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1. INTRODUCTION.

The major part of this monograph concemns density estimation. A well known nonparametric
estimator of the common density f of n independent identically distributed observations X,...,Xp is
the Parzen-Rosenblatt kernel estimator fnn (Parzen (1962), Rosenblatt (1956)). This estimator is
defined by

(1.1) fan(x) := EIHE, K((x-Xi)/h),

where h is a positive real number called the window or the bandwidth and K is a probability density
function called the kernel. The performance of this estimator is studied in Chapter 2. In Chapter 3 we
discuss cross-vzlidation methods designed to compute bandwidths from the observations. Of course
many other nonparametric density estimators have been proposed. For more general reviews of
density estimation we refer to Prakasa Rao (1983), Devroye & Gytrfi (1985), Silverman (1986) and
Devroye (1987). In Chapter 4 we leave density estimation and consider the deconvolution problem,
i.e. estimation of an unknown distribution function in a situation where we have a sample from a
distribution which is the convolution of the unknown distribution and a known one. We give a brief
outline of the contents of the three chapters.

Following Van Eeden (1985) and Cline & Hart (1986) in Chapter 2 we do not restrict
ourselves to estimation of smooth densities, but we also consider estimation of densities with
discontinuity points. We allow discontinuity points in the first or second derivative as well. At those
points we require the densities to have left and right Taylor expansions. Thus, apart from smooth
densities f, we also consider densities with jumps and kinks. In Section 2.1 we state the precise
conditions on f. For the moment we suffice with giving two examples.

Example 1.1. Let the density f be given by

0 if x<0
2-x2)/o. if 0<x<2
Q2-(x-32)0  if 2<x<3+V2
0 if x23+V2

(1.2) f(x) :=

2 3+V2
where o := J (2-5x)dx + J (2-(x-3)%)dx = 6.5523. Then f has a jump in the point 0, a kink in the
point 2 and a kink in the point 3+V2.
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Figure 1.1. A non-smooth density.
We use this density repeatedly as an example of a typical non-smooth density.

Example 1.2. A situation where a jump and a kink appear naturally is given by Wicksell's
corpuscle problem. Let X1, ... , Xy denote n radii of spheres of different random size in an opaque
medium, such as drops of oil in a piece of rock. Suppose that we can not observe these spheres
directly. Instead we can observe the radii of the circular profiles of the spheres obtained by taking a
slice of the medium. Denote the radii of the circular profiles by Y7, ... , Y, which we assume to be
independent. Defining f as the sphere radius density and g as the circle radius density, Wicksell
(1925) showed that under suitable regularity conditions the next relations between f and g hold,

1y
1.3 =— f(r) dr, 0 oo
(1.3) gy M{ 75 () dr,0<y<
and

T
(1.4) fr)=- = a;rl Wg(y) dy, 120,

where p equals the expectation of the sphere radii. Several parametric and nonparametric methods
have been proposed for estimating the density f or its distribution function. For reviews of the
Wicksell problem and related methods see Ripley (1981) and Stoyan, Kendall & Mecke (1987).
Estimators of the density f related to the kemel estimator were proposed by Taylor (1983), Hall &
Smith (1988) and Van Es & Hoogendoomn (1990). All these estimators suffer from a large bias close
to zero, which can be explained from the fact that , no matter how smooth the density f is, the density
g has a kink in zero. This is immediate from relation (1.3). Moreover, Hall & Smith propose an
estimator based on the squared circle radii. Since the density of the squared circle radii equals g1(r) =
(2r'2)yg(1!2), it is readilly seen that it has a jump in zero.

In our opinion kemnel estimators can be used for estimating non-smooth densities, even though they
have a larger error and thus require larger sample sizes. Moreover, these densities might occur
without the statistician being aware of it. For the same reason we have also studied the performance



of likelihood cross-validation for such non smooth densities. In fact, in an important special case,
treated in Corollary 3.6, the density f has jumps. Some of the results derived in this chapter are also
used frequently in Chapter 3.

To compute a kernel estimate of a density we have to choose a kernel and a bandwidth. It is
generally recognized that for most loss functions the choice of the bandwidth is more important than
the choice of the kernel. In Chapter 3 we consider so called cross-validation methods to determine a
good bandwidth for a kernel estimator. Least squares cross-validation was introduced and studied by
Rudemo (1982) and Bowman (1984) and has since received considerable attention. Stone (1984)
established an important optimality result with respect to the integrated squared error. This result
states that a kernel estimator with a bandwidth computed by least squares cross-validation
asymptotically performs as well as a kernel estimator with the best possible non-random bandwidth.
This optimality holds for all bounded densities. For smooth densities, i.e. essentially densities with a
continuous second derivative, the asymptotic distribution of the computed bandwidths and the
corresponding integrated squared error was derived by Hall & Marron (1987b). Likelikood cross-
validation was introduced earlier by Habbema, Hermans & Van den Broek (1974) and Duin (1976).
We establish the almost sure rates of convergence to zero of bandwidths computed by this method
and the asymptotic distribution theory. It turns out that the asymptotic behavior is similar to the
asymptotic behavior of least squares cross-validation, provided we use a modification proposed by
Marron (1985), and provided we exclude densities with jumps. We show that likelihood cross-
validation does not give asymptotically optimal bandwidths for densities with jumps. For densities
without jumps likelihood cross-validation gives bandwidths which are asymptotically optimal with
respect to a weighted integrated squared error, where the weight is equal to 1/f (Marron (1985)). For
a detailed introduction to cross-validation methods we refer to Section 3.1.

Chapter 4 is devoted to estimation of an unknown distribution function in the nonparametric
deconvolution problem. Since the Wicksell problem, suitably transformed, also has a convolution
structure, estimation of the distribution function of the sphere radii is one of the examples. In
particular we consider nonparametric maximum likelihood estimation. We present a minimax theorem
which shows that in the deconvolution problem, even for estimating a distribution function at one
fixed point, different rates of convergence appear, a phenomenon well known in density estimation.
For several examples we discuss the nonparametric maximum likelihood estimator of the distribution
function.



2. KERNEL ESTIMATION IN NON-SMOOTH CASES.

We consider the performance of the kernel estimator (1.1) with the emphasis on its properties
in situations where Xj, ..., Xp is a sample from a distribution on the real line, having a density f
which does not satisfy the usual smoothness conditions. Under these smoothness conditions f is
essentially required to have two continuous derivatives. While the results for the smooth case date
back to Rosenblatt (1956), studies on the behavior in non-smooth cases, allowing discontinuities in f
and its derivative, are fairly recent, see for example Van Eeden (1985) and Cline & Hart (1986).

The conditions we impose on f and K are given in Section 2.1. In Section 2.2 we discuss the
basic properties of the kemel estimator fyp,, evaluated at a fixed point x. The results presented in this
section are needed to derive global properties of kemel estimators in later sections. They also have
independent interest. The global behavior with respect to the integrated squared error and the
supremum distance is treated in Sections 2.3 and 2.4. For the properties of kemel estimators with
respect to the L; norm we refer to Devroye & Gyorfi (1985) and Devroye (1987). The last section of
this chapter contains technical (parts of) proofs of results in the preceding sections.

2.1. Assumptions.

We consider densities satisfying the following conditions. Essentially we allow the densities
to have jumps and kinks. A typical example of such a density is given in Figure 1.1 in the
introduction.

Condition F:

(F.1) The first and second derivatives of f, denoted as f' and £", exist at every point of the
real line, except at a countable set of points which we denote as D. In these points we
give f' and " arbitrary values . We assume that inf {Id;-d;l : dy,d2€ D} is positive,
i.e. the points in D are separated.

(F.2) The functions £, £' and £" have finite left and right limits at the points in D.
(F.3) The function f has finite left and right first and second derivatives at the points in D.
(F.4) The second derivative £" is continuous on the complement of D.

The elements of the set D are called singular points. For the density of Example 1.1 the set D is equal
to {0,2,3+V2}. The jumps of f, f' and f " at a singular point d are denoted by 5©(d), §')(d) and
3@(d), so we have

390a) := f(d+) - f(d-),
D) :=f'(d+) - £'(d-),
3D(d) :=f"(d+) - £"(d-).



Condition (F.3) requires some further explanation. By the existence of a finite right derivative of f at
deD we mean that the limit

im L(fd+e) - f(d+)

elo €
exists and is finite. By Taylor's theorem and (F.2) this limit equals f'(d+). By the existence of the
second right derivative of f at de D we mean that the limit

.2 .
Eﬂ; 3 (f(d+€) - f(d+) - ef'(d+))

exists and is finite. This limit then equals f"(d+). Hence
lim -I-(f(d+s) - f(d+) - ef'(d+) - iezf “(d+)) = 0.
elo &
The left derivatives are defined similarly. With left limits replacing the right limits the relation above

also holds for f(d-€). This means that we can use left and right Taylor expansions at the singular
points.

Given the fact that we use a probability density, the choice of kemel is relatively unimportant.
Hence we feel free to consider bounded support kernels only. This is further motivated in Section
2.3.1. We assume that the kemnels satisfy the next condition.

Condition K:

(K.1) K is a probability density function.
(K.2) K has support [-1,1].
(K.3) K is bounded.
(K.4) K is symmetric.
With respect to (K.2) note that
1% 1y
@1 7 & K(0-Xi/m) = =2 Ke((x-Xi)he),

where he = c-1h and K¢(x) := c'1K(c-1x), for all x. This shows that, when we are dealing with
bounded support kemels, without loss of generality we can restrict our attention to the support [-1,1].

2.2. Basic properties of the kernel estimator.

Since fnn(x) is an average of i.i.d. random variables its expectation is given by

@2  Efm)=EpK@-Xom).



To compute the variance note that a straightforward computation gives

E fuh(0) = =B FKAXpm) + L € ER(G-X)m)Y
and therefore
@3) var (fan(x)) = o EFKA(G-X/)) - =B K- Xn/m)2

Also note that the expectation (2.2) depends on the bandwidth but not on the sample size . The
variance depends on both the sample size and the bandwidth. A further observation is that for Efpn(x)
to converge to f(x) we have to assume that h tends to zero.

The expectations appearing in (2.2) and (2.3) are of the same form. They can be written as
g(x;h) := E Gn(x-X),
where G is a measurable function, not necessarily a density, and Gy, is defined by
Gn(x) = £G(D).

In (2.3) we take G equal to K? for the first term and equal to K for the second term. This shows the
necessity of expansions of such quantities for bandwidths h tending to zero. The next lemma consists
of two parts. Suppose that f satisfies Condition F and recall that that D denotes the set of singular
points of f. The first part gives an expansion of g(x,h) for h tending to zero and x in the set Dy, where

2.4 Dy, := {x: Ix-dI>h for all de D},

i.e. the set of all points of the real line which are at least at distance h of the singular points of f. In
Example 1.1 the set D is equal to {0,2,3+V2}. The set Dy, is equal to the following union of intervals,

Dh, = (-00,-h)U(h,2-h)U(2+h,3+V2-h)U(3+¥2+h,c0).

For technical reasons we establish the uniformity of the expansion over the sets Dy N[-M,M] for
arbitrary positive integers M. The second part of the lemma gives an expansion of g(x,h) for x in a
shrinking neighborhood of some fixed point xo. Here we consider points x=xg+th and we let h tend to
zero. The expansion holds uniformly on bounded t-intervals. Furthermore we prove uniformity of
these expansions for the bandwidths h in intervals (0,hy], where (hp) is a fixed sequence of real
numbers satisfying

hp>0 forn = 1,2,... and lim hy = 0.
n—oo



Lemma 2.1. Let G denote a bounded measurable function with support [-1,1] and let X denote a
random variable having a distribution with density f. Suppose that f satisfies Condition F.
(a) Then

g(xh) = E Gh(x-X) =
1 1 1
(2.5) f(x) | G(u)du - hf'(x) [uG(u)du + 32 "(x) [w’G(u)du + ri(x.h),

where the remainder 1, satisfies

(2.6) im sup sup  h2iIn(xh)=0,
n—0 O<h<hy xe Dy [-MM]

for every positive M.
(b) For xg a fixed point we have

g(xg+th,h) = E Gp(xg+th-X) =
0 00
f(xo-) | G(t-u)du + f(xg+) J G(t-u)du +

0 o0
2.7) h(f'(x0-) [ uG(t-u)du + f'(xg+) J uG(t-u)du) +

0 oo
F2(E"(x07) ] WP G(t-u)du + £"(xo+) | wPG-u)du) + ra(th),

where the remainder 1, satisfies

(2.8) im sup sup hZir(th) =0,
n—3o0 O<hshy, -M<t<M
for every positive M. |

Proof. By a substitution we obtain

g(x+th,h) = E Gy(x+th-X) =

oo

(2.9) | };G(ﬁgrl)f(v)dv =

o

| G(t-u)f(x+hu)du .



To show (a) we take t equal to zero and we assume that x belongs to the set Dy,. Relation (2.9) then

becomes
1

g(x,h) = { G(-u)f(x+hu)du .

Since xe Dy, the interval [x-h,x+h] contains no points of D and hence by Condition F the function f
allows a three term Taylor expansion for f(x-+hu) around the point x. We get
1

gxh) = [G(-w)(f(x) + huf '(x) + W’ "(x))}du + ri(xh),

where r; equals

1
(2.10) ri(xh) = g0 [W?G(-w){(f "E(xhw)) - £(x)))du

and &(x,hu) is the point between x and x+hu appearing in Lagranges version of the remainder term in
the Taylor expansion of f(x+hu). In order to complete the proof of part (a) it remains to show (2.6).
Let (hp) be an arbitrary sequence of bandwidths satisfying O<hp<hp, for all n, and let (xp) be an
arbitrary sequence of points in Dp,M[-M,M], where M is an arbitrary positive number. It suffices to
show

(2.11) lim hi2 ry(xghn) = 0.

Under Condition F the interval [-M,M] contains a finite number of singular points, -M<d;<d,<...
<dm<M, say. The second derivative f" is uniformly continuous on the intervals [-M,d;), (dm,M],
and (dj,dj+1), i=1,...,m-1. Since for -1<u<1 the points x, and §(xp,hpu) belong to the same interval
we have

Tim £"(E(%nhn)) - £" (%) = 0,

so the integrand in (2.10) converges pointwise to zero. By the dominated convergence theorem we
then obtain (2.11) and the proof of part (a) is finished.

The proof of part (b) is similar, except that since xo is allowed to belong to D we have to use left and
right Taylor expansions of f(xg+th) . In fact this is an important special case. The details of the proof
of part (b) are given in Section (2.5). |

By (2.2) we can now expand Efpn(x). Since Condition K implies that the integral of uK(u)
vanishes, taking G equal to K, part (a) of the lemma gives

E fon(x) = E Kp(x-Xy) =
1 1 1

f(x)_{ K(u)du - hf'(x)_{ uK(u)du + $h2f "(x)_{ u?K(u)du + ry(x,h) =



1
£(x) + 302 "(x) [u?K (u)du + ri(x.h).

By (2.6) this expansion is only meaningful for x a non-singular point of f. On the other hand for x a
singular point we can apply part (b) with t=0. We get
E fun(x) =
1 1
7 (E0x) + £0x)) + h8D(x) | uK (W)du + Fh2(E"(x-) + £"(x+)) fuPK (u)du + 12(0,h),
where r; satisfies

lim sup h2ir(0h) =0.
n—oo0 O<h<hp

The next two theorems give expansions of the bias b(x,h):=Efyn(x)-f(x) and the variance of fyn(x).
Note that the bias, just as the expectation, is independent of the sample size. It only depends on the
bandwidth. Similar to part (b) of Lemma 2.1 we give an expansion of b(xo+th,h)=Efpn(xo+th)-
f(xo+th), i.e. for values x=xg+th close to a point xo. However, since by Condition F the value of f in
a jumppimg point is arbitrary, we have to exclude t=0. We first introduce some functions which
appear in the expansion of b(xg+th,h).

Definition 2.2. The functions by, by and b, are defined by

t
[@-wy™K(u)du if t<0

bm®:=y :
- Jew™K@du if 120
t
form=0,1,2.
2 2 2
e ﬂq__k o
A | N | S
-1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

Figure 2.1. The functions by, by and b,.
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The pictures above show the graphs of by, b; and b,. We have used the kernel
K(x) = 33(1-x3T1.1,1)(x)s

a symmetric bounded support kernel with support [-1,1].

Theorem 2.3. Assume that the kernel K satisfies Condition K and that the density f satisfies
Condition F.
(a) Then

1
(2.12) b(xh) =3’ "(x) [u?K(u)du + r3(xh)

where the remainder 13 satisfies

lim sup su h2irxh)l = 0,
n—wo O<h<hy xe DpN[-MM]

for every positive M.
(b) For xg a fixed point we have

(2.13) b(xg+th,h) = bo(®)d@(x) + hby(1)6M(x) + 12b2(1)5P(x0) +

1
;hz_{ wZK (u)du {f "(xo-)(0,0)(t) + £ "(x0+)0,05) (1)} +

14(t,h),

where the remainder 14 satisfies

lim sup sup hZin(th) =0,
n—o0 O<h<hy, -MSt<M,t#0

for every positive M. |

Proof. Notice that by (2.2) the expansion in part (a) is a direct consequence of the expansion in part
(a) of Lemma 2.1 if we choose G equal to K. By the symmetry of K we have

1 1
(2.14) {uG(u)du = [uK(u)du =0,

and so, since K integrates to one, the remainder r3 is equal to the remainder r;.
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To prove part (b) notice that b(xg+th,h) equals Efpn(xo+th)-f(xo+th). Again by relation (2.2) the
expectation can be expanded using part (b) of Lemma 2.1. Together with left and right Taylor
expansions of f(xg+th) around xg the result can then be derived. The details are left to Section (2.5).

|

Theorem 2.4. Assume that the kernel K is a bounded probability density with support equal to
[-1,1] and that the density f satisfies Condition F.
(a) Then

1
var(Ean(x)) = g f00) [ K2(0)u + rs(x.b),

where the remainder term 15 satisfies

sup sup  Irs(x,h)l =0(%), for n — oo,
O<hshy, xe Dy[-M,M]

for every positive M.
(b) For xq a fixed point we have
1 t
var(Ean(xo+h) = (B0 K(u)du + fxg+) [ K2(udu)+ re(th,
where the remainder 1¢ satisfies

sup sup Irs(th)l =O(), forn — o,
O<hshy, -MSEM

for every positive M. 1
Proof. Recall that by (2.3) we have

var (6an(x)) = o E EKAG-X/h) - -8 L R(xXpm)?.

Both terms can be expanded by Lemma 2.1, taking the function G equal to K2 to deal with the first
term and equal to K to deal with the second term. It turns out that the second term is negligible. The

leading terms in the expansions of the first term give the leading terms in the expansions of the
variance. |

Remark 2.5. To derive the order h? of the bias on the set Dy, in (2.12) we have explicitly used the
fact that the integral of uK(u) is equal to zero. Assuming more smoothness of f, a bias of order h™,
with m>2, can be obtained using kemels satisfying



12

1
Ju'K@du =0 fori=12,.m1,

1
{u™K(u)du = 0.

Such kemels, called higher order kernels, clearly take on negative values. As a consequence they
produce density estimates which can be negative. We don't consider higher order kermnels here. We
only mention that cross-validation, a technique discussed in the next chapter, can be used to select an
appropriate order for a kemnel, see Hall & Marron (1988).

Example 2.6. To illustrate the bias expansions we have computed the bias of a kernel estimator of
the density f in Example 1.1. The kemel we have used is

(2.15) K(x) = 5(1-x2I[-1,15(%).

Figure 2.2.1 shows a graph of f and a graph of Efpn(x) where we have taken the bandwidth h equal
to: Figure 2.2.2 shows a graph of the bias b(x.3) of fan(x).

2
-

o
]
o

T T T J

-2.0 0.0 2.0 4.0 6.0

Figure 2.2.1, The density f and Efy, for h=y.

|

-

]
? T T T R}
-2.0 0.0 2.0 4.0 6.0

Figure 2.2.2. The bias of fyp, for h=}.
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Recall that for this density the set D is equal to {0,2,3+V2} and the set Dy, is equal to the following
union of intervals,

D, = (-e0,-h)U(h,2-h)U(2+h,3+¥2-h)U(3+V2+h,e0).

If (hp) is a sequence of bandwidths converging to zero then for every fixed x¢ D we have
1

b(x.hn) = 3hif "(x) [u?K(u)du + o(hd), for n—ses,

since xe D, for n large enough. In fact this expansion holds uniformly on D, hence is in all points
of at least a distance hy, to the singular points of f. In Figure 2.2.2 we see that the bias is much larger
close to these points.

Next let us consider the jump at x=0. Then Theorem 2.3 gives the following expansion

b(thp,hy) = be(t)3®(0) + O(hy) , for n—eo and 0.

This approximation holds uniformly for t in [-1,1]\{0}, so on [-hy,hp] the bias asymptotically
resembles the function by(t) times the jump of f in zero. Notice that if K is a symmetric kemel then the
function by is an uneven function.The bias will not converge to zero close to a jumping point if the
distance to the jumping point is measured in terms of h.

For the point x=2 we have the expansion

b(2+thy,hy) = hab(8P(2) + O(h2), for n—ee and t20,

again uniformly for t in [-1,1]. This expansion shows that on the interval [2-hp 2+hp] the bias
asymptotically resembles hy, times the function b, times the jump of f' in 2. By the symmetry of K the
function b; is an even function. Close to a kink the bias does converge to zero but it is not of the same
order h3 as it would have been in the smooth points in Dp,. Here the bias is of order hy! The point
x=3+V2 can be treated similarly since f has a kink in this point too.

All the previous considerations about the bias suggest that very small bandwidths give good
density estimates. This is far from true. Using Theorem 2.4 we obtain the next expansion of the
variance of fpn in a point x which does not belong to D

1
var(fan(x)) = 7 £06) [ K2(w)du + O(F) , for nses and hL0.

This expansion shows that very small bandwidths cause large variances of the kemnel estimator. Part
(b) of the theorem implies that this is also true if x belongs to D. It follows that we should require
nhp—eo, for n—eo, otherwise the variance does not vanish asymptotically. For optimal choices of the
bandwidth these two effects have to be balanced. Of course what we mean by optimal should be made
precise. Two global optimality concepts are discussed in the next sections.
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Here let us briefly discuss estimation of f in a fixed point x. A common loss function when
estimating a real valued parameter is the mean squared error. The mean squared error of fpn(x) is
defined by

MSEy(x,h) := E(fan(x) - f(x))*
A simple computation shows
MSEp(x.h) = b(x,h)? + var(fa(x)).

Let (hp) denote a sequence of bandwidths converging to zero. By Theorems 2.3 and 2.4 for a point
x¢ D the mean squared error can be expanded as follows

1 1
MSEq(x ) =04 £ "2 K (u)du)? + Ei-n-f(x)_{ K3uydu + o(hﬁ+ﬁ}ﬁ).

Minimizing the leading term in this expansion we obtain the asymptotically optimal bandwidth
1 1
hgP* = (£(x) [ K2)du / (£"(x) [uK()du)?)* 015,

This choice results in a mean squared error of order n4/5, Since the expansion of the bias in a kink is
different we also have a different expansion of the mean squared error. If x is a point where f has a
kink then we have

1
MSEx(xhe) = 6RO + =t00) [KE(u)du + otbegre),

which leads to an optimal bandwidth of order n-1/3 and a mean squared error of order n2/3. It is not
clear what the value of f should be in a jumping point so we don't consider estimation of f in such a
point.

There is one more unexpected lesson to be learned from Example 2.6. Careful examination of
Figure 2.2.2 on the interval (1/2,3/2) suggests that the bias is identically equal to zero on this interval.
The next remark shows that this is no coincidence.

Remark 2.7. If a density f is linear on an interval [a,b] then the bias of a kernel estimator is equal to
zero on the set [a+h,b-h], provided h is smaller than b-a. The proof is left to the reader. Now suppose
that we want to estimate f at a point x inside [a,b]. In that case bandwidths hy, which asymptotically
minimize the mean squared error of fnn,(x), don't converge to zero. This is immediate from the fact
that the mean squared error for vanishing sequences of bandwidths can always be decreased by taking
larger bandwidths. This follows since the estimator fnh,(x) is unbiased and has a variance of order
1/(nhg). On the other hand the bandwidths hy can not converge to infinity either, since then, if the
kernel is bounded by K*>0, by

K‘
fon(x) < e for all x,
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the estimate would converge to zero at every point of the real line. The conclusion is that in this case
good choices for the bandwidth are asymptotically bounded away from zero and infinity.

At this point it should be noted that the merit of Theorems 2.3 and 2.4 lies not only in the
pointwise properties just discussed, but also in the fact that these theorems give uniform
approximations of the bias and the variance on any bounded interval of the real line. This can be
achieved by considering Dp,, and the hy intervals of around the points of D separately. Thus we can
also expand integrals involving the bias and the variance, provided we integrate over bounded areas.

2.3. The integrated squared error criterion.

In the remainder of this chapter we approach density estimation from a global point of view.
Suppose that we want to estimate the density "well" on some subset E of the real line instead of in a
fixed point. What we mean by "well" could be quantified for instance by requiring that the estimate
minimizes the integrated squared error loss

(2.16) ISEq(h) := é (Fan(x)-£(x))*w(x)dx,
where w is a nonnegative measurable weight function. Incorporating the indicator function of the set
E in the weight function we can rewrite (2.16) in the more convenient form
ISEn(h) = | (Fan(x)-f(x))*w(x)dx.
Since the integrated squared error measures the discrepancy between the random function fy, and the

true density f, it is a random variable itself. The mean integrated squared error, defined as the
expectation of the integrated squared error,

MISE(h) := E ISEq(h) = E | (fan(x)-f(x))*w(x)dx,

is a deterministic loss function. We discuss the asymptotic behavior of the mean integrated squared
error in the following section. We also derive the asymptotic distribution of the integrated squared
error about its mean and discuss the relation between the two loss criteria.

2.3.1. The mean integrated squared error.

The mean integrated squared error can be rewritten as follows,

MISEq(h) = J E(fan(x)-f(x))?w(x)dx =

(2.17) [ {b(x,h)? + var(fan(x)) }w(x)dx.
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This shows that MISEy(h) is a weighted average of the mean squared error of fnon(x), the estimate at
the point x. We can use the expansions of the bias and the variance in the previous section to derive
an expansion of the mean intgerated squared error.

Assume that f satisfies Condition F. The set D of singular points of f contains at most
countably many points dy, da,.. . Recall that 8©(d;), 5(d;) and 5®(d;) denote the jumps of f, '
and f" at the point d;. We have to impose some extra conditions on the weight function w. We
assume that w has a bounded support, which we denote by supp(w), and we assume that w has finite
left and right limits in the singular points of f. We further assume that these limits are not both equal
to zero in those singular points of f which also belong to supp(w). Define

A9 .- Zl(w(di-) + w(di+)8Q(d;)?

and
2D = T widi) + widi)E(ey?

By Condition (F.1) and the fact that w has bounded support there are only finitely many elements of
D contained in the support of w. Hence the sums A(,g) and A‘(,}) exist of only finitely many

nonvanishing terms. It turns out that the mean integrated squared error has a different asymptotic
expansion in the following three cases:

casel A(o) >0,
casell : AD=0and AP >0,
case Il : AS,?)-AS)—O.

