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How THIS MONOGRAPH IS ORGANIZED

This work consists of three chapters. The first chapter is of an introductory
nature, the second and the third contain the theoretical material. Each chapter
consists of several sections. Some of these sections are subdivided in subsec-
tions. The sections do not carry the chapter numbers. The subsections carry
the section number and a subsection number. Formulas are numbered as fol-
lows. If a section contains a subsection, then the formulas in a subsection
carry the subsection number and the formula number, otherwise formulas
carry only the formula number. In each (sub)section the numbering starts all
over again. If we refer to a formula within the same (sub)section we do so by
calling its number, if we refer to a formula outside the present (sub)section,
then the chapter number, section number and if necessary the subsection
number and finally the formula number is called. Formula numbers always go
between brackets. Theorems, lemmas, corollaries, remarks etc. are numbered
with the section number, subsection number and their local number. Refer-
ences to theorems etc. are made in the same fashion as to formulas.
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Introduction

1. INTRODUCTION

1.1 What is adaptive control?

This monograph is concerned with the problem of adaptive control. In this
introductory section we will try to give a non-mathematical description of this
problem field. Since the motivation for studying control theory stems from
practical real-life problems rather than from elegant abstract mathematical
thoughts, we will illustrate the discussion with several examples which in our
opinion reflect one or more fundamental features of adaptive control. To that
end we will first give a brief description of the notion of dynamical system and
of the notion of classical control problem for a dynamical system.

A dynamical system, the basic object of study in system theory, is a mathemati-
cal model of a dynamical phenomenon, for instance a mechanical system. A
dynamical input/output system is a dynamical system in which two entities,
called input and output, can be distinguished. This distinction is such that the
output is causally dependent on the input. This dependence can be thought of
as determined by a set of laws, for example the laws of mechanics. The above
description is in the spirit of the mathematical definition of a dynamical sys-
tem as advocated by Willems [61], and the reader is referred to [61] for an ela-
borate discussion of this definition. Examples of dynamical input/output sys-
tems will be given in the sequel.

A control objective for a dynamical input/output system is defined by a collec-
tion of specifications on the behavior of the system. The rules of the game are
then to manipulate the input of the system in such a way that the
specifications are met. This can of course be done only if the specifications do
not contradict the laws of the system. Well-known examples of control prob-
lems are: stabilization and optimal control.

Let us become a little more specific by giving an example.

ExAMPLE 1 (Inverted pendulum) Consider a rod of length / and mass m
mounted on a carriage (see [38]). The carriage can move along a horizontal
rail and the rod can move in the plane passing through the rail and orthogonal
to the surface. The carriage can be moved along the rail to the left or the right
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by applying appropriate forces. The measured quantities for this dynamical
system are the position of the carriage, the velocity of the carriage, the angle of
the rod and the angular velocity of the rod. It is not difficult to understand
that the forces on the carriage cause all other variables and should hence be
considered as the input of the system. The other variables together form the
output. The control problem we want to discuss for this input/output dynami-
cal system is the following: how to generate an input function such that the
rod comes to an upright position and remains so. It is not our purpose to dis-
cuss possible solutions to this control problem, we merely state that based on
the physical laws governing this system, the mass m and the length /, a device
can be designed which carries out the control task. Important to our discus-
sion is that the input rule depends on the (physical) laws of the system which
we want to manipulate.

O

The solution of every non-trivial control problem will depend on the laws of
the system. It is important to note that the controller itself is a dynamical sys-
tem.

Let us now give a verbal definition of adaptive control.

DEFINITION An adaptive control problem is a control problem where the laws
of the system to be controlled are not completely known.
O

The term adaptive stems from the original motivation of adaptive control. Ori-
ginally adaptive control was intended to be applied to systems of which the
laws change (slowly) in time. The controller was then supposed to adapt itself
to these changes. The bulk of the existing literature, however, is devoted to the
problem of controlling systems with constant but unknown laws. This mono-
graph too is exclusively concerned with systems of which the laws do not
change in time. However, there is one type of change in time that we do not
want to exclude, namely abrupt changes of the system laws. The reason for
this is that it should be possible to connect an adaptive controller to different
systems. If we would first use the adaptive controller for one system and then
connect it to another one, the controller is supposed to adapt itself to the new
system to be controlled. This property reflects a certain universality of adaptive
controllers.

REMARK One could define an adaptive controller as a controller which adapts
itself to operation conditions. However, this description does not provide a
clear distinction between a classical and an adaptive controller. As an example
consider Watt’s governor for steam engines. This is a device that contracts a
valve whenever the velocity gets too high so as to temper the steam pressure
and hence the velocity, and opens it as soon as the velocity goes beyond some
prescribed threshold. Hence this controller adapts itself to changing operation
conditions in the sense that the control action depends on these conditions.
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Nevertheless, it should not be considered an adaptive controller, since it may
work well for the particular steam engine only. Only if it guarantees good con-
trol for different engines, should it be called adaptive. This example illustrates
the difference between adaptive control and what is usually called constant
feedback control.

O

ExAMPLE 1 (continued) Consider the problem of the inverted pendulum. A
relevant parameter in the laws of the system is for instance the mass of the
rod. If this parameter is not known, we are faced with an adaptive control
problem.

a

The main problem in adaptive control is of course that once the laws govern-
ing the system are unknown, the appropriate controller is also unknown, since
it depends on the unknown laws.

How to cope with this problem?

One way of dealing with the problem of controlling a dynamical system of
which the laws are unknown is the following. Carry out a number of experi-
ments on the system and observe the resulting behavior of the system. If the
experiments are diverse enough, one may be able to deduce the laws governing
the system and then design a controller based on these laws.

EXAMPLE 1 (continued) Suppose the mass of the rod is unknown. By just mov-
ing the carriage slightly, the mass of the rod can be approximately calculated
from the resulting motion of the rod.

O

This type of solution is usually not considered as part of adaptive control and
is often referred to as off-line identification. The unknown laws are determined
before the actual control process starts and are not updated anymore. This
method can be very useful in many situations, but there may be some draw-
backs. For instance, the mass of the rod can be determined with a finite accu-
racy only. In the case of the inverted pendulum this does not necessarily cause
serious trouble, since it can be expected that the controller will not be very
sensitive with respect to small errors in m, but for more complicated systems
one may wish to check the values of the parameters every now and then, and
adjust them if necessary. This will certainly be the case if these parameters
change with time. This last statement may sound a little contradictory, since it
was assumed that the system laws do not change with time. However, although
the theory is based on this assumption it is commonly believed that adaptive
controllers that are designed for systems with constant laws, will at least work
satisfactorily if the laws change slowly.

A solution in the spirit of adaptive control is as follows. Adjust the control
mechanism according to the behavior of the system. This should be done in
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such a way that every adjustment leads to an improvement of the quality of
the controller.

This is a fairly vague description and there are many ways it could be done.
We will describe two possibilities, but first we would like to speculate a little
on our own ability of controlling a system adaptively.

ExAMPLE 1 (continued) Let us once more consider the rod, but now no longer
mounted on the carriage. Imagine a human being who tries to balance the rod
on his hand. This can be seen as an example of an adaptive control problem,
since the person tries to control a system of which he does not know the
governing laws exactly. Most people will have little difficulty in balancing the
rod as long as its weight and length have a reasonable value. So let us indeed
assume that the person is capable of keeping the rod standing up on his finger
tip. How is our system-theoretic juggler doing this? Is he trying to discover
the physical laws the rod obeys? And is he then estimating the relevant param-
eters such as length and mass occurring in these laws? And after having done
that, does he then design a control strategy so as to keep the rod in the desired
position? It seems to us that it is very unlikely that something like that really
happens, since the person may have no knowledge of control theory at all. It
does not belong to our competence to analyze how a human being is able to
balance a rod without knowing anything about system theory or physics. How-
ever, private experience has shown that in order to balance the rod you have
to keep the tip of the rod in view and compensate for movements of the rod
(observed by carefully watching the tip) by moving your hand in the appropri-
ate (i.e. same) direction. Initially you will not have a good feeling for how fast
and intense the compensating movements of the hand should be, and as a
result the rod will make wild and unpredictable movements or it may even fall.
These wild movements are undesirable from the stability point of view, but
one can imagine that it enables the juggler to gain a good feeling for how to
keep the rod upright.
Now if a person is able to balance one rod, he may initially have trouble in
balancing another one if its length or its mass differs considerably from the
first one. This reflects the phenomenon that he has to adapt himself to the new
rod.

O

We will now discuss two approaches to adaptive control.

DIRECT ADAPTIVE CONTROL The type of adaptive control that comes close to
the previous example is usually called direct adaptive control. Roughly speak-
ing it consists of a (possibly infinite) family of controllers and of a device that
on the basis of the observed behavior of the system to be controlled decides
which of the controllers should be brought into operation. If that controller
does not result in satisfactory behavior, the device tries another one, and so
on, with the aim to end up with an appropriate controller. All this should be
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done in a systematic way. By now there exists a vast amount of literature on
the direct approach. The term direct refers to the fact that the laws of the con-
troller are determined directly without first determining the laws of the system.

INDIRECT ADAPTIVE CONTROL If there exists a direct method, then the reader
will not be surprised that also an indirect approach has been developed. In
the indirect approach one first tries to pry the system laws out of the observed
behavior of the system. And then, based on the ”guessed” laws, the
corresponding controller is designed. The process of estimating the laws from
the observed behavior is usually called identification. We will not be specific
about what we mean by the ”corresponding” controller because several
interpretations are possible. The designed controller may not be the right one,
since the knowledge of the system laws may be incomplete, especially initially.
But as time goes by, knowledge of the system laws gradually increases, and
hence the controller can be designed more and more accurately by adjusting it
to the knowledge acquired.

The main difference between the two methods just mentioned on the one hand

and the off-line identification method on the other hand is that in the first case

controller adjustment never stops. This implies that identification and control

are done simultaneously. This is often referred to as on-line identification. In

this work we will deal exclusively with the indirect approach. Approaches

other than the two mentioned here are possible, but we will not explain them

here. Summarizing, the main features of adaptive control are:

(i) The laws of the system to be controlled are not, or not completely
known.

