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Chapter 1

PRELIMINARIES

1.1 Introduction and summary

The field of infinitely divisible random variables has grown during the last few
decades to take a permanent position in the theory of probability. Almost all standard
text books on probability now include at least one chapter devoted to the field of
infinite divisibility. This is mainly due to its importance in solving the general central
limit problem and to its applications to stochastic processes with stationary
independent increments.

The notion of infinite divisibility originated in connection with the central limit
problem. The classical central limit problem is concerned with characterizing the
random variables X which can be obtained as

n w

Y a, Xg+b,>Xasn—oo,

k=1
where (Xi) is a sequence of identically distributed random variables with finite
variance a and expectation b, and a,,=(na)‘l’i and b, =-nb (a,,)""‘. It turns out (cf.
Logve (1977)) that X must be a normally distributed random variable with mean zero
and variance one. Natural generalizations of the classical central limit problem (and
thus of the normal distribution) is to drop the condition that the X;’s have finite mean
and variance (these limit random variables are called stable) and to consider limits
where (X;) does not necessarily have finite mean and variance and are not necessarily
identically distributed (these limit random variables are called self-decomposable).
Infinitely divisible random variables generalize the stable and self-decomposable ones
as they are defined as the solution of the following (general) central limit problem:

n w
Y Xin—oXasn—oo,
k=1
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with some conditions on (a,), (b,) and (X »).

Though practical applications have started to appear (cf. for example Ahmad and
Abouammoh (1977), Thorin (1977), Carasso (1987), Keilson and Servi (1987) and
Hansen and Willekens (1989)), infinite divisibility is (still) mainly of theoretical
interest. In this monograph the emphasis is on the theory. Examples and practical
applications are, as a rule, not sought.

Our starting point is the Lévy canonical representation of infinitely divisible
distributions (cf. Theorem 1.3.2 of this monograph), where the characteristic function
of an infinitely divisible distribution function F is related with a function M, called the
Lévy spectral function. We are interested in characterizing the distributions F which
have a Lévy spectral function M satisfying some monotonicity requirement.

In Chapter 2 we give a review of known monotonicity results in infinite
divisibility and we present a curious connection with analogous results in renewal
theory. In Chapters 3 and 4 we consider non-negative infinitely divisible random
variables whose Lévy spectral functions are either absolutely continuous or supported
by the non-negative integers. Chapter 3, which is based on the article On Moment
Sequences and Infinitely Divisible Sequences, Hansen and Steutel (1988), studies
these Lévy spectral functions in the context of moment sequences and moment
functions. The results of On Logconcave and Logconvex Infinitely Divisible Sequences
and Densities , Hansen (1988), are given in Chapter 4, where log-concave and log-
convex Lévy spectral functions are considered. The set of infinitely divisible
distributions with a-unimodal Lévy spectral functions is characterized in Chapter 5.
Chapter 6 deviates from the theme of this monograph, as it studies infinitely divisible
random variables with o-unimodal Lévy spectral functions as limits of sums of
triangular arrays of random variables and as limits of sums of shrunken random
variables.

1.2 Notations and conventions

In this section we list notations and conventions, which will be used throughout
this monograph, often without further reference.

Let R :=(—e0,), R, :=[0,0), R_ = (—,0], INp :={0,1,..} and
N, :={1,2,..}. Random variables will always be one-dimensional and real-
valued. They will be denoted by the capitals X, Y, Z, ... . The distribution functions of
X and Y will be denoted by F and G; their densities, if they exist, by f and g; their
characteristic functions by ¢ and 7, with ¢ defined by

o= [ e™dF(x), teR.

If the random variables X and Y are non-negative then we denote their Laplace-
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Stieltjes transforms by fand 2, where fis given by
f= [e™=dF (), TeR,.
R,

If the random variables are non-negative and concentrated on the non-negative
integers INg, then we call their distributions discrete and denote them by
®@n)n=0> @Gn)n=0s (rn)n=0 » ... . Their probability generating functions will be denoted
by P, O, R, ..., with P defined by

P(z)= Y p,z", lz1<1.
n=0

In general, we shall denote the generating function of a sequence (a,),-o by the
corresponding capital letter A, where

A@)=Ya,z", lz1<r,
n=0
for some r € R,. All sequences considered in this monograph will be real-valued and
indexed by INg, and henceforth denoted by (a,),(b,) etc..

A classification of a set C is a class { C;| t € I} with I C R an index set, such that
the sets C, are non-decreasing, i.e., for 1(1) <t(2)<...<t(n) with t(i)e I, we have
that C,(l) QC;Q) c .. CC,(,,) cC.

A set C of characteristic functions is said to be closed under limits if any
characteristic function which is the limit of a sequence of characteristic functions in C
is itself a member of C.

The letters M and N will always denote Lévy spectral functions (cf. Theorem
1.3.2 of Section 1.3) and H will always be a canonical measure (cf. Theorem 1.3.3).
The sequences (p,) and (r,) will always be assumed to be related through equation
(1.2) of Theorem 1.3.4.

1.3 Infinitely divisible distributions

We begin this section with a definition of an infinitely divisible random variable
(cf. Lukacs (1970), p. 107). This definition is equivalent to the one given in the
introduction (cf. Theorem 1.3.11).

DEFINITION 1.3.1. A random variable X is said to be infinitely divisible if for every
positive integer n, there exists independent and identically distributed random
variables X,, Xap, ..., Xp, such that

d
X=X, +Xon+...+Xp



4 PRELIMINARIES

d
with = denoting equality in distribution. O

We say that ¢, }, P or F is infinitely divisible if it stems from an infinitely
divisible random variable. We state three representation theorems for infinitely
divisible distributions on R, IR, and INj. The proof of the first theorem may be found
as Theorem 5.5.2 in Lukacs (1970), of the second partly in Feller (1971), p. 450,
Theorem 2 and partly in Steutel (1970), p. 86, Theorem 4.2.4 and the proof of the last
theorem in Feller (1968), p. 290 and Steutel (1970), p. 83, Corollary 4.2.1.

THEOREM 1.3.2. A function ¢ is an infinitely divisible characteristic function if and
only if it can be written in the form

Ino()=itay—Yeo4t*+ [ k(t,x)dM(x) ,
IR\{0}

where age R ,G% eR,, k(@ ,x)=e”"— 1-ixx (1 +x2)“1, and such that the function
M (called the Lévy spectral function) satisfies

(i) M (x) is non-decreasing on (—»,0) and (0,°);

(i) M (—e0)=M()=0;

0 1
(iii) The integrals J' x2daM x) and I x2dM (x) are finite.
-i 0

The representation is unique.

THEOREM 1.3.3. A function f“ is an infinitely divisible Laplace-Stieltjes transform if
and only if it can be written in the form

Inf@= [ (™-DxdHx),
0

where the function H (called the canonical measure) is non-decreasing. Equivalently,
fis infinitely divisible if and only if its distribution function F satisfies

[ wdF @)= [ F(x-u)dH ) , xeR, . (1.1)
0 0

Necessarily _[;’x'ldH (x) < eo. The representations are unique.

THEOREM 1.3.4. A function P with P(0)>0 is an infinitely divisible probability
generating function if and only if it can be written in the form

InP(z)=-0(1-G(2)) ,
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where 6 >0 and G is a probability generating function with distribution (g,) such that
G (0)=0. Equivalently, P is infinitely divisible with P(0)>0 if and only if its
distribution (p,) satisfies po >0 and

n
(n+)pps = an—k re ,nelNp , (1.2)
k=0

with (r,) (the canonical measure of (p,)) non-negative; necessarily r,=6(n+1) g,
and Z;" - ri/(k+1)=0 < oo, The representations are unique.

Relations between the function M in Theorem 1.3.2, the function H in Theorem
1.3.3 and the sequence (r,) in Theorem 1.3.4 are derived in van Harn (1978), Section
1.7. Equations (1.1) and (1.2) are derived from the canonical representation of the
integral transform of the corresponding infinitely divisible distribution by
differentiation (and then inverting the integral transforms). Since the derivative of a
characteristic function does not necessarily exist, we do not have a representation

similar to (1.1) and (1.2) in Theorem 1.3.2. We will use the following notations
throughout this monograph.

NoraTioN 1.3.5. Let ID(R), ID(R,) and ID (INg) denote the set of infinitely
divisible characteristic functions, Laplace-Stieltjes transforms and probability
generating functions, respectively. O

NoTATION 1.3.6. An infinitely divisible characteristic function ¢ is uniquely
determined by the triple [aq,,c%,M ] in Theorem 1.3.2. An infinitely divisible
characteristic function with Lévy spectral function M and constants a, and G% (cf.
Theorem 1.3.2) will therefore be denoted by ¢=[a,, 0% , M.

The next two theorems give some useful properties and another characterization
of ID(I), Ie {R, R,, INy}. For a proof of the first theorem we refer to Theorems 5.3.2
and 5.3.3 in Lukacs (1970). The second theorem is a basic consequence of Definition
1.3.1.

THEOREM 1.3.7. For I=R,R,or Ny the sets ID(I) (c¢f. Notation 1.3.5) are
multiplication semigroups, closed under limits.

THEOREM 1.3.8. The following equivalences hold (cf. Notation 1.3.5)

(i) ¢eID(R)if and only if OV is a characteristic function for all n e N, ;
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(ii) f e ID (R,) if and only if f”" is a Laplace-Stieltjes transform for all
neN,;

(iii) P eID (INg) if and only if PV is a probability generating function for all
nelN,.

Before continuing we need two definitions.

DEFINITION 1.3.9. A sequence (X;) of random variables is said to be bounded if there
exists a constant ¢ 20 such that

P(1X,l<c)=1, forallke Np. O

DEFINITION 1.3.10. By a triangular array of random variables is meant a double
sequence of random variables (Xi,), k=1,2,..,n, ne N, (hence forth denoted
(Xk.n)), such that the random variables X, ,, ..., X, , of the n-th row are mutually
independent.

The triangular array (X ,), is said to be uniformly asymptotically negligible (uan) if
Xi.n — 0in probability, uniformly in & as n — oo, i.e., if for every € >0

lim sup IP(1X;,12¢€)=0.
n—)oolskgn ( ki ) D

The triangular array of characteristic functions (¢ ) and the triangular array of
distribution functions (F ,) will be called uan if they stem from a uan triangular array
of random variables. As mentioned in the introduction, the notion of infinitely
divisibility originated in the context of the central limit theorem. We now state a
theorem which shows that the set of infinitely divisible random variables is the
solution of the so called general central limit theorem. For a proof we refer to
Theorem A, p. 321 in Logve (1977).

THEOREM 1.3.11. A random variable X is infinitely divisible if and only if there exists
a uan triangular array (X »), k=1,2, ..., n, n € IN,, of random variables such that
w

n
Y Xin—Xasn oo,
k=1
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w
Here — denotes weak convergence. The next theorem shows how the Lévy spectral
function M and the constant G in Theorem 1.3.2 are determined by the sums of the

distribution functions of (X ). This theorem is proved in Logve (1977) as Criterion
B, p. 326.

THEOREM 1.3.12. Let X be a random variable with characteristic function ¢ and let
XKkn) k=1,2,...,n, ne N, be a uan triangular array of random variables with
distribution functions (Fyp), k=1,2,..,n, ne N,. There exists a sequence (b,)
such that

n w
> Xgntby—>Xasn—oo,
k=1

if and only if
(i) there exists a function M satisfying (i) and (iii) of Theorem 1.3.2 such that
w
M, = E:=1 Frpn—>Masn—oo
outside every neighbourhood of the origin.

@ tmlm 5[ [ x2dFeu0-( | xdF.)*1=c.

e-0n—po1 Ixize Ix I<e

Necessarily ¢ is infinitely divisible with ¢=[a, , 0'% , M]for some aye R.

We finish this section with two lemmas, which will be used in Chapter 6 and the
Appendix. For a proof we refer to Logve (1977), p. 314, Theorem A.

LEMMA 1.3.13. The triangular array of characteristic functions (¢r ), k=1,2, ..., n,
ne IN,, is uan if and only if

lim sup | H-11=0,
n—»olskgn ¢k.n( )
uniformly on every finite interval.

LEMMA 1.3.14. If (X§)) and (X)) are uan triangular arrays, then (X{),+ X)) is a
uan triangular array.
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1.4 Self-decomposable and stable distributions

The sets of self-decomposable and stable distributions are two important subsets
of the set of infinitely divisible distributions. Stable distributions are widely studied
(cf. Lukacs (1970)) as they provide a natural generalization of the normal distribution;
self-decomposable distributions are, in turn, a generalization of the stable
distributions. In Chapters 5 and 6 we generalize both concepts.

A random variable X is called stable if there exists sequences (a,) and (b,) of
real numbers with 4,20 and a sequence (X;) of independent and identically
distributed random variables such that (X ,) with X} , =a, X; is uan and

n w
Y anXp+b, > X asn oo, (1.3)
k=1
If (X,) are not necessarily identically distributed then X is called self-decomposable.
The uan condition on (a,X}) implies that a, —0 and @, /a, — 1 as n — . Let the
linear operator T; be defined by T; x =tx. Then (1.3) can be rewritten as

n w

2Ty Xi+b, > X asn—eo. (1.4)

k=1
In Chapter 6 and in the Appendix, we consider limits of the form (1.4), with T,
replaced by a more general operator U, . Self-decomposability of X is equivalent to

d

X=cX'+X,, (1.5)
for all ¢ € (0,1), where X" and X, are independent and X’ is distributed as X. For the
corresponding characteristic functions this means that for every c e (0, 1) there exists a
characteristic function ¢, such that

o@)=90(ct) 0. (1) ,te R. (1.6)

The above results can be derived from Loéve (1977), Section 24. If
0c()=0((1-c®)" 1) e for some a ¢ R and 8¢ (0, 2], then ¢ is stable (cf. the proof
of Theorem 5.7.2, Lukacs (1970)). If X is non-negative, then we call f self-
decomposable (on R,,) if

fO=fcDf.@, te R,,

and stable (on RR,) if }C(T)=}((1 —cs)”8 7). Steutel and van Harn (1979) proposed a
discrete analogue of self-decomposability and stability. A random variable X is said
to be discrete self-decomposable if for every c e (0,1) there exists a random variable
X, independent of X’ such that

d
X=c®X'+X,, (1.7)

with X’ and X identically distributed. The random variable ¢ ®X is defined in
distribution by
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P.ex(z)=Px(1-c(1-2)), lz1<1,

with Pyx denoting the probability generating function of X. For a probabilistic
interpretation of ® see Steutel and van Harn (1979). In terms of probability
generating functions (1.7) reads

P(z)=P(1-c(1-2))P.(z), 1z1<1,ce(0,1),
for some probability generating functions P.. If P,(z)=P (1-(1—c®)"® (1-z)) for
some 3 >0, then P is said to be (discrete) stable.

We now give another notation and list a series of representation theorems for
self-decomposable and stable distributions. The proof of Theorem 1.4.1 can be found
in Lukacs (1970), Section 5.7. This proof contains a minor error, which is corrected
in Hall (1981). The proof of Theorem 1.4.5 is given in Lukacs (1970), Section 5.11.
For the proofs for distributions on R, we refer to Feller (1971), Section XIIL.6 and
those for distributions on INj to Steutel and van Harn (1979).

THEOREM 1.4.1. A function ¢ is the characteristic function of a stable distribution if
and only if ¢ is either normal or ¢ can be written in the form

Ind()=itag—c It |5(1+iBsgn(t)w(lt 1,8),
where ¢ 20, 1B1<1, 8¢ (0,2) and ay € R. The function w(lt 1,9) is given by

_] tan(mnd/2) if §=1
W(|t|’8)“{-—(2/1t)lnltl ifd=1 -

Equivalently, ¢ is the characteristic function of a stable distribution if and only ifdis
infinitely divisible and etther (cf. Theorem 1.3.2 ) Gq, >0 and M (x)=0 or 0¢ =0 and
M@x)=C,y Ix |3 Jor x <0 and M (x)=-— ng for x >0. The parameters satisfy
de (0,2), C120, C220 and C,+C,20. The parameter 8 is called the exponent of
stability of ¢.

THEOREM 1.4.2. A function f is the Laplace-Stieltjes transform of a stable distribution
on R, if and only if it can be written in the form

lnf('c)=—7»t ,TeR,,
with 20 and 8¢ (0,1]. The parameter 8 is called the exponent of stability of f

THEOREM 1.4.3. A function P is the probability generating function of a stable
distribution on INg if and only if it can be written in the form

InP(z)=-M1-2), 1z1<1,
with A20 and 8 € (0,1]. The parameter 3 is called the exponent of stability of P.
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The degenerate distribution is trivially self-decomposable and stable. It is
therefore usual in the literature not to call the degenerate distribution a stable
distribution. For our purposes it is however desirable to include the degenerate

distributions in the set of stable distributions. We therefore introduce the following
notation.

NoTATION 1.4.4. The characteristic function of a stable, possibly degenerate,
distribution with exponent 3, will be denoted by ¢sTaBLE(s). Similarly, we denote by
PstaBLEs) and fstaBLE@) the probability generating function and the Laplace-
Stieltjes transform of a stable, possibly degenerate, distribution with exponent 8. [

THEOREM 1.4.5. A function ¢ is the characteristic function of a self-decomposable
distribution if and only if ¢ is infinitely divisible with Lévy spectral function M (cf.
Theorem 1.3.2) having left and right derivatives and such that |x \M’(x) is non-
decreasing on (—,0) and non-increasing on (0,0).

THEOREM 1.4.6. A function P is the probability generating function of a self-
decomposable distribution if and only if it can be written in the form

1
InP@)= [InQ(U-v(1-z)vtdv,
0

with Q a unique infinitely divisible probability generating function. Equivalently, P is
a self-decomposable probability generating function if and only if it is infinitely
divisible and its canonical measure (r,) (¢f. Theorem 1.3 4) is non-increasing.

The analogue of Theorem 1.4.6 for distributions on IR, is proved in van Harn et.
al. (1982) and mentioned for distributions on R in Steutel and van Harn (1979). In
Chapter 5 we prove two theorems which include these analogues. We finish this
section with a definition, which we use in Chapters 5 and 6.

DEFINITION 1.4.7. The characteristic function ¢ is said to be in the domain of normal
attraction of a stable characteristic function with exponent § if and only if for suitable

(b, lime ™ ¢"(1/n)! 1) = ds7ABLE®) ©) 0
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1.5 Motivation and methodology

In this monograph we study the relationship between an infinitely divisible
distribution and its Lévy spectral function (or canonical measure). We prove that an
infinitely divisible distribution whose Lévy spectral function (or canonical measure)
possesses some (well-known) monotonicity property, for example complete
monotonicity, log-concavity, log-convexity or o-unimodality, belongs to a (well-
known) set of distributions, for example the set of mixtures of geometric distributions,
strongly unimodal distributions or a-self-decomposable distributions.

It turns out that in studying monotonicity properties in this context, it is easiest to
first consider the discrete case (cf. Theorem 1.3.4). Here the canonical measure can be
explicitly expressed in terms of the probabilities, which makes developing and
proving hypotheses and constructing counterexamples easier than in the case of
distributions on R or IR,. In many cases we can even prove the equivalent result for
distributions on R, from those on INy by applying some simple argument (cf.
Sections 3.5, 4.3 and 5.5). Also, by studying the discrete case we develop insight
which can be helpful in proving the result for R (cf. Section 5.4).

As is seen in Chapter 2, many of the monotonicity results obtained in renewal
theory and infinite divisibility are quite similar. This observation led us to consider
log-convexity and moment sequences in the context of infinite divisibility (cf.
Theorems 2.4.2 and 2.4.3 of the next chapter).



Chapter 2

INFINITELY DIVISIBLE SEQUENCES
AND RENEWAL SEQUENCES

2.1 Introduction

Much of renewal theory is concerned with determining properties of the renewal
function. This includes study of the relationship between the renewal function and its
underlying distribution. Similarly, the interplay between an infinitely divisible
disaibution and its Lévy spectral function plays an important role in the field of
infinite divisibility. Many of the results obtained in these two, very different, fields are
quite similar. This correspondence, between results in infinite divisibility and in
renewal theory, proves to be very useful (cf. Chapters 3 and 4). In this chapter we
give a brief review of the results concerning monotonicity properties in these two
fields. Section two of this chapter gives a short introduction to renewal theory. The
following two sections state the results, with little mention of possible applications.
For a more complete description we refer to the references. The last section discusses
the interplay between renewal sequences and infinitely divisible sequences.

2.2 A taste of renewal theory

In this section we give a brief introduction to renewal theory. For simplicity we
restrict ourselves to renewal sequences on INy. For a more rigorous introduction to
renewal theory we refer to Feller (1968). Let E be an event (for example a renewal)
and define the probability distribution (f,,) by

f» = P(E occurs for the first time attime n+1) , ne€ INp .
Define the sequence of probabilities (u,) (called the renewal sequence with underlying
12
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distribution (f,)) by
u, '=P(Eoccursattimen), ug=1, ne IN, .

It then follows that (f,,) and (u,,) are related by

n
Uns1= 2, Un-k fi» wo=1, ne Ny . @0
k=0

It is usual in the literature (cf. for example Feller (1968)) to define f, as the
probability that E occurs for the first time at time n, with fo=0. We prefer our
approach because it results in a recurrence relation which, in appearance, resembles
equation (1.2). The probability f, can be interpreted as the probability that a machine
first breaks down at time n+1 given that it broke down at time zero. If a broken down
machine gets fixed instantaneously, and after reparation is ‘as good as new’, then u,
gives the probability that the machine breaks down at time n. In many practical
situations the distribution (f,,) is known, or at least some property (for example a
monotonicity property) is known, and the sequence (u,) or its behaviour in some
sense, is sought. One of the most important results from renewal theory is:

ifp = Y (n+1)f, <o and (f,) is aperiodic, then lim u, = pl,

n=0 n—ee

In the following section we give a review of monotonicity results in renewal theory.

