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Prologue 

From the late forties onwards, after George B. Dantzig had developed 
the simplex algorithm for the solution of linear programmes, optimiza
tion problems have been the subject of extensive research. Basically, 
this research aimed at either developing and analysing algorithms for 
specially structured optimization problems, or at strengthening existing 
and developing new theoretical concepts. The contents of our contri
bution belong to the latter category. As the title already indicates, it 
involves the three related notions of stability, duality and decomposi
tion. Before discussing why and how these notions interact, we will 
first clarify the title by providing an intuitive idea of what each notion 
stands for separately. 

In the sequel, general mathematical programming problems in finitely 
dimensional Euclidean spaces will be considered. A formulation of such 
a problem reads 

maxnruze f ( z) 
al 

subject to Gi(z) ◊i 0, i = 1, ... , m 

z EX 

where/(·) and Gi(·) are given (extended) real-valued functions, Xis a 
given subset of the n-dimensional Euclidean space Rn and ◊i is a given 
equality or inequality sign ( i = 1, ... , m ). Note that the finite dimen
sionality here, refers to both the solution space X and the constraint 
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6 PROLOGUE 

space !Rm. This implies for example, that problems in variational cal
culus and optimal control are not included in our analysis. 

The notion of stability has been used by numerous authors to indicate 
a variety of things. In our terminology, stability refers to the continuity 
of the optimal objective function value of a mathematical programme 
with respect to changes in its right-hand-side. This optimal objective 
function value considered as a function of the right-hand-side, is de
noted by the term value-function. So in what follows, stability will be 
identified with the continuity of the value-function. 

The notion of duality is somewhat more difficult to explain. Suppose a 
vector of arguments is available - either from an oracle or from an algo
rithm - that satisfies the constraints of a given maximization problem. 
How can the quality of such a feasible solution be measured? A natural 
measure of quality would be based on a comparison between the associ
ated objective function value and the optimal objective function value. 
Unfortunately, such a comparison can only be made in the ideal situa
tion in which the latter value is known. In the more realistic situation, 
in which a device exists that is only able to generate upper bounds for 
the optimal objective function value, only lower bounds on the quality 
of the given feasible solution can be derived. So, in order to appraise 
the quality of a given feasible solution, it is crucial to have (tight) upper 
bounds. In a duality theory, a second optimization problem, called the 
dual programme, is defined, with the property that all of its feasible 
solutions yield upper bounds for the optimal objective function value 
of the original programme, which for discriminating purposes is usu
ally referred to as the primal programme. This property is denoted by 
weak duality. Weak duality is a desirable property, but unfortunately, it 
does not always suffice. Suppose the primal feasible solution we started 
with happens to be an optimal solution, in the sense that its objective 
function value equals the optimal primal objective function value. We 
would only be able to recognize this solution as being optimal, if we 
actually knew the optimal primal objective function value. Such knowl
edge can be derived from the dual programme, only if for at least one 
of its solutions the gap between the upper bound it generates and the 
optimal primal objective function value disappears. This property is 
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called strong duality. So, weak duality always yields lower bounds on 
the quality of any primal feasible solution, whereas only in combina
tion with strong duality it becomes possible to recognize optimality. A 
duality theory is now defined as the collection of interactions between 
such a primal and dual programme. 

In many situations, the mathematical programme under consideration 
contains one or several substructures which are in some sense easy to 
handle. A natural solution strategy is then to try to disengage these 
structures from each other and from the full problem, with the idea 
in mind that the original problem may be easier solved by exploiting 
their presence. Of course, a complete disengagement of such struc
tures cannot be obtained other than in specific cases only, but even 
so, it may still be worthwhile to at least partially separate them from 
the full problem in some way. This is in fact what all decomposition 
methods aim for. In these methods, the original problem is tackled by 
partially separating useful and promising substructures from the full 
programme. Information gathered during the solution of these struc
tures is then used to improve on the way they were separated from the 
original problem. In this way, an iterative procedure results between 
substructures on the one hand, and updates c.q. improvements on the 
way of separating them from the original problem on the other. 

Now that we have explained the ingredients, we will return to the ques
tion how the aforementioned notions interact. Let us start with the 
relation between duality and decomposition. The decomposition meth
ods that will be discussed here, are generalizations of two well-known 
decomposition methods for linear programmes, viz. Benders Decompo
sition and Dantzig-Wolfe Decomposition. In the latter two methods, 
Linear Programming duality plays a crucial role. Consequently, gener
alizations of these methods will require a similar theory. The general 
duality theory that will be used for this purpose, is an extension of Lin
ear Programming duality, in the sense that the latter can be obtained 
from the former when applied to linear programmes. So, the relation 
between the two notions mentioned above is that general duality theory 
is an essential prerequisite for the general decomposition methods that 
will be described. 
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As already mentioned, the general duality theory we will consider, is an 
extension of Linear Programming duality. This observation, however, 
does not necessarily imply that all properties of the latter carry over 
to the former when applied to other than linear programmes. In fact, 
they do not. One of the properties that is lost in the general case, is 
the one-to-one correspondence between constraints in the primal pro
gramme and variables in the dual. The relation between stability and 
duality now stems from the fact that in case of stability, this one-to
one correspondence between primal constraints and dual variables can 
be restored. 

The final relation concerns the one between stability and decompo
sition. It can, and will, be proven that, except for pathological cases 
maybe, stability is an essential condition for the general decomposition 
methods to converge asymptotically. The latter statement means that 
each accumulation point of the sequence of intermediate solutions which 
is generated by the iterative procedure, is in fact an optimal solution 
for the problem under consideration. 

This monograph is subdivided into three separate parts, each one deal
ing with one of the three notions of stability, duality and decomposition 
separately. The contents of these parts are self-contained. Each part 
is preceded by an introduction and concluded by a summary, which 
also contains a list of theoretical contributions. The monograph itself 
is preceded by a preliminary section on notational conventions, and 
concluded by an epilogue, an author index, a subject index, a list of 
references and a summary in Dutch. The list of references is also sub
divided into three parts. This has been done for reasons of clarity, al
though it has led to a small overlap between the lists of the second and 
third part. Finally, it should be mentioned that the reader is assumed 
to be familiar with elementary concepts in analysis ( such as converging 
sequences, accumulation points, compactness, topological closure of a 
set, convexity), and with basic concepts in Linear Programming. 

One final reflection is in order. As already mentioned, the approach fol
lowed is one of abstraction; the forthcoming analysis is definitely more 
conceptual than algorithmic in nature. One may of course question the 
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use of theoretical research that does not seem to have any immediate 
application to the solution of real-life problems. However, one should 
always bear in mind that it seems impossible to encounter the limits of 
the scope of concepts and methods, if one remains safely within these 
limits. The only way to encounter those limits is to try to go beyond 
them. This is exactly what we have been doing here. By approaching 
the notion of stability and duality from a general point of view, and by 
trying to generalize the decomposition methods and their properties to 
the most general mathematical programmes, one gets a feel of where 
the limits of these concepts and methods lie. Of course, it will never 
be possible to decide whether or not these limits are artificial, in the 
sense that they might be overcome by looking at the problem from a 
different angle. However, as long as we realize their limitations, the 
results of a theoretical analysis may well turn out to be informative, 
useful and inspiring, even to those whose primary interest is in real-life 
applications. 





Notational preliminaries 

In this section some notational conventions will be agreed upon. Nearly 
all symbols will be generic, although there has been an attempt to 
minimize the number of changes in interpretation of each symbol in 
the course of the text. The symbols which have been defined by means 
of a numbered definition, however, will keep their meaning throughout 
the entire (sub )section in which they have been defined. 

Sets will usually be denoted by a capital roman letter, except for some 
special cases, in which they will be denoted by a capital greek or 
capital calligraphic letter. 

Variables (vectors as well as scalars) will be denoted by small roman 
or small greek letters. Indices are usually denoted by one of the 
letters i,j,k,l,m,n. 

(Extended) functions are single-valued mappings from a given do
main to a given codomain. They will be denoted by a roman or 
greek letter, followed by a matching pair of parentheses enclosing 
a period. So, a function f ( ·) will be described as: f ( ·) : X --+ Y, 
where X and Y are the domain and codomain off(·) respectively. 

If the codomain of a function equals (RU {±oo})m, where mis 
some positive integer, then the function is called extended vector
valued; in that case, it will be denoted by a capital roman or 
capital greek letter. In the case that m = 1 the function is called 
extended real-valued and is denoted by a small letter. If the 

11 



12 NOTATIONAL PRELIMINARIES 

codomain of a function equals IRm, then the function is called 
vector-valued, or real-valued if m = 1. 

Point-to-set maps are multi-valued mappings from a given domain 
to a given codomain. They relate to each point of the domain, 
a subset of the codomain. Point-to-set maps will be denoted by 
small greek letters, followed by a matching pair of parentheses en
closing a period. So, a point-to-set map a(·) will be described as: 
a(·): X --+--+ Y, where X and Y are the domain and codomain 
of a(·) respectively. A double arrow is used to distinguish point
to-set maps from functions. 

If a(·) : Y --+--+ Z and /3( ·) : X --+--+ Y are two point-to-set 
maps, then the composed map a(/3( ·)) : X --+--+ Z is defined as 
a(/3(:r:)) = Uye,B(a:)a(y) Vx EX. 

Sequences will be denoted by a variable, supplied with a superscript 
( usually k ), and enclosed by a matching pair of parentheses; a sub
script is added to indicate the possible values for the superscript. 
For instance, the infinite sequence ( x1 , x2 , .•. ) will be denoted by 
(xk)IN· 

Subsequences can be described by defining a suitable monotoni
cally increasing function from the set of possible values for the 
superscript of the given sequence to itself. In most cases, the no
tation p( ·) will be used for this purpose. A subsequence of ( xk )1N 

is thus denoted by (xP(k))1N. 

To describe the limiting behaviour of an infinite sequence, there 
will be no ambiguity with respect to which quantity approaches 
infinity. Therefore, any indication of this quantity will be sup
pressed. For instance, lim sup xk = x 00 means 

lim sup xk = a:00 

k-+oo 

A similar notation is used with respect to the limes inferior 
(lim inf) and the limit (lim). 
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Special symbols 

• IN is the set of positive integers. 

• Z is the set of integers. 

• IR is the set of real numbers. 

•IR:= {r E IRm I ri ~ 0, i = l, ... ,m} (m E IN). 

• 'P denotes a primal programme. 

• V denotes a dual programme. 

• Fis the dual solution space. 

• r denotes a subset of F. 

• cl(·) is the topological closure of a given set. 

• V denotes the Jacobian matrix of a given function. 

• C1 ( ·) is the set of all continuously differentiable functions on 
a given set. 

• <p( ·) denotes the optimal solution value of a given optimiza
tion problem (possibly ±oo ). 





Part I 

Stability 





Section 1 

Introduction 

In mathematical programming the notion of stability has been used by 
numerous authors to indicate a variety of things. The connection be
tween all these different usages seems to be the smoothness of certain 
characteristics of mathematical programmes which are subject to per
turbation. One such characteristic is described by the value-function, 
also denoted by optimal value-function, extremal value-function, mar
ginal function and perturbation function. A general definition of this 
function reads 

v(r) = { 
sup{j(z, r) I z e a(r)} if a(r) ¥- 0 
• 

otherwise 
(1.1) 

-00 

where i(·, ·) is an (extended) real-valued function and a(·) is a point
to-set map which identifies with each choice of the parameter r, a set of 
feasible solutions for the resulting optimization problem; usually a(·) 
is described by means of (in)equalities. Another characteristic, for in
stance, is the curve of (unique) optimal solutions of a family of per
turbed optimization problems (if such a curve exists). With respect to 
the notion of smoothness, a similar variety of usages seems to exist. 

17 



18 SECTION 1. INTRODUCTION 

Usually, a function is called smooth if it is (once) continuously differen
tiable, but occasionally, smoothness is associated with other properties, 
like continuity, or the existence of directional derivatives. In any case, 
the notion of stability, though not well-defined, is intimately related to 
the notion of sensitivity. 

In what follows we will confine ourselves to the continuity of the value
/unction. In addition, we will only study the special case of (1.1) in 
which 

Vr E Rm:/(· ,r) = f(·) /\ a(r) = {x EX I G(:e) or} (1.2) 

Here, Xis a subset of IR", G(·) is an (extended) vector-valued function, 
and◊ E {~,=}m (m,n EN). Note that G(:e)or is a shorter notation 
for Gi(:c)◊iri, where Gi(·), ri and ◊i are the i-th components of G(·), r 
and◊ respectively (i = 1, ... ,m). So, we will restrict attention to those 
instances of the value-function for which the underlying optimization 
problems differ through their right-hand-sides only, and for which the 
domain as well as the codomain of the feasible set map a(•) are subsets 
of finitely dimensional Euclidean spaces. 

Some of the results that will be stated in the sequel are easily shown 
to hold for more general cases than the one we consider. However, 
two good reasons exist why we may avert from generality with a clear 
conscience. On the one hand, the case of right-hand-side perturbations 
is general enough in view of the results to come in Part II and Ill 
On the other hand, (1.2) is not so restrictive as one might suspect at 
first sight. The loss of generality in (1.2) as compared to (1.1) is only 
twofold. 

• The perturbations in (1.1) are described by means of a finite num
ber of ( extended) real-valued functions, their common domain be
ing the Cartesian product of a given solution space and a given 
parameter space. More formally, a(r) = {:e EX I Hi(:c,r)oiO, i E 
J}, where Xis some solution set, Hi(·,·) is an (extended) real
valued function, ◊i E {~, =} and I is some finite index set. 
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• Both the domain and codomain of o:( ·) are subsets of finitely 
dimensional Euclidean spaces. 

It can easily be shown that under these two assumptions, (1.1) is just 
as general as the seemingly more restrictive case of right-hand-side per
turbations considered in (1.2); the value-function is not affected if the 
parameter r is replaced by a new variable y and the constraint y = r is 
added ( cf. [Fiacco, 1983)). The result of these manipulations, however, 
is a mathematical programme which is perturbed through the right
hand-side only. Whether it is beneficial from an analytical point of 
view to actually perform these manipulations, heavily depends on the 
question to be resolved. The above argument only implies that, un
der the aforementioned assumptions, it is not overly restrictive from a 
conceptual point of view to consider only right-hand-side perturbations. 

The outline of part I is as follows. In Section 2 it will be argued that the 
continuity of the value-function is essentially equivalent to the continu
ity of the corresponding feasible set map o:( · ). In Section 3 a number 
of conditions is stated under which the latter property indeed holds. 
The sufficiency of these conditions is a direct consequence of the proofs 
given; their necessity, on the other hand, cannot be established un
ambiguously, although it can be argued that they are "almost neces
sary". This fuzzy conjecture results from the fact that they coincide 
with the three types of conditions which imply constraint-qualification 
in Karush-Kuhn-Tucker points, viz. linearity, convexity combined with 
Slater's condition, and the Mangasarian-Fromovitz regularity condition 
(cf. [Mangasarian & Fromovitz, 1967], [Minoux, 1986)). Therefore, it is 
not to be expected that similar statements concerning the continuity of 
the value-function hold under significantly weaker conditions, because 
these three types of conditions have been proven to play a too crucial 
role in Mathematical Programming. Part I is concluded by a summary. 

The main contributions of Part I are the following. First of all, we 
already argued that considering right-hand-side perturbations is not so 
restrictive as one might be led to believe at first sight. Secondly, all 
results are presented within one single framework, being the continuity 
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of the feasible set map. Some earlier results on the subject are thereby 
put into a unifying framework. Thirdly, it is proven that the conti
nuity of the feasible set map is not only sufficient, but in some sense 
also necessary for the continuity of the value-function. Fourthly, it is 
demonstrated that the value-function is continuous on its domain of 
finiteness if all constraints are strictly quasi-convex and of the "less
than-or-equal" type. This result is a unification and an extension of 
two known results ( cf. [Evans & Gould, 1970] and [Hogan, 197311 ]). 

Finally, two new results are stated that combine some of the conditions 
under which the value-function was already shown to be continuous. 

Before concluding this section, let us relate Part I to some previous work 
on the subject. In [Dantzig et al., 1967] the continuity of the value
function is studied through the behaviour of the optimal set map; this 
is a point-to-set map which identifies with each choice of parameter 
values, the set of optimal solutions of the resulting mathematical pro
gramme. The authors present conditions which ensure continuity of 
the value-function in case a(•) is described by means of parameterized 
affine functions. As such, our result in the linear case (Theorem 3.1) 
is included in their work. Their proof, however, is significantly more 
complicated because they embedded the result in a considerably more 
general setting (general perturbations versus right-hand-side perturba
tions). B Results concerning the continuity of value-functions in Linear 
Programming can be found in [Bohm, 1975], [Martin, 1975], [Bereanu, 
1976], [Robinson, 1977], [Mangasarian & Meyer, 1979] and [Wets, 1985]. 

In [Evans & Gould, 1970] the case of right-hand-side perturbations of 
inequality constraints is taken into consideration. First, the authors de
rive an abstract necessary and sufficient condition for the continuity of 
the value-function at a point. Then they show that in case all constraint 
functions are strictly quasi-convex, their condition holds and, as a re
sult, the value-function is continuous on a certain domain. This result 
is a more restrictive version of our result for the strictly quasi-convex 
case (Theorem 3.3). 

The results in [Greenberg & Pierskalla, 1972] are an extension of the 
ones in [Evans & Gould, 1970]. The former two authors prove that 
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under the same conditions as derived by the latter two, the value
function also varies continuously with perturbations in the constraint 
functions. They also extend the work of Evans and Gould by allowing 
for equality constraints in the description of the feasible set map. This 
result, however, is comprised by our Theorem 3.3. In [Greenberg & 
Pierskalla, 1975] the results are also proven to hold in case there are an 
infinite number of constraints. 

In [Dirickx et al., 1972) attention is also restricted to right-hand-side 
perturbations. The authors come up with a rather abstract sufficient 
condition for the continuity of the value-function by imposing condi
tions on the value-function itself; they show that this function is contin
uous on its domain of :finiteness if the objective and constraint functions 
are convex and if all directional derivatives of the value-function exist 
and are bounded from below. 

In [Daniel, 1973b) the continuity of the curve of (unique) optimal solu
tions in Definite Quadratic Programmes is analysed; in [Guddat, 1976) 
Convex Quadratic Programmes are studied. In [Bank & Hansel, 1984] 
the continuity of the value-function in Mixed-Integer Quadratic Pro
grammes is dealt with. 

Besides [Meyer, 1970), it was also [Hogan, 1973b) that served as an 
example to us. With identical notions and proof-techniques, these au
thors derive similar results as in our Section 2, but for the more general 
problem setting (1.1). For the case in which the map a(·) is supposed 
to be described by means of inequalities, Hogan derives three interest
ing results. First, a more general version of our result for the convex 
case (Theorem 3.2) is proven to hold: Hogan relaxes the requirement 
of right-hand-side perturbations. Secondly, a generalization of the ab
stract result in [Evans & Gould, 1970) is presented. This result is 
not so interesting from an operational point of view because it states 
conditions on the map a(•) itself, rather than on the constraint func
tions which describe a(·). Finally, the case in which the constraints are 
assumed to be a mixture of equalities and inequalities is considered. 
Though resembling our Theorem 3.5, the two results are, in fact, in-
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comparable; Hogan's requirements are weaker than ours, but so is his 
result when applied to our case. 

[Brosowski, 1984] and [Zencke & Hettich, 1987] consider the case in 
which a(·) is described by means of an (in)finite number of affine in
equality constraints. Although the latter paper largely concentrates 
on the existence of directional derivatives, they do have one interest
ing result in common: the value-function is proven to be continuous 
if a Slater-type condition is assumed to hold. However, if their frame
work is applied to the more restrictive cases we consider, their result is 
comprised by ours. 

Besides continuity, other important properties of perturbed mathemat
ical programmes have been studied. A large body of literature exists on 
the Lipschitzean behaviour and the existence of all kinds of derivatives 
of the value-function, the curve of (local) minimizers and the curve of 
Karush-Kuhn-Tucker points; cf. [Aubin, 1984], [Auslander, 1979,1984], 
[Cornet & Vial, 1986], [Demyanov & Zabrodin, 1986], [Dontchev & Jon
gen, 1986], [Fiacco, 1976], [Fujiwara, 1985], [Gauvin, 1979], [Gauvin & 
Dubeau, 1982], [Gollan, 198411 ,1984&], [Hogan, 1973c], [Janin, 1984], 
[Jittorntrum, 1984], [Kojima & Hirabayashi, 1984], [Mangasarian & 
Shiau, 1987], [Penot, 1984,1988], [Robinson, 1974,1982,1987], [Rock
afellar, 1982,1984], [Seeger, 1988], [Shapiro, 198511 ,1985&,1988], [Spin
garn, 1980] and [Stern & Topkis, 1976]. A notion of stability which is 
not stated in terms of optimization problems, is discussed by [Daniel, 
197311 ,1975] and [Robinson, 1975,1976,1980]. Finally, all kinds of con
vexity and concavity properties of the value-function have been studied 
by [Kyparisis & Fiacco, 1987]. Although the list of references is already 
comprehensive, the reader should be aware that it is not yet complete. 
The references which are selected here, are a representative subset of, 
and a complete introduction to all the papers which are dealing with 
one of these related subjects. For extensive surveys on sensitivity and 
stability in nonlinear programming we refer to [Fiacco & Hutzler, 1982], 
[Bank et al., 1983] and [Fiacco, 1983]. 



Section 2 

Some basic definitions and 
results 

The approach we pursue in Section 2 is largely based on [Meyer, 1970] 
and [Hogan, 1973"]. The results in this section can easily be generalized 
to the more general problem statement (1.1) (see e.g. [Debreu, 1959], 
[Berge, 1963] and the two references cited above). Theorem 2.2, which 
states that the continuity of the feasible set map is, in some sense, a 
necessary condition for the continuity of the value-function, seems to 
be new. 

Consider the following family of mathematical programming problems: 

'P(r): max f(z) 
z 

s.t. G(z)◊r (2.1) 

zEX 

where f( ·) and G( ·) are functions from D ~ Rn to the IR U { ±oo} 
and (RU {±oo} )m respectively, X is a subset of D and ◊ E {~, = }m 
( m, n E N). As already mentioned, G( z) ◊ r is a shorter notation for 

23 
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Gi(x) ◊i ri, where Gi(·), ◊i, and ri are the i-th components of G(·), ◊ 
and r respectively ( i = 1, ... , m ). More formally: 

X ~ D ~ Rn 

/(·): D ~ IR U {±oo} 

◊E{~,=}m 

G(·): D ~(RU {±oo})m 
(2.2) 

For each right-hand-side r E Rm the feasible set of 'P( r) is defined by 
the following point-to-set map 

a(·): Rm~~ Rn with a(r) = {x EX I G(x) or} (2.3) 

The map a(·) is called the feasible set map. The right-hand-sides for 
which the corresponding feasible set is non-empty, form the set of fea
sible right-hand-sides; it is defined as 

RHS = {r E Rm I a(r) =/- 0}. (2.4) 

The value-function is defined as 

v(•): Rm~ RU {±oo}, with 

{ 
sup{/(x) Ix E a(r)} 

v(r) = z 

-00 

if r E RHS (2.5) 

otherwise 

The subset of RHS on which v(·) is real-valued, is denoted by V; hence 

V = {r E Rm I v(r) ER}. (2.6) 
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Note that V ~ RHS. Our goal is to come up with conditions on 
f ( • ), G( • ), X and ◊, which enforce certain continuity properties on the 
value-function v( · ). Unfortunately, the classical definition of continuity 
cannot be used, because this notion might be meaningless when applied 
to points which lie on the boundary of RH S or on the boundary of V. 
To resolve this difficulty, we use a slightly different notion of continuity. 

Definition 2.1 Let W ~ Rm. A sequence (y")w is said to be in W if 
Vic E N : y 111 E W. 

Definition 2.2 ( (Semi-)continuity with respect to) Let W s; Rm. 
In addition, let w( •) : W -+ R U { ± oo} be an ( e:i:tended) real-valued 
function on W. If for all sequences (y")r.f in W with limy"= y E W, 

• lim sup w(y") ~ w(y), then w( •) is called upper semi-continuous 
at y w.r.t. W; 

• liminf w(y") ~ w(y), then w(•) is called lower semi-continuous at 
y w.r.t. W; 

• limw(y") = w(y), then w(·) is called continuous at y w.r.t. W. 

From this definition it immediately follows that a function is continuous 
at y w.r.t. W if and only if it is both upper and lower semi-continuous 
at y w.r.t. W. Furthermore, a function is said to be (semi-)continuous 
w.r.t. W if and only if it has the same property at every pointy E W. 

For points y that lie in the interior of W, the classical definition of 
continuity is reobtained. Therefore, Definition 2.2 can be considered to 
be an extension of the classical one in defining a notion of continuity 
at boundary points. In fact, Definition 2.2 boils down to the classical 
one if, instead of the natural topology on Rm, the topology induced by 
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Wis considered. Note that every function w(·) is continuous w.r.t. W 
if W is a singleton. 

Before going into technical details, let us first try to develop some 
intuition. Continuity of the value-function means that for slight changes 
in the right-hand-side r, the optimal solution value of 'P( r) also changes 
only moderately. For a continuous objective function / ( ·) this seems 
to imply that the feasible set in (2.1) should not change drastically in 
case only niinor changes in the right-hand-side are carried through. In 
other words, the feasible set map a(·) should change continuously with 
changes in its arguments. In order to make this notion of continuity for 
point-to-set maps more precise, we adopt the terminology of [Hogan, 
1973b]; in [Meyer, 1970] the same definitions occur under the names 
l.s.c. and u.s.c. respectively. 

Definition 2.3 (Openness with respect to) Let W ~ Rm. In ad
dition, let -y( ·) : W -+-+ Rn be a point-to-set map. Then -y( •) is said to 
be open at y E W w.r.t. W if from 

• (yle )1N is a sequence in W with lim yle = y, and 

• z E -y(y), 

it follows that. there is a sequence (zle)IN with zle E -y(yle) Vk E N and 
limzle = z. 

Definition 2.4 ( Closedness with respect to) Let W ~ Rm. Addi
tionally, let -y( ·) : W -+-+ Rn be a point-to-set map. Then -y( •) is said 
to be closed at y E W w.r.t. W if from 

• (yle )IN is a sequence in W with lim yle = y, and 
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• (zk)IN is a sequence with zk E ;(yk) Vk EN and limzk = z, 

it follows that z E ;(y). 

Definition 2.5 (Continuity with respect to) LetW ~ Rm. In ad
dition, let ;( •) : W -+--+- Rn be a point-to-set map. Then ;( •) is said to 
be continuous at y E W w .r. t. W if;(·) is both open and closed at y 
w.r.t. W. 

A point-to-set map is said to be open/closed/continuous w.r.t. W if 
it has the same property at every point y E W w.r.t. W. The same 
difference that exists between Definition 2.2 and the classical notion of 
( semi-)continuity for functions is encountered here too: Definitions 2.3-
2.5 coincide with the "classical" ones if the natural topology on Rm is 
replaced by the topology induced by W. Moreover, every point-to
set map ;( ·) is open w.r.t. W if W is a singleton. Note that this 
statement does not apply to the notion of closedness, unless ;(W) is 
a topologically closed set. Also note that the closedness of;(·) w.r.t. 
W implies the topological closedness of every set ;(y) where y E W. 
Definitions 2.3 and 2.4 reveal that there is a difference between the 
topological openness ( closedness) of a set and the openness ( closedness) 
of a point-to-set map; from the context it will always be clear which 
specific notion is referred to. 

Definitions 2.3 and 2.4 precisely fulfil the purpose they are designed for. 
If the feasible set map is open, then it does not suffer from discontinuous 
expansions, because for any sequence ( rk )IN in W with lim rk = r E W, 
every point z E a( r) can be obtained as a limiting point of a sequence 
(zk)IN with zk E a(rk) Vk E N. Hence, at infinity, points will not 
suddenly "crop up". In such a case, situations like the one in Figure 2.1 
will not occur. 

As far as closedness is concerned, the situation is kind of reversed. If 
the feasible set map is closed, then it does not suffer from discontinuous 
contractions because for any sequence ( rk )w in W with lim rk = r E W, 
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G(·) 

r I 

I ------------~-----------------l-------r2 I I I 
I I I 

~ ------------r-----------------r-------~--- --
1 I I I 
I I I I 

x ---x2 . x1 

Figure 2.1: An example of a feasible set map a(r) = {:c E IR I G(:v) ::;; r} 
which is not open. 

the limiting point :v of every converging sequence (:vk) 1111 with :ck E 

a(rk) 'r/k E IN, is an element of a(r). Hence, at infinity, points will 
not suddenly "drop out". In such a case, situations like the one in 
Figure 2.2 will not occur. 

Now, if a feasible set map does not suffer from discontinuous expansions, 
the optimal solution value of a continuous objective function cannot 
increase discontinuously. To say it in other words, the lower semi
continuity of v( ·) is likely to follow from the openness of a(•). Similarly, 
the upper semi-continuity of v( •) might follow from the closedness of 
a(·). Below, these assertions will be made more precise. 

Definition 2.6 (Essentially boundedness with respect to) Let 
W ~ Rm. In addition, let ;( ·) : W --+--+ IRn be a point-to-set map. 
Then ;( ·) is said to be essentially bounded at y E W w .r. t. W if from 

• (yk),., is a sequence in W with limyk = y and 

• (zk)IN is a sequence with zk E ;(yk) 'r/k E IN, 

it follows that ( zk ),., is bounded. 



r -----------------
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Figure 2.2: An example of a feasible set map a( r) = { :z: E R I G( :z:) $ r} 
which is not closed. 

This notion resembles Hogan's "uniformly compactness" (see [Hogan, 
1973"]); it is slightly weaker but it has been introduced for the same 
purpose. Again, a point-to-set map is said to be essentially bounded 
w.r.t. W if it is essentially bounded at every point y E W w.r.t. W. 
Like [Hogan, 1973"] we can now derive the following result; note that 
we use Uwa( r) as a shorter notation for U.,.ewa( r ). 

Theorem 2.1 ( (Semi-)continuity of v( •) - sufficient conditions) 
Let {2.1}-(2.6} be given. In addition, let 

1. W ~ V and suppose that 

• /(·) is lower semi-continuous w.r.t. Uwa(r) and 

• a(·) is open w.r.t. W 

Then v(·) is lower semi-continuous w.r.t. W. 
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2. W ~ V and suppose that 

• /(·) is upper semi-continuous w.r.t. Uwa(r) 

• a(·) is essentially bounded w.r.t. W and 

• a(·) is closed w.r.t. W 

Then v(·) is upper semi-continuous w.r.t. W. 

9. W ~ V and suppose that 

• /(·) is continuous w.r.t. Uwa(r) 

• a(•) is essentially bounded w. r. t. W and 

• a(·) is continuous w.r.t. W 

Then v(·) is continuous w.r.t. W. 

Proof 

1. Take any arbitrary sequence (r")w in W with lim r 11 = r 00 E W. 
We have to prove that liminfv(r11 ) ~ v(r00 ). 

Let e > 0 be arbitrarily chosen. W ~ V implies that 

Furthermore, a(·) .is open w.r.t. W, so 

From the lower semi-continuity of/(·) w.r.t. Uwa(r) it follows 
that 
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As this relation holds for every E > 0, it follows that lim inf v( rk) ~ 
v( r00 ), which proves the theorem. 

2. Take any arbitrary sequence (r.,.)1111 in W with limrk = r00 E W. 
We have to prove that limsupv(rk) :::; v(r00 ). W ~ V implies 
that 

As a result we get 

limsupv(rk) = limsup/(zk) 

Let (zP(k))1111 be a subsequence of (z.,.)1111 , such that 

lim /(zP(k)) = lim sup /(zk) 

From the essentially boundedness it follows that ( zP(k) )1111 has an 
accumulation point z 00 • Let (z11(k))1111 be a subsequence of (zP(k))1111 

such that lim zll(k) = z 00 • From the closedness of a(·) it follows 
that z 00 E a( r 00 ), so 

The upper semi-continuity of / ( •) then, implies that 

v(r00 ) ~ /(a:00 ) ~ limsup/(z11(k)) = lim/(:z:11(k)) = 
lim/(zp(k)).= limsup/(zk) = limsupv(rk) 

3. According to the previous two results, v(·) is both lower and up
per semi-continuous w.r.t. W, hence continuous w.r.t. W. 

□ 

One of the implications of this result is the following 
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Corollary 2.1 (Closedness of the optimal set map) 
Let (2.1 )-(2. 6) be given. In addition, let e( •) denote the optimal set 
map, defined as 

e(•): Rm-+-+ Rn with e(r) = {z E a(r) I /(z) = v(r)} 

If the conditions of Theorem 2.1 sub 9 are satisfied, then e( ·) is closed 
w.r.t. W. 

Proof This is left to the reader. 
D 

According to Theorem 2.1, continuity of the feasible set map (besides 
continuity of the objective function and some boundedness condition 
on the feasible set map) is a sufficient condition for the continuity of 
the value-function. What about its necessity? Of course, specific cases 
may exist in which the value-function is continuous whereas the feasible 
set map is not. However, if the value-function is to be continuous for 
any continuous objective function f( • ), then the feasible set map must 
be both open and closed. In this respect, continuity of the feasible set 
map is a necessary condition as well. 

Theorem 2.2 ((Semi-)continuity of v(•) - necessary conditions) 
Let {2.1}-(2.5} be given. In addition, let 

1. W ~ RH S and suppose that 

• for any objective function f(·) which is continuous w.r.t. D 
and for which the resulting value-function is real-valued on 
W, this value-function is lower semi-continuous w.r.t. W 

Then a(·) is open w.r.t. W. 
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2. W ~ RH S and suppose that 

• Vr E W: a(r) is a closed set and 

• for any objective function f(·) which is continuous w.r.t. D 
and for which the resulting value-function is real-valued on 
W, this value-function ia upper semi-continuous w.r.t. W 

Then a(·) is closed w.r.t. W. 

