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INTRODUCTION

0.1. Extension problems. This book concerns extension problems for linear opera-
tors. They can be described roughly as follows. Given a part of an operator, find, if possi-
ble, the complementary part such that the full operator has certain prescribed properties. To
pose the problems in a more precise way, consider vector spaces X and Y and let Q be a
projection on & = AX,Y), the space of linear operators acting from X to Y. Assume that
A is in the image of Q, and let & be the set of operators in & satisfying a certain property,
(P) say. The general problem is to describe the set

Fgod):=€n{B EL|QB) =4}

This set of solutions, .?&,Q (A), consists of all operators B that have the property (P) and
that are equal to 4 on the part which is left invariant by Q. An element B in &g ,(4) is
called an extension of A with property (P). The phrase “describe the set” concerns ques-
tions like the following. For which 4 is the set of solutions non-empty? When is Fg,(4) a

singleton? Give a description of %4 ;,(A4) in terms of the given part 4, etc.

0.2. Three classes. The setting described in the previous subsection is very general,
and a large variety of problems can be put in this context. In this book we treat three
classes of problems of this type, namely:

— positive extension problems;
— strictly contractive extension problems;
— minimal rank extension problems.

In the positive extension problems that we shall treat, the operators act on
X =Y =C"oronX =Y = l,, the Hilbert space of square summable sequences of com-
plex numbers, and hence they may be represented as finite n Xn or semi-infinite matrices
B = [b,-j] . The given part is a symmetric band consisting of 2p +1 diagonals, say, cen-
tered around the main diagonal and the extensions are required to be positive definite. In

other words, & is the set of all positive definite operators and the projection Q is given by

o) = C 0 if [j-i| >p,
( )= = (C] , Cii =
’ ! b;if |j—i| = p.

In our contractive extension problem the operators again act on X = Y = C” or on
X =Y = [,. But now the given part is of triangular form and consists of all diagonals

below a given diagonal, the g-th say. The extensions are required to have operator norm
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less than one. Thus Q is the projection defined by
0 ifj—i >gq,
Q(B) = C = [Cu] ’ cij = . (0.1)
byifj—i s q,
and & is the set of all strictly contractive operators.
In the minimal rank extension problems we consider sets &, C £ defined by
& ={B € | rankB =n }.

The given parts are of triangular form, and thus the projection Q may be of the form (0.1).
Here we shall also consider integral operators acting on X = Y = L,[0,1], the usual Les-

besgue space of square integrable functions defined on [0,1], and in that case the projection
Q is defined by Q(B) = C, where

B : L,0,1] = L,[0,1] ; (Bé)(r)

IA
A

1
[ k(t.5)(s)ds ,0 =
0

C : Ly[0,1]1 = L,[0,1] ; (C)(2)

I

t
fk(.5)p(s)ds , 0=t s 1.
0

The minimal rank extension problems we shall deal with ask to determine for a given 4 in

the image of Q the smallest number ¢ = A4) for which .9’31,Q(A) # @ and to describe
the set Fg (A4). In other words, given a lower triangular operator A we want to deter-
mine the smallest possible rank of an extension of A and all minimal rank extensions of A .

We shall not restrict the attention to scalar matrices only, but we allow the entries to
be matrices or, more generally, operators acting on Hilbert spaces. Positive and strictly
contractive extension problems also appear in the context of integral operators (see H. Dym
and I. Gohberg [24]). The general method for dealing with positive and strictly contractive
extension problems developed in this thesis may also be applied to such operators. Our
problems also concern special subclasses of operators. E.g., as a variant of the positive
extension problem we shall consider the case when the operators in & are required to be
(block) Toeplitz operators, i.e., b;; = b, ;,, for all i and j. In the latter form the posi-
tive extension problem may be rephrased as an extension problem concerning (matrix- or

operator-valued) functions on the unit circle.

In what follows we treat the above problems in more detail, and we describe some of

our main results.

0.3. Positive extension problems. Consider the following problem. Let B;; be given
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matrices for |j—i| = ¢. Find the remaining matrices B;, |j-—i| > q, such that the

n
is positive definite (shortly: B > 0). This problem was

J=1
introduced by H. Dym and I. Gohberg [23] who proved that a solution exists if and only if

block matrix B = [B,j] _
1

By ... By
: >0,i=1,.,n—q. 0.2)
Biigi -+ Bitgi+q
In a paper by J.A. Ball and I. Gohberg [5] a finite dimensional version of the shift invari-
ant subspace approach of J.A. Ball and J.W. Helton [6] was used to derive a full parametri-
zation of the set of all solutions via a linear fractional representation. The coefficients in
this linear fractional map are determined using a theorem of Beurling-Lax type. In this
book we shall present two other methods to obtain such a linear fractional representation
and, moreover, we shall give explicit formulas for the coefficients in this linear fractional

map in terms of the given data. The following two theorems are among our main results.
THEOREM 0.1. Ler B;; = B;,- be given matrices for |j—i| =q(=n-1), and

assume that condition (0.2) is satisfied. For 0 < j—i = q define the matrix Z;; by
Z; = _ij'Yi;lfij,

where (3;;,y;; and {; are given via the partitioning

; ay By By
[BrsJ r.s=i - Bi'j ‘YY rij
By §y my
Put
n
Ay = (brps @2, P = Lt
andlet A, . . . ,A, be defined recursively by

n

Ao = diag [%B,.iJ LA = BAGHAAG",

-l *—lha — P! -k
8, = WIL_ U~AADT*AG A, AGHT _ =8;807% . p = 2,04,

Put
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a AF  AF o g [ U-8,8)7% U-b8,8,)7%a,) (0
= - - II * - * * - .
8 —Ag% Ag% ) a1 (U-a,8,)7HA,  (I-ApA,)7H 1
n

Then the set of all nXn block matrices F = [Fij] with F; = B,

,)=
—q = j—i = q,and F > 0 is the set of all matrices of the form

F = (aG+B)" " 'I-G"G)(aG+B) 7},

n
where G = (G,-j] e is any strictly contractive block matrix with G;; = 0, j—i
ij=

=q.
The correspondence is 1-1. Moreover,
n
det F = (IldetB;) ( I det(I—A,A,)) det(/ ~G"G).
i=1 O<p=gq
2> “

Here I H, = H; -+ -H; and I H, =H; -+ -H; for i <j, and these
p=i p=i N

matrix products are defined to be the identity matrix for i > j. When a matrix has a zero

number of rows or columns the formulas have to be interpreted in the usual way.
THEOREM 0.2. Let B;; = B;i be given matrices for |j—i| =q(=n-1), and

assume that condition (0.2) is satisfied. Forp = 1,...,n let

(I

Yop Bpp - Bpap) 0

Y500 By - Bpw).sw) 0

and

B -1 [0

X,0)p By -+ Brorw :

: = M . 0 ’
pr Bp.v(p) Bpp 1

where ((p) = min{n,p +q} and y(p) = max{l,p —q}. Define nXn triangular block

n n

andV = (VUJ by

matrices U = [UU]
i ij=1

J=1

Y Y% L JsisB3);

i 0 , elsewhere;
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X, X;% ,y()sis;

U‘f = 0 , elsewhere.

n
Then the set of all nXn block matrices F = [Fij] with Fy; = By,
ij=1

—q = j—i = q,and F > 0 is the set of all matrices of the form

F=(G'V'+U" W U-G"G)(VG+U) !,

n

where G = [GU] is any strictly contractive block matrix with G;; =0, j—i = q.

ij=1
The correspondence is 1-1. Moreover,

det F = |detU | ~2det(l -G G).

The two theorems are obtained in quite different ways. Theorem 0.1 is derived via a
sequential approach developed in Chapter I, which may be viewed as an adapted version of
the classical Schur algorithm used in complex function theory (see I. Schur [61, 62]). It
consists of recursively applying an elementary linear fractional map, which reduces the
problem in each step to a simpler one, and finally to a trivial one. Theorem 0.2 appears as
a corollary of the so-called band method, a general scheme for dealing with extension prob-
lems introduced by H. Dym and I. Gohberg [24, 27] and developed further by I. Gohberg,
M_.A. Kaashoek and H.J. Woerdeman [38, 39, 40]. This method is described in the next

subsection.

0.4. The band method. Here a positive extension problem is considered in an alge-
bra .# with a unit e and an involution *. The algebra admits a direct sum decomposition

of the form
vﬂ=c/”l'i'v/“(2)'i'u‘{d'i‘q/”g+uﬂ4,

where M, , M) v My , M) and M, are linear subspaces of # satisfying the following two

conditions:

() e €My, M= My, M= (M), My = My;

(ii) the following multiplication table describes some additional rules on the multiplication
in A
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My M My M M
M| M M My M M
M| My M M M, M
My| My M My M My
MY M M M M M,
My MM M, M, M,

where

An element a € # is called positive definite in # if there exists an invertible element
c € M such that @ = c"c. In this context the positive extension problem reads as fol-
lows. Letk =k* € H . be given. Find all positive extensions b € # of k, i.e., find all
b such that b = m+k +m] with m, € ., and b positive definite in .

To put Theorem 0.2 in this context, take 4 to be the algebra of n Xn block matrices

with involution the usual adjoint of a matrix and with the identity matrix as unit, and let

n

n
u«2=./¢t§‘={(a,-j] llaij=0,j—i>qandj—i§0},
ij=

n
Uﬂd={(aijJiJ=llaij=0,i ¢j}.

In the band method an important role is played by a positive extension of a special type,
called the band extension, which, by definition, is a positive extension b of k € #, with
the additional property that b~! € A .. Thus the band extension of the positive band
extension problem in Theorem 0.2 is the unique extension F such that (F~') ij = 0 for
j—i = q. In H. Dym and I. Gohberg [23] it was shown (assuming (0.2) is satisfied) that
the unique band extension is given by U W' = v*"lv~! where U and V are as in
Theorem 0.2. Thus Theorem 0.2 shows that the coefficients of the linear fractional map
which describes all solutions can be read off from the Cholesky factors of the band exten-
sion. It turns out — and this is the second main feature of the band method — that this

principle holds in general. The first main principle in the context of the band method is
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that the construction of the band extension may be reduced to solving a linear equation.

As a further illustration of the band method we consider an extension problem in the
Wiener algebra W on the unit circle. Recall that W consists of all complex valued func-

tions f on the unit circle T of the form

fFN = £ Nf NET,

j=-—00
y Ifjl < oo.
j=—00
The involution * on W is defined by
ffy = N =", M =1,
j==oo
and the unit is the function e(A\) = 1.

Given complex numbers a; = E_j, |j | =< m, a function f € W is called a positive
extension of the given band {a; | |j| = m} whenever f(\) >0 for |A\| =1 and
fj =a; for | j | = m. The problem to find all positive extensions of a given band can be

put in the context of the band method by choosing thg subspaces in the following manner:
M= My ={fEW|[[f;=0,jsm},
M= M ={f EW|f;=0,j=0andj>m},
My ={f EW|f;=0,j#0}.

In a similar way the positive extension problem in the operator Wiener algebra may be put
in the context of the band method, and we shall use this (in Section III.3) to derive a linear
fractional description of all positive extensions of a given operator band. In other words,
given the operator band { A j l | J ] = m } we shall determine all positive definite block

Toeplitz matrices

ByB_, B_, ..
B, By B_, ..

B = BZ Bl BO

such that B; = 4, |j| = m, and the symbol of B is in the Wiener algebra.

In this book we illustrate the band method only on the above mentioned examples.
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Other examples may be found in I. Gohberg, M.A. Kaashoek and H.J. Woerdeman [38,
39, 40].

0.5. Strictly contractive extension problems. Consider the following problem. Let

A;; be given matrices for j = i. Find the remaining matrices Ay, j > i, such that the
n

block matrix 4 = (Aijj has operator norm less than 1. From the distance formula

ij=1
of W. Arveson [3] it follows that the necessary and sufficient conditions for the existence

of a solution are

A e Ay
] : Sl ll<1,i=1,..m
A A

nl c-- n,i

In [5] J.A. Ball and I. Gohberg showed that the set of all solutions may be represented via
a linear fractional map, for which they used again their finite dimensional version of the
shift invariant subspace approach. For the 2X2 case the contractive completion problem
was treated earlier by Gr. Arsene and A. Gheondea [2], and by C. Davis, W.M. Kahan
and W.F. Weinberger [17].

Our aim is to present an explicit description of the set of all solutions via a linear frac-
tional map of which the coefficients are directly given in terms of the original data. As in
the positive extension problem we do this in two ways: a sequential way and via the band
method which applies to strictly contractive extensions as well. The sequential approach
yields the following result for the scalar case.

THEOREM 0.3. Let a;; be given complex numbers, where 1 < j =i =n, and
suppose that

n p
I [a,.,.) Tl <1, p =1l
i=p,j=1

For j = i define the number h; by

b (aij +Bij(l ‘"a;jaij)_]a;j'yij)
i (1-8,U —d:jdij)_‘ﬁrj)%-(l—V;j(l_aija;j)—lvij)% ’

where o ;;,8;; and v ;; are given via the partitioning

a = .
") r=is=1 i Vi
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Furthermore, let

011 612 - o U=8,4)7"% U-8,A)7"4,
=H » - * L - 1)
6y 02 p=-n+1 ((I=A,8,)7"A, (I-A,A,)7"

where

n

A, = [, .hJ p = —n+1,...0.
P [ i+ dti )y I3

n

Then the set of all matrices F = [f,j] € C"*" with fy=ay, j =i, and

ij=1
|F |l < 1 is the set of all matrices of the form

F =F(G) = (0,,G+0,)(0,,G+0,) ",
n

where G = (gij]i' . is any matrix with ||G|| <1 and 8y =0 for j =i. The
J=

correspondence is 1-1. Moreover,

det(/ —F(G)"F(G)) = {jI'I‘(l— |hyj 1D} detd —=G*G).
si

The band method yields the following result.

THEOREM 0.4. Let a;; be given complex numbers, where 1 = j =i =n, and

IIA

suppose that

a

Bni

1
@11, 0
. = (I—S,-S;)—l 3 L= l’ »n,
&ni 0
6,',1 0
.t =S.(-S"S) | L i=1,.m,
ﬁn—l,i 1( i l) (1)
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A
T rl
Yo . 0
| =Sid=-8;8H7 .| ,i=1,.n,
\‘9i,i L0
(64 (0
~ ; = — ‘ . -1 =
8;‘—[_1’ (1 sxsy) 0 s 1 19 »n,
2 1
L 6ii N
and let
o n &yéy”,izjs
* La'j]i,jn’aij_ 0 i <J3

n Fyay” i =j;

[71‘1] =70 i >

-
(& 5

5.z [6UJ n ,5',]: <601]5]'1' ’:f.{:

i,j=1 ’ J:

L

n
Then the set of all matrices F = [ f ,-j] o
ij=
[|IF |l < 1is the set of all matrices of the form

F = T(G) = (aG+B)(vG +8) 7},

n

where G = [g,j} is any matrix with ||G|| <1 and 8y =0 for j =

ij=1
correspondence is 1-1. Moreover,

det( —=T(G)"T(G)) = |detd| 2 det(/ -G"G).

) e Cnxn With f‘] = a,-j, j

i, and
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Theorem 0.3 and its block matrix analogue are the first main results in Chapter I.
Theorem 0.1 is proved using the block matrix version of Theorem 0.3 and the fact that the
positive extension problem may be reduced to a strictly contractive extension problem by
using an inverse scattering principle. Theorem 0.4, in contrast, is proved as a corollary of

the results on positive extensions. Here we use the observation that

- ) 6]

is positive definite if and only if ||4 || = 1. Note that whenever a lower triangular part of

Al] is of band type.

A is given, the given part of { A’.

As another application of the band method we shall also consider the following strictly
contractive extension problem. Given complex numbers ¢;, j < 0, determine all f in the
Wiener algebra W such that |f()\) | < 1 for I)\{ = 1land f; = ¢; for j = 0. This prob-
lem is connected with the well-known theorem of Nehari (see, e.g., V.M. Adamjan, D.Z.
Arov and M.G. Krein [1] and H. Dym and I. Gohberg [26]), and its matrix version plays
an important role in H ,-control theory. In this book we solve the problem in the more

general setting of the operator Wiener algebra.

0.6. Maximum entropy principles. Consider again the positive extension problem

for block matrices: let B;; be given matrices for |j—i| = ¢, and find the remaining
n

matrices B,-j, |j —i l > q, such that the block matrix B = [B,-jJ i is positive definite.
ij=

Let Dy denote the middle (diagonal) factor in the U*DU decomposition (where U is

upper triangular with identities as its diagonal entries) of a positive extension B of the

given band, and write B for the band extension. In [23] H. Dym and I. Gohberg showed

that for any positive extension B of the given band
Dp = Dg,, 0.3)

and equality holds in (0.3) if and only if B = B,. As a corollary (see [23]) it follows that
the band extension is the unique positive extension for which the determinant is as large as
possible. (From the determinant formulas in Theorem 0.1 and 0.2 it is clear that one
obtains the extension with largest possible determinant only by choosing G = 0.) This
corollary is usually referred to as the maximum entropy principle for the matrix case. For
the positive extension problem in the Wiener algebra, considered in Subsection 0.3, there is

also a maximum entropy principle. It identifies the band extension as the unique positive
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extension f for which the entropy infegral

%jrlogf(e“’)do

is as large as possible (see J.P. Burg [13], and also H. Dym and I. Gohberg [22]). It turns
out that both maximum entropy principles may be viewed as special cases of a general
maximum entropy principle that we shall derive in the abstract setting of the band method.
This general maximum entropy principle identifies the band extension as the unique posi-
tive extension for which the multiplicative diagonal is maximal.

We shall derive an abstract maximum entropy principle also for strictly contractive
extension problems. The concrete maximum entropy principle for block matrices men-

tioned above will play a role in the sequential approach.

0.7. Minimal rank extension problems. As indicated before this class of problems
concerns mainly three kinds of operators: finite matrices, semi-infinite matrices and integral

operators. Let us start by describing the minimal rank extension problem for the latter case.

Let X : L7[0,1] — L3 [0,1] be an integral operator with an n X m matrix kernel k
defined on the square [a,b] X [a,b]. So

1
(Kf)(1) = [k(t,5)f(s)ds ,0 =1 = 1.
0

An integral operator H with kernel h is called a finite rank extension of the lower triangu-
lar part of K if rank H(=: rank k) < oo and

h(t,s) =k(t,s),0=s <t

IIA

For instance, the Volterra operator

IA
HIA

t
(Vf)() = éf(S)ds 01 =1,
on L,[0,1] has a finite rank extension of rank 1. The minimal rank extension problem we
are interested in asks to determine all minimal rank extensions of the lower triangular part
of a given integral operator K, i.e., to find all finite rank extensions of the lower triangular
part of K with smallest possible rank. Problems of this type originated in 1. Gohberg and
M.A. Kaashoek [35], where they appear in connection with minimal realizations of boun-

dary value systems.

The analysis of the minimal rank extension problem for integral operators is based on
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its matrix analogue, which is of interest in its own right. Let matrices A4,

1 =j =i =n,begiven. Find matricesA,-j, 1 =i < j = n, such that the block matrix

n
4= (A"j]uﬂ

has lowest possible rank. Such an 4 is called a minimal rank extension of the given lower
triangular part & := {4 | 1 =j =i = n}, and its rank is called the minimal lower
rank of . In this book we shall prove, among others, the following results.

THEOREM 0.5. Let & = {A; | 1 =j =i = n} be a given lower triangular part.
The minimal lower rank 4 ) of A is given by

n n—1
L) = Y, rank APP) -V rank AC*H1P) |
p=l1 p=l1

where

Apy - Ay,
APD = :

Ay oo Agg

Furthermore, & has only one minimal rank extension if and only if

rank AP?) = rank APH'P) = rank APHIPFD p =1,...n—1.

THEOREM 0.6. Assume that the lower triangular part of the integral operator
K : L7[0,1]1 = L3[0,1] with kernel k has a finite rank extension. Then the rank ¢ of a

minimal rank extension of the lower triangular part of K is equal to

¢ = max \(m,7,.k),

T, Ty

where the maximum is taken over all partitions = of [0,1] and all corresponding sets of
intermediate points 7,. Here, for © = {ag, * * * ,a,} and 7, = {7, - * * ,7,}, the

number N(w,7 .,k) is defined by

n n—1
Nm,75k) := Y rank k' — Y rank k%, 0.4)

i=1 i=1
where kP denotes the restriction of k 1o the rectangle [8,11X[0,8). Furthermore, the lower
triangular part has only one minimal rank extension if and only if rank kP is independent

of B € (0,1).



- 14 - Introduction

We identify a large class of partitions # and corresponding sets 7 for which the max-

imum in (0.4) is attained.

The minimal rank extension problems will be treated in the context of operators that
are triangular relative to chains of orthogonal projections. The general results will be speci-

fied for various types of operators.

0.8. General patterns. The matrix versions of the three classes of problems can also
be considered for the case when the given entries in the matrix do not form a band (posi-
tive extensions) or a triangle (strictly contractive/minimal rank extensions). For more gen-
eral patterns of given entries there are many open problems. One of them, connected with
the minimal rank extension problem, will be discussed in some detail. For positive exten-
sion problems relative to more general patterns we refer to R. Grone, C.R. Johnson, E.M.
de Sa and H. Wolkowitz [45], where the existence of a solution, in particular one with
maximal determinant, is the main topic, and to H. Nelis, P. Dewilde and E. Deprettere
[57] which concerns the case of multi-band patterns and its relation with questions appear-
ing in electrical engineering. For the contractive extension problem results on existence of

a solution relative to more general patterns appeared in C.R. Johnson and L. Rodman [46].

It turns out that, in general, in the minimal rank extension problem the minimal possi-
ble rank is not only determined by the ranks of fully specified submatrices as is the case for
the triangular patterns (cf. Theorem 0.5). This focusses the attention upon those patterns of
specified entries for which the minimum is so determined. It is shown that it is necessary
that the bipartite graph of the pattern be chordal, and some evidence is given for the con-
jecture that this is also sufficient. In this conjecture the triangular patterns once again play

an important role.

0.9. Description of contents. This book consists of two parts with a total of five
chapters. In Part A positive and strictly contractive extension problems are treated.
Chapter I concerns the sequential approach. The remaining two chapters in this part con-
cern the band method (Chapter II) and its applications (Chapter III). In Part B minimal
rank extension problems are treated. Chapter IV concerns matrices and Chapter V opera-
tors. This book is based upon results that already found a place in the literature, in papers
written by or co-authored by the present author. At the end of each part, in a brief section

of comments, we list the papers involved.
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PART A
POSITIVE AND STRICTLY CONTRACTIVE EXTENSIONS

This part, which consists of three chapters, treats positive and strictly contractive
extension problems. In Chapter I a sequential approach is used to derive linear fractional
forms describing all strictly contractive and positive extensions for block matrices. Chapter
II concerns the band method. In Chapter III the results obtained using the band method are

specified for the algebra of 6perator matrices and the operator Wiener algebra.






17 -

CHAPTER I. BLOCK MATRICES: A SEQUENTIAL APPROACH

In this chapter we treat the positive and strictly contractive extension problem for
block matrices using a sequential approach. The main aim is to derive explicit linear frac-
tional descriptions for all solutions. In Section 1 some elementary facts concerning linear
fractional maps are recalled. Section 2, which deals with the 2 X2 strictly contractive exten-
sion problem, provides a first step in the proof and illustrates the methods used to solve the
general problem. Section 3 describes the elimination procedure which is used in Section 4
to solve the general (n Xm) strictly contractive extension problem. In Section 5 the positive
extension problem is reduced to a strictly contractive one. Section 6 contains the solution of

the positive extension problem. Section 7 deals with the Toeplitz case.
I.1. Linear fractional maps with matrix coefficients

In this section we collect together some elementary facts on linear fractional maps with
matrix coefficients. As general references for this topic we mention B. Schwarz and A.
Zaks [63], [64] and the references given there. Also some special types of linear fractional
maps, which will be used for solving the problem of strictly contractive extensions, are

introduced in this section.

Let A ,B,C and D be matrices of size p Xp ,p Xq ,q Xp and g Xq, respectively.
Using them as blocks we define the following (p +¢q) X(p +¢) matrix:

u-[42)

We consider here only nonsingular (p +gq)X(p +q) matrices M, i.e., we assume

throughout that

A B
detM = det (C D} # 0.
Under this condition, define the linear fractional maps .#,, and M ys by
My (G) = (AG +B)(CG+D)~!,
My(G) = (A —GC)"\(-B+GD),

where the variable G is a p Xq matrix. We call the matrix M the matrix defining the map
My . The matrix #,(G) is defined only on the set of matrices G for which CG +D is

invertible. Analogous remarks hold for .#,, .
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PROPOSITION 1.1. Let M ,N be nonsingular (p +q) X(p +q) matrices. Then (on the

appropiate domains)
(1) My My = Myy,;
(i) My My = Myp;
(ill) My = My

: ab
Proof. Let M be given by (1.1) and N = [: c d] . First note that (on the appropiate
domain) #,,(G) = K if and only if

(&) (o) (7] =0

and the latter identity holds if and only if M u(K) =G.
For (i) note that Ay (#y(G)) = K if and only if

0= [1 —KJ M {V”NI(G)] = [1 —K] MN [(I;J (cG+d)~ L.

But this is equivalent to #n(G) = K.

One proves (ii) analogously. So let us finish with (iii). Since 4, (G) = K if and
only if Myu(K) =G, we obtain My = (My)"'. On the other hand, by (ii),
My ° My = Mpg-° My = My, Which is the identity map. So (My) "' = My -1. Now
(iii) follows. (J

In this paper we shall deal with linear fractional maps of which the defining matrix has

additional symmetry properties. Let J be the following (p +¢9) X(p +¢) matrix:

I, ©
P
J= [0 _I‘J, (1.2)

where I, denotes the identity matrix of size r Xr. The matrix M is called J —unitary if
M*JM =J and MIM* =J. For p = q the matrix M is called (J,J)—unitary if
M*JM =J and MIM™ = J, where J is as in (1.2) and J is the 2p X2p matrix

0 -1
~ p
J= [—1,, 0 J (1.3)

The symbol ||G || denotes the largest singular value (the operator norm) of the matrix G.
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PROPOSITION 1.2. Let M be as in (1.1).

(i) If M is J-unitary, then My and My map {G | |G|l <1} into
{G | Gl < 1}. Furthermore, if det(CG +D) # 0, then

det(] — My (G) My (G)) = |det(CG +D) | ~%det(I -G* G). (1.4)

(ii) If M is (J J)-unitary, then My, maps {G | |G|l < 1}into {G | G+G" > 0}
and My maps {G | G+G* >0} into {G | |G|l <1}.  Furthermore, if
det(CG+D) # 0, then

det( My (G) + My (G)") = |det(CG +D) | ~%det(I1 -G G). (1.5)

Proof. Let us prove (ii). One proves (i) analogously. Suppose that M is JJ )-unitary
and let G be a p Xq matrix with ||G || < 1. Then

. (G
I-G°G = — [G‘ 1] MM [1] = (1.6)
= (AG +B)*(CG +D)—(CG +D)" (AG +B)

is strictly positive. Suppose that (CG+D)x = O for some x # 0. Using (1.6), it follows
that <(I —G*G)x x> = 0, giving a contradiction. Since CG +D is square, we obtain that
det(CG +D) # 0. Hence .#,,(G) is well-defined. Rewriting (1.6) gives

I1-G"G = (CG+D)" (M (G)" +My(G))(CG+D), (1.7

S0 My (G)" +My (G) > 0. Analogously, one proves that .#, maps {G | G+G" > 0}
into {G | ||G|l < 1}. The identity (1.5) is a direct consequence of (1.7). OJ

The following types of linear fractional maps will be used to solve the strictly contrac-

tive extension problem. Let A be a p Xg matrix with norm less than 1. Define

TA(G) := W (G+A)NA*G+D) 7w !,

T,(G) :

WA UI-GA"Y N(G-2)W,,

where G is a p Xq matrix and Wy := (I-B*B)~* for ||B|| < 1. For a positive definite
matrix N the symbol N ~* denotes the inverse of the usual positive definite square root N i
of N. Note that Ty = My sy and Ty = My a), where M(A) is the J-unitary (with J as
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in (1.2)) matrix

[ W, WA-A]
M(a) = . . (1.8)

The following corollary is now a direct consequence of Propositions 1.1 and 1.2.

COROLLARY 1.3. Ler ||All < 1. Then
T,:{G | lIGll <1}=>{G | IGll <1}
is bijective, and its inverse is TA. Furthermore, if det(A*G +I) # O, then

det(I —T,(G) " Tp(G)) = det(I—A"A) |det(A* G +I) | ~%det(/ —G"G).

1.2. The strictly contractive extension problem: the 2x2 case

In this section we shall explain the method used in this chapter on the 2X2 case. Part
of the results are used later for the general case. Let «,8 and vy be given matrices. We

want to find all matrices F of the form

P 03)

with norm (strictly) less than one. Suppose that such an extension F has been found. Then
llall < 1, and by Corollary 1.3

I ) [ﬁ XJ = [ﬁwa waaa.wm} (2.2)

T[O 0 a y 0 Wa.'y
a0

is well-defined and has also norm less than one. In particular, B := W, and C := W .y

are strict contractions. Using again Corollary 1.3 we obtain that

0 Wy-(X+Ba"C)W
I ] ] (B X} = [ ? CJ (2.3)

T gw, o °T[°° a y 0 0
0 Wy « 0

is well-defined and has norm less than one. In other words, if ||F || < 1, then (2.3) is of

0G
the form [0 0) with G norm less than one.

0G) . B
Conversely, let us start with (0 0] with ||G|| < 1, and assume that || (a] Il <1
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and || {a 'y] Il < 1. The latter conditions imply that B := 8W, and C := W .y are strict

contractions, and hence the 2 X2 block matrix

T (2.4)

0 G B WglGWs'-Ba™C
] [0 0] = e v

°Tr
I

is well-defined and has norm less than one. In particular, the right hand side of (2.4)
solves the extension problem. The above calculations describe in a nutshell the elimination

procedure which we shall use later. We summarize the results in the following theorem.

THEOREM 2.1. Let «,8 and vy be matrices of sizes p;Xq,, p1Xq, and p,Xq,,

B
respectively, satisfying || (aj | <1andll| (a ‘yj I| < 1. Put

(0 0] W, 0O
A._] = a 0 ,Ao= 0 Wa"Y .

Then all the matrices of the form

B *]
[a 'Y (2.5)
with norm less than one are given by
0G
F(G) =T, °T,, 00J’ (2.6)

where G is any p,Xq, matrix with norm less than one. The correspondence is 1-1. Furth-

ermore, for such a matrix G,
det(I —-F(G)"F(G)) = det( —a"a).det(I =8I —a"a) " !8™) 2.7)
det(I —y" (I —aa™) " y).det(I -G G).

- 0G . =
Proof. It remains to prove (2.7). Let G = (0 OJ . Since det(AgG+I) = 1, we

obtain by Corollary 1.3

det(I-T (G) T5(G)) = det(I —AgAp).det(I -G G). (2.8)
Put G = T, O(G). An analogous reasoning yields

det(I-T,_(G)°T,_(G)) = det(I-AZ A _)).det(I-G"G). (2.9
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Inserting (2.8) in (2.9) and using the identity det(I —G " G) = det(/ —G"*G), we obtain
det(/ —F(G) F(G)) = det(I-AjAg)det(I-A",A_;)det(/—-G*G),

and (2.7) follows immediately. [J
The (1,2) entry of the right hand side in (2.4) is equal to

X = —(—-a"a) la"y+U -BU —a"a) 'BHYEGU -y U —-ac™) ') % (2.10)

*
Thus all strictly contractive extensions [z 7) are given by (2.1) with X as in (2.10) and
lIGll < 1. In this form the solution of the extension problem for 2 X2 matrices appears in
[17] and [2].

