

CWI Tracts

Managing Editors

K.R. Apt (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (Eindhoven University of Technology)

Editorial Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.C. Backhouse (Eindhoven)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
H.J. Sips (Delft)
M.N. Spijker (Leiden)
H.C. Tijms (Amsterdam)

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Telephone 31-205929333, telex 12571 (mactr nl),
telefax 31 - 20 592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

CWI Tract 75

Computer aided routing

M.W.P. Savelsbergh

,fj-
cw,
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1985 Mathematics Subject Classification: 90B05, 90C50.
ISBN 90 6196 412 1
NUGl-code: 811

Copyright© 1992, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

CONTENTS

0. Introduction

PART I. ALGORITHMS

l. Introduction
2. Formulation

I

5

5
7

2. l. The vehicle routing problem with time windows 7
2.2. The pickup and delivery problem with time windows 9

3. Optimization 10
3.1. Dynamic programming 12

3.1.1. Single-vehicle problems with time windows 13
3.1.2. State space relaxation 14

3.2. Set partitioning 15
3.2.1. The subproblem 16
3.2.2. The master problem 16
3.2.3. Acceleration techniques 17
3.2.4. The multi-salesman and vehicle routing problem with time windows 17
3.2.5. The pickup and delivery problem with time windows 17

4. Approximation: construction 18
4.1. Complexity 19
4.2. The vehicle routing problem with time windows 21
4.3. The pickup and delivery problem with time windows 23

5. Approximation: incomplete optimization 24
5.1. The generalized assignment problem 25
5.2. Seed selection 28
5.3. Route construction 31

6. Approximation: iterative improvement 34
6.1. The traveling salesman problem 34
6.2. A lexicographic search strategy 35
6.3. The traveling salesman problem with time windows 38
6.4. The traveling salesman problem with multiple time windows 42
6.5. The traveling salesman problem with mixed collections and deliveries 48
6.6. The traveling salesman problem with precedence constraints 50
6.7. The traveling salesman problem with fixed paths 52
6.8. The vehicle routing problem 52

7. Conclusion 55

PART II. INTERACTION 57

8. Introduction
9. Interactive planning systems

9.1. Planning
9.2. Models
9.3. Decision making vs. decision support
9 .4. Functional requirements

57
57
58
58
59
60

9.5. Interaction 61
9.6. User interface 62

10. CAR: an interactive planning system for computer aided routing 63
10.1. Problem type 63
10.2. Solution method 64
10.3. User inte1face and screen 64
10.4. Graphical Kernel System (GKS) 65
10.5. Input 65
10.6. Output 66
10.7. Current implementations 67
10.8. Modifications and extensions 67

11. CAR: functional description 68
11.1. Communication 68
11.2. Clustering 70
11.3. Routing 72
11.4. Information 75
11.5. Screen 76
11.6. Storage 77

12. CAR: user interface 78
12.1. Graphical Kernel System 78
12.2. Presentation language 81
12.3. Action language 85

13. Conclusion 86

PART III. EXPERTISE 87

14. Introduction 87
15. Classification 88

15.1. Definition language 88
15.1.1. Addresses 90
15.1.2. Vehicles 92
15.1.3. Problem characteristics 93
15.1.4. Objectives 96

15.2. Examples 97
16. Model and algorithm management 102

16.1. Representation 104
16.2. Manipulation 111
16.3. Towards implementation 117

17. Conclusion 118

Appendix A. A structured modeling schema for the standard vehicle
routing problem 120
Appendix B. An extended AMPL model for the standard vehicle
routing problem 122
Appendix C. An algorithm and its associated technique for the
standard vehicle routing problem 124

References 126

Subject index 132

COMPUTER AIDED ROUTING

0. INTRODUCTION

Distribution management presents a variety of decision making problems at
the three levels of strategic, tactical and operational planning. Decisions relat
ing to the location of facilities (plants, warehouses or depots) may be viewed as
strategic, while problems of fleet size and fleet mix determination can be
termed tactical. On the operational level, two problems prevail: the routing of
capacitated vehicles through a collection of customers to pickup or deliver
goods, the vehicle routing problem, and the scheduling of vehicles to meet time
or precedence constraints imposed upon their routes, the vehicle scheduling
problem.

The importance of effective and efficient distribution management is evident
from the associated costs. Physical distribution management at the operational
level, which is considered in this book, is responsible for an important fraction
of the total distribution costs. Small relative savings in these expenses could
already account for substantial savings in absolute terms. The significance of
detecting these potential savings has become increasingly apparent due to the
escalating costs involved such as fuel costs, driver salaries and capital costs.

Not surprisingly, there is a growing demand for planning systems that pro
duce economical routes. Although cost optimization is often the primary objec
tive for purchasing computerized systems for distribution management, there
are other benefits that should not be underestimated. The introduction of such
systems enables companies to maintain a higher level of service towards their
customers, it makes them less dependent of their planners, it supplies better
management information facilities, and it makes the conduct of work faster
and simpler.

Although already useful and profitable, many of the currently available
software packages for physical distribution management have two important

2 COMPUTER AIDED ROUTING

shortcomings. First, the implemented solution methods are often incapable of
handling the various side constraints encountered in real-life problems.
Secondly, they are often inadequate in their interface with the user. We ela
borate on both these points in more detail.

In practical distribution problems, difficulties arise due to the size of the plan
ning situation as well as the number and complexity of the side constraints.
We will mention some of the features encountered in realistic environments.

Problems may involve both deliveries and collections. In addition, it may be
possible to mix deliveries and collections on a single route, or alternatively, it
may be required to first perform all deliveries before performing all collections.
This latter case is often referred to as backhauling.

On many occasions, commodities have several dimensions, such as weight,
volume and time. For example, in air freight both weight and volume may
play an important role in determining what gets loaded on a given trip.

When the requirement of a single customer is large relative to vehicle capa
city, it may be economical to split a customer among several vehicles. When
splitting is possible, it may be important to take lumpiness of the cargo into
account. That is, the cargo is measured in certain units such that only an
integral amount may be assigned to vehicles involved in the split.

Service is often restricted to fall within one of a given number of working
time windows. In the dial-a-ride problem for instance, each customer has a
desired time window in which he would like to be served (either picked up at
his origin or delivered at his destination). Routes and schedules have to be
devised such that the required service is performed during these time windows.

Service requirements can be periodic, in the sense that a 'customer' has to be
served a specific number of times within a given period such as a week. Typi
cal problems of this type are coin collection from parking meters and garbage
collection.

The standard objective function is to minimize the total distance traveled
over all routes selected. In reality, there may be other objectives. Frequently,
driver overtime is allowed at a certain cost and one may be able to reduce the
number of vehicles required by making trips longer and incurring overtime.
More complex objectives have been utilized in various problem settings to cap
ture the flavor of constraints that are difficult to quantify.

The second point, inadequacy of the system, is a constant source of difficulties.
Nothing can discourage the user more than the inability to obtain and mani
pulate information that is supposedly 'in the computer'. This lack of emphasis
on the data handling capabilities of routing and scheduling systems has led to
the demise of many such systems. This may be traced in part to the tendency
in certain developers to concentrate on the algorithmic aspects of the system.
The user's feeling of loss of control over the underlying physical system is one
of the main impediments to user acceptance of computer systems. Many
computer-generated solutions are rejected based on relatively minor issues that

Introduction 3

could be corrected if certain controls over the computer system were given to
the user.

Only during the last decade, researchers started to emphasize the development
of methods to solve real-life distribution problems. Before that, most effort has
been put in methods that solve the basic theoretical models, especially for pure
routing problems. To obtain methods that are able to solve practical problems
we take the following two steps.

In Part I of this book, we strengthen the links between theory and practice
by the introduction of various side constraints into the theoretical models and
the development of algorithms to solve these extended models. In doing so we
will concentrate on three important classes of side constraints: time windows
at customers, combination of pickups and deliveries, and precedence relations
between customers. ,

An important consideration in the formulation and solution of vehicle rout
ing and scheduling problems is the required computational effort associated
with various solution techniques. The computational effort required to solve a
given problem clearly increases with the problem size. The nature of this
growth in computation time as a function of problem size is an issue of both
theoretical and practical interest. Computational complexity theory distin
guishes two classes of problems: the well-solvable problems, for which there
exist optimization algorithms whose running times are bounded by a polyno
mial function of the problem size, and the NP-hard problems, for which strong
evidence exists that any optimization algorithm has, in the worst case, a run
ning time that is a superpolynomial function of the problem size. Virtually all
vehicle routing and scheduling problems belong to the class of NP-hard prob
lems [Lenstra and Rinnooy Kan 1981]. This indicates that it is difficult to solve
even small instances of a problem to optimality with a reasonable computa
tional effort. As a consequence, when we have to solve large-scale real-life
problems, we should not insist on finding an optimal solution, but instead try
to find an acceptable solution within an acceptable amount of computation
time. To accomplish this we have to resort to approximation algorithms.

In Part II of this book, we discuss the application of a new tool provided by
computer engineering called interaction. We investigate solution approaches
that are not purely algorithmic but that integrate algorithms and human prob
lem solving capabilities via man-machine interaction.

Interaction is desirable because planning problems tend to be both hard and
soft. To conquer their complexity, it is often prudent to use a variety of
models under user control. Each of these is a picture of the actual situation,
but different aspects are emphasized or ignored. To deal with the impreciseness
of the notions of feasibility and optimality in real-life problems, it is often
beneficial to allow the user to adjust problem parameters.

Interaction has a threefold advantage in that it adds to effectivity, efficiency
and acceptability. First, the cooperation between man and machine leads to
better solutions. The machine can not be beaten in solving well defined
detailed problems. The human planner is superior in judging fuzzy situations,

4 COMPUTER AIDED ROUTING

in recognizing global patterns, and in observing ad hoc constraints which do
not form part of the underlying models. Secondly, these better solutions are
obtained faster, because interaction allows for flexibility in manipulating data
and in selecting solutions. Finally, an interactive system is more readily
accepted. The human planner is not replaced by a black box but gets a versa
tile tool.

A very important part of an interactive system is the user interface, the part
of the program that determines how the user and the computer communicate.
The user interface should be easy to use and consistent in order to help the
user assimilate. We believe that a graphical user interface is a necessity in case
of a system for physical distribution management.

Computer graphics is a topic of rapidly growing importance. It has always
been one of the most visually spectacular branches of computer technology,
producing images whose appearance and motion make them quite unlike any
other form of computer output. Computer graphics can also be an extremely
effective medium for communication between man and computer. The princi
pal usefulness of computer graphics is the ability to provide different, and
perhaps more insightful, representations of the same data. Now that the cost of
computer graphics technology is dropping, interactive computer graphics is
becoming available to more and more people.

As an example of an interactive planning system for physical distribution
management we will describe CAR (Computer Aided Routing). CAR incor
porates approximation algorithms able to handle various side constraints and
is equipped with a friendly user interface based on color graphics. CAR acts as
an assistant and advisor to the planner. CAR has a supporting function; it is
the user who is in charge and who is responsible for making all the decisions.

In Part III of this book we will report on our efforts to design a model and
algorithm management system for vehicle routing and scheduling problems.
The great variety of physical distribution problems and the large number of
existing algorithms make it difficult for an unexperienced distribution manager,
and even for an experienced one, to select a method that is well suited for his
specific situation. The model and algorithm management system will provide
support in modeling real-life problem situations and in suggesting algorithms
that might be applicable to the resulting models. The research discussed in
this part is still in its initial stage and by no means completed. Therefore, Part
III is mainly a presentation of ideas and thoughts.

The book draws heavily on material found in the following papers: Desroch
ers, Lenstra, Savelsbergh and Soumis [1988], Savelsbergh [1986], Savelsbergh
[1989], Anthonisse, Lenstra and Savelsbergh [1987], Anthonisse, Lenstra and
Savelsbergh [1988], and Desrochers, Lenstra and Savelsbergh [1989].

5

PART I. ALGORITHMS

1. INTRODUCTION

Over the past ten years, operations researchers interested in vehicle routing
and scheduling have emphasized the development of algorithms for real-life
problems. The size of the problems solved has increased and practical side
constraints are no longer ignored.

Most of the existing algorithms have been designed to solve pure routing
problems and hence only deal with spatial aspects. They are not capable to
handle all kinds of features that frequently occur in practice. One such feature
is the specification of time windows at customers, i.e., time intervals during
which they must be served. These lead to mixed routing and scheduling prob
lems and ask for algorithms that also take temporal aspects into account.
Another is the combination of deliveries and collections. In that case, it is not
only the total load assigned to a vehicle that determines feasibility with respect
to the capacity constraints, but also the order in which the customers are
visited.

In Part I, we consider three types of problems. One is the vehicle routing
problem with time windows (VRPTW), which is defined as follows. A number of
vehicles is located at a single depot and must serve a number of geographically
dispersed customers. Each vehicle has a given capacity. Each customer has a
given demand and must be served within a specified time window. The objec
tive is to minimize the total cost of travel.

The special case in which the vehicle capacities are infinite is called the mul
tiple traveling salesman problem with time windows (m-TSPTW). It arises in
school bus routing problems. The problem here is to determine routes that
start at a single depot and cover a set of trips, each of which starts within a
time window. Trips are considered as customers. There are no capacity con
straints, since each trip satisfies those by definition and vehicles moving

6 Chapter 1

between trips are empty.
The second problem type is an extension of the VRPTW, in which demands

are no longer restricted to be only deliveries or only collections. It involves the
delivery of commodities from the depot to customers as well as the collection
of commodities from customers to the depot. The algorithms relevant to the
solution of this problem type will be treated in some detail, as they make up
part of the interactive distribution planning system CAR, that was developed
to solve this particular problem type and will be discussed in Part II of this
monograph.

The third problem type is the pickup and delivery problem with time windows
(PDPTW). Again, there is a single depot, a number of vehicles with given
capacities, and a number of customers with given demands. Each customer
must now be picked up at his origin during a specified time window, and
delivered to destination during another specified time window. The objective is
to minimize total travel cost.

The special case in which all customer demands are equal is called the dial
a-ride problem (DARP). It arises in transportation systems for the handicapped
and the elderly. In these situations, the temporal constraints imposed by the
customers strongly restrict the total vehicle load at any point in time, and the
capacity constraints are of secondary importance. The cost of a route is a com
bination of travel time and customer dissatisfaction.

We will denote the time window of an address i (whether it be a customer in
the VRPTW or an origin or destination in the PDPTW) by [ei,l;], the time of
arrival at i by Ai, and the time of departure at i by Di. It is assumed that the
service time at i is included in the travel time tiJ from address i to address j.
Since service must take place within the time windows, we require that
ei ,;;;; Di,;;;; l; for all i. If Ai< ei, then a waiting time Wi = e; -Ai occurs before
the opening of the window at i.

There are several ways to define the tightness of the time windows. One
could say that the windows are tight when the underlying network with
addresses as vertices contains no time-feasible cycles. This guarantees that all
feasible routes are elementary paths. However, this condition is difficult to ver
ify, and we do not get much information if it does not hold. The following two
definitions may be more useful:

(/-e)
T •- l l

2 .- .
maxi{/i} - mmi{ ei}

T I is the ratio between the average window width and the average travel
time. If T 1 is at its minimum value 0, we have a pure scheduling problem. If
T I is in between O and 2, we can expect that there are not many time-feasible
cycles, and the temporal aspects are likely to dominate the spatial aspects. If
T I is large, we have almost a pure routing problem. These are, of course, only
rough indications.

T 2 is the ratio between the average window width and the time horizon. The
value of T 2 is between O and 1, with O indicating a pure scheduling problem

Formulation 7

and 1 a problem with identical time windows.
In the following, VRP denotes the VRPTW without time windows. TSPTW

is the m-TSPTW with a single salesman, and TSP is the TSPTW without time
windows. Since the TSP is already NP-hard, one has to obtain solutions to the
VRPTW and PDPTW by fast approximation or enumerative optimization. In
Chapter 2, we present mathematical programming formulations for these prob
lems and some of their extensions. In Chapter 3, we survey optimization algo
rithms based on dynamic programming and set partitioning. In Chapters 4, 5
and 6, we review various types of . approximation algorithms. Chapter 4
presents results on the complexity of finding feasible solutions and surveys
approximation algorithms based on construction. Chapter 5 is devoted to
approximation by incomplete optimization. We adapt Fisher and Jaikumar's
[1981] approach to the VRP so as to incorporate time windows and mixed col
lections and deliveries. Among the detailed implementations given is one of the
route construction methods reviewed in Chapter 4. Chapter 6 deals with
approximation by iterative improvement. The adaptation of this principle so as
to handle various side constraints without increasing its time complexity poses
some nontrivial algorithmic problems, which are solved in this chapter.

There are more time-constrained routing problems and more solution
approaches than we can cover. The interested reader is referred to a recent col
lection of papers on this topic [Golden and Assad 1986].

2. FORMULATION

In this chapter, the VRPTW and the PDPTW are defined and formulated as
mathematical programs. We concentrate on the basic problems, with a single
depot and a single vehicle type. We indicate generalizations involving multiple
depots, multiple vehicle types, and constraints on the travel time of the vehi
cles.

2.1. The vehicle routing problem with time windows
Given is a graph G = (V,A) with a set V of vertices and a set A of arcs. We
have V= {O}UN, where O indicates the depot and N = {1, ... ,n} is the set of
customers, and A= ({O}XN)U/U(NX{O}), where IC NXN is the set of
arcs connecting the customers, {O} XN contains the arcs from the depot to the
customers, and N X {O} contains the arcs from the customers back to the
depot. For each customer i EN, there is a demand q; and a time window
[e;,l;]. For each arc (i,J) EA, there is a cost cu and a travel time tu. Finally,
there is a set M of vehicles, each with capacity Q. We note that an arc (i,J) EI
may be eliminated by temporal constraints (e; + tu > !), by capacity con
straints (q; + q1 > Q), or by other considerations. The objective is to minimize
the total travel costs.

The mathematical programming formulation has three types of variables:
xu ((i,j) EA), equal to 1 if arc (i,j) is used by a vehicle and O otherwise;
D; (i EN), specifying the departure time at customer i; and y; (i EN), specify
ing the load delivered by the vehicle when departing from i. The problem is
now to minimize

8

~(i.J)EA ciJxiJ

subject to

" X· =} .::.,JEN lj

" X·· - " X·· = 0 .::.,JEN lj .::.,JEN JI

Xij = 1 ⇒ D; + tij ,;;;; DJ

e; ,;;;;D; ,;;;;/;

Xij = I ⇒Yi+ qi ¾Yi
qi,;;;;yi,;;;;Q

Xij E {0,1}

for i EN,

for i EN,

for (i,j) E [,

for i EN,

for (i,j) E [,

for i EN,

for (i,j) EA.

Chapter 2

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The objective function (I) represents the total travel costs; it is possible to
include the fixed charge of using a vehicle by adding it to all c0/" Minimizing
(I) subject to (2), (3) and (8) is a minimum cost flow problem, which has an
integral solution. Constraints (4) and (5) ensure feasibility of the schedule, and
constraints (6) and (7) guarantee feasibility of the loads. We note that the
number of vehicles is unbounded in the present formulation.

This VRPTW formulation is more compact than the VRP formulation due
to Bodin and Golden [I 981]. The latter formulation has O (n 3) variables and
an exponential number of subtour elimination constraints. The above formula
tion has O(n 2) variables, while the subtours are eliminated by (4), as well as
by (6). These constraints can be rewritten as follows, where C is a large con
stant:

D; + tiJ - D1 ,;;;; (1- xiJ)C

Yi+ qi - YJ,;;;; (1-xi1)C

for (i,j) EI,

for (i,j) E l.

(4a)

(6a)

In their TSP formulation, Miller, Tucker and Zemlin [1960] propose the fol
lowing subtour elimination constraints:

for (i,j) E f.

These appear as a special case of (4a) when all tiJ = I and C = n, and as a
special case of (6a) when all qi = 1 and C = n.

The above single-depot formulation is based on a single-commodity flow.
There is no explicit flow conservation constraint for the depot, as this is
implied by the flow conservation constraints (3) for the customers. Let us now
consider the multi-depot case. The single depot 0 is replaced by a set L of
depots. In the graph G = (V,A), we now have V = LU N and
A= (LXN)UIU(NXL), where N and I are as before. There are two vari
ants. In case each vehicle must return to its home depot, we need a multi
commodity flow formulation with a separate commodity for each depot. Each
variable xii is replaced by variables x/1 (l E L), where xi; = 1 if arc (i,j) is used
by a vehicle from depot /, and 0 otherwise. In case vehicles do not have to
return to their points of origin, all we have to do is to add a flow conservation

Formulation 9

constraint for each depot.
The case of multiple vehicle types is modeled with fictitious depots. For each

type of vehicle at a given depot, we create a fictitious depot with a separate
commodity to ensure that the number of vehicles of each type at each depot is
balanced. The case that the vehicles have upper bounds on their total travel
time is handled by the specification of a time window for the depot. The case
that the vehicles have different periods of availability is obviously dealt with
by the introduction of fictitious depots with time windows.

Fisher and Jaikumar [1978] propose .a slightly different formulation for the
VRPTW. We present it here because it is relevant to the solution approach
taken by CAR. Their formulation has three types of variables: Yik (i E V,k EM),
ejual to 1 if address i is assigned to vehicle k and 0 otherwise;
xiJ ((i,j)EA,k EM), equal to 1 if arc (i,j) is used by vehicle k and 0 otherwise;
and D; (i EN), specifying the departure time at customer i. The problem is then
to minimize

for i =0,

for i EN,

for kEM,

for iEV, kEM,

for (i,j)EA,

for i EV,
for i EV, kEM,
for (i,j)EA, k EM.

(9)

(10)

(11)

(12)

(13)

(14)
(15)
(16)

Two well known combinatorial optimization problems are embedded within
this formulation. Constraints (10) and (11) are the constraints of a generalized
assignment problem (GAP) and ensure that the depot is part of each route, that
every address is served by some vehicle, and that the load assigned to a vehicle
does not exceed its capacity. If the y;k are fixed to satisfy (10) and (11), then
for each k, constraints (12)-(14) define a TSPTW over the addresses assigned
to vehicle k.

2.2. The pickup and delivery problem with time windows
As in the previous section, there is a set N of customers. In the current situa
tion, however, each customer i E N requests the transportation from an origin
i+ to a destination i-. We write N+ = {i+ Ii EN} for the set of origins and
N- = { i - I i EN} for the set of destinations. The graph G = (V,A) is now
defined as follows. The vertex set is given by V = {0} UN+ UN-, where 0
denotes the depot. The arc set is given by A= ({0}XN+)U/U(N- X{0}),
where / C (N + UN-) X (N + UN -) is the set of arcs corresponding to feasible
trips between origins and destinations. For each customer i EN, there are a

10 Chapter 3

demand q; and two time windows [e;+ ,/;+] and [e; ,l;]. For each arc (i,j) EA,
there is a cost ciJ and a travel time tiJ. Finally, there is a set M of vehicles,
each with capacity Q. The objective is to minimize the total travel costs.

The mathematical programming formulation has the same three types of
variables as in the case of the VRPTW: xt ((i,j) EA, k EM), equal to 1 if arc
(i,j) is used by vehicle k and 0 otherwise; D; (i E N + UN -), specifying the
departure time at vertex i; and y; (i EN+ UN-), specifying the load of the
vehicle arriving at i. We note that the flow variables have now a third index in
order to ensure that the pickup at i + and delivery to i - are done by the same
vehicle. The problem is to minimize

" C··Y/.,:.,(i,j)EA,kEM lj I)

subject to

" "°' xk = I .,:.,kEM k.ljEV If

~ Xk - ~ _ .. ,/. = 0
j EV I) jE V JI

" xk, • - " xk = 0 .,:_,jcY I J £.,}EV .fl

D;• + I;'; ,s;;D;

xt = 1 =? D; + tiJ ,:;;; Di

e;,:;;; D;,:;;; l;

x;1 = 1 =? y; + q; ,:;;; YJ
0 ,:;;; y; ,:;;; Q

x;1 E {0, 1}

(17)

for i EN+, (18)

for i E N + UN - , k E M, (19)

for i E N, k E M, (20)

for i EN, (21)

for (i,j) EI, k EM, (22)

for i E N + UN - , (23)

for (i,J) E I, k E M, (24)

for i EN+, (25)

for (i,j) EA, k E M. (26)

Minimizing (17) subject to (18), (19) and (26) is a multi-commodity minimum
cost flow problem of a more complex structure than in case of the VRPTW.
Constraints (20) ensure that each i + and i- are visited by the same vehicle.
Constraints (21) represent the precedence relation between pickup and delivery
points. Constraints (22) and (23) ensure feasibility of the schedule, and con
straints (24) and (25) guarantee feasibility of the loads; we note that capacity
constraints are only specified for origins because a vehicle reaches its max
imum load after a pickup. We also note that all model extensions presented for
the VRPTW can be applied to the PDPTW.

3. OPTIMIZATION

Optimization algorithms for routing problems with time windows employ the
two standard principles of implicit enumeration: dynamic programming and
branch and bound. Among the branch and bound methods, two approaches
stand out. One is the set partitioning approach, which uses column generation
to solve a continuous relaxation of the problem and branch and bound to
obtain integrality. The other approach uses state space relaxation to compute
lower bounds. Dynamic programming is mainly applied to solve single-vehicle
problems. Those problems arise in the context of column generation and state

Optimization 11

space relaxation, so that dynamic programming algorithms appear as subrou
tines in branch and bound methods.

In Section 3.1, we collect the applications of dynamic programming, includ
ing state space relaxation. In Section 3.2, we discuss the set partitioning
approach. A variety of other methods is reviewed below.

Baker [1983] presents a branch and bound method for the TSPTW, in which
bounds are derived from longest path problems. He solves small problems with
this method.

The most widely studied routing problem with time windows is the school
bus routing problem [Orloff 1976], which is essentially an m-TSPTW. Two
objectives are distinguished: minimizing fleet size and minimizing a weighted
combination of fleet size and total travel time.

As to the first objective, Swersey and Ballard [1984] discretize the time win
dows and solve the linear programming relaxation of the resulting integer pro
gramming problem. For most instances, the solution is integral; otherwise, they
are able to modify the solution so as to obtain integrality without increasing
the fleet size. Desrosiers, Sauve and Soumis [1985] study the Lagrangean relax
ation which is obtained by relaxing constraints (2). As one visit to each custo
mer is no longer required, the Lagrangean problem is a shortest path problem
with time windows. Although the lower bound is often equal to the optimal
fleet size, this dual method does not necessarily produce a feasible solution, in
which case branch and bound has to be applied.

For the m-TSPTW with the second objective function, Desrosiers, Soumis,
Desrochers and Sauve [1985] study the network relaxation which is obtained
by removing the scheduling constraints (4) and (5). If e; = l; for all i EN, then
this relaxation produces an optimal solution in view of the definition of /. The
quality of the bounds deteriorates with an increasing number of customers and
an increasing width of the time windows. Two branching rules are proposed:
branching on the flow variables and branching by splitting time windows. In
the case of very tight time windows, Soumis, Desrosiers and Desrochers [1985]
apply the first rule to solve problems with up to 150 customers; as the time
windows become wider, the tree grows rapidly in size. The second branching
rule can handle wider time windows, but it is concluded that the network
relaxation is inferior to the set partitioning relaxation considered in Section
3.2.

Sorensen [1986] suggests the use of Lagrangean decomposition [Guignard
1984; Jornsten, Nasberg and Smeds 1985] for the VRPTW. The two resulting
subproblems are the shortest path problem with time windows and the general
ized assignment problem. No computational results have been reported.

The VRPTW formulation of Fisher and Jaikumar [1978] consists of two
interrelated components: a GAP and a TSPTW. To bring out this structure,
the formulation is rewritten as a nonlinear generalized assignment problem:
rmmrmze

12

subject to

~~ik= VMI
~ qiYik ¾ Qk

I

Yik E {O, I}

for i =0,

for i EN,

fork EM,

for i E V, k EM,

Chapter 3

(10)

(11)

(15)

where fk(y Ik,···,Ynk) is the cost of an optimal solution to the TSPTW defined
by the address set { i I Yi!, = 1} and the depot, for each k. This value is given
by

subject to

"' Xk ="' Xk· = Vk .:::.,1 JI .:::.,1 lj . 1

~kx;j = 1 =>Di+ tu¾ Di

ei ¾Di¾ li xt E {0, 1}

for i EV,

for (i,j)EA,

for i EV,
for (i,j)EA, k EM.

(12)

(13)

(14)
(16)

Obviously, }k(y Ik,···,Ynk) is a very complicated function that cannot be written
down explicitly. Fisher and Jaikumar [1978] suggest to iteratively construct a
piecewise linear approximation of fk(y Jk,···,Ynk) by applying Benders decompo
sition. Each time the GAP, with some approximation for Ji,(y lb···,Ynd, is
solved to obtain (y 1k,···,Ynk), a lower linear support for_,t;/yu0 ... ,Ynk) is con
structed. This support is derived by solving the m independent TSPTW's for
the given (y lk,···,Ynk) and using the dual variables thus obtained. The Benders
inequalities describing this lower linear support are then added to constraints
(10) and (11) to form an extended GAP. This problem is now resolved to
obtain a new improved (y lk•···,Y111c), which in turn leads to new TSPTW's,
whose solution provides further Benders inequalities, and so on.

3.1. Dynamic programming
Dynamic programming is a traditional solution method for constrained shor
test path problems. The constituents of a dynamic programming algorithm are
states, transitions between states, and recurrence equations that determine the
value of the objective function at each state. Let us consider the standard shor
test path problem on a graph G = (V,A) with vertex set V, arc set A, a source
0 E V, and a travel time ti/ for each (i,j) EA. Each vertex represents a state,
each arc represents a transition between two states, and the value d (j) associ
ated with state j is the shortest path duration from the source O to vertex j.
The recurrence equations to compute these values are:

d(O) = 0,

d(j) = nlinu.J)cA{d(i)+ti1 } for j EV\ {0}.

This algorithm has a running time that is polynomially bounded in the size of
G.

Optimization 13

Constraints are treated by expansion of the state space and modification of
the recurrence equations. Such a dynamic programming approach can be use
ful for several NP-hard routing problems. However, the cardinality of the state
space is usually exponential in the problem size. The practical use of dynamic
programming in this context is restricted to state spaces of at most pseudopo
lynomial size and relatively small problem instances.

3.1.1. Single-vehicle problems with time windows
We will consider four problems in this section: the traveling salesman problem
with time windows, the single-vehicle dial-a-ride problem, and two constrained
shortest path problems.

The TSPTW can be viewed as the problem of finding a shortest path from
an origin 0 to a destination n + 1 that visits all vertices in the set N and
respects the time window of each vertex. Christofides, Mingozzi and Toth
[1981c] propose the following dynamic programming algorithm. There are
states of the form (S,j) with S C N and j ES, and d(S,j) denotes the shortest
duration of a feasible path starting at 0, visiting all vertices in S, and finishing
at j. The optimal solution value d(N U {n + 1 },n + 1) is determined by the fol
lowing recurrence equations:

d({0},0) = eo,

d(S,j) = miniES-U),U,J)EA { d(S- U},i)+tiJ} for j EN U {n + 1 },

where we redefine d(S,j) = e1 in case d(S,j) < e1 and d(S,j) = oo m case
d(S,J) > 11.

Psaraftis [1983a] uses dynamic programming to solve the single-vehicle
DARP. The states are of the form (j,k 1 , .•• ,kn), where j is the vertex presently
visited and each ki can assume three values that denote the status of customer
i: not yet picked up, picked up but not yet delivered, and delivered. It is now
straightforward to define the feasible transitions between states. The algorithm
has 2n stages, each of which extends the paths constructed so far with one arc.
The total time requirement is O(n 23n). Psaraftis estimates that this approach is
able to solve problems with up to ten customers.

Desrosiers, Dumas and Soumis [1986b] give a similar 2n-stage algorithm for
the capacitated single-vehicle PDPTW. They propose a number of state elimi
nation rules to reduce the computational effort. In addition to Psaraftis' feasi
bility tests which eliminate states on the basis of information about customers
picked up so far, they also have feasibility tests which use information about
customers not yet delivered. The algorithm can solve real-life problems with up
to 40 customers.

Two types of constrained shortest path problems have been considered: the
shortest path problem with time windows (SPPTW) and the capacitated shor
test path problem with pickups, deliveries and time windows (SPPPDTW). The
main difference between these problems and the single-vehicle DARP is that
the path is no longer required to visit all customers. For the SPPTW, which is
defined by (1), (3)-(5) and (8), Desrosiers, Pelletier and Soumis [1984] propose

14 Chapter 3

a label correcting method. Desrochers and Soumis [1985a, 1985b] give two
pseudopolynomial algorithms. One is a label setting method, the other a
primal-dual method. Desrochers [1986] generalizes the latter algorithm to the
case of multidimensional time windows. For the SPPPDTW ((17) and (19)
(26)), Dumas [1985] and Dumas and Desrosiers [1986] present an algorithm
which is similar to the one for the capacitated single-vehicle PDPTW.

As we have mentioned before, dynamic programming algorithms are mostly
used as subroutines in other solution methods. This is because the problems
considered in this section occur as subproblems in multi-vehicle problems. The
TSPTW and the single-vehicle DARP arise in the second phase of cluster-first
route-second approaches, where the first phase allocates customers to vehicles
and the second phase asks for single-vehicle routes. The SPPTW occurs as a
subproblem in the set partitioning algorithm for the m-TSPTW due to Desro
siers, Soumis and Desrochers [1984], in the Lagrangean relaxation algorithm
for the fleet size problem due to Desrosiers, Sauve and Soumis [1985], and in
the Lagrangean decomposition algorithm for the VRPTW due to Sorensen
[1986]. The SPPPDTW is a subproblem in the set partitioning algorithm for
the PDPTW due to Desrosiers, Dumas and Soumis [1987].

3.1.2. State space relaxation
For a number of problems, Christofides, Mingozzi and Toth [1981a, 1981b,
1981c] have developed branch and bound algorithms that obtain lower bounds
by dynamic programming on a relaxed state space. They take a dynamic pro
gramming algorithm for the problem under consideration as a starting point
and replace its state space by a smaller space in such a way that the recursion
over the new state space requires only polynomial time and yields a lower
bound on the optimal solution value of the original problem.

State space relaxation is based on a mapping g from the original state space
to a space of smaller cardinality. If there is a transition from S I to S 2 in the
original state space, then there must be a transition from g(S i) to g(S 2) in the
new state space. We illustrate this idea on the TSPTW [Christofides, Mingozzi
and Toth 1981c].

With each vertex i, an arbitrary integer /Ji is associated, with /30 = /311 + 1 = 0.
The mapping is defined by g(S,j) = (k,/3,j), where k = IS I and /3 = "'2,i0.s/J;
The new recurrence equations are:

{ o if /3 = 0,
d(0,/3,0) = oo if /3=/=0,

d (k, /3,j) = mini=/=J.(i.J)EA { d (k - 1,/3- {31,i) + tiJ} for j EN U { n + I},
where we redefine d(k,/3,j) = e1 in case d(k,/3,j) < ei and d(k,/3,j) = oo 111

case d(k,/3,j) > t1. The lower bound is now given by

minjEN.(j.n + !)EA { d (n, 2,iEN/3;,j) + t;.n + 1 }.

This lower bound can be improved by the use of vertex penalties and state
space modifications. Vertex penalties serve to decrease the travel times of arcs

Optimization 15

incident to undercovered vertices and to increase the travel times of arcs
incident to overcovered vertices; these penalties are adjusted by subgradient
optimization. Similarly, the weights /3; can be modified by subgradient optimi
zation. The resulting branch and bound method is able to solve problems with
up to 50 vertices.