Proof 

1. Let (rlt)w be any sequence in W, converging to roe E W. Let 
zoe E a(roe) be arbitrarily chosen. We have to prove that there 
is a sequence (zit)..., with Vk EN: zit E a(rlt) and limzlt = zoe. 

Let the objective function f(·) be chosen as f(z) = -d(z,zoe), 
where d( · , ·) is any distance function. The corresponding value
function 6( ·) is assumed to be lower semi-continuous, so 

Furthermore, W ~ RH S, so 

1 
Vk EN :Jzlt E a(rlt) : 6(rlt) - k < -d(zk, :z:oe) 

From this relation it follows that 

limsupd(zk,zoe) :S -liminf6(rlt) :S -6(roe) = 0, 

which implies that lim d( :ck, zoe) = 0, so lim zit = zoe. 

2. Let (rlt)111 be any sequence in W, converging to roe E W. Fur
thermore, let (z1t)IN be a sequence, such that Vk E IN : zit E a(r1t) 
and limzlt = zoe. We have to prove that zoe E a(roe). 

Let the objective function f(-) be chosen as f(z) = -d(z, zoe). 
Let 6( ·) denote the resulting value-function. Obviously, Vr E 
Rm : 6(r) :S 0. From the definition of 6(·) and the fact that 
Vk E N : zit E a( rlt) and lim zit = zoe, it follows that 
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Furthermore, h( •) is supposed to be upper semi-continuous, so 

Consequently, h( r 00 ) = 0, which, combined with the closedness 
condition on the set a(r00 ), implies that z 00 E a(r00 ). 

□ 

Theorem 2.2 suggests that continuity of the feasible set map is a nec
essary as well as sufficient condition, if for a sufficiently large class of 
objective functions (in any case, including certain distance functions) all 
resulting value-functions are to be continuous. The result does not sug
gest anything concerning the necessity of the continuity of the feasible 
set map as soon as only one specific case (i.e. one specific ( type of) ob
jective function) is taken into consideration. In any case, Theorem 2.1 
and 2.2 imply that for general continuous objective functions, the con
tinuity of the value-function may equally well be analysed through the 
continuity of the feasible set map. 

In the sequel we will try to come up with conditions on the problem data 
G( · ), X and ◊, such that the resulting feasible set map a(•) is both open 
and closed. Let us start with closedness. Closedness can be enforced 
under very weak conditions, as can be seen by the following theorem 
(see also [Hogan, 1973b]); recall that the topological closure-operator 
on sets is denoted by cl(·). 

Theorem 2.3 (Closedness) Let (2.1)-(2.5} be given. In addition, 
let W ~ RH S and X be closed. Moreover, suppose that Gi( ·) is lower 
semi-continuous w.r.t. cl(Uwa(r)) if ◊i E {:=:.;} and that Gi(·) is con
tinuous w.r.t. cl(Uwa(r)) if ◊i E {=}. Then a(·) is closed w.r.t. W. 

Proof Let ( r" )1\1 be any sequence in W, converging to r 00 E W. Let 
( z" )111 be a sequence, such that Vk E N : z" E a( r") and lim z" = z 00 • 

We have to prove that z 00 E a(r00 ). 
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First of all, 'vk E 1\1 : a:" E X, so from the closedness of X it follows 
that 

Furthermore, if ◊i E {~}, then the lower semi-continuity of Gi( ·) implies 
that 

Finally, if ◊i E { = }, then the continuity of Gi( •) implies that 

As a result, a:00 E a(r00 ). 

D 

The conditions mentioned in Theorem 2.3 are weak. This explains why 
the function G( •) which is depicted in Figure 2.2, had to be chosen 
so nasty. It also reveals that the upper semi-continuity of the value
function can be enforced by imposing only some weak conditions on 
the problem data. 

Unfortunately, openness does not seem to be of the same simplicity. 
This is already revealed by the fact that even a "well-behaved" function 
G( ·) like the one depicted in Figure 2.1, does not enforce openness of 
the feasible set map. Intuitively, this can be explained by the fact that 
this function G( ·) has a local minimum which is not global as well. In 
fact, if one tries to draw (one-dimensional) functions G(·) such that 
the resulting feasible set map is, indeed, open, it seems impossible to 
succeed if G( ·) has the aforementioned property. As we shall see in the 
next section, similar observations apply to the multi-dimensional case 
too. In any case, it is the lower semi-continuity of the value-function 
which seems difficult to assure. 





Section 3 

Continuity of feasible set 
maps 

In this section we will study some specific cases in which the feasible 
set map a(•), as defined as in (2.3), is both open and closed. In fact, 
our main concern will be openness, because closedness can easily be 
obtained under very weak conditions (Theorem 2.3). Let us first state 
a lemma which appears to be useful in proving the openness of a point
to-set map. 

Lemma 3.1 Let {2.1}-(2.5} be given. In addition, let W ~ RHS 
and suppose that ( rlc )IN is a sequence in W, converging to r 00 E W. 
Furthermore, let z 00 E a(r00 ) be arbitrarily chosen, and suppose that 

Then a sequence (ylc)IN ezists with ylc E a(rlc) Vk E 1\1 and limylc = z 00 • 

Proof This is left to the reader. 
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3.1 The affine case 

In this subsection, the feasible sets of the underlying mathematical 
programming problems will be assumed to be polyhedral. 

Theorem 3.1 {The affine case) Let (2.1)-(2.5} be given. Suppose 
that X is a closed polyhedral set and G( :z:) = A:z: - b where A is a 
matrix of order m x n, and b is an m-vector. Then a(·) is continuous 
w.r.t. RHS. 

Proof The closedness of a(•) w.r.t. RHS immediately follows from 
Theorem 2.3. In order to prove the openness, let us suppose that (rle)IN 
is a sequence in RHS, converging to r00 E RHS. Let :z: 00 E a(r00 ). We 
will construct a sequence (:vle)IN such that Vk E N : :vie E a(rle) and 
lim :vie = :z: 00 • First we will consider the case where X = lfr, then X 
will be assumed to be a general closed polyhedral set. 

Case 1: X = Rn 

Consider for each k E N _ the following mathematical programme 

mm II :Z: - :z: 00 II 
a: 

s. t. A:z: - b ◊ rle 
(3.1) 

where 11 · 11 denotes the max-norm. An equivalent formulation 
reads 

mm z 
a:,z 

s.t. Vj E {l, ... ,n} 
Vj E {1, ... ,n} 

(3.2) 

Programme (3.2) is a linear programme; its dual is 
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max -AT:z:00 + µT:z:oc - uT(b + rle) 
>.,µ,o-

s.t. -A+µ - ATu = 0 
n n 

L A; + L µ; = 1 (3.3) 
j=l j=l 

A,µ 2:: 0 

CT; 2:: 0 if◊; E {$} 

Because of the fact that Vk E N : rle E RHS, it follows that 
(3.1) has an optimal solution, say :z:le. Let the optimal solutions 
of (3.2) and (3.3) be denoted by (:z:le,zle) and (Ale,µle,ule) respec
tively, where, without loss of generality, the latter point can be 
chosen to be an extreme point of the polyhedron which is defined 
by the feasible set of (3.3). Note that this polyhedron is inde
pendent of k EN, so (Ale,µle,ule) belongs to some finite set. This 
implies that 

:Is ER+ Vk E N : II ule II$ s 

Furthermore, from primal and dual feasibility it follows that 

(-Ale)T :z:00 + (µle)T :z:00 _ ( ule)T(b + rle) = 
(-Ale+ µle)T:z:oo _ (ule)T(b + rle) = 
(ule)T(Azoo) _ (ule)T(b + rle) = 
(ule)T(A:z:00 - b- rle) $ 

(ule)T(roo -rle) 

As a result, 

II :z:le - :z:00 II= zle = 
(-Ale)T zoo+ (µle)T:z:00 _ (ule)T(b + rle) $ 

(ule)T(roo _ rle) $ l(ule)T(roo _ rle)I $ 

m II (Tie II . II rle - r00 II$ ms II rle - r00 II 
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Now, let e > 0 be given. From lim rh = r 00 it follows that 

€ 
3k0 E N Vk > k0 : II rh - r00 II< -

ms 

Hence, 

€ 
Vk > k0 : II :ch - :c00 11::; ms 11 rh - r00 11< ms- = e 

ms 

By construction, :ch E a( rh) and lim :ch = :c00 , which proves the 
theorem for the case X = Rn. 

Case 2: Xis a closed polyhedral set 

Let X = {:c E Rn I E:c - e ::; 0} where E is a matrix of order 
m' x n, and e is an m'-vector. Define the following point-to-set 
map 

/3(·): Rm+m' -+-+ Rn, with 

/3(r,t) = {:c E Rn I A:c - bor, E:c - e::; t} 

Note that 

Vr E Rm: a(r) = /3(r, 0) 

As a result, 

Vk EN : /3(rh, 0) -::J 0 
lim( rh, 0) = ( r00 , 0) 

/3( r 00 , 0) -::J 0 
:c00 E /3(r00 ,0) 

(3.4) 

So, according to Case 1, there is a sequence ( :ch )IN with :ch E 

/3(rh, 0) Vk EN and lim:ch = :c00 • This, however, proves the the
orem, because from (3.4) it follows that :ch E a(rh) Vk E N as well. 

□ 
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Similar results ( with different kinds of proofs) can be found in [Hoffman, 
1952), [Bohm, 1975), [Robinson, 1975), [Wets, 1985) and [Mangasar
ian & Shiau, 1987). This result is also covered by Corollary 11.3.1 of 
[Dantzig et al., 1967]. In that paper, however, a much more complicated 
proof is given, due to the fact that the authors embedded the result in 
a much more general setting; they consider affine constraints which are 
parameterized in both the constraint coefficients and the right-hand
sides. In [Zencke & Hettich, 1987) parameterized semi-infinite linear 
programmes are dealt with. On the one hand, this problem setting is 
more general than ours because a (possibly) infinite number of affine 
constraints which are parameterized in both the constraint coefficients 
and the right-hand-sides is taken into consideration. On the other hand, 
the problem setting is more restrictive because only linear objectives 
and the interior of the set RH S is taken into account. 

3.2 The ( quasi-)convex case 

In this subsection, two results will be presented. In either of them it will 
be assumed that there are no equality constraints explicitly stated in the 
description of problem (2.1). This implies that◊ E {S}m. Furthermore, 
in both results the function G( ·) will, among other things, be assumed 
to be (strictly quasi-)convex. Note that the former assumption alone 
is not restrictive - any equality constraint can always be replaced by 
two inequalities - but in combination with the latter assumption, it 
18. 

Definition 3.1 (Quasi-convexity) Let W be a conve:c subset of some 
vector space, and let H(•) : W -+ (RU {±oo})m be some (e:ctended) 
vector-valued function on W. Then H( ·) is called 

• quasi-convex w.r.t. W if for every component-function Hi(·) of 
H(·) it is true that\/y1,y2 E W VA E [O, 1]: Hi(Ay1 +(1-A)y2 ) $ 
max{Hi(y1),Hi(y2)} {i = 1, .. . m). 



42 SECTION 3. CONTINUITY OF FEASIBLE SET MAPS 

\I 
Figure 3.1: Differences between convexity and quasi-convexity 

• strictly quasi-convex w.r.t. W if for every component-function 
Hi(·) of H(·) it is true that Vy1 E W Vy2 E W \ {y1 } V).. E (0, 1): 
Hi(>.y1 + (1 - >.)y2 ) < max{Hi(y1 ), Hi(y2)} (i = 1, ... m). 

The notion of quasi-convexity is a true generalization of convexity; ev
ery function which is (strictly) convex is (strictly) quasi-convex. The 
reverse statements are not necessarily true, as is shown by the examples 
depicted in Figure 3.1, where the first two functions are strictly quasi
convex and the third one is quasi-convex, whereas only the second one 
is (strictly) convex. In fact, under quasi-convexity a function cannot 
have a strict local minimum which is not global as well, and under strict 
quasi-convexity a function cannot have a local minimum which is not 
unique and global as well. And as already suggested by Figure 2.1, 
strict local minima and openness seem incoherent phenomena. 

Theorem 3.2 (The convex case) Let (2.1}-(2.5} be given. Let W ~ 
RH S be open. Furthermore, let X be a closed convex set, ◊ E {:SJm 
and G( ·) be convex on a( r) Vr E W and lower semi-continuous w. r. t. 
cl(Uwa(r)). Then a(·) is continuous w.r.t. W. 

Proof The closedness of a(·) w .r. t. W immediately follows from The
orem 2.3, which, together with the convexity assumption on G( • ), im
plies that Vr E W : a( r) is a closed convex set. For the openness, let 
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( r 11 )IN be a sequence in W, converging to r 00 E W. Let :c00 E a( r 00 ) be 
arbitrarily chosen. We have to construct a sequence (re11 )1N such that 
zle E a(r11 ) Vk EN and lim:c11 = z 00 • 

W is an open set, so :lr E W : r < r 00 • As a result, 

Let e > 0 be arbitrarily chosen. Let A E (0, 1) be chosen such that 

A II f - zoo II< e 

Define z~ = Af + ( 1 - A ):c00 • From the convexity of G( ·) on a( r 00 ) it 
follows that 

Now, lim r 11 = r 00 , so 

Furthermore, X is convex, so :c~ E X. Moreover, 

II z~ - z 00 II= A II f - z 00 II< e 

From Lemma 3.1 the result follows, because Vk > k0 : z~ E a(r11 ) and 
II z~ - :z: 00 II< e. 

□ 
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If besides the conditions stated in this theorem, G( ·) is assumed to be 
convex on X and lower semi-continuous w.r.t. X, then a(·) is continu
ous w.r.t. int(RHS), the interior of RHS. Unfortunately, the openness 
of a(·) cannot be extended to the boundary of RH S without impos
ing additional assumptions on X and/or G(·). This negative result 
is demonstrated by means of the following example, which is due to 
[Hogan, 19734 ]. 

X = {x E R2 111 z 11 1 ::; 2} o E {::;}2 

G(·): R2 -+ R2 with 

G{z); (z .. I1 z-( ~)II,+ I1 z-( ~1) II, -2) 7 

Here, II · 111 and II · 11 2 denote the sum-norm and the Euclidean norm 
respectively. The corresponding feasible set map is not open w.r.t. 
RH S, because 

"'kE N , •• ; (-P✓l+ m· -2f E RHs 

a( rk) = { ( - t, O) T} 
lim rk = r 00 = (0, O)T 

However, (0, -l)T E a(r00 ) and this point cannot be obtained as the 
limit of a converging sequence ( zk )tN with fek E a( rk) Vk E N. Note 
that, because of Theorem 3.2, (0, O)T must be a boundary point of 
RHS. Under slightly different conditions on X and G(·), the boundary 
of RH S can, indeed, be included in the result. 

Theorem 3.3 (The strictly quasi-convex case) Let {2.1}-(2.5} be 
given. Let W ~ RH S. Furthermore, let X be a closed convex set, 
◊ E {::; }m, G( ·) be strictly quasi-convex on a( r) Vr E W and lower 
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semi-continuous w.r.t. cl(Uwa(r)), and a(·) be essentially bounded 
w.r.t. W. Then a(·) is continuous w.r.t. W. 

Proof The closedness of a(·) w .r. t. W immediately follows from The
orem 2.3, which, together with the strict quasi-convexity assumption 
on G(·), implies that Vr E W : a(r) is a closed convex set. For the 
openness, let ( rle )111 be a sequence in W, converging to r 00 E W. Let 
a:00 E a(r00 ) be arbitrarily chosen. We have to construct a sequence 
( :ck ) 111 such that zle E a( rle) Vk E N and lim zle = a: 00 • 

Let Vk E 1\1 : zle E a(rle) be arbitrarily chosen. Because of the fact 
that a(·) is essentially bounded w.r.t. W, it follows that (:cle)IN 
has an accumulation point, say x. Let (:z:P(k))IN be a subsequence 
of (:ck)111 which converges to x. We then have 

Vk E N : rP(k) E W 

lim rP(k) = r 00 E W 

Vk E N : zp(Te) E a( rP(k)) 

lim zP(le) = :ii 

So, from the closedness of a(·) it follows that :ii E a( r00 ) = { a: 00 }. 

Therefore, (zle)111 has only one accumulation point, which is equal 
to a:00 • Hence, lim :ck = z 00 • 

Let f E a(r00 ) \ {z00 }. Let e > 0 be arbitrarily chosen and let 
A E (0, 1) be such that 

Define a:;\ = Af + (1 - .\)z00 • From the strict quasi-convexity of 
G( ·) on a( r00 ) it follows that 
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Now, lim rlc = r 00 , so 

Furthermore, X is convex, so :c.\ E X. Moreover, 

II z.\ - a?00 II=,\ II :ii - z 00 II< E 

From Lemma. 3.1 the result follows, because 'vk > k0 : a,.\ E a(rlc) 
and II z.\ - z 00 II< e. 

D 

A similar result as our Theorem 3.2 can be found in [Hogan, 1973b). 
Weaker versions of Theorem 3.3 can be found in [Evans & Gould, 1970), 
where W is required to be a subset of the interior of RHS, and in 
[Hogan, 1973°], where strict convexity on the constraint functions G( ·) 
is imposed. Finally, a slightly weaker result than our Theorem 3.3 
(continuity of v(•) w.r.t. the relative interior of RHS) under slightly 
weaker assumptions ( quasi-convexity of the parameterized constraint 
functions G i ( :c, r) as a function of ( :c, r)) can be found in [Hogan, 1973b). 

3.3 The MF-regular case 

The conditions which will be considered here, resemble the famous 
regularity conditions which enforce constraint-qualification in Karush
Kuhn-Tucker points ( cf. [Mangasarian & Fromovitz, 1967]). 

Let (2.1)-(2.5) be given. Suppose X = {:c E Rn I H(:c) o O} where 
H( ·) is a vector-valued function from Rn to Rl (l E N U {O}) and o 

is an £-vector of which all entries belong to {:::;, = }. Let E0 (E0 ) and 
10 (10 ) denote the index sets of equality and inequality constrained 
component-functions Gi(·) (Hi(·)) of G(·) (H(·)) respectively, hence 
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E0 = {i E {l, ... ,m} I ◊i E {=}} 10 = {l, ... ,m} \ E0 

E0 = {i E {1, ... ,l} I oi E {=}} Io = {1, ... , l} \ Eo 

Furthermore, let D be open, and let G( · ), H( ·) be once continuously 
differentiable on D, so 

G(·),H(·) E C1(D) 

Finally, we define the Jacobians of the equalities a.nd saturated inequal
ities a.s follows. 

Definition 3.2 (MF-regularity with respect to) z E a( r) is called 
MF-regular w.r.t. G(·) and H(·) if the following two conditions are sat
isfied. 

• ( J~(z) ) has full row rank 
J_;(z) 

• There is a direction y E Rn such that 

JJ(z,r)y < 0 , Jj(z)y < 0 

J~(z)y = 0 , J_;(z)y = 0 
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We can now state the following result. 

Theorem 3.4 (The MF-regular case) Let {2.1}-(2.5} be given. 
Suppose W ~ RHS. Let X = {z E Rn I H(:z:) o O}, where H(·) is a 
vector-valued function from Rn to R' (l E N U { 0} J and o is an l-vector 
of which all entries belong to {$, = }. Furthermore, let D ~ cl(X) be 
open, G(·) be vector-valued, and G(·),H(·) E C1(D). Finally, assume 
that V:z: E Uwa(r): :z: is MF-regular w.r.t. G(·) and H(·). Then a(·) 
is continuous w.r.t. W. 

Proof The closedness of a(·) w.r.t. W immediately follows from the 
continuity of G(·) and H(·) w.r.t. D. In order to prove the openness, 
let us suppose that (rle)IN is a sequence in W, converging to r 00 E W. 
Let z 00 E a( r00 ). We have to construct a sequence ( :z:le )1N such that 
Vk EN: zle E a(rle) and lim:z:le = z 00 • 

First we observe that for each direction p E Rm in the parameter space, 
there is an open neighbourhood A ~ R of 0, an open neighbourhood 
n ~ Rm of p and a continuously differentiable function 1/J(.) : A X n --+ 

Rn such that 

Vp E S1: 1/J(O,p) = 0, and 

VO$ .XE A Vp E S1: z 00 + 1/J(.X,p) E a(r00 + .Xp) 
(3.5) 

Intuitively, this result implies that small enough steps in the param
eter space can be reacted upon by small enough (nonlinear) steps in 
the solution space, such that the resulting solution remains feasible for 
the perturbed system of constraints. The proof of this statement relies 
upon the MF-regularity assumption and the Implicit Function Theo
rem; details can be found in [Gauvin & Dubeau, 1982]. Let us define 

zlc E argmin{II z - :z: 00 111 :z: E a(rle)} 
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Due to the fact that a(rk) is non-empty and closed, such a choice is 
always possible. Suppose lim zlc f- z 00 , then 

:le> 0 Vk0 E N :lk > k0 : II zlc - :z:00 II~ e 

Hence, there is a subsequence (zP(k))IN such that 

Vk E N : II zP(k) - z 00 II~ e 

Let ,Xie =II rk - r00 II and let pk be chosen such that II pk II= 1 and 
,Xie pk = rk - r 00 • Evidently, there is a subsequence ( q( k ))IN of (p( k ))IN 

such that lim pq(k) exists, and equals, say p00 • 

As a result, there is an open neighbourhood A~ IR of 0, an open neigh
bourhood n ~ Rm of p00 , and a continuously differentiable function 
1/J( ·) : A x n -+ Rn such that (3.5) is satisfied. 

Let k0 E N be chosen such that Vk > k0 : (,Xq(k),pq(k)) E Ax n. 
From (3.5) it follows that 

Note that 1/J(·) E C1(A x 0), so 

By definition of zlc, we have 11 z 00 -z9(1c) 11~11 z 00 -(z00 +1/J(..X9(1c), p9(k))) II 
for each k > k0 • Consequently, lim II :z: 00 - zg(k) II= 0. This result, 
however, contradicts the fact that (zg(k))IN is a subsequence of (zP(k))IN· 

Therefore, lim :ck = :c00 • 

D 
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Note that the MF-regularity assumption implies that W can only be 
a subset of the interior of RHS (cf. (3.5)). Also note, that for X = 
R and a one-dimensional real-valued inequality constrained function 
G(·) E C1(R), the MF-regularity condition implies that the derivative 
of G( ·) is fixed in sign. This excludes, for instance, the situation of 
Figure 2.1, where G(·) has a stationary point. Finally, in [Gauvin 
& Dubeau, 1982) it is proven that even in a more general problem 
setting (general versus right-hand-side perturbations), the same result 
holds. What we have done is adopted their approach and put it into 
the framework of Section 2. 

3 .4 Mixtures 

In this section we will unify some of the previous results. Theorem 3.5 
is a combination of Theorem 3.1-3.3. More precisely, Theorem 3.1 and 
some slightly weaker versions of Theorem 3.2 and 3.3 can be reobtained 
from Theorem 3.5 as a special case. The same reasoning applies to 
Theorem 3.6 as a combination of Theorem 3.1, 3.3 and 3.4. Both 
results seem to be new. First, the following description of the feasible 
set map a(•) will be considered. 

a(r,s,t) = {:z: EX I G1 (:z:) ~ r, G2(:z:) ~ s, Az- b◊t} (3.6) 

Here, G1(·) and G2(·) are (extended) vector-valued functions which are 
defined on D, and o is a vector all entries of which are elements of 
{~, =}. 

Theorem 3.5 (Mixed case 1) Let {2.1)-(2.5) be given. Let W -
{(r, s, t) I :3s < s : a(r, s, t)-/- 0}. In addition, suppose that 

• X is closed and convex 
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• X is polyhedral if the matrix A is non-vacuous 

• G1 (·) is strictly quasi-convex on X and continuous w.r.t. X if 
G1 ( • )-type of constraints occur explicitly in the description of a(·) 

• G2(·) is convex on X and continuous w.r.t. X 

• a(·) is essentially bounded w.r.t. W if G1(·)-type of constraints 
occur explicitly in the description of a(·) 

Then a(·) is continous w.r.t. W. 

Proof The closedness of a(•) w.r.t. W immediately follows from Theo
rem 2.3. In order to prove the openness, consider a sequence ( rle, sle, tle) 111 

in W which converges to ( r 00 , s00 , t00 ) E W. Let z 00 E a( r 00 , s00 , t00 ) 

be arbitrarily chosen. We have to construct a sequence (zle) 111 with 
zle E a( rle, sle, tie) 'r:/k E 1\1 and lim zle = z 00 • For this purpose we will 
distinguish between two cases. 

Case 1: G1 ( · )-type of constraints do not occur explicitly in (3.6) 

From (s 00 , t00 ) E Wand the definition of W, it follows that there 
is an ii: E a( s00 , t00 ) such that G2( ii:) < s00 • Let e > 0 be arbitrar
ily chosen, and let ..\ E (0, 1) be chosen such that 

e 
..\ II ii: - z 00 II< -

. 2 

Define z~ =.\ii:+ (1 - ..\)z00 • The following statements are easily 
verified 

According to Theorem 3.1 there is a sequence (zle)IN such that 
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(If there are no affine constraints explicitly stated in the descrip
tion of a(·), then choose zle = x~ Vk E N.) From the above two 
statements.and the continuity of G2(·) w.r.t. X it follows that 

€ 
:lk1 E 1\1 Vk > k1 : II zle - z~ II< 2 
:lk2 E 1\1 Vk > k2 : G2 (zle) < 8k 

Hence, Vk > max{k1 ,k2}: zit E a(sk,tk) and II zit-zoo II$ 
II zle - :z:~ II + II z~ - z 00 11< €. Applying Lemma 3.1 yields the 
desired result. 

Case 2: G1(·)-type of constraints do occur explicitly in (3.6) 

Let :i: E a( r 00 , s00 , t00 ) \ { z 00 } and e > 0 be arbitrarily chosen. (If 
such an :i: does not exist then we can use the same argument as in 
the proof of Theorem 3.3 to show that any sequence (zle)IN with 
zle E a( rle, sk, tie) converges to z 00 .) Let >i E (0, 1) be chosen such 
that 

€ 
>i 11 :i: - z 00 11< 2 

€ 
:z:~ E a(r00 , s 00 , t 00 ) j G1 (:z:~) < r 00 j II :z:~ - :z: 00 II< 2 

According to Case 1 there is a sequence ( :z:le )IN with 

From the above two statements and the continuity of G1(·) w.r.t. 
X it follows that 

€ 
:lk1 E 1\1 Vk > k1 : II zle-z~ II< 2 
:lk2 E 1\1 Vk > k2 : G1(:vk) < rle 



3.4. MIXTURES 53 

Hence, Vk > max{k1 ,k2 } :ck E a(rk,sk,tk) and 11 :ck - :c00 II 
$ II :ck - :c~ II + II z~ - :c00 II< e. Again, the result follows from 
Lemma 3.1. 

□ 

The condition imposed on W is nothing but a Slater-type of condi
tion with respect to the non-linear constraints which are convex but 
not strictly quasi-convex. This immediately follows from the fact that 
(r, s, t) E W if and only if 3:c E a(r, s, t): G2(:c) < s. Introducing such 
a condition for the strictly quasi-convex functions would be superflu
ous because strict quasi-convexity implies Slater's condition as soon as 
a(r, s, t) contains at least two points. 

Although the set W does not coincide with the entire set of feasible 
right-hand-sides, it fully contains the relative interior of the latter set. 
Loosely speaking, W equals the set of feasible right-hand-sides, except 
for that part of the relative boundary which is induced by the non-linear 
constraints which are convex but not strictly quasi-convex. Compared 
to the result in (Hogan, 1973") our result is stronger, because it may 
include more than just the relative interior of RHS, but it has been 
derived under stronger assumptions as well. 

Let us now consider the following description of a(·). 

a( r, s, t) - { :c E X I G1 ( z) $ r, G2 ( z) ◊ s, Az - b o t}, with 

X - {z E Rn I H1(z) $ 0, H2(:c)◊'0, Gz-do'O} 
(3.7) 

Here, G1 (·),G2(•),H1(·) and H 2(·) are vector-valued functions defined 
on Rn, and ◊, ◊1 , o and o' are vectors of which all entries belong to 
{$,=}. 
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Theorem 3.6 (Mixed case 2) Let (2.1)-(2.5) be given. Let W ~ 
RH S. Suppose that 

• D 2 cl(X) and D is open 

• G2 ( •) and H 2( •) are vector-valued and once continuously differen
tiable functions on D, which are also continuous w.r.t. Rn 

• V(r,s,t) E W Vz E a(r,s,t): xis MF-regular w.r.t. G2(·),H2(·) 

and the affine constraint functions 

• If G1 (·)- or H 1 (·)-type of constraints are explicitly used in the 
description of a(·), then 

- G1 ( •), H 1 ( •) are strictly quasi-convex on X and D, and con
tinuous w.r.t. X and D respectively 

G2 ( • ), H 2 ( ·) are quasi-convex on X and D respectively 

Gf(·) is affine on X if◊i E {=} 

- Hl (-) is affine on D if ◊~ E { =} 

- a(·) is essentially bounded w.r.t. W 

Then a(•) is continous w. r. t. W. 

Proof The closedness of a(·) w.r.t. W immediately follows from Theo
rem 2.3. In order to prove the openness, consider a sequence (rlc, sic, tlc)r,i 
in W which converges to ( r 00 , s 00 , t 00 ) E W. Let z 00 E a( r 00 , s00 , t 00 ) 

be arbitrarily chosen. We have to construct a sequence (zlc)r,i with 
zlc E a( rlc, sic, tic) V k E N and lim zlc = z 00 • For this purpose we will 
distinguish between two cases. 

Case 1: Neither G1 ( · )- nor H1 ( • )-type of constraints occur in (3. 7) 
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The existence of such a sequence ( :z:k)IN immediately follows from 
Theorem 3.4. 

Case 2: G1 ( · )- or H 1 ( · )-type of constraints do occur in (3. 7) 

In this case the proof is essentially similar to the second part of 
the proof of Theorem 3.5; the construction of a sequence (:z:k)IN 
with G2(re") ◊ sk, A:z:" - bot", H 2(re") ◊1 0, Grok - do' 0 and 
lim zk = zA can be done as in the proof of Theorem 3.4. 

D 





Section 4 

Summary 

In part I we reported on conditions under which the optimal solu
tion value of a perturbed mathematical programme varies continuously 
with changes in the parameter reflecting perturbation. In fact, we only 
considered the case of right-hand-side perturbations, and we gave two 
reasons for doing so. First, the case of right-hand-side perturbations is 
general enough in view of the stability results that are needed in Parts II 
and III. Secondly, the limitation which results from the assumptions 
we adopted, does not so much stem from the fact that perturbations 
were assumed to appear only in the right-hand-side, but more from 
the fact that the map o:( ·) was assumed to be described by means of a 
finite number of constraint functions, and that its domain as well as its 
codomain were supposed to be subsets of finitely dimensional Euclidean 
spaces. The results obtained can be summarized as follows. 

Theorem 4.1 (Continuity of the value-function) Let (2.1)-(2.6) 
be given. Suppose W ~ V and assume that 

• /(·) is continuous w.r.t. Uwo:(r) 

• o:(·) is essentially bounded w.r.t. W 

57 
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• at least one of the sets of conditions mentioned in Theorem 3.1-
3. 6 applies 

Then v(•) is continuous w.r.t. W. 

Proof This is an immediate consequence of Theorem 2.1 and 3.1-3.6. 
□ 

As already mentioned in Section 2, the continuity of the feasible set 
map o:( •) (besides some boundedness condition on o:( ·) and continuity 
of the objective function f ( •)) is not only a sufficient condition to ensure 
continuity of the value-function v( ·), but is in some sense also necessary. 
This fact is revealed by Theorem 2.2 which states that the continuity 
of o:( ·) is a necessary condition if for any continuous objective function, 
the resulting value-function is required to be continuous. So, in the 
absence of additional conditions on the objective function, it is not 
restrictive to analyse the continuity of the value-function by means of 
the continuity of the feasible set map. 

Unfortunately, the same sort of reasoning does not apply to the con
ditions which are mentioned in Theorem 3.1-3.6; these conditions are 
sufficient, but their necessity cannot be established that unambigu
ously. However, if one is willing to accept some less rigorous argumen
tation, it seems possible to plead that, except for pathological cases, 
the conditions are "almost necessary". Recall that the conditions under 
which the value-function is proven to be continuous, can basically be 
classified into three groups. The first group consists of those mathe
matical programming problems in which only affine constraints occur 
(Theorem 3.1). The second group consists of programming problems 
on which a convexity and a Slater-type of condition are imposed; the 
latter condition can be imposed either directly by restricting oneself 
to the interior of the set of feasible right-hand-sides (Theorem 3.2), or 
indirectly, by requiring that the constraint functions are strictly quasi
convex (Theorem 3.3). Finally, the third group contains those pro
gramming problems for which the Mangasarian-Fromovitz regularity 
condition holds (Theorem 3.4). As is well-known, these three types of 
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conditions are precisely the three classes of sufficient conditions which 
imply constraint-qualification in Karush-Kuhn-Tucker points. Many 
attempts have been made to loosen these conditions, but a significant 
step forward has not yet been made. Apparently, these three types of 
conditions.are too intimately related with the property of a mathemat
ical programme to be "well-behaved". This point of view can now be 
used as a justification for the conjecture that significantly weaker con
ditions which enforce continuity of the value-function will not be easily 
obtained. 

The contributions of the preceding analysis are the following. 

• The limitations which result from considering right-hand-side per
turbations, do not originate from the fact that perturbations are 
assumed to appear only through the right-hand-side, but from 
the fact that the feasible set map is assumed to be described by 
means of a finite number of constraint functions, and that its do
main as well as its codomain are supposed to be subsets of finitely 
dimensional Euclidean spaces. 

• All results are presented within one single framework, viz. the 
continuity of the feasible set map. 

• The continuity of the feasible set map is, in some sense, necessary 
and sufficient for the continuity of the value-function. Therefore, 
in the absence of additional conditions on the objective function, 
it is not restrictive to enforce the former in pursuing the latter. 