(ii) Control and identification have to be done simultaneously (on-line
identification)

(i) An adaptive controller is universal in the sense that it can be used for a
whole class of systems: it adapts automatically to the characteristics of
the system to be controlled.

An important problem which arises almost naturally in both the direct and the
indirect approach is the closed-loop identification problem. This problem plays a
major role in our work and we will therefore try to explain it here. It is best
illustrated in the indirect method. Recall that this method was based on the
estimation of the system laws on the basis of the observed behavior of the sys-
tem. To determine the laws exactly, the experiments (i.e. trying different con-
trollers) have to be diverse enough. If there is no experimentation at all, we
learn nothing about the system; if the experiments are too poor, we learn only
a little. It should be clear that if we apply all possible input functions to the
system, we will induce all possible input/output relations. In principle these
relations will determine the laws exactly. It can however not be expected that
an adaptive controller will generate a rich enough range of inputs. For the
inputs are not generated arbitrarily, but on the basis of the observed behavior.
We will illustrate this by means of an example. It is a simplified version of an
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example in [37], Chapter 12.4.

EXAMPLE 2 Suppose we have two slot machines. The first one pays one dollar
per game with probability p (>0) and the second one pays one dollar per
game with probability g (>0). From a certain point of view it is optimal to
play on the machine with the highest probability of winning. Now suppose
these probabilities are not known to the gambler and that the only possibility
of figuring out these quantities is by playing on the machines. Consider the fol-
lowing strategy, which can be seen as an adaptive controller. First play ten
times on the first machine and then ten times on the second one. Then play
the twenty-first game on the machine with the highest pay-off thus far. Every
next game is played on the ”best” machine up to that moment. At first sight
this seems to be a very reasonable and to some extent even natural strategy.
However, it is not difficult to see that there is a positive probability that we get
stuck on the worst machine. This can be seen as follows. Suppose that p is
larger than q. Consider the event that the first ten games on the first machine
(the best one) were unsuccessful and that on the second machine at least one
game paid off. The probability of this event may be very small, still it is larger
than zero. If this event really occurs, then from game twenty-one on all games
should be played on machine two, because regardless of the outcome of each
game, the yield of the first machine will stay zero (because we do not play on
it anymore) whereas that of the second machine will always be positive. The
reason that this can happen is that there is too little experimentation going on.
From probability theory we know that p and ¢ can only be estimated con-
sistently (i.e. exactly) if we play infinitely often on both machines. This implies
that experimentation should never stop: one should always be willing to recon-
sider one’s opinion about p and ¢. In other words every strategy that claims to
be able to detect the best machine within a finite number of trials is false.

O

Example 2 may be interpreted as an indirect adaptive control problem. The
strategy of estimating p and ¢ on the basis of the previous games and then
proceeding on the machine with the highest estimated probability is too naive,
since even after an infinite number of games p and ¢ may not be known
exactly. The example illustrates that the input of the system (in the example:
the input is the choice of the machine) is not chosen arbitrarily, but is deter-
mined by the resulting output of the system (in the example: the output is the
cumulative yield of each machine). It also shows that the resulting sequence of
inputs is not rich enough to reveal the laws of the system (in the example: the
laws are determined by p and ¢g). This phenomenon is known as the closed-
loop identification problem. The term closed-loop refers to the fact that the
inputs are not generated arbitrarily but according to the behavior of the sys-
tem.

In Example 2 the closed-loop identification problem caused a serious difficulty:
the impossibility of determining the system laws, and hence the impossibility
of controlling the system optimally. We call this the conflict between
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identification and control.
There are also control problems where the closed-loop identification problem
does not cause these extra difficulties. Again we illustrate this by an example.

EXAMPLE 3 Let there be given a non-zero real number y(0). For every
sequence {u(k)}xn the sequence {y(k)}cen is defined by:

yk+1) = ay(k) + bu(k) M

We interpret u (k) as the input of the system and y (k) as the output. For every
(a,b) the law of the system is given by (1). Suppose that we do not know the
true value of (a,b) but that we do know that it is either (2,2) or (1,1) and sup-
pose furthermore that we want to choose the input in such a way that the out-
put becomes identically zero. Assume that the true system law is given by
(1,1), this means that the input/output sequence satisfies:

yk+1) = yk) + uk) ()

This is clearly an adaptive control problem: we have to control the system
without knowing its law exactly. A typical indirect strategy goes as follows.
Try the first possibility for the value of (a,b), that is, postulate that:

y(k+1) = 2p(k)+2u(k) 3

If this were true, then the only way to make the output y(1) equal to zero, is
by choosing:

w® = ~2y0 = »© @
The resulting output will then be:
YD) = y© + u(® = y©0) — y(©) = 0 ©)

And that was exactly what we wanted. It is not difficult to see that once the
output is zero for k =1, the zero-input will keep it zero for all k, without ever
revealing the true value of (a,b)! The surprising conclusion is that although we
had a wrong guess about the value of (a,b), we were able to meet the control
objective. Moreover, the wrongness of our guess will never be revealed by the
behavior of the system.

O

Example 3 shows that there are adaptive control problems for which the lack
of experimentation due to the closed-loop identification problem does not
obstruct the control objective. In that case we speak about the conflux of
identification and control.

Example 2 is a special case of an optimal control problem. An optimal control
problem is a control problem where the control objective is the maximization
of a yield or the minimization of a cost. It can be argued that for adaptive
optimal control problems there will always be a conflict between identification
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and control. In chapters two and three we will investigate this problem for the
Linear Quadratic (LQ) optimal control problem.

Example 3 is a (very) special case of system regulation: controlling the output
of the system to zero. The proof that for this type of control problem there is
no conflict between identification and control will be given in chapter II. It is
one of the major results of this monograph.

We have illustrated the problem of adaptive control by some examples. Let us
now have a brief look- at it from a research point of view. Classical control
theory is based on the assumption that the laws of the system are known
exactly. As such adaptive control should be seen as a generalization of classical
control theory. Adaptive control is now a rapidly developing area in system
theory. The reason for this is twofold. Firstly because of an increasing demand
for controlling complex systems of which the laws are not exactly known or
slowly changing with time. The second reason is that the actual implementa-
tion of adaptive controllers is more often possible than in the past, due to the
growing availability of fast digital computers. The second point is particularly
important since typically the application of an adaptive controller requires
many computations to be carried out simultaneously with the control process.
Whereas the original motivation for adaptive control is of a purely practical
nature, its impact on the theoretical aspects of system theory has been enor-
mous, and still forms a challenge to many researchers in the field. Nowadays
emphasis is on the development of robust adaptive controllers. Controllers
that not only have good theoretical properties, but are also applicable in prac-
tical situations. This should fill the gap between on the one hand adaptive con-
trollers that work well in practice but are theoretically not completely under-
stood, and on the other hand adaptive controllers that work well in theory but
are of no practical value since they rely on unrealistic assumptions. This
monograph is of a theoretical nature and we do not make any claim about the
applicability of our algorithms. The justification for this kind of work lies in
the, in principle unverifiable, statement that if problems such as the closed-
loop identification problem play a fundamental role on a theoretical level, then
at least they will have some impact in practice. Also it can be argued that a
minimum requirement for adaptive algorithms should be that they work well
in an idealized theoretical environment.

We would like to conclude this section by describing two examples of success-
ful application of adaptive controllers in practical control problems.

ExXAMPLE 4 The ore crusher. An early account of a commercial application of
adaptive control is given in Borisson and Syding [8]. There the adaptive con-
trol of an ore crusher is described. The task of this machine is to crush incom-
ing ore to a prescribed maximum size, typically 25mm. The crusher is
designed in such away that ore which does not meet the specifications after it
has been crushed is returned in the crusher. The problem is that if a large
amount of ore is fed back, the capacity of the crusher can be exceeded,
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resulting in a standstill. The percentage of ore which has to be fed back into
the crusher varies from 25 to 75 percent. These variations are due to the
changing average sizes of the incoming ore, the crushability of the ore and the
condition of the crusher. The control task is the regulation of the amount of
incoming ore per time unit in such a way that the capacity of the crusher is
used as efficiently as possible while avoiding overload due to the recycled ore.
This can be seen as an adaptive control problem since the variations in the
percentage of recycled ore induce unpredictable changes in the dynamics of the
system. Originally the crusher was controlled by a classical controller. This
controller had to be cautious in order to be able to deal with “"worst case”
situations. As a result the crusher operated only at 77% of its capacity. Adap-
tively controlled, it operated at 91% of the capacity. This was mainly due to
the fact that the adaptive controller could be less cautious and as a result gave
much better control in average situations.

O

ExaMPLE 5 Ship steering. In a series of papers, see [1] and the references
there, Van Amerongen and several co-workers have reported on the applica-
tion of adaptive control in the steering of ships. The reason for applying adap-
tive controllers to ship steering, rather than using classical controllers is that
the conditions under which a ship has to be controlled can change consider-
ably. Examples of such conditions are: the depth of the water, the loading of
the ship, the current of the water, the wave-height etc. These conditions
influence the dynamics of the ship and can therefore be seen as part of the
dynamical system describing the ship. A ship can be modeled as a dynamical
system with two inputs, rudder-angle and thrustpower, and two outputs,
course-angle and speed [2]. In this model several parameters appear, some of
which are constant and known and others such as the ones mentioned are sub-
ject to unknown changes. Classical control of the ship would call for manual
adjustment of the controller parameters which can be difficult and time and
fuel consuming.
In [1] two control problems for ship steering are considered. The first is
course-tracking and the second is course-changing. These problems are formu-
lated as optimal control problems; the cost criterion to be minimized is the
fuel consumption. Adaptive algorithms that provide automatic adjustment of
the controller parameters have been developed, theoretically analyzed, simu-
lated and finally tested on full-scale experiments. Compared with classical
controllers the adaptive controller resulted in more efficient rudder control.
For the course-tracking problem this led to either a speed increase of 0.3% to
1.5% when the thrustpower was kept constant, or to a reduction of fuel con-
sumption of 1.5% to 3% when the speed was kept constant. Expressed in terms
of money this appears to be a significant improvement.

