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Abstract. We show here that meta-variables of Prolog admit a simple declarative 
interpretation. This allows us to extend the usual theory of SLD-resolution to the 

case of logic programs with meta-variables, and to establish soundness and strong 

completeness of the corresponding extension of the SLD-resolution. The key idea is 

the use of ambivalent syntax which allows us to use the same symbols as function and 

relation symbols. 

We also study the problem of absence of run-time errors in presence of meta-variables. 

We prove that this problem is undecidable. However, we also provide some sufficient 

a.nd polynomial-time-decidable conditions which imply absence of run-time errors. 

Keywords: meta-variables, ambivalent syntax, Prolog programs, soundness and com­

pleteness, absence of errors. 

1. Introduction 

23 

One of the unusual features of Prolog is the use of variables in the positions of atoms, both 

in the queries and in the clause bodies. Such a use of a variable is called a meta-variable. 

Meta-variables, when added to logic programs, allow us to extend their syntax in a simple 

way. For example, the program 

or(X,Y) +-- X. 
or(X, Y) +-- Y. 

allows us to define disjunction, which can be declared as an infix relation ";", and subse­

quently used in another program or query, like in the following program ISO: 

iso(void, void). 
iso(tree(X,Left1,Right1), tree(X,Left2,Right2)) +­

(iso(Left1,Left2),iso(Right1,Right2)) ; 
(iso(Left1,Right2),iso(Right1,Left2)). 
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which tests whether two binary trees are isomorphic. 
Using meta-variables some other extensions of logic programming can be defined. For example, assuming for a moment that the cut "!" facility is present in the language, we can introduce an if _then_el se predicate by means of the program 
iLthen_else(P, Q, R) ,.__ P, ! ,Q. 
iLthen_else(P, Q, R) ,.__ R. 

and then define negation by the single clause 
neg(X) f-- iLthen_else(X, fail, true). 

where true is the query which immediately succeeds. 
Other uses of meta-variables can be found in Prolog programs that solve puzzles. As an illustration consider the following puzzle from Smullyan [Smu94, page 23] and its solution in Prolog given in Casimir [Cas88): 

"Then there's my cook and the Cheshire Cat" continued the Duchess. "The Cook believes that at least one of the two is mad." What can you deduce about the 
Cook and the Cat? 

It is assumed that every person is always saying the truth or always lying, and "mad" is to be identified here with "always lying". 
is(truthful). 
is(lying). 

believes (Somebody, Sth) ,.__ 
Somebody = truthful, Sth 
Somebody = lying, ..., Sth. 

puzzle(Cook, Cat) f--

is(Cook), is(Cat), 
believes(Cook, (Cook= lying; Cat= lying)). 

Here ";" denotes disjunction, as defined above, "•" denotes negation and "=" is Prolog's built-in, called "is unifiable with" and defined by the single clause 
x = x. 

Executing the query puzzle(Cook, Cat) we get the desired answer: 
?- puzzle(Cook, Cat). 

Cat = lying, 
Cook = truthful 

no 

Meta-variables are also useful when writing meta-interpreters, as they allow us to exe­cute certain calls by "lifting" them to the system level - see for an instance the program considered in Example 6.1. 
Prolog's approach to meta-programming, so the process of writing programs (like meta­interpreters) that use other programs as data, should be contrasted with that of the pro­gramming language Godel of Hill and Lloyd [HL94], in which the data program is accessible indirectly, through its representation. In particular, there are no meta-variables in Godel. In this paper we provide theoretical foundations for the study of logic programs with meta­variables. We show that this seemingly illogical use of variables can be easily accounted for on a semantic level by means of ambivalent syntax which allows us to use the same symbols as function and relation symbols. More precisely, we first adopt a version of ambivalent syntax, then introduce a simple declarative semantics for logic programs with meta-variables, and 
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establish soundness and strong completeness of the corresponding extension of the SLD­
resolution. 

Intuitively, a meta-variable is a "place holder" which before its selection should be replaced 

by an atom. Consequently, following Prolog, we stipulate that the selection of a meta-variable 
by the selection rule leads to a run-time error. We prove that - as expected - absence of 

run-time errors in presence of meta-variables is undecidable. However, we also provide some 
sufficient and decidable conditions which imply absence of run-time errors. 

