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Introduction 
The work described in this tract has been inspired by the parallel object-oriented language 
POOL. The tract describes the design of the language itself and the techniques that have 
been used to give it a formal semantics. The language POOL, or more precisely, this 
family of languages, has been developed as a vehicle for writing application programs for 
a parallel computer. Programming such a parallel machine is considerably more difficult 
than programming a sequential machine, but if it works, a parallel machine can do the 
job faster and cheaper than a sequential one. 

POOL is directed towards symbolic applications, in contrast to numerical ones. Due 
to their irregularity, symbolic applications are more difficult to implement correctly and 
efficiently on a parallel machine. POOL tries to alleviate these problems by supporting 
an object-oriented programming style, which is currently the best available technique to 
structure large and complex software systems. In an object, pieces of data are closely 
integrated with the operations that can be applied to them and together they are 
protected from the outside world by an explicit interface: The internals of an object 
can only be reached by sending it messages of a precisely determined kind. In POOL, 
such an object also contains a local process, so that it can ·operate in parallel with the 
other objects in the system. The same message interface protects the sequential inside 
of an object against the parallel outside world. 

This tract consists of a collection of papers, all of which have been, or soon will be 
published elsewhere: 

• Pierre America. 
Issues in the design of a parallel object-oriented language. 
Formal Aspects of Computing, Vol. 1, No. 2, 1989, pp. 366-411. 

• Pierre America and Jan Rutten. 
Solving reflexive domain equations in a category of complete metric spaces. 
Journal of Computer and System Sciences, Vol 39, No. 3, 1989, pp. 343-37.5. 

• Pierre America, Jaco de Bakker, Joost Kok and Jan Rutten. 
Denotational semantics of a parallel object-oriented language. 
Information and Computation, Vol. 83, No. 2, 1989, pp. 152-205. 

• Pierre America and Jaco de Bakker. 
Designing equivalent semantic models for process creation. 
Theoretical Computer Science, Vol. 60, No. 2, September 1988, pp. 109-176. 

• Joost Kok and Jan Rutten. 
Contractions in comparing concurrency semantics. 
Report CS-R8755, Centre for Mathematics and Computer Science, Amsterdam, 
the Netherlands, November 1987. An extended abstract appeared in T. Lepisto 
and A. Salomaa, editors, Proceedings of the 15th International Colloquium on 
Automata, Languages and Programming, pp. 317-332, Lecture Notes in Computer 
Science 317, Springer-Verlag, 1988. (To appear in Theoretical Computer Science.) 
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• Jan Rutten. 
Semantic correctness for a parallel object-oriented language. 
SIAM Journal on Computing, Vol. 19, No. 3, 1990, pp. 341-383. 

• Jan Rutten and Jeffery Zucker. 
A semantic approach to fairness. 
Report CS-R87.59, Centre for Mathematics and Computer Science, Amsterdam, 
the Netherlands, November 1987. (To appear in Fundamenta Informaticae.) 

The first paper, "Issues in the design of a parallel object-oriented language", gives a 
more extensive introduction to the language POOL2, the member of the POOL family 
that is currently being used in subproject A of ESPRIT Project 41.5. It also discusses 
the factors that have influenced the most important decisions in the design of this 
language. Among others, it presents the basic principles of object-oriented programming, 
it compares several alternative ways of integrating parallelism into an object-oriented 
language, and it explains the viewpoint taken in POOL towards typing and inheritance. 
It also gives an overview of the studies on formal aspects of POOL. 

The rest of the papers are concerned with formal semantic models for parallel languages, 
in particular POOL. Object-oriented programming has grown out of an intuitive understanding 
of what are the important issues in the organization of large software systems. The 
development of a formal basis for this programming style has been somewhat neglected 
for a long time. Recently it has become clearer and clearer that such a formal understanding 
is indispensable in order to make the right choices in the complex process of designing 
object-oriented systems. This is even more important in parallel systems, where we can 
rely even less on our intuition. 

In this tract we discuss two styles of formal semantics that have been developed for 
POOL: operational semantics and drnotational semantics. The operational formalism 
describes the execution of a POOL program in terms of a sequence of transitions between 
states. The possible transitions are described by a transition relation, which is defined 
inductively by axioms and rules, corresponding to the syntactic structure of the language. 
For POOL, an operational semantics along these lines was first described in the paper 
"Operational Semantics of a Parallel Object-Oriented Language", by Pierre America, 
.Jaco de Bakker, Joost Kok, and Jan Rutten, which appeared in the Conference Record of 
the 13th Symposium on Principles of Programming Languages, St. Petersburg, Florida, 
January 13-1.5, 1986, pp. 194-208. Chapter 7 of this tract also defines such an operational 
semantics for POOL. 

The denotational semantics works by defining for each syntactic category ( e.g., statements, 
expressions) a meaning function that maps a syntactic construct to an element of some 
mathematical domain. Here the main point is the principle of compositionality: the 
meaning of a composite construct only depends on the meaning of its constituent parts, 
not on their actual form. This denotational semantics is described in the third paper 
included here, "Denotational semantics of a parallel object-oriented language". The 
mathematical domain used here is a complete metric space, which is obtained as a solution 
of a reflexive domain equation. The second paper in this collection, "'Solving reflexive 
domain equations in a category of complete metric spaces", develops a category-theoretic 
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technique by which a large class of these domain equations can be solved ( uniquely up 
to isomorphism). 

The next three papers are devoted to establishing the relationship between operational 
and denotational semantics. The paper entitled "Designing equivalent semantic models 
for process creation" investigates this relationship in the context of four languages, 
ranging from a very simple language with uninterpreted atomic action and a static 
process structure to a language where the individual processes can store and communicate 
data and where new processes can be created dynamically. For each of these languages it 
is proved that the operational semantics and the denotational semantics are equivalent, or 
in other words, that the denotational semantics is correct with respect to the operational 
semantics. This means that there exists an abstraction operator that takes the denotational 
semantics of a program and, by stripping away the structure necessary for compositionality, 
produces exactly the operational semantics. 

The technique used to prove this is essentially based on the introduction of semantic 
operators that replace the so-called continuations used in the denotational semantics. 
Unfortunately this leads to long and complicated proofs. Therefore, in the next paper, 
"Contractions in comparing concurrency semantics", a different technique is developed, 
which defines the semantic functions themselves as fixed point of some higher-order 
operators and relates these operators to each other. In the sixth paper, "Semantic 
correctness for a parallel object-oriented language", this technique is applied to the 
language POOL, with all its semantically essential constructs, thereby establishing the 
correctness of the denotational semantics with respect to the operational semantics. 

The last paper in this collection, "A semantic approach to fairness", deals with 
fair processes and fair operations on processes, in the same context of complete metric 
spaces as the preceding papers. For a simple semantic model, which can be used for the 
denotational semantics of languages with uninterpreted atomic actions, it is shown how 
to derive from any process a fair version, which does not postpone certain alternatives 
forever when repeatly choices must be made. Moreover, it shows how a fair version of 
the infinite iteration of a single process can be constructed. 





Issues in the design of a 
parallel object-oriented language 

Pierre America 

Abstract 

This document discusses the considerations that have played a role in the de-
sign of the language POOL2. This language integrates the structuring techniques 
of object-oriented programming with mechanisms for expressing parallelism. We 
introduce the basic principles of object-oriented programming and its significance 
for program development methodologies. Several approaches for integrating ob-
jects and parallelism are compared and arguments for the choices made in POOL2 
are presented. We also explain why inheritance is not yet included in POOL2. 
A brief overview of the research in formal aspects of POOL is given. Finally we 
indicate some directions for future developments. 

Note: A revised version of this article appeared in Formal Aspects of Computing. The ori-
ginal wrsion is reproduced in this tract with kind permission of the British Informatics 
Society Ltd. 
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1 Introduction 
It is generally accepted that the speed of computers that are organized according to 
the traditional Von Neumann model is approaching its physical limits. In this model, 
instructions and data are transported back and forth between processor and memory 
through the famous "Von Neumann bottleneck" and as memories become larger and 
processors faster, we come closer and closer to the limit that the speed of light imposes 
on the bandwidth of this bottleneck. A large number of solutions to this problem 
have been proposed, ranging in radicality from caches [Smi82], which serve as a kind 
of "impedance adapters" between a fast processor and a slow memory, to completely 
different computer organizations that are to be combined with revolutionary models 
of computations (see, e.g., [FFGL88,TBH82]). 

An approach in between these extremes proposes the use of a number of traditional 
processors, each with its own private memory and connected together by a network 
by which they can exchange information. Provided the network is designed carefully, 
this organization is scalable to a very large number (several thousands) of processors. 
Several concrete architectures are based on this general principle [Hil85,Odi87,Sei85]. 

A problem at least as difficult as designing such parallel machines is how to program 
them. Traditional programming languages such as Fortran and Pascal are closely 
related to the von Neumann architecture: they describe a single sequence of actions that 
the computer should perform. It is not at aH an easy task to transform such a program 
automatically to an equivalent program that makes efficient use of the opportunities 
for parallelism provided by the hardware. Only for numeric applications, which often 
have a simple control structure that is largely independent of the actual values of the 
data, attempts in this direction have been successful, first for vector computers [Ken80] 
and more recently also for MIMD computers [ACK87]. For symbolic computations, 
with their more irregular and data-dependent structure, the automatic exploitation of 
parallelism in traditional programming languages is much more difficult and it has not 
yet lead to results that are useful in practice. 

A drastic approach to this problem is to use pure functional [Bac78,Tur85] or logic 
[Kow79] programming languages. The idea is that a program in these languages only 
expresses what information the programmer wants, not how this should be obtained. 
By only giving the essential dependencies between input and output, this should leave 
enough freedom for the implementation to detect and exploit the parallelism automat-
ically. And in fact, the detection of potential parallelism in these languages is quite 
easy. However, its exploitation has turned out a much more difficult task than it had 
been initially assumed. Despite the advances made in the last years, the use of implicit 
parallelism in purely functional and logic languages is not yet understood well enough 
to be able to base a complete system exclusively on this kind of languages. Therefore 
it remains necessary to use languages that provide explicit mechanisms for expressing 
and controlling parallelism. 

Dealing with parallelism is not the only problem in programming symbolic appli-
cations for parallel machines. The organization of the software itself, data structures, 
algorithms, etc., for large and complex applications is often a very difficult matter, 
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where reliability, flexibility, and user-friendliness are important issues. This establishes 
a real challenge for software technology. A promising approach to meet this challenge is 
object-oriented programming [Cox86,Mey88]. Object-oriented programming languages 
offer excellent support for modularity and encapsulation. Object-oriented software 
development methods provide a relatively high degree of flexibility and reusability. 

In this paper we discuss the most important issues that have played a role in the 
design of the programming language POOL2 [Ame88a]. This language integrates the 
structuring principles of object-oriented programming with mechanisms for expressing 
parallelism. It is intended for formulating applications in the area of symbolic comput-
ing such that they can be executed on a parallel machine called DOOM (Decentralized 
Object-Oriented Machine) [Odi87]. The language POOL2 is developed from earlier 
languages in the POOL family, in particular POOL-T [Ame85b,Ame87a]. 

Section 2 explains the basic principles of object-oriented programming and briefly 
discusses its impact on software technology. In section 3 we introduce and compare 
several different ways in which object-oriented programming can be integrated with 
mechanisms for expressing parallelism. Section 4 then gives an overview of several 
new language concepts in POOL2 and section 5 explains why inheritance is not one of 
them. Then in section 6 an overview is given of the formal studies related to POOL. 
Finally, section 7 presents some conclusions and indicates some possible directions for 
future developments. 
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2 Object-oriented programming 

2.1 Basic principles 
In the object-oriented programming style a system is described as a collection of objects 
(see figure 1). An object is best defined as an integrated unit of data and procedures 
acting on these data. One can think of it as a box that stores some data and has the 
possibility to act on these data. The data in an object are stored in variables. The 
contents of a variable can be changed by executing an assignment statement. 

(var2 ) 

Figure 1: A POOL object 

A very important principle is that one object's variables are not accessible to other 
objects: they are strictly private. In other words, the box has a thick wall around 
it, which separates the inside from the outside. The only way in which objects can 
interact is by sending messages to each other (see figure 2). Such a message is in 
fact a request from the sender for the receiver to execute a procedure. This kind of 
procedures, which are executed in response to messages, are called methods in POOL. 
The receiver decides whether and when it executes such a method, and in some cases it 
even depends on the receiver which method is executed (see section 5). In general, the 
sender of the message can include some parameters to be passed to the method and the 
method can return a result, which is passed back to the receiver. In this way objects 
can cooperate and communicate. It is important to note that this interaction between 
objects can only occur according to this precisely determined message interface. Thus 
every object has the possibility and the responsibility to maintain its own local data 
in a consistent state. 

Objects are entities of a dynamic nature. At any point in the execution of a program 
a new object can be created, so that an arbitrarily large number of objects can come 
into existence. (Objects are never destroyed explicitly. However, they can be removed 
by garbage collection if it is certain that this will not influence the correct execution 
of the program.) In order to describe such systems with many objects, the objects are 
grouped in classes. All the elements (the instances) of a class have the same names 
and types for their variables (although each object has its own set of variables) and 
they all execute the same code for their methods. In this way, a class can serve as a 
blueprint for the creation of its instances. 

Several object-oriented programming langu11,ges use different 'mechanisms to de-
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Parameters 
Sender Receiver 

Result 

Ge) 
v2 

vl := v2 !math2 (v3) 

Figure 2: Sending a message 

scribe object creation. In general it is agreed upon that creating new objects is not a 
natural task for the existing instances of the same class (where would the first instance 
come from?) but rather for the class itself. In Smalltalk-SO [GR83] classes are con-
sidered to be objects themselves: they can also be created and changed dynamically. 
Therefore it is natural to describe object creation in class methods: a new object can 
be created by sending an appropriate message to the class. In POOL it is not natural 
to consider classes as objects, because we do not want them to change during program 
execution (see also section 5). Therefore in POOL the creation of new objects is done 
by routines, a kind of procedures different from methods. Routines are not associated 
with certain objects and they do not have direct access to any object's variables. In-
stead, in general (but see section 4.1) a routine is associated with a class, and it can 
be executed by any object that knows it. By encapsulating the creation of new objects 
in routines, it can be ensured that such a new object is properly initialized before it is 
used. 

It is interesting to discuss the nature of the data that is stored and manipulated 
in the objects. In general, a variable contains a re/ ere nee to some object. Also in 
parameters and results of methods, references are transferred. Some languages, like 
Objective-C [Cox86] and Eiffel [Mey87], in addition have some other built-in data 
types, like integers and characters, that can be manipulated by the objects. These 
languages are sometimes called hybrid object-oriented languages. By contrast, in pure 
object-oriented languages, like Smalltalk-SO [GR83] and POOL, every data item is 
represented by (a reference to) an object. In these languages, even very simple things 
like integers are conceptually modelled as objects. For example the addition 3+4 is 
performed by sending to the object 3 a message mentioning the method add and having 
( a reference to) the object 4 as a parameter. In response to this message, the object 3 
somehow knows how to add itself to the parameter object and it returns the result, 
a reference to the object 7, to the sender of this message. Of course, this is just 



the conceptual view: in an actual implementation some optimizations will take place 
so that these operations can be performed much more efficiently using the hardware 
facilities for integer addition. 

2.2 A simple example 

Window 

50 100 150 200 

Figure 3: A few objects 

Let us illustrate the concepts mentioned above by means of an example. Figure 3 shows 
a few objects in a certain state during the execution of a program. We see an instance 
of the class Window, which has three variables, contents, position, and size. The 
variable contents refers to an unspecified other object (drawn as a "black box"). The 
variables position and size each refer to an object of the class Vector. Instances of 
the class Vector have two variables, x and y. Both x and y refer to integers, which 
are also objects, instances of the class Integer. Integers are drawn as small "black" 
boxes. Note that these small black boxes do not represent objects in which integers 
are stored. Rather, they themselves are the integers. This is also illustrated by the 
fact that whenever two different variables, possibly in different objects, have the same 
integer value (e.g., 50) then they refer to the same integer object, instead of storing 
each a separate copy of the integer or referring to different objects that store the same 
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integer. 
In this section we shall concentrate on the class Window. The following piece of 

POOL2 code sketches how it could be described. 

CLASS Window 

VAR contents Object 
position, size Vector 

METHOD move (to : Vector) Window 
BEGIN 

position := to; 
display_contents O ; %% a method call 
RESULT SELF 

END move 

METHOD display_contents () 
%% only for internal use! 
BEGIN 

Window 

%% actual text not relevant here 
RESULT SELF 

END display_contents 

METHOD where() : Vector 
BEGIN 

RESULT position 
END where 

ROUTINE create (cont 
TEMP w : Window 
BEGIN 

Object, pos, siz Vector) 

w :=Window.new();%% the standard routine new 
w ! init (cont, pos, siz); 
RESULT w 

END create 

Window 

METHOD init (cont : Object, pos, siz Vector) Window 
%% for internal use only! 
BEGIN 

contents := cont; 
position := pos; 
size := siz; 
display_contents (); 
RESULT SELF 

END init 
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END Window 

A little explanation is appropriate here. First the variables are declared, each with its 
type. A variable may only refer to instances of the class that is indicated by the type of 
this variable. Then the methods and routines are defined. In the method move another 
method, display_contents, is called directly (without sending a message). In some 
other object-oriented languages this is done by sending a message to the expression 
SELF, which always indicates the object executing this expression. 

We see that for every access to the internal variables of an object, a method is 
needed: the method where simply reads the value of the variable position, whereas 
the method move essentially assigns a new value to this variable. In the latter case the 
method also ensures that the internal consistency is maintained, which here means that 
the window is actually displayed at the point indicated by the variable position. This 
illustrates how methods can be used to provide the outside world with a controlled 
access to the internal variables of an object. 

Note that methods and routines can have temporary variables, which only exist 
during the invocation of the method/routine. To distinguish them from the variables 
that exist from the object's creation onward, the latter are also called instance variables. 
Within a method or routine, the parameters can also occur as expressions, just like 
the temporary and instance variables, but parameters are not allowed as the left-hand 
side of an assignment. 

This example also illustrates the typical use of routines for the creation and initial-
ization of new objects. The routine create takes care of this. The creation of a new 
object is done by calling the routine new, which is automatically provided for the class 
Window by the language. Then the routine create immediately sends an initializing 
message to the newly created object. In our example this is indicated by a sc~called 
send statement: 

w ! init (cont, pos, siz) 

which sends a message to the object referred to by the variable w, specifying the method 
ini t and as parameters the values of the expressions cont, pos, and siz. In response 
to this message, the object initializes its variables with the information contained in 
these parameters and brings itself into a consistent state (by executing the method 
display_contents). Only then the routine create returns the new object to its caller. 
(In fact, the language POOL2 provides a more convenient notation to make sure that 
newly created objects are properly initialized. We have not used this here in order to 
illustrate clearly the basic principles.) 

Let us finally give a small example of code that uses this class Window. This code 
could appear, for instance, in the definition of another class. We assume that w is a 
variable of type Window and that v, vl, and v2 are variables of type Vector that have 
already been initialized. Finally something should refer to an arbitrary object that 
can be displayed in our window. In these circumstances, the following piece of code 
creates a new window, moves it around and asks its new position: 



w := Window.create (something, v1, v2); 
w ! move (v); 
vl := w ! where() 
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Note that to the users of the class Window we would like to grant only the routine 
create and the methods move and where, and to hide the routine new and the methods 
init and display_contents. In POOL, this is made possible by the unit mechanism, 
explained in section 3.3. 

2.3 Relationship with modules and abstract data types 
One may argue that object-oriented programming as introduced above is just a formu-
lation of well-known principles in new terminology: One can compare an object with 
a record and sending a message with a procedure call (in fact, this comes very close 
to the way in which many object-oriented languages are implemented). For structur-
ing software there are already concepts like modules and_ abstract data types. Let 
us therefore first look at the relationship between modules, abstract data types, and 
objects. 

First we consider the notion of modules, as it appears in, e.g., Modula-2 [Wir82] and 
Ada [ANS83] (where the name package is used). Such a module is nothing more than 
a collection of declarations of data types, variables, procedures, etc., provided with 
an interface that specifies which of these declarations can be used outside the module. 
The programmer has a large amount of freedom in choosing what to put in one module 
and where to place the boundaries between modules. It is intended that the grouping 
of declarations into modules is a meaningful one [Mey82], but the language does not 
enforce this in any way. It only enforces that the interfaces, once made explicit, are 
observed. 

In programming with abstract data types, as exemplified by the notions of 'cluster' 
in CLU [LAB*81] and 'form' in Alphard [Sha81], there is a clear notion of what is 
contained in a "module", a data type definition, and what i~ is about: Such a definition 
should describe one data type, its internal representation and the operations that can 
be performed on its instances. The interface with the outside world consists of the 
names of those operations that are to be available outside the data type definition, 
together with some specification of their behaviour (which is mostly limited to the 
types of the parameters and results). The internal representation is not accessible from 
outside the data type definition. With respect to modular programming, abstract data 
types are much more restrictive in the choice of the boundaries between program units, 
but on the other hand they offer a much clearer conceptual view of the meaning of 
these units. 

Note that both modules and abstract rlata types only offer the guarantee that 
the facilities defined in a program unit are used correctly (that the interfaces are 
observed) in a statically typed language (a language where for every expression it is 
possible to determine the type of the object it denotes from the program text alone, 
see section 5.2). In other languages, the use of modules and abstract data types is not 
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completely useless, because it can give a clearer structure to the program, but it does 
not offer such a high degree of security as in statically typed languages. 

Object-oriented programming is even more restrictive than abstract data types 
about the allowed constructs in a class definition. In the definition of an abstract data 
type A, the operations performed on the type ca.n access the internal details of all their 
arguments tha.t a.re of type A, and there may be more than one of these. In object-
oriented programming, however, a method can only access the variables of the object 
it is associated with {the destination of the corresponding message). So the internal 
details of only one object at a time can be accessed. 

Let us illustrate this with an example. Below is the definition of an abstract data 
type of complex numbers with addition as its only operation (we use an imaginary 
syntax): 

TYPE Complex 
VAR re, im: Float 

OP add (x, y : Complex) : Complex 
TEMP z : Complex 
BEGIN z : = Complex. new O ; 

z.re := x.re + y.re; 
z.im := x.im + y.im; 
RESULT z 

END add 

We see that the code of the operation add has access to the re and im variables of 
both its arguments plus the new object that is to be the result. The difference will be 
clear with the following corresponding class definition in an object-oriented style: 

CLASS Complex 
VAR re, im: Float 

METHOD add (y: Complex) : Complex 
1% the first operand is the destination of the message 
TEMP z : Complex 
BEGIN z Complex. new O ; 

z ! put_re (re+ y get_re ()); 
z ! put_im (im + y ! get_im ()); 
RESULT z 

END add 

METHOD put_re (new_re 
BEGIN re := new_re; 

RESULT SELF' 
END put._re 

METHOD. get_H 0 Float 

Float) Complex 



BEGIN RESULT re 
END get_re 

METHOD put_im (new_im Float) 
BEGIN im := new_im; 

RESULT SELF 
END put_im 

METHOD get_im () 
BEGIN RESULT im 
END get_im 

Float 

15 

Complex 

Here the code of the method add only has direct access to the variables re and im of 
its destination object. Messages must be sent to obtain the real and imaginary part of 
the second operand y and to fill the variables of the resulting object z. 

One can express this difference between modules and abst.ract data types on the one 
hand and object-oriented programming on the other hand by saying that with modules 
and abstract data types, protection takes place at a syntactic level ( each module is 
protected against the other modules), whereas with object-oriented programming the 
protection is at a semantic level (each object is protected against the other objects). 
This results in a finer granularity, because different object are protected against each 
other even if they are described by the same class definition. 

2.4 Impact on software development 
The most important contribution of object-oriented programming in the direction of 
better software development methods stems from the fact that it is a refinement of 
programming with abstract data types: It encourages the grouping together of all the 
information pertinent to a certain kind of entities and it enforces the encapsulation of 
this information according to an explicit interface with the outside world. For the user 
of a certain class, the set of available methods and routines, together with a description 
of their behaviour (including at least the types of the parameters and results), is all 
that is relevant. The inside of the objects, the variables and the code of methods and 
routines, is completely inaccessible to him. 

Two important quality aspects of software are addressed by this technique: The 
first one is adaptability: If a piece of software must be modified (a frequently occurring 
phenomenon), it is very often the case that many of the relevant pieces of code are 
inside one class definition instead of spread out over the whole program. Moreover, if 
the interface of such a class is unchanged or only extended (new methods are added, 
but the old ones retain their functionality), it is clear that the rest of the program 
will not be affected by the change. Another aspect is reusability: A class that is well-
designed and validated by testing or verification can be used over and over again in 
different programs. In order to be able to use a class, one need only consider the 
external interface; the internal details are irrelevant. 

It is true that modules already provide the possibility of encapsulating pieces of 
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software. However, they do not give guidelines about which definition should be placed 
together in a module. By choosing a wrong subdivision of a system into modules, it 
is very well possible to arrive at a collection of modules that not easily adaptable or 
reusable. The extra value of abstract data types and object-oriented programming is 
that in addition these techniques give an idea about what belongs in one "module": A 
class definition describes one class of entities, together with all the operations that can 
be performed on them. It has turned out in practice that this indeed leads to a better 
system structure. 

Object-oriented programming also leads to a different way of designing software. 
The common technique of top-down functional design starts from the required end-to-
end functionality of a complete program and divides this iteratively into subfunctions 
until basic language primitives are obtained. The resulting software is not very adapt-
able to changing requirements, because in practice the changes mostly pertain exactly 
to this end-to-end functionality. Moreover it is very unlikely that the subfunctions into 
which the program is divided coincide precisely with subfunctions in another program, 
which would allow reuse of software, because these subfunctions are obtained in an 
ad hoc way for each program separately. By contrast, object-oriented design initially 
focuses on the basic entities (objects) manipulated by the program and it grows to-
wards the required end-to-end functionality in a rather bottom-up way. The resulting 
software is often easier to adapt to changing circumstances, because these basic entities 
are not very likely to change. Moreover, this way of designing software leads more often 
to meaningful software components that can be re-used. (A more extensive discussion 
of these issues can be found in [Mey88].) 

In a strongly typed, sequential environment the extra protection offered by object-
oriented programming when compared with abstract data types does not seem very 
important. Indeed, it may even be a nuisance, as in the above example about complex 
numbers. One of the reasons nevertheless to choose an object-oriented language in this 
situation might be that good object-oriented languages are available [Mey87,Str86], 
whereas languages that directly support abstract data types are not so widely available. 

However, as soon as we leave this safe environment, the extra protection becomes 
really useful. As an example we mention dynamically typed languages, i.e., languages 
in which every data item has a well-defined type but where it is in general not possible 
to determine this type from the program text only. A well-known example is Lisp 
[MAE*80,Ste84]. This kind of languages are often used for rapid prototyping, a tech-
nique where a "quick and dirty" preliminary version of a program is produced in order 
to experiment with certain aspects, in particular the user interface. Since the resulting 
prototype program will not be used for production purposes (it is to be hoped!), relia-
bility is not such an important issue, but flexibility is important, because a prototype 
program must be changed often and quickly. Therefore the use of a dynamically typed 
language is justified. 

Some of the problems with programming in such a language are that it is in general 
not very well possible to make the structure of the data explicit (everything is coded 
in lists) and that errors are detected too late and at too low a level (a common error 
message in Lisp says that you have tried to extract the first element of an empty 
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list). Object-oriented programming can help here: A class describes the organization 
of a certain kind of data very clearly: it gives the internal representation and the 
available operations. Furthermore the object-against-object protection mechanism, 
unlike the type-against-type protection of abstract data types, also functions in a 
dynamically typed situation. Therefore errors can be caught earlier: the most common 
error message in a dynamically typed object-oriented language is that a message has 
been sent to an object that does not have an appropriate method, which occurs as soon 
as a data entity is being used in a wrong way. 

Object-oriented programming in dynamically typed languages does not stand in 
the way of flexibility, but it cari help in making the structure of a system explicit. 
This is probably an important reason why object-oriented languages like Smalltalk-
80 [GR83] and object-oriented extensions of Lisp [WM80,BDG*87] are so popular for 
rapid prototyping. Another reason is the support for reusability: If a prototype must 
be made from scratch, the amount of work this costs can be prohibitive. If however 
one can make use of a good collection of well-organized software for recurring tasks ( for 
example, handling windows and menus on a bit-mapped <lisplay) then sophisticated 
systems can be constructed very quickly because one only has to take care of the 
essentials. 

Another area in which an object-oriented approach has proved to be valuable is 
operating systems [Jon78,MT86,WLH81]. Here, again, it is impossible to check stati-
cally whether certain operations are permitted and the object-oriented approach gives 
a good model along which the dynamic checks can be organized. In these systems, 
the object-oriented principles are often complemented by using capabilities instead of 
just object references. Such a capability not only indicates the identity of an object, 
but it also explicitly determines the set of operations that may be performed on the 
object by the holder of the capability. This set may be smaller that the set of all the 
operations that the object itself admits. It must be admitted that the techniques used 
in these kinds of operating systems are often quite expensive, so that objects should be 
fairly large and message should not be sent too often in order to maintain a reasonable 
performance. Often traditional mechanisms are used to describe the actions of the 
system on a lower level. 

Apart from dynamically typed systems, also parallel programming constitutes an 
area where the more fine-grained protection of object-oriented programming presents 
a clear advantage above abstract data types. This is the subject of section 3. Further-
more, even in statically typed systems, there is a structuring mechanism, inheritance, 
which can be used with object-oriented programming but not in general with abstract 
data types. This mechanism is discussed in detail in section 5.1. 
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3 Parallelism 

3.1 Integrating parallelism in an object-oriented language 
Despite the terminology of "message passing", most existing object-oriented languages 
are sequential in nature. This can be explained by the fact that they observe the 
following restrictions: 

1. Execution starts with exactly one object being active. 

2. Whenever an object sends a message, it does not do anything before the result 
of that message has arrived. 

3. An object is only active when it is executing a method in response to an incoming 
message. 

Under these conditions we can see that at any moment there is exactly one active 
object, although control is transferred very often from one object to another. 

Now one can think of several ways to introduce parallelism to object-oriented lan-
guages. One possibility is to add processes as an orthogonal concept to the language. 
In some sense this can be seen as eliminating restriction 1. Several processes can be 
active at the same time, each one executing an object-oriented program in the way de-
scribed in section 2.1. These processes act on the same collection of objects; it is even 
possible that they are executing the same method in the same object at the same time. 
This way of dealing with parallelism has been adopted by some languages that were 
initially meant to be purely sequential, such as Smalltalk-SO [GR83] and Trellis/Owl 
[SCB*86,MK87]. 

While this approach seems appealing theoretically, it is not so attractive in practice. 
The point is that it does not at all solve the problems associated with parallelism (we 
shall come back to this point later). There are still extra facilities needed for synchro-
nization and mutual exclusion. To that end, the above languages provide some built-in 
classes, for example, semaphores. Even then, the facilities for parallel programming 
remain rather primitive. 

The second approach can be clearly described as relaxing restriction 2 above: In-
stead of letting an object wait for the result after sending a message, one allows the 
sender to go on immediately with its own activities. This is called asynchronous com-
munication. In this way the sender can execute in parallel with the receiver of the 
message. It is possible to obtain a large degree of parallelism after a number of mes-
sages have been sent. This scheme has been adopted most notably by the family of 
actor languages [Hew77,Lie81,The83,Agh86] but also in [Lan82]. 

A quite different scheme can be obtained by relaxing the last restriction. Now an 
object does not always wait quietly until it receives a message, but has an activity of its 
own, which we shall call its body. Execution of the body is started as soon as the object 
is created, and it takes place in parallel with the other objects in the system. At certain 
explicitly indicated points the body can be interrupted in order to answer a message. 
This takes place in the form of a rendez-vous: the sender and the receiver synchronize 
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(the one that is first willing to. communicate waits until the other is ready, too), the 
parameters are passed to the receiver's method, which is then executed, and finally the 
result is passed back to the sender (not necessarily at the end of the method execution), 
after which both objects again pursue their own computations independently. This is 
called synchronous communication. In this approach, too, a large degree of parallelism 
can be obtained, by creating a sufficient number of objects whose bodies can execute 
in parallel. The languages from the POOL family use bodies as their main mechanism 
to describe parallelism. 

3.2 Comparing different approaches 
Let us first compare the above approaches with respect to the criterion of how they help 
to solve the problems of parallel programming. The key to parallel programming is 
handling the nondeterminism that results from the unknown relative execution speed 
of the processes: This nondeterminism should be reduced as much as possible, but 
a certain amount of it is necessary to make effective use of the parallelism. Now 
the degree of nondeterminism is increasing very quickly not only with the number of 
processes, but also with the number of atomic actions in each process, or otherwise 
stated, with the number of places in each process where it may interact with other 
processes1 . 

Now the disadvantages of the first approach (processes as orthogonal concepts) 
become very clear: In this approach, a process must expect interaction (perhaps we 
should call it interference here) from other processes at every point of its execution. 
Therefore the number of different execution sequences of which the programmer has 
to take care is very large. The extra mechanisms [MK87] added in order to restrict 
this nondeterminism, for example semaphores, require a disciplined use, which is not 
enforced by the language. Therefore it is clear that this approach is not suitable for 
extensive parallel programming. 

In fact this issue also plays a role in the traditional dichotomy in parallel program-
ming between shared variables and message passing (see also [AS83]). How cumber-
some it is to work with shared variables, when compared with message passing, can 
also be seen by considering the formalisms for verifying such programs: The classical 
system to formally verify shared-variable programs [OG76] requires that every asser-
tion in any of the processes is left invariant by every action in every other process. For 
n processes having each m actions with m + 1 assertions around them, this requires 
n(m + l)mn-l checks. Reducing n would reduce the degree of parallelism. Reducing 
m could be done by increasing the size of atomic actions, and this is precisely what 
happens with message passing. Moreover, because the communication partner is often 
indicated explicitly, the checks can be restricted to the set of pairs of corresponding 
communication statements, which in general leads to a much smaller number of checks. 
This has been formalized in [AFR80]. 

1 For example, if we have m processes that do not influence each other's behaviour, and the ith 
process has n; atomic actions, then the number of possible interleavings is equal to the multinomial 
coefficient (n;n1 1 ••• ,nm) = n!/(n1! ·· •nm!) where n = n1 +···+nm, 
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Of course, the choice between shared variables and message passing is also influ-
ence by the underlying machine architecture. In machines with a shared memory 
between processors (or sequential machines, where the parallelism is virtual) imple-
menting shared variables is trivial, while message passing requires some work. On 
the other hand, in machines without a shared memory, where the processors exchange 
information over a communication network, message passing can be mapped directly 
to the architecture. In these machines it is possible, but very cumbersome and ineffi-
cient to implement shared variables. This seems to indicate that even if the machine 
architecture is not fixed in advanced, it is best to choose message passing instead of 
shared variables. (DOOM [Odi87], the machine for which POOL2 was developed, does 
not have shared memory between processors; they communicate via a packet-switching 
network.) 

All these arguments imply that for integrating parallelism in object-oriented lan-
guages the two other approaches (asynchronous communication or bodies) are superior: 
Here the concepts of object and process are effectively unified into one concept, so that 
the terms 'object' and 'process' have become synonymous. Processes now only interact 
at clearly defined points: only where messages are sent or answered. Moreover, the 
possible ways of interaction are limited: only parameters or results may be passed. 
The variables of each object are protected from access by other objects. If a certain 
piece of data must be shared among different processes, it can be put in an object of 
its own. The way in which it can be accessed is then clearly defined by the available 
methods (and possibly its own body). The language supports to a large degree the 
discipline necessary in using these mechanisms. Note that inside an object everything 
happens sequentially. This sequential, deterministic inside is protected from the paral-
lel, nondeterministic outside world by the message interface. Allowing multiple parallel 
processes to be active inside the same object (as is done, e.g., in Emerald [BHJ*87]) 
would spoil this comfortable situation. 

The choice between asynchronous message passing and the use of bodies for achieving 
parallelism is much less obvious than the choice against the first approach. Asyn-
chronous communication leads to more flexibility, because the sender does not need 
to synchronize with the receiver in order to communicate. In this way it is easier in 
certain cases to keep the available processors in a system busy. On the other hand, 
asynchronous communication has certain problems associated with it: 

For the programmer it is important to realize that the lack of synchronization with 
asynchronous communication not only increases the system's flexibility in exploiting its 
resources, but it also increases the degree of nondeterminism: there are more possible 
executions of such a program than for synchronous communication, and the program-
mer must ensure that all of these lead to a correct result. Furthermore, the set of 
messages that have been sent but not yet received constitutes a component of the 
system's state that does not occur explicitly in the program but is nevertheless very 
important. (Most formal techniques for asynchronous communication, e.g. [BKT84] 
explicitly represent these travelling messages; the notable exception is temporal logic 
[KVR83].) 

The most important problem for the implementation is the buffering of messages 
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that have been sent but not yet received. In principle, it is not admissible just to 
reserve a fixed buffer space and to block a sender if it tries to send more messages than 
fit in this buffer, because it would lead to deadlock in programs that are semantically 
correct. For example, if the sender transmits n messages labelled a and then a message 
labelled b whereas the receiver first wants to get a b message before answering the 
a messages, then a deadlock will occur if n is larger than the number of messages that 
fits in the buffer. On the other hand, in most cases the communication pattern is 
simpler that this (the receiver does not require such a peculiar order of messages) and 
in these circumstances one would like to slow down the sender when it gets too far 
ahead of the receiver. It does not seem possible to solve this problem in general. 

Another issue is whether to guarantee that messages travelling from the same sender 
to the same receiver should arrive in the order in which they were sent. This can be 
ensured by either using an end-to-end protocol, or by employing a fixed routing between 
every pair of nodes in a network and making sure that messages are kept in order at 
each stage of their transmission. In both cases this decreases the performance of the 
communication system and this penalty would have to be paid even by programs that 
do not need order preservation. 

Let us remark here that it is easy to implement asynchronous communication in 
a language that has only bodies and synchronous communication: For every message 
that is to be sent asyn~hronously, a buffer object is created. The message is sent 
(synchronously) to the buffer and later the buffer will send it (again synchronously) 
to the destination. The other way around, implementing synchronous communication 
with asynchronous communication is also possible, but in certain systems, including 
actor languages, this is quite cumbersome. The problem is here that an actor cannot 
selectively wait for messages of a certain kind. Therefore, after a message has been 
sent and the sender is waiting for the result, it must accept every message that arrives 
and determine whether it is indeed the expected answer. If not, the message must be 
stored for later use, or the actor can send it to itself (which would result in some kind 
of busy waiting). 

In POOL we have chosen to use bodies and synchronous communication as the 
basic mechanism to express parallelism. In most cases, this turns out to be the most 
natural way to program an application. If the programmer does not explicitly indicate 
a body, a default body is taken, which continuously answers one message after the 
other in the order in which they arrive. A method may return its result to the sender 
of the message before it actually terminates. In this way parallelism can arise with 
synchronous communication and the default body (this is illustrated by the example 
in section 3.3). However, in some case an explicit body is needed because it allows to 
answer messages selectively, indicating the specific kind of messages that are welcome. 
For example, a buffer might wish to answer only insert messages while it is empty, only 
extract messages if it is full, and both kinds of messages otherwise. In other cases, the 
use of a body is not strictly necessary but just more natural, especially in objects that 
are really active and not just waiting for a request to arrive. 

Receiving a message is done in an answer statement, which contains a list of method 
names. This indicates that exactly one message is to be answered, in principle the first 



22 

message that mentions a method occurring in the list. Note that the sender is not 
indicated (whereas in sending a message the destination is given explicitly). This 
gives the answering object to react flexibly on the supply of messages, taking the one 
that comes first without having to commit itself to a specific communication partner. 
If such a commitment is nevertheless desired, it is often possible to revert the roles 
of sender and receiver, because synchronous communication transmits information in 
both directions anyway. 

POOL2 also provides a conditional answer statement, that specifies that a message 
should be answered if a suitable one has already arrived. If no such message is available 
at the moment, the conditional answer statement will not wait for one but terminate 
immediately. Again this contributes to an object's flexibility in reacting on the other 
objects. It would be possible to increase this flexibility even more by allowing · an 
object to indicate a collection of send and receive actions with the intention that one 
of these actions is performed, preferably the first that can take place. This could be 
expressed by a generalization of an Ada-like select statement [FY85]. A mechanism to 
implement this in a POOL context has been developed [Wou88]. Whether this will be 
incorporated in a future version of the languages will depend on actual performance 
figures. 

In POOL2, asynchronous communication is provided in addition to synchronous 
communication. Conceptually it is considered as an abbreviation for the mechanism 
that creates a buffer object for each asynchronous message. This also means that 
preservation of message ordering is not guaranteed, because the buffer objects may 
proceed with unknown relative speed. Of course, an implementation is encouraged to 
use more efficient mechanisms, as long as they have the same semantics. In principle, 
the programmer is responsible to ensure that a sender of asynchronous messages does 
not get too far ahead of the receiver. 

If we compare POOL with traditional parallel programming languages [AS83] we can 
easily classify it with respect to criteria like the following: 

1. Shared variables or message passing? (POOL: message passing.) 

2. Value passing or remote procedure call? (POOL: remote procedure call.) 

3. Synchronous or asynchronous message passing? (POOL2: both.) 

4. Channels or direct naming of communication partner? (POOL: direct naming of 
receiver by sender, no naming of sender by receiver.) 

5. Static or dynamic process structure? (POOL: dynamic.) 

Most of these choices follow directly from the wish to change as little as possible in 
the mechanisms as we know them from sequential object-oriented programming. The 
others have been discussed above. The most obvious way in which POOL distinguishes 
itself from traditional parallel programming languages is by unifying data structures 
and processes in a single concept of object. This gives rise to a typical style of pro-
gramming, which is illustrated by the example in the next section. 
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Finally, let us make some remarks on another issue that is always important in 
concurrent systems: fairness. In POOL there are two requirements on the execution 
of a program that ensure a certain kind of fairness: The first is the fact that the 
execution "speed" of any object is arbitrary, but positive. This means that whenever 
an object can proceed with its execution without having to wait for a message or a 
message result, it will eventually do so. Clearly this is a very natural and necessary 
requirement to be imposed on the implementation of a concurrent language. Requiring 
more precise guarantees about the relative execution speeds of different objects would 
necessitate a way of measuring those speeds, and even in languages specifically meant 
for real-time applications (for example Ada [ANS83]) those guarantees are considered 
too involved to be included in a language definition. 

The second requirement on the execution of a POOL program is the condition 
that all messages sent to a certain object will be stored there in one queue in the 
order in which they arrive. When that object executes an answer statement, the first 
appropriate message in the queue will be answered (here 'appropriate' means that the 
message mentions a method occurring in the answer statement). This condition ensures 
that it is impossible that an object is sent a message and it executes infinitely many 
answer statements in which the message could have been answered, without answering 
this one message. In fact, it is not difficult to see that the latter condition (a message 
will eventually be answered) is exactly equivalent to the first one (messages are stored 
in a queue), when one takes the arbitrary but positive speed of the sending object into 
account. 

Note the contrast here with the situation in, e.g., Ada. In Ada, each entry (in this 
situation corresponding with a method name in POOL) has its own queue, and fairness 
is not guaranteed between different queues. Then it is possible that infinitely many 
messages with one name are answered without answering a message with another name, 
even when these messages are answered in a select statement where there is always 
another open branch for answering the second message. We consider this situation 
definitely undesirable. In POOL, it may be a little more difficult to implement the 
de-queuing operation efficiently, but the mechanism is much more convenient for the 
programmer. 

Of course, fairness is only a worst-case guarantee from the language, in a situation 
where better, quantitative guarantees cannot be given. In practice, it is intended that 
an object that does not have to wait for another one proceeds as quickly as possible, 
that messages travel as fast as possible from the sender to the receiver, and that they 
are answered in an order that approximates as well as possible the first-come-first-
serve principle. This is also the reason why message-answering fairness in the language 
definition is formulated in terms of queues instead of infinite neglection. 

3.3 An example: parallel symbol tables 
In this section we present a small programming example that shows a typical way of 
programming in POOL. In this example we implement a parallel version of a symbol 
table, a data structure that can associate keys with other pieces of information. We 
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also illustrate the use of a few other elements of the language POOL2, units and generic 
classes. 

Units are the largest pieces of a POOL2 program. They come in two kinds: imple-
mentation units and specification units. An implementation unit contains a collection 
of class definitions, giving the full details of each class. The corresponding specification 
unit indicates the interface it other units: it lists the classes that can be used outside 
of the· current unit and for each of these it gives the headers of the available methods 
and routines. Another unit can import these facilities by mentioning the first unit in 
its so-called use list. 

Below is a specification unit that describes the class ST, each instance of which 
represents a symbol table. 
SPEC UNIT Symbol_Table 

CLASS ST (Info) 
ll Each i~stance is a symbol table containing 
ll pairs of a string and an instance of the class Info. 

ROUTINE new() : ST (Info) 
U Delivers a new, empty symbol table 

METHOD insert (key : String, i: Info) : ST (Info) 
U Inserts a new pair into the destination symbol table. 
%1 key must not be NIL. 
%% If the key is already present, the old Info ia overwritten. 

ROUTINE search (st : ST (Info), key: String) : Info 
U Retrieves the info stored with this key. 
U If this key is not present in the symbol table, NIL ia returned. 

END ST 
The class ST is generic, that is, it has a class parameter Info, for which an arbitrary 

class can be filled in when the class ST is used. This allows us to define the class in such 
a general way that it can be used in many different circumstances without modifying 
the text. (It would also be possible to make the type of the key a parameter of the 
class definition. However, in the implementation unit we shall need the fact that keys 
are ordered. In section 4.1 it is explained how the ordering on keys can be made known 
to the symbol tables, such that the type of the keys can indeed become a parameter 
of the class ST,) 

The class ST provides its users with two routines and a method. The routine new 
creates and returns a new symbol table object, which is empty initially. The method 
insert adds a new piece of information to the symbol table, consisting of a key, which 
is an object of type String, and an instanee of the class Info. Finally we have the 
routine search, which tries to lo.ok up the Infn associated with a given key in a symbol 
table. We shall see below why aear.ch is a routine instead ofa method. 



Now here is the first part of the corresponding implementation unit: 

IMPL UNIT Symbol_Table 

CLASS ST (Info) 

VAR my_key 
my_info 
left 
right 

String 
Info 
ST (Info) 
ST (Info) 

%% key stored here 
%% Info stored here 
%% all pairs with key< my_key 
%% all pairs with key> my_key 

%% new is a standard routine 

METHOD insert (key 
BEGIN 

String, i : Info) : ST (Info) 

RESULT SELF; %% rendez-vous ends here 
IF my_key == NIL %% I am empty 
THEN my_key := key; my_info := i; 

left :=new(); right :=new() 
ELSIF key= my_key %% the key is stored here 
THEN my_info := i 
ELSIF key< my_key 
THEN left insert (key, i) 
ELSE right ! insert (key, i) 
FI 

END insert 
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Now we see that a symbol table is internally organized as a tree. Each node in 
the tree can contain a single key and its associated Info. Furthermore it contains 
references to the left and right subtrees, which contain the other symbol table entries. 
The routine new need not be described explicitly. A routine with this name is supplied 
automatically by the language. It creates and delivers a new object of the associated 
class, with all the variables initialized to NIL (a reference to no object). In our example, 
this is exactly what an empty symbol table looks like. 

The method insert returns its result to the sender of the message right at the 
beginning. In this way, the sender and the receiver are synchronized, but the sender 
need not wait until the execution of the method is completed. Instead, the rest of 
the method can execute in parallel with the sender. The actual value returned by 
the method is not important. Therefore the convention is followed that the object 
executing the method returns a reference to itself. This is indicated by the expression 
SELF, which denotes the object that is executing the expression. 

After having returned the result, the method insert determines what to do with 
the new piece of information. If the symbol table is empty, the new information is 
stored locally. Otherwise, if the new key happens to be the same as the key already 
stored here, the local Info is simply overwritten. In all other cases, the new key /Info 
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pair is sent to one of the subtrees. In the program text, the operators '=' and '<' are 
a short-hand notation for message sending operations. For example, key < my ...key is 
an abbreviation for the send expression key ! less (my...key), which sends a message 
to the object referred to by key, requesting the execution of the method less with 
parameter my...key. The operator '==', however, is an abbreviation for a call of the 
routine id, which is available for every class. This routine checks whether its two 
parameters refer to the same object. 

One can now ask where the parallelism comes into this example. We have already 
seen that the sender of an insert message does not have to wait until the new infor-
mation is actually stored in the symbol table. The sender can proceed with its own 
activities after having handed over the information to the symbol table, and the symbol 
table will process it in parallel with the sender's activities. The same holds, of course, 
for a symbol table object that inserts a key /Info pair into one of its subtrees; again it 
can proceed with a new request immediately after it has given the pair to the subtree . 
. This means that every node in the tree, in particular the top node, needs only a fixed 
amount of time to process an insertion, independent of the actual size of the symbol 
table. By contrast, in a sequential system such an insertion would cost an amount of 
time that in the best case increases logarithmically with the size of the symbol table. 
To put it otherwise, our parallel symbol table is able to process insertion requests 
with a constant throughput, whereas in a corresponding sequential symbol table, the 
throughput rate would decrease as the symbol tables grows. 

We would like to maintain this advantage even when look-up requests are sent to 
the symbol table. However, here it is not possible just to hand over some information 
to the symbol table, but a reply is desired. Determining this reply will cost an amount 
of time that increases with the size of the symbol table. So an individual user of the 
symbol table will inevitably have to wait longer for a reply to his look-up request. 
What we can do, however, is to maintain the constant throughput rate of the symbol 
table when there are several, parallel users. This is done as follows: A look-up request 
is sent to the top node of the tree. This top node returns a result, which just indicates 
that the request is received. The actual reply will be sent later. If the top node does 
not store the requested information itself, it delegates the request to one of its subtrees, 
and so on. When finally the information is found, it is sent directly to the sender of 
the initial request, without passing via the higher nodes in the tree. In this way we 
can retain the constant throughput property of the symbol table. 

There is one problem here: The reply must be sent to the object that sent the 
initial look-up request to the top node, and it cannot be the result of this request 
message. Therefore it must be sent in a separate message from some node in the tree 
to the requesting object. However, we want to make our symbol table available to an 
object of any arbitrary class, and we cannot make sure that such an object has an 
appropriate method to handle the message. To solve this, we introduce a new class, 
called Searcher (this class is hidden from the users of the unit SymboLTable). The 
instances of the class Searcher serve as intermediaries to help other objects in doing 
look-ups in symbol tables. For each look-up request, a dedicated Searcher object is 
created, it is sent a message (with method go) specifying the symbol table and the key 
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of the requested information. The method go in the Searcher object sends a request 
to the symbol table and starts waiting for the reply. When this reply has arrived, the 
requested information can be passed back to the requesting object as a result of the 
method go. 

Here is the code: 

ROUTINE search (st : ST (Info), key String) Info 
TEMP s : Searcher (Info) 
BEGIN 

s := Searcher(Info).new (); 
RESULT s ! go (st, key) 

END search 

METHOD look_up (key : String, client : Searcher (Info)) 
%% Not in SPEC UNIT; used by class Searcher 
BEGIN 

RESULT SELF; %% rendez-vous ends here 
IF my_key == NIL 
THEN client !! reply (NIL) 
ELSIF key= my_key 
THEN client !! reply (my_info) 
ELSIF key< my_key 
THEN left look_up (key. client) 
ELSE right ! look_up (key, client) 
FI 

END look_up 

%% Class ST needs no explicit body: 
%% Incoming messages are anwered in order of arrival 
%% by the default body. 

END ST 

CLASS Searcher (Info) %% Note: not in SPEC UNIT! 

VAR info : Info 

%% new is standard routine 

METHOD go (st : ST (Info), key String) Info 
BEGIN 

st ! look_up (key, SELF); 
ANSWER (reply); %% now the result is in info 
RESULT info 

END go 

ST (Info) 
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METHOD reply (new_info : Info) 
%% invoked asynchronously 
BEGIN info := new_info 
END reply 

BODY ANSWER (go) 
YDOB 
END Searcher 

%% each Searcher is used only once! 

What we see in this example is a programming style that is different from traditional 
parallel programming: We do not have a collection of processes on the one hand, .and 
a collection of data structures on the other hand, such that the processes act on the 
data structure, and where we must ensure that it will not happen that two processes 
are accessing the same data structure at the same time. Instead, the processes and 
data structt..res are closely integrated. One could say that each data structure performs 
the necessary operations on itself. In this way, synchronization and mutual exclusion 
are much easier to handle. In addition, the advantages of sequential object-oriented 
programming (section 2.4) are maintained. 
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4 More details about POOL2 
The language POOL2 is based on the principles explained in sections 2 and 3. Briefly 
summarized, these principles amount to describing a system as a collection of objects, 
each having variables, methods, and a body, where the objects can be created dy-
namically, are grouped in classes, and interact exclusively by sending messages to each 
other. However, POOL2 is not the simplest possible language based on these principles 
(this predicate would be more appropriate for POOL-T [Ame85b] or even better for 
POOL-S [Ame85a], an early language that was never implemented). While such a sim-
ple language has a surprising expressive power, it is nevertheless more convenient for 
a language used for complex and realistic applications to provide some more facilities. 

4.1 Special language elements 
The additional language constructs of POOL2 are all based on the idea of "syntactic 
sugar", a special notation, intended to be more convenient and more natural, for 
something that is already expressible in the language by other means. As an example, in 
section 3.3 we have already seen how operators in expressions can be used to abbreviate 
send expressions. E.g., the expression 3+4 is an abbreviation for 3 ! add(4). POOL2 
takes this idea rather far. For some kinds of syntactic sugar the language definition 
states explicitly into which more primitive form the sugared notation is expanded. 
In this way the programmer can make the new notation available for one of his own 
classes by defining a suitable method for this class. For example, the operator + can 
be used for any class that has a synchronous method add with one parameter. Let us 
call this explicit syntactic sugar. In other cases the actual expansion is hidden from 
the programmer, so that he can only access these features using the special notation 
( implicit syntactic sugar). This applies, for example, to the notions of globals and 
routine objects, which are discussed below. 

The extra facilities provided by POOL2 in addition to the basic primitives of parallel 
object-oriented programming include the following: 

• a lot of explicit syntactic sugar 

• implementation and specification units 

• generic classes 

• asynchronous communication 

• new-parameters 

• global names for objects 

• routines being considered as objects 

• enumeration classes 

• a collection of standard classes and standard units 
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We have already encountered several of these constructs in the previous sections. 
The others are briefly discussed below. A more extensive discussion can be found 
in [Ame88d], where it is also indicated how the functionality of the constructs can be 
obtained using only the basic primitives. 

For the creation and initialization of new objects, POOL2 provides the built-
in routine new, which is automatically included for each programmer-defined class. 
The parameters of this routine can be specified by the programmer. These so-called 
new-parameters are passed to the newly created object, where they remain available 
throughout the lifetime of this object. Before the new object is handed over to the 
caller of the routine new, it first initializes its variables, according to expressions in 
the variable declarations and/or by executing explicit initialization statements. In this 
way, the designer of a class can make sure that all the existing instances of the class 
are properly initialized. Of course, this can also be done by sending every new object 
an initializing message, as was illustrated in section 2.2, but since some form of explicit 
initialization is needed for almost every class, it seems more than justified to introduce 
some more convenient syntax for it. 

In POOL2 it is possible to define a global name to be bound to a specific object. 
Any other object in the system can then refer to this object by this name. Such globals 
are defined in global definitions: 

GLOBAL my_name : String := "Pierre" 
n: Int := (3+4) * (first ! get_number ()) 
first := Big_0bject.new() 

Conceptually, what happens here is that for each global implicitly an object is cre-
ated, which we shall call a global manager. This global manager starts to evaluate the 
expression in the global definition. As soon as this terminates, it stores the resulting 
value, and from that moment on this value is available for any other object in the 
system. If an object tries to determine the value of the global before this is known, the 
object becomes blocked until the global manager has finished evaluating the global. 
This mechanism ensures that even dependencies among globals ( as in the above exam-
ple, where n depends on first) are handled correctly, as long as they remain acyclic; 
otherwise a deadlock occurs. 

The manner in which the execution of a system is initiated is also based on globals: 
A few objects are created by declaring them to be globals. These objects may create 
other ones and so on until the desired degree of parallelism is reached. In the above 
example, the class Big_0bj ect might be defined in such a way that it sets the whole 
system running. 

We have already seen that POOL distinguishes between methods, a kind of procedures 
that are associated with individual objects, and routines, which are in general associ-
ated with a class. Because of the fact that a method can directly access the variables 
of the object it is associated with, it is not possible to consider it as an object itself: 
If a method could be stored in variables, passed around in messages and executed by 
any object that had access to it, the protection of the original object that owned the 
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method could not be guaranteed. (Note that we are talking about the method itself, 
not the program text that defines it.) However, no such restriction applies to routines, 
because these are not associated with individual objects and have no direct access to 
any object's variables. Therefore, POOL2 takes the point of view that routines can be 
considered as objects. That is, they can be stored in variables, passed as parameters 
or results of messages, and even new ones can be created dynamically: In addition to 
the routines associated with a class (we call them class routines), it is possible to write 
routine expressions, which indicate the creation of a new routine object. For example, 
the expression 

ROUTINE (p: Int) 
BEGIN RESULT p ** 
END 

Int 
2 - 3 

creates a routine that represents the function mapping any integer z to z2 - 3. This 
routine will be an instance of the class ROUTINE (Int) : Int. It is even possible to 
pass a kind of new-parameters to such a newly created routine object. For example, 
we can write the expression 

ROUTINE (p: Int) Int 
TEMP i : Int 
BEGIN 

i := P**2 - t; 
IF i < 0 THEN RESULT O ELSE RESULT i 

END 

where t is an integer variable of the object executing this routine expression. At the 
moment this expression is evaluated, the value of t is determined and this is stored 
with the routine object. This value will be the one that is used whenever the routine 
is called, even if the original variable t changes its value. In this way the routine does 
not need and does not have access to the variable t after its creation. 

Such a routine object can be called by any other object that has a reference to it. 
For example, if the variable f is of type ROUTINE (Int) : Int, then the expression 

f(3) + f(6 - f(2)) 

will lead to three calls of the routine object to which f refers. 
Note that the possibility to pass routines as parameters considerably enhances the 

usefulness of generic classes. For example, in section 3.3 we could have made the type 
of the keys into a parameter of the class ST. The desired ordering on these keys could 
be passed as a new-parameter to every symbol table object. The class specification 
would then look like this: 

CLASS ST (Key, Info) 
ROUTINE new (less : ROUTINE (Key, Key) Bool) ST (Key, Info) 

END ST 
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Now a symbol table that stores pairs of integers could be created by the expression 

ST (Int, Int).new (ROUTINE (n, m: Int) : Bool BEGIN RESULT n < m END) 

In addition to powerful mechanisms for defining classes, POOL2 also provides a num-
ber of standard classes [Ame88b]. These are available in every program unit without 
explicit importation via a use list. For standard classes more efficient implementations 
are provided than would have been possible if they were defined by the programmer. 
Moreover, for some of these classes, e.g., Int and String, a special notation is available 
so that the instances can be represented in a program in a natural way. 

The collection of standard classes comprises classes of small, fixed-size entities: 
booleans, characters, integers, and floating point numbers, but also of potentially large 
objects: strings and (multidimensional) arrays. In addition, there are generic standard 
classes for tuples and unions: A tuple contains a fixed number of components, possibly 
of different types, whereas a union contains one object reference out of a fixed number 
of possible types (a tuple can be compared with a fixed record in Pascal [BSl82], a 
union to a variant record). 

All these classes, with the exception of arrays, have been defined in such a way 
that their instances are immutable objects, i.e., once they are created, their contents 
cannot be changed any more. The advantage of this is that an implementation may 
freely make multiple copies of such an object without changing the behaviour of the 
system. In a machine like DOOM, without shared memory, it is much more efficient 
sending a copy of a small object than sending a reference so that the receiver must 
send several more messages to determine the contents of the object. For objects like 
strings or tuples, it is even possible to include a copy in a message that travels from 
one processor to another but to include a reference if the message is local. 

On the other hand, the arrays in POOL2 are even more dynamic than in most other 
programming languages: they can even change their size at run-time. The rationale 
behind this is that the language implementation can do this much cheaper than a 
POOL programmer could (for example, by dealing cleverly with pages in a virtual 
memory system, it can be avoided to copy a complete large array that must grow a 
little more). If these facilities are not used, they do not cost anything extra. 

A number of other facilities, which are not so basic to the language, are included 
in standard units [Ame88c]. The facilities of these units can be imported without the 
programmer having to define them. Currently POOL2 provides standard units for 
doing input/output on files, for communicating with the Unix operating system on a 
host machine, and for controlling the allocation of objects to processors in DOOM. 

The latter brings us to another issue: the mapping of a POOL program to a machine 
like DOOM [Odi87]. This machine consists of a number of processors (called nodes), 
each with its own private memory, which communicate via a message passing network. 
There is a very natural way of implementing POOL on such a machine: every object 
is allocated to a certain node, where its data are stored and its body and methods 
are executed. In general, there are many objects on each node, sharing the processor. 
These objects must be scheduled one after another, so that they cannot really run in 
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parallel. On the other hand, having multiple objects on a node makes it possible for 
the processor to do useful work even if many of these objects are waiting for messages 
or method results. 

At the creation of a new object, the programmer can influence the choice of the node 
by allocation pragmas. These can serve as annotations to calls of the standard routine 
new, and they indicate possible choices for the new object's location. For example, in 
the expression 

C.new (par) (* ALLOC HERE, WITH obj, setl t set2 *) 

it is indicated that the new object is to be allocated preferably on the same node as 
its creator. If that is not possible, the object should be placed at the same node as the 
object in the variable/parameter obj. If even that is not possible, it should be placed 
on a node that is in the intersection of setl and set2, which are variables/parameters 
of type Node..Set, representing sets of nodes. Whenever there are several possibilities 
for the allocation of the new object, the intention is that the least occupied node is 
chosen. 

If a message must be sent between two objects on the same node, this can be han-
dled locally, without involvement of the communication network. Only if a message is 
transmitted between different nodes this network is used. In general, nonlocal com-
munication is more expensive than local communication, because the data must be 
copied several times and larger messages must be split up in packets and reassembled 
again. Note that the same POOL send and answer constructs are used for both local 
and nonlocal communication. 

In DOOM, the communication network has been implemented in such a way that 
the distance between two nodes in the network is not very important for the cost of 
communication between them. Therefore the most important decision in allocating 
objects is whether they should be on the same node or on different nodes. If they are 
on the same node, communication between them is cheap, but they cannot actually run 
in parallel. If they are on different nodes, they can run in parallel, but communication 
is more expensive. A thorough understanding of a program is necessary to make the 
optimal decision. Therefore advice from the programmer is invaluable. Fortunately, in 
most cases this advice can be limited to allocation pragmas of the form HERE, - HERE, 
WITH obj, or - WITH obj. 

The general idea is that allocation decisions are made by the programmer and 
the run-time system together, where the programmer supplies the knowledge of the 
program, and the run-time system the knowledge of the current situation with respect 
to node occupation. 

4.2 Another example program 
We shall illustrate some of the abovementioned language constructs in the following 
example. It implements a parallel version of priority queues. Such a priority queue 
can store a collection of items; when these are retrieved from the queue the one with 
the highest priority is output first. Items with the same priority are treated in a 
first-in-first-out way. Here is the specification unit: 
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SPEC UNIT Prio_Queue 

CLASS PQ (Item) 
%% Instances of this class are priority queues that store 
%% elements of the class Item. 

ROUTINE new (higher : ROUTINE (Item, Item) : Bool) : PQ (Item) 
%% Creates and returns a new, empty priority queue. 
%% The routine higher determines the priority ordering. 
%% If it returns TRUE, the first argument is assumed to 
%% have a higher priority than the second. 

METHOD put (i : Item) : PQ (Item) 
U Stores the item i in the queue; returns SELF. 
%% The argument i should not be NIL. 

METHOD get() : Item 
%% Deletes and returns the item with the highest priority. 
%% This method will not be answered when the queue is empty. 

END PQ 

We see that the class PQ is defined in a generic way and that the priority criterion, 
the routine higher, is passed as a new-parameter to every instance. The corresponding 
implementation unit is somewhat more interesting. The same technique is used as in 
section 3.3: Every PQ object only stores one item and delegates the rest to another 
priority queue. Here is the code: 

IMPL UNIT Prio_Queue 

CLASS PQ (Item) 

NEWPAR (higher: ROUTINE (Item, Item) : Bool) 
%% The routine new, which creates and returns a new, empty priority 
%% queue, is defined automatically with the above parameter list. 

VAR max : Item %% the highest-priority element in the queue 
rest : PQ (Item) %% a PQ that stores all the other elements 
%% Both variables are automatically initialized to NIL. 

%% Invariant: max== NIL <==> queue is empty 
%% max-== NIL==> rest-== NIL 

METHOD put (i : Item) : PQ (Item) 
%% Stores the item i in the queue; returns SELF. 



BEGIN 
RESULT SELF; tt end of rendez-vous: sender can continue 
IF max== NIL tt queue is empty 
THEN max:= i; 

IF rest== NIL 
THEN rest := PQ (Item).new (higher) 
FI 

ELSIF higher(i, max) 
THEN rest ! put (max); 

max:= i 
ELSE rest ! put (i) 
FI 

END put 

METHOD get() : Item 

tt only if i has a higher priority 
tt we replace max by i 

ll Deletes and returns the item with the highest priority. 
ll This method will not be answered if the queue is empty. 
tt Therefore we know that max-== NIL, so rest-== NIL. 
BEGIN 

RESULT max; tt end of rendez-vous: sender can continue 
max:= rest get_largest_or_NIL () 

END get 

METHOD get_largest_or_NIL () : Item 
ll Returns NIL if the queue is empty. Otherwise it deletes 
tt the item with the highest priority and returns it. 
BEGIN 

RESULT max; tt end of rendez-vous: sender can continue 
IF max-== NIL 
THEN max:= rest ! get_largest_or_NIL () 
FI 

END get_largest_or_NIL 

BODY 
DO tt forever 

OD 
YDOB 

END PQ 

IF max== NIL 
THEN ANSWER (put, get_largest_or_NIL) 
ELSE ANSWER (put, get, get_largest_or_NIL) 
FI 

35 
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The class PQ has an explicit body, which makes sure that messages asking for the 
method get are only answered when the queue is not empty. In this way an object that 
asks for a new element from the queue is automatically delayed until such an element is 
actually available. For internal purposes an additional method get_largest_or _NIL 
is needed, which is always answered but returns NIL if the queue is empty. (This 
method might be useful even for users of the class PQ, so it could be mentioned in the 
specification unit, too.) 

The above unit is used by the following program. This will sort pairs of integers 
and strings, which it reads from the standard input file: 

IMPL UNIT Sorting 

USE File_IO Prio_Queue 

GLOBAL root := Sorter.new() 

CLASS Sorter 
%% An instance of this class will read pairs of integers and strings 
o/.% from the standard input file until a negative integer is found. 
Y.% Then it will print the preceding pairs in ascending order of the 
%% integers. Pairs with the same integer will be printed in the order 
%% in which they were input. 

ALIAS Pair= [Int, String] 

VAR compare := ROUTINE (pi, p2 Pair) : Bool 
BEGIN RESULT pi~ 1 < p2 1 
END 

pq := PQ (Pair).new (compare) 
n Int := standard_in ! read_Int () 
s : String 

BODY 
WHILE n >= 0 
DO s := standard_in read_String (); 

pq ! put ([n, s]); 
n := standard_in ! read_Int () 

OD; 

DO U until 
[n, s] := pq 
standard_out 

OD 
YDOB 

deadlock occurs 
get (); 
write_Int (n, 10) 
write_String (s + "\n") 
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END Sorter 

The use list of this unit mentions the above unit Prio_Queue in addition to the 
standard unit File_IO. The system is started by the definition of the global root, 
which is made to refer to a new object of the class Sorter. In the definition of the 
class Sorter first an alias is defined, a synonym for the class name [Int, String], 
which in turn is an abbreviation for Tuple2 (Int, String). Each instance of this 
standard class stores a pair containing an integer and a string. We shall insert this 
type of objects into our priority queue. 

The routine that determines the priority criterion on pairs is defined in the initial-
ization of the variable compare. (It is possible to use this routine expression directly 
as an argument for the routine new below, but this is not so readable.) In this routine; 
the expression pl Cl 1 is a piece of explicit syntactic sugar, which stands for the send 
expression pl ! get_l (), extracting the first component from the tuple pl. 

The standard input and output files are denoted by the globals standard_in and 
standard_out respectively, which are exported by the standard unit File_IO. These 
globals are referring to elements of the classes Read_File and Write_File. More 
instances of these classes can be created by calling the appropriate routines, which 
either create new files or associate POOL objects to existing files. Actual input and 
output can then be performed by sending messages to these objects. 

The expression [n, a] is syntactic sugar for the routine call 

Tuple2 (Int, String).new (n, a) 

which creates a new tuple object with n as the first component and a as the second. 
However, when [n, s] appears at the left-hand side of the assignment, it makes sure 
that the tuple yielded by the right-hand side is analyzed, storing its first component 
in n and the second component in s. 

The operator + for strings denotes concatenation: it delivers a new string containing 
the characters in the first operand followed by the characters in the second operand. 
The string "\n" contains a single character, a line feed. 

To illustrate the function of the program, consider the following sample input: 

1 jumps over 
0 the quick brown fox 
1 the lazy black dog 

-100000 

The corresponding output will be as follows: 

0 the quick brown fox 
1 jumps over 
1 the lazy black dog 
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5 Inheritance and typing 
In this section we deal with two issues that seem quite independent at first, but at a 
closer look turn out to be closely related. We explain the concept of inheritance and 
indicate the problems associated with it, which justify that inheritance is not included 
in POOL2. We also sketch some directions along which solutions to these problems 
could be found. This requires a careful analysis of the relationship between inheritance 
and typing. 

For the largest part, this section is quite independent of the specific properties of 
POOL. It is applicable to a large class of object-oriented languages. Therefore we shall, 
for the moment, forget about the peculiarities of POOL, such as bodies and routines. 

5.1 Inheritance 
The concept of inheritance was already present in the first object-oriented languages, 
like Simula [DN66] and Smalltalk-SO [GR83]. The basic idea is that in defining a new 
class it is often very convenient to start with all the variables and methods of an existing 
class and only to add some more in order to get the desired new class. The new class 
is said to inherit the variables and methods of the old one. (Note that inheritance is a 
relationship between classes, not between instances.) 

This inheritance mechanism constitutes a very successful way of i11corporating fa-
cilities for code sharing in a programming language. Both the programmer and the 
implementor can take advantage of it. For the programmer the most important thing 
is not that he need not write the inherited code several times: for this task a text edi-
tor can offer enough help. It is important, however, that the sharing of code has been 
made explicit. In reading a program, it is not necessary to compare pieces of code in 
order to see whether they are the same or in what aspects they differ: all this is clearly 
indicated in the code itself. Moreover, if the program is changed, the changes automat-
ically apply to all the classes inheriting the code. Therefore consistency is guaranteed. 
The implementation can profit from code sharing by producing more compact code, 
occupying less computer memory. Especially in systems without shared memory, where 
code must often be duplicated over many nodes, this is a considerable advantage. 

As an example, the piece of code below shows how a class Bordered_Window could 
be described as a subclass of the class Window, defined in section 2.2. The new class 
represents windows that have been adorned with a border of a certain width and colour. 
Note that it is only necessary to indicate the things that have changed. We can add 
new variables and methods, we can override the existing methods, and all the time we 
have access to the features of the superclass (even to the overridden method move). 

CLASS Bordered_Window 
INHERIT Window 

VAR border_width 
border_colour 

Integer 
Colour 



Integer, METHOD change_border (new~width 
new_colour Colour) : Bordered_Window 

BEGIN 
border_width := new_width; 
border_colour := new_colour; 
display_border (); 
RESULT SELF 

END change_border 

METHOD move (to : Vector) 
BEGIN 

Bordered_Window %% redefined 

Window.move(to); 
display_border (); 
RESULT SELF 

%% the method of the superclass! 

END move 

METHOD display_border () 
%% only for internal use 
BEGIN 

Bordered_Window 

%% actual text not relevant here 
RESULT SELF 

END display_border 

ROUTINE create (cont 
pos, siz 
border_width 
border_colour 

TEMP w : Bordered_Window 
BEGIN 

Object, 
Vector, 
Integer, 
Colour) : Bordered_Window 

w := Bordered_Window.new (); %% standard routine new 
w ! init (cont, pos, siz); 
w ! change_border (border_width, border_colour); 
RESULT w 

END create 
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But there is more to inheritance than only code sharing: Suppose that the class B 
has inherited all the variables and methods from the class A. Then, in a way, we can 
consider every instance of B equally well as an object of class A: At any point where an 
object of A is expected (because certain messages are sent to it), any object of class B 
will satisfy our needs, because it will accept all the messages that an object of class A 
would accept. Therefore the instances of B can be considered as specialized versions 
of the ones in class A. This can be expressed by calling the class B a subclass of A 
and A a superclass of B (note the correspondence with the terminology of subset and 
superset in set theory). 



40 

Conceptually, if we consider objects in a program as representations of entities in 
the real world (for example in a database or simulation system) and if we use them 
mainly as collections of variables in which attributes can be stored, then this makes 
good sense. For example, if we have defined a class Vehicle with variables to store the 
owner and the maximum speed, it is convenient to define the class Car as a subclass of 
Vehicle so that we only have to add a variable to store the licence number. An instance 
of class Car is then automatically considered as an element of the type associated with 
class Vehicle. 

Of course, this procedure can be repeated several times. For instance, we can define 
a class Truck as a subclass of Car, with an extra variable to store the load capacity, we 
can define Bus as another subclass of the class Car, with a variable for the number of 
seats, and we can define Bike to be a subclass of Vehicle, adding a variable containing 
the number of speeds. In this way we can get a whole hierarchy of classes, which has 
the form of a tree: 

Vehicle 

Car Bike 

Bus Truck 

Moreover, it is possible to allow a new class to inherit from more than one existing 
class. This mechanism is called multiple inheritance, in contrast to linear inheritance. 
For example, a horse can be considered as an animal (having, for example, a father and 
a mother) and as a vehicle, and therefore the class Horse can be defined conveniently 
as a subclass of both Animal and Vehicle. In the case of multiple inheritance, the 
class hierarchy is not a tree any more; it becomes an acyclic directed graph: 

Vehicle Animal 

Horse 

A mechanism like the one described above is included in most object-oriented pro-
gramming languages. In those languages that are statically typed, like Trellis/Owl 
[SCB*86] and Eiffel [Mey87], this mechanism is linked with typing in a way that is 
discussed below. In dynamically typed languages, like Smalltalk-SO [GR83], the con-
notation of specialization, associated with inheritance, is nowhere enforced explicitly by 
the language. The organization of classes into such a hierarchy based on specialization 
is only formulated in some informal advice to the programmer [HO87]. 

Even in these dynamically typed languages, there are some problems with inheri-
tance. The most difficult one is the phenomenon nf name clashes in multiple inheri-
tance. Such a class occurs when a class tries to inherit from two superclasses that both 
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have a variable or method with the same name, so that they cannot both be included in 
the new class. A large variety of solutions to this problem has been proposed, ranging 
from mandatory explicit renaming by the programmer [Mey88] to imposing a priority 
ordering on all the superclasses, often tog.ether with mechanisms describing how several 
methods should be combined [BDG*87]. 

5.2 Relationship with typing 
In a language that have a notion of static typing, in the sense that for each expression 
it is possible to determine from the program text the type of object it denotes, it 
is possible to make the implications of the specialization in subclasses explicit. For 
example, if B is a subclass of A, then it should be allowed to use an expression having 
type B wherever an object of type A is expected. For example, such an expression may 
be assigned to a variable of type A and a message mentioning a method of class A can 
be sent to it. 

A few extra conditions are necessary to make this absolutely safe: In particular, 
suppose that the class A has a method m and that B redefines this method. If in 
class A the method m has parameter types Pf, ... , Pf and result type RA, while in 
class B it has parameter types Pf, ... , P1B and result type RB then we must require 
that the number of parameters are equal ( n = l), that Pf ::S P1B, • •• , Pf ::S P;;, and 
that RB ::s RA, where X :s Y expresses that Xis either equal to Y or it is a subclass 
of Y (possible via a number of other subclasses). 

We can see that this is necessary if we consider the situation where we send a 
message listing the method m to an object contained in a variable of type A. Then we 
expect that the method takes n parameters of types Pf, ... , P:. However, the actual 
object stored in the variable may be an instance of class B. Therefore, the number of 
the parameters must be the same: n = l. Furthermore this object expects parameters 
of types Pf, ... , P;; and it may apply to them all the operations allowed by these 
classes. For, e.g., the first parameter this will not lead to problems, provided that 
Pf ::s Pf, because under this condition the actual parameter (of type Pt) will indeed 
admit all the operations defined for Pf. This is called the contravariant parameter 
type rule, because for parameters the inclusion sign ::s point in the other direction 
than for the classes A and B themselves. For the result types we have a covariant rule, 
because the method m of the class B may return any result of type RB, and because 
this will be treated as an object of type RA, we must require RB ::s RA. 

These rules have been studied in their purest form in [ Car88]. They are incorporated 
in the language Trellis/Owl [SCW85]. Whereas in Eiffel [Mey87] it is not explicitly 
stated that these rules are enforced (and [Mey88] even gives an example that does 
not obey the contravariant parameter type rule), circumstantial evidence nevertheless 
indicates that these rules are intended to be satisfied. 

While a statically typed language that enforces the above rules is indeed completely safe 
with respect to type checking (in the sense that never a message will be sent to an object 
that does not have a method for it), there are still some problems. For example, the 
simplest solution to name clashes in multiple inheritance, explicit renaming of inherited 
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variables and methods, cannot be applied: With renaming it cannot be guaranteed 
that if class A has a method m, every subclass will also have a method m, because 
the subclass could have renamed it. (In Eiffel this problem is attacked by nevertheless 
taking the renamed method in such a case, which is at least confusing.) 

A more serious problem that in some cases we want code sharing without subtyping 
or subtyping without code sharing. For example, in implementing a class Stack, it 
might be convenient to inherit the code from the class Array, in order to be able to 
store stack elements. However, we do not want Stack to be a subtype of Array, because 
we do not want all the array operations (storing and retrieving elements at arbitrary 
places) to be applicable to stacks, too. In another case, adding a new method to a 
number of existing ones may violate an invariant on which the correct functioning of 
the old methods is based. In this case, an object of the new class will not behave as a 
specialized version of the old one. 

The other way around, we can think of several different ways in which a stack can 
be implemented. While these implementations have completely different code, we do 
not want to consider them as different types, because they have the same behaviour. 
As another example, we would like to be able to consider the class Int as a subtype of 
a class Ordering, where the latter only specifies that a method less should be present 
that gives rise to a total ordering on the elements. This should be possible even though 
Int is a built-in class and Ordering a programmer-defined one, so that code sharing 
is utterly impossible. 

Therefore we propose, for a future object-oriented language, to make a clear distinc-
tion between inheritance and subtyping. Inheritance deals with the internal structure 
of the objects: their variables and the code they execute for their methods. Subtyp-
ing, on the other hand, deals with the externally observable behaviour of the objects: 
the messages that they accept (in particular the method names and parameter types) 
and the results they return. Note that this distinction is analogous to the separa-
tion between the implementation of an abstract data type (or class) and its interface 
to the outside world. By separating these concepts, many of the problems currently 
associated with inheritance can be solved easily [Ame87b]. 

In this context, it is useful to distinguish between the notions of class and type. Let 
us continue to consider a class as a collection of objects that have the same internal 
structure: the same variables, methods, and body. Then we can use the term 'type' 
for a collection of objects that have certain common properties with respect to their 
behaviour. In other words, whereas a class groups together the objects that have been 
built in the same way, a type comprises a collection of objects that can be used in a 
certain way. 

With these definitions, inheritance can take place without the connotations of sub-
typing. Pieces of code can be imported under the only condition that they perform 
some useful function. Redefinition and renaming is never a problem, because the new 
class is in principle unrelated to the existing ones. Subtyping can now be done a pos-
teriori: after a class has been defined it can be determined whether or not its instances 
belong to a certain type, and for any two types it can be determined whether one is 
a subtype of the other. This should be done on the basis of a specification of the ex-
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ternally observable behaviour of the class's instances, without regarding their internal 
implementation. 

At this point it is not so easy to see how this notion of subtyping can be formalized. 
In any case, a specification formalism should be devised that considers the behaviour of 
an object, but not its internal structure. It is not at all trivial to devise such a formalism 
(see also section 6). However, suppose that we have an appropriate formalism available. 
Then we can associate each type r with a specification 1>(x), by which we mean that 
the type r consists of all the objects /3 for which 1>(/3) holds. Now we can say that a 
class A belongs to r ( or rather, that all the instances of A belong to r) precisely if 
V/3 E A1>(/3). Moreover, if the type <1 is characterized by the specification it,(x), then 
we can say that a is a subtype of r, or <1 :s r, precisely if V/3 it,(/3) -+ 1>(/3). 

As an example, we can consider the specifications associated with the types Bag 
and Stack. Elements of both these types can store integers. They have a method 
put to insert a new integer and a method get to retrieve an integer. The difference 
between the two is that the type Stack requires that the integers are retrieved in a 
last-in-first-out order, while the type Bag does not specify a certain order. Now it 
can be seen that Stack is a subtype of Bag, because every object that satisfies the 
specification associated with Stack will automatically satisfy the specification of the 
type Bag. For a concrete class that implements stacks, e.g., using arrays, it can be 
established that the instances are members of the type Stack by verifying that they 
satisfy the specification of Stack. In that case it is clear that they also belong to the 
type Bag. (In [Ame89] it is shown how these specifications can be given in a formal 
way using techniques from abstract data types.) 

5.3 Integrating it into POOL 
Once we have decided that inheritance and subtyping are separate things, we can deal 
with them separately. In order to introduce inheritance into POOL, we can imagine 
the concept of inheritance package, a set of variables and methods, which may or may 
not comprise all the variables and methods of a given class, as long as it is complete: if 
a method in the package accesses a variable, this is also in the package. It might even 
be useful to give an explicit inheritance inter/ ace to such a package, which only lists 
a number of variables with their types and method headers. The advantage of this is 
that, in addition to making the interface explicit and easier to read, it is possible to 
hide certain variables and methods so that they cannot be used in a wrong way. 

Inheriting routines does not make sense, because these can anyway called from any 
point in the system. Bodies, however, require some special attention. Unfortunately 
there seems to be no natural way of inheriting bodies, especially in the case of multiple 
inheritance. The only part of the body that is a natural candidate for inheritance is 
the initialization of the variables. By including this in such an inheritance package, it 
can be ensured that all variables, even the hidden ones, are correctly initialized. 

For objects where the body plays an important role, inheritance might not be a very 
useful mechanism. But for other objects, with a more server-like role, which wait for 
messages and then process them, it might be just as useful as in sequential languages. 
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Also remember that the programming style advocated for POOL consists of letting 
the objects themselves perform the operations on them. If many classes of objects 
have a different parallel behaviour, but similar operations, sharing the code of these 
operations might be very useful. 

For the integration of subtyping withing POOL we propose the same approach as 
sketched broadly above. However, for a parallel language it seems even more difficult 
to develop an appropriate specification formalism, which is based exclusively on the 
external behaviour of the objects, without depending on their internal structure (work 
in this direction is briefly sketched in section 6). Moreover, it is highly improbable 
that such a formalism would be suitable in practice, i.e., that it would be possible to 
specify formally every type in every program, and that a compiler could verify the 
relationships between classes and types. Therefore it would probably be best, for a 
practical language, to leave a part of these specifications informal. But at the very 
least it would be possible to formalize the requirements on the availability of methods 
and the restrictions on their types (e.g., the contravariant parameter type rule). 
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6 Formal aspects 
The POOL family of languages has been the subject of extensive research in the area 
of formal techniques. Several frameworks have been employed to give a formal descrip-
tion of the semantics of POOL and the relationships between these semantic models 
have been investigated. Furthermore, significant progress has been made to develop a 
formalism in which the correctness of a program with respect to a certain specification 
can be verified. In this section, we give a brief overview of these studies. For more 
details, the reader is referred to the original documents. 