O
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1.2 Approaches to adaptive control

Several approaches to adaptive control have been proposed and reported, all
with their own features, advantages and disadvantages. At this moment it
seems that there is little consensus as to what is the best way of defining and
treating adaptive control. This is partly due to the wide variety of different
adaptive control problems and partly because of different viewpoints. Before
focusing on our viewpoint, we would like to give a brief description of the
mainstreams in the field.

Although papers on adaptive control have been published since the fifties, see
[24]), we can take [5] as a starting point for the modern literature on the sub-
ject. There an algorithm for adaptive control of an ARMAX system is pro-
posed. The algorithm is based on certainty-equivalence and minimum-variance
control. The authors proved that if the parameter estimates converge, not
necessarily to the true parameter, then asymptotically the variance of the out-
put is minimized. This is the celebrated self-tuning property. However, they
did not give a proof of convergence. A rigorous treatment of the self-tuning
regulator and a proof of its convergence was provided by [23]. In [6] the same
problem is considered, but analyzed in a different way. Based on the geometri-
cal properties of the algorithm it was proved that the parameter estimates con-
verge to a random multiple of the true system parameters. Asymptotically the
minimization of the output variance was achieved also. A disadvantage of
minimum-variance control is that only minimum-phase systems can be han-
dled. A survey of adaptive control of stochastic systems is [32]. See also [4].
Adaptive stabilization of deterministic systems is another highly active part of
the field. In continuous time both the direct and the indirect approach have
been used. In the last few years there has been a fascinating discussion on the
a priori assumptions on which the existing algorithms were based. These
assumptions were that the system is minimum phase, that an upper bound on
its order is known, that its relative degree is known and that the sign of the
high frequency gain is known. The discussion led to the famous Morse-
conjecture [47] which was disproven in [48], and later also in [62]. The final
answer was given in [43,44] and [9], where necessary and sufficient conditions
for adaptive stabilization were derived. In [43,44] and [9] it was proved that
necessary and sufficient knowledge of the system to be adaptively stabilizable,
is the order of a stabilizing compensator. The above-mentioned references are
based on the direct method. The direct method has the advantage that the
search is done in the controller space, which does not contain singular points.
In the indirect approach certain singular points (e.g. non-minimal triples) have
to be avoided, which causes extra difficulties. On the other hand it is not quite
clear how to use the direct method for more sensitive control problems than
just stabilization. In [28] the indirect method is used. Adaptive stabilization of
discrete time systems using various design methods are treated in
[3,21,31,42,50,53,55], see also Chapter III. Some of these references will be
commented upon in Chapter III.

In Model Reference Adaptive Control the control objective is the design of a
compensator such that the closed-loop system behaves like a prescribed system
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for a given reference input signal. See [12] and [58] for a unified treatment.
The term Dual Control was introduced in [16]. In adaptive control it refers to
the fact that the input of the system has two tasks. The first one is that of con-
trolling the system, the second one is that of learning, that is, reducing the
uncertainty one has about the system parameters. If the initial uncertainty is
modeled as an a priori probability distribution on the parameter space, then in
principle one can write down the corresponding dynamic programming equa-
tion, but to our knowledge closed-form solutions have not been reported.
Approximate solutions have been proposed by [60]. See also [25,32].

A very interesting problem, at least at a theoretical level, is that of the adap-
tive control of a finite-state Markov chain. It provides a way of studying the
main issues of adaptive control in an elementary setting. For instance, the
closed-loop identification problem can very well be illustrated using this class
of systems. In fact the first explicit account of the closed-loop identification
problem was described in [7]. Implicitly it was already mentioned in [5]. See
also [37]. A series of interesting papers on this adaptive control problem has
been published by Kumar and co-workers. [33,35,36]. Applications to general
input/output systems of the ideas developed there can be found in [34].

A fundamental problem in system theory is that of robustness. It was
reported in [57] that existing adaptive control algorithms were not robust with
respect to unmodeled dynamics. This was the starting point for research in the
area of robust adaptive control. See [19] and the references given there.

It follows from the previous description that several approaches to the problem
are possible. This monograph considers the problem of adaptively controlling
deterministic linear finite-dimensional time-invariant discrete-time systems of
known order. It is divided into two main parts. In Chapter II a mathematical
framework is developed. This chapter consists of four sections. In the first sec-
tion a definition of adaptive control is given and two subsets of the parameter
space are introduced. These sets play a central role in the remainder of the
monograph, they enable us to study some of the potential possibilities of an
adaptive control problem without referring to a particular algorithm. It will
turn out that the question whether or not the closed-loop identification prob-
lem causes serious difficulties for a given adaptive control problem, can be for-
mulated in terms of these sets. In the second and third sections these sets and
their relations are investigated for the pole assignment and LQ problem respec-
tively. In the last section an (only partially successful) attempt is made to clas-
sify all control problems for which the closed-loop identification problem does
not cause extra difficulties.

Chapter III is devoted to algorithms based on the considerations of Chapter II.
It contains four sections. In the first section a general method is described on
how to modify any indirect adaptive control algorithm so as to assure that the
singular points (e.g. non-reachable pairs) in the parameter space are avoided.
In the second section an adaptive pole-assignment algorithm for #-th order sys-
tems is proposed. The third section treats adaptive LQ control for a first order
system. Finally the last section is a contribution to the continuous time
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adaptive control literature. There an indirect algorithm for adaptive exponen-
tial stabilization is proposed.
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Chapter I

Mathematical Framework

1. INTRODUCTION

1.1 Adaptive controllers

The purpose of this section is to develop a mathematical framework for the
remainder of the monograph. First we will give a definition of an adaptive
controller for a specific class of systems. We will then define certain principles
on which an algorithm might be based. This will finally lead to the definitions
of a recursive, a neutral, a sensitive and a neutral certainty equivalent adaptive
control algorithm. This type of algorithm will form the main object of study in
this monograph.

In part 2 of this section we will associate two subsets of the parameter space
with the forementioned class of algorithms. It will turn out that part of the
potential quality of an algorithm can be studied in terms of these sets.

The definitions in this section will be motivated and illustrated by simple
examples. We would like to emphasize that our definitions do not reflect the
ultimate definition of adaptive control. They should rather be viewed as a
framework for a reasonable large class of algorithms whose properties we want
to study.

This monograph is concerned with linear finite-dimensional deterministic sys-
tems only. In setting up a mathematical framework we shall therefore focus
on this restricted class of systems. Much of what follows can easily be
extended to more general classes of systems, but we do not want to impress or
bother the reader with more abstract definitions and structures than are
needed and used! On the other hand we believe that before concentrating on
more specific problems, a certain level of generality can be of help in revealing
and studying fundamental properties.

In the previous chapter we have seen that several approaches to the problem of
adaptive control are possible. We will concentrate on the adaptive stabiliza-
tion and self-tuning approach.

Loosely speaking an adaptive control problem can be seen as the problem of
controlling an unknown but fixed plant. The adjective adaptive does then not
refer to a controller which adapts itself accordingly to the changed characteris-
tics of the plant, but should be understood in the following sense. The
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controller is first confronted with a system of which it knows very little.
Nevertheless it has to control it. In the beginning the control cannot be accu-
rate, but after some time the behavior of the system will yield its characteris-
tics more and more and the control can therefore become more accurate.
Hence the controller is adapted according to the knowledge gained about the
system. An important feature of an adaptive controller is that control and
learning have to be done simultaneously.
A first verbal definition of an adaptive controller could be given by pointing
out the difference between a controller and an adaptive controller. To this end
we will introduce the notion of universal controller.

A controller is a device that is able to control one single system.

A universal controller is a device that is able to control a class of systems.
This description does not yet explain the word adaptive. In our opinion the
adjective adaptive should reflect the phenomenon of the adaptation of the con-
troller in reaction to increased knowledge of the system.

ExXAMPLE 1.1.1 Let the control objective be stabilization. Consider the class of
first-order linear time-invariant systems in discrete time.

yk+1) = ay(k)+bu(k), b0 (L.1)

Every controller of the form u(k)=fy (k) with f such that | a +bf |<1 will sta-
bilize the system. On the other hand the fixed controller

u(k) = fy (k) 1.2)

will stabilize every system (a,b) for which | a +bf |<1. Hence the controller f
is able to control a class of systems, and should therefore be called universal
for the class of systems which satisfy | a +bf |<1. However f is not universal
for the class of all systems (a,b).

We conclude that universality depends on the class of systems. Universality
not only depends on the class of systems but also on the control objective. Let
us change the control objective from stabilization into a stronger one, namely
exponential stabilization with a prescribed rate of stability. Ie. let there be
given aeR, with | a |<1, and consider the problem to find a controller such
that y (k +1)=ay (k). For given (a,b) the following feedback will do:

uk) = k), f= “;“- (1.3)

Now there is exactly one controller for each system. But again, the same con-
troller can be used for different systems. More precisely: If (a,b) satisfies:

a+bf = aq, (1.4)

then f'is the controller for (a,b). Hence f is universal for every (a,b) satisfying
(1.4), but again f'is not universal for the class of all first-order systems.

O

In the first example, the type of universality is usually called robustness. If we
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equip the class of first order systems with the Euclidean topology, then for
each controller there is an open subset of systems which can be stabilized with
that controller. Robustness is not the topic of this monograph, but we will see
that it is very difficult to make a formal distinction between robust and adap-
tive controllers.

Intuitively one would like to call a controller adaptive if it is able to control a
reasonable large class of systems, for instance the class of all linear time-
invariant first-order systems. Robust controllers are then locally universal and
adaptive controllers are globally universal. One of the weak points in such a
description is the term “reasonably large”. For if the class of systems is
sufficiently small, the difference between global and local may totally disap-
pear.

Another attempt to come to a good definition of an adaptive controller is the
following. Suppose that we have a class of systems and that for each system
of that class we know a controller. We then have a family of controllers
parametrized by the elements of the class of systems. The class of controllers
could then be seen as an overall controller with adjustable parameters. If we
now include some mechanism to adjust the parameters of the controller, then
this could be called an adaptive controller. This description comes very close
to the controller structures which are usually called adaptive.

