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'But much yet remains to be said.' 





PREFACE 

This tract reports the result of my efforts to find a new mathematical basis 
for generalised functions, in such a way that multiplication of generalised 
functions is always possible. 

This search was motivated by a dissatisfaction on my part with the 
standard formulation of analysis, and by problems in mathematical physics 
for which existing theories of generalised functions are not adequate. The 
application to quantum field theory is indicated only briefly. The tract 
develops the theory as a mathematical subject on its own merits. 

The characteristic properties of the symmetrical theory are the exis-
tence of a symmetrical inner product, in which every generalised function 
also serves as a test function, and the possibility to multiply all generalised 
functions. The ability to assign finite values to generalised functions at every 
point is a natural consequence. 

In many respects the symmetrical theory resembles a Hilbert space, but 
it also contains Dirac's b'-function. The generalised functions also supports 
the usual operator algebra, without the domain problems of Hilbert space. 
The symmetrical theory combines the good properties of distributions and 
Hilbert spaces, while avoiding the difficulties in these theories. 

It will be seen that the symmetrical theory implies a great research 
program, which is at present far too difficult to tackle in its full generality. 
As a first step this tract presents the construction of a simple model for 
the symmetrical theory of generalised functions, in order to show that the 
program is feasible. 

The simple model contains many new generalised functions in addition 
to most of the usual special functions. The core of the book is the definition 
of the usual operator algebra and the constuction of a product algebra. 

The presentation has been kept informal, since I felt that the presen-
tation of new concepts, together with some heuristic considerations for the 
choices made in the construction, is at this stage more important than the 
deployment of formalism. 

The material in this book should be accessible to graduate students. 
On the technical level some familiarity with standard analytical function 
theory is necessary. Only some standard results on analytic continuation 
are assumed. Use of special functions has been kept to a minimum. Some 
familiarity with distribution theory and functional analysis is helpful, but 
not necessary for following the main line of the construction. The subject 
matter is in principle elementary, but it is necessary to develop a new way 
of looking at familiar concepts. This may take some getting used to. 

The tract is intended for a wide readership, ranging from working math-
ematicians to physicists who only need some of the results. To increase 
accessability many examples are presented. Remarks in the text give ad-
ditional explanations, which may be skipped. Each chapter begins with an 
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introduction outlining the contents. Long chapters end with a summary. 
In addition to the usual index an index to formulae has been provided for 
reference purposes. The tract may also serve as a reference work, in which 
results needed for applications can be looked up. 

The results of this book are applicable in areas of mathematical physics 
where multiplication or convolution of generalised functions is unavoidable, 
such as non-linear partial differential equations and the perturbation expan-
sions in quantum field theory. 

It will be seen that replacement of distribution theory ( as the mathemat-
ical explanation of Dirac's 8-function) by a symmetrical theory of generalised 
functions has far-reaching implications for mathematical analysis as a whole. 
These are outlined in a closing chapter. 

It is my hope that the challenge posed by the program for a symmetrical 
theory will be taken up by others. Further applications will be published 
elsewhere. 

Correspondence address: 
J. J. Lodder 
Oudegracht 331 b 
3511 PC Utrecht 
The Netherlands 
Tel. 31/(0)30 314153 
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CHAPTER 1 

INTRODUCTION 

This. tract presents a program and a simple model for a new theory, the 
symmetrical theory of generalised functions. 

The characteristic difference with distribution theory is the existence of 
a symmetrical inner product, in which generalised functions and test func-
tions are treated on an equal footing. Every generalised function also serves 
as a test function. In particular, the Dirac c5-function is treated on equal 
footing with ordinary functions and not just as a linear functional. 

The aim of this symmetrical theory is the mathematical treatment of 
singular objects such as the Dirac c5-function, divergent integrals or limits, 
and products of generalised functions. The symmetrical theory makes it 
possible to define these in cases where they are undefined or infinite in the 
sense of standard analysis or distribution theory. 

The standard method to deal with subjects of this kind is distribution 
theory, and it is the best possible method in the context of standard analy-
sis. Nevertheless distribution theory does not allow multiplication of distri-
butions, and it does not uniquely define the needed divergent integrals and 
convolutions. Ad hoc assumptions, for instance regularization methods, are 
necessary to obtain meaningful results of computations. 

The construction of the symmetrical theory of generalised functions is a 
first step towards an alternative 'explanation' of divergent integrals and c5-
functions. It avoids the limitations of distribution theory and Hilbert space 
theory, and it combines many of the good properties of these theories. 

At present the aim of constructing a definitive, or even in some sense 
complete, symmetrical theory of generalised functions is far too ambitious. 
The much simpler aim of this book is the construction of a demonstration 
model, in order to show that an alternative to distribution theory is possible. 
The model will be kept as small and simple as possible, yet it will be suffi-
ciently strong to give an unambiguous meaning to the undefined expressions 
which occur in applications such as quantum field theory. 

Despite the present immature state of the program it has implications 
for mathematical analysis. It suggests the need for a reconsideration of the 
foundations. A reconstruction of analysis, using concepts of function, limit, 
derivative, and integral which are appropriate for a symmetrical theory of 
generalised functions is called for. This will entail a large amount of work. 



2 · Introduction 

1.1 A historical perspective 

In the eighteenth century the subject of analysis consisted mainly of the 
investigation of the properties of analytic, or piecewise analytic functions, 
and indeed a function was understood in this way as an (in principle explicit) 
relation between quantities. The notion of infinitely large and infinitesimal 
quantities was used freely, often in ways no longer recognized as correct. 

This changed early in the nineteenth century. Two of the driving 
forces behind this change were the logical problems of the infinite and the 
infinitesimal in the foundations of the calculus, and the development of the 
theory of Fourier series and integrals. 

A drastic generalization of the function concept became necessary as a 
consequence of Fourier's insistence that the sum of a Fourier series should 
be accepted as a function when the series converges, and that only integra-
bility is needed for the existence of Fourier coefficients. The practical need 
for a sufficiently general and powerful theory of the Fourier transform has 
remained an important source of new developments in analysis ever since. 

Dirichlet's proof of Fourier's theorem, for functions with a finite number 
of maxima and minima, made it clear that not only the concept of a function, 
but also the theory of integration had to be generalised. The function con-
cept was generalised to what is now known as the Dirichlet function concept, 
in which functions are understood as arbitrary mappings. The needed gen-
eralization of the concept of the integral was given by Riemann. When the 
concept of bounded variation was added by Jordan the first major Fourier 
theory was conceptually complete. 

In the same period Cauchy and Abel initiated a program for the rigoriza-
tion of analysis by avoiding infinite quantities and eliminating infinitesimals. 
Mathematicians and philosophers have made a distinction between the ac-
tual and the potential infinite since classical antiquity. The first is 'really' 
infinite, the second can merely be made as large as one wishes. The rigoriza-
tion program required the complete elimination of the actual infinite (and 
the infinitesimal) from analysis, and its replacement by a potential infinite. 
This program was carried to completion by the efforts of Weierstrass and his 
school. The infinitesimal and the infinite were replaced by the arbitrarily 
small and the arbitrarily large. The program supplied a rigorous foundation 
for the Riemann integral, and consequently for the Fourier transform. 

Classical analysis and Fourier theory reached its modern form with 
Parseval and Lebesgue, with the emergence of measure theory and the £ 2 

theory of the Fourier transform. With the introduction of the concept of 
a Hilbert space, and the recognition that the Fourier operator is a unitary 
operator in Hilbert space, the second major Fourier theory was complete. 

The applications of the theory of integral transforms, and Fourier the-
ory in particular, were never free from difficulties caused by the limitations 
of the classical framework. The development of the operational calculus 
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by Heaviside, and the introduction of the b-function by Dirac, created for-
malisms which are not easily absorbed in the classical framework. 

The successes of quantum field theory, in particular quantum electro-
dynamics, in the years around 1950, were obtained by means of complicated 
manipulations with generalised functions and divergent integrals. For lack 
of an adequate mathematical foundation, these great advances were made in 
a heuristic and experimental manner. It is possible to reinterpret these com-
putations in the context of renormalization theory in terms of distributions, 
but this has the character of an explanation after the fact. It takes much 
effort to accomplish, and it does not help much with further developments. 

At about the same time, and independently of these developments, 
Dirac's b-function was 'explained' in a mathematically rigorous way by 
Schwartz by means of the theory of distributions. Distribution theory was 
a major accomplishment. It is sufficiently strong to give a rigorous meaning 
to many (but not all) applications of the Dirac b-function. The special case 
of the tempered distributions is the third major Fourier theory. 

Distribution theory explains the b-function as a linear functional instead 
of a function. Likewise all other distributions are defined as linear functionals 
only. It is in general not possible to assign a value at a point to a distribution. 
The multiplication of distributions is thereby excluded. 

This limits the straightforward application of distribution theory to lin-
ear problems. Solutions of the multiplication problem are possible in special 
cases, but a general method has not emerged. Yet the divergence problems 
of the perturbation expansion of quantum field theory arise as products of 
generalised functions. The limitations of distribution theory are also man-
ifest in the theory of non-linear partial differential equations, in particular 
when shock waves arise. 

None of the Fourier theories referred to above is adequate to deal with 
all problems which arise in attempts to apply the Fourier transform to the 
solution of problems. Moreover, the different Fourier theories are incompat-
ible in their formal properties, so that it is often impossible to combine the 
useful properties of the various theories. 

In particular, none of the available Fourier theories is adequate for the 
applications to quantum mechanics and quantum field theory. On the one 
hand in quantum mechanics it seems to be necessary to work in a Hilbert 
space, on the other hand in quantum field theory singular objects such as b-
functions cannot be missed. This often makes uneasy compromises in the 
mathematical apparatus unavoidable. 

The symmetrical theory of generalised functions will (when it has been 
sufficiently developed) constitute a fourth Fourier theory. It combines the 
symmetry and the possibility of multiplication of Hilbert space theory with 
the presence of b-functions and the absence of domain considerations of 
distribution theory. 
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When the symmetrical theory of generalised functions is applied to 
quantum field theory the result is the automatic disappearance of divergence 
problems. The divergence problem never arises in the context of symmetrical 
generalised functions, so it does not have to be eliminated. 

The program outlined in this book will make it unavoidable to recon-
sider the foundations of analysis, in particular the function concept and the 
treatment of the infinite. This will involve a reconsideration of some aspects 
of the historical context outlined briefly above. 

1.2 Introduction to this work 

The starting point of this work is a rejection of the premise underlying 
distribution theory, which is that objects such as the Dirac 8-function should 
be considered as linear functionals, and no more than that. 

An alternative explanation of the 8-function as a symmetrical general-
ised function is constructed instead. 'Symmetrical' refers to the existence of 
a symmetrical inner or scalar product, and to the absence of a distinction 
between generalised functions and test functions. 

The symmetrical theory of generalised functions is not only a Fourier 
theory. It provides an integration theory which can give a well defined mean-
ing to some divergent integrals, and it allows the definition of limits and 
derivatives which are undefined or divergent in a standard sense. 

It is well known that the multiplication problem of generalised functions 
does not have a solution in the context of distribution theory. In this work 
the existence of a solution to the multiplication problem is imposed as a 
requirement on the mathematical theory which explains the 8-function. It 
will be shown to be possible to construct a theory of generalised functions 
which satisfies this requirement. 

The resulting symmetrical theory of generalised functions is logically 
independent of distribution theory. It is in some respects less general, but 
on the other hand it also contains many objects which do not have a non-zero 
counterpart in distribution theory. 

Compared to the vast amount of work which has been done in the 
context of functional analysis and distribution theory, the aims and results 
of this book are modest. As indicated by its title it is only a first step 
towards a new theory of symmetrical generalised functions. 

The lack of an adequate function concept has forced me to fall back 
on the eighteenth century concept of a function as an explicitly described 
object. For this reason it might be more appropriate to call the present first 
attempt a theory of generalised special functions. It is to be hoped that 
a synthesis between the different function concepts can be effected in the 
future. 

A consequence of building a better Fourier theory, or a better theory of 
generalised functions, is the need for a rebuilding of analysis as a whole. It 
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seems that Crtheory and distribution theory are the best that is possible 
within the confines of standard analysis. If these theories are considered to 
be not good enough for all purposes, the need for a reconstruction of analysis 
gradually unfolds from attempts to construct a better theory. It turns out to 
be not very important which aims one uses as a starting point. Any attempt 
to add substantially new properties to distribution theory leads to the need 
for drastic revisions. 

Starting from simple wishes for a somewhat better Fourier theory or 
distribution theory, the need for reconstructing analysis gradually follows 
from the consequences. In this book the course of the evolution of ideas as 
it actually occurred is more or less followed. 

Once the simple model has been constructed, it can be used as a guide 
to the needed new conceptual framework. This conceptual framework is in 
turn needed to develop stronger models. 

It is not clear at present where this development may lead, and whether 
it will end with a unique largest model, which will be complete on its own 
terms. It is even less clear what kind of foundations will be needed to support 
the resulting structure. 

It will be necessary to reconsider the function concept, and consequently 
the limit, derivative and integral concepts. Perhaps more controversially, it 
seems also necessary to reconsider the role played by the infinite in analysis. 
It may be useful to restore the actual infinite to carefully delimited place in 
analysis. 

Nonstandard analysis in.its present form is not directly suitable for this 
purpose, since it is equivalent to standard analysis, but it may be possible 
to adapt it in such a way that it will be more suitable. 

The present treatment relies on the analysis of asymptotic behaviour, 
which replaces standard concepts of limit and convergence. The standard 
concept of asymptotics will also need generalization in future developments. 

1.3 Outline of the contents 

The organization of the rest of the book is as follows. 
In the next chapter, Ch. 2, the requirements imposed on a symmetrical 

theory of generalised functions are outlined. An outline of the construction 
of the simple model is given at the end of Ch. 2. The third chapter presents 
a trivial model in order to show that it is possible to satisfy all requirements 
of Ch.2. 

In the Chs. 4-11 the construction of a simple model for a symmetrical 
theory of generalised functions is given. It is verified in Ch. 12 that the model 
satisfies the requirements of Ch. 2. 

In keeping with the aims outlined in the previous section the model is 
kept as small as possible. Generality is not an objective at present. Only 
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closure under the operators is imposed. Convergence of sequences of general-
ised functions is defined in Ch.19, but this generalised convergence concept 
has not been used as yet to enlarge the model. 

The next two chapters, Chs. 13-14, deal with the values, the limits, and 
the support of the generalised functions. The integration over the support 
of the generalised functions is defined, and it is shown that the fundamental 
theorem of the calculus holds for the generalised functions in an appropriate 
sense. 

In the next three chapters, Chs. 15-18, the transformation properties of 
the generalised functions under translations and scale transformations are 
derived, with the applications to physical problems in mind. 

The convergence of sequences, and the equivalence of the weak topology 
for generalised functions, are defined in Ch. 19. Periodic functions and 
Fourier sums are added to the model in Ch. 20. In Ch. 21 the Hilbert trans-
form is added, and the analytic boundary properties of the generalised func-
tions are derived. These are useful for applications. 

Only the local infinities, such as divergencies near a point, are treated 
in this book. The set theoretic aspects are left for the future, with the 
exception of appendix F, where an indication of the application to Cantor 
sets is given. 

The application of the symmetrical generalised functions to the compu-
tations of quantum field theory will be worked out elsewhere. The results of 
methods for the regularization of integrals are compared with the generalised 
function results in Ch. 22. 

Finally the implications of the program, as elucidated by the model, for 
analysis and its foundations, are discussed in the closing Chs. 23-24. 

It should be kept in mind that the model is only a first step towards a 
symmetrical theory of generalised functions. This may be a suitable argu-
ment to justify the informal presentation. Theorems and proofs are avoided, 
only the verification of the most important properties is given. It seems to 
me that the present model is too small, it has too much the character of a 
tentative first step, to justify the deployment of formal apparatus. It seems 
better to continue the development to see where it may lead. 



CHAPTER 2 

REQUIREMENTS AND PROPERTIES 

In this chapter a list of properties required of a symmetrical theory of gener-
alised functions is given. It is pointed out that the construction of a complete 
model satisfying these requirements, starting from scratch is far too difficult 
a task. Instead the feasibility and usefulness of a symmetrical theory of gen-
eralised functions is demonstrated by constructing a simple model which is 
still large enough for many applications where products or convolutions of 
generalised functions are unavoidable. 

The final section of this chapter gives an outline of the construction of 
the simple model in Ohs. 4-11. The restrictions imposed to obtain the simple 
model are indicated. 

2.1 Contents of the model 

The space of generalised functions (GF) should contain at least an element 
such as Dirac's 8-function. The 8-function should have properties such as 
its defining property 

1_:dx 8(x) f(x) = /(0), (2.1) 

it should vanish when multiplied by x, 

X • O(x) = 0, (2.2) 

it is the derivative of a jump and the Fourier transform of a constant 

-H(x) = (27r)-1 dy e'xy = 8(x), d Joo . 
dx -oo 

(2.3) 

and it should appear as the limit of a sequence which sharpens up 

limE-1 /(E- 1x) = 8(x) · J00 dx f(x), 
<!0 -oo 

(2.4) 

as postulated for the first time by Dirac [Dir]. The properties listed above 
hold when /(x) is suitably restricted. The last of Dirac's requirements (2.4) 
is difficult to implement in distribution theory. It will be derived in Ch. 19. 

The space of generalised functions should be a linear vector space. It is 
convenient to use a complex linear space. The symbol O or O(x) is used for 
the zero element. 

The space of generalised functions should contain many ordinary func-
tions as generalised functions. In particular the usual spaces of test functions 
used in distribution theory, such as the Schwartz space S of C 00-functions 
of rapid decrease, should be included in the space of generalised functions. 
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2.2 The scalar product 

The distinctive property of a symmetrical theory of generalised functions is 
the existence of a symmetrical scalar (or inner) product GF X GF -+ C 
satisfying 

(f,g)= (g,f)*, 
V f, g E G F, in addition to the linearity conditions 

and 
u 'o:g > = 0: u 'g > = ( o:* f 'g ), 

( f, g + h) = ( f, g) + ( f, h ). 

(2.5) 

(2.6) 

(2.7) 

Following physics conventions the product is referred to as a scalar product 
instead of an inner product, the * denotes complex conjugation, and it is 
applied to the part to the left of the comma of the scalar product. 
Remark 2.1 The term 'scalar product' is used instead of 'inner product'. 
The term inner product usually means a positive definite inner product. The 
term scalar product is used for all bilinear maps from the Cartesian product 
space to the scalars of the vector space, without implying the positive definite 
property. The scalar product will also be scalar in the sense that it is invari-
ant under a large class of linear transformations of the space of generalised 
functions. In intermediate stages of the construction the term scalar product 
will also be used for non-symmetrical mappings to the complex numbers. 
The symmetrical theory has the symmetry property (2.5) in common with 
the £2 theory of square integrable functions and Hilbert space in general. It 
contrasts with distribution theory where one side of the bracket is a 'good' 
function and the other side is not a function at all but a linear functional. 

The requirement of symmetry means that there is no distinction between 
test functions and generalised functions. Every generalised function also 
serves as a test function. Equivalently every generalised function is always 
defined as a linear functional on the whole space of generalised functions. 

Complex conjugation is defined for generalised functions in such a way 
that for every generalised function f(x) E GF there is a complex conjugate 
element f(x)* E GF. It is defined in such a way that complex conjugation of 
generalised functions is an extension of the complex conjugation of ordinary 
functions. For the scalar product the standard property 

u 'g )* = ( f* 'g* ), (2.8) 

should hold. 
It seems to be impossible to construct a symmetrical theory of general-

ised functions with a positive definite scalar product. The possibilities 

( f' f) < o, (2.9) 
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and also 
(I,/)= 0, 

are left open, and the weaker requirement of non-degeneracy, 

(I, g) = 0, Vg E GF ~I= 0, 

9 

(2.10) 

(2.11) 

is adopted instead. The notation 11111 2 for (I, I) is not used since 11111 does 
not have the standard properties of a norm. 
Remark 2.2 For the construction of models the requirement of non-
degeneracy is in the first place a heuristic principle. If it is not satisfied the 
model is either too large or too small. This can be cured by eliminating 
the degenerate elements or by introducing additional elements to lift the 
degeneracy. Lacking a norm, the property of non-degeneracy is indispensable 
for defining convergence in the scalar product. (Compare Ch.19.) 

2.3 Operators 

The space of generalised functions GF should serve as domain for the usual 
operators of mathematical physics. In particular the differential operator 'D, 
the multiplication by x operator X, and all polynomials in these opera-
tors, should be defined for all generalised functions E G F. The standard 
commutation relation for these operators 

['D, X] := 'DX - X'D = Z, (2.12) 

should be satisfied. Here Z is the identity operator. 
Remark 2.3 The domain of all operators is the whole space of gener-
alised functions. This eliminates domain considerations, which are always a 
nuisance in Hilbert space theory. 
Remark 2.4 The standard proof [Neu] of uniqueness of representations 
of the commutation relation (2.12) does not apply. It refers to representa-
tions in Hilbert space. The space of generalised functions is not a Hilbert 
space since the scalar product is not positive definite. 
The operators should be extensions of the operators acting on standard 
functions in the sense that 

d 
'D l(x) = dx l(x), (2.13) 

and 
X l(x) = x • l(x), (2.14) 

in those cases that l(x) is a function for which the action of the operators 
is defined in a standard sense. An example is provided by the space S of 
rapidly decreasing C 00-functions, introduced by Schwartz [Sch2]. 
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Remark 2.5 The required operator properties of the theory of general-
ised functions are the same as the properties these operators have on S XS, 
considered as a subspace of £ 2 x £ 2 • In many respects the space of symmet-
rical generalised functions resembles the usual Schwartz space S and the £ 2 
Hilbert space. 
The Fourier operator :F should be defined on the whole space of generalised 
functions and it should be unitary. The operators V and X should be 
unitarily equivalent under the action of the Fourier operator. 
Following Bateman [Erd2], the Fourier operator will be normalized as 

(2.15) 

and 

(2.16) 

when the integral has a standard meaning. The superscript dagger t in-
dicates the adjoint operator, which is required to exist also. With this 
normalization the algebraic properties of the :F-operator are 

:,:2 = 21r1'' (2.17) 
and 

:,:t :F = 21rI, (2.18) 
so the inverse is 

(2.19) 

The operator 1' is the parity operator defined by 

1' f(x) = J(-x), (2.20) 

for ordinary functions. It has the property 

1'2=I, so p-1 = 'P, (2.21) 

so it can only have eigenvalues ±1. 
Remark 2.6 It will be clear that the operators X and 1' imply a fixed 
origin of the coordinate system. At this stage the functions are considered 
as functions on JR, so the special point is the point x = 0. The translation 
of generalised functions will be taken up in Ch. 15. 
With the adopted normalization of :F the unitary equivalence of the opera-
tors V and X takes the forms 

(2.22) 
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and 
(2.23) 

The inversion of the order in (2.22) and (2.23) follows from the relations 

'PX'P- 1 = -X, and 'P'IYP- 1 = -'D, (2.24) 

between the operators 'D and X and the parity operator. The unit func-
tion I(x) will be taken as a generalised function with the defining property 

'D I(x) = O(x). (2.25) 

This implies the existence of a generalised function 6(x), 

(2.26) 

with the property 
X 6(x) = O(x). (2.27) 

The normalization of J(x) and 6(x) is fixed up to a sign by requiring 

( J(x) , 6(x)) = 1. (2.28) 

The sign follows later when 6 will be identified with the Dirac 6-function. 
Remark 2. 7 For the time being read 15 for 6 until 6 has been defined 
in Ch. 7. In this book 'Dirac's 6-function' denotes the intuitively understood 
object proposed by Dirac, without implying a rigorization. The notation 15 is 
reserved for the distribution in the sense of Schwartz, and 6 always indicates 
the symmetrical generalised function. The generalised function J(x) is the 
generalised function equivalent of the ordinary unit function, which has the 
value one everywhere. It also coincides with the multiplicative unit element 
to be introduced below. 
With the extra factor 271' resulting from the normalization (2.15) the unitarity 
of the Fourier operator takes the form 

(:Ff , :F g ) = 271' ( / , g ) . (2.29) 

Formula (2.29) will be referred to as Parseval's equality, since it is the ex-
tension of Parseval's equality on £ 2 to generalised functions. 
Remark 2.8 Sometimes it will be useful to introduce the normalized 
Fourier operator :F defined by :F := (211')- 112:F, which is a unitary operator. 
Remark 2.9 The operators X and i'D cannot be made selfadjoint. It 
will even be impossible to provide an adjoint operator. The operators are 
almost selfadjoint in the sense that the adjoint exists when a small subset of 
exceptional cases is eliminated. When the adjoint exists the operators are 
selfadjoint. 
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2.4 Products 

It is a well-known property of distribution theory that multiplication and 
convolution of distributions is in general not possible. [Sch3]. 

For the symmetrical theory of generalised functions the existence of a 
product and a convolution is required. So for all/, g E GF there is a unique 
element f • g E GF. 
The product • : GF X GF--+ GF must have the properties: 

Linear 
(a!)• g =a(!• g), (2.30) 

Commutative 
(2.31) 

Distributive 
f • (g + h) = f • g + f • h, (2.32) 

Non-degenerate 
f•g=O, 'igEGF=?-f=O, (2.33) 

Existence of a unit element I 

3/ E GF: J • f = f, VJ E GF, (2.34) 

Agreement with the scalar product 

( / 'g) = (I, f*. g ), (2.35) 

Agreement with the pointwise product 

(2.36) 

whenever the generalised functions are locally equal to standard functions. 
Remark 2.10 The requirement of the existence of a unit element (2.34) 
implies the non-degeneracy of the product (2.33). It has been given as a sep-
arate entry since there are large subspaces of the model which do not contain 
a unit element for multiplication, but in which the weaker property (2.33) 
holds. 
Remark 2.11 In Ch.13 the values at a point of generalised functions 
will be defined. The pointwise property holds in the standard sense, and it 
holds more generally for generalised functions. 
Warning: It is not possible to define values of generalised functions in 
such a way that (2.36) holds generally in the sense of generalised functions. 
Nevertheless the term 'pointwise' will be applied to the generalised function 
product in order to distinguish it from the convolution product. 
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Remark 2.12 It will be necessary to identify the zero element for dif-
ferentiation I defined by (2.25) and (2.28) with the unit element I of the 
product defined by (2.34). The notation anticipates this. 
The product cannot be associative, in general 

J • (g • h) =/; (J • g) • h. (2.37) 

The non-associativity of the product cannot be avoided, not even by making 
the product non-commutative. It will be seen to be an unavoidable conse-
quence of the requirement (2.34) of the existence of a unit element for the 
product. 
Remark 2.13 This non-associativity also appears in distribution theory 
for convolution products, when an attempt is made to define products such 
as x • x-1 • 6, or the equivalent convolutions. 
Remark 2.14 It is also possible to define a non-commutative asymmetri-
cal generalised function product, indicated with the symbols o• and •o, which 
is more but not compietely associative. The definitions are given in Sec. 8.2 
and Sec. 9.2. Only one of these is really needed since the asymmetrical prod-
ucts are related by 

IO• g = g •O !, (2.38) 

for all / and g. It is convenient to define these products first. The com-
mutative symmetrical product • is obtained from the asymmetricai products 
by symmetrization. The generalised function products are defined in Ch. 8 
and Ch.9. 
More interesting product properties arise in combination with the operators 
introduced in the previous section. In particular Leibniz's rule must hold for 
the differentiation of a generalised function product 

'D(f•g) ='Df•g+f•'Dg. (2.39) 

The operator i'D does not have to be selfadjoint, since we have from Leibniz's 
rule 

('DI 'g) = - ( / ''Dg) + (I' 'D(f*. g) ). 

and the surface term on the right-hand side is not necessarily zero. 
Correspondingly we cannot have the left-multiplicative rule 

(2.40) 

(2.41) X(J•g) =XJ•g, 
and the right-multiplicative rule 

WRONG! 

X(J • g) = J • Xg, {2.42) 
WRONG! 

for the operator X, since in combination with (2.35) this would imply 
selfadjointness of the operator X. This is impossible, since X and 'D should 
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be unitarily equivalent. The symmetrized product rule, which will be called 
the semi-Leibniz rule, 

(2.43) 
WRONG! 

is also incorrect in general. The conditions on f and g under which the rules 
for X reduce to the semi-Leibniz rule (2.43) or even to the multiplicative 
rules (2.42) and (2.41) will be derived in Ch.10. Only a small subspace has 
to be excluded. It is also possible to derive the necessary correction terms. 

The product should be constructed in such a way that parity is con-
served. Therefore the parity operator should act on the product as 

'P(f(x) • g(x)) = 'P f(x) • 'P g(x). (2.44) 

If f and g are parity eigenfunctions, 

'Pf = PJ · f and 'Pg = Pg · g, (2.45) 

with PJ = ±1 and pg = ±1, then 

'P(f • g) = PJPg · (f • g). (2.46) 

Remark 2.15 The product will be constructed in such a way that it also 
conserves the scaling properties of the generalised functions. If f and g are 
homogeneous, 

f(ax) = a>..f(x) and g(ax) = aµ g(x), (2.47) 

Va E JR+ with..\,µ EC, then 

(2.48) 

in agreement with the corresponding properties of the pointwise product of 
ordinary functions. The scale transformations will be defined for generalised 
functions in Ch. 16. 
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2.5 Convolution products 

Corresponding to the pointwise product there is the convolution product ( * ). 
defined as the Fourier image of the pointwise product by 

The properties of the convolution product follow at once from the corre-
sponding properties (2.30-36) of t·he pointwise product and the properties 
of the Fourier transform. 
The convolution is: 

Linear 
(al) *9 = a(! *9), (2.50) 

Commutative 
(2.51) 

Distributive 
(2.52) 

Non-degenerate 

f * g = O, \:/9 E GF => f = O, (2.53) 

With unit element 

(2.54) 

In agreement with the scalar product 

( J(x), 9(x)) = ( ~(x), f(x)* * 'P 9(x) ). (2.55) 

In agreement with the integral form of the convolution 

(2.56) 

when / and g are standard functions, and when the integral is defined in a 
standard sense. 

The convolution cannot be associative. If it were associative, the point-
wise product would be associative by unitary equivalence, and this is known 
to be impossible. 

The operator relations for the convolution follow by unitary equivalence 
from the corresponding rules for the pointwise product. There is the Leibniz 
rule for the X operator 

(2.57) 
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acting on the convolution product. The complicated rule for the 'D operator 
will sometimes, but not always, simplify to the semi-Leibniz rule 

'D(f*g) = ½'Df*g+ ½! *'Dg, 

which may simplify to the multiplicative rule 

'D(f * g) = 'D f * g = f * 'Dg. 

(2.58) 
WRONG! 

(2.59) 
WRONG! 

As with the dot product the simple rule holds when a small subspace is 
excluded. 

Since the convolution and the pointwise product are unitarily equivalent, 
it is only a matter of convenience which is defined first. 
Remark 2.16 It is convenient to define also the left- and right-sided 
convolution products o* and *o as the Fourier images of o• and 0 0, which 
are the corresponding pointwise products. 

2.6 Summary of the properties 

The requirements and properties listed above are not given a priori. They 
were found by constructing a model with properties that are as 'good' as 
possible. The guiding principle is that it is attempted to conserve as much 
as possible of the 'good' properties of S X S, considered as subspace of the 
symmetrical structure C2 X C2 , when singular objects such as Dirac delta 
functions are added, while keeping the symmetry. 
The main differences between a space of symmetrical generalised functions 
and the Hilbert space C2 are: 
1) The scalar product is not positive definite, there is no norm. 
2) The pointwise product and the convolution are not associative. 
3) The differential and multiplication operators are not selfadjoint. 
4) The operators are defined without any domain restriction. 
5) The product operation does not take us out of the space. 
6) Evaluation of divergent integrals is possible. 
7) Sets of measure zero may contribute to integrals. 
It is not obvious that all requirements listed in the previous section can be 
satisfied at the same time. A trivial model, satisfying all requirements, is 
constructed in the next chapter to demonstrate the possibility. The chap-
ters 4 to 11 are devoted to the construction of a small model which is strong 
enough for many applications. An outline of the construction is gives in the 
last section of this chapter. 

The construction of a maximal, or in some sense complete model, for the 
requirements listed above is an open question, which requires much further 
work. The simple model given here will first be constructed in an informal 
manner. In Ch. 12 it will be shown to possess the required properties. 
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2. 7 Other properties 

Apart from the properties which were required in the previous sections the 
simple model has many other useful and beautiful properties. Some of these 
will be derived in the second half of the book. From their fundamental 
character it is to be expected that these properties are not particular to the 
simple model. 

There seems to be some freedom of choice in deciding which properties 
should be required, and which should be derived. The choice made in this 
work seems fairly natural. 

A first group of properties, Chs. 13-14, concerns the value and the 
support of generalised functions. The real number system is not adequate 
for supporting the generalised functions, but it seems plausible that an ex-
tension is possible in such a way that the support property of the product 
holds: the support of the product is the intersection of the supports of the 
factors. 

Also it is always possible to assign finite values to generalised functions 
at every point. In consequence generalised functions are integrable over every 
finite or infinite interval. It will be shown that a generalised function always 
possesses a primitive, and that the fundamental theorem of the calculus 
holds for generalised functions. 

A second group of properties, Chs. 15-18, derives from groups of opera-
tors defined on the generalised functions. For instance the translation group 
is defined on all generalised functions. An important result is the demonstra-
tion that it is possible to define the scale transformation on all generalised 
functions in such a way that the product is scale invariant. Consequently 
the scale operator is unitary. This makes meaningful applications to physics 
possible. 

Thirdly it is shown in Ch. 19 that generalised functions can also be 
obtained as generalised limits of sequences. This may well take a more 
prominent place in a future exposition of the subject. 

In the fourth place it is shown in Ch. 21 that the model possesses further 
analytic properties of another kind. Some generalised functions (not all) 
are limits (in a sense to be defined) of functions which are analytic in an 
imaginary half-plane [Tich]. 

It will be shown that the generalised function product has the prop-
erty that if J(x) and g(x) are generalised functions of argument x = Re..\ 
satisfying 

J(x) = lim j(..X), 
Im .>.!O 

and g(x) = lim g(>,.), 
Im .>.!O 

(2.60) 

with J(>,.) and g(..X) analytic functions in the half-plane Im..\> 0, then the 
generalised function product satisfies 

f(x) • g(x) = lim f (..X) • g(..X). 
Im.>.!O 

(2.61) 



18 Requirements and properties 

This is referred to as the analytic boundary property. It is a derived property 
of the model that was not used for its construction. 

Finally it is shown in Ch. 20 that periodic functions can easily be added 
as a special case. 

Taken together the required and derived properties are sufficiently gen-
eral to allow us to use the symmetrical generalised functions as a tool for 
mathematical analysis and its applications. 

2.8 Outline of the construction 

This section gives an outline of the organization of the following chapters. 
The actual construction of the model is based on the method of constructing 
functionals, which depend analytically on a complex parameter, which can 
be continued analytically. The starting point is a preliminary class of func-
tions (PC) with the property that x>- is a linear functional on PC, analytic 
in .A, which can be continued analytically as far as one wishes. 

It is not known what conditions should be imposed on PC to guarantee 
the existence of the analytic continuation. This leadn to the 
Fundamental unsolved problem: Give necessary (and sufficient) con-
ditions on f(x) E PC such that the analytic continuation (possibly multiple 
valued) of the functional 

(2.62) 

to almost the entire complex .A-plane exists. In other words the analytic 
continuation of ](.A) should give rise to at most isolated singularities in the 
complex .A-plane. (Or more generally a Riemann surface.) The occurrence 
of natural boundaries is not allowed. 
The solution to this fundamental unsolved problem seems to be unknown. 
Therefore it is not possible to consider the space PC in general. Instead the 
construction will be based on small subspaces of PC with simple properties. 
These are obtained by imposing strong sufficient conditions, which are not 
at all necessary. This is equivalent to prescribing simple singular behaviour 
of the (generalised) functions. Solving the unsolved problem amounts to 
characterizing the worst singularities which could be incorporated in a future 
symmetrical theory of generalised functions. 
Remark 2.17 Even the requirement of isolated singularities may be 
stronger than necessary. All that is actually needed is an appropriate gen-
eralization of Laurent's theorem. When limits and Fourier integrals in the 
sense of generalised functions are available it may well be possible to gen-
eralize to more complicated singularities, such as isolated density points of 
singularities. This lies far beyond the scope of this book. It will be necessary 
to proceed stepwise. 
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In this work the subspace PC>. c PC is used, which is restricted in such 
a way that the analytic continuations will be meromorphic in the entire >.-
plane. 

The subspace PC>. consists of functions JR-+ C which are C 00 with the 
exception of a finite number of singularities. At the singularities a simple 
asymptotic behaviour in terms of powers of x, logarithms, and oscillating 
exponentials is required. It will be seen in Ch. 4 that this restriction does 
indeed give rise to meromorphic analytic continuations. 

A preliminary integration is then defined using Hadamard's partie finie, 
or equivalently by means of analytic continuation. A preliminary scalar 
product is defined by combining the pointwise multiplication with the pre-
liminary integral. The preliminary versions of the operators are derived from 
their standard definitions. 

The resulting symmetrical structure PC>. x PC>., with the correspond-
ing preliminary operators, has many defects. Closure under the preliminary 
operators holds, but standard properties such as Leibniz's rule for differen-
tiating products, and Parseval's equality do not hold. 

These shortcomings are more easily remedied when the elements of the 
preliminary class are considered as linear functionals on PC, that is as el-
ements of PC'. Again the space PC' is hard to characterize. As in the 
case of PC only small subspaces of PC' are used. These subspaces have 
well-defined properties fixed by construction. The first subspace which oc-
curs naturally is the subspace PC~ which contains the elements of PC>., 
now considered as linear functionals on PC>.. Closure of PC~ under the 
operators is achieved by noting that the elements of PC>. are restricted in 
such a way that they have a local Mellin transform, which is a meromorphic 
function of its complex argument. The residues of this meromorphic function 
are easily found. This leads naturally to the introduction of many singular 
generalised functions, which are localized at or near a point. These local 
generalised functions measure the coefficients in the asymptotic expansion 
of the function on which they act. 

The subclass PC~ combined with these localized generalised functions 
is easily closed under the usual operators to PC~ in Ch. 6. The class PC>. is 
then completed to PC>. by introducing an injective mapping M : PC>. -+ 

PC~, and by requiring the inverse mapping M-1 : PC~ -+ PC>. to exist. 
The action of the operators on PC>. is then found by transferring them 
from PC~ in Ch. 7. 

The product and convolution on PC~ X PC~ are found in Ch. 8 by 
analytic means. This involves an explicit symmetrization to obtain a com-
mutative product and consequently a symmetrical scalar product. In order -, -to transfer the product and convolution from PC>. to PC>. special map-
pings Mx and Mv are constructed in Ch. 9, which have the additional 
property of commuting with either the X or the 7J operator. In this way 
the good product properties in PC~ X PC~ are conserved in PC>. X PC>.. 
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The generalised function product may differ from the preliminary pointwise 
product by additional 6-functions at singular points. 

Although the model contains objects called 8-functions which have 
many properties {2.1-4) in common with the 6--distribution in the sense 
of Schwartz [Sehl], it is necessary to keep a distinction in mind between 
symmetrical generalised functions and distributions. The symmetrical the-
ory of generalised functions and distribution theory are logically independent 
explanations of Dirac's 6-function although they have of course many prop-
erties in common. The generalised function product on PC,\ then gives rise 
to a symmetrical scalar product PC-\ x PC-\ --+ C, with better properties 
than the preliminary scalar product. 

Finally the symmetrical structures PC-\ X PC-\ and PC~ x PC~ are 
joined to give the full symmetrical structure GF8 X GF8 of simple gener-
alised functions. This completes the construction of the model. Again the 
space GF8 can be thought of as no more than a small subspace of an as yet 
unknown and much larger space GF satisfying the requirements of this chap-
ter. The construction: of such a complete symmetrical theory of generalised 
functions is far beyond the scope of this work. 

The model has been restricted to one independent variable. This is not 
a trivial restriction which is easily lifted. Unless the problem factorizes into 
one-dimensional problems, it entails consideration of the more complicated 
singularities in more dimensions. In this respect the symmetrical theory is 
not really less general than distribution theory, where comparable difficulties 
arise in actual computations, since the spaces of test functions must be 
adapted to the singularities which one allows to occur. 

In the final chapters the symmetrical theory of generalised functions 
will be compared with distribution theory and with different methods of 
defining products of distributions. A program for further work is outlined, 
and the possible implications of the program for the foundations of analysis 
are discussed briefly. 
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A TRIVIAL MODEL 

In order to show that all requirements listed in the previous chapter can be 
met a trivial model GFt is constructed. It is far to small to serve a useful 
purpose. It only serves as an illustration that the list of requirements of Ch. 2 
can be satisfied. The trivial model is even somewhat better than required. 
The trivial model GFt contains the basic elements 

and 6(q) 
' (3.1) 

'rip, q E N. It also contains all finite linear combinations of these elements 
with the standard linearity properties of a linear vector space. Therefore it 
also contains the element O := 0 • xP = 0 • 6(q) as the zero element. 

The basic elements in (3.1) are defined to be real, so complex conjuga-
tion does not yield more elements. 

More neutral names for the elements such as ap and bp could be used but 
the present choice is more in agreement with standard usage and heuristic 
interpretation. 
The symmetrical scalar products of the basic elements are defined by 

(3.2) 

where 8p,q is the Kronecker 8-symbol. 
The model contains elements that have a negative scalar product with 

themselves. An example is provided by the element x0 - 6(0), which has a 
negative squared norm. 
The operators X and 1) are defined 'rip E N by 

XxP := xP+l, 
X 6(p+l) := 6(p), 

X 6(0) := 0, 

1JxP+l := (p+l)xP, 
1) 6(p) := -(p + 1) 6(p+l), 

1Jx0 := 0. 

The Fourier operator :F is defined by 

with the corresponding inverse 

(3.3) 
(3.4) 
(3.5) 

(3.6) 

(3.7) 
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The parity of the elements xP and t<P) then follows from (3.7) and (2.20), 

The products are defined by 

6(q) • xP = xP • 6(q) := { O 
6(q-p) 

6(p) • 6(q) := 0, 

so I:= x 0 is the unit element of the product. 
The corresponding convolutions are 

:J;p*Xq:=0, 

6(q) * xP = xP * 6(q) := { 0 i 
~xp-q 

6(p) * 6(q) ·= (p+q)! 6(p+q) 
. p!q! , 

so 6 := tC0) is the unit element for convolution. 

p > q, 

q 2:: p, 

q > P, 

p 2:: q, 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

One readily verifies by direct computation that the trivial model is even 
better than required in Ch. 2. The operators X and 1J are selfadjoint and 
the product and convolution are associative. 
Remark 3.1 One may of course interpret xP as x to the power p, and tJCP) 
as the pth derivative of Dirac's 6-function divided by (-)Pp!. 

The trivial model can be constructed in the context of distribution the-
ory if it is considered as a subsµace of the tempered distributions, by impos-
ing associativity, commutativity, and Parseval's equality. 
Remark 3.2 Instead of verifying the properties of GFt by direct com-
putation one can also wait for the completion of a larger model such as GF8 

and recover the trivial model as a subspace. 
Remark 3.3 The trivial model can easily be enlarged by adding trans-
lated elements and/or the Schwartz space S of rapidly disappearing C 00 

functions, but this does not yield a more useful model. 
The construction of the trivial model may serve as an example of the method 
for the construction of a larger but still fairly simple model in the next 
chapters. The approach is constructive, without regard for completeness or 
topological considerations. When the model is completed it will be shown 
that it has the desired properties by construction. 
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PRELIMINARIES 

This chapter introduces a preliminary class of generalised functions, and 
preliminary versions of the integral, scalar product, operators, product, and 
convolution, by classical means. The preliminary properties are unsatisfac-
tory, but they can serve as a starting point for the construction of simple 
model for a symmetrical theory of generalised functions. 

4.1 A preliminary class of (generalised) functions 

Until a general method has been found the construction of a model for a 
symmetrical theory of generalised functions has to be a somewhat experi-
mental procedure. Considerations of utility lead to the inclusion of some 
elements. Closedness under the usual operators and under multiplication 
then forces the inclusion of many other elements. On the other hand it has 
been attempted to keep the model as small as possible, insisting only on 
closedness under the operators. 
Example 4.1 Inclusion of a function with a jump discontinuity in the 
finite, such as e-lxlsgn(x), leads by Fourier transformation to functions be-
having as x-1 at infinity. Repeated application of operators X, 'D, and :F, 
then leads to functions diverging as arbitrary powers of x at infinity and as 
arbitrary powers of x-1 in the finite, multiplied by arbitrary positive powers 
of loglxl, 
The preliminary class will contain the ordinary functions allowed as gener-
alised functions in the model. A natural possibility would be to start with 
a suitable subclass of the distributions, which is closed under the usual op-
erators. This course is not taken. Instead the elements of the preliminary 
class (abbreviated in the following as PC) will be considered to be ordinary 
functions JR. - C. In the following attention will be restricted to the sub-
set PC>. C PC to be defined below. It will be too bothersome to mention 
the restriction to the subspace PC>. explicitly, so 'preliminary class' will 
usually refer to PC>.. 
Remark 4.1 The preliminary class PC>. does not contain 6-functions. 
Its completion in the sense of generalised functions, PC>., defined in Ch. 7, 
does contain objects called 6-functions. In the restricted context of dis-
tribution theory the 6-functions have of the properties of 6-functions. As 
generalised functions they do not satisfy all of Dirac's requirements (2.1-4). 
The heuristics outlined in Ex. 4.1 lead naturally to the choice of functions 
which are infinitely continuously differentiable (C00 ), with the exception of a 
finite number of exceptional points (piecewise C 00 ), as the minimal general-
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ization with respect to the spaces of test functions of distribution theory. It 
is then necessary to restrict the singular behaviour at the exceptional points. 
This is done by requiring suitable asymptotic behaviour near the singularity. 

It is required that functions J(x) E PC>. are asymptotic to a formal 
power series of the form 

oo K; 

f(x) ~ f a(x; xo+) :=LL Cjk(x - xo)"; logk(x - xo), (4.1) 
j=Ok=O 

at the positive side of every point x0 E JR, with Ki E N, and >..i, Cjk E C. The 
powers and logarithms are taken on the principal branch. The coefficients Cjk 
depend on the point x0 • They are written as Cjk(xo+) where necessary for 
clarity. 
The { >..i} are assumed to be ordered by their real parts 

-oo < Re>..o Re>..1 · · · Re>..i · · · < oo, 

and they are restricted by requiring the pointset 

(4.2) 

(4.3) 

to be finite Va E R This means that every negative real half-plane Re>.. < a 
contains only finitely many { >..i} values. 

A sequence {>..i} CC with the properties (4.3) and (4.2) will be called 
an ascending {>..j} sequence. Reversing the inequality signs in ( 4.2), or equiv-
alently replacing {>..j} by { ->..j} results in a descending { >..j} sequence. A 
finite union of ascending sequences is ascending, an intersection of ascending 
and descending sequences is finite. 
In the following, a notation such as 

Re>.; <a 
I: <oo, ( 4.4) 
j=O 

will be used to indicate the sum over j, until the superscript condition is 
false. By restriction (4.3) this is a finite sum. The sum over powers of 
logarithms appearing in (4.1) is also required to be finite. The restrictions 
on the allowed >.-values imply that f E PC>. cannot grow faster than a 
power of x anywhere. 

The formal series appearing in (4.1) is asymptotic to f(x) in the sense 
of Poincare, that is Va EC 

Re>.; <Re a K; 

lim (x - xo)°'(f(x) - L 2:.:Cjk(x - xo)"ilogk(x - xo)) = 0. (4.5) 
xtxo j=O k=O 

By restriction ( 4.3) the number of subtractions in ( 4.5) is finite. 
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A proof that the powers x>.; can serve as basis for unique asymptotic ex-
pansions may be found in [B&H]. The logarithms are easily added, since after 
removing more strongly growing terms and multiplying by x->.;, the domi-
nant behaviour is by requirement (4.1) a finite degree polynomial in loglxl. 
The term 'non-asymptotic' ,f., is defined by 

(4.6) 

where Pi, q} is the set of powers appearing in the asymptotic expansion. It 
is usually clear from the context which point is meant, so the point x = 0 
does not have to be indicated in the notation. Non-asymptotic is in relation 
to a given asymptotic set. It means that the specified behaviour is absent 
from the subset describing the given function. 

More generally the notation J_ will be defined as proper generalization 
of ,f.,. It will also indicate that the the behaviour on both sides is different. 

The same kind of asymptotic requirements hold at the negative side of 
every point with x - xo replaced by x 0 - x. The coefficients Cjk(xo-) in 
the left, and Cjk(xo+) in the right asymptotic expansion are not necessarily 
equal. It is sometimes convenient to use Cjk(x0e) and Cjk(xoo) for the coeffi-
cients in the asymptotic expansions in terms of lx-xol>. and lx-xol>. sgn(x) 
respectively. 
Remark 4.2 The asymptotic property is required at every point. It is 
automatically satisfied at points where f E PC>. is C 00 • A C 00-function 
possesses a Taylor series at every point, which is of the required form. The 
Taylor series is asymptotic to the function, even if it does not converge to 
the function anywhere. 
Example 4.2 The C00-function 

(4.7) 

is asymptotic to its Taylor series at x = 0, but the sum of the Taylor series, 
which has all coefficients equal to zero, differs from f(x) except at x = 0. 
Example 4.3 For every given formal Taylor series there is an analytic 
function, analytic in a sector containing the positive real axis, which is as-
ymptotic to the given Taylor series, even if the radius of convergence is 
zero. (Ritt's theorem) [Hen]. So for every given formal Taylor series there 
is a C 00-function asymptotic to it. 
Remark 4.3 The restriction to a finite number of logarithmic terms is 
necessary, since we have formally 

CX) 

x>. = e>. log(x) = -\ >.i logi x, 
~1-
j=O 

(4.8) 

which would lead to non-uniqueness. Moreover the powers of the logarithm 
do not qualify as an asymptotic sequence. At x = 0 and x = oo the func-
tion llogk+llxll dominates llogklxll, instead of being dominated by it. 
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Since there are singularities in the finite it is to be expected that the Fourier 
operator will transform these into singularities at infinity. The asymptotic 
behaviour of Fourier transforms of functions f(x) E PCA with asymptotic 
expansions of the form ( 4.1) is well known. A derivation up to the first power 
of the logarithm may be found in Lighthill [Lig]. This is easily extended to 
arbitrary powers of the logarithm. The asymptotic behaviour off E PCA 
at infinity, both at +oo and -oo, is required to be the Fourier transform of 
the allowed singular behaviour in the finite, 

J oo L1c 
f(x) ~ f a(x; +oo) := I>iy;zL L c;1e1 x-Ai-1 1og1 x, (4.9) 

j=O k=O l=O 

with J, L1e E N, and Y; E R, and c;1e1, A1e E C. At x = -oo we have the same 
requirement with x replaced where necessary by -x. 

Reflecting the finite number of allowed singular points in the finite only 
a finite sum over exponentials is allowed at infinity. The { Ak} are restricted 
in the same way ( 4.3) as before. At infinity only descending sequences of {A;} 
values are allowed in the asymptotic expansions. 

Since every f(x) E PCA is piecewise C00 , all its derivatives are by 
definition piecewise C 00 • All derivatives t<n>(x) E PCA are required to 
admit an asymptotic expansion of the same type as f(x) E PCA itself. 
Example 4.4 The condition is necessary. The function 

(4.10) 

is piecewise C 00 , and asymptotic to fa ( x; O+) = 0 at x = O+ , but for x!O 
its derivative cannot be bounded by a power of x. The derivatives of f(x) 
do not admit an asymptotic expansion of the required type. 
Example 4.5 The functions sgn(x), tanh{x), sin(x), cos(x), all finite 
Fourier sums, cos(logjxl), the unit function I(x) , all polynomials in x, the 
Bessel functions J 11 ( x), and many other special functions of limited growth 
are elements of the preliminary class. 
Remark 4.4 The usual spaces of test functions of distribution theory, 
such as the Schwartz spaces S or 'D, are subspaces of PC A. 
Remark 4.5 The functions cosh{x), tan(x), and most periodic functions 
do not belong to PC A. The periodic continuation of functions of bounded 
support E PC A, and the resulting infinite Fourier series and sums will be 
added as a special case in Ch. 20. 
Remark 4.6 At this stage the elements of PCA are still ordinary func-
tions defined on a union of open intervals, obtained by deleting a finite num-
ber of points from JR. They will be defined as generalised functions in Ch. 7 
by adding the behaviour at the singular points. 
Remark 4. 7 In this book the standard concept of an asymptotic expan-
sion due to Poincare (4.5) has been used. This is not the natural concept 
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from the standpoint of generalised function theory. It has been used never-
theless to keep contact with a well-known starting point. The generalization 
to an asymptotic concept which fits better with the symmetrical generalised 
functions lies outside the scope of this work. 

4.2 A preliminary product 

The class PC>. is closed under pointwise multiplication. The product of 
piecewise C 00-functions is piecewise C00 , the product of two functions is 
asymptotic to the formal product of the asymptotic series, the product of 
the asymptotic series is of the required type, and the finiteness conditions are 
obviously met. This preliminary product satisfies the requirement (2.30-36). 
It is commutative, distributive and even associative. The unit function I(x) 
is the unit element of the product, and the product is non-degenerate. It 
will be made to agree with the preliminary scalar product in Sec. 4.4. 

The preliminary product of/ E PC>. and g E PC.x will be written 
as / g or f(x) g(x), in contrast with the generalised function product, (to 
be defined in Ch. 8 and Ch. 9), which will be indicated by the fat centred 
dot f • g or f(x) • g(x). 

The preliminary product is defined on a union of open intervals. This is 
sufficient since single points do not contribute to preliminary integrals. The 
generalised function product will agree with the pointwise product (2.36) 
on the open intervals, but in addition it will also give the behaviour at the 
singular points. 
Remark 4.8 In Sec. 4.6 a preliminary convolution product is introduced. 
It is less convenient than the pointwise product and it will not be used for fur-
ther developments. Its relation to the generalised function convolution will 
appear in Ch. 22, where the regularization of convolution integrals is derived. 

4.3 Preliminary integration on the preliminary class 

The elements of the preliminary class are ordinary functions. In general 
these functions will not be integrable in the classical sense, since there can 
be divergences as arbitrary powers of x. The method of the partie finie, 
which was originally introduced by Hadamard (Had], can be used to define 
an integral on the preliminary class. This is done by defining the integral 
for the functions which are allowed in the asymptotic expansions and by 
removing as many terms as necessary to make the integrals converge in the 
classical sense. 
The basic integrals we need are 

la aa+l 
dxx"' = --, 

0 a+l 
(4.11) 
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and l oo a°'+l 
dxx°' = ---1 , 

a a+ (4.12) 

which are valid (convergent) for Re o: > -1 and Re o: < -1 respectively. 
The integrals are now defined for other values of o: by analytic contin-

uation with respect to o:. More generally we define 'va E R+, 'vo: E C the 
preliminary value of the integral as 

( 4.13) 

which leads for o: i=- -1 to the result 

ia _(-_)q-,--q!_ + (-8 )q (a°'+l -1)' Pre 
O 

dx x°' logq(x) = (o:+l)q+l 80: o:+1 (4.14) 

and for o: = -1 to 

(4.15) 

The preliminary character of the integral is indicated by the 'Pre' appearing 
in front of it. The generalised function version of the integral will be defined 
in Ch. 14. The preliminary value of the integral is equal to the generalised 
function value of the integral over the 'open' intervals between singularities. 
The meaning of this statement will be defined in Ch. 14. 

In ( 4.13) the analytic continuation with respect to ,\ is understood, 
and 'Res' stands for the operation of taking the residue. This is understood in 
the sense of standard analytic function theory. The standard definition (A.3) 
has been written out in appendix A. 

At infinity the asymptotic expansions may also contain oscillating ex-
ponentials. For k i=- 0 we have to evaluate integrals of the form 

(4.16) 

For q = 0, substituting ikx := -y, and rotating the integration contour, 
converts the integral into 

100dx eikxx).. = (ik)-°'- 1100 dy e-Yy°' = (ik)-n-l r(o: + 1, ika), (4.17) 
a ika 
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which is the definition [Erdl] of the incomplete r-function. Since the in-
complete r-function can be continued analytically to an entire function of 
its first argument ( 4.17) can be used to define the preliminary integral 

. t'° · ( 8 )q Prela dx e'kzxo: logq(x) := aa. ((ik)-o:-l r(a. + 1, ika)), (4.18) 

for all values of a when k-::/:, 0. Logarithms are again introduced by formal 
differentiation with respect to a. For k = 0 the integrals are obtained by 
direct integration as in (4.13) 

(4.19) 

or by taking a residue. 
The integrals from -oo to -a are found by replacing x by -x. Integrals 

near other points are obtained by replacing x by x - x0 or x0 - x. 
The preliminary integration of arbitrary functions / E PC .x is now de-

fined by choosing a finite partition of JR not coinciding with any of the singu-
lar points of J(x), subtracting a sufficient number of terms of the asymptotic 
expansions to the left and right of every singular point to make the integral 
absolutely convergent in the classical sense, and integrating the pieces and 
the remainder separately. Since this gives a finite sum of finite contributions 
the result is finite. Let / E PC .x have singularities at 

-00 < Xo < X1 < • • ' < Xn < 00, 

Choose a partition {a;} of JR such that 

-oo < ao, < Xo < a1 < X1 < · · · · · · < Xn < an+l < oo. 

(4.20) 

(4.21) 

In agreement with Hadamard's definition of the partie finie the preliminary 
integral is then defined as 

Pre[:dx J(x) := Pre[a: dx J(x) + Prel:
1 
dx J(x) + 

+ t(Prelz; dx J(x) + Prela;+i dx J(x)). (4.22) 
j=O a; z; 

A typical term in (4.22) is defined by 
• {a;+1 

Prelz- dx J(x) := , 
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The terms at infinity are defined in terms of asymptotic expansions in x>-. 
This makes the integral dependent on the choice of the origin. We will 
return to this point in Ch. 15, where the translation of generalised functions 
is defined. 

The first integral above converges absolutely in a standard sense, so it 
does not need a 'Pre'. The integrals appearing in the sums have been defined 
by (4.14) and (4.15) above. The value of integral defined by (4.22) is finite, 
since it is a finite sum of finite contributions. It is clear from the definition 
that the preliminary integral coincides with the standard integral when this 
is defined in a standard sense. It also coincides with Hadamard's definition 
of the partie finie, so 'Pre' may also be read as valeur principale or principal 
value. The difference is that the preliminary integral is used in this book as 
a starting point for constructing a better definition of the integral. 

The value of the preliminary integral does not depend on the choice of 
the partition, since f(x) E PC>. is C00 between singularities. The loss in 
one term resulting from a shift of a point of the partition is balanced by the 
gain of the next. It is also possible to subtract more terms of the asymptotic 
expansion than necessary for obtaining convergence, without changing the 
value of the integral. Integrals between finite limits are obviously included 
as a special case of the integral over the infinite interval. 
Remark 4.9 It will be shown in Ch. 12 and Ch. 14 that it is not necessary 
to insert partition points explicitly. Integrals can also be evaluated by other 
methods. 
Remark 4.10 The preliminary integral of a (strictly) positive function 
can be negative. By (4.11) the preliminary integral 

(4.24) 

is an example a positive function with a negative integral. This will re-
main so in the definitive version. It also provides an example of a func-
tion x- 1 H(x)H(l - x) which would have a negative squared norm, if there 
was a norm. 
Remark 4.11 In Ch. 13 the concepts of limit and value will be defined 
for generalised functions in such a way that many integrals can be evaluated 
by the substitution of the limits of integration into a primitive function, in 
accordance with the fundamental theorem Prop. 14.2 of the calculus. This is 
usually a more convenient method for the actual computation of integrals. 
Remark 4.12 The behaviour of the integral under scale transforma-
tions will be defined in Ch. 16. The more general question of the possibility 
of transformations of the dummy variable in integrals will be left open for the 
future. The behaviour of integrals, and more generally of generalised func-
tions, under translations of the integration variable will be defined in Ch. 15. 
The so called surface terms at infinity, which arise by translations, are rele-
vant in quantum field theory. 
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The integral defined in this section is a preliminary integral. It corresponds 
with integral in the sense of generalised functions over a union of open in-
tervals. The integral in the sense which is appropriate for the generalised 
functions will be defined in Ch. 14. 

4.4 A preliminary scalar product 

Since the preliminary class is closed under the pointwise product introduced 
in Sec. 4.1 the integral introduced in the previous section gives rise to a 
symmetrical scalar product, defined by 

( f, g )pre:= Pref_:dx (f(x)* • g(x)). (4.25) 

Following physical convention the * denotes complex conjugation, and it is 
placed on the left in the otherwise symmetrical scalar product. 

Like the integral the preliminary scalar product contains only the con-
tributions from the open intervals. The good properties of the scalar product 
can be realised only when the operators have been defined in the generalised 
function sense on the completed space of generalised functions. 

The scalar product can be used to induce a preliminary topology on the 
preliminary class. This preliminary weak topology is not suitable as a basis 
for further development of the model. It lacks the analyticity properties 
needed for the construction of the model. 
Example 4.6 The integrals of the functions x>- are not analytic in the 
parameter)., since by (4.11), and (4.15), we have 

lim Pre rdx x>- =I= Pre f°dx x- 1 . 
>.->-1 Jo Jo (4.26) 

if the limit is understood in the standard sense. 
When the model has been completed the concepts of limit and convergence 
will be redefined in Ch. 13 and Ch. 19 in a way which is more appropriate to 
a theory of generalised functions. 

4.5 Preliminary operators 

The standard operators, X, 'D, 1', and :F, are defined in a standard sense, 
or almost a standard sense, on the preliminary class. 

The operator Xpre is simply defined as X·. It is defined as multiplication 
by the (generalised) function f(x) := x. Since the function f(x) = x belongs 
to PC>. this defines 

Xpre f(x) := X • f(x), (4.27) 

as an element of PC;.., 
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The operator 'Dpre is defined on the open intervals between singularities by 

d 
'Dpre f(x) := dx f(x) · (4.28) 

This defines 'Dpre/ E PC,x, since f E PC,x is C 00 between singularities, 
and the derivative is asymptotic to the formal derivative of the asymptotic 
expansion. This formal derivative is again of the required type. The prelim-
inary derivative at the singular points is left undefined. It will be defined 
in the sense of generalised functions in Ch. 7 when the preliminary class has 
been completed. With this preliminary definition the preliminary class is 
closed under differentiation but information is lost. Any piecewise constant 
function has a zero preliminary derivative. 

The Fourier operator presents somewhat more difficulties. It is not 
defined in a standard sense, since the integral 

(4.29) 

need not converge in a classical sense. Therefore the integral has to be 
defined in the sense of Sec. 4.4 by 

(4.30) 

The preliminary class is closed under the pre-Fourier operator. The pre-
Fourier transform is C00 up to a finite number of exceptional points given 
by the exponentials in the asymptotic expansion at infinity, since by sub-
traction the original function can be made to vanish faster than any given 
power at infinity, and the pre-Fourier transform of the subtracted terms is an 
entire function. It can be shown, using standard methods for the asymptotic 
estimation of Fourier transforms [Lig], that the asymptotic behaviour at the 
singular points and at infinity is again of the required type. 
Remark 4.13 The pre-Fourier operator also has a large zero space 

(4.31) 

It destroys information since it gives zero Vk E JR. 
The parity operator does not need a pre. It is defined by 

'P f(x) = f(-x), (4.32) 

V f E PC ,x. It is clear that ( 4.32) defines again an element E PC ,x • 
The preliminary operators are now defined on the whole of PC,x, and 

the subspace PC,x is closed under the action of the preliminary operators. As 
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a result of the classical definition of the operators, in principle as limits using 
the V 8 > 0 3E > 0 formalism, the properties of the preliminary operators are 
unsatisfactory. 

The operators Xpre and '.Dpre are not (unitarily) equivalent. The opera-
tor '.Dpre has a large zero-space by {4.28), but the operator Xpre has only the 
trivial zero-space spanned by the element O(x). The pre-Fourier operator is 
not unitary by (4.31), and the algebraic properties {2.22-23) do not hold. 

4.6 Preliminary convolutions 

It might also be also possible to use a preliminary convolution product 

(f * g)(x) := ( /(y)*, g(x - y) \re' (4.33) 

defined by partie finie of the usual convolution integral, but it not clear to 
me how this should be done. The approach based on the pointwise product 
is more transparent and direct, so this line will be followed instead. 

The desired unitary equivalence of the convolution and the pointwise 
product, {2.49), will be implemented in Ch.10 by defining the convolution 
as the Fourier image of the pointwise product. 

Basing the construction on the pointwise product, instead of using the 
convolution, avoids the problems associated with the lack of uniqueness and 
obviousness of the regularization methods which must be used to impose a 
meaning on the divergent convolution integrals. 

In Ch. 22 the converse will be discussed. Regularizations can be de-
rived from the known generalised function products. A regularization is not 
necessary, but it may be a convenient method for evaluating convolution 
integrals. 

It will also be made plausible that it is impossible to construct a satis-
factory generalised function product on basis of ad-hoc assumptions about 
the regularization of convolution integrals. 

4. 7 Summary of the preliminaries 

The ordinary functions which will become generalised functions have been 
taken as piecewise C 00-functions, with a restricted asymptotic behaviour 
near their singular points. The usual operators are then defined in a more 
or less standard sense. These preliminary operators do not have satisfactory 
properties as a consequence of their standard definitions. The preliminary 
class is closed under the preliminary operators and under the pointwise prod-
uct. 

In the next chapters the pre-operators are lifted to the linear functionals 
on the preliminary class, in such a way that they have suitable analyticity 
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properties. This makes the closure of the space of linear functionals un-
der the operators possible. The analytic properties of the linear functionals 
make it possible to define the operators on the linear functionals with better 
properties than those of the preliminary operators of this chapter. The oper-
ators are then (in Ch. 7) pulled back from PC~ to a completed preliminary 
class PC>., with greatly improved properties. 



CHAPTER 5 

LINEAR FUNCTIONALS ON THE PRELIMINARY CLASS 

The usual procedure for defining linear functionals on the preliminary class 
would be to introduce a topology on the preliminary class, followed by the in-
troduction of the dual space PC' of all continuous linear functionals on PC. 

This course will not be followed here for two reasons. The first is that 
the preliminary weak topology ( defined in Sec. 4.4) is not suitable for this 
purpose. The second is that any dual space constructed in this way will be 
much too large. This will make it impossible to effect the closure of PC in 
such a way that a symmetrical structure satisfying (2.5) results. 

Instead in the following the undefined concept of the space of 'all' linear 
functionals on PC is used loosely. This is indicated as the space PC' of 
'the' linear functionals on PC. Actually only the subspace PC>. C PC is 
used as a basis for the construction. Likewise only small subspaces of PC', 
with properties fixed by construction, will occur in the model. 

A situation as in .C2-theory, where the function space .C2 can be iden-
tified with the space of linear functionals on .C2, would be preferable. I do 
not known if this can be achieved for the symmetrical generalised functions. 

5 .1 The preliminary class as linear functionals 

An obvious class of linear functionals on the preliminary class PC>. can 
be generated from PC>. itself by means of the preliminary scalar product 
introduced in Sec. 4.4. An element f E PC>. generates an element f' E PC~, 
which is defined as a linear functional on PC>. by 

(g,J'):= (g,/)pre· (5.1) 

This definition defines both a class of linear functionals on PC>. and a natural 
embedding PC>.-+ PC'. In the following the symbol M: PC>.-+ PC~ 

M:J'=MJ, (5.2) 

will be used. The subspace MPC >. c PC' will be referred to as PC~. 
For the time being there is no symmetry in the scalar product defined 

by (5.1). By convention the elements of PC>. will be placed on the left side 
of the scalar product, ( , ) : PC>. x PC~-+ C. Symmetry will be restored 
in Ch. 8 and Ch. 11 when the model has been completed. 

When it is necessary to distinguish between functions / E PC>. and 
linear functionals on PC>. a 'prime' ' is added to the function symbol in a 
suitable way, for instance as in 

(5.3) 
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The prime should not be interpreted as differentiation. It will be seen in the 
following that one prime is sufficient, so only one prime will be used. 

In the next section subclasses of analytic functionals are introduced. 
These are linear functionals E PC~ which depend analytically on a complex 
parameter. The primed powers will be defined there (5.19) as residues. 

5.2 Analytic functionals 

Each term in the asymptotic expansion (4.1) gives rise to an analytic func-
tional in a complex parameter. For example the function f(x)* E PC>., 
with a E lI4 positive, 

f(x)* := x>-(H(x) - H(x - a)), 

defines for every g(x) E PC>- an analytic function g(>.) : C-. C by 

g(>.) := (/(x) 'g(x) )pre' 

or equivalently in integral notation 

(5.4) 

(5.5) 

Consider g(>.) as a function of >. defined on the complex >.-plane. First 
restrict g(x) E PC>- to g(x) E PC>- n C 00 (0, a]. 
Then from the asymptotic expansion (4.1) 

oo K; 

g(x) ~ L L:Cik x>-; logk(x), (5.7) 
j=Ok=O 

and the ordering of the { Aj} imposed in ( 4.2), it is clear that the integral (5.6) 
converges absolutely for Re).. > -1 - Re >.o 

By standard results on the analyticity of the Mellin transform [Tich], 
it is known that g( >.) is analytic in the right half-plane Re).. > -1 - Re >-.0 • 

This analytic function of >. possesses a meromorphic analytic continuation 
to the whole >.-plane, with the exception of finitely many singular points. 
The analytic continuation to the half-plane Re).. > a: is given explicitly by 

Re-\;>-a-1 K; 

g(>.) := 1adx x>-( g(x) - L L Cjk x>-ilogk x) + 
j=O k=O 

Re>-;>-a-1 K; a 

+ L L Cjk Prel dx x>-+>-; logk x. 
j=O k=O O 

(5.8) 
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The first integral converges absolutely in the half-plane Re>. > -a - 1. The 
integrals occurring in the finite sums in the second line of (5.8) have been 
defined as a Hadamard partie finie in Sec. 4.3. As a function of >. these terms 
are analytic in the entire >.-plane, with the exception of the singular point 
at >. = - >.i - 1, where there is a pole. One sees from the explicit form 
of the analytic continuation (5.8) that the analytic continuation is indeed 
meromorphic, since it is meromorphic in any half-plane. 
Finally the function g(>.) is defined at the exceptional points {>.i} by 

(5.9) 

in agreement the preliminary definition of the integral, and therefore in 
agreement with Hadamard's definition of the partie finie. 

In what follows the analytic continuation and the completion by taking 
a residue are always understood. Standard results on the uniqueness of 
the analytic continuation are used throughout. By Cauchy's theorem and 
definition (5.9) the function g(>.) satisfies 

(5.10) 

in the entire complex >.-plane, including the possible singular points. 
The analytic functional xA ( H ( x) - H ( x - a)) is now extended from the 

restricted space PCA n C 00 (0, a] to PCA as a whole by noting that 'r;/ g(x) E 
PC A the integral 

g(>.) := Prelb dx xA g(x), (5.11) 

with a, b E JR, b > a > 0, is an entire function of >.. This follows from 
standard arguments, (differentiability with respect to >.), when the inte-
gral J;dx g(x) converges absolutely. It can always be made convergent by 
choosing a suitable partition between singularities, subtracting a sufficient 
number of terms of the asymptotic expansions of g( x) at the singular points, 
and integrating these separately. A typical subtracted term is of the form 

(5.12) 

By a suitable change of variable this can be reduced to a standard repre-
sentation [Erdl] of the Eulerian incomplete B-function, or a k-times re-
peated derivative of the incomplete B-function. The incomplete B-function 
is an entire function of its first argument, [Erdl], so the singularities away 
from x = 0 gives a contribution which is a finite sum of entire functions. 
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Therefore, V g(x) E PC>,, the function g(A) is meromorphic in the en-
tire A-plane. In much the same way one sees that V g E PC>. the functions 

. rxo+a . rxo 
Prelxa dx (x - xo)" g(x), and Prelxa-/x (x0 - x)>, g(x), (5.13) 

are meromorphic linear functionals E PC~. Likewise one sees that in an 
environment of +oo or -oo the functionals 

Pre100dx x>, eikxg(x), and Pref_:dx (-x)" eikxg(x), (5.14) 

are meromorphic analytic functionals. They are by (4.9) entire functions 
of A for almost all values of the parameter k, with the possible exception of 
finitely many k-values where the asymptotic expansion of g(x) contains a 
factor oscillating as e-ikx, resulting in behaviour of eikxg(x) as a power. 
Remark 5.1 It is. convenient to remember that behaviour as lxl°' logqlxl 
in the finite or at infinity gives rise to a pole in the A-plane at A = -a - 1 
of order q + 1. 
The local behaviour of a function f E PC>., as given by its asymptotic 
expansion of the form ( 4.1) near a point, is transformed into the location and 
order of the poles of its local Mellin transform. This is exploited in Sec. 5.4 to 
define localized generalised functions, which selectively measure the separate 
coefficients in the asymptotic expansions. 
Remark 5.2 For almost all points xo E R. the elements f(x) E PC>, 
are C 00 (xo), and consequently asymptotic to a Taylor series. For these values 
of x0 the poles of ](x) are first order, located at the negative integers -p-1 E 
C in the complex A-plane. 
Example 5.1 The function 

f(x) := { ~-x 

is mapped into 

X;?: 0, 
X < 0,' 

(5.15) 

(5.16) 

which is [Erdl] the Eulerian r-function. The r-function has poles at A = 
-p - 1, with residues (-)P /p! equal to the corresponding coefficients in the 
power series of e-x at the point x = O+. 
The generalised function x" H' ( x) = x'" H ( x) is defined as an element of PC\ 
by 

( f(x), x" H'(x)) := ( J(x), x>, H(x) \re' (5.17) 
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V f(x) E PC.x, The more general functions and the linear combinations 

x'>- logq(x)H(x), and lx'l>. logqlxl, and lx'l>. logqlxl sgnm(x), (5.18) 

are defined in the same way. It is possible to leave out the scalar products 
in the definition (5.17). Then one writes 

x' 0 H(x) =Res(,\ - a)-1x>- H(x), (5.19) 
>.=a 

with the understanding that the appropriate scalar product has to be added 
to both sides. Similar notation is used for the powers of x on other intervals. 
More generally we define the logarithms E PC~ by 

x'0 logq(x)H(x) = Res q! (,\ - a)-q-lx>. H(x), (5.20) 
>-=a . 

in agreement with the standard properties of the complex powers. It would 
also be possible to define preliminary logarithms E PC.x and to take residues 
to obtain logarithms in PC~. 