The meaning of these cases will become clear after we have proved the next theorem.

Theorem 2.8. Suppose that the density f satisfies Condition F and that the kernel K satisfies
Condition K. Let w be a bounded measurable nonnegative weight function with bounded support and
finite left and right limits in the singular points of f. We assume that these limits are not both equal to
zero for singular points in supp(w). Then for any sequence of bandwidths (hy) converging to zero
and for n tending to infinity we have

(2.18) MISEy(hy) = Eh" { K?(u)du I fx)w(x)dx + o(—-) +

hnA(ve)J bé(t)dt + o(hp) in case I

nald J bA(t)dt + o(h3) in case Il

Ind ( !uzl((u)du)z [ £ "(x)®w(x)dx +o(h)  in case III. 1
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Proof. By (2.17) the mean integrated weighted squared error can be written as the integrated
weighted squared bias plus the integrated weighted squared variance. The basic idea of the proof is
that we split up the integration area in the set Dy, and its complement, which in its turn is a countable
union of hy neighborhoods of the elements of D. Starting with the integrated weighted variance we
write
o o dithy

(2.19) | var(fap(x))w(x)dx = Dr{n var(fan(x))w(x)dx + 1:21 & l;/ax(fnh(x))w(x)dx.

The same decomposition is used for the integrated weighted squared bias. Since w has bounded
support Theorems 2.3 and 2.4 provide us with asymptotic expansions of the integrands over the

integration areas. Thus part (a) of Theorem 2.4 implies that we have,

(2.20) Dr{n var(fon(x))w(x)dx =H};_{K2(u)dubi[hf(x)w(x)dx+ Di[gs(x,hn)w(x)dx,

where rs satisfies

sup Irs(x,hp)l = O(%), for n—eo,
x€ Dy, Nsupp(w)

since the support of w is bounded. This implies that the second term of (2.20) is of order O(n’!). To

deal with the first term notice that the Lebesgue measure of supp(w)\Dh, is of order O(hy), so

replacing the integral over Dp by an integral over supp(w) the difference is of order O(n’!) and

therefore (2.19) equals the first term in the expansion (2.18).

By part (b) of Theorem 2.4 it follows that for each d; belonging to D we have
dithy

1
di_{:ar(fnh(X))W(X)dx =0@,

and since there are only finitely many of such integrals which give a non zero contribution to (2.19)
the sum of these terms is also of order O(n‘l). This deals with the integrated weighted variance term.
Next we concentrate on the integrated weighted squared bias term. By part (a) of Theorem 2.3 we
have
I b(x,hp)*w(x)dx =
Dhy

1

(221) D:{,.@l’z‘f "(x) {u?K (u)du + r3(xhn)2w(x)dx =

1 )

%h}‘. ({ u2K(u)du)2 If "(x)*w(x)dx + o(hd),

which follows from similar arguments as above. We proceed with observing that for each d;
belonging to D we have
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divhy
di4{“b(x,hn)2wo()dx =

1
(2:22) hn { b(di+thnhn)*w(di+thn)dt =

0 1
hn { b(di+thn ha)*W(di+thn)dt +ho [D(di+thhn) w(di+ha)dt

Since cases II and III are similar to case I we only treat case I . By part (b) of Theorem 2.3 and the
dominated convergence theorem (2.22) is asymptoucally equivalent to,

hy {b&<t>s<°>(d.)2w(d. )t +hy b&(t)8<°’(d.)’w(d.+)dt +o(hy),

which can be rewritten as

0
hn | b§(1)dt 8O(d)AW(di-) + w(di+)) + oihn).

The proof is completed by selecting the leading terms and adding them up. It should be noted that in
cases I and II the terms (2.22) dominate over the term (2.21) while in case III it is the other way
around. We need the condition that for singular points d in supp(w) either w(d-) or w(d+) is positive
to ensure that Aw = 0 implies that all the jumps 3©)(d) for points d in supp(w) are equal to zero, and
similarly that Aw =0 implies that the jumps 81(d) are equal to zero for points d in supp(w).

|

Remark 2.9. The expansion for the mean integrated squared error holds uniformly in interval
(0,hp], where (hy) is a fixed sequence of bandwidths converging to zero. This follows from the proof
above using the fact that the orderbounds on the remainders in Theorems 2.3 and 2.4 also hold
uniformly on such intervals.

Theorem 2.8 supplements the results of Van Eeden (1985) and Cline & Hart (1986) for w=1
in the sense that we allow weight functions. In those papers however the kemels are not required to
have a bounded support. Cline & Hart also consider the higher order kernels mentioned in Remark
2.5).

In Theorem 2.8 the weight function w=1 is not allowed because of its unbounded support. Let us
instead consider the weight function w(x) := IE(x), -co<x<ee, where E is a bounded interval [a,b],
-co<a<b<eo, With this weight function the mean integrated squared error equals

MISEq(h) =E f (fan(x) - £(x))%dx,

A(l)

and the constants A and are equal to
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AW = 22 80d)? +8()* + 5O(b)?

(2.23) P

AW = 2% 5D(dp? +8D(a) + V()%
i=

where d;,...,dm denote the finitely many points of D inside (a,b). Notice that the contribution of the
points a and b differs from the contribution of the points d,....dm which are strictly inside E. This
caused by the fact that w(a-) = w(b+) = 0 and w(a+) = w(b-) = 1. For the points d inside E both
w(d-) and w(d+) are one. It follows that the cases we have distinguished in Theorem 2.8 correspond
to the fact whether f has jumps in [a,b], case I, whether f has kinks in [a,b], but no jumps, case II,
and whether there are neither kinks nor jumps in [a,b], which corresponds to case III. Thus the
conclusion to be drawn from Theorem 2.8 is that the presence of jumps and kinks in E causes a larger
mean integrated squared error than in the smooth case III. Jumps increase the error most since in that
case we are estimating a discontinuous function with a continuous one.

Similar conlusions hold for the error if the weight function is equal to w(x) = f'(x)Ig(x),
where E is an interval as above and the density f is assumed to be bounded away from zero on E. If
f=0 we also set w=0. The mean integrated squared error criterion thus obtained, i.e.

MISEq(h) = BE[(fnh<x) - f(x) 1 (x)dx,

plays an important role in the next chapter. Notice that this mean integrated squared error is the
squared L norm over the set E of the random function
fan(x) - f(x)
72x)
which for each fixed point which is not a jumping point by Theorem 2.4 has an asymptotic variance
independent of x. In this case the values of A(\?,) and A(“l,) are given by
m
A9 - ):l (£(di-) '+£(di+) 8O (di)? + f(a+) 18O (a)? + £(b-)156O(b)?
1=

A - En (£(di-) ' +(di+) HBD(d)? + f(a+)16M(a)? + £(b-) 16D (b)2.

(2.24)
This shows that, apart from the constants, jumps and kinks have the same influence on the asymptotic

behavior of the mean integrated squared error as in the case of the previously considered weight
function.

Returning to the expansion of Theorem 2.8 we see again that small bandwidths cause a large
integrated variance term and that large bandwidths cause a large integrated squared bias term.
Balancing these effects by minimizing the leading term in the expansion leads us to the following
optimal bandwidths,
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ay(f,w)2By(K) 2 n'12 in case I
(2.25) hP =9 op(fw) ™ Bu(K)n*  incaseIl ,
am(E,w) PBmK)P n'V®  in case III

where the constants o, depending on the density f and the weight function w, are given by

afw) =AD" [ix)w(x)dx)
on(f,w) = (3a%)" Jfxw(x)dx,

am(Ew) = (] £ x)2wx)dx) " [f(x)w(x)dx,
and the constants B, depending only on the kernel K, by
1 1 .
Bi(K) = [K2w)du (f bd(dt)”

1 1
Bu(K) = [K*(u)du (J biedt) ™

1 1
Bm(K) = [K*(u)du ({ 2K (u)du) .

Remark 2.10. It is no surprise that Theorem 2.8 shows that the presence of jumps of f in the
interval E, case I !, causes a large mean integrated squared error. Even if we use an asymptotically
optimal bandwidth for case I, the mean integrated squared error is still of order n"'2, while in case II
and in case III it would have been of orders n">* and n"* respectively. If we don't know where the
jumps are then this large error is unavoidable if we use a kernel estimator. However if a jump is
known then the influence of this jump can be substantially reduced. For densities with support [c.d],
[c,0) or (-e0,d], -0 < ¢ < d < o, with jumps at the points ¢ or d which are known points, Schuster
(1985) shows that the kernel estimator can be improved by a symmetrization device. The
symmetrization has the effect that the error caused by the jump is reduced to an error caused by a
kink. The special case of kemel estimation of decreasing densities on [0,ee) with a jump at zero is also
treated in Devroye (1987) Section 8.4. Cline & Hart (1986) generalize this symmetrization device to
be able to deal with known jumps which are not necessarily endpoints of the support of the density f.

Until now we have only considered the choice of an optimal bandwidth. For all three cases
there is also an optimal kernel.
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First we consider case ITL If we substitute the optimal bandwidth for this case in the expansion (2.18)
we get

lim n#SMISER($P) = (| fowx)ax) **( ] ' xPwixax)

1 1
([K2u)du)*°([u2K()du) ™.

Under certain regularity conditions this expansic .. also holds for kemels with unbounded support. It
is shown in Epanechnikov (1969) that the kernel which minimizes this expression over the class of
symmetric kemels is

(2.26) K(x) =3 (1-xH)I[1,1)(%),

which is the well known classical optimal kernel. It is less well known that the same procedure can be
carried out in the non-smooth cases. The optimal kernel in case I was derived by Van Eeden (1985), it
equals the Laplace density function

(227) K(x) = geXh -co<x<oo.

The optimal kemnel in case II, derived by Cline & Hart (1986) and simultaniously by Swanepoel
(1987), is a bounded support density given by

(2.28) K(x) = (2sinh(3)) "(cos(ixl)cosh(s - IxI) + sin(ixl)sinh(s - Ix1)) I -nz.n2 (%),

The last two kemels don't have support [-1,1]. By the scaling property (2.1) we can transfer the
kemel (2.28) to a kernel with support [-1,1], without disturbing the optimality property. This can of
course not be done with the Laplace kernel because of its unbounded support. However, Swanepoel
(1987) gives bounded support kemels which approach the Laplace kemel (2.27) arbitrarily closely in
the sense that the constants in the expansion of the mean squared error for the optimal bandwidth in
case IT become close to the optimal constants in this case, attained by the Laplace kemnel. This shows
that our use of bounded support kernels is not restrictive from the point of view of the mean squared
€rTor criterion.

2.3.2. Asymptotic normality of the integrated squared error.

The previous section dealt with the expectation of the integrated squared error and the optimal
bandwidths which we derived asymptotically minimize this expectation. However, it is more natural
to aim for minimizing the integrated squared error itself. From this point of view it is important that
the variation of the integrated squared error around its mean does not dominate the leading terms in
the asymptotic expansion of the mean integrated squared error, and thus disturb the optimality
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property of the optimal bandwidths derived in the previous section. To quantify this variation we will
derive a central limit theorem for the integrated squared error.

Theorem 2.11. Assume that f satisfies Condition F and that the kernel K satisfies Condition K.
Furthermore assume that w is a bounded almost everywhere continuous nonnegative weight function
with a bounded support and finite left and right limits in the singular points of f. Also we assume that

these left and right limits are not both equal to zero. Let (hy), a sequence of nonnegative bandwidths,
satisfy ha—0 and nhy—oo, Then

dn (ISEq(hy) - MISEq(hy)) 5

N(0.26%) if dy = nbif? and ifnh—0
N(0,20%+\of) if dy = nh2 and ifnh2 > A, incasel,
N(0,0f) ifdyp=n"K  and if nh3 — oo

N(0,26%) if dy = nhif? and if nh& > 0
N(©020%+Acf;)  ifdq=nh'2 and ifnhi > A, incasell,
N(0,0f1) ifdy =0 and if nh& — oo

N(0,26%) if dy = nbi2 and ifnhy— 0
N(,20%+Aofy)  if dy = nhi2 and ifnhy — A, incaselll,
N(0,0fu) if dy = n'2n and if nhg — oo

where the variances 62, of, ofl and o:fu are given by

w 1 oo
o = J( { K(V)K(v+z)dv)2dz | w2(u)f(u)du,

0o 0 0 1
of =4 Ei 80dy)? (f(d;-) | (w(di-)_{ K(t+v)bo(t)dt + w(di+)[K(t+v)bo(t)dt )2dv

oo 0 1
+1(di#) | (w(di-)_{ K(t+V)bo()dt + w(di+) [K(t+v)bo(t)dt )dv),

o e 0 1
ofi:=4 FZI £(d;)6V(d;)? | (w(d;- )[K@+vbi(0)dt + w(di+) | K(t+v)by(t)dt) dv,

1 oo 3

ofn:= (_{sz(v)dv )2 ( 1 £ "(x)PwA(x)f(x)dx - ( i f "X)wx)f(x)dx)?). I

Before we prove this theorem we first discuss its implications. Firstly the theorem shows that the
asymptotically optimal bandwidths not only asymptotically minimize the mean integrated squared
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error but that they also minimize the order of the variance of the integrated squared error. Secondly it
is readily checked that in all the cases considered we have for n tending to infinity

(2.29) %%&&Q

— 0, in probability,
which implies

ISEq(hn) . -
m—-) 1, in probability.

This theorem shows that the bandwidths which asymptotically minimize the mean integrated
squared error also, in probability, asymptotically minimize the integrated squared error. Property
(2.29) is shown for smooth densities by Hall (1982b). Under regularity conditions Marron & Hirdle
(1986) show that (2.29) holds almost surely uniformly in the bandwidths hy. Furthermore they don't
require smoothness of the density f. The uniformity in the bandwidths is useful for studying kernel
estimation techniques with random bandwidths, in particular the cross-validation techniques
discussed in the next chapter.

Central limit theorems for the integrated squared error for smooth densities have been derived
by Bickel & Rosenblatt (1973) and by Hall (1984). Both theorems correspond to our case III. Bickel
& Rosenblatt consider small bandwidths which satisfy hy = O(n"%®), so their theorem is covered by
the first line of the case III part of the theorem above. It should be noted that doing so they excluded
the optimal bandwidths in that case which are of order n'5, This was recognized by Hall who
proved a central limit theorem for the integrated squared error of multivariate kemel estimators which
is similar to our case III part in the one dimensional case.

Remark 2.12. A nice consequence of our theorem is that the asymptotic variance cfx of the

integrated squared error in case II is equal to zero if the value of the density in all the singular points
where f has a kink is equal to zero. This shows that for sequences of bandwidths with nh§ — o the

influence of a kink in the density on the variation of the integrated squared error is of smaller order if
this kink is in a point where the density is zero.

Proof of Theorem 2.11. We rewrite the integrated squared error ISEp(h) as follows,

ISEq(h) =

[ (Fan(x) - fx))*w(x)dx =

I (FF 2 KOXom) - £00) wx)dx =
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;,“-‘,E EK(%)K(%)W(XMX +
Z3 (KO row +

| (x)w(x)dx.

It follows that the integrated squared error is equal to a quadratic form plus a linear term. Statistics of
this type are treated in Appendix C, where special attention is paid to this specific case in Theorem
C.2 and Remark C.3. If b(u,h) denotes the bias function of a kernel estimator, i.e. b(u,h)=Efpn(u)-
f(u), Theorem C.2 states that if we assume

(2.30) anhitvar( | (4R buhnw()du) - 02,05 0 < oo
then the integrated squared error is asymptotically normal and we have

(2.31) nh}2(ISEq(hy) - MISEg(hn)) 3 N(0,20%+ o),

where o2 is defined above. Remark C.3 says that if (2.30) converges to infinity we also have

asymptotic normality because then the linear terms in the proof of Theorem C.2 dominate over the
quadratic term. In that case we have by (C.13)

-X . D
(232) 0'ha (var (| K (D) buha)w(u)du)) *(SEq(hy) - MISEa(ha) = NCO,1).
For a fixed sequence of bandwidths (hy), whether we are actually dealing with situation (2.31) or
with situation (2.32) depends on whether (2.30) converges to a finite number or to infinity. This

means that we have to expand the variance in (2.30). It turns out that the presence of singular points

of f in the support of w influences the order of magnitude of this variance. Distinguishing the cases I,
II and I, introduced in the previous section, we have

var( J K(‘l'r):]-)b(uhn)w(u)du) ~ -}hﬁcf incase I,

var( ] K(‘-’-%—‘-)b(u,hn)w(u)du) ~ -}h,s,cfl in case II,
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var (| K(l-l-%‘-)b(u,hn)w(u)du) ~inSofy incaselm,

Since the proof of these expansions is rather technical it is postponed to Section 2.5.
In case I we have

w 0 if nhZ—>0
anbgvar( | (Db bn)wuidu) 54 Ao} if nhd>A
-0 n 0o lf nlh? - o0 .

and

1n2h, (var (§ K (52D b(uhgw(uydu)) 2 ~ n2h; 2o,
?1 -0 K 1

which proves the theorem for case I by (2.31) and (2.32). The other cases are obtained in a similar
way. |

2.4. Properties with respect to supremum distances.

Let E be a closed bounded interval on the real line. An alternative for the integrated squared
error criterion and the mean integrated squared error criterion is the weighted supremum distance

(2.33) sug Ifpn(x) -f(x)I w(x),

where w is a weight function with w(x)>0 for xe E. Since fpy, is a continuous function the supremum
distance between fyh and f is always larger than some positive constant if the density f has a jump in
E. Therefore density estimation from the point of view of supremum distance loss functions is only
meaningful for densities f which are continuous on some & neighborhood of E. Consequently only
such densities are considered in this section

We discuss two aspects of kernel estimation from the point of view of supremum distances. In
Section 2.4.1, using the bias expansions of Theorem 2.3, we supplement results of Stute (1982b) on
- the almost sure asymptotically optimal bandwidths for the specific supremum loss function

(2.34) sup Ifan(x) - fx)I £12(x).

Note that here w equals 12 1n Section 2.4.2 we derive an almost sure order bound for

nh \12
(2.35) sup (g SUp fan(x) - Efan(x)
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Such bounds on the supremum distance between fun(x) and Efpn(x), uniformly in the bandwidth, are
important tools in studying bandwidth selection methods. The presented bound is frequently used in
Chapter 3.

The first results on strong uniform consistency were obtained by Nadaraya (1965). Other
relevant references are Révész (1978), Silverman (1978b), Kolcinskii (1980), Serfling (1982) and
Stute (1982b).

2.4.1. Almost sure asymptotically optimal bandwidths.

We consider the loss function (2.34). Note that by Theorem 2.4 the pointwise asymptotic
variance of (fun(x)-f(x))f" 1’2()() is independent of x. We derive asymptotically good bandwidths for
the supremum distance (2.34) by studying the two terms in the right hand side of the inequality

(2.36) sup Ifan(x) - £x) £12(x) < sup Ifgn(x) - Efan(x)! £12(x) + sup [Efan(x) - f(x)I £12(x).

The next theorem of Stute (1982b) gives the exact almost sure rate of the supremum norm of the
error part in (2.36).

Theorem 2.13. (Stute 1982). Let (hy ) be a sequence of positive bandwidths with hp—0, nhy—eo,
log(h'nl)=0(nhn) and log(h'nl)/log(log n)—>oo. Assume thatfis continuous on E=[ab], with
-co<a<b<eo, and assume O<msf(x)SM<eo, for all xe E. Furthermore let K be any kernel function of
bounded variation with K(x) = 0 outside some finite interval [1,s). With probability one we have

. (__nhy 12 ey (212
@3 lim (Frher) sup o) Blang00l £ = (JKPwidu)*?,
where Eg denotes the interval (a+€,b-€) for some >0. |

Since Theorem 2.3 gives us uniform expansions of the bias function Efyy(x)-f(x) the next lemma with
expansions of the bias part in the right hand side of (2.36) readily follows (recall b1(0)=‘[o1 uK(u)du).
The proof of this lemma is omitted. Just as in the previous section the presence of singular points in
the set E plays an important role. We only consider densities satisfying Condition F in Section 2.1
which are continuous on the interval E = [a,b], -co<a<b<ee. Let dy,..., dm denote the singular points
of f in the interval E. Define two special cases,

caseIl : all jumps 89X(d;), i=1,...,m, are equal to zero and at least one of the
jumps 81)(dy), i=1,...,m, is unequal to zero,

case Il : all jumps 8@(d;) and 8(d;), i=1,...,m, are equal to zero.
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Lemma 2.14. Let £, a density satisfying Condition F, be bounded away from zero on the interval
E=[a,b], -eo<a<b<eo, Let dy,..., dm denote the singular points of f in the interval E and let the kernel
K satisfy Condition K. We have in case Il

1

(2.38) Jim hy sup [Efnhy(x) - fOIE12(x) = (JuK(u)du)i=rlt13xm £(dy) I8 D(dy)!
and in case III
1
(2.39) lim h2 sup [Efang(x) - fOIE2(x) =% (_{ u?K(u)du) sup If ")l 12(x). |

By balancing the error and bias term in the right hand side of (2.36) we can now derive the
asymptotically optimal bandwidths in the two cases described above. Stute (1982b) accomplished this
for densities with a continuous third derivative. In exactly the same manner the following
asymptotically optimal bandwidths can be derived, we omit the proof. Notice that Stutes result is
covered by case III.

Theorem 2.15. Suppose that for some €>0 f, a density satisfying Condition F, is uniformly
continuous on [a-€,b+€], -co<a<b<eo, with 0<m<f(x)<M<eo for all xe [a-g,b+€]. Let K be a kernel
which satisfies Condition K and let h3P* denote the bandwidth which minimizes the right hand side of
(2.36), then

1 \/3
{Kz(u)du logn
hopt _ . - - ogn in case Il
6 (JuK(udu)’, max_f(d)"80(d;)?
= 1 geesyl m
and
1 /5
{Kz(u)du .
hPt ~ - 280 in case IlI.

1
10 (_{uzK(u)du)z sup f "(x)21(x)
X€E l

The corresponding orders of the supremum loss are almost surely O((log n/n)'/3) in case II and
O((logn/n)??) in case IIL.

2.4.2. Uniformity in the bandwidths.

Let Iy=[hy,hfi] be an interval of bandwidths with hj=n"1*3 and hy=n"® for some & with
0<8<1/2. Note that for all bandwidths hy, in I, we have h,—0 and nhy—os. We derive a uniform
orderbound for (2.35). This bound on the supremum over the set of bandwidths I, is needed for
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proofs in later sections. There we also consider kemel functions which are not probability densities.
For a related result see Lemma 1 in Hirdle & Marron (1985).

Theorem 2.16. Let f be a bounded density and let E be a bounded interval. Suppose that the kernel

K is a symmetric function with support [-1,1], not necessarily a density, and that K has a bounded
derivative, then

nh \12
2.40 limsup su sup Ifpn(x) - Efph(X)I < C, almost surely,
(2.40) msup sup (ogm)  Sup fan(x) - Efmn(x) y
for some constant C>0. |

Remark 2.17. Notice that for he I, we have logn < log(h!) < (1-8)log n so the norming constant
in (2.40) is of the same order as the constant in (2.37). By the conditions on f in Theorem 2.13 the
factor £ !(x) in (2.37) is bounded on E.

As a step in the proof of Theorem 2.16 we need a bound on the oscillations of fpn(x)-Efyn(x)
as a function of both h and x. Define for nonnegative real numbers o and f the random variable

Qp(a,p) ==  sup sup  (hyvhy) ifph,(x1)-Efnh (x1)-fahy(X2HEfnng(x2)1,
(h1,h)eAq(0) (x1,x2)eB(B)

where hvh; denotes the maximum of h; and h,,

An(a) := {(hy,h2) : hy,hely, Ihy - hhl <@},
and
B(B) := ((x1,X2) : x1,x2€ E, Ix1 - X2l < B}.

Proposition 2.18. Assume that the conditions of Theorem 2.16 hold. Let (0n) and (Bn) be two
sequences of real numbers such that

o = o(hp), B = O(1) for n—seo,

and
0(0tq + Bn) (log ny2 —es,
then
(2.41) Qn(0n,Bn) = o(an + Bn), almost surely. |

Proof. With Vp(x) = n'2(Fy(x) - F(x)), the empirical proces of the sample Xj,...,Xn, we have by
partial integration
fnh(x) - Efnn(x) =

oo

}1; | K((x-u)/h)d(Fy-F)(u) =
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-1-1‘7 [ (Fp-F)w)K'((x-u)/h)du =

1
,11- {(Fn-F)(x+hv)K'(v)dv

1
n2h! [ Vy(x+hv)K'(v)dv.
-1

Therefore for all (hy,hy)e Ap(0y) and all (x1,x2)e B(By) we have

I fhy(x1) - Efnny(X1) - fany(x2) + Efnny(x2) | =

1 1
02 Ihy 1 [ Va(xp+hv)K'(v)dv - hy! { Va(xg+hav)K'(v)dvl <
-1 - )
1
0" 2hy 1 [ (Vy(x1+hyv) - Va(o+hav)K'(Vdvi+
-1

1

n2h - ng | { Va(x1+hyv) K'(v)dvl.
Assuming that IK'l is bounded by the constant ¢>0 by | x; + hyv - x5 - hpv | € 0 + By, the first term is
bounded by

cn2hy (o + Ba),
with
(2.42) p(t) := su | Vp(x+s) - Vp(x) |,

xeEpn x+5€ Epn, 0SsSt

the oscillation modulus of the empirical process Vp on the interval Epy, (the hy neighborhood of E).
Since I,K'(v)dv 0 the second term can be rewritten as

o2y - by l(_{ (Va(xithyy) - Va(ra)K'v)avl,
which is bounded by
cn” o (hahz) Man(hy).
Thus we have for n sufficiently large

Qn(anyﬁn) =
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su sup  (havhy) | famy(xt) - Efiny (k1) - fahg(%2) + Efang(x2) 1 S
(1hDe Al (150 BB) ! (R by w2

1phivhy) (h1vhy)

e P n(om + Bo) + on o prpEanthn) <

o(1 + an/ho) { (n(an + Bu)) P (0m + Ba) Pwn(c + Bo)
+ (ahp) " sup by an(hy) } (@ + o) <
hielp
o(1) (log ) { (0 + Bo) eon(0m + Bu) + sup hyPan(hy) } o + B
1€ln
The proof of Proposition 2.18 is finished by an application of the next lemma about the oscillation
modulus wy.

Lemma 2.19. Let the oscillation modulus oy, be defined by (2.42) then for any €>0, any sequence
of nonnegative real numbers (tp), with ta—0 and ntp—eo, and any constant T>0, we have

. 1 12
limsu sup t t) £ C, almost surely,
mSUP Togn Sab ¥ Y

for some constant C>0. |

The proof of this lemma is given in Section 2.5.