ExaMPLE 1.1.2 Consider the following class of systems, parametrized by
(a,b)eRXR*,
y =ay+bu, y(0)eR (1.5)

and suppose we want to stabilize (1.5) without knowing (a,b). Consider the
following scheme:

k=y*, k@ =0. (1.6.2)
u= —ky (1.6.b)
We claim that (1.5) together with (1.6) is stable in the sense that,

tlixg y(@) =0, tl-i-f?o k() = kg .7

PrOOF From (1.6.a) it follows that k(¢) is non-decreasing. Hence there are two
possibilities. Either k tends to infinity or it reaches a finite limit. Suppose k
tends to infinity. For all #y we have:

[ @ = bknas
Y@ =y@o) e® (1.8)
Choose t;, such that a — bk(tp) < —1, this is possible since k tends to
infinity and & > 0. Then from (1.5) it follows that:
_/ ds

Y@ <|y@)|e (1.9.2)
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= |y(to)| e ¢ (19.b)

We conclude that yef)(0,00), together with (1.6.a) this implies that k is
bounded, which is a contradiction.

Suppose now that & is bounded, then by (1.6.a) it follows that y €, (0, c0), and
hence by (1.6.b) also uef(0,0). By (1.5) we conclude that ye£,(0,00).
Finally y, y €£,(0, 00) implies:

’lim y@®) =0 _ (1.10)
—00
This finishes the proof.

REMARK The main reason that this type of adaptive controller stabilizes the
system is that the sign of the ”b”-parameter is known. This means that one
knows in which direction k should change. The case where the sign of b is not
known inspired S. Morse to conjecture that then the system could not be sta-
bilized adaptively [47]. This conjecture was first disproved in [48], and later
also in [62].

One can consider (1.6) as a fixed nonlinear dynamic compensator which is
universal for every system (a,b)eRXR*. As such it is not clear why one
should call this controller adaptive. Another way of looking at (1.6) is the fol-
lowing. The class of feedback controllers for (1.5) can be parametrized by
keR. The problem is now to find a kR such that a —bk<0. Now, (1.6.a)
is a mechanism which adjusts the parameter k in (1.6.b) in such a way that
asymptotically one ends up with a fixed stability linear controller, namely k.
Indeed, it is not difficult to prove that if y (0)+0, then there must hold:

a—bk, < 0. (1.11)

Note that the gain adjustment mechanism (k=— y?) is driven by the output of
the system.
Hence either one considers (1.6) as a “complicated” (= nonlinear) fixed con-
troller or one considers it as a combination of a parametrized family of simple
(=linear) controllers and an adjustment procedure driven by the observed
data. The objective of the adjustment procedure is then to ultimately select a
controller which stabilizes the system of which the parameter values are
unknown. In our opinion the term adaptive is best reflected by the second
viewpoint.

O

From the previous discussion it is clear that a general and natural definition of
an adaptive controller is not easy to give. Therefore we will now restrict our
attention to the class of systems which will be the main object of study in this
monograph, namely the class of linear time-invariant systems of fixed order.
For the rest of this section we will mainly work in discrete time.
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We will formulate our definitions in terms of systems in input/output form
rather than in input/state/output form. The latter would lead to complicated
and awkward definitions, mainly due to the fact that observers have then to be
included. We will now describe the class of systems and the class of controllers
under consideration.

DEFINITION 1.1.3 (class of systems)

Sn) := {(4,B)eR[zP | A(z) = z"—apz" ' —..—a,_, (1.12)
B(z) = boz" ' +..+b,_4,
g.cd.(4,B)= 1}
O

INTERPRETATION: with (4,B)eR[z P

AQ@) =z"—agz" ' —.—a,_, (1.13)
B(z) = boz" ' +..+b,_, (1.14)
we associate the input/output system:

yk+1) = agy(k)+..+a,—1y(k —n + 1)+bou(k)+..+b, _ u(k —n +1) (1.15)

DEFINITION 1.1.4 (class of controllers)

() := {M,N)eR[z | M(2) = 2" —mz" ' —..—m, _,, (1.16)
N@) = nez"+..+n,_,,
gcd(MN)=1)

DEFINITION 1.1.5 A control objective on Z(n) is determined by a set of
specifications on the behavior of each element of 2(n). A solution of order r of
the control problem is a (possibly multivalued) function:

F: 3(n) - Z.(r) 1.17)

O
INTERPRETATION By a solution of order r of a control objective on )(n) we
mean that there exists a (multivalued) function F which assigns to a pair

(4,B)eZ(n), at least one pair (M,N)eZ.(r) with the property that each pair
(M,N)eF(A,B) is such that if these two systems are connected in feedback:

yk+1) =agyk)+.+a,_1ytk—n+1) + (1.18.a)
bou(k)+..+b, —utk —n +1)
u(k) = muk —1)+.+m,_jutk —r+1) + (1.18.b)
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noy(k)+..+n,_y(k —r+1),

the resulting behavior of the controlled system is as specified by the control
objective. Note that it is not necessary to give a precise definition of the
notion of control objective since this is implicitly done by the map F.
Examples of control objectives:

(i) Stability

(ii) Pole Assignment

(iii) Linear-Quadratic Control

We will now give a definition of an adaptive controller for the class of systems
3(n).

DEFINITION 1.1.6 An adaptive controller of order r on (n) is a pair (6,f),
where:

0: RN>3m) f: SMXR¥TIST (1) (1.19
]

INTERPRETATION An adaptive controller consists of an identification part (the
function ¢), which assigns to every data sequence (think of input/output
sequence) a system (model) and a control part, given by the function f. The
controller that is assigned to the estimate may also depend on the most recent
n+1 outputs and » inputs. Of course this is a special choice; we could also
allow f to depend on more inputs and outputs, but since we will not use that,
we do not want to include this possibility in the definition. An example of this
type of dependence is obtained when the controller also depends on the pred-
iction error:

Let (Ag,By) : = 0(y 0),...y (k),y (k +1),u(0),..,u(k)). Define:

(M, Ny) = f (A, By (k +1) — $(k +1)) (1.20)
where
}(k +1):= &o(k)y(k)+..+&,,_1(k)y(k —n+1) + (1.21)

bo(k)u(k)+..+b, _ (kyu(k —n +1)
(the coefficients of ,:ik and ék are denoted by a;(k) and l;,-(k) respectively).
DEFINITION 1.1.7 (certainty equivalence) The adaptive controller (,f) is said

to be based on certainty equivalence for the control objective F, solved by
2.(r), if for all (4,B)e 3)(n), and for all xeR>" *1;

f(4,B,x)eF(4,B). (1.22)

(if Fis a map then (1.22) implies f (4,B,x) = F(A,B)).
O
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INTERPRETATION Certainty equivalence means that the applied controller is
calculated as if the estimation @ of the unknown system were indeed the true
system. That means that the adaptive controller does not actively choose the
inputs so as to learn more about the system. In that sense the learning is pas-
sive.

DEFINITION 1.1.8 (recursiveness) An adaptive controller (6,f) is said to be
recursive of order (/1,/,) if there exists

8: Sn)* xR" > Sn) (1.23)
such that for all m =(mqg,m_,,m_,,..)e(R*)N

() =0(0(m 1, _ 3.}, 0 _ 1, 41, —1 ;A 1), gs M — 1y —p 1) (1.24)
(for m; one can think of an input/output sequence).

O

INTERPRETATION A recursive adaptive controller is an adaptive controller for
which the estimation part is recursive. The estimation at time k can be calcu-
lated on the basis of /; past estimates and /, past observations.

DEFINITION 1.1.9 .
() (neutrality) A recursive adaptive controller (4,f) of order (1,2n +1) is
said to be neutral if for all (4,B)e 3)(n), and for all 2 + 1-tuples

(& +1)yk),u(k),..y(k —n+1),u(k —n +1)] (1.25)
with the property that:
y(k+D=aqyk)+..+a,_1y(k —n+1) + (1.26)

bou(k)+ +b,, _lu(k —n+ 1)
(the coefficients of (4,B) are denoted by g; and b; respectively). the fol-
lowing holds:
b((A,B),y (k+1),...y(k —n+1),u(k),.,u(k —n +1)) = (4,B). (1.27.2)

(i) (sensitivity) The recursive adaptive controller (@, f) of order (1,2n +1) is
said to be sensitive if for all (4,B)eZ(n), and for all 2n + 1-tuples (25)
with the property that (1.26) does not hold, the following holds:

8((4,B),y (k +1),...y(k —n + 1), u(k),..,u(k —n +1)) 5= (4,B).  (1.27.b)

a

INTERPRETATION A recursive adaptive controller is called neutral if the follow-
ing property holds: if the current estimate is compatible with the observed

data ( i.e. the current estimate is not falsified by the observed data), then the
next estimate is equal to the current one. That means that the adaptive
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controller does not actively choose the inputs so as to learn more about the
system. In that sense the learning is passive. The adaptive controller is called
sensitive if the estimate is changed if it is not compatible with the observed
data.

DEFINITION 1.1.10 (neutral certainty equivalence) An adaptive controller (6,f)
is called neutral certainty equivalent for F if for all (4,B)eZ(n) and for all
2n + 1-tuples

bk +1),y(k),u(k),..y(k —n+1)u(k —n +1)] (1.28)

such that:

yk+1) = aqyk)+..+a,_1y(k —n+1)+bou(k)+..+b, _u(k —n +1)(1.29)

the following holds:

S A,By(k +1),y(k),u(k),...y(k—n+1),u(k —n +1))eF(4,B) (1.30)
O

INTERPRETATION Neutral certainty equivalence is weaker than certainty
equivalence. Loosely speaking it means that one is restricted to use the cer-
tainty equivalence principle only if the observed data do not falsify the esti-
mate (4,B). This type of adaptive controiler can be very useful, since it allows
one to deviate from certainty equivalence as long as the prediction error is
nonzero. On the other hand if the prediction is zero, then the estimate could be
the true system and hence we should apply the controls according to certainty
equivalence.