The use of the ambivalent syntax was first advocated in mathematical logic by Richards 

[Ric74], in the theory of logic programming by Kalsbeek [Kal93] and Jiang [Jia94], and in the 
programming languages area by Chen, Kifer and Warren[CKW89] in their logic programming 
language proposal HiLog. 

In each of these references different versions of ambivalence are assumed. Our version 
just boils down to identification of function and relation symbols. This approach is related 

to that of De Schreye and Martens [DM92] in which overloading of function and relation 
symbols is used in order to provide semantics to meta-programs. 

The results of our paper show that once ambivalent syntax is permitted, meta-variables 

admit a natural logical interpretation and can be easily reasoned about. Hence the title. 

2. Syntax and Proof Theory 

The step from meta-variables to ambivalent syntax is very natural. If we accept solve(x) <- x 

as a syntactically legal clause, then it is natural to accept any instance of it as syntactically 

legal, as well. So for any non-variable term tin the assumed language solve(t) <- t is a legal 
clause. Now the outermost symbol of t occurs in this clause both in the function symbol 

position and the relation symbol position. As t was arbitrarily chosen, we conclude that 

in presence of meta-variables the classes of function symbols and of relation symbols in the 
assumed language coincide, as soon as the closure under instantiation is assumed. 

So assume from now on a fixed first-order language {, such that the classes of function 
symbols and relation symbols in{, coincide. In the sequel we consider queries and programs 

written in this subset. Their syntax extends the customary syntax of logic programs as both 

in queries and in the clause bodies we allow variables to appear in atoms positions. In such 

a context they will be referred to as meta-variables. From now on we write meta-variables 

in capital. 
Formally, a query, is a possibly empty sequence of atoms or variables. In turn, a clause 

is a construct of the form A+- B where A is an atom and B is a query. Thus we do not 

allow variables to appear as a head of a clause. In this way we conform to Prolog syntax 

restrictions. 
In the subsequent analysis we shall also use resultants which are constructs of the form 

A+- B, where A and B are queries. By an expression we mean an atom, query, resultant 

or a clause. Given a program P, we denote by inst(P) the set of all instances of clauses 
of P and by ground( P) the set of all ground instances of clauses of P. All the considered 

expressions and their instances are built out of symbols present in£. If a query (respectively, 
a program) does not contain meta-variables, it is called a logical query (respectively, a logical 

program). 
Further, Var( E) denotes the set of variables occurring in the expression E. A substitution 

is a function from variables to terms with a finite domain; t denotes the empty substitution. 
Given a substitution 0, the set of variables occurring in its domain or in the terms forming 

its range is denoted by Var( 0) and its restriction to the set of variables V by 0 IV. Finally, a 

substitution is called a renaming if it is a permutation of the variables from its domain. Recall 

that for every renaming 0 there exists exactly one substitution 0- 1 such that 00-1 = 0-10 = t. 

The SLD-resolution in presence of meta-variables is defined as for logical programs (see 

e.g. Lloyd [Llo87]), with the exception that for every resolution step: 
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• the mgu employed acts now also on meta-variables, 
• the selection of a meta-variable by the selection rule leads to an error. 

The second condition is consistent with Prolog's interpretation of meta-variables. 
It is useful perhaps to mention here that for more powerful versions of ambivalent logics, 

like the ones discussed in Kalsbeek and Jiang [KJ9S], the unification algorithm has to be 
appropriately generalized. This is not so for the version of the ambivalent syntax we use 
here since it does not yield any syntactic changes on the atom level. 

vVe now refer to SLD-resolution with the leftmost selection rule as LD-resolution. 

Example 2.1. Consider the query p(X),X. When the program is {p(a) <--},then the only 
(up to renaming) LD-derivation fails, when the program is {p(y) <--} then the only LD­
derivation ends in an error after one computation step, and when the program is {p( a) t-, 

a<-- } then the only LD-derivation is successful and yields the computed answer substitution 
{X/a}. This agrees with Prolog's interpretation. 

Formally, we extend the SLD-resolution by stipulating that an SLD-derivation ends in an 
error when at the moment of evaluation the selected atom is a variable. 

The following notion will be useful in our considerations. 

Definition 2.1. Consider an SLD-derivation 

( 1) 

Let for i;:::: 0 
R; :=== QoB1 ... B; <-- Q;. 

We call R; the resultant of level i of ( 1 ). 

In Section 4. we shall need the following lemma which involves resultants. 

