
Fundamenta lnformaticae 28 (1996) 23-36

!OS Press

Meta-variables in Logic Programming,

or in Praise of Ambivalent Syntax

Krzysztof R. Apt
CW!
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands and

Dept. of Mathematics, Computer Science, Physics fj Astronomy

University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands

Rachel Ben-Eliyahu
Mathematics and Computer Science Department

Ben-Gurion University of the Negev

Beer-Sheva 84105

Israel

Abstract. We show here that meta-variables of Prolog admit a simple declarative
interpretation. This allows us to extend the usual theory of SLD-resolution to the

case of logic programs with meta-variables, and to establish soundness and strong

completeness of the corresponding extension of the SLD-resolution. The key idea is

the use of ambivalent syntax which allows us to use the same symbols as function and

relation symbols.

We also study the problem of absence of run-time errors in presence of meta-variables.

We prove that this problem is undecidable. However, we also provide some sufficient

a.nd polynomial-time-decidable conditions which imply absence of run-time errors.

Keywords: meta-variables, ambivalent syntax, Prolog programs, soundness and com­

pleteness, absence of errors.

1. Introduction

23

One of the unusual features of Prolog is the use of variables in the positions of atoms, both

in the queries and in the clause bodies. Such a use of a variable is called a meta-variable.

Meta-variables, when added to logic programs, allow us to extend their syntax in a simple

way. For example, the program

or(X,Y) +-- X.
or(X, Y) +-- Y.

allows us to define disjunction, which can be declared as an infix relation ";", and subse­

quently used in another program or query, like in the following program ISO:

iso(void, void).
iso(tree(X,Left1,Right1), tree(X,Left2,Right2)) +­

(iso(Left1,Left2),iso(Right1,Right2)) ;
(iso(Left1,Right2),iso(Right1,Left2)).

24 K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ...

which tests whether two binary trees are isomorphic.
Using meta-variables some other extensions of logic programming can be defined. For example, assuming for a moment that the cut "!" facility is present in the language, we can introduce an if _then_el se predicate by means of the program
iLthen_else(P, Q, R) ,.__ P, ! ,Q.
iLthen_else(P, Q, R) ,.__ R.

and then define negation by the single clause
neg(X) f-- iLthen_else(X, fail, true).

where true is the query which immediately succeeds.
Other uses of meta-variables can be found in Prolog programs that solve puzzles. As an illustration consider the following puzzle from Smullyan [Smu94, page 23] and its solution in Prolog given in Casimir [Cas88):

"Then there's my cook and the Cheshire Cat" continued the Duchess. "The Cook believes that at least one of the two is mad." What can you deduce about the
Cook and the Cat?

It is assumed that every person is always saying the truth or always lying, and "mad" is to be identified here with "always lying".
is(truthful).
is(lying).

believes (Somebody, Sth) ,.__
Somebody = truthful, Sth
Somebody = lying, ..., Sth.

puzzle(Cook, Cat) f--

is(Cook), is(Cat),
believes(Cook, (Cook= lying; Cat= lying)).

Here ";" denotes disjunction, as defined above, "•" denotes negation and "=" is Prolog's built-in, called "is unifiable with" and defined by the single clause
x = x.

Executing the query puzzle(Cook, Cat) we get the desired answer:
?- puzzle(Cook, Cat).

Cat = lying,
Cook = truthful

no

Meta-variables are also useful when writing meta-interpreters, as they allow us to exe­cute certain calls by "lifting" them to the system level - see for an instance the program considered in Example 6.1.
Prolog's approach to meta-programming, so the process of writing programs (like meta­interpreters) that use other programs as data, should be contrasted with that of the pro­gramming language Godel of Hill and Lloyd [HL94], in which the data program is accessible indirectly, through its representation. In particular, there are no meta-variables in Godel. In this paper we provide theoretical foundations for the study of logic programs with meta­variables. We show that this seemingly illogical use of variables can be easily accounted for on a semantic level by means of ambivalent syntax which allows us to use the same symbols as function and relation symbols. More precisely, we first adopt a version of ambivalent syntax, then introduce a simple declarative semantics for logic programs with meta-variables, and

K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ... 25

establish soundness and strong completeness of the corresponding extension of the SLD­
resolution.

Intuitively, a meta-variable is a "place holder" which before its selection should be replaced

by an atom. Consequently, following Prolog, we stipulate that the selection of a meta-variable
by the selection rule leads to a run-time error. We prove that - as expected - absence of

run-time errors in presence of meta-variables is undecidable. However, we also provide some
sufficient and decidable conditions which imply absence of run-time errors.