Kolen, Rinnooy Kan and Trienekens [1987] extend this approach to the
VRPTW. They use a two-level state space relaxation. At the first level, a lower
bound on the costs of a time-constrained path from the depot to vertex j with
load q is computed. This is done with an adaptation of the above method for
the TSPTW. The states are of the form (t,q,j), where q is the load of a shortest
path arriving at vertex j no later than time t. We have 0,;;;; t,;;;; T where Tis
the scheduling horizon, 0 ,;;;; q ,;;;; Q where Q is the vehicle capacity, and j E N.
At the second level, a lower bound on the costs of m routes with total load
~; '= Nq; and different destination vertices is computed. The states are now of
the form (k,q,j), where q is the total load of the first k routes and j is the des
tination vertex of route k. Vertex penalties are used to improve the lower
bounds. Problems with up to fifteen customers are solved.

3.2. Set partitioning
Vehicle routing problems and in particular the VRPTW and the PDPTW can
be reformulated as set partitioning problems, with variables (columns)
corresponding to feasible routes.

Let R be the set of feasible routes of the problem under consideration. For
each router ER, we define y, as the sum of the costs of its arcs and 8,; (i EN)
as a binary constant, equal to 1 if route r visits customer i and 0 otherwise. If
x, (r ER) is equal to 1 if route r is used and 0 otherwise, the set partitioning
problem is to minimize

subject to

"" 8,;x, = 1 ..:::.,,ER
x, E {0,1}

for i EN,

for r ER.

(27)

(28)

(29)

Although problems (17)-(26) and (27)-(29) are equivalent, their continuous
relaxations are not. This is because the variables in the latter problem are res
tricted to feasible paths in which each customer is included or not. Any solu
tion to the relaxed version of (27)-(29) is a feasible solution to the relaxation of
(17)-(26), but not vice versa. We can therefore expect to obtain better lower
bounds on the basis of the set partitioning formulation.

Because of the cardinality of R, the relaxed set partitioning problem cannot
be solved directly <1.nd column generation is used. That is, a new column of
minimum marginal cost is generated by solving an appropriate subproblem. If
its marginal cost is negative, then it is added to the linear program, the prob
lem is reoptimized and column generation is applied again; otherwise, the
current solution to the linear program is optimal. Before discussing results for

16 Chapter 3

specific vehicle routing problems, we first describe some general aspects of this
approach.

3.2.1. The subproblem
The objective function of the subproblem has coefficients that depend on the
values of the dual variables 'TT; (i E N) of the continuous relaxation of the set
partitioning problem. The constraints define a path subject to side constraints
but not necessarily visiting all customers. They include (3)-(8) for the VRPTW,
(3)-(5) and (8) for the m-TSPTW, and (19)-(26) for the PDPTW.

As we have seen in Section 3.1.1, dynamic programming is a suitable
method to solve these subproblems to optimality, because the state spaces are
relatively small.

3.2.2. The master problem
The continuous relaxation of the set partitioning problem is solved by the sim
plex algorithm. This method produces the dual values- 'TT; that are needed for
column generation and enables easy reoptimization each time new columns are
generated.

To obtain an integral solution to the master problem, we add cutting planes
or we use branch and bound. Each time a new constraint is added, another
round of column generation is applied in order to solve the modified master
problem. We must restrict ourselves to types of constraints that are compatible
with the column generation method. For any cutting plane, the method must
be able to compute its coefficients in order to evaluate the marginal cost of
new columns. For any branching rule, the method must be able to exclude the
columns that have become infeasible by branching

In case the cu are integral, a compatible type of cut is the one that rounds
the objective up to the next integer. In the particular case that we minimize
fleet size, this cut has the same coefficient I in each column; if it has a dual
value 'TT, a new column is generated by minimizing the reduced cost

2: ... (C;I· -'TT;)X;1· - 'TT.
(t,J)~A . .

However, we cannot use Gomory cuts or other types of cuts whose coefficients
are not known before the new column is generated.

As to branching, the usual rule to fix a fractional variable x, to O or I is not
compatible. We can fix x,. = 1 by simply deleting the customers on route r
from the subproblem. But we cannot fix x,. = 0: there is no way to prevent
route r from being generated again. Four types of compatible branching rules
have been proposed: branching on the flow variables of route r; branching on
the position of a customer in route r; branching by splitting time windows;
and branching on the number of vehicles of a given type in problems with
multiple vehicle types. These rules have been listed here in order of increasing
effectiveness.

Optimization 17

3.2.3. Acceleration techniques
There are various ways to improve the performance of the set partitioning
approach.

First of all, the set partitioning problems that arise in the context of vehicle
routing are highly degenerate. It is an obvious idea to improve the convergence
of the simplex method by a perturbation strategy.

Secondly, the solution of the relaxed master problem can be accelerated by
the simultaneous generation of columns. The solution of a subproblem by
dynamic programming produces not only a column of minimum reduced cost,
but also many other columns of negative reduced cost. Several of these can be
added.

In the third place, the solution of most of the subproblems can be greatly
sped up by the heuristic elimination of vertices, arcs, and states. The first
columns are generated in subnetworks, which only consist of customers with
large dual values and inexpensive arcs; in addition, less promising states are
ruled out during the recursion. At later stages, the elimination rules are gradu
ally relaxed, until at the final stage the full network and state space are used in
order to prove optimality.

3.2.4. The multi-salesman and vehicle routing problem with time windows
Desrosiers, Soumis and Desrochers [1984] propose a set partitioning approach
to the m-TSPTW. The column generation problem is the SPPTW, which was
reviewed in Section 3.1.1. In their algorithm, two cuts are added to the master
problem: one to round up the number of vehicles and one to round up the
total costs. After that, branching on flow variables is applied. With this rule, it
is time consuming to achieve optimality, even if the integrality gap is small.
They solve problems with up to 151 customers; the solution time on a CDC
Cyber 173 ranges from 100 to 1000 seconds, depending on the width of the
time windows. A recent improvement of the algorithm is able to solve prob
lems with 223 customers within 600 seconds. A branching rule based on time
window splitting is under development.

Desrosiers, Dumas and Soumis [1986a] extend this algorithm to the case of
multiple vehicle types. Several SPPTW's are now to be solved, one for each
type of vehicle. Branching is first done on the number of vehicles of a given
type; when this number is integral for each type, the usual branching on flow
variables is applied.

No set partitioning algorithm for the VRPTW has been proposed so far.
However, Desrochers [1986] presents a dynamic programming algorithm for
the shortest path problem with a variety of constraints. This method is suitable
for solving the subproblems that occur in this context.

3.2.5. The pickup and delivery problem with time windows
Dumas [1985] develops a set partitioning approach for the PDPTW. He solves
problems with 30 customers (60 vertices) within 100 seconds on a CDC Cyber
173. These problems have tight capacity constraints (q;;;:,, Q /3) and loose time
window constraints. Narrowing the time windows significantly decreases the

18 Chapter 4

cardinality of the state space and thereby the computation time.
The subproblem in this case is the SPPPDTW, which was reviewed in Sec

tion 3.1.1. The algorithm of Dumas [1985] first branches on the number of
vehicles per type and then on flow variables. Desrosiers, Dumas and Soumis
[1987] replace the latter branching rule by branching on the position of custo
mers in routes and obtain improved results.

4. APPROXIMATION: CONSTRUCTION

In spite of the recent success of optimization algorithms for vehicle routing
with time windows, it is unlikely that they will be able to solve large-scale
problems. In many situations one has to settle for algorithms that run fast but
may produce suboptimal solutions. In this chapter, we review three types of
approximation algorithms. Construction methods try to build a feasible solution
starting from the raw data. Incomplete optimization methods use a combination
of enumeration of the solution space and heuristic rules to truncate the search.
Iterative improvement methods start from a feasible solution and seek to
improve it through a sequence of local modifications. These types of methods
have been widely applied to unconstrained routing problems. Their extension
to constrained problems has only recently become a subject of investigation. In
presenting this work, we will concentrate on feasibility rather than optimality
aspects. As already indicated in Chapter I, we consider construction in the
present chapter, incomplete optimization in Chapter 5, and iterative improve
ment in Chapter 6.

Side constraints of interest to us are: single time windows at customers, multi
ple time windows at customers, both deliveries to and collections from customers,
and precedence constraints between customers. For presentational convenience,
we will often consider the side constraints one at a time. Furthermore, when
describing iterative improvement methods, we will restrict ourselves to the TSP
with side constraints and at the end indicate how the presented techniques can
be extended to the VRP with side constraints. We note that it is possible to
model the PDPTW as a VRPTW with both collections and deliveries and pre
cedence constraints. For each customer in the PDPTW there are two custo
mers in the VRPTW; one corresponding to the origin, where load will be col
lected, and the other corresponding to the destination, where load will be
delivered. In addition, there is a precedence constraint specifying that the cus
tomer where load will be collected should precede the customer where load will
be delivered. Therefore, the described iterative improvement methods can also
be applied to the PDPTW.

As in Section 3.1.1, we split the depot (vertex 0) in an 'origin' (vertex 0) and
a 'destination' (vertex n + 1). In the sequel, when we refer to a route, we
assume that it is given by (0, 1, ... ,i, ... ,n,n + 1), where i is the ith customer
visited by the vehicle. There are two quantities associated with a subpath
(h, ... ,k) that play a dominant role in the algorithms below. The possible for
ward shift S itc is the largest increase in the departure time D1, at h which causes
no violation of the time windows along the path (h, ... ,k):

Approximation: construction 19

St:= minh,e;;Jd{/J -(Dh + ~h,e;;;</;,;+1)}.

The possible backward shift SM is the largest decrease in the departure time Dh
at h which causes no waiting time along the path (h, ... ,k):

SM:= minh,;;;J,;;;k{D1-e1}.

These quantities express the flexibility we have when we want to push custo
mers forward or backward in time.

In the design of construction methods, there are two key questions:
(1) Selection criterion: which customer is selected next to be inserted into the

current solution?
(2) Insertion criterion: where will it be inserted?
While such decisions may be made at the same time, several of the algorithms
to be discussed in Sections 4.2 and 4.3 employ different criteria for selection
and insertion. Before we start our discussion of construction methods, we
present some results on the complexity of finding initial feasible solutions.

4.1. Complexity
Although constructing an initial solution may seem easier than finding an
optimal solution, we will show that in the presence of side constraints this is
not always true.

The traveling salesman problem. In the TSP [Lawler, Lenstra, Rinnooy Kan
and Shmoys 1985], we are given a complete graph on a set
V = {O, l, ... ,n,n + 1} of vertices, and a travel time t;1 for each arc (i,j) E VX V.
A solution to the TSP is a path of minimum duration from origin O to destina
tion n + 1 that visits each other vertex exactly once. The duration of a path is
the sum of the travel times of the arcs contained in it. We assume that the
matrix (tiJ) is symmetric and satisfies the triangle inequality, i.e.,

for i,j EV,
for i,j,k E V.

Constructing an initial feasible tour is trivial because any permutation of the
vertices constitutes a feasible tour. Note that the above definition stipulates
the existence of a complete graph, contrary to our earlier definition in Chapter
2. In case of an arbitrary graph, the problem of finding an initial solution is
equivalent to the problem of finding a Hamiltonian cycle in a graph, which is
known to be NP-complete in the strong sense.

The traveling salesman problem with time windows. In the TSPTW, we are
given in addition to the travel times between vertices, for each vertex i a time
window, denoted by [e;,l;], where e; specifies the earliest service time and l; the
latest service time. The problem of determining whether there exists a feasible
tour for the TSPTW is NP-complete in the strong sense. Our proof starts from
the recognition version of the TSP, which is known to be NP-complete in the
strong sense [Garey and Johnson 1979]:

20 Chapter 4

TSPDECISION
Instance: A set V = {O, ... ,n +l} of vertices, a travel time tiJEZ+ for each
(i,j)EVX V, and a bound BEZ+.
Question: Does there exist a path from origin O to destination n + l of dura
tion not larger than B that visits each vertex exactly once?

Given an instance of TSPDECISION, we construct the corresponding instance
of TSPTW by giving each city a time window [O,B]. This implies that there
exists a feasible tour if and only if TSPDECISION has a solution.

In addition, the problem of determining whether there exists a feasible solu
tion to the TSPTW belongs to NP: a non-deterministic algorithm need only
guess an ordering of the vertices and test in polynomial time whether it is
feasible.

The traveling salesman problem with mixed collections and deliveries. In the TSP
with mixed collections and deliveries, we are given in addition to the travel
times between vertices, for each vertex i an associated load q; together with a
specification that indicates whether this load should be collected or delivered.
The salesman uses a vehicle with fixed capacity Q.

In the special case where all load to be delivered has to be collected at ver
tex O and all load to be collected has to be delivered to vertex n + 1, there exits
a feasible tour if and only if it is feasible to visit all delivery vertices before all
collection vertices. This strategy is known in vehicle routing problems as
back-hauling. In the general case, the existence problem is more difficult. The
problem of determining whether there exists a feasible tour for the TSP with
mixed collections and deliveries is NP-complete in the strong sense. Our proof
starts from the following problem, which is known to be NP-complete in the
strong sense [Garey and Johnson 1979]:

3-PARTITI0N
Instance: A finite set A of 3m elements, a bound BEZ+ and a size s(a)EZ+
for each a EA, with Bl4<s(a)<Bl2 and

~aEAs(a) = mB.

Question: Can A be partitioned into m mutually disjoint sets S 1 ,S 2, • · · ,Sm
such that, for I ,;;;; i,;;;; m,

~ s(a) = B?
aES,

(Notice that the above constraints on the item size imply that every such S;
must contain exactly three elements from A.)

Given an instance of 3-PARTITI0N, we construct the following instance of
the TSP with mixed collections and deliveries. There are 3m delivery vertices a
with load equal to s(a)(aEA) and m collection vertices with load equal to B.
The salesman has a vehicle with capacity B. Note that in a feasible solution a
collection can only be made if the vehicle is empty. This implies that a feasible
solution will consist of m subsequences, each consisting of a collection

Approximation: construction 21

followed by three deliveries. But such a solution exists if and only if 3-
PARTITI0N has a solution.

In addition, the problem of determining whether there exists a feasible solu
tion to the TSP with mixed collections and deliveries is a member of NP: a
non-deterministic algorithm need only guess an ordering of the vertices and
test in polynomial time whether it is feasible.

The traveling salesman problem with precedence constraints. In the TSP with
precedence constraints, we are given in addition to the travel times, precedence
constraints specifying that some pairs of vertices have to be visisted in a
prescribed order. The problem of finding an initial feasible solution is trivial
because all we have to do is to visit the vertices in topological order.

The vehicle routing problem. The problem of determining whether there exists a
feasible set of routes for the VRP is NP-complete in the strong sense. Our
proof starts again from 3-PARTITI0N [Garey and Johnson 1979].

Given an instance of 3-PARTITI0N, we construct the following instance of
the VRP. There will be 3m customers a with load equal to s (a)(a EA) and m
vehicles with capacity equal to B. Note that the total load to be delivered is
equal to the total vehicle capacity. This implies that a feasible set of routes
corresponds to a division of the set of customers into m subsets, such that the
sum of the loads over the members of a subset is exactly equal to the vehicle
capacity. But such a set of routes exists if and only if 3-PARTITI0N has a solu
tion.

In addition, the problem of determining whether there exists a feasible set of
routes for the VRP belongs to NP: a non-deterministic algorithm need only
guess a division of the set of vertices into subsets, guess an ordering for the
vertices in each subset, and test in polynomial time whether it is feasible.

4.2. The vehicle routing problem with time windows
Solomon [1983] was one of the first who attempted to adapt the ex1stmg
approximation algorithms for the VRP to the VRPTW. Part of the material in
this section is based on his work.

Savings. The savings method of Clarke and Wright [1964] is probably the first
and certainly the best known heuristic proposed to solve the VRP. It is a
sequential procedure. Initially, each customer has its own route. At each itera
tion, an arc is selected so as to combine two routes into one, on the basis of
some measure of cost savings and subject to vehicle capacity constraints. Note
that in this case the selection criterion applies to arcs rather than customers
and that the insertion question does not occur.

In order to adapt this procedure for the VRPTW, we must be able to test
the time feasibility of an arc. While in pure routing problems the direction in
which a route is traversed is usually immaterial, this is not the case anymore in
the presence of time windows. Hence, we only consider arcs from the last cus
tomer on one route to the first customer on another.

22 Chapter 4

If two routes are combined, the departure times on the first route do not
change. As to the second route, one necessary condition for feasibility is that
the departure time at the first customer is no more than his latest service time,
but that is not all. The other departure times on the route could be pushed for
ward, and one of them could become infeasible. This is where the possible for
ward shift enters the picture. For any path (I, ... ,n + 1), a change in the depar
ture time at 1 is feasible if and only if it is no more than st,,+ 1.

By selecting of a cost effective and time feasible arc, the modified heuristic
could link two customers whose windows are far apart in time. This suggests a
further modification which selects arcs on the basis of both spatial and tem
poral closeness of customers, e.g., by adding a waiting time penalty to the cost
savings.

Nearest neighbor. Initially, a route consists of the depot only. At each iteration,
an unvisited customer who is closest to the current end point of the route is
selected and added to the route to become its new end point. The selection is
restricted to those customers whose addition is feasible with respect to capacity
and time window constraints. A new route is started any time the search fails,
unless there are no more customers to schedule.

The measure of closeness should include spatial as well as temporal aspects.
Solomon [1983] proposes the following:

a.1 tu + aimax{ e1,Di +tu} - DJ+ a.3(11 - (Di+ tu)), with a. 1 +a.2 +a.3 = 1.

This measures the travel time between customers i and j, the difference
between their respective delivery times, and the urgency of a delivery at j.

Insertion. Insertion methods treat the selection and insertion decisions
separately. We distinguish sequential and parallel insertion rules. The former
construct the routes one by one, whereas the latter build them up simultane
ously. All methods considered here are of the sequential type.

The general scheme of an insertion method is simple. Let U be the set of
unrouted customers. For each customer u E U, we first determine the best
feasible point iu after which it could be inserted into the emerging route:

t(u,iu) = minos;;i,,:;,,{t(u,i)} for u EU.

We next select the customer u* to be inserted into the route:

a(u*,iu•) = min,,"u{a(u,iu)}.

The insertion criterion t and the selection criterion a are still to be specified;
we refer to Solomon [1983] and Savelsbergh [1986] for a number of possible
definitions which take both spatial and temporal aspects into account. When
no more customers can be inserted, a new route is started, unless all customers
have been routed.

A detailed implementation of an insertion algorithm, given an assignment of
customers to vehicles, is given in Section 5.3.

Approximation: construction 23

Cluster first-route second. The best known example of the cluster first-route
second approach is the sweep method of Gillett and Miller [1974]. Their idea is
to sweep a ray with the depot as pivot and a randomly selected 'seed' custo
mer, clockwise or counterclockwise in the plane, and add customers to a clus
ter as they are encountered, until the vehicle capacity is exceeded. A route for
the customers in this sector is then constructed using an insertion method.
This sweeping process is repeated until all customers are routed.

In the presence of time windows, some of the customers in a sector may
remain unscheduled. Therefore, in a time oriented sweep method, extra atten
tion is paid to the selection of the seed customers. Solomon [1983] suggests to
bisect the previously constructed sector, and let the customer that gives rise to
the smallest positive angle formed by the ray from the depot through that cus
tomer and the bisector be the seed for the next cluster to be formed. The intui
tion behind this partitioning of the unrouted customers in the sector into two
subsets is that, assuming a counterclockwise sweep, the customers in the right
half sector will be relatively far away from the new cluster. Hence, a better
schedule may be obtained by scheduling them at a later stage.

Chapter 5 discusses a cluster first-route second approach based on the itera
tive optimization algorithm suggested by Fisher and Jaikumar [1978] and
described in Chapter 3.

Solomon [1983] concludes on the basis of extensive computational experiments
that insertion methods outperform other types of construction methods.

4.3. The pickup and delivery problem with time windows
Jaw, Odoni, Psaraftis and Wilson [1986] consider a variant of the DARP.
Their approach seems to be applicable to the proper DARP as well.

The customers that are to be picked up and delivered have the following
types __Qf service constraints. Each cus.!._omer i specifies either a desired pi_ckup
time D;+ or a desired delivery_time A;-, and a maximum travel time T;; in
addition, there is a tolerance U. If customer i has specified a desired pickup
t~e,_the ~ctual pickup time D;+ should fall within the time window
[D;+ ,D;+ + V]; if he has specified a desired_ deli~ry_ time, the actual delivery
time A;- should fall within the window [A;- - U,A;-]. Moreover, hi~ actual
travel time should not exceed his maximum travel time: A;- - D;+ ,,;; T;. Note
that this information suffices to determine two time windows [e;+ ,l;+] and
[e; ,l;] for each customer i. Finally, waiting time is not allowed when the
vehicle is carrying passengers.

The selection criterion is simple: customers are selected for insertion in
order of increasing e;+. The insertion criterion is as follows: among all feasible
points of insertion of the customer into the vehicle schedules, choose the
cheapest; if no feasible point exists, introduce an additional vehicle.

For the identification of feasible insertions, the notion of an active period is
introduced. This is a period of time a vehicle is active between two successive
periods of slack time. For convenience, we drop the superscript indicating

24 Chapter 5

pickup or delivery. For each visit to a customer i during an active period, we
define the following variants of possible backward and forward shifts:

Lt= min{min1,;;;;{A;-e;},A},

Lt= min1 ,;;;;{l;-A;},

S;- = min;~;{A;-e;},

st= min{min1~;{1;-A;},L},

where A and L are the durations of the slack periods immediately preceding
and following the active period in question. L;- (Lt) denotes the maximum
amount of time by which every stop preceding but not including i can be
advanced (delayed) without violating the time windows, and S;- (St) denotes
the maximum amount of time by which every stop following but not including
i can be advanced (delayed). These quantities thus indicate how much each
segment of an active period can be displaced to accommodate an additional
customer. Once it is established that some way of inserting the pickup and
delivery of customer i satisfies the time window constraints, it must be ascer
tained that it satisfies the maximum travel time constraints.

The cost measure that is used to choose among feasible insertions is a
weighted combination of customer dissatisfaction and resource usage.

Sexton and Bodin [1985a, 1985b] consider a variant of the single-vehicle
DARP in which only deadlines for the deliveries are specified. Their solution
approach is to apply Benders decomposition to a mixed 0-1 nonlinear pro
gramming formulation, which separates the routing and scheduling component.

5. APPROXIMATION: INCOMPLETE OPTIMIZATION

Fast approximation algorithms can also be derived from optimization algo
rithms. The principal idea is to use heuristic rules to truncate the search of the
solution space.

In case of the set partitioning algorithms the two main techniques are the
heuristic generation of columns and the partial exploration of the branch and
bound tree.

Heuristic generation of columns is based on the third type of acceleration
technique mentioned in Section 3.2.3. While solving the relaxed master prob
lem, we eliminate vertices, arcs and states in a heuristic fashion. The elimina
tion rules are not relaxed, so that an approximate solution to the linear pro
gram is obtained.

Partial exploration of the search tree can take place in several ways. One is
to obtain an integral solution by depth-first search and then to explore the tree
for the remaining available time. Another way is to use an invalid branching
rule, i.e., to eliminate branches on heuristic grounds.

A combination of these techniques has been used to obtain feasible integral
solutions within two percent from the optimum with highly reduced running
times.

Approximation: incomplete optimization 25

The iterative optimization algorithm suggested by Fisher and Jaikumar
[1978], which has the potential of obtaining an optimal solution, can be turned
into an effective approximation algorithm if terminated early. For the VRP
(that is, the case without time windows) Fisher and Jaikumar [1981] propose a
cluster first-route second method by only considering the first iteration of the
Benders decomposition. In the first phase, an assignment of customers to vehi
cles is obtained by solving a GAP with an objective function that approxi
mates the cost of the traveling salesman tours of the vehicles through the cus
tomers. In the second phase, once the assignment has been made, a routing of
each vehicle through its set of customers is obtained by solving a TSP. The
objective function that approximates delivery cost is obtained by seed routes
and the cost of inserting customers into these seed routes. A seed route is an
artificial route consisting initially of the depot and a seed point (or seed for
short), which indicates an area that is expected to be visited by one vehicle.

In the process of developing the interactive distribution planning system
CAR, that is the subject of Part II, we have extended this cluster first-route
second approach to handle various side constraints: time windows, mixed
deliveries and collections, and different vehicle types.

In the present chapter, we describe the clustering phase and the route con
struction phase. The resulting solution can be subjected to the iterative
improvement procedures presented in Chapter 6; these procedures serve pri
marily to improve individual routes (Sections 6.1-7), but may also modify the
clustering (Section 6.8).

To be able to handle mixed deliveries and collections we make use of the
following observation. As long as all load to be delivered is collected at the
depot and thus all load collected is to be delivered at the depot, a necessary
and sufficient condition for a load feasible route to exist is that neither the
total amount of deliveries nor the total amount of collections exceeds the vehi
cle capacity. In that case, a route can be constructed using the backhauling
strategy which specifies that all deliveries have to be made before any collec
tion. In the cluster phase, we therefore have to solve two GAP's: one for the
deliveries and one for the collections, both based on the same set of seeds.

5.1. The generalized assignment problem
Given are a set N of customers and a set M of vehicles. For each customer
i EN there is a load q;. For each vehicle k EM there is a capacity Qk. Finally,
there is a cost c;k associated with the assignment of customer i to vehicle k.
The objective is to assign all customers to a vehicle at minimal cost. The
mathematical programming formulation for the GAP has one type of variable:
J;k (i EN,k EM) is equal to 1 if customer i is assigned to vehicle k and O other
wise. The problem is then to minimize

'"2.iEN,kEMC;kJ;k

subject to

26

for i EN,

for kEM,

for i EN, k EM.

Chapter 5

This is, in fact, a special case of the GAP because the coefficients in the con
straint matrix do not depend on the rows. (The demand of an customer is
independent of the vehicle that is going to serve the customer.) A number of
optimization algorithms for the GAP have been developed [Ross and Soland
1975; Fisher, Jaikumar and Van Wassenhove 1984; Martello and Toth 1981],
but these are only able to solve small problem instances. For the solution of
very large GAP's, an approximation algorithm is required.

The basis of our approximation algorithm is a very simple but effective
scheme [Martello and Toth 1981]. For its description we introduce the follow
ing notation:
F:
Ak:
c(i,k):
j(i,k,S):

V (i):

the set of unassigned customers, initially all customers;
the set of customers assigned to vehicle k, initially empty;
the cost of assigning customer i to vehicle k;
a boolean function indicating whether or not customer i can be
assigned to vehicle k given that a set S of customers has already
been assigned to vehicle k;
the vehicle to which customer i is assigned (only introduced for
notational convenience).

The algorithm iteratively considers all unassigned customers and determines
the customer which has the maximum difference between the smallest and
second smallest cost of a feasible assignment. This customer is then assigned to
the vehicle for which the minimum cost was attained. More formally:

WHILE (Fc=/=0) {

bound~ oo

FOR (iEF) {

c 1(i,k 1) ~ minkEv{c(i,k) I j(i,k,Ak) = TRUE}

[if "dk:f(i,k,A1J=FALSE, then F -i- F\ {i}]

c2U,k2) - minkEV\(lc,){c(i,k) I j(i,k,A,J = TRUE}

[if "dkc=j=k 1 :j(i,k,Ak)=FALSE, then c2(i,k 2) - - oo]

di.ff~ C2(i,k2) - C1(i,k1)

IF (di.ff< bound) {

}

bound ~ di.ff

i* ~ i

Approximation: incomplete optimization

}

}

F - F\ {i*}

Ak* - Ak* U {i*}

27

Note that there is no guarantee that each customer will be assigned to some
vehicle. Especially when '"2.;ENq; is almost equal to '"2.kEMQk> it is possible that
some of the customers will be left unassigned. In order to prevent customers
with large loads to be treated in the end we split the set of customers based on
their demands and process the set with the larger demands first. A natural
choice for the threshold to divide the set of customers would be half the vehi
cle capacity because we know in advance that loads larger than half the vehicle
capacity should end up in different vehicles.

Once the initial assignment of customers to vehicles is obtained we apply
two local improvement procedures. The first one tries to reassign a customer
to another vehicle, the second one tries to swap two customers between their
associated vehicles.

Improvement procedure 1:

FOR (iEV) {

}

c(i,ki) - minkEM\{v(i)){c(i,k) I f(i,k,Ak) = TRUE}

IF(c(i,ki) < c(i,v(i))) {

Av(i) - Av(i) \ {i}

Aki - Aki u {i}

Improvement procedure 2:

FOR (iEV) {

}

FOR (J EV I\ j=/=i I\ v (J)=l=v (i)) {

}

IF (f(j,v(i),Av(i) \ {i}) = TRUE I\

f(i,v(j),Av(j) \ U}) = TRUE I\

}

c(j,v(i)) + c(i,v(j)) < c(i,v(i)) + c(j,v(j))) {

Av(i) - Av(i) \ {i} U U}

Av(j) - Av(j) \ U} U {i}

28 Chapter 5

To complete the description of the algorithm we have to specify two func
tions: c(i,k), which indicates the costs associated with the assignment of custo
mer i to vehicle k, and f (i,k,S), which indicates whether or not it is possible
to assign customer i to vehicle k given that a set S of customers has already
been assigned to vehicle k.

The function c(i,k). The cost of assigning customer i to vehicle k should
reflect the knowledge that in the routing phase a traveling salesman problem
has to be solved for each of the sets of customers assigned to the vehicles. Our
function c(i,k) is based on seed routes and the cost of inserting a customer into
a seed route. A seed route is an artificial route consisting initially of the depot
and a seed point, where the seed point indicates an area that is expected to be
visited by one vehicle. This results in the following cost function

c(i,k) = min{to,i + cx.ti,s, - to,s,, aJs,,; + t;,o - (,,,o},

where ex. is the route shape parameter introduced by Gaskell [1967]. The
metric defined by this cost function will sometimes be referred to as the extra
mileage metric.

The function f(i,k,S). The boolean function f (i,k,S) establishes whether or
not it is feasible to assign customer i to seed k given that a set S of customers
has already been assigned to seed k. This feasibility function is our only means
to prevent assignments that turn out to be bad in the routing phase. The pri
mary component is of course concerned with vehicle capacity:

f(i,k,S) - FALSE if q; > Qk - ~. q1· JES

We can add several types of heuristic feasibility tests:
- f (i,k,S) - FALSE if the vehicle associated with a seed k is not allowed to

perform the service at customer i (for instance because it does not have the
appropriate loading equipment);

- f (i,k,S) - FALSE if the number of customers assigned to seed k exceeds a
given bound C, i.e., if I S I ;;,, C;

- f (i,k,S) - FALSE if the total time spent on unloading exceeds a given
bound U, i.e., u; > U - 2.1ESuJ, where u1 denotes the unloading time at
customer j;

- f (i,k,S) - FALSE if there is no time feasible path from the depot to seed
k via customer i, and no time feasible path from seed k to the depot via cus
tomer i, i.e., max{ e;, e0 +to,;} + t;,s, > ls, I\ max{ e;, e,, + t5,,;}

+ t;,o > lo.
It would even be possible to construct partial routes on a subset of customers
of S and check the time feasible insertion in this partial route. However, we
have to keep in mind that the function f (i,k,S) is called many times and
should therefore require a moderate amount of computing time.

5.2. Seed selection
As the cost of assigning customers to vehicles is based on seed routes, two

Approximation: incomplete optimization 29

questions remain to be answered before we can actually apply the algorithm
presented in the previous section. We have to decide where the seeds will be
located and which vehicle type will be allocated to each seed. Although these
questions form essentially one problem and should ideally be treated simul
taneously, we propose to treat them heuristically in the order specified above.

Location of seeds. In order to simplify the computations, seeds are located
at customers. First, a set of candidate seeds is constructed based on the
difficulty degree of customers. This set is then gradually refined to end up with
a set containing exactly the requested number of seeds. The difficulty degree of
a customer is a weighted combination of several of its characteristics:

d; : = a 1t 0,; + a2q; - a3(l; - e;).

This means that customers far from the depot, customers with large loads, and
customers with small time windows are considered to be difficult. The parame
ters a 1,a2 and a3 are used to tune the algorithm to specific problem instances.
The initial set S 3 of candidate seeds will have a cardinality of tree times the
number of requested seeds and will contain the customers with the largest
difficulty degrees. This set is refined by choosing among its members a subset
S 2 that will have a cardinality of twice the number of requested seeds and will
contain candidate seeds that are geographically dispersed. This is achieved by
the following procedure:

WHILE (I S2 1 < twice the requested number of seeds) {

k* - argmaxkEs' {/3t Ok + ~!ES' tk1}

s 3 -s3 \{k*}

s2 - s2 u {k*}

Again, the parameter /3 is used to tune the algorithm. If /3 is taken greater
than one, the procedure favours addresses far away from the depot. Next, we
associate with each seed k ES 2 a load L(k) as follows:

FOR (iEN) {

L(k*) - L(k*) + q;

}

Note that the associated load is equal to the load that would be assigned to
this seed by the GAP if it did not have a capacity constraint. The final set S
of seeds that will have a cardinality of exactly the requested number of seeds
will contain the seeds with largest associated loads.

Allocation of vehicles. Given the locations of the seeds we have to decide
which vehicle types, and thus how much capacity, will be allocated to each
seed. To accomplish this we use the following approximation algorithm.

30 Chapter 5

Define:
S: the set of seeds;
N: the set of customers;
T: the set of vehicle types (capacities), T 1 < Tz < · · · < Tm;
D1(k): the set of customers that have k as closest seed with respect to

the extra mileage metric;
the set of customers that have k as second closest seed with
respect to the extra mileage metric;

t(k): index of the vehicle type allocated to seed k;
L(k): the load associated with seed k.
The objective for the allocation can now be stated as

LljENqj ..;; LlkEsTi(k) ..;; (l +y)"2:jENqj.

The goal is thus to find an allocation that has sufficient capacity to accommo
date all the load but in addition one that does not have to much spare capa
city. A first step in achieving this goal is to associate a load with each seed as
follows:

L(k) := (1 - l3)L,jED,(k)qj + 13°'2:jED,(k)qj.

In case we take l3 equal to zero, we associate with seed k all the customers that
have k as their closest seed. The parameter l3 is introduced to take account of
the fact that it might not be possible to find a vehicle allocation in which all
customers are allocated to the closest seed. In that case some customers have
to be allocated to another seed.

To prepare the initial allocation we define for each vehicle type a region of
attraction:

[O, T1 + £(T2 - T1))
[T, - (1-£)(T1 - T1-1), T, + £(T1+1 - T,))
[Tm - (I -£)(Tm - Tm-d, oo)

for type 1,
for type/(/= 2, ... ,m -1),
for type m.

This region of attraction is introduced to prevent the system from deciding too
soon to allocate large vehicles to seeds. Next, we allocate to each seed the
vehicle type with the region of attraction that contains its associated load.
Unless we take f. equal to zero, we are not sure whether the current allocation
has sufficient capacity to accommodate all the load. Two mechanisms are
applied to manipulate the current vehicle allocation.

In case "2-kEsT,(k) < "2,jENqj, we try to identify a seed for which we will
increase the capacity as follows. We determine the seeds that are not yet at
maximum capacity and that have insufficient capacity to accommodate their
associated load. Among these we select the one that results in the minimum
additional spare capacity if we switch to the next larger vehicle type:

k* - argminkEs{T,(k)+I - L(k) I L(k) > T,(k) I\ t(k) < m}

IF (k* EXISTS)

t(k*) - t(k*) + 1

Approximation: incomplete optimization 31

If this fails, there is at least one seed at maximum capacity with an associated
load that exceeds this maximum capacity. In that case, we increase the capa
city of the seed for which this is possible and that is closest in distance:

I* - argmax1Es{L(l) - Ti(!) I L(/) > Ti([) I\ t(l) = m}

k* - minkEs{d(k,l*) I t(k) < m}

t(k*) - t(k*) + I
In case ~kEs Ti(k) > Y~JENqJ, we try to decrease the capacity of one of the

seeds that are not yet at minimum capacity in such a way that the load that
has to be redistributed is minimum and the total allocated capacity is still
sufficient:

k* -argminkEs{L(k) - T1(k)-1

I t(k) > 1 /\ 2,/ESTI(/) - (T1(k) - T1(k)-d > 2,jENqj}

t(k*) - t(k*) - 1

5.3. Route construction
When the clusters have been formed, a route has to be constructed for each of
them. This amounts to solving a traveling salesman problem with side con
straints. An insertion algorithm, as described Section 4.2, is used to accomplish
this task.