Ordinary function E PC~ will be indicated by J'(x), or by explicitly 
adding primed Heaviside functions to the function symbol. 

It follows at once that formal differentiation with respect to a yields the 
result 

8 - x'0 logq(x)H(x) = x'0 logq+l(x)H(x), 
8a 

in agreement with standard expectations. 

5.3 Analytic properties of the partie finie 

(5.21) 

In Sec. 4.3 the partie finie was defined by analytic continuation for the powers 
and logarithms, and by a subtraction procedure for arbitrary f(x) E PC.x. 
Now that the analytic properties of the powers are available it is possible to 
unify these cases. 
From (5.8) it is seen that 

Prej_:dx lxl 0 J(x) = ll~~ (,\ - a)-1 i:dx lxl>. f(x), (5.22) 

with the special case 

(5.23) 

In particular for the finite interval we have 

Pref°dx f(x) = Res ,\-11adxx>- f(x). lo >-=0 o 
(5.24) 

This is sometimes a convenient method to evaluate integrals from the ana-
lytic functionals when these are known explicitly. 
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Example 5.2 The integral 

(5.25) 

can be evaluated as a residue. The ¢-function is the logarithmic deriva-
tive [Erdl] of the r-function. 
Remark 5.3 In the following the preliminary integral will be identified 
with the generalised function integral over an 'open' interval {O+, a-). The 
generalised function integrals over 'closed' intervals are defined in Ch. 14, 
together with a preliminary definition of 'open' and 'closed' in the sense of 
generalised functions. 
The scalar product was defined by means of the integral by (4.25). Therefore 
the scalar product inherits the analytic properties of the integral. 
This gives the result 

(5.26) 

The scalar product appearing above can be interpreted both as the prelim-
inary scalar product on PC>., or as the generalised function scalar prod-
uct PC>. X Pc; - C. 

At first sight nothing has been gained by going from PC>. to PC;, but 
the gain is having good analytic properties such as (5.26), in contrast to the 
undefined result obtained by replacing the residue in (5.26) by a limit. 

5.4 Localized functionals 

In the previous section it was shown that the linear functionals on PC>., 
generated by the powers of the variable x are analytic functions in a half-
plane, with a meromorphic analytic continuation. Therefore corresponding 
to every f E PC>. we have four families of meromorphic functions generated 
by the scalar products 

( f(x), (x - xo)>. (H(x - xo) - H(x - a - xo)) ), 
( f(x), (xo - x)>-(H(xo - x) - H(xo - x +a))), 
( J(x), x>- eikox H(a - x) ), 
( f(x), (-x)>. eikox H(-x - a)), 

(5.27) 
(5.28) 
(5.29) 
(5.30) 

parametrized by x0 E R. and ko E R At each point Xo E R. there are the 
left and right local Mellin transforms. At each ko E R. there is a left and a 
right Mellin transform, localized at x = -oo and x = +oo respectively, of 
the function eikox f(x). 
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These local transforms also depend on the value of a, which determines 
the length of the integration interval. This dependence on a is irrelevant 
for the pole parts of the meromorphic function. As shown in the previous 
section a different choice of a changes the local Mellin transform by adding 
an entire function of the variable >.. 
Example 5.3 The integral 

(5.31) 

defined in Sec. 4.3 can be written as 

ia 1 a.XH -1 
Pre dxx.x = -,- + >. . 

o A+l +1 
(5.32) 

The first term is a pole part independent of a. The second term does depend 
on a, but it is an entire function of the variable >.. 
Remark 5.4 In contrast with this the value assigned to the meromorphic 
function at the pole location by (5.9) does depend on the choice of a. Some 
of the consequences of this dependence will be demonstrated in Ch. 16, where 
the invariance under scale transformations is discussed. 
Conversely the coefficients of the powers of x occurring in the asymptotic 
expansion can be found from the local Mellin transform. 

Following the method introduced by Gelfand and Shilov [G&S], the 
'eta-down' generalised function, r,1 (x), is defined by 

(J(x),r,.(x)):= Res (f(x),x.x(H(x)-H(x-a))). 
.X=-1 

(5.33) 

This expression will be non-zero if and only if the scalar product on the right-
hand side of (5.33) has a first order pole at>.= -1. From the foregoing it is 
known that this will be the case when the asymptotic expansion at x = O+ 
contains a constant term proportional to x0• By (5.32) the result of taking 
the residue in (5.33) does not depend the choice of a. It is not necessary 
to take a smaller than the distance to the next singular point, since the 
integration near the next singular point will produce by ( 4.17) only entire 
terms, which do not contribute to the residue in (5.33). 
Example 5.4 In the special case that J(x) E PC,x is continuous at x = 0, 
we obtain 

( f(x), r,1 (x)) = J(O)*, (5.34) 

so apart from the conventional * the generalised function 'Tl:i (x) is in this 
special case equivalent to the 8-distribution. 
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Example 5.5 
but such that 

In the special case that f E PC>. is discontinuous at x = 0, 

f(0+) := lim/(x) 
x!O 

(5.35) 

exists, we obtain 
( J(x), 171 (x)) = J(o+ )*. (5.36) 

In the sense of distribution theory the expression (J, c5) is in this case un-
defined. It can be defined only when the space of test functions has been 
suitably adapted. 
Example 5.6 For the function f(x) E PC>., defined by 

(5.37) 

we obtain 
(5.38) 

This shows that the generalised function 171 (x) can measure the constant part 
of a function, even when it is hidden under divergent terms. This possibility 
is absent in distribution theory, unless it is specially defined by a suitable 
subtraction procedure. 
Remark 5.5 Dirac's generalised function c5(x) and Schwartz's distribu-
tion c5 have a traditional normalization, due to Dirac [Dir) which does not 
carry over easily to symmetrical generalised functions. Therefore it was nec-
essary to choose a different letter, 17 instead of c5. The c5 will be reintroduced 
in Ch. 7 as ~, with a different normalization, and a different meaning. 
A larger class of localized generalised functions 11?•,q\x) is defined by 

( J(x), 11i"',q\x)) := Res ~(,\+a + l)q ( f(x), x>.(H(x) - H(x- a))), 
>.=-a-1 q. 

(5.39) 
with a E JR+, Va EC, Vq EN. 
The generalised function 11t·q\ x) measures the coefficient of x"' ( - log(x) )q, 
in the asymptotic expansion (4.1) of J(x) E PC>., at the positive side of the 
point x = 0. In particular we obtain the result 

((3) {
(-)q a*-/3 q-r ( x"' logq(x) H(x) 17 ,r (x)) = - ; - ' 

' • 0 otherwise, (5.40) 

when the 7]-function acts on a power. 
Example 5.7 The generalised functions such as 171(x) can be used to 
measure the behaviour of functions such as ,Ix, 

(5.41) 

The 77-functions are particularly suitable to detect scaling behaviour. An 
example is given in appendixF, where the action of the 171-functions on 
the Cantor's staircase function is computed. This is an example where 77-
functions with a transcendental number in the index occur naturally. 
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By the uniqueness of the different powers in the asymptotic expansions al-
lowed by (4.1) different powers are not asymptotic to each other 

(5.42) 

when a -:/= /3, or q -:/= r, or m -:/= n. Correspondingly the 11J.-functions are 
independent for different coefficients. The symbol ..L is used to indicate this 

(5.43) 

when the indices are different. The relation ..Lis not related to the vanishing 
of the scalar product. 
Remark 5.6 In the superscript of the 7rfunctions indices which have 
the value zero are usually omitted, 

(5.44) 

as in (5.41) and in the definition (5.33) of 7JJ. (x) given above. 
Remark 5. 7 The normalization of the 1rfunctions chosen here differs 
by a factor (-lq/q! from that of earlier work, ( [Lodl]: equations (1.23) 
and (1.25) ). Instead of q! logqJxl measured by the 'old' 7JJ.-functions, the 
'new' 7JJ.-functions measure lloglxl lq. This is done to facilitate the general-
ization to non-integral powers of loglxJ in the future. From 

(5.45) 

one sees that arbitrary complex powers of the logarithm will give rise to 
branchpoints in the >.-plane. For v = q E N these reduce to poles. (The 
poles in (5.45) at (-v - 1) E N come from the upper limit). 
In the same way as for the right asymptotic behaviour one finds the left 
asymptotic behaviour by defining the 'eta-up' functions 1J;(x) by 

( J(x) , 1J~<>,q\x)) := (5.46) 

:= Res 1y(>.+a+l)q(f(x),(-xl(H(-x)-H(-x-a))), 
A=-o-1 q 

so 1J~a,q)(x) is related to 11}0 ,q\x) by 

11}<>,q\x) = 1J~<>,q\-x). (5.47) 

For many computations it is easier to introduce the symmetrical and the 
antisymmetrical linear combinations by 

(5.48) 
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and 
(5.49) 

for all values of the indices. The symmetrical one, T/s, measures the average 
of the left and right values, the antisymmetrical one, T/a, measures half the 
jump across a singular point. 
Remark 5.8 It is possible to obtain ,,.,ia,q\x) as a residue from 

by combining (5.39) and (5.46) with (5.48). 
Example 5.8 For the signum function, sgn(x), which is fully defined (as 
an element E PC.x) by 

{ 
1 X > 0, 

sgn(x) := undefined x = 0, 
-1 X < 0, 

(5.51) 

one obtains 
() { 1 a-Oq-0 (sgn(x),r, 0 •q(x))= - '. - ' 
a O otherwise. (5.52) 

It should be remembered that by definition (5.49) the T'/a-function measures 
half the jump of the sgn-function. 
For integer values of the parameter a on the r,-function it is often more 
convenient to define the linear combinations 

and 
u(p,q)(x) := ½ r,lp,q\x) - ½(-)Pr,~p.q)(x), 

which measure xPjloglxllq, and xPjloglxllq sgn(x) respectively. 
It is sometimes convenient to use the notation 

(5.53) 

(5.54) 

for keeping the computations general. This notation will be shown to agree 
with the product of generalised functions in Ch. 9. The special notations for 
the r,-functions are summarized in Table 5.1. 

The notation of the special cases can be simplified by introducing the 
generalization to complex subscripts of the Kronecker's a-symbol defined by 

{ 1 a*= /3, 
oa,/3 := 0 a* i= {3. (5.55) 
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The previous formula (5.40) then takes the form 

( XQ logq(x), 11t•r)(x)) = (-)q6Q,/j 6q,r • (5.56) 

A further simplification of the notation can be obtained by introducing an-
other generalization of the Kronecker symbol defined by 

6mod2 ·= ! (l + (-)m+n) = { 0 m I- n (mod 2), 
m,n · 2 1 m = n (mod 2). (5.57) 

The 'Kronecker delta mod two' tests if the parity of m and n is equal. 
Equation (5.56) can be rewritten with Kronecker 6's as 

( lxlQ logqlxl sgnm(x) , 11it,,r)(x) sgnn(x)) = (-)q6Ck,/j 6q,r 6!~~2 • (5.58) 

Despite its first appearance this notation will be found to simplify many 
computations. It avoids the necessity of considering odd and even special 
cases separately. 

Considered as a function of the variable o: or o:*, the function 6a,t, is 
zero for almost all values of o: with the exception of a finite set of points. 
Nevertheless it is convenient to consider it as an analytic function, with the 
property that it is zero in the punctured complex plane o: E C, o: I- /3*. 

In the following the term 'zeromorphic' is used to indicate an analytic 
function with this property in the complex plane, which is punctured by 
omitting a discrete set of points. The simplest example of a zeromorphic 
function is of course the generalization of the Kronecker's 6-symbol. Con-
versely every zeromorphic function can be written as a formal sum over 
Kronecker's 6-symbols. 
Example 5.9 The analytic function g(o:) defined by 

g(o:) := Res I'(..\), 
>-=Ck 

(5.59) 

where r(..\) is the Eulerian r-function, is zeromorphic. The exceptional 
points are at o: = -p, p E N. Using the Kronecker's 6-symbol the func-
tion g( o:) can be written explicitly as 

00 

-( ) 6 g 0: = L,_, p! Ck,-p ! (5.60) 
p=O 

in the form of a formal sum of Kronecker's 6-symbols. This formal sum 
notation will often be used to indicate exceptional cases explicitly. 
Remark 5.9 An obvious property of zeromorphic functions is that 

Res(..\ - o:l /(..\) = 0, 
A=Ck 

(5.61) 

Vo: E C, Vk E .Z, and for every zeromorphic function. 
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Following the same method one can also define generalised functions at 
infinity. The same definition is used, up to a minus sign arising from the 
fact that the relevant term now comes from the lower limit of the integration 
interval, and a factor (- )q since the function logq lxl is positive at infinity. 
The generalised function 'eta-slash-up', 'ffr(x), is defined by 

As usual we take a E JR+ positive. The resulting scalar product does not 
depend on the value of a. 

The slash through the greek letter such as r, serves to distinguish be-
tween an r,(x )-function in the finite, and the similar 'ff (x )-function at infinity. 
The equivalent of the measurement formula (5.58) for the 'ffr-functions is 

(5.63) 

without the minus signs (- )q. This was absorbed in the definition, in keeping 
with the positive sign of the logarithm at infinity. 
In the special case a = q = 0 the function ifr(x) = if?•0\x) measures the 
constant part at x = +oo of f(x) E PC>.. 
Example 5.10 When the limit 

lim f(x) =: /(+oo) 
xjoo 

(5.64) 
, 

exists, one obtains 
( f(x), ifr(x)) = /(+oo)*. (5.65) 

The result (5.65) is again independent of the choice made for a. Equa-
tion (5.65) also gives the general result when f( +oo) is interpreted as the 
asymptotic coefficient of x0 in the asymptotic expansion of f(x) at x = +oo. 
In Ch. 13 a generalised limit will be defined in terms of the scalar product. 
Example 5.11 The 'ff-function averages out oscillations at infinity, as in 

k :#= O, 
k =0, (5.66) 

so it measures an average behaviour at infinity. 
As before the generalised function 'eta-slash-down' if/"',q)(x) at minus infinity 
is defined by 

(5.67) 

so it can be found as a residue from 

(5.68) 
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Many equations in this work are invariant under the substitutions 

(5/69} 

since the definitions (5.39} and (5.62} have been constructed in this way. In 
the following a slash will be added to the equation number to indicate this. 
This convention reduces the number of equations which have to be written 
out in full. 
As in the finite, one can define the even and odd linear combinations 

and 
(5/70} 

(5/71} 

with the arrows reversed in accordance with (5.69}. These generalised func-
tions detect functions behaving at infinity as 

and 

The linear combinations J( and r/, are defined for p E Z, q E N, by 

and 

(5/72} 

(5/73} 

(5/74) 

(5/75} 

These linear combinations measure the coefficients of the powers at infinity 

and 
(5/76} 

(5/77) 

The general case is again written as Jf}a,q)(x) sgnm(x), with the same special 
cases as for 11!a,q)(x)sgnm(x). The special cases are tabulated on the next 
page. 
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For convenience the special notations for the 'T/ and J(-functions are collected 
in the following table, with a E C, p E Z, and q E N. 

Table 5.1 

Special notations for 'T/~"',q\x) sgnm(x) and Jf}"',q)(x) sgnm(x) 
a m (mod 2) q ,,,::: ,,,::: measures 

a m 0 'T/~"')(x) sgnm(x) lxl"' sgnm(x) 
a 0 q · 'T/i"',q) (x) lxl"'l loglxllq 
a 1 q 'T/i"',q\x) lxl"'l loglxllq sgn(x) 
p p q 'T/(p,q)(x) xPI loglxllq 
p p+l q cr(p,q)(x) xPI loglxllq sgn(x) 
p p 0 'T/CP>(x) xP 
p p+l 0 crCPl(x) xP sgn(x) 
0 0 0 'T/(X) I(x) 
0 1 0 cr(x) sgn(x) 

and idem for ef}"',q\x) sgnm(x) with an added slash 

The same specialization applies to the 'T/!-functions and the other 'Tl-functions 
with arrows. 
Combination of the definitions (5.39) and (5.62) of the ,,,-functions as resi-
dues gives 

>-=~~s_/).+a+l)q lxl>- sgnm(x) = 2(-)qq! (<-)q'T/i"',q)(x)-1{8(<>,q)(x)) sgnm(x), 

(5.78) 
which is the basis for computing the Fourier transforms of the ,,,-functions. 
Remark 5.10 The linear combination of 'T/ and lf as in (5.78) occurs 
often. For convenience the ( - )q will always be combined with the ,,,-function, 
and the minus sign with the l{-function. Both terms then measure logqlxl, 
both in the finite and at infinity. 
Example 5.12 It is often obvious how the split between the finite and 
infinity should be effected without introducing explicit cutoffs. The Mellin 
transform of the function arctan(x) is given by [Erd2] 

100 >, 1r 
dxx arctan(x) = 2(). ) . 1r)., 

O +1 sm 2 
(5.79) 

which has poles at ). = 2m, and an additional pole at ). = -1. These 
correspond to the powers x2m+l, and an additional power x0 • Computing 
the residues at the poles gives the scalar products with the ,,,-functions. 
Splitting between x = O+ and x = +oo- by hand, we find 

00 

( ,,,}"',q)(x), arctan(x)) = c5q,o I:Oo,2p+l ~;{i, (5.80) 
p=O 
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and consequently the asymptotic expansion 

(X) • 

arctan(x) ~ x - -31 x3 + -51 x 5 + . . . - <->3 x 2i+l - L.J 2j+l ' (5.81) 
j=O 

for x!O, and likewise, 

(X) • 

t ( ) 1r -1 1 3 __ ... _ (_\J -23·-1 arc an x ~ 2 - x + 3x- + · · · - 2 L...J t-trx , (5.82) 
j=O 

for xjoo, in agreement with the elementary standard result. The asymptotic 
expansion (5.81) actually converges for small x, but this is irrelevant. 
Formal differentiation with respect to o: applied to the definitions of the r,--
functions yields 

(5/83) 

and 

(5/84) 

for q 0, and to 

(5/85) 

in agreement with the corresponding behaviour of the powers. 
The complex conjugate of the r,--functions is defined in the obvious way 

by taking the complex conjugate of defining equations such as (5.85). The 
result is obviously 

(5.86) 

since (x.x)* = x.x• for x E lR+. 
Remark 5.11 The generalised functions at infinity do not have a support 
in JR. Nevertheless they are treated as localized generalised functions. The 
concept of the support of the generalised functions will be defined in Ch. 13 
in a heuristic way. 
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5.5 Translated arguments and exponentials 

Now that the singular functions of argument x are defined, the generalised 
functions of argument x - x 0 are defined by 

ry~°',q\x-xa) := Res -\(..\+a+l)q(x-xa).x(H(x-xa)-H(x-xa-a)), 
.X=-o-1 q. 

(5.87) 
and idem at infinity 

The definitions of the functions "7r ( x - Xo} and efi ( x - xa) are the same 
with x - xa replaced by xa - x, and with adapted Heaviside functions. 

Here some preliminary remarks on the subject of translations are nec-
essary. A more elaborate treatment will be given in Ch. 15. 

In the finite the 1rfunctions at different locations, ry(x - x1 ), and ry(x -
x2), with x1, x2 E iR, x1 -f. x2, are linearly independent in the sense that 
an ry-function at one point cannot be written as an effectively finite linear 
combination of ry-functions at other points. The relation ..l will also be used 
to indicate this. 
Example 5.13 An attempt to define (anticipating Ch. 15) 

(5.89) 
WRONG! 

fails. The resulting formal linear combination is not an allowed expression 
in the model. 
At infinity the function /(x) := (x - x0).x H(x - x0) is asymptotic to its 
Taylor expansion, which is found from the binomial theorem, 

00 

J(x) ~ !a(x;+_oo) := L (;)(-xo)ix.X-iH(x), (5.90) 
j=O 

so the function ef/°'•q\x - xa) of argument (x - xa) can be expressed as 

00 j =LL (-)i+kxoi (qtk)(-~-1/k} ef/°'+i,q+k}(x), (5.91) 
j=Ok=O 

in terms of of the functions ef1 (x) of argument (x). The derivatives of the 
binomial coefficients occurring in (5.91) are defined by (B.5) in appendix B. 



'.Iranslated arguments and e,;ponentials 51 

Remark 5.12 The infinite sum over the indices appearing in (5.91) is 
only formally infinite. The functions f(x) E PC.x are restricted to a finite 
number of effective powers and a finite number of logarithmic terms. The 
infinite sum has only a finite number non-zero terms when a scalar product 
with an element f(x) E PC.x is evaluated. 
The function f(x) E PC.x defined by 

f(x) := x.x ik:t: H(x - a), (5.92) 

with a E R+, has the residue 

(5.93) 

The usual linear combinations are defined in the usual way. The correspond-
ing measurement formula is 

( eiki:i:lxl°' logqlxl sgnm(x), eik2:i:,t;f3,r)(x) sgnn(x)) = 6k1 ,k2 60<,{3 6q,r 6!!!~:2 • 
(5.94) 

The functions eiki:i:,t/0 ,q)(x) .L eik2a:,t/°'•q>(x) are again linearly independent 
in their k-dependence. 
In the finite at x = o+ the function 

is asymptotic to the formal power series 

00 

ft,(x;O+) := '°' ~(ik)ix-X+iH(x), L..., 3. 
j=O 

as one sees by expanding the exponential. 
Therefore the function eik:t:17f0 •q)(x) can be expressed as 

(5.95) 

(5.96) 

(5.97) 

in terms of 11i -functions. The sum is again only formally an infinite sum. 
Remark 5.13 The asymptotic (binomial and exponential) series used 
above are actually convergent,. This is completely irrelevant in the context 
of generalised functions. 
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The general case is now clear. The function eikx(x - xo)>. H(x - xo) has the 
residue 

Res (..\+a+ l)q (x - xo)>. eikx H(x - xo) = 
>.=-a-1 

00 

= eikxo"' ( ikx )i 11f °',q+j) (x - Xo) + 
~J-
j=O 

00 j +LL (-)i+k(xo)j (qtk) (-,rl) (k) ikxa11/°'+j,q+k)(x). (5.98) 
j=Ok=O 

The corresponding formulre for the function eikx(x0 -x)>. H(x0 -x) and the 
usual linear combinations are easily found, so it is not necessary to write 
them out. The translation operators acting on all generalised functions will 
be defined in Ch. 15. 

5.6 Linear combinations 

It is important to characterize the allowed linear combination of 77-functions. 
Some examples of allowed and forbidden linear combinations occurred in the 
previous section. 
Remark 5.14 The four families of 77-functions depend on a complex 
parameter, which can take arbitrary complex values. The rr-functions at 
different parameter values have to be considered as linearly independent 
elements of the space of generalised functions. The space of generalised 
functions will be very dense in an (as yet undefined) topological sense. This 
is not really a problem in the limited context of this book, since only finite 
linear combinations of these elements are allowed as generalised functions. 
Expressions such as 

(5.99) 

are in general undefined. 
Following the examples given above, the space PC~ of allowed linear com-
binations of 77-functions is defined to contain all linear combinations of the 
form 

00 00 1 LL LL Cjklm 11i°'k,l)(x - Xj) sgnm(x - Xj), (5.100) 
{x;} k=O l=O m=O 

with { Xj} C JR a finite subset of the reals, { ak} C C a descending sequence 
of complex numbers in agreement with restriction (4.2), and with arbitrary 
coefficients Cjklm E C. 
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Likewise the allowed linear combinations at infinity are of the form 

00 00 1 LL LL Cjklm ix;x'ffs(°'k,l)(x) sgnm{x), {5.101) 
{x;} k=O l=O m=O 

with the same requirements as in {5.100) except that {ak} CC now has to 
be an ascending sequence instead of a descending one. The notation PC, is 
used for the subspace of PC' spanned by the elements of {5.101). 

Instead of using the definition {5.39) it would be possible to define 
new 11-functions by expressions of the form 

{5.102) 

with an additional arbitrary analytic (preferably entire) function g(.X). This 
yields nothing new, the resulting new 1}-functions are allowed linear combi-
nations of the old 11-functions, provided g(A) is meromorphic with poles of 
order less that q. 
Example 5.14 A useful example occurs in Ch. 16, where the scaled 1}-
functions appear by taking g(A) := a·X. It is also convenient to introduce 
equivalence classes of 11-functions by identifying linear combinations ob-
tained by modifying the analytic function in {5.102), for instance by identi-
fying 11-functions with different values of the parameter a. This will be done 
in Ch.18. 
One easily sees that the scalar products of the allowed linear combinations 
with an element E PC>. contains only finitely many non-zero terms, since 
by ( 4.2) the intersection between an ascending sequence and a descending 
sequence of {ak} values is finite. With the restriction {4.1) the allowed linear 
combinations (5.100) and {5.101) are effectively finite as linear functionals. 
It will be seen when products have been defined that all expressions of the 
form 

.. ·11··· ·= g(x) • --·11 .. . L.J ... . L.J ... , (5.103) 
allowed 

are again allowed linear combinations. 
The availability of so many localized generalised functions gives the 

symmetrical theory of generalised functions a far greater analysing power 
than distribution theory. This is a general property of symmetrical theories 
of generalised functions. Enlarged models can be expected to contain many 
more localized generalised functions than the simple model developed in this 
tract. 

In the following chapter the usual operators will be defined on the part 
of PC~ which has now been constructed, and PC~ will be completed to PC~ 
to close it under the operators. It will be seen that PC~ and PC, can also 
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be obtained from PC\ by imposing closure under differentiation, but the 
direct definitions of this chapter seem preferable. 

A table summarizing the contents of the various Pc::: classes is pre-
sented at the beginning of Ch. 9. 



CHAPTER 6 

OPERATORS ON THE LINEAR FUNCTIONALS 

In this chapter the usual operators are defined on the space PC' of linear 
functionals on PC, at least on the subspaces which were explicitly con-
structed in the previous chapter. Since there is an embedding M: PC>.-+ 
PC\ , the preliminary operators can be transferred from PC>. to PC\. The 
natural definition of the element Og' E PC\ is derived from the requirement 

(6.1) 

V / E PC.>.. The scalar product is required to be non-degenerate, so ( 6.1) 
defines a unique element E PC\. 

This does not settle the definition fully. In Sec. 4.3, and Sec. 5.3, it was 
seen that two equivalent definitions of the preliminary scalar product are 
available, either by repeated subtractions, or as a residue. It was shown that 
both methods give the same value to the scalar product. This changes when 
the operator O introduces an additional function of the complex variable in 
the residue. 

The definition (6.1) is completed by choosing the analytic method to 
calculate the residue. This conserves the good analytic properties of the 
analytic functionals introduced in the previous chapter. An operator O is 
therefore defined on the analytic functionals by 

(6.2) 

in terms of its preliminary version, by interchanging the operator and the 
taking of the residue. It is understood that all functions of A which are 
added by the action of the operator are expanded in a Laurent series when 
the residue is computed. Only operators which give meromorphic additional 
functions of A are considered in the following. This condition is automatically 
satisfied for the usual operators, so it is not an actual restriction. It should 
be clear that analytic functions of A cannot be taken out of residues. In 
general 

- >. - >. Res••·f(A)···x =ff(a)Res••·x. 
>.=o >.=o 

(6.3) 

Even when the function f (A) is entire the non-zero terms in its Taylor ex-
pansion will give rise to additional 7,functions. 

When operators are defined by taking residues the unsatisfactory pre-
liminary properties of the preliminary class are converted into the good an-
alytic properties of PC\. The subtraction scheme for computing the scalar 
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product would result in properties of PC\ which are no better than the 
preliminary properties of PC .x. 

For 'ordinary' functions J'(x) E PC\ the operators in the sense of gen-
eralised functions are defined by adding the appropriate localized generalised 
functions. These are obtained from the known action of the operator on the 
asymptotic expansions of f(x) E PC_x. 

0 J'(x) = OMJ(x) := MOpref(x) + 
+ OM L f a(x; xo) - MOpre L f a(x; Xo). (6.4) 

XO 

The map of the asymptotic expansion is understood as formally the same 
asymptotic expansion, with primes added to make the separate terms ele-
ments of PC\. The sum over xo including xo = ±oo is by definition finite. 
The operators acting on the asymptotic expansions yield allowed linear com-
binations of localized generalised functions. 

This somewhat roundabout definition is made necessary by the con-
structive approach followed in this book. The elements of PC\ are defined 
by construction rather than in terms of other objects with known proper-
ties. It is for instance unknown a priori if it is possible ( or even desirable) 
to make the operators selfadjoint. (selfadjointness properties will be derived 
in Ch. 12). It is not possible to define the operators in the same way as in 
distribution theory. For instance simply postulating 

( X f(x), g(x)) = ( f(x), X g(x) ), (6.5) 

may not yield a suitable theory of generalised functions. · This makes it 
impossible to define operators on PC\ by transfer of preliminary operators 
on PC_x. Conversely the operators (in the sense of generalised function 
theory) on PC.x will be found in Ch. 7 from the corresponding operators 
on PC\ by inverting the mapping. 

6.1 Multiplication 

The simplest case is the X operator. Its preliminary version is defined 
on PC_x by 

Xpre f(x) := x · f(x) = (x - Xo + Xo) · f(x), 
so its action on the powers and logarithms is 

Xprelx - xol°' logqjx - xol sgn(x - xo) = Ix - xol°'+l logqJx - xol + 

and 
+ xolx - xol°' logqjx - xol sgn(x - xo), 

Xprelx - xol°' logqjx - xol = Ix - xol°'+l logqJx - xol sgn(x - xo) + 
+ xolx - xol°' logqlx - xol-

(6.6) 

(6.7) 

(6.8) 
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The translation by x0 merely adds x0Z to the X operator. It is not necessary 
to write the x 0 in all cases, since it can be easily added. 

Transferred to the A-plane the X operator produces only a transla-
tion A := A + 1. Since no additional function of A is introduced by the X 
operator, the action of X can be transferred directly to the powers and 
logarithms in PC~, with the result 

Xix'!°' logqlxl sgnm(x) = lx'l°'+l logqlxl sgnm+1(x), (6.9) 

where the notation sgnm(x), with m E Z, has been introduced to combine 
the odd and even cases. 

The action of X on the 7rfunctions follows from the definitions (6.2) 
and (6.6) and the analyticity, with the results 

X 11}°',q) (x - xo) = 11ia-l,q) (x - xo) + Xo 11}°',q\x - xo), (6/10) 

and 

(6/11) 

For the linear combinations 17~"',q)(x) and 11i°''q)(x), the operator X behaves 
as 

and 
X 11i"',q)(x) = 11t-l,q)(x). 

For the linear combinations 17(p,q) and a(p,q) the operator X gives 

X17(p,q)(x) = 17<P-l,q>(x), 
and 

(6/12) 

(6/13) 

(6/14) 

(6/15) 

The operator X has odd parity, so it changes the parity of the functions it 
acts on. 
Remark 6.1 
operator 

The behaviour of the function 17(x) = 17<0>(x) under the X 

(6/16) 
contrasts with property 

X 6(x) = O(x), (6.17) 

of the Dirac 6-function in the sense of distribution theory, which will be 
derived for the generalised function 8(x) in the next chapter. The non-zero 
result is made possible by the enlarged space of test functions, which contains 
elements behaving as x-1 near x = 0. 
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6.2 Differentiation 

The pre-differential operator 'Dpre is simply differentiation in the standard 
sense. 

df 
'Dpre f(x) := dx, 

which is well defined between singularities. 
Acting on the powers E PC>. gives 

'Dpre(x - xo)" H(x - xo) = .:\(x - xo)"- 1 H(x - xo), 

(6.18) 

(6.19) 

From this we find for the derivatives of the powers E PC\, (putting ;\ = 
a+ A - a, and invoking the analyticity) 

'D (x - xo)°' logq(x - xo)H'(x - xo) = Res q! (.:\ - a)-q- 1.:\x"-1 H(x) = 
>-=<> 

= a(x - xo)°'- 1 logq(x - xo)H'(x - xo) + 
+ q(x - xo)°'- 1 logq-l(x - xo)H'(x - xo), (6.20) 

in agreement with the standard result for q > 0. 
For the special case q = 0, there is no logarithmic term and we obtain 

'D (x - xo)°' H' (x - xo) = a(x - xo)°'- 1 H' (x - xo) + 
+ 11i-°'\x - xo) - rJ/-°'l(x - xo), (6.21) 

and in particular 
(6.22) 

Using the Kronecker's 8-symbol (5.55), and taking x0 = 0 for convenience 
of notation, these can be combined into 

'D x°' logq (x)H' (x) = ax°'- 1 logq(x)H' (x) + 
+ q(l - oq,o)x°'- 1 logq-l(x)H'(x) + 
+ 8q,o(11i-°'\x) - rJ/-°'\x)), (6.23) 

which is now valid for all special values of the parameters. 
For the odd and even functions this result can be written as 

'D lx'I°' logqlxl sgnm(x) = alx'l°'- 1 logqlxl sgnm+l(x) + 
+ q(l - oq,o)lx'l°'- 1 logq-llxl sgnm+1(x) + 
+ 2 8q,o(11i-°'>(x) - rj}-°'>(x)) sgnm+l(x). (6.24) 

It is seen that in contrast with distribution theory, there is (6.21) always a 
singular term when a power of xis differentiated in the space PC\. 
In the special case a = m = p E N, q = 0, of the function x'P we find 

(6.25) 
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which reduces for p = 0 to 

'D I'(x) = 2 a(x) - 2 ¢(x). (6.26) 

This shows that the function I'(x) is not the zero element (7.49) for the 
differential operator. In fact the space PC~ does not contain an identity 
element I which satisfies 'DI = 0. The existence of a preferred point is 
inherent in functions belonging to PC~. 
Remark 6.2 It is necessary to give the special point when specifying 
elements of PC~. The function I'(x - x0 ) has the derivative 

'D I'(x - xo) = 2 a(x - xo) - 2 ¢(x - xo), (6.27) 

in agreement with (6.25) after specialization to a = q = m = 0, so the 
generalised function I'(x - x0 ) is not equal to I'(x). 
Example 6.1 In the special case a = -p, m = p + 1 we obtain 

'D x'-P sgn(x) = -p • x,-p-l sgn(x) + 217(Pl(x) - 2 'ff(P)(x), (6.28) 

which reduces in the special case p = 0 to 

'Dsgn'(x) = 217(x) - 2'ff(x), (6.29) 

so in contrast with the situation in distribution theory the function sgn'(x) 
has a derivative both in the finite and at infinity. 
In terms of the mapping M : PC A - PC~, the difference between the 
direct transfer and the definition (6.1) appears as 

M'Dprelxl"' = nlx'l"'- 1 sgn(x), (6.30) 
in contrast with 

'DMlxl"' = nlx'l"'- 1 sgn(x) + 11i-"'l(x) - l{j-"'\x). (6.31) 

This also corresponds with the difference between the subtraction method 
and the analytic method for defining the operators. 

The derivatives of the 17-functions also follow from the analyticity. Sub-
stitution of the definition of 'D into (5.39) or (5.62) gives 

'D11i"'•q)(x) sgnm(x) =-(a+ 1) 11i"'+l,ql(x) sgnm+1 (x) + 
+ (q + 1) 11i"'+l,q+l)(x) sgnm+l(x), (6/32) 

both in the finite and at infinity, and 

'D ikx'ffs(<>,q)(x) sgnm(x) =-(a+ 1) eikx'ff}"'+l,q\x) sgnm+l(x) + 
- (q + 1) eikxef;"'+l,q+l\x)) sgnm+l(x) + 
+ ik eikx'ff;"'•q)(x) sgnm+l(x), (6/33) 

at infinity and also in the finite. The difference of the signs in the second 
term between (6.32) and (6.33) comes from the different normalization (5.39) 
versus (5.62) of 1J and 'ff. 
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Remark 6.3 As indicated by the slashes at the formula numbers (6.32) 
and (6.33) one of the two formulre is superfluous. 
Example 6.2 For the linear combinations 'Y/r and 'Hr we find that the 
sense of the arrows is unchanged by differentiation. The derivatives of 'YJ L 
and 'Y/; are found from (6.32) as 

1JrJ;(x) = -7Ji1>(x) +rJi1'1\x), (6/34) 
and 

1JrJ;(x) = +rJ?\x) - rJ?'1)(x), 
in agreement with expectation. 

(6/35) 

For future reference the repeated derivatives are also computed as residues. 
For the rJ-functions the result is 

p 

1)P 'YJ~°',q) sgnm(x) = p! L (q!k) (-~-1) (k) 'YJ~°'+p,q+k>(x) sgnm+P(x), 
k=O 

and (6/36) 
p 

1)P rj}a,q) sgnm(x) = p! L (-)k (q!k) (-~-1) (k) rj}°'+p,q+k)(x) sgnm+P(x), 
k=O 

(6/37) 

with the derived binomial coefficients defined in appendix B. In particular 
the Stirling numbers of the first kind (1 )1k] appear in the repeated derivative 
of the 7J-function 

p 

1JP rJ(x) = L (-)k(1)1k] 'YJ(p,k)(x). 
k=O 

For the powers the same computation gives 
min(p,q) 

(6.38) 

1JPlx'I°' logqlxl sgnm(x) = p! L m (;)(k)lx'l°'-p logq-klxl sgnm+P(x) + 
k=O 

p-q-1 
+ 2 I (-)kq!k! (°')(k+q+l) X 

p. L.J (q+k+l)! p 
k=O 

x ((-)krJi-°'+p-1,k>(x) -'ffs(-Dl+p-1,k)(x)) sgnm+P(x). (6.39) 

The second summation in (6.39) may be empty. In this case it should be 
omitted. The differentiation yields 7J-functions when the condition p > q is 
satisfied. 

The subspace PC~ is not closed under differentiation, but it is seen from 
the preceding results that PC~ EB PC~ EB PCef is closed under differentiation. 

It remains to define the differential operator for arbitrary J' ( x) E PC~. 
This is left for Sec. 6.4. 
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6.3 The Fourier operator 

The Fourier operator is defined for good functions J(x) ES by 

:F f(x) = 1-:dy e-ixy J(y), (6.40) 

following the convention (2.15) used in [Erd2). The corresponding adjoint 
operator is then normalized to 

(6.41) 

It will be shown in Ch. 12 that the complex conjugate which appears above 
is actually also the adjoint operator. On S XS the Fourier operator has all 
the properties listed in Sec. 2.3. 

For the powers of x the preliminary Fourier transform is well-known. 
The Fourier integral 

fo 00dy e-ixyy">-, (6.42) 

can be found [G&S) by substituting ixy := y, and rotating the integration 
contour, which results in 

Fi,reX>-H(x)= (6.43) 
= r(.X + 1) ( e-i I (>-+1lx->-- 1 H(x) + e+i I (>-+1) (-x)->--1 H(-x)), 

where r(.X + 1) is the Eulerian r-function. In the same manner one finds 

Fi,re(-x)>-H(-x) = (6.44) 

= r(.X + 1) (e+i (>-+1lx->-- 1 H(x) + e-i I (>-+1) (-x)->--1 H(-x)), 

in agreement with the result obtained by substituting x -+ -x. 
Remark 6.4 In the symmetrical theory of generalised functions there 
is complete symmetry under the Fourier transform. There is no need to 
distinguish between k-space and x-space, as in some other Fourier theories. 
The letter x will be used also for the Fourier transformed variable. 
It is often more convenient to use the linear combinations 

(6.45) 
and 

:Fprelxl>- sgn(x) = 2i r(.X + 1) sin I (.X + 1) lx1->--l sgn(x), (6.46) 

which are parity eigenfunctions. The formulre (6.45) and (6.46) can be com-
bined into 

:Fprelxl>- sgnm(x) = -2im r(.X + 1) sin I (.X + m) lx1->--l sgnm(x). (6.47) 

In this way the separate consideration of the odd and even case is avoided. 
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Remark 6.5 Even though only the values m = 0 and m = 1 are 
needed it turns out to be convenient to keep m E Z arbitrary. The func-
tion im sin i (..\ + m) is periodic in m with period two, as it should be. 
The Fourier transforms found above hold in a classical sense for -1 < Re,\ < 
0. Again by analytic continuation with respect to ..\, these formulre can be 
extended to the entire complex ,\-plane, with the exception of the inte-
gers, ,\ = p, p E Z, where poles and/or zeroes may be found. 

Formal differentiation with respect to ,\ gives the Fourier transforms 
with log-functions. It is convenient for this purpose to define the Laurent 
coefficients 

(6.48) 

of the function J(..\) := r(..\ + 1) sin i (..\ + m). The explicit value of these 
coefficients and some of their properties are derived in appendix C. It is 
simpler to find the Fourier transform of the logarithms E PC,x, including 
the 6-functions which may arise, by computing the Fourier transform first 
in PC\. 
For future reference the Fourier transform of a power on a finite interval is 
also given. It is found in the same way, 

.'.Fprelxl>. H(lxl - a) = -2im ,'(A+ 1, ialxl) sin i (..\ + m) lxi->--l, (6.49) 
where 1(-,\ - 1, ialxl) is now the incomplete 1-function. [Erdl]. By sub-
traction of (6.49) from (6.47), or directly by evaluating the integral one also 
finds 

Fprelxl>. H(a - lxl) = -2im r(..\ + 1, ialxl) sin i (..\ + m) lxi->--i, (6.50) 
where r(..\ + 1, ialxl) is the other [Erdl] incomplete r-function. 

Now that the pre-Fourier operator is known for the powers x>- E PC,x 
the Fourier operator acting on the powers and logarithms E PC\ is found 
in accordance with (6.1) by computing the appropriate residues 

.'.Flx'I"' logqlxl sgnm(x) := (6.51) 
- 2im Res q! (..\ - a)-:-q-l r(..\ + 1) sin i (..\ + m) lxl->.-l sgnm(x). 

>-=<> 
Expansion of the special functions in a Laurent series at ,\ = a, and calcu-
lation of the residue gives 

:Flx'I"' logqlxl sgnm(x) = 
q+l . 

- 2imq! L <-;/3 Cq-j(a, m)lx'l-"'- 1 logilxl sgnm(x) + 
j=O 
00 

+ 4imq! Lj! Cq+i+l (a, m) ( (-)i17~<>,i)(x) - ft}<>,j) (x)) sgnm(x), (6.52) 
j=O 

with coefficients c ... defined in appendix C. 
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Frequently occurring special cases are the broken powers 

:Fx'P sgn(x) = 2(-i)P+lp! x,-p-l + 
00 

63 

+ 4iP+l Lj!ci+1(p,p + 1)(<-)ia(P,i) x - ¢<P,il(x)), (6.53) 
j=O 

with the special case 

00 

:Fsgn'(x) = -2ix'-1 +4iLj!ci+1(0,1)(<-)ia<0,il(x)-¢<0,il(x)). (6.54) 
j=O 

For the integral powers (6.52) specializes to 

00 

:F x'P = 4iP Lj! ci+1(p,p)(<-)i71(P,il(x) - 1f(P,il(x)), (6.55) 
f=O 

with the special case 

:F I'(x) = 21r(11(x) -'ff(x)) + 
00 

+ 4 Lj! ci+1(0, o)(<-)i71<0,il(x) - 1(<0,il(x)), (6.56) 
j=l 

where the value of the coefficient c1 (0, 0) = given in table G.1 has been 
substituted. 

The Fourier transform of the 71-functions is found in the same way by 
computing the appropriate residue 

:F((-)q11i",q)(x) -'ff}",q)) sgnm(x) = (6.57) 

-im -\=~E;,8_1 <;jt (,\+a + l)q r(,\ + 1) sin~(,\+ m) lxl--\-l sgnm(x). 

The residue generates again 7rfunctions, unless a = r = p, and q = 0, where 
a power reappears. When the Kronecker 8 is used to combine the exceptional 
cases, the evaluation of the residue gives 

00 

+2im"' (-)q(q+j)!(l-8 8- )c·(-a-1 m)x q. q,O J,-1 J , 
j=-1 

x (<-)q+i11i-<>-l,q+il(x) -'Jf}-<>-l,q+j)(x)) sgnm(x) + 

- im 8q,O C-1(-a - 1, m)jx'I" sgnm(x). (6.58) 
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In these expressions the generalised functions in the finite and at infinity 
occur together. It is possible to separate these by introducing suitable 
smooth cutoff functions, but it is done more easily by definition. From 
the asymptotic behaviour of the Fourier transform [Lig] it is known that the 
Fourier transform of a singularity in the finite will be a singularity at infinity, 
so the splitting is effected by defining 

.:F(any TJ) :== only if-functions, (6.59) 
and vice versa 

.:F(any ef) :== only 7J-functions. (6.60) 

This is not possible in the special case a == p E N, m = p (mod 2), q = 0, 
where we obtain after substituting the explicit form (C.18) of the coeffi-
cient c-1(-p - 1,p) 

(6/61) 
00 

+ 2iP LJ! ci(-p - 1,p) ( (-)i1J~-p-l,i)(x) - ef}-p-l,i>(x)) sgnP(x). 
j=O 

No suitable generalised function which can serve as :F 7J or :F ef exists as yet 
in the model,so it is necessary to create one by definition, 

00 

:Fr,CP>(x) :== (-;t (x'P + 0<P>(x)) - 2iP Lj!ci(-p- I,p) 9"(-p-l,i)(x), 
j=O 

and (6.62) 
00 

:Fef(Pl(x) :== (-f 0<P\x) - 2iP"'"" (-ii}! Cj(-p - 1,p) O"(-p-l,j)(x), 
p. LJ 

j=O 
(6.63) 

and consequently, after applying :F again and using (C.27) to re-arrange the 
summations, we find 

00 

:F0(p\x) = 4iP LJ! Cj+i(P,P) ef(p,i)(x). (6.64) 
j=O 

Inverting the Fourier transform yields 

00 

0<P>(x) = ¾(-i)P:FLj!cj+1(p,p)ef(p,i)(x), (6.65) 
j=O 

which gives 0(p\x) as an (inverse) Fourier transform. 
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The translated functions 0(p)(x - x0 ) are defined similarly by 
00 

0(p)(x - xo) = -4iP_?:"-1 L (-)j j! Cj+1(p,p) e-ixxo'H(p,i>(x). (6.66) 
j=O 

The space PC~p of all allowed linear combinations of o(p)_functions contains 
all elements of the form 

00 L L Cjk 0(k) (x - Xj ), (6.67) 
x1 EIR k=O 

with { Xj} C JR a finite subset, and Cjk E C arbitrary. This agrees with the 
restrictions (4.1) imposed on PC». 
The closure of PC~ under the operators can now be defined as 

(6.68) 

The space PC~ defined above contains all elements from the undefined 
space PC' that will be included in the simple model for a symmetrical theory 
of generalised functions. The definition of the functions 0(Pl(x-x0 ) as linear 
functionals on PC» will be postponed until the next chapter, when PC» has 
been completed to PC». 
Remark 6.6 This is an example where the non-degeneracy of the scalar 
product (2.11) is used as a heuristic principle. The scalar product of the 
generalised functions 0(Pl(x - x0 ) with all elements f(x) E PC» would be 
zero, but the 0(Pl(x - x0 ) are necessary, so PC» must be enlarged. 
The general form of the action of the Fourier operator acting on the ri-
functions can now be written as 

00 

F riio,q>(x) sgnm(x) = -2im L (q!t>' (1 - 8q,O 8j,-1) X 
j=-1 

X Cj(-a -1,m)efs(-o-l,q+j)(x)sgnm(x) + 
00 

+ 8 '"'8 8mod2 (-i)P (x' + 0(p)(x)) (6.69) q,O L.J o,p p,m pl ' 
p=O 

and 
00 

Fef}o,q)(x) sgnm(x) = -2im L (-)j~f+i)'(l - 8q,O 8j,-1) X 
j=-1 

X Cj(-a - 1, m) rii-o-l,q+i)(x) sgnm(x) + 
00 

+ 8 '"'8 8mod2 (-i)P 0(p)(x) q,O L.J o,p p,m pl ' (6.70) 
p=O 
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valid for arbitrary values of the parameters. The formal summations over p 
come from the substitution of the explicit form (C.18) of the c_ 1(-p-1,p) 
coefficient. 

In all equations up to this point, such as (6.70) or (6.69) one may verify 
that it is possible to differentiate formally with respect to complex param-
eters such as a. This is of course not accidental. Since differentiation with 
respect to a and the operators act on different pieces of equation (6.1), we 
have in general 

a o ... °'... o a ·••Q• .. 

8a ··· = 8a · · · ' (6.71) 

for all elements in PC~. The validity of this property is confined to the -, subspace PC.x, It will not carry over to the whole model. 
The action of the operators X and 1) on the function 0(Pl(x) follows 

from the known action of these operators on the function ef(Pl(x), and from 
the requirements (2.22-23) of unitary equivalence, 

(6.72) 
and 

(6.73) 

Evaluation of the operators gives 

(6.74) 
and 

and especially 
v0<0l(x) = 1J0(x) = -2a(x). (6.76) 

Heuristically the function 0(P)(x) can be considered to be the function 

(6.77) 

restricted to an infinitesimal surrounding of the point x = 0. This is made 
plausible by noting that 

(6.78) 

which shows that the 'gap' in the function x'P in the finite at x = 0, which 
caused a a-function upon differentiation, (6.25), has been 'bridged' by the 
addition of the 0(Pl(x)-function. The definition of the support of elements 
such as 0(x) will be postponed until Ch.13. 
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The normalization of the 0-functions has been chosen with this inter-
pretation in mind. In particular one can think of the function O(x) = o<0l(x) 
as the generalised function version of the ordinary function 

0 ( ) { 1 X = 0, 
ord X := 0 X -:f. 0. (6.79) 

This function cannot be non-zero in distribution theory, since it is equivalent 
to zero in the Lebesgue measure. As a distribution it is therefore equivalent 
to the zero distribution. 

Anticipating the results of Ch.19, the limit properties of O(x) are also in 
agreement with this interpretation. The sequence exp( -nx2 ) will be shown 
to go to O(x) for n-> oo, in the sense defined in Ch. 19. 
Remark 6.7 Even after completing PC~ to PC~ it still does not contain 
by (6.78) an zero element satisfying (2.25), since the derivative at infinity 
of I'(x) + O(x) remains non-zero. 
Remark 6.8 The operators X and 'D are invertible on PC~. This is 
to be expected since there is no zero element. The space PC~ is not closed 
under x-1 and v-1 however. The exceptions are the expressions 

x- 1 o(x) and v- 1 'ff(x), (6.80) 

which will have a meaning in the full model GF8 , but not in the restricted 
subspace PC~. The inverse operators will be defined for all generalised 
functions in Ch. 14. 

6.4 Operators on ordinary functions 

The operators are now extended by means of the definition (6.4) to the 'or-
dinary' functions J'(x) E PC~. 
The extension of the multiplication operator X to ordinary functions is ob-
vious. No additional 17-functions arise in this case, since none are produced 
when the operator X acts on the asymptotic expansions 

X J'(x) = XMJ(x) = MX f(x). (6.81) 

By (6.32) and (6.32) the operator 'Dadds ,,,.-functions only when f(x) 
behave as JxJ>- sgnm(x) in the finite, or as eikxJxJ>- sgnm(x) at infinity. When 
the asymptotic coefficients are measured with the appropriate 17 and if-
functions the derivative can be written as 

'D J'(x) = 'DMJ(x) = M'D f(x) + 
+ L LL (f(x),11i.x•,oi(x-xo)sgnm(x))11i->-,o)(x-xo)sgnm+l(x) 

xoEIR >-EC m 

+LL L ( f(x) 'eikxwp·,o'(x) sgnm(x)) X 

kEIR >-EC m 

x eikx(11i->-,o)(x) + ik'ff}->--1,o)(x)) sgnm+l(x). (6.82) 
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This is again a formally infinite sum over 7,functions. Since / E PC .x has 
been restricted ( 4.1) to a finite number of poles in a negative real half-plane in 
the finite, the contribution from a finite point is a descending sequence of 7, 
functions. Likewise the contributions from infinity are ascending sequences 
of if-functions. In both cases only a finite number of terms in the formally 
infinite sums will contribute. 
Remark 6.9 The form of the asymptotic expansion at infinity, and con-
sequently the form of the resulting sum of 1(-functions, will depend on the 
choice of origin. The value of a scalar product involving such a sum does 
not depend on this choice. 
To summarize: The derivative of an ordinary function, f(x), considered as 
an element J'(x) E Pc;, is the ordinary derivative plus the 77-functions 
resulting from the differentiation of its asymptotic expansion near the sin-
gularities. 
The embedding M : PC .x ---t Pc; can be modified at points x 0 E JR 
where f(x) E PC.x is C 00 (xo). There f(x) E PC.x is asymptotic to a 
Taylor series · 

00 

J(x) ~ L::Ci(x - xo)i. (6.83) 
j=O 

The map M can be changed by adding the appropriate o(p)_functions 

00 

J'(x) :=Mnewf(x) :=Mo1d/(x)+ I:cj0(j)(x-xo), (6.84) 
j=O 

to the image Mold f(x). This makes J'(x) E Pc; also C 00 , without having 
additional a-P-1-functions upon differentiation. In this way C 00-points and 
singular points are treated on the same footing. The map Mnew is a map 
from PC.x to Pc;. Under the map Mnew the singular points remain the 
same. No new singular points in Pc; as in Ex. 6.1 are introduced. 
Remark 6.10 This modification does not alter the mapping M essen-
tially. In the following the notation Mx will be used for the completed 
mapping Mnew for reasons which will become clear in Ch. 9. Conversely 
one can also think of (6.84) as the natural extension of the C 00-concept 
to Pc;. By the usual restrictions only a finite number of points x 0 E JR 
with singular powers (x' - xo)P are allowed. 
Adding the derivatives of the 0-functions in (6.84) to (6.82) defines the 
differential operator for arbitrary elements E Pc;. 
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The Fourier operator can be extended to all J' ( x) E PC~, in accordance 
with (6.4). The result is 

:F J'(x) = :FMJ(x) = M:Fi,re J(x) + 
00 

+ L L LL(f(x),ef}>.•,q)(x)sgnm(x))x 
{xoEIR} {>.;EC} q=O m 

00 

x +4imq! L Hi j! cq+j+i(a, m) 'Tlf•,il(x) sgnm(x) + 
j=O 

00 

+ L L LL(f(x),i"'0"'efp•,q\x)sgnm(x))x 
{xo EIR} {>.; EC} q=O m 

00 

x -4imq! L j! Cq+j+l ( a, m) 'Tl~"',i>(x - x0) sgnm(x - x0), (6.85) 
j=O 

which again displays the relevant asymptotic behaviour. Despite its awful 
appearance when written out (6.85) still represents an allowed linear com-
bination. 
Example 6.3 A useful example, which will be used for the verification 
of Parseval's equality;; in Ch. 12, is the Fourier transform of the damped 
power 

which can be found in the same way as (6.43). The corresponding Fourier 
transform in PC~ is found either from (6.86) or by taking residues. The 
result is ( again for parity eigenfunctions) 

:FJx'I"' e-alxlsgnm(x) = 
= - r[-ll(a + l)((ix + a)-a-l) log(ix +a)+ (-)m(i--, -i)) I'(x) + 

+ rl0l(a + l)((ix + a)-a-l + (-r(i--, -i)) I'(x) + 
00 00 

- 4im L fl (-a)i L k! Ck+i(a + j, m) lf}-a+i,k\x) sgnm(x), (6.87) 
j=O k=O 

where the binomial theorem can be used to find the asymptotic expansion 
of the powers of ( ix + a) at infinity. The discontinuities at x = 0 transform 
into l{-functions under the Fourier transform. The Fourier transform does 
not contain 17-functions in agreement with the smooth behaviour of f(x) at 
infinity. 
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This lengthy exposition has served its purpose. The usual operators, 
and the operator algebra generated by them, is defined on PC\, and PC\ 
is closed under the operators. 

Now the operators can be transferred to PC.x, and PC_x can be closed 
under the operators to PC .x, while keeping most of the good properties of 
the operators on PC\. This will be done in the next chapter. 



CHAPTER 7 

OPERATORS ON THE COMPLETED PRELIMINARY CLASS 

It became clear on several occasions in the preceding chapters Chs. 4-6 that 
the preliminary class PC ,x of ordinary functions is too small. The func-
tion 0(x) E PC~ lacks a suitable test function E PC,x to distinguish it from 
zero. The preliminary differentiation of a step function gives zero, and the 
preliminary Fourier transform of the function I(x) is also zero. 

The space PC~, with the operators defined in Ch. 6 does not have these 
shortcomings. It can therefore be used to define the operators in the sense 
of generalised functions on PC,x. The simplest idea would be to transfer 
the operators from PC~ to PC ,x by means of the natural map M defined 
by (5.2) and its inverse M-1 , 

(7.1) 

for all /(x) E PC,x. In this simple form this does not work, since PC,x 
is too small. In Sec. 7.1 the space PC,x is first completed to PC,x, and 
the map M-1 : PC~ ---+ PC,x is completed to M-1 : PC~ ---+ PC,x in 
a minimal way, adding as little to PC,x as possible. The map M is also 
completed to M . 
The operators are then defined on PC,x by analogy with (7.1) by 

(7.2) 

for all f(x) E PC,x. Since M J(x) is an element E PC~, the expres-
sion OM f(x) has been defined as an element of PC~ in the previous 
chapter. When PC,x has been completed in such a way that the expres-
sion M-1pc~ is always defined as an element of PC,x, the previous equa-
tion (7.2) defines the action of the operators on PC,x. 

7.1 Completion of the-preliminary class 

Some freedom exists in the choice of the completion PC,x of PC,x, and 
consequently in the construction of the inverse map M-1. This freedom is 
restricted by taking the minimal extension of PC,x which completes PC,x 
to PC ,x under the usual operators. 

This minimal extension is obtained by giving a zero inverse image E 
PC,x to as many elements of PC~ with point support as possible. This is 
not always possible. The operators can convert an element E PC~ with 
support which is larger than a point into an element with point support. In 
the preceding chapter it was found that this happens in the cases 

VI'(x) = 2o-(x)-2ff(x), (7.3) 



72 Operators on the completed preliminary class 

and 
'.Dsgn'(x) = 211(x) - 2'Jl(x), (7.4) 

and 
.:F(I'(x)+0(x)) =21r11(x)+ L"·1J(O,i)(x) .. ·, (7.5) 

j=l 

by equations (6.26), (6.29), and (6.56). The converse happens in the case 

00 

.:F11<Pl(x) = x'P + 0<P\x) + L • • • ,<-p-l,i)(x), (7.6) 
i=O 

which is the only case in which an element with point support acquires a 
support greater than a point. 

The collection of elements on the right-hand side of (7.3)-(7.6) is still 
too large, since it will be further enlarged by the action of the operators. 
Two considerations can be used to restrict the completion of PC.x. 

The first is the requirement (7.49) that there should be a zero element 
for differentiation, the unit function I(x) E GF, with zero derivative. Since 
such an element is not present in PC\, it must be in PC .x. This leads to 
the choice 

M-1 I'(x) = I(x), (7.7) 

and consequently one has to make the choice 

(7.8) 

in order to obtain a unit element with a zero derivative. 
A second consideration is that the element 0(x) E PC\ lacks a suitable 

test function f(x) E PC.x to distinguish it from zero. By the requirement 
of non-degeneracy of the scalar product (2.11), an element E GF is non-
zero if and only if it has a non-zero scalar product with at least one other 
generalised function. Since 0(x) is localized at x = 0, its test function 
should also be localized at the origin. This leads to the definition of the 
element t(x) E PC.x by 

(7.9) 

with a corresponding extension of the map M- 1 to M- 1 . 

Remark 7.1 The preceding definition is a purely formal one. All prop-
erties of the object t(x) follow from definition (7.9), and the subsequent 
use of M and M-1 to define operators and products. The same was true 
for the definition (7.7), but there it was not immediately clear, since the 
object I(x) appears to be well understood. 
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Remark 7.2 In contrast with the usage in distribution theory 'test func-
tion' is used to indicate a generalised function which has non-zero scalar 
product with the given function, and zero scalar product with all other gen-
eralised functions. Of course, by the requirement of symmetry, all generalised 
functions are test functions if the term 'test function' is used in the sense of 
distribution theory. The generalised function 8(x) tests for the presence of 
the function 0(x) and visa-versa. 
More generally PC.x is completed to PC.x by adding the (finite linear com-
binations of the) elements 8(p)(x - x0 ) E PC.x, defined by 

(7.10) 

It will be demonstrated that these additional elements are sufficient for 
achieving operator completion with the good properties required in Ch. 2. 
One sees that the minimal completion is obtained by giving non-zero in-
verse image only to those elements with point support E PC~, which can be 
converted by an operator into an element with support larger than a point. 
Only the r,<P>-functions appearing in (7.6) meet this criterion. It will be seen 
that the definition (7.10) leads to the results 

'D I(x) = O(x) and X 8(x) = O(x), (7.11) 

in agreement with the unitary equivalence of the X and 1) operators. 
Remark 7.3 The product will be defined in accordance with the require-
ment (2.36) in such a way that it is pointwise. Therefore it does not make 
further extension of PC>. necessary. The convolution product likewise has 
the property that the convolution of elements with point support has again 
a point support. 
The general form of the inverse map M-1 acting on the r,-functions is 
defined in agreement with (7.10) and (7.8) as 

00 

M-1 'fl(a,q)(x) sgnm(x) = 6 "'6 6mod2 8(p)(x) s q,0 L.J a,p p,m , (7.12) 
p=O 

and 
(7.13) 

Ya E C, 't/m E Z, 't/q E N. 
Remark 7.4 The definitions (7.13) and (7.12) have the special cases 

(7.14) 
and 

(7.15) 
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Combining these gives for the one-sided 71-functions 

(7.16) 
but 

(7.17) 

as it should, since the 7/ J. and 7/r -functions are normalized to detect Ix IP, 
while 6(Pl(x) detects xP. This explains the minus signs. 
The complex conjugates 6* of the 6-functions are defined to be equal to 
themselves. All 6-functions are real, as they are in distribution theory. 

One may notice at this point that formal differentiation with respect to 
parameters such as o: does not commute with the inverse mapping. 
Example 7.1 By (5.83-85) we have 

..!!__ M-17/(a,l)(x) = M-1 O(x) = O(x), aa 
but inverting the order gives 

M-1 :a ,,,ca,l)(x) = M-1 ,,,cal(x) = f 8a,p 6(P)(x) =/. O(x), 
p=O 

for o: = p EN. 

(7.18) 

(7.19) 

Therefore one expects that in general differentiation with respect to o: will 
not commute with the operators. In special cases however 8~ may commute 
with an operator. This will be seen when the action of the operators has 
been worked out. 

The space PC6 of allowed linear combinations of 6-functions is de-
fined to be the image under M-1 of the allowed linear combinations of 71-
functions, 

PC5 := M- 1 (PC~ EB PC1) = M- 1PC~, (7.20) 

so the space PC6 contains the linear combinations of the form 

Ki LL Cjk 6(k)(x - Xj), (7.21) 
{xi} k=O 

with { Xj} C JR. a finite subset of the real numbers, and with coefficients Cjk E 
C arbitrary. 

In contrast with the linear combinations of the r,--functions the allowed 
linear combinations of 6-functions are explicitly finite. This follows imme-
diately since a descending { ak} sequence can contain only a finite number 
of positive integers. 
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The completion PC>. of PC>. is now defined as 

(7.22) 

It will be seen in the following sections that PC>. is indeed closed under the 
operators. 

The 'delta-bar' := 6 symbol has been introduced to avoid the inconve-
nient normalization of the customary 8-function. It also helps to avoid confu-
sion between the distribution c5 and the generalised function 6(x). The prop-
erties of the generalised function 6(x) will be derived from its definition (7.10) 
in the following sections. Apart from the normalization it has many proper-
ties in common with Dirac's 8-function, and with the distribution c5. Some 
properties of the 8-function are taken over by the r,-function however. 
Remark 7.5 In the following a distinction between distribution theory 
and the symmetrical theory of generalised functions will be made by us-
ing 'distribution' exclusively for a distribution in the sense of the theory of 
distributions [Sehl] of Schwartz. 'Generalised function' or simply 'function' 
(as in 6-function) will be reserved for an object in the sense of this book. 
It is unfortunate that 'generalised function' is such an over-used term, de-
noting with some authors not only distributions, but also all kinds of other 
generalizations of the standard function concept. 'Symmetrical generalised 
functions' will be used when it is necessary to emphasize the distinction. 
At this point it might be asked if it would have been easier to introduce PC>. 
from the start as a subclass of the tempered distributions. This would make 
it closed under the usual operators from the start. There are two reasons 
for not doing this. 

In the first place it will be necessary to keep in mind a clear distinc-
tion between the generalised functions 6(x) and TJ(x) on one hand, and the 
distribution c5 on the other hand. Generalised functions in the sense of this 
book and distributions are logically independent explanations of Dirac's 8-
function. Moreover the properties (2.1-4) postulated by Dirac for the 8-
function are shared in generalised function theory by the 6 and 'T]-function 
in ways which will become clear in the following chapters. A comparison will 
be made in Ch. 23 where the symmetrical theory of generalised functions is 
compared with distribution theory. 

A second reason for not starting with distributions is that the inverse 
mapping and the completion of PC>. to PC>. which has been chosen is the 
minimal completion. It does not seem to be necessary to make this minimal 
choice. Other choices for the completion would have less resemblance to 
distribution theory. 
Remark 7 .6 Since the Schwartz space S of test functions is contained as 
a subspace both in PC>. and in PC~, all symmetrical generalised functions 
are also (tempered) distributions. Many non-zero generalised functions cor-
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respond to the zero distribution for lack of a suitable test function E S to 
distinguish them from zero. 
Example 7.2 The generalised function ,,,<a,q)(x - xo) is for a-::/= p EN, 
or q > 0, equivalent to the zero distribution. It has a zero scalar product with 
the good functions J(x) E S. The same holds 'va E C for the generalised 
functions 'J((a,q>(x), since good functions disappear at infinity faster than 
any power. 
For the ordinary functions the inverse map was already defined. In particular 
for the powers we have 

M- 1lx'la logqlxl sgnm(x) = lxla logqlxl sgnm(x). (7.23) 
This has the special case 

(7.24) 
so we can take 

(7.25) 

since the element xP E PC>., which is C 00 (-oo, oo ), already has local proper-
ties at the point x = 0 corresponding to the inclusion of the function 0<P) ( x) 
at the origin. 

The completion chosen in this section is minimal in the sense that the 
only cases where a localized generalised function from PC~ has a non-zero 
counterpart in PC>. is the unavoidable case (7.6) where an operator converts 
an element with point support into an element with support greater than a 
point. 
Remark 7. 7 It would be possible to take a maximal completion of PC>. 
by giving a non-zero counterpart E PC>. to every element E PC\, but 
this would leave us without elements /j and I satisfying 'DI = 0 = X 15, 
so no improvement with respect to staying in PC~ would result. Since 
the completion should not be maximal we may as well take the minimal 
completion. 

7 .2 The remaining scalar products 

In this section the remaining undefined scalar products are computed by 
imposing Parseval's equality (2.29). The scalar product of the 0(x)-function 

( 6(x), 0(x)) = ( I(x), 'J((x)) = 1, 

is in agreement with the na'ive interpretation of the function 0(x). 
More generally we find for translated arguments 

(7.26) 

(7.27) 
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It also follows from Parseval's equality that 

(7.28) 
and 

(7.29) 

'lfx1, x2 E JR, Va EC, and 'lfp, q EN. 
The scalar product of the 6-function with the powers and logarithms E PC~ 
is zero, 

(7.30) 

In particular 
( 6(x), I'(x)) = 0, (7.31) 

but 
(7.32) 

The product of a 6(Pl_function with a C 00-function E PC~ is, in accordance 
with (7.30) and (7.32), entirely due to the o(p)_function which may or may 
not be present at the location of its support. 

7 .3 The operators X and 1J on the preliminary class 

The operators are now defined on PC>. by pulling them back from PC~, in 
accordance with the definition (7.2). The preliminary operators were already 
defined between singular points. All that is needed is the addition of the 
appropriate 6-functions at the singular points. 

The multiplication operator does not change with respect to its prelim-
inary version. It does not introduce additional 6-functions. 
The action of the operator X on the 6-functions is 

X6(p+l)(x) := M-1xM 6(p+l)(x) = M- 1x11(p+l)(x) = 
= M- 1 17(Pl(x) = 6(P)(x), 

and in particular for p = 0 

(7.33) 

X 6(x) = M-1 XM 6(x) = M-1 17(-ll(x) = O(x). (7.34) 

One sees that under the ope~ator X the generalised functions 6(P)(x) trans-
form in the same way as the distributions {j(P) (apart from the different 
normalization). The action of X on the translated functions is 
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and 
X 6(x - xo) = xo 6(x - xo), (7.36) 

which again shows the localization of the 6-functions. According to (7.36) 
the functions 6(x - xo) are eigenfunctions of the X operator 

X 6(x - xo) = xo 6(x - xo), 

in agreement with the corresponding property of the a-distribution. 
For the powers of x one obtains the unremarkable result 

Xlxlet logqlxl sgnm(x) = lxlet+l logqlxl sgnm+1(x), 

as expected from elementary algebra. 
The differential operator 'D acting on the 6-functions gives 

(7.37) 

(7.38) 

'D 6(P>(x - xo) = M- 1'DM 6(P)(x - xo) = -(p + 1) 6(p+ 1>(x - xo), (7.39) 

as expected from distribution theory. 
Remark 7.8 In contrast to the standard normalization the superscript 
in parenthesis on the 6-functions does not indicate a repeated derivative. 
Instead we have 

(7.40) 

and conversely, when 6<P\x) is temporarily interpreted as a distribution 

(7.41) 

in contrast with the usual normalization of the o<P) distribution. For p = 0 
the bar in 6(0 ) could be omitted, since o<0> and 6(0 ) have the same normal-
ization. This is never done to avoid confusion between generalised functions 
and distributions. 
Acting on the powers and logarithms, now considered as elements of PC>. in-
stead of PC\, the 'D operator gives additional 6-functions in the special case 
that the function f(x) E PC>. behaves as (x - xo)-P logqlx - xol sgn(x -xo) 
at a singular point. 

In this and many following formulre the notation can be simplified, and 
all exceptional cases can be combined in one formula by using the gener-
alization to complex argument of Kronecker's 6-symbol (5.55) introduced 
previously. The result of the computation of the derivative then takes the 
form 

'Dlxlet logqlxl sgnm(x) = +o:lxlet-l logqlxl sgnm+l(x) + 
+ q(l - b'q,o)lxlet-l logq-llxl sgnm+1(x) + 

00 

+ 2 oq,o L oet,-p o;,~.;1 6<P>(x). (7.42) 
p=O 
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In particular for q = 0 this reduces to 

and 

in agreement with the corresponding result in distribution theory. 
The corresponding formulre in terms of Heaviside's step functions are 

and 
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(7.43) 

(7.44) 

(7.45) 

(7.46) 

The different behaviour of H(x) E PC>. and H'(x) E PC~ should be noted. 
The primed Heaviside functions H'(x) and H'(-x) E PC~ have different 
derivatives at x = 0, · 

but the unprimed Heaviside functions H(x) and H(-x) E PC>- have the 
same derivative, 

'DH(x) = -'DH(-x) = i5(x), (7.48) 

(up to a sign). This is a consequence of the choice of the minimal completion 
of PC>-. 

The equality of the derivatives in (7.48) can be interpreted as meaning 
that the support of the i5 function is the point x = 0 itself, while the 'f/r ! -
functions reside on the positive and negative infinitesimal surroundings of the 
point, at x = o+ and x = 0- respectively. This illustrates the inadequacy 
of the real number system as a support for the generalised functions. This 
matter will be the subject of Ch. 13. 
For the unit function I(x) E PC>. the previous equation is equivalent to 

'D I(x) = 'D(H(x) + H(-x)) = i5(x) - i5(x) = O(x), (7.49) 
in contrast with equation (6.26) 

'D I'(x) = 'D(H'(x) + H'(-x)) = 2u(x) - 2 9'(x) f. O(x), (7.50) 

found in the previous chapter. 
The derivatives of the ordinary functions are found from the correspond-

ing derivatives in PC~ by 

(7.51) 



80 Operators on the completed preliminary class 

in the same way. Additional 6-functions appear in the derivative when there 
is a jump in the coefficient of the power x-P in the asymptotic expansions. 
Measuring the jump with the appropriate a-function, the result can be writ-
ten as 

00 

'D f(x) = 'Dpre f(x) + 2 LL ( a<-P>(x - Xj), f(x)) 6(P)(x - Xj)- (7.52) 
{:z:;} p=O 

As a consequence of the restrictions imposed on PC>. both the sum over 
singular points, and the sum over powers are actually finite. The sum is a 
finite linear combination of 6-functions. 
Remark 7 .9 Anticipating the results of Ch. 16, where the scaling and 
homogeneity properties of generalised functions are defined, we expect 6(p)_ 
functions to appear when the result of a computation is locally of parity (- )P, 
and homogeneous of degree -p - 1. 

7 .4 The Fourier transform on the preliminary class 

The Fourier operator on PC.>. is also found directly from the Fourier operator 
on PC\. 
The Fourier transform of the 6-functions is 

(7.53) 

which has the special cases 

(7.54) 
and 

:F6(x) = I(x). (7.55) 

The 6-function and the unit function I(x) are indeed a Fourier pair. 
The parity of the 6-functions is found by computing the square of the :F 
operator, 

(7.56) 

in agreement with the corresponding behaviour of the standard 8-function. 
The Fourier transform of the powers and logarithms is computed by appli-
cation of the definition (7.2) as 

q+l . 
:Flxl<> logqlxl sgnm(x) = -2imq! L (-/ Cq-j(a, m)lxl-a-l logilxl sgnm(x) 

j=O 
00 

+ 4imq! L 8<>,P 8;'.~2 Cq+i(P, m) 6(p)(x). (7.57) 
p=O 
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Specialization to a = m = p E N gives 
q . 

