = CNam (A P).

In an environment -y = ('Yen, 'Y!2J), the first component 'Yo> assigns an interpretation
to each statement variable, which gives a process after being told which object is
to execute the statement and which process is to be actiyated after this statement
variable. This first component corresponds to the environments as used in Section 5.

The second component 'Y< 2 > is important for the creation of new objects. When
given the class c and the name a of the object to be created, rm(c)(a) is the process
to be activated for it.

Again, we shall often omit the indices in dealing with environments.
We shall define two semantic evaluation functions qjJ and "€, the first for statements

and programs, and the second for expressions. Since expressions are now more
involved than in Section 5, we consequently need a more complicated definition of
their meanings. The relevant types are

NDI
qjJ[· D: (A (SeStCo--+ P))),

NDI
"€[· D: (SeExCo--+ P)))

and, in addition, qjJ[· D: 2nud P. We draw attention to the fact that "t[eD, when
supplied with some 'Y, a, and f, delivers a process p E P instead of some value
,Be Obj. Values (i.e., objects) which result from evaluating an expression are always
passed on to some expression continuation rather than being delivered explicitly
by the semantic function.

6.9. Definition. (l) The function "€ is defined by
(a) "t[xhaf= Au.{(u,f(u(a)(x)))};
(b) "t[,Bhaf = f(,B);
(c) ~[e1 op e2haf = "t[e1ha(A,B1. "t[e2ha(A,B2,f(.81 OPsem .82)));
(d) "€[op ehaf = "t[eha(A,B.f(opsem ,B));
(e) "t[new(c)haf = Au.{(u', -y(c)(,B)llf(,B))} where ,B = (c, u(c) + 1) and u' =

u{u(c)+l/c}.

190 P. America, J. De Bakker

(2) We define the function for statements as follows:
(a) ~[x := ehap = ~[eha(A/L\u.{(u', p)}) where u' = o-{u(a){/3/x}/ a};
(b) ~[s1 ;s2hap = ~[s1ha(~[s2hap);
(c) ~[if b then s1 else s2 fihap

= Ao-.{(u, if[bBau =tthen ~[s&yap else ~[s2hap fi)};
(d) ~[vhap= 'Yo>(v)ap;
(e) ~[µ,v[s]]yap = 'Poo(a)(p), where 'Poe is the unique fixed point of the function

<P; from the space AObj (SeStCo NDI P) to itself, which is given by

<P('P) = Aa.Ap.Au.{(u, ~[sh{'P/ v}ap)};

(f) ~[e?xhap = i&[eha(A/3.Ao-.{(a, {3?x, p)});
(g) ~[?xhap = Au.{(a, ?x, p)};
(h) ~[e!e'hap = ~[eha(A/3.~[e'ha(A/3'.Au.{(a, /3 !{3',p)}));
(i) ~[!ehap = ~[eha(A/3.Ao-.{(a, !p, p)}).
(3) Let, for a program t, the mapping 1/1'1 : I'2 I'2 be given as follows:

where c~s occurs in t, and y1 E I'1 is arbitrary (since t is closed, the choice of y1
is really immaterial). If c is not declared int, we can put 1Jl',(y2)(c)=Aa.p0 , for
example.

Let y2 , be the unique fixed point of 1/1', (see the remark below). We put
'Y, =def (')'1, 'Y2,), for arbitrary 'Y1 Er •.

(4) Now we can define the denotational semantics of programs as follows. Let
f =(c1~S1, , Cn~sn>• Then

Remarks. (1) The clause for ~[new(c)D uses essentially the same idea as in Section
4 of putting the newly created process y(c)(/3) in parallel with the (expression)
continuation f (supplied with the new name {3 which is the value of the expression
new(c)). Here y(c)(/3)-or 'Y<i>(c)(f3), to be precise-will, in the context of a
program t=(ck~sk)~=I, contain the relevant information on the class c as a result
of the definition of y, (to be precise, y2,) in clause (3). We also observe that due
to our requirement that all class names used in a program t must be also be declared
in it, the result of y, for undeclared classes does not matter (actually, new objects
of such classes would execute the process p0).

(2) Clause (2)(e) is justified by the fact that the mapping <Pis contracting. Again
we can obtain its unique fixed point by 'Poo = lim; cp;, where 'Po is arbitrary and

'P;+ 1 = Aa.Ap.Au.{ (o-, ~[sh{ cpJ v}ap)}.

(3) The mapping 1/1'1 in clause (3) is contracting since recursive occurrences of c
in any s are always constituents of statements which take time steps (specifically
in evaluating new(c)) before we apply y to such a recursive occurrence of c.

Equivalent semantic models for process creation 191

6.4. Equivalence of operational and denotational semantics

We start this section with the promised extension of gnus and l!J.

6.10. Definition. (1) The notion of configuration is expanded so as to include pairs
of the form (p, 77) (note that 77 ranges over Step= l: u Comm).

(2) We obtain the transition system f/~ud from flnud by adding the axioms

(p u {(a, (,8 ?x);r)}, u) (p u {(a, r)}, (a, ,8 ?x)),

(p u {(a, (?x);r)}, (p u {(a, r)}, (a, ?x)),

(p u { (a, (,8 ! ,B');r)}, u) (p u { (a, r)}, (a, ,8 ! ,8')),

(p u {(a, (!,B);r)}, u) (p u {(a, r)}, (a, !,8))

and by replacing, in all rules,

(p 1 , u')

by

(P2, u')

(P1, 77')
(P2, u) (p', 77').

(3) Now we define O*[· Il: PSyCo P by

Receive2

Receive3

Send3

Send4

l!J*[D = {Po
p Au.{(77', O*[p'D)l(P, 77')}

if p = {(a 1 , E), ... , (an, E)},
otherwise.

As in Section 5, we have the following lemma.

The abstraction operator abs can be defined as in Definition 5.11 (but now applied
to P as in Definition 6.5). Again, we have

6.12. Lemma. 0 = abs O l!J*.

We can now discuss the relationship between O* and ffi. The treatment combines
ideas of Sections 4 and 5. We first present a lemma listing various properties of O*

192 P. America, 1. De Bakker

which are either direct from its definition, or follow as in Section 5 (in turn relying
on [16)).

6.13. Lemma. (1) 0*[{(a, (x := ,B);r)}] = Aa.{(a', 0*[{(a, r)}])} with a' as usual.
(2) 0*[{ (a, (x := e);r) }] = 0*[{ (a, e: Az.((x := z);r)}Il where z is fresh.
(3) 0*[{(a, (s 1 ;s2);r)}] = 0*[{(a, s 1 ;(s2 ;r))}].
(4) C*[{(a, if b then s 1 else s 1 fi;r)}Il

= Aa.{ (a, if [b]aa then O'*[{ (a, s 1 ;r) }] else O'*[{ (a, s2 ;r)}Dfi)}.
(5) 0*[{(a, µv[s];r)}] = limn O'*[{(a, s~.n\r)}] where s;?' =skip and s~n+JJ =

skip;s[s~.n 1/ v]. Note that here we cannot use x := x for skip any more because x := x
now costs two steps.

(6) C*[{(a, (e?x);r)}] = 0*[{(a, e: Az.((z?x);r))}] with z fresh, and similar
equations fore !e' and !e.

(7) 0*[{(a, (,B?x);r)}Il = Aa.{(a, ,B?x, O*[{(a, r)}])} and similar equations for ?x,
.B !,B', and !,B.

(8) O'*[t(a, (,B?x);r1), (/3, (a !a'); r2)}D = Aa.{(a, ,B?x, 0*[{(a, r1), (/3, (a !a');ri)}]),
(/3, a !a', 0*[{(a, (.B ?x);r1), (/3, r2)}]), (a', O'*[{(a, r1), (/3, r2)}])} where a' is as usual,
and similar equations for ?x with a!a' andfor ,B?x with !a'.

(9) 0*[{ (a, x: g) }] = Aa.{(a, 0*[{ (a, a(a)(x): g) }])}.
(10) 0*[{(a, .B: Az.r)}] = O'*[{(a, r[,8/z))}].
(1 I) O'*[{ (a, (/3 1 op /3 2): g)}Il = <'7*[{ (a, (.B I OPsem /3 2): g)}] and a similar equation

for unary operators.
(12) O'*[{(a,(e1opei):g)}]=O'*[{(a,e1 :Az1 .(e2 :Az2 .((z10pz2):g)))}E and a

similar equation for unary operators.
(13) O'*[{a,new(c):g)}]=Aa.{(a',O'*[{(a,/3:g),(.B,s;E)}Il)} where c¢=.s occurs

in t and with a'= a{a(c) + 1/ c} and /3,= (c, a(c) + 1).

We continue with the analysis which links O'* with (jj) and 'ifJ. Our aim is the proof
of the following theorem.

6.14. Theorem. For a given program t =(ck¢=.sk)~-i, for closed s, arbitrary r, e and
g, and for y, as in Definition 6.9(3), we have

(1) 0*[{(a, e: g)}Il = 'i!J[e](y,)(a)(A,B.C*[{(a, .B: g)}]),
(2) O'*[{(a, s;r)}] = (jj)[s](y,)(a)(O'*[{(a, r)}]).

In order to prove this theorem, we apply a nonuniform version of the strategy
used at the end of Section 4. Since we are concerned with both statements and
expressions, we need the nonuniform argument in two forms. Firstly, we introduce
the branching time analogues of the constructs uJ v from Section 4. One form also
mentions the J, the other one is parameterized by objects .B from Obj, each of which
plays a role similar to the one played by J. For the remainder of this section we
introduce three domains P, Q, and R with typical elements p, q, and r respectively
(the last not to be confused with r E SyStCo).

Equivalent semantic models for process creation 193

6.15. Definition. (I) Recall from Definition 6.5 that P is the solution of

As before, we shall use X to range over {!/)c1(Step x P) and 1r to range over Step x P.
(2) The domain Q is the solution of the following domain equation

We shall use Y to range over [l}c1(Step x Q) and { to range over Step x Q.
(3) The domain R is defined as the solution of

R == (Obj X P) U Pc1(Step X R)).

We shall use Z to range over {!/)c1(Step x R) and (to range over Step x R.

The intuitive interpretation of Q and R is as follows. An element of Q is a process
executing a specific statement (the "local" one), possibly in parallel with some other
processes. Termination of the local statement is explicitly indicated by The idea
is that a continuation can start at that point (see the definition of the operator":"
below). More specifically, if q E Q is of the form p) this means that the local
process terminates immediately, and that the parallel processes continue with p. If
in q the local process does not terminate immediately, an ordinary step is possible,
after which we come in the same situation again. Because we have also included
p0 in Q, P can be embedded in Q in a canonical way. We shall therefore assume
that actually P £: Q.

An element of R is evaluating an expression, again possibly in parallel with other
processes. It will be composed with elements of Q or R by the operator
":". If the evaluation of the expression terminates, it delivers a value (3 being the
result of this expression, together with an ordinary process p representing the ongoing
computation of the other processes (which is to be executed in parallel with the
semantic expression continuation).

We shall define four forms of the operator ":" which will take care of the
composition of elements of Q and R with appropriate continuations (notice the
analogy with Definition 4.7):

6.16. Definition. (I) We define":": Q x Q Q by the following clauses (which can
be completed to a full definition along the lines of Definition 5.5):

(a) Po: q = Po;
(b) p): q = Pllq (see Definition 6.17 below);
(c) (Au. Y): q = Au.(Y: q), where Y: q = {g: ql{E Y} and (TJ, q'): q =(TJ, q': q).
(2) We define ":": Q x R R as follows:
(a) Po: r = Po;
(b) (J,p):r=pllr (see Definition 6.17);
(c) (Au. Y): r= Au.(Y: r), where Y: r = {g: rl{E Y} and (TJ, q'): r=(T/, q': r).

194 P. America, J. De Bakker

(3) The operator":": Rx Q) Q is given by the following clauses:
(a) (/3, p}:f = PIIJ(/3); .
(b) (Au.Z):f=Au.(Z:f), where Z:f={(:f!(EZ} and (r,, r}:f=(r,, r:f).
(4) Finally, we define the operator":": Rx R) R by the following clauses

(we shall use h to range over R):
(a) (/3,p}:h=pllh(/3);
(b) (Au.Z): h = Au.(Z: h), where Z: h = {(: h I (E Z} and (T/, r}: h = (T/, r: h}.

Note that if q E P, then p: q E P, so that we also have":": Q x P P. Analogously,
if f E P, then we get r :f E P, so that we can state ":": R x P) P.

We also need the definitions of Pllq and Pllr:

6.17. Definition. (1) We define the operator by the following
clauses:

(a) Pollq=q, PIIPo=P, Pll(J,p'}=(J,pllP'};
(b) for p -,;f p0 and q e {p0} u (x P) we define

Pllq = Au.((p(u)llq) u (pllq(u)) u (p(u) luq(u)));

(c) for XE Pl'c1(Step x P) we put X llq = { ?Tllq I 'IT EX}, where (T/, p'}llq = (T/, p'llq};
(d) for YE Pl'c1(Step x Q) we put PII Y = {plltl { E Y}, where PII(T/, q'} = (T/, Pllq'};
(e) for X and Y as above, we define

Xlu Y=LJ{'IT!u{!'ITEX,{E Y}

where (r,1,p'}!u(T/2,q'}={(u',p'llq'}} with u' as usual if r,1 and r,2 are matching
communications, and 1r !,,{ = 0 otherwise.

Note that restricted to P x P this coincides with the old operator "II" (see
Definition 6.7).

(2) We define the operator "II": P x R R by the following clauses:
(a) Pollr = r, Pll(/3, p'} = (/3, Pllp'};
(b) for p -,;f p0 and re Obj x P we define

Pllr = Au.((p(u)II r) u (pllr(u)) u (p(u) !ur(u)));

(c) for XEPl'c1(StepxP) we put Xllr~{?Tllrl?TEX}, where (r,,p'}llr=(r,,p'llr};
(d) for Z E Pl'c.(Step x R) we put PIIZ = {pllCI (E Z}, where PII(T/, r'} = (T/, PII r'};
(e) for X and Z as above, we define

XluZ = LJ { 1rl,r (I 'IT EX, (E Z}

where (r,1,p'}!u (r,2, r'}={(u',p'llr'}} with u' as usual if r,1 and r,2 are matching
communications, and 1rl,r (= 0 otherwise.

Analogous to Lemma 4.8 we have the following important lemma.

6.18. Lemma. (1) All forms of the mappings ":" and "II" are continuous.
(2) The operators "II" are associative:
(a) (pillP2)llq = P1ll(P2llq),
(b) (pdlP2)llr= Pill(P2llr).

Equivalent semantic models for process creation

(3) The operators ":" with the first argument from Qare associative:
(a) (q1:q2):q3=q1:(q2:q3),.
(b) (q1:q2):r=q1:(q2:r).

195

(4) The operators ":" with the first argument from R have an analogous property
(let us call it A-associativity):

(a) (r:.f):q = r:A/3.(J(/3):q),
(b) (r:.f):r' = r:A/3.(J(/3):r'),
(c) (r:h):f= r:A/3.(h(/3):f),
(d) (r:h):h' = r:A/3.(h(/3):h').
(5) Finally, we have a kind of distributivity:
(a) (pllq):q' = Pll(q:q'),
(b) (pllq):r=pll(q:r),
(c) (pllr):f = Pll(r:.f),
(d) (pllr):h = Pll(r:h).

Proof. Part (1) can be proved by observing that each ver~ion of ":" or "II" is the
unique fixed point of an appropriate higher-order function that maps continuous
operators into continuous operators. Therefore, ":" and "II" are themselves con-
tinuous.

For the other parts, one first proves that p:q = p and p:r = p for all p E P, q E Q,
and rE R. The rest of the properties are then proved in the order (2)-(5)-(3)-(4),
by a metric argument. We illustrate this technique by giving the proof of part (3)(a).
(We assume that part (5) has already been proved.) Consider the operators <P and
1/1, given by <P(q1,q2,q3)=(q1:q2):q3 and 1/l(q1,q2,q3)=q1:(q2:q3). Both can be
seen as elements of the metric space Q x Q x Q Q. We shall show that <P = 1/1 by
proving d (<P, t[r) = 0. Let us therefore denote d (<P, 1/1) by E, or in other words,

E = sup dQ((q1 :q2):q3, q1 :(q2:q3)).
qi .q'J_,q3E:.Q

Now let q1, q2 , q3 E Q be arbitrary. We show

dQ((ql :q2):q3, qi :(q2:q3)) ~k
Distinguish the following cases:

(1) q1=Po-Then (q1:q2):q3=po:q3=po=q1:(q2:q3).

(6.1)

(6.2)

(2) q1 = p). Then (q1 :q2):q3 = (pllq2):q3 = (by part (5)(a)) Pll(q2:q3) =
qi :(q2:q3).

(3) q1 E 1: r1i'c1(Step x Q). Now by Definition 6.16 we have that q1 :q2, (q1 :q2):q3,
and q1:(q2 :q3) are also elements of Let <TE1: be arbitrary and
set Y=q 1(<T). Then we get, by Definition 6.16,

and

(q1 :qz)(<T) = Y:q2 = {g:q2I gE Y} = {(71, q':q2)l(11, q')E Y},

((qi :q2):q3)(<T) = (Y:q2):q3 = {(71, (q':q2):q3)l(11, q')E Y},

196 P. America, J. De Bakker

Now the time has come to remember our convention from Section 2.3 that, implicitly,
every occurrence in the right-hand side of the domain being defined is surrounded
by id 112 (cf. equation (2.3')). Of course, this also holds for the defining equation for
Qin Definition 6.15. From (6.1) it follows that

d0 ((q':q2):q3, q':(q2: q3}),.;; e.

Therefore

d;d,;,(Q)((q':q2):q3, q':(q2 :q3}},.;; k
By applying the clauses of Definition 2.7 (and remembering that u was arbitrary)
we can conclude that

do((q,:q2}:q3, q,:(q2:q3)),.;;½e.

Because q1, q2, and q3 were arbitrary in (6.2), we can conclude from (6.1) that
e ,.;; ½ e, so that d (<P, 1Jr) = e = 0 and <P = 1Jr.

Next, w,.; state the analogues of Lemma 4.9 and Corollary 4.10. By way of
preparation we need some extensions to the definitions of PSyCo and (J*.

6.19. Definition. (1) We define the set PSyCo', with typical element p, to be the
same as PSyCo, except that at most one of the components has an r E SyStCo',
defined (together with g E SyExCo') by

r ::= I s;r' I e:g g ::= Az.r
with s closed.

(2) The set PSyCo", with typical element p, is the same as PsyCo except that
exactly one component has an r E SyStCo", which is defined together with g E

SyExCo" by

;; ::= s;r' I e:g g ::=

with s closed.
(3) We define the function O'[·]: PSyCo' Q as follows

. {Po , if p = {(a 1 , E), ... , (ak, £)},
0[p]= (J,0*[p']) ifp={(a,J)}up',

Au. {(u', O'[p ']) I (u, p) (u', p ')} otherwise.

Here we interpret the transition with respect to .o/"~ud (only extended
in so far that we declare the existing axioms and rules also applicable to our new
parallel syntactic continuations).

(4) We define the function O[·] : PSyCo" R as follows

O["] = {(~, (J*[p'.~) if p = {(a, ~:J)}u p',
P Au.{(u', 0[p'])l(u, p')} otherwise.

Note that PsyCo c_;; PSyCo', and that tJ restricted to PsyCo is equal to()*. Further-
more, Lemma 6.13 also holds for tJ and 0, and we can restate Lemma 6.11 as follows.

Equivalent semantic models for process creation

6.20. Lemma. (1) O'[p u PD= O*[µDIIO[µE.
(2) 6[p u iiD = O*[pDll6[iiD-

Now we can state the next lemma.

197

6.21. Lemma. (1) For any e E Exp, a E A Obj, and g E Sy ExCo we have

O*[{(a, e:g)}D = 6[{(a, ,B:g)}D)

and the same for any g with O* replaced by e) and for any g with O* replaced by 6.
(2) Let s E Ynud (not necessarily closed) and let all free statement variables of s be

contained in { v1 , ••• , vk}. Now let s 1 , ••• ,sk be closed statements such that, for any a
and r,

O*[{(a, S; ;r)}D = O'[{(a, S; r)}D

and for any r the same with (J* replaced by O' and for any r the same with O* replaced
by 6. If we defines= s[sJ v;t-i, then we have, for any a and r,

O*[{(a, s;r)}D = O'[{(a, r)}D

and analogously for any r and for any r.

Proof. Part (1) is proved by induction on the complexity of e. We give some typical
cases:

Case 1: e = ,B.

6[{(a, (A,B'.O*[{(a, ,B':g)}])

= (,B, p0): (A,B'.O*[{(a, ,B':g)}]) (Definition 6.19)

= PollO*[{(a, ,B:g)}]

= O*[{(a, ,B:g)}D

(Definition 6.16)

(Definition 6.7).

Exactly the same proof works for g with O and for g with 6.
Case 2: e =ope'.

O*[{(a, (op e'):g)}]

= O*[{(a, e':Az.(op z: g))}]

= O[{(a, (A,B'.O*[{(a, ,B':Az.(op z: g))}])

= 6[{(a, (A,B'.O*[{(a, op ,B': g)}])

(Lemma 6.13(12))

(ind. hyp.)

(Lemma 6.13(10))

= O[{(a, (A,B'.O*[{(a, OPsem ,B': g)}]) (Lemma 6.13(11))

= O[{(a, (A,B'.O[{ (a, OPsem ,B': }] : (A,B.O*[{ (a, ,B :g) }]))
(Case 1)

= (O[{(a, (A,B'.O[{(a, OPsem ,B': (A,B.O*[{ (a, ,B :g)}])
(Lemma 6.18(4))

198 P. America, J. De Bakker

= (O[{ (a, (A,B'.O[{(a, ,B':Az.(op z: (A,B.O'*[{(a, ,B :g)}Il)
(Lemma 6.13(11, 10))

= O[{(a, e':Az.(op z (A,B.O*[{(a, ,8:g)}Il)

= O[{(a, ope': (A,B.O'*[{(a, ,B:g)}Il).

(ind. hyp.)

(Lemma 6.13(12))

Again, the proof is also valid for g and g.
Case 3: e = new(c).

O*[{(a, new(c):g)}]

= Au.{<u', O*[{(a, ,B:g), (,8, s;E)}Il)}
(Lemma 6.13(13), with s, u', and ,B as usual)

= Au.{(u', O*[{(,B, s;E)}] II O*[{(a, ,8:g)}Il)} (Lemma 6.11)

= Au.{(u', O'*[{(,B, s;E)}Il II (O[{(a, (A,B'.O'*[{(a, ,B':g)}])))}
(Case 1)

= Au.{(u', (O*[{(,B, s;E)}] II O[{(a, (A,B'.O'*[{(a, ,B':g)}Il))}
(Lemma 6.18(5))

= Au.{(u', O*[{(,B, s;E)}Il II O[{(a, (A,B'.O*[{(a, ,B':g)}Il)
(Definition 6.16)

= Au.{(u', O[{ (,8, s;E), (a, ,B (A,8'.0*[{ (a, ,B':g) }Il)

= O[{(a, (A,B'.O*[{(a, ,B':g)}Il).

Once again, the proof is also valid for g and g.

(Lemma 6.20)

(Lemma 6.13(13))

Now we can prove part (2) by induction on the complexity of s. Again some
typical cases:

Case 4: s=x:=e (so s=s).

O*[{(a, x := e;r)}Il

= O*[{(a, e:Az.(x := z;r))}Il

= O[{(a, (A,B.O*[{(a, ,B:Az.(x := z;r))}])

(Lemma 6.13(2))

(part (1))

= O[{(a, (A,B.O*[{(a, x := ,B;r)}Il) (Lemma 6.13(10))

= O[{(a, (A,B.Au.{(u', O*[{(a, r)}])})(Lemma 6.13(1), u' as usual)

= O[{(a, e:v')}D: (A,B.Au.{(u', O'[{(a, O*[{(a, r)}Il)})

(because and

= O[{(a, (A,B.Au.{(u', O'[{(a, O*[{(a, r)}Il)
(Definition 6.16)

Equivalent semantic models for process creation } 99

= O[{(a, (A,8.0'[{(a; x := O*[{(a, r)}Il) (Lemma 6.13(1))

= O[{(a, (A,8.0'[{(a, ,8:Az.(x := O*[{(a, r)}])
(Lemma 6.13(10))

= (O[{(a, (A,8.0[{(a, ,8 :Az.(x := }])) : O*[{(a, r)}Il

= O[{(a, e:Az.(x := O*[{(a, r)}Il

= O'[{(a, x := O*[{(a, r)}].

For r or ;: instead of r the proof runs exactly the same.
Case 5: s=e?x (so s=s).

O*[{(a, e?x;r)}Il

= O*[{(a, e:Az.(z?x;r))}D

= O[{(a, (A,B.O*[{(a, ,8:Az.(z?x;r))}])

= O[{(a, (A,8.0'*[{ (a, ,8 ?x;r)}D)

(Lemma 6.18(4))

(part (1))

(Lemma 6.13(2))

(Lemma 6.13(6))

(part (1))

(Lemma 6.13(10))

= O[{(a, (A,8.Au.{ (a, ,8 ?x, O*[{ (a, r)}])}) (Lemma 6.13(7))

= O[{(a, (A,8.Au.{(a, ,B?x, O'[{(a, O*[{(a, r)}D)})
(see above)

= O[{(a, (A,8.Au.{ (a, ,8 ?x, O'[{(a, O*[{(a, r)}])
(Definition 6.16)

= O[{(a, (A,8.0'[{(a, O*[{(a, r)}])
(Lemma 6.13(7, 10))

= (O[{(a, (A,8.0[{ (a, ,8 :Az.(z O*[{(a, r)}Il

= O'[{(a, O*[{(a, r)}Il

= O[{(a, O*[{(a, r)}Il.

(Lemma 6.18(4))

(part (1))

(Lemma 6.13(6))

Case 6: s = µ v[s']. Without loss of generality we can assume that v e { v1 , ••• , vk}.
Ifwe defines'= s'[sJ v;] ~= i, then we haves= µv[s']. Now we first prove, by induction
on n, that for any a and r (and also for r),

For n = 0, we get s~(O) = skip and

O*[{(a, skip;r)}D

(6.3)

200 P. America, J. De Bakker

= Au.{(u, O*[{(o:, r)}D>} (definition of skip)

= Au.{(u, O[{(o:, J)}E: O*[{(o:, r)}])} (see above)

= Au.{(u, O[{(o:, O*[{(o:, r)}] (Definition 6.16)

= O[{(o:, skip;J)}]: O*[{(o:, r)}] (definition of skip).

Now let us assume (6.3) for certain n; then we can apply the outer induction
hypothesis for s', with Vk+1=v and Sk+1=s:,(n)_ If we define ;~<n)=s'[s~(n)/v]=
s'[sJ v;]~,:'.), this gives us

Now we can calculate

O*[{(o:, s~(n+l>;r)}]

= O*[{(o:, (skip;s~<»l);r)}]

= O*[{(o:, skip;(s~<n\r))}]

= Au.{(u, O*[{(o:, s~<n>;r)}])}

= Au.{(u, O[{(o:, s~<n\J)}]: O*[{(o:, r)}])}

= Au.{(u, O[{(o:, s:,<nJ;J)}])}: O*[{(o:, r)}D

= 6[{(o:, skip;(s~<n);J))}D: O*[{(o:, r)}]

= O[{(o:, (skip; O*[{(o:, r)}]

= O[{(o:, O*[{(o:, r)]

which gives us (6.3) for n + 1.
Finally, we can compute as follows:

O*[{(o:, µv[s'];r)}]

(Lemma 6.13(3))

(definition of skip)

(by (6.4))

(Definition 6.16)

(definition of skip)

(Lemma 6.13(3))

= limn O*[{(o:, s~<"\r)}] (Lemma 6.13(5))

= limn(O[{(o:, O*[{(o:, r)}]) (by (6.3))

= (limn O[{(o:, O*[{(o:, r)}] (Lemma 6.18(1))

= O[{(o:, µv[s'J;J)}D: O*[{(o:, r)}] (Lemma 6.13(5)). D

(6.4)

In order to prove Theorem 6.14, in addition to the reasoning encountered earlier,
there is one extra step necessary to deal with the possible recursion in declarations
such as c ¢= ... new(c) This step involves the second component o/(2) of an
environment y. For simplicity's sake we again drop the indices.

Equivalent semantic models for process creation

6.22. Lemma. Let t be a fixed program. If -y E r satisfies

-y(c) = Aa.O'*[{(a, s;E)}D

for c ¢= s in t, then we have the following:
(1) For any eE Exp, -yE r, a EAObj, andfE P we have

~[ehaf = O[{(a, e:J)}]:f

201

(6.5)

(2) Lets E Y'nuct (not necessarily closed) and assume that the free statement variables
in s are all in { v,, . .. , vd and let s,, ... , sk be closed. Put s = s[s;/ v;] 7= 1 and define

({); = Aa.Ap.(O[{(a, S; ;J)}D:p) (i = 1, ... , k)

and let -y = r{ cp;/ v;} 7= 1• Then we have, for any a and p,

~[sD-yap = &[{(a,

Proof. The proof follows the same line of argument as in Sections 4 and 5. It runs
by induction on the complexity of e and s. We make use of Lemmas 6.13, 6.18,
6.20, and 6.21 and we need the assumption (6.5) to deal with the case e = new(c).

We shall deal with some typical cases here, starting with part (1).
Case 1: e = /3.

~[f3haf = f(/3) (Definition 6.9)

= Poll!(/3) (Definition 6.17)

= (/3, Po):f (Definition 6.16)

= O[{(a, {3:J)}D:f (Definition 6.19).

Case 2: e =ope'.

~[op e'haf

= ~[e'ha(A/3.f(op5em /3)) (Definition 6.9)

= ~[e'D-ya(A/3.0[{ (a, OPsem /3: J)}D:f) (Case 1 for OPsem /3)

= ~[e'ha(A/3.0[{(a, /3:Az.(op z: (Lemma 6.13(11, 10))

= O[{(a, (A/3.0[{ (a, /3 :Az.(op z: (ind. hyp.)

= (O[{(a, e':J)}D: (A/3.0[{(a, /3:Az.(op z: (Lemma 6.18(4))

= O[{(a, e':Az.(op z (Lemma 6.21)

= O[{(a, op (Lemma 6.13(12))

Case 3: e = new(c).

202 P. America, J. De Bakker

i[new(c)haf

= Au.{(u', -y(c)(/3)1\f(/3))} (Definition 6.9, with u' and /3 as usual)

= Au.{(u', -y(c)(/3) II (O[{(a,

= Au.{(u', (-y(c)(/3) II O[{(a,

= Au.{(u', (-y(c)(/3) II O[{(a,

= Au.{(u', (0'*[{(/3, s;E)}] II O[{(a,

= Au.{(u', 0[{(/3, s;E), (a,

= O[{(a,

And now part (2). Again we deal with a few typical cases.
Case 4: s = x := e, so s = s.

0J[x := e]yap

(see Case 1)

(Lemma 6.18(5))

(Definition 6.16)

(by (6.5))

(Lemma 6.21)

(Lemma 6.13(13))

= i[eTI-ya(A/3.Au.{(u', p)}) (Definition 6.9, with u' as usual)

= i[e]-ya(A/3.0[{(a, {3:Az.(x :=
(see proof of Lemma 6.21, Case 4)

= O[{(a, (A/3.0[{(a, {3:Az.(x :=

= (O[{(a, (A/3.0[{(a, {3:Az.(x :=

= O[{(a, e:Az.(x :=

= O[{(a, x :=

(part (1))

(Lemma 6.18(4))

(Lemma 6.21)

(Lemma 6.13(2))

Case 5: s = µ v[s']. Let us assume again that v e { v1 , ••• , vd, so that, if we define
s' = s'[s;/ v;]7=i, then we haves= µv[s']. Now, on the one hand, we have, by Lemma
6.13(5) and Lemma 6.18(1), that

(6.6)

On the other hand, Definition 6.9 says that

(6.7)

where t/10 can be chosen arbitrarily, and

t/Jn+I = Aa.Ap.Au.{(u, 0>[s']y{t/Jn/ v}ap)}.

Now we make a definite choice for t/10 , namely

and we prove, by induction on n, that

(6.8)

Equivalent semantic models for process creation 203

For n =O this is obvious, so assume (6.8) for some n; then we can apply the outer
induction hypothesis to s' with vk+i = v and sk+i = s~<n>, so our inner induction
hypothesis (6.8) says that 'Pk+i = 'Pn· We then get (because s'[sJ v;] ~,;;/ = s'[s~<n> Iv])

(6.9)

and we calculate

'Pn+I (ex)(p) = Ao-.{(o-, 0J[s'] y{ I/In/ V }exp}} (definition of 'Pn+ 1)

= Au.{ (o-, O'[{(ex, s'[s~(n) / v (by (6.9))

= Au.{(o-, O'[{(ex, (Definition 6.16)

= O'[{(ex, skip;(s'[s~(n) IV (definition of skip)

= O'[{(ex, (skip;s'[s~(n); v (Lemma 6.13(3))

Finally, (6.8) tells us that in (6.6) and (6.7) we are taking the limit of the same
sequence, so their respective left-hand sides are equal. D

One more step is necessary before we reach the desired conclusion.

6.23. Lemma. Let y, be as in Definition 6.9(3). Then we have that y, satisfies (6.5).

Proof. Choose any y satisfying (6.5). Then, by the definition of 'P, (in Definition
6.9(3)), we have, for c¢:=s in t,

'P,(y)(c) = Aex.0J[s](y)(ex)(p0)

= Aex.(O'[{(ex, (Lemma 6.22)

= Aex.(O'[{(ex, O'[{(ex, E}}]) (Definition 6.19)

= Aex.O*[{(ex, s:E}}] (Lemma 6.21)

=y (by(6.5)).

If we have furthermore that y(c) = Aex.p0 for c not declared in t, then we have that
y is a fixed point of 'P,, so that y = y,.

Now we can prove Theorem 6.14:

Proof of Theorem 6.14. For part (1), we calculate as follows:

O*[{(ex, e:g}}] = O[{(ex, (A~.O*[{(ex, ~:g}}]) (Lemma 6.21)

204 P. America, J. De Bakker

= ~[eh,a(A/HY*[{(a, ,8:g)}D) (Lemma 6.22)

where the application of Lemma 6.22 is allowed by Lemma 6.23.
Now for part (2), we have

O*[{(a, s;r)}D = O'[{(a, s;J)}D: O*[{(a, r)}D (Lemma 6.21)

= gj>[sh,a(O*[{(a, r)}D) (Lemma 6.22)

where s = s and -y, = y, because s is closed. Here, again, Lemma 6.23 justifies the
application of Lemma 6.22. D

6.24. Corollary. For any t E .:lnud, O*[tD = gj>[tD.

Proof. Let t=(c;<=s;)~= 1; then we have

0-l<[tD = O*[{((c1 , 1), s 1 ;E)}D (Definition 6.10(4))

= gj>[s 1D(-y,)((c1 , l))(O'*[{((c1, 1), E)}B) (Theorem 6.14(2))

= gj>[s1D(-y,)((c1, l))(p0) (Definition 6.10(3))

(Definition 6.9(4)).

With Corollary 6.24, we have obtained the ultimate goal of our paper: to establish
the equivalence of an operational and a denotational semantics for a nonuniform
language with process creation.

Acknowledgment

Discusssions with Jeffery Zucker led to a considerably improved way of incorporat-
ing syntactic continuations for the uniform case. Moreover, Definition 4.4 is due to
him. We are also indebted to Dr. Zucker for pointing out several minor and some
major flaws in a draft of this paper which we (hope to) have corrected in the present
version.

The contributions of Joost Kok and Jan Rutten to the design of the POOL
semantics as reported in [6, 7] were absolutely essential for the present investigation.
The idea of assembling transition sequence information into a process is due to
Joost Kok. We acknowledge fruitful discussions on our work in the Amsterdam
concurrency group, including Frank de Boer, Joost Kok, John-Jules Meyer, Jan
Rutten and Erik de Vink.

Finally, we express our thanks to Marisa Venturini Zilli for the opportunity
extended to the second author to lecture on the material of this paper in the Advanced

Equivalent semantic models for process creation 205

School on Mathematical Models for the Semantics of Parallelism, Rome, September
1986.

References

[I] The Programming Language Ada Reference Manual, American National Standards Institute,
ANSI/MIL-STD-1815A-1983 (also published as: Lecture Notes in Computer Science 155 (Springer,
Berlin, 1983)).

(2) G. Agha, Semantic considerations in the Actor paradigm of concurrent computations, in: S.D.
Brookes, A.W. Roscoe and G. Winskel, eds., Proc. Seminar on Concurrency, Carnegie-Mellon
University, Pittsburgh, PA, July 9-11, 1984, Lecture Notes in Computer Science 197 (Springer,
Berlin, 1984) 151-179.

(3) P. America, Definition of the programming language POOL-T, ESPRIT Project 415, Doc. No. 91,
Philips Research Laboratories, Eindhoven, The Netherlands, September 1985.

[4) P. America, Rationale for the design of POOL, ESPRIT Project 415, Doc. No. 53, Philips Research
Laboratories, Eindhoven, The Netherlands, January I 986.

(5) P. America, Objected-oriented programming: a theoretician's introduction, EATCS Bull. 29 (June
I 986) 69-84.

(6) P. America, J.W. De Bakker, J.N. Kok and J.J.M.M. Rutten, Operational semantics of a parallel
object-oriented language, in: Conf Rec. 13th Symp. on Principles of Programming Languages, St.
Petersburg, FL (January 13-15, 1986) 194-208.

(7] P. America, J.W. De Bakker, J.N. Kok and J.J.M.M. Rutten, A denotational semantics of a parallel
object-oriented language, Report CS-R8626, Centre for Mathematics and Computer Science,
Amsterdam, The Netherlands, August 1986.

[8) P. America and J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete
metric spaces, in: Proc. Third Workshop on Mathematical Foundations of Programming Language
Semantics, New Orleans, LA, April 8-10, 1987, Lecture Notes in Computer Science 298 (Springer,
Berlin, 1988) 254-288.

(9) K.R. Apt, Recursive assertions and parallel programs, Acta Inform. 15 (1981) 219-232.
[JO) K.R. Apt, Formal justification of a proof system for communicating sequential processes, J. ACM

30(1) (1983) 197-216.
[I I) J.W. De Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer, Linear time and branching time

semantics for recursion with merge, Theoret. Comput. Sci. 34 (1984) 135-156.
(12) J.W. De Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker, Contrasting themes in

the semantics of imperative concurrency, in: J.W. De Bakker, W.-P. De Roever and G. Rozenberg,
eds., Current Trends in Concurrency: Overviews and Tutorials, Lecture Notes in Computer Science
224 (Springer, Berlin, 1986) 51-121.

[13] J.W. De Bakker and J.-J.Ch. Meyer, Order and metric in the stream semantics of elemental
concurrency, Acta Inform. 24 (1987) 491-51 I.

(14] J.W. De Bakker, J.-J.Ch. Meyer and E.-R. Olderog, Infinite streams and finite observations in the
semantics of uniform concurrency, Theoret. Comput. Sci. 49(2, 3) (1987) 87-ll2.

(15] J.W. De Bakker, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker, Transition systems, infinitary
languages and the semantics of uniform concurrency, in: Proc. 17th ACM Symp. on the Theory of
Computing, Providence, RI (1985) 252-262.

(16] J.W. De Bakker, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker, Transition systems, metric spaces
and ready sets in the semantics of uniform concurrency (full version of (15]), J. Comput. System
Sci. 36 (1988) 158-224 ..

(17] J.W. De Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Inform.
and Control 54 (1982) 70-120.

[18] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Inform. and Control
60 (1984) 109-137.

206 P. America, 1. De Bakker

[19) F.S. De Boer, A proof rule for process creation, in: M. Wirsing, ed., Formal Description of
Programming Concepts III, Proc. Third IFIP WG 2.2 Working Conf, GI. Avernres, Ebberup, Denmark,
August 25-28, 1986 (North-Holland, Amsterdam, 1987) 23-50.

[20) M. Broy, Fixed point theory for communication and concurrency, in: D. Bj0rner, ed., Formal
Description of Programming Concepts II (North-Holland, Amsterdam, 1983) 125-146.

[21) M. Broy, Applicative real-time programming, in: R.E.A. Mason, ed., Information Processing '83:
Proc. IFIP Conference (North-Holland, Amsterdam, 1983) 259-264.

[22) A. De Bruin and A.P.W. Bohm, The denotational semantics of dynamic networks of processes,
ACM Trans. Programming Languages and Systems 7(4) (1985) 656-679.