In order not to obscure the semantic essentials of the language with many syntac-
tical details, the syntax has been simplified considerably in these formal studies. All 
the syntactic sugar present in POOL2 has been removed, and even several important 
facilities of POOL-T (e.g., units and routines) have disappeared. Furthermore the 
types of variables, parameters, and method results are no longer explicitly mentioned 
in the program. In this way we arrive at a language with a very simple syntax. Nev-
ertheless it is straightforward to translate an arbitrary POOL2 program to this simple 
language: For the special POOL2 elements, it is indicated in [Ame88d] how they can 
be reformulated in POOL-T terms. Translating POOL-T into this simple language 
is also easy: Units are merged together (taking care of name clashes between hidden 
classes), each routine definitions is transferred into method definitions in the classes 
where the routine is called, and finally all the typing information is omitted. Via these 
translation steps we can say that we have given a formal description of POOL2. 

6.1 Semantics 
6.1.1 Operational Semantics 

The simplest semantic technique is the use of transition systems to define an op-
erational semantics. This technique has been introduced by Hennessy and Plotkin 
[HP79,Plo81,Plo83]. It describes the behaviour of a system in terms of sequences of 
transitions between configurations. A configuration describes the system at one par-
ticular moment during the execution. Apart from a component describing the values 
of the variables, it typically contains as a component that part of the program that is 
still to be executed. The possible transitions are described by a transition relation, a 
binary relation between configurations (by having a relation instead of a function, it 
is possible to model nondeterminism). This transition relation is defined by a number 
of axioms and rules. Because of the presence of ( the rest of) the program itself in the 
configurations, it is possible to describe the transition relation in a way that is closely 
related to the syntactic structure of the language. 

The term "operational" can now be understood as follows: The set of configurations 
defines a (very abstract) model of a machine, and the transition relation describes how 
this machine operates: each transition corresponds to an action that the machine can 
perform. The fact that the semantic description follows the syntactic structure of the 
language so closely (as we shall see below) is a definite advantage of the transition 
system approach to operational semantics. 
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The operational semantics of POOL [ABKR86] uses configurations having four 
components: 

Con/ = Pfin(LStat) x E x Type x Unit 

The first component is a finite set of labelled statements: 

Here each o:; is an object name and the corresponding s; is the statement (or sequence 
of statements) that the object is about to execute. This models the fact that the objects 
o:1 , ••• , O:n are executing in parallel. The second component is a state u E E, which 
records the values of the instance variables and temporary variables of all the objects 
in the system. The third component is a typing function r E Type, assigning to each 
object name the class of which the object is an instance. Finally, the last component 
is the complete POOL program or unit, which is used for looking up the declarations 
of methods (whenever a message is sent) and bodies (when new objects are created). 

The transition relation -+ between configurations is defined by axioms and rules. 
In general, an axiom describes the essential operation of a certain kind of statement 
or expression in the language. For example, the axiom describing the assignment 
statement has the following form: 

(xu {(o:,x := (J)},u,r,U)-+ (xu {(o:,(J)},u{(J/o:,x},r,U) 

Here, X is a set of labelled statements, which are not active in this transition, o: is 
the name of the object that executes the assignment, (J is another object name, a 
special case of the expression that can in general appear at the right-hand side of an 
assignment, and u{(J / o:, x} denotes the state that results from changing in the state a 
the value of the variable x of the object o: into the object name (J. 

Rules are generally used to describe how to evaluate the components of a composite 
statement or expression. For example, the following rule describes how the (general) 
expression at the right-hand side of an assignment is to be evaluated: 

(xu {(o:,e)},a,r,U)-+ (X' u {(a,e')},a',r',U) 
(xu {(o:,x := e)},a,r,U)-+ (X' u {(o:,x := e')},a',r',U) 

According to this rule, if the transition above the line is a member of the transition 
relation, then so is the transition below the line. In this way the rule reduces the 
problem of evaluating the expression in an assignment to evaluating the expression 
on its own. The latter is described by specific axioms and rules dealing with the 
several kinds of expressions in the language. Note that as soon as the right-hand side 
expression has been evaluated completely, so that an concrete object name (J results, 
the assignment axiom above applies and the assignment proper can be performed. 

The semantics of a whole program can now be defined as the set of all maximal 
sequences of configurations (ci, c2, c3, ... ) that satisfy c; -+ ci+I · Each of these sequences 
represents a possible execution of the program. 
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6.1.2 Denotational semantics 

The second form of semantic description that has been used to describe POOL is 
denotational semantics. Whereas operational semantics uses an abstract machine that 
can perform certain actions, denotational semantics assigns a mathematical value, a 
"meaning", to each individual language construct. Here, the most important issue is 
compositionality: the meaning of a composite construct can be described in terms of 
only the meanings of its syntactic constituents. 

For sequential languages, it is very natural that the value associated with a state-
ment is a function from states to states: when applied to the state before the execu-
tion of the statement, this function delivers the state after the execution. However, 
for parallel languages, this is no longer appropriate. The first problem is that parallel 
languages are in general nondeterministic: it is no longer possible to predict a single 
output state for each given input state. In general, there is a set of possible output 
states. 

The second problem is that describing the set of possible output states for each 
input states does not provide enough information to be able to compose a statement in 
parallel with other statements: information on the intermediate states is also required. 
This leads us to the concept of resumptions (introduced by Plotkin [Plo76]). Instead 
of delivering the final state after the execution of the statement has completed, we 
divide the execution of the statement into its atomic (indivisible) parts, and we deliver 
a pair (u', r), where u' is the state after the execution of the first atomic action and 
r is the resumption, which describes the execution from this point on. In this way, 
it is possible to put another statement in parallel with this one: the execution of the 
second statement can be interleaved with the original one in such a way that between 
each pair of subsequent atomic actions of the first statement an arbitrary number of 
atomic actions of the second one can be executed. Each atomic action can inspect the 
state at the beginning of its execution and possibly modify it. 

For a very simple language (not yet having the power of POOL) we get the following 
equation for the set (the domain) in which the values reside that we want to assign to 
our statements: 

P :::'. {po} U (E--> P(E x P)). (1) 
The intended interpretation of this equation is the following: Let us call the elements 
of the set P processes and denote them with letters p, q, and r. Then a process p 
can either be the terminated process p0 , which cannot perform any action, or it is a 
function that, when provided with an input state u, delivers a set X of possible actions. 
Each element of this set Xis a pair (u',q), where u' is the state after this action and 
q is a process that describes the rest of the execution. 

It is clear that equation (1) cannot be solved in the framework of sets, because the 
cardinality of the right-hand side would always be larger than that of the left-hand side. 
In contrast to many other workers in the field of denotational semantics of parallelism, 
who use the framework of complete partial orders ( CPOs) to solve this kind of equations 
(see, e.g., [Plo76]), we have chosen to use the framework of complete metric spaces. 
(Readers unfamiliar with this part of mathematics are referred to standard topology 
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texts like [Dug66,Eng77] or to [BZ82].) The most important reason for this choice is 
the possibility to uses Banach's fixed point theorem: 

Let M be a complete metric space with distance function d and let / 
M -+ M be a function that is contracting, Le., there is a real number £ 
with O < £ < 1 such that for all z,y EM we have d(/(z),/(11)) :5 £.d(z,y). 
Then / has a unique fixed point. 

This ensures that whenever we can establish the contractivity of a function we have a 
unique fixed point, whereas i:ii CPO theory mostly we can only guarantee the existence 
of a least fixed point. 

Another reason for using complete metric spaces is the naturalness of the power 
domain construction. Whereas in CPO theory there are several competing definitions 
(see, e.g., [Plo76,Smy78]) all of which are somewhat hard to understand, in complete 
metric spaces there is a very natural definition: 

HM is a metric space with distanced, then we define P(M) to be the set 
of all closed subsets of M, provided with the so-called Hausdorff distance 
dH, which is defined as follows: 

dH(X, Y) = max{sup{d(z, Y)},sup{d(y,X)}} 
zEX 11EY 

where d(z,Z) = inf,.ez{d(z,z)} (with the convention that sup0 = 0 and 
inf0 = 1). 

(A few variations on this definition are sometimes useful, such as taking only the 
nonempty subsets of Mor only the compact ones. The metric is the same in all cases.) 

The domain equation that we use for the denotational semantics of POOL (see 
[ABKR88]) is somewhat more complicated than equation (1), because it also has to 
accommodate for communication among objects. For POOL, the domain P of processes 
is defined as follows: 

P {Po} U (E-+ P(Stepp)) 

where the set Stepp of steps is given by 

Stepp= (Ex P) U Sendp U Answerp, 

with 
Sendp = Obj x MName x Obj* x ( Obj -+ P) x P 

and 
Answerp = Obj x MName x (Obj*-+ (Obj-+ P) -+ 1 P). 

The interpretation of these equations (actually, they can be merged into one large 
equation) is as follows: As in the first example, a process can either terminate directly, 
or it can take one out of a set of steps, where this set depends on the state. But 
in addition to internal steps, which are represented by giving the new state plus a 
resumption process, we now also have communication steps. A send step gives the 
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destination object, the method name, a sequence of parameters, and two resumptions. 
The first one, the dependent resumption, is a function from object names to processes. 
It describes what should happen after the message has been answered and the result 
has been returned to the sender. To do that, this function should be applied to the 
name of the result object, so that it delivers a process that describes the processing 
of that result in the sending object. The other resumption, called the independent 
resumption, describes the actions that can take place in parallel with the sending and 
processing of the message. These actions do not have to wait until the message has 
been answered by the destination object. (Note that for a single object the independent 
resumption will always be p0 , because a sending object cannot do anything before the 
result has arrived. However, for the correct parallel composition of more objects, the 
independent resumption is necessary to describe the actions of the objects that are not 
sending messages.) Finally we have an answer step: This consists of the name of the 
destination object and the method name, plus an even more complicated resumption. 
This resumption takes as input the sequence of parameters in the message plus the 
dependent resumption of the sender. Then it returns a process describing the further 
execution of the receiver and the sender together. 

Equations like (1) can be solved by a technique explained in [BZ82]: An increasing 
sequence of metric spaces is constructed, its union is taken and then the metric comple-
tion of the union space satisfies the equation. The equation for POOL processes cannot 
be solved in this way, because the domain variable P occurs at the left-hand side of the 
arrow in the definition of answer steps. A more general, category-theoretic technique 
for solving this kind of domain equations has been developed to solve this problem. It is 
described in [AR88]. Let us only remark here that it is necessary to restrict ourselves to 
the set of non-distance-increasing functions (satisfying d(f (x), f (y)) ::; d(x, y) ), which 
is denoted by -+ 1 in the above equation. 

Let us now give more details about the semantics of statements and expressions. These 
are described by the following two functions: 

[ ... Ils : Stat-> Env-> A Obj-+ Cont 8 -> 1 P 

[ ... ]E : Exp-+ Env-+ A Obj-> ContE -+1 P. 

The first argument of each of these function is a statement (from the set Stat) or an 
expression (from Exp), respectively. The second argument is an environment, which 
contains the necessary semantic information about the declarations of methods and 
bodies in the program (for more details, see [ABKR88]). The third argument is the 
name of the (active) object executing the statement/expression. The last argument 
is a continuation. This certainly deserves some explanation. It seems natural that 
the semantic function of a statement returns a process describing just the execution 
of that statement. However, we would get into trouble then, because in defining the 
semantics of the sequential composition s 1; 8 2 of two statements we would have to 
determine the sequential composition of the corresponding processes. This turns out 
to be impossible, the main source of trouble being the fact that 8 1 can create a new 
object which should execute in parallel not only with the rest of 8 1 , but also with 8 2• In 
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the same way, one would expect that the semantic function for expressions just returns 
a value (an object name) as its result. This approach, however, would leave us with 
the problem of describing the possible side-effects of expression evaluation, which can 
be quite complicated, e.g., involving message sending. 

Continuations form the most convenient and elegant solution to these problems. 
(For a nice introduction to the use of continuations in a sequential setting, see [Gor79].) 
The semantic function for statements is provided with a continuation, which is just 
a process ( Conts = P), describing the execution of all the statements following the 
current one. The semantic func::tion then delivers a process that describes the execution 
of the current statement plus the following ones. Analogously, the semantic function 
for expressions is fed with a continuation, which in this case is a function that maps 
object names to processes ( ContE = Obj -+ P). This function, when applied to the 
name of the object that is the result of the expression, gives a process describing 
everything that should happen in the current object after the expression evaluation. 
Again, the semantic function delivers a process describing the expression evaluation 
plus the following actions. · 

Now we are ready to give some examples of clauses that appear in the definition 
of the semantic functions [ ... Bs and [ ... )8 • Let us start with a relatively simple 
example, the assignment statement: 

This equation says that if the statement :,; := e is to be executed in an environment 'Y 
(recording the effect of the declarations), by the object a, and with continuation p (de-
scribing the actions to be performed after this assignment), then first the expression e 
is to be evaluated, with the same environment 'Y and by the same object a, but its 
resulting object is to be fed into an expression continuation A,8.{ (u', p}} that delivers 
a process of which the first action is an internal one leading to the new state u' and 
having the original continuation p as its resumption. Here, of course, the new state u' 
is equal to u{,8 /a,:,;}, only different from u in that the value of the variable :,; in the 
object a is now equal to ,8. 

The semantic definition of sequential composition is easy with continuations: 

Here the process describing the execution of the second statement s 2 just serves as the 
continuation for the first statement s1 • 

As a simple example of a semantic definition of an expression let us take an instance 
variable: 

[z)8 ('Y)(a)(f) = AU.{ (u, f(u( a)(z))} }. 
Evaluating the expression :,; takes a single step, in which the value u(a)(z) of the 
variable is looked up in the state u. The resumption of this first step is obtained by 
feeding this value into the expression continuation / (which is a function that maps 
object names into processes). 
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As a final example of a semantic definition, let us take object creation: The expres-
sion new( C) creates a new object of class C and its value is the name of this object. 
Its semantics is defined as follows: 

[new(C)IlE('r)(o:)(J) = >.a.{(a',,(C)(,B) II /(,B))}. 

Here ,B is a. fresh object name, determined from a in a way that does not really interest 
us here, and a' differs from a only in that the variables of the new object ,B are 
initialized to NIL. We see that execution of this new-expression takes a single step, of 
which the resumption consists of the parallel composition of the body ,( C)(,B) of the 
new object with the execution of the creator, where the latter is obtained by applying 
the expression continuation / to the name of the new object ,B (which is, after all, 
the value of the new-expression). The parallel composition operator II is a function in 
P x P -+ P, which can be defined as the unique fixed point of a suitable contracting 
higher-order function ~Pc: (P x P-+ P) -+ (P x P-+ P) (an application of Banach's 
fixed point theorem). 

From the above few equations it can already be seen how the use of continuations 
provides an elegant solution to the problems that we have mentioned. 

There are a number of further steps necessary before we arrive at the semantics 
of a complete program. One interesting detail is that in the denotational semantics, 
sending messages to standard objects is treated in exactly the same way as sending 
messages to programmer-defined objects. The standard objects themselves (note that 
there are infinitely many of them!) are represented by a (huge) process PsT, which is 
able to answer all the messages sent to standard objects and immediately returning 
the correct results. This process PsT is composed in parallel with the process Pu, 
which describes the execution of the user-defined objects in order to give the process 
describing the execution of the whole system. From this process it is possible to derive 
a set of possible execution sequences that resemble the ones that we had with the 
operational semantics. 

6.1.3 Equivalence of operational and denotational semantics 

Despite the fact that the two forms of semantics described above, the operational and 
the denotational one, are formulated in widely different frameworks, it turns out that 
it is possible to establish an important relationship between them: 

0 = abstr o !), 

which in some sense says that the different forms of semantics of POOL are equivalent. 
Here 1) is the function that assigns a process to a POOL program according to the 
denotational semantics and O assigns to each program a set of (finite or infinite) se-
quences of states, which can be extracted from the sequences of configurations obtained 
from the operational semantics. Finally, abstr is an abstraction operator that takes a 
process and maps it into the set of sequences of states to which the process gives rise. 
The complete equivalence proof can be found in [Rut88]. In the present section we 
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shall give a rough sketch of this proof, which proceeds in several steps. We apologize 
for sometimes being somewhat sloppy in our notation. 

The first step leads to an operational semantics that delivers a process, instead 
of a set of sequences of states. For this, it is most convenient to switch to a labelled 
transition system, a transition system in which the transition relation is ternary, and 
where the extra component gives some more information on the nature of the transition 
(e.g., whether it is an internal step or a communication action). Now it is possible to 
define another operational semantics O* as follows: 

O*(X) = { ::.{ (u', 0*(X')) j (X,u) (X',u')} U .•• 
if X has terminated 
otherwise 

Here X and X' are finite sets of labelled statements (see section 6.1.1), (X,u) stands 
for a configuration containing X and u, stands for a transition that is labelled as an 
internal on,, and the dots ( ... ) stand for additional, more complicated terms dealing 
with communication actions. Note that this definition is a recursive one: O* also 
occurs at the right-hand side. However, it can be made into a well-formed definition 
by taking O* as the unique fixed point of a suitable contracting higher-order function. 
Now it is possible to prove that 

0 = abstr o O*, 

which completes the first step of the equivalence proof. 
The second step consists mainly of getting rid of the continuations. Two different 

techniques have been developed for this. The first technique defines a number of addi-
tional semantic operators that allow a denotational (compositional) style of semantic 
definitions without the use of continuations. The resulting semantics can be proved to 
be equivalent both with O* and with the denotational semantics with continuations. 
For a language slightly simpler than POOL (instead of methods it has a CSP-like value 
communication) this approach has been explored in [AB88a]. For POOL itself, this 
has not yet been tried, but it seems feasible. The advantage of this technique is that it 
provides a clear intuitive idea of the proof, but unfortunately it leads to a large number 
of tedious calculations (the advantages of using continuations become very clear when 
one tries to avoid them). 

The second technique describes the semantic functions themselves as fixed points of 
suitable higher-order contractions over different domains, the one with and the other 
without continuations. By defining mappings between these domains and showing that 
they commute with the contractions, it can be shown that the two semantic functions 
are equivalent. This technique has been introduced in [KR87] and it is used in [Rut88] 
to prove the equivalence of POOL semantics. This technique is more difficult to explain, 
but it definitely leads to a shorter proof. 

The final step consists of dealing with a number of details in the semantic defini-
tions that are not yet solved by the above steps. For example, the standard objects 
are described by special axioms in the operational semantics, but in the denotational 
semantics there is a large process PsT to describe them. The problem is that the above 
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two steps only work if in the domain equation for P we take, in the power domain P ( X), 
only the compact subsets instead of all the closed ones. (This is because a continuous 
function maps each compact set into a compact c,ne, which is not necessarily true for 
closed sets.) However, the process PsT does not fit in this domain. The problem can 
be solved by proving that if presides in the "compact" domain then abstr(p II PsT) is 
compact. (For more details, see [Rut88]). 

6.1.4 Other forms of semantics for POOL 

In addition to the operational and denotational semantics described above, POOL has 
been the subject of a number of other semantic studies. Let us first mention [Vaa86]. In 
this paper, the semantics of POOL is defined by means of process algebra [BK84,BK85]. 
This is done as follows: with the help of an attribute grammar, each POOL program 
is mapped unto a specification of a process in the ACP formalism with a number 
of additional operators. This specification in turn can be interpreted in each of the 
different semantic models that exist for ACP, e.g., bisimulation [BBK87] and failure 
semantics [BKO86]. 

In addition to describing the semantics of POOL, [Vaa86] also studies a number 
of related issues. One of them is the implementation of a fair (in a technical sense) 
communication mechanism with the help of message queues. The analysis in [Vaa86] 
detected a small error in the language manual. After this had been corrected, the 
correctness of this implementation could not yet be proved, unfortunately. In bisim-
ulation semantics it can be shown that the process that results from using explicit 
message queues is different from the process that does not use these queues. However, 
this difference is due to the strict notion of equivalence in bisimulation semantics: all 
we are interested in is that the two processes can not be distinguished by observation 
from outside. This notion is captured by failure semantics (leading to some additional 
axioms of equality in the formalism), but unfortunately [Vaa86] does not go as far as 
giving the equivalence proof in this case, because of its expected complexity. 

Another semantic technique, which is currently explored for its suitability to de-
scribe POOL, uses graph grammars. In [JR87], a special type of graph grammars, called 
actor grammars, are used to describe the semantics of actor languages, a different type 
of concurrent object-oriented languages [Agh86,Cli81,Hew77] (see also section 3.1). In 
this model, the execution of a program can be seen as a sequence of rewritings of a 
graph which represents the system. Production rules in the graph grammar describe 
how these rewritings should take place. In [Lei88] an initial study is made of the 
viability of such a technique for describing the semantics of POOL. 

Finally, we should mention here some work which describes POOL on a different 
level. In [DD86,DDH87] a description is given of an abstract POOL machine. In 
contrast to the "abstract machine" employed in the operational semantics described 
above, this abstract POOL machine is intended to be the first step in a sequence 
of refinements which ultimately lead to an efficient implementation on real parallel 
hardware (DOOM). This abstract POOL machine is described formally in AADL, an 
Axiomatic Architecture Description Language. 
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6.2 Proof theory 
Developing a formal proof system for verifying the correctness of POOL programs is 
an even harder task than giving a formal semantics for this language. Therefore this 
work has been done in several stages. 

First the proof theory of SPOOL, a sequential version of POOL, has been studied 
(see [Ame86]}. This language is obtained by omitting the bodies (and the possibility 
to return a result before a method ends) from POOL, such that now at any moment 
there is only one active object and we have a sequential object-oriented language. For 
this language a Hoare-style [Apt81,Hoa69] proof system has been developed. The main 
contribution from the proof theory of SPOOL was a formalism to deal with dynamically 
evolving pointer structures. This reasoning should take place at an abstraction level 
that is at least as high as that of the programming language. More concretely, this 
means the following: 

1. The only operations on "pointers" (references to objects) are 

• testing for equality 
• dereferencing ( determining the value of ap instance variable of the referenced 

object) 

2. In a given state of the system, it is only possible to reason about the objects that 
exist in that state, i.e., an object that does not exist (yet) cannot play a role. 

Requirement 1 can be met by only admitting the indicated operations to the assertion 
language (however, this excludes the approach where pointers are explicitly modelled as 
indices in a large array that represents the "heap"). In order to satisfy requirement 2, 
variables are forbidden to refer to nonexisting objects and the range of quantifiers is 
restricted to the existing objects. (The consequence is that the range of quantification 
depends on the state!) 

It is somewhat surprising that even with these restrictions it is possible to describe, 
e.g., the creation of a new object. The trick is that the reference to the new object 
can be removed from the precondition of the new-statement if one takes the properties 
of the new object into account. In fact, the SPOOL proof system has recently been 
proved to be complete [AB88b], i.e., every correctness formula that is true can be 
proved in this system. (The only addition with respect to "classical" proof systems 
is the possibility to quantify over finite sequences of object references, which is not 
uncommon in dealing with abstract data types [TZ88].) 

Another contribution of the SPOOL proof system is a proof rule for message passing 
and method invocation (in a sequential setting). In this rule the context switching 
between sending and receiving object and the transmission of parameters and result 
are representing by appropriate substitution operations. 

Along a different track a proof theory was developed to deal with parallelism, in par-
ticular with dynamic process creation. In [Boe86] a proof system was given for a 
language that essentially only differs from POOL in that message passing only consists 
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of transmitting a single value from the sender to the receiver (like in CSP [Hoa78]). 
The approach in this proof system is similar to that in [AFR80]: It consists of a local 
proof system, in which each process is verified separately, using assumptions on the 
behaviour of the communication statements, and a global proof system, in which these 
assumptions are proved, using a global invariant. 

Whereas the proof system in [Boe86] uses an explicit coding of object references by 
numbers, an integration with the work on SPOOL has lead to a more abstract proof 
system for the same programming language [AB88c]. Again this proof system has been 
proved to be sound and complete. 

6.3 Future work 
Especially in the area of formal aspects there remain many unsolved problems, so that 
there is ample opportunity for future work. With respect to semantics, our next goal 
is to define a semantics in which there is a clear notion of the behaviour of a single 
object. Ideally, this semantics would be fully abstract, which means that it only leads 
to different meanings for constructs that can actually be observed to be different. In 
order to reach this ideal, the semantics must abstract away from the internal details 
of the object, because these cannot be observed from outside. 

Another interesting issue connected with semantics is formal verification of an im-
plementation of the language. In the case of the POOL2 implementation on DOOM, 
this is utterly infeasible, if we exclude miracles. However, certain aspects may turn out 
to be tractable. Some of these (e.g., message queues, see section 6.1.4) have already 
been tackled. The most promising implementation aspects pertain to optimizations: If 
a program satisfies certain syntactic conditions, objects of a certain class have a spe-
cific behaviour, which allows a simpler and more efficient implementation. Formally 
proving this kind of properties can make sure that the optimized version of a program 
indeed has the same semantics as the original one. 

In the area of proof theory, the next goal is the development of a sound and complete 
proof system for the full language POOL, i.e., with dynamic process creation and 
rendez-vous communication. This is certainly not a trivial extension to the languages 
that have already been dealt with. Rendez-vous communication is more complex than 
simple value passing, especially if nested rendez-vous are possible (note that [GR84] 
makes use of the fact that the nesting depth is statically bounded, which is not the 
case in POOL). 

Another goal, possibly for the more remote future, would be a compositional proof 
system, which would allow the separate verification of a single class and the constr"Gc-
tion of a complete program on the basis of external specifications of the component 
classes. Such compositional proof systems exist already (see, e.g., [ZREB85]), but 
they rely on the fact that the interconnection structure of the processes is determined 
statically. The dynamic structure of POOL systems will probably require totally new 
techniques. 

An issue where both semantics and proof theory could be of considerable help is 
inheritance. Formalization of the approach sketched in section 5.3 would ideally consist 
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of a fully abstract semantics for POOL plus a specification/verification formalism that 
respects this semantics. It is clear that a large effort will be required to reach these 
goals. 
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7 Conclusions 
In the design of POOL2 several aspects have played a role. In the first place, POOL2 
should be a tool that allows a professional programmer to construct rather large and 
complex applications that run correctly and efficiently on a parallel machine. Extensive 
experience with POOL-T has shown that this language offers considerable help in this 
respect, by providing adequate concepts that can be used in a flexible way. POOL2 is 
certainly a more complex language, but once it is mastered it is even more convenient 
for the programmer. Many small and several medium-sized applications have been 
written in it with good results. 

Implementing POOL efficiently on a parallel machine is not an easy task, due to 
the quite luxurious facilities that the language offers to the programmer. Therefore 
a considerable effort is needed in the construction of the compiler and the run-time 
system. At the moment of this writing, the first POOL2 programs are running on 
our parallel machine, DOOM. It is too early to give a realistic impression of the 
performance. 

A large research effort has been directed at the formal aspects of this language. 
Especially developing a denotational semantics for a language is a quite severe test of 
the soundness and validity of its concepts. In the semantic analysis of POOL we have 
found no significant flaws in the language design. We hope that in the near future we 
can develop a formalism for the verification of POOL programs. While it is unrealistic 
to assume that large programs can be verified completely with such a formalism, it 
might nevertheless give directions towards a better informal basis for software design. 

The future developments in the POOL language family will depend to a large extent on 
the experience with execution of POOL2 programs on a parallel machine. Experimental 
data will become available in the near future. This can help us to discover where the 
language or its implementation needs further improvement. Another possibility for the 
future is the integration of inheritance/subtyping into the language. In order to do 
this in the right way, more theoretical research is needed. New application areas may 
also necessitate new language concepts. For example, we can think of the notion of 
persistency in connection with advanced data and knowledge bases. The overall goal is 
a clean and consistent combination of concepts in a language of moderate complexity. 
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The framework of complete metric spaces has proved to be very useful for giving a denotational 
semantics to programming languages, especially concurrent ones. For example, in the approach of De 
Bakker and Zucker [BZ] a process is modelled as the element of a suitable metric space, where the 
distance between two processes is defined in such a way that the smaller this distance is, the longer it 
takes before the two processes show a different behaviour. 

In order to construct a suitable metric space in which processes are to reside, we must solve a 
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reflexive domain equation. For example, a simple language, where a process is a fixed sequence of 
uninterpreted atomic actions, gives rise to the equation 

P {po} U (A XP). 

(Here U denotes the disjoint union operation.) In [BZ] an elementary technique was developed to 
solve such equations. Roughly, this consisted of starting with a small metric space, enriching it itera-
tively, and ta.king the metric completion of the union of all the obtained spaces. 

In many cases this technique is sufficient to solve the equation at hand, but there are equations for 
which it does not work: equations where the domain variable P occurs in the left-hand side of a func-
tion space construction, e.g., 

P {po} U 
This kind of equation arises when the semantic description is based on continuations (see for example 
(ABKR]). In this paper we present a technique by which these cases can also be solved, at least when 
we restrict the function space at hand to the non-distance-increasing functions. 

The structure of this report is as follows: In section 2 we list some mathematical preliminaries. In 
section 3 we introduce our category e of complete metric spaces, we define the concepts of converging 
tower and contracting functor. We show that a converging tower has a direct limit and that a con-
tracting functor preserves such a limit. Then we see how a contracting functor gives rise to a converg-
ing tower and that the limit of this tower is a fixed point of the functor. 

Section 4 presents two cases in which we can show that the fixed point we construct is the unique 
fixed point (up to isomorphism) of the contracting functor at hand. One case arises when we work in 
a base-point category: a category where every space has a specially designated base-point and where 
every map preserves this base-point. The other case is where the functor is not only contracting, but 
also horn-contracting: it is a contraction on every function space. 

Finally, in section 5, we present a large class of functors (including most of the ones we are interested 
in), for which we can show that each of them has a unique fixed point. 
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2. MATHEMATICAL PRELIMINARIES 

In this section we collect some definitions and properties concerning metric spaces, in order to refresh 
the reader's memory or to introduce him to this subject. 
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2.1. Metric spaces 
DEFINITION 2.1 (Metric space) 
A metric space is a pair (M,tf) with Ma non-empty set and d a mapping I] (a metric or 
distance), which satisfies the following properties: 
(a) \fx,yEM[d(x,y)=O <=> x =y] 
(b) \fx,yEM[d(x,y)=d(y,x)] 
(c) \fx,y,z EM [d(x,y)..;d(x,z)+d(z,y)]. 
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied: 
(c') \fx,y,z EM [d(x,y)..;max{d(x,z),d(z,y)}]. 
Note that we consider only metric spaces with bounded diameter: the distance between two points 
never exceeds 1. 

Example 
Let A be an arbitrary set. The discrete metric d,1. on A is defined as follows. Let x,y EA, then 

{
Q if X =y 

d,1.(x,y) = 1 if X'FY· 

DEFINITION 2.2 
Let (M,tf) be a metric space, let (x;); be a sequence in M. 
(a) We say that (x;); is a Cauchy sequence whenever we have: 

'v'£>0 3NEN \fn,m>N [d(x.,xm)<£]. 
(b) Let x EM. We say that (x;); converges to x and call x the limit of (x;); whenever we have: 

'v'£>0 3N EN \fn>N [d(x,x.)<£]. 
Such a sequence we call convergent. Notation: =x. 

(c) The metric space (M,tf) is called complete whenever each Cauchy sequence converges to an ele-
ment of M. 

DEFINITION 2.3 
Let (M1,d1),(M2,d2) be metric spaces. 
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a such that: 

\fx,yeM1 [d2(f(x),/(y))=d1(x,y)]. We then write M 1.;;;r,_M2. When/is not a bijection (but only 
an injection), we call it an isometric embedding. 

(b) Let f:M 1 2 be a function. We call f continuous whenever for each sequence (x; ); with limit x 
in M I we have that /(x). 

( c) Let A ;;.Q. With M 1 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property: 
\fx,yEM1 [d2(f(x),f~))..;A•d1(x,y)). 
Functions f in M 1 M 2 we call non-distance-increasing (NDI), functions f in M 1 M 2 with 
Q..;£< I we call contracting. 

PROPOSITION 2.4 
(a) Let (M1,d1),(M2,d2) be metric spaces. For every A ;;.Q and fEM 1 M2 we have: f is continuous. 
(b) (Banach's fixed-point theorem) 

Let (M,tf) be a complete metric space and f :M a contracting function. Then there exists an 
x EM such that the following holds: 
(1) f(x)=x (xis a fixed point of j), 
(2) \fyeM lf(y)=y => y =x] (xis unique), 
(3) 'v'xoEM 1 where J<• +l)(xo)= J(t<•)(xo)) and J<0l(xo)=xo. 

DEFINITION 2.5 (Closed subsets) 
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A subset X of a metric space (M,d) is called closed whenever each Cauchy sequence in X converges to 
an element of X. 

DEFINITION 2.6 
Let (M,d),(Mi,di), ... ,(M.,d.) be metric spaces. 
(a) With we denote the set of all continuous functions from M 1 to M2. We define a 

metric dF on M 1 2 as follows. For every f 1 ,h EM 1 2 

dF(/1 ,fi)=supxeM, {d2(/1(x),/i(x))}. 

For A ;.,,Q the set M 1 2 is a subset of M 1 2, and a metric on M 1 M2 can be obtained 
by taking~e res!!!ction of the corresponding dF. 

(b) With M 1 U · · · UM. we denote the disjoint union of Mi,.:....:.. ,M.!!1. which can be defined as 
{l}XM1 U · · · U{n}XM •. We define a metric du on M 1 U ···UM. as follows. For every 
x,yEM1U · · · uM. 

_ {dj(x,y) if x,yELJ} XM1, 1E,;Jo:;;n 
du(x,y) - I otherwise. 

(c) We define a metric dp on M I X · · · X M. by the following clause. 
For every (xi, ... ,x.), (yi, ... ,y.)EM1 X · · · XM. 

dp((xi, ... ,x.),(y 1, ... ,y.))=max;{d;(x;,y;)}. 

(d) Let 'il'c,(M)=def{XJXt;;MJX is closed and non-empty}. We define a metric dH on 'il'c,(M), called 
the Hausdorff distance, as follows. For every X, YE 'il'c,(M) 

dH(X, Y)=max{supxex{d(x, Y)},supyer{d(y,X)} }, 

where d(x,Z)=de/inf,,,2 { d(x,z )} for every Z t;;M, x EM. 
An equivalent definition would be to set V,(X)={yEM l3xEX[d(x,y)<rl} for r>O,XCM, 
and then to define 

dH(X,Y) = inf{r>OJ XcV,(Y)I\ YCV,(X)}. 

PROPOSITION 2.7 
Let (M,d), (Mi,d1), ••• ,(M.,d.~ dF, du, dp and dH be as in definition 2.6 and suppose that (M,d), 
(M1,d1), ... ,(M.,d.) are complete. We have that 
(a) (M1=.M2,t!E), M2,dF), 
(b) (M1 U · · · UM.,du), 
(c) (M1 X · · · XM.,dp), 
( d) (6J'c1(M),dH) 
are complete metric spaces. If (M,d) and (M;,d;) are all ultra-metric spaces these composed spaces are 
again ultra-metric. (Strictly spoken, for the completeness of M 1 2 and M 1 M 2 we do not need the 
completeness of M 1• The same holds for the ultra-metric property.) 

If in the sequel we write M 1 U ···UM., M 1 X · · · XM. or '1'c,(M), we mean 
the metric space with the metric defined above. 
The proofs of proposition 2.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can be 
proved with the help of the following characterization of the completeness of (6J'c1(M),dH ). 

PROPOSITION 2.8 
Let (6J'c1(M),du) be as in definition 2.6. Let (X;); be a Cauchy sequence in 6J'c1(M). We have: 

= EX;, (x;); a Cauchy sequence in M}. 
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Proofs of proposition 2.7(d) and 2.8 can be found in (for instance) [Du) and [En). Proposition 2.8 is 
due to Hahn [Ha]. The proofs are also repeated in [BZJ. 

THEOREM 2.9 (Metric completion) _ 
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion of M) 
toget'!!!! with an isometric embedding i :M such that: 
(I) Mis complete 
(2) For every complete !!'!!_ric space M' a!!_d isometric embedding j :M there exists a unique 

isometric embedding j:M such that j 0 i = j. 
PROOF 
The space M is constructed by taking the set of all Cauchy sequences in M and dividing it out by the 
equivalence relation = defined by 

(x.),,=(Y.). =def lim.-"'d(x.,y.)=O. 
The metric de on M is defined by 

dc([(x.)]=,[(Y.)k) =def lim.-a,d(x.,y.) 
and the embedding i will map every x eM to the equivalence class of the sequence of which all ele-
ments are equal to x: 

i(x) = [(x).k. 

It is easy to show that M and i satisfy the above properties. 

3. A CATEGORY OF COMPLETE METRIC SPACES 

In this section we want to generalize the technique of solving reflexive domain equations of De 
Bakker and Zucker ([BZ]). We shall first give an example of their approach and then explain how it 
can be extended. 
Consider a domain equation 

P ;;; {po} U (A X P) , 

with A an arbitrary set. In [BZ] a complete metric space that satisfies this equation is constructed as 
follows. An increasing sequence A <0> ~A <1> • • · of metric spaces is defined by 

(0) A <0> = {p0 } , do trivial , 

(n+l)A<•+I) = {po} UA xA<•>, 
dn+I (po, q) = I if qeA<•+I), q =I= po, 

d,,+1(<a1, Pi>, <a2, p2>) = I J_. d (pl ) l 2 n I, P2 

Note that for every i;;;.O, A(il is a subspace of A(i+I)_ Their union is defined as 

A*= LJ A<•>, 
• EN 

and a domain A"' is defined as the metric completion of this union: 
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A 00 =A'. 
It is then proved that A 00 satisfies the equation. (We observe that A • is isometric to the set of all 
finite sequences of elements of A, while A 00 is isometric to the set of all finite and infinite sequences, 
in both cases with a suitable metric.) 
In order to extend this approach, we shall formulate a number of category-theoretic generalizations of 
some of the concepts used in the construction described above. 

First we shall define a converging tower to be the counterpart of an increasing sequence of metric 
spaces; then the construction of a direct limit of such a tower will be the generalization of the metric 
completion of the union of such a sequence. Finally we shall give a generalized version of Banach's 
fixed-point theorem. 
For this purpose we define a category e of complete metric spaces. 

DEFINITION 3.1 (Category of complete metric spaces) 
Let e denote the category that has complete metric spaces for its objects. The arrows I in e are 
defined as follows. Let M 1,M2 be complete metric spaces. Then M 1---+'M2 denotes a pair of maps 

I 

M 1,.:zM2, satisfying the following properties: 
1 

(a) i is an isometric embedding, 
(b) j is non-distance-increasing (NDI), 
(c) j 0 i=idM,· 
(We sometimes write <i,j > for 1.) Composition of the arrows is defined in the obvious way. 

REMARK 
For the basic definitions from category theory we refer the reader to [ML]. 

We can consider M 1 as an approximation of M 2 : in a sense the set M 2 contains more information 
than M 1 , because M I can be isometrically embedded into M 2• Elements in M 2 are approximated by 
elements in M 1. For an element m2 EM 2 its (best) approximation in M I is given by j(m2). (The rea-
son why j should be NDI is, at this point, difficult to motivate.) 
When we informally rephrase clause (c), it states that the approximation in M I of the embedding of 
an element m I EM I into M 2 is again m 1 • Or, in other words, that M 2 is a consistent extension of 
M1. 

DEFINITION 3.2 
For every arrow M 1---+' M2 in e with 1= <i,j > we define 

8(1) = (i 0j,idM,) ( = SUPm,eM, { dM, (i 0j(m2),m2)}). 

This number plays an important role in our theory. It can be regarded as a measure of the quality 
with which M2 is approximated by M1: the smaller 8(1), the denser M 1 is embedded into M 2. 
We next try to formalize a generalization of increasing sequences of metric spaces by the following 
definition. 

DEFINITION 3.3 (Converging tower) 
(a) We call a sequence (D.,i,,). of complete metric spaces and arrows a tower whenever we have that 

'lfneN [D ....... ~D.+1E8]. 
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(b) The sequence (Dn,&n),, is called a converging tower when furthermQre the following condition is 
satisfied: 
V£>0 3NeN \tm>n-;;,,N [8(1nm)<£), where &nm= &,,,- 1° · · · 0 &,,: 

ExAMi'LE 3.4 
A special case of a converging tower is a sequence (Dn,&n)n that satisfies the following conditions: 
(a) \tneN ee), 
(b) 3£ (0-.;£< 1 /\ \tn eN [8(&,, + i)..; £•8(1,,)]). 
(Note that 8(1,,m)o;;;B(i,,)+ • · · +8<1m-1 )o;;;£"•8(1o)+ · · · +~ -• ·8(1o)o;;; 1 ~£ ·8(1o).) 

ExAMPLE 3.5 
Let A<0> ~A<1l · · · be the sequence of metric spaces defined at the beginning of this chapter. We 
show how it can be transformed into a converging tower, by defining a sequence of arrows (&n). (with 
&,, = <i., j. >) with induction on n: 

(0) io(po)=po, jo trivial, 
(n + l)i. +1 : A<•+IJ A<•+2> , trivial (i.+ 1(p) = p), 

j.+1 : A<•+2J A<•+IJ' 

j.+1(po) =Po, 
j.+1(<a, p>) = <a, j.(p)> for <a, p> e A<•+2>. 

It is not difficult to see that we have obtained a tower 
... ' 

which is converging. 

3.1 The direct limit construction 
In this subsection we show that in our category e every converging tower has an initial cone. The 
construction of such an initial cone for a given tower (the direct limit construction) generalizes the 
technique of forming the metric completion of the union of an increasing sequence of metric spaces. 
Before we treat the inverse limit construction, we first give the definition of a cone and an initial cone 
and then formulate a criterion for the initiality of a cone. 

DEFINmON 3.6 (Cone) 
Let (D.,i,,). be a tower. Let D be a complete metric space and (y.). a sequence of arrows. We call 
(D,(r.)n) a cone for (D.,i,,). whenever the following condition holds: 

\tneN = 'Yn+1°&nl 
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DEFINITION 3.7 (Initial cone) 
A cone (D,(y.),,) of a tower (D.,i.,,). is called initial whenever for every other cone (D',(y~).) of 
(D.,i.,,). there exists a unique arrow ,:D->D' in e such that: 

'v'n EN [icy. = y~]. 

D -------> D' 
L 

LEMMA 3.8 (Initiality lemma) 
Let (D.,i.,,). be a converging tower with a cone (D, (y.).). Let Yn = <a.,P. >. We have: 

PROOF 
<= 

D is an initial cone~ =idD. 

Suppose lim,,...,. 00 a. 0P.=idD. Let (D', (y~).), with y~=<a~, {1~>, be another cone for (D., i.,,) •. We 
have to prove the existence of a unique arrow D->'D' Ee such that 

'v'n EN [ L O Yn = Y~] • 

First we construct an embedding i:D->D', then a projection j:D'->D. Next, the arrow I will be 
defined as i=<i, J>. 
For every n EN we have 

a~ 0 Pn ED->D'. 

We show that (a~ 0P.). is a Cauchy sequence in D->D' and then use the completeness of this function 
space to define i as the limit of that sequence. 
Let m>n~O. We have 

0 f1m , a~ 0 P.) = 
0 Pm, a~ 0 inm 0}nm O f1m) = 

SUPxeD{dD•(a~ 0 Pm(X), a~ 0 inm 0)nm O f1m(X))} = 
[ because a~ is isometric ] 

SUPxeD{dD.<Pm(X), inm O }nm O Pm(X))} = 
[ because Pm is surjective ] 

SUPxeD. {dD.(X, inm 0]nm(X))} = 
inm 0]nm)) = li(t,m). 



Let £>0. Because (D., 1,,). is a converging tower there is an N EN such that 

\r/m>n;;itN [ 8(1,,m)<E]. 

Thus (a~ 0 /J.). is a Cauchy sequence. We define 

i = lim,,_""a~o/Jn . 

We prove that i is isometric by showing: 

\r/x, JED [ dD' (i(x), i(y)) = dD(x, y)] 
Let x, y ED, we have 

dD•(i(x), i(y)) = 
dD•(lim,,_""a~ 0 fJ.(x), lim,,_00 a~o/J.(y)) = 
lim,,_""dD,(a~ 0 fJ.(x), a~ofJ.(y)) = 
[ because a~ is isometric ] 

lim,,_""dD,<fJn(x), (/J.(y)) = 
[ because a. is isometric ] 

lim,,_0()dD(a. 0fJ.(x), a.ofJ.(y)) = 
lim,,_O()a.ofJ.(y)) = 

dD(x, y). 

Thus i is isometric. 

Similar to the definition of i we choose 

J = lim,,_""a.ofJ~ . 

We have that J is NDI, because, for x, y ED': 

dD(j(x), J(y)) = 
lim,,_""a. 0 /J~(y)) = 

lim,,_""dD(a. 0 /J~(x), a.ofJ~(y)) = 
[ because a. is isometric ] 

lim,,_""dD, (/J~(x), (/J~(y)) .;;; 

I because fJ~ is NDI l 
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y) = 
dv•(x, y). 

We also show: J O i =idv. Let xED, then 

J O i(x) = 
o /J.(x)) = 

o a~ o {3.(x) = 
o /j~ o a~ o fJ.(x) = 

o /J~ o a~ o /3.(x) = 
[ because /J~ 0 a~ = idv. ] 

° fJ.(x) = x . 

Now we can define 

t = <i,j>' 
of which we have so far proved : D--+'D'E8. 

Next we have to verify that I satisfies the condition 

itmEN [ 1"'(., = y~]. 

Tiris amounts to 

itm EN [ i o a., = a~ I\ /3., 0 J = {3~ ] . 

Let m ;;,;, 0. We only prove the first part of the conjunction. We have 

i o a., = a~ o /Jn) o a., 

= +m O /J. +m) 0 a., 
= lim,,-+ooa: +m O /Jn +m O am 

= lim,,_ooa~ +m O /Jn +m O an +m O im, m+n 

= Iim,,_ooa~ +m o idv,,+ ... o im, m+n 

= Iim,,_oo a~ = a~ . 

Finally we show that I is unique. Suppose D--+"D', with 1'=<i',j'>, is another arrow in C?., that 
satisfies 

itm EN [ 1' 0 Ym = Y~ ] . 

We only show that i' = i, leaving the proof of j' = j to the reader: 

i' = i' 0 idv 

= a~ 0 /Jm 
= i. 
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Suppose now that (D, (yn),,) is an initial cone of the converging tower (Dn, 1n)n- We have to prove 
that 

lim,,, ... 00 «n ° /Jn = idD • 
By an argument similar to the proof for (a~ 0 /Jn),, above, we have that (an ° /Jn)n is a Cauchy 
sequence. We define 

f = lim,, ... 00 «n ° /Jn , 
D' = { x I xeD lf(x)=x }. 

We set out to prove that D' = D. 
The set D' is a closed subset of D, so it again constitutes a complete metric space. For each n el\l we 
have 

because of the following argument. Let deDn, then: 

flan(d)) = 
lim,,, ... ao«m 0 /Jm(«n(d)) = 
limm ... ao«n +m 0 /Jn +m O (an(d)) = 
lim,,, ... ao«n+m 0 /Jn+m O «n+m O in. n+m(d) = 
lim,,, ... ao«n +m O in, n+m(d) = 
I: :n,,, ... 00 «n(d) = 
«n(d). 

So f(an(d)) = «n(d), and thus «n(d) E D'. 
Next we define, for each n el\l: 

/J~ = /Jn1D' (/Jn restricted to D'), 

y~ = <a~, {J~>. 
It is clear that (D', (y~)n) is another cone for (Dn, ln)n- Because (D, (Yn)n) is initial, there exists a 
unique arrow D-+'' D' ee with 11 = <i 1, j 1 > such that 

"In el\l [ 11 ° Yn = Y~ ] • 

The set D' can also be embedded into D: let D, with ,2 = <i2,Ji>, be defined by 

i2 = idD', 

h = i1 · 
Then Dee. For i2 1s isometric, h is NDI and the following argument shows that 
h O i2 = idD'· Let deD'. Then 

h o i2(d) = Ji(d) 
= ii(d) 

= [ because d e D', we have /(d) = d ; 

in other words, (lim,, ... 00 «n ° /JnXd) = d ] 
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(i I o (lim,,'-'ooan o /J.)Xd) 
= 1 ° a. 0 P.Xd) 
= (a~ 0 P.Xd) 
= 0 P.Xd) = d . 

Now we are able to define by 

I = 12 o It 

= <i2oi1,}t oJi>. 
It is easy to verify that 

'lfn EN [ 1 ° Yn = Yn ] . 

By the initiality of D we have that 

I = <idD ' idD > . 
Thus i 2 ° i 1 = idD, This implies D = D'. 
Conclusion: 

lim a. a {J. = idD . 

The initiality lemma will appear to be very useful in the sequel, where we shall construct a cone for 
an arbitrary converging tower and prove that it is initial. 

DEFINITION 3.9 (Direct limit construction) 
Let (D.,i,,)., with i,, =<i.,J. >, be a converging tower. The direct limit of (D.,,.). is a cone (D,(r.).), 
with y.=<a.,/J.>, that is defined as follows: 

D ="'I {(x.).l'lfn;;;.O[x.ED. /\J.(x.+ 1) = x.l} 
is equipped with a metric such that for all (x.).,(y.).ED: 
d((x.).,(y.).) = sup{ dD. (x.,y.)}; 
a.:D.->D is defined by a.(x)=(xk)b where l}k.(x) if k <n 

xk = x if k =n 
ink(x) if k >n; 

is defined by IJ.((xk)k)=x •. 

LEMMA 3.10 
Let (D,d) be as defined above. We have: 



(D,tf) is a complete metric space. 
PROOF 
Let (x.)., (y.). ED. Let m >n ;..o, then 

do.(x., y.) = do.<Jnm(Xm), jnm(ym)) 

o;;; I because j.m is NDI ] 

do.(Xm, Ym) • 
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Thus (d0 .(x.,y.)). is an increasing sequence. It is bounded by I, thus its supremum exists, and is 
equal to the limit. It is not difficult to show that d is a metric. . . 
We shall prove the completeness of D with respect to this metric. Let (x\, with x' =(xb, x\, x~ •.. . ) 
be a Cauchy sequence in D. Because for all k and for all n and m: 

do,<xZ, xf) o;;; supkeN{do,<xZ, xf)} 

= d (x", xm) 

and <x\ is a Cauchy sequence, we have, for all kEN, that (xDi is a Cauchy sequence in Dk, For 
every k we set 

Xk = illllj_.ooxi , 
We have jk(Xk+ i)=xk, since 

jk(xk+i) = A(illllj .... ooXi+i) 

= limi .... ooA(xi + 1 ) 

= lim;_.00 Xi 

= Xk. 

Thus (xk)k is an element of D. 
Because the convergence of the sequences (xl:)i fork EN was uniform, we have 

V<>O 3NEN VkEN \fn>N [ do,(xi, xk)<<]. 

This fact implies that (xk)k is the limit of (x\, since, for <>0, 

d((xk)k, x") = SUPkeN{do,(Xk, xV} 

for n bigger than a suitable N. 

RELATION BE1WEEN THE DIRECT LIMIT CONSTRUCTION AND METRIC COMPLETION 
We can look upon the construction of the direct limit for a tower (D.,i.). as a generalization of tak-
ing the metric completion of the union of a sequence of metric spaces. We define 

Do = {O}XDo 

D~+I = {n +l}X(D.+ 1 \i.(D.)) U D~. 

and take l.:D.-+D~ as follows: 

/ 0(d) = <0,d> for dEDo, 

{ 
l.(d') ifd=i.(d')ED.+ 1 withd'ED. 

l.+i(ti) = <n+l,d> ifdei.(D.). 
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Because each ;. is an injection, this construction worlcs, and we see that each '• is a bijection. There-
fore, we can use (I.). in the obvious way to define a metric d. on each D~ and suitable 
andj.:D~+ 1 
Now we have an isomorphic copy of our original tower, which satisfies the condition that each 
i~ + 1 is a subset embedding. From now on we leave out the primes, and just suppose that 
i. :D. + 1 satisfies this condition. 
If we define U as the union of (D.)., and by 

d(x,y) = dD, (x,y ), 

whenever xED.,yeDm and k-_.m,n, we have that (U,d) is a metric space. Generally, it will not be 
complete. The direct limit of (D.,i.). can be regarded as the completion of (U,d) in the following 
sense. 
In U we consider only such sequences (x.)., for which: 

"In eN[x. eD.] 
and 

"In eN[x. = j.(x. + 1)i 
It follows tha, (x.). is a Cauchy sequence. For m >n we have 

d(xm,Xn) = dD.(Xm,i-(x.)) 

= dD. (Xm,inm 0jnm(Xm)) 

._; 

This number is small for large n and m, because (D.,i.). is a converging tower. 
For every (x.). and (Y.). in U, that both satisfy (1) and (2), we have: 

if (x.,y.) = 0, then (x,.). = (Y.)., 

because of: 

dD, (x,,,y.) = dD, (j.(x. + i),j.(Y. + i)) 

-.; dD,.,(Xn+hYn+1) 

(2) 

(expressing that (dD,(x.,y.)). is a monotonic, non-decreasing sequence with limit 0, so all its elements 
are 0). 
Of course it is not the case that every Cauchy sequence satisfies (l) and (2), but we can find in each 
class of Cauchy sequences that will have the same limit a representative sequence, which satisfies (1) 
and (2), and which by the above is unique. Let (x.). be an arbitrary Cauchy sequence in U. As a 
representative of the class of Cauchy sequences with the same limit as (x.)., we take the sequence 
(Y.)., defined by 

Yn = 
with 

{ 
Xm if XmEDn 

x::, = jn1c(Xm) if Xm !i!D., and k >n is the least number with Xm eDk 

(Remember that k >n~Dk ":JD.). It is not very difficult to show, that we have indeed: 

dD, (x.,y.) = 0, 
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and that (y.). satisfies()) and (2). Finally we remark that the direct limit D of (D.,i,,). consists of 
exactly those sequences in U, that satisfy (l) and (2), and thus can be viewed as the metric completion 
of (U,d). 

Remember from theorem 2.9 that the metric completion M of a metric space M is the sma:!!_est com-
plete metric space, into which M can be isometrically embedded, in the following sense: M can be 
isometrically embedded into every other complete metric space with that property. 
For the direct limit of a converging tower, we have a similar initiality property: 

LEMMA 3.11 
The direct limit of a converging tower (as.defined in definition 3.9) is an initial cone for that tower. 

PROOF 
Let (D., i,,). and (D, (y.).) be as defined in definition 3.9. According to the initiality lemma (3.8), it 
suffices to prove 

"• o /1. = ido ' 
which is equivalent to 

V£>0 3NeN Vn>N [ d(a. 0 /1., id0 )<£] 
Let £>0. Because (D., i,,). is a converging tower, we can choose N eN such that 

Vm>n;;;.N [ d(inm O jnm, ido.)<£ ]. 

Let n>N. Let (xm)mED, we define 
<Ym)m = IXn ° /Jn((Xm)m), 

For every m>n we have 

Therefore 

do.<Ym, Xm) = do_(i.m(x.), Xm) 

= do.(inm O jnm (xm), Xm) 

,,;;; d(inm 0jnm, ido.) 

<£. 

do((ym),,,, (xm)m) = sup{do.<Ym, Xm)} ,,;;;(. 

Because (x.). eD was arbitrary, we have 
d(a. 0 fJ.,ido)<£ 

for all n>N. 

3.2 A fixed-point theorem 
As a category-theoretic equivalent of a contracting function on a metric space, we have the following 
notion of a contracting functor on e. 
DEFIN1110N 3.12 (Contracting functor) 
We call a functor F:e-.+e contracting whenever the following holds: there exists an£, with O.r;;;£<1, 
such that for all D-+' E ee we have: 
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A contracting function on a complete metric space is continuous, so it preserves Cauchy sequences 
and their limits. Similarly, a contracting functor preserves converging towers and their initial cones: 

LEMMA 3.13 
Let F:<3--+e be a contracting functor, let (Dn,&n),, be a converging tower with an initial cone (D,(yn)n} 
Then (FDn,F&,,),, is again a converging tower with (FD,(Fyn)n) as an initial cone. 

The proof, which may use the initiality lemma, is left to the reader. 

THEOREM 3.14 (Fixed-point theorem) 
Let Cat be a category and let be a functor. Let FDoeCat. Let the tower (Dn,&n)n be 
defined by Dn+I =FD. and i,. +I =F&,, for all n;;;.O. If this tower has an initial cone (D,(yn)n) and if this 
tower and its cone are preserved under F, that is, if (FDn,F&,,),, has (FD,(Fyn)n) as an initial cone, then 
we have: Dr;;;r,FD. 

PROOF 
We have that 

(FDn, F&,,),, = (Dn+I, ln+l)n-

This implies that (D, (Yn)n) and (FD, (Fyn)n) are both initial cones of (Dn + 1, i,, + i) •. It follows from 
the definition of an initial cone that D and FD are isomorphic. 

D.+1 =FD. 

Yn+V '--[r. 
D ------- FD 

CoROLLARY 3.15 Let F be a contracting functor F:<3--+e and let FDee. Then F has a fixed point, 
that is, there exist a Dee with D r;;;r,FD. 

PROOF Consider the tower (D.,&n). defined by Dn+I =FD. and ln+I =Fi,. for all n;..O. This tower 
can be seen to be converging in the same way as in example 3.4. Thus it has a direct limit (D,(y.).), 
which is (according to lemma 3.11) an initial cone for this tower. According to lemma 3.13, F 
preserves towers and their initial cones. Now we can apply theorem 3.14, which yields: Dr;;;r,FD. 

REMARK 
It is always possible to find an arrow Take D0 ={p0 }; because FD0 is non-empty we 
can choose an arbitrary p1 eFDo, and put io=<io,Jo> with i(po)=p1 andj(x)=po, for xeFDo. 

4. UNIQ~ OF FIXED POINTS 

We know that a contracting function f :M on a complete metric space M, has a unique fixed 
point. We would like to prove a similar property for contracting functors one. 
Let us consider a contracting functor F on the category of complete metric spaces e. By corollary 



3.15 we know that F has a fixed point, that is there exists D Ee! and an isometry K such that 

Suppose we have another fixed point D' with an isometry A, such that 
>. 

"" 
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We know by the construction of D that it is the direct limit of the converging tower (Dn,Ln)n, where 
FDoEc!is a given embedding and Dn+I =FDn, t.,,+1 =Fi,,. 

If we have that D' is also (the endpoint of) a cone for that tower, the initiality of D implies that there 
exists an isometric embedding If we moreover can demonstrate that this I is an isometry, 
then we can conclude that the functor F has a unique fixed point, which would be quite satisfactory. 
A proof for , being an isometry might look like: 

8(1) = (?)IJ(_F1) 

._; t·ll{_ I), 

implying (once the question-mark has been eliminated) that 8(1)=0, thus I is an isometry. 
It turns out that we can guarantee that the second fixed point D' is also a cone for the converging 
tower (Dn,Ln)n in one of two ways. Firstly, we can restrict our functor F to the base-point category of 
complete metric spaces (to be defined in a moment). Secondly, we can require F to be contracting in 
yet another sense, to be called horn-contracting below. 
We shall proceed in both directions, first exploring the unicity of fixed points of contracting functors 
on the base-point category, then focusing on functors on e that are contracting and horn-contracting. 
In both cases it appears to be possible to prove the equality marked by (?) above. Unfortunately (for 
good mathematicians, who are.said to be lazy), this takes some serious effort, to which the proof of 
the following theorem bears witness. 
First we give the definition of the base-point category: 

DEFINITION 4.1 (Base-point category of complete metric spaces) 
Let f! denote the base-point category of complete metric spaces, which has triples 

<M,d,m> 

for its objects. Here (M,d) is a complete metric space and m is an arbitrary element of M, called the 
base-point of M. The arrows in f! are as in e (see definition 3.1), but for the constraint that they 
map base-points onto base-points, i.e. for we also require that 
i(m)=m', andj(m')=m. 

REMARK 
The definitions of cone, functor etcetera can be adapted straightforwardly. Moreover, lemmas 3.8, 
3.11, 3.13 and corollary 3.15 still hold. 

THEOREM 4.2 (Uniqueness of fixed points) 
Let F be a contracting functor F: f! Then F has a unique fixed point up to isometry, that is to say: 
there exists a D E f! such that 

(1) FD ~D, and 

(2) VD'Ef! [FD'~D'=>D~D']. 

PROOF 
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We define a converging tower (D., i,,). by 

Do = <(po}, d(p,), po> , 

D.+ 1 =FD.for all n;;a,,O, 
'<l : Do-+D1, trivial, 

t.,,+1 = Fi,, for all n;;a,,O. 
Let (D, (y.).) be the direct limit of this tower. As in theorem 3.14, we have that both (D, (y.).) and 
(FD, (Fy0 ) 0 ) are initial cones of (D0 , i,,) •. The initiality of (D., (y0 ) 0 ) implies the existence of a 
unique arrow D-+" FD, such that for n ;;.,o, 

* 
D FD 

I( 

FIGURE 1 
Because also (FD, (Fy0 ))0 is initial, we know that K must be isometric. 

Now let D'e<? be another fixed point of F, say D'-;;:FD' for an isometry A. We define {y.). such that 

(D', {y0 ) 0 ) is a cone for (D., i,,)0 : 

Yo : Do-+D' is the unique arrow, which maps base-point to base-point, 

Yn+l =A-I° Fyn. 
We have that (D', (y0 ) 0 ) is indeed a cone for (D., i,,). because of the commutativity of the following 
diagram, for all n EN: 

D. 
,.,, 

:,, FD0 = D0 +1 

,. l * !FY. 

D' EA FD' 

We prove it by induction on n : 
(0) Because the arrows in(? map base-points onto base-points, we have that (;\- 1°Fy0°'<))i(p0 ) 

and {y0 ) 1(p0 ) are both equal to the base-point of D', and for any xeD', that 
(;\-loFyoo'<l)i(x)= (yoh(x)=po. 



Note that this is the only riai:e, whe~e we make use of the base-point structure of I?. 
(n + l) Suppose that we have,\.- °Fy.oi.,, =y •. Then 

A-1 0 Fr.+1 0 '-+I = A-1 0 F6.+1 0 "'> 
= .\.-1 o F(.\.-1 o Fy. o i,,) 

= .\.-1 oF-y. 
= Yn+I · 

Again by the initiality of (D, (y.).) there is a unique arrow D' such that, for all n eN : 

* 
D D' 

- - - - - - -> 
I 

FIGURE 2 
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As indicated above, we now set out to prove that I is an isometry. When we apply F to figure 2, we 
get 

FD FD' 

which leads to: 

Dn+I 

FY 

FD * D' 

FD' 

(because Yn + 1 = .\. - I ° Fy., so Fy. =>.. 0 Yn + 1 ), or, replacing .\. by .\. - 1 and reversing the corresponding 
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arrow: 

D.+1 Fyn, FD _f.!_ FD' x-i D' 

Yn+I 

Substituting IC O Yn + 1 for Fy. (figure 1) yields: 

D.+!.!!..±.! D FD ..f..!:..FD'~ D' 

or: (A-I O Fi O IC) 0 Yn+I =rn+I (this equality also holds for Yo and Yo). But according to figure 2, I is 
the only arrow with: 'vn EN [, O Yn = r.). Thus 

,=x-10F101C, 

or, in other words: 

D IC FD 

D' FD'. 

This commutativity, together with the fact that IC and;\ are isometries implies: 

6(,) = 8(Fi). 

(For the definition of 8 see definition 3.2.) 
Now the proof can be concluded, following the train of thought indicated above: 

8(,) = 8(Fi) 
,;;;; (. 8(1), 

for some O.;;;;i< l, since Fis a contraction. This implies 

8(,) = 0, 

so (if'= <i, j>) 
i O j = id0 ,. 

At last we can draw the desired conclusion: 
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Now we return again to our original category e of complete metric spaces and provide for, as prom-
ised above, another criterion for functors on e, that, together with contractivity, will appear to be 
sufficient to ensure uniqueness of their fixed points. 

DEFINITION 4.3 (Hom-contractivity) 
We call a functor F:~e horn-contracting, whenever 

'!IP ee '!IQ ee 3(< I IFP.Q :(P FQ)] 

where 

REMARKS 
Because arrows in e are pairs, we have on the standard metric for the Cartesian product. So 
let 11, 11 = <i1,j1 > and 12 = <i2,ji>. Then their distance is defined by 

d(11,12) = 

It is not the case that every horn-contracting functor is also contracting, which follows from the fol-
lowing example. 
Let A ={O} and B ={1,2} be discrete metric spaces. We define a functor F:~e as follows. For 
every complete metric space Pee let 

_ {A if P contains exactly I element 
FP - B otherwise. 

For we define F,: 

11..i if FP =FQ =A 
F,= Is if FP=FQ=B 

lo if FP =A and FQ =B, 

where io=<i0,j0 >, with i0 :0....I, j 0 :l,2....0. Note that there is no if FP =Band FQ =A. It 
is not difficult to verify that F is a functor, which is horn-contracting. The following argument shows 
that it is not contracting. Let C={3,4} with d(3,4)=t, and let with 1e=<k,I> be defined 
by k:O..-.3 and /:3,41-+O. Then we have 6(1e)=i, but is (as defined above), for 
which 6(1o)= 1. 

THEOREM 4.4 
Let F be a contracting and horn-contracting fwictor F:~e. Then F has a unique fixed point up to 
isometry, that is to s'o/: there exists a Dee such that 

(I) FD ;;;;.D and 

(2) '!ID'e<! [FD' ;;;;.D' D ;;;;.D'). 

PROOF 
The proof of this theorem differs from that of theorem 4.2 only in the definition of y0 . There we 
could take for Yo the trivial embedding of D0 into D', mappingp0 onto the base-point of D'. Here we 
have no base-points. But we can use the fact that F is horn-contracting by taking for y0 the unique 
fixed point of the function that we define by: G(y) = X- 10Fy0io, for 
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ye(D 0-iD'). (Note that G is contracting because Fis horn-contracting.) It follows that Yo, thus 
defined, satisfies A- 1 °Fy0°1o = Yo, which serves our purposes. 

5. A CLASS OF DOMAIN EQUATIONS WITH UNIQUE SOLUTIONS 

In this section we present a class of domain equations over the category e that have unique solutions. 
For this purpose we first define a set Fune of functors on e and formulate a condition for its elements 
that implies contractivity and hom~contractivity. It then follows that every domain equation over e 
induced by a functor that satisfies this condition, has a unique solution. 

DEFINITION 5.1 (Functors) 
The class Fune, with typical elements F, is defined by: 

F ::= FMI id'I F1UFil F1XFil 'il'c1(F)I F1°Fi 
where Mis an arbitrary complete metric space and (>0. Every FeFune is to be interpreted as a 
functor 

as follows. Let (P,dp), (Q,dQ)ee be complete metric spaces. Let with i=<i,J>. For the 
definition of each FeFune we have to specify: 

(a) F=FM: 

(1) the image of P under F: FP, 
(2) the image of d under F: Fd, 
(3) the image of, under F: Fi (=<Fi,FJ>). 

(1) FP = M, 

(2) Fd = dM (the metric of M), 

(3) Ft= <idM,idM>-
We sometimes use just a set A instead of a metric space M. In this case we provide A with the 
discrete metric ( definition 2.1 ). 
(b) F=id': 

(1) FP = P, 
(2) Fd = A(x,y)·min(I, (•d(x,y)), 
(3) Ft= l 

Next we define functors that are composed. Let F1, Fi eFune, such that 

(1) F1P = Pi, FiP = Pi, F1 Q = Qi, FiQ = Q2, 

(2) F1d = di, F2d = d2, 
(3) F11= <i1,J1>, F2t= <i2,Ji>. 

(c) 

(1) FP = 



(2) Fd = dF (see definition 2.6(a)), 

(3) F, = <"AJ-(i2°/oi1), Ag·(J2°g0i1)>. 
(F =F1 F2 is defined similarly.) 
(d) F=F1 UF2: 

(1) FP = P1 UP2, 
(2) Fd = du (see definition 2.6(b)), 

(3) F, = <Ap· if pe{O} XP 1 then i1((ph) else i2((ph) fi, 
Aq· if qe{O}XQ1 thenj1((qh) else}2((qh) fi>. 

(e) F=F1 XF2: 
(I) FP = P1 XP2, 
(2) Fd = dp (see definition 2.6(c)), 

(3) Fi= <A<p1,p2>·<i1(p1),i2(p2)>,'A<q1,q2>·<J1(qi),}2(q2)>>. 
(f) F=~c1(F1): 

(I) FP = ~c1(P1), 
(2) Fd = d8 (see definition 2.6(d)), 

(3) F, = <AX·{i1(x)lxeX},AY·c/osure U1<Y)lyeY}>. 
(g) F = F 1 °F 2: the usual composition of functors on e.. 

REMAllx 
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The set Fune contains elements of various form. We give an example. Let Fi, F2 eFune. The follow-
ing functor is an element of the set Fune, as can be deduced from its definition. 

I 
F1 F2 =rkf °F2)), for A >0. 

LEMMA 5.2 
For all FeFune we have: F is a well definedfunetor one. 

PROOF 
We treat only one case by way of example, being (lazy and) confident that it shows the reader how to 
proceed in the other cases. 
Let F = and suppose F1 and F2 are well defined. Let (P,dp),(Q.~) and with 
, = <i,j>; furthermore, let fork = 1,2: 

FkP = Pk, FkQ = Qk, 
FkdP = dp,, FkdQ = dQ., 

Fk, = <ik,)k>. 
The functor F is defined by 

(I) FP = 
(2) Fdp = dF, 
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(3) Fi = <Fi,Fj> = <"A.j-(i2°/oj1),"A.g·(J2°g0ii)>. 
p Pi-+1 P2 

l 1 j F~ Jo "A.j-(i2ojoj1)=Fi l 1 Fj="A.g•(J2°g0 ii) Fi-+ F2 

Q Q1-+1Q2 
It follows from proposition 2. 7, that (P 1-+ 1 P 2 ,dF) is a complete metric space, which leaves us to 
prove: 

(a) Fi is isometric, 

(b) Fj is NDI and 

(c) Fj°Fi = idFP· 
Part(a): Let/i,fieP1-+1P2. Wewanttoshow 

dFp(/1 ,h) = dFQ(Fi(/1 ),Fi(/2)). 
We have 

sup9.Q, {dQ,(i2•/1•j1(q), i2°/i0j1(q))} = [because i2 is i~metric] 

SUPqeQ, {dp,(J1oji(q),Jioji(q))} 

= [because j I is surjective] 

sup,.,, { dp, (/1 (p ), fi(p )) } 

Part (b): Let g1,g2 eQ 1-+1 Q2. We want to show: 

d£p(Fj(g1),Fj(g2)) ,i;;; dFQ(g1,g2). 
Let peP1; we have: 

= 

d,,(Fj(g1)(p),Fj(g2)(p)) = d,,(J2°g1 °i 1 (p),ji0g2°i 1(p)) 

-.; U2 is NDI] 
dQ,(g1•i1(p),g2°i 1(p )) 

Part (c): Let /eP1-+1 P 2. We have 
Fj•Fi(f) = jioi20Joj1oi1 

=f. 

,i;;; dFQ(g1,g2). 

DEFINmON 5.3 (Contraction coefficient) 
For each FeFunc we define its so-called contraction coefficient (notation: c(F), with c(F)e[O,oo)), 
using induction on the complexity of the structure of F. 

(a) If F=FM, then c(F)=O. 
(b) If F=id', then c(F)=(. 

Let F1, F2eFunc, with coefficients c(F1) and c(F2). Then we set: 



(c) If F =F1-+F2, then c(F)=max{ oo·c(F1), c(F2)}, 

(d) If F =F1-+1 F 2, then c(F)=c(F1)+c(F2). 

(If we would restrict ourselves to ultra-metric spaces, we could write max{ c(F i),c (F 2)} here.) 

(e) If F=F1 UF2, then c(F)=max{c(Fi),c(F2)}. 

(f) If F=F1 XF2, then c(F)=max{c(F1),c(F2)}. 

(g) If F=~c1(F1), then c(F)=c(Fi)-

(h) If F=F1°F2, then c(F)=c(F1)·c(F2), 

(With oo we compute as follows: oo·0 = 0·oo = 0, oo·c = c·oo = oo, if c >0.) 

THEOREM 5.4 
For every functor FeFunc we have 

(I) "IP-+'Qee [8(Fi),e;;;c(F)·8(1)], 

(2) VP,Qee [Fp,Q:(P-+8Q)-+c<F)(FP-+eFQ)]. 

PROOF 
Let P,Qee, ,,,'eP-+eQ, with,= <i,j>,1' = <i',j'>. 
Case (a) F = FM: 
Part (al) 

part (a2) 

8(Fi) = 
= 
= 0 = c(F)-8(1). 

= = 0 = 

Case (b) F = id': 
part (bl) 

Part (b2) 

8(F1) = 
= supqEQ{dFQ(i0j(q),q)} 

= supqEQ{(·dQ(i0j(q),q)} 

= (·8(1) 

= c(F)·8(1). 

= 
= 
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Now let F 1 ,F2 E Fune and suppose the theorem holds for these functors. Fork = 1,2 we use the fol-
lowing notation: 

Fk, = lk ' Fk,' = lk ' FkP =pk' FkQ = Qk' 
Fki = ik , Fki' = ;k , 
Fkj = A, Fkf = ·' 

}k ' 
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We only treat the cases that F = F 1 Fi and F = F 1 XFi. 
Case (d) F = F 1 Fi: 
Part (di) 

li(F1) = dFQ--+FQ(Fi°F},idFQ) 

= SUPgeFQ{ dFQ(iioJiogoi I o}I ,g) }. 

LetgeFQ For q1 EQ 1 we have 

dQ, (iio}iogoi I oJ I (qi),g(q i)) dQ, (iio}iogoi I o}I(q1 ),goj I 0j I (qi))+ 

dQ, {g0 i I 0} I (q I ),g(q I)). 

(This"+" could be replaced by "inax" in the case of ultra-metric spaces.) 
For the first term we have 

dQ, (iioJiogoi I o}I (q 1 ),goi I oJ I (q I)) supq,eQ, { dQ, (iio}i(qi),qi)} 

= li(Fii). 

For the second 

We see 

Part (d2) 

dQ,(g0 i1°}1(q1),g(q1)) 

dQ, (i 1 °}I (q 1),q1) 

= li(F11). 

li(Fi) li(F11)+li(Fi1) 

[induction] 

(c(F1 )+c(Fi))-li(,) 

= c(F)·/i(1). 

dFP .... EFQ(Fi,Fi') = max{dFP-FQ(Fi,Fi'),dFQ-FP(FJ,Fj')}. 

For the first component, we have 

dFP .... FQ(Fi,Fi') = SUPJeFP.qeQ, { dQ, (Fi(fXq),Fi'(f)(q)) }. 

LetfeFP,qeQ 1. Then 

dQ,(Fi(fXq),Fi'(fXq)) = dQ,(ii 0Joi 1(q),i2°/0/ 1 (q)) 

dQ,(ii 0Joi1(q),i20Jo}I(q)) + dQ,(i20Joi1(q),i20Jo/1(q)) 

dP,-Q,(ii,i2) + dQ,(i2°/0}1(q),i2°/0/1(q)) 

[because i2 is isometric ,f E P 1 1 Pi) 

dp, .... Q,(ii,ii) + dQ, .... P,(}1./1)-

(Again, in the case of ultra-metric spaces, we would have "max" here.) 
Likewise, we have for the second component 

dFQ--+FQ(Fj,Fj') dp, .... Q, (i I J1) + dQ, .... P,(Ji,/i). 

Together this implies 



< + 
< (induction) 

= 
Case (f) F = F1 XF2: 
Part (fl) 

Part (f2) 

8(_F1) = 
= SUJ)qeFQ{dp12(FioFj@,q)} 

= SUP<q,.q,>eFQ{dFQ( <i1 °ji(q1),i2°h(q2)>, <q1 ,q2 >)} 

= SUP<q,.q,>eFQ{max{dQ, (i 1°j1(q1),q1),dQ,(i2°h(q2),q2)}} 

= max{supq,eQ, {dQ1(i1°j1(q1),q1)},sup9,eQ, {dQ,(i2°h(q2),q2)}} 

= max{8(F11),8{_F21)} 
< (induction) 

(c(F 1 )+c(F2))·8(1) 

= c(F)·8(1~ 

= SUJ)peFP { dFQ(Fi(p),Fi'(p))} 
= SUP<p,,p,>eFP{dFQ(<i1(pi),i2(p1)>, <ii (p2),i2(p2)>)} 

= max{ SUP,,,eP, {'421 (i1(p1),ij (p1))},supp,eP, {dQ,(i2(p2),i2(p2))}} 

= 
Similarly, we have 

= 
Thus we obtain 

= 
< (induction) 

= 

CoR.OLI.AllY 5.5 
For e-,ery Fe Fune, with O<c(F)< l, we have 

(l) Fis a contracting functor, and 
(2) F is a hom-contracting functor. 

CoR.OLI.AllY 5.6 
Every reflexive domain equation over e of the form 
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P;;;;;;FP, 

for which FeFunc and c(F)< l, has a unique solution (up to isomorphism). 

6. CoNCLUSIONS 

We have presented a te.chnique for constructing fixed points of certain functors over a category of 
complete metric spaces. This enables us to solve the reflexive domain equations associated with these 
functors. The te.chnique is an adaptation of the limit construction that was first used in the context of 
certain partial orders ( continuous lattices, complete lattices, complete partial orders). Nevertheless, 
we have encountered some nice metric phenomena in our metric framework. To begin with, the con-
cept of a converging tower is an analogue to the concept of a Cauchy sequence in a complete metric 
space, and indeed, both have a limit. Furthermore, a contracting functor on our category of metric 
spaces is a concept analogous to that of a contracting function on a complete metric space, and both 
are guaranteed to have a fixed point. If we strengthen our requirements on the functor to include 
hom-contractivity (also analogous to contractivity of a function), we even know that the fixed point is 
unique (as is the case with a contracting function). Therefore the whole situation looks very much 
like Banach's theorem in a category-theoretic disguise. 

A few questions remain open, however. We are still looking for a functor that is contracting but not 
horn-contracting, or even better for a functor that is contracting but has several non-isomorphic fixed 
points. Another point is what can be said about functors where the argument occurs at the left hand 
side of a general function space construction (all continuous functions, not just the NDI ones). 

In any case, the class of functors (and, thus, domain equations) that we can handle is large enough, so 
that our te.chnique is a useful tool in the construction of domains for the denotational semantics of 
concurrent programming languages. 

RELATED WORK 

The subje.ct of solving reflexive domain equations is not new. Various solutions of the kind of equa-
tions mentioned above already exist. We shall not try to give an extensive and complete bibliography 
on this matter and confine ourselves to the following remarks. 
We mention the work of Scott ([Sc]), who uses inverse limit constructions for solving domain equa-
tions. Our method of generalizing metric notions in terms of category-theoretical notions shows a 
clear analogy to the work D. Lehmann ([Le]) did in the context of partial orderings. In fact, there is 
a clear similarity between the metric and the order-theoretic cases: Both are based on theorem 3.14 
and in both cases the main part of the work is showing that the premisses of this theorem are 
satisfied. Of course, the details of these proofs are quite different. It is interesting to notice that in the 
order-theoretic case one can often prove that there is an initial fixed point of the functor: a fixed 
point that can be embedded in every other fixed point (see, e.g., [SP]), whereas in the metric case we 
can prove the existence of a unique fixed point (up to isomorphism). This is a nice parallel to what 
happens at the elementary level: in order theory one can prove that certain functions have a least 
fixed point, whereas in complete metric spaces we have unique fixed points of contracting functions. 
Our work is also related to the general method of solving reflexive equations of Smyth and Plotkin 
([SP]). In the terminology used there, we show that our category e is w-complete in the limited sense, 
that all converging towers have direct lir:rits. Further we show that a certain type of w-continuous 
functors ( called contracting) has a fixed point. (Without having investigated the precise relationship, 
we also mention here the anology between their notion of an O-category, and the fact that in our 
category e the horn-sets are complete metric spaces.) 
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A denotational model is presented for the language POOL, · a parallel object-oriented language. It is a syn-
tactically simplified version of POOL-T, a language that is actually used to write programs for a parallel 
machine. The most important aspect of this language is that it describes a system as a collection of com-
municating objects that all have internal activities which are executed in parallel. To describe the semantics 
of this language we construct a mathematical domain of processes. This domain is obtained as a solution 
of a reflexive domain equation over a category of complete metric spaces. A new technique is developed 
to solve a wide class of such equations, including function space constructions. The desired domain is 
obtained as the fixed point of a contracting functor implicit in the equation.. The domain is sufficiently rich 
to allow a fully compositional definition of the language constructs in POOL, including concepts such as 
object creation and method invocation by messages. The semantic equations give a meaning to each syn-
tactic construct depending on the POOL object executing the construct, the environment constituted by the 
declarations and a continuation, representing the actions to be performed after the execution of the current 
construct. After the process representing the execution of an entire program is constructed, a yield func-
tion can extract the set of possible execution sequences from it. A preliminary discussion is provided on 
how to deal with fairness. Full mathematical details are supplied, with the exception of the general domain 
construction which is described elsewhere 

Note: This paper appeared in Information and Computation and is included in this tract 
with kind permission of Academic Press, Inc. 

1. INTRODUCTION 
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In this paper we give a formal semantics of a language called POOL (Parallel Object-Oriented 
Language). It is a syntactically simplified version of the language POOL-T, which is defined in 
(America, 1985) and for which (America, 1986) and (America, 1987) give an account of the design 
considerations. POOL-Twas designed in subproject A of ESPRIT project 415 with the purpose of 
programming a highly parallel machine which is also being developed in this project (see (Odijk, 
1987) for an overview). The language provides all the facilities needed to program reasonably large 

( 0 ) This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages for AIP - a VLSI-
directed approach. 
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parallel systems and many small and several large applications have been written in it. 
The language POOL for which we shall give a formal semantics is described in detail in section 3. 

In this language, a system is viewed as a collection of objects. These are dynamic entities containing 
data (stored in variables) and methods (a kind of procedures). Objects can be created dynamically 
during the execution of a program and each of them has an internal activity (its body) in which it can 
execute expressions and statements. While inside an object everything proceeds sequentially, the con-
current execution of the bodies of all the objects can give rise to a large amount of parallelism. 
Objects can interact by sending messages to each other. Acceptance of a message gives rise to a 
rendez-vous between sender and receiver, during which an appropriate method is executed. 

The relationship between POOL (as described in section 3) and POOL-T is such that there is a 
straightforward translation from valid POOL-T programs to valid POOL programs. This translation 
merely performs some syntactic simplifications and it omits some context information (POOL-T is a 
statically typed language, POOL is not). At no point does this translation replace any semantic prim-
itive by another one. The sole reason for using two languages and translating between them is that 
POOL-Tis a practical programming language, where readability, among others, is much more impor-
tant than syntactic simplicity. In order not to overload the present paper, we shall not describe 
POOL-T and the above translation, but take as a starting point the language POOL as described in 
section 3. 

After having defined an operational semantics for POOL in (America et al., 1986), in this paper we 
set out to develop a denotational semantics. In general, denotational semantics assigns to every con-
struct in the language a meaning, which is a value from a suitably chosen mathematical domain. The 
most important principle in denotational semantics is compositionality: The meaning of a composite 
construct is determined solely on the basis of the meanings of its components, which means that the 
actual form of these components is irrelevant. 