At this point, it is appropriate to analyze, in some detail, the insertion of a
yet unrouted or free customer into a route. This basic action contains all the
ingredients needed later in more sophisticated functions. The analysis is split
in two parts: the first deals with the feasibility of an insertion, the second deals
with its profitability. Let (0, 1, ... ,n + 1) be the considered route, u the unrouted
customer to be inserted, and i and i + 1 the customers between which u is
being inserted. Figure 1 illustrates this insertion.

0

Figure 1. The insertion of u between i and i + 1.

To establish the feasibility of an insertion, we have to test the side

32 Chapter 5

constraints. We will consider time window and capacity constraints. (Note that
even if after the insertion both the total load to be delivered and the total load
to be collected do not exceed the vehicle capacity, it is still possible that the
ordering of the customers leads to a violation of the capacity constraints.) The
insertion of u between i and i + 1 has generally two effects. First, it can affect
all the arrival times at vertices i + 1,i +2, ... ,n + 1, which may result in an
infeasible tour. Secondly, it affects either the vehicle load when visiting the
vertices 0, 1, ... ,i, in case u is a delivery, or the vehicle load when visiting the
vertices i + 1,i +2, ... ,n + 1, in case u is a collection.

To test the feasibility of an insertion with respect to the time window con
straints efficiently, we use the quantity st+ 1,,, + 1 which expresses the possible
forward shift in time of the departure time at i + 1 causing no violation of the
time window constraints along the path (i + 1, ... ,n + I). The feasibility test of
an insertion then amounts to ·

max{Di + t;,u, eu} + tu,i+I - D;+I ,;;;; st+1,n+I·

The following backward recursion will compute St,,,+ 1 for all customers k in
O(n) time:

s:+1,n +I - I,, +I - D,, +I;

stn+I - min{St+1,n+I, lk - Dk} + wk+I fork =n, ... , I.

To test the feasibility of an insertion with respect to the capacity constraints
efficiently, we introduce the following quantities. Let r be the set of customers
where the salesman has to make a collection and ~ the set of customers where
the salesman has to make a delivery. We define

Ck:= Q - ~->k · ,qj - ~-.a:k · rqJ,
j ,)Eu. j - ,)E

which is the remaining capacity in the vehicle at the departure at vertex k,

L;; := min1..;k{C1},

which is the maximum delivery increase the vehicle can accommodate on the
path (O, ... ,k), and

Lt:= minpk{ C1 },

which is the maximum collection increase the vehicle can accommodate on the
path (k, ... ,n + 1). Note that the formula given for the remaining capacity is
based on the fact that in the VRPTW all deliveries have to be collected at the
depot and all collections have to be delivered at the depot. The feasibility of
an insertion can now be tested by

in case u is a delivery and

qu ,;;;; Lt+1

in case u is a collection. The values of Cb L;;, Lt can be computed for all

Approximation: incomplete optimization

customers kin O(n) time as follows:

Co - Q - "'2,1E 6 q1,

{
Ck-I -qkifkEf

ck - ck-I + qk if kE!:::.

Lo - Co

Lj; - min{Ck,Lk-1}

L;;+I - Cn,

Lt - min{Ck-1,L't+1}

33

fork= 1, ... ,n + 1,

fork= 1, ... ,n + 1,

fork =n, ... , 0.

To establish the profitability of an insertion, we have to compute the inser
tion criterion t and the selection criterion a. The insertion criterion t deter
mines the place where a customer will be inserted in the emerging route and
the selection criterion a serves as a guideline to choose between the vertices
available for insertion. Therefore, in trying to achieve our primary goal, creat
ing a feasible tour, we have to rely on the first criterion.

Which criteria to use strongly depends on the tightness of the time windows
involved. If the time window are relatively wide, the spatial aspect is more
important, but if the time windows are quite tight, the temporal aspect
becomes dominant. Therefore, we introduce two phases: first the vertices with
tight time windows are inserted, and next the vertices with wide time windows.
(The definition of tight and wide can be set according to the user's prefer
ences.)

Let the extra travel time of customer u with respect to the link (i,i + 1) be
defined by:

E(u,i) := max{D;+t;,u, eu}+tu,i+I -A;+I·

In phase 1, where the customers with tight time windows are routed, the tem
poral aspect is dominant. The criteria to be used are

t(u,i) = min{l,,-max{D;+t;,u, e,,}, S;++l,n+I -E(u,i)},

a(u,i,,) = E(u,i,,).

The first criterion is guided by the remaining flexibility of the route under con
struction with respect to the time windows whereas the second criterion
searches for the vertex whose inclusion will lead to the smallest increase in
travel time of the tour. In phase 2, where the vertices with large time windows
are routed, feasibility problems play a minor role and we can concentrate on
the spatial aspect. Therefore the criteria are interchanged to obtain:

i(u,i) = E(u,i),

a(u,i,,) = min{/u -max{ D,, + t;,,,,,, eu },

As t and a can be computed in constant time, the complexity of the

34 Chapter 6

insertion scheme is O(n 2), even in the presence of time window and capacity
constraints. There are n insertions, each taking O(n) time, because the O(n)
possible insertion places can be tested in constant time and an actual insertion
gives rise to an O(n) update.

6. APPROXIMATION: ITERATIVE IMPROVEMENT

Iterative improvement procedures are based on what is perhaps the oldest
optimization principle: neighborhood search. It is a simple and natural idea,
which has proven to be surprisingly successful on a variety of problems. The
general iterative improvement procedure proceeds as follows. We start at some
initial feasible solution and search in its neighborhood for a better (cheaper)
one. As long as an improved solution exists, we adopt it and repeat the neigh
borhood search from the new solution. Finally, we will reach a local optimum
and stop.

To apply this approach to a particular problem, we have to make a number
of choices. We have to decide how to obtain an initial feasible solution, we
have to define a neighborhood for the problem at hand, and we have to choose
a method for searching it.

As to obtaining an initial feasible solution in vehicle routing problems, we
refer the reader to the previous section on construction methods. The most
often used neighborhood for vehicle routing problems is the k-exchange neigh
borhood. A k-exchange is a substitution of k arcs of a route with k others. A
route is said to be k-optimal if it is impossible to obtain a shorter route by
replacing k of its arcs by another set of k arcs. The number of possible k
exchanges in a given route is O (nk). The computational requirement of k
exchange procedures thus increases rapidly with k, and one usually only con
siders the cases k = 2 and k = 3. The choice of an appropriate search strategy
for this neighborhood will turn out to be of crncial importance.

Croes [1958] and Lin [1965] introduced the notion of k-exchanges to
improve solutions to the TSP. Lin and Kernighan [1973) generalized the
approach, and many authors reported on its application to related problems.
In the context of vehicle routing, Christofides and Eilon [1969) and Russell
[1977] adapted the approach to the basic VRP, and Psaraftis [1983] used it for
the DARP.

In this section, we will show how various side constraints can be handled in
the k-exchange methods without increasing the time complexity.

In the TSP, the processing of a single k-exchange takes constant time for
any fixed value of k. One only has to test whether the exchange is profitable
and does not have to bother about feasibility. In the presence of side con
straints, the processing of a k-exchange may take O (n) time. This is because a
modification at one point may affect the entire route, so that feasibility ques
tions arise. It will be indicated below that, even in the presence of side con
straints, constant time suffices for the processing of a single exchange.

6.1. The traveling salesman problem
A 2-exchange replaces two arcs (i,i + 1) and (j,j + 1) by (i,j) and (i + l,j + 1),

Approximation: iterative improvement

thereby reversing the path (i + 1, ... ,j) (see Figure 2).

Figure 2. A 2-exchange.

Such an exchange results in a local improvement if and only if

ti,i+I + tj,j+I > ti,j + ti+l,j+I·

35

In a 3-exchange, three arcs are deleted and there are seven possibilities to
construct a new route from the remaining segments. Figure 3 shows two possi
ble 3-exchanges that can be performed by deleting the arcs (i,i + I), (j,j + I)
and (k,k + I) of a route.

For all cases conditions similar to the one given for the case k = 2 can be
given to obtain local improvement. There is one important difference between
the two 3-exchanges shown above: in the latter the orientation of the paths
(i + 1, ... ,j) and (j + 1, ... ,k) is preserved whereas in the former this orientation
is reversed.

Because the computational requirement to verify 3-optimality becomes
prohibitive if the number of vertices increases, proposals have been made to
take only a subset of all possible 3-exchanges into account. Or [1976] proposes
to restrict attention to those 3-exchanges in which a string of one, two or three
consecutive vertices is relocated between two others. To see how the Or-opt
procedure works, the reader is referred to Figure 4. In this route the path
(i 1, ... , i 2) is relocated between j and j + 1. Note that no paths are reversed in
this case and that there are only O(n 2) exchanges of this kind. There are two
possibilities for relocating the path (i 1, ••• , i 2); we can relocate it earlier
(backward relocation) or later (forward relocation) in the current route. The
cases of backward relocation (j < i 1) and forward relocation (j > i 2) are han
dled separately.

6.2. A lexicographic search strategy
The main problem with the use of k-exchange procedures in the TSP with side
constraints is checking the feasibility of an exchange. A 2-exchange, for
instance, will reverse the path (i + 1, ... ,j), which means that one has to check
the feasibility of all the vertices on the new path with respect to those con
straints. In a straightforward implementation this requires O (n) time for each

36 Chapter 6

j +I

Figure 3. Two ways to perform a 3-exchange.

Figure 4. An Or-exchange.

2-exchange, which results in a time complexity of O(n 3) for the verification of
2-optimality.

The basic idea of the proposed approach is the use of a search strategy and
of a number of global variables such that, for each considered exchange,

Approximation: iterative improvement 37

checking its feasibility and updating the global variables require no more than
constant time. Because the search strategy is of crucial importance, we present
it first.

In the sequel, we will assume that the current route, for which we want to
prove optimality, is given by a sequence (O, ... ,i, ... ,n + 1), where i represents the
ith vertex of the route, and that we are always examining the exchange that
involves the substitution of arcs (i,i + 1) and U,J + 1) with (i,J) and (i + 1,j + 1)
in case of a 2-exchange, and the substitution of (i 1 -1,ii), (i 2,i2 +1) and
U,J + 1) with (i 1 - l,i2 + 1), U,i i) and (i 2,j + 1) in case of an Or-exchange.

Lexicographic search for 2-exchanges. We choose the arcs (i,i + 1) in the order
in which they appear in the current route starting with (0,1); this will be
referred to as the outer loop. After fixing a arc (i,i + 1), we choose the arc
U,J + 1) to be (i +2,i + 3), (i + 3,i +4), ... , (n,n + 1) in that order (see Figure 5);
this will be referred to as the inner loop.

Figure 5. The lexicographic search strategy for 2-exchanges.

Now consider all possible exchanges for a fixed arc (i,i + 1). The ordering
of the 2-exchanges given above implies that in the inner loop in each newly
examined 2-exchange the path (i + 1, ... ,j -1) of the previously considered 2-
exchange is expanded by the arc U - I,j). This observation, together with an
appropriate set of global variables, makes it is possible to maintain informa
tion on the feasibility and duration of this path efficiently, i.e., to check its
feasibility and to update the global variables in constant time.

Lexicographic search for backward Or-exchanges. We choose the path (i 1 , ... ,i 2)

in the order of the current route starting with i I equal to 2. After the path
(i 1, ... ,i 2) is fixed, we choose the arc U,J+l) to be
(i 1-2,i 1 -1).(i 1 -3,i 1 -2), ... ,(0,1) in that order. That is, the arc (j,j+l)
'walks backward' through the route. Note that in the inner loop in each newly
examined exchange the path (/ + 2, ... , i 1 - 1) of the previously considered
exchange is expanded with the arc U + 1,j +2).

Lexicographic search for forward Or-exchanges. We choose the path (i 1, ... ,i 2)

in the order of the current route starting with i I equal to 1. After the path
(i 1 •... ,i 2) is fixed, we choose the arc U,J + 1) to be
(i 2 +1,i2 +2),(i2 +2,i 2 +3), ... ,(n,n+l) in that order. That is, the arc U,J+I)

38 Chapter 6

'walks forward' through the route. Note that in each newly examined exchange
the path (i 2 + l, ... ,j -1) of the previously considered exchange is expanded
with the arc (j -1,j).

6.3. The traveling salesman problem with time windows
2-Exchanges. In the following, a quantity with superscript 'new' indicates the
value after the exchange has been carried out, and subscripts always refer to
the ordering of the current tour. A 2-exchange is feasible and profitable if and
only if the following conditions are satisfied:
(a) the reversed part of the route is feasible:

(b) the departure time at j + 1 is decreased:

D new < D .
j+l j+l,

(c) part of the gain at j + 1 can be carried through to the vertex where the
salesman finishes:

Dk > ek, for j + 1-,;;;;;k ,;;;;;n + 1.

The third condition needs some further consideration. If it is violated the
exchange will not alter the completion time of the route. It will only reduce the
completion time of the path from O to k - 1, for the smallest k for which viola
tion occurs. Although this condition does not create unsurmountable prob
lems, we will drop it for two reasons. First, keeping it will make the presenta
tion of the ideas unnecessarily complicated. Secondly, introducing slack can
be very beneficial for the rest of the procedure.

Recall that in the lexicographic search strategy after the arc (i,i + 1) is fixed,
the arc (j,j + 1) is chosen to be equal to (i +2,i +3), (i +3,i +4), ... , (n,n + 1).
This means that once we have fixed the arc (i,i + 1), we can completely specify
an exchange by the other arc involved. In the following, an arc appearing as
superscript will specify the exchange on which the information is based. To be
able to check feasibility, we define three global variables:
S + : possible forward shift in time of the departure time at j - 1 causing no

violation of the time window constraints along the path (i +I, ... ,j - 1):

S + · - min {l - (D(J- l,j) + '-' t)} · .- · i+l,s;;k,s;;j-l k 1-l .L..ik,s;;p,s;;j-2 p,p+I ,

W: waiting time on the path (i + 1, ... ,j), excluding possible waiting time at j,
including possible waiting time at i +I:

w := ~ wv-1+11;
i+l,s;;k,s;;j-l

T: travel time, excluding the periods of waiting, on the path (i + l, ... ,j):

T ·= ..._.. t
• .L..i;+J,s;;k,s;;J-I k,k+I·

The path (i + 1, ... ,j I) of the previously considered exchange is expanded by
the arc (j - 1,j). This usually results in a change of the departure time at j - I

Approximation: iterative improvement 39

(and thus in the change of the departure time of possibly all the other vertices
on the path (i + I, ... ,j -1)). We define the local variable S to be this change in
the departure time at j - I:

s · = nu,1+ 1> + t . - nu- 1,1>
· J J,J - I ; - I ·

The following lemma enables us to show that the condition (a) for local
improvement can be tested in constant time.

LEMMA. Expanding the path (j - I, ... , i + I) with the arc (j - I ,j) is feasible if
and only if S ,,;;; S + .

PROOF. If the tour that results if the exchange is carried out is feasible, we
know that

n<J,1+ 1i + ~ t ,,;:: 1
J :,. .,,;;;_k~p~J-1 p,p+I __,, k for i + J,s,;;k <j,

which implies that

n<J,J+ 1>+t-- ,,;::/ ~ t fori+J,,;::k<;· ; ;,;-! __,, k - ,;;;;..k~p~J-2 p,p+I --, ,

which just says that S ,,;;; S +.
To prove the converse, note that DYc•i + 1> ;;,, nv- l,j) for i + 1 ,s,;;k ,s,;;J -1.

The only vertices for which infeasibility can occur are those for which
DYc•i + I) =f= nv- l,j). A necessary condition for this to occur is that there is no
waiting time on the path (j, ... ,k) after the exchange is carried out. Suppose
now that S ,,;;; S +. This implies that

D1(J,J + I) + t1-1 - I - D1(J ~tJJ ,,;;; lk - (D1(J ~tJ> + ~ . tpp + i),
• .,,;;;_k~p~J-2 •

so that

D(j,j+I)+~ t +1,s,;;fk
J ,;;;;..k~p~J-1 p,p

and (since we may assume that there is no waiting time)

D(j,j+I) + ~ t + ~ W)/•J+I)
J .,,;;;_k ~p ~J-1 p,p + I .,,;;;_k ~p ~J-1

which is equivalent to

AYc·J+I) ,,;;; lk. □

With the use of the above lemma we find that a 2-exchange is feasible (condi
tion (a)) and potentially profitable (condition (b)) if and only if nyJ+I) ,,;;; t1,
S ,,;;; S +, and DJ'+1 < D1 + 1• All three conditions can be tested in constant
time. Because the triangle inequality holds, traveling directly from i to j takes
no more time than through i + I,i +2, ... ,J-1, so the first condition is always
satisfied. The second is just the comparison of two variables. The third requires
the exact departure time at vertex j + l, which is equal to

. (j, + I) mm{e1+ 1, D1 1 + T + W + t;+I,J+I }.

Now that we have shown that testing a single 2-exchange takes constant

40 Chapter 6

time, what remains to be done is to show that the global variables can also be
updated in constant time.

An examination of the definition of S shows that it covers two different
cases (Figure 6). In the case that S < 0, the triangle inequality guarantees
that the new arrival at j - 1 is never earlier than the old arrival, so it must
have been the case that the old arrival and old departure did not coincide.
This means that the old departure was equal to the opening of the time win
dow. But then ISi is exactly equal to the waiting time at j - 1. In the case that
S ;;;,, 0, S is exactly equal to the difference between the new arrival time and
the old arrival time at j - 1, that is, the forward shift in time.

Figure 6. Schematic presentation of the possible shifts.

We now assert that the global variables can be updated in constant time as fol
lows:

T (- T + tj.j - I ;

W (- max { W - S, 0}:

s+ min{/1 - nyJ+I>, s+ - S}.

It is easily verified that the transformations for W and T are correct. The
correctness of the transformation for S + can be proved as follows. Define Fk
as the maximal forward shift in time of the departure time at j causmg no

Approximation: iterative improvement 41

violation of the time window constraints at k:

ci'i,J+l):=/.-(DV•J+IJ+~ t).
_,, k k ; £.,k ~p ~J- I p,p + I

We have

ci'i,j+I) - I - (D(j,j+I) + ~ t)
-" k - k ; - I £.,k ~p ~j - I p,p + I

= lk - (D(j-l,j) + ~ t +1)- D(j,j+l) - t -I+ DV~ll,j)
J £..k ~p ~J-2 p,p J J,J J

= F)f-1,JJ - S.

But this implies

+ · di ·+I) S = Illln;+l~k~j{rk"J }

= min{/ - D(J,J+I)
J J '

= min{/ - D(J,j+I)
J J '

= min{/ - D(j,J+I)
J J '

It is easy to see that the complexity for each individual 2-exchange is
reduced to constant time because the necessary tests for feasibility and local
improvement plus the updating of all quantities involved require constant time.
This gives an overall time complexity of O(n 2) for the verification of 2-
optimality.

Or-exchanges. For presentational convenience, we will present our method
only for those Or-exchanges in which a single customer i is relocated. This
implies that i 1 = i 2 = i. Because the concepts presented in this part differ
only slightly from those described for the 2-exchanges we will take a more
intuitive and informal approach. Note that the orientation of the path
(j + 1, ... ,i -1) is preserved, which makes it easier to handle the feasibility
checks. The global variables we need are:
S +: possible forward shift, which is equal to S/+ 1,; -I as defined earlier;
s-: possible backward shift, which is equal to S;-+ I,J-I as defined earlier;
G: gain made by going directly from i - 1 to i + 1:

G := A;+ 1 - (D;- 1 + t;-i,;+I);

L: loss incurred by going from j through i to j + 1:

L := max{D1 +tJi,e;}+t;,1+ 1 -A1+1;

W: waiting time on the path (j + 1, ... ,i -1):

W := ~j+l~k~i-1 Wk.

During the backward search, an exchange is feasible if D2ew ,;;; lk for
k = j + 1, ... ,i -1, and potentially profitable if D?'.\-w1 < D; + 1• In terms of glo
bal variables, feasibility and potential profitability are equivalent to

42

L < min { S +, G + W}.

The global variables are updated by

S + - min {11 + 1 - D1 + 1 , S + } + ~ + 1 ;

w-w+~+1•

Chapter 6

During the forward search, an exchange feasible if D7ew ~ l; and potentially
profitable if DJ~w1 < D1 + 1• This is equivalent to

L < min{S-, G}.

The only update is

s- - min{D1 - e1, s-}.
It follows that a single exchange of this type can be handled in constant

time. The adaptation to the relocation of a string of vertices instead of a single
vertex is conceptually similar but technically a little more complicated.

6.4. The traveling salesman problem with multiple time windows
In the previous section, we have shown that k-exchange procedures can be
adapted to handle a single time window at each vertex of a route without
increasing the time complexity. A natural extension is to look at iterative
improvement algorithms for problems where each vertex can have more than
one time window. For instance, in practical distribution problems it often
occurs that shops can only be served either in the morning or in the afternoon,
but not during the lunch hours.

Although the techniques discussed in this section can be applied to the gen
eral case where the number of time windows at a vertex is bounded by a con
stant, we restrict ourselves, for presentational convenience, to the case where
each vertex k has two time windows, denoted by [el,l}J and [ek,/1'].

In the presence of multiple time windows, we are no longer able to maintain
the 0(11 2) time complexity for verifying 2-optima!izy. However, the time com
plexity we achieve, 0 (n 2logn), is still better than the straightforward imple
mentation that requires O (n 3) time. For the Or-exchanges we do better. The
computational requirement to verify Or-optimality remains O (n 2).

To illustrate certain aspects of the proposed algorithms, we will often resort
to pictorial representations. Because of their importance, they will be explained
in detail here. A pictorial representation (see Figure 7) will contain informa
tion on two consecutive vertices. For each vertex there will be a time axis with
the two time windows, the arrival time, and the departure time. A time win
dow is represented by a pair of square brackets, the first indicating the earliest
service time, the second indicating the latest service time. Arrival and depar
ture times are represented by a dot. In case the arrival and departure time
coincide (we assumed there is no actual service time), there is only one dot.
Otherwise, the dot associated with the departure time will coincide with the
earliest service time within one of the two time windows, and the difference
between the two dots represents the waiting time. In addition, an arrow will

Approximation: iterative improvement 43

represent the travel time between the two vertices. We will draw the time axis
associated with the vertex with the earliest departure time at the bottom.

AJ-1 DJ-I

l)-1 l}-1

el 11 e2 t2
J J J J

Figure 7. A pictorial representation.

2-Exchanges. Let us briefly review the variables needed in the single window
case:
S + : possible forward shift in time of the departure at j - l causing no viola

tion of the time window constraints along the path (i + 1, ... ,j - 1);
W: waiting time on the path (i + 1, ... ,J) (excluding possible waiting time at j,

including possible waiting time at i + 1);
T: travel time, excluding periods of waiting, on the path (i + 1, ... ,J);
S: change in departure time at j -1 when the arc (j -1,J) is added to the

path (i + l, ... ,J-1).
In each iteration the global variables were updated using the following formu
las:

r - T+ t;,J,

s+ - min{s+ - s, 11 - D1},

W - max{O, W - S}.

It is obvious that in the multiple window case, the first is still valid, but the
other two might no longer be valid.

Let us consider the possible forward shift. As infeasibility only occurs when
departure is later than the closing of the last time window, a first idea might
be to control the feasibility by only considering the latest service time of the
last time window and thus replacing !1 by !J. To show that this does not
suffice, suppose that at some point

DJ<!)

and

!) - D1 < S + - S < eJ - D1.

In that case, an update would set S + to S + - S because S + - S < !J - D1,

44 Chapter 6

whereas it should be equal to t) - D1. It is obvious that this can easily be
fixed by using a slightly more sophisticated updating mechanism:

+ {') - DJ if t) - DJ < S + - S < e; - DJ,

S - min { S + - S, tJ - DJ} otherwise.

Let us consider the waiting time. In the single window case, we were able to
keep track of the waiting time on the path (i + 1, ... ,j -1) using only local
information obtained when an arc (j -1,j) was added to the path
(i + 1, ... ,J-1). To show that this no longer suffices in the multiple window
case, suppose that at some point and for some k on the path (i + 1, ... ,j -2)

lk < Dk+S - ~ . W1, < erc-k,c;;,p,c;;,.1-1

The quantity S - Lk ,c;;,p ,c;;,J - I ~' is the. shift in departure time at k, i.e., the
shift in departure time at j -1 minus the consumed waiting time along the
path (i - 1, ... , k). It is not hard to see that in this case S induces a waiting
time at k equal to

et - (Dk + S - ~ . Wp)-
k ,c;;,p ,c;;,J I

Therefore it is impossible, in the multiple window case, to restrict attention to
waiting time that occurs at vertex j - 1 when the path (i + 1, ... ,) - I) of the
previously considered exchange is extended with the arc (j -1,j). The waiting
time that might occur anywhere along the path (i + l, ... ,j -2), has to be taken
into account as well. The global nature of the waiting time makes it very hard
to control. However, the lexicographic search strategy enables us to maintain a
set of intervals that can be used to calculate any waiting time along the path
(i + I, ... ,j - 2) based on the value of S.

The set of intervals, denoted by { (i~ ,i'{), ... ,(i(11 , i~,) }, will have two properties:
- they are all disjoint;
- if i~ < S < i}'. for some k, then the waiting time on the path (i + 1.. .. ,j -2)

induced by this value of S is equal to ik - S + c1o where ck is a constant
associated with the interval.

What happens is basically the following. When the path (i + 1, ... ,j - I) is
extended with the arc (j-1,j) and DJ<!), the interval U} - DJ, e} - DJ) is
added to the current set of intervals. The logic behind this is that when the
departure time at vertex j is, at some time, shifted with an amount that falls
inside this interval it will induce waiting time.

There are five basic cases that have to be considered when an interval
(i~ewi~ew) is added to the current set of intervals. Composite cases can all be
handled as a sequence of the five basic ones.

Case I. k: (i~ew,i:!ew) n (i)c,i'/J = 0. This is the simplest case. The new
interval is added with c new = 0.

Case 2. k: (i~ew,i~ew) n ULi'D = (i;,ew,i~ew). The waiting time induced
when S falls inside the new interval is completely dominated by the waiting
time induced by the interval (i)oi'/J, because i); - S is larger than i:!ew - S.
Therefore, the set of intervals is not changed.

Approximation: iterative improvement

I

I
I

I
I

I
I

45

Case 3. k: (i~ew,i~ew) n uun = (iLi¼). Here, the situation is opposite
to the previous case. The waiting time induced when S falls inside the new
interval completely dominates the waiting time induced by ULiD. Therefore,
the interval UL in is replaced by (i~ew,i~ew) with Cnew = 0.

I
I I

I
I

I
I I

I I
I

Case 4. k: (i~ew,i~ew) n (iLi¼) = (iLi~ew). Here, the situation is a bit
more complicated. At first glance, there is only partial dominance. In fact, a
kind of chaining occurs. The waiting time induced when· S falls inside the new
interval is i¼ - S. Therefore, the interval (i~,i¼) is replaced by (i;,ew,i¼) with the
associated constant equal to zero.

I I
I I

I

I
I

Case 5. k: (i~ew,i~ew) n ULi¼) = (i;,ew,i¼). Here, there really is partial
dominance. When i~ ,;;; S ,;;; i~ew, it will still induce a waiting time equal to
i¼ - S, but when i~ew ,;;; S ,;;; i¼, it will induce a waiting time equal to i~ew - S
instead of i¼- S. Therefore, the interval U!c.i¼) is replaced by (iLi~ew) with the
associated constant equal to i¼-i~ew, and a new interval (i~ew,i~ew) is added
with associated constant equal to zero.

46

I
I

I
I

Chapter 6

The battle is now nearly won. One small problem remains to be solved. An
interval U) - D1,e) - D1) is created on the basis of the departure time. As
soon as waiting time occurs at vertex j - I, it has to be absorbed in all the
intervals. This means that both the lower and the upper ends of the intervals
have to be increased with an amount equal to this waiting time.

To analyze the complexity of the 2-exchange procedure for the TSP with
multiple time windows, let us drop the assumption that there are at most two
time windows at each vertex. Let us assume instead that there are at most k
time windows at each vertex, for a fixed k. Now, when the path (i + l, ... ,j -1)
is expanded with the arc (j -1,j), there are at most k -1 intervals that have to
be compared with the current set of intervals. The worst that can happen is
that each interval leads to the creation of a new interval (Case 1 or Case 5),
and the cardinality of the current set of intervals increases by exactly k - 1.
Overall this leads to a worst case of O(kn) intervals. With data structures like
balanced trees, it is possible to determine the waiting time and perform an
update of the current set of intervals in O(logkn) time. This leads to an overall
worst case time complexity for testing 2-optimality of O ((kn)2logkn).

Or-exchanges. The introduction of multiple windows at vertices does not lead
to a worse time complexity for the Or-exchanges. We encounter the same type
of problems, but controlling them is easier because there are no path reversals.

Let us, for the sake of completeness, review the global variables used in the
single window case:
S +: possible forward shift in time of the departure time at j + 1 causing no

violations of the time window constraints on the path (j + l, ... ,i -1);
s-: possible backward shift in time at vertex i + 1 causing no additional

waiting time on the path (i + l, ... ,j);
G: gain made by going directly from i -1 to i + 1:

G := A;+ 1 - (D;-1 + t;-1,;+i);

L: loss L incurred by going from j through i to j + 1:

L := max{D1 +tJi,e;}+t;,1+1 -AJ+I;

W: waiting time on the path (j + I, ... ,i -1):

W := ~ Wk.
j+l<;;k<;;i-1

Approximation: iterative improvement 4 7

During the backward search (in the single window case) an exchange is
feasible and profitable if

L < min { S +, G + W},

and the variables are updated by

S+ ~ min{/J+I -DJ+I, S+} + WJ+I;

w ~ w+ wJ+I·

As in the case of the 2-exchanges, we have to modify the updates for the
possible forward shift and the waiting time. In the 2-exchanges, the waiting
time on the path (i + l, ... ,j -2) created a problem because of its global nature.
Here, because the ordering on the path (j + 1, ... , i - 1) remains the same, the
waiting time can be controlled using only local information.

To see this, let us first take a closer look at the updates that have to be per
formed when the path (j + 1, ... ,i -1) is expanded with the link (j + 1,j +2).
The test for feasibility and profitability is

L < min{S+, G + W}.

Now, the same test in the next iteration, when expressed in the current quanti
ties, looks as follows:

L < min{(ming+l - DJ+I, s+} + ~+1), G + (W + WJ+i)}.

We can rewrite this as

or

L < min {Ii+ 1 - D1 + 1, min { S + , G + W}} + ~ + 1.

This reveals the fact that in actual implementations we will not use the two
global variable S + and W, which is conceptually simpler, but just one. We call
this one global variable the possible profit P, which is equal to
min{ S +, G + W}. Whereas up to now, initialization has been trivial, here it is
different. P is initialized by

P ~ ming_! - D;-1, A;+1 - (D;-1 +t;-1,i+1)} + W;-1,

and updated by

P ~ min{/1+1 - DJ+I, P} + W1+1•

Similarly to what we have seen with the 2-exchanges, we have to modify this
slightly in the presence of multiple windows to

{
l)+1 - DJ+I if l)+1 - DJ+I < P < eJ - DJ,

p~ . { 2 h . mm P, IJ+I - D1+i} ot erw1se.

During the forward search (in the single window case) an exchange is feasi
ble and profitable if

48

L < min{S-, G}

and the possible backward shift is updated by

s- ~ min{DJ - eJ, s-}.

Chapter 6

In the multiple window case we have to be more careful. When
eJ < DJ <!},the two intervals (DJ-e),DJ-l)) and (DJ-eJ,DJ) will not lead
to waiting time if L falls in one of them, whereas the interval (DJ-l),DJ-eJ)
will lead to waiting time if L falls in it. Fortunately, we do not have to main
tain a set of intervals, like we had to do for the 2-exchanges, because we can
use the gain G to choose the appropriate interval at once. If DJ - G > 1), the
update of s- is given by DJ - eJ. If DJ - G..;; 1), then it is given by DJ - e).

6.5. The traveling salesman problem with mixed collections and deliveries
The following quantities will be helpful for the description of the algorithm.
Given a feasible tour (0, l, ... ,n,n + I), we define

C(r,s) : = ~kE(r ,s),kEfqk, D(r,s) : = ~kE(r, ... ,s),kE~ qk.

A tour is feasible if and only if

0 ..;; C(0,k)- D(0,k) ..;; Q fork = 0, ... ,n + l.
An important variant of the TSP with mixed collections and deliveries arises
when it is required that all load to be delivered has to be collected at vertex 0,
and all load to be collected has to be delivered at vertex n + 1. In that case a
route is feasible if and only if

C(0,k)- D(0,k) ..;; Q fork = O, ... ,n + l.

2-Exchanges. Consider the 2-exchange where the arcs (i,i + l) and (j,j + 1) are
replaced by the arcs (i,j) and (i + I,j + 1). In the following, a quantity with
superscript 'new' indicates the value after the exchange has been carried out,
and arguments always refer to the ordering of the current tour. If the
exchange would be carried out, the quantities that determine feasibility can be
expressed in terms of the quantities of the current tour as follows:

cnew(0,k) = C(0,k)
Dnew(0,k) = D(0,k)
cnew(0,k) = C(0,i) + C(k,j)
Dnew(0,k) = D(0,i) + D(k,j)

The exchange is feasible if and only if

for 0..;;k ..;;;, j + I..;;k ..;;n + I,
for 0..;;k ..;;;, j + I ..;;k ..;;n + I,
for i + I ..;;k ..;;J,
for i + I ..;;k ..;;j.

0..;; C(0,i)- D(0,i) + minkE{i+l, ... ,J){C(k,J)- D(k,J)},

C(0,i)- D(0,i) + maxkE{i+I, ... ,J){C(k,J)- D(k,J)}..;; Q.

If we introduce global variables for C(0,i) - D(0,i),
minkE {i + 1, ••• ,J) { C (k,j) - D (k,j)} and maxkE {i + 1, ... ,J) { C (k,j) - D (k,j)},

Approximation: iterative improvement 49

checking the feasibility of an exchange reduces to two additions and two com
parisons, which take constant time. The lexicographic search strategy allows us
to maintain the global variables efficiently, i.e., to update them for each new
value of j in constant time.

Or-exchanges. Consider the backward Or-exchange, where the path (i 1, ... ,i 2) is
relocated backward between j and j + 1. We find that

cnew(0,k) = C(0,k)
Dnew(0,k) = D(O,k)
cnew(0,k) = C(0,k) + C(i 1,i 2)
Dnew(0,k) = D(O,k) + D(i1,i2)
cnew(0,k) = C(0,k) - C(j + l,i 1 -1)
Dnew(0,k) = D(0,k)-D(j+l,i1-l)

for Q:e;;;k:e;;;J, i2+1:e;;;k:e;;;n +I,
for O:e;;;k:e;;;J, i 2 + 1 :e;;;k:e;;;n + 1,
forj+I:s;;;k:s;;;i 1-1,
for j + 1 :,;;; k :,;;; i 1 - 1,
fori 1:s;;;k:s;;;i2,
for i 1 :s;;;k:s;;;i2,

The exchange is feasible if and only if

0:,;;; minkEU+I, ... ,; 1-q{C(0,k) - D(0,k)} + C(i1,i2)- D(i1,i2),

maxkEU+I, ... ,; 1-q{C(0,k)- D(O,k)} + C(i1,i2)- D(i 1,i2):,;;; Q,

0 :,;;; minkE(i 1, ... ,i,J { C(O,k) - D(0,k)} - C(j + 1,i 1 -1) + D(j + 1,i 1 -1),

maxkE(i 1, ... ,i,) { C(0,k) - D(0,k)} - C(j + 1,i 1 -1) + D(j + 1,i 1 -1) :s;;; Q.