.'.F xP logqlxl = -2iPq! L <·/ Cq-j(p,p)x-p-l log11xl sgn(x) 
j=O 

+ 4iPq! Cq+1(P,P) 6(p)(x), (7.58) 

which is the case where additional 6-functions occur. 
For q = 0 this reduces to the well-known result 

.'.F xP = 4iP c1(p,p) 6(p)(x) = 211'(-i)Pp! 6(p\x), (7.59) 

where the explicit values of c0(p,p) = 0 and c1(p,p), found in appendixC, 
table C.1, have been substituted. 
For the computation of Hilbert transforms one needs the special case 

.'.Fx-1 = -i71'sgn(x), (7.60) 

in agreement with the standard result. 
The rules for estimating the leading term of the asymptotic behaviour 

of the Fourier transform are apparent from (7.58). The results found above 
compare directly with the results given in [Lodl]. When a correction for 
the different normalization is made the results agree. The main difference is 
that in [Lodl] only the leading term of the Fourier transform appears. 
Remark 7.10 The Fourier transforms of the powers cannot be differen-
tiated formally with respect to a. Even when the undefined derivative of 
the Kronecker o in (7.58) is ignored, the coefficient of the 6-function which 
would be obtained by formal differentiation is incorrect. This is to be ex-
pected, since the inverse mapping and formal differentiation with respect 
to a do not commute. 
The Fourier transform of the ordinary functions f(x) E PC>. can be found 
in the same way by application of (7.2) 

.'.F f(x) = M-1.'.FM f(x). (7.61) 

The Fourier transform differs from the preliminary Fourier transform by 6-
functions, when behaviour as xP eikx at infinity is present. 
The previous result on PC~ takes the form 

.'.F f(x) = Fpre f(x) + 
00 00 +LL L ( J(x), i"'i"''J{(p,q)(x)) x 

{x;} p=O q=O 

X +4iPq! Cq+1(p,p) 6(p\x - Xj), (7.62) 

when the l{-functions are used to measure the relevant terms in the asymp-
totic expansion of f(x) at infinity. The sums over 6-functions which occur 
in (7.62) are again actually finite. 
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Example 7.3 Functions which vanish at infinity, such as (6.86), cannot 
have ~-functions in their Fourier transform 

Flxl 0 e-alxlsgnm(x) = 
= - r[-ll(a + l)((ix + a)-a-l) log(ix +a)+ (-)m(i-. -i)) + 

+ r[0l(a + l)((ix + a)-a-l + (-)m(i-. -i)). (7.63) 

Remark 7.11 The method of calculating the action of operators acting 
on PC>. first in PC~, keeping only relevant terms, and transferring back 
to PC>., is an efficient tool to calculate the action of operators on PC>.. 

Since PC>. can be interpreted as a subspace of the (tempered) distribu-
tions the method introduced in this chapter is also an efficient calculational 
tool in the context of distribution theory. 
It has now been shown by explicitly defining all operators on PC>. that the 
space PC>. is closed under the action of the operators. 



CHAPTER 8 

PRODUCTS OF LINEAR FUNCTIONALS 

In this chapter the scalar product of the class PC~ with itself is defined. In 
agreement with this scalar product, a pointwise product • : PC~ X PC~ -+ -, . -,-, -, .. PC>., and also a convolution product * : PC>. x PC>. -+ PC>. IS defined with 
the properties required in Ch. 2 for a product and convolution of generalised 
functions. 

It is not necessary to follow the constructive approach used in this chap-
ter. In earlier work [K&L] it was shown that there exists a product on PC', 
derived from the pointwise product on S by considering PC' as the bi-dual 
of S. 

As indicated in Ch. 2 it is convenient to do more. It will be seen that 
a generalised function product (on PC~, not on PC>. or GF) can be either 
associative or commutative, but not both. The commutative non-associative 
product is the natural choice since it agrees with the requirement of sym-
metry of the scalar product. The associative non-commutative product has 
a richer algebraic structure, and the commutative product can be easily de-
rived from it by symmetrization. Therefore both products are defined in this 
chapter. Conversion between the two possibilities is not difficult. In other 
theories of multiplication of distributions often only one of these options is 
worked out, so a comparison is also easier when both a commutative and a 
non-commutative version of the product is available. 

It should be kept in mind that the choice between a commutative and 
an associative product algebra exists only in PC~, not in PC>. or GF as 
a whole. A separate section is devoted to the algebraic properties of the 
commutators and associators. 

8.1 Linear functionals on the linear functionals 

In the previous chapters the spaces PC>. and PC~ were equipped with suit-
ably defined operators. The scalar product PC>. x PC~ -+ C is still asym-
metrical since the spaces PC>. and PC~ have different properties. First 
the scalar product is symmetrized on PC~ to a symmetrical scalar prod-
uct ( , ) : PC~ x PC\ -+ C. As an intermediate step asymmetrical scalar 
products are introduced. These are then symmetrized. 

The product • : PC~ X PC~ -+ PC~ is defined in such a way that it 
agrees with the symmetrized scalar product. 

In the foregoing PC~ was understood as the space of linear functionals 
on the preliminary class PC>., given by the scalar product PC>. X PC\ -+ C. 
This relation can be read the other way. The preliminary class PC>. can also 
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be considered as a class of linear functionals on PC~. The elements of PC~ 
can now be defined as linear functionals on PC~ by taking suitable residues. 

Care is needed here, since the elements of PC~ were already defined 
as residues. A double residue involves an analytic function in two variables, 
and the taking of two residues of an analytic function in two variables may 
depend on the order in which the residues are evaluated. 
The ordinary functions present no difficulty. We can define 

(!'(x), g'(x)) := ( /(x), g'(x) ), (8.1) 

'v g'(x) E PC~, which says that as far as the scalar product with PC~ is 
concerned the element /(x) E PC>. can be identified with J'(x) E PC~. 
In particular we obtain 

with g'(x) E PC~ an ordinary function. This could be used to define 
(8.3) 

WRONG! 

This definition could give rise to difficulties, since elements g'(x) E PC~ are 
also defined as residues. In particular one can take (5.20) 

Then we have to compute a double residue 

Res (,\+a + l)q Res(µ - (3)-r-l · · · • • • (,\, µ). (8.5) 
>.=-o-1 µ={3 

To obtain the simplest case, putting a= (3 = q = r = 0, and going over to 
one-sided 1rfunctions, reduces (8.5) to 

(8.6) 

where the definitions (5.39) and (5.19) of 'T/i (x) and H'(x) have been substi-
tuted. 

The anticipated difficulty does indeed occur. The evaluation of the 
residues (taking a= I for simplicity since the result does not depend on a), 
depends on the order in which the evaluation is carried out. If the,\ residue 
is computed first the answer is zero. 
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Taking the A-residue first results in a zeromorphic function of µ, so the 
second µ-residue is zero. If the µ-residue is evaluated first the result is 
merely the substitution µ := 0, and the result of taking the second ).-residue 
is 

The 'left-first' scalar product is defined by the prescription that the residue 
connected with the term of the left-hand side of the scalar product has to 
be evaluated first. 
From the preceding computation of residues (8.7) and (8.8) we find 

~ri.(x), H'(x)) = 0, (8.9) 
and 

(8.10) 

where the notation , ) has been introduced to indicate the left-first scalar 
product. The circle through the angle bracket in the scalar product sym-
bol has been chosen to remind us that after all the residue is obtained by 
evaluating a contour integral. 

In the same way the 'right-first' scalar product is defined by taking the 
residue on the right-hand side of the scalar product first. This results in 

and 
( "Ii (x), H'(x) ',i = 1, 

( H'(x), 1/i(x) ',i = 0, 

(8.11) 

(8.12) 

where in similar notation ( , ',i indicates the right-first scalar product. 
Remark 8.1 The lack of interchangeability is not particular to the com-
putation of residues. The same phenomenon occurs when one attempts to 
compute the analogous double limit 

lim / 00 dxb- 1H(x)H(a -x)H(b- x) = lim b-1 min(a,b) = { ;rs:, :tg -oo :tg rs , 
(8.13) 

which also depends on the order in which the limits are evaluated. 
The left- and right-first scalar products defined above do not qualify as a 
symmetrical scalar product, as required by (2.5) for a symmetrical theory of 
generalised functions. 

It follows from the requirement of symmetry of the scalar product (2.5) 
that we have to define the symmetrical scalar product ( , ) by symmetriza-
tion 

(8.14) 
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The symmetry property (2.5) of the scalar product is obviously satisfied, 

(/,g)= (g,/)*, (8.15) 

since the left- and right-first scalar products satisfy 

'4J(x), g(x) )* = ( g(x), f(x) )i, (8.16) 

by construction. 
For the special cases (8. 9-12) computed above we obtain 

( H' ( X) , 1/, ( X) ) = ( 1/, ( X) , H' ( X) ) = ½ , (8.17) 

in contrast with the earlier result 

( 11.(x), H(x)) = 1. (8.18) 

This shows that H'(x) and H(x) are different generalised functions, which 
will remain different when PC>. and PC\ will be combined (in Ch.11) to 
the space GF8 of symmetrical generalised functions. 
It is also possible to effect a trivial generalization by defining 

2(/(x),g(x))P:=(l+p)~/(x),g(x))+(l-p)(/(x),g(x))i, (8.19) 

which reduces to one of the previous cases for p = -1, 0, or 1. Another choice 
of the parameter p will lead to a product which is neither commutative nor 
associative. 

In the following it will be often sufficient to give only the symmetrical 
form of the products in cases where the left-sided form equals the right-sided 
form. The general case of a scalar product with one r,-function becomes 

1/~"',q\x) sgnm(x), lx'l13 logrlxl sgnn(x)) = 0, (8/20) 
and 

( 11ia,q)(x) sgnm(x), lx'l13 logrlxl sgnn(x) )i = (-)q6a,f3 6q,r 6':.~;2 , (8/21) 

and idem with left and right interchanged. 
Averaging (8.21) and (8.20) gives the symmetrical scalar product 

The corresponding formulre for the usual linear combinations are similar. 
The same factor ½ occurs in the symmetrical version in all cases. Likewise 
there is the same ½ in all symmetrical scalar products at infinity. 
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The scalar product of an 77-function at x = x 0 or at x = ±oo and an 
ordinary function J'(x) E PC~ is again defined as the scalar product with 
the corresponding asymptotic series 

and idem at infinity. The sum implied in (8.23) is always finite in con-
sequence of the restrictions imposed on the allowed asymptotic form (4.1) 
of f(x). 

The result of a scalar product with 17(a,q)(x) or J((a,q)(x) is again a 
zeromorphic analytic function of the argument a. Therefore the scalar prod-
uct of two 77-functions can be obtained by co~puting another residue with 
the result 

(8/24) 

'r/a, /3 E C, q, r E N, m, n E Z, since any zeromorphic function has residue 
zero everywhere. In the same way we obtain 

(8/25) 
and 

(8/26) 

for all values of the parameters. It is not necessary to distinguish the left-
first and the right-first case, since both are zero. 
Finally the symmetrical scalar products involving the 9(p)_functions are 
found by imposing Parseval's equality (2.29) for the scalar product. 
The results are 

(8.27) 

by (8.26) and 

( 9(P)(x) ,,.,(a,q)(x) sgnm(x)) = .!. /j /j 15mod2 , ·is 2 q,O a,p p,m , (8.28) 

by (8.22) and the Fourier transforms found in Ch. 6. The non-zero case is 

(8.29) 

while the scalar product 

(8.30) 

of 9(P)(x) with anything at infinity is zero. The scalar product of a 9(P)_ 
function and an ordinary function J' ( x) E PC\ is also defined to be zero. 
This exhausts the elements of PC~. 
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We now have a symmetrical scalar product, ( , ) : PC~ X PC~ _. C, 
defined on the whole space, with the required properties. 

The next step is the definition of a • : PC>. x PC>. - PC>. product, 
which generates this scalar product by 

( J'(x), g'(x)) = ( I(x), J'(x)* • g'(x) ), (8.31) 

'v J'(x),g'(x) E PC~, with product properties which are as simple as possi-
ble. Corresponding to the left-first scalar product there will be a left-first 
generalised function product, while the symmetrical product corresponds 
to the symmetrical scalar product. Afterwards the scalar products can be 
redefined from the products. 

8.2 The pointwise product on PC~ 

The 'pointwise' product of generalised functions, indicated by the fat cen-
tered dot • , will be defined in such a way that it is local in the sense of this 
work. This means that the support (in the sense of generalised functions, to 
be introduced in Ch.13) of the product is contained in the supports of the 
factors. The pointwise product is an extension of the pointwise product of 
ordinary functions f(x),g(x) ES. This justifies the name 'pointwise' given 
to the • product to distinguish it from the convolution product, which is as 
usual indicated by * the centered asterisk. 
Remark 8.2 The method followed in this book is the opposite of the 
method used previously in [K&L]. There the simple product on PC~ was 
derived from the more complicated product on PC>.. Here the product 
on PC~ is defined first. This product is then transferred by a suitable 
mapping to PC>.. In [K&L) an automatic method was outlined to obtain a 
canonical product on PC>. (there called simply PC), by considering PC>. 
as a bi-dual of the Schwartz space S of test functions. The results of this 
procedure agree with the definition adopted here, which is based on choosing 
the simplest product which agrees with the scalar product. 
The product indicated by • is the product associated with the symmetrical 
scalar product. It is commutative but not associative. It is derived from 
the products associated with the left-first and the right-first scalar prod-
ucts. These are indicated by o• and •o respectively. These products are not 
commutative, but they can be shown to be associative. 

The left-sided product o• is defined in such a way that it agrees with 
the left-sided scalar product in the sense that 

4,J(x), g(x)) = ( J(x), f(x)* 0° g(x) ). (8.32) 

Likewise the right-sided product •o satisfies 

( /(x) , g(x)), = ( I(x), f(x)* 0 0 g(x) ). (8.33) 
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Comparing {8.33) and {8.32) with {8.16) one sees that that the left- and 
right-sided products can be related by 

f(x) 0° g(x) = g(x) 0 0 f(x), {8.34) 

so it is sufficient to calculate only one {usually the left-first) case. When 
only the symmetrical product is given it agrees with both the left and the 
right-sided product unless stated otherwise. 
Remark 8.3 Anticipating the results of the next chapter it is mentioned 
that there will be only one unit element I E PC~ for all products. Scalar 
products with the unit function do not depend on the choice of left or right. 
The symmetrical product defined by 

f(x) • g(x) := ½ /(x) o• g(x) + ½ /(x) •o g(x), {8.35) 

can also be written in the forms 

f(x) • g(x) = ½ /(x) 0° g(x) + ½ g(x) 0° f(x) = 
= ½ /(x) •o g(x) + ½ g(x) •o f(x). {8.36) 

The symmetrical product is obviously commutative by construction. The 
product commutator is defined by 

[f(x) o• g(x)] := f(x) 0° g(x) - f(x) 0 0 g(x), {8.37) 

where the lowered product symbol takes the place of the comma in the usual 
form of the commutator. It can by {8.34) also be written as the difference 
of the left and right-sided products 

[f(x) o• g(x)] = f(x) 0° g(x) - f(x) 0 0 g(x). (8.38) 

The asymmetrical products can be recovered from to symmetrical product 
and the product commutator by 

and 
f(x) o• g(x) = f(x) • g(x) + ½ [/(x) o• g(x)], 

f(x) 0 0 g(x) = f(x) • g(x) - ½ [/(x) o• g(x)], 

(8.39) 

{8.40) 

The algebraic properties of the commutators are the subject of the next 
section. 

To get started the products of the basic functions are defined in the 
simplest possible way by inspection of the corresponding scalar product. 
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From the scalar products (8.24) and (8.26) we are led by (8.32) to define the 
products 

(8/41) 
and 

(8/42) 

for all values of the indices. Of course we have to define 

(8/43) 

since the supports do not overlap. The left- arid right-first versions of these 
products are also zero. 

The products of the 7]-functions and the powers can be read off directly 
from the corresponding scalar products. From the left-sided scalar products 
one is led to 

and 

r > q, 
q 2:: r, 

(8/44) 

(8/45) 

in agreement with (8.20) and (8.21). The corresponding right-sided products 
are 

and 

r > q, 
q 2:: r, 

lx'l,8 logrlxl sgnn(x) 0 017~°',q)(x) sgnm(x) := O(x), 

as one also sees by inverting left and right in (8.45) and (8.44). 
The symmetrized product is the same up to a factor ½ 

11!°',q)(x) sgnm(x) • lx'l,8 logrlxl sgnn(x) = 
= lx'l,8 lo{lxl sgnn(x) • 17~°',q)(x) sgnm(x) 

1 {0(x) r>q, 
= 2 (-t17~e>-,8,q-r)(x)sgnm+n(x) q 2:: r. 

(8/46) 

(8/47) 

(8/48) 
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Frequently occurring special cases are 

(8/49) 
and 

(8/50) 

and the first powers 

(8/51) 
and 

(8/52) 

which occur in connection with the operators X and x-1 . The correspond-
ing left-first products lack the factor ½, the corresponding right-first prod-
ucts are zero. 

The products (left, right, and symmetrical) of the 1rfunctions and the 
ordinary functions are again obtained by taking the product of the 77-function 
with the asymptotic expansion 

(8.53) 

where the separate terms have been defined above. As before this leads to 
formally infinite sums with only a finite number of effectively non-zero terms. 

The • product of ordinary functions is put equal to the pointwise prod-
uct, in agreement with the scalar product of the ordinary functions, 

J'(x) • g'(x) := M(f(x) · g(x)). (8.54) 

In particular for the powers and logarithms 

lx'l 0 logqlxl sgnm(x) • lx'l 13 logrlxl sgnn(x) = lx'l 0 +.B 1ogq+rlxl sgnm+n(x), 
(8.55) 

the standard result is recovered. This is also valid for the left- and right-
sided versions of this product. 
The products of the 9(p)_functions are fixed by the requirement that 

(8.56) 

behaves in the finite at x = 0 as the function xP. In particular the func-
tion I'(x) + O(x) should behave at x = 0 as the unit element for all products. 
This will be the case if the left/right character of the 0-functions is defined 
to be the opposite of the corresponding powers. 
This consideration leads to the definitions 

(8.57) 
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and 

The corresponding symmetrical prc,duct is 

For p = 0 this reduces to the special case 

The functions 0<v>(x) regularize the positive integral powers x'P E PC~ in 
the sense that the linear combination x'P +0(p)(x) is insensitive to the choice 
of the left- and right-sided products 

(x'P + 0<v>(x)) 0° 11f•,q>(x) sgnm(x) = 11ia,q)(x) sgnm(x) o• (x'P + 0<v\x)) 
= 11t-p,q)(x) sgnm-p(x), (8.61) 

for all the 17-functions. The same holds for the right-sided products. 
In particular for p = l and p = 0 one has 

and 

in which the 'hole' at x = 0 bas been filled by adding the correct amount 
of 0-function. The linear combination (8.62) is the best approximation to 
a unit element for multiplication in PC~. The exceptional elements are the 
generalised functions at infinity, which receive a factor ½. 

Since the class PC~ contains only the functions 0<v >( x - x0 ) as localized 
powers, only the positive integral powers in the finite, without additional 
logarithms, can be made regular in this way. The terminology 'regular power' 
and 'singular power' is used in the following to distinguish between the two 
cases. 
The product of 0(x) with itself is also found in this way from 

(I'(x) + 0(x)) • 0(x) := 0(x), (8.64) 

so the simplest definition is 

0(x) • 0(x) := 0(x), (8.65) 
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and consequently 

I'(x) • 0(x) = O(x). (8.66) 

More generally these considerations lead to 

(8.67) 

in agreement with the nai:ve interpretation of the 0-functions. Analogously 
to the case of the positive integral powers (8.61), the left- and right-sided 
products of the 9(p)_functions are the same as the symmetrical product. 

The product of 0-functions and 7rfunctions located at different points 
is of course defined to be zero. Otherwise the product would not be point-
wise. Likewise, the product of the 9(p)_functions with the ordinary func-
tions /'(x) E PC~ is defined to be zero at the singular points, 

(8.68) 

At the regular points J'(x) E PC~ is by definition asymptotic to a Taylor 
series, so the product can be defined by 

9(P)(x - xo) • J'(x) := 9(p)(x - xo) • f a(x; xo) = 
00 

= '°' +, JU) (xo) 9(P+i) (x - xo), (8.69) L...J J. 
j=O 

at the points where /'(x) E PC~ is C 00 • This assumes of course that f(x) is 
regular at x = xo, in the sense that it contains the appropriate 9(p)(x - xo) 
functions. If these are omitted by taking a residue in Ix - x0 1>. the result is 
again zero. The preceding equations (8.68) and (8.69) can be combined to 

9(p)(x - xo) • /'(x) = 9(p)(x - xo) • f a(x; xo) = 
= L ft f'k)(xo) 9(p+k)(x - xo), (8.70) 

{j:>.; =kEN} 

which leaves only the contribution from the regular terms of the asymptotic 
expansion. 
The three different products o• , •, •o : PC~ X PC~ - PC~ are now defined 
for all pairs J'(x),g'(x) E PC~. 

The scalar product defined previously can be recovered from the com-
mutative product by 

( J(x) , g(x)) := ( I(x), J(x)* • g(x) ), (8.71) 

where it should be noted that I(x) is the element I(x) E PC>., not I'(x) E 
PC~. 
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8.3 Associativity and commutativity 

Multiple products can be defined as repeated products of pairs. It is clear 
that the symmetrical product involving more than two factors is not neces-
sarily associative. 
Example 8.1 The triple product 

'f!,.(x) • (H'(x) • H'(x)) = 'f!,.(x) • H'(x) = ½ 'f!,.(x), (8. 72) 

differs from the rearranged form 

(8.73) 

by a factor two. 
The non-commutative left- and right-sided products are associative as long 
as the order of the factors is respected. 
For all J' ( x), g' ( x), and h' ( x) E PC\ one easily verifies that 

(f'(x) o• g'(x)) o• h'(x) = J'(x) o• (g'(x) o• h'(x)), (8.74) 

and also for the right-sided products 

(f'(x) ,o g'(x)) ,o h'(x) = J'(x) •o (g'(x) ,o h'(x)). (8.75) 

There are no factors ½ to spoil the associativity. One can also go back to 
the scalar product to verify that the residues corresponding to (8.75) can be 
taken in arbitrary order. It is of course impossible to change the order of 
the terms in (8. 75) cyclically as this interchanges non-commuting products. 

For an arbitrary product the product commutator is defined by anal-
ogy with the corresponding definition (8.37) in the previous section by 

[! g] := f g - g f. (8. 76) 

The kind of product is indicated by the lowered product symbol, which 
replaces the comma in the usual commutator. It is not convenient to use 
the standard commutator notation [!, g] since there are too many different 
products. 
Likewise the associator of an arbitrary product is defined by 

[fogoh] :=(Jog)oh-fo(goh). (8.77) 

The associator expresses the lack of associativity of a product. Like the more 
familiar commutator it can be used to convert a product into a form with 
parenthesis placed differently. 
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The general commutator properties are 

(8.78) 
and consequently 

[f(x). g(x)] = O(x). {8.79) 

In addition in PC~ there are the associator properties {8.75) of the non-
commutative products 

[f(x) o• g(x) o• h(x)] = [f(x) .o g(x) oo h(x)] = O(x), {8.80) 

V f, g, h E PC~, which will not carry over to model as a whole. 
Using the associativity of the asymmetrical products the associator 

of the symmetrical product can be expressed in the commutators of the 
symmetrical products. The result is 

[f(x). g(x). h(x)] = ¼ [g(x) o• [J(x) o• h(x)]] = 
= ¼ [g(x) •O [f(x) •o h(x)]]. (8.81) 

The general case of a product which is neither associative nor commutative 
occurs in the next chapter. 
Remark 8.4 Symmetrization can always be used to convert any associa-
tive non-commutative algebra into a commutative non-associative algebra. 
The basic non-vanishing product commutators are 

and 

so for the regular powers we have 

All other product commutators also vanish. 

q > r, 
q::; r, (8/82) 

(8.83) 

(8.84) 

The asymmetrical products of the basic functions are commutative 
unless one of the factors is an 77-function, and the other factor is a non-
integral power. For positive integral powers the product is commutative 
when the correct amount of 0-function is present. In the terminology in-
troduced with (8.61) a power of x product commutes with an 77-function if 
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and only if it is regular. The result of any commutator is always an fr or 
an 1(-function, so the commutator space is spanned by the allowed linear 
combinations of fr and 1(-functions. 

From the relation {8.81) between the associator of the symmetrical prod-
uct and the commutators of the asymmetrical products one sees that the 
symmetrical product of basic functions is non-associative if and only if both 
of the repeated commutators in {8.81) are non-zero. This can happen only in 
the case that one, and no more than one, of the outer factors is an rrfunction, 
and if both the other factors are singular powers. The only nonvanishing 
associator of the symmetrical product is thus 

and likewise with o• replaced by •o, or with the rrfunction on the left. 
Associators with the 77:....function in the middle such as 

{8.86) 

are always zero. 
Products of ordinary functions with 77-functions are associative or com-

mutative if and only if the products of the 77-functions with all components 
of the asymptotic expansions are associative or commutative. The associator 
space of the symmetrical product is the same as the commutator space of 
the asymmetrical product. 

In PC~ the commutators of the asymmetrical products satisfy the cyclic 
commutator property {the Jacobi identity) 

{8.87) 

Likewise the associator of the symmetrical product satisfies the cyclic asso-
ciator property 

[/. g. h] + [g. h. f] + [h. f. g] = 0, {8.88) 

as one verifies by elementary algebra. These properties do not carry over to 
the model as a whole. The general case occurs in the next section. 
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The convolution products *, and also o* and *o, are defined as the Fourier 
image of the corresponding pointwise products by 

(8.89) 
and 

(8.90) 

Conversely one has 

(8.91) 

as one sees by replacing :Ff' by f'. 
It is convenient to define the left-sided convolution products with the 

same handedness as the ordinary product, 

f O* g ;= :J=-1(:J=f O• :J=g), (8.92) 

since this makes 'D on o* obey the same rules as X on o•. 
Remark 8.5 It follows from the parity properties of the product and the 
Fourier operator that equation (8.90) can also be written in the form 

(8.93) 

These two forms are equal. 
The properties of the convolution product follow at once from the corre-
sponding properties of the pointwise product. The two products are uni-
tarily equivalent, and the product algebras are isomorphic. Therefore it is 
unnecessary to rewrite the previous sections for the convolution products. 

Computation of convolutions is a straightforward application of the defi-
nition. The actual computation of convolutions is a tedious exercise however. 
The formulre are much bigger than the corresponding pointwise product for-
mulreTherefore only some illustrative examples are given. 

The convolution product does not have a unit element in PC~. The best 
approximation to a unit element is the generalised function :F-1 (I'(x)+0(x)) 

00 

:F-1 (I'(x) + 0(x)) = 77(x) + I: (-)i j! Cj+l (0, 0) .,,o,i) (x). (8.94) 
j=l 

The exceptional cases are the localized generalised functions 77(a.,q)(x - xo), 

(8.95) 
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with (a, q) -:f. (p, 0), and 0<Pl(x - x0 ) 

'fl(x) * 0<Pl(x - x0 ) = ½ 0<Pl(x - xo), (8.96) 

in the finite, which receive an additional factor ½. This contrasts with the 
generalised functions at infinity 

'fl(x) * Jf}a,q)(x) sgnm(x) = ef}a,q)(x) sgnm(x), (8.97) 

for which 'fl(x) is the unit element. 
More generally, convolution with the generalised function (-)Pp! 'Tl(p)(x) 

corresponds to repeated differentiation, again with an additional factor ½ 
for the exceptional elements in the finite. 
The convolution of the ,,,-functions with each other is 

'flia,q)(x) sgnm(x) * 'fl~/3,rl(x) sgnn(x) = 
00 

= + !. 0 '°' (-)P O Omod2 'DP .,.,(/3,r)(x) sgnn(x) + 2 q,O p! a,p m,p 'Is 
p=O 
00 

+ !. 0 '°'(-)PO Omod2'Dq"'(a,q)(x)sgnm(x) 2 r,0 pl (3,p n,p ·is , (8.98) 
p=O 

with the repeated derivative given explicitly by (6.36). 
Convolution of an arbitrary generalised function J'(x) with an 'Tl(a,q) 

function with (a, q) -:f. (p, 0) yields an effectively finite sum of 0<Pl(x - Xj) 
and 'fl( x - x j) functions at the discrete set of singular points { x j} E JR 
of J'(x). 

For generalised functions which are ordinary functions E PC~ n £2 the 
convolution product takes the classical form 

(8.99) 

by standard theorems. [Tich]. 
The convolution product does not have the support property of the 

pointwise product. The convolution of a generalised function at infinity 
with a function of bounded support is usually non-zero. 
Example 8.2 The convolution product 

'ff(x) * 'fl(X) = 'fl(X). (8.100) 

is non-zero. Likewise the convolutions ef(x) * H(l - !xi) and ef(x) * C"'2 are 
non-zero. For integrable ordinary functions the leading term of the convolu-
tion equals 

(8.101) 

as one might guess from the classical form of the convolution integral. 
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The possibility of obtaining the convolution product by regularization of 
convolution integrals will be discussed in Ch. 22. This will be shown to be 
impossible. There seems to be no natural way to obtain a non-associative 
product by regularization. 

The causality aspects of the convolution will be left for Ch. 21, when 
the convolution on GF8 is available, and the Hilbert transform has been 
introduced. 

8.5 Operator and product properties 

The product and convolution PC~ x PC~ -+ PC~ have all the properties 
required in Ch. 2. It is sufficient to consider only the pointwise product. 
By unitary equivalence, using (2.22-23) and the definition of the convo-
lution (2.49) all properties can be transferred to the convolution product 
when X and i'IJ are interchanged. 

Actually the operator properties in PC~ X PC~ are better than re-
quired. The operator X is multiplicative on PC~ 

X (!' • g') = X J' • g' = J' • X g', (8.102) 

V f', g E PC~, and for all choices left/right/symmetrical of the product. 
Verification is done by inspection of the products of the basic functions. 

The product satisfies the Leibniz rule (2.39) for 1) on o• and •o, and 
therefore on • 

1J(J' • g') = (1J !') • g' + !' • (1Jg'), (8.103) 

as one verifies for o• and •O by direct computation. The Leibniz rule for X 
on the convolutions 

X (!' * g') = X J' * g' + J' * X g'. (8.104) 

then follows from (2.22-23) and (2.49) by Fourier transformation. 
The Leibniz rule also holds for multiple products, since these can only 

be defined as repeated pair-wise products. Therefore the Leibniz rule has to 
be applied pair-wise. 

In the commutative version the parentheses have to be respected in 
keeping with the non-associativity 

1J (f • (g • h)) = ( 1J f) • (g • h) + f • 1J(g • h) 
= (1Jf) • (g • h) + f • ((1Jg) • h) + f • (g • (1Jh)) (8.105) 

with some superfluous additional parenthesis inserted for clarity. 
In the associative version of the product the parentheses are irrelevant, 

but the order of the terms has to be respected in keeping with the non-
commutativity. 
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Example 8.3 It is incorrect to differentiate the as yet undefined expres-
sion (H')m(x), assuming for lack of a better definition that (H')m(x) = 
H'(x), to obtain by misuse of Leibniz's rule 

and 
(8.106) 

'vm E N, which would be a contradiction form=/; 2. It is correct to differen-
tiate the repeated product of three terms pair-wise, 

'D(H'(x) • (H'(x) • H'(x))) = ( ½ + ¼ + ¼ )(11i (x) - 'ffr(x)) = 'DH'(x), 
(8.107) 

with the (not unexpected) correct result. By induction this can be extended 
to all m E N if the as yet undefined expression ( H') m ( x) is defined by 

(H')\x) := H'(x), (8.108) 

or even by an arbitrary insertion of properly nested parenthesis, which are 
respected by the differential operator. 
In the non-commutative product version the multiple products can also be 
differentiated correctly but in this case the order of the terms has to be 
respected. 
Example 8.4 The previous product (8.107) of Heaviside functions is in 
the non-commutative left-sided version 

'D(H'(x) o• H'(x) o• H'(x)) = (0 + 0 + 1)(77/x) -11'r(x)) = 'DH'(x), 
(8.109) 

which is also correct. The same holds in the right-sided version. The term 
which gives the non-zero contribution depends on the choice of the right- or 
left-sided version of the product but the result is correct in both cases. 
Remark 8.6 It is best to indicate multiplication dots explicitly and to 
avoid undefined expressions such as H'm(x) or H'(x)m, unless the meaning 
is clear from the context. 
The parity operator can be taken into the product in agreement with its 
standard behaviour (2.44) 

'P(f' (x) • g'(x)) = 'P !' (x) • 'P g'(x). (8.110) 

The operator X is selfadjoint in the scalar product on PC~ X PC~, since it 
is multiplicative (8.102) in PC~. 

( X f 1 , g' ) = ( f' , X g' ) = (I , X (/ • g) ) . (8.111) 
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Therefore by unitary equivalence of X and i'D the operator i'D is also 
selfadjoint in PC~ 

< 'D !' ' g' ) = - ( !' ' 'Dg' ) . (8.112) 

\:If', g' E PC~. In combination with the Leibniz rule (2.39) for differentiation 
of a product, this implies that 

(I, 'D J'(x)) = O, (8.113) 

\:/ J'(x) E PC~. In integral notation (to be introduced in Ch.14) this appears 
in the form 

(8.114) 

\:/ J'(x) E PC~. The good functions J(x) ES also satisfy (8.114). 
It should be noted that the selfadjoint character of these operators holds 

only on PC~. It will not be possible to carry over this property to the whole 
model. The selfadjointness properties are collected in Sec. 12.6. 

The Fourier operator is (up to the normalization) unitary in the scalar 
product. (Parseval's equality (2.29)), 

( f', 91 ) = (21r)-l (:Ff', :Fg' ), (8.115) 

\:/ f', g' E PC~. This will be verified in Ch. 12. 
It is clear that the subspace PC~ C G F has much better operator 

properties than required for GF as a whole. 

8.6 Summary of the product properties 

The product properties are in agreement with the requirements of Ch. 2. 
The product satisfies Leibniz's rule for differentiation, and the opera-

tor X is both left- and right-multiplicative. 
The asymmetrical products are completely associative, and the sym-

metrical product is almost associative. The only source of non-associativity 
is the factor ½ resulting from the symmetrization. 

The subspace PC~ is closed under the product, and conversely every 
element J'(x) E PC~ can be written (in many ways) as the product of two 
other elements. 

The only shortcoming of the product on PC~ is the absence of a unit 
element for the product as required in Ch. 2. 

In the next chapter the product and convolution are transferred to PC>. 
in such a way that the product acquires a unit element, while keeping as 
many of the good properties of PC~ as possible. 

It will be seen there that the gain of a unit element for the product 
must be paid for by a loss of associativity of the products and the loss of 
complete selfadjointness of the operators 'D and X. 
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It may well be preferable in many cases to avoid the need for a unit 
element for the product (and a zero element for differentiation) so that it 
remains possible to work entirely in the space PC~. 



CHAPTER 9 

PRODUCTS ON THE COMPLETED PRELIMINARY CLASS 

In this chapter the pointwise product and the convolution product are trans-
ferred from the space of linear functionals PC~ to the completed prelimi-
nary class PC>.· This is accomplished, while keeping most of the good 
properties of PC~, by choosing suitable transfer mappings. The prod-
uct•: PC>. x PC>.-+ PC>. is then defined Vf,g E PC>. by 

(9.1) 

with Mf, Mg E PC~ and M-1 : PC~ -+ PC>. to be defined below. 
The left-sided and the right-sided products are also defined by (9.1), with • 
replaced by 0° and •o respectively. The properties of the product are defined 
in the next chapter. 

9.1 Mappings 

This section begins with a summary of the mappings defined previously. The 
linear functionals on PC>. and a mapping M : PC>. -+ PC~ we!'e defined 
in Sec. 5.1. This mapping was extended in Sec. 7.1 to M : PC>. -+ PC~, 
defined on the completion of PC>. in such a way that its inverse M-1 : 
PC~ -+ PC>. is as simple as possible. The natural mapping M is generated 
by 

(9.2) 

and 

M Ix - xol"' logqlx - xol sgnm(x - xo) = 
= Ix' - xol"' logqlx - xol sgnm(x - xo), (9.3) 

for the 6-functions and the powers. For ordinary functions at their C00-

points the mapping identifies the function and the linear functional. 
The inverse mapping M-1 : PC~ -+ PC>. can be read off directly from the 
formulre above, 

(9.4) 

for the non-zero case, and more generally for all ry-functions 

00 

M- 1 ryi"',q)(x) sgnm(x)(x) = Dq,O I: D"',P o:~cf2 v<Pl(x), (9.5) 
p=O 
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with the non-zero cases indicated explicitly. For the powers we obtain the 
simple result 

M-1 lx' - xol°' logqlx - xol sgnm(x - xo) = 
= Ix - xol°' logqlx - xol sgnm(x - xo). (9.6) 

There are many elements E PC~ which are not in the range PCM C PC~ 
of the map M . For the complement of PCM the symbol PC#t = PC~ e 
PCM is used. The symbols PM and P#t are used for the respective pro-
jection operators. The projection operator PM eliminates all 0-functions 
and all 77-functions with the exception of 77(p>(x - x0 ). It leaves only those 
elements J'(x) E PCM C PC~ which have a non-zero counterpart in 
distribution theory. 
This is equivalent to 

J'(x) E PCM~ 3g(x) ES: (J'(x) ,g(x)) =J: O, (9.7) 

-, and conversely for the complement PC #t 

J'(x) E PC#t (/'(x), g(x)) = 0 V g(x) ES, (9.8) 

where Sis the Schwartz space of C00-functions of rapid decrease. 
For the elements of PC#t the inverse mapping is defined to be zero, 

for all elements which have no counterpart as distributions. 

(9.9) 

The notation M-1 may be somewhat misleading. It is accurate on the 
restriction PCM = PMPC~ C PC~, but not on PC~ as a whole. The 
operator relations between Mand M-1 are 

(9.10) 
and 

(9.11) 

V f(x) E PC>.· The excepted subspace can be seen explicitly in this form. 
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For convenience the contents of the various PC-classes and the relations 
between them are collected in the following table. 

Table 9.1 

PC... Contents of PC. .. 

PC An unspecified class of 'ordinary' functions used as a starting point 
PC,x Piecewise C 00~functions with power type singularities 
PC6 All allowed linear combinations of 6-functions 
PC.\ The direct sum of the two previous classes 

PC' The undefined class of 'all' linear functionals on PC 
PC~ The space PC,x, considered as linear functionals on PC,x 
PC~ All allowed linear combinations of 77-functions 
PCif All allowed linear combinations of l(-functions 
PC~P All allowed linear combinations of 9(p)_functions 
PC~ The direct sum of the previous four classes 
PC~ The range of the map M and also 

the elements E PC~ which are non-zero as distributions 
PC~ All elements of PC~ which are zero as distributions 
PCf The direct sum PC .x EB PC~ 

GF An unspecified model for the requirements of Ch. 2 
GFt The trivial model of Ch. 3 
GF8 The direct sum PCf, reduced by identifying the 

common elements of PC.\ and PC~, ( to be defined in Ch. 11) 

The next table gives the properties of the various maps. 

Table 9.2 
Map Domain Range • • •jective 

M PC,x PC~ bijective 
M-1 PC~ PC,x bijective 
M PC,x PC~ injective 
M-1 PC~ PC,x surjective 
M PC,x PC~ bijective 
M-1 PC~ PC,x bijective 



106 Products on the completed preliminary class 

The relations between the various PC-spaces are collected in the following 
diagram 

M- 1 M --
I 

M-1 M --
(9.12) 

which summarizes the steps taken in the construction. 
The mapping in the top line of the preceding diagram M : PC A -+ PC~ 
is bijective. This is no longer the case in the second line, since PC~ has - - -, been enlarged more than PCA. The completed map M : PCA -+ PCA -, -, has a large zero space PC -¥1 C PC A. After removing this zero space 
with the projection operator PM = M-1M the mapping in the third 
line M : PCA -+ PC~ is again bijective. The term 6-equivalent will be 
used to denote elements E PC~ which have the same image under PM, The 
properties of the maps are summarized in table 9.2 on the preceding page. 

In Ch. 11 the spaces PCA and PC~ are joined to form the space GFs 
of symmetrical generalised functions. The mappings then reduce to M : 
GFs - GFs, 

The mapping M : PCA-+ PC~ and its inverse M- 1 : PC~-+ PC.\ 
given above are now renamed to Mx and Mi1 for reasons which will 
become clear. 

. -, -It is possible to use the mapping Mx to transfer products from PCA to PCA 
by putting (9.13) 

WRONG! 

This will not lead to a product with good properties. In particular Leibniz's 
rule (2.39) for the differentiation of a product will not be satisfied in PC.\, 
even though it is satisfied in PC~. Leibniz's rule in PCA could be derived 
in PC A if the mapping Mx ( and its inverse) commuted with differentiation, 
but 

Mx'D /(x)-::/- 'DMx /(x), 

for many elements /(x) E PC.\. 

(9.14) 
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Example 9.1 
unit function 
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The obvious counterexample by (7.49) and (6.26) is the 

O(x) = Mx'D I(x) # 'DMx I(x) = 'D I'(x) = 2 a(x) - 2 ~(x). (9.15) 

This phenomenon occurs more generally for arbitrary powers 

(9.16) 
but 

'DMxlxl"' sgn(x) = 'D lx'I"' sgn(x) = 
= alx'l"'- 1 + 2(11i-"'\x) - 'ffs(-o)(x)), (9.17) 

valid when a # 2p, p E N. 
By inspection it is seen that the mapping Mx almost commutes with the X 
operator. It satisfies 

MxX f(x) = XMx f(x), (9.18) 

on a large subspace of PC>.. 
It is not possible to have a mapping which commutes completely with 

the operator X, since the operator X has by ( 7 .33) a zero element 6 ( x) E 
PC>., but it does not have a zero element in PC~. 

On the restricted space (I - P 6co) )PC>. the mapping Mx does com-
mute with the operator X. In obvious notation P 6co) and P1 denote the 
one-dimensional projection operators on the indicated one-dimensional sub-
spaces. The commutation rule of X and Mx is 

[X, Mx] := XMx - MxX = XMxP6co), (9.19) 

with the one dimensional excepted subspace span 6(0) indicated explicitly. 
It is now easy to construct a mapping M1> which almost commutes 

with differentiation. The operators X and 'D are unitarily equivalent under 
the Fourier transform by equations (2.22-23). Therefore the mapping M1>, 
defined by 

(9.20) 

almost commutes with the differential operator 'D. The commutation rela-
tion is the Fourier transform of (9.19), 

(9.21) 

The exceptional element is of course the unit function I(x), since it is the 
Fourier transform of the element 6(x) 
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It should be noted that in (9.20) the Fourier operator acts on the 
space PC>., while the inverse Fourier operator acts on PC~. 
Since the unitary equivalence (2.22-23) can be written in the forms 

we are at liberty to define either 

Mv := :,:--i Mx:F', or 

(9.22) 

(9.23) 

Both expressions are equal since the parity operator 'P commutes with the 
maps Mx and Mv, 

'PMx =Mx'P, Mv'P = 'PMv, (9.24) 

as one verifies by inspection. 
When the definition of the Fourier operator on PC>. is substituted 

into (9.20) the map Mv can also be written in the form 

(9.25) 

For the actual computation of the products and convolutions several 
possibilities are now open. A choice has to be made on the basis of conve-
nience. The pointwise product has to be computed with the Mv mapping 
which is more complicated than the Mx mapping. On the other hand 
the Mx mapping is simple, but the convolution products on PC~ are more 
complicated expressions than the pointwise products. Moreover the point-
wise product and the convolution product can always be found from each 
other by Fourier transformation. 

The following choice is made. First the Mv-mapping is calculated 
explicitly for the ~-functions and the powers. It can be extended easily 
to the 'ordinary' functions. Then the product is calculated explicitly for 
the same special cases. The extension to 'ordinary' functions is made by 
means of the asymptotic expansions. Finally the convolution products are 
calculated in the simplest way, in some cases by Fourier transformation of 
the pointwise product, in some cases by direct computation of convolutions 
in PC~ and the Mx mapping. 
Computing the Mv mapping by (9.20) gives for the ~(p)_functions 

00 

= 2~;( L (-)i j! C;+1(p,p) 'TJ(p,j)(x), (9.26) 
j=O 
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with the er-coefficients defined as usual by (6.48). For the powers we obtain 
from (9.20) by straightforward computation 

Mvlxl°' logqjxj sgnm(x) = Ix'!°' logqjxj sgnm(x) + 
00 

+ 2 L djq(a, m)( (-)j'TJ~-a-l,j) (x) - 'J(}-a-l,j) (x)) sgnm(x) + 
j=O 

00 • 

+ ¾ q! L <-/ Cq+l(j,j) 80 ,j 8J:;:.d2 9(j)(x). 
j=O 

The d-coefficient is a combination of c-coefficients given explicitly by 
j 

djq(a,m) := -¾q!j! L (-)1+ic1(-a -1, m) Cq+3+1-1(a,m) = 
l=-1 

q 

= -¾q!j! L (-)l+qc1(a,m)cq+j+1-1(-a -1, m). 
l=-1 

(9.27) 

(9.28) 

The conversion between the two forms is derived in appendix C. Comparison 
of the two forms gives the symmetry property of the d-coefficients 

(9.29) 

This is sometimes useful to diminish the number of terms in summations. 
Remark 9.1 The map Mv obviously respects the parity of the gen-
eralised functions, but it does not respect the one-sidedness of the Heavi-
side functions. The expression Mv x>- H(x) contains not only .,,i->.-l,j\x)-
functions, but also .,,~->.-l,i\x)-functions. It will be seen in the next section 
that the product of a Heaviside function on the positive side and a Heaviside 
function on the negative side is not necessarily zero. 
Remark 9.2 The 'J(8 -functions do not contribute to any product, so they 
can be omitted to save superfluous work. 
For ordinary functions f E PC>. we find Mv f = f' E PC~, plus a sum of TJ-
functions at the singular points. This is defined to be the sum of TJ-functions 
generated by the mapping by Mv of the corresponding asymptotic series. 
In formula this can be written as 

Mv f(x) = Mx f(x) + L (Mv fa(x;xj) -Mx f a(x;xi)), (9.30) 
{x;} 

The sum over singular points is finite, and the resulting linear combination 
of ,,,-functions is again an allowed generalised function. 
The inverse mapping Mi/ is also found by direct computation, which gives 

00 

M-1 'TJ(a,q)(x) sgnm(x) = 8 8 15mod2 i5(p)(x) 
'Z) s q,O L..J a,p p,m , (9.31) 

p=O 
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and 
{9.32) 

and 
{9.33) 

The only case which needs special attention is 

{9.34) 

where it must be verified by explicit computation that no additional 6(pl(x)-
function is introduced. · 

It is not immediately clear that the operators M'D and M~1 have 
the same relation as Mx and Mi\ since :F' and PM do not commute. 
One must verify that the operators M'D and M~1 are related in the same 
way {9.11) and {9.33)5 as the operators Mx and Mx1, 

{9.35) 

V J'(x) E PC~, and 
{9.36) 

V f(x) E PC>.. The only case which needs attention is that of the powers. 
Computation gives 

(9.37) 

without additional 6(pl_functions. The coefficient of the 6(P)_functions which 
do appear in {9.37) equals doq(-p-1,p), which is zero by (C.38). 

Comparing the mappings M'D and Mx one sees {9.30) that the lead-
ing terms agree. The differences appear in the higher terms. The inverse 
mappings are identical 

M -1-M-1 
'D - X' {9.38) 

since there are no elements in PC>. which can be used to distinguish between 
them. 

Now that the mappings M'D and M~1 are known explicitly, it is pos-
sible to define a pointwise product on PC>. which satisfies Leibniz's rule for 
differentiation. 
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9.2 The pointwise product on PC.x X PC.x 

The products o•, •o, and • are defined by transfer from PC~ using the map-
ping M:z, instead of Mx as in (9.13). This results in a product which obeys 
Leibniz's rule for differentiation. This will be shown in the next chapter. 
The 'left-sided' product o•: PC.x x PC.x-+ PC.x is defined as 

(9.39) 

and idem for the 'right-sided' product. The symmetrical product can be 
obtained either by symmetrization, or by transfer from PC~. 

(9.40) 

The result is the same for both methods. 
Given the maps M:z, and ~ 1 an~he • product on PC~ X PC~ the 

computation of the product•: PC.x X PC.x-+ PC.x (and also 0° and 0 0) is 
only a matter of carrying out the necessary substitutions. In order to save 
effort it may be convenient to insert the projection operator PM in (9.40) 

(9.41) 

since it is useless to carry along terms which will vanish in the final result. 
The simplest product is that of the 6-functions 

(9.42) 

'rip, q E N and 'r/x1, x2 E R The product of 6-functions located at different 
points is obviously zero since the supports do not overlap. 
Remark 9.3 In (9.42) x1 and x 2 have to be considered as parameters. 
Considered as a generalised function of more variables expressions such as 

could be written. This lies outside the scope of this book. 
As a special case of (9.42) we have the result 

6(x) • 6(x) = O(x), 

for the product of two 6-functions located at the same point. 

(9.43) 

(9.44) 

Remark 9.4 The result 8 • 8 = 0 is often found surprising. This is the 
result of mental pictures of the 6-function as a limit of a sharply peaked 
function. The relation of this picture to the generalised functions rJ and 6 is 
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given in Ch. 19 when convergence of sequences of generalised functions has 
been defined. 

In distribution theory the result is not infinite, it is undefined, and any 
answer (including 8(0) = 0) can be obtained for 8(0) by suitably adapting 
the undefined double limit. The result (9.44) arises in a natural way in all 
attempts to define products of distributions, since the zero distribution is the 
only distribution which has even parity, is homogeneous of degree -2, and 
has its support contained in a point. (The support of the zero distribution 
is empty, so it is contained in any point.) 
The left- and right-sided products of 6-functions are also zero in all cases. 
For the left-sided product of a power and a 6-function we find 

00 

lxl°' logqlxl sgnm(x) o• i(r)(x) = 2(-)r q! c 1(r r) 8 • 8mod2 • 6(j)(x) 1rr! q+ , r-a,J m+r,J , 
j=O 

(9.45) 
since the 0(p) term in (9.27) does not contribute to a left-sided product. 
For the special case a = m = p E N, q = 0, we find 

(9.46) 

by substituting the value c1(r, r) = (-tr! from table C.2. 
For the right-sided product only the 0-functions in (9.27) contribute and we 
obtain 

r . 

lxl°' logqlxl sgnm(x) •0 v(r)(x) = ¥ L (-x Cq+i(j,j) 80,j 8'::,~f2 D(r-j\x), 
j=O 

(9.47) 
which reduces for a = m = p E N, q = 0 to 

p < r, 
p~r, 

(9.48) 

in agreement with the left-sided version (9.46). In particular for q = 0 we 
find 

(9.49) 

in agreement with the identification of the unit function I(x) as the unit 
element for multiplication. 
For the sgn-function one finds 

sgn(x) o• 6(P)(x) = sgn(x) 0 0 D(p)(x) = O(x), (9.50) 

as expected. 
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For the negative powers specialization to a = m = -p - 1 gives 

and correspondingly 

Therefore for q = 0 we have the special cases 

X-p-l O• i?(rl(x) = i?(r+p+l}(x), 

x-p-l •o 6(rl(x) = O(x), 
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(9.51) 

(9.52) 

(9.53) 
(9.54) 

Symmetrization gives the symmetrical product of a 6-function and a power 
is in its general form 

r . 
_q_!_ £ £IDOd2( (-)J ( • ') (-t ( )) «(r-j)( ) + ,r .L., ua,j uj,m J! Cq+l J,J + ,:r Cq+l r, T u X + 

j=O 
00 

+ i! 8 • 8~0 d 2 (-)r c (r r) 6(r+j+l)(x) 
,r .L., a,-J-1 J+l,m r! q+l , , 

j=O 

where the summation in (9.45) has been split and rearranged. 
For positive integral powers specialization to a = m = p E N gives 

For the case q = 0 this reduces to 

p > r, 

r?. p. 

(9.55) 

(9.56) 

(9.57) 

The result for positive powers is in agreement with the operator X · · · = X•· · • 

and with the corresponding formula in distribution theory. 
For the special case q = 1 one obtains 

p > r, 

r?. p. 
(9.58) 
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For p = r = 0 we obtain the result 

(9.59) 

with the often occurring special case 

loglxl • 6(x) = 1P(l) 6(x). (9.60) 

The function 7P is the logarithmic derivative of the r -function, and 1P( 1) is 
the Euler-Mascheroni constant. This result (9.60) has to be modified when 
scale transformations are considered. This will be done in Ch. 18 when the 
scale transformation has been defined. 
Remark 9.5 The result (9.60) contrasts with the result (8.48) 

loglxl • r,(x) = O(x), 

which was found in the previous chapter. 
Specializing to a= m = -p - l, p EN gives 

x-P- 1 logqlxl • 6(rl(x) = <-J:,q! Cq+1(r, r) 6(r+p+l)(x). 

and by taking q = 0 and q = l one obtains 

x-p-l • 6(rl(x) = ½ 6(r+p+l\x), 
and 

(9.61) 

(9.62) 

(9.63) 

(9.64) 

The factor ½ in (9.64) and (9.63) should be noted. 
Remark 9.6 In the product formulre given above various factors ½ occur. 
It is often surprising to see how these factors ½ are necessary to give correct 
answers to complicated computations. As a result of the presence of the 0-
function in PC~ these factors ½ automatically come out correctly. In other 
approaches it seems to be necessary to put them in by hand. 
Example 9.2 By combining (9.57) and (9.63) one obtains the standard 
example of a non-associative product 

(x- 1 • x) • 6(x) = 6(x), but x- 1 • (x • 6(x)) = O(x), (9.65) 
and 

(x • x- 1) • 6(x) = 6(x), but x • (x- 1 • 6(x)) = ½ 6(x), (9.66) 
and 

(x • 6(x)) • x- 1 = O(x), but x • (6(x) • x-1 ) = ½ 6(x). (9.67) 

The non-associativity of the product on PC>- cannot be avoided, not even 
by using a non-commutative product. It is an inevitable consequence of 
introducing a 6-function. 
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The left-sided product of arbitrary powers and logarithms is found to be 

00 

+ 2 dqr(f:J, n) L ocr+fj,-p-1 o:+~,p 6(Pl(x). (9.68) 
p=O 

The right-sided product has the same form 

00 

+ 2 drq(a, m) L Ocr+,6,-p-1 o:+~,p 6(Pl(x), (9.69) 
p=O . 

but with a different d-coefficient. The symmetrical product is found by 
symmetrization, 

+ (drq(a, m) + dqr(f:J,n)) L Ocr+/3,-p-1 o:+d;,p 6(P)(x). (9.70) 
p=O 

The form of the result (9.70) is explicitly symmetrical in the factors of the 
product. It is seen by inspecting the Kronecker d's that 6(Pl(x)-functions 
arise if and only if the result of a product is proportional to a negative 
integral power of the form x-P- 1 logqlxl sgn(x). 
Specializing (9.69) to q = r = 0 gives 

(9.71) 
00 

- (doo(a, m) + doo(f:J, n)) L 8cr+/3,-p-l o:,~Jn 6(P)(x). 
p=O 

The coefficient of the 6-function in (9.71) is for a, (:J ¢ Z given explicitly by 

( doo( a, m) + doo(f:J, n)) = (9. 72) 
(-)m7r (-)n11" = ½('¢(a+1)+'¢(-a)+'¢((:J+1)+'¢(-f:J)+-.- +-:--(:J). sm 1ra sm 1r 

Rewriting (9.71) in terms of Heaviside step functions gives 

xcr H(x) • x/3 H(x) = xcr+/3 H(x) + 
00 

(9.73) 

- ¼(¢(a+ 1) +'¢(-a) +'¢((:J+ 1) +'¢(-f:J)) LOcr+,6,-p-l 6(P)(x), 
p=O 
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and 
00 

x 0 H(x) • (-x)13H(-x) = -~(sin1r,8)-1 LOa+/3,-p-l 6(P)(x), 
p=O 

00 

=-~(sin 1ra)-1 L (-)Poa+/3,-p-l 6(P>(x). (9.74) 
p=O 

This shows that products involving H(x) and H(-x) are not necessarily 
zero. It will be seen in Ch. 13 that this is in agreement with the supports of 
these functions which overlap at x = 0. When generalised functions of argu-
ment (x±io) are introduced in Ch. 21 this overlap will make a satisfactory 
product definition for functions of argument (x±io) possible. 
For integral powers only the cases in which additional 6-functions may occur 
are interesting. For the special case of the function xP one obtains 

xP o• lxl 0 logqlxl sgnm(x) = xP 0 0 lxl 0 logqlxl sgnm(x) 
= lxla+p logqlxl sgnm+P(x), (9.75) 

so products with regular powers xP never add 6-functions. The same re-
sult for the 6-functions was obtained in (9.46) and (9.48). Therefore the 
functions xP E PC>. are special in the sense that they have the property 

xP o• f(x) = f(x) o• xP = xP •o f(x) = f(x) •o xP, (9.76) 

for all f(x) E PC.x, It will be seen in Ch.11 that (9.76) also holds for 
all f(x) E GF8 • This makes it possible to identify the operator X with the 
generalised function multiplication by x • 

X f(x) = x • f(x), (9.77) 

for all generalised functions. 
For the case with the sgn-function on the other side one finds 

xP sgn(x) • x-p-l-q = x-q-l sgn(x) - 2( V'(P + 1) + 1P(P+ q + 1)) 6(q>(x), 
(9.78) 

In particular one has the special cases 

(9.79) 
and 

(9.80) 

This shows again that care is needed with the notation and that the gen-
eralised function multiplication dot • has to appear explicitly. Undefined 
notations such as 1/x or 1/lxl should be avoided. 
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Example 9.3 It follows from the preceding formulre that 

H(x) • lxl-1 = x-1 H(x) ::/:- H(x) • x-1 = x-1 H(x) - '¢(1) 6(x). (9.81) 

The notation is consistent and. logical, but I made the mistake of equating 
both sides of (9.81) by omitting the 6-function several times. This point will 
recur in Ch.14 in connection with the definition of the integral. 
There remains the uninteresting case 

which completes the products of powers where additional 6(p)_functions oc-
cur. 

The products of 6-functions and ordinary functions is again defined as 
the product of the 6-function with the asymptotic expansion of the ordinary 
function. The result is non-zero only when the function f(x) is considered 
to belong in PC_x, 

which is by (4.1) always a finite linear combination of 6-functions. The 
result of the computation becomes (with the substitution of an appropriate 
measurement formula for the asymptotic coefficients, and taking xo = 0 for 
convenience) 

00 

f(x) o• 6(P>(x) = L ( xH1 f(x), 6(x)) 6(P+i+i>(x) + 
i=O 

p 

+ L ( /(x), 6<i\x)) 6(p-i)(x), 
j=O 

for the left-sided products, and 

p 

(9.84) 

f(x) •o 6CP>(x) = L ( /(x), 6Ci>(x)) 6(p-i), (9.85) 
j=O 

for the right-sided product. 
Only the asymptotic terms proportional to xP logqlxl and x-p-l logqlxl 

contribute. For p = 0 one obtains the symmetrized result 

00 

f(x) • 6(x - xo) = ½ L(l + 6i,o) ( Xi f(x), 6(x)) 6Ci>(x), (9.86) 
i=O 
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which often occurs in applications. When negative powers are absent this 
reduces to 

f(x) • 6(x) = ( 6(x), f(x)) 6(x), (9.87) 

in agreement with distribution theory when f (x) is regular at x = 0, without 
logarithmic terms. 

The generalised function product of ordinary functions f(x) • g(x) E 
PC>. is defined as the product of the asymptotic expansions added to the 
ordinary product, which results in 

f(x) • g(x) := f(x) · g(x) + L Pi(! a(x; Xj) • 9a(x; Xj)). (9.88) 
XjEIR 

The generalised function product differs from the preliminary product by 
at most a finite linear combination of 6-functions, located at finitely many 
points. 

9.3 The convolution product 

Computation of the convolution product * : PC>. X PC>. --> PC.x is now 
straightforward. Either we Fourier transform the pointwise product 

(9.89) 

or we calculate directly 

(9.90) 

from the convolution on PC\ and the transfer mappings Mx and Mx1 . 
The results are the same for both methods, since the map Mx is the Fourier 
transform of the map M:z, by (9.20). The first method is preferable in the 
simple cases. 

Likewise one may define the the left- and right-sided convolution prod-
ucts o*, and *o either by Fourier transformation of the corresponding point-
wise product in accordance with (8.89), 

f O* g := :,:-1 (:Ff O• :Fg)' 

or from the similar convolutions on PC\ by using the Mx mapping. 
The convolution product has a unit element 6(x) 

6(x) * f(x) = f(x), 

(9.91) 

(9.92) 

V /(x) E PC>., since 6(x) is the Fourier transform of J(x), which is the unit 
element of the pointwise product. In the same way one finds that convo-
lution with the generalised function (- )Pp! c,(P) (x) is equivalent to repeated 
differentiation 

c,(Pl(x) * f(x) = (-t 'DP f(x). p. (9.93) 
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This holds generally for arbitrary f(x) E PC,x, since it is the Fourier image 
of the property XP f(x) = xP • f(x) of the X operator. 
In particular one obtains for the 6-functions 

6(P)(x) * 6(q)(x) = <~t:?' 6(p+q)(x) = <;t 1Y' 6(q)(x), 

and for 6-functions convoluted with powers 

6(P>(x) * lxla logqlxl sgnm(x) <;t 1Y'{lxla logqlxl sgnm(x)) = 
min(p,q) 

= p! L m (;/k)lx'la-p logq-klxl sgnm+P(x) + 
k=O 

00 

+ 2pl _1_ (a)(q+l) 6 6mod2 6(kl(x) 'L.,_ q+l p -a+p-1,k m+p,k , 
k=O 

(9.94) 

(9.95) 

and where the derivatives of the binomial coefficients are zero when the sum 
over k is empty. 
The convolutions of the powers and logarithms are again rather cumber-
some to compute. Additional polynomials arise in combination with the 
logarithms at infinity when the convolution behaves as xP logq lxl at infinity. 
This was expected from the appearance of additional 6(p)_functions in the 
pointwise products behaving as x-P- 1 logqlxl sgn(x) in the finite. 
The only special case which is needed is 

(9.96) 

which appears in Ch. 21 when the inverse of the Hilbert operator has to be 
found. 

The convolution of ordinary functions E PC,x is best computed by 
means of the Fourier transform method. The appearance of polynomials 
at infinity can be read off from the asymptotic expansion of the factors at 
infinity. Additional terms may appear when the convolution product is ho-
mogeneous of degree p E N and of parity ( - JP at infinity. 
The relation of the convolution product to the standard convolution integral 

f(x) * g(x) = 1_:dy f(y) g(x - y), (9.97) 

will be discussed in Ch. 22 when the limits of generalised functions have 
been defined. Since the convolution product of the generalised functions is 
known, it is possible to assess the correctness of the various 'regularization 
methods' which can be used to define the convolution as a 'regularization' of 
the undefined divergent integrals which are obtained by attempting to take 
a regularization of (9.97) as a definition of the convolution product. 
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9.4 Uniqueness of the products 

It is clear that the map M.:r is not fully determined by the commutation 
requirement (9.19) 

(9.98) 

For 6(pl(x) one could define instead of (9.2) 

00 Mx 6(p)(x) := L Cj .,,(p,j)(x). {9.99) 
j=O 

It follows from commutativity {9.99) that the coefficients in (9.99) can de-
pend only on j, not on p. Likewise for the powers one can make the more 
general choice 

00 

+ p(a) L Cq,m;j .,,i-a,-l,j) sgnm(x), (9.100) 
j=O 

where p( a) = p( a+ 1) is an arbitrary periodic function of a with period one. 
The periodicity and the factoring out of the a dependence again follow from 
the commutation requirement (9.19). 

The different possibilities for the standardization can be parametrized 
by a countable number of of parameters, since the periodic function p( a) is 
fully characterized by its Fourier coefficients. 

In what follows the choice standardization defined in the previous sec-
tion is kept, which corresponds to the choice 

c3 = 63,0 and p(a) = 0. (9.101) 

The standardization of the map M 1;1 follows immediately by Fourier trans-
formation of {9.101). 

The freedom to choose a different standardization of the mappings im-
plies a freedom the products of 6-functions and logarithms one sees that the 
coefficient in 

{9.102) 

can be chosen arbitrarily be changing he standardization. It will be shown 
in Chs.16-18 that this freedom of standardization does not affect the re-
sults of computations with generalised functions when invariance under scale 
transformations is imposed. In Ch. 17 a slightly more general standardization 
will be introduced to accommodate indeterminate generalised.functions. 
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When the freedom to choose a different standardization is kept it fol-
lows that the method of this chapter defines a (countably) infinite family of 
products on the generalised functions, and therefore also on the correspond-
ing distributions. It seems that the product definitions for this subspace of 
the distributions, which have been proposed in the literature, can be ob-
tained by choosing the standardization appropriately. This chapter provides 
a covering theory for these approaches to the multiplication problem. This 
remark will be further discussed in Ch. 23. 

There are good reasons for preferring the standardization (9.101) or 
its indeterminate generalization (17.26). These will become clear in the 
following chapters when the consequences of the choice (9.101) are seen. The 
standardization will be discussed in Chs.14, 16 and Ch.18, 19, and Ch. 22, 
where it appears again in explicit form. 

The algebraic properties and the operator properties of the product 
on PC>. X PC>. are derived in the next chapter. 





CHAPTER 10 

PRODUCT PROPERTIES 

In this chapter some of the properties of the pointwise product are de-
rived. The associativity and commutativity of the product are investigated. 
Rules are found for the validity of the multiplicative property of the oper-
ator X. The exceptional subspaces in which the operators X and 'D are 
not selfadjoint are characterized. The chapter closes with a summary of the 
product properties. 

10.1 Associativity and commutativity of the products 

The left- and right-sided products on PC~ were found to be associative (but 
not commutative). One may ask if this property carries over to PCA. This 
is best seen by attempting to derive associativity on PCA from associativity 
on PC~. Transfer of a left-sided triple product results in 

(/ O• g) O• h = M;1 (M'DM;1(M'D/ O• M'Dg) O• M'Dh}, (10.1) 
and idem for the other term of the associator. If it were allowed to replace 
the expression M'DM;1 by:{, then associativity would follow. However it 
is known from (9.35) that we have instead 

M'DM;1 = X - P-,t,t, (10.2) 
Using ass~ciativity in PC~ the associator in PCA is found as 

[/ O• g O• h] = M;1 (P-,t,t(M'Df O• M'Dg) O• M'Dh} + 
- M;1 (M'D/ O• P-,t,t(M'Dg O• M'Dh)). (10.3) 

Now we have M;1 P-,t,t f = 0 from the definition of the projection operator, 
but this does not imply that M;1 (P-,t,t(/ o• g) o• h} = 0. 
Example 10.1 Substituting/ := sgn(x), g := sgn(x), h := 6(x) in (10.3) 
gives 
6(x) = (s~n(x)o•sgn(x)} o•6(x) :/= sgn(x)o• (sgn(x)o•6(x)} = O(x), (10.4) 

which is clearly not associative. 
Product commutators the asymmetrical products are found by straightfor-
ward computation. This results in 

[lxl0 logqlxl sgnm(x) 0 • 6(Pl(x)] = 
00 

- 2 <-t I (p ) t. 1.mod2 ii(j)( ) + - ;: p. q. Cq+l , p L..., up-a,j um+p,j u X 
j=O 

p . 
2 I~ (-)1 ( · ") 1. 1.mod2 iiP-i( ) - ;:q. L..., T Cq+l J,J u 0 ,j um,j u X , (10.5) 

j=O 
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for the 8-function, and 

[lxl 0 logqlxl sgnm(x) o• lxl.B logrlxl sgnn(x)] = 
00 

= 2(~r{.fl, n) - drq(o:, m)) :E 6-o-,8-l,p 6!t~,P 8(p){x), {10.6) 
p=O 

for the powers. Inspection of {10.5) and {10.6) reveals that the coefficient 
of 8<0>(x) is zero in both cases, by cancellation and by the symmetry prop-
erty {9.29) of the d-coefficients. That is, V f(x),g(x) E PC.,., 

8(x) ::/; [/(x) o• g(x)]. {10.7) 

Again the notation .l will be used to indicate this 

8<0>(x) l. [/(x) o.g(x)], (10.8) 

where .l with respect to a set now means .l with respect to all elements in 
the set. 

The commutator space is spanned by the allowed linear combinations 
of 8-functions without the one-dimensional subspace spanned by 8(x). This 
makes the scalar product in PC.>. unique. 

Associators involve somewhat more work. Associators containing three 
or two 8-functions are obviously zero. The associator involving one 8-
function on the right equals 

[lxl 0 logqlxl sgnm(x)o.lxl.B logrlxl sgnn{x) 0 • 8(P>(x)] = 
00 _ '°' 1: 1:mod2 -J1(i){ ) - L...,, e; up-o-{3,j up+m+n,j u X , (10.9) 

j=O 

with the coefficient ej given by 

e · = Cq+r+1(P,P) _ Cr+1(P,P) 0 c5mod2 Cq+1(k, k). 
3 c1(p,p) c1(p,p) f:::o p-,8,k p+m,k c1(k, k) {10.10) 

The associator in (10.9) is zero in the special case q = r = 0. The other 
associators with one 8-function are similar in form. 
The left-sided associator of the powers equals 

[lxl 0 logqlxl sgnm{x) o• lxl.B logrlxl sgnn(x) o• lxl'Y log8 lxl sgn°{x)] = 
00 

= 2 :E 60 +,8+-y,-p-l o!t~+o,p 8(p)(x) X 
p=O 

p . 

X (dq+r,s(-r,o}-dq,r+s('Y,O)+ 2; 1 dqr(.fl,n):E <-;?3 6-y,;6:!'..id2 cs+1{j,j)+ 
j=O 

00 . 

d ( ) '°' tl 6 0mod2 { • ')) - 1r rs 'Y, 0 L...,, j! o-p,j m+p,j Cq+l J,J • {10.11) 
j=O 
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The associator space of the left-sided product is spanned by the allowed 
linear combinations of 8-functions, including 8<0>(x). 

The associator of the symmetrical product can be expressed in terms of 
associators and commutators of the left-sided product as 

4(/ • g. h] = +[! O• g O• h] +[IO• h O• g] + [g O• / O• h] + 
- [g O• h O• I] - [h O• g O• I] - [h O• IO• g] + 
+ [g O• [IO• h]]. (10.12) 

The commutator in (10.12) implies non-associative parenthesis. In the spe-
cial case (8.80) of the product on PC~ the product is associative and only 
the double commutator in the last line survives. The associators of the 
symmetrical product are easily evaluated by carrying out the appropriate 
substitutions. The formulre become rather large so they are not written out 
here. 

There are two reasons for the lack of associativity of the symmetrical 
product on PC .x. 
The first is the lack of associativity of the left- and right-sided products 
represented by the associator terms in (10.12). This cannot be avoided 
in PC_x. An example was given above. 
The second is the occurrence of factor ½ resulting from the symmetrization, 
as in the product on PC~. This is given by the double commutator term. 
Example 10.2 The product 

½ 8<2>(x) = (x-1 • x-1) • 8(x)-# x-1 • (x-1 • 8(x)) = ¼ 8<2>(x), (10.13) 

is not associative even though none of the sub-products are zero, and even 
though the corresponding left- and right-sided products 

(10.14) 

are associative. 
The second type of non-associativity can be avoided by going to the left-
and right-sided products. This leaves the first source of non-associativity. 

It is therefore seen that on PC ,x it is possible to have a commutative 
product, but it is not possible to have an associative product. This is the 
reason for preferring the commutative product, the inconvenience of non-
associativity being unavoidable. 

For an arbitrary product o, which is neither associative, nor commuta-
tive, elementary algebra yields the cyclic commutator property 

[ao [boc)) + (bo [coal]+ [co [aob]) = 
= - L (-lerm[aoboc), 

perm 
(10.15) 
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where the sum with the signature is over the six permutations. It follows 
that an associative product satisfies the cyclic commutator property. 
Conversely the cyclic associator property of an arbitrary product is 

+ + = 
= + + (10.16) 

so a non-associative product satisfies the cyclic associator property if it is 
commutative. 
Remark 10.1 As usual the commutator separation symbol takes prece-
dence, so no parenthesis are inserted around the products in (10.16). 
On PC" the left- and right-sided products satisfy neither the cyclic associa-
tor property, nor the cyclic commutator property. The symmetrical product 
is commutative, so it satisfies the cyclic associator property. Being commu-
tative it satisfies the cyclic commutator property trivially. 

10.2 Operator properties of the product 

The operator properties on PC" are more complicated than the correspond-
ing properties on PC\. The multiplication operator X satisfies the simple 
property ' 

X(f • g) = (Xf) • g = f • (Xg), (10.17) 

on PC\. This property does not carry over to PC,\. 
Example 10.3 The standard example in which (10.17) is violated is 

6(x) = (xx- 1 ) • 6(x) =/. X(x- 1 • 6(x)) = ½ 6(x) =/. x-1 • (X6(x)) = O(x), 
(10.18) 

in agreement with the non-associative products (9.65-67). 
This was to be expected since the map M'P does not commute with the 
operator X, even though it does commute with M1'1 . If one attempts to 
derive the property (10.18) for the left-sided product on PC\ one obtains 

X(f o•g) =M1;1(XM'Pfo•Mvg) = 
= Xf o• 9 + M 1;1([x, M'P]! o• M'Pg) = 
= f O• Xg + M1'1 (M'Pf 0• [X, M'P]g), (10.19) 

and one has to verify by explicit computation whether the second terms 
in (10.19) and (10.18) vanish. 
For the left-sided product one finds the left-left rule 

X(J 0• g) = (Xf) 0• g =/. f 0• (Xg), (10.20) 
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which is that the operator X is multiplicative on the left-sided factor of 
the left-sided product. Correspondingly in the opposite order there is the 
right-right rule for the right-sided product 

X(f •0 g) = f •0 (Xg) f:. (Xf) •0 g. (10.21) 

The validity of the product rules (10.20) and (10.21) must be verified by 
inspection. Instead of working out the operator commutators in (10.18) 
and (10.19) it is more convenient to work out the basic products. In the 
product equation (9.45) it is clear that the operator X can be taken into 
the left factor, since the coefficient of 15(x) does not depend on a:. The same 
holds for the right-sided product by symmetry. The same argument does 
not hold when one attempts to do the same for the X operator acting on 
the second factor of the left-sided product. 

For the symmetrical product the multiplicative properties of X are more 
complicated. Expressing the symmetrical product in left-sided products an 
rearranging terms by means of product commutators yields the forms 

X(f •g) =Xf•g- ½X[f o.g] + ½[XJ o.g] = 
=f•Xg+ ½X[fo.g]-½[fo.Xg] = 
= ½Xf•g+ ½J•Xg+ ¼[Xf o.g]- ¼[Jo.Xg]. (10.22) 

The validity of the multiplicative rules (2.41-43) depends on the vanishing 
and/or cancellation of the product commutators in (10.22). Tnis is not 
difficult since the product commutators are known explicitly. In the example 
given above the multiplication rule is the semi-Leibniz rule. 