2.3 Monotonicity results in renewal theory

To avoid repetition, we only review the results in discrete renewal theory, i.e., on
sequences related through (2.1). The analogous results for general renewal functions,
related through the so-called renewal equation (cf. Ross (1983)), are also true. In fact
in many cases the result for renewal functions can be obtained by applying a limiting
argument to the result on renewal sequences (cf. Hansen and Frenk (1989)). The list
is by no means complete and will be given with very few comments to applications.

Kaluza (1928) was the first (to the author’s knowledge) to study sequences
related through (2.1). Among other results he proved

THEOREM 2.3.1. Let the sequences (u,) and (f,) be related by (2.1). The following
implications hold.

i) Iff,20, ne Ny then u, 20, n e Ny;

(ii) If (u,) is log-convex then f, 20, n € INy.
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The definitions of log-convexity and log-concavity are given in Section 4.2. In
de Bruijn and Erdos (1953), for part (i), and in Hansen and Frenk (1989), for parts (ii)
and (iii), we find the following theorem.

THEOREM 2.3.2. Let the sequences (u,) and (f,) be related by (2.1). Suppose ¥ f, <1
and ¥, (n+1) fy=l <o, Let

Fr) =¥ fi, Fi(n) = b 3 (1=F (k).
k=0 k=0

The following implications hold.

() If (fp) is log-convex then (u,) is log-convex;
(i1) If (1 —F (n)) is log-convex then (u,) is non-increasing;

(iil) If (1=F (n)) is log-convex then u, 2, n e INy.

For condition (i) in Theorem 2.3.2 it is only necessary to assume that f, >0 for
n e INg. The analogue of Theorem 2.3.2, parts (ii) and (iii), for distributions on R,
was first proved in Brown (1980), by coupling methods. Hansen and Frenk (1989)
provides a simpler proof by applying a limiting argument to Theorem 2.3.2. The
conditions on (f,,) given in (ii) and (iii) are related to distributions with decreasing
failure rates and increasing mean residual life-times. Note that

(fn) log-convex => (1—F (n)) log-convex => (1— u‘lF 1(n)) log-convex.
(u,) log-convex => (u,) non-increasing => u,, > p.—l , ne INp.

Horn (1970) studied (2.1) in the context of moment sequences. For the definition
of moment sequences we refer to Notation 3.2.1. Horn (1970) dropped the condition
that the sequences are non-negative and convergent.

THEOREM 2.3.3. Let the sequences (u,) and (f,) be related by (2.1). Then
(i) (up41) is a Hamburger moment sequence on R if and only if (f,) is a
Hamburger moment sequence on R;

(ii) (u,) is a Stieltjes moment sequence on R, if and only if (f,) is a Stieltjes
moment sequence on IR, ;

(iii) (u,) is a Hausdorff moment sequence on [0, 1] if and only if (f,) is a
Hausdorff moment sequence on [0, 11 with 3 f, <1.
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Kaluza (1928) proved part (ii) and the ‘if* part of (iii), with a proof different from
Horn’s (1970). Theorem 2.3.3 is stronger then Theorem 2.3.2 in the sense that

(a,) Hausdorff moment sequence => (a,) Stieltjes moment sequence = (a,)
log-convex.

This is easily verified by using Schwarz’ inequality. Part (i) of the following, and last,
theorem of this section is proved in Kingman (1972), p. 7, Theorem 1.4. The other two
parts are easily proved.

THEOREM 2.3.4. Let the sequences (u,) and (f,) be related by (2.1). Then.

()  Upim 2Up U, for ne Ny, me Ny;
(i) Ifugu,>0thenu, >0, ne Ny;

(iii) If fo e [0,1] and fri1 ! fn $1—fq then (u,) is non-increasing.

2.4 Monotonicity results of infinitely divisible distributions

As in Section 2.3 we only review the results for discrete distributions. Most
results are here also true for distributions on R, and can usually be obtained by some
limiting argument (cf. Chapter 4) or some other argument (cf. Chapters 3 and 5) from
those on INy. The analogues of Theorems 2.3.2 and 2.3.3 are proved in Chapters 4
and 3, respectively. For completeness we also state them here.

THEOREM 2.4.1. Let the sequences (p,) and (r,) be related by (1.2), i.e., by
n
(n+D)Ppps1= 3, Pn-kTk»P020, ne Np . (2.2)
k=0
The following implications hold.

() Ifr,20, ne Ny thenp,20, ne Ny;

@) If (p,)is log-convex thenr, 20, n e INy.

Part (ii) of Theorem 2.4.1 was first proved in Steutel (1970), Theorem 4.2.2. For
a different proof see Section 4.2. Part (ii) states that all log-convex distributions are
infinitely divisible. The absolutely continuous analogue of Theorem 2.4.1 (ii) is
proved as Theorem 4.2.6, p. 89 in Steutel (1970). The following theorem and its
absolutely continuous analogue is proved in Chapter 4.
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THEOREM 2.4.2. Let the sequences (p,) and (r,) be related by (2.2). The following
implications hold.
() If (rp) is log-convex and r§ <r then (p,) is log-convex;

(i) If (rn) is log-concave and r§ 2ry then (p,) is log-concave.

In Chapter 3 we prove the analogue of Theorem 2.3.3 for infinitely divisible
sequences, i.e., sequences (p,) and (r,) related by (2.2). This analogue also provides
an alternative proof of Theorem 2.3.3 (cf. Section 3.4).

THEOREM 2.4.3. Let the sequences (p,,) and (r,) be related by (2.2). Then
(1)  (Pn+1) is a Hamburger moment sequence on R if and only if (r,/(n+1)) is a
Hamburger moment sequence on R with W< (cf. (3.6));

(i) (pn) is a Stielties moment sequence on R, if and only if (r,/(n+1)) is a
Stieltjes moment sequence on R, with W< (cf. (3.6));

(iii) (p,) is a Hausdorff moment sequence on [0, 1] if and only if (r,/(n+1)) is a
Hausdorff moment sequence on [0, 1] with L <A (cf. (3.6)).

The absolutely continuous analogue of part (iii) is proved in Steutel (1970), Theorem
2.12.1. Parts (iii) and (iv) of the following theorem are proved in Steutel and van
Harn (1979). The first part is due to F.W. Steutel (private communication) and can be
proved as Theorem 1.4, p.7 in Kingman (1972) is proved. The second part is proved in
Steutel (1970), Theorem 4.2.3.

THEOREM 2.4.4. Let the sequences (p,) and (r,) be related by (2.2). Then

()] (mr-n'-")pn+m 2 pp P for n e Ny, m e INo;
(i) Ifpop1>0thenp,>0, ne No;
(iii) Ifroe[0,1] and (r,) is non-increasing then (p,) is non-increasing;

(iv) If (rp) is non-increasing then (p,) is unimodal.

Condition (iv) implies that all discrete self-decomposable distributions are unimodal
(cf. Theorem 1.4.6).
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2.5 Renewal sequences and infinitely divisible sequences

As seen in the two previous sections there is a connection between the behaviour
of sequences related through (2.1) and sequences related through (2.2). This section is
intended to give some understanding to why this is true.

Let (p,) be a sequence of real numbers and define the two sequences (r,) and
(fn) through

n
Pni1= 2 Pnifi.neNg, (2.3)
k=0
n
(n+D)ppy1=3, Pnkrr,neNg. 2.4)
k=0

Equation (2.4) is more general than equation (2.3) in the sense that if the sequence (f,,)
is non-negative, then (r,) is also non-negative (cf. Steutel (1970), p.83). In fact, if (p,)
is a probability distribution and (f,) is non-negative, then (p,) is a compound
geometric distribution and hence infinitely divisible.

Taking generating functions on both sides of (2.3) and (2.4) and eliminating P (z)
yields

R(z)=——d—ln(l—zF (2)). 2.5)
dz
Let f_; := —1. Equation (2.5) is equivalent to
(+ DI ol = 3 11 e 11Derd , nelNo. (2.6
k=0

One could therefore expect that the relationship between (p,) and (r,) is similar to
that between (f,) and (r,,). Hence, if (r,) has some property which (p,) inherits and
((-1)"r,) also has this property, then (1)~ f,_;) will also inherit this property. In a
similar way one can start with (p,,). Equation (2.6) does not only provide an idea as to
why the theorems in Sections 2.3 and 2.4 are similar, but also provides alternative
proofs of some of the results in Section 2.3 (see Chapter 3).



Chapter 3

MOMENT SEQUENCES AND MOMENT
FUNCTIONS

3.1 Introduction

In this chapter we consider sequences (p,) and (r,) related through equation
(1.2), i.e., through

n
(n+1)Pps1 =3, Pk Ta-k» nelNg, 3.1
k=0
where either (p,) or (r,/(n+1)) is a moment sequence (cf. Notation 3.2.1), and we
consider functions f and A related through (cf. (1.1))

xf@)= [ fx-wh@du, xeR,, (3.2)
0

where either f or h(u)/u is a moment function (cf. Definition 3.5.1). The discrete
case is considered in the same vein as renewal sequences were by Horn (1970) (cf.
Theorems 2.3.3 and 2.4.3). The proofs in the discrete case are based on a theorem in
monotone matrix function theory by Bendat and Sherman (1955). At first glance it
may seem as though this approach uses too powerful tools, but its great advantage is
that it results in some very elegant proofs. The somewhat more straightforward, but
tedious, approach used to prove Theorems 3.3.2 and 3.3.7 can also be adapted to
prove Theorems 3.3.4 and 3.3.8, but fails to prove Theorem 3.3.1 (cf. Remark 3.3.3).

In all but the last section of this chapter we will consider equation (3.1), and its
absolutely continuous analogue (3.2), outside its probabalistic context; for (3.1) we
drop the conditions that r, 20 and Y’ ,,/(n+1) < e (thus (p,) need not be non-negative
and ¥ p, need not be convergent) and take, for convenience, p = 1; for (3.2) we drop

18
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the condition that r h(x)/x dx < oo (thus j fdx need not be finite). In Section 3.2 we
give some preliminaries. Statements (i), (ii) and (iii) of Theorem 2.4.3 will be proved
as separate theorems in Section 3.3. The absolutely continuous analogue is proved in
Section 3.5 using the results on infinitely divisible moment sequences. Using
equation (2.6) and Theorem 2.4.3 we prove Theorem 2.3.3 in Section 3.4. Its
absolutely continuous analogue is mentioned in Section 3.6. Our result on Hausdorff
moment sequences has applications in probability theory, as sequences of this type are
mixtures of geometric distributions. This case and its absolutely continuous analogue
will be investigated in more detail in Section 3.7.

3.2 Preliminaries

For ease in notation we introduce the following sets.

NotATION 3.2.1. Let MS (IR), MS (R, ) and MS ([0, 1]) denote the set of Hamburger,

Stieltjes and Hausdorff moment sequences, respectively, i.e., for/ € { R, Ry, [0, 1]}
let

(@n) e MS() if and only if a, = | x"dp(x), nelNy, (3.3)
1

where W is a nonnegative measure. Also let the sets MS *() (cf. (3.3)) be given by
(ap) € MS*(I) if and only if (a,) e MS (/) with p<A ; 3.4
here A denotes Lebesgue measure and p; < W, means that W, (B) < 1, (B) for all Borel
sets B, i.e., that p; is absolutely continuous with respect to U, and the Radon-
Nikodym derivative du, /dpy <1. We also define (compare (3.3) and (3.4)) the set
MSr(I) by
(an) e MSt(I) if and only if (a,)e MS(I) and p is supported by [-T,T]. (3.5)

and let MST()=MSr(I)AMS*(I). In a similar way we define MS(IR_) and
MS™(IR_). The measure W in (3.3) is called the representing measure of the sequence

(@n). O

According to equation (2.1) the functions U and F are related by
1

ZF(Z)=1—WZ), (36)
and P and R, according to (3.1), by
~ ©  Ip
— n_
R(iz)=z %, e 2" =log P(z) . 3.7

n=0
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The symbols U, F, P and R in (3.6) and (3.7) can be regarded as formal power
series. We only use them as functions when W in (3.3) is supported by [-7,T]. Then
U, F, P and R are well-defined functions of the form

f@= [ Q=xzyldpx), ze-T71,77).
[-T.T]

Hence they are Stieltjes transforms and so the measure p is unique.

As will become apparent, the essential difference between (3.6) and (3.7) in the
context of moment sequences stems from the fact that

1- L maps the upper half-plane onto the upper half-plane,
w

log w maps the upper half-plane onto the strip 0 < Imw < 7.

This difference explains the difference between Theorems 2.3.3 and 2.4.3 and
somewhat complicates the proof of Theorem 2.4.3. We will use the following lemmas
describing some properties of moment sequences. The proofs of the first two lemmas
can be found in Shohat and Tamarkin (1943). The third lemma follows from Helly’s
first theorem and the corollary to Theorem 25.12, p. 292 in Billingsley (1979).

LEMMA 3.2.2. (a,) e MS(IR,) if and only if (a,) € MS (R) and (a,41) € MS(R) .
LEMMA 3.2.3. (a,) e MS([0, 1]) ifand only if (a,) e MS (R,) and a, is bounded.

LEMMA 3.24. Let Ie {R,R,,[0,1]}). If(a,(t))e MS(I) (or MS*(I)) for all
t 2 tg, and if lim a,(t) = a,, ne Ny, then (a,) e MS(I) (or Mms* )).
t—y00

REMARK 3.2.5. In proving Theorem 2.4.3 we will use Lemma 3.2.4 together with
truncation of integrals. If (p,) is given by

Pa=[x"dux),  nelNg,
R

and (r,,) is defined by (3.1), then we define (p,(T)) by
pn(T) = I x" du(x), nelNp.

Ix I<T
If we now define (r,(T)) from (p,(T)) by means of (3.1), then p,(T)—p, and
ra(T) = r, as T — oo, In a similar way one can start from (7). O

Before we proceed we need a definition.
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DEFNITION 3.2.6. For T >0, let A7 denote the set of real analytic functions on
(-T71,T7!) that have an analytic continuation to the upper half-plane, and that are
either constant or map the upper half-plane into itself; AT denotes the subset of
functions in A7 that map the upper half-plane into the strip0 < Im z < 7. O

The following lemma, proved in Bendat and Sherman (1955), is as basic here as
it was in Horn (1970).

LEMMA 3.2.7. Let T >0 and let C be a real-valued function defined on (<T~1,T71).
Then the following statements are equivalent.

(@) CeArn

(ii) C(x)=§c,,x" forx e (T, Ty with (cp41) € MST(R);
0

(i) C@)=CO+ [ ——du®) (Imz>0).
(-f.r) 172

Lemma 3.2.7 shows that (c,4;) is a (truncated) Hamburger moment sequence if
and only if its generating function (seen as a mapping) maps the upper half plane into
itself. Hence U has this mapping property if and only if zF (z) does (cf. (3.6)). The
next lemma enables us to use Lemma 3.2.7 in the situation of equation (3.7).

LEMMA 3.2.8. Let T > 0 and let | be a finite measure on [T, T]. Let f be defined by
f@o= | Tz—dp.(t) (Imz >0). (3.8)
(1) 12t
Then W<\ (cf.(34)) ifandonlyif 0 <Imf (z) <& for Imz > 0.

PrROOF. Clearly, Imf (z) > 0if Imz > 0. If p <A then for Im z > 0 we have
Imf(@)<Im | ——dt=arg(l+N)-arg(1-2T) <™ .
(-T.T] 1-zt
Now suppose that 0 < Im f (z) < w. The function
_ 1
gE)=~f(G6+T Y= [ ——due-T)
[0,2T] s+t

is a Stieltjes transform. From the inversion formula for such transforms (cf. Widder
(1946), p. 340) we have for any &;,& with 0<§; <&,, and writing uE€) =
W& +0)+uE-0)2,
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&
~ ~ .1 1
1) - &) = lim T | Imf (s s& =&

1

since Im(1/Z) > 0 if and only if Imz > 0. It follows that L < A. O

COROLLARY 1. Let f be given by (3.8) and let ¢ >0. Then O<Imf (z)<cm for
Imz >0 ifand only if u<cA.

Now from Lemmas 3.2.7 and 3.2.8 we obtain

LEMMA 3.2.9. Let T > 0 and let C be a real-valued function on (<T~', T™1). Then the
Jollowing three statements are equivalent.

(@) CeAf;

() C@)=Y cux"forx e (T, T with (cner) € MSE(R);
n=0

(i) C@)=C(0)+ —Z_duo ,
" ' [—TI,T] = ¥

for a measure L < \.

The next lemma is an analogue for our situation of Lemma B in Horn (1970). It
reduces to this lemma if all *’s are deleted. We will need both versions of the lemma,
and we will refer to it as Lemma 3.2.10* if we need it with the *’s and as Lemma
3.2.10 otherwise. These lemmas are the key lemmas for the results of the next section,
as they enable us to study moment sequences by considering the mapping properties
of their generating functions. Here we use A} c Ay and MST(I) € MSt(I), which
follows from Notation 3.2.1 and Definition 3.2.6.

LEMMA 3.2.10.* (3.2.10.) Let T > 0 and let (c,) be a sequence of real numbers such
that C (x) = Y, c,x™ converges for all x e (<T~1, T™!). Then (cf. Definition 3.2.6 and
0

equation (3.5))

@ (c,)e MST(R) ifand only if x C (x)e A¥;
(b) (cns1)€ MST(R) if and only if C (x) € AT;
(© (cn)e MST(R,) ifand only if x C (x)e AF and C (x) e Ar;
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(d) (Cus1)e MST(R,) ifand only if C(x)e AT and x 1(C (x)-C (0)) e Ay .

PROOF. (a) and (b) follow directly from Lemma 3.2.9; the proofs of (c) and (d) are
quite similar. We prove (c). First, let (c,) e MST(RR,). Then by (a) we have
x C(x) € AT and by (c) of Lemma 3.2.10 that C (x) e A. Conversely, if xC (x) € AT,
then (c,) MS?(IR) by (a), whereas C (x) e At by (b) of Lemma 3.2.10 implies that
(ch+1) € MST(R). From Lemma 3.2.2 and the fact that MS?(]R)CMST(]R) we
conclude that (c,) e MST(RR,). Finally, since moment sequences on MSr(I) have
unique representing measures we have (c,) € MS#(]R) NMSr(R,) = MS?(]RQ. a

The following lemma is immediate from Lemma 3.2.2.

LEMMA 3.2.11. (c,)e MSF(R,) if and only if (c,) e MST(R) and (c,+1) € MS(R).

3.3 Moment sequences and infinitely divisible sequences

We are now ready to prove Theorem 2.4.3. We present the statements (i), (ii) and
(iii) as separate theorems.

3.3.1. Hamburger moment sequences

THEOREM 3.3.1. Let (p,) and (r,) be related by
n
(n+1)pps1= 3, Pk Tak >, nelNp.
k=0

Then (cf. (3.3) and (34))

Tn

(Pr+1) € MS(R) if and only if (——) e MS*(R).

n+l

PrOOF. In view of Lemma 3.2.4 and Remark 3.2.5 we only have to prove the
equivalence for MSr(R) and MS?(R)L Since (cf. (3.7)) the generating functions of
(p,) and (r,/(n + 1)) are related by R(z) =log P (z)), in view of Lemma 3.2.10*
(3.2.10) it is sufficient to prove that P e A if and only if log P € A~ for some T’ > 0.
This last statement is true since (cf. Definition 3.2.6) P (is constant or) maps the upper
half-plane into itself if and only if log P (is constant or) maps the upper half-plane into
the strip 0 < Imz < . Finally, P (z) is convergent for Iz | < T with T > 0 if and only
if log P (z) converges for |z | < T’ for some T’ > 0. O
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The next theorem, of some interest in its own right, is a preparation for the proof
of (ii) in Theorem 2.4.3. Its proof is similar to the proof of Theorem 2.12.1 in Steutel
(1970) concerning mixtures of exponential distributions.

THEOREM 3.3.2. Let (p,) and (r,) be related as in Theorem 3.3.1. Then

(Pn) € MS(R) if and only if ffl— = b, — (=1)"c, with (bp), (cx) € MS*(R,) .

PROOF. Any sequence in MS (R) can be approximated by sequences in MSy(R) as
follows. If (p,) € MST(IR) has a discrete representing measure with positive atoms g;
aty; (i=1,2,...,N)where-T <ty < ... <1131 <0<ty < ... <ty <T, then P (x) takes
the form

P(x)= }151 qil(1-xt)=Q (x)/ INIl (1 =xt),
i= i=
with O a polynomial of degree at most N — 1. Observe that
Px)<Oforxleg! , fork=1,2,..,1,
P(x)>0forxTeg! , fork=1,2,..,1 ,
P(x)>0forxlrg!, fork=1+1,2,..,N ,
P(x)<O0forxTeg!, fork=1+1,2,..,N .

Since Q is continuous on R except maybe at 7, k=1,2,..,N, we see that Q has at
least N —2 zeros, denoted by sEl, k=1,2,..,1-1,142, ..., N, which satisfy

“T<tN<SN<..<S142<t1y1 <0<fy<s;_1<..<s1 <ty <T.

The graph of P (x) is sketched in figure 3.1 (see the next page). If a zero of Q, st say
(s # 0), is the site of a local extremum of @ we must have

t
0=P'(x) l o1 = ———du(),
06) =g Hjﬂ e WO
-
0=P@) = | —=_ap,

(1,11 (=s711)?
which implies that

0= [ —L—auw,

(-t A=s711)?
i.e., that u=0, a.e.. Thus no zero of Q is the site of a local extremum and so the
reciprocal of the (W —1)st zero, s say, must lie in (#;4,2). Let s, =min(0,s) and
s;=max(0,s). If @ only has N -2 zeros (this corresponds to s =0 above and is the
case when ¥ g;#; =0), then let 5;=s5;,1 =0. In either case
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N N
P)=[T(-xs)/ [T =xe). (3.9)
k=1 i=1

It follows that R can be written as (cf. (3.7)

T T
-~ _ _ X _ X
RULJ%PQLQIT;;MWJM J';;dMuU%

with u’~.1(t)=22=1 1(5,.1,)(®), and F‘-’N,Z([)=22]=,+l 15, =) (®), 50 Wy, 1 and Uy, 2
are bounded by Lebesgue measure, i.e., r,/(n+1) has the desired property. A
limiting argument completes the proof.