From (2.7) it is clear that
det (I —F(0)*F(0)) > det(I —F(G)"F(G))

for G # 0. So F(0) is the unique strictly contractive extension F of (2.5) for which
det(I —F"F) is maximal. According to (2.10) the corresponding X is given by

Xo= —-BU-a"a) la"y. (2.11)

1.3. The elimination procedure

In this section the principle of reducing the strictly contractive extension problem to
one of simpler form by creating zero diagonals, illustrated in the previous section on the
2x2 case, will be described for the n Xm block case. As suggested by the approach fol-
lowed in Section 2, to solve the strictly contractive extension problem for arbitrary block
matrices one has to understand the behaviour of the linear fractional maps T, and T, on
upper triangular (relative to some diagonal) block matrices.

Let Q"*™ denote the set of all n Xm block matrices 4 = {A ,-j] i:l,i: with a fixed
block structure. Thus for each (i,j) the matrix A,.j has some fixed size independent of A .
In the set Q%™ addition is a well-defined operation. When multiplying A € Q"*™ and
B € Q™*P, we shall assume that the product A ;B ; makes sense. When inverting or tak-
ing the square root of A € Q"*", the diagonal elements A ; are assumed to be square.

Define for p € Z the p-th diagonal map @, : Q"™ — Q"*™ by

n m

LR CE T P
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where &; denotes the Kronecker delta, i.e., 8; = 1 and é;; = 0 for i # j. Note that for
p = —n and p = m the matrix 2,(4) is equal to 0. Of course, we are not interested in
those values of p, but for notational convenience they are not excluded. We refer to
@,(A4) as the p-th diagonal of A. Let £, : Q"™ — Q"™ be defined by

L,4) =¥ D (4) .
q9q=p

We call £,(A4) the lower triangular part of A relative to the p-th diagonal. Furthermore,

let U ; XM denote the set of upper triangular matrices relative to the p -th diagonal, i.e.,

Upm={4 €0V | %, 4)=0}={4 €2 |4 = L 9,(4) }.
qzp

ForA € Q"*™ and ¢ € Z put

A 0 Aiiag
my(A) =max || | : : II.
q
i€z |, p

nl n,i+q

It is easy to see that m,(4) < 1 implies that ||4 ;|| < 1 for j—i = q. Since

@, = m?xHA,.,,-ﬂ,H,

we conclude that H@p(A)H < 1 whenever m (4) < landp = gq.
The elimination procedure may now be described by the following two propositions.
PROPOSITION 3.1. LerA € Up*™, ||@ ,(4)|| < 1andq = p. Then
® T@,(A)(A) € UL
(i) If £,(4) = Z,(K), then Qq(f'gp(A)(A)) = Qq(TQP(A)(K));
(ifi) If mg(4) < 1, then my(Tg 4)(4)) < 1.
PROPSITION 3.2. Letp = q, and let G,G € U;i’{' be such that £,(G) = Qq(é).
Furthermore, let A = P,(8) have norm less than 1. Then
L,(TA(G)) = Z,(TA(G)) .

Moreover,

det(I —=T,(G) " T,(G)) = det(I—A"A)det(I —-G"G). (3.1)

We shall prove these two propositions at the end of this section. First we deduce the
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following theorem.

THEOREM 3.3. Let A € Q"*™ be such that my(A) < 1. Make the following

sequence of matrices:

E—n+l =AL,A 4 = Dy 4y(4)

2 . 32
El' = TA,_I(Ei—l) ’Ai = @,-(Ei),l = -n +2,...,q+1. ( )

Then the set { F(G) | G € UZET G < 1}, where
F(G):=Ty_ (" " (Ty(G) "),

is the set of all F € Q"*™ such that Z,(F) = £,(A) and |IF || < 1. The correspon-

dence between these sets is 1-1. Furthermore,
* q - *
det(/—-F(G) F(G)) = II det(d —ApAp)det(I-G G). (3.3)
p=-n+l

Proof. Using Proposition 3.1 one sees, by induction, that the matrices in (3.2) are
well-defined, mq(Ep) <land I, € U;x”‘ forp = —n+1,...,g+1. Let ||[F|| <1 be
such that £,(4) = L, (F). Put G_, 1 = F, G; = T4 (G;_y), j = —n+2,..,g+1. By
repeatedly applying Corollary 1.3 and Proposition 3.1(ii) one obtains that ||G;|| < 1 and
2,(G)) = £,(E)), j = —n+1,..,g+1. In particular, ||G,,ll <1 and Z,(G,,p) =
Z,(Z441) = 0. Hence for G = G,y € URLT we have that F = F(G) and ||G|| < 1,
and thus F is of the desired form.

Conversely, let G € UiT with [|GIl < 1. PutF,,, = G and F; = Ty (F; ) for
j = —n+l,...,q. Since lquHH < 1, it follows from Corollary 1.3, by induction, that
IIF;ll <1 for j = —n+1,....,q. Furthermore, Z,(Fgyp) = 0=,(Z,,). By repeat-
edly applying Proposition 3.2 we obtain that &, (F;) = £,(X;) for j = —n+1,...,9. So
IF_pull <1 and L (F_ i) = LHE_,,) = £L,(4). This proves that
F_, +1 = F(G) is a contraction such that £, (F(G)) = £,(4).

The 1-1 correspondence follows immediately from the fact that T, is invertible for
i =-n+l,...4q.

Finally, a repeated application of the determinant formula in Proposition 3.2 yields
(3.3). O

The construction of the linear fractional map F(G) in Theorem 3.3 may be viewed as

a variation of the Schur algorithm which is used to solve the Nevanlinna-Pick interpolation
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problem (see, e.g., [61] and [62]).

Let A be such that m q(A) < 1. Recall from [5] the following definition. The max-
imum entropy solution of the strictly contractive extension problem for A is the unique
strictly contractive extension of 4 which maximizes the number det(I —F F), i.e., the
maximum entropy solution F has the following properties: £, (Fg) = £,(4), IFoll <1

and
det(I —FoFy) > det(I—F"F),

where F # F varies over the set { F | ||F|l = 1 and %,(F) = £,(4) }. Note that in
Theorem 3.3 the maximium entropy solution is obtained by taking G = 0. The latter state-
ment follows immediately from (3.3).

For the proofs of Propositions 3.1 and 3.2 we need to analyze further the behaviour of
the linear fractional maps T, and f'A. In what follows A € Q"*™ is a diagonal, i.e.,
A = @,(A) for some p. Furthermore, we assume that llall < 1. Then W, € Q™™

and W,- € Q"*" are both invertible square block diagonal matrices. To be more precise,

n m
ifa = (a,) iotyoy = @p(&), then

m n

, W, = diag (WA‘.-P'H] ,

W, = diag (WAMJ] o

j=1

where we use the convention that A; =0 for (i,j) & {l,....,n}x{l,...m}. Here
k

diag [z,.] _, = diag [zl,...,zk] denotes the k Xk block diagonal matrix with Z; as the
i=

(i,i)th entry (i
then

1,....k). If Ay = 0, then WA!‘/ = [. So, for instance, if n+p = m,

dlag [WAI—p,l’ D ’WAn;n+p’I’ o e ’IJ , P = 0’
W, =
diag (1, N R N ,WAWP,I,...,I} ,p >0.

Let E; denote the square block matrix which has on the (i,i)-th place an identity matrix
and zeros elsewhere. The number of blocks in E; and their sizes should be clear from the

context.

n m

LEMMA 34. Let A = [A,.jj €UN™ and fix r € {l,.,n} and

i=1,j=1
s € {l,...m} such that s—r = p. Put A = E AE, and assume that ||A|| < 1. Then
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A ,i>rorj<s;
0 ,i=r,j=s;
(Ty4))j = {4, T~ArA, )% ,i<r,j=s;
(I-A A7) %4, ,i=r,j>s;
(Ay+A (I —A[A )T AfA,; i<rj>s.

In particular, if j—i > p, then
(?A(A))ij = (WA°)il'(Aij +Zij)(WA)jj ’
where

AWy Ar WA, i <r,j>s,
ZU =
0 , otherwise,

Proof. Straightforward calculations. [J

LetP; (i = 1,...,n) and QJ (j = 1,...,m) be the block matrices of size (m —i +1) Xn

and m Xj, respectively, given by

(1 3

Pi=

r
.

Here and in the sequel the blank entries in the matrices denote zeroes. For convenience we
also introduce P; =1 (i =0), P;=0 (i 2n+l), Q; =0 (i =0) and Q; =1
(i = m+1). Note that

Ay ... A,.j
PiAQj = :
A"l cee Anj

LEMMA 3.5. Let A € Up™™ and A = @,(A) have norm less than one. Then
TA(A) exists and
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PTNA)Q; = Tp g (PrAQ)) , k = 1,.n 1 = 1,...m .

Proof. Since AA® € U §>", and its main diagonal has norm less than one, we get that

I—-AA" is invertible. Hence f‘A(A) is well defined. Let A; = E;A, i = 1,...,n—p, then

n—
A= ﬁAi. Now M(4,_,) * - - M(A)) = M(A), which is easy to check because of the

i=1

abundance of zeroes in the matrices M (A;). Hence

A A

Ty=Ty° Ty (3.5)

n-p"
‘Let (k,0) € {l,...,n}x{1,....m}. Note that by Lemma 3.4 the block matrix
TAM" s °7A‘A"_p(A) belongs to U™ and its (i,j)th entry is the matrix 4, for
i < k+1. So, in particular,

Ay = ERAE, = Ex(T,, °* * - Ty, (A)E, k-
Thus it suffices to prove (fori € {1,...,n—p}) that
Py Ty (B)Q; = Tp,a,0,PBQ)),

where B € U;*™ and E,BE,,,; = A;. The latter follows directly from Lemma 3.4. J

Proof of Proposition 3.1. Denote A = @p (A). In order to prove (ii), note that
Z,(4) = £,(K) if and only if P,-AQH_q = P,KQ;.4, i = 1,..,n. Furthermore, if
Qq(A) = Qq(K), then A = @p(A) = @p(K). Using Lemma 3.5 we obtain

P Ty(4)Q;,, = TP‘AQ,+,(P1AQi+q) = TPiAQ,-+q(PiKQi+q) = P, Ty(K)Q; 4,

fori = 1,...,n. But then (ii) follows immediately.

For (i), use (ii) with ¢ = p and K = A. Since Qp(fA(A)) = 0, this gives the
desired result.

Finally, we prove (iii). If ||P;4Q;,,Il <1, then Corollary 1.3 yields that
f'p',AQW(PiAQHq) = P,TA(A)QHq has norm less than one. Using this observation for
all admissible i, we obtain (iii). [

Proof of Proposition 3.2. First note that A*G € UT*™. Hence I +A"G is inverti-
ble, and T,(G) is well defined. Denote H = T,(G) and H = TA(G). Since
P,GQ;., = P;GQ,,,, we get that

TP,»AQ,-H,(PiHQiH)) = P;GQ;y, = PiGQ;.y = Tpag,, (PiHQ; ).
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The injectivity of Tp,ag,,, yields P;HQ; ., = P;HQ;,,.

To prove (3.1) note that A*G € U T>™. Hence det(J +A*G) = 1. Use now Corol-
lary 1.3. [

1.4. The strictly contractive extension problem: the general case

In this section we prove the first main theorem for the strictly contractive extension

problem. Recall that for A € Q"*™ the block matrix ¥%,(A) stands for the lower triangu-

-

i
lar part of 4 relative to the gth diagonal. We use the following notations: II H, =
p=i
< J
H;---Hjand I H,=H;---H; where i = j. In the case when i > j these
p=i
matrix products are defined to be the identity matrix.
n m
THEOREM 4.1. Let A = (A,j] L €OV and g € {—n+1,..m—1} be
i=1l,j=
given. Suppose that
Ay -0 A,
Il : l<1,i=1,.,m—q
Anl An,i+q
For j—i = q define
— * _] *
Zy = ByU—ayoy) " ayyy,
where o ;;,8,; and v ; are given via the partitioning
noj By Ay
A = . 4.1
[ ’S]r=i,s=l [aij 7ij ( )
Furthermore, let
n m
Ap = [8i+pJ(Aij+zij)] RN +1,..9,
and A,,p = —n+l,...q, be given by
A—n+l = A—n+1 ’
a =117 d-aanra,m T d-alagyh. (4.2)
P k=-n+1 P h=nt1
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Put

(91, 0,2J ni [(I—APA;)-” (I—A,,A;)'*‘*Ap]

p=—n+1 (U=8,8,)7%A; (I-48,4,)7"

Then the set of all F € Q"™ with Z,(A) = Z,(F) and |IF|l < 1 is the set of all

matrices of the form
F = F(G) = (0,,G+0,)(0,,G+0,)",

where G is any matrix with £,(G) = 0 and ||G|| < 1. The correspondence is 1-1.

Moreover,
det(I -F(G)*F(G)) = pr§1qdet(1 -A,4,)det(I-G"G), (4.3)
and
det(/ -F(G)"F(G)) = ;L detdt —H;H;)det(I-G"G), (4.9
where

Hij = (I—Bij(l_a;jaij)_lﬁ;j)_%
(4 +3ij(1-a;jaij)-la:j’7ij) a _'YFj(I_aija;j)_l'Yij)_% .

It may happen that the matrix o;; in (4.1) has a zero number of columns or a zero
number of rows. In the first case «;; should be understood as the linear map from the zero
space to CP, where p stands for the number of rows of a;; (= number of rows of v;;). In
the second case a;; should be understood as the linear map from C” to the zero space, and
here p stands for the number of columns of a; (= the number of columns of 6,-]-). A
similar interpretation applies to the other matrices in (4.1). In all such cases Z;; is a matrix

with zero entries of the same size as 4 ;.
The scalar version of the above theorem is the following.

THEOREM 4.2. Let ¢ € {—n+1,...,m—1} and a;; be given complex numbers for

lsi=sn,1=j=mandj—i = q. Suppose that

n p+q
I [aij]_ ) 1” <l,p=1,.m—q.
i=p,j=

For j—i = q define the number h; by
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= (@ +ByU —aja;) gy ;) @.5)
Yo -ByU—age )T B R Iy T —aya ) Tyt '

where o ;;,8,; and v ;; are given via the partitioning

n j By ay
a = .
[ ”Jr=i.s=l Vi
Furthermore, let

{o” 0,2J nil {(I—APA;)—V' (I—APA;)—%AP]

03 0 p=-n+1 (U=A8,8,)7%A, (I-A,8,)7*

where
n m
AP = (8‘+P’.’h‘.’] i=lj=1 s P = —n +1,...,q.

n m

(S C"xm with fU = au, ]_l

lIA

Then the set of all matrices F = [ f ii] q, and

i=1,j=1
[IF |l < 1 is the set of all matrices of the form

F = F(G) = (6,,G+6,)(65,G+6,) ",

n m

where G = [gu]

correspondence is 1-1. Moreover,

is any matrix with ||G|| < 1 and g;; = 0 for j—i = q. The

i=1,j=1

det(I -F(G)'F(G)) = { TI (1—|h;|?)}det(1-G"G).
j-isq

We shall prove Theorem 4.1 using Theorem 3.3. The following proposition yields

explicit formulas for the matrices A; appearing in Theorem 3.3.

n m
PROPOSTION 4.3. Let A = [A,j]‘ _ EQU™ be given such thas
i=l,j=
m,, _,(A) < 1. Consider
Ay o Ay X
Ayt Agmo Aoy
AX = . . .
Agr 0 Anm-1 A

Then ||Ay || < 1 if and only if for some strictly contractive G
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X = Z+LGR, (4.6)
where
- m-2 “ m-2

L= (1 I-A A%, ,R=(1I I-ATA Y%y |
( » +1( p p) )l] ( p= +l( P p) )mm

=-n -n
Z = —fW,a"W, 7,

withA,, p = —n+1,...,m—1, defined by (3.2) and

Ay - v A2,m--l Ay,

a = : : Y =

Ay 0 Apm-1 A

8 = [A” .. 'An,,.-nJ-
Furthermore, if ||G || < 1 and X is given by (4.6), then
det(I-G*G) = det(I-H"H) , (4.7)
where
H=(-Bl-a"a)'8) *(X-Z)U~y"(I~aa")'y)™*. (4.8)

If, in addition, the element in the right upper corner is scalar, then G = H.

Proof. Let £ _, (X)) =4y and £,(X) =T, (F, (X)), p = —n+2,..m—1.
Since £, _x(Ay) = &,,_»(4) we get that &£, _»(E,(X)) = &, _»(X£,) (where L, is
defined by (3.2)), p = —n+l,...,m—1. Suppose that ||[Ay|l < 1. Then also
HZ,, (X1l < 1. Furthermore, %, _o(Z,_ (X)) = %, oZ,_1) =0, so
(Epm-1(X)); = 0 for (i,j) # (1,m). Let G = (£, (X)) ;- Then |[|G Il < 1. Let us
start with proving that

G =L \(X-Z)R7!, (4.9

where Z is some matrix. Later we will show that Z = Z. Put Gp = (EP(X))lm,

p = —n+1,...,m—1. By induction we prove that
Gp = Lp(X_Zp)Rp' p=-n+l,...m—1, (4.10)

A « p-l N > p-l A . o
where L, = Hk=_n+1(WA;)”, R, = Hk=—n+1(WA*)”'”' and Z, is some matrix indepen-

dent of X. Here ﬁ_nH and f\’_,,H should be understood as being the identity matrix.
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Equation (4.10) clearly holds for p = —n +1. Suppose that (4.10) holds for p —1. Con-
sider now £,(X) = Ty (£, /(X)). Let A{); = E,A,_E,,,_;, » = l,...,n. Then

n
A,_;= Y AP, Asin the proof of Lemma 3.5 we obtain

v=1

Ty, = Tao, Tye,-

Since A, =D, (E,_) =D, _((E£,_1(X)), we have that A{Y, =

E, L, ((X)E,.,_,. Furthermore, ||A1(>"—)l |l < 1, so we can use Lemma 3.4 and obtain
(Taw,(Ep 1O 1m = (Waw) 110Gy 1 =Z521 YW 502 um»

where Zlﬁ"_)l is some matrix independent of X. Applying TA‘(,n_-ll) on TA“,"_’,(E p-1X)) we

get, using the same kind of arguments, on the (1,m)th entry of the result the matrix
(W a0 n{(Taw, (Ep 210D 1m =257 W p0-) yom =
(W g9 (W ;) “(Gp_l—Z)(WA;,_,])M(WA;,__,,)M,
where
Z = (Wao) WZ5T" (W a0 mm +Z57).
Proceeding in this way we obtain

Gy = (T, im = {Tap, (- (Tpe,(Bp X))+ him =

- n

= {0 (Wap) udGpo1=Z I _ (o)} =

= (WA;_l) 11(Gp 1—Z ’)(WA,,_,)mm ’

where Z' is some matrix independent of X . The induction hypothesis yields that

— p_.2 R - p-2
Gp = Wa; Do _  WapuX =2, DAL Wa)mm =2 YWy, Jmm =

< p-1 p-1

=@ WA X2, Wa)
where
R — p—2 . - p—2 )
Z =7 _+(I1 W,nZ'(l W) mm-
p =Lt @ FaduZ W e mm
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Hence we proved (4.10). Since G = G,,_,, equation (4.9) holds.

Summarizing, we proved that
Ay =Ty _.° - °Ty (G), (4.11)

where G = I,,_(X) € Q%" has norm less than one and G = (G),,, is given by (4.9).
Conversely, by Theorem 3.3 (with ¢ = m—1), if we let G vary over the set
{G | G € a7 |IGl < 1}, we obtain via formula (4.11) all Ay with ||[Ay || < 1. The
corresponding X is given via (4.9) where G = (G) 1m - Furthermore, the determinant for-

mula of Theorem 3.3 gives that
det(I —AyAy) = c,det(I -G G) = c,;det(I -G G), (4.12)

where ¢; > 0. So the maximum entropy solution Ay is obtained for G = 0, giving

Xo = Z. On the other hand, viewing Ay as the 2X2 block matrix

(ﬁ X ] ‘
oy
one concludes from the results in Section 2 that (4.8) gives a 1-1 correspondence between

the set {H | ||H|| < 1} and all matrices X such that ||4y |l < 1 (use the description
given in (2.10)). Furthermore,

det(/ —AyAy) = c,det(I-H"H), (4.13)

where ¢, > 0 (use formula (2.7)). Hence we can conclude that the maximum entropy solu-
tion Ay is obtained for H = 0, which according to (4.8) corresponds to Xy = Z. So
Z =X,= Z. But then (4.9) implies (4.6). Further, using (4.12) and (4.13) with
X = X, we get that

c = det(I_AX;Axo) = Ca.

Now (4.7) follows from (4.12) and (4.13).

Finally, if the X is scalar, so are G and H. Equation (4.7) then implies |G | = |H | .
Since both G and H are a product of X —Z and some positive number, we obtain equality.
O

Since L and R are invertible, equation (4.6) gives a 1-1 correspondence between X

and G. The proof of Proposition 4.3 shows that G as a function of X is given by

G=(CpaiXN =T (- (Ts_ (Ax) " Nim- (4.14)
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Proof of Theorem 4.1. In order to prove that the map F(G) in Theorem 4.1 is the
same as in Theorem 3.3., we have to prove that the A » 's in (4.2) are the same as in (3.2).
When this is done one uses Proposition 1.1(i) to conclude that both maps F(G) are the
same. Fix p € {—n+1,...,q}. According to (3.2) the (r,s)th coefficient in A,, where

r—s = p, is equal to the (r,s)th coefficient in EP . Since
PE,Q, =Tpa, 0 " (Tpa, 0(PAQ) -+ ")

(use Lemma 3.5), we can focus only on P,AQ and find ourselves in the situation of Pro-
position 4.3 with X = A ;. The matrix (X,) , plays according to (4.14) the role of the G
in Proposition 4.3. So using (4.6) we can conclude that

-1 p-1

(Ap)rs = (Ep)rs =1II (W(P,A,Q.).)’T (Ar_‘. +Z,J) Hy=_n+‘(WPrA-Q.)3-\'

v=—n+l1
- p—] - P-l
= (II WA:),,(A,S +Z, )11 WA,)_“.
+1 v= +1

-n
. Calculating the (r,s)th entry of the right hand side of (4.2) one obtains the same matrix.
Hence the definitions of A p in (3.2) and (4.2) coincide.

Formula (4.3) follows directly from Theorem 3.3. Rewriting (4.3) we get

det(I-F(G)'F(G)) = (I { T det(I—(4,)(8,),)}) det(I —~G"G).
psSq r—s=p

By Proposition 4.3 we have that det (I—(Ap):s(Ap),S) = det(/ —H:,H,s). But then (4.4)
follows. [

Proof of Theorem 4.2. Let r —s = p. Note that (A,) , is scalar. Using the last sen-
tence of Proposition 4.3 with G replaced by (A,),, we get that (A,), = H,;. Theorem

4.1 now implies Theorem 4.2. [J

2 g q
Letf:= |0 be as in Theorem 4.1. Since 6 = II M(A,), where M (A)
Y Jij=1 p=—n+l p

is defined in (1.8), the matrix @ is J-unitary. Using this, one calculates that

F(O)(I—F(0)"F(0)) ™" = 0,,05,'{655 (0200 5,— 0120 19)05,'} " = 6,202

It is not hard to see that @,(0,) = 0 forp > q and 6 € U ™. Hence for the max-

imum entropty solution F(0) we have

@,(FO)I~-FO)F@©)™)=0,p >q
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In other words, F(0)(I —F(0)"F(0))~! is lower triangular with respect to the ¢-th diago-
nal. This result also appears in Theorem III.9 in [5]. We shall return to this connection in
Section II1.2.

I.5. Reduction of the positive extension problem to a strictly contractive one

To solve the problem of positive extensions we need the following linear fractional

maps. Let A be a positive definite matrix. Define
RA(G) := AY(G+I)(—=G+I)~'a%,
RA(G) := A%(A+G)"(G—-a)A™%,

where G is a matrix of the same size as A. Let N(A) be the (J ,J)-unitary matrix

A% A%
. (5.1

N(a) = BV2 [_A_% A

Note that R, and R, are the linear fractional maps My (s and JlN(A), respectively. The

following corollary is now a direct consequence of Propositions 1.1 and 1.2.

COROLLARY 5.1. Let A > 0. Then
Ry:{G | lIGll <1} {G | G+G" > 0}
is bijective, and its inverse is R A Furthermore, if det(I—G) # O, then

det(R ,(G) +RA,(G)") = det2A |det(/ —G) | ~2 det(/ —G" G). (5:2)

The next theorem shows that the positive extension problem may be solved by reduc-

tion to a strictly contractive extension problem. First we introduce some notations. Let

n
B = [Bij] . € Q"*" and fix a number ¢ = 0. We write diag q(B) > 0if
ij=
B e Bi,(+q
: >0,i=1,.,n—q.
B

i+q,i

Bi+q,i+q

With a B € Q"*" satisfying diag ¢(B) > 0 we associate the following strict upper

triangular matrix B
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B = Ryp,5) (% Do(B)+ L 9,(B)). (5.3)
i>0

We shall later see that m, (B ) < 1. The next theorem shows that the positive extension
problem for B reduces to a strictly contractive extension problem for B. The main idea
here can also be interpreted as a reduction principle which employs inverse scattering (see,
e.g., [19]).

n
THEOREM 5.2. Let q = 0, and let B = [B,.j] € @7 be such that
1,)=
diag q(B) > 0. Put A = % D(B). Then the set

{RAF)+RA(F)" | IIFIl <1, Z,(F) = £,(B)}

n

is the set of all C = [c,j] with C >0 and Cy =By, |j~i| =q. The

ij=1
correspondence is 1-1. Furthermore,

det(Ro(F)+R(F)") = det2Adet(I —F"F). (5.4)

Let P,-j, 1 =i =j = n, be the block matrix of size (j —i +1) Xn given by

i J
i
1
n
So, if B = [B,-,J o then
i,Jj=
Bh vee Bij
P;BP; = :
Bji co Bjj

Note that if ¢ =20 and A4 ,K € Uj*", then Z,(4) = £,(K) if and only if

P.., AP}, . =P

* .
ii+qg ii+q i,i+qKPi,i+q’l =1l,..,n—q.

LEMMA 5.3.Let A € UR*" with A = @y(A) > 0. Then R 5(A) is well-defined and

P RA\(A)P}; = R,,UAP;(PUAP;;), l<sisjsn
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Proof. Since 4 +A € UJ*" and its main diagonal 2A is positive definite, A+A is
invertible. So R (4) is well-defined. Write

Ay A A A, 0 0
A = 0 A22 A23 ,A = 0 A2 0 »

such that 4,, = P,.jAPZ,- and A, = P,-jAP;;. Straightforward calculations yield the lemma.
O

PROPOSITION 54.Letq =z Oand A € ng" with @ o(A) > 0. Then
(i) Rg4)4) EUT™
(i) If £,(4) = 2,(K), then L,(R g ,4)(4)) = Z,(R g ,4)(K));
(iii) If diag ,(A+A47) > 0, then m, (Rg 4)(4)) < 1;
Proof. Put A = @y(4). Since (A+A)"! € U™ and 4 —A € UT*", (i) follows
directly.
For (ii), note the following. If P; ;, AP} ., = P;;,,KP;,.,, then by Lemma 5.3
PrirgRA(PT g = Py i qRA(KIP] g
Using this for i = 1,...,n —q yields (ii).

*

If P,-’Hq(A +A*)P,,,-+q >0,i = 1,...,n —q, then, by Corollary 5.1, the matrices
Pl,i+qRA(A)P;,i+q = ﬁPi'i+qM:‘i+q(Pi,i+qAP:,i+q) ’ i = 1,...," -q ,

have norm less than one. Since also ﬁA(A) € U™, it follows that mq(ﬁA(A N <1.0

PROPOSITION 5.5. Let ¢ = 0 and K,K € UT™" be such that £,(K) = £,(K).
Furthermore, let A = D(A) be positive definite. Then

Z,(RA(K)) = £,(R(K)).
Furthermore,
det(R,(K)+R,(K)") = det2A det( —K"K).
Proof. Put H = R(K) and H = Ru(K). Since P, ;, KP{;,, = P;;,,KP} ;. q, we

get by Lemma 5.3 that

A A

Rp . ap (PiisgHPing) = Rp  apr,, (PiisgHP 1g)
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HP; ., = AP’

But then the injectivity of the map If’,,i 1 +sAP yields P; iivq = Pii+q

i,i+q i,i+q*

vx+

The determinant formula follows directly from the determinant formula in Corollary
5.1.0

n

Proof of Theorem 5.2. Lot C = (C; )~ be such that C >0 and C; = B,
ij=1

—-i| = q. Let XK €UL*™ be such that K+K' =C and PyK) = A. Put

=R A(K) By Proposmon 5.4(ii), £, (F) = Z, (B) Furthermore, Corollary 5.1 yields

HFH <1

lj’

Conversely, let K = R,(F) where ||F|| <1 and Z,(F) = Qq(E). Corollary 5.1
gives that K +K * > 0. With Proposition 5.5 one concludes that .S’q(K) = E’q(R AB)).
Since B = RA(B)+RA(B)', the matrix C := K+K"* satisfies @p(C) = @p(B) for
—9=p =49.

Proposition 5.4(i) yields F € U}>*". Thus det(/ —F) = 1. Now use (5.2) to obtain
(54).0

To finish this section let us illustrate the reduction procedure on the 3X3 case.

EXAMPLE: the 3x3 block case. Let «,8,v,{ and 7 be given matrices such that

a B y ¢
2950, [2 7] 5.

We want to find all matrices X such that

a B
By = |B" v > 0.
Xt g_-
Note that
Yha B X Ya 0 O
0 0 'Yy 0 0 'Yy
and thus

0 a ”8y™* a”HX-By )"
By=10 0 A
0 0 0

All Y such that
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0 a %py* Y
Cy=10 0 7—%3'77_%
0 0 0

has norm less than one, are given by (cf. (2.10))

Y

(U—a™ "8y 8% M G U -0 %"y e TH %,
where IG] < 1.50
X =By~ 't +atyy® =
By +a I —a TRy I8 R G U —n TR Ty T e TR MR
The unique solution Cy with maximal determinant is obtained for ¥ = 0. The matrix

By (> 0) for which the determinant is as large as possible (the so-called 'maximum

entropy solution’) is therefore By , where X = By lt.

1.6. The positive extension problem

n
THEOREM 6.1. Let B = {BUJ =1 € Q"*" and q € {0,...,n —1} be given. Sup-
i,j=
pose that

B B

ii ii+q

Bi+q,i B

i+q,it+q
For 0 < j—i = q define the matrix Z;; by
= -1
Zgj = —Bij‘Yij fij,

where §3;;,y;; and [ ;; are given via the partitioning

; @y By By
[Brer .= B;j Yy Sy | - (6.1
By £y my

Furthermore, let

n

AP = [61+P,,I(Blj+zlj)] i »P = 1!-"’q ’

ij=
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and A,,p =0,...,9, be given by

n

Ao = diag [%Bﬁ] LA = MATHAAGY,
i

&-p—-] -p
k

-1
ap = I 1(I—A,,A,:)-‘/'A(;"ﬁ/x,,A(;"ln 1(1—A,’;A,‘)“‘z P =2,..4

Put

[0” o,zJ [ Ag A(‘{*]., a [ I-a,8,)7% (I—APA;)“V’APJ

“w .ou | IT _ _
02 02 —Ag% AGH) o U-,8)7A,  d-as8,)7R

n

Then the set of all F = [F,-j] . 16 Q""" with F; =B;, —q =j—i =q and
ij=

F > 0 is the set of all matrices of the form F = T(G)+T(G)", where
T(G) = (6,;G+8,)(8,,G+0,) !

and G is any matrix with Lq(G) = 0and ||G|| < 1. The correspondence is 1-1. More-

over,
n
det(T(G)+T(G)") = IdetB; TI det(I—A,A,)det(I-G"G), (6.2)
i=1 O<p=gq
and
n
det(T(G)+T(G)") = T detB; TII det(I-HyH;)detI-G*G),  (6.3)
i=1 O<j—isq
where

Hy = (a;=Byvi'Bp By —Byvi's oy —tyviy't ™

and oz,-j,B,-j ,'y,-j,i',.j and n;; are as in (6.1).

