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1. INTRODUCTION. 

The major part of this monograph concerns density estimation. A well known nonparametric 

estimator of the common density f of n independent identically distributed observations X1, ... .Xn is 

the Parzen-Rosenblatt kernel estimator fn11 (Parzen (1962), Rosenblatt (1956)). This estimator is 

defined by 

(1.1) 
1 n 

fn11(x) := iiJi~ K((x-Xi)/h), 
t=l 

where h is a positive real number called the window or the bandwidth and K is a probability density 

function called the kernel. The perfonnance of this estimator is studied in Chapter 2. In Chapter 3 we 

discuss cross-validation methods designed to compute bandwidths from the observations. Of comse 

many other nonparametric density estimators have been proposed. For more general reviews of 

density estimation we referto Prakasa Rao (1983), Devroye & Gy6rfi (1985), Silverman (1986) and 

Devroye ( 1987). In Chapter 4 we leave density estimation and consider the deconvolution problem, 
i.e. estimation of an unknown distribution function in a situation where we have a sample from a 

distribution which is the convolution of the unknown distribution and a known one. We give a brief 

outline of the contents of the three chapters. 

Following Van Eeden (1985) and Cline & Hart (1986) in Chapter 2 we do not restrict 

ourselves to estimation of smooth densities, but we also consider estimation of densities with 

discontinuity points. We allow discontinuity points in the first or second derivative as well. At those 

points we require the densities to have left and right Taylor expansions. Thus, apart from smooth 

densities f, we also consider densities with jumps and kinks. In Section 2.1 we state the precise 

conditions on f. For the moment we suffice with giving two examples. 

Example 1.1. Let the density f be given by 

(1.2) {
o 
(2-x/2')/a 

f(x) := ~2-(x-3)2')/a 

2 3+✓2 

if x<O 
if0Sx<2 
if2Sx<3+✓2 
if-a3+✓2 

where a := J (2-½,t)dx + J (2-(x-3)2)dx = 6.5523. Then f has a jump in the point 0, a kink in the 

point 2 and a kink in the point 3+✓2. 
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Fiimre 1. 1. A non-smooth density. 

We use this density repeatedly as an example of a typical non-smooth density. 

Example 1.2. A situation where a jump and a kink appear naturally is given by Wicksell's 

corpuscle problem. Let X1, ..• , Xn denote n radii of spheres of different random size in an opaque 
medium, such as drops of oil in a piece of rock. Suppose that we can not observe these spheres 

directly. Instead we can observe the radii of the circular profiles of the spheres obtained by taking a 

slice of the medium. Denote the radii of the circular profiles by Y 1, •.• , Y n, which we assume to be 
independent. Defining f as the sphere radius density and g as the circle radius density, Wicksell 

(1925) showed that under suitable regularity conditions the next relations between f and g hold, 

(1.3) 

and 

(1.4) 

g(y) = .!. j" h-f(r) dr, 0 < y < oo 
µ y r2 _ y2 

2µ d .. 1 . 
f(r) = --ar I ~g(y) dy, r~. 

1t r y -r 

where µ equals the expectation of the sphere radii. Several parametric and nonparametric methods 

have been proposed for estimating the density f or its distribution function. For reviews of the 

Wicksell problem and related methods see Ripley (1981) and Stoyan, Kendall & Mecke (1987). 

Estimators of the density f related to the kernel estimator were proposed by Taylor (1983), Hall & 

Smith (1988) and Van Es & Hoogendoorn (1990). All these estimators suffer from a large bias close 

to z.ero, which can be explained from the fact that , no matter how smooth the density f is, the density 
g has a kink in zero. This is immediate from relation (1.3). Moreover, Hall & Smith propose an 

estimator based on the squared circle radii. Since the density of the squared circle radii equals g1(r) = 
(2r112)"1g(r112), it is readilly seen that it has a jump in uro. 

In our opinion kernel estimators can be used for estimating non-smooth densities, even though they 
have a larger error and thus require larger sample sizes. Moreover, these densities might occur 

without the statistician being aware of it. For the same reason we have also studied the performance 
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of likelihood cross-validation for such non smooth densities. In fact, in an important special case, 

treated in Corollary 3.6, the density f has jumps. Some of the results derived in this chapter are also 

used frequently in Chapter 3. 

To compute a kernel estimate of a density we have to choose a kernel and a bandwidth. It is 

generally recognized that for most loss functions the choice of the bandwidth is more important than 

the choice of the kernel. In Chapter 3 we consider so called cross-validation methods to determine a 

good bandwidth for a kernel estimator. Least squares cross-validation was introduced and studied by 

Rudemo (1982) and Bowman (1984) and has since received considerable attention. Stone (1984) 

established an important optimality result with respect to the integrated squared error. This result 

states that a kernel estimator with a bandwidth computed by least squares cross-validation 

asymptotically performs as well as a kernel estimator with the best possible non-random bandwidth. 

This optimality holds for all bounded densities. For smooth densities, i.e. essentially densities with a 

continuous second derivative, the asymptotic distribution of the computed bandwidths and the 

corresponding integrated squared error was derived by Hall & Marron (1987b). Likelihood cross­

validation was introduced earlier by Habbema, Hermans & Van den Broek (1974) and Duin (1976). 

We establish the almost sure rates of convergence to zero of bandwidths computed by this method 

and the asymptotic distribution theory. It turns out that the asymptotic behavior is similar to the 

asymptotic behavior of least squares cross-validation, provided we use a modification proposed by 

Marron (1985), and provided we exclude densities with jumps. We show that likelihood cross­

validation does not give asymptotically optimal bandwidths for densities with jumps. For densities 

without jumps likelihood cross-validation gives bandwidths which are asymptotically optimal with 

respect to a weighted integrated squared error, where the weight is equal to 1/f (Marron (1985)). For 

a detailed introduction to cross-validation methods we refer to Section 3.1. 

Chapter 4 is devoted to estimation of an unknown distribution function in the nonparametric 

deconvolution problem. Since the Wicksell problem, suitably transformed, also has a convolution 

structure, estimation of the distribution function of the sphere radii is one of the examples. In 

particular we consider nonparametric maximum likelihood estimation. We present a minimax theorem 

which shows that in the deconvolution problem, even for estimating a distribution function at one 

fixed point, different rates of convergence appear, a phenomenon well known in density estimation. 

For several examples we discuss the nonparametric maximum likelihood estimator of the distribution 

function. 
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2. KERNEL ESTIMATION IN NON-SMOOTH CASES. 

We consider the perfonnance of the kernel estimator ( 1.1) with the emphasis on its properties 

in situations where X1, ... , Xnis a sample from adistribution on the real line, having a density f 

which does not satisfy the usual smoothness conditions. Under these smoothness conditions f is 

essentially required to have two continuous derivatives. While the results for the smooth case date 

back to Rosenblatt (1956), studies on the behavior in non-smooth cases, allowing discontinuities in f 

and its derivative, are fairly recent, see for example Van Eeden (1985) and Cline & Hart (1986). 

The conditions we impose on f and Kare given in Section 2.1. In Section 2.2 we discuss the 

basic properties of the kernel estimator fnh, evaluated at a fixed point x. The results presented in this 

section are needed to derive global properties of kernel estimators in later sections. They also have 

independent interest. The global behavior with respect to the integrated squared error and the 

supremum distance is treated in Sections 2.3 and 2.4. For the propenies of kernel estimators with 

respect to the L1 nonn we refer to Devroye & GyOrfi (1985) and Devroye (1987). The last section of 

this chapter contains technical (pans of) proofs of results in the preceding sections. 

2.1. Assumptions. 

We consider densities satisfying the following conditions. Essentially we allow the densities 

to have jumps and kinks. A typical example of such a density is given in Figure 1.1 in the 

introduction. 

Condition F: 

(F .1) The first and second derivatives off, denoted as f' and f ", exist at every point of the 

real line, except at a countable set of points which we denote as D. In these points we 
give f' and f" arbitrary values . We assume that inf { Id 1-<hl : d 1,d2e D} is positive, 

i.e. the points in Dare separated. 

(F.2) The/unctions f, f' and f" have finite left and right limits at the points in D. 

(F.3) The function f has finite left and right first and second derivatives at the points in D. 

(F.4) The second derivative f" is continuous on the complement o/D. 

The elements of the set D are called singular points. For the density of Example 1.1 the set D is equal 

to {0,2,3+✓2}. The jumps of f, f' and f" at a singular point d are denoted by o<0>(d), o<1>(d) and 

o<2>(d), so we have 

o<0>(d) := f(d+)- f(d-), 

o<l)(d) :=f'(d+)- f'(d-), 

o<2>(d) := f"(d+) - f"(d-). 
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Condition (F.3) requires some further explanation. By the existence of a finite right derivative off at 
de D we mean that the limit 

fun !(f(d+e) - f(d+)) 
eJ.o £ 

exists and is finite. By Taylor's theorem and (F.2) this limit equals f'(d+). By the existence of the 
second right derivative off at de D we mean that the limit 

fun .!.(f(d+e)- f(d+)- ef'(d+)) 
EJ.o £2 

exists and is finite. This limit then equals f"(d+). Hence 

fun !2 (f(d+e) - f(d+) - £f'(d+) - ¥2f"(d+)) = 0. 
EJ.0 E"" 

The left derivatives are defined similarly. With left limits replacing the right limits the relation above 
also holds for f(d-£). This means that we can use left and right Taylor expansions at the singular 

points. 

Given the fact that we use a probability density, the choice of kernel is relatively unimportant. 

Hence we feel free to consider bounded support kernels only. This is further motivated in Section 

2.3.1. We assume that the kernels satisfy the next condition. 

Condition K: 

(K.1) K is a probability density function. 
(K.2) K has suppon (-1,l]. 

(K.3) K is bounded. 
(K.4) K is symmetric. 

With respect to (K.2) note that 

(2.1) 

where he= c-1h and Kc(x) := c-lK(c-lx), for all x. This shows that, when we are dealing with 

bounded suppon kernels, without loss of generality we can restrict our attention to the support (-1,1 ]. 

2.2. Basic properties of the kernel estimator. 

(2.2) 

Since fnh(x) is an average of i.i.d. random variables its expectation is given by 

1 
E fnh(x) = E Ii K((x-X1)/h). 
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To compute the variance note that a straightforward computation gives 

2 1 1 2 n-1 1 2 
E fnh(x) = iiJi E Ii K ((x-X1)/h)) + 0 (E Ji K((x-X1)/h)) , 

and therefore 

(2.3) 

Also note that the expectation (2.2) depends on the bandwidth but not on the sample size . The 

variance depends on both the sample size and the bandwidth. A further observation is that for Efnh(x) 

to converge to f(x) we have to assume that h tends to zero. 

The expectations appearing in (2.2) and (2.3) are of the same form. They can be written as 

g(x,h) := E Gii(x-X1), 

where G is a measurable function, not necessarily a density, and Git is defined by 

1 X 
Gii(x) := ftG(Ii). 

In (2.3) we take G equal to K2 for the first term and equal to K for the second term. This shows the 

necessity of expansions of such quantities for bandwidths h tending to zero. The next lemma consists 

of two parts. Suppose that f satisfies Condition F and recall that that D denotes the set of singular 

points off. The first part gives an expansion of g(x,h) for h tending to zero and x in the set Dii, where 

(2.4) 0ii := {x: lx-dl>h for all de D), 

i.e. the set of all points of the real line which are at least at distance h of the singular points of f. In 

Example 1.1 the set D is equal to { 0,2,3+✓2}. The set Dii is equal to the following union of intervals, 

Dh = (-oo,-h)u(h,2-h)u(2+h,3+✓2-h)u(3+✓2+h,oo ). 

For technical reasons we establish the uniformity of the expansion over the sets Dii f"'l[-M,MJ for 

arbitrary positive integers M. The second part of the lemma gives an expansion of g(x,h) for x in a 

shrinking neighborhood of some fixed point xo. Here we consider points x=xo+th and we let h tend to 

zero. The expansion holds uniformly on bounded t-intervals. Furthermore we prove uniformity of 

these expansions for the bandwidths h in intervals (0,hii], where (hii) is a fixed sequence of real 

numbers satisfying 

hii>O for n = 1,2, ... and lim hii = 0. n..-
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Lemma 2.1. Let G denote a bounded measurable function with support [-1,1) and let X denote a 

random variable having a distribution with density f. Suppose that f satisfies Condition F. 

(a)Then 

g(x,h) = E Gii(x-X) = 
1 1 1 

(2.5) f(x)j G(u)du - hf'(x)J uG(u)du + ½b2f"(x)J u2G(u)du + r1(x,h), 

where the remainder r1 satisfies 

(2.6) fun sup sup h·21r1(x,h)I = 0, 
n-- O<hShit xe Dt,nf-M,M] 

for every positive M. 

(b) For XO a fixed point we have 

g(xo+th,h) = E Gii(xo+th-X) = 

0 .. 

f(xo-) I G(t-u)du + f(xo+)J G(t-u)du + ... 
0 .. 

(2.7) h(f'(xo-) 1 uG(t-u)du + f'(xo+)J uG(t-u)du) + 

0 .. 

½b2(f"(xo-) I u2G(t-u)du + f"(xo+)J u2G(t-u)du) + r2(t,h), ... 
where the remainder r2 satisfies 

(2.8) fun sup sup h"2 lr2(t,h)I = 0, n--O<hSh8 -MSISM 

for every positive M. 

Proof. By a substitution we obtain 

g(x+th,h) = E Gii(x+th-X) = 

(2.9) ik,ocx+r-v~f(v)dv = ... 

J G(t-u)f(x+hu)du . 

I 
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To show (a) we take t equal to zero and we assume that x belongs to the set OJi. Relation (2.9) then 

becomes 
1 

g(x,h) = J G(-u)f(x+hu)du . 

Since xe Dii the interval [x-h,x+h] contains no points of D and hence by Condition F the function f 

allows a three term Taylor expansion for f(x+hu) around the point x. We get 

1 

g(x,h) = J G(-u){f(x) + huf'(x) + ~2u2r"(x))}du + r1(x,h), 

where r1 equals 

1 

(2.10) r1(x,h) = ½it2J u2G(-u){ f "(~(x,hu)) - f "(x)) )du 

and ~(x,hu) is the point between x and x+hu appearing in Lagranges version of the remainder term in 

the Taylor expansion of f(x+hu). In order to complete the proof of part (a) it remains to show (2.6). 

Let (hn) be an arbitrary sequence of bandwidths satisfying O<hnShn for all n, and let (xn) be an 

arbitrary sequence of points in Dtinri[-M,MJ, where Mis an arbitrary positive number. It suffices to 

show 

(2.11) 

Under Condition F the interval [-M,MJ contains a finite number of singular points, -MSd1Sd2S ... 

SdmSM, say. The second derivative f" is uniformly continuous on the intervals [-M,d1), (dm,MJ, 

and (di,di+t), i=l, ... ,m-1. Since for -l<u<l the points Xn and ~(xn.hnu) belong to the same interval 

we have 

lim f"(~(xn.hnu)) - f"(xn) = 0, 
n--

so the integrand in (2.10) converges pointwise to zero. By the dominated convergence theorem we 

then obtain (2.11) and the proof of part (a) is finished. 

The proof of part (b) is similar, except that since Xo is allowed to belong to D we have to use left and 

right Taylor expansions of f(Xo+th) . In fact this is an important special case. The details of the proof 

of part (b) are given in Section (2.5). I 

By (2.2) we can now expand Efnh(x). Since Condition K implies that the integral of uK(u) 

vanishes, taking G equal to K, part (a) of the lemma gives 

E fnh(X) = E Kh(x-X1) = 
1 1 1 

f(x)_f K(u)du - hf'(x)j uK(u)du + ,½h2f"(x)_f u2K(u)du + r1(x,h) = 
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1 

f(x) + ½ti2f"(x)j u2K(u)du + r1(x,h). 

By (2.6) this expansion is only meaningful for x a non-singular point off. On the other hand for x a 

singular point we can apply part (b) with t=O. We get 

E fnh(x) = 
1 1 

½ (f(x-) + f(x+ )) + h6(1l(x)J uK(u)du + ½ti2(f"(x-) + f"(x+ ))J u2K(u)du + r2(0,h), 

where r2 satisfies 

lim sup h-21r2(0,h)I = 0. 
n-0<:hSh,i 

The next two theorems give expansions of the bias b(x,h):=Efnh(x)-f(x) and the variance of fnh(x). 

Note that the bias, just as the expectation, is independent of the sample size. It only depends on the 

bandwidth. Similar to part (b) of Lemma 2.1 we give an expansion of b(xo+th,h)=Efnh(xo+th)­

f(xo+th), i.e. for values x=xo+th close to a point xo. However, since by Condition F the value off in 

a jumppimg point is arbitrary, we have to exclude t=O. We first introduce some functions which 

appear in the expansion of b(xo+th,h). 

Definition 2.2. The functions bo, b1 and bi are defined by 

t 

form= 0,1,2. 

.. 
0 

;l+-~--~-----. 

J (t-u)mK(u)du if t<0 
-oo 

00 

- fo-u)mK(u)du if t~0 
t 

.. 
0 

.. 
'P-+--~-~~-~ 

-1.0 -il.5 0.0 o.s 1.0 -1.0 -il.5 0.0 o.s 1.0 

Fiimre 2, 1. The functions bo, bt and bi. 

.. 
0 

.. 
<p+-~-~~--. 

-1.0 -il.5 o.o o.s 1.0 



The pictures above show the graphs of bo, b1 and bi. We have used the kernel 

K(x) = ~1-x2)311-1,11(x), 

a symmetric bounded support kernel with support [-1,1). 

Theorem 2.3. Assume that the kernel K satisfies Condition K and that the density f satisfies 

Condition F. 

(a)Then 

1 

(2.12) b(x,h) = ,½h2t"(x)j u2K(u)du + r3(x,h) 

where the remainder r3 satisfies 

fun sup sup h"2 lr#,h)I = 0, 
n-+oo O<bSh,i xe Dbl"l[-M,M] 

for every positive M. 

(b) For XO a fixed point we have 

(2.13) b(xo+th.h) = bo(t)6<0>(xo) + hb1(t)6<1>(xo) +,½h2t>i(t)6<2>cxo) + 

1 

ib2j u2K(u)du{f"(xo-)Ic-.o)(t) + f"(xo+)lco,oo)(t)} + 

where the remainder r4 satisfies 

fun sup sup h"2 lr4(t,h)I = 0, 
n-+oo O<hSh,i -MSISM,h'O 

for every positive M. I 

Proof. Notice that by (2.2) the expansion in part (a) is a direct consequence of the expansion in part 

(a) of Lemma 2.1 if we choose G equal to K. By the symmetry of K we have 

1 1 

(2.14) J uG(u)du = J uK(u)du = 0, 

and so, since K integrates to one, the remainder r3 is equal to the remainder r1. 
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To prove part (b) notice that b(xo+th,h) equals Efnh(xo+th)-f(xo+th). Again by relation (2.2) the 

expectation can be expanded using part (b) of Lemma 2.1. Together with left and right Taylor 

expansions of f(xo+th) around xo the result can then be derived. The details are left to Section (2.5). 

I 

Theorem 2.4. Assume that the kernel K is a bounded probability density with support equal to 

[-1,1] and that the density f satisfies Condition F. 

(a) Then 

1 1 
var(fnh(x)) = iinf(x)JK2(u)du + rs(x,h), 

where the remainder term rs satisfies 

1 
sup sup lrs(x,h)I =0(-), for n ➔ oo, 

O<hShn xeDJin[-M,M] n 

for every positive M. 

(b) For XO a fixed point we have 

where the remainder r6 satisfies 

1 
sup sup lr6(t,h)I = 0(0), for n ➔ oo, 

O<hShn-MS~ 

for every positive M. I 

Proof. Recall that by (2.3) we have 

1 1 2 1 1 2 
var (fnh(x)) = iin E Ii K ((x-X1)/h)) - 0(E Ii K((x-X1)/h)) . 

Both terms can be expanded by Lemma 2.1, taking the function G equal to K2 to deal with the first 

term and equal to K to deal with the· second term. It turns out that the second term is negligible. The 

leading terms in the expansions of the first term give the leading terms in the expansions of the 

variance. I 

Remark 2.5. To derive the order h2 of the bias on the set Db in (2.12) we have explicitly used the 

fact that the integral of uK(u) is equal to zero. Assuming more smoothness off, a bias of order hm, 

with m>2, can be obtained using kernels satisfying 
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1 

J uiK(u)du = 0 for i = 1,2, .•. ,m-1, 

and 

Such kernels, called higher order kernels, clearly take on negative values. As a consequence they 

produce density estimates which can be negative. We don't consider higher order kernels here. We 

only mention that cross-validation, a technique discussed in the next chapter, can be used to select an 

appropriate order for a kernel, see Hall & Marron (1988). 

Example 2.6. To illustrate the bias expansions we have computed the bias of a kernel estimator of 

the density f in Example 1.1. The kernel we have used is 

(2.15) K(x) = i1-x2)311-1,11{x). 

Figure 2.2.1 shows a graph off and a graph of Efnh(x) where we have taken the bandwidth h equal 
to½ Figure 2.2.2 shows a graph of the bias b(x,½} of fnh(x ) . 

.., 
0 

N 
0 

0 

0+---'-....--....--........ ~ 
-2.0 0.0 2.0 4.0 8.0 

Fi&Y)'e 2.2.1, The density f and Efnh for h➔ . 
.., 
0 

0 
0 

.., 
~--~-....-----,,-----, 

-2.0 o.o 2.0 4.0 6.0 

Fi&Y)'e 2.2,2. The bias of fnh for h~ 
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Recall that for this density the set Dis equal to {0,2,3+✓2} and the set Dii is equal to the following 

union of intervals, 

Dh = (-oo,-h)u(h,2-h)u(2+h,3+✓2-h)u(3+✓2+h,00). 

If (hn) is a sequence of bandwidths converging to zero then for every fixed xE D we have 
1 

b(x.hn) = ½iiif"(x)J u2K(u)du + o(hii), for n➔oo, 

since xe Dh0 for n large enough. In fact this expansion holds uniformly on Dh0 , hence is in all points 

of at least a distance hn to the singular points of f. In Figure 2.2.2 we see that the bias is much larger 

close to these points. 

Next let us consider the jump at x=O. Then Theorem 2.3 gives the following expansion 

b(thn.hn) = bo(t)6(0)(0) + O(hn) , for n➔oo and t:tO. 

This approximation holds uniformly fort in [-1,1]\{0}, so on [-hn,hn] the bias asymptotically 

resembles the function bo(t) times the jump off in zero. Notice that if K is a symmetric kernel then the 

function bo is an uneven function.The bias will not converge to zero close to a jumping point if the 

distance to the jumping point is measured in terms of h. 

For the point x=2 we have the expansion 

again uniformly fort in [-1,1). This expansion shows that on the interval [2-hn,2+hn1 the bias 

asymptotically resembles hn times the function b1 times the jump off' in 2. By the symmetry of K the 

function b1 is an even function. Close to a kink the bias does converge to zero but it is not of the same 

order hii as it would have been in the smooth points in Dhn• Here the bias is of order hn! The point 

x=3+ ✓2 can be treated similarly since f has a kink in this point too. 

All the previous considerations about the bias suggest that very small bandwidths give good 

density estimates. This is far from true. Using Theorem 2.4 we obtain the next expansion of the 

variance of fnh in a point x which does not belong to D 

1 1 1 
var(fnh(x)) = nhf(x)_!K2(u)du + O(n) , for n➔oo and h!0. 

This expansion shows that very small bandwidths cause large variances of the kernel estimator. Part 

(b) of the theorem implies that this is also true if x belongs to D. It follows that we should require 

nhn➔oo, for n➔oo, otherwise the variance does not vanish asymptotically. For optimal choices of the 

bandwidth these two effects have to be balanced. Of course what we mean by optimal should be made 

precise. Two global optimality concepts are discussed in the next sections. 
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Here let us briefly discuss estimation of f in a fixed point x. A common loss function when 

estimating a real valued parameter is the mean squared error. The mean squared error of fnh(x) is 

defined by 

MSEn(x,h) := E(fnh(x) - f(x))2. 

A simple computation shows 

MSEn(x,h) = b(x,h)2 + var(fnh(x)). 

Let (hn) denote a sequence of bandwidths converging to zero. By Theorems 2.3 and 2.4 for a point 
xe: D the mean squared error can be expanded as follows 

1 1 

MSEn(X.hn) =¼hi f "(x)2(J u2K(u)du)2 + nkf(x)JK2(u)du + o(hhn:k,). 

Minimizing the leading term in this expansion we obtain the asymptotically optimal bandwidth 
1 1 

hW'1 = (f(x)JK2(u)du / (f"(x)J u2K(u)du)2) 115 n-115• 

This choice results in a mean squared error of order n-4/S. Since the expansion of the bias in a kink is 

different we also have a different expansion of the mean squared error. If x is a point where f has a 

kink then we have 
1 

MSEn(x.hn) = h~bi(0)6(1)(x)2 + nkf(x)JK2(u)du + o(h~+n:k,), 

which leads to an optimal bandwidth of order n-1/3 and a mean squared error of order n-2/3. It is not 

clear what the value of f should be in a jumping point so we don't consider estimation off in such a 

point. 

There is one more unexpected lesson to be learned from Example 2.6. Careful examination of 

Figure 2.2.2 on the interval (1/2,3/l) suggests that the bias is identically equal to zero on this interval. 

The next remark shows that this is no coincidence. 

Remark 2.7. If a density f is linear on an interval [a,b] then the bias of a kernel estimator is equal to 

zero on the set [a+h,b-h], provided h is smaller than b-a. The proof is left to the reader. Now suppose 

that we want to estimate fat a point x inside [a,b]. In that case bandwidths hn, which asymptotically 

minimize the mean squared error of fnhn(x), don't converge to zero. This is immediate from the fact 

that the mean squared error for vanishing sequences of bandwidths can always be decreased by taking 

larger bandwidths. This follows since the estimator fnh0 (x) is unbiased and has a variance of order 

l/(nh0 ). On the other hand the bandwidths hn can not converge to infinity either, since then, if the 

kernel is bounded by K*>O, by 

K* 
fnh(X) S bn' for all X, 
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the estimate would converge to zero at every point of the real line. The conclusion is that in this case 

good choices for the bandwidth are asymptotically bounded away from zero and infinity. 

At this point it should be noted that the merit of Theorems 2.3 and 2.4 lies not only in the 

pointwise properties just discussed, but also in the fact that these theorems give uniform 

approximations of the bias and the variance on any bounded interval of the real line. This can be 

achieved by considering Dh0 and the hn intervals of around the points of D separately. Thus we can 

also expand integrals involving the bias and the variance, provided we integrate over bounded areas. 

2.3. The integrated squared error criterion. 

In the remainder of this chapter we approach density estimation from a global point of view. 

Suppose that we want to estimate the density "well" on some subset E of the real line instead of in a 

fixed point. What we mean by "well" could be quantified for instance by requiring that the estimate 

minimizes the integrated squared error loss 

(2.16) ISEn(h) := J (fnh(x)-f(x))2w(x)dx, 
E 

where w is a nonnegative measurable weight function. Incorporating the indicator function of the set 

E in the weight function we can rewrite (2.16) in the more convenient form 
~ . 

ISEn(h) = J (fnh(x)-f(x))2w(x)dx. 

Since the integrated squared error measures the discrepancy between the random function fnh and the 

true density f, it is a random variable itself. The mean integrated squared error, defined as the 

expectation of the integrated squared error, 

MISEn(h) := E ISEn(h) = E J (fnh(x)-f(x))2w(x)dx, 

is a deterministic loss function. We discuss the asymptotic behavior of the mean integrated squared 

error in the following section. We also derive the asymptotic distribution of the integrated squared 

error about its mean and discuss the relation between the two loss criteria. 