Pkx)

T

=1
-1 - _ W -1
fin 142 'A}—-] \ 1 R
SN 2

- "
- -1 = s - -l
s Siey sEy i ( 1 53! sth

figure 3.1

Conversely, we approximate the representing measures {; and pa of (b,) and (ca),
respectively. Fork=1,2,..,N-1,let

U N= T(N—k)/N ,

SN =rk,N =1 (O,Ik'N] +u1(0,tk+l.N] ’

, N-1
BN 0= T Tgpirm O
k=1

HN, 10,5 N1=11 (0,1 N]

Fork=N,N+1,..,2N-1,let
Sk.N =T(N—k)/N N

1N =SeN —H2(0,=Sk 1 N1 +H2(0,—se N1 s

, 2N-1
u-N,Z(t)= E 1(“5LN--‘I.N) ®,
k=N
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uv, 2(0,=sg N1 =2 (0,—sk N] .

w w
Since Wy 1 — M1 and Py 2 - My we have by Helly’s first and second theorems (cf.

(3.7)

T T
. x x
P =1 - —d t
) lim exp oj — dpy, 1(t) 0‘[ e M, 2(2)

2N-1 1—xs
_Alllm H = k- lim E fk f 1_1 du(t) .
=% pq Xl  Noeo k=1 xtk (-T.T] Xt

O

COROLLARY 1. (p,) e MS (R) if and only if (r,,1/(n + 2)) € MS(R) with representing
measure |\ satisfying

j I 17 dp(r) < oo and W(B) < I It 1dr for all Borel sets B .
—oo B

PRrOOF. Let y,, and p. be the representing measures of (b,) and (c,,) in Theorem 3.3.2,
and let dy; =tdy, , dy, =tdp.. Then the measure U defined by

_ Ha(=t, =) t<0
HEee, 1] _{l»lz((), ) +1,(0,1) £>0 °

satisfies the requirements. O

REMARK 3.3.3. Suppose that (p,,1) € MST(R) with a discrete representing measure
and po=1. Proceeding as in the proof of Theorem 3.3.2 we see that P (the generating
function of (p,)) takes the form

N N
Px)=1+Y qx/(1-xt;)=Qx)/ ] (1 -xt),
i=1 i=1
with @ a polynomial of degree at most N. As in the proof of Theorcm 3.3.2 we can
identify N-2 zeros of Q by observing the sign of P (x) as x — 1} ! from the left and
from the right (cf. figure 3.1). The method of proof used to prove Theorcm 3.3.2 now
fails to prove Theorem 3.3.1 since the last two zeros cannot be confined to the interval

(t141,1)- O
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3.3.2. Stieltjes moment sequences

THEOREM 3.3.4. Let (p,) and (r,) be related by
n
(n+1pp+1 =X Pirn-k, nelNg.
k=0
Then (cf. (3.3) and (34))

(Pn) € MS(R,) if and only if (

rn "
e Ye MST(R,).

PROOF. For the first part we restrict attention to MSp(R,) and MST (R, ) (cf. Remark
3.2.5). If (p,) € MST(R,), then by Lemma 3.2.2 we have (p,) € MST(R) and (pn+1)
e MST(R) c MS(R). Hence, by the proof of Theorem 3.3.1 and the corollary to
Theorem 3.3.2 one has (r,/(n+1)) € MS? (R) and (rp41/(n +2)) e MS(R). By
Lemma 3.2.11, then (r,/(n + 1)) e MSF(R,).

Conversely, by Theorem 3.3.2 withc, =0 (n =0, 1,...) we have (p,) € MS (R). Since

MS*(R,) cMS*(R), by Theorem 3.3.1 we also have (pn41)e MS(R), and
therefore, by Lemma 3.2.2, (p,) € MS (R,).

COROLLARY 1. Let (u,) and (v,) be in MS (R,), with generating functions U and V

and let W = UV be the generating function of (w,). Then (w,) e MS(R,) ifa 20,
b20anda+b<1.

PrOOF. See (3.7) and (3.4). . O

REMARK 3.3.5. Theorem 3.3.4 can also be proved without use of Theorem 3.3.2 in a
similar way as its analogue in Horn (1970) is proved. This proof, however, uses
Theorem 2.3.3 (ii). As mentioned in Remark 3.3.3, the proof of Theorem 3.3.2 can be
adapted to give yet another proof of Theorem 3.3.4. O

REMARK 3.3.6. If (p,) and (r,/(n+1)) are in MS(R) then by Theorem 3.3.1 and
Lemma 3.2.2, (p,) e MS(IR,.) and by the corollary to Theorem 3.3.2 and Lemma 3.2.2,
(rp/(n+1))e MS(R, ). Hence, as in the renewal case (cf. Horn (1970)), (p,) and
(rn/(n + 1)) cannot both be in MS (R) without being in MS (R,.).

It .is interesting to note the difference between Theorems 3.3.1 and 3.3.4.
Theorem 3.3.4 considers (p,) as a moment sequence, whereas Theorem 3.3.1
considers (p,+1). This shift in indices is necessary to ensure that the sequence (p,)
has the right sign. For example, if (r,/(n+1))e MS *(R), then r¢ >0 and since pg >0
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we must have p; >0, which (p,,;)e MS(R) ensures. This observation led us to
consider the set MS(IR_), where the odd terms of the sequence are non-positive.

THEOREM 3.3.7. Let (p,) and (r,) be related by
n
(n+1)ppy1 =, Pafnsk» nelNp.
k=0
Then (cf. (3.3) and (3.4))

T'n

*
n+1)eMS R).

(Vn+1) € MS(R_) if and only if (

PROOF. Any sequence in MS (IR_) can be approximated by sequences in MST(IR_) as
follows. If pg=1 and (p,41) € MST(R_) has a discrete representing measure with
positive atoms g; at ¢; where (i=1,2,...,N) and -T<ty<..<Ity_1<..<11 <0,
then P (x) takes the form

Px)=1+ %i gx/(1=xt)=Q(x)/ ﬁ 1 -xt),
i= i=

with Q a polynomial of degree at most N. Observe that

P(x)<O0forxleg!, fork=1,2,..,N ,

P(x)>0forxTeg! , fork=1,2,..,N ,
thus, since Q is continuous on R except maybe at !, k=1,2,..,N, we see that Q
has at least N — 1 zeros, denoted by sgt, k=1,2,..,N—1,and satisfying

T <ty <SN-1 <IN-1 <SN-2<..<S§2<13<s571<1t;<0.

The graph of P (x) is sketched in figure 3.2 (see the next page). Since P (x) = —oo as
xdry! and P (0)=1, then the last zero, si! say, must satisfy —T’ < sy <ty for some
T’ > 0. Hence

N N
P)=TTA -xs)/ [T (1 = xz),
k=1 i=1
and so
0

Rx) = Y N
R(x)=1logP (x) = _Tj e NOR

with Wy(r) = 2’,:;1 1(s,.1,)(#), s0 Wy is bounded by Lebesgue measure, i.e., 7, / (n + 1)
has the desired property. A limiting argument completes the proof.
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P(x)
1
13! B N~ ,ﬁvl o x
57 53! SN vl |V
figure 32
The converse is proved as in Theorem 3.3.2. O

3.3.3. Hausdorff moment sequences

THEOREM 3.3.8. Let (p,) and (r,) be related by
(n+Dppyy = Z Piln—k,» nelNp.
k=0
Then (cf. (3.3) and (3.4)).
Tn

n+l

(pn) € MS([0, 1]) if and only if ( )e MS*([0, 1]) .

Proof. If (p,)e MS([0,1]), then (p,) is non-increasing and since pg=1, we have
pn<1. By Lemma 3.2.3, (p,)e MS(R,). By Theorem 3.3.4, (r,/(n+1))e MS*(R,)
and by (3.1), p, <1 implies that r, <n+1. Hence (r,/(n+1))e MS*([0,1)) by Lemma
3.2.3.

Conversely, if (r,/(n+1)) e MS™*([0,1)), then by Lemma 3.2.3, (r,/(n+1))e MS*(R,)
and r, <1. By Theorem 3.3.4, (p,)e MS(R,) and by (3.1), r, <1 implies that p, <1
and hence, by Lemma 3.2.3, (p,,) € MS([0,1]). O
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COROLLARY 1. Let (u,) and (v,) be in MS ([0, 1]) with generating functions U and V
and let W=U®°V? be the generating function of (w,). Then (w,)e MS ([0, 1]) if
a20,b20anda+b<1.

COROLLARY 2. Let (p,) and (r,) be related by (3.1). Then (cf. (3.3) and (3.4))
r’l

n+l

(Pa)e MS([(0,TY) if and only if (—=)e MS*([0,T]),

for any T>0.

ProoF. If (p,)eMS([0,T]) then (T™"p,)e MS([0,1]). From (3.1) it follows that
n
DT pp]l= ¥ [T (T 1], nelNp .
k=0

Tn

Ye MS™*([0,1]). Observe that
n+l

1 T
ral(n+)=T"* [ x"du(x)= [ y"dTpQT).
0 0

Hence, by Theorem 3.3.8, (T"'”1

Since Tu(y/T) is bounded by Lebesgue measure, then (r,/(n+1)) e MS *([0,T]). The
converse is proved similarly. O

3.4 Moment sequences and renewal sequences

Let the two sequences (p,) and (r,,) be related through (3.1). Define the sequence
(fa) by

n
Pn1= 2, Pk Jak>» nelNp. (3.10)
k=0
In Section 2.5 we proved that for f_; =-1
n
(DDl = 3 (D firt 1 IED 7], nelNp (3.11)
k=0

We now give an alternative proof of Theorem 2.3.3.

PROOF (of Theorem 2.3.3). From the definitions of MS(R) and MS™* (R) it is clear that

@) (an)e MS(R) (or MS™*(R)) iff (-1)"a,) e MS(R) (or MS* (R));
(b) (an)e MS(R,) (or MS™ (IR,)) iff ((-1)"a,) e MS(R_) (or MS™ (R_)).
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Theorem 2.3.3 (i) is proved by noting the equivalence of the following statements.

®n+1) € MS(R) iff (r,/(n+1)) e MS * (R) (cf. (3.1) and Theorem 3.3.1)
iff (-1)*rn/(n+1)) e MS*(R) (cf. statement (a))
iff (-1)"f,) e MS(R) (cf. (3.11) and Theorem 3.3.1)
iff (f,) e MS(R). (cf. statement (a))

For the result on Stieltjes moment sequences we note the following.

(Pn) € MS(R,) iff (r,/(n+1)) e MS* (R,) (cf. (3.1) and Theorem 3.3.4)

iff (1)*rn/(n+1))e MS*(R_) (cf. statement (b))

iff (F1)*f,) e MS(R.) (cf. (3.11) and Theorem 3.3.7)

iff (f,) e MS(IR,). (cf. statement (b))

The result on MS ([O, 1]) is easiest proved as in Horn (1970). O

The same reasoning for MS(IR_) yields

THEOREM 3.4.1. Let (u,) and (f,) be related by equation (2.1), i.e., by

n
Uny1= 2, Ui fur» nelNp.
k=0

Then (cf. (3.3) and (3.4))
(un+1) € MS(RZ) if and only if (f,) e MS(R.).

3.5 Moment functions and infinitely divisible functions

Let F and H be two non-decreasing, right continuous, not necessarily bounded
functions on R, related through equation (1.1) of Theorem 1.3.3, i.e., through

[ udF )= | Fx-u)dH ), xeR,. (3.12)
0 0

Let F and H be absolutely continuous with Radon-Nikodym derivatives f and h,
respectively. Then

xf @)= [ fa-wh@du, xeR, . (3.13)
0

In this section we consider (3.13) where either f or A (u)/u are moment functions (cf.
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Definition 3.5.1). In the proof of Theorem 3.5.3 of this section it is essential whether
or not the distribution function of f or of 4 (u)/u is bounded. We therefore state the
theorem in terms of the densities of the distribution functions in (3.12), instead of in
terms of the functions in (3.13). We consider (3.13) in the context of moment
functions instead of (3.12), partly because (3.13) is the analogue of (3.1) and partly
because ¢ —F is a bounded moment function for some ¢ >0 if and only if fis a
moment function with j f=c.

The set MS([0, 1]) coincides with the set of completely monotone sequences (cf.
Feller (1971), Section VII,3). The set of completely monotone functions is equal to
the set of Laplace-Stieltjes transforms (cf. Feller (1971), Section XIII,4). In order to
keep the analogy between completely monotone sequences and completely monotone
functions we introduce the following definition.

DEFINITION 3.5.1. Let MF((0, «)) and MF((0,1]) denote the sets of Stieltjes and
Hausdorff moment functions, respectively, i.e., for I € {(0, <), (0, 1]} let

fe MF (I) if and only if f (1) = j e dux), teR,, (3.14)
—~In(l)

where | is a nonnegative measure and —1n((0,1])=[0, e) and —1n((0, «))=IR. Also
let the sets MS™ (1) (cf. 3.14)) be given by

fe MF*(I) if and only if f € MF (I) with p <A .
The measure p in (3.14) is called the representing measure of f. (]

We will need the following lemma. The proof is almost ide;ltical with that of
Lemma 3.2.4 and therefore omitted.

LEMMA 3.5.2. LetIe {(0,),(0,1]}. If f, € ME(I) (or MF*(I)) for all t > t, and
if lim £,(t) = f(z), te R, then fe MF (I) (or MF*(1)).
t—yo0

Part (ii) of the following theorem was proved by Steutel (1970), p. 44, Theorem
2.12.1, for distribution functions. We slightly generalize this result in

THEOREM 3.5.3. Let F and H be related by (3.12) and suppose they have densities f
and h, respectively. Then

() feMF((0,)) ifand only if T h(t)e MF*((0, «));
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(i) fe MF((0,11) if and only if T h (t) e MF*((0,1]).

PROOF. Theorem 2.12.1 of Steutel (1970) proves part (ii) for bounded F. Any
function F with density fe MF((0,1]) can be written as a limit of bounded functions
F, with densities f, e MF((0,1]). For each F, a function H, can be found satisfying
(3.12). By Theorem 3.5.3 (ii) for bounded F, T™' h,(t) e MF*((0,1]). Since F,— F and
H,— H, then by Lemma 3.5.2, T 'h(t)e MF*((0,1]). Similarly when starting with
tlh ().

Part (i) can be proved from part (ii) as follows; if fe MF((0, <)), then by truncation
of integrals we have a sequence f; e MF ((0,t]) such that f;— f. Since f; e MF ((0,t]) if
and only if 1*f,(t) e MF ((0,1]), then by part (ii) r™*t"! h,(t) e MF*((0,1]) and hence
T h(t)e MF*((0,r]). By Lemma 3.5.2, on letting r—o it follows that
T h(t)e MF*((0, »)). Similarly when starting with T A (). O

REMARK 3.5.4. Part (i) of Theorsm 3.5.3 can also be proved by applying a limiting
argument to Theorem 3.3.8 as in the proof of Theorem 4.3.2 (see Chapter 4). Yet
another way to prove Theorem 3.5.3 (i) (or another way to prove Theorem 3.3.8 using
Theorem 3.5.3 (i)) is as follows:

Suppose fe MF((0,1]). By Steutel (1969) f is infinitely divisible and therefore
satisfies (3.13). For any 1<c, ¢ 21, f can be put in the form (cf. (3.14))

oo

}(T)= f x(x+t/c)t du(ex)
0

1
= [ A-x(1-ve) ™ dpy c(x) = P(1-1c), (3.15)
0

where dj; (x)=—(1-x)dpu(c (x'l—l)). Let (p,(c)) have generating function P.. Then
(Pn(c)) e MS([0,1]). Let {r,(c)) be defined by using (p,(c)) in (3.1) and let R, denote
its generating function. By Theorem 3.3.8, (r,(c)/(n+1)) e MS* ({0, 1]), and hence

1
R@)= [ A-x)2du )= [ c0+c-2))2dup (), (3.16)
0 0

with dpy ((y)=—c ((y/c)+1)? dpy (¢ /c)+1)1). Hence py  <A. Observe that (cf.
(3.13)

ho=— -9 =4
h(t)= it Inf (1) It
From (3.16) and (3.17) it follows that & (t)/te MF*((0,1]). The converse is shown
similarly. O

InP.(1-1/c)=c" R, (1-1/c). (3.17)
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3.6 Moment functions and renewal functions

Let F be a distribution function on R, with density f and Laplace-Stieltjes
transform f. Suppose F is a compound geometric distribution, i.e.,

F(x)=(1-p) ¥, p"G*"(x), xeR,,
n=0

with G a distribution function, having density g, and G*” being the n-th convolution
power of G. Applying the same type of argumentation as used in Remark 3.5.4 to
Theorem 2.3.3 or applying a limit argument to Theorem 2.3.3 as in Hansen and Frenk
(1988), it can be shown that (this is partly shown in Sumita and Masuda (1987),
Theorem 3.3.2, p. 644 and is proved in Frenk (1988), both with proofs similar to that
of Theorem 3.3.2))

fe MF((0,1]) if and only if ge MF((0,1]) .

Let U, = (1-p)'F and U := lim,_,;U,. If u is the density of U, then by Lemma
3.5.2,

u € MF((0,1]) if and only if ge MF((0,1]) . (3.18)

The function U (called the renewal function (cf. Ross (1983))) is the unique solution
of the renewal equation,

U)=1+ [ Gax-)dU©), xeR,. (3.19)
0

Using the method of proof of Theorem 3.5.3 on statement (3.18) we obtain

THEOREM 3.6.1. Let U and G be related by (3.19) and suppose they have densities u
and g respectively. Then

() ueMF((Q,))ifand only if g e MF((0, =));

(i) ue MF((0,1]) if and only if g € MF ((0,1]) and j g(x)dx<1.
0

3.7 Applications and special cases

The main occurrence of (3.1) is in infinite divisibility. In this context (p,) is a
Hausdorff moment sequence if and only if (p,) is a mixture of geometric distributions,
ie.,

1
Pn= [ x"(1-x)dF (x), nelNp , (3.20)
0 .
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where F is a distribution function on [0, 1]. Theorem 3.3.8 can be restated as

THEOREM 3.7.1. (p,) in (3.1) is a mixture of geometric distributions if and only if
(gn) = (r/{6(n + 1)}) (cf. Theorem 1.3.4) is a mixture of geometric distributions with
F in (3.20) satisfying (1 —1t)dF <d\ (cf. (34)). Equivalently, the probability
generating function P is of the form

1
P(z)= | (1-x)/(1-xz)dF (x),
0

with F a distribution function on [0,1], if and only if P can be represented as
11
InP(z)= | [ A-w)2duw)du,
z 0

and | bounded by Lebesgue measure. The representation is unique.

The continuous analogue of Theorem 3.7.1 is implicit in Theorem 2.12.1 of Steutel
(1970).

As a curiosity we prove that it is possible to have (p,) = (g,+1) in Theorem 3.7.1,
i.e., zP (z) = G () in Theorem 1.3.4. Solving for (p,) in P (z) = P (0) exp [0z P (z)] one
finds, e.g. by Lagrange expansion,

"=%;_' ©e0Y e®, nelNy. (3.21)
Since

n © .
L_-_% [ (ZEZ explx cotx])dx, nelNo,
0

n! X

as has been proved by Bouwkamp (1986), (p,) is a Hausdorff moment sequence. The
distribution in (3.21) and its continuous analogue are busy period distributions. This
application is discussed in Steutel and Hansen (1988).

We finish this chapter by stating a conjecture, the continuous analogue of which
is discussed in Steutel (1970) (p.28, 94). In probabilistic terms the conjecture is that
mixtures of negative binomial distributions of order 2, i.e., of probabilities of the form

(n+p"(1 - p)2 (n=0,1,..), are infinitely divisible. We state the conjecture more
formally as follows.

CONJECTURE. If (a,) is a Hausdorff moment sequence, then (p,):=((n + la,)
satisfies (3.1) with r, 2 0.
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Note that the conjecture is true if and only if the analogous conjecture in Steutel
(1970) concerning mixtures of gamma two distributions is true (this can be seen by
applying the method used to couple distributions on INy and IR, in Remark 3.5.4). It
is however numerically easier to look for counter examples in the discrete case than in
the gamma two case. We computed™) the first 200 r;’s for 20 different mixtures of
negative binomial distributions of order two and did not find any negative r;’s.

(*) My thanks go to A.A Stoorvogel for his programming help.



Chapter 4

LOGCONCAVE AND LOGCONVEX
SEQUENCES AND DENSITIES

4.1 Introduction

Log-concavity and log-convexity of functions and sequences in probability has
been of interest to several authors, e.g. Karlin (1968). Ibragimov (1956) calls a
distribution strongly unimodal if its convolution with any unimodal distribution is
unimodal. He proves that the set of strongly unimodal probability densities is equal to
the set of log-concave densities. An equivalent result for log-concave discrete
probability distributions has been proved by Keilson and Gerber (1971). Much work
has been done on the unimodality of infinitely divisible distributions (cf. Wolfe
(1971), Yamazato (1978) and Sato and Yamazato (1978)), but little on strong
unimodality. The study of log-concave functions and sequences is thus a relatively
unknown field in probability, with important applications in the fields of statistics and
optimization. Log-convexity is of interest in the study of reliability and of infinitely
divisible random variables. Steutel (1970) proves that all log-convex discrete
probability distributions are infinitely divisible (Theorem 2.4.1 (ii)). The absolutely
continuous analogue is also proved in Steutel (1970).