An important choice we have made is to use the 'mathematical framework of complete metric spaces 
for our semantic description. In this we follow and generalize the approach of (De Bakker and 
Zucker, 1982). (For other applications of this type of semantic framework see (De Bakker et al., 
1986).) First, we construct a suitable domain P of processes, which is a set of mathematical objects 
that will be used as meanings. It will satisfy a reflexive domain equation, which will be solved by 
deriving from it a functor on a certain category of complete metric spaces and then constructing a 
fixed point for this functor. The mathematical techniques to do this are sketched in section 2 and 
presented in detail in (America and Rutten, 1988). They are not necessary for an understanding of 
the rest of the paper. 

After having constructed the domain P, we want to define a mapping from the set of POOL pro-
grams (also called units) to P. Before we assign a semantic value to the unit as a whole, we first 
define the semantics of statements and expressions. This semantics will be given by functions of the 
following type: 

( · · · IE : 
( · · · 1s: 

where 

ContE = 
Conts =P. 

We give the formal description of the type of these semantic functions here because we want to stress 
three of their characteristics: the use of environments, objects and continuations. 

The environments (elements of the set Env) are used to store the meanings of declarations (of 
classes and methods). With the help of I · · · IE and [ · · · Is we can define for each unit U a suitable 
en~ironment Yu, which contains the meanings of the classes and methods as they are defined in U. It 
will be constructed as the unique fixed point of a contracting operator on the complete metric space 
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of environments. The semantic domain Obj stands for the set of object names. Its appearance in the 
defining equations reflects the fact that in POOL each expression or statement is evaluated by a cer-
tain object. Finally, a continuation will be given as an argument to the semantic functions. This 
describes what will happen after the execution of the current expression or statement. As the con-
tinuation of an expression generally depends upon the result of this expression (an object name), its 
type is whereas the type of continuations of statements is simply P. This use of continua-
tions makes it possible to define the semantics, especially of object creation, in a convenient and con-
cise way. (For more examples of the use of continuations in semantics, see (De Bruin, 1986) and 
(Gordon, 1979).) 

The denotational semantics proper for POOL is presented in section 4. It first discusses the details 
of the process domain P. Next, it defines an auxiliary operator for parallel composition, which is 
used, e.g., in the equation for the creation of a new object. (POOL itself does not have a syntactic 
operator for parallel execution: parallelism occurs implicitly as a consequence of object creation.) 
Then the core of the semantic definitions, in terms of the various semantic equations for the respective 
classes of expressions and statements, is displayed. Once the reader has understood (or taken for 
granted) the underlying mathematical foundations he will appreciate, we hope, that the framework 
allows a concise, rigorous, and compositional (the touchstone of a denotational model) definition of 
intricate notions such as the creation of a new object or the passing of messages leading to the invoca-
tion of the appropriate method. Section 4 then continues with the discussion of the standard process 
Pm which describes the standard objects (integers, booleans, and nil) of the language. Next, the 
definition of the environment Yu corresponding to a unit U is given and used to define a process Pu• 
In a last step we show how the set of all possible sequences of computation steps can be obtained 
from the process resulting from the parallel composition of Pu and PST· 

In section 5 the semantic model is adapted to provide the possibility to formulate requirements that 
distinguish between fair and unfair executions of the program. The ideas in this section are not in 
their final form and will probably be developed further in subsequent work. Section 6 presents some 
conclusions and gives some directions for further research. 

As related work concerning the semantics of POOL, we first refer to (America et al., 1986), where 
we describe the semantics in an operational way, using a transition system in the style of (Hennessy 
and Plotkin, 1979). In (Vaandrager, 1986), the semantics of the language is described by translating it 
into process algebra and using the several kinds of semantics that had already been developed for the 
latter (see, e.g., (Bergstra and K.lop, 1984)). In order to do this, some extra process algebra operators 
are introduced. The advantage of this approach is that it uses an existing framework which admits 
algebraic calculations with meanings of programs, and furthermore that it can deal with fairness in a 
natural way. However, due to the extra translation step, the meaning of an individual construct is 
quite hard to understand. 

Semantic treatments of parallel object-oriented languages in general are scarce; we only know 
(Clinger, 1981), which gives a detailed mathematical model for an actor language. This is done by 
defining a set of so-called augmented actor event diagrams, each of which is a fairly complicated 
structure representing (the beginning of) a single computation. In order to deal with nondeterminism, 
a novel power domain construction is used. This technique deals very well with fairness, but the 
event diagrams seem a rather ad hoc construction. 

As to the material in section 2, there is a vast amount of literature on order-theoretic domain 
theory (see, for instance, (Gierz et al., 1980)). Our approach, in which a category of metric spaces 
and (generalizations of) Banach's theorem are central, may be an attractive alternative that can be 
used in a situation where the contractivity of the various functions encountered is a natural 
phenomenon. 

Acknowledgements: We are indebted to the members of the Working Group on Semantics of 
ESPRIT project 415, especially to Werner Damm who stressed the importance of using continuations 
at a moment we had given up on them (at that time the approach in (America and Rutten, 1988) had 



not yet been conceived, and continuations did not fit into the process domain). We also wish to 
thank the following persons for their contribution to the discussions of many of the preliminary ideas 
on which this report is based: Frank de Boer, Anton Eliens, Hans Jonkers, Frank van der Linden, 
John-Jules Meyer, Marly Roncken, and Erik de Vink. Finally we are grateful to the anonymous 
referees, whose comments on an earlier version of this paper have led to considerable improvements. 

2. METRIC SPACES AND DOMAIN EQUATIONS 

In this section we first collect some definitions and properties concerning metric spaces. Then we 
show how the well-known direct limit construction can be used as a means to produce a solution of a 
recursive domain equation in a category of complete metric spaces. 

It is not absolutely necessary to read this section in order to understand the rest of this paper. It 
mainly gives a mathematical justification for the constructions used in sections 4 and 5. 

2.1. Metric spLces 

DEFINITION 2.1 (Metric space) 
A metric space is a pair (M,tl) with M a non-empty set and d a mapping d:M X M->[0, I) (a metric or 
distance), which satisfies the following properties: · 
(a) v'x,yEM[d(x,y)=O x =y] 
(b) v'x,yEM[d(x,y)=d(y,x)] 
(c) v'x,y,z EM [d(x,y).;;;d(x,z)+d(z,y)]. 
We call (M,tl) an ultra-metric space if the following stronger version of property (c) is satisfied: 
(c') v'x,y,z EM [d(x,y).;;;max{d(x,z),d(z,y)}]. 

REMARK 
In our definition the distance between two elements of a metric space is always bounded by I. 

ExAMPLE 
Let A be an arbitrary set. The discrete metric d,1 on A is defined as follows: Let x,y EA, then 

{o ifx=y 
d,1 (x,y) = I if x=j:y. 

Now (A,d,1) is a metric, even an ultra-metric, space. 

DEFINITION 2.2 
Let (M,d) be a metric space, let (x;); be a sequence in M. 
(a) We say that (x;); is a Cauchy sequence whenever we have: 

v'£>0 3NEN v'n,m>N [d(xn,Xm)<4 
(b) Let xEM. We say that (x;); converges to x (denoted by x=lim;-ooX;) and call x the limit of (x;); 

whenever we have: 
v'£>0 3NEN v'n>N [d(x,x.)<£]. 
Such a sequence we call convergent. 

(c) The metric space (M,tl) is called complete whenever each Cauchy sequence converges to an ele-
mentof.M. 

(d) A subset X of a metric space (M,tl) is called closed whenever each Cauchy sequence in X con-
verges to an element of X. 
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DEFINITION 2.3 
Let (M 1,di),(M2,d2) be metric spaces. 
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a such that: 

'rlx,yeM1 [d2(/(x),fty))=d1(x,y)). We then write M 1~M2. When/is not a bijection (but only 
an injection), we call it an isometric embedding. 

(b) Let f:M 1 be a function. We call f continuous whenever for each sequence (x;); with limit x 
in MI we have that f (x). 

(c) Let £;;;.O. With we denote the set of functions/from M 1 to M2, that satisfy the fol-
lowing property: 'rlx,y eM 1 [d2(/ (x ),f (y )),;;;E-d 1 (x,y )]. 
Functions fin M M2 we call non-distance-increasing (NDI), functions fin M 1 with 
Q.;;;£<1, we call contracting. 

PROPOSITION 2.4 Let (M1,d1),(M2,d2) be metric spaces. For every £;;;.O and we have: f is 
continuous. 

THEOREM 2.5 (Banach's fixed point theorem) 
Let (M,d) be a complete metric space and f :M a contracting function. Then there exists an x eM 
such that the following holds: 
(1) f(x)=x (xis a fixed point of j), 
(2) 'rlyeM [f(y)=y y =xi (xis unique), 
(3) 'rlxoEM where r+ 1(xo)=f(f"(xo)) and J0(xo)=xo. 

REMARK: This theorem will be the main mathematical tool that we shall use: Contracting functions 
and their unique fixed points play an important role throughout this paper. 

DEFINITION 2.6 
Let (M,d),(M 1,di), ... ,(M.,d.) be metric spaces. 
(a) With we denote the set of all functions from M 1 to M 2• We define a metric dF on 

as follows: For every we put 

dF(/1,h)=supxeM, {d2(/1(x),fi(x))}. 

This supremum always exists since the codomain of our metrics is always [O, l ). For £;;;.O the set 
is a subset of and a metric on can be obtained by taking the res-

triction of the corresponding dF-
(b) With M IU · · · UM. we denote the dis joint union of M 1 , ••• , M., which can be defined as 

{l}XM~ · · ·_!:J{n}XM •. We define a metric du on M 1U ···UM. as follows: For every 
x,yeM1 U · · · UM., 

-{dj(x,y) if x,yeLJ}XMj, I.;;;J.;;;n 
du(x,y) - I otherwise. 

If no confusion is possible we shall often write U rather than U. 
(c) We define a metric dp on the Cartesian product M I X · · · XM. by the following clause: 

For every (x1, ... ,x.), (y 1, ••• ,y.)eM1 X · · · XM., 
dp((x1, ... ,x.),(y1, ... ,y.))=max;{d;(x;,y;)}. 

(d) Let 'iPc1(M)= {X:X!:;;M /\Xis closed}. We define a metric dn on 'iPc1(M), called the Hausdorff dis-
tance, as follows: For every X, Y e'iPc1(M), 

dn(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} }, 

where d(x,Z)=inf,ez{d(x,z)} for every Z!:;;M, xeM. (We use the convention that sup0 =O 
and inf0 = 1.) 
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(e) For any real number t with tE[O, I] we define 

id,((M,d)) = (M,d'), 

where d'(x,y)=t·d(x,y), for every x andy in M. 

PROPOSITION 2. 7 
Let (M,d), (Mi,d1), ••• ,(M.,d.), dF, du, dp and dH be as in definition 2.6 and suppose that (M,d), 
(Mi,d 1), ... ,(M.,d.) are complete. We have that 

(a) (M1-+M2,dF), (M1-+'M2,dF), 

(b) (M 1U · · · uM.,du), 

(c) (M1 X · · · XM0 ,dp), 

(d) ('?!'c1(M),dH ), 

(e) id,((M,d)), 

are complete metric spaces. If (M, d) and (M;, d;) are all ultra-metric spaces, then so are these composed 
spaces. (Strictly spoken.for the completeness of M1-+M2 and M 1-'M2 we do not need the complete-
ness of M 1• The same holds for the ultra-metric property.) 

Whenever in the sequel we write M 1-+M2, M 1-+'M2, M 1U ···UM,, M 1 X · · · XM., 'iJ',iM), or 
id,(M), we mean the metric space with the metric defined above. 
The proofs of proposition 2.7 (a), (b), (c), and (e) are straightforward. Part (d) is more involved. It 
can be proved with the help of the following characterization of the completeness of (6Yc1(M),dH)-

PROPOSITION 2.8 
Let ('?!'c1(M),dH) be as in definition 2.6. Let (X;); be a Cauchy sequence in 'iI'c1(M). We have: 

1im;_00 X; = {lim;_00 x;jx; EX;, (x;); a Cauchy sequence in M}. 

Proofs of proposition 2.7(d) and 2.8 can be found in (for instance) (Dugundji, 1966) and (Engelking, 
1977). Proposition 2.8 is due to Hahn (Hahn, 1948). The proofs are also repeated in (De Bakker and 
Zucker, 1982). 

2.2. Solving reflexive domain equations 
We shall use as a mathematical domain for our denotational semantics a complete metric space satis-
fying a so-called reflexive domain equation of the following form: 

P~F(P). 

Here F(P) is an expression composed of P and some given fixed spaces by applying one or more of 
the constructions introduced in definition 2.6. A few examples are: 

(I) P ~A Uid,.,(BXP) 

(2) P~AU'?!'c1(BXid,.,(P)) 

(3) P A U (B-+id ½(P)), 

where A and B are given fixed complete metric spaces. De Bakker and Zucker have first described (in 
(De Bakker and Zucker, 1982)) how to solve these equations in a metric setting (see also (De Bakker 
et al. (1986)) for many examples). 
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Roughly, their approach amounts to the following: In order to solve P~F(P) they define a 
sequence of complete metric spaces (P.). by: P0 =A and P.+1=F(P.), for n>O, su~h that Po!: 
P 1 \;;; • • • • Then they take the metric completion of the union of these spaces P., say P, and show: 
P~F(P). In this way they are able to solve the equations (1), (2), and (3) above. 

For our denotational semantics we shall have to solve a domain equation of yet another type, 
namely 

(4) P ~A Uidv.,(P-+1G(P)), 

in which P occurs at the left side of a function space arrow, and G(P) is an expression possibly con-
taining P. Here, the method of (De Bakker and Zucker, 1982) fails, since, with Fas in (4), it is not 
always the case that P. \;;;F(P.). 

In (America and Rutten, 1988) the approach is generalized in order to overcome this problem. The 
family of complete metric spaces is made into a category e by providing some additional structure. 
(For an extensive introduction to category theory we refer the reader to (Mac Lane, 1971).) Then the 
expression Fis interpreted as a functor F:e-e which is (in a sense) contracting. It is proved that a 
generalized version of Banach's theorem holds, i.e., that contracting functors have a fixed point (up to 
isometry). Such a fixed point, satisfying P~F(P), is a solution of the domain equation. 

We shall now give a quick overview of these results, omitting many details and all proofs. For a full 
treatment we refer the reader to (America and Rutten, 1988). 

DEFINITION 2.9 (Category of complete metric spaces) 
Let e denote the category that has complete metric spaces for its objects. The arrows , in e are 
defined as follows: Let M j ,M 2 be complete metric spaces. Then M 1 -+' M 2 denotes a pair of maps 

I 

M1~M2, satisfying the following properties: 
) 

(a) i is an isometric embedding, 
(b) j is non-distance-increasing (NDI), 
(c) j 0 i=idM,· 
(We sometimes write <i,j > for,.) Composition of the arrows is defined in the obvious way. 

We can consider M 1 as an approximation of M 2 : In a sense, the set M 2 contains more information 
than M 1 , because MI can be isometrically embedded into M 2• Elements in M 2 are approximated by 
elements in M 1• For an element m2 eM 2 its (best) approximation in M I is given by J(m 2). Clause 
(c) states that M2 is a consistent extension of M 1• 

DEFINITION 2.10 
For every arrow M 1-+' M2 in e with,= <i,j > we define 

8(1) = dM,--,M, (i 0j,idM,) (= SUPm,eM, { dM,(i0j(m2)1m2)}), 

This number can be regarded as a measure of the quality with which M 2 is approximated by M 1 : the 
smaller 8( ,), the better M 2 is approximated by M 1 • 
Increasing sequences of metric spaces are generalized in the following 

DEFINITION 2.11 (Converging tower) 
(a) We call a sequence (D.,i,,),, of complete metric spaces and arrows a tower whenever we have that 

VneN [D.-+'-D.+1ee]. 
(b) The sequence (D.,i,,). is called a converging tower when furthermore the following condition is 

satisfied: 
VE>O 3NeN Vm >n-;;,,N [8(1nm)<E], where 'nm= i,,,_ 1° · · · 0 i,,: Dn-+Dm. 
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ExAMl'LE 
A special case of a converging tower is a tower (D.,,.). satisfying, for some£ with O.;;;;£< I, 

VnEN [8(t,,+1),;;;;di(t,,)]. 

(Pleasenotethat8(t,,m),;;;;8(i,,)+ · · · +8(t,,,-1),;;;;£"-8(1o)+ · · · +~- 1-8(1o),;;;; J~c-8(1o).) 

We shall now generalize the technique of forming the metric completion of the union of an increasing 
sequence of metric spaces by proving that, in e, every converging tower has an initial cone. The con-
struction of such an initial cone for a given tower is called the direct limit construction. Before we 
treat this direct limit construction, we first give the definition of a cone and an initial cone. 

DEFINITION 2.12 (Cone) 
Let (D.,i,,). be a tower. Let D be a complete metric space and (y.). a sequence of arrows. We call 
(D,(y.).) a cone for (D.,i,,). whenever the following condition holds: 

Vn EN [D ...... 1• D Eel\ "Yn = "Yn + I 0 t,,]. 

DEFINITIO!'. 7 13 (Initial cone) 
A cone (D,(y.).) for a t0wer (D.,i,,). is called initial whenever for every other cone (D',(y~).) for 
(D.,i,,). there exists a unique arrow 1:D-->D' in e such that: 

'vn EN (1°y. = y~]. 

DEFINITION 2.14 (Diiect limit construction) 
Let (D.,i,,)., with'•= <i.,J. >, be a converging tower. The direct limit of (D.,,.). is a cone (D,(y.).), 
with "Yn = <g. ,h. >, that is defined as follows: 

D = ((x.).IVn;;;;.O(x. EDn I\ J.(x. +1) = x.l} 

is equipped with a metric d:D XD-->(O, I] defined by: d((x.).,(y.).)= sup(dvJx.,y.)}, for all (x.). 
and (y.). ED. 
g.:D ...... D is defined by g.(x)=(xk)k, where l)k.(x) if k <n 

xk = x if k =n 
i.k(x) if k >n; 

h.:D-->un is defined by h.((xdk)=x •. 

LEMMA 2.15 
The direct limit of a converging tower (as defined in definition 2.14) is an initial cone for that tower, 

As a category-theoretic equivalent of a contracting function on a metric space, we have the following 
notion of a contracting functor on e. 
DEFINITION 2.16 (Contracting functor) 
We call a functor F:e-+e contracting whenever the following holds: There exists an£, with O.;;;;£<1, 
such that, for all D-->' EE(?, 

8(F(1)),;;;; £•8(1). 
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A contracting function on a complete metric space is continuous, so it preserves Cauchy sequences 
and their limits. Similarly, a contracting functor preserves converging towers and their initial cones: 

LEMMA 2.17 
Let F:e.-.+e be a contracting functor, let (D.,1.n). be a converging tower with an initial cone (D, (y.).). 
Then (F(D0 ),F(1n)). is again a converging tower with (F(D),(F(y.)).) as an initial cone. 

THEOREM 2.18 (Fixed-point theorem) 
Let F be a contracting functor F:e.-.+e and let Do->" F(D0)e<2. Let the tower (D.,1.n). be defined by 
Dn+l =F(D.) and &n+l =F(i,,)for all n;;;,,0. This tower is converging, so it has a direct limit (D,(y.).). 
We have: D;;;;fF(Di 

REMARK: In (America and Rutten, 1988) it is shown that contracting functors that are moreover con-
tracting on all hom-sets (the sets of arrows in e between any two given complete metric spaces) have 
unique fixed points (up to isometry). It is also possible to impose certain restrictions upon the 
category e such that every contracting functor on e has a unique fixed point. 

Let us now indicate how this theorem can be used to solve the equations (I) through (4) above. We 
define 

(1) F 1(P)=AUid*(BXP) 

(2) F 2(P) = A U '?Pc1(B X id *(P)) 

(3) F3(P) = A U(B->id*(P)). 

If the expression G(P) in equation (4) is, for example, equal to P, then we define F4 by 

(4) F4(P) = A Uid*(P->1 P). 

(Please note that the definitions of these functors specify, for each metric space (P,dp ), the metric on 
F(P) implicitly (see definition 2.6).) Now it is easily verified that F 1, F2, F3, and F4 are contracting 
functors on e. Intuitively, this is a consequence of the fact that in the definitions above each 
occurrence of P is preceded by a factor id*. Thus these functors have a fixed point, according to 
theorem 2.18, which is a solution for the corresponding equation. 

REMARKS 
(1) In (America and Rutten, 1988) it is shown that functors like F 1 through F4 are also contracting 

on horn-sets, which guarantees that they have unique fixed points (up to isometry). 
(2) The results above hold for complete ultra-metric spaces too, which can be easily verified. The 

domain we shall use for our denotational semantics is an ultra-metric space. 

3. THE LANGUAGE POOL 

3.1 An informal introduction to the language 
The language POOL makes use of the principles of object-oriented programming in order to give 
structure to parallel systems. Object-oriented programming (of which the language Smalltalk-SO 
(Goldberg and Robson, 1983) is a representative example) offers a way to structure large systems. 
Originally it was only used in sequential systems, but it offers excellent possibilities for a very advan-
tageous integration with parallelism. (This was already proposed in (Hewitt, 1977), using an 
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approach quite different from ours.). 
A POOL program describes the behaviour of a whole system in terms of its constituents, objects. 

Objects contain some internal data, and some procedures that act on these data (these are called 
methods in the object-oriented jargon). Objects are entities of a dynamic nature: they can be created 
dynamically, their internal data can be modified, and they have an internal activity of their own. At 
the same time they are units of protection: the internal data of one object are not directly accessible 
for other objects. 

An object uses variables (more specifically: instance variables) to store its internal data. Each vari-
able can contain the name of an object (another object, or, possibly, the object under consideration 
itself). An assignment to a variable can make it refer to a different object than before. The variables 
of one object cannot be accessed directly by other objects. They can only be read and changed by 
the object itself. 

Objects can interact by sending messages to each other. A message is a request for the receiver to 
execute a certain method. Messages are sent and received explicitly. In sending a message, the 
sender mentions the destination object, the method to be executed, and possibly some parameters 
(which are again object names) to be passed to this method. After this its activity is suspended. The 
receiver can specify the set of methods that will be accepted, but it can place no restrictions on the 
identity of the sender or on the parameters of messages. If a message arrives specifying an appropri-
ate method, the method is executed with the parameters contained in the message. Upon termination, 
this method delivers a result (an object name), which is returned to the sender of the message. The 
latter then resumes its own execution. Note that this form of communication strongly resembles the 
rendez-vous mechanism of Ada (ANSI, 1983). 

A method can access the variables of the object that executes it (the receiver of a message). Furth-
ermore it can have some temporary variables, which exist only during the execution of the method. 
In addition to answering a message, an object can execute a method of its own simply by calling it. 
Because of this, and because answering a message within a method is also allowed, recursive invoca-
tions of methods are possible. Each of these invocations has its own set of parameters and temporary 
variables. 

When an object is created, a local activity is started: the object's body. When several objects have 
been created, their bodies execute in parallel. This is the way parallelism is introduced into the 
language. Synchronization and communication takes places by sending messages, as described above. 

Objects are grouped into classes. All objects in one class (the instances of that class) use the same 
names for their variables, they have the same methods for answering messages, and execute the same 
body. In creating an object, only its desired class must be specified. In this way a class serves as a 
blueprint for the creation of its instances. 

There are a few standard classes predefined in the language. In this semantic description we will 
only incorporate the classes Boolean and Integer. On these objects the usual operations can be per-
formed, but they must be formulated by sending messages. For example, the addition 2+4 is indi-
cated by the expression 2!add(4), sending a message with method name add and parameter 4 to the 
object 2. 

There is a special standard object, nil, which can be considered to be an element of every class. 
Upon the creation of a new object, its instance variables are initialized to nil, and when a method is 
invoked, its temporary variables are also initialized to nil. If a message is sent to this object, an error 
occurs. In general, whenever a run-time error occurs, the whole system will halt immediately. 

At this point it is useful to emphasize the distinction between an object and its name. Objects are 
intuitive entities as described above. In this paper there will appear no mathematical construction that 
directly models a single object with all its dynamic properties (although it would be interesting to see 
a semantics which does this). Object names, on the other hand, are modeled explicitly as elements of 
some abstract set Obj. Object names are only references to objects. On its own, an object name gives 
little information about the object it refers to. In fact, object names are just sufficient to distinguish 
the individual objects from each other. Note that variables and parameters contain object names, and 
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that expressions result in object names, not objects. Only for standard objects: integers, booleans, and 
nil, it does not seem to make sense to distinguish between an object and its name. However, even for 
these objects a separate description of their behaviour is necessary ( see section 4.4). If in the sequel we 
speak, for example, of "the object a", we hope that the reader understands that the object with name 
a is meant. 

3.2 Syntax of POOL 
In this section the (abstract) syntax of the language POOL is described. We assume that the follow-
ing sets of syntactic elements are given: 

!Var (instance variables) with typical element x, 
TVar (temporary variables) with typical element u, 
CName ·(class names) with typical element C, 
MName (method names) with typical element m. 

We define the set SObj of standard objects, with typical element rf,, by 

SObj = l U {tt,.ff} U {nil}. 

(Z is the set of all integers.) Note that for standard objects, we do not distinguish between object 
names and the objects themselves. 

We now define the set Exp of expressions, with typical element e: 
e ::= X 

u 
e ! m (e 1, ••• ,e.) 
m (e 1, ••• ,e.) 
new (C) 
eJ=e2 
s ; e 
self 
rf, 

The set Stat of statements, with typical elements s, ... : 

S ::= X+-e 
u +- e 
answer V 
e 
SJ ; S2 

(Vr;;;,MName, V'i60) 

if e then SJ else s2 fi 
doe thens od 
sel KJ or · · · or g. les 

The set GCom of guarded commands, with typical elements g, . . . : 

g :: = e answer V thens (Vr;;;,MName). 

(Note that V= 0 is allowed.) 

The set Unit of units, with typical elements U, . . . : 

(n ;.. I). 



108 

The set ClassDef of class definitions, with typical elements d, . . . : 

d : : = < ( m 1 <= /J,1, ••. , m. <= µ.,, ) , s > 
And finally the set MethDef of method definitions, with typical elements µ., ... : 

µ. ::= < ( U1, ... , Un), e >. 

3.2.1 Informal explanation 

Expressions 
An instance variable or a temporary variable used as an expression will yield as its value the object 
name that is currently stored in that variable. 

The next kind of expression is a send expression. Here, e is the destination object, to which the 
message will be sent, m is the method to be invoked, and e I through e. are the parameters. When a 
send expression is evaluated, first the destination expression is evaluated, then the parameters are 
evaluated from left to right and then the message is sent to the destination object. When this object 
answers the message, the corresponding method is executed, that is, the formal parameters are initial-
ized to the u · jects names in the message, the temporary variables are initialized to nil, and the expres-
sion in the method definition is evaluated. The value which results from this evaluation is sent back 
to the sender of the message and this will be the value of the send expression. 

A method call simply means that the corresponding method is executed ( after the evaluation of the 
parameters from left to right). The result of this execution will be the value of the method call. 

A new-expression indicates that a new object is to be created, an instance of the indicated class. 
The instance variables of this object are initialized to nil and the body starts executing in parallel with 
all other objects in the system. The result of tl1e new-expression is ( the name of) this newly created 
object. 

The next type of expression checks whether e I and e2 result in the same object. If so, It is returned, 
otherwise ff. 

An expression may also be preceded by a statement. In this case the statement is executed before 
the expression is evaluated. 

The expression self always results in the name of the object that is executing this expression. 
The evaluation of a standard object cf, results in that object itself. For instance, the value of the 

expression 23 will be the natural number 23. 

Statements 
The first two kinds of statements are assignments, to an instance variable and to a temporary vari-
able, respectively. An assignment is executed by first evaluating the expression on the right, and then 
making the variable on the left refer to the resulting object. 

The next kind of statement is an answer statement. This indicates that a message is to be 
answered. The object executing the answer statement waits until a message arrives with a method 
name that is contained in the set V. Then it executes the method (after initializing the formal param-
eters and temporary variables). The result of the method is sent back to the sender of the message, 
and the answer statement terminates. 

Next it is indicated that any expression may also occur as a statement. Upon execution, the 
expression is evaluated and the result is discarded. So only the side effects of the expression evalua-
tion (e.g., the sending of a message) are important. 

Sequential composition, conditionals and loops have the usual meaning. 
A select statement is executed as follows: First all the expressions (called guards) in the guarded 

commands are evaluated from left to right. They must all result in an object of class Boolean, other-
wise an error occurs and the system is halted immediately. The guarded commands of which the 
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guards have resulted in ff are discarded (they do not play a role in the further execution of the state-
ment). Now one of the remaining guarded commands is chosen. For this there are two possibilities: 
One possibility is that the (textually) first guarded command is chosen in which the answer statement 
contains no method names (if there such a guarded command). In this case the statement after then 
is executed and the select statement terminates. The second possibility is that a guarded command 
with a nonempty answer set is chosen. For this the following requirements must be satisfied: 
- A message has arrived specifying a method in this answer set. 
- This guarded command must be the (textually) first one that contains this method in its answer set 
and for which the guard resulted in tt. 
- There must be no guarded command with an empty answer set and a true guard occurring before 
this one. 
If this case applies, the above message is answered (by executing the specified method and returning 
the result), the statement after then is executed, and then the select statement terminates. 

Guarded commands 
These are sufficiently described in the treatment of the select statement. 

Units 
These are the programs of POOL. A unit consists of a number of bindings of class names to class 
definitions. If a unit is to be executed, a single new instance of the last class defined in the unit is 
created and execution of its body is started. This object has the task to start the whole system, by 
creating new objects and putting them to work. 

Class definitions 
A class definition describes how instances of the specified class behave. It indicates the methods and 
the body each instance of the class will have. The set of instance variables is implicit here: it consists 
of all the elements of /Var that occur in the methods or in the body. 

Method definitions 
A method definition describes a method. Here u I through u,, are the formal parameters and e is the 
expression to be evaluated when the method is invoked. The set of temporary variables is again 
implicit: it consists of all the elements of TVar that occur in the expression e, with the exception of 
the formal parameters. 

3.2.2 Context conditions 
For a POOL program to be valid there are a few more conditions to be satisfied. We assume in the 
semantic treatment that the underlying program is valid. 
These context conditions are the following: 
- All class names in a unit are different. 
- All method names in a class definition are different. 
- All parameters in a method definition are different. 

Any POOL program that is a translation of a valid POOL-T program will automatically satisfy these 
conditions. POOL-Tis even more restrictive. For example, it requires that the type of every expres-
sion conforms with its use, and it forbids assignments to formal parameters. However, the conditions 
above are sufficient to ensure that the program will have a well-defined semantics. 
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3.3 An example program 
As an illustration of programs that can be written in POOL, we present an example. In the following 
program (unit) U, a parallel implementation of Eratosthenes' sieve for generating prime numbers is 
given. An object of the class Primes (the "root" object) generates an infinite ascending stream of 
integers, which it feeds into a chain of instances of the class Sieve. Each of those remembers in its 
variable p the first number it gets (always a prime), and from the rest passes on only those numbers 
that are not divisible by p. The computation proceeds in a pipelined way: 

where 

with 

Primes 

1 
i=23 
first 

Sieve 

P=2 
q=22 
next 

Sieve 

P=3 
q=21 
next 

U = <Sieve<==dSieve, Primes<=dp,;mes > 

Sieve 

p=5 
q=19 
next 

ds;f/fl/fl = <(input~/ltnput, create~/lc,eate), SSieve>, 

/ltnput = <(n), q-n; self>, 

/lcreate = <(), new(Sieve)>, 

sSieve = answer(input); 

p-q; 

next-create(); 

do It 

then answer(input); 

if q!mod(p)!equal(O)!not() 

then next!input( q) 

fi 
od, 

and 

with 
dPrimes = <(), Spnmes>, 

sPnmes = first-new(Sieve); 

i-2; 
do It 

then first!input(i); i-i!add(l) 

od. 
(It is assumed that {P, q, next, i, first} C/Var and neTVar.) 



111 

4. DENOTATIONAL SEMANTICS 

This section constitutes the heart of our paper. First, the sets of objects and states are introduced and 
the mathematical domain P of processes is defined which we use for our denotational semantics. 
Secondly, an auxiliary semantic operator for parallel composition is defined, followed by the 
definition of environments. Then the semantics of expressions and statements is defined, with the 
use of the notion of continuations, some familiarity with which may be helpful for the reader. (For an 
extensive treatment of continuations and so-called expression continuations, which we shall also use, 
we refer to (Gordon, 1979).) Next, the semantics for the standard objects (integers and booleans) of 
POOL is given. The section culminates in the definition of the semantics of a unit (a POOL program). 
This involves in particular the definition of the environment corresponding to it. Finally, the notions 
of paths and yield of a process are introduced. 

4. 1 Domain definitions 
Before we can give the definition of our process domain we have to define the sets of objects and the 
set of states. 

DEFINITION 4.1 (Objects) 
We assume given a set A Obj of names for active objects together with a function 

T: 

which assigns to each object aeAObj the class to which it belongs. Furthermore, we assume a func-
tion 

p; 'ift,.(AObj) X CName A Obj, 

such that P(X,C)G!X and 'T(P(X,C))=C, for finite Xc;;,AObj and CeCName. The function" gives for a 
finite set X of object names and a class name Ca new name of class C, not in X. The set AObj and 
the set of standard objects SObj together form the set Obj of object names, with typical elements a 
and /j: 

Obj = AObjUSObj 

= AObjUZU{tt,.ff}U{ni/}. 

REMARK: A possible example of such a set A Obj and functions 'T and" could be obtained by setting: 

AObj = CNameXN, 

'T(<C,n >) = C, and 

P(X,C)=<C, max{n:<C,n>eX}+l>. 

DEFINITION 4.2 (States) 
The set of states I, with typical element a, is defined by 

I = 
X 

X 'ift,.(AObj). 

REMARKS 
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(I) We denote the three components of oEl: by o = <01,02,03>. 
(2) The first and the second component of a state store the values of the instance variables and the 

temporary variables of each active object. The third component contains the object names 
currently in use. We need it in order to give unique names to newly created objects. 

In order to give a meaning to expressions, statements, and units we shall define a mathematical 
domain P, the elements of which we shall from now on call processes. 

DEFINmON 4.3 (Semantic process domain P) 
Let P, with typical elements p and q, be a complete ultra-metric space satisfying the following 
reflexive domain equation: 

P ~{po} U id )), 
where Stepp, with typical elements 'IT and p, is 

Stepp= (IXP)U Sendp U Answerp, 
with 

Sendp = ObJX MNameX Obj' X P, 

Answerp = ObjX MNameX (Obj' 

Here Obj', with typical elements a and /J, is the set of finite sequences of object names. (The sets 
{p0 }, l:, Obj, MName, and Obj' become complete ultra-metric spaces by supplying them with the 
discrete metric (see the example preceding definition 2.2).) 

In section 2 it is described how to solve such ari equation. Let us try to explain intuitively the 
intended interpretation of .the domain P. First, we observe that in the equation above the subexpres-
sion id,,,, is necessary only to guarantee that the equation is solvable by defining a contracting functor 
on the category e (see section 2). For a, say, more operational understanding of the equation it does 
not matter. 

A process pEP is either p0 or a function from l: to 'ii'c1(Stepp). The process po is the terminated 
process. For p-:l=p0 , the process p has the choice, depending on the current state o, among the steps in 
the set p(o). If p(o)= 0, then no further action is possible, which is interpreted as abnormal termina-
tion. For p(o)#:0, each step 'ITEp(o) consists of some action (for instance, a change of the state o or 
the registration of an attempt at communication) and a resumption of this action, that is to say the 
remaining actions to be taken after this action. There are three different types of steps 'ITE Stepp. 

First, a step may be an element of l:XP, say 

.,,= <o',p'>. 
The only action is a change of state: o' is the new state. Here the process p' is the resumption, indi-
cating the remaining actions process p can do. (When p'=p0 no steps can be taken after this step 'IT.) 

Secondly,.,, might be a send step, 'ITE Sendp. In this case we have, say 

'IT = <a,m,/J,f,p >, 
with aEObj,mEMName,/JEObj', and pEP. The action involved here consists of the 
registration of an attempt at communicatio_E., in which a message is sent to the object a, specifying the 
method m..!. together with the parameters /1 This is the interpretation of the first three components 
a,m, and /1 The fourth component f, called the dependent resumption of this send step, indicates the 
steps that will be taken after the sender has received the result of the message. These actions will 
depend on the result, which is modeled by f being a function that yields a process when it is applied 
to an object name (the result of the message). The last component p, called the independent 
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resumption of this send step, represents the steps to be taken after this send step that need not wait 
for the result of the method execution. 

Finally, w might be an element of Answerp, say 

w= <a,m,g> 
with aeObj, meMName, and P). It is then called an answer step. The first 
two components of w express that the object a is willing to accept a message that specifies the method 
m. The last component g, the resumption of this answer step, specifies what should happen when an 
appropriate message actually arrives. The function g is then applied to the parameters in this message 
and to the dependent resumption of the sender (specified in its corresponding send step). It then 
delivers a process which is the resumption of the sender and the receiver together, which is to be com-
posed in parallel with the independent resumption of the send step. 

We now define a semantic operator for the parallel composition (or merge) of two processes, for which 
we shall use the symbol II. It is auxiliary in the sense that it does not correspond to a syntactic opera-
tor in the language POOL. 

DEFINITION 4.4 (Parallel composition) 
Let 

II :PXP->P 
be such that it satisfies the following equation: 

pllq = .\a.({wllq :wep(a)Aq(a):;60} U {wllp :weq(a)Ap(a)=f,0} U 

U { wl.P: wep(a),peq(a)}) 

for all p,qeP \ {p0 }, and such that p0 llq=qllpo =p0 . Here, wllq is defined by 

<a',p'>llq = <a',p'llq>, 
<a,m, P,f ,p > fiq = <a,m, "fJ,J,p liq>, and 

<a,m,g>llq = <a,m,.\P·M·(g("iJ)(h)llq)>, 

and wl0 p by 

.,,,.p = 

REMARKS 

l{ <a, g{"iJXf)llp >} 

0 

if w= <a,m,"fJ,J,p > and p= <a,m,g > 
orp=<a,m,"fJ,f,p> andw=<a,m,g> 
otherwise. 

(I) We observe that this definition is self-referential, since the merge operator occurs at the righthand 
side of the definition. For a formal justification of this definition see the appendix (A. I), where 
the merge operator is given as the unique fixed point of a contraction 
iPpc:(P P). 

(2) Since we intend to model parallel composition by interleaving, the merge of two processes p and 
q consists of three parts. The first part contains all possible first steps of p followed by the paral-
lel composition of their respective resumptions with q. The second part contains similarly the 
first steps of q. The last part contains the communication steps that result from two matching 
communication steps taken simultaneously by process p and q. For weStepp the definition of 
wllq is straightforward. The definition of wl.P is more inyolved. It is the empty set if w and p do 
not match. Now suppose they do match, say w=<a,m,{J,f,p> and p=<a,m,g>. Then w is a 
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send step, denoting a request to object a to execute the method m, and p is an answer step, 
denoting that the object a is willing to accept a message that requests the execution of the 
method m. In w I aP, the state a remains unaltered. Since g, the third CO_!Ilponent of p, represents 
the meaning of the execution of the method m, it needs the parameters /3 that are specified by a. 
Moreover, g depends on the dependent resumption/ of the send step w. This explains whJ both 
/J and / are supplied as arguments to the function g. Now it can be seen that g(/JXJ)llp 
represents the resumption of the sender and the receiver together. In order to get more insight in 
this definition it is advisable to return to it after having seen the definition of the semantics of an 
answer statement. 

(3) If, for a given state a, either p(a) or q(a) is empty, then (pllqXa) is the empty set. Since the 
empty set is used to model abnormal termination, this can be understood as follows: If abnormal 
termination occurs in one of the two components of a parallel composition, then the entire com-
position is considered to terminate abnormally. 

(4) The merge operator is associative, which can easily be proved as follows. Define 

f = SUPp.q.reP {dp((pllq)llr,pll(qllr))} 

Then, using the fact that the operator II satisfies the equation above, one can show that f.;;; ½·f. 
Therefore f=O, and II is associative. 

Next, environments are introduced in the following 

DEFINITION 4.5 (Environments) 
The set of environments is defined as follows: 

Env = 
P). 

REMARKS 
(1) We denote the first and the second component of y by y1 and y2• 
(2) When we are going to compute the semantics of a certain unit U, we shall define an environment 

Yu such that it contains all information about the definitions that are present in U. It will be 
needed in the computation of the semantics of U. The first component y1 of an environment y is 
a function that, supplied with an object name a, gives the process representing the execution of 
a's body. Note that this body depends on the class of a, which can, however, be determined from 
the object name by applying the function T. We shall need this first component when we want to 
define the semantics of a new-expression. 
The second component y2 gives the meaning of method executions and is used to define the 
semantics of an answer statement, a method call, and a select statement. When we supply y2 
with arguments m and a we get the meaning of the execution of the method m by the object a. 
It depends on the parameters that are passed to the method, so /J is a third argument. The final 
argument is the expression continuation/, which, applied to the object resulting from the execu-
tion of the method, yields a process that represents the steps to be taken next. The result 
y2(mXaX/J)(/) EP is a process expressing the meaning of the execution of the method m by the 
object a with parameters /J and expression continuation f 
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4.2 Semantics of statements and expressions 
In this section we define the semantics of statements by specifying a function [ · · · 1s of the following 
type: 

[ · · · Js: P 
where Conts = P, the set of continuations of statements. Let seStat,yeEnv,aeAObj, and pEP. The 
semantic value of s is the process given by 

[sJs(YXa)(p). 

The environment y contains information about class definitions (needed to evaluate new-expressions) 
and method definitions (needed to evaluate answer statements, select statements, and method calls). 
The second parameter of [sJs, the object name a, represents the object that executes the statements. 
The semantic value of s finally depends on its so-called continuation: the semantic value of everything 
that will happen after the execution of s. The main advantage of the use of continuations is that it 
enables us to describe the semantics of expressions, in particular the new-expression, in a concise and 
elegant way. For that purpose, we shall specify a function 

[ · · · 1£: P 
where ContE = the set of expression continuations. Let e eExp, yeEnv, a EA Obj, and 

The semantic value of e is the process given by 

[el£(y)(a)(/) 
The environment y, the object a and the continuation f serve the same purpose as in the semantics of 
a statement s. However, there is one important difference: the type of the continuation. The evalua-
tion of expressions always results in a value (an element of Obj), upon which the continuation of such 
an expression generally depends. The function f, when applied to the result fJ of the expression, will 
yield the process f ({J) that is to be executed after the evaluation of the expression. 

REMARK 
Please note the difference between the notions of resumption and continuation. A resumption is a part 
of a semantic step weStepp, indicating the remaining steps to be taken after the current one (see the 
explanation following definition 4.3 above). A continuation is one of the arguments that we give to 
our semantic functions. Such a continuation, when supplied as an argument to [s)5 (y)(a), for a state-
ment s, an environment y, and an object a, indicates the actions that should be taken after the state-
ment s has been executed. It may appear as a resumption in the result. A good example of this is 
the definition of [x~eJs (in definition 4.7, Sl) below. 

DEFINITION 4.6 (Semantics of expressions) 
We define a function 

( · · · 1£: P. 
where 

by the following clauses. Let 

(El, instance variable) 

[xl£(y)(a)(f) = Ao·{ <o,f(o1(a)(x))> }. 

The value of the instance variable x is looked up in the first component of the state o supplied with 
the name a of the object that is evaluating the expression. The continuation f is applied to the 
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resulting value. 

(E2, temporary variable) 

[u)E('yXa)(f) = Xa·{ <o,f(o2(a)(u))> }. 

(E3, send expression) 

[e!m(e1, ... , e.)h(rXa)(f) = 
[e)e(y)(a)( 

VJ- ((e 11£(y)(a)( 

X/11 · ([e2JE(y)(a)( 

X/1.-1 · ([e.)E('y)(a)( 

X{l.·Xo·{ <{1,m,fl,J,po>})) · · · ))))) 
where 

fl= </11, ... ,{1.>. 
The expressions e, e 1, ••• , e. are evaluated from left to right. Their results correspond to the formal 
parameters {1,{11, ••• , {1. of their respective continuations. Finally a send step is performed. The 
object name f1 refers to the object to which the message is sent. The sequence < /11 , ••• , fl.> 
represents the parameters for the execution of the· method m. Besides these values and the method 
name m the final step <{1,m,fl,f,p0 > also contains the expression continuation/of the send expres-
sion as the dependent resumption. If the attempt at communication succeeds, this continuation will 
be supplied with the result of the method execution (see section 4.1). The independent resumption of 
this send step is initialized at p 0 . 

(E4, method call) 

where 

[m(ei, ... ,en)]E(y)(a)(f) = 
le1h<rXa:X 

X/11 · ([e21£(y)(a)( 

X/1. -1 · ([e.]E(Y)(a)( 

X/1.·Xo-{ <o, Y2(m)(a}{fl)(j)> })) · · · ))) 

fl= </11, · · · ,{1.>. 
Here the final step is not a communication step. It represents the execution of the method m by the 
object a with the parameters fl and the continuation f 

(E5, new-expression) 

[new(C)]E(Y)(a)(f) = Xo·{ <o', Y1(/1)ll/({1)>} 

where 



a'= <o1{Ax·ni//fi}, 02, 03U{P}>, and 

p = 11(03,C). 
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A new object of class C is created. It is called 11(03,C): the function 11, supplied with the set of all 
object names currently in use and the class name C as an argument yields a name of class C that is 
not yet being used. The state a is changed by initializing the values of the instance variables of the 
new object to nil and by expanding the set o3 with the new name p. The process y1 (/J), representing 
the body of the new object, is composed in parallel with the process resulting from the application of 
the continuation/ to P, which is the value of the evaluation of this new-expression. We are able to 
perform this parallel composition because we know from/ what should happen after the evaluation of 
this new-expression, so here the use of continuations is essential. 

(E6, identity checking) 

[e 1 =e21E<r)(a)(f) = [e 11£(y)(a)( 

(E7, sequential composition) 

XP1 · [e2lE(Y)(a)( 

XPi· if P1 =Pi 
then/ (tt) 

else /(ff) 
ft)). 

[s;el£(y)(a)(f) = [s]s(r)(a)((el£(y)(a)(f)). 

The definition of [ · · · ls is given below in definition 4.7. Lemma 4.8 states that [ · · · JE and 
[ · · · ls are well defined, although their definitions refer to each other. 

(ES, self) 

[selt1£{y)(a)(f) = /(a). 

The continuation/ is supplied with the value of the expression self, that is the name of the object exe-
cuting this expression. We use /(a) instead of Xo·{ <o,/(a)>} in this definition, wishing to express 
that the value of self is immediately present: it does not take a step to evaluate it. A similar remark 
applies to definition E9: 

(E9, standard objects) 

[</>)E(Y)(a}(f) = /(</>). 

DEFINITION 4.7 (Semantics of statements) 
The function 

(···ls: P, 
where 

Cont5 =P, 

is defined by the following clauses. Let yeEnv,aeAObj,p eP. 

(SI, assignment to an instance variable) 
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[x..-e]s(y)(a)(p) = [eh(y)(a)(i\.,B·i\.o·{ <o',p> }) 
where 

a'= <01 {(01(a){,8/x})/a}, 02,03>. 

The expression e is evaluated and the result .B is assigned to x. 

(S2, assignment to a temporary variable) 

[u..-e]s(y)(a)(p) = (e]E("Y)(a)(i\.,B·i\.o·{ <o',p>}) 
where 

(S3, answer statement) 

[answer VJs(y)(a)(p) = i\.o·{ <a,m,Km >: m EV} 

where for m E V 

Km= i\{JeObj'· i\feObj ...... P· Y2(m) (a) (/J) (i\.,8·(((.B)llp)). 

For each method m the function Km represents its execution followed by its continuation. In the 
definition of Km the second com_ponent of environment y is supplied with arguments m and a. This 
function Km expects parameters .B and a continuation f, both to be received from an object sending a 
message specifying the method m. After the execution of the method both the continuation of the 
sending object and the given continuation p are to be executed in parallel. So the final argument y2 is 
supplied with is 

i\.,B·(f(.B)llp ). 

REMARK 
Now that we have defined the semantics of send expressions and answer statements let us briefly 
return to the definition of wJ.p (definition 4.4). Let w= <a,m,{J,f,q> (the result from the elaboration 
of a send expression) and p= <a,m,K > (resulting from an answer statement). Then wl.P is defined as 

wJ0 p = { <o,K(/J)(/)llq> }. 
We see that the execution of the method m proceeds in parallel with the independent resumption q of 
the sender. Now that we know how K is defined we have 

K(fJ)(f) = "Y2(m )(a)(/J)(i\.,8·(( (.B)llp )). 
The continuation of the execution of m is given by i\.,8·(((.B)llp ), the parallel composition of the con-
tinuations f and p. This represents the fact that after the rendez-vous, during which the method is 
executed, the sender and the receiver of the message can proceed in parallel again. (Of course, the 
independent resumption q may still be executing at this point.) Moreover, the result .B of the method 
execution is passed on to the continuation f of the send expression. 

(S4, expressions as statements) 

(e1s(y)(a)(p) = (e)e{y)(a)(i\.,8-p). 

If an expression occurs as a statement, only its side effects are important. The resulting value is 
neglected. 
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(S5, sequential composition) 

ls1 ;s2Js(y)(a)(p) = [s1ls(Y)(a)([s2J(y)(a)(p)). 

The continuation of s 1 is the execution of s 2 followed by p. We observe that a semantic operator for 
sequential composition is absent. The use of continuations has made it superfluous. 

(S6, conditional) 

[if e then s 1 else s2 fi)s(y)(a)(p) = 
[eh(y)(a)(A/l·(if P=tt 

then [s I ls(r)(a)(p) 

elseif p = ff 
then [s2ls(y)(a)(p) 
else Ao·0 

fi)). 

If /lfl.{tt,ff}, then the result is Ao·0, indicating abnormal termination due to the occurrence of an 
error. 

(S7, loop statement) 

[doe thens od)s(y)(a)(p) = Fixed Point (<I>) 

where <1>:p....,p is defined by 

<l>(q) = [e]E(y)(a)(A/l·Ao·{ <o, if P=tt 
then [sls(r)(a)(q) 

elseif P= ff 
thenp 

else Ao· 0 

fi>} ). 

We shall show below (lemma 4.S(b)) that <I> is contracting. 

(SS, select statement) 

(sel (e1 answer V1 then s 1) or··· or (e. answer v. thens.) les)s(y)(a)(p) = 
[e I IE(y)(a)( 

A/11 · if P1 fl. { tt,ff} then Ao· 0 

else [e2IE(y)(a)( 

A/ln · if P. 11. { tt ,ff} then Ao· 0 

else Ao· 

({<o, foJs(y)(a)(p)>: Pk=tt I\ Vk=0 I\ Vi<k[/l;=tt=>V;,f,01} U 

{ <a,m,gm_k>: Pk =tt I\ m E vk I\ Vi <k [.B; =tt=>(m fl. V;I\ V;,f,0)1}) 
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fi ... ) 

fi), 

where 

Km.k = '}JJEObj' · 

-Y2(m) (a) (ft) (>../1-(J(ft) II lsds(-YXa)(p))). 

The reader is entitled to some explanation. First the guards are evaluated from left to right. If any of 
them evaluates to something different from tt or ff, then an error occurs immediately, indicated by 
Ao· 0 . After the evaluation of the guards we have two sets of possible steps: 

The first set is empty or contains a step corresponding with a guarded command that has a true 
guard and an empty answer set, and for which there does not occur any empty answer set to its left. 

The second set contains those steps that result from the selection of a method in one of those 
guarded commands that have a non-empty answer set Vk. A message specifying the method m E Vi 
can be answered if to the left of the k-th guarded command there occur no guarded commands with 
an empty answer set nor with an answer set containing m. This expresses exactly the priority order of 
the methods as explained in section 3.2. l. The function Km,k expresses the execution of the method m 
in the k-th L'1arded command. The only difference with the function Km used in the definition of the 
answer statem.:nt (S3 above) is that the continuation of the receiving object a (which executes the 
select statements) in this case is: [sds(-YXa)(p). It represents the execution of the statement sk of the 
k-th guarded command, followed by p, the continuation of the entire select statement. 

Note that a guarded command for which the guard evaluates to ff can never be selected. If all 
guards in the select statement evaluate to ff, the result is >..a· 0, denoting abnormal termination. 

LEMMA 4.8 
The semantic functions I · · · h and ( · · · Js of definitions 4. 6 and 4. 7 are well defined: 
(a) For all eEExp,sEStat,-yEEnv,aEAObj: 

[eh(-yXa)E(Obj->P)->1 P and [s]s(-y)(a)EP->1 P. 

(b) The function (J):P->P used in definition 4.7 (S7) is contracting. 

For the proof see the appendix (A.2). 

4.3 Standard objects 

DEFINITION 4.9 (Integers) 
Let the process PINT, which represents the activity of all integer objects, be such that is satisfies the 
following equation: 

PINT= "A.a· ({<n,add,g,;>:nEZ} U {<n,sub,g;>:nEZ} U · • • ), 
where 

g,; = >..°[JEOb/·>..fEObj->P· 

(if /JEZ then f(n + fJ)llpINT else >..o- 0 fi), 

g; = A/JEOb/ ·>..f EObj->P· 

(if /JEZ then f(n - fJ)llpINT else "Ao· 0 fi), 

and where the dots stand for similar terms representing the other operations on integers. 
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REMARKs 
(!) This definition is self-referential since PINr occurs at the righthand side of the definition. For-

mally, PINr can be defined as the fixed point of a suitably defined contraction on P, similar to 
the definition of the merge operator II as the fixed point of the contraction 4lpc (see A. I in the 
appendix). 

(2) We observe that PINr is an infinitely branching process. Such a process fits naturally into our 
domain. This is the reason why we have chosen '8'c1( • • · ) (closed subsets) in our domain equa-
tion rather than '8'cony,( • • ·) (compact subsets). 

(3) The operational intuition behind the definition of p INf is the following: For every n e Z the set 
PINr(u) contains, among others, two elements, namely <n,add,g;; > and <n,sub,g,;- >. These 
steps indicate that the integer object n is willing to execute its methods add and sub. If, for 
example by evaluating n !add(n'), a certain active object sends a request to integer object n to 
execute the method add with parameter n', then g;;, supplied with n' and the continuation f of 
the active object, is executed. We have that g;; (n'Xf) is, by definition, the parallel composition 
off supplied with the immediate result of the execution of the method add, namely n +n', and 
the process PINr, which remains unaltered: g;; (n'Xf)= f (n +n')llpJNr. If, by mistake, a request 
for the execution of the method add arrives that specifies the wrong type or number of parame-
ters, then AG· 0 is the result: the system deadlocks. 

DEFINITION 4.10 (Booleans) 
Let the process PsooL, which represents the behaviour of the booleans tt and ff, be such that it 
satisfies the following equation: 

where 

REMARK 

PsooL = 'll.u· ({ <b,and,gt >: be{tt,ff}} U { <b, or,gt >: be{tt,ff}} U 

{ <b, nol,gb' >:be { tt,ff}}) 

gt = f{JeObj' ·'ll.feObj-->P· (il {Je {tt,ff} then /(b/\fJ)llp800L else 'll.u· 0 fi) 

gt= 'll.fJeObJ'·'ll.feObj-->P· (il {Je{tt,ff} thenf(bv{J)llp800L else 'll.u·0 fi) 

gb' = 'll.{JeObj' ·'ll.feObj-->P· (il fJ = <> thenf(...,b)llp800L else '/1.u· 0 fl) 

As with PINT, the definition of PBOOL is self-referential. It can be formally justified along the lines of 
remark (I) above. The intuition for this definition is very similar to that of the definition of PINr (see 
remark (3) above). 

DEFINmoN 4.11 (Standard object nil) 
The process PNIL, representing the behaviour of the standard object nil, is given by: 

PNIL = AG· { <ni/,m, 'JI.fl· 'll.f- 'll.u· 0 > :m eMName }. 

REMARK 
The process PNIL, representing the behaviour of the object nil, is willing to execute any method 
m eMName. The execution of a method consists of immediate (abnormal) termination, indicated by 
AG· 0. In this way, we model that sending messages to nil leads to abnormal termination of the entire 
system. 

DEFINITION 4.12 (Standard objects) 
We define one process for all our standard objects: 
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ExAMPI.ll 
The standard objects are assumed to be present at the execution of every POOL statements. There-
fore the process representing the semantic value of s will be put into parallel with Psr• An example 
may illustrate how communication with a standard object proceeds. We determine 

(x+-(2!add(3)))s('rXa)(po)llpsr 
for a given xelvar, -yeEnv, and aeAObj. First we compute the semantic value of the assignment: 

(x+-(21add(3)))s('YXa)(po) 
= (2!add(3))E('YXa)(f) 

[where/= A/Hd·{ <a'',po>} with a''= <a'1 {(a'1(a){,8/x}/a},a'2,a'3>) 

= 121E('YXaX A/J1-((3M1X«X A/Ji·>.a-( <.81,add,/h.,J,po>} ))) 
= (3)E('YX«XA/Ji·Aa·{ <2,add,/h.,J,po >}) 
= >.a·{ <2,add,3,/,po> }. 

Now the parallel composition: 

>.a·{ <2,add,3,f,p0 > }llpsr 
= Aa·{<2,add,3,f,p0 >}11>.a'·{ ... ,<2,add,g2>, ... }llpeooLllpN1L 

[where g2 = ~ez thenft.2 + mllP1NT else °Jl.a·0 fi)) 

= Ao·{ <2,add,3,J,po>la<2,add,g2>, ... }llpeooLllpN1L 
[where all steps have been omitted but for the successful communication step] 

= Ao·{ <a,g2(3)(/)>, ... } llpeooLilpN1L 
= Aa·{<a,/(5)11pINT>, ... }llpeooLllpN1L 
= Ao·{ <a,(>.a'·{ <a'',po> })llpINT>, ... }llpeooLilpN1L 

where a'' is as above but with ,8=5. 

4.4 Semantics of a unit 

4.5.l Environments 
If we want to define the semantics of a unit U we obviously need an environment 'Yu that contains 
information about the class definitions and the method definitions of U. It will be defined as the fixed 
point of a contracting function. 

DEFINmON 4.13 
Let Env be the set of environments as defined in definition 4.5. Thus 

Env = 
P). 

For every Ue Unit, we define a function Let -yeEnv, 1=<11,12>. Now 4.>u('Y}, 
denoted by y, is given as follows: First we determine y1: Let «eAObj and C =7(«). If U specifies a 



definition for the class C, then we put 

Yi (a) = lsJs(y)(a)(po), 

where 
U=< ... ,C~ •... >, d=< ... ,s>, 

otherwise: 
y,(a) = Aa·0. 
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Now we define y2• Let m eMName, aeAObj, Pe_Ob/, f eObj-+P, and put C ='!(a). If U specifies 
a definition for C in which m occurs and length(/:l) is equal to the number of formal parameters of 
m, then we put 

where 
y2(m)(a)(p)(/) = Ao· { <a',(e)E(Y)(a)(A,B·Aa·{ <a',f(P)> })> }, 

u = < ...• c~ •... >, 
d = < ... ,( ... ,m.,,1', ... ), ... >, 
/J = <(u1, ... ,u,,),e>, 

a'= <01,02(hla},a3>, 

p =</Ji, ... ,/Jn>, 
h(Ui) = /J1 for i = 1, ... ,n, 
h(u) = nil for uf(u,, ... ,Un}, 

a'= <a,,'a2{02(a)/a},a3>. 

Otherwise, we put 

Y2(m )(aXPXf) = Ao· 0. 

Rmwuc 
If y1 is applied to an object name of which the class is not defined in the unit U, then the empty pro-
cess, Ao· 0, is the result, indicating that an error has occurred. The same happens when y2 is supplied 
with incorrect arguments. The definition of y1 is straightforward. It provides a process representing 
the body of the appropriate object. If y2 is applied to a method m and object a, we get as a result 
the semantic value of the expression e that is used in the definition /J of m, preceded by a state 
transformation in which the temporary variables of a are initialized. After the execution of e these 
temporary variables are set back to their old values again, and the continuation / is supplied with the 
resulting value of e. (Here we use the fact that, although evaluation of a method by an object might 
lead to a nested invocation, this always proceeds in a "last in, first out" fashion.) 

LEMMA4.14 
I.et UeUnit and let «l>u be defined as in 4.13. Then «l>u is a contraction. 

For the proof see the appendix (A.3). 

DEFINITION 4.15 
Let UeUnit, let cI>u be as in 4.13. We define 

Yu= Fixed Point («l>u). 
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4.5.2 Semantics of a unit 
The execution of a unit U with U = < C 1 <=d 1 , .•• , c. <=d" > consists of the creation of an object of 
class c. and the execution of its body. 

DEFINITION 4.16 (Semantics of a unit) 
We define a function 

6D: Unit-'>P 

as follows: Let U e Unit. Then 

6i'f U] = Pu llpsr 
where 

Pu= [s]s(yu)(P( 0 ,C.))(po), 

with 

U = < ... ,C.<=< ... ,s>>, 

and Yu as given in definition 4.15. 

REMARK 
The function [s]s is supplied with the environment Yu, which contains information about the class 
and method definitions in U, the name 11(0,C.) of the first object, and withp0 , denoting the empty 
continuation. The standard objects are represented by PST· They are assumed to be present at the 
execution of every unit U. Therefore they are composed in parallel together with Pu• 

4.5.3 Paths and yield 
The semantics of the statement x<-1; x<-x + I executed by object a, and with the continuation p 0 is: 

Ao·{ <o', Ao·{ <o',p0 >} > }, 

where in a' the value of o(a)(x) is set to I, and in o' the value of o(a)(x) is set to o(a)(x)+ I. This 
process consists of two successive state transformations that are not yet composed. The reason for 
this is that in our semantics parallelism is modeled by interleaving. If, however, we know that the 
statement above is the entire POOL program we want to consider, then no further parallel composi-
tion, and thus no further interleaving, will take place. Then we are able to compose the two state 
transformations into one that accumulates their respective effects. For that purpose we introduce the 
notion of paths. Given a process p I and a state o1, we want to consider computation sequences start-
ing from <o1 ,p 1 >. 

DEFINITION 4.17 (Paths) 
A finite or infinite sequence (<o;,p;>); with o;e"i:.,p;EP is called a path (starting from <oi,p 1 >) 
whenever 
(a) Vj;;:.I U<length((<o;,p;>);) <oj+hPj+I >epj(oj)] 
(b) The sequence satisfies one of the following conditions: 

(I) It is infinite. (This represents an infinite computation.) 
(2) The sequence terminates with the pair <o.,p.>, wherep.=p0 • (This represents normal ter-

mination of all the objects in the system.) 
(3) The sequence terminates with the pair <o.,p.>, where p.(o.)= 0. (This represents abnor-

mal termination.) 
(4) The sequence terminates with the pair <o.,p. >, where p.(a.)CSendp UAnswerp. (This 



represents termination by deadlock.) 
The set of all paths we shall call Path. 

REMARKs 
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(1) A path (<p;,a;>); represents a particular execution of the process p 1 starting from the state a1• 

In every component <a;,p;> of a path starting in <a1,p 1>, the state a. is passed on to the 
resumption process Pn. 

(2) In general a set p;(a;) may contain elements of Sendp or Answerp, besides elements of "2.XP. 
Since we consider paths of only those processes that represent total (POOL) systems that are not 
expected to communicate with any environment, we view such elements as unsuccessful attempts 
at communication. Therefore we do not want to incorporate them in our definition of paths. 
Note that if p;(a;) contains only elements of Sendp and Answerp, then the paths ends, and we 
have the termination by deadlock of case (4) above. 

(3) Note that for paths representing the execution of an entire unit case (2) above never arises due to 
the fact that at least the standard objects are always ready to answer messages. This means that 
"normal termination" of a POOL program is an instance of case (4) above. 

Next we define the function yield It presents us, given a process p and a state a, with the set of all 
possible paths that start from <a,p>. 

DEFINITION 4.18 (Yield) 
The functionyield:P--+"2.--+<5'(,Path) is defined as follows. LetpeP,ae:i.. Then 

yield(pXa) = {(<a;,p;>);: (<a;,p;>); a path such that <a1,p 1 >= <a,p>} 

If we want to have all computation sequences of the denotational meaning of a given unit U, we can 
apply this function yield to the semantics of U as given in definition 4.16: 

yield (61{ U])(au). 

The state au we start with must be such that 

a1 = Aa·'Ju:·ni/, 
a2 = Aa·Au ·nil, 
03 = {11(0,C.)}, 

(where U = < ... ,c.~d.>) in which all variables are initialized to nil, and the set of object names 
that are currently in use consists of the name of the first active object. 

5. FAIRNESS 

We shall now introduce the notion of fairness. A path will be called fair if it does not represent a 
situation in which an object is infinitely often enabled to take a step but never does so. 
To determine whether a path is fair or not, for each step that occurs in the path we have to identify 
the object that takes it. It appears that the semantics of statements as we have defined it offers too 
little information to make the desired identification. Therefore a small adaptation of our semantic 
domain P, the merge operator II and the semantic functions ( · · · 1£ and [ · · · Is is required. 
In our new domain, which we shall still call P, we label every step with the name of the object that 
takes it. We give the adapted equation that must be satisfied and forget about the details of how to 
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solve it. 

DEFINITION 5.l (Adapted domain P) 
Let P be such that it satisfies the following equation: 

P;;; {po} 

where 

Stepp = Compp U Sendp U Answerp, 

Compp = AX ~X P (the set of computation steps), 

Sendp = ObJX ObjX MNameX Obj' X P, 

Answerp = 
The set of labels A, with typical elements re, is defined by 

A= ObJU(ObjXObj). 

The set Answerp is as before, because answer steps were already labeled: their first component indi-
cates the object that is willing to answer the method specified by the second component. The first 
component of a send step denotes the object that is sending a message; the second indicates the 
object to which this message is sent. The first component of a computation step (i.e., an element of 
Compp) is an element of A. It is either an object, indicating the object that is taking an (internal) 
computation step, or it is a pair of objects, indicating the two participants in a successful communica-
tion step (see the definition of the merge operator below). 

The definition of the merge operator has to be adapted to this new definition of the domain P. 

DEFINITION 5.2 
Let be such that it satisfies, forp,qEP: 

p 
q 

if q =po 
ifp=po 

pllq = Arr ({wllq :wEp(o)/\q(o),tc0}U otherwise. 
{ wllp : wEq(o)Ap(o~ 0} U 
U { wl0 p: wEp(o),pEq(o)}) 

For wEStepp w11 distinguish three cases. 
(i) <rc,o',p'=::llq= <,_rc,o',p'llq> _ 
(ii) <a,/J,m, /J,J,p >liq= <_!!,/3,m, ftf ,p liq> 
(iii) <a,m,g > liq= <a,m,}t./J•M·(g(/JXh)llq)>. 
Finally the set of successful communications between two processes is defined as follows. Let 
w,pEStepp. We have -!{ <(a,/J),o, g(P)(/)llp>} if w=_ <a,{3,m,~f,p > and p=_ <{3,m,g> 

wl0 p - or p- <a,/J,m,/3,f,p > and 'IT- </1,m,g > 
0 otherwise. 

The definition of a path (as given in definition 4.17) has to be altered straightforwardly: A path now 
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contains triples <rc;,a;,p;>. Finally the definition of [ · · · h and [ · · · Js ought to be changed. We 
give one example of a clause of the definition of [ · · · 1£. 

DEFINITION 5.3 
Let [ • • • h and [ • · · Js be as given in definitions 4.6 and 4.7, but adapted straightforwardly as is 
illustrated by the following clause. Let We define 

[x)E(yXa)(f) = >.a·{ <a,a,J(a1(aXx))> }. 

As fairness is a negative constraint let us define which paths are to be excluded. 

DEFINITION 5.4 (Unfairness) 
A path (<rc;,a;,p;>); is called unfair whenever one of the following conditions holds: 
(i) 

3rc 3i0 ;;;.Q Vn;;;.io 

[3p 3a [ <rc,a,p > ep.(a.)]/\,qcrc. + 1 ]. 
(ii) 

(iii) 

REMARK 

3a 3<i0 ,i1, ... > 3/J 3m 3P 
[Vk;;;.Q [1-.;ik<ik+i] 

l\'vn;;;.io 3/ 3p [<a,/J,m,P,f,p>ep.(a.)) 

I\Vk;;;.1 3g [</J,m,g>ep;,(a;.)] 

I\ Vn >io [rc.,f,<a,/l> ]]. 

3a 3<io,i1, ... > 3m 
[Vk;;;.Q [J,.;jk<ik+d 

I\ Vn ;;;.;0 3g [ <a,m,g> ep.(a.)] 

/\'vk;;;.J 3/l 3P 3/3p [</J,a,m,P,f,p>ep;,(a;,)] 

/\Vn>io -,3/l [rc.=</l,a>]]. 

The unfairness of a path satisfying condition (i) is interesting only when rceObj. Let rc=a, for an 
object aeObj. When condition (i) is infonnally rephrased, it states that from a certain moment i0 on, 
object a is continuously willing to take a step (namely <a,a,p>, where a and p depend on the 
moment n) but in this path never does so. 
If a path satisfies condition (ii) it is unfair with respect to an object a because this object is neglected 
in too rude a manner. It tries, from a certain moment i0 on, to communicate with object /J in order 
to have method m executed. But although there are infinitely many moments ik at which object P is 
willing to execute this method m our object a is never chosen as a matching communication partner. 
Condition (iii) concerns the academic case that an object a wants to execute method m from moment 
i0 on but never does so, although infinitely many matching partners present themselves one after 
another. (They might all be the same object.) Whenever the first component of a path results from the 
evaluation of a POOL program, condition (iii) implies condition (ii). For, once an object is willing to 
send a request to object a for the execution of method m, it is unable to do anything else until a 
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agrees to the request. 

DEFINITION 5.5 (Fairness) 
A path ( <ic;,a;,p; > ); is called fair if it is not unfair. 

We define a functionfairyield, which presents us, given a process p, a state a, and a label ic, with the 
set of all possible fair paths that start from <ic,a,p>. 

DEFINITION 5.6 (Fairvield) 
The functionfairyield: P-+'2.-+A-+GJ(__Path) is defined as follows. LetpeP, ae'f., iceA, then 

fairyield(pXa)(ic) = {( <ic;,a;,p; > ); : <ic1,a1,p1 > = <ic,a,p> and 

(<ic;,a;,p;>); is a fair path}. 

(Formally the choice of a label ,c is necessary, but of no importance for the result of 
fairyield(p )(a)(ic).) 

The fair computation sequences for a unit U are now given by 

J<.:;'1'ield(6il U))( au )(a), 

where 6il[ VJ is as in definition 4.16, au as defined at the end of subsection 4.5.3, and a is an arbitrary 
label. 

6. CONCLUSIONS 

Now that we have given a semantics for the language POOL, it is time to evaluate our efforts. The 
first thing to note is that we have succeeded in giving a semantics that is really denotational: It con-
stitutes a rigorously defined mapping from the syntactically correct constructs of the language to a 
mathematical domain suitable for expressing the behaviour of these constructs. Furthermore, this 
mapping is defined in a compositional way, in the sense that the semantics of a composite construct is 
defined in terms of the semantics of its constituents. We think we have given a satisfactory semantics 
to a parallel language with very powerful constructs: dynamic process (object) creation (the new-
expression) and flexible communication primitives (send, answer and select). 

The techniques we have used are quite general. We are confident that they can also be used to give 
a denotational semantics to other parallel languages, such as Ada or Occam. 

Giving a denotational semantics to a language is an excellent way of reviewing the language design 
itself. In doing this for POOL, a simplified version of POOL-T, we have encountered no major 
semantic anomalies. A minor point is the semantics of the select statement, which appears to be 
overly complex and difficult to understand. In the design of POOL2, a new member of the POOL 
family, we have decided not to change the basic semantic primitives of the language, and to introduce 
only some syntactic 'sugar' to enhance its ease of use. The select statement, however, is omitted and 
its functionality is obtained by the use of a conditional answer, which accepts an appropriate message 
if there is any and otherwise continues without waiting. 

Let us now review some of the details of the present work: Why did we use the metric framework 
instead of the more common order-theoretic framework? We did this because it was possible. One 
should realize that the main reason to use structured domains instead of plain sets is that we want to 
be able to.solve equations describing the required semantic objects in a recursive way. An equivalent 
formulation is that we want to construct fixed points of certain operations. Now the order-theoretic 
approach has turned out to be very valuable in the situation that the operations under consideration 
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may have many fixed points. Taking the least fixed point of a continuous operation on a complete 
partial order amounts to taking the solution that makes the fewest arbitrary assumptions. In other 
words, it takes the solution that is only defined insofar as it is defined explicitly by the equation. In 
contrast, the metric approach is very useful if the equation has only one solution. If the equation is 
characterized by a contracting operation on a complete metric space, then this implies that the equa-
tion has exactly one solution, and that this solution can be approximated by repeatedly applying the 
corresponding operation, starting from an arbitrary point. In a situation with unique fixed points, we 
think that the metric approach is more appropriate because it makes this situation manifest. 

One could argue that our paper is not very concise, because we have to justify our constructions 
with proofs that are sometimes very lengthy. But if we compare this with the order-theoretic 
approach, we see that such proofs are also required there. They are, however, frequently omitted. 
This is justified on the one hand by the fact that order theory has become rather standard, so that the 
reader can be assumed to be able to provide the proofs himself, and on the other hand by the 
existence of very general theorems stating that functions ( or functors) constructed in certain ways 
from certain basic building blocks are guaranteed to have fixed points. The metric approach is not 
yet so well known, so we thought it advisable to include the relevant proofs, but on the other hand, 
corresponding general theorems about the existence of fixed points for large classes of functors have 
been developed (see for example (America and Rutten, 1988)). A remarkable point is that the 
mathematical techniques used to solve reflexive domain equations, which in (De Bakker and Zucker, 
1982) differed greatly from the ones used in the order-theoretic approac;h, have again converged to the 
latter in our work. 

An important issue is the choice of the concrete mathematical domain in which the meanings of our 
program fragments reside, the space P of processes. It is certainly complex enough to accommodate 
all the different constructs in the language. However, in certain respects it appears to be too complex. 
For example, in the definition of fairness we had to deal extensively with unrealistic situations, 
processes that could never turn up as the meaning of a program. Intuitively it is clear that if we want 
to use a single domain of processes to describe the semantics of different constructs like expressions, 
statements, and units, then this domain cannot be made simpler. So if we want simpler (smaller) 
domains, we shall have to use different ones for different syntactic categories. Actually there are good 
reasons for trying to develop another semantics with smaller domains: 

First, the semantics given here does not provide a clear view of the basic concept of the language, 
the concept of an object. It would be nice to have a semantics in which the objects appear as building 
blocks of the system and in which their fundamental properties, e.g. with respect to protection, are 
already clear from the domain used for their semantics. 

Secondly, there is the notion of full abstractness. A semantics is called fully abstract if any two pro-
gram fragments that behave the same in all possible contexts are assigned equal semantic values. 
Intuitively speaking, a semantics is fully abstract if it does not provide unnecessary details. This is 
certainly a pleasant property of a semantics. Now full abstractness assumes a notion of observable 
behaviour of a program and in the language as we have presented it, programs do not interact at all 
with the outside world. Therefore such a notion of observability still has to be developed for POOL. 
Nevertheless it seems extremely unlikely that for any reasonable choice of observable behaviour a 
semantics along the lines of the current paper will turn out to be fully abstract. 

Another unsatisfactory point is the treatment of fairness. The way this is defined here, by first gen-
erating all execution paths and then excluding the unfair ones, has a definite non-compositional 
flavor. It would be much more elegant if processes exhibiting unfair behaviour did not even arise in 
the whole construction. The most important ingredient would be a fair merge operator, merging two 
fair processes into one fair process. However, in our framework such a fair merge is impossible, 
because in some situations the resulting process would give rise to non-closed subsets of steps (con-
taining a whole Cauchy sequence, but not its limit). To solve this problem we shall probably need a 
more general theory of fairness, if possible in the metric framework. 

A final point of further work to be done is the comparison of this denotational semantics with the 
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operational one given in (America et al., 1986). An equivalence proof would, of course, be very desir-
able. For a language that is only slightly simpler than POOL (instead of the rendez-vous mechanism it 
uses simple value transmission) this has already been achieved (see (America and De Bakker, 1988)). 
Proving the equivalence of the operational and denotational semantics for the full language POOL is 
the subject of current research. 
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APPENDIX 
In definition 4.4 we ~ave an equation for the merge operator II. Here we show that there is exactly one 
operator in P XP--> P satisfying that equation. Let 4>pc: (P XP-->~ P)-->(P XP--> 1 P) be defined as 
follows: For O EP XP-->1 P we define 4>pc(0), which we denote by O, by: 

p 0q = >..o.((w0q: wEp(o)/\q(o),t,0} U {w0p: wEq(o)/\p(o),t, 0} U 

U {wl.P: wEp(o),pEq(o)}) 

for allp,qEP\ {po}, and by p0 0q=q0p0 =p0 . Here, w0q is defined by 

<o',p'>Oq = <o',p'Oq>, 
<a,m,/1,f,p>Oq = <a,m,/1,f,pOq>, and 

<a,m,g>Oq = <a,m,>..{1)J1·(g(/1)(h)Oq)>, 
and wl.P by l{ <o, g({l)(j)Op>} 

wl.P = 
0 

LEMMA A.I 
(a) 4>pc is well defined, that is: 

ifw=<a,m,{1,f,p> and p=<a,m,g> 
or p= <a,m,/1,f,p > and w= <a,m,g > 
otherwise. 

VO EP XP-->1 P(4>pc(0)EP XP-->1 P1 
(b) 4> PC is a contraction. 

PROOF 
(a) 4> PC is well defined: 
Let 0EPXP-->1P; we show 

Vp, ,p2,q,q2 EP(dp(p, Oq, ,p2 Oq2),;;;max(dp(p1 ,p2),dp(q1 ,q2)}] 

where 0 =4>pc(O). 
Let p1,p2,q1,q2 EP. We have (recall that Pis an ultra-metric space) - - - - - -dp(p, Oq, ,p2 Oq2),;;;max(dp(p1 Oq, ,p, Oq2),dp(p, Oq2,P2 Oq2)}. 

It suffices to show that 

(I) dp(p, Oq,,p, Oq2)..;;dp(q,,q2), 
(2) dp(p, Oq2,P2 Oq2)..;;dp(p, ,p2). 
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We treat only the first case, the second being symmetric to it. 
If one of p 1,qi,q2 is equal to p0, the result is trivial, so suppose p1,q1,q2,;=p0 • Let ael: and let for 
i=l,2 

X; = {,r0q,l,rep1(o)Aq1(a)#:0)}, 

Y; = {,r0pd,req,(o)Ap1(a)#:0 }, 

z, = U {,rlop:,rep1(a).peq1(a)}, 

sop 10q1(a)=X1 UY; UZ1• Because a is arbitrary it suffices to show that 

½•d9,<s,.,,,>(X1 U Y1 UZ1,X2 U Y2 UZ2),s;.dp(q1,q2). 

The factor ½ is due to the occurrence of id* in the domain equation for P (see definition 4.3). We 
have 

d9,<St.,,,>(X1 U Y1 UZ1,X2 U Y2 UZ2),s;;; 

max{ d9,<s1.,,,>(X1 ,X2),d9..<s,.,,,i(Y 1, Y 2),d9,<s1.,,,>(Z 1,Z2) }. 

This is a consequence of the fact that the union operator is NDI, which is quite easy to prove. We 
show: d9,(Siq,,)(Z 1 ,Z2)<&;;;2•dp(q 1 ,q2). (The proofs for X1 and Y; are straightforward.) By the 
definition of the Hausdorff distance we have · 

d9,(St.,,,)(Z 1 ,Z2) = max{ sup,,.z, { d(z1 ,Z2)},sup,,.z, { d(z2,Z 1 )} }. 

We consider only the first supremum: 

sup,,.z, {d(z1,Z2)} = sup,,.z.inf,,.z; {ds,.,,,(z1,z2)}. 

Let z I e Z 1 . There are seve_!al possibilities: _ 
1. Suppose {zi}= <a,m,/J,f,p > l0 <a,m,g1 > with <a,m,fJ,f,p>ep1(0), <J1,m,g1 >eq1(0). 
l.(a) If there is a <a,m,g2 > eq2(a), then we can take z2 eZ2 such that 

{z2}=<a,m,fJ,f,p> l 0 <a,m,g2> 
Then we have 

ds,.,,,(z1,z2) = ds,.,,,(<a,g1(/JXf)0p>,<a,g2<fJXf)0p>) 

= dp(g1(/JXJ)0p, g2(/JX/)0p) 

< [since 
d(g1,g2) 

= ds,.,,,(<a,m,g1 >,<a,m,g2>). 

Now for any (>0 we can choose <a,m,g2 > eq2(o) such that 

ds,.,,,( <a,m,g1 >, <a,m,g2> )<&;;;d9,(s1.,,,)(q1 (a),q2(0))+( 

<d,: ... 9,(S1,p,)(q 1,q2) +( 

,s;.2•d(q1 ,q2)+(. 

Therefore 

d(z1 ,Z2)<&;;;2·d(q1,q2}+( 

for arbitrary (, so 

d(z 1,Z2)<2·d(q1 ,q2). 



l.(b) If there is no g2 such that <a,m,g2 > eq2(a), then 

d9.,(Stq,,)(q1 (a),q2(a)) _. d( <a,m,g1 > ,q2(a)) = 1. 

Therefore 

Now 

d(z1,Z2)..;I =2·d,(q1,q2), 

2. The second possibility is that {z1 }=<a,m,g> lo<a,m,fl,/1,p>, 
with <a,m,g>ep1(a), <a,m,IJ,fi,p>eq1(a). This case can be treated similarly to the first case. 

From 1. and 2. we know that for arbitrary z I e Z 1 : 

d(z 1,Z2)..;2•d,(q1 ,q2), 

Symmetrically we have 

'1fz2 eZ2 [d(z2,Z1 )..;2•dp(q1,q2)]. 

Therefore we can conclude 

d9..<s1-,,)(Z 1,Z2)..;2•d,(q1 ,q2). 

(b) 41,c is a contraction: 
Let 0;=def4i,c(0;). Weshowthat 

We have 
- ... ... -

= supp,qeP{d,(p01q,p02q)}. 

Let p,q },aeI. Let for i = 1,2 

X; =def { ,;0;ql'll'Ep(a) }, 

Y; =def {'11'0;pl'll'Eq(a)}, 

Z; =def U {'ll'loP:'ll'Ep(a},peq(a)}, 

sop0;q(a)=X1UY;UZ;. Wehave 

d9..<si-,,>(X1 U Y1 UZ1,X2 U Y2 UZ2)< 

max{ d9..<s1-,,)(X 1,X2},d9..<s1-,,J(Y1, Y 2),d9.(s1-,,J(Z 1,Z2) }. 

We consider d9,(Stq,,)(X1,X2). By definition of the Hausdorff distance we have 

d9.(s1-,,J(X1,X2) = max{sup,,,ex, {d('ll'1,X2)},sup,,,ex, {d('ll'2,X1)}} 

Let '11'1 eX1. We show 

d('ll'1,X2) = inf..,ex, {ds,-,,('11'1,'11'2)}..; 

We treat one of the three possible cases for 'll'J eXi, say '11'1 = <a',p'01q >, where p'ep(a): 

inf..,ex, {ds,-,,( <a',p'01q>,'ll'2)}..; 

ds,-,,(<a',p'01q>,<a',p'02q>) = 

133 
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d'J:xp(<a',p'01q>,<a',p'02q>) = 
dp(p'01q,p'02q)"-

Thus we have 

SUP,.,ex, {d(w1,X2)}"-dpxp .... 1p(01, 02). 

Similarly 

So 

d~.,(step,>(X 1,X2)<dpxp ... ' p( 01, 02), 

And analogously 

d~.,(Sup,)(Y1' Y2)"-dPXp ... 1p(01' 02). 