2.3.1. The mean integrated squared error. 

(2.17) 

The mean integrated squared error can be rewritten as follows, 
~ 

MISEn(h) = J E(fnh(x)-f(x))2w{x)dx = 

J (b(x,h)2 + var(fnh(x)) }w(x)dx. 
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This shows that MISEn(h) is a weighted average of the mean squared error of fnh(x), the estimate at 

the point x. We can use the expansions of the bias and the variance in the previous section to derive 

an expansion of the mean intgerated squared error. 

Assume that f satisfies Condition F. The set D of singular points off contains at most 

countably many points d1, d2, .... Recall that 6<0>(di), 6<1>(di) and 6(2)(di) denote the jumps off, f' 

and f" at the point di. We have to impose some extra conditions on the weight function w. We 

assume that w has a bounded support, which we denote by supp(w), and we assume that w has finite 

left and right limits in the singular points off. We further assume that these limits are not both equal 

to zero in those singular points off which also belong to supp( w ). Define 

A~>:= f(w(di-) + w(di+))6(0)(di)2 
i=l 

and 

By Condition (F.1) and the fact that w has bounded support there are only finitely many elements of 

D contained in the support of w. Hence the sums A~ and A~> exist of only finitely many 

nonvanishing terms. It turns out that the mean integrated squared error has a different asymptotic 

expansion in the following three cases: 

case I 
case II 
case III 

A~>O, 

A~ = o and a<Jl > o, 
A~= A~)= 0. 

The meaning of these cases will become clear after we have proved the next theorem. 

Theorem 2.8. Suppose that the density f satisfies Condition F and that the kernel K satisfies 

Condition K. Let w be a bounded measurable nonnegative weight function with bounded support and 

finite left and right limits in the singular points off. We assume that these limits are not both equal to 

zero for singular points in supp(w). Then for any sequence of bandwidths (hn) converging to zero 

and/or n tending to infinity we have 

1 1 00 1 
(2.18) MISEn(hn) = nhn J K2(u)du L f(x)w(x)dx + O(ii) + 

1 

hnA~ J b<r(t)dt + o(hn) 
1 

hiiA~> J bf(t)dt + o(hJ) 

1 .. 

~~ (Ju2K(u)du)2L f "(x)2w(x)dx + o(h~) 

in case I 

in case II 

in case Ill. I 
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Proof. By (2.17) the mean integrated weighted squared error can be written as the integrated 

weighted squared bias plus the integrated weighted squared variance. The basic idea of the proof is 

that we split up the integration area in the set Dit0 and its complement, which in its turn is a countable 

union of hn neighborhoods of the elements of D. Starting with the integrated weighted variance we 

write 
.. di+ho 

(2.19) J var(fnh(x))w(x)dx = J var(fnh(x))w(x)dx + I. .1 var(fnh(x))w(x)dx. 
.- Dhn 1=1 di o 

The same decomposition is used for the integrated weighted squared bias. Since w has bounded 

support Theorems 2.3 and 2.4 provide us with asymptotic expansions of the integrands over the 

integration areas. Thus part (a) of Theorem 2.4 implies that we have, 
1 1 

(2.20) J var(fnh(x))w(x)dx = iinn IK2(u)du J f(x)w(x)dx + J r5(x,hn)w(x)dx, 
Dhn n -1 Dhn Dhn 

where rs satisfies 

1 
sup lr5(x,hn)I = O(n), for n➔oo, 

xe Dii0~upp( w) 

since the support of w is bounded. This implies that the second term of (2.20) is of order O(n-1). To 

deal with the first term notice that the Lebesgue measure of supp(w)\Dh0 is of order O(hn), so 

replacing the integral over Dh 0 by an integral over supp(w) the difference is of order O(n-1) and 

therefore (2.19) equals the first term in the expansion (2.18). 

By part (b) of Theorem 2.4 it follows that for each di belonging to D we have 
di+ho 1 
. I var(fnh(x))w(x)dx = O(°', 

di-ho 

and since there are only finitely many of such integrals which give a non zero contribution to (2.19) 

the sum of these terms is also of order O(n-1 ). This deals with the integrated weighted variance term. 

Next we concentrate on the integrated weighted squared bias term. By part (a) of Theorem 2.3 we 

have 

(2.21) 

J b(x,hn.>2w(x)dx = 
Diin 

1 

J ( ¥t;t""(x) r u2K(u)du + r3(x,hn))2w(x)dx = 
Dhn -1 

1 .. 

{hi (J u2K(u)du)2 J f "(x)2w(x)dx + o(h~, 

--
which follows from similar arguments as above. We proceed with observing that for each di 

belonging to D we have 
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1 

(2.22) h0 _f b(di+th0 ,h0 )2w(di+thn)dt = 

0 1 

hn_f b( di+thn.hn)2w( di+thn)dt +hnJbC di+thn.hn>2w( di+tho)dt . 

Since cases II and mare similar to case I we only treat case I . By part (b) of Theorem 2.3 and the 

dominated convergence theorem (2.22) is asymptotically equivalent to, 
0 1 

hn_f b6(t)6<0>(di)2w(di-)dt +hnJ b6(t)6<0>(di)2w(d1+)dt + o(hn), 

which can be rewritten as 
0 

hn_f b6(t)dt 6<0>(di)2(w(di-) + w(di+)) + o(hn). 

The proof is completed by selecting the leading tenns and adding them up. It should be noted that in 

cases I and II the terms (2.22) dominate over the term (2.21) while in case m it is the other way 

around. We need the condition that for singular points din supp(w) either w(d-) or w(d+) is positive 

to ensure that t,,.<':J = 0 implies that all the jumps 6<0>(d) for points din supp{w) are equal to i.ero, and 

similarly that t,.<;} = 0 implies that the jumps 6(l)(d) are equal to i.ero for points din supp(w). 

I 

Remark 2.9. The expansion for the mean integrated squared error holds uniformly in interval 

(0,hh], where (hh) is a fixed sequence of bandwidths converging to i.ero. This follows from the proof 

above using the fact that the orderbounds on the remainders in Theorems 2.3 and 2.4 also hold 

uniformly on such intervals. 

Theorem 2.8 supplements the results of Van Eeden (1985) and Cline & Han (1986) for ws:l 

in the sense that we allow weight functions. In those papers however the kernels are not required to 

have a bounded support. Cline & Han also consider the higher order kernels mentioned in Remark 

(2.5). 
In Theorem 2.8 the weight function.wal is not allowed because of its unbounded support. Let us 

instead consider the weight function w(x) := IE(X), -oo<x<oo, where E is a bounded interval [a,b], 

-oo<a<b<oo. With this weight function the mean integrated squared error equals 

MISEn(h) = E J (fnh(x) - f(x))2dx, 
E 

and the constants t,.<':J and t,.';J are equal to 
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(2.23) 

m 
A~> = 2;1 6<o>(di)2 + 6<0>(a)2 + 6<0>(b)2 

m 
A~>= 2;1 60>(di)2 + 60>(a)2 + 60>(b)2, 

where d1, ••• ,dm denote the finitely many points of D inside (a,b). Notice that the conttibution of the 

points a and b differs from the conttibution of the points d1, ... ,dm which are strictly inside E. This 

caused by the fact that w(a-) = w(b+) = 0 and w(a+) = w(b-) = 1. For the points d inside E both 

w(d-) and w(d+) are one. It follows that the cases we have distinguished in Theorem 2.8 correspond 

to the fact whether f has jumps in [a,b], case I, whether f has kinks in [a,b], but no jumps, case II, 

and whether there are neither kinks nor jumps in [a,b], which corresponds to case m. Thus the 

conclusion to be drawn from Theorem 2.8 is that the presence of jumps and kinks in E causes a larger 

mean integrated squared error than in the smooth case m. Jumps increase the error most since in that 

case we are estimating a discontinuous function with a continuous one. 

Similar conlusions hold for the error if the weight function is equal to w(x) = f 1(x)IE(X), 

where E is an interval as above and the density f is assumed to be bounded away from zero on E. If 

f=O we also set w=O. The mean integrated squared error criterion thus obtained, i.e. 

MISEn,(h) = E J(fnb(X) - f(x))2f1(x)dx, 

plays an important role in the next chapter. Notice that this mean integrated squared error is the 

squared L2 norm over the set E of the random function 

fnh(X) - f(x) 
frn(x) 

which for each fixed point which is not a jumping point by Theorem 2.4 has an asymptotic variance 
independent of x. In this case the values of~ and A<J/ are given by 

(2.24) 

m 
A~>=~ (f(di-)·1+f(di+)"1)6<0>(di)2 +f(a+)·16<0>ca)2+f(b-)"16<0>(b)2 

1=1 
m 

A~> = ~ (f(di-)"1+f(di+)"1)6(1l(di)2 + f(a+)"16(1)(a)2 + f(b-)"16<1>(b)2. 
t=l 

This shows that, apart from the constants, jumps and kinks have the same influence on the asymptotic 

behavior of the mean integrated squared error as in the case of the previously considered weight 
function. 

Returning to the expansion of Theorem 2.8 we see again that small bandwidths cause a large 

integrated variance term and that large bandwidths cause a large integrated squared bias term. 

Balancing these effects by minimizing the leading term in the expansion leads us to the following 

optimal bandwidths, 
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(2.25) 
in case I 
in case II , 
in case III 

where the constants ex, depending on the de11sity f and the weight function w, are given by 

00 

a1(f,w) = (a<:}r1 J f(x)w(x)dx) 

00 

au(f,w) = (36.~)"1 J f(x)w(x)dx, 

.. .. 
am(f,w) = ( J f "(x)2w(x)dx)°1 J f(x)w(x)dx, 

and the constants ~. depending only on the kernel K, by 

l l 

~1(K) = _f K2(u)du (J b6(t)dt}°1 

l l 

~n(K) = _f K2(u)du (J bf(t)dt}°1 

l l 

~m(K) = _fK2cu)du {Ju2K(u)du}"2• 

Remark 2.10. It is no surprise that Theorem 2.8 shows that the presence of jumps off in the 

interval E, case I !, causes a large mean integrated squared error. Even if we use an asymptotically 

optimal bandwidth for case I, the mean integrated squared error is still of order n·112, while in case IT 

and in case ill it would have been of orders n·314 and n·415 respectively. If we don't know where the 

jumps are then this large error is unavoidable if we use a kernel estimator. However if a jump is 

known then the influence of this jump can be substantially reduced. For densities with support [c,d], 
[c,oo) or (-oo,d], -oo Sc < d S 00, with jumps at the points c or d which are known points, Schuster 

(1985) shows that the kernel estimator can be improved by a symmetrization device. The 

symmetrization has the effect that the error caused by the jump is reduced to an error caused by a 
kink. The special case of kernel estimation of decreasing densities on [0,00) with a jump at zero is also 

treated in Devroye (1987) Section 8.4. Cline & Hart (1986) generalize this symmetrization device to 

be able to deal with known jumps which are not necessarily endpoints of the support of the density f. 

Until now we have only considered the choice of an optimal bandwidth. For all three cases 

there is also an optimal kernel. 
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First we consider case Ill If we substitute the optimal bandwidth for this case in the expansion (2.18) 

we get 
00 00 

fun n415 MISEn(hgp1) = ¾ ( J f(x)w(x)dx) 415( J f'(x)2w(x)dx) 115 
n-+oo -oo -oo 

1 1 

(J K2(u)du)415{_f u2K(u)du) 215• 

Under certain regularity conditions this expansic,. also holds for kernels with unbounded support. It 

is shown in Epanechnikov (1969) that the kernel which minimizes this expression over the class of 

symmetric kernels is 

(2.26) 

which is the well known classical optimal kernel. It is less well known that the same procedure can be 

carried out in the non-smooth cases. The optimal kernel in case I was derived by Van Eeden (1985), it 

equals the Laplace density function 

(2.27) 

The optimal kernel in case II, derived by Cline & Han (1986) and simultaniously by Swanepoel 

(1987), is a bounded support density given by 

(2.28) K(x) = (2sinh(½ff1(cos(lxl)cosh(½- lxl) + sin(lxl)sinh(½- lxl)) I(-7t/2.lt/2:i(x), 

The last two kernels don't have support (-1,1]. By the scaling property (2.1) we can transfer the 

kernel (2.28) to a kernel with support (-1,1], without disturbing the optimality property. This can of 

course not be done with the Laplace kernel because of its unbounded support. However, Swanepoel 

(1987) gives bounded support kernels which approach the Laplace kernel (2.27) arbitrarily closely in 

the sense that the constants in the expansion of the mean squared error for the optimal bandwidth in 

case II become close to the optimal constants in this case, attained by the Laplace kernel. This shows 

that our use of bounded support kernels is not restrictive from the point of view of the mean squared 

error criterion. 

2.3.2. Asymptotic normality of the integrated squared error. 

The previous section dealt with the expectation of the integrated squared error and the optimal 

bandwidths which we derived asymptotically minimize this expectation. However, it is more natural 

to aim for minimizing the integrated squared error itself. From this point of view it is important that 

the variation of the integrated squared error around its mean does not dominate the leading terms in 

the asymptotic expansion of the mean integrated squared error, and thus disturb the optimality 
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propeny of the optimal bandwidths derived in the previous section. To quantify this variation we will 

derive a central limit theorem for the integrated squared error. 

Theorem 2.11. Assume that f satisfies Condition F and that the kernel K satisfies Condition K. 

Furthermore assume that w is a bounded almost everywhere continuous nonnegative weight function 

with a bounded support and finite left and right limits in the singular points off. Also we assume that 

these left and right limits are not both equal to zero. Let (hn), a sequence of nonnegative bandwidths, 
satisfy hn-+0 and nh8 -+oo. Then 

dn (ISEn(hn) - MISEn(hn)) ~ 

{ N(0,2a2) ifdn = nHf and 
N(0,2a2+A<rl) if dn = nt/f and 
N(O,ai) if dn = n 1121if and 

{ N(0.2a'J if dn = nHf and 
N(0,2a2+A<rlu if dn = nh1/f and 
N(O,a11) if dn = n 112nf and 

{ N(0,2a') if dn = nHf and 
N(0,2a2+A<rlu) if dn = ntJf and 
N(O,aiu) if dn = n 112h~ and 

where the variances a2, al, al1 and alu are given by 

.. 1 

a2 := J ( J K(v)K(v+z)dv ) 2dz J w2(u)t2(u)du, 
-00 -1 -00 

if~➔ O 
ifnh~ ➔ A., in case I, 
if~➔ oo 

ifim: ➔ o 
ifnh~ ➔ A., in case II, 
ifnh~➔ 00 

if~➔ O 
if nh~ ➔ A., in case Ill, 
if~➔ 00 

oo O O 1 

al := 4 ~ 6<0>(di)2 (f(di-) 1 ( w(di• )jK(t+v)bo(t)dt + w(di+)JK(t+v)bo(t)dt ) 2dv 

00 0 1 

+ f(di+ )J ( w(di-)jK(t+v)bo(t)dt + w(di+ )J K(t+v)bo(t)dt )2dv ), 

00 .. 0 1 

al1 := 4 ~ f(di)6(1)(di)21 ( w(di• )jK(t+v)b1(t)dt + w(di+)JK(t+v)b1(t)dt)2dv, 

1 00 

aln := (J v2K(v)dv ) 2 ( J f "(x)2w2(x)f(x)dx - ( J f "(x)w(x)f(x)dx)2). I - -
Before we prove this theorem we first discuss its implications. Firstly the theorem shows that the 

asymptotically optimal bandwidths not only asymptotically minimize the mean integrated squared 
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error but that they also minimize the order of the variance of the integrated squared error. Secondly it 

is readily checked that in all the cases considered we have for n tending to infinity 

(2.29) ISEn(~En(hn) ➔ 0, in probability, 

which implies 

&~ ➔ 1, in probability. 

This theorem shows that the bandwidths which asymptotically minimize the mean integrated 

squared error also, in probability, asymptotically minimize the integrated squared error. Property 

(2.29) is shown for smooth densities by Hall (1982b ). Under regularity conditions Marron & Hardie 

(1986) show that (2.29) holds almost surely uniformly in the bandwidths hn, Furthermore they don't 

require smoothness of the density f. The uniformity in the bandwidths is useful for studying kernel 

estimation techniques with random bandwidths, in particular the cross-validation techniques 

discussed in the next chapter. 

Central limit theorems for the integrated squared error for smooth densities have been derived 

by Bickel & Rosenblatt (1973) and by Hall (1984). Both theorems correspond to our case m. Bickel 

& Rosenblatt consider small bandwidths which satisfy hn = O(n-219), so their theorem is covered by 

the first line of the case m part of the theorem above. It should be noted that doing so they excluded 

the optimal bandwidths in that case which are of order n·115• This was recognized by Hall who 

proved a central limit theorem for the integrated squared error of multivariate kernel estimators which 

is similar to our case m part in the one dimensional case. 

Remark 2.12. A nice consequence of our theorem is that the asymptotic variance al1 of the 

integrated squared error in case Il is equal to zero if the value of the density in all the singular points 

where f has a kink is equal to zero. This shows that for sequences of bandwidths with nh~ ➔ oo the 

influence of a kink in the density on the variation of the integrated squared error is of smaller order if 

this kink is in a point where the density is zero. 

Proof of Theorem 2.11. We rewrite the integrated squared error ISEn(h) as follows, 

ISEn(h) = 

J (fnh(x) - f(x))2w(x)dx = 

00 1 n 2 J (iili ~ K((x-Xi)/h) - f(x)) w(x)dx = _ t=l 
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n oo 
2 "'t" J (x-X·) -iiliti _ K T f(x)w(x)dx + 

n .. 
1 "'t" f 2(X-Xi) 

n2h2 ti - K 7i""". w(x)dx + 

J f2(x)w(x)dx. 

It follows that the integrated squared error is equal to a quadratic form plus a linear term. Statistics of 

this type are treated in Appendix C, where special attention is paid to this specific case in Theorem 

C.2 and Remark C.3. If b(u,h) denotes the bias function of a kernel estimator, i.e. b(u,h)=Efnb(u)­

f(u), Theorem C.2 states that if we assume 

then the integrated squared error is asymptotically normal and we have 

where a2 is defined above. Remark C.3 says that if (2.30) converges to infinity we also have 

asymptotic normality because then the linear terms in the proof of Theorem C.2 dominate over the 

quadratic term. In that case we have by (C.13) 

(2.32) 1t1flhn (var <I K(\~1)b(u,hn)w(u)du))"1fl(ISEn(hn)- MISEn(hn)) ~ N(O,l). 

For a fixed sequence of bandwidths (hn), whether we are actually dealing with situation (2.31) or 

with situation (2.32) depends on whether (2.30) converges to a finite number or to infinity. This 

means that we have to expand the variance in (2.30). It turns out that the presence of singular points 

off in the support of w influences the order of magnitude of this variance. Distinguishing the cases L 

II and IIL introduced in the previous section, we have 



Since the proof of these expansions is rather technical it is postponed to Section 2.5. 

In case I we have 

GO { 0 
4nhii1var( J K(ut1)b(u.hn)w(u)du) ➔ ~ 

- n 00 

and 

if ~➔ O 
if nbi➔ A. 
if nh~ ➔ -

25 

which proves the theorem for case I by (2.31) and (2.32). The other cases are obtained in a similar 
way. I 

2.4. Properties with respect to supremum distances. 

Let E be a closed bounded interval on the real line. An alternative for the integrated squared 

error criterion and the mean integrated squared error criterion is the weighted supremum distance 

(2.33) sup lfnh(x) -f(x)I w(x), 
xeE 

where w is a weight function with w(x)>O for xe E. Since fnh is a continuous function the supremum 

distance between fnh and f is always larger than some positive constant if the density f has a jump in 

E. Therefore density estimation from the point of view of supremum distance loss functions is only 
meaningful for densities f which are continuous on some £ neighborhood of E. Consequently only 

such densities are considered in this section 

We discuss two aspects of kernel estimation from the point of view of supremum distances. In 

Section 2.4.1, using the bias expansions of Theorem 2.3, we supplement results of Stute (1982b) on 

the almost sure asymptotically optimal bandwidths for the specific supremum loss function 

(2.34) sup lfnh(x) - f(x)I r1fl(x). 
xeE 

Note that here w equals r1fl. In Section 2.4.2 we derive an almost sure order bound for 

(2.35) ( nh )1/l 
sup log n sup lfnh(x) - Efnh(x~ 
hef0 xeE 
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Such bounds on the supremum distance between fnh(x) and Efnh(x), unifonnly in the bandwidth, are 

important tools in studying bandwidth selection methods. The presented bound is frequently used in 

Chapter 3. 

The first results on strong unifonn consistency were obtained by Nadaraya (1965). Other 

relevant references are Revesz (1978), Silvennan (1978b), Kolcinskii (1980), Serfling (1982) and 

Stute (1982b). 

2.4.1. Almost sure asymptotically optimal bandwidths. 

We consider the loss function (2.34). Note that by Theorem 2.4 the pointwise asymptotic 

variance of (fnh(x)-f(x))f112(x) is independent of x. We derive asymptotically good bandwidths for 

the supremum distance (2.34) by studying the two terms in the right hand side of the inequality 

(2.36) sup lfnh(x) - f(x)I f 112(x) s sup lfnh(x) - Efnh(x)I f 112(x) + sup IEfnh(x) - f(x)I f 112(x). 
~~ ~E ~E 

The next theorem of Stute (1982b) gives the exact almost sure rate of the supremum nonn of the 

error part in (2.36). 

Theorem 2.13. (Stute 1982). Let (hn ) be a sequence of positive bandwidths with hn➔O, nhn➔oo, 

log(hil)=o(nhn) and log(hJ)/log(logn)➔ oo. Assume that f is continuous on E=[a,b], with 

-oo<a<b<oo, and assume O<mSf(x)SM<oo,/or all xe E. Furthermore let K be any kernel function of 

bounded variation with K(x) = 0 outside some finite interval [r,s). With probability one we have 

( nh ) 112 112 ( 8 )112 (2.37) n~ 2 log(h~) :~~ lfnhn(x) - Efnhn(x)I f (x) = J K2(u)du , 

where Ee denotes the interval (a+e,b-e)for some £>0. I 

Since Theorem 2.3 gives us unifonn expansions of the bias function Efnh(x)-f(x) the next lemma with 
expansions of the bias part in the right hand side of (2.36) readily follows (recall b1(0)= ~ uK(u)du). 

The proof of this lemma is omitted. Just as in the previous section the presence of singular points in 

the set E plays an important role. We only consider densities satisfying Condition Fin Section 2.1 

which are continuous on the interval E = [a,b], ..oo<a<b<oo. Let d11 ••• , dm denote the singular points 

off in the interval E. Define two special cases, 

case II : all jumps 6<0>(di), i=l , ... ,m, are equal to zero and at least one of the 

jumps 6°>(di), i=l, ... ,m, is unequal to zero, 

case m all jumps 6<0>(di) and 6°>(di), i=l, ... ,m, are equal to zero. 
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Lemma 2.14. Let f, a density satisfying Condition F, be bounded away from zero on the interval 
E=[a,b], -oo<a<b<oo. Let d1, ... , dm denote the singular points off in the interval E and let the kernel 

K satisfy Condition K. We have in case II 

l 

(2.38) ~ h°J :R 1Efnhn(x)-f(x)lf112(x) = (JuK(u)du)i=~m f(di)- 11216<1>(di)I 

and in case l/l 

l 
(2.39) Jim hi? sup IEfnhn(x)- f(x)lf112(x) =½( fu2K(u)du) sup lf"(x)lf112(x). 

n-- xeE -i xeE 
I 

By balancing the error and bias term in the right hand side of (2.36) we can now derive the 

asymptotically optimal bandwidths in the two cases described above. Stute (1982b) accomplished this 

for densities with a continuous third derivative. In exactly the same manner the following 

asymptotically optimal bandwidths can be derived, we omit the proof. Notice that Stutes result is 

covered by case m. 

Theorem 2.15. Suppose that for some e>O f, a density satisfying Condition F, is uniformly 

continuous on [a-e,b+e], ..oo<a<b<oo, with 0<mSf(x)SM<oo for all xe [a-e,b+e]. Let K be a kernel 

which satisfies Condition K and let hgpt denote the bandwidth which minimizes the right hand side of 

(2.36), then 

in case II 

and 

in case lll. 

I 

The corresponding orders of the supremum loss are almost surely O((log n/n)113) in case II and 

O((logn/n)2/5) in case m. 

2.4.2. Uniformity in the bandwidths. 

Let In=[hh,hii] be an interval of bandwidths with hii=n-l+II and hii=n-8 for some 6 with 

0<6<1/2. Note that for all bandwidths hn in In we have hn-+0 and nhn➔oo. We derive a uniform 

orderbound for (2.35). This bound on the supremum over the set of bandwidths In is needed for 
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proofs in later sections. There we also consider kernel functions which are not probability densities. 

For a related result see Lemma 1 in Hllrdle & Marron (1985). 

Theorem 2.16. Let f be a bounded density and let Ebe a bounded interval. Suppose that the kernel 

K is a symmetric function with support [-1 , 1], not necessarily a density, and that K has a bounded 

derivative, then 

( nh )112 
(2.40) limsup sup log n sup lfnh(x) - Efnh(x)I SC, almost surely, 

0-- hel0 xeE 

for some constant C>O. I 

Remark 2.17. Notice that for he In we have 6log n S log(h-1) S (l-6)log n so the norming constant 

in (2.40) is of the same order as the constant in (2.37). By the conditions on fin Theorem 2.13 the 

factor f 1(x) in (2.37) is bounded on E. 

As a step in the proof of Theorem 2.16 we need a bound on the oscillations of fnh(x)-Efnh(x) 

as a function of both h and x. Define for nonnegative real numbers ex. and ~ the random variable 

On(<X,~) := sup sup (h1vh2) lfnh1(x1)-Efnh1(x1)-fnh2(x2)+Efnhi{x2)I, 
(h1,h2)eAo(a) (x1,x:z)eB(l3) 

where h 1 vh2 denotes the maximum of h 1 and h2, 

and 

Proposition 2.18. Assume that the conditions of Theorem 2.16 hold. Let (CX.n) and (~n) be two 

sequences of real numbers such that 

CX.n = o(hh), ~ = 0(1) for n➔oo, 

and 

then 

(2.41) On(CJ.n,~ = o(cx.n +~).almost surely. I 

Proof. With Vn(x) = n112(Fn(x) - F(x)), the empirical proces of the sample X1, ... ,Xn, we have by 

partial integration 

k jK((x-u)/h)d(Fn-F)(u) = -



~ I(Fn-FXu)K'((x-u)/h)du = 

/i J (Fn-F)(x+hv)K'(v)dv 
-1 

1 

n-112h-1 J Vn(x+hv)K'(v)dv. 
-1 

Therefore for all (h1.h2)e An(a,J and all (x1.x2)e B(l3n) we have 

I fnh1(X1) - Efnh1(X1) - fnh2(X2) + Efnhixv I= 

1 1 

n-l/2 lh(1 J Vn(x1+h1v)K'(v)dv - hf1 J Vn(x2+h2v)K'(v)dvl S: 
-1 -1 

1 

n-1flti2-1I J (Vn(X1+h1v) - Vn(X2+h2v))K'(v)dvl+ 
-1 

1 

n-112lh(1 - hf11 I J Vn(x1+h1v) K'(v)dvl. 
-1 
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Assuming that IK'I is bounded by the constant c>O by I x1 + h1v - x2- h2v Is; <Xii+~ the first term is 

bounded by 

with 
(2.42) ~(t) := sue I Vn(x+s)- Vn(x) I, 

xeJ:twx+se~.~ 

the oscillation modulus of the empirical process V n on the interval Ehii (the hii neighborhood of E). 
Since J~K'(v)dv = 0 the second term can be rewritten as 

1 

n-112(111-1- h2-1) le J (Vn(X1+h1v)- Vn(X1))K'(v)dvl, 
-1 

which is bounded by 

cn-1120n(h1h2r1~(h1). 