Proof of Theorem 2.16. Let (en) denote a sequence of nonnegative real numbers converging to
zero. Since Eh"|K((x-Xx)/h)l=ﬁll((u)lf(x+hu)du we have for some constant ¢">0

sup sup E h UK ((x-X)m)l S c".
hel, xeE

Consequently the exponential bound (A.4) in Appendix A implies for n large enough, for all xeE and
allhel

P(h? | fyn(x) - Efan(x) | 2 €n) S
2exp( -nex2/(2K* E h UK ((x-X /M)l + h'12ep) ) <
2exp( -C'n€p?),

for some constant ¢'>0. Here K* is a constant bounding K, i.e. IK(x)l < K* for all x.

Next define subsets I, and E, of I and E where I, consists of n2 equidistant points, the endpoints
included, and, similarly, E, consists of nl-34 equidistant points including the endpoints. Then for n
large enough
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7 )
P(hsgy,, xsélgn h'ifpn(x) - Efpn(x)! 2 €n) <
1”7, i
hg'l,, erE,. P(h ™ fpn(x) - Efan(x)l 2 €0) <

2n2n1-8/4exp(-c'nep2) =
2exp( -c'nep? + (3-8/4)logn ),
which is summable if we choose €, = 5¢”'(log n/n)!2. Thus by the Borel-Cantelli theorem we get

limsup su sug e‘,}hmlfnh(x) - Efpn(x)l < 1, almost surely,
n—oo hel, xeE,

which in its turn implies (2.40) with the sets I, and E replaced by I, and E,.

We finish the proof by showing that the difference between the supremum over the finite sets and the
supremum over the continuous sets vanishes almost surely. Let (hy,x;) be a point in InxE, and let
(h2,x7) be the nearest point in /, xE,. Then we have lhl-h2I<n'2 and le-le<(:n‘1‘*5’4 for some constant
¢>0. It suffices to show that

(2.43) I(nh1)"(log n) 2 (fan, (1) - Efnng (1)) - (nh2)*2(log n) (fany(x2) - Efpny(x2))!

converges to zero, uniformly for all points (hy,x;) and (ha,x2) as described above. Here Proposition
2.18 will be instrumental.
Writing ot = n'2 and By, = cn”*3* we see that (2.43) is bounded by

n'2(hyvhy) 2 (log n) ifan (x1) - Efahy (X1) - fah(%2) + Efang(x2)l +
n"2((hyvhg) 2 - (hiahy)P)(log ny 22K * (i ahy) ! =

(2.44) n'2(h1vhy) P (log n) 2 (hyvhy)ifan; (X1) - Efany (%1) - frny(X2) + Efang(%2)l +
n"2((hyvhg) 2 - (i) )log ny 22K (hyahy) ™,

where we have used
Ifan(x) - Efqn(x)! € 2K*/,

for all x and all h>0.
The first term in (2.44) is bounded by

n'2(hyvhy) (log n) Y2(0uy+Br) (0tn+Bn) ! Qn(on,Br) <
n'2n12-82(n-2, cn 14304y (0 4B0) Q0 Br) <
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2en™* (0 +Ba) 'Qu(0n, Br) = 0(1), almost surely,
by Proposition 2.18. In order to treat the second term in (2.44) notice
(hyvhy)'2=
(1ah) (1 + ((yvhy) - (yahg))(hyabg)) 2 <
- (iAhy) (1 + ag/(hiah) 2 <
(h1Ah) (1 + og/(hyahp)) =

(h1Ah) 2 + o(hyAb) 12,
Therefore
n!2((hyvhy)'2 - (h1ahg) 2Xlog ny 22K *(hyahp) ! <

n2an(hyAhg) 2 (ogn) 22K *(hyahy) ! <
2K*(n(h1ahy)) *2(logn) 12 <
2K*n" 32 (logn) 12 = o(1).

Since these bounds don't depend on the h's or the x's we have indeed shown that (2.43) vanishes
uniformly and the proof is completed. 1

2.5. Proofs.

Proof of Lemma 2.1 part (b). Let xo be a fixed point and let M be an arbitrary positive number.
Recall that by (2.9) we have

g(xo+th,h) = | G(t-u)f(xo+hu)du .

We omit the proof for xoe D since then the same Taylor expansion argument as for part (a) can be
used. Hence we assume xge D and write

g(xg+th,h) = | G(t-u)f(xg+hu)du + JG(t-u)f(xo+hu)du .

Next define ry(t,h) by .
(2.45) n(th) = | G(t-u)(fxo+hu) - f(xg-) - huf (xg-) - 227 "(xo)}du
and similarly r(t,h) by

(2.46) Bh(th) = [ G(t-u){f(xo+hu) - f(xo+) - huf ‘(xg+) - s’ "(xg+)}du.
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Then r(t,h) = r&(t,h) + 15(t,h). Now use (F.3) and the dominated convergence theorem, which can be
applied since the integrals in the definition of 13 is in fact an integral over a bounded area, to obtain

lim hy20(tn,hn) = 0,
n—oo

for all sequences (hy) with O<hy<hy, for all n, and for all sequences (tg), with -M<ty,<M for all n. A
similar result holds for 5 and therefore for r,. |

Proof of Theorem 2.3 part (b). By (2.2) we have

bxoHhh) = B K(xoHh-Xi)h) - fixgh).

Part (b) of Lemma 2.1 gives an expansion of the first term in this expression. The second term can be
expanded as follows

f(xo+th) = (f(xo-) + thf'(xp-) +it2h2f"(xo-) Mo,0)(t) +
(f(xo+) + thf'(xg+) + itzhzf "(x0+))(0,0)(t) +
(t,h),

where the remainder term r has the property we have to prove for the remainder r4 in the theorem. If
Xo is not a singular point of f this follows from a Taylor expansion argument and if X is a singular
point it follows from Condition (F.3), just as in the preceding proof. Combining these expansions we

get
0 L

b(xg+th,h) = f(xo-) | K(t-u)du + f(xo+) J K(t-u)du
- [£(x0-)(-0,0)(t) + f(xg+)(0,) ()] +
0 oo
hf'(xo-) | uK(t-u)du + hf'(xo+)J uK(t-u)du
- ht[f'(x0-) (0,0)(t) + £'(x0+)I(0,0)()] +

0 o0
2" (x07) | uPK(-u)du + 326" (xg+) | wK (t-u)du

-0 [£" (X0 (o, 0)(8) + £ " (g ) (0, 00)(1)] +
r4(t.h),

where the remainder r4 has the property claimed in the theorem.



34

First consider the constant term in this expansion. Since K integrates to one this term is for t<0 equal
to

. 00 [
f(xo)] K(u)du + f(xo+) i K(u)du - f(xo-) =

t
(f(xo+) - f(xo-)) [ K(u)du =

bo(t)8®(x0).

Next consider the coefficient of h. Using the fact that the integral of uK(u) is equal to zero we see that
for t<0 this term equals

Aad t

hf'(xo-)! (t-u)K(u)du + hf'(xo+) 1 (t-u)K(u)du - htf'(xp-) =

t oo
h(f'(xo+) - £'(x0-)) | (t-u)K(u)du +hf '(xo-) J (t-u)K(u)du - htf'(xo-)=
hby (8D (xo).

For t<0 the coefficient of h2 is for t<0 equal to

oo t
22" (xo)] (t-u)K(udu + 37" (xo¥) J (t-u)?K(u)du - 6" (xg-) =
t oo
2(E" (xo+) - £"(x0-)) J (t-u)*K (u)du +50% "(xo-) | (t-u)’K(u)du - 322" (xg- )=

370,©5P(x0) + 3% "(x0-) | uK (u)du.

For t>0 similar arguments hold. 1

Proof of Theorem 2.11. The proof is completed by checking Condition (C.7) of Theorem C.2
in Appendix C which means that we have to expand the variance
Y u-Xl
var ( i K(—K-)b(u,hn)w(u)du)

for n tending to infinity. If the set D = {d; d;,...} denotes the set of singular points of f and the set
D, defined in (2.4), denotes the set of points at least at distance h of D, then we write,
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E(JR(HE Xl)b(u,hn)W(u)du)2

o dithn
E (D!ml((‘%l)b(u,hn)w(u)du +2 ol K(4EL X‘)b(u,h,,)w(u)du)2

E (D!{nK (‘-J-i;)-;-‘-)b(u,hn)w(u)du)2 +

o0

dj+hy
Z E(, [ KR b hawwdn) +

i=1l

2.47) . di+hn
2XE (DLK(‘l’B’fl)b(u,hn)w(u)du) (di_I K(EEL X‘)b(u,h,.)w(u)du) +

TE( dirllz(“'xl)b(u hpw(u)du)( de K(4L X‘)b(u hn)w(u)du).
Tt Sl PR dj-hn "

Notice that since w has a bounded support the conditions on f imply that there are only finitely many
singular points dy,...,dm say, which are in the support of w. These points are the only singular points
of f which can give a nonzero contribution to the sums above. All the singular points outside the
support of w are at a positive distance from this support which means that their contributions are
exactly equal to zero if n is larger than some fixed ng. Using the fact that K has support [-1,1] and
using the expansions of b(u,hp) given by Theorem 2.3 we derive the following bounds,
d+hy <
u-
K -BT)b(u,hn)w(u)du =

(2.48) {K(H ) b(d+thy hp)w(d+thp)dt =
Tid-2hy,d+2n)(X) O(had () + h35(d) + hd),
for each de D, and

[ K( )b(u,hn)w(u)du =

(2.49)

Dpp [x- hn x+hp ]( )b(ﬂ,hn)w(u)du O(hn)

From (2.48) it is immediately clear that the fourth term of (2.47) vanishes for n large enough. For the
third term (2.48) and (2.49) give
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di+hp
E (D{hx(‘%l)uu,hn)w(u)du)(dif K(HEL xl)b(u,hn)w(u)du) =
. im(off( X)buhnw(u)du) ( I K(“ )b(uhw(u)du)fx)dx =
O(4hghd(had®(d;) + h350(d)) + b)) =

O(h3(8(dy) + hp8M(d;) + h3))

It turns out that this term is also asymptotically negligible compared to the first two terms in (2.47).
Using the expansion of b(u,hy) given by Theorem 2.3 we can expand the first term as follows,

(2.50)

B GIRCRE X1) b w(u)du)? =
I ( | K( )b(u.h,,)w(u)du) f(x)dx ~
i ({ 2K(v)dv)’! ( IK )f"(u)w(u)du) f(x)dx =
1 oo
4 ({ vZK(v)dv)? ! ((Dhn-jx KO "(x+hav)W(x+hav)dv ) f(x)dx~

1 oo
4 (] vIK(v)dv)? | £ "(x)2wA(x)E(x)dx.

The last equivalence holds since for each x¢ D the set (Dn,-x)/hy converges to (-c0,00) which, since f"
is continuous outside D and since w is almost surely continuous, implies that for each fixed x¢ D we

have

(Dhn-IX) /hln((v)f "(x+hpv)w(x+hpv)dv — i KW)dv £ "w(x) = £"(x)w(x),

almost surely as a function of x.
Conceming the second term in (2.47), just as in (2.48), for each de D again by Theorem 2.3 we get,

E (d -i[’n K(u x')b(u,hn)w(u)du)

w 1
W J (| K(t+§%)b(d+mn,h,,)w(d+mn)dt )26y ~
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o 1

B3 J ( {K(+v)b(d+thghn)w(d+thp)dt ) f(d+vhndv ~

w 1
13 J ( {K@+v)8O@bottyw(d+thadt ) f(d+vho)dv ~
0 0 1
b3 892 ( f(d-) J (w(d-) {K(+v)bo(t)dt + wid+){ K(t+v)bo(e)dt )’dv +

3 0 1
f(d+)f (w(d-) [K(t+v)bo@dt + w(d+) K(t+v)bo(t)dt )dv).

If §0(d) is equal to zero a similar argument gives

Gtho u-X 2
E(d L K(-hTL)b(u,hn)W(u)du) -

et 0 1
b3 A@EV@)? | (w(d-) [K@+v)ba(t)dt + w(d+)| K(t+v)by(t)dt) dv,

and if both 8©(d) and 5)(d) are equal to zero then we have
ttn u-X 2
E (d JI'n K(-h-nl)b(u,hn)w(u)du) = O(hY).

In order to derive expansions for the variance let us successively consider the three cases
introduced in Section 2.3.1. Recall the definition of the quantities A and A%,

AW = Z(w(di) + wd#)s Oy
and o ow
Ay = El(w(di-) + w(di+))d(dp2.

In case I we have Afvo)>0 which means that there is at least one singular point d; with

(w(di-)+w(di+))8(0(dj)%>0. Since this implies that for such a point either w(d;-)5®(di)? or
w(di+)80(d;)? is positive we get

E( j 1(("-'b?-lfl-)b(u,h,,)w(u)cm)2 ~

o 0 0 1
h3 ;2.1 89d;)? (f(d-) | (w(di-)_{ K(t+)bo(t)dt + w(di+) [ K(t+v)bo(t)dt Vv +
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oo 0 1
f(di+)f (w(di) {K@+v)bo@dt +w(dir){K+v)bode )dv).

The bounds (2.48) and (2.49) imply that the squared expectation,
r u-Xy 2
(e i K(T)b(u,h,,)w(u)du) ,

is asymptotically negligible in this case. Thus we get
u-X 1
var ( i K( -Ell)b(u,hn)w(u)du) ~thioy 2

In case II the situation is similar. Here we have A(3,)=0 and As,l,)>0. By our condition that for points

d; in the support of w either w(d;-) or w(d j+) is positive the fact that A(3,)=0 implies that all the jumps

50d;) for points in the support of w are equal to zero. Since A(wl) is positive there is at least one

point d; such that (w(d;-)+w(d;+))8D(d;)? is positive. We then have

E( j K (L) b hmwodu)” ~

oo o 0 1
h gif(di)S(‘)(di)z | (w(di-)_{ K@+v)bi)dt + w(di+) | K(t+v)by(t)dt) 2dv

and since in this case the squared expectation is also negligible we arrive at

var ( i K(l-l-%‘-)b(u,hn)w(u)du) ~ %h,slcn 2,

In case III the situation is different because the squared expectation is no longer negligible. Here both
o Ae,) are equal to zero. Therefore all 39(d;) and 5V(d;) for points d; in the support of w are

equal to zero. This leads to

E( i K(‘%)b(u,hn)w(u)du)z‘-

1 oo

15 ([VRwav) | £ "ePwendx.

Since we have
E (Dl{nK(‘li;f—‘-)b(u,hn)wm)du) =

] (DLK (Eb(wbaw(u)du)fex)dx =

-0
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h,,DL(ﬁTJ K (EDdx)bluhwiw)du ~
hnm{u(f(u) + b(u,hp)) b(u,hy)W(u)du ~

h.,m{nf(u)b(umn)w(u)du ~

1 oo

o [VEK(v)dv | £ "(@)w(f(u)du,
we find

var (| K(4eL)buhw(u)du) ~
1 oo
P8 (VR | £ @Weofxx -

1 0
(303 [ V2K (V)dv | £ "@)w(u)fu)du)” =

#tom
This completes the proof of Theorem 2.11. 1

Proof of Lemma 2.19. First we use the Bernstein inequality for the binomial distribution, i.e.
inequality (A.3) in Appendix A, to derive the following exponential bound. For all xe Ep;,, all ty<t<T
and all O<s<t such that x+se Ep,» we have for any sequence (€p) tending to infinity and n sufficiently
large

P(t121 Vp(x+s) - Vp(x) | 2 &) S

P( | Fq(x+8) - Fy(x) - (F(x+s) - F(x)) | 2 n"12¢;) <
p(%l Enl Ix xes) %D - PR<Xisx+s)l 2 %1%, ) <
2exp( - n2/2(c'+(nt) Pen)) <

2exp(- €n),

where c' is a constant bounding f, i.e. 0sf(x)<c' for all x. We have used 0SP(x<Xj<x+s)Sc's<c't,
and (nt)’ 2 (nty) 2 —0.
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Next let J,, denote the interval [t,,T]. Since E is bounded and since hy converges to zero the intervals
Epy, are uniformly bounded. Hence there exists a positive constant M such that the interval [-M,M]
covers both Ep; and Jy, for all n. Let Gy denote the grid of 2n® points of [-M,M], given by gi=iMn™3,
i=-n3+1,..., n>. Notice that consecutive points have a distance equal to Mn3, It follows for n
sufficiently large

P(sup sup sup €121 Vy(x+s)- Vp(x)I12€n) <
teJy Gy xeEhg{"Gn 5€[0.01Gy

12
'EJE;‘G“ XEE%’\G., se[o.?hcn P(t | Vn(x+s) - Vp(x) 1 2 en) <

(2n*)’exp(-gq) =
8exp( -€n + 9logn ),

which is summable if we take €, equal to lllogn, which we assume from now on.
Let S, denote the supremum over the discrete sets,

Sp = Sn‘l sup sup sup 12 Vn(x+5) - Vn(x) 1,
1eJy"Gn xe By Gy 5€[0.4NGp

and Sy, the supremum over the continuous sets,
Sn:=¢n! sup sup sup 12| Vy(x+45) - Vp(x) 1.
tely "EEh;', se[0,t]
By the Borel-Cantelli Theorem we have for S, ,
limsup S, < 1, almost surely.
n—p0
It remains to show that the difference between Sy and S, vanishes almost surely, since then
limsup S, <1, almost surely.
n—po
~From this result Lemma 2.19 is immediate since
1 B3
sup t <11
Togn ok, n(t) S 118y,

we would have established the result of Lemma 2.19. To show that Sy - S,; vanishes almost surely
define the set A

A := {dp < Mn’, infinitely often),

where dy denotes the smallest spacing of the sample Xj,...,Xp. It follows from a result of Devroye
(1982) that the probability of A is zero. Actually Devroye condiders uniform spacings but since the
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density f is bounded it also follows for the spacings of the sample Xj,...,Xp. On the complement of
A for te J, xe Ep; and se [0,t] the value of

en 0121 Vp(x+s) - V(x) | =

en” 't 1202 | Fy(x+s) - Fn(x) - (F(x+s) - F(x)) |
changes for n larger than a certain random index Ny at most

en tn (30’ - 3cMn3) =

3en M(nty) V(1 + cMn2) = o(1),

if we replace t,x, and s by their nearest points in the interval Jp, Ep; and [0,t] which also lie on the
grid Gp. Hence on the complement of A we have

Sn < Sﬂ < sn + 0(1), N—yoo,
and since the complement of A has probability one we have indeed shown
Sn - Sp = o(1), almost surely,

which completes the proof of Lemma 2.19. 1
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3. BANDWIDTH SELECTION BY LIKELIHOOD CROSS-VALIDATION.
3.1. Introduction and results.

The results in the previous chapter show that optimal bandwidths for kemel estimators depend
on the unknown density f. A way to avoid this problem is to design procedures which compute a
bandwidth, Hp = Hp(Xj,...,Xp), from the sample Xj,...,Xy. For large sample sizes these
bandwidths should be close to the optimal ones. Kemel estimators using these bandwidths are called
automatic or data adaptive. Two such data adaptive bandwidth selection methods are likelihood cross-
validation, which originates from a likelihood approach to the problem, and least squares cross-
validation. Least squares cross-validation is briefly discussed in Section 3.1.1. Likelihood cross-
validation has a history of trial and error. A review of its development is given in Section 3.1.2. For a
comparison of cross-validation techniques in a more general setting see Marron (1987). Next, in
Section 3.1.3, we give a heuristic derivation of our results on the rates of convergence to zero and the
asymptotic distribution of the bandwidths selected by likelihood cross-validation. These results are
proved in the remaining sections of this chapter.

3.1.1. Least squares cross-validation.

Let us first consider the least squares cross-validation. Suppose that our aim is to find
bandwidths and corresponding density estimates with a small integrated squared error. In order to do
S0 write

MISEq(h) =
E [ (fan(u) - f(u))’w(u)du =

E | f2n(u)w(u)du - 2 E [ fan(u)f(u)w(u)du + | £2(u)w(u)du,

where w is a nonnegative weight function. Since the third term is independent of h it suffices to find a
bandwidth which minimizes

3.1 E | £2n(u)w(u)du - 2 E [ fon(u)f(u)w(u)du,

an expression depending on the unknown density f. The least squares cross-validation method results
in an unbiased estimator of (3.1). So we can estimate (3.1) as a function of h and compute the value
of h which minimizes the estimate.

Define the "leave one out estimator” based on the sample Xj...., X with X; left out by

n

(.2) 000 = (lT-!ﬁFj Y K((x-Xj/h), 00 <x < oo.

=1

Then
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E £ = FE K((x - X1/h) = E fun(x),
and the independence of f,(,'z(x) and X; implies
E25 fdcxowex =

23 B oW =

2 [ E £Dwwu)ftu)du =

2 [ E fyp(u)w(u)f(u)du =
2 E [ fan(u)f(u)w(u)du.
Therefore
(3.3) LSy(h) := | f2n(u)w(u)du - -2,,-51 £ (Xi)w(Xi), h >0,

is an unbiased estimator of (3.1). For w=1 this reduces to
13351 @)y x . x 2 vlox x
LSalh) = % ,21 FEAXi - X - gy § £ K(Xi - X)),
where K@ denotes the convolution of K with itself. The factor 2/((n(n-1)) is often replaced by 2/n?.

This method is introduced and studied by Rudemo (1982) and Bowman (1984). Further relevant
references are Hall (1983a, 1983b), Stone (1984), Scott (1985), Burman (1985), Hall & Marron
(1987a, 1987b) and Scott & Terrell (1987). Silverman (1986) also considered computational aspects
of the method.

Hall (1983a) obtained the first asymptotic optimality result for densities f with a finite second
moment and a continuous square integrable second derivative. Generalizing this result Stone (1984)
showed that the optimality property holds for all bounded densities f. In the univariate case and for
kemels satisfying Condition K in Section 2.1 the theorem states the following.

Theorem 3.1. (Stone 1984). If K is Lipschitz of order B, i. e. for some positive constants B and ¢
K(y) - K(x)l <cly - x, forallrealxandy,

then we have for all bounded densities f on the real line
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(.4) lim mISE"(}z“)
h

=1, almost surely,

where Hy, is the bandwidth obtained by least squares cross-validation, i.e. the bandwidth which
minimizes (3.3) and ISEp(h) equals

(3.5) | (fan(u) - f(u))*du,

the integrated squared error of the kernel estimate fnh. |

This theorem shows that asymptotically the bandwidths obtained by least squares cross-validation
perform as well as the best possible deterministic ones.

The rate of convergence in (3.4) was investigated by Hall & Marron (1987a, 1987b). If H,",‘
denotes the random bandwidth which minimizes the integrated squared error (3.5) then under some
smoothness conditions on K and f, essentially our smooth case III in Chapter 2, they show

*
(3.6) Ho-Ho om0,
Hn
and .
ISEn(Hn) - ISEn(I"[n - -1/5
SEqHD | OR

In spite of the nice asymptotic optimality result (3.4), the convergence is very slow. However, Hall
and Marron show that no data adaptive bandwidth selection method can have a faster convergence.

Before we discuss likelihood cross-validation we briefly mention other data adaptive methods.
Silverman (1978a, 1986) gives a graphical method to compute bandwidths with good properties with
respect to the supremum distance loss function, the so called test graph method. Scott & Factor
(1981) and Bowman (1985) compare several other data adaptive methods by means of simulation
studies.

3.1.2. The likelihood approach to bandwidth selection.

Again we consider the problem of selecting a bandwidth for a kernel estimator with a kernel
satisfying Condition K. Now we argue as follows. A "good" bandwidth h will give a large value to
the "likelihood" Ly, defined by

Lach) := I] fun(X0.

This suggests that we should use the value of h which maximizes Ly, over [0,e0). However, we can't
use this value because it is always equal to zero. This can be seen from the inequalities

3.7) fanCX0) = 7 23 K(OKXypmy 2 10
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and

Ln(h) 2 (K(0)/(nh))",

which show that Ly(h) tends to infinity if h decreases to zero. Recognizing this phenomenon
Habbema, Hermans & Van den Broek (1974) and Duin (1976) proposed to replace Ly by

(3.8) Levam =T 500,

where f,(,?l is the "leave one out" kemnel estimator defined by (3.2) in the previous section. The value
of h which maximizes LCVy, is always finite, since for n fixed we have
O<h< max min IX;-Xjl = LCVp(h) =0
i=1,..,n j#i
and ‘
0 < £2(X;) < K*Mh — 0 for h—res,

where we assume that the kernel is bounded by K*>0. In this way we lose the i-th term in (3.7),
which is exactly the term which made it converge to infinity for h tending to zero. This technique is
called likelihood cross-validation or Kullback-Leibler cross-validation.

The first undesirable property was reported by Schuster & Gregory (1981). Let Hy, denote the
positive value of h which maximizes LCVy(h), then, since the kernel K has a support equal to [-1,1],
the next inequality holds. We have

Hﬂ 2 xn:n‘xn-lzn ’

where X;:.n<X2:n<...<Xn:n denotes the ordered sample. This inequality follows from the fact that
LCVp(h) is equal to zero for all bandwidths h with 0 < h < Xp.p - Xp-1:n, Since for these bandwidths
the term in the product (3.8) corresponding to the largest sample point Xy, is equal to zero. It
follows that the computed bandwidth is always at least equal to the difference between the largest
sample point and the second to largest. For certain densities f however this difference converges
almost surely to infinity. Moreover, these densities are by no means pathalogical. It turns out that
densities with an exponential tail form the border line. For densities with heavier tails the bandwidths
Hp converge almost surely to infinity and therefore produce inconsistent estimates.

One possibility to avoid the problem discussed above is to restrict attention to densities with a
compact support. If we know that f does not have a compact support we can always disregard all
observations outside some bounded interval E, next estimate the probability of this interval and use
likelihood cross-validation to compute a bandwidth for a kernel estimate of the density, conditional on
being in E. Chow, Geman & Wu (1983) and Devroye & Gybrfi (1985) prove some positive results
concerning the estimation of bounded support densities. An altemative to avoid the tail problems is to
maximize the product
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(3.9) LCVy(h) := ang £90Xi),

where E is a bounded interval on the real line. Note that this definition coincides with (3.8) if we can
take E equal to the support of f. Here we evaluate the leave one out estimators f,(,?, only in the points
X;j in the interval E, instead of in all the points as we did in the original definition of LCVp,. It is
important to notice that here f,(,?, is still based on the whole sample Xj,...,.Xy minus Xj, contrary to
above where it was based on observations in E only! By maximizing (3.9) we aim at finding a good
bandwidth for estimating f on the interval E rather than on the whole real line as in the original
definition (3.8). Accepting this restriction indeed avoids the tail problems discussed above, but
instead we are faced with the next property reported in Hall (1982). The theorem is reformulated to
hold for kernels satisfying Condition K.

Theorem 3.2. (Hall 1982). Let E=[a,b], -e> < a < b < o0. Assume that f is twice continuously
differentiable on (a-€,b+€) for some positive €. Furthermore assume that f is bounded and that f is
bounded away from zero on E. Then the bandwidths computed by maximizing LCVy, as defined by
(3.9), are of order n'” if £'(b) < £'(a), and they are much larger if £'(b) > £'(a). In the last case we
might even have inconsistency. ]

Notice that in neither case the order is n"*” which is the optimal one for the integrated squared error
criterion (see (2.25)). Also the dependence on the derivatives in the endpoints of E is very
undesirable. However, Marron (1985) showed that if we maximize a modification LCV§(h), instead
of LCVp(h), this behavior can be avoided. Then we even achieve asymptotic optimality with respect
to a weighted integrated squared error with respect to the weight function f'Ig. We obtain LCVS(h)
by multiplying LCVy, by a correction factor,

LCV§(h) := LCVp(h)exp (-n Ejfn..(u)du) = LCVy(h) exp (-El 111- é K((u-X;)/h)du).