Recursiveness, certainty equivalence and neutrality are widely used principles
in the adaptive control literature. The algorithms we will present in Chapter
IIT will be derived from these principles.

REMARK 1.1.11 Descriptions of adaptive controllers for continuous-time sys-
tems may be found in [9]. See also [22,27,28,29] for a general treatment of
identification algorithms for continuous-time systems. Most of the algorithms
in the literature are based on the principles which we have just developed.
Sometimes the map (f,0) is not explicitly factorized but considered as a map
that assigns a controller to observed data. Such algorithms are called direct.
If the factored form is used we speak about indirect algorithms.

As may be concluded from the previous discussion it is difficult, if not impossi-
ble, to give a satisfactory and mathematical definition of adaptive control on a
general level. For a specific class of systems a definition has been given how-
ever. For this class we can now distinguish between adaptive and robust
(universal) controllers, by saying that a robust controller is a local controller
and an adaptive controller is a global controller. Here local is with respect to
some natural topology on the ).

There is another important difference between robust and adaptive controllers.
Thus far we have only given definitions without specifying what we would like
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to do with an adaptive controller. Of course a desirable property of an adap-
tive controller is that, at least asymptotically, exactly the right control signals
are applied. This is a property that robust controllers do not have in general.
For instance if the control objective is pole-assignment, then if the controller is
calculated on the basis of a model and the true system is a slight perturbation
of that model, the poles are not assigned exactly but only approximately. A
good adaptive controller would adjust the model until the poles are placed
exactly.

1.2. Identification in closed-loop: the sets G and H

In the second part of this section we want to study some of the potential possi-
bilities and fundamental limitations of adaptive controllers as defined in the
first part.

Let (f,0) be an adaptive controller for Z(n) and the control objective F. The
map 0:(R2)N — Z(n) represents the identification part of the controller. The
term identification, however, does not have any meaning as long as we do not
specify the arguments of 6 and how they are generated.

ASSUMPTION For the rest of this section we will assume that there is given a
nonzero vector H0)eR?> ! and a fixed but unknown pair (49,Bp)e=(n).
Furthermore it is assumed that each time we refer to a data sequence
(O (k +1),y(k)u(k),..y (k —n +1),u(k —n +1)} it satisfies:

yk+1) = ady(k)+..+ad_1y(k —n +1)+bu(k)+..+b% _utk —n +1) 2.1)

where the af’s and the b)’s are the coefficients of 4o and B, respectively.
Finally we will assume that the initial state of the system (4¢,B) is :

0 0),..y (—n +1D,u(=1),.,u(—n +1)) = ¢0) 22
O

In part one we have defined the notion of adaptive controller; we now want to
define an adaptive control scheme. Loosely speaking this will be an adaptive
controller (f,#) together with a rule which tells us how to apply (f,6) to real
data coming from some unknown system.

DeFINITION 1.2.1 An adaptive control algorithm of order r for >(n) is an
adaptive controller (4,f) together with the scheme

(A Br) = 0y (), (ke — 1) uk — 1),y (k —2),u(k —2),.) (23.2)
(Mi,Ny) = f (g B,y (k)y (ke = 1),k —1),...p (k —n),u(k —n)) 23b)
u(k) = mykKuk —D+..+m, _ulk —r+1)+ (2.3.0)

no(k)y (k)+..+n,_ (k) (k —r +1)

where the data (u(k),y(k)) satisfy the equations of the unknown system
(A0,Bo):
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y(k+1) = agyk)+..+a,—1y(k —n+1)+bou(k)..+b,_u(k —n +1) (2.3.d)
O

REMARK 1.2.2 For the definition of an adaptive control algorithm it is not
necessary that the unknown system belongs to the class D)(n). For the evalua-
tion of the behavior of the resulting controlled system, however, one has to
impose something on the unknown system. In this monograph we shall mainly
study the behavior of the controlled system subject to the assumption that it
belongs to >(n), where n is known. This is what some people nowadays refer
to as the ideal case.

O

Let us now assume that the data {(u(k),y(k)} is indeed produced by the sys-
tem (do,Bg)eZ(n). A first natural guestion is: how does the sequence
{(Ax,By)} behave? If we consider (A4x,B;) as an estimate for (4¢,8), then in
particular we could like to know whether or not:

Jim (4, B) = (4o,B0) @4)

Or otherwise stated we would like to know whether or not the true system is
identified. Let us first consider the question of identification. It is well-known
that for the identification of a system it has to be sufficiently excited by the
input. For instance, it is clear that if the input of the system is chosen to be
zero, then no information can be gained about the B-polynomial of the system.
Several papers appeared which gave conditions on the input signal to ensure
that from the resulting input/output behavior the system can be identified
completely.

ExaMPLE 1.2.3 Consider the first-order system
Yk +1) = ay(k)+bu(k) 2.5)

(a,b) unknown, b5~0.
An estimation method for (a,b) which will be used and commented upon in
Section II1.2 is the projection algorithm. In recursive form it reads as follows:

atk+1) = at)+——2LE 6k + 1) —ak)y (k) — bk k) (2.6.2)

y(k)+u*(k)
b = b ___ﬂkl__ _A _ 7
b(k +1) = b(k)+ yz(k)+u2(k) O (k +1)—a(k)y(k)—b(k)u(k)) 2.6.b)
Now take as control law:
w=(—1y(k), (2.6.)

then (2.6.a,2.6.b) can be written as:

atk +1) = &(k)+-;— ((@o—a(k))+(bo — b)) — 1)) (2.6.d)
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bk +1) = I;(k)+-;— (@0 — a())(— 1) + (b — b(K))) (2.6.€)
Define:

Vi 1= li@o,bo) — @(k),b()I? @7
Then from (2.6.¢,2.6.d,2.6.¢) it follows that:

Viewr = V< (@o—a)+(bo—bX— DY X

The first conclusion is that li(ag,bo) — (a(k), b)) converges. Also one can
easily prove, see Lemma II1.2.2.1, that

Jim @1 =@ + (1~ = 0 @9)

Choose a subsequence {s.} of 2N (the even natural numbers) such that
(@, ,bs,) converges, say

lim @,.5,)=@5) (2.10)
—>00

then by (2.9) also:

Jim @, +1,B,+1) = @B) @11)

It follows from (2.10) and (2.11) and the fact that s; is even that (@,b) is an
invariant point of (2.6) for both k even and odd. This gives:

a=a+ %((ao—a) + (bo—D)) @2.12)

and:

a=a+ %((ao—b') — (bo—b)) (2.13)

(2.12) and (2.13) yield a=ay, E=bo. This together with (2.8) gives:

Jim @,50) = (ao,bo). (2.14)
O

(2.6.¢) is a sufficient condition for the sequence of estimates to converge to the
true system parameters. Two remarks are in order. It should be emphasized
that (2.6.c) is just an example of a sufficient condition for identification and
serves as an illustration that simple conditions on u(k) can be given. On the
other hand, since it is clear that #(k)=0 can never identify the b-parameter,
one should at least have some conditions on the “richness” of the input signal.
We now want to study the richness of the input signals if they are generated
by an adaptive control algorithm. We will restrict our attention to recursive,
neutral, sensitive, and neutral certainty equivalent algorithms. In particular
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algorithms of the form:
Ak +1:Be+1) = 8k, B,y (k + 1),y (), u(K), .y (k —n + D,u(k —n +1))(2.15.2)
yk +1)=agk)y (k)+..+a, _(k)y(k —n+1)+ (2.15.b)
bo(k)u(k)+..+b, — 1 (Kyu(k —n +1)
(M Ny) = f (A, Broy () —5(K) @2.15.0)
u(k) = my(eyuk —1)+..+m, _yu(k —r + 1)+ (2.15.d)
no(k)y (k)+..+n,_ (k) (k —r +1)
and 8 has the property
yUe+1) =5k +1) = @es1,Be41) = Ap.By)  (neutrality) (2.16)
and f satisfies:
for all (4,B)e2(n) and for all yeR:
f(4,B,0)eF(A,B) (neutral certainty equivalence) .17

Note that by abuse of notation, the third argument of f'is a real number rather
than a 2n + 1-vector as in the original definition of f.

REMARK 1.2.4 Why focus on this type of algorithm?

(i) Recursiveness. For computational reasons.

(i) Neutrality. If the predicted output (y(k +1)) equals the observed output,
then there is no other obvious choice for the next estimate than the
current one.

(ii) Sensitivity. If the prediction error is non-zero then we know for sure that
the current estimate is wrong. It is reasonable to require that the algo-
rithm then changes the estimate.

(iv) Neutral certainty equivalence. If the predicted output equals the
observed output, then it is always possible that the estimate on which the
prediction was based is in fact the true parameter (4¢,By). If that is the
case it will be kept constant for ever, due to neutrality. Hence in that
case it is reasonable to require that a desired control (€F(4¢,B,)) is
applied. Since (4¢,B) is not known, the principle follows.

O

Note that the convergence proof in Example 1.2.3 was based on the observa-
tion that the only invariant point of the estimation scheme was (a¢,by), the
boundedness of the sequence of estimates and the vanishing difference between
successive estimates.

On this level of generality the question of identification can only be studied in
terms of the invariant points of the estimation part of the algorithm, in the
sense that every invariant point is a potential limit of the sequence of esti-
mates. From the neutrality and sensitivity assumptions it follows that:
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Ak +1,Be 1) = AoBr) it y(k+1) = j(k+1) 2.18)
Hence invariant points are those (4, B)e=(n) for which for all k: y (k) = p(k).

DEeFINITION 1.2.5
G := {(4,B)eZ(n) | for all k: y (k) = y(k)} (2.19)

where y(k) and u (k) are defined by the algorithm (2.15). G is the set of invari-
ant points of the algorithm (2.15) applied to the system (4,B,) with initial
state ¢(0). :

O

REMARK Note that although u(k),y (k) and y(k) depend on the particular algo-
rithm, G will be the same for all algorithms that satisfy (2.15).
O

The question of identification can now be studied by analyzing G. If
G = {(40,Bo)}, . then boundedness of {(Ax,By)} and
kli?clo (Ak+l _AksBk+l —Bk) = 0 is sufficient for identification of (Ao,Bo).
However, since the input of the system is not generated arbitrarily, but on the
basis of the observed behavior of the system, it cannot be expected that G will
consist of nothing more than (4, By).