Thus we have for n sufficiently large 

nn(<Xii,13n> = 
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cn·112Chg'2>eon(au + ~ + cn·l/la.. (h61J2>0>n(h1) s; 

c(l + <Xn/h2){ (n(au + f3n))"112(0n + f3n)"1120>n(<X.n + ~ 

+ (nhii)"112 sup h(112Wn(h1)} (On+~ s; 
h1eln 

The proof of Proposition 2.18 is finished by an application of the next lemma about the oscillation 
modulus O>n, 

Lemma 2.19. Let the oscillation modulus Wit be defined by (2.42) then/or any £>0, any sequence 
of nonnegative real numbers (tn), with tn-+O and ntn........,, and any constant T>O, we have 

limsup Iogl n sup t·l/leon(t) s; C, almost surely, 
n-,.. tn:St<T 

for some constant C>O. I 

The proof of this lemma is given in Section 2.5. 

Proof of Theorem 2.16. Let (en) denote a sequence of nonnegative real numbers converging to 
uro. Since Eh"11K((x-X1),1l)l=J}1K(u)lf(x+hu)du we have for some constant c">O 

:t =~ E h"11K((x-X1)/h)I s; c". 

Consequently the exponential bound (A.4) in Appendix A implies for n large enough, for all xe E and 

all he In 
P(h 112 1 fnh(X) • Efnh(x) I :.!: en) S: 

2exp( -11£n2/(2K* E h"11K((x-X1)/h)I + h"11'len)) s; 

2exp( -c'nen2 ), 

for some constant c'>O. Here K* is a constant bounding K, i.e. IK(x)I s; K* for all x. 

Next define subsets I,. and E,. of In and E where I,. consists of n2 equidistant points, the endpoints 
included, and, similarly, E,. consists of n1·&/4 equidistant points including the endpoints. Then for n 

large enough 



P( SUI! SUI!. h1121fnh(X)- Efoh(X)I ~ En) S 
heln XE En 

2exp( -c'nE02 + (3-6/4)log n ), 

which is summable if we choose En= 5c'-1(logn/n)112. Thus by the Borel-Cantelli theorem we get 

limsup SUI! SUI!. EJh1121fnh(X) - Efnh(x)I S 1, almost surely, 
n-+oo heln XEEn 

which in its tum implies (2.40) with the sets In and E replaced by In and En, 
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We finish the proof by showing that the difference between the supremum over the finite sets and the 

supremum over the continuous sets vanishes almost surely. Let (h1,x1) be a point in l0 xE, and let 
(h2,x2) be the nearest point in In zEn, Then we have lh1-h2kn-2 and lx1-x2l<cn-t+6!4 for some constant 

c>O. It suffices to show that 

converges to z.ero, uniformly for all points (h1,x1) and (h2,x2) as described above. Here Proposition 

2.18 will be instrumental. 
Writing Cln = n-2 and 13n = cn-t-Hi/4 we see that (2.43) is bounded by 

n112(h1vh2)112(lognr1121fnh1(x1)- Efnh1(x1) - fnhi{x2) + Efnhi{x2)I + 

n112((h1vh2)112 - (h1Ah2)112Xlognr1/2.iK*(h1Ah2f1 = 

(2.44) n112(h1vh2)-112(lognr112 (h1vh2)1fnh1(x1)- Efnh1(x1) - fnh2(x2) + Efnh2(x2)I + 

n112((h1vh2)112 - (h1Ah2)112Xlognr1/2.iK*(h1Ah2r1. 

where we have used 

for all x and all h>O. 

The first term in (2.44) is bounded by 

n112(h1vh2)"112(lognr112(Cln+l3n) (Cln+l3n)-10n(<Xn,13n} S 

n112.n112-6/2(n·2+cn·l+6/4) (0n+l3n)-10n(Cln,13n} s 
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2cn-6/4 (au+~·10n(<Xn,~ = o(l), almost surely, 

by Proposition 2.18. In order to treat the second term in (2.44) notice 

Therefore 

(h1Att2)112(1 + ((h1vh2) - (h1Att2))/(h1Att2))112 S 

(h1Alt2)112(1 + <Xnf(h1Alt2))112 S 

(h1Alt2)112(1 + <Xn/(h1Alt2)) = 

n112((h1vh2)112 - (h1Att:v112Xlogn)"112zK*(h1Att2r1 S 

n1120n(h1Att2r112(logn)"1'2zK*(h1Att2r1 S 

2K*(n(h1Att2))-312(logn)"112 S 

2K*n-3312 (logn)"112 = o(l). 

Since these bounds don't depend on the h's or the x's we have indeed shown that (2.43) vanishes 
uniformly and the proof is completed. I 

2.5. Proofs. 

Proof of Lemma 2.1 part (b). Let xo be a fixed point and let M be an arbitrary positive number. 

Recall that by (2.9) we have 

g(xo+th,h) = J G(t-u)f(xo+hu)du . 

We omit the proof for xoE D since then the same Taylor expansion argument as for part (a) can be 

used. Hence we assume xoe D and write 
0 00 

g(xo+th,h) = J G(t-u)f(xo+hu)du + J G(t-u)f(xo+hu)du . -
Next define Jl(t,h) by 

0 

(2.45) Jl(t,h) := I G(t-u){f(xo+hu) - f(xo-) - huf'(xo-) -½h2u2r"(xo-)}du ... 
and similarly t1(t,h) by 

00 

(2.46) 11(t,h) := J G(t-u){f(xo+hu) - f(xo+)- huf'(xo+) -½h2u2r"(xo+)}du. 
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Then r2(t,h) = r!(t,h) + 11(t,h). Now use (F.3) and the dominated convergence theorem, which can be 

applied since the integrals in the definition of 11 is in fact an integral over a bounded area, to obtain 

lim h11~tn,hn) = 0, D_., 

for all sequences (hn) with O<hnShn for all n, and for all sequences (tn), with -MStnSM for all n. A 
similar result holds for 11 and therefore for r2. I 

Proof of Theorem 2.3 part (b). By (2.2) we have 

1 
b(xo+th,h) = E Ii K((xo+th-X1)/h) - f(xo+th). 

Part (b) of Lemma 2.1 gives an expansion of the first term in this expression. The second term can be 

expanded as follows 

f(xo+th) = (f(xo-) + thf'(xo-) + ½t2h2f"(xo-) )1(-,o)(t) + 

(f(xo+) + thf'(xo+) + ,½t2h2f"(xo+ ))l(O,oo)(t) + 

r(t,h), 

where the remainder term r has the property we have to prove for the remainder r4 in the theorem. If 

xo is not a singular point of f this follows from a Taylor expansion argument and if xo is a singular 

point it follows from Condition (F.3), just as in the preceding proof. Combining these expansions we 

get 
0 .. 

b(xo+th,h) = f(xo-) L K(t-u)du + f(xo+)J K(t-u)du 

- [f(xo-)1(-,0)(t) + f(xo+)l(O,oo)(t)] + 

0 .. 

hf'(xo-) L uK(t-u)du + hf'(xo+)J uK(t-u)du 

- ht[f'(xo-)1(-.o)(t) + f'(xo+)lco ... )(t)] + 

0 00 

,¥h2f"(xo-) I u2K(t-u)du + ½t2h2f"(xo+)J u2K(t-u)du -

where the remainder r4 has the property claimed in the theorem. 
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First consider the constant term in this expansion. Since K integrates to one this term is for t<O equal 

to 
oo I 

f(xo-)/K(u)du + f(xo+) /K(u)du - f(xo-) = 
I -oo 

t 

(f(xo+) - f(xo-)) J K(u)du = 

Next consider the coefficient of h. Using the fact that the integral of uK(u) is equal to zero we see that 

for t<O this term equals 

oo I 

hf'(xo-)J (t-u)K(u)du + hf'(xo+) J (t-u)K(u)du - htf'(xo-) = 
I -oo 

I oo 

h(f'(xo+) - f'(xo-)) J (t-u)K(u)du +hf'(xo-) J (t-u)K(u)du - htf'(xo-)= .... 

For t<O the coefficient of h2 is for t<O equal to 

oo I 

½i2f"(xo-)J (t-u)2K(u)du + jb2r"(xo+) J (t-u)2K(u)du -jh2t2f"(xo-) = 
I -oo 

I oo 

jb2(f"(xo+)- f"(xo-)) J (t-u)2K(u)du +jb2r"(xo-) J (t-u)2K(u)du -jh2t2f"(xo- )= .... .... 

jb2bi(t)6<2>(xo) +jb2r"(xo-) J u2K(u)du . .... 

For t>O similar arguments hold. I 

Proof of Theorem 2.11. The proof is completed by checking Condition (C.7) of Theorem C.2 

in Appendix C which means that we have to expand the variance 
00 

var (1 K(\:1)b(u,hn)w(u)du) 

for n tending to infinity. If the set D = (d1,d2, ... } denotes the set of singular points off and the set 

Dii, defined in (2.4 ), denotes the set of points at least at distance h of D, then we write, 
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oo di+hn 

E ( I K(°t1)b(u.hn)w(u)du + ~ I K(\X1)b(u.hn)w(u)du)2 = 'Oiin n 1=1 di·hn n 

oo di+hn 

~ E ( J K(°t1)b(u,hn)w(u)du)2 + 
1=1 di·hn n 

(2.47) 00 di+hn 

2 ~ E ( J K(°l1)b(u,hn)w(u)du)( I K(\X1)b(u,hn)w(u)du) + 
1= 1 °bu n di·hn n 

di+hn dj+hn 

;!; E ( J K(°l1)b(u,hn)w(u)du)( I K(\X1)b(u,hn)w(u)du). 
1".J di·hn n dj·hn n 

Notice that since w has a bounded support the conditions on f imply that there are only finitely many 

singular points d 1 , ••• ,dm say, which are in the support of w. These points are the only singular points 
of f which can give a nonzero contribution to the sums above. All the singular points outside the 

support of w are at a positive distance from this support which means that their contributions are 
exactly equal to zero if n is larger than some fixed no. Using the fact that K has support [-1,l) and 

using the expansions of b(u.hn) given by Theorem 2.3 we derive the following bounds, 

d+hn 

J K(rn)b(u.hn)w(u)du = 
d-hu n 

1 

(2.48) hnj K( t+t)b(d+thn.hn)w(d+thn)dt = 

lld·2hn.d+2hnl(x) O(hn6<0>(d) + ~6<1>(d) + hii}, 

for each de D, and 

(2.49) 
I K(lf:-)b(u,hn)w(u)du = O(hi). 

D11nn [x•bn,x+hnl n 

From (2.48) it is immediately clear that the fourth term of (2.47) vanishes for n large enough. For the 
third term (2.48) and (2.49) give 
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di+2hn di+hn 

J ( J K(rn)b(u,hn)w(u)du)( J K(rn)b(u,hn)w(u)du)f(x)dx = 
di-2hn °lln n di-hn n 

0{4hnh~(h0 6<0>(di) + h;6Cl>(di) + hii)) = 

0(h~.(6<0>(di) + h06<1>(di) + h;)) 

It turns out that this term is also asymptotically negligible compared to the first two terms in (2.47). 

Using the expansion of b(u,hn) given by Theorem 2.3 we can expand the first term as follows, 

00 

J ( J K(rn-)b(u,hn)w(u)du)2f(x)dx-
- °lln n 

(2.50) 

1 00 

{ltg ( I v2K(v)dv ) 2 J ( J K(v)f"(x+h0 v)w(x+h0v)dv )2f(x)dx-
- - <Db0-x}lbn 

1 00 

{ltg (I v2K(v)dv ) 2 J f "(x)2w2(x)f(x)dx. -
The last equivalence holds since for each XE D the set (0ii0-x)/hn converges to (-00,00) which, since f" 

is continuous outside D and since w is almost surely continuous, implies that for each fixed xE D we 

have 

J K(v)f"(x+h0 v)w(x+h0 v)dv ➔ J K(v)dv f"(x)w(x)= f"(x)w(x), 
<Dbn-x)/hn -

almost surely as a function of x. 

Concerning the second term in (2.47), just as in (2.48), for each de D again by Theorem 2.3 we get, 

00 1 

h~L (JK(t+¥u)b(d+th0 ,hn)w(d+thn>dt )2f(x)dx-



37 

.. 1 

hii J {JK(t+v)b(d+thn.hn)w(d+thn)dt ) 2f(d+vhn)dv --
.. 1 

hii J {J K(t+v)6<0>(d)bo(t)w(d+thn)dt ) 2f(d+vhn)dv --
0 0 1 

hii 1><0>(d)2 ( f(d-) 1 ( w(d-)_f K(t+v)bo(t)dt + w(d+)JK(t+v)bo(t)dt ) 2dv + 

00 0 1 

f(d+)J ( w(d-)_f K(t+v)bo(t)dt + w(d+)JK(t+v)bo(t)dt ) 2dv ). 

If 1><0>(d) is equal to um a similar argument gives 

00 0 1 

hii f(d)6<1>(d)21 ( w(d-)_f K(t+v)b1(t)dt + w(d+)JK(t+v)b1(t)dt)2dv, 

and if both 1><0>(d) and 6°>(d) are equal to uro then we have 

In order to derive expansions for the variance let us successively consider the three cases 

introduced in Section 2.3.l. Recall the definition of the quantities !J.~ and tJ.'J/, .. 
!J.~> := ~(w(di-) + w(di+))6CO)(di)2 

1=1 

and .. 
a~> := ~(w(di-) + w(di+))6(l)(di)2• 

1=1 

In case I we have !J.~>0 which means that there is at least one singular point di with 

(w(di-)+w(di+))6<0>(di)2>O. Since this implies that for such a point either w(di-)6(0)(di)2 or 

w(di+)6<0>(di)2 is positive we get 

E ( j K(ut1)b(u,hn)w(u)du)2 -
- n 

oo O O 1 

hii ~ 1><0>(di)2 (f(d-) 1 ( w(di-)_f K(t+v)bo(t)dt + w(di+)JK(t+v)bo(t)dt ) 2dv + 
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oo O l 

f(di+)J ( w(di-)_f K(t+v)bo(t)dt + w(di+)JK(t+v)bo(t)dt ) 2dv ). 

The bounds (2.48) and (2.49) imply that the squared expectation, 

(EI K(\~1)b(u,hn)w(u)du)2 , 

is asymptotically negligible in this case. Thus we get .. 
var (I K(ut1)b(u,hn)w(u)du) -¼ti~cr12• 

- n 

In case II the situation is similar. Here we have A~ =0 and A';J >O. By our condition that for points 

di in the support of w either w(di-) or w(d i+) is positive the fact that A~ =O implies that all the jumps 

5(0)(di) for points in the support of ware equal to zero. Since A';J is positive there is at least one 

point di such that (w(di-)+w(di+))60>(di)2 is positive. We then have 

oo 00 0 l 

hii ~f(di)6<1>(di)21 ( w(di-)_f K(t+v)b1(t)dt + w(di+)JK(t+v)b1(t)dt)2dv 

and since in this case the squared expectation is also negligible we arrive at 

var ( j K(°t1)b(u,hn)w(u)du) -ibiiCJn 2• 
... n 

In case III the situation is different because the squared expectation is no longer negligible. Here both 

A~> and A';J are equal to zero. Therefore all 6<0>(di) and 6<1>(di) for points di in the support of w are 

equal to zero. This leads to 

l .. 

¼ti~ {J v2K(v)dv ) 2 J f "(x)2w(x)2f(x)dx. - . 

Since we have 

.. 
J ( J K(rn·)b(u.hn)w(u)du)f(x)dx = 
- Diio n 



we find 

hnol ( ti K ('ii;-)f(x)dx)b(u,hn)w(u)du ~ 

hnoL(f(u) + b(u.hn))b(u.hn)w(u)du ~ 

h~(u)b(u.hn)w(u)du ~ 

1 00 

{h~J v2K(v)dv ! f "(u)w(u)f(u)du, 

var ( j K(\X1)b(u,hn)w(u)du) ~ 
.- n 

1 00 

{b~ (J v2K(v)dv ) 2 J f "(x)2w2(x)f(x)dx --
1 00 

({h~J v2K(v)dv J f "(u)w(u)f(u)du)2 = --
,h.60 2 
4un ill · 

This completes the proof of Theorem 2.11. 
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I 

Proof of Lemma 2.19. First we use the Bernstein inequality for the binomial distribution, i.e. 

inequality (A.3) in Appendix A, to derive the following exponential bound. For all xe Eb;i, all tn<t<T 

and all OSsS:t such that x+se Eh~ we have for any sequence (en) tending to infinity and n sufficiently 

large 

P( I Fn(x+s) - Fn(x) - ( F(x+s) - F(x)) I~ n·1f2t112en) S: 

1 n 
P( ii I ~ l(x,x+s](Xi)- P(x<XiS:x+s)I ~ n·1i'lt112en) S: 

2exp( - £n2/2(c'+(nt)"112£n)) S: 

2exp(-£n), 

where c' is a constant bounding f, i.e. OS:f(x)S:C' for all x. We have used OS:P(x<XiS:X+s)S:c'sS:C't, 
and (nt)" 112 S:(ntn)· 112 -+0. 
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Next let Jn denote the interval [tn,T]. Since Eis bounded and since hii converges to zero the intervals 

&i;i are uniformly bounded. Hence there exists a positive constant M such that the interval [-M,M] 
covers both &i;i and Jn for all n. Let Gn denote the grid of 2n3 points of [-M,M], given by gi=iMn-3, 

i=-n3+1, ... , n3. Notice that consecutive points have a distance equal to Mn-3• It follows for n 

sufficiently large 

P( sup sup sup r112 1Vn(x+s)-Vn(x)l~En)S 
reJ,.O,. XE Eiiif'tGn SE [O,tr,Gn 

8exp( -En+ 9log n ), 

which is summable if we take £n equal to 1 llogn, which we assume from now on. 

Let Sn denote the supremum over the discrete sets, 

Sn := En-t sup sup sup r 112 1 Vn(x+s)- Vn(x) I, 
reJ,.O,. xEF.tt;r,Gn SE [O,tr,G0 

and Sn the supremum over the continuous sets, 

Sn:= En-t sup sup sup r112 I Vn(x+s)- Vn(x) I . 
reJ0 xeF.ttn SE [O,t] 

By the Borel-Cantelli Theorem we have for Sn, 

limsup Sn S 1, almost surely. D--
It remains to show that the difference between Sn and Sn vanishes almost surely, since then 

limsup Sn S 1, almost surely. D--
From this result Lemma 2.19 is immediate since 

logl O sup r 112ron(t) s llSn, 
tnSt<T 

we would have established the result of Lemma 2.19. To show that Sn- Sn vanishes almost surely 

define the set A 

A:= {dnS Mn-3, infinitely often}, 

where dn denotes the smallest spacing of the sample X1, ... ,Xn. It follows from a result of Devroye 

(1982) that the probability of A is zero. Actually Devroye condiders uniform spacings but since the 
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density f is bounded it also follows for the spacings of the sample X1,,,.,Xa. On the complement of 
A for te In, xe Et.. and se [0,t] the value of 

en·1r112 1 Vn(x+s)- Vrt_x) I= 

en·1r 112n112 I Fn(x+s) - Fn(x)- (F(x+s) - F(x)) I 

changes for n larger than a certain random index No at most 

en·\ilf2nll2c3n·1- 3c'Mn·3) = 

3tn"1(ntn)"1'2ct + c'Mn"1) = o(l), 

if we replace t,x, and s by their nearest points in the interval In, Eba and [0,t] which also lie on the 

grid On. Hence on the complement of A we have 

and since the complement of A has probability one we have indeed shown 

Sn - Sn = o(l), almost surely, 

which completes the proof of Lemma 2.19. I 
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3. BANDWIDTH SELECTION BY LIKELIHOOD CROSS-VALIDATION. 

3.1. Introduction and results. 

The results in the previous chapter show that optimal bandwidths for kernel estimators depend 

on the unknown density f. A way to avoid this problem is to design procedures which compute a 

bandwidth, Hn = Hn(X1, ... ,Xn), from the sample X1, ... ,Xn. For large sample sizes these 

bandwidths should be close to the optimal ones. Kernel estimators using these bandwidths are called 

automatic or data adaptive. Two such data adaptive bandwidth selection methods are likelihood cross­

validation, which originates from a likelihood approach to the problem, and least squares cross­

validation. Least squares cross-validation is briefly discussed in Section 3.1.1. Likelihood cross­

validation has a history of trial and error. A review of its development is given in Section 3.1.2. For a 

comparison of cross-validation techniques in a more general setting see Marron (1987). Next, in 

Section 3.1.3, we give a heuristic derivation of our results on the rates of convergence to :zero and the 

asymptotic distribution of the bandwidths selected by likelihood cross-validation. These results are 

proved in the remaining sections of this chapter. 

3.1.1. Least squares cross-validation. 

Let us first consider the least squares cross-validation. Suppose that our aim is to find 

bandwidths and corresponding density estimates with a small integrated squared error. In order to do 

so write 

MISEn(h) = 
00 

E J (fnh(u) - f(u))2w(u)du = 

E J fJh(u)w(u)du - 2 E J fnh(u)f(u)w(u)du + J r2(u)w(u)du, 

where w is a nonnegative weight function. Since the third term is independent of h it suffices to find a 

bandwidth which minimizes 

(3.1) E J fJh(u)w(u)du - 2 E J fnh(u)f(u)w(u)du, 

an expression depending on the unknown density f. The least squares cross-validation method results 

in an unbiased estimator of (3.1). So we can estimate (3.1) as a function ofh and compute the value 

of h which minimi:res the estimate. 

Define the "leave one out estimator'' based on the sample X1, ... ,Xn with Xi left out by 

(3.2) (i) 1 ° 
fnh(x) := (n-l)li'j=fJ,.; K((x-Xj)/h)), -oo < x < oo. 

Then 
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(i) 1 ( ) E fnh(x) = li'E K((x - X1)/h) = E fnh x, 

and the independence of f::li(x) and Xi implies 

2 ~ (i) 
E -n !- fnh(Xi)w(Xi) = 

t=l 

.. 
2 J E f~~(u)w(u)f(u)du = -
2 J E fnh(u)w(u)f(u)du = 

2 E J fnh(u)f(u)w(u)du. 

Therefore 

(3.3) 
.. n 

l.Sn(h) := J f5h(u)w(u)du -¾~ f::li(Xi)w(Xi), h >O, _ t=l 

is an unbiased estimator of (3.1). For w-1 this reduces to 

1••1 2 1 
l.Sn(h) = ::'f ;I, ;I, liK<l>((Xi - Xj}ni) - ::7:"'Tt'n n- ~ Ii K((Xi - Xj)/h), n ,.11 .. 1 11\11-11 ,.._. 

where K<2> denotes the convolution of K with itself. The factor 2/((n(n-l)) is often replaced by 2/n2• 

This method is introduced and studied by Rudemo (1982) and Bowman (1984). Further relevant 

references are Hall (1983a, 1983b), Stone (1984), Scott (1985), Burman (1985), Hall & Marron 

(1987a, 1987b) and Scott & Terrell (1987). Silverman (1986) also considered computational aspects 

of the method. 

Hall (1983a) obtained the first asymptotic optimality result for densities f with a finite second 

moment and a continuous square integrable second derivative. Generalizing this result Stone (1984) 

showed that the optimality property holds for all bounded densities f. In the univariate case and for 

kernels satisfying Condition K in Section 2.1 the theorem states the following. 

Theorem 3.1. (Stone 1984). /fK is Lipschitz of order /3, i. e.for some positive constants p and c 

IK(y) - K(x)I S cly - xJP,for all real x and y, 

then we have for all bounded densities f on the real line 
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(3.4) . ISEn(Hn) 
Jim inf ISE (h) = 1, almost surely, n-- h n 

where Hn is the bandwidth obtained by least squares cross-validation, i.e. the bandwidth which 

minimizes (3.3) and ISEn(h) equals 
00 

(3.5) I (fnh(u) - f(u))2du, 

the integrated squared e"or of the kernel estimate fnh. I 

This theorem shows that asymptotically the bandwidths obtained by least squares cross-validation 

perform as well as the best possible deterministic ones. 

The rate of convergence in (3.4) was investigated by Hall & Marron (1987a, 1987b). If Hri 

denotes the random bandwidth which minimizes the integrated squared error (3.5) then under some 

smoothness conditions on K and f, essentially our smooth case III in Chapter 2, they show 

(3.6) 

and 

* Hn - Hn _ O ( -1/10) 
H; - P n ' 

In spite of the nice asymptotic optimality result (3.4), the convergence is very slow. However, Hall 

and Marron show that no data adaptive bandwidth selection method can have a faster convergence. 

Before we discuss likelihood cross-validation we briefly mention other data adaptive methods. 

Silverman (1978a, 1986) gives a graphical method to compute bandwidths with good properties with 

respect to the supremum distance loss function, the so called test graph method. Scott & Factor 

(1981) and Bowman (1985) compare several other data adaptive methods by means of simulation 

studies. 

3.1.2. The likelihood approach to bandwidth selection. 

Again we consider the problem of selecting a bandwidth for a kernel estimator with a kernel 

satisfying Condition K. Now we argue as follows. A "good" bandwidth h will give a large value to 

the "likelihood" Ln, defined by 
n 

Ln(h) := !l fnh(Xi)-

This suggests that we should use the value of h which maximizes Ln over [0,oo ). However, we can't 

use this value because it is always equal to zero. This can be seen from the inequalities 

l ° K(O) 
(3.7) fnb(Xi)) = ::,:-~ K((Xi-Xj)/h)) ~-=-

nn J=l nn 
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and 
Ln(h) ~ (K(O)/(nh)f, 

which show that Ln(h) tends to infinity if h decreases to zero. Recognizing this phenomenon 

Habbema, Hennans & Van den Broek (1974) and Duin (1976) proposed to replace Ln by 

(3.8) 

where f::/i is the "leave one out" kernel estimator defined by (3.2) in the previous section. The value 

of h which maximizes LCV n is always finite, since for n fixed we have 

O< h <. max ~i? IXi-Xjl => LCVn(h) = 0 
t=l, ... ,nJl'l 

and 

where we assume that the kernel is bounded by K•>O. In this way we lose the i-th term in (3.7), 

which is exactly the term which made it converge to infinity for h tending to 1.ero. This technique is 

called likelihood cross-validation or Kullback-Leibler cross-validation. 

The first undesirable property was reported by Schuster & Gregory (1981). Let Hn denote the 

positive value ofh which maximi7.es LCVn(h), then, since the kernel K has a support equal to (-1,1), 

the next inequality holds. We have 

Hn ~ Xn:n-Xn-1:n, 

where X1:nSX2:nS •.. SXn:n denotes the ordered sample. This inequality follows from the fact that 
LCV0 (h) is equal to 1.ero for all bandwidths h with O < h S Xn:n - Xn-t:n, since for these bandwidths 

the term in the product (3.8) corresponding to the largest sample point Xn:n is equal to 1.ero. It 
follows that the computed bandwidth is always at least equal to the difference between the largest 

sample point and the second to largest. For certain densities f however this difference converges 
almost surely to infinity. Moreover, these densities are by no means pathalogical. It turns out that 

densities with an exponential tail form the border line. For densities with heavier tails the bandwidths 
Hn converge almost surely to infinity and therefore produce inconsistent estimates. 