A heuristic motivation for this correction factor is given in Section 3.1.3. The corrected method has
the following optimality property. The theorem is reformulated to hold for kernels satisfying
Condition K.

Theorem 3.3. (Marron 1985). Let E=[a,b], -co<a<b<eo. Suppose f is bounded away from zero on
E and suppose that f satisfies a Lipschitz condition,

If(x) - f(y)l < Mix - yIY, for all x,y,

for some positive constants M and y. If H, denotes the value of h which maximizes LCVS(h) over the
set In=[hjp,hii), where hy=n"1*° and hjj=n"° for some 6>0, then

(3.10) ISEfHY) _
he [hy,hg)

, almost surely,
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and similarly

3.11) MISEq(Hp)

he [hhhal

— 1, almost surely.

Here the integrated squared error is defined by
ISEp(h) = J (Fan(x)-f(x))*f 1(x)dx,

and MISEy(h) as its expectation. ]

This theorem was the first asymptotic optimality result for the likelihood cross-validation method.
Just like Theorem 3.1 it says that the random bandwidths computed by cross-validation
asymptotically perform just as well as the best deterministic ones except that here we are dealing with
a weighted integrated squared error. In Section 3.1.3 we give an heuristic explanation for the
appearance of this particular weighted integrated squared error.

The method studied by Chow, Geman & Wu and Devroye & Gydrfi differs from the one
studied by Hall and Marron in one important aspect. Apart of course from the correction factor in
Marron's modification, Hall and Marron assume that the interval E = [a,b] is strictly contained in the
support of f in the sense that both the endpoints a and b are strictly inside the support. Chow, Geman
& Wu and Devroye & Gyorfi study the case where E is equal to the support of f. The results
described in the next section show that this causes a quite different behavior.

Theorems 3.1 and 3.3 show that the two cross-validation methods have optimality properties
with respect to appropriate (mean) integrated squared error loss functions. For these loss functions
the choice of the kernel is relatively unimportant. Consequently we consider bounded support kernels
only. It should be noted however that things change considerably if instead we want to minimize the
Kullback-Leibler distance between our estimate and the true density, which can be desirable for
instance in problems of discrimination. Likelihood cross-validation is studied from this point of view
in Hall (1987a,1987b). Actually in Hall (1987a) it is shown that in this context the choice of the
kemel is important and that it is unwise to use kernels with a compact support.

3.1.3. Likelihood cross-validation: heuristics and results.

The original likelihood cross-validation method prescribes that we maximize the function
LCVy(h) given by (3.9). The main ingredients in the proofs in Hall (1982) and Marron (1985) are
expansions of the logarithm of this function. Using such expansions they prove Theorem 3.2, Hall's
surprising theorem about the original method, and Theorem 3.3, Marron's optimality result. In this
section by heuristics in the same spirit we present our results concerning likelihood cross-validation,
both uncorrected and corrected. Later sections contain rigorous proofs of these results. The basic
theme of these proofs is the analysis of the derivative of the logarithm of LCVp(h). We assume that
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the density f satisfies Condition F, so we also consider non-smooth densities. We don't impose the
restriction required by Hall and Marron that the set E is strictly contained in the support of f. On the
other hand we do also have to require that f is bounded away from zero on E.

Let I, denote the interval [hi,hy], where hy=n"1*° and hj=n"C for some ¢ > 0. From now on
we assume n—oo, h—0 and nh—es, Following Hall and Marron we write

S l0g(LCVy(h)) =
-2 Iog(ERXNIEX:) =

n n f(i) ) - f(X;
L3 togCtsx + £ Z tog(1 + IR yrecxy,

Since the first term is independent of h the problem is to maximize

(3.12) %g log(1 + Ani(Xi,h))IE(X5),
where Api(x,h) is defined by

ey = BRI o
Defining
(3.13) g(x) :=log(l +x) - x + 5 %%,

we can rewrite (3.12) as
ly ly 1y
(3.14) 72 Ani(XiIEX) - 71 2 ATKMIEXD) + 1+ 2 8(Ani(Xih)IEX:).
Now assume that the variation in (3.14) is asymptotically negligible compared to the expectation, in
the sense that, asymptotically, by maximizing LCVy(h) we are maximizing the expectation of (3.14).

We don't give a proof of this assumption. However, proofs of the results coming from this heuristic
approach are given in Sections 3.2 to 3.5.

The expectations of the first two terms in (3.14) are easily computed. Since

Z E(Ani(Xi)IEX) | Xj, j=1,..0, j # 1) =
Z

: ¢ (€3 w) - fu)f u)u)du =

+2 | (e, 2, K@ Xpm)du - | fu)du =

=1j#1
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(3.15) L > JK(@-Xjm) du - [ fu)dn =

nn-1)N j=1 i=1,i%
2 [K(@-Xh) du - [ fu)du =
]-l E E

[ fan(u)du - | f(u)du,
E E

the expectation of the first term in (3.14) is

(3.16) EEI. (fan(u)du - f(u))du = 12;[ b(u,h)du,

where b(u,h) is the bias of the kemel estimator fy, at the point u. Since Theorem 2.3 gives uniform
expansions of the bias function we can also derive expansions for (3.16). To obtain the expectation of
the second term in (3.14) note that

n
LY BALKIEX) 1 X;, j=1,0.00, £ 1) =
nj=1

i=1

; %Enl F{ (2 ) - fw)*F2(w)u)du.

Therefore the expectation is given by

3L ZiEI (£ ) - fu))*F (u)du =

(3.17) -,Eé (£$Pw) - f(u))?f (u)du =
-5E { (Ean(w) - £)’f (u)du.

Expansions of this mean integrated squared error are given by Theorem 2.8. From (3.16) and (3.17)
we conclude that by maximizing log(LCVn(h)) is asymptotically equivalent to maximizing

(3.18) b(uh)du - $E [ (fan() - £u))f ‘(u)du + E g(Anm(XL))IECK:).
E

So if the second term dominates the other two terms then we are asymptotically minimizing the
weighted mean integrated suared error

(3.19) E EI (fan(w) - £(u))* (u)du.

However it turns out that this not always true.
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Before we proceed with considering separate cases note that at this stage we can also show the
intuition behind Marron's correction term. From the definition of LCV§(h) we have

£ 10B(LCVEM) = 10BLCVaM) - | an(u)du.
By (3.16) and (3.18) maximizing LCV§(h) is asymptotically equivalent to maximizing

- Jfwdu - éEF{ (fan(w) - £(w)*f (u)du + E g(An1(X1,h)IE(X)).

Note that the first term is independent of h. This means that in those cases where the third term is
negligible compared to the second term, we are minimizing the weighted mean integrated squared
error (3.19).

Let E be a bounded interval [a,b], -0 <a < b < e, and let us again consider the three cases
introduced in Section 2.3.1. If we take the weight function w equal to f UIg then these cases were
defined by

casel : A@>0,

casell : AQ=0and AV >0,
case Il : AQ =AM =,

where A and AD are given by

A0 = 2. (Y 44y IO +Ha+"8O @) + (b 15Ob)
AV = g{ (£(di-y 4+ di HED(dp)? + f(a+)16D(a)? + £(b-)18D(b)>.

Here dy,...,dm denote the singular points of f in the open interval (a,b). Further we assume without
proof that for the cases II and IIT we have

(3.20) . sup sug 1Api(x,h)l — 0, almost surely.
i=1,...,n xe

By Ig(x)iIxI3, for x small enough, this implies that the third term in (3.18) is negligible. Since cases
II and IIT correspond to densities which are smooth on E, having at most kinks, condition (3.20) is
not an unreasonable assumption. This condition is not satisfied for case I. In that case there are two
possibilities. If there is at least one jumping point d in (a,b) then

P sup IAni(h)l 2 789%a) (inf £)>0,

and if one of the endpoints of E is a jumping point then (3.20) also can't be valid.
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In case III using the expansions given by Theorem 2.3 and Theorem 2.8 we see that (3.18) is
asymptotically equivalent to

s}hz_{luzK(u)du é f "(u)du +
1 1
-;{.} h* (_{uzK(u)du)z l! £ "(u)*f (u)du + %‘f— _{Kz(u)du}g
3.21) 1n? Ibf "(u)du {luzl((u)du a3 {le(u)du.
: ) T
Since for twice continously differentiable f we have If "(u)du = f'(b)-f'(a) we get exactly n times the
expansion derived by Hall (1982) to prove Theoretn 3.2. Clearly if £'(b) - f '(a) is positive then

(3.21) is an increasing function of h which does not have a maximum . It does have a maximum if
f'(b) - f'(a) is negative. The point h where the maximum is attained is of order nlB,

Next we consider case II. Let d;,...,dm denote the points in (a,b) where f has a kink and recall
that in case II there are no jumping points of f in E. Let Dy denote the set of points which are at least
at a distance h of the singular points of f. Then Theorem 2.3 gives the following expansion for the
first term in (3.18),

b
| b(u,h)du = [ b(u,h)du =
E a

a+h b m dith
[b(uh)du + [b(uh)du + X _Ihb(u,h)du +  [buh)du =
a bh =lg Dyr(ab)

1 0 m 1
(3.22) h Jb(a+th,h)dt +h {b(b+th,h)dt +h Z {b(di+th,h)dt +  [b(uh)du =
- i=1 - Dnn{a,b]

1 0 m 1
h25"(a) Jbl(t)dt + h28(1)(b)_{ by(t)dt + hZEIB(l)(di)_{bl(t)dt +

1 b
70 {w?K(udu [ £ "(u)du =
- a

m 1 1 b
12 (3D(a) + 8M(b) + 2,2}5‘”@0) ot + zh? {uzl((u)du [ £ "(u)du.
i= - a

The terms of order h? in (2.13) don't appear in this expansion because they are integrated over
intervals of length 2h. We have also used
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b
[ £"(u)du = [ f "(u)du.
Dypna,b] a

Because f' can be discontinuous on (a,b) this integral is not necessarily equal to f'(b) - f'@. By
Theorem 2.8 it now follows that in this case we are asymptotically maximizing

m 1 1 b
hz{(ﬁ(l)(a) +8M(b) + 2@18“)@)) o1t + {,h’_{uzx(u)du ,f f "(u)du }+

1 1
-,}{h%"’ bf®ade + %‘hﬂ _{Kz(u)du}z

m 1 1 b
h? {(8(1)(a) +8W(b) + 2};‘1 5M(d;) o1t + {,hz_{uZK(u)du 1 f "(u)du }+

1
; ;%_{Kz(u)du,

which leads for the uncorrected method to the same type of behavior as in case III above.

Since in cases II and III the third term in (3.18) is negligible the corrected method indeed
asymptotically minimizes the weighted mean integrated squared error (3.19). This corresponds to
Marron's optimality result given in Theorem 3.3. Notice that in cases II and III the density f satisfies
a Lipschitz condition on an e-neighborhood of [a,b] for some € small enough. If the kernel K has a

bounded support then this property can replace the condition in Theorem 3.3 that f should be
Lipschitz on the whole real line.

Finally we consider case I. Suppose that dy,..., dm denote the jumping points of f in (a,b)
then we have similarly to (3.22)

[ b(u,h)du =
E
1 0 m 1
h89(a) Jbo(t)dt + h8(°)(b)_{bo(t)dt +h 55@)@9_{ bo(t)dt =

1
h a) - 5%b)) [botdt,

since by is odd. Notice that since by is negative on [0,1] the integral above is also negative. For the
third term in (3.18) we have for h small enough

Eg(Am(X1,h)IE(X1) =

E g((E50X1) - fCX ) (X)) IE(Xy) =



hX]

JE g((fin () - f)f i) f(u)du =

ath b m dith o .
(J+ 42 L) Eean - fa)f w)fu)de ~

ath b f di+h f(l) .
+ [+ - =
IRNAS AL (CHOROOZOE

( IR z ﬁg,) g(b(u,h)f (w))f(u)du =

- hy(f,K),
where

1
WEK) :=f(a+) J g(f(a+) 18 (a)bo(r))dt +
0
(3.23) £(b-) [8(f(b- '8V b)bo)dt +

m 1 0
2. (£(di) [y "8 V(dbott)dt + £dr) [(di-) '8 (dbott)d).

So in case I this term is not negligible. Again by Theorem 2.8 we see that in case I we are
asymptotically maximizing

1 1 1
h 39(a) - 3(b)) Jbo(t)dt - ,‘z{h A® J bg(t)dt + %'hﬂ _{Kz(u)du }+ hy(EK) =

1 1 1
(3.24) h{(5<°>(a) - 89y)) Jbo(t)dt -3A© J bg(t)dt + Y(f,K) } %}_{Kz(u)du.
However using the corrected method we are asymptotically maximizing
1 A (0) ! b-a ! 2
h { FAC Jb&(t)dt + y(f,K)}- m{K (u)du.

Since in case I situations the third term in (3.18) is not negligible neither the uncorrected nor the
corrected method asymptotically minimizes the integrated squared error (3.19). So Marron's
optimality result does not hold for densities with jumps in the interval [a,b). Notice that if neither a
nor b is a jumping point of f then there is no difference in the asymptotic behavior of the uncorrected
and the corrected method because the first term in (3.24) vanishes.
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These heuristics lead to the next theorem which gives the rates of convergence of the
bandwidths obtained by likelihood cross-validation.

Theorem 3.4. Suppose that E is a bounded interval [a,b], -.co<a<b<eo, and that the density f
satisfies Condition F and is bounded away from zero on E. Let d,,...,dm, denote the singular points of
f in (a,b). Further assume that the kernel K satisfies Condition K and has a bounded second
derivative. For some 6>0 let I denote the interval [hyp,hp] with h;,:n'““ and hj=n"°. Let Hy, denote
the value of h which maximizes LCVy(h) over I and let HS, denote the value of h which maximizes
LCVE(h) over I,. The next statements hold almost surely.

(a) Case I: If Hn=Cnn’mthen

1
J b-2) (K2 (u)du
(3.25) .P_',“.., Cn= T T
l<8‘°’(b)«s‘°’(a»g bo(t)dt + A [bd(t)dt - W(£.K)

12

provided . .
(89(b)-59(a)) Jboddt + 2O Jb&(t)d: -YEK) > 0.
If HS=CSn''2 then
1 12

. 3b-2) [KX(u)du

(3.26) Iim Cf = r :
A [bb(t)dt - W(E.K)

provided

1
7 [b(t)dt - HEK) > 0.

(b) Case II : If Hy=Cyn Pthen

111111’11;_:&(1ogn)"-’-"a Co21

(327) .
limsup ————Cp < 1,
n—)ol}p (log n)l+€ n -
provided
m 1 1 b
(5D(a) + 8M(b) + 2}:{8“’@9) Jbide + zh? {uzK(u)du J £ "(u)du < 0.
i= - a
IF HS=CSn' ™ then

(3.28) lim C§ = on(f,w)Bu(K)".
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(c) Case III : If Hy=Cp n"Pthen

o e 1ﬂ+€
hgt_u”x';f (logn) Cn21

3.29
(3:29) .

limsup ————C < 1,
1" (log )" "

provided f'(b) < f'(a).

IFHS=CSn™'5 then

(3.30) Tim C§ = om(f,w)Bm(K)'~. 1
Here the constants oy(f,w), oyn(f,w), Bri(K) and Bm(K) are the factors in the optimal bandwidths

given in (2.25), where the weight function should be taken equal to f !Ig, and Y(f K) is defined in
(3.23). So the limits (3.28) and (3.30) are the optimal censtants in cases II and III respectively.

Remark 3.5. Since by Remark 2.9 the expansions of the mean integrated squared error hold
uniformly for h in (0,hy] for any sequence of positive hy converging to zero, for the corrected method
in cases II and III the theorem above implies (3.11) of Theorem 3.3. By an argument based on a
result of Marron & Hirdle (1986), similar to the one Cline & Hart (1986) use to prove their Theorem
6, it can be shown that (3.10) also holds.

Next we consider the type of densities studied by Chow, Geman & Wu (1983) and Devroye
& Gybrfi (1985), i.e. we assume that f has bounded support [c,d] and E=[c,d]. This means that we
compute the product (3.9) over all the data points X;. Also assume f continuous and bounded away
from zero on E. This is a case [ situation with

1 1
WEK) = f(o#) [g(flc+y fleHbo()dt + £(d-) [g(-£(d-y ' H(d-bo(t))dt =
1
(f(c+) + f(d-))J g(bo(t))dt < 0.

This constant is negative because g is an increasing function on (-1,e0) with g(0) = 0. So g is negative
on (-1,0) and since by is negative on (0,1) the function g(bo) is also negative. We also have by partial
integration

1
@d)-5(c)) fbot)dt =

11
(fe+) +£(d-)) | (tI K(u)du)dt =

1
(f(c+) + £(d-)) J uK(u)du > 0.
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Using the equality AP=f(c+)+f(d-) the next result now follows from Theorem 3.4.

Corollary 3.6. Let f satisfy Condition F and have bounded support [c,d}. Let E=[c,d] and let f be
continuous and bounded away from zero on E. If Hn-Cnn'l’2 and H§=CSn 12 then under the

conditions of Theorem 3.4 we have almost surely

1
j »d-c) {Kz(u)du
(3.31) lim Cp=

l(f(c+) + f(d-))(JuK(u)du + 7J b&(t)dt Jg(bo(t))dt)

12

and
12

1
Hd-c) { Kz(u)du

332  ImCi= J
l(f(6+) + f(d- ))(7J b&(t)dt J g(bo(t))dt) .

Remark 3.7. The asymptotically optimal constant for the weight function f UE in the case I situation
of this corollary is given by (2.25). It equals

1 2
#d-0) [K¥u)du

Copt =

1
(f(c+) + f(d-))J;J b(t)dt

The corresponding optimal bandwidth hgP" is equal to cop‘n‘m. Note that the quotients of the limits in
(3.31) and (3.32) and copt depend only on the kemel function K and not on the density f. This means
that we can obtain almost sure convergence to the asymptotical optimal constant copt by multiplying
the computed bandwiths Hy and H§ by a known constant. However, even using the optimal
bandwidths, unavoidably we have a large error since we are dealing with a case I situation. It would
be better to use the symmetrization device described by Schuster (1985) combined with cross-
validation to determine a good bandwidth. Cline & Hart (1986) discuss this approach for least
squares cross-validation. '

The two previous theorems show that in the cases IT and III, i.e. if the density f has no jumps
in the interval [a,b], the bandwidths HS are asymptotically almost surely equivalent to the
deterministic asymptotically optimal bandwidths with respect to the weighted mean integrated squared

error MISEy(h), where
b

MISEn(h) = E ISEqy(h) = E 5[ (fan(x) - FX)E (x)dx.
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Let Hj denote the positive value of h which minimizes the integrated squared error ISEx(h). Since Hp
is the random bandwidth which we would like to approximate we derive the asymptotic distribution
of HS - Hy. The next theorem establishes the asymptotic normality of Hf - Hy in the cases II and L
The proof is given in Section 3.4.

Theorem 3.8. Suppose that the conditions of Theorem 3.4 are satisfied. With L(u):=K(u)+uK'(u)
we define the constants 02, ?ﬁ and oﬁl by

o= 4(b-a) [ L(u)du,

1 1
of := A(I)J (] G-uL(wydu)at,
t

1 b b
ofi =3 (| u2K(u)du)?( a{ £ "(x)2F  (x)dx - ( a{ f "(x)dx)%),
and the constants 0p, 0 and 0z by

1
o= b_iﬁ_{ Kz(u)dn,
1 ) b
=% ({ u?K(u)du) ‘{ f ") (x)dx

1 1
ap =2 A(”J ([ t-wKudu)at.
t

Then we have in case Il
n¥B(HS - HY) 3 N(0.45 Qo0 e 02 + 050y Mot))
and in case HIl
nM10mE - 12 3 N(Og5 200 Py 62 + ag Py ¥ o). ]

The second statement of this theorem is similar to Theorem 2.1 in Hall & Marron (1987a), the
asymptotic normality result for the bandwidths computed by least squares cross-validation, the only
difference is in the asymptotic variance. It shows that for smooth densities we also have the slow
convergence demonstrated by (3.6) for least squares cross-validation. Though formally it doesn't
apply here since we use a different weight function, this result is coherent with Theorem 2.1 in Hall
& Marron (1987b), which states that we can not expect a faster rate of convergence. This theorem
assumes the densities to be twice differentiable, essentially our case III situation. It is a nice surprise
that the first statement of our theorem shows a faster rate of convergence. In that case we have
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HS - Hp 38 .
g = O = 0™,

which is of smaller order than the bound Op(n""/%) which holds in the smooth case. Proceeding as in
Hall & Marron (1987a) we would also obtain

ISEn(HP) - ISEq(Hp) _ 144y
SEL(HS) Op(n™™"), in case II

and

ISEn(HY) - ISEn(Hp) _ o (155
SELY) Op(™™"), in case I,

which shows that the minimal integrated squared error is also better approximated in case II
However we should keep in mind that if f has kinks in [a,b] this integrated squared error is of a larger
order than it is for smooth densities.

3.2. The derivative of log(LCVy(h)).

The proofs of Theorem 3.4 and Theorem 3.8 in the previous section are based on expansions
of the derivative of the function log(LCVpy(h)). Before we can derive these expansions we give two
successive decompositions of this derivative in Sections 3.2.1 and 3.2.2 . In Section 3.3 we then
obtain the expansions which prove Theorem 3.4. The proof of Theorem 3.8, stating the asymptotic
normality of H§ - Hy, is given next in Section 3.4.

3.2.1. A decomposition.

We first consider the derivative of the kernel estimator fy with respect to the bandwidth h.
For K differentiable we have

g 00 = 5 2 g K(Xom) =

(3.33) 1 2 - —;K«x Xpm) - &K gix-xppm)) =
1 n
;h‘le L((x-Xi)/h)
with
(3.34) L(x) := K(x) + xK'(x), 00 < X < 0o,

This function plays an important role in the sequel. For kemnels K, satisfying Condition K and having
a bounded derivative, L has the following properties,

(L.1) L has support [-1,1],
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(L.2) L is bounded,

(L.3) L is symmetric,
1

(L.4) { L(u)du = 0.

The first three properties are immediate and property (L.4) follows by partial integration.
The next figure shows the graph of the function L for the kemel K, given by

K(x) = 33(1-x2)31(.1,1)(%).

Notice that K' continuous implies L continuous, and that L has a bounded derivative if K has a
bounded second derivative. This last property is required if we want to apply Theorem 2.16 to the
derivative (3.33).

-
e

-
o
2
2
T

L v U Ll L]
-1.0 0.0 1.0

Figure 3.1. The function L.

Now consider log(LCVpy(h)). Since

FIoBLCVa®) =1 T Iog(ER(X0).
and

(@) n 1

fnn(Xi) = 57 fan(X) - mK(O)
we have

L jog(LCVa(h) =

2 8GR fan(X0) - Gy KO)

n iXjeE
1 1 n
I i OB (X0 - S K(O) + log(op).

Next use (3.33) to obtain



L 4 10g(LCV () =

6 i T il 2, L(Xi-Xpm) - 5K(O)
iXXjeE fan(Xi) -'n-IHK(O)

1y 1
Ly i &, L(Xi-X)/h) - 72 K(0)
iXieE 1 ¢ 1 )
Eh',{:, K((Xi-X;j)/h) - =K(0)

The following decomposition of this derivative is the key tool in our analysis of the behavior of
likelihood cross-validation. '

Proposition 3.9. If the kernel K is differentiable and satisfies Condition K, and if we define the
function L by (3.34), then

+ S 10g(LCV () =

Un(h) + Vn(h) + Wy(h) + Yn(h) + Ra(h).

where

Uah) := 7 & Ui, Valh) = 15 2 Vith) and Wafh) := 25 %, Wich)
with

Uijh) = - LX) 0K (X0,

Vih) = KX Xh) LK X)) £(X)? (X0,

Wijk(h) := Eng((Xi-Xj)/h) L((Xi-Xi)/h) f(Xi) 2 Ig(Xy),
and where

Yalh) = g 2 (g & LX) - rKO)

L3 k(XX 5. 2
(3.36) ( 3 2 KX - £0) - oK)
( 7 2 KCGXh) - 7 KO} £06) 15X,

and

2 n
Ru(h) :=%}-i§1 £X0) 2 Te(X)). 1
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Proof. Write the denominator in (3.35) as
(X)) - 2 K(0) = £(X0) + fan(Xi) - £CX) - - K(0) = £X1) + Aui(h),

thus defining Api(h). Next we introduce the function g by

o1 1, 1_ ¢
g(x,s) b TSl i reypey Tk
This gives
1 1 Anith)
— =% - Tt EEXD).Ani(h),
fan(X;) - =K (0) D XD o
and therefore by (3.35) we have
T S log(LCVy(h) =
1 1y - 1 1 Api(h) AL _
-mﬂgl&{,—ﬁ Z L(XiXj)/h) - KO {m - Tt g(f(xl),Amox))} =
- & Te0%0 {y Z, LUK Xyph) - KO}
2 1 (1¥y 1
{m - 7 (R &, KX/ - fpKO) + g(f(xo,Ani(h»} :
This can be rewritten as

6
(3.37) Z Zni(h) + Yn(h)
with
Zan(h) i= - s 2294 LUK X)X X,

1 g
Zna(h) 1= gy 222 2 LK XPK(Ki-Xi/h) £ (K0,

Zas(h) = - s K(0) 222, LK X)) £0X0) 210X,

Zaa(h) 1= = KO, £ TeCX),
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Zosh) := - (—nh—;K(O)EE K((Xi-Xj)/) £Xi) IE(X3),

_K(0)
Zpe(h) := (E)Tz £(X0) 2 IE(Xi).
and
Ya(h) :=- 5‘,,-2 {55-2 L((Xi-Xj)/h) - ;h-xw)} (E(X;),Ani(h)) TE(Xi).
Now note that

Zy1(h) = -Zna(h ) + Un(h),
Znao(h) = -Zn3(h) - Zps(h) + Zns(h) + Vn(h) + Wn(h),
Zns(h) =5Ry(h),
which shows that (3.37) equals
Un(h) + Vn(h) + Wn(h) + Yn(h) + Ra(h).
This completes the proof of the proposition. |
3.2.2. The relation to U-statistic theory: a second decomposition.