Lemma 2.1. [Disjointness] Consider an SLD-derivation of PU { Q} with the sequence d1, ... , 

dn+I, ... of input clauses used and with the sequence R0 , .. ., Rn, ... of resultants associated 
with it. Then for i ;:::: 0 

Var(R;) n Var(d;+i) === 0. 

Proof: 
It suffices to prove by induction on i that 

Var(R;) s;; Var(Q) U LJ( Var(Bj) U Var(dj)), (2) 
j=! 

where Bi, ... , Bn, ... are the substitutions used. The claim then follows by standardization 
apart (defined as in Lloyd [Llo87, page 41], so as the condition that each input clause d; is 
variable disjoint with ( Var( Q) U LJ~:,~ ( Var( BJ U Var( di))) ) . 
Base. i === 0. Obvious. 

Induction step. Suppose (2) holds for some i ~ 0. Note that if R; === Q' <--A, B, C where 
B is the selected atom, and d;+1 === H +- B, then R;+1 = ( Q' <--A, B, C)O;+i · Thus 

Var(Ri+1) 
C Var(R;) U Var(Bi+1) U Var(di+I) 
~ {induction hypothesis (2)} 

i+l 

Var(Q) U LJ( Var(Bj) U Var(dj)). 
j=l 
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3. Semantics 

As a next step in our study of logic programs with meta-variables we study their meaning. 
To this end w~ d_efine the meaning of expressions, so a fortiori of queries and programs. 

In general, it 1s not clear how to define the meaning of an expression in an interpretation 
of the language .C, because it is not clear how to define the meaning of meta-variables. We 
circumvent thi~ problem ~y limiting our attention to a restricted classes of interpretations, 
the Herbrand mterpretat1ons. Then we discuss to what extent this restriction could be 
relaxed. 

Formally, by a Herbrand interpretation we mean a set of ground atoms (or equivalently 
ground termms) in the language .C. By a state we mean a mapping assigning to each variable 
a ground term. 

We now define a relation I !=.,. E between a Herbrand interpretation I, a state u and 
an expression E. Intuitively, I Fu E means that E is true in I when its variables are 
interpreted according to u. 

• if X is a variable, then 

• if A is an atom, then 

• if Ai, ... , An is a query, then 

I Fu X iff u(X) E /, 

I Fu A iff Au E J, 

I Fu Ai, ... , An iff I Fu A; for i E [l, n], 
• if A+- Bis a resultant, then 

I Fu A+- B iff (IF" B implies I Fu A). 

In particular, if H +- B is a clause, then 

I Fu H +-- B iff (IF" B implies I Fu H), 
and for a unit clause H +-

J Fu H +- iff J Fu H. 

In this definition only the first statement is unusual. In the usual setting the condition 
on its right hand side does not make sense, and consequently can never succeed. But now 
the ambivalent syntax is assumed, so this statement is perfectly legal as every term is also 
an atom and consequently it can succeed. 

Finally, given an expression E and a Her brand interpretation I, we say that E is true in 
I, or I is a Herbrand model of E, and write IF E, when for all states u we have I Fu E. 
Note that the empty query is true in every Herbrand interpretation I. An interpretation I 
is called a model of a program P if all the clauses of P are true in I. When Eis true in all 
Herbrand models of a program P, we write P FE. 

The following example hopefully clarifies the introduced notions. 

Example 3.1. Suppose that .C has only one constant (and 0-ary relation symbol) c, and 
one unary function (and relation) symbol solve. Let P = {solve(X) +-- X}, and let I = 
{c, solve(c)}. 

Then I is not a model of P, because I F solve(c) but not I F solve(solve(c)). On the 
other hand for every k 2: 0, Jk = {solven(c) In 2: k} is a model of P, since every ground 
term of .C is of the form solven(c) for n 2: 0 and solven(c) E Jk implies solven+1(c) E Jk. 
Also, the empty Herbrand interpretation is a model of P. 

When trying to define the meaning of expressions in more general interpretations one has 
to clarify how to assign meaning to meta-variables. We see two possible approaches. The 
first one consists of considering term interpretations, that is interpretations whose universe 
consists of all terms. Then the appropriate notion of a state is that of a mapping assigning to 
each variable a (not necessarily ground) term and the first statement in the above definition 
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of semantics still makes a perfect sense, as every term interpretation for the ambivalent 
language [, can be identified with a set of terms. In our presentation we decided to limit our 
attention to Herbrand interpretations, as they are easier to understand and to deal with. 