We rewrite this as

D(i1,i2)- C(i1,i2):,;;; minkEU+l, ... ,; 1 -l){C(0,k)- D(0,k)},

C(i1,i2)- D(i 1,i2):,;;; Q - maxkEU+l, .. .,; 1--l){C(0,k)- D(0,k)},

C(j + 1,i 1 -1) - D(j + 1,i 1 - 1) :s;;; minkEfii, ... ,i,J { C(0,k) - D(0,k)},

D(j + 1,i 1 -1) - C(j + 1,i 1 - 1) :s;;; Q - maxkE{i 1 ... ,;,J { C(0,k) - D(O,k)}.

We have now accomplished our goal: we can introduce global variables for
D(i 1,i2)- C(i 1,i 2), minkE{ii, .. ,;,J{C(0,k)- D(0,k)} and
maxkE{ii, ,;,J { C(0,k) - D(0,k)} that can be maintained efficiently in the outer
loop and global variables for C(j+l,i 1-1)-D(j+l,i 1-1),
minkE{j+l, ... ,; 1-l){C(0,k)- D(0,k)} and maxkE{j+l, ... ,i 1 -l){C(0,k)- D(O,k)}
that can be maintained efficiently in the inner loop.

Consider the forward Or-exchange, where the path (i 1 , ... ,i 2) is relocated for
ward between j and j + 1. Analogously to the backward Or-exchange, we find
that

cnew(0,k) = C(0,k)
Dnew(0,k) = D(O,k)
cnew(0,k) = C(O,k)- C(i 1,i 2)
Dnew(0,k) = D(O,k) - D(i 1,i2)
cnew(0,k) = C(0,k) + C(iz + 1,j)
Dnew(0,k) = D(O,k) + D(i2 + 1,j)

for O:e;;;k:e;;;i 1 -1, j + 1:e;;;k:e;;;n + 1,
for O:e;;;k:e;;;i 1 -1, j + 1:e;;;k:e;;;n + 1,
for i 2 + 1 :e;;;k :e;;;J,
for i 2 + I:e;;;k:e;;;J,
for i 1 :s;;; k :e;;; i 2,
fori 1:s;;;k:s;;;iz.

50

The exchange is feasible if and only if

0,;;;; minkE(i,+l, .. .,JJ{C(O,k)- D(O,k)} - C(i1,i2) + D(i1,i2),

maxkE{i,+l, .. .JJ { C(O,k) - D(O,k)} C(i 1 ,i2) + D(i 1 ,i2) ,;;;; Q,

0 ,;;;; minkE(i,, ... ,i,J { C(O,k) - D(O,k)} + C(i 2 + l,j) - D(i 2 + 1,j),

maxkE{i, ... ,i,J { C(O,k) - D(O,k)} + C(i 2 + I,j) - D(i2 + I,j) ,;;;; Q.

We rewrite this as

C(i1,i2) - D(i1,i2),;;;; minkE{i,+1, ... ,JJ{C(O,k)- D(O,k)},

D(i1,i2)- C(i1,i2),;;;; Q maxkEfi,+1. .. .,J){C(O,k)- D(O,k)},

D(i2 + I,j) - C(i2 + I,j) ,;;;; minkE{i, .. .i,J { C(O,k) D(O,k)},

C(i2+I,J)-D(i2+I,j),;;;; Q-maxkE{i,, ,;,J{C(O,k)-D(O,k)}.

Chapter 6

As in the backward case, we can now easily define global variables that can be
efficiently maintained in both loops.

6.6. The traveling salesman problem with precedence constraints
The single-vehicle dial-a-ride problem, where a single vehicle has to pickup and
deliver n customers, is an example of the TSP with precedence constraints.
Each customer has a pickup and delivery location and the pickup must pre
cede the delivery. Psaraftis [1983] shows that the k-exchange improvement
methods can be modified to handle these restrictions. By a straightforward
choice of the set of global variables, the lexicographic search strategy produces
the same result.

To describe the precedence relations, we attach a label to each vertex con
taining the following information:

Ju if vertex v must precede vertex u,
prec (v) : = - u if vertex u must precede vertex v, l O if vertex v has no precedence relation with other vertices.

Feasibility checking can now be accomplished by a simple marking mechanism
based on these labels and an appropriate set of global variables. In the follow
ing, when we refer to a 'successor' or 'predecessor' of a vertex, we will always
mean its uniquely defined precedence-related successor or precedence-related
predecessor, and not a successor or predecessor determined by the current ord
ering of the tour.

2-E.xchanges; A 2-exchange is feasible if and only if there 1s no pall' of
precedence-related vertices on the path (i + 1, ... ,)):

v E(i + 1, ... ,j) ⇒ lprec(v) I f.t(i + 1, ... ,)).

We associate a global variable mark (v) with each vertex v EV, as follows:

Approximation: iterative improvement 51

{
l if prec(v)>0 I\ jprec(v) I E(i + I, ... ,j -1),

mark (v) : = 0 otherwise.

With these global variables, the feasibility of exchanges can be checked in con
stant time. Whenever we try to expand the path (i + l, ... ,j -1) with the arc
(j -1,j) and mark(})= I, vertex j has a predecessor that is already on the
path, which implies that expansion of the path will result in infeasible
exchanges. What remains is to show that we can maintain these global vari
ables efficiently. Again, the lexicographic search strategy provides a simple way
to accomplish this. In the inner loop, whenever we expand the path
(i + l, ... ,j -1) with the arc (j -1,j), we test if vertex j has a successor, and if
so we set the variable associated with this successor to 1:
- If prec(j)>0, then mark(prec(j)) - 1.
Now note that if the inner loop is terminated because a marked vertex is
encountered, it is very well possible that there are other marked vertices on the
path (j + 1, ... ,n). Fortunately, we do not have to reset all marked vertices on
the path (j + l, ... ,n) but just the successor, if any, of vertex i, because this is
the only global variable that is no longer valid. This introduces one additional
action in the outer loop:
- Ifprec(i)>0, then mark(prec(i)) - 0.

Or-exchanges. A backward Or-exchange is feasible if and only if there is no
pair of precedence-related vertices with one of them on the path (i 1, ... ,i 2) and
the other on the path (j + l, ... ,i 1 -1):

vE(i 1, ... ,i2) ⇒ jprec(v)I El(j+l, ... ,i 1-1).

We associate a global variable mark(v) with each vertex v EV:

JI if prec (v)>0 /\ prec (v) E(i 1 , ... ,i 2),

mark (v) : = l O otherwise.

Whenever we try to expand the path (j + 1, ... ,i 1 -1) with the arc (j,j + 1) and
mark(j)=I, its successor is on the path (i 1, ... ,i 2), thus implying that expan-
sion will only result in infeasible exchanges. For the backward Or-exchanges
the actual marking and resetting can both be controlled in the outer loop:
- If mark(i i)<O, then mark(jprec(i i) I) - 1.
- If mark(i 2 +1)<0, then mark(jprec(i 2 +1)1)- 0.

A forward Or-exchange is feasible if and only if there is no pair of
precedence-related vertices with one of them on the path (i 1 , ... ,i 2) and the
other on the path (i 2 + 1, ... ,j):

vE(i 1, ... ,i 2) ⇒ jprec(v)I El:(i 2+1, ... ,J).

We associate a global variable mark(v) with each vertex vEV:

mark(v) · = . {
1 if prec (v)<0 /\ jprec (v) I E(i 1 , ... ,i 2),

· 0 otherwise.

52 Chapter 6

Whenever we try to expand the path (i 2 + 1, ... ,j) with the arc (j,j + 1) and ver
tex j + 1 is marked, its predecessor is on the path (i 1 , ... ,i 2), thus implying that
expansion will only result in infeasible exchanges. The actual marking and
resetting of global variables is performed in the outer loop:
- If mark(i 2)>0, then mark(prec(i 2)) (--- 1.
- If mark(i 1 -1)>0, then mark(prec(i 1 -1)) (- 0.

6.7. The traveling salesman problem with fixed paths
In many applications of the k-exchange improvement algorithms in vehicle
routing, and especially in interactive planning situations, it is useful to be able
to specify parts of the tour that may not be separated. One way of doing this
is attaching a label to each vertex in the following way:

. {1 if vertex v may not be separated from its predecessor,
lznk (v) : = 0 otherwise.

If we try to modify the k-exchange methods to handle the fixed path restric
tions, we find ourselves in the unique situation where we do not need global
variables at all. Feasibility can be checked as follows.

2-Exchange. A 2-exchange is feasible if and only if

link(i + 1) = 0 /\link(/+ 1) = 0.

Or-exchange. An Or-exchange, backward and forward, is feasible if and only
if

link(ii) = 0 I\ link(i 2 +I) = 0 I\ link(j+1) = 0.

6.8. The vehicle routing problem
After showing how various side constraints can be handled in iterative
improvement methods for the TSP, we now turn to the VRP. We will describe
three k-exchange neighborhoods for the VRP, that relocate customers between
two routes. The neighborhoods are chosen such that testing for optimality over
the neighborhood requires O(n 2) time. As we are dealing with two routes, we
will sometimes refer to the route that currently contains the customers we want
to relocate as the origin route and the other as the destination route. In addi
tion, for presentational convenience, we will only describe relocations of single
customers. It is straightforward to extend the presented techniques to the case
where paths are relocated instead of single customers. Also, we will only
describe modifications that are necessary to be able to test time window and
capacity constraints, because handling precedence constraints is trivial.

As the neighborhoods can be completely described in terms of the substitu
tions that are considered, we will use the following notation to describe a
neighborhood:

Approximation: iterative improvement

{ set of links to be removed -
from the current routes}

{ set of links to replace the
removed links}.

53

Furthermore, a vertex i will always refer to a vertex from the origin route and
pre; and sue; will denote its predecessor and successor, and a vertex j will
always refer to a vertex from the destination route and pre1 and suc1 will
denote its predecessor and successor.

The discussion below will focus on the feasibility aspects. With respect to
profitability, all procedures apply the same scheme: consider all feasible
exchanges and carry out the most profitable one, if any.

Relocate: { (pre;,i),(i,suc;),(j,suc1)} { (pre;,suc;),(j,i),(i,suc1)}
Relocate tries to insert a vertex from one route into another. A relocation is
pictured in Figure 8.

Figure 8. The relocate neighborhood.

It is obvious that infeasibility can only occur at the destination route. The
feasibility tests that have to be performed are similar to those described for the
insertion method to construct an initial feasible tour.

Exchange: { (pre;,i),(i,suc;),(pre1,j),(j,suc1)} { (pre;,j),(j,suc;),(pre1, i),(i,suc1)}
A slight modification of the previously described relocate-neighborhood leads
to what we will call the exchange-neighborhood. Here we look simultaneously
at two customers from different routes and try to insert them into the other
routes. An exchange is pictured in Figure 9.

pre,

Figure 9. The exchange neigborhood.

The feasibility tests for the time window constraints are the same as for the

54 Chapter 6

relocation, but the feasibility tests for the capacity constraints have to be
modified to take into account that load has been, or will be removed, from the
route where an insertion will be made. If the customer that is removed is a
delivery it only affects the part of the route before this customer, if it is a col
lection it only affects the part of the route after this customer. This results in
the following feasibility tests:
- if i,JE~, then q1 ~ Lp--,.e, + q; and q; ~ Lp-,e1 + q1;
- if i E~ 1 j EI', then q1 ~ Ls;,c, and q; ~ Lp-,e, ;

·f · r · A h ,;:: L- d & L+ · - l IE 1 J E1.1, t en qi --, pre, an q; __, sue,,
- if i,j E f, then q1 ~ L/,e, + q; and q; ~ Lp~e, + q1 .

Cross: { (i,suc;),(j,suc1)} { (i,suci),(j,suc;)}
Cross tries to remove crossing links and turns out to be very powerful. As a
special case, if the constraints allow it, it can combine two routes into one. A
cross-change is pictured in Figure 10.

Figure 10. The cross neighborhood.

After fixing a link (i,suc;) in route r 1, the algorithm will check every link of
route r 2 for a feasible and profitable cross-change. For a cross-change the
feasibility checks are slightly more complicated than for the other neighbor
hoods we discussed. Notice that if a cross-change is actually performed, the
last part of either route will become the last part of the other. Checking the
time window constraints is rather easy and involves the two tests:

As to capacity constraints, let us restate the criterion for a route to be feasible
with respect to these constraints:

maxo,;;;k,;;;n+1{~k+1,;;;t,;;;n+l,tC't:31 + ~o,;;;t,;;;k.!Ffqi} ~ Q,.

The first summation is the amount of load in the vehicle at the departure at
vertex i that is still to be delivered. The second summation is the amount of
load in the vehicle at the departure at i that has already been collected. An
analysis of the routes that result if a cross-exchange is performed with respect
to the feasibility condition stated above reveals how we can test feasibility

Conclusion 55

efficiently. Because of the symmetry, we will consider only one of the resulting
routes: (O, ... ,i,suc1, ... ,n + 1). In addition it is useful to split the analysis in two
parts.

Part 1: (O, ... ,i)

Q - max0,s,;k.;;;{2: . q1 + 2: qi} ~ 0 ⇒ r, IE(k + l, ... ,1,suc,, .. ,n + I), /Et,, /E(O, ... ,k), iEf

Part 2: (suc1, ... ,n + 1)

Q,,-maxsuc.,s,;k<;;;n+J{2: q,+2: . q,}~O ⇒
J /r=_(k + l, ... ,n + I). IE!:,. IE(0, ... ,1,suc,, ... ,k), fof

Q,., - maxsuc),s,;;k ,s,;;n + I {2:,E(k + 1, ... ,/J + I), IE!:,. qi+ 2:IE(O, ... ,j,suc,, .. ,k), fr.fq,} +

2: . qi - 2: . q, + Q,., - Qr, ~ 0 =>
IE(0,. .. ,1), IEf iE{O, ... ,;), /Ef

L_-:;,,. + Q,. 1 - Qr, ~ 2: . q, - 2: · q,
I • IE(O, ... ,;), IEf /r=_(0, ... ,1), /Ef

If the values of L; and L;; are stored for each v E V and a lexicographic
search strategy is used, feasibility testing requires in constant time because the
right-hand side differences can be updated by one addition or subtraction at
each iteration.

The above described local search methods can easily be extended to larger
neighborhoods by the introduction of paths instead of vertices. The paths
have to be checked but that involves only local information. Figure 11 illus
trates some possible extensions.

7. CONCLUSION

If one conclusion emerges from Part I, it is that the development of efficient
methods that are capable of solving large-scale routing problems subject to
real-life constraints is no longer a neglected research area.

A striking example is the set partitioning approach, which appears to be
particularly efficient for strongly constrained problems. The continuous relaxa
tion of the set partitioning formulation can be solved by the use of a column
generation scheme and provides for better bounds than the relaxation of other
formulations. Dynamic programming turns out to be a powerful tool to gen
erate columns. This family of algorithms is well designed to produce approxi
mate solutions to large problems. Optimization algorithms of this type are
being used for school bus scheduling.

The construction and iterative improvement algorithms that have received so
much attention in the context of the TSP and the VRP have now been

56 Chapter 7

Figure 11. Extensions to the various neighborhoods.

extended to incorporate time windows and other constraints, such as pre
cedence constraints and mixed collections and deliveries. These types of algo
rithms are all familiar, but their modification to handle practical problems is
nontrivial. Although the worst-case performance of these methods is very bad
[Solomon 1986], they have been successfully incorporated in distribution
management software, as we will see in Part II.

57

PART II: INTERACTION

8. INTRODUCTION

This part of the book will be devoted to decision support systems. We will con
centrate on systems that are designed to support decision making in practical
planning situations through man-machine interaction. Hence, we will often use
the more specific term interactive planning systems. In Keen's terminology
[Keen, 1986], they would probably be named extended decision support sys
tems, as the use of quantitative techniques is as vital as the role of human
insight.

For us, DSS represents a novel approach towards the practice of operations
research, which has been made possible by advances in information technol
ogy. While the mathematics of operations research is a normative occupation
which intends to develop a theory of models and algorithms, practical opera
tions research is an empirical activity in which formal tools are applied to
actual problem situations in a heuristic fashion. This is in particular true for
DSS.

Part II is organized as follows. Chapter 9 discusses some general concepts
and addresses the questions 'What should an interactive planning system look
like and how should it behave?' and, perhaps even more importantly, 'Why
should it do so?'. Chapters 10, 11 and 12 describe CAR, an interactive system
for computer aided routing. This will illustrate the concepts discussed in
Chapter 9.

9. INTERACTIVE PLANNING SYSTEMS

We will use the term interactive planning system (IPS) to indicate a system that
provides support with planning activities by the integration of human percep
tion and mechanical algorithmics in an interactive environment. The purpose
of the system is to improve the quality of decision making in terms

58 Chapter 9

of effectivity and efficiency.
In what follows, we first review the process of planning, the role of models,

and the need for interaction. We next specify a number of desirable functional
requirements of an IPS. We then elaborate on the concept of man-machine
interaction, and finally discuss its realization in the form of a graphical user
interface.

9.1. Planning
Depending upon the tasks of a unit and its level within an organization, it will
have different sets of short-term and long-term goals. Depending upon its size,
an organization will have more or less formalized planning procedures to
define these goals in the best interest of the organization as a whole and to
translate these into a plan for the activities of each unit. Planning is a never
ending activity. A plan is usually a revised and extended version of a previous
plan. The final stage of a planning process is the decision to adopt a certain
plan. In the preceding stages, many plans may have been generated, evaluated,
compared and rejected. It is a challenging task to develop and implement sys
tems that support this process.

Before starting our discussion of interactive planning systems, we must con
sider the characteristics of the user we have in mind and the nature of the
problems he has to solve. We assume that the user is a trained professional,
knowledgeable about his subject area but not necessarily familiar with the
techniques of operations research and computer science. The planning situa
tion he is facing is complex in at least two respects. First, the objectives and
constraints are numerous and difficult to quantify. That is, it is impossible to
construct a model that precisely captures the real-life situation. Secondly, the
process required to achieve an acceptable plan cannot be completely specified
in advance. Even after the plan has been developed, it may be difficult to say
which of the steps taken were directly relevant to the construction of the final
plan.

Each generation of users is confronted with a variety of approaches that
claim to facilitate their task, each with its own acronym. Before DSS and IPS,
we had - and we still have - MIS and OR.

The aim of management information systems is to improve the quality of
information in terms of accuracy and timeliness. The emphasis is on registra
tion of data in the broad sense of the word: their collection, storage, retrieval,
and presentation.

The aim of operations research is to improve the quality of decisions. The
emphasis is on planning on the basis of models of decision situations and algo
rithms that evaluate tentative decisions and generate reasonable decisions.

9.2. Models
A model is an abstract description of a decision situation which relates possi
ble decisions to their quality. In a model, decisions and their quality are
specified in terms of variables and relations between them. It is illuminating to
distinguish two classes of models.

Interactive planning systems 59

In the first class, the model is designed to evaluate decisions. Thus, a tenta
tive decision is input and its quality is output. Simulation models are examples
of this approach. Such models are usually defined as computer programs. The
user fully governs the search for a good decision, and several decisions may be
tried before one is adopted.

In the second class, the model is designed to generate decisions. Thus, a
desired quality is input and a decision is output. Linear programming is the
prime example of this approach. Quality is here a multidimensional notion,
stipulating feasibility on a number of dimensions and optimality on another
one. In case the linear programming paradigm does not suffice and one of its
many extensions - integer, nonlinear or stochastic programming - is called
upon, optimization may be too time consuming and approximation algorithms
are used.

With evaluative models, different kinds of 'what if' questions can be
answered. First, the situation is fixed and the consequences of different deci
sions are studied. Secondly, the decision is fixed and its consequences in
different situations are studied. With generative models, decisions for a variety
of decision situations and quality requirements can be obtained and analyzed.

9.3. Decision making vs. decision support
The prototypical OR approach is oriented towards decision making: 'Give me
the problem, then I will give the optimal solution.' This simplistic attitude does
not match the complexity of many planning situations. If a single model is
chosen to represent such a situation, its solution - mathematically correct or
not - may be unusable in practice. This is because no model, no matter how
elaborate, can ever be a perfect representation of reality.

It is often prudent to use a variety of models. Each of these is a picture of
the actual situation, but different aspects are emphasized or ignored. Moreover,
it is not always known a priori what constitutes a good decision, because the
decision maker does not fully specify his tolerances and priorities.

Quantitative techniques cannot substitute the human decision maker, but the
reverse of this statement is also true. Instead of lamenting the limitations of
either, one should profit from combining the strong points of both: the insight
and experience of the planner, and the power and precision of the algorithms.
This is what IPS is all about. An IPS aims at decision support rather than deci
sion making. It focuses on helping users prepare decisions.

This point of view has some consequences for the realization of an IPS. At
the algorithmic side, it must be equipped with evaluative as well as generative
models to enable the planner to produce and judge alternative decisions. As to
the interaction, it must be able to manipulate massive amounts of data in real
time. It is in this sense that IPS merges OR and MIS.

In accordance with the above, we define the following design goals for the
development of an IPS:
(I) combine the use of operations research models and methods with advanced
data access and retrieval functions;
(2) focus on features which make the system easy to use, such as interactivity,

60 Chapter 9

computer graphics, and error prevention;
(3) strive for flexibility and adaptability in order to accommodate changes in
the decision situation, the interactive environment, and the planning approach.

9.4. Functional requirements
These design goals lead in tum to a number of functional requirements for an
IPS.

1. Functional flexibility. On the one hand, the system should enable the planner
to define and modify a plan. It is then used as an automatic scratch pad, which
supports the traditional manual planning in a modem way. It provides facili
ties for the storage, retrieval and display of data of problem situations and
decisions; in this respect, it resembles an MIS. It is also able to evaluate the
quality of a given plan. The system acts as an assistant to the planner.

On the other hand, the system should be able to construct a complete plan
and to modify an existing plan by itself. It has now the role of an automatic
pilot. In addition to the registrative and evaluative facilities, it provides the
means to generate a plan of a given quality. The system acts as an advisor to
the planner.

The roles of assistant and advisor are the extremes of a broad spectrum and
there is much inbetween. When the user constructs a plan by hand, he may do
so on the basis of suggestions provided by the system at various points. When
he completes a plan in this way, he may ask the system for possible improve
ments. Alternatively, he may construct a partial plan and leave it to the system
to complete it; the result can then serve as the starting point for manual
modifications. The number of possibilities is virtually unlimited, and it
depends on the entire context which style of planning is employed most fre
quently. Even if the system does not go beyond the role of assistant, it is
already a useful tool for planners. It is always the user who is in charge, even
if the system functions as advisor.

2. Ease of use. If the system is easy to use or 'user friendly', the planner can
concentrate on solving the problem at hand. This is a hard job under any cir
cumstances, and a system perceived as difficult to operate may go unused even
though of potential value. Features that contribute to ease of use are the fol
lowing:

(a) Simplicity. Features that are not simple to understand will not be used. It
is often difficult for the software engineer to detect troublesome aspects of his
design. These aspects do become apparent, however, when the functional
description is written. They can be avoided by completing this document
before implementing the system or at least by having feedback from
specification to implementation. Anything that is difficult to explain will
almost certainly be difficult to use.

(b) Consistency. A consistent system is one that behaves in a generally
predictable manner. Function names and calling sequences, graphical represen
tations and colors, all these should follow simple and similar patterns without

Interactive planning systems 61

exceptions. The user is then able to build a conceptual model of how the sys
tem reacts; in new situations, he can apply his knowledge with a good chance
that it will work. Again, inconsistencies often show up when the functional
description is written.

(c) Completeness and conciseness. The system must contain a complete and
concise set of functions that allow the user to handle his problem effectively.
There should be no irritating omissions or redundancies. The strength of the
system lies in the coherence of the functions, not in their number.

3. Robustness. Users are capable of an extraordinary misuse of the system,
either through misunderstanding or for enjoyment. The ,system should accept
such treatment with a minimum of complaint. When the user does something
unexpected, the system reports the error in the most helpful manner possible.
Only in extreme circumstances errors cause termination of execution, as this
generally results in the loss of valuable information.

9.5. Interaction
Until now, we have discussed the issue of man-machine interaction in fairly
broad terms. We will be more specific in this section.

In the last decade we have witnessed extraordinary advances in information
technology, which have resulted in enormous increases in processing power
and graphics capabilities. There is now an alternative to batch processing and
centralized operations. Due to the practicality to perform intricate computa
tions in real time and to display data and results in an informative way, it is a
feasible idea to involve humans throughout the planning process.

Interaction is possible, but why is it desirable? The brief answer is that plan
ning problems tend to be both hard and soft.

Most practical planning problems are, in any reasonable abstraction, NP
hard. This implies that these problem types are probably inherently intractable
in a well defined sense [Garey & Johnson 1979]. For practical purposes, it indi
cates that the solution of realistic problem instances to optimality may require
an inordinate computational effort. We have to resort to approximation algo
rithms, that deliver acceptable solutions within an acceptable amount of time.
It is just one step further to embed such algorithms in a heuristic setting. The
solution is then found by means of a trial-and-error procedure, in which man
and machine divide the tasks in accordance with their respective capabilities.
In interactive optimization [Fisher 1986], the user controls the solution process
by setting initial parameters, selecting algorithms, and adjusting solutions.
Jones [1987] introduces the term grey box for this type of optimization: the
traditional single black box is replaced by a network of black boxes with user
intervention required whenever one of them completes execution. In this way,
the human planner guides the computer towards promising parts of the solu
tion space.

Another aspect of real-life problem solving is that the notions of feasibility
and optimality are not as precise as in mathematics. Most planning problems
contain subjective elements that are difficult to quantify. Feasibility

62 Chapter 9

requirements may be soft rather than strict, and tradeoffs between optimality
criteria are often not explicitly known but carried implicitly in the value judge
ment of the decision maker. Interaction is one way of coping with this aspect
[Fisher 1986]. While the planner constructs (or modifies, or extends) a plan, he
may override constraints; the system should warn him as soon as violation
occurs, but it is the planner who determines feasibility. Similarly, the planner
decides about the comparative evaluation of the objectives. He has full control
and responsibility.

As a consequence, interaction adds to effectivity, efficiency, and acceptabil
ity. First, the cooperation between man and machine leads to better solutions.
The machine cannot be beaten in solving well-defined detailed problems. The
human planner is superior in guiding the overall solution process, in recogniz
ing global patterns, and in observing all kinds of ad hoc constraints. Secondly,
these better solutions are obtained faster, because interaction allows for flexi
bility in manipulating data and in selecting alternatives. Finally, an interactive
system is more readily accepted. The human planner is not replaced but gets a
versatile tool.

9.6. User interface
Now that we have indicated why interaction is a desirable feature of the plan
ning process, we discuss in general terms how interaction has to take place.

The user interface is the part of the system that provides the means for com
munication between man and machine. It essentially consists of two languages
[Bennett 1983]. The first one is the presentation language, which is employed by
the machine and understood by the user; it expresses what the user sees or
senses as context for interaction. The second one is the action language,
employed by the user and understood by the machine; it expresses what the
user can do in order to change the context in a way which will help him to
meet his goals. By 'language' we mean the collection of patterns of signs and
symbols which one participant in the interaction (man or machine) is allowed
to use in presenting information to the other participant.

An IPS should be able to present problem instances and solutions in a
meaningful way, i.e., one that permits a quick assessment and analysis of the
data being presented. The principal usefulness of computer graphics is the pos
sibility to provide different, and perhaps more insightful, representations of the
same data. The use of iconic as well as representational graphics is clearly
relevant here. Iconic graphics display part of the real world, such as a road
network or a facility layout, while representational graphics display data sum
maries, such as bar charts and pie charts. Noteworthy research in this area is
Tufte's [1983] work on the visual display of quantitative information and
Jones' [1988] attempts to develop novel representations of machine schedules.
The benefit of computer graphics to decision making, however, is still a topic
of debate. DeSanctis [1984] summarizes the literature on this subject and
arrives at several propositions based on persistent trends.

The effect of a graphical user interface can even be stronger if color graphics
are used. Colors provide an easy way to distinguish between various objects.

CAR: An interactive planning system for computer aided routing 63

One should color with taste, however; an excessive use of colors may confuse
the picture.

As to the action language, we have already mentioned ease of use as a major
functional requirement of an IPS. Simplicity, consistency, completeness and
conciseness are, of course, worthy goals in the design of any computerized sys
tem. For an IPS they are especially important, and the action language is the
prime feature of the system that will reveal whether these goals have been
achieved.

All in all, an IPS should provide an interface which the user can interpret
easily and control effectively. The design of the user interface is a principal
component of the overall design process. Many guidelines have been proposed
for this purpose; the recent book by Shneiderman [1987) reviews the subject
area. At the risk of repeating ourselves, we emphasize the two central issues:
focus on a limited number of well-chosen representations and operations on
them, and provide uniformity of structure so that the user can take the interface
for granted as he concentrates on the problem he is solving.

10. CAR: AN INTERACTIVE PLANNING SYSTEM FOR COMPUTER AIDED ROUTING
CAR is an interactive software package which has been developed as a tool to
support operational distribution management. CAR enables the user to con
struct economical vehicle routes and schedules in a simple way. CAR acts as
an assistant and advisor to the planner. CAR has a supporting function; it is
the user who is in charge and who is responsible for making all the decisions.
The use of CAR can lead to savings in physical distribution costs, a faster and
simpler planning process, a more constant level of service towards the custo
mers, a lesser dependence on the quality of the human planner, and better
management information facilities.

The planning module CAR should form part of larger system. Data entry
and report generation do not belong to CAR. Managing the permanent and
temporary data bases of vehicles, addresses, distances and travel times, pro
cessing incoming orders and generating printed schedules are tasks of the
environment.

CAR was developed at the Centre for Mathematics and Computer Science
during the period I 983- I 987. Its development was financially supported by the
Stichting voor de Technische Wetenschappen and the Stichting Mathematisch
Centrum.

l 0.1. Problem type
CAR is suited for distribution problems with the following characteristics.
- There is a single depot where several vehicles, possibly with different capaci

ties, are stationed.
The commodity to be transported is homogeneous in the sense that the allo
cation of commodities to vehicles is restricted only by the vehicle capacities.
A vehicle can make several trips a day.
A vehicle has a time window that specifies its availability. (This allows one
to impose a maximum route duration.)

64 Chapter 10

- There may be both collections and deliveries. Vehicles depart from the depot
with the commodities to be delivered and eventually return to the depot
with the collected commodities. Anything collected on the way is tran
sported to the depot. Collections and deliveries may occur in any sequence
on the same trip.

- An address may impose restrictions on the capabilities of the vehicle visiting
it. For example, it may require special loading equipment.

- An address has one or more time windows within which service must take
place.

- An address can have a priority, indicating that it must be visited.
- An address is to be visited by at most one vehicle.

I 0.2. Solution method
The solution method used is based on the 'cluster first-route second' principle.
It is a two-phase approach. The first phase clusters the addresses into groups,
one for each vehicle; the second phase routes each vehicle through the
addresses assigned to it. It is not a purely algorithmic approach, but a heuristic
one, proceeding along the lines indicated in Chapter 9.

10.3. User interface and screen
As argued in Chapter 9, the user interface is an important component of an
interactive planning system. In developing CAR, we have chosen for a graphi
cal user interface. Data that are traditionally presented in alphanumerical form
can now be used to create a graphical representation. CAR provides facilities
for three types of graphical representations of the problem, oriented towards
distance, time and load. Colors are used to distinguish between clusters and
routes. For small problems this has a minor advantage, for large problems it is
a necessity. Next to these graphical representations, the user is also able to
consult the relevant part of the huge amounts of alphanumerical data.

In order to obtain a steady view of the entire screen, we have divided it into
three fixed regions, which contain a problem representation, commands, and
alphanumerical information, respectively.

The interaction is menu driven. This has the advantage that at any moment
all the feasible commands are visible, and it prevents the user from giving
infeasible commands. The commands are divided over three primary and three
secondary menus. The first primary menu (COMMUNICATION) contains com
mands that allow the user to change the problem instance and to write partial
solutions on an output file. The second one (CLUSTERING) contains com
mands that constitute the clustering phase, and the third one (ROUTING)
those that form the routing phase. The secondary menus provide the support
ing functions. The first secondary menu (INFORMATION) contains commands
to show alphanumerical information. The second one (SCREEN) contains
commands to define the contents of the problem representation region. The
user can ask for four different representations: the three graphical ones men
tioned above and a purely alphanumerical one. In the spatial representation,
he can work with separate parts of the solution by zooming in and making

CAR: An interactive planning system for computer aided routing 65

trips invisible. The third secondary menu (STORAGE) contains commands
that enable the user to temporarily store the current solution. The clustering of
commands into groups leads to an efficient use of the screen, because exactly
one primary menu and at most one secondary menu can be active at any time.

10.4. Graphical Kernel System (GKS)
GKS was used for the implementation of the user interface. It is a graphical
library for applications that generate two-dimensional pictures on vector or
raster graphic terminals.

10.5. Input
The input is read from three files address. CAR, vehicle. CAR and table. CAR, the
first two of which are specified in more detail in Table I.

Addresses
CAR requires the following data for each address:
- collection or delivery;
- identification: postal code, description (optional);
- limitations on vehicle types;
- time windows;
- address dependent (un)loading time; summing this and the order dependent

(un)loading time results in the total (un)loading time;
- number of orders;
per order:
- order number;
- priority. indicating if it must be included in the plan;
- size;
- (un)loading time.

Vehicles
The following data are required for each vehicle:
- identification;
- capabilities;
- capacity;
- availability.

Remarks
- The notions 'size of an order' and 'capacity of a vehicle' have to be further

defined in consultation with the user. They have to be expressed in the same
units.

- The 'capabilities of a vehicle' have to be further defined in consultation with
the user. They relate to address-vehicle restrictions.

- The 'availability of a vehicle' is expressed in terms of a time window. The
window also reflects the opening hours of the depot and the working period
of the driver.

66 Chapter 10

file # characters

address.CAR per address collection/ delivery
identification 40
limitations 8
time windows 4/4/4/4
(un)loading time 4
#orders 3

per order order number JO
priority
size 5/5
(un)loading time 4

vehicle.CAR per vehicle identification 9
capabilities 8
capacity 6/6
availabiiity 4/4

plan.CAR per trip vehicle identification 9
load 6/6
load factor 3/3
length 6
travel time 4
waiting time 4
#addresses 3

per address identification 16
arrival time 4
waiting time 4
departure time 4

#trips 2
average load factor 313
total length 6
total travel time 6
included addresses 4
free addresses 4

per free address identification 16

modifications

I. First all delivery addresses, then all collection addresses.
2. In order of decreasing capacities.
3. In the order in which they are visited, with the depot as the first and last address.

Table 1. Detailed specification of input and output files.

Distances, travel times, and coordinates
CAR uses distances, travel times, and coordinates. This information does not
belong to CAR and has to be provided by the user in the form of separate
tables. CAR uses the postal code as a key to these tables. Whether these tables
are compiled on the basis of a road network or in any other way is immaterial.