The statistics Up(h), Vn(h) and Wy(h) in the preceding section are U-statistics. If ¢ is a
symmetric real valued function defined on the m dimensional Euclidean space then a U-statistic of
degree m with kemel ¢ is defined as

(m) (i10ees 15“; O(XigseresXipy)s

where Cp n is the set of all ordered m-tuples (iy,...,im) of different indices from the set {1,2,...,n}.
Note that, with

o(x,y) :=- h%ucx-»/hxr(x)"Is<x>+f<y)"ls(y»,

oy (xy) := hl;K«x-y)/h)L(x—y)/h)(f(x)'zls(x»f(y)'zlﬂy»,
we have

Unh) = ;‘z);J oV (Xi.X;),

Vah) = 35 Z o} (X1 X)),
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so up to normalizing factors Up(h) and Vp(h) are indeed U-statistics. Also notice

QY (Xi.X;) = Uij(h)+Ujih)

and
0y (Xi.Xj) = Vijh)+Viich).
Similarly we can write Wp(h) as
1 Wiy w.
Wa(®) =5 % 0 (XX} X0,
where

‘Pf,v(xi,xj.xk) = Wiji(hH Wik (h)+Wyji(h )+ Wik (h)+Wiki(h)+Wij(h),
i.e. the sum over all permutations of the indices. So Wy(h) is a U-statistic of order 3.

The kemel functions ¢, ¢ and ¢, depend on the bandwidth. To derive the asymptotic
distribution theory for likelihood cross-validation we need the asymptotic distribution of Up,(hp) for a
sequence of bandwidths (hp) (The terms Vp,(hp) and W, (hp) are negligible). In that case we are
dealing with a statistic of the form

Unth) = 27 % @0 (Xi X)),

a U-statistic with a kernel depending on the sample size. The asymptotic distribution theory for this
type of statistics is studied by Hall (1984), Jammalamadaka & Jansson (1986), De Jong (1987,
1990), Nolan & Pollard (1987, 1988).

Although we can not use the theory for U-statistics with fixed kemels, we can employ
Hoeffding's projection technique to derive a decomposition of a U-statistic (Hoeffding (1948),
Serfling (1980)). This results in the following decompositions

Un(h) = =1 EUy(h) +
nLL 3% Uy - EUya) + L1 E : E(U(h)X;) - EU(h) +
7 Z (U - B(U X0 - ECUHI) + B,

which we rewrite as

Uay= 2L BUjm) +



ll 2 : (B(U(WIX) - EUyh)) + L2 E (E(U(h)IX;) - EUy(h)) +

Ou(h),
where
Oath) := ;,172:; 03,
and
Oij(h) := Uij(h) - E(Uji(h)IX;) - E(Uj5(h)IX;) + EUij(h).
Similarly we decompose Vy(h) as
V)= 7 EVi) +
DL Vi) - BV + S LS vy - Bvy +
Oa(),
where
Gt =5 Z O30,
and

0ij(h) = Vijjth) - E(Vij(h)IX;) - E(Vi(h)IX;) + EVij(h).
Finally we also decompose the statistic Wy(h). We get

Waby= 0D By m +
@DOD LS BwipmxD) - EWiph) +
QL) L3, BOWiRMIX;) - EWiglh)) +

eleD L 3 EWig®iXo - EWgh)) +

ng=1

w!I(h) »

where
W) := 5. % W)
and

Wi,k(h) = Wijk(h) - E(Wi(®)IX;) - EWijk(h)IXj) - E(WixM)IXy) + 2EWijc(h).
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An important property of these decompositions is that the conditional expectations of the terms of
ﬁn(h) given the X's vanish, i.e. for k=1, ..., n

EDim)ixy =0.

This implies that ﬁn(h) and the linear terms in the decomposition of Uy(h) are uncorrelated, an
inherent property of the Hoeffding decomposition. The other two decompositions have a similar
property.

We obtain a further decomposition of the derivative of n"llog(LCVpq(h)) by plugging in the
previous ones of the statistics Up(h), Vu(h) and Wy(h) in the decomposition derived in the previous
section. Then we compute the various conditional expectations appearing above. These conditional
expectations can be expressed in terms of functions b® with G equal to one of K, L, or KL, the
product of the functions K and L. These functions b€ are generalizations of the bias function b in
Section 2.2. We also introduce generalizations of the functions by, b; and b, which appeared in the
expansion of the bias.

Definition 3.10. The functions bC, b§, b?andb&‘ are deﬁnedby
b9(xh) = E pGEED) - ) | G(u)du-h- [ GlCx-uyh)fuda - £x) {G(u)du

and
t
[ (t-u)™G(u)du if t<0
bE® =y " .
-J (t-u)™G(u)du if 120
for m=0,1,2.

The proof of the next lemma is a direct generalization of the proof of Theorem 2.3 and is therefore
omitted.

Lemma 3.11. Assume that G is a bounded symmetric measurable function with support equal to
[-1,1] and that the density f satisfies Condition F. Let (hy) be a vanishing sequence of positive real
numbers.

(a) Then .
bSCx.h) = 3% "(x) [u2G(u)du + ry(x.h)
where the remainder 1, satisfies

lim sup su h2iry(x,h)l =0,
n—eo O<hshy' xe Dpn[-MM]

for every positive M.
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(b) For xoa fixed point we have

bS(xotthh) = bE(©)8(xg) + hbF()5V(xo) +3n?bF ()5 (x0) +

1
2 [u2G(u)du (£ "(x0-)=x,0)(8) + £ "(xoH) 0, (D)) +

12(t,h),
where the remainder 1, satisfies

im sup sup hZinth)=
n—oo O<hs<hy' -M<St<M, 120

for every positive M. |
We now state the main proposition of this section.

Proposition 3.12. If the kernel K is differentiable and satisfies Condition K, and if we define the
function L by (3.34), then we have the following decomposition,

2 4 10B(LCV(h) =
2L EU ) + S BV + SR Ew ) +
BL L3 o1Ki) - BwnCXe) +

el E(uz(X.,h) Euy(X;h)) +

E;Tl_n_lzl:zl(vl(xbh) - Evi(Xj,h)) +

Bl L waXih) - Eva(Ki) +

(n—lnz(n-2) %E{ (wi(Xch) - Ewi(Xih) +

%&Q%El(wxxi,h) - Ewy(Xj,h)) +

(n-ln!S‘n-ZQ %Ex(w;‘(xi’h) - Ews(Xj,h)) +
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Oah) + Outh) + W) +
Yn(h) + Ra(h),

where the functions uy, uy, v1, V2, W1, W2, W3 are defined by

woch) = -p bOoh) 00 e,

wh) = -BITE[L((u-x)/h)du,

itch) = g (f(x)_fxuu)du + b5 h))f(x) 2T (x),
(338)  wh) = JKL((u—x)/h)f(u)‘ldu,

W) = f Kb Is(x)

waxh) = LJK((u-x)/h)f(u)“b"(u,h)du,

W) = gz [Le0miey b e,

To prove this result we only have to compute the conditional expectations in the decompositions of
Un(h), Vn(h) and Wy(h). These conditional expectations are given by the next lemma.

Lemma 3.13. The conditional expectations of ﬁij(h), Vij(h) and Wij(h) are given by

(@ B(Ui(h) | X = - 5 BH(Xeh) £CX R = 20y (Xih),

E(Usj(h) 1 Xp) = - h"ZILJL((u'Xj)/h)du = 2up(Xh),

1
(®) E(Vi) 1) = (06) [KLdu + bKLCGRMCK) 25X = viCKuh),
E(Vij(h) 1 X;) = h%JKu(u-xj)m)f(u)"du = va(X;h),

(c) E(Wig(h) | Xi) = - $E (Uih) 1 X0) + - X (Xi 6L, h)ECKi) g (X) =

- ui(Xjh) + wi(Xj,h),
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E(Wijk(h) | X;) = ,—}:J K((u-X;j/)f(u) "o (uh)du = wa(X;h),
E(Wij(h) | Xi) = - 7E (Uie(h) | X) + Elz Ju(u-xk)m«n)"b"(u,h)du =

- u(Xj.h) + wa(Xi.h).

Proof. We only derive the expressions for E(Wjjx(h)IX;) and E(Wjjx(h)IXy). The other expressions
are obtained similarly. We get the conditional expectation of Wi;i(h) given Xj and Xy by integrating
out Xj,

E(Wijk(h)IX;,Xk) =

I KOG ML XK X))y =

oy LUCG XOMECK) IECK) (£0K0) + | K(Ki-v My - £(X0) =

Vi) + Sy LK XK (KKK ).

Next we obtain E(Wijk(h)IX;) = E(E(Wijk(h)IXj,Xk)IX;) by integrating out Xy This gives

E(Wijk(h)IXj) =
2EU®m)IX) + | ElzL((Xi-W)/h)f(Xi)'zll-:(xi)b"(xi,h)f(W)dw =

FEUih)X) + i bR hbLK )X H(X,).

Similarly we compute E(Wjjk(h)IXy) by integrating out X;. This gives

E(Wijk(h)IXy) =

FEURMIX + | LX) b)) =
FEURMIX + 7] LX) b))
E

which is the correct expression. i
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Proposition 3.12 gives us a basis for deriving both the rates of convergence to zero as well as the
asymptotic distributions of the bandwidths computed by likelihood cross-validation. In the following
section we obtain results on the rates of convergence to zero. Distributional properties are studied in
Section 3.4.

3.3. Rates of convergence: proof of Theorem 3.4.

Recall that the random bandwidth Hy, computed by the uncorrected likelihood cross-validation
method is equal to the value of h which maximizes the random function LCVy, defined in (3.9), over
the interval In=(hj,hj], where hy=n"'*® and hjj=n"C for some 6>0. The random bandwidth H§
computed by the corrected likelihood cross-validation method is equal to the value of h which
maximizes the random function LCV§, over the interval I,. The function LCVS is obtained from LCVj,
by n
(3.39) LCVE(h) = LCVa(h) exp (-X E JK(@-Xmydu).

In this section we prove Theorem 3.4 concerning the rates of convergence to zero of the random
bandwidths Hy and H§. We consider the root and the sign of the derivative of the random functions

log(LCVx(.)) and log(LCVE(.)).

Throughout this section we assume that the conditions of Theorem 3.4 are satisfied, i.e. we
assume that E=[a,b] and that the density f satisfies Condition F and is bounded away from zero on E.
Further we assume that K satisfies Condition K and has a bounded second derivative. By d,,..., dm
we denote the singular points of f in the open interval (a,b). We treat the points a and b separately.

The decomposition given in Proposition 3.12 gives the next expansion of the derivative of
log(LCVy(.)). The proof of this expansion is given at the end of the section.

Proposition 3.14. If we write

L g logLCVah) =
1y 1
. H,-Z"i ET'!L((U-Xj)/h)du +
1
zbﬁ'ﬁz-{l(z(u)du +
E ol du +

Yn(h) +

Rﬂl(h)’
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where Yy(h) is defined by (3.36), then the remainder term Ry satisfies

qu ag(h) IRyi(h)l = o(1), almost surely,
he n

with a(h) equal to .
(n'TlF"' 1)- in case I
-1
onh) = (n-%z+ h2) in case Il
1 31 ,
(n—hz+ h?) in case IlI. 1

Now we also automatically obtain an expansion for the derivative of log(LCV$(.)) since by (3.39)
and (3.33) we have

3 4 0BLCVEM) =

(40 3aFlosCV) - x4k (X f I K(@-Xivh)du) =

& 45 108LCV) + 52 o [ L(u-Xo/mdu

i=1

It follows that the correction factor removes the first term in the expansion of % adﬁlog(bCVn(h))
given by Proposition 3.14. Using the expansions of the bias functions bX and bL, provided by
Lemma 3.11, next we expand the deterministic third term.

Lemma 3.15. We have

F J BbR ) Tdu =

1
- 5AO b5t + ri(h) in case I
1
(3.41) - ;th“)J b¥(t)%dt + h?ry(h) in case Il ,

1
- 5h3({u?Ku)du)’ It "(u)*f Y(u)du + hr3(h) in case I

where 11(h), 12(h) and r3(h) converge to zero uniformly for he I. |

Proof. Let Dy, denote the set of points on the real line which are at least at a distance h from the
singular points of f. For n large enough and he I, write
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£ J oM@ @ (udu =

a+h

b m dith
1 K 1
rGL++ b-jh+i}=:ld;!h ) bhuhb¥ @ h)f (u)du.

First consider case IIL. Then the interval E = [a,b] contains no singular points. By Lemma 3.11 we
have for n large enough

F JoHER e nE ) =

1 1
}1; é (%hzf"(u)(_{ v2L(v)dv)3h’t "(u)(_{ vZK(v)dv)f Y(u)du) + h3ry(h),

where the remainder term r4(h) vanishes uniformly for he I, for n tending to infinity. Since by partial

integration we have
1 1

{vPLvdv = 2 [vK(v)dv
this proves (3.41) for case III. In the cases I and II the integral over ENDy, is asymptotically
negligible and the term

1 b

a+h m dith
(3.42) g ( 3 + I +Z [ ) bhhbXuh)f udu

|+
bh  i=1drh

dominates. Let d; be a singular point of f in the open interval (a,b). The term corresponding to d; in
the sum (3.42) is equal to

p
(3.43) B-di!hb!‘(u,h)bx(u.h)fl(u)du.

By Lemma 3.11 this term is equal to

1
{ 59(dbht)sd)bS (Of (di+th)dt + o(1) =

1 _
8% [ bSO (dithde + o(1) =

1 0
8%a)*(£ (i) {bbbE 0t + £1(di) [bhpBiar) + (1) =

1
80AYXE i) + £1dir)) [ bhpar +o(1),
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since b and bly are odd functions. If 8°)(d;) is equal to zero then the expansion of (3.43) becomes

1
{8V @bE®B VT '(dirth)dt + oh) =

1
W28 (@) (E i) + £1dir)) fLTbTdt + o).

Similar expansions hold for the points a and b. The uniformity of these expansions is readily verified
so it remains to show the equalities

1 1
(3.44) JobobSa = -3 [blyar

and 1 s 1
(3.45) Jpropfoa = -3 [bfm’dr.
The proof of these equalities is postponed to the end of Section 3.5. |

We also need a bound on the term Yy(h). For cases IT and III it is given by Lemma 3.16.
Lemma 3.17 provides information on Yp(h) for case I. Both lemmas are proved in Section 3.5.

Lemma 3.16. For some constant ¢ >0
limsup su? an(h) [Yn(h)l < ¢, almost surely,
n—e hely
where
32 -1
(ll; (l%ﬁr'l) + h3) in case Il
312 -1 .
(,1; (li’ﬁlﬂ) +h°) in case Il 1

on(h) =

First consider the corrected method in the smooth case III. Proposition 3.14, (3.40), Lemma 3.15
and Lemma 3.16 imply

(346)  E{lop(LCVEM) = ooy - cub®+ Rea(h) (kg + 1),

where for some sequence of almost surely vanishing random variables S, we have for all he I,

(3.47) IRp2(h)l < Sp,

and the constants 0, and o, are defined in Theorem 3.8. Substituting h = cn™' in relation (3.46) and
multiplying by n*> we get

(3.48) oozlz 016>+ Ryg(en™™) (;lz+ ).
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Let ¢ be equal to (ovolo.l)l/5 then cg is equal to the optimal constant for the mean integrated squared
error in case III for the weight function w = f 'Ig (see (2.25)). Next we rewrite (3.48) as

1 1?4' c3
(3.49) (Oq(':z- (1103)(1 + an(cn“/s) -—-r——(m)
0052 - U1

We see by (3.47) that for any 0 < € < ¢g and for all n larger than a random integer N(€) the expression
(3.49) is positive for all ¢ in (0,co-€)~n'I,, and negative for all ¢ in (co+€,00)n "L, So if we write
H§ = C§ n"'” then for all £ in (0,co)

co-€ < Cf; S co+€, for all n 2 N(g).
Thus we have shown
nh_x)nw C§ = co, almost surely,
which proves (3.30), i.e. the almost sure convergence to the optimal constant for case IIL

The proof of statement (3.28) of Theorem 3.4 for the case II is exactly the same except that the
second term in (3.46) is of order h? instead of h>. In case II we have

1 1
(350)  ;qplog(LCVE®) = oy~ o+ Rs(h) (7 + ),
where oy is given in Theorem 3.8, and Ry3(h) satisfies a condition similar to (3.47).

In case I the situation is different since then the term Yy(h) in the expansion of proposition
3.14 is no longer negligible. The next lemma deals with this term. The proof is given in Section 3.5.

Lemma 3.17. Let d,,..., dm denote the jumping points of f in (a,b). Then
Yn(h) = W(fK) + Rns(h),
where W(f K) is defined in (3.23) and Rpa(h) satisfies
::{:1 (n—:lz+ l)-1 Rpa(h)l = (1), almost surely. ]
We now get the following expansion of the derivative of log(LCVE(.)),
(G5 flogLCVEM) = dokr- o5+ AEK) + Rash) (7 + 1),
where for some almost surely vanishing sequence of random variables S}, we have for all he I,

IRas(h)! < Sp.
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Here oy is the same as above and a3 is given by
1
03:=5AQ ({ b8y
Contrary to the previous cases here the leading term of (3.51) does not always have a root in (0,c°). If
a3 - ¥f,K) <0 then by the same argument as above the derivative is positive for all he I, for n larger

than some random integer N. This means that we find large values of HS. On the other hand if o3 -
W£K) > 0, defining C§ by HS = Csn"'/2, we get (3.26) of Theorem 3.4.

Having dealt with the part of Theorem 3.4 about the corrected method we proceed with
proving the results concerning the uncorrected method. The next lemma gives expansions of the
expectation of the correction term

1y 1
72 7 ] L(@-Xim)du .
Since the proof is a straigthforward application of Lemma 3.11 it is omitted.

Lemma 3.18. We have

b
E 7 [ L(u-Xi/h)du =

a

( (89%a) - 39(b)) Jlb{s(t)dt +11(h) in case I
) h(3P(a) + 8V(b) + 22‘.1 3M(dy) Jlbli'(t)dt +
o be "(u)du_{luzL(u)du + hry(h) in case II
L3h be "(u)du_{luzL(u)du + hrs(h) in case 11,
where the functions 11(h), r2(h) and r3(h) converge to zero uniformly for he I, 1

By the statement concerning u; in Lemma 3.19 below we also have almost surely
1 e 10
aToga &0p. @02 1% Gz [ Lie-Xim)du - E &7 T L(@-Ximau)l = oc0),

so the correction term is equal to

1 logn
(352)  Byz[L(Xim)iu+ Ros) - 185

where Ry6(h) for all he I, satisfies
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IRps(h)l < Sn

for some almost surely vanishing sequence of random variables Sp. It is not hard to show that the
asymptotic standard deviation of the correction term is of the order (nh) ™2, so apart from the factor
logn the bound in (3.52) is sharp.

First consider the uncorrected method in case III. Substracting expansions (3.46) and (3.52)
we get 1d
7 5 log(LCVn(h) =

S logLCVEm) - X 2 [L(w-Xm)du =

=1

-

b
1 3 1 .3 1 : logn
o0z @b+ Ruo®) (G + %) - B g7 [ LA X/modu - Roglh) -
which by Lemma 3.18 equals

Oz~ oub®+ h + r(h) + Rea(h) (Gz+ 1°) - Raslh) '(l:n)l% =

G aogz odh+hust) + Raa) (1) -Roat) 2B,

where oy is given by
1

b 1 b
=-L [ f"(u)du {uzL(u)du = Jf"(u)du {uzl((u)du
2, - a .

and r4(h) converges to zero uniformly for he In. Next notice

sap_1
1 (“hl) h?
7 ’
@7 "

so if nh? converges to zero or infinity fast enough the term (nh)'mlogn is negligible compared to the
leading terms in (3.53), uniformly for he I,. However if nh? remains bounded away from zero and
infinity then this term is not negligible. Writing h = cn"' and multiplying (3.53) by n'”® we rewrite
(3.53) as

0051-# auc - Rus(cn™'P) log n + cra(en”) + Rpa(en™P) (l?+ n??),



76

Now assume that 04 is negative then 00¢ 2 + ac has a root in (0,c0). By a similar argument as we

used for the corrected method we then find that for n larger than a random integer N we have for all

0
1

——————< Cp < (logn)!*€

(log n)lﬂ"f‘E n ( g )
which gives »

- 124€

hnx_r_nhnf(logn) Ch21, almost surely,
and

—Cy <1, almost surely,

thus proving (3.29).

For case II the proof of (3.27) is exactly the same except that the constant oy is different since
Lemma 3.18 gives a different constant. Here oy is equal to

m 1
-h (6W) + V() + 2i=2'is<‘>(di)) J b (t)dt 1 £ (u)du_{uzL(u)du =

m 1 b 1
2h (6D(a) + 5V(b) + 2i=Zla<1)(di)) J b¥®dt +h ,f £ "(u)du | wK(u)du ,

where we use (see the end of Secnon 3.5 for the proof)
(3.54) J bl(tdt=-2 J bX(vdt.

Statement (3.25) for case I can be proved in the same way as we proved (3.26) because in this case
the variation of the correction term is negligible since uniformly for all he I, we have logn (nh)'2 =
0(1). Here we need the relation

1

A 1

(3.55) Jbbodt=- [b¥mar,

. the proof of which is also postponed to Section 3.5.

To complete the proof of Theorem 3.4 we now prove Proposition 3.14.

Proof of Proposition 3.14. The proof is based on the decomposition given by Proposition 3.12.
Combining some of the terms of the decomposition we write

2L i) + %'zl-EVij(h) + “—'ll(z'ﬁlew,,k(h) + 1‘-112 (u2(Xih) - Eup(Xy,h)) =

B2 (BEUhIX;) - Bug0ih) + S EEVhix + KD pewi k) +
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nll
“"n nji

IMe

Elf i L((u-X)/h)du.
a
By Lemma 3.13 this is equal to

2L (2B (X h) - Eus(Xuh) + S BviOXu ) +

(n-1)(n-2) (-Euy(X1,h) + Ewi(X1,h)) - T%? ‘12’ I L((u-Xj)/h)du =
n i=1 h a
2L By ) - SDPD oy +

':l—‘,l-Evl(xl,h) + @gﬂﬁw«xlm +

M=

1 1
- r'ln—; T J L((u-X;)/h)du.

Notice that by Lemma 3.11 we have

1 o
L EVi(Xuh) = ([ KL | £ 10T + hra(h)) =

b-a

(3.56) St? {Kz(u)du +—'zl'4(h),

where r4(h) converges to zero uniformly for he I,. Here we use the equality
1 1 1

{KLw)du = [(K*@) + uK'()K(@)du = 3,_{ K%(u)du.

Furthermore we have

EwiC) = [oambumt) dn
and since Euy(X,h) = Eup(Xy,h) = EUjj(h) we also get
2L Byt ) - S By ) =

(3.57) 2 t:‘—'zl-Euz(Xl,h).

It follows from Lemma 3.18 that (3.57) is asymptotically negligible and from Lemma 3.15, Lemma
3.18, (3.52) and (3.56) that the factors (n-1)/n and (n-1)(n-2)/n? can be replaced by one.
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Since the term Ry(h) is readily dealt with it remains to show that the linear terms corresponding to the
functions ui, v, v2, Wi, w2 and w3 and the quadratic terms ﬁn(h), on(h) and Wn(h) are
asymptotically negligible. This is achieved by the next two lemmas which are proved in Section 3.5.

Lemma 3.19. Let @ be one of the functions uy, uz, Vi, V2, W1, Wz and w3 and let (cq(.)) be
sequence of positive functions on (0,0). The statement

(3.58) Hﬁl'é—n' lfgﬁ: an(h) IE{ (p(Xih) - E(p(Xi,h))| = o(1), almost surely,

is valid for @ =uy, 9 = wa and ¢ = w3 if

n'2p!2 in case |
an(h) = n'2p12 incasell .
n'?p! in case Il1

It is valid for ¢ = u; if we take oq(h) equal to n'2p12, for @ = vy and ¢ = v, if we take on(h) equal to
n'?h? and for ¢ = wy if

n'2h12 in case I
agh) =4 n"?h3?  incasell .
n'2p3 in case 111 ]

Lemma 3.20. For any a>0 we have

suP n"%nh3?) |0n(h)l o(1), almost surely,
he n

(3.59) suP n"%n%h’?) lon(h)l o(1), almost surely,
he n

su? n%(n*?h?) |Wn(h)| o(1), almost surely. |
he n

The proof of Proposition 3.14 is completed by checking that the bounds provided by these two
lemmas are small enough. For instance for the term corresponding to the function u; we use

1 L2172 0172
ap? (B h

1 2
l-—-m(nh) h

n-lﬂh-lfz =

which shows by distinguishing the cases nh?>1 and nh?<1 that we have
anp-1e (1
n ’“h < (;-hT-F 1),

for n large enough. So in case I the linear term corresponding to the function u; is indeed small
enough. The other linear terms can be treated similarly. For the quadratic term ﬁn(h) we write
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Ol = hlﬂnhmlﬁn(h)l s—,(n*’ﬂm’ﬂlﬁn(h)l)

so by Lemma 3.20 this term is also asymptotically negligible. By similar bounds the other two
quadratic terms are also negligible and the proof of Proposition 3.14 is completed. |

3.4. Asymptotic distribution theory: proof of Theorem 3.8.

Before we study the asymptotic distribution of the bandwidths obtained by likelihood cross-
validation we first derive some properties of Hy, the value of h in the interval I, which minimizes the
integrated squared error ISEp(h), given by

(3.60) ISEq(h) = ,.{ (fan(x) - £(x))*f i(x)dx.
In the proof of Theorem 2.11 we already noticed that

ISEy(h) =
"lh“f,Z | KCEEDR Dy +

n

2 KD ax +
)_{ f(x)dx.

Since with L as in (3.34),
EEED = 5LE
we have

4 1SEah) =

) 52257% d K(l%i)lf(l};&)f Yxdx +
Ezzz J L(l]:—(i')dx+

i=l E

- | KA wax.
Therefore

4 ISEa(h) =
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2
-7 & BOWiph)iX; X +

L3 Buymg) +

-
1l

n

2
‘A E(Vijj(h)IX;),

with Ujj(h), Vij(h) and Wijk(h) as in Proposition 3.9. Just as in Section 3.2.2. we use the Hoeffding
projection technique and Lemma 3.13 to obtain the decomposition

- ISEq(h) =
(n-l 1) . 20y, 2"'1 Wi (h
- (5+ 5D EUiih) - TEVii() - 2 - EWigh) +

) ':l_zl_gi (Wa(Xi,h) - Ewa(X;h)) +

(3.61) ; 2“;}):‘ (w3(Xih) - Ews(X;,h)) +

-2 3% vaXih) - Eva(Xi ) +

n

-2 (aXish) - Bug(Xih) +

-2 Wy(h),
where the functions w,, w3 and v, are defined by (3.38) and

Wnh) = I-]lz Ek (E(Wijk(M)IX;,X1) - E(Wiji(h)IX;) - EWij(h)IXi) + EWijk(h)).

By the same arguments we used to prove the bound on ﬁn(h) in Lemma 3.20 we have for any a>0

(3.62) sup " %(nh3?) Wyh) = o(1), almost surely.
he n

Next notice the similarity of (3.61) and the decomposition given by Proposition 3.12, and also notice
that the linear term corresponding to the function u,, which dominated the behavior in case of the
uncorrected likelihood cross-validation method, is of lower order in (3.61). Proceeding in the same
way as in Section 3.3 we obtain the next result which states that in the three cases I, I and III the
random bandwidths Hy are asymptotically almost surely equivalent to the deterministic optimal
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bandwidths for the mean integrated suared error, which is no surprise since we are directly
minimizing ISEp(h). The proof of the theorem is omitted.