Care is needed only when additional 15(p)_functions appear in prod-
ucts. This happens when the product is homogeneous of degree -p - 1 
with parity p + 1. 
Subtracting both forms yields the error term for the multiplicative rule 

(10.23) 

This can also be used to shift the operator X in a product. It is also possible 
to replace the operator X by x•. Using the special property (9.76) the error 
terms in the multiplicative rule can also be expressed in terms of associators 
as 

X(f • g) = X f • g + ½ [x o• f o• g] + ½[go• f o• x], 
=f•Xg+ ½[xo.go.f] + ½[f o.go.x]. 

The commutator form seems more convenient however. 

(10.24) 

The pointwise product defined in Ch. 9 satisfies Leibniz's rule for the 
differentiation of a product 

'D(f(x) • g(x)) = ('D f(x)) • g(x) + f(x) • ('D g(x)). (10.25) 



128 Product properties 

This follows for products not involving the identity element from the com-
mutation of M1> and 'D, 

M1>'D = 'DM1>, and (10.26} 

and from Leibniz's rule (8.103} in PC~ X PC~. For products with the 
identity element J(x) it follows by direct computation. 

'D(I(x) • f(x}) = O(x) • f(x) + I(x) • 'D f(x) = 'D f(x), (10.27} 

since J(x) is both the unit element of the multiplication and the zero element 
for differentiation. It is seen that it is necessary that the identity element of 
the product coincides with the zero element of the differential operator. 

10.3 The scalar products on PC>. 

Now that the products have been defined it is possible to define the scalar 
product ( , ) : PC.>. X PC.>. -+ C in terms of the generalised function product. 
This is done by putting for the left-sided scalar product 

f(x), g(x)) := ( J(x), f*(x) o• g(x) ), (10.28) 

for all / and g in PC>.. It is sufficient to define the scalar product of PC>. 
with the unit function J(x). Correspondingly one has the right-sided product 

( /(x), g(x)), := ( J(x), f*(x) •o g(x) ), (10.29) 

and the symmetrical scalar product 

( /(x), g(x)) := ( I(x), f(x)* • g(x) ), (10.30) 

which may be obtained by symmetrizing the scalar product, or equivalently 
by using the symmetrical product. 

In the following it is sufficient to consider only the symmetrical scalar 
product. In the previous section it was shown (10.7) that product commu-
tators do not contain the element 6(x). Therefore in PC>. product com-
mutators do not contribute to scalar products. The left-first scalar product 
equals the symmetrical scalar product in all cases. There is only one scalar 
product ( , ) : PC>. X PC>. 

~!, g) = ( /, g) = ( f, g f, (10.31} 

'flf,g E PC>.. The scalar product on PC>. agrees with the preliminary scalar 
product (4.25} between singularities. 
Scalar products with the unit function can be defined as 

( J(x), /(x)) := ( 6(x), :F f(x)) = ( J(x), 6(x) • :F f(x) ), (10.32) 
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in accordance with Parseval's equality (2.29) and definition (10.30). It is 
known from the previous section that any product with a 6-function is of 
the form 

00 

(10.33) 
p=O 

'I:/ f(x) E PC>., Only finitely many Cp coefficients can be non-zero. Therefore 
all scalar products can be reduced to the special case 

(10.34) 

in agreement with the normalization (2.28) of the 6-function. Compared to 
the preliminary scalar product defined in Sec. 4.4 only the 6<0\x)-functions 
at the singular points give additional contributions. 
The product formula for the 6-function has the consequence 

( 6(x), J(x)) = J(O), (10.35) 

when f(O) is defined in a standard sense. For symmetrical generalised func-
tions the scalar product (10.35) is always defined, and conversely in Ch. 13 
equation (10.35) will be taken as the definition of the value of a generalised 
function. 
Remark 10.2 It should be kept in mind that TJ(x) and 6(x) behave 
similarly only for continuous functions. For the logarithm one obtains 

(10.36) 
but 

(10.37) 

The ,,.,-functions are more selective than the 6-function. 
For the scalar product of the powers one obtains 

( lxl 0 logqlxl sgnm(x), lxl~ logrlxl sgnn(x)) = 
= 60 ,-~-i o:~i2 drq(a*, m) + d9r(,B, n)). (10.38) 

Numerically the result of (10.38) is usually zero. The only exception occurs 
when the products are proportional to lxl- 1 logq+rlxl. 
One obtains as a special case of (10.38) for a <I. N 

( lxl 0 , lxi-a-l) = ½ '1/;(a + 1) + ½ 1/J(-a) + _;!!-. 
Slll11'Q 

(10.39) 

The value of the scalar product does depend on a, even though the nai:ve 
(but incorrect) answer for the scalar product is 

(I(x), lxi- 1 ) = 0, (10.40) 

independently of a. 
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Specializing (10.38) to scalar products with the unit function gives 

(10.41) 

'r/a E C, 'r/q E N. In particular for a = -1 rewriting (10.41) in integral 
notation results in 

1_:dx lxl- 1 logqlxl = 0. (10.42) 

This result can also be obtained from (10.36) by Parseval's equality and 
the completion formula (C.27) of the crcoefficients. The simple appearance 
of (10.42) is a consequence of the choice of the standardization (9.101) of 
the products. 
In Ch. 14 the integral in the sense of generalised functions will be defined as 
a special case of the scalar product. When written in integral notation the 
scalar product (10.42) takes the form 

'r/a E C, 'r/q E N, in agreement with Hadamard's definition of the partie finie 
used in Sec. 4.3 as a starting point. 

In contrast with the situation in PC~ the operators X and i'D are not 
selfadjoint in the scalar product PC>. X PC>. --+ C defined above. 
Example 10.4 In the special case 

i = (I(x), i 6(x)) = (I(x), i'DH(x)) i-
i- ( i'D I(x), H(x)) = ( O(x), H(x)) = 0, (10.44) 

one sees this immediately. It can be obtained as the Fourier transform of 
the more familiar example 

(10.45) 

which corresponds with the example of a non-associative product (9.65-67) 
given above. In general one has 

(i'Df(x),g(x))= (f(x),i'Dg(x))- (I(x),i'D(f(x)*•g(x))), (10.46) 

from Leibniz's rule for differentiation of products. 
One sees from the failure of the multiplicative product property (10.22) for 
the X operator that the selfadjointness of the operator X on PC~ does 
not carry over to PC>.. It is not difficult to characterize the failure of the 
selfadjointness for the operator X. It is selfadjoint when the multiplica-
tive rule holds, so it is not selfadjoint in scalar products in which the error 
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term (10.23) for the multiplicative rule contributes. Since the commutator 
space of the products does not contain the element 15<0>(x), only the second 
term in (10.23) with X outside the commutator can contribute. This is the 
case if and only if the product is equal to lxl- 2 logqlxl sgn(x), or to 15<1>(x). 
For arbitrary generalised functions selfadjointness depends on the vanishing 
and/or cancellation of the cross-terms of degree -2 in the product of the 
asymptotic expansions at x = 0. By unitary equivalence the operator 'D 
is not selfadjoint in scalar products where the asymptotic expansion of the 
convolution product of the factors contains a term of the form x logqlxl 
at x = ±oo. 
Remark 10.3 Anticipating the results of Ch. 14 it is easy to character-
ize the failure of the selfadjointness of the operator i'D. It fails when the 
product f(x) • g(x) behaves as sgn(x) logqlxl at infinity. Consequently the 
operator X fails to be selfadjoint in the scalar product when the convolu-
tion J(x) * g(x) behaves as x-1 logqlxl at x = 0. This apparent lack of 
symmetry between the operators 'D and X is a consequence of the choice of 
the standardization (9.101) of the product. 
Remark 10.4 It follows from the existence of a zero element that the 
operators X and 'D do not possess an adjoint in PC>-.. There does not exist 
an operator i'Dt such that 

( J(x), i'D ;(x)) = ( i'Dt f(x), g(x) ), (10.47) 

\;/ f,g E GF8 • The same conclusion is also implied by the existence ofa zero 
element. 
The exceptions to the selfadjointness of the operators X and 'D will be 
characterized in Sec. 12.6. The operators X and i'D are almost selfadjoint 
in the sense that for an element f(x) E PC>-. it is sufficient to exclude at 
most a 'small' subspace for the allowed function g(x) in order to obtain a 
selfadjoint operator in the remaining space. It is necessary to exclude a 
subspace of PC>-. X PC>-.· It is not sufficient to exclude a subspace of PC>-. 
only. 

The lack of selfadjointness of the operator i'D is an inevitable conse-
quence of the introduction of a non-zero unit element with zero derivative 
everywhere, including infinity. Likewise its Fourier transform 6(x) causes 
the lack of selfadjointness of the operator X. 

A choice is inevitable, either one has a unit element for the product 
and a zero element for differentiation, or one has selfadjoint operators and 
the possibility of an associative product. The model constructed in this 
book has both possibilities realised, each in its own subspace PC>-. and PC\ 
respectively. The model as a whole cannot have all possibilities realized at 
the same time. 
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The Fourier operator is unitary in the scalar product defined in this 
section, (Parseval's equality), 

( :F J(x), :F g(x)) = 21r ( f(x), g(x) ), (10.48) 

apart from the normalization. This is easily verified for the special cases 
given above. The verification in the general case will be given in Ch. 12. 

10.4 Summary of the product properties 

In the two previous chapters the product has been extended from a product 
on the linear functionals to a product on the original space PC>.. The 
algebraic structure of the product on PC>. is richer and more complicated 
than the corresponding product on PC~. 

The product algebra is neither commutative, nor associative. A com-
mutative product can be obtained by symmetrization. The non-associativity 
cannot be removed. 

The product satisfies Leibniz's rule for differentiation, but the opera-
tor X is not multiplicative in the product. 

The product algebra generates a symmetrical scalar product, but the 
operators X and 'D are not completely selfadjoint in the scalar product. 
This is an unavoidable consequence of the introduction of a unit element for 
the product, which is a zero element for the operators. 

Parseval's equality, which is equivalent to unitarity of the Fourier oper-
ator holds without exception. 

The product and convolution on PC>. can be transfered directly to an 
important subspace of the (tempered) distributions. Some remarks on the 
connection with other definitions of products and/or convolutions on the 
distributions will be made in Ch. 23. 



CHAPTER 11 

THE SIMPLE MODEL 

In the previous five chapters the operator and product properties of the pre-
liminary class were found by a large detour. The generalised function proper-
ties were found from the preliminary properties of Ch. 4, by first transferring 
everything to the space PC~ of linear functionals on the preliminary class, 
and then back to the preliminary class. 

The preliminary class PC>. by itself is already a model for a symmetrical 
theory of generalised functions. It satisfies all requirements listed in Ch. 2. 
It lacks the analysing power and the simplicity of computation present in 
the linear functionals PC~. The space PC~ is not a model by itself, since 
it lacks the required unit elements I and 8. 

The simple model referred to in the chapter title is obtained by com-
bining PC>. and PC~ into the space GFs, which is the simple model for a 
symmetrical generalised functions. 

As an intermediate step the space PCf is defined as the direct sum 
of PC>. and PC~ by 

EB - -, PC>. := PC>. EB PC>.. (11.1) 

This space is too large however, since the spaces PC>. and PC~ have many 
elements, such as the Schwartz space S, in common. The space of simple 
symmetrical generalised functions GF8 is obtained from PCf by identifying 
the common parts of PC>. and PC~. 
Remark 11.1 The properties of PC~ were obtained from the prelimi-
nary properties of PC>. by taking suitable residues. The generalised function 
properties of PC>. differ from the preliminary properties only for excep-
tional isolated values of the complex parameters. Instead of combining PC>. 
and PC~ it is also possible, now that we have the space PC>. as a space of 
generalised functions, to rederive the properties of PC~, and consequently 
of G F8 from the known generalised function properties of the space PC>.. 
Since the results are the same the choice is a matter of convenience. 
Two sections are devoted to the discussion of the relations between sym-
metrical generalised functions on one hand, and distributions and ordinary 
functions on the other hand. 

11.1 Local power functions 

The functions H(x) E PC>. and H'(x) E PC~ differ only at x = 0 and x = 
oo. In between they are indistinguishable. The difference is defined as an 
element E PCf by 

(11.2) 
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More generally the functions 'theta-down' and 'theta-slash-up' are defined 
by 

(11.3) 

The notation anticipates a splitting of this difference into a part in the finite 
and a part at infinity. As before the slash indicates a location at infinity. 
The sign convention in (11.3) with a+ sign at infinity is different from the 
corresponding formula (5.78) for the 1]-functions. 

The generalised functions ( - )q 0~a,q) ( x) can be interpreted heuristically 
as the restriction of the function x°' logq ( x) to a positive infinitesimal envi-
ronment of the point x = 0. Anticipating the section on products it may 
be noted that this heuristic interpretation is supported by product formulre 
such as 

(11.4) 

The 'theta-up' 0r and the 'theta-slash-down' d! functions are defined simi-
larly by 

(11.5) 

The convention (5.69) for adding slashes to formula numbers can de extended 
with the definitions 

(11.6) 

in accordance with the transformations of the '17-functions. A slash at a 
formula number now indicates that the formula remains valid when slashes 
are added where possible, with cancellation of double slashes. 
As for the 'l}-functions it is convenient to define the even and odd 0-functions 
by 

(11/7) 
and 

(11/8) 

The functions 0~°',q\x) behave as (- )q !xi°' logq lxl near x = 0, while the 
functions 0i<>,q)(x) behave as (-)q!xl°' logqlxl sgn(x). In contrast with the 
complementary formulre (5.48-49) for the '17-functions no factor ½ is included 
in the definitions (11.8) and (11.7). 
As usual the· notation 

g(o,q (x) sgnm(x) := s = m ' ) { 0(o,q)(x) m 0 ( od 2) 
8 0ia,q)(x) m = 1 (mod 2), (11/9) 
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combines the two cases. For integral values of the index it is convenient to 
define 

(11/10) 

and 

(11/11) 

which behave as (-)qxPlogqlxl, and (-)qxPlogqlxlsgn(x) at x = 0 respec-
tively. At infinity there are the same linear combinations with slashes added. 
The special notations for the 0-functions are collected in the following table. 

Table 11.1 

Special notations for 0ia,q)(x) sgnm(x) and Jl;°',q\x) sgnm(x) 

a m (mod 2) q 0··· ( ) ... X corresponding 11:::(x) 

a m q 0~°')(x) sgnm(x) 11!°') (x) sgnm(x) 
a 0 q 0~a,q) (x) 1/ia,q)(x) 

a 1 q 0i°',q)(x) 11i°',q) (x) . 0(p,q\x) 1/(p,q)(x) p p q 
p p+l q T(p,q)(x) a-<p,q)(x) 

p p 0 0<Pl(x) 71<Pl(x) 
p p+I 0 7(Pl(x) 17(Pl(x) 
0 0 0 0(x) 71(x) 
0 1 0 r(x) a-(x) 

and idem for ll;°',q\x) sgnm(x) with slashes added 

The symbol 0(P)(x) has been defined twice in two different ways. In this 
section the function 0(P)(x) was defined as the difference in the finite between 
the functions xP and x'P, while the function 0<P) ( x) was defined previously 
in (6.62) as the Fourier transform of ef(Pl(x) + · • • . It will be seen in the 
next section that the two definitions agree. 

The properties of the functions 0~a,q)(x) sgnm(x) follow from the known 
properties of the subspaces PC>. and PC\ by linearity. 
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11.2 Scalar products 

The scalar products 

( , ) : PC~ x PC~ - C and ( , ) : PC" x PC" - C, 

were defined in Sec. 8.1 and Sec. 10.3. The scalar product 

( , ) : PC~ x PC" - C 

is defined in agreement with (8.14) to by imposing symmetry 

( , ) : PC~ x PC" - C := ( , ) : PC" x PC~ - C. 

This gives the scalar product 

( , ) : PCf X PCf - C, 

as 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

where all terms are now defined. The same definition applies to the left-first 
and the right-first scalar products. 

The scalar product defines the elements of PCf as linear functionals 
on PC~. This is only a small part of their properties as generalised functions. 

11.3 Operators on the generalised functions 

The action of the operators on PC" and PC~ was completely defined in Ch. 6 
and Ch. 7, and both PC,\ and PC~ are closed under the operators. Therefore 
the operators are defined on PCf by their action on PC" and Pc:\. Only for 
the Bi'-",q)_functions introduced in the previous section some care is needed. 
Subtraction always yields a sum of a 0-function in the finite, and a f!-
function at infinity, which has to be split. As before it is convenient to 
resolve this splitting problem by definition. 
Remark 11.2 When limits of sequences of generalised functions are 
defined in Ch.19 it can be shown that the splitting by definition which 
is used in this chapter agrees with the behaviour of suitably chosen limit 
sequences. 
The operators X and 1J are defined to be local, in the sense that they do 
not enlarge the support of the generalised functions on which they act. They 
convert functions in the finite into functions in the finite. Splitting into parts 
in the finite and parts at infinity gives in the case of the X operator 

X Bi°',q)(x) = Bi°'+l,q)(x), and X 11;°',q\x) = e1°'+i,q\x), 

for all possible subscripts. 

(11/16) 
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For the differential operator 1) we obtain 

1)(}ia,q)(x)sgnm+l(x) = +a9ia-l,q)(x)sgnm(x) + 
+ q(l - <\o) 9!<>-l,q-l}(x) sgnm(x) + 
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- 26q,o77!-a)(x)sgnm(x), (11.17) 
and 

1Jl;0 •q\x)sgnm+l(x) = +al;°-l,q}(x)sgnm(x) + 
+ q(l - 6q,o) l;a-1,q-1) (x) sgnm(x) + 

+ 2 6q,O 11}-0 >(x) sgnm(x), (11.18) 

which again shows that the 9-functions behave as the powers. 
The exceptional cases for differentiation are 9, I, r, and f. In these 

cases {}-functions are converted into 77 and o--functions. The results are 

1)9(x) = -20-(x), and 1Jr(x) = 26(x) - 277(x), (11.19) 

and at infinity 

1Jl(x) = 2fl(x), and 1Jf(x) = 21l(x), (11.20) 

The equivalent formulre for the one-sided linear combinations are 

(11.21) 
and 

(11.22) 

This illustrates the intermediate position of the 9 i -function between the 
spaces PC,. and PC~. It also serves as a reminder that the choice 6(x) -::/= 
77(x) is necessary to obtain an interesting theory. 
The Fourier transforms of the 9-functions are also found by subtraction. 
From the asymptotic behaviour of the Fourier transform [Lig] it is known 
that the Fourier transform of a singularity in the finite leads to a singularity 
at infinity. 
Therefore the splitting is defined as 

:F9~a,q)(x) sgnm(x) = · 
q+l . 

= -2im(-)qq! L c-;13 Cq-;(a, m) ,1-a-l,j}(x) sgnm(x) + 
j=O 

00 

+ 4im(-)qq! Lj! Cq+;+i(a, m)1l}0 •i>(x) sgnm(x), (11.23) 

and 
j=O 
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:Fd;"',q)(x)sgnm(x) = 
q+l 

- 2imq! L Tl Cq-j(a, m) 0~-a-l,i\x) sgnm(x) + 
j=O 
00 

- 4imq! L (-)j j! Cq+j+l)(a, m) 11i"',j)(x) sgnm(x) + 
j=O 
00 

+ 4imq! L 8a,p 8;'.~2 Cq+l(P, m) v<P\x). 
p=O 

For integer parameter values this can be written as 

and 

q+l . 
:F0(p,q)(x) = -2iP(-)qq! L <-/ Cq-j(p,p)f(-p-l,i\x) + 

j=O 
00 

+ 4im(-)qq! L Cq+j+i(P,P) 'H(p,j)(x), 
j=O 

q+l . 
:FT(p,ql(x) = -2iP(-)qq!L <-/ cq-j(p,p)d(-p-l,j\x) 

j=O 
' 00 

+ 4imHqq! L Cq+j+i(P,P) /i(p,j)(x). 
j=O 

In particular the previous special case ( 6.64) 
00 

:F0(P)(x) = 4iP Lj! Cj+1(P,P) 'd(P,il(;z;), 
j=O 

(11.24) 

(11/25) 

(11/26) 

(11.27) 

is recovered as a special case by putting q = 0. This shows that the different 
definitions of 0(p) ( x) do indeed agree. The Fourier transform of the difference 
of the functions xP and x'P at x = 0 equals the Fourier transform of 0<P>(x) 
as defined previously in (6.64). 
This completes the definition of the operators on the 0-functions. 
Remark 11.3 The transformation of the 0-functions under the usual 
operators is dual to the corresponding formulre for the 17-functions. The 0-
functions transform as the powers, the 17-functions measure the powers. The 
measurement formula in the finite 

( 0(a,q) (x) ..,(/3,r) (x)) = l 8 8 s , ·is 2 a,/3 q,r, (11/28) 

is by Parseval's equality in agreement with the corresponding formula 

( d(a,q) (x) ,,1((3,r) (x)) = l 8 8 
s , Yls 2 a,/3 q,r, (11/29) 

at infinity. 
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It is convenient to extend the definition of the maps to GF8 as a whole. The 
map M: PC,x-> PC~ is completed by the definition 

M J'(x) := I J'(x) = J'(x), {11.30) 
't/ J'(x) E PC~. This makes M into a projection operator on the sub-
space PC~, 

MM=M2 =M. 
The zero space of M is spanned by the elements 

(6(p)(x - xo) -11(p>(x - xo)) E GFs, 

't/p E N, 't/xo E IR, and the elements 

ot,q>(x - Xo) sgnm(x - Xo) E GFs, 

a E C, (a, q) =/:- (p E N, 0), xo E JR, and the elements 

(11.31) 

{11.32) 

(11.33) 

eikxg1°',q)(x) sgnm(x) E PC~ C GFs, (11.34) 
't/a EC, 't/q,m EN, 't/k E JR. 
The projection operators PM and P~ are completed by defining 

PMPC,x := ZPC,x, {11.35) 
and 

(11.36) 
which makes PM a projection on the elements of GFs which are non-zero 
as distributions. 
Likewise M-1 is completed by the definition 

M-1 J(x) := I f(x) = f(x), (11.37) 
't/ J(x) E PC,x. This definition makes M- 1 into a projection operator on 
the subspace PC,x, In addition to its zero space in PC~ it has the same 
zero space as M. In particular the elements o(P>(x) are in the zero space 
of M-1 , but not in the zero space of M. 

It is obvious that M-1 is not the inverse of M, since non-trivial pro-
jections do not have an inverse. The relation between the operators M 
and M-1 remains {9.10) 

M- 1M = MM- 1 = PM =Z-P~, {11.38) 
so that these operators are each others inverse on the subspace PMGF8 • The 
restricted mappings M : PC,x -> PMPC~ and M-1 : PMPC~ -> PC,x 
are bijective. 

The same holds for the map Mx = M, and for M-v = :F- 1Mx:F. 
The zero-space of M-v is found by applying :F-1 to the zero-space of Mx. 
Remark 11.4 Despite this extension of the maps there remains a differ-- -, -, ence between PC ,x and PC ,x. Operators are defined first on PC ,x, and then 
transferred by M-10M to PC,x, 
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11.4 The product of generalised functions 

The products 0°, •o, • have to be defined on E PC>. X PC~. Most of the 
formulre are given only for the symmetrical product. In most cases the three 
products are equal, and it is not necessary to write them all out. 
The products 

(11.39) 
and 

(11.40) 

have already been defined. It remains to find the products 

(11.41) 
and 

(11.42) 

to complete the product 

(11.43) 

and consequently the product 

(11.44) 

It would be possible to abstract the product PC>. X PC~ from the scalar 
product as in Ch. 8 for the products on PC~. Now that the product on PC>. 
is known, it is possible to work back from the product on PC>. by taking 
appropriate residues. In this way the product PC>. x PC~ ....... PCf is found 
first. By taking a second residue, with the usual symmetrization (8.14), the -, -, product PC>. x PC>. can be recovered. It agrees with the product defined 
previously. 
As a starting point the product (9.70), 

00 

= !xi>.+µ sgnm+n(x) + L 8>.+µ,-p-l · · · i5CP\x), (11.45) 
p=O 

can be taken. The explicit dependence of • • • on >, and µ is irrelevant, since 
the Kronecker 8 is zeromorphic. Taking a residue on .X gives 

(11.46) 
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The 15-function part drops out, since it is a zeromorphic function of the 
variable>.. Multiplying by a power of.>.+ a+ 1 and taking the residue gives 
after splitting 

and 
'Jf}a,q)(x) sgnm(x) • lxlµ logrlxl sgnn(x) = 

{ O(x) 
= 'Hs(a-µ,q-r)(x)sgnm+n(x) 

in agreement with the scalar product. 

r > q, 
q r, 

r > q, 
q r, 

Products in PC>. X PC~ involving 15-functions follow from (7.33) 

00 

15(p)(x) • lxla logqlxl sgnm(x) = L °-a,i · · · 15(P+i)(x). 
i=-p 

(11/47) 

(11/48) 

(11.49) 

The right-hand side is again zeromorphic in a, so by taking a residue, we 
obtain 

(11.50) 
and 

(11.51) 

't/a EC, 't/q EN. 
The product involving ordinary functions is now defined as the pointwise 

product between singularities. At the singularities it is defined as the product 
of the asymptotic series. This gives 

f(x) • g'(x) = (f(x) · g(x))' (x). 

If one of the factors has a prime the product has a prime. 
The product PC~ X PC~ is now recovered in the usual way ( com-

pare Ch. 8). If another residue is taken starting from (11.48) the result is 
zero, if we start with (11.46) we obtain one. The left-sided products are 
obtained by taking the residue corresponding to the left-sided factor in the 
residue first, the right-sided product by taking the opposite order. By sym-
metrization as in Ch. 8, the product PC~ X PC~ is recovered. 
A typical result is 

lx'la logqlxl sgnm(x) • lx'l 13 logrlxl sgnn(x) = lx'la+/3 logq+rlxl sgnm+n(x), 
(11/52) 
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which also holds for the other versions of the product of the powers. For the 
products of the 77-functions and the powers one recovers the result (8.44-45) 

and 

q > r, 
q $ r, 

(11/53) 

(11/54) 

in agreement with the results of Ch. 8. The product of 77-functions is always 
zero, 

(11/55) 

again independently of the kind of product. 
Finally, repeated subtractions of (11.52) and (11.46) from (9. 70), yields 

the products of the 0-functions with themselves 

00 

+ ( drq(a, m) + dqr(/3, n)) (-)q+rL b_o:-{j-l,p 8:~'!;,P 6(Pl(x), (11.56) 
p=O 

and idem at infinity 

without 6-functions. The formulre (11.56) and (11.57) will be needed for 
verifying Parseval's equality in Ch. 12. 
It is seen from (11.56) that we have in the special case (/3,r) = (0,0) 

(11/58) 

without additional 6-functions. This is in agreement with the nai've interpre-
tation of the 0-functions. In particular by further specialization one recovers 
the result (8.65) 

0(x) • 0(x) = 0(x). (11.59) 

By subtraction of (11.54) and (11.47) one sees that the left- and right-sided 
products of the 0-functions behave oppositely to the corresponding products 
of primed powers, 

q > r, 

q $ r, 
(11/60) 
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and 
(11/61) 

without the factor (-)q, since 9!°'•q)(x) is defined as a positive function. 
The products of 9-functions and 6-functions are found as 

r . 
i! ~,. i.mod2 { (-)3 ( • ') i=f. ( )) fi(r-j)( ) = 1r L..., u a,j u j,m ...,-i-. Cq+l J, J + r! Cq+l r, r u X + 

j=O 
00 

+ i! 0 · 0~0 d2 (-ir C (r r) 6(r+j+l)(x) 
11' L..., a,-3-l J+l,m -i:r q+l , , (11.62) 

j=O 

in agreement with the corresponding product of the unprimed powers. The 
primed powers do not contribute. Therefore one finds the property 

in agreement with the interpretation of the 9-functions. 
The previous equation (11.62) has the important special case, (substituting 
the value c1(0,0) = f from table C.1), 

{11.64) 

This does not include a factor ½, since both terms in {11.62) contribute a 
factor ½ to {11.64). 
Remark 11.5 The result of a product from PC~ X PC>., as in (11.64), 
is not necessarily E PC~. 
The product • : PC>. x PC~ - PCf is now completely defined, and by 
commutativity also the product • : PC~ x PC>. _. PCf. Therefore the 
product • : PCf X PCf _. PCf can now be defined by 

(11.65) 

in agreement with the definition of PCf. 
The product PCf X PCf _. PCf has all the properties required 

in Ch. 2. In particular one verifies by direct computation that the generalised 
function I(x) is indeed the unit element of all products 

I(x) o• f(x) = I(x) • f(x) = I(x) •o f(x) = f(x), {11.66) 

for all/ E PCf. 
The product of all pairs of elements has been explicitly defined as an 

element of PCf, so the model is closed under the generalised function mul-
tiplication. 



144 The simple model 

11.5 Convolution of generalised functions 

The convolution product PCf X PCf -+ PCf is best defined as the Fourier 
image of the pointwise product' 

(11.67) 

The convolution can also be defined by defining a 'regularization' of the 
convolution integrals but this method is more arbitrary. The regularization 
of divergent integrals will be defined in Ch. 22. It is easier and less arbitrary 
to derive the correct regularization from the known convolution. 
The identity element of the convolution is ~(x) = 6, since 

~(x) * f(x) = f(x), {11.68) 

V /(x) E PCf. The function ~(x) is the Fourier transform of the unit 
function. Calculation of the remaining convolutions V /(x) E PCf is a 
tedious exercise which yields no new insights. 

11.6 The simple model 

It remains to complete the construction by removing the superfluous parts 
of PCf. The spaces PC,x and PC~ have much in common. 
Example 11.1 The Schwartz space S of C 00-functions of rapid decrease 
at infinity is a subset of both PC,x and PC~. 
This extends immediately to all C 00 pieces between singularities. It is only 
at the singular points that elements of PC ,x and PC~ differ. 

Now the space of simple generalised functions is obtained by identifying 
the C00 parts. This leaves only a summing up of the possible singular 
behaviour at the singular points. The simple model GF8 can be written as 
a direct sum of pieces as 

GFs = PC,x EB PCi EB PC~ EB PC~ EB PCt, 
or equivalently as 

GFs = PC~ EB PC~ EB PCt EB PC~ EB PCi, 

since PC~ contains the localized difference between PC,x and PC~. 

(11.69) 

{11.70) 

Conversely the splitting is no longer unique, any C00-function can be 
assigned either to PC,x or to PC~. It is only at the singular points that the 
characterization of the singular behaviour is unique. 

It follows that the space GF8 has the required properties, since by con-
struction the space PCf has them. This will be verified in the next chapter. 
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11.7 Generalised functions as ordinary functions 

In the previous chapters the generalised functions were constructed starting 
with a class of ordinary functions. Conversely one can associate an ordinary 
function f(x0 ) with a generalised function by 

f(xo) := ( 6(x - xo), f(x) ), (11.71) 

which can be used to identify generalised functions with ordinary functions. 
The function f(x0 ) will be defined as the value of the generalised function 
in Ch.13. 

The converse is not uniquely possible. Corresponding to an 'ordinary' 
function f(x) : lll --+ JR, which satisfies the restrictions imposed in Ch. 4, 
there are in general many different generalised functions. These functions 
differ in the interpretation of their behaviour at the singular points as either 
of the type of PC~, or of type PC,x. In fact the number of different choices 
is much larger, since the choice of adding a prime can be made for each 
separate term in the asymptotic expansion at each singular point. Arbitrary 
linear combinations of the two possibilities are also allowed. A generalised 
function is not determined by its values. 

The local behaviour of an ordinary function J'(x), which is piecewise 
constant, considered as a generalised function E PC~, can be demonstrated 
by writing out the function in terms of 9(P) and Heaviside stepfunctions. The 
local behaviour of a piecewise constant ordinary generalised function E PC~ 
can be characterized by the three numbers 

J'(x) = c __ H'(-x) + c0 0(x) + c++ H'(x), 

which can be measured by 

co= (6(x),/'(x)), 
c_ - = ( 21Jr ( x) - 6 ( x) , J' ( x) ) , 
c++ = ( 21]! (x) - 6(x) , J'(x) ). 

(11.72) 

(11.73) 

By contrast an ordinary function f(x) E PC,x, with no more than a jump 
discontinuity, can be written as 

f(x) = c __ H(-x) + c++ H(x), 

with its coefficients measured by 

It is characterized by only two numbers. 
In the general case of a function E GFs with a jump discontinuity 

(11.74) 

(11.75) 

(11.76) 
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the coefficients can be measured using the asymmetrical scalar products 

c __ = ( 111(x), f(x) 
Co- = 11r(x), f(x) ), 
Co+= ~17!(x), f(x) ), 
c __ = ( 17!(x), /(x) 

{11.77) 
{11.78) 
{11.79) 
(11.80) 

The 8(x)-function is not needed; since it measures ½ (c0_ + eo+) at the jump. 
Corresponding to an ordinary function with a singularity such as a jump, 

there are two different generalised functions. Both have a jump discontinu-
ity, but of a different kind. The difference shows up for instance in their 
different derivatives. Which one is appropriate in a given problem depends 
on the problem to which analysis is applied. Roughly speaking it will be 
seen that the 'smooth' Heaviside functions H'(x) E PC~ are appropriate 
when the functions are seen as the limit of a sequence of smooth function. 
The 'sharp' Heaviside functions H(x) E PC>. are appropriate when the func-
tions involved are 'really' discontinuous rather than very (perhaps infinitely) 
steep. Of course linear combinations of sharp and smooth discontinuities are 
also allowed. 
notation The following conventions will be used. Ordinary function with-
out further mention will be assumed to have sharp singularities, that is 
as f(x) E PC>.. If all singularities are weak a prime is added to the func-
tion symbol, as in /' ( x) E PC~. Primes in a function symbol as in ( x' ±io )°', 
(compare Ch. 21), indicate that a residue should be taken, so the appearance 
of 7rfunctions is to be expected. The type of singularity can also be indi-
cated be the explicit appearance of Heaviside functions, and/or (}-functions, 
as in e-1:i:IJ'(x) versus e-lzl. 
Mixed behaviour at different singularities is also possible. It is allowed to 
choose any type of singularity for any term in the asymptotic expansion at 
any point, including regular points. The functions I'(x), I(x), and I'(x) + 
9(x) are different. 
Remark 11.6 The distinction between the functions I(x) and I'(x) + 
9(x) ties in with the traditional distinction between the actual and the 
potential infinite in an aesthetically pleasing way. This remark will be taken 
up again in Ch. 24. 
Example 11.2 In Ch.19 it will be found that the smooth functions have 
limit properties such as 

00 

~ffle-a:i:2 = I'(x) + 9(x) +I:··· 91(-t,il(x) ::/: I(x), 
j=O 

{11.81) 

where the limit has to be interpreted as convergence in the sense of the 
symmetrical theory of generalised functions, to be defined in Ch. 19. 
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It will be seen that the sharp and the smooth functions correspond with 
different idealizations. Both are useful in an appropriate context. 
Example 11.3 If in quantum electrodynamics electrons are considered 
to be point-particles, the sharp functions are appropriate. If the electron is 
only very small (finite but of a size which is too small to be measured) the 
smooth singularity is an appropriate idealization for its description. 

11.8 Generalised functions as distributions 

The Schwartz spaces of test functions S and 1J are contained in the prelim-
inary class, and therefore also in the classes PC~ and PC.>., and in GF8 • 

This means that all symmetrical generalised functions are always defined as 
linear functionals on a space of test functions, that is as distributions. 

Many generalised functions are zero as distributions for lack of a suitable 
test function in S to distinguish them from zero. The contents of PC.>. are 
non-zero as distributions. The elements of PC~ are non-zero when they are 
unchanged by the projection operator PM defined in Ch. 9. The difference 
between an element f(x) E PC.>. and the corresponding element J'(x) := 
M J(x) E PC~ is also zero in the sense of distribution theory. 
Example 11.4 The difference 6(x) - "l(x) is zero as a distribution, since 

( f(x), 6(x) J = ( f(x), "l(x)) = f(O), (11.82) 

V f(x) E S. The generalised function 0(x) is needed to distinguish be-
tween "l(x) and 6(x). 
Zero as distributions are all 0-functions, all generalised functions at infinity, 
and all "7-functions except .,,<P>(x - x0 ), with p E N, and x0 E JR. The 
reduction of the symmetrical generalised functions to the elements which 
have a non-zero equivalent among the distributions is a projection. One is 
free to choose the either a projection on PC.>. or PC~. The transfer map M 
and its inverse M-1 can be used to convert between the two possibilities. 

The distributional aspect of the symmetrical generalised functions is 
only a part of their properties as generalised functions. Generalised func-
tions have more properties than distributions, since they are not exclusively 
defined as linear functionals. 

11.9 Summary of the contents of the model 

The model contains several independent families of elements localized at a 
point. At the point x = 0± there are the families 

(11.83) 
and 

(11.84) 
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Va EC, Vq EN, Vm E Z. Moreover at the point x = 0 there is the family 

(11.85) 

Vp E N. Many linear combinations of these elements are also generalised 
functions E GF8 • In particular one verifies that V g(x) E GFs the elements 

g(x) • 71~"',q)(x), and g(x) • 0~c.,q)(x), and g(x) • 6(Pl(x), (11.86) 

are elements E GF8 • These are admissible linear combinations of generalised 
functions. This does not exhaust the linear combinations. As noted before 
there are many formally infinite linear combinations which are effectively 
finite, since only finitely many terms in the linear combination are non-zero 
in any scalar product with an element E GF8 • 

At infinity there are the families of elements 

(11.87) 

Va E C, Vq E N, Vm E Z. There are no 6-slash functions in the model. 
For the linear combinations at infinity the same restrictions apply as in the 
finite. Effectively only finite linear combinations occur in both cases. This 
implies that the allowed a-values in a linear combination of l{-functions are 
an ascending sequence, while H-functions contain only descending sequences. 
Remark 11. 7 The model GF8 contains two subspaces which are also 
closed under the operators. These are obtained by restricting the complex 
parameters such as a and the allowed powers in the asymptotic expansions 
to a E Z or a E R No significant simplification is obtained in this way, so 
we keep the general case a E C. 
The simple model is now complete. In the following chapters some of its 
properties will be derived. 
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PROPERTIES AND VERIFICATION 

In this chapter the list of requirements given in Ch. 2 is followed and it is 
verified that the requirements are satisfied. Only an outline of the verification 
is given in most cases. This chapter also serves to collect partial results 
spread over several previous chapters. 

Given the exploratory character of the work presented in this book it 
does not seem appropriate to develop formalism and to give formal proofs 
of theorems. It seems better to develop the formalism further, with the aim 
of developing more general methods. 

12.1 Contents of the model 

The model contains not only the Dirac 8-function, it even contains two dif-
ferent objects 8(x), and rJ(x), which both have 8-like properties. 
The first and the third of the properties (2.1-4) postulated by Dirac are 
shared by both 8 and 'T/· Both are the derivative of a step-function, H(x) 
and H'(x) respectively. Both are the Fourier transform of a 'constant' func-
tion. Only small changes in the interpretation are necessary. Both functions 
measure a (different) aspect of the value at x = 0 of another generalised 
function. 
The second property of the 8-function (2.2) 

X 8(x) = x • 8(x) = O(x), (12.1) 

is satisfied by 6(x ), but not by rJ(x ). 
The fourth property (2.4) has not been dealt with yet. It will be shown 
in Ch.19 that it is satisfied by rJ(x), but not by 6(x). It will be necessary to 
redefine the limit concept for this purpose. 

The model does not contain an element which satisfies all of Dirac's 
requirements. Conversely for all of Dirac's requirements there is an element 
which satisfies it. These elements are different for different requirements. 
In a wider sense the model is in agreement with the spirit in which Dirac 
proposed the 8-function. It satisfies an appropriate generalization of Dirac's 
requirements. 
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12.2 The scalar product 

The scalar product ( , ) : GF8 X GF8 -+ GF8 is obviously linear by con-
struction. The symmetry must be verified. 
Property 12.1 The scalar product satisfies 

(/(x),g(x))= (g(x),f(x))*. (12.2) 

Verification: For real functions this is obviously true since the product 
is commutative by construction, so we have for real f(x),g(x) 

( f(x), g(x)) = ( I(x), f(x) • g(x)) = 
= (I(x),g(x)•f(x))= (g(x),f(x)). (12.3) 

For arbitrary f(x),g(x) we obtain 

(/ 'g > = (I' f* • g) = (I' g. f*) = ( g* 'f* ), (12.4) 

so it remain to verify that the * can be taken out of the scalar product, 

(/(x), g(xj} = (/(x)*, g(x)*) *, (12.5) 

It is sufficient to show this in the special case 

(I,/*)= (I,/)*. (12.6) 

Since all scalar products have been reduced by the definition of the scalar 
product to the scalar product (I, 6) = 1, it is sufficient to have 6* = 6. 

From the complex conjugation of the powers (x>-)* = x>-• one is led 
to (x1>-)* = x1>-· and (11<a,q)(x))* = 11<°'•,qJ(x), so 7J = (11)* is real for real a, 
in particular for a = 0. By the postulate of minimal completion 6(x) is also 
taken to be real. (It would be possible to redefine 6 := ei'P6, but this leads 
only to avoidable complications.) The complex conjugates can be taken out 
of the scalar products by definition of the complex conjugation. 

12.3 Integration on the preliminary class 

Remark 12.1 This section is superfluous since the needed results have 
been verified already in Ch. 4. It is included to show that the conditions 
imposed there can easily be weakened and that it is not necessary to insert 
an explicit partition in order to define the integral. 



Integration on the preliminary class 151 

The preliminary integral, defined in Sec. 4.3, on a restricted preliminary 
class PC>. agrees with Hadamard's definition (Had] of the partie finie. It is 
always well-defined and finite. 

The restrictions imposed upon the preliminary class are much stronger 
than necessary to allow the definition of the integral. The finiteness condi-
tions are already implied by the analyticity requirements and the required 
asymptotic form are far to restrictive for this purpose of integration. It is 
sufficient to impose on f(x) E PG the condition 

1xo+b 
Vxo E JR3Ax0 E JR3ax0 + E JR+ : g(A; xo+) := dx (x - xo)>. J(x) < oo, 

XO 
(12.7) 

for Xo < b < ax0 + and Re A > Axo. A similar condition is imposed to 
the left of every point. By standard arguments [Tich] it is known that the 
function g(A; xo+) is an analytic function of A in the half-plane Re A> Ax0 • 

Again the existence of a (for simplicity single-valued) analytic continuation 
to the whole A-plane is required for all points x0 E JR.. 
Remark 12.2 For the definition of the integral continuation of g(A; xo) 
to an environment of A = 0 is already sufficient, but the continuation to the 
whole A-plane is needed for a satisfactory theory of generalised functions. 
Associated with every point Xo E JR there is now an open interval xo-ax0 - < 
x < xo + axo+ with the property that f(x) E PC has an integral on all 
subintervals (xo - b,xo + b+) defined by 

(12.8) 

Vb_ < ax0 , and Vb+ < axo+· These open intervals around every point xo E JR 
obviously cover any compact subset [a, b] C JR.. By the Heine-Borel theorem 
every open cover of a compact set C JR has a finite subcover. Associated 
with each open set in the subcover is a point Xj E JR.. These points can be 
arranged in order as 

a xo < xi < · · · · · · xi b, (12.9) 

The integral over a compact subset [a, b] E JR is now defined by choosing a 
finite partition 

(12.10) 

with each partition point ai in the intersection of the open environments 
of Xj and Xj+i• The integral is now defined as the finite sum of the sub-
integrals. It is obviously finite and it does not depend on the choice of the 
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partition. If we also require analytic integrability on the intervals (a+, oo), 
and (-oo, a-) with a_, a+ ER+, the integral is defined from -oo to oo by 

l oo la_ 1a+ 100 
-oodx f(x) := -oo + a_ + a+ (12.11) 

It has been shown that only requirements on analyticity and analytic contin-
uation are needed. The finiteness and the asymptotic expansions then follow. 
The simple model is obtained by imposing the restriction to meromorphic 
functions. 

The integral over finite intervals (in the sense of generalised functions) 
is redefined in Ch.14 in terms of scalar products. It will be shown that 
this definition is a generalisation of the partie finie integral which served 
as starting point. The contributions from isolated singular points appear 
in addition to the partie finie integral in a way which generalises Dirac's 
requirement. 

12.4 Operator algebra 

The general pattern of the verification of an algebraic property of the opera-
tors is similar in all cases. First the validity of the property in a preliminary 
sense on the preliminary class is established. Then the unrestricted validity 
of the property on PC\ is deduced using analytic continuation and evalua-
tion of residues. This must be extended to the completion PC\ by explicit 
computation. Finally the property is established on PC.>. by transfer, us-
ing mappings such as M and M-1 . It then holds for GF8 as a whole by 
linearity. Only some typical cases are written out fully. 

It will be shown first that the canonical commutation relation (2.12) for 
the operators X and 'D holds. 
Property 12.2 

['D, X] f(x) := ('DX - X'D) J(x) = X f(x) = f(x). (12.12) 

V f(x) E GFs 
Verification: The commutation relation (12.12) holds for the prelimi-
nary operators acting on the powers 

(12.13) 

for all values of A. By taking residues in accordance with the definition 
one sees that it holds for the elements lx'l>-log9 lxl sgnm(x) E PC\ This 
implies the validity for the 9CPLfunctions since these functions behave as 
the corresponding powers under X and 'D. The property also holds for 
the 77-functions 11<a,q)(x) sgnm(x) and 'Jf}°',q)(x) sgnm(x). The commutation 
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relation is now verified for all of PC~, since J'(x) E PC~ is C 00 between 
singularities. The property holds on PC>. by transfer, 

'.DX f(x) = M- 1'.DMM- 1 .:t'Mf(x) = M- 1'.DPMX = 
= M- 1'.DXMJ(x)-M- 1'.DP.¥tXMJ(x), 

and the second term is zero since M-1 commutes with '.Dan .:t', 

and by definition 

M-1 =M-1PM, 

Therefore 

so 

By linearity the commutation relation holds on GF8 as a whole. 

{12.14) 

{12.16) 

(12.17) 

The demonstration of the validity of the properties of the Fourier operator 
is slightly more complicated. We have the algebraic properties 
Property 12.3 

:F:F = 21r'P, (12.18) 

and in the same way 
:F:F* = :F* :F = 21rZ, (12.19) 

and consequently 
(12.20) 

Verification: The property holds as a theorem in .C2• Therefore it 
holds for the function x>- H(x)H(a - x) for Re>. > -½, and by analytic 
continuation for all values of >.. It also holds at infinity for the func-
tions x>- eik:i: H ( x - a), with Re>. < - ½ . The property holds for the powers 
and 7rfunctions in PC~ by taking suitable residues, for example 

:F:F ,,,~a,q) sgnm(x) = :,:( >-=~E; __ 1 ~(>.+a + 1r :Flxl>- sgnm(x)) = 
= >-=~~s_ 1 ~(>.+a + l)q 211''Plxl>. sgnm(x) = 
= 21r'P17~a,q) sgnm(x). (12.21) 

The property is extended to PC~ by computation of the action of :F:F on 
the 0-functions. 

00 

:F:F 9(Pl(x) = :F4iP L j! Cj+i (p, p) lf(P,i) (x ), = (-)p0(p) (x), (12.22) 
i=O 
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as one sees by explicit computation using the completion formula (C.27) of 
the Cj-coefficients. The property holds for the ordinary functions in PC~ 
by linearity, since a function E PC~ can be converted into an C2 function 
by a finite number of subtractions of terms for which the property has been 
shown to hold. Finally the property can be transferred to PC>. by transfer 
with the mapping M. 

{12.23) 

and the last term in {12.23) equals zero since :F commutes with P-¥i. 
The related property with :F replaced by :F'" follows in the same way. In 
the next section Parseval's equality will be verified. Then it will be possible 
to replace the complex conjugate :F* by the adjoint :,:t. 

Example 12.1 By explicit computation we find 

:F:Flxl>. sgnm(x) = :F(-2im r(..\ + 1) sin I(..\+ m) lxl->.-l sgnm(x)) = 
= 4<-rr(..x + 1) sin; (..x + m) r(-..x) sin; (-..x - 1 + m) lxl.x sgnm(x) = 

= 271"(-lmlxl>. sgnm(x) = 27r'Plxl>. sgnm(x), {12.24) 

by the completion formula (C.7)' of the r-function. 
Next there is the unitary equivalence (2.22-23) of the operators X and i'D. 
Property 12.4 Unitary equivalence of X and i'D 

(12.25) 

and 
(12.26) 

Verification: The verification proceeds along the same lines as the pre-
vious case. Again the property holds as a theorem in C2 n PC>., it holds for 
the powers by analytic continuation, it holds for the primed powers and r,-
functions by taking residues. It is not necessary to verify the property for 
the 0-functions, since the operators X and 'D were defined on the 0-functions 
by (12.26) and {12.25). It again holds for the ordinary functions E PC~ by 
subtraction. The transfer to PC.x is also possible, since 

and both 'D and :F-1 commute with P-¥i· 

As an immediate consequence we have 

(12.27) 
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Property 12.5 The transfer map Mi, is equivalent to Mx = M for 
the definition of the operators. 
Verification: It has to be shown that 

(12.28) 

V f(x) E PC>.. Direct computation gives 

Mij1'.DMi, = F- 1Mx1F'.DF-1 Mx.?=' = 
- i.?='- 1XF = '.D = M~i'.DMx, (12.29) 

by application of the previous result. The property also holds for all poly-
nomials in the operators X and '.I). o 

12.5 Operators and products 

The properties of the operator X have been found already in Chs. 8 and 10, 
so they are only summarized. 
Property 12.6 The operator X is multiplicative in PC\ 

X (/' ( x) • g' ( X)) = ( X f' ('x)) • g' ( X) = J' ( X) • ( X g' ( X)) , (12.30) 

D 

Property 12.7 The operator X is not multiplicative in PC>.. A suf-
ficient condition for the validity of the multiplicative rule is the absence 
of terms in the product which are homogeneous of degree -p - 1 with 
parity (-)P. o 

Property 12.8 The operator X is also multiplicative in mixed prod-
ucts PC\ x PC>.. 

The next property to be verified is Leibniz's rule for the differentiation of 
the product. 
Property 12.9 Leibniz's rule 

'.D(f(x) • g(x)) = ('.D J(x)) • g(x) + f(x) • ('.D g(x)). (12.31) 

holds for the differentiation of a product. 
Verification: Between singular points the elements of GF8 are C00 , so 
Leibniz's rule holds by standard arguments. At the singular points in PC\ 
one verifies Leibniz's rule by direct computation for the products of the 
powers and the 7]-functions. By subtraction a function remains for which 
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Leibniz's rule holds in a standard sense. Also one verifies Leibniz's for the 0-
functions, since these behave as the integral powers. Then Leibniz's rule also 
holds on PC.>. by transfer, since the transfer map M1> has been constructed 
in such a way that it commutes with differentiation. 

'D(/ • g) = 'DMi/(M1>f • M1>g) = Mv1 ('D(M1>/ • M1>g)) = 
= Mv1 ('DM1>/ • g + f • 'DM1>g) = 
= 'D f • g + f • 'Dg + Mv 1 ( [ 'D , M1>] f • g + f • [ 'D , M1>] g) 
='DJ• g + f • 'Dg. (12.32) 

The last line follows from (9.21)so the commutator equals 'DM1>P1. Its 
action on any generalised function is a generalised function at infinity, which 
is annihilated by the inverse map. o 

12.6 Selfadjoint properties 

In this section the existence of adjoint operators is investigated. The condi-
tions for lack of selfadjointness of the operators X and i'D is established. For 
the operators i'D and X it was already shown in Ch. 6 that these operators 
are selfadjoint in this subspace. 
Property 12.10 The operator Xis selfadjoint in PC~. 
Verification: This follows immediately from the validity of the multi-
plicative rule (12.30) 

X(/'(x) • g'(x)) = X J'(x) • g'(x) = J'(x) • X g'(x), 

valid V J'(x),g'(x) E PC~. 

(12.33) 

D 

Property 12.11 The operator i'D is selfadjoint in PC~: V J'(x), g'(x) E 
PC~ 

( i'D / 1 ( X) , g1 ( X) ) = ( J' ( X) , i'D g1 ( X) ) , {12.34) 

Verification: In PC~ there are no stock-terms at infinity, 

( I(x), 'D J'(x)) = ( 6(x), :F'D J'(x)) = i ( 6(x), X:F J'(x)) = O, (12.35) 

V f ( x) in PC~, since PC~ does not contain an element such that X • J' ( x) = 
0(x). It follows from Leibniz's rule that the adjoint 1)t = -'D exists, and 
that the operator i'D is selfadjoint in PC~. Equivalently one can Fourier 
transform the previous property. o 
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On the other hand it is known that the operators X and i'D do not possess 
an adjoint in PC». It remains to characterize the exceptions. 
Property 12.12 The operator Xis selfadjoint in PC» iff 

( X f(x), g(x)) = ( f(x), X g(x)) <==? X[f(x) o• g(x)] = O(x), (12.36) 

at x = 0. It is sufficient (but not necessary) th11,t 

f(x) • g(x) .L 15<1>(x) and f(x) • g(x) .L lxl- 2 logqlxl sgn(x), (12.37) 

so the product should not be homogeneous of degree -2 with negative parity. 
Equivalently the product of their Fourier transforms should be ,fa x logqlxl 
at infinity. 
Verification: See Sec. 10.3. 

Property 12.13 The necessary and sufficient condition for the validity of 

in PC» is 

Verification: 

( 'D f(x), g(x)) = - ( f(x), 'D g(x) ), 

( l(x), f(x) • g(x)) = 0, 

The stock-term equals 

( I(x), 'D(/(x) f • g(x))) = ( 6(x), :F'D(/(x) • g(x))) = 
= i ( 6(x), X:F(/(x) • g(x)} ). 

(12.38) 

{12.39) 

(12.40) 

It is non-zero if and only if the expansion of f(x) • g(x) at infinity contains 
terms of the form sgn(x). Since PC~ does not contribute it is sufficient to 
exclude f(x). It is not necessary to exclude f(O,q)(x) with q > 0. One easily 
verifies from the Fourier and product properties that 

( 6(x), iX:F f(O,q)(x)) = 2 Dq,O = ( I(x), 'Dsgn(x) ). (12.41) 

This special behaviour of 'D at infinity is a fortunate result of the standard-
ization (9.101). It is indeed a good reason to prefer this standardization. 
(See also Rem.12.4 in the next section however). 

It is not possible to exclude a small subspace for f(x) and g(x) separately. In-
stead it is necessary to exclude a subspace of PC» X PC». Given f(x), there 
is given a descending sequence of,\ values which occur in its asymptotic ex-
pansion. Correspondingly there is an ascending sequence of forbidden -,\-1 
values for the asymptotic expansion of g(x). Since the asymptotic expan-
sion of g(x) is also required to be descending, the number of non-zero terms 
which actually appears is finite. 
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Remark 12.3 Translations, which will be defined for generalised func-
tions in Ch. 15 change the asymptotic behaviour at infinity. If it is desirable 
that i'D should also be selfadjoint for the translated functions as well it is 
necessary to exclude behaviour as xP sgn(x) at infinity. 
Remark 12.4 Likewise scale transformations, to be defined in Ch. 16 
transform logqlxl sgn(x) into {log(a) + logjxlt sgn(x), so if these transfor-
mations are allowed behaviour as xP logqlxl sgn(x) at infinity should be ex-
cluded. 
The fundamental theorem of the calculus Prop. 14.2 is closely related to 
the selfadjointness of the operator 'D. It will be shown in Sec.14.3 that the. 
fundamental theorem holds for generalised functions in an appropriate sense, 
despite the lack of complete selfadjointness of the differential operator. 

12. 7 Parseval's equality 

Next the existence of an adjoint of the Fourier operator must be demon-
strated. This amounts to the verification of Parseval's equality. 
Property 12.14 Parseval's equality 

( :F J(x), :F g(x)) = 21r ( f(x), g(x) ), 

V f (x ), g(x) E GFs, 

(12.42) 

Verification: For zero scalar products the result is trivial, it is only 
necessary to verify the non-zero cases. For the powers Ix'!°' logqjxj sgnm(x) E 
PC~ the property holds trivially. Only (-)i11i°'•q>(x) - w}°',q\x) occurs as 
a linear combination of 17-functions in the Fourier transforms. All scalar 
products are zero. For the 9(pl(x)-functions the scalar products have been 
defined by invoking Parseval, so Parseval holds by construction. 

In order to extend this to PC>- the elements 9(o,q)(x) must be added. 
Adding one 0-function still gives a zero result. For two 0-functions one 
obtains a non-zero scalar product only for /3 = -a - 1, m = n, as one sees 
from the product property (8.65). (For convenience a* = a is taken. The 
stars can easily be restored if desired) 

( 0;°'•q\x) sgnm(x), 0!-o-l,r)(x) sgnm(x)) = drq(a, m) + dqr(-a - 1, n), 
(12.43) 

while comparison with the Fourier transform of 0!0 ,q)(x) sgnm(x) 

+ 4im(-)qq! Li' Cq+j+l(a, m) w}0 ,il(x) sgnm(x), (12.44) 
j=O 
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yields the same answer. The c-coeffi.cients in the cross-terms combine to the 
correct d-coeffi.cient 

( _,::-9(a,q)(x) sgnm(x), J=' 9(-a-l,r)(x) sgnm(x)) = 
q+l 

= 4q!r! L (-)icq-j(a,m)cq+r-i+l(-a -1.m) + (q-+ r,a-+ -a -1) 
j=-1 

= 211"(drq(a, m) + dqr(-a - 1, n)). (12.45) 

The contribution from the ~-function at the origin in (12.43) equals the 
cross-products at infinity. 

The same result is obtained for the functions ll(a,q\x) sgnm(x) at infin-
ity. Adding the 0 and II-functions to the powers in PC~ gives the validity 
of Parseval's equality for the powers in PC>.. This is not yet sufficient since 
products of powers may diverge both in the finite and at infinity. Therefore 
the validity is also established for the functions cal:i:ljx'I>. sgnm(x). The log-
arithms can easily be added, but this yields no new insight, while it makes 
the formulre more cumbersome. The scalar product follows from the defini-
tion of the r-function 

( lxl00 sgnm(x) , lxl.6 e-a!:z:lsgnn(x)) = (12.46) 

= 2 8:~~2 a-a-,6-l (r[0l(~ + /3 + 1) - r[-ll(a + /3 + 1) log(a)) + 
00 • 

4 £mod2 -a-/3-1 ( ) ( l ) '°"' (-)3 £ - ,i-' um,n a Co a, m C1 -a - , n J! u-a-,6-l,j, 
j=O 

The Fourier transform of the damped power has been calculated in Ch. 7. 
For the verification of Parseval's equality we need the integral 

{
00d >.(. + )µ _ (- ')>.+1 >.+µ+1 r(A + 1) r(-A - µ - 1) 

lo xx ix a - i a r(-µ) , (12.47) 

since the integral is a standard representation [Erdl] of the Eulerian B-
function. Carrying out the necessary substitutions one finds that Parseval's 
equality holds for the scalar product (12.46). Since Parseval's equality has 
already been verified for the 0-function (12.46) holds both in PC~ and 
in PC>.. 

Finally Parseval's equality is now seen to hold for arbitrary generalised 
functions. by subtracting a finite number of terms of the asymptotic ex-
pansions and damped powers, such that an £ 2 function remains. By the 
restrictions imposed on PC>. this is always possible. Parseval's equality has 
been shown to hold for the subtracted terms. For the remainder Parseval's 
equality holds in a classical sense. Combining these gives Parseval's equality 
for the generalised functions. 
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The validity of Parseval's equality for the symmetrical scalar product is the 
key result of the symmetrical theory of generalised functions. 

It is possible to convince oneself that the brief outlines of the verifica-
tions can be worked out to complete proofs of theorems. Fully writing this 
all out will result in a book by itself however. In the present state of the 
program it seems more appropriate to me to continue the development to 
see where it may lead. An outline is presented in Ch. 24. 



CHAPTER 13 

VALUES, LIM~TS, AND THE SUPPORT 

A definition of the value of a generalised function at a point follows naturally 
from the model. An attempt is made to define the concept of the support of 
generalised functions. The real number system is not suitable as a support 
for the generalised functions. In its place an ad hoc modification is made 
which lacks a proper foundation at present. Infinitesimal environments of 
points are used as if they were ordinary points. The values of generalised 
functions on the other hand are found as scalar products, which have values 
in the standard complex numbers. Limits of generalised functions are also 
defined by means of scalar products. 

13.1 Values of generalised functions 

It is possible to assign point values to generalised functions, but conversely 
the point values do not determine the generalised funciion fully. 

Corresponding to the generalised function f(x) E GFs one defines the 
complex number valued functions JR -, C on (for the time being) the real 
axis 'vxo E JR by 

and also 
f(xo) := ( 6(x - xo), f(x) ), 

f(xo+) := ( r1i(x - xo), J(x) ), 
J(xo-):= \'flr(x-xo),J(x)), 

(13.1) 

(13.2) 
(13.3) 

which are called the value of the generalised function at the point x = xo, 
and the limiting value on the positive and negative side of the same point. 
Similarly one can define the value of the p'th derivative at and around the 
point Xo by 

/P\xo) := p! ( 15(P)(x - xo), J(x) ), 

jCPl(xo+) := p! ( rJip)(x - xo), J(x) ), 

jCPl(xo-) := p! ( (-)P'f/~P)(x - xo), f(x) ). 

(13.4) 

(13.5) 

(13.6) 

The terminology is justified, since at C 00-points all three values coincide, 
and are equal to the standard value of the ordinary function corresponding 
to the generalised function. It is on occasion convenient to use the notation 

f(xo) = J(x) lx~x0 = J(x) lxo' (13.7) 

in particular in connection with the evaluation of definite integrals. 
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According to these definitions the unprimed Heaviside step function has the 
values 

{ 
0 Xo $ 0-, 

H(xo) = ½ xo = 0, 
1 xo o+, 

(13.8) 

and correspondingly for H(-x). The primed Heaviside function has the 
values 

{ 
0 Xo $ 0-, 

H'(xo) = xo = 0' 
2 Xo - 0+' 
l Xo > o+' 

(13.9) 

which are different from the values (13.8) of the unprimed step functions. 
Likewise the value assigned to an 'ordinary' function f(x) at a point of 
discontinuity depends on its interpretation, either as a generalised func-
tion f(x) E PC, or as J'(x) E PC'. 

The generalised function 0(x) cannot be described as the function which 
is one at x = 0 and zero everywhere else, since this fixes the generalised func-
tion only modulo the class of generalised functions of value zero everywhere. 
It has the values 

{ 
0 xo < 0- , and x0 > o+ , 

0(xo) = ½ ,xo = 0-, and x0 = o+, 
l Xo = 0, 

in the sense of generalised functions. 
Correspondingly the generalised function 0 ! ( x) has the values 

{ 
0 Xo < 0, 

0!(xo)= ½ xo=0,andxo=0+, 
0 Xo > 0+, 

since the value at x = 0 is divided between 0! and 0r. 

(13.10) 

(13.11) 

Remark 13.1 It is also possible to define the value by means of the 
left-sided or the right-sided product, or by means of an arbitrary linear com-
bination. This leaves the values of the ordinary functions E PC). unchanged 
by (10.7), but it changes the values of 0!(x) and H'(x) at x = o+. 
Similarly the values near x = ±oo are defined by 

(13.12) 

for the value below +oo and 

/(-oo+):= (ef.(x),/(x)), (13.13) 

for the value above -oo. The model does not contain a fi ('delta-slash') 
function, so the values at the points ±oo cannot be defined by means of 
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a scalar product. Instead the values at ±oo will be defined in such a way 
that the fundamental theorem of the calculus Prop. 14.2 holds. This will be 
verified in the next chapter. 
For the unprimed powers E PC .x the values at ±oo are 

(13.14) 

in agreement with the standardization (9.101) of the maps and products. If 
another standardization is chosen one has to modify the values at infinity 
or give up the fundamental theorem Prop.14.2 of the calculus. The former 
seems preferable, since the values at infinity are conventional anyway. 
For the primed powers one has to assign the values 

(13.15) 

in agreement with the corresponding behaviour of these functions at x = 0. 
Oscillatory functions at x = ±oo have the value zero by definition 

(13.16) 

fork# 0, in agreement with their response to 'ffr(x). 
For the Hr and fJ! -functions there is a minor difference. The points ±oo 

are considered as distinct points, in contrast with the point x = 0. Therefore 
these functions have the values 

xo:::; +oo-, 
xo = +oo-, 
xo = +oo, 

(13.17) 

As a consequence the unit function I(x0 ) = 1 has the value one everywhere, 
but the function I'(x) + 0(x) has the values 

{
o xo = ±oo, 

I'(x) + 0(x) = ½ ±oo=f, 
1 -oo+ < x < +oo- , 

in agreement with a nai:ve interpretation of these functions. 

(13.18) 

The same symbol is used for generalised function and its value. The 
distinction is usually clear from the context. It can also be made clear by 
distinguishing in the notation between 'fixed' and 'variable' variables, using 
for instance f(x) for the generalised function and f(xo) for its value, in 
accordance with standard usage. 
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For convenience and for reference purposes the values of all commonly oc-
curring piecewise constant functions are collected in the following table. 

Table 13.1 
Values of piecewise constant generalised functions 

J(x) = ... -00 -oo+ -1 0- 0 o+ 1 +oo- +oo 
H(x) 0 0 0 0 1 1 1 1 1 2 
H'(x) 0 0 0 0 0 1 1 1 0 2 2 
H(-x) 1 1 1 1 1 0 0 0 0 2 
H'(-x) 0 1 1 1 0 0 0 0 0 2 2 

I(x) 1 1 1 1 1 1 1 1 1 

I'(x) 0 1 1 1 0 1 1 1 0 2 2 2 2 
sgn(x) -1 -1 -1 -1 0 1 1 1 1 

sgn'(x) 0 -½ -1 1 0 1 1 1 0 -2 2 2 
0,(x) 0 0 0 0 1 1 0 0 0 2 2 
0r(x) 0 0 0 1 1 0 0 0 0 2 2 
0(x) 0 0 0 1 1 1 0 0 0 2 2 
ir(x) 0 0 0 0 0 0 0 1 1 2 
i,(x) 1 1 0 0 0 0 0 0 0 2 

The values assigned to generalised functions are usually not very sur-
prising. An exception may be the case of the logarithms, where application 
of the definition gives 

(loglxl) lx=O := ( loglxl, ~(x)) = ¢(1), (13.19) 

by (9.60) and more generally 

(logqlxl) lx=O = ¾q! Cq+1(0,0), (13.20) 

by (9.59), with the crcoe:fficients defined by (6.48) as Laurent coefficients. 
For the ordinary functions the values at any point is defined as the 

evaluation of its asymptotic expansion at that point. 
The value. at a point is a linear functional on the generalised functions. 

For values defined as scalar products this follows from the linearity of the 
scalar product, for the values at infinity it is clear by inspection. 

When it is necessary to display the value explicitly it is convenient 
to introduce an evaluation operator e : GF8 ---+ PC.>.., which converts a 
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generalised function into its value. The function e f(xo) E PC.>. : JR-+ C is 
defined 'vx0 E JR by 

e f(xo) := ( 6(x - xo), f(x) ), (13.21) 

which is easily seen to define an element of the preliminary class. It can 
therefore be considered as a generalised function E PC.>., since the ordinary 
functions E PC.>. have been identified with the corresponding generalised 
functions. For all f(x) E GF8 the operator E' : GF8 -+ PC~ is defined as 

e' f(x) := M ( 6(y - x), f(y) ), (13.22) 

which assigns the corresponding generalised function E PC~ to f(x). The 
difference appears only when other operators are applied. 
Remark 13.2 The distinctions made above may appear overly subtle, 
but the framework lends itself naturally to make these distinctions. 
Remark 13.3 In earlier work [K&L] a more general evaluation functional 
was used. This was arbitrary except for its agreement with the standard 
value of a continuous function. Nevertheless it can serve as basis for a 
product. The evaluation operator of this section follows from the product, 
which is fixed by the requirements of analyticity. 
The evaluation operator e is a projection operator 

ee=e, (13.23) 

so it can be expected to destroy information. It is clear that information is 
indeed lost by passing from the generalised function to its value( s). 
Example 13.1 The generalised function 6(x) has the value zero every-
where, since 

6(xo) := ( 6(x - xo), 6(x)) = 0, (13.24) 

'vxo E R Also its limiting values from above and below are zero. 

6(xo+) := ( 'TJ,(x - xo), 6(x)) = 0, (13.25) 
and 

(13.26) 

Likewise the generalised functions 'T/ and l( are everywhere zero. (Read 
this as: Have their value equal to zero everywhere). 
This shows that a non-zero generalised function can have its value zero every-
where. This is not surprising and no disadvantage of the theory. Generalised 
functions are constructed for the purpose of overcoming the limitations of 
the standard function concept. It is therefore not surprising that the con-
cept of a function as a mapping of the reals into itself fails to describe all 
the properties of the generalised functions. 
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A generalised function with value zero necessarily has a discrete support. 
Corresponding to a given set of values there is a simplest generalised function, 
which is obtained by requiring a zero scalar product with other generalised 
functions with point support. By the requirement of non-degeneracy of the 
scalar product this defines it uniquely. 

The pointwise property cannot be carried over completely to the gener-
alised functions. It is not true that the value of the product of two generalised 
functions equals the ordinary product of their values. The equation 

(13.27) 
( 6(x), f(x) • g(x)) = ( c7(x), f(x)) · ( 6(x), g(x) ), 

WRONG! 

does not hold in general, not even when the generalised value of the gener-
alised functions is taken. 
Example 13.2 Two obvious counter examples in which the product of 
the values at x = 0 is incorrect are obtained by taking J(x) = g(x) = sgn(x), 
or by taking f(x) = x-1 , g(x) = x. In both cases the left-hand side of (13.27) 
equals one, but the right-hand side is zero. 
It is an ancient folklore that zero times infinity may be finite. In the theory of 
generalised functions one could say that even zero times zero may be finite. 
This is probably no help to the understanding, and it is safer to keep in 
mind that the value product property (13.27) does not hold for generalised 
functions. 

13.2 Limiting values of generalised functions 

At points where a generalised function has no worse than a jump disconti-
nuity the value from above 

f(xo+) = lim f(x), 
xlxo 

(13.28) 

is equal to the limit in the standard sense. Therefore the limit in the sense 
of generalised functions is defined by 

Lim J(x) := ( 17i (x), J(x)) = j(O+ ), 
xlO 

(13.29) 

where the notation 'Lim' is used to indicate the limit in the sense of gener-
alised functions. A limit in the classical sense is always indicated by using 
'lim'. Both limits agree when both exist. The generalised limit exists in 
many cases where the standard limit does not exist. 
Example 13.3 The generalised limit 

(13.30) 

exists 'r/n E N, the standard limit exists only for n = 0. 
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Conversely it is not obvious that the generalised limit is really a generaliza-
tion of the standard limit concept. A proof that the generalised limit always 
exists when the standard limit exists depends on a resolution of the difficult 
problems of the existence of analytic continuation which cannot be resolved 
at present. In cases it is not necessary to distinguish between the the two 
limit concepts. 
More generally the limits at other points and at infinity are defined by 

Lim /(x) := ( 'f/! (x - xo), f(x)) = f(xo+ ), 
x!:z:o 

Lim /(x) := ( rJr(x - xo), f(x)) = /(xo-), 
xT:z:o 

Lim/(x) := ( ifr, /(x)) = /(+oo-), 
:z:Too 

Lim /(x) := ( 'lj!(x), /(x)) = /(-oo+). 
:z:!-oo 

(13.31) 

(13.32) 

(13.33) 

(13.34) 

By construction the generalised limit always exists as a well defined finite 
complex number. 
Remark 13.4 One may notice that the value of a generalised function 
at x = oo defined in the previous section cannot always be obtained as a 
limit or a generalised limit. 
Example 13.4 One has for t,he generalised function I'(x) 

0 = J'(+oo) =j:. LimJ'(x) = J'(+oo-) = ½, 
xToo 

as defined in the previous section. 
It is convenient to remember the (limiting) values of the powers 

Lim x°' logq(x) = Lim x°' logq(x) = 150 0 /jq O , 
x!O xToo ' ' 

and in particular 

Limx°' = Limx°' = { O a =j:. O, 
:z:!O :z:Too 1 a = 0, 

Va EC. This contrasts with the more complicated standard result 

{
o 

• Q 1 hmx = ? 
x!O , 

00 

Rea> 0, 
a=O, 
Re a ::; 0, Im a =j:. 0, 
Rea<0,Ima=0. 

(13.35) 

(13.36) 

(13.37) 

(13.38) 

One easily gets used to the generalised limits, which greatly simplify the cal-
culation of definite integrals. This will be demonstrated in the next chapter 
when the fundamental theorem of the calculus, Prop. 14.2, is available. 
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13.3 The support of the generalised functions 

The theory of generalised functions leads naturally to the concept of infinites-
imal surroundings of the points· in the finite and to infinite environments at 
plus and minus infinity. The real number system as formalized in the nine-
teenth century does not have the room to accommodate this. Nonstandard 
analysis is at first sight more suitable for this purpose. It is not clear however 
if nonstandard analysis is the most suitable way of providing the generalised 
functions with a support in an intuitively attractive way. Therefore this 
matter is left open and the support of the generalised functions is defined in 
a heuristic way without proper foundation. 

Disclaimer 13.1 The author does not accept any responsibility 
whatsoever for any interpretation that may placed on the contents of this 
section. It is not based on any foundations and has been included only for 
its possible heuristic value. It is hoped that the heuristic value will not be 
offset by causing too much discussion or confusion. 

The support of the generalised functions consists of the real numbers 
x0 E JR, and their positive and negative infinitesimal environments. The 
positive infinitesimal environment of the point x0 is written as xo+ and 
treated as if it were an ordinary point x0 E R. The 'points' +oo- and -oo+ 
are introduced as an environment of plus and minus infinity. 

The supports of the singular generalised functions are now fixed by 
definition, starting from the well known properties of the 'ordinary func-
tions' E PC.x, The definition is a generalization of the concept that the 
support should be the closure of the set of points where the function is non-
zero. This notion is well defined for C 00-functions. It can be generalised 
to PC>. by putting . 

supportH(x) = {0,+oo}, {13.39) 

and likewise for the Heaviside function on the negative side 

support H(-x) := {-oo, 0}, {13.40) 

and likewise for the same functions including powers or logarithms. 
The notion of the support can now be transferred to PC~. Since the r7i-

function has the scalar products 

( 1/!(x), H(x)) = 1, and ( 1/!(x), H(-x)) = 0, {13.41) 

the support of "h cannot include the point x = 0. On the other hand the 
support does not include the interval { 1:, oo} for any finite f > 0. Therefore 
the 'point' x = 0+ is introduced in order to provide a support for 1/!(x), 

support11!(x) := {0+}, {13.42) 
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and by analogy 
supportH'(x) := {0+,+oo-}. (13.43) 

The support space is obviously not the space of the real numbers. It is 
not even properly defined at present. Therefore it also lacks a topology. 
The standard distinction between open and closed intervals is therefore also 
undefined. 