10.6. Output
The output is written on a file plan.CAR, which is specified 111 more detail m
Table 1.

CAR: An interactive planning system tor computer aided routing 67

Trips
CAR supplies the following data for each trip:
- identification of the vehicle allocated to the trip;
- load;
- load factor;
- length;
- travel time;
- waiting time;
- number of addresses;
per address (where the depot is included as the first and the last address in the
trip):
- identification;
- arrival time;
- waiting time;
- departure time.

Overall summary
This contains the following data:
- number of trips;
- average load factor of the used vehicles;
- total length;
- total travel time;
- identifications of the addresses that have not been included in the trips.

Input modifications
All the changes in the input data that have been made during the planning ses
sion are listed here.

Remark
All information concerning loads consists of a delivery and a collection com
ponent.

10.7. Current implementation
CAR is written in the C programming language. The user interface is imple
mented using the S-GKS graphics library. S-GKS is a full GKS implementa
tion marketed by Xelion B.V. and available on a range of hardware
configurations.

Currently, CAR is only available on IBM compatible computers with a
VGA adapter. However, it shoud be fairly easy to port it to other platforms
supported by S-GKS.

10.8. Modifications and extensions
CAR has a modular structure, which makes it easy to change existing func
tions and to add new ones.

The precise output and the alphanumerical information displayed on the
screen are defined in consultation with the user. This document describes a

68 Chapter 11

possible specification.
Extensions that could be considered are:

- multiple depots;
- collection and delivery of the same commodity during a single trip (as in

dial-a-ride systems);
- heterogeneous commodities;
- division of an order over several vehicles.

11. CAR: FUNCTIONAL DESCRIPTION

At the start of a planning session, CAR searches the environment for the files
address. CAR, vehicle. CAR, and table. CAR, which should contain all the
required input data, and processes them. If new orders arrive during a plan
ning session, they can be appended to the file address. CAR. At the end of a
planning session, CAR leaves a file plan. CAR in the environment, which con
tains data on the trips created, an overall summary, and input modifications, if
any.

CAR distinguishes two types of commands. The distinction is visualized on
the screen by the presence or absence of an exclamation point in front of the
command. Commands preceded by an exclamation point call functions that
correspond to algorithms, the results of which are generally not predictable by
the user. These are the functions that generate or modify a plan automatically.
Commands without an exclamation point have an easily predictable result.
These are the functions that allow the user to generate or modify a plan manu
ally. Figure 12 lists all available commands.

One enters all commands by choosing from menus or specifying addresses
with the mouse, light pen, or joystick, depending on the configuration. An
address is specified by indicating the associated point on the screen. If the pos
tal area corresponding to this point contains just this address, then one is
done; otherwise, CAR lists all the addresses in the area in a menu and the user
indicates the desired address.

Some commands ask for the identification of a cluster or a trip. In the spa
tial representation, a cluster or a trip is specified by indicating an address that
belongs to it. In the three other representations, a color palette is used in
which each cluster or trip has its own color.

When CAR is started, the user sees a spatial representation of the problem
and the CAR 'supermenu'. This contains five commands: COMMUNICATION,
CLUSTERING, ROUTING, RESTART, and STOP. It serves to select one of
the three primary menus, to restart the planning (without having to process the
files address.CAR and vehicle.CAR again), and to end the planning session.

11.1. COMMUNICATION
This primary menu contains the commands that enable the user to modify the
problem instance and to write partial solutions to the file plan.CAR. CAR
maintains a record of all modifications of the original data and writes these on
the file plan.CAR at the end of the planning session.

CAR: functional description

COMMUNICATION

ADD

DELETE

CHANGE

WRITE

INFORMATION

SCREEN

INFORMATION

ADDRESS

VEHICLE

CLUSTER

TRIP

PLAN

CAR

COMMUNICATION

CLUSTERING

ROUTING

RESTART

STOP

CLUSTERING

!SEEDS

!CLUSTERS

!FIXED CLUSTERS

SET SEED

ERASE SEED

DELETE ADDRESS

ADD ADDRESS

CHANGE VEHICLE

INFORMATION

SCREEN

STORAGE

SCREEN

ZOOM

FULL

(IN)VISIBLE

SEE DISTANCE

SEE TIME

SEE LOAD

SEE TEXT

ROUTING

!TRIP

!FIXED TRIPS

CREATE

!IMPROVE

!MERGE

CHANGE VEHICLE

COUPLE

DECOUPLE

DELETE ADDRESS

!ADD ADDRESS

ADD ADDRESS

RELOCATE ADDRESS

RELOCATE PATH

REVERSE PATH

FREEZE

DEFROST

INFORMATION

SCREEN

STORAGE

STORAGE

STORE

RETRIEVE

SWAP

Figure 12. Relations between menus.

69

70

ADD
effect:

DELETE
input:
effect:

CHANGE
input:
effect:

WRITE
input:
effect:

Chapter 11

Data of addresses that have been added to the file address. CAR are
processed.

Address.
The specified address is deleted from the set of addresses.

Address.
The input data of the specified address can be changed.

Trip.
The specified trip is written on plan. CAR. The addresses of this trip
an,d the vehicle allocated to it are no longer taken into considera
tion.

INFORMATION
effect:

SCREEN
effect:

The secondary menu INFORMATION is activated.

The secondary menu SCREEN is activated.

11.2. CLUSTERING
This primary menu contains the commands to generate clusters in the first
phase of the planning process. A cluster is a collection of addresses with a
vehicle that will visit them. The user can form and modify clusters manually or
ask the system to construct them automatically, as he sees fit. One can also
reenter the clustering phase from the routing phase. In that case, the existing
trips define the clusters, but the orderings that define the trips disappear.

For each cluster, there is an address which serves as a seed point around
which the cluster is grown. A seed point is marked with a circle around the
address in question, in the color of the cluster.

An address that does not belong to any cluster is called free.

!SEEDS
input:
effect:

algorithm:

Integer m.
A set of m new seed points is created on the basis of distances,
order sizes, address-vehicle restrictions, time windows, and existing
seed points. A vehicle is allocated to each new seed point, which
defines an upper bound on the total order size in the correspond
ing cluster.
See Section 5.2.

CAR: functional description 71

!CLUSTERS
effect: The free addresses are assigned to a seed point, as far as the res

trictions permit it.
algorithm: See Section 5.1.

!FIXED CLUSTERS
effect:

SET SEED
input:
effect:

When this function is called, it is assumed that no seed points
exist. CAR searches the environment for the file fixed.CAR. This
file contains a number of trips that have been earlier defined by the
user; these are now interpreted as clusters. For each of these clus
ters, its intersection with the collection of addresses is determined.
In case the intersection is nonempty, it constitutes a new cluster;
the system generates a seed point an? allocates a vehicle.

Free address; vehicle.
The specified address will serve as a seed point. The specified vehi
cle is allocated to the seed point.

ERASE SEED
input:
effect:

Seed point.
All assignments of addresses to the specified seed point are can
celed. The seed point is erased.

CHANGE VEHICLE
input:
effect:

Seed point; vehicle.
The specified vehicle is allocated to the specified seed point. This
cancels the previous allocation.

DELETE ADDRESS
input:
effect:

Address.
The assignment of the specified address is canceled.

ADD ADDRESS
input:
effect:

Free address; seed point.
The specified address is assigned to the specified seed point.

INFORMATION
effect:

SCREEN
effect:

STORAGE
effect:

The secondary menu INFORMATION is activated.

The secondary menu SCREEN is activated.

The secondary menu STORAGE is activated.

72 Chapter 11

11.3. ROUTING
This primary menu contains the commands to generate routes in the second
phase of the planning process. A route consists of one or more trips. A trip is
a collection of addresses that have been put in the order in which they have to
be visited, starting and finishing at the depot. The user can form and modify
trips manually or ask the system to do so automatically, as he sees fit.

A trip is represented on the screen by linking each pair of successive
addresses by a line segment. The depot is the only address that can occur in
more than one trip; it occurs in each trip. To avoid congestion around the
depot on the screen, we have decided to delete the line segments of which the
depot is an end point. The first address on a trip is marked with a circle
around it, in the color of the trip.

An address that does not belong to any cluster or trip is called free.
There are commands for trip optimization and trip manipulation. An impor

tant aspect of trip manipulation is the presentation: the user first sees the
effect of the action he proposes, and then decides to accept it or not. Even if
the proposed action results in an infeasible trip, acceptance is allowed.

Next to the spatial representation, the user can switch to three other
representations of a single trip: a bar chart indicating the schedule in time, a
bar chart indicating the load of the vehicle, and a complete alphanumerical
survey. These representations are secondary to the spatial one because they
relate to just a single trip. In all representations, trip optimization and manipu
lation are possible.

!TRIP
input:
effect:

note:

algorithm:

Cluster.
For the specified cluster, a short feasible trip is generated. If it
appears to be impossible to include all addresses of the cluster in a
feasible trip, the assignment of some addresses is canceled.
If the user indicates the depot, this function is carried out for all
trips. This is consistent with the fact that the depot is an address
that belongs to all trips.
See Section 5.3.

!FIXED TRIPS
effect:

CREATE
input:
effect:

When this function is called, it is assumed that no clusters exist.
CAR searches the environment for the file fixed.CAR, which con
tains a number of trips that have been earlier defined by the user.
For each of these trips, its intersection with the collection of
addresses is determined. In case the intersection is nonempty, a
new trip is defined by visiting the addresses in the intersection in
the same order as in the fixed trip; the system allocates a vehicle.

Number of addresses; (vehicle).
The user creates a trip in a stepwise fashion. If the address that is

CAR: functional description 73

!IMPROVE
input:
effect:

algorithm:
note:

!MERGE
input:
effect:

algorithm:

specified first is free, then a new cluster will be defined: a vehicle
has to be allocated to it, and only free addresses may be assigned.
If the first address does belong to a cluster, then a vehicle has
already been allocated, and only addresses belonging to this cluster
or free addresses may be assigned. The user specifies addresses in
the order in which he wants them to be visited. He removes the
last address of the partial trip by specifying the next to last
address. He completes the trip by specifying the depot, or by speci
fying the last address twice in a row. During this process the user
is informed about the feasibility of an extension and of the length,
travel time, waiting time and load of the trip created thus far.

Trip.
Optimization techniques are applied to shorten the specified trip.
Information about changes in length, travel time and waiting time
of the trip is provided.
See Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7.
If the user indicates the depot, this function is carried out for all
trips.

Two trips from different routes.
Optimization techniques are applied to shorten the specified trips
by the exchange of addresses. It is possible that both trips are
merged into one. Information about changes in length, travel time,
waiting time and load of the trip is provided.
See Section 6.8.

CHANGE VEHICLE
input:
effect:

COUPLE
input:
effect:

Trip; vehicle.
The specified vehicle is allocated to the specified trip. This cancels
the previous allocation.

Two trips.
The specified trips are concatenated. In contrast to the function
!MERGE, this function does not change the ordering of each trip.
The largest of the vehicles allocated to the original trips is allocated
to the newly created route. Information about the new departure
and arrival times at the depot for each trip is provided.

DECOUPLE
input:
effect:

Trip.
The specified trip is decoupled from possibly preceding and
succeeding trips. It becomes a separate route again.

74 Chapter 11

DELETE ADDRESS
input:
effect:

Address.
The specified address is deleted from the cluster to which it
belongs. It becomes a free address. In case the specified address
belonged to a trip, information about changes in length, travel time
and load of the trip in question is provided.

!ADD ADDRESS
input:
effect:

Free address.
The specified address is inserted at the best feasible point in one of
the existing trips. Information about changes in length, travel time
and load of the trip in question is provided. In case each insertion
is infeasible, the address remains free.

ADD ADDRESS
input:
effect:

Free address; two addresses that occur successively in a trip.
The specified free address is inserted between the two successive
addresses. Information about the feasibility of the insertion and
about changes in length, travel time and load of the trip in ques
tion is provided.

RELOCATE ADDRESS
input:

effect:

Address belonging to a trip; two addresses that occur successively
in a trip.
The first specified address is relocated between the other two. Note
that the trips from which these addresses are taken may be the
same. Information about the feasibility of the relocation and about
changes in length, travel time and load of the trips in question is
provided.

RELOCATE PATH
input:

effect:

Two addresses belonging to the same trip; two addresses that occur
successively in a trip.
The path which is specified by the first two addresses is relocated
between the other two. Note that the trips from which these
addresses are taken may be the same. Information about the feasi
bility of the relocation and about changes in length, travel time
and load of the trips in question is provided.

REVERSE PATH
input:
effect:

Two addresses belonging to the same trip.
The path specified by the two addresses is reversed. Information
about the feasibility of the reversal and about changes in length
and travel time of the trip in question is provided.

CAR: functional description 75

FREEZE
input:
effect:

DEFROST
input:
effect:

Two addresses belonging to the same trip.
The path specified by the two addresses is fixed. This means that
the path will not be changed by algorithmic commands (i.e., those
preceded by an exclamation point).

Two addresses belonging to the same trip.
The fixation of the path specified by the two addresses, caused by a
FREEZE command, is canceled.

INFORMATION
effect:

SCREEN
effect:

STORAGE
effect:

The secondary menu INFORMATIO.N is activated.

The secondary menu SCREEN is activated.

The secondary menu STORAGE is activated.

11.4. INFORMATION
This secondary menu can be activated from the primary menus COMMUNI
CATION, CLUSTERING and ROUTING. It contains commands that enable
the user to examine information about addresses, vehicles, clusters, trips, and
the overall plan. These functions will be further defined in consultation with
the user.

ADDRESS
input:
effect:

VEHICLE
input:
effect:

Address.
The following information about the specified address is provided:
- identification;
- limitations on vehicle types;
- time windows;
- (un)loading time;
- priority;
- size;
- arrival time;
- waiting time;
- departure time.

Vehicle.
The following information about the specified vehicle is provided:
- corresponding cluster or trip;
- identification;
- capabilities;

76

CLUSTER
input:
effect:

TRIP
input:
effect:

PLAN
effect:

Chapter 11

- capacity;
- availability.

Cluster.
The following information about the specified cluster is provided:
- allocated vehicle;
- load;
- load factor;
- number of addresses.

Trip.
The following information about the specified trip is provided:
- allocated vehicle;
- load;
- load factor;
- length;
- travel time;
- waiting time;
- number of addresses.

An overall summary is given:
- number of trips;
- average load factor;
- total length;
- total waiting time;
- total travel time;
- number of free addresses.
Next, a summary of each trip is given:
- load factor;
- length;
- travel time;
- waiting time.

11.5. SCREEN
This secondary menu can be activated from the primary menus COMMUNI
CATION, CLUSTERING and ROUTING. It contains commands that define
the problem representation region.

When CAR is started, the user sees a spatial representation of the problem.
In this representation, he can work with separate parts of the problem by
zooming in and by making trips invisible. Next to the spatial representation,
the user can switch to three other representations of a single trip: a bar chart
indicating the schedule in time, a bar chart indicating the load of the vehicle,
and a complete alphanumerical survey.

CAR: functional description 77

ZOOM
input:
effect:

FULL
effect:

Rectangle, specified by its lower left and upper right comers.
The contents of the rectangle form the new contents of the prob
lem representation region.

In the problem representation region, all trips are made visible in
their original sizes.

(IN)VISIBLE
input: Trip, or the depot.
effect: If a trip is specified, it is made invisible. If the depot is specified,

all trips are made visible.

SEE DISTANCE
effect:

SEE TIME
input:
effect:

SEE LOAD
input:
effect:

SEE TEXT
input:
effect:

Transition from the current problem representation to the one
oriented towards distance.

Trip.
Transition from the current problem representation of the specified
trip to the one oriented towards time.

Trip.
Transition from the current problem representation of the specified
trip to the one oriented towards load.

Trip.
Transition from the current problem representation of the specified
trip to an alphanumerical survey.

11.6. STORAGE
This secondary menu can be activated from the primary menus CLUSTERING
and ROUTING. It contains commands that enable the user to temporarily
store the current solution.

STORE
effect:

RETRIEVE
effect:

The current set of clusters or trips is stored. A set that may have
been stored before is erased.

The current set of clusters of trips is erased. The set that has been
stored before is retrieved.

Chapter 12 78

SWAP
effect: The current set of clusters or trips is exchanged with the one that

has been stored.

12. CAR: USER INTERFACE

As already indicated in Section 10.4, we used the Graphical Kernel System
(GKS) for the implementation of the color graphics user interface of CAR.
GKS is a basic graphics system for applications that produce computer gen
erated two-dimensional pictures. It supports man-machine interaction by sup
plying basic functions for graphical input and picture segmentation. In order
to enable the reader to understand the implementation issues relating to the
user interface, we start with a brief description of the principal facilities and
more important functions of GKS [Hopgood, Duce, Gallop and Sutcliffe 1983;
Sproull, Sutherland and Ullner 1985]. ·

12.1 Graphical Kernel System
Coordinate systems and transformations. In order to specify the geometry of a
graphical primitive, GKS measures its location relative to a cartesian coordi
nate system. GKS uses three two-dimensional coordinate systems at various
stages in the control of graphical input and output:
(1) The world coordinate system (WC) is used by an application program to

specify the location and size of the graphical object to be drawn; it may be
freely chosen by the application program.

(2) The normalized device coordinate system (NDC) acts like a device indepen
dent display surface. The size of this region is limited; only objects lying in
the region O,;:;:;x,;:;:; 1 and O,;:;;_,v,;;;; 1 can be displayed.

(3) The device coordinate system (DC) measures physical locations on a works-
tation display surface.

There are always two active coordinate transformations establishing mappings
between these systems:
(I) One of several normalization transformations, which convert world coordi

nates to normalized device coordinates, is applied when an application calls
GKS to output a graphical object. The principal use of normalization
transformations is to allow the application program's coordinate system to
be independent of NDC space, whose properties are fixed. Normalization
transformations allow scaling and translation.

(2) A workstation transformation, which maps NDC coordinates into the coor
dinate system used by the output device. The purpose of this transforma
tion is to achieve device independence, so that users of most GKS func
tions can think of drawing on an NDC surface and need not be concerned
with the details of the device coordinate system.

GKS maintains a list of several normalization transformations, each described
by a window in the world coordinate system and a viewport in NDC space.
The application program may set the window and viewport limits of each
transformation. It may also select one of them to be the current active one,
which is applied by GKS to world coordinates supplied in calls to graphical

CAR: user interface 79

primitives. The viewport serves another role besides being part of a normaliza
tion transformation: it defines a clipping rectangle. If clipping is enabled, GKS
will clip all graphical primitives to the viewport limits, so that no lines, text, or
other object will be shown outside the viewport. Normalization transforma
tions thus serve two purposes: they define a transformation and a clipping rec
tangle.

Graphical output. At the heart of GKS are the functions that display primitive
geometric objects. Pictures are considered to be constructed from a number of
basic building blocks, or output primitives. The four basic output primitives in
GKS are:
(1) po(yline, which draws a sequence of line segments;
(2) po(Ymarker, which marks a sequence of points with the same symbol;
(3) fill area, which displays a specified region; ·
(4) text, which displays a string of characters.
The various properties of graphical primitives are collectively called attributes.
Attributes govern the color of a line, whether it is solid or dashed, and its
thickness. Similar attributes apply to other primitives.

Segments and their attributes. Segments are structures held within GKS that
allow an application program to represent and manipulate pictures or portions
of pictures. Loosely speaking, a segment is a collection of graphical primitives
specified by the functions for graphical output described above. An applica
tion program may create as many segments as storage permits; for
identification, it assigns each one a segment name of its choice. Segments are
manipulated by changing the segment attributes. They allow the application
program to modify the appearance of the segment. The following attributes are
associated with a segment:
(1) The segment visibility attribute determines whether a segment will be

displayed or not.
(2) The segment highlighting attribute specifies whether a segment is displayed

normally or highlighted.
(3) The segment priority attribute is a number between O and 1 that determines

how overlapping segments are displayed. When one segment overlaps
another, primitives in the segment with higher priority may obscure primi
tives in the segment with lower priority.

(4) The segment transformation is a geometric transformation that is applied
whenever a segment is drawn on the screen to translate, rotate, or scale the
primitives of the segment before they are displayed.

(5) The segment detectability attribute determines whether primitives in the seg-
ment can be identified by the pick input device (see below).

Graphical input devices. Graphical input is obtained from one or more logical
input devices associated with a workstation. A logical input device obtains user
actions from the physical device, but also provides feedback on the screen to
help the user operate the physical device. The different classes of logical input

80 Chapter 12

devices provide different kinds of feedback, designed for different kinds of
graphical input. The logical input device is best thought of as an interaction
technique rather than a device per se. The six classes of logical input devices
provided by GKS and the values they report to the application program are:
(1) locator: The user identifies a location on the screen; the application pro-

gram obtains the world coordinates of the location and the identity of the
normalization transformation that was used to map NDC to WC.

(2) stroke: The user traces a path; an array of world coordinates on the path is
returned.

(3) pick: The user points to an object on the screen; the name of the segment
that contains the object is returned, together with the objects pick identifier.
The pick identifier is an output primitive attribute that can be associated
with graphical primitives so as to distinguish picked objects within a seg-
ment. ,

(4) valuator: The user indicates a numeric value in some range; the value is
returned.

(5) choice: The user selects one of a fixed number of alternatives; the index of
the selected alternative is returned.

(6) string: The user enters a text string; a character string is returned.
When a logical device is used to obtain input, it goes through the following
stages:
(1) A prompt may be displayed. For example, a device may prompt with an

initial string,
(2) The user manipulates the input device, and an echo appears on the screen

that allows the user to see what he is doing. For example, a rubber band.
(3) The user triggers the completion of the interaction. For example, by strik-

ing a key on a mouse.
The interaction process, involving a logical input device, can be considered as
taking place between two processes. One is the application program; the other
is the input process, which looks after the input device and delivers data from
the device to the application program. The relationship between the two
processes can vary and, in doing so, will produce different styles of interaction
which will effect the way that the user sees the system.

The three operating modes for logical input devices that GKS knows specify
who (the user or the application program) has the initiative: SAMPLE input is
acquired directly by the application program; REQUEST input is produced by
the user in direct response to the application program; EVENT input is gen
erated asynchronously by the user. They work as follows:
(1) SAMPLE. The application program samples the state of a particular dev

ice. GKS does not wait for a trigger, but instead returns the device's value
at the time of the call.

(2) REQUEST. The application program requests input from a particular logi
cal device. The logical device is started, using any beginning values
specified in its initialization. As it is operated, the prompt/ echo type deter
mines what is shown on the screen. Finally, when the user triggers the end
of the input, the results are returned to the application program.

CAR: user interface 81

(3) EVENT. The application program examines an event queue, which
describes completed input events obtained from any input device that are
in event mode. An event is entered in the queue when the user triggers its
completion.

As we already mentioned in Section 9.6, the user interface consists of two
parts: the presentation language and the action language. We will discuss
some of the design considerations and implementation techniques used to
build the user interface of CAR. In doing so we will concentrate on the
presentation language and the action language.

12.2. Presentation language
The basic question we have to solve when designing the user interface is how
to present information on the screen in the most effective manner, i.e. the
manner that promotes the most effective interaction between user and com
puter. Problems in information display generally relate either to the representa
tion of objects and data, i.e. the graphical representation of each of the items
that appear on the screen, or to the overall layout of the information on the
screen.

Before addressing the question of representing problem instances and solu
tions, we first take a closer look at the data we want to represent. In vehicle
routing and scheduling all data relate to addresses, vehicles or the underlying
network. The system maintains a large data base with all these data. For
presentational convenience we assume that we are using a relational data base.
When discussing a relational data base we will use the terminology found in
Date [1981]. Let us introduce the relation 'address' with a number of attri
butes which will then be used for all our examples:

RELATION ADDRESS (
IDENTIFICATION
COORDINATES
TYPE
DEMAND
TIME WINDOW
ARRIVAL TIME
WAITING TIME
DEPARTURE TIME
SUCCESSOR
ASSOCIATED VEHICLE)

Let us stress again that this is intended only as a conceptual tool and has little
to do with the actual implementation. The interesting point of using the rela
tional data base model is that all of the questions on representations can be
viewed as part of the query language. Consider for instance the following
query:

82 Chapter 12

SELECT *
FROM ADDRESS
WHERE IDENTIFICATION = identification

Simple qualified retrieval queries like this are embedded for instance in the
functions INFO ADDRESS and INFO VEHICLE, that show the requested data
alphanumerically on the screen. This type of information is of course of lim
ited use when we actually want to solve routing and scheduling problems. A
somewhat more complicated query might look like:

SELECT
FROM
WHERE

COUNT(*)
ADDRESS
TYPE = DELIVERY

AND ASSOCIATED VEHICLE = identification

or

SELECT
FROM
WHERE

SUM(DEMAND)
ADDRESS
TYPE= DELIVERY

AND ASSOCIATED VEHICLE = identification

These queries, that use built-in functions in the 'select' clause, are embedded in
functions like INFO CLUSTER and INFO ROUTE.

The four representations that CAR supplies are based on queries that we
feel are very important. For instance, the spatial representation in the cluster
phase is based on the following query:

SELECT
FROM

COORDINATES, TYPE, ASSOCIATED VEHICLE
ADDRESS

We could of course present these data alphanumerically in tabular form, but
because we have a graphical display we can show data with graphics rather
that with characters. We represent the items of the ADDRESS TYPE domain
set, depot, delivery and collection, as follows: an address of type depot by a
large star, an address of type delivery by a small square, and an address of
type collection by a small diamond. In addition, we color the addresses
according to their associated vehicle, where every vehicle has its own color,
and use the coordinates to plot them on the screen. The spatial representation
in the routing phase is based on the following query:

SELECT
FROM

COORDINATES, TYPE, ASSOCIATED VEHICLE, SUCCESSOR
ADDRESS

The only difference with the query that led to the primary display in the clus
ter phase is the addition of the successor attribute. The successor attribute is

CAR: user interface 83

represented by a line segment from the coordinates of the address to the coor
dinates of the successor address with the exception that a line segment is not
shown when one of the addresses has type depot.

The examples given above show that the issue of representing data, or a
plan, boils down to two questions:
(l)What are the interesting queries?
(2)How do we represent the attributes graphically?

In addition to its primary (spatial) representation CAR knows three secon
dary representations. The temporal representation of a route is based on the
following query:

SELECT IDENTIFICATION, TIME WINDOW, ARRIVAL TIME,
WAITING TIME, DEPARTURE TIME.

FROM ADDRESS
WHERE ASSOCIATED VEHICLE = identification
ORDER BY ARRIVAL TIME

For this query we chose to use a combination of an alphanumerical table and
some graphical representations. Each row in the table will show the selected
attributes. The identification and arrival time are represented alphanumerically,
the time window as a yellow bar, waiting time, if any, as a green bar, the
difference between departure time and latest service time, if greater than zero,
as a red bar and the arrival time as a blue dot. Note that the arrival time
attribute is represented twice! The load representation is based on the query:

SELECT
FROM
WHERE
ORDER

IDENTIFICATION, TYPE, DEMAND
ADDRESS
ASSOCIATED VEHICLE = identification
BY ARRIVAL TIME,

and the text representation on the query:

SELECT IDENTIFICATION, SUM(DEMAND), ARRIVAL TIME,
WAITING TIME, DEPARTURE TIME, SUM(DISTANCE),

FROM ADDRESS
WHERE ASSOCIATED VEHICLE = identification
ORDER BY ARRIVAL TIME.

As we have seen above we have used two ways to distinguish different
objects graphically. These are both applications of general techniques: different
styles to display output primitives (square, star and diamond), and different
colors. Both techniques have a decreasing effect if the objects to which they
are applied become smaller.

Once we have decided on the representations we will use, we have to deal
with the overall layout of the screen. This amounts to deciding how to use the
limited screen area. The scarcity of the screen space is often exacerbated by

84 Chapter 12

the need to accommodate menus, prompts and other control objects on the
screen, that are there to assist the control of the program. CAR divides the
screen in three regions, which contain a problem representation, commands, and
alphanumerical information, respectively. This division into regions makes it
possible for the user to view the result of two queries simultaneously, one in
the problem representation region and one in the alphanumerical information
region.

As we have already mentioned above, one of the most vexing problems in
information display is that of dealing with the limited capacity of the display.
If problem instances get larger, reducing the overall size of the picture to make
it fit in the graphical representation region is usually not effective; the screen
clutter can make it hard or impossible for the user to find the information he
needs. The system should therefore provide commands that allow the user to
enlarge or reduce the picture size, so that he can see an overall view or a
detailed view as needed. Commands to pan around a detailed view will also be
useful. CAR offers the user three screen handling utilities: ZOOM, FULL, and
(IN)VISIBLE.

These functions can be easily implemented by using the segment attributes
and normalization transformations. As each trip is stored in a separate seg
ment (see below), changing the visibility of a trip amounts to changing the visi
bility attribute of the associated segment. Zooming is only slightly more com
plicated. We have to take care of both output primitives that still have to be
created and output primitives that already exist. Zooming is basically selecting
part of the current visible picture and enlarging it. This can be easily accom
plished by defining the appropriate normalization transformation. Let WI be
the current window on our picture and V be the associated viewport. If we
want to zoom in on part W 2, the appropriate normalization transformation is
defined precisely by W2 and V (see Figure 13).

w, ~--------~

,,

~:n- -
~

' '
(X1,J1) '-

_v.....--------c-=-...--,

Figure 13. Normalization transformation for ZOOM.

For already existing output primitives, stored in segments, we have to adjust
the segment transformation accordingly. The transformation is given by:

CAR: user interface 85

11
0

11
X --x

12 I / 2 2

0
/ I / I

l2 Yi -T?2

0 0 1

In addition we enable clipping in order to make sure that the graphical
representations are only visible inside the graphical information area.

12.3. Action language
The action language consists of all the user actions that control the application
program and the syntactic and semantic rules that allow command sequences
and disallow others, and that assign meaning to some command sequences and
not to others. Several considerations apply to the design of the action
language:
(a) Consistency. If all commands adhere to a common structure, the user will

find them easier to remember and to invoke without error.
(b) Command abort. An action language should provide a graceful way for a

user to change his mind. He may select a command, start to enter its argu
ments, and then decide to do something else instead.

(c) Error handling. Mistakes in entering commands must be treated carefu11y
by the command interpreter. You will usually want to inform the user of
an error and allow selection of a new command.

We have chosen for a menu driven interaction mode. Menu driven interaction
has the advantage that the full range of options available to the user at any
stage is plainly displayed and it prevents the user from making selections out
side this range, and hence solves the problem of erroneous commands. The
division of commands into subsets enables us to reduce the space of the screen
needed to display the commands as at any stage at most two of the menus are
displayed together. Menus are implemented as segments with a separate pick
identifier for each option. The visibility attribute of the segment allows us to
make a menu pop-up and disappear.

As we have seen above, the availability of a graphical display allows us to
represent the result of a query to the data base in various ways. The query
itself is also different from the ones found in standard query languages in data
base environments. Most of the queries presented require as argument either
an address or a vehicle identification (shown in lower case in the queries). A
user can enter an identification by identifying the corresponding address on
the screen. In CAR this is implemented by use of the pick logical input device,
which returns the name of the segment and the pick identifier of the output
primitive picked. This second level of naming is provided in GKS to reduce
the segment overhead for applications where a great number of picture parts
need to be distinguished for input but the need for manipulation is less impor
tant. In the primary representation this is exactly the situation. There is a large

86 Chapter 13

number of addresses that need to be distinguished for input, divided into a
relatively small number of trips. Therefore the natural thing to do is to create
a segment for each trip and give each of the addresses that make up the trip a
different pick identifier. As an immediate consequence, a call of the request
pick function uniquely determines both the address and the trip of which it is
a member. (In addition, all the free addresses are also in a separate segment.)

We only have input in REQUEST mode.
Another feature of the command input is the fact that every command has

been implemented as an 'infinite loop', that is, we assume that the user wants
to perform the same command over and over again unless he explicitly states
otherwise, by issuing another command. This has the effect that if the user
wants information on several addresses he only has to give the INFO
ADDRESS command once.

13. CONCLUSION

To summarize our views, we find that interaction can play a vital role in com
plex planning situations by integrating human insight and formal models.
Many planning problems are too hard and at the same time too soft to be
amenable to solution by purely algorithmic techniques. A variety of evaluative
and generative models, meaningful representations of problem instances and
solutions, and a uniform set of actions to manipulate all these are the main
constituents of an IPS which realizes functional flexibility, ease of use and
robustness.

If we contrast traditional OR with the above presented concept of an JPS,
we find that on the practical level decision making is replaced by decision sup
port, and on the technical level algorithms are no longer as prominent as they
were. The most visible part of an IPS is the user interface. Its only purpose,
however, is to create the opportunity to manipulate information in a con
venient way. Whether information and manipulation make sense depends on
the context, which consists of the practical planning situation on the one hand
and the formal models and methods on the other. One might say that the role
of information technology pertains to the form, while practice and its abstrac
tions provide the substance. For the OR researcher, an IPS is like the wooden
horse of Troy: it enables him to disguise his weapons in an attractive fashion
and to bring them closer to practice.

87

PART Ill: EXPERTISE

14. INTRODUCTION

Since the papers by Dantzig and Ramser [1959] and Clarke and Wright [1964],
the development of optimization and approximation algorithms for vehicle
routing and scheduling has been a central activity in operations research. The
interest in the area is motivated by the importance of effective and efficient
methods for handling physical distribution problems and by the intriguing
nature of the underlying combinatorial optimization models. This is not to say,
however, that all issues have been dealt with satisfactorily. In particular, the
application of theoretical achievements in practical situations is still very much
an ad hoc affair. Due to the great diversity of vehicle routing and scheduling
problems encountered in practice and the large number of available algo
rithms, one has to be an experienced distribution manager as well as an opera
tions researcher in order to be able to select a method that is well suited for a
specific situation. To facilitate this decision process, we propose to develop a
model and algorithm management system that provides support in modeling
problem situations and in suggesting algorithms that might be applicable to
the resulting models.

The system will represent and manipulate information at three different lev
els. At the first level, there is the real-life problem situation. It may contain
many aspects that are not relevant for the selection of a solution method. At
the second level, there is the abstract problem type. It is obtained from the
real-life problem situation by determining and modeling the relevant entities
that describe this situation in terms of decisions, objectives and constraints. At
the third level, there are the algorithms. One that appears to be suitable in the
situation at hand is selected or constructed.

The knowledge and expertise that must be built into the system concern two
different issues. On the one hand, there is the knowledge and expertise that is

88 Chapter 15

applied to obtain an abstract representation of the problem situation. On the
other hand, there is the knowledge and expertise that is applied to choose from
among the multitude of available algorithms one that is appropriate for this
model.

There is a vast literature on vehicle routing and scheduling that contains the
knowledge and expertise of either type. This is one interesting aspect of the
project: the knowledge exists, and the question is how to formalize its use. In
order to meet this challenge, we will have to create a vocabulary for represent
ing the knowledge and to design inference algorithms for manipulating it.

In Chapter 15, we propose a language to define abstract problem types in
vehicle routing and scheduling and illustrate its use on a number of examples.
In Chapter 16, we outline the components of the system that select or con
struct a suitable algorithm for a problem type.

15. CLASSIFICATION

It is often difficult to keep track of all the available information on a problem
class, even if the class is well structured and the information is of very elemen
tary kind. Lageweg, Lenstra, Lawler, and Rinnooy Kan [1981, 1982] built a
specialized inference engine in order to be able to keep track of the complexity
results for a class of 4536 deterministic machine scheduling problems. Their
main purpose was to determine the complexity status of each of these prob
lems: solvable in polynomial time, NP-hard, or open. The resulting
MSPCLASS system, using simple inference rules and straightforward
knowledge on problem transformations, is able to deduce listings of essential
results: maximal easy problems, minimal and maximal open problems, and
minimal hard problems. To construct these listings by hand would be a very
tedious task.

While the system we propose to develop calls for the synthesis of a massive
amount of knowledge on vehicle routing and scheduling, achieving such a syn
thesis is already a worthwhile purpose in itself. We hope that the classification
scheme which is presented in this chapter is a step in this direction.