The second approach (suggested by a referee of an earlier version of this paper) consists 
of transforming each program and query into a logical program and a logical query in a 
first-order non-ambivalent language without meta-variables, and assign the meaning to the 
latter objects. To this end it suffices to replace every atom or meta-variable A by holds( A), 
where holds is a new unary relation symbol. 

From the proof theoretic point of view the transformed program and query behaves in 
an equivalent way to the original one with the important exception that errors due to the 
selection of a meta-variable X are mapped onto the selection of atoms of the form holds(X). 
So this approach does not provide any means to prove absence of such errors. On the other 
hand, this type of transformations is useful when studying meta-interpreters. 

From the semantic point of view this approach has a number of drawbacks. The reason 
is that it associates a meaning with a program indirectly, so the semantics of the programs 
like P in Example 3.1. is explained only in terms of a semantics of another, logical program. 
This approach makes "holds" a special relation symbol and does not blend well with the 
overwhelming body of results that follow the standard logic programming practice and define 
the meaning of a program directly in terms of the meaning of its relations. 

For example, once a program transformation (for instance introduction of disjunction) 
introduces in a logical program a meta-variable, the semantics of the program changes even 
if the transformation ensures semantic equivalence. As a consequence, this approach does 
not support systematic program construction by means of programs transformation. 

This in turn implies that this approach does not support modular program construction 
either. Indeed, in case of a program built out of modules it is customary to associate with a 
program semantics that is a function of the semantics of the underlying program modules. 
But this function has now to be changed once an underlying program module is a logical 
program and in the process of its refinement a meta-variable is introduced. 

To cope with these problems one would have to use this "indirect" semantics for all 
programs, including the logical ones which is awkward and artificial. 

It is useful to remark that semantics of programs that takes into account modularity is 
important both for program construction (see e.g. Brogi and Turini [BMPT94]) and for 
program verification (see e.g. Apt and Pedreschi [AP94]). 

The program ISO of Section 1. suggests that one might get rid of meta-variables by 
unfolding. Indeed, by unfolding in ISO the call to the ";" relation we end up with a program 
without meta-variables. Unfortunately, this approach does not work in general. For example 
the meta-variables cannot be eliminated in this way from the other program from Section 1. 
or from the program P in Example 3.1. 

We conclude this section by mentioning the following result which can be established by 
mimicking the corresponding proof for the case of (standard) SLD-resolution. 

Theorem 3.1. [Soundness] Suppose that there exists a successful SLD-derivation of PU{Q} 
with the computed answer substitution 0. Then P I= QO. 

4. Completeness 

In this section we establish a completeness result. To this end we adjust the proof of strong 
completeness of SLD-resolution due to Stark [Sta90]. We begin by introducing the following 
concept. 

Definition 4.1. A finite tree whose nodes are atoms, is called an implication free w.r.t. P if 
for each of its nodes A with the children Eli ... , En, the clause A+-- Bi, ... , Bn is in inst(P). 



K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ... 29 

that an atom has an implication tree w.r.t. P if it is the root of an implication tree 
'. An implication tree is called ground iff all its nodes are ground. 

cular, for n = 0 we get that every leaf A of an implication tree is such that the unit 
l +- is in inst( P). The following lemma reveals the relevance of the implication trees 
iemantics. 

l 4 .1. The Herbrand interpretation 

M(P) :={A I A has a ground implication tree w.r.t. P} 

iel of P. 

>te that for a Herbrand interpretation I, I f= P iff I f= ground(?). Now to show 
1(P) f= ground(?) it suffices to prove that for all A<-B1 , •. .,Bn in g1·ound(P), 
, Bn} ~ M(P) implies A E M(P). But this translates into an obvious property of 
ind implication trees. D 

M(P) is the least Herbrand model of P, but this property is not needed here. This 
is to the following conclusion. 