[23) W.D. Clinger, Foundations of actor semantics, Technical Report No. 633, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, May 1981.

[24) 0.-J. Dahl, B. Myhrhaug and K. Nygaard, SIMULA 67, Common Base Language, Norwegian
Computing Center, Forskningsvn. lb., Oslo, Norway, 1967.

[25) J. Dugundji, Topology (Allyn &. Bacon, Newton, MA, 1966).
[26) R. Engelking, General Topology (Polish Scientific Publishers, Warsaw, 1977).
[27) G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, A Compendium of

Continuous Lattices (Springer, Berlin, 1980).
[28) H. Hahn, Ree/le Funktionen (Chelsea, New York, 1948).
[29) M. Hennessy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in:

J. Becvar, ed., Proc. 8th Symp. on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science 74 (Springer, Berlin, 1979) 108-120.

[30) C. Hewitt, Viewing control structures as patterns of passing messages, Art(ficial Intelligence 8 (1977)
323-364.

[31) C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21(8) (1978) 666-677.
[32) C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).
[33) J.-J.Ch. Meyer, Merging regular processes by ineans of fixed point theory, Theoret. Comput. Sci. 45

(1986) 193-260.
[34) J.-J.Ch. Meyer and E.P. de Vink, Applications of compactness in the Smyth powerdomain of

streams, in: Proc. TAPSOFT '87, Vol. 1, Pisa, Italy, March 23-27, 1987, Lecture Notes in Computer
Science 249 (Springer, Berlin, 1987) 241-255.

[35] M. Nivat, Infinite words, infinite trees, infinite computations, in: Foundations of Computer Science
III.2, Mathematical Centre Tracts 109 (1979) 3-52.

[36) D. Niwinski, Fixed point semantics for algebraic (tree) grammars, in: M. Nielsen and E.M. Schmidt,
eds., Proc. 9th Internal. Coll. on Automata, Languages and Programming, Lecture Notes in Computer
Science 140 (Springer, Berlin, 1982) 384-396.

[37) G.D. Plotkin, A powerdomain construction, SIAM 1. Comput. 5(3) (1976) 452-487.
[38) G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer

Science Department, Aarhus University, September 1981.
[39) G.D. Plotkin, An operational semantics for CSP, in: D. Bjiilrner, ed., Formal Description of Program-

ming Concepts II (North-Holland, Amsterdam, 1983) 199-223.
[40) A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: W.

Brauer, ed., Proc. 12th Internal. Coll. on Automata, Languages and Programming, Nafplion, Greece,
July 15-19, 1985, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985) 15-32.

[41) W.C. Rounds, On the relationship between Scott domains, synchronization trees and metric spaces,
Report CRL-TR-25-83, University of Michigan, 1983.

[42) V.A. Saraswat, The concurrent logic programming language CP: definition and operational seman-
tics, in: Conj Rec. 14th Symp. on Principles of Programming Languages, Miinchen, Fed. Rep. Germany
(January 21-23, 1987) 49-62.

[43) S.A. Smolka and R.E. Strom, A CCS semantics for NIL, in: M. Wirsing, ed., Formal Description
of Programming Concepts III, Proc. Third IFIP WG 2.2 Working Conj, GI. Avemres, Ebberup,
Denmark, August 25-28, 1986 (North-Holland, Amsterdam, 1987) 347-373.

Contractions in ·Comparing Concurrency Semantics

Joost N. Kok

Jan Rutten
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We define for a number of concurrent imperative languages both operational and denotational semantic
models as fixed points of contractions on complete metric spaces. Next, we develop a general method for
comparing different semantic models by relating their defining contractions and exploiting the fact that con-
tractions have a unique fixed point.

1980 Mathematical Subject Classification: 68B10, 68C01.
1986 Computing Reviews Categories: 0.3.1, F.3.2, F.3.3.
Key words and phrases: concurrency, imperative languages, denotational semantics, operational semantics,
metric spaces, contractions, semantic equivalence.
Note: This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages
for Advanced Information Processing - a VLSI-directed approach

207

This paper appeared in Theoretical Computer Science and is included in this tract with
kind permission of Elsevier Science Publishers B.V. (North-Holland).

0. INTRODUCTION
We present a study of three concurrent imperative languages, called L 0, L 1, and L 2• For each of
them we shall define an operational semantics 0; and a denotational semantics 6D;, for i =O, 1,2, and give
a comparison of the two models. ('Ne shall use the terms semantics and semantic model as synonyms.)
This comparison is the main subject of our paper, rather than the specific nature of the languages
themselves, or the particular properties of their semantics.

The languages L; have been defined and studied already in much detail in [BMOZl,2] and [BKMOZ].
We rely heavily on these papers, using many definitions taken from them literally, and others in an
adapted version. (The languages L 0, L 1, and L 2 we use here are called L 0 , L2, and L3 in the
papers mentioned.)

Let us try to characterize in a few words the languages under consideration. They all belong to the
wide class of concurrent (parallel) imperative programming languages. We shall discuss parallel execu-
tion through interleaving (shuffle) of elementary actions (in L 0), together with synchronization and
communication (in L 1) and extended with (an elementary form of) message passing (in L2)- Imperative
concurrency is further characterized by an explicit operator for parallel composition on top of the
usual imperative constructs, such as elementary action and sequential composition. Herein it differs
from another widely used style, so-called applicative concurrency, where the parallelism is implicit.
Further, Lo and L 1 are uniform and L 2 is nonuniform. In Lo and L 1 the elementary actions are left
atomic, whereas in L 2 an interpretation of these actions is supplied. They consist of assignments, test
and send and receive actions. Another important feature is the presence of local nondeterminacy (in
L 0) and global nondeterminacy (in L 1 and L 2). (Sometimes this is called internal and external non-
determinacy.) The difference between the two has major implications for the different semantic
models. (For an extensive discussion of this matter see, e.g., the introduction of [BKMOZ].)

For our semantic definitions we shall use metric structures, rather than order-theoretic domains. The
metric approach is particularly felicitous for problems where histories, computational traces and tree-

208

like structures of some kind are essential. Moreover, it allows for the definition of the notion of con-
traction, which we discuss in more detail in a moment. Our operational models f!; are based on the
transition system technique of Hennessy and Plotkin [HP] and Plotkin [Pl2, Pl3]. They are closely
related to the ones defined in [BK.MOZ], but there are some differences. We use labeled transitions
and (in 01 and fli) communication is treated somewhat differently. Our denotational models D; are
almost exactly the same as in [BKMOZ]. They are defined compositionally, giving the meaning of a
compound statement in terms of the meaning of its components, and tackling recursion with the help
of fixed points. For D 1 and D 2 we use a reflexive domain, being a solution of some domain equation
in the style of Plotkin [Pll] and Scott [Sc]. We shall not give the details of solving in a metric setting
this type of equations, but refer the reader to [BZ], where a solution was presented first, and to [AR],
where this metric approach is reformulated and extended in a category-theoretic setting.

Although the semantic models presented here are (roughly) the same as in [BK.MOZ], there is one
major difference, being the way in which they are defined. In this paper we define both the opera-
tional and denotational models as fixed points of contractions.

A contraction f :M on a complete metric space M has the useful property that there exists one
and only one fixed point xEM (satisfying/(x)=x). This elementary fact is known as Banach's fixed
point theorer (see A.4.(b)). Such a fixed point x is entirely determined by the definition off any
other elementyeM satisfying the same properties as x, that is, satisfying/(y)=y, is equal to x. The
contractions ii> we use in this paper are always of type

il>:(M 1 1 2),

that is, they are defined on a complete metric function space M 1 2• Then the fixed point of ii> is a
function from MI to M 2.

The fact that our denotational models can be obtained as fixed points of suitable contractions is not
very surprising, fixed points playing traditionally an important role in denotational semantics. It is
interesting, however, to observe that the same method applies to the definition of operational models.
One might wonder whether the models thus obtained still deserve to be called operational. That this is
the case follows from the fact that they equal the models defined in the usual manner, without the use
of fixed points (see lemma 1.12).

The main advantage of this style of defining semantic models as fixed points is that it enables us to
compare them more easily. This brings us to the discussion of what has been announced above to be
the main subject of this paper: the comparison of operational and denotational semantic models,
which we shall also call the study of their semantic equivalence. About the question why this would be
an interesting problem we want to be brief. Different semantic models of a given language can be
regarded as different views of the same object. So they are in some way related. Their precise relation-
ship we want to capture in some formal statement.

Let us now sketch the way we use contractions in our study of semantic equivalences. Let L be a
language. Suppose an operational model e for L is given as the fixed point of a contraction

where M is a complete metric space. Suppose furthermore that we have a denotational model 6D for L
of the same type as e, that is, with for which we can prove il>(6D)=6D. Then it follows from
the uniqueness of the fixed point of ii> that 0=6D.

In the context of complete partial ordering structures similar approaches exist (see, e.g., [HP] and [AP]).
There, the operational semantics fJ can be characterized as the (with respect to the pointwise ordering)

209

smallest function '!}" satisfying ~§)=~ for some continuous function 4>. Then it follows from
~6D}=6D that e is smaller than 6D. In order to establish El=6D it is proved that e satisfies the defining
equations for 6D, from which it follows that 6j) is smaller than e. Please note that within the metric set-
ting we can omit the second part of the proof.

In general e and 6j) have different types, that is, they are mappings from L to different mathematical
domains. In the languages we consider, this difference is caused by the fact that recursion is treated
in the denotational and operational semantics with and without the use of so-called environments,
respectively. Therefore, e and 6j) cannot be fixed points of the same contraction. Now suppose e and
6D are defined as fixed points of

1 1 }, and 2)

respectively, where M I and M 2 are different complete metric spaces. Then we can relate e and 6j) by
defining an intermediate semantic model for L as the fixed point of a contraction

and by relating 4> , 4>' and Y as follows. If we define

/ 1 1 and h
and we next succeed in proving the commutativity (indicated by *} of the next diagram:

C,

Ji! ., J/1
41'

hr *2 rh
"'

then we are able to deduce the following relation between e and 6D:
h(6D}= J, (El}.

It is straightforward from• 1 and *2, and the fact that 4>, 4>', and v are contractions.

This will be the procedure we follow for the models and % of Lo in section 1. There / 1 and Ji are
such, that for closed statements (i.e., containing no free statement variables} s eL0, we have:
e(s}=6iXs}. Once this result has been achieved for Lo, it is straightforward to adapt the definitions,
lemmas and theorems involved so as to deduce a similar result for L 1 and L 2 • (For the latter
languages there is one slight complication. It appears to be convenient to relate I and 2
via two intermediate types, and In [BMOZl,2) and [BKMOZ] there have already
been given proofs for the semantic equivalence of operational and denotational models for L0 and
L 1. These proofs, however, are quite complicated and not so easy to understand. Furthermore, the
proof for L 1 is much more complex than that for L0 , involving an intermediate ready-set domain.

The method of proving semantic equivalence as described above is general in the sense that it is appli-
cable to very different languages, such as L 0, L 1 and L 2 •

This paper has seven sections. You are now reading section 0, the introduction. It is followed by the
treatment of Lo, L, and L2 in sections 1, 2, and 3 respectively. Then, in section 4, some conclusions
and remarks about future research are formulated. Section 5 gives the references and section 6, the
appendix, gives the basic definitions of metric topology.

210

Acknowledgements
We are much indebted to Jaco de Bakker, John-Jules Meijer, Ernst-Rudiger Olderog, and Jeffrey
Zucker, authors and co-authors of the papers [BMOZl,2] and [BKMOZ], respectively, on which we
have relied heavily. We are also grateful to Jaco de Bakker for his many comments and suggestions
made during our work on this subject. We thank Pierre America for pointing out an error in the
definition of guardedness (which caused us considerable trouble and therefore increased our insights).
We acknowledge fruitful discussions on our work in the Amsterdam concurrency group, including
Jaco de Bakker, Frank de Boer, Arie de Bruin, John-Jules Meijer, and Erik de Vink. Finally, we
express our thanks to Dini Verloop, who has expertly typed this document.

l. A SIMPLE LANGUAGE (Lo)

1.1 Syntax
For the definition of the first language studied in this paper, we need two sets of basic elements. Let
A, with typical elements a,b, ... , be the set of elementary actions. For A we take an arbitrary, possi-
bly infinite, set Further, let Stmv, with typical elements x,y, ... , be the set of statement variables.
For Stmv we take some infinite set of symbols.

DEFINITION l.l (Syntax for L 0)
We define the set of statements L0 , with typical elements s,t, ... , by the following syntax:

s::= als1;s2ISJ Us2lsills2lxl11X[t]
where t el,4, the set of statements which are guarded for x, to be defined below.

A statement s is of one of the following six forms:
an elementary action a.
the sequential composition SJ ;s2 of statements s1 and s2•
the nondeterministic choice s1 Us2, also known as local nondeterminism [FHLR]: s 1 Us2 is exe-
cuted by executing either SJ or s2 chosen nondeterministically.
the concurrent execution SJ lls2, modeled by the arbitrary interleaving (shuffle) of the elementary
actions of s 1 and s2•
a statement variable x, which is (normally) used in
the recursive construct /1X{t]: its execution amounts to execution of t wbere occurrences of x in t
are executed by (recursively) executing 11X[t). For example, with the definition to be proposed
presently, the intended meaning of /1X[(a;x)Ub) is the set a*·bU{a"'}.

An important restriction of our language is that we consider only recursive constructs 11X[t], for which
tis guarded for x: tel,4. Intuitively, a statement tis guarded for x when all occurrences of x int are
preceded by some statement. More formally:

DEFINITION 1.2 (Syntax for 1,4)
The set 1,4 of statements which are guarded for x is given by

t::= a

t;s, for seLo

ti Ut2 I ti llt2
y , fory=,=x

/1X[t]

211

I µy(t1, for y=/=x, t' el,fi n.l.,j\.

REMARK
In order to avoid possible confusion about the definitions of Lo and l,fi, let us give a more extensive
definition, for which the ones given above are shorthand. We define L0 and, for every xeStmv, Lij
simultaneously and in stages:

Stage O:

L 0(0) = A UStmv, l,fi(O) = A U(Stmv \ {x})

Stage (n+ I):

Lo(n + 1) = Lo(n)U {s1 ;s2 ls1,s2 eLo(n)}

U {s1 Us2 ls1,s2 eLo(n)}

U {siils2 ls1,s2 eLo(n)}

U {µx[t] It eLij (n)}.

l,fi(n +l) = l,fi(n)U {t;sltel,fi(n), seL0(n)}

U {t1 Ut2 lt1,li el,fi(n)}

U {tillt2 lt1,li el,fi(n)}

U {µx(t]ltel,fi(n)}

u {µy(t) ly=/=x /\t ELij(n)n.l.,j\(n)}.

We define

Lo = U Lo(n), 1.6 = U L;(n~
neN neN

REMARK (Empty statement)
It appears to be useful to have the languages under consideration contain a special element, denoted
by E, which can be regarded as the empty statement. From now on E is considered to be an element
of L0 , and 1.6. We shall still write Lo for Lo U { E} and 1.6 for Lij U { E}. Please note that syntactic
constructs like s ;E or Ells are not in L0 •

Now that we have formulated the notion of guardedness for x, we can easily generalize this:

DEFINITION 1.3 (Guarded statements)
The set~ of guarded statements (guarded for all x) is defined as

= nxeStm,, l.fi.
As Lo and 1.6, also~ has a simple inductive structure.

LEMMA 1.4 The set~ can be given by the following syntax:

t::= alt;slt1 Ut2ltillt2lµx[t)

where seLo,

We need yet another notion of syntactic nature, that is, the notion of closedness.

212

DEFINITION 1.5 (Free variables, closed statements)
For every statement seL0 we define the set FV(s) of all statement variables that occur freely ins as
usual:

FV(a) = 0, FV(x) = {x}, FV(µx[sD = FV(s)\ {x},

FV(s 1ops2) = FV(s 1)UFV(s2), for op = ;, U,11.

We call a statement s closed (notation: closed (s)), whenever FV(s)= 0. Finally, we define for
L =Lo, LB, and I,6:

Lei = {s lseL I closed (s)}

We have: (Lo)°' = (Lr,'1 = (L6f1•

We expect that the reader may benefit from a few

ExAMPLES
First we observe that L6 <;;;,L5 <;;;,L0 • Further we have that

xeL0 , xii.LB

y;xeLij, y;xfi.1,/;

µx[y;x]eLo, µy[y;x]!i.Lo

a;µx[y;x]eL5 nLt;

µy[a ;µx[y ;x]]eLo

1.2 Operational mnantia
We first introduce a semantic universe for both the operational and the denotational semantics for L 0 •

DEFINITION 1.6 (Semantic universe P 0)
Let A 00 , the set of finite and infinite words over A, be given by

A 00 =A*UA".

For the empty word we use the special symbol£. Let d,1• denote the usual metric on A 00 (see example
A. I.I). We define

Po= '!Pnc(A 00),

with typical elements p,q, ... , the set of all non-empty, compact subsets of A 00 • As a metric on Po
we take dp, =(d,4•)8 , the Hausdorff distance induced by d,4•. According to proposition A.7 we have
that P0 together with the metric dp, is a complete metric space.

The operational semantics for L 0 is based on the notion of a transition relation.

DEFINITION 1.7 (Transition relation for I,6)
We define a transition relation

<;;;, l,6XAXLo
a

(writing for as the smallest relation satisfying
a

(i) (for all aeA)
(ii) for all aeA, s,tel,6, s',seL0 : if s'=/=E, then:

213

a a
s -+s' => (s ;S

a a
I\ I\

a a
A I\

a
I\ 1,1X[s] s'[µx[s]/ x)),

where the latter statement is obtained by replacing all free occurrences of x in s by 1,1X[s]; and if
s'=E, then:

a a
=>

a .a
I\ I\

a a
I\ I\

a
Intuitively, tells us that s can do the elementary action a as a first step, resulting in the state-
ments'. We now give the definition of 0o, the operational semantics for Lff. (It is defined on closed
statements only, because we do not want to give an operational meanmg to, e.g., a ;x: what should it
be?) It will be the fixed point of the following contraction.

DEFINITION l.8 (~o)
Let ~o :(Lg 0) be given by

~o(F)(s) = l{E} a

U { a·F(s') Is' eLf/ /\a eA

for and seLt

REMARKS l.9
(I) It is straightforward to prove that ~o is contracting.

a
(2) Please note that closed (s) and imply closed (s').

a
(3) We have that ~ 0(F)(s) is a non-empty, compact subset of A 00 , because is

finite and non-empty (this follows from lemma 1.14 below) and F(s') is compact for every
s'el,f}. This implies that ~ 0(F)eLf}

DEFINITION 1.10 (0o): 0o=Fixed Point(~o)

REMARK: We use open brackets to denote application of 0o to an arguments: 0o[s].

In [BKMOZ] another, seemingly more operational, definition of 0o is given. We shall repeat a slightly
different version of it here and show that it is equivalent to this fixed-point definition.

DEFINITION I.I l (60)
Let seLf}, s=/=E. We define 0o:Lfl by putting weA 00 in 60[s) if and only if one of the following
two conditions is satisfied:

a 1 a1 al a.
(i) I\ Sn =EI\ W = Gt •··On

214

a, 02 o, a. · "-••
(ii) I\ W = Dt • • • 0,,0,,+J •••

"• 01 a, Oz

(where abbreviates I\ s' H s = E, then 8ols) = { (}.

LEMMA 1.12: &,=80

PROOF
Let wEA"", sE~, with s*E. We have

wE8Q(s] • [definition 80)
a

3aEA3s'E~3w'EA 00 /\w=a·w' /\w'e8o[s]]

• [definition ~ol
we..,(8Q)(s).

Since it follows that 80=~80). Thus 80=&,.

We give yet another characterimtion of&,. It is based on the following definition and will be the one
we use in proving semantic equivalence.

DEFJNJTION 1.13 (Initial steps)
We define a function

XLo)

(where ~fin(X) ={YI Y!;;;X/\ finite (Y)}) by induction on Li:
(i) J(E)= 0, and J(a)={(a, E)}
(ii) Suppose J(s)={(a;, s;)}, l(t)={(bj, ti)} for s,tel.i,a;,bieA, s;,tieL0 • (The variables i and j

range over some finite sets of indices, which we have omitted.) Then

I(s;s) = {(a;, s;;s)} (forieLo)

J(s Ut) = J(s)UJ(t)

I(sllt) = {(a;, s;llt)} u {(bi, sllt1)}

J(p.x[sD = {(a;, s,(p.x[s)/xD}-

Rmwut: Please note that for all s*E the set J(s) is finite and non-empty.

This definition is motivated by the following lemma, which can be easily proved.

a
LEMMA 1.14: 'o'aEA'o'sEL.i'o's'eL0 • (a, s')EJ(s))

CollOLI.AllY 1.15: ..,(F)(s)= LJ {a·F(s')I (a,s')el(s)}, for SE~\ {E}.

1.3 Daotationaliia
The second semantic function we define for Lo will be denotational: We call a semantic function

(where Mis some mathematical domain) denotational if it is compositionally defined and
tackles recursion with the help of fixed points. The first condition is satisfied if for every syntactic
operator op in L0 we can define a corresponding semantic operator (assuming op to be
binary) such that

215

F(.r1t.ps2) = F(.r1)'¥'F(.r2).
As semantic domain for the denotational semantics of L0 we take again P0 • The semantic operators
corresponding with; , U, and II, the syntactic operators in L 0 , will be of type Po

l>EFINmON 1.16 (.Sc:J:!lantic operators)
The operators;, U, II: are defined as follows. Letp, qeP0 , then

(i) - {q ifp = {<}
p;q= U{a·(p.;q)IPo=F0} otherwise

(ii) p Uq = p Uq (set-theoretic union)

(iii) pHq = q •
if q = {<}
ifp = {<} !p .

U{a·(p.H q)IPo=F0} U U{a·(ptt q.)I q.+0} otherwise,

where, for every peP0 and aeA, we define:
p0 ={wl weA 00 /\a•wep}.

(We often write op rather than tj, if no confusion is possible.)

Rawucs 1.17
(l) This def!nition is self-referential and needs some justification. We shall give it for; and leave the

case of II to the reader. We define a mapping: •:(Po by

{
q ifp= {<}

~F)(p,q) = LJ{a·F(p.,q)IPo=F0} otherwise.

It is not difficult to show that • is contracting. Then we define: ; = Fixed Point(•), which
satisfies the equation of definition 1.16 above.

(2) If we define the left-merge operator IL by

{
0 ifp = {<}

pllq = U{a{p0 II q)IPa=F0} otherwise,

then we have that

pllq= pllqu qll.p

(using the fact that p'llq'=q'llp', for all p' and q'). This abbreviation will be helpful in some
future proofs.

We need the following properties, which are easily verified:

LEMMA 1.18
(a) For op=;, U, and fi we have

"lp,p',q,q'eP0 (dp0 (popq,p'opq') c. max{d,,(p,p'), d,,(q,q')}J.

(b) For p,p'eP0 with <fp, <fp', and q,q'eP0 we have

dp,(p;q, p';q') c;; max{d,,(p,p'), ½,d,,(q,q')).

(c) The operators;, U, and fi preserve compactness.

216

We shall treat recursion with the help of environments, which are used to store and retrieve meanings
of statement variables. They are defined in

DEFINITION 1.19 (Semantic environments)
The set f of semantic environments, with typical elements y, is given by

r = Stmv--+1i" p O·

We write y{plx} for a variant of y which is like y but with y{p/x }(x)=p.

Now we have defined everything we need to introduce the denotational semantics for L0 •

DEFINITION 1.20 (Yo, Do)
We shall define D 0 as the fixed point of

Yo:(Lo...,.f (Lo...,.f ...,.i Po)
which is given by induction on L 0• (Here f Po denotes the set of non-distance-increasing func-
tions (see A.3.(c)).) Let FeL0...,.f P0 , then:

(i) Yo(F)(a)(y)={a}, Y0(F)(x)(y)=y(x), Y0(F)(E)(y)={t}

(ii) Yo(F)(s op t)(y) = Yo(F)(s)(y) op Yo(F)(t)(y)

(iii) Y0(F)(px[s))(y) = Y0(F)(s)(y{ F(Ju[s])(y)/ x}) for s EL~,

for op=;, U, II, and oj, as in definition 1.16. (We define '110(.F) only for those sandy, such that
FV(s)~dom(y).) Now we set

D 0 = Fixed Point(Y0).

REMARK: We have: Do[iu[s))(y)= Dolsl(y{Doliu(s]J(y)/x}). (As for flo, we also use open brack-
ets for <>Do.)

It is not obvious that Yo is contracting. The fact that we consider only guarded recursion is essential
for proving it.

LEMMA 1.21
(a) If FeL0...,.f P0, then P0•
(b) If thenforal/y1,y2Ef,sELo:

(*) 'vyeStmv(sf.ELlj Y1(y)=r2(y)]

(**) dp0 ('1to(F)(s)(y1), '1to(F)(s)(y2)),.;; ½·dr(Y1,Y2).
(c) Vo is contracting on P0.

PROOF
(a) The proof of (a) goes along the lines of (b), which is more interesting.
(b) Let P0 , let y1, y2 Ef. We use induction on L 0 •

(i) Fors =a we have: dp0 ('1t0(F)(a)(y1), v0(F)(a)(y2))=0. Let s =x, with xeStmv. Suppose (*)
holds for x. Then

dp,(Vo(F)(xXr1), Vo(F)(x)(y2)) = dp0 (Y1(x), Y2(x))

= 0 [because of (*)).

(ii) We only treat sequential composition and recursion. Lets =s 1;s2, with s 1,s2eL0• Suppose (b)

217

holds for s1 and s2 • Suppose(*) holds for s1 ;s2• 1bis implies that(*) holds for SJ. Thus we have
(**) for s J. Now:

dp, (Yo(F)(s 1 ;s2X-YJ), Yo(F)(s 1 ;s2Xr2))

= dp, (Yo(F)(s J)(YJ); Yo(F)(s2X-YJ), Yo(F)(s I Xr2); Yo(F)(s2XY2))

,,;;;; [for all seL0 \ {E}, F and y we have: £ilYo(F)(s)(y); thus lemma l.18(b) applies)
I

max{ dp,(Yo(F)(sJ)(-YJ), 'Yo(F)(sJ XY2)), TdP, ('Yo(F)(s2XY1), 'Yo(F)(s2Xr2))}

-.;; [(**) for s1; (a) for s2)
I I

max{Tdr(y1,-Y2), Tdr(Y1,Y2)}
I = Tdr(Y1,-Y2)-

(The proof for SJ Us2 and s 1 lls2 is similar.) Next we treat recursion. Let s1 eL0 and suppose that
,u[s ii satisfies (*). Then s I satisfies it. Thus we have (**) for s 1. Now

dp, ('Yo(FXIU(s J IX-YJ), 'Yo(FXIU[s J IXY2))

== dp, ('Yo(F)(s XYJ { F(J.u[s dXY1)/ x }), 'Yo(F)(s XY2 { F(J.u[s dXY2)/ x }))

-.;; ((*) holds for s 1, also w.r.t. Y;{F(J.u[si))(y;)/x}, for i = 1,2, thus so does(**))
I

Tdr(Y1 {F(J.u[sd)(r1)/x }, Y2 {F(J.u[si))(y2)/x })
I

.;;; Tmax{dr(Y1,Y2), dp0 (F(J.u[si))(y1), F(J.u[si))(y2))}

.;;; [(a) for ,u[s ill
t·dr(ii, Y2)-

(c) Let F1,F2eLo->f->1Po. We only treat recursion. Suppose dp,('Yo(F1)(s)(-y), 'Y0(F2)(s)(y))
I .;;;Td(F1,F2), for some seLi, all yef. Then

dp, ('Yo(F 1)(,u(s))(-y), 'Yo(F 2XIU[s))(y))

= [Y; = y{F;(J.u[s])(y)/x}, i = 1,2)

dp0 (Yo(FJ)(s)(y1), Yo(F2)(s)(y2))

.;;; max{dp0 (Yo(F1)(s)(y1), Yo(F2)(s)(y1)), dp0 (Yo(F2)(s)(-yJ), Yo(F2)(s)(r2))}

,,;;;; [induction, (b))
I I

max{Td(F1,F2), Tdr(Y1,Y2)}
I I = max{Td(F1,F2), Tdp0 (F1(J.u[s])(y), F2(J.u[s))(y))}

I = Td(F1,F2)-

1.4 Semantic equiva/mt% of &> and 61\i
An important difference between 61\i and &> is that recursion is treated with and without semantic
environments, respectively. We have

61\i[,u[s))(y) = 61\i[s)(y{6J:\i[,u[s))(y)/ x })

218

and

&i[µx[s]) = eo[s[µx[s]/x]l

In the latter case the statement µx[s] is syntactically substituted for all free statement variables x in s,
whereas in the first case the environment y is changed by setting x to the semantic value of µx[s].
We shall compare 0o and 61\-i by relating both to an intermediate semantic function 0o', which takes
syntactic instead of semantic environments as arguments. It will be defined such that for syntactic
environments ll:

f\i'(µx[s]l(ll) = 0t)'[s](ll{µx[s]/ x }).
Here ll is changed, the new value of xis the statement µx[s]. By first comparing 0o and 0o' and next
0a' and 61\-i we are able to prove the main result of this section: 0o[sJ= D 0[s](y), for all sEL61 and
arbitrary yEf. For the definition of 0a', we need

DEFINmoN 1.22 (Syntactic environments)
The set A of syntactic environments, with typical elements ll, is defined by

A = { ll I llE(Stmv-->lin L 0)A(ll is normal)},

where the notion of normal environments is given in:

DEFINITION 1.23 (Normal environments)
A syntactic environment ll is called normal, whenever

(i) 'r/xEdom(ll) [B(x)E~]

(ii) 'r/sEL0 [FV(s)(;;;dom(ll) =>3k;;..0 [s[llJ" EL8]],

where s[ll]° =s, s[ll]1 =s[8(x1)/x1, ... ,ll(x.)lx.] (with FV(s)= {x I' ... ,x. }) and s[Br +I =(s[ll])[llr.
For ll normal and sELo, with FV(s)Cdom(ll), we define

s = s[llJ",

where k = min{m ls[llrEL6'}.

REMARKS
(1) From now on we shall assume whenever we consider sEL0 and llEA together (as two arguments

for a function, or as a pair) that FV(s)(:dom(ll).
(2) Let 8eStmv....,JinL0 be such that for x,yEStmv: ll(x)=y and ll(y)=x. Such an environment is not

normal. It does not give us any useful information about the values of x and y.
(3) It would be too restrictive to require for all llEStmv....,JinL0 that 'r/xEdom(ll) [x[ll]EL8]. An

example may illustrate this. Let ll be defined such that dom(ll)={x,y}, and

6(y)=µy[b ;x ;y], 6(x)=µx[a ;µy(b ;x ;y]].

Such an environment we shall encounter when computing 0o'[µx(a ;µy[b ;x ;y Ill Now y [ll] =
6(y)££L8, buty[llfEL8,

Now that we have introduced syntactic environments, we can formulate a principle of induction for
the set Lo XA, which we shall heavily use in the sequel.

THEOREM 1.24 (Induction principle for Lo X A)
Let :E: CLo X A. If:

(I) A xAc:::
(2) {s,t}XA(::E: => {s;s,sUt, sllt}XAC:E:for s,t, sEL0

219

(3) {s}XA\;;;E: => {µx[sl}XA\;;;E: forsE4

(4) (8(x),B)EE: => (x,B)EE:for xEStmv and BEA,

then:

PROOF
Let E:\;;;L0 XA, suppose E: satisfies (1) through (4). We first prove fact (a) and fact (b) given below,
and next show that (a) and (b) imply: E:=L0 XA. So we have

fact(a): L6 XA\;;;E:

fact (b): "IS\;;;L0 XA [S\;;;E:=>S'\;;;E:], where

S' = {(s,B)l(s,B)EL0 XA /\ "lxEFV(s) [slt'L6 => (B(x), B)ES)}.

To show that (a) holds, we use (1), (2), and (3), and induction on the structure of L6- We proceed
with (b). Let S \;;;Lo XA and suppose S \;;;E:. Let S' be as above. We use (1) through (4) and induction
on L0 to show that S'\;;;E:. Let (s,B)ES', forsELo,BEA.
(i) s:=a: (a,B)EE:, because (1).
(ii) s=S 1ops2 : Suppose that if (s;,B)ES', then (s;,B)EE:, for i=l,2. If (s,B)eS', then also (s1,B) and

(s2,B)ES'. Thus (si,B),(s2,B)EE:. By (2) we have: (s 1 op s2,B)eE:.
(iii) s:=µx[si], for s 1 E4: Suppose that (s 1,B)eS' implies (s 1,B)EE:. Because s 1 eLij we have:

(s 1,B)eS'~ (µx[si],B)ES'. Because (µx[si],B)eS' we have (s 1,B)eE:. Thus, using (3), we have
(µx[s i],B) E :::.

(iv) s=X: If (x,B)eS', then (B(x),B)eS, thus (because S \;;;E:) (B(x),B)eE:. Because of (4), we then
have that (x, B) E :::.

Thus facts (a) and (b) hold. Next we show that E:=L0 XA. For this purpose we define, for all n eN:

Vo=L6XA,

Vn+l = {(s,B)l(s,B)eLoXA /\ "lxeFV(s) [srlL6 => (B(x), B)eVnl}.

Then we have:

(*) "lsELo"IBEA3nEN [s[BreL6 =>(s,B)EVnl,
which we prove with induction on n EN. Let sELo and BEA. If s[B]° EL6, then s eLf/ \;;;L5. Thus
(s,B)EVo. Now suppose(*) holds for neN, and suppose s[Br+ 1eL5. Then (s[B])[BrEL6, thus by
induction (s[B],B)E Vn. This implies (s,B)E Vn + 1, which proves(*) for n + 1.
Because all BEA are normal we have

"l(s,B)ELoXA3neN [s[BrEL6).

Together with (*) this implies:

"l(s,B)ELo XA3n EN [(s,B)E Vnl-

Since Vn\;;;LoXA, for all nEN, it follows that LoXA=UneNVn. Now Vo\;;;E: because of (a), and
Vn \;;; E: => Vn + 1 \;;; E: because of (b), so we conclude: ::: = L0 X A.

REMARK
We cannot reason about a free statement variable x unless we know what statement it is bound to.
Therefore, we consider non-closed statements together with syntactic environments, which give infor-
mation about the free variables they contain. This explains why we have formulated an induction
principle for L 0 XA instead of Lo only.

220

Now let ::: (:L0 Xll. The first three conditions of the principle suffice to prove that L6 Xll(:E, since
they express exactly the syntactic structure of L6 (see lemma 1.4). (We have chosen L6 here instead
of Lf/, because the latter set has no simple inductive structure.) Thus also L~ XLl ((:L/i Xll) (:E.
Adding condition (4) enables us to prove Lo Xll(:E:. This may be motivated by the followinf For
every statement seL0 and normal environment '5ell there exists an /EN such that s['5fEL8 (:1,6.
Let us call k EN with k =min{/ Is ['5f EL~} the degree of c/osedness of s with respect to 8. Please note
that every sEL8 has degree 0, and arbitrary sELo has, for arbitrary '5, a finite degree. Therefore, this
degree can be used as a measure for the complexity of statements. Our induction principle is indeed a
principle of induction on the degree of closedness. Conditions (I), (2), and (3) are sufficient to prove
::: for all (s,'5) with degree 0. They form, so to speak, the basis of the principle. Condition (4)
expresses the "step part": if E: holds for (8{x),'5), which has degree k, say, then E: holds for (x,'5),
which then has degree k + I.

We now proceed with the definition of 0o '. It will be of type

0o' o,
which could be called intermediate between

Instead of basing the definition of 0o' on some transition relation (as in definition 1.8) we use a vari-
ant of the initial step function (definition 1. 13).

DEFINITION 1.25 (Initial steps with syntactic environments)
We define a function

XL0 Xll),

using the induction principle for L 0 X a. The predicate ::: (: Lo X a we use is defined as:

E:(s,'5) = /'(sX8) is defined

We shall define/' such that E: satisfies the induction conditions. Thus we ensure that /' is defined for
every seL0 and '5Ell (with FV(s)(;;;dom(8)).
(1) /'(EX'5)= 0, and J'(aX'5)={(a,E,'5)}, for all a EA, '5Ell.
(2) Suppose /'(s)=M·{(a;,s;,'5;)}, I'(t)=M·{(bj,tj,8j)} for s,t,s;,tjELo, a;,bjEA, and '5;,'5jELl.

(The variables i and j range over some finite sets of indices, which are omitted.) Then:

I'(s;s)(8) = {(a;, S;;s, '5;)} (forsELo)
J'(sUtX8) = /'(sX8)UJ'(tX8)

I'(slltX8) = {(a;, s;llt, '5;)} u {(bj, slltj, '5j)}

(3) For the definition of /'(J.U[s I) we have to consider possible clashes of variables. Therefore, we
distinguish between two cases (supposing that /'(s) has already been defined):

{
l'(sX8{µx[s]Ix}) if x ridom(8)

/'(/U[s JX'5) = J'(s)('5{µ.x[s]/i}) if x Edom(8),

where xis some fresh variable with x ridom(8) and s=s[x/x].
(4) Suppose J'(8{x)X8) has already been defined. We set:

/'(xX'5)=J'('5(x)X8).

REMARKs
(1) We have: if J'(sX8)= {(a;,s;,'5;)}, then normal ('5;), and thus '5; E.Ll, for all i.

221

(2) The definition of J'(Ju[s JX8), with x edom(8), is correct, because s ands have the same complex-
ity.

(3) If I'(sX8)= ((a;,s;,8;)}, then for all i: \fxeStmv[xedom(8)ndom(8;) => 8(x) = 8;(x)].

DEFINITION 1.26 (cl>o')
We define (Lo->A->Po) by

{
~} ils=E

il>o'(.F)(sXB) = LJ (a·F(s'X8')1(a,s',8')el'(sX8)} otherwise

for FeL0 ->A->Po, seL0 , and 8eA with FV(s),;;;;dom(8).

DEFINITION 1.27: 0o'=Fixed Point(il>o').

Next, we compare 0o and 0o'. We can do this by relating/ and I', since we have:

0o(s) = U {a·0o(s') l(a,s')e/(s)}, for seL~, s=pE

0o'[s](8) = U { a·0o'[s')(8') I (a,s',8')eJ'(s)(8) }, for s ELo, s=pE, 8eA.

THEOREM 1.28 (Relating / and /')
For all seL0 and 8eti, with FV(s),;;;;dom(8), we have:

\faeA\fs'eL0\f8'eA [(a,s',8')eI'(sX8) (a,s'<8'>)e/(s<8>)).

(For the definition of s <8> see 1.23.)

PROOF
We define

E(s,8) = \faeA\fs'eL0\f8'eA [(a,s',8')e/'(sX8) (a,s'<8'>)el(s<8>)]

and use the induction principle for L 0 XA to show that E=Lo XA. We only treat the case of recur-
sion. Suppose seL~ such that {s}XA,;;;;E. We have to show that{µ.x[sl}XA,;;;;E. Let 8eA and
assume (without loss of generality) that x edom(8). Then

/'(Ju[s]X8) = I'(sX8')

where 8'=8{µ.x[s]/x} (by the definition of/'). On the other hand, we have

/(Ju[s]<8>) = [xedom(8)]

J(Ju[s<8>])

= /(s<8>[µ.x[s<8>]/x])

(the latter equality following from:

\fteLf, (/(Ju[t]) = J(t[µ.x[t)/x])]).

We take a quick (but deep) breath and proceed as follows:

s <8>[µ.x[s <8>]Ix] = [definition s <8>]

s[8]<8>[µ.x[s <8>]/ x]

= [x edom(8), \fy edom(8) [x eFV(8(y))]]

s[8][µ.x[s <8>]/ x]<8>

= s[8][µ.x[s]/ x]<8>

222

= W = 6{µx[s)/x}]

s[6']<6>

= [x ~FV(s[6')))

s[6')<6'>

= s<6'>.

Thus we have /(µx[s]<6>)=/(s<6'>). Combining this with I'(µx[s))(6)=I'(s)(6'), which we saw
above, yields:

E(µx[s],6) E(s,6').

Because {s}Xa~::: we may conclude: E(µx[s),6).

D

We formulate the relation of 6ii and 6ii' in terms of their defining contractions '1l0 and '1l0 '. Tbis can
be elegantly done using the following

DEFINITION 1.29
We define <>:(L~ for every by-

<>(F) = p<> (notation)

= ASELo·Mea- F(s<6>).