There already exist classification schemes for other problem areas in opera
tions research. Conway, Maxwell, and Miller [1967] introduced a four
parameter notation to classify deterministic and stochastic scheduling prob
lems. Graham, Lawler, Lenstra, and Rinnooy Kan [1979] extended and
modified this system for the class of deterministic machine scheduling prob
lems; their scheme formed the basis for the specialized inference engine men
tioned above. Handler and Mirchandani [1979] classified a limited class of
location problems. Bodin and Golden [1981] outlined a classification scheme
for vehicle routing and scheduling problems, and Ronen [1987] lists a number
of practical problem characteristics in this area.

15 .1. The definition language
A number of vehicles, stationed at one or more depots, have to serve a collec
tion of customers in such a way that given constraints are respected and a
given objective function is optimized. To define one such problem type in a

Classification 89

formal way, our language uses four fields. The first field describes the charac
teristics and constraints that are relevant only to single addresses (customers
and depots). We prefer the term 'address' to 'customer' because of the great
variety of customer types: apart from the usual single-address customer, there
is also the customer corresponding to an origin-destination pair or to all the
addresses located on a street segment. The second field specifies the charac
teristics relevant only to single vehicles. The third field contains all problem
characteristics that cannot be identified with single addresses or vehicles. The
fourth field defines one or more objective functions.

A fifth field may be added to describe additional information about a
specific class of problem instances. Although such information does not belong
to the model as defined in our four fields, it might still be useful for the selec
tion of a suitable algorithm. For example, it might be helpful to know the
average number of addresses that are to be assigned to one vehicle. The
specification of this field has been postponed until the development of the sys
tem is at a more advanced stage.

The classification scheme is designed to model real-life problem situations
and to describe them in a standard form. Currently, the scheme only handles
static problems, where the data do not change during a planning session.
However, it permits some data to be stochastic.

We have tried to design the classification scheme in such a way that, in most
cases, there is an obvious correspondence between characteristics of a real-life
problem situation and components of the model. There are two basic assump
tions that the user should be aware of. First, locations and distances are
defined in terms of a given network, and information on natural barriers and
such is incorporated in this network. Secondly, the distribution activities have
to be planned for a single day, except in the case of period routing; we return
to this distinction in Section 2.1.

There are cases in which some modeling aspects require the imagination of
the user. Consider, for example, a situation in which the driver must have a
minimum rest period between two workdays. This can be modeled as a vehicle
routing problem with non-identical time windows for the vehicles: once the
end of the previous workday is known, it is possible to determine the availabil
ity of the drivers, i.e., the time window for each vehicle.

The classification scheme also allows the modeling of soft constraints, by
means of penalty functions. As an example, consider a situation in which each
driver can go up to a limited amount of overtime. This is modeled by combin
ing a hard and a soft constraint on route duration: the hard constraint imposes
a limit on overtime, and the soft constraint penalizes overtime.

All the elements in our problem definition are in principle unidimensional.
However, superscripts can be added to indicate multidimensional constraints.
For example, cap; indicates that vehicle load is bounded from above in one
dimension, which may be, e.g., volume or weight; capt indicates a two
dimensional capacity constraint, which may mean that upper bounds on both
volume and weight are to be taken into account.

The classification language consists of a set of rules that define allowable

90 Chapter 15

structures. Each rule defines a nonterminal symbol in terms of other nontermi
nal symbols (fields, subfields, and elements) and terminal symbols (values of
elements, or 'tokens'); the symbol V is used to represent an exclusive or. Each
nonterminal symbol is enclosed in angular brackets. Each token is followed by
a comment on its interpretation between square brackets. The token ° indi
cates the empty symbol; it is used to indicate a default value, which is usually
either the simplest or the most frequently occurring value.

Each problem type in the class under consideration is defined by a number
of tokens, some of which may be equal to 0 • For notational convenience, two
successive tokens are separated by a vertical bar if they belong to different
fields and by a comma if they belong to the same field and are both not equal
to 0 •

Note that we have chosen for a brief verbal interpretation of each token
rather than for a complete definition in mathematical terms. A formal
approach, while possible and useful in itself, would distract our attention from
the main purpose of this chapter.

<classification> :: =

<addresses>
<vehicles>

I 5. 1. I. Addresses

<problem characteristics>
<objectives>

The first field defines the characteristics that can be associated with single
addresses. All the addresses will be located on a network G = (V,E) with a
set V of nodes and a set E of (undirected) edges and (directed) arcs. There are
four subfields.

The first subfield specifies the number of depots. There are single-depot prob
lems and problems where the number of depots is given as part of the problem
instance.

The second subfield specifies the type of demand. There are three parts. First
the location of the demand: 0 indicates that the customers are located on the
nodes, EDGE indicates that the customers are located on the edges (arcs) of
the network, MIXED indicates that the customers are located on both the
nodes and edges (arcs), and TASK indicates the case that each customer
corresponds to an origin-destination pair; the load is picked up at the origin
address and delivered to the destination address. The second part of the
subfield specifies if all the demands are of the same type (all deliveries or all
collections) or not (mixed deliveries and collections). The third part specifies
the nature of the demand: deterministic or stochastic.

The third subfield specifies the address scheduling constraints, i.e., the tem
poral aspect of the demand. Either there are no temporal constraints, or the
departure time is fixed (fixed schedule), or the departure time is restricted to a
single interval (single time windows) or to a set of intervals (multiple time

Classification 91

windows).
The final subfield specifies the address selection constraints. There is a basic

distinction between two problem classes. In the first class, a single plan is to be
made for the given collections of addresses and vehicles. There are three subc
lasses: all addresses must be visited; a given subset of addresses must be
visited and the others may be visited if it is profitable; or the addresses are
partitioned into subsets and at least one address in each subset must be
visited. In the second class, a number of plans is to be made over a certain
time period, during which the addresses must be visited with given priorities or
at given frequencies. This requirement is open to various specifications. It may
lead to problems with a longer time horizon, in which a weekly allocation
problem is to be solved before the daily routing problem is defined.

<addresses> : : =

<number of depots>
<type of demand>
<address scheduling constraints>
<address selection constraints>

<number of depots> :: = 1 V /

[one depot] 1
I [specified as part of the problem instance]

0 V EDGE V MIXED V TASK

0

EDGE
MIXED
TASK

[node routing]
[edge routing]
[mixed routing (nodes and edges)]
[task routing]

0 [either all deliveries or all collections]
+ [mixed deliveries and collections]

0 [deterministic demand]
[stochastic demand]

<address scheduling constraints> 0 V fs V tw V mw . j j j

92

0 [no scheduling constraints]
[fixed schedule]
[single time windows]
[multiple time windows]

Chapter 15

< address selection constraints> : : = 0 V subset V choice V period

0

subset

choice

period

[single plan; all addresses must be visited]
[single plan; a given subset of addresses
must be visited]
[single plan; at least one address in each
subset of a given partition must be visited]
[a number of plans over a given time period
is to be made]

15.1.2. Vehicles
The second field defines the characteristics of the vehicles and their routes.
There are three types of information in this field: the number of vehicles, phy
sical characteristics of the vehicles, and temporal constraints on a route.

The first subfield specifies the number of vehicles: the number of vehicles is a
constant, specified as part of the problem type, or a variable, specified as part
of the problem instance. The symbol '=' can be used to indicate that all vehi
cles must be used.

The second and third subfields specify the pl~vsical characteristics of the vehi
cles: the capacity and the presence of compartments. The fleet can be homo
geneous (all vehicles have the same capacity) or heterogeneous. There are two
types of compartmentalized vehicles. Some vehicles have interchangeable com
partments. These can be used to separate incompatible commodities such as
chickens and foxes. Other vehicles have dedicated compartments, each used to
store one type of good; e.g., frozen meals and fresh vegetables must be kept in
separate dedicated compartments.

The fourth and fifth subfields specify temporal constraints. There can be avai
lability intervals for the vehicles and lower and upper bounds on the duration
of the routes.

<vehicles> : : =

<number of vehicles>
<capacity constraints>
<commodity constraints>
<vehicle scheduling constraints>
<route duration constraints>

<number of vehicles>

Classification

0

o V

[at most /32 vehicles can be used]
[all /3 2 vehicles must be used]

</32 > ::= c V m

C (c Er\!)
m

[c vehicles]
[specified as part of the problem instance]

<capacity constraints> : : = 0 V cap V cap;

0

cap
cap;

[no capacity constraints]
[vehicles with identical capacities]
[vehicles with different capacities]

<commodity constraints> :: = 0 V sep V ded

o [no compartments]
sep [vehicles have interchangeable compartments]
ded [vehicles have dedicated compartments]

<vehicle scheduling constraints> :: = 0 V tw V tw;

0

tw
tw;

[no scheduling constraints]
[identical time windows for vehicles]
[different time windows for vehicles]

<route duration constraints> : : = 0 V dur V dur;

0 [no route duration constraints]
dur [identical bounds on route duration]
dur; [different bounds on route duration]

15.1.3. Problem characteristics

93

The third field defines the network underlying the problem, the service stra
tegy, and constraints on the relations between addresses and vehicles.

The first subfield specifies the properties of the network (directed, undirected
or mixed) and of the travel times (satisfying the triangle inequality or not).

The second subfield specifies the service strategy chosen by the user. There
are four types of strategic decisions.

(1) The first type allows or disallows splitting of the customer demand. A
priori splitting of demand occurs when it is decided at the outset that the
demand may be satisfied by more than one visit to the customer. A posteriori
splitting of the demand occurs in the case of stochastic demand when, once on
the customer premises, the driver discovers that the demand is larger than

94 Chapter 15

foreseen and decides not to satisfy the demand completely during that visit.
(2) In the case of node routing with mixed deliveries and collections, the

user can choose for backhauling, i.e., delivering first to empty the vehicle and
then collecting loads on the way back to the depot. In the case of task routing,
the user can choose for full load routing, i.e., only one load can be in the vehi
cle at any time.

(3) In most, cases a vehicle performs at most one route per period, but the
user can allow more than one route per vehicle.

(4) Usually vehicles are restricted to start and finish at the same depot, but
this can be relaxed and the user can allow multi-depot routes.

The other subfields specifies the possible relations between two addresses,
between an address and a vehicle, or between two vehicles. Such relations are
caused by a number of very different factors, and enumerating these here
would not be feasible. Instead of describing the underlying factors, we have
chosen to specify the restrictions caused by them.

The best known of these relations is the precedence constraint between two
customers: the vehicle must visit one customer before visiting the other. Note
that these precedence constraints have nothing to do with the implicit pre
cedence constraints in the origin-destination pairs in TASK routing, because
we view such an origin-destination pair as a single customer.

Most of the other relations are inclusion and exclusion restrictions. It may be
that an address must be served from a given depot, must be allocated to the
same route as another address, or must be visited by a given vehicle. For
example, an address-vehicle inclusion restriction occurs if the vehicle must be
equipped with an unloading device because the customer has no delivery dock.
It may also be that an address should not be served from a given depot, should
not be allocated to the same route as another address, or should not be visited
by a given vehicle.

The last type of restriction is vehicle synchronization, occurring when two or
more vehicles must exchange loads or assist each other.

<problem characteristics> : : =

<type of network>
<type of strategy>
< address-address restrictions>
< address-vehicle restrictions>
<vehicle-vehicle restrictions>

<type of network>

o V ~

0 [general costs]
[the costs satisfy the triangle inequality]

Classification

<y2 > ::= 0 V dir V mix

0 [undirected network]
dir [directed network]
mix [mixed network]

0 [splitting of demand not allowed]
I [a priori splitting of demand allowed]

[a posteriori splitting of demand allowed]

<lh> :: = 0 V back V full

0

back
full

0

;;.IRIV

0

;;.ID/R

[no backhauling or full loads required]
[backhauling, in case of node routing]
[full loads, in case of task routing]

[at most one route per vehicle]
[more than one route per vehicle allowed]

[a route starts and finishes at the same depot]
[multi-depot routes allowed]

<address-address restrictions>::= <t:1> <t:2> <t:3>

<t:1 > : : = 0 V prec

0

prec

0

DA

0

[no precedence constraints]
[precedence constraints]

[no depot-address restrictions]
[depot-address restrictions]

[no address-address restrictions]

95

96 Chapter 15

AA [address-address restrictions]

<address-vehicle restrictions> : : = <f 1 > <f 2 >

<t1> ::= 0 V DV

0 [no depot-vehicle restrictions]
D V [depot-vehicle restrictions]

<f2> ::= 0 V AV

0 [no address-vehicle restrictions]
AV [address-vehicle restrictions]

<vehicle-vehicle restrictions> : : = 0 V VV

0 [no vehicle-vehicle restrictions]
VV [synchronization between vehicles needed]

15 .1.4. Objectives
The fourth field defines the objective functions. To specify an objective func
tion we introduce five quantities.

The travel and service time of vehicle i, i.e., the tour duration of its route,
will be denoted by T;. With this quantity we can express the standard objec
tives found in the vehicle routing and scheduling literature: minimization of
the total travel and service time, and minimization of the span of a solution.

To be able to express more realistic objective functions, we introduce a vehi
cle cost function C;, an address cost function c1, a vehicle penalty function P;,
and an address penalty function P1. A vehicle cost function can be used to
model situations where, in addition to routing and scheduling, it is also
required to determine the fleet size and mix. An address cost function allows
the modeling of costs incurred due to deviation of a preferred service level.
The penalty functions enable the modeling of costs incurred due to the viola
tion of soft constraints. These are constraints that may be violated at a certain
cost; driver overtime is an example. The constraints that are considered to be
soft are listed as arguments of the vehicle and address penalty functions.

In practice, the problems often have a composite objective function. The
user can specify this by listing the components of the objective function in
order of decreasing importance. At the other end, our schemes also leaves the
possibility open that no objective is specified, so that the problem reduces to a
feasibility question.

As an addendum to the rules below, we note that, in the case of a single
vehicle, the operator sum or max and the subscript i are dropped in the objec
tives related to routes and vehicles.

Classification

<objectives> : : = <objective> V <objective> <objectives>

<objective> : : = 0 V <operator> <function>

<operator> : : = sum V max

sum [minimize the sum of the cost function values]
max [minimize the maximum cost function value]

<function>::= T; V C; V P;(<vehicleconstraints>) V
CJ V P/ <address constraints>)

T;
C;
P;(<vehicle constraints>)
C .I
P/ <address constraints>)

[route duration]
[vehicle costs]
[vehicle penalty]
[address costs]
[address penalty]

<vehicle constraints> : : = <vehicle constraint> V
<vehicle constraint> <vehicle constraints>

<vehicle constraint> :: = cap V cap; V tw V tw; V dur V dur;

< address constrain ts> : : = tw • V mw • .I .I

15.2. EXAMPLES

97

In this section, fourteen problems taken from the vehicle routing and schedul
ing literature are classified using the scheme given in the previous section. This
presentation has a twofold purpose. First, the examples illustrate the use of the
classification scheme. Secondly, they show that a broad class of problems,
including very practical ones, can be handled.

The examples are all presented in the same format. The difference in style of
the various problem descriptions is due to the fact that we have quoted the
source texts throughout.

Example 1. l I l I I (Jaques [1859])
'In this new Game (invented by Sir William Rowan Hamilton, LLD., &c., of
Dublin, and by him named Icosian, from a Greek word signifying "twenty") a
player is to place the whole or part of a set of twenty numbered pieces or men
upon the points or in the holes of a board ... in such a manner as always to
proceed along the lines of the figure'.

The board is a planar representation of the pentagonal dodecahedron. This
is the single-depot single-vehicle problem in its purest form. Note that the
objective, being unspecified, is to find a feasible tour.

Example 2. 1 11 I~ I T (Menger [1930])
'Wir bezeichnen als Botenproblem (weil diese Frage 111 der Praxis von jedem

98 Chapter 15

Postboten, i.ibrigens auch von vielen Reisenden zur losen ist) die Aufgabe, fi.ir
endlichviele Punkte, deren paarweise Abstande bekannt sind, den ki.irzesten die
Punkte verbindenden W eg zu fin den.' [We call this the messenger problem
(because in practice the problem has to be solved by every postman, and also
by many travelers): finding the shortest path joining all of a finite set of
points, whose pairwise distances are known.]

Menger's messenger is a close relative of today's traveling salesman. The
only difference is that Menger's statement does not require a cycle, just a path
connecting all points. Because of the reference to 'Praxis', we have assumed
that the distances satisfy the triangle inequality. It is interesting to note that,
for Menger, there is no mathematical distinction between postmen and sales
men.

Example 3. l,EDGEI 111 T (Guan [1962])
'When the author was plotting a diagram for a mailman's route, he discovered
the following problem: "A mailman has to cover his assigned segment before
returning to the post office. The problem is to find the shortest walking dis
tance for the mailman." This problem can be reduced to the following: "Given
a connected graph in the plane, we are to draw a continuous graph (repetition
permitted) from a given point and back minimizing the number of repeated
arcs."'

This is, of course, the celebrated Chinese postman problem - Chinese
because of its originator; the problem occurs all over the world. Unless
P = NP, this is the only problem in this collection that is solvable in polyno
mial time.

Example 4. 11 m,cap 11 sumT; (Dantzig and Ramser [1959])
'The Traveling Salesman Problem may ... be generalized by imposing the con
dition that specified deliveries q; be made at every point P; (excepting the ter
minal point). If the capacity of the carrier C ;;;,, '"2.;q;, the problem is formally
identical with the Traveling-Salesman Problem in its original form ... the Truck
Dispatching Problem is characterized by the relation C << '"2.;q;. ... For sim-
plicity of presentation it will be assumed that only one product is to be
delivered and that all trucks have the same capacity C.'

The first reference in the literature to the vehicle routing problem in its most
basic form: one depot, m vehicles of equal capacities, minimization of the sum
of the route durations. We invite the reader, here as well as in the following
examples, to make sure that each token in the classification is justified be the
subsequent quotation.

Example 5. l,tw1 I 11 fl IT (Savelsbergh [1986])
'In the TSPTW we are given in addition to the travel time t;,J for each pair of
vertices i,j EV, for each vertex i a time window, denoted by [e;,U where e;
specifies the earliest service time and l; the latest service time. The latter bound
is strict in the sense that departing later than I; is not allowed and causes the
tour to become infeasible, whereas arriving earlier than e; does not lead to

Classification 99

infeasibility but merely introduces waiting time at vertex i. We make the
additional assumption that the distance matrix is symmetric and satisfies the
triangle inequality Minimize the completion time of the tour'.

TSPTW stands for 'traveling salesman problem with time windows'. This
generalization of the TSP is as straightforward as its classification. The same is
true for the next two examples.

Example 6. I,choice I I I IT (Laporte and Nobert [1983])
' ... we consider a generalization of theTSP in which each city is replaced by a
set of cities. More precisely, we consider a city (city 0) used as the trip starting
and ending point, and also n sets of cities (S 1 ,S 2, ••• , Sn)- The problem ...
consists of finding the shortest route through city O and at least one city taken
from each Sk. As in the TSP each city may be visited only once.'

Example 7. 1,TASKI 111 T (Psaraftis [1983])
'In the DARP's generic version, a vehicle, initially located at point A, is called
to service N customers, each of whom wishes to travel from a distinct origin to
a distinct destination, and then return to A so that the total length of the route
is minimized.'

DARP stands for 'dial-a-ride problem'.

Example 8. 1, + I m,cap I back I sumT; (Goetschalckx and Jacobs [undated])
'The linehaul-backhaul problem is an extension of the VRP involving both
delivery and pick-up points. Linehaul (delivery) points are sites which are to
receive a quantity of goods from the single central DC. Backhaul (pick-up)
points are sites which send a quantity of goods back to the DC. The quantities
to be delivered and picked up are fixed and known in advance. There exists a
homogeneous fleet of vehicles each of which is assumed to have a fixed capa
city of some weight or volume. The crucial assumption is that all deliveries
must be made before any pick-ups can be made. This is caused by the fact that
the vehicles are rear-loaded and the rearrangement of the loads on the truck at
delivery points is not deemed feasible. Hence, a feasible solution to the prob
lem consists of a set of routes where all deliveries for each route are completed
before any pick-ups are made and the vehicle capacity is not violated either by
the linehaul or backhaul points assigned to the route. The objective is to find
such a set of routes which minimizes the total distance traveled.'

DC stands for 'distribution center'. Note that there are 'both delivery and
pick-up points' (+) and that deliveries precede pickups, which is called back
hauling (back).

Example 9. !,period I m,cap;,dur; 11 sumT; (Christofides and Beasley [1984])
'In the period vehicle routing problem ... the problem is to design a set of
routes for each day of a given (p-day) period. Each customer may require a
number of visits by a vehicle during this period. If a customer requires k (say)
visits during the period, then the visits may only occur in one of a given
number of allowable k-day combinations [Let] D,. be the total allowable

100 Chapter 15

driving time of vehicle r .. .'
Simple as this classification is, it represents one of the hardest problem types

in the vehicle routing literature.

Example 10. I,EDGE,subset I m,dur I/ I sumC;,sumT; (Stern and Dror
[1979])
'This paper is addressed to the problem of collecting data on household con
sumption of electricity for billing purposes ... Each reader has a maximum ...
workshift time limit of 5 hr established by union regulations Figure 2 [not
reproduced here] presents a graph that corresponds to the network of streets.
The heavy lined edges represent those streets that contain meters and must be
covered by the meter readers while moving from house to house. Dotted edges
represent streets that contain no meters but may be traversed as connecting
streets if required. There are no oneway streets ... as readers proceed by foot
and walking can be done on sidewalks in any direction working tours may
begin and end at intermediate locations of an edge The primary objective is
to find the minimum number of working tours needed to cover the required
edges in the graph. A secondary objective, given the minimum number of
tours, is to find the routes of each tour such that the total length traversed is
minimal.'

Since some streets 'contain no meters but may be traversed as connecting
streets', one has to visit only a subset of all the edges. Furthermore, as 'working
tours may begin and end at intermediate locations of an edge', splitting of
demand among vehicles is allowed (/).

Example 11. l I m,cap;,sep,tw; I AV I sumT;,sumP;(dur;) (Brown and Graves
[1981])
'The dispatchers, located at a central national order processing facility, must
each handle several bulk terminals ... Drivers are domiciled with company
owned vehicles at the terminal ...

Delivery vehicles possess a wide variety of features relevant to their use in
the dispatch. A model truck and rig ... is equipped with multiple, isolated com
partments. Each compartment has a volumetric capacity specific to the density
of the product contained

Vehicle operating costs are specified for each proprietary truck on a
customer-by-customer basis as a function of mileage and standard delivery
time. Nonproprietary truck costs may also be simple functions of actual
delivery time and mileage, or may be fixed point-to-point charges for each trip
depending upon operating region and contract terms and duration. Each vehi
cle is assigned a sequence of loads for a shift with the duration of each shift
determined by driver availability, vehicle availability, and contract terms.
Overextension of vehicle shifts leads to overtime labor costs ...

Each order typically includes three products, usually grades of gasoline,
jointly constituting a complete truck load ... and additional data regarding spe
cial equipment requirements (such as special couplings, pumps, an unmarked
truck, and so forth).'

Classification 101

We only note that, in this complex classification, 'overtime labor costs' due
to 'overextension of vehicle shifts' are modeled by vehicle penalties that
depend on individual route durations (P;(dur;)).

Example 12. 1, +,mw1,subset I m,cap;,tW; I~ IR/ V,AV I maxT;,sumT;
(Anthonisse, Lenstra, and Savelsbergh [1987])
'CAR is an interactive software package ... for distribution problems with the
following characteristics.
- There is a single depot where several vehicles. possibly with different capaci

ties, are stationed.
- The commodity to be transported is homogeneous in the sense that the allo-

cation of commodities to vehicles is restricted only by the vehicle capacities.
- A vehicle can make several trips a day.
- A vehicle has a time window that specifies its availability.
- There may be both collections and deliveries. Vehicles depart from the depot

with the commodities to be delivered and eventually return to the depot
with the collected commodities. Anything collected on the way is tran
sported to the depot. Collections and deliveries may occur in any sequence
on the same trip.

- An address may impose restrictions on the capabilities of the vehicle visiting
it. For example, it may require special loading equipment.

- An address has one or more time windows within which service must take
place.

- An address can have a priority, indicating that it must be visited.
- An address is to be visited by at most one vehicle.'

Example 13. 1,~,mw1,period I m,cap;,tw; I /,AVI sumC1,sumT;,sumC; (Bell,
Dalberto, Fisher, Greenfield, Jaikumar, Kedia, Mack, and Prutzman [1983])
'The degree of freedom available to distribution management at Air Products
is greater than in any other industry. They decide when to supply a customer
based on the inventory level in the customer tank, how much to deliver, how
to combine the different loads on a truck and how to route the truck. Thus
inventory management at customer locations is integrated with vehicle schedul
ing and dispatching

Because of the uncertainty in customer demand, ... inventory must be main
tained at a specified safety-stock level. Customers are not open for delivery on
every day of the week or during every hour of the day and trucks must make
their deliveries within certain prescribed time windows which can vary among
customers. The trucks in the fleet differ in characteristics such as capacity and
operating costs Finally, some trucks are incapable of serving certain custo
mers because they are too big, require an external power source for an electric
pump, and so forth. The availability of trucks, drivers and product is limited.

The costs that must be considered in scheduling include driver pay, tolls,
and vehicle-related costs such as depreciation, fuel, and maintenance

The scheduling module is used daily at each depot to produce a detailed

102 Chapter 16

schedule for a two- to five-day horizon, with the first day's schedule being the
most important one Deciding when to deliver to customers and how much
to deliver requires a forecast of the rate at which each customer is consuming
product and a calculation of the latest possible time the customer needs a
delivery

For each customer a value per unit of product delivered by the end of the
planning horizon has been defined. The object of the model is to maximize the
value of th!:! product delivered less the costs incurred in making these
deliveries.'

Note that the demand is estimated from historical data; its realization is
only known when the customer is visited. Once the demand is forecasted for
the next few days, the scheduler can decide to satisfy it in a single visit or to
split it over several visits. The cost to visit a customer is in fact the opposite of
a reward which we try to maximize.

Example 14. l,TASK,tw1 Im I dir,full I sumC;,sumT; (Desrosiers, Soumis, and
Desrochers [1984]) ·
'A trip is a productive journey which may be carried out by a vehicle. The trip
i is characterized by a place of origin, a destination, a duration, a cost and a
time interval [a;,bd during which the trip must begin. An intertrip arc is an
unproductive (i.e., empty) journey carried out by a vehicle. The intertrip arc
(i,j) goes from the end of trip i to the beginning of trip j. Its duration ti/ and
its cost ci/ may include respectively the duration and cost of the trip i. A route
is a sequence of trips and intertrip arcs carried by the same vehicle. The prob
lem is to determine routes and schedules for all the trips so as to minimize the
number of vehicles and travel costs while respecting network and scheduling
constraints.'

16. MODEL AND ALGORITHM MANAGEMENT

Model management and model management systems are relatively new con
cepts, which have emerged from the recent interest in decision support systems,
expert systems, and artificial intelligence. The primary objective of a model
management system can be viewed as the counterpart of that of a database
management system. It provides an environment for storing, retrieving, and
manipulating models. A model management system serves as a bridge linking
the decision maker's environment with the appropriate models. The current
design paradigm for these systems stresses the need for expert knowledge in
the system along with associated knowledge-handling facilities.

The ultimate goal of the model and algorithm management system for vehi
cle routing and scheduling is to provide its user with a suitable algorithm for
the problem situation he is facing. In order to achieve this goal, the system
maintains models and algorithms, and contains inference mechanisms to mani
pulate them. Because the system is being used as a consultant, it is able to pro
vide explanations of its line of reasoning, i.e., it can explain why it is asking
particular questions and how it has reached a conclusion. It also provides
means to perform sensitivity analysis, for instance by allowing the user to

Model and algorithm management 103

attach confidence factors to his responses to the system's queries.
The system will go through two phases. In the first phase, it asks a set of

questions in a man-machine dialogue in order to decide upon the problem
type, the characteristics of the expected problem instances, and the algorithmic
requirements. The classification scheme mentioned in the introduction is used
to represent problem types. The characteristics of the expected problem
instances, such as the average number of customers in a route and the average
load factor of the vehicles, supplement the information embodied in the prob
lem type. The algorithmic requirements reflect the type of algorithm the user
wants. For example, a user might be interested only in very fast algorithms, or
in algorithms that produce an optimal solution. The characteristics of the
expected problem instances and the algorithmic requirements have a large
impact on the inference mechanisms the syst~m will employ in the second
phase. Although an important part of the system, the first phase will not be
treated in detail here.

In the second phase, the system tries to select or construct a suitable algo
rithm based on the knowledge residing in the system. Two classes of algo
rithms are distinguished. The first class contains algorithms that are based on a
mathematical programming formulation, the second class contains all the oth
ers. This differentiation is motivated by the fact that a mathematical program
ming formulation often reveals structural information about a problem that
may be used in determining which algorithm should be applied. In the future,
a third class may be added: dynamic prograrnn;i.ing algorithms. Here too, the
underlying state space and the recursion equations may provide useful infor
mation.

The system's distinction between classes of algorithms is reflected in the
knowledge organization. There are four different knowledge bases: a problem
knowledge base (PKB), a formulation knowledge base (FKB), an algorithm
knowledge base (AKB), and a general knowledge base (GKB). The PKB is a
set of well-known and well-investigated problems types, such as the traveling
salesman problem and the standard vehicle routing problem. The FKB and
AKB contain mathematical programming formulations and algorithms for
these problems, respectively, and the GKB contains knowledge on formulation
and algorithm construction. Together they represent the expertise of research
ers in the field as well as stacks of literature.

The problems as defined by the classification language must be viewed as
abstractions that belong to the PKB, but the mathematical formalism in which
they are described is not made explicit. The FKB, however, contains problem
representations in terms of a mathematical formalism.

The selection or construction of a suitable algorithm for a given problem
type proceeds as follows. First, if the problem is present in the PKB, we are
done; in that case, there is at least one associated algorithm in the AKB.
Secondly, if the problem is not present in the PKB, we try to identify prob
lems in the PKB that have a 'similar' structure and use their associated formu
lations, if any, and associated algorithms to piece together one or more promis
ing algorithms for the problem at hand; this is called 'analogical reasoning' in

104 Chapter 16

the artificial intelligence literature. Finally, if the problem is not present in the
PKB and there are no problems in the PKB with a similar structure, we can
not handle it.

The second step is, of course, by far the most intriguing and difficult one.
There are a number of issues that need further consideration. We indicate
them briefly here and elaborate on them in the next sections.

Similarly structured problems. If a problem is not present in the PKB, the PKB
is searched for problems with a similar structure, which will then be used to
construct an algorithm for the problem at hand. In order to relate problem
types to each other, we need to define a metric on the set of problem types
defined by the language.

Model integration and validation. Model integration, i.e., building composite
models and decomposing models into their constituent parts, is used to create
a mathematical programming formulation for a problem that does not belong
to the PKB. Some form of validation has to be performed on the obtained for
mulation to ensure that it deals with all the constraints of the problem.

Algorithm integration and validation. Alongside model integration, there is algo
rithm integration, i.e., building composite algorithms and decomposing algo
rithms into their constituent parts, so as to construct an algorithm for a prob
lem not present in the PKB. Yalidation, in this case, should also test whether
the algorithm obtained meets the algorithmic requirements.

16.1. Representation
A major question pertaining to the system is that of representation. How do
we represent knowledge, formulations, and algorithms? This is a crucial issue
since all manipulations, i.e., the kinds of inferences that can be made, depend
directly upon this structure.

There are several approaches to knowledge representation. An overview is
given by Mylopoulos and Levesque [1984]. With regard to modeling and deci
sion support, most knowledge representation approaches can be divided into
three categories, that are based on first-order predicate logic, networks, and
frames, respectively. The brief description below follows Mylopoulos [1980].

Logical representation schemes employ the notions of constant, variable,
function, predicate, logical connective, and quantifier to represent facts as logi
cal formulas in some logic. A knowledge base, according to this view, is a col
lection of logical formulas which provides a partial description of reality.
Modifications to the knowledge base occur with the introduction and deletion
of logical formulas. In these schemes, logical formulas are the atomic units for
knowledge base manipulation.

Network representation schemes, often called semantic networks, attempt to
describe reality in terms of objects (nodes) and binary associations (labelled
edges), the former denoting individual entities and the latter binary relation
ships between them. According to the network representational view, a

Model and algorithm management 105

knowledge base is a collection of objects and associat10ns, or a directed
labelled graph, and modifications to the knowledge base occur through the
insertion and deletion of objects and the manipulation of associations.

Frame-based representation schemes view a knowledge base as a frame sys
tem. A frame is a complex data structure for representing a stereotypical situa
tion. The frame has slots for the objects that play a role in this situation as
well as for the relations between these objects. Attached to each frame are
different kinds of information, such as how to use the frame and default values
for its slots. A further feature of this approach is the concept of a frame sys
tem, which is a collection of frames linked together by an information retrieval
network. The main function of the frame system is to provide a retrieval capa
bility for matching frames with reality or some part thereof. Frames were con
ceived originally for visual applications by Minsky [1975], but have been used
for scheduling by Goldstein and Roberts [1979] and as a major component of
the 'model abstraction' concept of Dolk and Konsynski [1984].

In the current design, the model and algorithm management system uses a
logical representation scheme to represent knowledge about formulations and a
frame-based representation scheme to represent knowledge about algorithms.
It may well be, however, that in the future a network representation scheme
will also be used.

Formulations. Most of the mathematical formulations for vehicle routing and
scheduling problems are mixed integer programming models. The system
should therefore be able to represent a mixed integer programming formula
tion in a manageable form. The research done on modeling languages for
mathematical programming might prove useful in this context. Practical large
scale mathematical programming involves more than just the application of an
algorithm to minimize or maximize an objective function subject to con
straints. Before any optimization routine can be invoked, considerable effort
must be expended on formulating the underlying model and generating the
requisite computational data structures. Modeling languages are designed to
make these steps easier and less error-prone. Examples of modeling languages
are the General Algebraic Modeling System (GAMS) (Bisschop and Meeraus
[1982], Brooke, Kendrick, and Meeraus [1985]) and A Mathematical Program
ming Language (AMPL) (Fourer, Gay, and Kernighan (1987]).

An alternative to this might be structured modeling as developed by
Geoffrion [1987]. The overall objectives of structured modeling are to provide a
formal mathematical framework, language, and computer environment for con
ceiving, representing, and manipulating a wide variety of models. Structured
modeling has benefited significantly from ideas from modeling languages,
spreadsheet modeling, and database theory. It purports to be more widely
applicable than a modeling language, because it is not restricted to mathemati
cal programming models. Appendix A shows a structured modeling schema of
the standard vehicle routing problem, l I =m,cap 11 sumT;.

In the model and algorithm management system for vehicle routing and
scheduling problems, we propose to use an extension of AMPL to represent

106 Chapter 16

mathematical' programming formulations. Extensions are needed to enable
model integration. AMPL comments will no longer be just comments, but will
serve as a source of information for the inference engine. The information pro
vided will be divided into three categories: first, information that links parame
ters, variables, and constraint sets to the corresponding elements in the
classification; secondly, information on the interpretation of parameters, vari
ables, and constraints sets; and, finally, information on formulations for simi
larly structured problems. All this information will be expressed by an exten
sion of AMPL, which is defined in Figure 14. We will call this the AMPL
extension language.