:i.ry 4.1. Assume that the language £ has infinitely many constants. Suppose that 
Then Q is a logical query and every atom in Q has an implication tree w.r.t. P. 

tma 4.1. M ( P) f= Q. First note that Q is a logical query. Indeed, suppose otherwise. 
•r some meta-variable X we have M(P) f= X, so every constant c of.[, has a ground 
tion tree w.r.t. P. (Here the ambivalence of the syntax is used and the constants are 
reted" as 0-ary relations.) So for every constant c of £ there is a clause of P with c 
ead. But P has only finitely many clauses, so this is impossible. 
the proof of the second property, let Xi, .. . , Xn be the variables of Q and c1, ... , Cn 

. constants of£ which do not appear in P or Q. Let/:= {x1/c1, ... ,xn/cn}· Then 
:round and M(P) f= Q1, so Qi~ M(P), that is every atom in Q1 has a ground 
tion tree w .r. t. P. By replacing in these trees every occurrence of a constant c; by x; 

[l, n] we conclude, by virtue of the choice of the constants ci, ... , en, that every atom 
LS an implication tree w.r.t. P. O 

L program Panda query Q, we now say that Q is n-deep if it is a logical query and 
.tom in Q has an implication tree w.r.t. P such that the total number of nodes in 
nplication trees is n. Then a query is 0-deep iff it is empty. 
following lemma relates two concepts of provability -· that by means of implication 

1d that by means of SLD-resolution. 

a 4.2. [Implication Tree] Suppose that Q8 is n-deep for some n ?.'. 0 and that all 
:rivations of PU {Q} via a selection rule R do not end in error. 
n there exists a successful S'LD-derivation of PU { Q} via R with the computed answer 
Ll tion 1) such that Q17 is more general than Q8. 

LStruct by induction on i E [O, n] a prefix 

LD-derivation of PU { Q} via n and a sequence of substitutions /o, .. ., /;, such that 
resultant R; := A; <- Q; of level i 
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• Q() =An;, 
• Qn; is (n - i)-deep. 

Then Q11 111 is 0-deep, so Qn is the empty query and consequently 

is the desired SLD-derivation, since A11 is then more general than Q() and An = Q81 .. . Bn. 

Base. i = 0. Define Q0 := Q and 10 := e. 
Induction step. Let B be the atom or the meta-variable of Q; selected by R. By the 
assumption of the lemma B is an atom. Q; is of the form A, B, C. By the induction 
hypothesis B;; has an implication tree with r ;::: 1 nodes. Hence there exists a clause 
c :== H <-- B in P and a substitution r such that B1; == Hr and 

Br is ( r - 1 )-deep. (3) 

Let 7r be a renaming such that C'lr is variable disjoint with Q and with the substitutions 
and the input clauses used in the prefix constructed so far. Further, let a be the union of 
/i I Var(R;) and (7r-1 r) I Var(c7r). By the Disjointness Lemma 2.1. a is well-defined. a acts 
on R; as /i and on err as 7r- 1r. This implies that 

so B and H 7r unify. Define ();+1 to be an rngu of B and H 7r. Then there is /i+l such that 

(4) 

Let Q;+1 := (A, B7r, C){);+l be the next resolvent in the SLD-derivation being constructed. 
Then A;();+1 <-- Q;+i is the resultant of level i + 1. We have 

and 

Q() 

== {induction hypothesis} 

A;/; 

{definition of o} 
A;o: 

{ ( 4)} 

A;e;+1 li+1, 

Q;+J/i+i, 

==(A, B7r, C)8;+J/;+1 

{(4)} 
(A, B7r, C)a 

{definition of o} 
A1;,Br,C1;. 

So Q;+l/i+1 is obtained from Qn; by replacing B1;, that is Hr, by Br. By the induction 
hypothesis and (3) we conclude that Q;+J/i+l is (n - (i + 1))-deep. This completes the proof 
of the induction step. o 

We can now prove the desired result. 
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Theorem 4.1. (Strong Completeness] Assume that the language [. has infinitely many con­

stants. Suppose that P f= QO and that all SLD-derivations of P U { Q} via a selection rule 

n do not end in error. 

Then there exists a successful SLD-derivation of PU{Q} v-ia n with the computed answer 

substitution 'f/ such that Qr1 is more general than QO. 

Proof: 
By the Corollary 4.1. P f= QO implies that QO is n-deep for some n 2 0. The claim now 
follows by the Implication Tree Lemma 4.2. o 

The assumption that the language [. has infinitely many constants is necessary here. Indeed, 

suppose that £ has only finitely many constants, say c1 , ... , Cn· Let P consist of the unit 

clauses solve(c1), ... ,solve(cn), and the clause solve(solve(x)) ._.. solve(x), where solve is a 

unary function and relation symbol (we make use here of the ambivalence of the syntax). 