Proposition 3.21. Suppose that E is a bounded interval [a,b], -co<a<b<eo, and that the density f
satisfies Condition F and is bounded away from zero on E. Let dy, ..., dm, denote the singular points

of fin (a,b). Further assume that the kernel K satisfies Condition K and has a bounded first
derivative. For some 6>0 let I denote the interval [hiy,hy], with hy=n"'*° and hj=n"C . Let Hy, denote

the value of h which minimizes ISEn(h), given by (3.60), over Iy. The next statements hold almost
surely.

a) Case I: If Hy=CanVthen
lim Cp = ou(f,w)2Bi(K)"2.
n—oo
(a) Case II: If Ha=Cpn"then
lim Ch = o, w)"Bu(K)".
n—o
(b) Case III: If Hy=CanYthen
lim Cp = am(f,w)"*Bm(K)"". 1
n—oo

Here the factors o, oy, o, Br, B and By are the factors in the optimal bandwidths for the mean
integrated squared error given in (2.25) with w=f 'IE.

Another important property of Hp, which we need is the fact that since the derivative of ISEy, is
equal to zero in the point Hy we have by (3.61)

{ (1;;!'+ i-nl-z-)EUij(h) + %Evij(h) +2 QF-I_I_Ewijk )+
2 r:?l'fi (w2(Xih) - Ewa(Xih)) +

(3.63) 2 :—}E (w3(Xi,h) - Ew3(Xih)) +

2 ;1,21 (va(Xih) - Eva(X;,h)) +

2 @aXih) - Bug(Xi) } |y ypa =

i=1

-2 Wn(Hp).
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In order to derive the asymptotic distribution of H§ - H;‘ we assume that the conditions of
Theorem 3.4 are satisfied. Define the two random functions D{’(.) and D@(.) by

D(h) := - logLCVE(h), h>0
and

DPh) := Edh?zlog(LCVﬁ(h)), h>0.
By the mean value theorem we have
DR(HY) - DP(HR) = - DY(Hy) = DR () (HE - Hy),
for some random variable Fi, between HS and Hy. Thus we have the equality

+ _ DYHp
(3.64) (HS - HY) =- B%f(ﬁi)l .

First consider the denominator. In cases II and II it follows from Theorem 3.4 and Proposition 3.21
that HS and Hy, are asymptotically almost surely equivalent to the deterministic optimal bandwidths
given by (2.25). The same is clearly true for . By examining the derivative of the decomposition
given by Proposition 3.9, using the same techniques which led to (3.50) in case II, and to (3.46) in
case III, it can be shown that we have

2007 -2ash + Rey(h)(=g+ h)  in case II
@w=y T h ,
" ‘20’-0;1'53’-301112 + Rns(h)(;—h-;+ h?) in case III

with ap, 0 and o as in Theorem 3.8 and where we have almost surely
suP IRp7(h)l = 0(1) and su{) IRqpg(h)l = o(1).
hel, hely

Since the optimal constants in the cases II and III are (ozo/onz)”4 and (adal)"s, respectively, we have
almost surely

1 Aoy 14 in case II
(3.65) DR (Hr) ~ 50250t Y5 Y in case I *

Next we examine the numerator of (3.64). Recall

1 1d 1y

DR = 7 108LCVAM)) - 2 un(Xih).
Use Proposition 3.12, (3.40) and (3.63) to show that

366)  =DPHD =TVED + TV,
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where
M) = Oaty + -1 Z(ul(x,,m Euy(X;,h))

and

@M =55 X 0Kh) - Evi(Xih) +

(n-lnz(n-Zz %E‘l(wl(xi’h) - Ew1(Xj,h)) +

Qn(h) + Wn(h) - Wa(h) + Yn(h) + Ra(h) +

) 2n_3,21 (u2(Xih) - Eup(Xi,h)) +

2n-
-2 BUh) - J7EVii) - 227 EWi(h).

It turns out that T(H) is negligible compared to T{)(H2). By the next two lemma's we derive the
asymptotic normality of

n-

(3.67) TO®S) = O + {11 Z(wi(Xih) - Bun(Xi) e -

1
nn

Lemma 3.22.
(a) In case Il we have

o (TR - T (eopn ™) 5 0,
where Cop denotes the asymptotically optimal constant for case II given by (2.25).
(b) In case III we have
" (TPH3) - TP(copn?)) 2o,
where Cop denotes the asymptotically optimal constant for case III given by (2.25). |

Lemma 3.23.
(a) In case II we have for any c>0

2B en ) B No.cA2octoR),
with 1
o= 4(b-a)_{ L(v)dv
1
of :=A® J bY(t)%dt.

(b) In case Il we have for any c>0
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"D e 8y B N0, 20?4+ o)),
with

1 b b
oft :=7}(_{ u?K(u)du)*( a{ £ "(x)2F {(x)dx - ( ;! f "(u)du)?). |
A sketch of the proof of Lemma 3.22 and the proof of Lemma 3.23 are postponed to Section 3.5.

Lemma 3.22 shows that to obtain asymptotic normality of (3.67) Hp can be replaced by the
deterministic asymptotically optimal bandwidth (c/ai2)#n"/# in case II, and by (a/0t)*n"Y3 in case
II. Provided T)(HY) is negligible by (3.64) we see from (3.64), (3.65) and the two previous
lemmas that in case II

1

= DP(HR)

38 * _ 380
n*%(Hg - Hp) = - ™" ——,
ED(x%)(nn)

is asymptotically normally distributed with zero mean and variance

(0/02) (20 + (0wlo)afl) _
1 60(01,)'(123,2

15200 a3 + 0 ey Mofl).

In case I n¥'%(HS - Hy) is asymptotically normally distributed with zero mean and variance

-3/5
(op/oty) - 5(:42/5-; l(g;)/al)oﬁl) - 213 Qg o6 + ag Py o).

To complete the proof of Theorem 3.8 it remains to show that T@(H}) is indeed negligible.
In order to deal with the term W(H}) - Wi(HE) we write

Wa(h) - Wy(h) =

;l:ri *Ek(wijk(h) - E(Wijk(h)IX;) - E(Wijk(h)IX;) - E(Wij(h)IX) + 2EWjji(h)) -

}117 Jé‘(E(wijk(h)'Xj,xk) - E(Wijk(h)IX;) - E(Wijc(h)IXy) + EWjj(h)) =

L Z (Wi(h) - W)X - ECWigeWiX; X0 + EWih) -

n i
;23 jzl:((E(wijk(h)lxj»xk) - E(Wijk(h)IX;j) - E(Wijk(h)IXi) + EWjji(h)) =

Ha) - 2Wa),
with
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(3.68) aln(h) = ;ll-gi *Ek(wijk(h) - E(Wijh)IX;) - E(Wijk(h)IXj,X) + EWijc(h)).
Similarly to the proof of the statement concemning Wn(h) in Lemma 3.20 it can be shown that we
have for any >0
(3.69) sup n*(n*?h?) |0v,,<h>| =0(1), almost surely.
In case IIT we now have
In"10(Wo(HE) - Wa(H)I <

0109372y 2 nsn(H;)2|¢,n(H;)| +

nOZL (1332 n(H AW (HE) <

(Cpy2n /10 sup @*20%) o)l +

2(Ca)y* ! sup @h*?) IWn(h)l,

which almost surely vanishes by statements (3.62) and (3.69) and Proposition 3.21. Thus we have
shown that the term Wp(HE)-Wq(HY) is indeed negligible in case IIL Case II can be treated similarly.
The terms

{n_n_l_llzg (vi(Xih) - Evi(Xi,h) } |h=H; ’

{EDEDLS wiXioh) - Ewi(Xish) } by gqe
and

{_ 537,?1 (ua(Xi,h) - Euy(Xj,h)) } |h=H;

can be dealt with using Lemma 3.19 and the term On(n;:) using Lemma 3.20.

The last three terms of 1‘,2.)(1-1.‘,) can be treated in the same way as in the proof of Proposition 3.14.
Lemmas 3.15 and 3.18 can then be used to show that they are also asymptotically negligible. The fact
that the term Yp(Hp) is negligible follows from Lemma 3.16. Since this is obvious for Rn(Hp) the
proof of Theorem 3.8 is completed. |

3.5. Proofs.

Before we give the remaining proofs we derive the next bound on the number of points X; in
intervals of length 2h.
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Lemma 3.24. Let f be a bounded density then we have for any point d for some positive constant ¢

d+h
. 1 .
hll;l_ng‘up hsgﬁ h d-{x dF; < ¢, almost sure{y. 1

Proof. By a discretization argument and the Bemstein inequality for the binomial distribution, i.e.
inequality (A.3) in Appendix A, we can show for any >0

12 d+h

n
3.70 sup ——————| | d(Fy-F)l = o(1), almost surely.
(.70 hely h12(log n)'2*¢ ¢h (Fo-F)l = o(1) Y

Since f is bounded we also have for some positive constant c'
d+h
[ dF < ch,
dh

for all he I,. Together these bounds complete the proof by the triangle inequality. ]
Proof of Lemma 3.16. First we introduce some notation. Define fX, and £ by

t8(x) = ﬁlﬁ'le K((x - Xj)h)
and

3500 = 7 2 L(x- X,

S0 f,l,’h(x) is the usual kernel estimator and f,{r,(x) is of the same form except for the fact that L is not a
probability density. Specifically it integrates to zero instead of to one (see (L.1) - (L.4) in Section
3.2.1). Next define the random variables S}f and S{; by

K. nh \12 i
(3.71) S = jup sup (m) IE8i(x) - EfE o
and

L. nh \12 i
(3.72) Sk = sup sup (Iog_n) I£35(x) - EfgR(X)I.

Notice that by Theorem 2.16 we have with probability one for some constant ¢ >0

. K
(3.73) limsup Sy <c¢
and

; L
(3.74) hll‘tls)gp St <c,

It follows that for any subset E' of E for all xe E' and all he I;, we have
1£5.x) - f(x) 1 <
(3.75) 1 £5.x) - E£5.0) 1 + | EES (%) - f(x) 1 <
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log n\12_g K
(—ni—) SX + sup, W% (),
and similarly for fip,

(3.76) Hfhx) 1<
(1—?5]3)1”8% + sup, b (x,h)l.
X€
Here the functions bX and b" are defined in definition 3.10.

Let dy, ..., dm denote the singular points of f in the open interval (a,b) and let Dy, as usual
denote the set of points on the real line which are at least at a distance h of all the singular points of f.
Notice that Yp(h), defined by (3.36), can be written as

Yoy =- L2 [elexy) - L kMo - £xp) - LrO)
n EHi:l i EH na\ A i EH

1
feixo - rro} 1o e00 =

YPM) + YR0),
with
n 2
YP0) =% {ehxn - grrOHaxn - 1) - ko)
-1
{ecxo - Zrx} 1000 2enoy )
and

L 2
YO®) =- =2 {eh(x) - = KOHexn - 1) - K (0)
T & &+
-1
{elicxo - oo o0

m
{IEn[a.a+h](xi) + IEA[b-h,b)(Xi) + :A:'l IE'\[dk-h.dk+h](Xi)}-
For Y{(h) we have by (3.75) and (3.76)

(1) 1 (rlogny12 L 1
rY,,m)nsH{(—ni—) S+ s b (x,h)l+Eh-K(0)}

2

log m\12_g K 1 ‘
{(—ni—) sK 4+ S Ib (x,h)l+l-1h-K(0)}
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{;e £(x) - (o5n) sk -xesggDhle(x,h)l ge s K(O)}'l{xigfE f(x)}-z,

for all he I. By Lemma 3.11 we have for some positive constant ¢' and for n large enough uniformly
forhel,

sup  IbX(x,h)l < ch?

EADp

X€

and
Xt

sup  IbL(xh)l < ch?,
€ ENDp

Since for n large enough uniformly for he I, we have

1 log n\12
F<CHED -0
the term Elh-K(O) is asymptotically negligible. A combination of these bounds then gives

. logn\12 . 2\3 )
limsup :2?., h ((—ni—) +h2) " 1IYP(h)l < c, almost surely.

Using (x + y)* < 23(x* + y?) for all x,y>0 we obtain

. 1 /logn B s\t (1) 3
(3.77) limsup sup GEEED  +0°) 1YPmy <2, almost surely.

Since in case III the term Y{2(h) is equal to zero for all he I, for n large enough we also have (3.77)
for Yp(h) which proves the case III part of the lemma. Next assume that we are dealing with a case I
situation and consider the term Y‘ﬁ)(h). If Np(h) denotes the number of points X; in the set

(3.78) E\Dyp, = [a,a+h] U [b-h,b] U 1(:{ [di-h,dj+h],

then by Lemma 3.24 we have for some positive constant ¢

limsup su No) ¢, almost surely.
n—o" help
By Lemma 3.11 we have for any point d where f has a kink, for some positive constant ¢' and for n
large enough uniformly for he I,

sup IbX(x,h)l < ch,
xe En[d-h,d+h]
and

sup IbY(x,h)l < c'h.

xe En[d-h,d+h]

By a similar argument as above, taking into account the number of points X; in the set (3.78), we find
for some positive constant c"
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. logmy 2 31 2
3.79 limsup su +h°) IY@(h)l <c", almost surely.
(3.79) msup sup (CFD) +1) YPH) y
From (3.77) and (3.79) the lemma follows for case II. |

Proof of Lemma 3.17. We use the same notation as in the previous proof. Since
3n

llf —ni—lo n) +h° < nh—lz+ 1,

for all he I, for n large enough (3.77) implies
1)y

su +1) IY | = o(1), almost surely.

sup (Gz+1) YR =o() y
Now consider Y(ﬁ)(h). We can write Y(,%)(h) as the sum of m+2 terms

n 2
- 2, i - ) {8k - 10 - rrcof
(3.80) = 1
{efcxo) - RO} 1) ernienami,

where d is one of the points a, b, d;,..., dm. We can write (3.80) as
38)  p_ | Gu(x)dFa(x),
En[d-h,d+h]
where Fy, is the empirical distribution function based on the sample X,..., X, and

s {f,{n(x) -alh'K(O)} {f#&.(x) - f(x) - E1E K(O)}z
nh(X) = - ]

{0 - RO} t0x?

2
foroumy + s - Bedhoo - K2 | ooy + elho - Belhoo - SR
freo + %) + o) - Bl - in(hgl} £(x)?

Recall that in case I Lemma 3.11 implies that for some constant ¢ > 0 and for n large enough we have
forallhe I

sup IbX(x,h)l <c and sup IbLxh) <c.
X€E X€

Further, defining SX and Sk as in (3.71) and (3.72), notice that we have
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150 - 61 < (2ER) 5K
and

ko) - Eefiot < (28D sk

By (3.73) and (3.74) and the fact that log n/nh vanishes uniformly on I, we see that with probability
one for n large enough

IGan(x) - gano) < cC2ED) ™,

for all x € Eand h € I, where we define gnn(x) by

___brahb¥h)?
Ban(X) =~ 200 + DR
Then, with
1 )
Roo() =] [Gan(x) - gan(x)] dFa(),
it follows that

12
Rosh) <o (R) " [aFa(o).

Hence by Lemma 3.24 we have now shown

suP IRpo(h)l = o(1), almost surely.
he n .

Next we consider the term
382  F | gun(x) dF(x).
En[d-h,d+h]

By Lemma 3.11 we have for n large enough for some constant c">0

() bl((x-dym)3 O (d)*bB (x-dyh)?
f(x) + 80)(d)bf((x-dyh)

| gon(x) - (- 2 f(x)2) IEA[d-h,d+h]}(X) < c"h,

for all xe E and all he I,. Then, with

©0)d)3 2
Ruo®) =fr ] H‘Sgnh(x)ﬁ (d)bl((x-dymb((x-dym)

£(x)2)dFp(x),
d-hd f(x) + 8O(d)b((x-dyh) (7)aFa(x)

we have "
IRn ()(h» < h dFp(x y
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and by Lemma 3.24
suﬁl IRp10(h)l = o(1), almost surely.
he

We continue with

1 by((x-dyWb(x-dm? .,
3.83 - 80 q)3 2 £(x)2 dFy(x).
(3:83) p@ En[d—ljx.d-l-h] £(x) + 8O(d)bS((x-d)h) ) )

Since the integrand in (3.83) is a bounded function, by a discretization argument and the Bernstein
inequality, (A.2) in Appendix A, with

1 bh(x-dymb(x-dm? . 2
R =-80(d)3 88 £(x)2 d(Fy-
wi® = FEOD L s ) + 8Om0

we have almost surely

glelﬁl Rp11(h)l = o(1).

Finally, assuming that d is not equal to a or b, notice that

2
- 5Oy Bl (x-dm? o 24
(d) En[d-ljl.d-lh] f(x) + 8(0)(d)b§((x _dyh) (x) (x)

1 2
- 50y? bYObE(L) Sy
@ { f(d+th) + s(")(d)b‘é(t)f( ) dt

converges uniformly for he I, to

1
- 50q)3 -1 bbb’
O rvesnr oy

(3.84) 0
. b(Hb tf
80ty | f(d-) E(t‘zw?((d)b’é(t) “
Using
bh(o) = tK() =t b5
and
£(x) = x%/(1+x)
by partial integration (3.84) equals

1
-£@4) § ¢ $a(Eary SO DpE W)t +
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1
1@ | ¢ §a(iay 8O @pE @) =
1
f(d+) | g(f(a+)" 8V bS®)de +

0
fd-) | g(f(@-)"8O@pw)ar.

If d equals a or b then one of the terms of (3.84) vanishes. By adding up these expansions for all the
m+2 terms in (3.80) the lemma is proved. 1

Proof of Lemma 3.19. First notice that the conditions we have imposed on the kernel function K
imply that K and L are Lipschitz functions. Using this property it can be shown that it suffices to
prove the lemma for suprema over discrete subsets I, of In with an at most algebraically fastly
increasing number of elements, i.e. we assume #/, < n?, for some integer a. If (oip(.)) is a sequence
of positive functions on (0,e) then by the Bernstein inequality, i.e. inequality (A.2) in Appendix A,
we have for any £ >0

P( 1% (o(Xih) - Eo(Xh) | > nlogn o'y e ) <

) - n (logn ag'(he)®
exp =% 1 N
2var(@(Xy,h)) + ym(h)logn oq (h)e

where m(h) is a constant such that I¢(X1,h) - E¢(X1,h)l € m(h) with probability one. For € < 1 this
bound is dominated by

- 5na;%(h)(log n)’e?
exp 5 )
E@“(Xy,h) + m(h)a, (h)logn

Assume that the functions oy, can be chosen such that for some constant ¢>0 and for n large enough

.A ,
(3.85) w— L
E@“(Xy,h) + m(h)op (h)logn

2¢>0,

for all h € I,. If #], < n®, for some integer a, then

P( a2y, oo 12 90kt - BoGim) 1>¢) 5

= x 13: (o0, - EqCkut) | > nlogn o'e ) <
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2 #, exp(- yce’(logn)?) =
2 exp(- écez(log n)? +alogn) ,

which is summable. Hence by the Borel-Cantelli theorem
1 n
nlogn ek, an(h) E{ (9(Xi.h) - Eo(Xi,h)| = o(1), almost surely.

First we take @ equal to u;. Recall that the set E is equal to the bounded interval [a,b]. We
shall choose a suitable sequence of functions (0y(.)) and then check (3.85). Write

Euf(Xyh) =

X ] (oL et T ()20,

b
L1 bl h)oxdx.
h%

Since the order of magnitude of b~ is different in the three cases I, I and III we also get three
different bounds for this expectation. By Lemma 3.11 we have for some constant ¢' >0

c in case I
(3.86) Elf(Xuh)Sq oh  incase I °

c'h? in case III

for n large enough uniformly for h € I, . Lemma 3.11 also provides us with suitable choices for
m(h). We can use

n1 3
<y in case I

(3.87) m(h) := sup luy(xh) - Bl(Xph) S { ¢ incasell -

c"h in case III

for n large enough uniformly for h € /,. Here c" is a positive constant. The inequalities (3.86) and
(3.87) imply that the condition (3.85), i.e. for n large enough

no;2

Euf(X1,h) + m(h)a ' (h)log(n)

2c¢>0, for all he I,

is satisfied for the choices
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n'?h!? in case I
anh)= {0202 incasell .
n'”p! in case III

Notice that we have taken oy(h) equal to n'? times the inverse of the root of the bounds in (3.86). We
have now shown that (3.58) is valid for the function u;.

Next consider the function uj. For this function we have for n large enough

Eu(X1h) =

b
a7 (J Lo-xymydu) foxyx <

—o0

1, 2
o _i (b(_h’x +l!]ﬁ[a’lt.;gu-x)/h)du) f(x)dx <

1 ath b )
(D Lomxu) oo,

1
since {L(u)du is equal to zero. It follows that for some constant ¢’ >0 we have

Buf(Xih) < coph h¥=c' £,

uniformly for h € I, and n large enough. We also have for some constant ¢" > 0
m¢) := sup lug(x,h) - Bup(X,h)l < c"l—llzh =c" Il;
It is readily verified that with the choice an(h) = n2h!? condition (3.85) is satisfied which proves

statement (3.58) for the function u,. For the other functions this statement can be proved in the same
manner. |

Proof of Lemma 3.20. Using the fact that the functions K and L are Lipschitz functions it can be
shown that it suffices to prove (3.59) for finite subsets /,, of I, instead of for the intervals I
themselves. We choose I, such that the number of its points increases sufficiently rapidly but still at
most algebraically fast in n. The Lipschitz property can be used to show that sufficiently small
changes in h result in negligible changes in Up(h), ¥n(h) and ¥y (h).

We start with 0(h). Write

3 372 -0
5"‘:2}’,, nh*2n 2 10,(h)l > €) <
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°0

1 Z, Phn 0 ) > ) <

o=l hel,

) #Ip sup P@h*2n 10,(h)l > €) <
=1 " hel,

i #1, sup (e 2%y P EQ,m)P =
n=1 hely

e’pi #, n'“"su;) (nh¥2P E(Op(h))P,
n=1 hel,

for every even positive integer p. Here #I,, denotes the number of elements of /, . In order to show
that this sum is finite, which would enable us to apply the Borel-Cantelli theorem, we derive a bound
for the p-th moment of ﬁn(h). Recall

Oun) = % ijn),
where 0jj(h) is defined above. Since
E;h)1Xy) = 0, for k=1,....n,

any product of ﬁij's, such as ﬁiljl(h)...ﬁip;p(h), with at least one index i or j appearing only once in
il,jl,...,ip,jp, has zero expectation. Therefore

P
EQym)P=n? X ESp,
m=2
where Sp is the sum of all products Uiyjy(h)... i), with iy.jy,....ip,j, containing exactly m

different indices, every index appearing at least twice. Since Xj,...,Xp are identically distributed we
can rewrite ESp, as

ESp = (:1) Esm,

with Sy, equal to the sum of all possible terms of Sy, with indices in {1,2,...,m}. Since m<p the
number of such terms is bounded by a constant depending only on p, ¢p, say. From Corollary B.3
( Appendix B) it follows that the expectation of the absolute value of each of the terms appearing in
Sm is bounded by a constant times h™2?P, Therefore

P
EQum)P < n?P P (R) cprm2 <

Ca P S, 2 g
m=2
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-23.-2 12ym _
g )P“éz (nh!?y® =
¢ p(n-zh-Z)p((nhlﬂ)p'H .(nhlﬂ)z)(nhlﬂ_l) <

28p(nh*?)P,

for n large enough. Here €} denotes a constant independent of h and n. We have used that for large n
and he I we have nh'Z>nh2nhy'—co.

Combining these bounds and assuming #I, < n2 for some positive integer a, we have for every
positive integer p, even and large enough, and for every £>0

)3 P(sup nh¥2n 2 Q) > €) <

n=1 he n

Zé‘pe'pi %P sup (nh*2)P(nh3?)P =
n=1 he n

2€pe‘p£.l n?P < oo,

which proves the statement of this lemma for ﬁn(h) by the Borel-Cantelli lemma.

The argument for on(h) is similar. Since by Corollary B.3 the bound on the expectation of the
absolute values of the terms appearing in Sy, is of order h™2-P, here it leads to

E(0u(m))P < 265 h>)Pmh! 2P = 205 252,
for n large enough.

For Wn(h) the argument is similar too. In this case by Corollary B.3 the bound on the
expectation of the absolute values of the terms appearing in Sy, is of order h2™3-3P_ Hence the bound
~ for the p-th moment becomes

[3p/2]
ERam)P < @ )P g (R) cpn2mi <
2¢5 @ n3)Pmh?P)e2 =
285 7P,

for n large enough. Just as before cp and €} are constants depending only on p. To derive these
inequalities we have used 2m<3p and that for large n and he I, we have nh**>nh>nhy'—c0. I
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Proof of Lemma 3.22. Since the proof of this lemma is tedious and very similar to the proofs of
Lemma 3.2 and Lemma 3.3 in Hall & Marron (1987a) we only mention the basic steps. For case Il it
suffices to show that for some £;>0 we have

(3.88) IH3 - copm™ 1 = Op(n'1/5-#1),

and that for all €,>0 we have

n
sup 010 10(n15) - Onlcopm™ R 2 (uy(Xp ™) - Buy(Kin155)
(3 89) It- COD[ <n-€; n® i=1

n-1 ¢
_..TZ

- ) P
o7 & (u1(Xi.Copin 15) . Bui(Xicopn )1 } 50,

For case II we have to prove two similar properties, i.e. (3.88) with n's replaced by
n"#, and (3.89) with n"Y> replaced by n"#* and n/° replaced by n®. 1

Proof of Lemma 3.23. For any sequence of bandwidths (hp) we define Tp(hp) by
Talha) 1= (o PTO0) = (al( Oatho) + -1 2 (1K) - Bur (X)),

Then the expectation of Tp(hp) is equal to zero and by the definition of ﬁn(h) we see that Tp(hp)
equals

(mho)?( n—‘zE} (Uijtha) - EUii(h)X;) - EUsi(ha)X;) + EUji(ha) +
BLLY ihn) - Bar(Xiha))) =

Z hiEUji(ha) - (Db 2 Bun(Xihn) + Z bEUsha) +

% (-a-DR3E(UBIXi) + EUha)X)) + (-DbE ui(Xihn)).
Next we write

§ h2 Uijthy) =- 3} 2L(Xi-X;) o)XY ME(XS) =
- 2; L((Xi-Xj)/hn) (06 IE(XG) + £0X5) M TE(X;)) =
iﬂZ G((Xi-X;)ha)w(X;.X;),

where G is equal to -L and w is the function given by
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w(x,y) := f(x) Ig(x) + f(y) g(y).
Thus Ty(hy) equals

Z h3EU;ho) - (1-Dhf 2 Bun(Xih) +

Z GX Xmaw(XioX)) + X a0,

with gn(Xj) equal to -(n-l)h%(E(Uij(hn)IXi) + E(Uji(hn)IX;y)) + (n-l)h% u1(Xj,hp). Asymptotic
normality of this type of statistic is treated in Appendix C. In order to apply Theorem C.1 notice that
the function gp(x) which appears in the conditions of this theorem is here given by

g5(x) = (-1)h uy(xh) = - (n-1hy bE(xM)E ' (X)E(X).
Condition (i) of Theorem C.1 then requires
(nh}?2y? sup | ga(x) - Ega(Xp) 1 - 0,
which is clearly satisfied here.To check condition (ii) we consider
(nhn) 'var(ga(X1)) =
(3.90) (nhn)-‘((n-l)zhﬁg bl(x b2 2(x)f(x)dx - (n-1)2hZ ( 1{ bL(x.h)dx)?) =

L, (bh e - ([ bhehdn)?).