We have, according to the definition of Z;, that Z 1 =Z2. So 

d~.,(s1-,,)(p01q(o),p02q(o))=d,.,(s1q,,l(X1 U Y1 UZ1,X2 U Y2 UZ2) 

..;dpxp ... •p(01,02). 

This holds for every oeI. Therefore 

dp(p01q,p02q)=½·d'l:-+~.(S1-,,)(p01q,p02q) 

<,½·dPXp ... •p(01,02) 

and thus 

LEMMA A.2 (Lemma 4.8) 
For every expression e, statement s, environment y, and active object a we have: 
(i) P 
(ii) P 
(iii) 
where 4>,,,,p: is defined.for qeP, by 

PROOF 

4>,,..,(q) = (elE(y)(a)( 

A/l·Nr { <a, if /J = tt then lsls(y)(a)(q) 

elseif /J= ff then p 

else Ao- .0 

fi> }). 

We prove this lemma using induction on the complexity of the structure of statements and expres-
sions. The proof consists of two parts. Let yeEnv,aeAObj. We show the following: 
(a) For all simple (see below) expressions e and statements s we have 

P and P. 
(b) Suppose we have proved part (i) and (ii) of the lemma for statements s; and expressions ej. lf 
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seStat and eeExp are compos«ld of the the statements s; and expressions ei the lemma holds for 
e ands. 

Part (a) 
Simple expressions are of the form x, u, new(e), self or 4>, the only type of simple statement is of the 
form answerV. 
Let e be a simple expression. We have to show that 

V/1,/z (dp((elE(rXa)(fi),(elE(YXaXf2)) ..;; d0bj-.P<!1 ,h)l 
Let / 1 ,/z For every simple expression e that is not a standard object nor the expression 
self, we even have: 

dp((e)E(YXaXf1),(elE(yXaXf2))E.½·do,,i ... P<f1,h). 
Intuitively the decrease of distance follows from the fact that the evaluation of these expressions 
always takes at least one step. In this step the state may be changed and the value of the expression is 
passed on to the continuation/;. This may be illustrated by the general form of the semantics of such 
expressions e: 

(e)E(yXa)(fi) = Ao·{ <a', · · · f;(/J) · · · >} 
for some a'el:, {JeObj. As an example let us treat one such type of expression. 
We show that P: 

dp((new(C)IE(yXaXf1),(new(C)IE(YXaXf2)) = 

",(Ao·{ <a', 'Y1 (/J)ll/1 (/J)> },Ao·{ <a', 'Y1 (/J)ll/i(/J)>} = 
½·SUPoel: {ds,q,,( <a', r1(/J)ll/1(/J)>, <a', Y1(/J)ll/i(/J)> )} = 
½·SUPoel: { dp('Y1 (/J)ll/1 (/J), 'YI (/J)ll/i(/J))}..;; 
(because II is NDIJ 
½·SUPoel: { dp(f1 (/J),/i(/J))} E. 

½·do,,j-.P<f 1 ,fz). 
Here a' and /J are as in definition 4.6, part ES. 
For the standard objects we have the following: Let 4>eSObj, then 

dp((4>)E(YXaXf1),(1j,IE(y)laXf2)) = 
dp(f1 (1/1),h(I/I))..;; 

fio,,j_.p(f 1 ,Ji), 
and analogously for self. 
For the only simple statement answerV, we have, for given processes p1,p2 eP, 

dp((answerVls(rXa'/.p1),(answerVls(YXa'/.p2))= 
dp(Aa·{ <a,m,g<,,\> >:me V},>.a·{ <a,m,g<,;> >:me V}) 

where forj=l,2 and meV, 

g'J,> = >."[JeOb/ y2(mXaXPX>./J·(f(/J)llpi)). 
The desired result is straightforward from 

<iob/--(Obj-.P}-.P(t,,\> ,~>).,; 
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Part (b) 

[because P] 

{ J },X/1·(/(ft)llp2))) = 
SUPpeP{ dp(p llpJ ,p llp2)} ,s;;; 
[because II is NDI] 

dp(pJ,P2)-

Composite expressions are of the form e!m(eJ, ... ,e.), m(eJ, ... ,e.), eJ::=e2, or s;e. Composite 
statements are of the form x+-e, u+-e, e, SJ ;s2, if e then SJ else s2 fi, doe thens od or 
set g 1 or · · · or g. les. Suppose that we have proved part (i) and (ii) of the lemma for expressions 
e,eJ, ... ,e.eExp and for seStat. We shall treat one composite expression and one composite state-
ment. 
We show that [e!m(eJ, ... , P. Let /1,/z We have: 

dp(le!m(ei, ... ,e.)JE(y)(a)(JJ), (e!m(eJ, ... ,e.))e(y)(a)(f2)) = 
t.i, '.leJE(y)(a)( ···Xu·{ <{1,m,/1,fi,po>} · · · ), 

[e]e(y)(a)( ···Xu·{ <{1,m,/J.f2,po>} · · · )) ,s;;; 

(by the induction hypothesis for e] 

d( · · · Xa·{ <{J,m,/1,f1,po>} · · ·, ···Xu·{ </J,m,/J.f2,po>} · · ·) ,s;;; 
[by the induction hypotheses for e 1, ••• , e.] 

dp(Xa·{ <{J,m,fJ,fJ ,po> },Xu·{ </J,m,{J,fz,po> }) ,s;;; 

,Ji). 
The most interesting example of a composite statement is the do-statement. We have that 

[doe thens P 

by the following argument, which at the same time proves part (iii) of the lemma. 
First, we show that 

'rip eP[«P,,s,p P}. 

Let qJ,q2 eP. We have: 

dp(«Pe,s,p(q J }, «P,,s,p(q2)} = 
dp((e]e(y)(a)(X{J · · · qJ · · · ), [e)E(y)(a)(X/3 · · · qi · · · )),s;;; 
[by the induction hypothesis for e] 

· · · qJ · · · }, X{J-Xu·{ · · · qi · · · }) ,s;;; 
½·dp((s ]s(y)( a)(q J ),(s ls(Y)( a)(q2)),s;;; 
[by the induction hypothesis for s] 

½·dp(qJ ,qz). 

Secondly, let p J ,p2 eP. We define 

q J = def Fixed Point («Pe,s,p, ), 



We have 

We see: 

qi = thf Fixed Point (4>,,,,p,), 

dp([do e thens od)s(y)(a)(p1),[do e thens od]s(y)(a)(p2)) = 
[by definition] dp(q1,q2) = 
dp(4>,,,,p, (q1 ), 4>,,,,p, (q2)).,;; 

(by the same kind of calculation as above, using the induction hypothesis for e] 

½·max{ dp([s ls(y)(a)(q 1 ),[sls(y)(a)(q2)),dp(p 1,p2)}.,;; 

[ using the induction hypothesis for s ] 

½·max{ dp(q 1,q2),dp(p 1,P2) }. 

LEMMA A.3 (Lemma 4.14) 
Let/or a unit UeUnit 4>u be defined as in definition 4.13. Then 4>u is a contraction. 

PROOF 
We shall show 

'<Jy,8 eEnv[dEnv(y,8)-.;; ½·dEn,(y,8)], 

where y=4>u(Y)~ 8=4>u{8), by proving for y,8eEnv the following two inequalities: 
(a) dEn,, ((y)1 ,(8)1 ).,;; ½·dEnv(y,8) 
(b) dEn,, ((y)i,(8)i).,;; ½·dEnv(y,8). 
We have 

dEn,, {(y)1 ,(8)1) = 
SUPaeAObJ { dp({y)1 {a),(8)1 {a))}.,;; 

sup,.s101,aeAObJ{ dp([sls{y)(a)(po),[s ls(8)(a)(po)) }. 

Now it is easy to prove (in the same way as in lemma 4.8) that, for every seStat and eeExp, 
[sJs E P), 
[el£ E P). 
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Intuitively this can be explained by the fact that whenever the environment occurs in the semantic 
equations (the cases E4, E5, S3, and S8), it is "guarded" by Aa·< · · · >. From this observation it 
follows that 

sup,.s101,aeAObJ{ dp([sls(y)(a)(po).ls ls(8)(a)(pa)} .,;; ½·dEnv(y,8), 
which concludes the proof of part (a). 
The proof of part (b) is similar to that of part (a) and therefore we omit it. 
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1. Introduction 

Process creation is an important programming concept which appears in a variety 
of forms in many contemporary programming styles. In imperative programming 
one finds it in languages such as Ada [1], NIL [ 43] and many others. In the context 
of functional or dataflow languages we refer to [22] for a semantic study dealing 
with process creation. For logic programming many recent references can be found 
in [ 42]. Object-oriented programming (see [5] for a general introduction from a 
theoretician's point of view) has the family of actor languages (see, e.g., [2, 23, 30]) 
as examples. The present study was inspired by the language POOL, an acronym 
for Parallel Object-Oriented Language, described in [3, 4]. 

In two previous investigations we have developed operational ( 0) and denota-
tional (~) semantics for POOL [6, 7]. These two semantic models were designed 
independently of each other, and the investigation reported below constitutes the 
first step towards the goal of settling the relationship between the two models. For 
this purpose we concentrate on the programming notion of process creation together 
with a simple version of process communication, and leave a number of further key 
notions in POOL for later study. More specifically, we treat communication in the 
sense-approximately-as exemplified by CSP [31, 32] and do not treat message 
passing and method invocation-notions which should be situated at the same level 
as remote procedure call or Ada's rendez-vous. A similar combination of process 
creation with CSP-like communication was first described in [19], a paper which 
provides a proof-theoretic treatment of these concepts taken together. 

Before going into the characteristics of the languages we shall deal with, let us 
say something about the terms "operational" and "denotational". Operational 
semantics gives a model of computation by constructing from a given program a 
kind of "abstract machine" having a set of "states" ( which we shall call configur-
ations), and describing the transitions this abstract machine can make from one 
state to another. Denotational semantics works by assigning a meaning, which is a 
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mathematical entity, to each fragment of a program, in such a way that the meaning 
of a composite piece of program can be inferred by looking only at the meanings 
of its parts, not at their internal structure. We say that denotational semantics 
describes the meaning of programs in a compositional way. Fortunately, the technique 
we use for our operational semantics, transition systems in the style of Hennessy's 
and Plotkin's Structured Operational Semantics (SOS) [29, 38, 39] describes the 
abstract machine and its state transitions in a way that is directly related to the 
syntactic structure of the original program. Due to the explicit presence of this 
abstract machine, the transition systems employed have, we feel, a strong operational 
intuition. 

The emphasis in our semantics design is very much on a systematic development 
of the tools for both the operational and denotational models. We have therefore 
structured the presentation in four sections, dealing with four languages of increasing 
complexity. Using some terminology which will be explained in a moment, we shall 
successively present operational and denotational semantics for 

(1) a uniform and static language 5£ us; 
(2) a uniform and dynamic language 2uct; 
(3) a nonuniform and static language 5£nus; 
( 4) a nonuniform and dynamic language 5£nuct. 

These languages are conceptually ordered according to the following diagram: 

In this classification, a uniform language is one which has uninterpreted elementary 
actions. In other words, the indivisible or atomic unit of such a language is just a 
symbol from some alphabet, and the meanings assigned to programs in a uniform 
language bear strong resemblance to formal languages (here with finite and infinite 
words). A nonuniform language has interpreted elementary actions, in our case 
assignments and communications. Thus, (individual) variables appear on the scene, 
and as a consequence we find in our semantics the notion of a state, i.e., of a 
mapping from variables to values. Programs now transform states, and we shall 
develop a mathematical structure with entities which combine the flavour of state-
transforming functions with that of a record of the computational history. In Section 
5, we shall provide evidence that the latter notion is necessary in view of the parallel 
execution operator. 

The second distinction in the above diagram concerns that of static versus dynamic 
languages. In the former, we have a fixed number of parallel processes, in the latter 
a dynamically growing number of processes: each time a new process is created, 
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the total number of active processes increases by one. ( We shall not investigate in 
our paper any notion of process destruction, a concept not present in the language 
POOL.) 

The simplest element in the partial order is ,;£us, to be treated in Section 3. It is 
extended in two directions: one adds the notion of process creation (,;fud), dealt 
with in Section 4, and the other adds the notion of interpreted elementary actions, 
described in Section 5. Finally, in Section 6, both extensions are brought together, 
and the full complexity of a nonuniform dynamic language is confronted. 

In Sections 3 and 4, the languages are uniform and the semantic models are of 
the so-called "linear time" variety (see, e.g., [11] or [ 40]), i.e., they consist of sets 
of (finite or infinite) sequences over a certain alphabet. The operational semantics 
is a uniform version of the Structured Operational Semantics (SOS) of Hennessy 
and Plotkin [29, 38, 39]. The denotational semantics is built on metric foundations 
(apart from the above diagram, no partial order is employed in our paper); this 
remains true for later (nonuniform) sections. A distance between two sequences or 
sets of sequences is readily defined, and most of the _tools of metric topology we 
use are quite standard. In particular, we shall make heavy use of Banach's fixed 
point theorem for contracting functions on a complete metric space. Accordingly, 
our ( denotational) semantics will be defined, when dealing with recursive constructs, 
only when the recursion is guarded. In formal languages, one would say that the 
grammar concerned satisfies a Greibach condition. (In the nonuniform setting we 
shall take an approach where guardedness is automatically satisfied.) 

In each of the Sections 3 to 6 we shall, after having presented the two semantic 
models, go on to investigate their equivalence. In Sections 3 and 4 we actually prove 
that the two semantics yield the same result, i.e., that for t E ,;£us or t E .;fud we have 
O[tD = flJ[tD, For .;fu" this is a result which was already obtained earlier (and 
presented in [ 16]). Below, we repeat certain parts of the proof as a first step towards 
the equivalence theorem for ,;£ ud, a result which we believe to be new. In the analysis 
of .;fud we make essential use of the notion of continuation, both of a syntactic and 
of a semantic kind. Since we develop the semantics of ,;£us as preparatory for .;fud, 

we have adapted accordingly the treatment of[ 16], which does not employ continu-
ations. The equivalence proofs for .;fu, and .;fud have strong similarities. On the 
other hand, there is also a fundamental difference having to do with the following 
consequence of process creation: in a statement with a syntactic sequential composi-
tion(";"), say s1 ;s2 , we do not know whether to model the syntactic";" by semantic 
concatenation("·") or by parallel execution (" II"). To see this, contrast the statement 
a; b yielding the singleton set {ab} as its meaning, with the statement new( a); b. 
The intended meaning of the latter equals that of a II b, which in turn equals the set 
{ab, ba}. To overcome this problem we introduce an auxiliary semantic operator 
":" which is able, somewhat surprisingly, as it were dynamically to make the decision 
whether to opt for"·" or" II". We consider the introduction of this operator, together 
with the derivation of its basic technical properties (such as associativity) as a main 
contribution of our paper. 
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In Sections 5 and 6 we investigate the nonuniform case. !£nus has simple communi-
cation commands which are syntactic variations on CS P's P; ?x and !e constructs. 
We stress that our mentioning CSP here is only to indicate the type of communication 
we have in our language. Partial, let alone full, modelling of CSP is not our aim 
here. The mathematical structures used to model !£nus and .:£nud are Plotkin's 
resumptions [37], presented in a fully metric framework as first described in [ 17] 
and subsequently extended and put in a category-theoretic perspective in [8]. We 
use the terminology of process domains P, satisfying certain (reflexive) domain 
equations of the form 

and we shall design the semantics of programs in !£nus and .:£nud such that the 
meaning of a program is a process p E P. Processes are objects which have a branching 
structure, and the models for !£nus and .:£nud are called branching time [11, 40]. 

The operational models for !£nus and .:£nud once more use SOS style transitions. 
An important new feature is that, in defining the operation<1,l meaning of a program, 
we collect the information from the induced transition steps into a process. In other 
words, we assemble the information in successive transition steps into a branching 
time object. Denotationally, we also use processes as meanings, obtained in the 
usual manner by a compositional system of defining equations. For the nonuniform 
languages, we do not have that (} and qi) yield the same function: In order to allow 
a compositional definition of qi) for the communication constructs, we include in 
qjJ[sD more information than in O[sD (here s is a nonuniform, static or dynamic, 
statement). We therefore introduce a natural extension O* of l!J, which preserves 
one-sided communication information, and then on the one hand establish that 
O* = qi), and on the other hand settle the relationship between l!J and (!J* in terms 
of an abstraction operator abs, resulting in the equivalence (!J = abs O fl'*. 

In Section 6, we combine the techniques designed for .:£ud and !£nus to deal with 
all of .:£nud • In this way, the reader may obtain a better understanding of this 
somewhat complicated case: The concepts of process creation and value communica-
tion have first been treated in isolation, and now a synthesis of the methods from 
Sections 4 and 5 is made. In .:£nud we have classes (ultimately stemming from Simula 
[24]), and creation of a process amounts to the creation of a new instance of a class 
(in the world of object-oriented programming, this instance would be called a (new) 
object). Such an instance has a name which is (just) another value-in addition to 
values such as integers or truth-values-and which may be assigned to a variable. 
In .:£nud we encounter for the first time expressions with nontrivial semantics. 
Consequently, the syntactic and semantic statement continuations used in previous 
sections are now extended with (syntactic and semantic) expression continuations. 
Operational and denotational semantics for 2'nud are without major surprises once 
one has digested Sections 4 and 5. At various points, the definitions owe much to 
similar definitions in [ 6, 7], though a systematic redesign has been applied in order 
to allow the final equivalence proof. Again, techniques of Sections 4 and 5 are 
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brought together, in particular leading to a nonuniform generalization of the ":" 
operator. Also, an additional argument is necessary to deal with the two forms of 
recursion now present, one in recursive procedures and the other in recursively 
defined classes. 

This concludes our overview of the contents of the paper. We also mention that 
in Section 2 we collect some mathematical preliminaries. We list elementary 
definitions and some useful theorems in metric topology, and provide a brief sketch 
of the intuition and mathematical basis for (our way of) solving process domain 
equations. 

Detailed semantic models of process creation are scarce in the literature. Semantic 
studies are reported in a few of the already cited papers [2, 23, 42, 43], but these 
are all focused on very different problems and techniques. Our work shares with 
[22] the central role played by continuations. However, that paper investigates 
process creation in a (deterministic) dataflow setting, and does not address semantic 
equivalence issues. 

Our debt to Plotkin's seminal work in semantics should be clear from the above. 
To Nivat we are indebted for stimulating our interest in metric techniques going 
back to his lectures in [35]. Without the detailed semantic analysis of POOL described 
in [6, 7], the present paper would have been impossible. Many of our semantic 
definitions can be traced back to concepts and techniques first developed in these 
two papers. 

2. Mathematical preliminaries 

2.1. Notation 

If X is a set, we denote with g}l(X) the power set of X, i.e., the collection of all 
subsets of X. g; ,,.( X) denotes the collection of all subsets of X which have property 
Tr. A sequence x0 , x 1 , ••• of elements of X is usually denoted by (x;) ~o or, briefly, 
( X; );. The notation f: X Y expresses thatf is a function with domain X and range 
Y. We use the notation f{y / x}, with x EX and y E Y, for a variant off, i.e., for the 
function which is defined by 

f{y/x}(x') = {;(x') if x=x', 
otherwise. 

If f: X X and f(x) = x, we call x a fixed point off 

2.2. Metric spaces 

Metric spaces are the mathematical structures in which we carry out our semantic 
work. We give only the facts most needed in this paper. For more details, the reader 
is referred to [25, 26]. 
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2.1. Definition. A metric space is a pair (M, d) where M is a nonempty set and d 
is a mapping M x M [O, l] having the following properties: 

(1) 't/x, y EM [d(x, y) = O~x = y], 
(2) 't/x,yEM[d(x,y)=d(y,x)], 
(3) 't/x, y, z EM [d(x, y)-,;;_ d(x, z) + d(z, y)]. 

(d is called a metric or distance.) 

Examples. ( 1) Let A be an arbitrary set. The discrete metric on A is defined as 
follows: Let x, y EA 

{ 0 if X = y, 
d(x v) = '. 1 if X;: y. 

(2) Let A be an alphabet, and let Ax:=A*uAw denote the set of all finite and 
infinite words over A Let, for x E A oc, x( n) denote the prefix of x of length n, in 
case length(x) n, and x, otherwise. We put 

d(x, y) = 2-sup{njxln)-yln)} 

with the convention that rx = 0. Then (Acx, d) is a metric space. 

2.2. Definition. Let (M, d) be a metric space and let (x;); be a sequence in M. 
(1) We say that (x;); is a Cauchy sequence whenever we have 

(2) Let x EM. We say that (x;); converges to x, and call x the limit of (x;); 
whenever we have 

We call the sequence (x;); convergent and write x = Jim; X;. 

(3) (M, d) is called complete whenever each Cauchy sequence in M converges 
to an element of M. 

2.3. Definition. Let (M,, d,) and (M2 , d2) be metric spaces. 
(1) We say that (M,, d 1) and (M2 , d2) are isometric if there is a mappingf: M, 

M2 such that 
{a) f is a bijection, 
(b) 't/x, y EM, [di(J(x),f(y)) = d,(x, y)]. 

We then write M 1 = M2 . If we have a function f satisfying only condition (1 )(b ), 
we call it an isometric embedding. 

(2) Let f: M 1 M 2 • We call f continuous whenever, for each sequence (x;); with 
limit x in M 1 , we have that limJ(x;) = f(x). We shall denote the set of all continuous 
functions from M, by M, M2 • 
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(3) We call a function f: M 1 M 2 contracting if there exists a real number c with 
0 c < 1 such that 

Vx, y E M 1 [di(f(x),f(y)) c d 1(x, y)]. 

(4) A function f: M 1 M2 is called non-distance-increasing if 

We shall denote the set of all non-distance-increasing functions from M 1 to M2 by 
M1 M2. 

2.4. Lemma. Let (M1, d 1) and (M2, d2) be metric spaces, and let f: M 1 M 2 be a 
contracting function. 111en f is continuous. 111e same holds for non-distance-increasing 
functions. 

2.5. Theorem (Banach). Let (M, d) be a complete metric space. Each contracting 
function f: M M has a unique fixed point which equals limJ'(x0 ) for arbitrary 
x0 E M. (Here f 0(xo) = Xo and f;+ 1(xo) = f(F(xo)).) 

Proof. Since f is contracting, the sequence (F (x0 )); is a Cauchy sequence. By the 
completeness of (M, d), the limit x = limJ; (x0 ) exists. By the continuity off ( Lemma 
2.4),f(x) = f(lim;r (xo)) = limJi+ 1 (xo) = X. If, for some y E M,f(y) = y then, by the 
contractivity off, d(x, y) = d (f(x),f(y)) c d(x, y ). Hence, since c < 1 we conclude 
that d (x, y) = 0, and x = y follows. 

2.6. Definition. Let (M, d) be a metric space. 
(1) A subset X of M is called closed whenever each converging sequence with 

elements in X has its limit in X. 
(2) A subset X of M is called compact whenever each sequence in X has a 

subsequence which converges to an element of X. 

Remarks. (1) The definition of compactness given here is in fact what is called 
sequential compactness in general topology. In a metric space this is equivalent to 
compactness. 

(2) Taking, in Definition 2.6(2), X equal to M defines when the space (M, d) is 
called compact. 

(3) In a metric space every compact set is closed. 

2.7. Definition. Let (M, d), (M1, d1), and (M2 , d2) be metric spaces. 
(1) We define a metric dF on the set M 1 M2 of all functions from M 1 to M 2 as 

follows: For every f 1 ,f2 E M 1 M2 we put 

dFU1JJ = sup dif1(x),J2(x)). 
xEM1 

(2) We define a metric dp on the Cartesian product M 1 x M 2 by 

dp((x1,y1),(x2,Y2))= max d;(x;,y;). 
iE{ 1,2} 



Equiva/en, semantic models for process creation 147 

(3) With M 1 LJ M 2 we denote the disjoint union of M 1 and M 2 , which may be 
defined as ( { 1} x M 1) u ( {2} x M 2 ). We define a metric du on M 1 LJ M 2 as follows: 

if x, y E { i} x M; for i = 1 or i = 2, 
otherwise. 

In the sequel we shall often write M 1 u M 2 instead of M 1 LJ M 2 , implicitly assuming 
that M 1 and M 2 are already disjoint. 

(4) Let [J/'c1(M) ={XIX s; M, X closed}. We define a metric dH on [J/'c1(M), called 
the Hausdorff distance, as follows: 

dH(X, Y) = max {:~f d(x, Y), :.~e d(y, X)} 

where d (x, Z) = inCEz d (x, z) (here we use the convention that sup 0 = 0 and inf 0 = 
1, so that the empty set will have distance 1 to every other set). 

2.8. Theorem. Let (M, d), (M1 , d1), (M2 , d2), dF, dp, du, and dH be as in Definition 
2.7, and suppose in addition that (M, d), (M1 , d1), and (M2 , d2) are complete. We 
have that 

(1) (M1 M 2 , dF) (together with (M1 M 2 , dF) and (M1 NDJ M 2 , dF)), 
(2) (M1 x M 2 , dp), 
(3) (M1 LJ M2, du), 
(4) ([J/'c1(M), dH) 

are complete metric spaces. ( Strictly speaking, for the completeness of M 1 M 2 , the 
completeness of M 1 is not required.) 

In the sequel we shall often write M 1 xM2 , M 1 LJM2 , [J/'c1(M), etc., 
when we mean the metric spaces with the metrics just defined. 

The proofs of parts (1), (2), and (3) of Theorem 2.8 are straightforward. Part (4) 
is more involved. It can be proved with the help of the following characterization 
of completeness of ([J/'c1(M), dH)-

2.9. Theorem. Let ([J/'c1(M), dH) be as in Definition 2.7. Let (X;); be a Cauchy sequence 
in [J/'c1(M). We have 

lim; X; = {lim; X; Ix; EX;, (x;); a Cauchy sequence in M}. 

Theorem 2.9 is due to Hahn [28). Proofs of Theorems 2.8 and 2.9 can be found, 
e.g., in [25] or [26]. The proofs are also .repeated in [ 17]. 

2.10. Theorem (Metric completion). Let M be an arbitrary metric space. Then there 
exists a metric space M (called the completion of M) together with an isometric 
embedding i: M M such that 

( 1) M is complete, 
(2) for every complete metric space M' and isometric embedding j: M M' there 

exists a unique isometric embedding J: M M' such that JO i = j. 
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Proof. Standard topology. 

Finally, we have the following result from Rounds [ 41]. 

2.11. Theorem. Let f: M 1 M2 be an arbitrary function, where M 1 and M2 are 
compact metric spaces, and define]: (J\1(M1) :1J>(M2) by f(X) = {f(x) Ix EX}. Then 
the following statements are equivalent: 

( 1) f is continuous. 
(2) For every XE :1/>c1(M1) we have](X) E :1f>c1(M2), and]is continuous with respect 

to the Hausdorff metrics. 
(3) For every XE :1/>ci( M1) we have f(X) E :1f>c1(M2), and,for each decreasing chain 

(X;); (i.e., X; 2 X;+ 1 for all i) of elements in :1f>c1(M1) we have 

2.3. Resumptions and domain equations 

We begin with a brief intuitive introduction of the notion of resumption ( due to 
Plotkin [37]). We use the terminology of processes p, q, which are elements of a 
process domain P We emphasize that we are concerned here with semantics rather 
than with syntax: processes are elements of mathematical structures rather than 
(pieces of) program texts. Process domains are obtained as solutions of domain 
equations. In this informal introduction we let A and B stand for arbitrary (fixed) 
sets (where necessary provided with the discrete metric) and we shall denote by p0 

an arbitrary mathematical object which shall play the role of a nil process. A very 
simple equation is 

(2.1) 

We can read this equation as follows: a process p E P is either Po, which cannot 
take any action, or it is a pair (a, q) EA x P, where a is the first action taken and q 
is the resumption, describing the rest of p's actions. Clearly, (2.1) has as a solution 
the set of all finite sequences (a 1 , a2 , • •• , a 11 , p0), with n 0 and a; EA for all i. The 
set of all these finite sequences plus all infinite sequences (a 1, a 2 , ••• ) is another 
solution. 

We next consider 

(2.2) 

This is already a much more interesting equation: each process p is either p0 or a 
function which, when supplied with an argument a, yields a pair p(a) = (b, p'). We 
see that p maps a to b, at the same time turning itself into the resumption p'. We 
can say that p determines its first step b and the resumption p' on the basis of a. 

The following equation we consider is 

(2.3) 
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Now, if we feed a process p -'I: p0 with some a EA, a whole set X of possible pairs 
(b, q) results, among which the process can choose freely. For reasons of cardinality, 
(2.3) has no solution when we take all subsets, rather than all closed subsets of 
Bx P. Moreover, we should be more precise about the metrics involved. We should 
have written (2.3) like this: 

(2.3') 

where, for any positive real number c, id,. maps a metric space (M, d) into (M, d') 
with d'(x, y) = c d (x, y ). We shall adopt the convention that in domain equations 
like (2.1), (2.2) and (2.3) every occurrence of the defined space Pon the right-hand 
side is implicitly surrounded by id,12 • (Note that (2.1) and (2.2) can be solved even 
without this convention, resulting in a set of sequences or trees respectively, with. 
the discrete metric.) 

It will turn out that (2.3) is the right type of domain equation for our purposes. 
We shall, in Sections 5 and 6, specialize A and B to certain sets which have the 
appropriate semantic connotations. As we shall see later, an important advantage 
of processes as in (2.3) is that they allow a natural definition of their merge, which 
combines interleaving and communication steps in a way which is quite familiar in 
concurrency semantics (for one example, see ACP [18]). 

We next discuss how one may solve equations as exemplified by (2.1) to (2.3). 
These equations are special cases of domain equations as studied in depth in the 
domain theory initiated by Scott and developed further by many researchers (includ-
ing Plotkin's [37], see, e.g., [27] for a comprehensive reference). We shall here 
briefly sketch an approach to the solution of such domain equations which is fully 
couched in the setting of (complete) metric spaces (first described in [17]) and, in 
this way, avoids any mention of order-theoretic structures. We thus obtain a unified 
mathematical foundation for our semantics since we exclusively base ourselves on 
metric techniques. We present a somewhat streamlined version of the results in [17]. 
There is an important class of domain equations not covered in that paper, viz. 
equations of the form 

(2.4) 

i.e., involving functional domains with the "unknown" domain on the left-hand 
side Recently, a fuller treatment of the metric approach has been described 
by America and Rutten [8]. There, equations P = [!f( P) are solved in a category of 
metric spaces, also catering for situations as in (2.4). For the purpose of the present 
paper, the restricted case to be described below suffices, and we thus avoid the 
introduction of various category-theoretic notions which are not essential for the 
applications at hand. 

We consider a domain equation 

(2.5) 

where [!f is a function (technically, a functor on the category of complete metric 
spaces, but we do not have to be aware of this) which is constructed according to 
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the following syntax (where c is a real number, 0< c< l, and M an arbitrary 
complete metric space with metric dM ): 

(2.6) 

The above definition of ;ffe ,hould be understood as follows. For each complete 
metric space (Q, d) we define the complete metric space (::ffe(Q), ::ffe(d)) to which ;ffe 

maps (Q, d): 
(1) ::ffeM ( Q) = M, ::ffe111 ( d) = d111 • Thus, ::ffeM is the constant function, yielding 

(M, d111 ) for every Q. In various applications, we just give some arbitrary set A and 
assume for A the discrete metric. 

(2) idc(Q)=Q, id,.(d)(x,y)=cd(x,y). 
(3) If ;ffe = ::ffe1 x ::ffe2 , assume that ::ffe;( Q) = Q; and ::ffe;(d) = d; for i = 1, 2. Then we 

put ::ffe(Q)=Q1 xQ2 and ::ffe(d)=dp (see Definition 2.7). 
(4) If fffe = fffe1 LJ F2 , assume again that ::ffe;( Q) = Q; and ::ffe,(d) = d; for i = 1, 2. Then 

we put fffe( Q) = Q1 LJ Q2 and ::ffe(d) = du (see Definition 2.7). 
(5) If [Ji= g\,(::ffe'), assume that ::ffe'( Q) = Q' and ::ffe'(d) = d'. Now we put ::ffe( Q) = 

g\i(Q') and ::ffe(d)=(d')H (see Definition 2.7). 
(6) If we already know that ::ffe111 (Q)=M and ::ffeM(d)=dM. Now 

assume that ::ffe'( Q) = Q' and ::ffe'(d) = d'. We put .'Ji( Q) = M Q' and ::ffe( d) = ( d')h 
where (d')F is the function metric on M Q' derived from d' (see Definition 2.7). 

According to [ 17], for ;ffe as just given we can solve (2.5) by the following scheme: 
Define inductively 

Po= ( { p0}, d0) d0 the discrete metric, 

Pn+I = ::ffe(Pn). 

Observe that-ignoring the obvious identification of P with { i} x P for i = 1, 2 in 
case ::ffe involves a disjoint union-we have for all n 

(2.7) 

Now we put ( Pw, dw) = (U 11 P,,, U II dn) ( with the obvious interpretation of Un d,,) 
and we define (P, d) as the completion (see Theorem 2.10) of (Pw, dw). Then we 
have the following theorem. 

2.12. Theorem. For ::ffe and Pas above, we have P = ::ffe( P). 

Proof. A nonessential variation of the results of [ 17]. 0 

Remark. The scope of the techniques applied in the proof of Theorem 2.12 was not 
fully understood in [ 17], and substantial clarification was provided by [8]. In 
addition, [8] brings an essential generalization: The clause ;J,M .'Ji' in (2.6) is 
replaced by ::ffe1 ::ffe2 , thus dropping the restriction that only constants appear on 
the left-hand side A precise analysis is provided of the ensuing situation, 
involving the notion of contraction coefficient c;,, 0 of a functor fffe, and culminating 
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in the result that, for c < 1, (2.5) has a unique solution (up to isometry). A key step 
in this analysis is a generalization of (2.7): in the presence of general functional 
domains we can no longer gloss over the need for a precise embedding of P" into 
Pn+i, and a rigorous definition of an arrow,: Pn Pn+ 1 is needed. For arbitrary 
complete metric spaces (M1 , d 1) and (M2 , d2), such an arrow i: M 1 M2 is a pair 
( i, j) with i: M 1 M2 an isometric embedding and j: M2 M 1 a non-distance-
increasing function such that j O i is equal to the identity function on M 1 • 

3. A uniform and static language 

We begin with a detailed study of 5£us, a uniform and static language. First we 
present its syntax, and its operational semantics in the style of Hennessy and Plotkin 
[29, 38, 39]. Next, we develop the metric framework to define the denotational 
semantics for 5£us · Finally, we discuss the relationship between the two semantics 
and outline an equivalence proof. Most of this section can- already be found in [ 16, 
Section 2]; we repeat this material here to make the present paper self-contained 
and to prepare the way for the treatment of the dynamic case in the next section. 
There are a few new points in the development presented below as well, partly due 
to the fact that 5£us has only one level of parallelism, partly caused by our wish to 
achieve a smooth transition to the definitions for 5£ud, the language with dynamic 
parallelism (a notion not treated in [16]). The latter aim has in particular motivated 
our use below of the technique of continuations. 

3.1. Syntax and preliminary definitions 

Let A be a finite alphabet of elementary actions, with typical elements a, b, c (by 
this we mean that the letters a, b, and c, possibly adorned with primes or subscripts, 
will be used to range over elements of A) and let Stm V be an infinite set of statement 
variables, with typical elements x, y. Statement variables are used in the syntactic 
construct for recursion, as we shall see in a moment. 

3.1. Definition (Syntax.for statements and programs). (1) The set Y'u, of (uniform 
and static) statements, with typical element s, is defined by 

s ::= a Ix I s1 ;s2 I s1 u Sz I µx[s'] 

The prefix µx in the construct µx[s'] binds occurrences of x in s' in the usual way. 
We call a statement s closed if it contains no free occurrences of statement variables. 

(2) The set 5£us of (uniform and static) programs, with typical element t, is defined 
by 

Here we require that s 1 , ••• , s" are all closed (so that programs are always closed). 
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Examples. (1) Statements: a;b, µx[(a;x) u b], µx[(a;x) u (x;b) u c], 
µx[(a 1 ;x;aJ u µy[(y;b) u c]], a;y;b (only the last example is not closed). 

(2) Programs: Each of the closed statements listed under (1), and, in addition, 
(a;b) II µx[(a;x) u b] II µx[ (x;b) u c ], µx[ a;x] II µy[b;y]. 

A statement s is of one of the following forms: 
• an elementary action a, 
• the sequential composition s 1 ;s2 of statements s1 and s2 , 

• the nondeterministic choice s1 u s2 (also known as local or internal nondetermin-
ism): s1 u s2 is executed by executing either s 1 or s2 , where the choice is made 
nondeterministically. 

• a statement variable x, which is (primarily) used in: 
• the recursive construct µx[ s]: its execution amounts to execution of s, where 

occurrences of x in s are executed by (recursively) executing µx[ s]. For example, 
with the ~emantic definitions to be proposed presently, the intended meaning of 
µx[(a;x)ub] is the set a*· bu{aw}. 
A program t = s 1 11 · · · II s,, consists of n ;;;, 1 statements which are to be executed 

in parallel. Since n remains fixed throughout the execution oft, we call the language 
!i'us static to distinguish it from the dynamic language 5£'ud studied in Section 4. 

!i'us has no synchronization or communication. The issues which arise when such 
notions are added to it are studied in detail in (later sections of) [16]. We do not 
want to complicate our treatment of !i'u,-which plays only a preliminary role in 
the present context-by including such ramifications. 

Substitution of a statement for a statement variable is defined in the familiar way: 
s[s'/x] denotes the result of substituting s' for all free occurrences of x in s, with 
the usual precaution of renaming bound variables when necessary to avoid clashes. 

In both operational and denotational models we shall use the universe of streams, 
defined as follows. 

3.2. Definition (Streams, cf. [20, 21]). We assume that ..L fl'. A The set A st of all 
streams over A is defined by 

Ast =A*uAwu(A*x{..L}) 

where A* (A"') is the set of all finite (infinite) words over A 

We shall use u, v, w to range over A st and use E for the empty stream. Streams 
of the form (u, ..L) will be written as u · ..L or simply u..L. We shall abbreviate (e, ..L) 
to 1-. The use of ..L is motivated, in an operational setting, by our wish to produce 
some visible result as the outcome of an infinite computation that does not produce 
an infinite sequence of elementary actions. For example, we shall organize the 
definitions such that both µx[x] and µx[(x;b) u c] deliver ..L as an outcome (in the 
latter case together with cb*). 
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We shall use aw for the infinite sequence of a's. length(u) yields the number of 
symbol occurrences (from Au {.L}) in u. In particular, for u E Aw, length(u) = co, 
and for u=u'.L, u'EA*, we have length(u)=length(u')+l. we use",,,;" for the 
prefix ordering on A st , i.e., we put u,,,; v whenever u = v or u EA* and, for some 
w EA", u · w = v (the reader who wants to see a precise definition of the concatena-
tion "·" of streams is referred to Definition 3.12). For example, we have ab,,,; abc, 
an,,,; aw, ab,,,; ab.L, but a.L ,t;, ab.L. We recall that each ,,,;.chain (u;);, with U;,,,; U;+ 1 , 

i = 0, 1, ... , has a least upper bound u = tub; U; in A'', where ( U;); is either infinitely 
often increasing ( U; ¥- ui+ 1 for infinitely many i) and then u E Aw, or ( u;); stabilizes 
in some u4, ( u; = u4, for all i ;;a: i0 ), and then u = u4,. We conclude this list of definitions 
with the notation u(n), which denotes the ,,,;.prefix of u of length n in case this 
exists, and which equals u otherwise. 

In both this and all subsequent sections we shall make extensive use of so-called 
continuations, both of syntactic and semantic variety. In defining the semantics of 
a statement, we shall use a continuation to indicate the "actions" which remain to 
be done after this statement. Syntactically, this is done b_y a piece of program text, 
a syntactic continuation, to be defined below. Semantic continuations will be 
introduced in Section 3.3. The use of continuations in the context of 2u, is not 
necessary or especially helpful, but it introduces the techniques which will be applied 
fruitfully in the following sections. 

We shall denote the empty syntactic continuation by E (note that E is not itself 
a statement) and then define the following sets. 

3.3. Definition ( Syntactic continuations). ( 1) The set SyCo of syntactic continuations, 
with typical element r, is defined by 

r ::= EI s;r' 

Here we require that each statement s occurring in a syntactic continuation r is 
closed (so that syntactic continuations are always closed). 

(2) We define the set PSyCo of parallel syntactic continuations, with typical element 
p, as follows: 

3.2. Operational semantics 

We now proceed with the operational semantics for Y'u, and 2u,· We apply the 
technique of transition systems, introduced by Hennessy and Plotkin [29, 38, 39), 
and proven to be quite fruitful in a variety of concurrency semantics. The particular 
version employed below is close to the style of definition in [9, 10), though these 
papers deal in fact with interpreted rather than with uninterpreted languages ( cf., 
for example, the discussion in [ 12) of the distinction between uniform and nonuni-
form). In [16) we also discuss the relationships between our version of the transition 
formalism and other variants one may encounter in the literature. 
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A configuration is either a pair (p, w), with w EA* x {.1}, or simply a stream w, 
with w EA*. A transition is a pair of configurations of the form 

or 

(where w, w' EA* x {.1}, w" EA*). In order to understand such transitions, we first 
mention-anticipating later precise definitions-that a program t = s1 II · · · II sn will 
correspond to a parallel continuation p = s 1 ; E, ... , sn ; E. For each configuration 
(p, w), we view pas the program currently to be executed, and was an (unfinished) 
stream of elementary actions collected so far. The relation as given above either 
reflects a one-step transition to a new such pair (p', w'), or a one-step transition to 
a (finished) stream w". The transition system to be defined in a moment provides 
the information necessary to deduce transitions of the given form. More precisely, 
we shall define the relation between configurations as the smallest ( with respect 
to set inclusion) relation which satisfies the axioms given in the following definition. 

3.4. Definition ( Transition system for .:t'u,). The system .'1u, for ,;£us consists of the 
following five axioms (in a self-explanatory notation): 

( ... ,a;r, ... •.. ,r, ... ,wa.1), Elem 

( ... ,(s 1 ;s2);r, ... , ••• ,s1 ;(s2 ;r), ... , w), SeqComp 

(here X YIZ is short for X Y and X Z), 

( ... , µx[s];r, ... , ... , s[µx[s]/x];r, ... , w), 

(£, ... , E, w. 

Rec 

Term 

( Note that, by our conventions, in the first and fifth axiom w EA*, and in the 
remaining ones w EA* x {1.}.) 

Our next step is the definition of a semantic function C[ · D, yielding, when applied 
to some p, a subset of Ast • 

3.5. Definition. We define the function 

O[ · D: PSyCo 2P(Ast ) 

as follows. Let p E PSyCo. We put a stream w into O[p D whenever one of the following 
conditions is satisfied: 

(1) There is a finite sequence of configurations ((p;, w;))~ 0 such that (p,, 
(p;+J, W;+1) for i=O, ... ' n -1, Po= p, Wo= .1, and <Pn, w. 

(2) There is an infinite sequence of configurations ((p;, w,)) t 0 , such that (p,, w,) 
(p;+ 1 , W;+ 1) for i = 0, I, ... , p0 = p, w0 = 1-, W; = w'.l., and w = (lub, w;).1. 
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Remark. In clause (2) we use the obvious fact that if(p, w'l.), then ws w'. 
Note that, for (w;J, infinitely often increasing, w' =cterlub; w; belongs to A"', so from 
the definition w = w' l. we infer that w = w' (by Definition 3.12, concatenating any 
stream to the right of some infinite stream has no effect). For ( w;); stabilizing in 
w;,,, we obtain w = w;01.. 

Examples. (1) <'7[µx[ (a;x) u b ];Ell= { aw} u a*b, O[µx[ (x;a) u b ];Ell= { l.} u ba*. 
(2) O[(cu (a;b));E,d;Ell = {cd, de, dab, adb, abd}. 

We conclude the operational semantics definitions with the definition of O[tll for 
t E ::£us; 

3.6. Definition. The mapping O[ · ll: :t:u, 9P(A st ) 1s defined as follows. Let t = 
s,11 · · · llsnE:i:u,• Then 

O[tD = O[s 1 ;E, ... , Sn ;El 

Remark. There is a natural connection between the notions discussed above when 
restricted to programs without parallelism ( t = s1) and the languages with finite or 
infinite words produced by context-free grammars in the sense of, e.g., Nivat [35]. 
For example, the grammar X aXblc produces {aw} u {a"cb" In ;a: 1}, and so does 
O[µx[ ( a ;x;b) u c ]Il. A difference arises in the presence of unguarded recursion ( cf. 
Definition 3.14 below); for example, O[µx[(x;b)uc]ll equals {l.}ucb*, whereas 
X Xblc would, by Nivat's definitions, produce only cb*. Briefly, the role of l. in 
our style(s) of semantics has no counterpart in traditional formal language theory. 
Fixed point considerations for infinitary languages generated by grammars which 
may be left recursive (in other words, which do not satisfy the Greibach condition) 
are discussed for instance by Niwinski [36]. 

A number of elementary properties of O[ · Il are collected in the following lemma. 

3.7. Lemma. (1) O[Ell = {E}. 
(2) O[a;rll = a·O[rll. 
(3) O[(s1 ;si);rll = O'[s, ;(s2 ;r)]. 
(4) O[(s1 us2 );rll=O'[s,;r]uO[s2 ;rll. 
(5) O[µx[s];r] = O[s[µx[s]/x];r]. 

Remark. This lemma presupposes the formal definition of operations on ( sets of) 
streams to be given in Definition 3.12. 

Proof of Lemma 3.7. Obvious from the definitions. 

3.3. Denotational semantics 

By way of preparation for the denotational semantics for :.tu,, we present some 
basic definitions which introduce the metric setting we apply for this purpose. 
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3.8. Definition. We define the distance 1] by 

where T"'=O. 

3.9. Lemma. (1) (A st , d) is a complete metric space. 
(2) For finite A, (A'', d) is compact. 

Proof. See, e.g., [35]. 

Let 9Jl nc(A st ) denote the collection of all nonempty closed subsets of A5'. We 
usually abbreviate :?Jl0 c(A't ) to Snc· Let X, Y range over Snc· We put X(n) = 
{u(n)juEX}. Now we also define a distanced on Snc· 

3.10. Definition. The distance J: Snc x Snc [O, 1] is defined by 

where, again, r·X) = 0. 

We have the following important theorem. 

3.11. Theorem. (1) (Snc, J) is a complete metric space, and if A is finite, this space 
is compact. 

(2) J coincides with the Hausdorff distance ( cf Definition 2.7) induced on Snc by 
the distance d on streams. 

Proof. Part (2) is easy from the definitions, and part ( 1) then follows from Theorem 
2.8 (together with a theorem that says that compactness also carries over from any 
M to :?Jlci( M ), see [25, 26]). The omission of the empty subset, which has distance 
1 to every other subset does not disturb closedness or compactness. D 

Remark. As a consequence of part (1) of Theorem 3.11, each Cauchy sequence 
(X")" in (S0 c, J) has a limit limn Xn in (S0 c, J), a fact we shall employ several 
times below. 

Next we introduce three semantic operators "· ", "u ", and "II", which are counter-
parts of the syntactic operators of sequential composition, choice and parallel 
execution. The first two are well-known; the II-operator (when applied to two sets) 
consists of the shujjle of all streams in the two operands. As remarked before, no 
operations involving synchronization or communication are considered for this 
language. The precise definition of the semantic operators proceeds in stages. 
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3.12. Definition (Semantic operators). (1) We assume as known the operation "·" 
of prefixing an element a EA to a finite stream u EA*, yielding as a result a· u 
(also written as au). Moreover, we put a· (u, ..L) = (au, ..L) for u EA*. 

(2) Assume X, Ys;;;A*u(A*x{..L}). We define 
(a) a·X={auluEX}; 
(b) for uEA*u(A*x{..L}), we define u· X by induction on the length of u, as 

follows: E · X=X, ..L · X ={..L}, (au)· X=a· (u· X); 
(c) X· Y=LJ{u· YiuEX}; 
(d) Xu Y is (indeed) the set-theoretic union of X and Y; 
(e) u[l W (which will be used in (2)(f) is defined by induction on the length of 

u, as follows: E[LX=X, i[LX={..L}, (au)[LX=a· ({u}IIX); 
(f) XII Y=(X[l Y)u(Y[LX), where X[l Y=U{u[LXluEX}. 
(3) Assume that X and Y are arbitrary elements of Snc, and let opE { ·, u, II}. 

Then we put 
X op Y = limn(X(n) op Y(n)). 

3.13. Lemma. (1) The operators op from { ·, u, II} are well-defined. In particular.for 
each X, YE Snc, (X(n) op Y(n))" is a Cauchy sequence. 

( 2) Each op is a continuous mapping: Snc x Snc Snc. 

Proof. Either by combining results from [11] with Rounds's theorem (Theorem 
2.11), or by appropriately modifying the proof as given in [ 17, Appendix B]. D 

We need one last step before we can give the definition for the denotational 
semantic function 0J[ ·]. We shall restrict the definition of 0J[ · D to statements 
involving only guarded recursion defined as follows. 

3.14. Definition. ( 1) A statement variable x may occur exposed in a statement s. 
This notion is inductively defined as follows: 

(a) x occurs exposed in x; 
(b) if x occurs exposed ins, then x occurs exposed in s;s', sus', s'us, and 

µy[s] for y x. 
(2) A statement s is called guarded when for each of its recursive substatements 

of the form µx[s'] we have that x does not occur exposed in s'. A program 
t = s, II · · · llsn is called guarded if all its constituents S; are guarded. 

Examples. The statements µx[a;x] and µx[µy[b;y];x] are guarded, whereas 
µx[(x;b) u c] and µy[µx[y];b] are unguarded. 

Let 9'~. denote the sets of guarded statements and 2~. the set of guarded programs. 
We shall now define the mappings 0J: 

NDI 
0J[ · (SeCo - Snc)) 

and 
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where r is the set of environments and SeCo the set of semantic continuations, both 
to be defined below. (Recall from Definition 2.3 that Noi stands for the set of all 
non-distance-increa~ing functions.) We take y to range over r and cp to range over 
SeCo NDI Snc· The type of especially the first iJlJ might require some explanation; 
it means that we apply the function iJlJ to a guarded statement, an environment, and 
a continuation in order to get an element from Snc, i.e., a nonempty, closed set of 
streams. 

The definition of the set SeCo of semantic continuations is simple: We just take 

SeCo = S0 c, 

and use X, Y to range over· SeCo as well. A semantic continuation denotes the 
semantics of the statements to be executed after the one to which iJJJ[ · TI is applied. 
To be more precise, when iJlJ is applied to a (guarded) statements and an environment 
y, we get a function cp: SeCo NDI Snc· The interpretation of this function is as 
follows: if XE SeCo = S 0 c is the semantics of a statement, say s', to be executed 
after s, then the semantics of s and s' together is given by cp(X) (this is illustrated 
very well by part (1 )(b) of Definition 3.15 below). At this point continuations may 
seem a complicated way of doing a simple thing (concatenating sequences), but in 
later sections we shall see that the technique of continuations enables denotational 
semantics to do in a simple way things that otherwise require quite an effort. 

There are two reasons to require the function cp to be non-distance-increasing: 
The technical reason is that we want Lemma 3.16 below to hold. The intuitive reason 
has to do with the fact that such a function cp will not have the opportunity to 
analyse its argument in detail and make decisive choices based on that analysis, 
but it will just concatenate the argument to the end of some set of streams, possibly 
(in later sections) interleaving it with yet another set of streams. This kind of 
operation will "shift" the argument "to the future", and due to the nature of the 
metric on S 0 c, this means that the distance between cp(X) and cp( Y) will possibly 
be smaller than the distance between X and Y, but definitely not greater. 

For the set of environments we use 

NDI 
I'= StmV (SeCo - S0 c). 

An environment gives a meaning to each statement variable. In more conventional 
languages, which use procedure declarations where we use the µ-construct, the 
meaning of such a set of declarations would be recorded in an environment y, which 
is subsequently used to interpret the procedure calls in the statements after the 
declarations. Our recursive construct effectively combines a declaration and a call 
of a "procedure", named with a statement variable. Therefore the statements within 
the recursive construct µx[s] will be interpreted with respect to an environment 
different from the one used in interpreting the recursive construct, where the 
difference lies in the meaning assigned to the statement variable x (see equation 
(3.1) below). 

We are now sufficiently prepared for the following definition. 
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3.15. Definition (Denotational semantics for Y'us and 5t'uJ- (I) Assume that s E Y'us 
is guarded. We define 0J[s] by structural induction on s: 

(a) 0J[a](-y)(X) =a· X, 
(b) 0J[s1 ;s2]( y)(X) = 0J[s1]( y)(0J[s2]( y)(X)), 
( c) 0J[s1 u s2]( y )(X) = 0J[s1]( y )(X) u 0J[s2]( y )(X ), 
(d) 0J[x]( y)(X) = y(x)(X), 
( e) 0J[µx[s ]]( y )(X) = q,00(X) where q,00 is the unique fixed point of the operator 

(/): (SeCo NDI Snc) (SeCo NDI S0c) given by t:P(<p) = 0J[s]( y{ <p/ x} ). (We 
use the variant notation y{ r,o / x} introduced in Section 2.1.) 

(2) For t=s1II · · · llsn, t guarded, we put 

0J[t] = 0J[s1](y)({E})II · · · ll@[sn](y)({E}) 

where y is arbitrary (and we assume the obvious associativity of "II"). 

The definition in clause (I)( e) is justified by the following lemma. 

3.16. Lemma. Ifs is guarded and x does not occur exposed in s, then we have that 
the operator tP defined by t:P=Aip.@[s](y{ip/x}) is contracting. 

Proof. Induction on the complexity of s, using the condition on x. 

By Banach's theorem (Theorem 2.5), the operator tP in Definition 3.15(1 )( e) 
indeed has a unique fixed point 'Poc• In particular, for the meaning of µx[s] we 
have the familiar fixed point relation (for each y): 

<p00 = 0J[µx[s ]]( ')') = @[s]( y{ 'Pool X} ). (3.1) 

Note furthermore that 'Poc, = limi 'Pi, where <p0 can be chosen arbitrarily and the rest 
of the sequence is given by 'Pi+i =@[s](y{q,Jx}). 

3.4. Equivalence of operational and denotational semantics 

After having defined both eJ and @ for (guarded elements of) Y'u, and 5t'us, we 
next discuss the relationship between the two semantics. We shall in fact establish 
that, for t guarded, 

eJ[ !] = @[ t]. (3.2) 

We need some technical properties of fJ which will play a role in the inductive 
argument to prove (3.2). A very detailed treatment of variants of these results can 
be found in [16] (variants stemming from the fact that the latter deals with nested 
parallelism as well). Therefore, we state the results here without proof. 

3.17. Lemma. (1) fJ[s;r] = fJ[s;E] · fJ[r]. 
(2) fJ[r1, r2] = eJ[r1] II eJ[r2], 

For the statement of the next theorem we need some further notation: Consider 
a recursive construct µx[s]. Let n be a new elementary action, i.e., n t A (This is 
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the only place where we find it convenient to distinguish a syntactic elementary 
action (fl) from the corresponding semantic one (..L).) fl will play a role only in 
connection with Theorem 3.18 below. We first introduce a corresponding axiom 
( extending the list of transition axioms in Definition 3.4): 

( ... , fl;r, ... , w. Undef 

(Recall that w EA* x {..L}. Thus, Undef is an axiom which terminates the computation 
with an unfinished stream.) Moreover, for each n 0, s, and x, we introduce the 
notation s~n > given by 

s~ = fl, 

The following theorem is proved in [16]. 

3.18. Theorem. Assume that µx[s] is closed and guarded. Then we have 

fi'ffµx[s ];r] = limn O[s~•>;r]. 

Proof. See the argument in [16], which involves an elaborate development of 
auxiliary tools. D 

Theorem 3.18 is in fact crucial for the proof of (3.2). We shall prove (3.2) in a 
way that anticipates the strategy followed in the next section where we deal with 
2ud· Our reason for doing this is our wish to pinpoint the places where the proof 
of the dynamic case is essentially more involved than that of the static case. 

In order to prove (3.2), we first prove a more general result, and then obtain (3.2) 
as a direct corollary. 

3.19. Theorem. Let s be guarded but not necessarily closed, and let the set of free 
statement variables of s be contained in {x 1 , •• • , Xm }, m 0. Let s 1 , • •• , s,,, be closed 
and guarded statements, let s = s[s;/ X;];"=1, and let, for any r, m[r] be short for 
AX( O'[r] · X). Let furthermore 

cp; = m[s; ;E] 

for i = I, ... , m, and let y = y{ cp;/ X;}: 1• Then we have 

m[s;E] = ~[s]( -y). 

Proof. Induction on the complexity of s. We treat three representative cases: 
Case 1: s = X;. Then m[s;E] = m[s; ;E] = cp; = ~[x;]( -y). 
Case 2: s = s';s". Now the free statement variables of s' and s" are also among 

{x1 , ••• , Xm}. We can write s' = s'[s;/ X;];"= 1 and similarly for s". Then we get 

m[s;E] = m[(s';s");E] 

= m[s';(s";E)D (Lemma 3.7) 
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= AX.O[s';(s";E)ll • x 
= AX.(O[s';ED · (O[s";ED · X)) (Lemma 3.17 and associativity of"·") 

= AX.(l'J[s';ED(l'J[s";ED(X))) 

= AX.(!?il[s'll( ,ji)(!?il[s"D( ,ji)(X))) (twice the induction hypothesis) 

= !?il[s';s"D( ,ji). 

Case 3: s = µy[s']. Let us first remark that from the conditions on sand s1, ... , Sm 

it follows that sis guarded. We define s' = s'[s;/ X; ];': 1 (note that y may still be free 
in s'). Now we have on the one hand 

l'J[s;ED = AX.(O[s;ED. x) 

= AX.limn(O[st\ED · X) (Theorem 3.18 and continuity of"·") 

= limn(l'J[s_:.<n);ED). 

On the other hand, we have !?il[sll( ,ji) = limn ifin, where 1/10 .can be chosen freely and 
o/n+1 = !?il[s'D( Hifin/y}). Our choice for 1/10 will be I/Jo= AX.{..L}. We prove, by induction 
on n, that 

l'J[st\ED = ifin• 

The case n = 0 is clear. Now assume (3.3) as induction hypothesis. Then 

(I)[ s:.( n+ I \E] = l'J[s'[s;/ X;] ;"= I u:.( n) I y]; ED 

= !?il[s'D( y{.-p;/x;}:"=1{1/Jnf Y}) = !?il[s'D( y{ifin/y}) = o/n+I · 

(3.3) 

Here we have used the main induction hypothesis withs'. replacing s, m + I replacing 
m, and s,, ... ' Sm, s_:.<n) replacing s,, ... , Sm. In order for the main induction 
hypothesis to apply we have to establish that l'J[,;)n\ED = ifin, which is nothing but 
our nested induction hypothesis (3.3 ). 

Now that we have proved (3.3) for all n, it is evident that (l)[s;Ell = !?il[sD( ,ji), 
which proves the most difficult part of the theorem. 

3.20. Corollary. For guarded t we have O'[tll = !?il[tD. 

Proof. For any closed and guarded s, and any -y, we have, by the previous theorem, 
that <D[s;ED=!?il[sll(-y). Hence, O'[s;Ell=l'J[s;Ell({1,})=!?il[sD(-y)({1,}). If t= 
s, II · · · II sn, we therefore obtain 

O'[tll = O'[s1 ;E, ... , Sn ;Ell= O'[s1 ;Ell II··· IIO'[sn ;Ell 

= !?il[s1D( -y)({E})II · · · ll!?il[snD( -y)({E}) = !?il[tD. D 

We conclude this section with a remark on possible other models for :£us. Besides 
the operational and metric denotational (linear time) models for :£us, we have also 
developed several other models which have been described elsewhere: 
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(1) A denotational semantics based on a cpo structure on (certain) sets of streams 
equipped with the Smyth order [12, 14, 33, 34]. 

(2) A denotational semantics based on a cpo structure on ( certain) sets of so-called 
finite observations equipped with the order of reverse set inclusion [12, 14]. 

(3) A branching time denotational semantics based on a process domain of the 
kind described in Section 2.3 [11]. 

The equivalence of the models in (1) and (2) has been established in [ 14], the 
equivalence of the model in ( 1) and the denotational metric model is proved in 
[13], and the relationship between the branching time model and (any of) the linear 
time models is settled in [ 11 ]. 

4. A uniform and dynamic language 

We now turn our attention to a language with process creation. In this section we 
study the uniform version of this phenomenon as couched in the language 2 ud. In 
Section 5 we shall investigate a nonuniform generalization. 

A substantial part of the semantic theory for !:fu, can be carried over to the present 
case. Thus, we can be much shorter in our definitions. The main equivalence result 
also closely follows the approach from Section 3, but for one important new problem 
which requires nontrivial additional analysis. 

4.1. Syntax and intuitive explanation 

We start with the following definition. 

4.1. Definition (Syntax for statements and programs). ( l) Let s range over the set 
:f'ud of (uniform and dynamic) statements: 

s ::= a Ix I s1 ;s2 I s1 u s2 I µx[s'] I new(s'). 

(2) Let t range over the set 5fud of (uniform and dynamic) programs: 

t ::= s 

Here we require again that s is closed. Thus, a program in 5fud is simply a closed 
statement from :f'ud. 

The intuitive operational semantics for t or s may be described in terms of a 
dynamically growing number of processes which execute statements in parallel in 
the following manner: 

(1) Set an auxiliary variable i to 1, and set s1 to s, the program to be executed. 
A process, numbered 1, is created to execute this s,. 

(2) Processes 1 to i are executed in parallel. Process j executes si ( 1 j i) in 
the usual way (see Section 3) if si begins with an elementary action, sequential 
composition, choice, or a recursive construct. For example, if s1 begins with an 
elementary action a, then this a is appended to the output word, and sj is set to its 
(syntactic) continuation (the part after this atomic action). 



Equivalent semantic models for process creation 163 

(3) If some process j (1 ~j i) has to execute a statement of the form new(s'), 
then the following happens: The variable i is set to i + 1, then s; is set to s', and a 
new process, with number i, is created to execute s,. Process j will continue to 
execute the part after the new-statement (sj is set to its continuation). Go back to 
step (2). 

(4) Execution terminates when there is no process left with a nonempty continu-
ation. 

Examples. (1) The statement a;new(b;c);d determines the execution as suggested 
by the following picture (where the arrow denotes creation of a new process): 

(2) The statement a;new(b;new(c;d);e );f determines the execution as suggested 
by the diagram: 

a 

f b 

e ; I 
4.2. Operational and denotational semantics 

The above intuitive explanation would clearly benefit from a more formal descrip-
tion, and this will be the main content of the present section. 

We first develop the operational semantics for Y:uu. We profit from the preparatory 
work in Section 3, and assume the general framework as described there. Also, 
configurations (p, w) or simply w' (with w EA* x {l.}, w' EA*) are as before, except 
that the statements sin such a parallel syntactic continuation p (see Definition 3.3) 
should now belong to 9'uct instead of 9'u,· The transition is now defined 
as the smallest relation satisfying the axioms in the following definition. 

4.2. Definition ( Transition system for 2uct). The transition system .'Juct for 2uct consists 
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of all the axioms of Definition 3.4 (i.e., of all of flu,), and in addition the axiom 

( ... , new(s);r, ... , ••• , r, ... , s;E, w). New 

Here on the left-hand side we have a parallel syntactic continuation p with, say, 
n;;;, 1 components and new(s);r as the ith component (for some i, 1:,;;; ;:,;;; n). On 
the right-hand side we have the parallel syntactic continuation p' with n + 1 com-
ponents, r as the ith component and s;E as the (n + l)st component (and no changes 
with respect to p in the remaining components). 

The definition of O'[p D is as before, but now with respect to transition system ffud. 

Also, since each t E .;fud equals some s E Y'ud, we simply put, fort= s, O'[tll = O'[s;Eil. 

Example. Take t = a;new(b;new(c);e);f Then 0'[t] = {afbce, abfce, abcfe, ab(:ef, 
afbec, abfec, abefc, abecf}. 

The elementary properties of O' listed in Lemma 3.7 remain valid. In addition, 
we have the following lemma. 

4.3. Lemma. O'[new(s);rD = O'[r, s;ED. 

Proof. Clear from the definitions. D 

We proceed with the definitions for the denotational semantics for Y'ud and .;fud• 

A complication which arises is that the notion of a statement being guarded has to 
be refined. A typical case concerns a recursive construct such as µx[new(a);x], 
where the elementary action a does not fulfil the duties of a guard: this construct 
may choose to start execution with the recursive call x. The precise definition of 
guardedness requires an amended definition of"x is exposed ins", and this involves, 
in turn, a notion of generalized new-statement. 

4.4. Definition. ( 1) A generalized new statement g is defined by 

g ::= new(s) \ g 1 ;gz \ g' us\ s u g' \ µx[g'] 

(2) When a statement variable x occurs exposed in a statements E Y'ud is defined 
inductively as follows: 

(a) x occurs exposed in x; 
(b) if x occurs exposed ins, then x occurs exposed in s;s', sus', s'us, µy[s] 

(if y;i,x), new(s), and in g;s. 
(3) A statements E Y'ud is called guarded if, for all its recursive substatements of 

the form µx[s'], s' contains no exposed occurrences of x. 

We shall now give a denotational semantics for .;fud by defining 
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where we use r, SeCo, and S0 c as in Section 3.3. (Analogously to Section 3.3, Y'~d 
denotes the set of guarded statements, and :t~d the set of guarded programs.) 

4.5. Definition. (I) For guarded s E Y'ud, s not of the form new(s'), we take over 
the clauses from Definition 3.15. 

(2) For guarded s of the form new(s') we put 

£il[new(s')]( y )(X) = £il[s']( y )( { E}) II X. 

(3) For guarded tEXud, t=s, we put £il[t]=£il[s](y)({E}), where y is arbitrary. 

We see that the meaning of a new-construct new(s') in a situation that X remains 
to be done (i.e., with a semantic continuation X) is given by the result of putting 
X in parallel with the meaning of s' where nothing remains to be done after it 
(continuation {E}). 

Remark. It has been proved that the expressive power of Xud is essentially greater 
than that of Xu,, in the sense that for each t E Xus there is a t' E Xud such that 
O'[t] = O'[t'] (indeed, take t' = t), but not the other way around. (IJ.J. Aalbersberg 
and P. America, personal communication.) 

4.3. Equivalence of operational and denotational semantics 

We now address the question as to whether, for guarded t, O'[ t] = £il[ t]. We follow 
the line of reasoning as in Section 3. First, we again have this lemma. 

4.6. Lemma. (1) For all r1 , r2 E SyCo we have O[r1 , r2] = O[r1] II O'[r2]. 

(2) If µx[s] is closed and guarded, then O[µx[s];r] = lim 0 O[s~"';r]. 

Proof. See the sources given with Lemma 3.17 and Theorem 3.18. D 

The next step in the argument concerns the analogue of Lemma 3.17(1) (and, 
somewhat more hidden, the way in which <D[ ·] is defined, cf. Theorem 3.19). Let 
us see whether we may expect that O[s;r] = O[s;E] · O'[r]. It is easy to see that this 
is not the case by taking, for example, s = new(a) and r = b;E. Then the left-hand 
side equals {ab, ba} and the right-hand side equals {ab}. On the other hand, taking 
s = a, r = b;E, we see that neither is it true in general that O[s;r] = O'[s;E] II O[r]. 
What we need here (and in the definition of <D[ • ]) is an operator which, as it were, 
is able to decide dynamically whether the operation at hand is of a sequential or 
of a parallel character. 

Having pinpointed the problem which distinguishes the situation in the current 
section from that in Section 3, we develop some additional tools and associated 
lemmas in such a way that eventually we shall be able to adopt the same style of 
argument for the main equivalence result as used in Section 3. 
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We shall introduce the semantic operator":", which should clearly be distinguished 
from both"·" and" II". The de.finition of":" requires the introduction of an auxiliary 
elementary action, not belonging to Au {.l}, and denoted Its intuitive function 
is to mark the termination of a local process and (thus) to indicate where a 
continuation should start. We shall put A'= and introduce the extended 
stream set A est as 

A eSt = A st U { W I W E A* W E A st} I 2 I , 2 • 

We now define the operator":" as follows. 

4.7. Definition. We shall put S~c=fiJl0 c(Aes1) (recall that S 0 c=fiJl0 c(Ast)). 

( 1) The operator ":" : A eS t x A eSI S~c is given by 

w·w'={ w1 • (w2 llw') ifw=w1Jw2, 
· { w} otherwise. 

(Note that w' could again contain an occurrence of .J, which will behave as an 
ordinary elementary action with respect to "II".) 

(2) For X, YE S~c, X and Y with finite streams only, we put 

X:Y=U{u:vluEX,vE Y}. 

(3) For arbitrary X, YE S~c, we put 

X: Y = limn(X(n): Y(n)). 

An important tf'-:hnical lemma concerning the operator ":" is the following one. 

4.8. Lemma. (1) ":" is continuous as a mapping and as a mapping 
S~cX S~c· 

(2) Restricting the domain of":" to S~c X S 0 c will restrict its range to S0 c, or in 
other words,":": S~c X Snc• 

(3) (X: Y):Z = X: ( Y:Z), for X, Y, Z E S~c• 
(4) XES~c-
(5) (Xu Y):Z = (X:Z) u ( Y:Z),for X, Y, Z E S~c-
(6) {XII Y):Z = XII{ Y:Z), for XE S 0 c, Y, Z E S~c• 

Proof. We only prove part (3). Below, we shall prove that (u:v):w = u:(v:w) for 
u, v, w EA est. Then we obtain, for X, Y, Z with finite streams only, 

= U U U (u1 :(u2 :w)) = X:( Y:Z). 
u1€X u2e Y weZ 

For general X, Y, Z, we take the limit of X(n): Y(n):Z(n). 



Equivalent semantic models for process creation 167 

We now prove that (u: v ): w == u:( v: w). If u E A st (so that u has no occurrence of 
then (u: v ): w == {u} = u:( v: w), and if v E A st then ( u: v ): w == u: v == u:( v:w). Now 

suppose that u == and v == We prove two inclusions: 
(1) (u: V): w<;; U: ( V: w). Wehaveu: V == Ui · (u2II V ),so(u: V): W == Uw'E(u2llv)(U1 w'): w. 

Let w' E u2llv. We distinguish two subcases: 
(a) w'EAst • This is only possible (since if u2EAwu(A*x{j_}). Then 

w'Eu2llv1, so w'Eu2ll(v1 ·(v2llw))==u2ll(v:w), and therefore (u 1w'):w== 
{u1w'},;; u:(v:w). 

(b) w' == w;. Now there are u21 , u22 such that u2 == u21 u22 , w; E u21 II v1, w; E 
uzillv2 • We obtain 

( U1 w'): w == U1 w;( w;II w) <;; u1(U21 II v1Hu22JI V2II w) 

<;; u1(u2ll(v1(v2llw))) == u:(v;w). 

(2) u:(v:w) <;; (u:v):w. We have u:(v:w) == u1 · (u2ll(v:w)) == Uu·cv:w U1 · (u2llu') == 
Uv'Ev,llw U1 · (u2ll(v1v')). Now let v'E v2llw and w'E u2ll(v1v'). There are u2i, u22 , 

w;, and w; such that w' == w; w;, w; E u21 II v1, w; E uzzll v'. We have that 

(4.1) 

(The inclusion holds since contains the set which in 
turn contains We conclude that • 

u1w'== u1w;w;E u1w;(uzillv2 llw),;; (u:v):w, 

where the last inclusion follows from ( 4.1) by postfixing both sides with ": w". 

We next show how the new operator ":" solves the problems described after 
Lemma 4.6. First we extend-for the remainder of this section-the definition of 
SyCo (cf. Definition 3.3), and now put 

r ::= E I I s; r' 

We emphasize that the "elementary occurs only in syntactic continuations; 
the syntax for statements s E Y'ud is not modified. Before we can state and prove the 
equivalent of Lemma 3.17(1 ), we discuss the induced amendment of the transition 
system ?Jud· Firstly, all axioms of .°lud now refer to r (and p) which may involve 

Secondly, we extend -'Yud with an axiom catering for J. In the present context, 
we need this axiom only in a restricted version: 

( ... , ... , ( ... , E, ... , wJ j_) Elem' 

where w EA* and none of the continuations appearing at the dots ( ... ) involves 
J. In other words, we restrict attention to parallel syntactic continuations p which 
involve at most one constituent syntactic continuation r ending in This is no real 
restriction since that property applies to all configurations in transition sequences 
which interest us: It holds trivially for p containing only one component, and it is 
preserved by applications of the axiom New, which creates new components. 
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We can now state the following lemma, which applies the technique of induction 
loading to prove Corollary 4.10. 

4.9. Lemma. Lets E Y'ud (not necessarily closed) and suppose that all the free variables 
in s are in { x 1 , ••• , x,}. Now let s 1 , ••• , sk be closed and guarded and define s = 
s[ sJ x;] 7~ 1• Suppose further that for i = 1, ... , k and for any r we have 

and that s is guarded. Then we have for any r 

Proof. Induction on the complexity of s. We give full details of the proof, in order 
to exhibit its dependence on Lemma 4.8. 

(I) If s = a, then s = a, so we get 

O[s;r] = O[a;r] =a· O[r] 

= 

= = 

(Lemma 3.7) 

(Lemma 4.8(4)) 

(2) Ifs= X;, then s = S; and the property follows from the assumption about S;. 

(3) If s=s';s", then we get in an obvious way s=s';s", so 

O[s;r] = O[(s';s");r] 

= O[s';(s";r)] (Lemma 3.7) 

= O[s";r] (ind. hyp. for s') 

= (ind. hyp. for s") 

= ( O[r] (Lemma 4.8(3)) 

= (ind. hyp. for s') 

= 

= 

( 4) Ifs= s' us", then, again, s = s' us" and we get 

O[;;r] = O[(s'u s");r] 

= O[s';r] u O[s";r] (Lemma 3.7) 

= u (ind. hyp. for s', s") 

= ( u (Lemma 4.8(5) 
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= O[(s'u s");J]:O[r] 
= O[s;J]:O[r]. 

(5) Ifs= new(s'), we get s = new(s') and then 

O[s; r] = O[new(s');r] 

= O[s';E]I/O[r] (Lemmas 4.3 and 4.6(1)) 

= (*) 

= 

= O[new(s');J]:O[r] 

= O[s;J]:O[r]. 
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Here, at the place marked(*), we have used Z = XIIZ if XE S0 c, Z E S~c; 
this is a special case of Lemma 4.8(6) together with Lemma 4.8(4). 

(6) Lets= µx[s']. Suppose (without loss of generality) that x e {x1, ... , xd. Put 
s' = s'[sJ x;t- 1, so that s = µx[s']. Then we have by Lemma 4.6(2) 

O[s;r] = O[µx[s'];r] = Jim,, O[s~(ll>; r]. 

Now we shall prove in a minute that 

(4.2) 

for all n and for all r'. Once we have proved this, we can calculate 

O[s;r] = lim,, O[s~(ll\r] (Lemma 4.6(2)) 

= lim,,(O[s~<"l;J]:O[r]) (property (4.2)) 

= (Jim,, (continuity of":") 

= O[s;J]:O[r] (Lemma4.6(2)), 

which is what we wanted. 
We still have to do the proof of property (4.2), which runs by an induction on n 

(nested within our original induction on the complexity of s ). For the case n = 0, 
we have s:(oi = f!, so O[s~'0 \r'] = l.. = l..:O[r'] = 

For the induction step we assume that property (4.2) holds for a certain value of 
n. Then we can apply the main induction hypothesis fork+ 1 to s' with x1, ... , xk+i = 
X1, ... , xk, X and S1, ... , Sk+I = S1, ... , sk, s:(n) in order to get 

O[s:(n+l>;r'] = O[s'[s:'")/x];r'] 

= O[s'[s,/x;]~:11;r'] 

= O[s'[sJ X;]}:1\JD:O[r'] 

= 
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4.10. Corollary. For closed and guarded s, O[s;r] = O[s;JE:O[rE, 

We are, at last, sufficiently prepared for the main theorem of this section. 

4.11. Theorem. Lets E Y'uct, not necessarily closed, and let the set of free statement 
variables of s be contained in {x1 , ••• , Xm}, m;;,, 0. Let s1 , ••• , sm be closed and guarded 
statements, let s = s[s;/ X;] 7: 1, and define (!)[ r] by 

m[ED = = AX.X, lll[s';r] = AX.(O[s';J]:lD[r](X)). 

Let furthermore cp; = (!)[s;; E] for i = 1, ... , m, and let -y = y{ cp;/ x;};"= 1• Now ifs is also 
guarded, we have 

(!)[s;E] = Qo[s](-y). 

Proof. Very similar to that of Theorem 3.19. We shall prove two cases of old 
statements plus the case of the new statement. 

Case 1: s = s';s" 

(!)[s;E] 

= (IJ[(s';s");E] 

= AX.( O[ :(l)[E](X)) 

= AX.( O[s'; (s";J)]:X) (Lemma 3.7) 

= AX.( O[s";J]:X)) (Corollary 4.10 and Lemma 4.8(3 )) 

= AX.(IJ[s';E](lD[s";E](X)) 

= AX.Qo[s'](-y)(Qo[s"](-y)(X)) (ind. hyp. for s' ands") 

= Qo[s';s"]( -ji) = Qo[s](-y). 

Case 2: s = µy[s']. As in Theorem 3.19, let us defines'= s'[s;/ x;];"= 1 and calculate 

(!)[s;E] = AX.(O[s;J]:X) = AX.limn(O[s','.nJ;J]:X) = limn (!)[st\£]. 

Here we have used Lemma 4.6(2) and the continuity of":". From this point on the 
argument follows exactly the same lines as in Theorem 3.19. 

Case 3: s = new(s'). 

lD[new(s');E] 

= AX.(O[J,s';E]:X) 

= 
= AX.(O[s';E]IIX) (Lemma 4.8, parts (6) and (4)) 

= (Corollary 4.10) 

= AX.((IJ[s';E]( {E}) IIX) (Lemma 3.7 and def. of lD) 

= AX.( Qo[s']( -y)( {E}) II X) (induction hypothesis) 

= ffi[new(s')](-y) (Definition 4.5). 
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4.12. Corollary. For guarded t E Xud we have O[t] = f0[t]. 

Proof. Clear from Theorem 4.11. 
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We have thus completed the semantic analysis of Xud, and are now ready for the 
generalization to the nonuniform case. 

5. A nonuniform and static language 

This section is devoted to the semantic definitions for a nonuniform and static 
language. The elementary actions are now interpreted, viz. as assignments and 
communication actions. However, for the moment we return to a static framework, 
and leave the treatment of the dynamic case to the next section. 

5.1. Syntax 

The nonuniform framework involves the introduction of three new syntactic 
classes: 
• The set IndV of individual variables, with typical elements x, y. For IndV we 

take an infinite alphabet of variable names. 
• The set Exp of expressions, with typical element e. 
• The set Test of conditions, with typical element b. 
We shall return to the syntax for expressions and conditions in a moment. Note 
that we have changed the notation with respect to Sections 3 and 4 in that we now 
use x, y for individual rather than statement variables. For the latter purpose we 
here use variables v ranging over Stm V. (The nonuniform framework has no streams, 
so we can freely use the letters u, v, w.) 

In the static case, a program will again be composed of n components s1 , ••• , sn-
Contrary to the uniform case, we are also interested in the identity of, in general, 
the ith statement (or process, in a terminology used, e.g., in CSP [31, 32]), and we 
introduce for this purpose the set I = { 1, 2, ... } of indices, with i, j, k, I ranging over 
I. Typically, indices i,j will be used in communication statements of the form i?x 
or j !e, denoting communication of two sorts: The first occurs, in general, in some 
process k and requires a value for the variable x from process i. The second occurs, 
say, in a process I and sends the current value a of the expression e to process j. 
In the case that k = j and I= i and, moreover, the communications synchronize in 
the usual sense, then the "handshake" communication can indeed take place, and 
the variable x takes the value a. Once more, this informal description requires 
formal definition, to be elaborated in the sequel. 

The last syntactic set we need to introduce is that of (individual) constants. We 
shall not bother to make a distinction between syntactic constants and semantic 
(basic) values, and use the set V, with typical elements a, /3, for both purposes. 

We now define the syntax for Y'nus and Xnus (and for Exp). 
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5.1. Definition. ( I) Let e range over the set Exp of expressions: 

e ::= x I a I e1 op e2 I ope' 

(Here op stands for an arbitrary binary or unary operator. We prefer not to take 
the trouble to introduce general n-ary function symbols into our language.) 

(2) We do not specify a syntax for the elements b of Test. We only require that 
their evaluation terminates and takes place without complications such as side-
effects. 

(3) Let s range over the set Ynus of nonuniform and static statements: 

s ::= x := e Is,; s2 Iv I µv[s'] I if b then s1 else s2 fi I i?x I i!e 

(4) Let t range over the set :£nus of nonuniform and static programs: 

We require that the statements s 1 , ••• , sn are closed and furthermore that every 
index i occu.ring in t actually corresponds to a component statement, i.e., i n. 

We see :£nus is similar to (classical) CSP (as in [31]). There are also important 
differences: the absence (in :£nu.> of guarded commands with communication in 
guards or features such as the distributed termination convention. On the other 
hand, :£nus has full recursion rather than only iteration. Compared with :£us, we 
have simplified :£nus by dropping the "u" operator. Extension of the treatment 
below to cover "u" is not difficult and we leave it to the reader. 

5.2. Operational semantics 

We proceed with the development of the framework for the operational semantics 
for :£nus. Syntactic continuations r are, as before, defined by 

r ::= Ejs;r' 

wheres is closed. Instead of parallel syntactic continuations pin the form of n-tuples 
r1 , ••• , rn, we now let p range over sets of the form 

where all the indices i1 , ••• , in must be different. Thus, in the pair (i, r), we make 
explicit the identity of the component r. We shall not require that every index i 
occurring in a communication statement i !e or i?x within p also occurs as the first 
component of a pair ( i, r) E p. 

We shall often use the notation p u {(i, r;)}, with the convention that pis supposed 
not to contain an element of the form (i, r'). Such a condition also applies to the 
notation p u {(i, r;), (j, r)}: here we suppose that i ,t=. j and that p does not contain 
an element whose index is i or j. 

The next step in the development of the semantic model is the introduction of 
states, and of the meaning or evaluation function for expressions (and conditions). 
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5.2. Definition. ( 1) The set of states ..r, with typical element a, is defined by 

...r (IndV V). 

(2) We define the meaning function for expressions, 

[ · l (..r V)), 

as follows: 

[xTI(i)(a) = a(i)(x), [aTI(i)(a) = a, 

[e, op e2TI(i)(a) = ([e,TI(i)(a)) OPsem([e2TI(i)(a)), 

[op eTI(i)(a) =op,em([eTI(i)(a)). 

Here we use OP,em for the semantic operator corresponding to op. 
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(3) We do not give a detailed definition of[bTI(i)(a), which yields an element of 
the set of truth values {t, f}. 

The operational semantics for Y'nus and 5£nus is again given through a transition 
system. This time, configurations are of the form (p, a). Transitions are pairs of 
configurations written in the form 

(p, (p', a'). 

There is no special role here for (an equivalent of) the ..l-action. 
Nonuniform transitions involve states rather than streams as the intermediate and 

final results. Since states are entities which are not naturally amenable to the 
operation of merging, we shall encounter below the necessity to resort to additional 
means to formulate results which are counterparts of uniform facts such as O[r1 , r2TI = 
O[r,n II O[r2TI-

We first give the transition system :Ynus for 2nus · Extending the formalism of the 
uniform case, we also employ rules, written in the format 

The meaning of such a rule is the following: In case a transition 1 2 is an element 
of :Ynus, then the rule allows us to infer that 3 4 is a valid transition of :Ynus as well. 