In this chapter we consider distributions of non-negative infinitely divisible
random variables whose canonical measures are either absolutely continuous or
supported by the integers. We prove that for such distributions to be log-concave
(log-convex), it is sufficient that their canonical measures be log-concave (log-
convex). Our results in the discrete case contain an analogue of Yamazato’s (1982)
concavity result (it also provides an alternative proof of this result), and an analogue
to the convexity result for renewal sequences in de Bruijn and Erdos (1953) (cf.
Theorem 2.3.2 (i)).

37
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4.2 Discrete distributions

In this section we consider infinitely divisible discrete probability distributions
(pn) on INg. A sequence (a,) is log-concave if (a,) is non-negative and (log(a,)) is
concave (here In0 := —e0), or equivalently if a,>0 and

a%?.a,,ﬂ a,-1, nelN, . 4.1)

If the sequence satisfies (4.1) with strict inequality, then the sequence is said to be
strictly log-concave. Similarly, (a,) is log-convex if @,>0 and the sequence satisfies

2
ap<a,410ap_1 , nelN, . “4.2)

(a,) is said to be strictly log-convex if (4.2) is satisfied with strict inequality. Log-
convex sequences are sometimes called Kaluza sequences, since Kaluza (1928) was
the first to study sequences satisfying (4.2). Karlin (1968) calls a sequence satisfying
(4.1) a Pélya frequency sequence of order 2.

A probability distribution (p,) on INy with py >0 is infinitely divisible if and
only if it satisfies

n
(n+)ppy = Z Tk Pn—k » nelNg, (4.3)
k=0

with non-negative r; and, necessarily, : - r/(k+1)<ee (cf. Theorem 1.3.4).
Theorem 2.4.1 part (ii) states that all log-convex distributions are infinitely divisible.
This can be proved by induction since

n-1

TnPnP0=PnPn+1* 2 7k(Pn+1 Pnk-1 —Pn-kPn)

k=0
is positive if (p,) is strictly log-convex and noting that any log-convex sequence can
be written as a limit of strictly log-convex sequences. Not all log-concave
distributions are infinitely divisible since (cf. (4.3))

r1=po’ (2p2p0-p})
is not necessarily non-negative when (p,) is log-concave. We also note that log-
concave and log-convex distributions do in fact exist, for example the generalized
logarithmic series distribution is log-convex (cf. Hansen and Willekens (1989)) and

the binomial and Poisson distributions are log-concave (cf. Keilson and Gerber
(1971)). Also the geometric distribution is both log-convex and log-concave.

The proofs of the two theorems in this section rely on two equations derived
from (4.3). Though easily verified by (4.3), the equations were rather hard to find.
Because of their importance we state them in a lemma.
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LEMMA 4.2.1. Let (p,) and (r,) be related by (4.3) and let p_ :=0. Then
m (m+2) (Prs1 =Pm Pms2)=Pm+1 (Y0 Pm—Pm1) “4)
+§', Zl', (Pm-1Pm-k-1 —Pm-k Pm-1-1 ) (Tes1 T1—T141 Te) 5
1=0k=0
Tm+1 (M42) (Pms1Pms3 ~Pm+2 )=Pma1 (Fms2 Pms2 = a1 Pm3 ) (4.5)
+ i (Pm-k Pm+2 —Pm+1 Pm—k+1 ) (Fma2 Tk =Tkt Fma1 )

k=0

Relation (4.4) is a discrete analogue of equation (10) in Yamazato (1982),
whereas (4.5) is an analogue of formula (7) in de Bruijn and Erdos (1953). We will
need the following lemma.

LEMMA 4.2.2. Let (p,) and (r,) be related by (4.3) withpo >0. Then

® lfp% >Pn_1Pns1forn=1,2, ... ,mthenropm—pms1 >0;

(i) if (rp) is strictly log-convex and r§—r1 <0 then rps; Pm+2 —Tm+1 Pm+3 >0.

PrOOF. If p%>p,,_1p,,+1 for n=1,2,...,m, then p,,1/p, is decreasing for
n=1,2,..,ms0rg=p1/po>DPm+1/Pm-

If (7,) is strictly log-convex, then (r, 1 / r,) is increasing. Hence,

m+2 ry
(m+3)Pms3 =Pms270+ X, Pma2—k Tk—1 y
k=1 -1

Tk
<Pm+27o+(m+2)ppyy max
1sksm+2| Tg-1

Tm+2 Tm+2
<Pm+2 +(m+2) P2 .
Tm+1 Tm+1 O

We are now ready to prove the two main results of this section. We begin with
the result on log-concave sequences.
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THEOREM 4.2.3. Let (p,) and (r,) be related by
n
(n+D)pps1= X rkPnk, nelNp, (4.3)
k=0

with ry 20, po >0 and let (r,) be log-concave. Then

(py) is log-concave if and only if r§ —r; 20.

PROOF. Suppose that (r,) is strictly log-concave and r% —r1 >0, then (r,) is positive
and hence (p,) is positive. Observe that (cf. (4.3))

2(pt —pop2)=pb (r§-r1). (4.6)

By using (4.6), Lemma 4.2.2 (i) and applying induction to (4.4) we see that (p,) is
strictly log-concave. The proof is completed by noting that any log-concave sequence
can be written as a limit of strictly log-concave sequences. O

The following theorem states the result on log-convex sequences. It is the
infinitely divisible analogue of Theorem 2.3.2 (i).

THEOREM 4.2.4. Let (p,) and (r,) be related by
n

(n+)ppy = Z TkPn-k » n € Np,
k=0

withr, 20, pog >0 and let (r,) be log-convex. Then

(pn) is log-convex if and only if r§ —r1 <0.

PROOF. As in Theorem 4.2.3 except that Lemma 4.2.2 (ii) is used and induction is
applied to (4.5). O

It is curious to note the difference in equations (4.4) and (4.5). We were not able
to find an equation of the form (4.4) to prove Theorem 4.2.4 or one of the form (4.5)
to prove Theorem 4.2.3.

REMARC 4.2.5. The assumption that (p,) is a probability distribution is not used in the
proofs of Theorems 4.2.3 and 4.2.4. These theorems are thus true for arbitrary non-
negative sequences related by (4.3). O
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4.3 Absolutely continuous distributions

In this section infinitely divisible probability distributions F on R, with
absolutely continuous canonical measures are considered. We obtain two results on
the log-concavity and log-convexity of the densities of F, which are analogues to
those obtained in Section 4.2. The result on log-concave densities is proved in
Yamazato (1982). We here propose a proof based on applying a limiting argument to
Theorem 4.2.3. This proof can easily be adapted to log-convex densities, thus giving
the absolutely continuous analogue of Theorem 4.2.4.

A function fon R is log-concave (log-convex) on an interval [ if fis positive on
I and log(f) is concave (convex) on /. The function f is said to be log-concave (log-
convex) if I={x | f >0} is an interval and f is log-concave (log-convex) on I. As in the
discrete case, fis strictly log-concave (strictly log-convex) if In (f) is strictly concave
(strictly convex).

A distribution function F on (0,e) is infinitely divisible if and only if there exists
a non-decreasing measure H such that

[ udF ()= | Fx-u)dH (), 4.7)
0 0

[uldH@w)<eo , 4.8)
1

where H and F determine each other uniquely (cf. Theorem 1.3.3). If F and H have
densities fand A, then

xf@)= [ h(x-u)f uydu . 4.9)
0

Without loss of generality we assume that inf{ x | f (x) >0} =0. It is shown in Steutel
(1970) that all absolutely continuous distributions with log-convex densities are
infinitely divisible. As in the discrete case, not all distributions having log-concave
densities are infinitely divisible, e.g. f (x)=cexp(—x 2) for xe (0,9).

We begin with a lemma.

LEMMA 4.3.1. Let f and h be related by (4.9). Suppose h is monotone on (0,€) for
some €>0and0< f (0+) <eo. Then h(0+)=1.

PROOF. Suppose & is non-increasing on (0,€), then 4 (0+) > 0. By (4.9) the function f
is continuous. From (4.9) it follows that forO<x <&

hOD)2xf )/ [ f @)du,
0
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h(x)<xf(x)/ [ f@)du.
0

As x— 0 the right hand sides tend to one, so A(0+)=1. Similarly if 4 is non-
decreasing. (|

THEOREM 4.3.2. (Yamazato) Let F be an infinitely divisible distribution function on
(0,0) with an absolutely continuous canonical measure H. Let f and h be the densities
of F and H respectively, and assume that h is log-concave. Then

fis log-concave if and only if h (0+) 2 1.

PROOF. Suppose h is log-concave and h(0+) > 1, then A must be continuous on /.
Define (r,(k)) by

r,,(k)=h(n—;1—), neNg,
and any keINy. Then (r,(k)) is log-concave, and since h(04+)>1 we have

(ro(k))2 >ry(k), for all sufficiently large k. By (4.8) and the continuity of 4 we see
that 3" r,(k)/ (n+1) < ce. For fixed k define (p,(k)) by

(+1)Prr ()= 3 pus) i), ne N, (4.10)
1=0

po(k)=kexp(—§ rak)/ (n+1))>0 , 4.11)
n=0

with ¥ p,(k)=k. By Theorem 4.2.3 and Remark 4.2.5 the sequence (p,(k)) is log-
concave. Let

Fx)= Y k7'pak), (4.12)
n20
n<kx
H@= Y klrk). (4.13)
n20
n<kx
From (4.10) and (4.11) it follows that
[ wdFw)= | Fex—u)dHew), (4.14)
[0,x+k7'] [0,x]
1 +1
b= [ hCEw)dFw) (4.15)
(0.1

By Helly’s first theorem (cf. Feller (1971)) there is a subsequence (Fis)) converging
weakly to some distribution function, Fy;,; say, as s — oo. Hence, since Hy — H, by
Helly’s second theorem
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| wdFimy@)=" | Fiimy(x—u)dH (u) .
[0.x] [0.x]
Since H uniquely determines F in (4.7) we must have F =Fy;,,;. Let

Fe) = (P ()Y pll)) 17k xe[%,ﬁi—l-) , (4.16)

then f; is a log-concave function of x. Let n — e and k — oo in such a way that
k7! (n+1) - x, then it follows from (4.9), (4.15) and (4.16) that

. 1 +1 ae
% fima@)i=  lim A= | hGow)dF) = xf ()
k—o0 [0,1)
n—oo
k(n+1)-x

Since log-concavity is preserved under convergence, F has a log-concave density
fiimit- As any log-concave function with A (0+)21 can be written as a limit of log-
concave functions (k) with h(0+) > 1, this completes the first part of the proof.

Conversely, if f and h are log-concave then h is monotone on (0,€) for some
€>0. If 0<f(0+)<oo then h(04+)=1 by Lemma 4.3.1. If f is log-concave then
f (0+) cannot be infinite. If f (0+) =0, then fis non-decreasing on (0,€) and

xf@)Sf @) [ h(uydu
0

Letting x— 0 yields A (0+)> 1. O

The proof of Theorem 4.3.2 can easily be adapted to log-convex densities by
using Theorem 4.2.4 instead of Theorem 4.2.3. We then obtain

THEOREM 4.3.3. Let F be an infinitely divisible distribution function with an
absolutely continuous canonical measure H. Let f and h be the densities of F and H
respectively, and assume that h is log-convex. Then

fis log-convex if and only if h(0+) < 1.

4.4 Applications and counterexamples

In this section we define a set of infinitely divisible distributions in terms of their
canonical measures and determine under what conditions a distribution in this set is
log-concave or log-convex. An application of this result shows that if (p,) is log-
concave (log-convex) then (r,,) is not necessarily log-concave (log-convex). Finally,
we characterize the log-convex discrete stable distributions.
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Let D denote the set of distributions having canonical measures (r,,) of the form
b a
r=(n+1){ [ y"dm@)+ [ y"dyt, nelNg, (4.17)
0 c

for fixed a, b and ¢ with0<b <1, 0<c <a <1, m bounded by Lebesgue measure and

b

| dm@)<b-a, ifb>a,
a

c

[ dmy<c, ife>0.
0

The proof of Theorem 4.2 in Yamazato (1982) can be adapted to prove the
following theorem if Theorem 3.3.8 of Chapter 3 and Corollary 2 to Theorem 3.3.8 is
used in the same fashion as Lemma 4.2 in Yamazato (1982).

THEOREM 4.4.1. Let (p,) and (r,) be related by

n
(n+Dppy1= 3 rePnsk, nelNp,
k=0

with non-negative ry andpo > 0. Let (p,)) € D, then

(@) ifc=0anda=bthen (p,) is log-concave;
if c 20 and a < b then (p,) is not log-concave;
@ii)) ifc=20anda=c2b then (p,) is log-convex;
ifc20and a=b > c then (p,) is not log-convex;
ifc20and b >a > c then (p,) is not log-convex;

ifc20and b <a=c then (p,) is log-convex.

REMARK 4.4.2. The absolutely continuous analogue of Theorem 4.4.1 can be obtained
by applying the same type of limiting argument as in the proof of Theorem 4.3.2. [J

REMARK 4.4.3. Let m in (4.11) be Lebesgue measure on (d,b), and zero otherwise.
Then r,=b"—d" +a" and r2 —rp41 rn—1 <O for large n if @ > b > d >0, whereas (p,,)
is log-concave by Theorem 4.4.1 (i). Similarly (r,) is asymptotically log-concave if
0=d < b <c <a, whereas (p,) is log-convex by Theorem 4.4.1 (ii). Hence, if (p,) is
log-concave (log-convex) then (r,) is not necessarily log-concave (log-convex)
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(compare with Theorems 4.2.3 and 4.2.4). O

REMARK 4.4.4. Theorem 4.4.1 characterizes D in terms of log-convexity and almost
completely in terms of log-concavity. We were not able to prove thatif a=b > ¢ >0,
then (p,,) is log-concave (cf. part (i) of Theorem 4.4.1). Od

A discrete analogue of an absolutely continuous stable distribution was
introduced by Steutel and van Harn (1979) and discussed in Section 1.4. Steutel and
van Harn (1979) proved that a distribution (p,) is discrete stable with exponent § if
and only if its generating function is of the form (cf. Theorem 1.4.3)

P(2)=exp(-M1-2)%), 8e(0,1], A0 .

Taking generating functions on both sides of (4.3) and comparing with the Taylor
series expansion of —K(l—z)a one sees that (r,) is strictly log-convex and that

r§—ry <0 if and only if 8 <1-rqy. Applying Theorem 4.2.4 to these observations

gives

THEOREM 4.4.5. Let (p,,) be discrete stable with exponent 8. Then

(p,) is strictly log-convex if and only if L <871 —1.

The canonical density A of an absolutely continuous stable distribution on (0,ee) is of
the form cx‘s, de (0, 1], hence h is log-convex and h(0+)=oco. Applying Theorem
4.3.3 we have, rather unexpectedly, that there are no log-convex stable densities on
(0,0).



Chapter 5

A GENERALIZED SELF-
DECOMPOSABILITY

5.1 Introduction

Functional equations have been a helpful tool in representing subsets of the set of
infinitely divisible distributions. The definitions of self-decomposable and stable
distributions in terms of a functional equation for their characteristic function or
probability generating function (cf. Section 1.4) are well-known examples; for other
examples see van Harn (1978). O’Connor (1979a) shows that membership in the set of
infinitely divisible distributions with unimodal Lévy spectral functions is related with
the solutions of the functional equation (cf. equation (1.6))

0N =B o.)  ,ce(01), 1R, .1)

with B=c and where ¢ and ¢, are characteristic functions. Jurek (1985) calls such
characteristic functions shrinking-self-decomposable, or s-self-decomposable for
short. All self-decomposable characteristic functions are s-self-decomposable, as
follows easily from the fact that self-decomposable characteristic functions are
infinitely divisible. Interpolating between (5.1) with B=c and (1.6), O’Connor (1979b)
studies equation (5.1) with B=c1‘°‘, oe (0,1). In O’Connor (1981) the case ace (1,3)
is considered. In this chapter we study the case B=c®, ae R. This case has also
been studied in Jurek (1988) and (1989), where some of the results of this chapter are
also proved. For a detailed comparison we refer to Remarks 5.4.11 and 5.4.12.

We consider random variables X on R, on R, and on IN;. We introduce a one
parameter family of functional equations, of the form (5.1), satisfied by the
characteristic function, Laplace-Stieltjes transform, or probability generating function
of X, depending on whether the random variable has support on R, on IR, or on INy.
Our equations for random variables on R include O’Connor’s and have as special

46
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cases the functional equation defining self-decomposable distributions and s-self-
decomposable distributions. We establish a canonical form for the integral transform
satisfying these functional equations, show that these integral transforms are infinitely
divisible, and have Lévy spectral functions that are, in an extended sense, o.-unimodal.
These results include those of O’Connor and Jurek. It is also shown that this one
parameter family of functional equations provides a classification of the set of
infinitely divisible random variables.

5.2 a-Unimodality

A random variable X with distribution function F and density f is said to be
unimodal, with mode at x( (not necessarily unique), if f (x) is non-decreasing for
x <xg and non-increasing for x > x¢. Throughout this chapter we assume that x4 =0,
i.e., if a function is said to be unimodal (or ci-unimodal) it is understood that its mode
is at the origin. Khintchine (1938) showed that X is unimodal (at zero) if X = UY,
with U and Y independent and U uniform on (0,1). Olshen and Savage (1970)
generalized this concept; a random variable is said to be a-unimodal (at zero) if it is
of the form UY*Y, with U and Y independent and U uniformly distributed on (0,1)
and o # 0. If Y has distribution function G, then

fO=0x*1 [v®dG W), xeR,,

f@=alx1®? [ vI*dGr), xe R

This result corresponds to Corollary 2 p. 28 in Olshen and Savage (1970). Hence, fis
o-unimodal if and only if Ix |1-o f (x) is non-decreasing on (—,0) and non-
increasing on (0,.¢). We will use a-unimodality in connection with Lévy spectral
functions, so a more general definition is needed.

DEFINITION 5.2.1. A function C (not necessarily non-negative) is said to be o-
unimodal for some e R, if Ix 117 C (x) is bounded from below and non-decreasing
on (—=,0) and non-increasing on (0, o) or equivalently if there exists constants
A1, A e R and a function N, non-decreasing on (<, 0) and (0, o) such that

x%71( j v AN W)+A), x>0

Cix)= , (5.2)

X
X170 [ IvIT®dNm)+)p), x<0
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and such that the integrals converge for every x € R\{0}. O

An analogue of a-unimodality for discrete distributions on INj is introduced in
Abouammoh (1987). An equivalent, but different, definition was given by Steutel
(1988). Steutel (1988) calls a random variable discrete a-unimodal (at zero) if X
=U"*® Y with U and Y independent and U uniform on (0,1). The multiplication
operator ® is defined in Section 1.4. Since we only consider discrete random
variables on INy, a-unimodality at zero is equivalent to a-monotonicity. If X and Y
are INy valued random variables with probability generating functions G and S,
respectively, then

1
G@)=a j S(=v(1-2)v*lay.
0

Expanding the integral on the right hand side Steutel (1988) shows that (g,) is -
monotone if and only if (n!T(n+o)~!g,) is non-increasing or equivalently if
(n+a)g,2(n+1)g,+1. We generalize this definition to

DEFINITION 5.2.2. A sequence (r,) is said to be oa-monotone, for a>0, if
(n!T(n+0)7! r,) is bounded from below and is non-increasing, or equivalently if
there exists A; € R and a non-negative sequence (h,) such that

T'h+o) | & k!

= .
n nt | 2 Tk

hy + 7\.1 ,nelNp. 5.3)

A sequence (r,) is said to be zero-monotone if ro=A and r, =0 for n>1 (cf. (5.3)),
i.e., (r,) is the canonical measure of the Poisson distribution. O

REMARK 5.2.3. It is immediate from Definitions 5.2.1 and 5.2.2 that if a function f or
a sequence (a,) is 0p-unimodal then it is a-unimodal for every a = oy. O

5.3 Distributions on INO

The starting point of this chapter was the work on random variables supported by
INp. In this special class of random variables the probabilities themselves can be found
explicitly and the corresponding Lévy spectral functions are easily computed. This
provided a good source of intuition and insight which was very helpful in establishing
the results of Section 5.4. In this section this discrete analogue is discussed. We begin
with a definition.
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DEFINITION 5.3.1 Let the random variable X on INy, have distribution (p,) and
probability generating function P. The function P is said to be a-self-decomposable
for some ate R and to belong to the set Sy (INp), if for every ¢ € (0,1) there exists a
probability generating function P, such that

P(2)=P" (1—c(1-2))P(2) , lz1<1. (5.4)

If =0 in Definition 5.3.1, then (5.4) provides the functional equation defining
discrete self-decomposable probability generating functions as given in Section 1.4.

Let (r,) be (o+1)-monotone, a.>—1, o # 0 and let 1?(2):210 h,/ (n+1)z"+1.
By using

1
[vB1 (v dy =TT T+
0
we obtain

RG) = X r*/(n+1)z"*
n=0
1

= [ (HU-v(1=-2)-H(1-v)v* dv+dp -2y (1-2)%, (5.5)
0
where A, =A; (1+0) T'(1+0x) (~0)!. Hence (rp) in (5.3) is a canonical measure, i.e.,
r,20 and Yr,/(n+1) <eo (cf. Theorem 1.3.4), if and only if (h,) is, with A; 20,
A1 =0 for 2>0. Similarly if a=0.
Suppose (p,) has canonical measure (r,) with (r,) (o+1)-monotone, a>—1 and

suppose (g,) is an infinitely divisible distribution with canonical measure (h,). By
(5.5) and Theorem 1.3.4,

InP(z)=R(z)+InP (0)=R(z)—R(1)
1
= [ (HQ-vA-2)-HO)V*  dv =My (1-2)
0

1
= [ mQU-v(I-2)v* dv-N (1-2)".
0

‘We now prove

THEOREM 5.3.2. Let a.e (—1,00) and let P be a probability generating function. The
following statements are equivalent.