REMARK
Tbis mapping links two kinds of semantic functions, one using syntactic environments, and the other
one not using environments. If FeL~ then p<> is a in a sense extended version of F: it can
take as an argument also statements seL0 that are not closed, provided it is supplied with a syntactic
environment, which is to give the (syntactic) values for the free variables ins.

THEOREM 1.30 (Relating cilo and '1l0'); 'r/Fe~ [cilo'(F<>) =('1l0(F))<>J

PROOF
The theorem is an immediate consequence of theorem 1.28. Let FeL~ -+Po, lets eL0, s=/=E.

'1lo'(F<>)(s)(6) = U {a·F<>(s')(6')1(a,s',6')eJ'(s)(6)}

= U {a·F(s'<6'>)1(a,s',6')e/'(s)(6)}

= [theorem 1.28)

U {a·F(s'<6'>)1(a,s'<6'>)e/(s<6>)}

= '1lo(F)(s<6>)

= ('1lo(F))<>(s)(6).

Because '1lo and 410 ' are contractions with 6ii and 6ii' as their respective fixed points, we have:

COROLLARY 1.31 (6ii'=ef>): 'rfseL0 'r/6ea [6ii'[s](6)= Ms<6>J).

Finally we relate

and

For this purpose we define the following mapping.

DEFINITION 1.32
We define by:

~(F) = F (notation)

= 'Jo.seL0·MeD.· F(sx°if)

223

{or where "if is given by "if = 'Ax edom(IJ)·F(IJ(x)X"if). (We often write IJ rather than
"if if from the context it is clear which F should be taken.)

REMARKS
(I) We have to justify the self-referential definition of "if. For this purpose we define

E:(s,IJ) = 'fxeFV(s) is well defined)],

for s eL0 and IJ ea, and use tl!ia. induction principle to prove: ::: = L 0 X a. Then it follows for all
xeStmv with xedom(IJ) that If (x) is well defined. Conditions (I) through (3) of t!Je induction
principle are trivially fulfilled. We prove congition (4). Suppose (IJ(x),IJ)eE:. Thus { (y) is well
defined for allyeFV(IJ(x)). This implies that "if (x) is well defined, since

"if (x)=F(IJ(x)X"if).

(2) In the same way as <>,also~ links two different kinds ~f semantic functions, one using syn-
tactic, and the other using semantic environments. Again F is an extended version of F in the
sense that it takes syntactic environments as an argument instead of semantic ones. In the
definition above a ~tactic environment IJe/j. is changed into a semantic version (according to the
semantic function F) IJF of it, which then is supplied as an argument to F.

Next, we come to the main theorem of this chapter. It relates the denotatiopal semantics 6Do and the
operational semantics 6'0 , whicJi. is a fixed point of 11>'0 , by stating that also 6Do is a fixed point of 11>'0 .
From this it follows that flo'=6Do.

THEOREM 1.33: ll>o'(61\i)=61\i

PROOF
Let E:{;;L0 xa be defined by

E:(s,IJ) = ll>o'(61\iXsXIJ) = 61\i(sXIJ)

for (s,IJ)eL0 xa. We use the ipduction principl1:_for Lo xa to show that E:=L0 xa. Let !Jea.
(I) For aeA we have ll>o'(6DoXaXIJ)= {a}= 6Do(aXIJ), so A XD.{;;E:.
(2) Let s,seL0 and suppose E:(s,IJ). We show: E:(s;s,IJ).

ll>o'(6DoXs;s)(IJ)= [definition 11>0 ' and /'(s;s)]

U { a'·61\i(s';s)(IJ') l(a',s',IJ')el'(sXIJ)}

U { a'·(61\i(s'XIJ'); 61\i(s)(IJ')) I (a',s',IJ')e/'(s XIJ)}

= [see remark (3) after definition 1.25]

U {a'·(61\i(s'XIJ'); 61\i(s)(IJ))l(a',s',IJ')e/'(sXIJ)}

= [definition ;]

224

(U {a'·6Do(s')(c'J')l(a',s',li')e/'(s)(c'J}}); 6Jlo(s)(c'J)

= [definition <1>0 ']
- -<l>o'(6Do)(s)(c'J); 6Do(s)(c'J)

= [because E(s, Ii)]

6Jlo(s)(Ii); 6Jlo(s)(li)

= 6Do(s;s)(c'J~

This proves E(s;s,c'J). Now let s,teL0 and suppose E(s,11) and E(t,c'J). We show: E(sllt,11).

<l>o'(6Jlo)(sllt)(li) = [definition <l>o' and /'(slit)]

U { a'·6Do(s'llt)(c'J') I (a',s',c'J')e/'(s)(c'J)} U

U { b'·6Do(sllt')(c'J') I (b',t',c'J')e/'(t)(c'J)}
- -= U {a'·(6Do(s')(c'J')ll%(t)(c'J'))I (a',s',c'J')e/'(s)(c'J)} U
- -U {b'·(6Do(s)(c'J')ll6Do(t')(c'J')) I (b',t',c'J')e/'(t)(c'J)}

= [see remark (3) after definition 1.25]

U { a'·(6Do(s')(c'J')ll6Do(t)(c'J)) I (a',s',c'J')e/'(s)(c'J)} U
- -U { b'·(6Do(s)(c'J)ll6Do(t')(c'J')) I (b',t',c'J')e/'(t)(c'J)}

= [definition IL (see remark 1.17(2))]

((U {a'·®o(s')(c'J')I (a',s',c'J')e/'(s)(c'J)})IL 6Do(t)(li)) U

((U {b'·6Do(t')(li')I (b',t',c'J')e/'(t)(li}})IL 6Do(s)(c'J))

= [definition%']
- -(<l>o'(6Do)(s)(li)IL 6Do(t)(c'J)) u
- -(ll>o'(6Do)(t)(c'J)IL 6Do(s)(c'J))

= [we have E(s,c'J) and E(t,c'J))

(6Jlo(s)(c'J)IL 6Do(t)(c'J)) u
(6Do(t)(li)IL 6Do(s)(c'J))

= 6Do(s)(c'J)ll6Do(t)(c'J)

= 6Jlo(s llt)(c'J).

This proves E(s lit, c'J). The case E(s U t, 8) is simple.
(3) Let sel,fi and suppose {s}XAkE. We show: E(µ.x[s],c'J). Assume (without loss of generality)

that x r£dom(8). Then

'1>o'(6Do)(px[s))(c'J) = [definition 4>0 ' and /'(µ.x[s])(c'J); let c'J'=c'J{J1X[s)/x}]

U {a'·6Do(s')(c'J')I (a',s',c'J')e/'(s)(c'J')}

= <l>o'(6i\))(s)(c'J')

= [we have E(s, c'J')]

6Do(s)(c'J')

= 61\i(s)(6')

= [definition 6']

61\i(s)(6{6%(,u[s])(6)/x})

= [definition 6%]

61\i(,u[s])(6)

= %(,u[s JX8)
This proves E:(/U[s],8).

(4) Let xeStmv, suppose E:(8(x},8). Now

«llo'(%XxX8) = [definition «llo' and /'(xX8)]

4io'(61\JX8(x)X8)

Thus E:(x, 8).

= [because E:(8(x }, 8)]

%(8(x)X8)

= 61\il8(x)J(6)

= [definition 8)
8(x)

= 61\i[x](6)

= %(xX8).

The induction principle now implies: ::: = L 0 xa.

As an immediate consequence of this theorem, we have

COROLLARY 1.34 (0o'=%): 'r/seL0 'r/8ea [flo'[s)(8)= 61\i[s)(6)].

Now combining corollaries 1.31 and 1.34 yields the main theorem of this section.

THEOREM 1.35 (et>=%): 'r/seL0 'r/8e!::,. [flo(s<8>)= 61\i(s)(6)).

COROLLARY 1.36: For all sel.,8, and arbitrary yef: flo(s] = 61\i(s](y).

1.5 Summary of section 1

225

It may be useful to give a short overview of this section because we shall follow the same approach of
proving semantic equivalence in the next sections. We have defined an operational semantics flo for
L0 as the fixed point of 410, and a denotational semantics 61\i as the fixed point of v0 • We have
related flo and via an intermediate semantic function flo', defined as the fixed point of 410 '. To be
more precise, we have related 410 , v0, and 410 ' using mappings<> and~, for which we have proved
some properties, schematically represented by the following diagram:

226

~.
<>! .. !<> ~.·
~i *foe i~

+,

The * in the upper rectangle indicates that it commutes, the symbol * foe in the lower rectangle indi-
cates that it commutes only for the fixed point of '1'0 (that is, %). Please note that * has been for-
mulated as theorem 1.30, and *foe as theorem 1.33. The main result of sectio~ 1 (theorem 1.35) fol-
lows from this diagram, because• implies: flf > = flu' and *foe implies: 0o' = DJ.\i.

REMARK
The lower rectangle does not commute for arbitrary As an example take
F =>-.s·">,:y- { £ }. Then, for given a,b EA and IIEA:

whereas

i'o(F)(a ;b)(Ii) = i'o(F)(a ;b)(8+,<F>)

= i'o(F)(a)(B,i,m); '1'0(F)(b)(8,i,,<F>)

= {a};{b}

= {ab},

4'o'(F)(a ;b)(li) = {a·f'(b)(li)}
= {a·F(b)(ff)}

= {a}.

2. A LANGUAGE WITH COMMUNICATION AND GLOBAL NONDETERMINISM (L 1)

2.1 Syntax
For L 1 we introduce some structure to the (possibly infinite) alphabet A of elementary actions. Let
C ~A be a subset of sercalled communications. From now on let c range over C and a,b over A. Simi-
larly to CCS [Mil] or CSP [Ho] we stipulate a bijection - : C with - 0 - = idc. It yields for every
cEC a matching communication -(c), which will be denoted by c. In A \C we have a special ele-
ment -r denoting a successful communication. Let Stmv, with typical elements x,y, ... , be again the
set of statement variables.

DEFINmON 2.1 (Syntax for L 1)
The set L 1, with typical elements s,t, ... , is given by

s:: = a is1 ;s2 ls1 +s2 isi!ls2 Ix lµx[t]

where t ELf, which is defined below. Please note that a EA C.

DEFINmON 2.2 (Syntax for Lf)
The set Lf of statements which are guarded for x is given by

t::= a
I t;s, for seL1

I t1 +t2 ltillt2

I y, for y=fax
I ,a[t I
I l'J[t'], for y=fax, t' eLf ni,r

DllFINmoN 2.3 (Syntax for LO
The set 1-' of statements which are guarded for all x eStmv is defined by

t:: = a lt;s lt1 +t2 lt1 llt2 l,a(t],

whereseL1.

REMARK
We extend L 1, Lf, and 1-' with the empty statement E (see the remark following definition 1.2).

227

The definitions of FV(s) (free variables of s) and of (syntactically) closed statements are as in section
l. The language L 1 dilfers from Lo in two respects. First, the presence of communication actions
entails a more sophisticated interpretation of s 1 lls2• Secondly, the operators of global nondeterminism
s1 +s2 and of local nondeterminism s 1 Us2 of Lo are dilferently interpreted. For an extensive discus-
sion of L 1 we refer the reader to [B.KMOZ] (where, for obvious reasons, it is called L 2). After we
have defined an operational semantics for L 1, we shall briefly discuss the intuitive meaning of L 1•

2.2 Opaati-' 6tllllllllia

DEFINmON 2.4 (Semantic universe P 1)
Let, as in definition l. 7, the set A 00 be defined as A 00 = A • U A.,. We extend this set by allowing as
the last element of a finite sequence a special element a, which will be used to denote deadlock:

AB° = A•uA•-{a}UA"'.

Now we define a complete metric space P1, with typical elements p,q, ... , as

Pi = ':tnc(AB°),
the set of all non-empty, compact subsets of Ar'. As a metric on P I we take (d,1;)8 (see A.6(d)). We
shall use P1 as the semantic universe for the operational semantics of Li, which will again (as for L0)
be based on a transition relation:

DEFINmON 2.5 (Transition relation for 1-')
We define a transition relation

as the smallest relation satisfying
a

(i) for aeA. (Please note that it is also possible that aeC!)
(ii) for all aeA, s, te1" and s',seL 1: if s'=faE, then:

a a
=9

a a
I\ I\

228

a a
"sllt->s'llt "tlls->tlls'

a
/\ µx[s]-> s'[Ju[s]/ x I);

and if s'=E, then:

a a
I\ s+t->E I\ t+s->E

a a
" s 11 t -> t II t lls -> t

a
/\ µx[s]->E).

(iii) for all cEC, s,tEIJj, s',t'EL 1: if s'=l=E=/=t', then:
C C ,,

(s->s' I\ t->t') sllt->s'llt',

and if s'=E, then:
C C T

ts-> E .1, t -> t') slit -> t'.

DEFINITION 2.6 (1)1)
Let l)i:(M->P1)->(Lj1->P 1) be given by

ifs=E
a

1)1(F)(s) = {o} !{£}

if {a 13s'[s->s']Aa !i!C} = 0

U {a·F(s')is..'.'..s' t\a!i!C}

DEFINITION 2.7: 61 = Fixed Point(l)i)

ExAMPLES

otherwise,

The following examples illustrate the intended meaning of L 1 :

MxJ = {a}

61[cllcJ = {T}
ei[(a;c)ll(b;c)] = {abT, baT}

ei((a;b) + (a;c)) = {ab,aa}

Ma ;(b +c)) = {ab},

for cEC, a,bEA \ C.

Thus with global nondeterminacy + the statements s 1 =(a ;b)+(a ;c) and s 2 =a;(b +c) get different
meanings under 61 • This difference can be understood as follows: If s 1 performs the elementary action
a, the remaining statement is either the elementary action b or the communication c. In case of c, a
deadlock occurs since no matching communication is available. However, if s2 performs a, the
remaining statement is b +c, which cannot deadlock because the action b is possible. Thus

229

communications c create deadlock only if neither a matching communication c nor an alternative ele-
mentary action b is available.
We again characterize the operational semantics by defining for each statement s a set of pairs of
which the first element denotes a possible first step of s.

DEFINITION 2.8 (Initial steps)
We define a function I:.L,i-'!Pfin(A XL 1) by induction on .L,i.
(i) /(£)=0 and/(a)={(a, £)}
(ii) Suppose /(s)={(a;, s;)}, l(t)=((b1, 11)} for s,tE.l,i,a;,b1EA, and s;,t1EL1. (The variables i and

j range over some finite sets of indices, which we have omitted.) Then

l(s;s} = ((a,, s;;s}} (forsEL1)

l(s+t) = l(s)Ul(t)

/(slit)= {(a;, s;llt)}U{(b1, silt1)}U{(-r, s;llt1)la;=~}

I(p.x[s]) = {(a;, s;[J.Lx[s]/x])}.

a
LEMMA 2.9: \fa EA \fsE.l,i \fs'EL1 [s-s'<:=>(a,s')El(s)]

COROLLARY 2.10: For FELf-P 1 and sELf, such that {a 13s'[s_:s']/\afi"C}~0, we have:

fll1(F)(s) = LJ {a·F(s')l(a,s')El(s)/\afi"C}.

2.3 Denotalional semantics
We follow [BKMOZ] in introducing a branching time semantics for L 1. First we have to define a suit-
able semantic universe. It is obtained as a solution of the following domain equation:

(*)

Such a solution we call a domain, and its elements are called processes. We can read the equation as
follows: a process p EP is either p 0, the so-called nil process indicating termination, or it is a (com-
pact) set X of pairs <a,q >, where a is the first action taken and q is the resumption, describing the
rest of p's actions. If Xis the empty set, it indicates deadlock (as does a in the operational semantics).
For reasons ~f cardinality (*) has no solution when we take all subsets, rather than all compact sub-
sets of A XP. Moreover, we should be mote precise about the metrics involved. We should have
written (*) like this:

DEFINITION 2.11 (Semantic universe P 1)
Let (P 1,d) be a complete metric space satisfying the following reflexive domain equation:

P;;;;{po}U'ii'c0 (A Xid½(P)),

where, for any positive real number c, idc maps a metric space (M,d) onto (M,d') with
d'(x,y)=c·d(x,l:.), and U denotes the disjoint union (see definition A.6). (F£f a formal definition of
the metric on P we refer the reader to the appendix.) Typical elements of P 1 are p and q, and are
called processes.

We shall not go into the details of solving this equation. In [BZ] it was first described how to solve
this type of equations in a metric setting. In [AR] this approach is reformulated and extended in a
category-theoretic setting.

230

As in definition 1.16 we define a number of operators on P 1 •

DEFINITION 2.12 (Sel!um_tic o_pera~rs) _
The operators;, +, II: P 1 are defined as follows. Letp,qeP 1, then:

(i) {
q ifp = po

p,q - {<a,p'; q>l<a,p'>ep} otherwise

(ii) p+q = q ifp = po ! p if q = po

p u q otherwise

p
q

(iii) pilq = { <a,p'llq I <a,p'> Ep} U

{ <a,pllq'I <a,q'>eq}U

if q = po
if p = Po

{<T,p'llq'>I <c,p'>epA<c,q'>eq} otherwise.

(We often write op rather than op if no confusion is possible.) For a justification of these definitions
see remark 1.17.

DEFINITION 2.13 (Semantic environments)
We use f to denote the set of semantic environments (as in definition 1.19), with typical elements y,
given by

DEFINITION 2.14 ('lr1,6D1)
We define the denotational semantics 6D1 of L 1 as

6D1 = Fixed Point('!r1),

where '1r 1 :L 1 1 is defined exactly as % in definition 1.20 but for the following two clauses:

'lr1(F)(aXy) = { <a,po>}

v,(F)(EXy) = Po-
We realize that it must be difficult for the reader who sees this type of denotational semantics for the
first time to understand and appreciate it. Nevertheless, we consider it for our purposes preferable to
refer the reader to [BKMOZ], where he can find an extensive explanation. In this paper, we want to
stress the technique of proving semantic equivalences, with which we now proceed.

2.4 Semantic equivall!nce of e, and 6D1
It is quite obvious that the result of the previous section, as formulated in corollary 1.36, namely that

'vseLf} 'vyef [0o[sJ=6Do[s](y)],

does not hold for the semantic functions e, and 6D1• The semantic universe P I of 01 is a set of sets of
streams, whereas P 1, the semantic universe for 6D1, is a set of tree-like, branching processes. Thus,
when comparing the types of 61 :L 1 and 6D1 :L 1->f ->Pi, we observe that besides the fact that 6D1
takes a statement as an argument as well as an environment, which 01 dcies not (as is the case with 6Do
and ~), there is a second difference between e, and 6D1• That is, they have different co-domains:

231

P I i=-P 1 (which is not the case in the previous section). The strategy we shall follow to relate 01 and
6D1 is to define functions

01':L1->A->P1

(where A will again be a set of syntactic environments) and

6D1':L1->A->P1,

and then relate 01 and 01' (similarly as with 0o and 0o'), next 6D1' and 6D1 (similarly as with 0o' and
"i\i), and finally compare 01' and 6D1' by using a suitable abstraction operator a:P 1->P1 • Like we did
in the previous section we define 01' (and 6D1 ') as fixed point of a contraction.
We start with the comparison of 01 and 01 '.

DEFINITION 2.15 (Syntactic environments)
The set A of syntactic environments, with typical elements li, is given by

A= L 1)/\(li is normal)}.

(For the notion of normal see definition 1.23.)

We formulate an induction principle for L 1 XA, as in 1.24.

THEOREM 2.16 (Induction principle for L 1 XA)
Let 'E.<;;,_ L1 XA. If

(I) A XAk.'E.

(2) {s,t}XAk.'E. => {s;s, s +t, sllt}XAk.'E., for s,t,sEL1
(3) {s}XAk.'E. => {p.x[s]}XAk.'E., for seL5
(4) (li(x),li)e'E. => (x,li)e'E., for x eStmv, and lie A

then:

'E.=L1XA.

PROOF: See theorem 1.24.

DEFINITION 2.17 (Initial steps with syntactic environments)
As in definition 1.25 we use the induction principle to define a function

J':L1->A-><5'fin (A XL1 XA).

(I) J'(EXli) = 0, and /'(aXli) = {(a,E,li)} for all aeA, lieA.
(2) Suppose J'(s)=M·{(a;,s;,li;)} and J'(l)=M·{(b1,t1,li1)} for s,t eL 1, a,,b1 EA, and li;,81 EA. Then:

l'(s ;s)(li) = {(a;, S;;s, li;)} (for all sEL1)

I'(s +tXli) = J'(sXli)UI'(tXli)

J'(slltXli) = {(a;, s;llt, li;)}U{(b1, sllt1, li1)}U{(-r, s;llt1, li;Uli1)la; = b;}

(3), (4): as in definition 1.25.

REMARK
In the clause for slit in the above definition we take the union of two environments, li; and 81. This we
can always do; if we impose the restriction upon all li;'s and li/s that:

ifa; = b1, then (dom(li;)\dom(li))n(dom(li1)\dom(li)) = 0.

232

If this condition is not satisfied (and in general it is not) a suitable renaming of variables should be
applied. An example of a statement for which this should happen is: µx[c ;x]llµx[c;x].

DEFINITION 2.19: 01 '= Fixed Point(il>1 ')

THEOREM 2.20 (Relating I and I')

ifs= E
if {(a,s',B')eJ'(sXB)laG!:C} = 0
(a,s',B')eJ'(sXB)Aa G!:C} otherwise

'!/seL 1 '!/Bell [J'(sXB) = {(a;,s;,B;)) J(s) = {(a;,s;<B;>)}]

PRooF: See theorem 1.28.

DEFINITION 2.21: We define by

<>F = p<>

= >.seL 1·Mell·F(s)

PROOF: See theorem 1.30.

Next we define as the fixed point of the contraction below and compare 6D1 and 6D1'.

DEFINITION 2. 24 (i' 1 ')
We define by

{
{£} ifs = E

'I' 1 '(FXs XB) = { <a,F(s'XB')> I (a,s' ,B')el'(s XB)} otherwise,

for seLi, and Bell.

DEFINITION 2.25: 6D1 '= Fixed Point(i'i')

REMARK
As 01' also 6D1' takes syntactic environments as arguments. Their co-domains, however, are different:
P 1=/=P 1• One could call 6D1' a branching variant of 0i'. Another difference is that 01'(c)(B)={a},
whereas 6Di'(cXB)={ <c,p0 > }, for ceC and Bell.

DEFINITION 2.26

Let ~:(L1 be given by

~(F) = F

= AseL1 ·"ABe11·F(sXK)

233

for where f is defined as f = "Axedom(8)·F(B(x)XK). (For a justification of the
definition of BF see remark (I) following definition 1.31.)

PROOF: lbis theorem can be proved in essentially the same way as theorem 1.33.

COROLLARY 2.28: 6Jl1'=601

Finally we provide the only missing link in the chain that is to connect e1 with 6Jl1 : the comparison of

and

We relate their different semantic universes P 1 and P1 in the following

DEFINITION 2.29 (Abstraction operat~ a)
We define an abstraction operator by:

a = streams0 restr,
where restr (for restriction) and streams are recursively defined:

(i) restr :P1
fPo if p = Po

P,... l { <a,restr(p')> I <a,p'> ep /\a fi! C} otherwise

(ii) !{<} ifp = Po
pt-+ {3} ifp = 0

U { a·streams(p') I <a,p'> ep} otherwise.

REMARKs
(I) Since the definition of restr and streams is recursive, we have to verify that it is well formed. It

suffices to note that these functions can be defined as fixed points of contracting functions (cf.
remark 1.17).

(2) The abstraction operator a transforms a (branching) process peP1 into an element a(p)eP 1 in
two steps. First it cuts off all branches (all subprocesses) of p I that are labeled with an element
of C: these e's can be regarded as failed (individual) attempts at communication. lbis is what
restr does. Then streams takes all paths (streams) of the result of restr (p), putting a a symbol
(denoting deadlock) at the end of all paths ending in the empty process. lbis can be understood
as follows: When a path in restr(p) ends in the empty process this means that the operation restr
has cut off everything at the end of the corresponding path in p. By definition of restr only e's
could have been present. Thus this path in p should be interpreted as indicating a situation in
which only individual communication steps can be taken. Operationally, we consider this to be a
case of deadlock. Therefore, we replace this empty process by a. lbis is what streams does.

234

Now that we have defined a mapping a:P 1->P1, we extend it in the following way.

DEFINITION 2.30
Let a:(L1->a->Pi)->(L1->a->P1) be defined by

a(F) = pa (notation)

= llsEL 1·Mea•a(F(s)(c5))

for FeL1->a->P1. (Please note that we use again the symbol a. We trust that no confusion will arise
from this slight abuse of language.)

THEOREM 2.31 (Relating '1'1' and cl>1'): 'vFEL1->a->P1 [cl>i'(F")=('lr1'(F))"]

PROOF
Let FeL1->a-+P1, let seL 1 and aea be such that {(a,s',c5')e/'(s)(c5)\a!t'C)~ 0. Then:

cl>1'(F)(s)(8) = U {a·F"(s')(c5')1(a,s',c5')e/'(s)(c5)/\aft'C)

= U {a·(a(F(s')(c5'))1(a,s',c5')e/'(s)(c5)/\aft'C)

= streams({ <a,restr(F(s')(8'))> I (a,s',8')1::/'(s)(8)/\a G"C))

= streams 0 restr({ <a,F(s')(8')> l(a,s,8')e/'(s)(c5)))

= a('lr1 '(F)(s)(c5))

= ('{, I '(F))"(s)(8).

If seL 1 and aea are such that {(a,s',c5')e/'(s)(c5) \a!t'C)= 0, then

cl>1'(F")(s)(8) = {3)

= streams(0)

= streams0 restr({ <a,F(s')(8')> I (a,s',8')e/'(s)(8)))

= ('1'1 '(F))"(s)(c5~

COROLLARY 2.32 ((6D,')" =0i'): 'vs EL1 'vc5ea [a(6Di'[s](c5)= 0i'[s)(c5)]

Combining corollaries 2.23, 2.28 and 2.32, which state:

(2.23) 0j<> = 01'

(2.32) 01' = (6Di')"

(2.28) 6D1, = 601 ,

now yields the main theorem of this section:

COROLLARY 2.34: For all seLf and arbitrary ye[: 01[s) = a(6D1[s](y)).

2.5 Swnma,y of section 2
We can again give a quick overview of the main theorems of this section by drawing a diagram as fol-
lows:

235

.,
<>l • l<> (theorem 2.22) .,,
af • fa (theorem 2.31) .,.
~t *foe t~ (theorem2.27) .,

where (as in subsection l.S) • indicates commutativity and *foe indicates commuta_!ivity with respect
to the fixed point of v1 (that is, 6D1). Please note that if we could identify P 1 and Pi, we could iden-
tify the second and the third horizontal lines of this diagram, leaving out the mapping a. This would
yield a diagram of exactly the same shape as that of subsection 1.5. This is just a way of rephrasing
what has already been said above: The only new thing about proving semantic equivalence_ for L 1 ,

compared with L0 , is the presence of a difference between the semantic universes P I and P I of 01
and 6D1, which made the introduction of a necessary. Theorems 2.22 and 2.27 are just (slightly)
modified versions of theorems already present in section 1 (namely, theorems 1.30 and 1.33).

3. A NONUNIFORM LANGUAGE WITH VALUE PASSING (L2)

We devote the third section of our paper to the discussion of semantic equivalence for a nonuniform
language. Elementary actions are no longer uninterpreted but taken as either assignments or tests.
Communication actions c and c are refined to actions c?v and c!e (with v variable and e an expres-
sion), and successful communication now involves two effects: both synchronization (as in the
language Li) and value passing: the (current) value of e is assigned to v. Thus, we have here the syn-
chronous handshaking variety of message passing in the sense of CCS or CSP.
We shall introduce a language L 2 which embodies these features and present its operational and
denotational semantics fli and 6D,z. Nonuniformity of L 2 calls for the notion of state in both semantic
models: They now deliver sets of streams, or processes, over state transformations, not over uninter-
preted actions as in the previous sections. The main goal of this section is to provide the reader with
yet another example of a language to which the method for proving semantic equivalence, as
developed in section 1 and 2, applies. Although L 2 will be in some sense more complex than L I and
accordingly fli and 6D:z more intricate than 61 and 6D1, the proof of the equivalence of operational and
denotational semantics will essentially be the same. Because of this emphasis on proving semantic
equivalence, we shall not give very much explanation when defining the semantics. For this we refer
the reader again to [BKMOZ], which we (roughly) follow in our definition of 0i and 6D;z. Nor shall we
give any proofs, because all of them can be obtained by straightforwardly modifying a corresponding
one from section 2.

J_I Syntax
We now present the syntax of L 2• We use three new syntactic categories, viz.

the set Var, with elements v,w, of individual variables
the set Exp, with elements e, of expressions
the set Bexp, with elements b, of boolean expressions.

We shall not specify a syntax for Exp and Bexp. We assume that (boolean) expressions are of an

236

elementary kind; in particular, they have no side effects and their evaluation always terminates. State-
ment variables x,y, ... are as before, as are the communications ceC. The latter now appear syntac-
tically as part of value passing communication actions c?v or c!e.

DEFINITION 3.1 (Syntax for L2)

s:: =v: =e lb lc?v lc!e ls1 ;s2 ls1 +s2 ls1 lls2 Ix IJ.U[I]

where .1 E LJ, defined in

DEFINITION 3.2 (Syntax for Li)
The set Li of statements which are guarded for x is given by

t::= v:=elblc?vlc!e

I I ;s, for seL2

I l1 +t2 ltillt2

I y, for y=/=x
I J,U[t I
I l'J(t'], for y=/=x, t' eLi n[/2

DEFINITION 3.3 (Syntax for ~}
The set of statements which are guarded for all x e Stmv is defined by

t::= v: = =e lb lc?v lc!e It ;s It, +t2 It, llt2 IJ,U(t),
where seL2.

REMAIUC: The sets L 2,Li, and~ are extended with the empty statement E (cf. the remark preceding
definition 1.3).

It will be useful to unite assignments v : = e, tests b and communications c?v and c !e into one set of
basic steps.

DEFINITION 3.4 (Basic steps)
We define the set Bsteps of basic steps, with typical element a, by

BStep = Comm U Bexp U Asg,

where the set Comm of communications is defined by

Comm= (c?vlceC,veVar) U (c!elceC,eeExp),

and the set Asg, of assignments, is defined. by

Asg = (v:=elveVar, eeExp).

The sets BSteps and Comm can be regarded as the nonuniform equivalents of the sets A of atomic
actions and C of communications of the previous section.

3.2 Operational semanJia

DEFINITION 3.5 (Transition relation for ~)
We define-->~~ XBStep XL 2 as the smallest relation satisfying

237

a
(i) a -> E, for all a EBStep. (Please note that it is also possible that a E Comm!)
(ii) for all aEBStep, s, tEL; and s',sEL 2 : if s'=-/=E, then:

a a
s~s' => (s;S--+s';S

a a
I\ s +t->s' I\ t +s->s'

a a
I\ s llt -> s'llt 1\ t 11s-> t lls'

a
I\ µx[s]-> s'[JLX[s]/ x]);

and if s'=E, then:
a a

s->E =>(s;s->s

a a
I\ sllt->t I\ tlls->t

a
I\ µx[s]-> E).

(iii) for all s,tEL;, s',t'EL2 , and c?v,c!eEComm: if s'=-/=E=-/=t', then;
c!e c?v v:=e v:=e

(s-> s' I\ t-> t') => (slit -> s'llt' I\ t lls -> t'lls'),
and if s' = E, then:

c!e c?v v:=e v:=e
(s-> E I\ t -> t') => (slit -> t' I\ tlls -> t').

For both operational and denotational models the notion of state is fundamental. Elements v, w in Var
will have values in a set Val. A state is a function that maps variables to their (current) values.
Accordingly, we define

DEFINITION 3.6 (States)
The set L of states, with typical element u, is defined as

L = Var->Val.

We shall also employ a special failure state il, with illt'L, and define

Lf =L.UL0 ·{il}UL"'.
Elements of Lf will be denoted by finite or infinite tuples <u1,u2, ..• >. The empty tuple will be
denoted by (. We shall write u for <u>. Concatenation is defined as usual.

For expressions eEExp and hEBExp we postulate a simple semantic evaluation function, details of
which we do not bother to provide. The values of e and b in state u will be denoted simply by

[e]u (EVal) and [b]u (E{tt,.ff}).

DEFINITION 3.7 (Semantic universe P2)
We define the semantic universe P 2 by

P2 =I->'iPnc(If),

where 'iP.c(If) is the set of all non-empty and compact subsets of If.

238

DEFINJTION 3.8 (<P2)
Let «l>2: (Lf/. P 2) (Lf/. P 2) be defined by

<P2(F)(£) = {£};
a

if {a13s'[s s']A(aEAsgV(aEBExp!\[a)a=tt))} = 0, then

«l>2(F)(s) = {o};

otherwise
b

«l>2(F)(s) = U {o·F(s')(o)I s->s'A[bBo=tt}U
V; =e

U {ov:=,F(s')(ov:=e)I s s'},

for FeL~1->P 2 and seL2, and with

Ov:=e = o{[e]o/v}.

(The notation a., =e will also be used in the sequel.)

DEFINITION 3.9: 0i = Fixed Point(<P2)

ExAMPLES

0i[v:=O) = Xo·{<o{O/v}>}.

0i[v:=OII (v:=1; v:=v + l)D = ;\o·{<o{O/v}, a{l!v). a(2!v)>.

<a{llv }, o{O/v }, o{ 1/v} >,
<o{ I Iv}, o{2/v }, o(O/v} >)

02lv:=O; µx(v:=v+l; x]J = ;\o•{<o{O/v},o{l/vj,o{2/v), ... >)

02[v: =O; V <OD =Xo·{ <o{O/v }, o>}

0i[c?v) = ;\a-{ <o>}

0i[c?v llc!3) = ;\o·{ <0{3/v) >}

We can again characterize the operational model using an initial step function.

DEFINITION 3.10 (Initial steps)
Let J: 1/2 -,GJ'fin(BStep XL2) be defined by
(i) /(£)= 0, J(a)={(a,E)}, for aeBStep
(ii) Suppose J(s)= {(a;,s;)}, l(t)={(bj,tj)) for s,tE}/2. a;.b;eBStep, and s,.r; EL, Then

J(s ;s) = {(a;, s;;s}}, for sEL2

J(s +t) = J(s)UJ(t)

J(sllt) = {(a;,s;llt)} U {(bj,slltj)} U ((v:=e,s;llt1)1(a,=c?vAb1 =-c 1e)V(u, 0=c'e h1 °0 1',
J(µ.x[s]) = {(a,, s;{µ.x(s]/ x])).

a
LEMMA 3.11: 'vaeBStep'vse}/2 'vsEL 2 [s->s'~a.s')el(s)]

COROLLARY 3.12

For FeLf--+P2, seL~1 and ae~ with {(a,s')el(s) I a eAsgv(aeBExp/\[a]a=tt)}'i= 0:

4'2(F)(sXa) = LJ {o-F(s'Xa)I (b,s')e/(s)/\(b)a=tt))} U

U {av:=e"F(s'Xav:=,)I (v: =e, s')e/ (s)}.

3.3 Denotational semantics

239

As in section 2.3 we start with the definition of a suitable semantic universe. It will be a process
domain that is obtained as a solution of the following domain equation:

P;;;;;{po} U~00(SS1eps XP),

where the set SSteps of semantic steps, with typical elements K, is given by

SSteps =
u
U (CXVar)

U

We can read this equation as follows: a process p eP is either p0 , the nil process, or it is a (compact)
set X of semantic steps KESSteps. Such a semantic step can have one out of four forms. First it can
be a state transformation. These will be used to give a semantics to assignments. Then it can be a
mapping from states to the set of truth values, corresponding with boolean expressions. Next, it can
be a pair <c,v>, corresponding with an input statement c?v. And finally it can be a pair <c,f >,
corresponding with an output statement c !e. Here, f is used to denote the value of e (that is,

As in section 2.3 we should be more precise about the metrics involved. We give a formal definition
below and refer the reader to section 2.3 for further explanation and references.

DEFINITION 3.13 (Semantic universe P 2)
Let (P2 ,d) be a complete metric space such that it satisfies the following domain equation:

P;;;;;{po} U~00(SSteps Xid!?(P)),

with SSteps as above. Typical elements of P2 will be p and q.

DEFINITION 3.14 (..SemantLc ~era_!ors)_ _
The operators;, +, and II: P 2 are defined as follows. Let p,qeP2 , KESSteps, c eC, v E Var,

Then:
(i)

(ii)

- !q p;q = -{ <K, p';q> I <K,p'> Ep}

p+q =
if q = Po
if p = po
otherwise

if p = Po
if p'i=po

(iii) Ifp =po, thenpOq=qilp=q. lfp'i=po and q'i=po, then:

240

pllq = {<,c,p'llq>i<,c,p'>Ep}U

{ <K, p liq'> I <,c,q'> Eq} u
{ <'>..o·o(j(o)/v },p'llq'> I (<<c,v >,p'> EpA<<c,f >,q'> Eq) V

(<<c,f >,p'>EpA<<c,v >,q'> Eq)}.

For a justification of these self-referential definitions see remark 1.17.

DEFINITION 3.15 (Semantic environments): f=Stmv_.,li"P 2 (typical elements are y).

DEFINITION 3.16 ('¥2,0Jl.i)
We define the denotational semantics 6Di of L2 as

6iJ.i = Fixed Point('Y2),

where 'Y2:(L2-.f-->P2)-->(L,-->f -->P2) is given, for FEL2-->f -->P2, by:

(i) 'Y2(F)(a)(y)= { <Ka,Po> }, and 'Y2(F)(E)(y)=po,

with

?l.o·Ov:=e ifa=v:=e
?l.o·[a]o if aEBExp

"· = <c,v> if a =c?v
<c,?l.o·[do> if a=c!e.

(ii) 'Y2(F)(s opt)(y) = 'Y2(F)(s)(y) op '¥2(F)(1)(y) for op = ;, +, II.
(iii) 'Y2(F)(µ.x[s])(y) = '¥2(F)(s)(y{ F(µx[s)(y)/x}).

Similarly to lemma 1.21 we have that '¥2 is contracting.

ExAMPLES

OJl.i[v: =O)(y) = { <?l.o·o{O!v },po>}

OJl.i[v: = I; v: =v + I](y) = { <?l.o·o{llv }, { <Ao'·o'{ o'(v)+ 1/v },po>}>}

OJl.i[c?v II c!3](y) = { <<c,v >,{ <<c,?l.o·3>,p0 > }>,

<<c,?l.o·3>,{ <<c,v >,po>}>,

<?l.0·0{3/v},po>}

OJl.i[v:=O; µx[v:=v+I; x)] = {<?l.o·o{O/v},p>}. wherepEP 2 satisfies

p = (<?l.o·o(o(v)+ !Iv },p > }.

3.4 Semantic equivalent:e of 0i and 6Di
The proof of the semantic equivalence of 0i and 6iJ.i is essentially the same as in the previous section.
Therefore, we only give a brief outline of how to proceed, leaving out the details of some definitions,
omitting all proofs, and stressing the (small) differences. We define

0/ = Fixed Point(<!>/) and °Di' = Fixed Point('¥/)

with <I>/ and'¥/ defined as follows. Let <l>/:(L2-->!::.-->P 2)-->(L 2-->!::.-->P 2) be given by

<l>/(F)(E)(8) = { (};

if {(a,s',ll')e/'(s)(ll)I aeAsgv(aeBExpi\(a)a=tt)} = 0, then

~2'(F)(s)(8) = {cl};
otherwise

~2'(F)(s)(8) = U {a·F(s')(a)(ll')I (b,s',ll')e/'(s)(ll)A(b]a=tt} U

U { a,,=,F(s')(ll')(a.,=,) I (v: =e,s',8')e/'(s)(8)},

241

for and llf§_ll (fl and/' can be defined similarly to definitions 2.5 and 2.17).
Let be defined by

{
Po ifs=E

'¥/(F)(s)(ll) = { <,c0 ,F(s')(8')> l(a,s',ll')e/'(s)(ll)} otherwise,

(with"• as in definition 3.16) for and Bell.

The definitions of ~ 2 ' and '¥2' are somewhat more involved than their counterparts from section 2.
What is different here is that a syntactic basic step does not literally coincide with the semantic step
that represents its meaning. In the previous section we had elementary actions a and c both as syntac-
tic and semantic entities. Here we have syntactic basic steps v: = e, b, c !e, and c ?v, all of which are
semantically represented in a different way.
Similarly to the definitions 2.21 and 2.26 we can define mappings

<>:(Lt;/_ 2) and

~:(L2->f

and prove

0i' = 0f> and6Di' = %-
Finally, we can compare 0i' and "Di' by recursively defining a suitable abstraction operator
by

a(po)(a)={£),

and, for p=/=po, by

a(p)(a) = U (f(a)·a(p')(f(a))I <f,p'>ep

U { a·a(p')(a) I <f,p'> ep A f (a)= tt},

if { <f,p'> I <f,p'> A/ (a)=tt))}=/=0, and by

a(p)(a) = {a}, otherwise.