The use of the ambivalent syntax was first advocated in mathematical logic by Richards

[Ric74], in the theory of logic programming by Kalsbeek [Kal93] and Jiang [Jia94], and in the
programming languages area by Chen, Kifer and Warren[CKW89] in their logic programming
language proposal HiLog.

In each of these references different versions of ambivalence are assumed. Our version
just boils down to identification of function and relation symbols. This approach is related

to that of De Schreye and Martens [DM92] in which overloading of function and relation
symbols is used in order to provide semantics to meta-programs.

The results of our paper show that once ambivalent syntax is permitted, meta-variables

admit a natural logical interpretation and can be easily reasoned about. Hence the title.

2. Syntax and Proof Theory

The step from meta-variables to ambivalent syntax is very natural. If we accept solve(x) <- x

as a syntactically legal clause, then it is natural to accept any instance of it as syntactically

legal, as well. So for any non-variable term tin the assumed language solve(t) <- t is a legal
clause. Now the outermost symbol of t occurs in this clause both in the function symbol

position and the relation symbol position. As t was arbitrarily chosen, we conclude that

in presence of meta-variables the classes of function symbols and of relation symbols in the
assumed language coincide, as soon as the closure under instantiation is assumed.

So assume from now on a fixed first-order language {, such that the classes of function
symbols and relation symbols in{, coincide. In the sequel we consider queries and programs

written in this subset. Their syntax extends the customary syntax of logic programs as both

in queries and in the clause bodies we allow variables to appear in atoms positions. In such

a context they will be referred to as meta-variables. From now on we write meta-variables

in capital.
Formally, a query, is a possibly empty sequence of atoms or variables. In turn, a clause

is a construct of the form A+- B where A is an atom and B is a query. Thus we do not

allow variables to appear as a head of a clause. In this way we conform to Prolog syntax

restrictions.
In the subsequent analysis we shall also use resultants which are constructs of the form

A+- B, where A and B are queries. By an expression we mean an atom, query, resultant

or a clause. Given a program P, we denote by inst(P) the set of all instances of clauses
of P and by ground(P) the set of all ground instances of clauses of P. All the considered

expressions and their instances are built out of symbols present in£. If a query (respectively,
a program) does not contain meta-variables, it is called a logical query (respectively, a logical

program).
Further, Var(E) denotes the set of variables occurring in the expression E. A substitution

is a function from variables to terms with a finite domain; t denotes the empty substitution.
Given a substitution 0, the set of variables occurring in its domain or in the terms forming

its range is denoted by Var(0) and its restriction to the set of variables V by 0 IV. Finally, a

substitution is called a renaming if it is a permutation of the variables from its domain. Recall

that for every renaming 0 there exists exactly one substitution 0- 1 such that 00-1 = 0-10 = t.

The SLD-resolution in presence of meta-variables is defined as for logical programs (see

e.g. Lloyd [Llo87]), with the exception that for every resolution step:

26 K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming,. ..

• the mgu employed acts now also on meta-variables,
• the selection of a meta-variable by the selection rule leads to an error.

The second condition is consistent with Prolog's interpretation of meta-variables.
It is useful perhaps to mention here that for more powerful versions of ambivalent logics,

like the ones discussed in Kalsbeek and Jiang [KJ9S], the unification algorithm has to be
appropriately generalized. This is not so for the version of the ambivalent syntax we use
here since it does not yield any syntactic changes on the atom level.

vVe now refer to SLD-resolution with the leftmost selection rule as LD-resolution.

Example 2.1. Consider the query p(X),X. When the program is {p(a) <--},then the only
(up to renaming) LD-derivation fails, when the program is {p(y) <--} then the only LD­
derivation ends in an error after one computation step, and when the program is {p(a) t-,

a<-- } then the only LD-derivation is successful and yields the computed answer substitution
{X/a}. This agrees with Prolog's interpretation.

Formally, we extend the SLD-resolution by stipulating that an SLD-derivation ends in an
error when at the moment of evaluation the selected atom is a variable.

The following notion will be useful in our considerations.

Definition 2.1. Consider an SLD-derivation

(1)

Let for i;:::: 0
R; :=== QoB1 ... B; <-- Q;.

We call R; the resultant of level i of (1).

In Section 4. we shall need the following lemma which involves resultants.

Lemma 2.1. [Disjointness] Consider an SLD-derivation of PU { Q} with the sequence d1, ... ,

dn+I, ... of input clauses used and with the sequence R0 , .. ., Rn, ... of resultants associated
with it. Then for i ;:::: 0

Var(R;) n Var(d;+i) === 0.

Proof:
It suffices to prove by induction on i that

Var(R;) s;; Var(Q) U LJ(Var(Bj) U Var(dj)), (2)
j=!

where Bi, ... , Bn, ... are the substitutions used. The claim then follows by standardization
apart (defined as in Lloyd [Llo87, page 41], so as the condition that each input clause d; is
variable disjoint with (Var(Q) U LJ~:,~ (Var(BJ U Var(di)))) .
Base. i === 0. Obvious.