(i) P is a-self-decomposable;
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1
(i) InP(z)= f InQ-v(-2)v*1adv-A(1-2)"% A20 and Q is a unique
0
infinitely divisible probability generating function;
(iii) (p,) is infinitely divisible and its canonical measure (r,) is (0+1)-monotone.

Furthermore, ) in (ii) is zero if 020 and P, is infinitely divisible for every c € (0,1) if
P is a-self-decomposable.

PROOF. (ii) <> (iii) has been proved above. We now prove (i) <=> (ii). Let P satisfy
(5.4), let r>0and ¢, € (0,1) for n e IN; such that r (1 —c,.)'1 e INp, then

InQ,n(2) = In (P, (2)) 7"
{lnP(z)—lnP(l—cn(l_z)) 1-c® }
=r +

InP(1-c,(1-2))
1-c, 1-c,

is the logarithm of a probability generating function. Let c, be such that ¢, T1 as
n — oo, then

InQ,(z) = imInQ, ,(z)=r (- (1-2) P’(z)/ P(z)+alnP(2)). (5.6)

Since Q,(z) > 1 as z— 1 (cf. Lemma 1, Steutel and van Harn (1979)), by Theorem
1.3.7, Q, is a probability generating function for every r >0, and thus @ = Q, is an
infinitely divisible probability generating function. Equation (5.6) gives rise to the
following differential equation,

InQ@)=—(1-2) %lnP(z)+alnP(z),

which has (ii) as unique solution.

Conversely, if P is as in (ii), then P satisfies (5.4) with
1
InP.(z)= j InQA-v(-2)v*lav . 6.7
c

Let (pn(c)) be the probability distribution corresponding to P, and define (7,(c))
using (p,(c)) in (1.2). Then

ngorn(c)zn = Rc(z)=-‘;i—zlnPC(Z)

1
= jH(l—v(l—z))v“dv ,

which has positive coefficients. Hence P, is infinitely divisible. O
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COROLLARY 1. P is discrete stable with exponent & (cf. Theorem 14.3), then
P e S o (INg) for every a.2—34.

COROLLARY 2. The Poisson distribution is the only distribution in S_1(INy), and its
canonical measure is 0.-monotone with o.=0.

Note that for >0 the sequence (r,) is (o+1)-monotone if and only if
(rn/ (n+1)) is a-monotone. Since all log-convex sequences and all Hausdorff moment
sequences are non-increasing we have (cf. Theorem 3.3.8 and Theorem 4.2.4)

COROLLARY 3. If (r,,) is log-convex, then (p,) is 0-self-decomposable.

COROLLARY 4. If (p,) is a mixture of geometric distributions, then (p,) is 1-self-
decomposable.

REMARK 5.3.3. It follows from the proof of Theorem 5.3.2 that a necessary and
sufficient condition for the convergence of the integral in Theorem 5.3.2 (ii) is that the
canonical measure (h,) of the infinitely divisible probability generating function Q
satisfies

(kD) Ml

ZTrzrey kel =7 (5-8)

for ace (—1,0) (recall that (r,) is (c+1)-monotone). By Stirling’s formula (5.8) is
equivalent to

hy
k+1)* —— <o,
T
If a=0 then it is necessary and sufficient that

ok h
ZZlk

& 2l k+

< oo,

or equivalently

): In(k+1)—-——<oe
O

Berg and Forst (1983) introduced the set of n-times self-decomposable
probability generating functions L, (INy) inductively by letting L (INg) =S ¢(INp) and
(cf. (5.4)
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Ly+1(INo)={P € L,(INo) | Pc € L,(INp), ce (0,1) }.

Hence L;(INg) is the subset of S¢(INg), where P, is 0-self-decomposable for every
c € (0,1). Similarly, let S (INg) := S (INp) and let

Set (No)={P e S§(Ng) | P, e S5 (INg), ce (0,1) }.

We conclude this section with a characterization of the probability generating
functions in Sg, (INg).

THEOREM 5.3.4. Let P e Sy(INg) with P, given by (54) and Q by Theorem 5.3.2.
Then Q € S&% (INg) if and only if P e SE*! (INg), n e INp.

PROOF. Suppose Q € Sg (INg). Observe that
InP.(z)=InP(z)—c®*InP(1-c(1-2))

1
= I [QU-v(1-z))—c*InQ(-cv(1-z)]v*dy
0

1
= [ nQ.(1-v(1-2)v* " dv,
0

for some probability generating function Q.. Obviously, if Q can be decomposed
n+1-times in this way, then so can P. Hence P e S%*! (INg).

Conversely, if P e S%+1(INy), then P, e S (INg) for every c e (0, 1). By the proof of
Theorem 5.3.2

In Q(z)=lii111(1-—c)'1 InP.(z).

Obviously Sg (INp) is closed under limits and so Q e S§ (INp). O

5.4 Distributions on R

Throughout this section we will understand by the derivative of a Lévy spectral
function M a right continuous function M’ defined by

M'(x+)=M,"(x),

M'(x-)=M_"(x),
where M.’ and M_’ are respectively the right and left derivatives,
f (x+)=limy |, f (¥) and f (x—)=limy1, f (y). The assumption of right continuity of
M’ is non-essential and is assumed for uniqueness only. The results of this section are

also true if we were to make M’ left continuous or set M’ equal to any (linear)
combination of M, and M _’ at points where M," = M _".
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We begin with a definition

DEFNITION 5.4.1. Let the random variable X on R have distribution function F and
characteristic function ¢. The function ¢ is said to be a-self-decomposable for some
oe R, if for every c € (0, 1) there exists a characteristic function ¢, such that

oN=0" (o) ,reR (5.8)

For a.=0 we have the functional equation defining self-decomposable characteristic
functions and for -2 < a <1 the equations corresponding to O’Connors class L.
Our results include those of O’Connor, but our proofs differ. For a detailed
comparison we refer to Remark 5.4.11.

We will use the following two lemmas; the proof of the first lemma is similar to
the first part of the proof of Theorem 5.11.1 in Lukacs (1970). The discrete
counterpart of the second lemma is discussed in the second paragraph of Section 5.3.

LEMMA 5.4.2. If ¢ satisfies (5.8), then & has no real zeros.

PROOF. If ¢ satisfies (5.8), then y= 1012 is a characteristic function which also
satisfies (5.8). Suppose  has zeros. Since y is continuous and y(0) =1, there exists a
to such that y(t¢)=0 while y(¢) # 0 for Iz | <. It follows from (5.8) that y.(t¢)=0
while y(¢) # O for It | <zy. By Theorem 4.1.2 on p. 69 of Lukacs (1970), with n=1
and t=ty/2, we have

4(1-yc(10/2)) 21—y (tg)=1.

Since W (20/2)=y(to/2)/ ¢* u(ct0/2) is continuous in ¢, we obtain a contradiction by
choosing ¢ sufficiently close to 1. So y and v, and hence also ¢ and ¢., have no real
Zeros. O

LEMMA 5.4.3. Let a.>—2 and let M be such that M’ (x) is o-unimodal, i.e.,

([ v AN +A), x>0
x

M'(x)= , (5.9

X190 [ I dNE)+)y), x<0

with the integrals converging for every x e R\ {0} and '[;' InvdN (v)<ee if a=0.
Then M is a Lévy spectral function if and only if N can be chosen to be a Lévy spectral
function and Ay , Ay € [ 0,00) and Ly =y =0 for 0.2 0.
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PROOF. First let M be a Lévy spectral function satisfying (5.9). We have to show that
N satisfies the requirements (ii) and (iii) of Theorem 1.3.2 and that A; and A, satisfy
the requirements of the lemma.

By Theorem 1.3.2 (i) and (ii), M’(x) 20 and M (e<)=0. Since lim,_,.. x = M) =
we have A e [ 0,%0). Similarly A, € [ 0,—oc). From (5.9) it follows that for y >0

-M@)= [ M'@)de= [ x%( [ vEdNE)+A;)dx . (5.10)
y y x

Since 0<—M (y) < oo, we must have that F A %! dx < oo and hence that A; =0 for
a2>0. A similar reasoning for y <0 yields 732 =0 fora20.

Requirement (ii) of Theorem 1.3.2. Let <0. By (5.9)

w> IM' ()1 21x7! [ dN@)+0x*T 1,

hence IN (e0)| <oo. Similarly IN(—eo)| <eo. Let v>0. Observe that for y >0 (cf.
(5.10))

-My)=a [ A-om*)dNE).
y

By (5.9) J'“ W) dN (v) <eo, s0 f”dN(v) converges and hence [N (e0)| < oo,
Similarly 1N (—eo)| < oo, Y

Requirement (iii) of Theorem 1.3.2. Let 0< 3 <&. From (5.9) it follows for a >-2,
that

€ oo
[ w2 dM@u)=(0+2) [(e™2-8%2)( [ v AN W) +]Xy)
8 €

€ €
-8 [y ®aN )+ [ vZdN()]. (5.11)
3 s

Since §%2 <v**2 for v € (8, €), the right hand side of (5.11) is bounded from below
by

(@+2)T [(e¥#2-8"2)( [ v*aN(M)+Ap)]. (5.12)
€

Let =0, then the left hand side of (5.11) tends to zero as € = 0 and so (5.12) tends to
zero as € — 0. By letting § = 0 in (5.11) it follows that N satisfies condition (iii) of
Theorem 1.3.2. Similarly for0>3>e€.

Conversely, suppose N is a Lévy spectral function such that the integrals in (5.9)
converge. We have to show that M <atisfies requirements (ii) and (iii) of Theorem
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1.3.2. Assume with out loss of generality that A; =A, =0.

Requirement (ii) of Theorem 1.3.2. Letz >y >0 and let o # 0. By (5.9) we have that

0<SM(2)-My)= [ M'(x)dx
y
=7l [z [ v*ANW)-y* [ vEAN@)+N(@)-N ()]
z y

<ol[z® [ v*ANE)-NO)].

For a. < 0, lim,_,., z°‘j""v‘°l dN (v)=0, and so | M (e0) | < 0. If a.> 0, then
¥4
limz* [ v ®dN)=limz* [ @v)*dNE)<lim N(z)=0,
Z—300 2 Z—300 2 Z—yo0
and hence |M (e0)| < oo, For a=0, observe that

4
0<M@)-M@y)= I InvdN@w)+N@)Iny-N(z)Inz .
y
By the condition on N in the lemma for a=0, lim, ,..N(z)Inz=0 and hence
IN (o) | < oo, A similar argument for z <y < 0 shows that | M (—o)| < co.

Requirement (iii) of Theorem 1.3.2. Let 0 <3 <e€. The right hand side of (5.11) is
bounded from above by
o 3
@+2)7' [ [ v *dN)+ [ vZdNW)]. (5.13)
£ )

Letting 8 -0 in (5.13) and (5.11) we see that j: u?am (v) <eo. A similar argument
holds for 0> 3 > €. O

COROLLARY 1. Let N be a Lévy spectral function such that the integrals in (5.9)
converge for o. # 0 and j:’ Inv dN (v) <o if u=0. Then,

oo x
@ limx® [ v®dNE)=0=lim Ix1* [ WIdNE), ae (—o);
X—y—o0

X—yo0 x —00

oo X
() tmx®? [y *dN@E)=0=1lim 1x1%? [ IvI®aN @), oe (-2,%).
x—0* x x—0" oo

PrOOF. This corollary is proved for a.e (0,1] in O’Connor (1979b). Part (ii) follows
from the proof of Lemma 5.4.3. Part (i) is trivial for & < 0 since the integrals always
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converge. For .20 part (i) is evident from

1x* [ v *aNE)ISING) .

REMARK 5.4.4. If M’(x) is a-unimodal then for 0 <x <€,
x2 M’ (x)2x% I v %dN (v) .
€

Integrating over (0,¢) it follows, by Theorem 1.3.2 (iii), that there are no a-unimodal
Lévy spectral functions with o <—2. O

In Section 1.4 we defined the linear operator T, on R by T,(x)=rx and showed
that it was closely related with the random variables having O-self-decomposable
characteristic functions. Let T, operate on set functions by

T,M(B) = M(T;'B)=M({xe R T.(x)e B}),

for any Borel set B. The following lemma gives a connection between T, and the
notion of a-unimodality.

LEMMA 5.4.5. Let oce R, B¢ be the set of Borel sets on R\(—¢€, €), for any €> 0, and
M a Lévy spectral function. The following statements are equivalent.

(i) M®B)2c*TM@B) ,ce(0,1), Bef;
(ii) M has left and right derivatives on R\ {0} and M’(x) is o-unimodal.

PROOF. First we prove (i)=> (ii). Letoe R, fixe>0and let B=(a, b),0<e<a <b.
Then (i) is equivalent to

c*(Mbic)-M(alc))SM(b)—M (a). (5.14)
If o <0, then M is convex and hence by Theorem A, p. 4, Roberts and Varberg (1973),
M is absolutely continuous on (€, e). Suppose & >0 and let w(x) = M (x”“). From
(5.14) withx=(b/c)*,y=(a/c)*,x’=b" and y’=a® it follows that

wE-w) we)-w(’)

x _y - xl__yl .

Hence w is convex. By Theorem A, p. 4, Roberts and Varberg (1973), w and hence
also M is absolutely continuous on (€, <). Observe that

| M'x)dx=M B)2c*T.M(B)=c*" [ T.M'(x)dx, (5.15)
B B
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with B =(a, b). Differentiating (5.15) with respect to a and multiplying both sides by
a'™, we see that a ™ M’(a) is non-increasing on R,. Similarly for b <a <e <0 we

obtain that a!1=* M’(a) is non-decreasing on IR_

The converse is proved for B =(a, b), 0 < €<a < b, by observing that (cf. (5.9))

M®)= [ M')dx= [ x* ([ vV ) dx
B B x

=c* | x““(jmv*‘dzv(v))dx
T.;'B cx

2c% [ M'(x)dx=c*T.M(B).
T:'B

If M (R) < oo, then by Lemma 5.4.5, M (R)2¢* M (R), c € (0, 1). Hence

COROLLARY 1. If M is a Lévy spectral function having left and right derivatives on
R\{0} and where M’(x) is o-unimodal, 0. < 0, then M must be unbounded.

Before proving a representation theorem for a-self-decomposable characteristic
functions we will prove a preparatory lemma, whose counterpart for discrete
distributions is discussed in the third paragraph of Section 5.3.

LEMMA 54.6. Let ¢ be an infinitely divisible characteristic function with Lévy

spectral function M having left and right derivatives on R\ {0} and such that M'(x) is
a-unimodal. Then,

(i) ifoe [0, o) there exists an infinitely divisible characteristic function Y such
that

1
Ino(r)= j Inyvr)v®dv;
0

(i) ifae (-2, 0) there exists an infinitely divisible characteristic function y and

a stable characteristic function QsTABLE(-)(t), possibly degenerate, such
that

1
In¢(r)= I Inyvr) v dv +1In dsTABLE0) (1) -
0
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PROOF. We partly follow the proof of Theorem 2 in Alf and O’Connor (1977). The
proof of (i) is very similar to that of (ii) for o€ (-1,0), so we only prove (ii). For ¢ as
given in the lemma, there exists a Lévy spectral function N and A; , A, € [0, =) such
that N and M are related by (5.9). Define the Lévy spectral function M by

M@E)—a A x* x>0

M= M@x)+o Ay 1x1* ,x<0

(5.16)

Hence M is an a-unimodal Lévy spectral function with the same N in (5.9) as M, but
with A; =X, =0. Define an infinitely divisible characteristic function y using N for M
in Theorem 1.3.2. We now wish to evaluate the integral in (ii) and show, by choosing
a and Oy appropriately, that it is equal to In ¢(¢). The manner in which a., must be
selected is closely related to the proof of Theorem 5.7.3 in Lukacs (1970). We
consider two cases.

CASE I, a.e (-1,0). For ease of notation we define for x >0
1 x

X ix(l+lt
L, x)=x [ v* k@, x)dv= [ (e™-1)v* dv -
0 0

(o1)(14+x?2)
From the first equality it follows that L (¢,x) / x®*? is bounded as x — 0. Note that
oL(t,x) _
ox
Observe that

1
[ Inywew®tdy —i(a+1) @yt + Ya(at2) " 0362
0

(5.17)

x® k(e , x)+ 23t /(a+ 1)(1+x2)?] .

w 1
= }' J' vl ke, x)dvdN (x)
—o 0

= [ LG, xx*aN@)+ [ L1, x)x™*d-N(=x)
0 0

o LX) a2 [ = (OLE,x) [
= lim[ =5 zfv dN(v)xI=£+sf = xjv dN (v)dx]

—L(_t B x) o+2

. 3 = (OoL(t,x) [
+lim(—= T2 ="x xJ'v-ad—N(—v)xI:E-FEI—ax-——-xj'v*ld—N(—v)dx]

= [ k@, 0aMx)+20+1)7" [ i/ (1) aM () (5.18)
R\{0}) RR\{0})

where the second equality is obtained by integrating by parts, and the final expression
by observing that L(t,x)/ x*2 is bounded as x — 0 and using Corollary 1 to Lemma
5.4.3. Let ay and oy be defined by
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(@+D)ay+2@+ 1y [ X3 /(A+x2) 2 aM () =ay, (5.19a)
R\{0}

Va(a+2)2ol=Y03. (5.19b)

From (5.18) we obtain (cf. Theorem 1.4.1 and (5.16))
1

[ Inywn v dv=i(o+ 1) ayt + Va(o+2) 203t
0

+20+ 17 [ i A+x?2dM )+ [ k@, x)dM ()
R\{0} RR\(0}

=iagt+Y:05t>+ [ k(t,x)dM(x)~IndsTABLECo)(F) -
IR\{0}

Hence ¢ is of the desired form.

CASE Il , o.e (-2,—1]. For ease of notation we define

X
L*¢,x)= [ (™-1-ivyw*dv . (5.20)
0
Note that L* (¢, x) / x**2 is bounded as x — oo and that
*
SLTE.X) _ ot [k (r, 1) - i3 /(1 +2D)] .
ox
Since the integrals in (5.9) converge we can let
ay=— [ v A+2aNE) . (5.21)
IR\{0}

Also define o% by (5.19b). Analogous to Case I, we have that
1
I Iny(we)v*'dv + Vaodt?
0

1

= j J' (e™*~1-itvx)v* ! dv dN (x)
RV(0) 0

= [ L*@,xx®dN @)+ [ L*(1,x)x™*d-N(-x)
0 0

—L*(t’-x) o+2

oo oo oo * oo
=i = [veave) | ai(.;(;—’—’flxj v~ dN (v)dx]

€0 x

T S NPT = foL*t,x) [ _
+B$[Tx“+ xj v‘“d—N(—v)xI=6+€I T—J v d-N (-v)dx]

= [ k@, x)dM(x)- [ i/ (14x?)dMy (x)
IR\{0}) R\{0}

Rewriting as in Case I, we see that ¢ has the desired form. O
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We are now ready to prove the two main theorems of this section (and in the
author’s opinion also two of the nicest results in this monograph).

THEOREM 5.4.7. Let a=20 and let ¢ be a characteristic function. The following
statements are equivalent.

(1) ¢ is a-self-decomposable, and ¢’ exists on R\ {0} with lirré te'(1)=0;
t—
(ii) There exists a unique infinitely divisible characteristic function vy such that

1
Ino(t)= [ Inyw)v*'av;
0

(iii) ¢ is infinitely divisible with Lévy spectral function M having left and right
derivatives and such that M’(x) is o-unimodal,

(iv) ¢ is a-self-decomposable and ¢. is an infinitely divisible characteristic
function for every c € (0,1).

PrOOF. First we prove (i) <= (ii). Let » >0 and ¢, e (0, 1) for n e IN, such that
r(1—c,)™' € Ny. By (5.8)

In ¢(¢) —1In ¢(c,t) . 1-c%
1-c, 1-c,

InY,,2(6) = 1n (9, (0)) ™" =r { In ¢(c,,t)} . (5.22)

is the logarithm of a characteristic function. Let ¢, be such that ¢, T 1 as n — o, then

Iny, (1) := limlnvy, ,(&)=r (£ ')/ ¢(t) + cln ¢(2)). (5.23)

Since ¥,(t)— 1 as t - 0, by Theorem 1.3.7, ¥, is a characteristic function for every
r >0, and thus ¥ := v; is an infinitely divisible characteristic function. Equation (5.23)
gives rise to the following differential equation:

a-1 I § _d_ o-1 — _d__ o
t*Iny(t)=t i In¢p@)+ot™ " Indp()= dtt In ¢(2). (5.24)

Hence ¢ is given by (ii). Conversely, if ¢ is as in (ii), then ¢’ exists on R\{0} with
1¢’(1) > 0 as t — 0 and ¢ satisfies (5.8) with
1

Inoc(t)= [ Inywe)v*tav . (5.25)

The characteristic function ¢, is infinitely divisible and so (ii) => (iv) is also proved.

Suppose (iv) is satisfied. Since ¢=1lim,_,y ¢., by Theorem 1.3.7, ¢ is infinitely
divisible with some Lévy spectral function M. Since ¢ and ¢, are related by (5.8), the
Lévy spectral function M, of ¢, is given by
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M. (x)=M(x)—c*M (x/c)
(cf. Theorem 1.3.2 and Lukacs (1970), p. 163). M, is non-decreasing by Theorem
1.3.2 (i), hence from Lemma 5.4.5 we see that (iii) is satisfied.

The proof is completed by applying Lemma 5.4.6 to get (iii) => (ii). O

THEOREM 5.4.8. Let ate (-2, 0) and let ¢ be a characteristic function. The following
statements are equivalent.

(1) ¢ is a-self-decomposable, ¢’ exists on R\ {0} with IR 1o'(1)=0;
t

(ii) There exists a unique infinitely divisible characteristic function Y and a
stable, possibly degenerate, characteristic function QstABLE(-a)(t) Such that
1

In ¢(r)= [ Inywr) v dv +1n dsTABLE0) () ;
0

(iii) ¢ is infinitely divisible with Lévy spectral function M having left and right
derivatives and such that M'(x) is a-unimodal,

(iv) ¢ is a-self-decomposable and ¢. is an infinitely divisible characteristic
function for every c € (0, 1).