One possibility to avoid the problem discussed above is to restrict attention to densities with a 

compact support. If we know that f does not have a compact support we can always disregard all 

observations outside some bounded interval E, next estimate the probability of this interval and use 

likelihood cross-validation to compute a bandwidth for a kernel estimate of the density, conditional on 

being in E. Chow, Geman & Wu (1983) and Devroye & Gy6rfi (1985) prove some positive results 

concerning the estimation of bounded support densities. An alternative to avoid the tail problems is to 

maximize the product 
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where Eis a bounded interval on the real line. Note that this definition coincides with (3.8) if we can 

take E equal to the suppon off. Here we evaluate the leave one out estimators f2li only in the points 

Xi in the interval E, instead of in all the points as we did in the original definition of LCVn. It is 

imponant to notice that here f2li is still based on the whole sample X1, ... ,Xn minus Xi, contrary to 

above where it was based on observations in E only! By maximizing (3.9) we aim at finding a good 

bandwidth for estimating f on the interval E rather than on the whole real line as in the original 

definition (3.8). Accepting this restriction indeed avoids the tail problems discussed above, but 

instead we are faced with the next propeny reponed in Hall (1982). The theorem is reformulated to 

hold for kernels satisfying Condition K. 

Theorem 3.2. (Hall 1982). Let E=[a,b], -oo <a< b < oo. Assume that f is twice continuously 

differentiable on (a-E,b+E)for some positive E. Furthermore assume that f is bounded and that f is 

bounded away from zero on E. Then the bandwidths computed by maximizing LCVn, as defined by 

(3.9), are of order n·113 i/f'(b) < f'(a), and they are much larger i/f'(b) > f '(a). In the last case we 

might even have inconsistency. I 

Notice that in neither case the order is n·115 which is the optimal one for the integrated squared error 

criterion (see (2.25)). Also the dependence on the derivatives in the endpoints of E is very 

undesirable. However, Marron ( 1985) showed that if we maximize a modification LC'Vii(h ), instead 

of LCV n(h), this behavior can be avoided. Then we even achieve asymptotic optimality with respect 

to a weighted integrated squared error with respect to the weight function f 1IE. We obtain Lcvg(h) 

by multiplying LCV n by a correction factor, 
n 1 

LCVii(h) := LCVn(h)exp (-n Jfnh(u)du) = LCVn(h)exp (-~ Ii J K((u-Xi)/h)du). 
E 1=1 E 

A heuristic motivation for this correction factor is given in Section 3.1.3. The corrected method has 

the following optimality propeny. The theorem is reformulated to hold for kernels satisfying 

Condition K. 

Theorem 3.3. (Marron 1985). Let E=[a,b], -00<a<b<00• Suppose f is bounded away from zero on 

E and suppose that f satisfies a Lipschitz condition, 

lf(x) - f(y)I S Mix - yfY,for all x,y, 

for some positive constants Mandy . .lf ~ denotes the value ofh which maximizes LCVii(h) over the 

set In=[hh,hi:], where hh=r11-+o and hn=n"° for some CJ>O, then 

(3.10) , almost surely, 



and similarly 

(3.11) MISEn(l-tii) inf MISEn(h) ➔ 1 , almost surely. 
he[hi,,hii] 

Here the integrated squared e"or is defined by 

ISEn(h) = J (fnb(x)-f(x))2i1(x)dx, 

and MISEn(h) as its expectation. 
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I 

This theorem was the first asymptotic optimality result for the likelihood cross-validation method. 

Just like Theorem 3.1 it says that the random bandwidths computed by cross-validation 

asymptotically perform just as well as the best deterministic ones except that here we are dealing with 

a weighted integrated squared error. In Section 3.1.3 we give an heuristic explanation for the 

appearance of this particular weighted integrated squared error. 

The method studied by Chow, Geman & Wu and Devroye & GyOrfi differs from the one 

studied by Hall and Marron in one important aspect. Apart of course from the correction factor in 

Marron's modification, Hall and Marron assume that the interval E = [a.,b] is strictly contained in the 

support off in the sense that both the endpoints a and bare strictly inside the support. Chow, Geman 

& Wu and Devroye & GyOrfi study the case where E is equal to the support of f. The results 

described in the next section show that this causes a quite different behavior. 

Theorems 3.1 and 3.3 show that the two cross-validation methods have optimality properties 

with respect to appropriate (mean) integrated squared error loss functions. For these loss functions 

the choice of the kernel is relatively unimportant. Consequently we consider bounded support kernels 

only. It should be noted however that things change considerably if instead we want to minimize the 

Kullback-Leibler distance between our estimate and the true density, which can be desirable for 

instance in problems of discrimination. Likelihood cross-validation is studied from this point of view 

in Hall (l 987a.,1987b). Actually in Hall (1987a) it is shown that in this context the choice of the 

kernel is important and that it is unwise to use kernels with a compact support. 

3.1.3. Likelihood cross-validation: heuristics and results. 

The original likelihood cross-validation method prescribes that we maximiu the function 

LCVn(h) given by (3.9). The main ingredients in the proofs in Hall (1982) and Marron (1985) are 

expansions of the logarithm of this function. Using such expansions they prove Theorem 3.2, Hall's 

surprising theorem about the original method, and Theorem 3.3, Marron's optimality result. In this 

section by heuristics in the same spirit we present our results concerning likelihood cross-validation, 

both uncorrected and corrected. Later sections contain rigorous proofs of these results. The basic 

theme of these proofs is the analysis of the derivative of the logarithm of LCVn(h). We assume that 
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the density f satisfies Condition F, so we also consider non-smooth densities. We don't impose the 

restriction required by Hall and Marron that the set E is strictly contained in the support of f. On the 

other hand we do also have to require that f is bounded away from 7.ero on E. 

Let In denote the interval [hh,hii], where hii=n·1+o and hii=n-o for some a > 0. From now on 

we assume n-+oo, h-+O and nh-+oo. Following Hall and Marron we write 

1 
iilog(LCVn(h)) = 

Since the first term is independent of h the problem is to maximi7.e 
1 n 

(3.12) ii~ log(l + Aru(Xi.h))IE(Xi), 

where Aru(x,h) is defined by 
(i) 

fnh(x) - f(x) . 
Ani(X,h) := f(x) , 1 = 1, ... ,n. 

Defining 

(3.13) g(x) := log(l + x)- x +½x2, 

Now assume that the variation in (3.14) is asymptotically negligible compared to the expectation, in 

the sense that, asymptotically, by maximizing LCVn(h) we are maximizing the expectation of(3.14). 

We don't give a proof of this assumption. However, proofs of the results coming from this heuristic 

approach are given in Sections 3.2 to 3.5. 

The expectations of the first two terms in (3.14) are easily computed. Since 

¼ti E(Aru(Xi,h)IE(Xi) I Xj, j=l, ... ,n, j -:t, i) = 

1 n 
ii~ J (f!!<u) - f(u))f1(u)f(u)du = 

1 n 1 n 
-n ;I: I (r.:-rn:-n _ l; . K((u-Xj)/h))du - r f(u)du = 

1=1 E \11"1/11 J=1J"1 E 
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(3.15) 
l n n 

=r.:-rn:-~ . l; . J K((u-Xj)/h) du - J f(u)du = 
11\U-• JU J=l t=l,1".J E E 

1 n 
iiJi~ J K((u-Xj)/h) du - J f(u)du = 

J=l E E 

J fnh(u)du - J f(u)du, 
E E 

the expectation of the first tenn in (3.14) is 

(3.16) E J (fnh(u)du - f(u))du = J b(u,h)du, 
E E 

where b(u,h) is the bias of the kernel estimator fnh at the point u. Since Theorem 2.3 gives unifonn 

expansions of the bias function we can also derive expansions for (3.16). To obtain the expectation of 

the second tenn in (3.14) note that 

-½-nl t, E(At(Xi,h)IE(Xi) I Xj, j=l, ... ,n, j ¢ i) = 
t=l 

Therefore the expectation is given by 

tl~ J (i) 21 -'!-n ~E (fnh(u) - f(u)) f (u)du = 
1=1 E 

(3.17) 

Expansions of this mean integrated squared error are given by Theorem 2.8. From (3.16) and (3.17) 

we conclude that by maximizing log(LCVn(h)) is asymptotically equivalent to maximizing 

(3.18) J b(u,h)du - tEJ (fnh(u) - f(u))2r1(u)du + E g(An1CX1,h))IE(X1). 

So if the second term dominates the other two terms then we are asymptotically minimizing the 

weighted mean integrated suared error 

(3.19) 

However it turns out that this not always true. 
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Before we proceed with considering separate cases note that at this stage we can also show the 

intuition behind Marron's correction term. From the definition of ~(h) we have 

1 1 
ii'log(LC~(h)) = ii'log(LCVn(h))- J fnb(u)du. 

E 

By (3.16) and (3.18) maximizing LC~(h) is asymptotically equivalent to maximizing 

- J f(u)du -½E J (fnh(u) - f(u))2f1(u)du + E g(An1(X1,h)IE(X1). 
E E 

Note that the first term is independent of h. This means that in those cases where the third term is 

negligible compared to the second term, we are minimizing the weighted mean integrated squared 

error (3.19). 

Let Ebe a bounded interval [a,b], ..oo <a< b < oo, and let us again consider the three cases 

introduced in Section 2.3.1. If we take the weight function w equal to f 1IE then these cases were 

defined by 

case II : .:1<0> = 0 and .:1<1> > 0, 

case ID : .:1<0> = .:1°> = 0, 

where .:1<0> and ,:10> are given by 

m 
AO)= ;l: (f(di-)·1+f(di+)"1)6(1)(di)2 + f(a+)·1o<l)(a)2 + f(b-)"1o<1>(b)2. 

1=1 

Here d1, ... ,dm denote the singular points off in the open interval (a,b). Further we assume without 

proof that for the cases II and ID we have 

(3.20) i=,~~.n ~~R IAru(x,h)I ➔ 0, almost surely. 

By lg(x)IS1xl3, for x small enough, this implies that the third term in (3.18) is negligible. Since cases 

II and ID correspond to densities which are smooth on E, having at most kinks, condition (3.20) is 

not an unreasonable assumption. This condition is not satisfied for case I. In that case there are two 

possibilities. If there is at least one jumping point din (a,b) then 

i=~~.n ~~R IAru(x,h)I ~ ½o<0>(d) (~ f)"1 > 0, 

and if one of the endpoints ofE is ajumping point then (3.20) also can't be valid. 
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In case ill using the expansions given by Theorem 2.3 and Theorem 2.8 we see that (3.18) is 

asymptotically equivalent to 

1 

½h2_f u2K(u)du J f "(u)du + 

b 1 b- 1 
(3.21) ½h2 ! f "(u)du Ju2K(u)du -'7iili JK2(u)du. 

b 

Since for twice continously differentiable f we have J f "(u)du = f(b)-f(a) we get exactly n times the 
a 

expansion derived by Hall (1982) to prove Theorem 3.2. Clearly if f'(b) - f '(a) is positive then 

(3 .21) is an increasing function of h which does not have. a maximum . It does have a maximum if 

f'(b) - f'(a) is negative. The point h where the maximum is attained is of Older n-113. 

Next we consider case II. Let d1, ... ,dm denote the points in (a.b) where f has a kink and recall 

that in case II there are no jumping points of fin E. Let Dii denote the set of points which are at least 

at a distance h of the singular points of f. Then Theorem 2.3 gives the following expansion for the 

first term in (3.18), 

b 
J b(u,h)du = J b(u,h)du = 

E a 

a+h b m d,~ 
J b(u,h)du + J b(u,h)du + ~ f b(u,h)du + J b(u,h)du = 
a b-h •=l di-O Dtinla.b] 

I O m 1 
(3.22) h Jb(a+th,h)dt + h fb(b+th,h)dt + h ~ fb(di+th,h)dt + J b(u,h)du = 

-1 •=1 -1 Dtinla.b] 

1 0 m 1 

h20C1>(a)Jb1(t)dt + h20Cl>(b)jb1(t)dt + h2~o<l)(di)_fb1(t)dt + 

1 b 

½h2_f u2K(u)du ! f "(u)du = 

m 1 1 b 

h2 (o<1>(a) + oCl>(b) + 2~o<l)(di))Jb1(t)dt +½h2_f u2K(u)du ! f "(u)du. 

The terms of order h2 in (2.13) don't appear in this expansion because they are integrated over 

intervals of length 2h. We have also used 
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b 

J f "(u)du = J f "(u)du. 
0iin[a.b] a 

Because f' can be discontinuous on (a.b) this integral is not necessarily equal to f '(b) - f '(a). By 

Theorem 2.8 it now follows that in this case we are asymptotically maximizing 

1 
b-a r 2 - rnii _1 K (u)du, 

which leads for the uncorrected method to the same type of behavior as in case m above. 

Since in cases II and m the third term in (3.18) is negligible the corrected method indeed 

asymptotically minimii.es the weighted mean integrated squared error (3.19). This corresponds to 

Marron's optimality result given in Theorem 3.3. Notice that in cases II and ill the density f satisfies 
a Lipschitz condition on an £-neighborhood of [a.bl for some£ small enough. If the kernel K has a 

bounded support then this property can replace the condition in Theorem 3.3 that f should be 

Lipschitz on the whole real line. 

Finally we consider case I. Suppose that di, ... , dm denote the jumping points off in (a,b) 

then we have similarly to (3.22) 

I b(u,h)du = 
E 

1 0 m 1 

h6<0>(a)Jbo(t)dt + h6<0>(b)_!bo(t)dt + h ~6<0>(di)_!bo(t)dt = 

1 

h (6<0>(a) - 6<0>(b))Jbo<t)dt, 

since bo is odd. Notice that since bo is negative on (0,1] the integral above is also negative. For the 

third term in (3.18) we have forh small enough 

Eg(.1n1(X1,h))IE(X1) = 

Eg((t~(X1) - f(X1))f1(X1))IE(X1) = 



where 

(3.23) 

J E g((rlcu) - f(u))f1(u))f(u)du = 
E 

a+h b m di-lb 
( I + I + ~ I ) E g((rlcu) - f(u))f1(u))f(u)du = 

a b-h 1=1 d;-h 

11-Hl b m d;-ib 

( I + I + ~ I ) g((Ef~(u) - f(u))f1(u))f(u)du = 
a b-h t= 1 d;-h 

a+h b m d;-ib 

( I + I + ~ I ) g(b(u,h)f1(u))f(u)du ... 
a b-h i=l d;-h 

· h)'(f,K), 

1 
)'(f,K) := f(a+)Jg(f(a+)"16<0>(a)bo(t))dt + 

0 

f(b-)_1g(f(b-)"16<0>(b)bo(t))dt + 

m 1 0 

~ (f(di+ )J g(f(di+)"16<0>(di)bo(t))dt + f(di-)_! g(f(di-)"16<0>(di)bo<t))dt). 
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So in case I this term is not negligible. Again by Theorem 2.8 we see that in case I we are 

asymptotically maximizing 

However using the corrected method we are asymptotically maximizing 

Since in case I situations the third term in (3.18) is not negligible neither the uncorrected nor the 

corrected method asymptotically minimizes the integrated squared error (3.19). So Marron's 

optimality result does not hold for densities with jumps in the interval [a,b]. Notice that if neither a 

nor b is a jumping point off then there is no difference in the asymptotic behavior of the uncorrected 

and the corrected method because the first term in (3.24) vanishes. 



54 

These heuristics lead to the next theorem which gives the rates of convergence of the 

bandwidths obtained by likelihood cross-validation. 

Theorem 3.4. Suppose that Eis a bounded interval [a,b], -oo<a<b<oo, and that the density f 

satisfies Condition F and is bounded away from zero on E. Let d1, ... ,dm denote the singular points of 

fin (a,b). Further assume that the kernel K satisfies Condition Kand has a bounded second 

derivative. For some a>O let In denote the interval [h0,hii] with hh=n-l+o andhii=n-o. Let Hn denote 

the value ofh which maximizes LCVn(h) over In and let~ denote the value ofh which maximizes 

LCVii{h) over In. The next statements hold almost surely. 

(a) Case I: /fHn==Cnn·112then 

(3.25) 

provided 
1 1 

(6<0>(b )-6Co>(a))Jbo<t)dt + ¥ <0> Jb6(t)dt - y(f,K) > 0. 

provided 
1 

¥<0> Jb6(t)dt -y(f,K) > 0. 

(b) Case II: //Hn=Cnn·113then 

liminf (logn)112+£ C ~ 1 
n-- n 

(3.27) 

limsup 1 l+£ Cn S 1, 
0-- (log n) 

provided 
m 1 1 b 

(6(1>(a) + 6<1>(b) + 2~6(l)(di))Jb1(t)dt +½h2ju2K(u)du ! f "(u)du < 0. 

/f Hfi=Cfin·114 then 

(3.28) lim ~ = an(f,w)114~n(K)114• 
n--
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(c) Case lll: 1/Hn=Cn n-113then 

liminf (logn)1fl+E Cn .!: 1 n--
(3.29) 

limsup l l+E CnS 1, 
0-- (log n) 

providedf'(b) < f'(a). 

(3.30) fun ~ = am(f,w)115~m(K)1/S. n-- I 

Here the constants an(f,w), am(f,w), ~n(K) and ~m(K) are the factors in the optimal bandwidths 

given in (2.25), where the weight function should be taken equal to f 11E, and 'Y(f,K) is defined in 

(3.23). So the limits (3.28) and (3.30) are the optimal constants in cases II and ill respectively. 

Remark 3.5. Since by Remark 2.9 the expansions of the mean integrated squared error hold 

uniformly for h in (0,hi:] for any sequence of positive hii converging to zero, for the corrected method 

in cases II and ill the theorem above implies (3.11) of Theorem 3.3. By an argument based on a 

result of Marron & Hllrdle (1986), similar to the one Cline & Hart (1986) use to prove their Theorem 

6, it can be shown that (3.10) also holds. 

Next we consider the type of densities studied by Chow, Geman & Wu (1983) and Devroye 

& Gy0rfi (1985), i.e. we assume that f has bounded suppon [c,d] and E=[c,d]. This means that we 

compute the product (3.9) over all the data points Xi, Also assume f continuous and bounded away 

from zero on E. This is a case I situation with 
1 1 

'Y(f,K) = f(c+)Jg(f(c+r1f(c+)bo(t)}dt + f(d-)Jg(-f(d-r1f(d-)bo(t))dt = 
1 

(f(c+) + f(d-))Jg(bo(t))dt < 0. 

This constant is negative because g is an increasing function on (-1,oo) with g(0) = 0. So g is negative 

on (-1,0) and since bo is negative on (0,1) the function g(bo) is also negative. We also have by partial 

integration 

1 
(6<0>(d)-6<0>(c))Jbo(t)dt = 

1 1 

(f(c+) + f(d-))J</K(u)du)dt = 

1 

(f(c+) + f(d-))JuK(u)du > 0. 
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Using the equality A<0>=f(c+)+f(d-) the next result now follows from Theorem 3.4. 

Corollary 3.6. Let f satisfy Condition F and have bounded support [c,d]. Let E=[c,d] and let f be 
continuous and bounded away from zero on E . .lf Hn=Cnn·112 and H8=ecn11·112 then under the 

conditions of Theorem 3.4 we have almost surely 

(3.31) 
½{d-c) lK2(u)du }1/l 

Jim Cn=~------....----:..--.----.----
n-+-

(f(c+) + f(d-))(JuK(u)du + ½Jba(t)dt-JgCbo(t))dt) 

and 

(3.32). { 
l }112 

Jim ~ = ½{d-c)_lK2(u)du . 

n-+- (f(c+) + f(d-))(½Jba(t)dt -Jg(bo(t))dt) 
I 

Remark 3.7. The asymptotically optimal constant for the weight function f 1IE in the case I situation 

of this corollary is given by (2.25). It equals 

The co1TCSponding optimal bandwidth hnopt is equal to Coptn·112• Note that the quotients of the limits in 

(3.31) and (3.32) and Copt depend only on the kernel function Kand not on the density f. This means 

that we can obtain almost sure convergence to the asymptotical optimal constant Copt by multiplying 
the computed bandwiths Hn and Hi by a known constant. However, even using the optimal 

bandwidths, unavoidably we have a large error since we are dealing with a case I situation. It would 
be better to use the symmetrization device described by Schuster (1985) combined with cross­

validation to determine a good bandwidth. Cline & Hart (1986) discuss this approach for least 
squares cross-validation. 

The two previous theorems show that in the cases II and m, i.e. if the density f has no jumps 
in the interval [a,b], the bandwidths Hi are asymptotically almost surely equivalent to the 

deterministic asymptotically optimal bandwidths with respect to the weighted mean integrated squared 
error MISEn(h), where 

b 
MISEn(h) = E ISEn(h) = EJ (fnb(X)- f(x))f1(x)dx. 

a 
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Let~ denote the positive value ofh which minimlles the integrated squared error ISEn(h). Since Hri 

is the random bandwidth which we would like to approximate we derive the asymptotic distribution 
of ffn -Hri. The next theorem establishes the asymptotic normality of ffn - Hri in the cases II and m. 
The proof is given in Section 3.4. 

Theorem 3.8. Suppose that the conditions of Theorem 3.4 are satisfied. With L(u):=K(u)+uK'(u) 
we define the constants a1-, <Jff and CJffi by 

1 

a1- := 4(b-a)J L 2(u)du, 

1 1 

OfI := ,~.<1) J ( l (t-u)L(u)du)2dt, 

1 b b 
<Jffl :=¼( r u2K(u)du)2( J f "(xff1(x)dx - {J f "(x)dx)2), 

-1 a a 

and the constants ao, «1 and «2 by 

1 

ao := ¥, J K2(u)du, 

1 b 
«1 :=½( r u2K(u)du)2 J f "(x)2r1(x)dx 

-1 a 

1 1 

a2 :=½ t.O>J (/ (t-u)K(u)du)2dt. 

Then we have in case 11 

n318(ffn_ - Hri) ~ N(O,ft(2ao·st4a2314a1-+ ao·114a2714an)) 

and in case 111 

I 

The second statement of this theorem is similar to Theorem 2.1 in Hall & Marron (1987a), the 

asymptotic normality result for the bandwidths computed by least squares cross-validation, the only 

difference is in the asymptotic variance. It shows that for smooth densities we also have the slow 

convergence demonstrated by (3.6) for least squares cross-validation. Though formally it doesn't 

apply here since we use a different weight function, this result is coherent with Theorem 2.1 in Hall 

& Marron (1987b), which states that we can not expect a faster rate of convergence. This theorem 

assumes the densities to be twice differentiable, essentially our case m situation. It is a nice surprise 

that the first statement of our theorem shows a faster rate of convergence. In that case we have 
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He H • -3/8 
n • n _ n..f!! ) _ n..r -1/8) 

Hri - '1'~ - "'P'n ' 

which is of smaller order than the bound Op(n-111°) which holds in the smooth case. Proceeding as in 

Hall & Marron (1987a) we would also obtain 

ISEn(Hij) - ISEn(Hri) _ n..( -1/4) · II 
ISEn(Hri) - ~p n , m case 

and 

ISEn(Hli) - ISEn(Hri) _ n..r -1/5) • m 
ISEn(Hri) - ~P'n ' m case ~ 

which shows that the minimal integrated squared error is also better approximated in case II. 

However we should keep in mind that if f has kinks in [a,b] this integrated squared error is of a larger 

order than it is for smooth densities. 

3.2. The derivative of log(LCV 0 (h)). 

The proofs of Theorem 3.4 and Theorem 3.8 in the previous section are based on expansions 

of the derivative of the function log(LCV n(h)). Before we can derive these expansions we give two 

successive decompositions of this derivative in Sections 3.2.1 and 3.2.2. In Section 3.3 we then 

obtain the expansions which prove Theorem 3.4. The proof of Theorem 3.8, stating the asymptotic 

normality of 8li - Hri, is given next in Section 3.4. 

3.2.1. A decomposition. 

We first consider the derivative of the kernel estimator fnh with respect to the bandwidth h. 

For K differentiable we have 

d 1 ~ d 1 
clhfnh(X) = ii;i dhnK((x-Xj)/h) = 

1 ~ 1 (x-~i) (3.33) n;i (-iii°K((x-Xi)/h)- h K'((x-Xi)/h)) = 

with 

(3.34) 

1 n 
• nh2 ~ L((X-Xi)/h) 

t=l 

L(x) := K(x) + xK'(x), ..oo < x < oo. 

This function plays an important role in the sequel. For kernels K, satisfying Condition K and having 

a bounded derivative, L has the following properties, 

(L.1) L has support (-1,1], 



(L.2) Lis bounded, 

(L.3) Lis symmetric, 
1 

(L.4) JL<u)du = 0. 

The first three propenies are immediate and property (L.4) follows by partial integration. 

The next figure shows the graph of the function L for the kernel K. given by 

K(x) = i<t-x2)3I1-1,11(x). 
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Notice that K' continuous implies L continuous, and that Lhasa bounded derivative if K has a 

bounded second derivative. This last property is required if we want to apply Theorem 2.16 to the 

derivative (3.33). 

0 

0 

0 

"! 
I 

-1.0 o.o 

Eiwre 3,1. The function L. 

Now consider log(LCVn(h)). Since 

-0
1 log(LCVn(h)) =-01 . I: log(~(Xi)). 

l!XjEE 

and 

we have 
1 
nlog(LCVn(h)) = 

Next use (3.33) to obtain 
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(3.35) 

1 d 
niDilog(LCVn(h)) = 

1 n 1 
1 ::,::-~ L((Xi-Xj)/h) - ::,::-K(O) 

_ ~ _nn__..,J=~l _____ nn __ _ 

iili i:XieE 1 n 1 
::,::-~ K((Xi-Xj)/h) - ::,::- K(O) 
nn J=l nn 

The following decomposition of this derivative is the key tool in our analysis of the behavior of 

likelihood cross-validation. 

Proposition 3.9. // the kernel K is differentiable and satisfies Condition K, and if we define the 

function L by (3.34), then 

1 d 
niDilog(LCVn(h)) = 

Un(h) + Yn(h) + Wn(h) + Yn(h) + R.n(h). 

where 

with 

and where 

(3.36) 

and 

U ij(h) := - ; 2 L((Xi-Xj)/h) f(Xi)"1 IE(Xi), 

V ij(h) := ~3 K((Xi-Xj)/h) L((Xi-Xj)/h) f(Xi)"2 IE(Xi), 

Wijk(h) := hK((Xj-Xj)/h) L((Xj-Xk)/h) f(Xj)"2 IE(Xi), 

1 n 1 n 1 
Y n(h) := - ::,::-~ { ::,::-~ L((Xi-Xj)/h) - ::,::-K(O)} 

nn i=l nn J=l nn 

1 n 1 
{ iili ~ K((Xi-Xj)/h) - f(Xi) - iili K(O)} 2 

{ ¼#i K((Xi-Xj)/h)-iikK(0)}-1 f(Xir2 IECXi), 

I 



Proof. Write the denominator in (3.35) as 

1 1 
fnh(Xi) - iili K(O) = f(Xi) + fnb(Xi) - f(Xi) - iili K(O) = f(Xi) + Am(h), 

thus defining Anj(h). Next we introduce the function g by 

1 1 1 s'-
g(x,s) := i+i-i'+ s i2'= x2(x+s) . 