(For a justification of this self-referential definition see remark 1.17.) In a(p)(a) all pairs <,c.p'> ep
with and ,c(a)=ff, or ,ceCXVar, or are neglected. This corresponds
with the restriction ope~tor of definition 2.29. A 5eCOnd effect of applying a is that it transforms a
(branching) proce.ss p eP2 into a function a(p)eP2), which yields, when supplied with
an argument a, a set of streams (in a sense the paths of p). In this respect a is similar to the operator
streams of definition 2.29. Applying a has yet another effect. If f and <f,p'> ep, then
j(a)·a(p')(f(a))ea(p)(a): the state transformation f is applied to the current state a, and the resulting
state f (a) is concatenated with a(p')(f(a)), in which/ (a), being the new state, is passed through to a
applied to p', the resumption off In this way, the effect of different state transformations occurring
subsequently in p is accumulated. A simple example may illustrate this. Consider

p = 60-i(v:=l;v:=v+I)

242

Then

= { <Aa·av:=1,{ <Aa'·a'v:=o'(,)+1,po> }> }.

a(p)(a) = { <av:=J, a({ <Aa'·a'v:=o'(,)+1,po> })(a,:=d>}

= { <av:=h av:=2, a(po)(av:=2)>}

= { <av:=], 0,:=2> }.

Next, we extend a to a mapping by putting for
a(F) = pa

= As·M·a(F(s)(8)). ·

We shall prove that

[<l>/(P) = ('Y/(F))"].

Let 8E!J., and aE~ be such that

{(a,s',8')E/'(s)(8) I a EAsgV(a EBExp /\[a)a = II)}* 0.

Then

<l>/(F")(s)(8)(a)

U { a·F"(s')(8')(a) I (b,s',8')EJ'(s)(8) /\ [b]a= It} U

U { a,, =,F«(s 1)(81)(a,,=,) I (v: =e,s 1,81)EJ'(s)(8)}

U { a·(a(F'(s')(8'))(a)) I (b,s 1,81)EI'(s)(81)/\[b]a= It} U

U {a,: =,·(a(F'(s')(8'))(a,: =,)) I (v: =e,s',8')El'(s)(81)}

= a({ <rc0 ,F'(s 1)(81)> I (a,s',8')EJ'(s)(8')})(a)

[with"• as above]

= a('1'/(F)(s)(8))(a)

= ('Y/(F))"(s)(8)(a).

The case that <l>/(F")(s)(8)(a)= {a} goes similarly. This proves

[<l>/(F") = ('l'/(F))"].

Now it follows that

Collecting the results from above, we see:

ef > = (60-i)", or, equivalently

'vsEL 2 'v8E!J. [0i[s<8>) = a(6Jli[s](8))],

with the obvious corollary, that

'vs EL~ 'vyEf [fli[s) = a(6Jli[s)(y))].

243

4. CoNCLUSIONS

We have developed a uniform method of comparing different semantic models for imperative con-
current programming languages. We have defined operational and denotational semantic models for
such languages as fixed points of contractions on complete metric spaces, and have related them by
relating their corresponding contractions. Here, we benefit from the metric structure of the underlying
mathematical domains, which ensures the uniqueness of the fixed point of such contractions (Banach's
theorem). It turns out that once this method has been applied to a certain (simple) language (L0), it
can be easily generalized for more complex languages (L 1 and L 2). This we consider to be the
strength of this approach. Currently, we are investigating possible extensions of this method to deal
with yet other languages, containing, e.g., program constructs for process creation.

Our investigations are related to the question of full abstraction, which at the same time is a topic for
further research. If L is a language with semantics 0 and 6D, then we call 6D fully abstract with respect
toe if

"lseL"lteL (6f{s)=6Dlt] "IC(·) [e(C(s))=e(C(t)]],

where C(·) ranges over the set of contexts for L, that is, the set of statements in L containing one or
more holes. An example would bes;(·), where(·) denotes the hole. Given such a context C(-) and a
statements the statement C(s) is obtained by substituting s for all the holes in C(-). The issue of full
abstraction is mostly raised with respect to a model e that is operational, expressing a notion of obser-
vability, and a model 6D that is compositional. Then it follows from a relation between (9 and 6[) of the
form 0=a0 6D that for alls and teL:

6D(s)=6Dlt) "IC(-) [e{C(s))=e{C(t))).

(1bis property is sometimes called: correctness of 6D with respect to 0.) Thus, our result of proving
0=a0 6D partly solves the problem of full abstraction. The reversed arrow is still an issue for further
research.

5. REFERENCES

[AP] K. APT, G. PLOTKIN, Countable nondeterminism and random assignment, Journal of the
Association for Computing Machinery, Vol. 33, No. 4, October 1986, pp. 724-767.

[AR] P. AMERICA, J.J.M.M. RUTTEN, Solving reflexive domain equations in a category of complete
metric spaces, in: Proceedings of the 1bird Workshop on Mathematical Foundations of
Programming Language Semantics (M. Main, A. Melton, M. Mislove, D Schmidt, eds.),
Lecture Notes in Computer Science 298, Spnnger-Verlag, 1988, pp. 254-288. (To appear
in the Journal of Computer and System Sciences.)

[BKMOZ] J.W. DE BAKKER, J.N. KOK, J .. J. CH. MEYER, E.-R. OLDEROG, J.I. ZUCKER, Contrasting
themes in the semantics of imperative concurrency, in: Current Trends in Concurrency (J.W.
de Bakker, W.P. de Roever, G. Rozenberg, eds.), Lecture Notes in Computer Science 224,
Springer-Verlag, 1986, pp. 51-121.

(BMOZI] J.W. DE BAKKER, J..J. CH. MEYER, E.-R. OLDER0G, J.J. ZUCKER, Transition systems,
infinitary languages and the semantics of uniform concurrency, in: Proceedings 17th ACM
STOC, Providence, R.l. (1985) 252-262.

(BMOZ2] J.W. DE BAKKER, J .• J. CH. MEYER, E.-R. OLDEROG, J.J. ZUCKER, Transition systems, metric
spaces and ready sets in :he semantics of uniform concurrency, Report CS-R8601, Centre for

244

[BZ)

[Du]
[En]
[FHLR]

[HP)

[Ho]
[Mic)
[Mil]

[Pll]
[PU]

[Pl3]

[Sc]

Mathematics and Computer Science, Amsterdam, January 1986. (To appear in: Journal
of Computer and System Sciences.)
J.W. DE BAKKEll, J.I. ZUCKER, Processes and the denotational semantics of concurrency,
Information and Control 54 (1982) 70-120.
J. DUGUNDn, Topology, Allen and Bacon, Rockleigh, N.J., 1966.
E. ENGELKING, General topology, Polish Scientific Publishers, 1977.
N. FRANCEZ, C.A.R. HOARE, D.J. LEHMANN, W.P. DE ROEVER, Semantics of nondetermin-
ism, concurrency and communication, J. CSS 19 (1979) 290-308.
M. HENNESSY, G.D. PLOTKIN, Full abstraction for a simple parallel programming language,
in: Proceedings 8th MFCS (J. Befvaf ed.), Lecture Notes in Computer Science 74
Springer-Verlag (1979) 108-120.
C.A.R. HOARE, Communicating sequential processes, Prentice Hall International, 1985.
E. MICHAEL, Topologies on spaces of subsets, in: Trans. AMS 71 (1951), pp. 152-182.
R. MILNER, A Calculus of communicating systems, Lecture Notes in Computer Science 92,
Springer-Verlag, 1980.
G.D. PLOTKIN, A powerdomain construction, SIAM J. Comp. 5 (1976) 452-487.
G.D. PLOTKIN, A structural approach to operational semantics, Report DAIMI FN-19,
Comp. Sci. Dept., Aarhus Univ. 1981.
C T). PLOTKIN, An operational semantics for CSP, in: Formal Description of Programming
Concepts II (D. Bj6mer ed.) North-Holland, Amsterdam (1983) 199-223.
D.S. ScoTI, Domains for denotational semantics, Proc. 9th ICALP (M. Nielsen, E.M.
Schmidt, eds.), Lecture Notes in Computer Science 140, Springer-Verlag, 1982, pp. 577-
613.

6. APPENDIX: MATIIEMATICAL DEFINITIONS

DEFINITION A.I (Metric space)
A metric space is a pair (M,d) with Ma non-empty set and d a mapping d:MXM-+[0, I) (a metric or
distance) that satisfies the following properties:
(a) \fx,yEM[d(x,y)=0 x =y]
(b) \fx,yEM[d(x,y)=d(y,x))
(c) \fx,y,z EM [d(x,y)..;d(x,z)+d(z,y)].
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied:
(c') \fx,y,z EM [d(x,y)..;max{d(x,z),d(z,y)}l.
Please note that we consider only metric spaces with bounded diameter: the distance between two
points never exceeds 1.

ExAMl>LES A. 1.1
(a) Let A be an arbitrary set. The discrete metric d,. on A is defined as follows. Let x,yEA, then

{
0 if X =y

d,.(x,y) = 1 if x=,=y.

(b) Let A be an alphabet, and let A co = A • U A"' denote the set of all finite and infinite words over A.
Let, for xEAco, x(n) denote the prefix of x of length n, in case length(x)~n, and x otherwise.
We put

d(x,y)=2-.n.,p{n lx(n)=y(n)),

with the convention that 2-co =O. Then (A co ,d) is a metric space.

245

DEFINmON A.2
Let (M,d) be a metric space, let (x;); be a sequence in M.
(a) We say that (x;); is a Cauchy sequence whenever we have:

V<>O 3NeN \fn,m>N (d(xn,Xm)<<].
(b) Let xeM. We say that (x;); converges to x and call x the limit of (x;); whenever we have:

V<>O 3NeN \fn>N [d(x,xn)<<J.
Such a sequence we call convergent. Notation: =x.

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele-
ment of M.

DEFINITION A.3
Let (M1,di),(M2,d2) be metric spaces.
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a bijectionf:M1-+M2 such that:

\fx,yeM 1 [d2(/(x),f(y))=d1(x,y)). We then write M 1 ;;;;;.M2. When f is not a bijection (but only
an injection), we call it an isometric embedding.

(b) Let f:M 1-+M2 be a function. We call f continuous whenever for each sequence (x;); with limit x
in MI we have that Iim;_00f (x;)= f (x).

(c) Let A ;;;.o. With M 1 -/• M 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property:
\fx,yeM1 [d2(/(x).fV,))~A·d1(x,y)). -
Functions f in M 1-+ M 2 we call non-distance-increasing (NOi), functions f in M 1-+' M 2 with
0~(< 1 we call contracting.

PROPOSITION A.4
(a) Let (M 1,d 1),(M 2,d2) be metric spaces. For every A.;;;.Q and f eM 1-+A M 2 we have: f is continuous.
(b) (Banach's fixed-point theorem)

Let (M,d) be a complete metric space and f :M-+M a contracting function. Then there exists an
x eM such that the following holds:
(1) f(x)=x (xis a fixed point of j),
(2) VyeM [f(y)=y y =xJ (xis unique),
(3) Vxo eM i where/<" +l>(xo)= f(J<•>(x0)) and f<0>(x 0)=x0.

DEFINITION A.5 (Compact subsets)
A subset X of a metric space (M,d) is called compact whenever each sequence in X has a subsequence
that converges to an element of X.

DEFINITION A.6
Let (M,d),(Mi,d1), ... ,(M.,d.) be metric spaces.
(a) With M 1 -+M 2 we denote the set of all continuous functions from M I to M 2. We define a

metric dF on M 1-+M 2 as follows. For every f1 ,/2 e M 1-+M 2

dF(/1 ,/i)=supxeM, { d2(/1 (x),/2(x)) }.

For A ;;;.o the set M 1-+A M 2 is a subset of M 1-+M 2, and a metric on M 1-+A M 2 can be obtained
by taking_!!_ie res!!jction of the corresponding dF.

(b) With M I U · · · UM. we denote the disjoint union of M 1, ... , Mn, which can be defined as
{l}XM~ · · ·_ll{n}XM •. We define a metric du on M 1U ···UM. as follows. For every
x,yeM1 U ···UM.

{
dj(x,y) if x,yeU}XM1, l~J~n

du(x,y) = 1 otherwise.

(c) We define a metric dp on M I X · · · XM. by the following clause.

246

For every (xi, ... ,Xn), (y1, ... ,Yn)EM1 X · · · XMn

dp((xi, ... ,x.),(y1, ... ,Yn))=max;(d;(x,,y,)).

(d) Let 0'nc(M)="'f(XIX<;;;MAX is compact and non-empty}. We define a metric dH on °1'.c(M),
called the Hausdorff distance, as follows. For every X, Y e 6Pnc(M)

dH(X, Y)=max{ supxex{d(x, Y)),supyE r{ d(Y,X)) },

where d(x,Z)="'linf,Ez(d(x,z)) for every Z <;;;M, x EM.
In 0'co(M)=def{ XIX <;;;MAX is compact} we also have the empty set as an element. We define dH
on 'ii'c0 (M) as above but extended with the following case. If X cfo 0, then

dn(0 ,X)=dn(X, 0)= I.

(e) Let ce[O,co). We define: id,(M,d)=(M,c·d).

PROPOSITION A. 7
Let (M,d), (M 1,di), ... ,(M.,dn), dp, du, dp and dn be as in definition A.6 and suppose that (M,d),
(M1,di), ... ,(M.,d.) are complete. We have that
(a) (M1"2M2,d_E),
(b) (M 1 U · · · UM.,du),
(c) (M 1 X · · · XM.,dp),
(d) (0'nc(M),dn), and ('if'c0 (M),dH)
are complete metric spaces. If (M,d) and (M,,d,) are all ultra-metric spaces these composed spaces are
again ultra-metric. (Strictly spoken, for the completeness of M 1 _,,M 2 and M 1 _..AM 2 we do not need the
completeness of M 1. The same holds for the ultra-metric property.)

The proofs of proposition A.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can
be proved with the help of. the following characterization of the completeness of the Hausdorff metric.

PROPOSITION A.8
Let ('Pc0 (M),dn) be as in definition A.6. Let (X;); be a Cauchy sequence in 6P,.(M). We have:

lim;- 00 X, = {lim;- 00 x;jx; EX,, (x;), a Cauchy sequence in M).

The proof of proposition A.8 can be found in [Mic] as a generalization of a similar result (for closed
subsets) in [Du] and [En].

Semantic Correctness for a Parallel Object-Oriented Language

J.J.M.M. Rutten
Centre for Mathematics and Computer Science

P.O. Box 4079. 1009 AB Amsterdam, The Netherlands

Different semantic models are studied for a language called POOL: a parallel object-oriented language. It
is a simplified version of POOL-T, a language that is actually used to write programs for a parallel machine.
The most important aspect of this language is that it describes a system as a collection of communicating
objects that all have internal activities which are executed in parallel. For POOL, an operational and a
denotational semantics have been developed previously. The former semantics aims at the intuitive opera-
tional meaning of the language, whereas the main characteristic of the latter is composit1onality. In this
paper, we relate both models, which are quite different, and prove the semantic correctness of the denota-
tional semantics with respect to the operational semantics. Our semantic investigations take place in the
mathematical framework of complete metric spaces. For the operational semantics we use a simple space
of functions from states to compact sets of streams (which are sequences of states); for the denotational
semantics, a domain of processes is used, which is the solution of a reflexive domain equation over a
category of complete metric spaces. The main mathematical tool we use is 'Banach's theorem. which
states that contractions on complete metric spaces have unique fixed points. Both the operational and the
denotational semantics are reformulated and are presented, as well as many operators on the semantic
domains, as the fixed point of a suitably defined contraction. In this way, we are able to establish a formal
equivalence between both models. For this purpose, we introduce an intermediate domain, which first 1s
compared to the operational model by means of an abstrac:ion operator. This function takes processes.
which are tree-like structures, as arguments and yields sets of streams as results. Next. ii is shown that
both the intermediate and the denotational model are fixed points of the same contraction. from which their
equality follows. From both facts, the main result of our study follows: The operational meaning of a POOL
program is equal to the denotational meaning to which the abstraction operator is applied. In this manner,
the correctness of the denotational semantics with respect to the operational semantics is established

7980 Mathematical Subject Classification: 68810, 68C01.
1986 Computing Reviews Categories: D.3.1. F.3.2. F3.3
Key words and phrases: operational semantics, denotational semantics, process creation, object-oriented
programming. semantic correctness. complete metric spaces. contractions.

Note: This paper appeared in Siam Journal on Computing and is included in this tract
with kind permission of Academic Press, Inc.

I. INTRODUCTION

247

We study different semantic models for a language called POOL: parallel object-oriented language.
Although the theoretical foundations of object-oriented programming in general, and of parallel
object-oriented programming in particular, have not been paid much attention to, this language has
been extensively studied in a formal semantic context: In [ABKR86(a)] and [ABKR86(b)], an opera-
tional and a denotational semantics of POOL have been developed. The main goal of this paper is to
compare the two models, which are quite different, by proving some formal relation between them,
which at the same time will establish the correctness of the denotational semantics with respect to the
operational semantics. Before we explain in some detail the language POOL and the contents of this
paper, we first give a short explanation of the notion of semantic correctness and the way it can be
proved.

A semantics for a programming language e is a mapping GJR.:~D, where D is some mathematical
domain (a set, a complete partial ordering, a complete metric space), which we call the semantic

(*) This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages for AIP - a VLSI-
directed approach.

248

universe of GJR. Sometimes G)R, is called a model for t Traditionally, two main types of semantics are
distinguished: operational semantics and denotational semantics. Without wanting to get involved in a
discussion about the precise definitions, we state that in our view the main characteristic of the former
is that its definition is based on a transition relation ([HP79], [Pl81], [Pl83]); a denotational semantics
is characterised by the fact that it is defined in a compositional manner: the denotational semantics of
a composite statement is given in terms of the denotational semantics of its components. (As a second
distinctive property one often considers the way in which recursion is treated: The usual view is that
an operational semantics treats recursion by means of so-called syntactic environments (or body
replacement) whereas a denotational semantic uses semantic environments, in combination with some
fixed-point argument.)

Now consider an operational semantics IS:e-.D and a denotational semantics 6D:t,.. .. D'. A natural
question is whether 6]) is correct with respect to IS, that is, whether 6D makes at least the same distinc-
tions as 0 does. (Often, 6D makes more; see [KR88] for a simple example.) If we define for a seman-
tics GJlt:1:->D" an equivalence relation =''l!L by

s =s>l I <=> GJR{s] = GJlt{r],
for alls, t Et, then the correctness of 6D with respect to 0 can be formally expressed by the condition:

--== . ., C='<l·

One way to prove the correctness of 6D is to introduce a so-called abstraction operator a:D'-.D,
which (is in general not injective and) relates the denotational semantic universe with the operational
one. If one can prove that

IS= ao6i)

then a precise relation between IS and 6D has been established, which moreover implies the correctness
of 6D with respect to IS.

As a mathematical framework for our semantic descriptions we have chosen complete metric spaces.
(For the ba5ic definitions of topology see [Du66] or [En77].) In this we follow and generalize [BZ82].
(For other applications of th.is type of semantic framework see [BKMOZ86].) We follow [KR88] m
using contractions on complete metric spaces as our main mathematical tool, exploring the fact that
contractions have unique fixed points (Banach's theorem). We shall define both operators on our
semantic universes and the semantic models themselves as fixed points of suitably defined contrac-
tions. In this way, we are able to use a general method for proving semantic correctness: Suppose we
have defined 0 as the fixed point of a contraction

<l>: (e-.D)-+ (e-.D).

If we next show that also a 0 6D is a fixed point of <I> then Banach's theorem implies that IS=a0 6D.
It is the approach sketched above that will be applied to the language POOL. Before doing so, we

start in section 2 with a toy language that is extremely simple but has with POOL in common a con-
struct for process creation. This section can be seen as a prolongation of the introduction and tries to
give the reader some feeling for the techniques used. Since no definitions or results of this section are
used in the other sections it can be skipped without any problem.

The language POOL is described in detail in section 3. It is a simplified version of the language
POOL-T, which is defmed in [Am85] and for which [Am86] and [Am87] give an account of the design
considerations. POOL-Twas designed in subproject A of ESPRIT project 415 with the purpose of
programming a highly parallel machine which is also being developed in this project (see [Od87] for
an overview). The language provides all the facilities needed to program reasonably large parallel sys-
tems and several large applications and many small ones have been written in it.

In POOL, a system is viewed as a collection of objects. These are dynamic entities containing dara
(stored in variables) and methods (a kind of procedures). Objects can be created dynamically during
the execution of a program and each of them has an internal activity (its body) in which it can execute

249

expressions and statements. \llhile inside an object everything proceeds sequentially, the concurrent
execution of the bodies of all the objects can give rise to a large amount of parallelism. Objects can
interact by sending messages to each other. Acceptance of a message gives rise to a rendez-vous
between sender and receiver, during which an appropriate method is executed.

In section 4, we follow [ABKR86(a)) in defining an operational semantics for POOL. It is based on
a transition relation and is given, and here we differ from [ABKR86(a)], as the fixed point of a con-
traction. The semantic domain used is a complete metric space of (functions from states to) compact
sets of streams, which are sequences of states.

In section 5, we present a denotational semantics for POOL, very similar to the model given in
[ABKR86(b)). We de_pne a mapping from the set of POOL programs (called units) to some reflexive
domain of processes P (cf. [Pl76]), which is a complete metric space with tree-like structures for its
elements. It satisfies a reflexive domain equation, which is solved by deriving from it a functor on a
category of complete metric spaces and then taking the fixed point of this functor. The mathematical
techniques to do so are sketched in section 2 of [ABKR86(b)) and presented in detail in [AR88).
Before we assign a semantic value to the unit as a whole, we first define the semantics of expressions
and statements, which will be given by functions of the following type:

6DE: LE->AObj->ContE->P, and 6Ds: Ls->AObJ-.Conts->P,

where LE and Ls are the sets of expressions and statements and

ContE=ObJ-.P, Conts=P.

The semantic domain A Obj stands for the set of (active) object names. Its appearance in the seman-
ucs of expressions and statements reflects the fact that in POOL each expression or statement is
evaluated by a certain object. Further, a continuation will be given as an argument to the semantic
functions. This describes what will happen after the execution of the current expression or statement.
As the continuation of an expression generally depends upon the result of this expression (an object
name), its type is Obj--'>P, whereas the type of continuations of statements is simply P. The use of
continuations makes it possible to define the semantics, especially of object creation, in a convenient
and concise way. (For more examples of the use of continuations in semantics, see [Br86] and
[Go79).)

After having defined an operational and a denotational semantics for POOL, we come to the main
subject of our paper: The comparison of both models. This constitutes a non-trivial problem, mainly
because, first, the respective semantic domains are very different and, secondly, because the denota-
tional semantics is defined in terms of continuations, whereas the operational semantics is direct, that
is, does not use continuations. Moreover, the communication mechanism of POOL (consisting of mes-
sage passing with method invocation) is dealt with quite differently by the two models. The solution
that we propose consists of the introduction of an intermediate semantic model, in section 6, which
has in common with the operational semantics that it is direct (without continuations) and that it is
based on the same transition relation, but which has for its range the same reflexive domain of
processes as the denotational model has. Then, in section 7, this intermediate model is related to the
operational semantics by means of an abstraction operator which takes processes as arguments and
yields sets of streams. Next, it is connected with (an extended version of) the denotational semantics
by the observation that both models are fixed point of the same contraction. As a result, it follows
that the operational semantics of a unit equals its denotational meaning to which the abstraction
operator is applied.

Section 8, which contains the references, is followed by three appendices. Appendix I gives the
mathematical definitions we use; in appendix II, the abstraction operator that is used in the proof of
the semantic correctness for POOL is defined in all formal detail. Finally, appendix III shows how the
language POOL can be extended with so-called standard objects and how the definitions and proofs
can be adapted in order to obtain a similar correctness result for the extended language.

Semantic treatments of parallel object-oriented languages in general are scarce; we only know

250

[081], which gives a detailed mathematical model for an actor language. This is done by defining a
set of so-called augmented actor event diagrams, each of which is a fairly complicated structure
representing (the beginning of) a single computation. In order to deal with nondeterminism, a novel
power domain construction is used. As to the comparison of operational and denotational semantics
for languages with process creation, we only know of [AB88], where some simplified versions of
POOL are studied. None of these languages, however, contains the original POOL-T constructs for
communication (for message passing with method invocation), the treatment of which, in the correct-
ness proof, we consider to be an essential part of this paper.

ACKNOWLEDGEMENTS: We wish to thank Pierre America for his detailed and constructive com-
ments on preliminary versions of this paper. Discussions with Jaco de Baller are gratefully ack-
nowledged, as well as the contributions of the Amsterdam Concurrency Group: Jaco de Baller,
Frank de Boer, Arie de Bruin, JoostKok, John-Jules Meyer and Erik de Vink. We thank Mini Mid-
delberg for the expert typing of this document.

2. A VERY SIMPLE LANGUAGE WITH PROCESS CREATION
Before we tackle the main problem of this paper, we would like to start with a much simpler case:

We introduce a very small "toy" language Lr and present an operational and a denotational seman-
tics for it. Next, we shall compare these two models. All this can-be regarded as a little exercise, a
"warming up" so to speak, aiming at a better understanding of what follows in the next section: It
turns out that for both the languages Lr and POOL (to be introduced in the next section) the opera-
tional and denotational semantics can be compared in very much the same way.

For the definition of Lr we need a set (a,be)A of elementary actions. (Throughout this paper, we
shail use the notation (x,ye)X for the introduction of a set X with typical elements x andy.) For A
we take an arbitrary, possibly infinite, set. It will contain a subset (ce)C<;:A of so-called communica-
tions. Similarly to CCS (IMil80]), we define a bijection - : C->C with - 0 - =idc. It yields for every
ceC a matching communication c. In A\ C we have a special element r denoting successful commun-
ication.

DEFINITION 2.1 (Syntax for Lr)
The set of statements (s,te)Lr is given by

s : : = a I s1 ;s2 I oew(s).

Note that a EA ;;} C. To Lr we add a special element E, denoting the empty statement. Note that syn-
tactic constructs likes; E and oew(E) are not in Lr.

A statement is of one of the following forms: First, it can be an elementary action a. Here elemen-
tary means that it is an uninterpreted action. Examples of possible interpretations are assignments, or
read and write actions. Secondly, a statements can be the sequential composition s 1; s 2 of statements
s1 and s 2 • Finally, it may be a new-statement new(s), the execution of which amounts to the creation
of a new process which executes s. A more detailed explanation will follow below.

The operational semantics will be formulated using the notion of parallel statements. A parallel
statement is a finite sequence of statements which are to be executed in parallel.

DEFINITION 2.2 (Parallel statements)
Let (p,we)Par be given by Par=(Lr)' , the set of finite sequences of statements. Typical elements
will also be indicated by <s1, ••• ,s. >, for n;;,, I. For p= <s 1, ••• ,s. > and w= <t 1, ••• , tm > we
define p11 w=<s1, ... ,sn, t1, ... ,tm>.

Next we define the operational semantics of parallel statements. It is based on the well known

notion of a transition relation (in the style of Hennessy and Plotkin ([HP79, PIBI, Pl83))).

DEFINITION 2.3 (Transition relation for Par)
Let XPar be the smallest relation (writing for (p, a, satisfying:

(1) <a>-a-+<E>,

(2) if <s>-a->p, then <new(s)>-a-+p

(3) if then <new(s);t>-a-+p

(4) if then <(s1;s2);s3>-a-+p

(5) if p-a->p', then and 'IT''p-a->'IT''p'

(6) if and .,,-c,,\ then

for a EA, cEC, s,t,s 1,s2,s3 ELr, and p,p',w,'lr'EPar.

251

Intuitively, tells us that starting in the parallel statement p the elementary action a can be
performed, resulting in the parallel statement p'. Interesting in the definition above are (3), (5) and
(6). According to (3), the parallel statements <s,t > and <new(s);t> can perform the same elemen-
tary acuons. In other words, evaluating <new(s);t> results in a parallel statement <s,t >. Thus we
see that the length of a parallel statement increases when new(s) is evaluated. Operationally, this can
be viewed as the creation of a process that starts evaluating s, while statement t is being executed in
parallel. According to (5), a composite parallel statement p' 'IT can perform all the elementary actions
that can be performed by either p or w. In (6) it is expressed that if p can perform a communication
action c and .,, can perform a matching communication action c, then p' .,,, the parallel statement com-
posed of p and 'IT, can perform a ,,, action, denoting a successful communication.

EXAMPLE: <new(c);a;new(c);b> -a-> <c, new(c);b> <c, c, E> -,,,--, <E, E, E>.

Before we give the definition of the operational semantics of parallel statements, we introduce ib
semantic universe P.

DEFINITION 2.4 (Semantic universe P)
Let A• denote the set of finite sequences or words of elements of A; let £ denote the empty word. We
extend this set by allowing as the last element of a finite sequence a special element a, which denotes
deadlock:

(wE)Aa=A' UA'•{a}.

Now we define (p,qE)P='!P~r(Aa), the set of all non-empty, finite subsets of Aa. Let dA; denote the
usual metric on Aa (see the definition in A.I.I). We take dp =(dA;)H, the Hausdorff metric induced by
dA;, as a metric on P. According to proposition A.7, we have that (P,dp) is a complete metric space.

DEFINITION 2.5 (Operational semantics B)
Let B= Fixed Point((>), where (>:(Par is given, for FE Par ->P, and pE Par, by !{£} if p=<E, ... ,E>

(l(F)(p) = {a} if 'va'vp' a EC)/\ p=/=<E, ... ,E>
U (a·F(p'): p-a->p'/\aflC} otherwise.

It is straightforward to show that (I is a contraction and thus has a unique fixed point.

252

Since our language does not contain any constructs for recursion, we need not be able to describe
infinite behavior. lberefore, it is not really necessary to define 0 using a contraction on a complete
metric space. It would have been sufficient to take P as an ordinary set without any metric, and define
0 with an easy induction on the structure of statements. Our motivation for nevertheless exploiting
metric strnctures here is given by the fact that in the next section we will deal with recursion and
in.finite behavior. There the use of some mathematical structure which can handle these, such as com-
plete metric spaces, is obligatory. Our use of complete metric spaces at this stage can be seen as part
of the introductory function of this section.

The operational semantics 0 can be best explained by giving a few

EXAMPLES:

0f<a>J = a·0[<E>) = a·{t) {a}

0{<new(a)>] = (a)

0{ <c>] = {3}

e[<c,c>) = ('r)
~<a;b>J = a·e[] = {ab}

0(<new(a);b>J = {a·0[<£,b>l b·{0[<a,E>:I} = {ab,ba}

Note that a single communication <c>, without a matching communication c in parallel, creates a
deadlock.

Such an operational semantics is nice, because it is intuitively very dear. However, it is not compo·
sitional with respect to the binary syntactic operator ; , that is, there is no semantic operator
;: PX corresponding to :, such that for alls and 1:

0[<s;I>]

This can be easily seen by the following argument. Suppose there is such an operator;. Then:

0(<new (a);b>J = 0(<new (a)>); 0[]
= [since0[<new(a)>]=0[<a>]]

0(<a>]; 0()

= e[<a;b>l
which yields a contradiction, as can be seen from the examples above.

The denotational semantics to be defined in a moment has the property that it is compositional
with respect to the syntactic operators in Lr.

First, we define a suitable semantic universe.

DEFINITION 2.6 (Semantic universe P)
We define a complete metric space (p,qE)P by P =6/'nJA '), the set of non-empty finite subsets of A·.
Let d4 · be the usual metric on A•; we define dp =(dA· lH-

The only difference between P and P is that the latter does not contain finite sequences ending in a.

DEFINITION 2.7 (Denotational semantics 6D)
Let 6D: Lr-'> Cont -'>P, where Cont=P denotes the set of continuations, be given by

6Lfa](p) = a-p, 6L{EJ(p) = p

6i:{new(s))(p) = p 116i:is]({ t})

6i:{s ;t)(p) = 6i:{s)(6i:{t)(p)),

with II: PXP-.P as defined below.

253

A continuation p E Cont denotes the semantics of the statement to be executed after the one to
which 6II is applied. The meaning of a new-construct new (s) with continuation p is determined as fol-
lows: The meaning of s is computed with the empty continuation { t }, which indicates that after s
nothing remains to be done. Since s is to be executed in parallel with everything that follows, the
result is composed in parallel with p, which indicates the remainder of the program after s.

DEFINITION 2.8 (Parallel composition II)
Let II: PXP-.P be such that it satisfies, for p,qEP,

p liq = p llq u q ll.p up I q,
where

pllq = U {a·(pallq): Pa'f"0} U {q:tEp},

Plq = U{T·(pclll/i'):p40'f"£Jc},

withp0 = {w: a·wEp), the set containing all the postfixes of a inp.

The above definition is seU-refere~tial_ an~ n~s s~mejustification. F~rm~ly,_we can define II as
the fixed point of a contraction'¥: (P XP-->P)->(P XP-c,P) given, for f EP XP-c,P, by

where

'l'(j)(.p,q) = p IL1q u qll1P up l1q,

PIL1q = U {af(p.,q): Pa'f"0) U {q:cEp},

P liq = U {r·(f(pc.l/i'))): p,=;t=0'f"l/i'}-

Note that 6II is compositional with respect to ";". The corresponding semantic operator
;: is not express~ explicitly in the definition of 6ll. For completeness
sake, we give its definition. We have, for f,gEP->P:

f ;g = >.p f(g(p)).

Semantic equivalence of 0 and GD
After having defined 0 and 6D for Par and Lr, we next discuss the relationship between the two
semantics. We shall compare 0 and 6D by relating both to an intermediate semantics IS': Par-P, given
in

DEFINITION 2.9 (Intermediate semantics 0')
Let 0'= Fixed Point (<ll'), where <I>': (Par-->P)-.(Par-->P) is given, for FEPar-,P and pEPar, by

{
{£} ifp=<E, ... ,E>

{f,'(FXp)= U {a·F(p'): p-a-+p') otherwise.

Note that in <ll', as opposed to $, single-sided communication steps aEC are allowed. The
difference between 0 and 0' can be illustrated by giving a few examples:

0[<c>] = {cl), 0[<c,c>) = {r},

0'[<c>)={c), fJ'[<c,c>]={cc, CC, T}.

254

The relationship between 0 and 0' will be expressed using the following abstraction operation.

DEFINITION 2.!0 (Abstraction operator a)
We define an abstraction operator a: by

{
{3} if Va(p0 cft0 EC]

a(p)= LJ {a·(a(p0)): aitCi•p0 /=0) U (c £Ep} otherwise,

with Pa as in definition 2.8. (For a justification of this self-referential definition see the remark f,1llow-
ing definition 2.8.)

The definition of a can be understood as follows: lf all the words .v c.p begin with a communication
action a EC, we have operationally a deadlock, since no single communication action is allowed
Therefore, we then have: a(p) :~: {a). !n the last case, a(p) contains all the words in p !hat begin with a
non-communication action a EA \ C, with a recursively applied to Pu. the set of postfixes 1A 11: addi-
tionally, a(p) contains i if ffp.

The following theorem ean be proved straightforwardly.

Since (j) and (j)' are contractions and lhu, have unique tixed points, lt follows that

COROLLARY 2.12: (')=:ca o 0'

PaoOF
We have: a 0 fi' = a 0 <!>'(8') = W(,t 0 fi'). Thus both u 0 1S' and 6 are lixeJ point, of QJ \,hich implie,
that they are equal.

The relationship between 0' and C.D can be elegantly expressed using the following mapping.

DEFINITION 2.13
We define ~: as follows. We denote, for FELr··•Co111-+P, -~(F) by F
and put

with p=<s 1, ••• ,s,>.

A simp]e consequence, using the associativity of II, of this definition is: F(p -r) = .F(p)IIF(-r). If the
function F takes a parallel statement <s 1, ••• , s. > as an argument, then the F values of all the sub-
statements s; supplied with the _empty continuation (£) are computed and next composed in parallel.

Now we can prove that 0'= 6D. It is a corollary of the following

THEOREM 2.14: i!>'(6i))=6il

PROOF
The proof uses induction on the structure of parallel statements. We treat one typical case, leaving the
other ones to the reader. Consider_p"'7TE far and suppose pi:<E, ... ,£> ang '11"=/=<E,_ ... ,£>.
Suppose we already know that <1>'(6D)(p)=6j)(p) and il>'(6D)('1T)=6j)('IT). We show: i1>'(6D)(p''1T)=6j)(p''IT).

- -il>'(6D)(p1o'IT) = U {a·6j)(p'): p''7T--a->p'}

= [definition of ---> (2.3 (5) and (6))]

U {a·6D(p"'w): p-a--->p'} U U {a·6D(p'w'): w-a--->w'} U

U {T•6D(p'"w'): p-C--->p' /\'IT-C--->w'}

= [definition ~]

U {a-(6D(p')ll6D(w)): p-a--->p'} U U {a·(6D(p)ll6D(w')): w-a--->w'} U

U { T-(6D(p')ll6D(w')): p-c--->p' /\w-C--->'IT'}

= [definitions IL and I]
(U {a·6D(p'): p-a....,.p'}IL 6D(w)) U (U {a·6D(w'): w-a--->w'}IL 6D(p)) U

< U {c-6JXp'): p-c--->p'} I U {c · GD<w'): w-c-.w'})

= (1P'(6DXp)IL 6D(w)) u (IP'(6DXw)IL 6D(p)) u (IP'(6ilXp) I 1P'(6ilXw))

= [induction]
.. - - - - -

(6D(p)IL 6D(w)) U (6D(w)IL 6D(p) U(6D(p)i 6D(w))

= 6D(p)ll6D(w)

= 6D(p"w)

COROLLARY 2.15: 0'=6j)

Combining Corollaries 2.12 and 2.15 now yields the main theorem of this section.

MAIN lHEOREM 2.16: 0=a0 6D

COROLLARY 2.17: 'vsELr [0(<s>] = a(6i(s]({£}))].

3. 1HE LANGUAGE POOL

255

In this paper, we compare different semantic models of a language that we call POOL: Parallel
Object-Oriented Language. It is a simplified version of a language called POOL-T, which is defined in
[Am85]. (For an account of the design considerations for POOL-T see [Am86] and [Am87].) The
simplification is two-fold. First, we omitted certain language constructs from POOL-T (such as the
select statement and the method call) as well as some of the protection mechanisms offered by the
definition of classes (such as different classes having different (instances of) variables and method
definitions). We have done this in order to make life somewhat easier: the semantic definitions are
shorter and so are the proofs of the theorems. We feel justified in doing so, since it is straightforward
to extend the approach of this paper to the full language. Secondly, we give an abstract syntactic
description of POOL which is a simplified version of the formal description of POOL-T.

A POOL program describes the behavior of a whole system in terms of its constituents, objects.
Objects contain some internal data, and some procedures that act on these data (these are called
methods in the object-oriented jargon). Objects are entities of a dynamic nature: they can be created
dynamically, their internal data can be modified, and they have an internal activity of their own. At
the same time they are units of protection: the internal data of one object are not directly accessible
for other objects.

An object uses variables (more specifically: instance variables) to store its internal data. Each

256

variable can contain the name of an object (another object, or, possibly, the object 1mder considera-
tion itself). An assignment to a variable can · make it refer to an object different from the object
referred to before. The variables of one object cannot be accessed directly by other objects. They
can only be read and changed by the object itself.

Objects can interact by sending messages to each other. A message is a request for the receiver to
execute a certain method. Messages are sent and received explicitly. In sending a message, the
sender mentions the destination object, the method to be executed, and possibly a parameter (which is
again an object name) to be passed to this method. After this, its activity is suspended. The receiver
can specify the set of methods that will be accepted, but it can place no restrictions on the identity of
the sender or on the parameters of messages. H a message arrives specifying an appropriate method,
the method is executed with the parameters contained in the message. Upon termination, this method
delivers a result (an object name), which is returned to the sender of the message. The latter then
resumes its own execution. Note that this form of communication strongly resembles the rendez-vous
mechanism of Ada ([ANSI83]).

A method can access the variables of the object by which it is executed (the receiver of a message).
Furthermore, it has a formal paran1eter, which is initialized to the actual parameter specified in the
message.

When a object is created, a local activity is started: the object's body. When several objects have
been ereatec ·heir bodies execute ill parallel. This is the way parallelism is introduced into the
language. Synchronization and communication takes places by sending messages, as described above.