The question of topology of the support is also left open for the time 
being. It is not necessary to define the concepts open or closed for the 
supports of the generalised functions. The neutral symbols { · · ·} have been 
used instead. In the next chapter open and closed intervals are defined in 
connection with the integral. 
The points +oo- and -oo+ are introduced as support for the J(-functions, 

supportlf'r(x) := {+oo-}, 

and correspondingly at -oo+ 

support Jf', (x) := {-oo+ }. 

(13.44) 

(13.45) 

The definition of the support is now carried back to the completion PC.\ 
of PC>. by including the 6-functions. From the supports of the Heaviside 
functions and the scalar products 

( H(x), 6(x)) = ½, and ( H'(x), 6(x)) = 0, 

it is seen that the support in JR of the 6(x)-function is 

support 6(x) = {0}, 
and more generally 

(13.46) 

(13.47) 

(13.48) 

Vxo E JR, Vp E N, in agreement with the corresponding support of the o-
distributions in distribution theory. 
Finally the support of the 0-fuctions is found by imposing linearity, 

support0,(x) := {0,0+}, and support0r(x) := {0-,0}, (13.49) 

as the intersection of the supports of the different Heaviside functions. Since 
there is only one point x = 0 the support of 0(x) becomes 

support 0(x) = {0-, o+ }, (13.50) 

and likewise at infinity 

supportd,(x) = {-00,-00+}, and supportdr(x) = {+oo-,+oo}, 
(13.51) 

but the points at ±oo are not identified with each other, so the support 
of d(x) consists of two disjunct pieces. 
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Remark 13.5 It is advisable in this context not to omit the plus sign 
in +oo for clarity. 
For the ordinary generalised functions the point x0 E JR belongs by definition 
to the support of f(x) E GFs if a 6-function at the point gives a non-
zero result, or if the point x0 is a density point of the support in order 
to include trivial zeroes. The support at the singular points follows from 
the interpretation of the corresponding asymptotic expansions as belonging 
either to PC.>. or PC~. 

The standard difficulties inherent in the definition of subsets of the reals 
do not arise here as yet. The limited content of the model considered in this 
book makes unnecessary to consider more than a finite union of intervals. 
Remark 13.6 The elements of the support have been taken to be ordered 
in the natural way, with the point x0+ greater than x0 but smaller than any 
standard real number greater than x0 • 

The definitions of the support of the generalised functions fit in with the 
definitions of the integration over finite intervals, which will be given in the 
next chapter. 

It will be obvious that the acceptance of the concept of a support for 
the generalised functions requires a restructuring of the real number system. 
Nonstandard analysis may be suitable for this purpose, but its suitability in 
this respect has not yet been explored. Some further remarks on the use of 
nonstandard analysis may be found in Ch. 23. 

The provisional solution adopted here has the standard continuum three 
times, in addition to four different 'points' at infinity. The standardization 
in this tract allows the identification of the points +oo and -oo, since all 
values in these points agree. 



CHAPTER 14 

INTEGRATION 

In this chapter integrals of generalised functions are defined 88 appropriate 
scalar products with piecewise constant functions. The inverse derivative, 
and therefore a primitive function, is defined for all generalised functions. 
The fundamental theorem of the calculus holds for generalised functions. 
The (generalised) value of an integral can be found by substituting the limits 
of integration into the primitive function, if this is done in accordance with 
the definitions of the values of generalised functions given in the previous 
chapter. 

14.1 Integration between arbitrary limits 

The integral in the sense of generalised functions is defined 88 a special case 
of the scalar product. In Sec. 4.4 the preliminary scalar product W88 defined 
in terms of the preliminary integral. Now that the definitive scalar product 
is available, it can be used for the definition of the integral. In particular 
the integral from -oo to oo is defined in the sense of generalised functions 
by 

1:dx f(x) := ( J(x), f(x) ), (14.1} 

88 the scalar product with the unit function. 
In Ch. 13 the limiting values of generalised functions were defined 88 

scalar products with an 7,function, and the point values were defined as 
a scalar product with a 6-function. A generalised function is said to be 
piecewise constant when the ordinary function of x0 ER 

/(xo) := ( 6(x - xo), f(x)) 

is a piecewise constant ordinary function of its argument x0 E R. 
Decompositions of the unit function into piecewise constant functions 

with the values one or zero, and possibly the value ½ in boundary points, 
lead automatically to restricted integrals. In PC.\ there is the decomposition 

I(x) = H(-x) + H(x}, 

while in PC~ there is the decomposition 

I'(x) = H'(-x) + H'(x), 

and consequently 

I'(x) + O(x) = H'(-x) + O(x) + H'(x). 

(14.2} 

(14.3} 

(14.4} 
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Combining these gives in PCf the decomposition 

(14.5) 

which again illustrates the inadequacy of the real number system as a support 
for the generalised functions. 
Remark 14.1 For the Lebesgue integral a decomposition involving 0(x) 
is pointless, since single points do not contribute to a Lebesgue integral. 
Restricted integrals are now defined by suitable scalar products such a 

lo- dx f(x) := ( H'(-x), f(x) ), 
-oo+ 

(14.6) 

and 
ro+ 

lo dx f(x) := ( 01(x), J(x) ), (14.7) 

and idem for other intervals, in self-evident notation. For the 0 i -functions 
the left and right-sided scalar products are not necessarily equal. This makes 
it possible to define a slightly more general integral by 

(14.8) 

and 
ro+] 

lo dx J(x) := ( 01(x), f(x) )>. (14.9) 

Of course it is convenient to choose the corresponding definitioll3 for the 
primed Heaviside functions, 

and 

{° dx f(x) := ~H'(x), J(x) ), 
l[o+ 

{° dx f(x) := ( H'(x), f(x) )>, 
l(o+ 

(14.10) 

(14.11) 

since this makes the integration intervals complementary if the parenthesis 
and square brackets are used according to the same rules as the standard 
notations for open and closed intervals. In order to show the consistency of 
this notation one must show that 

la 10+) la 10+] la dx= dx+ dx= dx+ dx. 
0 0 [O+ 0 (O+ 

(14.12) 
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This is the case since it follows from the the explicit product formula (9.68) 
that 

~sgn(x), f(x)) = ( sgn(x), f(x) )>, (14.13) 

V f(x) E PC.>., and therefore V f(x) E GF8 • 

The same notation is applied at = ±ao, but by splitting the integration 
interval it is also possible to combine an open interval near x = 0 with a 
closed interval at infinity and vice versa. 
Remark 14.2 Although the notation and terminology of open and closed 
intervals has been taken over from the corresponding standard usage no 
topology is implied. All integrals should be interpreted as convenient al-
ternative notation for the corresponding scalar products, which have been 
defined in the previous chapters. Readers who do not think this notation 
convenient can restrict themselves to scalar product notation. 
The integral with a O+ at the upper limit is by the preceding definitions the 
symmetrized version corresponding with the symmetrized scalar product, 

ro+ ro+) ro+] 
lo dx = ½ lo dx + ½ lo dx, (14.14) 

with a 0 ! ( x )-function, in agreement with the definitions of Ch. 8. This holds 
generally, no delimiter equals the average of a parenthesis and a square 
bracket. 
Remark 14.3 The notations O+) and O+] indicate limit processes, in 
particular this notation indicates orders in which limits are to be taken. It 
does not seem convenient to interpret these as points in the support. 
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The notation for the limits of integration is collected in the following table. 

Table 14.1 

Scalar product with of type lower limit upper limit 

Dt(x) left -00 -oo+) 
d1(x) right -00 -oo+] 

H'(-x) left [-oo+ 0-] 

H'(-x) right (-oo+ 0-) 

H'(-x) sym -oo+ 0-

H(-x) all types -oo 0 

01 (x) sym 0- 0 

0! (x) left 0 o+) 
0! (x) right 0 o+] 
01(x) sym 0 o+ 
H'(x) left [0+ +oo-] 
H'(x) right (0+ +oo-) 
H(x) all types 0 +oo 
D1(x) sym +oo- +oo 

I'(x) + 0(x) sym -oo+ +oo-
I(x) all types -00 +oo 

In the table 'sym' stands for symmetrical, and 'all' means that it does not 
matter which scalar product is taken. Not all cases have been listed in the 
table, but one easily adds the other cases by analogy with the cases listed. 
Usually only the integrals corresponding to the symmetrical scalar products 
are needed. 

The generalization to a finite number of partition points in the finite is 
immediate. In keeping with the self-imposed restrictions of this book only 
finite decompositions of the unit function and finite sums of partial integrals 
are considered. 

The preliminary integral of Sec. 4.3 can be identified with the integral 
in the sense of generaiised functions over the 'open' intervals obtained by 
omitting all singular points of the integrand. 

This set of definitions has some consequences which one needs to get 
used to. For integrals over the whole range there is no problem with the 
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notation, since 

1_:dxx-1 = ( J(x), x-1 ) = ( ~(x), -i7rsgn(x)) = 0, 

and 
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{14.15) 

1_: dx lxl-1 = ( J(x), lxl- 1 ) = ( ~(x) , 2(loglxl - '¢(1) J(x)) ) = 
= 2 ( J(x), ~(x) • (loglxl - '¢(1) J(x))) = 
= 2('¢(1) - '¢(1)) = 0, {14.16) 

as one finds by repeated application of ParseVc).l's equality. 
Care with the notation is needed for integrals over partial intervals. For 

the special case of integration starting at x = 0 one finds 

('°dx x-1 = ( H(x), x-1 ) = ½ ( sgn(x), x-1 ) = lo · 
= ½ (I(x) , sgn(x) • x- 1 ) = - '¢(1) = - /_0(X)dx x- 1, (14.17) 

by (9.79), but 

1(X)dxlxl-1 = (H(x), lxl- 1 ):: ½ (sgn(x), lxl- 1 ) = 

= ½ ( /(x), sgn(x) • lxl- 1 ) = 0 = f_°:x lxi- 1, (14.18) 

by {9.80), so the behaviour at x = 0 is really relevant when the integration 
interval includes the point x = 0. 
Remark 14.4 Another way to make a mistake is to put 

{14.19) 
WRONG! 

Written in this form the reason is obvious, on the right-hand side the con-
tribution from the point x = 0 is counted twice, on the left-hand side it is 
only counted once. 

It is difficult to get used to the fact that single points may contribute 
to integrals. 
The same care is needed when integrating Heaviside functions, since we have 
by construction 

{14.20) 
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which differs by a factor ½ from the corresponding formula (14.17) without 
the additional Heaviside function. 
The nai've expressions 

100 dx' 
0 X 

and 1a dx' 
0 X 

(14.21) 

do not have a unique meaning in the theory of generalised functions. It is 
necessary to specify the integrand as a generalised function before a well 
defined generalised function integral exists. 
Remark 14.5 In the next section it will be seen that the value of the 
integrals is in agreement with the fundamental theorem of the calculus, 

100 l+oo 
0 dx x-1 = loglxl O = 'lj;(l), (14.22) 

and 

100 l+oo 
0 dx lxl- 1 = loglxl sgn(x) 0 = 0, (14.23) 

which again shows the relevance of the behaviour of the primitive function 
at x = 0. Increasing the lower limit to o+ makes both integrals equal to 
zero. 
All integrals over all intervals are perfectly well defined. Mistakes can be 
caused only by improper use of the notation. 
Remark 14.6 This precision of notation will become less necessary when 
the indeterminacy of the integral has been introduced in Ch.18. When 
attention is restricted to determinate integrals, or when the indeterminacy 
is introduced explicitly, the difference between (14.23) and (14.22) is often 
irrelevant. 
Remark 14. 7 When ordinary functions are considered as primed func-
tions E PC\ boundary points such as x = 0 do not contribute to the inte-
grals. 
By definition scalar products can always be converted into integrals over the 
whole range from -oo to oo. The possibility ofreducing the scalar product to 
an integral over a smaller interval depends on the support of the generalised 
function which appears as the integrand. 

In distribution theory the support is by definition closed, and all inte-
grals can be reduced to an integral over any open interval containing the 
support. Taking the interval of integration equal to the support may give 
erroneous contributions from the endpoints. This is clear from the examples 
given above. 

This also holds in the sense of generalised functions. For generalised 
functions there is the additional possibility that the support may be open. 
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Then a complementary rule holds. A generalised function with an open 
support must be integrated over at least a closed interval containing the 
support. 
Example 14.1 To measure the amount of 6-function present in an el-
ement of PC .. one must integrate over (0-, 0+ ), to observe the amount of 
an 17,-function one has to integrate over [0,a], with a E JR+. It does not 
matter in this case if the upper limit is open or closed. The lower limit has 
to be closed in order to obtain correct answers. 
The behaviour of integrals, when limits are taken by varying the endpoints 
of the region of integration, will be left until the convergence of sequences 
of generalised functions has been defined in Ch. 19. This will allow the 
definition of the closed interval at for instance [0, 0+] as a limit [0, 0+] := 
lima!o(0, a]. Then the rules for integration over the support take the intu-
itively appealing form that integrals have to be taken over a region which is 
infinitesimally greater than the support of the integrand. 
Remark 14.8 Integrals with a logarithmic divergence are not invariant 
under scale transformations. This will be discussed in Ch. 16 when the scale 
transformation properties of the generalised functions are defined. 
Remark 14.9 The integral in the sense of generalised functions is a 
different concept, defined for a different class of integrands, than the standard 
Riemann or Lebesgue integral. This makes it somewhat pointless to argue 
about their relative generality. These different integral concepts should not 
be confused even though the same integral symbol is used for both. 

14.2 Inverse operators 

The inverse of the 'D and X operators has not yet been defined. Strictly 
speaking these operators do not have an inverse since they have a zero el-
ement, but they almost have an inverse. The definition follows the by now 
familiar pattern. The preliminary operator Xpre was defined in Sec. 4.5 as X·. 

The preliminary operator XP--;.! is defined on PC" by 

(14.24) 

which defines again an element of the preliminary class PC ... Unless f(x) 
happens to be zero and regular at x = 0 the element x-1 • f(x) has an 
additional singular point at x = 0, which is obviously of the required type. 

The preliminary operator XP--;.! is transferred to the linear functionals 
by taking residues. The result is 

x- 11x'I" logqlxl sgnm(x) = lx'l"- 1 logqlxl sgnm+l(x) = 
= x-1 • Ix'!" logqlxl sgnm+1(x) = 
= x'-1 • lx'I" logqlxl sgnm+l(x), (14.25) 
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for the powers. For the 77-functions we obtain after splitting into parts in 
the finite and at infinity, 

x-1 17f•,q)(x) sgnm(x) = 1J~a+l,q) sgnm+l(x) = 
= x-1 • 17~",q)(x) sgnm+l(x) = 
= x'- 1 o• 17~",q)(x) sgnm+1(x) = 
= 2x'-1 • 77~",q\x)sgnm+l(x), (14/26) 

where the factor 2 in the formula for the commutative product with x1- 1 

should be noted. At infinity the same formula holds with a slash added. 
The operator x-1 can be extended to (I - P 9col )PC~ by defining 

(14.27) 

in agreement with the na:ive interpretation of the o(p)_functions, but this 
will come later. 
The operator x- 1 is related to the operator x'- 1 • by 

x-1 J'(x) = x- 1 • J'(x) = x'- 1 o• J'(x) f:. x'- 1 •o J'(x), (14.28) 

\/ J' ( x) E PC~. In terms of the symmetrical generalised function product 
and x'- 1 • one obtains the more ~omplicated relation 

x- 1 f(x) = 2x'-1 • P,,,,,,tf(x) + x'- 1 • (I - Pr,r/) f(x) = 
= x'- 1 • (I+ Pr,r/) f(x), (14.29) 

where P""' is the projection operator on the allowed linear combinations of 1J 
and 'if-functions. 
The operator x-1 is pulled back to PC.x in accordance with (7.2) by putting 

(14.30) 

\/ f(x) E PC. The results for x- 1 acting on PC.x are 

(14.31) 
and 

(14.32) 

in agreement with expectations. The relationship between x-1 and x-1 • 

remains the same as in PC~, 

x-1 f(x) = x- 1 o• f(x), (14.33) 
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but again 

x-1 f(x) = 2x- 1 • P6 J(x) + x- 1 • (I - P6) f(x) = 

= x-1 • (I+ P6) f(x), 
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(14.34) 

V f(x) E PC>., since x- 1 E PC>. maps into x1 - 1 E PC~. The operator P6cp) 

is the projection operator on the space of (finite linear combinations of) 
the c,(P)(x)-functions at x = 0. The extension to singular functions at x =I- 0 
is found from the asymptotic expansion 

00 

x-1 ~ L (~.1)(x - xo)i xo -i-1 , (14.35) 
j=O 

of the function x-1 at the point x = xo, 
Example 14.2 For the 77-functions this gives 

00 

x- 1 77~<>,q)(x - xo) = L Ci)xo -j-l r,~a-j,q)(x - xo), (14.36) 
j=O 

which is an allowed linear combination. 
By linearity the operator is now defined on GF8 • This results in the formula 

(14.37) 

in agreement with the earlier definition (14.27). It is seen that PC\ is not 
closed under the operator x-1 even though it is closed under X, since 

x- 1 0(x) = 0(-l)(x), (14.38) 

and 0<- 1)(x) ff. PC~. The element 0(x) is the only exceptional element for 
the operator .x-1 in PC~. 

For the ordinary functions GF8 the operator .x- 1 is again equal to its 
preliminary version. No additional singular functions at the singular points 
arise. 

As the next step it must be seen in how far the name x-1 is justified. 
On PC\ one sees by direct computation that 

(14.39) 
Transfer to PC>. yields 

xx-1 =I, (14.40) 
but 

(14.41) 
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in agreement with the well known zero space of the operator X. 
The inverse differential operator v-1 is defined in the same way. Its 

preliminary version is defined between singularities by 

with an arbitrary lower limit of integration. 
In particular we obtain for ,\ -::/- -1 

v;,;lxl>- sgnm(x) = (,\ + 1)-1lxl>-+1 sgnm+l(x), 

(14.42) 

(14.43) 

where the lower limit can be taken as either 0 or ±oo. For the purpose of 
taking residues it is irrelevant what happens at ,\ = -1. 

The action of v-1 on PC~ is found by taking residues, using the bino-
mial theorem to expand (,\ + 1)-1 at ,\=a in powers of(,\ - a). 

v-1 lx'I°' logqlxl sgnm(x) = Res q! (,\ - a)-q-1(,\ + 1)-1lxl>-+i sgnm+l(x) = 
. >-=a 

q . 

= (-)qq!" <-:l3 (a+ l)j-q-llx'l°'+1 logijxl sgnm+l(x) + 
J• 

j=O 
00 

- 2(-)qq! L j! (a+ 1)-j-q-2 x 
i=O 

x ((-)i1J~-a- 2,i)(x) -'f(}-a-2,i)(x)) sgnm+l(x), 

for a-::/- -1 and 

v-11x'l-1 logqlxl sgnm(x) = logq+llx'I sgnm+l(x), 

(14.44) 

(14.45) 

for a = -1. No 17-functions arise in this case since it is not necessary to 
expand a function of ,\. 

For the 17-functions the general case becomes, ( after taking residues and 
splitting between the finite and infinity) 

00 

v-1 17~°',q\x) sgnm(x) = - L (q!f)' a-i-1 17~°'-l,q+i)(x) sgnm+1(x), 
j=O 

for a -::/- 0. The same holds for 'f( with slashes added. 
For a = 0 and q > 0 taking residues gives 

v-11110,q)(x) sgnm(x) = -q-11Ji-1,q-l)(x) sgnm+l(x), 

but for the exceptional case a = 0, q = 0 one obtains 

(14/46) 

(14.47) 

(14.48) 
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which cannot be split into a part at x = 0 and a part at infinity as we 
did in the general case. This problem cannot be resolved in the restricted 
space PC\. A solution will be possible in GF8 as a whole. 
The operator 1)-1 is now transferred to PC,x by 

(14.49) 

V f(x) E PC,x. 
For the powers this results in 

'D-1 lxl"'logqlxlsgnm(x) = 
q . 

= (-)qq! L <-/(a+ l)j-q-1 !xl"'+1 1ogi!xl sgnm+l(x) + 
j=O 

00 

+ 2ql (-)q+l(a + 1)-q-2 °'"' 8 /jmod2 6(P)(x) · L-J -<>-2,p m+l,p , (14.50) 
p=O 

with the special case 

For the 6-functions one obtains the obvious result 

(14.52) 

with the exceptional case 

'D-1 6(x) = ½ sgn(x), (14.53) 

in agreement with the corresponding result in distribution theory. 
Remark 14.10 It should be noted again that the function sgn(x) E PC,x 
does not have a non-zero component of its derivative at infinity, simply be-
cause by definition the minimal completion of PC ,x chosen in Ch. 7 does 
not contain anything at infinity which could serve as derivative for the func-
tion sgn(x). Introducing such an element does not serve a useful purpose, 
since the reason for having PC ,x next to PC\ is the desire to include a unit 
element for the multiplication. 
The operator 'D-1 is now defined on GF8 by linearity. The primitives of 
the 0-functions are found by subtraction. It is not useful to write out the 
results in the general case. 
The splitting problem for the r,-function can now be resolved. For the ex-
ceptional case a = q = m = 0 in (14.48) one obtains from (14.53) 

v- 1 (6(x)-17(x)+if(x)) = ½(sgn(x)-sgn'(x)) = ½(r(x)+f(x)), (14.54) 
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This can be split between the finite and infinity with the results 

(14.55) 
and 

'D-1 ef(x) = ½ f(x), (14.56) 

which gives 'D- 1 ef(x) a support at infinity. This allows us to find the prim-
itives of 'T/(x) and ef(x) separately with the additional result 

1)-1 ,,,(x) = ½ (sgn(x) - r(x)) = ½ (sgn'(x) + f(x)). (14.57) 

The function 'T/(x) has a non-zero primitive in the finite, and its primitive 
does not have a derivative at infinity. 
Likewise for the a-functions one can write 

(14.58) 

which can be split by defining 

'D- 1 a(x) = -½ 0(x), (14.59) 

since the unit function has a zero derivative. 
For ordinary functions the primitives can be found by subtraction of 

a sufficient number of terms of the asymptotic expansions at the singular 
points. For ordinary functions located in the finite the primitive function 
contains the sharp signum function at infinity. 
Example 14.3 For the function f(x) := cosh-2 (x) one finds 

and not 

since differentiation yields 

with an additional 'ff-function. 

(14.60) 

(14.61) 
WRONG! 

(14.62) 

The sharp signum function gives the correct result for the validity of the 
fundamental theorem of the calculus, ( compare the next section.) The oper-
ators 1)-1 and x-1 have the expected operator properties, such as unitary 
equivalence under Fourier transformation. 
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Property 14.1 The operators v- 1 and x- 1 are unitarily equivalent. 
x- 1 = -i:,:-1v- 1:,: = i:Fx- 1:,:- 1 , (14.63) 

and also 
(14.64) 

Verification: Direct computation gives 
x(-i:,:- 1v- 1 :F) = :,:-1v:,::,:- 1v- 1:,: = :,:-1z:,: = z, (14.65) 

and 
(-i:F- 1'D-1 :F) x- 1 = :,.:-1 (I - P1 ):F = I - P.5co>, 

by using the unitary equivalence of X and 1). 

(14.66) 

The relation between the operators 1) and v- 1 follows by Fourier transfor-
mation of the corresponding result for X. 

1)1)-1 = I, 
v- 1'D=I-P1, 

(14.67) 
(14.68) 

since the one-dimensional excepted subspace is spanned by I, which is the 
Fourier transform of the exceptional element 6(x) for the X operator. The 
operators x- 1 and v- 1 have a negative parity. We have 

px-1-p = -x-1, px-1 = -x-11', (14.69) 
and 

(14.70) 
so these operators convert parity eigenfunctions into parity eigenfunctions 
with the opposite parity. 
Remark 14.11 The operators x- 1 and v- 1 are defined uniquely. It is 
of course possible to include an arbitrary multiple of the zero element of X 
or 1) in the definition of the inverse operators but this is not done here. In 
this way confusion with the indeterminate constant introduced by the scale 
transformations is avoided. The inverse operators preserve the parity and 
scaling properties (Ch.16) of the generalised functions. 
Remark 14.12 It is also possible to use the unitary property (14.64) 
for the definition of 'D-1 in terms of x- 1, but the direct derivation of the 
properties is more transparent. 
From the unitary equivalence of x- 1 and v- 1 one finds the inverse operator 
as 

v- 1 f (x) = -i:F- 1 (x- 1 • :F f(x)) = ½ sgn(x) * J(x), 
which can be written in the form of an integral as 

v- 1 f(x) = ½ j_xOC)dy f(y) - ½ 10C)dy f(y). 

(14.71) 

(14.72) 

This result is also valid in a classical sense when the integrals converge. The 
generalised interpretation of (14.72) will be discussed in Ch. 22. 
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14.3 The fundamental theorem of the calculus 

In Ch. 4 the integral was defined as a residue of an auxiliary analytic func-
tion. This definition is often cumbersome to apply to the actual computation 
of integrals. The value of a generalised function on the other hand can often 
be found by inspection, when its asymptotic expansion is known. Therefore 
it is convenient to define a primitive generalised function for each general-
ised function in such a way that the fundamental theorem of the calculus 
holds. This has been accomplished in principle in the previous section by 
the definition of the operator v-1 , since the primitive function F(x) defined 
by 

F(x) := v- 1 f(x), (14.73) 

obviously satisfies 
'D F(x) = f(x), (14.74) 

by (14.67). It is often easy to find the primitive function by inspection, 
good luck, or by consulting a table of primitives, and to verify by explicit 
differentiation that it satisfies (14. 74) in the sense of generalised functions. 

With the primitive defined above one verifies the property referred to 
in calculus books as the fundamental theorem of the calculus, 
Property 14.2 V /(x) E GF., and for all integration intervals 

{b b la dx J(x) = F(x) la = F(b) - F(a), (14.75) 

if F(x) satisfies 
'D F(x) = f(x). (14.76) 

Verification: Let h(x) be a piecewise constant function of the kind 
used in the previous section to define integrals over intervals. The derivative 
of h(x) contains in general two TJ- or 6-functions. In case of a Heaviside 
function with a H(x) singularity at infinity there is only one 7J-like function, 
in the special case h(x) = I(x) there is none. From Leibniz's rule we have 

'D(h(x) • F(x)) = 'Dh(x) • F(x) + h(x) • f(x). (14. 77) 

Taking the scalar product with the unit function gives 

( I(x), 'D h(x) • F(x)) + ( I(x), h(x) • f(x)) = ( I(x), 'D(h(:r;) • F(x))) = 0, 
(14.78) 

This can be rewritten as 

( h(x), f(x)) = ( 1J h(x), F(x)) + ( I(x), 'D(h(x) • F(x)) ), (14.79) 
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From Parseval's equality we have 

( I(x), 'D(h(x) • F(x))) = ( i5(x), iX:F(h(x) • F(x)) ), 

so the result is non-zero iff for some q 
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(14.80) 

(14.81) 

Transforming back it follows that the stock-term is non-zero iff for some q 

h(x) • F(x) ~ logqlxl sgn(x). (14.82) 

Since there is complete freedom to choose the values of functions at infinity 
arbitrarily the values at ±oo have been chosen in the previous chapter in 
such a way that the stock-term at infinity equals the result of the missing 
derivative of the sharp Heaviside functions at x = ±oo. The fundamental 
theorem of the calculus holds by derivation in the finite, and by convention 

It is of course possible to choose a standardization of the maps and 
products differing from (9.101), with correspondingly different values for 

(14.83) 

and to choose an incompatible set of values at infinity. This would destroy 
the validity of the fundamental theorem, but there seems to be no good 
reason for doing this. 
Remark 14.13 It is also possible to obtain an indeterminate form of 
the fundamental theorem by replacing the determinate values of the prim-
itive by the indeterminate values. These will be defined in Ch. 16. The 
indeterminate form of the fundamental theorem is often very convenient for 
physical computations, in particular in quantum field theory. 
Finally one may remark that the inelegant need to insert partition points, 
which was necessary for the definition of the preliminary integral in Ch. 4, can 
be avoided by invoking the fundamental theorem. The singularities which 
contribute to the integral give rise to a sgn(x)-type behaviour, and only the 
total sgn(x) behaviour from all singularities and regular behaviour combined 
contributes to the value of the integral. The location of the singularities is 
irrelevant. 





CHAPTER 15 

TRANSLATIONS OF GENERALISED FUNCTIONS 

Up to this point many aspects of the theory of generalised functions sup-
posed the existence of a preferred point, the point zero, or the origin of the 
coordinate system, when the functions are used to describe a physical quan-
tity. The integrals of generalised functions are not always invariant under a 
change of the origin, or equivalently a shift of the function. In this chapter 
the origin is considered to be fixed and the functions are shifted. 

15.1 Translations 

The translations are defined following the same pattern as for the other 
operators. First the preliminary translation operators 'Ti,re(x0 , 0) are defined 
on PC>. by . 

'Ti,re(xo, 0) f(x) := f(x - xo), (15.1) 
in accordance with the standard definition of the translations. 
Remark 15.1 The translations with the second parameter equal to zero 
are referred to as coordinate translations, in order to distinguish them from 
the wave number translations intr~duced in the next section, and the phase 
plane translations, 
One readily sees that this preliminary definition does defines an element 
of PC>.. In the finite this is obvious. The asymptotic expansion at infinity 
has the correct form. For x » x0 > 0 and likewise for x « xo < 0 one 
expands 

00 

(x - x0 )>. = L (;)(-x0 )ix(>.-j), (15.2) 
j=O 

by the binomial theorem. For the logarithm near x = +oo one has 
00 

log(x - xo) = log(x) L j.!.i xoi+1x-i-1, (15.3) 
j=O 

so the asymptotic expansion of shifted powers of the logarithm is also of the 
required form. Substituting (15.3) and (15.2) into the asymptotic expansion 
of an arbitrary f(x) E PC>. is rather cumbersome, but the result is obviously 
an asymptotic expansion of the required form. 
The translations are now transferred to PC~ by taking residues. 
For the translated powers E PC~ one finds 

T(xo, 0)lx'I°' logqlxl sgnm(x) := Resq!(.X - a)-q-llx - xol>. sgnm(x - xo) 
>.=o 
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Considered as a function of (x) the asymptotic expansion at infinity and the 
corresponding ,.,-functions may be found by expanding the shifted power 
using the binomial theorem. The result is 

Ix' - xol"' logqlx - xol sgnm(x - xo) ~ 
00 j ~ I:lx'l<>-j sgnm+i(x) L m ("'tj)(k) logq-k(x) + (15.5) 

j=O k=O · 
00 j 

+ 2q' ""(-x )i"" (-)kk!j! ( a )(q+k+l) ,.J(-a+q+j,k)(x) sgnm+i(x) · L...J O L...J (q+k+l ! j+q+l Vis , 
j=O k=O 

which again includes a formally infinite sum of 'J(-functions. The deriva-
tives of the binomial coefficients which occur in the expansion are defined 
in appendix B. In the finite the shifted power cannot be expanded, so no 
additional ,.,-functions arise. 
For the the translated ,.,-functions one finds in the same way 

(15.6) 
and 

(15.7) 

The translated 'J(-functions can be expressed in terms of the 'J((x)-functions 
by expanding the power of x near infinity by the binomial theorem, followed 
by a Taylor expansion of the binomial coefficients. The result is 

(15.8) 
00 j =LL (-)i+k:z:oj (qtk)(-j-1) (k) 'J(}<>+i,q+k)(x) sgnm+i (x), 

j=Ok=O 

in agreement with the computation (5.91) of the translated 'J(-functions at 
infinity. 
For ordinary functions f(x) E PC~ one defines 

T(xo, O)J'(x) := M 'Ti,re(xo,O)M-1 J'(x) + (15.9) 
I - --1 I + T(xo, O)fa(x; ±oo) - M 'Ti,re(xo, O)M fa(x; ±oo). 

Additional 'J(-functions at infinity arise from the translation of the asymp-
totic series. Even though (15.9) looks formidable when fully written out it 
is obviously an allowed generalised function at infinity. 
Remark 15.2 The results do not depend on the choice of Mx or Mv, 
so the M without a subscript is used. 
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The translations are now defined on PC>. by 

T(xo, 0) f(x) := M-1T(xo, 0)M f(x), 

V f(x) E PC>.. This yields only'the translations of the 6-functions 

T(xo, O) 6(p)(x) = 6(p)(x - xo), 
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(15.10) 

(15.11) 

in agreement with expectations. For the powers E PC>. the inverse map 
destroys the generalised functions at infinity, so in this case the translation 
operator equals its preliminary version. 
The translation operator has one eigenfunction 

T(xo, 0) I(x) = I(x - xo) = I(x), {15.12) 

the unit function I(x) E PC>.. It does not have an eigenfunction E PC~. 
The infinitesimal generator of the translations is the operator i1' = IC. 

This follows for entire analytic functions from the Taylor series 
00 

eia1C f(x) = e-a'D f(x) = "°' -¼ (-a)i'I)i f(x) = f(x - a), L...,; J. 
j=O 

which converges in this case for all values of a. 

{15.13) 

For generalised functions the meaning of the operator e-a'D is defined 
as the corresponding translation operator, 

e-a'D f(x) := T(a, 0) f(x) = f(x - a), {15.14) .. 
V f(x) E GF8 • It remains to find out in which cases the computation of the 
translated function by expansion of the exponential is possible. 

It will be seen that this is the case only at infinity. For the if-functions 
one finds after rearranging the summations 

e-a'D(ef}°',q)(x) sgnm(x)) = 
00 j =LL (-)i+kai (q;/)(-j-i/k) ef}°'+J,q+k)(x) sgnm+j (x), (15.15) 

j=Ok=O 

in agreement with the result (15.8) derived by evaluating the relevant residue 
directly. 
For the operators X and 1' one obtains the transformation properties under 
translations 

{15.16) 
and 

{15.17) 

in agreement with the natural interpretation of the translation operator. 
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15.2 Wave number translations 

The wave number translations are defined V /(x) E GF8 by 

T(O, ko) f(x) = eikox. f(x), (15.18) 

V /(x) E GF8 • Since eikox is an element of GF8 this defines the wave number 
translation as an operator GF8 --+ GF8 . This makes the usual detour by way 
of the mappings superfluous. 
The infinitesimal generator of the wave number translations is the opera-
tor X. This follows at once from the result (9.77) that the multiplication 
operator X can be identified with the multiplication with the generalised 
function x • , 

X f(x) = x • J(x), (15.19) 

V /(x) E GF8 • 

As in the case of the coordinate translation operator it must be verified if 
the exponential can be expanded. This is the case in the finite, but not at 
infinity, since application of the expanded form of the exponential form of 
the operator yields descending sequences of '1]-functions, 

00 

eiaX 'IJi°',q)(x) sgnm(x) = '°' (ia)j 'l]t-j,ql(x) sgnm+j (x). L..t J. 
(15.20) 

j=O • 

Only descending sequences of '1]-functions in the finite, and ascending se-
quences of if-functions at infinity are allowed linear combinations. Descend-
ing sequences of if-functions and ascending sequences of '1]-functions are not 
allowed. 

The wave number translations of the derivatives of the functions 8(P) ( x) 
are given by 

(15.21) 

which is an explicitly finite linear combination. This result can also be 
obtained by application of the inverse mapping to (15.20) 
At infinity the operator eiaX is defined as 

eiaX J(x) := T(O, a) f(x) = eiax. f(x), (15.22) 

without the possibility of expanding the exponential. 
The wave number translations have only one eigenfunction, the ele-

ment 8(x) E PC;i., which is the Fourier transform of the eigenfunction of the 
coordinate translations, 

(15.23) 
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in agreement with the corresponding result in distribution theory. 
The wave number translation is unitarily equivalent to the translation 

operator 
(15.24) 

as one sees from the unitary equivalence (2.22-23) of their infinitesimal 
generators. A proof can be constructed in the same way as given in the 
corresponding proof of the unitary equivalence of the operators X and 'D. 
Correspondingly there is a symmetry between behaviour in the finite and at 
infinity. 

The combined translations T(x0 , ko) are introduced in the last section 
of this chapter. 

15.3 Surface terms 

Despite the fact that the unit function is invariant under translations and 
despite the suggestion going out from the notation 

1_:dx f(x) = ( I(x), f(x) ), (15.25) 

the integral of the generalised functions is not invariant under translations. 
The definition of the preliminary integral, at least the part near x = ±oo, 
depends on the existence of a preferred point which serves as the origin. 
The reason for this is the necessity to find asymptotic expansions near x = 
±oo, and the form of the asymptotic expansion depends on the variable, x 
or x - x 0 , in which one expands. 
Example 15.1 The integral 

1_:dx sgn(x) = 0, (15.26) 

equals zero by symmetry, but the integral 

(15.27) 

is non-zero. Similarly we find 

100 l+oo 
}_

00
dx tanh(x) = logcosh(x) _00 = 0, (15.28) 

but 

1_:dx tanh(x - xo) = logcosh(x - xo) 1:: = -2xo, (15.29) 

showing that the same occurs for C 00 (-oo, +oo) functions. 
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The reason for the occurrence of surface terms is obvious. The difference of 
two bounded functions, which behave asymptotically as sgn(x), is a function 
which is (absolutely) integrable in a standard sense. By linearity its integral 
in the sense of generalised functions has to agree with the standard value of 
the integral, 

100 Lq dx (sgn(x) - sgn(x - xo)) = 2 dx = 2xo, 
-oo 0 

(15.30) 

in agreement with (15.27) and (15.26). 
In other words the translation operators are in general not completely uni-
tary. 

( T(xo, 0) f(x), g(x)) =f. ( f(x), T(xo, o)t g(x) ), (15.31) 

in the scalar product. By unitary equivalence the same holds for the wave 
number translations. 

The failure of complete unitarity of the translation operators is also 
expected from the lack of complete selfadjointness of the infinitesimal gener-
ators X and i'D. The situation is different in the subspaces PC,x and PC~. 
In PC~ the generators are selfadjoint, the scalar product is translation in-
variant and the translation operators are unitary. In PC,x there are no 
generalised functions at infinity. Therefore the scalar product is not trans-
lation invariant and the translation operator is not unitary in PC,x, and 
therefore in G F8 • 

Example 15.2 The scalar product 

0 = ( sgn(x), I(x)) =f. ( sgn(x - xo), I(x - xo)) = -2xo, (15.32) 

is not translation invariant. 
Example 15.3 The previous example takes in PC~ the form 

(15.33) 

where the additional contribution of the ef-function cancels with the contri-
bution of the finite. 
The wave number translation operator is unitary in PC~, but it is not uni-
tary in PC>., in agreement with the lack of unitarity of translation operators. 
Example 15.4 The scalar product 

0 = ( t(x), x-1) =f. ( eikox, t(x), eikox,x-1) = 
= (t(x),ikx•x- 1 )=iko, (15.34) 
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is not invariant under wave number translations. In PC~ on the other hand 
the corresponding scalar product is invariant. 

00 00 

0 = ( eiko"'77(x) 'eikoxx-1) = (L fl (iko/ 11(-j.O) 'L ti (ikolxk-1) = 0. 
j=O k=O 

{15.35) 
This example is of course the Fourier transform of the previous example. 
For the application to physical problems this means that there is a choice. 
If the ordinary functions which describe the situation are considered as el-
ements of PC>,, then surface terms may appear when the origin is shifted. 
If they are considered as elements of PC~ these terms are canceled by the 
contributions of the 1(-functions at infinity. 

Nevertheless the value assigned to the integral does depend on the choice 
of the origin in PC>,, or equivalently on the amount of ef assumed to be 
present at infinity in PC~. A unique value can be assigned to the integral 
of a function behaving as xP sgn(x) at infinity only when there is a preferred 
choice for the origin of the coordinate system. The grounds for preferring 
an origin cannot be supplied by a mathematical analysis. Only the nature 
of the problem itself can supply a preferred point. 

The additional terms which arise when the origin is shifted are called 
surface terms since they reside on a 'surface' at infinity. 
Example 15.5 Surface terms arise frequently when the theory of gener-
alised functions or distribution theory is applied to computations in quantum 
field theory. 
Remark 15.3 In special relativity coordinate space does not have a 
preferred origin, wave number space on the other hand has one, since the 
origin in wave number space is not changed by Lorentz transformations. 
A homogeneous field in coordinate space is homogeneous for all Lorentz 
observers. The relevant symmetry is the Poincare group. This remark will 
recur in Ch. 22 when the regularization of integrals is discussed. 

15.4 Phase plane translations 

This section is not directly relevant to the main line of the book. It may well 
be skipped. It outlines an extension which is useful in some applications. 

The phase plane translations are defined as the transformations gener-
ated by arbitrary linear combinations of the operators X and i'D = 'JC, 

T(a, b) := e-a'l>+ibX = ei(alC+bX). {15.36) 

The Baker-Hausdorff lemma is frequently used In working out exponential 
operators. In its simplest form it reads 

eA+B= eAeBe- i [A,s] = eBeAe' [A,B]' and eAeB= eBeAe[A,B]' 
{15.37) 
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as one sees by straightforward algebra or by consulting a textbook. It holds 
in this form on condition that 

[A, [A, B]] = [B, [A, B]] = 0. (15.38) 

Using the Baker-Hausdorff lemma the general translation (15.36) can also 
be written in the forms 

(15.39) 

which can serve to define the general translation operator in terms of the 
special translations defined above. 
Remark 15.4 The general translations defined above generate a projec-
tive representation of the translation group of the two dimensional Euclidean 
plane. Using the Baker-Hausdorff lemma one sees that the group property 
becomes 

(15.40) 

The representation is only a ray representation, but this is not bothersome in 
applications such as quantum mechanics where phase factors are irrelevant. 
It is possible to introduce more general phase plane transformations by al-
lowing quadratic infinitesimal generators. The operator X 2 - 'D2 generates 
rotations of the phase plane. This is not worked out. Only the special 
case of the Fourier operator, which corresponds to a rotation of the phase 
plane by occurs in this book. The unitary equivalence (2.22-23) of X 
and 'D may serve as an example. Likewise the translations transform under 
rotations into 

(15.41) 

The parity operator 1' = :J::'2 corresponds to a rotation over 1r, which is a 
reflection of the phase plane. 

It is in principle simple to work out the general case, but the special 
functions which appear take up to much space. 

The scale transformations generated by ½ X'D+ ½ 'DX are the subject of 
the next chapter. Together these transformations generate the affine group 
of transformations of the Euclidean plane which leave the area element un-
changed. The group is is represented as a group of transformations of the 
generalised functions. This remark is not further worked out in this book. 
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SCALE TRANSFORMATIONS AND HOMOGENEITY 

In the previous chapter attention was focussed on the point x = 0 as the 
origin of the coordinate system. In this chapter the point one receives similar 
attention. Mathematically the number one is a well defined concept. 

When analysis is applied to the description of the world as in physical 
theory, a measurement procedure, involving a system of units, is needed to 
reduce quantity to number. Different choices of a system of units lead to 
different numbers and functions. A further discussion is given in Ch. 18. The 
relation between these numbers is usually a scale transformation. 

In this chapter the transformation of generalised functions under scale 
transformations is investigated, and homogeneity is defined for generalised 
functions. Indeterminate functions are introduced to simplify the scale trans-
formation and homogeneity properties of the generalised functions. This is 
useful in many applications of the theory of generalised functions and it 
simplifies the mathematical structure. 

16.1 Definition of the scale transformations . 
The scale transformation on the generalised functions corresponds in a clas-
sical sense to the change in the independent variable x := ax, with a E ll4 
a non-negative real number. The scale transformation is indicated by intro-
ducing the scale transformation operator S(a) with the property 

S(a) x := ax, (16.1) 

and more generally for ordinary functions, 

S(a) f(x) := f(ax). (16.2) 

It is sometimes convenient to introduce the normalized scale operator defined 
by 

S(a) := y'aS(a), (16.3) 

which is almost unitary. It will be shown to be a unitary operator on a large 
subspace of GF8 • If desired the scale transform can be defined for negative 
non-zero values of the parameter (a) by 

S(-a) f(x) := 'PS(a) f(x) = !(-ax), (16.4) 

where 'P is the parity operator. The general case can always be recovered 
by replacing a by -a or !al where necessary. 
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For generalised functions the behaviour under scale transformations 
is somewhat more complicated than the corresponding transformations of 
ordinary functions. To get started the definition (16.2) is taken as a prelim-
inary definition of the scale transformations on PC>.. Following the pattern 
established in previous chapters we begin with a preliminary scale transfor-
mation on PC>., not including 8-functions. This is used to find the scale -, -transformations on PC>.. The results are then pulled back to PC>., now 
including the 8-functions. 
Application of the definition (16.2) to the powers of x gives 

(16.5) 
and 

Spre(a)(-x)>-H(-x) := (-ax)>-H(-ax) :=a>-· (-x)>-H(-x). (16.6) 

where Spre(a) is used to indicate the preliminary scale transformation. The 
scale transformation is now defined on PC~ by taking residues. For the 
primed powers and logarithms we find 

S(a) (lx'I°') := Res q! (A - o:)-q-l a>-lxl>- sgnm(x) = 
>.=a 

q 

= a°'lx'I°' L (j) log-71x'l logq-j (a)sgnm(x) + 
j=O 

00 . 

+2a°''°' (-)~j!~! logq+j+l(a) x L.., (q+J+l ! 
j=O 

x (<-)j1J~-a-l,jl(x) - 'ff}-a-l,j)) sgnm(x). (16.7) 

To obtain ( 16. 7) the Taylor series 

(16.8) 

for the exponential has been substituted. The sum over 17-functions appear-
ing in (16.7) is as usual only formally infinite. The expression log(a) E JR is 
simply a real number, the logarithm log(a) does not have to be interpreted 
as a generalised function of a. 
Specialization of (16.7) to the unit function I'(x) E PC~ gives 

00 . 

I'(ax) = I'(x) + 2 L ~1t log-7+1(a)((-)ja(-l,j) -;<-1,jl(x)), (16.9) 
j=O 

so the function I'(x) is not invariant under scale transformations. 
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The 77-functions of the scaled argument are also defined as a residue by 

S(a)((-)q17~"',q)(x) - if}"',q)(x)) sgnm(x) := 

(16.10) 

00 . 

= a-<>-l '°' (-)J}~tj)! log1(a)((-)q+i17~"',q+i>(x) -i}"',q+i)(x)) sgnm(x). 
q.J. 

j=0 
This expression is again split into parts in the finite and parts at infinity 
in the obvious way, by keeping the scale transform of an 77-function in the 
finite in the finite. This gives 

00 

17~"',q)(ax) sgnm(ax) := a-<>-l L (~;J?1 log1(a) 17~"',q+il(x) sgnm(x), 
j=0 

(16/11) 
in the finite, and 

00 . 

w}"',q\ax) sgnm(ax) := a-<>-l L (-):f,tj)! logj (a) w}"',q+j)(x) sgnm(x), 
j=0 

(16/12) 
at infinity. 

Anticipating the result of transfer to PC>. one expects that the unit 
function I(x) E PC>. cannot change under scale transformations as there is 
only one unit element 

S(a) I(x) := I(x). (16.13) 

The scale transformation of the 0(x) function has to be defined as the op-
posite of the scaling (16.9) of the generalised function I'(x) E PC~ at the 
point x = 0. 

00 

0(ax) := S(a) 0(x) := 0(x) - 2 L i!l log1(a) a(-l,i>(x). (16.14) 
j=0 

More generally we obtain by extending the smoothness to xP 
00 

0(v)(ax) := S(a) 0(v)(x) := aP 0(v)(x) - 2aP L j!i log1(a) a(-p-l,i>(x). 
j=0 

(16.15) 
Further on this will be seen to agree with the result obtained by transferring 
the scale transformation to the powers in PC>. and taking differences. 

The scale transform of the ordinary functions J'(x) E PC~ is now 
defined by combining the preliminary scale transformations with the r,-
functions generated by applying the scale transformation to the asymptotic 
expansion at the points x = 0, and ±oo, 

S(a) J'(x) = MSpre(a) f(x)+S(a)Mfa(x; 0)-MSpre(a)fa(x; 0), (16.16) 
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and idem at x = ±oo. This completes the definition of the scale transfor-
mation on PC~. 
Example 16.1 The scale transform of a C 00-function such as 

(16.17) 

does not contain additional generalised functions. A slightly more compli-
cated scale transform is 

00 00 

= e-alx'I + t"' ai t"' k! logk(a) T/(-j-1,k)(x) (k+j+l)! s ' (16.18) 
j=O k=O 

which is again an allowed linear combination of r,-functions, with finitely 
many effectively non~zero terms. 
The scale transformation on PC>. is now defined 'v J(x) E PC>. as 

S(a) J(x) := M- 1s(a)M J(x). (16.19) 

following the general pattern estaolished in Ch. 7. 
It can be shown, compare Prop. 12.5, that the result does not depend on 

the choice of Mx or M1> to effect the transfer, so the subscript is omitted. 
The computation is done most conveniently using Mx however. 

The <5-functions transform under scale transformations in the same way 
as the corresponding distributions 

(16.20) 

For the powers and logarithms E PC>. we obtain 

q 

S(a) (lxl" logqlxl sgnm(x)) = a"lxl" L {J) logilxl logq-j(a) sgnm(x) + 
j=O 

00 

+ 2(q + 1)-1 logq+1(a) L 8_<>-1,p o:~:2 <5(Pl(x). 
p=O 

(16.21) 

The sum in the first part is the binomial expansion of (log(a) +loglxlt. The 
additional 6-functions in the second term appear for a = -p - 1, m = p. In 
particular one finds 

(16.22) 
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In the special case a = 0, q = 1, one recovers the standard result 

S(a) loglxl = loglaxl = loglxl + log(a), (16.23) 

in agreement with the classical defining property of the logarithm. 
Fpr ordinary functions J(x) E PC>. additional ~-functions appear un-

der scale transformations when the asymptotic expansion of J(x) at x = 0 
contains terms behaving as 

(16.24) 

in agreement with the result found above. 
The scale transformation has a fixed point at x = 0. By combining 

the scale transformations with the translations introduced in the previous 
chapter this fixed point can be shifted. The scale transformation around the 
point x = x0 is defined as 

(16.25) 

The action of the translated scale transformations is the same as above with 
all arguments x replaced by x - x0 • 

At infinity it is convenient to introduce the momentum translated scale 
transformations by ' 

(16.26) 

to simplify the transformation properties of oscillating exponentials at infin-
ity. It is also possible to introduce one-sided scale transformations acting on 
one side of the point x = 0 only. - -, The scale transformations are now defined on PC>. and PC>. and there-
fore on GFs. In the next sections some properties of the scale transform are 
found. 

16.2 Scaling of the scalar product and unitarity 

The scalar product in the standard sense should transform under scale trans-
formations as 

( S(a) f(x), S(a) g(x)) = a-1 ( J(x), g(x) ). (16.27) 

This is seen for ordinary functions E £ 2 by writing the scalar product in the 
form of an integral and by applying the change of variable x := ax 

( J(x), g(x)) = i:dx J(x)* g(x) = a i:dx J(ax)*g(ax). (16.28) 
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In terms of the scale transformation operator this means that it should have 
the property 

(16.29) 

In terms of the normalized version (16.3) this means that the normalized 
scale operator S(a) should be unitary, 

(16.30) 
WRONG! 

One verifies by inspection that this is the case in the subspace PC~. As one 
may anticipate from the lack of selfadjointness of the operators X and i'D 
the unitarity does not carry over to PC>.. 
Example 16.2 The scalar product 

( 1xr1 , I(x)) = 0 

transforms under scale transformation into 

( a- 11x1-1 + 2 log(a) 6(x), I(x)) = 2 log(a), (16.31) 

in disagreement with (16.27). 
As with selfadjointness the number of exceptional cases is small. These can 
be characterized more easily when the scaling of the product has been defined 
in the next section. 

16.3 Operator properties of the scale operator 

The scale transformations are a group. For the scale transformations at 
a point this is the multiplication group of the positive real numbers. By 
taking log( a) as the parameter rather than a itself this becomes the addition 
group of the reals. The translated scale transformations also form a group. 
The group property takes the form 

(16.32) 

The infinitesimal generator of the scale transformations is the opera-
tor X'D. For entire analytic functions one verifies this by expansion in a 
Taylor series 

00 

aX'D = elog(a)X'D f(x) = elog(a)X'DL Cp xP = 
p=O 

00 00 

= L Cp eplog(a)xP = L cp(ax)P = /(ax), {16.33) 
p=O p=O 
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so formally any Taylor series is transformed by the scale factor. 
The infinitesimal generator for the normalized scale operator is the almost 
selfadjoint operator ½ (X'.D + '.DX), 

1 ' 1 
S(a) = a2<xv+vx) = a2axv = ./a,S(a), (16.34) 

obtained from X'.D by using the commutation relation (2.12) in agreement 
with the definitions (16.1) and (16.3). 

The next step is to investigate the validity of the expansion of the expo-
nential form of the scale operator when it acts on the generalised functions. 
For the powers and logarithms one verifies by direct computation that 

axv(lxl>- logqlxl sgnm(x)) = laxl>.(loglxl + log(a)t sgnm(ax), (16.35) 
with the scaled power given by (16.21). The same result is found for the 
primed powers. 
For the '1]-functions one finds also that the exponential form of the scale 
transform acting on an r,--function results in an allowed linear combination 
of '1]-functions, 

axv 'l]i°',ql(x) sgnm(x) = S(a)('1Ji"',ql(x) sgnm(x)), (16/36) 
with the scale transform given by (16.10). The same holds for the tJ-
functions. 

For ordinary functions the scaled asymptotic expansions can therefore 
be found by application of the exponential form of the scale operator. The 
convergence (if any) is not changed by application of a scale transform, only 
the radius of convergence is scaled. Between singular points the scaled func-
tion is simply found from the definition (16.1) of the scale transformation. 
The operators X and '.D transform under scale transformations into the 
scaled forms 

(16.37) 
and 

S(-a)'.DS(a) = e-Jog(a)[XV, Jv = a'.D, (16.38) 
in agreement with the expected behaviour. -, In the subspace PC;. the operators X and '.D, and therefore also the 
operator ½ (X'.D + '.DX), are selfadjoint. Correspondingly the normalized 
scale operator S(a) is unitary in PC~. In the subspace PC;. these operators 
are not selfadjoint. and there is no reason to expect S(a) to be unitary 
in GF8 • By Ex. 16.2 given in the previous section it is seen that unitarity 
of the scale operator does not hold in PC>.. 

The Fourier operator does not commute with the scale transformations. 
Instead the Fourier operator transforms the scale operator into its inverse 

:,::- 1s(a):F = aS(a-1 ). (16.39) 
The additional factor a is due to the normalization of the scale operator. It 
can be avoided by taking the unitary scale operator. 
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16.4 Scaling of the product 

The product of generalised functions does not commute with scale transfor-
mations. It is in general not true that 

S(a) f(x) • S(a) g(x) = S(a)(f(x) • g(x)). 
(16.40) 

WRONG! 

The product of the scale transforms does not in general equal the scale 
transform of the product. 
Example 16.3 One has the scale transform of the product 

S(a)(x- 10 sgn(x)) = S(a)(lxl-1 - 2'lj!(l) 6(x)) = 

= a- 1 (1xi- 1 + 2(log(a) - 'lj!(l)) 6(x)), (16.41) 

but the product of the scaled factors is 

S(a)x- 1 • S(a) sgn(x) = a- 1x- 1 • sgn(x) = 
= a- 1 (lxl- 1 - 2'lj!(l) 6(x)), (16.42) 

so the results are different and (16.40) does not hold in general. 
This can also be seen from the infinitesimal generator acting on a product 

X'D(f(x) • g(x)) = X('D !(f) • g(x) + f(x) • 'D g(x)) =f 
=f X'D f(x) • g(x) + f(x) • X'Dg(x). (16.43) 

The failure of the multiplicative rule (2.41-43) for the X operator makes it 
impossible to take the generator into the product. 

The scale transformation does commute with the product when the 
factors are suitably restricted, for instance when the factors of the product 
are restricted to PC~. 
Example 16.4 The previous example in PC~ takes the form 

S(a)(x'- 1 • sgn(x)) = S(a)lx'( 1 = a-1 lx'( 1 + 
00 . 

+ 2a-1 L j1t logi(a)(Hj1J(O,j)(x) -l{(O,j)(x)), (16.44) 
j=O 

and by direct computation one verifies that 

S(a)x'- 1 • S(a) sgn(x) = a- 11x'1-1 + 
00 . 

+ 2a- 1 L j-}t logi(a)((-)j1J(O,j)(x) -l((O,j)(x)), (16.45) 
j=O 

so in this case the scale transformation commutes with the product. One 
easily verifies this for PC~ as a whole by computing the scale transform of 
the basic products of the powers and the 7)-functions. 
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Remark 16.1 As noted previously some care is needed with the notation. 
Multiplication dots should be indicated explicitly since 

{16.46) 

in accordance with the previous exceptional case given in Ex. 16.3. 
The la.ck of a product on the distributions which transforms correctly under 
scale transformations has been an obstacle for the application of products of 
generalised functions to physical problems. The availability of the product 
on PC~ which is scale invariant removes this obstacle. 

16.5 Homogeneity of generalised functions 

A function is called homogeneous of degree ..X when it has the property 

/(ax) := S(a) f(x) = a>. f(x), {16.47) 

where a>- = e>-loglal is the principal value of the power. It is called associated 
homogeneous of degree .X and order n when 

n 
/(ax) = a>. J(x) + a>. L logi (a)J;(x), (16.48) 

j=O 

where the functions fi(x) are also•associated homogeneous of degree .X and 
order n or less. Often the number of terms appearing in the sum is infi-
nite. The degree is then infinite. The term associated homogeneous is often 
used without mentioning the degree, associated homogeneous is often called 
simply homogeneous. 
Remark 16.2 It may happen that the scaling property {16.48) holds 
only for x > 0 or x < 0, or the value of .X may be different on the left and 
the right side. This may be called left- or right-sided homogeneity, but the 
distinction will usually not be made. For example, the generalised function 

{16.49) 

is left homogeneous of degree 0, and it is right homogeneous of degree .X. 
Homogeneous functions are by definition (16.47) eigenfunctions of the scale 
transformation operator. Associated homogeneous functions are eigenfunc-
tions of the scale transformation to leading order. In the next section the 
concept of indeterminacy is introduced to convert associated homogeneity 
into homogeneity. This makes the distinction irrelevant in many cases. 

From the transformation property {16.10) one sees that the 7rfunctions 
at the origin are associated homogeneous 
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of degree -a: - 1 and infinite order. The same holds for the }(-functions at 
infinity. 
For the primed powers x';,., we find from ( 16. 7) that these are 

(ax')°' H' (ax) = a°'x'°' H' (x) + 
00 . 

+ 2a°' L ~1t logi(a)(<-)j'f](-a-l,il(x) - if/-a-l,j)(x)), (16.51) 
j=O 

also associated homogeneous of degree a: of infinite order. 
For primed powers and logarithms E PC\ we find 

q 

lax'I°' logqlaxl sgnm(ax) = a°'lx'I°' L (j) logj (a) logq-j lxl sgnm(x) + 
j=O 

00 . 

+ 2a°' '°' (-)~q!j! logq+j+l(a) x (q+J+l)! 
j=O· 

X ((-)j'f](-a-1,q+j)(x) - }f}-a-1,i>(x)) sgnm(x), (16.52) 

so the finite order homogeneity of the standard logarithm is transformed into 
infinite order. 

In accordance with their interpretation the functions 0<P)(x) E PC\ are 
associated homogeneous of infinite order since 

00 

0<Pl(ax) = aP 0<P>(x) - 2aP L 1~ 1 logi+1(a) a<-p-l,il(x), (16.53) 
j=O 

Going back to PC;,., it is seen from (16.20) 

(16.54) 

that the i5(Pl_functions are homogeneous of degree -p-1, in agreement with 
the comparable properties of the distributions o<P). 
For the powers and logarithms E PC;,., we have by (16.21) 

00 

+ 2 '°' 6 15mod2 a-P-1 logq+l(a) i5(P)(x) a,-p-1 p,m , (16.55) 
p=O 

so these functions are associated homogeneous of finite order q. 
This is in agreement with classical analysis, with the exception of the 

case x-P-1 logqlxl sgn(x), where an additional 6(p)_function appears. This 
increases the order by one. 
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Going now to the whole space GFs, the homogeneity properties are 
found by subtraction. The 9(a,q)(x) functions are associated homogeneous 
of degree a of order oo, since by subtraction of {16.52) and {16.55) one finds 

q 

9!°'•9>(ax) sgnm(x) = +a°' L (J) log-1 (a) e!°'•q-j)(x) sgnm(x) + 
j=0 

00 

+ 2a°' L 60<,-p-l t5;'.~2 log9+1(a) 6(p)(x) + 
p=O 
00 

{16.56) 

- 2a°' g!i! log9+H1(a) .,,c-0<-l,j)(x) sgnm{x) L..., (q+j+l)I s , 
j=0 

in agreement with the special case {16.53) found above. At infinity this 
simplifies to 

q 

8';°'•9>(ax) sgnm(x) = a°' L (J) log-1 (a) l;°'•q-j) (x) sgnm(x) + {16.57) 
j=0 

00 • 

+ 2a°' (-)~q!j! log9+H1(a) ,,1(-0<-l,j)(x) sgnm(x) L..., (q+J+l)I . Yls , 
j=0 

since there are no 6-slash functions in the model. 
Remark 16.3 The basic generalised functions 

with point support in the finite, and their counterparts 

{16.58) 

at infinity are (associated) homogeneous. 
The usual operators X, 'D, :F, and 'P are homogeneous in the following 
sense. They convert a homogeneous function of degree A into a homogeneous 
function of degree A+ 1, A - 1, -A - 1, and A respectively. This is often 
convenient to predict beforehand where additional 6-functions will appear in 
a formula. This can occur only when the parity and degree of homogeneity 
are correct. 

Homogeneity also involves a preferred point x = 0 . Homogeneous 
functions with respect to a different point x are defined by replacing the 
scale transform by the translated scale transform operator. 
At infinity the generalised functions 1((0<,q)(x) are (associated) homogeneous. 
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The generalised functions eikx'ff(a,q\x) are eigenfunctions of S(a;0,p0 ), the 
momentum shifted scaling operator. 

The terms which are allowed in the asymptotic expansions of generalised 
functions by the requirement (4.1) are all (associated) homogeneous. The 
generalised function is homogeneous only when all terms in its asymptotic 
expansion have the same order. This can happen only when the number of 
terms in the asymptotic expansion is finite. 

For homogeneous generalised functions the power counting of the degree 
of divergence is used with the standard meaning although divergence is an 
irrelevant concept for generalised functions. Thus a limit is said to be loga-
rithmically, linearly, quadratically • • • divergent when the it concerns a func-
tion, whose leading term is associated homogeneous of degree 0, -1, -2, • • • 
in the finite and/or 0, 1, 2, • • • at infinity. Likewise for an integral with an 
integrand of degree -1, -2, -3, • • • in the finite, or of degree -1, 0, 1, • • • 
at infinity. 

In the next chapter the distinction between homogeneous and associated 
homogeneous is changed by introducing indeterminate generalised functions, 
for which the distinction vanishes. 



CHAPTER 17 

INDETERMINACY CALCULUS 

The generalised functions, as defined in the previous chapter, do not pos-
sess satisfactory transformation properties under scale transformations. The 
scale transform of a product does not equal the product of the scale trans-
formed factors, and the scale operator is not unitary in the scalar product. 
This becomes important when it is necessary to evaluate expressions which 
are divergent in a standard sense. 

The associated terms generated by the scale transformation are often a 
nuisance, in particular in cases where it can be seen beforehand that these 
terms will not contribute to a final result. Carrying them along in the 
meantime can involve much useless work. 

The scale transform can be made unitary, the product can be made to 
commute with scale transformations, and the superfluous associated terms 
can be avoided by introducing indeterminate generalised functions. 

1 7 .1 Indeterminate generalised functions 

In PC,x the indeterminate logarithm is defined as an equivalence class of 
generalised functions by 

ilogjx! := logjxj - C I(x), (17.1) 

for any value of the indeterminate constant C. The indeterminate logarithm 
is the orbit of the generalised function loglxl under the group of scale trans-
formations. Usually the generalised function J(x) will be omitted to shorten 
the notation. 
Remark 17 .1 The indeterminate logarithm can be looked at in a differ-
ent way. In standard analysis the logarithm may be defined by 

. lxl 
logjx! := 1 dyy-1. (17.2) 

The indeterminate logarithm is obtained by replacing the one at the lower 
limit of integration by an unspecified different point. For generalised func-
tions the indeterminate logarithm can also be found as 

(17.3) 

as an integral with an unspecified lower limit. This point will return in the 
next section, where the indeterminate form of the fundamental theorem of 
the calculus is given in its indeterminate form. 
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Remark 17.2 
also written as 

For physical quantities the indeterminate logarithm can 

ilogjxj = log(jxj/u.,) - C, (17.4) 

where u., is an arbitrary unit for measuring the the physical quantity x. This 
has the advantage that the argument of the logarithm is explicitly dimen-
sionless. Suppose it is useful to compare different lengths on a logarithmic 
scale. The expression log(length) is undefined. One may take 

lo (length) 
g 1 meter or 1 ( length) 

og 1 · h ' me 
(17.5) 

as the numerical value oflog(length). In cases where the units are irrelevant 
one does not have to specify them. The indeterminate logarithm can be used 
for this purpose. This remark will be worked out in the next chapter. 
The indeterminacy of the logarithm can be extended to other generalised 
functions. This is done by noting that the scale transformation as defined 
in Sec. 16.1 is an expansion in powers of log(a). The indeterminate gener-
alised functions are now defined by replacing log( a) by log( a) - C in their 
scale transforms, followed by putting a equal to one, or more formally 

(17.6) 

In PC\ this leads to (bringing the irrelevant exponential factor to the other 
side for clarity) 

00 

+ 2""' q! j! Cq+j+l ((-)j 71(-a-1,j) (x) _ .J(-a-1,j) (x)). 
(q+j+l)! ·ts Vis , (17. 7) 

j=O 

for the indeterminate powers and to 

00 • 

e-(a+l)Ci"l(a,q)(x) := ,,,<a,q)(x) + L (-):fjtj)! ci ,,,<a,q+j)(x), (17/8) 
j=l 

for the indeterminate 77 functions. 
Correspondingly in PC ,x there are the indeterminate powers 

q 

e"'cilxl"' logqlxl sgnm(x) = lxl"' L (-)j (3)Ci logq-jlxl sgnm(x) + 
j=O 

00 

+ 2(-)q+lcq+l ""'0 Omod2 15(p) (x) (17.9) a,-p-1 p,m , 
p=O 
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either by definition or by the usual inverse mapping from PC~. It may 
be noted that the sum in (17.9) has at most one non-zero term, the sum 
in (17.8) is infinite, so the indeterminacy is less in PC>.. 
The 6(P)_functions E PC>. are determinate. 

(17.10) 

so the notation i6(p) will not be used. 
The C's in the exponentials never contribute to scalar products, so the 

exponentials may be omitted without changing any numerical result. These 
exponentials are omitted in the following to save superfluous writing. This 
is equivalent to the preceding prescription. 
Remark 17.3 Strictly speaking one should introduce notation such as 

(17.11) 

with the indeterminate constant indicated explicitly. The same should be 
done for the powers, products (compare Rem.17.8), and also for indetermi-
nate integrals. This will not be done in this book. In actual computations it 
is quite easy to keep track of the scaling of the various factors without using 
this cumbersome notation. 
An advantage of having indeterminate functions is that associated homoge-
neous functions can be made homogeneous by defining the scale transforma-
tions as 

S(a)d(x; C) = S(a)S(e-c) f(x) = S(a · e-c) f(x) = d(x; C + log(a)), 
(17.12) 

with the indeterminate constant changed to 

C := C + log(a). (17.13) 

This is the basic rule of the indeterminacy. In shortened notation one may 
write 

(17.14) 

with the understanding that the substitution (17.13) has been carried out. 
The order of the associated homogeneity of the determinate function is 

equal to the degree of the highest power of C which appears in the corre-
sponding indeterminate function. In the following the explicit distinction be-
tween determinate and indeterminate will be omitted. No confusion should 
result. The indeterminacy is signalled by the explicit appearance of a power 
of the indeterminate constant. 
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Remark 17.4 At first sight this leads to confusing notation such as 

{17.15) 

which should be interpreted as 

{17.16) 

This notation is actually convenient when one is used to it. 
It is possible to use the indeterminacy in this informal way since indetermi-
nate final results are usually meaningless. 

Adding the indeterminate constant to formulre adds information which 
keeps track of the scale transformation properties. Information is lost by 
replacing C + 37 by C, or by C + 1. but this is irrelevant when the final 
result is indeterminate. If the final result yields C - C = 0 it is necessary 
to keep all numbers occurring together with the C consistently. This is also 
advisable in the calculation of intermediate results, unless the final result is 
known beforehand to be indeterminate. 

The indeterminate form of an arbitrary generalised function at a point 
is obtained as the indeterminate form of its asymptotic expansion. A gen-
eralised function is defined to be determinate when the indeterminate con-
stant C ( and therefore its powers) is absent from its indeterminate version. 
The terms in its asymptotic expansion are therefore homogeneous but not 
associated homogeneous. 
Example 17.1 The generalised function 

{17.17) 

E PC,\ is determinate, the function 

{17.18) 

either E PC,\, or E PC~ is indeterminate. The elements of PC~ are 
indeterminate, unless they are C00 functions of rapid decrease at infinity. 
(The space S of Schwartz). 
Example 17.2 The function 

J(x) := x- 1 = d(x) 

considered as an element E PC,\ is determinate, the function 

J(x) := lxi-1 

is indeterminate. Its indeterminate version is 

d(x) := lxl-1 - 2C6(x), {17.19) 
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Both functions are indeterminate as elements E PC~, with the corresponding 
indeterminate versions 

00 

iXl-1 = lx'1-1 - 2 L cHl((-)jO"(O,j)(x) - ¢"(0,il(x)), (17.20) 
j=O 

and 
00 

ilx'i-1 = xl-1 _ 2I:ci+l((-)j7J(O,j) _ef(O,jl(x)), 
j=O 

involving r,functions. 

17.2 Operators on indeterminate functions 

(17.21) 

The action of the operators on the indeterminate functions follows at once 
from the known action on the determinate functions. Many formulre can be 
simplified in cases where terms occurring together with the indeterminate 
constant can be ignored 
Example 17.3 In the Fourier transform (6.69) of the (indeterminate) r, 
function, with a =f. p E N, 

00 

:F17~a,q)(x) = -2 L (q!()! Cj(-a - 1, 0) 'Hs(-a-l,q+j)(x), 
j=O 

infinitely terms can usually be omitted leaving 
:F17~et,q)(x) = 2r(-a)sin I(a + l)efs(-a-l,q)(x) + 

+ · ·· Cefs(-a.-l,q+ll(x) + ···C2 • •• , 

(17.22) 

(17.23) 

since the C's have to cancel in the final result. When the leading term 
happens to vanish it is necessary to take an additional term. With some 
experience it is usually possible to see beforehand which terms are relevant. 
The indeterminate functions can also be shifted, again by replacing x by x -
xo. The shifted indeterminate functions are eigenfunctions of the translated 
scaling operator. It is now possible to define an indeterminate equivalent for 
the ordinary functions both in PC>. and PC~. This is done by replacing 
everywhere the asymptotic expansion by its indeterminate equivalent. This 
is possible by virtue of the fact that all terms in the allowed asymptotic 
expansions are (associated) homogeneous. Since no indeterminacy occurs at 
the C00 points this replacement has to be made only at the finitely many 
singular points. It is allowed to choose a different Ci for each side of each 
singular point. All the Ci 's can be made equal since a scale transformation 
at xi changes C to C + log( ai) with ai arbitrary. Therefore the Ci will be 
dropped and the same C is used at every singular point. This includes oo 
since C can be changed by by a scale transformation at an arbitrary finite 
point. 
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Remark 17.5 In this book only the simplest case, in which the scaling 
is the same at every point, is considered. More complicated cases are easily 
added by introducing a gauge field to relate the scaling at different points. 

17 .3 Indeterminate products 

The main shortcoming of the product defined in Ch. 9 is the lack of proper 
transformation of the product under scale transformations. This is a conse-
quence of the choice of standardization (9.101) of the map Mx, and thereby 
of the product. The map Mx does not commute with scale transformations. 
Example 17.4 For the simplest case i,(P)(x) one obtains 

00 

S(a)Mx 6(x) = S(a) ry(x) = a- 1 ry(x) + a- 1 I:1ogi(a) 7J(O,i)(x), (17.24) 
j=l 

but 
MxS(a) 6(x) = a-1 ry(x), (17.25) 

so the results are different. 
The remedy is now obvious. It is sufficient to change the standardization of 
the product by defining a new iMx by 

(17.26) 

and correspondingly for the inverse. 
For the generalised functions i,(P) and lxl°' the new standardization is 

and 

00 

iMx i,(P)(x) = I:(-C)i 7J(p,j)' 

j=O 

iMxlxl°' logqlxl sgnm(x) = lx'I°' logqlxl sgnm(x) + 
00 

(17.27) 

(17.28) 

+ L(-C)q+j+l 11~-o,-l,q)(x) sgnm(x). 
j=O 

This will be referred to as the indeterminate standardization when it it 
necessary to make a distinction with respect to the old determinate stan-
dardization. 

From the transformation of the scale operator under Fourier (16.39) 
and the relation (9.20) between M-v and Mx one sees that the corre-
sponding iM'D is given by 

(17.29) 
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The new mapping is not completely invariant under scale transformations 

(17.30) 

but the scale transformation merely replaces C by C + log(a), in agreement 
with (17.13). Therefore in the indeterminate sense defined in the previous 
section the map iMv is invariant under scale transformations. 

The product is now defined by complete analogy with the corresponding 
definitions in Ch. 9. From the scaling (16.37) and (16.38) of the operators X 
and 'D it is clear that the new map iMx again almost commutes with the 
operator X 

(17.31) 

Therefore the operator properties of the product are not changed by the 
indeterminate standardization. As in the previous section it is not necessary 
to introduce a special notation such as i• for the new product definition. 
The presence of explicit C's signals the necessity of using the new product. 