This gives 

and therefore by (3.35) we have 

1 d 
iialilog(LCVn(h)) = 
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1 ~ { 1 ~ 1 }{ 1 Ani(h) } - ii1i i:~E iili ~ 1 L((Xi-Xj)/h) - iftiK(O) nxi}" - f(Xij2 + g(f(Xi).Am(h)) = 

1 D {1 D 1 } - iili ~ IE(Xi) iili ~ 1 L((Xi-Xj)/h) - iili K(O) 

{r&u- f(~i)2 (n\i,~1 K((Xi-Xj)/h) -n\i,K(O)) + g(f(Xi),Ani(h))}. 

This can be rewritten as 

6 
(3.37) ~ Zni(h) + Yn(h) 

t=l 

with 
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and 

Now note that 

Zra(h) = -2.nJ(h) - Zns(h) + 2'.n6(h) + Vn(h) + Wn(h), 

2'.n6(h) =½Rn(h), 

which shows that (3.37) equals 

Un(h) + Vn(h) + Wn(h) + Y n(h) + Rn(h). 

This completes the proof of the proposition. 

3.2.2. The relation to U-statistic theory: a second decomposition. 

I 

The statistics Un(h), Vn(h) and Wn(h) in the preceding section are U-statistics. If q, is a 

symmetric real valued function defined on the m dimensional Euclidean space then a U-statistic of 

degree m with kernel q, is defined as 

(!)"1 
. _I, q,(Xil'•··•Xim)• 

(11 , .. ,,1m)e Cn,m 

where Cn,m is the set of all ordered m-tuples (i1, ... ,im) of different indices from the set { 1,2, ... ,n}. 

Note that, with 

~(x,y) := -ffe'L((x-y)/h)(f(x)"11E(X)+f(y)"1IE(Y)), 

~(x,y) := ~ K((x-y)/h)L(x-y}/h)(f(x)"21E(x)+f(y)"2IE(Y)), 

we have 
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so up to normalizing factors Un(h) and Vn(h) are indeed U-statistics. Also notice 

and 

Similarly we can write Wn(h) ~ 

where 

i.e. the sum over all pennutations of the indices. So Wn(h) is a U-statistic of order 3. 

The kernel functions q,~, q,~ and q,: depend on the bandwidth. To derive the asymptotic 

distribution theory for likelihood cross-validation we need the asymptotic distribution ofU11n(hn) for a 

sequence of bandwidths Chn) (The terms Vhn(hn) and W11n(hn) are negligible). In that case we are 

dealing with a statistic of the fonn 

a U-statistic with a kernel depending on the sample sire. The asymptotic distribution theory for this 

type of statistics is studied by Hall (1984), Jammalamadaka & Jansson (1986), De Jong (1987, 

1990), Nolan & Pollard (1987, 1988). 

Although we can not use the theory for U-statistics with fixed kernels, we can employ 

Hoeffding's projection technique to derive a decomposition of a U-statistic (Hoeffding (1948), 

Serfling (1980)). This results in the following decompositions 

n-1 
Un(h) = n EUij(h) + 

n-11 ~ n-11 ~ 
-n -n ~ (E(Uij(h)IXi) - EUij(h)) + -n -n ~ (E(UijCh)IXj) - EUijCh)) + 

l=l J=l 

which we rewrite ~ 

n-1 
Un(h) = n EUij(h) + 
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n-11 ~ n-11 ~ 
-n -n !- (E(Uij(h)IXi) - EUij(h)) + -0 -n !- (E(Uij(h)IXj) - EUijCh)) + 

1=1 J=l 

where 

and 

Similarly we decompose Vn(h) mi 

n-1 
Vn(h) = °7 EVijCh) + 

n-11 ~ n-11 ~ 
-::r-!- (E(Vij(h)IXi)- EVijCh)) +-::r-n !- (E(Vij(h)IXj) - EVijCh)) + 
n n 1=1 n J=l 

where 

~n(h) := l:E ~iJ·(h), 
D3 i".i 

and 

Finally we also decompose the statistic Wn(h). We get 

Wn(h) = (n-l~~n-2) EWijk(h) + 

(n-l)(n-2) 1 ~ 
0 2 0 ti_ (E(Wijk(h)IXi)- EWijk(h)) + 

(n-l)(n-2) 1,f (E(W·· (h)IX·)- EW•,...fh)) + 
n2 n j=l tJk J IJJ<, .. 

(n-IXn-2) 1 ~ 
n2 n i:'l (E(Wijk(h)IXk) - EWij1tCh)) + 

where 

~ (h) := .!,. l; ~-·1c(h) n n3i,,j..it IJ 

and 
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An imponant property of these decompositions is that the conditional expectations of the tenns of 
tin(h) given the X's vanish, i.e. for k=l, .•. , n 

This implies that tin(h) and the linear tenns in the d~omposition of Un(h) are uncorrelated, an 

inherent property of the Hoeffding decomposition. The other two decompositions have a similar 

property. 

We obtain a further decomposition oftbe derivative ofn"1log(LCVn(h)) by plugging in the 
previous ones of the statistics Un(h), Vn(h) and Wn(h) in the decomposition derived in the previous 
section. Then we compute the various conditional expectations appearing above. These conditional 
expectations can be expressed in tenns of functions b6 with G equal to one of K, L, ~ KL, the 
product of the functions K and L. These functions b6 are generali7.ations of the bias function b in 
Section 2.2. We also introduce generalizations of the functions bo, bt and i>2 which appeared in the 
expansion of the bias. 

Definition 3.10. The functions b6 , b8, b'i. andb~ are defined by 

1 (x-X1~ 1 1 • 1 
b6 (x,h) := E J10( ¥, -f(x) J G(u)du = Ii 1 G((x-u)/h)f(u)du - f(x) J G(u)du 

and 

if t<O 

if t~O 

for m=O,J ,2. 

The proof of the next lemma is a direct generalization of the proof of Theorem 2.3 and is therefore 
omitted. 

Lemma 3.11. Assume that O is a bounded symmetric measurable function with support equal to 

[-1,1 J and that the density f satisfies Condition F. Let (hn) be a vanishing sequence of positive real 
·· numbers. 

(a)Then 
1 

b6 (x,h) =½h2f"(x)_! u2G(u)du + r1(x,h) 

where the remainder r1 satisfies 

fun sup sup h"2 lr1(x,h)I = 0, 
n_..,. O<hShn' xeDi.n[-M,MJ 

for every positive M. 
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(b) For xoafixedpointwe have 

1 

·}ti2j u2G(u)du{f "(xo-)1(.-,o)(t) + f"(xo+)l(o,oo)(t)} + 

where the remainder r2 satisfies 

fun sup sup h"2 lr2(t,h)I = 0 
n- O<hSh0 ' -MSISM,t,O() 

for every positive M. I 

We now state the main proposition of this section. 

Proposition 3.12. If the kernel K is differentiable and satisfies Condition K, and if we define the 
function L by (3.34), then we have the following decomposition, 

1 d 
iiolilog(LCVn(h) = 

nn-l EUijCh) + ~EVij(h) + (n-l~n-2) EWijk(h) + 
n n 



Y n(h) + Rn(h), 

where the functions Ut, u2, Vt, v2, Wt, w2, W3 are defined by 

Ut(X,h) .- -k bL(x,h) f(xrt1E(X), 

u2(x,h) .- -~ J L((u-x)/h)du, 

t 

Vt(x,h) .- ~ (f(x)_/KL(u)du + bKL(x,h))f(xr2IE(X), 

(3.38) v2(x,h) := ~ JKL((u-x)/h)f(urtdu, 

Wt(X,h) := k bK(x,h)bL(x,h)f(xr2IE(X) , 

w2(x,h) := ~ J K((u-x)/h)f(urtbL(u,h)du, 

w3(x,h) := ~ J L((u-x)/h)f(ur1bK(u,h)du . 
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To prove this result we only have to compute the conditional expectations in the decompositions of 

Un(h), Vn(h) and Wn(h). These conditional expectations are given by the next lemma 

Lemma 3.13. The conditional expectations of Ui;(h), Yij(h) and WijkCh) are given by 

(a) E(Uij(h) I Xi)= -* bL(Xi.h) f(XfftlE(Xi) = 2u1CXi.h), 

E(Uij(h) I Xj) = - 'ffe J L((u-X;)/h)du = 2u2(Xj,h), 

t 

(b) E(Yij(h) I Xi)= b<f(Xi)_fL(u)du + bKL(Xi,h))f(Xir21E(Xi) = Vt(Xi,h), 

E(Yij(h) I X;) = ~ JKL((u-X;)/h)f(urtdu = v2(X;,h), 

(c) E(WiJ"k(h) I Xi)= -½E (Uilc(h) I Xi) +kbKcXi,h)bLCXi.h)f(Xff2IE(Xi) = 
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E(Wijk(h) I Xj) = b J K((u-Xj)/h)f(ur1bL(u,h)du = w2(Xj,h), 

E(Wijk(h) I Xk) = -½ E (Uik(h) I X0 + b JL((u-Xk)/h)f(ur1bK(u,h)du = 

Proof. We only derive the expressions for ECWijk(h)IXi) and E(Wijk(h)IXk). The other expressions 

are obtained similarly. We get the conditional expectation ofWijk(h) given Xi and Xk by integrating 

out Xj, 

00 1 
J if K((Xi-v)/h)L((Xi-X0/h)f(Xir2IE(Xi)f(v)dv = .... 

1 1 00 

ii7'L((Xi-Xk)/h)f(Xir2IE(Xi){f(Xi) + Ii J K((Xi-V)/h)f(v)dv - f(Xi)} = .... 

Next we obtain ECWijk(h)IXi) = E(E(Wijk(h)1Xi,X01Xi) by integrating out Xk. This gives 

-½ E(Uilt(h)IXi) + j b L((Xj-W)/h)f(Xi)"2IE(Xi)bK(Xi,h)f(w)dw = 
-00 

Similarly we compute ECWijk(h)IXk) by integrating out Xi. This gives 

ECWijk(h)IXk) = 

-,½E(UikCh)IXk) + j bL((u-Xk)/h)f(ur21E(U)bK{u,h)f{u)du = -
-½ E{Ujk(h)IXk) + b J L((u-Xk)/h)f(ur1bK(u,h)f(u)du ' 

E 

which is the correct expression. I 
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Proposition 3.12 gives us a basis for deriving both the rates of convergence to i.ero as well as the 

asymptotic distributions of the bandwidths computed by likelihood cross-validation. In the following 

section we obtain results on the rates of convergence to i.ero. Distributional properties are studied in 

Section 3.4. 

3.3. Rates of convergence: proof of Theorem 3.4. 

Recall that the random bandwidth Hn computed by the uncorrected likelihood cross-validation 

method is equal to the value of h which maximizes the random function LCV n, defined in (3.9), over 

the interval In=Chii.hii], where hii=n-l+o and hii=n-0 for some a>O. The random bandwidth Hg 

computed by the corrected likelihood cross-validation method is equal to the value of h which 

maximizes the random function LC~ over the interval In. The function ~ is obtained from LCV n 

by 
(3.39) 

n 1 
LC~(h) = LCVn(h) exp(-~ Ii J K((u-Xi)/h)du). 

In this section we prove Theorem 3.4 concerning the rates of convergence to i.ero of the random 

bandwidths Hn and ~. We consider the root and the sign of the derivative of the random functions 

log(LCVn(.)) and log(LC~(.)). 

Throughout this section we assume that the conditions of Theorem 3.4 are satisfied, i.e. we 

assume that E=[a,b] and that the density f satisfies Condition F and is bounded away from zero on E. 

Further we assume that K satisfies Condition Kand has a bounded second derivative. By d1, ... , dm 

we denote the singular points off in the open interval (a,b). We treat the points a and b separately. 

The decomposition given in Proposition 3.12 gives the next expansion of the derivative of 

log(LCV n(.) ). The proof of this expansion is given at the end of the section. 

Proposition 3.14. // we write 

1 d 
iicllilog(LCVn(h)) = 

1 n 1 
- ii~ 1i7 JL((u-Xj)/h)du + 

b-a t 
~JK2(u)du + 

~ Jt,l-(u,h)bK(u,h)f(ur1du + 

Yn(h)+ 

Rn1(h), 
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where Y nCh) is defined by (3.36). then the remainder term Rn1 satisfies 

sur, <Jn(h) IRn1Ch)I = o(l). almost surely, 
hen 

with <Jn(h) equal to 

in case I 

in case II 

in case Ill. I 

Now we also automatically obtain an expansion for the derivative of log(LC~(.)) since by (3.39) 

and (3.33) we have 

1 d 
iiclli log(LC~(h)) = 

ld ld(~lr ) (3.40) iicllilog(LCV(h))- 0clli ~ Ii E K((u-Xi)/h)du = 

ld l~lJ 
iiclli log(LCV(h)) +ii~ ii7 E L((u-Xi)/h)du . 

It follows that the correction factor removes the first term in the expansion of ¼ ¼ log(LCV n(h)) 

given by Proposition 3.14. Using the expansions of the bias functions bK and bL, provided by 

Lemma 3.11, next we expand the deterministic third term. 

Lemma 3.15. We have 

1 

-tli<0>Jb!(t)2dt + r1(h) in case I 
1 

(3.41) -;h2Li(l>Jb~(t)2dt+h2r2(h) incasell , 
1 

-t h3( r u2K(u)du)2 J f "(u)2r\u)du + h3r3(h) in case Ill 
-i E 

where r1 (h), r2(h) and r3(h) converge to zero uniformly for he In. I 

Proof. Let Dti denote the set of points on the real line which are at least at a distance h from the 

singular points off. For n large enough and he In write 
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First consider case m. Then the interval E = [a.b] contains no singular points. By Lemma 3.11 we 

have for n large enough 

k J bL(u,h)bK(u.h)f1(u)du = 

where the remainder tenn r4(h) vanishes unifonnly for he In for n tending to infinity. Since by partial 

integration we have 
1 1 

J v2L(v)dv = -2J v2K(v)dv 

this proves (3.41) for case m. In the cases I and II the integral over ErlDh is asymptotically 

negligible and the term 

a+h b m dj-tb 

(3.42) k( J + J + ~ J ) bL(u,h)bK(u,h)f1(u)du 
a b-h 1= 1 di-h 

dominates. Let di be a singular point off in the open interval (a.b). The tenn corresponding to di in 

the sum (3.42) is equal to 

(3.43) 
dj+h 

Iii J b1-(u,h)bK(u,h)f1(u)du. 
di-h 

By Lemma 3.11 this term is equal to 

1 
J&(O)(di)bW(t)3(0)(dubf(t)f1(dj+th)dt + o(l) = 

1 
&C0>(du2_f bW(t)bf(t)f1(dj+th)dt + o(l) = 

1 0 
&<0>(ciu2(f1(di+)Jblfct)bf(t)dt + f 1(di-)_fbW(t)bf(t)dt) + o(l) = 

1 
a<0>(du2(f1(di+) + f 1(dj-))Jblfct)bf(t)dt + o(l). 
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since b! and bh are odd functions. If 6<0>(d;) is equal to rero then the expansion of (3.43) becomes 

1 

.{ 6<1>(di)bt(t)60>(dJb~(t)f1(di+th)dt + o(h2) = 
1 

h26°>cdi(f1(di+) + f 1(dj-))Jbr<t)b~(t)dt + o(h2). 

Similar expansions hold for the points a and b. The unifonnity of these expansions is readily verified 

so it remains to show the equalities 
1 1 

(3 .44) Jbh(t)b!(t)dt = -½ Jb!(t}2dt 

and 1 1 
(3.45) Jbr<t)bfo)dt = -j Jb~(t}2dt. 

The proof of these equalities is postponed to the end of Section 3.5. I 

We also need a bound on the term Yn(h). For cases II and ill it is given by Lemma 3.16. 

Lemma 3.17 provides information on Y nCh) for case I. Both lemmas are proved in Section 3.5. 

Lemma 3.16. For some constant c > 0 

where 

limsup sup an(h) IY nCh)I < c, almost surely, 
n~ heln 

in case II 

in case Ill I 

First consider the corrected method in the smooth case ill. Proposition 3.14, (3.40), Lemma 3.15 

and Lemma 3.16 imply 

(3.46) ¼¼1og(LC~(h)) = ~- a 1h3+ Rn2(h) {;¾z+ h3), 

where for some sequence of almost surely vanishing random variables Sn we have for all he In 

(3.47) 1Rn2(h)I s Sn, 

and the constants ao and a1 are defined in Theorem 3.8. Substituting h = cn-115 in relation (3.46) and 

multiplying by n315 we get 

(3.48) ~- a1c3+ Rn2(cn-115) (?'+ c3). 
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Let Co be equal to (ac/a1)1/5 then Co is equal to the optimal constant for the mean integrated squared 

error in case ill for the weight function w = f 1IE (see (2.25)). Next we rewrite (3.48) as 

1 + c3 

(3.49) (~- a1c3)(1 + Rni(cn-115) ~ 3 ). 
"?- a1c 

We see by (3.47) that for any O <£<Co and for all n larger than a random integer N(e) the expression 

(3.49) is positive for all c in (O,co-e)nn115In and negative for all c in (co+£,co)nn115In. So if we write 

Hg= cg n-1ts then for all£ in (O,eo) 

Co-£ s Qi S co+£, for all n .!: N(e). 

Thus we have shown 

Jim cg= Co, almost surely, n-
which proves (3.30), i.e. the almost sure convergence to the optimal constant for case III. 

The proof of statement (3.28) of Theorem 3.4 for the case II is exactly the same except that the 

second term in (3.46) is of order h2 instead of h3. In case II we have 

1 d uC 1 2 {..! 2) (3.50) iialilog(LCv 11(h)) = ~- a2h + Rn3(h) 'nii7+ h , 

where a2 is given in Theorem 3.8, and Rn3(h) satisfies a condition similar to (3.47). 

In case I the situation is different since then the term Y nCh) in the expansion of proposition 

3.14 is no longer negligible. The next lemma deals with this term. The proof is given in Section 3.5. 

Lemma 3.17. Let d1, ... , dm denote the jumping points off in (a,b). Then 

Y n(h) = 'Y(f,K) + Rn4(h), 

where 'Y(f,K) is defined in (3.23) and Rn4(h) satisfies 

( ..! )-1 sup 'nii7+ 1 IRn4(h)I = o(l), almost surely. 
heln 

I 

We now get the following expansion of the derivative of log(LC°Vli(.) ), 

1 d 1 (..! ) (3.51) iialilog(LC°Vli(h)) = ~- a3+ 'Y(f,K) + Rn5(h) 'nii7+ 1 , 

where for some almost surely vanishing sequence of random variables Sn we have for all he In 
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Here ao is the same as above and <13 is given by 
I 

(l3 :=½A(O) J blfo}2dt. 
0 

Contrary to the previous cases here the leading tenn of (3.51) does not always have a root in (0,oo). H 

<13 - "f(f,K) < 0 then by the same argument as above the derivative is positive for all he In for n larger 

than some random integerN. This means that we find large values ofl-fn. On the other hand if <13-

"f(f,K) > 0, defining~ by 1-fn = ~n-112, we get (3.26) of Theorem 3.4. 

Having dealt with the part of Theorem 3.4 about the corrected method we proceed with 

proving the results concerning the uncorrected method. The next lemma gives expansions of the 

expectation of the correction term 
1 n 1 
ii~ ii2' J L((u-Xi)/h)du . 

Since the proof is a straigthforward application of Lemma 3.11 it is omitted. 

Lemma 3.18. We have 

1 b 
E ii2' ! L((u-Xi)/h)du = 

I 

(6<0>(a) - 5<0>(b))J bh(t)dt + r1(h) in case I 
m l 

h(6Cl)(a) + 5CO(b) + 2~6C1>(di))J bt(t)dt + 
b l 

½ti! f "(u)duj u2L(u)du + hr2(h) in case II 

b l 

¥1! f "(u)duj u2L(u)du + hr3(h) in case Ill, 

where the functions r1(h), r2(h) and r3(h) converge to zero uniformly for he In. 

By the statement concerning u2 in Lemma 3.19 below we also have almost surely 

1 n 1 b 1 b 
nlog n sup (nh)112 It (ii! J L((u-Xi)/h)du - E ;:Th J L((u-Xi)/h)du)I = o(l), 

heln 1~1 a a 

so the correction tenn is equal to 

lJb ~ (3.52) E ii7' L((u-Xi)/h)du + Rn6(h) 112 , 
a (nh) 

where Rn6(h) for all he In satisfies 

I 
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1Rn6Ch)I $ Sii 

for some almost surely vanishing sequence of random variables Sji. It is not hard to show that the 
asymptotic standard deviation of the correction term is of the order (nhr112, so apart from the factor 

log n the bound in (3.52) is sharp. 

First consider the uncorrected method in case m. Substracting expansions (3.46) and (3.52) 

we get 
1 d 
ii ali log(LCV nCh)) = 

ld l~lJ iiali log(LC~(h)) - ii~ ji'Z' E L((u-Xi)/h)du = 

b 
1 3 ~ 3) lJ ~ Oo::i:7nh - a1h + Rn2(h) :.:7+ h - E i:'!h L((u-Xi)/h)du - Rn6(h) 112 , 

a (nh) 

which by Lemma 3.18 equals 

Oo::i:7nhl - a1h3 + <X4h + hr3(h) + Rn2(h) ( :h+ h3) - Rn6Ch) log ~2 = 
'nh (nh) 

(3.53) Oo::i:Tnhl + <X4h + hr3(h) + ~(h) ( :h+ h3) - Rn6(h) log ~2 • 
'nh (nh) 

where a.. is given by 
b I b I 

a..= -½ J f "(u)duj u2L(u)du = J f "(u)duj u2K(u)du 

and r4(h) converges to rero uniformly for he In, Next notice 

1 -{(nh3)112 ¾r 
(nh)t,z - 1 h • 

(nh3)1,Z 

so if nh3 converges to rero or infinity fast enough the term (nh)" 112log n is negligible compared to the 
leading terms in (3.53}, uniformly for he In, However if nh3 remains bounded away from rero and 

infinity then this term is not negligible. Writing h = cn·113 and multiplying (3.53) by n113 we rewrite 

(3.53) as 
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Now assume that 04 is negative then O-OC-2 + 04c has a root in (O,oo ). By a similar argument as we 

used for the corrected method we then find that for n larger than a random integer N we have for all 

t>O 

which gives 

and 

1 l/2+£ < Cn S (logn)1+£ 
(logn) 

liminf (logn)112+£ Cn ~ 1, almost surely, 
D-joo 

limsup 1 l+£ Cn S 1, almost surely, 
n-joo (log n) 

thus proving (3.29). 

For case II the proof of (3.27) is exactly the same except that the constant 04 is different since 

Lemma 3.18 gives a different constant. Here 04 is equal to 

m 1 b 1 

- h (o(l>(a) + o<l)(b) + 2;0<1>(di))J bT(t)dt -~. ! f "(u)duj u2L(u)du = 

m 1 b 1 

2h (o(l>(a) + 6<1>(b) + 2;6co(di))J bf(t)dt + h ! f "(u)duj u2K(u)du , 

where we use (see the end of Section 3.5 for the proof) 
1 1 

(3.54) J bY(t)dt = - 2J bf(t)dt. 

Statement (3.25) for case I can be proved in the same way as we proved (3.26) because in this case 

the variation of the correction term is negligible since uniformly for all he In we have logn (nhr112 = 

o(l ). Here we need the relation 
1 1 

(3.55) J bh(t)dt = - J b!(t)dt, 

the proof of which is also postponed to Section 3.5. 

To complete the proof of Theorem 3.4 we now prove Proposition 3.14. 

Proof of Proposition 3.14. The proof is based on the decomposition given by Proposition 3.12. 

Combining some of the terms of the decomposition we write 



n-11 n 1 b 
- -n -n ~ ;:7h J L((u-Xi)/h)du. 

t=l a 

By Lemma 3.13 this is equal to 

n-1 ( ) n-1 n 2Eu2(X1,h) - Eu2(X1,h) + n7" Ev1(X1,h) + 

n b 
(n-l)(n-2) ) n-1 1 ~ 1 J 

2 (-Eu1(X1,h) + Ew1(X1,h) - -n -n ~ ;:7h L((u-Xi)/h)du = 
n 1=1 a 

n~l Eu2(X1,h) - (n-l~~n-2) Eu1(X1,h) + 

~Ev1(X1,h) + (n-l)~n-2) Ew1(X1,h) + 
n n 

n-11 n 1 b 
---~ ;:7 J L((u-Xi)/h)du. n n 1=1 h a 

Notice that by Lemma 3.11 we have 

1 
b-a r 2 h 

(3.56) 2nh2 .t K (u)du + iiii2'r4(h), 

where r4(h) converges to rero uniformly for he Jn. Here we use the equality 
1 1 1 

JKL(u)du = J (K2(u) + uK'(u)K(u))du = ½JK2(u)du. 

Furthermore we have 

Ew1(X1,h) = k Jb1-(u,h)bK(u,h)f(u)"1du 

and since Eu1(X1,h) = Eu2(X1,h) = EUijCh) we also get 

n-1 (n-l)(n-2) 
nEu2(X1,h)- :i7 Eu1(X1,h) = 

(3.57) 
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It follows from Lemma 3.18 that (3.57) is asymptotically negligible and from Lemma 3.15, Lemma 

3.18, (3.52) and (3.56) that the factors (n-1)/n and (n-l)(n-2)/n2 can be replaced by one. 
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Since the term Rn(h) is readily dealt with it remains to show that the linear terms corresponding to the 
functions u1, v1, v2, w1, w2 and w3 and the quadratic terms fin(h), ◊n(h) and ~n(h) are 

asymptotically negligible. This is achieved by the next two lemmas which are proved in Section 3.5. 

Lemma 3.19. Let q> be one of the functions u1, u2, vi, v2, w1, w2 and w3 and let (<Xn(.)) be 

sequence of positive functions on (0,oo ). The statement 

(3.58) 
1 n 

nlog n sup an(h) I~ (q>(Xi.h) - Eq>(Xi,h))I = o(l), almost surely, 
heln 1-l 

is valid/or q> = u1, q> = w2 and q> = w3 if 

in case I 
in case II 
in case Ill 

It is valid/or q> = u2 ifwe take an(h) equal to n112h112Jor q> = v1 and q> = v2 ifwe take an(h) equal to 

n112h2 and/or q> = w1 if 

in case I 
in case II 
in case Ill 

Lemma 3.20. For any a>O we have 

sur, n-a(nh312) l◊n(h)I 
hen 

= o(l), almost surely, 

(3.59) suf. n•a(n2h512) l◊n(h)I = o(l), almost surely, 
hen 

sur, n-a(n312h2) l~n(h)I 
hen 

= o(l), almost surely. 

I 

I 

The proof of Proposition 3.14 is completed by checking that the bounds provided by these two 

lemmas are small enough. For instance for the term corresponding to the function u1 we use 

{
:h(nh2)1/2 hl/2 

n•l!lh-112 = nh ' 
1 1 h 1/2 

(nhz)ttz 

which shows by distinguishing the cases nh2~1 and nh2<1 that we have 

n•l!lh-112< (-¾z+ 1), 

for n large enough. So in case I the linear term corresponding to the function u1 is indeed small 
enough. The other linear terms can be treated similarly. For the quadratic term fin(h) we write 
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so by Lemma 3.20 this tenn is also asymptotically negligible. By similar bounds the other two 
quadratic terms are also negligible and the proof of Proposition 3.14 is completed. I 

3.4. Asymptotic distribution theory: proof of Theorem 3.8. 

Before we study the asymptotic distribution of the bandwidths obtained by likelihood cross­

validation we first derive some properties of~. the value of h in the interval In which minimi7.Cs the 

integrated squared error ISEn(h), given by 

(3.60) ISEn(h) = J (fnh(x) -f(x))2r1(x)dx. 
E 

In the proof of Theorem 2.11 we already noticed that 

ISEn(h) = 

~~ J KCX-fi)K(\xi)r1(x)dx+ 

- iili2 -J:, I KCX-f i)dx + 
i=l E 

J f(x)dx. 