It follows from Theorem C.1 that if this quantity converges to a constant o? then

=177 (Talh) - ETa(ho)) = =77 Ta(ho) 3 N(O0,20%+02),
n n

. l L] L]
o= IGz(v)dv Iwz(x,x)fz(x)dx.

Inourcaseozequals
1

{Lz(v)dv I (F) B () + £ MR (X)) (x)dx = 4(b-a) {Lz(v)dv
So if (3.90) indeed converges to o then we have shown
(3.91) n3?(Untho) + L ‘E (@1(Xiha) - Eur(Xihn)) = — Tn<hn)-> N(0,20%+0?).

We proceed with computing o2 in the two cases considered in this lemma. By Lemma 3.11 in case II
we have the following expansion for hy=cn™14
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2
@y, (J BHoxny?e ooax - (] b cxax)?)
1
nhghd A [ bt =

1
ctA® J bYe)de

and in case III for h,,::n“’s we have

2
B b (] b xnE oo - (fHoc)dx)?) -

1 1

nhn (G ([uLowdu)” ] £ "7 Godx - (30 [u’Lawddu ] £ “Go)dx)?) =

1 b b
303 ({u2L()du)’( [ £ e - ([ £ "(wdu)?) =

1 b b
T ({ uzL(u)du)z( ‘{ £ "(x)%f 1(x)dx - ( ! f "(u)du)?).

These two expansions can be derived by the same method we have used in the proof of Theorem 2.8.
The proof of the lemma is completed by observing that the norming factor nh3?in (3.91) is equal to
¢*2n5B if hy is equal to e, and that it is equal to ¢¥?n”/'0f hy, is equal to cn™/5, |

Proof of relations (3.44), (3.45), (3.54) and (3.55). Consider the density f given by
0 if x<0
£(x) = {l+x if 0sx<v3-1 .
0 if x>v3-1
Computing the bias of a kernel estimator of f at the point th for O<t<1 and 0<h<-‘l%:-1- we get

b¥h) = ¢  K(BD)tu)du - fth) =
| K(t-v)f(vh)dv - f(th) =
J K(t-v)(14+vh)dv - (1+th) =

b() + hbk(o).

Similarly for O<t<1 and 0<h<f%ithe bias function for L is equal to
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bl(thh) = bh(t) + hvl ().

Next recall that by the definition of b¥(x,h) and b“(x,h), and by (3.33) we have
40K = - b ().

In order to prove mlatlons (3.54) and (3.55) consider the equatlon

J bK(x,h)dx J EIHb"(x hydx + b¥(h,h) = - J bY(x,h)dx,

which follows from Leibnitz's theorem for differentiation of integrals, i.e. formula 3.3.7 in
Abramowitz & Stegun (1965). By the subsututlon t=x/h we get

ah—hJ (bB() + hbfe)de = -J (bb(t) + hbk)dt,

which proves formulas (3.54) and (3.55) by comparing the constant term and the coefficient of h in
the left and right hand side of this equality.

Relations (3 .44) and (3.44) can be proved similarly by consxdermg the equation

Jb“a,h)zdx J b"(x,h)’dx+b“(h.h)2--h-J bX e )bl (xh)dx,

and comparing the constant terms and the coefficients of h2. |
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4. RECOVERING A DISTRIBUTION FUNCTION FROM A CONVOLUTION.

4.1. Introduction.

Originally our interest in deconvolution problems has been aroused by applications of
kernel estimation techniques to a classical problem of stereology, Wicksell's corpuscle problem.
This problem is introduced in Example 1.2 in Chapter 1. Recall that in the corpuscle problem we
want to estimate the distribution of radii of spheres in an opaque medium, given the radii of
circular profiles in cross-sections of the medium. The relation between the distribution of the radii
of the spheres and the distribution of the radii of the circular profiles is given by formulas (1.3)
and (1.4). Several authors have proposed kernel type estimators of the density of the sphere radii.
However, although the properties of the bias of these estimators are comparable with the bias of
ordinary kernel estimators, the variance is of order n"'h? instead of the usual order n"'h’, h
denoting the bandwidth. This also means that the errors of kernel type estimators in the corpuscle
problem are of larger order. For proofs see Hall & Smith (1988) and Van Es & Hoogendoorn
(1990). These results caused us to consider nonparametric maximum likelihood estimation of the
distribution function of the sphere radii. In the next section we present a nonparametric maximum
likelihood estimator (NPMLE) of this distribution function. Unfortunately the present state of
affairs is that the asymptotic properties of this NPMLE in the Wicksell problem are still unknown.
Therefore we have to be content with conjectures based on estimates computed from simulated
samples and on results in related deconvolution problems.

The deconvolution problems we consider can formally be stated as follows. Suppose that
we have a sample X;,...,X; of observations with a distribution function G which is the
convolution of two other distribution functions K and F, i.e. for all x we have

@.1) G = [K(x-y)dF(y).

Assuming that the function K is known we consider the problem of estimating F at a fixed point
" Xo, in cases where the distribution function F is uniquely determined by G and K (if, for
example, K is a distribution function with a characteristic function with compact support, this
need not be true). The relation between the Wicksell problem and deconvolution has been
observed by Hall & Smith (1988). If we rewrite the equations (1.3) and (1.4) in terms of the
densities f1(x)=(2Vx)'f(Vx) and g1(x)=(2Vx)'g(\x) of resp. the squared sphere and circle radii
then they have a convolution structure. Instead of relation (1.3) we get

1 1 1
4.2 = = - oo
42) 81(%) 2 (L:[) Nl 2w [ ky-% dF1y), 0<x <o,
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where | is defined in Example 1.2, Fj is the distribution function of the squared sphere radii and
k(x)=(ﬁ)'1l(..=,o)(x). Note that k is not a probability density and that y is an extra parameter not
appearing in (4.1).

Formulas (4.1) and (4.2) show that both in deconvolution and the Wicksell problem the
distribution of the observations is the image under some transformation of an unkown distribution
function F (or F;) which we want to estimate. Now, if we would have an estimate of the distribution
of the observations, then we obtain an estimate of F by inverting the transformation and computing
the inverse value of the estimate. In this way deconvolution and the Wicksell problem can be seen as
special examples of inverse estimation or ill posed problems. The consequences of properties of the
specific transformations for the performance of estimators obtained in this way are studied in a
general context in Carroll et al. (1990). In the deconvolution problem for certain distributions K the
inversion can be achieved with the aid of characteristic functions and kernel smoothing. The
characteristic function of G equals the product of the characteristic function of K, which is known,
and the characteristic function of F. The characteristic function of G can be estimated from the data,
and so by division and inverting the Fourier transform the distribution function F or its density can be
estimated. Several authors have proposed modifications of this approach using kernel type estimators
of the characteristic function of G, see Carroll & Hall (1988), Devroye (1989), Fan (1988), Liu &
Taylor (1987a, 1987b), Stefanski (1989) and Stefanski & Carroll (1987, 1989).

Our main interest in this chapter is nonparametric maximum likelihood estimation. In Section
4.2 we shall give two examples of deconvolution problems where the NPMLE of F is known
explicitly. We also discuss more general deconvolution problems where the NPMLE can only be
computed by iterative methods. The Wicksell problem and Gaussian deconvolution serve as final and
most difficult examples. To be able to judge the performance of these estimators in Section 4.3 we
derive a local asymptotic minimax lower bound for estimating F at a fixed point. In Section 4.4 we
discuss the results in the previous sections and Section 4.5 contains the proof of the minimax
theorem.

4.2. Examples.

The first four examples concem maximum likelihood estimation of a distribution function F in
deconvolution problems where K is absolutely continuous with density k. Let Xj, ... , X be
generated by the convolution density g given by

oo

(4.3) g(x) = | k(x-y)dF(y).
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The log likelihood of F based on Xj, ... , X can now be written as

n n el
(44) L(X o Xp) = 2 log(g(X0) = X tog( | k(Xi-y)dF(y))-

The next two examples deal with two densities k, thé uniform [0,1) density and the standard
eponential density, for which distribution functions which maximize (4.4) are explicitly known.

Example 4.1. Uniform deconvolution.

For k equal to the uniform [0,1) density, i.e. k(x)=Ij0,1)(x), the log likelihood (4.4) equals
n oo n
4.5) L(X,....Xp) = 2 log( | k(X - y)F(y)) = & log{F(X) - F(X; - ).

Note that this log likelihood depends only on the values of F at the points X;j, Xj-1, i= 1,..., n, so
NPMLE's of F are not unique. Under the additional assumption that the distribution corresponding to

F is concentrated on the interval [0,1] a maximizing function F can be computed as follows. Defining
3i=I{x;<1) the log likelihood (4.5) equals

n
4.6) 2 (8ilog F(Xi) + (1 - &log (1 - F(X; - 1)}}.

Now let Y;, 1<i<n, be defined by

X; LifX; <1,
Yi=={xi—1,ifxi21.

Then Y,,...,Y, are distributed as a sample from a uniform distribution on [0,1). Let Z, <..< Z
denote the order statistics of the set Y,..., Yy, and let A; = 1, if the X, , corresponding to Z;,is < 1,
and let Aj =0, otherwise. Then the NPMLE of F at Z, i.e. Fn(Z,), is given by the left-continuous
derivative at the point i of the convex minorant of the function H: [0,n] — R, defined by
0= 28

at points i, and by linear interpolation at other points of [0,n]. The fact that F;, maximizes the
likelihood can be inferred from results in Barlow et al. (1972). Groeneboom (1987, 1990) derives the
NPMLE of an unknown distribution function F in related interval censoring problems.
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The asymptotic distribution of the NPMLE is given by the next theorem.

Theorem 4.1. Let x, be such that 0=F(0-) < F(xy) < F(1)=1, and let F be differentiable at x, with
strictly positive derivative f(x,). Furthermore, let Fy be the NPMLE of F, based on the sample
Xy,..., X, generated by the (convolution) density gdefined by (4.3). Then we have, as n — oo,

4.7 n1A(Fy(x0) ~ Fxg))/ (3 Fxo)(1 - Fxg)fxg)) 3 3 2.2,

D N . . , , .
where — denotes convergence in distribution, and Z is the last time that two-sided Brownian motion
minus the parabola y(t) =t reaches its maximum.

The proof of Theorem 4.1 proceeds along the lines of the proof of Theorem 1.1 in Groeneboom
(1987) and is given in detail in Van Es & Van Zuijlen (1990).

The next three pictures show the NPMLE for the three distribution functions, F(x) = x, F(x) = x2,
and F(x) = Vx, 0 < x < 1, and simulated samples of size 1000, generated using the uniform random
number generator from the IMSL library.

1.0

Figure 4.1. The NPMLE computed for samples of size 1000.



105

Note that the fact that the support of F is contained in [0,1] is explicitly used. If this support
restriction is not satisfied then we have to maximize (4.5). In this case there is no explicit expression
for the NPMLE and we have to use iterative computational methods. As an alternative method
Van Es & Van Zuijlen (1990) extend the convex minorant methodology of the NPMLE above to
construct estimators of general distributions F. These estimators do not maximize the likelihood
except for F satisfying the support restriction. In those cases the estimator coincides with the
NPMLE. Surprisingly, even when the support restriction is not satisfied, for these estimators (4.7) of
Theorem 4.1 also holds. In Section 4.4 we return to this problem.

Example 4.2. Exponential deconvolution.

The second example concerns convolutions with the standard exponential distribution. Let k
denote the standard exponential density, i.e. k(x):e”‘l[o,,,)(x). For this density k the log likelihood of
F based on n observations X1, ... , X generated by the convolutioh density equals

n Lo n X;
(4.8) L(X; Xy) = 25 log( [ k(Xi-y)F(y) = 2 log( | ®iVdE(y)),

where by convention the integral is over the set (-e0,X;]. Because k(Xi-y)=e'(xi'y) is an increasing
function of y it is readily seen that, by moving the mass of F between the observations to the closest
observation at the right side, we increase the likelihood, unless all the mass is already concentrated in
the observations. Therefore the NPMLE of F is a discrete distribution function wich jumps in the
observations only. Moreover, the NPMLE is also unique. By transforming the problem to estimation
of a decreasing density on [0,e) and using the Grenander maximum likelihood estimator of a
decreasing density, Vardi (1989) shows a way to compute the NPMLE. We give the main idea. First
the data are transformed. Consider Zi=e'xi, i=1,...,n. Now note that the distribution of X is equal to
the distribution of the sum of two independent random variables, E; + Yj, with E; an exponentially
distributed random variable and Y;a random variable having distribution function F. Hence Z; is
distributed as Uie'Yi, where U; is independent of ¢ Yi and has a uniform (0,1] distribution. For any
distribution F the random variable Uie”Yi has a decreasing density on [0,ce). We can now estimate the
* distribution of Z; by the Grenander estimator and then tranform the estimate into an estimate of F. For
properties of the Grenander estimator we refer to Grenander (1956) and Groeneboom (1985).

Example 4.3. Deconvolution for decreasing densities k on [0,).

Let k be a decreasing density on [0,c) and let Xy, ..., Xn:n denote the order statistics of the
sample Xj, ..., Xp, generated by the convolution density g. For densities k which are strictly
decreasing in a right neighborhood of zero the same arguments as in the preceeding example show
that the NPMLE is a unique discrete distribution function with masses o at the points X;.n, where the
04 maximize the function:
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n i
(4.9) 2 10g (& KXia - X;m)ay),

n
under the restrictions }j',lai =1,0;20, 1 <i<n. We can write (4.9) in the form
1=

n i
igi log (JAE wijaj),

where Wi = k(Xi:n — Xjn). Letting o = (0q,...,04), for k = 1, ..., n we define the derivative with
respect to oy by

n i
(4.10) di) = % wic/ (Ei Wij0t;).

A maximum can be computed numerically using the gradient projection algorithm (Luenberger
(1973)), i.e. an algorithm for maximizing a concave function subject to a number of linear
constraints.

Example 4.4. Gaussian deconvolution.

The most studied deconvolution problem is the problem where k equals the standard normal
density. An old reference is Gaffey (1959). More recent references, treating Gaussian deconvolution
as important example, are Carroll & Hall (1988), Devroye (1989), Fan (1988), Liu & Taylor (1987a,
1987b), Stefanski (1989) and Stefanski & Carroll (1987, 1989). Most of these authors discuss
modifications of the kemel smoothed characteristic function inversion approach already mentioned
above. However, it turns out that the rates of convergence of these estimators in the case of standard
normal k are very poor. Even for estimating F at a fixed point the rate of convergence is slower than
any algebraic rate (Carroll & Hall (1988), Fan (1988)). Given these disappointing results the question
arises whether we can expect the NPMLE in the Gaussian deconvolution case to perform better. At
the moment, however, there is neither an acceptable method for computation of the NPMLE nor
asymptotic theory available. We shall return to this problem in Section 4.4.

Example 4.5. The Wicksell problem.

Let Xj.p, ..., Xn:n denote the order statistics of the sample Xj, ..., Xp of squared radii of
sections of spheres. We assume that the support of the distribution of the radii of the spheres is a
finite interval, which we take to be [0,1]. For a review of this estimation problem and related
problems we refer to Stoyan, Kendall and Mecke (1987). As observed by Hall and Smith (1988), the
distribution function of the squared section radii can be written as a convolution of the unknown
distribution function of the squared sphere radii with a known function. This relation is given by
(4.2). Therefore a technique similar to the one in Example 4.3 can be used.
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The log likelihood L(X, ,...,X},) of the sample can be written in the following form:

n
(4.11) L(XyXy) = X log {&f dF(x)},

1
¥ Kin 11 VX = Xi:n
where F is the distribution function of the squared sphere radii, and y is given by

1
1
=ld = 2|.
v T =

Examining the log likelihood (4.11) more closely we see that by a suitable choice of F we can
make it infinite. Therefore we restrict ourselve;to maximizing the likelihood within the class of
discrete distribution functions with mass in the observations only. The log likelihood of a
discrete distribution function F, with mass at the points X1.p, ..., Xp:n is equal to
n-1 1 o
L(X 1. X,) = 2 log {; Eﬁ}

Here a.y,...,0, are the masses of F at the points Xj:p, ..., Xn:n, and, defining Xo:n =0, the
parameter 'y can be written as

n n n
Y= 1-:21 J:‘:n zaj{‘lxj:n - Xj-1:n — ‘Ixj:n -Xin } = 2j§i VX -

It is readily shown that the log likelihood increases if masses o,,...,0.; are replaced by masses 0,
0,/ (Ol +...+0),..., O/ (0p+...+0), SO throughout we set o, equal to zero.

Note that this example does not exactly fit into the deconvolution problem for two reasons: we
look at the convolution with a function which is not a probability density and we have the extra
parameter Y. It is possible to reformulate the problem in such a way that we would deal with the
convolution with a probability density (looking at the logarithms of the observations), but we
would not get rid of the extra parameter in this way. There does not seem to be a real advantage in
this reformulation, so we keep to the above statement of the maximization problem.

Since L(Xj,...,Xp) is not a concave function of (0tz,...,0), using the gradient pojection algorithm as
in the previous example we might find local maxima. However, for fixed vy the log likelihood

L(X1,...,Xn) is concave. So by the gradient projection algorithm we can maximize L(Xj,...,Xpn)
subject to a; 2 0, for i = 2,...,n, and the two linear constraints

n n
i§2 aij=1 and 22:2 oiVXin = 7.

Next we can vary v to find values of oy, ..., 0ty and a corresponding Y which maximize the log
likelihood L(Xy,...,.Xn). Notice that this procedure also yields a maximum likelihood estimate of Y.
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Theory for this NPMLE seems to be absent, but should be related to the theory for the estimators of
Examples 4.1 ... 4.3. In fact, because of the peakedness of the weight function 1 / Vx — Xj.p in
(4.11), we expect a faster rate of convergence of the NPMLE.

To illustrate this procedure we have simulated three samples of circle radii of size 100, for F equal to
the three distribution functions of Figure 4.1. Since the computation for a fixed y is already
timeconsuming we have only computed the maximizing F for the three true values of , and for three

estimated values of y. We have used the estimator
n

1
9":=’m’i=}:i7x=i’

which is based on an estimator of i = /2 in Example 1.2 (see Hall & Smith (1988)). The log
likelihoods of the estimates are given in a table following the next figures.

e e

0.0
.0

1.0

°

0 1.0

Figure 4.2. The maximizing F for the true values of y for three samples of size 100.



1.0
1.0

109

0 1.0

Figure 4.3. The maximizing F for the estimated values of y for the same samples as in Figure 4.3.

The next table gives the values of the true and estimated values of y and the log likelihoods of the

corresponding estimates of F.

F Y % loglik. withtruey log lik. with est. y

X 1 1.07 29.71 29.57
x2 43 141 21.95 20.57
vx 23 0.5 36.29 37.32

Roughly speaking the estimates in Figure 4.2 for samples of size 100 have about the same error as the
estimates in Figure 4.1, which were based on samples of size 1000. This suggests that the NPMLE in
the Wicksell problem indeed has a faster rate than n-1/3, and perhaps even a rate close to n-1/2, Because
of limited computing time we have not been able to compute the true NPMLE, i.e. the estimate with a
value of y which maximizes L(X;,...,Xp). However we expect that for this value of vy the estimates

would have a better fit than the estimates for the estimated vy in Figure 4.3.
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4.3. An asymptotic local minimax lower bound for deconvolution.

Let xo be a fixed point in the support of F and let (y,) be a vanishing sequence of positive
numbers to be specified later. To define a local minimax risk for ne N and 0e (0,1), we introduce the
functions hp(.) and Fy(.;0), given by

hn(u) := f(X0){ Lixg-cyn,x)W) - Ixgxg+cy)(W)}
and

4.12) Fn(x:0) := F(x) + 0 | hy(u)du,

assuming that f(X), the derivative of F at xg, exists and is positive. Note that for n sufficiently large
Fn(.;0) is a distribution function. Now let the local minimax risk MR(n;0,5) be given by

(4.13) MR(n;0,8) :=inf max Eg |Up - Fn(x0;0)l,
Uy 6€(0,3)

where the infimum is taken over the set of all possible estimators Up of F(xo) based on the
observations Xj,...,Xp from the distribution K«F, where * denotes convolution. Thus MR(n;0,3) is
the best possible maximal expected error for estimating the two values F(xo)=Fn(x0;0) and Fy(x0;5).

It turns out that an important role in the derivation of asymptotic lower bounds for the minimax risks
is played by the second difference of the kemnel K. Define the first difference operator A; by
(AK)(x)=K(x+t/2)-K(x-t22). Thus we get (A%K)(x)=K(x+t)-2K(x)+K(x-t). The next proposition
relates this second difference of K to the local asymptotic minimax risk.

Assumption 4.2. There exists a constant p>0 and a constant to>0 such that for 0<t<tgy
{x: ksF(x)>p} o {x: (AZK)(x-x0)>0}

Proposition 4.3. Under Assumption 4.2, for >0 and B>0 such that

[ () s
(4.14) I b &~ @ o
and *{,,:n'”B we have ‘
(4.15) sup liminf n'/® MR(n;0,8) > 4"1+1/Bf(x)B-2/Bo 1B 18- 1B

8e(0,1),c>0 n—oo

Note that no density k with unbounded support satisfies Assumption 4.2. We shall restrict ourselves
to a class of bounded support densities k which at the most have "nice" discontinuities, i.e. at the
most we allow jumps or kinks. It is readily seen that these densities satisfy Assumption 4.2. For such
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densities we are able to check condition (4.14) of Proposition 4.3. This gives the next asymptotic
minimax lowerbound.

Assumption 4.4. The density k is differentiable except at m points ay,...,am where k has a jump or
a kink. In these points the left and right limits of k exist and are finite, as well as the left and right
derivatives of k. We further assume that, for i = 1,...m — 1, the restriction of k' to the interval
(aj,ai+1) can be extended to a continuous function on [a;,a;+1], such that the values at the endpoints
coincide with the corresponding one-sided derivatives. We use similar assumptions on the intervals
(-00,a1] and [am,o°) for the left and right endpoint, respectively.

Theorem 4.5. Let k be a bounded support density satisfying Assumption 4 4.

Ifk is continuous then for yn=n"'*

“K(x-xn)2 . \-1/4
(4.16) sup liminfn'* MR(n0,8) 2 4 f(x)2 (| ‘%%F’ﬁ%dx) .

8e€(0,1),c>0 n—o0

Ifk has at least one discontinuity point then for yo=n""?

m . - . ))2\-1/3
4.17 s liminf n? 0,8) > 248 B f(x) 3 (X (kg(a.+; k(ai))*y1?
( ) Se(O.lgfc»O n—0 n™ MR(@;0.9) (xo) (i=1 »b )(Xo+aj )

In the following section we discuss this minimax result in connection with the examples in Section
4.2 and other minimax results for the deconvolution problem.

4.4. Discussion.

Estimation of the value of the unknown distribution function F at the point xq in the
deconvolution problem can be seen as a special case of estimation of a functional T of the distribution
G of the observations Xj, ..., Xp. Here G belongs to the class of convolutions G of a fixed known
K with an arbitrary other distribution. The functional T is given by G=KsF — F(xp). Results in
Ibragimov & Khas'minskii (1981) and Donoho & Liu (1988) indicate that the rate of convergence to
zero of minimax risks of the type

(4.19) inf sup Eg|Uy-T(G)!
Uy GeG

can be expressed in terms of the modulus of continuity of the functional T. This approach has been
used by Fan (1988) to derive rates of convergence to zero of such minimax risks for the
deconvolution problem. It follows from these results that the smoother the density k is, the slower is
the rate of convergence. The difference between these minimax bounds and the one given by Theorem
4.5 is that in (4.19) the supremum is taken over a fixed set of distributions G, independent of the
samplesize n, while in (4.13) the maximum is taken over a set of distributions of the observations,
which shrinks to {K+F} as n tends to infinity. Furthermore the distributions in the class G are
usually required to
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satisfy uniform smoothness conditions, while the distributions G considered in (4.13) are less
smooth. We shall return to these other minimax results in one of the examples below.

Comparing the examples in Section 4.2 with the minimax theorem in Section 4.3 two
interesting questions arise. What does Theorem 4.5 mean for possible optimality of NPMLE's in
deconvolution problems ? We shall discuss this question for the uniform deconvolution problem,
where, under the support restriction that F is concentrated on [0,1], the asymptotic behavior of the
NPMLE is known, see Theorem 4.1. The second question is: Can we comprehend the n"!* rate
(4.16) for smooth bounded support k in connection with the poor nonalgebraic rate of convergence of
the kemnel type estimators in Gaussian deconvolution ?

Example 4.1. Uniform deconvolution continued.

Clearly the uniform [0,1) density satisfies the conditions of Theorem 4.5. For
k(x)=I{0,1)(x) we are in the n'? situation where (4.17) holds. The right hand side of (4.17)
equals
4P 1Py N1 1 1 hat

@1 20 (e Ty e R
 A4/3.-173 13 (F(X ) - F(xo-1))(F(x, +1 - F(x 1/3
= 2""%e M f(xq) ot

Now, let us assume that the distribution induced by F is concentrated on [0,1]. Then we get
(4.19) 2*PeBe(xg) ' (F(xoX1 - F(xo))}'?

as lower bound in (4.17). Note that this expression equals the asymptotic standard deviation of the
NPMLE in Theorem 4.1, apart from a constant not depending on F. A consequence is that if we
consider the right hand side of (4.17) as a quantity which measures the difficulty of estimating F(xg)
for distributions F(.:6) close to F , then the NPMLE adapts itself to this measure. Stricly speaking,

this statement requires an additional uniformity argument, showing that (4.7) also holds for
observations from a sequence of alternative distributions F(.:0).

For the estimators proposed by Van Es & Van Zuijlen (1990), in situations where the support
" restriction is not satisfied, the part depending on F in (4.18) is strictly smaller than the part
depending on F in the asymptotic §tandand deviation. This is seen from the inequality
( 1 + ) -13 ( + -13
X0) - F(xo- m Fxo) mss
= {F(xo)1 - F(xo))}'?,

which is valid if 0<F(xp-1) or F(xg+1)<1. The conclusion is that either these estimators do not have

the nice property of the NPMLE, or that the part depending on F in the bound of Theorem 4.5 for this
case is not sharp.
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Example 4.4. Gaussian deconvolution continued.