Objects are grouped into classes. All objects in one class (the instances of that class) execute the
same body. In creating an object, only its desired class must be specified. In this way a class serves
as a blueprint for the creation of its instances.

At this point, it might be useful to emphasize the distinction between an object and its name.
Objects are intuitive entities as described above. In this paper, there will appear no mathematical con-
struction that directly models a single object ,vith all its dynamic properties (although it would be
interesting to see a semantics which dOt".s this). Object names, on the other hand, are modeled expli-
citly as elements of some abstract set Obj. Object names are only references to objects. On its own, an
object name gives little information about the object it refers to. In fact, object names are just
sufficient to distinguish the individual objects from each other. Note that variables and parameters
contain object names, and that expressions result in object names, not objects. If in the sequel we
speak, for example, of "the object a", we hope the reader will understand that the object with name a
is meant.

Now we describe the (abstract) syntax of the language POOL We assume that the following sets
of syntactic elements are given:

(x E)!Var (instance variables),

(u E)TVar (temporary variables),

(CE)CName (class names),

(m E)MName (method names).

DEFINITION 3.1 (Expressions, statements, units)
We define the set of expressions (eE)LE and the set of statements (sE)Ls by:

e ::= xi ul e1!m(e2)I new(C)I s;el self

s ::= X<-e I u<-el answer m I s1;s2 I if e then s1 else s2 Ill doe thens od

The set (U E)Vnit of units is defined by

U ::= < (C1=s1, ... , c.=s.), (m1=<u1,e1>, ... , mk=<um,ek>) >.

257

We write c~seU if there exists an i such that C;=C and s;=s. Similarly, we write m~<u,e >eU.

An instance variable or a temporary variable used as an expression will yield as its value the object
name that is currently stored in that variable.

The next kind of expression is a send expression. Here, e1 is the destination object, to which the
message will be sent, m is the method to be invoked, and e2 is the parameter. When a send expres-
sion is evaluated, the destination expression and the parameter expression are evaluated successively.
Next, the message is sent to the destination object. When this object answers the message, the
corresponding method is executed, that is, the formal parameter is initialized to the name of the
object in the message, and the expression in the method definition is evaluated. The value which
results from this evaluation is sent back to the sender of the message and this will be the value of the
send expression.

A new-expression indicates that a new object is to be created, an instance of the indicated class. Its
body starts executing in parallel with all other objects in the system. The result of the new-expression
is (the name of) this newly created object.

An expression may also be preceded by a statement. In this case the statement is executed before
the expression is evaluated.

The expression self always results in the name of the object that is executing this expression.
The first two kinds of statements are assignments, to an instance variable and to a temporary vari-

able, respectively. An assignment is executed by first evaluating the expression on the right, and then
making the variable on the left refer to the resulting object.

An answer statement indicates that a message is to be answered. The object executing the answer
statement waits until a message arrives with a method name that is specified by the answer statement.
Then it executes the method (after initializing the formal parameter). The result of the method is sent
back to the sender of the message, and the answer statement terminates.

Sequential composition, conditionals and loops have the usual meaning.
Units are the programs of POOL. A unit consists of a number of definitions of class bodies and

methods. If a unit is to be executed, a single new instance of the last class defined in the unit is
created and execution of its body is started. This object has the task to start the whole system, by
creating new objects and putting them to work.

The relationship between POOL and POOL-Tis the following: POOL is obtained from POOL-T
via two successive simplifications. First, certain language constructs from POOL-T are omitted (like
the select statement) as well as some of the protection mechanisms in POOL-T, which are offered by
the definition of classes (such as different classes having different variables and method definitions).
Secondly, some syntactical simplifications are performed and some context information is omitted
(POOL-T is a statically typed language whereas POOL is not). The reason for making the first
simplification is simply lack of space, to which should be added the consideration that it would be
straightforward to extend our results to the full language. The sole reason for making the second
simplification is that POOL-Tis a practical programming language, for which readability, among oth-
ers, is more important than syntactic simplicity. Therefore, it is convenient to take a simplified
language, POOL, as the semantic core of POOL-T.

If one compares the version of POOL described in this paper with the one given in [ABKR86(a)]
and [ABKR86(b)], some minor differences can be observed. (For example, in the send expression of
definition 3.1 above only one parameter can be specified whereas in the definitions of the papers men-
tioned an arbitrary number of parameters is allowed.) However, it can easily be seen that it is
straightforward to adapt the definitions and proofs given in this paper such that they apply to the ver-
sion of POOL occurring in [ABKR86(a)) and [ABKR86(b)).

258

4. AN OPERATIONAL SEMANTICS FOR POOL
In this section we give the definition of an operational semantics for POOL, which is a modified

version of the one given in [ABKR86(a)]. (At the end of this section, we shall compare both models in
some detail.) It is based on a transition relation and will be defined as the fixed point of a suitable
contraction. For this purpose, we introduce a number of syntactic and semantic notions.

First of all, we introduce the set of objects.

DEF!NmoN 4. l (Objects)
We assume given a set A.Obj of names for active objects together with a function

v:'Pfin(A Ob))-"A Obj

such that ll(X)stX, for eveiy finite X~AObj. Given a set X of object names, the functwn;, yields a
new name not in X
Further we define

Obj = A.ObjUSObj,

where SObj is the set of s,,-calle<l standard objects, 10 be intrrn:luCF...d in Appendix m.

A possible example of such a set A Obj and function v could be ohlaine<l by setting:

AObj = N,

P(X) = max(n:n EX}+ l.

In POOL, a few standard classes, the instances of which are called standard objects, are pre{iefined;
examples are the classes of booleans and integers. The semantic treatment of these standard objects
is somewhat different from the way the active objects (which are created during the execution of a
POOL program) are trr..ated. Because we want to formulate our semantic models as concisely as possi-
ble in order to focus on the correctness proof. the standard objects are treated in an appendix (ill).

Next, it is convenient to extend the sets LE of expressions and Ls of statement, by adding wme
auxiliary syntactic constructs.

DEFINlTION 4.2 (LE,, Ls-)
Let (e E)LE' and (s E)Ls· be defined by

e ::= xi ul e1!m(e2)! 1:1ew(C)I s;el self! al (e, </>)

s : : = x .,....e I u +-e I &11Swer m I s 1 ;s 2 I if e t.!-1er1 s I else s 2 fi I do e then s oo I
release(B, s) I (e,>/;)

with a,PEAObj, </>ELPE and >/;ELp5 . Here the sets of parameterized expressions (</>E)Lp£ and
parameterized statements (>/;E)Lps are given by

</> ::= Au·e

if,::= "Au·s,
with the restriction that u does not occur at the left-hand side of an assignment in e or s. For
at.EObj, ,j>=NJ·e and ,t,="Au·s, we shall use </>(a) and ,t,(a) to denote the expression and the statement
obtained by syntactically substituting a for all free occurrences of u in </> and ,J,, respectively. The res-
triction just mentioned ensures that the result of this substitution again is a well-formed expression or
statement.

Let us explain the new syntactic constructs. In addition to what we already had in LE, an expres-
sion e EL£, can be an active object a or a pair (e, </>) of an expression e and a parameterized

259

expression ,j,. The latter will be executed as follows: First the expression e is evaluated, then the result
/J is substituted in ,j, and q,{fl) is executed. As new statements we have release statements release(/J,s)
and parameterized statements (e,,j,). If the statement release(/J,s) is executed, the active object /3 will
start executing the statement s (in parallel to the objects that are already executing). The release
statement will be used in the description of the communication between two objects (see definition 4.8
below). The interpretation of (e,iJ,) is similar to that of (e,,j,).

DEFINITION 4.3 (Empty statement)
The set L5,, as given in the definition above, is extended with a special element E, denoting the empty
statement. This extended set is again called Ls·• Note that we do not have elements like s;E or
doe then E od in Ls·• (There is, however, one exception: We do allow E in if e thens else E Ii,
which is needed in definition 4.8(A8) below.)

DEFINITION 4.4 (States)
The set of states (o E)~ is defined by

~=(AObj Obj)

X(AObj TVar Obj)

X 6Yfin (AObj).

The three components of o are denoted by <o1, o2 , o3 >. The first and the second component of a
state store the values of the instance variables and the temporary variables of each active object. The
third component contains the object names currently in use. We nee,d it in order to give unique names
to newly created objects.

We shall use the following variant notation. By o(/3! a, x} (with x E !Var) we shall denote the state
o' that is as o but for the value of o1 '(a)(x), which is /3. Similarly. we denote by o{/3/a, u) (with
u E TVar) the state o' that is as o but for the value of o1 '(a)(u), which is /3.

DEFINITION 4.5 (Labelled statements)
The set of labelled statements ((a, s)E)LStat is given by LStat =A Obj>< Ls•.

A labelled statement (a, s) should be interpreted as a statement s which is going to be executed by
the active object a.

Sometimes, we also need labelled parameterized statements. Therefore. we extend LStat:

LStat'=LStat U(A Obj X Lps)-

A pair (a,,J,) indicates that the active object a will execute the statement ti, as soon as it receives a
value which it can supply to iJ, as an argument.

Before we can give the definition of a transition relation for POOL, we first have to explain which
configurations and transition labels we are going to use.

DEFINITION 4.6 (Configurations)
The set of configurations (pE)Conj is given by

Conj= 6Y fin(LStat) X ~-

We also introduce:

Conf ='5' fin(LStat') X ~-

Typical elements of Conj and Conj' will also be indicated by <X,o> and < Y,o>.

We shall consider only configurations <X,o> that are consistent in the following sense: For

260

X={(a1, si), ... ,(a"' sk)), we call <X,o> consistent if the following conditions are satisfied:

Vi,JE{l, ... ,k} [i9'=J =;,a,9'=a1], and

(a1, ... ,a.d CaJ

Whenever we introduce a configuration < X, a>, it will be tacitly assumed that it is consistent
A configuration <X, a>, consisting of a finite set X of labelled statements and a state a.

represents a "snap shot" of the execution of a POOL program. It shows what objects are active and
what statements they are executing; furthermore, it contains a state o, in which the values of the vari-
i1hles of the active objects as well as the set of obje.:.,t names currently in use an: stored.

Dn·1N1T!ON 4.7 nrnnsition labels)
·n1e set of Ira11s1Iwn labels (,\ E JA is given by

TI1ese labels will be used in the delinition of the transition relation below and arc to be interpreted
a, follo 1A 1be label -r indicates a so--ca!led computation step. Next, (,r, /3 11m(/32)) indicates that object
,:; sends .. riessage to obje(:t /1 1 requestmg the execution of the method m with parameter fh- FinaJJ,
(/:flm) indic;,, .. s that the object f1 i, w11lmg to answer a message specifying the method m.

Now we are ready to define a relation for POOL. ·

DEHNITION 4.8 (Transition relation)
Let U F Unit. 'Ne ddin1: a labelled tr,msillon relatum

-- U--> C Conf >< A x Conf'.

Triples <p1, .A, P2 > E - U--• will be called transitions and are denoted by

Pi - U, A-, /J>2.

Such a transition reflect, a possible execution step of type A of the configuration p1, yielding a new
configuration p2 . 111e relation U--, is defined as the smallest relation satisfying the fol!o"''ing pro-
perties:

Axioms

Rules

(Al) <{(a, (x, ,/;))), o> --U, <((a, (a1(aXx), >/;))}, o>

(A2) <{(a, (u, ,/;))), o> -U, r-, <((a, (a2(aXu), >/;))}, a>

(A3) < { (a, (J11 !m(fh), I/;)}, a> - U, (a, (j11 1m(f32)))-.;, < { (a, ,/;)}, a>

(A4) <{(a, (new (C), >/;))), a> -U, -r-> <{(a; (JJ, ,/;)}, (/3, sc)l, a'>, where:

C=scEU, /3=ri._a3), a'=<a1, 02, a3U{,8}>.

(A5) < {(a,z..--,8)),a> - U, T-> < ((a,E)},a(,Bla, z} >, for z E !Var U TVar.

(A6) <{(a, answerm)}, a> -U, (a 9m)--> <{(a,£)},a>

(A7) <((a,doethensod)},a> -U,T--+

<{(a, if e then (s; doe illen sod) else E Ii)},a>

(RI) If <{(a, (e,,\u·z<--u))},a> -U, A-> p,

then <{(a, Z+-e)},a> -U, p, for ze/VarUTVar.

(R2) If <{(a, s)},o> -U, <{(a, s')}UX,a'>,

then <{(a, s;t)},o> -U, <{(a, s';t)}UX,a'>

(read t instead of s';t if s'=E).

If <{(a, s)},o> -U, <{(a, 1/,)}UX,o'>,

then <{(a, s;t)},o> <{(a, AU·(,i,(u);t))}UX,o'>.

261

(R3) If <{(a, s;)},o> -U, p, then <{(a, if fJ then s 1 else s2 fi)},o> -U, p,

{
SJ if /J=tt

where S; = ,; a=jf.
S2 I; I' ..

(R4) If <{(a, 1),(/J,s)},o> - U, p, then <{(a, release (/J,s);t)},o> - U, A-> p

(read release(/J,s) instead of release(/J,s);t if t = E).

(R5) If <{(a, (e,Au·if u then s 1 else s2fi))},o> - U, A-> p,

then <{(a, ife thens 1 elses2 fi)},o> -U, A-> p.

(Here s 2 is allowed to be E.)

(R6) If <{(a, ((e1,Au!'(e 2,Au2·u1 !m(u2))),1/,))},o> -U, A-> p,

then <{(a, (e1 !m(e2),1/,))},o> -U, A-> p.

(R7) If < { (a, s ;(e,1/,)) },o> - U, A-> p, then < { (a, (s ;e, 1/,)) },o> - U, A-> p.

(R8) If <{(a, (e,AU·(q,(_u),1/,)))},o> - U, A-> p, then <{(a, ((e,<j,),1/,))},o> - U, A-> p.

(R9) If <{(a, ,i,(/J))},o> -U, A-> p, then <{(a, (/J,1/,))},o> -U, A-> p, for {JeObj.

If <{(a, 1/,(a))},o> -U, A-> p, then <{(a, (self,1/,))},o> - U, A-> p.

(RIO) If <X,a> - U, A-> <X',a'>, then <XU Y,a> -U, A-> <X'U Y,a'>.

(Rll) If <X,a> -U, (a,/J1!m(/J2))--> <{(a, 1/,)}UX',o> and

<Y,a> -U,/J1?m--> <{(/11,s)}UY',o>,

then <XUY,a> -U,'T-->

< {(/11 ,(em,Au·(Um+-02(/11)(um); release(a, 1/,(u));s)))} U X' U Y',o'>,

where a'=a(/Ji!{J1 ,um}, and m¢=<Um,em >EU.
(End of definition.)

The general scheme for the evaluation of an expression is very similar to the approach taken in
(AB88]. Expressions always occur in the context of a (possibly parameterized) statement, such as
x+-e. A statement containing e as a subexpression is transformed into a pair (e,1/,) of the expression e
and a parameterized statement ,i, by application of one of the rules. (In our example, x+-e becomes
(x, Au·x+-u) by an application of (RI).) Then e is evaluated, using the axioms and rules, and results
in some value fJ'eObj. (Applying (Al) transforms (x, Au·x+-u) of our example into (/J', Au·x+-u), for
some /J' eObj.) Next, an application of (R9) will put the resulting object /J' back into the original con-
text 1/, (yielding x+-/J' in our example). Finally, the statement 1/,(/J') is further evaluated by using the
axioms and the rules. (The evaluation of x+-/J' results, by using (A6), in a transformation of the
state.)

262

Let us briefly explain some of the axioms and rules above.
In (A4) a new object is created. Its name {1 is obtained by applying the function v to the set a3 of

the active object names currently in use and is delivered as the result of the evaluation of IMlw(C). The
body sc of class C, defined in the unit U, is going to be evaluate,d by /3. Note that the state a is
changed by extending o-3 with /3.

In (RS), the evaluation of an expression pair (e, ,P), where ,p is a parameterized expression, in the
context of a parameterized statement ,y is reduced to the evaluation of the expression e in the context
of the adapted parameterized statement AU·(,p(u),it,).

(RI I) describes ilie communication rendez-vous of POOL If the object a is sending a message to
object /11, requesting the execution of the method m and if the object /31 is willing to answer such a
message, then the following happens: The object /31 starts executing the expression em, wbich
corresponds to the definition of the method m in U, while its state <J,(/11) is changed by setting um,
the formal parameter belonging to m, to {32, the parameter sent by the object a to /31, After the execu-
tion of em, the object {J1 continues by executing u.,.-a2(ft1)(um), which restores the old value of um,
followed by the statement relea.w(a,,/,{u));s. TI1e execution of reieast.'{a,i/,(u)) will reactivate the object
a, which starts executing i/,(u), the statement obtained by substituting the result u of the execution of
e,.,, into if;. Note that during the execution of em the object a is non-active, as can be seen from the
fact that a does not occur as the name of any labelled statement in the configuration resulting from
th.is transition. Finally, the object /31 proceeds with the execution of the statement s which is the
remainder of its body.

(Note that we have not incorporated any transitions for the standard objects; this is done in
Appendix HI.)

Now we are ready for the definition of the operational semantics of POOL. It will use the following
semantic uni verse.

DEFINITION 4.9 (Semantic universe P)
Let (wE)::E,j° =::E• U:E"' u::E•·{3}, the set of stream1'. We define

(p,q E)P = ::E--,0'ncompac1(:Ef) ,

where 6l'ncompoc,(::Ef) is the set of all non-empty compact subsets of ::Ef, and the symbol a denotes
deadlock. The set P is a complete metric space when supplie-,d with the usual metric (see definition
A.6).

The elements of P will be used to represent the operational meanings of statements and units. For
a given state oE::E, the set p(cr) contains streams w E::Eii°, which are sequences of states representing
possible computations. 1hey can be of one of three forms: If wE::E•, it stands for a finite normally
terminating computation. If w EL", it represents an infinite computation. Finally, if w E::E• ·{ il }, it
reflects a finite abnormally terminating computation, which is indicated by the symbol a for deadlock.

DEFINITION 4.10 (Operational semantics for POOL)
We define the operational semantics of finite ~ubsets of labelled statements. Let, for a unit U E Unit,
the function

«I> u: (0'fin(LStat)-->P)-->(0' fin(LStat)-->P)

be given, for FE0'fin(LStat)-->P and X E0'fin(LStat), by:

where

!{(} if '!fa'vs [(a,s)EX=>s=E]
«l>u(F)(X)=Ao· {cl} if ,<X,o> - U, T--> and 3a3s [s=/,E A(a,s)EX]

U { a'·F(X'Xa'): <X, a> - U, T-'> <X',a'>} otherwise,

<X,o> - U, -r-+ = 3X'.3a' [<X,o> - U, -r-+ <X',o'> i
Now the operational semantics 0u: GJfin(LStat)-+P is given as

l:!u= Fixed Point (Wu).

It is straightforward to prove that Wu is a contraction and thus has a unique fixed point.

263

The definition of Wu is very similar to the definition of Win the previous section (definition 2.5). If,
for a given XEGJfin(LStat) and oE~, we have that ,<X,o> - U, -r-+, then no computation steps,
which are indicated by -r, are possible from <X,o>. The transitions that are possible are of the form

<X,o> - U, (a,/J1 !m(P2)) -+p, or <X,o> - U, (a?m) -+p' ,
denoting attempts of a single object a to perform a communication action without any matching
object being present. This is an instance of deadlock and therefore we here have: 0uU1(o)= {o}. On
the other hand, for every transition

<X,o> - U, 'T -+<X',o'>

the set 0u[XJ(o) includes the set o'· 0u[X'](o'), in which the transformed state o' is concatenated with
the operational meaning of X' in state o'.

Finally, we can give the operational semantics of a unit.

DEFINITION 4.11 (Operational semantics of a unit)
Let [· · · le: Unit-+P be given, for a unit U= <(... , C0 <=s0), ••. >, by

lUJe =0u[{(P(0),s.)}l

The execution of a unit U= <(... , C.<=s.), ... > consists of the creation of an object of class c.
and the execution of its body. Its name is given by P(0), the name of the first object.

Comparison with [ABKR86(a)]
In [ABKR86(a)], an operational semantics for POOL is defined which differs from l:!u in a number

of respects: There, a transition relation without labels is used whereas we have a labelled transition
relation here; further, in [ABKR86(a)] communication is modeled by means of a so-called wait state-
ment as opposed to the release statement we use here; also our use of parameterized expressions and
statements is new. All these differences can be seen as minor variations of the semantic definitions
and are motivated by the main goal of this paper, which is to relate the operational semantics with
the denotational one. There is one major difference, however, which we shall treat in some detail: In
definition 4.10 of this paper, l:!u is given as the fixed point of a contraction, whereas in [ABKR86(a)]
the operational semantics is defined in terms of finite and infinite sequences of transitions. In order
to show the equivalence of both approaches, we now define an operational semantics l:!u in the style
of [ABKR86(a)], for which we next shall prove that it equals l:!u.

DEFINITION 4.12 (Alternative operational semantics)
Let, for a U E Unit, the function

l:!u: GJfin(LStat)-+P

be given as follows. Let X EGJfin(LStat) and oE~. We put for a word w E~f:

WEl:Ji;-[X)(o)

if and only if one of the following conditions is satisfied:
(I) w=o1 • • • o. and there exist X 1, ••• ,Xn such that

264

<X,o> -U,r-+ <Xi,o1> -U,T-:-> · · · -U,T-+ <X.,a.> and 'li(a,s)eX.[s=EJ

(2) w==o1o2 • · • and there exist Xi,X2, ••• such that

<X,o> -U,-r-+ <X1,01> -U,T-+ <X2,02> -U,-r-+ · · ·

(3) w=o1 • · • o.·il and there exist X 1, ••• ,X. such that

and 3(a,s)eX0 [s¥=E] and ...,<X.,u. > - U,T->

It is 1101 straightforward that the sets 0i.,(X](o) are in P, that is, that they are compact; we prove
this fact in the following

For every X Eiiffin(LStat) and oeI: 0i.,(X](o) is compact.

!>ROOF
Lei (w;); he a sequence of words in (9i.,(X)(o) (~If), say

We show that (w;); has a converging subsequence with its limit in 0u(X1(o). Assume for simplicity
that all words w, are infinite. Since w; e0i.,(X](o), for every i, there exist infinite transition sequences
such that

<X,o>-><X/,11/ >--><X7 • • •

(omitting the labels U,-r). From the definition of_:,, it follows that the set

{ <X',o'>: <X,o>-><X',o'>}

is finite. Thus there exists a pair <Xi,o1 > such that for infinitely many i's:

<X/,o} > = <X1,01 >.
Let / 1 :N->N be a monotonic function with, for all i,

<XJ(i), o}(iJ> = <X1,01 >.
Next we proceed with the subsequence (wf,!iJ); of (w;); and repeat the above argument, now with
respect to the set

{ <X',o'>: <X,,01 >-><X',o'> }.

Continuing in this way, we find a sequence of monotonic functions ([k)k, defining a sequence of
subsequences of (w;);, and a sequence of configurations (<Xk,ok>)k such that

Vk 'efj '!fi,;;;,k (o}.(i) = o;]

and <X,o>-><Xi,01 >-><X2,02>-> · · ·
and moreover such that the sequence (w.r..,(i)); is a subsequence of the sequence of (w.r.oi);. Now we
define

g(i) = /;(i).
Then we have

.limw (i) = 010203 · • ·. g

Thus we have constructed a converging subsequence of (w;); with its limit in 0u[X](o). (In case the

words w; are not all infinite a similar argument can be given.)

It is not difficult to show that Su= Si,:

THEOREM 4.14: Su=Si,

PROOF

265

We prove that Si, is also a fixed point of fl>u, from which the equality follows. Let X E<iffin(LStat)
such that 3(a,s)EX [s:f:E), let aE~ and let wE~f. If w=a then

WEll>u(Si,,)(X)(a) WESi,,[X](a).

Now suppose w:f,a. We have

wESi,,[X](a) 3a'E~3X'E<iffin(LStat)3w'E~f

[I\ w =a'·w' I\ w' E0i,,[X')(a))

[definition fl>u]
w E4>u(0i,,)(X)(a).

So we see: 0i,,=4>u(0i,,).

5. A DENOTATIONAL SEMANTICS FOR POOL
The denotational semantics that is defined in this section was already presented (in a slightly

different form) in [ABKR86(b)). (For a comparison of the two models we refer the reader to the end
of this section.)

Our denotational model has a so-called domain (a solution of a reflexive domain equation) for its
semantic universe. In [BZ82] it was first described how to solve these equations in a metric setting.
Then, in [AR88), this approach was generalized in order to deal with equations of the form:
P;;;t, · · · · · ·, a case that was not covered by [BZ82). For a quick overview of the main results of
[AR88), the reader might want to read section 2 of [ABKR86(b)].

Further, our model is based on the use of continuations. For an extensive treatment of continuations
and expression continuations, which we shall use as well, we refer to [Go79].

We start with the definition of a domain P, the elements of which we shall call processes from now
on.

DEFINITIO~ 5.1 (Semantic process domain I')
Let (p,qE)P be a complete ultra-metric space satisfying the following reflexive domain equation:

P ;;;t, {po} U id }),

where ('1T,pE)Stepp is

Stepp = Compp U Sendp U Answerp,

with

Compp = ~XP,

Sendp = ObjX MNameX ObjX P,

Answerp = ObJX MNameX

(The sets {p0 }, ~. Obj, and MName become complete ultra-metric spaces by supplying them with the
discrete metric.)

266

In [AR88], it is described how to find for such an equation a solution which is ~nique up to isomor-
phy. Let us try to explain intuitively the intended interpretation of the domain P. First, we observe
that in the equation above the subexpression id,,,, is necessary only to guarantee that the equation is
solvable by defining a contracting functor on (?., the category of complete metric spaces (see Appendix
I). For a, say, more operational understanding of the equation it does not matter.

A process p El' is either p 0 or a function from to 6Jcompac,(Step-;;), the set of all compact subsets of
Stepp. The process p 0 is the terminated process. For p=/=-po, the process p has the choice, depending
on the current state o, among the steps in the set p (o). If p(o) = 0, then no further action is possible,
which is interpreted as abnormal termination. For p(o)=/=-0, each step 'ITEp(o) consists of some action
(for instance, a change of the state o or an attempt at co=unication) and a resumption of this
action, that is to say, the remaining actions to be taken after this action. There are three different
types of steps '!TE Step-;;. _

First, a step may be an element of ~XP, say

'IT= <o',p'>.
The only action is a change of state: o' is the new state. Here the process p' is the resumption, indi-
cating the remaining actions process p can do. (When p' = p O no steps can be taken after this step 'IT.)

Secondly, 'IT might be a send step, '!TE Sendj;. In this case we have, say

'IT= <a,m,{1,f,p>,

with aEObj,mEMName,f)EObj, and pEP. The action involved here consists of an
attempt at co=unication, in which a mess:i.ge is sent to the object a, specifying the method m,
together with the parameter {). This is the interpretation of the first three components a,m, and {).
The fourth component f, called the dependent resumption of this send step, indicates the steps that
will be taken after the sender has received the result of the message. These actions will depend on the
result, which is modeled by f being a function that yields a process when it is applied to an object
name (the result of the message). The last component p, called the independent resumption of this
send step, represents the steps to be taken after this send step that need not wait for the result of the
method execution.

Finally, 'IT might be an element of Answer-;;, say

'IT= <a,m,g>

with aEObj, mEMName, and It is then called an answer step. The first
two components of 'IT express that the object a is willing to accept a message that specifies the method
m. The last component g, the resumption of this answer step, specifies what should happen when an
appropriate message actually arrives. The function g is then applied to the parameter in this message
and to the dependent resumption of the sender (specified in its corresponding send step). It then
delivers a process which is the resumption of the sender and the receiver together, which is to be com-
posed in parallel with the independent resumption of the send step.

We now define a semantic operator for the parallel composition (or merge) of two processes, for
which we shall use the symbol II. It is auxiliary in the sense that it does not correspond to a syntactic
operator in the language POOL.

DEFINITION 5.2 (Parallel composition)
Let II: P be such that it satisfies the following equation:

pllq = Ao· ((p(o)ILq) U (q(o)llp) U (p(o) i0 q(o))),

for all p,qEP \ {po}, and such that pollq =qllpo =po. Here, Xllq and XI O Y are defined by:

Xllq = { 'ITllq: '!TEX},

XlaY = u {'ITlaP: '!TEX, pEY},

where ,rfiq is given by

<a',p'>fiq = <a',p'llq>,
<a,m,{J,f,p>llq = <a,m,fJ,f,pllq>, and

<a,m,g>fiq = <a,m,AfJ·M·(g(PXh)llq)>,
and ,rj0 p by -l{ <a, g(/JXf)llp >} if"".'._ <a,m, {J,f,p > and P".'._ <a,m,g >

"iaP - or p- <a,m,{J,J,p > and ,r-<a,m,g >
0 otherwise.

267

We observe that this definition is self-referential, since the merge operator occurs at the right hand
side of the definition. For a formal justification of this definition see the appe~dix _Ef [~BKR86(b)],
where the merge operator is given as the unique fixed point of a contraction on P XP-->1 P.

Since we intend to model parallel composition by interleaving, the merge of two processes p and q
consists of three parts. The first part contains all possible first steps of p followed by the parallel com-
position of their respective resumptions with q. The second part contains similarly the first steps of q.
The last part contains the communication steps that result from two matching communication steps
taken simultaneously by process p and q. For ,re Stepp the definition of ,r I q is straightforward. The
definition of "iaP is more involved. It is the empty set if ,r and p do not match. Now suppose they do
match, say ,r = <a,m, fJ,f,p > and p= <a,m,g >. Then ,r is a send step, denoting a request to object
a to execute the method m, and p is an answer step, denoting that the object a is willing to accept a
mess.ige that requests the execution of the method m. In ,r I 0 p, the state a remains unaltered. Since
g, the third component of p, represents the meaning of the execution of the method m, it needs the
parameter fJ that is specified by a. Moreover, g depends on the dependent resumption f of the send
step "· This explains why both fJ and fare supplied as arguments to the function g. Now it can be
seen that g(/JX/)llp n:presents the resumption of the sender and the receiver together. (In order to get
more insight in this definition it is advisable to return to it after having seen the definition of the
semantics of an answer statement.)

The merge operator is associative, which can easily be proved as follows. Define

E = SUPp,q,reP {dj;((pllq)llr,pll(qllr))}

Then, using the fact that the operator II satisfies the equation above, one can show that £,.;; ½•£.
Therefore £=0, and II is associative.

Now we come to the definition of the semantics of expressions and statements. We specify a pair of
functions <6DE,6Ds> of the following type:

6DE: LE-->AObj--> ContE __,,IP,

6Ds: Ls-->AObj--> Conts __,,IP
where

ContE=Obj-->P and Cont5 =P.

Let sELs, aeAObj, andpeP. The semantic value of the statements is given by

6Ds(s)(a)(p).
The object name a represents the object that executes s. Secondly, the semantic value of s depends
on its so-called continuation p: the semantic value of everything that will happen after the execution of
s. The main advantage of the use of continuations is that it enables us to describe the semantics of

268

expressions in a concise and elegant way.
The semantic value of an expression eELE, for an object a and an expression continuation

f e ContE, is given by

6iMeJ(aXf).

The evaluation of an expression e always results in a value (an element of Obj), upon which the con-
tinuation of such an expression generally depends. The function f, when applied to the result fJ of e,
will yield a process /(/J)EP that is to be executed after the evaluation of e.

Please note the difference between the notions of resumption and continuation. A resumption is a
part of a semantic step 'ITEStep'j,, indicating the remaining steps to be taken after the current one. A
continuation, on the other hand, is an argument to a semanti~ function. It may appear as a resump-
tion in the result. A good example of this is the definition of Fs(x~e) (in definition 5.3(Sl)) below.

DEFINITION 5.3 (Semantics of expressions and statements)
Let

QE =
,1, = Ls->AObj->Conts->1 P.

For every unit VE Unit we defme a pair of functions 6Du = <6DE, 6Ds > by

6Du = Fixed Point ('I' u),
where

'Yu: (QEXQs) (QEXQs)

is defined by :nducti~n on tJle ~tructure of LE and L~ by the following £_lauses. For F= <FE, Fs >
we denote 'Yu(F) by F=<FE, Fs>. LetpeConts=P,feContE=Obj->P and aeAObj. Then:

Exl'RESSIONS

(El, instance variable)

FE(x)(a)(f)=Xo·{ <o,f(o1(a)(x})> }.

The value of the instance variable x is looked up in the first component of the state a supplied with
the name a of the object that is evaluating the expression. The continuation / is then applied to the
resulting value.

(E2, temporary variable)

FE(u)(a)(f)=Xa·{ <o,/(02(a)(u))>}

(E3, send expression) . . .
FE(e, !m(e2))(a)(f)=FE(e,)(a)(X/J1 ·FE(e2)(a)(X/J2·M{ </J1,m,/J2,J,po> })).

The expressions e I and e2 are evaluated successively. Their results correspond to the formal parame-
ters {31 and /Ji of their respective continuations. Finally, a send step is performed. The object name {31
refers to the object to which the message is sent; /32 represents the parameter for the execution of the
method m. Besides these values and the method name m, the final step </31,m,/32,/,po> also con-
tains the expression continuation / of the send expression as the dependent resumption. If the attempt
at communication succeeds, this continuation will be supplied with the result of the method execution.
The independent resumption of this send step is initialized at p 0•

(E4, new-expression)

FE(new (C))(a)(f)=M·{ <o',/(/J)IIFs(sc)(/3)(.po)> },

269

where

/J=ll{_a3),

a'=<a1,a2,a3U{/J}>, C~cEU.

A new object of class C is created. It is called 11{_a3): the function" supplied with the set of all object
names currently in use yields a name that is not yet being used. The state a is changed by expanding
the set a3 with the new name {J. The process Fs(sc)(.PXpo) is the meaning of the body of the new
object {J with p0 as a nil continuation. It is composed in parallel with /({J), the process resulting from
the application of the continuation f to {J, the result of the evaluation of this new-expression. We are
able to perform this parallel composition because we know from f what should happen after the
evaluation of this new-expression, so here the use of continuations is essential.

(ES, sequential composition) . . .
FE(s ;e)(a)(/)=Fs(s)(a)(FE(e)(a)(/)).

The continuation of s is the execution of e followed by f Note that a semantic operator for sequential
composition is absent: the use of continuations has made it superfluous.

(E6, self)

FE(self)(a)(/)= /(a).

The continuation off is supplied with the value of the expression self, that is, the name of the object
executing this expression. We use /(a) instead of A/J·{ <a,J(a)>} in this definition wishing to express
that the value of self is immediately present: it does not take a step to evaluate it.

STATEMENTS

(SI, assignment to an instance variable) . .
Fs(x+-e)(a)(p)=FE(e)(a)(A{J·Aa·{ <u',p> }),

where u'=a({J!a,x}. The expression e is evaluated and the result fJ is assigned to x.
(S2, assignment to a temporary variable)

.F's(u+-e)(a)(p)=.FE(e)(a)(A/J·Aa·{ <u',p> }),

where u'=a{fJ!a,u}.
(S3, answer statement)

Fs(answer m)(a)(p)=Aa·{ <a,m,gm> },
where

with

u'=a{fJ!a,u,.},

a' =a{ 1J2(a)(u,,,)/ a,u,. },

m~<u,,,,em >EU.

The function gm represents the execution of the method m followed by its continuation. This function
gm expects a parameter fJ and an expression continuation f, both to be received from an object send-
ing a message specifying the method m. The execution of the method m consists of the evaluation of
the expression em, which is used in the definition of m, preceded by a state transformation in which
the temporary variable u,,, is initialized at the value fJ. After the execution of e, this temporary vari-
able is set back to its old value again. Next, both the continuation of the sending object, supplied

270

with the result /J' of the execution of the method m, and the given continuation p are to be executed
in parallel. This explains the last resumption: f(/J')llp.

Now that we have defined the semantics of send expressions and answer statements let us briefly
return to the definition of wlaP (definition 5.2). Let w=<a.,m,{J,J,q> (the result from the elabora-
tion of a send expression) and p= <a.,m,g> (resulting from an answer statement). Then 'IT I aP is
defined as

?TI aP= { <o,g(/J)(f)llq> }.

We see that the execution of the method m proceeds in parallel with the independent resumption q of
the sender. Now that we know how g is defined we have

g(/JXJ)=Ao·{ <o',FE(em)(a.)(A/J'·Ao·{ <o',f(/J')llp> })> }.

The continuation of the execution of mis given by A/J'·Ao·{ <o',j(/J')llp> }, which consists of a state
transformation followed by the parallel composition of the continuations f and p. This represents the
fact that after the rendez-vous, during which the method is executed, the sender and the receiver of
the message can proceed in parallel again. (Of course, the independent resumption q may still be exe-
cuting at this point.) Moreover, the result /J' of the method execution is passed on to the continua-
tion f of the send expression.

(S4, sequential composition)
A A A

Fs(s 1 ;s2)(a.)(p)=Fs(s 1)(a)(Fs(s2)(a.)(p)).

(S5, conditional)

Fs(if e then s 1 else s 2 fi)(a)(p)=

FE(e)(a)(A/J· if {J=tt

(S6, loop statement)

then Fs(s1)(a)(p)

else Fs(s2)(a)(p)

fi).

Fs(doe thens od)(a)(p)=

Ao·{ <o, FE(e)(a)(A/J) · if {J=tt

(End of definition 5.3.)

then Fs(s)(a)(Fs(doe thens od)(a)(p))

else p

fi)> }.

It is not difficult to prove that 'Vu is a contraction and hence has a unique fixed point 6Du. As a
matter of fact, we have defined 'Vu such that it satisfies this property. Note that the original func-
tions FE and Fs have been used in only three places: in the definition of the semantics of a new-
expression, of an answer statement, and of a loop statement. Here the syntactic complexity of the
defining part is not necessarily Jess than that of what is being defined. At those place.., we have
ensured that the definition is "guarded" by some step Ao·{ <o', ... > }. It is easily verified that in
this manner the contractiveness of 'Vu is indeed implied.

DEFINITION 5.4 (Denotational semantics of a unit)

We define [···)'ii: For a unit UeUnit, with U=<(... , Cn4=Sn), ..• >, we set

[Ul'il =6J>slsnl(II(l2l))(po).

271

The execution of a unit always starts with the creation of an object of class Cn and the execution of
its body. Therefore, the meaning of a unit U is given by the denotational meaning of sc, the body of
class Cn, supplied with 11(/ZJ), denoting the name of the first active object, and with po, the empty con-
tinuation.

Comparison with (ABKR86(b)] .
There are some diiferences between the denotational semantics <6J>E,6J>s> presented here and the

denotational semantics given in [ABKR86(b)]: The former model is given as the fixed point of a con-
traction i'u and does not use so-called environmmts to deal with process creation (new(C)) and the
meaning of the execution of a method (answer m); the latter model is defined without the use of a
contraction and does use environments. In [ABKR86(b)], the semantics of a unit U is given with the
help of a special environment Yu, which contains information about the class and method definitions
in U and is obtained as the fixed point of a suitably defined contraction. Another diiference is the
way the loop statement is treated: In this paper, the definition of its semantics fits smoothly in the
definition of <6J>E,6J>s> as a fixed point. In (ABKR86(b)], a contraction is defined especially for this
case.

Another way to express these diiferences is that the three constructs for recursion present in POOL
(i.e., the new expression, the answer and the loop statement) are treated here by means of one fixed
point definition, whereas in (ABKR86(b)1 environments are used for the first two forms of recursion
and a specially defined contraction for the last one. However, we state (without proof) that the two
definitions are equivalent: it is straightforward how to translate the one approach into the other.

An additional diiference between the denotational semantics of a unit given here and the one
presented in [ABKR86(b)] is the presence of a semantic representation of the standard objects in the
latter, whereas these are not treated in this section. As mentioned before, we do not treat standard
objects now because we want to concentrate on the correctness proof. In order to show, however, that
our proof (to be presented in section 7) can also deal with standard objects, we shall extend, in
Appendix III, both our operational and our denotational semantics with a semantic representation of
standard objects, and prove that the correctness result still holds for these extended models.

6. AN INTERMEDIATE SEMANTICS
After having defined an intermediate semantics Elu for ~Jin (LStat) and a denotational semantics 6J>u

for LE and Ls we shall, in the next section, discuss the relationship between the two. As we did in
section 2, we s1!dJ compare Bu and 6J>u by relating both to an intermediate semantics
Elu': ~Jin the definition of which is the subject of this section.