<CLASS> : : = AMPL parameter, variable, or constraint;
(CLASS: <classification element>)

<A TIRJB> : : = AMPL parameter;
(ATIRIB: <attribute>)

<attribute> :: = travel time I demand I time window I capacity I arrival time I
waiting time I departure time

<DEFINES> :: = AMPL variable;
(DEFINES: <decision>)

<decision> : : = arc assignment I node assignment I flow I resource utilization
<CONDUCES> :: = AMPL constraint;

(CONDUCES: <characteristic> { and <characteristic>}*)
<characteristic> : : = arc assignment I node assignment I position assignment I

flow conservation I no subtours I (<classification element>)
<MOD> : : = AMPL parameter, variable, or constraint;

(MOD: (<classification element> REPLACES <classification element>)
{[and I or] (<classification element> REPLACES <classification element>}*=;,
(<empty symbol>l<CLASS>l<ATIRIB>l<DEFINES>I
<CONDUCES>
REPLACES <empty symbol>l<CLASS>l<ATTRIB>I
<DEFINES> I <CONDUCES>)
{and (<empty symbol>l<CLASS>l<ATIRJB>I
<DEFINES> I <CONDUCES>
REPLACES <empty symbol>l<CLASS>l<ATIRIB>I
<DEFINES>l<CONDUCES>)}*)

Figure 14. Syntax of the AMPL extension language.

Model and algorithm management 107

arc assignment xt JI if arc (i,j) is traversed by vehicle k

!!
otherwise

if node i is visited by vehicle k
otherwise node assignment A

flow zt amount of commodity k (such as type of good or type
of vehicle) traversing arc (i,j)

resource utilization D, amount of scarce resources (such as time) utilized at
node i

Figure 15. Types of decision variables.

arc assignment
node assignment

position assignment

flow conservation
no subtours

(<classification element>)

forces the selection of one or more arcs
forces the association of a vehicle with a node
forces the selection of a node for a given
position in a tour
relates the inflow of a node to its outflow
forces a depot to be on all feasible tours
forces feasibility with respect to the characteristic
modeled by a given classification element

Figure 16. Types of generalized problem characteristics.

The system views a formulation as composed of two parts: the parameter
and variable definitions and the constraint definitions. The AMPL extension
language enables us to provide additional information. In case of a parameter
definition, we add information to relate it to the attribute it is representing, in
case of a variable definition, we add information on the type of decision that is
being modeled, and in case of a constraint definition, we add information on
the problem characteristic that is being modeled. The objective function is con
sidered to be a constraint. We believe that for vehicle routing and scheduling
models, there is only a limited number of decision variables, which are listed in
Figure 15. We also believe that the many problem characteristics can all be
covered by a small set of generalized characteristics, which are listed in Figure
16.

The AMPL extension language also allows a concise description of similar
formulations for similar problem types. Similar formulations are stored as one
base formulation and a series of modifications. This results in great savings in
space over retaining all of them separately.

Figure 17 shows a segment of the extended AMPL formulation for the stan
dard vehicle routing problem, 11 =m,cap 11 sumTi. The complete formula
tion is given in Appendix B.

Algorithms. The system views an algorithm as a sequence of operations per
formed on a set of objects. There are two types of objects: first, objects associ
ated with the classification language, such as an arc, a set of arcs, an address, a

108

###PARAMETERS###
param t { arcs} > = O;

(ATTRIB: travel time)
param q {customers} > = O;

(ATTRIB: demand)
pararn Q > O;

(CLASS: cap)

(A TTRIB: capacity)
(MOD: (twi REPLACES <empty symbol>) =

Chapter 16

(pararn e {arcs} > = O; # (A TTRIB: earliest service time) REPLACES ()
and param I {arcs} > = O; # (A TTRIB: latest service time) REPLACES ()))

Figure 17. Segment from the extended AMPL formulation for the VRP.

set of addresses, a cluster, a set of clusters, a route, a set of routes, a vehicle,
and a set of vehicles. Secondly, there are objects associated with mathematical
programming formulations, such as a parameter, a set of parameters. a vari
able, a set of variables, a constraint, a set of constraints, and a linear program
ming formulation. Each of these objects may have one or more attributes asso
ciated with it, such as a travel time tij for an arc (i,j), a demand qi and a
time window [ej,lj] for an address j, and a capacity Qi for a vehicle i. Opera
tions on these objects include finding the best element in a set, deleting an
address from a route, adding an address to a route, evaluating an exchange of
addresses in a route, and solving a linear programming formulation.

The objects can be used to describe the input and output of an algorithm.
The overall goal of a vehicle routing algorithm is to produce a set of routes
(the output) on the basis of a set of addresses and vehicles with associated
attributes and restrictions as implied by the problem type (the input). This
overall goal can be broken into subgoals. The 'cluster first-route second' algo
rithms, for instance, have two subgoals: to produce a set of clusters using the
initial sets of addresses and vehicles, and to produce a set of routes using the
set of clusters. Therefore. an algorithm. consisting of a sequence of smaller
building blocks, is valid as long as the input of a building block is the output
of the previous building block.

An important notion in the description of algorithms is that of a technique.
A technique is a basic methodology that can be used in the construction of
algorithms. such as Lagrangean relaxation and branch and bound.

The model and algorithm management system for vehicle routing and
scheduling problems will use what we will call templates to represent tech
niques and algorithms. A template is a data structure that provides a descrip
tion of a technique or an algorithm in terms of their constituent components
and the interrelations between these. A template consists of a set of slots,
which store the components and relations. There are variable slots and per
manent slots. The fundamental operation performed on a template is instantia
tion, i.e., the creation a specific instance of a template by filling the variable

Model and algorithm management 109

slots. As a consequence we can distinguish two types of templates: generic and
instantiated. A generic template represents a class of techniques or algorithms
by describing the characteristics of the prototypical member of the class, i.e.,
by providing a skeleton for describing any possible instance in the class. An
instantiated template represents a specific technique or algorithm by instantia
tion of a generic template. The model and algorithm management system will
have one generic algorithm template and several generic technique templates.

An algorithm or technique template has to provide three types of informa
tion. First, there should be general information: the problem that is being
solved, a brief procedural description of the method, and results on its perfor
mance. Secondly, there should be information that is to be used by the infer
ence mechanisms: if the algorithm is based on a formulation, there should be a
reference to it, it should be stated what parts of the method deal with which
constraints, and also whether there are known rnodifications to make it appli
cable to other problems. Finally, there should be information for the user: a
natural language description and references to relevant papers in the literature.

More specifically, a generic algorithm template will have no permanent slots
and the following variable slots: CLASSIFICATION, DEFINITION, PERFORMANCE,

FORMULATION, DESCRIPTION, LITERATURE, and one or more algorithm specific
slots. Although the names of the slots are chosen to be self-explanatory, we
will discuss them briefly.
(1) The CLASSIFICATION slot gives the classification of the problem the algo

rithm is solving.
(2) The DEFINITION slot contains a listing of the other algorithms and tech

niques used by the algorithm and a procedural description of their interac
tion. These algorithms and techniques are defined in the algorithm specific
slots.

(3) The PERFORMANCE slot contains information on the efficiency and
effectivity of the algorithm. It will indicate the time and storage require
ments, whether it is an optimization or approximation algorithm, and
known results on its worst-case, empirical and maybe even average-case
behavior.

(4) The FORMULATION slot records, if the algorithm is based on a formulation.
where this formulation can be found.

(5) The DESCRIPTION slot provides a short natural language description of the
algorithm.

(6) The LITERATURE slot gives a number of relevant references.
(7) The algorithm specific slots contain instantiated algorithm or technique

templates.
A generic technique template will have two permanent slots, NAME and

DEFINITION, and the following variable slots: INPUT, OUTPUT, PERFORMANCE,

DESCRIPTION, and one or more technique specific slots.
(1) The NAME slot gives the name of the technique.
(2) The INPUT slot lists the objects the technique expects to be available.
(3) The OUTPUT slot lists the objects that will be produced.

110 Chapter 16

(4) The DEFINITION slot contains a listing of the other algorithms and tech
niques used by the technique and a procedural description of their interac
tion. These algorithms and techniques are defined in the technique specific
slots.

(5) The PERFORMANCE slot contains information on the efficiency and
effectivity of the technique. It will indicate the time and storage require
ments, whether it is an optimization or approximation technique. and
known results on its worst-case, empirical and maybe even average-case
behavior.

(6) The DESCRIPTION slot provides a short natural language description of the
technique.

(7) The technique specific slots contain instantiated algorithm or technique
templates.

To these slots, we will add comments that are to be used as a source of
information for the inference engine. They will associate parts of the algorithm
or technique with the constraints and provide information on relevant
modifications.

The most important information in a technique template is how the tech
nique specific slots interact. This can best be explained by means of examples.

Consider the technique template for branch and bound. It has four technique
specific slots: UPPER BOUND, LOWER BOUND, BRANCHING RULE, and SELECTION

RULE. The DEFINITION slot, which is shown in Figure 18, specifies the interac
tion between them. To supplement the knowledge incorporated in this tem
plate, the GKB contains additional facts about branch and bound. For
instance: branch and bound yields an optimal solution if run until completion
and an approximate solution if terminated prematurely; the upper bound is
obtained by some approximation algorithm; the lower bound is obtained by
some type of relaxation of the problem; the selection rule is to be chosen from
among a few standard ones such as best-first and depth-first; and the branch
ing rule partitions the set of feasible solutions. All this knowledge is quite stan
dard in operations research and can be used by the system to instantiate a
technique.

Another example is the technique template for Lagrangean relaxation. Its
INPUT, OUTPUT, and DEFINITION slots are given in Figure 19. The GKB con
tains several construction rules about the application of Lagrangean relaxation:
the constraints of the subproblem and the relaxed constraints form a partition
of the original constraint set; a multiplier has to be defined for each relaxed
constraint; if a candidate subproblem has the integrality property, then the
Lagrangean relaxation is not interesting; the multiplier adjustment method is
to be chosen from among subgradient optimization (the default), a dual ascent
method tailored for the model, or column generation; it may be possible to
obtain a feasible solution from a solution to the subproblem and the values of
the multipliers. This supplementary information is useful when this technique
has to be instantiated.

Appendix C shows an algorithm and the associated technique for the stan
dard vehicle routing problem, l I =m,cap I I sumTi.

Model and algorithm management

DEFINITION
UPPERBOUND()
LOWERBOUND()
BRANCHINGRULE()
SELECTIONRULE()

ActiveSet ~ OriginalProblem

111

UpperBoundValue & UpperBoundSolution ~ UPPERBOUND(OriginalProblem)
while (not empty(ActiveSet)) do
begin

Node ~ SELECTIONRULE(ActiveSet)
delete Node from ActiveSet
NewNodes ~ BRANCHINGRULE(Node)
for Node in NewNodes do
begin

LowerBoundValue & LowerBoundSolution ~ LOWERBOUND(Node)
if (LowerBoundValue ~ UpperBoundValue)
then

discard Node
else

if (FEASIBLE(LowerBoundSolution))
then

UpperBoundValue ~ LowerBoundV alue
UpperBoundSolution ~ LowerBoundSolution

else
add Node to ActiveSet

end
end

Figure 18. Definition slot for the branch and bound technique.

16.2. Manipulation
A substantial part of the knowledge in the GKB is related to the reasoning
and manipulation done by the system. We will distinguish several types of gen
eral knowledge.

Conceptual knowledge. This refers to all the concepts that are stored as facts
in the system and that form the basis of all manipulation done by the system,
such as a constraint, a relaxation, and a mixed integer programming formula
tion.

Operations research knowledge. This refers to the knowledge that may be use
ful when trying to decide if and how to apply a certain technique. As an exam
ple, the following knowledge may be available: the linear relaxation of a mixed
integer programming formulation provides a, sometimes bad, lower bound; in
fact, any relaxation of a mixed integer programming formulation provides a
lower bound. There is knowledge on how to construct various relaxations from

112

INPUT
Original Problem
RelaxedProblem

OUTPUT
LowerBoundValue
UpperBoundValue
U pperBoundSolution

DEFINITION
UPPERBOUND()
INITMULTIPLIERS()
ADJUSTMUL TI PLIERS()
SOLVE()
FEASIBLE()
UPDATE()

Chapter 16

UpperBoundValue & UpperBoundSolution <- UPPERBOUND(Origina!Problem)
INITMUL TIPLIERS(Multipliers)
iter <- 0
repeat

iter <- iter +
LowerBoundValue & LowerBoundSolution <- SOL VE(RelaxedProblem)
if FEASIBLE(LowerBoundSolution)
then

if LowerBoundValue = UpperBoundValue
then

stop
else

UPDATE(Lower BoundSolu tion, Upper Bound Value)
ADJUSTMUL TIPLIERS(LowerBoundSolution, Multipliers)

until 'no improvement' or iter > itermax

Figure 19. The input, output, and definition slots for the Lagrangean
relaxation template.

a formulation, such as relaxing one or more constraints.
Basic problems. There are descriptions of basic problems. such as the knap

sack problem and the linear assignment problem, in terms of constraint sets
plus information on the available algorithms for these problems. These basic
problems are useful when decomposition techniques are applied to a formula
tion. For example, if the system considers applying Lagrangean relaxation to a
formulation, it will scan the set of basic problems for problems that only have
constraints that appear in the formulation as well, since these basic problems
are suitable candidate subproblems for Lagrangean relaxation.

Model and algorithm management 113

Modification knowledge. Because a number of formulations (algorithms) are
stored only as modifications to other formulations (algorithms), there is
knowledge to guide the construction of formulations (algorithms) not explicitly
available.

Search knowledge. A considerable part of the knowledge will be devoted to
issues regarding the search of the various data bases. Efficient search strategies
are of crucial importance for the system since the amount of data in the sys
tem is enormous.

The short descriptions above are only meant to give an impression of the
types of knowledge available. In the next sections, more elaborate examples
will be given, especially for knowledge regarding the application of techniques.

Similarity in structure. A very important notion in the model and algorithm
management system is that of similarity in structure. The system will try to
identify pairs of problems that have a similar structure by comparing their
respective problem representations. The basic idea is that similarity in struc
ture can be measured by looking at the differences between problem represen
tations.

The representation defined in Chapter 15 uses 26 subfields to describe a
problem tyre, and each subfield has a limited number of values. We introduce
a weight wij so as to reflect the change in structure that results when the value
of subfield k is changed from i to j and the values for the other subfields
remain unchanged. The weight wt can of course be defined in several ways.
The simplest is to allow only two weights: small and large. The weight small
indicates that the problems are considered to have a similar structure and that
it is likely that formulations and algorithms for one of them can be modified in
order to be of use to the other. The weight large indicates. that the problems
are considered to have a different structure and that it is unlikely that formula
tions and algorithms for one of them can be modified to be of use for the
other. Note that we have assumed here that the change in structure is indepen
dent of the values of the other subfields. It is probably more realistic to define
conditional weight functions, where the value of the weight wt depends on the
values of the other subfields.

The following examples illustrate the concept of subfield changes and the
corresponding interpretation.

1 [1 [[T - 1, tw1 [1 [[T. This corresponds to the addition of time windows
to the cities in a traveling salesman problem, which makes the problem more
difficult.

1, TASK [m,cap 11 sumTi - 1, TASK [m,cap [full [sum Ti. This
corresponds to allowing only full truck loads in a pickup and delivery prob
lem. This is a simplification because it can now be modeled as a multisalesman
problem.

1 [m, cap [[sum Ti - 1, ~ [m, cap [[sum Ti. This corresponds to changing

114 Chapter 16

from deterministic demands to stochastic demands in a vehicle routing prob
lem, which completely changes its structure.

So far we have only discussed similarity in structure for representations that
differ in only one subfield. However, we have to be able to compare represen
tations that differ in more than one subfield as well. The most natural way to
do this is by looking at sequences of single subfield changes, i.e.,
~kEsubfields wt. In case of conditional weight functions this approach will be
more difficult since there may exist different sequences of single subfield
changes leading to different evaluations.

The definitions of the weight values represent a substantial part of the exper
tise that is built into the system.

Model integration. There are two ways to come up with a formulation for a
problem type P not explicitly stored in the PKB.

The first way is to see whether P is implicitly stored in the PKB. This is
done by searching the FKB for appropriate modification statements from the
AMPL extension language. If such statements are found, they provide all the
information needed to obtain a valid model for P.

The second way is to carefully merge two formulations associated with prob
lems similar in structure to P. In this case, we really constrnct a new formula
tion. Let P' and P" be two problems similar in structure to P. If the union of
their characteristics completely covers the characteristics of P and if their for
mulations have compatible variable and constraint definitions, we can attempt
to merge the two formulations. First, the new variable set is defined as the
union of the two variable sets. Secondly, complementary constraint sets are
extracted from the formulations, expressed in the new variables, and merged to
form the new formulation. Finally, the new formulation is validated, i.e., it is
checked whether the formulation is syntactically correct and deals with all the
constraints of problem P. Knowledge on the syntactic structure of a
mathematical programming formulation could be in the form of rules concern
ing the relationships between coefficient, variable and right-hand side indices
and their use in summations.

As an example, consider a PKB that contains, among others, the problems
1,twi I 111 T and 11 =m,cap 11 sumTi, and an FKB that contains the associ
ated formulations. For presentational convenience, we use the standard
mathematical notation, but we have added the relevant statements from the
AMPL extension language. The formulation of 1, twi 11 I I Tis:

minimize ~· c k ..:;_;ij If lj

subject to

~x=~x·=l ..:;_;j If ..:;_; j JI for i EN,

[#CONDUCES: arc assignment]

Model and algorithm management

Di+ tij - Di:;:;;; C(l - xij) for (i,j)EA,

[#CONDUCES: (tw1) and no subtours]

for i EN,

[#CONDUCES: (tw1)]

for (i,j) EA.

[#DEFINES: arc assignment]

The formulation of I I =m,cap 11 sumTi is:

... ~ ~ k
m1111m1ze .,::.,ii ciJ .,::.,k xii

subject to

for i =O,

for i EN,

[#CONDUCES: node assignment]

for kEM,

[#CONDUCES: node assignment and (cap)]

for i EN, k EM,

[#CONDUCES: arc assignment]

for 0-=f:-S CN, S-=f:-N,

[#CONDUCES: no subtours]

for i EN, k EM,

[#DEFINES: node assignment]

for (i,j)EA, k EM.

[#DEFINES: arc assignment]

115

Now, suppose we are interested in a formulation for the problem

1,twi I =m,cap 11 sumTi, which is not in the PKB. The system recognizes
that the characteristics of this problem are completely covered by the union of
the characteristics of the two problems mentioned above and that their associ

ated formulations have compatible variable and constraint definitions. In addi
tion, the system detects that if the two formulations are merged some redun

dancy arises: there will be two constraint sets to prevent subtours. It will
therefore delete one of them (the right one) to obtain:

... ~ ~ k mmm11ze c- • x • • ii lj k lj

116

subject to

~ k-~ k_ k X·· - X·· -y· j'IJ j JI I

for i =O,

for i EN,

[#CONDUCES: node assignment]

for kEM,

Chapter 16

[#CONDUCES: node assignment and (cap)]

for i EN, k EM,

[#CONDUCES: arc assignment]

Di+ tii - D.i ,s;; C(I-xt) for (i,j)EA, kEM,

[#CONDUCES: (tw1) and no sub tours]

for i EN,

[#CONDUCES: (tw1) and no subtours]

yfE{0,1} for i EN, k EM,

[#DEFINES: node assignment]

for (i,j) EA.

[#DEFINES: arc assignment]

Algorithm integration. An algorithm for a problem type P not explicitly stored

in the PKB can be constructed in several ways.
First, the AKB should be scanned for appropriate modification statements

from the template extension language, to see if P is implicitly stored in the
PKB. If so, these provide information indicating how the algorithm should be
modified to obtain a valid algorithm for P.

Secondly, two algorithms associated with problems that are similar in struc
ture to P might be merged. This closely resembles the merging of two formula
tions as described above. However, there is a distinction between merging algo
rithms based on a formulation and merging algorithms not based on a fornm
lation. In the first case, there exists a formulation F which is obtained by
merging two formulations F' and F'' associated with problem types P' and P"
similar in structure to P. Let A' and A" be two algorithms associated with the
formulations F' and F" respectively. The system tries to adapt one of them
using parts of the other. Suppose the system tries to adapt A'. To start, the
system identifies the characteristics or constraints of problem P that are not
dealt with by A'. Then, it establishes how these characteristics or constraints
are dealt with by A" and, if possible, modifies A' according to the techniques
used in A". Knowledge about the structure of the associated formulations
might guide this process. In the second case, the system performs the same

Model and algorithm management 117

steps without the additional knowledge from the formulations.
Finally, techniques might be applied to construct an algorithm. Suppose the

system obtains a formulation for some problem by merging formulations for
problems that have a similar structure. Instead of trying to merge the associ
ated algorithms, it might try to apply one or more techniques to this formula
tion. For instance, it could try to apply Lagrangean relaxation. Consider the
formulation for the problem 1 I I I T, the symmetric TSP:

minimize °" c x k,,lij If I}

subject to

foriEN,

for i EN,

for 0-=j=.S CN, S-=j=.N,

for (i,j)EE.

(I)

(2)

(3)

(4)

The system could successively try to move one or more of the constraints sets
(1)-(3) into the objective function and evaluate the resulting formulations. Note
that in order to be able to perform this evaluation, the system has to be able
to recognize the resulting subproblems as being the minimal spanning I-tree
problem, in case constraint sets (I) or (2) are moved into the objective func
tion, and the linear assignment problem, in case constraint set (3) is moved
into the objective function. Formulations should therefore be stored such that
these structural properties are included. Lee [1986] addresses the question of
how to manipulate and store formulations in such a way that structural infor
mation is included.

It is obvious that the research that is being done in the area of solving gen
eral mixed integer programming problems, such as Van Roy and Wolsey's
[1985] work on automatic reformulation and Glover and Klingman's [1987]
work on exploitable structure in linear and integer programs, is relevant in this
context.

16.3. Towards implementation
In order to assess different possible implementation strategies for the model
and algorithm management system, we explored the use of the programming
language Prolog [Clocksin and Mellish 1987]. Prolog is a language commonly
used in artificial intelligence applications. As a basis of comparison, we reim
plemented MPSCLASS, the classifier for machine scheduling problems of
Lageweg et al. [1981, 1982], which was briefly described in Section I.

MPSCLASS was originally implemented in Pascal on a mainframe com
puter, but has since has been converted to run on a personal computer, an
IBM PC/ AT. Our Prolog implementation was developed on a Macintosh II
running AAIS Prolog. Several slightly different implementations were
developed and tested, with the fastest one chosen for comparison with the

118 Chapter 17

Pascal implementation.
Prolog uses first-order logic as its paradigm. Since the structure of the prob

lem class under consideration is easily expressed in first-order logic, the trans
lation was quite direct. To increase execution speed, however, we relied on
several of Prolog's extra-logical features (the cut, assert and retract). We tested
our fastest implementation on a set of 1596 machine scheduling problems. It
required over twelve minutes of CPU time. In contrast, the Pascal implementa
tion required less than a second. Several factors contribute to the poor perfor
mance of the Prolog implementation. Neglecting differences among the
hardware, our version of Prolog is interpreted whereas the Pascal used is com
piled. But we doubt that even a compiled version of Prolog would run faster
than Pascal. In particular, the Pascal version stores the problems in an array,
which allows each problem to be accessed quite quickly; the Prolog version
stores each problem essentially as a relation in a relational database, with each
access to a problem requiring potentially linear time in the number of prob
lems. Prolog's storage scheme also requires a significant amount of memory,
since the problems are stored as strings of characters, rather than using a more
compact encoding scheme. With a better storage scheme for the Prolog version,
we might be able to reduce the storage requirements and execution time
significantly.

We offer some tentative conclusions concerning the use of a language such
as Prolog versus a traditional programming language for implementing the
model and algorithm management system for vehicle routing. Regarding execu
tion speed and storage requirements, there is little doubt that a procedural
language, with its ad hoc use of efficient data structures and algorithmic tech
niques, will dominate a logical language, which essentially applies exhaustive
search through all inferences that can be made. However, one must also con
sider the cost of developing and maintaining the program. In these respects,
Prolog seems to provide advantages over traditional procedural languages,
because it understands logical rules. Our first Prolog implementation was
developed in less than a day, and it was not hard to modify the program in
order to speed up execution. In addition, it is clear from the above that the
rules we intend to develop for inferring models and algorithms based on exist
ing vehicle routing models and algorithms will initially be expressed in logical
form. Prolog should allow us to translate those rules directly into a prototype
implementation, and thus has a significant advantage over a traditional pro
gramming language.

17. CONCLUSION

This final part of the monograph reported on our efforts to design a model and
algorithm management system for vehicle routing and scheduling problems. It
only contains basic ideas and is far from being a complete blueprint of the sys
tem. This is especially true for the algorithm selection and construction phase,
as can be seen from the frequent use of words like appropriate, adequate, and
suitable. The main challenge of the current research is to investigate the ques
tions how the knowledge should be organized and what types of inferences

Conclusion 119

should be made so as to achieve our goals.
In view of the close relation of these questions to the first two parts of the

monograph and the growing interest from management scientists and opera
tions researchers in artificial intelligence techniques, we felt it worthwile to
present our ideas. There still remain a lot of research questions to be settled.
We will mention a few.

We have been looking at problem types rather than problem instances. An
interesting question is whether it is possible to do parameter setting and algo
rithm tuning on the basis of the analysis of typical problem instances. Another
area for further research is that of structure identification in mathematical pro
gramming models. If really successful, it might be combined with automatic
decomposition and reformulation. Similarly, it is interesting to investigate
whether we can automate the determination of the level of aggregation best
suited for a certain problem type. Also, model building based on a set of
predefined constraint types, available in some knowledge base, in combination
with automatic index matching seems to be an interesting subject for further
research.

120

APPENDIX A. A STRUCTURED MODELING SCHEMA OF THE STANDARD VEHICLE

ROUTING PROBLEM

&YEHi The single depot, capacitated vehicle routing problem.

&LOCATIONS There are some LOCATION DATA

LOCi,j/pe/ There is a list of LOCATIONS. The first of these is the
depot and the rest are customers.

CUST _ LOC(LOCi)/ce/filter(i> l){LOC}. All but the first locations
are CUSTOMER LOCATIONS.

DEMAND(CUST LOCi)/a/{CUST LOC}:R+ Each
CUSTOMER LOCATION has a certain amount of DEMAND.

DIST(LOCi,LOCj)/a/ {LOC}X{LOC} where irreflexive: R +
There is a DISTANCE between each pair of non-identical
LOCATIONS.

&VEHICLES There are some VEHICLE DATA.

VEHiv/pe/ There is a list of VEHICLES.

CAPA(VEHiv)/a/{VEHI}:R+ Each VEHICLE has a maximimum
CAPACITY.

CUST SUB(CUST LOCi,VEHiv)/ce/Select {CUST LOC}X{VEHI}
where T covers {CUST LOC}, i unique, v covers {VEHI} Eve,y
VEHICLE is assigned a CUSTOMER SUBSET of its own. CUSTOMER
SUBSETS do not overlap.

AUG CUST SUB(LOCi,CUST SUB.v)/ce/ {CUST SUB} Union
((Filer(i= l){lOC})X{VEHI}) Every VEHICLE is assigned an
AUGMENTED CUSTOMER SUBSET consisting of its CUSTOMER
SUBSET plus the depot.

ROUTE(AUG CUST SUBiv,AUG CUST SUBjv)/ce/Select
{AUG CUST-SUB}X{AUG CUSf SUB} where (i,v) covers
{AUG-CUST-SUB}, (i,v) is unique, (j,v) is unique. For eve,y
VEHICLE there is a ROUTE specified as (from,to) pairs. Each ROUTE
makes a tour through the depot and the VEHICLE's CUSTOMER
SUBSET.

&CAP CALC There are some CAPACITY CALCULATIONS

Appendix A

YEHi DEM(CUST SUB.v,DEMAND)/f/ {YEHi};
SUMi(CUST _ SUBiv*DEMANDi) For each VEHICLE there is a
TOTAL DEMAND.

T:YEHI CAP(YEHI DEMv,CAPAv)/t/ {YEHi}; YEHi DEMv
< =CAPAv For each VEHICLE its TOTAL DEMAND does not
exceed its capacity (CAPACITY TEST).

&DISTANCE RESULTS

YEHi DIST(ROUTE.v.,DIST)/f/ {YEHi};
SUMCSUMj(ROUTEivj*DISTij) For each VEHICLE, there is a
TOTAL DISTANCE for its ROUTE.

GRAND TOT DIST(YEHI DIST)/f/l;SUMv(YEHI DISTv)
There is a GRAND TOTAL DISTANCE over all VEHICLES.

121

122 Appendix B

APPENDIX B. AN EXTENDED AMPL MODEL FOR THE STANDARD VEHICLE ROUT
ING PROBLEM

###SETS###
set addresses;
set customers within addresses;
set arcs within addresses cross addresses;
###PARAMETERS###
param t {arcs} > = 0;

(ATTRIB: travel time)
param q {customers} > = 0;

(A TTRIB: demand)
param Q > 0;

(CLASS: cap)
(A TTRIB: capacity)
(MOD: (tw1 REPLACES <empty symbol>) ⇒

(param e {arcs}>= 0; #(ATTRIB: earliest service time)
REPLACES () and param l {arcs} > = 0;
#(ATTRIB: latest service time) REPLACES ()))

###VARIABLES###
var m >= 0;

(CLASS: m)
(MOD: (=m REPLACES m) ⇒ (param m > =0) REPLACES

(var m >= 0))
var x {arcs} E { 0, 1 } ;

(DEFINES: arc assignment)
var 0 < = D {address} < = Q;

(DEFINES: resource utilization (cap))
(MOD: (tw1 REPLACES <empty symbol>) ⇒

(var T {address} > = 0; # (DEFINES: resource utilization (tw;))
REPLACES ()))

OBJECTIVE # # #
minimize total-travel-time:

sum { (i,j) in arcs} t[i,j] X x[i,j];
(CLASS: sum T;)

CONSTRAINTS # # #
subject to in-assign { i in address}:

if { i in customers}
then sum { (j,i) in arcs} xU,i] = 1
else sum { (j,i) in arcs} xU,i] m = 0;
(CONDUCES: arc assignment)

subject to out-assign {i in address}:
if { i in customers}

then sum { (i,j) in arcs} x[i,j] = 1
else sum { (i,j) in arcs} x[i,j]- m = 0;
(CONDUCES: arc assignment)

Appendix B

subject to capacity-constraints { (i,j) in arcs}:
D[i] + q[i] - DLi] < = (1 - x[i,j]) X M;

(CONDUCES: (cap) and no subtours)
(MOD: (tw1 REPLACES <empty symbol>) ⇒
(time-constraints REPLACES () and
address-time-window REPLACES ())

REPLACEMENT CONSTRAINTS # # #
subject to time-constraints { (i,j) in arcs}:

T[i] + t[i,j] - TLi] < = (1 - x[i,j]) X M;
(CONDUCES: (tw1) and no subtours)

subject to address-time-window {j in address}:
eLi] < = TLi] < = lLi];

(CONDUCES: (twj))

123

124 Appendix C

APPENDIX C. AN ALGORITHM AND ITS ASSOCIATED TECHNIQUE FOR THE STAN
DARD VEHICLE ROUTING PROBLEM

ALGORITHM

CLASSIFICATION
11 =m,cap 11 sumTi

DEFINITION
SEQUENTIAL INSERTION ()

PERFORMANCE
reasonable
(TYPE: empirical)

FORMULATION
EMPTY

DESCRIPTION
A set of vehicles based at a central depot is required to fulfill customers
demands. Each customer j has a demand q1 and the vehicles have capacity
Q. The objective is to minimize total travel time.

LITERATURE
N. CHRISTOFIDES (1985). The vehicle routing problem. E.L. LAWLER, J.K.
LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (eds.) (1985). The Traveling
Salesman Problem: a Guided Tour of Combinatorial Optimization, Wiley, Chi
chester, Ch. 12.

TECHNIQUE

NAME
SEQUENTIAL INSERTION

INPUT
set of addresses

OUTPUT
set of routes

DEFINITION
INITIALADDRESS ()
INSERTIONCRITERION ()
SELECTIONCRITERION ()

Appendix C

FASS set of addresses
while (not empty(F)) do
begin

r ASS (0, INITIALADDRESS(F), 0)
repeat

for u in F do
j(u) ASS INSERTIONCRITERION(r,u)

u* ASS SELECTIONCRITERION(r,F,J)
if (exists(u*)) then
begin

insert u* after f (u*) in r
FASS F-u*

end
until (not exists(u*))

end

INITIALADDRESS(F:set of addresses): address
argmaxu EFrlcbd o,urrcb
(TYPE: formula)

INSERTIONCRITERION(r: route, u: address): address
argmi11o9 ,;;,nrlcbdp,u + du,p + 1 -dp,p + 1 I ~09 ,;;,n qp + qu < Qrrcb

(CLASS: cap)
(TYPE: formula)

SELECTIONCRITERION(r: route, F: set of addresses,
f function (address):address): address
argminuEFrlcbdf(u),u +du,f(u)+ I -df(u),f(u)+ I rrcb
(TYPE: formula)

PERFORMANCE
O(n 2)

(TYPE: time)

DESCRIPTION
Sequential Insertion builds routes by the following iterative procedure:
(1) An initial tour is formed by choosing a single address.

125

(2) For all free addresses the best feasible insertion point after which it can
be inserted in the emerging route is determined.
(3) From all free addresses the one to be actually inserted is selected.

126

REFERENCES
J.M. ANTH0NISSE, J.K. LENSTRA, M.W.P. SAVELSBERGH (1987). Functional

Description of CAR, an Interactive System for Computer Aided Routing,
Report OS-R8716, Centre for Mathematics and Computer Science, Amster
dam.

J.M. ANTHONISSE, J.K. LENSTRA, M.W.P. SAVELSBERGH (1988). Behind the
screen: DSS from an OR point of view. Decision Support Systems 4, 413-419.

E.K. BAKER (1983). An exact algorithm for the time-constrained traveling
salesman problem. Oper. Res. 31, 65-73.

W.J. BELL, L.M. DALBERT0, M.L. FISHER, A.J. GREENFIELD, R. JAIKUMAR, P.
KEDIA, R.G. MACK, P.J. PRUTZMAN (1983). Improving the distribution of
industrial gases with an on-line computerized routing and scheduling optim-
izer. Inte1faces 13, 4-23. ·

J.L. BENNETT (1983). Analysis and design of the user interface for decision
support systems. J.L. BENNETT (ed.). Building Decision Support Systems,
Addison-Wesley, Reading, MA, 41-64.

J. BISSCH0P, A. MEERHAUS (1982). On the development of a General Algebraic
Modeling System in a strategic planning environment. Math. Programming
Study, 20, 1-29.

L. BODIN, B. GOLDEN (1981). Classification in vehicle routing and scheduling.
Networks 11, 97-108.

A. BROOKE, 0. KENDRICK, A. MEERAUS (1988). CAMS: A User's Guide, The
Scientific Press, Redwood City.

G.G. BROWN, G.W. GRAVES (1981). Real-time dispatch of petroleum tank
trucks. Management Sci. 27, 19-32.

N. CHRISTOFIDES, J.E. BEASLEY (1984). The period routing problem. Networks
14, 237-256.

N. CHRISTOFIDES, S. EILON (1969). An algorithm for the vehicle dispatching
problem. Oper. Res. Quart. 20, 309-318.

N. CHRISTOFIDES, A. MINGOZZI, P. TOTH (1981a). Exact algorithms for the
vehicle routing problem, based on spanning tree and shortest path relaxa
tions. Math. Programming 20, 255-282.

N. CHRISTOFIDES, A. MINGOZZI, P. TOTH (1981 b). State space relaxation pro
cedures for the computation of bounds to routing problems. Networks 11,
145-164.

N. CHRISTOFIDES, A. MINGOZZI, P. TOTH (1981c). Exact Algorithms for the
Travelling Salesman Problem with Time Constraints, Based on State-Space
Relaxation, Unpublished manuscript.