We will illustrate this with an example.

EXAMPLE 1.2.6 Consider the system

y(+1) = agy(k)+bou(k), b0, y(0)~0 (220)
desired control law:
u(k) = F(ag,bo)y(k) (2.21)

Let (a,b) be an invariant point of any algorithm which is neutral and neutral
certainty equivalent. With invariant we mean that if we start in (a,b) we stay
there (for instance (ag,by) itself is invariant).

Starting at k=0, we will apply

u(0) = F(a,b)y(0) (2.22)
which gives:

y(1) = (a9 +boF(a,b))y(0) (223)
y(1) = (a+bF(a,b)y(0) (2:24)
Since (a,b) is invariant we conclude that y (1)=y(1). In general we will have:
y(k+1) = (ag+boF(a,b)y(k) (2.25)

y(k+1) = (a+bF(ab)y(k) (2.26)
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Now, if y(k)=0 for all k, we can learn very little of (2.20). Assume that there
exists k such that y(k)+0. Then after dividing by y (k) we conclude:

ag+boF(a,b) = a+bF(a,b) .27

On the other hand one may easily check that if (a,b) satisfies (2.27), then it is
invariant. Hence:

G = {(a,b) | ap + boF(a,b) = a + bF(a,b), b5£0} (2.28)
' O

In general G will consist of an infinite number of pairs (a,b). The
phenomenon that G is larger than just {(4¢,bo)} is due to the fact that
identification takes place in closed-loop: Information is obtained only about
the closed-loop behavior of the system. It is very likely that there are many
parameter values that give rise to the same closed-loop behavior.

However, identification of (4¢,B,) is not the primary goal of adaptive control.
The main goal is just control, and identification of (4¢,B;) may not be
needed. Otherwise stated we will be happy to have an estimate of the system
that induces the same sequence of inputs as required by the control objective.
Hence what we want is to arrive at an estimate (4,B)e3(n) such that:

S (4,B,0)eF(40,B0) (229)
Let us define the set H as the subset of Z(n) of pairs (4,B) with that property:
H := {(4,B)e2(n) | f (4,B, 0)eF(4,B)} (2.30)

The set H may still not be what we are looking for. For if (4,B)eH, then
(4,B) will certainly give rise to the desired controls, but it is not necessarily
true that if some (4,B) produces the desired inputs, it then belongs to H.
Namely, it is very well possible that not all the modes of the system are
excited and in that case only the action of f(4,B,0) on the excited modes is
relevant. Hence we define a slightly more appropriate set:

DEFINITION 1.2.7

H := {(4,B)eZ(n) | for all k:u(k) = u(k)} 2.31)
where:

(M,N) = f(4,B) (2.32.2)

u(k) = mou(k —1)+..+m, _yu(k —r+1) + (2.32.b)

noy(k)+.+n_1y(k—r+1),
and there exists
(Mo,No) € F(Ao,By), (2.32.0)

and:
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(k) = mduk — D) +.+m_ju(k—r+1) + (2.32.d)
ndy (k)+..+nl_1y(k —r+1)
O

EXAMPLE_1.2.6 (continued) For the first order case there is no difference
between H and H:

H = ((@b) | f(ab) = [(a0,bs) b0} (2.33)
O

Now we come to the most crucial point of this chapter. We have just relaxed
the requirement of identification and replaced it by the weaker requirement of
producing the right controls. Hence instead of (2.4), we want to know whether
or not:

lim (A,By)eH (2.34)
—00

However since any limit is necessarily invariant we will at least have:
lim (4,B)eG (2.35)
k>

Now, (2.34) will automatically be satisfied if:
GCH (2.36)

DEFINITION 1.2.8
(i) The control objective F on 2(n) is said to have the potential weak self-
tuning property if G CH. _
(i) It has the potential self-tuning property if G CH.
a

CoMMENT 1.2.9 It is important to know whether or not a control objective has
the potential weak self-tuning property. For, if it has the property, then every
limit of an algorithm based on neutrality and neutral certainty equivalence will
generate the right controls.
If F does not have the property (i) or (ii), then an algorithm of the type just
mentioned may not be convenient, because there will always be invariant
points (=possible limits) which do not generate the right controls.

O

In the next sections we will investigate this problem for two different control
objectives. Also we will try to classify all control laws F which have property
@

REMARK 1.2.10 The problem just encountered is known as the closed-loop
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identification problem in adaptive control. It has first been studied in [7] for
the adaptive control of finite state Markov chains. The sets G and H were
introduced in a slightly different way in [49].

O
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2. G AND H FOR POLE ASSIGNMENT: CONFLUX OF IDENTIFICATION AND
CoNTROL

In this section we will study the sets G and H as defined in the previous sec-
tion for the case where the control objective is to obtain a prescribed
configuration of the closed-loop poles of the system. The material in this sec-
tion is based on Section 4 of [55].

Given the system:

y(k+1) = (k) + bJu(k), 0]
where: '
00 = (ag’"’a?l"l’b(l)a"’bg—l)’ (2)

where we assume that the associated 4 and B polynomials have no common
factors, and

o(k) = Y (k),...y (k —n+1),ulk —1),.,u(k —n +1))7, 3)
and a monic polynomial
neR(z] _ 4

of degree n, find a controller:
u(k) = muk —D+..+m,_yutk —n+1)+ngyk)+..+n,_1y(k—n+1), (5)

such that the resulting closed-loop polynomial of the system (1,5) is exactly:
2" "l@(z). The factor z" ! reflects the need of a dead-beat observer.
The main result of this section is that for this control objective indeed:

GCH ©

This means that potentially adaptive pole assignment can be based on a neu-
tral and neutral certainty equivalent algorithm. Potentially because the only
thing we can conclude from (6) is that the invariant points of such an algo-
rithm have the property that they correspond to desired behavior.

First we will reformulate (1,..,5) in input/state/output form. Then we will state
(6) as a theorem (Theorem 2.2). Finally we will give the proof of the theorem,
divided into several steps.

Let (Ag,bg,co)eR™™ " XR"*1 X R!*" be a minimal realization of (1). Le.
bYz" ' +.+b)
> 2o )

2" —adz" 1 —.—dd_,

co(zI —Ag) by =

Then, for every initial condition ¢(0) of (1), there exists a x (0)eR” such that:
x(k+1) = Agx(k) + bou(k), x(0) ®

yk) = cox(k), ®
for any input sequence {u(k)}. We will use the standard observable form:
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[ 1. 0] b
: 0 : :
Ay := T 0 bg := : co:=1[10..0] (10)
- 1 :
La?,_l 0. .. 0- ng_l_
and the dead-beat observer:
x(k) = Mod(k) , an
where My eR"*?"~1 is defined by:
i o o .. 0 0 0 .. 0]
0 & 4 ad_y b b by -1
a 4 . 0 b} B .0
My := . (12)
o a%, : R
L0 @, 0 .. 0 ¥, 0 .. 0

We will now describe a neutral and neutral certainty equivalent algorithm in
state-space terms. Consider the controlled system (1,5), define:

x(k) = Myp(k) 13)
fA,b) = —[0,..,0,1][b:4b:...: A" " b] ' m(4) (19

PROPERTY 2.1 The sequence {(u(k),y(k))} as defined by (1,5) satisfies:
u(k) = f(Ao,bo)x (k) (8]
x(k+1) = Agx(k) + bou(k), ,x(0) (16)
y(k) = cox (k) ﬁ an
O

The formula (14) is known as Ackermann’s formula (see [26]). Property 2.1
follows from realization theory and the fact that for all reachable pairs (4,b)
the characteristic polynomial of (4 + bf (4,b)) is exactly equal to #. There is
a one-to-one correspondence between the i/o and i/s/o description if the ini-
tial conditions are taken into account. Property 2.1 gives the controller (5) in
terms of state-feedback. We can now rewrite the control part of an adaptive
pole assignment algorithm in state-space form: R .

- Assume available the k-th estimate (@o(k),.;,a,1(k),bo(k),...b,—1(k)) of
(@),...ad —1,3,...b3_1). Define the matrices Ay, by, My, by replacing the
entries of (10) and (12) by their k-th estimates. Assume that (4,b;) is controll-
able, and define:
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FArbe) = —[0,.,0,11b, Ay iAy bl m(Ay) (18)

2(k) = Mig(k) (19)

and finally:

u(k) = fldy.be)z(k), 0)

where fis defined by (14).

We will now determine the set G. Define:

x(k+1) = dox (k) + bou(k), x(0) = Mo¥0) Q1)
y&) = ex (k) 22)

2k +1) = Az(k) + bu(k),  z(0) = M&0) (23)
(k) = cz(k) (249
u(k) = f(A4,b)z(k), (25)

where M is obtained from (12) by dropping the superscripts. Then by
definition of G (see 11.1.2.5), (4,b)eG if and only if for all k:

y(k) = y(k) (26)
Hence G is given by:
G = {(4,b)eE,; | forall k: y(k) = p(k) } (01))

where y (k) and y(k) are defined by (22,24).

Now H will be the set of those starting values (4,b), such that at every time
instant the right input is applied:

H = {(A,b)€E,, | for all k: f(4,b)z(k) = f(Ag,bo)x(k) } (28)

where z (k) and x (k) are defined by (21,23). Recall that we wanted to investi-
gate the relative location of G and H. The following theorem gives the answer:

THEOREM 2.2 The sets G and H as defined by (27) and (28) satisfy:
GCH (29)

The implication of Theorem 2.2 is that if we start any neutral, neutral cer-
tainty equivalent algorithm in a point belonging to G, then the applied inputs
are exactly as the ones we would have applied if we had known the system
parameters.