Since with Las in (3.34), 

we have 

Therefore 

d 1 (x:\ 1 L(x:\ 
alili K Ii' = - h2 Ii' 

d 
aliISEn(h) = 

-n~ ~ J KCXitxi)L(xhXi)r•(x)dx + 

~tiJ LCXitxi)dx+ 

- 2 'i:, J KCX-f i)L(!iiXi)r1(x)dx. 
ii'if°i=t 

d 
alilSEn(h) = 
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with Uij(h), YijCh) and Wijk(h) as in Proposition 3.9. Just as in Section 3.2.2. we use the Hoeffding 

projection technique and Lemma 3.13 to obtain the decomposition 

d 
anlSEn(h) = 

(ll-1 1 ) 2 n-1 
- \n+ 2fiZ EUij(h)- nEVij(h)- 2nEWijk(h) + 

(3.61) 

-2 Wn(h), 

where the functions w2, w3 and v2 are defined by (3.38) and 

By the same arguments we used to prove the bound on fJn(h) in Lemma 3.20 we have for any a>O 

(3.62) sup n-a(nh312) Wn(h) = o(l), almost surely. 
he In 

Next notice the similarity of (3.61) and the decomposition given by Proposition 3.12, and also notice 

that the linear tenn corresponding to the function u2, which dominated the behavior in case of the 

uncorrected likelihood cross-validation method, is of lower order in (3.61). Proceeding in the same 

way as in Section 3.3 we obtain the next result which states that in the three cases I, II and III the 

random bandwidths Hri are asymptotically almost surely equivalent to the detenninistic optimal 
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bandwidths for the mean integrated suared error, which is no surprise since we are directly 

minimizing ISEu(h). The proof of the theorem is omitted. 

Proposition 3.21. Suppose that Eis a bounded interval [a,b], -oo<a<b<oo, and that the density f 

satisfies Condition F and is bounded aw<J) from zero on E. Let d1, ... , dm denote the singular points 

off in (a,b). Further assume that the kernel K satisfies Condition Kand has a bounded first 

derivative. For some a>O let In denote the interval Chn,hn], with hn=n·l+<J and bn=n-<J. Let Hri denote 

the value of h which minimizes ISEu(h), given by (3.60), over In, The next statements hold almost 

surely. 

fun Cri = a1(f,w)112Pi(K)112• 
n-+oo 

(a) Case ll: If Hri=Crin·114then 

fun Cri = au(f,w) 114Pn(K)114• 
n-+oo 

(b) Case Ill: If Hri=Crin·115then 

fun Cri = am(f,w)115Pm(K)115• I 
n-+oo 

Here the factors a1, an, am, p., Pn and Pm are the factors in the optimal bandwidths for the mean 

integrated squared error given in (2.25) with w=f1IE, 

Another important property of Hri which we need is the fact that since the derivative of ISEu is 

equal to z.ero in the point Hri we have by (3.61) 

(3.63) 
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In order to derive the asymptotic distribution of ~ - Hri we assume that the conditions of 

Theorem 3.4 are satisfied. Define the two random functions D\P(.) and o<it>(.) by 

o(Jl(h) :=¼log(LC~(h)), h>O 

and 

By the mean value theorem we have 

for some random variable Rn between ~ and Hri. Thus we have the equality 

(3.64) (He _ H*) = _ D(Jl(H~) 
n n o(~l(Rn) • 

First consider the denominator. In cases II and ill it follows from Theorem 3.4 and Proposition 3.21 

that ~ and Hri are asymptotically almost surely equivalent to the deterministic optimal bandwidths 

given by (2.25). The same is clearly true for Rn. By examining the derivative of the decomposition 

given by Proposition 3.9, using the same techniques which led to (3.50) in case II, and to (3.46) in 

case ill, it can be shown that we have 

with 0-0, a1 and a2 as in Theorem 3.8 and where we have almost surely 

sur, 1Rn7Ch)I = o(l) and sur, IRns(h)I = o(l). 
hen hen 

Since the optimal constants in the cases II and ill are (ao/a2)114 and (ao/a1)115, respectively, we have 

almost surely 

(3.65) 

Next we examine the numerator of (3.64). Recall 

in case II 
in case III · 

1 (1) 1 d 1 ~ 
iiDn (h) = iidiilog(LCVn(h))- ii;t u2(Xi,h). 

Use Proposition 3.12, (3.40) and (3.63) to show that 

(3.66) ¼o<.PCHri) = T(Jl(Hri) + i{~>CHri), 



83 

where 

and 

2n-1 1 n-1 
- -:i:T4n EUij(h) - ::7 EYij(h) - 2 "".::T EWijk(h). n n 

It turns out that 1W(Hri) is negligible compared to nP(H~). By the next two lemma's we derive the 

asymptotic nonnality of 

(3.67) T<J)(Hri) = frn(Hri) + { n-l _nl tcu1(Xi.h) - Eu1(Xj,h)}} l11=u• . n 1=1 un 

Lemma 3.22. 
(a) In case II we have 

n518 (T\P(Hri) - t<J>(eoixn-114)) 2; 0, 

where Copt denotes the asymptotically optimal constant/or case II given by (2.25). 

(b) In case lll we have 

n7/10 (t<J>(Hri) - t<J>(Coptn-1/5)) 2; 0, 

where Copt denotes the asymptotically optimal constant for case lll given by (2.25). 

Lemma 3.23. 

(a) In case II we have/or any c>O 

n5!8t<J>(cn-114) ~ N(o,c-3(2a2+c4crft)), 

with 1 

a2 := 4(b-a)JL2(v)dv 

and 1 

CJft :=~<l)JbT(t}2dt. 

(b) In case lll we have/or any c>O 

I 
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n71l°'f<J>(cn-tts) ~ N(O,c-3(zo2+c5crllu), 

with t b b 
crdr :=¼( r u2K(u)du)2(J f "(x)2r1(x)dx - ( J f "(u)du)2). 

-i a a 
I 

A sketch of the proof of Lemma 3.22 and t.'le proof of Lemma 3.23 are postponed to Section 3.5. 

Lemma 3.22 shows that to obtain asymptotic normality of (3.67) Hri can be replaced by the 
deterministic asymptotically optimal bandwidth (O()/ai)114n-114 in case II, and by (O(y'ai)1!Sn-115 in case 

III. Provided -r<J>(Hri) is negligible by (3.64) we see from (3.64), (3.65) and the two previous 

lemmas that in case II 

is asymptotically normally distributed with z.ero mean and variance 

In case ill n3110(J-fn -Hri) is asymptotically normally distributed with i.ero mean and variance 

(ao,'a1r315(2cr2 + (ao,'a1)0'if1) _ 1 (2Nh-7/Sa -3/5cr2 + Nh-2/Sa -8/50'2) 
25 4/5 6/S -rr""" 1 ...., 1 Ill• ao a, 

To complete the proof of Theorem 3.8 it remains to show that -r<J>(Hri) is indeed negligible. 
In order to deal with the term ~n(Hri)- Wn(Hri) we write 

with 

~i (Wijk(h) - E(Wijk(h)IXi) - E(Wijk(h)IXj) - ECWijk(h)IXk) + 2EWijk(h)) -

~~(E(Wijk(h)IXj,Xk}- E(Wijk(h)IXj)- ECWijk(h)IXk) + EWijk(h)) = 

-;r ii (WijkCh) - ECWijk(h)IXi) - E(Wijk(h)IXj,Xk} + EWijk(h)) -

S-~(E(Wijk(h)IXj,Xk)- E(Wijk(h)IXj) - E(Wijk(h)IXk) + EWijk(h)) = 
n J"k 
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Similarly to the proof of the statement concerning ~n(h) in Lemma 3.20 it can be shown that we 

have for any a>O 

(3.69) sup n4n312h2) 1tn(h)I = o(l), almost surely. 
heln 

In case ill we now have 

ln7110(~n(Hri)- Wn(H;\'.))I S 

n 7/10n-3/2(H;\'.)"2 n3/2(Hri)2ltn(H;\'.)I + 

n 7/10 ~!. (H;\'.)"312 n(H;\'.)3121Wn(H;\'.)I S nn 

(C:\'.r2n-4110 suf. (n312h2) 1tn(h)I + 
hen 

2 (C;\'.)"312n·1 suf. (nh312) IWn(h)I, 
hen 

which almost surely vanishes by statements (3.62) and (3.69) and Proposition 3.21. Thus we have 
shown that the term ~n(H;\'.)-W0 (Hri) is indeed negligible in case ill. Case II can be treated similarly. 

The terms 

and 

can be dealt with using Lemma3.19 and the term ◊n(Hri) using Lemma 3.20. 

The last three terms ofT<J>(Hri) can be treated in the same way as in the proof of Proposition 3.14. 

Lemmas 3.15 and 3.18 can then be used to show that they are also asymptotically negligible. The fact 

that the term Y0 (Hri) is negligible follows from Lemma 3.16. Since this is obvious for Rn(Hri) the 
proof of Theorem 3.8 is completed. I 

3.5. Proofs. 

Before we give the remaining proofs we derive the next boWld on the number of points Xi in 
intervals of length 2h. 
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Lemma 3.24. ut f be a bo,wud density then we haYe for any point dfor some positiYe constant c 

d+b 

limsup sur. h"1 J dFn Sc, almost surely. 
n-too he D d,h . 

I 

Proof. By a discretization argument and the Bernstein inequality for the binomial distribution, i.e. 
inequality (A.3) in Appendix A, we can show for any £>O 

(3.70) 
1/2 d+b 

sup 112 n 112 I J d(Fn-F)I = o(l), almost surely. 
he In h (log n) +e d-h 

Since f is bounded we also have for some positive constant c' 

d+b 

J dF S c'h, 
d-h 

for all he In, Together these bounds complete the proof by the triangle inequality. 

Proof of Lemma 3.16. First we introduce some notation. Define fr\ii and fMi by 
} D 

fr\ii(x) := iili ~ K((x - Xj)/h) 
r-1 

and } D 

fMi(x) := iili~ L((x - Xj)/h), 
1=1 

I 

so fr\ii(x) is the usual kernel estimator and fMi(x) is of the same form except for the fact that L is not a 

probability density. Specifically it integrates to zero instead of to one (see (L.1) - (L.4) in Section 
3.2.1). Next define the random variables S~ and sk by 

(3.71) S~ := g~~ :% (1:! n)1f1. lf~(x)- Ef~(x~ 

and 

(3. 72) sk := :Po:% (1:! n) 112 lf.hi(x) - Efrlr.(x)I. 

Notice that by Theorem 2.16 we have_ with probability one for some constant c > O 

(3.73) 

and 
(3.74) 

limsup S~Sc -
limsup sk S c, -

It follows that for any subset E' of E for all xe E' and all he In we have 

I f~(x) - f(x) I S 

(3.75) I f~(x)- Ef~(x) I+ I ~(x)-f(x) IS 



(lln)112s~ + ~~R, lbK(x,h)I, 

and similarly for fJ!i, 

(3.76) I fJfi(x) IS 

<11 n) t/2sk + ~~R· llf-(x,h)I. 

Here the functions bK and tf are defined in definition 3.10. 
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Let dt, ... , dm denote the singular points off in the open interval (a,b) and let Dii as usual 

denote the set of points on the real line which are at least at a distance h of all the singular points of f. 

Notice that Y0 (h), defined by (3.36), can be written as 

with 

and 

Y(J>(h) := -¼ti {fki(Xj) - jfu-K(O)}{fi(Xi) - f(Xi) - jfu-K(of 

{fi(Xi) - ifu" K(O)rf(Xi)"2l~(Xi) 

y(J>(h) :=-¼ti {fJn(Xi) -jfu-K(O)}{fi(Xi) - f(Xi) -jfu-K(O)r 

{fi(Xi) - jfu-K(O)rf(Xi)"2 

For Y(J>(h) we have by (3.75) and (3.76) 

IY<J)(h)I S k {<11 n) 112sk + sup lbL(x,h)I + jfu- K(O)} 
xeEnDb 
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for all he In. By Lemma 3.11 we have for some positive constant c' and for n large enough unifonnly 

for he In 

and 

sup 1t,K(x,h)I s; c'h2 
xeEfillh 

sup lbL(x,h)I s; c'h2, 
xeEfll>Ji 

Since for n large enough uniformly for he In we have 

¼< <1r£n)lfl ➔ O 

the term ¼ K(O) is asymptotically negligible. A combination of these bounds then gives 

limsup suf. h ( ( 1.£ n) 112 + h2r3 IY\P(h)I < c, almost surely. 
n-+oo hen 

Using (x + y)3 s; 23(x3 + y3) for all x,y>O we obtain 

1 l'ln 312 s -t 
(3.77) limsup suf. (Ii ( ) + h ) IY\P(h)I < 2·3c, almost surely. 

n-+oo he n 

Since in case m the term y<i>(h) is equal to uro for all he In for n large enough we also have (3.77) 

for Y n(h) which proves the case m part of the lemma. Next assume that we are dealing with a case II 

situation and consider the term ~>(h). If Nn(h) denotes the number of points Xi in the set 

m 
(3.78) E\Dii = [a,a+h] u [b-h,b] u V [di-h,di+h], 

1=1 

then by Lemma 3.24 we have for some positive constant c 

limsup sur. Ngf!1) Sc, almost surely. 
n-too hen 

By Lemma 3.11 we have for any point d where f has a kink, for some positive constant c' and for n 

large enough unifonnly for he In 

and 

sup 1t,K(x,h)I S c'h, 
xe F.f"'l[d-h,d+h) 

sup nf(x,h)I s c'h. 
xe F.f"'l[<f-h,d+h) 

By a similar argument as above, taking into account the number of points Xi in the set (3.78), we find 

for some positive constant c" 



~ 312 3 -1 
(3.79) Iimsup sup ((oh) + h) IY~l(h)I < c", almost surely. 

n-- heln 

From (3.77) and (3.79) the lemma follows for case II. 

Proof of Lemma 3.17. We use the same notation as in the previous proof. Since 

1 (loJt)312 hs 1 1 Ii + < ~+ ' 

for all he In for n large enough (3.77) implies 

( _! )-1 sup 'cli!+ 1 IY\P(h)I = o(l), almost surely. 
heln 

Now consider y~l(h). We can write y~l(h) as the sum of m+2 terms 

(3.80) 

where dis one of the points a, b, d1, ... , dm. We can write (3.80) as 

(3.81) ½ J Gnh(x)dFn(x), 
Fn[d-h,d-+b] 

where Fn is the empirical distribution function based on the sample X1, ... , Xn and 

{fJri(x) - jfu-K(O)} {fl(x) - f(x) -jfu-K(O)r 
Gnh(X) := - ..;.._-----'--~------..;_-

{fl(x) - jfu-K(O)} f(x)2 

I 

{bL(x,h) + fn1b) - Efn1t(x) - ~} {bK(x,h) + fJ1.(x) - EfJ1.(x) -~r 
{f(x) + bK(x,h) + fJli(x) - EfJ1.(x) - K£O)} f(x)2 
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Recall that in case I Lemma 3.11 implies that for some constant c > 0 and for n large enough we have 

for allh e In 

sup lbK(x,h)I Sc and sup llf(x,h)I S c. 
xeE xeE 

Further, defining s! and Si as in (3.71) and (3.72), notice that we have 
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I 112 
lf~(x)- Ef~(x)I s ( ?£n) S~ 

and 

By (3.73) and (3.74) and the fact that logn/nh vanishes unifonnly on In we see that with probability 

one for n large enough 

1lln)tf2 IGnh(X) - gnh(x)I S c\ , 

for all x e E and h e In, where we define gnh(x) by 

Then, with 

it follows that 

1 (lrifi°)lfl J IRn9(h)I S c'Ji dFn(x). 
Frl[d-h,d-+h] 

Hence by Lemma 3.24 we have now shown 

suf. IRn9(h)I = o(l), almost surely. 
hen 

Next we consider the term 

(3.82) k J gnh(x) dFn(x). 
Frl[d-h,d-+h] 

By Lemma 3.11 we have for n large enough for some constant c">O 

for all xe E and all he In- Then, with 

Rn1oCh) := 1 J ( nh(X) + 6(0)(d)3b{5((x-d)/h)blfc(x-d)/h)2 f(xr2)dF (x), 
Ii Frl[d-h,d-+h)g f(x) + 6<0>(d)blf((x-d)/h) n 

we have 
c" 

I.Rn1o(h~ S nh J dFn(x), 
Frl[d-h,d-+h] 



and by Lemma 3.24 

sup IRn1o(h)I = o(l), almost surely. 
heJn 

We continue with 

(3.83) 
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Since the integrand in (3.83) is a bounded function, by a discretization argument and the Bernstein 

inequality, (A.2) in Appendix A, with 

RnuCh) := - 1 5(0)(d)3 J bh((x-d)/h)blf((x-d)/h)2 f(x)"2 d(Fn-F)(x) 
Ii F.n!d-h,d-+hl f(x) + a<0>(d)blf((x-d)/h) 

we have almost surely 

sup IRnu(h)I = o(l). 
heln 

Finally, assuming that d is not equal to a or b, notice that 

_ 6co>(d)3l J bh((x-d)/h)b~((x-d)/h)2 f(x)"2dF(x) = 
Ii Er\[d-h,d-+h] f(x) + 5(0)(d)blf((x-d)/h) 

- 5(0)(d)3 r1 bh(t)b~(t)2 f(d+th)" ldt 
-1 f(d+th) + a<0>(d)blf(t) 

converges uniformly for he In to 

(3.84) 

Using 

and 

g'(x) = x2/(l+x) 

by partial integration (3.84) equals 

1 

- f(d+) J t ¼g(f(d+)"16<0>(d)b~(t)}dt + 



92 

1 

- f(d-) J t ¼g(f(d-r16<0>(d)~(t))dt = 

1 

f(d+) J g(f(d+)"16<0>(d)b{fo))dt + 

0 

f(d-) J g(f(d-)"16<0>(d)blfo))dt. 

If d equals a or b then one of the terms of (3.84) vanishes. By adding up these expansions for all the 

m+2 terms in (3.80) the lemma is proved. I 

Proof of Lemma 3.19. First notice that the conditions we have imposed on the kernel function K 
imply that K and L are Lipschitz functions. Using this property it can be shown that it suffices to 

prove the lemma for suprema over discrete subsets In of In with an at most algebraically fastly 
increasing number of elements, i.e. we assume #lnS n8, for some integer a. If (an(.)) is a sequence 

of positive functions on (0,oo) then by the Bernstein inequality, i.e. inequality (A.2) in Appendix A, 

we have for any£ > 0 

n 
P( I~ ( cp(Xj,h) - Ecp(Xj,h)) I > nlog n an 1(h) £ ) s 

1=1 

2 (. - n (log n ari1(h)£)2 ) 
exp l,_2var(cp(X1.h)) + ½m(h)logn aji1(h)£ ' 

where m(h) is a constant such that lcp(X1,h) - Ecp(X1,h)I S m(h) with probability one. For£< 1 this 

bound is dominated by 

2exp ~ - \nari2(h)(logn)'r ) 

Ecp2(X1,h) + m(h)aii1(h)logn 

Assume that the functions On can be chosen such that for some constant c>O and for n huge enough 

(3.85) nan2(h) .!: C > 0 
Ecp2(X1,h) + m(h)ai/(h)logn ' 

for all h e In. If#/ n S n8, for some integer a, then 

1 n 
P( nlog n suo an(h) I~ (cp(Xi.h) - Ecp(Xi.h)) I>£) s 

he711 i=l 

n 

h~,. P( I~ {cp(Xi.h)- Ecp{Xj,h)) I> nlogn an1(h) £) s 



2 #In exp(- ½a2(log n )2) = 

2exp(-~(lognf +alogn), 

which is summable. Hence by the Borel-Cantell theorem 

1 D 

nlogn ~~~ an(h) I~ (cp(Xi.h)- Ecp(Xi,h))I = o(l), almost surely. 
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First we take q, equal to u1. Recall that the set Eis equal to the bounded interval [a,b]. We 

shall choose a suitable sequence of functions (an(.)) and then check (3.85). Write 

b 
l j L 2 ii'1a b (x,h) f(x)dx. 

Since the order of magnitude of bL is different in the three cases I, IT and ill we also get three 

different bounds for this expectation. By Lemma 3.11 we have for some constant c' > 0 

(3.86) 
in case I 
in case II • 
in case III 

for n large enough uniformly for he In. Lemma 3.11 also provides us with suitable choices for 

m(h). We can use 

(3.87) { 
,.1 

C Ii 
m(h) := s~p lu1(x,h) - Eu1(X1,h)I S c" 

c"h 

in case I 
in case II , 

in case III 

for n large enough uniformly for h e In. Here c" is a positive constant. The inequalities (3.86) and 

(3.87) imply that the condition (3.85), i.e. for n large enough 

naji2 
2 1 ~ c > 0, for all he In, 

Eu1(X1,h) + m(h)cxn (h)log(n) 

is satisfied for the choices 
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in case I 
in case n . 
in case m 

Notice that we have taken aa(h) equal to n112 times the inverse of the root of the bounds in (3.86). We 

have now shown that (3.58) is valid for the function 01. 

Next consider the function 02. For this function we have for n large enough 

1 oo b 2 
~ I ( /L(u-x)Jh)du) f(x)dx S 

-- a 

~l j ( J L(u-x)Jh)du)2f(x)dx S 
- [x-h,x+h]n[a,b] 

1 a+h b 2 
i:1' ( J + J) ( J L(u-x)Jh)du) f(x)dx , 
u a b-h [x-h,x+h]n[a,b] 

1 

since J L(u)du is equaJ to zero. It follows that for some constant c' > 0 we have 

Eu~(X1,h) S c'bh h2 = c' ½, 
unifonnly for h e In and n large enough. We a1so have for some constant c" > 0 

1 1 
m(h) := ~p lu2(x,h) - Eu2(X1,h)I S c"ii'2'h = c" li-

lt is readily verified that with the choice an(h) = n112h112 condition (3.85) is satisfied which proves 

statement (3.58) for the function 02. For the other functions this statement can be proved in the same 
manner. I 

Proof of Lemma 3.20. Using the fact that the functions K and L are Lipschitz functions it can be 

shown that it suffices to prove (3.59) for finite subsets In of In instead of for the intervaJs In 

themselves. We choose In such that the number of its points increases sufficiently rapidly but still at 

most aJgebraically fast in n. The Lipschitz property can be used to show that sufficiently small 
changes in h result in negligible changes in fJnCh), ~ nCh) and t,n(h). 

We start with bn(h). Write 

00 

:t P(suf. nh3'2n-a lbn(h)I > e) S 
n=t hen 
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f #In suf. P(nh3'2n-« lfJn(h)I > e) S 
n=l he n 

for every even positive integer p. Here #In denotes the number of elements of In. In order to show 

that this sum is finite, which would enable us to apply the Borel-Cantelli theorem, we derive a bound 

for the p-th moment of fJn<h). Recall 

bn(h) = n·2~ ()ij(h), 

where ()ij{h) is defined above. Since 

E(()ij(h)IXk) = 0 , for k=l, ... ,n, 

any product ofbij'S, such as ()it.ii(h) ... ()ipip(h), with at least one index i or j appearing only once in 

il'jl'···•¾,jp, has zero expectation. Therefore 
p 

E(bn(h))P = n·2P L ESm, 
m=2 

where Sm is the sum of all products ()it.ii(h) ... bipip(h), with i1,j1, ... ,¾,,jp containing exactly m 

different indices, every index appearing at least twice. Since X1, ... ,Xn are identically distributed we 

can rewrite ESm as 

ESm = (!) ESm, 

with Sm equal to the sum of all possible terms of Sm with indices in { 1,2, ... ,m}. Since mSp the 

number of such terms is bounded by a constant depending only on p, Cp, say. From Corollary B.3 

( Appendix B) it follows that the expectation of the absolute value of each of the terms appearing in 

Sm is bounded by a constant times hm/2·2P. Therefore 

p 

E(bn(h))P S n·2P L (n) Cp hm/2-2p S 
m=2 m 
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forn large enough. Here e'pdenotes a constant independent ofh and n. We have used that forlargen 

and he In we have nh1~nh~n'➔oo. 
Combining these bounds and assuming #In Sn• for some positive integer a, we have for every 
positive integer p, even and large enough, and for every £>O 

GO 

2f'.s-Pl: n8n-ap SUf. (nh312)P(nh3/l)"P: 
r n=I hen . 

GO 

2f'.s-P l: n•-ap < oo 
r n=I ' 

which proves the statement of this lemma for bn(h) by the Borel-Cantelli lemma. 

The argument fort 8(h) is similar. Since by Corollary B.3 the bound on the expectation of the 
absolute values of the tenns appearing in Sm is of order hmfl-3P, here it leads to 

for n large enough. 

For ~nCh) the argument is similar too. In this case by Corollary B.3 the bound on the 
expectation of the absolute values of the terms appearing in Sm is of order h2mJ3.3P. Hence the bound 

. for the p-th moment becomes 

(3.1!!2] 

~nCh))P S (n·3b-3)P ~ (;;.) Cp h2m/3 S 

2 e'p cn·3b·3)P(nh2/J)3p/2 = 

2 e'p cn·3121,2)P' 

for n large enough. Just as before Cp and e'p are constants depending only on p. To derive these 

inequalities we have used 2mS3p and that for large n and he In we have nh2/J~n'➔oo. I 
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Proof of Lemma 3.22. Since the proof of this lemma is tedious and very similar to the proofs of 

Lemma 3.2 and Lemma 3.3 in Hall & Marron (1987a) we only mention the basic steps. For case m it 
suffices to show that for some £1>0 we have 

and that for all e2>0 we have 

(3.89) 

sup n7ll0{ IOn(tn-l/5)- bn(Coptn-115)1+1~i;(u1(Xi,tn-l/S)- Eu1CXi,tn-115)) 
It - CoptTSn-£2 n t=l 

-~i:(u1(Xi,Coptn-115) - Eu1(Xi,Coptn-115))1} !.o, 
n t=l 

For case II we have to prove two similar properties, i.e. (3.88) with n-115 replaced by 
n-114, and (3.89) with n-115 replaced by n-114 and n7fl0 replaced by n518. I 

Proof of Lemma 3.23. For any sequence of bandwidths Chn) we define TnChn) by 

TnChn) := (nhn)2T<J>(h) = (nhn)2( bn(hn) + n~l ¼! (u1(Xi,hn) - Eu1(Xi.hn))). 

Then the expectation of Tn(hn) is equal to zero and by the definition of bn(h) we see that Tn(hn) 

equals 

Next we write 

(nhn)2( ii2°~ (Uij(hn)- E(Uij(hn)IXi)- E(Uij(hn)IXj) + EUij(hn)) + 

n~l ¼! (u1(Xi,hn) - Eu1(Xi.hn))) = 

-~ L((Xj-Xj)/hn) (f(Xir1IE(Xi) + f(Xjr1IE(Xj)) = 

~ G((Xi-Xj)/hn)w(Xi,Xj), 
l"J 

where G is equal to -L and w is the function given by 
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Thus T n(hn) equals 

D 

~ hiiEUij(hn) - (n-l)hii ~ Eu1(Xi.hn) + 

with gn(Xi) equal to -(n-l)h;(E(Uij(hn)IXi) + E(Uji(hn)IXi)) + (n-l)h; u1(Xi,hn). Asymptotic 

normality of this type of statistic is treated in Appendix C. In order to apply Theorem C.1 notice that 

the function g~(x) which appears in the conditions of this theorem is here given by 

Condition (i) of Theorem C.1 then requires 

(nh¥2r1 sup I &(x)- E&(X1) I-+ 0, 
X 

which is clearly satisfied here.To check condition (ii) we consider 

(nhnr1var(&(X1)) = 

(3.90) (nh0 )"1((n-1)2hiiJ bL(x,h}2f2(x)f(x)dx - (n-1)2hii (J bL(x,h)dx)2) = 

(n~)2 hn (J bL(x,h)2f 1(x)dx - (J bL(x,h)dx)2). 