DEFIN1110N. 6.1 (Intermediate semantics flu')
Let UeUnit. Let Elu': ~Jin be given by

flu' = Fixed Point <•u'>,
where

•u': (~Jin

is defined, for and Xe~Jin (LStat), as follows.

272

If Va"i/s [(a,s)EX~s =£), then 4'u'(F;(X)=p0 • Otherwise we have

fllu'(F;(X)=;\o-(CFUSFUAF)

where

with

and

CF = { <o',F(X')>: <X,o> - U, <X',o'> },

SF = { </J1,m,/Ji,;\/J•F({(a,,JIJJ))}), F(X')>:

<X,o> -U, (a,/J1 <{(a,1/,)} UX',o> },

AF= {<a,m,gm>: <X,o> <{(a,s)}UX',o>}

gm = ;\/J•;\f-(J\o·(<o',6iMemJ(a)(;\/J'•;\a•(<o',f(/J')IIF({(a,s)})> })>} II F(X')),

o' = o(/J!a,um},
a' = a(o2(a)(um)la,um},
II. =<Um,em > E (J.

(It is straightforward to show that fllu' is a contraction.)

The function f!u' differs from the operational semantics f!u in two ways. First, its range is the
semantic universe P, which is used for the denotational semantics 6Du, instead of P, the semantic
universe of f!u: For every set XeGJfin (LStat) the function f!u' yields a process l'lu'(X)eP, rather than a
function from states to sets of streams of states. Secondly, in addition to the computation steps (indi-
cated by the set CF above) single-sided communication steps are present in f!u'(X) (indicated by SF
and AF, for send and answer steps), whereas f!u(X) contains only computation steps. On the other
hand, the similarity between the definitions of f!u and f!u' is obvious: both are based on the transition
relation - for GJfin(LStat).

At first sight, two facts regarding the relation between fJ' u and 6Du can be mentioned. First, they
have the same range, that is, the semantic universe P of processes, in which single-sided communica-
tion actions are visible. Secondly, 6Du is defined compositionally with the use of semantic operators
(like the merge II), whereas the definition of f!u' is based, as was mentioned above, on the transition
relation -

In the next section the relationship between f!u, f!u' and 6Du will be formally expressed. Let us, for
the time being, try to elucidate the definition of f!u' above by explaining what communication steps
are present in f!u'(X).

Corresponding with every send transition of the form

<X,o> -U, <{(a,1/,)})UX',o>

the set f!u'(X)(o), for a state oe~, contains a send step of the form

</J1, m, /J2, ;\/J•f!u'({(a,,JIJJ})}), f!u'(X')>.

Here /J1, m and /Ji indicate that a message specifying the method m with parameter /Ji is sent to the
object /J1. The dependent resumption of this send step is ;\/J•f!u'({(a,,JIJJ)}}): the meaning of the state-
ment that will be executed by a as soon as it receives the result /J of the message. The last component
of this send step, the independent resumption, consists of f!u'(X'), which is the meaning of all the
statements executed by objects other than a. Thus it is reflected that these objects need not wait till
the message is answered; they may proceed in parallel.

Next, f!u'(X)(o) can contain some answer steps. For every answer transition

<X,a> -U, <{(a,s)}UX',a>
the set 6u'(X)(a) includes an answer step

273

with g,,, as in the definition above. It indicates that the object a is willing to answer a message specify-
ing the method m, while the resumption g,,, indicates what should happen when an appropriate mes-
sage arrives. 1bis function gm, when supplied with a parameter /J and a dependent resumption f (both
to be received from the sending object), consists of the parallel composition of the process flu'(X')
together with the process

Xo·{ <o', 'jjMemJ(a)(X,lf-Xa·{ <a', J(/J')ll6u'({(a,s)})> })>} .
(Note that we have used the function 6De here; the definition of flu' therefore depends on its
definition.) The process flu'(X') stands for the meaning of all the statements executed by objects
other than the object a: these objects may proceed in parallel with the execution of the method m, the
meaning of which is indicated by the second process. Its interpretation is the same as in the definition
of 6D5 [answer m)(a)(p) in the previous section but for the fact that here the last resumption of this
process consists of fi,B')llflu'({(a,s)}): the parallel composition of the dependent resumption of the
sender (supplied with the result /J' of the method m) and the meaning of the statement s, with which
the object a will continue after it has answered the message.

7. SEMANTIC CORRECTNESS
We are now ready to establish the main result of this paper. We shall relate the operational seman-

tics eu and the denotational semantics 6Du by first comparing flu and flu', the intermediate semantics
defined in the previous section, and next comparing 6u' and 6Du. These relationships will be formally
expressed by means of suitably defined abstraction operations. From this we shall deduce the fact that

[UJ~ = abstr([U)'il),

where abstr: is such an abstraction operation.

Part 1: Comparing flu and flu'
We start with the definition of abstr: which relates the semantic universes P and P of flu and
flu'•

DEFINITIO~ 7.1 (Abstraction operation abstr) _
Let abstr: P be defined as follows. We set abstr(p0) = { (}. If p eP \ {p0 }, then

{
{il} ifp(a)n Comp'j= 0

abstr(p)=Xa· U {a'·abstr(p')(a'): <a',p'>ep(a)} otherwise,

where Comp'j=IXP. (Formally, we can define this operation correctly by giving it as the fixed point
of a suitably defined contraction on See Appendix II for an extensive formal treatment of the
function abstr.)

The function abstr transforms a process peP into a function which
yields for every aeI a set abstr(p)(a) of streams. (If one regards the process pas a tree-like structure,
these streams can be considered the branches of p.) If p(a)n Comp'j= 0, that is, if p(a) is empty or
contains oruy single-sided communication steps, then we have a case of deadlock because, operation-
ally, single-sided communication is not possible. Therefore we then have: abstr(p)(a)={il}. If, how-
ever, p(a) does contain a computation step <a',p'>, then we have: a'·abstr (p')(a')!;;; abstr (p)(a).

274

The changed state o' is concatenated with abstr(p'Xa'), in which a' is passed through to abstr applied
top', the resumption of <a',p'>. Thus the effect of different state transformations occurring subse-
quently in p is accumulated.

Next, we use the operation abstr to relate «I>u and «l>u'-

Tu:EoREM 7.2 (Relating «I>u and «I>u'): [«l>u(abstr 0 F)= abstr O («l>u'(F)))

PROOF
Let Xe'iffin(LStat) and ae~. Suppose -,'lta'lts [(a,s)eX~s =E). If
,<X,a> - U, -r then

«I>u(abstr 0£XX)(a)={a}
= abstr(«l>u'(FXX)Xa)

since «l>u'(FXX)(a)nCon-p;= 0. (Recall that Con-p;=~XP.) If <X,a> -U, we have

«I>u(abstr 0 £XX)(a) = LJ { a'·(abstr0 £XX'Xa'): <X,a> - U, 'T_. <X',a'>}

= U {a'·(abstr(FXX')Xa'): <X,a> -U, 'T_. <X',a'>}

= [see definition 6.1]

abstrCAa·CF Xa)

= abstr(Aa·(CFUSFUAF)Xa)
= abstr(«l>u'(FXX)Xa)
= (abstr O «l>u'(F)XX)(a).

Since «I>u and «l>u' are contractions and thus have unique fixed points, the following corollary is
straightforward:

COROLLARY 7.3: 0u= abstr O 0v'

Part 2. Comparing 0v' and 6Du.
In order to compare 0v': 'iffin(LStat)_.P and 6DueQEXQs we define an extension of 6Du
(= <6DE, 6Ds>) in two steps. First, we define 6Du' (= <6DE',6Ds'>)eQE'X Qs', with

QE' = LE'--AObj_. Cont£ _.IP,
Qs' = Ls'_.AObj_. Conts _.Ip,

which is as 6Du but with the extended sets of expressions and statements, LE' and Ls', for its domain.
(Recall that Ls' is used in the definition of LStat = AObjXLs'-) Next, we extend 6Du' to
6Dif: 'if fin (LStat)_.P, which takes sets of labelled statements for its arguments.

DEFINITION 7.4 (6Du')
!:et v'Jl: (QE'XQs')--(QE'XQs') be defin~ as follows. For F=<JE, Fs-:.::__., we denote '1r'u(F) by
F=<FE, Fs>- Let aeAObj,pe Conts=P and/e ContE=ObJ--P. Now Fis defined similarly to
'1ru(F) (definition 5.3) but with the following clauses added:

FE<ftXa)(f)=f(JJ), for PeObj-;;;JAObj,

h((e,,p)Xa)(f)=F'E(eXaXAP·F'E('P<ft)Xa)(f))

F(EXa)(p)=p

F's (release(.8,s)Xa)(p)=p IIFs(s)(.B)(po)

Fs((e, ,J,)Xa)(p)= FE(e Xa)QI./J·Fs(,[,(/J)Xa)(p)~
Finally, we set

6Du'= <6DE', 6Ds'>

= Fixed Point (+"'u).

275

The meaning of (e,qi) is obtained by first evaluating the expression e, then substituting the result /J
into the parameterized expression qi and finally evaluating the expression qi(/J). The interpretation of
6Ds'[(e,,[,)) is similar. In 6Ds'[release(.8,s))(a)(p), the meaning of the statements (when executed by the
object /J and with the empty continuation p0) is computed and composed in parallel with the process
p, the continuation of the release statement.

DEFINITION 7.5 (6Di,)
Let%·: be given by

%=(6Du'),
where~: (QEXQs) is defined as follows: If F=<FE, Fs>, then ~(F), here
being denoted by F is given by

F({(a1,s1), ... ,(ak,sk)})= Fs(s1Xa1)(po)II · · · IIFs(skXak)(po),
(We put F(0)=po.)

Note that we have: F(XU Y)=F(X)IIF(Y).
The omission of .parentheses in the parallel composition above is justified by the fact that II is asso-

ciative.
Given a finite set X of labelled statements (a;,s;), the value of 6Di,(X) is obtained by first computing

the semantics of every labelled statement (a;,S;)EX. This is given by 6Ds(s;](a;)(po), where the label a;
indicates the name of the object executing the statement and where p0 indicates that after s; nothing
remains to be done. Next, all the resulting processes are composed in parallel.

Now that we have extended the domain of 6Du to '?Pfin(LStat) we are ready to prove the fact that
6Di,=flu'• It is a straightforward corollary of theorem 7.7 below. The proof of this theorem makes use
of the following

LEMMA 7.6
For all aeAObj and ,[,eLps we have:

PROOF

V/J l~u'(%X{(a,,[,(/J))}) = 6Di,({(a,,[,(/J))})]

VeeLE' [~u'(6Di,X{(a,(e,,[,))}) = 6Di,({(a,(e,,[,))})]

The proof uses induction on the complexity of expressions. We treat two simple basic cases, being
(lazy and) confident that these will show the reader how to proceed in the other cases. So let
aeAObj and ,[,eLps and suppose

'rl/J l~u'(6Di,X{(a,,[,(/J))}) = 6Di,({(a,,[,(/J))}H

Fore =/J we have

~u'(%X{(a,(/J,,[,))}) = ~u'(%X{(a,,[,(/J))})

276

= [hypothesis l
6i)i,({(a, '1-<P})})

= 6j)s'l'1-<P))(a)(po)
= 6j)s'l(,8,lf,))(a)(po)
= %({(a,(,8,lf,))});

if e = J:11 !m(Pi) then
cI>u'(%X{(a,(,81 !m(Pi),lf,))}) = Ao·{ </J1,m,f32,A{l•6i)i,({(a,'1-<P})}), po>}

= Ao·{ </J1,m./Ji,A/l•6i)s'l'1-<P)](a)(po), po>}
= 6j)E'l/J1)(aXX.B' 1 -6j)E'I/Ji)(aXA/J' 1 ·

THEOREM 7.7: 4>u'(6i)i,)=6i)i,

PROOF

Ao·{ <Jf 1 ,m, lh Afl•6i)s'l'1-<P)](a)(po), po>}))
= 6j)E'l/J1 !m(Pi))(aX'Afl•6j)s'l'1-<P))(a)(po))
= 6j)s'l(,81 !m(Pi), 1/,))(a)(po)

= %({(a,(,81 !m(Pi), 1/i))n

We show: lr/Xe'!ffin(LStat) [4>u'(6i)i.,)(X)=6i)i.,(X)], using induction on the number of elements in X.

Case 1: X={(a,s)}, with aeAObj, seL8 '.
The proof uses induction on the complexity of the statements. We treat some typical cases.
(i) answer m:

4>u'(%)({(a, answer m)})= >.a·{ <a,m,gm>}
with

Km= Afl->.J·Ka·{ <i',6i)E[em](a)(AP'·Xo·{ <a',Jt8')11%({(a,E)})> })>}

= X/J->.J·Ka·{ <i',6i)E(eml(a)(AP'·M·{ <a',/(,8')> })>}
(and i' and a' as in definition 6.1). If we compare this to the definition of 6i)8(answer m]
(definition 5.3(S3)) we see

Ao·{ <a,m,gm >} = 6Ds(answer m)(a)(po)
= %({(a, answer m)}~

(ii) x +-e: we distinguish two subcases. First , if e = /J, then

4>u'(%)({(a,x+-/J)}) = Ao·{ <a{/Jla,x},po>}

If efl.Obj, then:

= 6DE1Pl(a)(Afl·Ao·{ <a{/JI a,x }, Po>})
= 6Ds'lx+-/Jl(a)(po)
= %({(a,x+-/J)n

4>u'(6Di.,)({(a,x+-e)}) = [definition -]

(iii) SJ ;s2 : case analysis for SJ.
(iv) do e then s od:

ctiu'(%X{(a,(e,AU·x+-u))})

= [see (v) below]

6Di.,({(a,(e,Xu·x+-u))})

= 6DE'[e)(aXXP·6Ds'lx+-Jl)(a)(po))

= 6Ds'[x+-e)(a)(po)

= 6Di,({(a,x+-e)}).

ctiu'(%X{(a, doe thens od)})
= Xa·{ <a,6Di.,({(a, if e then s;(do e thens od) else£ fi)})>}

= Xa·{ <a,6DE'[e)(aXXP· if Jl=tt then

6Ds'ls)(aX6Ds'ldo e thens od)(a)(po)) else po fi)>}

= 6Ds'[do e thens od)(a)(po)

= %({(a, doe thens od)}).

277

(v) (e,,[,): by induction we have that the theorem holds for (a,,[,(Jl)), for every jlEObj. Now we can
apply lemma 7.6.

Case 2: XE'il'fin (LStat) and X has at least two elements.
Suppose we have two disjoint sets Xi and X2 in qi.fin (LStat) with X=XJ UX2 such that

ctiu'(%XX;)=6Di,(X;)
for i = 1,2. Assume Xi, X2,;6{ <a1,E>, ... , <a.,E> }. We shall show that from this induction
hypothesis it follows that

ctiu'(6Di.,XXJ UX2)= 6Di.,(XJ UX2)-

(Tois is prov~ in very much the same way as the fact that cti'(6iJXp)=6D(p) and cti'(6DX'1T)=6D('IT) implies
cti'(6DXp/\'1T)="i:(p/\'1T), which occurs in theorem 2.14 of section 2.)

From the definition of - U-+ (definition 4.8, rules 10 and 11) it follows that

cti'u(%XXJ UX2)= Xo·(X'l U~ UZ).

Here

X'l = {<o', 6Di,(X'JUX2)>: <XJ, o> -U,-r-+ <X'i, o'>}

U { <Pi, m, Pi, A/l·%({(a, ,[,(Jl))}), 6Di.,(XJ'UX2)>:

<XJ,o> -U,(a,JlJ!m(Pi))-+ <XJ'U{(a,,[,)},a>}

U{<a,m,gm>: <Xi,o> -U,(a?m)-+ <Xi'U{(a,s)}, a>}

with

g,., = ><PN·(Xa·{ <ii', 6j)E(e,.,)(aXX,8'·Aa·{ <a', f(,8')116Di.,({(a,s)})> })>}

II 6Di,(Xi'UX2))

and e,.,, a' and a' as in definition 6.1. The set is like xy but with the roles of XJ and X2 inter-
changed. Finally,

278

Z = { <a',6Di,({(P1, (e,,., Au·(u,,,~a2<PiXu,,,); release (a,t/i(u)); s)))} U X'i UX2')>:

<X;,a> -U, (a,/Ji!m(JJ,i)~ <{(a,1/,)}UX;', a> and

<~,a> -U,(Pi?m~ <{(P1,s)}U~', a>, fori=l,j=2ori=2,j=l}

(and a'=a{/Jil/J1, u,,,}, m~<u,,,, e,,.>eU). The steps in X'/ correspond to the transition steps that
can be made from Xi UX2 as a result of a transition step from X; (by an application of rule 10 in the
definition of for i=l,2.

The set Z contains those steps that correspond with a communication transition from Xi UX2
which results from a send transition from X; and an answer transition from x1 (for i = 1, j = 2 or
i = 2, j = l) by an application of rule 11.

Now we have
XT = 4iu'(6Di,XXiXa)IL GJ>i,(X2),

= 4iu'(6Di,XX2Xa)IL 6Di,(Xi),
Z= 4iu'(6Di,XXiXa)la4iu'(6Di,XX2Xa).

The proofs of these facts are not difficult (but tiresome and therefore omitted). It follows that
cf>u'(6Di,XXi UX2) = Aa·(XT U~ UZ)

= Aa·(4iu'(6Di,XXiXa)IL 6Di,(X2)U -
4iu'(6Di,XX2Xa)IL 6Di,(Xi)U

4iu'(%XX2Xa)la4iu'(%XX2Xa))
= [induction hypothesis]

Ao·(6Di,(XiXa)IL 6Di,(X2)U

6Di,(X2Xa)IL 6Di,(Xi)U
6Di,(X i Xa)la6Di,(X 2Xa))

= I definition II l
6Di,(X i)ll6Di,(X 2)

= 6Di,(Xi UX2).
This concludes the proof of theorem 7.7.

Since flu' and 6Di, are both fixed points of the same contraction 4iu', they must be equal:

CoROLLARY 7.8: flu'=6Di,

Part 3. Collecting the results
We have proved that flu= abstr O flu' and that flu'=6Di,. Thus

THEoREM 7.9: flu= abstr O 6Di,

From this theorem we deduce the main theorem of this paper:

THEOREM 7.10: (l/)8 = abstr((l/]'l!)

PROOF
Let U=<(... , C,.~11), ••• >. Then

D

279

lUJe = 6u({(1,(.0), Sn)}I .

8. REFERENCES
[Am85]

[Am86]

[Am87]

[ABBS]

[ABKR86(a)]

[ABKR86(b)]

[ANSI83]

[AR88]

[Br86]

[BBKM84]

[BKMOZ86]

[BZ82]

(081]

[Du66]
[En77]
(Go79]

[HP79]

= abstr(GDi,({(11(0), Sn)}))

= abstr(6Ds'lsnl(P(0)"XJ,o))

= abstr(6Dslsnl(P(0)"XJ,o))

= abstr((UJ'lli

P. AMERICA, Definition of the programming language POOL-T, ESPRIT project 415,
Doc. No. 0091, Philips Research Laboratories, Eindhoven, 1985.
P. AMERICA, Rationale for the design of POOL, ESPRIT project 415, Doc. No. 0053,
Philips Research Laboratories, Eindhoven, 1986.
P. AMERICA, POOL-T - A parallel object-oriented language, in: "Object-Oriented
Concurrent Systems" (A. Yonezawa and M. Tokoro, Eds.), MIT Press, 1987.
P. AMERICA, J.W. DE BAKKER, Designing equivalent semantic models for process crea-
tion, in: Theoretical Computer Science 60, 1988, pp. 109-176.
P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTTEN, Operational semantics of
a parallel object-oriented language, in: "Conference Record of the 13th Symposium on
Principles of Programming Languages, St. Petersburg, Florida," 1986, pp. 194-208.
P. AMERICA, J.W. DE BAKKER, J.N. KoK, J.J.M.M. RUTTEN, A denotational semantics
of a parallel object-oriented language, Technical Report (CS-R8626), Centre for
Mathematics and Computer Science, Amsterdam, 1986. (To appear in: Information
and Computation.)
ANSI, Reference manual for the Ada programming language, ANSI I MIL-STD 1815
A, United States Department of Defense, Washington D. C., 1983.
P. AMERICA, J.J.M.M. RUTTEN, Solving reflexive domain equations in a category of
complete metric spaces, in: Proceedings of the Third Workshop on Mathematical
Foundations of Programming Language Semantics (M. Main, A. Melton, M. Mislove,
D. Schmidt, Eds.), Lecture Notes in Computer Science 298, Springer-Verlag, 1988,
pp. 254-288. (To appear in the Journal of Computer and System Sciences.)
A. DE BRUIN, Experiments with continuation semantics: Jumps, backtracking, dynamic
networks, Ph. D. thesis, Free University of Amsterdam, 1986.
J.W. DE BAKKER, J.A. BERGSTRA, J.W. Kl.OP, J .• J.CH. MEYER, Linear time and
branching time semantics for recursion with merge, Theoretical Computer Science 34,
1984, pp. 135-156.
J.W. DE BAK.KER, J.N. KOK, J.-J.CH. MEYER, E.-R. OLDEROG, J.I. ZUCKER, Contrast-
ing themes in the semantics of imperative concurrency, in: Current Trends in Con-
currency (J.W. de Bakker, W.P. de Roever, G. Rozenberg, Eds.), Lecture Notes in
Computer Science 224, Springer-Verlag, 1986, pp. 51-121.
J.W. DE BAKKER, J.I. ZUCKER, Processes and the denotational semantics of concurrency,
Information and Control 54, 1982, pp. 70-120.
W.D. CLINGER, Foundations of actor semantics, Ph. D. thesis, Massachusetts Institute
of Technology (AI-TR-633), 1981.
J. DuGUNDn, Topology, Allyn and Bacon, inc., Boston, 1966.
E. ENGELKING, General topology, Polish Scientific Publishers, 1977.
M.J.C. GoRDON, The denotational description of programming languages, Springer-
Verlag, 1979.
M. tlENNEssY, G.D. PumuN, Full abstraction for a simple parallel programming

280

[KR88]

[Mi51]
[Mil80]

[Od87]

[Pl76]

[Pl81]

[Pl83]

language, in: Proceedings 8th MFCS (J. Becvaf ed.), Lecture Notes in Computer Sci-
ence 74, Springer-Verlag, 1979, pp. 108-120.
J.N. KOK, J.J.M.M. RUTTEN, Contractions in comparing concurrency semantics, in:
Proceedings 15th ICALP, Tampere, Lecture Notes in Computer Science 317,
Springer-Verlag, 1988, pp. 317-332.
E. MICHAEL, Topologies on spaces of subsets, Trans. AMS 71, 1951, pp.152-182.
R. MILNER, A calculus of communicating systems, Lecture Notes in Computer Science
92, Springer-Verlag, 1980.
E.A.M. Oom:, The DOOM system and its applications: a survey of ESPRIT 415 sub-
project A, in: "Parallel Architectures and Languages Europe, Volume I" (J.W. de
Bakker, A.J. Nijman, and P.C. Treleaven, Eds.), Lecture Notes in Computer Science
258, Springer-Verlag, 1987, pp. 461-479.
G.D. PLOTKIN, A powerdomain construction, SIAM Journal of Computing, Vol. 5, no.
3, 1976, pp. 452-487.
G.D. PLOTKIN, A structural approach to operational semantics, Report DAIMI FN-19,
Comp. Sci. Dept., Aarhus Univ. 1981.
G.D. PLOTKIN, An operational semantics for CSP, in: Formal Description of Program-
ming Concepts II (D. Bj6mer ed.), North-Holland, Amsterdam, 1983, pp. 199-223.

APPENDIX I: MATifEMATICAL DEFINmONS

DEFINITION A. I (Metric space)
A metric space is a pair (M,d) with Ma non-empty set and d a mapping l] (a metric or
distance) that satisfies the following properties:
(a) 'o'x,yEM[d(x,y)=0 x =yJ
(b) 'o'x,yEM[d(x,y)=d(y,x)]
(c) 'o'x,y,z EM [d(x,y)-.;d(x,z)+d(z,y)J.
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied:
(c') 'o'x,y,z EM [d(x,y)-.;max{ d(x,z),d(z,y))].
Please note that we consider only metric spaces with bounded diameter: the distance between two
points never exceeds 1.

ExAMJ>LES A. 1.1
(a) Let A be an arbitrary set. The discrete metric dA on A is defined as follows. Let x,y EA, then

{
0 if X =y

dA (x,y) = 1 if x=/=y.

(b) Let A be an alphabet, and let A 00 =A• U A., denote the set of all finite and infinite words over A.
Let, for x EA 00 , x [n] denote the prefix of x of length n, in case /ength(x)";,,n, and x otherwise.
We put

d(x,y)=2-.n,p{n:x[n[=y[nl),

with the convention that i- 00 =0. Then (A 00 ,d) is a metric space.

DEFINITION A.2
Let (M,d) be a metric space, let (x;); be a sequence in M.
(a) We say that (x;); is a Cauchy sequence whenever we have:

'1£>0 3NEN 'o'n,m>N [d(x.,xm)<(j.
(b) Let xEM. We say that (x;); converges to x and call x the limit of (x;); whenever we have:

281

'V(>O 3NeN 'Vn>N [d(x,xn)<€].
Such a sequence we call convergent. Notation: lim; 00 x;=x.

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele-
ment of M.

DEFINITION A.3
Let (M1,d1),(M2,d2) be metric spaces.
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a bijection/:M1-M2 such that:

'Vx,yeM1 [d2(f(x),/(y))=d1(x,y)]. We then write M 1~ 2 • When/is not a bijection (but only
an injection), we call it an isometric embedding.

(b) Let f:M 1-M 2 be a function. We call/ continuous whenever for each sequence (x;); with limit x
in MI we have that lim; 00/ (x;) = f (x).

(c) Let A ;;;.Q, With M 1 -AM 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property:
'Vx,y EM 1 [d2(J(x),f (y))..;A •d1(x,y)].
Functions fin M 1- 1 M 2 we call non-expansive, functions fin M 1-•M2 with O..;t<l we call
contracting.
(For every A ;;.Q and/eM1-A M 2 we have: /is continuous.)

PROPOSITION A.4 (Banach's fixed-point theorem)
Let (M,d) be a complete metric space and f :M-M a contracting function. Then there exists an x EM
such that the following holds:
(1) / (x)=x (xis a fixed point of j),
(2) 'Vy EM [f(y)=y => !, =x) (xis unique),
(3) Vxo EM [limn 00/<n (xo)=x 1 where pn + 'l(xo)= f(J<n>(xo)) and J<0l(xo)=xo,

DEFINITION A.5 (Closed and compact subsets)
A subset X of a complete metric space (M,d) is called closed whenever each Cauchy sequence in X has
a limit in X and is called compact whenever each sequence in X has a subsequence that converges to
an element of X.

DEFINITION A.6
Let (M,d),(M1,d1), ... ,(Mn,dn) be metric spaces.
(a) With M 1-M2 we denote the set of all continuous functions from M I to M 2. We define a

metric dF on M 1-M2 as follows. For every /1,/i EM1-M2

dFifl ,/2)=supxeM, {d2if1(x),fi(x))}.

For A;;;.Q the set M 1-AM2 is a subset of M 1-M2, and a metric on M 1-AM2 can be obtained
by taking_!!?.e res!!!ction of the corresponding dF.

(b) With M, U · · · UMn we denote the disjoint union of M 1, ... ,Mn, which can be defined as
{l}XM~ · · ·J:l{n}XMn. We define a metric du on M 1U · · · UMn as follows. For every
x,yEM1 U · · · UMn

-{dj(x,y) if x,yeLJ}XMj, I..;j..;n
du(x,y) - 1 otherwise.

(c) We define a metric dp on M 1 X · · · XMn by the following clause.
For every (x1, ... ,Xn), (y1, ... ,Jn)EM1 X · · · XMn

dp((X1, ... ,Xn),(y1, ... ,Yn))=max;{d;(X;,y;)}.

(d) Let lijcwed(M)= { X: X <;;,MAX is closed}. We define a metric dn on lijcwed(M), called the Haus-
dorff distance, as follows. For every X, Y E<ijcJo.red(M) with X, Y,;e0

282

dn(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} },

where d(x,Z)=definf,.z{d(x,z)} for every Z kM, xeM. For X=/=0 we put

dn(0,X)=dn(X, 0)= l.

The following spaces

'!fcompac,(M) = {X: XkM I\ Xis compact}

'!f.,ompacr(M) = {X: XkM I\ Xis nonempty and compact}

are supplied with a metric by taking the respective restrictions of dn.
(e) Let c e[O, l]. We define: idc(M,d)=(M,c·d).

PROPOSmON A.7
Let (M,d), (M1,d1), ... ,(M.,d.), dF, du, dp and dn be as in definition A.6 and suppose that (M,d),
(M 1,d1), ••• ,(M.,d.) are complete. We have that
(a) (M1 2 M2,t!E),
(b) (M1 U · · · UM.,du),
(c) (M 1 X · · · XM.,dp),
(d) ('!fc1..,e,1(M),dn), ('!fcompac1(M),dn) and ('!fncompac,(M),dn)
are complete metric spaces. lf (M,d) and (M;,d;) are all ultra-metric ~paces these composed spaces are
again ultra-metric. (Strictly spoken, for the completeness of M 1 2 and M 1 2 we do not need the
completeness of MI· The same holds for the ultra-metric property.)

The proofs of proposition A.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can
be proved with the help of the following characterization of the completeness of the Hausdorff metric.

PROPOSITION A.8
Let ('!fc1..,e,1(M),dn) be as in definition A.6. Let (X;); be a Cauchy sequence in 6Jc1.,,iM). We have:

lim; ooXi = {lim; 00 x;jx; EX;, (x;); a Cauchy sequence in M}.

The proof of proposition A.8 can be found in [Du66) and [En77]. The completeness of the Hausdorff
space containing compact sets is proved in [Mi5 l].

APPENDIX II: TIIE FUNCTION abstr
The definition of abstr: can be viewed as a fixed point characterization of a somewhat

differently and more intuitively defined operation

abstr':

which we introduce below. Next, we show that abstr =abstr'.

DEFINITION II.I (abstr')
LetpeP and ael:, and let wel:f'.
(1) We call w a finite stream inp(a) if there exist <a1,p1 >, ... , <a.,p.> such that

w=a1 ···a. I\ Vl..;i<n [<a;+1,P;+1>Ep;(a;)]/\ <a1,p1>ep(a)/\p.=po.
(2) We call wan infinite stream in p(a) if there exist <a1,p1 >, <a2,p2 >, ... such that

w=a1a2 · · · I\ VJ..;; [<a;+1,p;+1 >Ep;(a)] /\ <a1,P1 >ep(a).

(3) We call w a deadlocking stream in p(a) if there exist <a1,p 1 >, ... , <an,Pn> such that

w = a1 · · · a0 ·il I\ Vl..;i<n [<a;+1,p;+1 >ep;(a;)] /\

<a1,P1 > ep(a) /\p0 =/=po /\p0 (a0)n(IX.P)= 0.

Now we define a function abstr•: by

abstr'(p) = .\a·{w: w is a stream in p(a)}.

283

We have to verify that for every pe.P and aeI the set abstr'(pXa) is compact. This is not trivial
and is proved in theorem 11.3 below (which is a slightly generalised form of lemma All.4 in
[BBKM84]). The fact that we use in the definition of P compact subsets rather than closed ones is
essential for the proof. (For a process domain defined with closed subsets, [BBKM84] provides a coun-
terexample of the theorem.)

In the proof of theorem 11.3 below, we need the following lemma:

LEMMA 11.2
Let q=lim._,00 q0 ,for q,q.e.P: assume (without loss of generality) that for all n ;;.o

d(q,q.)..; 2-(n+I)_

Let aeI and let (w;); be a sequence in If with W;Eabstr'(q;Xa~for every j;;.Q. Then

Vn 3u [w.[n}ueabstr'(qXa)].

PROOF
Let w0 [n]=a1 · · · a0 • (In the case of termination or deadlock the rest of the proof is analogous to this
case.) Now there must be q1, •.. ,q• with

<a1,q 1 >eqn(a) and <a;+1,l+I >el(o;)

for 1-.;i..;n. We shall show that there are q1, ... ,q" with <o1,q1 >eq(a) and <o;+ 1,qi+I >ei(o;)
for 1-.;;..;n. We do this inductively: For i=l we observe that d(q,qn)..;r<n+IJ, so
d(q(o),qn(a))..;rn ..;½. Because <a1,q 1 > Eqn(a), there must be a q1 with

<a1l >eq(a) and d(q 1 ,q1)..;2-n.

For the inductive step, let 1-.;;..;n and let i be such that d(qi,q;)..;2-<n+IJ+;_ Then

d(q;(a;),i (o;))..;rn +;..; ½.

Because <a;+1,qi+I >eqi(a;) there must be a q;+I with
_;+I _;() d d{ i+I _;+I) 2 n+i <a;+1,q >eq a; an q ,q ..; - .

With q1, ... ,q" suitably chosen, we can take ueabstr'(q°Xon) arbitrary, and then wn[n]·u will be
in abstr'(qXo).

THEOREM 11.3: For every p e.P and aeI the set abstr'(pXa) is compact.

PROOF
Let (w;); be a sequence in abstr'(pXo). We shall show that there exists a subsequence of (w;); that has
its limit in abstr'(pXa). First we introduce some notation: For an arbitrary word weif, w <k >
indicates the word that is obtained from w by omitting the first k elements. We call p 0 =p, a0 =a and
fo =idN, the identity function on the set of natural numbers. We shall inductively construct for every
n ;;.Q a function J. a process Pn e.P, and a state an such that:

284

I. '\ij;;a.Q [w/.(i)[n]=a1 · · ·a.]

2. 'Iii, O..;;i<n [<a;+1,P;+1>Ep;(a;j]

3. 3(v;); in abstr'(p.Xa.) '\ii;;a.I [v;[i]=w.f.(i)<n >[ill

4. J. is monotonic and there exists a monotonic h with J. = J. -1 °h.
Once we have constructed such sequences (J.)., (p.). and (a.)., we are done: We can define

g(i) = f;(i).
This function is monotonic and we have

lim;_00 Wg(i) = U] •az · · • .
Since a1·a2 • • • eabstr'(pXa) we thus have found a subsequence (wg(i)); of (w;);, which has its limit in
abstr'(pXa).

The construction is as follows: Suppose we are at stage n ;;a.O. Let (v;); be a sequence in
abstr'(p.Xa.) satisfying property 3. above. Let for every ;;;,,1

V; =~-'T~ ••••

Then there a. q'1, q~, . .. eP with

<1"141 >ep.(a.), and

'liJ;;a.I I <T;+i,9;+ 1 >eq1(T;)l.
Since the set p.(a.) is compact, the sequence (<T\,q\ >); has a converging subsequence, which is
given by, say, the monotonic function hand which.has a limit, say <T,q> inp.(a.). We may assume

\fj;;,, I [-r1<il =TA d(q'/<i>,q)..;;2-(i+I)].

Now we take

Pn+I = q, Un+!= 'T, f.+1 = J.oh.
In order to show that this construction works, we have to verify that Pn + 1, a.+ 1 , and J. + 1 again

satisfy properties 1. through 4. above.
I. We have for every ;;;a.I:

w.f..,(iJln + 1] = WJ..,(i)[n]·w.f..,(i)(n + 1)

= a1 · · · a. ·wf..,(i) <n >(1)

= a1 • • • a.·vh(i)(I)

2. We have <a.+1,Pn+i> = <T,q>ep.(a.).
3. In order to prove tl!is property, we are going to apply the following version of lemma 11.2: For

all q, 91, qz, ... eP, and for all X1, Xz, ... e~r,
'\ii;;a.l [d(q,q;)..;;2-<i+I) A x;eabstr'(q;Xa)]

3(y;); in abstr'(qXa) '\ii;;,, 1 [y;[i] = x;[i]].

This we now use: Since

'\ij;;a.l [d(p.+1,q'/<il).,;;i-<i+I) A vh(i)<I>eabstr'(q'/(i)xa.+i)l

there must exist a sequence (v;'); in abstr (p. + I Xan + J) with

'Iii;;,, 1 [v;'[i] = vh(i) < 1 >[i]].

Now

vh(i)<l>[i] = vh(i)[h(i)]<l>[i]

= w/..,(il<n >[h(i)]<l>[i]

= w/..,(i)<n><l>[i]

= w/..,(i) <n + 1 >[il
(Here we have used twice the fact that h(i)>i, for all;;;,, 1.)

4. By definition.
This concludes the proof of theorem II.3.

285

Next we show that the function given in definition 7.1, can be defined as the fixed
point of a contraction.

DEFINmON II~ (Formal _definition abstrl _
We define P); let P, PeP and ae~. We put

:E:(F)(po)(a) = {(},
:E:(F)(p)(a) = {3}, if p(a)n Comp"j,= 0.

Otherwise, we set

:E:(F)(p)(a) = U {a'·F(p')(a'): <a',p'>ep(a)}.

Finally, we define

abstr = Fixed Point(!)

It is straightforward to show ::: is contracting. The fact that for every p eP and ae~ the set
:E:(F)(p)(a) is compact needs some explanation. In order to prove this, it is convenient to adapt the
definition of E a little. Recalling that P = we define

E':

where the superscript I above the arrow indicates that we consider only non-expansive (and hence
continuous)functions, by

Now

E'(F)(<p,a>) = U { a'·F(<p',a'>): <a',p'> ep(a)}.

E'(F)(<p,a>) = LJ {a'·F(<p',a'>)}
<o' ,p'> ep(o)

LJ(a'·{F(<p',a'>): <a',p'>ep(a)})
o'

U (a'·F({ <p',a'>: <a',p'> ep(a)}))
o'

This union can be seen to be compact by first observing that from the compactness of p it follows
that the union is finite: the set

{a': 3p'eP[<a',p'>ep(a)l}

is finite. The compactness of p(a) further implies the compactness of the isomorphic set

{ <p',a'>: <a',p'>ep(a)},

286

for every o'el:, which is preserved under the continuous mapping F and the concatenation with 11'.
So we have a finite union of compact sets, which is again compact. Now the compactness of
:E(F)(pXa) follows straightforwardly from the compactness of 'E.'(F'X<p',o'>), for arbitrary F',p'
and a'. The fact that :E(F) is again non-expansive is also easily verified.

We conclude this appendix by showing that abstr and abstr• are equal:

THEollEM Il.5: abstr=abstr•

PllooF: Considerpe.P-{p0 } and ael: such thatp(a)n(l:XP~0. Then:

weabstr•(pXa).,. [definition abstr•J

3o'el:3w'el:f 3p'eP [w=a'·w' /\ w'eabstr•(p'Xa')]
.,. [definition 'E.]

we:E(abstr)(pXa).
The other cases are easy. We see: abstr• ='E.(abstr•). Because 'E. is a contraction the theorem follows.
(Note the similarity of this proof and the one of theorem 4.14.)

APPENDIX III: STANDARD OBJECTS
We want to extend the language under consideration with a few standard classes of so-called stan-

dard objects, namely the classes Boolean and Integer. On these objects the usual operations can be
pedormed, but they must be formulated by sending messages. For example, the addition 23 + 11 is
indicated by the send expression 23! add (11), sending a message with method name add and parame-
ter 11 to the standard object 23. The set of expressions LE, given in definition 3.1, is extended with
these standard objects:

e:: = xlule1 !m(e2)lnew(C)ls;elselfl a,
where aeSObj, with

SObj = Z U { tt, ff}.
Recall that we already defined (in definition 4.1):

Obj = A.ObjUSObj
(= A.ObjUZU{tt, ff}~

Intuitively, the evaluation of the expression a, with aeSObj, results in that object itself. For
instance, the value of the expression 29 will be the integer 29.

Below, we shall first extend the definition of the operational semantics, next we adapt the definition
of the denotational semantics (following [ABKR86(b)]), and finally we shall prove that the
equivalence result of section 7 still holds.

III.I Standard objects in the operational semantics
We extend the set LE,, given in definition 4.2, with the standard objects:

e::= xi ule1 !m(e2)lnew(C)ls;el self1 al (e,cj,),

where now aeObj=A.ObjUSObj.
Next we add to the set of labeled statements (definition 4.5) an abstract element S1 that represents

all standard objects and for which transitions will be specified in a moment:

LStat• = LStat U { S,).

The following transitions are possible from S,:
<{S1}, a>
<{S1}, a>
<{S1}, a>
<{S1}, a>
<{S,}, a>

287

for every neZ and be{tt,.tf}. (This list can be extended with transitions for other operations.)
Communication with a standard object is now modeled by the following transitions:

If <{(a,s)}, a>-(a,n!add (m))---+<{(a,l/i)}, a>
then <{(a,s), S,}, >/i(n +m)), S1 }.