Induction step. Suppose (2) holds for some i ~ 0. Note that if R; === Q' <--A, B, C where
B is the selected atom, and d;+1 === H +- B, then R;+1 = (Q' <--A, B, C)O;+i · Thus

Var(Ri+1)
C Var(R;) U Var(Bi+1) U Var(di+I)
~ {induction hypothesis (2)}

i+l

Var(Q) U LJ(Var(Bj) U Var(dj)).
j=l

K.R. Apt and R. Ben-Eliyahu/ Meta-Variables in Logic Programming, ... 27

3. Semantics

As a next step in our study of logic programs with meta-variables we study their meaning.
To this end w~ d_efine the meaning of expressions, so a fortiori of queries and programs.

In general, it 1s not clear how to define the meaning of an expression in an interpretation
of the language .C, because it is not clear how to define the meaning of meta-variables. We
circumvent thi~ problem ~y limiting our attention to a restricted classes of interpretations,
the Herbrand mterpretat1ons. Then we discuss to what extent this restriction could be
relaxed.

Formally, by a Herbrand interpretation we mean a set of ground atoms (or equivalently
ground termms) in the language .C. By a state we mean a mapping assigning to each variable
a ground term.

We now define a relation I !=.,. E between a Herbrand interpretation I, a state u and
an expression E. Intuitively, I Fu E means that E is true in I when its variables are
interpreted according to u.

• if X is a variable, then

• if A is an atom, then

• if Ai, ... , An is a query, then

I Fu X iff u(X) E /,

I Fu A iff Au E J,

I Fu Ai, ... , An iff I Fu A; for i E [l, n],
• if A+- Bis a resultant, then

I Fu A+- B iff (IF" B implies I Fu A).

In particular, if H +- B is a clause, then

I Fu H +-- B iff (IF" B implies I Fu H),
and for a unit clause H +-

J Fu H +- iff J Fu H.

In this definition only the first statement is unusual. In the usual setting the condition
on its right hand side does not make sense, and consequently can never succeed. But now
the ambivalent syntax is assumed, so this statement is perfectly legal as every term is also
an atom and consequently it can succeed.

Finally, given an expression E and a Her brand interpretation I, we say that E is true in
I, or I is a Herbrand model of E, and write IF E, when for all states u we have I Fu E.
Note that the empty query is true in every Herbrand interpretation I. An interpretation I
is called a model of a program P if all the clauses of P are true in I. When Eis true in all
Herbrand models of a program P, we write P FE.

The following example hopefully clarifies the introduced notions.

Example 3.1. Suppose that .C has only one constant (and 0-ary relation symbol) c, and
one unary function (and relation) symbol solve. Let P = {solve(X) +-- X}, and let I =
{c, solve(c)}.

Then I is not a model of P, because I F solve(c) but not I F solve(solve(c)). On the
other hand for every k 2: 0, Jk = {solven(c) In 2: k} is a model of P, since every ground
term of .C is of the form solven(c) for n 2: 0 and solven(c) E Jk implies solven+1(c) E Jk.
Also, the empty Herbrand interpretation is a model of P.

When trying to define the meaning of expressions in more general interpretations one has
to clarify how to assign meaning to meta-variables. We see two possible approaches. The
first one consists of considering term interpretations, that is interpretations whose universe
consists of all terms. Then the appropriate notion of a state is that of a mapping assigning to
each variable a (not necessarily ground) term and the first statement in the above definition

28 K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ...

of semantics still makes a perfect sense, as every term interpretation for the ambivalent
language [, can be identified with a set of terms. In our presentation we decided to limit our
attention to Herbrand interpretations, as they are easier to understand and to deal with.

The second approach (suggested by a referee of an earlier version of this paper) consists
of transforming each program and query into a logical program and a logical query in a
first-order non-ambivalent language without meta-variables, and assign the meaning to the
latter objects. To this end it suffices to replace every atom or meta-variable A by holds(A),
where holds is a new unary relation symbol.

From the proof theoretic point of view the transformed program and query behaves in
an equivalent way to the original one with the important exception that errors due to the
selection of a meta-variable X are mapped onto the selection of atoms of the form holds(X).
So this approach does not provide any means to prove absence of such errors. On the other
hand, this type of transformations is useful when studying meta-interpreters.

From the semantic point of view this approach has a number of drawbacks. The reason
is that it associates a meaning with a program indirectly, so the semantics of the programs
like P in Example 3.1. is explained only in terms of a semantics of another, logical program.
This approach makes "holds" a special relation symbol and does not blend well with the
overwhelming body of results that follow the standard logic programming practice and define
the meaning of a program directly in terms of the meaning of its relations.