In the case of Gaussian deconvolution there is a striking difference between the
nonalgebraic minimax rates for estimating F at a fixed point derived by Carroll & Hall (1988) and
Fan (1988), and the n"'** rate in (4.16), for smooth bounded support densities. As already
mentioned at the beginning of this section the difference between the two types of minimax risks
is the set of distributions we allow for the observations. It is well possible that the nonalgebraic
rates are caused by distributions which are very different from the distributions (4.12) in the
minimax risk (4.13). One of the interesting problems is what the rate of convergence of the
NPMLE for a fixed distribution F is in this case, for instance, whether it is n"\* or a nonalgebraic
rate.

Carroll & Hall (1988), Fan (1988) and Theorem 4.5 show that better rates are achievable
in deconvolution when the density k is rough. Now, recall that in the Wicksell problem we have a
convolution structure (4.2) with k(x)=(«]7)_c)'1l(.w,o)(x) which has an infinite peak at zero. If that
peak would have been finite, i.e. if k would have had a finite jump at zero, then the rate of
convergence would have been n"'3. Therefore it is not unreasonable to expect a better rate of

convergence in the Wicksell problem.This seems to be confirmed by the simulations presented in
Example 4.5.

4.5. Proofs.

Proof of Proposition 4.3. Write

Fn(x0:0) - Fa(x0:0) = | 6f(xo)du = Ocynf(xo)
X0-CYn

and notice that the convolution of k and Fy(.;0) can be rewritten as
Ik(x-y)dF(y) + Ik(x Y)Bf(xo)hn(y)dy
= (ksF)(x) + 6f(x0) i k(x-y)hn(y)dy
= (ksF)(x) + 0f(x0) (K (x-X0+Ctn)-2K (x-x0}+K (x-X0-CY) }
= (ksF)(x) + Of(x0) (A2, K)(x-Xo0).

A combination of Assouad's lemma (Le Cam (1986), p.524) and Le Cam's inequality (Le Cam
(1973)) now gives

max Eg Uy - Fy(x0;0)!
6e {0,5}
25 Scynf(xo)lll"oAPgll

> Scyaf(xo){ | \/aPRAPE}
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}2n

=} 8cvaf(xo) { | VdP,dPy
=1 scyaf(xo){ 1 - HAP,Pp } 7",

where Py is the measure corresponding to (ksFp)(.;8) and HX(Py,Pg)=%J (+/ dPo-\/dPs)z denotes the
squared Hellinger distance between P, and Pg. We proceed with examining H*(P,Pg).

First note that for a continuous distribution function K the second difference (A%K)(x) tends to zero
as t40, uniformly in x. Writing g=k*F, under Assumption 4.2 we have as n—oo for arbitrary £>0

H2(Po,Py) = 3] (VIR - (koFoX(x:0) ) dx

f K)(x-
- ’12_ fgx) { (1 8 (Xo)(AcZ’,‘l) x Xo))lrz

<(+e)} azf(xO)z [ [(Ac K)(X-Xo)}

K
< (1+€) § 8%(x0)? | A: xi:))}

~ (1+€) 5 8%(x0) ccyn)P.

-1} 2ax

Here we have used that for x small enough a Taylor expansion of V1+x implies
(NTax-12 5 (1+) x2

For Yp=n"1/B we now get for all >0
timinf n'/B MR(n;0,8) 2  c5f(xo)exp(-2(1+€) § 8*(xo)2ach)

and consequently
timinf !B MR(n;0,8) 2 cf(xo)exp(- § 5%(xp)20cB).

Finally, putting 3 equal to one and maximizing over c, the lower bound becomes
4-1+1/Bf(x°)(ﬁ-2)/ﬂa‘llﬁﬁ-llﬂe-llﬂ

and the proof is completed. 1l

Proof of Theorem 4.5. Note that Assumption 4.4 implies Assumption 4.2. To check condition
(4.14) of Proposition 4.3 write

I ((AtK)(x)}z _% Y (AZK)(x)) (a2 i
k*F)(x+xo) i=1 gt (ksF)(x+x0) I[ (k*F)(x+x0)



115
m
with I; = (-e0,00) \ l__L.Jl (aj-t,aj+t]. For the terms of the sum we need the next lemma.

Lemma 4.7. Assume that k satisfies Assumption 4.4. Then
a+t

a£ ((AZK)(x) ) 2dx = §P(k(a+) - ka-))? + o(), td0.

For continuous kernels k we have
at+t

£ ((AZK)(x)} 2dx = O(), tL0.
a

Proof. By Taylor expansion and a substitution z=(x-a)/t we get

a+t
[ {(ATK)(x))2dx =
at
a+t a
= [ (K(x-t) - 2K(x) + K(x+1))%dx + L (K(x-t) - 2K(x) + K(x+t))2dx
dt a

= J (K(x-t) - K(a) - 2(K(x) - K(2)) + K(x+t) - K(2))?dx +
+a§K(x-t) - K(a) - 2(K(x) - K(a)) + K(x+t) - K(a))%dx

= J ((x-t-a)k(a-) - 2(x-a)k(a+) + (x-+t-a)k(a+))2dx +

*i ((x-t-a)k(a-) - 2(xl-a)k(a-) + (x+t-a)k(a+))2dx + o(t®)
=20(k(a+) - k(@) [ (1-2)dz + o(©’)

=4P(k(+) - k@@)2+ o)

which proves the first statement of the lemma. A similar argument with two term left and right Taylor
expansions proves the second statement. 1l

We can now complete the proof of Theorem 4.5. Since k is continuously differentiable on
(-0,0)\ {aj, ... , am} the integral over I; satisfies

2 2 et {} 2
l{((étxi(riz =t X Seoydx + ot

so for continuous k condition (4.14) 6f Proposition 4.3 is satisfied for

CKx)?
a=i - (x)+xo x and P=4.

For kemels k with at least one jump by Lemma 4.7 condition (4.14) is satisfied for
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_2 3 (k(a+) - k(aj-))? _
a3 ey~ d B3

Having checked the conditions of Proposition 4.3 the proof is now completed. 1l
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APPENDIX A. EXPONENTIAL BOUNDS.

In our proofs frequently we need an almost sure order bound for the supremum of some
stochastic process. A standard way to derive such bounds is to consider finite subsets of the set
where the supremum is taken over, and to derive a bound for the supremum over these finite subsets
first. This is then usually followed by an argument showing that the difference between the
supremum over the finite sets and the supremum over the original sets is asymptotically negligible. A
useful tool to derive a bound for the supremum over a finite set is the next exponential inequality
attributed to S.N.Bemstein. See Serfling (1980) who for the proof refers to Uspenski (1937). We
omit the proof here.

Lemma A.l. Let Yy,...,Yq be independent random variables satisfying P(1Y; - EY;l <m) = 1, for
each i, where m<eo. Then for t>0 we have

(A1) P( |§Yi - i=)Ellm | > nt) < 2exp( - n%?/(2251 var(Y;) + 3mnt)),
forn=12,... 1

If we impose the extra condition that the random variables are identically distributed then the bound
becomes

(A.2) P( ngi - é:lEYi | > nt ) < 2exp( - ne?/(2var(Y1) +3mv)),

which gives the next bound in the even more special case that Yj is binomial (1,p), and Z?=1Yi is
consequently binomial (n,p), distributed,

(A3) P( Ilei - iglEYi [ 2nt ) < 2exp( - 3at¥/(p + 1)).

Recall that the kemel estimator is a sum of i.i.d. random variables. Lemma A.1 then gives us the next
exponential bound, which is a minor adaptation of Lemma 5 in Chapter 6 of Devroye and Gy®orfi
(1985). We prove this bound for bounded measurable kernel functions K, so we don't require that K
is a density function.

Theorem A.2. Let K be a bounded measurable function then for arbitrary t>0 and h>0 we have for
any point x on the real line

(A.4) P( Ifyn(x) - Efqn(x) 12t ) < 2exp( - nht?/(2K*EBh IK((x-X1)/h)l + 1))).
Here K is bounded by K*, i.e. IK(X)I<K*, for all x. ]
Proof. First we estimate the variance of h™'K((x-X;)/h). We have

var(h'K((x-X;)/h)) < E(h 'K ((x-X;)/h))? <

hIK*Eh UK ((x-X /).
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A direct application of Lemma A.1 gives, with m=2h"'K*,
P( Ifan(x) - Efpn(x)12t) =
PCIEER(Xom) - EEEK(GXom)l 20t ) <
2exp( - ne/(2h K *En UK ((x-Xp /)l + 307 'K*D) <
2exp( - nht?/(2K*ENIK((x-Xp)/)l + 1)),

which proves the theorem.
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APPENDIX B. MOMENT BOUNDS.

Investigating the performance of kernel estimators and cross-validation techniques the
following type of statistic is often encountered. If X,...,Xj is an i.i.d. sample from a distribution
with a bounded density f then for h>0 we consider statistics Ty(h),

n
(B.1) Tath) = 2 GEERD) wexiX;) + 2 ea(Xi.

Here G, w and gy are bounded measurable functions for which we additionally require that G is
symmetric around zero, that G is integrable and that w is symmetric in its two arguments. The first
term of Tp(h), Gn(h) say, is a U-statistic of degree two. We have

Gath) = Z 9n(Xi X)),
with X
(B.2) enix,y) := G(FD) wixy).

Tn(h) is the sum of a U-statistic of degree two and a sum of i.i.d. random variables. Examples of
these statistics are (nh)2Un(h) and (nh)3Vn(h), where Up(h) and Vy(h) are defined in Proposition 3.9.
In the notation of Chapter 3 we have

(nh)2Un(h) =- % LD ¢ ME () + 10K) MECK;).
and XX
(ah)*Va(h) = 2 KL(ZFDHE00 60X + £06) *Te(Xy)).

In Chapter 3 we need bounds on the moments of terms in the Hoeffding decomposition of
these statistics. First consider the moments of the statistic Gp(h). Writing Gij(h) := on(Xi, Xj) we

have
Gn(h) = X Gjj(h).
)

For any positive integer k the k-th absolute moment of Gy(h) can be bounded as follows,

E IGa(h)X = E Ig Gijlk <

®-3) (il-jl)ecn-E(ika)ecn B G (- G Bl

where C, denotes the set {(i,j) : i=1,...,n, j=1,...n, i#j}. Each of the terms E IGiyj;(h)... Gipp(h)!l
can be represented as a graph I" with vertices corresponding to to the indices 1,2,...,n and with an
undirected edge between two vertices i and j, i#j, for each time the term Gi;(h) appears in the product
Giyj; (h)... Gigjy(h). Let €jj denote the number of edges between the vertices i and j and let v(I')
denote the number of vertices reached by at least one edge, which is equal to the number of different
indices in ij,jy,...,ik,jk- For example the term E IG,2(h)Gz3(h)Gz4(h)3Gss(h)2I is represented by the
graph
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1 2
6% 3
5 4

Figure B.1, The graph corresponding to E IG12(h)G23(h)G24(h)*Gsg(h)?.

We need some notions from graph theory which can be found for instance in Wilson (1975). A graph
I is called connected if, going through consecutive edges, each vertex of I" can be reached from any
other vertex. If I is not connected then I" is the union of finitely many disjoint connected subgraphs
called the components of I'. Let W(I') denote the number of such components. If for each pair of
vertices of a graph there exists one and only one way to reach one vertex from the other then such a
graph is called a tree. If T" is an arbitrary connected graph and if I'' is a subgraph of I" with the same
vertices, such that I"' is a tree, then I"' is called a spanning tree of I". The number of edges of any
spanning tree of I is equal to v(I")-1.

Now consider E IGjj; (h)... G, (h)l more closely. This expectation can be written as

oo oo P _—
£ oo § 16 Wi, xip)... GO wixi ki)l £x1)...£Gxn) dx1...dxp.
If T is connected we have
(B.4) E 1Gjyj; (h)... Giyjp(h)l < chv@-1

for some constant c>0 not depending on h. The fact that this inequality holds can be seen as follows.
Let I'' denote a spanning tree of I'. We can rewrite the integral above by performing a series of
- substitutions which correspond to consecutive edges of I''. Each of these substitutions yields a factor
h and the final integral is bounded because all integer powers of |Gl are integrable and because w and
f are bounded. The argument is completed by the observation that the number of edges of any
spanning tree is equal to v(I')-1. If I" is not connected then it has Y(I')>1 disjoint connected
components C;,...,CxI. For each of these components the bound (B.4) holds. By the independence

of the X's the expectation E IGj,j,(h)... Gigj(h)l is equal to a product of expectations, each
concerning terms of one component only, so we have for general I,

(B.5) E IGiyj; (h)... Gigj ()1 < NDRMVCD-D +.4 VC)-1) = HDRvID-AD),

which gives the next result.
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Lemma B.1. Let Xy,..., Xy, denote a sample from a distribution with a bounded density. Under the
conditions imposed on the functions G and w we have for any positive integer k and for any positive
h

(B.6) E IGigj; (0)... Gigg(b)! < chv1D),

for some constant c>0 independent of h, where I is the graph corresponding to the indices
considered. |

Next we decompose the statistic Gp(h) by Hoeffding's projection method (Hoeffding (1948),
Serfling (1980)). Writing the conditional expectations of Gij(h) as

E@G;j(h)X;) = gh(X5),
EG;j(h)X;) = gh(X;),

with -
gfx) = [onx.y)f(y)dy,

we define 8ij(h) and Gp(h) by

8ij(h) = Gij(h) - ghXi) - gh(X;) + EGyj(h)
and

mm:%%m.

This gives the next decomposition of Gy(h),
B.7) Gn(h) = Ga(h) + 2(ﬂ~1)§:1 gk (X)) - EGq(h).
Since E(ﬁij(;l)lxi) = E(G;j(h)IX;) = 0 it follows that the terms are uncorrelated. Plugging (B.7) into
(B.1) we get a similar decomposition for Ta(h),
(B . T = 8+ 3, Qa-DERCKD + gaki) - EGath

Notice that the terms of this decomposition are also uncorrelated. It turns out that Gij(h) also satisfies
(B.6).

Lemma B.2. Let X,,...,Xy denote a sample from a distribution with a bounded density. Under the
conditions imposed on the functions G and w we have for any positive integer k and for any 0<h<1,

(B.9) E i j,(h)... Sigp ()l < chV@1D),

for some constant c>0 independent of h, where T is the graph corresponding to the indices
considered. |
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Proof. By a simple substitution v = (y-x)/h we get

ghx) = Jon(x.y)f(y)dy =
G wxy)y)dy =

h [ G(v)w(x,x+hv)f(x+hv)dv,

and by repeated integration

EGij(h) = | Jon(x,y)f(x)f(y)dxdy =
J ghx)f(x)dx.

It follows that for some constant >0 we have

(B.10) Igh(x)! < ath, for all x,
and consequently
(B.11) [EG;j(h)l < ah.

Recall that G;j(h) is equal to Gij(h) - gh(X;) - gh(X;) + EGy(h). Returning to E 1G;,j; (h)... i)
we see that this expectation is equal to the sum of 4¥ terms of the form E IBijy (h)... Bigjy (h)l where
Bij(h) equals either Gij(h), gh(XD, g?.(Xj) or EGij(h). The proof is now completed by the same
spanning tree argument as above for each of the terms E 1By, (h)... Biyj, (h)l, with this exception that
each edge of the spanning tree, between i and j say, now corresponds to a term

Gij(h) il g (X)) iR (X)) HBEGi(h) i,

where €jj1,...,€ij4 are nonegative integers with ejj1+...+ejj4 = €jj. If ejjy=e;j this term yields a factor h
by substitution just as above, and by (B10) and (B.11) since O<h<1 it yields a factor smaller than a
constant times h otherwise. |

Corollary B.3. Let f be bounded density which is bounded away from zero on the set E. For the
statistics On(h), On(h) and Wo(h) defined in Proposition 3.9 we have for some constant c>0 and for
O<h<1

E 035,(h)... Digip ()1 < ch™?%,

Eigjyh)... Vigip(h)l < ch™>2P,

provided there are exactly m different numbers in the sequence iy, jy,..., ip, jp, each index appearing
at least twice.
Similarly we have
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provided there are exactly m different numbers in the sequence iy, j1, K1,..., ip, ip, kp, each index
appearing at least twice. |

Proof. Taking G equal to the function L defined by (3.34) and w equal to

w(x,y) = - (€)' TE() + £(y) ' Te(y))
we see that ﬁij(h) equals h‘zﬁij(h). By lemma B.2 we have

E 035, (h)... Uiyl =

WP E Gy, (b)... Gipip(h)l <

chvd@-1I)-2p.
The conditions of the lemma imply v(I')=m and y/(I")<m/2. So by O<h<1 the bound above is smaller
than ch™ ™22, This proves the first statement. The proof of the second statement is completely
analogous, except that the factor h2 should be replaced by h™. We cannot use Lemma B.2 to derive
the third statement . However, the expectation E lWiljlkl (h)... Wipjpkp(h)l can also be represented as a

graph I'. In this case the conditions of the lemma imply that the number of components of I', y(I),
does not exceed m/3. By the same method as above we can then derive a bound ch™™3-3P, |
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APPENDIX C. ASYMPTOTIC NORMALITY.

We consider the asymptotic distribution of the statistics Ty(hy) defined by (B.1) for sequences
of positive bandwidths (hy) tending to zero. In that case the kernel function of the U-statistic Gp(hy)
depends on the sample size and we can not use standard U-statistic theory to derive asymptotic
normality of Tp(hy). Instead we use a limit theorem of Jammalamadaka and Janson (1986). An
alternative approach would be to use central limit theorems for degenerate U-statistics which can be
found for example in Hall (1984), De Jong (1987, 1990), Nolan & Pollard (1987, 1988).

By decomposition (B.8) we have
c1) Ta(hn) = Gnh) + ﬁl ga(Xi) - EGn(ha),
with
(C.2) gn(x) = 2(n-1)gif,(x) + gn(x).

Since the terms in this decomposition are uncorrelated and since Eﬁn(hn)=0 the variance of Ty(hp)
equals
E(Gn(hn)? + n var(gh(Xy).

Next we use the fact that E(ﬁij(h)le) is equal to zero for k=1,...,n. We get

EGn(hn))? = E(% Bijthn))? = 2n(n-1) EG1a(hn))?,
and

var(Tn(hn)) = 20(n-1) E(G12(hn))? + n var(gh(X1)).

Assume that w and f are almost everywhere continuous. Then by (B.10), (B.11) in Appendix B and
the dominated convergence theorem

EG () =
E(Gia(hn) - 85,(Xi) - g5,(X;) + EG1a(hn))? ~

E(Gr2(hp))* =

2(xl W x1xx)f(xa)dx1dxz =

(C3) .-
haJ | GHv)WA(x,x+hov)f(x)f(x+hgv)dxdy ~

ha | | GHv)WA(x,x)f(x)dxdv =
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hy | G¥(v)dv | w2(x,x)f2(x)dx .

To examine the variance of the second term we compute E(gﬁn(xl))z. By the dominated convergence
theorem we have

Egf,(X1)* =

[ (ha | GOv)W(x,x+hgv)f(x+hgv)dv )2 f(x)dx ~
12 | ( [ Gv)w(xx)f(x)dv ) f(x)dx =

02 (| Gv)dv)?( | w(x,x)B(x)dx).

This implies that the variance of 2(n-1)gh‘:,(xl) is typically of order (nhg)?. Thus if gn is identically
equal to zero and if nhy—eo, as in our applications, then (Ajn(hn) is asymptotically negligible compared
to the linear term. For an example of this situation see Veraverbeke (1985). Actually in the standard
U-statistic theory where the kernels are fixed functions the linear term dominates too. In our
applications however g is not identically equal to zero. It turns out that in those cases gn(Xj)
compensates the terms 2(n-1)ggfn(Xi) in such a way that the variances of both terms in (C.1) are of the
same order, or that the variance of the second term is even of smaller order than the first term. We use
a theorem of Jammalamadaka and Janson (1986) to prove the next theorem which establishes
asymptotic normality of Ty(hp) in the case that ﬁ,.(hn) is not asymptotically negligible.

Theorem C.1. Let f be a bounded almost everywhere continuous density and let the functions G, w
and gy, also be bounded. Further assume that G is symmetric and integrable, that w is symmetric in its
two arguments and that w is almost everywhere continuous. Let the statistic Ty(h) be defined by
(B.1) and let (hy) be a sequence of positive bandwidths converging to zero such that nhp—eo. Let the
function gy, be defined by (C.2) and suppose that this function satisfies

@  @hi?)'suplga(x) - Bga(Xp) - 0,

()  (nhp)'var(ga(X1)) - o2, 0< o2 < oo,
Then
(C.4) ﬁ (Tahy) - ETa(hn) 3 N(0,20%+02),

with
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(C.5) o2:= [ G¥(v) dv [ wi(x,x)f2(x)dx. 1

Proof. To apply Theorem 2.2 of Jammalamadaka and Janson (1986) we rewrite and renormalize
Tn(hy) as follows,

Thho) = s (Talho) - ETa(hn)) =
1 5 _1
Z 25y Bt + 2 i (@3OX0) - EgH(X0) =

1 > 1 *
Z 25 (XX + & e (@3X0) - Egi(Xi).
with
(C.6) na(x.Y) = Png(x,y) - G (X) - @5(Y) + Egny(X1,X2).
Suppose that we have checked the conditions. Then this theorem gives
1 . - 1 * * D 262 0
& 27 XX » X i @20 - EGHOX0) N((o,O),(O o2 )) ,
and consequently
1 D
77 (Talho) - EToho) = Ta(ho) > NO20%+0),
which proves (C.4). All we have to do is to check
. 1
B Byt - EgiX) = B 2—pr ny(xX0) =,
n n
" 1
()  sup —priga(x) - Ega(X1) > 0,
X nhn
i) nE (G @0k - Egixn)* > o, 0S o <ov,
) 0B (pr (K12 > B 0SB <o,
1
) iuy |W¢hn(x,y)| -0,
i)  nsupE l—lpzfn (x.X2)l - 0.
X nhn

The first three conditions are clearly fulfilled by the fact that ﬁu(hn) = @hn(Xl,Xz) has vanishing
conditional expectations, and by conditions (i) and (ii) of our theorem. Condition (iv) with B2 equal to
202 follows from (C.3). In order to show (v) and (vi) notice that for n large enough we have
nh¥?>nhp—see, which together with (B.10) and (B.11) implies (v). Property (vi) follows by the
same arguments as in the derivation of (B.10) and (B.11). ]
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This theorem is used in Section 3.4 to prove the asymptotic normality of the statistic Up(hy),
thus serving as an important tool in the asymptotic distribution theory for likelihood cross-validation.
Another place where it is used is in the derivation of the asymptotic distribution of the integrated
squared error of kemel estimators in Section 2.3.2. There the theorem can be directly applied only for
w=1. However, for other weight functions, modifying the proof above we can also prove asymptotic
normality.

Assume that the function K satisfies Condition K and that w is a bounded nonnegative
measurable weigth function with a bounded support. In Section 2.3.2 we have shown that the
integrated squared error of a kernel estimator fyn can be written as

ISEx(h) =
E’lr'Fl%i K(u'x’)K(‘%-'-x)w(u)du +

a‘?'ﬁfi 1RO twa)du +

Ly Kz(“ Xi)w(uydu +

i=1

| £(u)yw(u)du.

For w=1 the first term equals
L3 | kK s XeXgy,
n“hiz

The terms of this sum are symmetric functions of (X;-X;)/h so we can directly apply the previous
theorem. However, if w is not identically equal to one we get

1
ﬁ%ﬁz,: I K@K (o + 2 w(X;+hu)du,

which is not of the form considered above. A modification of the proof of Theorem C.1 gives the
next limit theorem for the integrated squared error.

Theorem C.2. Let f be a bounded almost everywhere continuous density and let w be a bounded
almost everywhere continuous weight function with a bounded support. Furthermore assume that the
kernel K satisfies Condition K in Section 2.1 and that (hy) is a sequence of nonnegative bandwidths
converging to zero such that nhy—co. Let b(u,h) denote the bias function Efpn(u) - f(u) of the kernel
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estimator. If

€7 anhglvar (| K (4D haw(u)du) - o, 05 o <o,

then

(C8) nh (ISEn(hy) - MISEn(ha)) 3 N(0,26% + 0),

with .

(C.9) o? = | ( JKW)K(v+z)dv)2dz | w(u)f2(u)du. ]
w0 -1 -00

Proof. We use the same notation as above. Define the statistic Tn(h) by
Ta(h) := E,:%f | KR EEDwu)du - 20 Z I K(“ X0) fuyw(u)du .

We decompose this statistic usmg Hoeffding's projection technique. Write
On(x.y) = HJ KPR wydu

and
ghx) = j on(x.y)(y)dy =
j (& j: KK (D) wudu)fy)dy =
IK( )(;;I K(EDfy)dy)wu)du =
IK( ") f(u)w(u)du + JK( ") b(u,h)w(u)du.
* We obtain the decomposition

n
Tathy) = Z Bng(XieX)) + Z ga(Xi) - n(n-1)Eny (X1, Xa),
where @, is defined by (C.6) and the function g.’: is given by
gn(x) = 2(n-1)ghn(x> ] K( )f(u)w(u)du =

2(n-1) IK )b(u h)w(u)du - 2 j K(% )f(u)w(u)du

Using the fact that b(u,h) is bounded by a fixed constant for all real x and all positive h it is readily
shown that (}hn and g;, satisfy conditions (i),...,(vi) in the proof of the previous theorem. Therefore

(C.10) ;l-ﬁlnm-(Tn(hn) - ETy(hn)) ) 3 N(0,26? + a?).
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Returning to the integrated squared error notice

nh}/2 (ISEq(hy) - MISEg(hy)) =

1

(C.11) a
a7 (Talho) - ETaho)) + 2 (| KGR wuyn -E | kX X w(u)du).

The variance of the second term can be bounded as follows,

var —lmg‘.nl (J Kz(u Xl)w(u)du EI Kz(u X')w(u)du)) <

T E( e K1) w(u)dn)” =

= [ (] KD woxdu) fv)dv =

n
o 1
E%; i( { K2(w)w(v+haw)dw ) *f(v)dv = o(mlﬁ),

which shows that this term vanishes in probability. By (C.10) and (C.11) the proof is completed.
1

Remark C.3. If condition (C.7) of the previous theorem holds with o? equal to infinity then the
linear term =1 gn(X;) dominates over the quadratic term Zisj Qn,(X;,X;). Considering

n
(C.12) Z (ea(Xi) - Bga(X)/(nhif?)
we recall
(nhif?)'sup Iga(x) - Ega(Xn)l = 0,

i.e. the terms of the sum (C.12) vanish uniformly in i for n tending to infinity. We also have

n
var(Z (g(X) - Ega (X)) ~
n nl_zm4 (n-1)?var ( i K(Ili-lz:l)b(u,hn)w(u)du) -

4nhy) var ( K(“ X1) o ho)w(u)du) — oo.
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This implies asymptotic normality of the linear term by the Lindeberg Feller central limit theorem, so
in case condition (C.7) is fulfilled with o equal to infinity the integrated squared error is still
asymptotically normal. The proof of Theorem C.2 now implies

©13) 0 (var(J K(“-i;’fl)b(u,hn)wm)dd))"”asran(hn) - MISEq(h)) 3 N(O,1),

which gives the proper normalizing constant in this case.
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