Remark. Our framework for the operational semantics gives us quite some freedom, 
so that we can choose whether to use a rule or an axiom to express the semantics 
of a certain construct. The intuitive meaning remains the same, but technically an 
axiom needs a transition to perform a certain transformation, while a rule does not. 
We could, in fact, formulate the operational semantics for 2nus in terms of axioms 
only, but we prefer the version as adopted below. The reason for this is our wish 
to stay as close as possible to the denotational semantics to be developed sub-
sequently. The denotational framework does not provide so much freedom, mainly 
because of the necessity to arrive at contracting operators having unique fixed points. 
We have chosen the denotational semantics with the least possible number of 
computation steps, and tuned the operational semantics to match it. 
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5.3. Definition. The transition system :!Fnus specifies the relation between 
configurations of the form (p, <;r) as the smallest relation which satisfies the following 
axioms and rules: 

(p u { (i, (x := e ); r)}, (p u {(i, r)},er') 

where er'= er{er(i){,8/x}/i} and ,8 = [e](i)(er). 

(p u {(i, s1 ;(s2 ;r))}, (p', er') 
(p u {(i, (s1 ;s2);r)}, (p', er')' 

(p u {(i, µv[s ];r)}, (p u {(i, s[µv[s ]/ v ];r) }, er), 

(p u {(i, if b then s1 else s2 fi;r)}, (p u {(i, s1 ;r)}, er) 

in case [b](i)(er) = t, and an analogous axiom for the case [b](i)(er) = f. 

(p u {(i, (j?x);r1), (j, (i!e);r2)}, (p u {(i, r 1), (j, r2)}, er') 

where er'=er{er(i){,8/x}/i}, and ,8 =[e](j)(er). 

Ass 

SeqComp 

Rec 

Cond 

Comm 

Remarks. (1) Observe that no transition is defined for a configuration (p u 
{(i, (j?x);r)}, er) in the case that p does not contain the matching pair (j, (i!e);r') 
(and a symmetric observation). 

(2) The difference in treatment between SeqComp and Rec-the first as a rule, 
the second as an axiom-is motivated by the corresponding definition in the 
denotational semantics (which will be given in Definition 5.8). In operational terms, 
replacing (s1 ;s2 );r by s1 ;(s2 ;r) does not take a time step, whereas the replacement 
of µv[s] by s[µv[s]/v] does take a (silent) time step, (i.e., a step that does not 
change the state). In a uniform setting, the same effect would be obtained by 
transforming each recursive construct µx[s] into µx[skip;s] where skip is a special 
elementary action denoting the silent step. Accordingly, the automatic introduction 
of silent steps obviates the need for the guardedness restriction. 

(3) In the axioms Ass, Cond, and Comm we see how the evaluation of an expression 
e or condition b is parameterized by the index of the statement which contains the 
occurrence of the expression or condition involved. Effectively, this means that 
different components are treated as if they had disjoint sets of variables. 

The transition system :!Fnus is a natural generalization of the corresponding systems 
:!Fus and flud. What is more difficult is the definition of O'[p] and O'[ tl a formulation 
which is a straightforward extension of the uniform approach is not feasible, 
assuming that we want to express results which are variations on relationships such 
as 

(5.1) 

Two problems arise when we consider (5.1). The first concerns the basic question 
as to well-formedness of (5.1): we have as yet no outcome for O'[p] which allows 
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the operation of merging to be applied to two instances of it. The second may be 
considered as a more "practical" one: In a situation where p 1 involves a send and 
p2 a matching receive communication, p 1 u p2 will allow a matching transition by 
the Comm axiom, whereas the components p1 and p2 separately do not allow the 
corresponding send and receive actions to proceed. Thus, we expect that neither 
O'[p1] nor O'[p2] will contain the necessary information enabling the communication 
to take place through the semantic operator "II" (in whatever way the latter will be 
defined). 

In order to solve the principal problem, we apply a new method, which might 
be considered somewhat drastic in an operational context: we choose to deliver a 
process, now taken in the technical sense of Section 2.3, as the outcome of O'[p]. 
Thus, the outcome of O'[p] is an element of a certain process domain P obtained as 
the solution of an appropriate recursive domain equation P = :Ji,( P), where the form 
of :Ji, is to be determined in a moment. We intend to show that, by adopting this 
approach, we achieve two goals: Firstly, we shall be in a position to define "II" as 
an operation on processes and to apply it to O'[p1] and O'[p2] above. Secondly, since 
we shall employ processes as well in our denotational model, we have a much 
smaller distance to bridge between the operational and denotational definitions. 

The domain equation we use to determine the appropriate process domain P 
exploited below is described in the following definition. 

5.4. Definition. ( 1) Let the set Comm of communications, with typical element T, 

be given by 

Comm= Ix (J?IndVu l!V). 

(The delimiters"?" and "!" are used here to underline the connection with statements 
of the form i !x and i !e. Properly speaking, they are cosmetic variants of the Cartesian 
product operator "x".) 

(2) Let the set Step of steps, with typical element T/, be given by 

Step = 1: u Comm. 

(3) Let the function :Ji, be given by 

:Ji,(P) = {p0} u (1: {J}c1(Step x P)). 

(4) Let P be the process domain solving the equation P = :Ji,(P). We shall use 
p, q to range over P. 

(5) Let P0 = {p0}, Pn+i = :Ji,(Pn). By the general theory (Section 2.3) we know that 
each p E P is either an element of some Pn, in which case we shall call p finite, or 
else p is called infinite and there is a Cauchy sequence ( Pn)" with Pn E Pn such that 
p = Jim" Pn· For finite p, we call the smallest n such that p E P" its degree. 

(6) We shall use X, Y to range over {J}c1(Step x P) and 7r to range over Step x P. 
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Example. We have ((i,j?x), p)E Step x P. Below, we shall always adopt for this the 
simpler notation (i,j?x, p). 

We proceed with the semantic definitions for the familiar operators"·" and "II", 
this time defined as mappings P x P P. We shall in fact propose two definitions. 
The first one is probably simpler, and is based on an induction on the degree for 
finite processes. The second one involves Banach's theorem and is given here to 
familiarize the reader with its subsequent use in definitions where the simpler 
inductive definition is less convenient. 

5.5. Definition. Let p, q E P. We define p · q and Pllq as follows: 
(1) (Definition by induction on the degree of p and q.) We first consider the case 

that both p and q are finite. We put Po· p = PollP = PIIPo = p. If p is (or if p and q 
are) different from p0 , we put 

p · n = Au.(p(u) · q), 

Pllq = Au.((p(u)llq) u (q(u)IIP) u (p(u)I,, q(d))) 

where X · q = { 1r • q l1rE X}, Xllq ={1rljq I 1r EX}, (11, p') · q =(11, p' · q), and 
( 11, p')II q = < 11, p'II q) (note that, here, the degree of p' is less than the degree of p, or 
the maximum of the degrees of p and q). Moreover, 

Xl<T Y = LJ { 1T1la 1T2 I 1r1 EX, 1T2 E Y}, 

where 1r1 I" 1r2 is defined by 

(i,j?x, P1)la- (j, i la, P2) = { (u', P1 IIP2)} 

with u'=u{u(i){a/x}/i}, together with a symmetric clause, and 1r1l,,1r2=0 for 
1r1, 1r2 not of the above form. 

Finally, for p or q infinite, so that we have p = lim" Pn and q = Jim" q" with 
p,,, q,, E P,,, we put p. q = limn(Pn. qn) and Pllq = limnCPn llqn)-

(2) (Definition with Banach's theorem.) We define "·" and "II" as the unique 
fixed points of the contracting (higher-order) functions <P, 1Jf: (P x P P) 

given in the following manner: Let be arbitrary. We 
now define <P(cp) and 'IJf(ijJ). Let us abbreviate <P(cp)(p, q) to pcpq and 1fr(l/l)(p, q) 
to p ,frq. Then we put 

_ { q if p = Po, 
pcpq = Au.(p(u) cpq) if p 7"c Po; 

{
q ifp=po, 

pl/Jq= P ifq=po, 
Au.((p(u) Jq) u (q(u) Jp) u (p(u)la,t/J q(u))) otherwise; 

where Xcpq={1r¢ql1rEX}, X$q={1rifrql1rEX}, (11,p')cpq=(11,p'cpq), 
(11,p')ifrq=(11,p'I/Jq), and where 

Xla.1/J Y = LJ { 1T1la.t/J '7Tz I 1r1 EX, 1T2 E Y}. 
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Here 1ril"·"' 7T'2 is given by 

(i,j?x, Pi)I"·"' (j, i!a, P2) = {(a', Pi i/lP2)} 

with a'= a{ a( i){ a/ x }/ i}, together with a symmetric clause, and 7T'i I.,.,"' 7T'2 = 0 for 
7T'i, 7T'2 not of the above form. 

Now we define"·" to be the unique fixed point of <P and "II" as the unique fixed 
point of 'fr. 

It should be clear from these definitions that they are variations on one theme: 
in the second an appeal to Banach's theorem replaces the inductive argument of 
the first. We omit the proof that the above definitions are justified (and that they 
define the same operators). Details of a very similar proof are given in [7]. 

We are now ready for definition of the operational semantics of ::£nus· 

5.6. Definition. (1) We define O'[ · l PSyCo P as follows: Let p E PSyCo. If pr;;_ 
{(I, E), ... , (n, E)}, we put O'[p] = p0 • Otherwise, 

O'[p] = Aa.{(a', O'[p'])l(P, a')} 

where, of course, the transition relation is the one given by ff nus· 

(2) The function O'[ ·]: ::£nus-~ Pis defined as follows. Let t = Si II · · · llsn. Then 

O'[t] = O'[{(l, si;E), ... , (n, Sn;£)}]. 

It is not difficult to verify that()' as given in part ( 1) of this definition is well-defined. 
Once more, we deduce this by the following reasoning: Let the (higher-order) 
mapping F: ( PSyCo P) ( PSyCo P) be defined in the following manner: 

F(,,tt)( ) = {Po if pr;;_ {(1, E), ... , (n, E)}, 
p Aa.{(a', .At(p'))l(P, a')} otherwise. 

Then Fis a contracting mapping, and O' as given in Definition 5.6(1) is the unique 
fixed point of F. 

Remarks. ( 1) It is not difficult to establish that, for each (p, a), there are only finitely 
many (p', a') such that (p, (p', a'). Hence, the set occurring in the Aa.{ ... } 
clause in Definition 5.6(1) is finite and therefore closed. 

(2) Note that O[p] = Aa.0 may well occur. For example, 0[{(1, (2?x);E)}] = Aa.0 
since there are no transitions ({(1, (2?x);E)}, defined in ffnus· In general, 
(} does not preserve information on one-sided attempts at communication. 

(3) Processes p which equal O'[p] for some p are in fact elements of a process 
domain P' which satisfies 

This is the case since no steps in Comm x P are delivered by the transition relation 
The more involved process domain Pis exploited in full only in the definitions 

of O'* and of the denotational semantics r:!lJ, both of which we shall discuss presently. 
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Now that we have given a process interpretation for 0[p], yielding results in a 
domain for which "II" is well-defined, we have a well-formed question to ask: is it 
true that 0[p 1 up]= 0[p 1] II 0[p2]? The answer is negative-for the same reason as 
already explained earlier. However, a not too far-fetched variation on this property, 
which does indeed hold, will be presented soon. Rather than immediately getting 
to this, we first develop the denotational semantics for :£nus. In this way, the reader 
may acquire some additional appreciation for the way we utilize the process notion 
in our framework. In fact, a combination of ideas involving: 
• the tools of environments and semantic continuations as employed in Section 3, 
• the operational semantics of :£nus, and 
• the definition(s) of "II" 
will altogether provide most of the background to understand the denotational 
definition. 

5.3. Denotational semantics 

We introduce semantic continuations and environment-sin the following definition. 

5.7. Definition. (1) The set of semantic continuations is given by SeCo =def P. 
(2) We define the set of environments by r = def Stm V (SeCo NDt P) ). 

We shall use p, q to range over SeCo and -y to range over r. 

The definition of 'liJ will be given for all s E gnus and all t E :£nus· Thus, the 
restriction to statements with only guarded recursion is lifted. As remarked earlier, 
this is explained by our definition of recursion which involves a treatment of recursive 
calls such that always at least one initial "silent" step is made upon "procedure 
entrance". That is, (the equivalent of) a transition is made which does not affect 
the state but which does take (what may be seen as) one unit of time. For example, 
execution of µv[v] will result in an infinite sequence of such silent steps (rather 
than in just l. as in the uniform case). All this is a matter of taste rather than of 
principle. One may disagree with our feeling that silent steps are more natural in a 
nonuniform than in a uniform setting. 

We now give the definitions of 'liJ[s] and of 'liJ[t]. We shall often suppress 
parentheses around arguments of functions for easier readability. 

5.8. Definition. (1) We define the function 

NDI 
'liJ[ (SeCo - P))) 

as follows: 
(a) 'liJ[x := e]yip = Acr.{(cr', p)}, where cr' = cr{cr( i){ a/ x}/ i} and a= [ e]icr; 
(b) 'liJ[s1 ;s2hip = 'liJ[s1hi('liJ[s2hip); 
(c) 'liJ[if b then s1 else s2 fi]yip 

= Acr.{(cr, if [ b]icr = t then 'liJ[s1]-yip else 'liJ[s2]-yip fi)}; 
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(d) ~[v]yip = y(v)ip; 
(e) ~[µ,v[s]]yip = 'Poc(i)(p) where 'Poc is the unique fixed point of the operator 

<P, which maps the space (SeCo NDI P) to itself, and is given by 

<P( cp) = Ai.Ap.Au.{ (u, ~[s ]y{ cp / v }ip) }; 

(f) ~[j?x]yip = Au.{(i,j?x, p)}; 
~[j!e]yip = Au.{(i,j!a, p)}, where a= [elliu. 

(2) We define the function ~[ · Il: Y.'nus P as follows: Let t = s1 II · · · llsn and let 
y be arbitrary. Then 

Remark. The definition in clause (I)( e) above is justified by the fact that the function 
<P is contracting. Note that its unique fixed point can again be obtained as 'Poc = 
limk 'Pk, where 'Po is arbitrary and 

'Pk+i = <P(rpk) = Ai.Ap.Au.{(u, ~[s]y{rpdv}ip)}. 

Examples. (1) ~[µ,v[v]]yip=Au.{(u,Au.{(u, ... )})}. 
(2) We have 

~[(2?x)ll(l !3)Il = ~[2?x]ylpo II ~[I !3]y2po 

def 
=Au.{(l,2?x,po)}IIAu.{(2, 1!3,po)} = q1llq2 

= Au.{(l, 2 ?x, q2), (2, I !3, q1), (u{ u(I ){3/ x} /I}, Po)}. 

The resulting process, say q, contains two steps resulting from one-sided (failing) 
communication: (I, ... ) and (2, ... ). Moreover, there is one step resulting from 
successful communication: (u{ ... }, p0), where 3 is assigned to x. We recall that the 
latter step ultimately results from the definition of 1r1 j,, 1T-:. ( or 1r1 I"·'' 1r2 ) given in 
Definition 5.5. The operation of abstraction, to be introduced in a moment, will 
simplify the result q to just Au.{(u{ ... }, p0 )}, throwing away the unsuccessful parts 
0, ... ) and (2, ... ). 

5.4. Equivalence of operational and denotational semantics 

We return to the question concerning the (non)compositionality of 0. We shall 
introduce an extension of :Ynus to :Y~us, which induces an associated operational 
semantics O*, and we then settle the relationship between 0, O*, and f/i. 

5.9. Definition. (1) We expand the notion of configuration such that it includes 
pairs of the form (p, TJ) (recall that T/ ranges over Step= 1: u Comm). Therefore, in 
addition to configurations of the form (p, u), we also consider configurations of the 
form (p, r). (Actually, the latter ones will only occur on the right-hand side of a 
transition.) 
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(2) The transition system .'f;;\" extends the system .'Jnus of Definition 5.3 by adding 
to it the axioms 

(p u { (i, (j?x ); r), u) (p u { (i, r)}, (i,j?x)), 

(p u {(i, (j!e);r)}, (p u {(i, r)}, (i,j!a)) 

where a =[e]iu. Moreover, the rule SeqComp of .'Jnu,: 

(p u {(i, s, ;(s2 ;r))}, (p', u') 
(p u { (i, (s, ;s2);r)}, u) (p', u') 

is replaced by 

(pu{(i, s1 ;(s2 ;r))}, T) 1) 

(p u {(i, (s, ;s2);r)}, u) (p', TJ'} · 

(3) The operational meaning eJ*: PSyCo P is defined by 

lndComml 

lndComm2 

•*rr {Po if p {(1, E), ... , (n, E)}, 
O ~p]= otherwise. 

(Here we as determined by .'J~us·) 
( 4) The operational meaning eJ*: 2'nus defined as follows: Lett= s, II · · · II Sn. 

Then 

eJ*[tD = eJ*[{(l, S1 ;E), ... , (n, Sn ;E)}]. 

Following the detailed analysis as in [16], it is not difficult to prove the following 
theorem. 

5.10. Theorem. eJ*[p, u P2] = eJ*[p,] II eJ*[p,]. 

For example, 

eJ*[{(l, (2?x);E), (2, (1 !3);E)}] 

= Au.{(1, 2?x, p 1), (2, 1 !3, p2), (u{ u(l ){3/ x }/ 1}, Po)} 

where p, = Au.{(2, 1 !3, p0)} and p2 = Au.{(1, 2?x, p0)}. Thus, 

eJ*[{(l, (2?x);E), (2, (1 !3);E)}] = Au.{(1, 2?x, p0)} 11 Au.{(2, 1 !3, Po)} 

= eJ*[{(l, (2?x);E)}] 110*[{(2, (1 !3);£)}]. 

The relationship between eJ and eJ* is settled by the introduction of an abstraction 
operator abs: P P' (with P' as given in remark (3) after Definition 5.6). When 
applied to some p E P, abs ( p) deletes from p all pairs ( 7, p') which occur anywhere 
"inside" p: all unsuccessful attempts at communication disappear, and only the 
results of successful communications remain, together with the "normal" steps 
caused by, e.g., assignments. Again (as was the case with any p), abs(p) may have 
(inner) branches of the form Au.0-a phenomenon which is often called deadlock. 

The abstraction operator is defined as follows. 
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5.11. Definition. For finite p we put abs(Pc>) = p0 , abs(AO".X) = AO".abs(X), and 

(Note that a pair ( r, p') EX will not contribute to abs(X).) For infinite p, with 
p = limn Pn and p,, E Pn, we take abs( p) = limn abs( Pn ). 

Again relying on the general results in [16], we have the following theorem. 

5. 12. Theorem. (J = abs O O*. 

The final part of this section is devoted to the proof of the equality of O* and ~-

5.13. Theorem. For all t E 2nus, O*[til = ~[tE. 

The proof closely follows the strategy applied for the uniform version of this 
result described in Section 3. We first state a simple lemma on O* which we need 
below. 

5.14. Lemma. (I) O*[{(i, (x := e);r)}D = A0".{(0" 1 , O*[{(i, r)}Il)}, with 0" 1 as usual. 
(2) O*[{(i, (s, ;s2);r)}Il = O*[{(i, s, ;(s2 ;r))}Il. 
(3) O*[{(i, if b thens, else s2 fi; r)}Il 

= AO".{(O", if[biliO" then O*[{(i, s 1 ;r)}Il else O*[{(i, s2 ;r)}Ilfi)}. 
(4) O*[{(i, (J?x);r)}Il = AO".{(i,j?x, O*[{(i, r)}Il)}. 
(5) O*[{(i, (j!e);r)}Il = AO".{(i,j!a, O*[{(i, r)}Il)} where a= [eiliO". 
(6) O*[{(i, (j?x);r1), (j, (i!e);r2)}Il = AO".{(i,j?x, O*[{(i, r 1), (j, (i!e);r2)}Il), 

(j, i!a, V*[{(i, (.i?x); r,), (j, r2)}Il), (0" 1
, O*[{(i, r 1), (j, r2)}D)} with a =[eiliO" and 0" 1 as 

usual. 

Proof. Easy from the definitions of gtus and O*. 

Remark. Note that part (2) of this lemma would not hold in the form as given if 
.:f,ws contained an axiom for SeqComp, rather than a rule. Conversely, part (3) 
would not hold if we had a rule for Cond, instead of an axiom. 

The next lemma applies some notation which is a slight variant of the one 
introduced preceding Theorem 3.18. Let us, temporarily, add the statement skip to 
our language, with an associated transition 

(p u {(i, skip;r)}, O") (p u {(i, r)}, O") Skip 

(note that we could take skip as another name for x := x). Let, for given s and v, 
s~"l be defined by s~0 >=skip and s~"+ 11 =skip;s[s~"l/v]. We can then prove the 
following lemma, once more using the framework of [16]. 
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5.15. Lemma. For closed s: 

We are now ready for the statement of the main step in the proof of Theorem 5.13. 

5.16. Lemma. Lets E Y'nus be arbitrary ( not necessarily closed) and let the set of free 
statement variables in s be contained in { v1 , ••• , vk}, k;;, 0. Let s1 , ••• , sk be closed 
statements, and lets= s[sh/ vh]~=i• Let, for any p, m[pil be short for Ap.( O'*[pil · p ). 
Let, furthermore, for h = 1, ... , k, 

m[{(i, s;E)}Il = fiil[sil( -y)(i). 

Proof. Induction on the complexity of s, following the argument as given in the 
proof of Theorem 3.19, but for the addition of an extra parameter i, and replacement 
of X by p (and using Lemmas 5.14 and 5.15 to deal with the individual cases). D 

5.17. Corollary. For closed s: 

m[{(i, s;E)}Il = fiil[sil( y)(i). 

Now it is easy to prove Theorem 5.13. 

Proof of Theorem 5.13. Take any t = s111 · · · llsn. Then 

O'*[til = O'*[{(l, S1 ;E), ... , (n, Sn ;E)}Il 

= O*[{(l, S1 ;E)}Il II • • • II C*[{(n, Sn ;E)}l 

By Corollary 5. I 7, we have for each i that 

O'*[ {(i, S;; E) }Il = O'*[ { (i, S; ;E) }Il . Po= m[ { (i, S;; E)H( Po)= fiil[sJ( 'Y )( i)( Po). 

Thus, 

O'*[t] = O'*[{(l, S1 ;E)}Il II · · · IIO'*[{(n, Sn ;E)}Il 

=fiil[s1Il(y)(l)(po)II · · · llfiil[snil(y)(n)(po)=fiil[til. D 

Remark. Contrary to the situation for the uniform case, we have at present investi-
gated only metric ( operational and denotational) models for 5t nu,. Therefore we 
have no information on the feasibility of order-theoretic models for this purpose. 
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6. A nonuniform and dynamic language 

We have, at last, arrived at the presentation of the semantic models of a nonuniform 
and dynamic language. Not surprisingly, it brings a synthesis of the ideas of Sections 
4 and 5; for the reader who has understood these sections, the present section 
contains few surprises. Still, some technical difficulties which are not straightforward 
from previous considerations remain to be overcome. 

6.1. Informal introduction and syntax 

As usual, we begin with the syntax. Statements are almost as before, but for the 
fact that communications i?x or i !e (with static i, 1 i n) are now replaced by 
communications e?x or e !e', in which the value of the expression e is (the name 
of) a dynamically created process. The expression itself can be, for example, a 
variable, in which this process name is stored. The syntax of expressions also contains 
an essential new clause, viz. "new( c )". This expresses that a new process ( of class 
c) is to be created. Each program consists of a set of class declarations (ck¢:: sk) Z - 1, 

and, assuming that c above equals ck for some k, the (side-)effect of new( c) is the 
creation of a new process which will execute the statements= sk. Here we have the 
counterpart of the construct new(s) in Section 4. In addition, this new process is 
referred to by a (new) name, say a, and the value of the expression e will be this 
name a. Therefore, in the ( common) case that new( c) occurs in an assignment 
x := new( c ), the name a of the newly created process is assigned to x. In this way, 
upon subsequent occurrences of x in, e.g., x !e, it is known that the value of e has 
to be sent to process a. 

We now give the formal syntactic definitions. Let CNam be the collection of class 
names, with typical element c. Let IndV and Stm V be as before, and let a and f3 
range over the set Obj of objects to be defined presently. 

6.1. Definition. ( 1) The set Exp of expressions, with typical element e, is defined by 

e ::= x I a I e10P e2 I ope' I new(c) 

(Here, again, op stands for an arbitrary binary or unary operator.) 
(2) We do not give a detailed syntactic definition for the set Test of conditions 

(with typical element b) but we assume, for simplicity, that conditions (unlike 
expressions) can be evaluated without side-effects. 

(3) We define the set Ynud of statements, with typical element s, by 

s ::= x:= e I s 1 ;s2 Iv I µv[s'] I if b then s 1 else s2 fi I e?x I e!e' I ?x I !e 

(4) The set 2nud of programs, with typical element t is defined by 

t ::= (c1¢::s1 , ••• ,cn¢::s,.) (n;e,1). 

Here we require that all the si are closed, that all the c, are different, and that any 
class name c occurring in any si (in the context new(c)) is one of c1 , ••• , c11 • 
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Remarks. ( l) In Ynud we allow communications of the form ?x or !e which do not 
name a corresponding process (they are, in fact, willing to communicate with any 
other process). However, we shall require, in order that a match be established 
between a pair of send and receive statements, that at least one of the two explicitly 
identifies the process in which the other occurs. (Hence, no communication t'lkes 
place between ?x and !e.) 

(2) By convention, executing a program t = (ck ¢:=sk>Z-, is initiated by executing 
the statement x := new( c, ), for some fresh x (i.e., some individual variable not 
occurring in t ). In other words, a process of class c1 is created implicitly. (Its name 
is stored nowhere, so this process cannot be addressed explicitly by other processes.) 

(3) Note that we now have two forms of recursion, one in constructs of the form 
µ v[ s] and the other in case of a declaration such as c ¢= · · · c · · · . 

The set Obj of objects replaces the set of values v which we encountered m 
Section 5. It consists firstly of the so-called standard objects SObj. Here one may 
think of the union of the set of values V and the truth-values {t, f} as employed in 
Section 5. Moreover, we now also have the set of so-called active objects AObj, 
which consists of the names of processes as mentioned in the introductory paragraph 
of this section. In fact, we may see A Obj as the generalization of the set I of Section 
5. We define AObj as 

A Obj= CNam x N 

where N is the set of nonnegative integers. At each moment an active object (c, /) 
is the name of the /th process of class c, i.e., the process created by the Ith execution 
of a new( c) construct. 

From now on we shall use the term "object" in the above sense, i.e., for an 
element of AObj, not to confuse it with the technical term "process" in the sense 
of Section 2.3, the precise meaning of which we shall give in Definition 6.5. 

6.2. Operational semantics 

We proceed with the preparations for the operational semantics for Xnud. Firstly, 
we refine the class of syntactic continuations, by distinguishing between statement 
continuations and expression continuations. 

6.2. Definition. ( 1) The class of syntactic statement continuations SyStCo, with 
typical element r, is defined by 

r ::= E I s; r' I e: g 

wheres is closed. (The colon":" used here should not be confused with the semantic 
operator ":" as introduced in Definition 4.7. Here it is simply a syntactic symbol, 
comparable with";".) 
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(2) The class of syntactic expression continuations SyExCo, with typical element 
g, is defined by 

g ::= Az.r 

where z E IndV. Here z may not occur as the left-hand side of an assignment in r. 
(3) The class of parallel syntactic (statement) continuations PSyCo, with typical 

element p, is defined as the collection of sets of the form 

where the a; are different elements of AObj. 

The intuitive meaning of a syntactic expression continuation g = Az.r is to describe 
a computation which depends on some value. The variable z serves as a placeholder 
for this value in r. When g is given a value, i.e., an object a E Obj, then it delivers 
a syntactic statement continuation r[a/z] (where the value a'is put in the place of 
z ). A syntactic statement continuation r of the form e:g is executed by first evaluating 
the expression e ( which may or may not take some time steps or have some side-effect) 
and then feeding its value into g in the way described above. This yields a syntactic 
statement continuation which is executed subsequently. 

We also extend the class of states by introducing a second component, as follows. 

6.3. Definition. We define the set of states by 1: = 1:1 x 1:2 , with typical element 
a= (a, 11 , a(2)). We put 1:1 = AObj (JndV Obj) and 1:2 = CNam 

A state a has the following function: 
• The first component a(I I is as a in Section 5, but for the replacement of I by 

A Obj and of V by Obj. Thus, for any object a and individual variable x, u(l 1(a )(x) 
is the value of a's x-variable. 

• The second component a(2) records for each class name c the number I= a( 21 ( c) 
of objects of that class that have been created up to this point. 
We shall usually suppress indices and simply write a, also in cases where a(l) or 

a(2) is meant. 
In the transition system to be presented in a moment, we shall take into account 

the fact that evaluation of expressions may now be more involved since they may 
contain new-constructs. For reasons of simplicity, we shall not include a similar 
extension in our treatment of conditions. We shall, just as in Section 5, assume that 
evaluation of a condition b-expressed by the notation [b](a)(a)-is simple and 
has no side-effects. ( Of course, it is a minor exercise to adapt the treatment below 
to cover the case of conditions which may include new-constructs.) 

The operational semantics for ~'irnd is given in terms of a transition system Ynud 

of axioms and rules for configurations (p, a). Throughout, Ynud assumes one fixed 
program t=(ck¢sk)~=i, and we shall also assume that all class names occurring 
in any statement are declared in this program t. (We might carry the information 
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contained in t along as an extra component of the configuration, but we find this 
too cumbersome.) 

6.4. Definition. The transition system ;J"nud is given by the following axioms and 
rules: 

(p u {(a, (x := {3);r)}, (p u {(a, r)}, u') 

where u'=u{u(a){/3/x}/a}. 

(p u {(a, e: Az.((x := z );r))}, u) (p', u') 
(p u {(a, (x := e);r)}, (p', u') 

Asst 

Ass2 

where z is a fresh variable, i.e., an individual variable not occurring in p, e, or r 
(actually, it is sufficient to require that z does not occur in r ). Note that this rule 
is only useful if e is not itself a constant {3. 

SeqComp, Rec, and Cond are as in Definition 5.3 (with a replacing i). 

(p u {(a, e: Az.((z?x);r))}, (p', u') 
(p u {(a, ( e?x);r)}, u) (p', u') 

with z fresh. 

(p u {<a, e: Az.( e': Az'.( (z !z'); r)))}, u) (p', u') 
(pu{(a, (e!e');r)}, u') 

with z and z' fresh. 

(p u { (a, e: Az.( ( !z );r))}, u) (p', er') 
(p u {(a, ( !e );r)}, u) (p', u') 

with z fresh. 

Receivel 

Sendl 

Send2 

(p u { (a, ( f3 ?x );r1), ( /3, ( a !a');r2)}, u) (p u { (a, r1), ( /3, r2)}, a') Comm I 

where u' = u{a(a){a'/x}/ a}. 

with u' as above. 

with a' as above. 

(p u {(a, x: g)}, (p u {(a, u(a )(x): g)}, u). 

(pu{(a, r[/3/z])}, a') 

(p U {(a, ( /31 OPsem /32): g)}, (p', u') 
(p u {(a, ( /3 1 op /32): g)}, (p', u') · 

Comm2 

Comm3 

lndV 

Obj 

Binopl 
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Here, /3 1 OPsem /3 2 stands for the object /3 that results ifwe apply the semantic operator 
OPsem corresponding to op to. the objects /3 1 and /3 2 • 

(p u {(a, e1 : Az 1 .(e2 : Az2 .((z1 op z2 ): g) (p', a') 
(p u {(a, (e 1 op e2): g)}, (p', a') 

with z1 and z2 fresh. 

(p U {(a, (OPsem /3): g)}, (p', a') 
· 

Binop2 

Unopl 

Again, OP,em /3 stands for the object /3 1 that results if we apply the semantic operator 
OPsem corresponding to op to the object /3. 

(p u {(a, e: Az.((op z): g))}, (p', a') 
(pu{(a, (op e):g)}, a') 

with z fresh. 

(p u {(a, new(c): g)}, (p u {(a, f3: g), (/3, s;E)}, a') 

where c¢:::s occurs in t,/3=(c,a(c)+l) and a'=a{a(c)+l/c}. 

Unop2 

New 

Remarks. (1) In the New axiom, dealing with the case e = new( c ), a new object 
executing the statement s is created, and the name (3 = ( c, a( c) + 1) is delivered as 
the resulting value for e. As we already saw, (c, /) is the name of the /th object of 
class c, and, for each c, a( c) stores the currently highest object number. This also 
explains the update a' of a upon object creation. 

(2) The general scheme to deal with expression evaluation is the following. If 
the expression e occurs in a certain context, for example x := e;r, then an application 
of a rule (in our example, Ass2) transforms the context to one of the form e:g (in 
our case, e:Az.(x:= z;r)), indicating that first e is to be evaluated, after which its 
value can be used. Because a rule is applied and not an axiom, this does not take 
any time steps. Now the axioms IndV or New (which do take a time step) or rules 
like Binopl and Unopl (which do not take time) will take care of the evaluation of 
the expression. If necessary, the rules Binop2 or Unop2 will break the expression 
further apart (again without taking time). After the expression has been evaluated, 
the rule Obj will put the resulting object f3 back into the original context, and further 
axioms or rules (in our example, Asst) will deal with this result f3 in an appropriate 
way. 

The step from .'fnud to the corresponding O' is very similar to the one described 
in Section 5. We first introduce the relevant process domain. 

6.5. Definition. ( 1) The set Comm of communications ( with typical element T) is 
defined by 

Comm= AObj x (AObj?IndVu ?IndVu AObj!Obju !Obj). 
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(2) We define the set Step of steps ( with typical element 7/) by 

Step = 1: u Comm. 

(3) The process domain P (typical elements p and q) is the solution of the 
following domain quation: 

6.6. Definition. (I) C'[ ·TI: PSyCo P is defined by 

O[ D={Po . ifp={(a1,E), ... ,(a",E)}, 
p Au.{(u', O[p'])j(p, u')} otherwise. 

Remark. Although not specified here, the process p = O[tTI will of course be started 
in a state a-0 , which satisfies uo(c,)=l and u 0(c)=O for c~c1 • The choice of this 
a-0 and p above amounts to starting the computation with the first object of class 
c1, while objects of other classes do not yet exist. 

Anticipating the definition of Pllq, to be given in Definition 6.7, we again remark 
that it is not the case that O[p 1 u p2] = O[p,TI II O[p2D, As before, we shall remedy this 
by extending .'J nud to .'J~ud, and then introducing a corresponding extension of 0 
to O*. 

6.3. Denotational semantics 

We proceed with the denotational semantic definitions. We first fill in the details 
of the definition of the merge operator "II" ( in this section, we do not use the 
operator "· "). 

6.7. Definition. Let 1/', 1/1, J;, J, J;, X, Y, and 1r be as in Definition 5.5(2), but with 
P as in Definition 6.5. The only new element in the definition of "II" with respect 
to Definition 5.5 concerns rr1 j ,,_,i, rr2 , which is here given by 

(a, /3 ?x, P1) j,,_,i, (/3, a !a', P2) = {(u', Pi I/JP2)}, 

(a, ?x, p,) I"·"' (/3, a !a', P2) = {(u', Pi I/JP2)}, 

(a, /3 ?x, p,) l,,.,i, (/3, !a', P2) = {(u', Pi I/Jp2)} 

with u' = u{ u( a){ a'/ x}/ a}, together with three symmetric clauses, and 1r1j,,_,1, rr2 = 0 
for rr1 , rr2 not of the above form. 
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Corresponding to the distinction, for syntactic continuations, between statement 
continuations r and expression continuations g, we have a similar distinction at the 
semantic level: We have, besides the set of semantic statement continuations 
SeStCo = def P ( with typical element p ), also a set of semantic expression continu-
ations SeExCo = def P, with typical element f. 

Furthermore, corresponding to the two types of recursion, we accordingly have 
two components of an environment, defined as follows. 

6.8. Definition. The set of environments is defined by I'= I'1 x I'2 , with typical 
element -y = ( ')'(1 >, 'Ym), where 

NDI 
I'1 = Stm V (A (SeStCo - P)) and I'2 = CNam (A P). 

In an environment -y = ('Yen, 'Y!2J), the first component 'Yo> assigns an interpretation 
to each statement variable, which gives a process after being told which object is 
to execute the statement and which process is to be actiyated after this statement 
variable. This first component corresponds to the environments as used in Section 5. 

The second component 'Y< 2 > is important for the creation of new objects. When 
given the class c and the name a of the object to be created, rm( c )(a) is the process 
to be activated for it. 

Again, we shall often omit the indices in dealing with environments. 
We shall define two semantic evaluation functions qjJ and "€, the first for statements 

and programs, and the second for expressions. Since expressions are now more 
involved than in Section 5, we consequently need a more complicated definition of 
their meanings. The relevant types are 

NDI 
qjJ[ · D: (A (SeStCo--+ P))), 

NDI 
"€[ · D: (SeExCo--+ P))) 

and, in addition, qjJ[ · D: 2nud P. We draw attention to the fact that "t[eD, when 
supplied with some 'Y, a, and f, delivers a process p E P instead of some value 
,Be Obj. Values (i.e., objects) which result from evaluating an expression are always 
passed on to some expression continuation rather than being delivered explicitly 
by the semantic function. 

6.9. Definition. (l) The function "€ is defined by 
(a) "t[xhaf= Au.{(u,f(u(a)(x)))}; 
(b) "t[,Bhaf = f(,B); 
(c) ~[e1 op e2haf = "t[e1ha(A,B1. "t[e2ha(A,B2,f( .81 OPsem .82))); 
(d) "€[op ehaf = "t[eha(A,B.f(opsem ,B)); 
(e) "t[new(c)haf = Au.{(u', -y(c)( ,B)llf( ,B))} where ,B = (c, u(c) + 1) and u' = 

u{u(c)+l/c}. 
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(2) We define the function for statements as follows: 
(a) ~[x := ehap = ~[eha(A/L\u.{(u', p)}) where u' = o-{u(a){/3/x}/ a}; 
(b) ~[s1 ;s2hap = ~[s1ha(~[s2hap); 
(c) ~[if b then s1 else s2 fihap 

= Ao-.{(u, if[bBau =tthen ~[s&yap else ~[s2hap fi)}; 
(d) ~[vhap= 'Yo>(v)ap; 
(e) ~[µ,v[s]]yap = 'Poo(a)(p), where 'Poe is the unique fixed point of the function 

<P; from the space AObj (SeStCo NDI P) to itself, which is given by 

<P('P) = Aa.Ap.Au.{(u, ~[sh{'P/ v}ap)}; 

(f) ~[e?xhap = i&[eha(A/3.Ao-.{(a, {3?x, p)} ); 
(g) ~[?xhap = Au.{(a, ?x, p)}; 
(h) ~[e!e'hap = ~[eha(A/3.~[e'ha(A/3'.Au.{(a, /3 !{3',p)})); 
(i) ~[!ehap = ~[eha(A/3.Ao-.{(a, !p, p)}). 
(3) Let, for a program t, the mapping 1/1'1 : I'2 I'2 be given as follows: 

where c~s occurs in t, and y1 E I'1 is arbitrary (since t is closed, the choice of y1 
is really immaterial). If c is not declared int, we can put 1Jl',(y2)(c)=Aa.p0 , for 
example. 

Let y2 , be the unique fixed point of 1/1', (see the remark below). We put 
'Y, =def (')'1, 'Y2,), for arbitrary 'Y1 Er •. 

(4) Now we can define the denotational semantics of programs as follows. Let 
f =(c1~S1, .... , Cn~sn>• Then 

Remarks. (1) The clause for ~[new(c)D uses essentially the same idea as in Section 
4 of putting the newly created process y(c)(/3) in parallel with the (expression) 
continuation f (supplied with the new name {3 which is the value of the expression 
new(c)). Here y(c)(/3)-or 'Y<i>(c)(f3), to be precise-will, in the context of a 
program t=(ck~sk)~=I, contain the relevant information on the class c as a result 
of the definition of y, (to be precise, y2,) in clause (3). We also observe that due 
to our requirement that all class names used in a program t must be also be declared 
in it, the result of y, for undeclared classes does not matter (actually, new objects 
of such classes would execute the process p0 ). 

(2) Clause (2)(e) is justified by the fact that the mapping <Pis contracting. Again 
we can obtain its unique fixed point by 'Poo = lim; cp;, where 'Po is arbitrary and 

'P;+ 1 = Aa.Ap.Au.{ (o-, ~[sh{ cpJ v}ap)}. 

(3) The mapping 1/1'1 in clause (3) is contracting since recursive occurrences of c 
in any s are always constituents of statements which take time steps (specifically 
in evaluating new( c)) before we apply y to such a recursive occurrence of c. 
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6.4. Equivalence of operational and denotational semantics 

We start this section with the promised extension of gnus and l!J. 

6.10. Definition. (1) The notion of configuration is expanded so as to include pairs 
of the form (p, 77) (note that 77 ranges over Step= l: u Comm). 

(2) We obtain the transition system f/~ud from flnud by adding the axioms 

(p u {(a, ( ,8 ?x);r)}, u) (p u {(a, r)}, (a, ,8 ?x)), 

(p u {(a, (?x);r)}, (p u {(a, r)}, (a, ?x)), 

(p u { (a, ( ,8 ! ,B');r)}, u) (p u { (a, r)}, (a, ,8 ! ,8')), 

(p u {(a, ( !,B);r)}, u) (p u {(a, r)}, (a, !,8)) 

and by replacing, in all rules, 

(p 1 , u') 

by 

(P2, u') 

(P1, 77') 
(P2, u) (p', 77'). 

(3) Now we define O*[ · Il: PSyCo P by 

Receive2 

Receive3 

Send3 

Send4 

l!J*[ D = {Po 
p Au.{(77', O*[p'D)l(P, 77')} 

if p = {(a 1 , E), ... , (an, E)}, 
otherwise. 

As in Section 5, we have the following lemma. 

The abstraction operator abs can be defined as in Definition 5.11 (but now applied 
to P as in Definition 6.5). Again, we have 

6.12. Lemma. 0 = abs O l!J*. 

We can now discuss the relationship between O* and ffi. The treatment combines 
ideas of Sections 4 and 5. We first present a lemma listing various properties of O* 
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which are either direct from its definition, or follow as in Section 5 (in turn relying 
on [16)). 

6.13. Lemma. (1) 0*[{(a, (x := ,B);r)}] = Aa.{(a', 0*[{(a, r)}])} with a' as usual. 
(2) 0*[ { (a, (x := e );r) }] = 0*[ { (a, e: Az.( (x := z );r)}Il where z is fresh. 
(3) 0*[{(a, (s 1 ;s2);r)}] = 0*[{(a, s 1 ;(s2 ;r))}]. 
(4) C*[{(a, if b then s 1 else s 1 fi;r)}Il 

= Aa.{ (a, if [ b]aa then O'*[ { (a, s 1 ;r) }] else O'*[{ (a, s2 ;r)}Dfi)}. 
(5) 0*[{(a, µv[s];r)}] = limn O'*[{(a, s~.n\r)}] where s;?' =skip and s~n+JJ = 

skip;s[s~.n 1/ v ]. Note that here we cannot use x := x for skip any more because x := x 
now costs two steps. 

(6) C*[{(a, (e?x);r)}] = 0*[{(a, e: Az.((z?x);r))}] with z fresh, and similar 
equations fore !e' and !e. 

(7) 0*[{(a, (,B?x);r)}Il = Aa.{(a, ,B?x, O*[{(a, r)}])} and similar equations for ?x, 
.B !,B', and !,B. 

(8) O'*[t(a, (,B?x);r1), (/3, (a !a'); r2)}D = Aa.{(a, ,B?x, 0*[{(a, r1), (/3, (a !a');ri)}]), 
(/3, a !a', 0*[{(a, (.B ?x);r1), (/3, r2)}]), (a', O'*[{(a, r1), (/3, r2)}])} where a' is as usual, 
and similar equations for ?x with a!a' andfor ,B?x with !a'. 

(9) 0*[ { (a, x: g) }] = Aa.{(a, 0*[ { (a, a( a )(x): g) }])}. 
(10) 0*[{(a, .B: Az.r)}] = O'*[{(a, r[,8/z))}]. 
(1 I) O'*[ { (a, ( /3 1 op /3 2): g)}Il = <'7*[ { (a, (.B I OPsem /3 2): g)}] and a similar equation 

for unary operators. 
(12) O'*[{(a,(e1opei):g)}]=O'*[{(a,e1 :Az1 .(e2 :Az2 .((z10pz2):g)))}E and a 

similar equation for unary operators. 
(13) O'*[{a,new(c):g)}]=Aa.{(a',O'*[{(a,/3:g),(.B,s;E)}Il)} where c¢=.s occurs 

in t and with a'= a{a(c) + 1/ c} and /3,= (c, a(c) + 1). 

We continue with the analysis which links O'* with (jj) and 'ifJ. Our aim is the proof 
of the following theorem. 

6.14. Theorem. For a given program t =(ck¢=.sk)~-i, for closed s, arbitrary r, e and 
g, and for y, as in Definition 6.9(3), we have 

(1) 0*[{(a, e: g)}Il = 'i!J[e](y,)(a)(A,B.C*[{(a, .B: g)}]), 
(2) O'*[{(a, s;r)}] = (jj)[s]( y,)(a)(O'*[{(a, r)}]). 

In order to prove this theorem, we apply a nonuniform version of the strategy 
used at the end of Section 4. Since we are concerned with both statements and 
expressions, we need the nonuniform argument in two forms. Firstly, we introduce 
the branching time analogues of the constructs uJ v from Section 4. One form also 
mentions the J, the other one is parameterized by objects .B from Obj, each of which 
plays a role similar to the one played by J. For the remainder of this section we 
introduce three domains P, Q, and R with typical elements p, q, and r respectively 
( the last not to be confused with r E SyStCo). 
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6.15. Definition. (I) Recall from Definition 6.5 that P is the solution of 

As before, we shall use X to range over {!/)c1(Step x P) and 1r to range over Step x P. 
(2) The domain Q is the solution of the following domain equation 

We shall use Y to range over [l}c1(Step x Q) and { to range over Step x Q. 
(3) The domain R is defined as the solution of 

R == ( Obj X P) U Pc1(Step X R)). 

We shall use Z to range over {!/)c1(Step x R) and ( to range over Step x R. 

The intuitive interpretation of Q and R is as follows. An element of Q is a process 
executing a specific statement (the "local" one), possibly in parallel with some other 
processes. Termination of the local statement is explicitly indicated by The idea 
is that a continuation can start at that point (see the definition of the operator":" 
below). More specifically, if q E Q is of the form p) this means that the local 
process terminates immediately, and that the parallel processes continue with p. If 
in q the local process does not terminate immediately, an ordinary step is possible, 
after which we come in the same situation again. Because we have also included 
p0 in Q, P can be embedded in Q in a canonical way. We shall therefore assume 
that actually P £: Q. 

An element of R is evaluating an expression, again possibly in parallel with other 
processes. It will be composed with elements of Q or R by the operator 
":". If the evaluation of the expression terminates, it delivers a value (3 being the 
result of this expression, together with an ordinary process p representing the ongoing 
computation of the other processes (which is to be executed in parallel with the 
semantic expression continuation). 

We shall define four forms of the operator ":" which will take care of the 
composition of elements of Q and R with appropriate continuations (notice the 
analogy with Definition 4.7): 

6.16. Definition. (I) We define":": Q x Q Q by the following clauses (which can 
be completed to a full definition along the lines of Definition 5.5): 

(a) Po: q = Po; 
(b) p): q = Pllq (see Definition 6.17 below); 
(c) (Au. Y): q = Au.( Y: q), where Y: q = {g: ql{E Y} and (TJ, q'): q =(TJ, q': q). 
(2) We define ":": Q x R R as follows: 
(a) Po: r = Po; 
(b) (J,p):r=pllr (see Definition 6.17); 
(c) (Au. Y): r= Au.( Y: r), where Y: r = {g: rl{E Y} and (TJ, q'): r=(T/, q': r). 
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(3) The operator":": Rx Q) Q is given by the following clauses: 
(a) (/3, p}:f = PIIJ(/3); . 
(b) (Au.Z):f=Au.(Z:f), where Z:f={(:f!(EZ} and (r,, r}:f=(r,, r:f). 
(4) Finally, we define the operator":": Rx R) R by the following clauses 

( we shall use h to range over R): 
(a) (/3,p}:h=pllh(/3); 
(b) (Au.Z): h = Au.(Z: h ), where Z: h = {(: h I ( E Z} and ( T/, r}: h = ( T/, r: h}. 

Note that if q E P, then p: q E P, so that we also have":": Q x P P. Analogously, 
if f E P, then we get r :f E P, so that we can state ":": R x P) P. 

We also need the definitions of Pllq and Pllr: 

6.17. Definition. (1) We define the operator by the following 
clauses: 

(a) Pollq=q, PIIPo=P, Pll(J,p'}=(J,pllP'}; 
(b) for p -,;f p0 and q e {p0} u ( x P) we define 

Pllq = Au.((p(u)llq) u (pllq(u)) u (p(u) luq(u))); 

(c) for XE Pl'c1(Step x P) we put X llq = { ?Tllq I 'IT EX}, where ( T/, p'}llq = ( T/, p'llq}; 
(d) for YE Pl'c1(Step x Q) we put PII Y = {plltl { E Y}, where PII( T/, q'} = ( T/, Pllq'}; 
( e) for X and Y as above, we define 

Xlu Y=LJ{'IT!u{!'ITEX,{E Y} 

where (r,1,p'}!u(T/2,q'}={(u',p'llq'}} with u' as usual if r,1 and r,2 are matching 
communications, and 1r !,,{ = 0 otherwise. 

Note that restricted to P x P this coincides with the old operator "II" (see 
Definition 6.7). 

(2) We define the operator "II": P x R R by the following clauses: 
(a) Pollr = r, Pll(/3, p'} = (/3, Pllp'}; 
(b) for p -,;f p0 and re Obj x P we define 

Pllr = Au.((p(u)II r) u (pllr(u)) u ( p(u) !ur(u))); 

(c) for XEPl'c1(StepxP) we put Xllr~{?Tllrl?TEX}, where (r,,p'}llr=(r,,p'llr}; 
(d) for Z E Pl'c.(Step x R) we put PIIZ = {pllCI ( E Z}, where PII( T/, r'} = ( T/, PII r'}; 
( e) for X and Z as above, we define 

XluZ = LJ { 1rl,r (I 'IT EX, ( E Z} 

where (r,1,p'}!u (r,2, r'}={(u',p'llr'}} with u' as usual if r,1 and r,2 are matching 
communications, and 1rl,r ( = 0 otherwise. 

Analogous to Lemma 4.8 we have the following important lemma. 

6.18. Lemma. (1) All forms of the mappings ":" and "II" are continuous. 
(2) The operators "II" are associative: 
(a) (pillP2)llq = P1ll(P2llq), 
(b) (pdlP2)llr= Pill(P2llr). 
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(3) The operators ":" with the first argument from Qare associative: 
(a) (q1:q2):q3=q1:(q2:q3),. 
(b) (q1:q2):r=q1:(q2:r). 
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(4) The operators ":" with the first argument from R have an analogous property 
(let us call it A-associativity): 

(a) (r:.f):q = r:A/3.(J(/3):q), 
(b) (r:.f):r' = r:A/3.(J( /3):r'), 
(c) (r:h):f= r:A/3.(h(/3):f), 
(d) (r:h):h' = r:A/3.(h(/3):h'). 
(5) Finally, we have a kind of distributivity: 
(a) (pllq):q' = Pll(q:q'), 
(b) (pllq):r=pll(q:r), 
(c) (pllr):f = Pll(r:.f), 
(d) (pllr):h = Pll(r:h). 

Proof. Part ( 1) can be proved by observing that each ver~ion of ":" or "II" is the 
unique fixed point of an appropriate higher-order function that maps continuous 
operators into continuous operators. Therefore, ":" and "II" are themselves con-
tinuous. 

For the other parts, one first proves that p:q = p and p:r = p for all p E P, q E Q, 
and rE R. The rest of the properties are then proved in the order (2)-(5)-(3)-(4), 
by a metric argument. We illustrate this technique by giving the proof of part (3 )( a). 
(We assume that part (5) has already been proved.) Consider the operators <P and 
1/1, given by <P(q1,q2,q3)=(q1:q2):q3 and 1/l(q1,q2,q3)=q1:(q2:q3). Both can be 
seen as elements of the metric space Q x Q x Q Q. We shall show that <P = 1/1 by 
proving d ( <P, t[r) = 0. Let us therefore denote d ( <P, 1/1) by E, or in other words, 

E = sup dQ((q1 :q2):q3, q1 :(q2:q3)). 
qi .q'J_,q3E:.Q 

Now let q1, q2 , q3 E Q be arbitrary. We show 

dQ((ql :q2):q3, qi :(q2:q3)) ~k 
Distinguish the following cases: 

(1) q1=Po-Then (q1:q2):q3=po:q3=po=q1:(q2:q3). 

( 6.1) 

(6.2) 

(2) q1 = p). Then (q1 :q2):q3 = (pllq2):q3 = (by part (5)(a)) Pll(q2:q3) = 
qi :(q2:q3). 

(3) q1 E 1: r1i'c1(Step x Q). Now by Definition 6.16 we have that q1 :q2, (q1 :q2):q3, 
and q1:(q2 :q3) are also elements of Let <TE1: be arbitrary and 
set Y=q 1(<T). Then we get, by Definition 6.16, 

and 

(q1 :qz)(<T) = Y:q2 = {g:q2I gE Y} = {(71, q':q2)l(11, q')E Y}, 

((qi :q2):q3)(<T) = ( Y:q2):q3 = {(71, (q':q2):q3)l(11, q')E Y}, 
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Now the time has come to remember our convention from Section 2.3 that, implicitly, 
every occurrence in the right-hand side of the domain being defined is surrounded 
by id 112 (cf. equation (2.3')). Of course, this also holds for the defining equation for 
Qin Definition 6.15. From (6.1) it follows that 

d0 ( ( q':q2):q3, q':( q2: q3}),.;; e. 

Therefore 

d;d,;,(Q)((q':q2):q3, q':(q2 :q3}},.;; k 
By applying the clauses of Definition 2.7 (and remembering that u was arbitrary) 
we can conclude that 

do((q,:q2}:q3, q,:(q2:q3)),.;;½e. 

Because q1, q2, and q3 were arbitrary in (6.2), we can conclude from (6.1) that 
e ,.;; ½ e, so that d ( <P, 1Jr) = e = 0 and <P = 1Jr. 

Next, w,.; state the analogues of Lemma 4.9 and Corollary 4.10. By way of 
preparation we need some extensions to the definitions of PSyCo and (J*. 

6.19. Definition. (1) We define the set PSyCo', with typical element p, to be the 
same as PSyCo, except that at most one of the components has an r E SyStCo', 
defined (together with g E SyExCo') by 

r ::= I s;r' I e:g g ::= Az.r 
with s closed. 

(2) The set PSyCo", with typical element p, is the same as PsyCo except that 
exactly one component has an r E SyStCo", which is defined together with g E 

SyExCo" by 

;; ::= s;r' I e:g g ::= 

with s closed. 
(3) We define the function O'[ ·]: PSyCo' Q as follows 

. {Po , if p = {(a 1 , E), ... , (ak, £)}, 
0[p]= (J,0*[p']) ifp={(a,J)}up', 

Au. {( u', O'[p ']) I ( u, p) ( u', p ')} otherwise. 

Here we interpret the transition with respect to .o/"~ud (only extended 
in so far that we declare the existing axioms and rules also applicable to our new 
parallel syntactic continuations). 

( 4) We define the function O[ ·] : PSyCo" R as follows 

O[ "] = {(~, (J*[p'.~) if p = {(a, ~:J)}u p', 
P Au.{(u', 0[p'])l(u, p')} otherwise. 

Note that PsyCo c_;; PSyCo', and that tJ restricted to PsyCo is equal to()*. Further-
more, Lemma 6.13 also holds for tJ and 0, and we can restate Lemma 6.11 as follows. 
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6.20. Lemma. (1) O'[p u PD= O*[µDIIO[µE. 
(2) 6[p u iiD = O*[pDll6[iiD-

Now we can state the next lemma. 
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6.21. Lemma. (1) For any e E Exp, a E A Obj, and g E Sy ExCo we have 

O*[{(a, e:g)}D = 6[{(a, ,B:g)}D) 

and the same for any g with O* replaced by e) and for any g with O* replaced by 6. 
(2) Let s E Ynud ( not necessarily closed) and let all free statement variables of s be 

contained in { v1 , ••• , vk}. Now let s 1 , ••• ,sk be closed statements such that, for any a 
and r, 

O*[{(a, S; ;r)}D = O'[{(a, S; r)}D 

and for any r the same with (J* replaced by O' and for any r the same with O* replaced 
by 6. If we defines= s[sJ v;t-i, then we have, for any a and r, 

O*[{(a, s;r)}D = O'[{(a, r)}D 

and analogously for any r and for any r. 

Proof. Part (1) is proved by induction on the complexity of e. We give some typical 
cases: 

Case 1: e = ,B. 

6[{(a, (A,B'.O*[{(a, ,B':g)}]) 

= (,B, p0): (A,B'.O*[{(a, ,B':g)}]) (Definition 6.19) 

= PollO*[{(a, ,B:g)}] 

= O*[{(a, ,B:g)}D 

(Definition 6.16) 

(Definition 6.7). 

Exactly the same proof works for g with O and for g with 6. 
Case 2: e =ope'. 

O*[{(a, (op e'):g)}] 

= O*[{(a, e':Az.(op z: g))}] 

= O[{(a, (A,B'.O*[{(a, ,B':Az.(op z: g))}]) 

= 6[ {(a, (A,B'.O*[ {(a, op ,B': g)}]) 

(Lemma 6.13(12)) 

(ind. hyp.) 

(Lemma 6.13(10)) 

= O[{(a, (A,B'.O*[{(a, OPsem ,B': g)}]) (Lemma 6.13(11)) 

= O[ {(a, (A,B'.O[ { (a, OPsem ,B': }] : (A,B.O*[ { (a, ,B :g) }]) ) 
(Case 1) 

= ( O[ {(a, (A,B'.O[ {(a, OPsem ,B': (A,B.O*[ { (a, ,B :g)}]) 
(Lemma 6.18(4)) 
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= ( O[ { (a, (A,B'.O[{(a, ,B':Az.(op z: (A,B.O'*[{(a, ,B :g)}Il) 
(Lemma 6.13(11, 10)) 

= O[{(a, e':Az.(op z (A,B.O*[{(a, ,8:g)}Il) 

= O[{(a, ope': (A,B.O'*[{(a, ,B:g)}Il). 

(ind. hyp.) 

(Lemma 6.13(12)) 

Again, the proof is also valid for g and g. 
Case 3: e = new(c). 

O*[{(a, new(c):g)}] 

= Au.{<u', O*[{(a, ,B:g), (,8, s;E)}Il)} 
(Lemma 6.13(13), with s, u', and ,B as usual) 

= Au.{(u', O*[{(,B, s;E)}] II O*[{(a, ,8:g)}Il)} (Lemma 6.11) 

= Au.{(u', O'*[{(,B, s;E)}Il II (O[{(a, (A,B'.O'*[{(a, ,B':g)}])))} 
(Case 1) 

= Au.{(u', (O*[{(,B, s;E)}] II O[{(a, (A,B'.O'*[{(a, ,B':g)}Il))} 
(Lemma 6.18(5)) 

= Au.{(u', O*[{(,B, s;E)}Il II O[{(a, (A,B'.O*[{(a, ,B':g)}Il) 
(Definition 6.16) 

= Au.{(u', O[ { ( ,8, s;E), (a, ,B (A,8'.0*[ { (a, ,B':g) }Il) 

= O[{(a, (A,B'.O*[{(a, ,B':g)}Il). 

Once again, the proof is also valid for g and g. 

(Lemma 6.20) 

(Lemma 6.13(13)) 

Now we can prove part (2) by induction on the complexity of s. Again some 
typical cases: 

Case 4: s=x:=e (so s=s). 

O*[{(a, x := e;r)}Il 

= O*[{(a, e:Az.(x := z;r))}Il 

= O[{(a, (A,B.O*[{(a, ,B:Az.(x := z;r))}]) 

(Lemma 6.13(2)) 

(part (1)) 

= O[{(a, (A,B.O*[{(a, x := ,B;r)}Il) (Lemma 6.13(10)) 

= O[{(a, (A,B.Au.{(u', O*[{(a, r)}])})(Lemma 6.13(1), u' as usual) 

= O[{(a, e:v')}D: (A,B.Au.{(u', O'[{(a, O*[{(a, r)}Il)}) 

(because and 

= O[{(a, (A,B.Au.{(u', O'[{(a, O*[{(a, r)}Il) 
(Definition 6.16) 
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= O[{(a, (A,8.0'[{(a; x := O*[{(a, r)}Il) (Lemma 6.13(1)) 

= O[{(a, (A,8.0'[{(a, ,8:Az.(x := O*[{(a, r)}]) 
(Lemma 6.13(10)) 

= ( O[ {(a, (A,8.0[ {(a, ,8 :Az.(x := }]) ) : O*[ {(a, r)}Il 

= O[{(a, e:Az.(x := O*[{(a, r)}Il 

= O'[{(a, x := O*[ {(a, r)}]. 

For r or ;: instead of r the proof runs exactly the same. 
Case 5: s=e?x (so s=s). 

O*[{(a, e?x;r)}Il 

= O*[{(a, e:Az.(z?x;r))}D 

= O[{(a, (A,B.O*[{(a, ,8:Az.(z?x;r))}]) 

= O[ {(a, (A,8.0'*[ { (a, ,8 ?x;r)}D) 

(Lemma 6.18(4)) 

(part (1)) 

(Lemma 6.13(2)) 

(Lemma 6.13(6)) 

(part (1)) 

(Lemma 6.13(10)) 

= O[{(a, (A,8.Au.{ (a, ,8 ?x, O*[ { (a, r)}])}) (Lemma 6.13(7)) 

= O[{(a, (A,8.Au.{(a, ,B?x, O'[{(a, O*[{(a, r)}D)}) 
(see above) 

= O[{(a, (A,8.Au.{ (a, ,8 ?x, O'[{(a, O*[{(a, r)}]) 
(Definition 6.16) 

= O[{(a, (A,8.0'[{(a, O*[{(a, r)}]) 
(Lemma 6.13(7, 10)) 

= ( O[{(a, (A,8.0[{ (a, ,8 :Az.(z O*[{(a, r)}Il 

= O'[{(a, O*[{(a, r)}Il 

= O[{(a, O*[{(a, r)}Il. 

(Lemma 6.18(4)) 

(part (1)) 

(Lemma 6.13(6)) 

Case 6: s = µ v[ s']. Without loss of generality we can assume that v e { v1 , ••• , vk}. 
Ifwe defines'= s'[sJ v;] ~= i, then we haves= µv[s']. Now we first prove, by induction 
on n, that for any a and r (and also for r), 

For n = 0, we get s~(O) = skip and 

O*[{(a, skip;r)}D 

(6.3) 
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= Au.{(u, O*[{(o:, r)}D>} (definition of skip) 

= Au.{(u, O[{(o:, J)}E: O*[{(o:, r)}])} (see above) 

= Au.{(u, O[{(o:, O*[{(o:, r)}] (Definition 6.16) 

= O[{(o:, skip;J)}]: O*[{(o:, r)}] (definition of skip). 

Now let us assume (6.3) for certain n; then we can apply the outer induction 
hypothesis for s', with Vk+1=v and Sk+1=s:,(n)_ If we define ;~<n)=s'[s~(n)/v]= 
s'[sJ v;]~,:'.), this gives us 

Now we can calculate 

O*[{(o:, s~(n+l>;r)}] 

= O*[{(o:, (skip;s~<»l);r)}] 

= O*[{(o:, skip;(s~<n\r))}] 

= Au.{(u, O*[{(o:, s~<n>;r)}])} 

= Au.{(u, O[{(o:, s~<n\J)}]: O*[{(o:, r)}])} 

= Au.{(u, O[{(o:, s:,<nJ;J)}])}: O*[{(o:, r)}D 

= 6[{(o:, skip;(s~<n);J))}D: O*[{(o:, r)}] 

= O[{(o:, (skip; O*[{(o:, r)}] 

= O[{(o:, O*[{(o:, r)] 

which gives us (6.3) for n + 1. 
Finally, we can compute as follows: 

O*[{(o:, µv[s'];r)}] 

(Lemma 6.13(3)) 

( definition of skip) 

(by ( 6.4)) 

(Definition 6.16) 

( definition of skip) 

(Lemma 6.13(3)) 

= limn O*[{(o:, s~<"\r)}] (Lemma 6.13(5)) 

= limn(O[{(o:, O*[{(o:, r)}]) (by (6.3)) 

= (limn O[{(o:, O*[{(o:, r)}] (Lemma 6.18(1)) 

= O[{(o:, µv[s'J;J)}D: O*[{(o:, r)}] (Lemma 6.13(5)). D 

(6.4) 

In order to prove Theorem 6.14, in addition to the reasoning encountered earlier, 
there is one extra step necessary to deal with the possible recursion in declarations 
such as c ¢= ... new( c) .... This step involves the second component o/(2) of an 
environment y. For simplicity's sake we again drop the indices. 
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6.22. Lemma. Let t be a fixed program. If -y E r satisfies 

-y(c) = Aa.O'*[{(a, s;E)}D 

for c ¢= s in t, then we have the following: 
(1) For any eE Exp, -yE r, a EAObj, andfE P we have 

~[ehaf = O[{(a, e:J)}]:f 
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(6.5) 

(2) Lets E Y'nuct ( not necessarily closed) and assume that the free statement variables 
in s are all in { v,, . .. , vd and let s,, ... , sk be closed. Put s = s[s;/ v;] 7= 1 and define 

({); = Aa.Ap.(O[{(a, S; ;J)}D:p) (i = 1, ... , k) 

and let -y = r{ cp;/ v;} 7= 1• Then we have, for any a and p, 

~[sD-yap = &[{(a, 

Proof. The proof follows the same line of argument as in Sections 4 and 5. It runs 
by induction on the complexity of e and s. We make use of Lemmas 6.13, 6.18, 
6.20, and 6.21 and we need the assumption (6.5) to deal with the case e = new(c). 

We shall deal with some typical cases here, starting with part (1). 
Case 1: e = /3. 

~[f3haf = f(/3) (Definition 6.9) 

= Poll!( /3) (Definition 6.17) 

= (/3, Po):f (Definition 6.16) 

= O[{(a, {3:J)}D:f (Definition 6.19). 

Case 2: e =ope'. 

~[op e'haf 

= ~[e'ha(A/3.f(op5em /3)) (Definition 6.9) 

= ~[ e'D-ya(A/3.0[ { (a, OPsem /3: J)}D:f) ( Case 1 for OPsem /3) 

= ~[e'ha(A/3.0[{(a, /3:Az.(op z: (Lemma 6.13(11, 10)) 

= O[ {(a, (A/3.0[ { (a, /3 :Az.(op z: (ind. hyp.) 

= ( O[{(a, e':J)}D: (A/3.0[{(a, /3:Az.(op z: (Lemma 6.18(4)) 

= O[{(a, e':Az.(op z (Lemma 6.21) 

= O[{(a, op (Lemma 6.13(12)) 

Case 3: e = new(c). 



202 P. America, J. De Bakker 

i[new(c)haf 

= Au.{(u', -y(c)(/3)1\f(/3))} (Definition 6.9, with u' and /3 as usual) 

= Au.{(u', -y(c)(/3) II (O[{(a, 

= Au.{(u', (-y(c)( /3) II O[{(a, 

= Au.{(u', (-y(c)(/3) II O[{(a, 

= Au.{(u', (0'*[{(/3, s;E)}] II O[{(a, 

= Au.{(u', 0[{(/3, s;E), (a, 

= O[{(a, 

And now part (2). Again we deal with a few typical cases. 
Case 4: s = x := e, so s = s. 

0J[x := e]yap 

(see Case 1) 

(Lemma 6.18(5)) 

(Definition 6.16) 

(by (6.5)) 

( Lemma 6.21) 

(Lemma 6.13(13)) 

= i[eTI-ya(A/3.Au.{(u', p)}) (Definition 6.9, with u' as usual) 

= i[e]-ya(A/3.0[{(a, {3:Az.(x := 
(see proof of Lemma 6.21, Case 4) 

= O[{(a, (A/3.0[{(a, {3:Az.(x := 

= (O[{(a, (A/3.0[{(a, {3:Az.(x := 

= O[{(a, e:Az.(x := 

= O[{(a, x := 

(part (1)) 

( Lemma 6.18( 4)) 

( Lemma 6.21) 

(Lemma 6.13(2)) 

Case 5: s = µ v[s']. Let us assume again that v e { v1 , ••• , vd, so that, if we define 
s' = s'[s;/ v;]7=i, then we haves= µv[s']. Now, on the one hand, we have, by Lemma 
6.13(5) and Lemma 6.18(1), that 

(6.6) 

On the other hand, Definition 6.9 says that 

(6.7) 

where t/10 can be chosen arbitrarily, and 

t/Jn+I = Aa.Ap.Au.{(u, 0>[s']y{t/Jn/ v}ap)}. 

Now we make a definite choice for t/10 , namely 

and we prove, by induction on n, that 

(6.8) 
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For n =O this is obvious, so assume (6.8) for some n; then we can apply the outer 
induction hypothesis to s' with vk+i = v and sk+i = s~<n>, so our inner induction 
hypothesis (6.8) says that 'Pk+i = 'Pn· We then get (because s'[sJ v;] ~,;;/ = s'[s~<n> Iv]) 

(6.9) 

and we calculate 

'Pn+I ( ex )(p) = Ao-.{(o-, 0J[s'] y{ I/In/ V }exp}} ( definition of 'Pn+ 1) 

= Au.{ (o-, O'[ {(ex, s'[s~(n) / v (by ( 6.9)) 

= Au.{(o-, O'[{(ex, (Definition 6.16) 

= O'[ {(ex, skip;(s'[s~(n) IV ( definition of skip) 

= O'[{(ex, (skip;s'[s~(n); v (Lemma 6.13(3)) 

Finally, (6.8) tells us that in (6.6) and (6.7) we are taking the limit of the same 
sequence, so their respective left-hand sides are equal. D 

One more step is necessary before we reach the desired conclusion. 

6.23. Lemma. Let y, be as in Definition 6.9(3). Then we have that y, satisfies (6.5). 

Proof. Choose any y satisfying (6.5). Then, by the definition of 'P, (in Definition 
6.9(3)), we have, for c¢:=s in t, 

'P,( y)(c) = Aex.0J[s]( y)(ex)(p0 ) 

= Aex.( O'[{(ex, (Lemma 6.22) 

= Aex.(O'[{(ex, O'[{(ex, E}}]) (Definition 6.19) 

= Aex.O*[{(ex, s:E}}] (Lemma 6.21) 

=y (by(6.5)). 

If we have furthermore that y( c) = Aex.p0 for c not declared in t, then we have that 
y is a fixed point of 'P,, so that y = y,. 

Now we can prove Theorem 6.14: 

Proof of Theorem 6.14. For part (1), we calculate as follows: 

O*[{(ex, e:g}}] = O[{(ex, (A~.O*[{(ex, ~:g}}]) (Lemma 6.21) 
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= ~[eh,a(A/HY*[{(a, ,8:g)}D) ( Lemma 6.22) 

where the application of Lemma 6.22 is allowed by Lemma 6.23. 
Now for part (2), we have 

O*[{(a, s;r)}D = O'[{(a, s;J)}D: O*[{(a, r)}D (Lemma 6.21) 

= gj>[sh,a( O*[{(a, r)}D) (Lemma 6.22) 

where s = s and -y, = y, because s is closed. Here, again, Lemma 6.23 justifies the 
application of Lemma 6.22. D 

6.24. Corollary. For any t E .:lnud, O*[tD = gj>[tD. 

Proof. Let t=(c;<=s;)~= 1; then we have 

0-l<[tD = O*[{((c1 , 1), s 1 ;E)}D (Definition 6.10(4)) 

= gj>[s 1D( -y,)((c1 , l))(O'*[{((c1, 1), E)}B) (Theorem 6.14(2)) 

= gj>[s1D( -y,)((c1, l))(p0) (Definition 6.10(3)) 

(Definition 6.9(4)). 

With Corollary 6.24, we have obtained the ultimate goal of our paper: to establish 
the equivalence of an operational and a denotational semantics for a nonuniform 
language with process creation. 
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0. INTRODUCTION 
We present a study of three concurrent imperative languages, called L 0, L 1, and L 2• For each of 
them we shall define an operational semantics 0; and a denotational semantics 6D;, for i =O, 1,2, and give 
a comparison of the two models. ('Ne shall use the terms semantics and semantic model as synonyms.) 
This comparison is the main subject of our paper, rather than the specific nature of the languages 
themselves, or the particular properties of their semantics. 

The languages L; have been defined and studied already in much detail in [BMOZl,2] and [BKMOZ]. 
We rely heavily on these papers, using many definitions taken from them literally, and others in an 
adapted version. (The languages L 0, L 1, and L 2 we use here are called L 0 , L2, and L3 in the 
papers mentioned.) 

Let us try to characterize in a few words the languages under consideration. They all belong to the 
wide class of concurrent (parallel) imperative programming languages. We shall discuss parallel execu-
tion through interleaving (shuffle) of elementary actions (in L 0 ), together with synchronization and 
communication (in L 1) and extended with (an elementary form of) message passing (in L2)- Imperative 
concurrency is further characterized by an explicit operator for parallel composition on top of the 
usual imperative constructs, such as elementary action and sequential composition. Herein it differs 
from another widely used style, so-called applicative concurrency, where the parallelism is implicit. 
Further, Lo and L 1 are uniform and L 2 is nonuniform. In Lo and L 1 the elementary actions are left 
atomic, whereas in L 2 an interpretation of these actions is supplied. They consist of assignments, test 
and send and receive actions. Another important feature is the presence of local nondeterminacy (in 
L 0) and global nondeterminacy (in L 1 and L 2). (Sometimes this is called internal and external non-
determinacy.) The difference between the two has major implications for the different semantic 
models. (For an extensive discussion of this matter see, e.g., the introduction of [BKMOZ].) 

For our semantic definitions we shall use metric structures, rather than order-theoretic domains. The 
metric approach is particularly felicitous for problems where histories, computational traces and tree-
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like structures of some kind are essential. Moreover, it allows for the definition of the notion of con-
traction, which we discuss in more detail in a moment. Our operational models f!; are based on the 
transition system technique of Hennessy and Plotkin [HP] and Plotkin [Pl2, Pl3]. They are closely 
related to the ones defined in [BK.MOZ], but there are some differences. We use labeled transitions 
and (in 01 and fli) communication is treated somewhat differently. Our denotational models D; are 
almost exactly the same as in [BKMOZ]. They are defined compositionally, giving the meaning of a 
compound statement in terms of the meaning of its components, and tackling recursion with the help 
of fixed points. For D 1 and D 2 we use a reflexive domain, being a solution of some domain equation 
in the style of Plotkin [Pll] and Scott [Sc]. We shall not give the details of solving in a metric setting 
this type of equations, but refer the reader to [BZ], where a solution was presented first, and to [AR], 
where this metric approach is reformulated and extended in a category-theoretic setting. 

Although the semantic models presented here are (roughly) the same as in [BK.MOZ], there is one 
major difference, being the way in which they are defined. In this paper we define both the opera-
tional and denotational models as fixed points of contractions. 

A contraction f :M on a complete metric space M has the useful property that there exists one 
and only one fixed point xEM (satisfying/(x)=x). This elementary fact is known as Banach's fixed 
point theorer (see A.4.(b)). Such a fixed point x is entirely determined by the definition off any 
other elementyeM satisfying the same properties as x, that is, satisfying/(y)=y, is equal to x. The 
contractions ii> we use in this paper are always of type 

il>:(M 1 1 2), 

that is, they are defined on a complete metric function space M 1 2• Then the fixed point of ii> is a 
function from MI to M 2. 

The fact that our denotational models can be obtained as fixed points of suitable contractions is not 
very surprising, fixed points playing traditionally an important role in denotational semantics. It is 
interesting, however, to observe that the same method applies to the definition of operational models. 
One might wonder whether the models thus obtained still deserve to be called operational. That this is 
the case follows from the fact that they equal the models defined in the usual manner, without the use 
of fixed points (see lemma 1.12). 

The main advantage of this style of defining semantic models as fixed points is that it enables us to 
compare them more easily. This brings us to the discussion of what has been announced above to be 
the main subject of this paper: the comparison of operational and denotational semantic models, 
which we shall also call the study of their semantic equivalence. About the question why this would be 
an interesting problem we want to be brief. Different semantic models of a given language can be 
regarded as different views of the same object. So they are in some way related. Their precise relation-
ship we want to capture in some formal statement. 

Let us now sketch the way we use contractions in our study of semantic equivalences. Let L be a 
language. Suppose an operational model e for L is given as the fixed point of a contraction 

where M is a complete metric space. Suppose furthermore that we have a denotational model 6D for L 
of the same type as e, that is, with for which we can prove il>(6D)=6D. Then it follows from 
the uniqueness of the fixed point of ii> that 0=6D. 

In the context of complete partial ordering structures similar approaches exist (see, e.g., [HP] and [AP]). 
There, the operational semantics fJ can be characterized as the (with respect to the pointwise ordering) 
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smallest function '!}" satisfying ~§)=~ for some continuous function 4>. Then it follows from 
~6D}=6D that e is smaller than 6D. In order to establish El=6D it is proved that e satisfies the defining 
equations for 6D, from which it follows that 6j) is smaller than e. Please note that within the metric set-
ting we can omit the second part of the proof. 

In general e and 6j) have different types, that is, they are mappings from L to different mathematical 
domains. In the languages we consider, this difference is caused by the fact that recursion is treated 
in the denotational and operational semantics with and without the use of so-called environments, 
respectively. Therefore, e and 6j) cannot be fixed points of the same contraction. Now suppose e and 
6D are defined as fixed points of 

1 1 }, and 2) 

respectively, where M I and M 2 are different complete metric spaces. Then we can relate e and 6j) by 
defining an intermediate semantic model for L as the fixed point of a contraction 

and by relating 4> , 4>' and Y as follows. If we define 

/ 1 1 and h 
and we next succeed in proving the commutativity (indicated by *} of the next diagram: 

C, 

Ji! ., J/1 
41' 

hr *2 rh 
"' 

then we are able to deduce the following relation between e and 6D: 
h(6D}= J, (El}. 

It is straightforward from• 1 and *2, and the fact that 4>, 4>', and v are contractions. 

This will be the procedure we follow for the models and % of Lo in section 1. There / 1 and Ji are 
such, that for closed statements (i.e., containing no free statement variables} s eL0, we have: 
e(s}=6iXs}. Once this result has been achieved for Lo, it is straightforward to adapt the definitions, 
lemmas and theorems involved so as to deduce a similar result for L 1 and L 2 • (For the latter 
languages there is one slight complication. It appears to be convenient to relate I and 2 
via two intermediate types, and In [BMOZl,2) and [BKMOZ] there have already 
been given proofs for the semantic equivalence of operational and denotational models for L0 and 
L 1. These proofs, however, are quite complicated and not so easy to understand. Furthermore, the 
proof for L 1 is much more complex than that for L0 , involving an intermediate ready-set domain. 

The method of proving semantic equivalence as described above is general in the sense that it is appli-
cable to very different languages, such as L 0, L 1 and L 2 • 

This paper has seven sections. You are now reading section 0, the introduction. It is followed by the 
treatment of Lo, L, and L2 in sections 1, 2, and 3 respectively. Then, in section 4, some conclusions 
and remarks about future research are formulated. Section 5 gives the references and section 6, the 
appendix, gives the basic definitions of metric topology. 
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l. A SIMPLE LANGUAGE (Lo) 

1.1 Syntax 
For the definition of the first language studied in this paper, we need two sets of basic elements. Let 
A, with typical elements a,b, ... , be the set of elementary actions. For A we take an arbitrary, possi-
bly infinite, set Further, let Stmv, with typical elements x,y, ... , be the set of statement variables. 
For Stmv we take some infinite set of symbols. 

DEFINITION l.l (Syntax for L 0) 
We define the set of statements L0 , with typical elements s,t, ... , by the following syntax: 

s::= als1;s2ISJ Us2lsills2lxl11X[t] 
where t el,4, the set of statements which are guarded for x, to be defined below. 

A statement s is of one of the following six forms: 
an elementary action a. 
the sequential composition SJ ;s2 of statements s1 and s2• 
the nondeterministic choice s1 Us2, also known as local nondeterminism [FHLR]: s 1 Us2 is exe-
cuted by executing either SJ or s2 chosen nondeterministically. 
the concurrent execution SJ lls2, modeled by the arbitrary interleaving (shuffle) of the elementary 
actions of s 1 and s2• 
a statement variable x, which is (normally) used in 
the recursive construct /1X{t ]: its execution amounts to execution of t wbere occurrences of x in t 
are executed by (recursively) executing 11X[t). For example, with the definition to be proposed 
presently, the intended meaning of /1X[(a;x)Ub) is the set a*·bU{a"'}. 

An important restriction of our language is that we consider only recursive constructs 11X[t ], for which 
tis guarded for x: tel,4. Intuitively, a statement tis guarded for x when all occurrences of x int are 
preceded by some statement. More formally: 

DEFINITION 1.2 (Syntax for 1,4) 
The set 1,4 of statements which are guarded for x is given by 

t::= a 

t;s, for seLo 

ti Ut2 I ti llt2 
y , fory=,=x 

/1X[t] 
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I µy(t1, for y=/=x, t' el,fi n.l.,j\. 

REMARK 
In order to avoid possible confusion about the definitions of Lo and l,fi, let us give a more extensive 
definition, for which the ones given above are shorthand. We define L0 and, for every xeStmv, Lij 
simultaneously and in stages: 

Stage O: 

L 0(0) = A UStmv, l,fi(O) = A U(Stmv \ {x}) 

Stage (n+ I): 

Lo(n + 1) = Lo(n)U {s1 ;s2 ls1,s2 eLo(n)} 

U {s1 Us2 ls1,s2 eLo(n)} 

U {siils2 ls1,s2 eLo(n)} 

U {µx[t] It eLij (n )}. 

l,fi(n +l) = l,fi(n)U {t;sltel,fi(n), seL0(n)} 

U {t1 Ut2 lt1,li el,fi(n)} 

U {tillt2 lt1,li el,fi(n)} 

U {µx(t]ltel,fi(n)} 

u {µy(t) ly=/=x /\t ELij(n)n.l.,j\(n)}. 

We define 

Lo = U Lo(n), 1.6 = U L;(n~ 
neN neN 

REMARK (Empty statement) 
It appears to be useful to have the languages under consideration contain a special element, denoted 
by E, which can be regarded as the empty statement. From now on E is considered to be an element 
of L0 , and 1.6. We shall still write Lo for Lo U { E} and 1.6 for Lij U { E}. Please note that syntactic 
constructs like s ;E or Ells are not in L0 • 

Now that we have formulated the notion of guardedness for x, we can easily generalize this: 

DEFINITION 1.3 (Guarded statements) 
The set~ of guarded statements (guarded for all x) is defined as 

= nxeStm,, l.fi. 
As Lo and 1.6, also~ has a simple inductive structure. 

LEMMA 1.4 The set~ can be given by the following syntax: 

t::= alt;slt1 Ut2ltillt2lµx[t) 

where seLo, 

We need yet another notion of syntactic nature, that is, the notion of closedness. 
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DEFINITION 1.5 (Free variables, closed statements) 
For every statement seL0 we define the set FV(s) of all statement variables that occur freely ins as 
usual: 

FV(a) = 0, FV(x) = {x}, FV(µx[sD = FV(s)\ {x}, 

FV(s 1ops2) = FV(s 1)UFV(s2), for op = ;, U,11. 