For the scalar problem we have the following result.

THEOREM 6.2. Let ¢ € {0,...,n—1}, and b;; = l;j,- be given complex numbers for
1 =i, j=nand0 = j—i = q. Suppose that

[b,jJ pra >0, p=1l,.,n—q.
iJj=p
For 0 < j—i = q define the number h;; by
biy=Byvy'ty

hi’ = - * *® ’ (6'4
/ (Olij_ﬁij’Yileij)%(ﬂij_.('ij'Yijlg'ij)% )




1.6. The positive extension problem -41 -

where o B ij oY ijs$ ij and n;; are given via the partitioning

; ay By by
[b,s]’ = ﬁ,; Yi $if
b; i My

Furthermore, let

(0” 012] [ At A{{‘Jﬁ 7 [ I-4,8,)7" (I—AI,A;)‘”APJ

0y 03 ~AG"% Ag” I-8,8,)7 %A, U-8,8,)7"

p=1 p

where

n n
A, = diag [%b,-,] A= [aHthUJ RT RS

n

IIA
Q

Then the set of all matrices F = | f; €EC"" with f;, = b;;, —q = j—i
. i = by

and F > 0 is the set of all matrices of the form F = T(G)+T(G)", where

T(G) = (0,,G+0,)(8,,G +0,) !

n
and G = [g,-j] et is any matrix with ||G|| < 1 and 8ij =0 for j—i =q. The

correspondence is 1-1. Moreover,

n
del(T(G)+T(G)") = Mby. I (1-|hy|?H.det(! -G"G).
i=1  O<j—-isq

We shall prove Theorem 6.1 using Theorem 5.2.

n

LEMMA 6.3. Let ¢ = 0 and B = [B,-J-J such that diag ,(B) > 0. Denote

i,j=1

-_— i n
A = %Dy(B) and let B [B,-j] - be defined as in (5.3). Fix (r,s) such that
0<s—r = q. Then

"y I R PR 71 Qa1 -%

B,+b(I—a a)"'a c = KA, *(B,—By A", (6.5)

where a ,b ,c ,(3,v and { are given via the partitionings

b B,

) ) ) |

o *
e
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Furthermore, if
A=d-bU-a"a) ") %B,,+b(I-a*a) 'a*c)I-c*(I-aa") 'c) ™%
and
H = (a=By '8 (B, -8y 'O(n—"y ') 7%,
then
det(I-H"H) = det(I—H"H). (6.6)

When B ; is scalar, then H = H.

Proof. Let us start by proving that we may assume thatg = n—1,r = land s = n.

Let @ ,b and & be given by

Since B € U "Xn we have that

N 0 a é
b = [Ob] ,a = [00],c= [0}
It is easy to see that if in all the expressions in the lemma we replace a ,b and ¢ by a b
and ¢, respectively, the results do not change. So only the entries (i ,j), i,j € {r,...,s}, of
the block matrices B and B are of importance. So without loss of generality we can assume
that the entry (r,s) is in the upper right corner.

Consider the self-adjoint block matrix By € Q"*" which has an X on the (1,n)th
place and B;; on the (i,j)th place where 0 < lj—i I < q = n—1. Note that B and By
have the same main diagonal. Further, we denote by ﬁy the block matrix B where Eln is
replaced by Y. Suppose that X is chosen so that By > 0. (For instance, X = B;,.) Let EX
be defined as in (5.3) with B replaced by By. From Proposition 5.2(ii) it follows that

EX = l§y for some Y. Moreover,
Y =By iy = By)im = BATHX +@)ALA,
for some matrix & independent of X. Adding b(I —a"a) 'a"c on both sides gives

Y+b(I-a"a) 'a"c = A AX+®)A,%, (6.7)
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where & is some matrix independent of X . Since

N b'Y
By = [a c]’

we get that for this 2 X2 strictly contractive extension problem, where Y is the unknown,
the maximium entropy solution is ﬁyo with Yo = —b(I —a'a)'la*c. Following (6.7) the

corresponding X is —®. On the other hand, viewing B x as the 3X3 matrix

a B X
BX = 6* Y g- ’
X- S" n

we see that the maximum entropy solution By is obtained for X, = By~'¢. Hence

—& = By~!¢, and thus
Y+b(I—a"a) 'a"c = BATAHX -ByTI0)A R (6.8)

Substituting X = B, and ¥ = EI,, in (6.8) yields (‘6.5).
Let

Hy = (I-b(I-a"a) ")y " (Y +b(I-a"a) 'a"c)(I—c*(I-aa”)"lc) ",
Hy = (a=By7'8") AX By ') (- "y ') 7"
We know that (cf. Section 2)
det(I —ByBy) = codet(I-HyHy),
where ¢y > 0. So with (5.4) we may conclude that
detBy = det(By +By) = ¢det(I—HyHy), (6.9)

where ¢ > 0. On the other hand, one calculates that By = ®y®y, where

(@—By7'8%H"% 0 (@=By~18") " HX -By'0)
by = 0 % 0
0 0 {(n=¢ "y 'ORU—HyHy)(n—¢ vy '0)%}*

1 00 10 O
Y18 10| |01y
0 017 00 I
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So,
detBy = |det®y |2 = c'det(I—HyHy), (6.10)
where ¢’ > 0. If X = Xjand Y = Y, we obtain by (6.9) and (6.10) that
¢ =detBy =c'.
Equations (6.9) and (6.10) now give that
det(I—HyHy) = det(I —HyHy).

Filling in X = B,, and Y = B,, we obtain (6.6).
If B,, is scalar, then so are B,, H and H. Identity (6.6) then yields |H| = |H|.
Using (6.5) we see that H is a product of a positive number and B,,—By"'t. For H the
same is true. Hence we obtain equality. [
n
Proof of Theorem 6.1. Let B = [Bij] iy be such that diag q(B) > 0. By
i,j=

Theorem 5.2 the set of all matrices C with P;;, CP;;, = P,-y,+qBP;_,-+q,

i =1,...,n—q,and C > 0 is the set
{K+K" | K =Ry (F), lIFIl <1, 2,(F) = £,(B)}.

n

Denote B = (1_3 ,-j] . Theorem 4.1 gives a linear fractional description of all F with

ij=1
IFIl <1 and £,(F) = Qq(E). Let us denote the sequence of A’s we obtain from
Theorem 4.1 by A _, ., . .. ,Aq. Note that since B € U%*", we get that 13]- =0 for

Jj = 0. Further, using (6.5) we see that A; = Aj, Jj = 1,...,q. With Theorem 4.1 we

conclude that the set
{Ty° - °Ta(G) | lIGIl < 1,2,(G) = 0}
is the set of all F with [|[F|l<1 and £ (F)= Qq(E). Note that
T(G) = Ry ,°Typ,° + + * °T, (G) and the first part of the theorem is proved.
For formula (6.2) one uses the formulas (5.4) and (4.3). Let H ;j denote the matrices
H;; we obtain by applying Theorem 4.1 on the matrix B. Use identities (5.4) and (4.4) to
obtain

det(T(G)"+T(G)) = det(2Ap) T det(I-HH;)det(I-G"G).

j-isq
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With Lemma 6.3 one may conclude that
det(I-HyH ;) = det(I-H;H ).

Now (6.3) follows. (1

Proof of Theorem 6.2. We use the notations introduced in the proof of Theorem 6.1.
Let r—s = p > 0. As remarked in the proof of Theorem 4.2 we have that (AP),S = fim.

Using the last sentence of Lemma 6.3 we obtain

(Ap)rs = (Ap)rs = ﬁrs = H

rs*

Now Theorem 6.2 follows directly from Theorem 6.1. (1

2 - q
Let 6 := (0,.,]  'be as in Theorem 6.1. Note that 0 = V2N (AQIL _ M(4,),
ij= p=

where N (A) and M (A) are given by (5.1) and (1.8), respectively. Since N(Ay) is (f,J)-

unitary and M(A,) is J-unitary, the matrix 1%N20 is (J J)-unitary. Using this, one calcu-
* * - . -1

lates that T(0)+T(0)" = 26557 '05;'. It is not hard to see that 8,, = qE D,(05), so that
=0

P
the self-adjoint matrix (7(0)+T(0)*)~! belongs to U'L’;". In other words, the entries of

(T(0)+T(0)*)~! are zero outside the given band. Also T(0)+7(0)" is the unique exten-
sion with maximal determinant (cf. formula (6.2)). These connections will become more

transparent in Section III.1.

The set of all solutions of the positive extension problem may also be parametrized via
so-called choice sequences (see [16]), or triangular choice schemes (see [31], where also
the contractive extension problem appears). These methods yield determinant formulas of
the type appearing in Theorems 6.1 and 6.2. These choice-sequences and triangular choice
schemes are related to the Ay, © « * ,Aq defined in Theorem 6.1. The scalar versions in
(6.4) may be recognized as partial correlation coefficients (PARCOR’s) (see [54]). The
papers [16] and [31] do not contain linear fractional descriptions for the sets of all solu-

tions.
Independently, H.Dym [20] and P. Dewilde and E.F.A. Deprettere [18] obtained also
a linear fractional description for the set of all positive extensions of a given band. Their

methods are similar to the one used here, however, their formulas are less explicit than the

ones given here.



- 46 - Block matrices: a sequential approach

I.7. The Toeplitz case

In this section we consider the problems of strictly contractive and positive extensions

m

n
for the class of Toeplitz block matrices. A block matrix 4 = [A ,-j] is called Toe-

i=1,j=1
pliz if Aj; = A, ;4 for all admissible i and j. We denote the class of n Xxm Toeplitz
block matrices by 70" ™. By TU ;™ we denote all block Toeplitz block matrices 4 which

are upper triangular relative to the p -th diagonal, i.e., £,(4) = 0.

Let us first look at the strictly contractive case. The following example shows that a
lower triangular part of a Toeplitz block matrix A which satisfies the condition m ) <1
need not have a strictly contractive Toeplitz extension F (i.e., an F € TQ"*™ with
IFIl <1 and £,(F) = £,(4)). This conclusion may also be drawn from the results in
[47].

EXAMPLE 7.1. Consider the following lower triangular part of a Toeplitz matrix.

0
710 0
0 710 0 . (7.1)

710 0 710 O
0 710 0 7100

In the right upper corner of the first two columns there is an unknown entry. To find this
entry means to solve a 2X2 strictly contractive extension problem. By using (2.10) we get
that the (1,2)th entry should be a complex number in the disk {z € C | |z|? < 0.02}.
Next we determine the (2,3)th entry. For this we only consider the submatrix obtained by
leaving out the first row and the last two columns. Then again a 2X2 extension problem

appears. With (2.10) we may conclude that the (2,3)th entry should be in the disk

343 2
{z€C| |z +m | < 31 }. Since the two disks have an empty intersection, the entries

on the positions (1,2) and (2,3) cannot be the same complex number. Therefore the lower
part of (7.1) has no strictly contractive Toeplitz extension. Note that all given submatrices

have norm strictly less than one.

Thus in general the condition that all given submatrices have norm strictly less than
one does not imply the existence of a strictly contractive Toeplitz extension. We shall see

that the situation is different if we work in the class TU {{*" of all upper triangular Toeplitz

block matrices. First a few preliminary results.
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LEMMA 7.2. (i) IfA € TUZX”, (p z 0), such that A = D,(A) has norm less than
one, then Ty(4) € U3
(i) If G € m;i’;, (p z0), and A= @,(A) has norm less than one, then
To(G) € TULX™;

Proof. In the calculations there appear only upper triangular Toeplitz block matrices,
except for W, and W,.. In the latter matrices the non-Toeplitz part disappears because of

multiplication with zeroes. So to prove the lemma one only has to use the fact that the set
TU 3" of upper triangular Toeplitz block matrices is closed under addition, multiplication

and inversion (provided the inverse exists). [
PROPOSITION 7.3. Let ¢ = O and let A € TU §*" be such that mg(A) < 1. Define
Ep ,Ap,p = 0,...,q, by
Lo=4,A; = Dy(4),

. (7.2)
L, =Ty (Z,20.8, = D,(Z,),p = L,..q

Then Ag, ... ,4, are block Toeplitz matrices and the set
{F(G) | G €T, |G|l < 1}, where

F(G) = TAOQ vt OTAq(G)i

is the set of all F € TQ" ™" with Zy(F) = £,(4) and IF |l < 1. The correspondence is

1-1. Furthermore,
* q * *
det(I-F(G) F(G)) = I'Iodet(I—ApAp)det(I—-G G). (7.3)
p=

Proof. The proof of this proposition is similar to the proof of Theorem 3.3. (Note that
in this case the matrices A _,,{, . . . ,A _; appearing in Theorem 3.3 are zero.) One has to

realize, however, that in each step one stays in the set 7Q" *". This is ensured by Lemma
7.2.0

The above proposition leads to the following conclusion.
If in Theorem 4.1 one starts with a square upper triangular block Toeplitz matrix A ,

n—1
ie., A = [Aj_i] 0 with A, = 0 for p <0, and if q is a nonnegative integer, then
ij=

n—1
the set of all block Toeplitz matrices F = [F j_iJ o such that ||F|l < 1and F, = 4,
L=
for p = q is the set of all matrices F(G), where F(G) is constructed as in Theorem 4.1
n-1

and G = (Gj_i] o is any block Toeplitz matrix with G, =0, p =gq, and
,]=
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G|l < 1. The correspondence is I1-1.

For the scalar Toeplitz case the construction of F(G) can be simplified considerably.
The final result is the following.

THEOREM 7.4. Let q € {0,....n—1} and a, be given complex numbers for

q
0=p =gq,andleta, =0 for p <O. Suppose that the Toeplitz matrix [aj_,-J =0 has
norm less than one. Define the numbers h, . . . ,h q by

a,
hy=ag;hy = —7—35;
R PR
detSp_l
h, = (a, —zp)—de—t‘sp—,P =2,..9,
. r—1
where S, = I1—A, A, A, = [aj_,] . ,and
ij=
a; a, a,_1 0
(-1P! S0 Sor Sop-2  Sop-1
Zp = Jois .det . . . ,
etS,_ :
Sp-2,0 Sp-2,1 Sp-2p-2 Sp-2p-1

p-1 n-1
with s;; given by S, = [su] . Put A, = (6i+pjhp] - p =0,...,q. Further-

1,j=0 ij=
more, let
01 022 ~ “p=0 B, 1]
n-—1
Then the set of all Toeplitz matrices F = [fj_,-J o €C" with f, =a,,p =q,
ij=
and ||F || < 1 is the set of all matrices of the form
F =F(G) = (8,;,G+0,)(0,,G+0,) ",
n—1
where G = [gj_ij o is any Toeplitz matrix with ||G|| < 1 and g, =0 forp = q
ij=

The correspondence is 1-1. Moreover,

det(I-F(G)"'F(G)) = _ﬁo(l— |h; %" det(I -G"G).
j=
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Proof. We can apply Theorem 4.2 to obtain a linear fractional description for the set
of all strictly contractive extensions. From the results in Ya. L. Geronimus [32] it follows

that, for j—i = p (= 0), the number hij in Theorem 4.2 is equal to hp. Furthermore,

n—1
note that if A = (a,ﬂwh] (P =0, where [h| <1,and G € U, then
ij=
TA(G) = (G+A)(A G+~ L (7.4

This follows from the fact that premultiplying the right hand side of (7.4) with W . comes
down to dividing all entries by V1— |4 |2 and postmultiplying it with Wy ! comes down to
multiplying all entries with V1— |k |2. Formula (7.4) shows that the linear fractional map
in Theorem 4.2 for this special case is equal to F(G). Apply the conclusion preceding this
theorem and the proof is complete. [J

We now come to the positive extension problem. We want to use the reduction
described in Section 1.5. The fact that using this reduction we stay in the class of Toeplitz
matrices is the content of the following lemma.

LEMMA 7.5. (i) IfA € TUB " with A = @A) > 0, then R,(4) € TU™™,
(ii) IfG € TUT™", and A = Dy(A) € TA"*" is positive definite, then R ,(G) € TU §*".

Proof. Use the fact that the set TU §*" is closed under addition, multiplication and
inversion (provided the inverse exists). [J

The above lemma, Theorem 5.2 and Proposition 7.3 lead to the following conclusion.

If in Theorem 6.1 one starts with a block matrix B which, in addition, is Toeplitz, i.e.,

n-1 n—1

B = (B j_,-] oo then the set of all block Toeplitz matrices F = {F j_i} 2o such that
ij= ij=

F >0 and F, =B, for 0 =p =q is the set of all matrices of the form

F = T(G)+T(G)*, where T(G) is constructed as in Theorem 6.1 and

n—1
G = [Gj“’J is any block Toeplitz matrix with G, =0, p = q, and Gl < 1.

i,j=0

The correspondence is 1-1.
Here also are some simplifications in the scalar case. We have the following result.

THEOREM 7.6. Let ¢ € {0,...,n—1} and b, = i;_p be given complex numbers for
q
0 < p = q. Suppose that the Toeplitz matrix (b j_i] 2o is positive definite. Define the
ij=
numbers hy, . . . ,hg by

bl
0
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detT,_,
hp = by =2p)ggr,~ P = 2t

p-1
where T, = [bj_,-J and

i,j=0
(by . . b,3b,, 0 )
(—l)p 1:0 . bp—2 bp—l
z, = m.det b, b,
kbi,_z .. by by by )
n-1
Puta, = (6i+thp] o 0,p = 0,...,q. Furthermore, let
L=
On 012 [Ao Ao} 0 I a,
On 0] | —1 1) "poi|a, I
n-1

Then the set of all Toeplitz matrices F = ( f j_i] € CY* with f, =b

ij=0 L

—q =p = q,and F > 0 is the set of all matrices of the form F = T(G)+T(G)", where

T(G) = (6,,G+0,)(0,,G+0,) !

n-1
and G = [gj_,] =0 is any Toeplitz matrix with ||G|| < 1 and g, =0forp =q.

The correspondence is 1-1. Moreover,
* q i *
det(T(G)" +T(G)) = b} I (1— |h;|H"/ det(I -G*G).
(e J

Proof. We can apply Theorem 6.2 to obtain a linear fractional description for the set
of all strictly contractive extensions. From the results in [53] it follows that for
Jj—i =p (z 0), the number h;; in Theorem 6.2 is equal to h,. Furthermore, note that if
G € Q3" then

Ry (G) = (AG+AQ(-G+I)™L

This and the conclusion concerning T, in the proof of Theorem 7.4 prove that for this spe-
cial case the linear fractional map from Theorem 6.2 is equal to T(G). Apply the conclu-

sion preceding this theorem and the proof is complete. [

An analysis of the Toeplitz positive and contractive extension problem also appears in
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[15], [28], [29] and [30], where choice sequence approaches is used. These papers do not

contain linear fractional descriptions for the sets of all solutions.
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CHAPTER II: THE BAND METHOD

In this chapter the band method, which concerns a general scheme for dealing with
positive and strictly contractive extension problem, is introduced. Again the main aim is to
describe all solutions explicitely via linear fractional maps. Section 1 concerns the positive
extension problem and Section 2 the strictly contractive extension problem. Section 3 deals

with maximum entropy principles.
I1.1. Positive extensions

Let .# be an algebra with a unit ¢ and an involution *. We suppose that .# admits a

direct sum decomposition of the form
M= M M My M M, (1.1)

where M|, M3, M, , M3 and M, are linear subspaces of # and the following conditions
are satisfied:
() e€ My, M =M, M= (M), M = M

(ii) the following multiplication table describes some additional rules on the multiplication

in A
My MY My M M,
M| M M M M M
M| My M M M, M
1.2
My| My M My M M, (1.2)
M| M M, M M M,
My MM M, M, M,
where
M =ty + M, M =) o, (1.3)
M= MY+ MY+ A
Some additional notations are
M= M My, M= M My, (1.4

My = M) F My, M= M M.
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Note that .#, (resp. .#,) is a two-sided ideal of the subalgebra .# , (resp. .# _). Further-
more, if d € ., is invertible, then dle M.

If « is an algebra with a unit and an involution *, we say that an element a € . is
nonnegative definite in .« (notation: a = ,0) if there exists an element ¢ € .« such that
a =c*c. The element a € & is called positive definite in .« (notation: a > ,0) if there
exists an invertible element ¢ € ¢ such that a = ¢”c. We shall write b = a instead of
b—a =z ,0,and b > 4a vinstead of b—a > ,0. When & = .# we shall omit the sub-
script .

Let us introduce the following two types of factorizations for positive elements in 4.
Let b € # be positive definite in .#. We shall say that b admits a left spectral factoriza-
tion (relative to the decomposition (1.1)) if b = b+b:_ for some b, € A, with
b;' € M,. We shall say that b admits a right spectral factorization (relative to the
decomposition (1.1)) if b =b_b" for some b_ € 4_ with b~! € #_. Note that b
admits a left spectral factorization if and only if »~! admits a right spectral factorization.

We shall use the symbols P; (i = 1,...,4), P} (i =2,3), P,, P}, P, and P, to
denote the natural projections of .# onto the subspaces of the same index along their

natural complement in #. Thus, for instance,
P, =P,+P,,P_=Py+P,,P. = P,+PJ = P)+P,+P) = PY+P,.

Let k = k™ € M,. An element b € # is called a positive extension of k if
P_b = k and b is positive definite in .#. A positive extension b of k is called a (positive)
band extension of k if in addition b~! € #_. In what follows we will just speak about a

band extension and omit the adjective positive.

THEOREM 1.1. Let k = k™ € M_. The element k has a band extension b which

admits a left and a right spectral factorization if and only if the equations
Pykx) = e , Py(ky) = €, (1.5)
have solutions x and y with the following properties:
(i) x € My,y € M,,
(i) x and y are invertible, xle M, y"1 € M_,

(iii) P4x and P,y are positive definite in M ;.

Moreover, if such an element b exists, then b is unique and given by
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b =x""YPux)x =y " W(Py)y . (1.6)

In the proof of Theorem 1.1 we will need the following two lemmas.

LEMMA 12, If b, € M is invertible with inverse in My and b = b:tb:t belongs
1o M., thenb, € M\ M,.

Proof. Since b, =bb,"!, b € M, and b, € M_, we get that
b, € #,+ M+ M, But then, since b, € #,, we obtain that
b, € My= .M.\ M,. The proof of the minus version is analogous. (]

LEMMA 1.3. Letx , € M, be invertible withx:t_l € M. Then Pyx, is invertible
and (Pyx )" = Pyx [l

Proof. Write x, = Pyx  +PJx, and x;' =1y, = P,y +P%y . Writing out the
products x ,y, and y x,, which are equal to e, and by applying the projection P; one
obtains that P x idei = Pyy Pyx, = Pye = e, and the lemma is proved. [

Proof of Theorem 1.1. Let b be a band extension of k, and let b~ = uu™ = w",
where u*! € #, and v*! € #_. Since b~! € M,, Lemma 1.2 yields that u € 4,
and v € M;. Put x = u(Pyu”) and y = v(Pyv"). Then x € M,, y € M;, and
xle M, y“l € o _. Furthermore, P ;x = (Pdu)(Pdu)’ and P,y = (Pdv)(Pdv)*

are positive definite in 4 ;, and
GO P = @H T = = )T = o) TPy
Since P.b = k we have that b = P b +k +P,b. So using multiplication table (1.2)
Pylkx) = Py(bx —(P1b)x —(P4b)x) = Py(bx) = Py((x") " 'Pyx) = e,

where for the last equality one uses Lemma 1.3. In much the same way one proves that
Pi(ky) = e.

Conversely, suppose that x and y exist such that all the conditions in the theorem are
fullfilled. Let b be defined by b = b,+k +b;, where b; = —P(kx)x ™! € #,. Then
bx = —P (kx)+kx +bjx, and using the multiplication table (1.2) we get that
Py(bx) = 0and Pybx) = Py(kx) = e. Sobx € e+.#° . Since P x is positive defin-
ite (in #,), Pgx = Pyx", and hence x"bx € P x +.#° . From k = k" it follows that
(x*bx)* =x"bx, and hence x"bx € P,x +.#% . This can only happen when

x*bx = P,x. So we get that

b =x""NPux)x"L. (1.7)
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Now 6! = x(P4x)"'x™ E€.#_. Further, using that P x is positive definite in #,, we
see from (1.7) that b admits a right spectral factorization.

Analogously, one proves that
b= =) (Pylky))” +k = Pylhy)y™

is equal to (y*)_‘(de )y_l. But then b is a band extension of ¥ which admits a left spec-
tral factorization.

We finish the proof by proving that if ¥ has a band extension f which admits a right
spectral factorization and a band extension g which admits a left spectral factorization, then
f = g. This then yields b =b =:b and also the uniqueness of b. So let f and g be as
above and write f_l =uu”, u € My, ule M, and g"1 =w", v € M,
v € #_ (use Lemma 1.2). Put h := f~'—g~!. Then h belongs to #,. Since
P.f =P.g =k, we have that g—f = zl+zf for some z; € ;. Using that
h = f~Yz,+z7)g~"', we obtain u~'hv*~! = u*(z,+z])v. Because of the multiplication
table (1.2) the left hand side belongs to #, + #3 and hence 0 = P (u"(z,+z])v) =
u"ziv. Thusz; = 0. Butthen f = g follows. O]

Note that in the last paragraph of the proof of Theorem 1.1 we actually proved the fol-
lowing result.

THEOREM 1.4. Let k = k" € M., and suppose that k has a band extension f
which admits a right spectral factorization and a band extension g which admits a left spec-
tral factorization. Then f = g.

To describe the set of all positive extension of a given k € #_, we need extra
requirements on the algebra .#. We shall assume that .# is a *-subalgebra of a B*-algebra
® with norm ||. || g, and ® has a unit e which belongs to .#. Further, we assume that the
following two axioms hold:

AXIOM (Al). If f € #is invertible in R, then f ! € .,

AXIOM (A2).If f, EM,, f € Mand nlirx;llf,, —fllg =0,then f € 4.

Note that if e —f " f is positive definite in ., then e —f " f is positive definite in ®, and
hence |If |l q < 1.

THEOREM 1.5. Let # be a *-subalgebra of a B*-algebra ® such that the unit e of
R belongs to M, and assume that Axioms (A1) and (A2) hold. Let k = ke . and sup-

pose that k has a band extension b which admits a left and a right spectral factorization:
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b=u"lut=y"hl utle g, vt E . (1.8)
Then each positive extension of k is of the form
T(g) = (8"v +u")"He—g"g)(vg +u)", (1.9)

where g is an element of # | such that e —g" g is positive definite in M. Furthermore, for-
mula (1.9) gives a 1-1 correspondence between all such g and all positive extensions of k.

Alternatively, each positive extension of k is of the form

SU) = Tu" v e—f N f +v) 7 (1.10)
where f is an element of M, such that e —f " f is positive definite in M. Furthermore, for-
mula (1.10) gives a 1-1 correspondence between all such f and all positive extensions of k.

In the proof of Theorem 1.5 we need the following lemmas.
LEMMA 1.6. Let g € M. be such that e —g " g is positive definite in R. Then e —g
is invertible and (e —g)_1 € M,.

Proof. Let g € . be such that e —g " g is positive definite in ®R. Since R is a B*-
algebra llgll ® < 1. But then (e —g)'l exists in R, and because of Axiom (A1) the ele-
ment (¢ —g) ~! belongs to .#. Using Axiom (A2) and the fact that

n .
lle-g) '-L g/ llg=0,n— oo,
j=0

we get that (e —g)~! € .« +- The minus version one obtains by applying the involution.
O

LEMMA 1.7. Let z € M, be such that z +z" is positive definite in ®. Then z is

invertible and z ™! € M.

Proof. Write z+z" = aa” with a € @® invertible in ®. For ¢ > 0 we have
(e —ez‘)(e —ez) = e —¢[(z +z')—-ez‘z] = e—eale —ea"z'z(a”‘)*]a'.

Choose € > 0 such that ||e%#z(a~)* || < 1. Then, since R is a B*-algebra, we obtain that

e—ea”'z°z(a™")" = g g. for some invertible g, € ®. Now
e—(e —-ez*)(e —€z) = eageg:a*

is positive definite in ®. So by Lemma 1.6 the element z = e~ !(e —(e —ez)) is invertible
in@®,andz"! € M, O
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Proof of Theorem 1.5. Write b = c+c” with ¢ € . 4. and P c = Pk, and

define
L(g) = (=c"vg +cu)(vg +u) ™"
for all g for which u +vg is invertible. Then
L(g)+L(g)" = (¢"v +u") (g v +u")(=c vg +cu) +
+(—g vic+u e (vg +u)lvg +u)!
= (g v +u )y HuT (T +)u—g v (¢ +c)vg dvg +u) ! = T(g).

whenever u +vg is invertible. If u +vg is invertible, then the same is true for u ™ g +¢

and one checks that

1

L(g) =c—v "Ne+gu~v) lgu™l. (1

Suppose that g € #, and e—g g is positive definite in .#. Since v € .#y, we
have that v¢ € .#,, so u 'vg € # . Further, since e —(u 'vg) (u " 'vg) = e 2 2 is
positive definite in R, Lemma 1.6 yields that (¢ +u"'vg)™' € # . In particular, Ty
and L(g) are well defined. Note that T(g) clearly is positive definite in .#. Use now the
multiplication table to show that (e +gu‘lv)_l = e—g(e +u'1vg)“1u‘}

consequently, that L(g) € c+.#;. But then T(g) = L(g)+L(g)" € b+.#,+.#.

v € .#,, and.

Hence T(g) is a positive extension of k.

Conversely, suppose that a is a positive extension of k. Write a = z +z  with
z € M, and Pyz = %Pk, and put w := z—c € M. Since b +a is positive definite
in R, we get that v (b+a)v = v (b+b+w+w )y = 2e+v wy+v w'v is positive
definite in ®. From Lemma 1.2 it follows that v € ./((_ﬂul(c, and thus v 'wv € ..
Lemma 1.7 yields that e +v wv is invertible and its inverse belongs to .. Put now
g := —(e+v wv) W wu. By Lemma 1.2 the elements v- and u are in .#,. Since
w € M, we get that g € . Furthermore, vg +u = —v(e+v wv) v iwu +u =

(e +vv"w) i is invertible, and
L(g) = (c‘v(e +v'wv)_‘v‘wu +cu)u”‘(e +vv‘w)
= (c"=c"(e +vv*w)_1+c)(e +w w) = b(e +b_1w)—c‘ =z

Hence a = L(g)+L(g)' = T(g). Since a is positive definite in .#, it follows that

e —g g is positive definite in .#. Since the map g = T(g) is one-one we have established
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the desired 1-1 correspondence.