PROOF. Lemma 5.4.6 proves that (iii) = (ii) and (ii) => (i) is shown as in Theorem
5.4.7. It remains to prove (i) = (iv) = (iii). As in the proof of Theorem 5.4.7,
equation (5.8) gives rise to the differential equation (5.24). Integrating on both sides
of (5.24) over (ty, 1), to > 0 yields

t
j u® 1 Inyu)du=1*In¢(t)—1§ Ind(tg) ,

to

and hence

t
o= [ Iny"*@)d @)™+ § Ingto) ,

to

for all  >¢(. By (5.8) we have
1
Ingc()= [ lnyw)v*lav, (5.26)
c

for all £20. Similarly, we obtain that ¢, is of the form (5.26) for 1 <0. So ¢, is
infinitely divisible and condition (iv) is satisfied.
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By Theorem 1.3.8 (i), ¢S is a characteristic function for every ¢ such that ¢® e IN,..
From (5.8) it follows that

O (M=) 05 (1) .

So ¢C'“ (¢) is a characteristic function for every ¢ such that ¢* € IN, and therefore, by
Theorem 1.3.8 (i), ¢ is infinitely divisible. Since ¢ and ¢, are related by (5.8) the Lévy
spectral function M, of ¢, is given by

M. (x)=M (x)—c*M (x/c)

(cf. Theorem 1.3.2 and Lukacs (1970), p. 163). M, is non-increasing by Theorem
1.3.2 (i), hence from Lemma 5.4.5 we see that (iii) is satisfied.

It is interresting to note (as was done to me by L. de Haan) the exceptional role
that the stable characteristic function (with exponent o) plays in Theorem 5.4.8 (ii).
This resembles the exceptional role that the normal characteristic function plays in
Theorem 1.3.2. The stable characteristic function with exponent o has an ’extreme’
Lévy spectral function M in the sense that x 1"*M’(x) is constant and that it is the only
Lévy spectral function that satisfies Lemma 5.4.5 (i) with equality. Contrary to the
case of Theorem 1.3.2, the tail behaviour of the distribution function of ¢sTABLE(-0) IS
not much different than that of the integral in Theorem 5.4.8 (ii) (cf. Steutel (1974)
and his reference list).

NOTATION 5.4.9. A characteristic function ¢ belongs to the set S o (R) if ¢ satisfies any
of the conditions (i) - (iii) of Theorems 5.4.7 and 5.4.8. O

If ¢ is stable with exponent 8, then, by Theorem 1.4.1, ¢ has a Lévy spectral
function M such that M’(x) is (—3)-unimodal and hence (cf. Remark 5.2.3) a-
unimodal for all ®>—8. We thus have the following corollary to Theorem 5.4.8 (iii).

COROLLARY 1. ¢ is stable with exponent 8, then € S o(R) for every a.2—3.

The proof of (i) = (iv) => (iii) is also valid for ¢ <-2. By Remark 5.4.4 and
observing that the normal characteristic function is o-self-decomposable if and only if
a>-2, we obtain

COROLLARY 2. The normal characteristic function is the only characteristic function
in S_5(R) and in the case a<-2, Sy(IR) contains only degenerate characteristic
functions.
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By (5.26) and Theorem 5.4.8 (iii) we see that
[
c®Inge)=In o)~ In oc(t)= | Inywr)v*™! dv +1In OsTABLE(0)(F) -
0

Letc=(n +1)°‘_1. Letting n — = we have (cf. Definition 1.4.7)

COROLLARY 3. Let -2<0a.<0. If ¢e Sq(R), then ¢ is in the domain of normal
attraction of a stable characteristic function of order —.

REMARK 5.4.10. It follows from the proof of Theorem 5.4.8 that the the integral in
Theorem 5.4.8 (ii) converges if and only if the Lévy spectral function N of the
(unique) infinitely divisible characteristic function ¥ satisfies

| v¥aN )<, ae (-2,0),

lvi2l

and 7y has no degenerate component if ae (-2, -1], i.e., ay is of the form (5.21). For
a=0 it is necessary and sufficient that the Lévy spectral function N satisfies

[ WITINmdv= [ InlxldN&)<eo,

lvi21 Ix121

and hence

In Ix | dN (x) < oo,
Ix121

Finally, the integral in Theorem 5.4.7 (ii) converges for any characteristic function ¥,
provided o > 0. O

REMARK 5.4.11. O’Connor (1979b) proves Theorem 5.4.7 for a.e (0,1). In his proof
he uses the results of O’Connor (1979a), which proves Theorem 5.4.7 for a=1. We
prove Theorem 5.4.7 for any fixed 20 and we do not use results for other known
fixed o.. O’Connor (1981) does not consider condition (i) of Theorem 5.4.8, but the
condition

(i) ¢ is a-self-decomposable and infinitely divisible,

and proceeds to prove (i") <=> (iii) for oce (-2,0) and (ii) <= (iii) for a.e (-1,0). We
prefer (i) to (i) as it is usually easier to verify that ¢’ exists and ¢ ¢(t) >0 as t >0
rather than ¢ is infinitely divisible. The proofs are also simpler if condition (i) is used
instead of (i). O’Connor tried but was unable to prove (ii) <=> (iii) for ae (-2,-1].
We were able to do so by making the appropriate choices of ay and oy in the proof of
Lemma 5.4.6. O
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REMARK 5.4.12. Jurek (1988) and (1989) obtains some of the results of this section.
Our work, however, was done independently and almost simultaneously of Jurek’s.
Jurek (1988) and (1989) defines S o (IR) as the set of characteristic functions ¢ which
can be obtained as limits of the following kind (cf. Theorem 6.2.3 (ii));

n
In¢(r)= lim ¥ (1/n)*In¢;(z/n),
n—e o)
where (¢;) is a sequence of infinitely divisible characteristic functions. He then proves
that e So(R) <> (i) and that (i) <=> (ii) of Theorems 5.4.7 and 5.4.8 for o0 >—2.
Jurek however assumes that ¢ stems from a symmetric random variable in the case
that oce (=2, —1]. The key to understanding why this assumption is not necessary lays
in equation (5.21) in the proof of Lemma 5.4.6. By choosing ay as in (5.21) we
ensure that the integral in Theorem 5.4.8 (ii) converges. If ¢ stems from a symmetric
random variable, then so does Y and hence N (the Lévy spectral function of ) is
symmetric. If N is symmetric, then ay=0 in (5.21) and the integral in Theorem 5.4.8
(ii) will always converge. If N =0, then by (5.21) ay=0 if the integral in Theorem
5.4.8 (ii) is to converge. Furthermore, if we assume that ay=0 and require that the
integral in Theorem 5.4.8 (ii) converges, then necessarily
[ v} ia+vaNw)=0,
IR\{0)

which (for example) symmetry of N ensures. O

REMARK 5.4.13. The proof of Theorem 5.3.4 can easily be adapted to prove the
analogue of Theorem 5.3.4 for distributions on R (and R,). O

5.5 Distributions on R +

In this section we use the results of Section 5.3, to prove the analogue of
Theorems 5.3.2, 5.4.7 and 5.4.8 for random variables supported by R,. The theorem
is easily proved by Theorems 5.4.7 and 5.4.8. It is stated separately because it takes a
simpler form (as in Theorem 5.3.2), and, as will be shown, the o.-self-decomposable
distributions on R, and on INj, are closely related.

DEFINITION 5.5.1. Let the random variable X on R, have distribution function F and
Laplace-Stieltjes transform f. The function f is said to be o-self-decomposable and
belong to Sq(R,), for some ae R, if for every c e (0,1) there exists a Laplace-
Stieltjes transform f, such that

=" vf@® ek, (5.27)



5.5 Distributions on R | ) 65

It can be shown (cf. Theorem 2.7.1 of van Harn (1978)) that X is infinitely
divisible and supported by R, (cf. Theorem 1.3.3) if and only if the characteristic
function ¢ of X is given by Theorem 1.3.2 with M =0 for x <0, a¢=042,=0 and
xM’(x)=H’(x) for x >0. Furthermore f is analytic and Tf(t)—0 as T—0 (cf.
Steutel and van Harn (1979)). We have thus proved

THEOREM 5.5.2. Let o.e (—1,0) and let f be a Laplace-Stieltjes transform. The
following statements are equivalent.

@) f is a-self-decomposable;
1
(i) Inf(r)= J' Ing(vt)v*dv A1, A0 and G a unique infinitely divisible
0

Laplace-Stieltjes transform;

(iii) f is infinitely divisible with canonical measure H having left and right
derivatives and such that H’(x)/ x is o-unimodal on R, .

Furthermore A in (ii) is zero if .20 and fc is infinitely divisible for every c € (0,1) if f”
is a-self-decomposable.

Since all log-convex functions and all completely monotone functions are non-
increasing we have (cf. Theorems 4.3.3 and 3.5.3)

COROLLARY 1. IfH'(x)/ x is log-convex, then /2 e So(Ry).
COROLLARY 2. If F is a mixture of exponential distributions, then f e S1(R,).

Goldie (1967) proved that there is a correspondence between probability
generating functions in ID (INp) and Laplace-Stieltjes transforms in /D (R, ). A similar
result was proved in Forst (1979) between So(INp) and So(R,). We now prove a
lemma which generalizes these results by giving a correspondence between
probability generating functions in S4(INp) and Laplace-Stieltjes transforms in
Sa(Ry).

LEMMA 5.5.3. Let F be a distribution function on R, and define the probability
distribution (p,(s)) on Ny by

Pa(®)=(!? [ e (st)"dF (t) .
0
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The following statements are equivalent

(i) the probability generating function of (p,(s)) is in S o (INg) for all s e R, ;
(ii) the Laplace-Stieltjes transform of F is in S 4 (IR,.).

Proor. The probability generating function Pg of (p,(s)) and the Laplace-Stieltjes
transform f of F are related by

fis(1-2))=P(2).
The lemma now follows from (5.4) and (5.27). O

REMARK 5.5.4. Theorem 5.5.2 can also be proved by using Theorem 5.3.2, Lemma
5.5.3, Lemma 4.2.1 of Steutel (1970) and Theorem 1, p. 439 of Feller (1971). a

REMARK 5.5.5. Multiple a-self-decomposable characteristic functions are studied in
Hansen (1989b) and (a generalization and a unification of) multiple o-self-
decomposable distributions on R, and Ny is considered in Hansen (1989a). In
Hansen (1989c) characteristic functions satisfying

0N=0"(cT'N0:()  ,teRR,

are characterized. O

5.6 A classification of ID(I)

From Theorems 5.4.7 and 5.4.8 it is clear that S, (R) < /D (R), and that S5 (R) is
closed under multiplication and limits. If a(1) > 0(2) and ¢ € S o2 (R), then (cf. (5.8))

P er) 0P (et o).

o(1)=0
Since ¢ is infinitely divisible, qu)"m’ is a characteristic function and hence
¢e Syq)(R). From Corollary 2 to Theorem 5.4.8 it follows that Sq(R), 0 <-2,
contains only degenerate characteristic functions. Theorem 5.4.7 (ii) implies that for
any ¢e ID(R),
1 1

00 (1) = exp( J' In¢®(vr)v*ldv) =exp( j Indve)dv®) ,
0 0

is in S o (IR) for all &> 0, with the integral converging by Remark 5.4.10. By Helly’s
second theorem ¢y — ¢ as a.— e=. Hence

U Sa@)=ID(R) .
aeR
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Similarly for S (IR,) and S o (INg). We collect these results in the following theorem.

THEOREM 5.6.1. For I=1R, R, or INy, the sets S(I) are multiplication semigroups,
closed under limits and provide a classification of ID(I), i.e.,

(i) Ifog <oy then Sy, (1) Sq (D)

() ID)= U Sq);
aeR

(iii) Sy (1) is closed under limits and multiplication for every a.



Chapter 6

o-SELF-DECOMPOSABILITY AND
LIMIT LAWS

6.1 Introduction

Limit distributions of sums of independent random variables has been a central
topic in probability theory and statistics for many years. The classical central limit
problem and its successive generalizations to stable and self-decomposable random
variables are well-known examples. Also, the set of infinitely divisible random
variables can be described as the solution of the so-called general central limit
problem (cf. Logve (1977), compare Theorem 1.3.11). Recently, Jurek (1981)
introduced the set of s-self-decomposable random variables, which are defined as
limits of sums of ‘shrunken’ random variables. Jurek (1985) showed that this set
coincides with the set of random variables having characteristic functions in §;(R)
(see Notation 5.4.9). The set of 1-self-decomposable random variables satisfying (i) of
Theorem 5.4.8 is included in the set of infinitely divisible random variables and in
turn includes the sets of self-decomposable and stable random variables.

In contrast to the previous chapters we only study random variables on R in this
chapter. We consider random variables with characteristic functions in S(R) as
limits of sums of independent normed or ‘shrunken’ random variables. Using the
representations of S o(R) obtained in the previous chapter, we present in Section 6.2
four limit forms of o-self-decomposable random variables. One of these limit forms
is the one used by Jurek (1988) and (1989) to define S(R). The method used is
easily adapted to So(INg). In Section 6.3 we introduce two shrinking operators. Both
operators are closely connected with o-unimodality. The first operator is a
generalization of Jurek’s (1981) shrinking operator and the second operator, a
stochastic shrinking operator, is a generalization of the well-known linear operator T,
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(cf. Section 1.4). In the same vein as Jurek (1981) we consider limit distributions of
sums of ‘generalized shrunken’ independent random variables and show that the set of
these limit distributions is equal to S3(IR), 20. In Section 6.3 we also characterize
the set of distributions obtained as limits of sums of ‘generalized shrunken’
independent identically distributed random variables. In Section 6.4 we discuss
So(R) for ate (-2,0] in the context of limit distributions in detail. Among other
results we show that S4(R), ae (—2,0], contains limit distributions of T.-normed
sums of block wise identically distributed random variables. We conclude in Section
6.5 with a few comments and remarks.

6.2 Sums of uan triangular arrays

In this section we use equation (5.8) and the results of Section 5.4 to describe
random variables X with characteristic functions ¢ in S (IR) as limits of sums of uan
random variables. Our approach is similar to that in Lukacs (1970), Theorem 5.11.1
and its corollary.

Let ¢sTABLE(0)(f)=1 for «20. Writing the integrals in Theorems 5.4.7 and
5.4.8 as limits of Riemann sums we have (cf. Notation 5.4.9)

THEOREM 6.2.1. Let aa>0 and let ¢ be a characteristic function. The following
statements are equivalent.
D)  ¢eSa(R);

(ii) There exists an infinitely divisible characteristic function v such that

o) =a lim ¥ (i/n) InyYi( (i) r;
'l-—-)°°j=1

(iii) There exists an infinitely divisible characteristic function Y and a stable
characteristic function QsTABLE(o)(t) Such that

n .
In 0(r)=1n dsTABLE(-er) () + lim T, (j/m)* Iny ((j/n) ).
n—oo j=1
Conditions (i) and (iii) are also equivalent for 0.<0.

In Theorem 6.2.1 we see that the logarithm of any characteristic function in
S«(R) can be written as a limit of a weighted sum of logarithms of identical
characteristic functions. In the next two theorems we obtain a less restrictive limiting
form of ¢ than in Theorem 6.2.1. The proof of the first theorem is simpler and almost
identical with the proof of the second and is therefore omitted.
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THEOREM 6.2.2. Let a.>0 and let & be a characteristic function. The following
statements are equivalent.

@D ¢eSuR);
(i) There exist infinitely divisible characteristic functions (¢;)T such that

Ing()=lim ¥ (1/n)In 0;( (1) 1);
n—)°°j=l

(iii) There exist infinitely divisible characteristic function (¢;)T such that

o= lim 3, (Un)*Ino;(t/n).
n—-)°°j=1

Conditions (i) and (iii) are also equivalent for a.=0.

THEOREM 6.2.3. Let o.e (=2, 0) and let ¢ be a characteristic function. The following
statements are equivalent.

(@ ¢eSu(R);
(i) There exist infinitely divisible characteristic functions (¢;)T such that

Ino()=lim ¥ (1/n)®In d;(t/n).
n—->°°j___1

PROOF. Suppose ¢ Sq(R) and let o # —1. Letting j* ' Iny(jit)=In;(r), j22 and
91 =7Y" OsTABLE(-o;) in Theorem 6.2.1 (iii), we see that (i) implies (ii). A similar
argument holds for a=—1. We now prove (ii) => (i). Let (k,) be a sequence of real
numbers such that k,<n and (k,/n) — c € (0,1) as n — oo, Observe that

n ks
Y (1Un)*In¢j(t/n)=Y, (1/kn)* (kn/n)* In ¢;((t/k,) (kn/n))
j=1 j=1

+ 3 (Un)®Inoj(tin). 6.1)

J=kytl
Letting n — o in (6.1), the left hand side tends, by definition, to In ¢(z), the first term
on the right hand side tends, by definition, to ¢® In ¢(ct) and so the second term tends
to a limit, which by Theorems 1.3.8 and 1.3.7, is the logarithm of some infinitely
divisible characteristic function, In ¢,.(z) say. By Theorem 5.4.8 (iv) ¢ € S o (R). O
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Jurek (1988) uses condition (ii) of Theorem 6.2.3 to define S 4 (R).

REMARK 6.2.4. The implications (i) = (ii) for >0 and (i) = (iii) for x>-2 of
Theorem 6.2.2 can also be proved directly by noting that (cf. (5.8))

3, (/) In g (G =3 GmIne(Gim)"® 0 =G=DID a6 (G=1)/m"* 1)

j=1 j=1
=3 GimIn(Gm)V* )= 3 (G=1)/n)no((G=1)/n)"* 1)
=) j=1
=In (1),

with &> 0 and ¢; =((j—1)/j)* and observing that

3 (/m® o (GimH=1no() , >0,

j=1

(Un)*In &t /n)+ i ym)* Ing;, (G/n))=In¢@) , ae (-2,0],
j=2

where ¢;=(j-1)/}. O

REMARK 6.2.5. For ao>0 we can replace the existence of a sequence of infinitely
divisible characteristic functions (¢;) in Theorem 6.2.2 (ii) by the existence of a uan
triangular array (¢, ,), where

n
Indy ,()=1/n 3, lnq>,-((1/n)°l t) ,k=1,2,..,n,neIN,,
j=k
for some sequence of characteristic functions (¢;). The implication (ii) => (i) is then
proved, as in Theorem 6.2.2, by observing that

n kn
Y, (Un)Ino;((1/n)* t)="Y (1/kn) (kn/n) In 0;( (1kn)'® (kn/n) "™ )
j=1 j=1

n
+ Z In ¢j,n(t) +kyIn ¢k,,+1.n(t) » (6.2)
Jj=k,+1
and letting n — oo such that (k,/n) = c € (0,1). Observe that the sum of the last two
terms in (6.2) tends to the logarithm of an infinitely divisible characteristic function by
the uan property of (¢x,), Theorem 1.3.12, and Lemma 1.3.14. Conversely, by
Remark 6.2.4 we need only show that (¢ ,) is uan, where

n
NG a)=1/n 3 Inoc (G/m)"* 1) k=1,2,..,n,neN,,
j=k
and c¢j=((-1)/ j/HV®. An infinitely divisible characteristic function y has no real
zeros, hence for any T >0 there exists a C >0 such that Ilny()| <C, te[-T,T].
From (5.25), letting a (j) = (j /n)""*, we obtain
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n d([)
“n¢k.n(t)lS—C—Z—'f— | u“‘ldusgl—ni—masn—)oo,
" j=k J aG-1) o n

uniformly on [T, T]. By Lemma 1.3.13, (¢ ,) is uan. Similarly we can replace the
condition that (¢;) be infinitely divisible in part (iii) by the condition that the
triangular array (¢ ,) be uan (this is done in O’Connor (1979b) for a e (0,1)) where

In ¢y (1) =(1/n)* i Ing;((/n)t) k=1,2,..,n,neN, .
j=k O

REMARK 6.2.6. We would like to find a suitable definition of the generalized stable
laws in S (R) analogous to the definition of the stable laws corresponding to the
classical self-decomposable laws, i.e., to find the characteristic functions in S (R)
which can be written as a limit of weighted sums of identical characteristic functions.
All the theorems in this section are of the same form as Theorem 6.2.1, where ¢ is
equal to the limit of weighted sums of identical characteristic functions. In this setting,
the stable laws in S (IR) are just the limit laws in § ¢ (IR). Therefore the approach of
this section does not suggest a reasonable definition generalizing classical stability. [J

6.3 Sums of shrunken random variables

Throughout this section we will study S4(IR) for «=>0 only. Define the one-
parameter family of non-linear shrinking operators (U o), o > 0, by

0 if 1x 1 <¢
Uaux= Qm(tyoypay i lxI>e” 63
Ix 1

for £ >0. When a=1, we regain the shrinking operator U, defined in Jurek (1981). In
figure 6.1 on the next page we sketch Ug, as a function in x and a. Let Y, be a
random variable defined by P(Y,=1)=t*=1-1P(Y,=0). We then define the one-
parameter family of linear stochastic operators (Tq ), @20, by

Tax=YTx ,te[0,1]. 6.4)

If oe=0 then T, reduces to the linear operator T; (cf. Section 1.4). In this section we
show, using the results of the Appendix, that the set of random variables X given by

n w

Y Ug Xp+by =X asn—oeo, (6.5)
k=1

n w

Y TE, X +b, X  asn—eo, (6.6)
k=1

for suitable (¢,), (b,), (X&) and (TE),), is equal to the set of random variables with
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characteristic functions in Sy(IR). We also characterize the random variables X
obtained as (6.5) and (6.6) where X, are identically distributed.