• Our result in the strictly quasi-convex case is new; it is a unifica
tion and an extension of two earlier results ( cf. [Evans & Gould, 
1970] and [Hogan,· 1973°]). 

• The formal statements and proofs of the mixed cases as described 
by Theorem 3.5 and 3.6 are new as well. 





Part II 

Duality theory in General 
Mathematical Programming 





Section 1 

Introduction 

In Linear Programming the importance of duality theory is beyond 
dispute. Its usefulness not only originates from the fact that feasible 
dual solutions provide lower bounds on the quality of feasible primal 
solutions, an observation which is used in proving (near- )optimality, 
but also from the (economic) interpretation of the dual variables as 
sensitivity measures. Another, equally important feature of duality 
theory in Linear Programming, is that of symmetry, which means that 
the dual of a linear programme is, again, a linear programme. As such, 
the dual of the dual is well-defined, and, in fact, easily shown to equal 
the primal. From an analytical point of view, the primal and dual 
problems are therefore equally hard to solve, and usually an optimal 
solution of one of the problems can easily be obtained as a by-product of 
solving the other. This symmetry also allows for reoptimization when, 
after a problem has been solved, (some of) its data are perturbed. 

Naturally, there have been many attempts to develop similar and equally 
powerful theories for more general mathematical programmes. Well
known developments include the ones in Convex Quadratic Program
ming ([Dorn, 1960], [Cottle, 1963]), in Convex Programming ([Geof
frion, 1972]), in General Non-Linear Programming ([Rockafellar, 1974]), 
in Integer Linear Programming ([Burdet & Johnson, 1977], [Wolsey, 
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1981]) and in General Mathematical Programming ([Gould, 1969, 1972], 
[Tind & Wolsey, 1981]). Unfortunately, it seems as if each gain in gen
erality had to be paid for by a loss in applicability; although neither the 
capability of generating (tight) upper bounds, nor the interpretation of 
the dual variables as sensitivity measures has been affected, it is, except 
for the convex quadratic case, the symmetry that has. This is already 
revealed when Lagrangean duality in Convex Programming is consid
ered; unlike the convex quadratic and linear cases, the primal and dual 
programmes are no longer equally hard to solve, and in the absence 
of additional properties on the primal, an optimal primal solution is 
no longer readily obtainable from an optimal dual solution. · A more 
serious loss in symmetry occurs in the integer linear and the general 
cases; whereas the Lagrangean dual still is a finitely dimensional opti
mization problem, the decision variables in the integer linear and the 
general dual problems are (extended) real-valued functions, rather than 
(finitely dimensional) vectors of scalars. The conclusion seems justified 
that from a theoretical point of view, extensions of Linear Programming 
duality have succesfully been developed, but that from a computational 
point of view, this has not been the case; see also [Ponstein, 1983]. 

In this part a duality theory for general mathematical programmes is 
discussed. Such a programme, as well as its dual, will be introduced 
in Section 2. It will also be argued that this dual programme is in 
some sense the only natural one, if the primal programme is considered 
to be embedded in a family of parameterized problems which differ in 
their right-hand-sides only. In Section 3 the basic duality results are 
presented. These results concern weak and strong duality, as well as 
the Farkas property. In Section 4 some well known special cases will 
be considered, viz. Lagrangean duality ( which, in its turn, comprises 
Convex Quadratic and Linear Programming duality), augmented La
grangean duality, and Integer Linear Programming duality. Besides the 
fact that the dual programme as defined as in Section 2, is no longer an 
optimization problem in finite dimensions, another inconvenient prop
erty exists; the one-to-one correspondence between primal constraints 
and dual variables, as occurring in Lagrangean and Linear Program
ming duality, is lacking in the general case. In Section 5 we will prove 
that under certain conditions, this one-to-one correspondence can be 
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restored without affecting weak and strong duality. In fact, three dif
ferent cases will be distinguished. First, it is shown that with hardly 
any conditions imposed on the primal programme, this one-to-one cor
respondence can be restored. A less attractive feature of this result is 
that all dual solutions are assumed to have a codomain including the 
"value" +oo. Secondly, it is demonstrated that this weak feature can 
be removed, provided a stability condition on the primal programme is 
met. This result elucidates a limitation of some well-known augmented 
Lagrangean methods; it is argued that some of these methods can only 
produce tight bounds in the case that the aforementioned stability con
dition is met. Thirdly, it is proven that if the primal programme is an 
integer (non-linear) programme, a boundedness condition on the pri
mal feasible set is sufficient to restore the one-to-one correspondence. 
Part II will be concluded by a summary. Sections 1-4 are largely based 
on [Tind & Wolsey, 1981]. The results of Section 5 are new, except for 
Theorem 5.1, which can also be found in [Gould, 1969). 





Section 2 

The primal and dual 
programme 

Consider the following primal programme 

'P: max f(z) 
QI 

s.t. G(z)oO 

z EX 

(2.1) 

Here, f( ·) and G( ·) are functions from a set D ~ R" to IR U { ±oo} and 
Rm respectively, Xis a subset of D and◊ E {S, = }m (m, n E 1\1). More 
formally: 

X ~ D ~ R" 

/(·): D ~RU {±oo} 

oE{S,=}m 

G(·): D ~ Rm 
(2.2) 

As in Part I, G(z)or is a shorter notation for Gi(z)oiri, where 
Gi( · ), ri and ◊i are the i-th components of G( · ), r and ◊ respectively 
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{ i = 1, ... , m). Furthermore, the set of feasible right-hand-sides is de
noted by 

RHS = {r E IRm I ::Ix EX: G(:c)◊r} (2.3) 

The value-junction is defined as 

v(·): Rm-+ IR U {±oo}, with 

{ 
sup{f(:c) I G(:c) ◊r, x EX} 

v(r) = 2 

-oo 

if r E RHS {2.4) 

otherwise 

Problem Pis called infeasible, unbounded or regular according to wheth
er v(O) equals -oo, +oo or a real number respectively. Moreover, Pis 
called solvable if f(x) = v(O) for some :c E X with G(:c) ◊ 0. If P is 
regular and /(:c) 2 v(O) - e for some non-negative e and some feasible 
solution :c, then :c is called an e-optimal solution for P. A zero-optimal 
solution is called an optimal solution. The reason for introducing the 
notion of e-optimality is that all regular programmes have e-optimal 
solutions for every e > O; a similar statement does not hold for e = 0. 

Associated with P the following set of extended vector-valued functions 
is defined 

:F = {g(·): IRm-+ RU {±oo} I 
g(r) ~ g(r') Vr,r' E RHS: r◊r'} 

Finally, the dual programme of (2.1) is defined as 

V: mm g(O) 
g(•) 

s.t. g(G(x)) 2 f(x) V:c EX 

g(·) E :F 

(2.5) 

(2.6) 
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All notions which have been defined with respect to the primal pro
gramme can be defined similarly with respect to the dual. For instance, 
'D is called infeasible, unbounded or regular depending on whether its 
optimal solution value equals +oo, -oo or a real number respectively. 
Note that the decision variable in the dual programme is a function, 
rather than a (finitely dimensional) vector of scalars. It should also 
be noted that, by definition, the argument in the objective of 'D (i.e. 
0) equals the right-hand-side of 'P; if this right-hand-side were differ
ent, the argument in the objective of 'D would have to be modified 
accordingly. 

The justification of calling (2.6) the dual of (2.1) stems from the fact 
that, as in Linear Programming, the dual programme provides upper 
bounds for the optimal solution value of the primal programme, what
ever the value of the right-hand-side. This assertion is stated more 
rigorously in the following lemma. 

Lemma 2.1 Let (2.1)-(2.6) be given. Suppose g(·) E :F. Then the 
following two statements are equivalent. 

1. 'r/r E Rm: g(r) 2:'.: v(r) 

2. g(·) is a feasible solution for {2.6) 

Proof 

1. => 2. 

Let z EX be arbitrarily chosen. From 1. it follows that 

g(G(z)) 2:'.: v(G(z)) 

By definition of v( •) we also have 
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v(G(z)) 2 f(:z:) 

These two inequalities imply that 

g(G(z)) 2 f(:z:) V:z: EX 

This result, combined with the fact that g( ·) E :F, proves the first 
part of this lemma. 

2. :::} 1. 

Let r E Rm be arbitrarily chosen. If r ¢ RHS, then v(r) = -oo 
and the inequality in 1. obviously holds. Suppose r E RH S. Let 
:z: EX be such that G(:r:)◊r. From the feasibility of g(·) it follows 
that 

g(G(z )) 2 f(z) 

whereas g( ·) E :F and G( :z:) ◊ r imply that 

g(r) 2 g(G(z)) 

As a result, we have 

g(r) 2 /{:z:) V:z: EX: G(:z:) ◊r 

which proves the second part of this lemma. 
D 

Corollary 2.1 Let (2.1}-(2.6} be given. If v(r) = +oo then g(r) = 
+oo for all feasible dual solutions g( ·). 

Lemma 2.1 states that if a dual programme is to generate upper bounds 
for the optimal solution value of its primal, irrespective of the specific 
choice of the right-hand-sides in the primal, its feasible solutions should 
correspond to the feasible solutions of (2.6). Moreover, due to the 
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minimization in (2.6), the tightest upper bound for (2.1) is come up 
with. These observations show that only (2.6) is to be considered a 
natural candidate as a dual programme, in case the primal programme 
is considered to be embedded in a family of parameterized programmes 
that differ in their right-hand-sides only. This observation also reveals 
that the duality theory which is discussed here, only "dualizes" right
hand-side perturbations; it is not designed to deal with perturbations in 
either the objective or the constraint functions, because in such cases, 
the set of feasible dual solutions is also subject to perturbation. Before 
continuing with duality results, let us first prove a simple statement 
concerning V. 

Lemma 2.2 Let {2.1}-(2.6} be given. In addition, suppose that P is 
such that v(G(:c)) > -oo and f(:c) < +oo for all z E X. Let V be 
a regular programme. Then every e-optimal dual solution g( •) satisfies 
-E $ supa:{f(:z:) - g(G(:z:)) I :z: EX}$ 0. 

Proof Let E ~ 0 be given, and suppose g( ·) is an e-optimal solution 
for V. From the feasibility of g( ·) it follows that ( cf. Lemma 2.1) 

Va: EX: g(G(:z:)) ~ v(G(:z:)) ~ /(:z:) 

This, combined with the assumptions on P, implies that Va: E X : 
/(:c)-g(G(:c)) is well-defined and non-positive. Therefore, supa:{f(:c)
g( G( :c)) I :z: E X} is well-defined and non-positive. Let us denote this 
supremal value by s. Obviously, s $ 0. Suppose s < -E. Then a u E R 
exists, with s $ u < -E. Now consider the function g( ·) = g( ·) + u. 
Then g( ·) is a feasible solution for V, so 

cp(V) $ g(O) = g(O) + u $ cp(V) + e + u < cp(V), 

where cp(V) is the optimal solution value of V. This, however, is an 
obvious contradiction. Consequently, s ~ -E. 

D 





Section 3 

Basic duality results 

In this section three elementary duality results will be discussed, viz. 
weak duality, strong duality, and the Farkas property. The primal and 
dual programmes that will be considered here, are the ones which are 
defined in Section 2. Recall that cp( ·) denotes the optimal solution value 
of a given optimization problem. 

Theorem 3.1 (Weak duality) Let (2.1}-(2.6} be given. Suppose :z: 
and g( ·) are feasible solutions for P and V respectively. Then f( :z:) 5 
g(O). 

Proof Obviously, f(:z:) 5 v(O). From Lemma 2.1 it follows that f(:z:) 5 
v(O) 5 g(O), which proves the theorem. 

□ 

Corollary 3.1 v( 0) 5 g( 0) for all feasible dual solutions g( ·) 

Corollary 3.2 v(O) 5 cp(V) 
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Weak duality merely states that each feasible dual solution provides an 
upper bound for the optimal solution value of the primal programme. 

Theorem 3.2 (Strong duality) Let {2.1}-(2.6} be given. Then the 
optimal solution values of the primal and dual programme coincide. 
Hence, v(O) = cp('D). 

Proof v( ·) is a feasible solution for 'D, so cp('D) :5 v(O). From weak 
duality it follows that v(O) :5 cp('D). 

□ 

Corollary 3.3 'D has an optimal solution g*(·) with g*(O) = v(O). 

Proof Define g*( ·) = v( · ). The result follows from the proof of Theo
rem 3.2. 

□ 

According to strong duality, the discrepancy between the optimal pri
mal and dual solution values, also known as the duality gap, is equal 
to zero. 

Theorem 3.3 (The Farkas property) Let {2.1}-(2.6} be given. The 
following two statements are then equivalent. 

1. 3:v EX: G(:v)◊O 

2. h(O) ~ 0 Vh(•) E F: (h(G(:v)) ~ 0 V:v EX) 
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Proof 

1. =} 2. 

Consider a primal programme like 'P that has an objective func
tion which equals zero at all points :v E IRn. The result follows 
from applying weak duality to this primal programme and its 
dual. 

2. =} 1. 

Apply strong duality to the pair of primal and dual programmes 
which have been defined in the first part of this proof. 

D 

In Theorem 3.3 a necessary and sufficient condition is given for the 
feasible set of 'P to be empty or not. In this respect it can be regarded 
as an extension of the well-known Farkas Lemma for polyhedra ( e.g. 
[Rockafellar, 1970]). 

One final remark is in order. If the conditions mentioned in Lemma 2.2 
are satisfied, then V is strongly related to the following programme. 

'D': mm sup{/(:v) + g(O) - g(G(:v)) I :v EX} 
g(·) z 

s.t g(G(:v)) > -oo V:v EX 

g(O) ER 

g(·) E :F 

(3.1) 

In this problem too, an optimization takes place over functions g( ·) E :F, 
and weak and strong duality apply to the pair of programmes P and 
V'. The latter property follows from the fact that g(O) ~ supz{f(:v) + 
g(O)-g(G(:v)) I :v EX} for any solution g(·) that is feasible for both V 
and V'. This observation, combined with weak duality, implies that the 
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optimal solution value of V' is a number between the optimal solution 
values of 'P and V. Moreover, it also follows that any €-optimal solution 
for Vis also an €-optimal solution for V' (cf.Lemma 2.2). Note that V' 
looks quite familiar, because it resembles the well-known Lagrangean 
dual. In fact, the latter is obtained from the former by considering only 
affine functions g( ·) in (3.1). Similarly, the inner-optimization in V' can 
be regarded as an extension of the problem which results from applying 
Lagrangean relazation to 'P. In Section 4.1 it will be demonstrated that 
the dual programme V too, comprises the Lagrangean dual as a special 
case. 



Section 4 

Some well-known special cases 

The results in the previous section generalize the corresponding results 
in Linear Programming. A major drawback of the general duality the
ory, however, is its limited usefulness, due to the fact that the dual 
space :F is immense. Moreover, a complete description of the value
function, an a priori known optimal dual solution, is more difficult 
to obtain than solving the given mathematical programme 'P. Even 
worse, it may well be impossible to give a complete description of the 
value-function by means of either an explicit formula or a finite table 
of function values. Therefore, one usually must confine oneself to dual 
solutions g( ·) which have special strocture. Mathematically, this idea 
implies that the dual solution space :Fin (2.6) is replaced by a subset 
of :F. Obviously, this will not affect the property of weak duality. The 
property of strong duality, on the other hand, will generally cease to 
hold, unless, of course, the value-function is a member of the subset un
der consideration, or unless the primal programme has the appropriate 
special structure. For the Farkas property, a similar remark applies. In 
this section we will show that under the appropriate reduction of the 
dual space, some well-known dual programmes are recovered from the 
one that has been defined in Section 2. In Section 5 a new reduction of 
:F will be introduced, and strong duality will be proven to hold if the 
primal programme meets some additional conditions. In what follows, 
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the subset of F under consideration, will be denoted by ( a generic) r. 
So, for various choices of r ~ F, the following optimization problem 
will be considered to be the dual of (2.1). 

1!?.> g(O) 

s.t. g(G(:z:)) ~ f(:z:) 'v:z: EX 

g(·) Er 

4.1 Lagrangean duality 

Let r be the set of affine functions in F, so 

(4.1) 

r = {g(·) E F 13(µ,9) E Rm+l 'vr E Rm: g(r) =µTr+ 9} (4.2) 

In that case, (4.1) boils down to 

IIlln 9 
µ.,I 

s.t. µTG(:z:) + 9 ~ f(:z:) 'v:z: EX 

Pi ~ 0 'vi E {1, ... , m} : ◊i E {:5} 

(4.3) 

The non-negativity requirement in ( 4.3) follows from the monotonicity 
condition in F. Note that the property of weak duality applies to the 
pair of programmes (2.1) and (4.3). 

The property of strong duality can be proven to hold if 'P is a convex 
programme (i.e. X closed and convex, /( •) concave on X, G( •) con
vex on X and lower semi-continuous w.r.t. X and ◊ E {:::}m) and, 
additionally, v(O) E R and some Lipschitz condition on v( •) with re
spect to the right-hand-side of (2.1) (i.e. the origin) is verified (see 
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[Geoffrion, 1972]). This can be explained intuitively by observing that, 
under these conditions, v( •) is concave and not infinitely steep at the 
origin. As a consequence, v( •) is supported at the origin by some affine 
function g*(·). As a result, g*(r) ~ v(r) Yr E Rm and g*{O) = v(O). 
Furthermore, g*( •) E :F, because the converse would imply the exis
tence of an index i E {1, ... ,m} for which µi < 0. Choosing r a scalar 
multiple of the i-th unit-vector with the scalar approaching +oo, the 
function value of g*( •) would tend to -oo, whereas the function value 
of v( •) would never fall below v{O) E R; an obvious contradiction. As a 
result, g*( •) is a feasible solution for ( 4.3) with an objective value equal 
to the optimal solution value of the primal programme, which proves 
strong duality for this case. 

Under the same assumptions, the Farkas property too, remains valid, 
because it boils down t9 a separating hyperplane theorem with respect 
to the closed convex set RHS. Note that the assumption of concavity 
on the primal objective function is superfluous here. 

Finally, let us consider a trivial reformulation of ( 4.3). For each choice 
ofµ, the optimal value for fJ is equal to supa:{f{:z:) - µTG(:v) I :z: EX}. 
Therefore, ( 4.3) is equivalent to the following programme, which is 
nothing but the well-known Lagrangean dual. 

mm sup{f{:z:) - µTG(:v) I :z: EX} 
µ. a: (4.4) 

This proves that if only affine dual functions are considered in {2.6), 
the Lagrangean dual results. In this respect, Lagrangean duality can 
be considered to be a special case of the general duality theory that is 
discussed in Sections 2 and 3. More details on Lagrangean duality can 
be found in the outstanding paper by [Geoffrion, 1972], where it is also 
shown that in a similar way, Linear Programming duality and Convex 
Quadratic Programming duality ( cf. [Dorn, 1960], [Cottle, 1963]) are 
special cases of Lagrangean duality. As a result, {2.6) comprises the 
latter two dual programmes as special cases as well. 
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4.2 Augmented Lagrangean duality 

Let r be the set of real-valued, finitely representable dual solutions. So, 

r = {u(·) e .r 13(.\,8) e Ax R: u(·) = h(.\, ·) + 8} (4.5) 

where As;;; R" (k EN) is a given set, and h(•, •):Ax Rm~ Risa given 
function with h(.\, 0) = 0. The reason why we call such dual solutions 
finitely representable is obvious: each function g( ·) E r is completele 
described by means of a finite number of scalars, viz. ,\i (i = 1, ... , k) 
and 8. Note that the requirement h(.\, 0) = 0 is not restrictive; if it is 
not met, then it can be enforced by a redefinition of h(•, ·). Under this 
definition of r, ( 4.1) can be reformulated as 

mm 8 
>.,8 

s.t. h(.\,G(z)) + 8 2: /(z) Vz EX 

h(.\, ·) E .r 
.\EA 

(4.6) 

The variable 8 can easily be eliminated from ( 4.6), which results in the 
following mathematical programme 

Imn 
>. 

s.t. 

sup{/(z) - h(.\, G(z)) I z EX} 
• 

h(.\,·)E.r (4.7) 

.\EA 

The inner optimization in ( 4. 7) covers all approaches based on aug
mented Lagrangeans, in which the idea of penalizing constraint viola
tions is merged into a Lagrangean approach. For instance, the separable 
quadratic augmented Lagrangean approach for equality constrained pri
mal programmes ( ◊ E { = }m ), is recovered by taking 
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h( •) : Rm+l+m -t R, as 

h(µ, u, r) =µTr+ urTr 

Substituting ( 4.8) into ( 4. 7) renders 

min 
1-',tT 

s.t. 

sup{/(z) - µTG(z) - uG(z)TG(z) I z EX} 
a: 
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(4.8) 

(4.9) 

Due to the fact that ( 4.9) is a minimization problem, every negative 
choice of u is dominated by its positive counterpart -u. Therefore, 
we may add to (4.9) a non-negativity requirement on u. The result
ing inner optimization is then consistent with the separable quadratic 
augmented Lagrangean that can be found in the literature. Other aug
mented Lagrangeans (see e.g. [Rockafellar, 1974]) can just as well be 
cast into the framework of the general duality theory. For a comprehen
sive survey on augmented Lagrangean methods, or Lagrange multiplier 
methods as they are also called, the reader is referred to the excellent 
monograph by [Bertsekas, 1982]; for an early reference on this topic, 
see [Everett, 1963]. Dual programmes like (4.7) could be termed aug
mented Lagrangean duals or Lagrange multiplier duals. In view of their 
relation with general duality theory, however, we prefer to call them 
finitely dimensional dual programmes. 

In Section 5 it will be argued that for a specific class of augmented 
Lagrangeans (i.e. the separable ones), strong duality is unlikely to 
hold, unless some severe conditions on the primal programme are met. 
This apparently new observation reveals some of the limitations of sep
arable augmented Lagrangeans and justifies the use of (more general) 
non-separable ones (see e.g. [Bertsekas, 1982, pp. 207,223,229]). The 
conditions we will present in Section 5 mainly concern either discrete
ness of the primal solution space or stability of the primal programme 
with respect to right-hand-side perturbations. In fact, it will be shown 
that strong duality is unlikely to hold in any separable dual programme, 
not just in finitely dimensional ones. 
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4.3 Integer Linear Programming duality 

Suppose (2.1) is an integer linear programme. Hence, /(z) = cTz, G(z) 
= Az - band X = {z E Z" -, z ~ O} for suitable choices of c, A and b, 
where c and b are vectors and A is a matrix of appropiate dimensions. 
Let (4.1) he the dual programme, where r is chosen to consist of only 
those functions in :F, which are superadditive with respect to the vector 
-b. To he more specific, 

f = {g(·) E :FI g(-b) = o, g(r) > -00 Vr E RHS, 

Vr,r' E RHS: g(r + r' + b) ~ g(r) + g(r')} 
(4.10) 

How does such a definition of r affect the basic duality results? Again, 
weak duality continues to hold because r ~ :F. As far as strong duality 
is concerned, note that v( -b) > 0 if and only if Vr E RH S : v( r) = 
+oo. With this observation in mind, it is not difficult to prove that 
v(·) e r if and only if 3r e RHS : v(r) < +oo. The latter condi
tion is therefore a sufficient condition for strong duality. Recall that 
in Theorem 3.3 the Farkas property was proven by first replacing the 
objective function in the primal programme by an objective function 
which equals zero at all points z E R", followed by applying strong 
duality to this primal and its dual. In the integer linear case we are 
considering here, the primal programme thus obtained, obviously sat
isfies the aforementioned sufficient condition for strong duality. As a 
result, the Farkas property, with J=' replaced by r, also holds in Integer 
Linear Programming duality. 

The reason why a set r as defined as in (4.10) is taken into consider
ation, is explained by the fact that it is now possible to get rid of the 
primal variables in the dual programme. For all g( •) E r we have 

'vz E X : g( Az - b) ~ cT z # V j E { 1, ... , n} : g( a; - b) ~ c; 
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Here, a; is the j-th column of the matrix A and c; is the j-th component 
of the vector c. Consequently, the dual programme ca.n be formulated 
as 

mm g(O) 
g(•) 

s.t. g(a; - b) ~ c; 'r/j E {1, ... ,n} 

g(·) E f 

with r as defined as in (4.10). For more information concerning Integer 
Linear Programming duality we refer to [Burdet & Johnson, 1977) and 
[Wolsey, 1981). A slightly different but basically similar theory applies 
to the case of Mized-Integer Linear Programming; see [Jeroslow, 1979). 





Section 5 

Additively separable dual 
solutions 

As already mentioned in Section 1, the usefulness of Linear Program
ming duality is mainly due to a property we called symmetry, meaning 
that the dual of a linear programme is, again, a linear programme. 
In the general case, symmetry does not exist; as revealed by (2.1) 
and (2.6), the dual of a general optimization problem in finite dimen
sions is not a problem in finite dimensions. Unfortunately, the lack o.f 
symmetry goes even further than that. In Linear Programming, each 
primal variable corresponds to exactly one dual constraint and, due to 
symmetry, each dual variable is associated with exactly one primal con
straint. In the general case, this phenomenon does not occur; although 
each point z in primal space X induces a unique dual constraint, it 
is no longer true that each primal constraint Gi(:c) ◊i O corresponds to 
a single dual variable. In this section it will be shown that the one
to-one correspondence between primal constraints and dual variables 
can be restored by considering only additively separable du.al solutions; 
by definition, such solutions are the sum of an appropriate number of 
one-dimensional functions. As far as strong duality is concerned, three 
results will be presented. First it will be shown that with hardly any 
additional conditions imposed, the property of strong duality contin-
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ues to hold in case the dual space is restricted to the set of additively 
separable, extended real-valued functions. This result implies that the 
dual programme which results from just considering additively separa
ble dual solutions, is a true alternative for {2.6). Secondly, it will be 
proven that, provided a severe condition on the primal programme is 
met, strong duality also holds if, in addition to additive separability, 
the dual solutions are required to be real-valued and continuous as well. 
The severe condition mainly concerns stability of the primal feasible set 
with respect to right-hand-side perturbations, and, as a result, linearity 
of the primal equality constraints. It should be noted, by the way, that 
the continuity requirement with respect to the additively separable dual 
solutions is more or less imposed by the requirement of real-valuedness. 
Finally, it is demonstrated that, in case the dual space is restricted 
to the set of real-valued additively separable functions, strong duality 
also holds if the primal programme is a bounded discrete non-linear 
programme. Theorem 5.1 can also be found in [Gould, 1969), where a 
simple and constructive proof is given; the remaining two theorems are 
new. 

Let (2.1)-(2.5) be given. Let (4.1) be the dual programme of {2.1), 
where r ~ :F is yet to be defined. 

Definition 5.1 {Additive separability) Let g(·) : Rm -+ T be a 
function, where T ~ RU { +oo} or T ~ RU { -oo}. Then g( ·) is called 
additively separable if there are functions g1 ( ·), ... , Um ( ·) : R -+ T such 
that Yr E Rm: g(r) = E:,1 Ui(ri)-

The reason why the set T is introduced, is to avoid the situation in 
which +oo and -oo have to be added up. An additively separable 
function is thus the sum of a number of one-dimensional functions. It 
should be noted though, that, mutatis mutandis, all results in this sec
tion also apply to additively separable dual solutions which are the sum 
of an appropriate number of lower dimensional functions {not necessar
ily of dimension one). 

In case the dual solution space 1s restricted to additively separable 
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functions only, problem ( 4.1) is easily reformulated into 

s.t. 
m 

L9i(Gi(:c))2::f(:c) V:cEX 
(5.1) 

i=l 

Here, r 1 , ... , rm are sets of one-dimensional functions, such that r 1 + 
· · · + rm ~ r is well-defined. The major distinction between ( 4.1) 
and (5.1) is that in the latter, each dual variable corresponds to a 
unique primal constraint, whereas such a relation does not exist in the 
former. In other words, the one-to-one correspondence between primal 
constraints and dual variables is restored if in the dual programme, 
only additively separable solutions are taken into consideration. 

Before discussing the main results concerning strong duality between 
(2.1) and (5.1), let us first state a lemma on the codomain of dual 
solutions. As far as notation is concerned, the vector in which each 
entry i equals the maximum (minimum) of the i-th component of a 
vector a and a vector b, will be denoted by max{ a, b} ( min { a, b}). A 
similar notation applies to scalars. Finally, the index set of equality 
constraints in (2.1) will be denoted by E0 (cf. Section 3.3 of Part I). 

Lemma 5.1 Let {2.1)-(2.5) be given. Let {.I,. 1) be the dual programme 
of (2.1). 

1. If f = {g(·) E j: I Vr E IRm : g(r) > -oo} then {4,1) has 
an optimal solution g*( ·) E r with g*(O) = v(O) if and only if 
v(O) > -oo. 

2. If f = {g(·) E :F I Vr E Rm : g(r) < +oo} then {4,1) has 
an optimal solution g* ( ·) E r with g* ( 0) = v( 0) if and only if 
Vr E Rm: v(r) < +oo. 
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9. /Jr= {g(·) E :FI Vr E Rm: g(r) ER} then (4-1} has an optimal 
solution g*( ·) E r with g*(O) = v(O), provided that v(O) > -oo 
and 

w(s,t) = sup{f(z) I z EX, G(z) :S s, 
18 

-G-(z) < t- Vi E E } 
I - I <> 

(5.2) 

is less than +oo for all values of ( s, t) in the non-negative orthant 
Rm+IE~I + . 

Proof 

1. The only-if part is trivially obtained, since g*(O) = v(O) = -oo 
would imply g*( •) ¢ r; an obvious contradiction. In order to prove 
the if-part, definethefunctiong*(·): Rm---+ RU{±oo} whereg*(r) 
equals w(s, t) for s = max{O, r} and ti = - min{O, ri} Vi E E<> 
(cf. (5.2)). It is now easy to show that 

g*(r) ~ v(r) Vr E Rm 

g*(r) ~ v(O) > -oo Vr E Rm 

g*(r) =S g(r') Vr,r' E Rm: r◊r1 

g*(O) = v(O) 

As a result, g*(·) Er. The result now follows from Lemma 2.1. 

2. The only-if part immediately follows from Corollary 2.1. To prove 
the if-part, let g*( ·) be chosen equal to v( · ). The result now follows 
from the feasibility, hence optimality, of the latter function. 

3. Let g*( ·) be chosen as in 1. The result follows from a similar 
argument as in 1. and from the fact that g*(·) Er. 

D 
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Corollary 5.1 Let the conditions of Lemma 5.1 sub 3 be satisfied. In 
addition, suppose that w(s, t) as defined as in (5.2), is upper (lower} 
semi-continuow with respect to the non-negative orthant R:+IEol. Then 
( 4 .1) has an optimal solution g* ( ·) E r with g* ( 0) = v ( 0) which is upper 
{lower} semi-continuo'US on Rm. 

Proof The optimal dual solution that is defined in the proof of Lemma 5.1 
sub 1. is easily shown to be upper (lower) semi-continuous on Rm. 

D 

In the following three theorems, results on additively separable dual 
solutions will be stated. These theorems are all proven by mathemat
ical induction to m, the number of constraints in the primal which 
are "dualized". Only the first theorem will be proven extensively; the 
remaining ones are similar, and therefore left to the reader to some 
extent. 

The first theorem in this sequence states that, basically, dual solutions 
can always be required to be additively separable without invalidating 
weak and strong duality. A less attractive feature of this theorem is 
the fact that the codomain of all dual solutions must include +oo. 

Theorem 5.1 (Separability - general version) Let {2.1}-(2.5} be 
given. Let (4.1} be the dual of (2.1}, where r ~ :F is defined as 

r - rl + ... +rm, with 

ri - {g( ·) : R _,. R u { +oo} I (5.3) 

As far as the primal programme is concerned, suppose that v~ E X : 
/(~) < +oo andv(O) ER. Then {4,1} has an optimalsolutiong*(·) Er 
with g*(O) = v(O). 
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Proof The proof is by mathematical induction tom. Note by the way, 
that of all sets ri, at most two are distinct. 

Basis of induction: m = 1 

Form= 1 the result immediately follows from Lemma 5.1 sub 1. 

Induction hypothesis: m = l - 1 (l E N \ {1}) 

Suppose the statement is true for any primal-dual pair like (2.1) 
and (4.1), where m = l-1 (l EN\ {1} arbitrarily chosen), where 
r is defined as in (5.3), where the optimal solution value of the 
primal is a real number and where Vz EX: f(x) < +oo. 

Induction step: m = l 

Let (2.1 )-(2.4) be given. Suppose that m = l, that f ( x) < +oo 
Vx EX and that v(O) E IR. Define 

(5.4) 

and consider the following reformulation of (2.1) 

max f(x) 
m 

s.t. Gt(x)◊tO (5.5) 

zEX 

As a primal programme, (5.5) satisfies the conditions that are 
mentioned in the theorem, so from the basis of induction it follows 
that 

(5.6) 

Let us now consider the following primal programme 



m:,x /(a:) - u;(Gt(z)) 

s.t. Gi(a:)◊iO, i=l, ... ,l-1 

a:EX 
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(5.7) 

Note that the objective function in (5.7) is well-defined, because 

(5.8) 

Furthermore, the optimal solution value of (5.7) is real-valued and 
non-positive, because 

1. v(O) > -00 =} :lz EX: Gt(z) ◊l O /\ /(z) > -00 =} 

+oo > v(O) = u;(o) 2: u;(Gt(z)) 2: /(z) > -oo =} 

:lz ex: /(z) - u;(Gt(z)) > -oo 

2. Va: EX: /(a:) - u;(G,(z)) $ o < +oo 

So, according to the induction hypothesis 

satisfying 

l-1 

LU;(Gi(z)) 2: /(a:) - u;(Gt(z)) Va: EX 
i=l 

l-1 

Lu;(o) so 
i=l 

(5.9) 

(5.10) 

Now consider (u;(·), ... ,g;(·)) E r 1 X ... X rl. From (5.10) it 
follows that 

l 

LU;(Gi(a:)) 2: /(a:) Va: EX (5.11) 
i=l 

As a result, E:=i u;(·) is a feasible solution for (4.1). Conse
quently, weak duality implies that 
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l 

L 9:(o) ~ v(O) 
i=l 

However, (5.10) also implies that 

l 

L g;(o) :$ g;(o) = v(O) 
i=l 

(5.12) 

{5.13) 

This implies that E!=l g;( ·) E r is an optimal solution for ( 4.1) 
which closes the duality gap. 