It follows from Theorem C.1 that if this quantity conveiges to a constant a.2 then 

1 1 'D -22 
nhl/2 <Tn(hn)- ETn(hn)) = nhl/2 Tn(hn)-+ N(0,2o-+a. ), 

with - -
In our case er equals 

1 • 1 

J L2(v)dv ! (f(x)"1IE(~) + f(x)"1IE(x))2f2(x)dx = 4(b-a) J L2(v)dv. 

So if (3 .90) indeed conveiges to a.2 then we have shown 

(3.91) nhWZ(bn(hn) + n~l ¼tl (u1(Xi,hn) - Eu1(Xi.hn))) = nh1r,z Tn(hn) l N(0,2cr+a.2). 
~ D 

We proceed with computing a.2 in the two cases considered in this lemma By Lemma 3.11 in case II 

we have the following expansion for hn=cr1114 
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1 

nhnh! A (l) J b T(t)2dt = 

and in case m for h0=cn-115 we have 

1 1 

nhn (¼h~ ( r u2L(u)du)2 J f "(x)2r1(x)dx- (½h; r u2L(u)du J f "(x)dx)2) = 
-1 E -1 E 

1 b b 

¼n-1bii ( r u2L(u)du)2(J f "(x)2r\x)dx - ( J f "(u)du)2) = 
~ a a 

These two expansions can be derived by the same method we have used in the proof of Theorem 2.8. 
The proof of the lemma is completed by observing that the norming factor~ in (3.91) is equal to 
c312n518 if hn is equal to cn-114, and that it is equal to c3'2n 7110 if hn is equal to cn-l/5. I 

Proof of relations (3.44), (3.45), (3.54) and (3.55). Consider the density f given by 

f(x) ={ 1~~ 
ifx<O 

if 0SxS..f3-1 . 
if x>..f3-1 

Computing the bias of a kernel estimator off at the point th for O<t<l and O<h< '1-l we get 

K 1 J .. (th-u) b (th,h) = Ii K n- f(u)du - f(th) = 
-00 

J K(t-v)f(vh)dv - f(th) = 

J K(t-v)(l+vh)dv - (l+th) = 

b§(t) + hbf(t). 

Similarly for O<t<l and O<h<l '1-l the bias function for Lis equal to 
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Next recall that by the definition of bKcx.h) and tf(x,h), and by (3.33) we have 

d K 1 LL 
an b (x,h) = - Ji ir(x,h). 

In order to prove relations (3.54) and (3.55) consider the equation 
d h hd lh 
an J bK(x,h)dx = J anbK(x,h)dx + bKch.h) = - Ji J tf(x,h)dx, 

which follows from Leibnitz's theorem for differentiation of integrals, i.e. formula 3.3.7 in 

Abramowitz & Stegun (1965). By the substitution t=x/h we get 
1 1 

¼hJ ( b!(t) + hbfo))dt = -J (b!(t) + hb~(t))dt, 

which proves formulas (3.54) and (3.55) by comparing the constant term and the coefficient of h in 

the left and right hand side of this equality. 

Relations (3.44) and (3.44) can be proved similarly by considering the equation 
h h h 

¼ J bK(x,h)2dx = J ¼bK(x,h}2dx + bK(h,h)2 = -* J bK(x,h)bL(x,h)dx, 

and comparing the constant terms and the coefficients ofh2• I 



4. RECOVERING A DISTRIBUTION FUNCTION FROM A CONVOLUTION. 

4.1. Introduction. 
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Originally our interest in deconvolution problems has been aroused by applications of 

kernel estimation techniques to a classical problem of stereology, Wicksell's corpuscle problem. 

This problem is introduced in Example 1.2 in Chapter 1. Recall that in the corpuscle problem we 

want to estimate the distribution of radii of spheres in an opaque medium, given the radii of 

circular profiles in cross-sections of the medium. The relation between the distribution of the radii 

of the spheres and the distribution of the radii of the circular profiles is given by formulas (1.3) 

and (1.4). Several authors have proposed kernel type estimators of the density of the sphere radii. 

However, although the properties of the bias of these estimators are comparable with the bias of 

ordinary kernel estimators, the variance is of order n·1h·2 instead of the usual order n·1h·1, h 

denoting the bandwidth. This also means that the errors of kernel type estimators in the corpuscle 

problem are of larger order. For proofs see Hall & Smith (1988) and Van Es & Hoogendoorn 

(1990). These results caused us to consider nonparametric maximum likelihood estimation of the 

distribution function of the sphere radii. In the next section we present a nonparametric maximum 

likelihood estimator (NPMLE) of this distribution function. Unfortunately the present state of 

affairs is that the asymptotic properties of this NPMLE in the Wicksell problem are still unknown. 

Therefore we have to be content with conjectures based on estimates computed from simulated 

samples and on results in related deconvolution problems. 

The deconvolution problems we consider can formally be stated as follows. Suppose that 

we have a sample X1, .. ,,Xn of observations with a distribution function G which is the 

convolution of two other distribution functions Kand F, i.e. for all x we have 

(4.1) G(x) = J K(x-y)dF(y). 

Assuming that the function K is known we consider the problem of estimating F at a fixed point 

xo, in cases where the distribution function F is uniquely determined by G and K (if, for 

example, K is a distribution function with a characteristic function with compact support, this 

need not be true). The relation between the Wicksell problem and deconvolution has been 

observed by Hall & Smith (1988). If we rewrite the equations (1.3) and (1.4) in terms of the 

densities f1(x)=(21i)"1f(1i) and g1(x)=(2..fx.)"1g(1x) of resp. the squared sphere and circle radii 

then they have a convolution structure. Instead of relation (1.3) we get 

00 

(4.2) g1(x) = 2
1 J . ~dF1(y) = _.!_ J k(y - x) dF1(y) , 0 < x < oo, 
µ (x,oo) -VY - X 2µ -oo 
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where µ is defined in Example 1.2, F 1 is the distribution function of the squared sphere radii and 

k(x)=(--T-ir11(-.o)(x). Note that k is not a probability density and thatµ is an extra parameter not 

appearing in (4.1). 

Formulas (4.1) and (4.2) show that both in deconvolution and the Wicksell problem the 

distribution of the observations is the image under some transformation of an unkown distribution 

function F (or F1) which we want to estimate. Now, ifwe would have an estimate of the distribution 

of the observations, then we obtain an estimate of F by inverting the transformation and computing 

the inverse value of the estimate. In this way deconvolution and the Wicksell problem can be seen as 

special examples of inverse estimation or ill posed problems. The consequences of properties of the 

specific transformations for the performance of estimators obtained in this way are studied in a 

general context in Carroll et al. ( 1990). In the deconvolution problem for certain distributions K the 

inversion can be achieved with the aid of characteristic functions and kernel smoothing. The 

characteristic function of G equals the product of the characteristic function of K, which is known, 

and the characteristic function of F. The characteristic function of G can be estimated from the data, 

and so by division and inverting the Fourier transform the distribution function F or its density can be 
estimated. Several authors have proposed modifications of this approach using kernel type estimators 

of the characteristic function of G, see Carroll & Hall (1988), Devroye (1989), Fan (1988), Liu & 

Taylor (1987a, 1987b), Stefanski (1989) and Stefanski & Carroll (1987, 1989). 

Our main interest in this chapter is nonparametric maximum likelihood estimation. In Section 

4.2 we shall give two examples of deconvolution problems where the NPMLE of F is known 

explicitly. We also discuss more general deconvolution problems where the NPMLE can only be 

computed by iterative methods. The Wicksell problem and Gaussian deconvolution serve as final and 

most difficult examples. To be able to judge the performance of these estimators in Section 4.3 we 

derive a local asymptotic minimax lower bound for estimating F at a fixed point. In Section 4.4 we 

discuss the results in the previous sections and Section 4.5 contains the proof of the minimax 

theorem. 

4.2. Examples. 

The first four examples concern maximum likelihood estimation of a distribution function F in 

deconvolution problems where K is absolutely continuous with density k. Let X1, ... , Xn be 

generated by the convolution density g given by 

(4.3) g(x) = J k(x-y)dF(y). 
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The log likelihood of F based on X 1, ••• , Xn can now be written as 

n n 
(4.4) L(X1, ... ,~) = ,l: log(g(Xi)) = ,l: log( J k(Xi-Y)dF(y)). 

l=l 1=1 -

The next two examples deal with two densities k, the unifonn [0,1) density and the standard 

eponential density, for which distribution functions which maximize (4.4) are explicitly known. 

Example 4.1. Uniform deconvolution. 

Fork equal to the unifonn [0,1) density, i.e. k(x)=lco,1)(x), the log likelihood (4.4) equals 

n 00 n 
(4.5) L(X 1, .•• ,Xn) = .L log( J k(Xi-y)dF(y)) = .L log{F(Xi)-F(Xi-1)}. 

1=1 -00 1=1 

Note that this log likelihood depends only on the values of F at the points Xi, Xi-1, i= 1, ... , n, so 

NPMLE's of F are not unique. Under the additional assumption that the distribution corresponding to 

Fis concentrated on the interval [0,1) a maximizing function F can be computed as follows. Defining 

Oi=l(Xi<l} the log likelihood (4.5) equals 

n 
(4.6) ,l: { Oi log F(Xi) + (1-0i)log {1- F(Xi-1)}}. 

1=1 

Now let Yi , 1 Si Sn, be defined by 

Then Yi,···,Yn are distributed as a sample from a unifonn distribution on [0,1). Let Z1 :5 ... :5 2ii 
denote the order statistics of the set Y1, •.. ,Yn, and let Aj = 1, if the Xk, corresponding to Zj, is< 1, 

and let Aj = 0, otherwise. Then the NPMLE of F at ~. i.e. Fn(Zi), is given by the left-continuous 

derivative at the point i of the convex minorant of the function 8n= [0,n] ➔ R, defined by 

8n(i) := l: A· 
j s i J 

at points i, and by linear interpolation at other points of [0,n]. The fact that Fn maximizes the 

likelihood can be inferred from results in Barlow et al. (1972). Groeneboom (1987, 1990) derives the 

NPMLE of an unknown distribution function F in related interval censoring problems. 
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The asymptotic distribution of the NPMLE is given by the next theorem. 

Theorem 4.1. Let Xo be such that O=F(O-) < F(xo) < F(l)=l, and let F be differentiable at Xo• with 

strictly positive derivative f(Jto). Furthermore, let Fn be the NPMLE of F, based on the sample 

X1, .. ·,¾• generated by the (convolution) density gdefined by (4.3). Then we have, as n ➔ 00, 

where ~ denotes convergence in distribution, and Z is the last time that two-sided Brownian motion 

minus the parabola y(t) = t2 reaches its maximum. I 

The proof of Theorem 4.1 proceeds along the lines of the proof of Theorem 1.1 in Groeneboom 

(1987) and is given in detail in Van Es & Van Zuijlen (1990). 

The next three pictures show the NPMLE for the three distribution functions, F(x) = x, F(x) = x2, 

and F(x) = ..fi, 0 S x S 1, and simulated samples of size 1000, generated using the uniform random 

number generator from the IMSL library. 

Figure 4.1. The NPMLE computed for samples of size 1000. 
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Note that the fact that the support of F is contained in [0,1] is explicitly used. H this support 

restriction is not satisfied then we have to maximize (4.5). In this case there is no explicit expression 

for the NPMLE and we have to use iterative computational methods. As an alternative method 
Van Es & Van Zuijlen (1990) extend the convex minorant methodology of the NPMLE above to 

construct estimators of general distributions F. These estimators do not maximi7.e the likelihood 
except for F satisfying the support restriction. In those cases the estimator coincides with the 
NPMLE. Surprisingly, even when the support restriction is not satisfied, for these estimators (4.7) of 
Theorem 4.1 also holds. In Section 4.4 we return to this problem. 

Example 4.2. Exponential deconvolution. 

The Second example concerns convolutions with the standard exponential distribution. Let k 
denote the standard exponential density, i.e. k(x)=e-xl[o, ... Xx). For this density k the log likelihood of 

F based on n observations X 1, ... , Xn generated by the convolution density equals 

(4.8) 

where by convention the integral is over the set (..oo,Xi1• Because k(Xi-y)=e-CXi-Y) is an increasing 

function of y it is readily seen that, by moving the mass of F between the observations to the closest 

observation at the right side, we increase the likelihood, unless all the mass is already concentrated in 

the observations. Therefore the NPMLE of F is a discrete distribution function wich jumps in the 

observations only. Moreover, the NPMLE is also unique. By transfortning the problem to estimation 
of a decreasing density on [O,oo) and using the Grenander maximum likelihood estimator of a 

decreasing density, Vardi (1989) shows a way to compute the NPMLE. We give the main idea. First 
the data are transformed. Consider 2:j=e-Xi, i=l, ..• ,n. Now note that the distribution of Xi is equal to 

the distribution of the sum of two independent random variables, Bi+ Yi, with Bi an exponentially 

distributed random variable and Yi a random variable having distribution function F. Hence Zi is 
distributed as Uie-Yi, where Ui is independent of e-Yi and has a uniform (0,1] distribution. For any 
distribution F the random variable Uie-Yi has a decreasing density on [0,oo). We can now estimate the 

· distribution of Zi by the Grenander estimator and then tranform the estiinate into an estimate of F. For 

properties of the Grenander estimator we refer to Grenander (1956) and Groeneboom (1985). 

Example 4.3. Deconvolution for decreasing densities k on [0,oo). 

Let k be a decreasing density on [0,oo) and let X1:n, ... , Xn:n denote the order statistics of the 

sample X1, ... , Xn, generated by the convolution density g. For densities k which are strictly 
decreasing in a right neighborhood of zero the same arguments as in the preceeding example show 
that the NPMLE is a unique discrete distribution function with masses °t at the points Xi:n, where the 

°t maximize the function: 
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n i 

(4.9) ai log (ti k(Xi:n - Xj:n}a-j}, 

D 

under the restrictions ~ <Xj = 1, ai ~ 0, 1 Si Sn. We can write (4.9) in the form 
1=1 

where wij = k(Xi:n - Xj:n)- Letting a= (a1,···•0n), fork= 1, ... , n we define the derivative with 

respect to <Xie by 

n i 

(4.10) dk(a) := 2i Wik_/(~ Wjjaj)-

A maximum can be computed numerically using the gradient projection algorithm (Luenberger 

(1973)), i.e. an algorithm for maximizing a concave function subject to a number of linear 

constraints. 

Example 4.4. Gaussian deconvolution. 

The most studied deconvolution problem is the problem where k equals the standard normal 

density. An old reference is Gaffey (1959). More recent references, treating Gaussian deconvolution 

as important example, are Carroll & Hall (1988), Devroye (1989), Fan (1988), Liu & Taylor (1987a, 

1987b), Stefanski (1989) and Stefanski & Carroll (1987, 1989). Most of these authors discuss 

modifications of the kernel smoothed characteristic function inversion approach already mentioned 

above. However, it turns out that the rates of convergence of these estimators in the case of standard 

normal k are very poor. Even for estimating F at a fixed point the rate of convergence is slower than 

any algebraic rate (Carroll & Hall (1988), Fan (1988)). Given these disappointing results the question 

arises whether we can expect the NPMLE in the Gaussian deconvolution case to perform better. At 

the moment, however, there is neither an acceptable method for computation of the NPMLE nor 

asymptotic theory available. We shall return to this problem in Section 4.4. 

Example 4.5. The Wicksell problem. 

Let X1:n, ... , Xn:n denote the order statistics of the sample X1, ... , Xn of squared radii of 

sections of spheres. We assume that the support of the distribution of the radii of the spheres is a 

finite interval, which we take to be [0,1]. For a review of this estimation problem and related 

problems we refer to Stoyan, Kendall and Mecke (1987). As observed by Hall and Smith (1988), the 

distribution function of the squared section radii can be written as a convolution of the unknown 

distribution function of the squared sphere radii with a known function. This relation is given by 

( 4.2). Therefore a technique similar to the one in Example 4.3 can be used. 
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The log likelihood L(X1 , ... Jen) of the sample can be written in the following form: 
n 1 1 

(4.11) L(X1, ...• ~) =~log {1f(Xi:n,ll ✓ x _ Xi:n dF(x)}, 

where F is the distribution function of the squared sphere radii, and 'Y is given by 
1 1 

1=fdxf .r.::--= dF(y)=2µ. 
O (x,l)"'ly-x 

Examining the log likelihood (4.11) more closely we sec that by a suitable choice ofF we can 

make it infinite. Therefore we restrict ourselvetto maximizing the likelihood within the class of 

discrete distribution functions with mass in the observations only. The log likelihood of a 

discrete distribution function F, with mass at the points X1:n, ... , Xn:n is equal to 

_ n-1 .!. <Xj 
L(X 1, •.. ,Xn) - l: log { ~ ✓X X } . 

1=1 y J>l j:n - i:n 

Here a 1, •.• ,<Xn are the masses of Fat the points X1:n, ... , Xn:n, and, defining Xo:n = 0, the 

parameter 'Y can be written as 

n n ~---- =---- n 
"{= l:1 ~ 2<XJ·{ ✓Xj:n - Xi-1:n - ✓ Xj:n - Xi:n } = 2l:1 <Xj✓Xj:n. I= j=l j= 

It is readily shown that the log likelihood increases if masses a 1 , ... ,<Xn are replaced by masses 0, 

<X2/(<X2+ ... +<Xn), ... , <XJ(<X2+ ... +<Xn), so throughout we set a1 equal to zero. 

Note that this example does not exactly fit into the deconvolution problem for two reasons: we 

look at the convolution with a function which is not a probability density and we have the extra 

parameter 'Y· It is possible to reformulate the problem in such a way that we would deal with the 

convolution with a probability density (looking at the logarithms of the observations), but we 

would not get rid of the extra parameter in this way. There does not seem to be a real advantage in 

this reformulation, so we keep to the above statement of the maximization problem. 

Since L(X1, ... ,Xn) is not a concave function of (a2, ••• ,<Xn), using the gradient pojection algorithm as 

in the previous example we might find local maxima. However, for fixed 'Y the log likelihood 

L(X1, ... ,Xn) is concave. So by the gradient projection algorithm we can maximize L(X1, ... ,Xn) 
subject to <Xi.:: 0, for i = 2, ... ,n, and the two linear constraints 

n n 

~ <Xi= 1 and 2~ <Xi✓ Xi:n = 'Y· 
1=2 1=2 

Next we can vary 'Y to find values of <X2, ... , an and a corresponding y which maximiu the log 

likelihood L(X1, ... ,Xn). Notice that this procedure also yields a maximum likelihood estimate ofy. 
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Theory for this NPMLE seems to be absent, but should be related to the theory for the estimators of 

Examples 4.1 ... 4.3. In fact, because of the peakedness of the weight function 1 / ✓ x - Xi:n in 

( 4.11 ), we expect a faster rate of convergence of the NPMLE. 

To illustrate this procedure we have simulated three samples of circle radii of siz.e 100, for F equal to 

the three distribution functions of Figure 4.1. Since the computation for a fixed y is already 

timeconsuming we have only computed the maximizing F for the three true values of y, and for three 

estimated values ofy. We have used the estimator 

n 1 
1n := 1tn I~ _/'v"" , 

1=1 "Xi 

which is based on an estimator ofµ= y/2 in Example 1.2 (see Hall & Smith (1988)). The log 

likelihoods of the estimates are given in a table following the next figures. 

0.0 1.0 

0 

d-!--L-------------1 
0.0 1.0 

0.0 

Fiiwre 4.2, The maximizing F for the true values of y for three samples of siz.e 100. 

1.0 
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0.0 

Figure 4.3. The maximizing F for the estimated values of y for the same samples as in Figure 4.3. 

The next table gives the values of the true and estimated values of y and the log likelihoods of the 

corresponding estimates of F. 

F 'Y 1n log lik. with true y log lik. with est. y 

X 1 1.07 29.71 29.57 

x2 4/3 1.41 21.95 20.57 

'1/X 2/3 0.75 36.29 37.32 

Roughly speaking the estimates in Figure 4.2 for samples of siz.e 100 have about the same error as the 

estimates in Figure 4.1, which were based on samples of siz.e 1000. This suggests that the NPMLE in 

the Wicksell problem indeed has a faster rate than n-1/3, and perllaps even a rate close to n-112. Because 

of limited computing time we have not been able to compute the true NPMLE, i.e. the estimate with a 
value of y which maximizes L(X1, ... .Xn)- However we expect that for this value of y the estimates 

would have a better fit than the estimates for the estimated "( in Figure 4.3. 
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4.3. An asymptotic local minimax lower bound for deconvolution. 

Let Xo be a fixed point in the suppon of F and let (Yn) be a vanishing sequence of positive 

numbers to be specified later. To define a local minimax risk for ne N and 8e (0,1), we introduce the 

functions hn(.) and Fn(.;8), given by 

hn(u) := f(:xo){ lcxo-crn,XO)(U) - I[xo.X()+C"f,,)(U)} 
and 

X 

(4.12) Fn(x;8) := F(x) + 8 J hn(u)du, 

assuming that f(xo), the derivative of F at Xo, exists and is positive. Note that for n sufficiently large 
Fn(.;8) is a distribution function. Now let the local minimax risk MR(n;0,6) be given by 

(4.13) MR(n;0,6) := inf max Ee IUn - Fn(xo;8)1, 
Un 8e(0,6) 

where the infimum is taken over the set of all possible estimators Un of F(xo) based on the 
observations X1, ... ,Xn from the distribution K•F, where• denotes convolution. Thus MR(n;0,6) is 

the best possible maximal expected error for estimating the two values F(:xo)=Fn(:xo;0) and Fn(:xo;6). 

It turns out that an imponant role in the derivation of asymptotic lower bounds for the minimax risks 

is played by the second difference of the kernel K. Define the first difference operator L\t by 

(i1tK)(x)=K(x+t/2)-K(x-t/2). Thus we get (L\iK)(x)=K(x+t)-2K(x)+K(x-t). The next proposition 

relates this second difference of K to the local asymptotic minimax risk. 

Assumption 4.2. There exists a constant p>O and a constant to>O such that for O~to 

Proposition 4.3. Under Assumption 4.2,for a>O and ~>Osuch that 

(4.14) 

andyn=n·1~we have 

(4.15) sup Iiminfn11~MR(n;0,6);;:: 4-l+l~f(:xo)<l3-2>~a·1~p-1~e·1~. I 
6e(0,1),c>O n-ioo 

Note that no density k with unbounded suppon satisfies Assumption 4.2. We shall restrict ourselves 

to a class of bounded suppon densities k which at the most have "nice" discontinuities, ie. at the 

most we allow jumps or kinks. It is readily seen that these densities satisfy Assumption 4.2. For such 
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densities we are able to check condition (4.14) of Proposition 4.3. This gives the next asymptotic 

minimax lowerbound. 

Assumption 4.4. The density k is differentiable except at m points a1 , ... ,3m where k has a jump or 

a kink. In these points the left and right limits ofk exist and are finite, as well as the left and right 

derivatives of k. We further assume that.for i = l, ... ,m - 1, the restriction of k' to the interval 

(ai,ai+1) can be extended to a continuous function on [lli,8.i+d, such that the values at the endpoints 

coincide with the corresponding one-sided derivatives. We use similar assumptions on the intervals 

(-00,ai] and [am,oo)for the left and right endpoint, respectively. 

Theorem 4.5. Let k be a bounded support density satisfying Assumption 4.4. 

lfk is continuous thenfor"(u=n·114 

1 ( .. k'(x-x )2 )-1/4 
(4.16) sup liminfn114 MR.(n;0,6) ~ ... e-114 f(xo)112 JJ> dx . 

6e(0,1),c>O n_. 4 ..., (k-FXx) 

lfk has at least one discontinuity point then for "(n=n·113 

(4.17) sup liminfn113 MR.(n;0,6) ~ z-413e·113 f(xo)113 (l: (k(ai1 • k(ai•))\113. I 
6e(0,1),c>O 0_. i=l (k.Xxo+ai) 

In the following section we discuss this minimax result in connection with the examples in Section 

4.2 and other minimax results for the deconvolution problem. 

4.4. Discussion. 

Estimation of the value of the unknown distribution function F at the point xo in the 

deconvolution problem can be seen as a special case of estimation of a functional T of the distribution 

G of the observations X1, ... , Xn, Here G belongs to the class of convolutions G of a fixed known 
K with an arbitrary other distribution. The functional T is given by G=K•F ➔ F(xo). Results in 

lbragimov & Khas'minskii (1981) and Donoho & Liu (1988) indicate that the rate of convergence to 

zero of minimax risks of the type 

(4.19) inf sup F.o I Un - T(G) I 
Un GeG 

can be expressed in terms of the modulus of continuity of the functional T. This approach has been 

used by Fan (1988) to derive rates of convergence to zero of such minimax risks for the 

deconvolution problem. It follows from these results that the smoother the density k is, the slower is 

the rate of convergence. The difference between these minimax bounds and the one given by Theorem 

4.5 is that in (4.19) the supremum is taken over a fixed set of distributions G, independent of the 

samplesize n, while in (4.13) the maximum is taken over a set of distributions of the observations, 

which shrinks to {K•F} as n tends to infinity. Furthermore the distributions in the class G are 

usually required to 
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satisfy uniform smoot."tness conditions, while the distributions G considered in (4.13) are less 

smooth. We shall return to these other minimax results in one of the examples below. 

Comparing the examples in Section 4.2 with the minimax theorem in Section 4.3 two 

interesting questions arise. What does Th~orem 4.5 mean for possible optimality of NPMLE's in 

deconvolution problems ? We shall discuss this question for the uniform deconvolution problem, 

where, under the support restriction that Fis concentrated on [0,1], the asymptotic behavior of the 

NPMLE is known, see Theorem 4.1. The second question is: Can we comprehend the n-114 rate 

( 4.16) for smooth bounded support k in connection with the poor nonalgebraic rate of convergence of 

the kernel type estimators in Gaussian deconvolution ? 

Example 4.1. Uniform deconvolution continued. 

Clearly the uniform [0,1) density satisfies the conditions of Theorem 4.5. For 

k(x)=lco,1)(x) we are in the n113 situation where (4.17) holds. The right hand side of (4.17) 

equals 
(4.18) -4/3 -1/3 1/3 ( 1 1 )-1/3 

2 e f(xo) F(xo) - F(xo-1) 1 F(xo+l) - F(xo) 

_ 2.413 -1/3"( )1/3 ((F(xo) - F(xo-l?)(F(xo+l~ - F(xo)))l/3 
- e 1 xo F(xo+l - F(xo-1 • 

Now, let us assume that the distribution induced by Fis concentrated on [0,1]. Then we get 

(4.19) 

as lower bound in ( 4.17). Note that this expression equals the asymptotic standard deviation of the 

NPMLE in Theorem 4.1, apart from a constant not depending on F. A consequence is that if we 

consider the right hand side of ( 4.17) as a quantity which measures the difficulty of estimating F(xo) 

for distributions F(.:0) close to F, then the NPMLE adapts itself to this measure. Stricly speaking, 

this statement requires an additional uniformity argument, showing that (4.7) also holds for 

observations from a sequence of alternative distributions F(.:8). 