The proof of Theorem 2.2 will be divided into several steps, that are men-
tioned below. The proofs of the intermediate steps will be postponed to the
appendix to this section.
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THEOREM 2.3 Let (4¢,bo),(4,b)€E,, and V a linear subspace of R"*" such
that:

(i) For all veV: (A +bof(d4,b)y eV (30)
(ii) For all ve: (Ao +bof (4,b))y = (A +bf (4,b))v @3N
Then:

for all veV: f(4,by =1 (Ao,bo)v. (32)

PROOF See the appendix to this section.

THEOREM 2.4 Let {(u(k),y(k))}xen be a sequence in R? and suppose there
exist (Ay,by,¢1), (A2,b3,c2), minimal triples of order n, and sequences
{x(k)V,x(k)®} in R, such that for all k:

x(k+1D)WV = 4, x(k) +byu(k) (33
x(k +1)? = A,x(k)® +byu(k) (34
yk) = c1x (k)P (35)
y(K) = cox(k)® (36)

Define %; = span {x (k) }n, and d; = dim (%), i =1,2.

(@ if dy <n, then there exists a non-singular matrix S, such that:
Sx(k)® = x(k)®.

G) d, = d,.

(iii) if there exists g, such that: u(k) = g,x (k)" and d, = n, then there
exists a non-singular matrix S, such that: Sx (k)P = x (k).

PROOF See the appendix to this section.
PROOF OF THEOREM 2.2

Let (4,b)eG and let {x(k),z(k),u(k),y (k),y(k)} be defined by (21,..,25), then
for all k:

(k) = j(k) €0

By Theorem 2.4.ii there exists a non-singular matrix S such that for all k:

Sz(k) = x(k) (38)

This yields two recursions for x (k):

x(k+1) = Aox (k) + bof (4,b)z (k) (39.a)
= (Ao + bof (4,0))S " 'x(k) (39.b)
= (Ao + bof (SAS~,Sb))x (k) (39.0)

and:
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x(k+1) = Sz(k+1) (40.a)
=S8 + bf (4,b))z (k) (40.v)
= (SAS™! + Sbf (SAS~!,Sb))x (k) (40.c)

Define (4,b) = (SAS~!,Sb) and V = span{x(k)}, then it follows from the
two recursions (39,40) that:

(Ao + bof Ab) | v = @A + BfA,B) | v @1
Also it is not difficult to see that:

(Ao + bofA,b))V CV 42)
Hence from Theorem 2.3 it follows that:

fAD) | v = f(Ao.bo) | v (43)
In particular:

fADb)x (k) = f(Ao,bo)x (k) (44)
and hence:

fA;b)z(k) = f(Ao,bo)x (k) @45

which means that (4,b)eH.

APPENDIX
n
ProOF OF THEOREM 2.3 Factorize # as: m(z) = [J(z—A;). Define
; o

A := {A,..,A,}). Suppose that ACR and that A;5%); for all i%j. Let V be
one-dimensional. Then by (30,31) V' is generated by an eigenvector v of
(A +bf(4,b)) corresponding to let us say A:=A;.. Hence by (30,31):
(Ao +bof (4,b))v =Av. Suppose (4,by) is in standard controllable form. Then
v is a multiple of [LA,.,A""!\7, say v=[LA,..,A""'JT. The spectrum of
Ag+bgf(Ag,bo) is by definition of f equal to A. Hence A is an eigenvalue of
(Ao +b0f(A0,bo)), and there exists v such that (Ao +b0f(A0,b0));=A;. From
the standard controllable form it is easy to see that the only candidates for an
eigenvector with eigenvalue A are multiples of v, hence v=pv, for some ps%40.
Hence (4¢+bof (Ag,bo)v =(4o+bof (4,b)yv. Since by7#0, we conclude that
S b =f (Ao, bo).
If dimV>1, then “V has a basis of eigenvectors and the above reasoning gives
the result. For general A the proof goes along the same lines, but then one has
to study several different cases. We skip the details.

O

For the proof of Theorem 2.4 we will use the following:
LeEMMA 2.5 Let (4,b) be reachable, and x(0)eR". Let {u(k)} be a sequence of
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real numbers. Define:
x(k+1) = Ax(k)+buk) k =0,1,2,. (46)

Define %:= span {x(k)}ten, and d:=dim (%). If d<n, then there exists a
g€R™" such that for all k:

u(k) = gx(k) ’ CY)

ProOF Suppose (4,b) is in standard controllable form, i.e.

Dol 0
A=1|: : ::0 b = 0 (48)

0 0 ::1 1

ay a; : . G,
Define aeR'*" by: a:=(a,,..,a,). Define:
A:=A—ba (49)
u(k):=ax (k)+u(k) (50)
then:
x(k +1) = Ax(k)+bii(k) (5D
Suppose x (0)=[x1(0),..,x,(0)I7, define HeR"™N by:
H := [x(0),x(1),x(2),x(3),..] (52)
then:

x1(0) x200) x3(0) . . . x(©0  u(0)

: : u(0) :

= 5n(0) (0) 3

%00 #© u(l) . . . u(n—=2) #@(n—1) . .

Since d<n, rank(H)<n. Now H is a truncated Hankel matrix, hence its rank
does not increase if we add the last row, shifted to the left, as the n + 1-th row.
This shifted row is:

[#(0),u(1),u(2),%(3),...] (54

Since the rank of the increased matrix is equal to the original one, the last row
is a linear combination of the first » rows. In other words, there exist
£1,--8» €R such that:

Tnt1 = élrl+-°+§nrn (5
where r; denotes the i-th row. Define geR!*" by: g := [g),..,g,]. Then for
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all k:
u(k) = gx(k)
Define g by: g:=g—a. Finally:
u(k) = u(k)—ax(k)
= gx(k)—ax (k)
= gx(k)

We will now prove Theorem 2.4:

PROOF OF THEOREM 2.4:
(i) Suppose d; < n.

YU+ = ey[Abx (D + S Akbyu(e +i —j ~D)]

j=0
Define:
€
a4,
W:.= .
c;A'll—l
then:
y (k)
y(k+1)—cbyu(k)
Wx(k)(l) = [.

y(k+n—1)—c 147 2bu(k)—..—c b u(k +n—2)

From which we conclude that:

Fx(k)(l)
u(k)
w o] |
01
Lt‘;(k+n-2)_
k o - 1w

0. —clbl

1 .0 u(k)

= |: 1 —c1A772%b, . —c1by y(k+n—1)

o 0 . 1 ||ut+n—2)

37

(56)

&Y
(58)
(%9)

(60)

(61

(62)

(63)



38 Chapter Il

From which we derive:

P‘?) (9] ] y (k)

;cﬁ,l)(k) }.:(k +n—1)

u(k) =T lugk) 9
;l(k +n-2) _;l(k +n—2)
\\-Iith T, non-singular. In the same way one derives that:

- 2)

) KQ)

xP(k) .;:(k +n—1)

u(k) =T lu) ©5)
;;(k +n-2) L;;(k +n—2)]
Hence: .

x@® ] x(k)f®

t:l(k) — R 1:4(k) 66)
Lu(k +n-2) u(k+n-2)

where R=T,T;!. Now since u(k +i) = bf (x(k +i +1)® —A,x(k +i)?P),
there exist matrices M{?,.., M@ eR"*" | such that for all k:

x(k)V = MPx (k)P +..+ MPx(k +n —1)@ 67
and similarly:
x(k)® = MPx )V +..+ MO, - (68)

Since by assumption d; <n, we conclude from Lemma 2.5 that there exists g,
such that u(k) = g,x(k)®, hence x(k +1)D = (4, +b,g)x(k)V. Together
with (68) this gives that there exists a matrix N; such that for all k:

x(K)® = Nyx(k)® (69

Denote by %, the linear span of x(k)®;.n, and by d, its dimension. From
(69) it follows that: d; < d; < n, hence by Lemma 2.5 there exists g, such
that for all k: u(k) = g,x(k)®. As above we conclude that there exists a
matrix N, such that for all k:

x(k)V = Nyx(k)® (70)

Finally (69) together with (70) gives the statement.
(ii) This follows immediately form part (i).
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(iii) Suppose u(k) = g, x(k)?, then just as in the proof of part (i) (68), we
conclude that:

x(k)® = Nyx(k)® an

Since d, = d, = n, it follows that N, is non-singular.
O
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3. G AND H FOR LQ CONTROL: CONFLICT BETWEEN IDENTIFICATION AND
CoNTROL

In this section we will study the sets G and H for the case where the control
objective is described by a quadratic cost criterion. It will turn out that the
desirable property:

GCH M

does not hold for this control objective. In fact we will show that GNH is a
negligible subset of G. As in the previous section we formulate this somewhat
disappointing result in state space terms. The results in this section are
refinements of those obtained in [49,51], and can also be found in [54].
Theorem 3.10.i was also proven in [41] for the first order case.

Given the following system:
x(k+1) = Ax(k) + bu(k) @

y(k) = cx(k), 3

where (4,b,c)eR™ " XR"*1 XR!*" is a minimal triple.
Control objective: find a causal controller such that the following expression is
inimized:

o0
J=D@k? + rukp) r>0 ()
k=0
The solution of this problem is well known (see [38]) and is given by:
u(k)=f(4,b,c)x(k), &)
where:
fld,b,c)= —(bTKb +r)"'bTKA, (6)

and K is the unique symmetric positive definite solution of the Algebraic Ric-
cati equation:

K—ATKA +ATKb(bTKD +r)"'bTKA —cTc =0, )
Moreover, the optimal value of J is given by:
x(0)"Kx(0), ' @®

where x(0) is the initial state of the system. Note that the control law not
only depends on (4,b) but also on c.

As in the pole assignment case we will consider the standard observable form:
(& 1. . .0 ER
: 0 : :
Ag:= | : : 0 by:= ] : ¢ :=1[10.0] )]

ey

ag—] 0 . . . 0 ng._.]
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Recall the definition of E,;:

Ey := {(4,b)eR""XR"! | (4,b) reachable, (10)
(co,4) in standard observable form}

and define:

En 1= {(4,b)eR" " XR"™1 | (4,b,c,) minimal, A non-singular} (11

REMARK We restrict ourselves to non-singular 4-matrices for technical reasons
only.