For example, once a program transformation (for instance introduction of disjunction)
introduces in a logical program a meta-variable, the semantics of the program changes even
if the transformation ensures semantic equivalence. As a consequence, this approach does
not support systematic program construction by means of programs transformation.

This in turn implies that this approach does not support modular program construction
either. Indeed, in case of a program built out of modules it is customary to associate with a
program semantics that is a function of the semantics of the underlying program modules.
But this function has now to be changed once an underlying program module is a logical
program and in the process of its refinement a meta-variable is introduced.

To cope with these problems one would have to use this "indirect" semantics for all
programs, including the logical ones which is awkward and artificial.

It is useful to remark that semantics of programs that takes into account modularity is
important both for program construction (see e.g. Brogi and Turini [BMPT94]) and for
program verification (see e.g. Apt and Pedreschi [AP94]).

The program ISO of Section 1. suggests that one might get rid of meta-variables by
unfolding. Indeed, by unfolding in ISO the call to the ";" relation we end up with a program
without meta-variables. Unfortunately, this approach does not work in general. For example
the meta-variables cannot be eliminated in this way from the other program from Section 1.
or from the program P in Example 3.1.

We conclude this section by mentioning the following result which can be established by
mimicking the corresponding proof for the case of (standard) SLD-resolution.

Theorem 3.1. [Soundness] Suppose that there exists a successful SLD-derivation of PU{Q}
with the computed answer substitution 0. Then P I= QO.

4. Completeness

In this section we establish a completeness result. To this end we adjust the proof of strong
completeness of SLD-resolution due to Stark [Sta90]. We begin by introducing the following
concept.

Definition 4.1. A finite tree whose nodes are atoms, is called an implication free w.r.t. P if
for each of its nodes A with the children Eli ... , En, the clause A+-- Bi, ... , Bn is in inst(P).

K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ... 29

that an atom has an implication tree w.r.t. P if it is the root of an implication tree
'. An implication tree is called ground iff all its nodes are ground.

cular, for n = 0 we get that every leaf A of an implication tree is such that the unit
l +- is in inst(P). The following lemma reveals the relevance of the implication trees
iemantics.

l 4 .1. The Herbrand interpretation

M(P) :={A I A has a ground implication tree w.r.t. P}

iel of P.

>te that for a Herbrand interpretation I, I f= P iff I f= ground(?). Now to show
1(P) f= ground(?) it suffices to prove that for all A<-B1 , •. .,Bn in g1·ound(P),
, Bn} ~ M(P) implies A E M(P). But this translates into an obvious property of
ind implication trees. D

M(P) is the least Herbrand model of P, but this property is not needed here. This
is to the following conclusion.

:i.ry 4.1. Assume that the language £ has infinitely many constants. Suppose that
Then Q is a logical query and every atom in Q has an implication tree w.r.t. P.

tma 4.1. M (P) f= Q. First note that Q is a logical query. Indeed, suppose otherwise.
•r some meta-variable X we have M(P) f= X, so every constant c of.[, has a ground
tion tree w.r.t. P. (Here the ambivalence of the syntax is used and the constants are
reted" as 0-ary relations.) So for every constant c of £ there is a clause of P with c
ead. But P has only finitely many clauses, so this is impossible.
the proof of the second property, let Xi, .. . , Xn be the variables of Q and c1, ... , Cn

. constants of£ which do not appear in P or Q. Let/:= {x1/c1, ... ,xn/cn}· Then
:round and M(P) f= Q1, so Qi~ M(P), that is every atom in Q1 has a ground
tion tree w .r. t. P. By replacing in these trees every occurrence of a constant c; by x;

[l, n] we conclude, by virtue of the choice of the constants ci, ... , en, that every atom
LS an implication tree w.r.t. P. O

L program Panda query Q, we now say that Q is n-deep if it is a logical query and
.tom in Q has an implication tree w.r.t. P such that the total number of nodes in
nplication trees is n. Then a query is 0-deep iff it is empty.
following lemma relates two concepts of provability -· that by means of implication

1d that by means of SLD-resolution.

a 4.2. [Implication Tree] Suppose that Q8 is n-deep for some n ?.'. 0 and that all
:rivations of PU {Q} via a selection rule R do not end in error.
n there exists a successful S'LD-derivation of PU { Q} via R with the computed answer
Ll tion 1) such that Q17 is more general than Q8.

LStruct by induction on i E [O, n] a prefix

LD-derivation of PU { Q} via n and a sequence of substitutions /o, .. ., /;, such that
resultant R; := A; <- Q; of level i

30 K.R. Apt and R. Ben-Eliyah u I Meta-Variables in Logic Programming, ...

• Q() =An;,
• Qn; is (n - i)-deep.