If <{(a,s)}, a>-(a, b1 !and a>
then <{(a,s), S1}, /\b2)), S1}, a>,

and by similar transitions for the other operations. The result of, for example, an addition of the
integers n and m is computed and passed through to the parameterized statement of the object
requesting the execution of the method add.

Finally, the operational semantics of a unit (definition 4.11) is changed by taking into account the
standard objects; we put

[U]~ = 0u[{(ll(0),s.), S, }J.
(In the operational semantics defined in [ABKR86(a)], the standard objects are treated somewhat
differently. There no special rules are given for the communication with a standard object; instead,
some axioms are added that replace in one step a send expression that addresses a standard object by
the corresponding value of the result.)

III.2 Standard objects in the denotational semantics
The denotational meaning of a standard object a EL£ is given by

6Ma)(,8)(/) = /(a),

where ,BeAObj, and/ eContE.
We follow [ABKR86(b)] in introducing a process Ps, eP that represents the deEotational meaning

of the standard objects. For this we have to adapt our semantic process domain P. In definition 5.1
the domain P is given by

P ~{po} U

In order to let the standard process Ps" to be defined below, fit into our semantic domain nicely, we
are forced to use closed s'!!>sets of steps rather th~ compact ones. Let us indicate the process domain
given in definition 5.1 by P co• We introduce here Pc1, which satisfies:

Pc1 ~{po} U

We have, via an obvious C!!_lbedding, that Pco ~Pc1.
Next we introduce Ps, eP c1, which represents the meaning of all standard objects. It satisfies the fol-

lowing equation:

Psi= >.a· ({<n, add, g;;>: neZ}U
{ <n,sub, g;; >: n eZ} U
{<b, and, gt>: be{tt,.tf}}U
{<b, or, g~>: be{tt,.tf}}U
(<b, not, ,r;; >: be (tt, ff}}),

288

where

g;; = ·J..°jJE Ob/ :Af (if PEl then J(n + P)llps1 else Psi fl),

g;; = "APEOb/ (if PEl then f(n - P)llps1 else Psi fl),

gt = "APEOb/ (if PE{tt,.ff} then f(bt\f1)llps1 else Psi fl)

gt PE{tt,ff} thenj(bvP)llps1 elseps1 fl)

g,: =
This definition is self-referential since Psi occurs at the righthand si~e of the definition. Formally,

Ps, can be given as the fixed point of a suitably defined contraction on Pc1. _ _
We observe that ps, is an infinitely branching process, which is an element of Pc1 but not of Pco·

This explains the introduction of Pc1.
The operational intuition behind the definition of Ps, is the following: For every n EZ the set p 51 (a)

contains, among others, two elements, namely <n, add,g;; > and <n, sub,g;; >. These steps indi-
cate that the integer object n is willing to execute its methods add and sub. If, for example by
evaluating n !add(n'), a certain active object sends a request to integer object n to execute the method
add with i ·arameter n', then g;;, supplied with n' and the continuation f of the active object, is exe-
cuted. We •. ve that g;; (n'YJ) is, by definition, the parallel composition of f supplied with the
immediate result of the execution of the method add, namely -n +n', and the process Ps,, which
remains unaltered: g;; (n'YJ)= j(n +n')llps,- (A similar explanation applies to the presence in p5,(a)
of the triples representing the booleans.)

The standard objects are assumed to be present at the execution of every unit U. Therefore we
adapt the denotational semantics of a unit (definition 5.4) as follows:

[U)"' = 6Dsls.](II(0))(po)llps,-

Ill.3 Semantic equivalence
Finally, we extend the arguments presented in section 7 in order to show that for the modified ver-

sions of (U]6 and (U)<;J, as presented above, we still have:

[U]6 = abstr([U)<;J).

We begin by adapting the intermediate semantics 0u' (definition 6.1), which will now be of type

0u':

We put:

0u'({ S,}) = Psr
and for X!:;LStat• -{Si} (=LStat):

0u'(XU{S1}) = 0u'(X)ll0u'({S1}),

with 0u'(X) as defined according to definition 6.1.
Next we extend the definition of abstr to an operation:

abstr•)),

where abstr • is defined as in definition II. I. Please note, however, that for processes p E Pc1 it is in
general not the case that abstr'(pXa) is a closed subset of ~f. Fortunately we can prove the follow-
ing, which turns out to be all we need:

THEOREM III.I: For every pEPco and aE~: abstr'(pllps1Xa) is compact.

289

PROOF
The proof is analogous the one for theorem 11.3, given the additional observation that for every
pePco the set

(pllps,Xo)n(l:XPc1)
is compact, which we prove now.

According to the definition of II we have
(pllps,Xo) = p(o)ILps, U Ps,(o)ILp U p(o)laPs,(o}

From the continuity of II and the compactness of p(o) it follows that

(p(o)ll..p51)n(~XPc1) = { <o', p'llp5,>: <o', p'> ep(o)}

is compact. Secondly, the set

(ps,(o)ll...p)n(~XPc1)
is empty. Finally, we show that

(p(o)l.ps,(o))n(~ XPc1)

is compact. Consider a sequence (<o, q; >); in this intersection. We show that it has a converging
subsequence (<o, qk(i) >);. According to the definition of · la there exist sequences
(<a;, m;, /J;,f;,p;>); in p(o) and (<a;, m;, g;>); in ps1(o) such that

q; = g;(P;)(f;)llp;.
Because p(o) is compact there exists a monotonic function k:N->N such that

(<ak(i), mk(i), Pk(i), fic(i), Pk(i) >);

is convergent. From the definition of the metric on Pc1 it follows that we may assume that there exist
a,m and P such that for all i

ak(i)=a, mk(i)=m, and Pk(i)=P.
The definition of Ps, implies that for every <a, m, g> in p51 (o) the function g is entirely determined
by a and m. Thus

(<ak(i), mk(i), Kk(i)>); = (<a, m, Kk(i)>); = (<a, m, g>);,

for some g. Suppose we have

f = lim;-,oofic(i) /\ P = lim;-,ooPk(i);

then <a,m,P,f,p>ep(o) and

lim;_,00 <0,q;> = <a,g(PXJ)llp> e(p(o)laPs,(o))n(~XPc1}

CoR.OLLARY IIl.2: abstr* 0 f!u'E<ffjin(LStat*)->P

THEOREM 111.3: f!u=abstr* 0 f!u'

This theorem can be proved by showing that in addition to f!u also abstr• 0 f!u' is a fixed point of
4>u. This can be done analogously to the proof of theorem 7.2. From this observation and the fact
that 4>u is a contraction the theorem follows.

The definition of 6Di,, which is given in definition 7.5, is also changed. It will be a function of type

290

6Di,: '!Pfor(LStat•)-Pc1

that is like the original 6Di, but for the clause that

6Di,({S,}) = Ps,.
A last step towards the goal of this third appendix, which is to prove the semantic equivalence of

the denotational and operational semantics with standard objects present, consists of the observation
that theorem 7.6, stating that

ll>u'(6Di,) = 6Di,,
can be proved for the new version of 6Di, as well. The extended proof involves some. new case analysis
(within Case 2), concerning the communications with standard objects. This being the last appendix,
this step being the last step towards our goal, and the author being only human, we omit the details
and state without proof:

THEOREM III.4: (Extended version of 7.6): «I>u'(6j)i,)=6Di,

COROLLARY IIl.5: (Extended version of 7. 7): 0' = 6j)i_,

Finally we are ready to prove the extended version of the main theorem (7.9) of our paper:

THEOREM III.6: [lfle = abstr'([lfl'D)

PROOF

[lfle = 0uH(v(0), s0), S1 }]

= [theorem III.3]

abstr'(0u'({(11(0), s0), S1}))

= [corollary III.5]

abstr•(6Di,({(11(0), s.), S1}))

= abstr•(6j)s[s.)(11(0))(po)llps,)
= abs tr• ([lfl'il).

A Semantic Approach to Fairness

J.J.M.M. Rutten •
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

J.I. Zucker••
Department of Computer Science

State University of New York at Buffalo, USA

In the semantic framework of metric process theory, we undertake a general investigation of fairness of
processes from two points of view: (1) intrinsic fairness of processes, and (2) fair operations on processes.
Regarding (1), we shall define a "fairificalion" operation on processes called Fair such that for every (gen-
erally unfair) process p the process Fair(p) is fair, and contains precisely those paths of p that are fair. Its
definition uses systematic alternation of random choices. The second part of this paper treats the notion of
fair operations on processes: suppose given an operator on processes (like merge, or infinite iteration), we
want to define a fair version of it. For the operation of infinite iteration we define a fair version, again by a
"fair scheduling" technique.
1980 Mathematical Subject classification: 68810, 68C01, 68C05.
1986 Computing Reviews Categories: D.1.3, F.1.2.
Key words and phrases: Fairness, semantic domains of metric processes, fair infinite iteration, alternation of
random choices.

1. INTRODUCTION

291

The most basic context in which the notion of fairness can be defined is that of a repetitive choice
among alternatives. In [F] the reader can find an elaborate introduction to the notion(s) of fairness,
with an extensive overview of the research in this area. Here "fairness" means that, in having to
choose repeatedly among alternatives, no alternative will be postponed forever. Usually a nondeter-
ministic programming language is taken as the context for such a study, especially the language of
guarded commands ([DI).

In this paper we propose a different approach, which could be called a semantic one, as opposed to
the language (or syntax) directed approach mentioned above. Our point of departure is a
semantic domain for nondeterministic languages in general, without limiting ourselves to the choice of
a particular language. Such a semantic domain will in general be a solution of some reflexive domain
equation

FP~P,

where Fis a functor on some category of mathematical domains, and"~•· means "is isomorphic to".
Various techniques have been developed for solving this type of equation. We follow a metric

• The research of Jan Rutten was partially supported by ESPRIT project 415: Parallel Architectures and
Languages for Advanced Information Processing - a VLSI-directed approach.

•• The research of Jeffery Zucker was supported by the National Science Foundation under grant no. DCR-
8504296.

292

approach, introduced by De Bakker and Zucker in [BZI], and reformulated and extended in a
category-theoretic setting in [AR]. The category e under consideration consists of complete metric
spaces, and the functors on e are so-called contracting functors. These spaces are composed from
basic metric spaces (sets provided with the trivial 0-1 metric) by the operations of union, Cartesian
product, forming function spaces, and forming the set of all (closed) subsets of a given space. Exam-
ples would be complete metric.spaces satisfying one of the following equations:

P~AU(BXP), or

P ~A U(B~CXP)),

where A, Band Care arbitrary sets and stands for "is isometric to". (Since elements of e are pairs
<P,dp>, consisting of a set Panda metric dp on P, domain equations over e should also specify a
condition on these metrics. In this introduction, however, we omit such details.)

Another example of a domain is a metric space P satisfying the domain equation:

P {po} U'il'd(B XP).

(Here 'il'c1(• • •) denotes the set of all closed subsets of (· · ·).) Since this is the domain we shall use
in this paper as a starting point for our study of fairness, we discuss it in some detail. The (possibly
infinite) set B={b 1,b2, •.. } is called the alphabet of P. The elements of Pare called processes. A
process p Er -• either p0, the so-called nil process, or a (closed) set of the form

p={ <b;,p;> I <b;,p;>EBXP,iEI}
for some set I of indices. (Here the set / represents the choice among alternatives.) Then p can be
regarded as a process that for each i El can take a step b;, and then continues with the process p;
(called the resumption of b;). This is itself either p0, indicating that the process p has terminated after
performing step b;, or again a (closed) set of possible next steps and corresponding resumptions.

Roughly, one can think of these processes as tree-like entities. However, there are some differences.
Trees with a left branch labeled a and a right branch labeled b, and with a left branch labeled b and a
right branch labeled a, are identified, and both are represented by { <a,p0 >,<b,p0 > }. A tree with
only one branch labeled a is identified with a tree with two branches both labeled a. Furthermore, we
do not consider arbitrary subsets of B X P, but only closed ones. For an extensive comparison of trees
and processes we refer to [BK].

In our approach the elements of B, which are called basic steps, are atomic actions, whose possible
interpretations have been abstracted from. One such interpretation would be to associate a basic step
b; with each component of a guarded command, indicating that the i-th component of that command
is selected. Another interpretation would be to regard b; as an arbitrary action of the i-th component
of a system of (possibly infinitely many) active components, indicating that "progress" is being made
by that component. A context in which this interpretation makes sense is that of object-oriented pro-
gramming (see e.g. [ABKRD. The basic steps could also be thought of as being different possible
actions (e.g. read, write, assignment, etc.) which a single component can perform.

In this framework of metric process theory, we undertake a general investigation of fairness of
processes from two points of view: (1) intrinsic fairness of processes, and (2) fair operations on
processes.

Regarding (1), a process p is called (intrinsically) fair if all its paths are fair. A path for p is a
sequence of pairs: <a1,p1 >,<a2,p2>, .. . , such that <ai,p1 >Ep and <a;+ 1,p;+ 1 >Ep; for all
i;.,. J. The difference between fair and unfair paths can easily be illustrated with a simple example:
consider a process p E P satisfying

p={ <0,p>, <l,p>).

This process must choose infinitely often (in fact at every step) whether to perform the basic step "O"
or the basic step "l". The following path in p

293

<0,p>, <0,p>, <0,p>, ...
is unfair (with respect to basic step "1"), because step "l" can be taken infinitely often, but never is.
An example of a fair path is

<0,p>, <1,p>, <0,p>, <l,p>, ...

There are actually two notions (at least) of fairness current in the literature. The notion we are con-
sidering in this paper is often called "strong" fairness (e.g. in [OA]), as opposed to "weak" fairness. In
our context a path .,, would be called weakly fair if every basic step that is from some moment on
continually enabled in .,, occurs infinitely often in w. (For the definition of enabled see 2.3.) This
notion is also called justice ([LPS]). A path is strongly fair if every basic step that is enabled infinitely
often (but not necessarily continually) in .,, occurs infinitely often in w.) The difference between these
two notions can again be illustrated with a simple example: consider a process p eP satisfying

p={ <0,{ <0,p> }>, <l,{ <1,p> }> }.

This process can choose infinitely often whether to perform twice the basic step "O", or twice the
basic step "l ". Then the path in p

<0,{<0,p>}>, <0,p>, <0,{<0,p>}>, <0,p>, ...
is weakly fair but not strongly fair. We do not consider weak fairness further in this paper.

We shall define in section 3 (for a finite alphabet B) a "fairification"· operation

(where P1nd is a suitably extended version of P), such that the process Fair(p) is fair, and contains
precisely those paths of p that are fair, or, more precisely, representatives of such paths. The relation
between Fair(p) and p will be clarified by the definition of a mapping from the paths of Fair(p) to
those paths of p which they represent. Roughly, Fair(p) is defined by associating indices with the
subprocesses (or "nodes") of p so as to provide a "bookkeeping" of the way in which alternative sub-
processes are chosen in forming paths. These indices indicate priorities for each of the basic steps bj.
During the construction of Fair(p), new sets of indices will from time to time be chosen by certain
random choices. (This idea of implementing fair scheduling by means of systematic alternation of ran-
dom choices is well known (see e.g. [AO], [BZ2,3], [Pl).) In section 4 this theory is extended to an
infinite alphabet, with an "expanding" system of indices (i.e. increasing in length), so that an index at
a node records all the (finitely many) basic steps already encountered on the path to that node.

We tum now to (2), the notion of fair operations on processes. Suppose given an operation 0 on
processes, which is, say, binary: We want to define a fair version of 0,
such that for all p 1 ,p2 EP: first, if p I and p 2 are (intrinsically) fair, then so is 0/p 1 ,p2); and second,
0/pi,p2) is fair with respect to the operation e. This second condition must be explicated for each
operation 0. A good example is the merge operation II :PX P In [BZ2,3] a fair version 111 is
defined. In this case the second condition is the requirement that all paths in the resulting process
P1 IIJP2 must be fair with regard to alternate scheduling from p 1 and p 2. A trivial and wrong solution
to the problem would be to define

Pl IIJP2 = Fair(pillpi).
Obviously, the first condition would be satisfied, but not so the second. The reason for this is,
roughly, that in the resulting process p I IIJP2, (intrinsically) unfair paths of p I llp2 that are fair with
respect to the alternate scheduling from p I and P2 should still be present. The operation Fair, how-
ever, would remove them from p 1 llp2. So this solution would be too coarse. A satisfactory solution
was given in [BZ2,3], where the fair merge was defined on the basis of alternate sequences of random
choices.
In this paper (section 5) we shall consider another example of an operation on processes, namely
infinite iteration (· · · defined by

294

p"' =
where p0 = po and p" + 1 = p" 0p. (Here " 0 " stands for sequential composition of processes.) We
define the fair infinite iteration p"'' of a process p eP and, after explicating the notion of fairness with
respect to infinite iteration, prove that the conditions above are indeed satisfied.

An area that remains to be investigated is that of fairness for non-unifonn processes [BZl], where
our uninterpreted basic actions are replaced by basic state transformations, since here even the
definition of fairness of paths in such processes is problematic.

RELATED WORK: We already mentioned [F] above, where the reader can find an introduction to the
notion(s) of fairness. Next, we mention a few related papers without the intention of giving a com-
plete overview of this area of research. .

In [OM], fairness properties are imposed through metrics that allow convergence to fair processes
only. The starting point is a simple concurrent language for which a semantics is given with the help
of so-called concurrent histories, which are partial orderings describing 'true' concurrency. In [AO]
and [CS], proof rules are given for fair transformations in concurrent systems: in the first paper for a
fixed number of concurrent components, and in the latter for a (possibly) growing number.

The main difl"erence between the above approaches and ours, is that they consider fairness with
respect to parallel (or concurrent) behavior of subprocesses, and we relate fairness to nondeterministic
choice (represented by the nodes in our processes). Furthermore, the fact that we study fairness of
processes purely at a semantic level, enables us to consider the notion of arbitrary fair operation on
processes, of which the merge (of concurrent, possibly infinitely many, processes) is just one example.

ACKNOWLEDGEMENTS: It was Jaco de Bakker who first noticed that fair scheduling, implemented
by systematic alternation of random choices (as in [Pl), could be used to model fair merge in the
semantic framework of process domains, as in [BZ2,3]. The second author had useful discussions with
Shenquan Xie on fairification and fair infinite iteration.

2. MA'IHEMATICAL PRELIMINARIES

DEFINITION 2.1 (Domains)
We shall use mathematical domains P of processes p, which are such that:
(l) P is a complete metric space,
(2) P satisfies the following reflexive equation:

P {po} U'iPc1(A XP),

where stands for "is isometric to", p0 is a null process, 'iPc1(· • ·) denotes the set of all closed sub-
sets of (· · ·) and A, with typical elements a, is such that it contains as a subset a (possibly infinite)
alphabet

B={b1,b2, ... }
of basic steps.

We shall not dwell too long upon the mathematical details of the construction of a domain P which
satisfies the above definition. Let us just briefly mention two difl"erent approaches. First, one can take
the metric completion of the union of metric spaces P0 CP 1 C · · · defined inductively by

Po= {po},
P. +1 {po} U'iP,1(A XP.).

(The metric on Po is trivial, the metric on P.+ 1 can be defined using the metric on P •.) For this

295

method, full mathematical details and extensive motivation are supplied in [BZl]. Secondly, one can
interpret the reflexive equation for P as defining a functor Fon a category of complete metric spaces,
thus:

FP = {po}U~c1(AXP).
(The definition of F should also specify a metric for FP.) In [AR] it is shown how to define Fas a
so-called contraction, which has a (unique) fixed point; so

FP~P.

Thus this method also presents us with a solution.

REMARK: We should be more precise about the metrics involved. We should have written the equa-
tion above like

FP = {po} U ~c1(A X id ½(P)),
where, for any positive real number c, idc maps a metric space (M,d) onto (M,d') with
d'(x,y)=c·d(x,y). For the details see [AR].

We now introduce a number of concepts related to processes.

DEFINITION 2.2 (Paths)
A path for a process p EP is a (finite or infinite) sequence

7T = (<a1,p1 >,<a2,p2>, .. .)
such that

<a1,p 1 >Ep I\ \;fi;;,,l [<a;+1,P;+1 >Ep;].
We say that 7T passes through p;, and p; will be called a node of p or a subprocess of p (for i;;,,J). The
set of all paths for p will be called Paths(p).

The following definition explains which processes we want to consider fair.

DEFINITION 2.3 (Fairness)
(a) Let b;EB. Consider a path

7T=(<a1,p1>,<a2,p2>,. • .).
We say that b; is enabled in 7T (or i is enabled in w) whenever

3k EN 3q EP [<b;,q > Epkl-
If <b;,q> Epk we also say that b; is enabled at step k. We say that b; occurs in w, whenever

3kEN [ak =b;].

(b) We call a path w fair whenever for all b; EB, if b; is enabled infinitely often in w, then it occurs
infinitely often in w.

(c) A process p EP is called fair if all its paths are fair.

ExAMPLE: Let pEP be such that p = { <a,p >, <b,p >}.Then bis continually enabled in
w=(<a,p>, <a,p>, ...),

but never occurs in it. Thus, the path w is unfair.

296

Please note that only basic steps b;eB are taken into account in the definition of fairness.

3. FAIRJFICATION OF PROCESSES WI11I FINITE ALPHABET

Let P be defined by

P {po} U'ifc1(B XP),

with B a finite alphabet:

B ={bi, ... ,bm}•
Given a processpeP, we want to form a new process Fair(p), which is, in some sense, a fair version
of p. For this purpose we want to define a function

Fair:
such that there is an obvious correspondence between the paths of Fair(p) and the fair paths of p.
Here P1nd is ~ven by:

plnd = {po} U'ifc1(A xpI""),

where A = B Uindu, and Index is a set of indices (to be defined below). A node p' of a process
peP1nd with

p' = { <11,p,> I PE/},
for some subset I of Index, is called a sum node and is denoted by

p'= IP,·
rel'

After having defined the function Fair, we shall clarify the relation between p and Fair(p) by defining
a mapping

4>: Palhs(Fair(p),
that will satisfy the following two properties. First, for every path wePalhs(Fair(p)) we have that
il>(w) is fair. Secondly, any fair path in p will be in the range of 4>. The function Fair will be defined
in such a way that it transforms a process p into a fair process Fair(p) by labeling each node of p
with an index and, moreover, interspersing some new nodes consisting of sums of indices (to be
defined below). Indices are the main building blocks in the definition of the function Fair. They are
defined as follows.

DEFINmON 3.1 (Indices)
The set Index of indices, with typical elements 11, is given by

Index= { <n1', ... ,n::> I
Vie{l, ... ,m} [n;;;,.O /\ O<s;~oo /\ (n; =O~s; = oo))},

where mis the number of elements in B, and n:· denotes the Cartesian pair <n;,s;>.

Let p be a process and " an index. The process p•, which is defined below, can be viewed, infonnally
speaking, as a process that behaves like p as far as is allowed by the index 11. Consider the i-th ele-
ment of i,, say n:·. It is related to b;, the i-th element of our alphabet B. The interpretation of n:•
(relative top) is that in paths starting in p, a step b; is permitted n; times with priority s;.

297

For the priorities s; we have the convention that a low number indicates a high priority. It is possible
that two or more s;'s have the same value, the corresponding b;'s having the same priority. The sym-
bol 00 indicates the lowest priority possible. Because it is always associated with an n that is 0, it can
also be interpreted as indicating no priority at all.

REMARK
The interpretation of the i-th component nf' is in a sense orthogonal to the approach taken in e.g.
[AO]. There a single number z; is used to indicate the priority of the i-th component of some system
of active components. This number z; indicates, roughly, the number of times a computation can
"allow itself' not to choose this component as the next one to make progress. In our approach the
number n; indicates the number of times we are allowed to choose b; (the i-th component) as the next
step, before another component gets the highest priority.

Now suppose we have a process p containing a step <b;,q >:
p = { ... ,<b;,q>, ... };

and assume furthermore that we have 11E/ndex with

where n;>0 and s;=min{s 1, ••• ,sm}- Then, according to our interpretation ofp•, it is permitted to
choose <b;,q> as the first step of a path starting from p. With the resumption q of this step will be
associated a new index ,,-[i], in which n; is decreased by one. If n; > 1 nothing happens to the priority
s; of b;. If n; = 1 (and so decreased to 0) it is, for the time being, the last time that b; is allowed, and
s; is changed to 00 (the lowest priority possible). As we will see, at some later stage it will be taken
care of that n; ands; are reset again, so that n;>0 and s;<00. All this is formalized in the following
definition.

DEFINITION 3.2
Let 11Elndex be such that

and let iE{l, ... ,m}. We define

[
<ni', ... ,(n;-1)'-, ... ,n:;;>

,,-[i]= <ni', ... ,000 , ••• ,n:;;>
undefined

There is one other operation on indices we shall need.

DEFINITION 3.3
Let 11Elndex be such that

"= <nj1, ... ,n:;;>,
then

- -
N(11) = { <;;;• •... ,;;:;; > 1

if n; > 1

if n; = 1
if n; =0.

'v'jE{l, ... ,m} [(nj =0 /\sj= 00)=>(nj>0 /\sj =s + 1) /\

(nj>0 I\ sj<00) =>(nj =nj I\ sj =sj)l}

298

wheres =max({si, ... ,sm} \ { ao })._

The elements v in N (v) are obtained from II by changing, for all i with n; =O and s; = ao, the value of
n; to an arbitrary positive number and the value of s; to s + 1. In words, this means that b; is again
allowed to be chosen (n; times) but with a priority lower than all other priorities present in II that are
not ao. This definition will also be used in the definition of Fair, where it will be further elucidated.
We now give this definition, upon which an explanation will follow.

DEFINITION 3.4 (Fairification)
We define a function

Fair:
Let p eP. Then

Fair(p) = °'2,fair(p,v),
,e/0

where
Io= { <nl, ... ,nl> I n;>O, i = 1, ... ,m}

and
fair:P

is defined as follows. (We often write p' for fair(p, 11).) For all 11elndex we define

fair(po,11) = Po•
For p~p0 we distinguish two cases.
Case 1:

Case 2:

REMARKs

If 3i E {l, ... ,m} [n;>O i\ s;<ao i\ enab/ed(i)],

then p' = {<bj,q•-Ul> I <bj,q>epi\sj=min{s 1, ••• ,sm}}.

If 'vie{l, ... ,m} [enabled(i)=>(n;=Oi\s;=ao)],

then p' = "'2, /.
;eN(,)

(1) The definition of fair:P is self-referential and therefore needs some justification.
We observe that fair could be defined as the fixed point of a mapping

i):(P

which can be defined according to the definition scheme of fair above. It is straightforward to
see that such a definition yields a contracting function, which thus has a unique fixed point (cf.
Banach's fixed point theorem ([BZI], [AR])).

(2) Because case 2 never occurs twice in succession, fair(p, 11) never contains two sum nodes succes-
sively.

(3) Every node in Fair(p) is either a sum node, or of the form { <b;,,pj> ljel}, for some set of
indices I.

(4) We give some informal intuition for this definition. The indices 11elndex in the definition above
can be interpreted as strategies for the construction of a process Fair(p) such that every path in

299

this process will be fair with respect to every b; in B. An element " in / 0 can be regarded as per-
mission, for each i, to choose b; n; times. Alli are supplied at the beginning with the same prior-
ity, that is l.
We will treat p• for the case that P"'FPo• As long as case l applies there is no need to change our
strategy or, in other words, to choose a new "· Each b; that is enabled at p, and for which n; >0
and s;=min{si, ... ,sm}, may be chosen as the next step in the new process we are constructing.
The index" is changed according to the definition of ,,-[i], son; is decreased by l and the prior-
ity s; remains constant, unless n; was l. Then it is set to oo, indicating no priority at all.
Because every application of case l causes the decrease of an n;, it is obvious that after a finite
number of such applications case 2 must hold. For didactic purposes we shall now make a con-
ceptual distinction between two possible situations that may arise in this case. Formally how-
ever, as may be inferred from the definition of case 2, this is not necessary.
First, it may be the case that all n;'s have been decreased to 0 (and all s;'s have been set to oo).
Then we can consider the strategy suggested by the " we started with to be a great success: every
b; has been chosen the number of times we had in mind for it (n;). The fact that originally all
n;'s were strictly positive implies that so far we have made sure that all b;'s have been treated
fairly. It is clear what to do next: we can just restart by choosing a new index "• with all n;
strictly positive and all s; set to l. According to the definition of N (P), this is exactly what hap-
pens in this case.
The second situation is more typical. It concerns the case that for all i that are enabled at p, n; = 0
and s; = oo. But we have not finished the strategy suggested by the original "• because there exists
at least one j not enabled at p, with ni>0 and si<oo. Although we have not finished our first
strategy, we are forced to change it because it does not tell us what to do about the i's that are
enabled at p. A new strategy j; is defined such that for all j with nj >0 and si < oo these values
remain unchanged, thus preserving that part of the first strategy (P) that has not yet been dealt
with. For all other i (enabled or not enabled) the value of n; is set to an arbitrary strictly positive
number, and the value of s; to max{s 1, ••• ,sm}+l. So the new priority introduced here is
lower than all the already existing priorities. When at a later stage one of the / s, for which ni
and s1 remain unchanged here, is enabled, it will take precedence over those i's for which a new
prionty is introduced. Thus a fair treatment of such /s is ensured for the future.

Now for the rest of this section let p eP be fixed. We define a mapping

(): Patlu(Fair(p))-+Patlu(p),
relating to each path 'IT in Fair(p) a fair path in p. For its formal definition we shall make use of the
following lemma.

LEMMA 3.5
For all peP with P"'FPo, 11elndex and <a,q >efair(p,11), there exist p'eP and 1"elndex such that

q = fair(p',11') I\
aelndex ~p'=p I\
a EB~ <a,p'> ep.

The proof is straightforward from the definition of p' (= fair(p,11)).

DEFINITION 3.6 (The mapping ())
Let

'IT= <ao,qo>, <a1,q1 >, ...
be a path in Fair(p). By the above lemma and the definition of Fair(p) we can rewrite it as

300

'IT= <ao,p'>, <a1,pi' >, • • ••
for certain v,v1, ••• e/ndex and p 1,p2, ..• EP. Now if we delete all pairs <a;,pf' > with a; elndex,
and all superscripts JJ;, we get a sequence

~'IT)= <a;,,p;, >, <a;,,p;,>, .. . ,
which is a path in p. We call ~'IT) the path in p corresponding to the path 'IT in Fair(p). This defines a
mapping

w: Paths(Fair(p).

Next, we have an important theorem.

THEOREM 3.7
Fair(p) is fair. That is, for all 'ITEPaths(Fair(p)), 'IT is fair.

PROOF
Let 'ITEPaths(Fair(p)) be such, that

•,, - <a1,q1>,<a2,q2>, ...
= <a1,pi' >,<a2,p2' >, •. •·

Suppose b; is enabled infinitely often in 'IT. We must show that b; occurs infinitely often within 'IT. It is
sufficient to show that for any j, if b; is enabled at the node p'j of 'IT, then b; occurs further on in the
path 'IT, that is, for somej'-;;.j: b;=al.
We consider the sequence ,1, "i+i, ... and observe that for every kEN, "k+I is obtained from Pk by
an application of case I or 2 in the definition of fair(p, P) (definition 3.4). Now let

We consider all possible cases.
(I) n; =O:

Then s; = oo. For every application of case 1 (above) one of the n/s must decrease. Therefore
eventually case 2 must apply, which makes all nk's positive and brings us to the next case.

(2) n;>O: This implies s;<oo. As long ass; is not the highest priority, the following may happen.
Any application of case I results in either the decrease of an nk, not to 0, or the decrease of an nk
to O and the removal of a higher priority than s;. After a finite number of applications of case 1,
the latter must happen. Any application of case 2 introduces only priorities that are lower than
s;, and must be followed by an application of case I. Furthermore, during any of these applica-
tions, n; and s; remain constant. It follows then that eventually s; will be the highest priority.
Because b; is enabled infinitely often in 'IT, it must be enabled at some step beyond this, at which
point case I will be applied to it and b; will occur at the next step.

Now that we have proved that we did not promise too much, that is to say that Fair(p) indeed con-
tains only fair paths, let us also make sure that for all fair paths in p there is a corresponding path in
Fair(p).

THEOREM 3.8
Any fair path in p is in the range of the mapping 4>.

PROOF
Given a fair path 'lr'ePaths(p), we must construct a path 'ITEPaths(Fair(p)) such that

301

~11') = 'ff.
First, we partition the set {I, ... ,m} into two parts F and/, where Fis the set of all i such that b; is
enabled finitely often (perhaps never) in w', and/ is the set of all i such that b; is enabled infinitely
often in w'. Thus:

{I, ... ,m} = / U F.
Note that for all ; eF, b; occurs only finitely often in w', and for all i el, b1 occurs infinitely often in
w', since w' is fair. Let /1 eN be so big that
(I) nob; with ieFis enabled in the part of w' at or after step /1;
(2) every b; with i el occurs at least once by then.
Now for i =I, ... ,m, let n;' be the number of times that b; occurs before (or at) step /1 and then
define

[
n;'+l if ieF

n; = n;' if ie/.

We define our first index v1 by
"1 = <nl. ... ,n~>.

Now we can construct the first part of the path w corresponding with the part of w' before step / 1, by
starting withp•, and repeatedly applying case I for the appropriate bi, thus decreasing the n;'s until
(at step / 1) our index is such that for all i e { 1, ... , m}:

ieF,..n1=1 l\s;=l,
ie/ ,..n,=0As1=oo.

Now case 2 must be applied to get a sum node, since no i eF is enabled at step /1• To determine the
following index "2 we again choose a number /2 eN, with /2 >I 1, such that every b1 with i el occurs at
least once between steps /1 and /2 (including /1, excluding /2). Then choose an index "2 such that, for
iel, n; denotes the number of occurrences of b; between /1 and /2• We proceed as before, construct-
ing the part of w' between /1 and /2• Continuing in this way, we construct a path win Fair(p) such
that 4>(w) = w'.

REMAiuc: This function 4> is not bijective. In general there are more than one (in fact, infinitely many)
paths in Fair(p) that are mapped by 4> to the same path in p.

4. FAIRJFICATION OF PROCESSES WITH INFINITE ALPHABET

We now want to extend our technique of fairification to a set of processes, which we shall (again) call
P, defined by

Pa;: {po} Uljd(BXP),

with B an infinite alphabet:
B = {b1,b2, ... }.

We shall again define a function

where P1"" is given by

302

plnd = {po} U'iPd(A xpind),

A =BUindex,

with Index to be defined below. We shall repeat the approach of the previous section with some
small but essential changes. The definitions, lemmas and theorems that need not be changed will be
mentioned, but not repeated in full.
An important change is the new definition of indices. They no longer have a fixed length.

DllFINmON 4.1 (Indices)
The set Index of indices, with typical elements 11, is given by

Index= LJ Indexlml
meN . '

with

An index of length k is related to the first k elements of our alphabet B. The interpretation of n; and
priority s; is as before. When we define, for a given process p, a fair version Fair(p), we shall, during
the construction, increase the length of the indices used, thus considering fairness with respect to a
growing number of basic steps b;. Once the length of an index is-bigger than or equal to some i EN,
it is ensured that b; is treated fairly thereafter. The definition of the first operation on indices,
,,-[· · ·], remains unchanged, but for the fact that the original definition (3.2) should hold for indices
of arbitrary length. The most important adaptation of this section lies in the following new definition
ofN(II).

DEFINITION 4.2
Let 11Eindex be such that 11 = <n'i', ... ,n',;;> and letpEP. We define

N(11,p) = {<ii;•, ... ,ii~,> I
m'>m/\

{k I I..;;k..;;m' /\nk>O} n {k lk enabled atp},;6 0 /\

'ti} (((1-.;;J..;;m) /\ nj=O I\ sj = ao)=:;,(iij>O /\sj=s + 1)) /\

((1-.;;J..;;m) /\ nj>O I\ sj< oo)::;, (iij =nj I\ sj =sj)) /\

m<J..;;m' ::;,(nj>O I\ sj=s + 1) v (iij=O /\ sj= ao))]}

wheres =max{s1, ... ,sm }.

Let us see how this definition is used in the definition of the function Fair below, and then try to
comment on its intuitive interpretation. Although we do not change the definition of Fair (definition
3.4), we repeat its most interesting part and discuss it in the context of the altered definition of N (II).

If p EP with p,;6p0, then p' (= fair(p, 11)) is given by:
Case 1:

If 3i E{ 1, ... ,Jength(II)} [n;>O /\s;<ao I\ enahled(i)],

then p'={<bj,q•-Ul> I <bj,q>Ep/\sj=min{s1, ... ,s,,0g,h(,)}}.
Case 2:

If 'viE{l, ... ,length(11)} [enabled(i)~(n;=O/\s;=oo)],

then p' = /.
,eN(,.p)

303

The interpretation of case l is the same as before. When the condition of case 2 holds, we are
obliged to change our strategy, that is to choose a new index, because our current strategy does not
say anything about the ts that are enabled at p. This can have two reasons. For such an i we either
have n; =O and s; = oo or i>length(11). In order to be able to continue our construction, we therefore
allow several new strategies vEN(11,p), which all must satisfy the following constraints. First, the part
of the old strategy " that has not been dealt with yet has to be preserved: for l ,;;;;; ,;;;;fength(II) with
n;>O and S;<oo we have n;=n; and s;=s;. Then, for 1.;;;;,;;;;[ength(II) with n;=O and S;=oo, the
values of n; and s; are reset: n; arbitrary positive, s; = l + s. As in the finite case, the new priority is
lower than the existing ones. Because we want each bk EB eventually to be treated fairly, for each k
there should be a moment in our construction where an index " is introduced with length(ll)>k.
Therefore we require the length of the new index "i, to be strictly greater than the length of "· For the
newly introduced j's (length(11)<j.;;;m) we require

(nj>O I\ sj =s + l) v (nj =O /\ sj = oo).

Although here nj =O is allowed, we know that the next time that case 2 is applied ;:,j will be set to a
strictly positive value. The newcomers, so to speak, are granted one (and.only one) moment of respite.
The motivation for this generosity lies in the rather selfish wish to prove theorem 4.4. It appears that
it would be too restrictive to demand for all suchj that nj>O. Finally, the condition that

{k I l,;;;;k,;;;;m I\ nk>O} n {k lk enabled atp} :,6 0

entails that case 2 can never occur twice in succession.

Now for the rest of this subsection let p EP be fixed. We define a mapping

4>: Pallu(Fair(p),
relating to each path.,, in Fair(p) a fair path in p, in exactly the same way as in definition 3.6. We
finally repeat theorems 3.7 and 3.8 of the previous section, which together show that the definition of
Fair(p) (using the new definition of N(11,p)) is satisfactory. The former proofs of these theorems have
to be altered, as can be seen below.

'THEOREM 4.3
Fair(p) is fair. That is, for all 'TTEPallu(Fair(p)), ,,, is fair.

PROOF
Let p EP and let wEPallu(Fair(p)) be such that

w=.<a1,q1>,<a2,q2>, ...
=.<a1,p1' >,<a2,P'i >, • • •·

Suppose b; is enabled infinitely often in "'· We must show that b; occurs infinitely often within "'·
From the construction of Fair(p) it follows that in the sequence (11j)j each index "j+I is obtained
from "j by an application of case l or 2. Since case l can be applied only finitely many times in suc-
cession, it follows that case 2 must have been applied infinitely many times, each application increas-
ing the length of the index. Therefore there is an N EN such that for all j > N:

length (11j) > i.

304

Now we are back in the old situation of the previous section! The proof can be completed as before,
but for the new observation that with the increase of the length of an index, only priorities lower than
the existing ones are introduced.

THEoREM4.4
Any fair path in p is in the range of the mapping IP.

PROOF
Given a fair path w'EPatlu(p),

we must construct a path 'TTEPatlu(Fair(p)) such that
IP('TT) = ,,,,_

First, we partition N into two parts F and l, where F is the set of all i such that b; is enabled finitely
often (perhaps never) in w', and l is the set of all i such that b; is enabled infinitely often in w'. Thus:

N=lUF.

Note that (ao in 3.4) for all i EF b; occurs only finitely often in w' and for all i El b; occurs infinitely
often in w', since w' is fair. Secondly, we introduce the following ·functions that will be very useful in
our proof.
(a) For all LEN we define a (position) function by

smallest L'~L such that
'vj~L' [bk fipj)

PosL(bk) = smallest L'~L such that
3) [L<J <L' I\ b;, =bd

· if kEF

if k El.

For k EF this fundon gives the smallest position greater than L after which bk is never enabled
again. Fork El the smallest position greater than Lis chosen such that bk has occurred (at least)
once since L.