D 

In the following theorem the dual solutions are required to be both 
real-valued and additively separable. Under severe assumptions on the 
primal programme, the property of strong duality is still verified. In one 
of these assumptions, the notions of continuity and essentially bound
edness for point-to-set map reappear ( cf. Definitions 2.3-2.6 of Part I). 

Theorem 5.2 (Separability - restricted version) Let {2.1}-(2.5} 
be given. Let {4-1} be the dual of (2.1}, where r ~:Fis defined as 

ri - {g(·): R-+ RI g(·) is continuous on R and 

g(ri):$g(rD Vri,riER: ri◊irn, i=l, ... ,m 

As far as the primal programme is concerned, suppose that 

• cl(X) ~ D 

• /(·) and G(·) are continuous w.r.t. D 

(5.14) 
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• VzED: f(z)<+oo 

• v(O) > -oo 

• the feasible set map a(·) : Rm --+--+ Rn, which is defined as a( r) = 
{z EX I G(z)or}, is continuous w.r.t. R:' 

• there is an index j E { 1, ... , m} such that the point-to-set map 
/3(·): R --+--+ Rn, which is defined as /3(r;) = {z EX I G;(z)o; 
r;}, is essentially bounded w.r.t. R+ 

Then {4-1} has an optimal solution g*(·) Er with g*(O) = v(O). 

Proof Without loss of generality we may choose the index j equal 
to 1. The proof of the theorem is then similar to the previous one. 
Note that the assumption on ◊ implies that E0 = 0, so all sets ri are 
identical. 

Basis of induction: m = 1 

First we will prove by contradiction that Vr E R+ : v(r) < +oo. 
Suppose v(r) = +oo for some r E R+. Then there is a sequence 
(:i:11 ) 111 such that z" E a(r) Vk E N and Hmf(z") = +oo. In 
the case that m = 1 the point-to-set map a(·) coincides with the 
point-to-set map /3( · ). The condition of essentially boundedness 
then implies that (z11 ) 111 is bounded, which means that (:z:11 ) 111 has 
an accumulation point, say z 00 E cl(X) ~ D. The continuity as
sumption on/(·) w.r.t. D then implies that f(z 00 ) = +oo. How
ever, Vz E D : /( z) < +oo by assumption. This contradiction 
proves that Vr ER+ : v(r) < +oo. 

Applying Theorem 2.1 sub 3. of Part I and Corollary 5.1 proves 
the theorem for the case that m = 1. 
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Induction hypothesis: m = l - 1 (l E IN \ {l}) 

Suppose the statement is true for any primal-dual pair like (2.1) 
and {4.1), where m = l-1 (l E IN\ {l} arbitrarily chosen), where 
the primal programme {2.1) satisfies the conditions mentioned in 
this theorem and where r is defined as in (5.14). 

Induction step: m = l 

Let {2.1)-(2.4) be given, where m =land where the primal pro
gramme satisfies the conditions mentioned in this theorem. As 
mentioned before, we may assume without loss of generality, that 
/3(ri) is essentially bounded w.r.t. R+. The remaining part of this 
proof is along the same lines as the proof of Theorem 5.1; details 
are left to the reader. Note that checking the validity of the as
sumptions of (2.1) on the problems (5.5) and (5.7) is somewhat 
wearisome, but straightforward. 

D 

The ultimate goal of Theorem 5.2 was to state conditions under which 
the property of strong duality with real-valued and additively separa
ble dual solutions could be verified. So why do we impose continuity 
on both the dual solutions g;( ·) and the feasible set map a(·) as well? 
In proving the induction step, programmes (5.5) and (5.7) should have 
real-valued, and ( 5. 7) even additively separable, optimal dual solutions. 
According to Lemma 5.1 sub 2 then, the value-functions of these pro
grammes should not equal +oo anywhere. A natural way to enforce 
this, is to impose upper semi-continuity and real-valuedness on the 
objective functions, and some boundedness condition on ( the closure 
of) the feasible sets. For ( 5. 7) this implies that g;( ·) should be lower 
semi-continuous, which in general, does not result without the lower 
semi-continuity of the value-function of (5.5). On the other hand, the 
value-function of (5.5) and g;(·) are upper semi-continuous under very 
weak assumptions ( cf. Section 2 of Part I). This argumentation leads 
to the conclusion that the value-function of (5.5), and for the induction 
argument to work, also the value-function of (5.7), should be continu
ous, which in a sense is equivalent to the continuity of the feasible set 
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map o:(•) (cf. Theorem 2.1 and 2.2 of Part I). The reasonableness of 
the continuity requirements ( and the essentially boundedness condition 
on {3( •)) is hereby established. 

What about the assumption on o7 In case (2.1) has equality constraints 
(E0 # 0), the framework of Theorem 5.2 is still applicable when each 
equality is replaced by two inequalities. However, if we take a closer 
look at the stability results in Section 3 of Part I, it seems as if such a re
formulation satisfies stability, only if the equality constrained functions 
are affine. So, if attention is restricted to real-valued and additively 
separable dual solutions, and strong duality is still expected to hold, 
then all equality constraints had better be affine! If non-linear equality 
constraints are to be dealt with in Theorem 5.2, an improved version 
of Corollary 5.1 seems to be needed. 

In the final theorem of this section, discrete programmes will be dis
cussed. It will be proven that under some finiteness condition on the 
feasible set of the primal programme, strong duality with real-valued 
and additively separable dual solutions can be verified. 

Theorem 5.3 (Separability - the discrete case) Let {2.1}-(2.5} be 
given. Let {,1.1} be the dual of {2.1}, where rs;;; :Fis defined as 

r - r 1 + · · · + rm I with 

ri - {g(·): R-. R 1 (5.15) 

As far as the primal programme is concerned, suppose that v(O) > -001 

Vz EX: /(a:)< +oo and {a: EX I (G;(:z:) ~ s) I\ (-G;(z) ~ t ifo; E 
{=})} is finite for all (s, t) ER~, for at least one j E {1, ... , m}. Then 
{,1.1} has an optimal solution g*(·) Er with g*(O) = v(O). 

Proof Without loss of generality we may choose the index j equal 
to 1. The proof of the theorem is then, again, similar to the one of 
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Theorem 5.1. Note that of all sets ri, at most two are distinct. The 
basis of induction follows from Lemma 5.1 sub 3. Remaining details 
are left to the reader. 

D 

From the preceding three theorems it follows that in the dual pro
gramme, separability per se can easily be obtained, but separability, 
combined with real-valuedness, can only be established under severe 
conditions on the primal programme. These conditions mainly concern 
either finiteness, or stability of the primal feasible set. In view of the 
results of Part I, the latter condition also seems to imply that in case 
non-linear equality constraints are present in the primal programme, 
stability, and hence strong duality, will generally not hold. These ob
servations elucidate the limited applicability of some augmented La
grangean methods. Basically, these methods are directed towards solv
ing a dual programme with real-valued and finitely representable dual 
solutions. So, in the case that separable augmented Lagrangeans are 
used, a duality gap will generally exist, unless additional assumptions 
are met. 



Section 6 

Summary 

In Part II a. duality theory for genera.I ma.thema.tica.l programmes is 
discussed. This genera.I theory a.ppea.rs to be a. true generalization of 
Linear Programming duality ( and some other well-known special cases), 
in the sense that weak and strong duality, as well as the Farkas property, 
are also valid in the general case. A tremendous distinction between 
the two, however, is caused by the fact that the property of symmetry 
holds for the latter, whereas ,it does not hold for the former. More 
specifically, the dual programme of a. general optimization problem in 
finite dimensions, is not an optimization problem in finite dimensions, 
and, contrary to the situation in Linear Programming, the one-to-one 
correspondence between primal constraints and dual variables does not 
exist. Indeed, the lack of applicability of the genera.I theory seems to 
originate from this lack of symmetry. 

If the dual solution space is reduced to contain only real-valued, finitely 
representable dual solutions, then the dual programme becomes a.n op
timization problem in finite dimensions. This class of dual solutions 
seems to be the only interesting one from a. computational point of 
view. In fa.ct, considering only this class of dual solutions leads to what 
could be called augmented Lagrangean duality, a.nd methods based on 
this concept are considered to be among the most efficient ones nowa-

97 
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days available, to solve constrained non-linear programming problems 
in practice. 

In Part II research aimed at restoring the one-to-one correspondence 
between primal constraints and dual variables. This correspondence 
can be established by considering only additively separable functions 
in the dual solution space. In Section 5 conditions are stated, which 
imply strong duality between a primal and its "separable" dual. The 
contributions of Part II can be summarized as follows. 

• In case the dual solution space is reduced to additively separable 
functions, which are also required to be real-valued and contin
uous, then strong duality holds provided some severe condition 
is met. This condition mainly concerns stability of the primal 
feasible set under right-hand-side perturbations. An important 
observation is that the continuity of the dual solutions is more or 
less imposed by the property of real-valuedness. 

• Strong duality holds if in the dual programme attention is re
striced to real-valued, addititively separable functions, and if the 
primal programme is in some sense, a bounded, discrete optimiza
tion problem. 

The algorithmic implication of the first result for applied constrained 
optimization theory is considerable. In case separable augmented La
grangeans are used to solve a given mathematical programme, then 
strong duality cannot be guaranteed to hold, unless the mathematical 
programme satisfies a severe (stability) assumption. If one would like 
to apply such methods to problems which go beyond these conditions, 
a non-separable augmented Lagrangean should be used if a duality gap 
is to be avoided. 



Part III 

Decomposition methods in 
General Mathematical 

Programming 





Section 1 

Introduction 

In the early sixties, G.B. Dantzig, P. Wolfe and J.F. Benders devised 
two clever approaches for solving specially structured mathematical 
programming problems ( cf. [Dantzig & Wolfe, 1960], [Benders, 1962]). 
Both methods aim at solving a given mathematical programme by 
means of alternately solving a parameterized descendant of this prob
lem, usually referred to as the subprogramme, and adjusting the value 
of the parameter concerned. The latter is done by partially solving a 
mathematical programme, usually referred to as the master programme, 
which is nothing but a reformulation of the original programme. The 
part of the master programme which is solved during an iteration, is 
extended over iterations, which implies that it resembles more and more 
the master programme, hence the original programme, as iterations go 
by. In the subprogramme too, only a part of the given mathematical 
programme is taken into consideration, the remaining part being par
tially accounted for through the parameter. In the approach of Dantzig 
and Wolfe, for instance, the subprogramme is obtained from the original 
linear programme, by moving a weighted sum of some of the constraints 
to the objective function, the parameter being the vector of weights. 
In the approach of Benders, the subprogramme is obtained from the 
original problem by parametrically fixing some of the decision variables 
to specific values. 

101 
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The concepts of decomposition have been the subject of extensive re
search ever since their introduction. To a certain extent, research aimed 
at adjusting the original ideas to develop decomposition schemes which 
subsumed the existing ones. Generalizations of Dantzig-Wolfe Decom
position have been discussed in [Dantzig, 1963] for the convex case, in 
[Sweeney & Murphy, 1979], [Holm & Tind, 1985] and [Tind & Holm, 
1986] for the integer linear case, and in [Burkard et al., 1985] for the 
general case. Generalizations of Benders Decomposition have been 
developed in [Balas, 1969] and in [Lazimy, 1982,1985] for the convex 
quadratic case, in [Geoffrion.', 1972c] and in [Duran & Grossmann, 1986] 
for two partially convex cases, in [Wolsey, 1981] for the general case, 
and in [Burkard et al., 1985] for the separable case. Other decom
position schemes, which all seem to have descended from the original 
procedures, have been developed as well. The most famous one in this 
respect is Lagrangean Relaxation, which is strongly related to Dantzig
Wolfe Decomposition; see e.g. [Geoffrion, 1974], [Fisher et al., 1975], 
[Goffin, 1977], [Fisher, 1981] and [Dyer & Walker, 1982]. 

The usefulness of decomposition is illustrated by the vast literature 
on applications, both theoretical and practical. For instance, Dantzig
Wolfe Decomposition type of methods have succesfully been applied to 
economic lot sizing problems ([Dzielinski & Gomory, 1965]), cutting 
stock problems ([Gilmore & Gomory, 1961,1963]), multi-commodity 
flow problems ([Assad, 1978]), routing problems ([Desrosiers et al., 
1984]) and crew scheduling problems ([Crainic & Rousseau, 1987]). 
Benders Decomposition type of methods have succesfully been applied 
to variable factor programming problems ([Wilson, 1966]), location 
problems ([Geoffrion & Graves, 1974]), mixed-integer linear program
ming problems ([McDaniel & Devine, 1977]), multi-commodity fl.ow 
problems ([Assad, 1978]) and quadratic assignment problems ([Bazaraa 
& Sherali, 1980]), as well as to practical problems dealing with schedul
ing of nursing personnel in a hospital ([Warner & Prawda, 1972]), plan
ning of electric power generation ([Noonan & Giglio, 1977], [Bloom, 
1983], [Rouhani et al., 1985]), investment and allocation decisions in 
water planning ([Armstrong & Willis, 1977]) and the determination of 
chemical equilibria ([Clasen, 19841). For applications of Lagrangean 
Relaxation the reader is referred to e.g. [Geoffrion, 1974], [Fisher et 
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al., 1975], [Goflin, 1977], [Fisher, 1981) and [Dyer & Walker, 1982]. 
For two monographs on decomposition methods in the linear and the 
(partially) convex case, the reader is referred to [Dirickx & Jennergren, 
1979] and [Holmberg, 1985]. 

In Part III we present a unifying framework for extending the two afore
mentioned decomposition methods. Several names exist for these meth
ods. Benders Decomposition is also known a.s Primal Decomposition 
and Resource Directive Decomposition, while Dantzig-Wolfe Decompo
sition is also referred to as Column Generation, Generalized Linear Pro
gramming, Dual Decomposition and Price Directive Decomposition. We 
denote our generalizations by Variable Decomposition and Constraint 
Decomposition respectively. The reason for adding these two names to 
the list of already existing ones, is to facilitate terminology. The names 
seem to be well-chosen because in these methods, decomposition takes 
place with respect to the set of variables and constraints respectively. 

In Section 2 Variable Decomposition is discussed. The presentation is 
subdivided into a number of subsections. In Subsection 2.1 and 2. 2 the 
variable decomposition procedure is introduced and some complemen
tary observations are ma.de. The most crucial observation concerns an 
essential feature of the dual subprogrammes, without which the appli
cability of the procedure becomes questionable. It is shown that the 
formulation of the primal subprogrammes which is considered in Sub
section 2.1, leads to dual subprogrammes with the desired property. It 
is also argued that in former extensions of Benders Decomposition ( ex
cept for the one in (Wolsey, 1981)), additional conditions on the primal 
programme were needed, just because of the use of inappropriate for
mulations of the primal and dual subprogrammes. In Subsection 2. 3 the 
variable decomposition procedure is related to existing literature. The 
ma.in difference with former generalizations of Benders Decomposition 
is twofold. First of all, we do not have to impose any additional assump
tions on problem structure. Our development therefore comprises the 
ones in (Balas, 1969] and (La.zimy, 1982,1985] for the convex quadratic 
case, the ones in [Geoffrion, 1972] and [Duran & Grossmann, 1986] for 
two partially convex cases, and the one in [Burka.rd et al., 1985] for 
the separable case. One of the implications of our development is that 
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(some of) the additional assumptions in [Lazimy, 1982,1985] and in 
[Burkard et al., 1985] are proven to be superfluous. A second difference 
between our approach and former generalizations is that the primal 
and dual solutions which are generated during the iterative process, 
are allowed to be inaccurate. Additionally, duality gaps between the 
underlying primal and dual subprogrammes are also allowed to occur. 
These two features of Variable Decomposition are appealing, especially 
as far as applications are concerned; exact solutions may not exist, and 
even if they do, it may be computationally burdensome, prohibitive, or 
even impossible, to identify them. Because of these features, Variable 
Decomposition also comprises the approach in [Wolsey, 1981], which 
is an extension of Benders Decomposition to the general case as well. 
Another advantage of our discussion is that we do not need additional 
notions that cloud the apparent similarity between the original Benders 
Decomposition and its extension. Subsection 2.4 deals with the ques
tion which conditions ensure a non-cyclic behaviour of the procedure, 
and which conditions imply convergence within a finite number of steps. 
In Subsection 2.5 the question of asymptotic convergence is addressed. 
Asymptotic convergence means that each accumulation point of a se
quence of intermediate solutions, is (near-)optimal. It is proven that, 
apart from some minor conditions on problem data, stability of the 
primal subprogrammes and closedness of the point-to-set map which 
largely describes the construction of the sequence of intermediate pri
mal solutions, are sufficient conditions for asymptotic convergence. It 
is also argued that, apart from pathological cases, both conditions are 
necessary as well. In Subsection 2. 6 a new application of Variable De
composition is discussed. It turns out that if the approach is applied to 
mixed-integer non-linear programmes with an underlying convex struc
ture, the mixed-integer part is separated from the non-linearities; in 
that case, the procedure amounts to alternately solving purely convex 
programmes and mixed-integer linear programmes. 

A similar discussion with respect to Constraint Decomposition follows 
in Section 3. After its introduction and some minor observations in 
Subsections 3.1 and 3.2, the procedure is related to existing literature 
in Subsection 3.3. After that, its non-cyclic behaviour and finite conver
gence is established in Subsection 3.4. In Subsection 3.5 the asymptotic 
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convergence of the procedure is analysed. It is proven that under much 
more restrictive conditions than in the case of Variable Decomposition, 
Constraint Decomposition also converges asymptotically. The condi
tions mainly concern the finite representability and continuity of the 
intermediate dual solutions. The necessity of these sufficient conditions 
is also discussed. 

As a direct consequence of the discussions in Section 2 and 3, it fol
lows that Variable and Constraint Decomposition can be considered 
to be dual methods. More specifically, in Section 4 it will be shown 
that under extremely mild conditions, the latter approach applied to a 
mathematical programme is equivalent to the former applied to a well
chosen dual. The dual programme which has to be considered for this 
purpose, is the additively separable dual programme which is discussed 
in Section 5 of Part II. 

In Section 5 extensions of some related decomposition schemes are 
presented. In fact, three related methods will be discussed, viz. La
grangean Decomposition, or Variable Splitting as it is also sometimes 
referred to ( cf. [Jornsten et al., 1985], [Minoux, 1986], [Guignard & Kim, 
1987)), Cross Decomposition ( cf. [Van Roy, 1980,1983)) and Kornai
Liptdk Decomposition ( cf. [Kornai & Liptak, 1965], [ Aardal & Ari, 
1990]). The former is nothing but a Lagrangean Relaxation approach. 
The latter two can be regarded as being in between Variable and Con
straint Decomposition; from both decomposition methods some parts 
are adopted, while at the same time, other parts are ignored. Part III 
is concluded by a summary. 

The main contributions of Part III arise from the generality of the 
discussion. In deriving the variable and constraint decomposition pro
cedures, no restrictive assumptions on the primal programme are made. 
Furthermore, the (intermediate) primal and dual solutions, which are 
generated during the iterative process, are allowed to be inaccurate 
and duality gaps between the underlying primal and dual programmes 
are allowed to occur. As a result of these features, Variable and Con
straint Decomposition properly include former generalizations of Ben
ders and Dantzig-Wolfe Decomposition. At first glance, the approach 
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in [Burkard et al., 1985] seems to contradict this allegation. The math
ematical programmes considered there, are formulated in the context 
of algebraic optimization. In such problems the underlying structure is 
described by totally ordered commutative (semi-)groups, which com
prises the ordered group (R, +, $) we consider. However, except for 
the asymptotic convergence results, the approach in Part III can be ex
tended to account for these abstract fields of optimization as well, which 
means that our approach has not really lost in generality. Moreover, we 
accounted for inaccuracies in intermediate primal and dual solutions as 
well as for duality gaps between the underlying primal and dual pro
grammes. This fact, combined with the observation that in [Burkard 
et al., 1985] separability assumptions on the primal objective and con
straint functions were needed in deriving their extension of Benders 
Decomposition, validates the above claim. The non-cyclic and finite 
convergence results in Subsection 2.4 and 3.4 are, due to their gener
ality, new, although similar results were already mentioned in [Wolsey, 
1981] and [Burkard et al., 1985]. The asymptotic convergence results 
are also new; as far as Variable Decomposition is concerned, a similar 
result for the partially convex case can be found in [Hogan, 1973], and 
as far as Constraint Decomposition is concerned, a weaker result which 
takes Lagrangean duality into account and which concentrates on the 
convergence of dual solutions, can be found in [Magnanti et al., 1976]. 
Finally, the procedure which results from applying Variable Decom
position to mixed-integer non-linear programmes with an underlying 
convex structure, also contributes to the variety of known applications. 
The duality relation between Variable and Constraint Decomposition 
for the general case is an extension of a similar result for the the linear 
case ([Lasdon, 1970]) and the separable case ([Burkard et al., 1985]). 
Finally, the extensions of Lagrangean Decomposition, Cross Decompo
sition and Kornai-Liptak Decomposition are obtained straightforwardly 
from the preceding discussions. 



Section 2 

Variable Decomposition 

In this section the variable decomposition procedure is discussed. Basi
cally, it is a generalization of Benders Decomposition to general mathe
matical programmes. The idea underlying this approach is also known 
as (Generalized) Benders Decomposition, Primal Decomposition and 
Resource Directive Decomposition. In Subsection 2.1 and 2.2 the pro
cedure is explained and some remarks are made. In Subsection 2.3 
the procedure is related to existing literature. Non-cyclic behaviour, 
finite convergence and asymptotic convergence are the topics of Sub
sections 2.4 and 2.5. Section 2 is concluded by an application of the 
procedure to mixed-integer non-linear programmes with an underlying 
convex structure. 

2.1 Problem manipulations and solution 
strategy 

Consider the following primal programme 
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'P: 

SECTION 2. VARIABLE DECOMPOSITION 

max 
lll,1/ 

f(3J,y) 

s.t. G(3J,y)◊0 

(x,y) E Un(X x Y) 

(2.1) 

where f ( ·) and G( •) are functions from D ~ Rn to R U { ±oo} and Rm 
respectively, Un (X x Y) ~ D and ◊ E {:5, = }m (m, n E IN). More 
formally, 

Un (X x Y) ~ D ~ Rn 

/(·): D-+ IR U {±oo} 

◊ E {:5, =}m 

G(·): D-+ IRm 
(2.2) 

As in Part I and II, G(x,y)◊r is a shorter notation for Gi(x,y)◊iri, i = 
1, ... ,m, where Gi(·), ◊i and ri are the i-th components of G(·), ◊ 
and r respectively. Furthermore, it will be assumed that the following 
condition is satisfied. 

If (x,y) is a feasible solution for 'P, then a y' E Y 
exists, such that (3J, y') is a feasible solution for 'P (2.3) 
with /(3J, y') > -oo. 

This assumption is not a severe one; it is already met if the codomain 
of the objective function /( •) does not include -oo. The reason why we 
persist in taking extended objective functions f ( ·) into consideration, 
is to allow for the possibility off(·) being the result of an optimization 
problem itself. The necessity of introducing assumption (2.3) will be 
explained in this subsection, after the variable decomposition procedure 
has been described. 

In (2.1) two types of constraints occur, one of which is defined by means 
of a constraint function G( · ), and the other by means of a set U n 
(Xx Y). This fact does not imply that these two types are necessarily 
distinct. The set Un (X x Y) may partially, or even completely, be 
described by means of (in)equalities. The reason for keeping the two 
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types separate, is to have the opportunity to treat one differently from 
the other. The distinction between the sets U and X x Y stems from the 
fact that the former allows for interdependence between the variables 
x and y, whereas the latter does not. 

The reason for identifying two types of variables in (2.1), is to examine 
the possibility of splitting up the joint optimization in 'P into two sep
arate ones, viz. one optimization with respect to the variables of one 
type and one optimization with respect to the variables of the other. 
Obviously, it would be illusory to think that a complete independence 
between the two optimizations could be achieved. Therefore, we seek 
to decompose the joint optimization in (2.1) into, on the one hand, an 
optimization with respect to the x-variables and, on the other hand, 
an optimization with respect to they-variables conditionally on the x
variables. The latter optimization is easily obtained from P by fixing 
the x-variables to a certain value :c E X. By doing so, the following 
family of parameterized primal subprogrammes is obtained 

P(:c) : max f(x,y) 
z,y 

s.t. G(x,y)o0 
(2.4) 

x=f 

( x, y) E U n ( .X X Y) 

where .X may be any superset of X. If we let c,o( •) denote the optimal 
objective value of a given optimization problem (being defined as -oo 
( +oo) if the feasible set of the maximization (minimization) problem 
in question is empty), then the optimization with respect to the :v
variables looks like 

m:,x c,o(P(:c)) 

s.t. c,o(P0(:c)) ~ 0 

f EX 

(2.5) 
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where 7'0(:c) is a mathematical programme obtained from 7'(:c) by re
placing the objective function / ( •) with an objective function which 
equals zero at all points (z, y) E Un (X x Y). As a result, the con
straint cp(7'0(!)) ~ 0 guarantees that in (2.5) only those values for 
! E X are taken into account that can be supplemented with a value 
ii, such that {!, ii) is a feasible solution for 7'. It is a trivial observation 
that (2.5) is equivalent to the original optimization problem 7' in the 
following sense. 

Theorem 2.1 Let {2.1}-(2.5} be given. Then the optimal objective 
function values of 1' and (2.5} coincide. In addition, if 1' is regular, 
then (z•, y*) is an e-optimal solution for 1' if and only if 3e' E (0, e] : 
a,* is an e'-optimal solution for (2.5} and (z*,y*) is an (e - e')-optimal 
solution for 1'( z*). 

Proof This is left to the reader. For the notions of infeasibility, 
unboundedness, regularity and e-optimality we refer to Section 2 of 
Part II. 

□ 

The nested optimization in (2.5) is the core of Variable Decomposition: 
the optimization with respect to, on the one hand, the z-variables and, 
on the other hand, they-variables is done by two distinct, albeit related 
programmes. Unfortunately, (2.5) itself is usually not suitable to be 
dealt with directly, due to the complexity of both the objective function 
and the constraints. Therefore, some additional problem manipulations 
have to be carried out in order to end up with a formulation which is 
more amenable to solution. The key problem manipulations involved 
are called projection, dv.alization and outer approzimation, while the 
key solution strategy is referred to as relazation. 1 In fact, projection has 
already been carried out, being the transition from (2.1) to (2.5). For 
the second key problem manipulation, we need the dual subprogrammes 

1This terminology has been adopted from [Geoffrion, 1972"]. We changed his no
tion of outer linearua.tion into outer a.pprozima.tion because linear approximations 
are too restrictive for the general case we are dealing with. 
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V(z), which are the dual programmes of 'P(z). These programmes are 
defined as ( cf. Section 2 of Part II) 

V(i): mm g(O, z) 
g(,) 

s.t. g(G(:c,y),:c) ~ f(:c,y) V(:c,y) EU n (Xx Y) (2.6) 

g(·) E :F 

As in Part II the dual solution space :F equals 

:F - {g(·): Rm+n1 ~RU {±oo} I 
g(r,i):::; g(r',z) V(r,i),(r',i) E RHS: ror'} 

(2.7) 

where n 1 is the dimension of the :c-vector, and RH S is the set of feasible 
right-hand-sides, which is defined as 

RHS = {(r,i) E Rm+ni I 
3(:c,y) E Un(.X x Y): G(:c,y)or, :c = ii:} 

(2.8) 

The dual programmes V0(z) of P0(z) are defined similarly; they are 
obtained from (2.6) by replacing f(:c, y) with 0. 

Dualization can now be carried out by replacing the two primal pro
grammes in (2.5) by their dual counterparts. Due to strong duality, an 
equivalent mathematical programme is obtained. 

max i,o(V( :c)) 
Ill 

s. t. i,o(V0 ( :c)) ~ 0 

:c EX 

(2.9) 
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Note that we skipped the bar from the :z:-variables. In order to unify the 
way in which the objective cp(V( :r:)) and the constraint cp(V0 ( :z:)) ~ 0 
can be handled, we restate (2.9) as 

max () 
:r:,B 

s.t. -cp(V(z )) + () $ 0 
(2.10) 

-cp(V0 (z)) $ 0 

(:r:, 8) EX x R 

Obviously, 'P and (2.10) are equivalent problems, in the sense that one 
is infeasible, unbounded or regular if and only if the other is. Moreover, 
from (2.3) it follows that feasible values for the z-variables in the two 
programmes coincide. In addition, if one of the two programmes is 
regular, then (near-)optimal solution values for the z-variables in the 
two programmes coincide as well. Outer approximation is based on the 
fact that a given scalar is less than or equal to an intimal value of a 
set if and only if this scalar is less than or equal to every element of 
this set. To be more specific, if the feasible sets of V( :r:) and V0( :r:) are 
denoted by .6. and .6.0 respectively, hence 

.6. = {g(·) E :FI g(G(z, y), :z:) ~ /{z, y) V(:c, y) EU n {Xx Y)} 

.6.0 = {h{·) E :FI h(G(z,y),z) ~ 0 V(z,y) EU n (.Xx Y)} 

then the following statements hold 

8$cp(V(:e)) {::} 8$g(0,:e) Vg(·)E.6. 

0$cp(V0 (:v)) {::} 0$h{0,z) Vh(·)E.6.0 

These observations ultimately lead to the final restatement of 'P. 
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max 0 
a:,IJ 

s.t. -g(O,:z:)+0 ~ 0 'v'g(·) EA 
(2.11) 

-h(O,:z:) ~O 'v'h(•)EA0 

(:z:, 0) EX x R 

V'D(A, A0 ) is what is usually referred to as the master programme. 
The master programme is easily proven to be equivalent to the original 
programme 'P, in the sense that the former is infeasible, unbounded or 
regular if and only if the latter is. Moreover, feasible as well as (near-) 
optimal solutions for the :z:-variables in the two programmes coincide. 
Note that the so-called cut sets A and A0 are independent of :z:, which 
appears to be a crucial property for the applicability of the variable de
composition approach. In fact, the reason why in former generalizations 
of Benders Decomposition additional conditions had to be imposed 
on problem structure, is explained by a violation of this property ( cf. 
[Lazimy, 1982, 1985], [Geoffrion, 1972c], [Burkard et al., 1985]). This 
will be discussed in more detail in the following two subsections. 

The transition from (2.9) to (2.11) is called outer approximation be
cause both the objective function and the feasible set in (2.9) are de
scribed by means of the intersection of cuts. The constraints which are 
defined by A are called value cuts because their intersection determines 
the objective value in (2.9). For a similar reason, the cuts described by 
the set AO are referred to as feasibility cuts. 

Regarding the number of variables, the master programme is to be 
preferred to the original one. Unfortunately, this preference changes 
as soon as the number of constraints is taken into consideration. In 
general, the master programme contains a huge, if not infinite num
ber of constraints, even if all dominated ones would be identified and 
eliminated in advance. Therefore, relaxation is the only reasonable key 
solution strategy that can be applied to solve V'D(A, A0). Here, relax
ation just means that some (or most) of the constraints which describe 
the feasible set, are ignored. More formally, if A ~ A and 75.° ~ A0 , 

then the corresponding relaxation of V'D(A, A0) reads 
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- --:-0 VV(A,A): max () 
111,8 

s.t. -g(O, a:)+ 8 $ 0 'v'g(·) EA 

-h(O, a:) $ 0 'v'h(•) EK° 
(2.12) 

(z,8) EX x R 

VV(A, a°) is what is usually referred to as the relazed master pro
gramme. Optimal solutions for this programme supply upper bounds 
for the master programme, and thus for the original programme 'P, 
because every solution (a:, 8) which is feasible for VV(A, A0 ) is also 
feasible for VV(A, a°) with the same objective value. The converse of 
this statement is generally not true. Therefore, we have 

Theorem 2.2 (Upper bounds) Let {2.1}-(2.12} be given. 

2. lf'P is regular then 3A ~ A 3K° ~ A0 'v'e ~ 0 : cp (VV(A, a°)) $ 

cp('P) + € 

Proo£ This is left to the reader. 
D 

The situation is reversed when 'P(!) is considered. The feasible set of a 
primal subprogramme can be thought of as being a cross-section of the 
feasible set of the original programme, viz. consisting of those solutions 
of 'P, which have a predetermined value for the a:-variables. As a result, 
optimal solutions for 'P(:ii) supply lower bounds for 'P. 

Theorem 2.3 (Lower bounds) Let {2.1}-(2.12} be given. 

1. 'v'! EX: cp ('P(:ii)) $ cp('P) 
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2. If Pis regular then VE> 0 3:v EX: cp(P(:v)) ~ cp(P)- € 

Proof This is left to the reader. 
□ 

In the two aforementioned theorems the second result indicates that the 
bounds can be chosen as tight as desired. The question remains which 
subsets L). ~ L). and 75!' ~ L).O should be taken into consideration. In 
fact, two questions are involved here, viz. which subsets should be taken 
initially and how should these initial choices be modified in order to 
end up with a (near-)optimal solution for P. Note that the constraints 
in the relaxed master programmes originate from feasible solutions of 
the dual programmes 'D(x) and 'D0(x). These latter programmes in 
their turn, require predetermined values for the :z:-variables, which can 
be obtained from any relaxed master programme. This observation 
suggests an iterative procedure involving subprogrammes and relaxed 
master programmes. The following result appears to be useful, in the 
sense that it reveals what the variable decomposition procedure is going 
to look like. 

- -o 
Theorem 2.4 Let {2.1}-(2.12} be given. Suppose L). ~ L).J L). ~ L).O 

and cp (V'D(L)., 75!')) < +oo. 