In order to prove the alternative representation (1.10) one proceeds in an analogous
way. Let

K(f) = (—cuf +c*v)(v +uf) 7},

and use the axioms to show that for f € #, with e —f " f positive definite in # the ele-
ment K(f) is well  defined. Then calculations show that S(f) =
K(f)+K(f Y E b+t 1 +#, is a positive extension of k. Conversely, let a be a positive
extension of k and write @ = z+z" with z € #_ and P,z = %P k. One uses Lemma
1.7 to show that e +u*(z —-cu is invertible, and one introduces
f = —(e +u*(z —c*)u)_lu*(z —-c*)v. Then f € #,, e—f*f is positive definite in #
and K(f) = z. But then the desired one-one correspondence (1.10) is established. [
Theorems 1.1 and 1.4 are similar to some results in [24] but now concern positive
extensions in the setting of an algebra with an involution. In [24] the algebra has no invo-
lution and the extensions are required to be invertible. Theorem 1.5 is a new result

inspired by earlier concrete versions (see [20]).
I1.2. Strictly contractive extensions

Let 2 be a vector space, and suppose that 8 admits a direct sum decomposition
B=B_+ B, ,

where % _ and &, are subspaces of #. We are interested .n the following problem: given
¢ € B_, when does there exist an element y € & such that ||y|| < 1 (for some speci-
fied norm) and Yy —¢ € B, ? Such an element ¢ is called a strictly contractive extension
of ¢. Furthermore, if a strictly contractive extension of ¢ exists, we want to describe all
strictly contractive extensions of ¢. We shall solve the problem using the results in the pre-
vious section. In order to be able to do this we need some more structure on . In what
follows we shall assume that 9 can be embedded in an algebra of 2 X2 matrices with a unit
and an involution.

We shall assume that the space 9 appears as the space of (1,2)-elements of the follow-

ing algebra of 2 X2 block matrices:

ab
M= {f= [c dJ :aE.ﬂ,bE.@,cG@,dE@}.
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Here .« and & are algebras with identities e , and e g, respectively, and involutions *, and
& is a vector space which is isomorphic to & via an operator = whose inverse is also
denoted by ', such that for every choice of a € A, b € B,c € €andd € D:

bc € A, (bc) =c*b" ;ab € B, (ab)" =b"a" ;
bd € B,(bd)" =d"b” ;ca € €,(ca)” =a"c"; (2.1
dc € €,(dc)" =c’d" ;cb € @,(ch)" =b"c";

It is easy to see that .# is an algebra (with respect to the natural rules for matrix multiplica-

ey, 0
€= 10 egl

We define an involution ~ on .# by setting
[a bJ * a® ¢”
c d .- b* d* .

We will assume some additional structure within each of the four spaces .#— . The alge-

tion and addition) with unit

bras . and @ are assumed to admit direct sum decompositions
A= by + &, 9=2° + 9, + 29 (2.2)

in which all six of the newly indicated spaces are subalgebras and are such that

ey € Ay, (A2 = () ()" = Ay, (2.3)
eg € 24,(22)" = (29" ,(9,)" = 24,
and the inclusions
Ay CAl Aty Ctl 2,90 C9) 939, CDY (2.4)

are in force. It is then readily checked that
Ay =l + Ay, D, = D)+ Dy

are algebras. Moreover, if a € &, (resp. d € @,;) and is invertible, then a”! € Wy

(resp. d ! € @,). Finally, we suppose that & and € admit decompositions

B=RB_+ B,,€=€¢_+ ¥,, (2.5)
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where #, C Band ¢, C €are subspaces satisfying
€_=RB,,6, =B,
BD . CRB,, A B, CB,,
€. B, CPY, B, ¢, CY, (2.6)
€, A, C¥,,D,.¢,C6H,.

Now let us introduce the following subspaces of ¢:
0 &, 0b
M= 1o 0 |~ oo]]”e‘%’+ ’

A B a b . .
2= o g0~ lod la€y,b€EB_,dE D+,

Ay 0 a0
Ma = [o @,1]={[0d] |“€dd'deg’d}’

% 0 0
a ] 0 0
= = ca) la€H ce €, .d€a’ ¢,

0 O [0 0]
M= | g o = c 0 |c e e ¢.
Note that (1.1) holds and that this decomposition satisfies the conditions (i) and (ii) in Sec-

tion II.1. With respect to positive elements we assume that the algebra # satisfies the fol-

lowing axiom

ab
AXIOM (AOQa). If [ c dJ is positive definite in #, then a is positive definite in

and d is positive definite in @.
Note that Axiom (AOQa) implies that for b € & the element e9+b*b is positive definite in

@ and the element e_,+bb" is positive definite in . This follows immediately from the

ey b ey 0 ey 0 ey b
0 b* €g ’ b* €g 0 €g

€g

observation that
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are positive definite elements in .#. Further, from the equations

. ey h ey 0 ey 0 eq h
o7 h® eg) | BT eg 0 eg—h'h 0 eg
ed h ed_hh‘ 0 ed 0
0 e 0 €o) |h" eg

one obtains that for h € & the element k, is positive definite in 4 if and only if
eg—h"h is positive definite in @, or equivalently, e ,~hh" is positive definite in ..
From now on we shall write e for both e ,and eg.

Let ¢ € &B_ be given. An element y € B is called a strictly contractive extension of
¢ if y—¢ €EB, and e —y Y is positive definite in @. Recall that an element d € D is
called positive definite in @ if there exists an invertible element ¢ € @ such thatd = cc”.
The term ”strictly contractive extension” is justified by the fact that in a B*-algebra an ele-
ment b has norm less than one if and only if e—b"b is positive definite. We are
interested to find all strictly contractive extensions of a given ¢ € B_. Wecallg € B a
(strictly contractive) triangular extension of ¢ if g is a strictly contractive extension of ¢
and g(e—g~g) ! belongs to #_. In what follows we will omit the words strictly contrac-
tive and just talk about a triangular extension. As in Section II.1 we say that a positive ele-
ment d € 9 admits a left (right) spectral factorization (with respect to the decomposition of
D in (2.2)) if there is an invertible ¢ € @, (P _) such that d = cc® and ¢! € D,
(2_). In « we have similar definitions. Note that k¢ admits a right spectral factorization
in A if and only if e —¢" ¢ admits a right spectral factorization in % and that k¢ admits a
left spectral factorization in # if and only if e —¢¢' admits a left spectral factorization in
A

The following theorem is an application of Theorem II.1.1. We need some additional
notation. If &, is a subspace of the space &, we let P, denote the projection in & on &,

along a natural complement. So, for instance, P, _is the projection on .« along 0

THEOREM 2.1. Let # be an algebra as above, and assume that Axiom (AQa) is satis-
fied. Let ¢ € B_. The element ¢ has a triangular extension g such that e —gg" admits a

left and e —g " g admits a right spectral factorization if and only if the equations
e=a-P,($(Pg,($7a)) ,e =d—Pg ($"Pg (¢d)) . (2.7

have solutions a and d with the following properties:
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(i) a€A4_,d €D,
(ii) a and d are invertible, a™' € A4_,d"' € D,,
(iii) P g,a and P g d are positive definite in o4, and D, respectively.

In that case ¢ has a unique triangular extension g for which e —gg" admits a left and

e—g" g admits a right spectral factorization, and this g is given by
g:=bd '=a""1c",

where
b=Pg(¢d),c =Py (¢ a). (2.8)

The spectral factorizations of e —gg" and e —g" g are given by

e—gg =a""\(P 8)a" ,e—g g =d TPy d)d".

In many applications the algebra .# has the additional property that every positive
definite element admits a left and right spectral factorization. For such an algebra .# the
hypothesis of Theorem 2.1 imply that there exists a unique triangular extension of ¢.

Proof. We will transform the strictly contractive extension problem into a positive

extension problem in 4.

Let ¢ € 9B _ be given and put

Clearly, k4 is an element of # .. Suppose that k is a positive extension of k. (The
definition is in Section 1). Since k —k, € #, + .#, and k is selfadjoint, k has to be
equal to k, for some ¢ € B. Also y—¢ € & . Further, since

e 0 e O e v e —y
ERNEE [T -

Axiom (AOa) gives that e —y "y is positive definite in @. So a positive extension ky of kg
gives a strictly contractive extension ¥ of ¢. The converse is also true. Indeed, suppose that

¥ is a strictly contractive extension of ¢. Since y—¢ € &, the element k,,—k 4 belongs to
M, + M. Since e —y "y is positive definite in @, equation (2.9) yields that k, is positive

definite in 4. So the strictly contractive extension problem in & is equivalent to a positive
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extension problem in .#. Further, note that

[e w] - [ ¢<e—¢‘¢>“]
\V e = * * .

So k! € M, if and only if Y(e—y"¥)~' € B_. Thus k,, is a band extension of k, if

and only if ¢ is a triangular extension of ¢.

We are now ready to prove the theorem. Suppose that g is a triangular extension of ¢
such that

e—g'g=r'r,e—gg" =5s"s,

where rt! € @ and s*' € _. Since g is a triangular extension of ¢ we have that kg

is a band extension of k¢, and since

N I I 1 ]

the matrix k g admits a left spectral factorization (with respect to the decomposition (1.1)).

Analogously, k, admits a right spectral factorization. By Theorem 1.1 there are

J—be a 0
*x= 10 4 My = | o a| €4

such that x~! € M, yleu_, P,x and P,y are positive definite in .#;, and equa-
tions (1.5) hold with k = k,. Writing out (1.5) one obtains that 4 = d = e, and equa-
tions (2.7) and (2.8) hold. Furthermore,

" e bd~!
¥U= o at ) S

yields that ™' € @ +- Analogously, a~! € &_. Since P ;x is positive definite in #,,

e O * 0 *0
de = 0 Pgdd = 0 q-i 0 q ’
%

where [0 q} is invertible in «#,. Thus, in particular, Pg d = q"q is positive definite

we have that

in @;. Analogously, P 4 a is positive definite in ;. Furthermore, from (1.6) with band
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extension k, one obtains that g = a7 ¢* =bdl.

Conversely, suppose that a and d exist as in the theorem. Put k = k,

[e —bj a 0
x:= | d € M,,y := [—c e] € M;,

where b and c are given by (2.8). One easily checks that with this choice of x and y the
conditions in Theorem 1.1 are satisfied. Applying Theorem 1.1 gives that

-1 -1
e g a’ —c' Pga 0 a 0
kg = g el T O e 0 ej|-ce (2.10)
-1 -1
e 0 e O e —b
= |- a 0P, ,d| |0 d] °

is the unique band extension of k. But then g = a”~'c¢*=bd™! is the unique triangular
extension. Using equation (2.9) with g instead of y and equation (2.10) one obtains that
e—g'g = d"l(PQdd)d", so that e —g" g admits a right spectral factorization. Analo-
gously one shows that e —gg* =a"" (P «,3)a ~1 admits a left spectral factorization. [

If¢ € B, weletE := P, ¢: €, — A_ denote the operator defined by the follow-

ing action:
E(c) = (P y ¢)(c) =Py (¢c) ,c € €,.

We shall employ this notation also for other subspaces.

THEOREM 2.2. Let # be a Banach algebra satisfying Axiom (AOa). Let ¢ € B _ be

given. Introduce the following operators
E:=Py¢: €, > A _;E.:=Pg ¢ :d_—€,; (2.11)
E:=Pg ¢: D, > B_;E.:=Pgy ¢ :B_D,.

2

Suppose that for each 0 < € = 1 the operators I —¢“EE +« and | —e28 .5 are invertible,

and that the elements
P [(I-EE.) "e], Pg [ —€*E . E) e] (2.12)

are positive definite in 4y and D, respectively. Letr € «&; and s € D, be such that

*

P IU-EE) el =r"r,Pg [U-E.E) el =s"s,
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and put
a:= (I-EE.)'e)yr !,y := Py (¢7a), (2.13)
d:= (I-E.E) le)s™!,B := Pg (90).

Then ¢ has a unique triangular extension g for which e —gg" admits a left and e —g"g

admits a right spectral factorization, and this g is given by
* l *

g :=p8"1=a""ly".

Moreover, at! €4_, 8! € @, and the spectral factorizations of e —gg" and e —g"g
are given by
e—gg" =a"la7! ,e—g"g =86""18"".
Proof. For0 = ¢ = 1, put

a,:= U-e285.)"le ,C 1= Pm(eda'ae) s

d = (I-¢E.8) e b, := P g (edd),

ed —bf ae 0
Y= L0 d, | YT | —c, eg]”

Note that x, € A andy, € 4 _ for 0 =< e¢ =< 1. Clearly, the elements introduced above

ey €
are analytic in the real variable e. For k, = * we have that
€ eg
a.—epc, €d
P3(keye) =P3 E¢.ae-ce eg =€,

since P (e a,—c,) = 0 and
P, (a—epc) = Py (a,—~edPg (ed"a)) = I—€*EE.)a, = e.

Analogously, one calculates that Py(kx,) = e. If € is small enough, 0 s e <o (= 1)
say, then the elements a, and d, are invertible in .«_ and @, respectively. Further, by
assumption, for 0 < ¢ =< 1 the elements P 4 (a,) and Pg (d,) are positive definite in &,
and @,, respectively. Hence, for 0 < ¢ < 1, the elements P,(x,) and P,(y,) are positive

definite in .# ;. Now Theorem II.1.1 yields that for 0 = e < ¢
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X TN PxIx Tt =y T Py Iy
is the unique band extension of k.. It follows that
x(Pgx) ™ =y (Pyydly: (2.14)

holds for 0 = € < o, and by analyticity (2.14) also holds for 0 = ¢ = 1. Calculating the
(1,1) element of (2.14) we obtain

a(Pya) 'a] =e+b(Pgyd) b

Axiom (AOQOa) implies that the right hand side is positive definite, which gives that a, is

invertible for 0 = ¢ =< 1. Indeed,
= (P “la(e+b (Pgd) 'b])!
a, : ( .:l,,ae) a. (e e( Dy e) e)
is a right inverse of a,. Further, ¢ — a,* is analytic. Consider
ata,—e.

For 0 = e < o this equals zero. But then a,*a,—e is zero for ¢ € [0,1], proving the inver-
tibility of a,. Furthermore, since P dga:' = 0 for 0 = ¢ < o, we get by analyticity that
this also holds for e = 1. So a, is, in fact, invertible in _. Analogously, d, is invertible

in @ .. But then the theorem follows directly from Theorem 2.1. [J

THEOREM 2.3. Assume that the algebra M is a *-subalgebra of the B*-algebra R
where the unit e of ® belongs to #, and assume that Axioms (AOa), (A1) and (A2) hold.
Let ¢ € B_, and suppose that ¢ has a triangular extension g such that e —gg" admits a
left and e —g" g admits a right spectral factorization. Let « € A_ and & € D _ be inver-
tible elements such that «™' € A_, "' € D, and

(e—gg") ' =aa” ,(e—g"g) 7' = 85,
and put
B=Pg($d) ,7=Pg (¢ a).
Then each strictly contractive extension y € ®B of ¢ is of the form
¥ = (ah+B)(yh+8)7", (2.15)

where h is an element in B, such that e —h”h is positive definite in @. Furthermore,

equation (2.15) gives a one-one correspondence between all such h and all strictly
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contractive extensions y of ¢. Alternatively, each strictly contractive extension y € &B of ¢
is of the form
V= (a"+f"8) I +£78T), (2.16)

where f is an element in ®B, such that e —ff" is positive definite in . Furthermore,

equation (2.16) gives a one-one correspondence between all such f and all strictly contrac-

tive extensions ¥ of ¢.

Proof. Put

(o %)= (50

u= g -5 v= —y el

Now apply Theorem 1.5 (in particular (1.9)) to obtain that all positive extensions k, of
ky € M, are of the form

_ e (ch +B)(vh +8)~"
Y l(vh+9) T ah +B)” e ’
(0 h] . e 0 . o
where | ) € #, is such that 0 e—n*nl| i positive definite in .#. Moreover,

there is a one-one correspondence between all such & and all positive extensions of k4. But

then the one-one correspondence (2.15) follows.
The alternative form (2.16) is obtained by using formula (1.10) in Theorem 1.5. [
The approach in this section is the same as the abstract approach in [27], except that

here the algebra is enriched with an involution. Both Theorems 2.2 and 2.3 are new, but

they are inspired by earlier concrete versions in [26], [27] (see also [20]).
I1.3. Maximum entropy principles

This section concerns maximum entropy principles in the general setting of the band
method. These principles provide alternative ways to identify the band extension (in the
positive extension problem) and the triangular extension (in the strictly contractive exten-

sion problem).

3.1. Positive extensions. Let .# be an algebra with unit e and involution ~ and with

the structure described in the first paragraph of Section II.1. We introduce the following
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notions. Let b be a positive definite element of .# which admits a right spectral factoriza-
tion b = b_b~,bE! € #_. We define the right multiplicative diagonal A,(b) of b to

be the element
A (b) :=Py(b_)Py(b.)".

The right multiplicative diagonal of b is well-defined. Indeed, suppose that b = c_c_ ,

c*! €.#_, is another right spectral factorization of b . Then

di=cZW_=cb>"' e _NM, = M,

Hence b_ =c_d, thus c_c. =b_b" = c_dd"c" , giving that dd* = e¢. But then,
since d € My,

Py(b)Py(b)" = Py(c_d)Py(c_d)" =
= Py(c_)dd P (c~) = Py(c_)Py(c_)".

Note that A, (b) is positive definite in .#,. This follows from P (b o7 l= Pd(bfl) (see
Lemma 1.3). When b admits a left spectral factorization b = b b% , b¥' € # ., we

define its left multiplicative diagonal A ;(b) to be the element
Ayb) :=Py(b)Py(b)".

Again A;(b) is well-defined and A;(b) is positive definite in ;.

Recall that an element a € # is called nonnegative definite in . if there is an ele-
ment ¢ €  such that a = ¢*c. With respect to nonnegative definite elements we intro-

duce the following two axioms.
AXIOM (A3). The element Pd(c‘c) is nonnegative definite in . for all c € .
AXIOM (A4).If Py(c"c) = 0, then ¢ = 0.

When  satisfies these two axioms we have the following general maximum entropy prin-
ciple.

THEOREM 3.1. Let M be as above, and assume that M satisfies Axioms (A3) and
(A4). Let k € M, have a band extension b which admits a right (left) spectral factoriza-

tion. Then for any positive extension a of k which admits a right (left) spectral factorization
A, (b) z A(a) (Ay(b) = Ay(a)). 3.1

Furthermore, equality holds in (3.1) if and only ifa = b.
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We need the following lemma.

LEMMA 3.2. (i) Suppose that b admits a right spectral factorization. Then there are
uniquem_ € M° and d € My such that (e +m_)"' € M_ and

b= (e+m_)d(e+m_)". (3.2)

Moreover, d = A, (b).
(ii) Suppose that b admits a left spectral factorization. Then there are unique m . Eufl‘i
and d €My such that (e +m )~ € M, and

b =(e+m)d(e+m,)". (3.3)

Moreover, d = Aj(b).

Proof. Let us prove (i). Letb = b_b" with b%! € .#_, be a right spectral factor-
ization. Put m_ := b_Pd(b_)"l—e and d = A,(b). It is easy to check that m_ € M,
(e+m ,_)"l € #_ and that (3.2) holds. Suppose now that

b= (e+m_)de+m’),
where ii_ € M2, (e+m_)"' € M_andd € M,. Then
(e+m_) We+m_) =d(e+m_) (e+m_)""d~\. (3.4

Applying P, to both sides of (3.4) gives e = dd~', which implies that d = d. Apply now
P _ to both sides of (3.4). Then

(e +r’r‘1_)“l(e +m_) = dd~! = e.

Thus mi_ = m_.
The proof of (ii) is similar. [J

Proof of Theorem 3.1. Let & have a band extension b, let a be a positive extension

of k, and suppose that both admit a right spectral factorization
a = (e+a_)A (a)(e+a_)" ,b = (e+b_)A (b)(e+b )",

with a_,b_ € A% and (e+a_)“1,(e+b_)_l EM_. Since b™' € M., Lemma 1.2
implies (e +b_) ' € My. Write a = b+a—b, and observe that

(e+b_)Ne+a_)A (a)(e+a_ ) (e+b )" ! = (3.5

A, (b)+(e+b_ ) Na-b)(e+b_) "L
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Since a and b are both positive extensions of k,
a—-b = m|+mr
for some m, € #,. Then (e +b_)"'m,; € 4 . From this we obtain that
Py((e+b_)"Na-b)e+b_ )N = 0.
Write (e +b_) (e +a_) =e+w withw € MO Applying P, on equation (3.5) gives
8,(b) = Py((e+w)A (a)(e+w)") =
Py(A,(a)+wA,(a)+A,(@)w" +wA (a)w") = A, (a)+Py(wA,(a)w”) = A,(a),

where in the proof of the last inequality we use Axiom (A3). Furthermore,
A,(a) = A,(b) if and only if Pd(wA,(a)w') = 0. Since A,(a) > 0, we obtain from
Axiom (A4) that the lattér equality holds if and only if w = 0. Butthena = b.

The proof of the left version is similar. [

Theorem 3.1 is inspired by earlier concrete versions (see [22], [23]).

Let 7 denote the set of all elements in #, that are positive definite:
M; :=1{a € My |a >0}

We call a function F : #7 = R strictly monotone if d| = d, and d, # d, implies
F(dy) > F(dy.

COROLLARY 3.3 Assume that M satisfies Axioms (A3) and (A4), and let
F : M7 = R be strictly monotone. Let k € M_. Suppose that k has a band extension b
which admits a right (left) spectral factorization. Then for any positive extension a of k

which admits a right (left) spectral factorization
F(A, (b)) =z F(A,(a)) (F(A;(b)) = F(4;(a))). (3.6)

Furthermore, equality holds in (3.6) if and only ifa = b.
Proof. Follows directly from Theorem 3.1. [J

3.2. Strictly contractive extensions. In this subsection .# is the algebra

ab
M= {f= [c dJ :aEd,bEQ,cE%,dE@},
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with the properties described in the second and third paragraph of Section II.2. We shall

use the following axiom.

ab
AXIOM (AOb). If [ c d] is nonnegative definite in ., then a is nonnegative defin-
ite in «# and d is nonnegative definite in 9.
The notions of right and left multiplicative diagonals of elements in .« and @ we introduce

in the same way as is done in Subsection 3.1 for elements in .#. We now have the follow-

ing theorems.

THEOREM 3.4. Let A satisfy Axioms (A0a), (A0b), (A3) and (A4). Let ¢ € B_,
and suppose that ¢ has a triangular extension g such that e —g" g admits a right spectral

factorization. Then for any strictly contractive extension ¥ of ¢ such that e —y"y admits a

right spectral factorization
A(e—g"g) = A (e—¥7Y) ,

and equality holds if and only if y = g.
THEOREM 3.5. Let A satisfy Axioms (AOa), (AOb), (A3) and (A4). Let ¢ € B_,

and suppose that ¢ has a triangular extension g such that e —gg~ admits a left spectral fac-

torization. Then for any strictly contractive extension ¥ of ¢ such that e —y\y" admits a left

spectral factorization
A(e—gg™) z= Ay(e—y¥"),
and equality holds if and only if = g.

We prove Theorem 3.4. The proof of Theorem 3.5 is similar.

Proof of Theorem 3.4. The assumptions in the theorem imply together with Axiom
(AOa) that k, is a band extension of k, which admits a right spectral factorization. Further-
more, k, is a positive extension of k, which admits a left spectral factorization. Using
(2.9) one finds that

e 0
Ark) =10 ae—v'w |’

and we have an analogous formula for A (k g). Since (A3) and (A4) hold in .# we obtain

from Theorem 3.1 that

0 0
Ar(kg)_Ar(klﬁ) = [0 Ar(e—g*g)—A’(e_w‘v/)J
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is nonnegative definite in .#. Axiom (AOb) implies

A(e—g"g) = A (e—¥ V).
Further, if equality holds, then A ,(kg) = A,(kw). From Theorem 3.1 we obtain that
ky, = ky, and hence g = ¥. O

As in Subsection 3.1 any strictly monotone function on @j (or on 7) can be used

to pick out the triangular extension.
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CHAPTER III. THE BAND METHOD: APPLICATIONS

In this chapter the band method is applied to some concrete positive and strictly con-
tractive extension problems. Sections 1 and 2 concern extension problems for finite opera-
tor matrices, and Sections 3 and 4 treat extension problems for operator valued functions

from the Wiener algebra.
II1.1. Operator matrices: positive extensions

In this section we specify the results of Section II.1 for the algebra of n Xn operator

matrices. An element of this algebra has the following form:

Ay o Ay,
T= | : :
Apy oo Ay,
Here A;;, 1 = i,j = n, is a bounded linear operator from a Hilbert space H; into a Hil-
bert space H;; shortly 4;; € AH;,H;). Note that T is an operator on the Hilbert space
H,® : - - ®H,. The notation T > 0 means that T is positive definite. We write /; for
the identity operator on H;.
THEOREM 1.1. For 1 s i,j = n, |j—i | sp,leedy = A;, be a given operator

acting from a Hilbert space H; into a Hilbert space H;, and suppose that

Ay Aiip
: >0,i =1,..n—p. (1.1)
Ai+p,i Ai+p,i+p
Forq = 1,...,n, let
1
-1|%q
qu Aqq Aq,B(q) 0
: = : E M ’ (1‘2)
Yswara Apg)g - 8@ 8@ 0
and
1 (0
Xy@)q Aypaw - v :
: = : : ol (1.3)
Xq,q Aqrr(q) Aqq 1
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where 3(q) = min{n p +q} and y(q) = max{l,g—p}. Let the n Xn triangular operator
matrices U and V be defined by

Y Y;% ,j=i=83);
Vy =7 0 , elsewhere; (1.4
L

r

_ XyX5* ,y()sis);
=3 0 |, elsewhere. (1.5)

L

Then the n Xn operator matrix F given by the following factorizations of its inverse
F:=U"Wyl'=yp"y1! (1.6)

is the unique positive definite operator matrix with F; = Ay, | j—il =p, and
(Fhy;=0,l]ji-i| >p.

Proof. We will obtain this theorem as a special case of Theorem II.1.1. Let 4 be the
algebra of n Xn operator matrices considered in this section. The unit in .# is the identity
operator on H,® - - - ®H, and the involution * on # is the usual adjoint of an operator

between Hilbert spaces. Put

n
M = { (F,-jJiJ=‘ | Fy =0,j~i >pandj—i =0},

n

Vﬂd:{[Fij] | Fy=0,i=j},

ij=1

: n
'/“(3)={[Fij]l _ | F; =0,j—i z0andj—i < —p},

n
‘/’{4={(Fij] | Fy=0,j-iz-p}
It is easy to see that
M= M M M+ M M

and that the above subspaces satisfy the conditions (i) and (ii) in Section II.1.
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n

Let K = [KUJ ", where K;; = A, for |j—i| = p and K;; = 0 otherwise. A
1

direct computation shows that

PyKX) =1 ,PyKY) =1,

n n

and Y = [YU] are the upper and lower block band

where X = (XU]
ij=1

ij=1
matrices of which the entries in the band | Jj—i | < p are given by (1.2) and (1.3), respec-
tively, and which have zero entries outside this band. Since Y s is the (1,1)-block element
in the left upper corner of the inverse of a positive definite operator matrix, the element
Y., is positive definite. Similarly X, is positive definite, and hence the main diagonals of
X and Y are positive definite. But then X and Y are invertible and X! € #, and
Y~! € #_. In this way it follows from Theorem II.1.1 that the operator matrix F

defined in Theorem 1.1 is precisely the unique band extension of K. [J

We say that an nXn operator matrix F is a positive extension of the band
{4, | |j=i| = p}if F is positive definite and F; =4, for |j—i| = p. The exten-
sion F in Theorem 1.1 is called the band extension of {A,-j | j—i =p },ie., a positive
extension F of {4 | j—i = p }is called the band extension of {4 | j—i =p}if
(F "’) i = 0 for j—i > p. Note that condition (1.1) is clearly a necessary condition for
the existence of a positive extension of the band {4, | |j—i| = p}. By applying
Theorem II.1.5 in the setting described in the proof of Theorem 1.1 we obtain the follow-

ing description for the set of all positive extensions of a given band.

THEOREM 1.2. Let A;; = Aj‘,-, l=i,j=sn, |j—i | =< p, be giyen operators act-

ing from a Hilbert space H; into a Hilbert space H;. In order that there exists a positive

extension of the band {A; | |j—i| = p}itis necessary and sufficient that

A A

il i,i+p
: >0,i =1,...,n—p. .7

Ai+p,i Ai+p,i+p

Assume that the latter conditions hold. Let U and V be the n Xn operator matrices defined

in (1.2)-(1.5). Then each positive extension F of the given band is of the form
F = (G'V'+U"H \U-G*GyvG+U)!, (1.8)

where G is a strictly contractive (in operator norm) n Xn operator matrix with Gij =0,

j—i = p. Furthermore, formula (1.8) gives a 1-1 correspondence between all such G and
all positive extensions F.
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Proof. Let M, M ,—.#, be as in the proof of Theorem 1.1. Since .# endowed with
the operator norm is a B*-algebra and .# , is a closed subalgebra of .#, Axioms (Al) and
(A2) are fulfilled automatically (with ® = .#). Now apply Theorem II.1.5 to obtain the
theorem. [J

Let us remark that there is an alternative description for the set of all positive exten-
sions of a given band, which one obtains from (1.10) in Chapter II.

Next we specify the general maximum entropy principle for the case considered in this
section. It is known (see [7]) that a positive definite operator 4 on H{® - - + ®H, admits

a U DU factorization as follows.

I . I, Uy ... Up,

- vy, . ' 0 . . n . :
= . g (af)] " | o0 gl | a9

Uy o Up_yp I, 1,

where AJ(A) is a positive definite operator on H; (i = 1,...,n). We call
diag [A i) J

of A is given by the following identities:

n
: the right multiplicative diagonal of A . The right multiplicative diagonal

i=

Af(4) = A, , (1.10)

-1
Ay o A Ay

A‘r(A) = Aii_ [All ot Ai,i—l H H H s = 2, ,n
A1 - Aiopio A1
Also A admits a L* DL factorization:
I, Vig oo Vi, I
A ) : diag | Al | Ve 0 (1.11)
= . ia . . . .
0 . V;—l,n & [ i )J i=1 . .
I Vin «+ Vacin In

n
We call diag [AS(A)J - the left multiplicative diagonal of A. The left multiplicative
i=

diagonal of A is given by
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A o Agge) T (A
Ald) =4, - [A,-_,-H Ce- A, : : fo L i= 1,1,
Ai+l,n Ann Am’
1 —
Al =4, (1.12)

THEOREM 1.3. For 1 =i,j =n,
acting from a Hilbert space H ; into a Hilbert space H, and suppose that

j—i| =p, let Ay = A;,- be a given operator

Ay o Ay
: >0,i =1,....n—p.
Ai+p,i Ai+p,i+p
Put
-1 (0
Ay - Ay
M, = [0 .0 1,-] : : 0| »i=1l.un, (1.13)
Ai iy Ay 1,

where y(i) = max{l,i —p }. Then for the right multiplicative diagonal
diag [A{(A )J
hold:

n
of any positive extension A of the given band, the following inequalities
1

i=

A(4) = M[',i=1,.,n (1.14)

Moreover, equality holds for all i in (1.14) if and only if A is the band extension of the
given band.

Proof. Let M, M —M, be as in the proof of Theorem 1.1. Let us check the Axioms
(A3) and (A4). Clearly, Axiom (A3) is fulfilled since the diagonal entries of a nonnega-

tive definite operator matrix are themselves nonnegative definite. To check Axiom (A4), let

n 0 4,
A= [A,-,-J = 0, and suppose that A; =0, i = 1,...,n. Consider & = [ R 1]

ij=1 4; 0

for some j > i. Since A = 0, we have that ® = 0. Thus forallv € Hj

—Ayv —A;v 2
<<I>[ ’ }[ ) ]>=—21|A,-jv|| =0.