We call a statement s closed (notation: closed (s)), whenever FV(s)= 0. Finally, we define for 
L =Lo, LB, and I,6: 

Lei = {s lseL I closed (s)} 

We have: (Lo)°' = (Lr,'1 = (L6f1• 

We expect that the reader may benefit from a few 

ExAMPLES 
First we observe that L6 <;;;,L5 <;;;,L0 • Further we have that 

xeL0 , xii.LB 

y;xeLij, y;xfi.1,/; 

µx[y;x]eLo, µy[y;x]!i.Lo 

a;µx[y;x]eL5 nLt; 

µy[a ;µx[y ;x ]]eLo 

1.2 Operational mnantia 
We first introduce a semantic universe for both the operational and the denotational semantics for L 0 • 

DEFINITION 1.6 (Semantic universe P 0) 
Let A 00 , the set of finite and infinite words over A, be given by 

A 00 =A*UA". 

For the empty word we use the special symbol£. Let d,1• denote the usual metric on A 00 (see example 
A. I.I). We define 

Po= '!Pnc(A 00 ), 

with typical elements p,q, ... , the set of all non-empty, compact subsets of A 00 • As a metric on Po 
we take dp, =(d,4• )8 , the Hausdorff distance induced by d,4•. According to proposition A.7 we have 
that P0 together with the metric dp, is a complete metric space. 

The operational semantics for L 0 is based on the notion of a transition relation. 

DEFINITION 1.7 (Transition relation for I,6) 
We define a transition relation 

<;;;, l,6XAXLo 
a 

(writing for as the smallest relation satisfying 
a 

(i) (for all aeA) 
(ii) for all aeA, s,tel,6, s',seL0 : if s'=/=E, then: 
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a a 
s -+s' => (s ;S 

a a 
I\ I\ 

a a 
A I\ 

a 
I\ 1,1X[s] s'[µx[s ]/ x )), 

where the latter statement is obtained by replacing all free occurrences of x in s by 1,1X[s ]; and if 
s'=E, then: 

a a 
=> 

a .a 
I\ I\ 

a a 
I\ I\ 

a 
Intuitively, tells us that s can do the elementary action a as a first step, resulting in the state-
ments'. We now give the definition of 0o, the operational semantics for Lff. (It is defined on closed 
statements only, because we do not want to give an operational meanmg to, e.g., a ;x: what should it 
be?) It will be the fixed point of the following contraction. 

DEFINITION l.8 (~o) 
Let ~o :(Lg 0) be given by 

~o(F)(s) = l{E} a 

U { a·F(s') Is' eLf/ /\a eA 

for and seLt 

REMARKS l.9 
(I) It is straightforward to prove that ~o is contracting. 

a 
(2) Please note that closed (s) and imply closed (s'). 

a 
(3) We have that ~ 0(F)(s) is a non-empty, compact subset of A 00 , because is 

finite and non-empty (this follows from lemma 1.14 below) and F(s') is compact for every 
s'el,f}. This implies that ~ 0(F)eLf} 

DEFINITION 1.10 (0o): 0o=Fixed Point(~o) 

REMARK: We use open brackets to denote application of 0o to an arguments: 0o[s]. 

In [BKMOZ] another, seemingly more operational, definition of 0o is given. We shall repeat a slightly 
different version of it here and show that it is equivalent to this fixed-point definition. 

DEFINITION I.I l (60) 
Let seLf}, s=/=E. We define 0o:Lfl by putting weA 00 in 60[s) if and only if one of the following 
two conditions is satisfied: 

a 1 a1 al a. 
(i) I\ Sn =EI\ W = Gt •··On 
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a, 02 o, a. · "-•• 
(ii) I\ W = Dt • • • 0,,0,,+J ••• 

"• 01 a, Oz 

(where abbreviates I\ s' H s = E, then 8ols) = { (}. 

LEMMA 1.12: &,=80 

PROOF 
Let wEA"", sE~, with s*E. We have 

wE8Q(s] • [definition 80) 
a 

3aEA3s'E~3w'EA 00 /\w=a·w' /\w'e8o[s]] 

• [definition ~ol 
we..,(8Q)(s). 

Since it follows that 80=~80). Thus 80=&,. 

We give yet another characterimtion of&,. It is based on the following definition and will be the one 
we use in proving semantic equivalence. 

DEFJNJTION 1.13 (Initial steps) 
We define a function 

XLo) 

(where ~fin(X) ={YI Y!;;;X/\ finite (Y)}) by induction on Li: 
(i) J(E)= 0, and J(a)={(a, E)} 
(ii) Suppose J(s)={(a;, s;)}, l(t)={(bj, ti)} for s,tel.i,a;,bieA, s;,tieL0 • (The variables i and j 

range over some finite sets of indices, which we have omitted.) Then 

I(s;s) = {(a;, s;;s)} (forieLo) 

J(s Ut) = J(s)UJ(t) 

I(sllt) = {(a;, s;llt)} u {(bi, sllt1)} 

J(p.x[sD = {(a;, s,(p.x[s)/xD}-

Rmwut: Please note that for all s*E the set J(s) is finite and non-empty. 

This definition is motivated by the following lemma, which can be easily proved. 

a 
LEMMA 1.14: 'o'aEA'o'sEL.i'o's'eL0 • (a, s')EJ(s)) 

CollOLI.AllY 1.15: ..,(F)(s)= LJ {a·F(s')I (a,s')el(s)}, for SE~\ {E}. 

1.3 Daotational .....iia 
The second semantic function we define for Lo will be denotational: We call a semantic function 

(where Mis some mathematical domain) denotational if it is compositionally defined and 
tackles recursion with the help of fixed points. The first condition is satisfied if for every syntactic 
operator op in L0 we can define a corresponding semantic operator (assuming op to be 
binary) such that 
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F(.r1t.ps2) = F(.r1)'¥'F(.r2). 
As semantic domain for the denotational semantics of L0 we take again P0 • The semantic operators 
corresponding with; , U, and II, the syntactic operators in L 0 , will be of type Po 

l>EFINmON 1.16 (.Sc:J:!lantic operators) 
The operators;, U, II: are defined as follows. Letp, qeP0 , then 

(i) - {q ifp = {<} 
p;q= U{a·(p.;q)IPo=F0} otherwise 

(ii) p Uq = p Uq (set-theoretic union) 

(iii) pHq = q • 
if q = {<} 
ifp = {<} !p . 

U{a·(p.H q)IPo=F0} U U{a·(ptt q.)I q.+0} otherwise, 

where, for every peP0 and aeA, we define: 
p0 ={wl weA 00 /\a•wep}. 

(We often write op rather than tj, if no confusion is possible.) 

Rawucs 1.17 
(l) This def!nition is self-referential and needs some justification. We shall give it for; and leave the 

case of II to the reader. We define a mapping: •:(Po by 

{
q ifp= {<} 

~F)(p,q) = LJ{a·F(p.,q)IPo=F0} otherwise. 

It is not difficult to show that • is contracting. Then we define: ; = Fixed Point(•), which 
satisfies the equation of definition 1.16 above. 

(2) If we define the left-merge operator IL by 

{
0 ifp = {<} 

pllq = U{a{p0 II q)IPa=F0} otherwise, 

then we have that 

pllq= pllqu qll.p 

(using the fact that p'llq'=q'llp', for all p' and q'). This abbreviation will be helpful in some 
future proofs. 

We need the following properties, which are easily verified: 

LEMMA 1.18 
(a) For op=;, U, and fi we have 

"lp,p',q,q'eP0 (dp0 (popq,p'opq') c. max{d,,(p,p'), d,,(q,q')}J. 

(b) For p,p'eP0 with <fp, <fp', and q,q'eP0 we have 

dp,(p;q, p';q') c;; max{d,,(p,p'), ½,d,,(q,q')). 

(c) The operators;, U, and fi preserve compactness. 
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We shall treat recursion with the help of environments, which are used to store and retrieve meanings 
of statement variables. They are defined in 

DEFINITION 1.19 (Semantic environments) 
The set f of semantic environments, with typical elements y, is given by 

r = Stmv--+1i" p O· 

We write y{plx} for a variant of y which is like y but with y{p/x }(x)=p. 

Now we have defined everything we need to introduce the denotational semantics for L0 • 

DEFINITION 1.20 (Yo, Do) 
We shall define D 0 as the fixed point of 

Yo:(Lo...,.f (Lo...,.f ...,.i Po) 
which is given by induction on L 0• (Here f Po denotes the set of non-distance-increasing func-
tions (see A.3.(c)).) Let FeL0...,.f P0 , then: 

(i) Yo(F)(a)(y)={a}, Y0(F)(x)(y)=y(x), Y0(F)(E)(y)={t} 

(ii) Yo(F)(s op t)(y) = Yo(F)(s)(y) op Yo(F)(t)(y) 

(iii) Y0(F)(px[s ))(y) = Y0(F)(s )(y{ F(Ju[s ])(y)/ x}) for s EL~, 

for op=;, U, II, and oj, as in definition 1.16. (We define '110(.F) only for those sandy, such that 
FV(s)~dom(y).) Now we set 

D 0 = Fixed Point(Y0). 

REMARK: We have: Do[iu[s))(y)= Dolsl(y{Doliu(s]J(y)/x}). (As for flo, we also use open brack-
ets for <>Do.) 

It is not obvious that Yo is contracting. The fact that we consider only guarded recursion is essential 
for proving it. 

LEMMA 1.21 
(a) If FeL0...,.f P0, then P0• 
(b) If thenforal/y1,y2Ef,sELo: 

(*) 'vyeStmv(sf.ELlj Y1(y)=r2(y)] 

(**) dp0 ('1to(F)(s)(y1), '1to(F)(s)(y2)),.;; ½·dr(Y1,Y2). 
(c) Vo is contracting on P0. 

PROOF 
(a) The proof of (a) goes along the lines of (b), which is more interesting. 
(b) Let P0 , let y1, y2 Ef. We use induction on L 0 • 

(i) Fors =a we have: dp0 ('1t0(F)(a)(y1), v0(F)(a)(y2))=0. Let s =x, with xeStmv. Suppose (*) 
holds for x. Then 

dp,(Vo(F)(xXr1), Vo(F)(x)(y2)) = dp0 (Y1(x), Y2(x)) 

= 0 [because of (*)). 

(ii) We only treat sequential composition and recursion. Lets =s 1;s2, with s 1,s2eL0• Suppose (b) 
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holds for s1 and s2 • Suppose(*) holds for s1 ;s2• 1bis implies that(*) holds for SJ. Thus we have 
(**) for s J. Now: 

dp, (Yo(F)(s 1 ;s2X-YJ ), Yo(F)(s 1 ;s2Xr2)) 

= dp, (Yo(F)(s J)(YJ ); Yo(F)(s2X-YJ ), Yo(F)(s I Xr2); Yo(F)(s2XY2)) 

,,;;;; [for all seL0 \ {E}, F and y we have: £ilYo(F)(s)(y); thus lemma l.18(b) applies) 
I 

max{ dp,(Yo(F)(sJ)(-YJ ), 'Yo(F)(sJ XY2)), TdP, ('Yo(F)(s2XY1 ), 'Yo(F)(s2Xr2))} 

-.;; [(**) for s1; (a) for s2) 
I I 

max{Tdr(y1,-Y2), Tdr(Y1,Y2)} 
I = Tdr(Y1,-Y2)-

(The proof for SJ Us2 and s 1 lls2 is similar.) Next we treat recursion. Let s1 eL0 and suppose that 
,u[s ii satisfies (*). Then s I satisfies it. Thus we have (**) for s 1. Now 

dp, ('Yo(FXIU(s J IX-YJ ), 'Yo(FXIU[s J IXY2)) 

== dp, ('Yo(F)(s XYJ { F(J.u[s dXY1 )/ x }), 'Yo(F)(s XY2 { F(J.u[s dXY2)/ x })) 

-.;; ((*) holds for s 1, also w.r.t. Y;{F(J.u[si))(y;)/x}, for i = 1,2, thus so does(**)) 
I 

Tdr(Y1 {F(J.u[sd)(r1)/x }, Y2 {F(J.u[si))(y2)/x }) 
I 

.;;; Tmax{dr(Y1,Y2), dp0 (F(J.u[si))(y1), F(J.u[si))(y2))} 

.;;; [(a) for ,u[s ill 
t·dr(ii, Y2)-

(c) Let F1,F2eLo->f->1Po. We only treat recursion. Suppose dp,('Yo(F1)(s)(-y), 'Y0(F2)(s)(y)) 
I .;;;Td(F1,F2), for some seLi, all yef. Then 

dp, ('Yo(F 1 )(,u(s ))(-y), 'Yo(F 2XIU[s ))(y)) 

= [Y; = y{F;(J.u[s])(y)/x}, i = 1,2) 

dp0 (Yo(FJ)(s)(y1), Yo(F2)(s)(y2)) 

.;;; max{dp0 (Yo(F1)(s)(y1), Yo(F2)(s)(y1)), dp0 (Yo(F2)(s)(-yJ), Yo(F2)(s)(r2))} 

,,;;;; [induction, (b)) 
I I 

max{Td(F1,F2), Tdr(Y1,Y2)} 
I I = max{Td(F1,F2), Tdp0 (F1(J.u[s])(y), F2(J.u[s))(y))} 

I = Td(F1,F2)-

1.4 Semantic equiva/mt% of &> and 61\i 
An important difference between 61\i and &> is that recursion is treated with and without semantic 
environments, respectively. We have 

61\i[,u[s ))(y) = 61\i[s)(y{6J:\i[,u[s ))(y)/ x }) 
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and 

&i[µx[s]) = eo[s[µx[s]/x]l 

In the latter case the statement µx[s] is syntactically substituted for all free statement variables x in s, 
whereas in the first case the environment y is changed by setting x to the semantic value of µx[s ]. 
We shall compare 0o and 61\-i by relating both to an intermediate semantic function 0o', which takes 
syntactic instead of semantic environments as arguments. It will be defined such that for syntactic 
environments ll: 

f\i'(µx[s ]l(ll) = 0t)'[s](ll{µx[s ]/ x }). 
Here ll is changed, the new value of xis the statement µx[s]. By first comparing 0o and 0o' and next 
0a' and 61\-i we are able to prove the main result of this section: 0o[sJ= D 0[s](y), for all sEL61 and 
arbitrary yEf. For the definition of 0a', we need 

DEFINmoN 1.22 (Syntactic environments) 
The set A of syntactic environments, with typical elements ll, is defined by 

A = { ll I llE(Stmv-->lin L 0 )A(ll is normal)}, 

where the notion of normal environments is given in: 

DEFINITION 1.23 (Normal environments) 
A syntactic environment ll is called normal, whenever 

(i) 'r/xEdom(ll) [B(x)E~] 

(ii) 'r/sEL0 [FV(s)(;;;dom(ll) =>3k;;..0 [s[llJ" EL8]], 

where s[ll]° =s, s[ll]1 =s[8(x1)/x1, ... ,ll(x.)lx.] (with FV(s)= {x I' ... ,x. }) and s[Br +I =(s[ll])[llr. 
For ll normal and sELo, with FV(s)Cdom(ll), we define 

s<B> = s[llJ", 

where k = min{m ls[llrEL6'}. 

REMARKS 
(1) From now on we shall assume whenever we consider sEL0 and llEA together (as two arguments 

for a function, or as a pair) that FV(s)(:dom(ll). 
(2) Let 8eStmv....,JinL0 be such that for x,yEStmv: ll(x)=y and ll(y)=x. Such an environment is not 

normal. It does not give us any useful information about the values of x and y. 
(3) It would be too restrictive to require for all llEStmv....,JinL0 that 'r/xEdom(ll) [x[ll]EL8]. An 

example may illustrate this. Let ll be defined such that dom(ll)={x,y}, and 

6(y)=µy[b ;x ;y], 6(x)=µx[a ;µy(b ;x ;y]]. 

Such an environment we shall encounter when computing 0o'[µx(a ;µy[b ;x ;y Ill Now y [ll] = 
6(y)££L8, buty[llfEL8, 

Now that we have introduced syntactic environments, we can formulate a principle of induction for 
the set Lo XA, which we shall heavily use in the sequel. 

THEOREM 1.24 (Induction principle for Lo X A) 
Let :E: CLo X A. If: 

(I) A xAc::: 
(2) {s,t}XA(::E: => {s;s,sUt, sllt}XAC:E:for s,t, sEL0 
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(3) {s}XA\;;;E: => {µx[sl}XA\;;;E: forsE4 

(4) (8(x),B)EE: => (x,B)EE:for xEStmv and BEA, 

then: 

PROOF 
Let E:\;;;L0 XA, suppose E: satisfies (1) through (4). We first prove fact (a) and fact (b) given below, 
and next show that (a) and (b) imply: E:=L0 XA. So we have 

fact(a): L6 XA\;;;E: 

fact (b): "IS\;;;L0 XA [S\;;;E:=>S'\;;;E:], where 

S' = {(s,B)l(s,B)EL0 XA /\ "lxEFV(s) [slt'L6 => (B(x), B)ES)}. 

To show that (a) holds, we use (1), (2), and (3), and induction on the structure of L6- We proceed 
with (b). Let S \;;;Lo XA and suppose S \;;;E:. Let S' be as above. We use (1) through (4) and induction 
on L0 to show that S'\;;;E:. Let (s,B)ES', forsELo,BEA. 
(i) s:=a: (a,B)EE:, because (1). 
(ii) s=S 1ops2 : Suppose that if (s;,B)ES', then (s;,B)EE:, for i=l,2. If (s,B)eS', then also (s1,B) and 

(s2,B)ES'. Thus (si,B),(s2,B)EE:. By (2) we have: (s 1 op s2,B)eE:. 
(iii) s:=µx[si], for s 1 E4: Suppose that (s 1,B)eS' implies (s 1,B)EE:. Because s 1 eLij we have: 

(s 1,B)eS'~ (µx[si],B)ES'. Because (µx[si],B)eS' we have (s 1,B)eE:. Thus, using (3), we have 
(µx[s i],B) E :::. 

(iv) s=X: If (x,B)eS', then (B(x),B)eS, thus (because S \;;;E:) (B(x),B)eE:. Because of (4), we then 
have that (x, B) E :::. 

Thus facts (a) and (b) hold. Next we show that E:=L0 XA. For this purpose we define, for all n eN: 

Vo=L6XA, 

Vn+l = {(s,B)l(s,B)eLoXA /\ "lxeFV(s) [srlL6 => (B(x), B)eVnl}. 

Then we have: 

(*) "lsELo"IBEA3nEN [s[BreL6 =>(s,B)EVnl, 
which we prove with induction on n EN. Let sELo and BEA. If s[B]° EL6, then s eLf/ \;;;L5. Thus 
(s,B)EVo. Now suppose(*) holds for neN, and suppose s[Br+ 1eL5. Then (s[B])[BrEL6, thus by 
induction (s[B],B)E Vn. This implies (s,B)E Vn + 1, which proves(*) for n + 1. 
Because all BEA are normal we have 

"l(s,B)ELoXA3neN [s[BrEL6). 

Together with (*) this implies: 

"l(s,B)ELo XA3n EN [(s,B)E Vnl-

Since Vn\;;;LoXA, for all nEN, it follows that LoXA=UneNVn. Now Vo\;;;E: because of (a), and 
Vn \;;; E: => Vn + 1 \;;; E: because of (b ), so we conclude: ::: = L0 X A. 

REMARK 
We cannot reason about a free statement variable x unless we know what statement it is bound to. 
Therefore, we consider non-closed statements together with syntactic environments, which give infor-
mation about the free variables they contain. This explains why we have formulated an induction 
principle for L 0 XA instead of Lo only. 
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Now let ::: (:L0 Xll. The first three conditions of the principle suffice to prove that L6 Xll(:E, since 
they express exactly the syntactic structure of L6 (see lemma 1.4). (We have chosen L6 here instead 
of Lf/, because the latter set has no simple inductive structure.) Thus also L~ XLl ((:L/i Xll) (:E. 
Adding condition (4) enables us to prove Lo Xll(:E:. This may be motivated by the followinf For 
every statement seL0 and normal environment '5ell there exists an /EN such that s['5fEL8 (:1,6. 
Let us call k EN with k =min{/ Is ['5f EL~} the degree of c/osedness of s with respect to 8. Please note 
that every sEL8 has degree 0, and arbitrary sELo has, for arbitrary '5, a finite degree. Therefore, this 
degree can be used as a measure for the complexity of statements. Our induction principle is indeed a 
principle of induction on the degree of closedness. Conditions (I), (2), and (3) are sufficient to prove 
::: for all (s,'5) with degree 0. They form, so to speak, the basis of the principle. Condition (4) 
expresses the "step part": if E: holds for (8{x),'5), which has degree k, say, then E: holds for (x,'5), 
which then has degree k + I. 

We now proceed with the definition of 0o '. It will be of type 

0o' o, 
which could be called intermediate between 

Instead of basing the definition of 0o' on some transition relation (as in definition 1.8) we use a vari-
ant of the initial step function ( definition 1. 13). 

DEFINITION 1.25 (Initial steps with syntactic environments) 
We define a function 

XL0 Xll), 

using the induction principle for L 0 X a. The predicate ::: (: Lo X a we use is defined as: 

E:(s,'5) = /'(sX8) is defined 

We shall define/' such that E: satisfies the induction conditions. Thus we ensure that /' is defined for 
every seL0 and '5Ell (with FV(s)(;;;dom(8)). 
(1) /'(EX'5)= 0, and J'(aX'5)={(a,E,'5)}, for all a EA, '5Ell. 
(2) Suppose /'(s)=M·{(a;,s;,'5;)}, I'(t)=M·{(bj,tj,8j)} for s,t,s;,tjELo, a;,bjEA, and '5;,'5jELl. 

(The variables i and j range over some finite sets of indices, which are omitted.) Then: 

I'(s;s)(8) = {(a;, S;;s, '5;)} (forsELo) 
J'(sUtX8) = /'(sX8)UJ'(tX8) 

I'(slltX8) = {(a;, s;llt, '5;)} u {(bj, slltj, '5j)} 

(3) For the definition of /'(J.U[s I) we have to consider possible clashes of variables. Therefore, we 
distinguish between two cases (supposing that /'(s) has already been defined): 

{
l'(sX8{µx[s ]Ix}) if x ridom(8) 

/'(/U[s JX'5) = J'(s)('5{µ.x[s]/i}) if x Edom(8), 

where xis some fresh variable with x ridom(8) and s=s[x/x]. 
(4) Suppose J'(8{x)X8) has already been defined. We set: 

/'(xX'5)=J'('5(x)X8). 

REMARKs 
(1) We have: if J'(sX8)= {(a;,s;,'5;)}, then normal ('5;), and thus '5; E.Ll, for all i. 
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(2) The definition of J'(Ju[s JX8), with x edom(8), is correct, because s ands have the same complex-
ity. 

(3) If I'(sX8)= ((a;,s;,8;)}, then for all i: \fxeStmv[xedom(8)ndom(8;) => 8(x) = 8;(x)]. 

DEFINITION 1.26 (cl>o') 
We define (Lo->A->Po) by 

{
~} ils=E 

il>o'(.F)(sXB) = LJ (a·F(s'X8')1(a,s',8')el'(sX8)} otherwise 

for FeL0 ->A->Po, seL0 , and 8eA with FV(s),;;;;dom(8). 

DEFINITION 1.27: 0o'=Fixed Point(il>o'). 

Next, we compare 0o and 0o'. We can do this by relating/ and I', since we have: 

0o(s) = U {a·0o(s') l(a,s')e/(s)}, for seL~, s=pE 

0o'[s](8) = U { a·0o'[s')(8') I (a,s',8')eJ'(s)(8) }, for s ELo, s=pE, 8eA. 

THEOREM 1.28 (Relating / and /') 
For all seL0 and 8eti, with FV(s),;;;;dom(8), we have: 

\faeA\fs'eL0\f8'eA [(a,s',8')eI'(sX8) (a,s'<8'>)e/(s<8>)). 

(For the definition of s <8> see 1.23.) 

PROOF 
We define 

E(s,8) = \faeA\fs'eL0\f8'eA [(a,s',8')e/'(sX8) (a,s'<8'>)el(s<8>)] 

and use the induction principle for L 0 XA to show that E=Lo XA. We only treat the case of recur-
sion. Suppose seL~ such that {s}XA,;;;;E. We have to show that{µ.x[sl}XA,;;;;E. Let 8eA and 
assume (without loss of generality) that x edom(8). Then 

/'(Ju[s]X8) = I'(sX8') 

where 8'=8{µ.x[s]/x} (by the definition of/'). On the other hand, we have 

/(Ju[s]<8>) = [xedom(8)] 

J(Ju[s<8>]) 

= /(s<8>[µ.x[s<8> ]/x]) 

( the latter equality following from: 

\fteLf, (/(Ju[t]) = J(t[µ.x[t)/x])]). 

We take a quick (but deep) breath and proceed as follows: 

s <8>[µ.x[s <8> ]Ix] = [definition s <8>] 

s[8]<8>[µ.x[s <8> ]/ x] 

= [x edom(8), \fy edom(8) [x eFV(8(y))]] 

s[8][µ.x[s <8> ]/ x ]<8> 

= s[8][µ.x[s ]/ x ]<8> 
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= W = 6{µx[s)/x}] 

s[6']<6> 

= [x ~FV(s[6'))) 

s[6')<6'> 

= s<6'>. 

Thus we have /(µx[s]<6>)=/(s<6'>). Combining this with I'(µx[s))(6)=I'(s)(6'), which we saw 
above, yields: 

E(µx[s],6) E(s,6'). 

Because {s}Xa~::: we may conclude: E(µx[s),6). 

D 

We formulate the relation of 6ii and 6ii' in terms of their defining contractions '1l0 and '1l0 '. Tbis can 
be elegantly done using the following 

DEFINITION 1.29 
We define <>:(L~ for every by-

<>(F) = p<> (notation) 

= ASELo·Mea- F(s<6>). 

REMARK 
Tbis mapping links two kinds of semantic functions, one using syntactic environments, and the other 
one not using environments. If FeL~ then p<> is a in a sense extended version of F: it can 
take as an argument also statements seL0 that are not closed, provided it is supplied with a syntactic 
environment, which is to give the (syntactic) values for the free variables ins. 

THEOREM 1.30 (Relating cilo and '1l0'); 'r/Fe~ [cilo'(F<>) =('1l0(F))<>J 

PROOF 
The theorem is an immediate consequence of theorem 1.28. Let FeL~ -+Po, lets eL0, s=/=E. 

'1lo'(F<>)(s)(6) = U {a·F<>(s')(6')1(a,s',6')eJ'(s)(6)} 

= U {a·F(s'<6'>)1(a,s',6')e/'(s)(6)} 

= [theorem 1.28) 

U {a·F(s'<6'>)1(a,s'<6'>)e/(s<6>)} 

= '1lo(F)(s<6>) 

= ('1lo(F))<>(s)(6). 

Because '1lo and 410 ' are contractions with 6ii and 6ii' as their respective fixed points, we have: 

COROLLARY 1.31 (6ii'=ef>): 'rfseL0 'r/6ea [6ii'[s](6)= Ms<6>J). 

Finally we relate 



and 

For this purpose we define the following mapping. 

DEFINITION 1.32 
We define by: 

~(F) = F (notation) 

= 'Jo.seL0·MeD.· F(sx°if) 
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{or where "if is given by "if = 'Ax edom(IJ)·F(IJ(x)X"if ). (We often write IJ rather than 
"if if from the context it is clear which F should be taken.) 

REMARKS 
(I) We have to justify the self-referential definition of "if. For this purpose we define 

E:(s,IJ) = 'fxeFV(s) is well defined)], 

for s eL0 and IJ ea, and use tl!ia. induction principle to prove: ::: = L 0 X a. Then it follows for all 
xeStmv with xedom(IJ) that If (x) is well defined. Conditions (I) through (3) of t!Je induction 
principle are trivially fulfilled. We prove congition (4). Suppose (IJ(x),IJ)eE:. Thus { (y) is well 
defined for allyeFV(IJ(x)). This implies that "if (x) is well defined, since 

"if (x)=F(IJ(x)X"if ). 

(2) In the same way as <>,also~ links two different kinds ~f semantic functions, one using syn-
tactic, and the other using semantic environments. Again F is an extended version of F in the 
sense that it takes syntactic environments as an argument instead of semantic ones. In the 
definition above a ~tactic environment IJe/j. is changed into a semantic version (according to the 
semantic function F) IJF of it, which then is supplied as an argument to F. 

Next, we come to the main theorem of this chapter. It relates the denotatiopal semantics 6Do and the 
operational semantics 6'0 , whicJi. is a fixed point of 11>'0 , by stating that also 6Do is a fixed point of 11>'0 . 
From this it follows that flo'=6Do. 

THEOREM 1.33: ll>o'(61\i)=61\i 

PROOF 
Let E:{;;L0 xa be defined by 

E:(s,IJ) = ll>o'(61\iXsXIJ) = 61\i(sXIJ) 

for (s,IJ)eL0 xa. We use the ipduction principl1:_for Lo xa to show that E:=L0 xa. Let !Jea. 
(I) For aeA we have ll>o'(6DoXaXIJ)= {a}= 6Do(aXIJ), so A XD.{;;E:. 
(2) Let s,seL0 and suppose E:(s,IJ). We show: E:(s;s,IJ). 

ll>o'(6DoXs;s)(IJ)= [definition 11>0 ' and /'(s;s)] 

U { a'·61\i(s';s)(IJ') l(a',s',IJ')el'(sXIJ)} 

U { a'·(61\i(s'XIJ'); 61\i(s)(IJ')) I (a',s',IJ')e/'(s XIJ)} 

= [see remark (3) after definition 1.25] 

U {a'·(61\i(s'XIJ'); 61\i(s)(IJ))l(a',s',IJ')e/'(sXIJ)} 

= [definition ;] 
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( U {a'·6Do(s')(c'J')l(a',s',li')e/'(s)(c'J}}); 6Jlo(s)(c'J) 

= [definition <1>0 '] 
- -<l>o'(6Do)(s)(c'J); 6Do(s)(c'J) 

= [because E(s, Ii)] 

6Jlo(s )(Ii); 6Jlo(s)(li) 

= 6Do(s;s)(c'J~ 

This proves E(s;s,c'J). Now let s,teL0 and suppose E(s,11) and E(t,c'J). We show: E(sllt,11). 

<l>o'(6Jlo)(sllt)(li) = [definition <l>o' and /'(slit)] 

U { a'·6Do(s'llt)(c'J') I (a',s',c'J')e/'(s)(c'J)} U 

U { b'·6Do(sllt')(c'J') I (b',t',c'J')e/'(t)(c'J)} 
- -= U {a'·(6Do(s')(c'J')ll%(t)(c'J'))I (a',s',c'J')e/'(s)(c'J)} U 
- -U {b'·(6Do(s)(c'J')ll6Do(t')(c'J')) I (b',t',c'J')e/'(t)(c'J)} 

= [see remark (3) after definition 1.25] 

U { a'·(6Do(s')(c'J')ll6Do(t)(c'J)) I (a',s',c'J')e/'(s)(c'J)} U 
- -U { b'·(6Do(s)(c'J)ll6Do(t')(c'J')) I (b',t',c'J')e/'(t)(c'J)} 

= [definition IL (see remark 1.17(2))] 

(( U {a'·®o(s')(c'J')I (a',s',c'J')e/'(s)(c'J)})IL 6Do(t)(li)) U 

(( U {b'·6Do(t')(li')I (b',t',c'J')e/'(t)(li}})IL 6Do(s)(c'J)) 

= [definition%'] 
- -(<l>o'(6Do)(s)(li)IL 6Do(t)(c'J)) u 
- -(ll>o'(6Do)(t)(c'J)IL 6Do(s)(c'J)) 

= [we have E(s,c'J) and E(t,c'J)) 

(6Jlo(s )(c'J)IL 6Do(t)(c'J)) u 
(6Do(t)(li)IL 6Do(s )(c'J)) 

= 6Do(s)(c'J)ll6Do(t)(c'J) 

= 6Jlo(s llt)(c'J). 

This proves E(s lit, c'J). The case E(s U t, 8) is simple. 
(3) Let sel,fi and suppose {s}XAkE. We show: E(µ.x[s],c'J). Assume (without loss of generality) 

that x r£dom(8). Then 

'1>o'(6Do)(px[s))(c'J) = [definition 4>0 ' and /'(µ.x[s])(c'J); let c'J'=c'J{J1X[s)/x}] 

U {a'·6Do(s')(c'J')I (a',s',c'J')e/'(s)(c'J')} 

= <l>o'(6i\))(s)(c'J') 

= [we have E(s, c'J')] 

6Do(s)(c'J') 



= 61\i(s)(6') 

= [definition 6'] 

61\i(s)(6{6%(,u[s ])(6)/x}) 

= [definition 6%] 

61\i(,u[s ])(6) 

= %(,u[s JX8) 
This proves E:(/U[s ],8). 

(4) Let xeStmv, suppose E:(8(x},8). Now 

«llo'(%XxX8) = [definition «llo' and /'(xX8)] 

4io'(61\JX8(x)X8) 

Thus E:(x, 8). 

= [because E:( 8( x }, 8)] 

%(8(x)X8) 

= 61\il8(x)J(6) 

= [definition 8) 
8(x) 

= 61\i[x](6) 

= %(xX8). 

The induction principle now implies: ::: = L 0 xa. 

As an immediate consequence of this theorem, we have 

COROLLARY 1.34 (0o'=%): 'r/seL0 'r/8ea [flo'[s)(8)= 61\i[s)(6)]. 

Now combining corollaries 1.31 and 1.34 yields the main theorem of this section. 

THEOREM 1.35 (et>=%): 'r/seL0 'r/8e!::,. [flo(s<8>)= 61\i(s)(6)). 

COROLLARY 1.36: For all sel.,8, and arbitrary yef: flo(s] = 61\i(s](y). 

1.5 Summary of section 1 
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It may be useful to give a short overview of this section because we shall follow the same approach of 
proving semantic equivalence in the next sections. We have defined an operational semantics flo for 
L0 as the fixed point of 410, and a denotational semantics 61\i as the fixed point of v0 • We have 
related flo and via an intermediate semantic function flo', defined as the fixed point of 410 '. To be 
more precise, we have related 410 , v0, and 410 ' using mappings<> and~, for which we have proved 
some properties, schematically represented by the following diagram: 
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~. 
<>! .. !<> ~.· 
~i *foe i~ 

+, 

The * in the upper rectangle indicates that it commutes, the symbol * foe in the lower rectangle indi-
cates that it commutes only for the fixed point of '1'0 (that is, %). Please note that * has been for-
mulated as theorem 1.30, and *foe as theorem 1.33. The main result of sectio~ 1 (theorem 1.35) fol-
lows from this diagram, because• implies: flf > = flu' and *foe implies: 0o' = DJ.\i. 

REMARK 
The lower rectangle does not commute for arbitrary As an example take 
F =>-.s·">,:y- { £ }. Then, for given a,b EA and IIEA: 

whereas 

i'o(F)(a ;b )(Ii) = i'o(F)(a ;b )(8+,<F>) 

= i'o(F)(a)(B,i,m); '1'0(F)(b)(8,i,,<F>) 

= {a};{b} 

= {ab}, 

4'o'(F)(a ;b)(li) = {a·f'(b)(li)} 
= {a·F(b)(ff)} 

= {a}. 

2. A LANGUAGE WITH COMMUNICATION AND GLOBAL NONDETERMINISM (L 1) 

2.1 Syntax 
For L 1 we introduce some structure to the (possibly infinite) alphabet A of elementary actions. Let 
C ~A be a subset of sercalled communications. From now on let c range over C and a,b over A. Simi-
larly to CCS [Mil] or CSP [Ho] we stipulate a bijection - : C with - 0 - = idc. It yields for every 
cEC a matching communication -(c), which will be denoted by c. In A \C we have a special ele-
ment -r denoting a successful communication. Let Stmv, with typical elements x,y, ... , be again the 
set of statement variables. 

DEFINmON 2.1 (Syntax for L 1) 
The set L 1, with typical elements s,t, ... , is given by 

s:: = a is1 ;s2 ls1 +s2 isi!ls2 Ix lµx[t] 

where t ELf, which is defined below. Please note that a EA C. 

DEFINmON 2.2 (Syntax for Lf) 
The set Lf of statements which are guarded for x is given by 



t::= a 
I t;s, for seL1 

I t1 +t2 ltillt2 

I y, for y=fax 
I ,a[t I 
I l'J[t'], for y=fax, t' eLf ni,r 

DllFINmoN 2.3 (Syntax for LO 
The set 1-' of statements which are guarded for all x eStmv is defined by 

t:: = a lt;s lt1 +t2 lt1 llt2 l,a(t], 

whereseL1. 

REMARK 
We extend L 1, Lf, and 1-' with the empty statement E (see the remark following definition 1.2). 
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The definitions of FV(s) (free variables of s) and of (syntactically) closed statements are as in section 
l. The language L 1 dilfers from Lo in two respects. First, the presence of communication actions 
entails a more sophisticated interpretation of s 1 lls2• Secondly, the operators of global nondeterminism 
s1 +s2 and of local nondeterminism s 1 Us2 of Lo are dilferently interpreted. For an extensive discus-
sion of L 1 we refer the reader to [B.KMOZ] (where, for obvious reasons, it is called L 2). After we 
have defined an operational semantics for L 1, we shall briefly discuss the intuitive meaning of L 1• 

2.2 Opaati-' 6tllllllllia 

DEFINmON 2.4 (Semantic universe P 1) 
Let, as in definition l. 7, the set A 00 be defined as A 00 = A • U A.,. We extend this set by allowing as 
the last element of a finite sequence a special element a, which will be used to denote deadlock: 

AB° = A•uA•-{a}UA"'. 

Now we define a complete metric space P1, with typical elements p,q, ... , as 

Pi = ':tnc(AB° ), 
the set of all non-empty, compact subsets of Ar'. As a metric on P I we take (d,1; )8 (see A.6(d)). We 
shall use P1 as the semantic universe for the operational semantics of Li, which will again (as for L0) 
be based on a transition relation: 

DEFINmON 2.5 (Transition relation for 1-') 
We define a transition relation 

as the smallest relation satisfying 
a 

(i) for aeA. (Please note that it is also possible that aeC!) 
(ii) for all aeA, s, te1" and s',seL 1: if s'=faE, then: 

a a 
=9 

a a 
I\ I\ 
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a a 
"sllt->s'llt "tlls->tlls' 

a 
/\ µx[s ]-> s'[Ju[s ]/ x I); 

and if s'=E, then: 

a a 
I\ s+t->E I\ t+s->E 

a a 
" s 11 t -> t II t lls -> t 

a 
/\ µx[s]->E). 

(iii) for all cEC, s,tEIJj, s',t'EL 1: if s'=l=E=/=t', then: 
C C ,, 

(s->s' I\ t->t') sllt->s'llt', 

and if s'=E, then: 
C C T 

ts-> E .1, t -> t') slit -> t'. 

DEFINITION 2.6 (1)1) 
Let l)i:(M->P1)->(Lj1->P 1) be given by 

ifs=E 
a 

1)1(F)(s) = {o} !{£} 

if {a 13s'[s->s']Aa !i!C} = 0 

U {a·F(s')is..'.'..s' t\a!i!C} 

DEFINITION 2.7: 61 = Fixed Point(l)i) 

ExAMPLES 

otherwise, 

The following examples illustrate the intended meaning of L 1 : 

MxJ = {a} 

61[cllcJ = {T} 
ei[(a;c)ll(b;c)] = {abT, baT} 

ei((a;b) + (a;c)) = {ab,aa} 

Ma ;(b +c)) = {ab}, 

for cEC, a,bEA \ C. 

Thus with global nondeterminacy + the statements s 1 =(a ;b)+(a ;c) and s 2 =a;(b +c) get different 
meanings under 61 • This difference can be understood as follows: If s 1 performs the elementary action 
a, the remaining statement is either the elementary action b or the communication c. In case of c, a 
deadlock occurs since no matching communication is available. However, if s2 performs a, the 
remaining statement is b +c, which cannot deadlock because the action b is possible. Thus 
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communications c create deadlock only if neither a matching communication c nor an alternative ele-
mentary action b is available. 
We again characterize the operational semantics by defining for each statement s a set of pairs of 
which the first element denotes a possible first step of s. 

DEFINITION 2.8 (Initial steps) 
We define a function I:.L,i-'!Pfin(A XL 1) by induction on .L,i. 
(i) /(£)=0 and/(a)={(a, £)} 
(ii) Suppose /(s)={(a;, s;)}, l(t)=((b1, 11)} for s,tE.l,i,a;,b1EA, and s;,t1EL1. (The variables i and 

j range over some finite sets of indices, which we have omitted.) Then 

l(s;s} = ((a,, s;;s}} (forsEL1) 

l(s+t) = l(s)Ul(t) 

/(slit)= {(a;, s;llt)}U{(b1, silt1)}U{(-r, s;llt1)la;=~} 

I(p.x[s]) = {(a;, s;[J.Lx[s ]/x])}. 

a 
LEMMA 2.9: \fa EA \fsE.l,i \fs'EL1 [s-s'<:=>(a,s')El(s)] 

COROLLARY 2.10: For FELf-P 1 and sELf, such that {a 13s'[s_:s']/\afi"C}~0, we have: 

fll1(F)(s) = LJ {a·F(s')l(a,s')El(s)/\afi"C}. 

2.3 Denotalional semantics 
We follow [BKMOZ] in introducing a branching time semantics for L 1. First we have to define a suit-
able semantic universe. It is obtained as a solution of the following domain equation: 

(*) 

Such a solution we call a domain, and its elements are called processes. We can read the equation as 
follows: a process p EP is either p 0, the so-called nil process indicating termination, or it is a (com-
pact) set X of pairs <a,q >, where a is the first action taken and q is the resumption, describing the 
rest of p's actions. If Xis the empty set, it indicates deadlock (as does a in the operational semantics). 
For reasons ~f cardinality (*) has no solution when we take all subsets, rather than all compact sub-
sets of A XP. Moreover, we should be mote precise about the metrics involved. We should have 
written (*) like this: 

DEFINITION 2.11 (Semantic universe P 1) 
Let (P 1,d) be a complete metric space satisfying the following reflexive domain equation: 

P;;;;{po}U'ii'c0 (A Xid½(P)), 

where, for any positive real number c, idc maps a metric space (M,d) onto (M,d') with 
d'(x,y)=c·d(x,l:.), and U denotes the disjoint union (see definition A.6). (F£f a formal definition of 
the metric on P we refer the reader to the appendix.) Typical elements of P 1 are p and q, and are 
called processes. 

We shall not go into the details of solving this equation. In [BZ] it was first described how to solve 
this type of equations in a metric setting. In [AR] this approach is reformulated and extended in a 
category-theoretic setting. 
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As in definition 1.16 we define a number of operators on P 1 • 

DEFINITION 2.12 (Sel!um_tic o_pera~rs) _ 
The operators;, +, II: P 1 are defined as follows. Letp,qeP 1, then: 

(i) {
q ifp = po 

p,q - {<a,p'; q>l<a,p'>ep} otherwise 

(ii) p+q = q ifp = po ! p if q = po 

p u q otherwise 

p 
q 

(iii) pilq = { <a,p'llq I <a,p'> Ep} U 

{ <a,pllq'I <a,q'>eq}U 

if q = po 
if p = Po 

{<T,p'llq'>I <c,p'>epA<c,q'>eq} otherwise. 

(We often write op rather than op if no confusion is possible.) For a justification of these definitions 
see remark 1.17. 

DEFINITION 2.13 (Semantic environments) 
We use f to denote the set of semantic environments (as in definition 1.19), with typical elements y, 
given by 

DEFINITION 2.14 ('lr1,6D1) 
We define the denotational semantics 6D1 of L 1 as 

6D1 = Fixed Point('!r1), 

where '1r 1 :L 1 1 is defined exactly as % in definition 1.20 but for the following two clauses: 

'lr1(F)(aXy) = { <a,po>} 

v,(F)(EXy) = Po-
We realize that it must be difficult for the reader who sees this type of denotational semantics for the 
first time to understand and appreciate it. Nevertheless, we consider it for our purposes preferable to 
refer the reader to [BKMOZ], where he can find an extensive explanation. In this paper, we want to 
stress the technique of proving semantic equivalences, with which we now proceed. 

2.4 Semantic equivall!nce of e, and 6D1 
It is quite obvious that the result of the previous section, as formulated in corollary 1.36, namely that 

'vseLf} 'vyef [0o[sJ=6Do[s](y)], 

does not hold for the semantic functions e, and 6D1• The semantic universe P I of 01 is a set of sets of 
streams, whereas P 1, the semantic universe for 6D1, is a set of tree-like, branching processes. Thus, 
when comparing the types of 61 :L 1 and 6D1 :L 1->f ->Pi, we observe that besides the fact that 6D1 
takes a statement as an argument as well as an environment, which 01 dcies not (as is the case with 6Do 
and ~), there is a second difference between e, and 6D1• That is, they have different co-domains: 
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P I i=-P 1 (which is not the case in the previous section). The strategy we shall follow to relate 01 and 
6D1 is to define functions 

01':L1->A->P1 

(where A will again be a set of syntactic environments) and 

6D1':L1->A->P1, 

and then relate 01 and 01' (similarly as with 0o and 0o'), next 6D1' and 6D1 (similarly as with 0o' and 
"i\i), and finally compare 01' and 6D1' by using a suitable abstraction operator a:P 1->P1 • Like we did 
in the previous section we define 01' (and 6D1 ') as fixed point of a contraction. 
We start with the comparison of 01 and 01 '. 

DEFINITION 2.15 (Syntactic environments) 
The set A of syntactic environments, with typical elements li, is given by 

A= L 1)/\(li is normal)}. 

(For the notion of normal see definition 1.23.) 

We formulate an induction principle for L 1 XA, as in 1.24. 

THEOREM 2.16 (Induction principle for L 1 XA) 
Let 'E.<;;,_ L1 XA. If 

(I) A XAk.'E. 

(2) {s,t}XAk.'E. => {s;s, s +t, sllt}XAk.'E., for s,t,sEL1 
(3) {s}XAk.'E. => {p.x[s]}XAk.'E., for seL5 
(4) (li(x),li)e'E. => (x,li)e'E., for x eStmv, and lie A 

then: 

'E.=L1XA. 

PROOF: See theorem 1.24. 

DEFINITION 2.17 (Initial steps with syntactic environments) 
As in definition 1.25 we use the induction principle to define a function 

J':L1->A-><5'fin (A XL1 XA). 

(I) J'(EXli) = 0, and /'(aXli) = {(a,E,li)} for all aeA, lieA. 
(2) Suppose J'(s)=M·{(a;,s;,li;)} and J'(l)=M·{(b1,t1,li1)} for s,t eL 1, a,,b1 EA, and li;,81 EA. Then: 

l'(s ;s)(li) = {(a;, S;;s, li;)} (for all sEL1) 

I'(s +tXli) = J'(sXli)UI'(tXli) 

J'(slltXli) = {(a;, s;llt, li;)}U{(b1, sllt1, li1)}U{(-r, s;llt1, li;Uli1)la; = b;} 

(3), (4): as in definition 1.25. 

REMARK 
In the clause for slit in the above definition we take the union of two environments, li; and 81. This we 
can always do; if we impose the restriction upon all li;'s and li/s that: 

ifa; = b1, then (dom(li;)\dom(li))n(dom(li1)\dom(li)) = 0. 
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If this condition is not satisfied (and in general it is not) a suitable renaming of variables should be 
applied. An example of a statement for which this should happen is: µx[c ;x ]llµx[c;x ]. 

DEFINITION 2.19: 01 '= Fixed Point(il>1 ') 

THEOREM 2.20 ( Relating I and I') 

ifs= E 
if {(a,s',B')eJ'(sXB)laG!:C} = 0 
(a,s',B')eJ'(sXB)Aa G!:C} otherwise 

'!/seL 1 '!/Bell [J'(sXB) = {(a;,s;,B;)) J(s<B>) = {(a;,s;<B;>)}] 

PRooF: See theorem 1.28. 

DEFINITION 2.21: We define by 

<>F = p<> 

= >.seL 1·Mell·F(s<B>) 

PROOF: See theorem 1.30. 

Next we define as the fixed point of the contraction below and compare 6D1 and 6D1'. 

DEFINITION 2. 24 (i' 1 ') 
We define by 

{
{£} ifs = E 

'I' 1 '(FXs XB) = { <a,F(s'XB')> I (a,s' ,B')el'(s XB)} otherwise, 

for seLi, and Bell. 

DEFINITION 2.25: 6D1 '= Fixed Point(i'i') 

REMARK 
As 01' also 6D1' takes syntactic environments as arguments. Their co-domains, however, are different: 
P 1=/=P 1• One could call 6D1' a branching variant of 0i'. Another difference is that 01'(c)(B)={a}, 
whereas 6Di'(cXB)={ <c,p0 > }, for ceC and Bell. 

DEFINITION 2.26 



Let ~:(L1 be given by 

~(F) = F 

= AseL1 ·"ABe11·F(sXK) 
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for where f is defined as f = "Axedom(8)·F(B(x)XK). (For a justification of the 
definition of BF see remark (I) following definition 1.31.) 

PROOF: lbis theorem can be proved in essentially the same way as theorem 1.33. 

COROLLARY 2.28: 6Jl1'=601 

Finally we provide the only missing link in the chain that is to connect e1 with 6Jl1 : the comparison of 

and 

We relate their different semantic universes P 1 and P1 in the following 

DEFINITION 2.29 (Abstraction operat~ a) 
We define an abstraction operator by: 

a = streams0 restr, 
where restr (for restriction) and streams are recursively defined: 

(i) restr :P1 
fPo if p = Po 

P,... l { <a,restr(p')> I <a,p'> ep /\a fi! C} otherwise 

(ii) !{<} ifp = Po 
pt-+ {3} ifp = 0 

U { a·streams(p') I <a,p'> ep} otherwise. 

REMARKs 
(I) Since the definition of restr and streams is recursive, we have to verify that it is well formed. It 

suffices to note that these functions can be defined as fixed points of contracting functions ( cf. 
remark 1.17). 

(2) The abstraction operator a transforms a (branching) process peP1 into an element a(p)eP 1 in 
two steps. First it cuts off all branches (all subprocesses) of p I that are labeled with an element 
of C: these e's can be regarded as failed (individual) attempts at communication. lbis is what 
restr does. Then streams takes all paths (streams) of the result of restr (p), putting a a symbol 
(denoting deadlock) at the end of all paths ending in the empty process. lbis can be understood 
as follows: When a path in restr(p) ends in the empty process this means that the operation restr 
has cut off everything at the end of the corresponding path in p. By definition of restr only e's 
could have been present. Thus this path in p should be interpreted as indicating a situation in 
which only individual communication steps can be taken. Operationally, we consider this to be a 
case of deadlock. Therefore, we replace this empty process by a. lbis is what streams does. 
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Now that we have defined a mapping a:P 1->P1, we extend it in the following way. 

DEFINITION 2.30 
Let a:(L1->a->Pi)->(L1->a->P1) be defined by 

a(F) = pa (notation) 

= llsEL 1·Mea•a(F(s)(c5)) 

for FeL1->a->P1. (Please note that we use again the symbol a. We trust that no confusion will arise 
from this slight abuse of language.) 

THEOREM 2.31 (Relating '1'1' and cl>1'): 'vFEL1->a->P1 [cl>i'(F")=('lr1'(F))"] 

PROOF 
Let FeL1->a-+P1, let seL 1 and aea be such that {(a,s',c5')e/'(s)(c5)\a!t'C)~ 0. Then: 

cl>1'(F)(s)(8) = U {a·F"(s')(c5')1(a,s',c5')e/'(s)(c5)/\aft'C) 

= U {a·(a(F(s')(c5'))1(a,s',c5')e/'(s)(c5)/\aft'C) 

= streams( { <a,restr(F(s')(8'))> I (a,s',8')1::/'(s)(8)/\a G"C)) 

= streams 0 restr({ <a,F(s')(8')> l(a,s,8')e/'(s)(c5))) 

= a('lr1 '(F)(s)(c5)) 

= ('{, I '(F))"(s )(8). 

If seL 1 and aea are such that {(a,s',c5')e/'(s)(c5) \a!t'C)= 0, then 

cl>1'(F")(s)(8) = {3) 

= streams( 0 ) 

= streams0 restr( { <a,F(s')(8')> I (a,s',8')e/'(s)(8))) 

= ('1'1 '(F))"(s)(c5~ 

COROLLARY 2.32 ((6D,')" =0i'): 'vs EL1 'vc5ea [a(6Di'[s](c5)= 0i'[s)(c5)] 

Combining corollaries 2.23, 2.28 and 2.32, which state: 

(2.23) 0j<> = 01' 

(2.32) 01' = (6Di')" 

(2.28) 6D1, = 601 , 

now yields the main theorem of this section: 

COROLLARY 2.34: For all seLf and arbitrary ye[: 01[s) = a(6D1[s](y)). 

2.5 Swnma,y of section 2 
We can again give a quick overview of the main theorems of this section by drawing a diagram as fol-
lows: 
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., 
<>l • l<> (theorem 2.22) .,, 
af • fa (theorem 2.31) .,. 
~t *foe t~ (theorem2.27) ., 

where (as in subsection l.S) • indicates commutativity and *foe indicates commuta_!ivity with respect 
to the fixed point of v1 (that is, 6D1). Please note that if we could identify P 1 and Pi, we could iden-
tify the second and the third horizontal lines of this diagram, leaving out the mapping a. This would 
yield a diagram of exactly the same shape as that of subsection 1.5. This is just a way of rephrasing 
what has already been said above: The only new thing about proving semantic equivalence_ for L 1 , 

compared with L0 , is the presence of a difference between the semantic universes P I and P I of 01 
and 6D1, which made the introduction of a necessary. Theorems 2.22 and 2.27 are just (slightly) 
modified versions of theorems already present in section 1 (namely, theorems 1.30 and 1.33). 

3. A NONUNIFORM LANGUAGE WITH VALUE PASSING (L2) 

We devote the third section of our paper to the discussion of semantic equivalence for a nonuniform 
language. Elementary actions are no longer uninterpreted but taken as either assignments or tests. 
Communication actions c and c are refined to actions c?v and c!e (with v variable and e an expres-
sion), and successful communication now involves two effects: both synchronization (as in the 
language Li) and value passing: the (current) value of e is assigned to v. Thus, we have here the syn-
chronous handshaking variety of message passing in the sense of CCS or CSP. 
We shall introduce a language L 2 which embodies these features and present its operational and 
denotational semantics fli and 6D,z. Nonuniformity of L 2 calls for the notion of state in both semantic 
models: They now deliver sets of streams, or processes, over state transformations, not over uninter-
preted actions as in the previous sections. The main goal of this section is to provide the reader with 
yet another example of a language to which the method for proving semantic equivalence, as 
developed in section 1 and 2, applies. Although L 2 will be in some sense more complex than L I and 
accordingly fli and 6D:z more intricate than 61 and 6D1, the proof of the equivalence of operational and 
denotational semantics will essentially be the same. Because of this emphasis on proving semantic 
equivalence, we shall not give very much explanation when defining the semantics. For this we refer 
the reader again to [BKMOZ], which we (roughly) follow in our definition of 0i and 6D;z. Nor shall we 
give any proofs, because all of them can be obtained by straightforwardly modifying a corresponding 
one from section 2. 

J_I Syntax 
We now present the syntax of L 2• We use three new syntactic categories, viz. 

the set Var, with elements v,w, of individual variables 
the set Exp, with elements e, of expressions 
the set Bexp, with elements b, of boolean expressions. 

We shall not specify a syntax for Exp and Bexp. We assume that (boolean) expressions are of an 
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elementary kind; in particular, they have no side effects and their evaluation always terminates. State-
ment variables x,y, ... are as before, as are the communications ceC. The latter now appear syntac-
tically as part of value passing communication actions c?v or c!e. 

DEFINITION 3.1 (Syntax for L2) 

s:: =v: =e lb lc?v lc!e ls1 ;s2 ls1 +s2 ls1 lls2 Ix IJ.U[I] 

where .1 E LJ, defined in 

DEFINITION 3.2 (Syntax for Li) 
The set Li of statements which are guarded for x is given by 

t::= v:=elblc?vlc!e 

I I ;s, for seL2 

I l1 +t2 ltillt2 

I y, for y=/=x 
I J,U[t I 
I l'J(t'], for y=/=x, t' eLi n[/2 

DEFINITION 3.3 (Syntax for ~} 
The set of statements which are guarded for all x e Stmv is defined by 

t::= v: = =e lb lc?v lc!e It ;s It, +t2 It, llt2 IJ,U(t), 
where seL2. 

REMAIUC: The sets L 2,Li, and~ are extended with the empty statement E (cf. the remark preceding 
definition 1.3). 

It will be useful to unite assignments v : = e, tests b and communications c?v and c !e into one set of 
basic steps. 

DEFINITION 3.4 (Basic steps) 
We define the set Bsteps of basic steps, with typical element a, by 

BStep = Comm U Bexp U Asg, 

where the set Comm of communications is defined by 

Comm= (c?vlceC,veVar) U (c!elceC,eeExp), 

and the set Asg, of assignments, is defined. by 

Asg = (v:=elveVar, eeExp). 

The sets BSteps and Comm can be regarded as the nonuniform equivalents of the sets A of atomic 
actions and C of communications of the previous section. 

3.2 Operational semanJia 

DEFINITION 3.5 (Transition relation for ~) 
We define-->~~ XBStep XL 2 as the smallest relation satisfying 
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a 
(i) a -> E, for all a EBStep. (Please note that it is also possible that a E Comm!) 
(ii) for all aEBStep, s, tEL; and s',sEL 2 : if s'=-/=E, then: 

a a 
s~s' => (s;S--+s';S 

a a 
I\ s +t->s' I\ t +s->s' 

a a 
I\ s llt -> s'llt 1\ t 11s-> t lls' 

a 
I\ µx[s ]-> s'[JLX[s ]/ x ]); 

and if s'=E, then: 
a a 

s->E =>(s;s->s 

a a 
I\ sllt->t I\ tlls->t 

a 
I\ µx[s ]-> E). 

(iii) for all s,tEL;, s',t'EL2 , and c?v,c!eEComm: if s'=-/=E=-/=t', then; 
c!e c?v v:=e v:=e 

(s-> s' I\ t-> t') => (slit -> s'llt' I\ t lls -> t'lls'), 
and if s' = E, then: 

c!e c?v v:=e v:=e 
(s-> E I\ t -> t') => (slit -> t' I\ tlls -> t'). 

For both operational and denotational models the notion of state is fundamental. Elements v, w in Var 
will have values in a set Val. A state is a function that maps variables to their (current) values. 
Accordingly, we define 

DEFINITION 3.6 (States) 
The set L of states, with typical element u, is defined as 

L = Var->Val. 

We shall also employ a special failure state il, with illt'L, and define 

Lf =L.UL0 ·{il}UL"'. 
Elements of Lf will be denoted by finite or infinite tuples <u1,u2, ..• >. The empty tuple will be 
denoted by (. We shall write u for <u>. Concatenation is defined as usual. 

For expressions eEExp and hEBExp we postulate a simple semantic evaluation function, details of 
which we do not bother to provide. The values of e and b in state u will be denoted simply by 

[e]u (EVal) and [b]u (E{tt,.ff}). 

DEFINITION 3.7 (Semantic universe P2) 
We define the semantic universe P 2 by 

P2 =I->'iPnc(If), 

where 'iP.c(If) is the set of all non-empty and compact subsets of If. 
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DEFINJTION 3.8 (<P2) 
Let «l>2: (Lf/. ...... P 2) ...... (Lf/. ...... P 2) be defined by 

<P2(F)(£) = {£}; 
a 

if {a13s'[s ...... s']A(aEAsgV(aEBExp!\[a)a=tt))} = 0, then 

«l>2(F)(s) = {o}; 

otherwise 
b 

«l>2(F)(s) = U {o·F(s')(o)I s->s'A[bBo=tt}U 
V; =e 

U {ov:=,F(s')(ov:=e)I s ..... s'}, 

for FeL~1->P 2 and seL2, and with 

Ov:=e = o{[e]o/v}. 

(The notation a., =e will also be used in the sequel.) 

DEFINITION 3.9: 0i = Fixed Point(<P2) 

ExAMPLES 

0i[v:=O) = Xo·{<o{O/v}>}. 

0i[v:=OII (v:=1; v:=v + l)D = ;\o·{<o{O/v}, a{l!v). a(2!v)>. 

<a{llv }, o{O/v }, o{ 1/v} >, 
<o{ I Iv}, o{2/v }, o(O/v} >) 

02lv:=O; µx(v:=v+l; x]J = ;\o•{<o{O/v},o{l/vj,o{2/v), ... >) 

02[v: =O; V <OD =Xo·{ <o{O/v }, o>} 

0i[c?v) = ;\a-{ <o>} 

0i[c?v llc!3) = ;\o·{ <0{3/v) >} 

We can again characterize the operational model using an initial step function. 

DEFINITION 3.10 (Initial steps) 
Let J: 1/2 -,GJ'fin(BStep XL2) be defined by 
(i) /(£)= 0, J(a)={(a,E)}, for aeBStep 
(ii) Suppose J(s)= {(a;,s;)}, l(t)={(bj,tj)) for s,tE}/2. a;.b;eBStep, and s,.r; EL, Then 

J(s ;s) = {(a;, s;;s}}, for sEL2 

J(s +t) = J(s)UJ(t) 

J(sllt) = {(a;,s;llt)} U {(bj,slltj)} U ((v:=e,s;llt1)1(a,=c?vAb1 =-c 1e)V(u, 0=c'e h1 °0 1', 
J(µ.x[s]) = {(a,, s;{µ.x(s ]/ x]) ). 

a 
LEMMA 3.11: 'vaeBStep'vse}/2 'vsEL 2 [s->s'~a.s')el(s)] 

COROLLARY 3.12 



For FeLf--+P2, seL~1 and ae~ with {(a,s')el(s) I a eAsgv(aeBExp/\[a]a=tt)}'i= 0: 

4'2(F)(sXa) = LJ {o-F(s'Xa)I (b,s')e/(s)/\(b)a=tt))} U 

U {av:=e"F(s'Xav:=,)I (v: =e, s')e/ (s)}. 

3.3 Denotational semantics 
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As in section 2.3 we start with the definition of a suitable semantic universe. It will be a process 
domain that is obtained as a solution of the following domain equation: 

P;;;;;{po} U~00(SS1eps XP), 

where the set SSteps of semantic steps, with typical elements K, is given by 

SSteps = 
u 
U (CXVar) 

U 

We can read this equation as follows: a process p eP is either p0 , the nil process, or it is a (compact) 
set X of semantic steps KESSteps. Such a semantic step can have one out of four forms. First it can 
be a state transformation. These will be used to give a semantics to assignments. Then it can be a 
mapping from states to the set of truth values, corresponding with boolean expressions. Next, it can 
be a pair <c,v>, corresponding with an input statement c?v. And finally it can be a pair <c,f >, 
corresponding with an output statement c !e. Here, f is used to denote the value of e (that is, 

As in section 2.3 we should be more precise about the metrics involved. We give a formal definition 
below and refer the reader to section 2.3 for further explanation and references. 

DEFINITION 3.13 (Semantic universe P 2) 
Let (P2 ,d) be a complete metric space such that it satisfies the following domain equation: 

P;;;;;{po} U~00(SSteps Xid!?(P)), 

with SSteps as above. Typical elements of P2 will be p and q. 

DEFINITION 3.14 (..SemantLc ~era_!ors)_ _ 
The operators;, +, and II: P 2 are defined as follows. Let p,qeP2 , KESSteps, c eC, v E Var, 

Then: 
(i) 

(ii) 

- !q p;q = -{ <K, p';q> I <K,p'> Ep} 

p+q = 
if q = Po 
if p = po 
otherwise 

if p = Po 
if p'i=po 

(iii) Ifp =po, thenpOq=qilp=q. lfp'i=po and q'i=po, then: 
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pllq = {<,c,p'llq>i<,c,p'>Ep}U 

{ <K, p liq'> I <,c,q'> Eq} u 
{ <'>..o·o(j(o)/v },p'llq'> I (<<c,v >,p'> EpA<<c,f >,q'> Eq) V 

(<<c,f >,p'>EpA<<c,v >,q'> Eq)}. 

For a justification of these self-referential definitions see remark 1.17. 

DEFINITION 3.15 (Semantic environments): f=Stmv_.,li"P 2 (typical elements are y). 

DEFINITION 3.16 ('¥2,0Jl.i) 
We define the denotational semantics 6Di of L2 as 

6iJ.i = Fixed Point('Y2), 

where 'Y2:(L2-.f-->P2)-->(L,-->f -->P2) is given, for FEL2-->f -->P2, by: 

(i) 'Y2(F)(a)(y)= { <Ka,Po> }, and 'Y2(F)(E)(y)=po, 

with 

?l.o·Ov:=e ifa=v:=e 
?l.o·[a]o if aEBExp 

"· = <c,v> if a =c?v 
<c,?l.o·[do> if a=c!e. 

(ii) 'Y2(F)(s opt )(y) = 'Y2(F)(s)(y) op '¥2(F)(1)(y) for op = ;, +, II. 
(iii) 'Y2(F)(µ.x[s ])(y) = '¥2(F)(s)(y{ F(µx[s )(y)/x} ). 

Similarly to lemma 1.21 we have that '¥2 is contracting. 

ExAMPLES 

OJl.i[v: =O)(y) = { <?l.o·o{O!v },po>} 

OJl.i[v: = I; v: =v + I](y) = { <?l.o·o{llv }, { <Ao'·o'{ o'(v)+ 1/v },po>}>} 

OJl.i[c?v II c!3](y) = { <<c,v >,{ <<c,?l.o·3>,p0 > }>, 

<<c,?l.o·3>,{ <<c,v >,po>}>, 

<?l.0·0{3/v},po>} 

OJl.i[v:=O; µx[v:=v+I; x)] = {<?l.o·o{O/v},p>}. wherepEP 2 satisfies 

p = ( <?l.o·o(o(v)+ !Iv },p > }. 

3.4 Semantic equivalent:e of 0i and 6Di 
The proof of the semantic equivalence of 0i and 6iJ.i is essentially the same as in the previous section. 
Therefore, we only give a brief outline of how to proceed, leaving out the details of some definitions, 
omitting all proofs, and stressing the (small) differences. We define 

0/ = Fixed Point(<!>/) and °Di' = Fixed Point('¥/) 

with <I>/ and'¥/ defined as follows. Let <l>/:(L2-->!::.-->P 2)-->(L 2-->!::.-->P 2) be given by 

<l>/(F)(E)(8) = { (}; 



if {(a,s',ll')e/'(s)(ll)I aeAsgv(aeBExpi\(a)a=tt)} = 0, then 

~2'(F)(s)(8) = {cl}; 
otherwise 

~2'(F)(s)(8) = U {a·F(s')(a)(ll')I (b,s',ll')e/'(s)(ll)A(b]a=tt} U 

U { a,,=,F(s')(ll')(a.,=,) I (v: =e,s',8')e/'(s)(8)}, 
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for and llf§_ll (fl and/' can be defined similarly to definitions 2.5 and 2.17). 
Let be defined by 

{
Po ifs=E 

'¥/(F)(s)(ll) = { <,c0 ,F(s')(8')> l(a,s',ll')e/'(s)(ll)} otherwise, 

(with"• as in definition 3.16) for and Bell. 

The definitions of ~ 2 ' and '¥2' are somewhat more involved than their counterparts from section 2. 
What is different here is that a syntactic basic step does not literally coincide with the semantic step 
that represents its meaning. In the previous section we had elementary actions a and c both as syntac-
tic and semantic entities. Here we have syntactic basic steps v: = e, b, c !e, and c ?v, all of which are 
semantically represented in a different way. 
Similarly to the definitions 2.21 and 2.26 we can define mappings 

<>:(Lt;/_ 2) and 

~:(L2->f 

and prove 

0i' = 0f> and6Di' = %-
Finally, we can compare 0i' and "Di' by recursively defining a suitable abstraction operator 
by 

a(po)(a)={£), 

and, for p=/=po, by 

a(p)(a) = U (f(a)·a(p')(f(a))I <f,p'>ep 

U { a·a(p')(a) I <f,p'> ep A f (a)= tt}, 

if { <f,p'> I <f,p'> A/ (a)=tt))}=/=0, and by 

a(p)(a) = {a}, otherwise. 

(For a justification of this self-referential definition see remark 1.17.) In a(p)(a) all pairs <,c.p'> ep 
with and ,c(a)=ff, or ,ceCXVar, or are neglected. This corresponds 
with the restriction ope~tor of definition 2.29. A 5eCOnd effect of applying a is that it transforms a 
(branching) proce.ss p eP2 into a function a(p)eP2 ), which yields, when supplied with 
an argument a, a set of streams (in a sense the paths of p). In this respect a is similar to the operator 
streams of definition 2.29. Applying a has yet another effect. If f and <f,p'> ep, then 
j(a)·a(p')(f(a))ea(p)(a): the state transformation f is applied to the current state a, and the resulting 
state f (a) is concatenated with a(p')(f(a)), in which/ (a), being the new state, is passed through to a 
applied to p', the resumption off In this way, the effect of different state transformations occurring 
subsequently in p is accumulated. A simple example may illustrate this. Consider 

p = 60-i(v:=l;v:=v+I) 
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Then 

= { <Aa·av:=1,{ <Aa'·a'v:=o'(,)+1,po> }> }. 

a(p)(a) = { <av:=J, a({ <Aa'·a'v:=o'(,)+1,po> })(a,:=d>} 

= { <av:=h av:=2, a(po)(av:=2)>} 

= { <av:=], 0,:=2> }. 

Next, we extend a to a mapping by putting for 
a(F) = pa 

= As·M·a(F(s)(8)). · 

We shall prove that 

[<l>/(P) = ('Y/(F))"]. 

Let 8E!J., and aE~ be such that 

{(a,s',8')E/'(s)(8) I a EAsgV(a EBExp /\[a)a = II)}* 0. 

Then 

<l>/(F")(s)(8)(a) 

U { a·F"(s')(8')(a) I (b,s',8')EJ'(s)(8) /\ [b ]a= It} U 

U { a,, =,F«(s 1)(81)(a,,=,) I (v: =e,s 1,81)EJ'(s)(8)} 

U { a·(a(F'(s')(8'))(a)) I (b,s 1,81)EI'(s)(81)/\[b ]a= It} U 

U {a,: =,·(a(F'(s')(8'))(a,: =,)) I (v: =e,s',8')El'(s )(81)} 

= a({ <rc0 ,F'(s 1)(81)> I (a,s',8')EJ'(s)(8')})(a) 

[with"• as above] 

= a('1'/(F)(s)(8))(a) 

= ('Y/(F))"(s)(8)(a). 

The case that <l>/(F")(s)(8)(a)= {a} goes similarly. This proves 

[<l>/(F") = ('l'/(F))"]. 

Now it follows that 

Collecting the results from above, we see: 

ef > = (60-i)", or, equivalently 

'vsEL 2 'v8E!J. [0i[s<8>) = a(6Jli[s](8))], 

with the obvious corollary, that 

'vs EL~ 'vyEf [fli[s) = a(6Jli[s)(y))]. 
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4. CoNCLUSIONS 

We have developed a uniform method of comparing different semantic models for imperative con-
current programming languages. We have defined operational and denotational semantic models for 
such languages as fixed points of contractions on complete metric spaces, and have related them by 
relating their corresponding contractions. Here, we benefit from the metric structure of the underlying 
mathematical domains, which ensures the uniqueness of the fixed point of such contractions (Banach's 
theorem). It turns out that once this method has been applied to a certain (simple) language (L0), it 
can be easily generalized for more complex languages (L 1 and L 2). This we consider to be the 
strength of this approach. Currently, we are investigating possible extensions of this method to deal 
with yet other languages, containing, e.g., program constructs for process creation. 

Our investigations are related to the question of full abstraction, which at the same time is a topic for 
further research. If L is a language with semantics 0 and 6D, then we call 6D fully abstract with respect 
toe if 

"lseL"lteL (6f{s)=6Dlt] "IC(·) [e(C(s))=e(C(t)]], 

where C(·) ranges over the set of contexts for L, that is, the set of statements in L containing one or 
more holes. An example would bes;(·), where(·) denotes the hole. Given such a context C(-) and a 
statements the statement C(s) is obtained by substituting s for all the holes in C(-). The issue of full 
abstraction is mostly raised with respect to a model e that is operational, expressing a notion of obser-
vability, and a model 6D that is compositional. Then it follows from a relation between (9 and 6[) of the 
form 0=a0 6D that for alls and teL: 

6D(s)=6Dlt) "IC(-) [e{C(s))=e{C(t))). 

(1bis property is sometimes called: correctness of 6D with respect to 0.) Thus, our result of proving 
0=a0 6D partly solves the problem of full abstraction. The reversed arrow is still an issue for further 
research. 
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6. APPENDIX: MATIIEMATICAL DEFINITIONS 

DEFINITION A.I (Metric space) 
A metric space is a pair (M,d) with Ma non-empty set and d a mapping d:MXM-+[0, I) (a metric or 
distance) that satisfies the following properties: 
(a) \fx,yEM[d(x,y)=0 x =y] 
(b) \fx,yEM[d(x,y)=d(y,x)) 
(c) \fx,y,z EM [d(x,y)..;d(x,z)+d(z,y)]. 
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied: 
(c') \fx,y,z EM [d(x,y)..;max{d(x,z),d(z,y)}l. 
Please note that we consider only metric spaces with bounded diameter: the distance between two 
points never exceeds 1. 

ExAMl>LES A. 1.1 
(a) Let A be an arbitrary set. The discrete metric d,. on A is defined as follows. Let x,yEA, then 

{
0 if X =y 

d,.(x,y) = 1 if x=,=y. 

(b) Let A be an alphabet, and let A co = A • U A"' denote the set of all finite and infinite words over A. 
Let, for xEAco, x(n) denote the prefix of x of length n, in case length(x)~n, and x otherwise. 
We put 

d(x,y)=2-.n.,p{n lx(n)=y(n)), 

with the convention that 2-co =O. Then (A co ,d) is a metric space. 
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DEFINmON A.2 
Let (M,d) be a metric space, let (x;); be a sequence in M. 
(a) We say that (x;); is a Cauchy sequence whenever we have: 

V<>O 3NeN \fn,m>N (d(xn,Xm)<<]. 
(b) Let xeM. We say that (x;); converges to x and call x the limit of (x;); whenever we have: 

V<>O 3NeN \fn>N [d(x,xn)<<J. 
Such a sequence we call convergent. Notation: =x. 

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele-
ment of M. 

DEFINITION A.3 
Let (M1,di),(M2,d2) be metric spaces. 
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a bijectionf:M1-+M2 such that: 

\fx,yeM 1 [d2(/(x),f(y))=d1(x,y)). We then write M 1 ;;;;;.M2. When f is not a bijection (but only 
an injection), we call it an isometric embedding. 

(b) Let f:M 1-+M2 be a function. We call f continuous whenever for each sequence (x;); with limit x 
in MI we have that Iim;_00f (x;)= f (x). 

( c) Let A ;;;.o. With M 1 -/• M 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property: 
\fx,yeM1 [d2(/(x).fV,))~A·d1(x,y)). -
Functions f in M 1-+ M 2 we call non-distance-increasing (NOi), functions f in M 1-+' M 2 with 
0~(< 1 we call contracting. 

PROPOSITION A.4 
(a) Let (M 1,d 1 ),(M 2,d2) be metric spaces. For every A.;;;.Q and f eM 1-+A M 2 we have: f is continuous. 
(b) (Banach's fixed-point theorem) 

Let (M,d) be a complete metric space and f :M-+M a contracting function. Then there exists an 
x eM such that the following holds: 
(1) f(x)=x (xis a fixed point of j), 
(2) VyeM [f(y)=y y =xJ (xis unique), 
(3) Vxo eM i where/<" +l>(xo)= f(J<•>(x0)) and f<0>(x 0)=x0. 

DEFINITION A.5 (Compact subsets) 
A subset X of a metric space (M,d) is called compact whenever each sequence in X has a subsequence 
that converges to an element of X. 

DEFINITION A.6 
Let (M,d),(Mi,d1), ... ,(M.,d.) be metric spaces. 
(a) With M 1 -+M 2 we denote the set of all continuous functions from M I to M 2. We define a 

metric dF on M 1-+M 2 as follows. For every f1 ,/2 e M 1-+M 2 

dF(/1 ,/i)=supxeM, { d2(/1 (x),/2(x)) }. 

For A ;;;.o the set M 1-+A M 2 is a subset of M 1-+M 2, and a metric on M 1-+A M 2 can be obtained 
by taking_!!_ie res!!jction of the corresponding dF. 

(b) With M I U · · · UM. we denote the disjoint union of M 1, ... , Mn, which can be defined as 
{l}XM~ · · ·_ll{n}XM •. We define a metric du on M 1U ···UM. as follows. For every 
x,yeM1 U ···UM. 

{
dj(x,y) if x,yeU}XM1, l~J~n 

du(x,y) = 1 otherwise. 

(c) We define a metric dp on M I X · · · XM. by the following clause. 



246 

For every (xi, ... ,Xn), (y1, ... ,Yn)EM1 X · · · XMn 

dp((xi, ... ,x.),(y1, ... ,Yn))=max;(d;(x,,y,)). 

(d) Let 0'nc(M)="'f(XIX<;;;MAX is compact and non-empty}. We define a metric dH on °1'.c(M), 
called the Hausdorff distance, as follows. For every X, Y e 6Pnc(M) 

dH(X, Y)=max{ supxex{d(x, Y)),supyE r{ d(Y,X)) }, 

where d(x,Z)="'linf,Ez(d(x,z)) for every Z <;;;M, x EM. 
In 0'co(M)=def{ XIX <;;;MAX is compact} we also have the empty set as an element. We define dH 
on 'ii'c0 (M) as above but extended with the following case. If X cfo 0, then 

dn( 0 ,X)=dn(X, 0 )= I. 

(e) Let ce[O,co). We define: id,(M,d)=(M,c·d). 

PROPOSITION A. 7 
Let (M,d), (M 1,di), ... ,(M.,dn), dp, du, dp and dn be as in definition A.6 and suppose that (M,d), 
(M1,di), ... ,(M.,d.) are complete. We have that 
(a) (M1"2M2,d_E), 
(b) (M 1 U · · · UM.,du), 
(c) (M 1 X · · · XM.,dp), 
( d) (0'nc(M),dn ), and ('if'c0 (M),dH) 
are complete metric spaces. If (M,d) and (M,,d,) are all ultra-metric spaces these composed spaces are 
again ultra-metric. (Strictly spoken, for the completeness of M 1 _,,M 2 and M 1 _..AM 2 we do not need the 
completeness of M 1. The same holds for the ultra-metric property.) 

The proofs of proposition A.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can 
be proved with the help of. the following characterization of the completeness of the Hausdorff metric. 

PROPOSITION A.8 
Let ('Pc0 (M),dn) be as in definition A.6. Let (X;); be a Cauchy sequence in 6P,.(M). We have: 

lim;- 00 X, = {lim;- 00 x;jx; EX,, (x;), a Cauchy sequence in M ). 

The proof of proposition A.8 can be found in [Mic] as a generalization of a similar result (for closed 
subsets) in [Du] and [En]. 
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Different semantic models are studied for a language called POOL: a parallel object-oriented language. It 
is a simplified version of POOL-T, a language that is actually used to write programs for a parallel machine. 
The most important aspect of this language is that it describes a system as a collection of communicating 
objects that all have internal activities which are executed in parallel. For POOL, an operational and a 
denotational semantics have been developed previously. The former semantics aims at the intuitive opera-
tional meaning of the language, whereas the main characteristic of the latter is composit1onality. In this 
paper, we relate both models, which are quite different, and prove the semantic correctness of the denota-
tional semantics with respect to the operational semantics. Our semantic investigations take place in the 
mathematical framework of complete metric spaces. For the operational semantics we use a simple space 
of functions from states to compact sets of streams (which are sequences of states); for the denotational 
semantics, a domain of processes is used, which is the solution of a reflexive domain equation over a 
category of complete metric spaces. The main mathematical tool we use is 'Banach's theorem. which 
states that contractions on complete metric spaces have unique fixed points. Both the operational and the 
denotational semantics are reformulated and are presented, as well as many operators on the semantic 
domains, as the fixed point of a suitably defined contraction. In this way, we are able to establish a formal 
equivalence between both models. For this purpose, we introduce an intermediate domain, which first 1s 
compared to the operational model by means of an abstrac:ion operator. This function takes processes. 
which are tree-like structures, as arguments and yields sets of streams as results. Next. ii is shown that 
both the intermediate and the denotational model are fixed points of the same contraction. from which their 
equality follows. From both facts, the main result of our study follows: The operational meaning of a POOL 
program is equal to the denotational meaning to which the abstraction operator is applied. In this manner, 
the correctness of the denotational semantics with respect to the operational semantics is established 
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We study different semantic models for a language called POOL: parallel object-oriented language. 
Although the theoretical foundations of object-oriented programming in general, and of parallel 
object-oriented programming in particular, have not been paid much attention to, this language has 
been extensively studied in a formal semantic context: In [ABKR86(a)] and [ABKR86(b)], an opera-
tional and a denotational semantics of POOL have been developed. The main goal of this paper is to 
compare the two models, which are quite different, by proving some formal relation between them, 
which at the same time will establish the correctness of the denotational semantics with respect to the 
operational semantics. Before we explain in some detail the language POOL and the contents of this 
paper, we first give a short explanation of the notion of semantic correctness and the way it can be 
proved. 

A semantics for a programming language e is a mapping GJR.:~D, where D is some mathematical 
domain (a set, a complete partial ordering, a complete metric space), which we call the semantic 

(*) This work was carried out in the context of ESPRIT project 415: Parallel Architectures and Languages for AIP - a VLSI-
directed approach. 
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universe of GJR. Sometimes G)R, is called a model for t Traditionally, two main types of semantics are 
distinguished: operational semantics and denotational semantics. Without wanting to get involved in a 
discussion about the precise definitions, we state that in our view the main characteristic of the former 
is that its definition is based on a transition relation ([HP79], [Pl81], [Pl83]); a denotational semantics 
is characterised by the fact that it is defined in a compositional manner: the denotational semantics of 
a composite statement is given in terms of the denotational semantics of its components. (As a second 
distinctive property one often considers the way in which recursion is treated: The usual view is that 
an operational semantics treats recursion by means of so-called syntactic environments ( or body 
replacement) whereas a denotational semantic uses semantic environments, in combination with some 
fixed-point argument.) 

Now consider an operational semantics IS:e-.D and a denotational semantics 6D:t,.. .. D'. A natural 
question is whether 6]) is correct with respect to IS, that is, whether 6D makes at least the same distinc-
tions as 0 does. (Often, 6D makes more; see [KR88] for a simple example.) If we define for a seman-
tics GJlt:1:->D" an equivalence relation =''l!L by 

s =s>l I <=> GJR{s] = GJlt{r], 
for alls, t Et, then the correctness of 6D with respect to 0 can be formally expressed by the condition: 

--== . ., C='<l· 

One way to prove the correctness of 6D is to introduce a so-called abstraction operator a:D'-.D, 
which (is in general not injective and) relates the denotational semantic universe with the operational 
one. If one can prove that 

IS= ao6i) 

then a precise relation between IS and 6D has been established, which moreover implies the correctness 
of 6D with respect to IS. 

As a mathematical framework for our semantic descriptions we have chosen complete metric spaces. 
(For the ba5ic definitions of topology see [Du66] or [En77].) In this we follow and generalize [BZ82]. 
(For other applications of th.is type of semantic framework see [BKMOZ86].) We follow [KR88] m 
using contractions on complete metric spaces as our main mathematical tool, exploring the fact that 
contractions have unique fixed points (Banach's theorem). We shall define both operators on our 
semantic universes and the semantic models themselves as fixed points of suitably defined contrac-
tions. In this way, we are able to use a general method for proving semantic correctness: Suppose we 
have defined 0 as the fixed point of a contraction 

<l>: (e-.D)-+ (e-.D). 