1. IfV'D(L).,fi°) is infeasible, so is P 

2. Let (z, 9) be any feasible solution for VV(L)., Li°), then 

• cp (P(z)) < 8 tj, 3g(-) EL).\ L).: -g(O, z) + 9 > o 
• P(z) is infeasible tj, 3h(·) E L).O \ti°: -h(O,z) > 0 

9. Let (z, 8) be an E1-optimal solution for VV(L)., 75!'). Suppose y 
is an E2-optimal solution for P(z), and assume that there is a 
g( ·) E a such that g( ·) is an e3 -optimal solution for V( f), then 
( z, jj) is an ( e1 + e2 + E3 )-optimal solution for P. 
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Proof 

1. Trivial ( cf. Theorem 2.2). 

2. From strong duality it follows that r,o{'P(f)) < 0 # r,o(V(x)) < 0. 
Furthermore, r,o(V(f)) < 0 # 3g(·) E Li : g(O, f) < 0. Finally, 
'v'g( ·) E Li : g(O, f) 2: 0, hence g( ·) E Li\ Li. 

The second assertion immediately follows from the Farkas prop
erty. Again, h( ·) E Li O \ ti.° because h( 0, f) 2: 0 'v'h( ·) E ti.°. 

3. r,o(P) s "° (vv(Li, ~)) s o + e1 s g(o, x) + e1 s 
r,o(V(x)) + e1 + e3 = r,o('P(x)) + (e1 + e3) S 

/(f,y) + (e1 + e2 + e3) 
□ 

In defining the variable decomposition procedure we will need the fol
lowing definitions; a superscript k is used to denote the value of a 
variable during iteration k. 

U Bk = best upper bound for r,o{'P) over the first k iterations 

LBk = best lower bound for r,o('P) over the first k iterations 

(~inc,k,yinc,lc) = best solution for 'P over the first k iterations2 

2The superscript "inc" comes from "current incumbent"; see [Geoffrion & 
Marsten, 1972]. 
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I VARIABLE DECOMPOSITION PROCEDURE - START I 

I 0. INITIATION PHASEI 

BEGIN 

0.1 LET k := 1; 

0.2 LET fl.le :~ fl., ao,1e :~ Jl.O BE SUCH THAT 
'f' (VV(ll.", fl.0,Ie)) < +oo; 

0.3 IF impossible THEN STOP because 'f'('P) = +oo 

0.4 ELSE BEGIN LET U B 0 := +oo; LET LB0 := -oo END; 

11. MASTER PROGRAMME PHASEI 

1.1 SOLVE VV(ll.", Jl.O,Ie); 

1.2 IF 'f' (VV(ll.", fl.0,Ie)) = -oo THEN STOP 
because 'f'('P) = -oo; 

ELSE BEGIN 

1.3 LET (et,:c",8") BE SUCH THAT (z",8") is an et-optimal 
solution for VV(A", AO,le); 

1.4 LET UB" := min{UB"-1 ,8" + et) 

END; 

12. SUBPROGRAMME PHASEI 

2.1 SOLVE 'P(z"); SOLVE V(z"); 

2.2 IF 'f'('P(z")) = -oo THEN BEGIN 

LET e~ := e! := O; LET LB" := LB"-1 ; 

2.3 LET h"(·) E ll.0 BE SUCH THAT h"(0, z") < 0; 

2.4 LET fl.le~: A"+1 =~ fl.; LET fl.O,le U {h"(·)} ~= fl.O,le+l =~ Jl.O 

END 
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ELSE BEGIN 

2.5 LET (e~,yle) BE SUCH THAT yle is an e~-optimal 
solution for 'P(zle); 

2.6 LET (e~,gle(,)) BE SUCH THAT gle(,) is an e~-optimal 
solution for 'D(zle); 

2.7 LET !::,,.le u {gle(·)} ~: !::,,.le+l :~!::,,.;LET !::,,.O,le ~= !::,,.O,le+l :~ !::,,.O; 

2.8 LET LBle := ma.x{LBle-1,/(zle,yle)}; 

2.9 IF LBle > LBle-i THEN LET (zinc,le, yinc,le) := (zle, yle) 

ELSE LET ( zinc,le, yinc,le) := ( zinc,le-1 1 yinc,le-1) 

END; 

1 s. OPTIMALITY CHECKI 

3.1 LET e~ BE SUCH THAT e~ ~ et + e~ + e~; 

3.2 IF UBle - LBle $ e~ THEN STOP because (zinc,le,yinc,le) 
is a (UBle - LBle)-optimal solution for 'P, which meets 
the required accuracy of e~ 

3.3 ELSE BEGIN LET k := k + 1; GOTO 1 END 

END. 

!VARIABLE DECOMPOSITION PROCEDURE - ENDI 

In this procedure many questions are left unanswered, such as how 
to initiate it (step 0.2), how to solve the relaxed master programmes 
(steps 1.1 and 1.3) and the primal subprogrammes (steps 2.1 and 2.5), 
how to generate dual solutions (steps 0.2, 2.1, 2.3, 2.4, 2.6 and 2.7) 
and how to specify the inaccuracy parameters (steps 1.3, 2.5, 2.6 and 
3.1). The reason for this is twofold. First of all, general answers do 
not exist to these questions; the unboundedness at initial iterations, 
for instance, is a notorious phenomenon, even if 'P is an ordinary linear 
programme. Secondly, it may well be possible that, depending on the 
specific problem characteristics involved, a choice between alternatives 
can be made. A similar remark applies to the extensions of the set !::,,.le 
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(A0,lc) to A"+1 (A0,1c+1) in steps 2.4 and 2. 7. For the generation of dual 
solutions the situation is not much different. Usually, these solutions 
can be obtained as a by-product once the primal programmes have been 
solved, but it may be possible to do better. To summarize, we have 
been discussing a framework here; applying the procedure to a specific 
problem(-class) still requires a significant amount of fine-tuning. We 
will close this subsection with some additional explanations. 

Step 1.4 (Jlc + et is an upper bound on cp(V'.D(A",A0•")), hence on 
cp('P). 

Step 2.3 From (2.3) it follows that cp('P(a:")) = -oo if a.nd only if 
cp('P0 (:i:")) = -oo. This observation explains the necessity of 
(2.3), because in this way, the executability of step 2.3 is guaran
teed. 

Step 2.4 h"(O, a:") < 0 implies that a:" will not be generated in subse
quent iterations if the dual solution h"( ·) E AO is added to A O,lc+l. 

Note that h"(·) ¢ A0,1c, because -h(O,a:") :5 0 Vh(•) E A0 ,1c. 

Step 2.5 'P(:i:") is a regular programme, because -oo < cp('P(a:")) :5 
cp('P) :5 <p (V'.D(A", A0•")) :5 <p (V'.D(A1, A0•1 )) < +oo. 

Step 2. 7 From U B" < fJ"+e" and g"(O :i:")-€"-ek < f(a:k yk) < LB" 
- 1 ' 2 3- ' - ' 

it follows that (9" + e~) - (gk(O, a:") - e! - e!) 2:: U Bk - £Bk. 
Combining this inequality with €~ 2:: et+ e~ + e: and U Bk - £Bk > 
€~ yields that -g"(O,a:k) + (Jk > 0. As a result, (a:lc,fJk) is cut off 
in subsequent iterations by adding the dual solution gk( •) E A 
to A"+1 . Note that g"(·) ¢ a1c, because -g(O, zlc) + (Jlc :5 0 
Vg(·) EA". 

Step 3.1 €~ is a non-negative parameter, bounding the overall inaccu
racy which is allowed in the final solution of 'P. Note that all four 
inaccuracy parameters are allowed to change among iterations. 

Step 3.2 0 :5 cp('P) - f(zinc,k,yinc,lc) :5 UBk - £Bk. Consequently, 
( zinc,lc, yinc,lc) is a ( U Bk - LB" )-optimal solution for 'P. 
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2.2 A major and some minor remarks 

In this subsection some additional remarks concerning the variable de
composition procedure will be made. The first and by far most crucial 
observation concerns an essential feature of the family of dual subpro
grammes V( • ), without which the applicability of the variable decom
position procedure is seriously called into question. The second obser
vation stresses the fact that the procedure as presented in the previous 
subsection allows for inaccuracies, and hence duality gaps, during the 
iterative process and comments on the choice of the inaccuracy param
eters involved. The third remark relates to the monotonicity of the 
upper bounds in case optimal solutions are generated in the master 
programme phase throughout the execution of the procedure. In the 
fourth and final remark, the consequences of ignoring feasibility cuts in 
the (relaxed) master programme(s) is touched upon. 

The feasible set of 'D( •) 

As one can see, all dual subprogrammes V( :c) share a common feasible 
set; a similar remark applies to the dual programmes V0(:c). If this 
were not the case, relaxations of the master programme would look like 

max 8 
:r:,8 

s.t. -g(O,:v) + 8 :5 0 Vg(·) E A(:v) 

-h(O,:v) :50 Vh(·)E~(:v) 
(2.13) 

(:c,8) EX x IR 

where A(:v) (A0(:v)), the feasible set of V(:v) (V0(:v)), now depends on 
- --,--() 

:v, and where A(:v) (A (:v)) is a subset of A(:v) (A0(:v)). In general, 
(2.13) is an intractable programme, because its constraints are of a 
very complicated nature. To illustrate, suppose that (2.13) has to be 
solved and that -g(O, :v) + 8 :5 0 is one of its constraints. In addition, 
suppose that the feasibility of a trial solution ( z, iJ) has to be checked. 
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If g( ·) E A(z), then (x, 8) has to satisfy the constraint -g(O, x) + 0 :S 0. 
On the other hand, if g( ·) ¢ A(x), then the constraint -g(O, x) + 0 :S 0 
does not have to be met. Loosely speaking, each x EX defines its own 
set of constraints and it is exactly this fact that makes (2.13) highly 
intractable. Therefore, it seems crucial for the feasible sets of V(z) 
and V0(z) to be independent off. What does this observation mean 
for the primal programmes 'P(z) and P 0(z)? On the one hand, these 
programmes should only depend on :ii through their right-hand-sides; 
on the other hand, the primal constraints which are parameterized by 
:ii should belong to the set of constraints which are dualized. This ex
plains why in (2.4) the constraints x = x are formulated in an explicit 
way. Former generalizations of Benders Decomposition have not made 
use of this elementary but crucial observation. For instance, the way 
in which a dual feasible set is obtained in [Lazimy, 1982,1985] which 
is independent off, is in view of our argument not only unnecessar
ily complicated, but also unnecessarily restrictive, because additional 
requirements on the original primal programme had to be introduced. 
The reason why in [Geoffrion, 1972c] a constraint-qualification is needed 
and why in [Burkard et al., 1985] only separable problems are dealt with 
(like the one mentioned below), can also be explained by our argument. 
For more detailed information on this, the reader is referred to the next 
subsection. 

Of course, when dealing with special cases, the primal subprogrammes 
may be formulated differently, as long as dual subprogrammes are ob
tained which satisfy the aforementioned requirement. For instance, if 
U = Rn and if/(•) and G( •) are additively separable with respect to :z: 
and y, i.e. 'v'(:z:, y) EX x Y, . 

(2.14) 

then the primal subprogrammes may be formulated as 
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max 
y 

f2(Y) 

s.t. Ga(y) ◊ -G1 (:v) 

y E y 

(2.15) 

The feasible set of the resulting dual subprogramme will, indeed, be 
independent of :ii. It is in fact this approach that has been pursued in 
[Benders, 1962] and in [Burkard et al., 1985]. 

Inaccuracies and duality gaps 

As is revealed by the superscript k, all four inaccuracy parameters 
E~ (i = 0, ... , 3) are allowed to vary between iterations. The overall in
accuracy E~, though, has to be chosen at least as large as the sum of the 
inaccuracies which are allowed in the blocks of which the procedure is 
composed; if €~ has not been assigned in this way and if the optimality 
condition has not yet been satisfied, then the (near-)optimal solution 
of the current relaxed master programme is not necessarily cut off, im
plying that this solution may be generated in all subsequent iterations 
(see the additional explanation concerning step 2.7 in Subsection 2.1). 
Of course, if U Bk - LBk ::::; E~, then (:z:inc,k, yinc,k) is a (near-)optimal 
solution for P which meets the required accuracy of€~, irrespective of 
whether €~ outweighs the sum of the other three. But if the proce
dure is to be guaranteed not to exhibit cyclic behaviour, €~ has to be 
chosen as indicated. For more information, the reader is referred to 
Subsection 2.4. 

From a computational point of view it may be undesirable, or even 
prohibitive, to optimize the dual subprogrammes over the entire dual 
solution space .6.. In performing steps 0.2, 2.1, 2.3, 2.4, 2.6 and 2.7, one 
may therefore be tempted, or even be forced, to restrict attention to 
specially structured dual solutions only. Obviously, this may introduce 
duality gaps between primal and dual subprogrammes. The variable 
decomposition procedure as presented in the previous subsection, allows 
for such gaps, because these values are fully absorbed by the values of 
€~. One has to realize, however, that the larger the gap, the larger the 
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overall inaccuracy e~ one has to accept. An example of such an approach 
is given in [Rouhani et al., 1985]. In this paper, attention is restricted 
to affine dual solutions only (Lagrangean duality; see [Geoffrion, 1972&] 
and Subsection 4.1 of Part II), although all kinds of convexity conditions 
may not have been met. 

It should also be noted that the values for e; and e; need not be spec
ified separately. If in steps 2.5 and 2.6 a primal and a dual solution 
yk and gk(·) have been obtained for which f(zk, yk) and gk(O, zk) are 
sufficiently close, then e; + e; may be chosen equal to the difference of 
these two values. In this way, the individual values for e; and e; are 
unknown, but also unimportant. 

Monotonous upper bounds 

It is a trivial observation that, by construction, (UBk)w and (LBk)w 
constitute a monotonically non-increasing and non-decreasing sequence 
of upper and lower bounds respectively. If at each iteration, the relaxed 
master programme is solved to optimality, i.e. et = 0 Vk E IN, then the 
values for IJk which are generated during the master programme phase, 
constitute a monotonically non-increasing sequence of upper bounds. 
In that case, step 1.4 can be modified into: "LET U Bk .- IJk." A 
similar statement does not hold for the lower bounds. 

Feasibility cuts 

From a theoretical point of view, the constraint <,o(P0(z)) ~ 0 in (2.5) 
may be considered to be redundant, because any :il EX that violates it 
yields an objective value of -oo, which is a most undesirable objective 
value as far as maximization is concerned. The consequences of leaving 
out this constraint are only minor. Both the problem manipulations and 
the solution strategy are straightforwardly adapted and the feasibility 
cuts will no longer occur in the (relaxed) master programme(s); mutatis 
mutandis, the results in Subsections 2.4-2.6 will also remain valid. For 
more detailed information on this, the reader is referred to [Flippo et 
al., 1987]. 
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2.3 Relations to existing literature 

In this subsection Variable Decomposition will be related to existing 
literature. More specifically, it will be argued that Benders Decompo
sition and former extensions are subsumed by the approach of Subsec
tion 2.1. The approaches that will be discussed here concern the ones in 
[Benders, 1962] for the partially linear case, [Balas, 1969] and [Lazimy, 
1982,1985] for the convex quadratic case, [Geoffrion, 1972c] and [Duran 
& Grossmann, 1986] for two partially convex cases, [Wolsey, 1981] for 
the general case, and [Burkard et al., 1985] for the separable case. 

[Benders, 1962] 

Benders can be regarded as the founding father of the procedure. In 
his paper partially linear programmes are considered, which can be ob
tained from (2.1) by specifying f(x,y) = t(x) + qy, G(z,y) = T(z) + 
Ey - b, U = R" and Y = R:2 (0 < n2 < n). Here, t(•) and T(•) 
are functions and q, E and b are vectors and matrices of appropriate 
dimensions. In this case, the primal subprogrammes 'P( ·) are linear 
programmes, which can be formulated as (2.15). As a result, the dual 
programmes 1'( •) and 1'0 ( •) can be chosen to be the Linear Program
ming duals. If, in addition, all inaccuracies are chosen equal to zero, 
Benders's approach is recovered. Finite convergence is implied by The
orem 2.9 (cf. Subsection 2.4). 

[Balas, 1969] 

In Balas's paper mi.zed-integer quadratic programmes with a convex 
structure are considered. Such programmes can be obtained from (2.1) 
by specifying f(x, y) = p'l'z + qTy + zTC11 :v + 2xTC12y + yTC22y, 
G( z, y) = Az + Ey - b, U = IR", X = { z E Z"1 I :z: ~ 0} and 
Y = {y E R"2 I y ~ O} (n1 + n2 = n). Here, p, q, and bare vectors, 
and 0 11 , 0 12 , 0 22 , A, and E are matrices of appropriate dimensions. 
Furthermore, it is assumed that 
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is negative semi-definite. As a result, the dual programmes V(•) and 
V 0 ( ·) can be chosen to be the Convex Quadratic Programming du
als (cf. [Dorn, 1960], [Cottle, 1963]), because strong duality and the 
Farkas property hold in this case. If, in addition, all inaccuracies are 
chosen equal to zero, Balas's approach results, although Balas does 
not solve relaxed master programmes to (near-)optimality, but attacks 
them by implicit enumeration instead. As an unfavourable consequence 
of this, useful information is lost because upper bounds are no longer 
obtained from these relaxations. Furthermore, contrary to what Balas 
claims, finite convergence is not implied by Theorem 2.9, but follows 
from Theorem 2.8 if, additionally, X is assumed to be bounded ( cf. 
Subsection 2.4). 

[Lazimy, 1982, 1985] 

Lazimy considers the same type of problems as Balas does. First, the 
author explains that straightforwardly generalizing Benders's approach 
to the quadratic case yields an intractable master programme, due to 
the fact that its constraints are quadratic in a:. However, the fact that 
each a: EX in the master programme defines its own set of constraints 
is a far more serious problem (see Subsection 2.2), which remains un
mentioned. To circumvent the quadratic constraints, Lazimy proposes 
a transformation of variables. In this way primal subprogrammes P( ·) 
are obtained, which depend on ii: through their· right-hand-sides only. 
As we have explained in Subsection 2.2 this is crucial for the appli
cability of the variable decomposition procedure. In order to make 
the transformation of variables work, a constraint-qualification on the 
matrix C is imposed, which excludes Mixed~Integer Linear Program
ming as a special case. The fact that, in the end, the same procedure 
is obtained as the one described in Subsection 2.1 when applied to 
the quadratic case using Convex Quadratic Programming duality ( cf. 
[Dorn, 1960], [Cottle, 1963]), inevitably leads to the conclusion that 
Lazimy's approach is both unnecessarily complicated and restrictive; 
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see also [Flippo & Rinnooy Kan, 1990]. 

[Geoffrion, 1972c] 

In [Geoffrion, 1972c] mathematical programming problems are consid
ered which may be referred to as partially convex programmes. Such 
programmes are obtained from (2.1) if U = Rn and ◊ E {::::Jm. In 
addition, it is assumed that for each iv E X the primal subprogramme 

P(:v): max f(:v,y) 
11 

s.t. G(:v,y)~O 

y E y 

is a convex programme. Finally, some minor regularity conditions are 
supposed to hold such that the feasible set of the dual subprogrammes 
V( iv) may be restricted to the set of monotonically non-decreasing affine 
functions, without invalidating strong duality and the Farkas prop
erty (Lagrangean duality; see [Geoffrion, 19721>] and Subsection 4.1 of 
Part II). Under the aforementioned conditions, the dual programmes 
of P( iv) can be defined as 

V(:v): mm ( 
u,C 

s.t. uTG(:v,y) + ( ~ f(x,y) Vy E Y 

u~O 

The dual programmes of P0(x) are similarly defined 

mm e v,e 
s.t. vTG(:v,y) + e ~ 0 Vy E Y 

v~O 
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The use of these dual programmes leads to the following formulation of 
the master programme 

max 8 
l!,9 

s.t. 8 $ ( Vu~ OV(: (( ~ f(i,y)-uTG(z,y) Vy E Y) 

0 $ e Vv ~ ove: (e ~ -vTG(i,y) Vy E Y) 

(:ii, 8) EX x R 

For any u ~ 0 fixed, the only value cut that is non-redundant is 8 $ 
sup11{f(i,y) - uTG(i,y) I y E Y}; a similar statement holds for the 
feasibility cuts. The master programme is therefore reformulated as 

max 8 
11,9 

s.t. 8 $ sup{f(:ii, y) - uTG(i, y) I y E Y} Vu~ 0 
y 

0 $ sup{-vTG(z,y) I y E Y} Vv ~ 0 
y 

(z, 8) EX x R 

Geoffrion conjectures that relaxations of this master programme are 
only apt to solution if for every u, v ~ 0 both suprema are "essentially 
independent" of i, in the sense that they can be evaluated for all i EX 
with little or no more effort than is required to evaluate them for a 
single i E X. This is what Geoffrion· calls Property P. In view of 
Subsection 2.2 it is not surprising that such an additional property is 
needed, due to the fact that the feasible sets of V(:z:) and V0 (:c) depend 
on f. Obviously, if these programmes can be reformulated in such a 
way that their feasible sets are independent off, then Property P holds. 
The converse of this statement, however, is not easily verified, because 
Property P has not been rigorously defined. 
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[Wolsey, 1981] 

Suppose there are no constraint functions explicitly stated in (2.1) (i.e. 
m = 0), then the following dual subprogrammes are obtained 

V(z): mm o-(z) 
v(•) 

s.t. o-(a.:) 2:: /(a.:,y) 'v'(a.:,y) Eun (X X Y) 

o-(•): R"1 -+RU {±oo} 

7JO(z) : mm T(f) 
-r( •) 

s.t. T(a.:) 2:: O 'v'(a.:,y) e Un (Xx Y) 

T(•): R"1 -+ RU {±oo} 

The resulting master programme then reads 

max 6 
111,8 

s.t. 6 :5 o-(a.:) 'v'o-(·) feasible in V(•) 

0 :5 T( a:) 'v'T( •) feasible in v0( •) 

(a.:,6) EX x R 

(2.16) 

Most of the constraints in (2.16) are redundant. Let X 1 = {a.: E X I 
rp(P(a.:)) > -oo}. Suppose a.:* E X 1 , then 8* > o-(a.:*) for some o-(·) 
feasible for V(•) if and only if fJ* > 0-111.(a.:*) for some 0-111.(•) which is 
optimal for V(a.:*). Furthermore, under (2.3) we have that a.:* EX\ X 1 

if and only if O > T111.(a.:*) for some T111.(·) which is feasible for V0 (a.:*). 
As a result, (2.16) is equivalent to 
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max (J 
111,8 

s.t. 8 $ 0-111.(x) Vx* E X1 

0 $ r111.(x) Vx* EX \X1 

(x, 8) EX x R 

129 

(2.17) 

Wolsey's master programme is similar to (2.17). In his approach, 0-111.(·) 

is a support function with respect to x* E X1 and r111 • ( ·) is a cut function 
with respect to :c* E X \ X1 . In our terminology, these notions a.re 
defined a.s follows 

Definition 2.1 (Support function) 0-111.(•) is a support function with 
respect to :c* if a:* E X1 , 0-111 .(a:) ~ r,o('P(:c)) Ya: E X1 and 0-111.(a:*) = 
r,o('P( a:*)). 

Definition 2.2 ( Cut function) r111 • ( ·) is a cut function with respect 
to x* if x* EX\ X1 , r 111.(:c) ~ 0 Vx E X1 and r 111.(:c*) < 0. 

From Lemma. 2.1 of Pa.rt II it follows that 0-111.(•) is a. support function 
if and only if :c* E X1 and 0-111.(•) is optima.I for '.D(z*). It is also a. trivia.I 
observation that r111 • ( ·) is a. cut function if and· only if x* E X \ X1 , 

T 111 • ( ·) is feasible for '.D0( :c*) and T 111 • ( :c*) < 0. From these observations it 
follows that Wolsey's master programme is not only similar, but even 
identical to (2.17), which justifies the conclusion that Wolsey's frame
work fits into ours. The main difference is that Wolsey ignores (most of 
the) redundant constraints in the master programme. However, such 
constraints may not be redundant in relazations of the master pro
gramme. Furthermore, in Wolsey's approach it is not allowed to dualize 
constraints which a.re formulated explicitly in the original programme 
'P (i.e. G(x,y)◊O). 
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[Burkard et al., 1985] 

The mathematical programming problems considered by Burkard c.s. 
are formulated in the context of algebraic optimization. In such prob
lems, the underlying structure is described by totally ordered commu
tative (semi-)groups. Such general structures include the ordered group 
(R, +, :5) we considered. However, the approach in Subsection 2.1 can 
be amplified to account for these abstract fields of optimization a.s well, 
which means that our approach is, in fact, not overly restrictive. On 
the other hand, Burkard c.s. assume that both the objective /( ·) and 
the constraint function G( •) are separable in z and y. This has been 
done in order to end up with primal subprogrammes like the ones in 
(2.15), so with dual programmes V(:c) and V0(:c) in which the feasible 
sets are independent off. As explained in Subsection 2.2 this is cru
cial for the applicability of the variable decomposition procedure. The 
generality of Subsection 2.1, however, reveals that it is unnecessarily 
restrictive to consider only separable objective and constraint functions 
in the original problem formulation 'P. Furthermore, the case in which 
inaccuracies and/ or duality gaps are present during the iterative pro
cess, is not covered by their approach, due to the absence of a. metric. 

(Duran & Grossmann, 1986] 

Duran and Grossmann consider a. class of additively separable, partially 
convez mized-integer programming problems, which follows from (2.1) 
by specifying U = Rn, X as the intersection of a. given polyhedron 
with zni, Y as a polyhedron, /(z,y) = cTz + r(y) V(z,y) EX x Y for 
some vector c and some real-valued function r(·), G(z, y) = Bz + S(y) 
V( z, y) E Xx Y for some.matrix Band some vector-valued function S( ·) 
and◊ E {:5}m. Furthermore, it is assumed that Xis a finite set, Y is 
a bounded polyhedron and -r( ·) and S( ·) are convex and continuously 
differentiable functions with respect to Y. Finally, Slater's condition 
is assumed to hold, i.e. 3(z,y) E X x Y: Bz + S(y) < 0. Let us 
now apply the following version of Variable Decomposition. To obtain 
the dual subprogrammes, only the projecting constraints z = f a.re 
dualized. This leads to the following master programme. 
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max 0 
z,8 

s.t. 0sg(z) Vg(·)EA 

0 s h(z) Vh(·) E ao 

(z,8) EX x R 
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(2.18) 

Here, A and A0 are the feasible sets of the dual subprogrammes V(z) 
and V0(z) respectively; hence 

A - {g(•): Rn1 -+RU {±oo} I g(z) 2'.: cTz + r(y) 

V(w,y) EX x Y: Bw + S(y) s O} 

A0 _ {h(•): R"1 -+RU {±oo} I h(z) 2'.: 0 

V(ro,y) EX x Y: Bro+ S(y) SO} 

where Xis any superset of X. Due to the convexity and continuous 
differentiability conditions on -r( ·) and S( • ), the master programme 
(2.18) can be reformulated into 

max 8 
111! 1'1/,(I 

s.t. 0 s cTro + r(y) + Vr(y)(y -y) Vy E Y 

0 s -Bro - S(y) - VS(y)(y-y) Vy E Y 

(re, y, 8) EX x Y x R 

(2.19) 

where V denotes the Jacobian of the function involved. The equiva
lence between the two master programmes is easily established. More 
specifically, we can derive the following result. 

Theorem 2.5 lf(z,8) is feasible for (2.18}, then there is ay E Y such 
that (z,y,8) is feasible for (2.19}. Vice versa, if(z,y,B) is feasible for 
(2.19}, then (z, 8) is feasible for (2.18}. 
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Proof Let (ii:, 8) be feasible for (2.18). It follows by definition that 
0 $ h(ii:) Vh(·) E A0 , so 

This inequality, and the conditions on r(·) and Y, imply that P(iil) has 
an optimal solution, say jj E Y. From the convexity assumptions it 
follows that 

Vy E Y : Biil + S(y) + V S(y)(jj - y) $ Biil + S(y) $ 0 

Furthermore, U $ g(iv) Vg(·) EA. This implies that 

Vy E Y: 8 $ <p(V(ii:)) = <p(P(z)) = 

cTz + r(jj) $ cTf + r(y) + 'vr(y)(jj - y) 

which proves that (z, jj, 8) is feasible for (2.19). In order to prove the 
second part of the theorem, let (re, jj, 8) be feasible for (2.19). Consider 
y = jj. It follows that O $ -Bz-S(y). This implies that <p(P0 (:v)) = 0. 
Applying strong duality yields 

A similar argument yields that U $ cTz + r(jj). Strong duality then 
implies that 
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Hence, (z, 0) is feasible for (2.18). This completes the proof. 
□ 

As a result, the outer approximation approach of Duran and Gross
mann can be cast into the framework of Variable Decomposition, in 
which, additionally, a reformulation of the master programme has been 
carried out by expanding its dimension. Note, however, that although 
the procedure can be regarded as a special instance of Variable De
composition from a conceptual point of view, it may substantially dif
fer from a straightforward implementation of Variable Decomposition 
from a computational point of view, due to the different ways in which 
intermediate primal solutions in rela:cations of these two master pro
grammes are cut off. One negative effect of this is that in the approach 
of Duran and Grossmann, infeasible values for the integer variables z 
can only be cut off from all subsequent iterations through an "ad-hoc" 
strategy (see [Duran & Grossmann, 1986, pp. 315,316,320)). 

2.4 Non-cyclic behaviour and finite 
convergence 

In this section it will be demonstrated that the variable decomposi
tion procedure as explained in Subsection 2.1, does not exhibit cyclic 
behaviour. In addition, conditions will be stated under which the pro
cedure is guaranteed to terminate within a finite number of steps. 

Theorem 2.6 (Non-cyclic behaviour of complete solutions) 
Let (2.1}-(2.12} be given. 

1. In step 1.9 no solution (zlc, Bk) will be generated more than once. 

2. In step 2.9 no solution hie(,) will be generated more than once. 
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9. As soon as in step 2.6 a solution gle(·) is generated/or the second 
time, the algorithm will terminate. 

Proof 

1. This has already been proven in Subsection 2.1 (see the additional 
explanation concerning steps 2.4 and 2. 7) 

2. Assume that at iteration k, hie(•) is generated for the second time. 
This implies that hie(·) E ao,1e. From step 1.3 it then follows that 
hle(0, role) ~ O, whereas from step 2.3 we know that hle(0, role) < 0. 
This contradiction proves the second part of the theorem. 

3. Suppose that at iteration k, gle( •) is generated for the second time. 
Consequently, gle( ·) E .6_1e. From step 1.3 it then follows that 
-gle(0, :vie)+ ()le ~ 0. According to Subsection 2.1 (see the addi
tional explanation concerning step 2.7), U Ble - LBle > €~ would 
imply that -gle(0, :zile) + ()le > 0. As a result, U Ble - LBle ~ €~, 

hence the procedure terminates at iteration k. 
D 

If the algorithm which is used to solve the relaxed master programmes 
is of such a nature that its outcome (:vie, ()le) is completely determined 
by the cut sets .6,k ~ A and .6,0,k ~ .6.0 , then the second and third 
part of the proof of the theorem could be simplified; if a dual solution 
gk(,) (hk(,)) would be generated more than once, then the same cut sets 
would appear more than once, implying that the same solution ( :vk, f)k) 
would be obtained more than once, which contradicts the first result of 
the theorem. However, assuming such a deterministic kind of algorithm 
in step 1.3 is unnecessarily restrictive. On the one hand, the algorithm 
may be stochastic, in the sense that all kinds of decisions which have to 
be taken during the course of the algorithm, are randomized. On the 
other hand, the inaccuracy parameter €~ may vary between iterations, 
possibly leading to different solutions as well. For these two reasons the 
proof in Theorem 2.6 is more general than the one which is discussed 
in this paragraph. 
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The requirement e~ ~ et + e; + e; appears to be crucial if the procedure 
is to be safeguarded against cycling. Loosely speaking, it means that, 
at any time, the overall inaccuracy parameter e~ should not be chosen 
less than the sum of the inaccuracies which are allowed in the building 
blocks of the procedure. 

Although it is already a great comfort to know that the variable de
composition procedure does not exhibit cyclic behaviour with respect 
to the "full" solutions (x",8"), g"(·) and h"(·), it should still be consid
ered a most undesirable situation if the procedure could generate cycles 
with respect to the "partial" solutions x" in step 1.3. In such a case, 
the same (finite) sequence of primal subprogrammes would repeatedly 
have to be solved in step 2.1. The result of such cyclic behaviour would 
be that both the upper and the lower bound would not be improved 
upon by more than the maximal reduction possible in the inaccuracy 
parameters et and e;. Fortunately, this kind of cyclic behaviour can be 
avoided quite easily, as is revealed by the following theorem. For this 
purpose we define max{ e; + e;} to be the largest value of e; + e; that 
has been used so far. 

Theorem 2.7 (Non-cyclic behaviour of partial solutions) 
Let {2.1}-(2.12} be given. Suppose that at each iteration k that passes 
through steps 2.5-2.9, e~ is chosen such that e~ ~ e~ + max{e; + e;}, 
then the procedure terminates as soon as a solution x" is generated for 
the second time. 

Proof Suppose :z:t = x" for some k > l. From the additional explana
tion in Subsection 2.1 concerning step 2.4, it follows that cp('P(xl)) = 
cp('P(z")) > -oo. From step 1.3 it then follows that -gl(O, x")+B" s 0, 
implying that 

From steps 2.5 and 2.6 it also follows that 
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These two inequalities imply that 

U Bk - LBle :5 U Bk - LB' :5 (file+ et) - /(z', yl) :5 

(file+ ft) - (g'(O, z') - ~ - ~) :5 f~ 

Consequently, the algorithm terminates at iteration k. 
□ 

So, the procedure will not exhibit cyclic behaviour with respect to the 
partial solutions zle either. As revealed by Theorem 2.7, the inaccura
cies in steps 2.5-2.9 are the most critical ones, in the sense that there is 
no gain in demanding a specific value for e: + e:, once a larger value for 
this quantity has ever been allowed. Therefore, the sequence ( f: + f: )r-, 
could just as well be chosen monotonically non-decreasing, in which 
case the condition boils down to the one stated in step 3.1. 