For the estimators proposed by Van Es & Van Zuijlcn (1990), in situations where the support 

restriction is not satisfied, the part depending on Fin (4.18) is strictly smaller than the part 

depending on F in the asymptotic standard deviation. This is seen from the inequality 

( 1 1 )·1/3 ( 1 1 )-1/3 
F(xo) - F(xo-1) + F(xo+l) - F(xo) < °F('io)➔ (1 - F(xo)) 

= {F(xo)Cl - F(xo))} 113, 

which is valid if O<F(xo-1) or F(xo+l)<l. The conclusion is that either these estimators do not have 

the nice property of the NPMLE, or that the part depending on F in the bound of Theorem 4.5 for this 
case is not sharp. 
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Example 4.4. Gaussian deconvolution continued. 

In the case of Gaussian deconvolution there is a striking difference between the 

nonalgebraic minimax rates for estimating F at a fixed point derived by Carroll & Hall (1988) and 

Fan (1988), and the n-114 rate in (4.16), for smooth bounded support densities. As already 

mentioned at the beginning of this section the difference between the two types of minimax risks 

is the set of distributions we allow for the observations. It is well possible that the nonalgebraic 

rates are caused by distributions which are very different from the distributions (4.12) in the 

minimax risk (4.13). One of the interesting problems is what the rate of convergence of the 

NPMLE for a fixed distribution Fis in this case, for instance, whether it is n-114 or a nonalgebraic 

rate. 

Carroll & Hall ( 1988), Fan ( 1988) and Theorem 4.5 show that better rates are achievable 

in deconvolution when the density k is rough. Now, recall that in the Wicksell problem we have a 

convolution structure (4.2) with k(x)=(-v-xf11(-oo,O)(x) which has an infinite peak at zero. If that 

peak would have been finite, i.e. if k would have had a finite jump at zero, then the rate of 

convergence would have been n-113 . Therefore it is not unreasonable to expect a better rate of 

convergence in the Wicksell problem. This seems to be confirmed by the simulations presented in 

Example 4.5. 

4.5. Proofs. 

Proof of Proposition 4.3. Write 
XO 

Fn(xo;0) - Fn(xo;O) = J 0f(xo)du = 0c-ynf(xo) 
xo-c'Yn 

and notice that the convolution of k and Fn(.;0) can be rewritten as 

J k(x-y)dF(y) + J k(x-y)0f(xo)hn(Y)dy ... .. 
= (k•F)(x) + 0f(xo) J k(x-y)hn(y)dy 

= (k•F)(x) + 0f(xo){K(x-xo+c'Yn)-2K(x-xo)+K(x-xo<'Yn)} 

= (k•F)(x) + 0f(xo)(~ynK)(x-xo). 

A combination of Assouad's lemma (Le Cam (1986), p.524) and Le Cam's inequality (Le Cam 

(1973)) now gives 

max Ee IUn - Fn(xo;0)1 
8e{0,6} 

~ ½ OC1nf(xo)IIP'1 <J"l11 

2: ¼ OC"fnf(xo) { J ✓ dP~dJ1} 2 
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=¼6cynf(xo){J ✓dP0dP6 } 2n 

=¼6C'Ynf(xo){ 1 - H2(P0,Ps)} 2n, 

where Pe is the measure corresponding to (k.Fn)(.;8) and H2(P0,P6)=½ J ( ✓ dP0-✓dP6)2 denotes the 

squared Hellinger distance between PO and P6. We proceed with examining H2(P 0,Ps). 

First note that for a continuous distribution function K the second difference (AtK)(x) tends to rero 

as tJ.O, unifonnly in x. Writing g=k*F, under Assumption 4.2 we have as n➔oo for arbitrary E>O 

Here we have used that for x small enough a Taylor expansion of ✓ 1 +x implies 

For 'Yn=n·1/li we now get for all £>O 

liminf n l/li MR(n;0,6) ~ ¼c6f(xo)exp(-2(1 +£) ½ 62f(xc»2a.cP} 
n-+oo 

and consequently 

liminf n I/Ii MR(n;0,6) ~ ¼c6f(xo)exp(-¼ 62f(xo)2a.cP} • 
n-+oo 

Finally, putting 6 equal to one and maximizing over c, the lower bound becomes 

and the proof is completed. I 

Proof of Theorem 4.5. Note that Assumption 4.4 implies Assumption 4.2. To check condition 

(4.14) of Proposition 4.3 write 

j ((AfK)(x)}2 dx = l: j1(AtK)(x)}2 dx + f ((AtK)(x)}2 dx 
_ (hF)(x+xo) i=l a;.-t (k•F)(x+xo) ft (hF)(x+xo) ' 



m 
with It= ( -00,00) \ !--J (ai-t,3.j+t]. For the terms of the sum we need the next lemma 

1=1 

Lemma 4.7. Assume that k satisfies Assumption 4.4. Then 
a+t 
J { (AtK)(x)}2dx = jt3(k(a+) - k(a-))2 + o(t\ tio. 

a-t 

For continuous kernels k we have 
a+t 
J { (A tK)(x) }2dx = O(t5}, t.J,0. 

a-t 

Proof. By Taylor expansion and a substitution '&={x-a)/t we get 

a+t 
J {(AtK)(x)} 2dx = 

a-t 
a+t a 

= J (K(x-t) - 2K(x) + K(x+t))2dx + J (K(x-t) - 2K(x) + K(x+t)}2dx 
\+t a-t 

= J (K(x-t) - K(a) - 2(K(x) - K(a)) + K(x+t) - K(a)}2dx + 
\ 

+ J (K(x-t) - K(a) - 2(K(x) - K(a)) + K(x+t) - K(a))2dx 
a-t 
a+t 

= J ((x-t-a)k(a-)- 2(x-a)k(a+) + (x+t-a)k(a+))2dx + 
aa 

+ J ((x-t-a)k(a-)- 2(x-a)k(a-) + (x+t-a)k(a+)}2dx + o(t3) 
a-t 

1 

= 2t3(k(a+) - k(a-))2 J (1-z)2dz + o(t3) 
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which proves the first statement of the lemma A similar argument with two term left and right Taylor 

expansions proves the second statement. I 

We can now complete the proof of Theorem 4.5. Since k is continuously differentiable on 

(-00,00) \ {a1, ... , 3m} the integral over It satisfies 

{ (AtK)(x)} 2 4 00 k'(x)2 4 l (k•F)(x+xo) dx = t ! (k.F)(x+xoF + o(t ), 

so for continuous k condition (4.14) of Proposition 4.3 is satisfied for 

00 k'(x)2 a.=! (k.F)(x+xofx and ~=4. 

For kernels k with at least one jump by Lemma 4.7 condition (4.14) is satisfied for 
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Having checked the conditions of Proposition 4.3 the proof is now completed. I 
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APPENDIX A. EXPONENTIAL BOUNDS. 

In our proofs frequently we need an almost sure order bound for the supremum of some 

stochastic process. A standard way to derive such bounds is to consider finite subsets of the set 

where the supremum is taken over, and to derive a bound for the supremum over these finite subsets 

first. This is then usually followed by an argument showing that the difference between the 

supremum over the finite sets and the supremum over the original sets is asymptotically negligible. A 

useful tool to derive a bound for the supremum over a finite set is the next exponential inequality 

attributed to S.N.Bemstein. See Serfling (1980) who for the proof refers to Uspenski (1937). We 

omit the proof here. 

Lemma A.1. Let Y1, ... ,Yn be independent random variables satisfying P(IYi - EYil Sm)= l,for 

each i, where m<oo. Then for t>O we have 

(A.I) 

for n = 1,2, .... I 

If we impose the extra condition that the random variables are identically distributed then the bound 

becomes 

(A.2) 

which gives the next bound in the even more special case that Yi is binomial (l,p), and L:':1Yi is 

consequently binomial (n,p ), distributed, 

(A.3) 

Recall that the kernel estimator is a sum of i.i.d. random variables. Lemma A.1 then gives us the next 

exponential bound, which is a minor adaptation of Lemma 5 in Chapter 6 of Devroye and Gy6rfi 

(1985). We prove this bound for bounded measurable kernel functions K, so we don't require that K 

is a density function. 

Theorem A.2. Let K be a bounded measurable function then for arbitrary t>O and h>O we have for 

any point x on the real line 

Here K is bounded by K*, i.e. IK(x)ISK*,for all x. 

Proof. First we estimate the variance ofh-1K((x-Xi)/h). We have 

var(h-1K((x-Xi)/h)) S E(h-1K((x-Xi)/h))2 S 

h-1K*Eh-11K((x-X1)/h)I. 

I 
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A direct application of Lemma A.1 gives, with m=2h-1K*, 

P( lfnh(X) - Efnh(X) I ~ t ) = 
D 1 D 1 

P( l~liK((x-Xi)/h)- ~8fi-K((x-Xi)/h)I ~ nt) S 

2exp( - nt2/(2h"1K*El111K((x-X1)/h)I +½i·1K*t)) S 

2exp( - nht2/(2K*(Eh"11K((x-X1)/h)I + t)) ), 

which proves the theorem. I 
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APPENDIX B. MOMENT BOUNDS. 

Investigating the performance of kernel estimators and cross-validation techniques the 

following type of statistic is often encountered. If X 1, •.. ,X8 is an i.i.d. sample from a distribution 

with a bounded density f then for h>O we consider statistics T 8 (h), 

X·-X· n 
(B.1) Tn(h) := ~ G( !!!:.!!:lh) w(Xi,Xj) + ~ g8 (Xi). 

'"'J 1=1 

Here G, wand g8 are bounded measurable functions for which we additionally require that G is 

symmetric around zero, that G is integrable and that w is symmetric in its two arguments. The first 

term ofT8 (h), G8 (h) say, is a U-statistic of degree two. We have 

with 
(~) (B.2) (j)h(x,y) := G h w(x,y). 

T n(h) is the sum of a U-statistic of degree two and a sum of i.i.d. random variables. Examples of 

these statistics are (nh)2U8 (h) and (nh)3V8 (h), where U8 (h) and V8 (h) are defined in Proposition 3.9. 

In the notation of Chapter 3 we have 

(nh)2Un(h) = -~ L(X~Xi)(f(Xir1IE(Xi) + f(Xjr1IE(Xj)). 
1"'J 

and 

In Chapter 3 we need bounds on the moments of terms in the Hoeffding decomposition of 

these statistics. First consider the moments of the statistic G8 (h). Writing Gij(h) := (l)h(Xi,Xj) we 

have 

For any positive integer k the k-th absolute moment ofG8 (h) can be bounded as follows, 

(B.3) 

where Cn denotes the set {(ij): i=l, ... ,n, j=l, ... n, i:;1,j}. Each of the terms E 1Gi1j1(h) ... Gikik(h)I 

can be represented as a graph r with vertices corresponding to to the indices 1,2, ... ,n and with an 

undirected edge between two vertices i and j, iaj, for each time the term Gij{h) appears in the product 

Gi1j1 (h) ... Gikik(h). Let eij denote the number of edges between the vertices i and j and let v(r) 

denote the number of vertices reached by at least one edge, which is equal to the number of different 

indices in ii,ji, ... ,ikjk. For example the term E IGdh)G23(h)G24(h)3Gs6(h)21 is represented by the 
graph 
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5 4 

fiwre B,1, The graph corresponding to E IG12(h)G23(h)G24(h)30s6(h)21. 

We need some notions from graph theory which can be found for instance in Wilson (1975). A graph 

r is called connected if, going through consecutive edges, each vertex of r can be reached from any 

other vertex. If r is not connected then r is the union of finitely many disjoint connected subgraphs 

called the components of r. Let 'Y(r) denote the number of such components. If for each pair of 

vertices of a graph there exists one and only one way to reach one vertex from the other then such a 

graph is called a tree. If r is an arbitrary connected graph and if r' is a subgraph of r with the same 

vertices, such that r' is a tree, then r' is called a spanning tree of r. The number of edges of any 

spanning tree of r is equal to v(f')-1. 

If r is connected we have 

for some constant c>O not depending on h. The fact that this inequality holds can be seen as follows. 

Let r• denote a spanning tree of r. We can rewrite the integral above by performing a series of 

. substitutions which correspond to consecutive edges of r '. Each of these substitutions yields a factor 

h and the final integral is bounded because all integer powers of IOI are integrable and because w and 

f are bounded. The argument is completed by the observation that the number of edges of any 

spanning tree is equal to v(r)-1. If r is not connected then it has 'Y(r)>l disjoint connected 

components C1, ... ,C'){I). For each of these components the bound (B.4) holds. By the independence 

of the X's the expectation E 1Giij1 (h) ... GiJc.ik(h)I is equal to a product of expectations, each 

concerning terms of one component only, so we have for general r, 

which gives the next result 
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Lemma B.1. Let X1, ••• .Xn denote a sample from a distribution with a bounded density. Under the 

conditions imposed on the functions G and w we have for any positive integer k and for any positive 

h 

for some constant c>O independent of h, where r is the graph corresponding to the indices 

considered. I 

Next we decompose the statistic Gn(h) by Hoeffding's projection method (Hoeffding (1948), 

Serfling (1980)). Writing the conditional expectations of Gij(h) as 

E(Gij(h)IXi) = g~(Xi), 

E(Gij(h)IXj) = g~(Xj), 

with 
g~(x) = J (j)h(x,y)f(y)dy, 

we define bij(h) and bn(h) by 

bij(h) = Gij(h) - g~(Xi) - g~(Xj) + EGijCh) 

and 

This gives the next decomposition of Gn(h), 
n 

(B.7) Gn(h) = bn(h) + 2(n-1)~ g~(Xi) - EGn(h). 
1=1 

Since E(bij(h)IXJ = E(bij(h)IXj) = 0 it follows that the terms are uncorrelated. Plugging (B.7) into 

(B.1) we get a similar decomposition for T nCh), 
n 

(B.8) Tn(h) = bn(h) + ~ (2(n-l)g~(Xi) + gn(Xi)) - EGn(h). 
1=1 

Notice that the terms of this decomposition are also uncorrelated. It turns out that bijCh) also satisfies 

(B.6). 

Lemma B.2. Let Xi , ... .Xn denote a sample from a distribution with a bounded density. Under the 

conditions imposed on the functions G and w we have for any positive integer k and for any O<h<l, 

for some constant c>O independent of h, where r is the graph corresponding to the indices 

considered. I 
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Proof. By a simple substitution v = (y-x)/h we get 
00 

g\i(x) = J (!)h(x,y)f(y)dy = 
00 

! ~(,t'-)w(x,y)f(y)dy = 

h J G(v)w(x,x+hv)f(x+hv)dv, 

and by repeated integration 

EGij(h) = J J (!)h(x,y)f(x)f(y)dxdy = 

J gfi(x)f(x)dx. 

It follows that for some constant a>O we have 

(B.10) 

and consequently 

(B.11) 

lg\i(x)I :5: cxh, for all x, 

IEGij(h)I :5: cxh. 

Recall that bij(h) is equal to Gij(h) - gft(Xi) - gft(Xj) + EGij(h). Returning to E 1biih (h) ... bikik(h)I 

we see that this expectation is equal to the sum of 4k terms of the form E 1Pi1ji(h) ... Pikik(h)I where 

Pij(h) equals either Gij(h), gft(Xi), gfi(Xj) or EGij(h). The proof is now completed by the same 

spanning tree argument as above for each of the terms E IPiih (h) ... Pikik(h)I, with this exception that 

each edge of the spanning tree, between i and j say, now corresponds to a term 

where eijt, .. ,,eij4 are nonegative integers with eij1+ ... +eij4 = Cij, If eij1=eij this term yields a factor h 

by substitution just as above, and by (B 10) and (B.11) since O<h<l it yields a factor smaller than a 

constant times h otherwise. I 

Corollary B.3. Let f be bounded density which is bounded away from zero on the set E. For the 

statistics b0 (h), ◊ 0 (h) and~ 0 (h) defined in Proposition 3 .9 we have for some constant c>O and for 

O<h<l 

E rt)iih (h) ... bipip(h)I :5: chm/2-2P, 

E l◊i1j 1 (h) ... ◊ipip{h)I :5: chm/2-3P, 

provided there are exactly m different numbers in the sequence i1, j1, ... , ip, jp, each index appearing 

at least twice. 

Similarly we have 
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provided there are exactly m different numbers in the sequence i1, ji, k1, ... , ip, jp, kp, each index 

appearing at least twice. I 

Proof. Taking G equal to the function L defined by (3.34) and w equal to 

w(x,y) = - (f(x)"1IE(X) + f(y)"1IE(Y)) 

we see that ()ij(h) equals h·2bij(h). By lemma B.2 we have 

E ,biui<h) ... ()ipipCh)I = 

h-2p E ,ei1j1 (h) ... eipip(h)I S: 

chv(r)--i<r)-2p_ 

The conditions of the lemma imply v(r)=m and 'Y(Ds:m/2. So by O<h<l the bound above is smaller 

than chm-m/2•2P. This proves the first statement. The proof of the second statement is completely 

analogous, except that the factor h-2 should be replaced by h·3• We cannot use Lemma B.2 to derive 

the third statement. However, the expectation E r~liuiki (h) ... *ipipkp(h)I can also be represented as a 

graph r. In this case the conditions of the lemma imply that the number of components of r, 'Y(D, 
does not exceed m/3. By the same method as above we can then derive a bound chm-m/3-3p_ I 
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APPENDIX C. ASYMPTOTIC NORMALITY. 

We consider the asymptotic distribution of the statistics T nChn> defined by (B.1) for sequences 

of positive bandwidths (hn) tending to uro. In that case the kernel function of the U-statistic Gn(hn) 

depends on the sample size and we can not use standard U-statistic theory to derive asymptotic 

normality of Tn(hn). Instead we use a limit theorem of Jammalamadaka and Janson (1986). An 

alternative approach would be to use central limit theorems for degenerate U-statistics which can be 

found for example in Hall (1984), De Jong (1987, 1990), Nolan & Pollard (1987, 1988). 

(C.l) 

with 

By decomposition (B.8) we have 
n 

Tn(hn) = bn(hn) + L g:(Xi) - EGn(hn), 
i=l 

(C.2) g:(x) := 2(n-l)gb~(x) + g8 (x). 

Since the terms in this decomposition are uncorrelated and since Ebn(hn)=O the variance of T n(hn) 

equals 

Next we use the fact that E(b;j(h)IXk) is equal to uro for k=l , ... ,n. We get 

E(bn(hn))2 = E(2~ b;j(hn))2 = 2n(n-l) E(b12(hn))2, 
l<.J 

and 

Assume that wand fare almost everywhere continuous. Then by (B.10), (B.11) in Appendix Band 

the dominated convergence theorem 

(C.3) 
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To examine the variance of the second term we compute E(gEn(X1))2. By the dominated convergence 

theorem we have 

J (hn J G(v)w(x,x+h0 v)f(x+h0 v)dv ) 2f(x)dx-

hii J ( J G(v)w(x,x)f(x)dv ) 2f(x)dx = - -
hii ( J G(v)dv ) 2( J w(x,x)f3(x)dx). -

This implies that the variance of 2(n-1 )gii'ii(X 1) is typically of order (nhn)2• Thus if g0 is identically 

equal to z.ero and if nh0➔oo, as in our applications, then bn(hn) is asymptotically negligible compared 

to the linear term. For an example of this situation see Veraverbeke ( 1985). Actually in the standard 

U-statistic theory where the kernels are fixed functions the linear term dominates too. In our 

applications however g0 is not identically equal to z.ero. It turns out that in those cases g0 (Xi) 

compensates the terms 2(n-1 )gii'ii(Xi) in such a way that the variances of both terms in (C.1) are of the 

same order, or that the variance of the second term is even of smaller order than the first term. We use 

a theorem of Jammalamadaka and Janson (1986) to prove the next theorem which establishes 
asymptotic normality of T 0 (hn) in the case that bnChn) is not asymptotically negligible. 

Theorem C.1. Let f be a bounded almost everywhere continuous density and let the functions G, w 

and g0 also be bounded. Further assume that G is symmetric and integrable, that w is symmetric in its 

two arguments and that w is almost everywhere continuous. Let the statistic T0 (h) be defined by 

(B.1) and let (hn) be a sequence of positive bandwidths converging to zero such that nh0➔oo. Let the 

function g~ be defined by (C.2) and suppose that this function satisfies 

(i) 

(ii) 

Then 

(C.4) nhfl (Tn(hn)- ET0 (hn)) ~ N(0,2cr+a2), 

with 
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00 00 

(C.5) I 

Proof. To apply Theorem 2.2 of Jammalamadaka and Janson (1986) we rewrite and renonnalize 

T nChn) as follows, 

J'ri(hn) :==ii171"1 (Tn(hn)-ETnChn)) = 
n n 

with 

(C.6) ~n(x,y) := %nCx,y) - in(x) - inCY) + E(J)hn(X1,X2). 

and consequently 

1 ...,. 'D -22 
=ii17Z" (Tn(hn)- ETn(hn)) = 1n(hn) ➔ N(0,2o-+a ), 
n n 

which proves (C.4). All we have to do is to check 

1 "' "' 1 6c (i) E=ii17Z"(gn(X1)-E~(X1)) = E 2=iit7r'l'llnCx,X2) = 0, 
n n n n 

1 "' "' (ii) sup =ii17Z"l~(x)- E~(X1)I ➔ 0, 
x n n 

(111 •• ·> E t - 1 c "'ex > E *ex >>)2 2 o ,,,. 2 n 'iiii1l' gn 1 - ~ 1 ➔ a , ""a < 00, 

(iv) n2E ~~gz ~n(X1.X2))2 ➔ p2, 0 S P2< 00, 

(v) sup l=ii171"1 ~n(x,y)I ➔ 0, 
x,y n n 

(vi) n sup E l=ii171"1 ~n(x,X2)I ➔ 0. 
x n n 

The first three conditions are clearly fulfilled by the fact that b12(hn) = $hn(X1,X2) has vanishing 

conditional expectations, and by conditions (i) and (ii) of our theorem. Condition (iv) with p2 equal to 

2cr2 follows from (C.3). In order to show (v) and (vi) notice that for n large enough we have 

nhf.!:nh11-+00, which together with (B.10) and (B.11) implies (v). Property (vi) follows by the 

same arguments as in the derivation of (B.10) and (B.11). I 
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This theorem is used in Section 3.4 to prove the asymptotic nonnality of the statistic Un(hn), 

thus serving as an important tool in the asymptotic distribution theory for likelihood cross-validation. 

Another place where it is used is in the derivation of the asymptotic distribution of the integrated 

squared error of kernel estimators in Section 2.3.2. There the theorem can be directly applied only for 
w-1. However, for other weight functions, modifying the proof above we can also prove asymptotic 

normality. 

Assume that the function K satisfies Condition K and that w is a bounded nonnegative 

measurable weigth function with a bounded suppon. In Section 2.3.2 we have shown that the 

integrated squared error of a kernel estimator fnh can be written as 

ISEn(h) = 

1 ~ 00 (u-X·\ /U-X·\ ii2ii7~ ! K ,r1,K,,F,w(u)du + 

2 ~ 00 (u-X·\ -iili ti_ I K ,F1f(u)w(u)du + -
1 ~ 00 2(u-X·\ ii'ii7ti_ ! K ,r1,w(u)du + 

00 

I r(u)w(u)du. 

For wal the first term equals 
1 

1 ~ J ( X·-X·\ ii2ii~ _1 K(u)K u + TJdu. 

The tenns of this sum are symmetric functions of CXi-Xj)/h so we can directly apply the previous 

theorem. However, if w is not identically equal to one we get 
1 

1 ~ J ( X·-X·\ ::T.:'h !a! K(u)K u + TJW(Xi+hu)du, n 1"'.J _1 . 

which is not of the form considered above. A modification of the proof of Theorem C.1 gives the 

next limit theorem for the integrated squared error. 

Theorem C.2. Let f be a bounded almost everywhere continuous density and let w be a bounded 
almost everywhere continuous weight junction with a bounded support. Furthermore assume that the 
kernel K satisfies Condition Kin Section 2.1 and that (hn) is a sequence of nonnegative bandwidths 
converging to zero such that nhn➔00• Let b(u,h) denote the bias function Efnh(u) - f(u) of the kernel 
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estimator. If 

(C.7) 

then 

with 

(C.9) 

00 

4nhii1var ( J KCUl1)b(u,hn)w(u)du) ➔ a.2, 0 ~ a.2 < oo, 
_.. n 

00 1 

cr2 := J ( J K(v)K(v+z)dv )2dz J w2(u)f2(u)du. 
-00 -1 -00 

Proof. We use the same notation as above. Define the statistic Tn(h) by 

~ 1 00 (u-X·) (u-X·) ~ J.. (u-X·) Tn(h) := :'4Ji J K T K T w(u)du - 2n ~ K T f(u)w(u)du. 
"'.J -oo l= 1 -oo 

We decompose this statistic using Hoeffding's projection technique. Write 

(f)h(x,y) := k j K(T")K(¥,)w(u)du 
-00 

and 

g&(x) = J (l)h(x,y)f(y)dy = 

i(k j K(¥)K(¥,)w(u)du)f(y)dy = 
-00 -00 

jK(¥)(k j K(¥,)f(y)dy)w(u)du = 
-00 -00 

00 00 

J K(T")f(u)w(u)du + JK(T")b(u,h)w(u)du. 
-00 -00 

· We obtain the decomposition 

where ~ is defined by (C.6) and the function !fu is given by 
00 

g~(x) := 2(n-l)g]i~(x) - 2n 1 K(li;")f(u)w(u)du = 
00 00 

2(n-1) 1K(li;")b(u,~)w(u)du - 21K(li;")f(u)w(u)du. 

I 

Using the fact that b(u,h) is bounded by a fixed constant for all real x and all positive hit is readily 
shown that ~n and g~ satisfy conditions (i), ... ,(vi) in the proof of the previous theorem. Therefore 

1 'lJ 2 2 (C.10) ~(Tn(hn)- ETn(hn))) ➔ N(0,2cr + a ). 
n n 
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Returning to the integrated squared error notice 

(C.11) 

The variance of the second tenn can be bounded as follows, 

( _1 ~ ( 00 2(u-X·) 00 2/U-X·) )) 
var 'iiiiW2't"f ! K ~ w(u)du - E ! K , ~ w(u)du S 

which shows that this term vanishes in probability. By (C.10) and (C.11) the proof is completed. 

I 

Remark C.3. If condition (C.7) of the previous theorem holds with rt2 equal to infinity then the 

linear term Li~1 g~(Xi) dominates over the quadratic term Li"'.i ~n(Xi,Xj), Considering 

(C.12) 

we recall 

i.e. the terms of the sum (C.12) vanish uniformly in i for n tending to infinity. We also have 

n :i;:-h 4 (n-1)2var ( j K(°t1)b(u,hn)w(u)du) ~ 
n n ..,. n 

00 

4nh~ var( J K(°t1)b(u,hn)w(u)du) ➔ 00, 
..,. n 
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This implies asymptotic nonnality of the linear term by the Lindeberg Feller central limit theorem, so 

in case condition (C.7) is fulfilled with a.2 equal to infinity the integrated squared error is still 

asymptotically normal The proof of Theorem C.2 now implies 

(C.13) ½i112hn ( var (j K(°h~1)b(u,hn)w(u)du) } 112(ISEn(hn)- MISEn(hn)) ~ N(O,l), 

which gives the proper normalizing constant in this case. 
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