If we next show that also a 0 6D is a fixed point of <I> then Banach's theorem implies that IS=a0 6D. 
It is the approach sketched above that will be applied to the language POOL. Before doing so, we 

start in section 2 with a toy language that is extremely simple but has with POOL in common a con-
struct for process creation. This section can be seen as a prolongation of the introduction and tries to 
give the reader some feeling for the techniques used. Since no definitions or results of this section are 
used in the other sections it can be skipped without any problem. 

The language POOL is described in detail in section 3. It is a simplified version of the language 
POOL-T, which is defmed in [Am85] and for which [Am86] and [Am87] give an account of the design 
considerations. POOL-Twas designed in subproject A of ESPRIT project 415 with the purpose of 
programming a highly parallel machine which is also being developed in this project (see [Od87] for 
an overview). The language provides all the facilities needed to program reasonably large parallel sys-
tems and several large applications and many small ones have been written in it. 

In POOL, a system is viewed as a collection of objects. These are dynamic entities containing dara 
(stored in variables) and methods (a kind of procedures). Objects can be created dynamically during 
the execution of a program and each of them has an internal activity (its body) in which it can execute 
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expressions and statements. \llhile inside an object everything proceeds sequentially, the concurrent 
execution of the bodies of all the objects can give rise to a large amount of parallelism. Objects can 
interact by sending messages to each other. Acceptance of a message gives rise to a rendez-vous 
between sender and receiver, during which an appropriate method is executed. 

In section 4, we follow [ABKR86(a)) in defining an operational semantics for POOL. It is based on 
a transition relation and is given, and here we differ from [ABKR86(a)], as the fixed point of a con-
traction. The semantic domain used is a complete metric space of (functions from states to) compact 
sets of streams, which are sequences of states. 

In section 5, we present a denotational semantics for POOL, very similar to the model given in 
[ABKR86(b)). We de_pne a mapping from the set of POOL programs (called units) to some reflexive 
domain of processes P (cf. [Pl76]), which is a complete metric space with tree-like structures for its 
elements. It satisfies a reflexive domain equation, which is solved by deriving from it a functor on a 
category of complete metric spaces and then taking the fixed point of this functor. The mathematical 
techniques to do so are sketched in section 2 of [ABKR86(b)) and presented in detail in [AR88). 
Before we assign a semantic value to the unit as a whole, we first define the semantics of expressions 
and statements, which will be given by functions of the following type: 

6DE: LE->AObj->ContE->P, and 6Ds: Ls->AObJ-.Conts->P, 

where LE and Ls are the sets of expressions and statements and 

ContE=ObJ-.P, Conts=P. 

The semantic domain A Obj stands for the set of (active) object names. Its appearance in the seman-
ucs of expressions and statements reflects the fact that in POOL each expression or statement is 
evaluated by a certain object. Further, a continuation will be given as an argument to the semantic 
functions. This describes what will happen after the execution of the current expression or statement. 
As the continuation of an expression generally depends upon the result of this expression (an object 
name), its type is Obj--'>P, whereas the type of continuations of statements is simply P. The use of 
continuations makes it possible to define the semantics, especially of object creation, in a convenient 
and concise way. (For more examples of the use of continuations in semantics, see [Br86] and 
[Go79).) 

After having defined an operational and a denotational semantics for POOL, we come to the main 
subject of our paper: The comparison of both models. This constitutes a non-trivial problem, mainly 
because, first, the respective semantic domains are very different and, secondly, because the denota-
tional semantics is defined in terms of continuations, whereas the operational semantics is direct, that 
is, does not use continuations. Moreover, the communication mechanism of POOL (consisting of mes-
sage passing with method invocation) is dealt with quite differently by the two models. The solution 
that we propose consists of the introduction of an intermediate semantic model, in section 6, which 
has in common with the operational semantics that it is direct (without continuations) and that it is 
based on the same transition relation, but which has for its range the same reflexive domain of 
processes as the denotational model has. Then, in section 7, this intermediate model is related to the 
operational semantics by means of an abstraction operator which takes processes as arguments and 
yields sets of streams. Next, it is connected with (an extended version of) the denotational semantics 
by the observation that both models are fixed point of the same contraction. As a result, it follows 
that the operational semantics of a unit equals its denotational meaning to which the abstraction 
operator is applied. 

Section 8, which contains the references, is followed by three appendices. Appendix I gives the 
mathematical definitions we use; in appendix II, the abstraction operator that is used in the proof of 
the semantic correctness for POOL is defined in all formal detail. Finally, appendix III shows how the 
language POOL can be extended with so-called standard objects and how the definitions and proofs 
can be adapted in order to obtain a similar correctness result for the extended language. 

Semantic treatments of parallel object-oriented languages in general are scarce; we only know 
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[081], which gives a detailed mathematical model for an actor language. This is done by defining a 
set of so-called augmented actor event diagrams, each of which is a fairly complicated structure 
representing (the beginning of) a single computation. In order to deal with nondeterminism, a novel 
power domain construction is used. As to the comparison of operational and denotational semantics 
for languages with process creation, we only know of [AB88], where some simplified versions of 
POOL are studied. None of these languages, however, contains the original POOL-T constructs for 
communication (for message passing with method invocation), the treatment of which, in the correct-
ness proof, we consider to be an essential part of this paper. 

ACKNOWLEDGEMENTS: We wish to thank Pierre America for his detailed and constructive com-
ments on preliminary versions of this paper. Discussions with Jaco de Baller are gratefully ack-
nowledged, as well as the contributions of the Amsterdam Concurrency Group: Jaco de Baller, 
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2. A VERY SIMPLE LANGUAGE WITH PROCESS CREATION 
Before we tackle the main problem of this paper, we would like to start with a much simpler case: 

We introduce a very small "toy" language Lr and present an operational and a denotational seman-
tics for it. Next, we shall compare these two models. All this can-be regarded as a little exercise, a 
"warming up" so to speak, aiming at a better understanding of what follows in the next section: It 
turns out that for both the languages Lr and POOL (to be introduced in the next section) the opera-
tional and denotational semantics can be compared in very much the same way. 

For the definition of Lr we need a set (a,be)A of elementary actions. (Throughout this paper, we 
shail use the notation (x,ye)X for the introduction of a set X with typical elements x andy.) For A 
we take an arbitrary, possibly infinite, set. It will contain a subset (ce)C<;:A of so-called communica-
tions. Similarly to CCS (IMil80]), we define a bijection - : C->C with - 0 - =idc. It yields for every 
ceC a matching communication c. In A\ C we have a special element r denoting successful commun-
ication. 

DEFINITION 2.1 (Syntax for Lr) 
The set of statements (s,te)Lr is given by 

s : : = a I s1 ;s2 I oew(s). 

Note that a EA ;;} C. To Lr we add a special element E, denoting the empty statement. Note that syn-
tactic constructs likes; E and oew(E) are not in Lr. 

A statement is of one of the following forms: First, it can be an elementary action a. Here elemen-
tary means that it is an uninterpreted action. Examples of possible interpretations are assignments, or 
read and write actions. Secondly, a statements can be the sequential composition s 1; s 2 of statements 
s1 and s 2 • Finally, it may be a new-statement new(s), the execution of which amounts to the creation 
of a new process which executes s. A more detailed explanation will follow below. 

The operational semantics will be formulated using the notion of parallel statements. A parallel 
statement is a finite sequence of statements which are to be executed in parallel. 

DEFINITION 2.2 (Parallel statements) 
Let (p,we)Par be given by Par=(Lr)' , the set of finite sequences of statements. Typical elements 
will also be indicated by <s1, ••• ,s. >, for n;;,, I. For p= <s 1, ••• ,s. > and w= <t 1, ••• , tm > we 
define p11 w=<s1, ... ,sn, t1, ... ,tm>. 

Next we define the operational semantics of parallel statements. It is based on the well known 



notion of a transition relation (in the style of Hennessy and Plotkin ([HP79, PIBI, Pl83))). 

DEFINITION 2.3 (Transition relation for Par) 
Let XPar be the smallest relation (writing for (p, a, satisfying: 

(1) <a>-a-+<E>, 

(2) if <s>-a->p, then <new(s)>-a-+p 

(3) if then <new(s);t>-a-+p 

(4) if then <(s1;s2);s3>-a-+p 

(5) if p-a->p', then and 'IT''p-a->'IT''p' 

(6) if and .,,-c ..... .,,\ then 

for a EA, cEC, s,t,s 1,s2,s3 ELr, and p,p',w,'lr'EPar. 

251 

Intuitively, tells us that starting in the parallel statement p the elementary action a can be 
performed, resulting in the parallel statement p'. Interesting in the definition above are (3), (5) and 
(6). According to (3), the parallel statements <s,t > and <new(s);t> can perform the same elemen-
tary acuons. In other words, evaluating <new(s);t> results in a parallel statement <s,t >. Thus we 
see that the length of a parallel statement increases when new(s) is evaluated. Operationally, this can 
be viewed as the creation of a process that starts evaluating s, while statement t is being executed in 
parallel. According to (5), a composite parallel statement p' 'IT can perform all the elementary actions 
that can be performed by either p or w. In (6) it is expressed that if p can perform a communication 
action c and .,, can perform a matching communication action c, then p' .,,, the parallel statement com-
posed of p and 'IT, can perform a ,,, action, denoting a successful communication. 

EXAMPLE: <new(c);a;new(c);b> -a-> <c, new(c);b> <c, c, E> -,,,--, <E, E, E>. 

Before we give the definition of the operational semantics of parallel statements, we introduce ib 
semantic universe P. 

DEFINITION 2.4 (Semantic universe P) 
Let A• denote the set of finite sequences or words of elements of A; let £ denote the empty word. We 
extend this set by allowing as the last element of a finite sequence a special element a, which denotes 
deadlock: 

(wE)Aa=A' UA'•{a}. 

Now we define (p,qE)P='!P~r(Aa), the set of all non-empty, finite subsets of Aa. Let dA; denote the 
usual metric on Aa (see the definition in A.I.I). We take dp =(dA;)H, the Hausdorff metric induced by 
dA;, as a metric on P. According to proposition A.7, we have that (P,dp) is a complete metric space. 

DEFINITION 2.5 (Operational semantics B) 
Let B= Fixed Point((>), where (>:(Par is given, for FE Par ->P, and pE Par, by !{£} if p=<E, ... ,E> 

(l(F)(p) = {a} if 'va'vp' a EC)/\ p=/=<E, ... ,E> 
U (a·F(p'): p-a->p'/\aflC} otherwise. 

It is straightforward to show that (I is a contraction and thus has a unique fixed point. 
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Since our language does not contain any constructs for recursion, we need not be able to describe 
infinite behavior. lberefore, it is not really necessary to define 0 using a contraction on a complete 
metric space. It would have been sufficient to take P as an ordinary set without any metric, and define 
0 with an easy induction on the structure of statements. Our motivation for nevertheless exploiting 
metric strnctures here is given by the fact that in the next section we will deal with recursion and 
in.finite behavior. There the use of some mathematical structure which can handle these, such as com-
plete metric spaces, is obligatory. Our use of complete metric spaces at this stage can be seen as part 
of the introductory function of this section. 

The operational semantics 0 can be best explained by giving a few 

EXAMPLES: 

0f<a>J = a·0[<E>) = a·{t) {a} 

0{<new(a)>] = (a) 

0{ <c>] = {3} 

e[<c,c>) = ('r) 
~<a;b>J = a·e[<b>] = {ab} 

0(<new(a);b>J = {a·0[<£,b>l b·{0[<a,E>:I} = {ab,ba} 

Note that a single communication <c>, without a matching communication c in parallel, creates a 
deadlock. 

Such an operational semantics is nice, because it is intuitively very dear. However, it is not compo· 
sitional with respect to the binary syntactic operator ; , that is, there is no semantic operator 
;: PX corresponding to :, such that for alls and 1: 

0[<s;I>] 

This can be easily seen by the following argument. Suppose there is such an operator;. Then: 

0( <new (a);b>J = 0( <new (a)>); 0[ <b>] 
= [since0[<new(a)>]=0[<a>]] 

0( <a>]; 0( <b>) 

= e[<a;b>l 
which yields a contradiction, as can be seen from the examples above. 

The denotational semantics to be defined in a moment has the property that it is compositional 
with respect to the syntactic operators in Lr. 

First, we define a suitable semantic universe. 

DEFINITION 2.6 (Semantic universe P) 
We define a complete metric space (p,qE)P by P =6/'nJA '), the set of non-empty finite subsets of A·. 
Let d4 · be the usual metric on A•; we define dp =(dA· lH-

The only difference between P and P is that the latter does not contain finite sequences ending in a. 

DEFINITION 2.7 (Denotational semantics 6D) 
Let 6D: Lr-'> Cont -'>P, where Cont=P denotes the set of continuations, be given by 

6Lfa](p) = a-p, 6L{EJ(p) = p 



6i:{new(s ))(p) = p 116i:is ]( { t}) 

6i:{s ;t )(p) = 6i:{s )(6i:{t )(p )), 

with II: PXP-.P as defined below. 
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A continuation p E Cont denotes the semantics of the statement to be executed after the one to 
which 6II is applied. The meaning of a new-construct new (s) with continuation p is determined as fol-
lows: The meaning of s is computed with the empty continuation { t }, which indicates that after s 
nothing remains to be done. Since s is to be executed in parallel with everything that follows, the 
result is composed in parallel with p, which indicates the remainder of the program after s. 

DEFINITION 2.8 (Parallel composition II) 
Let II: PXP-.P be such that it satisfies, for p,qEP, 

p liq = p llq u q ll.p up I q, 
where 

pllq = U {a·(pallq): Pa'f"0} U {q:tEp}, 

Plq = U{T·(pclll/i'):p40'f"£Jc}, 

withp0 = {w: a·wEp), the set containing all the postfixes of a inp. 

The above definition is seU-refere~tial_ an~ n~s s~mejustification. F~rm~ly,_we can define II as 
the fixed point of a contraction'¥: (P XP-->P)->(P XP-c,P) given, for f EP XP-c,P, by 

where 

'l'(j)(.p,q) = p IL1q u qll1P up l1q, 

PIL1q = U {af(p.,q): Pa'f"0) U {q:cEp}, 

P liq = U {r·(f(pc.l/i'))): p,=;t=0'f"l/i'}-

Note that 6II is compositional with respect to ";". The corresponding semantic operator 
;: is not express~ explicitly in the definition of 6ll. For completeness 
sake, we give its definition. We have, for f,gEP->P: 

f ;g = >.p f(g(p) ). 

Semantic equivalence of 0 and GD 
After having defined 0 and 6D for Par and Lr, we next discuss the relationship between the two 
semantics. We shall compare 0 and 6D by relating both to an intermediate semantics IS': Par-P, given 
in 

DEFINITION 2.9 (Intermediate semantics 0') 
Let 0'= Fixed Point (<ll'), where <I>': (Par-->P)-.(Par-->P) is given, for FEPar-,P and pEPar, by 

{
{£} ifp=<E, ... ,E> 

{f,'(FXp)= U {a·F(p'): p-a-+p') otherwise. 

Note that in <ll', as opposed to $, single-sided communication steps aEC are allowed. The 
difference between 0 and 0' can be illustrated by giving a few examples: 

0[ <c>] = {cl), 0[ <c,c>) = {r}, 

0'[<c>)={c), fJ'[<c,c>]={cc, CC, T}. 
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The relationship between 0 and 0' will be expressed using the following abstraction operation. 

DEFINITION 2.!0 (Abstraction operator a) 
We define an abstraction operator a: by 

{
{3} if Va(p0 cft0 EC] 

a(p)= LJ {a·(a(p0 )): aitCi•p0 /=0) U ( c £Ep} otherwise, 

with Pa as in definition 2.8. (For a justification of this self-referential definition see the remark f,1llow-
ing definition 2.8.) 

The definition of a can be understood as follows: lf all the words .v c.p begin with a communication 
action a EC, we have operationally a deadlock, since no single communication action is allowed 
Therefore, we then have: a(p) :~: {a). !n the last case, a(p) contains all the words in p !hat begin with a 
non-communication action a EA \ C, with a recursively applied to Pu. the set of postfixes 1A 11: addi-
tionally, a(p) contains i if ffp. 

The following theorem ean be proved straightforwardly. 

Since (j) and (j)' are contractions and lhu, have unique tixed points, lt follows that 

COROLLARY 2.12: (')=:ca o 0' 

PaoOF 
We have: a 0 fi' = a 0 <!>'(8') = W(,t 0 fi'). Thus both u 0 1S' and 6 are lixeJ point, of QJ \,hich implie, 
that they are equal. 

The relationship between 0' and C.D can be elegantly expressed using the following mapping. 

DEFINITION 2.13 
We define ~: as follows. We denote, for FELr··•Co111-+P, -~(F) by F 
and put 

with p=<s 1, ••• ,s,>. 

A simp]e consequence, using the associativity of II, of this definition is: F(p -r) = .F(p)IIF(-r). If the 
function F takes a parallel statement <s 1, ••• , s. > as an argument, then the F values of all the sub-
statements s; supplied with the _empty continuation ( £) are computed and next composed in parallel. 

Now we can prove that 0'= 6D. It is a corollary of the following 

THEOREM 2.14: i!>'(6i))=6il 

PROOF 
The proof uses induction on the structure of parallel statements. We treat one typical case, leaving the 
other ones to the reader. Consider_p"'7TE far and suppose pi:<E, ... ,£> ang '11"=/=<E,_ ... ,£>. 
Suppose we already know that <1>'(6D)(p)=6j)(p) and il>'(6D)('1T)=6j)('IT). We show: i1>'(6D)(p''1T)=6j)(p''IT). 

- -il>'(6D)(p1o'IT) = U {a·6j)(p'): p''7T--a->p'} 



= [definition of ---> (2.3 (5) and (6))] 

U {a·6D(p"'w): p-a--->p'} U U {a·6D(p'w'): w-a--->w'} U 

U {T•6D(p'"w'): p-C--->p' /\'IT-C--->w'} 

= [definition ~] 

U {a-(6D(p')ll6D(w)): p-a--->p'} U U {a·(6D(p)ll6D(w')): w-a--->w'} U 

U { T-(6D(p')ll6D(w')): p-c--->p' /\w-C--->'IT'} 

= [ definitions IL and I ] 
( U {a·6D(p'): p-a....,.p'}IL 6D(w)) U ( U {a·6D(w'): w-a--->w'}IL 6D(p)) U 

< U {c-6JXp'): p-c--->p'} I U {c · GD<w'): w-c-.w'}) 

= (1P'(6DXp)IL 6D(w)) u (IP'(6DXw)IL 6D(p)) u (IP'(6ilXp) I 1P'(6ilXw)) 

= [induction] 
.. - - - - -

(6D(p)IL 6D(w)) U (6D(w)IL 6D(p) U(6D(p)i 6D(w)) 

= 6D(p)ll6D(w) 

= 6D(p"w) 

COROLLARY 2.15: 0'=6j) 

Combining Corollaries 2.12 and 2.15 now yields the main theorem of this section. 

MAIN lHEOREM 2.16: 0=a0 6D 

COROLLARY 2.17: 'vsELr [0(<s>] = a(6i(s]({£}))]. 

3. 1HE LANGUAGE POOL 
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In this paper, we compare different semantic models of a language that we call POOL: Parallel 
Object-Oriented Language. It is a simplified version of a language called POOL-T, which is defined in 
[Am85]. (For an account of the design considerations for POOL-T see [Am86] and [Am87].) The 
simplification is two-fold. First, we omitted certain language constructs from POOL-T (such as the 
select statement and the method call) as well as some of the protection mechanisms offered by the 
definition of classes (such as different classes having different (instances of) variables and method 
definitions). We have done this in order to make life somewhat easier: the semantic definitions are 
shorter and so are the proofs of the theorems. We feel justified in doing so, since it is straightforward 
to extend the approach of this paper to the full language. Secondly, we give an abstract syntactic 
description of POOL which is a simplified version of the formal description of POOL-T. 

A POOL program describes the behavior of a whole system in terms of its constituents, objects. 
Objects contain some internal data, and some procedures that act on these data (these are called 
methods in the object-oriented jargon). Objects are entities of a dynamic nature: they can be created 
dynamically, their internal data can be modified, and they have an internal activity of their own. At 
the same time they are units of protection: the internal data of one object are not directly accessible 
for other objects. 

An object uses variables (more specifically: instance variables) to store its internal data. Each 
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variable can contain the name of an object (another object, or, possibly, the object 1mder considera-
tion itself). An assignment to a variable can · make it refer to an object different from the object 
referred to before. The variables of one object cannot be accessed directly by other objects. They 
can only be read and changed by the object itself. 

Objects can interact by sending messages to each other. A message is a request for the receiver to 
execute a certain method. Messages are sent and received explicitly. In sending a message, the 
sender mentions the destination object, the method to be executed, and possibly a parameter (which is 
again an object name) to be passed to this method. After this, its activity is suspended. The receiver 
can specify the set of methods that will be accepted, but it can place no restrictions on the identity of 
the sender or on the parameters of messages. H a message arrives specifying an appropriate method, 
the method is executed with the parameters contained in the message. Upon termination, this method 
delivers a result (an object name), which is returned to the sender of the message. The latter then 
resumes its own execution. Note that this form of communication strongly resembles the rendez-vous 
mechanism of Ada ([ANSI83]). 

A method can access the variables of the object by which it is executed (the receiver of a message). 
Furthermore, it has a formal paran1eter, which is initialized to the actual parameter specified in the 
message. 

When a object is created, a local activity is started: the object's body. When several objects have 
been ereatec ·heir bodies execute ill parallel. This is the way parallelism is introduced into the 
language. Synchronization and communication takes places by sending messages, as described above. 

Objects are grouped into classes. All objects in one class (the instances of that class) execute the 
same body. In creating an object, only its desired class must be specified. In this way a class serves 
as a blueprint for the creation of its instances. 

At this point, it might be useful to emphasize the distinction between an object and its name. 
Objects are intuitive entities as described above. In this paper, there will appear no mathematical con-
struction that directly models a single object ,vith all its dynamic properties (although it would be 
interesting to see a semantics which dOt".s this). Object names, on the other hand, are modeled expli-
citly as elements of some abstract set Obj. Object names are only references to objects. On its own, an 
object name gives little information about the object it refers to. In fact, object names are just 
sufficient to distinguish the individual objects from each other. Note that variables and parameters 
contain object names, and that expressions result in object names, not objects. If in the sequel we 
speak, for example, of "the object a", we hope the reader will understand that the object with name a 
is meant. 

Now we describe the (abstract) syntax of the language POOL We assume that the following sets 
of syntactic elements are given: 

(x E)!Var (instance variables), 

(u E)TVar (temporary variables), 

(CE)CName (class names), 

(m E)MName (method names). 

DEFINITION 3.1 (Expressions, statements, units) 
We define the set of expressions (eE)LE and the set of statements (sE)Ls by: 

e ::= xi ul e1!m(e2)I new(C)I s;el self 

s ::= X<-e I u<-el answer m I s1;s2 I if e then s1 else s2 Ill doe thens od 

The set ( U E)Vnit of units is defined by 

U ::= < (C1=s1, ... , c.=s.), (m1=<u1,e1>, ... , mk=<um,ek>) >. 
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We write c~seU if there exists an i such that C;=C and s;=s. Similarly, we write m~<u,e >eU. 

An instance variable or a temporary variable used as an expression will yield as its value the object 
name that is currently stored in that variable. 

The next kind of expression is a send expression. Here, e1 is the destination object, to which the 
message will be sent, m is the method to be invoked, and e2 is the parameter. When a send expres-
sion is evaluated, the destination expression and the parameter expression are evaluated successively. 
Next, the message is sent to the destination object. When this object answers the message, the 
corresponding method is executed, that is, the formal parameter is initialized to the name of the 
object in the message, and the expression in the method definition is evaluated. The value which 
results from this evaluation is sent back to the sender of the message and this will be the value of the 
send expression. 

A new-expression indicates that a new object is to be created, an instance of the indicated class. Its 
body starts executing in parallel with all other objects in the system. The result of the new-expression 
is (the name of) this newly created object. 

An expression may also be preceded by a statement. In this case the statement is executed before 
the expression is evaluated. 

The expression self always results in the name of the object that is executing this expression. 
The first two kinds of statements are assignments, to an instance variable and to a temporary vari-

able, respectively. An assignment is executed by first evaluating the expression on the right, and then 
making the variable on the left refer to the resulting object. 

An answer statement indicates that a message is to be answered. The object executing the answer 
statement waits until a message arrives with a method name that is specified by the answer statement. 
Then it executes the method (after initializing the formal parameter). The result of the method is sent 
back to the sender of the message, and the answer statement terminates. 

Sequential composition, conditionals and loops have the usual meaning. 
Units are the programs of POOL. A unit consists of a number of definitions of class bodies and 

methods. If a unit is to be executed, a single new instance of the last class defined in the unit is 
created and execution of its body is started. This object has the task to start the whole system, by 
creating new objects and putting them to work. 

The relationship between POOL and POOL-Tis the following: POOL is obtained from POOL-T 
via two successive simplifications. First, certain language constructs from POOL-T are omitted (like 
the select statement) as well as some of the protection mechanisms in POOL-T, which are offered by 
the definition of classes (such as different classes having different variables and method definitions). 
Secondly, some syntactical simplifications are performed and some context information is omitted 
(POOL-T is a statically typed language whereas POOL is not). The reason for making the first 
simplification is simply lack of space, to which should be added the consideration that it would be 
straightforward to extend our results to the full language. The sole reason for making the second 
simplification is that POOL-Tis a practical programming language, for which readability, among oth-
ers, is more important than syntactic simplicity. Therefore, it is convenient to take a simplified 
language, POOL, as the semantic core of POOL-T. 

If one compares the version of POOL described in this paper with the one given in [ABKR86(a)] 
and [ABKR86(b)], some minor differences can be observed. (For example, in the send expression of 
definition 3.1 above only one parameter can be specified whereas in the definitions of the papers men-
tioned an arbitrary number of parameters is allowed.) However, it can easily be seen that it is 
straightforward to adapt the definitions and proofs given in this paper such that they apply to the ver-
sion of POOL occurring in [ABKR86(a)) and [ABKR86(b)). 



258 

4. AN OPERATIONAL SEMANTICS FOR POOL 
In this section we give the definition of an operational semantics for POOL, which is a modified 

version of the one given in [ABKR86(a)]. (At the end of this section, we shall compare both models in 
some detail.) It is based on a transition relation and will be defined as the fixed point of a suitable 
contraction. For this purpose, we introduce a number of syntactic and semantic notions. 

First of all, we introduce the set of objects. 

DEF!NmoN 4. l (Objects) 
We assume given a set A.Obj of names for active objects together with a function 

v:'Pfin(A Ob))-"A Obj 

such that ll(X)stX, for eveiy finite X~AObj. Given a set X of object names, the functwn;, yields a 
new name not in X 
Further we define 

Obj = A.ObjUSObj, 

where SObj is the set of s,,-calle<l standard objects, 10 be intrrn:luCF...d in Appendix m. 

A possible example of such a set A Obj and function v could be ohlaine<l by setting: 

AObj = N, 

P(X) = max(n:n EX}+ l. 

In POOL, a few standard classes, the instances of which are called standard objects, are pre{iefined; 
examples are the classes of booleans and integers. The semantic treatment of these standard objects 
is somewhat different from the way the active objects (which are created during the execution of a 
POOL program) are trr..ated. Because we want to formulate our semantic models as concisely as possi-
ble in order to focus on the correctness proof. the standard objects are treated in an appendix (ill). 

Next, it is convenient to extend the sets LE of expressions and Ls of statement, by adding wme 
auxiliary syntactic constructs. 

DEFINlTION 4.2 (LE,, Ls-) 
Let ( e E )LE' and (s E )Ls· be defined by 

e ::= xi ul e1!m(e2)! 1:1ew(C)I s;el self! al (e, </>) 

s : : = x .,....e I u +-e I &11Swer m I s 1 ;s 2 I if e t.!-1er1 s I else s 2 fi I do e then s oo I 
release(B, s) I (e,>/;) 

with a,PEAObj, </>ELPE and >/;ELp5 . Here the sets of parameterized expressions (</>E)Lp£ and 
parameterized statements (>/;E)Lps are given by 

</> ::= Au·e 

if,::= "Au·s, 
with the restriction that u does not occur at the left-hand side of an assignment in e or s. For 
at.EObj, ,j>=NJ·e and ,t,="Au·s, we shall use </>(a) and ,t,(a) to denote the expression and the statement 
obtained by syntactically substituting a for all free occurrences of u in </> and ,J,, respectively. The res-
triction just mentioned ensures that the result of this substitution again is a well-formed expression or 
statement. 

Let us explain the new syntactic constructs. In addition to what we already had in LE, an expres-
sion e EL£, can be an active object a or a pair (e, </>) of an expression e and a parameterized 
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expression ,j,. The latter will be executed as follows: First the expression e is evaluated, then the result 
/J is substituted in ,j, and q,{fl) is executed. As new statements we have release statements release(/J,s) 
and parameterized statements (e,,j,). If the statement release(/J,s) is executed, the active object /3 will 
start executing the statement s (in parallel to the objects that are already executing). The release 
statement will be used in the description of the communication between two objects (see definition 4.8 
below). The interpretation of (e,iJ,) is similar to that of (e,,j,). 

DEFINITION 4.3 (Empty statement) 
The set L5,, as given in the definition above, is extended with a special element E, denoting the empty 
statement. This extended set is again called Ls·• Note that we do not have elements like s;E or 
doe then E od in Ls·• (There is, however, one exception: We do allow E in if e thens else E Ii, 
which is needed in definition 4.8(A8) below.) 

DEFINITION 4.4 (States) 
The set of states ( o E )~ is defined by 

~=(AObj Obj) 

X(AObj TVar Obj) 

X 6Yfin (AObj). 

The three components of o are denoted by <o1, o2 , o3 >. The first and the second component of a 
state store the values of the instance variables and the temporary variables of each active object. The 
third component contains the object names currently in use. We nee,d it in order to give unique names 
to newly created objects. 

We shall use the following variant notation. By o(/3! a, x} (with x E !Var) we shall denote the state 
o' that is as o but for the value of o1 '(a)(x ), which is /3. Similarly. we denote by o{/3/a, u) (with 
u E TVar) the state o' that is as o but for the value of o1 '(a)(u), which is /3. 

DEFINITION 4.5 (Labelled statements) 
The set of labelled statements ((a, s)E)LStat is given by LStat =A Obj>< Ls•. 

A labelled statement (a, s) should be interpreted as a statement s which is going to be executed by 
the active object a. 

Sometimes, we also need labelled parameterized statements. Therefore. we extend LStat: 

LStat'=LStat U( A Obj X Lps)-

A pair (a,,J,) indicates that the active object a will execute the statement ti, as soon as it receives a 
value which it can supply to iJ, as an argument. 

Before we can give the definition of a transition relation for POOL, we first have to explain which 
configurations and transition labels we are going to use. 

DEFINITION 4.6 (Configurations) 
The set of configurations (pE)Conj is given by 

Conj= 6Y fin(LStat) X ~-

We also introduce: 

Conf ='5' fin(LStat') X ~-

Typical elements of Conj and Conj' will also be indicated by <X,o> and < Y,o>. 

We shall consider only configurations <X,o> that are consistent in the following sense: For 
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X={(a1, si), ... ,(a"' sk)), we call <X,o> consistent if the following conditions are satisfied: 

Vi,JE{l, ... ,k} [i9'=J =;,a,9'=a1 ], and 

(a1, ... ,a.d CaJ 

Whenever we introduce a configuration < X, a>, it will be tacitly assumed that it is consistent 
A configuration <X, a>, consisting of a finite set X of labelled statements and a state a. 

represents a "snap shot" of the execution of a POOL program. It shows what objects are active and 
what statements they are executing; furthermore, it contains a state o, in which the values of the vari-
i1hles of the active objects as well as the set of obje.:.,t names currently in use an: stored. 

Dn·1N1T!ON 4.7 nrnnsition labels) 
·n1e set of Ira11s1Iwn labels (,\ E JA is given by 

TI1ese labels will be used in the delinition of the transition relation below and arc to be interpreted 
a, follo 1A 1be label -r indicates a so--ca!led computation step. Next, (,r, /3 11m(/32)) indicates that object 
,:; sends .. riessage to obje(:t /1 1 requestmg the execution of the method m with parameter fh- FinaJJ, 
(/:flm) indic;,, .. s that the object f1 i, w11lmg to answer a message specifying the method m. 

Now we are ready to define a relation for POOL. · 

DEHNITION 4.8 (Transition relation) 
Let U F Unit. 'Ne ddin1: a labelled tr,msillon relatum 

-- U--> C Conf >< A x Conf'. 

Triples <p1, .A, P2 > E - U--• will be called transitions and are denoted by 

Pi - U, A-, /J>2. 

Such a transition reflect, a possible execution step of type A of the configuration p1, yielding a new 
configuration p2 . 111e relation U--, is defined as the smallest relation satisfying the fol!o"''ing pro-
perties: 

Axioms 

Rules 

(Al) <{(a, (x, ,/;))), o> --U, <((a, (a1(aXx), >/;))}, o> 

(A2) <{(a, (u, ,/;))), o> -U, r-, <((a, (a2(aXu), >/;))}, a> 

(A3) < { (a, (J11 !m(fh), I/;)}, a> - U, (a, (j11 1m(f32 )))-.;, < { (a, ,/;)}, a> 

(A4) <{(a, (new (C), >/;))), a> -U, -r-> <{(a; (JJ, ,/;)}, (/3, sc)l, a'>, where: 

C=scEU, /3=ri._a3), a'=<a1, 02, a3U{,8}>. 

(A5) < {(a,z..--,8)),a> - U, T-> < ((a,E)},a(,Bla, z} >, for z E !Var U TVar. 

(A6) <{(a, answerm)}, a> -U, (a 9m)--> <{(a,£)},a> 

(A7) <((a,doethensod)},a> -U,T--+ 

<{(a, if e then (s; doe illen sod) else E Ii )},a> 

(RI) If <{(a, (e,,\u·z<--u))},a> -U, A-> p, 



then <{(a, Z+-e)},a> -U, p, for ze/VarUTVar. 

(R2) If <{(a, s)},o> -U, <{(a, s')}UX,a'>, 

then <{(a, s;t)},o> -U, <{(a, s';t)}UX,a'> 

(read t instead of s';t if s'=E). 

If <{(a, s)},o> -U, <{(a, 1/,)}UX,o'>, 

then <{(a, s;t)},o> <{(a, AU·(,i,(u);t))}UX,o'>. 
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(R3) If <{(a, s;)},o> -U, p, then <{(a, if fJ then s 1 else s2 fi )},o> -U, p, 

{
SJ if /J=tt 

where S; = ,; a=jf. 
S2 I; I' .. 

(R4) If <{(a, 1),(/J,s)},o> - U, p, then <{(a, release (/J,s);t)},o> - U, A-> p 

(read release(/J,s) instead of release(/J,s );t if t = E). 

(R5) If <{(a, (e,Au·if u then s 1 else s2fi ))},o> - U, A-> p, 

then <{(a, ife thens 1 elses2 fi )},o> -U, A-> p. 

(Here s 2 is allowed to be E. ) 

(R6) If <{(a, ((e1,Au!'(e 2,Au2·u1 !m(u2))),1/,))},o> -U, A-> p, 

then <{(a, (e1 !m(e2),1/,))},o> -U, A-> p. 

(R7) If < { (a, s ;(e,1/,)) },o> - U, A-> p, then < { (a, (s ;e, 1/,)) },o> - U, A-> p. 

(R8) If <{(a, (e,AU·(q,(_u),1/,)))},o> - U, A-> p, then <{(a, ((e,<j,),1/,))},o> - U, A-> p. 

(R9) If <{(a, ,i,(/J))},o> -U, A-> p, then <{(a, (/J,1/,))},o> -U, A-> p, for {JeObj. 

If <{(a, 1/,(a))},o> -U, A-> p, then <{(a, (self,1/,))},o> - U, A-> p. 

(RIO) If <X,a> - U, A-> <X',a'>, then <XU Y,a> -U, A-> <X'U Y,a'>. 

(Rll) If <X,a> -U, (a,/J1!m(/J2))--> <{(a, 1/,)}UX',o> and 

<Y,a> -U,/J1?m--> <{(/11,s)}UY',o>, 

then <XUY,a> -U,'T--> 

< {(/11 ,(em,Au·(Um+-02(/11 )(um); release(a, 1/,(u));s)))} U X' U Y',o'>, 

where a'=a(/Ji!{J1 ,um}, and m¢=<Um,em >EU. 
(End of definition.) 

The general scheme for the evaluation of an expression is very similar to the approach taken in 
(AB88]. Expressions always occur in the context of a (possibly parameterized) statement, such as 
x+-e. A statement containing e as a subexpression is transformed into a pair (e,1/,) of the expression e 
and a parameterized statement ,i, by application of one of the rules. (In our example, x+-e becomes 
(x, Au·x+-u) by an application of (RI).) Then e is evaluated, using the axioms and rules, and results 
in some value fJ'eObj. (Applying (Al) transforms (x, Au·x+-u) of our example into (/J', Au·x+-u), for 
some /J' eObj.) Next, an application of (R9) will put the resulting object /J' back into the original con-
text 1/, (yielding x+-/J' in our example). Finally, the statement 1/,(/J') is further evaluated by using the 
axioms and the rules. (The evaluation of x+-/J' results, by using (A6), in a transformation of the 
state.) 
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Let us briefly explain some of the axioms and rules above. 
In (A4) a new object is created. Its name {1 is obtained by applying the function v to the set a3 of 

the active object names currently in use and is delivered as the result of the evaluation of IMlw( C). The 
body sc of class C, defined in the unit U, is going to be evaluate,d by /3. Note that the state a is 
changed by extending o-3 with /3. 

In (RS), the evaluation of an expression pair (e, ,P), where ,p is a parameterized expression, in the 
context of a parameterized statement ,y is reduced to the evaluation of the expression e in the context 
of the adapted parameterized statement AU·(,p(u ),it,). 

(RI I) describes ilie communication rendez-vous of POOL If the object a is sending a message to 
object /11, requesting the execution of the method m and if the object /31 is willing to answer such a 
message, then the following happens: The object /31 starts executing the expression em, wbich 
corresponds to the definition of the method m in U, while its state <J,(/11) is changed by setting um, 
the formal parameter belonging to m, to {32, the parameter sent by the object a to /31, After the execu-
tion of em, the object {J1 continues by executing u.,.-a2(ft1)(um), which restores the old value of um, 
followed by the statement relea.w(a,,/,{u));s. TI1e execution of reieast.'{a,i/,(u)) will reactivate the object 
a, which starts executing i/,(u), the statement obtained by substituting the result u of the execution of 
e,.,, into if;. Note that during the execution of em the object a is non-active, as can be seen from the 
fact that a does not occur as the name of any labelled statement in the configuration resulting from 
th.is transition. Finally, the object /31 proceeds with the execution of the statement s which is the 
remainder of its body. 

(Note that we have not incorporated any transitions for the standard objects; this is done in 
Appendix HI.) 

Now we are ready for the definition of the operational semantics of POOL. It will use the following 
semantic uni verse. 

DEFINITION 4.9 (Semantic universe P) 
Let (wE)::E,j° =::E• U:E"' u::E•·{3}, the set of stream1'. We define 

(p,q E )P = ::E--,0'ncompac1(:Ef) , 

where 6l'ncompoc,(::Ef) is the set of all non-empty compact subsets of ::Ef, and the symbol a denotes 
deadlock. The set P is a complete metric space when supplie-,d with the usual metric (see definition 
A.6). 

The elements of P will be used to represent the operational meanings of statements and units. For 
a given state oE::E, the set p(cr) contains streams w E::Eii°, which are sequences of states representing 
possible computations. 1hey can be of one of three forms: If wE::E•, it stands for a finite normally 
terminating computation. If w EL", it represents an infinite computation. Finally, if w E::E• ·{ il }, it 
reflects a finite abnormally terminating computation, which is indicated by the symbol a for deadlock. 

DEFINITION 4.10 (Operational semantics for POOL) 
We define the operational semantics of finite ~ubsets of labelled statements. Let, for a unit U E Unit, 
the function 

«I> u: (0'fin(LStat)-->P)-->(0' fin(LStat)-->P) 

be given, for FE0'fin(LStat)-->P and X E0'fin(LStat), by: 

where 

!{(} if '!fa'vs [(a,s)EX=>s=E] 
«l>u(F)(X)=Ao· {cl} if ,<X,o> - U, T--> and 3a3s [s=/,E A(a,s)EX] 

U { a'·F(X'Xa'): <X, a> - U, T-'> <X',a'>} otherwise, 



<X,o> - U, -r-+ = 3X'.3a' [ <X,o> - U, -r-+ <X',o'> i 
Now the operational semantics 0u: GJfin(LStat)-+P is given as 

l:!u= Fixed Point (Wu). 

It is straightforward to prove that Wu is a contraction and thus has a unique fixed point. 
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The definition of Wu is very similar to the definition of Win the previous section (definition 2.5). If, 
for a given XEGJfin(LStat) and oE~, we have that ,<X,o> - U, -r-+, then no computation steps, 
which are indicated by -r, are possible from <X,o>. The transitions that are possible are of the form 

<X,o> - U, (a,/J1 !m(P2)) -+p, or <X,o> - U, (a?m) -+p' , 
denoting attempts of a single object a to perform a communication action without any matching 
object being present. This is an instance of deadlock and therefore we here have: 0uU1(o)= {o}. On 
the other hand, for every transition 

<X,o> - U, 'T -+<X',o'> 

the set 0u[XJ(o) includes the set o'· 0u[X'](o'), in which the transformed state o' is concatenated with 
the operational meaning of X' in state o'. 

Finally, we can give the operational semantics of a unit. 

DEFINITION 4.11 (Operational semantics of a unit) 
Let [ · · · le: Unit-+P be given, for a unit U= <( ... , C0 <=s0 ), ••. >, by 

lUJe =0u[{(P(0),s.)}l 

The execution of a unit U= <( ... , C.<=s.), ... > consists of the creation of an object of class c. 
and the execution of its body. Its name is given by P( 0 ), the name of the first object. 

Comparison with [ABKR86(a)] 
In [ABKR86(a)], an operational semantics for POOL is defined which differs from l:!u in a number 

of respects: There, a transition relation without labels is used whereas we have a labelled transition 
relation here; further, in [ABKR86(a)] communication is modeled by means of a so-called wait state-
ment as opposed to the release statement we use here; also our use of parameterized expressions and 
statements is new. All these differences can be seen as minor variations of the semantic definitions 
and are motivated by the main goal of this paper, which is to relate the operational semantics with 
the denotational one. There is one major difference, however, which we shall treat in some detail: In 
definition 4.10 of this paper, l:!u is given as the fixed point of a contraction, whereas in [ABKR86(a)] 
the operational semantics is defined in terms of finite and infinite sequences of transitions. In order 
to show the equivalence of both approaches, we now define an operational semantics l:!u in the style 
of [ABKR86(a)], for which we next shall prove that it equals l:!u. 

DEFINITION 4.12 (Alternative operational semantics) 
Let, for a U E Unit, the function 

l:!u: GJfin(LStat)-+P 

be given as follows. Let X EGJfin(LStat) and oE~. We put for a word w E~f: 

WEl:Ji;-[X)(o) 

if and only if one of the following conditions is satisfied: 
(I) w=o1 • • • o. and there exist X 1, ••• ,Xn such that 
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<X,o> -U,r-+ <Xi,o1> -U,T-:-> · · · -U,T-+ <X.,a.> and 'li(a,s)eX.[s=EJ 

(2) w==o1o2 • · • and there exist Xi,X2, ••• such that 

<X,o> -U,-r-+ <X1,01> -U,T-+ <X2,02> -U,-r-+ · · · 

(3) w=o1 • · • o.·il and there exist X 1, ••• ,X. such that 

and 3(a,s)eX0 [s¥=E] and ...,<X.,u. > - U,T-> 

It is 1101 straightforward that the sets 0i.,(X](o) are in P, that is, that they are compact; we prove 
this fact in the following 

For every X Eiiffin(LStat) and oeI: 0i.,(X](o) is compact. 

!>ROOF 
Lei (w;); he a sequence of words in (9i.,(X)(o) ( ~If), say 

We show that (w;); has a converging subsequence with its limit in 0u(X1(o). Assume for simplicity 
that all words w, are infinite. Since w; e0i.,(X](o), for every i, there exist infinite transition sequences 
such that 

<X,o>-><X/,11/ >--><X7 • • • 

(omitting the labels U,-r). From the definition of_:,, it follows that the set 

{ <X',o'>: <X,o>-><X',o'>} 

is finite. Thus there exists a pair <Xi,o1 > such that for infinitely many i's: 

<X/,o} > = <X1,01 >. 
Let / 1 :N->N be a monotonic function with, for all i, 

<XJ(i), o}(iJ> = <X1,01 >. 
Next we proceed with the subsequence (wf,!iJ); of (w;); and repeat the above argument, now with 
respect to the set 

{ <X',o'>: <X,,01 >-><X',o'> }. 

Continuing in this way, we find a sequence of monotonic functions ([k)k, defining a sequence of 
subsequences of (w;);, and a sequence of configurations ( <Xk,ok> )k such that 

Vk 'efj '!fi,;;;,k (o}.(i) = o;] 

and <X,o>-><Xi,01 >-><X2,02>-> · · · 
and moreover such that the sequence (w.r..,(i)); is a subsequence of the sequence of (w.r.oi);. Now we 
define 

g(i) = /;(i). 
Then we have 

.limw (i) = 010203 · • ·. g 

Thus we have constructed a converging subsequence of (w;); with its limit in 0u[X](o). (In case the 



words w; are not all infinite a similar argument can be given.) 

It is not difficult to show that Su= Si,: 

THEOREM 4.14: Su=Si, 

PROOF 
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We prove that Si, is also a fixed point of fl>u, from which the equality follows. Let X E<iffin(LStat) 
such that 3(a,s)EX [s:f:E), let aE~ and let wE~f. If w=a then 

WEll>u(Si,,)(X)(a) WESi,,[X](a). 

Now suppose w:f,a. We have 

wESi,,[X](a) 3a'E~3X'E<iffin(LStat)3w'E~f 

[ I\ w =a'·w' I\ w' E0i,,[X')(a)) 

[definition fl>u] 
w E4>u(0i,,)(X)(a). 

So we see: 0i,,=4>u(0i,,). 

5. A DENOTATIONAL SEMANTICS FOR POOL 
The denotational semantics that is defined in this section was already presented (in a slightly 

different form) in [ABKR86(b)). (For a comparison of the two models we refer the reader to the end 
of this section.) 

Our denotational model has a so-called domain (a solution of a reflexive domain equation) for its 
semantic universe. In [BZ82] it was first described how to solve these equations in a metric setting. 
Then, in [AR88), this approach was generalized in order to deal with equations of the form: 
P;;;t, · · · · · ·, a case that was not covered by [BZ82). For a quick overview of the main results of 
[AR88), the reader might want to read section 2 of [ABKR86(b)]. 

Further, our model is based on the use of continuations. For an extensive treatment of continuations 
and expression continuations, which we shall use as well, we refer to [Go79]. 

We start with the definition of a domain P, the elements of which we shall call processes from now 
on. 

DEFINITIO~ 5.1 (Semantic process domain I') 
Let (p,qE)P be a complete ultra-metric space satisfying the following reflexive domain equation: 

P ;;;t, {po} U id }), 

where ('1T,pE)Stepp is 

Stepp = Compp U Sendp U Answerp, 

with 

Compp = ~XP, 

Sendp = ObjX MNameX ObjX P, 

Answerp = ObJX MNameX 

(The sets {p0 }, ~. Obj, and MName become complete ultra-metric spaces by supplying them with the 
discrete metric.) 



266 

In [AR88], it is described how to find for such an equation a solution which is ~nique up to isomor-
phy. Let us try to explain intuitively the intended interpretation of the domain P. First, we observe 
that in the equation above the subexpression id,,,, is necessary only to guarantee that the equation is 
solvable by defining a contracting functor on (?., the category of complete metric spaces (see Appendix 
I). For a, say, more operational understanding of the equation it does not matter. 

A process p El' is either p 0 or a function from to 6Jcompac,(Step-;;), the set of all compact subsets of 
Stepp. The process p 0 is the terminated process. For p=/=-po, the process p has the choice, depending 
on the current state o, among the steps in the set p (o). If p(o) = 0, then no further action is possible, 
which is interpreted as abnormal termination. For p(o)=/=-0, each step 'ITEp(o) consists of some action 
(for instance, a change of the state o or an attempt at co=unication) and a resumption of this 
action, that is to say, the remaining actions to be taken after this action. There are three different 
types of steps '!TE Step-;;. _ 

First, a step may be an element of ~XP, say 

'IT= <o',p'>. 
The only action is a change of state: o' is the new state. Here the process p' is the resumption, indi-
cating the remaining actions process p can do. (When p' = p O no steps can be taken after this step 'IT.) 

Secondly, 'IT might be a send step, '!TE Sendj;. In this case we have, say 

'IT= <a,m,{1,f,p>, 

with aEObj,mEMName,f)EObj, and pEP. The action involved here consists of an 
attempt at co=unication, in which a mess:i.ge is sent to the object a, specifying the method m, 
together with the parameter {). This is the interpretation of the first three components a,m, and {). 
The fourth component f, called the dependent resumption of this send step, indicates the steps that 
will be taken after the sender has received the result of the message. These actions will depend on the 
result, which is modeled by f being a function that yields a process when it is applied to an object 
name (the result of the message). The last component p, called the independent resumption of this 
send step, represents the steps to be taken after this send step that need not wait for the result of the 
method execution. 

Finally, 'IT might be an element of Answer-;;, say 

'IT= <a,m,g> 

with aEObj, mEMName, and It is then called an answer step. The first 
two components of 'IT express that the object a is willing to accept a message that specifies the method 
m. The last component g, the resumption of this answer step, specifies what should happen when an 
appropriate message actually arrives. The function g is then applied to the parameter in this message 
and to the dependent resumption of the sender (specified in its corresponding send step). It then 
delivers a process which is the resumption of the sender and the receiver together, which is to be com-
posed in parallel with the independent resumption of the send step. 

We now define a semantic operator for the parallel composition (or merge) of two processes, for 
which we shall use the symbol II. It is auxiliary in the sense that it does not correspond to a syntactic 
operator in the language POOL. 

DEFINITION 5.2 (Parallel composition) 
Let II: P be such that it satisfies the following equation: 

pllq = Ao· ((p(o)ILq) U (q(o)llp) U (p(o) i0 q(o))), 

for all p,qEP \ {po}, and such that pollq =qllpo =po. Here, Xllq and XI O Y are defined by: 

Xllq = { 'ITllq: '!TEX}, 

XlaY = u {'ITlaP: '!TEX, pEY}, 



where ,rfiq is given by 

<a',p'>fiq = <a',p'llq>, 
<a,m,{J,f,p>llq = <a,m,fJ,f,pllq>, and 

<a,m,g>fiq = <a,m,AfJ·M·(g(PXh)llq)>, 
and ,rj0 p by -l{ <a, g(/JXf)llp >} if"".'._ <a,m, {J,f,p > and P".'._ <a,m,g > 

"iaP - or p- <a,m,{J,J,p > and ,r-<a,m,g > 
0 otherwise. 
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We observe that this definition is self-referential, since the merge operator occurs at the right hand 
side of the definition. For a formal justification of this definition see the appe~dix _Ef [~BKR86(b)], 
where the merge operator is given as the unique fixed point of a contraction on P XP-->1 P. 

Since we intend to model parallel composition by interleaving, the merge of two processes p and q 
consists of three parts. The first part contains all possible first steps of p followed by the parallel com-
position of their respective resumptions with q. The second part contains similarly the first steps of q. 
The last part contains the communication steps that result from two matching communication steps 
taken simultaneously by process p and q. For ,re Stepp the definition of ,r I q is straightforward. The 
definition of "iaP is more involved. It is the empty set if ,r and p do not match. Now suppose they do 
match, say ,r = <a,m, fJ,f,p > and p= <a,m,g >. Then ,r is a send step, denoting a request to object 
a to execute the method m, and p is an answer step, denoting that the object a is willing to accept a 
mess.ige that requests the execution of the method m. In ,r I 0 p, the state a remains unaltered. Since 
g, the third component of p, represents the meaning of the execution of the method m, it needs the 
parameter fJ that is specified by a. Moreover, g depends on the dependent resumption f of the send 
step "· This explains why both fJ and fare supplied as arguments to the function g. Now it can be 
seen that g(/JX/)llp n:presents the resumption of the sender and the receiver together. (In order to get 
more insight in this definition it is advisable to return to it after having seen the definition of the 
semantics of an answer statement.) 

The merge operator is associative, which can easily be proved as follows. Define 

E = SUPp,q,reP {dj;((pllq)llr,pll(qllr))} 

Then, using the fact that the operator II satisfies the equation above, one can show that £,.;; ½•£. 
Therefore £=0, and II is associative. 

Now we come to the definition of the semantics of expressions and statements. We specify a pair of 
functions <6DE,6Ds> of the following type: 

6DE: LE-->AObj--> ContE __,,IP, 

6Ds: Ls-->AObj--> Conts __,,IP 
where 

ContE=Obj-->P and Cont5 =P. 

Let sELs, aeAObj, andpeP. The semantic value of the statements is given by 

6Ds(s )(a)(p ). 
The object name a represents the object that executes s. Secondly, the semantic value of s depends 
on its so-called continuation p: the semantic value of everything that will happen after the execution of 
s. The main advantage of the use of continuations is that it enables us to describe the semantics of 
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expressions in a concise and elegant way. 
The semantic value of an expression eELE, for an object a and an expression continuation 

f e ContE, is given by 

6iMeJ(aXf). 

The evaluation of an expression e always results in a value (an element of Obj), upon which the con-
tinuation of such an expression generally depends. The function f, when applied to the result fJ of e, 
will yield a process /(/J)EP that is to be executed after the evaluation of e. 

Please note the difference between the notions of resumption and continuation. A resumption is a 
part of a semantic step 'ITEStep'j,, indicating the remaining steps to be taken after the current one. A 
continuation, on the other hand, is an argument to a semanti~ function. It may appear as a resump-
tion in the result. A good example of this is the definition of Fs(x~e) (in definition 5.3(Sl)) below. 

DEFINITION 5.3 (Semantics of expressions and statements) 
Let 

QE = 
,1, = Ls->AObj->Conts->1 P. 

For every unit VE Unit we defme a pair of functions 6Du = <6DE, 6Ds > by 

6Du = Fixed Point ('I' u ), 
where 

'Yu: (QEXQs) (QEXQs) 

is defined by :nducti~n on tJle ~tructure of LE and L~ by the following £_lauses. For F= <FE, Fs > 
we denote 'Yu(F) by F=<FE, Fs>. LetpeConts=P,feContE=Obj->P and aeAObj. Then: 

Exl'RESSIONS 

(El, instance variable) 

FE(x)(a)(f)=Xo·{ <o,f(o1(a)(x})> }. 

The value of the instance variable x is looked up in the first component of the state a supplied with 
the name a of the object that is evaluating the expression. The continuation / is then applied to the 
resulting value. 

(E2, temporary variable) 

FE(u)(a)(f)=Xa·{ <o,/(02(a)(u))>} 

(E3, send expression) . . . 
FE(e, !m(e2))(a)(f)=FE(e,)(a)(X/J1 ·FE(e2)(a)(X/J2·M{ </J1,m,/J2,J,po> })). 

The expressions e I and e2 are evaluated successively. Their results correspond to the formal parame-
ters {31 and /Ji of their respective continuations. Finally, a send step is performed. The object name {31 
refers to the object to which the message is sent; /32 represents the parameter for the execution of the 
method m. Besides these values and the method name m, the final step </31,m,/32,/,po> also con-
tains the expression continuation / of the send expression as the dependent resumption. If the attempt 
at communication succeeds, this continuation will be supplied with the result of the method execution. 
The independent resumption of this send step is initialized at p 0• 

(E4, new-expression) 

FE( new (C))(a)(f)=M·{ <o',/(/J)IIFs(sc)(/3)(.po)> }, 
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where 

/J=ll{_a3), 

a'=<a1,a2,a3U{/J}>, C~cEU. 

A new object of class C is created. It is called 11{_a3): the function" supplied with the set of all object 
names currently in use yields a name that is not yet being used. The state a is changed by expanding 
the set a3 with the new name {J. The process Fs(sc)(.PXpo) is the meaning of the body of the new 
object {J with p0 as a nil continuation. It is composed in parallel with /({J), the process resulting from 
the application of the continuation f to {J, the result of the evaluation of this new-expression. We are 
able to perform this parallel composition because we know from f what should happen after the 
evaluation of this new-expression, so here the use of continuations is essential. 

(ES, sequential composition) . . . 
FE(s ;e)(a)(/)=Fs(s)(a)(FE(e)(a)(/)). 

The continuation of s is the execution of e followed by f Note that a semantic operator for sequential 
composition is absent: the use of continuations has made it superfluous. 

(E6, self) 

FE( self )(a)(/)= /(a). 

The continuation off is supplied with the value of the expression self, that is, the name of the object 
executing this expression. We use /(a) instead of A/J·{ <a,J(a)>} in this definition wishing to express 
that the value of self is immediately present: it does not take a step to evaluate it. 

STATEMENTS 

(SI, assignment to an instance variable) . . 
Fs(x+-e)(a)(p)=FE(e)(a)(A{J·Aa·{ <u',p> }), 

where u'=a({J!a,x}. The expression e is evaluated and the result fJ is assigned to x. 
(S2, assignment to a temporary variable) 

.F's(u+-e)(a)(p)=.FE(e)(a)(A/J·Aa·{ <u',p> }), 

where u'=a{fJ!a,u}. 
(S3, answer statement) 

Fs( answer m)(a)(p)=Aa·{ <a,m,gm> }, 
where 

with 

u'=a{fJ!a,u,.}, 

a' =a{ 1J2(a)(u,,,)/ a,u,. }, 

m~<u,,,,em >EU. 

The function gm represents the execution of the method m followed by its continuation. This function 
gm expects a parameter fJ and an expression continuation f, both to be received from an object send-
ing a message specifying the method m. The execution of the method m consists of the evaluation of 
the expression em, which is used in the definition of m, preceded by a state transformation in which 
the temporary variable u,,, is initialized at the value fJ. After the execution of e, this temporary vari-
able is set back to its old value again. Next, both the continuation of the sending object, supplied 
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with the result /J' of the execution of the method m, and the given continuation p are to be executed 
in parallel. This explains the last resumption: f(/J')llp. 

Now that we have defined the semantics of send expressions and answer statements let us briefly 
return to the definition of wlaP (definition 5.2). Let w=<a.,m,{J,J,q> (the result from the elabora-
tion of a send expression) and p= <a.,m,g> (resulting from an answer statement). Then 'IT I aP is 
defined as 

?TI aP= { <o,g(/J)(f)llq> }. 

We see that the execution of the method m proceeds in parallel with the independent resumption q of 
the sender. Now that we know how g is defined we have 

g(/JXJ)=Ao·{ <o',FE(em)(a.)(A/J'·Ao·{ <o',f(/J')llp> })> }. 

The continuation of the execution of mis given by A/J'·Ao·{ <o',j(/J')llp> }, which consists of a state 
transformation followed by the parallel composition of the continuations f and p. This represents the 
fact that after the rendez-vous, during which the method is executed, the sender and the receiver of 
the message can proceed in parallel again. (Of course, the independent resumption q may still be exe-
cuting at this point.) Moreover, the result /J' of the method execution is passed on to the continua-
tion f of the send expression. 

(S4, sequential composition) 
A A A 

Fs(s 1 ;s2)(a.)(p)=Fs(s 1)(a)(Fs(s2)(a.)(p )). 

(S5, conditional) 

Fs( if e then s 1 else s 2 fi )(a)(p)= 

FE(e)(a)(A/J· if {J=tt 

(S6, loop statement) 

then Fs(s1)(a)(p) 

else Fs(s2)(a)(p) 

fi ). 

Fs( doe thens od )(a)(p)= 

Ao·{ <o, FE(e)(a)(A/J) · if {J=tt 

(End of definition 5.3.) 

then Fs(s)(a)(Fs( doe thens od )(a)(p)) 

else p 

fi )> }. 

It is not difficult to prove that 'Vu is a contraction and hence has a unique fixed point 6Du. As a 
matter of fact, we have defined 'Vu such that it satisfies this property. Note that the original func-
tions FE and Fs have been used in only three places: in the definition of the semantics of a new-
expression, of an answer statement, and of a loop statement. Here the syntactic complexity of the 
defining part is not necessarily Jess than that of what is being defined. At those place.., we have 
ensured that the definition is "guarded" by some step Ao·{ <o', ... > }. It is easily verified that in 
this manner the contractiveness of 'Vu is indeed implied. 

DEFINITION 5.4 (Denotational semantics of a unit) 



We define [···)'ii: For a unit UeUnit, with U=<( ... , Cn4=Sn), ..• >, we set 

[ Ul'il =6J>slsnl(II( l2l ))(po). 
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The execution of a unit always starts with the creation of an object of class Cn and the execution of 
its body. Therefore, the meaning of a unit U is given by the denotational meaning of sc, the body of 
class Cn, supplied with 11(/ZJ), denoting the name of the first active object, and with po, the empty con-
tinuation. 

Comparison with (ABKR86(b)] . 
There are some diiferences between the denotational semantics <6J>E,6J>s> presented here and the 

denotational semantics given in [ABKR86(b)]: The former model is given as the fixed point of a con-
traction i'u and does not use so-called environmmts to deal with process creation (new(C)) and the 
meaning of the execution of a method (answer m); the latter model is defined without the use of a 
contraction and does use environments. In [ABKR86(b)], the semantics of a unit U is given with the 
help of a special environment Yu, which contains information about the class and method definitions 
in U and is obtained as the fixed point of a suitably defined contraction. Another diiference is the 
way the loop statement is treated: In this paper, the definition of its semantics fits smoothly in the 
definition of <6J>E,6J>s> as a fixed point. In (ABKR86(b)], a contraction is defined especially for this 
case. 

Another way to express these diiferences is that the three constructs for recursion present in POOL 
(i.e., the new expression, the answer and the loop statement) are treated here by means of one fixed 
point definition, whereas in (ABKR86(b)1 environments are used for the first two forms of recursion 
and a specially defined contraction for the last one. However, we state (without proof) that the two 
definitions are equivalent: it is straightforward how to translate the one approach into the other. 

An additional diiference between the denotational semantics of a unit given here and the one 
presented in [ABKR86(b)] is the presence of a semantic representation of the standard objects in the 
latter, whereas these are not treated in this section. As mentioned before, we do not treat standard 
objects now because we want to concentrate on the correctness proof. In order to show, however, that 
our proof (to be presented in section 7) can also deal with standard objects, we shall extend, in 
Appendix III, both our operational and our denotational semantics with a semantic representation of 
standard objects, and prove that the correctness result still holds for these extended models. 

6. AN INTERMEDIATE SEMANTICS 
After having defined an intermediate semantics Elu for ~Jin (LStat) and a denotational semantics 6J>u 

for LE and Ls we shall, in the next section, discuss the relationship between the two. As we did in 
section 2, we s1!dJ compare Bu and 6J>u by relating both to an intermediate semantics 
Elu': ~Jin the definition of which is the subject of this section. 

DEFIN1110N. 6.1 (Intermediate semantics flu') 
Let UeUnit. Let Elu': ~Jin be given by 

flu' = Fixed Point <•u'>, 
where 

•u': (~Jin 

is defined, for and Xe~Jin (LStat), as follows. 
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If Va"i/s [(a,s)EX~s =£), then 4'u'(F;(X)=p0 • Otherwise we have 

fllu'(F;(X)=;\o-(CFUSFUAF) 

where 

with 

and 

CF = { <o',F(X')>: <X,o> - U, <X',o'> }, 

SF = { </J1,m,/Ji,;\/J•F({(a,,JIJJ))}), F(X')>: 

<X,o> -U, (a,/J1 <{(a,1/,)} UX',o> }, 

AF= {<a,m,gm>: <X,o> <{(a,s)}UX',o>} 

gm = ;\/J•;\f-(J\o·( <o',6iMemJ(a)(;\/J'•;\a•( <o',f(/J')IIF({(a,s)})> })>} II F(X')), 

o' = o(/J!a,um}, 
a' = a(o2(a)(um)la,um}, 
II. =<Um,em > E (J. 

(It is straightforward to show that fllu' is a contraction.) 

The function f!u' differs from the operational semantics f!u in two ways. First, its range is the 
semantic universe P, which is used for the denotational semantics 6Du, instead of P, the semantic 
universe of f!u: For every set XeGJfin (LStat) the function f!u' yields a process l'lu'(X)eP, rather than a 
function from states to sets of streams of states. Secondly, in addition to the computation steps (indi-
cated by the set CF above) single-sided communication steps are present in f!u'(X) (indicated by SF 
and AF, for send and answer steps), whereas f!u(X) contains only computation steps. On the other 
hand, the similarity between the definitions of f!u and f!u' is obvious: both are based on the transition 
relation - for GJfin(LStat). 

At first sight, two facts regarding the relation between fJ' u and 6Du can be mentioned. First, they 
have the same range, that is, the semantic universe P of processes, in which single-sided communica-
tion actions are visible. Secondly, 6Du is defined compositionally with the use of semantic operators 
(like the merge II), whereas the definition of f!u' is based, as was mentioned above, on the transition 
relation -

In the next section the relationship between f!u, f!u' and 6Du will be formally expressed. Let us, for 
the time being, try to elucidate the definition of f!u' above by explaining what communication steps 
are present in f!u'(X). 

Corresponding with every send transition of the form 

<X,o> -U, <{(a,1/,)})UX',o> 

the set f!u'(X)(o), for a state oe~, contains a send step of the form 

</J1, m, /J2, ;\/J•f!u'({(a,,JIJJ})}), f!u'(X')>. 

Here /J1, m and /Ji indicate that a message specifying the method m with parameter /Ji is sent to the 
object /J1. The dependent resumption of this send step is ;\/J•f!u'({(a,,JIJJ)}}): the meaning of the state-
ment that will be executed by a as soon as it receives the result /J of the message. The last component 
of this send step, the independent resumption, consists of f!u'(X'), which is the meaning of all the 
statements executed by objects other than a. Thus it is reflected that these objects need not wait till 
the message is answered; they may proceed in parallel. 

Next, f!u'(X)(o) can contain some answer steps. For every answer transition 



<X,a> -U, <{(a,s)}UX',a> 
the set 6u'(X)(a) includes an answer step 
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with g,,, as in the definition above. It indicates that the object a is willing to answer a message specify-
ing the method m, while the resumption g,,, indicates what should happen when an appropriate mes-
sage arrives. 1bis function gm, when supplied with a parameter /J and a dependent resumption f (both 
to be received from the sending object), consists of the parallel composition of the process flu'(X') 
together with the process 

Xo·{ <o', 'jjMemJ(a)(X,lf-Xa·{ <a', J(/J')ll6u'({(a,s)})> })>} . 
(Note that we have used the function 6De here; the definition of flu' therefore depends on its 
definition.) The process flu'(X') stands for the meaning of all the statements executed by objects 
other than the object a: these objects may proceed in parallel with the execution of the method m, the 
meaning of which is indicated by the second process. Its interpretation is the same as in the definition 
of 6D5 [ answer m )(a)(p) in the previous section but for the fact that here the last resumption of this 
process consists of fi,B')llflu'({(a,s)}): the parallel composition of the dependent resumption of the 
sender (supplied with the result /J' of the method m) and the meaning of the statement s, with which 
the object a will continue after it has answered the message. 

7. SEMANTIC CORRECTNESS 
We are now ready to establish the main result of this paper. We shall relate the operational seman-

tics eu and the denotational semantics 6Du by first comparing flu and flu', the intermediate semantics 
defined in the previous section, and next comparing 6u' and 6Du. These relationships will be formally 
expressed by means of suitably defined abstraction operations. From this we shall deduce the fact that 

[UJ~ = abstr([ U)'il), 

where abstr: is such an abstraction operation. 

Part 1: Comparing flu and flu' 
We start with the definition of abstr: which relates the semantic universes P and P of flu and 
flu'• 

DEFINITIO~ 7.1 (Abstraction operation abstr) _ 
Let abstr: P be defined as follows. We set abstr(p0) = { (}. If p eP \ {p0 }, then 

{
{il} ifp(a)n Comp'j= 0 

abstr(p)=Xa· U {a'·abstr(p')(a'): <a',p'>ep(a)} otherwise, 

where Comp'j=IXP. (Formally, we can define this operation correctly by giving it as the fixed point 
of a suitably defined contraction on See Appendix II for an extensive formal treatment of the 
function abstr.) 

The function abstr transforms a process peP into a function which 
yields for every aeI a set abstr(p)(a) of streams. (If one regards the process pas a tree-like structure, 
these streams can be considered the branches of p.) If p(a)n Comp'j= 0, that is, if p(a) is empty or 
contains oruy single-sided communication steps, then we have a case of deadlock because, operation-
ally, single-sided communication is not possible. Therefore we then have: abstr(p)(a)={il}. If, how-
ever, p(a) does contain a computation step <a',p'>, then we have: a'·abstr (p')(a')!;;; abstr (p)(a). 



274 

The changed state o' is concatenated with abstr(p'Xa'), in which a' is passed through to abstr applied 
top', the resumption of <a',p'>. Thus the effect of different state transformations occurring subse-
quently in p is accumulated. 

Next, we use the operation abstr to relate «I>u and «l>u'-

Tu:EoREM 7.2 (Relating «I>u and «I>u'): [«l>u(abstr 0 F)= abstr O («l>u'(F))) 

PROOF 
Let Xe'iffin(LStat) and ae~. Suppose -,'lta'lts [ (a,s)eX~s =E). If 
,<X,a> - U, -r then 

«I>u(abstr 0£XX)(a)={a} 
= abstr(«l>u'(FXX)Xa) 

since «l>u'(FXX)(a)nCon-p;= 0. (Recall that Con-p;=~XP.) If <X,a> -U, we have 

«I>u(abstr 0 £XX)(a) = LJ { a'·(abstr0 £XX'Xa'): <X,a> - U, 'T_. <X',a'>} 

= U {a'·(abstr(FXX')Xa'): <X,a> -U, 'T_. <X',a'>} 

= [ see definition 6.1 ] 

abstrCAa·CF Xa) 

= abstr(Aa·(CFUSFUAF)Xa) 
= abstr(«l>u'(FXX)Xa) 
= (abstr O «l>u'(F)XX)(a). 

Since «I>u and «l>u' are contractions and thus have unique fixed points, the following corollary is 
straightforward: 

COROLLARY 7.3: 0u= abstr O 0v' 

Part 2. Comparing 0v' and 6Du. 
In order to compare 0v': 'iffin(LStat)_.P and 6DueQEXQs we define an extension of 6Du 
(= <6DE, 6Ds>) in two steps. First, we define 6Du' (= <6DE',6Ds'> )eQE'X Qs', with 

QE' = LE'--AObj_. Cont£ _.IP, 
Qs' = Ls'_.AObj_. Conts _.Ip, 

which is as 6Du but with the extended sets of expressions and statements, LE' and Ls', for its domain. 
(Recall that Ls' is used in the definition of LStat = AObjXLs'-) Next, we extend 6Du' to 
6Dif: 'if fin (LStat)_.P, which takes sets of labelled statements for its arguments. 

DEFINITION 7.4 (6Du') 
!:et v'Jl: (QE'XQs')--(QE'XQs') be defin~ as follows. For F=<JE, Fs-:.::__., we denote '1r'u(F) by 
F=<FE, Fs>- Let aeAObj,pe Conts=P and/e ContE=ObJ--P. Now Fis defined similarly to 
'1ru(F) (definition 5.3) but with the following clauses added: 

FE<ftXa)(f)=f(JJ), for PeObj-;;;JAObj, 

h((e,,p)Xa)(f)=F'E(eXaXAP·F'E('P<ft)Xa)(f)) 

F(EXa)(p)=p 



F's (release(.8,s)Xa)(p )=p IIFs(s)(.B)(po) 

Fs((e, ,J,)Xa)(p )= FE(e Xa)QI./J·Fs(,[,(/J)Xa)(p )~ 
Finally, we set 

6Du'= <6DE', 6Ds'> 

= Fixed Point (+"'u). 
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The meaning of (e,qi) is obtained by first evaluating the expression e, then substituting the result /J 
into the parameterized expression qi and finally evaluating the expression qi(/J). The interpretation of 
6Ds'[(e,,[,)) is similar. In 6Ds'[release(.8,s))(a)(p), the meaning of the statements (when executed by the 
object /J and with the empty continuation p0 ) is computed and composed in parallel with the process 
p, the continuation of the release statement. 

DEFINITION 7.5 (6Di,) 
Let%·: be given by 

%=(6Du'), 
where~: (QEXQs) is defined as follows: If F=<FE, Fs>, then ~(F), here 
being denoted by F is given by 

F({(a1,s1), ... ,(ak,sk)})= Fs(s1Xa1)(po)II · · · IIFs(skXak)(po), 
(We put F(0)=po.) 

Note that we have: F(XU Y)=F(X)IIF(Y). 
The omission of .parentheses in the parallel composition above is justified by the fact that II is asso-

ciative. 
Given a finite set X of labelled statements (a;,s;), the value of 6Di,(X) is obtained by first computing 

the semantics of every labelled statement (a;,S;)EX. This is given by 6Ds(s;](a;)(po), where the label a; 
indicates the name of the object executing the statement and where p0 indicates that after s; nothing 
remains to be done. Next, all the resulting processes are composed in parallel. 

Now that we have extended the domain of 6Du to '?Pfin(LStat) we are ready to prove the fact that 
6Di,=flu'• It is a straightforward corollary of theorem 7.7 below. The proof of this theorem makes use 
of the following 

LEMMA 7.6 
For all aeAObj and ,[,eLps we have: 

PROOF 

V/J l~u'(%X{(a,,[,(/J))}) = 6Di,({(a,,[,(/J))})] 

VeeLE' [~u'(6Di,X{(a,(e,,[,))}) = 6Di,({(a,(e,,[,))})] 

The proof uses induction on the complexity of expressions. We treat two simple basic cases, being 
(lazy and) confident that these will show the reader how to proceed in the other cases. So let 
aeAObj and ,[,eLps and suppose 

'rl/J l~u'(6Di,X{(a,,[,(/J))}) = 6Di,({(a,,[,(/J))}H 

Fore =/J we have 

~u'(%X{(a,(/J,,[,))}) = ~u'(%X{(a,,[,(/J))}) 
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= [ hypothesis l 
6i)i,( {( a, '1-<P})}) 

= 6j)s'l'1-<P))(a)(po) 
= 6j)s'l(,8,lf,))(a)(po) 
= %({(a,(,8,lf,))}); 

if e = J:11 !m(Pi) then 
cI>u'(%X{(a,(,81 !m(Pi),lf,))}) = Ao·{ </J1,m,f32,A{l•6i)i,({(a,'1-<P})}), po>} 

= Ao·{ </J1,m./Ji,A/l•6i)s'l'1-<P)](a)(po), po>} 
= 6j)E'l/J1 )(aXX.B' 1 -6j)E'I/Ji)(aXA/J' 1 · 

THEOREM 7.7: 4>u'(6i)i,)=6i)i, 

PROOF 

Ao·{ <Jf 1 ,m, lh Afl•6i)s'l'1-<P)](a)(po), po>})) 
= 6j)E'l/J1 !m(Pi))(aX'Afl•6j)s'l'1-<P))(a)(po)) 
= 6j)s'l(,81 !m(Pi), 1/,))(a)(po) 

= %({(a,(,81 !m(Pi), 1/i))n 

We show: lr/Xe'!ffin(LStat) [4>u'(6i)i.,)(X)=6i)i.,(X)], using induction on the number of elements in X. 

Case 1: X={(a,s)}, with aeAObj, seL8 '. 
The proof uses induction on the complexity of the statements. We treat some typical cases. 
(i) answer m: 

4>u'(%)({(a, answer m)})= >.a·{ <a,m,gm>} 
with 

Km= Afl->.J·Ka·{ <i',6i)E[em](a)(AP'·Xo·{ <a',Jt8')11%({(a,E)})> })>} 

= X/J->.J·Ka·{ <i',6i)E(eml(a)(AP'·M·{ <a',/(,8')> })>} 
(and i' and a' as in definition 6.1). If we compare this to the definition of 6i)8(answer m] 
( definition 5.3(S3)) we see 

Ao·{ <a,m,gm >} = 6Ds(answer m)(a)(po) 
= %({(a, answer m)}~ 

(ii) x +-e: we distinguish two subcases. First , if e = /J, then 

4>u'(%)({(a,x+-/J)}) = Ao·{ <a{/Jla,x},po>} 

If efl.Obj, then: 

= 6DE1Pl(a)(Afl·Ao·{ <a{/JI a,x }, Po>}) 
= 6Ds'lx+-/Jl(a)(po) 
= %({(a,x+-/J)n 

4>u'(6Di.,)({(a,x+-e)}) = [ definition - ] 



(iii) SJ ;s2 : case analysis for SJ. 
(iv) do e then s od: 

ctiu'(%X{(a,(e,AU·x+-u))}) 

= [ see (v) below ] 

6Di.,({(a,(e,Xu·x+-u))}) 

= 6DE'[e)(aXXP·6Ds'lx+-Jl)(a)(po)) 

= 6Ds'[x+-e)(a)(po) 

= 6Di,({(a,x+-e)}). 

ctiu'(%X{(a, doe thens od )}) 
= Xa·{ <a,6Di.,({(a, if e then s;(do e thens od) else£ fi )})>} 

= Xa·{ <a,6DE'[e)(aXXP· if Jl=tt then 

6Ds'ls)(aX6Ds'ldo e thens od)(a)(po)) else po fi )>} 

= 6Ds'[do e thens od)(a)(po) 

= %({(a, doe thens od)}). 
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(v) (e,,[,): by induction we have that the theorem holds for (a,,[,(Jl)), for every jlEObj. Now we can 
apply lemma 7.6. 

Case 2: XE'il'fin (LStat) and X has at least two elements. 
Suppose we have two disjoint sets Xi and X2 in qi.fin (LStat) with X=XJ UX2 such that 

ctiu'(%XX;)=6Di,(X;) 
for i = 1,2. Assume Xi, X2,;6{ <a1,E>, ... , <a.,E> }. We shall show that from this induction 
hypothesis it follows that 

ctiu'(6Di.,XXJ UX2)= 6Di.,(XJ UX2)-

(Tois is prov~ in very much the same way as the fact that cti'(6iJXp)=6D(p) and cti'(6DX'1T)=6D('IT) implies 
cti'(6DXp/\'1T)="i:(p/\'1T), which occurs in theorem 2.14 of section 2.) 

From the definition of - U-+ (definition 4.8, rules 10 and 11) it follows that 

cti'u(%XXJ UX2)= Xo·(X'l U~ UZ). 

Here 

X'l = {<o', 6Di,(X'JUX2)>: <XJ, o> -U,-r-+ <X'i, o'>} 

U { <Pi, m, Pi, A/l·%({(a, ,[,(Jl))}), 6Di.,(XJ'UX2)>: 

<XJ,o> -U,(a,JlJ!m(Pi))-+ <XJ'U{(a,,[,)},a>} 

U{<a,m,gm>: <Xi,o> -U,(a?m)-+ <Xi'U{(a,s)}, a>} 

with 

g,., = ><PN·(Xa·{ <ii', 6j)E(e,.,)(aXX,8'·Aa·{ <a', f(,8')116Di.,({(a,s)})> })>} 

II 6Di,(Xi'UX2)) 

and e,.,, a' and a' as in definition 6.1. The set is like xy but with the roles of XJ and X2 inter-
changed. Finally, 
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Z = { <a',6Di,({(P1, (e,,., Au·(u,,,~a2<PiXu,,,); release (a,t/i(u)); s)))} U X'i UX2')>: 

<X;,a> -U, (a,/Ji!m(JJ,i)~ <{(a,1/,)}UX;', a> and 

<~,a> -U,(Pi?m~ <{(P1,s)}U~', a>, fori=l,j=2ori=2,j=l} 

(and a'=a{/Jil/J1, u,,,}, m~<u,,,, e,,.>eU). The steps in X'/ correspond to the transition steps that 
can be made from Xi UX2 as a result of a transition step from X; (by an application of rule 10 in the 
definition of for i=l,2. 

The set Z contains those steps that correspond with a communication transition from Xi UX2 
which results from a send transition from X; and an answer transition from x1 (for i = 1, j = 2 or 
i = 2, j = l) by an application of rule 11. 

Now we have 
XT = 4iu'(6Di,XXiXa)IL GJ>i,(X2), 

= 4iu'(6Di,XX2Xa)IL 6Di,(Xi), 
Z= 4iu'(6Di,XXiXa)la4iu'(6Di,XX2Xa). 

The proofs of these facts are not difficult (but tiresome and therefore omitted). It follows that 
cf>u'(6Di,XXi UX2) = Aa·(XT U~ UZ) 

= Aa·(4iu'(6Di,XXiXa)IL 6Di,(X2)U -
4iu'(6Di,XX2Xa)IL 6Di,(Xi)U 

4iu'(%XX2Xa)la4iu'(%XX2Xa)) 
= [ induction hypothesis ] 

Ao·(6Di,(XiXa)IL 6Di,(X2)U 

6Di,(X2Xa)IL 6Di,(Xi)U 
6Di,(X i Xa)la6Di,(X 2Xa)) 

= I definition II l 
6Di,(X i )ll6Di,(X 2) 

= 6Di,(Xi UX2). 
This concludes the proof of theorem 7.7. 

Since flu' and 6Di, are both fixed points of the same contraction 4iu', they must be equal: 

CoROLLARY 7.8: flu'=6Di, 

Part 3. Collecting the results 
We have proved that flu= abstr O flu' and that flu'=6Di,. Thus 

THEoREM 7.9: flu= abstr O 6Di, 

From this theorem we deduce the main theorem of this paper: 

THEOREM 7.10: (l/)8 = abstr((l/]'l!) 

PROOF 
Let U=<( ... , C,.~11), ••• >. Then 

D 
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lUJe = 6u({(1,(.0), Sn)}I . 
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APPENDIX I: MATifEMATICAL DEFINmONS 

DEFINITION A. I (Metric space) 
A metric space is a pair (M,d) with Ma non-empty set and d a mapping l] (a metric or 
distance) that satisfies the following properties: 
(a) 'o'x,yEM[d(x,y)=0 x =yJ 
(b) 'o'x,yEM[d(x,y)=d(y,x)] 
(c) 'o'x,y,z EM [d(x,y)-.;d(x,z)+d(z,y)J. 
We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied: 
(c') 'o'x,y,z EM [d(x,y)-.;max{ d(x,z),d(z,y) )]. 
Please note that we consider only metric spaces with bounded diameter: the distance between two 
points never exceeds 1. 

ExAMJ>LES A. 1.1 
(a) Let A be an arbitrary set. The discrete metric dA on A is defined as follows. Let x,y EA, then 

{
0 if X =y 

dA (x,y) = 1 if x=/=y. 

(b) Let A be an alphabet, and let A 00 =A• U A., denote the set of all finite and infinite words over A. 
Let, for x EA 00 , x [n] denote the prefix of x of length n, in case /ength(x )";,,n, and x otherwise. 
We put 

d(x,y)=2-.n,p{n:x[n[=y[nl), 

with the convention that i- 00 =0. Then (A 00 ,d) is a metric space. 

DEFINITION A.2 
Let (M,d) be a metric space, let (x;); be a sequence in M. 
(a) We say that (x;); is a Cauchy sequence whenever we have: 

'1£>0 3NEN 'o'n,m>N [d(x.,xm)<(j. 
(b) Let xEM. We say that (x;); converges to x and call x the limit of (x;); whenever we have: 
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'V(>O 3NeN 'Vn>N [d(x,xn)<€]. 
Such a sequence we call convergent. Notation: lim; .... 00 x;=x. 

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele-
ment of M. 

DEFINITION A.3 
Let (M1,d1),(M2,d2) be metric spaces. 
(a) We say that (M1,d1) and (M2,d2) are isometric if there exists a bijection/:M1-M2 such that: 

'Vx,yeM1 [d2(f(x),/(y))=d1(x,y)]. We then write M 1~ 2 • When/is not a bijection (but only 
an injection), we call it an isometric embedding. 