From the previous two theorems it follows that, even in its full gen
erality, Variable Decomposition will not exhibit cyclic behaviour. To 
enforce finite convergence of the procedure, severe conditions have to 
be imposed on problem structure. Below we will formulate two such 
conditions. 

Theorem 2.8 (Finite convergence - primal version) 
Let (2.1)-(2.12} be given. Suppose that at each ·iteration k that passes 
through steps 2. 5-2. 9, e~ is chosen such that e~ ;::: et + max{ e; .+ en. 
If, in addition, all zle E X which are generated in step 1. 9, belong to 
some finite subset of X I then the procedure terminates within a finite 
number of steps. 

Proof The result immediately follows from the fact that under the 
aforementioned condition on zle, the procedure cannot generate in
finitely many different values for zle. As a consequence, a previously 
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generated value for zle will be reobtained within a finite number of 
steps. From Theorem 2.7 it then follows that the procedure will termi
nate within a finite number of steps as well. 

□ 

This theorem proves its usefulness, for instance, in the common situ
ation where the set X is a bounded set of vectors with integer-valued 
components. 

Theorem 2.9 (Finite convergence - dual version) 
Let {2.1}-(2.12} be given. Suppose that all gle(·) EA and hie(,) E A 0 

which are generated in steps 2.6 and 2.3 respectively, belong to finite 
subsets of A and A 0 respectively, then the procedure terminates within 
a finite number of steps. 

Proof This proof is similar to the previous one, except that all occur
rences of zle should be replaced by gle(,) and hie(·), and Theorem 2.7 
should be replaced by Theorem 2.6. 

□ 

This theorem applies, for instance, if the primal subprogrammes are 
linear programmes. In that case attention can be restricted to dual 
solutions gle( ·) and hie(•) in steps 2.6 and 2.3 respectively, which corre
spond to the extreme points and rays of a certain polyhedron. 

2.5 Asymptotic convergence 

In this subsection, the asymptotic convergence properties of the variable 
decomposition procedure will be discussed. In Theorem 2.10 sufficient 
conditions will be stated which imply asymptotic convergence. Apart 
from some mathematical technicalities, these conditions boil down to 
closedness of the point-to-set map which largely describes the construc
tion of the sequence of intermediate primal solutions zle in the master 



138 SECTION 2. VARIABLE DECOMPOSITION 

programme phase, and stability of the family of primal subprogrammes 
'P( ·) ( cf. Part I). After Theorem 2.10, the necessity of the two condi
tions is brought into question. Although neither condition is proven to 
be necessary from a strictly mathematical point of view, it is argued 
that, except for some pathological cases maybe, asymptotic convergence 
is unlikely to occur without them. More specifically, it will be argued 
that the stability condition is necessary, in that it is inherent to the 
notion of asymptotic convergence in Variable Decomposition, whereas 
the closedness condition is necessary in that is inherent to the asymp
totic convergence property in general. Unfortunately, the property of 
stability significantly narrows down the class of problems for which a 
convergent variable decomposition scheme can be guaranteed. As re
vealed in Part I, stability cannot be expected, unless severe conditions 
are imposed on the original problem 'P. The property of closedness is 
further analysed in Theorem 2.11. It is demonstrated that in all compu
tationally relevant cases (i.e. the dual space being restricted to finitely 
representable dual solutions; see Subsection 4.2 of Part II), closedness 
is preserved if these functions satisfy some continuity conditions, and 
if they can be represented by elements of some (finitely dimensional) 
compact set. This subsection is concluded by Theorem 2.12, which is a 
result on the asymptotic behaviour of the variable decomposition pro
cedure, in case the procedure does not terminate within a finite number 
of steps and is unable to come up with an infinite sequence of feasible 
solutions (:r.:", y"). In such a case, the procedure will not generate value 
cuts from a certain iteration onwards. Under similar conditions on 
the (common) feasible set of the dual subprogrammes as mentioned in 
Theorem 2.11, the procedure is proven to at least converge to a feasible 
value for the :r.:-variables. 

It should be noted that (parts of) the results in this subsection hold 
under slightly weaker or slightly modified conditions as well. However, 
we resisted the temptation to bury ourselves into further technicalities. 
On the contrary, we aimed at coherent and useful results. The results 
in this subsection are new. For the special case of partially convex 
programmes, Theorem 2.10 boils down to Hogan's Theorem 3.1.1 (cf. 
[Hogan, 1973]). 
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By definition, an asymptotic analysis requires the occurrence of infinite 
sequences of solutions. However, the procedure may terminate within 
a finite number of steps. Therefore, if reference is made to asymptotic 
behaviour, it is tacitly assumed that the algorithm does not terminate 
prematurely. Let F S x denote the set of feasible x-values, hence 

FSx = {x EX I r,o('P(x)) > -oo} (2.20) 

Note that (2.3) implies that x E FSx if and only if there is a y E Y 
such that (x, y) E U and G{x, y) ◊ 0. Furthermore, the index set of 
iterations that pass through steps 2.5-2.9 is denoted by I. So, 

I = { k E N I :z:le E F s X} (2.21) 

Finally, some point-to-set maps are defined which largely describe the 
construction of the sequence of intermediate primal solutions xle in the 
master programme phase. On close inspection, there are two of them. 
The first map describes the generation of xk+1 from :z:le, in case a value 
cut is added to the current relaxed master programme. This process 
can be defined by means of the composed point-to-set map a(,8( · )), 
where 

a(·) : fl --+--+ X x R, with 

a(g(·)) = {(x,8) EX x RI -g(O,x) + 8 ~ O} 
(2.22) 

,8(·): FSx x R+ --+--+ fl, with 

,8( x, e3 ) = {g( ·) E fl I g( ·) is e3-optimal for V( x)} 

The second map is defined similarly. It describes the generation of :vk+1 

from :vie, in case a feasibility cut is added to the current relaxed master 
programme. This process can be defined by means of the composed 
point-to-set map a 0 (,B0(-)), where 
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aO(·): .a0 --+--+ X, with 

a 0(h(·)) = {:z: EX 1-h(O,:i:) $ O} 

/3°(-): X \ FSx --+--+ .a0 , with 

130(:z:) = {h(•) E .a0 1-h{O,:z:) > O} 

{2.23) 

In studying the asymptotic convergence of the variable decomposition 
procedure, we will distinguish between two cases, viz. III = +oo on the 
one hand, and III < +oo on the other. Theorem 2.10 and 2.11 apply 
to the former case, Theorem 2.12 to the latter. 

Case 1. I II = +oo 

It should be noted that in the following two theorems, all sequences and 
all lim sup's are no longer taken with respect to the index set N, but 
with respect to the index set I instead. Note that the assumption on I 
only makes sense if the initiation phase has been passed through suc
cesfully, and if the STOP-statement in step 1.2 will never be executed. 
Therefore, we will assume that 'P is a regular programme. 

Theorem 2.10 {Asymptotic convergence) Let {2.1}-(2.12} and 
{2.20)-(2.23} be given. Suppose that cp(P) E IR, that Un {X x Y) 
is a compact set, and that f ( ·) is upper semi-continuous with respect to 
Un(X x Y). Furthermore, suppose that Gi(·) is lower semi-continuous 
with respect to Un (X x Y) in case ◊i E {$} and continuous with 
respect to Un (Xx Y) in case ◊i E {=}, and that cp('P(·)) is lower 
semi-continuous with respect to F S x. Moreover, let for all k E I, ef 
be chosen from a compact set Ei ~ IR+ (i = 1, ... , 3}. Finally, assume 
that the point-to-set map a(/3(·)) is closed with respect to FSx x E3 • 

Then the variable decomposition procedure converges, in the sense that 

1. If III = +oo, then every accumulation point of the sequence (:z:k)J 
is a lim sup(€~+ €~)-optimal solution for (2.5). 
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2. If III = +co, then every accumulation point of (:z:lc,ylc)r is a 
lim sup( Et + E~ + E;)-optimal solution for 'P. 

3. If III = +co, then every accumulation point of (:z:inc,lc)r is a 
limsup(1:t + 1:; + E;)-optimal solution for {2.5), and every accu
mulation point of ( :z:inc,/c, yinc,le )r is a lim sup( Et+ 1:; + E;)-optimal 
solution for 'P. 

5. Let max{k E I I r,o('P(:z:le)) = -co} S l 0 E 1\1. Furthermore, 
suppose that there is an 1/ > 0 such that Vk 2 l 0 : E~ 2 1:t + 
1:; + 1:; + 1/, then the algorithm terminates within a finite number 
of steps, say k0 , and ( :z:inc,/co, yinc,/co) is a ( U Blco - LB/co )-optimal 
solution for 'P, which meets the required accuracy of 1:~0 • 

Proof 

1. Let :z:00 E FSx be any accumulation point of (:z:lc)r. Note that 
such a point exists, and is necessarily an element of FSx, because 
{:z:lc I k EI}~ FSx and FSx is a compact set. From Theorem 2.2 
we know that 

Vk EI: 91c + Et 2 r,o (VV(Alc, A0,lc)) 2 r,o('P), so 

Vk EI: 91c 2 r,o('P) - Et 2 r,o('P) - sup(Ei) 

On the other hand, if l is the smallest index for which U Bl = 
U Bk, then we also know that 

Vk EI: 91c S r,o (VV(Alc, A0,le)) $ r,o (VV(Al, A0,l)) S 

(Jl + 1:f = u Bl s u Bl 
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Due to the fa.ct that U B 1 E IR, cp(P) E IR and E1 is a. compact set, 
it follows that Vk E J : 01c is chosen from some compact set, say 
0. Consequently, there is a subsequence (p(k))i of I such that 

for some ( 000 , er, ego) E IR X E1 X Ea, We now have that 

lim(:z:P{le),0P{le)) = lim(:z:P(le+1),0P{le+1)) = (:z:oo,000), and 

(zP(le+i), 0P(le+i)) E a(,B(zP{k), ?s{le))) 

These two relations, combined with the closedness of a:(,8( ·)) with 
respect to F S x x Ea, imply that 

Consequently, there is an ego-optimal solution g00( •) of V( z 00 ) for 
which 

900 - eoo < goo(o zoo) - eoo < a - 1 a -

On the other hand, it is obvious that 

Vk E J : 0P(le) + ?i(le) 2:: cp(P) =} 000 + e~ 2:: cp(P) 

The latter two relations imply that 

(2.24) 

(2.25) 

This fact proves that z 00 is a lim sup( e~ + e;)-optimal solution for 
{2.5), because :z:00 E FSx and er+ ego::; limsup(1:t + e;). 

2. Let (:z: 00 ,y00 ) be any accumulation point of (zle,yk)i. Note that 
such a point exists, and is necessarily a feasible solution for P, 
because {( :z:le, yk) I k E J} is a subset of the feasi hie set of P, 
which is compact. Just as in 1., there is a subsequence (p(k))i of 
I such that 
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for some (800 ,ef,Ei,E:'} ER X E1 X E2 X Ea, From the upper 
semi-continuity of /( · ), the lower semi-continuity of cp('P( ·)) and 
(2.25} it follows that 

/(z00 ,y00 ) 2:: limsup/(zP(k),yP(k)) 2:: 

limsup (c,o('P(zp(k))) - G(")) 2:: 

liminf cp('P(zP(k))) - e;o 2:: 

cp('P(:i:00 )) - e2 2:: ',O('P} - Ef - e;o - e;ci 2:: 

cp('P} - limsup(et + E~ + e~) 

which proves the theorem. 

(2.26} 

3. Let ( zinc,oo, yinc,oo) be any accumulation point of ( zinc,r., yinc,r. )r. 
Note again, that such a point exists, and is necessarily a feasible 
solution for 'P, because { ( zinc,r., yinc,le) I le E J} is a subset of 
the feasible set of 'P, which is compact. Just as in 1., there is a 
subsequence (p( le) )r of J such that 

lim(zinc,p(k) yinc,p(k) zP(k) yP(k) (Jp(k) e?(k) Dl'lc) ~(")} _ , , , , , 1 ,Ei' , 3 -

(zinc,oo yinc,oo Z°" yoo (Joo E°" eoo ~} 
' ' ' ''1'2'3 

for some ( z 00 1 Y°", 800 , er, Ei, Ea) E X X Y X R X E1 X E2 X Ea, 
From (2.26} and the upper semi-continuity of/(•), it follows that 

cp('P( zinc,oo}) 2:: / ( zinc,oo, yinc,oo} 2:: 

limsup/(zinc,p(k),yinc,p(lc)) 2:: limsup/(zP(k),yP(k)) 2:: 

cp('P} - lim sup( et + E~ + e~) 

So, it follows that zinc,oo is a lim sup( et+ E~ + €~)-optimal solution 
for ( 2.5) as well as that ( zinc,oo, yinc,oo) is a lim sup( et + E~ + E~ )
optimal solution for 'P. 
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4. Let us consider a subsequence as defined as in 3. By construc
tion, (LBk)w ((U Bk)N) is a monotonically non-decreasing (non
increasing) sequence of lower (upper) bounds, which is bounded 
from above (below) by cp(P). As a result, the sequence of lower 
(upper) bounds is convergent. For the lower bounds it follows 
that 

LB00 = lim inf LBP(k) = lim inf f( :,:ine,p(le), yinc,p(le)) 2'.: 

liminf f(:,:11(1e),y11(le)) 2'.: liminf (cp(P(:i:P(k))) - ~(le))= 

liminf cp(P(a:P(k))) - e~ 2'.: cp(P(a:00)) - e~ 

For the upper bounds we have (cf. (2.24)) 

U B 00 = lim U B11(k) $ lim( fjp(le) + ?i(le)) = 
800 + er :s; cp(P(a:00 )) +er+ er 

Combining both results yields 

0 $ lim(U Bk - LBk) = U B 00 - LB00 $ 

cp(P(a:00 )) +er+ er - cp(P(a:00 )) + e~ :s; 
lim sup( et + e~ + e;) 

5. Suppose the variable decomposition procedure has not terminated 
before iteration l 0 • Because of 4. we know that 

3k0 > l 0 : U Bko - LBko < eleo + eleo + eko + T/ < eleo - 1 2.3 -0 

Hence, the variable decomposition procedure terminates after k0 

iterations, and (:vinc,ko,yinc,leo) is recognized as a (UBko - LBko)
optimal solution for P, which meets the required accuracy of 1:~0 

D 

What about the necessity of these conditions? As far as the closedness 
of a:(/3( ·)) is concerned, we can be brief. Ever since Zangwill intro
duced his general framework for analysing the asymptotic behaviour 
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of iterative procedures ( cf. [Zangwill, 1969]), closedness has generally 
been accepted as the fundamental concept for asymptotic convergence. 
In order to show that stability becomes an essential requirement if the 
asymptotic convergence analysis is specifically applied to a variable de
composition scheme, it is crucial to understand that it is, in fact, the 
lower semi-continuity of the objective function which is an essential 
prerequisite. To justify this assertion, suppose that the function z( ·) 
which is defined as 

if X E [O, ½) 
z(x) = { 1 x 

12 - X if X E [ ½ 1 1] 

has to be maximized over the interval [O, l]. Suppose we have an algo
rithm that generates a sequence of solutions (x11 )1N, where z 11 = ½- 11 1 1 • 

Obviously, this algorithm converges asymptotically to the optimal so!u
tion z* = ½· However, the algorithm does not converge with respect to 
function values, because limf(zh:) = ½ < 1 = f(x*). The implication 
of this phenomenon is twofold. First, any solution which is generated 
by the algorithm, is valued at least 50% less than the optimal solu
tion is, and secondly, any stopping rule of the type "upper bound -
lower bound :$ e" (as in step 3.2) would actually be unable to ever stop 
the iterative procedure if e is chosen too small. This example clearly 
shows that the notion of asymptotic convergence is meaningless if the 
objective function is allowed to suddenly jump upwards in the transi
tion from limz(:z:k) to z(a:*). A condition that precisely excludes such 
behaviour, is that oflower semi-continuity of z(·). 

Let us now return to the asymptotic convergence analysis of the vari
able decomposition procedure. On close inspection, Variable Decom
position aims at solving (2.5) instead of 'P. As a result of the previous 
discussion, an asymptotic convergence analysis for the variable decom
position procedure will only be meaningful, if the objective function of 
(2.5) is lower semi-continuous. This explains the stability condition on 
P( ·) in Theorem 2.10. Note that, actually, stability means continuity of 
i,o('P(·)), whereas we only require lower semi-continuity. However, the 
difference between the two notions is only minor; in Section 2 of Part I 
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it is shown that the upper semi-continuity of the objective function in 
(2.5) can be enforced by imposing only weak conditions on the original 
problem and, in fact, the upper semi-continuity of r,o('P( ·)) here, follows 
from the assumptions that are mentioned in the theorem. Therefore, 
the notions of lower semi-continuity and stability coincide in this case. 
Finally, the compactness conditions on the feasible set of 'P and of (2.5) 
are essential to make sure that any infinite sequence in either set has 
at least one accumulation point, which necessarily belongs to the same 
set. To conlude, it seems that, although the conditions in Theorem 2.10 
are not proven to be necessary from a strictly mathematical point of 
view, similar results cannot be expected to hold without them. 

The fact that in 3. a:inc,oo can only be proven to be lim sup( E't + E'~ + E'~)
optimal (instead of lim sup( E't + E'~)-optimal), is due to the fact that 
( a:inc,As )IN depends on (a:•, y• )w, hence on ( E'~ )w-

Finally, the condition in 5. concerning the choice of the inaccuracy 
parameters, is also intuitively justifiable. It states that the required 
bound on the inaccuracy of the overall solution during a certain itera
tion, should always be strictly greater than the sum of the inaccuracies 
which have already been allowed during the same iteration. In addition, 
this difference is not allowed to gradually vanish over iterations. 

This is as far as Theorem 2.10 is concerned. One important special 
case, and in more practical applications the only meaningful one, is 
when (near-)optimal solutions of the dual subprogrammes can be de
scribed by means of a finite number of parameters ( cf. Subsection 4.2 of 
Part II). For instance, if the primal subprogrammes 'P( ·) satisfy certain 
convexity conditions, then the dual solution space may be restricted to 
the finitely representable affine functions (Lagrangean duality; see [Ge
offrion, 1972b] and Subsection 4.1 of Part II). In the next theorem we 
will show that in such "finitely dimensional cases", the closedness con
dition on the point-to-set map a(/3( ·)) is satisfied, if, additionally, the 
dual solutions involved satisfy some continuity conditions and can be 
represented by means of elements of some (finitely dimensional) com
pact set. 
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Theorem 2.11 {Closedness of a(/3(·))) Let {2.1}-(2.12}, {2.20)
(2.29} be given. Suppose that X is closed and <p('P(·)) is upper semi
continuous with respect to F S x. In addition, let there be a non-empty 
and compact set T ~ R.,. (-r E NJ and a function w( •) : T x Rm+ni -+ 

R U { ±oo} that is continuous with respect to T x { ( r, z)} V( r, z) E RH S 
as well as with respect to T x { 0} x F S x as well as upper semi-continuow 
with respect to T x { 0} x X, and for which 

V(z,ea) E FSx x Ea: [(z,6) E a(,B(z,ea)) => 
3t ET: w(t, ·, ·) E ,B(z, Ea)/\ (z, 9) E a(w(t, ·, ·))] 

(2.27) 

Then a(,8(·)) is closed with respect to FSx x Ea. 

Proof Let (z", e~)w be a sequence in FSx x Ea which converges to 
(z00 , ego) E FSx x Ea, and let (z", B")IN be a sequence converging to 
( z00 , 900 ), where 

(2.28) 

We have to prove that (z00 , 900 ) E a(,8(z00 , e3)). From (2.27) and (2.28) 
it follows that 

Vk EN 3t" ET: -w(t", O, z") + B" ~ 0 

where w(t", ·,·)is an E~-optimal solution for V(z"). Tis compact, so 
without loss of generality we may assume that lim t" = t00 E T. From 
the upper semi-continuity of w( •) with respect to T x {O} x X it follows 
that 

- w(t00 , O, z00 ) + 900 ~ 0 (2.29) 
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and from the continuity of w(·) with respect to T x {(r,:z:)} V(r,:z:) E 
RH S it follows that 

w( t00 , • , ·) E a (2.30) 

Recall that w(t", •,•)is an €:-optimal solution for V(z"), so 

In addition, w(•) is continuous with respect to T x {O} x FSx and 
cp('P(·)) is upper semi-continuous with respect to FSx, so 

w(t00 0 :z:00 ) - lim w(t" 0 z") < , , - , , -

limsup (c,o('P(:z:")) + €~) :5 cp('P(:z:00)) +Ea= 
cp( V( zoo)) + fa 

(2.31) 

From (2.30) and (2.31) it follows that w(t00 , ·,·)is an €3-optimal solu
tion for V(:z:00 ). This, on its turn, combined with (2.29), implies that 
(zoo,Boo) E a(P(:z:00,€3)). 

□ 

Note that (2.27) is a condition on the problem 'P, rather than a condi
tion on the solution procedure. It states that the e:i:istence of finitely 
representable dual solutions is the issue. It does not state that it is nec
essary to actually generate such solutions during the iterative process, 
although in any practical situation one will. 

Case 2. III < +oo 

As we are only interested in the limiting behaviour of the variable 
decomposition procedure, we will assume that the procedure will not 
terminate within a finite number of steps. This assumption, combined 
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with the supposition that 111 < +oo, implies that from a certain it
eration onwards, the variable decomposition procedure will no longer 
generate values for the z-variables that can be supplemented by values 
for the y-variables, such that feasible solutions for 'P result. Another 
implication is, that from the same iteration onwards, the procedure will 
no longer be able to improve on the lower bound LEie. 

In the next theorem, we will state a convergence result which seems to 
complement a synthesis of the previous two. It will be shown that under 
appropriate conditions, any accumulation point of the sequence of solu
tions ( z11 )1N\I is admissible for 'P, in the sense that each one of them can 
be supplemented by a value for they-variables, such that a feasible so
lution for 'P results. Loosely speaking, this result means that, although 
inadmissible solutions might be generated throughout the algorithm, 
an admissible solution is at least approached as closely as desired. As 
in Theorem 2.11, we have to assume that finitely representable, contin
uous dual solutions exist. Unlike Theorem 2.11, however, we have to 
assume that such dual solutions are actually generated in step 2.3 of 
the algorithm. 

Theorem 2.12 (Asymptotic feasibility) Let {2.1}-(2.12}, {2.20)
(2.29} be given. Suppose that X is compact and cp('P) E R. Further
more, suppose that 111 < +oo and assume that the variable decomposi
tion procedure does not terminate within a finite number of steps. In 
addition, let there be a non-empty and compact set T s;;; R.,. (T E N) 
and a function w(·): T x Rm+ni -t RU {±oo} that is continuous with 
respect to T x { 0} x X, and for which 

Vz EX\ FSx: [z E a 0(,8°(:c)) => 
3t ET: w(t, ·, ·) E ,8°(:c) A z E a0(w(t, •, •))] 

(2.32) 

Finally, assume that (flc)IN\I is a sequence of non-negative values, con
verging to O, and that at each iteration k E N \ 1, a function w( tic, • , •) E 
,8°(z11 ) is generated in step 2.9, where t11 is an f 11 -optimal solution for 
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mm w(t, 0, :vk) 
t 

s.t. t E T 
(2.33) 

in case (2.33} is a regular programme, and where tk is an optimal solu
tion for {2.33} in case of unboundedness. Then each accumulation point 
:z:00 of (:vk)IN\I - and there is at least one - is an admissible solution for 
'P, i.e. :z:00 E FSx, 

Proof Let :z:00 EX be any accumulation point of (:vk)IN\I· Note that 
there is at least one such point and that all such points are in X, because 
(zk)II\I\I is an infinite sequence of points belonging to the compact set 
X. The compactness of T then implies that there is a t00 E T, and a 
subsequence (p( k) )1N\I of 1\1 \ I, such that 

lim(tP(k) zP(k) eP(k)) - (t 00 :z: 00 0) 
' ' - ' ' 

From step 2.3 it follows that 

which, together with the continuity assumption on w( • ), implies that 

Now, let t E T be arbitrarily chosen. We know that tP(k) is an eP(k)_ 
optimal solution for (2.33) in case (2.33) is regular, and that tP(k) is 
optimal in case of unboundedness. Therefore, 

w(t,0,z00 ) = limw(t,0,zP(k)) 2::: 

lim ( w( tP(k), 0, zP(k)) - eP(k)) = w( t00 , 0, :z: 00 ) 2::: 0 
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This result, combined with (2.32), implies that z 00 E FSx. 
D 

One application of Theorem 2.12 is when the original programme 'P 
is a conve:c programme. In that case, the feasibility cuts -h(0, z) :5 0 
can always be chosen to be affine, i.e. of the form tTz + t0 :5 0, if 
some mild conditions on the problem data X, Y, U and G( ·) are met. 
In that case, the feasibility cuts are actually separating hyperplanes. 
Such cuts obviously obey the continuity requirement that is mentioned 
in the theorem; the compactness condition on T, however, still has to 
be enforced. In the special case of Linear Programming, this latter 
condition too, is met. In that case, the only functions h(•) in .6.0 which 
have to be considered, are the ones which relate to the extreme rays of 
a certain polyhedral cone. These extreme rays, in their turn, can be 
normalized, thereby satisfying the compactness condition on T; (2.33) 
then states that the "(almost) most violated" normalized extreme ray 
should be generated. In the case of Linear Programming, however, a 
much stronger property holds, viz. finite convergence (cf.Theorem 2.9). 

The reader may have observed a slight discrepancy between the con
ditions mentioned in Theorems 2.11 and 2.12. In the former theo
rem the ezistence of finitely representable dual solutions is required, 
whereas in the latter theorem, such solutions actually have to be gen
erated. An explication for this phenomenon possibly stems from the 
fact that in the latter theorem, the notion of closedness seems to be 
useless. Closedness of a 0 (,8°(-)) would necessarily imply that only a fi
nite number of feasibility cuts would be generated during the iterative 
process, implying that there is nothing left to prove in Theorem 2.12. 
To justify this assertion, let us assume that the sequences (zlc)N\I and 
(hk(·))t.1\I are infinite .. Consider a subsequence (zP(lc))N\I of (zlc)IN\I 
which converges to z 00 E X. Note that the existence of such a con
verging subsequence is guaranteed by the compactness condition on X. 
Consequently, limzP(lc) = limzP(k+l) = z00 and zP(k+l) E a 0(,8°(zP(lc))). 
Closedness of this point-to-set map would imply that a dual solution 
hoc:i(·) E ,8°(z00 ) existed, for which -h00 (0,zoc:i) :5 0, or, to say it in 
other words, for which h00 ( •) ¢ ,8°( z 00 ). This is an obvious contradic
tion, implying that the aforementioned sequences are actually finite. 
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To summarize, in the absence of a useful notion of closedness, we have 
to rely on what actually happens during the execution of the iterative 
procedure. This may explain why in Theorem 2.12 we cannot con
fine ourselves to the ezistence of finitely representable, continuous dual 
solutions, but why we actually have to generate them. 

2.6 The special case of Mixed-Integer Non
Linear Programming with an 
underlying convex structure 

In this subsection it will be demonstrated that the variable decom
position procedure applied to a mixed-integer non-linear programme 
with an underlying convex structure, amounts to alternately solving 
mixed-integer linear programmes and ordinary non-linear convez pro
grammes; in other words, the integrality requirements are separated 
from the non-linearities. 

Consider such a mixed-integer non-linear programme, which, apart 
from the integrality requirements, has a convex structure. In terms of 
(2.1) this means that X contains integrality requirements on its vari
ables, that Y and Un (X x Y) are convex sets for some convex set 
X 2 X, that - f ( ·) and G( ·) are convex functions on U n ( X x Y) 
and that◊ E {~}m. In that case, the primal subprogrammes (2.4) are 
convez programming problems. Under some mild constraint qualifica
tions then, the ( common) feasible set of their duals can be restricted to 
the set of affine functions without invalidating strong duality and the 
Farkas property (Lagrangean duality; cf. [Geoffrion, 1972b] and Subsec
tion 4.1 of Part II). In doing so, the following dual subprogrammes are 
obtained 
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u,v,w 

s.t. uTG(x, y) + vTx + w ~ f(x, y) V(x, y) E Un (.Xx Y) 

u~O 

The resulting master programme reads 

max 8 
. il!,IJ 

s.t. -vTf + () :s; w V(u,v,w) satisfying 1. u ~ O, and 

2. uTG(x, y) + vTx + w ~ f(x, y) 

V(x,y) E Un(X X Y) 
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(2.34) 

-sTf :s; t V(r, s, t) satisfying 1. r ~ 0, and 

f EX 

2. rTG(x,y) + sTx + t ~ 0 

V(x,y) Eun (X X Y) 

This master programme contains a huge number of dominated con
straints. Many of them can be eliminated by using the equivalence of 
the following two statements 

• -vTf + (} :s; w V(u,v,w) satisfying 1. u ~ 0, and 

2. uTG(:v, y) + vT:v + w ~ f(:v, y) 

V(:v,y) EU n (Xx Y) 

• -vTf + (} :s; sup{/(:v,y) - uTG(:v,y)- vT:v I 
(:v,y)EUn(.XxY)} V(u,v): u~O 
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A similar equivalence holds for the feasibility cuts in (2.34). As a result, 
(2.34) can be replaced by 

max f) 
11,B 

s.t. -vTf + 0 < sup{f(:v,y) - uTG(:v,y)- vT:v I 
(:v,y) Eun (X X Y)} \l(u,v): u20 

(2.35) 

-sTz < sup{-rTG(:v,y)- sTz I 
(z,y) EU n (Xx Y)} \l(r,s): r20 

z EX 

Note that both (2.34) and (2.35) are mixed-integer linear programming 
problems. As a result, applying Variable Decomposition to mixed
integer non-linear programming problems with an underlying convex 
structure, amounts to alternately solving mixed-integer linear relaxed 
master programmes and ordinary non-linear convex primal subpro
grammes. To say it differently, the integrality requirements and the 
non-linearities are dealt with separately. 



Section 3 

Constraint Decomposition 

In this section, Constraint Decomposition is discussed. Basically, it is a 
generalization of Dantzig-Wolfe Decomposition ( cf. [Dantzig & Wolfe, 
1960]) to general mathematical programmes. The idea underlying this 
approach is also known as Column Generation, Generalized Linear Pro
gramming, (Generalized) Dantzig-Wolfe Decomposition, Dual Decom
position and Price Directive Decomposition. In Subsection 3.1 the pro
cedure will be explained. Some comments are made in Subsection 3.2 
and the procedure is related to existing literature in Subsection 3.3. 
Non-cyclic behaviour and finite convergence are the topics of Subsec
tion 3.4. Our discussion is concluded by Subsection 3.5, in which the 
asymptotic convergence of Constraint Decomposition is analysed. 

3.1 Problem manipulations and solution 
strategy 

Consider the following primal programme 
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'P: max f(z) 
a: 

(3.1) 

Here, f ( ·) and G( •) are functions from D ~ Rn to IR U { ±oo} and Rm 
respectively, X ~ D and◊ E {$, =}m (m, n E 1\1). More formally, 

X ~ D ~ Rn 

f(·): D-. RU {±oo} 

◊ E {$,=}m 

G(·): D-. Rm 
(3.2) 

As in Part I and II, G( x) ◊ r is a shorter notation for Gi( a:) ◊i ri, i = 
1, ... , m, where Gi( · ), ◊i and ri are the i-th components of G( · ), ◊ and 
r respectively. For reasons to be explained in Theorem 3.1, we will 
assume that 

Vz EX: f(z) < +oo (3.3) 

Note that (3.3) is not a severe condition. The reason why we persist 
in taking extended real-valued functions f ( ·) into consideration, is to 
include the possibility off(·) being the result of an optimization prob
lem itself. As one can see, two types of constraints are distinguished in 
(3.1), viz. the (in)equality constraints G(z)◊O, and the (possibly) more 
general constraints z E X. The reason for such a distinction originates 
from the fact that the former type will be treated differently from the 
latter. Consider for all X ~ X the following dual pair of programmes: 

'P(X): max f(z) 
:i: 

(3.4) 
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'.D(X): ~f g(O) 

s.t. g(G(z)) ~ /(a:) Va: EX 

g(·) E f 

Here, the dual solution space r equals 

r = {g( ·) : Rm -+ Ru { +oo} I 
g(r) ::5 g(r') Vr,r' E RHS: r◊r1} 

where the set of feasible right-hand-sides RH S is defined as 

RH S = { r E Rm I 3:c E X : G( z) ◊ r} 
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(3.5) 

(3.6) 

(3.7) 

From Lemma 5.1 sub 1 of Part II, it follows that strong duality holds be
tween the pair of programmes 'P(X) and '.D(X) if and only if r,o('P(X)) > 
-oo; here, r,o( •) denotes the optimal solution value of a given optimiza
tion problem, being defined as -oo( +oo) if the feasible set of the max
imization (minimization) problem in question is empty. 

'P(X) and '.D(X) are usually referred to as the primal and du.al mas
ter programme. By definition, 'P(X) is equivalent to the original pro
gramme 'P. For any X ~ X, 'P( X) is called a restricted primal master 
programme. Considering such programmes only makes sense if one is 
able to distinguish whether a given subset X ~ X takes into account 
the relevant part of the feasible set of 'P, and if not, one is able to mod
ify X in some sensible way. Fortunately, this can be done through the 
relazed du.al master programmes '.D(X); due to the fact that '.D(X) is a 
relazation of '.D(X), it follows that g( ·) is a (near-)optimal solution for 
the latter problem if it is both (near-)optimal for the former and feasi
ble for the latter. As a result, testing optimality can be done through 
testing dual feasibility. Let us now elaborate on these intuitive ideas. 
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Theorem 3 .. 1 Let (3.1}-(3. 7) be given. 