Hence we may conclude that Ay = 0, j # i. Thus # satisfies Axiom (A4). Now we

may apply Theorem I1.3.1.
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Let F be the band extension of the given band. From the factorization U” ~'U “lof F
in (1.6) it follows that diag [M i_lJ is precisely the right multiplicative diagonal of F.
Indeed, the operator M, is precisely the operator X . Since any positive definite operator

matrix admits a right spectral factorization, the theorem follows directly from Theorem
11.3.1. O

An analogous result holds for the left multiplicative diagonal of a positive extension.

In that case the M; have to be replaced by M, where

(1
Aii cee Ai,ﬁ(i) O

M, := [10 0] : : | =1,
Agini -+ Agw e 0

with 8(i) = min{n,p +i}.
It turns out that in the finite dimensional case the determinant provides a suitable

strictly monotone function on the set of positive definite diagonal block matrices. This

observation yields the following corollary, which also appeared in [23].

COROLLARY 14. For 1 =i,j =n, |j—i| = p, let Aj; = A}; be a given opera-
tor acting from a finite dimensional Hilbert space H into a finite dimensional Hilbert space

H,;, and suppose that

A o Ay
: >0,i =1,..,n—p.
A

i+p,i -

. Ai+p,i+p

Then for any positive extension A of the given band
n .
detd = IIdet M, (1.16)
i=

where M; is defined in (1.13). Moreover, equality holds in (1.16) if and only if A is the

unique band extension of the given band.

Proof. Let f : .#7 — R be defined by f(4) = det A. Here .#7 denotes the set of
positive definite diagonal operator matrices. Then f is strictly monotone (for the definition
see Section 11.3) and the corollary follows immediately from Corollary 3.3 in Chapter II. [

Note that this corollary identifies the band extension as the unique positive extension
for which the determinant is maximal. Thus we recover the remark made at the end of Sec-

tion L.6.
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Theorem 1.1, 1.2 and 1.3 also have stationary versions which concern block Toeplitz
matrices. To prove these one has to specify further the band method (incuding the proofs)
for block Toeplitz matrices. It turns out that in this case the matrices U and V are not Toe-

plitz, but nevertheless the final parametrization theorem is an analogue of Theorem 1.2.

For the block matrix case Theorems 1.1 and 1.3, and Corollary 1.4 appeared in [23].
I11.2. Operator matrices: strictly contractive extensions

In this section we specify the results of Section II.2 for the space of n Xm operator

matrices. An element of this space has the following form:

o1 o Pim
T=|: ;
¢nl d’nm

Here ¢, l=i=n,1=j = m,isabounded linear operator from a Hilbert space H j
into a Hilbert space H; shortly ¢ ; € AH;,H;). We let ||T|| denote the usual operator
nomof T :H® - - - ®H, - H® - - - ®H,,.

Fix -n<p<m. Forlsi=n,1=jsmj—i =p,letd; € AH H).
An operator matrix T is called a strictly contractive extension of the given lower triangular
part { ¢, ,j—i =p }if [ITI| < 1andforj—i = p the (i,j)th element of T is equal to
¢;. Let r(j) = max{l,j—p} and s(j) = min{m,j+p}. Clearly a necessary condition

for the existence of a strictly contractive extension is the following:

n s(k) :

I [qs,j] Il <1,k =rq),...,n @2.1)

i=k,j=1 ,
Forj = 1,...,n let

¢ - sy ) -

S = : : : @H, > ®@H,,

J k=1 ¢ k= F
bn1 - ¢n,s(i)

ifj+p = 1, and
n -~
§; =0:(0) > ®H,,
k=j

if j+p < 1. Forj = 1,...,m let



- 82 - The band method: applications

brina o Prond n
R; := : : : ®H, > ® H,,
] : k=1 5 k= ¥
¢n1 ¢nJ

ifj—p = n,and

J
Rj = 0:k®]Hk d (0),

if j—p > n. Obviously, (2.1) implies that ||S;|| < 1,1 =/ = n, and also [[R;[| < 1,

1 < j = m. The converse statement holds trivially.

THEOREM 2.1.Forl =i =n,1=sj sm, j—i s p, let ¢, be a given operator

acting from a Hilbert space H into a Hilbert space H,, and suppose that (2.1) holds. Put

ay Ig
@11 . 1| O
: =(I=5;5)" i =1..n,
&ni 0
Briyg 0
.| =R,U-R'R)™ vJj=1l,..m,
Bn—l,j 1( j 1) 0 J m
an IHJ
'911 11-'],
¥ai 0
co | =8ia=8sH7H| L | Li=1,.m,
'?s(i)l 0
8y; 0
.| = u-RRH! ,j=1l,..,m,
6]"'1J J7 10
2 H
6]_,' f]

and let

2.2)

2.3

(2.4)

(2.5)

(2.6)
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nom Bydy™ . izr(id;
f:= (BU] i=1j=1" By = 0 ,i<r(@); 2.7
m n Fyéy” i ss3);
YT [7"] izt Y8 T ) 0 L i>s(); (2.8)
m byby" i s
é:= [51]]'_le ,5,1 = 0 ,i>j; (29)

Then the operator matrix G defined by

G:=8"1=a""14*
is the unique strictly contractive extension of the given lower triangular part
{6y | j—i = p}with(GU-G"G)™Y); =0forj—i >p.

Proof. We will obtain this theorem as a special case of Theorem I1.2.1. Let

> n 'y ry
A} = 2 = {(Fy] i | FyiBj> By Fy=0,j-i 50},

n o~ -~
Ay = { [Fij] 1=t | Fy:H; > H; ,F;; =0,j=i #0},
and define @& and @, in the same way with H, replaced by H, and n replaced by m.

Furthermore, let

m ~

B, =@ ={[F,-j]

q .
| Fy:H;—H; ,F; =0,j—i>p}.

B =€ ={ [F"j} i=1,j=1

Let &— 9 be given via (2.2) and (2.5) in Section II.2. On these spaces we define the

operations " as the usual adjoint of an operator between Hilbert spaces. We endow the

B
space M = [qg @J of (n +m) X (n +m) operator matrices with the usual operator norm.

It is easy to see that the conditions (2.1)-(2.6) in Section II.2 are satisfied.

n m

Let ¢ = [¢ij]i=lJ=1’ where ¢, =0 for j—i >p. Consider the operator
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I—€*25 ., where = and X . are defined in (2.11) in Section I1.2. Applying this operator to
an element A € _ gives an element in ««_ whose columns are described by the follow-
ing equations:

[((I—ezzz.)(A))ij) = U=e,5)) (Ai,] L=l

n
i= i=j

It is not hard to see that I —e2ZX%. is invertible for all 0 < ¢ < 1 if and only if
IIs;Il <1, j =1,.,n. Analogously, one shows that the operators I—€’5.%,
0 < e = 1, are all invertible if and only if condition (2.1) holds. Assume that (2.1)
holds. Then for 0 =< ¢ =< 1 the first element appearing in (2.12) in Section II.2 is the
diagonal operator matrix with as (i,i)th element the (1,1) element of the positive operator
matrix (I —e2S iS:)”'. So clearly this diagonal operator matrix is positive definite in ;.
Analogously, one proves that the second element in (2.12) in Section II.2 is positive defin-
ite in @,;. Applying now Theorem II.2.2 one obtains (using the above calculations) the

operator matrices «, 3, v, and 6 given in this theorem. [J

We shall call the extension G in Theorem 2.1 the triangular extension of
{oy | j—i = p}. For the description for the set of all strictly contractive extensions of a
given lower triangular part one now simply applies Theorem II.2.3. Since condition (2.1)
is necessary for the existence of a strictly contractive extension, we obtain the following
result.

THEOREM 2.2. For1 =i =n,1=j =m,j—i =p, let ¢ be a given operator
acting from a Hilbert space H; into a Hilbert space H i+ Then the lower triangular part
{o | j—i = p} has a strictly contractive extension if and only if (2.1) holds. Suppose
that (2.1) holds, and let a, B8, 7y, and & be defined by (2.2)-(2.9). Then each strictly con-

tractive extension F of the given lower triangular part is of the form

F = (@E+B)(YE+&) !, (2.10)

n m

where E = (E ‘fJ is a strictly contractive operator matrix with E; =0,

i=lj=1
j—i = p. Furthermore, (2.10) gives a one-one correspondence between all such E and

all strictly contractive extensions F of the given lower triangular part.

Proof. Introduce the spaces #/—@ with their decompositions as in the proof of

A B
Theorem 2.1. The space 4 = (qg @] clearly satisfies Axiom (AOa). Since the algebra

of (n+m)X(n-+m) operator matrices endowed with the usual adjoint and the usual
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operator norm is a B*-algebra and .#, C # is a closed subalgebra, Axioms (Al) and

(A2) are fulfilled automatically (with ® = .#). Now apply Theorem II.2.3 to obtain the
theorem. [J

Let us remark that there is an alternative description for the set of all positive exten-

sions, which one obtains from (2.16) in Section II.2.

The general maximum entropy result in Theorem II.3.4 specified for the case con-

sidered here yields the following theorem.
THEOREM 23.Forl =i =sn,1=j=m,j—i =p,let b be a given operator
acting from a Hilbert space H into a Hilbert space H ;» and suppose that (2.1) holds. Put

0
L; = [0 <0 IH,J(I—R;Ri)_I 0 , i =1,...,m (2.11)

1y,

Then for the right multiplicative diagonal diag [A a —‘ﬁ'w)] of I—y"y, where ¥ is a
strictly contractive extension of the given lower triangular part, the following inequalities
hold:

AlI—y"y) s L7V, i =1,..m. (2.12)

Moreover, equality holds for all i in (2.12) if and only if ¥ is the unique triangular exten-

sion of the given lower triangular part.

Proof. Introduce the spaces .&— @ and # as in the proof of Theorem 2.1 along with
their decompositions. Clearly Axioms (AOa) and (AOb) are satisfied. As in the proof of
Theorem III.1.3 one checks that Axioms (A3) and (A4) are satisfied. Note that from

n
Theorem 2.1 it follows that diag [Li“] - is the right multiplicative diagonal of
i=
I—G*G, where G is the triangular extension of the given band. Apply now Theorem
11.3.4 to obtain the theorem. [J
Theorem I1.3.5 yields a left analogue.

For the block matrix case, as in Section III.1, the determinant can be used to identify
the triangular extension of a given lower triangular part.

COROLLARY 24. For 1 =i =n, 1=j=m, j—i =p, let ¢;; be a given
operator acting from a finite dimensional Hilbert space H; into a finite dimensional Hilbert

space H;, and suppose that (2.1) holds. If ¥ is a strictly contractive extension of the given



- 86 - The band method: applications

lower triangular part, then
- m
det(I —y"y) = ‘HldetL,-"l , (2.13)
1=

where L,, . . . ,L,, are defined in (2.11). Moreover, equality holds for all i in (2.13) if

and only if ¥ is the unique triangular extension of the given lower triangular part.

In a somewhat different form the maximum entropy principle in Corollary 2.4 may

also be found in [10] (in the setting of a maximum distance problem) and in [5].
I11.3. The operator Wiener algebra: positive extensions

Let H be a complex Hilbert space. We write AAH) for the Banach algebra of all
bounded linear operators on H. By Wy (T) we denote the operator Wiener algebra on the

unit circle T, which consists of all operator valued functions F on T of the form

FO) = ¥ NF \€T, 3.1

j==oo

where F ; € AH) for each j and

£ IRl < oo.

j==co

As usual we refer to F; as the j-th Fourier coefficient of the function F. On Wy (T) there

is a natural involution, namely for F as in (3.1) we have

FFoy = £ NF, =FO', [\ =1

j==oo
Also Wy,(T) has a unit, namely the function e(\) = I. Here I stands for the identity
operator on H .

LEMMA 3.1. Let F € Wy(T). Then F is positive definite in Wy (T) if and only if

F(\) is a positive definite operator on H for each N € T. In that case we may write
FO\) = J+UMN)'DUI+UN) ,NE T, (3.2)

where D is a positive definite operator on H and U is an element of Wy (T) such that the
j-th Fourier coefficients of U and (e +U)~'—e are zero for each j = 0 (or for each

j = 0). Such factorizations are unique.
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Proof. Assume that F(\) > O for each |[\| = 1 and F € W(T). By Theorem 0.1

in [42] the function F admits a canonical factorization
FON =G_NG, (N, |\ =1,

of which the factors G_, G, are in Wy(T). Since F(\) is positive definite for each
NET,

FN =G,MNG-(N,\NET,

is again a canonical factorization of F, and hence there exists an invertible operator A in
HAH) such that G, = AG~ . It follows that A is positive definite, and

FON = (G_NA®G_MNA™T™ N ET,

which implies that F is positive definite as an element of Wy (T). This proves the suffi-
ciency. The proof of the necessity is trivial. Putting D := G _(0)AG _(%0)" and
U=G_(0)""1G* —e we get the desired factorization. The uniqueness of the factoriza-
tion follows in the same way as the uniqueness of the factorization in Lemma 11.3.2. O

In this section we solve the following problem. Given 4; = 4 z ' | J ] < m, in AH),
determine all F € Wy(T) such that

(i) F(N) is a positive definite operator for |)\ | =1,

(i) Fj =4 for |j| =m.

Such a function F will be called a positive extension of the band { 4; | il sm} I
what follows H™ is the Hilbert space equal to the direct sum of m copies of H.

THEOREM 3.2. Let 4; = A‘_j, |j| = m, be given operators in A H), and assume
that

Ag A_y ... A_,
Al Ao cen A_m+l

r:= (3.3)
Ap Ap_y ... Ag

is a positive definite operator on H™*'. Put

%o N (Y-n 0
X] . .
X = 11—1 . , : = I'_l . , 34
. : Y_] 0 ( )
X
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m . 0 . '
UN = LNXXe% vy = 3 NMYrg”. (3.5)
j=0 j=-m
Then
FON:=UN"TUMNT=vr0N""lv) I ,ANET, (3.6)

is in Wy(T) and F is the unique function in Wy (T) such that F(\) > 0, |)\| =1, the j-
th coefficient F; = A for |j | < m, and for |j | > m the j-th coeffcient of F~' is equal

1o zero.

Proof. First we show that X, and Y, are positive definite operators in A H). Put

m

n
r, = [A,-_jJ o Since I', = T is positive definite, the operators I'g,I';, + « * ,I

are invertible. Hence (see [7]) the operator matrix I",, factors as I'), = UDL, where U
(resp. L) is an upper (resp. lower) triangular (m +1) X(m +1) operator matrix with I’s on
the diagonal and D is a (m +1) X(m +1) diagonal matrix with positive definite operators

Dy, . .. ,D,, on the diagonal. Now let X, - - * ,X,, be defined by (3.4). Then
1 Xo Xo DXy
0 X, * *
=r| . |=UD| .| =U . ,
0 X, * *

and hence X, = Dg! > 0. In a similar way one proves that Y > 0.
Since X and Y, are positive definite, the functions U and V in (3.5) are well-defined.
Next, we show that U(\) is invertible for all || = 1. To do this put Uu;:= Xon‘l for

j =0,....,m, and let

([ -Uu, 10..0)

-U, 01..0
_UM"l 0 0 e I
| ~Un 00 ..

(=}

Note that
(x; x; ... X;,JI‘ = [1 0 .. 0]

and X; = X,. Hence we can use the same arguments as in steps 1 and 2 of the proof of
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Theorem 2.1 in [43] to show that
I,_;—K°T',,_ K = diag (X4',0, - - - ,0), (3.7

T —(KH™T,, K™ =

s * » VN (v -1 3

v, ..U, X, o ... 0O I 0 00

0 I ..U, 0 Xg'.. 0 U, I 00
e S . .. (3.8)
00 .. U] 0 0 ... 0 Upo Up_s ... 10

00 ... 1 JLO 0 X7 |Upy Upy . U

Recall that T',, =T is positive definite. So the same is true for I',_,. Hence
I',,_; = E"E for some invertible operator E on H™ . But then (3.8) implies that
I-[E*"(K"Y"E"J[EK™E™Y]

is a positive operator on H™, and thus ||[EK™E"!|| < 1. It follows that EK™E~! has its
spectrum in the open unit disc D, and using similarity and the spectral mapping theorem,

we may conclude that the spectrum of K is in[D. Note that

00..1) (00 ..1 0..00 -U, )
00..0 00..0 I..00-U,_,
C K{. . . .|=1]. ... . (=:Cp). (3.9
07..0 071..0 0..10 -U,
10..0 10..0 LO"'OI -U,

B

The right hand side of (3.9) is the so-called second companion matrix of the operator poly-

nomial
LN := Uy, +NU,y_y+ * + + +N""1U N1

Since K and C; are similar we know that \—C; is invertible for all |\| = 1. Now use
that A\—C| is a linearization (cf., [36], Section 2.1) of L(\). It follows that L (M) is inverti-
ble for all |A| = 1. But UQ\) = N"L(\"HXg%. So U(\) is invertible for all
0< |A\| =1. Also U(0) = X® is invertible, and we have proved that U(N\) has the
desired invertibility properties. In a similar way one proves that ¥'()\) is invertible for all
IN = 1.

We are now ready to use the general scheme of Section II.1 and to apply Theorem
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II.1.1. Let
My ={F EWy(M) |F;=0,j =m},
My ={F EWy() | F; =0,j sOandj>m},
My ={F €Wy(T) | F; =0,j #0},
M ={F €Wy(T) | F;=0,j < -mandj = 0},

My={F EWy(T) |F; =0,j =z -m}.

m
Put k() = Y )\jAj. Then k =k* € M, and (by Lemma 3.1) a function

j==m
F € Wy(T) satisfies (i) and (ii) above if and only if F is a positive extension of k (in the

sense of Section II.1), Define

x(\) = f';xij Sy = f; NY; ,\ET.
j=0 =-m

It is easy to see that equations (II.1.5) are satisfied. Since x = UX&“ has no spectrum in D
we obtain that x ! € .#,. Also P x = X, is positive definite in .#,; = HAH). Analo-
gously, y~! € #_ and P,y is positive definite in ;. Theorem II.1.1 now yields that k
has a unique band extension and that this band extension is given by (II.1.6). It follows
that F defined in (3.6) is the unique band extension of k. [

The positive extension F of {4; | |j| = m} obtained in Theorem 3.2 is called the

band extension of {4 | il =m}.

To get all positive extensions we shall apply Theorem II.1.5. This requires to prove
that W (T) satisfies the Axioms (A1) and (A2) for a suitable B*-algebra ®R. For ® we
take the algebra Cy(T) of all #{H)-valued continuous functions on T endowed with the
usual supremum norm. With this norm and the involution * defined by F*(}) = F n°,
|)\I = 1, the algebra Cy(T) is a B*-algebra. The function e(A\) = I, N\ € T, is the unit
of Cy(T). Note that Wy(T) is a *-subalgebra of Cy(T), and the unit e belbngs to
Wy (T). Axiom 1 is fulfilled because of the Bochner-Phillips theorem [11], which states
that F € Wy (T) is invertible in W (T) if and only if F()) is an invertible operator on H
for each N € T. The latter statement may be rephrased as F is invertible in Cy(T). To
prove that Axiom (A2) is satisfied, take F € Wy(T), and assume that there exists a
sequence FIVF® . .. in #, such that F™ — F in the norm of Cy(T). Since
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F™ € #,, we know that (F™); =0 for j < 0. It follows that

1% o s
F; = —27_51F(e' Ve V%do =

. 1 * o i . X
= lim 5— [F™(eie~0d9 = nlgx:o(F(”)j =0,j<0.

—00
n -%

Thus F € 4, and Axiom (A2) is fulfilled.

THEOREM 3.3. Ler 4; = A:j, |j| < m, be a given set of operators on H. In
order that there exists a positive extension of the given band { A ; | 1j| = m} it is neces-
sary and sufficient that the operator T, defined in (3.3), is positive definite on H™ ', Sup-
pose that this condition is satisfied, and define U(N\) and V(\) by (3.5). Then each posi-

tive extension E of the given band is of the form
EN) = (VOGN +UMN) "I T-GM GO NGN+UN)) LA E T,(3.10)

where G is an element in Wy (T) such that |GVl < 1, |[\| =1, and G;=0,j =m.
Furthermore, formula (3.10) gives a one-one correspondence between all such G and all
positive extensions E of the given band.

Proof. In order to prove that the positive definiteness of I' is a necessary condition,
let E be a positive extension of the given band. Then the operator on /,(H) (the space of

all square summable sequences with elements in H) defined via the matrix

(o]
(Ei"j] ij=1

is positive definite. Since I" is a principle submatrix of this infinite matrix, I" is a positive
definite operator. The rest of the theorem is a direct application of Theorem II.1.5, where
it should be noted that e —G*G is positive definite in A = Wy(T) if and only if
lemll = llem*ll <1, eT. O

There is an alternative description for the set of all positive extensions of a given band
which one obtains from (1.10) in Section II.1.

ol .
Let E € Wy(T) and assume that EQ\) = Y E ;N is positive definite for all
j==c0

M € T. By Lemma 3.1 there exists a unique function W in Wy (T) and a unique positive
definite operator A,(E) on H such that W and (e +W)~1—¢ has zero nonpositive Fourier

coefficients and
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EM) = (I+W()\))'A,(E)(I+W()\)) ,ANET. (3.11)

We refer to A, (E) as the right multiplicative diagonal of E. It is known (cf. [7]) that
A, (E) is given by

Fo F_; .\ (g
A (E) ' = (1 0 J F, Fy .. 0. (3.12)

THEOREM 3.4. Let Aj = A'_j, Ij | < m, be given operators in AH), and assume
that

Ag A_y ... A

-m

A, Ao see A_m+‘l
I:=
Am Am_l e Ao
is a positive definite operator on H™*!. Put
1
) 0
M,=[10 0)1“ . (3.13)

0

Then for the right multiplicative diagonal A .(E) of a positive extension E of the given band
the following inequality holds:

A(E) =M. : (3.14)
Moreover, equality holds in (3.14) if and only if E is the unique band extension of the given

band.
Proof. Let #, M ,—.#, be as in the proof of Theorem 3.2. If a function E,

(o)
EN = ) E i)\', is nonnegative semi-definite in Wy (T), then the operator

i=—o0

co

[Ej—.-} 1y=0 2 (H) = Iy(H) , (3.15)

where I,(H) is the Hilbert space of square summable sequences of elements in H, is non-
negative semi-definite. But then E, is a nonnegative definite operator on H. This proves

that # satisfies Axiom (A3). When E( = 0, the nonnegative definiteness of the operator
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in (3.15) implies that all E; are zero. This follows from the arguments used in the first

paragraph of the proof of Theorem III.1.3. Hence # satisfies Axiom (A4).

Using the formula for the band extension in (3.6) one easily sees that M ,’l is the right
multiplicative diagonal of this band extension. Applying Theorem II.3.1 in the setting
described here one obtains the theorem. []

For the case when H is finite dimensional it is known (see [13], and also [22]) that the

band extension is characterized as the unique extension which maximizes the entropy

integral

l x
—_ i0
o _jrlogdetE(e )d#. (3.16)
Note that when E is factorized as in (3.11) this integral equals the number logdetA ,(E).
Indeed, inserting in (3.11) in (3.16) gives a sum of three integrals. Furthermore, since

e +W and its inverse are analytic in a neigbourhood of the unit disc, the integral

3

—2}}- [ logdet (I +W(e'%))do

-

equals zero, and hence the assertion follows. Since "logdet” is a strictly monotone function
on the set of positive definite matrices, Corollary I1.3.3 yields the result stated in th begin-
ning of this paragraph.

For the matrix Wiener algebra case Theorem 3.2 was obtained before in [22] (see also
[55], [56]), and a linear fractional description of all positive extensions of a given band

appears in [20] without proof, and with proof in [21].
I11.4. The operator Wiener algebra: strictly contractive extensions

In this section we solve the following problem. Given ¢ joJ = 0, in A H) such that

0
Y ll¢;ll < oo, determine all F € Wy (T) such that

j==oo
() F(\) is a strictly contractive operator for |\| = 1 (i.e., [[FOV)Il < 1,\ € T),

0 .
Such a F is called a strictly contractive extension of ¢, where ¢(\) = Y, N¢ i»NE T.

j==oo

(o]
In what follows /,(H) is the Hilbert space of sequences (9;);-, 7; € H, such that
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8

I, 112 < co. The space /,(H) is defined analogously.
j=0

0
THEOREM 4.1. Let ¢j, J = 0, be given operators on H with Y, thj [| < o0, and

j==o

assume that the Hankel operator matrix

b9 ¢ O_5 ...
o ¢ b3 ...
A= , 4.1
b 2 b3 by ... (4.1
seen as an operator on l,(H), has norm less than one. Put
n 3 fA ' n
g (1) Yo g
G_y | =d=-AAHTT 0], |4, =A% &, |, (4.2)
7 L:J S : N :
A ( a (A
501 (1) Bo 99
., =a-A"m'o|, |B_,| =Ald ]|, (4.3)
: | | g
and let
0 e o
al\) = Y} é;ag No,y(\) = Eﬁjﬁo N, 4.4
Jj==—00 j=0
0 L, . ) o .
BOY = X B85V 600 = L 855" .
j==00 j=0

Then the function g given by
g = BNIN T =aN) Iy LNET,

is the unique function g € Wy(T) such that g; = ¢; for j =0, llgMWIl <1 for
IN| =1, and (g1 —g"g)™"); = 0forj > 0.
Proof. Take ., 8, € and 9@ to be the Banach algebra Wy(T). Put

A =B, =€ =3% = {fEWyT)|f;=0,js0};

A =9% = {f EWyT) | f;=0,j

v

0}
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B_=€, ={f €Wy |[f;=0,j>0};
"dd=@d=ﬂH)'

One easily checks that the induced decompositions satisfy the desired algebraic structure as

described in the second paragraph of Section II.2. Our aim is to apply Theorem I1.2.2.

Let ¢ € [0,1]. First we show that / —€e2AA” acts as an invertible operator on [(H).

I €A
eA” I

on I,(H)®I,(H) is invertible. Let A denote the matrix A with the columns in the reversed

Since ||All < 1 the operator

order, i.e., we identify sequences (9 j)}".’_:o with sequences (& j)?=_°°. Put D, = diag
¢4 NN, - - - ) and 1.5)\ = diag ( * * - NI JM,I). Consider the operator valued func-

tion
o DY 0) (1 ) (Dr © N
) = 0 D, (A” 1 0 Dy’ o

Note that F(\) = Y \'Z;, where

i=—00
0 M,; 1 M,
z2,=2;= [0 0},i<o,zo= [M; 1}’
and
(.. 0ep; 0 0..0 O
.0 0 €;0..0
M. =

i 1.0 0 0 0..0 eo,
..0 0 00..00

L - - e e e
So the norm of the operator Z;, i # 0, on the Hilbert space [,(H)®I,(H), equals ¢ H¢,~ Il.

0
Since Y Il¢;ll < oo the function F belongs to the Wiener algebra Wi, s (T)-

j=—00
Further, F(\) is invertible for each |\| = 1. Using Theorem 1 in [11] we get that F~!
belongs also to the operator Wiener algebra of the Hilbert space I,(H) ®1,(H). Since
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- —l’ *
I €A Dy 0) [P O
eA” 1 ~ | o Dy F7™ D,

- -1
I eA o A
eA” I = X 4p

j==oo

we conclude that

where 3 [1a;ll < co. In fact,

j==oo

P, 0,
J
a;= [R, s;] : L(H) @ L(H) = 1y(H) ®ly(H),

where P;, R;, Q; and S; each have at most one nonzero diagonal. Because of this, 4 is
also a well-defined operator on /;(H)®!(H) and its norm as an operator on ! (H)®!,(H)
is at most ||P;[|+11Q; I +1IR; | +1IS; |l = 4lla;Il. Hence

-1
I €A
eA” I

is bounded as an operator acting in [[(H)®I,(H) since its norm is bounded by

4 ¥ lla;ll. 1t follows that I—€*AA" is invertible on [,(H).

j==oo

in (2.11) in Section II.2, acts in the following way. If A(\) = EAJ.)J belongs to &,

Note that in the present case the operator I —2Z= ., where = and = . are defined as
j=0

0 .
then B(\) = Y} B;N := (I —€2EE .)A is given by

Jj=-—00
Bix = [(I-®AA")(4;x)%0]; ,j = 0,—1,...,x € H. (4.5)

Since I—€e?AA" is invertible on [ ((H) we get that I—-e®5%, is invertible. Further,
1rd[(1—52EE* “lel= {U -—ezAA‘)“}oo is a positive definite operator on H. Analo-
gously, one proves that I —eZ.Z is invertible and that wq [ —e?E.E) " le] is positive
definite. Now we may apply Theorem II.2.2. By using the description of the operator

I —EX. given above (via equation (4.5)) and an analogous description for I —Z.% one

obtains the theorem. [

We call the strictly contractive extension g of ¢ in Theorem 4.1 the triangular
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extension of ¢. Thus a stictly contractive extension g of ¢ is the triangular extension of ¢ if
the j-th Fourier coefficient of g (I —g~g)~! is zero for j > 0.
0
THEOREM 4.2. Let ¢;, j = 0, be given operators in A H) with Y ||¢j || < oo.
j==oo

0 .
In order that the function $(N) = Y}, Né; has a strictly contractive extension it is neces-
j==oo

sary and sufficient that A, defined in (4.1), seen as an operator on ly(H), has norm less
than one. Assume that the latter condition is satisfied, and let a()\),B(N),y(\) and 6(\) be
defined by (4.2)-(4.4). Then each strictly contractive extension  of ¢ is of the form

YO = (@AM +BON(YWVEN+ON) LN E T, (4.6)

where h is an element in Wy (T) such that ||h(M)I| < 1, |[N| =1, and h;=0,j =0.
Furthermore, formula (4.6) gives a one-one correspondence between all such h and all

strictly contractive extensions y of f .

Proof. If y(\) = 3 N ¥, is a strictly contractive extension of ¢, then the matrix

i=—00
o]
[1// j- i] . (viewed as an operator on the Hilbert space of square summable doubly-
i,j=—00
infinite sequences of elements of H) has norm strictly less than one. But then A, being part

of this matrix, also has norm strictly less than one. Hence ||All < 1 is a necessary condi-

tion for the existence of a strictly contractive extension.

It remains to check that the conditions of Theorem II.2.3 are satisfied. Let .&/— @ be

oA B
as in the proof of Theorem 4.1. Then the matrix algebra # = [qg @J may be identified

with Wy e, (T). The latter is a *-subalgebra of the B*-algebra Cpq4(T), and hence all
the axioms are fulfilled (compare the paragraph preceding Theorem II1.3.3). Now we may

apply Theorem 11.2.3 and obtain the desired result. O
Theorem 11.3.4 yields the following maximum entropy principle.

0
THEOREM 4.3. Let d)j, Jj = 0, be given operators on H with Y, H¢,~ || < o0, and

j==eo

assume that the Hankel operator matrix

b9 -4 D2 ..
¢y d_p d_3 ...
b_y b3 d_y ... |’
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seen as an operator on l,(H), has norm less than one. Put

I
M, = [1 0 ] (I-A"A"1o]. 4.7
o .
Then for any strictly contractive extension y of the function ¢(\) = Y, N¢ ; the follow-
. Pt
ing inequality holds
Ad-y"Y) s MY, (4.8)

where A (I -y ) denotes the right multiplicative diagonal of I —y"y. Moreover, equality
holds in (4.8) if and only if ¥ is the unique triangular extension of ¢.