In PC~ the scale transformation commutes with the product. The 
product of the indeterminate functions in PC~ equals the indeterminate 
version of the product. 
Remark 17.6 Even though the indeterminacy is easily handled infor-
mally (and correctly!) by just adding C's where required, this procedure 
seems to sloppy and difficult to understand to some readers. For once the C's 
will be written out in full splendour by defining 

;Mv(C) := S(e0 )MvS(e-0 ), (17.32) 
;Mi;/(C) := S(e0 )M:j,1S(e-0 ), (17.33) 

f(x) i"C g(x) := ;M:j,1(C)(;Mv(C) f(x) • ;Mv(C)g(x)), (17.34) 

with the scale of the product indicated explicitly. Application of the scale 
operator to the product of indeterminate functions, and use of the inter-
changeability of product and scale in PC~ gives the result 

S(a) (d(x; C) i"C ;g(x; C) = S(a);f(x; C) i"C+log(a) S(a)ig(x; C) = 
= d(x; C + log(a)) ;•c+tog(a) ig(x; C + log(a) ). (17.35) 

In (17.35) he scale of the functions and the product is indicated explicitly. 
Formally the product has been made scale invariant by defining a prod-

uct which depends explicitly on the scale. In the following explicit references 
to a scale will usually be omitted. Of course one can effect a trivial general-
ization in (17.35) by replacing C, C, and C by C1 , C2, and C3. This does 
not affect the determinacy or indeterminacy of any result, it only introduces 
additional arbitrariness. 
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Usually (17.35) will simply be written as 

S(a)(f(x) • g(x)) = S(a) f(x) • S(a) g(x), (17.36) 

and consequently 

( S(a) f(x), S(a) g(x)) = a-1 ( f(x), g(x) ), (17.37) 

with the indeterminacy and the scaling (17.13) understood. 
Since the determinate product of generalised functions and the scale trans-
formation do not commute, it can happen that the indeterminate product 
of determinate functions is indeterminate and visa versa. 
Example 17.5 The following examples show that all possibilities actu-
ally occur for the indeterminate product in PC_x, 

(d • d = d): 
-1 -1 -2 X •X =X , (17.38) 

(d•d=i): 
x- 1 • sgn(x) = lxl- 1 - 2(1/'(1) + C) 6(x), (17.39) 

(i • d = d): . 
(lxl- 1 - 2C 6(x)) • sgn(x) = x- 1 , (17.40) 

(i•d=i): 
(lxl- 1 - 2C6(x)) • I(x) = (lxl- 1 - 2C6(x)), (17.41) 

(ioi=d): 
(lxl- 1 - 2C6(x)) • (lxl-1 - 2C6(x)) = x-2 , (17.42) 

(ioi=i): 
(loglxl + C I(x)) • (loglxl + C I(x)) = log2 lxl + 2Cloglxl + C 2 /(x). 

(17.43) 

The introduction of the indeterminate product serves its purpose. We now 
have the property 
Property 17.1 The indeterminate product commutes with scale trans-
formations 

S(a)(f(x) • g(x)) = S(a) f(x) • S(a) g(x), (17.44) 

provided that the indeterminate constant is adjusted appropriately by 

C := C + log(a), (17.45) 

as in (17.13). 
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As an immediate consequence we have 
Property 17.2 The scale transformation operator is unitary (up to the 
normalization) in the indeterminate scalar product 

( S(a) J(x), S(a) g(x)) = a-1 ( /(x), g(x) ), 

again with the substitution (17.45). 

(17.46) 

a 

Example 17.6 The previous example Ex.16.2 of a non-unitary scalar 
product now becomes 

( lxl-1 - 2C8(x), I(x)) = -2C, 

and idem scaled 

( lxl-1 - 2C 8(x) - 2 log(a) 8(x), I(x)) = -2C - 2 log(a), 

in agreement with (17.45). 

17.4 More indeterminacy 

(17.47) 

(17.48) 

The whole content of this book, and in fact the whole of analysis, can be 
written either in determinate or indeterminate form. Which form is prefer-
able depends on the relevance of scale transformations. 

The concept of the value of a 'generalised function can be extended to 
the indeterminate generalised functions introduced in Sec. 17.1. Obviously 
the values of indeterminate generalised functions may become indeterminate. 
The indeterminate logarithm E PC>. has the values 

ilog{0+) = ( 17i(x), ilog(x)) = -C, 
ilog{0) = ( 8{x), iloglxl) = 'lf,{1) - C, 

The indeterminate logarithm E PC' has the values 

ilog'{0+)= (17i(x),iloglx'l)=-½C, 
ilog'{0) = ( 8(x), iloglx'I) = 0, 

{17.49) 
{17.50) 

{17.51) 
(17.52) 

as one sees by substituting the explicit form of the indeterminate logarithm. 
The values for the primed functions again have the additional factor ½ . The 
other half of the indeterminacy is located in the corresponding 9-functions. 
More generally we obtain for the value of the unprimed powers of the loga-
rithm at x = 0 

(ilxl°' logqixl sgnm(x)) lo = ( 8(x), ilxl°' logqlxl sgnm(x)) = 
q 

= 6 6mod2 "" (-)q+j (~) C·+1(0 O)Cq-j · ,r a,O m,O L...J 3 1 • (17.53) 
j=O 
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The limiting values in the unprimed case are 

(17.54) 

There is again an additional factor ½ in the primed case. The corresponding 
determinate values of the logarithm are recovered by omitting the C's. 

In Ch.13 the limit was defined at a fixed value (equal to one) of the scale 
parameter. It is of course also possible to define an indeterminate limit by 

iLim f(x) := a ( 1/, (ax) , J(x) ). 
x!O 

(17.55) 

Rewriting this in integral notation 

iLimf(x) := fbd(ax) 11,(ax)f(x), 
xio lo (17.56) 

makes the reason for the factor a in (17.55) clear. 
Substitution of the explicit form of the scaled 11,-function (16.10), 

00 

11,(ax) = a-1 L)oe;i(a) 1/~0,j)(x), (17.57) 
j=O 

shows that the difference between the determinate and the indeterminate 
version appears only for the logarithm and its powers. For the special case 
of the first power one obtains 

iLimlog(x) = ilog(O+) = log(a) := -C, 
:i:!0 

(17.58) 

with log(a) := -C the arbitrary scale factor. It does not matter if the loga-
rithm is made indeterminate or the limit is made indeterminate. The result 
is the same in both cases, 

(17.59) 

as one sees from the explicit form ( 17 .5 7) of the scaled 1/. -function. 
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The fundamental theorem of the calculus can also be applied in its 
indeterminate form by replacing the values of the primitive by the indeter-
minate values. This results in 

ilog(b) = /b dxx- 1 = log(b) - C, 'lo+ (17.60) 

'J'his corresponds with replacing the factor zA in Hadamard's prescription 
for the partie finie by ( e-0 x )A. The indeterminate form of the fundamental 
theorem is especially suitable for physical computations, which may have 
indeterminate results. The indeterminacy of the integral is entirely due to 
the indeterminacy of the integrand since 

1_:dx f(x) := ( J(x), f(x) ), {17.61) 

and products with the uriit function, {or the ~-function), never add indeter-
minacy. 

In the next chapter the consequences of the introduction of indeter-
minate generalised functions for the applications of the theory to physical 
problems are elucidated. 





CHAPTER 18 

INDETERMINACY AND MEASUREMENT 

This chapter is not directly related to the main line of this tract. It deals 
with the application of indeterminate generalised functions to physics. 

In the previous chapter indeterminate generalised functions were intro-
d uced to simplify the scaling behaviour of the generalised functions. The 
indeterminate versions of the generalised functions are often more suitable 
to represent physical quantities than the corresponding determinate expres-
sions. 

The first section summarizes some measurement conventions. The de-
terminacy and indeterminacy of the numbers, representing the results of 
computations of physical quantities, is the subject of the next section. 

In the theory of generalised functions the results of physical computa-
tions are found as scalar products and integrals. At present it seems that 
indeterminacy in the results of physical computations cannot be avoided in 
the case of quantum field theory. 

The last section gives some properties which are useful when determi-
nacy or indeterminacy has to be established . . 
18.1 Measurement and unit systems 

This section summarizes the conventional relations between physical quan-
tities and mathematical numbers. It is best skipped by readers interested 
mainly in the mathematical aspects of the generalised functions. 

In order to make it possible to apply (generalised) functions, whose 
argument and value are (usually real) numbers, to the description of the 
physical world it is necessary to convert physical quantities to numbers. 
The need for generalised functions derives from the desire to idealize certain 
situations, for instance point particles instead of very small particles, in order 
to simplify physical theories. 

The reduction of quantity to number is accomplished by a measurement 
procedure, using a suitable system of units. This consists of a few funda-
mental units and many derived units. It is a matter of convention which 
units are considered to be fundamental. The relations between fundamen-
tal and derived units are formalized by a system of dimensions of physical 
quantities. 

In the following the variable x will denote both a real number and a 
physical quantity converted into a real number by measuring it with respect 
to the unit Ux· The unit will be written explicitly only when this is necessary 
for clarity. 
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A system of units is an artificial construct, which allows much arbitrari-
ness. The simplest change in a unit system is to change the magnitude of 
an unit. It is also possible to change the quantities considered as fundamen-
tal and/or the relations between derived and fundamental quantities. Both 
changes multiply the real number representing the physical quantity by a 
constant. This constant may be different for different physical quantities. 
Example 18.1 If length is measured in meters instead of in inches the 
measured value changes by a factor 0.0254. Therefore the numerical value 
of the argument of a function of the measured value changes by the same 
factor. 
Remark 18.1 So called dimensionless quantities, which are already a 
number in a suitable unit system, are not immune to changes in the unit 
system. Whether or not a given quantity is dimensionless and also its value 
depends on the system of units which is adopted. 
Example 18.2 In some cases feet/mile may seem to be a more convenient 
unit for measuring angles than a degree or a radian. Whether this unit is 
dimensionless or not is a matter of convention. 
Example 18.3 The ratio of an electric field strength and a magnetic field 
strength is dimensionless in natural unit systems. It is also dimensionless 
in the Gaussian unit system. In other systems of units (such as the MKSA 
system) it has the dimension of a velocity. 
More complicated changes are also possible. but these are not considered 
here. 

The results of (physical) computations are (usually real) numbers, which 
are interpreted as physical quantities by inverting the measurement conven-
tions. These real numbers arise in the theory of generalised functions as 
suitable scalar products. 
Example 18.4 The procedure of 'substituting values in the functions' 
takes the form of a scalar product with a i:5-function, 

f(xo) := ( t(x - xo), f(x) ), (18.1) 

in agreement with the definitions ( 13.1) of the values of generalised functions 
introduced in Ch.13. It is this step which converts generalised functions into 
ordinary functions. 
Example 18.5 The predictions of quantum mechanics are expectation 
values, derived from 'amplitudes' f(x) by computing scalar products of the 
form 

(J(x), 0 f(x)) := (f(x)O, J(x) ), (18.2) 

where f(x) is a (generalised) function and O a (selfadjoint) operator which 
represents a physical quantity. 
Remark 18.2 In physical terminology a quantity is invariant under a 
change of units if it changes in the correct way. For example if the result of a 
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computation is a length it should change by a factor .0254 under the change 
of units of Ex.18.1. If it is a volume it should change by a factor (.0254)3• 

Likewise the ratio of field strengths of Ex. 18.3 should not change under 
the change of units of Ex.18.1, if a natural type of unit system is employed. 
It should change by a factor .0254 in the second type of unit system. It 
might be better to call this covariant. 
Deciding what the transformation of a physical quantity under changes in 
the unit system should be is therefore somewhat complicated. 

In physical terminology 'invariant' is used for 'transforms correctly un-
der scale transformations'. In mathematical terminology this might be called 
covariant. 
Natural question: Is the result of computations in physics (involving 
generalised functions) invariant under changes in the measurement conven-
tions? 
In terms of generalised functions this reduces to the question: Is the scalar 
product, and consequently the assignment of values to generalised functions, 
invariant under scale transformations? 

It would be nice if the assignment of values to generalised functions 
could be made invariant under scale transformations, but it is known from 
the previous chapter that this is not possible. The desirable behaviour of 
the scalar product is lacking in the case 

log(0) :~ ( 6(x), loglxl) = 1P(l), (18.3) 

as one sees from the product (9.60). From the scale transformation prop-
erty (16.21) it is known that (18.3) transforms into 

( 6(x), logJaxl) = 1P(l) + log(a), (18.4) 

under scale transformations. This is a consequence of the lack of complete 
unitarity of the scale operator. 
From a physical standpoint this is unavoidable. An expression such as 

(18.5) 

cannot be invariant under a change of units. Mathematically the logarithm 
can be fixed by defining log(l) to be zero, physically one may put log(l meter) 
or log(linch) equal to zero, but not both at the same time. 

It is therefore necessary to distinguish quantities which transform cor-
rectly under scale transformations, which have a physical interpretation, 
from quantities which do not transform correctly, which are therefore (phys-
ically) meaningless. 



222 Indeterminacy and measurement 

Even when the result of all computations are fully determinate, the 
indeterminate functions are still a useful tool for performing physical compu-
tations when the choice of a unit system is irrelevant, or when it is convenient 
to have indeterminate intermediate results. 
Example 18.6 The equation for an adiabatic curve 

p-Y- 1T-Y = constant, 

in thermodynamics can be written as 

('Y-1) ilog(p) + 'Y ;log(T) = C, 

or 

(18.6) 

(18.7) 

(18.8) 

where up and ur are arbitrary units of pressure and temperature. It is of 
course possible to write this in determinate form in terms of the determinate 
logarithm as 

('Y-1) log(p/p0 ) + "(log(T/To) = 0, (18.9) 

where Po and To are the coordinates of an arbitrary point on the adiabatic 
curve. Of course a point on the curve has to be known for this to be possible. 
Remark 18.3 The indetermin~te form (18.7) is useful even when no 
point (po, To) on the curve is known, since it gives the functional dependence 
of the physical quantities. 
Remark 18.4 It often happens that ratios of physical quantities can 
be measured to much greater precision than the values of these quantities 
expressed in a unit system. If desired an arbitrary unit can be introduced 
in these cases. 
Remark 18.5 The habit of introducing units is so strong that it is 
customary to use the term 'arbitrary units', when a quantity has not been 
measured in relation to a standardized unit system. This is in practice 
equivalent to working with indeterminate quantities. 
Mathematically inclined readers may wonder how it is possible that the result 
of a well defined computation of a physical quantity may be indeterminate. 
Indeterminacy might be acceptable for intermediate results but one might 
think that physical results should always be determinate. This was indeed 
the case before the invention of quantum field theory. Even though clas-
sical field theory produced divergent results in some cases, these results 
were always determinate. Quantum field theory by contrast [Lod2] produces 
divergent results which can be indeterminate. An example occurs in the 
computation of the electromagnetic mass correction of the electron. 

When the result of a computation is indeterminate it is necessary to 
appeal to experiment to supply a definite value. This may not always be 
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possible. It is not known if this reliance on experimental values for fun-
damental parameters is a permanent feature of quantum field theory. One 
might hope for a fully determinate physics, but this hope may well be in 
vain. 
Answer to natural question: The answer is no, but conversely physi-
cal meaning is attached only to determinate results. Indeterminate results 
function as free parameters of the physical theory. 
Remark 18.6 It has been thought for a long time that ordinary func-
tions f(x) : R - R should be adequate as a basis for theoretical physics. 
With the invention of quantum field theory the use of generalised functions 
has become unavoidable, even though the results of the theory appear in the 
form of real numbers, which can be compared with the outcome of experi-
ments. 
Remark 18. 7 Although physical terminology has been used through-
out the same considerations would apply to any attempt to generalize the 
interpretation of the integral as 'the area under the curve' to include the 
integral {18.9). 
In the following determinate and indeterminate are used synonymously with 
invariant and not invariant under scale transformations. 

18.2 Indeterminate computations 

Indeterminate expressions occur naturally when scalar products and inte-
grals of the indeterminate generalised functions are computed, or when log-
arithmically divergent integrals are evaluated. Some examples were given 
in Sec. 14.3. Some further examples will be given in Ch. 22, where the eval-
uation of divergent convolution integrals is discussed. 

Determinacy of integrals is not the same as convergence. A convergent 
integral is always determinate, a divergent integral can be both determinate 
or indeterminate. 
Example 18. 7 The integral 

{18.10) 

with A E C and a E R+, is determinate for A =/: -1, it is indeterminate 
for A = -1 , it is divergent, but determinate for Re A < -1. 
Example 18.8 When one computes the {logarithmically divergent) in-
tegral 

{18.11) 
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one obtains an indeterminate result. The same holds for the (linearly diver-
gent) integral 100dx x-_ 2 e-x= -'t/;(2) + C, (18.12) 

but the integral of the sum of the previous integrands gives 

{
00dx (1 + x)x-2 e-x= 't/;(1) - C - 'lj;(2) + C = -1, lo · (18.13) 

which is a determinate result, even though the integral in (18.13) is still 
linearly divergent. 
An advantage of having indeterminate integrals is that the cumbersome dif-
ference between the integrals 

(18.14) 

and 
1adx x- 1 , (18.15) 

becomes irrelevant. The contributions from the additional 6-functions cancel 
or do not cancel together with the C's. If they do not cancel the integral is 
indeterminate and therefore (physically) meaningless. 

Indeterminate functions are very suitable for performing physical com-
putations when the results of the computations may or may not be determi-
nate. 
Example 18.9 The potential caused by an electrical line charge (The 
Green function of the Laplace equation in two dimensions), of charge den-
sity A is found as 

V(r) = - dx (x2 + r 2)- 1!2 = A !00 

471' -oo 

= log( J x 2 + r 2 + x) I +oo = 
471' -oo 

-A = 271' (log(r /ro) + 2 log 2 + C). (18.16) 

This is given in convenient form by the indeterminate logarithm. The value 
of the potential at a point is meaningless, and it cannot be fixed in a natural 
way. It is of course possible to fix the value of the potential by any suitable 
convention, but this is physically irrelevant. 
The electrical field produced by a line charge, 

A r 
E(r) = 271' r2 , (18.17) 

is given by the gradient of the potential, which is of course determinate. 
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Example 18.10 The second order correction to the mass of the elec-
tron in the perturbation expansion of quantum electrodynamics is ( com-
pare [Lod2]) linearly divergent and indeterminate, the mass correction of 
the photon is quadratically divergent and determinate. One does not know 
this before the integrals representing these corrections have been found, for 
example by explicit computation. The determinacy can then be established, 
for instance by evaluating the integrals. 
The use of an indeterminate constant takes care of the bookkeeping of the 
scale transformation properties automatically. In complicated computations 
it is a useful check on the correctness of the computation, since all powers of 
C have to vanish in the final result, when this is known to be determinate. 
It is even possible to split a determinate expression into indeterminate parts, 
and to recombine these later into the determinate final result. (if no errors 
have been committed)! The introduction of the indeterminacy does not spoil 
the linearity of the theory of generalised functions. 

The manipulation of the indeterminate constant is analogous to the 
corresponding rule for the indefinite constant which appears in the indefinite 
integral. By the fundamental theorem of the calculus Ch.14, the definite 
integral of a function f(x) is the definite difference 

1b dx f(x) = (F(b) + C) - (F(a) + C) = F(b) - F(a), (18.18) 

of two values of the indefinite primitive F(x) + C. Of course the same value 
of C has to be chosen in both to obtain the correct result. 
Example 18.11 In the definite integral one may take C + 37 at the 
upper limit and C at the lower limit. The definite integral is then equal to 
the area under the curve plus 37. There is no limit to the complications 
which can be created arbitrarily. 

Likewise there is the possibility of adding a different number to C at 
each singular point. This corresponds to choosing a different definition of 
the logarithm at each singular point. It is convenient to define the logarithm 
in the same way everywhere. Other conventions are possible but not useful 
in the context of this book. 
Remark 18.8 The possibility of obtaining a determinate result by ad-
dition of the contributions from different singularities obviously implies the 
possibility to relate the scaling at different points. Here only the simplest 
case is considered. It corresponds to a homogeneous space with the same 
properties everywhere. A more complicated possibility is obtained by intro-
ducing a gauge faild to relate the scaling at different points. 
Remark 18.9 Actually the indeterminate constant is closely related to 
the indefinite constant which appears in the indefinite integral. Instead of 
the choice made in this book, one can define the operator '.D- 1 only up 
to a multiple of the unit function. In the Fourier transformed picture this 
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means that the function x- 1 has been made indeterminate. The function x- 1 

should then be replaced by x-1 + C 6(x). This choice was not made in this 
work. It would destroys the definite parity of the operator '.D- 1 . Only the 
function lxl-1 - 2C6(x) is allowed to be indeterminate by a 6(x) function. 
If one does not like the indeterminacy can always work with determinate 
expressions. It is then necessary to find out by other means if the results of 
computations are scale invariant and (physically) meaningful. 

18.3 Determinacy 

It is often useful to have criteria to decide beforehand whether generalised 
functions, scalar products, or integrals are determinate. The contents of the 
preceding are summarized by listing some properties. 
Property 18.1 A generalised function J' ( x) E PC~ is determinate iff 
/'(x) E PC~ n S = S, where Sis the Schwartz space of C 00-functions of 
rapid decrease. 

An equivalent statement is 
Property 18.2 A generalised function J' (x) E PC~ is determinate iff 

00 

( 1/(a,q)(x - xo), J'(x)) = L 8.a,p oq,O o;:~2 ( 1/(Pl(x - Xo), J'(x)) 

'</a E C, 'r/xo E JR, 'r/q E N, and 

'r/k E JR, '</a E C, 'r/q E N. 

Likewise in PC>. one finds 

p=O 

(18.19) 

Property 18.3 A generalised function f(x) E PC.x is determinate iff 

(18.20) 

'</a E C, 'r/q E N, 'r/xo E JR, and 

( a(-p-l,ql(x - xo), f(x)) = 0, (18.21) 

'r/p, q E N, 'r/xo E JR, and 

(18.22) 

'r/k E JR, '</a E C, 'r/q E N. 
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The various indeterminacies in PC>,. and PC~ do not cancel, so we have 
Property 18.4 A generalised function /(x) E GF8 is determinate iff 
f(x) = /1(x) + /2(x), with fi E PC>,. and / 2(x) E PC~ and with / 1(x) 
and / 2 ( x) separately determinate. 
Verification: 
trivial 

From left to right by inspection, from right to left is 

In the scalar product the indeterminacy of different terms may cancel. In 
view of the definition of the scalar product it is sufficient to consider the 
determinacy of the integral. An integral can be determinate only if all powers 
of the indeterminate constant cancel, so we have 
Property 18.5 A generalised function /(x) E PC~ has a determinate 
integral iff 

L ( (-)ka(-1,k)(x - Xj) 'f(x)) = ( 91(-1,k)(x), /(x) ), (18.23) 
Xj EIR 

Vk E N. As usual the sum over singular points is by definition finite and the 
number of equalities which have to be checked is also effectively finite. 
Verification: By inspection it is seen that the generalised functions 
which occur in the indeterminacy ali have a zero integral with the exception 
of 7J(x - xo), and 'f((x - xo), so these terms have to add to zero. 

In PC.>.. the situation is less satisfactory, since there is an asymmetry 
between the finite and infinity. This leads to 
Property 18.6 A generalised function /(x) E PC>,. has a determinate 
integral iff L ( a(-l,k)(x - xo), f(x)) = 0, (18.24) 

x;EIR 

Vk EN. 
Verification: In PC>,. only the 6<0\x - Xj) function contributes. As 
for the property 12.4 the equality is the necessary and sufficient condition 
for the cancellation of the contributions of the 6(x - x0) functions 

Since adding the generalised function r<-1>(x) does not change the determi-
nacy of the integral 

(18.25) 

while it does change the response to a a<-1>-function, it is not possible to 
combine the previous properties into a statement valid for GF8 as a whole. 
Examples Ex.18.8 and Ex.18.10 provide some cases where cancellation of 
the indeterminacy occurs. 
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It is obvious from the properties listed above that only logarithmically 
divergent integrals contribute to the indeterminacy. More precisely one sees 
from the properties of the a(-ll(x) functions that it is only the logarith-
mically divergent terms in the ·asymptotic expansions that matter. The 
occurrence of more strongly divergent terms is irrelevant. 

Finally one may verify that the different choices for the standardization 
will affect the outcome of a computation only when the result of the com-
putation is indeterminate. 

There is often some arbitrariness in deciding which generalised functions 
should be used to represent an 'ordinary' function. The determinacy may 
depend on this choice. 
Example 18.12 We have 

(18.26) 

which does not contribute to the integral, but 

(18.27) 

which does contribute. 
Mathematical analysis is no help here. It is necessary to formulate the whole 
physical theory in terms of generalised functions from the beginning, instead 
of attempting to translate 'ordinary' functions into generalised functions 
when mathematical difficulties occur. 



CHAPTER 19 

CONVERGE~CE OF SEQUENCES 

In this chapter the scalar product of the generalised functions is used to 
define a convergence concept on the generalised functions. Formally this 
definition of convergence is the generalised function equivalent of the weak 
convergence in Hilbert space. Since the space of generalised functions is 
enlarged with respect to Hilbert space by the addition of many singular 
generalised functions with point support, the 'weak' convergence also be-
comes much stronger. Weak convergence of generalised functions implies for 
instance pointwise convergence. 

It is therefore useful to consider also partial convergence. This is defined 
as weak convergence with respect to the scalar product with a subset instead 
of the whole space. 

The standard limit concept is not the most suitable limit concept for 
defining convergence of generalised functions. The generalised limit concept 
developed in Ch. 13 is more suitable for this purpose. 

It will be seen that many standard results are recovered with an adapted 
interpretation. For instance, a sequence of increasingly peaked functions 
with integral one will converge to an 11-function in a sense to be developed 
below. There are many sequences which converge to a non-zero limit as 
generalised functions, even though they converge to zero in the sense of 
distribution theory. It is also possible to interchange operators and limits, 
as one is used to in distribution theory. 

There is no generalised function equivalent of the strong convergence in 
Hilbert space induced by convergence in the norm, since there is no norm 
for the generalised functions. 

19.1 Sequences of generalised functions 

We consider one parameter families of generalised functions f(x; a), with a E 
JR, and investigate the limiting behaviour as a tends to a limiting value, for 
instance for a!O. In keeping with the standard definition of weak convergence 
the sequence f(x; a) is defined to converge {weakly) to /(x) for a!O when 

lim ( f(x; a), g(x)) = ( /(x), g(x) ), 
a!O 

(19.1) 

'v g(x) E GF8 • 

Weak limits are defined uniquely. This follows immediately from the re-
quirement of non-degeneracy (2.11) of the scalar product. Any generalised 
function that has zero scalar product with all other generalised functions is 
by definition zero. 
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Limits for other values of a are defined analogously. It is usually suffi-
cient to consider the limits al0 and ajoo. For convenience of notation a E ll4 
will be taken as a positive. The case where a runs through the positive in-
tegers is easily included as a special case when summation of sequences of 
numbers has been defined in Ch. 20. 

It should be kept in mind that in (19.1) we have a parametrized family 
of generalised functions of one independent variable. At this stage of the 
development it is not possible to consider it as a generalised function in two 
variables. This makes the exposition somewhat unsatisfactory at times, but 
this cannot be remedied in the context of this book. 

Despite the name, 'weak' convergence is actually a strong property for 
generalised functions. The space GF8 contains many elements such as 6(x) 
which are not contained in the Hilbert space £2, This makes 'weak' conver-
gence for generalised functions a much stronger property. Since the terms 
'weak' and 'strong' are not really appropriate for generalised functions the 
distinction will be dropped, and only the term convergence will be used. 

The convergence defined above is such a strong property that it is use-
ful to consider also partial convergence. A sequence f(x; a) is defined to 
converge partially to f(x) with respect to a subset SC GF8 when 

lim ( J(x; a), g(x)) = ( f(x), g(x) ), 
a 

(19.2) 

V g(x) ES C GF8 • The subset SC GF8 does not have to be a subspace. It is 
of course possible that the sequence actually converges partially on a larger 
subset than the subset on which convergence has been proved. A completely 
convergent sequence converges partially on every subset. In the following 
the subset S will be called the test set or the convergence set of the partial 
convergence. 
Example 19.1 By taking for the convergence set S the subset containing 
the elements 6(x-xo), for all points x0 E JR., one obtains the generalised func-
tion equivalent of pointwise convergence everywhere. Pointwise convergence 
is obviously not included in weak convergence in Hilbert space. 
Convergence in the sense of distribution theory is included as a special case. 
It corresponds to partial convergence on the usual Schwartz spaces of test 
functions, such as S or 'D, which are subspaces of the generalised functions. 

The drawback to having only partial convergence is that the limit of a 
partially convergent sequence may not be defined uniquely. Any generalised 
function that has zero scalar product with the whole test set can be added to 
the limit. For example if the convergence is no stronger than the pointwise 
convergence of Ex.19.1, any allowed linear combination of 6-functions can 
be added to the limit. 

The advantage of the concept of partial convergence is that it is fre-
quently unnecessary to establish complete convergence. For computing sea-
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lar products it is sufficient to know that the functions which actually occur 
in the scalar products belong to the convergence set. 

A proof of complete convergence will usually proceed through successive 
stages in which convergence on successively larger subsets is established. 

The convergence in the sense of the generalised functions is therefore a 
very flexible concept. There is no loss of power or convenience with respect 
to convergence in the sense of distribution theory. If convergence in the sense 
of distribution theory is adequate one can stop once partial convergence with 
respect to S has been proved, if necessary it is possible to do more. 

Instead of considering convergence in the symmetrized scalar product 
it is also possible to consider convergence in the left- or right-first scalar 
products defined in Ch. 8. This will be seen. to hold advantages in some 
cases. 

It has tacitly been assumed so far that the limit needed in the definition 
of the concept of convergence is the standard limit. This is indeed a possible 
definition, but it is not the most suitable choice for the generalised functions. 
Example 19.2 Consider the 'Gaussian' sequence f(x; a) defined by 

2 2 f(x; a):= ae-a"' , (19.3) 

which is the standard example of a sequence converging (when ajoo) to ,/"ii 
times the 6(x)-function. Therefore ii converges partially, with respect to the 
subset SC GF8 , to both 6(x) and r,(x). It is not possible to distinguish these 
on S. Actually using only S the limit is as yet undefined by any element 
in the subspace P.¥-tGFs, but it will be seen that the convergence can be 
strengthened. 
In order to test for convergence on larger subspaces we compute the scalar 
product 

(19.4) 

which follows (substituting a2x 2 -+ y) from the definition of the r-function. 
The result is valid in a classical sense for Re A > -1, and in the sense of 

generalised functions for A cf:. -,-2p-1. One sees that the standard limit of the 
sequence exists as a finite number only for Re .X > 0 or A = 0. This restriction 
is clearly unnecessary when the generalised limit properties (13.36) found 
in Ch. 13, such as Lim a>- = o >. 0, are used to define the convergence. 

' 
The example given above suggests that a more useful convergence concept 
is obtained by replacing convergence in the standard sense, 

f(x; a) -+ f(x) lim ( f(x; a), g(x)) = ( f(x), g(x) ), 
a 

(19.5) 

which was tacitly assumed in the definition (19.1), by 

J(x; a)-+ J(x) Lim ( f(x; a), g(x)) = ( f(x), g(x) ). 
a 

(19.6) 
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The distinction will be kept by writing 'Lim' or 'lim' also for limits of se-
quences. 

Strictly speaking this is not a satisfactory way to proceed, since it would 
be much better to define f(x; a) from the beginning as a generalised function 
in two variables, but this is not possible in the context of this book. Actually 
the situation is often better than it seems at first sight. In the non-zero 
contributions the factors a and x can in many cases be combined in such a 
way that only functions of argument ax remain. 

19.2 Increasingly peaked sequences 

In this section special attention is paid to sequences which (according to 
nai've expectation) converge to localized generalised functions such as the r,-
function. To get started we return to the sequence (19.3) of Gaussians. 
The relevant scalar products with PC .x are those which have a singularity 
at X = 0 

and 
(ae-a2x2, lxlA) =a-.xr(½A+ ½)-

Taking the analytical limit in (19. 7) gives zero, in (19.8) it gives 

Lim ( ae-a2 x 2 , lxlA) =Lima-Ar( ½A+½)= 
aToo aToo 

= ..fa8.x,o = .Ji ( r,(x), lxl.x ), 

(19.7) 

(19.8) 

(19.9) 

which is valid for A -:j:. -2p-1. The value for the exceptional cases is obtained 
by taking a residue. 

Therefore we have established partial convergence J(x; a) -. r,(x), with 
respect to the powers E PC.x, and consequently to all functions E PC.x 
which have an asymptotic expansion in terms of the simple powers. 

This result is easily extended to include logarithmic terms. Taking 
a residue on A, which is (at a regular point) equivalent to differentiating 
equation (19.6) repeatedly with respect to A, gives 

q 

( a e-a2x2' lxlA logqlxl) =a-AL (-)km 2k-q r(q-k) (½A+ ½) logk(a). 
k=O 

(19.10) 
At the singular points rUl is replaced by j! rLil, which is the residue defined 
in appendix A. 
In the generalised limit only the k = 0 term of the sum contributes, 

(19.11) 
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In particular for q = I and >. = 0 this gives the result 

Lim ( ae-a2 x2, loglxl) = ½ r<1>(½) ¥ ( 6{x), loglxl) ¥ ( 11(x), loglxl ), 
a1oo , 

(19.12) 
Comparing the result (19.12) with the corresponding scalar product of the r,-
functions 

( lxl>. logqlxl, 77f3,rl(x)) = (-)q8>.,{J 8q,r, 

one finds as a result of the limit computation 

00 

= Ii 11(x) + ~)-2)i rUl( ½) 17<0,i>(x). 
j=l 

(19.13) 

(19.14) 

This result for the limit reproduces the scalar products with PC>. correctly. 
The first term in (19.14) is in accordance with expectations, but the occur-
rence of the other terms might be an unexpected result. The interpretation 
of these additional terms will become clear in the following. 

The coefficients in the linear combination of 77<0,il (x) functions depend 
on the sequence of generalised functions used to approximate the r,-function. 
Example 19.3 Taking instead of f(x; a)= a e-a2x2 the sequence 

(19.15) 

and repeating the computation yields 

00 

Lim ae-ax H(x) = L (-)jr(j)(l) ,,,io,j)(x), 
a1oo j=O 

(19.16) 

and consequently 

(19.17) 

with coefficients differing from those appearing in {19.14). This is a generally 
the case. 
The situation in the symmetrical theory of generalised functions differs fun-
damentally from the corresponding situation [Lig] in distribution theory. 

In distribution theory the 8-function can be defined as an equivalence 
class of sequences converging to it, such as {19.17) or (19.15). The distinction 
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between these sequences cannot be made by means of the test functions of 
distribution theory. 

For generalised functions the linear combination of 7rfunctions which 
appears does depend on the particular approximating sequence. The class of 
all sequences which converge partially on S to the 17-function is an inherently 
richer object than the 8-distribution. 

The difference between non-equivalent sequences can be observed by 
taking a scalar product with a function having a !x!0 logqlxl type behaviour 
at x = 0. In the context of distribution theory such test functions are not 
allowed, since the resulting limit does not exist classically. 

The situation outlined above is satisfactory. Equivalent sequences in 
the sense of distribution theory are not equivalent in the sense of symmet-
rical generalised functions. Yet there is only one unique 7rfunction. The 
difference between different sequences can be characterized completely by 
the different linear combinations of 17<0,i) (x )-functions which appear in the 
limit. 
Remark 19.1 In Fourier transformed language the approximation of 8-
functions corresponds to the regularization of integrals s which diverge at 
infinity. This subject will be dealt with in Ch. 22. 
Remark 19.2 The result of taking the limit is not invariant under scale 
transformations of the parameter a. The generalised limit Limaroo log(a) 
is not invariant under scale transformations. One can always replace the 
parameter a by 2a, which changes the result of the computation by replac-
ing log(a) by log(a) + log 2, which gives an additional term in the limit. 
By straightforward computation one obtains for J(x; a) := 2a e-4a2 x 2 

(19.18) 

which has the same leading term as (19.14). The higher terms are different 
however. The sequence (19.18) is different from the sequence (19.3). 
The examples given above ma:k.e it again clear why it is not possible to obtain 
a satisfactory theory of multiplication of generalised functions on the basis 
of taking suitable limits of sequences. It is not even possible to obtain a 
satisfactory regularization in his way. (Compare Ch. 22). 
The scalar products of 8-like functions with logarithms 

( 6(x), log!xl) = 1P(l), and ( 17(x), loglxl) = 0, (19.19) 

are perfectly well defined, but the values of these scalar products cannot 
be obtained by the limiting procedure outlined above. Any value can be 
obtained be choosing a suitable approximating sequence. 

The improved approach using the methods developed in this book is 
possible by relating the definitions of the generalised functions loglxl, 17(x), 
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and 'B(x) to the same scale. Everything is derived from the simple powers x>.. 
The 7rfunctions with other indices are also obtained easily as limits. 
As a special case we compute 

00 '"'i; · (-)P (}(2p)( ) + L..J Ua,-2p 7 X ' 
p=O 

{19.20) 

with rfil the residue of the r-function defined in appendix:A. The addi-
tional 9(p)_functions arise from the fact that for these special values of a 
testing with 'B(p)(x) yields a non-zero result in the limit. 
In particular for a = 0 we obtain 

00 

Lime-02x2 = 6(x) + '°"{-2)ij! rfil(o)u<- 1,i>(x), 
afoo L..J 

j=O 
{19.21) 

in agreement with the naive interpretation of 9(x) as the function which 
equals one at x = 0 and zero otherwise. The result differs from 

00 

a°' Lime-ax H(x) = '°" <->; j! rfil(a) .,,ia-l,i)(x) + 
afoo L..J 

j=O 
00 

+ L <~t °-a,p ()iP>(x). {19.22) 
p=O 

Only the leading terms agree (up to the normalization). 
It is a simple matter to obtain a sequence having 71<0,1>(x) as its leading 

term in the limit. Any difference of two normalized sequences with leading 
term 71(x) will do. 
Remark 19.3 In distribution theory it is necessary to approximate de-
rivatives of the 6-distribution by sequences which are designed to have their 
lower moments equal to zero, otherwise the limits of the scalar products will 
diverge in a classical sense. 
Example 19.4 In distribution theory one has the limits 

(19.23) 

and consequently 

(19.24) 
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and differentiating once more 
lim (2a5x2 - a3) e-a2x2 = ~(2)(x). 
aToo 

(19.25) 

It is necessary to use these more complicated forms to avoid divergence of 
the limits. In the sense of generalised functions (19.25), with 'lim' replaced 
by Lim, also converges to ../"ii r/2> (x) + • • • , but it is possible to use the 
simpler form (19.20) with a= 3 instead. 

19.3 Convergence on PC~ 

As the next step one may attempt to extend the convergence to PC~ by 
taking residues with respect to A to obtain lx'I>.. As found before the result 
depends on the order in which the residues are computed. 

Using again the notation of the left-first and right-first scalar products 
to indicate which residue is to be computed first we define 

Lim ( f(x; a), lx'I"' f := LimRes(A - a)-1 ( f(x; a), lxl>. ), 
a a >.=c, (19.26) 

and 
Lim f(x; a) , lx'I"') := Res Lim(A - a)-1 ( f(x; a), lxl>. ). 

a >.=c, a 
(19.27) 

Symmetrization is defined by 

Lim (f(x;a),lx'I"') := ½LimRes···+ ½ResLim••·,. 
a a a 

(19.28) 

As before in Ch. 8 only one term contributes, so the net result is simply the 
introduction of the usual half. 

Taking the residue first substitutes a for A, and then the Lim is non-
zero, taking the Lim first leaves a residue of a zeromorphic function, which 
is zero. 
Scalar products with 0-functions are again found as differences 

Lim ( f(x; a), 0i"'\x)) = Lim ( f(x; a), lxl"') - Lim ( f(x; a), lx'I"' ). 
a Too a Too a Too 

(19.29) 
Application of these definitions to the standard example 

(19.30) 
yields 

(19.31) 

and 
Lim ( f(x; a), lx'I>. f = 8>.,o • afoo 

(19.32) 
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Symmetrization gives 

Lim ( f(x; a), lx'I>.) = -21 6>. 0 = ( 'f/(x), lx'I>. ). 
ajoo ' 

This extends the convergence of (19.30) to PC~. 
Taking the difference with the result for the unprimed powers yields 

in accordance with the scalar product with the r,-function. 
Putting ,.\ = 0 gives 
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(19.33) 

(19.34) 

Lim ( f(x; a) , 0(x)) = ½ = ( T/(x), 0(x)) -::j:. ( 6(x), 0(x)) = 1. (19.35) 
ajoo 

The leading term of the limit of the sequence is the ,,,-function, not the 6-
function. The same is the case for the higher terms in the series since there 
are no 6(0,,j)_functions. 
With this extension of the definition of convergence we have 
Property 19.1 

00 

Lim a e-a2 x 2 = '°' (-2)i rU> ( l) ,,,<0 ,i> (x), 
ajoo 2 

j=O 

converges completely on GF8 to its limit. 

(19.36) 

D 

It will be seen that most sequences which occur naturally allow for extension 
of the partial convergence to complete convergence. 

19.4 Dirac's limit property 

After the rather special examples considered in the previous section it is 
time to introduce a more general limit property due to Dirac. 

In his book [Dir) Dirac mentions several properties (2.1-4) that the 6-
function should have. The first three of these are obviously satisfied by the 
distribution 6, but the fourth, (2.4) 

(19.37) 

is usually omitted, since it is somewhat problematical in distribution theory. 
Dirac's notation is used in this section, even though it would be more 

consistent with the notation of the rest of this chapter to write 

Limaf(ax) = 6(x) · f00 dx f(x). 
ajoo J_oo (19.38) 
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The first question is how (19.37) should be interpreted. Dirac is not clear on 
this point, but from the general context it is clear that only conditions which 
are necessary to give meaning to the right-hand side should be imposed. It is 
therefore sufficient that f(x) should be (Lebesgue) integrable. An often used 
example is the rectangular function f(x; E) := c 1 H(x)H(E - x) of width E 

and height c 1 , which is worked out in the next example. 
It is clear that ( 19.37) is not valid in the sense of distribution theory with 

this interpretation. In distribution theory the distribution 8 can be defined 
as an equivalence class of sequences of C00-functions, for instance from the 
Schwartz spaces Sor V. The rectangular function is not an element of these 
spaces, so Dirac's sequence cannot be used as a definition of the 8-function 
in this case. 

It is possible in the context of distribution theory to give a more useful 
interpretation to (19.37), by considering the function f(x) as a distribution, 
which happens to be equal (in the sense of distribution theory) to an ordinary 
function. With this interpretation the sequence (19.37) becomes a sequence 
of distributions, which converges to the 8-distribution in the sense of distri-
bution theory. This is a rather weak result, since the convergence is only 
with respect to the test functions E V or E S. 

It is of course possible to work harder and to show that the result can be 
extended to functions which are continuous at the origin, but this requires 
more effort, and it does not produce 'a general result. 

The situation is different when the symmetrical theory is used, with the 
convergence concept defined above. Considering only the positive real axis 
for convenience, and taking f(x) real valued, one finds for the scalar product 
with a power 

( f(x; E), xA H(x)) = 100dx XAE- 1 /(E-1x). (19.39) 

By substituting y := E-1x this takes the simple form 

( J(x; E), xA H(x)) = EA 100dy f(y) yA :=EA](>,), (19.40) 

From the limit properties (13.36) one sees that the limit dO exists when](>.) 
is analytic at the origin. It is known from the results of Ch. 5 that this is 
the case when the asymptotic expansion of f(x) at x = O+ does not contain 
terms of the form x-1 logq(x). 
The result of taking the limit (partially on the powers) is 

(19.41) 

in agreement with Dirac's requirement. The result (19.41) holds not only 
for integrable functions. It holds more generally, the only requirement is the 
absence of logarithmically divergent terms. 
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The general result ( converging completely) is 
00 

. -(j) (01·) 
~\1J1f(x;e) = L...J(-)1 / (0) 'T/i' (x), 

j=O 
(19.42) 

valid when j(>,.) is analytic at ,\ = 0. 
Example 19.5 The rectangle limit. Taltlng the natural example f(x) = 
H(x)H(l - x) one obtains 

00 

Lime-1H(x)H(e-x) = Lil'f/l0•i)(x), 
E!O . O 

1= 

(19.43) 

with the first term in agreement with naive expectations. 
Remark 19.4 Dirac's property cannot be extended simply to all gener-
alised functions by considering f(x; e) := e.\S(c1 ) f(x) The na¥ve change of 
variable y := C 1x is not justified in general. It was shown in Ch.16 that 
the scale operator is not completely unitary. The exception is again given 
by the functions behaving as x-P-1 logqlxl sgn(x) at the origin. 
Example 19.6 As a special case one may take the function f(x) = 
6(x - 1), or equivalently 'TJ(X - 1). This yields the the intuitively appealing 
result 

Lim 6(x - e) = 'T/i (x), 
dO 

(19.44) 

without additional higher terms. By,comparison with (19.40) one sees that 
this is (essentially) the only sequence without higher terms. Only the func-
tion 6(x -1) has the function/(:.\)= 1 as its Mellin transform. One may of 
course add functions with a zero Mellin transform such as 6(x-1)-'TJ(x-1). 
By computing the required scalar products one verifies that the convergence 
in (19.44) is complete. 
Example 19.7 When we replace 6(x -1) by 6(x - 2) we obtain 

00 

Lim 6(x - 2e) =~(-log 2)i j! ,,,I0•i\x), 
E!O ~O 

1= 

{19.45) 

so by taking the difference we obtain a sequence with ,,,io,i) (x) as leading 
term, 

Lim(6(x - e) - 6(x - 2e)) = log2 ,,,i0•1\x) + • • •. 
E!O 

{19.46) 

One can also construct sequences converging to logarithmic ,,,_functions 
~\1J1e6<1l(x - e) = ,,,io,i)(x), (19.47) 

without additional terms. Similarly one can construct sequences converging 
to the higher logarithmic ,,,_functions with j > 1. 
Dirac's limit property is easily generalised to scaled sequences of the general 
form a.\S(a) f(x). Many of the limits which occur in this chapter, such 
as (19.3), are special cases of Dirac's limit property. 
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19.5 Limits at infinity 

Instead of increasingly peaked sequences one can also consider sequences 
which become progressively wide:r. The method of computation remains the 
same. Computation of the analog of the examples given in the previous 
section results in 

(19.48) 

in agreement with the limit calculated in (19.20). 
Remark 19.5 In the limit calculation the scalar product with a power 
has been computed, and the 7rfunctions have been put either at x = 0 
or x = oo in such a way that the correct result is obtained. This can also be 
obtained by splitting the integration interval. The result is the splitting of 
the r-function into incomplete r- and ,y-functions with the correct limiting 
behaviour. This has not been written out fully since it leads only to technical 
complications without additional insight. 
An example which will be needed in the next chapter in connection with the 
analytic properties of the Hilbert transform is 

(19.49) 

A particularly instructive special case is given by 

Lim H(a + x)H(a - x) = I'(x) + 0(x), 
afoo 

(19.50) 

without additional I-functions. From the lack of ,-<-1,J>(x) one concludes 
that the integral in the sense of generalised functions satisfies 

Lim f°dx f(x) = [00-dx f(x), 
afoo lo lo (19.51) 

V f(x) E GFs, including the logarithmically divergent integrals behaving 
as lxl-1 logqlxl at infinity. For ordinary integrands (not containing general-
ised functions at infinity) the upper limit can be taken as oo. This example 
will recur in worked out form in Ch. 22. 
Fourier transformation or direct computation yields the corresponding ex-
ample 

00 

Lim 'll'-1x-1 sin(ax) = I:C->3 j! C;+1(0, 0) 17<0,i>(x) = M'.l> 6(x). (19.52) 
afoo j=O 
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There are indeed good reasons for preferring the Dirichlet kernel. Conse-
quently the generalised limit 

Liim ( 1r-1x-1 sin(ax), logqlxl.) = Cj+1{0, 0) = ( 6{x), logqlxl ), {19.53) 
a oo 

gives the correct products of the 6-function with the powers of the logarithm. 
The sequences {19.52) and {19.50) are preferred sequences. A different choice 
of the values of generalised functions at infinity, and consequently a different 
choice for the values of the powers of the logarithm at x = 0 in Ch. 13, and 
another choice for the standardization of the product in Ch. 9, would result 
in another preferred sequence. The present choice is a highly convenient one. 
This remark will be taken up again in Ch. 22. 

19.6 Operators and limits 

One of the great virtues of distribution theory is the ability to interchange 
limits and operators freely. It remains to investigate in how far this will hold 
for sequences of generalised functions. 
For operators which have an adjoint the situation is simple. 
Property 19.2 Operators which have an adjoint can be interchanged 
with completely convergent limits. 
Verification: We have 

Lim ( 0 f(x; a), g(x)) = Lim ( f(x; a), ot g(x) ), 
a a 

{19.54) 

from the definition of the adjoint. By complete convergence this equals 

Lim ( f(x; a), ot g(x)) = ( /(x), ot g(x) ), 
a 

{19.55) 

so by shifting the operator back we have 

Lim/(x;a) = f(x) => LimO f(x;a) = 0 f(x), 
a ' a 

{19.56) 

valid when the operator O has an adjoint. In particular limits can be inter-
changed with selfadjoint operators. 
The simplest case is obtained by considering the Fourier operator. It has an 
adjoint :,::t = 21r:,:-1 , so the limit of the Fourier transforms is the Fourier 
transform of the limit. By computing the Fourier transform of a sequence 
such as {19.3) one obtains an identity involving r-functions. Quite compli-
cated identities for analytic functions can be produced in this way. 

For the differential operator the situation is more complicated. The 
possibility of interchanging limit and differentiation would follow from self-
adjointness ness of the operator i'D by 

Lim ( 'D f(x; a), g(x)) = - ( f(x; a), 'D g(x) ), 
a 

{19.57) 
WRONG! 



242 Convergence of sequences 

Assuming complete convergence the right-hand side converges, and using 
selfadjointness again we obtain 

Lim ( 'D J(x; a), g(x)) = ( 'D f(x), g(x) ). 
a 

(19.58) 
WRONG! 

Therefore the interchange of differentiation with the limit is allowed when-
ever the operator 'D is selfadjoint in the relevant scalar products. In particu-
lar this is the case in the subspace PC~. However it was seen in Ch. 10 that 
the differential operator does not have an adjoint when PC~ is enlarged 
to G F8 by the addition of PC>.. It is necessary to investigate the excep-
tional cases separately. The lack of selfadjointness in PC>. is caused by the 
existence of a stock-term at infinity 

( 'D f(x), g(x)) = - ( J(x), 'D g(x)) + ( J(x), 'D(f(x) • g(x)) ), (19.59) 

which equals 

1+00 
( J(x), 'D(f(x) • g(x))) = /(x) • g(x) l-oo = ( {l(x), f(x) • g(x) ), (19.60) 

by the fundamental theorem Prop. 14.2 of the calculus. 
Only the term proportional to sgn(x) in the asymptotic expansion at 

infinity of J(x) • g(x) may spoil the possibility of interchanging limit and 
derivative. It can be shown that products of the form f(x) • g(x) • {l(x) are 
associative V f, g E PC>., so the stock-term can be rewritten as 

Lim ( J(x; a), {l(x) • g(x)) = ( /(x), {l(x) g(x) ), 
a 

(19.61) 

which holds by the assumption of complete convergence. Therefore we have 
the result: 
Property 19.3 The derivative of the limit of a completely convergent 
sequence of generalised functions equals the limit of the derivative of the 
sequence. D 

For the operator X we have the same situation, since X and 'D are unitarily 
equivalent under Fourier. The multiplication by x operator can be inter-
changed with the limit when the operator X is selfadjoint in the relevant 
scalar products. This is again the case in the subspace PC~. In PC>. he 
exceptional case occurs when J(x) * g(x) ~ x-1 at x = 0. As in the case of 
the operator 'D one finds that the operator X can be interchanged with the 
limit. 
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19. 7 Completed limits 

It was seen in the previous section that peaked sequences such as (19.3) 
converge completely to 1/ + • • • on GF8 • They also converge partially to 6 on 
a subset C GF8 • Sequences of increasingly peaked functions do not converge 
completely to the 8-function. 
Example 19.8 It is possible to construct sequences converging com-
pletely to 6(x) of the form 

J(x; a):= fi(a) 6(x) + h(x; a), (19.62) 

with Lim Ji (a) = 1, and Lim h ( x; a) = 0 ( x). The result of taking the limit 
is obviously the 8-function, but it has been put in explicitly. 
It is sometimes useful to possess limiting procedures which yield 6-functions. 
This can be achieved by defining completed limits by 

L1mf(x;a) :=M-1 LimM/(x;a). (19.63) 

This obviously yields a limit which is an element of PC>.. In particular the 
standard examples take the form 

(19.64) 

and 
(19.65) 

and 
(19.66) 

An application of this definition will be given in the next chapter. 

19.8 On topology 

When the standard limit (19.5) is used to define convergence it is possible to 
apply standard methods to derive a topology from convergence in the scalar 
product. The topology is based on properties of the numerical value of 
scalar products, for instance on the requirement that a given scalar product 
be smaller than a given E > 0. 

With the generalised limit (19.6) this is no longer possible. The defini-
tion of the generalised limit is not based on the numerical values of scalar 
products, but instead on the asymptotic behaviour of the scalar product as 
a function of the limiting parameter. 
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Example 19.9 The sequence f(x; a) := a- 1 e-n2 /a2 was shown to con-
verge completely. Its scalar product with the 6-function equals a-1, with a 
going to zero. The generalised limit is nevertheless zero, since asymptotic 
behaviour for large a does not contain a constant part. 
What is needed is a measure of the closeness of an element of a limiting 
sequence to the limit. Suppose that Limaio(/(x; a) - f(x)) = O(x). Then 
we may consider the scalar product 

d(a;g) := (f(x;a)-f(x),g(x)), (19.67) 

for a suitable test function g(x) E GF8 • In distribution theory test func-
tions g(x) E S are required to be asymptotic to a Taylor series, so the 
distance function d( a; g) is also asymptotic to a Taylor series. 

When generalised limits are considered the closeness function is in gen-
eral asymptotic to a more general expression, within the limits imposed 
by (4.1). As a measure of the distance E(a) between f(x; a), and f(x), with 
respect to the generalised function g(x) one can take any finite number of 
the leading terms of the asymptotic expansion 

E(a;g):= L LcikalA3 llogklxl, 
jAjl<P k 

(19.68) 

with the exponent of the power replaced by its absolute value. The Cjk 

are the coefficients in the asymptotic expansion of d(a;g) for alO. The 
potentially bothersome divergence of the logarithms is irrelevant, since a 
distance function with )..i = 0 cannot occur in the case of convergence. 

In particular one can take only the leading term, corresponding to the 
highest power of the logarithm of the power of a closest to >. = 0. In 
the previous example the newly defined distance is a instead of a- 1 . It is 
of course impossible to use the asymptotic expansion as a whole, since no 
assumptions about convergence have been made. For Re >.i > 0 the modulus 
sign in (19.68) is superfluous and we have convergence in a standard sense. 
This is also the case when the asymptotic expansion vanishes except for a 
remainder term. 

This asymptotic analysis is an essential component of a symmetrical 
theory of generalised functions. It will remain even if it were possible to 
avoid the use of analytic methods to investigate the asymptotic behaviour. 
Remark 19.6 It is often thought that convergence is indispensable in 
order to give a computational content to analysis. This is not the case. The 
numbers which appear as the result of generalised function computations 
can be obtained by determining coefficients in asymptotic expansions. 
It is possible to consider limit processes, it does not seem to be possible to 
define the concept of a neighbourhood in the space of generalised functions 
in such a way that it agrees with the generalised convergence concept. 
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Topological vector spaces are not suitable at present to serve as basis 
for a symmetrical theory of generalised functions. It is not possible to obtain 
adequate symmetry properties in this way. Further thought on this subject 
is necessary. 

19.9 Conclusion 

It has become clear that many limit processes can be handled on basis of the 
definitions given above. The limit concept is stronger, yet the computational 
convenience of distribution theory has not been lost. It is still possible to 
interchange limits and operators in the relevant cases. 

It is also clear that the limit properties are less suitable for the definition 
of singular functions. In cases where divergence occurs the limit approach 
lacks the necessary power. 

Limits in the sense of smaller than E have to be replaced by an as-
ymptotic analysis for small E. In this respect the symmetrical theory of 
generalised functions differs fundamentally from both distribution theory 
and standard analysis. 

The subject of closure under convergence in some sense is left open. 
Regaining an unified theory, which should combine the good properties of 
standard analysis with the additional power of the symmetrical generalised 
function, will require a large amount of work. 





CHAPTER 20 

SUMMATION AND PERIODIC FUNCTIONS 

The summation of infinite series is to a large extent analogous to the inte-
gration of functions. A summation theory for numerical sequences, which is 
suitable for the generalised functions is developed along the lines of Ch. 4. 

Periodic generalised functions, and consequently Fourier series are not 
yet allowed as generalised functions. This is easily remedied. Only the comb 
of equally spaced 15-functions has to be added as a generalised function. 
Then the multiplication of the 15-comb with an arbitrary generalised func-
tion E GF8 gives the Fourier transforms of the periodic functions which are 
compatible with the rest of the model. Every generalised function with a 
bounded support can be continued to a periodic generalised function. Its 
Fourier coefficients are found in the form of the standard integral over the 
period, which is now interpreted in the sense of generalised function theory. 

Since the product of a i5-function and a Fourier sum is then well defined, 
the theory of Fourier sums also gives the possibility of evaluating many sums 
as a product of a periodic generalised function and a 15-function. A sequences 
of numbers { an} can be represented by a generalised function, which is a 
sum of of 15-functions at x = n with •weight an. The summation of infinite 
series which results in this way is compatible with the evaluation of integrals 
as defined in Ch. 14. 

20.1 Preliminary summation 

In the standard sense sums of sequences of numbers are defined by con-
vergence of the series of partial sums. This concept is on one hand more 
general than needed for the purpose of the model developed in this book, 
on the other hand it does not provide a sum for many (divergent) sequences 
which arise naturally when periodic generalised functions are defined in a 
way which is compatible with the symmetrical theory. 

As in the case of functions we begin by defining a preliminary class 
of sequences with suitable asymptotic properties. The sequences { an} are 
considered as functions of the variable n. These functions of n are required 
to satisfy the same asymptotic conditions ( 4.9) as the functions which belong 
to the preliminary class, 

J CX) Lk 
an~ LL L Cjk! eibinn>.k log1(n), 

j=O k=O l=O 

(20.1) 

with bn E IR, and Cjkl, >..k E C. The sums over j and l are finite, the upper 
limit Lk of the [-summation may depend on k. The >..k are again required 
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to be a descending sequence in the complex ,X-plane, in the sense defined 
in Sec. 4.1. As before asymptotic means asymptotic in the standard sense due 
to Poincare. The exponential oscillations are usually absent, which greatly 
simplifies the computations. The asymptotic behaviour is then of the form 

oo Lk 

Un~ LL Ck! n>-k log1(n), {20.2) 
k=Ol=O 

with the same restrictions as above. In the simplest case the elements Un 

are asymptotic to a power of n for njoo. The logarithms are easily obtained 
by formal differentiation with respect to .X. 
The basic sum we need is therefore 

I: n.>. = ((-.x), {20.3) 
n=l 

valid in a standard sense for Re .X < -1. The function ( ( .X) is the Riemann 
zeta function. Some of the properties of the ( -function and its generaliza-
tions are listed in appendix D. 

The ( -function is analytic in the entire .X-plane, with the exception 
of a simple pole of first order at .X = 1. The residue at the pole is equal 
to 1. The ( -function is therefore a meromorphic function of .X. For sums the 
function ((-.X) is the discrete equivalent of the function (.X + 1)-1 , which 
occurs in the case of integrals. The discrete case is technically more difficult, 
but there is no fundamental difference. 
The needed preliminary sums are defined as in Ch. 4 by 

00 00 

PreI: eibnna log1(n) := (.X - a)- 1 L eibnn>- log1(n), (20.4) 
n=l n=l 

where as usual the analytical continuation needed to define the residue has 
been assumed. 
Remark 20.1 The existence of the analytic continuation should not be 
taken for granted. Some counterexamples with a natural boundary along the 
imaginary axis may be found in [Tich]. The conditions on the asymptotic 
expansion imposed above are sufficient to assure the existence of the analytic 
continuation, but these conditions are much stronger than necessary. As 
before the aim is to keep the model as small as possible. 
In particular one finds for the sum of the powers, after consulting appendix D 
or [Erdl] for the Laurent expansion of the (-function 

P .>. _ {((-.X) A 1' -1, 
reL, n - 'lj!(l) ,x = -1, 

n=l 

in agreement with the standard result for Re .X < -1. 

(20.5) 
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The preliminary sum of a sequence is defined as 

oo oo J Re>-k2::-1 Lk 

PreI>n := L(an - L· L LCjkleibinn>-k!og1(n)) + 
n=l n=l j=O k=O l=O 

J Re:>.k<-1 Lk 

+ L L PreL Cjkl eibinn>-k log1(n), (20.6) 
j=O k=O l=O 

by complete analogy with the corresponding formula ( 4.22) for the integral. 
The first sum is convergent in a standard sense, and the number of subtracted 
terms is finite since the {Ak} are required to be a descending sequence. The 
preliminary sums in the second line have been defined above in the sense of 
generalised functions. 
Remark 20.2 In expressions such as (20.6) there are two different types 
of sum, the ( effectively finite) formal summations over terms of the asymp-
totic expansion , and generalised summations over an. This should not lead 
to confusion even though the same summation-symbol is used in both cases. 
It follows from the definition of the sum that it has the analytical property 

(20.7) 

This could also be used as a definition of the sum. 
The special functions which arise in the summation of sequences are 

special cases of the function (Bateman's notation), 

00 

IP(z,s,v) := L(v+n)-s zn. (20.8) 
n=O 

The definition of the function IP(z, s, v) and many derived properties may 
be found in [Erdl]. 

The Riemann ( -function and the generalised (-function are special 
cases of (20.8). The generalised (-function is obtained by taking z = 1, 

00 

((s, v) = IP(l, s, v) = L(v + n)-s, (20.9) 
n=O 

and the Riemann (-function is obtained by specializing to v = 1, 

00 

((s) = ((s, l) = IP(l, s, 1) = L n- 8 • (20.10) 
n=l 



250 Summation and periodic functions 

The properties of these functions mentioned in [Erdl] will be used in the 
following without proof. Some formulre are collected for reference purposes 
in appendixD. 

All sums defined so far are sums from n = 1 to infinity. Sums starting 
at another n-value are defined by 

CX) CX) p-1 

PreL an := PreL an - Lan. (20.11) 
n=p n=l n=l 

Sums over negative n-values are defined analogously. In the allowed asymp-
totic expansions n is replaced by -n or lnl, and the sums are defined by 
replacing n by -n in the definitions. 

In Fourier theory one encounters sums from -oo to oo. These are 
defined in the obvious way by 

CX) -1 CX) 

Pr~L an := PreL an + ao + PreL an. (20.12) 
--ex, --ex, -1 

If the sequences are defined on part of the integers the sum is interpreted as 
a sum over all integers by taking undefined an-values to be zero. 

It will be clear that the phenomenon of surface terms in the evaluation 
of integrals recurs in the definition of sums. The term at n = 0 has a 
preferred position, and the substitution m := n + p may yield an additional 
contribution at infinity. 
Example 20.1 Taking an = n° = 1, Vn E Z, one obtains from the 
definitions 

CX) 

PreL n° = ((0) = -½, 
n=l 

00 00 

PreLn° =PreL(n+p-1)0 = ½ -p, 
n=p n=l 

which illustrates the dependence on the choice of an origin. 
Summing over all positive and negative integers n gives 

00 00 -1 0 00 

(20.13) 

(20.14) 

PreL(n +p)0 = PreL n° = L + L + L = -½ + 1 - ½ = 0. (20.15) 
n=-oo n=-oo -oo O 1 

The result is independent of the choice of origin since an = n° does not have 
a jump at infinity. 
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The dependence of sums on the choice of an origin is unavoidable when the 
summand has jumps at infinity. Expressions such as 

00 I: i = ??? 
n=p 

or 1 + 1 + 1 + · · · = ??? , 
(20.16) 

WRONG! 

are and remain meaningless. It is of course possible to give these expressions 
an arbitrary meaning, but it is better to avoid this in order to prevent 
unnecessary confusion. 

20.2 Scalar products of sequences 

A preliminary symmetrical scalar product can be defined on the sequences 
by 

00 

. (an, bn )pre:= PreL a~bn, (20.17) 
n=-oo 

by analogy with the scalar product of functions. 
As before the sequences can be considered as linear functionals on the se-
quences by 

(20.18) 

The primed powers are obtained as 

(20.19) 

In particular the primed Heaviside sequence H'(n) is defined for positive n 
by 

H'(n) := Resn>- H(n), 
.X=O 

(20.20) 

and likewise for negative n. The primed unit sequence is now defined by 

I'(n) := H'(-n) + 8n,o +H'(n). (20.21) 

The primed unit sequence equals one in the finite, the residue determines its 
limiting behaviour at infinity. 

The generalised functions at infinity can also be defined for sequences. 
For example the generalised function 'ff/°',q\n) may be defined for sequences 
by 

00 

(an, 'ff/a,q)(n)) := >-=~~s_ 1 <~t (>,+a + l)q PreL ann>-. (20.22) 
n=l 
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It measures the coefficient of n°'· logq(n) in the asymptotic expansion of an 
at n = +oo 

( ,,1(a,q)(n) n.Blogr(n))=8 8 1'1; ' , a,,8 q,r , (20.23) 

in agreement with the corresponding measurement formula for functions. 
Limits of sequences are defined in an analogous manner. In particular, 

the limit for njoo of a sequence is defined by 

(20.24) 

Application of the definition (20.24) to the discrete powers gives 

(20.25) 

in agreement with the corresponding result (13.36) for the continuous powers 
of x. 
The standard limit is in this case 

limn°' logq(n) = { t 
nT= 00 

undefined 

Rea< 0, 
Reo:=0,q=0, 
Rea= 0, q > 0, 
Rea> 0, Imo:= 0, 
Rea> 0, Imo: f. 0. 

The sum in the sense of generalised functions is defined by 

+=-L an := ( H'(n), an), 
n=l 

by analogy with the corresponding integral. 

(20.26) 

(20.27) 

Sums and limits can be defined for sequences in complete analogy with 
the corresponding definitions for generalised functions. Perhaps it would 
have been better to start with summation instead of integration, but the 
integrals are simpler. In order to proceed it is necessary to define operators 
on the sequences. Instead of doing this directly it is more convenient to 
consider the sequences as generalised functions, and to define the operators 
on the corresponding generalised functions first. 
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20.3 The comb of 6-functions 

The material of this section provides the necessary tools to include periodic 
functions, and consequently Fourier series, in the symmetrical theory of gen-
eralised functions. When the Fourier theory of the periodic functions is 
available it can be used to complete the theory of sequences. 

In order to add periodic functions it is sufficient to add a single one, 
since the others arise from the operator and product properties. The best 
choice for this periodic function is the comb of 6-functions defined as a 
formal expression by 

00 

lll(x) := L 6(x - n). (20.28) 
n=-oo 

The sum is as yet a formal sum. This generalised function is also called 
Dirac's comb by some authors. The function lll(ax + b) is defined in the 
same way. Since the factor a can be taken out of the 6-function it is sufficient 
to consider the argument ( x - b) for the translated combs. 
One frequently encounters the special case 

00 

lll(x) := L 6(x - 21rn) = (21r)- 1 111(x/21r), (20.29) 
n=-oo 

which occurs as the Fourier transform of (20.28). 
The scalar product of a generalised function and a comb of 6-functions gives 
rise to the formal expression 

00 

( lll(x), f(x)) =Lan. (20.30) 
n=-oo 

The coefficients an are given by 

an= ( 6(x - n), f(x) ), (20.31) 

The scalar product takes the form of an infinite sum of the kind which has 
been defined in the previous section. The correct asymptotic behaviour of 
the terms in the sums follows at once from the asymptotic behaviour (4.9) 
imposed on the generalised functions. Therefore the sum is well defined. 

The product of the comb with an arbitrary generalised function g(x) E 
PC>- is a rough comb of the form 

oo P,. 

f(x) • lll(x) = L L an,m 6(P)(x - n), (20.32) 
n=-oop=O 
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with the coefficients an,m given by (9.86) 
00 

an,m = L ¼q! Cq+1(0, 0) ( 6(x - n), xm g(x) ), (20.33) 
q=O 

since the product of any generalised function with a 6-function is by (9.86) 
again a linear combination of 6-functions at the same point. The coefficient 
in (20.33) follows from (9.53-54) for the product of a negative power with 
a 6-function. 

This expression should also be defined as a generalised function. From 
the requirements imposed on the preliminary class it follows that the number 
of points where Pn > 0 must be finite. For every /(x) E PC,x there is an N1 
such that /(x) is C00 for lxl > N1. Therefore we have Pn = 0 for all n > NJ. 
The infinite q-summations are also effectively finite. 

It remains to define the action of the operators on the combs. The 
operators X and 'D do not present any difficulties. The derivatives of the 
comb are given by 

00 

'DP lll(x) := (-)Pp! 111(Pl(x) = (-)Pp! L t<Pl(x - n), (20.34) 
n=-oo 

which is again easily accommodated as a generalised function. 
Somewhat more effort is required'to define the Fourier transform of the 

comb. Formally one obtains 

(20.35) 
n=-oo 

In the sense of distribution theory it is known that 
00 00 

(20.36) 
n=-oo n=-oo 

Apart from a scale transforml;l.tion the comb is its own Fourier transform, 

Flll(x) = 21r lll(x) = 111(x/21r). (20.37) 

This will be taken as the definition of the Fourier transform of the comb. 
Remark 20.3 Application of (20.37) to a test function E S yields a 
special case of Poisson's summation formula [Lig]. For example, taking a 
Gaussian gives 

(20.38) 
n=-oo n=-oo 

Poisson's summation formula is easily extended to larger classes of functions 
by approximating them with test functions. 
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It must be shown that (20.37) is a good definition in the sense of generalised 
functions. This is equivalent to demonstrating that Parseval's equality holds 
with definition (20.38). 

The result holds for the contribution from the finite by Parseval's equal-
ity, so it is sufficient to consider the asymptotic regime. For convenience this 
can be taken from n = 1 since the results holds for the contributions from 
the finite. 
Taking J(x) = x>-H(x) gives 

00 

( x>. H(x), lll(x)) = L n>. = ((-,\), (20.39) 
n=l 

while the Fourier transform yields 

( r(,\ + 1) ( e-; (>.+i)x->.-l H(x) + ei; (>.+1)(-x)->.-l H(-x)) , lll(x)) = 
= -2(27r ),-->.-l sin ; ,\ r(,\ + 1) ((,\ + 1). (20.40) 

Equating the right-hand sides of (20.40) and (20.39) yields Riemann's func-
tional equation (D.6) of the (-function, 

(20.41) 

valid for,\¥- -1. For,\= -1 both sides have the same residue. Parseval's 
equality has therefore been verified for this special case. 

Shifting the comb lll(x) to lll(x - a) and making the same calculation 
yields Hurwitz's equation, (D.5) for the generalised (-function. Adding os-
cillations at infinity yields Lerch's formula (D.4) (after some transformation). 
Considering f(x) := x>- e-bx also leads to Lerch's formula. Finally powers of 
logarithms can be added by differentiation with respect to ,\, These formulre 
and their proof may be found in [Erdl]. 

The convergence is established for arbitrary generalised functions by 
subtracting a sufficient number of terms of the asymptotic expansion until 
a remainder is obtained for which Poisson's summation formula holds in a 
classical sense. 

Now that the Fourier transform of the comb has been established it is 
possible to define the infinite formal sum (20.35) as 

00 00 

(20.42) 
n=-·CX> n=-oo 

This result can also be obtained by approximating a periodic function with 
suitable sequences. 
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20.4 Periodic functions 

The definition of periodic generalised functions must be constructed in such a 
way that it is an extension of the. classical concept of periodicity. Classically 
a function fv(x) is periodic with period one when it satisfies 

fv(x + 1) = fv(x), (20.43) 

'vx E R This definition cannot be taken over for generalised functions, 
since generalised functions are not determined by their values. It was seen 
in Ch. 13 that there is a large class of generalised functions with value zero 
everywhere. Therefore it is necessary to return to the concept of infinite 
repetition. Consider any generalised function f0 (x) with support contained in 
the interval{-½,½}. The corresponding periodic generalised function fv(x) 
is defined by the formal expression 

00 

fp(x) := LT(n, 0) f0 (x), (20.44) 
n=-oo 

which formally represents an infinite repetition of the same function. The 
coordinate translation operator T( n, 0) has been defined in Ch. 15. With this 
definition a periodic function is invariant under translation over a period, so 
instead of ( 20 .43) we now have 

T(l, 0) fv(x) = fv(x). (20.45) 

A convention is necessary to decide if the point - ½ or the point ½ belongs 
to the interval { - ½ , ½ } . The choice is irrelevant for the resulting periodic 
function, as long as double counting is avoided. 
Example 20.2 Taking !o(x) := t(x) results in fv(x) = lll(x). 
The Fourier transform of the periodic function defined above can be read of 
immediately from the Fourier properties (15.24) of the translation operator. 
The result is 

:F(T(n, 0) f0 (x)) = T(0, n)(:F f0 (x)). (20.46) 

The action of the momentum translation operator T(O, n) on the generalised 
functions corresponds by (15.18) to generalised function multiplication by 
the generalised function einx, so the Fourier transform of a periodic function 
takes the form 

00 

(20.47) 
n=-oo 

The sum of exponentials which occurs here has been defined as a generalised 
function in the previous section. It equals the comb of t-functions. The 
Fourier transform of a periodic function can also be written in the form 

00 

:F fv(x) = 21r(:F fo(x)) • L t(x - 21rn) = 21r:F f0 (x) • lll(x). (20.48) 
n=-oo 
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This can be simplified by using the product property (9.86) of the 6-function, 
which states that the product of any generalised function and a 6-function is 
again a finite linear combination of v<PLfunctions. Ignoring the contributions 
at infinity for the time being, and assuming derivatives to be absent we obtain 
for the finite part of the Fourier transform 

00 

:F fp(x) = 271' Lan l(x 211'n), 
ri=-oo 

with the Fourier coefficients an given by 

an= ( :F f0 (x), l(x - n)) = :F f0 (n), 

This can be converted by means of Parseval's equality to 

(20.49) 

(20.50) 

Joo /1/2 
an= ( e21rinx, fo(x)) = dx e-21rinx !o(x) = dx e-21rinx fo(x), 

-oo -1/2 
(20.51) 

which coincides with the standard form of the Fourier coefficient. 
Example 20.3 Testing the Fourier transform with a 0(x-211'n) function 
yields 

(20.52) 

which shows that the Fourier coefficient a0 is equal to the constant part of 
the periodic function at infinity. 
More generally the coefficient an can be found by multiplication with any 
function having the value 1 at x = 21l'n and the value zero at all other 
integral multiples of 271'. 