Then Q11 111 is 0-deep, so Qn is the empty query and consequently

is the desired SLD-derivation, since A11 is then more general than Q() and An = Q81 .. . Bn.

Base. i = 0. Define Q0 := Q and 10 := e.
Induction step. Let B be the atom or the meta-variable of Q; selected by R. By the
assumption of the lemma B is an atom. Q; is of the form A, B, C. By the induction
hypothesis B;; has an implication tree with r ;::: 1 nodes. Hence there exists a clause
c :== H <-- B in P and a substitution r such that B1; == Hr and

Br is (r - 1)-deep. (3)

Let 7r be a renaming such that C'lr is variable disjoint with Q and with the substitutions
and the input clauses used in the prefix constructed so far. Further, let a be the union of
/i I Var(R;) and (7r-1 r) I Var(c7r). By the Disjointness Lemma 2.1. a is well-defined. a acts
on R; as /i and on err as 7r- 1r. This implies that

so B and H 7r unify. Define ();+1 to be an rngu of B and H 7r. Then there is /i+l such that

(4)

Let Q;+1 := (A, B7r, C){);+l be the next resolvent in the SLD-derivation being constructed.
Then A;();+1 <-- Q;+i is the resultant of level i + 1. We have

and

Q()

== {induction hypothesis}

A;/;

{definition of o}
A;o:

{ (4)}

A;e;+1 li+1,

Q;+J/i+i,

==(A, B7r, C)8;+J/;+1

{(4)}
(A, B7r, C)a

{definition of o}
A1;,Br,C1;.

So Q;+l/i+1 is obtained from Qn; by replacing B1;, that is Hr, by Br. By the induction
hypothesis and (3) we conclude that Q;+J/i+l is (n - (i + 1))-deep. This completes the proof
of the induction step. o

We can now prove the desired result.

K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ... 31

Theorem 4.1. (Strong Completeness] Assume that the language [. has infinitely many con­

stants. Suppose that P f= QO and that all SLD-derivations of P U { Q} via a selection rule

n do not end in error.

Then there exists a successful SLD-derivation of PU{Q} v-ia n with the computed answer

substitution 'f/ such that Qr1 is more general than QO.

Proof:
By the Corollary 4.1. P f= QO implies that QO is n-deep for some n 2 0. The claim now
follows by the Implication Tree Lemma 4.2. o

The assumption that the language [. has infinitely many constants is necessary here. Indeed,

suppose that £ has only finitely many constants, say c1 , ... , Cn· Let P consist of the unit

clauses solve(c1), ... ,solve(cn), and the clause solve(solve(x)) ._.. solve(x), where solve is a

unary function and relation symbol (we make use here of the ambivalence of the syntax).

Note that every ground term in [. is of the form solvei(Cj) for some i 2 O and j E (1..n], and

that every such term, viewed as an atom, belongs to every Herbrand model of P.
Take now the query Q := solve(x). Note that P f= Qt. Also, all LD-derivations of

PU { Q} do not end in error. In fact, meta-variables are not used here. However, every

successful LD-derivation of PU { Q} yields a computed answer substitution 1) such that Q1)

is of the form solve(Cj) for some j E [l..n], so not more general than Qc
This is in contrast to the classical theory of the SLD-resolution where the strong com­

pleteness does not depend on the underlying language. It is useful to understand the reasons

for this difference.
In the classical case of logical programs and logical queries semantics is defined for ar­

bitrary interpretations, whereas in presence of meta-variables only for Herbrand interpre­

tations. Now, for logical programs and logical queries the truth in all interpretations is in

general not equivalent to truth in all Herbrand interpretations but the equivalence does hold

when the underlying language has infinitely many constants - see Maher [Mah88]. So when

infinitely many constants are present in the language, the completeness theorem for logical

programs and logical queries does hold when only Herbrand interpretations are used. Thus

the above theorem extends this version of the completeness theorem to programs and queries

in presence of meta-variables.
It is worthwhile to note that when the semantics based on all term interpretations is used,

then the corresponding completeness result does not require that the underlying language

has infinitely many constants. The proof of this result is analogous to the proof of the

Strong Completeness Theorem 4.1. and is omitted. In fact, in the case of logical programs

and logical queries the truth in all interpretations is always equivalent to truth in all term

interpretations - see Falaschi et al. [FLMP89], and this results extends to programs and

queries in presence of meta-variables.
Also, when the other approach to semantics of programs and queries discussed at the

end of Section 3. is used, so the one involving the translation by means of the relation

symbol holds, the corresponding completeness result does not depend on the assumptions

about the underlying language. This is the consequence of the fact that the semantics of the

translated program and translated query is given in terms of arbitrary interpretations and

not only Herbrand interpretations.
The assumption that the language [, of programs has infinitely many constants sounds

perhaps artificial. However, at a closer look it is quite natural. For example, any Prolog

manual defines infinitely many constants. Of course, in practice only finitely many of them

can be written or printed. But even in the case of one fixed program arbitrary queries can

be posed, and in these queries arbitrary constants can appear. So when studying behaviour

of a program, it is natural to assume a language in which all these constants are present.