Proof. Make the same choices of subspaces as in the proof of Theorem 4.1. Since
M= Wyop(T) C Cyey(T), this algebra satisfies Axioms (A3) and (A4). Further-
more, the right multiplicative diagonal of / —g*g, where g is the triangular extension of ¢,
equals 50 in Theorem II1.4.1, which clearly is equal to M,~!. But then the theorem follows
directly from Theorem I11.3.4. [J

Using again the strictly monotone function "log det” for the matrix case the classical

maximum entropy principle (see [26]), which identifies the triangular extension as the

unique extension ¢ that maximizes the entropy integral
1% i0 6
—_ — igN* i
= _jr logdet (I —y(e'") " Y(e'*)do ,

appears as a corollary of Theorem 4.3.

With obvious modifications the results in this section carry over to the strictly contrac-
tive extension problem for operator functions in the Wiener class whose values are opera-
tors from a Hilbert space H into another Hilbert space H (choose = Wg(T),
B=€¢ = Wy g(T) and @ = Wy(T)).

For matrix Wiener algebras formula (4.6) appeared earlier in [1], [25] and [26] (see
also [20]). In the operator Wiener algebra the existence of a strictly contractive extension

under the assumption that ||A|| < 1, with A as in (4.1), was established earlier in [1].
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COMMENTS (Part A)

The results in this part are collected from the papers [66], [38], [39] and [40]. Chapter
1 is a rewritten version of the paper [66]. Chapter 2 contains the general results from the
papers [38], [39] and [40]. Chapter 3 contains the applications of the band method con-
cerning the finite operator algebra and the operator Wiener algebra from [38], [39] and

[40].
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PART B
MINIMAL RANK EXTENSIONS

In this part minimal rank extension problems are treated. It consists of Chapters 4 and

5. Chapter 4 concerns the matrix case and Chapter S the operator case.
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CHAPTER IV: MATRICES

This chapter treats the minimal rank extension problem for matrices. In Sections 1 to
5 the given part is of triangular type. More general patterns appear in Section 7. In Sec-
tion 1 a formula for the minimal lower rank is derived. Section 2 characterizes the case
when there is only one minimal rank extension. In Section 3 a description is given of the
set of all minimal rank extensions. Section 4 deals with the Toeplitz case. In Section 5 the
minimal lower rank of the lbwer triangular part of an invertible matrix is described in terms
of a lower triangular part of its inverse. In Section 6 the partial realization problem from
mathematical systems theory appears as a minimal rank extension problem of special type.

Section 7 discusses minimal rank extensions relative to general patterns.
IV.1. The minimal lower rank

Consider the following ”partially defined matrix”

_
4
Ay Ayp 7

o = ’ ' . (1.1

Ant Anz - o - A |

This chapter concerns the question how to fill in the unknown entries (denoted by ?) such
that the rank of the full matrix is as small as possible. In this section we derive a formula

for this minimal lower rank in terms of the given data.

Let us introduce some terminology. By a partially defined matrix we mean a matrix of
which some entries are specified elements of the complex plane C and the remaining

entries are free to be chosen from C. A set of matrices
A={A; | 1=j=is=n} (12)

where A;; is of size v;Xp; (v;,p; = 0), is called a lower triangular part. We identify
such a lower triangular part with the partially defined (block) matrix (1.1). A strictly

lower triangular part, where also the diagonal elements are not specified, appears when

n
pp=0andr, =0. LetB = (BU] be a block matrix, where Bj; is of size »; Xp ;.

ij=1

The block matrix B is called an extension of . if Bij =Ay;, 1=sj=si=sn. The
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minimal lower rank 4 ) of .« is defined to be the number
A9 := min{ rank B | B is an extension of .+ }. (1.3)

An extension B for which the minimum in (1.3) is attained is called a minimal rank exten-
sion of .

THEOREM 1.1. Let & = {Ay; | 1 =j =i = n} be a given lower triangular part.

The minimal lower rank of . is given by

n n—1
A = Y rank APP)— ¥ rank 4@ *1P) |
p=1 p=

where

Apy . Apg
APD = | s (1.4)

App oo Ay

Proof. We consider the partially defined block matrix (1.1) as a scalar matrix of size
NXxM, where N = Y v, and M = Y u;. Let c; denote the i-th scalar column of (1.1)
(i = 1,...,M). For a column ¢ of (1.1) we denote by (c), the specified (given) part of the

. p=l p=l
column c¢. For p = 1,...,n choose an index set J, C {1+ Eluj, - ’“1’+,E]“f} such
Jj= j=
that { (c;), |ieJ p} is a linearly independent set of columns and

span{ (c;), | i€J,} + MmAPP™D = ImAPP.

The symbol + denotes a direct sum. The matrix A"*® should be understood as the zero
matrix of size N X0. Note that #/, = rank A??)— rank A®?~D. Here and in the sequel
#1 stands for the number of elements of the set /. Choose arbitrary complex numbers for

the unspecified entries in the columns
n
{c;li€er:=UJ;}
j=1

The unspecified entries in the other columns of (1.1) can always be chosen in such a way
that these columns are in the span of { c; | i € J}, and hence ) = #/. On the other
hand it is obvious that for any choice of complex numbers for the unknown entries in the
colums { ¢; | i € J} these columns will be linearly independent. Hence 4.#) = #/. But
then



IV.1. The minimal lower rank - 105 -

ad)=# = L4,
=1

and the theorem is proved. [J

Note that the proof gives a way to construct a minimal rank extension. The row
analogue of this construction will now be stated explicitely.
Let r; denote the i-th scalar row of (1.1) (i = 1,...,N). For a row r of (1.1) we

denote by (r)g the specified part of the row r. Choose for p = 1,...,n an index set
p-l Pl

I, C {1+ Elvj, R ,vp+zlvj} such that { (r)), | i €1,} is a linearly independent
j= j=

set of rows and

span { (r,-); | i€ I} + ImAPHPT = 1 @27,

The superscript | denotes a transpose. The matrix 4™ should be understood as the
zero matrix of size OXM. Note that #/, = rank A®P)— rank A®*'P) and
n
E #Ip = AA). Choose arbitrary complex numbers for the unspecified entries in r;,
p=1

n
i €1:= UlI p- Let r be a row which still has unspecified entries. The specified part (r)
p=

of r is a linear combination of the corresponding parts of the rows r;, i € I. Let us denote

this as
i€l
Then the row r should be chosen as
r = Z)\iri.
i€l

All minimal rank extensions can be obtained in this way.
This construction of a minimal rank extension yields the following corollary.

COROLLARY 1.2. Let &= {Ay | 1 =j =i = n} be a given lower triangular

n
part. Let 1 =p,g =n. If B = [Bij] o is a minimal rank extension of 4, then
ij=

, n o gq
B = [B ij] e is a minimal rank extension of the partially defined matrix
i=p.j=
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pi - App ?
Agp o Agp oo Agy | (1.5)
A App oo Apg
n q
Conversely, if D = [D,-j ] ) ]isamim'mal rank extension of (1.5), then there exists a
i=p,j=
n
minimal rank extension B = [BijJ of 4 such that
ij=1
Bij=Dij’p éi §”,1§‘I =n

Proof. First assume that ¢ = n. The corollary states that if B is a minimal rank exten-
sion of (1.1) and we leave out rows from the top in B, then the remainder is a minimal
rank extension of the corresponding given part. This as well as the converse statement fol-
lows directly from the construction given above. The same we can do with columns which
we leave out from the right (the p =1 case). But then we may also perform these reductions

one after the other and obtain the corollary. [

As one may expect, Corollary 1.2 does not remain true when one deletes rows and

columns at random. For instance, consider the following two partially defined matrices:

brd) (ol 16

The matrix on the left hand side in (1.6) is extended to a minimal rank extension by choos-
ing 7 = 1, but this is a wrong choice when one only considers the last two columns. This
shows that the analogue of the first statement of Corollary 1.2 fails in this case. The matrix
on the right hand side in (1.6) is extended to a minimal rank extension only by choosing
? = 0, but when one starts with a minimal rank extension for the last two columns one

could have chosen the unspecified entry differently.

As we shall see later (in Section IV.6) the minimal rank extension problem for
matrices is related to the notion of partial realization, which was introduced by R.E. Kal-
man in [51] and [52]. The minimal lower rank defined here may be viewed as a generaliza-
tion of the rank of a partial behaviour (Hankel) matrix appearing in [52]. The main Lemma
in [52] (which in our terminology concerns the case n = 2, v; = 1 and g, = 1) may be
viewed as a first step in the direction of the construction of a minimal rank extension in this

section.
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IV.2. Uniqueness

Let &= {4y | 1 =j si = n}be a given lower triangular part. We say that « is
lower unique when .« has only one minimal rank extension. The partially defined matrix on
the right hand side of (1.6) provides an example of a lower triangular part that is lower

unique and the matrix on the left hand side of (1.6) does not.
THEOREM 2.1. Let /= {A;; | 1 =j =i = n}, where A;; is of size v;Xu;.
Assume v| > 0 and p, > 0. Then the following are equivalent.
(i) A is lower unique;
(i) rank APP) = rank AP*!1P) = rank 4@*TPHD H =1, n-1;
(iii) the numbers rank AP, 1 = g =p = n,areall equal;
(iv) rank 4,; = A9).
Here A®D js defined in (1.4) and A9 is the minimal lower rank of A..

Note that for the case », = 0 or u; = 0 (i.e., when the given part is strictly lower tri-
angular) Theorem 2.1 states that .« is lower unique if and only if A.®) =0, or,
equivalently, when all 4;;, 1 = j =i = n, are zero. Of course, this case is of minor

interest.
We shall use the following lemma.

LEMMA 2.2. Let B be a matrix. Then there exist an injective matrix F and a surjec-
tive matrix G such that B = FG. In that case rank B = rank F = rank G. Moreover, if
{13’ ,G} is another pair of matrices satisfying the above conditions then there is an invertible
matrix S such that F = FS and G = S7'G.

Proof. The first two statements are evident, so let us prove the last statement. We
have B = FG = FG with F and F injective and G and G surjective matrices. Let G(™V
and GV be right inverses of G and G, respectively, and let F(~V and FV be left
inverses of F and F, respectively. Define S := GGV = FCVYF  and

A A A

T := FCVF = GGV, Then ST= FUDFGGPV= FCUVEGGD = 1. In the same
way TS = I. Furthermore, FS = FGG(™VY = FGG("D = F and G = TG, proving the
lemma. O

Proof of Theorem 2.1. Clearly, rank A,,; <= rank A?% <= 4,1 =g =p = n.

So (iv) implies (iii). The implication (iii) = (ii) is also trivial. Let us prove (ii) = (i).

n n

and C = (CUJ be minimal rank

Assume that (i) holds. Let B = [BUJ .
i ij=

=1
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extension of . Note that Theorem 1.1 implies that
rank B = rank C = o) = rank AD = rank 41,
Write B = FG and C = FG with F and F injective and G and G surjective. Denote

Fy

Note that

n
=AM = row (Dnj]jﬂ N

)

n

F,G = row (an]
. ji=1

Since G and G are surjective, we get that rank F, = rank A®™ = rank F,. But then
F, and F n are injective, and hence by Lemma 2.2 there exists an invertible matrix S such

that F, = F, S and G = S™'G. In particular, G, = $~!G,. Furthermore,

FG, = A" = FG,| = FSG,. (2.2)
Since rank F = rank A") and F is injective, we get that G, is surjective. But then

(2.2) gives that F = FS. Hence B = FG = FSS~'G = C, proving the lower uniqueness
of .

Assume that (ii) does not hold. Then at least one of the sets J,, ... ,J, and
1y,...,I,_; introduced in Section 1 is not empty. Thus the construction in Section 1
shows that there are entries in (1.1) which are free to choose in the complex plane when
making a minimal rank extension of (1.1). (Here we use that v ,u,, > 0.) But then .« is

not lower unique. This proves (i) = (ii).

We finish by proving the implication (ii) = (iv). Assume that (ii) holds. Note that
Theorem 1.1 gives that A.#) = rank A(’””),p = 1,...,n. Suppose that rank 4,; < 4A4).
Then rank A,; < rank A®??) forall 1 = p = n. Consider the partially defined matrix
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All ? see ?

Ag_iy 2 .. 2 | 23
A,y A,y ..o Ay,

By Theorem 1.1 the minimal lower rank of (2.3) is given by
rank A"D + rank 4™ — rank 4,,; > rank A0V = g9 .

Since any extension of . is an extension of (2.3), we get a contradiction. [J

Note that in the case when ./ is lower unique one may construct a minimal rank exten-

sion of .« as follows. Let S; be such that

Ail = SiAlll ,i = 1,...,". (2.4)

. n n
Then B := col [S,-] row [A ,,i) _ is the unique minimal rank extension of ..
1

n

Indeed, since rank 4,; = rank col (A“] oy there exist Sy, ... ,S, such that (2.4)
i=

holds. Furthermore, rank B = rank 4" =/A.). Finally, ifj < i,

[1 _Sl} Ail AU 0 Al]-SlAn]
0 I Anl Anj - Anl Anj

has rank equal to rank 4,;, and hence 4;; = §;4,;.

1V.3. The set of minimal rank extensions

In this section we describe the set of all minimal rank extensions of a given lower tri-
angular part. Before stating the main result, let us consider the following example. All

minimal rank extensions of

O -
- O

are the matrices

Xy Xp x1x3+x2
1 0 X3 ,
0 1 1
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where x, x, and x3 are complex numbers which one can choose freely. It is clear that
there is a one-one correspondence between the extensions and the triples (x,x,,x3). More
precisely, in this case the set of minimal rank extensions is a manifold diffeomorphic to c3.

THEOREM 3.1. Let & = {A;; | 1 = j i = n}, where A, is of size v;Xp . The

set () of all minimal rank extensions of A is a manifold diffeomorphic 1o C*, where

n-—1 n—-1 n
k=k(#=Y t”i(9j+l,j+l—9j+l,j) + Y Y wilejj—ej+1 ) (3.1

j=li=1 j=li=j+1
n—In-1
- Y X(eji—ejs1,))@isnit17 Qi)
j=ti=j
and
Apl . qu
Qg = rank A®9 = rank | : :

Ay oo Apg

More precisely, there are polynomials p; : C* = C such that the matrix polynomial

P = [p,.j] Y e o

i=1,j=1

is a diffeomorphism. Moreover, the polynomials p;; may be chosen such that the variables

x,, r = 1,...k, appearing in the polynomials p ;;, have an exponent of degree 0 or 1.

ij?

Proof. Choose index sets Ip and Jp, p = 1,...,n as in Section 1. Choose for the

n
unspecified entries in c¢;, i € J := UlJp, arbitrary complex numbers. Since all the
p=

columns of (the partially defined matrix belonging to) .« can be made to be in the span of
{c; | i €J} one obtains a partially defined matrix o~/ with the same minimal rank.

Choose now arbitrary complex numbers for the still unspecified entries in r;,

n

ie€r:= Ip. Because of the choice of the rows r;, i € I, and since the minimal rank
p=1

of . equals A#) = #I, once again one does not increase the minimal rank. Suppose that

we have chosen arbitrary complex numbers for these k (.« entries (referred to as the k ()

variables) in these columns and rows.

Introduce the following partially defined matrix
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. ,
By By A

By By By ?
B = ,
B,, B, B, ... B,
(Bn+10 Bu+11 Brsrz - - - Buiin)
n+l1 n+l1
where col [Bw] __ consists of the columns c¢;, i € J, and col [Bipj consists of
= 1=
p—1 p—1
the columns ¢;, i € {Il+ Y p;, ... ,up+ Y u;}\J, forp = 1,...,n. Analogously, row
i=1 i=1

n n
[BnHJJ j=0 consists of the rows r;, i € I, and row [Bij consists of the rows r;,

p—1 p=1
i €{l+yv;,...,vy,+ Y v;\, for p=1,.,n. Note that the order of scalar
i=1

i=1
columns or scalar rows within one block column or block row, respectively, is irrelevant.
We have that A B) = AA).

Let us prove that rank B, ;o = A&. For this consider the 2X2 extension problem
Cpy ?
€= ,
Cun Cx
n

N C21 = Bn+1,0 and C22 = Trow [Bn+l,iJ ; ]. Now

n

where Cy; = col {Bioj

i=

Cn
rank [CmJ =#] = A = #I = rank [CZI C22].

Since € has a extension of rank equal to %) = A, it follows that { ) = 4+ and

hence

Cn
rank B, ,, o = rank Cy = rank [C2l} + rank (C2l C22] —A6) = 4AA).

We may conclude that for all fully specified submatrices of % containing B, ;o the
rank is equal to A#) = AB). Hence, following Theorem 2.1, & has a unique minimal
rank extension, and, furthermore, by the remark at the end of the previous section the unk-

nown entries Bi]-, 1 =i <j = n,are given by
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. B,
B; =S, Byii, |’ 3.2)
where §; is a solution of
BnO Bnl
(Bio By) =S, By Buont |- (3.3)
BnO Bnl

Since rank B, ., = 44 = rank [ J , we get that (3.3) is equivalent

Bn+l,0 Bn +1,1
with

I BB, i1 0 0
[Bio B”J - si 0 I Bn+l,0 Bn+],l )

Since we know that (3.3) is solvable, we get that

I B,oByio i
Silo I = [* BiOBn+l,0] ,
where * may be chosen arbitrarily. Let us choose O for *. Then

§; = [0 BB _411,0} (3.4

With (3.2) one concudes that the entries of B;; = B,-OB,,‘+'1'OB,,HJ, l=i<j=n,are
expressed in terms of the k (.#) variables via a rational expression. Since the k («#) variables
may vary over the whole complex plane, these expressions should in fact be polynomial.
Using the fact that each x,, r = 1,...,k(4), appears at most once in the matrices B,

B, .10 and B, ;, we get that each scalar entry in Bj;, being a linear combination of

ij>
determinants of submatrices of B, . o, does not contain powers of x, higher than one. [J

Note that for »; > 0 and p, > 0, the number k() = 0 if and only if

Qii = Qi+l = Qi+1,i+1 »i=l..,n—1,

which should be the case because of Theorem 2.1.

Let bi}- denote the (i,j)th scalar entry of B. Since p,j(C") is either all of C or a sin-
gleton, the set { b;; | B € .#() } is either the whole complex plane or a singleton.
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IV.4. The Toeplitz case

This section concerns minimal rank extension problems for lower triangular parts with
a Toeplitz structure. The extension will also be required to be Toeplitz. By a Toeplirz
(strict) lower triangular part we mean a set 7= { A | 0 =j <i = n} of matrices of
sizes »Xu such that 4; ., ;,; = A; for all admissible indices (i,j). We shall also write J
as I = {Ap | p = —n,...,—1}, where AP 1= A—p,O. The partially defined matrix associ-
ated with Jis

(2 ?...??}
A_, ? ... ? 2

A, A_, 2 2

. (4.1)
A gy A_pyg o 22
[ Acn Apiy o Ay 2

J

By adding a empty first column and an empty last row one may see & as a lower triangular

part of the type considered in (1.2). Therefore we may speak of a (minimal rank) exten-
n

sion of & and the minimal lower rank of 4. A block matrix B = [BUJ ij=0 is called a
Toeplitz minimal rank extension of & if B is a minimal rank extension of Jand in addition
B is Toeplitz, i.e., B;,, ;,; = By; for all admissible indices (i,j). The set of all Toeplitz
minimal rank extensions of & will be denoted by A ;(F). At first sight it is not clear
whether M (F) #+ @. The next theorem shows, among other things, that M (F) #+ O.
The latter result (among all minimal rank extensions of a Toeplitz lower triangular part
there is a Toeplitz one) may be deduced as well from the minimal degree formula in [37],

and is suggested in [52].

THEOREM 4.1. Let = {AP | p = —1,...,—n} be a Toeplitz lower triangular
part, with A, of size vXy. Then M1(T) is a manifold diffeomorphic to C™, where

n
m = m(‘q) = E(Qp,p_Qp,p—l)(Qp,p_Qp+1,p): (4'2)
p=1
withforl = q =p =n,
-p - A_p+q_1

= rank A®9 = rank : : ,
Ay o A_yig

Qpq
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and @,0=0=¢,,,,. More precisely, there exist polynomials p; :C" = C,
l =i s(n+l)r,1 £ j =< (n+1)p, such that the matrix polynomial

(n+)v (n+Dp m

is a diffeomorphism.

We shall not prove Theorem 4.1 in detail, but give a procedure to construct all Toe-
plitz minimal rank extensions which explains along the way the main idea of the proof.

To describe the construction, we view (4.1) as an (n +1)» X(n +1)p matrix of which
some entries are specified (the ones in 4,, p < 0) and some are unspecified, i.e., these
entries are free variables over C. As in Section IV.1 let ¢; denote the i-th scalar column
and r; the i-th row of the (n +1)» X(n +1)u matrix. The specified (given) part of a column
¢ or row r we denote by (c)g and (r)g, respectively. Choose an index set J; C {l,...,u}
such that { (c;), | i € J} is a basis for Im A(D. Furthermore, choose inductively for
p=2..,n an index set J, C {(p—Dp+l,...,pp} such that J,—p(:=
{i-nl|je€ I CJpops {(c)), | i €J,} is a linearly independent set of columns

and
span{ (c;), | i€J,} + MmAP?™D = InACP,

So compared to the sets J,, that we obtained in Section IV.1, these sets J, have the addi-

tional property that J,—p C J,_,. It is possible to choose Jy, ... ,J, in such a way

n
because 7 is Toeplitz. Next we make index sets I,, p = 1,...,n, for the rows. Choose
I, C {nv+1,....(n +1)»} such that {(r,-)gT | i €1,}is a basis for Im A@MT | Rurther-
more, choose inductively for p = n—1,...,1 an index set I, C {pr+1,... ,(p+1)r}

such that I, +v C I, .y, { (r)), |ie 1,} is a linearly independent set of rows and
span{ (r)T | i € 1,} + ImA®HPT = Im4@PT.

In [52] (see also [12]) a similar procedure of picking out column and row indices is

described in the setting of Hankel matrices.



IV.4. The Toeplitz case 'S

Let us make the following picture of a block matrix:

NN
NN\

Y

Figure 1

The grey strict lower triangular part corresponds to the specified part. The cross-hatched

n
columns and rows correspond to the columns c¢;, i €J := UJp, and rows r;,
p=1
n
i €1:= U]I p- Any (not necessarily block Toeplitz) minimal rank extension can now be
p=

cbtained by .*hoosing freely the entries in the cross-hatched part in the upper triangle. But

n
we want to find a block Toeplizz minimal rank extension B = [Bj_,-J o of (4.1). Let
iJj=

us start by constructing B. For this we look at all the places where B should appear and
we consider only those entries of B which are free to choose in each of these places. For
those entries the choice is free. Make an arbitrary choice for these entries. We get the fol-

lowing picture for B,.

Figure 2

The cross-hatched part stands for the entries which we have just chosen. We claim that the

rest of B is uniquely determined. Let us illustrate this on the 4 X4 example
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By B, B; B,
B_, B, B, B,
B_, B_, By B, |’
B_,B_, B_, By

B =

which corresponds to Figure 1. Partition B as a 4 x4 block matrix suggested by Figure 2.

4
So By = {EUJ » and the matrices Z,;, X3;, X4, 35, X4 and L 44 correspond to

ij=1
the cross-hatched part. Note that I, is of size (v—#I3)X#J5, L, is of size
(BI3—#1) X(#]y—#]3), L33 is of size (#I,—#1\)X(#J,—#J,) and I, is of size

#1,X(p—#J ). Now consider the first block column of B and leave out the »—#I, scalar
3 4

rows corresponding to (E ij] . So one has
i=lj=1
(241 }342243] Lu L Ly
B_, B BY
B_, = 1BY BY |’
B_, B B
with £ 4, unspecified. Since
£
1
B BY B
rank BY = rank [BY | = rank |B_,| =#/,,
B(_l; B(_lg B—3

Theorem 2.1 yields that a minimal rank extension for this part is uniquely determined.
Thus T 4, is uniquely determined. Now omit the first block row, and repeat the reasoning

for the first two block columns of

B_, B, B, B,
B = B_z B—l Bo Bl
B_, B_, B_, B,

This determines [E 13 234] . Proceeding this way we see that all {£;;} are uniquely
isj

determined. Thus when making a Toeplitz minimal rank extension B all the entries in B,

in the cross-hatched part in Figure 2 are free to choose and all other entries of B are



IV.S5. Minimal lower rank and inverses - 117 -

determined by that choice. This principle also works for the construction of the other B,
p 2 0. By counting the number of entries which are free to choose one finds the number
m(J).

COROLLARY 4.2. Let n =z 2. The Toeplitz lower triangular part & has a unique

Toeplitz minimal rank extension if and only if for some p € {1,...,n —1} we have that

rank A®?) = rank AP*T1P) = prank AP TP FD, (4.3)

Proof. If A J) = 0 the statement is trivial, so suppose that A7) # 0. The situation
that & has an unique block Toeplitz minimal rank extension corresponds to the situation
when m(Z7) = 0 (use Theorem 4.1). Since the numbers Qqq Qqq-1= #Jq form a des-
cending sequence, and the numbers o g.9 —@q+1,4 = #I, form an ascending sequence, we
have that m(F) =0 if and only if max{q | Qg4 Cqq-1%* 0} <
min{q | Qg4 Qq+1,4 * 0}. If this is the case, one may choose in (4.3) the integer p
equal to max{q | Qg4 Qq.4-1 * 0}. Conversely, if (4.3) holds, then @, , = €p11,p

= Qp+lp+1 and
max{q | Qq,q_Qq,q—l #* 0} =p < mln{q | Qq,q_9q+|,q * 0} a

Note the difference between this result and the uniqueness result in Section IV.2,

where an equation like (4.3) is required for all relevant p .

Since C is an algebraically closed field the set p;;(C™) is either the whole complex
plane or a singleton. If a; denotes the (i,j)th scalar entry of a matrix 4, then the set

{a; | A € #;(F) }is either a singleton or the whole complex plane.
IV.5. Minimal lower rank and inverses

In this section we show that the minimal lower rank of the lower triangular part of an
invertible block matrix may be computed in terms of the minimal lower rank of the strictly
lower triangular part of its inverse.

n

THEOREM S.1. Let T = Ty | =~ be an inverible block matrix with T; of size

1j=1
v;Xp;. So Yov; = You; =:N. The inverse of T is partitioned according to the partition-

n .
ingof T: T™! = [Sij] oy where S;; is of size p; Xv;. Put
,)=

jllsisisn},#={S;|1=j<iz=n} 5.1
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Then

AT)+4&F) = N.

A B
Proof. If [C D} is of size (r;+ry) X(s;+s,) and

8- (en)
v 8J = lcD
is of size (s;+s,) X(r;+r,), then from Theorem 1.1 in [9] we obtain that

rank C +s, = rank y+r,.

Applying this on the identity

| * * - * *
I = T@9 =* = s@+Lp=1) x|

n n
rank T® O+ Y3 pu; = rank S@*1P"D4 35,
j=q+1 j=p

we obtain that

Here T®-%) and S®+9) are assumed to be zero when p or g is not in {1,...,n }. But then

n @) n—=1 n n—1 @+1p-1) n n
2 rank TPP)+ %5 33 p; = ¥ rank SPTP7U+ 37 Yy (5.2)
p=1 p=1j=p+1 p=2 p=1lj=p
and
n—1 n—1 n n—1 n—-1 n
Yy rank TCHPI 4+ 5% 35 40 = ¥ rank SCHIP LT Yy (5.3
p=1 p=1j=p+1 p=1 p=1j=p+1

Subtracting (5.3) from (5.2) gives together with Theorem 1.1 that

A7) = - AN+L v, ,

j=1
and the theorem is proved. [J

In the special case when S;; = 0 for all 1 = j <i = n Theorem 5.1 states that
A J) = N. In other words, in that case changes in the strict upper triangular part of T does
not spoil the invertibilty of T. This result may also easily be derived by using Kramer’s

rule. A more interesting corollary of Theorem 5.1 concerns the following result of E.
Asplund [4].
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) n
COROLLARY 52. Lea T = [tij] . be an invertible n Xn scalar matrix and
iJj=
n
denote T™! = [Sijj et Let p € {0,...,n—1}, and let F denote the lower triangular
1,]=
part T= {1, | 1=j <i+p = n}. Then &F) = p if and only ifsy=0,j<i-p,
and Sj+pj * 0,j=1,...,n—p.

Proof. First let p=0. Then A7) = 0 if and only if T is upper triangular, but this
holds if and only if S is upper triangular, and since S is invertible its diagonai elements
can not be zero. Next, let p € {0,...,n—1}. View T as a (n —p +1) X(n —p +1) block
matrix where the first p columns of T and its last p rows are taken together. In S this
corresponds to taking together the first p rows and the last p columns. Applying now

Theorem 5.1 we get that £ J) = p if and only if the partially defined matrix

Sp+1,1 ?
Sp+2,1 Sp+2,2
Snl Snz cee sn,,,_p

has minimal lower rank equal n —p, which is precisely its order. Use now the p =0 case to

see that this can only happen when s;; = 0, j < i—p and s +#0,j=1,.,n—p. 0O

J+p.J

With Corollary 5.2 together with its upper triangular analogue (which one may obtain
by reversing the order of the rows and columns) one can describe those scalar matrices
whose inverses are band matrices. We will not do this here since it would involve new

notations. In this way one may recover results from [8] and [60].
IV.6. Connections with the partial realization problem

Let M, -+ ,M, be a given finite sequence of »Xu matrices. A system
L = (4,B,C) of matrices, where A ,B and C are matrices of sizes I X/, I Xu and v X/,

respectively, is called a realization of My, - - - M, if
CA'"'B=M;,i=1,.n

The space C' on which A acts is called the state space of the realization L. If
Z=(,B,C) is a realization of M, - ,M, and S is invertible, then
(S*‘AS ,S7'B ,CS) is also a realization of M, - + -+ ,M,, which is called similar to the
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realization . Note that similar realizations have the same state space dimension. Follow-
ing [37], we call the smallest possible state space dimension of a realization of
M, - ,M, the degree of M, - -+ - ,M, A realization of M,, - + - ,M, is called
minimal if its state space dimension is equal to the degree of M, - + - ,M, . The problem
of partial realization, which was introduced by R.E. Kalman in [51] and [52], consists of

finding all minimal realizations of My, - + + ,M,,.

Let us make the connection with the minimal rank extension problem considered in

Section 4. Consider the partially defined matrix

( ? 2 ? 27

Mn 2 2

Mn—l Mn
: o (6.1)
M, My .. ? ?

M, M, .. M, ?

J

There is a 1-1 correspondence between the set of non-similar minimal realizations of
M,, - - ,M, and the set of Toeplitz minimal rank extensions of (6.1). In one direction

the correspondence is simple: If & = (4 ,B,C) is a minimal realization of My, - -+ - ,M,,

. n
then the matrix (CAJ “‘*"B] is a Toeplitz minimal rank extension of (6.1), and

ij=
similar minimal realizations give the same Toeplitz minimal rank extension. The other
direction is more involved. For this we refer to [12] and [37], where instead of the Toeplitz

the Hankel version is considered. Thus Theorem IV .4.1 yields the following corollary.

COROLLARY 6.1. Let My, - - - ,M, be given vXp matrices. The set
©O
MM, - - - M) C J]C"**, defined by
i=1
. (o)
{(CA“’B). . | (4,B,C) is a minimal realization of M, * + * ,M, },
i=

is a manifold diffeomorphic to C™*. Here M is the Toeplitz lower triangular part
corresponding to (6.1) and m(A#) is defined in (4.2). The diffeomorphism acting from
Cc™“* onto MM,, + + - ,M,) may chosen to be a polynomial.