4 us

figure 6.1

6.3.1 U o —shrunken random variables.

Let the random variable X have distribution function F and denote by Fy the
distribution function of U g ((X). Let U, and U;}, act on Borel sets B by

Ug:B=(y | Ugx=y, forxe B} and U;f,B=[x 1 UgixeB).
LetI=(a,b),0<a <b, then
Fyl) =PUq,Xel)=PXe U;},l):F(U;“,I).

We therefore let the operator U, operate on set functions by U, F (B)=F (U;},B),
for any Borel set B. The following lemma gives a connection between U, and the
notion of a-unimodality.



74 ~ a-SELF-DECOMPOSABILITY AND LIMIT LAWS

LEMMA 6.3.1. Let >0, € >0 and let B be the set of Borel sets on R\(—¢, €). Further
let M be a Lévy spectral function. The following statements are equivalent.

(1) M has left and right derivatives on R\ (0} and M’(x) is a-unimodal,
@) M@®B)2UqgM®B) ,te(0,),Bef;.

PrROOF. First we prove (ii)=> (i). Letae R, fixe>0and let B=(a, b),0<e<a<b.
(ii) is equivalent to
M((B*+1%)V) M (@* +1%)V*) <M (b)-M (a). 6.7)

Let w(x) := M (xV®). From (6.7) with x=b%*+1%, y=a®+1%, x’=b% and y’=a® it
follows that
wx)-w(@) . w&x)-w@")
x_y - xl_yl .
‘Hence w is convex. By Proposition 16, p. 109, Royden (1968), w and hence also M

has left and right derivatives on (g,0). Letting a —b and hence y > x and y’ - x” in
(6.8) we obtain

(ba +ta)—l+l/a M'((b“ +ta)1/a) Sbl—a M(b) .
Letc®=b%*+t%, then c 2b and

M (C)ShITEM(b).
For B =(a,b), 0>€2b > a the proof is similar. So M’ is a-unimodal.

6.8)

The implication (i)=>(ii) is proved for B =(a,b), 0 <€ <a < b, by observing that
(cf. (5.9)

M®B)= | M'x)ydx= [ ([ v*dN@)da'x*
B B x

( | veave)data®-1%
U;:,B (xu_'u)lla
| M'Gx)ydx=UqM(B).
U;:,B O

v

We are now ready to prove
THEOREM 6.3.2. Let X have characteristic function ¢. Then ¢ e Sq(R), a.>0 if and
only if there exists a sequence (b,) such that

n w
Y Uq Xy+bp—X asn—oee, (6.5)
k=1
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where (1,) is a non-negative, non-decreasing sequence and (Xy) is an independent
unbounded sequence of random variables such that the triangular array (U o Xy) is
uan.

PROOF. In this proof we will frequently use the results of the Appendix. First we will
show that the operator U, satisfies Assumptions A.2.1, A.2.2, A.2.3 and A.2.5. Fix
a>0andlet f; = Ugy,, t € [0,50). By (6.2) we have

fso fi)=fs(sgnx) (1x 14 =) ¥ =sgn(x) (1x 1% =1 =5s*)}* = £, ,(x),
where (x), is equal to x if x >0 and zero otherwise and s @ t is defined by

s@r=(s*+1)e,
Obviously fo(x)=x and so foof;=f; Hence S=({f;};cR, o) is a composition
semigroup with respect to the semigroup (R, ,® ). If =5 then

1,0 =(lx 1=tV <(Ix 1% —sM) Ve | L)1 < x|,

and so f; in fact does shrink its arguments. From (6.2) it follows that f,(x) is
continuous in both ¢ and x (f;(x) is differentiable in both # and x on (z, «°)), that f; is
unbounded (f; (x) — o as x — o) and that f; is one-to-one on (¢, ).

Suppose X is obtained by (6.5). Since (U, X;) is uan, X is infinitely divisible
and hence ¢=[a,, G% ,M]. By Corollary 1 to Theorem A.3.2 in the Appendix, M
satisfies the inequality of Lemma 6.3.1 (ii). By Lemma 6.3.1 and Theorem 5.4.7,
de Su(R).

The converse is proved in three steps. First it is shown that the symmetric normal
distribution is a limit as described in the theorem; secondly it is shown that a random
variable in Sy (R) without normal component is of the desired type and finally these
two results are combined to prove the theorem.

Let X be a symmetric normal random variable, i.e., $=[0, G% ,0]. Let F M and F@
be Weibull distributions, defined by

FOx)=1-exp(-%6x2%), x20,
FP(x)=exp(-%01x12%),x<0.
and let G be given by
GB)=%LFVYBNR)+%BFDBN(—,0).
Choose 0 such that

c%:oj x2d(1-e7®").

Define (z,) by

n=t%exp(14012%).
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Hence f, —c as n—oo. We will prove that the triangular array (Fy,) with
Fin=Uq,G, k=1,2,...,n is uan and satisfies conditions (i) and (ii) of Theorem
1.3.12 with M =0 and hence that X is of the form (6.5).

The uan property . Let € >0 be fixed. Observe that
Fra({Ix12€})=Uq, G({Ix12€ })=e—‘/§9(£"+z:)z .

Hence (Fy ) tends to zero outside every neighbourhood of the origin, uniformly in £,
as n — o and so (Fy ,) is uan.

Condition (i) of Theorem 1.3.12 . Let € >0 be fixed. Observe that
n L3
3 Fia({ 1x128))=nUq, G({ Ix | 28} )=12e 0 +2D
k=1
which tends to zero as n — o=. Hence X is infinitely divisible with M=0.
Condition (ii) of Theorem 1.3.12 . Let € >0 be fixed. Observe that

€,

n L] . -
lim E I x2 dFk,n(x)= J’xz d(l_e—ex e 140(x/t, ) )
nk=1IxI<e 0

oo

- j xzd(l—e‘e"a)=o% asn-—oo,
0

Hence condition (ii) is also satisfied.

Next, let X be a random variable in Sy(R) without normal component, i.e.,
¢=[ay,0,M]. By Theorem A.3.2 of the Appendix, X can be obtained as a limit of
the form (6.5).

We now have proved that for any ¢e Sq(IR) with ¢=[a¢,og,M ] we can find
distribution functions F{!} =U; G and F, =U o, Ff? such that

n
}:Ild)ﬂ?,-—mﬂ) =10, 203,0],

ﬁ¢ﬁ%—>¢m = [2a4,0,2M].

Let
Fy = % (G+FP).

It can be verified that the sequence (X) is unbounded and that (U q, F) is uan. Let
Ok » be the characteristic functions of U g s, Fi. In view of Theorem 1.3.12

1 0kn— ¢ = [a4, 05, M].
k=1
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THEOREM 6.3.3. Let X have characteristic function ¢. Then ¢ is infinitely divisible,
ie., 0=[ay,c}, M] witheither M =0 and 6320, or 63 =0 and

-Cie ™! x>0

M (x)= Cpex1® x<0”

witha>0,p; >0,p2>0,C120,C,20and Cy+C, >0 if and only if there exists a
sequence (b,) such that

n w
2 U Xe+by =X  asn—eo,
k=1

where (t,) is a non-negative, non-decreasing sequence and (Xy) is an independent not
bounded sequence of identically distributed random variables such that the triangular
array (U g, Xy) is uan.

PrOOF. In this proof we will frequently use the results of the Appendix. From the
proof of Theorem 6.3.2, we know that U, satisfies Assumptions A.2.1, A.2.2, A.2.3
and A.2.5 of the Appendix.

Let¢=[ay, 0% » M] be as in the theorem. If ¢=[ay, 0'% , 0], then by the proof of
Theorem 6.3.2, X is of the form (6.5), with (X) identically distributed. Theorem
A.4.1 of the Appendix proves the "only if" part for ¢=[0,0, M].

Suppose X can be obtained as a limit as described in the theorem. By Theorem
1.3.12, X is infinitely divisible with ¢=[a,, G% ,M]. By Theorem A.4.1, there exists
a semigroup homomorphism g from (R, ,®) to ([1,00), '), with @ defined in the
proof of Theorem 6.3.2, such that

M@B)=q(t) Uy M (B). 6.9
Let g (x) := q(xY*). Then since ¢ is a homomorphism

g M=9("H g0 ) =q((x+y)"*)=gx+y).
Since g (x)=1 and g (0)=1 then g (x) =exp(px) and so

q(x)=exp(px®),
for some p 20. If p =0, then by repeated use of (6.9) we have

M(B)=Uqy M (B).

Letting n —< we see that M=0 and hence ¢ is normal. Now let p >0 and
B=(a%b% with0<a<bh,*=sand letw (x) := M(x'*). By (6.9)

w(a)—w(b) — o pS w(a+s)—w(b+s)
a-b (a+s)—(b+s)

We know from Theorems 6.3.2 and 5.4.7 that M’ exists. Letting b — a we obtain that
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eP? w'(a)=eP @) w'(a+s)=q,

with g a non-negative constant. Hence w (x)=ce P* and therefore
M@)=w(x*)=ce P,

with ¢ e IR_. Likewise for 0 > b 2a. Hence M is of the desired form.

It remains to be shown that if M is not identically zero then 0'42,=0. Let F be the
distribution function of (X;) and let M,, := nUq; F. Also define

R.(s) =M,({IxI>s}) = nUg F({Ix1>5}).

Let ¢ be such that R,(s) is non-zero in a neighbourhood of ¢ and let (k(n)) be a
sequence such that (t§() —3)!* —t as n — oo (this is possible by Lemma A.3.1 of
the Appendix). Observe that

Rimy®)=n(k@)n)Uq, F({1x1>s})
=(k (n)/n) M ({ 1x 1 > (s® + 18y =tV } )= (k (1)/n) Ru(s® + 18y — 1)) .

Since M,, - M, R,(s) converges for all s >0 to a not identically zero limit, R (s) say,
and we must have lim,,_,..k (n)/n =c < . Integrating by parts we have

£
| %% dMyuy(x)=—€Ri(ny(®) +2 [ s Ru((s*+ 18y — 1)) dis .
IxI<e 0

Letting n — oo we have
n €
lim ¥ [ x2dFea(x)S2c [ sR(*+tM)"*)ds<2cR()e,
R0 p=11x I<e 0

which tends to zero as € — 0. Hence, by Theorem 1.3.12, 63 =0. O
6.3.2 Ty —shrunken random variables.

Let the random variable X have distribution function F and denote by F the
distribution function of Ty, X. Let I =(a,b),0<a <b. Wevthen define F 1 by

Fr() = P(Ty, Xe=t*PXe T; )=1* F(T;'I).

We therefore let the operator Ty, operate on set functions by Ty F (B)=t*F (T7'B),
for any Borel set B and with T, defined in Section 1.4. Hence for any Borel set B of
R\{-€,¢€}, €>0,

M(B)2c* T, M(B) if and only if M(B) 2Ty .M (B). (6.10)

We are now ready to prove
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THEOREM 6.3.4. Let X have characteristic function ¢. Then ¢e S o(R) (20) if and
only if there exists a sequence (b,) such that

n w
Y TE X+b, -»X  asn—eo, (6.6)
k=1

where (t,) is a non-negative, non-increasing sequence with t1 <1, (Xy) is an
independent unbounded sequence of random variables such that (Tg‘,),n Xy) is uan and
the random operators TS), are independent and identically distributed.

PROOF. In this proof we will frequently use the results of the Appendix. First we will
show that Ty, satisfies Assumptions A.2.1, A.2.2, A.2.3 and A.2.5 of the Appendix.
Fix a>0.Let U; = To, 1, fr = Tir te[1,00) and p (1) = t7%. We have

foefi)=f(17x)=5sT 17 x=fi0,(0),
where s@® t is defined by
s@t=t=s.

Obviously f1(x)=x and so fiofy=f;. Hence S=({f;};c[1,)»° ) is a composition
semigroup with respect to the semigroup ([1,e0) ,@® ). If 25 then

) =1t x 1< s Il = 1f,(x) 1 < Ix |,

and so f; in fact does shrink its arguments. From the definition of T, (cf. Section 1.4) it
follows that f;(x) is continuous in both ¢ and x (f;(x) is differentiable in both z and x on
(0,29)), that f; is unbounded (f;(x) — co as x — <o) and that f; is one-to-one on (0,c°).
The operator Ty, thus satisfies Assumptions A.2.1, A.2.2, A.2.3 and A.2.5 of the
Appendix.

Suppose X is obtained by (6.6). Since the sequence (Tq,, Xi) is uan, X is
infinitely divisible and so ¢=[a,, 0% ,M]. By (6.10) and Corollary 1 to Theorem
A.3.2 in the Appendix M satisfies the inequality of Lemma 5.4.5 (ii). By Lemma
5.4.5 and Theorem 5.4.7, ¢ e S, (R).

The converse is proved in three steps. First it is shown that the symmetric normal
distribution is a limit as described in the theorem; secondly it is shown that a random
variable without normal component is of the desired type and finally these two results
are combined to prove the theorem. The last step is identical with the last step of the
proof of Theorem 6.3.2 and therefore omitted.

Let X be a symmetric normal random variable, i.e., ¢=[0,c%,0]. Let Y be a
unbounded random variable on IR with finite second moment and let it have
distribution function G. Let

os= [ x?dG(x).



80 ] o-SELF-DECOMPOSABILITY AND LIMIT LAWS

Let (z,) be defined by
1,=n"V@+D)

We will prove that the triangular array (Fy ,) with Fy , =Ty, G, k=1,2, ..., nis uan

and satisfies conditions (i) and (ii) of Theorem 1.3.12 with M =0 and hence that X is
of the form (6.6).

The uan property. Let € >0 be fixed. Observe that
Fra({1x12€))=Tq, G({ Ix12€})<tG=n"0@D

Hence (Fy ,) tends to zero outside every neighbourhood of the origin, uniformly in £,
as n — oo and so (Fy ,) is uan.

Condition (i) of Theorem 1.3.12 . Let € >0 be fixed. Observe that

n
Y Fa({Ix12€})=nTy, G({Ix12¢€})
k=1
=n?@ DG ({ 1x | 2p(*Dg ), (6.11)
Since Y has finite second moment, lim,_,., x2 (1-G (ex))=0 for €>0. Hence (6.11)
tends to zero as n — 0. So X is infinitely divisible with M =0.

Condition (ii) of Theorem 1.3.12 . Let € >0 be fixed. Observe that
e,
n
im 3 [ x2dFea()=n? [ y2dG ()
0

R p=1lxl<e
- J' yZdG(y)=c§ asn —oo .
0

Hence condition (ii) is also satisfied.

Next, let X be a random variable without normal component, i.e., ¢=[a4, 0, M]. By
Theorem A.3.2 of the Appendix, X can be obtained as a limit of the form (6.6). O

THEOREM 6.3.5. Let X have characteristic function ¢. Then ¢ is stable if and only if
there exists a sequence (b,) such that

n w
Y TE Xp+b, X asn—ee,
k=1

where (1,) is a non-increasing sequence in (0,1], (X) are independent not bounded
identically distributed random variables and the random operators Tﬁ,'f),_ are
independent and distributed as Ty ;, .
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PROOF. In this proof we will use the results of the Appendix. From the proof of
Theorem 6.3.4, we know that Ty, t € (0,1] satisfies Assumptions A.2.1, A.2.2, A.2.3
and A.2.5 of the Appendix.

Let 9=[ay, cqz, , M] be stable. If ¢=[a,, G% , 0], then by the proof of Theorem
6.3.4, X is of the form (6.6), with (X;) identically distributed. Theorem A.4.1 of the
Appendix proves the ‘only if” part for $=[0,0, M].

Suppose X can be obtained as a limit as described in the theorem. Observe that

P(I Xy nl28) = P(I T, Xi | 28) =15 P(IT, X; 1 28) SP(IT ;X | 26).
Since the sequence (T1y,, Xy) is uan, (Tq,,, Xi) is uan and hence X is infinitely divisible

with characteristic function ¢ of the form ¢=[a,, G% , M]. From Theorem 1.3.12 we
have that

n
lim 3, To, Fe=lim n 63T, F =M,

[Guraad T3

outside every neighbourhood of the origin. Also

. . n 2 s . n 2 o _ 2
limlim ¥ [ x dTa',qu(x)—tho lim 3 [ x*du3T, F(x)=0}.
£

e-0n—> k-1 1y 1<e n—%°p-1lx <e

Obviously, if nt$ is bounded then M =0 and so ¢ is normal. Suppose M is not
identically zero, then n t% — oo as n — 0. Let N(n)=n 1. Then

M=1lim N )T, F, (6.12)
n—oo
outside every neighbourhood of the origin and

n
os=limlim 3 [ x*dN(mT,F@&).
E0n0 oy ix e

By Lemma A.3.1 of the Appendix, #,41/t, = 1 as n — eo. Observe that (cf. (6.12))
WN@n+1)-N@) T, F=(((n+1)t341/m13)-1)N(n) T, F -0, (6.13)

as n — oo outside every neighbourhood of the origin. Similarly

limlim 3 [ x2d®V(a+)-N@)T, F(x)=0.

e-0n—e )11 1 1ce

For every I € IN, there exists an ne IN, such that N(n)<I <N(n+1). Let ()j; be
defined by

y’'=t, ,N(n)<I<N(n+l),1=1,2,3,....
For any ! € IN, let n be such that N (n) <! < N(n+1). Then (cf. (6.12) and (6.13))

1
lim 3, T, F = lim [ T,,F =lim (N ()T, F +( =N )T, F)=M ,
—y00 —y00

I—)°°k=1

outside every neighbourhood of the origin. Similarly
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]
2 i1 2
oy =lim lim x“dIT, F(x).
¢ 5"’°"’°°k§llxl.£_£ wF @)

By Theorem 1.3.12 we see that

1
YTy Xp—X asl—oo,
k=1
where (X;) are independent and identically distributed with distribution function F.
Hence X is stable (cf. Section 1.4). O

REMARK 6.3.6. We can also use Theorem A.4.1 to prove the "if" part of Theorem
6.3.5. This proof however must be split into two steps. The first (which we give
below) shows that M is of the desired form. In the second step it is shown that if M is
not identically zero then cqz,=0. This second step is quite involved (cf. proof of
Theorem 6.3.3) and therefore omitted.

Suppose X can be obtained as a limit as described in the theorem. From the proof of
Theorem 6.3.4 we know that X can be normal. By Theorem A.4.1 there exists a
semigroup homomorphism g from ([1,00),®) to ([1,0),-) with @ defined in the
proof of Theorem 6.3.4, such that

M@B)=q®)t™*TM(B). (6.14)

Since g(x)=1 and gq(1)=1 we have that g (x)=x" for some y20. If y=0 then by
repeated use of (6.11) we see that M =0. Let y>0 and B =(a,b) with 0<a<b. By
6.14)

M(a)—-M(b) 1 M (at)—M (bt) '
a-b a-b
We know from Theorems 6.3.4 and 5.4.7 that M’ exists. Letting b — a we obtain that
a’** ! M’ (@)=(ar)"** M’(at)=c, ,
with ¢; a non-negative constant. Hence
M@)=cx* 7,
with ¢ e R_. Since M is a Lévy spectral function if and only if (a—7) e (0,2) we must

have ye (a,04+2). Likewise for 0 > b >a. Hence M is the Lévy spectral function of a
stable distribution. O

REMARK 6.3.7. The unbounded condition on X, in the theorems of this section is
assumed, since if (X;) were bounded and ¢, — 0 (¢, — <) then the limit in (6.6) ((6.5))
would be degenerate. O
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6.4 Subsets of the set of self-decomposable limit laws

In this section we consider the subsets Sy (R), ae (-2,0] of the self-
decomposable limit laws. We show that random variables X whose characteristic
functions are in S o (IR) can be written as (1.4), where (X;) are independent and block
wise identically distributed random variables. This result is in some sense, the
counterpart of Theorem 6.3.2 for ace (-2,0].

Let Y(¢#) be a stochastic process with independent stationary increments with
Y(0)=0 with probability one (cf. Feller (1971)) and let (X;) be a sequence of
independent random variables, all distributed as Y(1). Then

d s
Y()=3 Xk, seR,,
k=1

where a non-integer sum of the X; is defined by the non-integer power of its
characteristic function. Let the stochastic operator Tz', act on infinitely divisible
random variables Y(1) by

d
Ta Y(1)=1Y(®).

Hence, for any infinitely divisible random variable X we have that

L] d i

ToX=3 tXk,
k=1

where (X;) are independent random variables distributed as X. If ae R_ and t € (0, 1],
then t*>1. As Tg X produces t* copies of X we can interpret Ty, with ace IR_ and
te (0,1], as a stochastic ‘breeding’ operator. Let (¢,) be a sequence of non-increasing
real numbers with ;=1 and ¢, >0 as n —»e. Theorem 6.2.3 (iii) states that a
random variable X has a characteristic function in S 4(IR), o > -2, if and only if there
exists a sequence (X;) of independent infinitely divisible random variables such that

n w
Y TerXj—X. (6.15)
j=1

Thus (6.15) is a limit of a sum of a triangular array as in Theorem 1.3.12.

To eliminate the condition that (X;) be infinitely divisible we introduce a new
stochastic ‘breeding’ operator Ty, as follows.
d 1%
T X=3 tX;, te(0,1], ae (-2,0],
k=1
where [x] denotes the integer part of x and (X;) are independent random variables
distributed as X. The following theorem gives us another classification of the S (R)
limit laws. For a proof we refer to Theorem A.5.1 of the Appendix.
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THEOREM 6.4.1. Let oe (—2,0] and let X have characteristic function ¢. Then
be So(R) if and only if there exists a sequence (b,) such that

n w

2 Tar Xe+tb, =X asn—ee,

k=1
where (t,) is a non-negative, non-increasing sequence and (X;) are independent not
bounded random variables such that the sequence (Tq ; Xy) is independent and uan.

The set S o (IR) thus contains characteristic functions ¢ whose random variables X
are weak limits of normed sums of block-wise identically distributed random
variables. The size of these blocks is [t$]. For a.=0, the block size is one and the limit
in Theorem 6.4.1 reduces to the limit defining classical self-decomposable random
variables (cf. Section 1.4).