32 K.R. Apt and R. Ben-Eliyahu/ Meta-Variables in Logic Programming, ...

5. Absence of Errors
When studying SLD-resolution in presence of meta-variables it is natural to seek condi
that ensure that the SLD-derivations do not end in error. It is particularly of in1
when studying correctness of Prolog programs that use meta-variables, like the ISO pro
discussed in Section 1. The following result shows that this property is in general undecid

Theorem 5.1. For some logical program P the following property is undecidable:
a query Q is such that all LD-derivations of P U { Q} do not end in error.

Proof:
Below Mp denotes the least Herbrand model of a program P and Bp the Herbrand
determined by P. By the strong completeness of SLO-resolution we have for every pro,
P and a ground atom A:

A E .Mp iff there exists a successful LO-derivation of PU {A},
so

A E B p - M p ilf no successful LO-derivation of P U {A} exists
iff all LD-derivations of P U {A, X} do not end in error,

where X is a meta-variable. Thus to prove the theorem it suffices to exhibit a progra
for which the set Mp, and consequently the set Bp - Mp is undecidable. Now, this i:
contents of Corollary 4.7 in Apt [Apt90]. This completes the proof.

6. Sufficient Conditions for Error-Free Computation
In this section we provide sufficient conditions on programs and queries that imply abs
of errors of the kind defined in the previous sections. We also show that these suffi,
conditions can be checked in time polynomial in the size of the program and the query

We start by introducing meta-modes. Meta-modes indicate how the arguments
relation should be used. Intuitively, in order to prevent run-time errors, we should ~
having a variable as the i'th argument of the query p(...) if i is in the meta-mode for p

Definition 6.1. [meta-mode] Consider an n-ary relation symbol p. A meta-mode for p,
is a subset of { l, .. ., n}. By a meta-moding for a program P we mean a collection of m<
one for each relation symbol in the language [, and such that mp = 0 for all relation syrr
p not in P.

Sometimes we shall say just mode (resp. moding) instead of meta-mode (resp. rr
moding).

Example 6.1. Consider the following program SOLVE from Sterling and Shapiro [S
pages 307-308], where solve(Query) succeeds whenever Query is deduced from the Pr
program defined by a binary relation symbol clause. To avoid some uninteresting sy
complications we assume here that each program clause H t- B is represented by the a
clause (H, Bs), where Bs is the list of atoms forming B. We also assume that the rela
symbol system defines the system predicates.

solve([]).
solve([A I Bs])) +- solve(A), solve(Bs).
solve(A) t- system(A), A.
solve(A) <- clause(A, Bs), solve(Bs).

K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming, ... 33

Below we consider the following meta-moding for this program: msolve = {1}, mp = 0 for
all other relation symbols of £.

We now define when a variable is considered to be a meta-variable in a query. From now on
assume a fixed moding for each considered program.

Definition 6.2. [The relations'"'-+ and'"'-+*] Consider an atom A := p(ti, .. . , tn)- Suppose
that i E mp. Then we write A '"'-+ t;. Due to the ambivalent syntax ..._.,, can be viewed as
a binary relation both on terms and on atoms. '"'-'* denotes the transitive, reflexive closure
of'"'-+.

Definition 6.3. [meta-variable in a query]
• A variable X is a meta-variable in an atom A if A..._.,,• X.
• A variable X is a meta-variable in a query if it occurs in it as a meta-variable or it is

a meta-variable in some of its atoms.

Intuitively, A'"'-'* X holds if in the parse tree for A an occurrence of the variable X can be
reached from the root via a path with only "meta-moded" links.

Example 6.2. For the moding given in Example 6.1., X is a meta variable in the queries
solve(sol ve (X)) and system(X) ,X, but X is not a meta-variable in the query solve(p (X)),

where p is a relation symbol different from solve.

To deal with absence of errors in presence of meta-variables we now introduce the notion of
well-rneta-modedness.

Definition 6.4. [well-meta-moded (wmm)]
• A query Q is called well-meia-rnoded (in short wmm) if no variable is a meta-variable

in Q.
• A claus<• A <--- CJ is calJPd well-meia-rnoded if for every meta-variable X in Q we have

A.-...+ X.
• A program is ea.lied wdl-mda-modtd if every clause of it is.