Note that every ground term in [. is of the form solvei( Cj) for some i 2 O and j E (1..n], and 

that every such term, viewed as an atom, belongs to every Herbrand model of P. 
Take now the query Q := solve(x ). Note that P f= Qt. Also, all LD-derivations of 

PU { Q} do not end in error. In fact, meta-variables are not used here. However, every 

successful LD-derivation of PU { Q} yields a computed answer substitution 1) such that Q1) 

is of the form solve( Cj) for some j E [l..n], so not more general than Qc 
This is in contrast to the classical theory of the SLD-resolution where the strong com­

pleteness does not depend on the underlying language. It is useful to understand the reasons 

for this difference. 
In the classical case of logical programs and logical queries semantics is defined for ar­

bitrary interpretations, whereas in presence of meta-variables only for Herbrand interpre­

tations. Now, for logical programs and logical queries the truth in all interpretations is in 

general not equivalent to truth in all Herbrand interpretations but the equivalence does hold 

when the underlying language has infinitely many constants - see Maher [Mah88]. So when 

infinitely many constants are present in the language, the completeness theorem for logical 

programs and logical queries does hold when only Herbrand interpretations are used. Thus 

the above theorem extends this version of the completeness theorem to programs and queries 

in presence of meta-variables. 
It is worthwhile to note that when the semantics based on all term interpretations is used, 

then the corresponding completeness result does not require that the underlying language 

has infinitely many constants. The proof of this result is analogous to the proof of the 

Strong Completeness Theorem 4.1. and is omitted. In fact, in the case of logical programs 

and logical queries the truth in all interpretations is always equivalent to truth in all term 

interpretations - see Falaschi et al. [FLMP89], and this results extends to programs and 

queries in presence of meta-variables. 
Also, when the other approach to semantics of programs and queries discussed at the 

end of Section 3. is used, so the one involving the translation by means of the relation 

symbol holds, the corresponding completeness result does not depend on the assumptions 

about the underlying language. This is the consequence of the fact that the semantics of the 

translated program and translated query is given in terms of arbitrary interpretations and 

not only Herbrand interpretations. 
The assumption that the language [, of programs has infinitely many constants sounds 

perhaps artificial. However, at a closer look it is quite natural. For example, any Prolog 

manual defines infinitely many constants. Of course, in practice only finitely many of them 

can be written or printed. But even in the case of one fixed program arbitrary queries can 

be posed, and in these queries arbitrary constants can appear. So when studying behaviour 

of a program, it is natural to assume a language in which all these constants are present. 
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5. Absence of Errors 
When studying SLD-resolution in presence of meta-variables it is natural to seek condi 
that ensure that the SLD-derivations do not end in error. It is particularly of in1 
when studying correctness of Prolog programs that use meta-variables, like the ISO pro 
discussed in Section 1. The following result shows that this property is in general undecid 

Theorem 5.1. For some logical program P the following property is undecidable: 
a query Q is such that all LD-derivations of P U { Q} do not end in error. 

Proof: 
Below Mp denotes the least Herbrand model of a program P and Bp the Herbrand 
determined by P. By the strong completeness of SLO-resolution we have for every pro, 
P and a ground atom A: 

A E .Mp iff there exists a successful LO-derivation of PU {A}, 
so 

A E B p - M p ilf no successful LO-derivation of P U {A} exists 
iff all LD-derivations of P U {A, X} do not end in error, 

where X is a meta-variable. Thus to prove the theorem it suffices to exhibit a progra 
for which the set Mp, and consequently the set Bp - Mp is undecidable. Now, this i: 
contents of Corollary 4.7 in Apt [Apt90]. This completes the proof. 

6. Sufficient Conditions for Error-Free Computation 
In this section we provide sufficient conditions on programs and queries that imply abs 
of errors of the kind defined in the previous sections. We also show that these suffi, 
conditions can be checked in time polynomial in the size of the program and the query 

We start by introducing meta-modes. Meta-modes indicate how the arguments 
relation should be used. Intuitively, in order to prevent run-time errors, we should ~ 
having a variable as the i'th argument of the query p( ... ) if i is in the meta-mode for p 

Definition 6.1. [meta-mode] Consider an n-ary relation symbol p. A meta-mode for p, 
is a subset of { l, .. ., n}. By a meta-moding for a program P we mean a collection of m< 
one for each relation symbol in the language [, and such that mp = 0 for all relation syrr 
p not in P. 

Sometimes we shall say just mode (resp. moding) instead of meta-mode (resp. rr 
moding). 