1. Suppose that g( ·) E r and X ~ X, then g( ·) is feasible for V( X) 
if and only ifsupz{f(:z:)-g(G(:z:)) I :z: EX} :5 0 

2. Suppose that g( ·) E r and g(O) E R, then g( ·) is feasible for V(X) 
if and only if l()(CV(g(·))) :5 g(O). Here, 

CV(g(·)): max /(:z:) + g(O) - g(G(:z:)) a: 

s.t. :z: EX 
(3.8) 

Proof 

1. g( ·) is feasible for V(X) if and only if g( ·) E r and V:z: E X : 
/(:z:) $ g(G(:z:)). From (3.3) and (3.6) it follows that 

V:z: EX: (f(:z:) < +oo /\g(G(:z:)) > -oo) 

As a result, f( :z:) - g( G( :z:)) is well-defined for all :z: E X. This 
observation implies that g( •) E r is feasible for V(X) if and only if 
V:z: E X : J( :z:) - g( G( :z:)) :5 0. The latter statement is equivalent 
to supa:{f(:c) - g(G(:c)) I :c EX} :5 0. 

2. g(·) Er and g(O) E IR imply that g(·) is feasible for V(X) if and 
only if supa:{f(:c)+g(O)-g(G(:c)) I :z: EX}= g(O)+sup:i:{f(:c)
g(G(:c)) I :c EX} :5 g(O) (cf. 1.). 

□ 

Problem (3.8) looks familiar; it can be regarded as a "generalized" 
Lagrangean relaxation of 'P, in the sense that functions g( ·) other than 
affine ones, may be used to relax the constraints G( :c )◊O. As is revealed 
by the following theorem, these programmes supply upper bounds for 
the original programme 'P, and because of strong duality, these upper 
bounds can be as tight as desired. 
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Theorem 3.2 (Upper bounds) Let {3.1}-(3.8} be given. 

1. r,o(CV(g(·))) 2 r,o('P) for every g(·) Er with g(O) ER 

2. If 'P is regular then r,o ( CV(g( ·))) :5 r,o{'P) + E for every e-optimal 
solution g( •) E r of V(X) 

Proof 

1. Let g(·) E r be such that g(O) E R. As in the proof of The
orem 3.1, f(z) + g(O) - g(G(z)) is well-defined for all z E X, 
so r,o(CV(g(•))) is well-defined as well. If r,o('P) = -oo then the 
statement obviously holds, so assume that r,o('P) > -oo. From 
(3.6) it follows that g( G( z)) :5 g(O) for all z E X with G( z) ◊ 0. 
Consequently, 

r,o(CV(g(·))) = sup{f(x) + g(O) - g(G(x)) Ix EX} 2 
z 

sup{f(z) + g(O) - g(G(x)) I G(z) ◊ 0, x EX} 2 
m 

sup{f(z) I G(z)◊0, z EX}= r,o('P) 
m 

2. Let E 2 0 be given and suppose that g( ·) E r is an e-optimal 
solution for V(X); the existence of such a solution follows from 
the regularity assumption on 'P and from Lemma 5.1 sub 1 of 
Part II. Applying. Theorem 3.1 sub 2 yields r,o(CV(g(·))) :5 g(O) 
:5 r,o(V(X)) + E = r,o('P) + E. 

D 

Of course, restricted primal master programmes supply lower bounds 
for the original programme 'P, and these lower bounds can also be as 
tight as desired. More specifically, 
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Theorem 3.3 (Lower bounds) Let {3.1}-(3.8} be given. 

1. VX ~ X: cp(P(X)) ~ cp(P) 

2. If 1' is regular then 3X ~ X Ve~ 0 : cp(P(X)) ~ cp(P) - e 

Proof This is left to the reader. 
D 

The two aforementioned theorems indicate that the upper and lower 
bounds can be chosen as tight as desired. The question remains, how
ever, which subset X ~ X should be taken into consideration. In fact, 
two questions are involved here, viz. which subset should be taken ini
tially and how should this initial choice be modified in order to end up 
with a (near-)optimal solution for 1'. In defining the constraint decom
position procedure, we will need the following definitions; a superscript 
k is used to denote the value of a variable during iteration k. 

U Bk - best upper bound for cp(P) over the first k iterations 

LBk - best lower bound for cp(P) over the first k iterations 

:l!inc,le - best solution for 1' over the first k iterations1 

I CONSTRAINT DECOMPOSITION PROCEDURE - START I 

I 0. INITIATION PHASE! 

BEGIN 

0.1 LET k := l; 

0.2 LET x1e :~ X BE SUCH THAT cp(P(Xk)) > -oo; 

1The superscript "inc" comes from "current incumbent"; see [Geoffrion & 
Marsten, 1972]. 
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0.3 IF impossible THEN STOP because i.p('P) = -oo 

0.4 ELSE BEGIN LET U B 0 := +oo; LET LB0 := -oo END; 

11. MASTER PROGRAMME PHASEI 

1.1 SOLVE 'P(Xlc); SOLVE V(X,.); 

1.2 IF i.p('P(Xlc)) = +oo THEN STOP because i.p('P) = +oo 

ELSE BEGIN 

1.3 LET (:z:Te, et) BE SUCH THAT zlc is an et-optimal 
solution for 'P(Xlc); 

1.4 LET (glc(·), e;) BE SUCH THAT glc(·) is an e;-optimal 
solution for V(Xk); 

1.5 LET LBlc := max{£Blc-1,f(:z:lc)}; 

1.6 IF LBlc > LBlc-l THEN LET :z:inc,lc := :z:lc 

ELSE LET zinc,1c := zinc,1c-1 

END; 

12. SUBPROGRAMME PHASEI 

2.1 SOLVE CV(g,.(·)); 

2.2 IF i.p(CV(glc(·))) = +oo THEN BEGIN LET e~ := O; 

2.3 LET ylc E X BE SUCH THAT 
f(ylc) + glc(0) _ glc(G(ylc)) > glc(0); 

2.4 LET x1c U {ylc} ~: Xk+1 :~ X; LET UBlc := UB1c- 1 

END ELSE BEGIN 

2.5 LET (ylc, e~) BE SUCH THAT yk is an e~-optimal 
solution for CV(gk( •) ); 

2.6 LET Xk U {ylc} ~: Xle+i :~ X; 

2.7 LET UBk := min{UBk-1,f(yle) + gk(0)-gk(G(yle)) + en 

END; 
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1 s. OPTIMALITY CHECKI 

3.1 LET E~ BE SUCH THAT E~ 2'.: et+ e; + e~; 
3.2 IF U Blc - LEie :5 e~ THEN STOP because :z:inc,1e 

is a (UBk - LBlc)-optimal solution for 'P, which 
meets the required accuracy of e~ 

3.3 ELSE BEGIN LET k := k + 1; GOTO 1 END 

END. 

I CONSTRAINT DECOMPOSITION PROCEDURE - END I 

As in the variable decomposition procedure of Subsection 2.1, many 
questions are left unanswered here, such as how to initiate the proce
dure (step 0.2), how to solve the restricted primal master programmes 
(steps 1.1 and 1.3), how to obtain dual solutions (steps 1.1 and 1.4), 
how to solve the subprogrammes (steps 2.1, 2.3 and 2.5), how to extend 
Xie to Xlc+1 (steps 2.4 and 2.6) and how to specify the inaccuracy pa
rameters e; (steps 1.3, 1.4, 2.5 and 3.1). The reason for this is, again, 
twofold. On the one hand, general answers do not exist for these ques
tions; the infeasibility at initial iterations, for instance, is a notorious 
phenomenon, even if 'P is an ordinary linear programme. On the other 
hand, it may well be possible that, depending on the specific problem 
characteristics involved, several alternatives exist. Dual solutions, for 
instance, can usually be obtained as a by-product of solving the primal, 
but it may be possible to obtain them otherwise. To summarize, we 
have been discussing a framework here; applying the procedure to a 
specific problem(-class) still requires a lot of fine-tuning, which highly 
determines its performance. Let us close this subsection with some 
additional remarks. 

Step 1.2 cp('P) 2'.: cp('P(X,.)) = +oo. 

Step 1.3 'P(Xk) is a regular programme. 

Step 1.5 /(:z:k) is a lower bound for cp('P(Xk)), hence for cp('P). 
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Step 2.3 From the fact that gk(·) is a feasible solution for V(Xk), it 
follows that yk ¢ Xk. 

Step 2.4 Due to the fact that f(yk) - gk(G(yk)) > 0, it follows that 
gk( •) will not be generated in subsequent iterations if yk E X \ Xk 
is added to Xk+t. 

Step 2.5 CV(gk(·)) is a regular programme, because ip(CV(gk(·))) ~ 
ip(P) ~ ip(P(X1 )) > -00 for all gk(·) E f with g(0) ER (cf. 
Theorem 3.2). 

Step 2.7 (f(yk) + gk(0) - gk(G(yk)) + e!) is an upper bound for ip(P), 
because it is one for i,o(CV(gk(·))). 

Suppose e~ 2:: et + e; + e; and U Bk - LBk > e~. Then it follows 
that 

(f(yk) + gk(0) - gk(Q(yk)) + e~) - (gk(O) - e~ - e~) ~ 
U Bk - (ip(V(Xk)) - et) = U Bk - (ip(P(Xk)) - et) 2:: 

UBk - f(zk) 2:: UBk - LBk > e~ 

hence f(yk) - gk(G(yk)) > e~ - e~ - e; - e; 2:: 0. The solution 
gk(·) is feasible for V(Xk), so yk ¢ Xk. As a result, gk(·) will not 
be generated in subsequent iterations since yk EX\ Xk is added 
to Xk+1 • 

Step 3.1 e~ is a non-negative parameter, bounding the overall inaccu
racy which is allowed in the final solution of P. Note that all four 
inaccuracy parameters are allowed to vary among iterations. 

Step 3.2 0 ~ ip(P) - f ( zinc,k) ~ U Bk - LBk. Therefore, zinc,k is a 
(U Bk - LBk)-optimal solution for P, which meets the required 
accuracy of e~. 

The test U Bk - LBk ~ e~ is essentially a test on dual optimality. 
This assertion was already made before the actual description of 
the procedure; its justification is based on the fact that at each 
iteration k, a dual feasible solution for V(X) is readily available. 
In addition, this dual feasible solution is (U Bk-£Bk)-optimal for 



164 SECTION 3. CONSTRAINT DECOMPOSITION 

'D(X). In proving this statement, consider an arbitrary iteration 
k. Let l denote the smallest index for which U Bl = U Bk. Note 
that, by definition, U Bl < U Bl-1 , so during iteration l, step 2. 7 
was executed. Define the function g( •) as follows 

Note that g(O) = U Bl = U Bk. Obviously, g( •) E r because g( •) is 
readily obtained from gl( •) by a vertical shift. Furthermore, the 
e!-optimality of yl in C'D(gl(,)) implies that 

Vx EX: f(x) - g(G(x)) = 
f ( x) - (gl( Q( x)) + f (yl) - gl( G(yl)) + e~) = 
(f(x) + gl(O) - gl(G(x)))-

(f(yl) + gl(O) - gl(Q(yl)) + e~) ~ 0 

Consequently, g( ·) is a feasible solution for 'D(X). Moreover, 

As a result, g(·) is a (UBk-LBk)-optimaI solution for 'D(X). 
These observations imply that the test in step 3.2 is, in fact, a 
test on dual optimality. 

3.2 Some minor remarks 

In this subsection, two additional remarks concerning the constraint 
decomposition procedure will be made. The first remark concerns the 
choice of the inaccuracy parameters ef, ( i = 0, ... , 3); the second re
mark relates to the monotonicity of the lower bounds, in case optimal 
primal solutions are generated in the master programme phase through
out the execution of the procedure. 
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Inaccuracies and duality gaps 

As is revealed by the superscript k, all four inaccuracy parameters e~ 
(i = 0, ... , 3) are allowed to vary between iterations. The overall inac
curacy e~, though, has to be chosen at least as large as the sum of the 
inaccuracies which are allowed in the blocks of which the procedure is 
composed, in order to make sure that the current solution will be cut 
oft' in all subsequent iterations. In this way, the procedure is prevented 
from getting stuck in a cycle ( see the additional explanation concerning 
steps 2.3-2.7 in Subsection 3.1). Of course, if UBlc - LEie $; ·e~, then 
zinc,lc is a (near-)optimal solution which fits the required accuracy e~, 
irrespective of whether e~ 2:: et + e~ + e~. However, if non-cyclic be
haviour is to be guaranteed, then e~ has to be chosen as indicated. For 
more detailed information, the reader is referred to Subsection 3.4. 

If the restricted primal master programmes 'P( •) are of a specific struc
ture, attention may be restricted to specially structured solutions in 
the relaxed dual master programmes V( • ). For instance, if 'P(X) is 
a convex programme (i.e. having a concave objective function and a 
convex feasible set) then, under a mild regularity condition, attention 
can be restricted to affine solutions in V(X) (Lagrangean duality; cf. 
[Geoffrion, 1972b] and Subsection 4.1 of Part II). From a computa
tional point of view, however, it may be desirable, or even compulsory, 
to restrict attention to a (well-structured) subset of the feasible set of 
V(X), even if strong duality can thereby no longer be guaranteed. The 
constraint decomposition procedure as presented in the previous sub
section allows for such an approach, because the resulting duality gaps 
are fully absorbed by the values for e~. One has to realize, however, 
that the larger the gap, the larger the overall inaccuracy e~ one has 
to accept. It should also be noted that the values for et and e~ need 
not be specified separately. If in steps 1.3 and 1.4 a primal and a dual 
solution zlc and glc(,) have been obtained for which f(zlc) and glc(O) are 
sufficiently close, then et + e~ may be chosen equal to the difference of 
these two values. In this way, the individual values for et and e~ are 
unknown, but also unimportant. 
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Monotonous lower bounds 

If at each iteration et= 0, then the values /(zlc) constitute a monoton
ically non-decreasing sequence of lower bounds. As a result, steps 1.5 
and 1.6 can then be changed into: "LET LBlc := /(zlc);" and "LET 
zinc,lc := zlc" respectively. A similar statement does not apply, however, 
to the sequence of upper bounds U Blc. 

3.3 Relations to existing literature 

In this subsection Constraint Decomposition will be related to existing 
literature. More specifically, it will be argued that Dantzig-Wolfe De
composition and two former extensions are captured by the approach 
of Subsection 3.1. The procedures that will be discussed here concern 
the ones in [Dantzig & Wolfe, 1960] for the linear case, [Dantzig, 1963] 
for the convex case and [Burkard et al., 1985] for the general case. 

[Dantzig &; Wolfe, 1960] 

Dantzig and Wolfe can be regarded as the founding fathers of the pro
cedure. In their paper, linear programmes are considered, which can 
be obtained from (3.1) by choosing /(z) = cTz, G(z) = Az - b, and 
X = {z E Rn I E:D - h :5 0, :D 2::: 0}; here, c, b and h are given vec
tors, and A and E are given matrices of appropriate dimensions. Let 
us denote the (finitely many) extreme points of the polyhedron X by 
zi (j E J) and its (finitely many) extreme rays by rl (l E L). Let us 
consider the following restriction of the primal solution·space X. 

X - { z E Rn I z can be written as a convex 

combination of zi (j E J ~ J) plus a 

non-negative combination of rl ( l E L ~ L)} 

(3.9) 
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The restricted primal master programmes thus obtained, satisfy the suf
ficient conditions which imply strong duality between these programmes 
and their Lagrangean duals (cf. [Geoffrion, 1972b) and Subsection 4.1 
of Part II). A simple transformation of variables, however, causes each 
primal-dual pair of master programmes to be transformed into a pair 
of linear programmes, which are dual to one another in a Linear Pro
gramming sense. 

In the subprogramme phase an extreme point z; or an extreme ray 
{ z; + .\rl I .\ ~ O} of X is generated, depending on whether the subpro
gramme CV(gl•(·)) is bounded or not. In step 2.4 or 2.6 then, Xle+l is 
obtained from Xie by extending the index sets J and/or L. As a result, 
an uncountable number of points is added to the current restriction of 
X. 

Finally, if all inaccuracy parameters et (i = O, ... , 3) are chosen equal 
to zero, Dantzig and Wolfe's original constraint decomposition pro
cedure is obtained. Note that such a choice is possible, because all 
programmes involved are linear programmes. The finite convergence 
of the procedure follows from Theorem 3.6 ( cf. Subsection 3.4). 

[Dantzig, 1963] 

In [Dantzig, 1963] pp. 4 71-4 78 a constraint decomposition procedure is 
discussed for the conve:n case. Such programmes can be obtained from 
(3.1) by assuming that Xis a compact and convex set,/(·) is a real
valued and concave function on X, G( •) is a vector-valued and convex 
function on X, and ◊ E {~}m. Suppose that at the start of iteration 
k, a finite number of points Y' E X (j E J ~ J) has already been 
generated. In the master programme phase of iteration k, the primal 
solution space is then restricted to the set {Y' I j E J}, leading to a 
restricted primal master programme of the following type. 
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max f(:v) 
Ill 

s.t. G(:v) ~ 0 (3.10) 

:v E {y:i I j E J} 

In case only affine functions are considered in the dual of (3.10), then 
the corresponding relaxed dual master programmes coincides with the 
Lagrangean dual of (3.10), viz. 

mm ( 
u,C 

s.t. uTG(:v) + ( ~ f(:v) V:v E {y:i I j E J} (3.11) 

u~O 

The subprogrammes are fully determined by (near-)optimal solutions of 
the relaxed dual master programmes. These subprogrammes therefore 
look like 

max f(:v) - uTG(:v) 
Ill 

s.t. :v EX 
(3.12) 

Unfortunately, the resulting algorithm does not seem to be a promising 
tool for solving mathematical programmes of the aforementioned type, 
for at least two reasons. On the one hand, there will usually be a 
large gap between the optimal solution values of the restricted primal 
and relaxed dual master programmes (3.10) and (3.11) respectively. 
This will usually lead to large values for €~ + E;, implying that the 
values for the overall inaccuracies €~ will usually have to be chosen 
large. As a result, it seems as if one has to content oneself with truly 
inaccurate solutions for the original programme P. On the other hand, 
the restricted primal master programmes which are defined in (3.10) 
are unlikely to be able to constantly generate good lower bounds; the 
yk's which are generated in the subprogramme phase are usually not 
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feasible for 'P. Consequently, the feasible set of 'P( Xie) will usually not 
be extended from iteration to iteration, implying that the lower bound 
will usually not be increased significantly over iterations. Fortunately, 
in the convex case we are dealing with, these two major drawbacks can 
easily be eliminated. The crucial observation in this respect is that 
(3.11) is a linear programme, of which the dual reads 

max 'E).;f(y;) 
~ 

;e"J 

s.t. L).;G(yj) ~ 0 
;e"J (3.13) 

'E).;= 1 
;e1 

).; ~ 0, j E J 

From Linear Programming duality it follows that there is no duality gap 
between (3.13) and the Lagrangean dual of (3.10). As the Lagrangean 
dual generally closes the duality gap in case the primal programme is 
a convex optimization problem, (3.13) is sometimes referred to as the 
convezification of (3.10) ( cf. [Magnanti et al., 1976]). Also note that any 
feasible solution ). for (3.13) leads to a feasible solution z = :E;e1 ).;Y; 
for 'P. Because of the latter property, one is tempted to take (3.13), 
instead of (3.10), as the restricted primal master programme. By do
ing so, both the aforementioned drawbacks are eliminated; on the one 
hand, there is no duality gap between (3.13) and (3.11), meaning that 
any positive value for et+ e~ is solely due to an unwillingness to solve 
the two linear programmes to optimality, and on the other hand, the 
feasible set of (3.13) will usually be extended from iteration to itera
tion, meaning that the lower bound will usually be improved upon as 
iterations go by. The question remains of course, whether it is actually 
allowed to replace (3.10) with (3.13). Fortunately, the answer is yes. It 
is easily verified that the only way in which the algorithm is affected, 
is through the determination of the lower bounds; all statements in 
Subsection 3.1 remain valid, though. The description of Dantzig's de
composition method for the convex case is hereby complete. It is an 
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iterative method between the relaxed dual master programmes (3.11) 
and the subprogrammes (3.12), where the current incumbents zinc,/e and 
the lower bounds £Bk are determined by the restricted primal master 
programmes (3.13). 

[Burkard et al., 1985] 

The generalization of the Dantzig-Wolfe decomposition procedure which 
is discussed in [Burkard et al., 1985] is essentially the same as ours. As 
in Variable Decomposition, the former discussion covers the field of al
gebraic optimization. The approach in Subsection 3.1, however, can be 
amplified to account for these abstract fields of optimization as well. 
Moreover, we allowed for inaccuracies in intermediate primal and dual 
solutions, as well as for duality gaps between the underlying primal and 
dual master programmes. 

3.4 Non-cyclic behaviour and finite 
convergence 

In this subsection it will be explained that the constraint decomposition 
procedure, like the variable decomposition procedure in Section 2, does 
not exhibit cyclic behaviour. In addition, conditions will be stated 
under which the procedure is guaranteed to terminate within a finite 
number of steps. 

Theorem 3.4 (Non-cyclic behaviour of complete solutions) 
Let {3.1}-(9.8} be given. 

1. In step 1.,4 no solution gk( ·) will be generated more than once 

2. As soon as in step 2.9 or 2.5 a solution yle is generated for the 
second time, the algorithm will terminate 
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Proof The first assertion immediately follows from the additional ex
planation concerning step 2.4. In order to prove the second one, let us 
suppose that yl = ylc for some l < k. From step 1.4 it follows that 

This fact, combined with the additional explanation concerning steps 2.4 
and 2.7, yields that UElc -LEie ~ e~. Hence, the algorithm terminates 
at iteration k. 

D 

Definition 3.1 (Essentially identical) Let g( ·) and g'( ·) be two ex
tended real-valued functions, defined on a common domain. Then g( ·) 
and g'( ·) are called essentially identical if and only if :3a E R : g( ·) = 
g'(·) + a. 

Two functions which are not essentially identical, are called essentially 
different. The reason for introducing such a notion is clear: if two func
tions are essentially identical, they yield the same subprogramme C'D( · ), 
implying that the upper bound cannot be improved upon by more than 
the largest reduction in E; possible. Fortunately, the procedure can be 
safeguarded against generating essentially identical solutions gh( ·) quite 
easily. Let max{ E;} denote the largest value of E; that has been used 
so far. 

Theorem 3.5 (Non-cyclic behaviour of partial solutions) 
Let (3.1}-(3.8} be given. In addition, suppose that a real-valued upper 
bound U Elco has been obtained at iteration k0 , and that at each subse
quent iteration the following conditions are satisfied. 

• If <p ( C'D(gh( ·))) = +oo then ylc in step 2. 3 is chosen in such a 
way that f(ylc) + glc(O) - glc(G(ylc)) ~ UE1c 
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• If <,o(CV(g'e(·))) < +oo then e~ in step 3.1 is chosen in such a 
way that e~ ~ et + e; + max{ e~} 

Then the procedure terminates as soon as in step 1..4 a solution gle( ·) 
is generated which is essentially identical to a previously generated so
lution!/(·) for some l E {k0 , ... , k - 1}. 

Proof Suppose gl( ·) is essentially identical to gk( •) for some l E 

{k0 , ... , k - 1}. We know that yl E X", so g"(G(yl)) ~ f(yl). This 
implies that 

(3.14) 

Furthermore, gl(,) is essentially identical to g"( · ), hence 

(3.15) 

In case <,o(CV(gl(·))) = <,o(CV(gk(,))) = +oo, (3.14) and (3.15) imply 
that 

UBk - £Bk~ UBl - £Bk~ UBl - f(x") ~ 

(f(yl) + gl(O) - gl(G(yl))) - (gk(O) - et - e;) = 

(f(yl) + g"(O) - g"(G(yl))) - (g"(O) - et - e;) ~ e~ 

As a result, the procedure terminates at iteration k. On the other 
hand, if <,o(CV(gl(·))) = <,o(CV(gk(·))) < +oo, then (3.14) and (3.15) 
imply that 

UBk - £Bk s UBl - £Bk~ UBl - f(zk) s 
(f(yl) + gl(O) _ gl(G(yl)) + 1) _ (gk(O) _et_ e;) = 

(f(yl) + g"(O) - g1e(G(yl)) + 1) - (gk(O) - et - e;) ~ e~ 
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Again, the procedure terminates at iteration k. 
D 

As one can see, Theorem 3.5 does not exclude the possibility of repeat
edly generating essentially identical functions 9''( •) completely. How
ever, once a solution gl•( ·) is generated in step 1.4 with <p (CV(g"( · ))) 
< +oo, a real-valued upper bound U B" is obtained. From that iteration 
onwards, all solutions in step 1.4 can be guaranteed to be essentially 
different, unless termination occurs. As in the variable decomposition 
procedure, the inaccuracy in the subprogram.me phase is the most crit
ical one if repeatedly generating essentially identical functions g11( •) is 
to be avoided. Apparently, there is no gain· in requiring a specific accu
racy~, once a less accurate solution has ever been allowed in step 2.5. 
The sequence ( e:),.. could therefore just as well be chosen monotonically 
non-decreasing, in which case the condition stated in step 3.1 results. 

From the previous two theorems it follows that even in its full generality, 
Constraint Decomposition does not exhibit cyclic behaviour. To enforce 
finite convergence, severe conditions have to be imposed on problem 
structure. Below we will formulate two such conditions. 

Theorem 3.6 (Finite convergence - primal version) 
Let {9.1}-(9.8) be given. In addition, suppose that every y11 EX that is 
generated in step 2.9 or 2.5 belongs to some finite subset of X. Then 
the procedure is guaranteed to terminate within a finite number of steps. 

Theorem 3.7 (Finite convergence - dual version) 
Let {9.1}-(9.8} be given. In addition, suppose that a real-valued upper 
bound U Blto has been obtained at iteration ko and that at each subse
quent iteration, the following conditions are satisfied. 

• If <p ( CV(g"( ·))) = +oo then y11 in step 2. 9 is chosen in such a 
way that f(y") + g11 (0) - g11( G(y")) ~ U B" 
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• If <p ( CV(gk( ·))) < +oo then e~ in step 3.1 is chosen in such a way 
that ek > ek + ek + max{ ek} 

0 - 1 2 3 

Finally, suppose that every gk( ·) which is generated in step 1..4., can be 
obtained by vertically shifting a member of some finite set of functions. 
Then the procedure will terminate within a finite number of steps. 

Proof The results are a direct consequence of the fact that the pro
cedure neither generates the same values for y E X, nor essentially 
identical functions g( ·) E r more than twice. 

D 

These convergence results prove their usefulness, for instance, if the 
subprogrammes can be converted into linear programmes. In that case, 
all intermediate primal solutions yk relate to a finite number of extreme 
points and/or extreme rays. More specifically, the finite convergence of 
the original Dantzig-Wolfe decomposition procedure is covered by these 
results. 

3.5 Asymptotic convergence 

In this subsection, the asymptotic convergence properties of the con
straint decomposition procedure will be discussed. In Theorem 3.8 suf
ficient conditions will be stated which imply asymptotic convergence. 
These conditions concern, apart from some mild continuity and com
pactness requirements on problem data, the existence of finitely rep
resentable dual solutions for the relaxed dual master programmes ( cf. 
Subsection 4.2 of Part II). Moreover, it is assumed that these dual 
solutions are continuous, and that they can be represented by means 
of elements of some {finitely dimensional) compact set. Finally, such 
dual solutions are supposed to be actually generated throughout the 
execution of the algorithm. 
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Theorem 3.8 (Asymptotic convergence) Let {3.1}-(3.8} be given. 
Suppose that X is compact, <p('P) E R and that f ( ·) and G( ·) are con
tinuous functions with respect to X. Furthermore, suppose that \:/k : e~ 
is chosen from some compact set Ei {i = 1, ... , 3}. Finally, suppose 
that there is a non-empty and compact set T s;;;; RT (T E IN) and a func
tion w(·) : T x Rm -+ RU {±oo} which is continuous and real-valued 
with respect to T x RHS, such that w(t, •)Er Vt ET and 

If gl•( ·) is generated in step 1.,4 during iteration k, 
then :Jtlc ET: w(tlc, •) = glc(·) 

Then the algorithm converges asymptotically, in the sense that 

(3.16) 

1. If the algorithm does not terminate within a finite number of 
steps, then for every accumulation point t00 of (tk)1111 it follows 
that w(t00 , ·)+er is an (er+ er)-optimal solution for V(X) for 
some accumulation point (er, er) of ( e;, e~ )1111. 

2. If the algorithm does not terminate within a finite number of steps, 
then every accumulation point of ( zlc) 1111 is a lim sup( et+ e~ + e;)
optimal solution for 'P. 

3. If the algorithm does not terminate within a finite number of steps, 
then every accumulation point of(zinc,lc)JN is a lim sup( et+e;+e;)
optimal solution for 'P. 

4- If the algorithm does not terminate within a finite number of steps, 
then O:::;; lim(UBlc - LEie):::;; limsup(et + e; + e;). 

5. Suppose there is an iteration l 0 and an 'T/ > 0 such that \:/k 2::: l 0 : 

e~ 2::: et + e; + e; + 'T/, then the algorithm terminates within a finite 
number of steps, say k0 , and zinc,/co is a (U Elco - LB/co )-optimal 
solution for 'P, which meets the required accuracy of e~ . 
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Proof First of all, it should be noted that under the aforementioned 
conditions, steps 2.2 and 2.4 of the algorithm will never be executed. 
This assertion is easily proven. The image of X under f ( •) does not 
include +oo, and the image of RHS under w(t, ·) does not include -oo 
for any t E T. This implies that the objective function of C'D( w( tie, ·)) is 
less than +oo at all points x EX for any iteration k. As a consequence 
of the compactness of X and the continuity of/(·), G(·) and w(tle, •), 
it follows that the optimal objective function value of C'D( w( tie, •)) is 
bounded from above for all iterations k. Secondly, it should be observed 
that due to cp(P) E IR, finite convergence of the algorithm necessarily 
implies that the optimality criterion in step 3.2 is met. Finally, it 
should be mentioned that all references to accumulation points only 
make sense in case such points exist. From the compactness conditions 
it follows that such points exist if and only if the algorithm does not 
terminate prematurely. 

1. Let t00 be any accumulation point of (tle)IN· Note that the com
pactness condition on T implies that such a point exists, and is 
necessarily an element of T. Furthermore, the compactness con
ditions on E 2, Es and X imply that there is a subsequence (p(k))1N 
of N such that 

for some (er, ego, y00 ) E E2 X Es X X. From the fact that yP(le) is 

an ?a(le)_optimal solution ofC'D(w(tP(le),,)), it follows that 

Vx EX : f(x) - w(tP(le), G(x )) :S 

f(yP(le)) - w(tP(le), G(yP(le))) + ?a(le) 

The continuity conditions on/(·), G(·) and w(·) imply that 

Vx EX: f(x)-w(t 00 ,G(:v)) :S 

f(y 00 ) - w( t00 , G(y00 )) + ego 
(3.17) 
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Note that y 00 is hereby proven to be an fa-optimal solution for 
CV( w( t00 , • )). From step 1.4 it also follows that 

which, together with the continuity conditions on/(·), G(·) and 
w( • ), implies that 

(3.18) 

Combining (3.17) and (3.18) renders 

It is obvious that r is closed with respect to scalar addition, so 

The last two statements prove the feasibility of w(t00 , ·) + e3 in 
V(X). Finally, it is also true that w(tP(le), 0)- ~(le) S cp(V(XP(le))) 
= cp('P(XP(le))) S cp('P) = cp(V(X)). Again from the continuity 
condition on w( ·) it follows that 

As a result, w(t00 , ·) + e3 is an (er+ e3)-optimal solution for 
V(X) 

2. Let :z: 00 be any accumulation point of (:z:le)rr,,. Note that the com
pactness condition on X implies that such a point exists, and is 
necessarily an element of X. As above, we construct a subse
quence (p( k) )1N of N, such that 

lim(t1'(le) f!(le) ~(le) e!(le) :z:P(le)) = (too eoo eoo eoo :z:oo) 
,1 ,2 ,a, '1'2'3' 

for some (t00 , Ei, er, ea') ET X E1 X E2 X Ea. The continuity of 
G( ·) implies that :z:00 is a feasible solution for 'P. Furthermore, 
from the continuity of f( ·) it follows that 
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f(:z: 00 ) = limf(zP(lc)) 2:: 

lim sup ( r,o('P( XP(lc))) - er(lc)) = 
lim sup ( r,o('.D(XP(ic))) - er<1c>) 2:: 

lim (w(tP(lc),O)- er(lc) - ~(le))= 

w(t00 , 0) - Ei - E2 = 

(w(t00 ,0)+er)-(ei+er+er) 2:: 

rp('P) - ( Ei + E2 + E3) 

The last inequality follows from the fact that w(t00 , ·)+Es is a 
feasible solution for V(X) (cf. 1.). 

3. Let zinc,oc be any accumulation point of ( zinc,lc )1111 • Note that the 
compactness condition on X implies that such a point exists, 
and is necessarily an element of X. As above, we construct a 
subsequence (p(k))IN of N, such that 

for some z 00 E X. The continuity of G( •) implies that zinc,oo is a 
feasible solution for 'P. Furthermore, f(zinc,lc) 2:: f(zlc), so 

4. From the compactness conditions on X, T, E1 , E 2 and E 3 it 
follows that there is a subsequence (p( k) )IN of N such that 

lim(tP(le) f!(lc) e?;(lc) e?;(lc) yP(lc)) - (too Eoo Eoo Eoo yoo) 
,1·,2 ,a, - 111213, 

for some (t00 , Ei, e2, e3, y00 ) E T X E 1 X E 2 X E3 X X. Note 
that (U Blc)N ((£Blc)1N) is a monotonically non-increasing (non
decreasing) sequence of upper (lower) bounds, which is bounded 
from below (above) by r,o{'P). Hence, both sequences converge to, 
say U B 00 and LB00 respectively. On the one hand, (3.18) implies 
that 



3.5. ASYMPTOTIC CONVERGENCE 179 

UB00 -.5: 

lim (f(yP(k)) + w(tP(k), 0) - w(tJ>(k), G(yP(k))) + ?a("')) -.5: 

f(y 00 ) + w(t00 , 0) - w(t00 , G(y00 )) + er -.5: w(t00 , 0) + e~ 
On the other hand, 

LB00 2::: lim /(:z:P(k)) 2::: 

lim ( w(tP(k), 0) - ?i(k) - G("')) = w(t00 , 0) - Ei - e2 

The above two relations imply that 

5. Suppose the algorithm does not terminate within a finite number 
of steps. We know that 

As a result, 

which would imply that the optimality criterion is met at iter
ation k; an obvious contradiction. Therefore, the algorithm is 
bound to terminate after a finite number of steps. 