6.5 Remarks and comments

Jurek (1988) and (1989) gives the following interpretation of Theorem 6.2.3: Let
(Y (2)) be a sequence of stochastic processes with independent stationary increments
with Y;(0)=0 with probability one (cf. Feller (1971)) and let X, be distributed as
Yi(1). Rewritting Theorem 6.2.3 (ii) in terms of stochastic processes with
independent stationary increments and letting z, = 1/n we get

Yi(n)+Y,(n ) +.4Y,(n %) w
—X asn—oo,

n

Note that n™' Y;(n™*)=Tg,Y(1), with Ty, defined in Section 6.4. The other
theorems of Section 6.2 can also be reformulated in terms of limit distributions of
sums of T,-shrunken (or T;,-shrunken) stochastic processes with independent
stationary increments.

The shrinking operators introduced in Section 6.3 do have some practical
justification. One could for example imagine a situation where a signal X must be
measured. Uq, can then be interpreted as follows; if the signal is too small then our
instruments can not register the signal and if the signal is registered, then we only
measure a fraction of the strength of the true signal. Likewise, we can interpret T,
as: with a certain probability we do not receive the signal, and if the signal is received
then we only measure a fraction of the strength of the true signal.



APPENDIX

LIMIT DISTRIBUTIONS OF SUMS OF
SHRUNKEN RANDOM VARIABLES

A.1 Introduction

In this appendix we consider random variables X obtained as limits of sums of
random variables as follows;

Y UPX, 5X+b, asn oo, (A.1)
k=1
where (b,) is a sequence of real numbers, (X;) are independent, unbounded random
variables, the triangular array (U®X;) is uvan, and (U®)}., are mutually
independent and independent of (X;) and all distributed as U, with U, a ‘generalized
stochastic shrinking’ operator defined by

UX=Y, ;(X), (A2)

where X and Y, are independent and P(Y,=1)=p(t)=1-1P(Y,=0). Let § be a
distribution function with total mass at zero and let B be a Borel set. The distribution
function of the random variable U,X is given by

Fyx@®B) =p@OP(fi(X)e B)+(1-p (1)) 8o(B)
=p(OP(Xe {x | fix)e BN+(1-p(1)e(B) . (A3)

The notion of a shrinking operator originated from Jurek (1981). Many of the proofs
in this appendix are based on the proofs of the corresponding theorem in Jurek (1981),
where (A.3) is considered with U;=U, where U, is defined in (6.3). As special
cases of U, we have the shrinking operators U and Ty, introduced in Section 6.4.
The assumptions on the ‘shrinking functions’ f;, the norming sequence (t,) and the
probabilities p(z) are stated in Section A.2. In Section A.3 we characterize the

85
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random variables X in (A.1) in terms of an inequality on the Lévy spectral function of
X. The special case where (X) are identically distributed is studied in Section A.4. In
Section A.5 we give a classification of the set of random variables of the form (A.1)
and in Section A.6 we list a few examples.

A.2 Preliminaries

Let f, and f;! act on Borel sets B by
fiB={y | fi(x)=yforxeB}and f;'B={x|f,(x)e B }. (A.4)

We begin by listing the assumptions which we make on f;, (¢,) and p (¢) in (A.1) and
(A.2).

ASSUMPTION A.2.1. We make the following assumptions on U; Xy;

(i) (Xy) are independent, unbounded random variables;
(>ii) (Yff))L] are mutually independent and independent of (Xg);
(iii) The triangular array (U X,) is uan;

(iv) The norming sequence (z,) is non-decreasing. O

ASSUMPTION A.2.2. We make the following assumptions on f;;
@ S=Wfi}te[0.)» ©)» is a commutative composition semigroup with respect
to the semigroup ([0,°) , D), i.e.,
forall £,s € [0,%0); fy o fs=fr@ s>
forall z € [0,00); fo o fi=fi=fi° fos

(ii) {/ft}¢e[0,) are shrinking operators, i.e.,
for all ¢,5 € [0,00) with £ > 5, | f(x)| < If;(x) ], xe R;
forall x e R, lim f;(x)=0;
=00

(iii) f;(x) is continuous in both ¢ and x, unbounded in x and for any interval I, not
containing zero, f,(ff! (I))=1. O
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ASSUMPTION A.2.3. We make the following assumptions on p (t);

(i) pisa semigroup homomorphism from ([0,°),®) to ((0,1],°), i.e.,
p(s®1)=p(s)p @) for all t,s € [0,0). g

Assumption A.2.1 (iii) ensures that the limit in (A.1) exists, namely an infinitely
divisible random variable. Part (i) is assumed, since if (X;) was bounded and #, — oo
with f.. =0, then (A.1) would have a degenerate limit. Requirement (iv) is equivalent
with the assumption that (z,) be monotone ((¢,) non-increasing implies that (s,) with
s, =1, is non-decreasing) which is a normal assumption in central limit problems.

Assumption A.2.2 (ii) states that f; in fact does shrink its arguments and provides
an ordering of {f;}. Conditions (i) and (iii) of Assumption A.2.2 as well as
Assumption A.2.3 are essential for solving the limit problem on hand.

As a consequence of our assumptions we have the following lemma.

LEMMA A.2.4. Let {f;};cj0,~) and p(t) satisfy Assumptions A22 and A2.3,
respectively. Then
(i) Forall s,t € [0,00) with t 25 and any interval I not containing zero:
feo 1D =fig o) with 1© 5 € [0,00);

(ii) p(t) is continuous, non-increasing and non-zero on [0,%) with p (0)=1 and
for all t,s € [0,00) witht>5s

p(©s)=p)/p(s).

PROOF. We first prove part (i). Let s,z € [0,e°) be arbitrary with £ >s. We can always
select ay € [0,20) such that

| fsoy@) 1 2 1, (0)1,

for all x e R and s @ y <t. By Assumption A.2.2 (ii) it is impossible to have w <t and
IfwG)! > 1fitx)! and 1f,,(x2)l < 1fi(x2)! for some x;,x7e R. Hence, by the
continuity of f; in ¢, there exists a unique y e [0,c0) such that fyg; =f;. We therefore
have

feo [ 0=, = figs(®),
for any x # 0.

For part (ii) let y =¢© s and hence t =y @ s. Observe that (cf. Assumption A.2.3)
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p©s)ps)=py®s)=p). 0

If p(t,) > c >0 as n > oo, then upon replacing X; in (A.1) by Y,=ZX, with
P(Z=0)=1-P(Z=1)=1-c and p(t) by p* (£)=1, we obtain the same limit problem.
We therefore make the following and last assumption.

ASSUMPTION A.2.5. p(1) ism either constantly one or p(z) is non-increasing with
lim p (£)=0. 0O
t—y00

We conclude this preliminary section with a lemma and a notation.

w w
LEMMA A2.6. If F, > F andt, —tasn —oo, then Uy F, > U,F as n — oo,

PROOF. Let x, — x, then by the continuity of f,(x) in both ¢ and x, U, x, — U,x. The
lemma now follows from Theorem 5.5 in Billingsley (1968). O

NOTATION A.2.7. Let U(S,p) denote the set of characteristic functions whose
random variables can be described as limits of the form (A.1), under Assumptions
A21,A22,A23and A2.5. O

A.3 A characterization of U(S,p)

Let the operators U; and U,‘l act on set functions by
U,F B)=p(t)F (f;'B) and U;'F (B)=p (tY' F (;B).
Let t,5 € [0,00) with £ 25. From Assumptions A.2.2 (i) and Lemma A.2.4 we have
U,US'FB)=p ()lp(s)F (fs© f;'B)=p(t© s)F ((; ° f;')'B)
=p(t© s)F (fi4sB)=Ug F (B), (A5)
and that (cf. (A.5))
UF B)=p()F (f;o f5' o fi'B)=p(®)p (5)Ip () F (fy o fi' o £5'B)
=p(s) UU'F (f;'B)=p (s) Urg sF (;'B)
=UU,gsF(B)=U,g ;Us;F(B). (A.6)

Before proving the main theorem of this section, we prove a preparatory lemma.
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LEMMA A.3.1. Let ¢ be infinitely divisible with ¢=[a,, o% M1 IfoeU(S,p)andif
M is not identically zero, then
(i) t,>occasn—eo

(i) £, = 1,410, >0asn —oo.

PROOF. We first prove part (i). Suppose (i) is not true, then there exists ¢¢ € [0,0) such
that ¢, <t < e for all n e IN,. By Assumptions A.2.2 (ii) and A.2.5 we have for each
€>0,

P(IUP X1 28)=p (t,)P(If, (X)| 2€)2p (1)P(1 £, (Xi) | 2€) .
Since (U¥ X,) is uan, then
sgpP(lf,o(Xk)l 2€)=0.

From Assumption A.2.2 (iii), f; is unbounded and hence (X;) is bounded. This
contradicts Assumption A.2.1 (i). Hence (i) holds.

To prove part (ii) suppose (f,) has a limit point g € (0,0). Then there exists a
subsequence (k(n)) such that ?k(,,) —1g. By Theorem 1.3.12 it follows that outside
every neighbourhood of the origin,

n w
M, =Y U Fy—»>Masn—eo. (A7)
k=1

Let I be a continuity set of M, with I and interval bounded away from the origin.
From (A.7) and (A.6) it follows that

k(n)
My D=Uy . Frmym D+ 3 Uy o044, Une, P
k=1

=Us pn Frey1 (D + Ui, My (D) (A.8)

Letting n — <o in (A.8) we obtain, by Lemma A.2.6, (A.7) and the uan property of
(UPXy) that

MW=UM({). (A9)
By repeated use of (A.9) we see that
MI)=UgM D<M (f@I),

for ke IN,. Applying Assumption A.2.2 (ii) yields M (I)=0, which contradicts the
assumption of the lemma. O

THEOREM A.3.2. Let ¢ be infinitely divisible with ¢=[ay,0,M]. Then $cU(S,p) if
and only if for every t € (0,0) and for every Borel set B of R\(-€, €), for any € >0, the
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Lévy spectral function M satisfies
M@B)2UMB).

PROOF. We first prove the ‘only if* part. If M vanishes identically then the ‘only if’
part is trivial. Suppose M is not identically zero. From Lemma A.3.1 it follows that
for any ¢ € (0,<0) there exists a subsequence (k (n)) such that k(n)2n and

T, = Lk(n)©O 1ty >t asn —ee. (A.10)
For any continuity set / of M, with I an interval bounded away from the origin, we
have (cf. (A.7) and (A.6))

k(n) n
Mipy(D= X Uy, . Fid)2 X Uy 01, Ur FiD)
k=1 k=1

n
= X U U Fr(H=Us M, 1) .
k=1

Letting n—eo we have by (A.7), Lemma A.2.6 and (A.10) that M satisfies the
inequality of the theorem for B =/. Since the Borel sets on R\(—¢, €) are generated by
the intervals bounded away from zero, the ‘only if” part is proved.

Conversely, suppose M satisfies the inequality of the theorem. If M vanishes
identically then the ‘if” part is trivial. Suppose M does not vanish identically. Suppose
(ry) is a non-decreasing sequence satisfying conditions (i) and (ii) of Lemma A.3.1
and such that p (r,)™! € IN,. (this is possible by Assumption A.2.5). Define L, by

Li=M-UM .
Letsg=ri©ry-1,k=2,3,... ands;=co. Then Ly, =M and (cf. (A.7) and (A.5))

n
U, UjlL, =M . (A.11)
n k k
k=1

We now approximate (ﬁ‘lLs‘) by distribution functions (F;) and proceed to show that
(U, F) satisfies the conditions of Theorem 1.3.12.

Define (g) by
g=inf {e>0 | Ly, ({ IxI>€})<1} ,keN,,
and M) by Nk =L, (1x | >€), ke N,. Alsolet
FiB)=flLaBN{1x]1>8))+(1-M)%(®B) , ke N,,
for any Borel set B of R, with §; a distribution function with total mass at zero.
Finally, let k 0)=0, k()=37_ p (re)™! and
y=rpfork(n-1)<i<k(@m),neN,;
Fi=F} fork(n-1)<1<k(n),ne N, .
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Observe that & — 0 as n — o, since, if g, 2€9 >0, then Ly, ({ Ix | > €p})21 and so (cf.
Lemma A.3.1 (ii))

1< limLy ((1x]>e))=M((Ix1>e))=mUsM([ x| > ))=0.

For every n e IN, we can choose an N € IN, such that k (N—1) < n <k (N). Thus
n kN) k)
M, = YU Fi= Y UF, - ¥ UF
1=1 I=1 I=n+1

p ) U, Ff —(k(N)—n)U, FF . (A.12)
1

Mz

k

The uan property . For every € >0, define the sequence (j (n)) by
lsSlI:IS)nUt"Fk( {IxI>¢g} )=U,.Fj(n)( {lxI>€}).

If (j (n)) is bounded, then by Lemmas A.2.6 and A.3.1
lim sup U, Fi({1x1>¢€})=0. (A.13)
n—eol<ks<n

Suppose (j (n)) is unbounded. Observe that Fj(,)=F }"(,,) for some i(n) <N. Hence by
the definition of F; and Lemma A.2.4 (i),

U Fimy({ Ix1 >€})SUer;,~:,)Li(n)({ Ix1>e})=pOn) fyornw,Llim({1x1>€}).
From Assumption A.2.2 (ii) and the unboundedness of f; we have that
Fraong(L1x1>ec({1x1>€)).

Hence
Ut,Fj(n)({ Ixl>¢ } )Sp(rN)Li(,,)({ Ix | >E}).

Since i(n) —ee as n —eo and 50 $(y) > as n—reo, Ly - —0. Formula (A.13) is

thereby satisfied. The triangular array (U, Fy) is therefore uan.

Condition (i) of Theorem 1.3.12. Let I be a continuity set of M with I an interval
bounded away from the origin. Since € —0 as k — oo there exists a k¢ such that
€, & I for all k > k. Observe that (cf. (A.12), the definition of F' Z, (A.5) and (A.6))

ko N
My = X pr) U FE D+ X p () U 7 M =L, MY(T)
k=1 k=kq

ko N N
=Y pr) U, Fi)+ Y U, UMW)~ 3 U0, U, Url

LMD
k=1 k=ko k=ko

ko
=Y p () U Fe(D+M ()= Uy e, MU).
k=1

Letting N — co we obtain
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w

Mk(N)—-)M as N 5 oo (A.14)
outside every neighbourhood of the origin. Observe that
(kW) =n)U, FND<p (ra) ' Uy FND S L, () . (A.15)

w
Since Lg, (I)—>0 as N - we have by (A.12), (A.14) and (A.15), that M, > M

outside every neighbourhood of the origin. Hence condition (ii) of Theorem 1.3.12 is
satisfied.

Condition (ii) of Theorem 1.3.12. By the definition of F;, we have (cf. (A.12) and
(A.11))

n N
y | xduFm<y | x2dp)'U,FE®)
I=1 Ix 1< k=1 IxI<e
N 2 1
<y [ x*dU,UrlL,(x)
k=1 Ix|<e
= x2dM (x) .
Ix I<e
Letting € — oo, we see that condition (ii) of Theorem 1.3.12 is met. ad

In the ‘only if’ part of the proof of Theorem A.3.2 it was not necessary to assume
that c% =0. We therefore have

COROLLARY 1. If 9=[ay, og ,M]and e U(S,p), then M satisfies the inequality of
Theorem A.3.2.

A.4 Stability in U(S,p)

In this section we consider (A.1) with the added assumption that the sequence
(Xy) is identically distributed. We call such limit distributions U (S , p)-stable.

THEOREM A.4.1. Let ¢ be infinitely divisible with $=[ay,0,M]. Then ¢ is U(S , p)-
stable if and only if there exists a semigroup homomorphism g from ([0,=),®) to
([1,%0), *), such that for every t € (0,o0) and for every Borel set B of R\(—¢,€), for any
€ >0, the Lévy spectral function M satisfies

MB)=g () UM (B). (A.16)
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PrROOF. We first prove the ‘only if* part. If M vanishes identically then the ‘only if’
part is trivial. Suppose M is not identically zero. From Lemma A.3.1 it follows that
for any 7 e (0,%0) there exists a subsequence (k(n)) such that k(n)2n and (A.10) is
satisfied. For any continuity set / of M, with I an interval bounded away from the
origin, we have (cf. (A.6))

My = k(WU,,,, F(=k(n)in-U; M,(I) .
Letting n — oo we have by (A.7), Lemma A.2.6 and (A.10) that both My, and U; M,
converge and hence & (n)/n must converge. Let g (£)=lim,_,..k (n)/n. Then M satisfies
(A.16) with B=I. Since the Borel sets on IR\(—¢,€) are generated by the intervals
bounded away from zero, (A.16) holds for all Borel sets B.
Suppose there is a ¢ > 0 such that g (#¢) < 1. By repeated use of (A.16) we see that

M (B)<Uwe:M (B)=p (1%%) fyo:M (B),

for k e IN,.. Applying Assumption A.2.2 (ii) we have M =0. Hence g (¢) > 1 on (0, o).
Observe that M (B) =g (t®s) Ujps(B) and

MB)=g()M@B)=¢g (g (s) U;UM (B)=g (s)g (t) UigsM (B) .
Hence g is a semigroup homomorphism from ([0,0),®) to ([1,0),").

Conversely, suppose M satisfies (A.16). If M vanishes identically then the ‘if’
part is trivial. Suppose M does not vanish identically. Let (z,) be a non-decreasing

sequence satisfying conditions (i) and (ii) of Lemma A.3.1_and such that g (¢,) =7 (this
is possible since g is unbounded and continuous). Define € by

e=inf{e>0IM({Ix1>e})<1},
and setn=M({ x| >E]). Define the probability distribution F by
F(B)=MBAN{Ix|>e})+(1-m(B),
for any Borel set B of R. We now show that (U, F) satisfies the conditions of
Theorem 1.3.12.

Condition (i) of Theorem 1.3.12. Let I be an interval bounded away from the origin.
For any a there exists an N such that forall n 2N

fn{ix>a)y=10.
If this were not true then f, 1 (I)> B for all n large and for some non-empty Borel set B
contained in { Ix | <a}. Hence I=f, f; 1 (I)> f;,(B). By Assumption A.2.2 (ii) for any

xeR, f; (x) =0 as n — oo, contradicting the assumption that / is bounded away from
the origin. Hence for n large

nU, F(1)=g (t,)p (t) M ({1x | >} N1 )+ -8 (f (1))
=g (t)U, M(N=M (). (A.17)
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Condition (i) of Theorem 1.3.12 is thus satisfied.

The uan property.. For any n 2N and any € >0 we have by (A.17)
sup U, F({ Ix12¢€})=n""M({ Ix12¢}).
1<k<n

Letting n — oo we see that (U,_F ) is uan.

Condition (ii) of Theorem 1.3.12 . Finally, observe that for n >N, (cf. (A.17))

2"3 | PauFx)= | x*aMx).

k=1 IxI<e Ix I<e

Condition (ii) of Theorem 1.3.12 is now met upon letting n — oo and € - 0. O

A.S Some subsets of U(S,p)

Let the stochastic ‘breeding operator’ B, be defined by
dq(®)]

t =
k=1

UPX,,
where X , ..., X[4()] are independent random variables, all distributed as X and ¢ (r)

is a semigroup homomorphism from ([0,0) ,@®) to ([1,°), -). We are interested in the
random variables X which have the form

n w
Y BIOX+b, > X asn — oo, (A.18)
k=1

where (b,) is a sequence of real numbers, (Bﬁf)Xk) are uan, (X;) are independent and
unbounded, B{¥) are independent and identically distributed, and all independent of
(Xy) and (z,) is non-decreasing. We therefore introduce the notation

NoTATION A.5.1. Let B(S,p,q) denote the set of characteristic functions whose
random variables can be described as limits of the form (A.18). O

Let F; be the distribution function of X;. Then

* n [q@)] n
Mi =3 S U Fr=lg@)] LU, Fr. (A.19)
k=1 I=1 k=1

As in the proof of Lemma A.3.1 (i) we see that the uan property of (B, X;) implies
that t, = oo as n — e, If q(t) = ¢ < oo as t — oo, then ¢ =lim,_,..q (t®")=cq () and
hence g (¢) =1 for all z. Hence assume without loss of generality that

q(t) > ocast—oo,

It follows from (A.19) and Theorem 1.3.12, that M}, tends to a Lévy spectral function
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M and so
n
YU Fr—0asn—eo,
k=1
outside every neighbourhood of the origin. Therefore M} and M,, with
n
M, = q(1,) EUI,,Fk’
k=1

have the same limits. The proof of Theorem A.3.2 can now easily be adapted to prove

THEOREM A.5.2. Let ¢ be infinitely divisible with ¢=[ay,0,M]. Then
0eB(S,p,q) if and only if there exists a semigroup homomorphism q from
([0,00),®) to ([1,%°), ), such that for every te (0,e0) and for every Borel set B of
R\(—¢€,€), for any € >0, the Lévy spectral function M satisfies

M@B)2q() UM B).
A.6 Examples

We conclude this appendix with a few examples. A special case of Example
A.6.1 yields the shrinking operator Ty, of Section 6.4.1 and of Example A.6.2, the
operator U o considered in Section 6.4.2.

EXAMPLE A.6.1.
fi)=tYx, te(,1], v>0,
p®=t*, te(0,1], a0,
s@r=st.
Hence U, =Teyy, - O

EXAMPLE A.6.2.
i) =sgn(x) (Ix 1% =MV | 1e[0,00), >0,
p=e?", te[0,=),
sS@t=(s*+r%)V*

Hence U;=Uy, if p=0. O
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EXAMPLE A.6.3.
fix)=sgn(x) [(1x 1%+ 1)-1]"*, 1€ (0,1], a>0,
p(®=t7, te(0,1], y20,
s@t=st. 0
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