The case when there is only one minimal realization (up to similarity) corresponds to
the case when m(.#) = 0. With Corollary 4.2 one sees that this happens if and only if for
some p € {l,...,n—1}
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rank MPP?) = rank M@ *1P) = papk M@ 1P D,
where

M M

n—p+1 - n—p+q

M(P»q) =

M, .. M,

This is a somewhat other version of the characterization of uniqueness of minimal realiza-

tions (up to similarity) given in Theorem 2.1(iii) in [12].
IV.7. General patterns

Up to now we only considered minimal rank extensions for partially defined matrices
with given entries in a triangular form. In this section we consider the case when the given
entries are not necessarily located in a triangular part. Let us introduce some notations. Let

J be a pattern, i.e., a subset of {l1,...,n}x{l1,....,m}. Let Ay, (i,j) € J, be given block

n m

matrices of size v;Xp;. We call a block matrix B = [B,-j} , with B;; of size

i=1,j=1
v;Xu;, an extension of &= {A; [ (i,j) €J} if By = Ay, (i,j) € J. The minimal
rank of « is defined by

A ) := min{ rank B l B is an extension of « } , (7.1)

and all extensions of . which attain the minimum in (7.1) are called minimal rank exten-
sions of /. We shall call the pattern J triangular if there exist permutations ¢ on {1,...,n}

and 7 on {1,...,m} such that
Tori= {(a(),7()) | G.J) € T}
has the property that (i,j) € J,, implies
{kr)y |isksn,lsrsj}cCl,.

Since the minimal rank extension problem does not change when one permutes rows and
columns, Theorem 1.1 gives a formula for the minimal rank in the case that J is triangular.
In fact, in that case the minimal rank is determined by the ranks of certain fully specified
submatrices. The following example shows that for a general pattern the number A %)

depends, in general, upon more data.

Consider the following partially defined matrices
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711 711
r21],|1 21 (7.2)
1172 1272

In both matrices all fully specified submatrices have rank 1, but the matrix on the left hand

side in (7.2) has minimal rank 1 while the other has minimal rank 2.

The question arises for which patterns the minimal rank is determined by the ranks of
fully specified submatrices. Let us be more precise. We call R C {1,....,n}x{l,....m} a
rectangular pattern if R is of the form R = IXI. A pattern J is called rank determined if
for given & = {4; | (i,j) €J} and o = {/i,-j | (i,j) € J}, with Ay and “i\ij of size

viXuj, the minimal ranks 4.) and c(Jd) are equal as soon as

rank (A,.j] = rank ["i\uj
(i.)ER (i.J))ER

for all rectangular patterns R C J.

A convenient way to describe matrix patterns is via bipartite graphs. Given a pattern
J, the corresponding (undirected) bipartite graph G(J) has vertices
vio. .Uy, .o up ), and (v;,u;) is an edge in G(J) if and only if (i,j) € J. A
bipartite graph G is called chordal if there are no minimal cycles of length = 6. In a
bipartite graph all minimal cycles have even length. See, e.g., [44] for further properties of
chordal bipartite graphs. Note that the bipartite graph corresponding to the pattern of the

partially defined matrices in (7.2) is not chordal.

THEOREM 7.1. If the pattern J is rank determined, then the corresponding bipartite
graph G(J) is chordal.

Proof. Suppose that G(J) is a 2k-cycle, k = 3. Applying a permutation and leaving

out fully unspecified rows and columns a partially defined matrix with pattern J looks like

r b
al bl 2?2 ... ? ?
? an b2 ? ... ? ?
. (7.3)
27 2 7 . agoy by
b, ?2 ?2 ? .. ? a
- k k J

Let a;,b; be non-zero numbers. Then the ranks of all fully specified submatrices of (7.3)
are equal to 1. On the other hand one easily checks that the minimal rank of (7.3) is 1 if
TTa; = T1Ib; and 2 otherwise. Thus J is not rank determined.
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Suppose that G(J) is not chordal. Then G(J) contains a 2k -cycle, for some k

1%
(98]

This means that any partially defined matrix corresponding to J contains a submatrix as in
(7.3). Choosing the given entries outside this submatrix equal to 0, one may use the same

reasoning as above in order to show that J is not rank determined. [J
It remains an open question whether the converse of Theorem 7.1 is true.

CONIJECTURE 7.2. Let J be a pattern for which the corresponding bipartite graph is
chordal. Then J is rank determined. Moreover, if & = { A4 | (i,j) €J }isa given part,

then
ad) = max /({4 | G.)) €T}, (7.4)

where the maximum is taken over all triangular T C J.
Note that (7.4) is true if = is replaced by =.

The conjecture would, for instance, imply that the minimal rank of

(> ¢ o) 09

is equal to

B
rank [C] +max { rank [A B] — rank B , rank [C DJ — rank D }.

The latter statement is indeed true. To see this put r; = rank [A B] — rank B and
r, = rank [C DJ — rank D. Suppose r; = r,. Then select r; linearly independent
colur‘nnS in A which span together with Im B the image of [A BJ . Replace the
corresponding columns in the (2,1) entry of (7.5) by the r, linearly independent columns
from D that together with Im C span Im (C DJ . Now all the columns in D are

linearly dependent of the columns on the left of D in (7.5). Thus it follows that the

A B
minimal rank of (7.5) is equal to the minimal rank of [*7 CJ , where * denotes the

B
columns we just filled in. The minimal rank of the latter is equal to rank [ CJ +ry.

More evidence for the correctness of Conjecture 7.2 may be found in [14].
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CHAPTERYYV. -TRIANGULAR OPERATORS

This chapter concerns minimal rank extensions of operators which act on infinite
dimensional Hilbert spaces and are triangular relative to chains of orthogonal projections.
Section 1 presents the main results for the case of finite chains. Preliminaries on lower tri-
angular parts of an operator relative to arbitrary chains of projections appear in Section 2.
In Section 3 formulas are given for the minimal lower rank. In Section 4 the case when
there is only one minimal rank extension is characterized. Section 5 presents a construction
to obtain all minimal rank extensions. In Sections 6 and 7 the results are specified for
semi-infinite operator matrices and for kernels of integral operators, respectively. Section 8
treats minimal rank extensions of difference kernels and in Section 9 the connections with

systems theory are made.
V.1. Finite chains

Let Z an& Y be separable Hilbert spaces over C, and let #= {P,, * + *+ ,P,} and
2= {Qq, * * *,Q,} be finite chains of orthogonal projections on Z and Y, respectively.
See [41], Section 1.3, for the definition. We do not assume that & and 2 are bordered,
i.e., #and 2 are not required to contain the operators 0 and /. We define the lower tri-

angular part of T relative to the chains #and 2 to be the operator

n
AT;#2) := (I-QyTP, + E(I—Qj~1)T(Pj_Pj—l)' (1.1)
j=2
Note that in formula (1.1) the projections Py and Q, do not play any role. If #and 2 are
bordered (and thus P, = I and Q, = 0), then (1.1) can be rewritten as

n
AT;2,2) := R U-Q;_pT(P;—-P;_p =
j=1

= Zn: f:'(Qi-Qi—l)T(Pj_Pj—l)-

The operator A T;% 2) may be represented as a lower triangular operator matrix. To see
this, put Zg = Im Py, Z; = Im (P;—P;_)) (i = 1,...,n), Z, ;= Im (I-P,), Yy =
ImQy, Y, = Im(Q;-Q;-) (i =1,.,n),and Y, .,y = Im (/-Q,). Then

n+1

n+l1
Z=@®Z ,Y=0Y, (1.2)
i=0 i=0
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Decompose T = [TUJ :;:10 relative to the decompositions in (1.2) of Z and Y. Then
) 0 0 0 .. 0 0 0)
Tg Ty, 0 o .. 0 0o o
Too Tay Toy O .. O 0 0
AT, P2 = . . . . . . . .. (1.3)
Tyo10 Tootg Touoi2 Tooig oo Toogpr 0 0
Tn,O Tn,l Tn,z Tn,3 Tn,n—l Tn,n 0
Tn410 Tnwrg Tovr2 Towrs o Tovin-1 Tovin O

The operator T : Z — Y is said to be of finite (#, 2)-lower rank if there exists a finite
rank operator K : Z — Y such that AT;#2) = AK;#2). In that case K is called a fin-
ite rank extension of AT;% 2). Note that T is of finite (£, 2)-lower rank if and only all
the T;; appearing in the representation (1.3) are of finite rank, which in turn is equivalent
to saying that AT ;% 2) has finite rank. The minimal (#,2)-lower rank of T is by defini-
tion the smallest possible rank of a finite rank extension of AT;# 2). In other words, the
minimal (£, 2)-lower rank AT;%,2) of T is given by

AT;# 2) := min{ rank K | AT, #2) = AK;PD}. (1.4)

All K’s “or which the minimum in (1.4) is attained are called minimal rank extensions of
KAT;#2). The operator T is called (& 2)-lower unique when HAT;%# 2) has only one

minimal rank extension. We have the following theorems.
THEOREM 1.1. Let T:Z—Y, and la &#={Py '+ ,P,} and 2=

{Q¢, * * * ,0,} be finite chains of orthogonal projections on Z and Y, respectively.
Assume that T is of finite (#,2)-lower rank. Then

AT;#,2) = ¥ rank -0, TP, — ¥ rank (I-Q,)TP, . (1.5)
p=1 p=1

Proof. We use the decompositions (1.2) and the representation (1.3). If Z and Y are

finite dimensional, the theorem follows directly from Theorem IV.1.1. For the general

case make decompositions

Z.

4

=zMez® .Y, =YyVeorP,i =0,.,n+1,

such that Z{" and ¥{" are finite dimensional and relative to these decompositions 7; is of
*
the form {0 OJ . Since all T;; in (1.3) are of finite rank, such decompositions exist. But
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then the theorem follows immediately from the finite dimensional case. OJ
An alternative proof of Theorem 1.1 may be found in [65].

THEOREM 12. Lee T:Z—Y, and laa P={Py ---,P,} and
2= {Qq, * * * ,Q,} be finite chains of orthogonal projections on Z and Y, respectively,
with P, = I and Q, = 0. Assume that T is of finite (#,2)-lower rank. Then the following

are equivalent.
(i) Tis (# 2)-lower unique;

(ii) the operators
I—-Q;_PTP; ,i =1,...,n, (1.6)
U-Q)1P; ,i =1,...,n-1, (1.7

all have the same rank;

(iii) the operators

(I-Qj)TPi,l =i =j+l

IIA
B

all have the same rank;
(iv) rank I -Q, TP, = AT;#,2).

Theorem IV.2.1 is the finite dimensional version of Theorem 2.1. Theorem 1.2 will
follow as a special case of Theorem 4.1, and will not be used before. Note that the opera-
tors in (1.6) and (1.7) are exactly the ones which appear in the formula for the minimal

lower rank in Theorem 1.1.

V.2. Arbitrary closed chains

2.1. Lower triangular parts and minimal rank extensions. Let Z and Y be separ-
able Hilbert spaces over C, and let and 2 denote closed chains of orthogonal projections
on Z and Y, respectively. Let: — P, and ¢t — Q, be parametrizations (see [41], Section
V.1) of & and 2 defined on the same closed subset A of the extended real line
RU{—o0,0}. We shall refer to A as the parameter set of #and 2. We do not assume
that the chains #and 2 contain the operators 0 and /. For a closed subset A of A we put
#,=1{P, |t €A} and 2, = {Q, | +t EA}. Note that also #, and 2, are closed
chains on Z and Y, respectively, with parameter set A. A finite subset

{ogery, © v e, p,a,} of As called a partition of A if a; < a; (i <j), @g=minA
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and o, = max A. Obviously, any partition of A is a closed subset of A.

For a partition 7 of the parameter set A the operator AT;#,,2,) is defined by for-

mula (1.1). By definition the lower triangular part of T relative to the chains P and 2 is

the operator
AT;#,2) = lim AT;#,,2,), (2.1
w

provided the right hand side exists. The limit in (2.1) should be understood as follows.
For every € > 0 there exists a partition 7, of A such that

lAT.:#2 - AT;2,,2,)|l <e

for all partitions w of A such that * Cw. (Note that for finite chains the definitions in

(1.1) and (2.1) coincide.) It is known ([41], Sections 1.10 and III.7) that for a Hilbert-
Schmidt operator T the operator A T;P, 2) is well-defined when #= 2. This result also
holds for & # 2. To see this note that A T;%, 2) equals the (2,1) entry of the operator

A [(7)" g] PO 2,90 2), 2.2)

where #® 2 is the chain on Z@Y given by @2 = { P,®Q, | + € A}, and the opera-
tor (2.2) exists if T is Hilbert-Schmidt. In particular, if T has finite rank, then AT;& 2)
exists. To illustrate the definition of the lower triangular part, let us consider the following
example.

EXAMPLE 2.1. Let k be a Hilbert-Schmidt kernel defined on the square
[0,2]x[—1,1], and let K : L,[—1,1] = L,[0,2] be the corresponding integral operator, i.e.,

1
(KF)(1) = [k(t,5)f(s)ds,0 =1 =2, ae.
-1

Further, let P, and Q, be the orthogonal projections on L,[—1,1] and L,[0,2], respectively,
defined by P,f = x[_j,f and o.f = xpf (t€[0,11). (Here xg is the function
which takes the values 1 on E and zero elsewhere.) Then, the lower part L of K relative to
the chains #= {P, | + € [0,1]1 }and 2 = {Q, | + € [0,1] } is the operator

min{t,1}

HW= | k@s)f(s)ds ,0 =1 =2
-1

The operator T : Z — Y is said to be of finite (%, 2)-lower rank if there exists a finite
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rank operator K : Z — Y such that AT;#2) = AK;#2). (Such an operator is also
called lower separable relative to the given chains of orthogonal projections, cf. [33] and
also [48], [65] and [49].) In that case K is called a finite rank extension of AT ;P %2). The
minimal (#,2)-lower rank of T is by definition the smallest possible rank of a finite rank
extension of AT;# 2). In other words, the minimal (£ 2)-lower rank A7;%#,2) of T is
given by

AT;#,2) := min{rank K | AT;# 2 = AK;2 D). (2.3)

All K'’s for which the minimum in (2.3) is attained are called minimal rank extensions of
AT;#,2). The operator T is called (# 2)-lower unique when A T;P 2) has only one

minimal rank extension.

The next lemma contains a few simple observations. The proof of this lemma is sim-

ple and therefore omitted.
LEMMA 2.2. Let T : Z = Y be a (# 2 -lower separable operator, and let A and A,
be closed subsets of A with A C A}, min A = min A; and max A = max A,. Then
() ALAT:Py,2,);8,,2,) = AT; Py, 24);
(ii) if K is a finite rank extension of AT;P,,2,), then K is a finite rank extension of
AT Py, 2,);
(i) AT;9,2,) = AT;P,,2,).
2.2. Reduction to finite chains and C-partitions. In the analysis of minimal rank
extensions problems in the context of arbitrary chains reduction to finite chains plays an

important role. An important tool for such a reduction is the following special class of par-

titions. Let KX : Z — Y be a finite rank operator. Consider the maps
ny:A—> {01, - ,rank K}, ,n,: A= {0,1, - - -, rank K}
defined by
n(t) := rank (I —Q,)K , ny(t) := rank KP,. 2.4

Note that n, is monotonically decreasing and n, is monotonically increasing. Furthermore,
n; is right continuous and n, is left continuous. For instance, the right continuity of n; can
be shown in the following way. Since r — Q, is continuous in the strong operator topol-
ogy and K has finite rank, the map ¢+ — (/—Q,)K is continuous in the operator norm.

Take s € A. Observe that (I —Q;)K is injective on [ Ker (I—QS)K]*. So there exists
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tg € A, 1y > s such that (/ —Q,)K 'is injective on [ Ker (I—-Q)K]* fors =1 <1y It

follows that n,(¢) = n(s) for s =t <15 On the other hand, we always have

ny(r) = ny(s) fort =z s. Thus n(t) = n((s) for s =t < ry, which proves that n; is
right continuous. We call a partition 7 of the parameter set A a C-partition for &, 2 and
K if the functions n; and n, are continuous on A\x. The C in C-partition stands for con-
stant, referring to the fact that on the open intervals of A\x the functions n; and n, are
constant. Note that for any finite rank operator K there exists a C-partition for % 2 and
K. If v is a C-partition for # 2 and K, then any partition «' finer than = is again a C-
partition for &,2 and K. The intersection of two C-partitions for #,2 and K is again a C-
partition for #,2 and K. Hence there is a coarsest C-partition 7 for # 2 and X, and it

follows that the partition 7 of A is a C-partition for #,2 and K if and only if 7y C .
V.3. Minimal lower rank

Let Z and Y be separable Hilbert spaces over C, and let #and 2 denote closed chains
of orthogonal projections on Z and Y, respectively, with common parameter set A. For
vy € A denote the predecessor of vy in A by y", i.e., put v" := sup{ @ € A | @ < 7} if
v # min A and (min A)" := min A. The points where ¥~ # y correspond to jumps in
the chains. Let T be of finite (%, 2)-lower rank. Consider a partition 7 = {ag, * * * ,,}
of A with a set of intermediate points v, = {r, + * - ,7,}. This means that 7, C A,

a; | <7; £a;and 7, # a; fori = 1,...,n. We define the number

n n—1
Nw,7,,T) := 3 rank (/ =Q TP, — 37 rank (I -Q, ) TP, . (3.1

i=1 i=1
Note that for any partition 7 of A there exist sets of intermediate points 7, with the proper-
ties mentioned above. Indeed, if (a;_,@;) [1 A = &, then one can choose 7; = a;; oth-

erwise one can take for 7; any point in the intersection of («;_j,c;) and A.

THEOREM 3.1. Let T : Z = Y be of finite (#,2)-lower rank, then

AT;#,2) = max N(«w,7,,T), (3.2)

T, Tx

where the maximum is taken over all possible partitions w of the parameter set of # and 2
and over all sets 7 of intermediate points corresponding to w. Moreover, the maximum in
(3.2) is attained whenever © is a C-partition for &, 2 and some finite rank extension of

AT;P,9D) and 7, is some set of intermediate points corresponding to .



v.3. Minirhal lower rank - 131 -

THEOREM 3.2. Let T be of finite (#,2)-lower rank, and let K be a finite rank exten-
sion of KT;P,2D). Then

AT;#,2) = min{ AK;P,,2,) | = partition of A } (3.3)

and in (3.3) the minimum is attained whenever = is a C-partition for &, 2 and K.
In order to prove Theorem 3.1 we need the following lemma.

LEMMA 3.3. Let K : Z = Y be a finite rank operator, and let = = {ag, * * * ,0,}
be a C-partition for #,2 and K. Fix i ,j € {1,...,n }. Then

rank (I —Q )KPO“ = rank (I—Qs)KPy,

-y
fory,d € Awithe; ; <y sea;anda;_; =6 <a.

Proof. Let v,6 € A be such that o;_; <y = «a; and ;| =6 <a;. Write
K = FG, where F : X Yis injective, G : Z — X is surjective and X is a (finite dimen-
sional) Hilbert space. Since = is a C-partition for #,2 and K, and G is surjective, it fol-
lows that rank (I —Q;)F = rank (I'“Qa,_l)F and hence dim Ker (I-Qy)F = dim
Ker (I“Qa,_,)F- Since Ker (I_Qa,_l)F C Ker (I-QpF, we get that Ker
(I——Qaj_l)F = Ker (I —Q;)F. Analogously, Im GPV = Im GP,,. Hence

rank (/ -Q, )KP, = rank (I—Qaj_l)FGPm =

a; ) KPq,
dim Im GP, — dim (Im GP, N Ker (I-Q, )F) =
dim Im GP, — dim (Im GP, 1 Ker (I =Q,F) =
rank (I -Qn)FGP, . O
Note that for a finite rank extension K of AT ;% 2)

I=-0,)TP; = (I~Q,)KP; , ¥ 2 &. (3.4)

Proof of Theorem 3.1. Let K be a minimal rank extension of AT;%,2),
7 = {ag, * * * ,a,} apartition of A and 7, = {r|, - -+ ,7,} a set of intermediate points
belonging to w. Since K is a finite rank extension of AK;#,,2,) and rank X =
AT;#2) = AK;P, D = 4AK;#,,2,), the operator K is a minimal rank extension of
HAK;#,,2,). Sofrom Theorem 1.1 we get that

-1
rank K = 3 rank (I-0, )KP, — ¥ rank (=0, )KP,,. (3.5)

i=1 i=1
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Since (I‘Qr;)(l—Qa,-_,)KPa,-Pr, = (I —QT._-)TPT'_, we conclude that

rank (I —-Q )KP, = rank (]—Qn-)TP,‘ ,i=1,...,n

Further, (I—Q,,‘_)KP‘,I = ([ -Q,)TP, (because of (3.4)). So from (3.5) we deduce that
AT;#,2) = rank K =z \N(mw,7,,T).

Hence max \(w,7,,T) exists and is majorized by AT;#,2).

TTx

Next, in addition to our earlier hypothesis, assume that 7 is a C-partition for & 2 and
K. Then (by Lemma 3.3 and formula (3.4))

rank (/—Q_ )KP

o = tank I—Q )KP, = rank I-Q,)TP,. (3.6)

Q-

Using (3.5) we get that AT;%#,2) = rank K = A\(w,r,T) for this particular 7 and 7. [J
Proof of Theorem 3.2. Let K be a finite rank extension of A T;%, 2). Obviously,
AT, %, 2) = AK;#,2) = 4K;#,,2,) for any partition 7 of the parameter set A. Now
assume that 7 = {ag, * - * ,a,} is a C-partition for %2 and K, and let
7, = {r;, * * *,7,} be a set of intermediate points belonging to w. Formula (3.4) allows

us to replace the operator T in the right hand side of (3.1) by K. Since rank
(I-Q,, )KP, = rank (I—Qn_-)KP,i (Lemma 3.3), we get that

AT;#,2) = N7, T) = ¥ rank (-0, )KP,, — "i‘l(l—Qai)KPa'. (3.7
i i=1

i=1 i=

Using that the right hand side of (3.7) equals AK;%.,2,), we obtain {T;#2) =
AK;2,.,2,) =z AK; & 2) = AT;%2), which completes the proof. [J

V.4. Uniqueness

Recall that an operator T of finite (&, 2)-lower rank is called (&, 2)-lower unique if
AT;#,2) has only one minimal rank extension. We have the following characterization of

lower uniqueness. Put A\q = min A and \; = max A.

THEOREM 4.1. Assume that I € Pand 0 € 2. Let T : Z — Y be of finite (#,2)-

lower rank. Then the following are equivalent.
(i) Tis (# 2)-lower unique;

(ii) the operators
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I=Q. TP, (\g <7 EA,Y" #1\) (4.1)
I=Q)TP, (\g <7y EA,v # X)) (4.2)

all have the same rank, r say;

(iii) the operators
(I=Q,)TP, N\<YEAYy=0EA #)\)

all have the same rank.

Furthermore, in that case the minimal (#,2)-lower rank T ;%#,2) is equal to r.

First we need some preliminaries on seperable representations. Let K : Z = Y be a
operator with finite rank. A pair of operators {F,G}, where F : X—> Y and G : Z — X, is
called a separable representation of K if X is a finite dimensional inner product space and
K = FG. The space.X is called the internal space of the representation and its dimension
the order. Two separable representations {F,G,} and {F,,G,} with internal spaces X; and
X,, respectively, are called similar if there exists an invertible operator S : X; = X, such
that F; = F,S and G, = S”'G,. Note that two similar representations have the same
order. A separable representation {F,G} of K is called a minimal separable representa-
tion if among all separable representations of K the order of {F,G} is as small as possible.
It is clear that any finite rank operator K : Z — Y has a (minimal) separable representa-
tion.

LEMMA 4.2. Let K : Z = Y be an operator with finite rank, and let {F,G} be a

separable representation of K. Then the following are equivalent:

(i) {F,G} is a minimal separable representation of K ;

(ii) the order of {F,G} is equal to the rank of K ;

(iii) F is injective and G is surjective.

Moreover, if {F,G,} and {F,,G,} are minimal separable representations of K, then they
are similar.

Proof. The implication (iii) = (ii) is evident. To prove (ii) = (i) note that the order of
a separable representation is always greater than or equal to the rank of K. So when equal-

ity holds the separable representation must be minimal.
Next we show (i) = (iii). It is easy to see that K can be written as K = F'G’' with

F':X'— Y an injective and G' : Z = X' a surjective operator. Take for instance X' =
Im K, F:X'— Y the inclusion and G = K :Z = Im K. So, dim X' = rank K.
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Suppose that F : X — Y is not injective, then dim X' = rank K < rank F < dim X.
So {F,G} is not a minimal separable representation of K. In the same way the assumption
that G is not surjective leads to a contradiction.

To prove the last part assume we have K = F|G, = F,G, with F,, F, injective and

G,, G, surjective operators. Let G{ ™" and G{™" be right inverses of G, and G,, respec-

tively, and let F{™Y and F§{~" be left inverses of F, and F,, respectively. Define
S :=G,G{™Y = F{"VF, and T:=F{"VF,=G,G§™V. Then ST =
F{™YF,G,G{™V = F§"VF,G,G{™Y = I. In the same way TS = /. Furthermore, F,S =

F,G,G{™" = F|\G,G{™" = F, and G, = TG,, proving the proposition. (]
Proof of Theorem 4.1. We prove (i) = (iii) = (ii) = (i). In order to prove (i) =

0, = 0, such that rank (I—Qg;)TP_” #+ rank (I—Qa;)TP.”. Then rank
(I—Qa;)TPA,l # rank (I—Q‘,;)TP.,Z or rank (I—QO;)TPY2 # rank (I—Qa;)TP,“. So

(ili) suppose that there are y;,0; € A with \g<y; < g;, 0; # \; (i =1,2) and

without loss of generality we may assume that either 0; = 0, or v; = v,. We shall obtain

a contradiction for the second possibility; for the first one the proof is similar.

So let us assume that v, = y, =: vy and hence 0, < 0. Note chat vy = o;. LetA
be a minimal rank extension of AT;#<2). Then  rank (I—Qa;)AP.r < rank
v _Qo;)APw and hence

rank (I—Qa:)APY < rank APV.

Put Z, =P Z, Z,=(P,:=P)Z, Zy=(—-P,)Z and Y, =Q,, ¥, =(Q,:—-Q,))Y,
Y, = (I_Qa,‘)Y- Note that Z, and Y, may be trivial spaces. In fact, this happens if and
only if vy =o;. All other spaces are nonzero. Writing A = (4;)},;:
Z,0Z,9Z,— Y ,®Y,®Y,, we have that rank A3 < rank (col(Ajl)JLl). So there
exists a (nonzero) vector ¢ € Z, such that col(Ajl)le(b # 0and 450 = 0. Let Y be a
nonzero vector in Z,, and define C : Z = Z by Cy := ¢ and Cv := 0 forv € M, where
M is a closed linear suspace of Z with Z,®Z, C M and Z, C span {y}®M. Put
A’ := A(I+C). Since I +C is invertible (with inverse [ —C), rank A = rank A’. Furth-
ermore, AA;P2) = AA';P 2), which one obtains from Lemma 2.2(i) with A =
{)\0,7,61',)\1} C A. Thus AT; P, 2) = KA';#2). So A' is a minimal rank extension of
AT;,# 2) which is different from A (because AC # 0). Contradiction.

In order to prove (iii) = (ii) note that the set of operators considered in (ii) is a sub-

set of the set of operators considered in (iii). To see this, take ¢ = vy if A\j < v € A and
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" # N\, (case (4.1)) and take o =inf{a >y | @ € A} if N\¢ <y € A and y # \,
(case (4.2)). Note that in the latter case 6~ =y # \,.

We end with (ii) = (i). Let A and A’ be minimal rank extensions of AT ;% 2), and
let {F,G} and {F',G'} be minimal separable representations for 4 and A ', respectively.
Assume the ranks of the operators in (ii) are all equal to r. Theorem 3.1 yields
r =4AT;#,2) = rank A = rank A'. Take A\; < ¥ € A, and assume that v # A,. Put
TM = (I-Q,)TP,. Note that

TM = (I-Q,)FGP, = (I-Q.-)F'G'P,
because of formula (3.4). Since rank T = r equals the orders of the separable

representations {(/ —Q.-)F ,GP.} and {(I~Q.-)F',G'P_} of T, it follows that they are

minimal separable representations of 7¢"). According to Lemma 4.2, this implies that
(I-Q,)FS(7) = U-Q,)F',S(y)~'GP, = G'P,
for some invertible S(vy). Furthermore, GP, and G'P, are surjective (Lemma 4.2 (iii)).

We shall prove that S(v) does not depend on the choice of v.

Take vy, > Mg and vy, > Ay in A. Assume that v; < v, and v3 # \; (and hence
¥i # \p). From v, < 7, it follows that

-1 — -1 — ' —_ ' _ -1
S(yp) 'GP, = S(y)~'GP_P. =GP, P, =GP, =S() 'GP,

Thus (S(vp ~'-S(y;)"HGP, = 0. But GP, is surjective. Hence S(y,) = S(v;) and
S := S(v) does not depend on 7.

We have now proved that
(I-Q,)FS = (I-Q,)F',S7'GP, = G'P,, (\g < v €A, YEN).  (43)

This implies that S™!G = G'. For the case when \] # A, this is evident. Assume
Al = \,. Then there exists a sequence v,y * * * in A such that vy, <X, (n = 1,2,..)
and v, T \,. But then, since ] € %,

$7'G = limS~'GpP, = limG'P, =G

n—oo n—oo
Next we prove that FS = F'. Put a := inf {y € A | ¥ > \¢}. Obviously, a™ = \q. If

o > \g, then (4.3) with ¥ = « implies that FS = F'. Assume that & = \o. Then there
exists a sequence v,y © * * in A such that y, > N (n =12,.) and vy, l)\o, which
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implies that

n—*oo n

n—oo

Here we use that 0 € 2.

Hence the representations {F,G} and {F’,G'} are similar. Thus A = A4 ', and it fol-
lows that T is (&, 2)-lower unique. [J

When I & #or 0 & 2 one easily sees that T is (%, 2)-lower unique if and only if
AT;8,2) = 0. This case corresponds to the "strict lower triangular case”.

We end this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. The equivalence of (i), (ii) and (iii) folows directly from
Theorem 4.1, as well as the implication (iii) = (iv). The implication (iv) = (iii) is trivial
(cf. the proof of Theorem IV.2.1). [

V.5. Construction

For the construction of all minimal rank extension of a given lower triangular part we
need the following three theorems. The first two compare minimal rank extensions
corresponding to a part of the chain to minimal rank extensions corresponding to the full
chain (cf. Corollary IV.1.2). The third theorem reduces the problem of construction to the
case of finite chains.