In distribution theory it is possible to consider instead of periodic dis-
tributions the distributions of a space of test functions of bounded support. 
If it is desirable to consider periodic distributions on the support ( -oo, oo), 
it is necessary [Lig] to obtain the Fourier coefficients by means of so called 
'unitary' or 'smudge' functions, since the classical Fourier integral (20.51) 
is undefined in the sense of distribution theory. A unitary function is an 
element U(x) ES such that U(x) has support contained in !xi 1, and such 
that 

00 

(20.53) 
n=-oci 

Vx E JR. Its Fourier transform is (the restriction to the real axis of) an 
entire analytic function, which equals one at x = 0 and zero at every integer 
multiple of 271'. The Fourier coefficients can be computed as 

an= 1-:dx e- 21rinx fp(x) U(x), (20.54) 

with U(x) an arbitrary smudge function. 
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In practice the requirements imposed on unitary functions are so restric-
tive that the actual computation of Fourier coefficients by means of (20.54) 
is impracticable. 

In the symmetrical theory of generalised functions these problems do 
not arise. Equation (20.54) is also a correct (but unnecessarily awkward) 
way to compute Fourier coefficients in the sense of generalised functions. 
The use of smudge functions is not necessary. In the symmetrical theory of 
generalised functions there is more freedom to compute Fourier coefficients 
in any convenient way. 

The standard formula for the Fourier coefficients corresponds to choos-
ing U(x) = H(l - jxj). The corresponding observing function is the Fourier 
transform (x-n)- 1 sin(x-n). This choice is allowed for periodic generalised 
functions, it is forbidden for periodic distributions. 

For integrable function the Fourier transform of a function of bounded 
support is known to be the restriction to the real axis of an entire analytic 
function of exponential type, (Tich]. This carries over to ordinary generalised 
functions of bounded support. 

Other localized generalised functions, such as 0(a,q) or r/a,q) can also 
generate periodic generalised functions, which do not have a counterpart 
in distribution theory. These new periodic functions do not have Fourier 
coefficients in the finite. Their Fourier transform is located at infinity. 
Example 20.4 Consider the periodic function 

00 00 

/p(x) := L0(x-n) = LT(n,0)0(x), (20.55) 
n=-oo n=-oo 

which which might be called a 0-comb by analogy with the 6-comb. Its 
Fourier transform is given by 

00 

:F fp(x) = :F0(x) L e2,rinx= :F0(x) • lll(x)) = 
n=-oo 

00 00 

= L Li! Cj+1(0, 0) e2,rinx11'(0,J\x). (20.56) 
n=-ooj=O 

The scalar product of this expression with all generalised functions E GFs 
is well defined. By ( 4.9) its scalar product with all generalised functions 
contains only finitely many non-zero terms. 
Generally the Fourier transform of a periodic function takes the form 

00 

n=-oo 
00 00 

=Lan 6(x - 27rn) + f 2(x) • L einx, (20.57) 
n=-oc n=-oo 

with f 2 ( x) an allowed generalised function at infinity. 
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20.5 Completion of the sequences 

Application of the limit properties of sequences leads to the question in 
how far periodic functions can be considered as an infinite repetition of the 
period. This is conveniently discussed in terms of the comb of 6-functions. 
The treatment parallels the corresponding treatment for sequences, so it is 
not necessary to write out the details. The result is 

N +oo- oo 

Lim L 6(x - n) := L 6(x - n) = H'(x) • L 6(x - n). 
Njoo n=l n=l n=l 

(20.58) 

Likewise in the symmetrical case one obtains 

N +oo-

Lim L 6(x - n) = L 6(x - n). 
Njoo 

n=-N -oo+ 

(20.59) 

The formal sum which served as a starting point can be recovered as the 
completed limit 

N oo 

Lim L 6(x-n)=L6(x-n). 
Njoo n=-N n=-oo 

' 
The same holds for the sums of sequences 

and the completion 

N +oo-

Lim Lan = L an. 
Njoo 

n=l n=l 

N +oo 

Lim Lan= Lan, 
Njoo 

n=l n=l 

The two expressions do not differ 

n=l n=l 

(20.60) 

(20.61) 

(20.62) 

(20.63) 

since there is a contribution from infinity only when this is explicitly indi-
cated by the appearance of a generalised function at infinity. The completion 
is simpler for sequences than for functions. 

The periodic generalised functions are only partially recovered as limits. 
In particular the periodic functions at infinity are missing. 
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20.6 Conclusion 

This chapter presents an outline of the introduction of periodic symmetri-
cal generalised functions. It is not yet a complete definition in the sense of 
generalised functions. The products of periodic functions have been defined 
only for periodic functions with the same period. In order to lift this restric-
tion it is necessary to enlarge the allowed asymptotic behaviour at infinity. 
Instead of the finite sum of exponentials allowed by ( 4.9), it is now necessary 
to allow more complicated expressions of the form 

(20.64) 

An extension of the model in this direction does not give rise to new dif-
ficulties, since only finitely many periodic functions have to be multiplied. 
This extension is not included in this work since it is not immediately useful 
for applications, and it does not lead to more insight in the structure of the 
model. 



CHAPTER 21 

HILBERT TRANSFORMS AND CAUSALITY 

The Hilbert transform of a generalised functions is defined as the convo-
lution of that function with the generalised function ( -1rx)-1. It can be 
found by straightforward computation from the Fourier transform and the 
multiplication by the signum function, which are already defined for all gen-
eralised functions. As an application the Kramers-Kronig relations for causal 
functions are derived. 

21.1 The Hilbert transform 

The Hilbert transform of a generalised function is defined as the convolution 
of that function with the generalised function -1r- 1x- 1, 

(21.1) 

The normalization used here is the same as the normalization used in the 
tables of the Bateman manuscript project. [Erdl]. With this choice of 
normalization the Hilbert transform of a real function is real, but its square 
is negative. 
In cases where the integral is defined classically the Hilbert transform takes 
the form 

"LJ f( ) - -ljood f(y) n.. X - -'Ir y -- ' -oo X -y 
(21.2) 

where the integral is to be understood classically as a principal value. 
In accordance with the definition of the convolution of generalised func-

tions, the Hilbert transform of a generalised function can be computed by 
Fourier transformation as 

1-f, f (x) = iF-1 ( (:F f(x)) • sgn(x)), (21.3) 

where the factor i comes from :Fx- 1 = -i1rsgn(x). Since the Fourier trans-
form and the multiplication is defined for all generalised functions the com-
putation of Hilbert transforms is straightforward. 
The Hilbert transform would be its own inverse ( up to the sign) if the relation 

(21.4) 
rlrl = -I, WRONG! 

would hold. In cases where the convolution product is associative the iden-
tity (21.4) follows from 

(21.5) 
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and the convolution product (9.96). 

(21.6) 

Unfortunately the convolution product (21.5) is in general not associative. 
This can be seen by Fourier transformation to the equivalent non-associative 
pointwise product 

sgn(x) • (sgn(x) • f(x)) ¥ (sgn(x) • sgn(x)) • f(x) = I(x) • f(x) = f(x). 
(21. 7) 

The standard example in which inequality holds in (21.7) is 

O(x) = sgn(x) • (sgn(x) • 6(P)(x)) ¥ (sgn(x) • sgn(x)) • 6(P)(x) = 6(Pl(x), 
(21.8) 

as found before. Correspondingly the convolution product is not associative 
when f(x) is a polynomial in x. 

The Hilbert transform has a zero space containing all polynomials E 
PC_x. Instead of (21.4) only the weaker equality 

(21.9) 

holds. On the subspace (I - PxP )GI\ the Hilbert transform has a unique 
inverse. In general the inverse of the Hilbert transform is defined only up to 
an arbitrary polynomial. 

The Hilbert transforms of the generalised functions are computed by 
straightforward application of the definition. As usual it is convenient to 
begin with the subspace PC\. Computation of the Hilbert transform of the 
powers gives 

1tlx'l 0 logqJxl sgnm(x) = 
q+l . 

= Hqq!L <3;1 hq-j(a,m)lx'l 0 logilxlsgnm+l(x) + 
j=O 

00 

- 2(-)qq! Lj! hq+j+i(a, m) x 
j=O 

X (<-)j1]i-a-1,j)(x) - ef(-a-1,j)(x)) sgnm+l(x), (21.10) 

valid for (a, q) ¥ (p, 0). The coefficients h ... 

(21.11) 
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are defined by (C.42) in appendix C. The corresponding computation gives 
in the exceptional case 

00 

1f.x' = -2 :Ej! hi+1(P,P)(<-l11(-p-l,il(x) -ef(-p-l,i>(x)) .. (21.12) 
i=O 

For the corresponding 9(p)_functions one obtains 

00 

1f. 0<P>(x) = 2 :E (-)i j! hj+1(p,p) 77<-p-l,il(x), 
i=O 

so combining (21.13) and (21.12) gives 

00 

1t(x'P + 0<P>(x)) = 2 :Ej! hi+i(P,P) ef(-p-l,i)(x). 
j=O 

(21.13) 

(21.14) 

One sees that the result of taking the Hilbert transform of a power E PC~ 
is always non-zero. The ef-functions at infinity cannot be removed, so the 
Hilbert transform of a polynomial in PC~ is a non-zero generalised function 
at infinity. 
For the ,,,-functions computation gives 

00 . 

= '°' (-)3 (q+i)!(l-6 6- )h·(-a-lm)'ll(a:,q+i)(x)sgnm+l(x)+ L...., q! q,O J,-1 J , 'IS 

i=-1 
00 

+ ¾ 6q,O :E(60:,-p-l 0(P)(x) - p! 60:,p(x'-p-l + g(-p-l)(x)) ). (21.15) 
p=O 

As expected one sees that the Hilbert transform of a localized function in 
the finite is always located in the finite at the same place. The exceptions 
arise either on the way out or coming back. 
At infinity one finds almost the same result, 

00 . 

= '°' (-)3 (q+i)'(l-6 )6- h·(-a-1 m)'11(0:,q+i)(x)sgnm+1(x)+ L...., q! q,0 J,-1 3 ' '18 

j=-1 
00 

+ ! 6 '°'(6 __ (x'P + 0<P>(x)) - p! 6 g<-p-l)(x)) 
1r q,O L...., a:, p 1 a:,p , (21.16) 

p=O 
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The wave number shifted JI-functions (with x 0 -:j:. 0) are unchanged up to a 
sign by the Hilbert transform 

(21.17) 

since in this cases multiplication with the signum function changes only a 
sign. 

The Hilbert transform does not have a zero element in PC~. On the 
other hand PC\ is not closed under the Hilbert transform, since we have 

and consequently 
00 

1<,J((P)(x) = - ,<-p-1\x) - I:C-)jj! h1(p,p + 1) l(p,j\x), (21.18) 
j=O 

so the subspace PC~ is not closed under the Hilbert operator. 
In PC» one computes the Hilbert transform either directly or by trans-

fer, with the results for the powers in 

q+l . 
1tlxl°' logqlxl sgnm(x) = (-)qq! L <-/ hq-j(a., m)lxl°' logilxl sgnm+1(x) + 

j=O 
00 

- 2(-)qq! L 8-<>-1,p 8m+l,p h1+1(a., m) i,(Pl(x), 
p=O 

valid for (a, q) -:j:. (p, 0). The exceptional case is trivial 

1<,xP = O(x), 

Vp EN. For the i,(Pl(x)-functions one finds 

1{, i,(P) (x) = - ¼ x-p-1 , 

in agreement with the corresponding result in distribution theory. 

(21.19) 

(21.20) 

(21.21) 

Remark 21.1 Alternatively one can transfer the results which were 
found in the subspace PC~ by application of the mappings 

(21.22) 

as one sees by substituting the definitions. 
In PC» the Hilbert transform has a zero space containing all polynomials, 
and the repeated Hilbert transform is not the identity. One sees again that 
the introduction of the unit element I(x) makes it impossible to have a fully 
invertible Hilbert transform. 
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21.2 Functions of argument (x±io) 

An important special case which occurs often is related to functions with 
support on the positive real axis._ In linear response theory the requirement 
that the response should follow its cause leads naturally to Green's functions 
with support on the positive real axis. It follows classically that the real 
and imaginary parts of the Fourier transform of the response function are 
related by a Hilbert transform. These connections are traditionally known as 
dispersion relations. It may happen that the convolution integrals appearing 
in dispersion relations diverge in a classical sense. It is then necessary to 
subtract the divergent part, which leads to subtracted dispersion relations. 

In the sense of generalised functions the dispersion relations are always 
well defined and there is no need for subtractions. 

The definitions follow the by now familiar path. First the preliminary 
functions are defined by 

(x±io)~re = xet H(x) + e±i,ret(-xf H(-x). (21.23) 

Somewhat more generally one can define 

(ei"'(x±io));re = eicpet(x±io)~re = 
= eicpetxet H(x) + ei(cp±,r)et(-x)et H(-x), (21.24) 

which often occurs in formulre, especially with cp = ±i1r /2. 
The corresponding functions in PC\ are again defined by taking appropriate 
residues. In self evident notation the powers are defined by 

(ei"'(x'±io)t logq(ei"'(x±io)) := Resq! (>, - a)-q-l eicpet(x±io)~re, 
-"=et 

(21.25) 
and the corresponding 77-functions of argument (x±io) are defined by 

(-)q1J(et,q)(x±io) - ef(et,q)(x±io) ·= Res (-)q (A+ a+ l)q ei"'-"(x±io)-" 
'P 'P • .X=et 2q! pre, 

(21.26) 
which is as usual split in 11.,, -functions at x = 0 and ef.,, -functions at infinity. 
To simplify the notation the subscript cp is omitted if cp = 0. 

Straightforward computation of the residue, expanding the exponentials 
in a Taylor series, and recombining terms by the binomial theorem gives for 
the 77-functions 

00 

ry~et,q)(x±io) = ½ e-icp(et+l)L (qji)(icp)i 1Jlet,q+i)(x) + 
j=O 

00 

+ ½ e-i(cp±,r)(et+l)L (qji) ii(cp ± 1r)i 17~et,q+i\x) = 
j=O 

00 

(21/27) 
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and idem at infinity. In particular for rp = 0 one obtain the special case 

00 

11<0 ,q>(x±io) = ½ 11f0 ·q)(x) + ½ e'Fi7r(<>+l)I: (q:rH±i1r)i 11f0 •q+i>(x). 
i=O 

{21/28) 
Remark 21.2 It is tempting to introduce notation such as 11(ei'P(x±io)), 
but this might cause confusion by suggesting that 7rfunctions of complex 
argument have been defined, which is not the case. Functions of argu-
ment (ei'P(x±io)) are functions defined on the real axis. 
Evaluation of the residue gives in case of the powers gives 

(i'P(x'±io))° logq (i'P(x'±io)) = 
= ei'P0 x' 0 (log(x) +icprH(x) + 

+ ei(ip±1rl0 (-x)0 (log(-x) + i(rp ± 1r)r H(-x) + 
00 • . 

+ eiipa"" (-)3q!j! {it1i)q+i+l((-)j,,.,(-a-l,j){x) _ ..J(-o-1,j){x)) + L.., (q+j+l)! T 'I! Wt 
i=O 

00 . 

{21.29) 

+ ei(ip±1r)a"" (-)3q!j! (i(ill ± 1r))q+i+l((-Ji'T/(-a-l,j)(x) _ ..J(-a-1,j)(x)) L.., (q+j+l)l T T ,,! . 
j=O 

In particular for rp = 0 one obtains 

(x'±io) 0 logq(x'±io) = {21.30) 
= x 0 logq(x)H'(x) + e±i1r0 (-x)0 (log(-x) ± i1r)r H'(-x) + 

00 . + e±in"" (-)3q!j! {±i1r)q+i+l((-)j,,.,(-a-l,j)(x) _ ..J(-a-1,j)(x)) 
L.., (q+i+l)l ·tt 1'1! • 
i=O 

One sees that the side on which the 7rfunctions appear depends on the 
choice of phase on the positive real axis. Consequently it is not true that 
exponentials can be taken out of the primed powers, 

{21.31) 

as the 17-functions are different. This even holds if rp is a multiple of 21r. 
The corresponding functions in PC>. are again defined by application 

of the inverse mapping, 

( ei'P(x±io)) a logq ( ei'P(x±io)) := M-1 ( ei'P(x' ±io)) 0 logq ( ei'P(x' ±io)), 
{21.32) 
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These functions differ from the corresponding preliminary functions by at 
most ~(p)_functions at x = 0. In particular one recovers the standard result 
from distribution theory 

00 

+ L 80,,-p-1 ((icp)q+l eirpo, + (i(cp ± 1r))q+1 ei(rp±-,r)o,) ~(P>(x), 
p=O 

which reduces for cp = 0 to the more familiar form 

(x±iof logq(x±io) = xo, logq(x)H(x) + 
+ e±i11"(-xf(logq(-x) ± i1r)H(-x) + 

00 

+ L80t,-p-1 (-)p+1(±i1r)q+1 ~(P>(x). 
p=O 

In particular for q = 0 one obtains 

(21.33) 

(21.34) 

(21.35) 

This agrees with the standard result 'when the different normalization of 
the ~-function is taken into account. 
It is also possible to define ~(p)_functions of argument (x±io) by 

(21.36) 

but fortunately this is not necessary, since it does not produce any new 
generalised functions. Computation of the inverse mapping simply gives 

(21.37) 

so the definition (21.36) is superfluous, and it will not be used in this book. 
This completes the definition of the powers and r,--functions of argu-

ment (x±io). Ordinary functions (such as Bessel functions) can be defined 
as functions of argument (x±io) at singular points if the asymptotic expan-
sion at these points is of the required form. 

The operators are defined in the usual way taking residues and using 
the mappings. Some typical results are 

(21.38) 
and 

(21.39) 
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for the operator X, and 

'D( ei'P(x' ±io) )" = a eicp ( ei'P(x' ±io) )"-1 

+ 2 eicp ('1J1-<>) (x±io) - 1'~ -<>) (x±io)), (21.40) 

which corresponds in PC>. with 

(21.41) 

which holds both for integral and non-integral values of a. 
For the 1/cp -functions the result is formally the same as for the ordinary 11-
functions 

'D111",q)(x±io) =-(a+ 1) eicp111"+l,q)(x±io) 
+ (q + 1) eicp111"+1,q+1)(x±io). (21.42) 

Finally the Fourier transforms take the form 

J='(x' ±io)" = -2 Res(A - a)-1 r(A + 1) e±i I >.sin 1r A (±x)->.-i H'(±x), 
>.=o 

(21.43) 
It is not useful to compute this residue explicitly. 
sum over the usual crcoefficients. 

It does not reduce to a 

In PC>. (21.43) reduces to 

{
-2 e±i I >.sin 1r A r(a + 1) x- 0 - 1 H(x) 

J='(x±io )" = 
21r(-i)P "{j(P>(x)/p! 

a =f P, 

a= p, 
(21.44) 

in agreement with the corresponding formula in distribution theory. 
Products behave as expected. By direct computation one finds in PC~ 

(ei'P(x'±io))°' logq(x±io) • (ei'P(x'±io)).a logr(x±io) = 
= (ei'P(x'±io))°'+.a logq+r(x±io), 

where the sum over factorials 

r (-)i(l+j)! l!(q+r)! 
; j! (r - j)! (q + l + j + 1)! = q! r! (q + r + l + 1)!' 

can be evaluated using the toolkit supplied in [G,K&P]. 
For the r,functions one finds 

(e''P(x'±io))°' logq(x'±io) • 1/(.B,r)(x'±io) = '/Jcp x io 
. { (,8-o,r-q) ( 1 ± • ) 

cp O(x) 

(21.45) 

(21.46) 

r q, 
r < q. 
(21/47) 
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As always the product of the 17-functions remains zero. It is seen that the 
product conserves the causal character of the functions. These properties 
carry over immediately to PC>.. This results in 

( i'P(x±io) )"' logq (x±io) • ( ei'P(x±io)) ,8 logr (x±io) = 
= (ei'P(x±io))"'+.6 logq+r(x±io), (21.48) 

while the product with t5CP\x)-functions becomes trivial. There is only one 
kind of 15(P)_function. 

This simplicity of the product is lost when functions of argument (x+io) 
are multiplied with functions of argument (x-io). It is also lost when func-
tions with a different choice of phase on the positive real axis are multiplied -, -together. Finally the products of elements E PC,x with elements from PC,x 
is not simple. 

The simple product. properties for functions of argument (x±io) are 
easily obtained from those of the corresponding powers by defining func-
tions of argument (x±io) in terms of asymptotic expansions in powers and 
logarithms of argument (x±io). 
Example 21.1 It is instructive to compare the the different ways in 
which the product properties are realized in PC~ and PC,x, In PC~ we 
compute 

(21.49) 

and the 17-functions come from products of H'(x) and 17(x)-functions on the 
same side of the origin. In PC,x the computation 

(x±io)°' • (x±io)-ac-l = (x±io)-1, (21.50) 

also gives the correct amount of i5-function, but the result now comes from 
cross-terms of the form (x)°' H(x) • (-x)-a-l H(-x). 
The simple product properties for the functions of argument (x±io) corre-
spond under Fourier transformation to simple convolution properties of the 
causal functions with support on the positive real axis. The convolution of 
two functions of positive support is again a function of positive support. 

21.3 Boundary values of analytic functions 

In distribution theory Titchmarsh's theorem is valid. Every distribution on 
the real axis is the sum of the boundary values of an analytic function in the 
imaginary upper half-plane and one in the lower half-plane, 

f(x) = f+(x) + f_ (x), (21.51) 
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with f+ and f_(x) defined by 

f+(x) := :r-- 1 (H(x) • (F f(x))), 
f_(x) := :r-- 1 (H(-x) • (F f(x))). 

(21.52) 
(21.53) 

These functions are known as the positive and negative frequency parts, or 
as analytic signals. In the following the term analytic parts will be used. 
It follows immediately from the definition that 

and conversely 

f+(x) + f_ (x) = J(x), 
f+(x) - J_(x) = -i1tf(x). 

f+(x) = ½ (f(x) - i1t(x)), 
. f_(x) = ½ (f(x) + i1t(x)), 

(21.54) 
(21.55) 

(21.56) 
(21.57) 

(with the 'wrong' sign). These definitions can be taken over for the symmet-
rical generalised functions. 

Instead of considering a new function space of analytic functions by al-
lowing the Fourier transformed variable to be complex, it is more convenient 
to keep the Fourier operator as a mapP.ing of GFs into itself, and to consider 
instead the limiting behaviour of the generalised functions 

f+(x; a):= :r-- 1 (e-a"' H(x) • (F f(x)) ), 
f_(x;a) := :r-- 1 (ea"'H(-x) • (F f(x))). 

(21.58) 
(21.59) 

as alO. The interesting case occurs when these functions have a support 
which is larger than a point. This is the case in PC.x and in the corresponding 
part PC~ of PC\. 

As in Ch. 14 in the definition of the generalised function integral, the 
increased analysing power allows us to split the frequency domain into more 
parts than is possible in distribution theory. 
The 'zero frequency part' may be defined by 

(21.60) 

which has the advantage that the functions xP do not have to be split. 
Likewise one may define the 'positive infinitesimal frequency part' by 

(21.61) 

and the 'strictly positive frequency' part by 

(21.62) 
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Finally the 'positive infinite frequency' part may be defined by 

(21.63) 

The standard positive frequency part may be recovered as 

(21.64) 

Analogous definitions apply on the negative frequency side. 
If the analytic parts are considered as functions of the complex vari-

able z = x + ia, the strictly positive frequency part is analytic in the half-
plane Im z < 0. The negative frequency part is analytic in the upper half-
plane. 

Fourier transforming the limit properties (19.49) of the Heaviside func-
tions or by direct computation one finds the corresponding limit properties 
for the analytic parts. 
In the special case of the powers one finds 

Lim(x ± ia)°' = (x±io)'", 
alO 

The limiting behaviour is as expected, one finds 
Property 21.1 Analytic boundary property 

(21.65) 

The limit of an analytic part equals, the corresponding function of argu-
ment (x'±io). 
Verification: The property holds for the powers by direct computation. 
Therefore it holds for the asymptotic expansions, and therefore also for the 
ordinary functions. 

The product properties are also as expected 
Property 21.2 The product of the limits equals the limit of the product. 
If 

Limf(x ± ia) = f(x'±io), and Limg(x ± ia) = g(x'±io), 
alO alO 

then 

Verification: 
powers. 

Limf ·g(x±ia) = f•g(x'±io), 
alO 

(21.66) 

As above it is sufficient to verify the property for the 
D 

The usual formulre from distribution theory can be recovered by taking the 
completed limit, for example 

(21.67) 

The formula simplify, since there is only one 6-function. The difference 
between left and right of a singularity is no longer observable. 



272 · Hilbert transforms and causality 

21.4 Causality 

Many systems in which things vary in time, for instance electrical networks 
with varying applied voltages, cal). be described by linear (differential) equa-
tions . .Physical systems satisfy the condition that effects follow their causes. 
In mathematical terms this means that the Green function of a causal sys-
tem should be zero for negative values of the time. Therefore a generalised 
function is defined to be causal when it satisfies the condition 

H(-x) • f(x) = O(x), 

or equivalently 
H(x) • f(x) = J(x), 

since the two Heaviside functions sum to the unit function. 
Combining (21.69) and (21.68) gives 

sgn(x) • J(x) = J(x). 

(21.68) 

(21.69) 

(21. 70) 

By Fourier transformation and the definition of the Hilbert transform this 
can be rewritten as 

:,:-1 f(x) = -i'H.:F- 1 J(x). (21.71) 

The Hilbert transform anti-commutes with the parity operator 

'H.'P = -'P'H., (21. 72) 

so (21.71) can be written more conveniently in terms of the Fourier operator 

:F J(x) = i'H.:F J(x). (21. 73) 

Since it is easily seen that the Hilbert transform commutes with taking real 
parts, the expression (21.73) can be reduced to the pair 

Re:F f(x) = -1-{, Im:F J(x), (21.74) 
and 

Im:F f(x) = 'H.Re:F J(x), (21.75) 

which is valid when f(x) is causal. When f(x) is a causal function the real 
and imaginary parts of its Fourier transform are a Hilbert pair. This is a 
reason for adopting the definition (21.69). 

In the terminology of linear response theory the response to an ap-
plied ~(x) input is called the impulse response function. Its Fourier trans-
form is called the spectral response function. 
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The relations (21. 75) and (21. 74) are called Kramers-Kronig relations or 
dispersion relations. When a system is causal its spectral response satisfies 
a dispersion relation. 

The standard definition of causality (21.68) has some properties which 
one has to get used to. Application of the definition shows that the general-
ised functions 

(21. 76) 

are causal. More generally, V J'(x) E PC~ the generalised function H(x) • 
J'(x) is causal. The 6(x)-function is not causal, since 

H(x) • 6(x) = ½ 6(x) cl 6(x). (21.77) 

It may be preferable to define 'strict causality' by 

H'(x) o• J(x) = J(x). (21. 78) 

The generalised functions r,J, (x), and H'(x) are strictly causal, the generalised 
function H(x) is not. 

An idealized resistor, described by Ohm's law is not strictly causal or 
even causal in the standard sense. Ohm's law 

I= V/R, (21. 79) 

leads to an impulse response given by a 6(x)-function, the spectral response 
is given by the unit function. The response is not causal, the spectral re-
sponse does not satisfy a dispersion relation of the form (21.71). Subtrac-
tion of the constant pa.rt at infinity leaves O(x), so there is no subtracted 
dispersion relation either. In the sense of distribution theory this is all that 
can be done. 

In the sense of this book this problem disappears if the impulse response 
is assumed to be given by r,J, (x) instead of 6(x). This is a causal function sat-
isfying (21.68-69). The corresponding spectral response is found by Fourier 
transformation 

(21.80) 
00 

- 2 LJ!(cj(-1,p) ,(-l,j) + i Cj(-1,p + 1) ;f(-l,il(x)). 
j=O 

The real and imaginary parts of (21.80) are indeed by (21.16) and (21.14) 
a Hilbert pair. The spectral response is causal, and it satisfies a dispersion 
relation (21.74-75). An r,J,(x) response is physically indistinguishable from 
a 6(x) response, since the response 

(21.81) 
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is different from the non-causal response 

I(x) = ~(x) * V(x)/R, (21.82) 

only when the applied voltage contains infinitely high frequencies, which are 
absent in realistic applied voltages. 

One can interpret the causal resistor .and the non-causal resistor as 
different idealizations of realizable resistors. The causal resistor is in a sense 
more realistic, since physically realizable resistors are equivalent to a network 
with a small inductance in series and a small capacitor in parallel. These 
non-Ohmic contributions to its impedance cause the spectral response to go 
to zero for high frequencies. 

The non-causal resistor has an actually infinite frequency response, so it 
cannot be realized. The causal resistor corresponds to the limit of a actually 
realizable resistor, when the frequency response is (by idealization) assumed 
to extend to arbitrarily high frequencies. 

The completed limits defined in Ch.19 can be used to obtain a unit 
frequency response function. In agreement with the nai:ve interpretation the 
actual infinite cannot be realized by a limit process. 

The example given above illustrates that the symmetrical theory of 
generalised functions makes it both possible and necessary to consider the 
idealizations one wants to allow. 



CHAPTER 22 

ON REGULARIZATION 

Obtaining the results of mathematical computations often takes the form of 
the evaluation of definite integrals. When the integrands of these integrals 
are (Lebesgue) integrable the evaluation is well defined, at least in principle. 

In many cases of interest, in particular in quantum field theory, the inte-
grals turn out to be divergent, and therefore meaningless. It is necessary to 
inject meaning into the integrals afterwards. Regularization and renormal-
ization are the terms used for this process. It seems to be impossible to give 
a general method beforehand, instead the regularization method is defined 
afterwards on basis of physical ideas as to the desirability of the results to 
be obtained. 
Opinions of the author This is a curious and unacceptable situation. 
It seems to have been accepted mainly on basis of its empirical success and 
the lack of an alternative. 

In a good physical theory, resting on a sound mathematical basis, it must 
be clear beforehand how computations are to be carried out. The results 
should always be well defined, leaving no room for different interpretations. 
There should be no room nor necessity for ad-hoc regularizations devised 
afterwards on basis of the desirability of their results. 

Clearly this state of affairs may have two possible causes. The physical 
theory might be incorrect, or the mathematical apparatus brought to bear 
on it might be inadequate. 

The correctness of the physical theory as a description of nature is not 
really relevant in this context. Whether electrons are point partides or very 
small finite-sized particles, with a size which is (forever?) too small to be 
observed is irrelevant. 

An adequate mathematical apparatus should have the possibility to 
handle both cases. Even if a charged point particle does not exist in nature 
it is a plausible idealization. Simplification by idealization and exploration 
of the consequences is what mathematical analysis should accomplish. 

The root of the problem is the occurrence of actual infinities in the case 
of a theory of point particles. The interaction energy of an extended particle 
tend to infinity when the size of the particle tends to zero. The interaction 
energies of point particles are infinite to begin with. 

By banishing the actual infinite from analysis (compare Sec. 1.1) the 
possibility of supplying an adequate foundation for a quantum field theory 
of point particles has been lost. 

The difficulty of the incorporation of Dirac's 8-function in analysis, and 
the impossibility of solving the multiplication problem for distributions can 
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be seen as mathematical consequences of the same lack of adequate treatment 
of the infinite. 

Of course the problem is not that classical analysis as we know it is in 
any W8f incorrect. It is merely that the rigorization of analysis (as it has 
been generally accepted) is not adequate as a basis for the mathematical 
treatment of actual infinities. It only deals with limit processes which yield 
finite results. 

In this view the persistence of divergence problems in 'quantum field 
theory does not indicate a lack of adequate understanding of the physical 
world. Instead it indicates the need for a better treatment of the infinite 
in analysis. The efforts reported in this tract may be a first step in this 
direction. end of opinions. 
Example 22.1 The question: Is the perturbation expansion in quantum 
electrodynamics gauge invariant? can be answered with: 

1) No, 
2) That depends on the regularization, 
3) Of course! The regularization must be chosen in such a way that the 

result is gauge invariant. 
Textbooks on quantum electrodynamics generally favour the third answer 
but disagree on the proper method of achieving this result, [QED]. There 
is no universal agreement that the possibility of the third answer has been 
proved, [F,H,R&W] although this is generally assumed. 

22.1 Perturbations in quantum field theory 

This section provides only the briefest possible outline. It may be skipped. 
A quantum field theory is defined by specifying a suitable Lagrangian 

density. In many cases this consists of a free part, leading to equations for 
free fields which can be solved trivially, and an interaction term which can 
only be handled by means of a perturbation expansion. 

The perturbation expansion results in products of propagators (Green 
functions) of the free fields. These propagators involve repeated products of 
(modified) Bessel functions of argument (x2 + a2 - io), and therefore of the 
generalised functions x-2 , 6(x2 ), x 2n H(x2 ), and x 2n logjx2 j. These products 
are undefined in the sense of distribution theory. 

The undefined products are then Fourier transformed into undefined 
(because divergent) convolution integrals, assuming (without justification) 
that the standard integral formula for the convolution, (2.56) or (22.13), is 
valid also when it yields divergent integrals. (This turns out to be incorrect 
in Sec. 22.6). 

The resulting undefined convolution integrals are then subjected to a 
regularization process which defines their meaning. The quantum field the-
ory is said to be renormalizable when this is possible by introducing no 
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more than a finite number of empirical parameters. The results are in often 
spectacular agreement with experiment. 
There are several difficulties with this procedure. 

1) TJie validity of the classical convolution formula must be taken on faith. 
2) The equivalence of coordinate and momentum representations is lost, 

since the renormalization can only be carried out in the momentum 
representation. 

3) The unitarity of the Fourier transformation from coordinate to mo-
mentum representation is also a matter of faith, the results cannot be 
evaluated in the original coordinate representation. 

4) The presence of 6-functions is not compatible with the use of a Hilbert 
space for the state vectors. 

5) It is only a prescription, which does not rest on a sound foundation. 
Despite these problems the situation is not as bad as it might seem from 
the above discussion. The results of the renormalization can be shown to be 
correct up to finite renormalizations. 

22.2 Standard regularizations 

In a standard treatment it is necessary to define a regularization of the 
divergent integral in order to obtain finite predictions of the theory. There 
are many ad-hoc regularization schemes available in the literature. 

It can be seen that the products, integrals, and convolutions which occur 
in quantum field theory are well defined in the sense of the symmetrical 
theory of generalised functions. Also the limit processes involved in the 
regularization are well defined (Ch.19) in the sense of this tract. Therefore 
the result of a regularization method can be compared with the result in the 
sense of generalised function theory. 

When the results do not agree it is possible to obtain the necessary 
corrections. Regularization methods are thereby reduced to more or less 
convenient computation methods, which can be used to evaluate integrals in 
the sense of this tract. 

In the following the complications inherent in the Minkowski geometry 
of space-time are ignored. Instead the equivalent problems are discussed for 
functions of one independent variable. This exhibits the most important 
points. 

A first class ofregularization methods is obtained by introducing a cutoff 
function depending on a parameter, in such a way hat the cutoff function 
approaches the unit function in a suitable limit. This approach fits in with 
the limiting properties of sequences of generalised functions found in Ch. 19. 
These limiting properties can be used to evaluate the cutoff regularization 
methods, and to evaluate the corrections which have to be made to a given 
cutoff procedure. 
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A second class of methods uses analytic techniques resembling those 
used in this work. These methods allow for even more arbitrariness than the 
cutoff methods. It is possible to obtain the generalised function results in 
this way. 

It will be seen in the last section that it is incorrect to assume that the 
convolution product can be obtained by regularization of the classical form of 
the convolution integral. Consequently it is also impossible to find the gen-
eralised function products from assumed regularizations of the convolution 
integral. 

The theory of generalised functions allows less arbitrariness than reg-
ularization methods. Moreover it is possible to show explicitly where the 
remaining arbitrariness resides, and how it is fixed. 

22.3 Cutoff regularization 

A cutoff regularization of an integral is defined by choosing a cutoff func-
tion f(x; a), such that it tends to the unit function in the limit. Only results 
with correct scaling properties are of interest, so we can restrict attention 
to scaling limits of the type considered first by Dirac. This means that we 
choose cutoff functions of the type Lima Too S(a- 1 ) f(x) = f(a- 1x), normal-
ized to f(O) = 1. Calculating the scalar product with a power yields 

(22.1) 

which gives for the limit in the sense of Ch.19 

00 

Lim f(a- 1x) = (I'(x) + 0(x)) + L /i\-1) ,C-1,il(x). 
a Too j=O 

(22.2) 

It is immediately clear from (22.2) that the difficulties with a regularization 
occur in the case of integrands which have logarithmically divergent terms 
of the form lxl- 1 logqlxl in their asymptotic expansion at infinity. 
Remark 22.l When 'ordinary' functions considered as elements E PC>-
without a generalised function at infinity are considered as integrands the 
difference between the upper limit +oo- and +oo vanishes. 
Comparing the limit property (22.2) with the definition of the integral in 
the sense of generalised functions in Ch. 14 

1:dx f(x) := ( I(x), f(x) ), (22.3) 

one sees that the regularization will reproduce the values of the integral if 
and only if all coefficients /il ( -1) = 0 are zero. 
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This is the case when we choose f(x) = H(I+x)H(I-x), or f(a- 1x) = 
H(a + x)H(a - x). The limit property now takes the form 

la 1+00- loo 
-a dx f(x) = -oo+ dx J(x) = _00dx f(x), (22.4) 

in agreement with expectations. For other cutoff functions the expected 
result does not hold. For example from (19.48) we have 

The difference appears when the integral diverges logarithmically. 
If one wants to use an arbitrary cutoff function it is not difficult to 

recover the generalised function results by computing the appropriate Mellin 
coefficients, and by correcting (22.5) accordingly. 

22.4 Analytic regularizations 

A second method to define divergent integrals is based on the observation 
that it is often possible to generalise one of the parameters of the integrand 
to a complex number, or to introduce an additional function depending on a 
complex parameter, in such a way that the integral becomes a meromorphic 
function of the parameter. Divergences are signalled by the appearance of 
poles. The value of the integral is then defined by taking a suitable residue. 
Example 22.2 The power of x satisfies 

(22.6) 

Correspondingly the integral in the sense of generalised functions satisfies 

(22.7) 

in agreement with the result (5.22) obtained in Ch. 4. 
Remark 22.2 It does not matter if one writes 

Res · · · x>- • J(x), or Res · · · x>. f(x), 

since the difference is zeromorphic. 
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Analytic regularizations are not less arbitrary than cutoff regularizations. 
One may add an arbitrary (entire) function g(,\) of,\ to (22.6) to obtain 

00 

g(X) Jxl>- = g(O) I'(x) + L fr gU+1l(o) ,<-1,il(x), 
j=O 

(22.8) 

with corresponding additional terms in the regularization of integrands con-
taining a logarithmically divergent term in their asymptotic expansion at 
infinity. 

There is more arbitrariness in analytic methods, since it is largely a 
matter of taste which parameter one wants to complexify. 
Example 22.3 In the method of dimensional regularization one defines 

(22.9) 

with /(r) a suitable generalisation of J(x) to n-dimensional space. This 
would give the same result as the generalised function computation, except 
that it is customary to introduce additional analytic functions of g(n) in the 
residue. 
Straightforward dimensional regularization with g(n) = 1 reproduces the 
generalised function results. Choice of a different analytic function in (22.8) 
corresponds to a different standardization of the generalised function prod-
uct. 
Remark 22.3 In the method of dimensional regularization, as used in 
quantum field theory, the auxiliary analytic function depends on the integral 
to be regularized. This destroys the linearity of the integral (J (f + g) =I-
ff+ Jg), and introduces an arbitrariness which cannot be accommodated 
in a mathematical theory based on first principles. 

22.5 Arbitrariness and standardization 

It is clear that all regularization methods allow some arbitrariness. The 
same possibility for allowing arbitrariness exists in the symmetrical theory 
of generalised functions. It was seen in Ch. 10 and Ch. 14 that the values of 
the integrals 

1_:dx JxJ- 1 logqlxl := cq, (22.10) 

can be chosen arbitrarily. This arbitrariness also appears in integrals diverg-
ing s more strongly than logarithmically when the asymptotic expansion at 
infinity contains a logarithmically divergent term. 

When this arbitrariness is allowed no meaning can be attached to the 
differences of divergent integrals of this type, since the scaling of the different 
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logarithms is not related. The scale operator is not unitary in this approach. 
The lack of unitarity can be compensated by the freedom to choose the 
regularization prescription. 

For the generalised function product the arbitrariness can be fixed, up 
to the single indeterminate constant C, by the requirement that the general-
ised function product should transform properly under scale transformations. 
By (17.36) the scale transform of the (properly standardized) product equals 
the product of the scaled factors 

S(a)(/(x) • g(x)) = S(a) J(x) • S(a) g(x), {22.11) 

and consequently by (17.37) the normalized scale transformation is unitary 

( S(a) f(x), S(a) g(x)) = ( f(x), g(x) ), {22.12) 

in the corresponding scalar product. 
This fixes the standardization, and hence the arbitrary constants in the 

evaluation of divergent integrals. The mathematical development in Ch. 13 
and Ch.14 used this standardization on grounds of simplicity and mathe-
matical elegance. 

The availability of a scale invariant product opens the possibility that 
the now well defined finite renormalizations can have a physical interpreta-
tion, (Lod2]. This possibility remains to be explored. 

22.6 Convolutions and surface terms 

The discussion in the previous section focussed on the logarithmically di-
vergent integrals, since the arbitrariness resides there. The phenomenon of 
surface terms must also be considered. It was shown in Ch. 15 that the value 
of a linearly divergent integral will change by a finite quantity when the 
integrand is translated. 

This will introduce a lack of determinacy when there is no reason to 
prefer an origin for the coordinate system. This is usually assumed to be 
the case in quantum field theory. 

The problem can be converted in mathematical terms as an attempt 
to define products of generalised functions by regularization of convolutions. 
This is based on the convolution formula 

:F(:F- 1 J(x) • :,:-1 g(x)) = f(x) * g(x) = 
= {:dy J(y) g(x -y) = {:dy f(x -y) g(y), 

{22.13) 
WRONG! 

which is valid in a standard sense in £2. One may (in £2) even take the 
same integral with y replaced by y + a, for arbitrary a E R., 
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In the standard treatment one assumes (without justification) that the 
integral formula (22.13) for the convolution also holds for generalised func-
tions, even when the integral diverges. This makes the convolution product 
undefined by a surface term. 
Example 22.4 Consider the product x-1 • i5(x). This product is well 
defined for generalised functions, and given by x- 1 • i5(x) = ½ 15(1l(x). This 
result does not depend on the formalism of this book, any other definition 
would violate the analytic boundary property. 
Fourier transformation of the product (using :Fx- 1 = 2isgn(x)) gives 

I(x) * sgn(x) = x1 = x. (22.14) 

On the other hand the convolution integrals equal 

1-:dy sgn(y) I(x - y) = 1-:dy sgn(y) = 0, (22.15) 

and 1-: dy sgn(x -y -a) I(a + y) = 1-: sgn(y - x +a)= 2x - 2a, (22.16) 

By symmetrization we obtain after inverting the Fourier transform 
(22.17) 

WRONG! 

The result is easy to understand. Instead of x- 1 • i5(x) we have computed 

(eiaxx-1) • (e-iaxi5(x)) = (x-1 + ia + O(x) +) • i5(x) = 

= ½ 15(1) +½iai5(x) :/: x-1 • i5(x). (22.18) 

The factor ½ is also incorrect since the lack of associativity of the product 
does not have a counterpart in the regularization of the integrals. 
One sees that it is not possible to find the products of generalised functions 
from the regularization of convolution integrals. 

The formal convolution theorem (22.13) cannot be made to hold for 
generalised functions, and the product cannot be obtained from the regular-
ization of the convolution. 

Whether the arbitrariness inherent in the surface terms will actually 
appear in the results of computations depends on the physical system in 
question. 
Example 22.5 Quantum field theory is invariant under the Poincare 
group, which contains Lorentz transformations and translations of the co-
ordinates. In momentum space there is a preferred origin, marked by i5(x), 
which corresponds to the Fourier transform of a constant function. 
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Remark 22.4 The arbitrariness in the scaling behaviour has been fixed 
by using a more appropriate mathematical formalism, the arbitrariness in 
the surface terms cannot be fixed on mathematical grounds. Fortunately it 
can be fixed on physical grounds, at least in a homogeneous space-time. 
Arguments in quantum field theory, which depends for their validity on the 
assumption of freely chosen surface terms, are incorrect. 

22. 7 Conclusion 

It seems plausible that the symmetrical theory of generalised functions is 
sufficiently powerful to give rigorous meaning to the products, convolutions, 
and integrals needed in the perturbation expansion of quantum field the-
ory, (Lod2). The divergent integrals in quantum field theory appear as well 
defined convolution products in the sense of generalised function theory. In-
stead of evaluating convolutions it is simpler in many cases to evaluate the 
pointwise products directly, without performing the Fourier transformation. 

In contrast to the standard approach there is complete symmetry un-
der Fourier transformation, and all computations can be done either in the 
coordinate representation or the momentum representation. The choice is a 
matter of convenience only. 

The characteristic difference between the generalised function method 
and the regularization methods is the absence of arbitrary finite renormal-
izations. Only one single arbitrary mass scale remains. It appears explicitly 
in the form of the indeterminate constant C and its powers. 

Physical results do not contain C's, conversely any result that does 
contain C's has no physical significance. It will not transform correctly 
under scale transformations. 

The new possibility (Lod2) is that determinate finite results may be 
hidden under divergences. These results are arbitrary by a finite renormal-
. ization in the standard sense. 

The physical consequences of the possibility that finite renormalizations 
may be determinate remains to be explored. Much work remains to be done 
along these lines. 





CHAPTER 23 

MULTIPLICATION AND THE INFINITE 

The simple model provides a covering theory from which many product 
algebras on subspaces of the distributions can be obtained by suitable spe-
cialization. 

There are many theories of more general objects than distributions. 
(Usually these are also called generalized functions). In some of these theo-
ries multiplication is also possible. A review will not be attempted. 

Instead a criterion will be discussed by which the different possible the-
ories can be compared. The question is what one wants to accomplish by 
constructing a theory of generalized functions. 

The actual infinite and its role in mathematics, in particular for theories 
of generalized functions is discussed. The need for infinitesimals and the 
relevance of nonstandard analysis is also discussed briefly. 

23.1 A practical impossibility argument 

Let us assume that a multiplication of all (tempered) distributions has 
been achieved. Equivalently one may assume that multiplication has been 
achieved in a larger theory of generalized functions, in such a way that a re-
duction to the distributions is possible. Consider products of the form 6 · f, 
which are by hypothesis well defined distributions. From the support re-
quirement it follows that the result of the product must be a finite linear 
combination of the <5(P)_distributions, since there are no other objects with 
point support in the distributions. 
Consider in particular the function f(x) defined by 

(23.1) 

The periodic function f(x) is bounded, lf(x)I I;n- 2 = 1r2/6, and f(x) 
is continuous. Continuity is established by a simple estimate or by remark-
ing that (23.1) is a Fourier series with quadratically vanishing coefficients. 
Therefore (23.1) also defines a tempered distribution. It is not a generalised 
function in the sense of this book however. The Fourier coefficients do not 
satisfy the required asymptotics. 
Its product with the 8-function is by assumption well defined, so it must 
equal 

00 

8(x) • f(x) = ~(x) L n-2 = 1r6
2 6(x), (23.2) 

n=l 
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assuming that product and summation can be interchanged. Since f(x) is 
bounded the derivatives of 8 are absent. 
Remark 23.1 The ability to interchange sums, differentiation, etc. freely 
is one of the justifications for having distribution theory. 
Being a distribution, J(x) is differentiable and its derivative is again a 
distribution. Taking the first derivative, interchanging summation and dif-
ferentiation, and multiplying with the 8-function gives 

00 00 

'"" .,2 '"" 8(x) • n!ein.n x = 8(x) n!. (23.3) 
n=l n=l 

By hypothesis the product is a well defined distribution, so we should know 
the meaning of the expression I:; n! as a finite real number. The distribu-
tional derivative of a (standard) non-differentiable continuous function is an 
example of a distribution which cannot be given a value at a point. Only 
integrals with test functions E S are well defined. 

The choice of the sequence an := n! in (23.3) is of course arbitrary. 
Any sequence of numbers {an} C JR can be substituted for n! . Therefore 
the hypothesis that distributions can be multiplied implies that for arbitrary 
sequences {an} C JR, 

00 L an = ??? = a well defined real number??? (23.4) 
n=l 

As a special case we may choose the sequence an := J:+ldx f(x), for an 
arbitrary function f(x) E C 00 (0, oo) to reach the conclusion that 

f 00 dx f(x) =???=a well defined real number???, (23.5) 

for arbitrary functions E C 00 (1, oo), no matter how strongly divergent at 
infinity. ( Of course integrability in the finite is already sufficient). The 
conditions (23.4) and (23.5) are necessary, there is no assurance that they 
are also sufficient. 
Remark 23.2 The special case I:; n! may be evaluated in a future gener-
alization of the theory, but it seems impossible to achieve this in the general 
case. 
So, the hypothesis that multiplication of distributions is possible without 
losing the useful properties of distribution theory implies the possibility of 
assigning a finite value to every divergent expression whatsoever. 

One cannot exclude the possibility that the definition of a finite value 
for every divergence will be possible in a mathematically satisfactory way in 
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some future theory, but for the time being it is necessary to conclude that a 
product on the distributions satisfying the minimal requirements used here 
is not possible. 

The success of other approaches to the multiplication problem can be 
judged by their success in coming to grips with the problem of defining finite 
values for divergent quantities. 

The simple model developed in this book is again the minimal model 
in this respect. It defines finite values for divergent quantities behaving as 
powers and logarithms, and as 6-functions. 

It is partially possible to avoid the problem by defining values of gen-
eralized functions in a larger class of objects. Again the yardstick by which 
these efforts can be gauged is the possibility to relate these more general 
objects to standard real numbers. 

23.2 On the nature of the infl.nite 

(Continued from Sec. 1.1). The nature of the infinite has been a subject for 
speculative thought for philosophers, theologians, and of course mathemati-
cians from the earliest times. More recently the infinite has also made its 
appearance in physics, in particular in (quantum) field theory. The correct 
handling of the infinities which arise there has been the subject of a very 
large research effort. 

A philosophical distinction, which was explicitly made already by Aris-
totle, is the distinction between the actual and the potential infinite. The 
actual infinite is defined to be really infinite, without possibility of approach-
ing it in any way. By contrast a potentially infinite quantity is defined to be 
a quantity which can be made larger than any given quantity. 
Example 23.1 In terms of an actual infinite parallel lines in Euclidean 
geometry may be said to intersect at infinity. Euclid did not accept this. A 
possible restatement in terms of a potential infinite is that parallel lines will 
not intersect, no matter how far they are continued. 
In the eighteenth century the calculus was developed in an intuitive way, 
without the availability of a sound logical basis. Infinite quantities and 
infinitesimals were freely used and manipulated, and in the right hands this 
yielded spectacular results. 

In the nineteenth century the desire for a sound logical foundation of 
these operations with infinities led to the formulation of a program for the 
rigorization of analysis [Kli]. The content of this program was the elimination 
of the actual infinite and the infinitesimals from analysis, and therefore (it 
was then thought) from mathematics in general. The program was brought 
to completion by the efforts of the Weierstrass school. Many manipulations 
with infinities were given a sound basis by the development of the theory 
of analytic continuation. Divergent series were brought under control by 
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Poincare's theory of asymptotics. It is these ingredients which also lie at the 
basis of this book. 

As far as analysis is concerned the elimination of the actual infinite has 
been achieved, provided that the real number system is taken for granted. 

It ias been thought that this demonstrated the practical necessity of 
avoiding the actual infinite. The development of nonstandard analysis by 
Robinson [Robi] made this position very difficult to maintain., 

23.3 The impossibility result of Schwartz 

There is a well known impossibility result due to Schwartz, [Sch3], which 
states that an associative algebra containing the 8-fuction and the continu-
ous functions is not possible. This result is not directly relevant to the efforts 
in this book, since the product of the generalised functions, when reduced 
to the intersection with the distributions, is inherently non-associative. It 
has been demonstrated in Ch. 10 that this lack of associativity is actually 
an advantage. It drastically simplifies the theory by allowing Leibniz' rule 
to hold for differentiation of multiple products (8.105). 
Remark 23.3 In other theories, with an associative product and Leib-
niz's rule, it seems unavoidable to introduce infinitely many different Heav-
iside functions, with different 8-like derivatives. This leads to very large 
theories, with contents that are difficult to characterize. 
Although Schwartz's result is not directly relevant, it offers heuristic support 
for the choices made in this work. 

23.4 On more general theories 

There exists a vast literature on generalizations of the distribution concept, 
that is theories which admit more singular objects than 8-functions. No 
attempt will be made to review these efforts. 

Typically there may be a non-zero element 8 • 8, or there may be in-
finitely many different Heaviside functions, with different 8-like derivatives. 

A guiding idea of the symmetrical theory of generalised functions is that 
the multiplication problem for distributions cannot be solved because there 
are to many distributions. The 8-function has been explained mathemati-
cally by imbedding it in a larger class of objects than necessary. This may 
be convenient for many purposes, but it makes the multiplication problem 
intractable. 
Remark 23.4 The natural method in mathematics is to generalise as 
much as possible. For instance in solving differential equations it is custom-
ary to attempt an existence proof for solutions in some very general class of 
objects. As the next step regularity results are proved to define properties of 
solutions. This approach may be convenient, but it becomes self-defeating if 



On more geneml theories 289 

the generality makes the multiplications needed to obtain solutions impos-
sible, [Lod3]. 
It goes against the spirit of this work to attempt a solution of the multiplica-
tion pry>blem by construction of larger classes of objects. since distribution 
theory is already held to be too large. 

Nevertheless it may be possible to obtain a symmetrical theory of gen-
eralised functions from a larger theory, such as [Col], by a suitll,ble reduction. 
More work is needed to investigate this possibility. 

The test for the usefulness of larger theories is in accordance with the 
heuristic of the previous sections the possibility of obtaining finite results in 
cases where standard computations diverge. 

23.5 Nonstandard analysis 

The construction of nonstandard analysis by Robinson [Robi] was a very 
important result for the interpretation of analysis. It showed clearly that 
the results of analysis are independent of the standard rigorization. Indeed 
it opens up the possibility that there may be many ways to create a logically 
consistent foundation for analysis. 

The emphasis on the avoidance of the actual infinite, which was the 
characteristic property of the standard formulation, is absent from the non-
standard formulation. In nonstandard analysis it is possible to operate freely 
with infinitesimals and with infinite numbers within the rules of internal set 
theory [Robe]. 

A simple model for nonstandard analysis can be constructed by consid-
ering nonstandard real numbers as equivalence classes of sequences of stan-
dard real numbers. In this model infinitesimals are identified with ( equiv-
alence classes of) sequences which converge to zero, infinite numbers with 
diverging sequences. The correspondence JR* -+ JR takes the form of identi-
fying convergent sequences with their limit. 

It is well known that nonstandard analysis is equivalent to standard 
analysis in the sense that standard proofs exist for the standard part of 
all nonstandard results. Nonstandard analysis does not help us with with 
the interpretation of divergent quantities. Standard divergent expressions 
become nonstandard infinite numbers. 

Distribution theory can be reformulated in terms of nonstandard anal-
ysis [Robi]. 
Example 23.2 The a-function in nonstandard analysis becomes an 
equivalence class of functions JR* -+ JR. These functions take on infinite val-
ues in the infinitesimal environment of the point x = 0. and are infinitesimal 
everywhere else. 
Unfortunately the reformulation of distribution theory in terms of nonstan-
dard analysis is no help with the multiplication problem. The nonstandard 
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version of the theory is equivalent to the standard approach. This is best 
seen when distributions are considered as equivalence classes of sequences of 
test functions [Lig]. 

For instance an object such as 8 • 8 may be defined as a nonstandard 
function by choosing particular elements of the equivalence class represent-
ing the 8-function, but this does not help us with the interpretation of the 
expression 8 • 8. The nonstandard approach supplies only a conceptual im-
provement with respect to the standard approach. 

As pointed out above, the problem of the multiplication of generalised 
functions should not be separated from the problem of giving a meaning to 
infinite expressions in the form of standard real numbers. 
Example 23.3 The value of the Ii-function at x = 0 is undefined in a 
standard sense, It is a well defined infinite number for a given representant 
of the Ii-function in nonstandard analysis. This infinite number is differ-
ent for different representants of the a-function. Therefore the value of 
the Ii-function at x = 0 cannot be given a unique nonstandard value. The 
reinterpretation of 6(x) as a symmetrical generalised function supplies the 
value zero. 
Remark 23.5 The conceptual simplifications offered by nonstandard 
analysis are best seen in situations where one has to deal with one limit 
process. In cases with two non-commuting limits rewriting the example 
given in Rem. 8.1 as 

1:11 min(1:1, 1:2), (23.6) 
with 1:1 and E2 infinitesimal is not really helpful. 

This may be a reason why nonstandard analysis has not proved useful 
in the construction of a solution for the multiplication problem. 
The additional property of the model presented in this book can be in-
terpreted in terms of nonstandard analysis as the construction of a new 
mapping JR* - JR with the property that it maps some, but not all, infinite 
nonstandard numbers into the finite standard real numbers. The mapping 
of finite nonstandard real numbers is not changed. 

The usual mapping JR* - JR can be based on the standard convergence 
concept. Likewise the new map JR* - JR can be based on the generalised 
convergence concept. 
Example 23.4 When the equivalent of the restrictions imposed in this 
work is imposed, the nonstandard infinite values of the Ii-function are all 
mapped into the standard real number zero. 

6(0) := (I(x), 6(x) • 6(x)) = (I(x), O(x)) = 0, (23.7) 
as found in Ch. 9. 
Of course the limited character of the model allows only for the interpretation 
of a small subset of the infinite numbers. Clearly much stronger theories are 
possible. 
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Nevertheless, the systematic mapping of infinite numbers into finite 
numbers is an essential step on the way to progress with the multiplica-
tion problem. It is also what separates the work in this book from other 
approaches to the multiplication problem. 

This mapping of infinite numbers into finite numbers is a new contribu-
tion, and it is the aspect which makes a break with many standard concepts 
unavoidable. 

The results obtained so far have a rather limited character. It is to be 
feared that this will be unavoidable for a long time to come. Somewhere 
between standard (and nonstandard) analysis, where no infinities are in-
terpreted, and complete multiplication of the distributions, which requires 
the interpretation of all infinities, the further development of symmetrical 
theories of generalised functions will remain the art of the possible. 

23.6 Other distribution products. 

There exists a large amount of literature in which products and/ or convo-
lutions are defined on restricted subspaces of the distributions. Some exam-
ples are [Fsh], [Kel], [LB-G], [A,M&S] [Obe], and [Ita]. The subspace of the 
distributions usually coincides, or is contained in, the subspace PC>. of the 
simple model. 

Actually the simple model provides more. There is some freedom in 
the choice of the standardization of the' product, and there is also ~he choice 
between symmetrical and asymmetrical products. By suitable specialization 
many special multiplication theories can be derived. 

The special cases found in the literature obtain a product by postulating 
product properties, for instance the Leibniz rule for differentiation (2.39) or 
the analytic boundary property. The products which result in this way are 
special cases of the more general product obtained in this work, which can 
be obtained by choosing the appropriate standardization. 

The symmetrical theory provides a covering theory for multiplication 
theories on the subspace of the distributions which it contains. 

23. 7 Conclusion 

The evaluation in finite terms of infinite quantities is a good criterion for 
comparing theories of generalized functions with the possibility of multipli-
cation. 

The symmetrical theory of generalised functions differs fundamentally 
from other approaches to the multiplication problem. It does not fit in with 
distribution theory and other approaches to generalized functions. 

It is a new theory of generalised functions, which is logically independent 
of other theories of generalized functions. In particular it is independent of 
distribution theory. 





CHAPTER 24 

PROGRAM, OUTLOOK, AND CONCLUSION 

This chapter outlines the possibility of larger models for the symmetrical 
theory of generalised functions. All restrictions imposed of thE; simple model 
are sufficient, none are necessary. This leaves much room for generalization. 

The development of new concepts, which is necessitated by the accep-
tance of symmetry as a starting point, is by no means complete. In particular 
the definition of asymptotic expansions needs generalization. The standard 
(Poincare's) concept used in this book is not really adequate for the purpose. 
The analysis of asymptotic behaviour should serve as a basis for theories of 
generalised functions, instead of on the approach to a limit. 

The construction of a model for a symmetrical theory of generalised 
functions makes it clear that an alternative to distribution theory is possible. 
It is necessary to work out the consequences further in order to demonstrate 
the usefulness of the new approach. 

What remains to be done is the reconstruction of parts of analysis, in 
such a way that generalised functions are incorporated from the beginning. 

24.1 Larger models 

More work is needed on the analysis of singular behaviour of functions. The 
method used in this book can be taken much further. Analysis of singular 
behaviour in the real was effected by Mellin transforming functions on the 
real axis into analytic functions on the (punctured) complex plane. (It is also 
possible to employ other integral transforms). The starting point was the 
analysing power which is available (without recourse to generalised methods) 
for meromorphic functions. 

The analysis of the behaviour in the complex plane near a singular 
point Ao is effected by analysing the behaviour of the analytic function of A = 
Ao + p ei'P as a function of the argument cp on a sufficiently small circle p = 
constant, around the singular point. (The circle may be deformed arbitrarily 
as long as no other singular points are included). For single-valued analytic 
functions this function is simply a periodic function of the argument cp. The 
analysis involves no more than computing its Fourier coefficients. (It is 
actually sufficient to find the constant part.) 

More complicated singular behaviour in the real leads to multiple-valued 
analytic functions. (Compare (5.45), which shows that non-integral pow-
ers of the logarithm give rise to branchpoints). The argument cp now runs 
from -oo to +oo, and considered as a function of rp the the analytic function 
is no longer periodic. 



294 Program, outlook, and conclusion 

As a function of cp, it can be considered as a generalised function of the 
argument cp, which makes it amenable to analysis with the tools supplied 
by the simple model. This in turn allows the analysis of more complicated 
singular behaviour in the finite. It is not clear to me at present if this 
bootstrap process [M iin] will lead to an infinite regression. 

It would be very much preferable if general methods could be found, but 
it seems likely that further development of models will be necessary before 
adequate general insight can be obtained. 

Generalization will result in the enlargement of the two parameter index 
set ( a, q) of the rrfunctions to an infinite dimensional index space. The 
number of singular generalised functions with point support will equal the 
number of allowed types of singular behaviour. (In distribution theory only 
non-singular local behaviour as xP can be detected). 

It seems plausible that a symmetrical theory of generalised functions 
can be built on the basis of the exponential-logarithmic functions [Har] in-
troduced by P. du Bois-Raymond. 

The difficult question (which will be discussed further in the next sec-
tion) is how many different types of asymptotic behaviour one may have 
in a function, if it is required that the different asymptotic components 
can be distinguished uniquely. This is the inverse of the standard question 
in asymptotics: given a function, which is defined in some way, find its 
asymptotic behaviour. 

The questions posed above could be answered on basis of a s0lution to 
the fundamental unsolved problem (2.62) referred to in Ch. 2. 

The extension to more variables is not trivial. It is necessary to consider 
more the complicated singularities which are possible in more dimensions. 
The simple arrow on the 77-functions will have to be replaced by a description 
of the approach to the singularity. For the time being only factorizable 
problems can be considered. 

The greater generality of distribution theory in this respect is only ap-
parent. In actually handling complicated singularities it is necessary to de-
sign appropriately adapted spaces of test functions, and coordinate transfor-
mations immediately cause great difficulties. 

A definitive model is not in sight, nor do I know if there can be such a 
thing. There is room and need for much further work. 

24.2 On asymptotics 

Throughout this work this work the standard definition, due to Poincare, 
based on the standard limit concept, has been employed. In the abbreviated 
notation for ( 4.5) the asymptotic condition is 

f(x) ~ f asy(x;O+) {=;> limx"(f(x) - f asy(x;O+)) = 0, (24.1) 
xlO 

Va EC. 
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It is natural in the context of generalised function theory to replace this 
by the generalised limit concept, 

f(x) ~ fasy(x;0+) <==> Limx"'(f(x)-fasy(x;0+)) = 0, 
xlO 

'</a EC, or equivalently 

An example at infinity is provided by the oscillating functions 

I( ) ·- ikx _ { 0(x) .k ::/ 0, 
x .-e ~ I(x) k=0, 

(24.2) 

(24.3) 

(24.4) 

which are according to this definition asymptotic to zero for xloo, even 
though the standard limit does not exist. 

This weaker form· of the asymptotic condition might therefore be re-
ferred to as asymptotic. In the finite this concept allows us to handle singu-
larities with increasingly rapid oscillations, for instance of the form 

(24.5) 

which are in the mean asymptotic to zero. 
Standard asymptotic theory might be called a posteriori in the sense 

that it attempts to solve the problem: Given a function defined in some 
(possibly implicit) way, find its asymptotic expansion up to some given ac-
curacy. 

As a consequence of this work the opposite question has to be posed: 
How many different types of asymptotic behaviour can be distinguished 
uniquely in presence of each other. 

It is not sufficient to find a finite number of terms in an asymptotic ex-
pansion. An order symbol O(something) is not sufficient. (Compare Ex. 4.4, 
where differentiation converts terms of order zero into dominant terms). 

It is necessary to characterize all terms which may occur, in order to 
know if the required analytic continuations exist. It is also necessary to 
be sure that the class of allowed asymptotic expansions is closed under the 
operator algebra which should be defined on all generalised functions. 

It is unclear if this problem of a priori asymptotics does have a unique 
solution. There might be different, incompatible solutions, or a sequence of 
increasingly large classes without a closure in the form of a largest class. 
This subject must be left for the future. In this tract the problem is avoided 
by the restriction (4.1) to a well known asymptotic set. [B&H]. 

It is often thought that convergence is necessary in order to define pre-
cise numerical results, and that asymptotic expansions cannot serve in this 
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respect, since numerically an asymptotic expansion yield only a finite, non-
zero precision. This is correct, but the results of generalised function compu-
tations appear as the values of coefficients in asymptotic expansions, which 
can (it:, principle) be found with -arbitrary precision. There is no need to 
attempt to sum asymptotic expansions, although this remains as a useful 
approximation method. 

24.3 On foundations 

As indicated in Sec. 1.1, the theory of the Fourier transform has been a source 
new developments in mathematics right from its inception by Fourier. 
The apparently simple questions: 

Which 'functions' allow a Fourier expansion? 
and conversely: 

What is the meaning of Fourier sums and integrals? 
have led to the basic questions: 

What is a function, and what are limits, derivatives, and integrals? 
The foundations of analysis, as constructed before the introduction of the 
Dirac 8-function, do not leave room for the existence of a 8-function. The 
situation was saved by considering 8 as a linear functional only. Conse-
quently, even the simplest possible Fourier integral (2.3) and sum (20.35) do 
not represent a function in the classical sense. 

The requirement that multiplication of (generalised) functions must al-
ways be defined for all generalised functions makes this compromise solution 
untenable. 

The symmetrical theory of generalised functions is the natural next 
step. Once this has been accepted it is unavoidable to consider generalised 
functions and ordinary functions on the same footing. 

This poses unsurmountable problems on basis of the standard concept 
of functions as maps JR ---+ JR. In this work I have of necessity fallen back on 
the eighteenth century concept ( enunciated by Euler) [Eul], of a function as 
an analytic expression. 

In this sense it is perhaps inappropriate to talk about generalised func-
tions. In a sense all generalised functions introduced in this work, including 
the 8-function, are special functions. 

If the program outlined above were fully completed, the result would 
be a general theory of special functions. This may well be enough for the 
applications of analysis. 

The really difficult problem is building a synthesis, which combines the 
availability of 8-functions with a general function concept. This should of 
course be done without losing the general existence of derivatives, limits, 
and integrals. As pointed out in the previous chapter this involves a recon-
sideration of the handling of infinite quantities in mathematics. 
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As discussed in Sec. 19.8 the standard tools from topology are not suit-
able in the presently available form. Only in the special case of the .C2 
Hilbert space does a symmetrical structure result when linear functionals 
are de9ned. · 

A solution is not in sight, and I have to leave the reader at this point 
with open problems which will take much effort to settle satisfactorily. 

24.4 Outlook 

The reader who has followed the outline of the preceding chapters will have 
acquired some feeling for the inherent problems of the construction of sym-
metrical theories of generalised functions. It is not that the construction 
involves difficult concepts or methods. Indeed, given some familiarity with 
the theory of analytic continuation, the material lends itself to an elementary 
presentation. 

The difficulty is rather that it is necessary to unlearn concepts which 
have been part of an education in mathematics for a long time. 

The most drastic break with tradition is the need to reinterpret infinite 
quantities as finite quantities. Strictly speaking this is not a reinterpretation, 
infinite quantities do not exist in standard analysis, they are undefined. Even 
though we are at liberty to define undefined quantities in any (consistent) 
way we choose, it takes time and effort to regard the new interpretations as 
natural. 

The first step is the replacement of 'smaller than any given E' by 'does 
not contain a term Eo asymptotically' in the asymptotic expansion for small E. 

This forces us to forget standard visualizations of open environments as small 
surroundings, and consequently standard notions of topology. 

The second step must be a reconsideration of the standard function con-
cept. The standard (Dirichlet) function concept arose from the realization of 
the insufficiency of the concept of functions as relations between quantities. 
A new function concept must be developed in such a way that generalised 
functions can be accommodated. 

The name 'generalised functions' is a misnomer in this respect. Gener-
alised functions are really special functions in the sense that these functions 
have been constructed explicitly. It is to be expected that also in future 
theories the families of generalised functions will be parametrized by finite, 
or at most countable index sets. Generalised functions are special in the 
same sense that analytic functions are special. 

Further progress will entail a better understanding of asymptotic be-
haviour. The method of mapping to analytic functions will probably remain 
indispensable for progress in this respect. It allows for the application of the 
well developed classification of singularities of analytic functions. 

It is difficult to imagine at present what a definitive theory of generalised 
function would be like. Instead one can think of a series of increasingly 
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comprehensive models, which are defined constructively. 
The situation is analogous to the theory of computable real numbers, 

ever large classes can be defined and constructed, but the class of all com-
putable real numbers remains an intractable concept. 

Perhaps progress with the fundamental unsolved problem (2.62) of the 
existence of analytic continuations will make a less constructive approach 
possible. 

The present work is only a first start towards a symmetrical theory of 
generalised functions. It may be seen as no more than an indication that it 
is necessary and useful to overstep the boundaries which have traditionally 
been imposed by classical analysis and distribution theory. 

Nevertheless the symmetrical theory of generalised functions is strong 
enough to deal with the divergence problems which arise in quantum field 
theory. The common denominator of both quantum field theory and the 
theory of multiplication of generalised functions is the need to come to grips 
with problems which necessitate the handling of (actual) infinities. 

Assigning finite values to infinite quantities in a sensible and meaningful 
way will remain the challenge for future enlarged theories of generalised 
functions. Only the simplest special case has been dealt with as yet. 
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24.5 Propositions 

Let me now summarize some of my conclusions, which arise from the work 
reported in this tract. 

1) The requirement of the possibility of multiplication should be added to 
the requirements which are traditionally imposed on Dirac's 8-function. 

2) (Occam's razor) The number of generalised functions is not to be mul-
tiplied without good reason .. 

3) As a consequence one has the requirement that it must be possible to 
evaluate generalised functions at a point. 

4) Given 1) and 2) the existence of a symmetrical scalar product should 
be required. Mathematically in order to remain as close to a Hilbert 
space as possible, physically in order to have applicability to quantum 
mechanics. 

5) It is possible to construct a model for a symmetrical theory of general-
ised functions. It allows the definition of operators and products. 

6) This model is applicable to computations in quantum field theory. Ap-
plications of the symmetrical theory are possible without worrying about 
the foundations. 

7) More work is needed to explore more general theories of symmetrical 
generalised functions. 

8) The theory is, and should be, based on asymptotics instead of on con-
' vergence. 

9) It is necessary to reconsider the foundations of analysis. 
10) The constructive approach should be extended to analysis as a whole. 
There is no need for the reader to agree with the propositions enumerated 
above. These propositions represent my interpretation of the work and its 
meaning. 

It is to be hoped that more work will be carried out to enlarge our 
understanding of analysis and its applications. The nature of the infinite 
in mathematics and physics needs much further thought. The standard 
foundations of analysis must be reconsidered. 
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APPENDIX A. Laurent coefficients 

For every single valued analytic function /(>..), with only isolated singular-
ities, there is for every point a in the complex >.-plane a formal Laurent 
series 

00 

J(>.) = L (>. - a)i JLil(a). 
j=-oo 

The Laurent coefficients /Lil (a) are defined by 

JLil(a) := Res(>.- a)-i-l /(>..). )..=c, (A.2) 

The Res operation stands for the taking of the residue. This is defined in 
the standard way as 

Res/(>.):= f d>.J(>.) := 2~ lim f 21rdcppei'Pf(a+pei'P). (A.3) 
>,.=c, . plO } 0 

i>,.-c,l=O+ 

For analytic functions with isolated singularities the limit is trivial, since its 
argument does not depend on p when p is sufficiently small. In the special 
case of meromorphic functions the Laurent series has at most a finite number 
of singular, (j < 0), terms. The Laurent series actually converges to /(>..) in 
a punctured disk centered at >.. = a, but this is irrelevant for the purpose of 
generalised function theory. It is sufficient that the residues exist. 

If the function /(>.) is analytic at >. = a, the Laurent series reduces to 
a Taylor series 

00 

J(>.) = L(>. _ a)i JLil(a), (A.4) 
j=O 

The JU) is the j-th derivative. In the following the square bracket superscript 
is always used for a residue, the superscript in parenthesis is used for a 
derivative. A raised prime never means a derivative. It serves to distinguish 
between objects E PC defined as functions, and objects E PC' defined as 
linear functionals. 