The theorem below explains our interest in the notion of well-meta-modedness. We need the
following lemma.

Lemma 6.1. An SLD-resolvent of a well-meta-rnoded query and a well-meta-moded clause
that is variable disjoint with it, is well-rneta-rnoded.

Proof:
First note that an instance of a wmm query is wmm. Indeed, if AO----+* X then either A is
a met.a-variable or A----+* X or for some binding Y/s E 0 both A'"'-+* Y and s '"'-+* X.

Suppose now that a wmn1 query Q is (successfully) resolved with the wmm clause c :=

p(li, ... ,tk) <--- B. Let A be the selected atom in Q. For some terms s1, ... ,sk A :=

p(s 1 , •.. , 8k)· Let X be a meta-variable in B. Since c is wmm, for some i E [l, k] we have
X = t; and i E m 1,. Since Q is wmm, .Si is a term having no meta-variables. Hence when
c is instantiated with an rngu of A and p(t1, ... , tk) all the meta-variables in Bare replaced
with terms having no meta-variables.

This implies that the SLD-resolvent is wmm. D

Theorem 6.1. [Absence of Errors] If P and Q are well-meta-moded then all SLD-deriva­

tions of P U { Q} arc erTor·-free.

Proof:
It is an immediate cor1sC(jlH'ne<·~ of Lennna G. I. D

We now tum to complexity isstws. First note the following result.

34 K.R. Apt and R. Ben-Eliyahu I l'vfeta-Variables in Logic Programming,. ..

Theorem 6.2. Letµ be a moding for a program P. There exists an algorithm which eh
whtfhfl' p (nsp. a query Q) is wmm w.r.t. µ in time polynomial in the size of P (resp.

Proof:
The size any moding for a program P is polynomial in the size of P. In fact, it is 0(1 where n is the number of relation symbols and k the maximum arity. Hence, the relat._. and ...,__.•, defined in Definition 6.2. can be computed in time which is polynomial in
size of P, and the number of pairs in these relations is polynomial in the size of P.

Deciding whether a variable is a meta-variable in some query (Definition 6.3.) can be d
in time linear in the size of the relation ----t*. So for each clause and for each query we
decide whether it is well-meta-moded (Definition 6.4.) in time polynomial in the size of relations....._. and ...,__.•. Hence we can decide whether a program P (resp. a query Q) is w1
with respect to some moding in time which is polynomial in the size of P (resp. Q).
This shows that the conditions of the Absence of Errors Theorem 6.1. can be checkec
polynomial time.

Freqm'ntly, a rnoding that assigns to each n-ary relation symbol of the program the rn { 1, ... , n} will make the program well-meta-moded, but then the class of well-meta-mo,
queries becomes too restrictive. Hence the motivation for a minimal meta-moding.
Definition 6.5. A moding p for a program P is a good meta-moding for P iff P is w
meta-rnoded with respect to p and µ is minimal. That is, there is no other moding µ' s
that P is well-rneta-moded w.r.t. p' and for some relation symbol p, m'p E µ', mp E µ <
m'P C mP.

Example 6.3.
(i) The moding provided in Example 6.1. is a good meta-moding for the program SOL

By the Absence of Errors Theorem 6.1. applied to the program SOLVE and the qu
solve (p (X)) we conclude that the SLD-derivations of SOLVE U {sol ve(p(X))} are err
free. This conclusion cannot be drawn for the query solve (solve (X)) which is l
wmm. In fact, an SLD-derivation of SOLVE U {solve(solve(X))} that repeatedly u
the third clause of SOLVE ends in an error.

(ii) The program which consists of the single clause

p(X) <-- q(X), Y

does not have a good meta-moding.
(iii) Consider the following program P:

p(X, Y ,Z) <-- q(X,Y), Z.
q(X,Y) <- r(Y), X

Let /t be a moding such that mp = {1,3}, mq = {l}, and mr = 0. Then ft is a go meta-moding for P.
The query p(a, b, Z) is not wmm w.r. t. µ, whereas the query p(a, Y, r(X)) is wmm w .I

toµ. The query X is not wmm w.r.t. any moding. By the Absence of Errors Theorem 6 all SLD-derivations of P U {p(a, Y, r(X))} are error-free.

We conclude with the following result concerning good meta-modings.

Theorem 6.3. There _exists an algorithm which checks whether a program P has a go
mda-modmg and provides such moding if it exists. This algorithm runs in time polynom in the si::e of P.

K.R. Apt and R. Ben-Eliyah u I Meta-Variables in Logic Prowamming, ...