Example 6.1. Consider the following program SOLVE from Sterling and Shapiro [S 
pages 307-308], where solve(Query) succeeds whenever Query is deduced from the Pr 
program defined by a binary relation symbol clause. To avoid some uninteresting sy 
complications we assume here that each program clause H t- B is represented by the a 
clause (H, Bs), where Bs is the list of atoms forming B. We also assume that the rela 
symbol system defines the system predicates. 

solve([]). 
solve( [A I Bs] )) +- solve(A), solve(Bs). 
solve(A) t- system(A), A. 
solve(A) <- clause(A, Bs), solve(Bs). 
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Below we consider the following meta-moding for this program: msolve = {1}, mp = 0 for 
all other relation symbols of £. 

We now define when a variable is considered to be a meta-variable in a query. From now on 
assume a fixed moding for each considered program. 

Definition 6.2. [The relations'"'-+ and'"'-+*] Consider an atom A := p(ti, .. . , tn)- Suppose 
that i E mp. Then we write A '"'-+ t;. Due to the ambivalent syntax ..._.,, can be viewed as 
a binary relation both on terms and on atoms. '"'-'* denotes the transitive, reflexive closure 
of'"'-+. 

Definition 6.3. [meta-variable in a query] 
• A variable X is a meta-variable in an atom A if A..._.,,• X. 
• A variable X is a meta-variable in a query if it occurs in it as a meta-variable or it is 

a meta-variable in some of its atoms. 

Intuitively, A'"'-'* X holds if in the parse tree for A an occurrence of the variable X can be 
reached from the root via a path with only "meta-moded" links. 

Example 6.2. For the moding given in Example 6.1., X is a meta variable in the queries 
solve(sol ve (X)) and system(X) ,X, but X is not a meta-variable in the query solve(p (X)), 

where p is a relation symbol different from solve. 

To deal with absence of errors in presence of meta-variables we now introduce the notion of 
well-rneta-modedness. 

Definition 6.4. [well-meta-moded (wmm)] 
• A query Q is called well-meia-rnoded (in short wmm) if no variable is a meta-variable 

in Q. 
• A claus<• A <--- CJ is calJPd well-meia-rnoded if for every meta-variable X in Q we have 

A.-...+ X. 
• A program is ea.lied wdl-mda-modtd if every clause of it is. 

The theorem below explains our interest in the notion of well-meta-modedness. We need the 
following lemma. 

Lemma 6.1. An SLD-resolvent of a well-meta-rnoded query and a well-meta-moded clause 
that is variable disjoint with it, is well-rneta-rnoded. 

Proof: 
First note that an instance of a wmm query is wmm. Indeed, if AO----+* X then either A is 
a met.a-variable or A----+* X or for some binding Y/s E 0 both A'"'-+* Y and s '"'-+* X. 

Suppose now that a wmn1 query Q is (successfully) resolved with the wmm clause c := 

p(li, ... ,tk) <--- B. Let A be the selected atom in Q. For some terms s1, ... ,sk A := 

p(s 1 , •.. , 8k)· Let X be a meta-variable in B. Since c is wmm, for some i E [l, k] we have 
X = t; and i E m 1,. Since Q is wmm, .Si is a term having no meta-variables. Hence when 
c is instantiated with an rngu of A and p(t1, ... , tk) all the meta-variables in Bare replaced 
with terms having no meta-variables. 

This implies that the SLD-resolvent is wmm. D 

Theorem 6.1. [Absence of Errors] If P and Q are well-meta-moded then all SLD-deriva­

tions of P U { Q} arc erTor·-free. 

Proof: 
It is an immediate cor1sC(jlH'ne<·~ of Lennna G. I. D 

We now tum to complexity isstws. First note the following result. 
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Theorem 6.2. Letµ be a moding for a program P. There exists an algorithm which eh 
whtfhfl' p (nsp. a query Q) is wmm w.r.t. µ in time polynomial in the size of P (resp. 

Proof: 
The size any moding for a program P is polynomial in the size of P. In fact, it is 0(1 where n is the number of relation symbols and k the maximum arity. Hence, the relat. ....._. and ...,__.•, defined in Definition 6.2. can be computed in time which is polynomial in 
size of P, and the number of pairs in these relations is polynomial in the size of P. 