The Laurent series for a product of analytic functions is the product of 
the corresponding series. Collecting the same powers of ( >.. - a) we find 

00 

(!. g)Lil(a) = L f[kl(a) gf.i-kl(a), (A.5) 
k=-oo 

which is convenient for the actual computation of Laurent coefficients. For 
the case that both f and g are meromorphic, the summation in (A.5) is 
finite. 
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APPENDIX B. Binomial coefficients, Pochhammer symbols 

The binomial coefficients (~) are polynomials in the complex variable.,\ E C, 
of degree n E N defined by 

( .,\) ·- 1 0 .- ' ( .\ ) .\- n (..\) 
n + 1 := n + 1 n · (B.1) 

The explicit form of the polynomial is 

( .,\) = 2_ ..\(.,\ - 1) • • • (.,\ - n + 1). 
n n! 

(B.2) 

They are related to the Eulerian f-function by 

( .,\) 1 f(.\ + 1) (-)n f(n - ..\) 
n = n! f(.,\ - n + 1) = n! r(-..\) ' (B.3) 

for .\ /: p E Z, and by a limit when a f-function is singular. From this one 
immediately finds the well known special values 

( m) m! 
n n!(m-n)!' and 

which are valid for integer values .,\ = m E N. 

(-)n(m + n)! 
m!n! 

(B.4) 

The derivatives of the binomial coefficients with respect to .\ are now written 
as 

(B.5) 

By repeated application of the Leibniz rule for differentiating a product one 
finds the explicit form 

(~) (k) LL······ L k; (.\ - j1)(..\ - h) · · · · · · (.\ - jn-k)- (B.6) 
-l<j, <h< ... <Jn-k<n n. 

It is a polynomial of degree n - k in .,\ and it is zero for k > n. 
The Taylor series of the binomial coefficient at an arbitrary o: E C is given 
by 

(~) = t t, (:) (k) (.\ - o:)\ (B.7) 

which is obviously a polynomial of degree n in .\. 
The Taylor series of the derivative of the binomial coefficients at .,\ = o: is 

(
,\) (k) n-k l (0:) (k+j) . 

=~-:- (.\-o:)1, 
n L..J J! n ;=O 

(B.8) 
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and in particular for a = 0 

(
,\) (k) = n-k !._ (O) (k+j) j I: ., ,\' 
n i=O J. n 

(B.9) 

which gives the derivatives of the binomial coefficient as a polynomial of 
degree n - k in the variable ..\. The derivative of the binomial coefficient 
does not have the property that it is integer for integer values of ..\. The 
values also alternate in sign. 

For computational purposes it is therefore preferable to introduce the 
Pochhammer symbols by 

(B.10) 

This gives the explicit form 

(..\) = ..\(..\ + 1) · .. (..\ + n -1) = r(..\ + n) = (-)n r(l - ..\) . (B.11) 
n r(..\) r(l - ..\ - n) 

The derived Pochhammer symbols are now defined Vk E Z by 

by taking residues. This gives the explicit values 

0 :'.S k :'.Sn, 
otherwise. 

(B.12) 

(B.13) 

The derived Pochhammer symbols are zero unless 0 :'.S k :'.S n, since the 
Pochhammer symbol is a polynomial of degree n in ..\. It should be noted 
that in contrast with the derivative of the binomial coefficient a factorial k! 
is included in the definition.. This simplifies some formulre. For n = 0, 
and V ,\ E C, one has the special value 

( ) [k] 
,\ 0 = Oo,k • (B.14) 

The properties of the Pochhammer symbols are easily found from the def-
inition. The corresponding formulre for the binomial coefficients are then 
found from the connections 

( ,\)[k] = n. _ n+k -" I ( ') (k) 
n k' ( > ' . n 

(B.15) 
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Some of the properties of the derived Pochhammer symbols are: 
Explicit form as a factored polynomial with integer coefficients 

(,\)~] = LL'''''· L (,\ + j1)(,\ + h)""" (,\ + in-k), (B.16) 
-l<ji <i2< ··· <in-k<n 

Inversion formula 
(B.17) 

Recursion by n 
(,\)~t = (,\ + n) (,\)~] + (,\)~-1]. (B.18) 

Recursion with respect to ,\ 

(,\)[k] = ,\ (,\ + l)[k] + (,\ + l)[k-1]. n n-1 n-1 (B.19) 

Taylor series 

(,\)~]=I: (j k) (a)~+k](,\ - a)i. 
j=O J 

(B.20) 

Explicit polynomial form in powers of ,\ 

(B.21) 

The explicit values of the integer coefficients (O)~l are best calculated re-
cursively by using the recursion formula (B.18) with the initial conditions 

(O)~l = 80,n (ot+l] = 0. (B.22) 

The results are 

1 
0 1 
0 1 1 

(O)~l = 0 2 3 1 = (1)~_::}l. (B.23) 
0 6 11 6 1 
0 24 50 35 10 1 
0 120 274 225 85 15 1 

The values of these special derived Pochhammer symbols are known [Erdl) 
as the Stirling numbers of the first kind. A large table can be found in [A&S), 
with a trivial difference in the sign convention. 
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APPENDIX C. Laurent coefficients for Fourier transforms 

The different forms of the derivatives of the trigonometric functions 

d~ cos,\= -sin,\, d~ sin,\ = cos,\, 

can be written by means of the shi1' relations, 

sin(,\± J) = ±cos,\, 

in the same form, 

cos(,\ ± J ) = =J= sin,\, 

(C.1} 

(C.2} 

d~ cos,\= ±cos(,\± J ), :,\sin,\= ±sin(,\± J ). (C.3} 

This can be used to put the Taylor series of these futtetions in the forms 
00 

sin,\= L fr sin(a + J j)(,\ - a}1, (C.4} 
j=O 

and 
00 

sin J ,\ = L fr ( J>i sin J ( a + j)( ,\ - a )i, (C.5} 
j=O 

and idem for the cosine. 
This avoids the cumbersome period 4 of the usual form of the Taylor series. 
The Eulerian r-function satisfies the functional equation 

r(-\ + 1) =-\. r(-\}, (C.6} 

and the completion formula, 

r(-\}r(l-,\}sin,r,\ = ,r. (C.7} 

Repeated application of the functional equation (C.6} gives 

which connects the r-functions and the Pochhammer symbols. 
The Laurent series of the r-function at the singular points ,\ = -p, p E 

N is easily found by division from the completion equation. The result is 

r(-\) = <~t ((-\ + p)-1 + 1/J(p + 1) + 

-½(,\+p)('I/J(l)(p+l}-1/i(p+l}- ; 2 )+O(,\+p)2), (C.9} 
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where 'lj;(>.) is the logarithmic derivative 

(C.10) 

of the r-function. At other points the Laurent series of the r-function is 
the Taylor series. 
Going over to half angles and using the shift formulre (C.2) the completion 
formula ( C. 7) can be put in the forms 

and 
r(>.) sin(~>.) r(1 - >.)sin~ (1 - >.) = ~, 

r(>.) cos(~>.) r(l - >.) cos (1 - >.) = ~. 

These can be combined into the form (putting >. := >. + 1), 

r ( >. + 1) sin ( >. + m) r ( - >.) sin ( - >. - 1 + m) = , 

for arbitrary m E Z. 

(C.11) 

(C.12) 

(C.13) 

The Laurent coefficients Cj(a, m) needed for the computation of the 
Fourier transforms of generalised functions can all be expressed in the Lau-
rent coefficients of the function J(>.) :=-r(>. + 1) sin~(>.+ m), 

cj(a, m) :=Res(>. - a)-j-l r(>. + 1) sin~(>.+ m). 
>-=<> 

(C.14) 

It follows immediately from the definition (C.14) that it is possible to differ-
entiate formally with respect to a, with the result 

(C.15) 

This is useful only for a =f. p E Z. 
The coefficients Cj clearly have the property 

(C.16) 

Vn E Z, since the sine has that property. 
Remark C.1 Despite the fact that these Laurent coefficients are periodic 
in m with period 4 it is convenient to keep m E Z arbitrary. 
Since the sine function is entire, and the r-function has only first order 
poles, we have immediately 

for j < -1. (C.17) 
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For j = -1 the coefficient C-1(a, m) is non-zero only for a= -p-1, p EN, 
where a pole of the r-function is found. The explicit form can be written as 

c_1(a,m) = p { 
0 a =j:. -p- l, 

<;/ sinI(a+m) a=-p-1, 
(C.18) 

which can be written in one line by means of Kronecker's 6-symbol as 

00 

c (a m) = _ '°' 6 i5mod2 1 (-)(m+p)/2 -1 , L o,-p-1 p,m p! , (C.19) 
p=O 

which is an explicitly zeromorphic function. 
For a =j:. -p - 1, p E N, the function J(>.) = r(>. + 1) sin I(>.+ m) is 

analytic, and its Taylor coefficients can be found by repeated differentiation. 
This results in the explicit form 

j ( ) _ '°' 1 r(k)( 1)( 1r )i-k · 1r ( • k) Cj a,m - L k!(i-k)! a+ 2 sm 2 a+m+J- , 
k=O 

so 
co(a, m) = r(a + 1) sin I (a+ m), 

and 
c1(a,m) = co(a,m)('I/J(a + 1) + I cot i(a + m)), 

(C.20) 

(C.21) 

(C.22) 

valid for a =j:. -p - 1 , p E N. Since the singular points are isolated Cj can 
be expressed in terms of c0 , 

(C.23) 

by substituting (C.20) with j = 0 into (C.14). 
For the special case that a= p E N, m = p or m = p + 1, the explicit 

values of the coefficients, up to terms involving the second derivatives of 
the r-function, are collected in the following table. 

Table C.1 
co(P,P) = 0 
c1(P,P) = I (-)Pp! 

c2(p,p) = I(-)Pp!'I/J(p+ 1) 
C3(p,p) = i (-)Pp! (1/J{l)(p + 1) + 1/J2(p + 1) - ;; ) .......................................................................... 

co(p,p+ 1) = (-)Pp! 
c1(P,P + 1) = (-)Pp! 1/J(p + 1) 
c2(p,p+l) = ½<-)Pp!('I/J(1'(p+l)+'I/J2(p+l)- ~2 ) 
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The c-coefficients at other values of the second parameter are found from 

Only the values at m = 0, 

are usually needed for actual computations. 

m - p = 0 (mod 2), 

p = 0 (mod 2), 

p = 1 (mod 2), 

p = 0 (mod 2), 

p = 1 (mod 2), 

The c-coefficients satisfy the completion formula 

IH L (-)icj(a, m) c1-j(-a - 1, m) = 81,0, 
j=-1 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

which is obtained by substituting the Laurent series into the completion 
formula (C.13), using the Laurent product formula (A.5). A slightly more 
general form is obtained by using the functional equation of the r-function 
in the form (C.8) 

1+1 

L (-)ici(a + n, m - n) c1-j(-a - 1, m) = (-)1(a);!l, (C.28) 
j=-1 

which reduces to the previous form (C.27) for n = 0. In particular for a (/. Z 
we have the special cases 

co(a,m)co(-a -1,m.) = ~, 
and 

The completion formula (C.28) can be used to shorten summations, 

q 

HqL (-)icj(a,j)cq+r+i-j(-a -1,m) = 
j=-1 

r 

= (-( L (-)jcj(-a - 1, m.) Cq+r+l-j(a, m), 
j=-1 

(C.29) 

(C.30) 

(C.31) 
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as one finds from (C.28} by putting l = q+r+ 1 and rearranging summations. 
The completion formula (C.28} can be used conveniently to calculate the c-
coefficients at the singular points a = -p - 1, p E N. Substituting l = 
-1, l = 0 gives the starting conditions. By isolating the highest term, the 
completion equation (C.28} can be rewritten for l > 0 and Vp e N as 

l-1 2(-)P+l+l . c,(-p - 1,p) = ,..,1 L..J <->'c;(-p - 1,p) c1-;+1(1),p), (C.32) 
j=-1 

l-1 ( )P+l+l · c,(-p-1,p+l)=- , 1 L...J(-)3c;(-p-1,p+l)c,_;(p,p+l), (C.33) 
j=O 

where the explicit values of eo(p,p + 1) or c1(p,p) have been substituted. 
These forms of the completion relation can be used to compute the c;-
coefficients at the singular points recursively. 
The results are collected in the following table. 

Table C.2 
C-1(-p- l,p+ 1) = 0 
eo(-p- 1,p + 1) = i <->' /pl 
c1(-p - 1,p + 1) = i C->'¢(p + 1)/pl 
c2(-p- 1,p + 1) = I<->'+1(¢<1>(p + 1) - ¢ 2(p + 1) - ,..; )/pl 

C-1(-p- l,p) = (-)P+l/pl 
eo(-p -1,p} = <->'+1¢(p + 1)/p! 
c1(-p- l,p) = ½<->'(¢<1>(p+ 1}-¢2(p+ 1)- 1: )/pl 
c2(-p - 1,p) = • • • ¢<2> • • • calculate for yourself 

The table has been completed again up to second derivatives of the r-
function. It is obviously possible to compute all coefficients recursively in 
this way but the amount of work involved rapidly becomes excessive. 

It is often useful to relate different c-coefficients. The functional equa-
tion for the r-function (C.6) can be converted into 

C;+1(0 + 1,m + 1) =-(a+ l)c;+1(0,m) - c;(a,m), (C.34) 

by computing the residue. Unfortunately this relation cannot be used to 
enlarge the tables given above. 

Dividing the functional equation (C.6) by ..X and computing residues 
gives a formula for increasing a in the form 

; 
c;(a, m) = E (-a - l)1c-;-1c1c(o + 1, m + 1), (C.35) 

k=-1 
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valid for a=/. -1. For a= -1 one obtains the relation {C.34) at a= -1. 
For the computation of products it is convenient to introduce a coeffi-

cient djq(a, m), with a EC, r, q EN, m E Z by 
r 

dqr(a,m) := -¾q!r! L (-)i+rcj(a,m)cq+r+l-j(-a-1,m) = 
j=-1 

q 

= -¾q!r! L (-Ji+qci(-a -1,m)cq+r+i-i(a,m), 
j=-1 

(C.36) 

where the different forms are related by (C.31). It follows from the two 
different forms of (C.36) that the d-coefficients are related by 

dqr(a, m) = drq(-a - 1, m). (C.37) 

The d-coefficients are again periodic in m with period 2. In the special 
case q = 0 one obtains from the second form 

dor(a, m) = -¾r! (co(-a -1, m) Cr+1(a, m) - C-1(-a -1, m) Cr+2(a, m)), 
(C.38) 

of which only the first term survives, unless a = p E N. Further specializa-
tion gives 

doo(a, m) = -v,(a + 1) - % cot % {~ + m) = doo(-a - 1, m). {C.39) 

For integral values of the argument substitution of the c-coefficients gives 
the special values 

dqo(p,p) = dor(-p - l,p) = 0, (C.40) 
and 

doo(P,P + 1) = doo(-p- l,p + 1) = -v,(p + 1), (C.41) 

which occur in products of integral powers. 
For computing Hilbert transforms it is convenient to introduce coeffi-

cients h1(a, m) defined by 

{C.42) 

which differs from the completion formula {C.27) only by the change of m 
to m + 1. The trivial zeros of the h-coefficients are located at 

ho(p,p) = ho(-p - l,p + 1) = 0. 

The h-coefficients satisfy the reflection property 

(-)1+1h1(-a - 1, m + 1) = h1(a, m) = (-/h1(-a - 1, m - 1), 

since the summation can be changed from j to l - j. 

{C.43) 

(C.44) 
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APPENDIX D. Generalised zeta functions 

In this appendix some properties of the Riemann (-function and its gener-
alizations are listed. Proofs and more complicated formulre may be found 
in [Erdl]. 

The special functions which arise in the summation of sequences are 
special cases of the function (Bateman's notation) defined by 

CX) 

4>(z,s,v) := 2)v+n)-s zn, (D.l) 
n=O 

for v =f -p-1, lzl < 1, Res> -1, and by analytic continuation elsewhere. 
The generalised (-function is obtained by putting z = 1, 

CX) 

((s,v) := 4>(1,s,v) = ~)v+n)-s, (D.2) 
n=O 

and the Riemann (-function is obtained by specializing to v = 1, 
CX) 

({s) := ((s, 1) = 4>{1, s, 1) = L n-s. {D.3) 
n=l 

The properties of these functions and tqeir derivation as given in [Erdl] will 
be used in the following without proof. 
The function 4>(e':t,-A,v) satisfies the functional equation 

4>(e<>, -A, v) = i e-<>11 (211')-.X-l f(A + 1) x 
x (ei I ,x4>(e-21ri11 1 + A .E.-) _ ei I (11-.X)4>(e21ri11 1 + 1-a)) (D.4) 

' ' 2,ri ' ' ' 2,ri • 

This functional equation for the function 4>(z, -A, v) is known as Lerch' 
equation. 

Specializing to z = 1, or o: = 0 and writing out the 4>-function gives 
Hurwitz' formula for the generalised (-function 

CX) 

((-A,, v) = 2{211')-.X-l f(A + 1) L n-.X-l sin(2'11'nv- iA). (D.5) 
n=l 

while further specialization to v = 1 gives Riemann's functional equation 

((-A) = -2(211')-.x-i f{A + 1) sin I A ((A+ 1). (D.6) 

for the (-function. 
The ( -function is analytic as a function of A, with the exception of a 

simple pole at A= -1 with residue 1 and constant term equal to -,J,(1). The 
generalised (-function has the same pole and residue, but its constant part 
at the pole equals '1/J(v). 
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APPENDIX E. Operator algebra 

Operator algebra 

This appendix lists some well known operator properties for ease of reference 
and to fix the notation. The infinitesimal generators are tabulated. 
The commutator of two operators is defined by 

[.A., B] := .A.B- B.A., (E.l) 

and the repeated commutator is defined by 

with [.A., B] 0 := B, (E.2) 

so 
(E.3) 

By straightforward expansion of the exponentials and reordering terms one 
~mt~ r 

e.Ase-.A= f -Jr [.A., .. .i]B = f fr [.A., B]i = e[A,··]s. (E.4) 
j=O j=O 

For the reordering of operators in exponentials the Baker-Hausdorff lemma 
is needed in its simplest form. If 

[.A., [.A., B]] = [B, [.A., B)] = 0 

then 

and 
(E.5) 

as one sees by straightforward algebra or by consulting a textbook. 
For one parameter families of unitary operators U(a) depending addi-

tively on a parameter a, it is convenient to look for an infinitesimal genera-
tor .A. in order to obtain the operator family in the form 

(E.6) 

This presents some difficulties in the case of the operators acting on the gen-
eralised functions since the formal expression resulting from the application 
of the exponentiated operator may be undefined as a generalised function. 
Moreover it is very useful to have the exponential form also for operators 
that are not completely unitary, but almost unitary. 
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Such families are easily generated by operator differential equations of the 
form :a U(a)_ = i [.A., U(a)], (E.7) 

with the formal solution 

(E.8) 

by {E.4). If the infinitesimal generator .A. is selfadjoint the operators U(a) 
are unitary. 

When the generalised functions are transformed by a unitary operator 
the scalar products transform according to 

(f(x),Og(x))- (Uf(x),OUg(x))= (f(x),utoug(x)), (E.9) 

Therefore one can also consider transformations of t~ operators instead of 
transformations of the functions. The transformed operators are given by 

o :=utou =u-1ou, (E.10) 

if the operator U is unitary. 
It is often more convenient to consider the operator U(a) as a (su-

per)operator transforming the operators, since it avoids the question if the 
exponentials can be expanded. 
The operator family then satisfies an operator differential equation 

! O(a) = -i [.A., O(a)], (E.11) 

with the corresponding formal solution 

(E.12) 

Therefore instead of the operators acting on the generalised functions we 
consider the same operators as (super)operators acting on the operators. 
This transformation is known in quantum mechanics as the transformation 
between the Schrodinger and the Heisenberg picture. In the following the 
difference between the operator .A. acting on the generalised functions and 
the corresponding superoperator acting on the operators on the generalised 
functions will be ignored. 

Families of unitary superoperators are best characterized by their action 
on the operators X and 'D. 
It will be convenient to introduce the operator 1(, as 

1(, := -i'D, (E.13) 
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in order to replace the antihermitian character of the operator 'D by an op-
erator with a hermitian character. The minus sign is traditional in quantum 
mechanics, together with the commutation relation 

[X,1C]=iI. (E.14) 

The operator 1C is known as the wave number operator. The choice made 
above makes f(x) = eikx a wave function with positive wave number. 

The operator phase plane is defined to be the two dimensional space 
spanned by the operators X and 1C, so all operators O of the form 

0 := aX + b1C, (E.15) 

with a, b E lll It is convenient to characterize the operators by their trans-
formation of the phase plane. Only the simple cases where the infinitesimal 
generator is a linear or quadratic polynomial in the operators X and 1C 
(or 'D) are considered. 

The families of transformations of the generalised functions are all sub-
groups of the (affine) group of linear transformations of the phase plane 
which invariant area element. The infinitesimal generators are given in the 
following table 

Infinitesimal generator 
X 

1C = -i'D 
aX + b1C 

X'D 
½(X'D + 'DX) 

x2-v2 
x2+v2 

Table E.1 
Phase plane transformations 
Wavenumber translations 
Translations 
General phase plane translations 
Scale transformations 
Normalized scale transformations 
Rotations 
Lorentz transformations 

The phase rotations occur in this tract only for the special cases of rotations 
over multiples of given by .the powers of the Fourier operator. The gen-
eral rotation can also be written out for the generalised functions, but this 
involves too many special functions properties (parabolic cylinder functions) 
for the purpose of this tract. 

The Lorentz transformations are scale transformations rotated over i . 
When the scale and Lorentz transformations are omitted the Euclidean group 
of the plane remains. 

One can also consider many other one parameter subgroups, such as 
shifted scale transformations. Many operator properties such as (16.39) are 
easy to remember by thinking of the corresponding phase plane transforma-
tions. The whole group can be represented as a transformation group of the 
generalised functions. 
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APPENDIX F. Cantor's staircase function 

The staircase function introduced by Cantor is well known as an example of 
a monotonously increasing function with zero derivative almost everywhere, 
which is not constant. It does not equal the Lebesgue integral of its deriva-
tive. It is the standard textbook example of a function which is continuous, 
but not absolutely continuous. 

The Cantor staircase (it would be unkind to associate it with the devil) 
is defined for 0 S x S 1 by 

Cho(x) := x, 

and 
Ch(x) := lim Chn(x). 

· n-too 

0 S X S ½, 
½ S X S i, 
i S X S 1, 

(F.1) 

(F.2) 

It follows immediately from the definition that the Cantor function satisfies 
the scaling property 

Ch(3x) = 2 Ch(x), Ch(x) = ½ Ch{3x), (F.3) 

for 0 S x S ½ , and conversely 

2 Ch(x/3) = Ch(x), Ch(x/3) = ½ Ch(x), (F.4) 

which can be used to define a continuation of the Cantor function to the 
positive real axis 0 S x < ao. The Cantor function does not satisfy the 
requirements imposed in Ch. 4 on generalised functions. Nevertheless it will 
be treated as such for the time being. In order to find its properties as a 
generalised function we compute the integral 

(F.5) 

which converges for Re A sufficiently large. Splitting the interval (0, 1) into 
the subintervals (0, ½),and ( ½, 1), and using the scaling property (F.3) gives 

(F.6) 

which can be rearranged to 

(F.7) 
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The integral occurring in (F.7) is an entire function of\ since it is defined 
and differentiable for all>. E C. The pre-factor has simple poles at the zeroes 
of the denominator. These occur at the points >.k EC satisfying 

3-A1,-l = 2, 

\:/k E Z, so at 

(->.~ - 1) log(3) = log(2) + 2k7ri, 

>.k := -1- 3log(2) - 2k7ri 3log(e), 

(F.8) 

(F.9) 
\:/k E Z. The notation is simplified by introducing 3log(x) = log(x)/ log(3), 
which is the logarithm to base 3. 

The Mellin transform is analytic for Re>.> -1- 31og(2), with a mero-
morphic analytic continuation to the entire >.-plane. The residue Ck, at the 
pole located at >.k, is equal to 

ck:= Res Oi(>.) = 3log(e) f~xxA,. Clt(x), (F.10) 
A=A1, Ji 

3 

which is \:/k E Z a well defined complex number, since the integrand is 
continuous and bounded. 
The scalar product of the Cantor function with the 1/J.-functions is therefore 
well defined, 

00 

( Clt(x), 7]~"',q)(x)) = 8q,O L Ck 80 ,-1-A,. · (F.11) 
k=-oo 

This leads us to suspect that Cantor's staircase function is asymptotic to 
the formal power series 

00 

Clt(x) ~ L Ck x-l-A1,. (F.12) 
k=O 

The staircase function does not satisfy the restrictions imposed on the pre-
liminary class in Ch. 4, since the number of poles on the line Re >. = -1 -
3log(2) is not finite. It can be easily included in future generalizations of the 
model. 

The expansion obtained in (F.12) is not only asymptotic to the Cantor 
function, it actually converges to it on the whole real axis. To see this the 
expansion (F.12) can be written in the form 

00 

Clt(x) ~ x3log(2) L Ck e2k,ri 3log(:i:)' 
k=-oo 

with coefficients rewritten as 

Ck = Jod(3log(x)) e-2k1Ti 3Iog(:i:)x-31og(2) Clt(x ), 
-1 

in the form of an integral over the variable 3log(x). 

(F.13) 

(F.14) 
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It is clear from the scaling formula (F.3) that the function 

(F.15) 

has the property 
c(x) = c(3x) = c(x/3), (F.16) 

' 'vx E JR+, so the function c(x) is a periodic function of the argument log(x) 
with period log(3). The expansion (F.13) can therefore be interpreted as 
a Fourier series. Moreover it is a Fourier series of a function of bounded 
variation, so it is known to converge to the function. As a consequence it 
follows that Cantor's staircase function possesses a convergent expansion in 
terms of powers of its argument x. 
Remark F.1 To verify the bounded variation one remarks that the Can-
tor staircase function is bounded by 

r 
(x/2)3log(2) Ch(x) x3log(2)' 

so the function c(x) is bounded by 

(F.17) 

(F.18) 

The logarithm of c( x) is the difference of two monotonic functions, so it is 
of bounded variation. Therefore in combination with the bound (F.18) it 
follows that c( x) is itself of bounded variation. 
The derivative at x = 0 of the staircase function can be expected to be given 
by a sum of 'f/, -functions 

(X) 

'D Ch(x) lx=O = L Ck 'f/rlog(2)+2k7ri3log(e),O\x), 

k=-CXl 
(F.19) 

with the same coefficients as before. 
At this stage it is not possible to demonstrate that the Cantor function 

equals the integral of its derivative in the sense of generalised functions. 
It is clear however that the standard treatment by means of Lebesgue's 

measure theory is inadequate. It is of course correct that standard derivative 

(d) - Ch(x) = 0, 
dx Lebesgue 

a.e., (F.20) 

equals zero almost everywhere, but this statement ignores the nature of the 
singularities completely. 



·. 
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APPENDIX Y. Formula index 

This appendix lists definitions, results of operations on, and indeterminacies 
of generalised functions. The tables give both a reference to a formula num-
ber and a pagenumber. The formulre are listed in order of appearance in the 
text. Results are indicated by the = sign. Missing pieces of large formulre 
or arguments are indicated by 

Y.1 Definitions 

This table gives references to places where symbols are defined, to key for-
mulre, or to the place of first occurrence of a symbol. 

Definition Remark Form Page 
or result nr. nr. 

6 The distribution delta 2.1 7 
<- .. ' ... ) Symmetrical scalar product 2.5 8 
0 = O(x) Zero generalised function 2.10 9 
[· .. ' .. ·] Operator commutator 2.12 9 

'D Differential operator 2.12 9 
X Multiplication by x operator 2.12 9 
I Identity operator·· 2.12 9 
'D Extension of i,, 2.13 9 
:F Fourier operator 2.15 10 

:F-1 Inverse Fourier operator 2.19 10 
'P Parity operator 2.20 10 

I(x) Unit function 2.25 11 
6(x) Generalised function delta-bar 2.26 11 

Standard pointwise product 2.36 12 
0• Left-first product 2.38 13 
•0 Right-first product 2.38 13 

* Convolution product 2.49 15 
xP O(q) 

' Trivial elements 3.1 21 
f a(x;xo+) Asymptotic expansion of f(x) at x = xo+ 4.1 24 

,f, Not in asymptotic expansion 4.6 25 
r(- .. , .. ·) Second incomplete r-function 4.17 28 

Pref Preliminary integral 4.22 29 
( · .. , ... \,e Preliminary scalar product 4.25 31 

Xpre Preliminary multiplication by x 4.27 31 
'Dpre Preliminary differential operator 4.28 32 
:Fpre Preliminary Fourier operator 4.30 32 

continued 
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'P Parity operator 4.32 32 
* Preliminary convolution 4.33 33 

M Map PC>. -PC~ 5.2 35 
Prime added to function symbol 5.3 35 

g(>.) Meromorphic Mellin transform 5.5 36 
r(>.) Eulerian Gamma-function 5.16 38 

x'>.. logq(x)H(x) Power, logarithm as linear functional 5.18 39 

'T/i Generalised function 'eta-down' 5.33 41 
'T/~a,q) (x) General 'eta-down' function 5.39 42 

.l Independence symbol 5.43 43 
'T/ = ,,,co,o) 

! - ! No superfluous superscripts 5.44 43 
TJ}a,q) (x) Generalised function 'eta-up' 5.46 43 
,,,ia,q) (x) Symmetrical r,-function 5.48 43 
rJi°',q\x) Antisymmetrical r1-function 5.49 44 
'T/(p,q)(x) Integral power-type ,,,-function 5.53 44 
a(p,q)(x) Idem for discontinuous power 5.53 44 

rJi°',q\x) sgnm(x) General notation odd/ even 5.54 44 

8a,/3 Generalised Kronecker 8-symbol 5.55 44 
0mod2 

m,n Parity Kronecker 8-symbol 5.57 45 
it,q>(x) 'Eta-up' function at +oo 5.62 46 
11/°',q) (x) 'Eta-down' function at -oo 5.67 46 
11}°',q)(x) Symmetrical (even) combination at 5.70 47 

infinity 
111°',q)(x) Idem anti-symmetrical (odd) 5.71 47 
1/(p,q)(x) Integral power ,,,-function at infinity 5.74 47 
¢'(p,q)(x) Idem for discontinuous powers 5.75 47 

1fs(a,q\x) sgnm(x) General odd/even combination 5.78 47 
eikx1f/°',q) Oscillating 1/-function 5.93 51 

0 Any operator 6.1 55 
Opre Any preliminary operator 6.4 56 
Xpre Preliminary multiplication by x 6.6 56 
'Dpre Preliminary differential operator 6.18 58 
:Fpre Preliminary Fourier operator 6.43 61 

Cj ( ... , ... ) Laurent coefficients 6.48 62 
:F Fourier operator on PC~ 6.51 62 

0(p\x) Generalised function 'theta' 6.65 64 
continued 
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PC' >. Closure of PC~ under operators 6.68 65 
Bord Naive theta function 6.79 67 
x-1 Inverse of X 6.80 67 

0 Any operator on PC.x 7.2 71 
M Completed map PC.x - PC~ 7.2 71 

M-1 Inverse of the map M-1 7.2 71 
6(x ), 6(P) (x) Generalised functions 'delta-bar' 7.10 73 

PC6 Space of allowed linear combinations 7.20 74 
of 6(p) functions 

PC.x The completed preliminary class 7.22 75 
f ·· ,···) 'Left-first' scalar product 8.9 85 
( ... ' ... 'Right-first' scalar product 8.11 85 
( ... ' ... ) Symmetrical scalar product 8.14 85 
(··· ' ... )µ Trivial generalisation 8.19 86 

O• Left-first product on PC~ 8.32 88 
•O Right-first product on PC~ 8.33 88 -, Symmetrical product on PC.x 8.35 89 

[• •. O• • • •] Product commutator 8.37 89 
(- .. ' ... ) Scalar product recovered 8.71 93 

[! og] Arbitrary product commutator 8.76 94 
[f ogoh] Arbitrary product associator 8.77 94 

[•"" O• """ 0• "" ·] Product associator 8.80 95 
O* Left-first convolution 8.89 97 
* Symmetrical convolution 8.93 97 

Symmetrical product on PC.x 9.1 103 
M Completed map 9.2 103 

M-1 Inverse of completed map 9.4 103 
PC'..w Subspace of PC~. See also table 9.1 9.7 104 
PC' #t Complement of PC'..w 9.8 104 

PM, P#t Corresponding projections 9.8 104 
Mx, Mx1 M, M-1 renamed 9.13 106 

p6(0) Projection on 6<0>(x) 9.19 107 
M1> Fourier image of Mx 9.20 107 
P1 Projection on I(x) 9.21 107 

dqr( · · ·, · · ·) d-coefficient 9.28 109 
M-1 

'.l) Inverse of M1> 9.31 110 
O• 'Left-first' product, on PC.x 9.39 111 

continued 
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•O 'Right-first' product on PC.>. 9.39 111 
Symmetrical product on PC.>. 9.40 111 

* Convolution on PC.>. 9.89 118 
o* 'Left-sided' convolution 9.91 118 

M'.t, Alternative standardization 9.99 120 
l. Extension of l. to sets 10.8 124 

pcEJ:J .>. Direct sum of PC\ and PC.>. 11.1 133 
0} 0 ,q\x) Generalised function 'theta-down' 11.3 134 
Hr(a,q\x) Generalised function 'theta-slash-up' 11.3 134 
e~a,q) (x) Generalised function 'theta-up' 11.5 134 
Hi(a,q\x) Generalised function 'theta-slash- 11.5 134 

down' 
08 (x) Even combination 11.7 134 
0a(x) Odd combination 11.7 134 

e(p,q\x) Power-type 0 function 11.10 135 
T(p,q)(x) Broken power-type 0 function 11.10 135 

J(xo) Value at x = xo 13.1 161 
J(xo+ ), f(xo-) Limiting values at x = xo+, xo- 13.2 161 

H(xo) Values of Heaviside functions 13.8 162 
f( +oo-), J(-oo+) Values at infinity 13.12 162 

e Evaluation operator 13.21 165 
lim Standard limit 13.28 166 
Lim Generalised limit 13.29 166 

support The support 13.39 168 

J~OCJ Generalised function integral 14.1 171 

J:dx Generalised function integral 14.6 172 
x-1 

pre Pre inverse operator x- 1 14.24 177 
x-1 Inverse of operator X 14.25 177 
v-1 pre Preliminary inverse operator v- 1 14.42 180 
v-1 Inverse of operator 'D 14.49 181 
F(x) Primitive function 14.73 184 

T(xo,0) Coordinate translation 15.4 187 
1C Infinitesimal generator 15.13 189 

T(0, ko) Wavenumber translation 15.18 190 
X Infinitesimal generator 15.20 190 

T(a, b) General phase plane translation 15.36 193 
eA+B Baker-Hausdorff lemma 15.37 193 
S(a) Scale transformation 16.1 195 

continued 
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S(a) Unitary scale transformation 16.3 195 
S(a; x0 , 0) Translated scale transformation 16.25 199 
S(a; 0,po) Wave translated scale transformation 16.26 199 

aX'D Infinitesimal generator of scale 16.33 200 
iloglxl Indeterminate logarithm 17.1 207 

C Indeterminate constant 17.7 208 
i lx'I°' Indeterminate power 17.7 208 

irJ(a,q) (x) Indeterminate rJ function 17.8 208 
d(x) Indeterminate version of f(x) 17.19 210 
;Mx Indeterminate mapping 17.26 212 

i"C Explictly scale dependent product 17.32 213 
• Indeterminate product 17.38 214 

;log(0+) Indeterminate value 17.49 215 
;Lim Indeterminate limit 17.55 216 

(!(x), 0 f(x)) Expectation value 18.2 220 
C Indefinite constant in integral 18.18 225 

lim Standard weak convergence 19.1 229 
Lim Generalised 'weak' convergence 19.6 231 

H(a + x)H(a - x) Preferred sequence to I' ( x) 19.50 240 
7r- 1x- 1 sin(ax) Preferred sequence to 8(x) 19.52 240 

Lim Completed limit 19.63 243 
((s) Riemann's zeta function 20.3 248 

pre I: Preliminary sum 20.6 249 
<I>(z, s, v) Lerch's transcendent 20.8 249 
((s,v) Generalised zeta function 20.9 249 

(an,bn) Scalar product of sequences 20.17 251 
lll(x) The comb of 8's, Dirac's comb 20.28 253 
lll(x) Dirac's comb, rescaled 20.29 253 

fp Any periodic function, period one 20.43 256 
lo Idem, the restriction to one period 20.44 256 
an Fourier coefficient 20.50 257 

U(x) Smudge function 20.53 257 
1{, The Hilbert operator 21.2 261 

(x±io)"' Analytic boundary functions 21.23 265 
(ei\O(x±io))°' Analytic boundary functions 21.24 265 
T/~a,q) (x±io) Corresponding r,-functions 21.26 265 
M- 11tM Definition 21.27 265 

( ei\O ( x' ±io) )°' Computation 21.29 266 
(x±io)"' logq(x±io) Standard result 21.34 267 

continued 
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f+, f_ Positive, negative frequency parts 21.52 270 
dnr N-dimensional volume element 22.9 280 
f [j] Laurent coefficient A.2 301 
Res Residue at pole A.3 301 

(~) (k) Derivative of binomial coefficient B.5 302 
(A)~l Residue of Pochhammer symbol B.12 303 
(O)~l Stirling numbers of the first kind B.23 304 

1/J Logarithmic derivative of r C.10 306 
Cj(' ) Laurent coefficient for Fourier C.14 306 
dqr(, ) Combination of Cj coefficients for C.36 310 

product 
hi(' ) Combination of Cj coefficients for C.42 310 

Hilbert transform 
cI>(z, s, v) I;,erch's transcendent function D.1 311 

((s,v) Generalised (-function D.2 311 
((s) Riemann's zeta function D.3 311 

Oi(x) Cantor's staircase function F.1 315 
end of table Y.1. 

Y.2 The operator X 

Formulre for the operator X. 
X-formula Remark Form Page 

or result nr. nr. 
['D' X] Commutator 2.12 9 
X f(x) Extension requirement 2.14 9 

:,:-ix:,: = -i'D, Unitary equivalence 2.22 10 
'PX'P Parity= -X 2.24 11 
X6(x) Annihilation requirement 2.27 11 

X(f • g) Multiplicative rules 2.41 13 
X(f * g) Leibniz's rule (convolution) 2.57 15 
Xpre/(x) Xpre = X • f(x) 6.6 56 

Xlx'I°' logqlxl sgnm(x) = lx'l°'+l logqlxl sgnm+l(x) 6.9 57 
X 11}°',q\x - xo) (a-1,q) ( ) = 11! X - Xo + · · · 6.10 57 
X eikx'll/°'•q)(x) = eikxi/a-1,q)(x) 6.11 57 

X 11i°',q\x) sgnm(x) = 11i0r-l,q)(x) 6.12 57 
X 17(p,q)(x) = 11(p-l,q)(x) 6.14 57 
X a(p,q)(x) = a(p-1,q)(x) 6.15 57 
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The operator X 325 

X17(x) = 1/(-l)(x) 6.16 57 
X0(Pl(x) = 0(p+l)(x) 6.72 66 
X J'(x) General element 6.81 67 

X 6(p+l)(x) = 6(P)(;) 7.33 77 
X6(x) = O(x) 7.34 77 

X6(x -xo) = xo 6(x - xo) 7.36 78 
Xlxl 0 logqlxl = lxl 0 H logqlxl sgn(x) 7.38 78 

X(f' • g') Multiplicative rule on PC~ 8.102 99 
( Xf', g') Selfadjointness in PC~ 8.111 100 

X f(x) = X • f(x) 9.77 116 
X(f O• g) Left-left multiplicative rule 10.20 126 
X(f • g) Multiplicative rules on PC,\ 10.22 127 

Xf•g-f•Xg Error term 10.23 127 
X 0~a,q)(x) = 0ia+l,q)(x) 11.16 136 

[1'' X] Commutation rule 12.12 152 
:F-11):F = -iX, Unitary equivalence 12.25 154 

X (/' ( X) • g' ( X)) Multiplicative rules 12.30 155 
( Xf' 'g') Selfadjointness in PC,\ 12.33 156 
(Xf,g) Selfadjointness in PC,\ 12.36 157 

x-1 pre Pre inverse operator 14.24 177 
x-1 lx'l 0 logqlxl sgnm(x) = lx'l 0 - 1 logqlxl sgnm+l(x) 14.25 177 
x-111i0,q\x) sgnm(x) = 11io+l,q)(x)sgnm+l(x) 14.26 178 

x-1 J'(x) 1 '( -, = x- • f x) on PC,\ 14.28 178 
x-1 f(x) =/. x-1 • f(x) on PC,\ 14.29 178 

x-11xl 0 logqlxl sgnm(x) = lx1°- 1 logqlxl sgn(x) 14.31 178 
x-1 c,(P)(x) = c,(P+l)(x) 14.32 178 

x-1 0~a,q)(x) sgnm(x) = 0~0-l,q)(x) 14.37 179 
x-1 0(x) = 0(-l)(x) 14.38 179 
xx-1 Almost inverse 14.39 179 

:F-lx-1:F = i1'-1, Unitary equivalence 14.64 183 
ea'.D X e-a'.D Translation of X operator 15.16 189 

S(-a)XS(a) Scaling of X 16.37 201 
LimX = XLim Interchangeable 19.62 242 
X ( ei"'(x' ±io) )° . (. r+l = e-•cp e'"'(x' ±io) 21.38 267 
X 11&a,q) (x±io) _ (o-1,q) -···1Jcp ... 21.39 267 

end of table Y.2. 
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Y.3 The operator 'D 

Formulre for the operator 'D. 
'D-formula Remark Form Page 

or result nr. nr. 
[v' x] Canonical commutator 2.12 9 
'D f(x) Extension requirement 2.13 9 

:,:-iv:,: = -iX, Unitary equivalence 2.23 11 
1''D1' Parity= -'D 2.24 11 

'D(f. g) Leibniz rule 2.39 13 
'D(f. g) Multiplicative rules 2.58 16 

'Dpre(X - Xo)>. H(x - Xo) = >.(x - xo)>.-i H(x - xo) 6.19 58 
'D (x - xo)°' logq(x - xo) = a(x - xo)°' · · · + · · · 6.23 58 
'D lx'I°' logqlxl sgnm(x) = alx'l°'-1 logqlxl sgnm+l(x) + 6.24 58 

'D I'(x) = 2 a(x) - 2 ¢'-(x) 6.26 59 
'D 11i°'•q) (x) sgnm(x) =-(a+ 1) 11i°'+1,q) · · · 6.32 59 

'D eikx'ff}°',q) (x) sgnm(x) =-(a+ 1) eikx'ff}°'+l,q) ... 6.33 59 
'DP 11i°',q) sgnm(x) = · · · 11t+p,q\x) · · · 6.36 60 

'D0(P>(x) = p 0p-l(x)°:t- ... 6.73 66 
'D !' (x) General element E PC\ 6.82 67 

'D6(P)(x) = -(p + 1) 6(P+1\x) 7.39 78 
'l)P 6(x) = (-)Pp! 6(P)(x) 7.40 78 

'Dix!°' logqjxl sgnm(x) = alxla-1 logqlxl sgnm+l(x) + · · • 7.42 78 
'DH(x) = 6(x) 7.48 79 
'D I(x) = O(x) 7.49 79 
'D f(x) General element E PC>. 7.52 80 

'D(H')m 'D on multiple products 8.106 100 
( 'Df' 'g') Selfadjointness in PC\ 8.112 101 

'D(/(x) • g(x)) Leibniz rule 10.25 127 
'D 0!°',q) (x) = a0i°'-1,q)(x) + ... 11.17 137 

'D0(x) = -2a(x) 11.19 137 
'Dr(x) = 26(x) - 277(x) 11.19 137 
'DU(x) = 2 ¢'-(x) 11.20 137 
'Df(x) = 21{(x) 11.20 137 
['D' X] Commutation rule 12.12 152 

:,:-1 X:F = -i'D, Unitary equivalence 12.25 154 
'D(/(x) • g(x)) Leibniz rule 12.31 155 

continued 
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( TJ !' 'g' > Selfadjointness in PC\ 12.34 156 
(VJ ,g) Selfadjointness in PC>. 12.39 157 

v-1 
pre Preliminary inverse operator 14.42 180 

v-11x'I"' logqlxl sgnm(x) =(a+ 1)-1lxl"'+1 ... 14.44 180 
v-11x'l-1 logqlxl sgnm(x) = (q + 1)-1 logq+1jx'I · · · 14.45 180 

v-111i<>,q)(x)sgnm(x) = -a:-177t-l,q)(x) · · · 14.46 180 
TJ-l 11iO,q) (x) = -q-17]i-1,q-l'(x) 14.47 180 

v-11xl"' logqlxl sgnm(x) =(a+ 1)-1lxl"'+1 ... 14.50 181 
v-1 6(p+l)(x) = -(p+ 1)-lt(Pl(x) 14.52 181 

v-1 6(x) = ½ sgn(x) 14.53 181 
v-1 1if(x) = ½ f(x) 14.56 182 
v-1 77(x) = ½ (sgn(x) - r(x)) 14.57 182 

v- 1 cosh-2 (x) = tanh(x) 14.60 182 
:F-lTJ-1:F = ix-1, Unitary equivalence 14.63 183 

v-1v Almost inverse 14.67 183 
v- 1 f(x) Indefinite integral 14.72 183 

F(x) := v- 1 f(x) Primitive function 14.73 184 
ea'Dve-a'D Translation._of TJ operator 15.17 189 

S(-a)TJS(a) Scaling of TJ 16.38 201 
Lim TJ = TJ Lim Interchangeable 19.58 242 

TJP lll(x) Derivative of comb 20.34 254 
V( ei"'(x' ±io))"' = a ei"' ( ei"'(x' ±io)) <>-l 21.40 268 
TJ 77~"',q\x±io) =-(a+ 1) ei"'11&"'+l,q'(x) · · · 21.42 268 

end of table Y.3. 

Y.4 The operator :F 

Formulre for the operator :F. 
:F-formula Remark Form Page 

or result nr. nr. 
:F f(x) Normalization 2.15 10 
:Ft f (x) Normalization 2.16 10 

:F-1 f(x) Normalization 2.19 10 
:F-lX:F = -i'D, Unitary equivalence 2.22 10 
:F-1v:F = -iX, Unitary equivalence 2.23 11 
:Fl= 6 Requirement 2.26 11 

(:Ff,:Fg) Parseval's equality 2.29 11 
continued 
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.:F'prelxlA sgnm(x) Preliminary Fourier transform 6.45 61 
.:Flx'I°' logqlxl sgnm(x) = · · · lx'!-0- 1 logqlxl sgnm(x) · · · 6.52 62 

:F I'(x) = 271" ( 1J( X) - 1f ( X)) + · ' ' 6.56 63 
:F'0(Pl(x) = 4iP c1(P,P) ll(x) + · · · 6.64 64 

:F 1Jio,q) (x) sgnm(x) (-o-1,q) = ... 1]s ••• + ... 6.69 65 
:F 11}°',q\x) sgnm(x) = .. ·lf}-o-1,q) ... + ... 6.70 65 

:F J'(x) General element E PC~ 6.85 69 
:Fix'!°' e-al:z:lsgnm(x) (' + )-o-1 = · ·· ix a ··· 6.87 69 

:F6(P)(x - xo) = ei:z::z:o (-ix)P /p! 7.53 80 
:F6(x) = I(x) 7.55 80 

.:Flxl°' logqlxl sgnm(x) I 1-0-l ="·X ... 7.57 80 
:rx-1 = -i1rsgn(x) 7.60 81 
:F f(x) General element E PC~ 7.62 81 

:Fix!°' e-al:z:lsgnm(x) C + )-0-1) = · ·· ix a •·· 7.63 82 
:F 0~°',q\x) sgnm(x) = ... e;-o-1,q\x) ... 11.23 137 
:F d;°'•q\x) sgnm(x) = ... 0~-0-l,ql(x) ... 11.24 137 

:F0(P)(x) Agrees with definition (6.62) 11.27 138 
:F:F = 21r'P Parity property 12.18 153 

:r-1 Inverse 12.20 153 
(:Ff,:Fg) Parseval's equality 12.42 158 
:r-1s(a):F Fourier transform of scale 16.39 201 

:Flll(x) Fourier transform of comb 20.35 254 
:F fp(x) Periodic function 20.48 256 

an Fourier coefficient 20.50 257 
:F(x±io)°' -0-1 H( ) ="·X X"· 21.44 268 

Re:F f(x), Im.:F f(x) Real part, imaginary part 21.74 272 
end of table Y.4. 

Y.5 Mappings 

This table lists formulro for the various maps used in the construction of the 
products. 

M-formula Remark Form Page 
or result nr. nr. 

f'=Mf Preliminary definition 5.2 35 
M'.Dpre -::/- '.DM 6.30 59 

M 6(Pl(x - xo) = 1J(Pl(x - xo) 9.2 103 
M lxl°' logqlxl = lx'I°' logqlxl 9.3 103 

continued 
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M-1 ,,,~<>,q\x) sgnm(x)(x) = 0 0 0mod2 <5(P)(x) 
q,O o,p m,O 9.5 103 

M-1 lxl 0 logqlxl sgnm(x) = lxl 0 logqlxl 9.6 104 
M-1 0(pl(x) = O(x} 9.9 104 
MM- 1 Exceptional subspace 9.10 104 
M,M- 1 Table of properties 9.12 105 
M,M- 1 Commutative diagram 9.12 106 

Mx Standardization: = M 9.13 106 
M-1 

X Standardization: =M-1 9.13 106 

[X ,Mx] Commutator 9.19 107 
Mv = :F-1 Mx:F Definition 9.20 107 

['D ,Mv] Commutator 9.21 107 

Mv <5(Pl(x) = 'T/(p)(x) + ... 9.26 108 
Mvlxl 0 logqlxl sgnm(x) · = lx'i<>(x) .. ·+··· 9.27 109 
Mvf =Mxf+··· General element 9.30 109 

M 1;1 'TJ!<>,q\x) sgnm(x) = 0 0 0mod2 <5(P)(x) 
q,O o,p p,m 9.31 110 

M 1;10(Pl(x) = O(x) 9.32 110 
M 7;1lx'l 0 logqlxl sgnm(x) = x-P- 1 logqlxl sgnm(x) 9.33 110 

MvMv1 Exceptional subspace 9.35 110 
Mx6(P>(x) Alternative standardization 9.99 120 

Mxlxl 0 logqlxl sgnm(x) Alternative standardization 9.100 120 
Mf'(x) Extension of M to PC~ 11.30 139 

M-1 J(x) Extension of M-1 to PCA 11.37 139 
M- 1M Exceptional subspace 11.38 139 

Mv,Mx Equivalence for operator defini- 12.28 155 
tion 

iMx Indeterminate standardization 17.26 212 
iMx t<P>(x) Indeterminate standardization 17.27 212 

iMxlxl 0 logqlxl sgnm(x) Indeterminate standardization 17.28 212 
iMv Indeterminate standardization 17.29 212 

iMv(C) Explictly scale dependent map 17.32 213 
M- 11tM Transfer of Hilbert 21.22 264 

end of table Y.5. 
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Y .6 Translation operators 

This table lists various formulre involving the translation operators. 
Translation Remark Form Page 

or result nr. nr. 
½re(Xo, 0) Preliminary translation 15.1 187 

T(xo, 0)lx'I°' logqlxl sgnm(x) · = Ix' - xol°' · · · 15.5 188 
T(xo, 0) 11!a,q)(x) sgnm(x) = 17(a,q)(x - Xo) · · · 15.6 188 

T(xo, 0) 8(P>(x) = 8(P)(x - xo) 15.11 189 
T(x0 , 0) I(x) I ( x) is translation invari- 15.12 189 

ant 
T. (0 k ) _ iko:x pre , O - e • Preliminary wave transla- 15.18 190 

tion 
eiax,,,ia,q)(x) sgnm(x) Wave translation of 17 15.20 190 

eiaX8(P>(x) Wave translation of 8(p) 15.21 190 
T(0, ko) 8(x) Eigenfunction 15.23 190 
:,:- 1T(a, 0):F Unitary equivalence 15.24 191 

( T(xo, 0) f(x), T(xo, 0) g(x)) Almost unitary 15.31 192 
T(a, b) General phase plane trans- 15.36 193 

lations 
T(a1,b1)T(a2,b2) Group property, 15.40 194 

projective representation 
:,:- 1T(a, b):F Unitary equivalence, 15.41 194 

=T(-b,a) 
00 

LT(n,O) Repeated period 20.44 256 
n=-oo 

end of table Y.6. 

Y.7 Scale transformation operators 

This table lists various formulre involving the scale operators 
Scale formula Remark Form Page 

or result nr. nr. 
S(a) Preliminary definition 16.2 195 

S( a) {lx'I°' logqlxl sgnm (x)) = a°'lx'I°' logqlxl sgnm(x) + • • • 16.7 196 
S(a) I'(x) i= I'(x) not scale eigenfunction 16.10 197 

S(a) 71(a,q)(x) sgnm(x) -a-1 (a,q\ ) = a 7/s X · · • 16.11 197 
S(a) I(x) = I(x): is scale eigenfunction 16.13 197 

S(a) 0<P\x) = aP 0<Pl(x) - · · · 16.15 197 
continued 
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S(a) J'(x) Scale transformation in PC\ 16.16 197 
S(a) 6(P)(x) Scaling of 6-functions 16.20 198 

S(a)lxl" logqlxl sgnm(x) = a°'lxl" ... 16.21 198 
S(a) lxl-1 = lxl-1 +2log(a)6(x) 16.22 198 
S(a) loglxl Scaling of the logarithm 16.23 199 

( S(a) J(x), S(a) g(x)) S(a) unitary in PC\ 16.27 199 
( S(a) f(x), S(a) g(x)) S(a) not unitary in PC>. 16.27 199 

S(a1)S(a2) = S(a1a2), Group property 16.32 200 
aX'D Exponential form of scale 16.33 200 

½(X'D+'DX) Selfadjoint generator 16.34 201 
S(-a)XS(a) Scaling of the operator X 16.37 201 
S(-a)'DS(a) Scaling of the operator 1) 16.38 201 
:,:.--1s(a):F Fourier transform of scale 16.39 201 

S(a) f(x) • S(a) g(x) Scaling of product 16.40 202 
S(a)(f(x) • g(x)) Scaling of indeterminate prod- 17.44 214 

uct 
( S(a) J(x), S(a) g(x)) Unitarity, indeterminate 17.46 215 

end of table Y.7. 

Y.8 Indeterminacy 

This section lists the indeterminacy of the generalised functions. Only the 
leading component is given when • • • appears. 

Indeterminacy Remark Form Page 
or result nr. nr. 

;loglxl = -C I(x) 17.1 207 
;lx'I" = _l_C+ .. , q+l 17.7 208 

11i°',q\x) = -(q + l)Cr,i",q+l\x) + · · · 17.8 208 
lxl°' -2CI:6 . i5mod26(P)(x) <>,-p-1 p,m 17.9 208 

6(P>(x) = O(x) : Determinate 17.10 209 
S(a) ;r,(o,q)(x) Scaling of indeterminate func- 17.12 209 

tions 
e-x2 = O(x) : Determinate 17.17 210 
x-1 = O(x) : Determinate 17.19 210 
lxl-1 = -2C6(x) 17.19 210 
x'-1 = -2C a(x) + 2C ¢-(x) + · • · 17.20 211 
lx'1-1 = -2C r,(x) + · · · 17.21 211 

S(a) (d(x; C) i"C ig(x; C) Scale invariant product 17.35 213 
continued 
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Indeterminate adiabatic 18.6 222 
Indeterminate potential 18.16 224 
Indefinite constant in integral 18.18 225 

end of table Y.8. 

Y.9 Hilbert transforms 

Formulaa for the operator 1{, 
1{,-formula Remark Form Page 

or result nr. nr. 
1{, Definition 21.1 261 

1f. /(x) Integral form 21.2 261 
1{,1{, Almost inverse 21.4 261 
1{,1{, Excepted subspace 21.9 262 

1tlx'la log9 lxl sgnm(x) = · · · lxla · · · Sgnm+l(x) 21.10 262 
h1(0:,m) Hilbert coefficients 21.11 262 

1{, x'P = ... 77(-p-l)(x) _ .,,.(-p-l)(x) + ... 21.12 263 
1{,(J(P)(x) = 77c-p-ll(x) ... 

1{, 77~a,q) {x) sgnm(x) = ... .,,~a,q)(x)•••sgnm+l(x) 
1t.'ff}a,q)(x) sgnm(x) = · · -17~a,q'(x) · · ·sgnm+l(x) 

1{,'f{(P)(x) = ... ,,c-p-l)(x)··• 
1tlxla logqlxl sgnm(x) = · · • lxla · · •sgnm+l(x) 

1{,xP = O(x): Zero space 
1{, ~(p) (x) = _ lx-p-1 

'Ir 

M- 11t.M Transfer mapping 
1{,'P Anti-commutes 

Y.10 Tables 

Tables for various conventions and properties are listed 
Table Remark 

11, .,,. 
PC 
M 

M,M-1 

8(x), l(x) 
X, i'D, etc. 

or result 
Special notations 
The spaces PC::: 
Map properties 
Commutative diagram 
Special notations 
Infinitesimal generators 

21.13 263 
21.15 263 
21.16 263 
21.18 264 
21.19 264 
21.20 264 
21.21 264 
21.22 264 
21.72 272 

end of table Y.9. 

Form Page 
nr. nr. 

5.78 48 
9.12 105 
9.12 105 
9.12 106 

11.12 135 
E.16 314 

end of table Y.10. 
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APPENDIX Z. Product tables 

The tables in this appendix give the formula numbers of products of the basic 
functions. The first table lists the.asymmetrical products, left-sided when 
reading southwest to northeast, or right-sided when reading the opposite 
way. It may be necessary to specialize or rename parameters to obtain the 
desired product. The factors in the product are only partially indicated for -, , -lack of space. The first block gives elements in PC>., the second in PC>., 
while the last block contains the mixed elements. 

O•/',/•O .,,u,,r) 'f((/3 ,r) x'log 0(q) 6(p) xlog 0(/3,r) g(/3,r) 

,,,( 0t,q) 0 0 0 8.58 0 11.46 11.59 0 
J((0t,q) 0 0 0 0 0 11.47 0 11.59 
x' log 8.45 8.45 8.55 0 0 11.45 0 0 
0(p) 0 0 0 8.65 11.62 ll.h7 11.55 0 
6(p) 0 0 0 11.62 0 9.47 11.62 0 
xlog 11.46 11.47 11.45 11.57 9.45 9.68 11.55 11.56 
0(0t,q) 0 0 0 11.55 11.61 11.55 11.55 0 
g(0t,q) 0 0 0 0 0 11.56 0 11.56 

Entries marked O indicate that the product in question equals zero. The 
second table lists the symmetrical products 

. /',/ • 'f/(/3,r) J{(/3,r) x' log 0(q) 6(p) xlog 0(/3,r) ,C/3,r) 

,,,(0t,q) 0 0 8.48 8.59 0 11.46 11.59 0 
ef(0t,q) 0 0 8.48 0 0 11.47 0 11.59 
x' log 8.48 8.48 11.45 0 0 11.45 0 0 
0(p) 8.59 0 0 8.67 11.61 11.55 11.55 0 
6(p) 0 0 0 11.61 0 9.55 11.61 0 
xlog 11.46 11.47 11.45 11.55 9.55 9.70 11.55 11.56 
0(0t,q) 11.59 0 0 11.55 11.61 11.55 11.55 0 
g(0t,q) 0 11.59 0 0 0 11.56 0 11.56 

It is symmetrical, since it lists the symmetrical products. Some entries agree 
with the previous table. In these cases the left- and right-sided products are 
equal. 
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INDEX 

This index lists keywords only. A large index to formulre, symbols, and 
notations is given in appendix Y. For frequently occuring keywords only a 
selection of the pagenumbers is given. 

Abel, 2. 
actual infinite, 2, 5, 274ff, 285-9, 

see also potential -. 
adiabatic curve, 222. 
analysing power, 53, 133, 270, 293. 
analytic continuation, 18 ff, 28, 

36-40, 62, 151-4, 167,248,287, 
295-8, 311, 316. 

analytic functional, 36-9, 55. 
analytic parts, 270 ff. 
analytic regularization, 280. 
analytic signals, 270. 
approximating sequence, 234. 
ascending sequence, 53, 68, 148, 

157, 190, see also descending 
sequence. 

associated homogeneity, 203, 209. 
associativity, 13-6, 22, 27, 83-8, 

94-6, 99 ff, 123-6, 132, 242, 
261 ff, 282, 288, see also non-
associativity. 

associator, 83, 94-6, 123-7. 
asymmetrical product, 13, 89, 96, 

101, 123. 
asymptotic, 
- a posteriori, 294 ff, 
- a priori, 295, 
- behaviour, 5, 19, 24-6, 32 ff, 43, 

64, 69, 81, 137, 158, 243ff, 253, 
293-7, 

- coefficient, 46, 67, 117, 
- expansion, 19, 25-32, 36-43, 46, 

49, 56, 67-69, 80 ff, 91 ff, 108, 
117-9, 131, 145-8, 152, 157-9, 
164, 170, 179, 182-91, 197ff, 206, 
210 ff, 228, 232, 238, 242-52, 255, 
267-71, 278-80, 293-7, 

- in the mean, 295, 

- instead of convergent, 299, 
- Poincare sense, 248, 288, 
- requirement, 25, 
- series, 27, 87, 109, 141, 188, 
- set, 25, 295. 
Baker-Hausdorff lemma, 193 ff, 312. 
Bateman, conventions, 10, 249, 261, 

311. 
Bessel functio~, 26, 267. 
bi-dual, 83. 
binomial coefficient, 188, 302 ff, 
- derivatives of, 50, 60, 119, 188, 

302ff. 
binomial theorem, 50, 69. 
bookkeeping, indeterminacy, 225. 
boundary value, 269. 
Cantor's staircase function, 42, 

316ff. 
Cauchy, 2, 37. 
Cauchy-Riemann, 271. 
causality, 261, 269-73. 
commutation relation, 107, 152, 
- canonical, 9, 152 ff, 201, 314. 
commutativity, 13, 19, 27, 83-9, 

93-9, 123-6, 132,150,178, see 
also non-commutativity. 

complete convergence, 230-7, 241 ff, 
see also partial convergence. 

completed limit, 243, 259, 271, 274. 
completion formulre, 305-10. 
complex conjugation, 8, 21, 31, 49, 

61, 74, 150. 
coordinate translations, 187-90. 
cutoff function, 48, 64, 277-80. 
cyclic associator property, 96, 126. 
cyclic commutator property, 96, 

125 ff, see also Jacobi identity. 
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decomposition of intervals, 171-4. 
definite integral, 167, 225, 275. 
degree, 
- of angle, 220, 
- of homogeneity, 203-9. 
ascending sequence, 24-6, 52 ff,· 148, 

190, 248ff. 
determinate logarithm, 222. 
determinate physics, 223. 
differential operator, 9, 59ff, 68, 

78,100,107,128,137,158,180, 
241 ff. 

dimensional regularization, 280. 
Dirac, 
- 's comb, 253, 
- 's limit property, 237-39, 278, 
- 's requirements, 7, 23, 75, 149, 

152, 237ff, 
- 's 8-function, 1-7, 11, 16, 20-2, 

42, 57, 75,149,275, 296-9. 
Dirichlet, 
- 's function concept, 2, 297, 
- 's kernel, 241, 
- 's proof, 2. 
disclaimer, 168. 
dispersion relation, 265, 273. 
distribution, 
- and limits, 7, 229, 235-45, 269, 
- as boundary value, 269, 
- as generalised function, 147, 288, 
- as limit of sequence, 289, 
- as starting point, 23, 75, 
- 8, 11, 20, 23, 57, 74-8, 169, 198, 

204, 233, 237 ff, 
- has no value, 3, 286, 
- linear functional, 1, 3, 8, 
- multiplication of, 1-4, 12 ff, 

20, 83, 112, 121, 132, 203, 275, 
286-8, 

- sense of Schwartz, 75 ff, 104, 133, 
238, 

- sequences, 234-8, 
- tempered, 3, 22, 75, 132, 285 ff, 

Index 

- zero, 4, 67, 76, 104, 112, 139, 
147, 258. 

distribution theory, 
- agrees with g. f., 181, 191, 
- analysing power, 53, 270, 294, 
- and renormalization, 3, 193, 
- comparison with g. f., 1-5, 20, 

42, 56, 58, 75-82, 112-7, 233, 
267-71, 291-8, 

- convergence, 229-31, 238, 
- domain problems, 3, 
- explains 8, 3, 
- generality of, 294, 
- generalisations of, 285-8, 
- is best possible, 1, 5, 
- linearity, 3, 
- nonstandard, 289, 
- properties, 237, 
- sense of, 148, 254-7, 273-6. 
divergence, 6, 27, 177, 206 ff, 236, 
. . 244 ff, 283-6. 
divergence problem, 3 ff, 276, 298. 
divergent, 206 ff, 222-8, 238 ff, 24 7, 

265, 275-89. 
divergent convolution, 33. 
divergent integral, 1, 3 ff, 16, 119, 

144, 234, 279-82. 
divergent term, 42, 228. 
diverging sequence, 289. 
Euler's function concept, 296, 
- r-function, 38, 45, 61, 302-5, 
- B-function, 159. 
Euler-Mascheroni constant, 114. 
evaluation operator, 164 ff. 
factor ½, 86, 90-2, 101, 114, 125, 

134, 143, 176, 215, 282. 
formal power series, 24, 51, 316. 
foundation, 1-6, 20, 161, 168, 

275-7, 287-9, 296-9. 
Fourier, 
- J. B. J., 2, 296, 
- coefficient, 2, 120, 247, 257ff, 

285, 293, 
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- integral, 61, 257, 296, 
- operator, 2, IO ff, 21, 26, 32, 61 ff, 

69, 80, 97,101,108,132,153, 
158,194,201,241,272,314, 

- series, 2, 26, 24 7, 253, 285, 317, 
- sum, 6, 26, 24 7, 296, 
- theory, 2-4, 61, 250-3, 
- transform, 2-7, 15, 26, 32, 48, 

61-4, 69-71, 80-2, 87, 99, 107ff, 
118 ff, 130-8, 144, 149, 156-9, 
182ff, 190-3, 211, 240ff, 247, 
253-62, 265, 268-76, 282,296, 
306. 

frequency parts, 270. 
fundamental theorem of the 

calculus, 6, 17, 163, 167, 171, 
176, 182-5, 207,217,225,242. 

fundamental unsolved problem, 18. 
gauge field, 225. 
generalised limit, 17, 46, 166ff, 

229-34, 241-4, 295. 
generalized functions, 285--91. 
Green function, 224, 272, 276. 
Hadamard's partie finie, 19, 27-30, 

37, 130, 151, 217. 
Heaviside, 2, 162, 168-72, 175 ff, 

184ff, 251, 271ff, 288. 
heuristic, 3, 9, 21-3, 49, 65 ff, 134, 

168, 288ff. 
Hilbert operator, 119, 264. 
Hilbert space, 1-10, 16, 229ff, 277, 

297ff. 
Hilbert transform, 6, 81, 99, 240, 

261-5, 272, 310. 
homogeneity, 14, 80, 112, 119, 127, 

155-7, 195, 203-5. 
impulse response, 272 ff. 
incomplete B--function, 37. 
incomplete r-function, 29, 62. 
incomplete ,-function, 62, 240. 
indefinite constant, 225. 
indefinite integral, 225. 

indeterminacy, 176, 185, 203, 
206-19, 222-8. 

indeterminate constant, 183, 
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207-11, 214,225, 281-3. 
indeterminate limit, 216. 
indeterminate logarithm, 207 ff, 215. 
indeterminate standardization, 212. 
infinitesimal, 2, 177, 285-90, 
- environment, 66, 79, 134, 161, 

168, 289, 
- generator, 189-94, 200-2, 312-4. 
inner product, 1, 8. 
inverse derivative, 171. 
Jacobi identity, 96. 
Kramers-Kronig relations, 261, 273. 
Kronecker's 8-symbol, 44 ff, 58, 307. 
Laurent, 
- coefficient, 62, 164, 301, 306, 
- expansion, 248, 
-;-:- product formula, 308, 
- series, 55, 62, 301-8, 
- 's theorem, 18. 
Lebesgue, 2, 67, 172, 177, 238, 275, 

315-7. 
left-first scalar product, 88, 128. 
left-sided product, 88, 112-7, 125-7, 

141. 
Leibniz's rule, 13-5, 19, 99-101, 

106, 110 ff, 127-32, 155 ff, 184, 
288, 291, 302. 

limiting value, 161, 165, 171, 216. 
Lorentz, 193, 282, 314. 
mass correction, 222, 225. 
measurement, 195, 219-21, 252. 
Mellin transform, 19, 36-41, 48, 

239, 293, 316. 
meromorphic function, 19, 40 ff, 

152. 
minimal completion, 71-9, 150, 181. 
multiplication operator, 16, 67, 77, 

126, 190. 
na'ive interpretations, 76, 93, 142, 

163, 178, 235, 274. 
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natural boundary, 18, 248. 
non-associativity, 13, 83, 95-101, 

114, 125 ff, 130-2, 262, 288, see • 
also associativity. 

non-asymptotic, 25. 
non-commutativity, 13, 83, 94-100, 

114, see also commutativity. 
non-degeneracy, 9, 12-5, 27, 55, 65, 

72, 166, 229. 
non-linearity, 3. 
nonstandard analysis, 5, 168-70, 

285, 288-91. 
non-uniqueness, 25. 
norm, 9, 16, 21, 229. 
normalization, 10, 42 ff, 59, 67, 

75-8, 81, 101, 129, 132, 201, 215, 
235, 261, 267. 

notation, 9-13, 24 ff, 36, 39, 44-8, 
53, 57ff, 68, 78, 85, 94, 101-7, 
116, 124, 130, 134 ff, 146, 161-3, 
166, 172-6, 191,203, 207-16, 
230, 236 ff, 249, 265 ff, 294, 
311-6. 

orbit, 207. 
order of homogeneity, 203-9. 
0 is order symbol, 295. 
ordinary function, 7-14, 23-33, 

67-71, 76-81, 84-8, 91-8, 103, 
109, 117-9, 133, 141, 145 ff, 154, 
161-8, 171, 176-82, 193-201, 
220-3, 238,271,296. 

origin, 10, 30, 68, 72, 76, 159, 187, 
191-5, 203, 238ff, 250ff, 269, 
281 ff. 

parity, 14, 22, 45, 57, 61, 69, 80, 97, 
109, 112, 119, 127, 155-7, 183. 

parity operator, 10-4, 32, 100, 108, 
194ff, 272. 

Parseval, 2. 
Parseval's equality, 11, 19, 22, 70, 

76ff, 87, 101, 129--32, 138, 142, 
154, 158-60, 185, 255-7. 

Index 

partial convergence, 229-32, 237, 
see also complete convergence. 

partie finie, see Hadamard's -. 
partition, 29ff, 37, 150-2, 174, 185. 
periodic, 
- distributions, 257ff, 
- function, 6, 18, 26, 120, 247, 

253--60, 285, 293, 317, 
- generalised function, 247, 

256-59. 
phase plane translation, 187, 193, 

314. 
physics, 17, 219-23, 287, 299. 
piecewise constant, 145, 164, 171, 

184. I" 
Pochhammer symbols, 303-5. 
Poincare, 24-6, 248, 288, 294, 
- group, 193, 282. 
point support, 71-6, 166, 205, 229, 

285, 294. 
point value, 161, 171. 
pointwise convergence, 229 ff. 
pointwise product, 12, 262, 283. 
Poisson's summation formula, 254 ff. 
potential infinite, 2, 146, 287, see 

also actual -. 
primitive function, 171, 176-84. 
principal value, 261. 
product commutator, 89, 94ff, 

123-8. 

quantum field theory, 1--6, 30, 185, 
219-23, 275-7, 280-3, 298ff. 

quantum mechanics, 3, 194, 220, 
299, 313ff. 

real number, 74, 161, 168-72, 195ff, 
200, 219-23, 286-90, 298. 

real number system, 17, 79. 
rectangular function, 238. 
regular power, 92, 95, 116. 
regularization, 1, 6, 27, 33, 99, 119, 

144. 
Riemann, 2, 18, 177. 
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right-first scalar product, 85-8, 136, 
236. 

right-sided product, 141 ff, 162. 
Ritt's theorem, 25. 
Robinson A., 288 ff. 
scale operator, 17, 195, 200-21, 281. 
scale transformation, 14, 17, 30, 

114,120,158,177,183, 194-225, 
234,254, 281-3, 314. 

Schwartz L., 3, 7-11, 20-2, 26, 42, 
75, 88,104,133,144,147,210, 
226, 230, 238, 288. 

selfadjoint, 11-6, 22, 56, 100 ff, 123, 
130-2, 156-8, 192, 200ff, 220, 
241 ff, 313. 

semi-Leibniz rule, 14-6, 127. 
singular power, 92, 96. 
smudge function, 257. 
spectral response, 272-4. 
standard, 
- function concept, 15, 75, 165, 

297, 
- limit, 166ff, 229-31, 243, 252, 

295, 
- sense, 4, 9, 12-5, 30-3, 58, 129, 

156,166,192,199,207,231, 
244-9, 273, 281-3, 290. 

standardization, 120ff, 130ff, 157, 
163, 185, 212, 228, 241, 280 ff, 
291. 

Stirling numbers, 60, 304. 
stock-term, 156 ff, 185, 242. 
strong convergence, 229. 
summation, 189, 230, 247-52, 286, 

301, 308-11. 
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support, 5 ff, 17, 26, 49, 66, 71-9, 
88-90, 98, 111 ff, 115, 134 ff, 161, 
166-77, 182,247, 256-8, 265-70, 
285. 

surface term, 13, 30, 192 ff, 250, 
281-3. 

symmetrical product, 13, 88-96, 
101, 111-5, 125-8, 140,291. 

Taylor series, 25, 38, 68, 93, 189, 
196, 200ff, 244, 265, 301-6. 

test function, 1, 4, 7 ff, 20, 24, 26, 
42, 57, 71-6, 88, 147, 230, 234, 
238,244,254,257,286,290,294. 

topology, 6, 22, 31, 35, 52, 169, 173, 
243, 297. I' 

transfer mapping, 103, 118. 
translation, 6, 30, 50, 52, 57, 158, 

187-94, 199,282,314. 
unit element, 12-5, 22, 27, 72, 89, 

91, 97 ff, 101 ff, 112, 118, 128, 
131-3, 143,181,197,264. 

unit function, 11, 26ff, 72, 79ff, 89, 
107, 112, 128-30, 144, 163, 171, 
174, 182-4, 189, 191, 196 ff, 217, 
225, 272-8. 

unit sequence, 251. 
units, 195, 208, 219-22. 
wave number translations, 187, 
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