Good-meta-moding
Input: A program P
Output: If P has a good meta-moding, such a moding will be the output.
Otherwise false is returned.

Let p1 , ••• , Pn be all the relation symbols in P.
for i := 1 to n do mp, := 0;
""·:= {(X, X) IX is a variable in P};
change :=fr-ue; fail :=false;
while change and not fail do

change :=false;

for each clause p(t1, ... ,tk)- Qin P do

for each X which is currently a meta-variable in Q do
if for some 1 :::; j :::; k tj = X then

if j €t- mP then
begin

mp := mpLJ{j};
change := true;

end;

else fail:=tr-ue;
endfor;

endfor;

compute"'-"* according to the current values of mp,, ... , mpn;

endwhile;
for each relation symbol p not in P do mp = 0;
if not fail then return mp1 , ... , mPn else return false

Figure 1 Algorithm Good-meta-moding

Proof:

85

Consider the algorithm Good-meta-moding (in short, gmm) given in Figure 1 Suppose the
input to algorithm gmm is some program P. First, note that the while-loop repeats at most
n * k times, where n is the number of relation symbols and k the maximum arity of any
relation in P. Recall that the relation -vt* can be computed in time which is polynomial in
the size of the program, and once this relation is given, testing whether a variable is a meta­
variable in some query is also easy. Hence the algorithm runs in time which is polynomial in
the size of the program. To verify that the algorithm indeed generates a correct output, note
that the following invariants hold after each time the body of the while-loop is executed:

1. For every relation symbol p, if j E mp then also j is in mp in every other moding that
makes P well-meta-moded,

2. If fail= true then P has no good meta-moding.

The proof of the invariants is done by induction on i, the number of times the body of
the while-loop was executed so far. Hence we have shown an algorithm which checks in
polynomial time whether a program P has a good meta-moding and provides such rnoding
if it exists. D

36 K.R. Apt and R. Ben-Eliyahu I Meta-Variables in Logic Programming,. ..

Acknowledgements
We would like to thank the referees of an earlier version of this paper and Marianne Kalsbeek
for useful comments.

References

[AP94] K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. ACM
Top/as, 16(3):687-726, 1994.

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theo­
retical Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[BMPT94] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic program­
ming. ACM Top/as, 16(4):1361-1398, 1994.

[Cas88] R. Casimir. Is Prolog echt zo bijzonder. !nfo1"1natie, 30(7 /8):484-491, 1988. In
Dutch.

[CKW89] W. Chen, M. Kifer, and D.S. Warren. Hilog: A first-order semantics for higher­
order logic programming constructs. In Proceedings of the North-Ame·rican Con­
ference on Logic Programming, Cleveland, Ohio, October 1989.

[DM92] D. De Schreye and B. Martens. A sensible least Herbrand semantics for untyped
vanilla meta-programming and its extension to a limited form of amalgamation.
In A. Pettorossi, editor, Proceedings Meta '92, Lecture Notes in Computer Science
649, pages 192-204. Springer-Verlag, 1992.

[FLMP89] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling
of the operational behavior of logic languages. Theoretical Computer Science,
69(3):289-318, 1989.

[HL94] P. M. Hill and J. W. Lloyd. The Godel Programming Language. The MIT Press,
1994.

[Jia94]

[Kal93]

[KJ95]

[Llo87]

[Mah88]

[Ric74]
[Smu94]
[SS86]
[Sta90]

Y. Jiang. Ambivalent logic as the semantic basis of metalogic programming: I. In
P. Van Hentenryck, editor, Proceedings of the International Conference on Logic
Programming, pages 387-401. MIT Press, June 1994.
M. Kalsbeek. The vanilla meta-interpreter for definite logic programs and am­
bivalent syntax. Technical Report CT-93-01, Department of Mathematics and
Computer Science, University of Amsterdam, The Netherlands, 1993.
M. Kalsbeek and Y. Jiang. A vademecum of ambivalent logic. In K.R. Apt and
F. Turini, editors, Meta-logics and Logic Programming, pages 27-56. The MIT
Press, Cambridge, Massachusetts, 1995.
J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.
M.J. Maher. Complete axiomatizations of the algebras of finite, rational and in­
finite trees. In Proceedings of the Fifth Annual Symposium on Logic in Computer
Science, pages 348-357. The MIT Press, 1988.
B. Richards. A point of reference. Synthese, 28:431-445, 1974.
R. Smullyan. Alice in Puzzle-land. Penguin, Harmondsworth, 1994.
L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
R. Stark. A direct proof for the completeness of SLD-resolution. In E. Borger,
H. Kleine Biining, and M.M. Richter, editors, Computer Science Logic 89, Lecture
Notes in Computer Science 440, pages 382-383. Springer-Verlag, 1990.