G. CLARKE, J.W. WRIGHT (1964). Scheduling of vehicles from a central depot
to a number of delivery points. Oper. Res. 12, 568-581.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967). Theo1:,i1 of Scheduling,
Addison-Wesley, Reading, MA.

A. CROES (1958). A method for solving traveling salesman problems. Oper.
Res. 5, 791-812.

127

G.B. DANTZIG, J.H. RAMSER (1959). The truck dispatching problem. Manage
ment Sci. 6, 80-91.

C.J. DATE (1975). An Introduction to Database Systems, Addison-Wesley,
Reading, MA.

R. DAVIS (1980). Meta-rules: reasoning about control. Artificial Intelligence 15,
179-222.

G. DESANCTIS (1984). Computer graphics as decision aids: directions for
research. Decision Sci. 15, 463-487.

M. DESROCHERS (1986). An Algorithm for the Shortest Path Problem with
Resource Constraints, Publication 421A, Centre de recherche sur Jes tran
sports, Universit de Montral.

M. DESROCHERS, J.K. LENSTRA, M.W.P. SAVELSBERGH (1989). A classification
scheme for vehicle routing and scheduling problems. European J. Oper. Res,
to appear.

M. DESROCHERS, J.K. LENSTRA, M.W.P. SAVELSBERGH, F. SOUMIS (1988).
Vehicle routing with time windows: optimization and approximation. B.L.
GOLDEN, A.A. ASSAD (eds.). Vehicle Routing: Methods and Studies, North
Holland, Amsterdam, 65-84.

M. DESROCHERS, F. SOUMIS (1985a). A Generalized Permanent Labelling Algo
rithm for the Shortest Path Problem with Time Windows, Publication 394A,
Centre de recherche sur Jes transports, Universit de Montral.

M. DESROCHERS, F. SOUMIS (1985b). A Reoptimization Algorithm for the Shor
test Path Problem with Time Windows, Publication 397 A, Centre de
recherche sur Jes transports, Universit de Montral.

J. DESROSIERS, Y. DUMAS, F. SOUMIS (1986a). The Multiple Vehicle Many to
Many Routing and Scheduling Problem with Time Windows, Cahiers du
GERAD G-84-13, Ecole des Hautes Etudes Commerciales de Montral.

J. DESROSIERS, Y. DUMAS, F. SoUMIS (1986b). A dynamic programming solu
tion of the large-scale single-vehicle dial-a-ride problem with time windows.
Amer. J. Math. Management Sci. 6, 301-326.

J. DESROSIERS, Y. DUMAS, F. SoUMIS (1987). Vehicle Routing Problem with
Pick-up, Delivery and Time Windows, Cahiers du GERAD, Ecole des Hautes
Etudes Commerciales de Montral.

J. DESROSIERS, P. PELLETIER, F. SouMIS (1984). Plus court chemin avec con
traintes d'horaires. RAIRO Rech. Opr. 17(4), 357-377.

J. DESROSIERS, M. SAUVE, F. SOUMIS (1985). Lagrangian Relaxation Methods
for Solving the Minimum Fleet Size Multiple Traveling Salesman Problem with
Time Windows, Publication 396, Centre de recherche sur les transports,
Universit de Montral.

J. DESROSIERS, F. SOUMIS, M. DESROCHERS (1984). Routing with time windows
by column generation. Networks 14, 545-565.

J. DESROSIERS, F. SOUMIS, M. DESROCHERS, M. SAUVE (1985). Routing and
scheduling with time windows solved by network relaxation and branch
and-bound on time variables. J.-M. Rousseau (ed.). Computer Scheduling of
Public Transport 2, North-Holland, Amsterdam, 451-469.

128

D.R. DOLK (1986). Data as models: an approach to implementing model
management. Decision Support Systems 2, 73-80.

D.R. DOLK, B.R. KONSYNSKI (1984). Knowledge representation for model
management systems. IEEE Trans. Software Engrg. SE-JO, 619-628.

Y. DUMAS (1985). Confection d'itinraires de vhicules en vue du transport de
plusieurs origines a plusieurs destinations, Publication 434, Centre de
recherche sur les transports, Universit de Montral.

Y. DUMAS, J. DESROSIERS (1986). A Shortest Path Problem for Vehicle Routing
with Pick-up, Delivery and Time Windows, Cahiers du GERAD G-86-09,
Ecole des Hautes Etudes Commerciales de Montral.

M.L. FISHER (1986). Interactive optimization. Ann. Oper. Res. 4, 541-556.
M.L. FISHER, R. JAIKUMAR (1978). A Decomposition Algorithm f<Jr Large-Scale

Vehicle Routing, Working Paper 78-11-05, Department of Decision Sciences,
University of Pennsylvania. ·

M.L. FISHER, R. JAIKUMAR (1981). A generalized assignment heuristic for
vehicle routing. Networks, 11, 109-124.

M.L. FISHER, R. JAIKUMAR, L. VANWASSENHOVE (1986). A multiplier adjust
ment method for the generalized assignment problem. Management Sci. 32,
1095-1103.

R. FOURER, D.M. GAY, B.W. KERNIGHAN (1987). AMPL: A Mathematical
Programming Language, AT&T Bell Laboratories, Murray Hill. N.J.

M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractabili(}': a Guide to
the The01y of NP-Completeness, Freeman, San Fransisco.

T.J. GASKELL (1967). Bases for vehicle fleet scheduling. Oper. Res. Quart. 18,
281-295.

A.M. GEOFFRION (1987). An introduction to structured modeling. Manage
ment Sci. 33, 547-587.

F. GLOVER, D. KLINGMAN (1988). Layering strategies for creating exploitable
structure in linear and integer programs. Math. Programming 40, 165-182.

M. GOETSCHALCKX, C. JACOBS (undated). The Vehicle Routing Problem with
Backhauls, Manuscript, Department of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta.

B.L. GOLDEN, A.A. ASSAD (1986). Vehicle routing with time-window con
straints: algorithmic solutions. Amer. J. Math. Management Sci. 6, 251-428.
(special issue).

LP. GOLDSTEIN, B. ROBERTS (1979). Using frames in scheduling. P.H. WINS
TON, R.H. BROWN (eds.). Artificial Intelligence: An MIT perspective, MIT
Press, Cambridge, MA.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979).
Optimization and approximation in deterministic sequencing and schedul
ing: a survey. Ann. Discrete Math. 5, 287-326.

GUAN MEIGU [KWAN MEI-Ko] (1962). Graphic programming using odd or
even points. Chinese Math. I, 273-277.

M. GUIGNARD (1984). Lagrangean Decomposition: an Improvement over
Lagrangean and Surrogate Duals, Report 62, Department of Statistics,
University of Pennsylvania, Philadelphia.

129

G.Y. HANDLER, P.B. MIRCHANDANI (1979). Location on Networks: Theo,y and
Algorithms, MIT Press, Cambridge, MA.

F.R.A. HOPGOOD, D.A. DUCE, J.R. GALLOP, D.C. SUTCLIFFE (1983). Introduc
tion to the Graphical Kernel System (GKS), Academic Press, London.

W. JAQUES (1859). The Icosian Game, published and sold wholesale by John
Jaques and Son, London.

1.-1.]AW, A.R. ODONI, H.N. PSARAFTIS, N.H.M. WILSON (1986). A heuristic
algorithm for the multi-vehicle advance request dial-a-ride problem with
time windows. Transportation Res. Part B 20B, 243-257.

C.V. JONES (1987). User interfaces. Unpublished manuscript; E.G. COFFMAN,
JR., J.K. LENSTRA, A.H.G. RINNOOY KAN (eds.). Handbook in Operations
Research and Management Science, Volume 3: Computation, North-Holland,
Amsterdam, to appear.

C.V. JONES (1988). The 3-dimensional Gantt chart. Oper. Res., to appear.
K.0. J6RNSTEN, M. NASBERG, P.A. SMEDS (1985). Variable Splitting - a New

Lagrangean Relaxation Approach to Some Mathematical Programming
Models, Report LITH-MAT-R-85-04, Department of Mathematics,
Linkoping Institute of Technology.

P.G.W. KEEN (1986). Decision support systems: the next decade. E.R.
McLEAN, H.G. SOL (eds.). Decision Support Systems: a Decade in Perspec
tive, North-Holland, Amsterdam, 221-237.

A.W.J. KOLEN, A.H.G. RINNOOY KAN, H.W.J.M. TRIENEKENS (1987). Vehicle
routing with time windows. Oper. Res. 35, 266-273.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1981).
Computer-Aided Complexity Classification of Deterministic Scheduling Prob
lems, Report BW 138, Mathematisch Centrum, Amsterdam.

B.J. LAGEWEG, J.K. LENSTRA, E.L. LAWLER, A.H.G. RINNOOY KAN (1982).
Computer-aided complexity classification of combinatorial problems. Comm.
ACM 25, 817-822.

G. LAPORTE, Y. NOBERT (1983). Generalized travelling salesman problem
through n sets of nodes: an integer programming approach. INFOR 21, 61-
75.

J.S. LEE (1986). A Model Base for Identifying Mathematical Programming Struc
tures, Report 86-06-05, The Wharton School, University of Pennsylvania.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1981). Complexity of vehicle routing
and scheduling problems. Networks 11, 221-227.

S. LIN (1965). Computer solutions to the traveling salesman problem. Bell Sys
tem Tech. J. 44, 2245-2269.

S. LIN, B.W. KERNIGHAN (1973). An effective heuristic algorithm for the trav
eling salesman problem. Oper. Res. 21, 498-516.

S. MARTELLO, P. TOTH (1981). An algorithm for the generalized assignment
problem. J.P. BRANS (ed.). Operations Research 81, North-Holland, Amster
dam. 589-603.

K. MENGER (1930). Das Botenproblem. K. MENGER (ed.) (1932). Ergebnisse
eines Mathematischen Kolloquiums 2, Teubner, Leipzig, 9. Kolloquium
(5.11.1930), 12.

130

C. MILLER, A. TUCKER, R. ZEMLIN (1960). Integer programming formulation
of travelling salesman problems. J. Assoc. Comput. Mach. 7, 326-329.

M. MINSKY (1975). A framework for representing knowledge. P.H. WINSTON
(ed.). The Psychology of Computer Vision, McGraw-Hill, New York.

J. MYLOPOULOS (1980). An overview of knowledge representation. M.L. BRO
DIE, S.N. ZILES (eds.). Proc. ACM Workshop on Data Abstraction, Data
bases, Conceptual Modeling, 5-12.

J. MYLOPOULOS, H.J. LEVESQUE (1984). An overview of knowledge representa
tion. M.L. BRODIE, J. MYLOPOULOS, J.W. SCHMIDT (eds.). On Conceptual
Modeling, Springer, New-York, 3-17.

I. OR (1976). Traveling Salesman-Type Combinatorial Problems and Their Rela
tion to the Logistics of Blood Banking, Ph.D. thesis, Department of Industrial
Engineering and Management Sciences, Northwestern University, Evanston,
IL.

C.S. ORLOFF (1976). Route constrained fleet scheduling. Transportation Sci. 10,
149-168.

H. PSARAFTIS (1983a). An exact algorithm for the single vehicle many-to-many
dial-a-ride problem with time windows. Transportation Sci. 17, 351-360.

H. PSARAFTIS (1983b). k-Interchange procedures for local search in a
precedence-constrained routing problem. European J. Oper. Res. 13, 391-402.

H.N. PSARAFTIS (1983). Analysis of an O(N2) heuristic for the single vehicle
many-to-many Euclidean dial-a-ride problem. Transportation Res. Part B
17B, 133-145.

D. RoNEN (1987). Perspectives on practical aspects of truck routing and
scheduling. European J. Oper. Res., to appear.

G.T. Ross, R.M. SOLAND (1975) A branch and bound algorithm for the gen
eralized assignment problem, Math. Programming 8, 91-103.

T. RUBACH (1985). Programmbibliothek und Expertensystem zur Maschinen
belegungsplanung: Algoritmische Beschreibung - Dokumentation, Report
WIOR-241, Universitiit Karlsruhe.

R.A. RUSSELL (1977). An effective heuristic for the m-tour traveling salesman
problem with some side constraints. Oper. Res. 25, 517-524.

M.W.P. SAYELSBERGH (1986). Local search in routing problems with time win
dows. Ann. Oper. Res. 4, 285-305.

M.W.P. SAYELSBERGH (1989). Efficient implementations of local search algo
rithms for constrained routing problems. European J. Oper. Res, to appear.

T.R. SEXTON, L.D. BODIN (1985a). Optimizing single vehicle many-to-many
operations with desired delivery times: I. Scheduling. Transportation Sci. 19,
378-410.

T.R. SEXTON, L.D. BODIN (1985b). Optimizing single vehicle many-to-many
operations with desired delivery times: II. Routing. Transportation Sci. 19,
411-435.

B. SHNEIDERMAN (1987). Designing the User I nte,face: Strategies for Effective
Human-Computer Interaction, Addison-Wesley, Reading, MA.

M.M. SOLOMON (1987). Vehicle routing and scheduling with time window con
straints: models and algorithms. Oper. Res. 35, 254-265.

131

M.M. SOLOMON (1986). On the worst-case performance of some heuristics for
the vehicle routing and scheduling problem with time window constraints.
Networks 16, 161-174.

M.M. SOLOMON, E.K. BAKER, J.R. SCHAFFER (1987). Vehicle Routing and
Scheduling Problems with Time Window Constraints: Implementations of Solu
tion Improvement Procedures. Working paper 87-03, Northeastern University.

B. SORENSEN (1986). Interactive Distribution Planning, Ph.D. thesis, Technical
University of Denmark, Lyngby.

F. SOUMIS, J. DESROSIERS, M. DESROCHERS (1985). Optimal urban bus routing
with scheduling flexibilities. Lecture Notes in Control and !,!formation Sci
ences 59, Springer, Berlin, 155-165.

R.F. SPROULL, W.R. SUTHERLAND, M.K. ULLNER (1985). Device-Independent
Graphics, McGraw-Hill, New York.

H. STERN, M. DROR (1979). Routing electric meter readers. Comput. & Oper.
Res. 6, 209-223.

A.J. SWERSEY, W. BALLARD (1984). Scheduling school buses. Management Sci.
30, 844-853.

E.R. TUFTE (1983). The Visual Display of Quantitative information, Graphics
Press, Cheshire, CT.

T.J. VAN ROY, L.A. WOLSEY (1987). Solving mixed integer programming prob
lems using automatic reformulation. Oper. Res. 35, 45-57.

132

Index

2-exchange
Benders decomposition
CAR
DARP
GAP
GKS
Graphical Kernel System
IPS
Lagrangean decomposition
Lagrangean relaxation
Or-exchange
PDPTW
TSP

TSPTW
VRP
VRPTW

abstract problem type
action language
advisor
algorithm integration
algorithm knowledge base
algorithm validation
assistant
automatic pilot
automatic scratch pad
backward Or-exchange
branch and bound
classification scheme
cluster first-route second
column generation
completeness and conciseness
complexity
consistency
construction method
cross neighborhood
decision making
decision support
decision support system
definition language
dial-a-ride problem

6.1, 6.2, 6.3, 6.4, 6.5, 6.6
3, 4.3, 5
8, IO, 11, 12, 15.2
1, 3.1, 4.3, 6, 15.2
2.1, 3, 5, 5.1
10.4, 10.7, 12, 12.1, 12.3
10.4, 12, 12.l
9, 9.1, 9.3, 9.4, 9.6, 13
3, 3.1
3, 3.1
6.1, 6.2, 6.3, 6.4, 6.5, 6.6
1, 2, 2.2, 3.1, 3.2, 4
1, 2.1, 4, 4.1, 5, 6, 6.2, 6.4, 6.5, 6.6,
6.8, 7, 15.2
1, 2.1, 3, 3.1, 3.2, 4.1, 15.2
1, 2.1, 4, 4.1, 4.2, 5, 6, 6.8, 7, 15.2
1, 2, 2.1, 2.2, 3, 3.1, 3.2, 4, 4.1, 4.2,
5.3
14, 16.2
9.6, 12.1, 12.3
9.4, 10
16, 16.2
16
16.2
9.4, 10
9.4
9.4
6.1, 6.2, 6.5, 6.6
3, 3.2, 5
15, 15.1, 15.2, 16
4.2, s, 10.2
3, 3.2, 5, 7
9.4
1, 4, 5.3, 6, 6.2, 6.3, 6.4. 9.3
9.4
4, 4.3, 6
6.8
8, 9, 9.3, 9.6
9.3
8
9.6, 12.2
1, 3.1, 6.6, 15.3

dynamic programming
ease of use

1, 3, 3.1, 3.2
9.4

enumerative optimization 1
exchange neighborhood 6.8
fast approximation 1, 5
formulation knowledge base 16
forward Or-exchange 6.2, 6.5, 6.6
frame-based representation 16.1
functional description 9.4, 11
functional requirements 9, 9.4
general knowledge base 16
generalized assignment problem 2.1, 3, 5.1
iconic graphics 9.6
incomplete optimization 1, 4, 5
insertion method 4.2, 5.3
instantiation 16.2
interactive optimization 4.2
interactive planning system 8, 9, 9.1, 10, 10.3
iterative improvement 1, 4, 5, 6, 6.4, 6.8, 7
k-exchange 6, 6.2,
lexicographic search strategy 6.2, 6.3, 6.4, 6.5, 6.6, 6.8
logical representation 16.1
m-TSPTW 1, 3, 3.1, 3.2
management information system 9.1
mathematical programming formulation 1, 2.1, 2.2, 5, 16, 16.2
maximum collection increase 5.3
maximum delivery increase 5.3
model integration 16, 16.2
model management system 16
model validation 16
modeling language 16.1
multiple traveling salesman problem
with time windows
nearest neighbor
neighborhood
network representation
operations research
pickup and delivery problem
with time windows
possible backward shift
possible forward shift
presentation language
problem knowledge base
real-life problem situation
relocate neighborhood
representational graphics

4.2
6, 6.8
16.1
14, 15, 16.2, 17

1, 2, 2.2, 3.2, 4.3
4, 4.3, 6.3, 6.4
4, 4.2, 4.3, 5.3, 6.3, 6.4
9.6, 12.1, 12.2
16
14, 15
6.8
9.6

133

134

robustness
savings method
seed
seed routes
set partitioning
shortest path problem
similarly structured
simplicity
slot
state space relaxation
structural description
structured modeling
sweep method
template
traveling salesman problem
traveling salesman problem
wifh precedence constraints
traveling salesman problem
with mixed collections and deliveries
traveling salesman problem
with fixed paths
traveling salesman problem
with time windows
traveling salesman problem
with multiple time windows
user interface
vehicle routing problem
vehicle routing problem
with time windows

9.4
4.2
4.2, 5, 5.1, 5.2
5, 5.1, 5.2
1, 3, 3.1, 3.2, 5, 7
3, 3.1, 3.2
16, 16.2
9.4
16.2
3, 3.1
16.2
16.1
4.2
16.2
3.1, 4.1, 5, 6.1, 15.3, 16, 16.2

4.1, 6.6

4.1, 6.5

6.7

4.1, 6.3, 15

6.4
9, 9.6, 10.3, 12, 12.2, 13
3.1, 4.1, 6.8, 15, 15.3, 16, 16.1, 16.2

1, 2.1, 3.2, 4.2

CWITRACTS
~9~.t.J. Epcma. Su,faces with canonical hyperplane sections.

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension if1 temzs of negligibility. 1984.

3 A.J. van der Schaft. System theoretic descriptions of physical
systems. l 984. ·

4 J. Koene. Minimal cost flow in procl:'ssing networks, a primal
approach. 1984.
5 R Hoogenboom. flllertwining functions 011 compact lie
groups. 1984.

6 A.P.W. B0hm. Datajlow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.

8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984.

9 C.P.J. Koymans. Models of the lambda calculus. 1984.
10 C.G. van der Laan, N.M. Temme. Calculation of special
functions: the gamma function, the exponential integrals and
error-like functions. I 984.
11 N,M. van Dijk. Controlled Markov processes; time
discretization. 1984.

12 W .H. I-lundsdorfcr. The numerical solution of nonlinear
r/Jl,/litial value problems: an analysis of one step methods.

13 D. Grune. On the design of ALEPH. I 985.

14_ J.G.F. Thiemann. A11.aly1ic spaces and dynamic program
mmg: a measure theoret,c approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infinite
primes. 1985.

16 R.~.P. Groothuizen. Mixed elliptic-hyperbolic partial dif {e;;;~1al operators: a case-study in Fourier imegral operators.

17 H.M.M. ten Eikclder. Symmetries for dynamical and Hamil
tonian systems. 1985.

18 A.D.M. Kester. Some larf?e deviation results in statistics.
1985.

19 T.M. V. Janssen. Foundations and applications of Montague f~~tll(Ir, part I: Philosophy, framework, computer science.

20 B.F. Schriever. Order dependena. 1986.
21 D.P. van dcr Vccht. Inequalities for stopped Brownian
motion. I 986. ·

22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
w,pects of a,1 evolution. 1986.

24 J.C.M. Baeten. Filters and ultra.filters over definable sub
sets of admissible ordinals. 1986.

25 A.W.J. Kolen. Tree network mid planar rectilinear location
theory. 1986.

?6 A.H_. Veen. The misconstrued semicolon: Reconciling
imperative languages and data.flow machines. 1986.

27 A.J.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sds. 1986.
28 T.M. V. Janssen. Foundations and applications <f Montague
grammar, part 2: Applications to natural language. 1986.

29 H.L. Trcntclman. Almost invariant subspaces and high ~ain
feedback. 1986. "

30 A.G. de Kok. Production-inventory control models:
approximations and algorithms. 1987.
3 I E.E.M. van Bcrkum. Optimal paired comparison designs
for factorial experiments. 1987. '

32 J.H.J. Einmahl. Multhmriate empirical processes. 1987.

33 O.J. Vrieze. Stochastic games with finite state and action
spaces. 1987.
34 P.H.M. Kersten. Infinitesimal symmetries: a computational
approach. t 987.

fi8~.L. Eaton. Lectures on topics in probability inequalities.

36 A.H.P. van dcr Burgh, R.M.M. Mattheif(eds.). Proceedings
of the first intemational conference on industrial and applied
mathematics (IC/AM 87). 1987.

37 L. Stougie. Design and analysis vf algorithms for stochastic
integer programmin,::. 1987.

38 J.B.G. Frenk. On Banach algebras, renewal measures and

regenerative processes. 1987.
39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory
and related topics. 1987.
40 J.L. Geluk, L. de Haan. Regular variation, extemions and
Tauberian theorems. 1987.
41 Sape J. Mullender (ed.). The Amoeba d;stributed operating
system: Selected papers J984-I987. 1987.
42 P.R.J. Asveld, A. Nijholt (eds.). Essays 011 concepts, for
malisms, and tools. 1987.

43 H.L. Bodlaender. Distributed computing: structure and
complexity. 1987.
44 A.W. van der Vaart. Statistical estimation in large parame
ter spaces. 1988.
45 S.A. van de Geer. Regression analysis and empirical
processes. 1988.

46 S.P. Spekreijse. Multigrid solution <if the steadv Euler equa-
tions. 1988. ·

47 J.B. Dijkstra. Analysis of means in some 11011-standard
situations. 1988. ·

48 F.C. Drost. ~symptotics for generalized chi-square
goodness-oFfit tests. 1988.
49 F.W. Wubs. Numerical solution cf the shallow-water equa
tions. 1988.
50 F. de Kerf. Asymptotic analysis ,if a class of perturbed
Korteweg-de Vries initial value problems. 1988.
51 P.J.M. van Laarhoven. Theoretical and computational
aspects of simulated annealing. 1988.
5_2 P.M. van Loon. Continuous decoupling Iran.formations fnr
lmear boundary value problems. 1988.
53 K.C.P. Machielscn. Numerical solution of optimal control
problems ivith state constraints by sequrntial quadratic pro
gramming in function .~pace. 1988.
54 L.C.R.J. Willenborg. Computalfrmal aspl'Cts (!{ s111'\'ey data
processing. 1988.

55 G.J. van der Steen. A program generator for recognition,
parsing and transduction with syntactic patterns. 1988.
56 J.C. Ebcrgen. Translating programs into delay-insensitive
circuits. 1989. ·

57 S.M. Verduyn Lune!. EXponential type calculus for linear
delayequations. 1989.
58 M.C.M. de Gunst. A random model for plant cell popula
tion ,::rowth 1989.

~:;,~;gv/?. ~~~~-. Charactt!rizations of Banach spaces not con-

60 H.E. de Swart. Vacillation and predictability properties of
low-order atmo.}pheric spectral models. 1989.

61 P. de Jong. Central limit theorems for genaalizcd multil
inearfonns. 1989.

1~s~:J. de Jong. A specification system for statistical ,w~ftware.

63 B. Hanzon. ldemijiability, recursive idemification and
.,paces of linear dynamical systems, part I. 1989.

64 B. Hanzon. Identifiability, recursive ident{ficatim, and
spaces of linear dynamical systems, part JJ. 1989.

f~8~_.M.M. de Weger. Algorithms for d;ophantine equations.

66 A. Jung. Cartesian closed categories of domains. 1989.

67 J.W. Poldcrman. Adaptive control & ide11t(ficatio11: Conflict
orconflux?. 1989. ·

68 H.J. Wocrdeman. Matrix and operator extensions. 1989.

69 B.G. Hansen. Monotonicity properties of i11fi11ite!y divis;/J/e
distrihutions. 1989.

70 J.K. Lcnstra: H.C. Tijms, A. Volgenant (eds.). Twenty-five
years of nperatwns research in the Netherlands: Papers dedi
cated to Gijs de Leve. 1990.

71 P.J.C. Sprcij. Counting process systems. Ide11tification and
stochastic realization. 1990.
72 J.F. Kaashoek. Modeling one dimensional patternfonnation
hy anti-diffusion. 1990.

73 A.M.H. Gcrards. Graphs and polyhedra. Binarv spaces and
cutting planes. 1990. ·

74 B. Koren. Multigrid and defect correction for the steadv
Navier-Stokes equations. Application to aerodynamics. 1991. ·

75 M.W.P. Savelsbergh. Computer aided routing. 1992.

76 O.E. Flippo. Stability. duality and decomposition in general
mathematical programming. 1991.
77 A.J. van Es. A.\pects of nonparametric density estimation.
1991.
78 G.A.P. Kindervatcr. Exercises in parallel combinatorial
computing. 1992.
79 J.J. Lodder. Towards a symmetrical theory of generaliz.ed
functions. 1991.

80 S.A. Smuldcrs. Cofltrol o.ffreeway traffic.flow. 1992.
8 I P.H.M. AmeriL:a, J.J.M.M. Rutten. A parallel object
oriented language: design and senumticfowulations. 1992.

82 F. Thuij~man. Optimality and equilibria in stochastic
games. 1992.
83 R.J. Kooman. Convergence properties of recurrence
sequences. 1992.

84 AM. Cohen (ed.). Computational aspects of Lie group
representations and related topics. Proceedings o.f t!w 1990
Computational Algebra Seminar at CW/, Amsterdam. 1991.
85 V. de Valk. One-dependent processes. 1992.
86 J.A. Baars. J.A.M. de Groot. On topoloJ.:ical and linear
equivalence of certainf1mction spaces. 1992. ,

87 A.F. Monna. 711e way of mathematics and mathematicians.
1992.

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes. part
I: model and method. 1964.
4 G. de Leve. Generalized Markovian decision processes, parr
II: probabilistic background 1964.
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice.· Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of ne,,.~paper Dutch.
1965.
13 H.A. Lauwerier. Asymptoric expansions. 1966, out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Ca/culw of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition 1,,programmi"!,
\~ges with an application to the de mi/ion of AL OL 60.

17 R.P. van de Riel. Formula manipulation in ALGOL 60,
part I. 1968.
18 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.
21 E. Wattel. The compactness operator m set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Pafrl. Representations of the Lorentz group and projec
tive geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part I.
1968.
27 European Meeting 1968. Selected statistical papers, part 11.
1968.
28 J. Oostcrhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoefl. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computaliona/ linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribu1ion functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. 1970.
34 I. Juhasz, A. Verbeck, N .S. Kroonenberg. Cardinal func
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary• layers. 1971.
37 J.W. de Bakker, G.A. Blaauw. A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruscman, M.V. Wilkes, G. Zoutendijk. MC-25 lnforma11ca
Symposium. 1971.
38 W .A. Verloren van Themaat. A utomauc analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of ls.SJ inventory models. 1972.
41 A. Verbeck. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (wtth applica
tions in number theory·). f972.
43 F.H. Ruymgaart. Asymptotic theory· of rank tests for
independence. f973.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balkema. Monotone transformalions and limit laws.
1973.
46 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systems, part I: ihe language. 1973.
47 R.P. van de Riel. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. Kruscman Aretz. P.J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-XB. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Smtzorr, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. I 974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A.'Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part/:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinutorial
geometry. 1914.
57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1915.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. I 976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lame
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionislic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational stu,ry of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic opllmality of likelihood
ratio tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Emperica/ dismbutions and rank
statistics. 1977.
80 P. W. Hemker. A numerical stud)· of stiff two-point boundary
problems. 1977.
81 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science II, part I. 1976.
82 K.R. Apt. J.W. de Bakker (eds.). Foundalions of computer
science I/, part 2. 1976.
83 L.S. van Benthem Jutting. Checking Landau"s
"Grundlagen" in the AUTOMATH svstem 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic mto l.Atin ~r Hermann of Carinth1a {?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming system for operations o~ vectors and matr,ces over arbi
trary pelds and oJ variable s1:e. 1978.
88 A. Schrijver. Matro1d, and linking .,ystem.,. 1977.
89 J.W. de Roever. Complex Fourier transf0rmation und
ana(1mc funaionals wuh unbounded c·arr,ers. 1978.

90 L.P.J. Groenewegen. Characterzzation of optimal strategies
in dynamic games. 1981.
91 J.M. Geysel. Tramcendence infields of positive characteris
tic. 1979.
92 P.J. Weeda. Fmite grnera/ized Markov programming. I 979.
93 H.C. Tijms. J. Wessels (eds.). Markov decision rheory.
1977.
94 A. Bijlsma. SimultaneotLS approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vititnyi. Lmdenmayer system,: structure, languages,
and growth functions. J 980.
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular penurbarions of hyperbolic ~vpe. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan. P. van Emde Boas
(eds.). Interfaces between computer sc,ence and operations
research. I 9°78.
100 P.C. Baayen, D. van Dulst. J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
I. 1979.
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979. :g~8?. van Dulst. Reflexive and superrejlexive Banach spaces.

103 K. van Ham. Classifying infinitely divisible distributions
by functional equations. J<.ns.
104 J.M. van Wouwe. Go-spaces and generalizations ofmetri
zahilily. 1979.
105 R. He~e~s. Edgeworth expansions for lmear combmauons
of order slallsllcs. 1982.
106 A. Schrijver (ed.). Packmg and covering in combmalorics.
1979.
l07 C. den Heijer. The numerical solurwn of nonlinear opera
tor equations by imbedding methods. 1979,
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundarions of
computer science Ill, part 1. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundarions of
computer science Ill, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 1ranspu1, pan I: hislorical
review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 rranspul, par/ II: an implemen
tation model. 1979.
l 12 H.C.P. Berbee. Random walks wuh slationarl/ increments
and renewal theory. I 979. '
113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricted alternatives. 1979.
I 14 A.J.E.M. Janssen. Application of the Wigner d1str1bution to
harmonic analysis of generaltzed stochastic processes. 1979.
115 P.C. Baayen. J. van Mill (eds.). Topological srruclures II,
pan I. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological s1ruc1ures II,
pan 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
stale space. 1979.
118 P. Groenehoom. Large devzalwns and asympwtic efficien-
cies. 1980. ·
119 F.J. Pet~rs. Sparse matrices and substructures, with a novel
implemen1at10n oJfinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques m design and graph
rheory. 1980.
122 J.C.P. Bus. Numenca/ solution of systems of nonhnear
equations. 1980.
:~~01_. Yuhasz. Cardinal functions m topology. ten years later.

124 R.D. Gill. Censoring and stochastic mtegrals. 1980.
125 R. Eising. 2-D sysrems, 0fl algebraic approach. 1980.
126 G. van der Hoek. Reducrion methods in nonlinear pro
gramming. 1980.
127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J, Talman. Varzable dimensionjixedpomt algorzthms
and triangulations. 1980.
129 G. van der Laan. Simplicialfixedpoinr algorirhms. 1980.
130 P.J.W. ten Hagen. T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program rejinemems·
proof theory and applications. 1980.
132 H.M. Mulder. The inrerval funcrion of a graph. 1980.
133 C.A.J. Klaassen. Statistical performance of local ion esti
mators. 1981.
134 J.C. van Vliet. H. Wurzer (eds.). Proceedings interna
tional conference on ALGO 68. 1981.
135 J.A.G. Groenendijk. T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal method, in the srudy of language, pan I. 1981.
136 J.A.G. Groenendijk. T.M.V. Janssen. M.J.B. Stokhof
(eds.). Formal merhods m rhe s1udy of laflguage, pan II. 1981.
137 J. Telgen. Redundanl}' and lmear programs. 1981.
138 H.A. Lauwerier. Mathematical models ofep1dem1cs. 1981.
139 J. van der Wal. Stochastic dynamic programming, succes
sive approximations and near(r optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point ~rpothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogemesfor certam ~J'pes of
Fano 1hreefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamicfeedback infinite- and
mfinire-dimenswna! linear sysrems. 1981.
144 P. Eijgenraam. The solution of initial value problems IL'>ing
interval arithmetic; formulation and analysis of an algorithm.
1981.
145 A.J. Brentjes. Mulll-dm1ensional continued fractwn algo
rirhms. 1981.
146 C. V -~- van der Mee. Semigroup and facror1zation
methods m transport theory. 1981.
147 H.H. Tigelaar. ldentffication and informa11ve sample si:;e.
1982.
148 L.C.M. Kallenberg. Lmear programming and_fimte Mar
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek. W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, proceedings of a ~ymposi1,m
in honour of A.C. Zaanen. 1982.
150 M. Veldhorst. An analysis o_(sparse matnx s10rage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymplOllcr for simpk linear
rank statistics. 1982.
152 G.F. van der Hoeven. Pro1ec11ons of lawless sequences.
1982.
153 J.P.C. Blanc. Applicatzon of the theory of boundary value
problems m the anab·s1s of a queuemg model wuh pa,red ser
vices. 1982.
154 H.W. Lenstra, Jr.. R. Tijdeman (eds.). Comp111a11onal
methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computarwnal
methods in number theory, part I I. 1982.
156 P.M.G. Apers. Query processing and data allocallon m
distributed Jataba.re systenLr. 1983.
157 H.A.W.M. Kneppers. The covanant cla.ss1fication of two
dimenswnal smooth commutative formal groups over an alge
braically closed field of pos/llve characteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundarwns of
computer science IV, distributed .systems, part 1. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Faundatwns of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abs1rac1 AUTOMATH. 1983.
161 G.F. Helminck. Eisen.stem senes on the metaplect1c group.
an algebraic approach. 1983.
162 J.J. Dik. Tesrsfor preference. 1983.
163 H. Schippers. Mulllple gnd merhods for equa/lons of rhe
second kind with applications in fluid mechamcs. 1983.
164 F.A. van der Duyn Schouten. Markov dec1s1011 processe\·
wilh conlmuous lime parameter. I 983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abs1rac1wn, spectjicatwn and implem£'n
tation techmques. with w, application to garbage co/lectwn.
1983.
167 W.H.M. Zljm. Nonnegallve matrices m dynamic program
mmg. 1983.
168 J.H. Evertse. Upper houndr for the numhers of solurwns oj
diophantme equations. 1983.
169 H.R. Bennett, D.J. Lutzer (ed~.). Topologv and order
structures, part 2. 1983.