(b) Let f:M 1-M 2 be a function. We call/ continuous whenever for each sequence (x;); with limit x 
in MI we have that lim; .... 00/ (x;) = f (x ). 

( c) Let A ;;;.Q, With M 1 -AM 2 we denote the set of functions f from M I to M 2 that satisfy the fol-
lowing property: 
'Vx,y EM 1 [d2(J(x),f (y))..;A •d1(x,y)]. 
Functions fin M 1- 1 M 2 we call non-expansive, functions fin M 1-•M2 with O..;t<l we call 
contracting. 
(For every A ;;.Q and/eM1-A M 2 we have: /is continuous.) 

PROPOSITION A.4 (Banach's fixed-point theorem) 
Let (M,d) be a complete metric space and f :M-M a contracting function. Then there exists an x EM 
such that the following holds: 
(1) / (x)=x (xis a fixed point of j), 
(2) 'Vy EM [f(y)=y => !, =x) (xis unique), 
(3) Vxo EM [limn .... 00/<n (xo)=x 1 where pn + 'l(xo)= f(J<n>(xo)) and J<0l(xo)=xo, 

DEFINITION A.5 (Closed and compact subsets) 
A subset X of a complete metric space (M,d) is called closed whenever each Cauchy sequence in X has 
a limit in X and is called compact whenever each sequence in X has a subsequence that converges to 
an element of X. 

DEFINITION A.6 
Let (M,d),(M1,d1), ... ,(Mn,dn) be metric spaces. 
(a) With M 1-M2 we denote the set of all continuous functions from M I to M 2. We define a 

metric dF on M 1-M2 as follows. For every /1,/i EM1-M2 

dFifl ,/2)=supxeM, {d2if1(x),fi(x))}. 

For A;;;.Q the set M 1-AM2 is a subset of M 1-M2, and a metric on M 1-AM2 can be obtained 
by taking_!!?.e res!!!ction of the corresponding dF. 

(b) With M, U · · · UMn we denote the disjoint union of M 1, ... ,Mn, which can be defined as 
{l}XM~ · · ·J:l{n}XMn. We define a metric du on M 1U · · · UMn as follows. For every 
x,yEM1 U · · · UMn 

-{dj(x,y) if x,yeLJ}XMj, I..;j..;n 
du(x,y) - 1 otherwise. 

(c) We define a metric dp on M 1 X · · · XMn by the following clause. 
For every (x1, ... ,Xn), (y1, ... ,Jn)EM1 X · · · XMn 

dp((X1, ... ,Xn),(y1, ... ,Yn))=max;{d;(X;,y;)}. 

(d) Let lijcwed(M)= { X: X <;;,MAX is closed}. We define a metric dn on lijcwed(M), called the Haus-
dorff distance, as follows. For every X, Y E<ijcJo.red(M) with X, Y,;e0 
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dn(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} }, 

where d(x,Z)=definf,.z{d(x,z)} for every Z kM, xeM. For X=/=0 we put 

dn(0,X)=dn(X, 0)= l. 

The following spaces 

'!fcompac,(M) = {X: XkM I\ Xis compact} 

'!f.,ompacr(M) = {X: XkM I\ Xis nonempty and compact} 

are supplied with a metric by taking the respective restrictions of dn. 
(e) Let c e[O, l]. We define: idc(M,d)=(M,c·d). 

PROPOSmON A.7 
Let (M,d), (M1,d1), ... ,(M.,d.), dF, du, dp and dn be as in definition A.6 and suppose that (M,d), 
(M 1,d1), ••• ,(M.,d.) are complete. We have that 
(a) (M1 2 M2,t!E), 
(b) (M1 U · · · UM.,du), 
(c) (M 1 X · · · XM.,dp), 
(d) ('!fc1..,e,1(M),dn ), ('!fcompac1(M),dn) and ('!fncompac,(M),dn) 
are complete metric spaces. lf (M,d) and (M;,d;) are all ultra-metric ~paces these composed spaces are 
again ultra-metric. (Strictly spoken, for the completeness of M 1 2 and M 1 2 we do not need the 
completeness of MI· The same holds for the ultra-metric property.) 

The proofs of proposition A.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It can 
be proved with the help of the following characterization of the completeness of the Hausdorff metric. 

PROPOSITION A.8 
Let ('!fc1..,e,1(M),dn) be as in definition A.6. Let (X;); be a Cauchy sequence in 6Jc1.,,iM). We have: 

lim; .... ooXi = {lim; .... 00 x;jx; EX;, (x;); a Cauchy sequence in M}. 

The proof of proposition A.8 can be found in [Du66) and [En77]. The completeness of the Hausdorff 
space containing compact sets is proved in [Mi5 l]. 

APPENDIX II: TIIE FUNCTION abstr 
The definition of abstr: can be viewed as a fixed point characterization of a somewhat 

differently and more intuitively defined operation 

abstr': 

which we introduce below. Next, we show that abstr =abstr'. 

DEFINITION II.I (abstr') 
LetpeP and ael:, and let wel:f'. 
(1) We call w a finite stream inp(a) if there exist <a1,p1 >, ... , <a.,p.> such that 

w=a1 ···a. I\ Vl..;i<n [<a;+1,P;+1>Ep;(a;)]/\ <a1,p1>ep(a)/\p.=po. 
(2) We call wan infinite stream in p(a) if there exist <a1,p1 >, <a2,p2 >, ... such that 

w=a1a2 · · · I\ VJ..;; [<a;+1,p;+1 >Ep;(a)] /\ <a1,P1 >ep(a). 



(3) We call w a deadlocking stream in p(a) if there exist <a1,p 1 >, ... , <an,Pn> such that 

w = a1 · · · a0 ·il I\ Vl..;i<n [<a;+1,p;+1 >ep;(a;)] /\ 

<a1,P1 > ep(a) /\p0 =/=po /\p0 (a0 )n(IX.P)= 0. 

Now we define a function abstr•: by 

abstr'(p) = .\a·{w: w is a stream in p(a)}. 
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We have to verify that for every pe.P and aeI the set abstr'(pXa) is compact. This is not trivial 
and is proved in theorem 11.3 below (which is a slightly generalised form of lemma All.4 in 
[BBKM84]). The fact that we use in the definition of P compact subsets rather than closed ones is 
essential for the proof. (For a process domain defined with closed subsets, [BBKM84] provides a coun-
terexample of the theorem.) 

In the proof of theorem 11.3 below, we need the following lemma: 

LEMMA 11.2 
Let q=lim._,00 q0 ,for q,q.e.P: assume (without loss of generality) that for all n ;;.o 

d(q,q.)..; 2-(n+I)_ 

Let aeI and let (w;); be a sequence in If with W;Eabstr'(q;Xa~for every j;;.Q. Then 

Vn 3u [ w.[n}ueabstr'(qXa) ]. 

PROOF 
Let w0 [n]=a1 · · · a0 • (In the case of termination or deadlock the rest of the proof is analogous to this 
case.) Now there must be q1, •.. ,q• with 

<a1,q 1 >eqn(a) and <a;+1,l+I >el(o;) 

for 1-.;i..;n. We shall show that there are q1, ... ,q" with <o1,q1 >eq(a) and <o;+ 1,qi+I >ei(o;) 
for 1-.;;..;n. We do this inductively: For i=l we observe that d(q,qn)..;r<n+IJ, so 
d(q(o),qn(a))..;rn ..;½. Because <a1,q 1 > Eqn(a), there must be a q1 with 

<a1l >eq(a) and d(q 1 ,q1)..;2-n. 

For the inductive step, let 1-.;;..;n and let i be such that d(qi,q;)..;2-<n+IJ+;_ Then 

d(q;(a;),i (o;))..;rn +;..; ½. 

Because <a;+1,qi+I >eqi(a;) there must be a q;+I with 
_;+I _;( ) d d{ i+I _;+I) 2 n+i <a;+1,q >eq a; an q ,q ..; - . 

With q1, ... ,q" suitably chosen, we can take ueabstr'(q°Xon) arbitrary, and then wn[n]·u will be 
in abstr'(qXo). 

THEOREM 11.3: For every p e.P and aeI the set abstr'(pXa) is compact. 

PROOF 
Let (w;); be a sequence in abstr'(pXo). We shall show that there exists a subsequence of (w;); that has 
its limit in abstr'(pXa). First we introduce some notation: For an arbitrary word weif, w <k > 
indicates the word that is obtained from w by omitting the first k elements. We call p 0 =p, a0 =a and 
fo =idN, the identity function on the set of natural numbers. We shall inductively construct for every 
n ;;.Q a function J. a process Pn e.P, and a state an such that: 
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I. '\ij;;a.Q [ w/.(i)[n ]=a1 · · ·a.] 

2. 'Iii, O..;;i<n [<a;+1,P;+1>Ep;(a;j] 

3. 3(v;); in abstr'(p.Xa.) '\ii;;a.I [v;[i]=w.f.(i)<n >[ill 

4. J. is monotonic and there exists a monotonic h with J. = J. -1 °h. 
Once we have constructed such sequences (J.)., (p.). and (a.)., we are done: We can define 

g(i) = f;(i). 
This function is monotonic and we have 

lim;_00 Wg(i) = U] •az · · • . 
Since a1·a2 • • • eabstr'(pXa) we thus have found a subsequence (wg(i)); of (w;);, which has its limit in 
abstr'(pXa). 

The construction is as follows: Suppose we are at stage n ;;a.O. Let (v;); be a sequence in 
abstr'(p.Xa.) satisfying property 3. above. Let for every ;;;,,1 

V; =~-'T~ •••• 

Then there a. q'1, q~, . .. eP with 

<1"141 >ep.(a.), and 

'liJ;;a.I I <T;+i,9;+ 1 >eq1(T;)l. 
Since the set p.(a.) is compact, the sequence ( <T\,q\ > ); has a converging subsequence, which is 
given by, say, the monotonic function hand which.has a limit, say <T,q> inp.(a.). We may assume 

\fj;;,, I [-r1<il =TA d(q'/<i>,q)..;;2-(i+I) ]. 

Now we take 

Pn+I = q, Un+!= 'T, f.+1 = J.oh. 
In order to show that this construction works, we have to verify that Pn + 1, a.+ 1 , and J. + 1 again 

satisfy properties 1. through 4. above. 
I. We have for every ;;;a.I: 

w.f..,(iJln + 1] = WJ..,(i)[n ]·w.f..,(i)(n + 1) 

= a1 · · · a. ·wf..,(i) <n >(1) 

= a1 • • • a.·vh(i)(I) 

2. We have <a.+1,Pn+i> = <T,q>ep.(a.). 
3. In order to prove tl!is property, we are going to apply the following version of lemma 11.2: For 

all q, 91, qz, ... eP, and for all X1, Xz, ... e~r, 
'\ii;;a.l [d(q,q;)..;;2-<i+I) A x;eabstr'(q;Xa)] 

3(y;); in abstr'(qXa) '\ii;;,, 1 [y;[i] = x;[i] ]. 

This we now use: Since 

'\ij;;a.l [d(p.+1,q'/<il).,;;i-<i+I) A vh(i)<I>eabstr'(q'/(i)xa.+i)l 

there must exist a sequence (v;'); in abstr (p. + I Xan + J) with 

'Iii;;,, 1 [ v;'[i] = vh(i) < 1 >[i]]. 



Now 

vh(i)<l>[i] = vh(i)[h(i)]<l>[i] 

= w/..,(il<n >[h(i)]<l>[i] 

= w/..,(i)<n><l>[i] 

= w/..,(i) <n + 1 >[il 
(Here we have used twice the fact that h(i)>i, for all;;;,, 1.) 

4. By definition. 
This concludes the proof of theorem II.3. 

285 

Next we show that the function given in definition 7.1, can be defined as the fixed 
point of a contraction. 

DEFINmON II~ (Formal _definition abstrl _ 
We define P); let P, PeP and ae~. We put 

:E:(F)(po)(a) = {(}, 
:E:(F)(p)(a) = {3}, if p(a)n Comp"j,= 0. 

Otherwise, we set 

:E:(F)(p)(a) = U {a'·F(p')(a'): <a',p'>ep(a)}. 

Finally, we define 

abstr = Fixed Point(!) 

It is straightforward to show ::: is contracting. The fact that for every p eP and ae~ the set 
:E:(F)(p)(a) is compact needs some explanation. In order to prove this, it is convenient to adapt the 
definition of E a little. Recalling that P = we define 

E': 

where the superscript I above the arrow indicates that we consider only non-expansive (and hence 
continuous)functions, by 

Now 

E'(F)( <p,a>) = U { a'·F( <p',a'> ): <a',p'> ep(a)}. 

E'(F)(<p,a>) = LJ {a'·F(<p',a'>)} 
<o' ,p'> ep(o) 

LJ(a'·{F(<p',a'>): <a',p'>ep(a)}) 
o' 

U (a'·F({ <p',a'>: <a',p'> ep(a)})) 
o' 

This union can be seen to be compact by first observing that from the compactness of p it follows 
that the union is finite: the set 

{a': 3p'eP[<a',p'>ep(a)l} 

is finite. The compactness of p(a) further implies the compactness of the isomorphic set 

{ <p',a'>: <a',p'>ep(a)}, 
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for every o'el:, which is preserved under the continuous mapping F and the concatenation with 11'. 
So we have a finite union of compact sets, which is again compact. Now the compactness of 
:E(F)(pXa) follows straightforwardly from the compactness of 'E.'(F'X<p',o'>), for arbitrary F',p' 
and a'. The fact that :E(F) is again non-expansive is also easily verified. 

We conclude this appendix by showing that abstr and abstr• are equal: 

THEollEM Il.5: abstr=abstr• 

PllooF: Considerpe.P-{p0 } and ael: such thatp(a)n(l:XP~0. Then: 

weabstr•(pXa).,. [definition abstr•J 

3o'el:3w'el:f 3p'eP [w=a'·w' /\ w'eabstr•(p'Xa')] 
.,. [definition 'E.] 

we:E(abstr)(pXa). 
The other cases are easy. We see: abstr• ='E.(abstr•). Because 'E. is a contraction the theorem follows. 
(Note the similarity of this proof and the one of theorem 4.14.) 

APPENDIX III: STANDARD OBJECTS 
We want to extend the language under consideration with a few standard classes of so-called stan-

dard objects, namely the classes Boolean and Integer. On these objects the usual operations can be 
pedormed, but they must be formulated by sending messages. For example, the addition 23 + 11 is 
indicated by the send expression 23! add (11), sending a message with method name add and parame-
ter 11 to the standard object 23. The set of expressions LE, given in definition 3.1, is extended with 
these standard objects: 

e:: = xlule1 !m(e2)lnew(C)ls;elselfl a, 
where aeSObj, with 

SObj = Z U { tt, ff}. 
Recall that we already defined (in definition 4.1): 

Obj = A.ObjUSObj 
(= A.ObjUZU{tt, ff}~ 

Intuitively, the evaluation of the expression a, with aeSObj, results in that object itself. For 
instance, the value of the expression 29 will be the integer 29. 

Below, we shall first extend the definition of the operational semantics, next we adapt the definition 
of the denotational semantics (following [ABKR86(b)]), and finally we shall prove that the 
equivalence result of section 7 still holds. 

III.I Standard objects in the operational semantics 
We extend the set LE,, given in definition 4.2, with the standard objects: 

e::= xi ule1 !m(e2)lnew(C)ls;el self1 al (e,cj,), 

where now aeObj=A.ObjUSObj. 
Next we add to the set of labeled statements (definition 4.5) an abstract element S1 that represents 

all standard objects and for which transitions will be specified in a moment: 

LStat• = LStat U { S, ). 



The following transitions are possible from S,: 
<{S1}, a> 
<{S1}, a> 
<{S1}, a> 
<{S1}, a> 
<{S,}, a> 
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for every neZ and be{tt,.tf}. (This list can be extended with transitions for other operations.) 
Communication with a standard object is now modeled by the following transitions: 

If <{(a,s)}, a>-(a,n!add (m))---+<{(a,l/i)}, a> 
then <{(a,s), S,}, >/i(n +m)), S1 }. 

If <{(a,s)}, a>-(a, b1 !and a> 
then <{(a,s), S1}, /\b2)), S1}, a>, 

and by similar transitions for the other operations. The result of, for example, an addition of the 
integers n and m is computed and passed through to the parameterized statement of the object 
requesting the execution of the method add. 

Finally, the operational semantics of a unit (definition 4.11) is changed by taking into account the 
standard objects; we put 

[U]~ = 0u[{(ll(0),s.), S, }J. 
(In the operational semantics defined in [ABKR86(a)], the standard objects are treated somewhat 
differently. There no special rules are given for the communication with a standard object; instead, 
some axioms are added that replace in one step a send expression that addresses a standard object by 
the corresponding value of the result.) 

III.2 Standard objects in the denotational semantics 
The denotational meaning of a standard object a EL£ is given by 

6Ma)(,8)(/) = /(a), 

where ,BeAObj, and/ eContE. 
We follow [ABKR86(b)] in introducing a process Ps, eP that represents the deEotational meaning 

of the standard objects. For this we have to adapt our semantic process domain P. In definition 5.1 
the domain P is given by 

P ~{po} U 

In order to let the standard process Ps" to be defined below, fit into our semantic domain nicely, we 
are forced to use closed s'!!>sets of steps rather th~ compact ones. Let us indicate the process domain 
given in definition 5.1 by P co• We introduce here Pc1, which satisfies: 

Pc1 ~{po} U 

We have, via an obvious C!!_lbedding, that Pco ~Pc1. 
Next we introduce Ps, eP c1, which represents the meaning of all standard objects. It satisfies the fol-

lowing equation: 

Psi= >.a· ({<n, add, g;;>: neZ}U 
{ <n,sub, g;; >: n eZ} U 
{<b, and, gt>: be{tt,.tf}}U 
{<b, or, g~>: be{tt,.tf}}U 
( <b, not, ,r;; >: be ( tt, ff}}), 
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where 

g;; = ·J..°jJE Ob/ :Af (if PEl then J(n + P)llps1 else Psi fl), 

g;; = "APEOb/ (if PEl then f(n - P)llps1 else Psi fl), 

gt = "APEOb/ (if PE{tt,.ff} then f(bt\f1)llps1 else Psi fl) 

gt PE{tt,ff} thenj(bvP)llps1 elseps1 fl) 

g,: = 
This definition is self-referential since Psi occurs at the righthand si~e of the definition. Formally, 

Ps, can be given as the fixed point of a suitably defined contraction on Pc1. _ _ 
We observe that ps, is an infinitely branching process, which is an element of Pc1 but not of Pco· 

This explains the introduction of Pc1. 
The operational intuition behind the definition of Ps, is the following: For every n EZ the set p 51 (a) 

contains, among others, two elements, namely <n, add,g;; > and <n, sub,g;; >. These steps indi-
cate that the integer object n is willing to execute its methods add and sub. If, for example by 
evaluating n !add(n'), a certain active object sends a request to integer object n to execute the method 
add with i ·arameter n', then g;;, supplied with n' and the continuation f of the active object, is exe-
cuted. We •. ve that g;; (n'YJ) is, by definition, the parallel composition of f supplied with the 
immediate result of the execution of the method add, namely -n +n', and the process Ps,, which 
remains unaltered: g;; (n'YJ)= j(n +n')llps,- (A similar explanation applies to the presence in p5,(a) 
of the triples representing the booleans.) 

The standard objects are assumed to be present at the execution of every unit U. Therefore we 
adapt the denotational semantics of a unit ( definition 5.4) as follows: 

[ U)"' = 6Dsls.](II( 0 ))(po)llps,-

Ill.3 Semantic equivalence 
Finally, we extend the arguments presented in section 7 in order to show that for the modified ver-

sions of ( U]6 and ( U)<;J, as presented above, we still have: 

[U]6 = abstr([U)<;J). 

We begin by adapting the intermediate semantics 0u' ( definition 6.1), which will now be of type 

0u': 

We put: 

0u'( { S,}) = Psr 
and for X!:;LStat• -{Si} (=LStat): 

0u'(XU{S1}) = 0u'(X)ll0u'({S1}), 

with 0u'(X) as defined according to definition 6.1. 
Next we extend the definition of abstr to an operation: 

abstr• )), 

where abstr • is defined as in definition II. I. Please note, however, that for processes p E Pc1 it is in 
general not the case that abstr'(pXa) is a closed subset of ~f. Fortunately we can prove the follow-
ing, which turns out to be all we need: 

THEOREM III.I: For every pEPco and aE~: abstr'(pllps1Xa) is compact. 
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PROOF 
The proof is analogous the one for theorem 11.3, given the additional observation that for every 
pePco the set 

(pllps,Xo)n(l:XPc1) 
is compact, which we prove now. 

According to the definition of II we have 
(pllps,Xo) = p(o)ILps, U Ps,(o)ILp U p(o)laPs,(o} 

From the continuity of II and the compactness of p(o) it follows that 

(p(o)ll..p51)n(~XPc1) = { <o', p'llp5,>: <o', p'> ep(o)} 

is compact. Secondly, the set 

(ps,(o)ll...p)n(~XPc1) 
is empty. Finally, we show that 

(p(o)l.ps,(o))n(~ XPc1) 

is compact. Consider a sequence ( <o, q; > ); in this intersection. We show that it has a converging 
subsequence ( <o, qk(i) > );. According to the definition of · la there exist sequences 
( <a;, m;, /J;,f;,p;>); in p(o) and ( <a;, m;, g;> ); in ps1(o) such that 

q; = g;(P;)(f;)llp;. 
Because p(o) is compact there exists a monotonic function k:N->N such that 

( <ak(i), mk(i), Pk(i), fic(i), Pk(i) > ); 

is convergent. From the definition of the metric on Pc1 it follows that we may assume that there exist 
a,m and P such that for all i 

ak(i)=a, mk(i)=m, and Pk(i)=P. 
The definition of Ps, implies that for every <a, m, g> in p51 (o) the function g is entirely determined 
by a and m. Thus 

(<ak(i), mk(i), Kk(i)>); = (<a, m, Kk(i)>); = (<a, m, g>);, 

for some g. Suppose we have 

f = lim;-,oofic(i) /\ P = lim;-,ooPk(i); 

then <a,m,P,f,p>ep(o) and 

lim;_,00 <0,q;> = <a,g(PXJ)llp> e(p(o)laPs,(o))n(~XPc1} 

CoR.OLLARY IIl.2: abstr* 0 f!u'E<ffjin(LStat*)->P 

THEOREM 111.3: f!u=abstr* 0 f!u' 

This theorem can be proved by showing that in addition to f!u also abstr• 0 f!u' is a fixed point of 
4>u. This can be done analogously to the proof of theorem 7.2. From this observation and the fact 
that 4>u is a contraction the theorem follows. 

The definition of 6Di,, which is given in definition 7.5, is also changed. It will be a function of type 
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6Di,: '!Pfor(LStat•)-Pc1 

that is like the original 6Di, but for the clause that 

6Di,({S,}) = Ps,. 
A last step towards the goal of this third appendix, which is to prove the semantic equivalence of 

the denotational and operational semantics with standard objects present, consists of the observation 
that theorem 7.6, stating that 

ll>u'(6Di,) = 6Di,, 
can be proved for the new version of 6Di, as well. The extended proof involves some. new case analysis 
(within Case 2), concerning the communications with standard objects. This being the last appendix, 
this step being the last step towards our goal, and the author being only human, we omit the details 
and state without proof: 

THEOREM III.4: (Extended version of 7.6): «I>u'(6j)i,)=6Di, 

COROLLARY IIl.5: (Extended version of 7. 7): 0' = 6j)i_, 

Finally we are ready to prove the extended version of the main theorem (7.9) of our paper: 

THEOREM III.6: [lfle = abstr'([lfl'D) 

PROOF 

[lfle = 0uH(v(0), s0 ), S1 }] 

= [theorem III.3] 

abstr'(0u'({(11(0), s0 ), S1})) 

= [corollary III.5] 

abstr•(6Di,({(11(0), s.), S1})) 

= abstr•(6j)s[s.)(11( 0 ))(po)llps,) 
= abs tr• ([ lfl'il ). 
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The most basic context in which the notion of fairness can be defined is that of a repetitive choice 
among alternatives. In [F] the reader can find an elaborate introduction to the notion(s) of fairness, 
with an extensive overview of the research in this area. Here "fairness" means that, in having to 
choose repeatedly among alternatives, no alternative will be postponed forever. Usually a nondeter-
ministic programming language is taken as the context for such a study, especially the language of 
guarded commands ([DI). 

In this paper we propose a different approach, which could be called a semantic one, as opposed to 
the language (or syntax) directed approach mentioned above. Our point of departure is a 
semantic domain for nondeterministic languages in general, without limiting ourselves to the choice of 
a particular language. Such a semantic domain will in general be a solution of some reflexive domain 
equation 

FP~P, 

where Fis a functor on some category of mathematical domains, and"~•· means "is isomorphic to". 
Various techniques have been developed for solving this type of equation. We follow a metric 

• The research of Jan Rutten was partially supported by ESPRIT project 415: Parallel Architectures and 
Languages for Advanced Information Processing - a VLSI-directed approach. 

•• The research of Jeffery Zucker was supported by the National Science Foundation under grant no. DCR-
8504296. 
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approach, introduced by De Bakker and Zucker in [BZI], and reformulated and extended in a 
category-theoretic setting in [AR]. The category e under consideration consists of complete metric 
spaces, and the functors on e are so-called contracting functors. These spaces are composed from 
basic metric spaces (sets provided with the trivial 0-1 metric) by the operations of union, Cartesian 
product, forming function spaces, and forming the set of all (closed) subsets of a given space. Exam-
ples would be complete metric.spaces satisfying one of the following equations: 

P~AU(BXP), or 

P ~A U(B~CXP)), 

where A, Band Care arbitrary sets and stands for "is isometric to". (Since elements of e are pairs 
<P,dp>, consisting of a set Panda metric dp on P, domain equations over e should also specify a 
condition on these metrics. In this introduction, however, we omit such details.) 

Another example of a domain is a metric space P satisfying the domain equation: 

P {po} U'il'd(B XP). 

(Here 'il'c1( • • • ) denotes the set of all closed subsets of ( · · · ).) Since this is the domain we shall use 
in this paper as a starting point for our study of fairness, we discuss it in some detail. The (possibly 
infinite) set B={b 1,b2, •.. } is called the alphabet of P. The elements of Pare called processes. A 
process p Er -• either p0, the so-called nil process, or a (closed) set of the form 

p={ <b;,p;> I <b;,p;>EBXP,iEI} 
for some set I of indices. (Here the set / represents the choice among alternatives.) Then p can be 
regarded as a process that for each i El can take a step b;, and then continues with the process p; 
(called the resumption of b;). This is itself either p0, indicating that the process p has terminated after 
performing step b;, or again a (closed) set of possible next steps and corresponding resumptions. 

Roughly, one can think of these processes as tree-like entities. However, there are some differences. 
Trees with a left branch labeled a and a right branch labeled b, and with a left branch labeled b and a 
right branch labeled a, are identified, and both are represented by { <a,p0 >,<b,p0 > }. A tree with 
only one branch labeled a is identified with a tree with two branches both labeled a. Furthermore, we 
do not consider arbitrary subsets of B X P, but only closed ones. For an extensive comparison of trees 
and processes we refer to [BK]. 

In our approach the elements of B, which are called basic steps, are atomic actions, whose possible 
interpretations have been abstracted from. One such interpretation would be to associate a basic step 
b; with each component of a guarded command, indicating that the i-th component of that command 
is selected. Another interpretation would be to regard b; as an arbitrary action of the i-th component 
of a system of (possibly infinitely many) active components, indicating that "progress" is being made 
by that component. A context in which this interpretation makes sense is that of object-oriented pro-
gramming (see e.g. [ABKRD. The basic steps could also be thought of as being different possible 
actions (e.g. read, write, assignment, etc.) which a single component can perform. 

In this framework of metric process theory, we undertake a general investigation of fairness of 
processes from two points of view: (1) intrinsic fairness of processes, and (2) fair operations on 
processes. 

Regarding (1), a process p is called (intrinsically) fair if all its paths are fair. A path for p is a 
sequence of pairs: <a1,p1 >,<a2,p2>, .. . , such that <ai,p1 >Ep and <a;+ 1,p;+ 1 >Ep; for all 
i;.,. J. The difference between fair and unfair paths can easily be illustrated with a simple example: 
consider a process p E P satisfying 

p={ <0,p>, <l,p> ). 

This process must choose infinitely often (in fact at every step) whether to perform the basic step "O" 
or the basic step "l". The following path in p 
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<0,p>, <0,p>, <0,p>, ... 
is unfair (with respect to basic step "1"), because step "l" can be taken infinitely often, but never is. 
An example of a fair path is 

<0,p>, <1,p>, <0,p>, <l,p>, ... 

There are actually two notions (at least) of fairness current in the literature. The notion we are con-
sidering in this paper is often called "strong" fairness (e.g. in [OA]), as opposed to "weak" fairness. In 
our context a path .,, would be called weakly fair if every basic step that is from some moment on 
continually enabled in .,, occurs infinitely often in w. (For the definition of enabled see 2.3.) This 
notion is also called justice ([LPS]). A path is strongly fair if every basic step that is enabled infinitely 
often (but not necessarily continually) in .,, occurs infinitely often in w.) The difference between these 
two notions can again be illustrated with a simple example: consider a process p eP satisfying 

p={ <0,{ <0,p> }>, <l,{ <1,p> }> }. 

This process can choose infinitely often whether to perform twice the basic step "O", or twice the 
basic step "l ". Then the path in p 

<0,{<0,p>}>, <0,p>, <0,{<0,p>}>, <0,p>, ... 
is weakly fair but not strongly fair. We do not consider weak fairness further in this paper. 

We shall define in section 3 (for a finite alphabet B) a "fairification"· operation 

(where P1nd is a suitably extended version of P), such that the process Fair(p) is fair, and contains 
precisely those paths of p that are fair, or, more precisely, representatives of such paths. The relation 
between Fair(p) and p will be clarified by the definition of a mapping from the paths of Fair(p) to 
those paths of p which they represent. Roughly, Fair(p) is defined by associating indices with the 
subprocesses (or "nodes") of p so as to provide a "bookkeeping" of the way in which alternative sub-
processes are chosen in forming paths. These indices indicate priorities for each of the basic steps bj. 
During the construction of Fair(p ), new sets of indices will from time to time be chosen by certain 
random choices. (This idea of implementing fair scheduling by means of systematic alternation of ran-
dom choices is well known (see e.g. [AO], [BZ2,3], [Pl).) In section 4 this theory is extended to an 
infinite alphabet, with an "expanding" system of indices (i.e. increasing in length), so that an index at 
a node records all the (finitely many) basic steps already encountered on the path to that node. 

We tum now to (2), the notion of fair operations on processes. Suppose given an operation 0 on 
processes, which is, say, binary: We want to define a fair version of 0, 
such that for all p 1 ,p2 EP: first, if p I and p 2 are (intrinsically) fair, then so is 0/p 1 ,p2); and second, 
0/pi,p2) is fair with respect to the operation e. This second condition must be explicated for each 
operation 0. A good example is the merge operation II :PX P In [BZ2,3] a fair version 111 is 
defined. In this case the second condition is the requirement that all paths in the resulting process 
P1 IIJP2 must be fair with regard to alternate scheduling from p 1 and p 2. A trivial and wrong solution 
to the problem would be to define 

Pl IIJP2 = Fair(pillpi). 
Obviously, the first condition would be satisfied, but not so the second. The reason for this is, 
roughly, that in the resulting process p I IIJP2, (intrinsically) unfair paths of p I llp2 that are fair with 
respect to the alternate scheduling from p I and P2 should still be present. The operation Fair, how-
ever, would remove them from p 1 llp2. So this solution would be too coarse. A satisfactory solution 
was given in [BZ2,3], where the fair merge was defined on the basis of alternate sequences of random 
choices. 
In this paper (section 5) we shall consider another example of an operation on processes, namely 
infinite iteration ( · · · defined by 
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p"' = 
where p0 = po and p" + 1 = p" 0p. (Here " 0 " stands for sequential composition of processes.) We 
define the fair infinite iteration p"'' of a process p eP and, after explicating the notion of fairness with 
respect to infinite iteration, prove that the conditions above are indeed satisfied. 

An area that remains to be investigated is that of fairness for non-unifonn processes [BZl], where 
our uninterpreted basic actions are replaced by basic state transformations, since here even the 
definition of fairness of paths in such processes is problematic. 

RELATED WORK: We already mentioned [F] above, where the reader can find an introduction to the 
notion(s) of fairness. Next, we mention a few related papers without the intention of giving a com-
plete overview of this area of research. . 

In [OM], fairness properties are imposed through metrics that allow convergence to fair processes 
only. The starting point is a simple concurrent language for which a semantics is given with the help 
of so-called concurrent histories, which are partial orderings describing 'true' concurrency. In [AO] 
and [CS], proof rules are given for fair transformations in concurrent systems: in the first paper for a 
fixed number of concurrent components, and in the latter for a (possibly) growing number. 

The main difl"erence between the above approaches and ours, is that they consider fairness with 
respect to parallel (or concurrent) behavior of subprocesses, and we relate fairness to nondeterministic 
choice (represented by the nodes in our processes). Furthermore, the fact that we study fairness of 
processes purely at a semantic level, enables us to consider the notion of arbitrary fair operation on 
processes, of which the merge (of concurrent, possibly infinitely many, processes) is just one example. 

ACKNOWLEDGEMENTS: It was Jaco de Bakker who first noticed that fair scheduling, implemented 
by systematic alternation of random choices (as in [Pl), could be used to model fair merge in the 
semantic framework of process domains, as in [BZ2,3]. The second author had useful discussions with 
Shenquan Xie on fairification and fair infinite iteration. 

2. MA'IHEMATICAL PRELIMINARIES 

DEFINITION 2.1 (Domains) 
We shall use mathematical domains P of processes p, which are such that: 
( l) P is a complete metric space, 
(2) P satisfies the following reflexive equation: 

P {po} U'iPc1(A XP), 

where stands for "is isometric to", p0 is a null process, 'iPc1( · • · ) denotes the set of all closed sub-
sets of ( · · · ) and A, with typical elements a, is such that it contains as a subset a (possibly infinite) 
alphabet 

B={b1,b2, ... } 
of basic steps. 

We shall not dwell too long upon the mathematical details of the construction of a domain P which 
satisfies the above definition. Let us just briefly mention two difl"erent approaches. First, one can take 
the metric completion of the union of metric spaces P0 CP 1 C · · · defined inductively by 

Po= {po}, 
P. +1 {po} U'iP,1(A XP.). 

(The metric on Po is trivial, the metric on P.+ 1 can be defined using the metric on P •. ) For this 
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method, full mathematical details and extensive motivation are supplied in [BZl]. Secondly, one can 
interpret the reflexive equation for P as defining a functor Fon a category of complete metric spaces, 
thus: 

FP = {po}U~c1(AXP). 
(The definition of F should also specify a metric for FP.) In [AR] it is shown how to define Fas a 
so-called contraction, which has a (unique) fixed point; so 

FP~P. 

Thus this method also presents us with a solution. 

REMARK: We should be more precise about the metrics involved. We should have written the equa-
tion above like 

FP = {po} U ~c1(A X id ½(P)), 
where, for any positive real number c, idc maps a metric space (M,d) onto (M,d') with 
d'(x,y)=c·d(x,y). For the details see [AR]. 

We now introduce a number of concepts related to processes. 

DEFINITION 2.2 (Paths) 
A path for a process p EP is a (finite or infinite) sequence 

7T = (<a1,p1 >,<a2,p2>, .. . ) 
such that 

<a1,p 1 >Ep I\ \;fi;;,,l [<a;+1,P;+1 >Ep;]. 
We say that 7T passes through p;, and p; will be called a node of p or a subprocess of p (for i;;,,J). The 
set of all paths for p will be called Paths(p ). 

The following definition explains which processes we want to consider fair. 

DEFINITION 2.3 (Fairness) 
(a) Let b;EB. Consider a path 

7T=(<a1,p1>,<a2,p2>,. • .). 
We say that b; is enabled in 7T (or i is enabled in w) whenever 

3k EN 3q EP [ <b;,q > Epkl-
If <b;,q> Epk we also say that b; is enabled at step k. We say that b; occurs in w, whenever 

3kEN [ak =b;]. 

(b) We call a path w fair whenever for all b; EB, if b; is enabled infinitely often in w, then it occurs 
infinitely often in w. 

(c) A process p EP is called fair if all its paths are fair. 

ExAMPLE: Let pEP be such that p = { <a,p >, <b,p >}.Then bis continually enabled in 
w=(<a,p>, <a,p>, ... ), 

but never occurs in it. Thus, the path w is unfair. 
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Please note that only basic steps b;eB are taken into account in the definition of fairness. 

3. FAIRJFICATION OF PROCESSES WI11I FINITE ALPHABET 

Let P be defined by 

P {po} U'ifc1(B XP), 

with B a finite alphabet: 

B ={bi, ... ,bm}• 
Given a processpeP, we want to form a new process Fair(p), which is, in some sense, a fair version 
of p. For this purpose we want to define a function 

Fair: 
such that there is an obvious correspondence between the paths of Fair(p) and the fair paths of p. 
Here P1nd is ~ven by: 

plnd = {po} U'ifc1(A xpI""), 

where A = B Uindu, and Index is a set of indices (to be defined below). A node p' of a process 
peP1nd with 

p' = { <11,p,> I PE/}, 
for some subset I of Index, is called a sum node and is denoted by 

p'= IP,· 
rel' 

After having defined the function Fair, we shall clarify the relation between p and Fair(p) by defining 
a mapping 

4>: Palhs(Fair(p ), 
that will satisfy the following two properties. First, for every path wePalhs(Fair(p)) we have that 
il>(w) is fair. Secondly, any fair path in p will be in the range of 4>. The function Fair will be defined 
in such a way that it transforms a process p into a fair process Fair(p) by labeling each node of p 
with an index and, moreover, interspersing some new nodes consisting of sums of indices (to be 
defined below). Indices are the main building blocks in the definition of the function Fair. They are 
defined as follows. 

DEFINmON 3.1 (Indices) 
The set Index of indices, with typical elements 11, is given by 

Index= { <n1', ... ,n::> I 
Vie{l, ... ,m} [n;;;,.O /\ O<s;~oo /\ (n; =O~s; = oo))}, 

where mis the number of elements in B, and n:· denotes the Cartesian pair <n;,s;>. 

Let p be a process and " an index. The process p•, which is defined below, can be viewed, infonnally 
speaking, as a process that behaves like p as far as is allowed by the index 11. Consider the i-th ele-
ment of i,, say n:·. It is related to b;, the i-th element of our alphabet B. The interpretation of n:• 
(relative top) is that in paths starting in p, a step b; is permitted n; times with priority s;. 
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For the priorities s; we have the convention that a low number indicates a high priority. It is possible 
that two or more s;'s have the same value, the corresponding b;'s having the same priority. The sym-
bol 00 indicates the lowest priority possible. Because it is always associated with an n that is 0, it can 
also be interpreted as indicating no priority at all. 

REMARK 
The interpretation of the i-th component nf' is in a sense orthogonal to the approach taken in e.g. 
[AO]. There a single number z; is used to indicate the priority of the i-th component of some system 
of active components. This number z; indicates, roughly, the number of times a computation can 
"allow itself' not to choose this component as the next one to make progress. In our approach the 
number n; indicates the number of times we are allowed to choose b; (the i-th component) as the next 
step, before another component gets the highest priority. 

Now suppose we have a process p containing a step <b;,q >: 
p = { ... ,<b;,q>, ... }; 

and assume furthermore that we have 11E/ndex with 

where n;>0 and s;=min{s 1, ••• ,sm}- Then, according to our interpretation ofp•, it is permitted to 
choose <b;,q> as the first step of a path starting from p. With the resumption q of this step will be 
associated a new index ,,-[i ], in which n; is decreased by one. If n; > 1 nothing happens to the priority 
s; of b;. If n; = 1 (and so decreased to 0) it is, for the time being, the last time that b; is allowed, and 
s; is changed to 00 (the lowest priority possible). As we will see, at some later stage it will be taken 
care of that n; ands; are reset again, so that n;>0 and s;<00. All this is formalized in the following 
definition. 

DEFINITION 3.2 
Let 11Elndex be such that 

and let iE{l, ... ,m}. We define 

[
<ni', ... ,(n;-1)'-, ... ,n:;;> 

,,-[i]= <ni', ... ,000 , ••• ,n:;;> 
undefined 

There is one other operation on indices we shall need. 

DEFINITION 3.3 
Let 11Elndex be such that 

"= <nj1, ... ,n:;;>, 
then 

- -
N(11) = { <;;;• •... ,;;:;; > 1 

if n; > 1 

if n; = 1 
if n; =0. 

'v'jE{l, ... ,m} [(nj =0 /\sj= 00)=>(nj>0 /\sj =s + 1) /\ 

(nj>0 I\ sj<00) =>(nj =nj I\ sj =sj)l} 
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wheres =max({si, ... ,sm} \ { ao })._ 

The elements v in N (v) are obtained from II by changing, for all i with n; =O and s; = ao, the value of 
n; to an arbitrary positive number and the value of s; to s + 1. In words, this means that b; is again 
allowed to be chosen (n; times) but with a priority lower than all other priorities present in II that are 
not ao. This definition will also be used in the definition of Fair, where it will be further elucidated. 
We now give this definition, upon which an explanation will follow. 

DEFINITION 3.4 (Fairification) 
We define a function 

Fair: 
Let p eP. Then 

Fair(p) = °'2,fair(p,v), 
,e/0 

where 
Io= { <nl, ... ,nl> I n;>O, i = 1, ... ,m} 

and 
fair:P 

is defined as follows. (We often write p' for fair(p, 11).) For all 11elndex we define 

fair(po,11) = Po• 
For p~p0 we distinguish two cases. 
Case 1: 

Case 2: 

REMARKs 

If 3i E {l, ... ,m} [n;>O i\ s;<ao i\ enab/ed(i) ], 

then p' = {<bj,q•-Ul> I <bj,q>epi\sj=min{s 1, ••• ,sm}}. 

If 'vie{l, ... ,m} [enabled(i)=>(n;=Oi\s;=ao)], 

then p' = "'2, /. 
;eN(,) 

(1) The definition of fair:P is self-referential and therefore needs some justification. 
We observe that fair could be defined as the fixed point of a mapping 

i):(P 

which can be defined according to the definition scheme of fair above. It is straightforward to 
see that such a definition yields a contracting function, which thus has a unique fixed point (cf. 
Banach's fixed point theorem ([BZI], [AR])). 

(2) Because case 2 never occurs twice in succession, fair(p, 11) never contains two sum nodes succes-
sively. 

(3) Every node in Fair(p) is either a sum node, or of the form { <b;,,pj> ljel}, for some set of 
indices I. 

(4) We give some informal intuition for this definition. The indices 11elndex in the definition above 
can be interpreted as strategies for the construction of a process Fair(p) such that every path in 
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this process will be fair with respect to every b; in B. An element " in / 0 can be regarded as per-
mission, for each i, to choose b; n; times. Alli are supplied at the beginning with the same prior-
ity, that is l. 
We will treat p• for the case that P"'FPo• As long as case l applies there is no need to change our 
strategy or, in other words, to choose a new "· Each b; that is enabled at p, and for which n; >0 
and s;=min{si, ... ,sm}, may be chosen as the next step in the new process we are constructing. 
The index" is changed according to the definition of ,,-[i], son; is decreased by l and the prior-
ity s; remains constant, unless n; was l. Then it is set to oo, indicating no priority at all. 
Because every application of case l causes the decrease of an n;, it is obvious that after a finite 
number of such applications case 2 must hold. For didactic purposes we shall now make a con-
ceptual distinction between two possible situations that may arise in this case. Formally how-
ever, as may be inferred from the definition of case 2, this is not necessary. 
First, it may be the case that all n;'s have been decreased to 0 (and all s;'s have been set to oo). 
Then we can consider the strategy suggested by the " we started with to be a great success: every 
b; has been chosen the number of times we had in mind for it (n;). The fact that originally all 
n;'s were strictly positive implies that so far we have made sure that all b;'s have been treated 
fairly. It is clear what to do next: we can just restart by choosing a new index "• with all n; 
strictly positive and all s; set to l. According to the definition of N (P), this is exactly what hap-
pens in this case. 
The second situation is more typical. It concerns the case that for all i that are enabled at p, n; = 0 
and s; = oo. But we have not finished the strategy suggested by the original "• because there exists 
at least one j not enabled at p, with ni>0 and si<oo. Although we have not finished our first 
strategy, we are forced to change it because it does not tell us what to do about the i's that are 
enabled at p. A new strategy j; is defined such that for all j with nj >0 and si < oo these values 
remain unchanged, thus preserving that part of the first strategy (P) that has not yet been dealt 
with. For all other i ( enabled or not enabled) the value of n; is set to an arbitrary strictly positive 
number, and the value of s; to max{s 1, ••• ,sm}+l. So the new priority introduced here is 
lower than all the already existing priorities. When at a later stage one of the / s, for which ni 
and s1 remain unchanged here, is enabled, it will take precedence over those i's for which a new 
prionty is introduced. Thus a fair treatment of such /s is ensured for the future. 

Now for the rest of this section let p eP be fixed. We define a mapping 

(): Patlu(Fair(p ))-+Patlu(p ), 
relating to each path 'IT in Fair(p) a fair path in p. For its formal definition we shall make use of the 
following lemma. 

LEMMA 3.5 
For all peP with P"'FPo, 11elndex and <a,q >efair(p,11), there exist p'eP and 1"elndex such that 

q = fair(p',11') I\ 
aelndex ~p'=p I\ 
a EB~ <a,p'> ep. 

The proof is straightforward from the definition of p' ( = fair(p,11)). 

DEFINITION 3.6 (The mapping ()) 
Let 

'IT= <ao,qo>, <a1,q1 >, ... 
be a path in Fair(p ). By the above lemma and the definition of Fair(p) we can rewrite it as 
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'IT= <ao,p'>, <a1,pi' >, • • •• 
for certain v,v1, ••• e/ndex and p 1,p2, ..• EP. Now if we delete all pairs <a;,pf' > with a; elndex, 
and all superscripts JJ;, we get a sequence 

~'IT)= <a;,,p;, >, <a;,,p;,>, .. . , 
which is a path in p. We call ~'IT) the path in p corresponding to the path 'IT in Fair(p). This defines a 
mapping 

w: Paths(Fair(p ). 

Next, we have an important theorem. 

THEOREM 3.7 
Fair(p) is fair. That is, for all 'ITEPaths(Fair(p )), 'IT is fair. 

PROOF 
Let 'ITEPaths(Fair(p)) be such, that 

•,, - <a1,q1>,<a2,q2>, ... 
= <a1,pi' >,<a2,p2' >, •. •· 

Suppose b; is enabled infinitely often in 'IT. We must show that b; occurs infinitely often within 'IT. It is 
sufficient to show that for any j, if b; is enabled at the node p'j of 'IT, then b; occurs further on in the 
path 'IT, that is, for somej'-;;.j: b;=al. 
We consider the sequence ,1, "i+i, ... and observe that for every kEN, "k+I is obtained from Pk by 
an application of case I or 2 in the definition of fair(p, P) (definition 3.4). Now let 

We consider all possible cases. 
(I) n; =O: 

Then s; = oo. For every application of case 1 (above) one of the n/s must decrease. Therefore 
eventually case 2 must apply, which makes all nk's positive and brings us to the next case. 

(2) n;>O: This implies s;<oo. As long ass; is not the highest priority, the following may happen. 
Any application of case I results in either the decrease of an nk, not to 0, or the decrease of an nk 
to O and the removal of a higher priority than s;. After a finite number of applications of case 1, 
the latter must happen. Any application of case 2 introduces only priorities that are lower than 
s;, and must be followed by an application of case I. Furthermore, during any of these applica-
tions, n; and s; remain constant. It follows then that eventually s; will be the highest priority. 
Because b; is enabled infinitely often in 'IT, it must be enabled at some step beyond this, at which 
point case I will be applied to it and b; will occur at the next step. 

Now that we have proved that we did not promise too much, that is to say that Fair(p) indeed con-
tains only fair paths, let us also make sure that for all fair paths in p there is a corresponding path in 
Fair(p). 

THEOREM 3.8 
Any fair path in p is in the range of the mapping 4>. 

PROOF 
Given a fair path 'lr'ePaths(p), we must construct a path 'ITEPaths(Fair(p)) such that 
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~11') = 'ff. 
First, we partition the set {I, ... ,m} into two parts F and/, where Fis the set of all i such that b; is 
enabled finitely often (perhaps never) in w', and/ is the set of all i such that b; is enabled infinitely 
often in w'. Thus: 

{I, ... ,m} = / U F. 
Note that for all ; eF, b; occurs only finitely often in w', and for all i el, b1 occurs infinitely often in 
w', since w' is fair. Let /1 eN be so big that 
(I) nob; with ieFis enabled in the part of w' at or after step /1; 
(2) every b; with i el occurs at least once by then. 
Now for i =I, ... ,m, let n;' be the number of times that b; occurs before (or at) step /1 and then 
define 

[
n;'+l if ieF 

n; = n;' if ie/. 

We define our first index v1 by 
"1 = <nl. ... ,n~>. 

Now we can construct the first part of the path w corresponding with the part of w' before step / 1, by 
starting withp•, and repeatedly applying case I for the appropriate bi, thus decreasing the n;'s until 
(at step / 1) our index is such that for all i e { 1, ... , m}: 

ieF,..n1=1 l\s;=l, 
ie/ ,..n,=0As1=oo. 

Now case 2 must be applied to get a sum node, since no i eF is enabled at step /1• To determine the 
following index "2 we again choose a number /2 eN, with /2 >I 1, such that every b1 with i el occurs at 
least once between steps /1 and /2 (including /1, excluding /2). Then choose an index "2 such that, for 
iel, n; denotes the number of occurrences of b; between /1 and /2• We proceed as before, construct-
ing the part of w' between /1 and /2• Continuing in this way, we construct a path win Fair(p) such 
that 4>(w) = w'. 

REMAiuc: This function 4> is not bijective. In general there are more than one (in fact, infinitely many) 
paths in Fair(p) that are mapped by 4> to the same path in p. 

4. FAIRJFICATION OF PROCESSES WITH INFINITE ALPHABET 

We now want to extend our technique of fairification to a set of processes, which we shall (again) call 
P, defined by 

Pa;: {po} Uljd(BXP), 

with B an infinite alphabet: 
B = {b1,b2, ... }. 

We shall again define a function 

where P1"" is given by 
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plnd = {po} U'iPd(A xpind), 

A =BUindex, 

with Index to be defined below. We shall repeat the approach of the previous section with some 
small but essential changes. The definitions, lemmas and theorems that need not be changed will be 
mentioned, but not repeated in full. 
An important change is the new definition of indices. They no longer have a fixed length. 

DllFINmON 4.1 (Indices) 
The set Index of indices, with typical elements 11, is given by 

Index= LJ Indexlml 
meN . ' 

with 

An index of length k is related to the first k elements of our alphabet B. The interpretation of n; and 
priority s; is as before. When we define, for a given process p, a fair version Fair(p ), we shall, during 
the construction, increase the length of the indices used, thus considering fairness with respect to a 
growing number of basic steps b;. Once the length of an index is-bigger than or equal to some i EN, 
it is ensured that b; is treated fairly thereafter. The definition of the first operation on indices, 
,,-[ · · · ], remains unchanged, but for the fact that the original definition (3.2) should hold for indices 
of arbitrary length. The most important adaptation of this section lies in the following new definition 
ofN(II). 

DEFINITION 4.2 
Let 11Eindex be such that 11 = <n'i', ... ,n',;;> and letpEP. We define 

N(11,p) = {<ii;•, ... ,ii~,> I 
m'>m/\ 

{k I I..;;k..;;m' /\nk>O} n {k lk enabled atp},;6 0 /\ 

'ti} (((1-.;;J..;;m) /\ nj=O I\ sj = ao)=:;,(iij>O /\sj=s + 1)) /\ 

((1-.;;J..;;m) /\ nj>O I\ sj< oo)::;, (iij =nj I\ sj =sj)) /\ 

m<J..;;m' ::;,(nj>O I\ sj=s + 1) v (iij=O /\ sj= ao))]} 

wheres =max{s1, ... ,sm }. 

Let us see how this definition is used in the definition of the function Fair below, and then try to 
comment on its intuitive interpretation. Although we do not change the definition of Fair (definition 
3.4), we repeat its most interesting part and discuss it in the context of the altered definition of N (II). 

If p EP with p,;6p0, then p' ( = fair(p, 11)) is given by: 
Case 1: 

If 3i E{ 1, ... ,Jength(II)} [ n;>O /\s;<ao I\ enahled(i) ], 

then p'={<bj,q•-Ul> I <bj,q>Ep/\sj=min{s1, ... ,s,,0g,h(,)}}. 
Case 2: 



If 'viE{l, ... ,length(11)} [enabled(i)~(n;=O/\s;=oo)], 

then p' = /. 
,eN(,.p) 
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The interpretation of case l is the same as before. When the condition of case 2 holds, we are 
obliged to change our strategy, that is to choose a new index, because our current strategy does not 
say anything about the ts that are enabled at p. This can have two reasons. For such an i we either 
have n; =O and s; = oo or i>length(11). In order to be able to continue our construction, we therefore 
allow several new strategies vEN(11,p), which all must satisfy the following constraints. First, the part 
of the old strategy " that has not been dealt with yet has to be preserved: for l ,;;;;; ,;;;;fength(II) with 
n;>O and S;<oo we have n;=n; and s;=s;. Then, for 1.;;;;,;;;;[ength(II) with n;=O and S;=oo, the 
values of n; and s; are reset: n; arbitrary positive, s; = l + s. As in the finite case, the new priority is 
lower than the existing ones. Because we want each bk EB eventually to be treated fairly, for each k 
there should be a moment in our construction where an index " is introduced with length(ll)>k. 
Therefore we require the length of the new index "i, to be strictly greater than the length of "· For the 
newly introduced j's (length(11)<j.;;;m) we require 

(nj>O I\ sj =s + l) v (nj =O /\ sj = oo). 

Although here nj =O is allowed, we know that the next time that case 2 is applied ;:,j will be set to a 
strictly positive value. The newcomers, so to speak, are granted one (and.only one) moment of respite. 
The motivation for this generosity lies in the rather selfish wish to prove theorem 4.4. It appears that 
it would be too restrictive to demand for all suchj that nj>O. Finally, the condition that 

{k I l,;;;;k,;;;;m I\ nk>O} n {k lk enabled atp} :,6 0 

entails that case 2 can never occur twice in succession. 

Now for the rest of this subsection let p EP be fixed. We define a mapping 

4>: Pallu(Fair(p ), 
relating to each path.,, in Fair(p) a fair path in p, in exactly the same way as in definition 3.6. We 
finally repeat theorems 3.7 and 3.8 of the previous section, which together show that the definition of 
Fair(p) (using the new definition of N(11,p)) is satisfactory. The former proofs of these theorems have 
to be altered, as can be seen below. 

'THEOREM 4.3 
Fair(p) is fair. That is, for all 'TTEPallu(Fair(p )), ,,, is fair. 

PROOF 
Let p EP and let wEPallu(Fair(p )) be such that 

w=.<a1,q1>,<a2,q2>, ... 
=.<a1,p1' >,<a2,P'i >, • • •· 

Suppose b; is enabled infinitely often in "'· We must show that b; occurs infinitely often within "'· 
From the construction of Fair(p) it follows that in the sequence (11j)j each index "j+I is obtained 
from "j by an application of case l or 2. Since case l can be applied only finitely many times in suc-
cession, it follows that case 2 must have been applied infinitely many times, each application increas-
ing the length of the index. Therefore there is an N EN such that for all j > N: 

length (11j) > i. 
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Now we are back in the old situation of the previous section! The proof can be completed as before, 
but for the new observation that with the increase of the length of an index, only priorities lower than 
the existing ones are introduced. 

THEoREM4.4 
Any fair path in p is in the range of the mapping IP. 

PROOF 
Given a fair path w'EPatlu(p), 

we must construct a path 'TTEPatlu(Fair(p )) such that 
IP('TT) = ,,,,_ 

First, we partition N into two parts F and l, where F is the set of all i such that b; is enabled finitely 
often (perhaps never) in w', and l is the set of all i such that b; is enabled infinitely often in w'. Thus: 

N=lUF. 

Note that (ao in 3.4) for all i EF b; occurs only finitely often in w' and for all i El b; occurs infinitely 
often in w', since w' is fair. Secondly, we introduce the following ·functions that will be very useful in 
our proof. 
(a) For all LEN we define a (position) function by 

smallest L'~L such that 
'vj~L' [bk fipj) 

PosL(bk) = smallest L'~L such that 
3) [L<J <L' I\ b;, =bd 

· if kEF 

if k El. 

For k EF this fundon gives the smallest position greater than L after which bk is never enabled 
again. Fork El the smallest position greater than Lis chosen such that bk has occurred (at least) 
once since L. 

(b) For all L, L'EN, with L.;;.L', we define a (number) function by 
1 + (number of occurrences in w' 

of bk between L and L') if k EF 
(number of occurrences in w' 
of bk between L and L') if kE/. 

(In this definition between L and L' means including Land excluding L'.) 
We shall define, at each of an infinite sequence of stages k, an index Pk and, corresponding to that 
index, the k-th part of the path 'TT corresponding tow'. After we have constructed, at stage k -1, the 
(k -1)-th approximation of path,,, corresponding to the initial segment 

<b;,,p1>, ... ,<b;,,p,> 

of path w', then at stage k we shall take into account the basic steps b;,., and all the b/s we have 
encountered in the preceding stages. We shall make sure that the length of the index "k will be, as 
prescribed by definition 4.2, strictly bigger than the length of "k - I· Note that in the previous section, 
where our alphabet was finite, from the beginning we could focus on all b/s at the same time. 

Stage 1 
For the definition of our first index 111 we focus on basic step b;,. We define 



Li =Pos1(b;1 ), 

R1 ={ii,··· ,iL,-d, 

Mi =maxR1. 

Our first index Pi, with v1 = <n~• , ... , n~: >, is defined so that 

'vi ,;;;.j.;;.M1 I/ER 1 ==>(ni =Num 1,L, (bi) /\si =I)/\ 

j~R 1 ='>(ni=O I\ si = oo)]. 
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The length of v I is M 1 , because according to the definition of indices no holes are allowed in v1 , that 
is: every index is related to an initial part of the enumeration of our infinite alphabet {b1,b2, ••• }. 
For those basic steps bi that do not occur in the path w' before place L 1, default values ni =O and 
si = oo are chosen in v1. (Here we use the fact that for newly introduced /s, ni can get the value 0 
once. See the corresponding remark in the explanation following definition 4.2.) With v1 we can con-
struct the first part of ,,, corresponding to the part of w' before L 1, starting with p'', and repeatedly 
applying case 1 for the appropriate b;, thus decreasing the n;'s until (at step L 1) our index is such that 
for all 1.;;.; .;;.M 1: 

(i EFnR 1) ==>(n; = 1 /\ s; = l), 

(iE/ nR 1 vi ~R 1) ==>(n; =O /\ s; = oo). 

Now case 2 must be applied, since no j EFnR I is enabled at step L 1. This brings us to stage 2. 

Stage 2 . 
We define our next index v2 , taking into account all steps encountered at stage 1, that is all b;'s with 
1 ,;;;.;.;;.M 1, and the next step in the path w', that is b;,,. We define 

L2 = max({PosL,(b;,,)} U {PosL,(bk)I 1.;;.k.;;.Mi}), 

R2 ={I, ... ,Mi} U {iL,, ... ,iL,-d, 

M2 = 1 +maxR2. 

We define our second index v2, with v2 =<ii{', ... ,ii~:>, such that 

'vl.;;.j.;;.M2 [((l.;;.j.;;.M1 /\ni=O)v(j>M1 /\jER2) ==> 

iii =NumL,,L,(bi) I\ sj= 1 +max{sk I l.;;.k.;;.M I})/\ 

(I ,;;;.j.;;.M1 I\ ni = l) ='> (iii =ni I\ si =si) I\ 

(Jd2) ==> (iii=O/\si=oo)). 

Note that M 2, the length of 112, is strictly bigger than M 1, the length of v1. We proceed as before, 
constructing the part of,,, corresponding to the part of w' between L 1 and L 2• Continuing in this 
way, we construct a path,,, in fair(p) such that 4>(w) = w'. 
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5. INFINITE ITERATION 

Let P be the mathematical domain of section 3, that is, a complete metric space satisfying 
P:;; {po}U~c1(BXP) 

where B is a finite alphabet 
B = {bi, ... ,bm}-

The operation of sequential composition on P is defined in 

DEFINITION 5.1 (Sequential composition) 
Let 0 : PXP-+P be given by . 

[
q ilp=po 

paq = { <b,p'0 q> I <b,p'> ep} iI p=ppo 

for all p and q in P. 

REMARxs 
(l) Because this definition is self-referential, it needs some justification. We observe that O can be 

defined as the unique fixed point of a contraction cl> of type cl>: (PXP-+P)-+ (PXP-+P). (Cf. 
definition 3.4.) 

(2) It is not very difficult to show that: 

"lp,q,q' eP IP*Po dp(p 0q,poq') ..;½ dp(q,q')]. 

We shall use this property below. 

In this section we want to study the operation of infinite iteration of a process p eP. It is defined as 
follows: 

DEFINITION 5.2 (Infinite iteration) 
Let ( · · · f: P-+P be given by 

p., = limDn 

for p eP, where p 0 = Po and pn + 1 = pn op. 
(This limit exists, as can be easily proved using the property of remark (2) above). 

Let us now explain how fairness issues come into play by taking the infinite iteration of p eP. 
Generally, taking the infinite iteration of a process p eP introduces new infinite paths in p., that were 
not yet present in p. When we take, for example, p = { <a,p0 >, <b,p0 > }, then p does not contain 
any infinite paths, whereas p", which satisfies 

p., = { <a,p"' >' <b,p., > }, 
contains many. Some of these are unfair, such as 

.,, = <a,p"'>,<a,p"'>,<a,p"'>, ... , 
which is unfair with respect to b1• Such unfair paths.,, we call globally unfair. We do not call every 
unfair path in p"' globally unfair, only those that are introduced, so to speak, by taking the infinite 
iteration of p. Another example may illustrate this point. (Formal definitions follow below.) Con-
sider a process p eP satisfying 



p = {<a,p>,<b,po>}.. 
Then p,. will contain the unfair paths 

<a,p>,<a,p>, ... , 
<b,p >, <a,p >,<a,p >, ... , 
<b,p>,<b,p>,<a,p>,<a,p>, ... , etc. 

The unfairness of these paths is, as it were, reducible to the unfairness of the path 
<a,p>,<a,p>, ... , 

which was already present in p. Therefore they will not be called globally unfair paths. 
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There is a second notion of unfairness, ·which plays a role here. It is called node (or local) unfair-
ness. Again we explain it here by giving an example, the fonnal definition following below. Let p eP 
contain the node p'={<a,p 1>,<b,p2>}. Let wePaJlu(p"') and suppose w passes through p' 
infinitely many times. If it is the case that in w the next step that is taken after passing through p' is 
always a, and never b, we call w node unfair (with respect to the node p'). The reason for this tenni-
nology is obvious: although bis infinitely often enabled in w at node p', it is never chosen in was the 
next step after p'. 

The notions of global and node unfairness are in a sense independent. ~t p eP be given by 
p = {<b,p'>}, where 
p' = {<a,p>,<b,po>}. 

Consider wePaJlu(p"'), given by 
'II= <b,p'>,<a,p>,<b,p'>,<a,p>, .... 

This path is not globally unfair; but is node unfair with respect to the node p'. Thus node unfairness 
does not imply global unfairness. The same holds in the opposite direction. Let p e P be defined by 

p = {<an,{<a,po>,<b,po>}>lneN} U {a"'}, 
using an and a"' as shorthand with an obvious interpretation. (The fact that a,. ep is not important 
for the point we want to make with this example, but is implied by the (topological) closedness of p.) 
Now it is not difficult to find a path 

w = <a,p1>,<a,p2>,<a,p3>, ... 
in PaJlu(p"') (with p1,p2,p3, ... nodes of p) that is globally unfair (with respect to b), but fair with 
respect to every node of p, although it passes through p infinitely many times. 

Let us now proceed with formally defining these notions of global and node unfairness. Actually, 
we shall define what we consider to be globally fair and node fair. For this we need the following 
notion. 

DEFINmON 5.3 (Iteration paths) 
Let p eP, wePaJlu(p"'). We call w an (infinite) iteration path, whenever w is the concatenation of an 
infinite sequence of finite paths w1,w2, ••• ePaJJu(p): 

'II= 'IIJ°'IT2"'IT3° •••. 

For a basic step b occurring in 'Ilk we say that b occurs in the k-th instantiation of p. 

Rnwuc 
We have not defined the concatenation of finite paths. It is just what one would expect: if 
w1=<a1,p1>, ... ,<a,,,,po>, and w2=<b1,q1>, ... ,<bm,Po> are finite paths in PaJlu(p), 
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then: 
71'J°'IT2 = <a1,p1>, ... ,<a,,,p>,<b1,q1>, ... ,<bm,po>. 

(Note that finite paths always end in <a,p0 >, for some aeB.) 

DEFINmoN 5.4 (Global fairness) 
Let p eP, 71'EPflllu(p.,). We call 71' globally fair whenever 
(1) 71' is fair (in the sense of definition 2.3); or 
(2) 71' is not an iteration path. 
We call p., globally fair whenever all paths in p., are globally fair. 

REMARK: It follows that a path in-p., is globally unfair if and only if it is an iteration path and 
unfair. 

DEFINmON 5.5 (Node fairness) 
Let pEP, 71'EPflllu(p.,). We call 71' node fair with respect top', for a subnode p' of p, whenever it is 
the case that: if 71' passes through p' infinitely often, then for all b EB that are enabled in p': b occurs 
infinitely often in 71', immediately after p'. We call 71' node fair if it is node fair with respect to every 
subnode p' ~' p. Finally we call p., node fair if all paths in Pflllu(p.,) are node fair. 

REMARK 
In this definition the phrase "71' passes through p' infinitely often" is not altogether clear: it may be 
the case that a subnode p' occurs in p on more than one place; p might even contain infinitely many 
instances of p'. Below we shall overcome this ambiguity by being more precise in identifying sub-
nodes of p. 

The aim of this section is to define two fair versions of the infinite iteration operator: 
( •.• }°',.,,: 

such that the result p.,,., will be globally fair and node fair respectively. For this purpose we first give 
an alternative definition of infinite iteration, which will be used as a starting point for defining 
( ... )°',.,_ 

PROPOSITION 5.6 (Alternative definition of infinite iteration) 
LetpeP. 

App,(po) = paApp,(p) 
App,(q) = { <a,App,(q')> I <a,q'> eq }, if q=/=po. 

(Read "append'' for App.) Then we have: 
p., = App,(p) 

REMARKs 
(I) Formally, App, can be defined as the unique fixed point of the function 

given by 

c),(F)(po) = pcF(p), 
•,(F)(q) = { <a,F(q')> I <a,q'> eq }, if q=/=po. 

(It is straightforward to show that•, is contracting.) 
(2) The function App, applied to an argument qeP replaces all occurrences of po in q by p, in 



which, recursively, all occurrences of p0 are again replaced by p. 
(3) From proposition 5.6 it follows that ..4pp,(p0 )=..4pp,(p ). 

PROOF OF THE PRoPOsmoN 
We define, for fixed peP, a function 4>,,: by 

</>p(q) = qop.,. 
We have 

<t>,,(po) = poop., = p"' = pop"' 
= po(pop"') = p°<l>p(p) 

and, for qeP, q1=po: 
4>,,(q) = qop., (definition of 0 ) 

= {<a,q'op"'>l<a,q'>eq} 
= { <a,4>,,(q')> I <a,q'> eq }. 
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From this it follows that <I>,, is also a fixed point of <I>,- Because <I>, is contracting, it has a unique 
fixed point, thus <I>,, =App,- Thus 

p"' = pop"' = </>p(p) = Appp(p ). 

(1) Global fairness 
In this subsection we set out to define a fair version 

( · · · )""-: 
of the o~eration of infinite iteration such, that for p in P the result p "'"" will be globally fair. 
range P J,uJ of this mapping ( · · · )"'"" is given by 

pFl,uJ = {po} U '3'c1(A X pFI,uJ), 

with 

A = BU Flndex, 
where Flndex is a set of indices to be defined below. A naive first attempt would be to define 

p"'1- = Fair(p"'), 

The 

with the function Fair as in definition 3.4. This would be wrong, according to our definition of global 
fairness. The function Fair transforms its argument into a process, in which all unfair paths have 
disappeared. However, not every unfair path in p0 is globally unfair, only those that are iteration 
paths. Thus the function Fair removes too m!llly paths from p"'. (For an illustration see the informal 
explanation above.) Therefore we have to come up with another solution. We shall use the definition 
of p"' as ..4pp,(p) as a starting point for the definition of p"'"", but changing it by again using indices 
(as we did in the definition of Fair) to label the nodes of p. After having defined p"'"", we shall clarify 
the relation between p"',.. and p"' by defining a mapping 

<I>: Patlu(p"',-) Patlu(p"'). 
Although the idea of definingp.,"" as Fair(p"') does not work (as was mentioned above), the definition 
of ( · · · )"',- will be surprisingly similar to that of the function Fair. The reason is the following: in 
constructingp"',.. for a givenpeP, we do two things at the same time. On the one hand we construct 
(a special version of) the infinite iteration of p, and on the other hand we select certain paths, namely 
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those that are globally fair. The first task is performed along the lines of the definition of Appp, the 
second task is realised following the definition of Fair. So in some sense the definition of p.,r- will be 
a combination of the definitions of Appp and Fair (see proposition 5.6 and definition 3.4). 

DEFINmON 5.7 (Flag indices). The set of flag indices, with typical element µ, is defined by: 

Flndu = { <<n1,s1,f1 >,,.,, <nm,sm,Jm>> jn;;.,o, o..;s;..;oo, /;E{ U,D}} 

where m is the number of basic steps in our finite alphabet B, and { U,D} is the set of flags, contain-
ing two elements: U (for "up") and D (for "down"). 

The interpretation of n; and s; is as in definition 3.1 (see the informal explanation that follows 
there), but for the difference that only the first occurrence of b; in each instantiation of p in p .,r- will 
cause n; to be decreased by I. Whether or not b; has been chosen in a given instantiation of p, is indi-
cated by the flag Ji. If it is up, b; has not yet been chosen, and if it is down, b; has been chosen at 
least once in the current instantiation of p. 

We need the following operations on indices. 

DEFINITION 5.8 
Let µEFlndu, withµ= <<n1,sif1 >, ... , <nm,sm,Jm>>, and let iE{l, ... ,m }. We define 

µ ifJi=D 

<<n1,s1,f1>, ... ,<0,oo,D>, ... ,<nm,sm,Jm>> 
undefined 

if Ji = U I\ n; = 1 
otherwise. 

For µEFlndu with Ji= Uthe interpretation ofµ- [i] is as in definition 3.2, with the difference that U 
is changed to D. This indicates that in the current instantiation of p the basic step b; has been chosen 
(at least once). If Ji=D, then µ-[i]=µ, as indicated above. This will be explained below, after the 
definition of p "'r- . 

DEFINITION 5.9 
LetµEFlndu, with <<µ=n1,s1,J1>, ... ,<nm,sm,fm>>. We define 

N(µ) = { <<ii1,s1.i1 >, .. ·, <iim,Sm,im>> I 
'<tiE{l, ... ,m} [(n;=O/\s;=oo~ii;>OAs;=l+max{s1! }..;j..;m}) 

I\ (n;>O I\ s;< oo ~ii; =n; /\s; =s;) 

l\f; = Ji]}. 
The interpretation of N(µ) is as in definition 3.3, because the flags do not matter here. 

DEFINITION 5.10 
Let µEFlndu with, µ=<<n1,s1,f1 >, ... , <nm,Sm,fm>>. Then 

µU = <<n1,s1,U>, ... ,<nm,Sm,U>>. 
This operation sets all flags to "up" and is used upon entrance to a new instantiation of p. Now we 
are ready to define ( · · · >"''"'. 
DEFINITION 5.11 (Fair infinite iteration) 
We define ( · · · )"''"':P->PFind• LetpEP. Then 

p"''"' = ~Appp(p,µ), 
14e/, 



where 

Io = { <<ni,l,U>, ... , <nm,l,U>> ln;>O} 

and for ~ven p eP 
.yp,: 

is defined as follows. (We write qµ for .4pp,(q,1')-) Let l'EFlndu. We define 

.yp,(po,I') = .yp,(p,l'u). 

For qeP, q=fop0 , we distinguish two cases. 
Case 1: 

Case 2: 

REMARKS 

If 3ie{l, ... ,m} [enabled(i)/\(li=Dv(s;<ooAn;>O))], 

then qµ = { <b;,q-1iJ> I <b;,q>eq/\ 
(li=DV(s;<00An;>O/\s;=min{s1, ... ,sm}))}. 

If 'Vie{l, ... ,m} [enabled(i)=>(li=U/\S;=oo/\n;=O)] 
then qµ = qµ'_ 

µ'eN(p.) 

(1) The remarks (1), (2), and (3) following definition 3.4 apply also to the above definition. 
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(2) We ~ve some informal explanation of this definition by referring to remark (4) after definition 
3.4 and making explicit what is different here. First, when we reach p0 in the definition (3.4) of 
fair, we are done: fairVJ 0 ,v) = p0 • Here we continue by appending p to po, together with the 
index I' changed into I' :Appf(po,l')=.yp,(p,l'u). The reason why we append p to p0 is obvi-
ous: we are building the infinite iteration of p. (See proposition 5.6.) The index I' is changed to 
l'u, that is all flags/; of I' are set to U to indicate the entrance of a new instantiation of p. The 
second important difference between this definition and definition 3.4 is the role played by the 
flags. Let qeP with <b;,q>eq for some qeP, b;eB. If/; =D (down), then b; has already been 
chosen (at least once) in the current instantiation of p. Therefore it may be chosen unrestrictedly, 
even infinitely many times, within this instantiation of p (no matter what the values of n; and s; 
are). In this case we have: l'-[iJ=I', formally expressing that b; may pass "for free" without 
chan~g the values of n; ands;. The reason for letting b; pass for free is that it provides us with 
the presence within p.,,.. of those infinite paths (possibly unfair) that are not iteration paths (and, 
hence, not globally unfair). If on the other hand/;= U and n;>O and S; =min{s1, ... ,sm}<oo, 
then b; may be chosen (as in case 2 of definition 3.4), but now I' is changed into l'-[i] by chang-
ing the values of n; and s; (as in definition 3.4) and by chan~g the flag/; to D. 

Now for the rest of this subsection let p eP be fixed. We define a mapping 
«I>: Paths(p.,,..) Paths(p.,), 

relating to each iteration path in p"',.. a corresponding fair iteration path in p"'. We start by re-stating 
lemma 3.5. 

LEMMA 5.12 
LetpeP, withp=p0, l'EFlndu, and <a,q>e.4pp,(p,I') for aeB and qeP. Then there existp'eP 
and l''eFlndu such that . 
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q = Appp(p',µ') I\ 
aEFlndex p'=p I\ 
aeB <a,p'>ep. 

The proof is straightforward from the definition of l ( = Apppfp,µ)). 

DEFINITION 5.13 (The mapping fl>) 
Let 

,,, = <ao,qo>,<a,,q,>, ... 
be a path in p"',-,. We can rewrite it as: 

'IT= <ao,p~>,<a,,p't' >,<a2,p'i' >, ... 
for certain µ,µ1,µ2, .. . EFindex and p1,p2, .. . EP. If we omit in 'IT all pairs <a;,pf > with 
a; E Flndex, and further all superscripts µ;, we get a sequence 

fl>('IT) = <a;,,p;, >,<a;,,p;, >, ... 
which is a path in p"'. We call <l>('IT) the path in p corresponding to the path 'IT in p"',-,. This defines a 
mapping 

fl>: PaJhs(p"',-,)-> PaJhs(p"'). 

THEOREM 5.14 
p .,,., is globally fair. That is, for all 'IT E PaJhs(p .,,., ), if 'IT is an iteration path, then 'IT is fair. 

PROOF 
Let 'ITEPaJhs(p"'t-) and suppose,,, is an iteration path. We reduce the proof of this theorem to that of 
theorem 3.7 by making the following observation. Since .,, is an infinite iteration paths it enters 
infinitely often into a new instantiation of p. Upon each entrance, all flags are raised (set to "up"). 
As was observed above, if f;=U (for ie{l, ... ,m}), then b; is treated in case I of definition 5.11 
above in exactly the same way as in case I of definition 3.4. Because this situation arises infinitely 
often, the argument given in the proof of theorem 3.7 also applies here. (Note that case 2 in both 
definitions 3.4 and 5.11 is the same.) 

REMA.Iuc: Formally we have to extend definition 5.4 of global fairness to processes in pFiml_ This can 
be done straightforwardly. · 

THEOREM 5.15: Any globally fair path in p"' is in the range of the mapping fl>. 

PROOF 
Let 'IT'ePaJhs(p"') such that 'IT' is globally fair. We must construct a path 'ITEPaJhs(p"'t-) such that 

<l>('IT) = 'Ir. 

We distinguish between two cases: first, that 'IT' is not an iteration path (and possibly unfair); second, 
that 'IT' is an iteration path and fair. 
(1) Suppose 'IT' is not an iteration path. Without loss of generality we may assume that 'IT' lies 

entirely within p (that is, the first instantiation of p in p"'). We define a flag indexµ by 

µ = <<1,1,U>, ... , <1,1,U>> 
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and take <µ.,p~> as the first element of the path w that we are constructing. Now we can con-
tinue the construction of w by repeatedly applying case 1 (of definition 5.11) for the appropriate 
b;'s (namely, those that occur in w'). Each time we encounter a b; for the first time, the 
corresponding triple <1,1,U> in the index is changed into <0,oo,D>. >From this moment 
on b; may be chosen unrestrictedly within this instantiation of p (in which the path w' lies), 
without changing the index. The path w thus constructed is an element of Paths(p"''"'). Further-
more: ll>(w)=w'. (Note that it is of no importance whether w' is fair or not.) 

(2) Suppose w' is a fair infinite iteration path. As in the proof of theorem 5.14, we reduce this proof 
to that of the corresponding theorem in section 3 (theorem 3.8) by observing that the latter only 
needs a slight modification. When we count the number of ti.mes that a certain b; occurs before 
a given step 9 in the path w', we have to count only the first occurrences of b; in different instan-
tiations of p. With this change in mind the proof of 3.8 can easily be transformed into a proof of 
this theorem. 

(2) Node fairness 
Let us now forget about global fairness and focus on the second notion: node fairness. We again set 
out to define a fair version 

( ... )"1-: p-,pNind 

of the operation of infinite iteration but now such, that for all p EP the result p"''"' will be node fair. 
The domain pNind is like P1nd and pFl•d, but with 

A = B UN/ndex, 

with Nlndex a set of indices to be defined below. 

In constructing this second version of infinite iteration we proceed globally as in the previous sub-
section, now using node indices in order to ensure the node fairness of p "''"', instead of flag indices, 
which were used above. We shall characterize (and even identify) a subnode of a given process p EP 
by the subpath in p that leads to it. 

DEFINITION 5.16 (Nodes) 
LetpEP. We define the set of nodes ofp by 

Nodes(p) = { w I 3w' EPaths(p) [w is a finite initial part of w']). 

For wENodes(p), with w= <ai,p 1 >, ... , <a.,p.>, we define 

end(w) = Pn· 
(When no confusion is possible we sometimes identify wand end(w).) We set end(£)=p, where£ is the 
empty path. 

The set of node indices for a given p EP is defined as follows. Each node index for p has two com-
ponents: the first is a finite mapping, associating with each of a (finite) set of nodes of p an index as 
defined in 3.1; and the second is a node of p. Such a node index schedules the fairness of paths with 
respect to this second component. At each moment in the construction of p0'"', we consider only a 
finite number of nodes (the domain of the first component), namely those that we have encountered 
thus far. 

DEFINITION 5.17 (Node indices) 
Let p EP. We define the set of node indices for p as follows: 

Nlndexp = (Nodes(p)-,fi• Index) X Nodes(p), 
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where denotes the set of partial functions on Nodes(p) with a finite domain, and Index is defined 
as in definition 3.1. A typical element of Nindex is denoted p=(pi,f>l). For Pt ENodes(p)~ Index 
we use the variant notation for functions: for w, w' ENodes(p) and PE Index, IP if w=ii 

pt{Plw}(i) = ,-,. if-...J--Pt \ 7T I .,, -,-w. 

(We shall use this notation whether or not wEdomain(p).) 

We again need the operations P-[i] and N(P) on indices PEindex (see definitions 3.2 and 3.3). 
They are used in the following 

DEFINITION 5.18 (Fair infinite iteration) 
We define ( · · · )"'Jo. Let p EP. Then 

p.,Jo, = Appp(p,(Pt,£)) 
Po 

where E is the empty subpath of p (identifying p as a subnode of itself), 

Io = { <nl, ... ,n~> Jn;>O} 
and for given p EP 

Appp: 

is defined as follows. (We write qP for Appp(q,p).) Let pE p;,.,;--, ;.: . (pi,p, I """ 
q=,=end(f>l), then Appp(q,p) is undefined. Now suppose that q=- .d\f>l). rncu aeune 

Appp(po,P) = Appp(po,(P1 ,£)). 
For q=,=p0 we distinguish two cases . 
..:....0.v:111\· n,,,.,=J---'-.~ ~--=>< 

(a 1) If 3iE{I, ... ,m} [enabled(i)/\n;>O/\s;<oo), then 

qP = {<b;,q'P,Vli]/1>,J,,.,,<b.,q>)>l <b;,q>Eq/\s;=min{sjJl..:j..:m}}. 

(a2) If 'v'iE{I, ... ,m} [enabled(i)~n;=O/\s;=oo), then 
qP = q(p,{r'/1>,),1>,)_ 

vcN(,) 

Case (b): P'l ££domain(pt). Then 
qP = q(p,{v/1>,),1>,), 

Ve/0 

where / 0 is as above. 

REMARKS 

IPt nFP If 

(I) The remarks (I), (2), and (3) following definition 3.4 apply also to the above definition. 
(2) We have that Appp(q,p) is undefined whenever q=,=end(f>l). This implies (since P'l ENodes(p )) 

that Appp is defined on nodes of p only, which seems quite natural. 
(3) We give some informal explanation of the definition above. If we arrive at po, with index p, we 

continue with Appp(p,p'). Here p'=(pt,E), that is, the second component of p' now indicates that 
the node we are treating next is (md(E)=) p itself. The interpretation of cases (al) and (a2) 
above is entirely similar to that of the cases I and 2 in definition 3.4: if P'l Edomain(pi), then 
v = Pt (/>l) is treated exactly as before. A small difference is that, in (a 1 ), the second component 
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P2 is extended with <b;,q> to denote that the next node of p that is treated is 7j 
(=end(1>2°<b;,7j>)). If P2fldomain(p1), an extension of the domain of p1 takes place. Here 10 
is the set of initial indices (as in definition 3.4). 

Now for the rest of this subsection let p eP be fixed. As in definitions 3.6 and 5.13 we can define a 
mapping 

cl>: Paths(p"'t-) Paths(p"'). 
The following two theorems can be proved by easy generalizations of the corresponding proofs (3.7 
and 3.8) in section 3. 

THEOREM 5.19 p"'t- is node fair. 

THEOREM 5.20 Any node fair path in p"' is in the range of the mapping cl>. 

Combining global and node fairness 
We could now combine the two definitions (5.11 and 5.18) of fair infinite iteration and construct a 
function 

( · · · )"''"": 
such that p"'-"" would be both globally and node fair. We do not do this and confine ourselves to the 
observation that it would be a straightforward and dull exercise. Similarly for the generalization to 
an infinite alphabet. 
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