Deciding whether a variable is a meta-variable in some query (Definition 6.3.) can be d 
in time linear in the size of the relation ----t*. So for each clause and for each query we 
decide whether it is well-meta-moded (Definition 6.4.) in time polynomial in the size of relations....._. and ...,__.•. Hence we can decide whether a program P (resp. a query Q) is w1 
with respect to some moding in time which is polynomial in the size of P (resp. Q). 
This shows that the conditions of the Absence of Errors Theorem 6.1. can be checkec 
polynomial time. 

Freqm'ntly, a rnoding that assigns to each n-ary relation symbol of the program the rn { 1, ... , n} will make the program well-meta-moded, but then the class of well-meta-mo, 
queries becomes too restrictive. Hence the motivation for a minimal meta-moding. 
Definition 6.5. A moding p for a program P is a good meta-moding for P iff P is w 
meta-rnoded with respect to p and µ is minimal. That is, there is no other moding µ' s 
that P is well-rneta-moded w.r.t. p' and for some relation symbol p, m'p E µ', mp E µ < 
m'P C mP. 

Example 6.3. 
(i) The moding provided in Example 6.1. is a good meta-moding for the program SOL 

By the Absence of Errors Theorem 6.1. applied to the program SOLVE and the qu 
solve (p (X)) we conclude that the SLD-derivations of SOLVE U {sol ve(p( X))} are err 
free. This conclusion cannot be drawn for the query solve (solve (X)) which is l 
wmm. In fact, an SLD-derivation of SOLVE U {solve(solve(X))} that repeatedly u 
the third clause of SOLVE ends in an error. 

(ii) The program which consists of the single clause 

p(X) <-- q(X), Y 

does not have a good meta-moding. 
(iii) Consider the following program P: 

p(X, Y ,Z) <-- q(X,Y), Z. 
q(X,Y) <- r(Y), X 

Let /t be a moding such that mp = {1,3}, mq = {l}, and mr = 0. Then ft is a go meta-moding for P. 
The query p( a, b, Z) is not wmm w.r. t. µ, whereas the query p( a, Y, r(X)) is wmm w .I 

toµ. The query X is not wmm w.r.t. any moding. By the Absence of Errors Theorem 6 all SLD-derivations of P U {p( a, Y, r(X))} are error-free. 

We conclude with the following result concerning good meta-modings. 

Theorem 6.3. There _exists an algorithm which checks whether a program P has a go 
mda-modmg and provides such moding if it exists. This algorithm runs in time polynom in the si::e of P. 
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Good-meta-moding 
Input: A program P 
Output: If P has a good meta-moding, such a moding will be the output. 
Otherwise false is returned. 

Let p1 , ••• , Pn be all the relation symbols in P. 
for i := 1 to n do mp, := 0; 
""·:= {(X, X) IX is a variable in P}; 
change :=fr-ue; fail :=false; 
while change and not fail do 

change :=false; 

for each clause p(t1, ... ,tk)- Qin P do 

for each X which is currently a meta-variable in Q do 
if for some 1 :::; j :::; k tj = X then 

if j €t- mP then 
begin 

mp := mpLJ{j}; 
change := true; 

end; 

else fail:=tr-ue; 
endfor; 

endfor; 

compute"'-"* according to the current values of mp,, ... , mpn; 

endwhile; 
for each relation symbol p not in P do mp = 0; 
if not fail then return mp1 , ... , mPn else return false 

Figure 1 Algorithm Good-meta-moding 

Proof: 

85 

Consider the algorithm Good-meta-moding (in short, gmm) given in Figure 1 Suppose the 
input to algorithm gmm is some program P. First, note that the while-loop repeats at most 
n * k times, where n is the number of relation symbols and k the maximum arity of any 
relation in P. Recall that the relation -vt* can be computed in time which is polynomial in 
the size of the program, and once this relation is given, testing whether a variable is a meta­
variable in some query is also easy. Hence the algorithm runs in time which is polynomial in 
the size of the program. To verify that the algorithm indeed generates a correct output, note 
that the following invariants hold after each time the body of the while-loop is executed: 

1. For every relation symbol p, if j E mp then also j is in mp in every other moding that 
makes P well-meta-moded, 

2. If fail= true then P has no good meta-moding. 

The proof of the invariants is done by induction on i, the number of times the body of 
the while-loop was executed so far. Hence we have shown an algorithm which checks in 
polynomial time whether a program P has a good meta-moding and provides such rnoding 
if it exists. D 
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