□ 

Corollary 3.1 (Asymptotic convergence - perturbed version) 
Let the conditions of Theorem 3.8 be satisfied. Then every accumulation 
point y00 of (y"')IN is a lim sup e:-optimal solution for the mathematical 
programme which is obtained from 'P by changing the right-hand-side 0 
into G(y00 ). 
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Proof Let yoc be any accumulation point of (ylc)HII. Note that the 
closedness condition on X implies that y00 E X, so the feasibility of y00 

with respect to the aforementioned perturbed primal programme is eas
ily verified. As in the proof of Theorem 3.8, we construct a subsequence 
(p( k) )IN of N, such that 

for some (t00 ' er' Es°) E T X E2 X Ea, From (3.17) we know that y00 

is an e3-optimal solution for CV(w(t00 , •)). This fact, combined with 
w(t00 , ·)Er, renders 

sup{f(:c) I G(:c)◊G(yoc), :c EX}$ 
Ill 

sup{/( :c) + w( t00 , G(yoc)) - w( t00 , G( :c)) I 
Ill 

G(:c)◊G(y00 ), :c EX}$ 

sup{/( :c) + w( t 00 , G(y00 )) - w( t 00 , G( z)) I :c E X} = 
Ill 

sup{f(:c) + w(t00 , 0) - w(t00 , G(:c)) I :c EX}+ 
Ill 

w(t00 , G(y00 )) - w(t00 , 0) $ 

f(y 00 ) + w(t00 , 0) - w(t00 , G(y00 )) +Ea+ 
w(t00 , G(y00 )) - w(t00 , 0) = 

This proves the corollary. 
D 

Although there seems to be a lot of similarity between Variable Decom
position and Constraint Decomposition (in fact, these methods will be 
proven to be dual approaches in Section 4), there remains an annoying 
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discrepancy with respect to the generality of the asymptotic conver
gence results. In Variable Decomposition, we did not have to rely on 
finitely representable dual solutions in order to prove convergence. In 
Subsection 2.5, convergence was proven under a closedness condition 
on a(,8( · )), the point-to-set map which largely described the variable 
decomposition procedure. Furthermore, it was also proven that in case 
finitely representable, and in some sense continuous dual solutions ez
isted, closedness of this point-to-set map followed. 

In proving the convergence of Constraint Decomposition, we assumed 
the ezistence of finitely representable and continuous dual soluti"ons w( ·) 
right from the start; we even assumed that such solutions were actually 
generated throughout the execution of the procedure. As in Variable 
Decomposition, the former assumption, together with the continuity 
conditions on/(·), G(·) and w(·) and the compactness condition on X, 
implies the closedness of the point-to-set map which largely describes 
the constraint decomposition procedure. Here too, this map can be 
defined as the composed map a(,8( · )), where 

a(·): X -+-+ T, with 

a(z) = {t ET I w(t,G(z)) ~ /(z)} 
(3.19) 

,8(·): T x E2 -+-+ X, with 

,8( t, e2) = { z E X I z is Eroptimal for C'V( w( t, ·))} 

Unfortunately, it seems impossible to generalize Theorem 3.8 to non
finitely representable dual solutions. In such a case, a closedness condi
tion on the analogue of a(,8(· )) would no longer be superfluous; it would 
be needed in deriving a similar expression as in (3.18), for instance. 
But such a general condition of closedness on a(,8( ·)) would require the 
notion of convergence of a sequence of functions. How could such a 
notion be defined? Pointwise convergence would not suffice, because 
then Theorem 3.8 would not follow as a special case. More specifically, 
lim1c_00 tic = t00 would not necessarily imply that lim1c_00 w( tic, ·) coin
cides with w( t00 , ·) in case finitely representable functions are taken into 
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consideration. The only way out seems to define a norm, so that by def
inition lim1t_oo git(·) = g00 ( ·) if and only if lim1t_oo II git(·) - g00 ( ·) II= 0. 
Consequently, normed functional spaces would have to be taken into 
consideration. This is an enormous complication and beyond the scope 
of this monograph. · 



Section 4 

Variable Decomposition and 
Constraint Decomposition as 
dual methods 

Many striking similarities exist between the two decomposition proce
dures that are discussed in the previous two sections. For instance, 
in Variable Decomposition, relazations of the original programme 
are obtained through the master programmes, while restrictions are 
obtained through the subprogrammes. Moreover, primal solutions of 
the relaxed master programmes are sent to the subprogrammes, which 
in their turn, send dual solutions back. The situation is reversed 
when Constraint Decomposition is considered. In that case, restric
tions of the original programme are obtained through the master pro
grammes, while relaxations are obtained through the subprogrammes. 
Furthermore, dual solutions of the restricted master programmes are 
sent to the subprogrammes, which in their turn, send primal solutions 
back. Moreover, the results concerning non-cyclic behaviour and finite 
and asymptotic convergence of the two methods also bear a great deal 
of resemblance. Finally, it is a well-known fact that in Linear Program
ming, Benders and Dantzig-Wolfe Decomposition are dual approaches, 
in the sense that the latter applied to a linear programme is equivalent 

183 
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to the former applied to its dual ( cf. [Lasdon, 1970]). The question 
now arises whether Variable Decomposition and Constraint Decompo
sition can be considered to be dual methods in the general case as well. 
Consider the following primal programme 

'P : max /(z) 
ll 

s.t. G(z)oO 

H(z) o 0 

zEX 

(4.1) 

where/(·), G(·) and H(·) are functions from a set D s; Rn to RU{-oo}, 
Rm1 and Rm, respectively, X is a subset of D, ◊ E {:$, = }m1 and o E 

{ :5, = }m2 ( m 1 , m 2, n E N). In the sequel we will also assume that 

'P('P) E R (4.2) 

From Theorem 5.1 of Part II it follows that the dual programme of 
( 4.1) may be formulated as 

where 

'D : 9 r;!J!c.> g(O) + h(O) 

s.t. g(G(z)) + h(H(z)) ~ /(z) Vz EX 

g(·) Er G, h(•) E rH 

fa= {g(·): Rm1 -+RU {+oo} I 
g(r) :$ g(r') Vr,r' E Rm1 : r◊r1} 

rH = {h(•); Rm2 -+ Ru {+oo} I 
h(s) :$ h(s') Vs,s' E Rm2 : sos'} 

(4.3) 

(4.4) 
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Applying Constraint Decomposition to (4.1) leads to an iterative 
scheme involving the restricted primal master programmes 

'P(II) : ma.x /(z) 
e 

s.t. G(z) ◊ 0 

z E II 

the relaxed dual master programmes 

'.D(II) : ~~f g(O) 

s.t. g(G(z)) 2:: /(z) \:/z E II 

g(·) E f G 

and the subprogrammes 

C'.D(g(·)): m:x /(z) + g(O) - g(G(z)) 

s.t. H(z)oO 

zEX 

(4.5) 

(4.6) 

(4.7) 

· where II ~ II = {z E X I H(z) o O}. Note that there is no duality 
gap between those restricted primal master programmes 'P(II) and re
laxed dual master programmes '.D(II) for which 'f'('P(II)) > -oo ( cf. 
Lemma 5.1 sub 1. of Part 11). Now, if we would like to apply Variable 
Decomposition to the dual of (4.1), i.e. (4.3), we would temporar
ily have to fix some of the decision variables, while optimization would 
take place over the remaining ones. In ( 4.3) the function g( ·) can be 
temporarily held fixed. This is exactly the reason why we formulated 
the dual programme as we have. The following primal subprogrammes 
are hereby obtained. 
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V(g( ·)) : Tt.f g( 0) + h( 0) 

s.t. h(H(z)) ~ f(z) - g(G(z)) Vz EX (4.8) 

h( ·) E rH 

Because V(g( ·)) is dual to CV(g( ·)) for those g( ·) E r G with g(O) E R, 
we can reformulate ( 4.3) by applying the key problem manipulations of 
projection and dualization as indicated. This leads to 

min max f(z) + g(O) - g(G(z)) 
I(·) a: 

s.t. H(z)oO 
{4.9) 

zEX 

s.t. g(O) ER, g(·) Era 

Introducing a dummy variable 8 gives us the following equivalent for
mulation 

min 8 
l(·),8 

s.t. 8~f(z)+g(O)-g(G(z)) VzEX: H{z)oO {4.10) 

g( 0) E R, g( ·) E r G, 8 E R 

Finally, a change of variables is carried out; the function g( •) is sub
stituted for every occurrence of g(·) - g(O) + 8. As such, the following 
relaxed master programmes are finally obtained. 

V'D(II): mm g(O) 
g(•) 

s.t. g(G(:v))~f(:v) VzEII 

g(O) ER, g(·) Era 

(4.11) 
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Note that V(II) equals VV(II) for those II ~ II with rp('P(II)) > -oo! 
To summarize1 both Constraint Decomposition applied to the primal 
programme (4.1} and Variable Decomposition applied to its dual pro
gramme {4-3} amount to iterating between the master programmes {4-6) 
and the subprogrammes (4-7). Loosely speaking, the two decomposition 
schemes can, even in the general case, be considered as dual methods. 
With this observation in mind, the many striking similarities between 
the two decomposition methods and their results are no longer surpris
ing. 

The observed dual relation between the two decomposition schemes also 
adds to the intuitive understanding of the two types of subprogrammes. 
The ones in Variable Decomposition reveal how the original primal 
programme is affected when some of the decision variables in the primal 
space are held fixed. In Constraint Decomposition, however, they show 
how the original primal programme is affected when some of the decision 
variables in the dual space are held fixed. Apparently, the latter effect 
is twofold; first, the primal feasible set is enlarged and, secondly, the 
primal objective function is modified. 





Section 5 

Extensions of some known 
variations 

Many variations of the two decomposition schemes which are discussed 
in Sections 2 and 3 are possible. Here, we will discuss a few. Sub
section 5.1 deals with some miscellaneous matters. In Subsection 5.2 
Cross Decomposition is discussed, and a brief remark on Kornai-Lipta.k 
Decomposition follows in Subsection 5.3. 

5 .1 Miscellaneous 

First of all, it should be noted that for a given problem formulation, 
many implementations are still possible for both the variable and the 
constraint decomposition procedure. In Variable Decomposition one 
first has to decide which decision variables will be dealt with through 
the master programme and in Constraint Decomposition one has to 
select those constraints which together form the set X (cf. (3.1)). Ob
viously, not all possibilities are equally desirable. 
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Although it was not mentioned explicitly in Section 2 and 3, it is very 
important to realize that both decomposition methods fully depend on 
the mathematical formulation of an optimization problem, more than 
on problem characteristics. This statement is not only true in case a 
completely different formulation is considered, but also if the original 
formulation is only slightly modified. In this respect, one could think 
of first duplicating existing variables and/or constraints, or first adding 
new variables and/or constraints which are in some sense redundant, 
before applying decomposition. For instance, if all variables are first 
duplicated and then Constraint Decomposition is applied in such a way 
that the set X consists of all but the duplicating constraints, then a 
procedure results which has been called Variable Splitting in [Jornsten 
et al., 1985], and Lagrangean Decomposition in [Guignard & Kim, 1987]. 
As another example, suppose a linear programme is given in which 
activities share some common resources, and that only a limited amount 
of each of these resources is available. In that case, artificial variables 
may be introduced, indicating which amount of each type of resource is 
allocated to each activity. As a consequence, new constraints have to be 
added, enforcing that such an allocation does not exceed the amounts 
of resources available. The application of Variable Decomposition to 
such a reformulation, where the artificial variables are the ones that 
are temporarily held fixed in the primal subprogrammes, is known as 
Resource Directive Decomposition. 

Other variations of Variable and Constraint Decomposition are ob
tained if the master programme is set aside in favour of some other 
device that is able to feed the subprogrammes. As far as Variable 
Decomposition is concerned, [Balas, 1969] may serve as an example, 
although Balas's device which generates integer values for the integer 
variables, is very much similar to the relaxed master programmes. As 
far as Constraint Decomposition is concerned, many references can be 
given. All Lagrangean Relaxation approaches in Integer (Linear) Pro
gramming, for instance, fall into this framework. In these approaches 
the master programmes are replaced by a (heuristic) update mechanism 
for the dual solutions, such as a subgradient optimization procedure; 
see e.g. [Geoffrion, 1974], [Fisher et al., 1975], [Goffi.n, 1977], [Fisher, 
1981], [Dyer & Walker, 1982] and the references cited there. Cross 
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Decomposition and Kornai-Liptak Decomposition are examples of ap
proaches that are variations on Variable Decomposition and Constraint 
Decomposition simultaneously; they will be discussed in the next two 
subsections. 

5.2 Cross Decomposition 

Basically, Cross Decomposition is a variation of Benders Decomposition 
and Dantzig-Wolfe Decomposition simultaneously, and as such, it can 
also be generalized to general mathematical programmes. Originally, it 
has been developed for programmes with a linear structure and it has 
been applied quite successfully to facility location problems ( cf. [Van 
Roy, 1980,1983]); the results in this section are an extension of the ones 
developed by Van Roy. In [Burkard et al., 1985] too, a generalization 
of Cross Decomposition is presented. On the one hand, their treatment 
is more general than ours, because in their paper the field of algebraic 
optimization is being dealt with. The discussion in this subsection, 
however, can be amplified to account for such general structures as 
well. On the other hand, their results are more restrictive, because in 
the problems they consider, all primal and dual solutions are supposed 
to have a separable structure. 

Suppose we are given a mathematical programme to which both Vari
able and Constraint Decomposition could be applied. 

'P: max 
:i:,y 

f(x,y) 

s.t. G(:r.:,y)oO 

(:r.:, y) E Un (X x Y) 

(5.1) 

Here, / ( ·) and G( ·) are functions from D ~ IRn to IR U { ±oo} and 
IRm respectively, Un(X x Y) ~ D, and◊ E {~,=}m (m,n E IN). 
Furthermore, it will be assumed that 
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• V(z,y) EU n (Xx Y): f(x,y) < +oo 

• If ( z, y) is a feasible solution for P, then a y' E Y 
exists, such that (z, y') is a feasible solution for P 
with f(z, y') > -oo. 

Let us consider the following implementation of Variable Decom
position, where iterations take place between, on the one hand, the 
primal subprogrammes 

'P(f): max 
11:,11 

f(z,y) 

s.t. G(z, y) ◊ 0 

( z, y) E U n ( .X x Y) 

and the dual subprogrammes 

V(i): mm u(O,f) 
o-( •) 

s.t. u(G(z,y),z) 2: f(z,y) 

V(z,y) E Un (.X X Y) 

u(•): Rm+ni ~RU {+oo} 

u(r,z)$u(r',z) Vr◊r1 VzEX 

and, on the other hand, the relaxed master programmes 

- -o 
VV(.6., .6. ) : max () 

11:,8 

s.t. -u(O,z) + () $ 0 Vu(·) E .6. 

-r(O,z) $0 Vr(·)EK° 

(z, fJ) EX x IR 

(5.2) 

(5.3) 

(5.4) 
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Here, Xis any superset of X, independent of x EX, and A (X°) is a 
subset of A (A0 ), where A is the common feasible set of the dual subpro
grammes (5.3) and A0 is obtained from the definition of A by changing 
the occurrence of f(x,y) into O (cf. Subsection 2.1). Constraint De
composition applied to (5.1), amounts to iterating between, on the 
one hand, the restricted primal master programmes 

P(II) : max 
z,JI 

f(z,y) 

s.t. G(re,y)oO 

(re,y)EII 

and the relaxed dual master programmes 

V(II) : 1;'t~f g(O) 

s.t. g(G(x,y)) ~ f(x,y) 'v'(x,y) E II 

g(·): IRm-+ IR U {+oo} 

g(r) :s; g(r') Vror': 

(:l(x,y)EII: G(re,y)or) 

and, on the other hand, the subprogrammes 

CV(g(·)): max 
z,JI 

s.t. 

f(x,y) + g(O) - g(G(x,y)) 

(re, y) E u n (X X Y) 

(5.5) 

(5.6) 

(5.7) 

Here, II~ II= Un (X x Y); see also Subsection 3.1. In most applica-
- -:-0 - -

tions the master programmes VV(A, A ), 'P(II) and V(II) are more dif-
ficult to solve than the corresponding subprogrammes P(x), V(x) and 
CV(g( ·)), which explains the incentive to ignore the master programmes 
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as much as possible. The implication, of course, is that another device 
has to be chosen to feed the subprogrammes 'P(z), 'D(z) and C'D(g(·)), 
depending on whether Variable or Constraint Decomposition is applied. 
In this sense, Cross Decomposition is a variation on Variable Decom
position in that the relaxed master programmes VV(~, A°°) in (5.4) 
are ignored in favour of the subprogrammes CV(g(·)) in (5.7). More 
specifically, if a solution u( ·) ( r( ·)) is obtained from the dual subpro
gramme 'D(z), then the subprogramme CV(g(·)) is solved next, where 
g(·) = &(·,:ii) (g(·) = r(·,z)). This latter programme, in its turn, sends 
a primal solution :ii' back, so that in the next iteration 'D( :ii') is going 
to be solved, etc. But if that is the way it is, then Cross Decompo
sition can just as well be considered to be a variation on Constraint 
Decomposition, in which the relaxed dual master programmes 'D(II) in 
(5.6) are ignored in favour of the dual subprogrammes 'D(z) in (5.3)! 
To conclude, Cross Decomposition is a variation on Variable De
composition and Constraint Decomposition simultaneously. 

What about termination criteria? Obviously, all primal subprogrammes 
'P(z) supply lower bounds for the optimal solution value of 'P, and 
these lower bounds can be as tight as desired ( cf. Theorem 2.3). On 
the other hand, the subprogrammes CV(g( ·)) with g(O) E R, supply 
upper bounds for 'P, and these upper bounds too, can be as tight as 
desired ( cf. Theorem 3.2). Hence, if LB and U B denote the greatest 
lower bound and least upper bound which have been found so far, a 
natural termination criterion is U B-LB ~ e0 , where e0 is a (prescribed) 
tolerance level. In case this criterion is met, the current incumbent :z:inc 

is an (UB - LB)-optimal solution for 'P, which meets the accuracy 
required. 

Although the incentive to ignore master programmes may be justified 
with good reasons, a price has to be paid; in the absence of master 
programmes, non-cyclic behaviour, let alone asymptotic convergence, 
can no longer be guaranteed. Intuitively, this can be explained by 
the fact that in Cross Decomposition only the most recently obtained 
information is taken into account. This is in sharp contrast with the 
use of master programmes in Variable and Constraint Decomposition, 
where an accumulation of information takes place. 
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The most natural way to avoid cycling is to rely on the variable or con
straint decomposition procedures. Suppose that each time the cross 
decomposition procedure is in danger of generating a cycle, at least one 
full iteration of the variable ( c.q. constraint) decomposition procedure 
is performed. In that case, all the nice properties of Variable ( c.q. Con
straint) Decomposition concerning non-cyclic behaviour pass on to this 
modified version of Cross Decomposition. It is even allowed to invoke 
the variable and constraint decomposition procedures alternately, as 
long as these procedures are called upon sufficiently often. Viewed in 
this way, the resulting procedure is a variation of Cross Decomposition, 
in the sense that the latter is equipped with a "spacer step" (see e.g. 
[Luenberger, 1984]). However, the resulting algorithm could just as well 
be considered as ( a variation of) Variable ( c.q. Constraint) Decompo
sition, where some extra time is spent in the subprogramme phase to 
build up the set .6.k+1 and/or .6.0 ,k+1 out of .6.le and/or .6.0 ,1e (c.q. Xk+ 1 

out of Xie); see Subsections 2.1 and 3.1. The resulting procedure is 
therefore a hybrid approach. It can be visualized by Figure 5.1. Note 
that the diagram is a little bit deceptive because the entire picture can 
also be regarded as ( a variation of) one of the three decomposition pro
cedures individually. How to wander around in the diagram will heavily 
depend on the specific problem(-class) that has to be solved. A ma
jor concern remains, of course, how to safeguard the procedure against 
cycling. In [Va.n Roy, 1983] some anti-cycling strategies are given for 
the mixed-integer linear case, which are all based on the condition that 
the variable ( c.q. constraint) decomposition procedure is called upon 
sufficiently often. For the general case we are dealing with, similar 
strategies can also be proven to prevent the procedure from cycling. 
For more detailed information on this, the reader is referred to [Flippo 
et al., 1987]. 

5.3 Kornai-Liptak Decomposition 

As explained in the previous subsection, Cross Decomposition can be 
considered to be an iterative method in which at any moment, only 
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[lvv(X,X°JI-) 
) I Variable I dual solution(• . . primal solution 

~----DI ~o:(p:)sitionl • '----)~-~ 

(--·~~-) 
Cross 

primal solution dual solution 
~ Decomposition ) 

.1 CV(g(·)) 1-◄ --

dual .c.~ I Constraint I pri..:lutfon( •) I t Decompos1t1on J 

\__I P(Il) I__) 

Figure 5.1: The three decomposition procedures related 

the most recently obtained information is taken into account. An un
favourable consequence of this ignoring the past, is that cyclic be
haviour can no longer be precluded. Strategies that are designed to 
prevent such behaviour do exist, but most of them, unfortunately, rely 
on the master programmes of the variable and/or constraint decomposi
tion approach, in which the entire past has been accumulated. Kornai
Liptak Decomposition tries to meet these two extremes halfway; like 
Cross Decomposition it ignores the master programmes, but the infor
mation that is sent between the two su bprogrammes V( x) and CV(g( •)) 
partly takes the past into account. This is done by sending to the next 
programme to be solved, an aggregation of the past. Of course, such an 
approach would, from a memory-allocation point of view, only be an 
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improvement compared to the variable and constraint decomposition 
procedures, if the aggregation formula. can be updated from iteration 
to iteration, so that keeping track of the full past becomes unneccesary. 
For instance, as input for the subprogramme V(:c), the arithmetic mean 
of all previously generated values for :c could be used. A similar strategy 
for the dual information g( ·) is likely to be applicable, only if all gen
erated dual solutions g( ·) are finitely representable and if the aggrega
tion formula is applied to the (finitely dimensional) parameter through 
which these dual solutions are characterized. For a specific class of 
linear programmes, asymptotic convergence of the Kornai-Liptak pro
cedure has been established in case arithmetic means are used to ag
gregate both the intermediate primal and intermediate dual solutions; 
cf. [Kornai & Liptak, 1965], [Dirickx & Jennergren, 1979] and [Aardal 
& Ari, 1990]. 





Section 6 

Summary 

In part III we introduced and analysed extensions of two well-known de
composition methods, viz. Benders Decomposition and Dantzig-Wolfe 
Decomposition, to general mathematical programming problems. The 
former generalization is discussed in Section 2. The idea underlying this 
approach is also known as Generalized Benders Decomposition, Primal 
Decomposition and Resource Directive Decomposition. We prefer to 
call the approach Variable Decomposition, in order to reflect the par
titioning of the set of variables into two mutually exclusive sets. In 
Section 2, the approach is also related to a part of existing literature, 
and an account on non-cyclic behaviour, asymptotic convergence and 
finite convergence is given as well. Finally, the approach is shown to 
separate integrality requirements from non-linearities, if it is applied 
to a mixed-integer non-linear programme with an underlying convex 
structure. A similar discussion on Dantzig-Wolfe Decomposition fol
lows in Section 3. Generalizations of this apJ>roach are also known as 
Column Generation, Generalized Linear Programming, Dual Decom
position and Price Directive Decomposition. However, we chose to add 
the name Constraint Decomposition, to voice the partitioning of the set 
of constraints into two disjoint subsets. This approach too, is related 
to a part of existing literature, and non-cyclic behaviour, asymptotic 
convergence and finite convergence are also topics that are dealt with. 
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In Section 4, Variable and Constraint Decomposition are shown to be, 
in some sense, dual to one another, and finally, some variations are 
discussed in Section 5. 

As already mentioned in Section 1, the main contributions of Part III 
arise from the generality of the discussion. On the one hand, no restric
tive assumptions on the original primal programme are made, and on 
the other hand, inaccuracies and duality gaps are allowed to occur. As 
a result of this, former generalizations of Benders and Dantzig-Wolfe 
Decomposition are captured by ours. This statement also holds for the 
generalizations that are described in [Burkard et al., 1985], although 
a (straightforward) extension of our approach to the field of algebraic 
optimization remains to be carried out. More specifically, with respect 
to Variable Decomposition the following contributions have been 
made. 

• For the applicability of the variable decomposition procedure, it 
is essential for the dual subprogrammes to have a common fea
sible set. This observation implies that the parameterization of 
the primal subprogrammes is to be modelled through their right
hand-sides, and that the parameterizing constraints are to be 
among the ones that are dualized. In fact, the need for constraint
qualifications in former generalizations of Benders Decomposition 
can be explained by a violation of this requirement ( cf. Subsec
tions 2.2 and 2.3). 

• The results in Subsection 2.4 reveal the impact of inaccuracies 
and duality gaps during the iterative process, on possibly cyclic 
behaviour and finite convergence. The variable decomposition 
procedure can be guaranteed not to cycle if, quite naturally, at 
each iteration the overall accuracy required, does not exceed the 
sum of the inaccuracies that are already allowed in the blocks of 
which the procedure is composed. If, in addition, the primal or 
dual solution space is essentially finite, the finite convergence of 
the procedure is even guaranteed. 
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• Apart from some continuity and compactness conditions on prob
lem data, closedness of the point-to-set map which largely de
scribes the construction of the sequence of intermediate primal 
solutions :,:le, and stability of the family of primal subprogrammes 
'P( · ), turn out to be sufficient conditions for Variable Decompo
sition to converge asymptotically. Furthermore it is argued that, 
although neither of these two conditions is proven to be necessary 
from a strictly mathematical point of view, asymptotic conver
gence can generally not be expected without them; the notion of 
closedness is just too intimitely related to the notion of asymp
totic convergence in general, whereas a meaningful convergence 
analysis for Variable Decomposition necessarily implies stability. 
After this result has been established, attention is restricted to 
the computationally relevant cases. This means that the solution 
space of the dual subprogrammes is restricted to finitely repre
sentable functions only. The aforementioned point-to-set map is 
then proven to be closed, if these finitely representable dual solu
tions are defined over a compact set and, additionally, meet some 
continuity requirements. Finally, it is demonstrated that similar 
conditions imply the feasibility of all the accumulation points of 
the sequence of primal solutions that are generated by the relaxed 
master programmes. A full account of these results can be found 
in Subsection 2.5. 

• As is described in Subsection 2.6, an iterative scheme results 
between, on the one hand, a family of ( ordinary) convex sub
programmes, and on the other hand, a family of mixed-integer 
linear relaxed master programmes, in case the variable decom
position procedure is applied to a mixed-integer non-linear pro
gramme with an underlying convex structure. In other words, in 
such programming problems, the integrality requirements can be 
separated from the non-linearities. 

With respect to Constraint Decomposition similar results have been 
obtained. More specifically, the following contributions have been made. 

• The results in Subsection 3.4 reveal the impact of inaccuracies 
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and duality gaps during the iterative process, on possibly cyclic 
behaviour and finite convergence. The constraint decomposition 
procedure can be guaranteed not to cycle if, quite naturally, at 
each iteration the overall accuracy required, does not exceed the 
sum of the inaccuracies that are allowed in the blocks of which the 
procedure is composed. If, in addition, the primal or dual solu
tion space is essentially finite, finite convergence of the procedure 
results. 

• In Subsection 3.5 the constraint decomposition procedure is shown 
to converge asymptotically if, besides some compactness and con
tinuity conditions on problem data, the solution spaces of the 
relaxed dual master programmes can be restricted to finitely rep
resentable functions only, which, additionally, are defined over a 
compact set and meet some continuity requirements. 

• A straightforward extension of a known variation of Constraint 
Decomposition is presented in Section 5. This variation con
cerns Lagrangean Decomposition, or Variable Splitting as it is 
also sometimes referred to. 

Results which relate to the interaction between the two decom
position methods are the following. 

• The apparent similarity between Variable Decomposition and Con
straint Decomposition is analysed in Section 4. There, the two 
methods are proven to be dual approaches, in that if the latter 
is applied to a mathematical programming problem, an identical 
iterative scheme results as if the former were applied to a well
chosen dual. The dual formulation that has to be considered for 
this purpose, is the additively separable dual programme which 
has been introduced in Section 5 of Part II. 

• Straightforward extensions of two known variations on both meth
ods simultaneously are presented in Section 5, viz. Cross Decom
position and Kornai-Liptak Decomposition. 
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As already mentioned in Subsection 3.5, there remains an annoying dis
crepancy between the generality of the asymptotic convergence results 
of Variable Decomposition on the one hand, and Constraint Decompo
sition on the other. In Variable Decomposition, we did not have to rely 
on finitely representable dual solutions in order to prove convergence; 
convergence was proven under a closedness condition on a(,B(·)), which 
is the point-to-set map which largely describes the variable decompo
sition procedure. Furthermore, it was also proven that in case finitely 
representable and in some sense continuous dual solutions defined on 
a compact set existed, closedness of this point-to-set map followed. In 
proving the convergence of Constraint Decomposition, we assumed the 
existence of finitely representable and continuous dual solutions w( ·) 
right from the start. This assumption, like in Variable Decomposition, 
implies closedness of the point-to-set map that largely describes the 
constraint decomposition procedure, in case some additional continu
ity and compactness conditions on problem data are met. Finally, it 
was also argued that it would probably be impossible to remove this 
discrepancy, unless maybe, the complex notion of normed functional 
spaces would be taken into consideration. How is it possible to be 
stuck in the seemingly conflicting situation where two methods, even 
in their full generality, can be proven to be dual to one another, while 
their asymptotic convergence results suffer from being equally general? 
It is our belief, that the asymptotic convergence results can only be 
expected to be "alike", if the primal and dual problems are. Recall 
that in general, the dual of an optimization problem in finite dimen
sions, is an optimization problem in infinite dimensions, which is of a 
completely different nature. Therefore, it seems that only in case the 
primal and dual programmes are both optimization problems in finite 
dimensions, the discrepancy in the asymptotic convergence results may 
vanish. And according to the results in Subsections 2.5 and 3.5, it does! 





Epilogue 

In the preceding -discussion we analysed the notions of Stability, Du
ality and Decomposition in General Mathematical Programming. A 
full account of these notions is given in Parts I till III. For a list of 
new results we refer to the summaries of these parts. The preceding 
discussion also reveals the interrelations between the three notions. As 
already mentioned in the Prologue, duality theory appears to be an 
essential ingredient for both Variable and Constraint Decomposition. 
Furthermore, stability is proven to play a natural role in duality the
ory, if the one-to-one correspondence between constraints in the primal 
programme and variables in the dual is to be restored, and if the dual 
solutions are required to be real-valued. Stability is also proven to be 
an essential prerequisite for the asymptotic convergence of both decom
position methods. 

In the Prologue we also mentioned the usual doubts about the use of 
· theoretical research; in this respect, we argued that" it seems impossible 
to encounter the limits of concepts and methods except by a process 
of abstraction. One might ask whether our analysis actually came up 
with any such limits. Fortunately, the answer is yes. First of all, we 
concluded in Section 4 of Part I that the three types of conditions which 
imply constraint-qualification in Karush-Kuhn-Tucker points (viz. lin
earity, convexity with Slater and MF-regularity) also seem to be es
sential in enforcing stability. Secondly, in Subsection 4.2 of Part II it 
was argued that the use of separable augmented Lagrangeans seems 
limited, unless at least one of the aforementioned three types of con-
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ditions is met. This observation, of course, strongly suggests the use 
of non-separable augmented Lagrangeans. Finally, the results in Sub
section 2.5 of Part III indicate that stability is an essential prerequisite 
for the asymptotic convergence of Variable Decomposition. This im
plies that, again, one of the aforementioned three types of conditions 
should be met if Variable Decomposition is to converge. To conclude, 
the three types of conditions which enforce constraint-qualification in 
Karush-Kuhn-Tucker points, viz. linearity, convexity with Slater and 
MF-regularity, also play a major role in stability, duality and decom
position. In this respect, they seem to indicate whether a mathematical 
programme can be considered to be "well-behaved". 

Of course, many things still remain to be explored. A natural research 
topic in the general duality theory we discussed in Part II, for instance, 
would be to look for necessary and/or sufficient conditions for the ex
istence of finitely dimensional dual programmes that preserve strong 
duality. The importance of such a result follows from the close connec
tions between finitely representable dual solutions, and the approaches 
based on augmented Lagrangeans ( cf. Subsection 4.2 of Part II). As 
far as the decomposition methods in Part III are concerned, it would 
be worthwhile to explore under which conditions the asymptotic con
vergence results in Variable Decomposition remain unaffected, if con
straints in the relaxed master programmes are allowed to be dropped; 
with respect to Constraint Decomposition a similar issue applies. Only 
with such a strategy one may hope to keep the problems in the master 
programme phase of reasonable size. The general theory on convergence 
of cutting plane algorithms, as developed in [Eaves & Zangwill, 1971], 
may thereby prove to be extremely useful. Finally, there are many 
implementation issues that are yet unresolved. To name only one, it 
will most likely benefit the performance of the variable decomposition 
procedure, if one chooses in an "intelligent" way from all the (near-) 
optimal dual solutions that qualify to be added as a cut to the relaxed 
master programme, the one that actually will. For an elaboration of 
this idea we refer to [Magnanti & Wong, 1981]. 
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