THEOREM 5.1. Let vy € A, v # minA, and put A = (—oco,y] NA. If K is a
minimal rank extension of KT;#2), then KP, is a minimal rank extension of
AT P,,2,). Conversely, if K' is a minimal rank extension of A T;P,,2,), then there
exists a minimal rank extension K of A T;P 2) such that K'P.1 = KPT

Proof. Let K be a minimal rank extension of AT;#2). Let m = {ag, * * * ,a,} be
a C-partition for &2 and K containing . Note that (/ -Q,)AT;# 2 = HAT;#2). So
0 —QaO)K is a finite rank extension of A T;# 2). It follows that rank (I—an)K = rank
K, because K is a minimal rank extension. This implies that rank (/-Q,)KP, = rank

KP,. Suppose that y =a;. Put m; = {aga;,a;, " " ,0,}. Since rank
K = 4dK;#2) = ¢(K;9’T‘,Q,l), the operator K is a minimal rank extension of
Q(K;.i’,,l,ﬁzrl). So rank K = 4K;9’W‘,le). On the other hand, since K is a minimal
rank extension of HAT;#2), we can use Theorem 3.2 to show that rank

K =4K;#,,2,). Thus 4K;#,,2,) —AK;.?,I,Q,‘) = 0. Using Theorem 1.1 this identity
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yields
rank KP‘,,'_0 = rank (I—QM)KPD”0 =
io io=1
Y rank (I-Q,, )KP, + } rank (I-Q,)KP, =dK:#, ,2.),
p=1 p=1
where 7, = {ag, * * * ,a;}. Since =, is a C-partition for P,,2, and K, and K is a finite

rank extension of HT;%,,2,), Theorem 3.2 implies AT;P,,2,) = AK;,?,Z,Q,Z). So
rank KPY = AT;%#,,2,), and KP, is a minimal rank extension of AT;#,,2,).

Let K' be a minimal rank extension of HAT;#,,2,). Since Q(T;.?A,QA)PY =
AT;$,,2,), the operator K’Pv is also a minimal rank extension of AT;%#,,2,). Choose
an arbitrary finite rank extension A of AT;# 2), and put A’ = K’P7+A 0 —-P.'). Then
A' is also a finite rank extension of AT;#2) and A'P, = K'P,. The latter identity
implies rank A'P. = AT;#,,2,). Let 7 = {ag, *+ * + ,a,} be a C-partition for #,2 and
, o0 P,} and
s ,Qa"}. Let K be a minimal rank extension of HAA ';9’,@). Then

A' containing y. Let us say y=a,. Put P= {o.p, .P
2={0,0, .0
K is a finite rank extension of AT;# 2), and we shall prove that K has the desired pro-

Om+1

A +)?

perties.
From rank K = 4A ’;@’,:@) and Theorem 1.1 it follows that

n
rank K = rankA'P, + 3 rank (/I-Q, )A'P, (5.1

i=m+1

n—1
— Y rank (I-Q,)A'P,.

i=m

Since 7, := {ag, * * * ,a,} is a C-partition for #,,2, and A'P, (= K'P, ), Theorem
3.2 implies that AT;#,,2,) = A4 ’Pam;.?,l,;@,l). So rank A'Pa,,, = AT;#, 2, =
AA'P, ;#.,2,). Now use Theorem 1.1 and formula (5.1). We obtain  rank
K =AA";#,,2,) = AT;#,2), where the last equality follows from Theorem 3.2. Thus
K is a minimal rank extension of AT;#%2). Further, KP,Y = Q(K;ﬁ’; :32)P7 =
AAa2,2P, =K'P,. 0O

Analogously one proves the following theorem.

THEOREM 5.2. Let y € A, with v # maxA, and denote A = [y,0) N A. IfKisa

minimal rank extension of AT;# 2), then (I—QY)K is a minimal rank extension of
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HAT;#,,2,). Conversely, if K' is a minimal rank extension of AT;P,,2,), then there
exists a minimal rank extension K of A T;P,2) such that U-Q)K' = I-Q)K.

Let T : Z = Y be of finite (% 2)-lower rank. Note that Theorem 5.1 shows that for
a minimal rank extension K of AT;% 2) the rank of KP. does not depend on the particu-
lar choice of K. In fact, rank KP, = AT;$,,2,), where A = (—o0,y]NA. From
Theorem 5.2 we obtain rank (I—Q_,)K = AT;%5,,2, ), where A = [y,) N A, for any
minimal rank extension K of AT;% 2). These observations lead to the following corol-
lary.

COROLLARY 5.3. Let T : Z = Y be of finite (#,9D)-lower rank. If = a C-partition
for #,2 and some minimal rank extension of AT ;P ), then © is a C-partition for P, 2
and any other minimal rank extension of KT ;P 2).

The following theorem shows that the problem to find all minimal rank extensions of
HAT;# 2 is in fact a finite chain problem.

THEOREM 5.4. Let T : Z = Y be of finite ($,2)-lower rank. Let K be a finite rank
extension of AT;# 2), and let © = {agy, - * * ,a,} be a C-partition for #,2 and K.
Then any minimal rank extension of AK;%,,2,) is a minimal rank extension of AT;#,2),

and, conversely, any minimal rank extension of AT ;P 2) is a minimal rank extension of
LAK;&,,2,). In particular,

(I-Qq, )KP, =U-Q, )K'P, ,i=1,.n, (5.2)
for any minimal rank extension K' of AT ;P 2).
Proof. Let K be a finite rank extension of AT;# 2) and 7= = {ag, * * - ,a,}acC-

partition for #,2 and K. From Lemma 2.2 it is clear that any finite rank extension of
AK;,P,,2,) is a finite rank extension of HAT;% 2). Furthermore, Theorem 3.2 yields
AT, #,2) = AK;#,,2,). From these two observations it follows that any minimal rank

extension of AK;#,,2,) is a minimal rank extension of AT;# 2).

To prove the converse, let K’ be a minimal rank extension of AT;% 2). Take
i € {l,..,n}, and put A = [a;_;,a;] N A. Denote P’, = P,| Im P, and Q', = Q, |
Ker Q,,  fort € A. Let #' and 2’ be the chains on Im P, and Ker Q, , respec-

tively, given by
P ={P', |t €A}, 2 ={Q", |1t €A}. (5.3)

Note that / € & and 0 € £'. Since 7 is a C-partition of A for &, 2 and K we have (by
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Lemma 3.3 and formula (3.4)) that, fora;_; < y € A, 'y' # ay,

rank (I_Qu;_l)KPa; = rank (I—Qy-)KPn{ rank (I—Qv-)TPT

Similarly, fore;_; <y € A, v # «;

rank (I'Qa,-_,)KPa, = rank (I-Qv)KP., rank (I—QY)TPV.

Using Theorem 4.1. one sees that T' = (I-Q, )TP, : Im P, = Ker @,  is
(#',2")-lower unique and (I-Qa,_l)KPa' is a minimal rank extension of HAT;%',2').
From Theorems 5.1 and 5.2 it follows that (I—Q, )K'P, is also a minimal rank exten-
sion of AT';9',2'). But then, because of the (#',2')-lower uniqueness, (5.2) must hold
true. Since (5.2) holds, K’ is a finite rank extension of AK;#,,2,). With rank K' =
AT; 2,2 = AK;#,,2,) it follows that K’ is a minimal rank extension of AK;#,,2,). [J

The preceding theorems yield a procedure to construct minimal rank extensions. This
procedure consists of three basic elements.

(). The 2X2 case. Let T:Z,™Y,, T:Z,™ Y, and T,,:Z,—> Y, be given finite
rank operators. We have to construct an operator T},:Z,—> Y such that rank (T,-j),2 =1
is as small as possible. This is done as follows. Let X; = {x € Z, | Ty € Im T,,} and

let X, be a direct complement of X in Z,. Write
Tp=I[T% Thl: X, + X,— Y,

Note that 7%, is injective. Since Im T%, C Im T, there exists an operator S : X, = Z,
such that T,,S = T9, . Put

T12 = [T”S E] : Xl + XZ—’ Yl’

where T is an arbitrary operator acting X,— Y. Then the extension (T,-j),2 j=1 has rank

equal to

Ty,
rank [TZJ + rank [TZI TZZJ — rank Ty,

which by Theorem 1.1 is the smallest possible rank.
(IT). The case of finite chains. Let = {P,, - - - ,P,}and 2 = {Qg, - * * ,@,} be

finite chains of projections on Z and Y, respectively. For » = 1,...,n define the chain A
on Z by #” = {Py, - - - ,P,} and the chain 2 on Y by 2* = {Qq, - - * ,0,}. Let
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T :Z — Y be of finite (&, Q)-lowe.r rank. One can construct a minimal rank extension of
AT;#2) by induction as follows. We start with a minimal rank extension of
KAT;#V,20), for instance (I —Qg)TP,. Next, suppose that a minimal rank extension A
of AT;#”~Y, &*~D) has been constructed. Write

A4y
A|lImP,_, = Lm] :ImP, ;> ImQ, ®KerQ,_,.

Consider the operator

A’ = [Am Ayl ImP, | ®KerP, ;= ImQ, ®KerQ,_,,

where A, = (I-Q,_)TP, | Ker P,_,: Ker P,_, — Ker Q,_,. Using the 2X2 case
we can construct an operator A,,: Ker P,_;— Im Q,_, such that B := (Aij),?’jﬂ has the
lowest possible rank. Such a B is a minimal rank extension of Q(T;.?‘”),Q(")) (use
Theorem 1.1). When v = n a minimal rank extension for AT ;% 2) is obtained.

(IIT). The general case. When & and 2 are arbitray chains the procedure is as fol-
lows. Let T be of finite (%, 2)-lower rank. Take any finite rank K extension of AT;% 2).
Determine a C-partition = for % 2 and K. Next make a minimal rank extension 4 for
AK,&,,2,), using the construction outlined under (II). Theorem 5.4 yields that 4 is a
minimal rank extension for AT ;% 2).

The minimal extension procedure sketched above also solves the problem of finding
all minimal rank extensions, which was posed in [35]. Indeed, Theorem 5.4 shows that all
minimal rank extensions of HAT;# 2) can be found as minimal rank extensions of
LXK #,,2,), where K is some finite rank extension for AT;# 2) and = is a C-partition
for #,2 and K. But for finite chains the problem to construct all minimal rank extensions
reduces to the 2X2 case (use the explanation in (II) and Theorems 5.1 and 5.2). It is not
hard to see that in the 2X2 case the construction given under (I) yields all minimal rank

extensions.
V.6. Semi-infinite operator matrices
Let T = (Tij)?f}=1 11,(Z) = 1,(Y) be a (bounded linear) operator. Here [,(Z)

(resp. [,(Y)) stands for the space of all square summable sequences with elements in Z

(resp. Y). The spaces Z and Y are given separable Hilbert spaces. An operator
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A=A ij);'x,}-—-l 1 1)(Z) = 1,(Y) is called a finite rank extension of the lower triangular
part of T if A has finite rank and A;; = T;; for j =< i. If the lower triangular part of T
has a finite rank extension, then T is called of finite lower rank. A finite rank extension A
of the lower triangular part of T is called a minimal rank extension if among all finite rank
extensions of the lower triangular part of T the rank of A is as small as possible. The
minimal lower rank of an operator matrix of finite lower rank is by definition the smallest
possible rank of a finite rank extension of the lower triangular part of T. The operator
matrix T is called lower unique if the lower triangular part of T has precisely one minimal

rank extension. .

We specify the minimal rank extension construction (given at the end of the previous

section) for semi-infinite operator matrices. Let

T = (Ty) oy 1(Z) = 1Y)

i
(=]
be of finite lower rank, and let K = [K ,-j] _ be an arbitrary finite rank extension of
L,]=
o0 ©o
T. Consider for p = 1,2,... the numbers rg,) = rank (K;) and r®) = rank
i=p,j=1

© p

(Ky) . Choose an n € N such that r(,y = r(,, and r™ = r® for p = n. Define
i=1j=

Ly,

L,; =col(K;)iZ, forl = j =n-landL,, = (K;){j=,- Consider

l=sj=i=n, by setting L,-j=K,j(=T,-j) for 1=j=i=n-1,

(L, 0 ... 0
Ly Ly .
L=1|" o | iZ® - @Z®INZ) D YD - - - DY BINY).
. .0
Lt Lna + -« Ly

Theorem 5.4 implies that any minimal rank extension of L (relative to the finite chain sug-
gested by the block form of L) is a minimal rank extension of T. Conversely, any minimal

rank extension of T is a minimal rank extension of L. In order to see this define the chain

P = {PyP P,y - -+ P} onlyZ) as follows: let P, = 0, and P; be the ortogonal pro-
jection upon the first i block coordinates (i = 1,2,...). Further, put P, = I. Define on
1,(Y) the chain 2 = {Q;,0,,Q5, * * * ,Q} analogously. Then, with this choice of #and

2, the definition of minimal rank extension of Section V.2 coincides with the definition

given above. Furthermore, the partition = = {0,1,2, - - - ,n,00} is a C-partition for &, 2
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and K. With the observation that L = #AK;#,,2,) the assertions made in this paragraph

follow immediately from Theorem 5.4.

Using the chains & and 2 defined above we obtain from Theorem 4.1 the following

characterization of lower uniqueness.

COROLLARY 6.1. Lat T = (T,-j)}’:’j=1 2 1y(Z) = 1y(Y) be of finite lower rank. Then

T is lower unique if and only if the operators

© p
(Tij). . s P = 1,2,... ’ (6.1)
i=p,j=1
oo p-1
T , = 2,3,... 6.2
( i])i=p,j=l p (6.2)

all have the same rank, r say. Furthermore, in that case the lower minimal rank of T is

equal to r.

The condition "the operators in (6.1) and (6.2) have the same rank” does not imply

that T has a finite rank extension. Take for instance

1 00
% % 0
Y% Y% Y% .- - iy

i+1

. . it . . .
Then T is well defined since ), Y < oo, Assume its lower triangular part has a finite
i=0

rank extension. Then the minimal lower rank is 1 and for a minimal rank extension there is

only one possibility, namely
1 11

“B %
% % Y%

But clearly this matrix does not define a bounded linear operator acting on /,.
7. Kernels of integral operators

In this section we specify the reults for integral operators. The problem which we
solve here originated in [35]. Let k be an m X n matrix kernel defined on the square

[a,b] X [a,b]. We say that k is of finite lower rank if the lower triangular part k; of &,
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which is defined by
k;(t,s) =k(1,s),a =s <t =b,

admits a finite rank extension, i.e., there exists a finite rank matrix kernel h on
[a,b] X [a,b] such that k; is the lower triangular part of k. Recall that for an m Xn
matrix kernel 4 on [«,3] X [v,6] the rank of h (notation: rank h) is the rank of the

corresponding integral operator

6
(Hf)(t) = [ h(t,9)f(s)ds ,a =t = B, ae.,

Y

which has to be considered as an operator from L} [v,8] into LY [«,3]. Note that k is of
finite lower rank if and only if k; is the lower triangular part of a degenerate kernel. By
definition a minimal rank extension of k; is a finite rank extension h of k; with the extra
property that among all finite rank extensions of k; the rank of h is as small as possible.
The rank of a minimal rank extension of k; is called the minimal lower rank of k. The
(lower triangular part of the) kernel k is said to be lower unique if k; has precisely one
minimal rank extension. Note that if k is of finite lower rank the restriction of k to the
rectangle [y,b] X [a,y] is a finite rank kernel foreacha < y < b.

We specify the construction of minimal rank extensions for the case considered here.
Let k be a given kernel of finite lower rank and let L denote the integral operator

corresponding to k; :
t
(LF)(1) = [k(1,5)f(s)ds ,a =t =b. (7.1

Let h be an arbitrary finite rank extension of k;, and let H denote the corresponding

integral operator, i.e.,
b
(H)(@) = [h(t,5)f(s)ds ,a =1 sb.
a
With H and a = ¢ = b we associate the following auxiliary operators:
c
H.:L%[a,b] > L}[a,b],H.¢ = [h(..s)é(s)ds ,

a

H® :L3[a,b] >LT[a,b] , H ¢ = x( 5 H® .
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(Here X [c,b] denotes the characteristic function of the interval [c,b].) Choose a partition
T = {ag " * ,ap} of [a,b] such that for j = 1,...,p the numbers rank H_, and rank
H¢ are constant for @j<c<a;. For 1 =j =i =p define the operator
Hij :Lg [aj_l,aj] - L'zn[a,-_l,ai] by

@

(Hy®)() = [ h(1,5)6(s)ds ,a;_; =1 =«

i
ay-y

From Theorem 5.4 it follows that a minimal rank extension of the operator

(H, 0 ... 0
Hj Hy .
p P
) : iC:)l L[o;_y,0y1 ig)l LY [a;_,0;] (7.2)
. . 0
(Hp1 Hp2 - - Hpy |

(relative to the finite chain suggested by its block form in (7.2)) has a kernel which is a
minimal rank extension of the kernel k; . Moreover, and all minimal rank extensions of k,
can be obtained in this way. To make a minimal rank extension of (7.2) is just a finite

chain problem, and we can use (II) in Section V.5.

In order to see that indeed the above statements follow from Section V.5 one chooses
the following chains of projections. Fora =t = b, let P, be the projection in L ([a ,b])
defined by

f(@s) a=s=1,

(P.f)(s):= {
t<s=b.

Then #= { P, | a =t = b} is a closed chain. Define 2 in L% ([a,b]) analogously.
Note that in this case A = [a,b] and ¥* = v for each y € [a,b]. Moreover, if K is the
integral operator with kernel k, then AK ;% 2) is the integral operator L in (7.1) (cf.
Example V.2.1).

If one specifies Theorem V.3.1 for the integral operators considered here one obtains
Theorem 0.6, which gives a formula for the minimal lower rank of a kernel. Also, with

the above choice of chains we derive the following characterization of uniqueness.

COROLLARY 7.1. Assume that k is a matrix kernel on [a,b] X [a,b] of finite lower
rank. Then k is lower unique if and only if for a < y < b the rank of the restricted kernel
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k(t,s) =k(t,s),y =t =b,ass =7,

is independent of y. Furthermore, in that case the rank of the (unique) minimal rank exten-
sion of k; is precisely the integer r = rank k..

Proof. Let X and K, be the integral operators corresponding to the kernels k and k.,
respectively. It is now easy to see that K7 = (I—Q.’)KP7 = (I—QY-)KP.Y (a <y < b).
According to Theorem 4.1 the operator K is lower unique if and only if for each
a <y <b the rank of K, is independent of y. Since there is a 1-1 correspondence

between an integral operator and its kernel, Corollary 7.1 follows directly from Theorem
4.1. O

When k(t,s) = F(1)G(s), a = s <t = b, with F and G analytic on [a,b], then

the uniqueness condition in Corollary 7.1 is fulfilled, and we have lower uniqueness (see

[35D).

Without the assumption that k is of finite lower rank Corollary 7.1 does not hold true.
In other words, the condition "rank k. is independent of v fora <y < b” does not imply

that k has a finite rank extension. For instance, take

t™% 0

IIA

s <t <1,
k(t,s)=
) 0=sr=s =1l

Then rank k7 =1 for 0 < y < 1, but k is not of finite lower rank. To see this, assume
k is of finite lower rank. Then, by Corollary 7.1, the lower triangular part k; of k has a
finite rank extension h of rank 1. The only possibility is the kernel h given by
h(t,s) =t % for0 <t = 1and 0 = s =< 1. This k, however, does not define a square
integrable kernel.

The restriction to matrix kernels in this section is not essential. The results also hold
for an operator-valued kernel k(t,s) :Z =Y, a st = b,a =5 = b, of finite lower
rank, where Z and Y are separable Hilbert spaces.

Independently, G. Peeters [58], [59] has found another procedure to construct a

minimal rank extension (or, in fact, a lower separable representation) for the lower triangu-

lar part of a kernel.
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8. Difference kernels

In this section we consider minimal rank extensions of difference kernels. Let k be an
m Xn matrix kernel defined on the square [a,b]X[a,b]. We call k a difference kernel if a
function k : [a —b,a +b] — C™*" exists such that

k(t,s) =h(t—s),a =s ,t<b ,ae.

THEOREM 8.1. Let k be a m Xn matrix difference kernel on [a,b]X[a,b] of finite
lower rank. Then k; has a unique minimal rank extension. If this extension is continuous,

then it is a difference kernel.

Without loss of generality @ = 0 and b = 1. We shall view an integral operator with

a difference kernel as a Toeplitz operator relative to any “equidistant decomposition”. By

this we mean the following Let P, and Q, (+ € [0,1]) be the projection on L} [0,1] and
710,11, respectively, defined by

P.f = X4, Cef = x[0,1]f.

Then #= {P, |+ €[0,1] }and 2 = {Q, | + € [0,1] } are closed chains of orthogonal

projections. Let

9N={PO’P|’. c :PN—I’Pl}r'QN={Q0’Q1:' * '9QN—1’QI}'
N N N N

If g(t,s),0 = s,t = 1, is a difference kernel, and G is the corresponding integral opera-

tor, we may write G in the following way

N
G = (6y),,_,» Gy = (@102, =P ).
o N N N N

1 1
We will view G as a Toeplitz operator from (L% [O,W])N to (L’z"[O,-ﬁ])N .

PROPOSITION 8.2. Let k be a m Xn difference kernel defined on [a ,b]1X[a ,b] of fin-

ite lower rank, and let k7 denote the restriction

kv(t,s) =k(t,8),a =s =v,% b.

IIA

t

IIA

Then rank k. is independent of v € (a,b).

Proof. Without loss of generality @ = 0 and b = 1. Let K denote the integral opera-

tor with kernel k, and let 7 = {ag,@y, * * * ,&,} be a C-partition of & 2 and a finite
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rank extension of AK;# 2). Lemma V.3.3 implies that for a; < v < «;,, the rank of
(I-Q,)KP, is independent of y (i =0,...,r—1). Fix i € {l,...,r—1} and let us show

that for some v €(a;_y,;) and 6 € (o;,0;4¢)

rank (I -Q )KP, = rank (I-QyKP,; (8.1)
v .
Choose N such that ~N < ymin{a;—e;_, | i=1,..,r} and
1 N-1
{F N 3N7 = D. Consider AK,Py\{P },2y\{Qo}), Which is a strictly lower tri-

angular part. We view this lower triangular part as a Toeplitz operator. Let
. . 1
v = max{ # | -1%,- <a;}and 6 = Tty Note that v and é are in the right intervals.

Consider

(I-Q)KP, = [(I—Qy)KPV_ 1 T=Q)K(P,=P 1 )].
N N

1
Since YY~N € (a;_,a;) Lemma 3.3 yields that its rank equals the rank of

(I—Q_,)KP 1 - Hence
N

Im (/-Q)K(P,—P ) C Im(-Q)KP .
‘Y"ﬁ 'Y—ﬁ

Multiplying by Q 5 _; on the left we obtain that
N

Im (QN—I —Q'Y)K(P'Y—P 1) C Im (QN—'I _Q'Y)KP 1-
N -y ~ N

Using the Toeplitz structure this implies that

Im (I -Q)K(P;—P,) C Im (I-—QG)K(P.Y—PL)
N

which in turn is contained in Im (/ —Qs)KP.Y. Thus
rank (I —Q;)KP; = rank ((I—Qa)KPV (I—Qa)K(Pa—Py)J (8.2)
= rank (I -Qy)KP.,.
Analogously, one proves that

(Q;—Q,)KP,
rank (/ -Q )KP, = (I-Q)KP, = rank (/1 —QyKP.. (8.3)
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Now (8.3) and (8.2) together give (8.1). Thus rank (I—Q.y)KPy is independent of
v € [0,1]\n.

Suppose there is an a; € 7 (j € {l,...,r —1}) such that
rank (I =Q, )KP, # rank (I-Q,)KP, (8.4)
forn € [0,1\r. Fix a; <9 < min{aj+,,aj+'/s(aj—aj_l) }. Lemma 3.3 gives that
rank (I—QH)KPaJ_ = rank (I—Q,,j)KPaj,
and hence
rank (I-Q,)KP, > rank (I -Q)KP, , (8.5)
Putg = n—a; and consider
(U =Qo,-KPoy g = (U=Qu,pKPo, 25 (=00, K (Pa,g=Po,39) |
Because of Lemma 3.3 (and o -8B, o -2 E(aj_l,aj)) we have that
rank (/ "Qa,-ﬂ)KPa,—a = rank (I—Quj _5)KP,,}_23.
So
Im(I-Q, pK(P, =Py 29 C Im(I-Q, pKP, .
Multiplying on the left with O, _,g gives
Im (Q_23=Qa,-p)K(Py,—g=Pg4,—25) C Im (Q1-28=Qq,-p)KP,, 25
Using the Toeplitz structure we get that
Im (I-Q, +p)K(Pg,15—Po) C Im (I-Qq ()KP, .
But then
rank (1 =Q,)KP, = rank [(I—Qn)KPaj (I—Q,,)K(Pn—Paj)] = rank (I-Q,)KPa,.

This contradicts (8.5). Thus (8.4) cannot hold, and the proposition is proved. [
We need operator analogs of results in Section IV .4.

Let Tj :Z—=>Y, j=—-1,.,—n+1, be finite rank operators, and consider all

n-1
A= [Aj_,-J iZT YU, withA; = Tj,j = ~1,.,~n+1. Such an 4 with lowest
1,]=
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possible rank we shall call a Toeplitz minimal rank extension of T, where

T.

n-1 j-i0d <5
T = [Tu] 1j=0’ Tyi= 10 , elsewhere.

LEMMA 8.3. Let T be as above. Then the rank of a Toeplitz minimal rank extension
of T is equal to

n n—1
Y rank T®P)—'Y rank T®*1P) |

p=1 p=1
where
T_p e T_P +q_l
T®49 = rank | :
T, .. T, +g—1

Moreover, there exists only one Toeplitz minimal rank extension of T if and only if for some
p € {l,...n—1}

rank T®P?) = rank T®*1P) = rpank 7@ 1P+, (8.6)

Proof. If Z and Y are finite dimensional the lemma follows directly from Theorem

IV.4.1 and Corollary IV.4.2. For the general case make decompositions
Z=20e0z®@ |y = yDWoy?
such that Z‘ and YV are finite dimensional and that relative to these decompositions T; is

K; 0
of the form [0 0] . Since all T; are of finite rank this can be done. First note that the

formula for rank A follows. Suppose now that T has only one Toeplitz minimal rank

extension. Then also K, where

n—1 Kj—j 7j <i M
k= (Kij] ij=0" Ky =10 , elsewhere.

has only one Toeplitz minimal rank extension. But then for some p € {l,...,n —1} we
have that
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rank K®@P) = rank K@ +t1P) = pank K@ 1P +D,

and thus (8.6) holds.

Suppose that (8.6) holds. Using the 2X2 case of Theorem V.1.2 and the restriction

results Theorems 5.1 and 5.2 one sees that 4 is uniquely determined when making a Toe-

n-1
plitz minimal rank extension A = [A j'iJ o for T. With the same reasoning the
ij=

uniqueness of 4, . . . ,4,_, follows. [
Proof of Theorem 8.1. Without loss of generality a = 0 and b = 1. Let k be as in
the theorem. Using Corollary 7.1 and Proposition 8.2 we obtain that k; has only one

minimal rank extension.

Suppose that the unique minimal rank extension & of k; is continuous. Let H denote

the integral operator with kernel 5. Note that {0,1} is a C-partition for &, 2 and H. Let
p > 1 and consider

AH;Pp\{P 1}, 2\ Q0D 8.7

Lemmas 3.3 and 8.3 give that this lower triangular part has a unique Toeplitz minimal rank
extension. Since H is an extension and its rank equals the minimal lower rank of (8.7), this
unique Toeplitz minimal rank extension must be equal to H. Apparently, H is Toeplitz
relative to the decompositions corresponding to &5 and 2, for any p. Since the kernel h

of H is continuous, we obtain that h is a difference kernel. This completes the proof. []
V.9. Connections with systems theory

Consider the time variant causal system

x(t) =A@)x(#) + B)u(t) ,a =t =b,
0 1y(@) = C@)x(1) ,a =t =b, 9.1
x(a) = 0.

Here A(t), B(t) and C(r) are matrices of size r Xr, r Xn and m Xr, respectively. We
assume that A (z), as a function of 7, is integrable on [a,b], and that B(.) and C(.) are
square integrable. The matrix function 4 (.) is called the main coefficient and the number r

is called the state space dimension of the system. To simplify the notation we denote the
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system (9.1) by 6 = (4 (t),B(t),C(t‘)). The impulse response matrix function(see [50],
Section 9.1) of the system 0 is given by

h(t,s)=C()U()U(s)"'B(s) a =ss <t b,

where U(t) is the fundamental operator of the system, i.e., U(t) is the unique absolutely

continuous solution of the matrix differential equation

Ut) =A@0)U@), a =t =b,Ua) =1,.

Here I, denotes the identity matrix of order r. Obviously, the impulse response matrix
function is the lower triangular part of a finite rank matrix kernel. The converse statement
is also true (cf., [34], Section 1.4).

Let h (= h;) be a kernel of finite lower rank. A causal time-variant system 6 is said
to be a realization of h if the impulse response matrix function of 6 is equal to k. A reali-
zation 6 of h is called minimal if among all realizations of h the state space dimension of 6
is as small as possible. Two realizations 8 = (A4 (¢),B(t),C(¢)) and 6 = (4 (¢),B(1),C (1))
are said to be similar if there exists an absolutely continuous square matrix function S(.)

such that S(¢) is invertible fora = ¢t = b and

A@) =SMA@WSH ™+ SIS,
B(t) = S()B(),C(t) =Ccm)s@)!,

almost everywhere on @ <t < b. Two minimal realizations of a given impulse response
matrix function do not have to be similar. E.g., the systems 6; = (0,xy ;,1) and
05 = (0,X[y%,1X,1p on the time interval [0,1], are two systems which have the same
impulse response matrix function but which are not similar (see also [35]). The following
theorem gives the necessary and sufficient conditions on an impulse response matrix func-
tion A in order that a minimal realization of A is unique up to similarity.

THEOREM 9.1. Let h(t,s),a = s< t= b, be an impulse response matrix function.

Then a minimal realization of h is unique up to similarity if and only if for a < v < b the

kernels

h(t,s) =h(t,s),y=t =b,a b

IIA
(%]
IIA

all have the same (finite) rank r, say. Furthermore, in that case the state space dimension of

a minimal realization of h is equal to r.

Let h (= h) be an impulse response matrix function. Recall (see [35]) the following
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connections. The state space dimension of a minimal realization of h is equal to the
minimal lower rank of h. Moreover, there is a one-one correspondence between the simi-
larity classes of minimal realizations of h and the set of minimal rank extensions of h.
Consequently, when there is only one minimal rank extension of A, then all minimal reali-

zations of h are similar. This last remark together with Corollary 7.1 proves Theorem 9.1.

It is a classical result (see [50]) that for the time invariant case (i.e., A, B and C con-
stant) minimal realizations of the same impulse response matrix function A are similar. In
that case one obtains an analytic difference kernel 4, and thus Theorem 9.1 yields that all
minimal realizations of the impulse response matrix function of a time invarant causal sys-

tem are similar even in the class of time variant causal systems.

Theorem 9.1 and its upper triangular analogue can also be used to answer the question
of uniqueness up to similarity of SB-minimal realizations (see [35]) of integral operators

with a semi-separable kernel.

COMMENTS (Part B)

The results in this part are collected from the papers [48], [65], [67] and [14]. Section
V.8 did not appear before.

The minimal lower rank formula in Section IV.1 and its corollary appeared earlier in
[65]. The proofs and the construction, described in this section, are in the spirit of [67].
The uniqueness result in Section IV.2 was obtained in [48]. The description of the set of all
minimal rank extensions in Section IV.3 can be found in [67], as well as the results on the
Toeplitz case (Section IV.4) and its connection to the partial realization problem (Section
IV.6). Theorem IV.5.1 is hidden in Corollary 1.4 in [65] and the results concerning the
general patterns can be found in [14]. The results in Chapter IV, with the exception of the
remark in the last paragraph of Section IV.4 and of Theorem 7.1, remain true when one
considers matrices over an arbitrary field (in stead of C). Theorem 7.1 is true for any non-
trivial field, and the remark in the last paragraph of Section IV .4 is true for any algebrai-

cally closed field.
Chapter V, with the exception of Section V.8, is based on the papers [48] and [65].
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