(b) For all L, L'EN, with L.;;.L', we define a (number) function by
1 + (number of occurrences in w'

of bk between L and L') if k EF
(number of occurrences in w'
of bk between L and L') if kE/.

(In this definition between L and L' means including Land excluding L'.)
We shall define, at each of an infinite sequence of stages k, an index Pk and, corresponding to that
index, the k-th part of the path 'TT corresponding tow'. After we have constructed, at stage k -1, the
(k -1)-th approximation of path,,, corresponding to the initial segment

<b;,,p1>, ... ,<b;,,p,>

of path w', then at stage k we shall take into account the basic steps b;,., and all the b/s we have
encountered in the preceding stages. We shall make sure that the length of the index "k will be, as
prescribed by definition 4.2, strictly bigger than the length of "k - I· Note that in the previous section,
where our alphabet was finite, from the beginning we could focus on all b/s at the same time.

Stage 1
For the definition of our first index 111 we focus on basic step b;,. We define

Li =Pos1(b;1),

R1 ={ii,··· ,iL,-d,

Mi =maxR1.

Our first index Pi, with v1 = <n~• , ... , n~: >, is defined so that

'vi ,;;;.j.;;.M1 I/ER 1 ==>(ni =Num 1,L, (bi) /\si =I)/\

j~R 1 ='>(ni=O I\ si = oo)].

305

The length of v I is M 1 , because according to the definition of indices no holes are allowed in v1 , that
is: every index is related to an initial part of the enumeration of our infinite alphabet {b1,b2, ••• }.
For those basic steps bi that do not occur in the path w' before place L 1, default values ni =O and
si = oo are chosen in v1. (Here we use the fact that for newly introduced /s, ni can get the value 0
once. See the corresponding remark in the explanation following definition 4.2.) With v1 we can con-
struct the first part of ,,, corresponding to the part of w' before L 1, starting with p'', and repeatedly
applying case 1 for the appropriate b;, thus decreasing the n;'s until (at step L 1) our index is such that
for all 1.;;.; .;;.M 1:

(i EFnR 1) ==>(n; = 1 /\ s; = l),

(iE/ nR 1 vi ~R 1) ==>(n; =O /\ s; = oo).

Now case 2 must be applied, since no j EFnR I is enabled at step L 1. This brings us to stage 2.

Stage 2 .
We define our next index v2 , taking into account all steps encountered at stage 1, that is all b;'s with
1 ,;;;.;.;;.M 1, and the next step in the path w', that is b;,,. We define

L2 = max({PosL,(b;,,)} U {PosL,(bk)I 1.;;.k.;;.Mi}),

R2 ={I, ... ,Mi} U {iL,, ... ,iL,-d,

M2 = 1 +maxR2.

We define our second index v2, with v2 =<ii{', ... ,ii~:>, such that

'vl.;;.j.;;.M2 [((l.;;.j.;;.M1 /\ni=O)v(j>M1 /\jER2) ==>

iii =NumL,,L,(bi) I\ sj= 1 +max{sk I l.;;.k.;;.M I})/\

(I ,;;;.j.;;.M1 I\ ni = l) ='> (iii =ni I\ si =si) I\

(Jd2) ==> (iii=O/\si=oo)).

Note that M 2, the length of 112, is strictly bigger than M 1, the length of v1. We proceed as before,
constructing the part of,,, corresponding to the part of w' between L 1 and L 2• Continuing in this
way, we construct a path,,, in fair(p) such that 4>(w) = w'.

306

5. INFINITE ITERATION

Let P be the mathematical domain of section 3, that is, a complete metric space satisfying
P:;; {po}U~c1(BXP)

where B is a finite alphabet
B = {bi, ... ,bm}-

The operation of sequential composition on P is defined in

DEFINITION 5.1 (Sequential composition)
Let 0 : PXP-+P be given by .

[
q ilp=po

paq = { <b,p'0 q> I <b,p'> ep} iI p=ppo

for all p and q in P.

REMARxs
(l) Because this definition is self-referential, it needs some justification. We observe that O can be

defined as the unique fixed point of a contraction cl> of type cl>: (PXP-+P)-+ (PXP-+P). (Cf.
definition 3.4.)

(2) It is not very difficult to show that:

"lp,q,q' eP IP*Po dp(p 0q,poq') ..;½ dp(q,q')].

We shall use this property below.

In this section we want to study the operation of infinite iteration of a process p eP. It is defined as
follows:

DEFINITION 5.2 (Infinite iteration)
Let (· · · f: P-+P be given by

p., = limDn

for p eP, where p 0 = Po and pn + 1 = pn op.
(This limit exists, as can be easily proved using the property of remark (2) above).

Let us now explain how fairness issues come into play by taking the infinite iteration of p eP.
Generally, taking the infinite iteration of a process p eP introduces new infinite paths in p., that were
not yet present in p. When we take, for example, p = { <a,p0 >, <b,p0 > }, then p does not contain
any infinite paths, whereas p", which satisfies

p., = { <a,p"' >' <b,p., > },
contains many. Some of these are unfair, such as

.,, = <a,p"'>,<a,p"'>,<a,p"'>, ... ,
which is unfair with respect to b1• Such unfair paths.,, we call globally unfair. We do not call every
unfair path in p"' globally unfair, only those that are introduced, so to speak, by taking the infinite
iteration of p. Another example may illustrate this point. (Formal definitions follow below.) Con-
sider a process p eP satisfying

p = {<a,p>,<b,po>}..
Then p,. will contain the unfair paths

<a,p>,<a,p>, ... ,
<b,p >, <a,p >,<a,p >, ... ,
<b,p>,<b,p>,<a,p>,<a,p>, ... , etc.

The unfairness of these paths is, as it were, reducible to the unfairness of the path
<a,p>,<a,p>, ... ,

which was already present in p. Therefore they will not be called globally unfair paths.

307

There is a second notion of unfairness, ·which plays a role here. It is called node (or local) unfair-
ness. Again we explain it here by giving an example, the fonnal definition following below. Let p eP
contain the node p'={<a,p 1>,<b,p2>}. Let wePaJlu(p"') and suppose w passes through p'
infinitely many times. If it is the case that in w the next step that is taken after passing through p' is
always a, and never b, we call w node unfair (with respect to the node p'). The reason for this tenni-
nology is obvious: although bis infinitely often enabled in w at node p', it is never chosen in was the
next step after p'.

The notions of global and node unfairness are in a sense independent. ~t p eP be given by
p = {<b,p'>}, where
p' = {<a,p>,<b,po>}.

Consider wePaJlu(p"'), given by
'II= <b,p'>,<a,p>,<b,p'>,<a,p>,

This path is not globally unfair; but is node unfair with respect to the node p'. Thus node unfairness
does not imply global unfairness. The same holds in the opposite direction. Let p e P be defined by

p = {<an,{<a,po>,<b,po>}>lneN} U {a"'},
using an and a"' as shorthand with an obvious interpretation. (The fact that a,. ep is not important
for the point we want to make with this example, but is implied by the (topological) closedness of p.)
Now it is not difficult to find a path

w = <a,p1>,<a,p2>,<a,p3>, ...
in PaJlu(p"') (with p1,p2,p3, ... nodes of p) that is globally unfair (with respect to b), but fair with
respect to every node of p, although it passes through p infinitely many times.

Let us now proceed with formally defining these notions of global and node unfairness. Actually,
we shall define what we consider to be globally fair and node fair. For this we need the following
notion.

DEFINmON 5.3 (Iteration paths)
Let p eP, wePaJlu(p"'). We call w an (infinite) iteration path, whenever w is the concatenation of an
infinite sequence of finite paths w1,w2, ••• ePaJJu(p):

'II= 'IIJ°'IT2"'IT3° •••.

For a basic step b occurring in 'Ilk we say that b occurs in the k-th instantiation of p.

Rnwuc
We have not defined the concatenation of finite paths. It is just what one would expect: if
w1=<a1,p1>, ... ,<a,,,,po>, and w2=<b1,q1>, ... ,<bm,Po> are finite paths in PaJlu(p),

308

then:
71'J°'IT2 = <a1,p1>, ... ,<a,,,p>,<b1,q1>, ... ,<bm,po>.

(Note that finite paths always end in <a,p0 >, for some aeB.)

DEFINmoN 5.4 (Global fairness)
Let p eP, 71'EPflllu(p.,). We call 71' globally fair whenever
(1) 71' is fair (in the sense of definition 2.3); or
(2) 71' is not an iteration path.
We call p., globally fair whenever all paths in p., are globally fair.

REMARK: It follows that a path in-p., is globally unfair if and only if it is an iteration path and
unfair.

DEFINmON 5.5 (Node fairness)
Let pEP, 71'EPflllu(p.,). We call 71' node fair with respect top', for a subnode p' of p, whenever it is
the case that: if 71' passes through p' infinitely often, then for all b EB that are enabled in p': b occurs
infinitely often in 71', immediately after p'. We call 71' node fair if it is node fair with respect to every
subnode p' ~' p. Finally we call p., node fair if all paths in Pflllu(p.,) are node fair.

REMARK
In this definition the phrase "71' passes through p' infinitely often" is not altogether clear: it may be
the case that a subnode p' occurs in p on more than one place; p might even contain infinitely many
instances of p'. Below we shall overcome this ambiguity by being more precise in identifying sub-
nodes of p.

The aim of this section is to define two fair versions of the infinite iteration operator:
(•.• }°',.,,:

such that the result p.,,., will be globally fair and node fair respectively. For this purpose we first give
an alternative definition of infinite iteration, which will be used as a starting point for defining
(...)°',.,_

PROPOSITION 5.6 (Alternative definition of infinite iteration)
LetpeP.

App,(po) = paApp,(p)
App,(q) = { <a,App,(q')> I <a,q'> eq }, if q=/=po.

(Read "append'' for App.) Then we have:
p., = App,(p)

REMARKs
(I) Formally, App, can be defined as the unique fixed point of the function

given by

c),(F)(po) = pcF(p),
•,(F)(q) = { <a,F(q')> I <a,q'> eq }, if q=/=po.

(It is straightforward to show that•, is contracting.)
(2) The function App, applied to an argument qeP replaces all occurrences of po in q by p, in

which, recursively, all occurrences of p0 are again replaced by p.
(3) From proposition 5.6 it follows that ..4pp,(p0)=..4pp,(p).

PROOF OF THE PRoPOsmoN
We define, for fixed peP, a function 4>,,: by

</>p(q) = qop.,.
We have

<t>,,(po) = poop., = p"' = pop"'
= po(pop"') = p°<l>p(p)

and, for qeP, q1=po:
4>,,(q) = qop., (definition of 0)

= {<a,q'op"'>l<a,q'>eq}
= { <a,4>,,(q')> I <a,q'> eq }.

309

From this it follows that <I>,, is also a fixed point of <I>,- Because <I>, is contracting, it has a unique
fixed point, thus <I>,, =App,- Thus

p"' = pop"' = </>p(p) = Appp(p).

(1) Global fairness
In this subsection we set out to define a fair version

(· · ·)""-:
of the o~eration of infinite iteration such, that for p in P the result p "'"" will be globally fair.
range P J,uJ of this mapping (· · ·)"'"" is given by

pFl,uJ = {po} U '3'c1(A X pFI,uJ),

with

A = BU Flndex,
where Flndex is a set of indices to be defined below. A naive first attempt would be to define

p"'1- = Fair(p"'),

The

with the function Fair as in definition 3.4. This would be wrong, according to our definition of global
fairness. The function Fair transforms its argument into a process, in which all unfair paths have
disappeared. However, not every unfair path in p0 is globally unfair, only those that are iteration
paths. Thus the function Fair removes too m!llly paths from p"'. (For an illustration see the informal
explanation above.) Therefore we have to come up with another solution. We shall use the definition
of p"' as ..4pp,(p) as a starting point for the definition of p"'"", but changing it by again using indices
(as we did in the definition of Fair) to label the nodes of p. After having defined p"'"", we shall clarify
the relation between p"',.. and p"' by defining a mapping

<I>: Patlu(p"',-) Patlu(p"').
Although the idea of definingp.,"" as Fair(p"') does not work (as was mentioned above), the definition
of (· · ·)"',- will be surprisingly similar to that of the function Fair. The reason is the following: in
constructingp"',.. for a givenpeP, we do two things at the same time. On the one hand we construct
(a special version of) the infinite iteration of p, and on the other hand we select certain paths, namely

310

those that are globally fair. The first task is performed along the lines of the definition of Appp, the
second task is realised following the definition of Fair. So in some sense the definition of p.,r- will be
a combination of the definitions of Appp and Fair (see proposition 5.6 and definition 3.4).

DEFINmON 5.7 (Flag indices). The set of flag indices, with typical element µ, is defined by:

Flndu = { <<n1,s1,f1 >,,.,, <nm,sm,Jm>> jn;;.,o, o..;s;..;oo, /;E{ U,D}}

where m is the number of basic steps in our finite alphabet B, and { U,D} is the set of flags, contain-
ing two elements: U (for "up") and D (for "down").

The interpretation of n; and s; is as in definition 3.1 (see the informal explanation that follows
there), but for the difference that only the first occurrence of b; in each instantiation of p in p .,r- will
cause n; to be decreased by I. Whether or not b; has been chosen in a given instantiation of p, is indi-
cated by the flag Ji. If it is up, b; has not yet been chosen, and if it is down, b; has been chosen at
least once in the current instantiation of p.

We need the following operations on indices.

DEFINITION 5.8
Let µEFlndu, withµ= <<n1,sif1 >, ... , <nm,sm,Jm>>, and let iE{l, ... ,m }. We define

µ ifJi=D

<<n1,s1,f1>, ... ,<0,oo,D>, ... ,<nm,sm,Jm>>
undefined

if Ji = U I\ n; = 1
otherwise.

For µEFlndu with Ji= Uthe interpretation ofµ- [i] is as in definition 3.2, with the difference that U
is changed to D. This indicates that in the current instantiation of p the basic step b; has been chosen
(at least once). If Ji=D, then µ-[i]=µ, as indicated above. This will be explained below, after the
definition of p "'r- .

DEFINITION 5.9
LetµEFlndu, with <<µ=n1,s1,J1>, ... ,<nm,sm,fm>>. We define

N(µ) = { <<ii1,s1.i1 >, .. ·, <iim,Sm,im>> I
'<tiE{l, ... ,m} [(n;=O/\s;=oo~ii;>OAs;=l+max{s1! }..;j..;m})

I\ (n;>O I\ s;< oo ~ii; =n; /\s; =s;)

l\f; = Ji]}.
The interpretation of N(µ) is as in definition 3.3, because the flags do not matter here.

DEFINITION 5.10
Let µEFlndu with, µ=<<n1,s1,f1 >, ... , <nm,Sm,fm>>. Then

µU = <<n1,s1,U>, ... ,<nm,Sm,U>>.
This operation sets all flags to "up" and is used upon entrance to a new instantiation of p. Now we
are ready to define (· · · >"''"'.
DEFINITION 5.11 (Fair infinite iteration)
We define (· · ·)"''"':P->PFind• LetpEP. Then

p"''"' = ~Appp(p,µ),
14e/,

where

Io = { <<ni,l,U>, ... , <nm,l,U>> ln;>O}

and for ~ven p eP
.yp,:

is defined as follows. (We write qµ for .4pp,(q,1')-) Let l'EFlndu. We define

.yp,(po,I') = .yp,(p,l'u).

For qeP, q=fop0 , we distinguish two cases.
Case 1:

Case 2:

REMARKS

If 3ie{l, ... ,m} [enabled(i)/\(li=Dv(s;<ooAn;>O))],

then qµ = { <b;,q-1iJ> I <b;,q>eq/\
(li=DV(s;<00An;>O/\s;=min{s1, ... ,sm}))}.

If 'Vie{l, ... ,m} [enabled(i)=>(li=U/\S;=oo/\n;=O)]
then qµ = qµ'_

µ'eN(p.)

(1) The remarks (1), (2), and (3) following definition 3.4 apply also to the above definition.

311

(2) We ~ve some informal explanation of this definition by referring to remark (4) after definition
3.4 and making explicit what is different here. First, when we reach p0 in the definition (3.4) of
fair, we are done: fairVJ 0 ,v) = p0 • Here we continue by appending p to po, together with the
index I' changed into I' :Appf(po,l')=.yp,(p,l'u). The reason why we append p to p0 is obvi-
ous: we are building the infinite iteration of p. (See proposition 5.6.) The index I' is changed to
l'u, that is all flags/; of I' are set to U to indicate the entrance of a new instantiation of p. The
second important difference between this definition and definition 3.4 is the role played by the
flags. Let qeP with <b;,q>eq for some qeP, b;eB. If/; =D (down), then b; has already been
chosen (at least once) in the current instantiation of p. Therefore it may be chosen unrestrictedly,
even infinitely many times, within this instantiation of p (no matter what the values of n; and s;
are). In this case we have: l'-[iJ=I', formally expressing that b; may pass "for free" without
chan~g the values of n; ands;. The reason for letting b; pass for free is that it provides us with
the presence within p.,,.. of those infinite paths (possibly unfair) that are not iteration paths (and,
hence, not globally unfair). If on the other hand/;= U and n;>O and S; =min{s1, ... ,sm}<oo,
then b; may be chosen (as in case 2 of definition 3.4), but now I' is changed into l'-[i] by chang-
ing the values of n; and s; (as in definition 3.4) and by chan~g the flag/; to D.

Now for the rest of this subsection let p eP be fixed. We define a mapping
«I>: Paths(p.,,..) Paths(p.,),

relating to each iteration path in p"',.. a corresponding fair iteration path in p"'. We start by re-stating
lemma 3.5.

LEMMA 5.12
LetpeP, withp=p0, l'EFlndu, and <a,q>e.4pp,(p,I') for aeB and qeP. Then there existp'eP
and l''eFlndu such that .

312

q = Appp(p',µ') I\
aEFlndex p'=p I\
aeB <a,p'>ep.

The proof is straightforward from the definition of l (= Apppfp,µ)).

DEFINITION 5.13 (The mapping fl>)
Let

,,, = <ao,qo>,<a,,q,>, ...
be a path in p"',-,. We can rewrite it as:

'IT= <ao,p~>,<a,,p't' >,<a2,p'i' >, ...
for certain µ,µ1,µ2, .. . EFindex and p1,p2, .. . EP. If we omit in 'IT all pairs <a;,pf > with
a; E Flndex, and further all superscripts µ;, we get a sequence

fl>('IT) = <a;,,p;, >,<a;,,p;, >, ...
which is a path in p"'. We call <l>('IT) the path in p corresponding to the path 'IT in p"',-,. This defines a
mapping

fl>: PaJhs(p"',-,)-> PaJhs(p"').

THEOREM 5.14
p .,,., is globally fair. That is, for all 'IT E PaJhs(p .,,.,), if 'IT is an iteration path, then 'IT is fair.

PROOF
Let 'ITEPaJhs(p"'t-) and suppose,,, is an iteration path. We reduce the proof of this theorem to that of
theorem 3.7 by making the following observation. Since .,, is an infinite iteration paths it enters
infinitely often into a new instantiation of p. Upon each entrance, all flags are raised (set to "up").
As was observed above, if f;=U (for ie{l, ... ,m}), then b; is treated in case I of definition 5.11
above in exactly the same way as in case I of definition 3.4. Because this situation arises infinitely
often, the argument given in the proof of theorem 3.7 also applies here. (Note that case 2 in both
definitions 3.4 and 5.11 is the same.)

REMA.Iuc: Formally we have to extend definition 5.4 of global fairness to processes in pFiml_ This can
be done straightforwardly. ·

THEOREM 5.15: Any globally fair path in p"' is in the range of the mapping fl>.

PROOF
Let 'IT'ePaJhs(p"') such that 'IT' is globally fair. We must construct a path 'ITEPaJhs(p"'t-) such that

<l>('IT) = 'Ir.

We distinguish between two cases: first, that 'IT' is not an iteration path (and possibly unfair); second,
that 'IT' is an iteration path and fair.
(1) Suppose 'IT' is not an iteration path. Without loss of generality we may assume that 'IT' lies

entirely within p (that is, the first instantiation of p in p"'). We define a flag indexµ by

µ = <<1,1,U>, ... , <1,1,U>>

313

and take <µ.,p~> as the first element of the path w that we are constructing. Now we can con-
tinue the construction of w by repeatedly applying case 1 (of definition 5.11) for the appropriate
b;'s (namely, those that occur in w'). Each time we encounter a b; for the first time, the
corresponding triple <1,1,U> in the index is changed into <0,oo,D>. >From this moment
on b; may be chosen unrestrictedly within this instantiation of p (in which the path w' lies),
without changing the index. The path w thus constructed is an element of Paths(p"''"'). Further-
more: ll>(w)=w'. (Note that it is of no importance whether w' is fair or not.)

(2) Suppose w' is a fair infinite iteration path. As in the proof of theorem 5.14, we reduce this proof
to that of the corresponding theorem in section 3 (theorem 3.8) by observing that the latter only
needs a slight modification. When we count the number of ti.mes that a certain b; occurs before
a given step 9 in the path w', we have to count only the first occurrences of b; in different instan-
tiations of p. With this change in mind the proof of 3.8 can easily be transformed into a proof of
this theorem.

(2) Node fairness
Let us now forget about global fairness and focus on the second notion: node fairness. We again set
out to define a fair version

(...)"1-: p-,pNind

of the operation of infinite iteration but now such, that for all p EP the result p"''"' will be node fair.
The domain pNind is like P1nd and pFl•d, but with

A = B UN/ndex,

with Nlndex a set of indices to be defined below.

In constructing this second version of infinite iteration we proceed globally as in the previous sub-
section, now using node indices in order to ensure the node fairness of p "''"', instead of flag indices,
which were used above. We shall characterize (and even identify) a subnode of a given process p EP
by the subpath in p that leads to it.

DEFINITION 5.16 (Nodes)
LetpEP. We define the set of nodes ofp by

Nodes(p) = { w I 3w' EPaths(p) [w is a finite initial part of w']).

For wENodes(p), with w= <ai,p 1 >, ... , <a.,p.>, we define

end(w) = Pn·
(When no confusion is possible we sometimes identify wand end(w).) We set end(£)=p, where£ is the
empty path.

The set of node indices for a given p EP is defined as follows. Each node index for p has two com-
ponents: the first is a finite mapping, associating with each of a (finite) set of nodes of p an index as
defined in 3.1; and the second is a node of p. Such a node index schedules the fairness of paths with
respect to this second component. At each moment in the construction of p0'"', we consider only a
finite number of nodes (the domain of the first component), namely those that we have encountered
thus far.

DEFINITION 5.17 (Node indices)
Let p EP. We define the set of node indices for p as follows:

Nlndexp = (Nodes(p)-,fi• Index) X Nodes(p),

314

where denotes the set of partial functions on Nodes(p) with a finite domain, and Index is defined
as in definition 3.1. A typical element of Nindex is denoted p=(pi,f>l). For Pt ENodes(p)~ Index
we use the variant notation for functions: for w, w' ENodes(p) and PE Index, IP if w=ii

pt{Plw}(i) = ,-,. if-...J--Pt \ 7T I .,, -,-w.

(We shall use this notation whether or not wEdomain(p).)

We again need the operations P-[i] and N(P) on indices PEindex (see definitions 3.2 and 3.3).
They are used in the following

DEFINITION 5.18 (Fair infinite iteration)
We define (· · ·)"'Jo. Let p EP. Then

p.,Jo, = Appp(p,(Pt,£))
Po

where E is the empty subpath of p (identifying p as a subnode of itself),

Io = { <nl, ... ,n~> Jn;>O}
and for given p EP

Appp:

is defined as follows. (We write qP for Appp(q,p).) Let pE p;,.,;--, ;.: . (pi,p, I """
q=,=end(f>l), then Appp(q,p) is undefined. Now suppose that q=- .d\f>l). rncu aeune

Appp(po,P) = Appp(po,(P1 ,£)).
For q=,=p0 we distinguish two cases .
..:....0.v:111\· n,,,.,=J---'-.~ ~--=><

(a 1) If 3iE{I, ... ,m} [enabled(i)/\n;>O/\s;<oo), then

qP = {<b;,q'P,Vli]/1>,J,,.,,<b.,q>)>l <b;,q>Eq/\s;=min{sjJl..:j..:m}}.

(a2) If 'v'iE{I, ... ,m} [enabled(i)~n;=O/\s;=oo), then
qP = q(p,{r'/1>,),1>,)_

vcN(,)

Case (b): P'l ££domain(pt). Then
qP = q(p,{v/1>,),1>,),

Ve/0

where / 0 is as above.

REMARKS

IPt nFP If

(I) The remarks (I), (2), and (3) following definition 3.4 apply also to the above definition.
(2) We have that Appp(q,p) is undefined whenever q=,=end(f>l). This implies (since P'l ENodes(p))

that Appp is defined on nodes of p only, which seems quite natural.
(3) We give some informal explanation of the definition above. If we arrive at po, with index p, we

continue with Appp(p,p'). Here p'=(pt,E), that is, the second component of p' now indicates that
the node we are treating next is (md(E)=) p itself. The interpretation of cases (al) and (a2)
above is entirely similar to that of the cases I and 2 in definition 3.4: if P'l Edomain(pi), then
v = Pt (/>l) is treated exactly as before. A small difference is that, in (a 1), the second component

315

P2 is extended with <b;,q> to denote that the next node of p that is treated is 7j
(=end(1>2°<b;,7j>)). If P2fldomain(p1), an extension of the domain of p1 takes place. Here 10
is the set of initial indices (as in definition 3.4).

Now for the rest of this subsection let p eP be fixed. As in definitions 3.6 and 5.13 we can define a
mapping

cl>: Paths(p"'t-) Paths(p"').
The following two theorems can be proved by easy generalizations of the corresponding proofs (3.7
and 3.8) in section 3.

THEOREM 5.19 p"'t- is node fair.

THEOREM 5.20 Any node fair path in p"' is in the range of the mapping cl>.

Combining global and node fairness
We could now combine the two definitions (5.11 and 5.18) of fair infinite iteration and construct a
function

(· · ·)"''"":
such that p"'-"" would be both globally and node fair. We do not do this and confine ourselves to the
observation that it would be a straightforward and dull exercise. Similarly for the generalization to
an infinite alphabet.

6. REFERENCES

[ABKR]

[AO]

[AR]

[BK]

[BZI]

(BZ2]

[BZ3)

[CS]

P. AMERICA, J.W. DE BAKKER, J.N. KoK, J.J.M.M. RUITEN, A denotational semantics for
a parallel object-oriented language, report CS-R8626, Centre for Mathematics and Com-
puter Science, Amsterdam, August 1986. (To appear in: Information and Computa-
tion.)
K.R. APT, E.-R. OLDEROG, Proof rules dealing with fairness, Science of Computer Pro-
gramming 3, 1983, pp. 65-100.
P. AMERICA, J.J.M.M. RUTTEN, Solving reflexive domain equations in a category of com-
plete metric spaces, in: Proceedings of the Third Work.shop on Mathematical Founda-
tions of Programming Language Semantics (M. Main, A. Melton, M. Mislove, D.
Schmidt, Eds.), Lecture Notes in Computer Science 298, Springer-Verlag, 1988, pp.
254-288. (To appear in the Journal of Computer and System Sciences.)
J.A. BERGSTRA, J.W. KLoP, A convergence theorem in process algebra, Report CS-R8733,
Centre for Mathematics and Computer Science, Amsterdam, Nether lands, 1987.
J.W. DE BAKKER, J.I. ZUCKER, Processes and the denotational semantics of concurrency,
Information and Control 54, 1982, pp. 70-120.
J.W. DE BAKKER, J.I. ZUCKER, Processes and a fair semantics for the ADA rendez-vous,
in: Proceedings 10th ICALP (J. Diaz, Ed.) Lecture Notes in Computer Science 154.
Springer-Verlag, 1983, pp. 52-66.
J.W. DE BAKKER, J.l. ZUCKER, Compactness in semantics for merge and fair merge,
Proceedings Workshop Logics of Programs, (E. Clarke & D. Kozen, Eds.) Pittsburgh,
Lecture Notes in Computer Science 164 Springer-Verlag, 1983, pp. 18-33.
G. COSTA, C. STIRLING, Weak and strong fairness in CCS, Information and

316

Computation 73, 1987, pp. 207-244.
[DJ E.W. DJJKSTRA, A discipline of programming, Prentice-Hall, 1976.
[OM] P. DEGAN0, U. MONTANARI, Liveness properties as convergence in metric spaces,

Proceedings of the sixteenth annual ACM Symposium on Theory of Computing, Wash-
ington, D.C.-, 1984, pp. 31-38.

[F] N. FRANCEZ, Fairness, Springer-Verlag, 1986.
[LPS] D. LEHMANN, A. PNuEu, J. STAVI, Impartiality, justness and fairness: the ethics of con-

current termination, Proceedings 8th ICALP, Acre, July 1981 (0. Kariv, S. Even, Eds.),
Lecture Notes in Computer Science 115, Springer-Verlag, 1981.

[OA) E.-R. OLDER0G, K.R. APT,· Transformations realizing fairness assumptions for parallel
programs, Proceedings STACS 1984, Lecture Notes in Computer Science 166, Springer-
Verlag, 1984.

[P] G.D. PumaN, A powerdomain for cow,table nondeterminism, in: Automata, Languages
and Programming, Proceedings 9th ICALP, Aarhus, July 1982 (M. Nielsen, E.M.
Schmidt, Eds.), Lecture Notes in Computer Science 140, Springer-Verlag, 1982, pp.
418-428. ,

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Samplingfrom a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes,
part I: model and method. I 964.
4 G. de Leve. Generalized Markovian decision processes,
part II: probabilistic background. I 964.
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, f96~~n Wijngaarden. Formal properties of newspaper Dutch.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print:
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathemalical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition xprogramminl
~a9c;ages with an applicalion to lhe de nition of AL OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part I. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. I 968.
19 J. van der Slot. Some properties related lo compactness.
1968.
20 P.J. van der Houwen. Finite difference melhods for solving
parlial differential equalions. 1968.
21 E. Wattel. The compactness operator in set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, parl 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Paerl. Represenlations of the Lorentz group and projec-
tive geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part /.
1968.
Ti6~~ropean Meeting 1968. Selecled statistical papers, part I I.

28 J. Oosterhof[Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservations of infinite divisibility under mix-
ing and related topics. 1970.
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func-
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen. G.A.M. Kamsteeg-Kemper.
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap-
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. I 971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of(s,S) inventory models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica-
tions in number theory). f972.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. I 973.
44 H. Bart. Meromorphic operator valued functions. 1973.

45 A.A. Balkema. Monotone transformations and limit laws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 1: the language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: {he compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudsboorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). Re~•ised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. I 974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizabili~v in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part/. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I:
theory of designs, finite geometry and coding theory. l974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. I 914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group tht!ory. 1974.
58 W. Albers. Asymptotic expansions and the deficiemy con-
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric dosed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor-
ical approach. I 975.
66 H.G.J. Pijls. Logical£v convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. I 976.
69 J.K. Lenstra. Sequencing ~v enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. I 976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lame
functions and their applications in the theory of conical
waveguides. I 977.
73 D.M.R. Leivant. Absoluteness ofintuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo-
logical spaces. 1977.
76 M. Rem. Associons and the closure statements. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge. A.C.M. van Rooij. Introduction to Riesz
spaces. I 977.
79 M.C.A. van Zuijlen. Empirical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part/. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 2. 1976.
83 L.S. van Benthem Jutting. Checking Landau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into lAtin by Hermann of Carinthia (?), books
vii-xii. 1977.
85 J. van Mill. Supercompacllless and Wallmann spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program-
ming system for operations on vectors and matrices over arbi-
trary fields and oj variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and ana-
lytic functionals with unbounded carriers. 1978.
90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic games. I 981.

91 J.M. Geysel. Transcendence infields of positive characteris-
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Marko\' decision theon1.
1977. .
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian comrol of Markov chains. 1978.
96 P.M.B. Vitinyi. Lindenmayer systems: structure,
languages, and growth functions. 1980.
97 A. Federgruen. Markovian control problems; functional
equations an"il algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Interfaces between computer science and operations
research. 1978.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
ings bicentennial congress of the Wiskundig Genootschap, part
/. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff(eds.). Proceed-
ings bicentennial congress of the Wiskundig Genaotschap, part
2. 1979. rn~s~· van Dulst. Reflexive and superref/exive Banach spaces.

103 K. van Ham. Classifying infinitely divisible distributions
by functional equations. l 978.
104 J.M. van Wouwe. GO-Jpaces and generalizations of metri-
zability. 1979.
105 R. Heirr.iers. Edgeworth expansions for linear combinations
of order statlstics. 1982. rn~9~. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution o_f nonlinear opera-
tor equations by ilnbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part 1. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 tra11sput, part I: historical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part JI: an implemen-
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.
I 13 T.A.B. Snijders. AsJ1mptotic optimali~y theory for testing

problems with restricted' alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part /. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures II,
part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.
118 P. Groeneboom. Large deviations and asymptotic .
efficiencies. 1980.
119 F.J. Peters. Sparse matrices and substructures, with a novel
implementation oJ finite element algorithms. 1980,
120 W.P.M. de Ruyter. On the asymptotic analysis of large-
scale ocean circulation. 1980.
121 W.H. Haemcrs. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Nwnerica/ solution of systems of nonlinear
equations. 1980. g~l Yuhasz. Cardinal functions in topology - ten years later.

I 24 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hock. Reduction methods in nonlinear pro-
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems, 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Harn, T. Hagen, P. Klint, H. Noot, H.J. ~tiii. A.H. Veen. I P: intermediate language for pictures.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The imerval function of a graph. 1980.

133 C.A.J. Klaassen. Statistical performance of location esti-
mators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna-
tional conference on ALGOL 68. 1981.
135 J.A.G. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof
(eds.). Fonnal methods in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part II. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming, succes-
sive approximations and near(r optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point liypothesis.
1981.
141 G.E. Welters. Abe/.Jacobi isogeniesfor certain types of
Fono threefolds. 198 I.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures. part 1. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
i{~g';at arithmetic; formulation and analysis of an algorithm.

145 A.J. Brentjes. Multi-dimensional continued fraction algo-
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981.
147 H.H. Tigelaar. Identification and infonnative sample size.
1982.
148 L.C.M. Kallenberg. Linear programming and finite Mar-
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, proceedings ofa sympo-
sium in honour of A. C. Zaanen. 1982.
150 M. Veldhorst. An ana(vsis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymplotics for simple linear
rank statistics. I 982.
~~~2?.F. van der Hoeven. Projections of lawless sequencies. 

153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the ana?,1lsis of a queueing mode{ with paired ser-
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part /. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part II. 1982. 
156 P.M.G. Apcrs. Query processing and data allocation in 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification oftwo-
dimensiona/ smooth commutative formal groups over an alge-
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part I. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science JV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
I 61 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. I 983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations o_f the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen-

techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program-
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions of 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 2. 1983. 



CW/ TRACTS 
I D.H.J. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 JJ. Dijkstra. Fake _topological Hilbert ~/Xlces and characteri-
zations of dimension m terms ofnegl1g1b1lity. 1984. 
3 AJ. van der Schaft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoogenboom. Intertwiningfunclions on compact Lie 
groups. I 9'84. 
6 A.P.W. IIObm. Dataflow camputation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue-
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. I 984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 

functions: the gamma function, the exponential integrals and 
error-like junctions. I ~84. 
11 N.M. van Dijk. Controlled Markov processes; time-
discretization. 1984. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
st.tff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Ana/ytic spaces and dynamic program-
ming: a measure theoretic approack 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case-study in Fourier integral opera-
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham-
iltonian systems. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Montague 
grammar. part 1: Philosophy. framework. computer science. 
1986. 
20 B.F. Schriever. Order dependence. 1986. 
21 D.P. van der Vecht. Inequalities for stopped Brownian 
motion. 1986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods, concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultra.filters over definable subsets 
of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The misconstrued semicolon: Reconciling 
imperative languages and dataflow machines. 1986. 
27 AJ.M. van Engelen. Homogeneous zero-dimensional abso-
lute Borel sets. 19&6. 
28. T.M.V. Janssen. Foundations and applicaJions of Montague 
grammar, part 2: Applications to natural language. I 986. 
29 H.I •. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production-inventory control models: approxi-
mations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs for 
factorial experiments. 1987. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approach. 1987. 
35 M.L. Eaton. Lectures on topics in probability inequalities. 
1987. 
36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.). Proceed-
ings of the first international conference on industrial and 
applied mathematics (IC/AM 81). 1987. 
37 L. Stougie. Design and ana/ysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 
regenerative processes. 1987. 

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory 
and related topics. 1987. 
40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers 1984-1987. 1987. 
42 P.R.J. Asveld, A. Nijholt (eds.). Essays on concepts,for-
ma/isms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1987. 
44 A.W. van der Vaart. Statistical estimation in large parame-
ter spaces. 1988. 
45 S.A. van de Geer. Regression ana/ysis and empirical 
processes. 1988. 
46 S.P. Spekreijse. Multigrid solution of the steady Euler equa-
tions. 198°8. · 
47 J.B. Dijkstra. Analysis of means in some non-standard 
situations. 1988. 
48 F.C. Drost. Asymptotics for generalized chi-square 
goodness-of-fit tests. 1988. 
49 F.W. Wubs. Numerical solution of the shallow-water equa-
tions. 1988. 
50 F. de Kerf. Asymptotic ana/ysis of a class of perturbed 
Korteweg-de Vries initial value problems. 1988. 
51 P J.M. van Laarhoven. Theoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous decoupling transformations for 
linear boundary value problems. I 988. 
53 K.C.P. Machielsen. Numerical solution of optimal control 
problems with state constraints by sequential quadratic pro-
gramming in function space. 1988. 
54 L.C.R.J. Willenborg. Computational aspects of survey data 
processing. 1988. 
55 G.J. van der Steen. A program generator for recorition, 
parsing and transduction with syntactic patterns. 198 . 
56 J.C. Ebergen. Translating programs into delay-insensitive 
circuits. l98~ 
57 S.M. Verduyn Lune!. Exponential type calculus for linear 
delay equations. 1989. 
58 M.C.M. de Gunst. A random model for plant cell popula-
tion growth. 1989. 
59 D. vw Dulst. Characterizations of Banach spaces not con-
taining I . 1989. 
60 H.E. de Swart. Vacillation and predictability properties of 
/ow-order atmospheric spectral models. 1989. 
61 P. de Jong. Central limit theorems for generalized multil-
inear forms. 1989. 
62 V.J. de Jong. A specification system for statistical software. 
1989. 
63 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part I. 1989. 
64 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part II. 1989. 
65 B.M.M. de Weger. Algorithms for diophantine equations. 
1989. 
66 A. Jung. Cartesian closed categories of domains. 1989. 
67 J.W. Polderman. Adaptive control & identification: Conflict 
or conjlux?. 1989. 
68 HJ. Woerdeman. Matrix and operator extensions. 1989. 
69 B.G. Hansen. Monotonicity properties of infinite/)' divisible 
distributions. 1989. 
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-jive 
years of operations research in the Netherlands: Papers dedi-
cated to Gijs de Leve. 1990. 
71 P.J.C. Spreij. Counting process systems. Identification and 
stochastic realization. 1990. 
72 J.F. Kaashoek. Modeling one dimensional pattern formation 
by anti-diffusion. 1990. 
73 A.M.H. Gerards. Graphs and po/yhedra. Binary spaces and 
cutting planes. 1990. 
74 B. Koren. Multiirid and defect correction for the steady 
Navier-Stokes equations. Application to aerodynamics. 1991. 
75 M.W.P. Savelsbergh. Computer aided routing. 1991. 
76 O.E. Flippo. Stability, duality and decomposition in general 
mathematical programming. 1991. 



77 A.J. van Es. Aspects of nonparametric density estimation. 
1991. 
78 G.A.P. Kindervater. Exercises in parallel combinatorial 
computing. 1991. . 
79 J.J. Lodder. Towards a symmetrical theory of generalized 
fanctions. 1991. 
80 SA. Smulders. Control of freeway traffic flow. 1991. 
81 P.H.M. America, JJ.M.M. Rutten. A parallel object-
oriented language: design and semantic foundations. 1991. 
82 F. Thuijsman. Optimality and equilibria in stochastic 
games. 1991. 
83 R.J. K.ooman. Convergence properties of recurrence 
sequences. 1991. 
84 A.M. Cohen (ed.). Computational aspects of Lie group 
representations and related topics. Proceedings of the 1'190 
Computational Algebra Seminar at CW/, Amsterdam. 1991. 
85 V. de Valk. One-dependent processes. 1991. 