Define:
P := (KeR"™"| K=KT > 0} 12)

Throughout this section let (44,b¢) be fixed. Also let there be given some
fixed non-zero non-minimal initial state ¢(0)eR?* ~!. For (4,b)cE,,, define
the sequences {x(k)}, {z(k)}, {u(k)}, {y(k)} and {p(k)} as follows:

Firstly:

x(0) := Myp(0) z(0) := M¢(0) 13)

where the matrices My and M are derived as in Section IL.2 (12). from
(A¢,bo) and (4,b) respectively. Assume that x (0) is non-zero.
Secondly:

x(k+1) = Aox(k) + bou(k) z(k+1) = Az (k) + bu(k) (14)
Y (k) = cox (k) yk) = coz(k) (15)

where:

u(k):=f(4,b,co)z (k) 16)

The sets G and H, depending on ¢(0), are then:

G:={(A,b)€E,, | for all k: y(k) = y(k)} amn

H:={(A,b)€E,, | for all k: f(A,b,co)z(k) = f(Ao,bo,co)x(k)} (18)

We will first state the main result of this section:

CLAM 3.1 GNH is a negligible subset of G.
a

Claim 3.1 is of course not a mathematical statement. We will have to do some
work before we can formalize the contents of the claim. Intuitively it means
that within the set of invariant points of an adaptive algorithm only a negligi-
ble part consists of points that correspond to the desired (optimal) control law.
This is in contrast to the pole assignment problem where every invariant point
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corresponds to the desired control law. In this sense adaptive LQ control is
more difficult. In pole assignment the only concern is convergence of the
parameter estimates, every limit point will be invariant and will hence produce
the right controls. In LQ control we have to avoid that the estimates converge
to sub-optimal invariant points. That means that we have to develop an algo-
rithm for which those invariant points can never be attractive!

It is difficult to get a direct grip on the sets G and GNH, therefore we will
introduce two other sets, Gy and Hj, which are easier to analyze and which
are closely related to G and H. In order to relate G and H with Gy and H we
will also define a subset G of G and a subset G of G.

DEFINITION 3.2
Gy := {(A,b)€E,; | Ag + bof (A,b,co) = A +bf (4,b,co)} (19)
HO = {(Aab)EEw If(A9b,c0) = f(AO’bOsCO) } (20)

DEFINITION 3.3 For every (4,b)eE,,, define:

WA4,b) := span {x(k)}ren @D
where {x(k)} and {z(k)} are defined by (13,14,15,16).

|
DEFINITION 3.4
Go := {(4,b)eGy | (Ao + bof (4,b,c0),x(0)) is reachable } (22)
G := {(4,b)eG | W4,b) = R") 23)
m]

THEOREM 3.5 G and G, are C* diffeomorphic.
PROOF See the appendix to this section.
THEOREM 3.6

@) Gy is open and dense in G,.

(ii) G is open and dense in G.

PROOF See the appendix to this section.

THEOREM 3.7 Gy is an embedded analytic manifold of dimension n. (a
definition of embedded manifold can be found in the appendix).

PROOF See the appendix to this section.
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LemMA 3.8 For all (4,b)eGNH: KA,b) = WAy,bo).

Proor This is immediate from the fact that (4,b)eH implies: for all k:

f(Asb’CO)z(k) = f(Ao,bo,Co)X(k). 0

DEFINITION 3.9 Y := WAy,bo), the linear span of the the optimal state tra-
jectory.
O

THEOREM 3.10
@ Ifdim(%) = n, then GNH = {(d¢,bo)}. .
(i) If dim () < n, then GNH is contained in G\ G.

PROOF See the appendix to this section.

CoMMENT Let us now discuss some of the consequences of Theorem 3.10.
First of all it is the mathematical formalization of Claim 3.1. For suppose ¢(0)
is such that dim(¥y) = n. Then from Theorem 3.10i we know that
GNH = {Ay,by)}, a singleton. Now G contains an open and dense subset
that is diffeomorphic to an open and dense subset of an #» —dimensional mani-
fold (by Theorems 3.5, 3.6 and 3.7). In that sense G N H, being a singleton, is a
negligible subset of G. In the other case, where ¢(0) is such that dim(V,)<n,
GNH is contained in G\ G. In other words GNH is contained in the boun-
dary of a set that is diffeomorphic to an open and dense subset of an #-
dimensional manifold. Since the boundary of an n-dimensional manifold has a
strictly smaller dimension again G N H is a negligible subset of G.
Now suppose that we want to use a neutral and neutral certainty equivalent
adaptive algorithm for LQ control. Then almost every invariant point of the
algorithm will result in sub-optimal behavior. This means that almost every
invariant point must not be stable, i.e. must not be a possible limit of the algo-
rithm. This seems to be very difficult, if not impossible.

O

ExampLE 3.11

In Figure 3.1, we have depicted the sets G and H for a first order system. The
parameter values were: (ag,bo) = (1,1), r = 2. The first part of the picture
shows the branches of G and H in the right half plane, the second part shows
the left half plane branches of G and H. The picture illustrates that
GNH = {ag,bg)}, as was already predicted by Theorem 3.10.i.



44 Chapter Il

1 b

5 F
4
G
3 H
' 2
1
0 ,
0 1 2 3 4 5

a
-

0

-1

-2

b G

3 H

4

S5 b )

-5 -4 -3 -2 -1 0

a
(_

FIGURE 3.1 G and H for a first order system.

APPENDIX
Let us first recall some preliminaries.

DEFINITION 3.12 (see [59]). Let X CR”. X is an embedded m-dimensional C*-
manifold, if VxeX, 3UCR", open, with xeU and a Ck-function
L:U->R"™™ such that:
@ LE)=0
@ L7'{0p=xnU
(iii) The derivative of L with respect to x, evaluated in x, has full rank.

O

~ LemMA 3.13 Let M;,N;eR”™% i=1,2. Define [(M,,M,),(N;,N;)] by:
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[(M,,Mz),(N,,ivz)] 1= )7("r(M1N1T) + Tr(M,NY). This defines an inner-
product on RP' "% XRP*"%_ (Tr denotes the trace of a matrix)
O

LEMMA 3.14 Let (X,[.,.lx) and (Y,[.,.]y) be finite-dimensional inner-product
spaces, and F:X—Y a linear map.
(i) There exists one and only one linear map F*:Y—X such that for allxeX
and for all yeY [Fx,yly=[x,F'ylx. F is called the adjoint operator of
F with respect to [.,.]y and [.,.]y.
(i) Fis surjective iff F" is injective.
ProOF See [18].
O

LemMA 3.15 Let M,NeRPXP, let A : RP*P RP*P be defined by:
AX)=X—MTXN, then:

Spec(A)=1—Spec(M)X Spec(N) = { 1=\ | AeSpec(M), peSpec(V) }
(”Spec” denotes spectrum)

PROOF See [39)].
m]

LeMmMa 316 For every minimal triple (4,b,c) one has:
Ker (A +bf(A,b,c)) = Ker A

PROOF Suppose x¢sKer (4 +bf(4,b,c)), then x;, =0 and u, =0, for all k=1.

Hence: :

x§Kxg = xfcTexqg+ulrug by (4) and (8)
= x§(cTc + f(4,b,c)Trf(4,b,c))xo by (5)
= x§ (K — ATK(A +bf(4,b,c))+ f(A4,b,c)Trf(4,b,c))x, by (6) and (7)
= xJKxo + x§f(A,b,c)Trf (A4,b,c)xy

This implies that: x§f(4,b,c)"rf(4,b,c)xy = 0 and thus that f(4,b,c)xo=0.
Together with (4 +bf(4,b,c))xq = O this gives Axy = 0.
Suppose on the other hand that Ax, = 0, then also f(4,b,c)xq = 0 (by (6))
and thus (4 +5bf(4,b,c))xo = 0.

O

CoroLLARY 3.17 For all (4,b,c)€E,;, A + bf (4,b,c) is non-singular.
Proor This follows from Lemma 3.16 and from the fact that by definition of

E,;, (A,b,c)eE,,, implies that 4 is non-singular.
O
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LemMMA 3.18 For all (A bco)eGol there exists an € > 0 such that Vf with:
Ilf -f (A b ,co)ll < ¢, there exists (4,b,cq)€E such that:

@ fAbed=F  _ _ __

(i) Ag + bof(4,b,co) = A + bf(4,b,co)

(iii) (A4,b) depends continuously on f.

PROOF Choose (4,b »¢0)€Go. We will prove that the map f subject to the con-
straint that (4,b,¢q)€ Gy, is locally surjective. To this end it is enough to prove
that, locally, (4,b) can be written as a continuous function of f. Define:

L :Ran XRnXl xR%u(n+l) leXn _)Ran leXnR%n(n-H)

by:

L(A,b,K,f) := (L1(4,b,K,f),Ly(A4,b,K,f),L3(4,b,K,[)) (24)
where:

LiA,bKf):=Ag + bof — A — bf (25)
Ly(4,b,K,f) := bTKbf + rf+bTKA (26)

Ly 4,bK]):= K — ATKA + ATKb(bKb + r)~'bTKA — cco @n

By definition of L it follows that: L(4,b,K,f) = (0,0,0), where K is_the posi-
tive definite solution of the algebraic Riccati equation and f = f(4,b,co). We
will now calculate the derivative of L with respect to (4,b,K) evaluated in
(4,K,b,f):

A(Ad,Ab,AK) = —AA — Abf (28

Ay(04,8b,AK) = AbTKbf + bT AKbf + b KAbS + 29
AbTKA + bTAKA + bTKAA

A3(A4,Ab,AK) = AK — (A + bf)TAK(A + bf) — (30)

MTRA + 5y — (@ + BpTiad —

1TKABF — FPABRTKA — FATKD + BT KADYF

ATKAbf — FAbTRA — f(ATKD + b KAB)f
To show that A has full rank it is sufficient to show that it is injective:
Put:

E;: Aj(04,0b,AK) = 0 €2))
Ez: Az(AA,Ab,AK) =0 (32)
E;: A3(A4,Ab,AK) = 0 (33)

Ey + (A + bf)TKE, + ETK(A + bf) gives:
— (A + bTAKA + bf) = 0 (4
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By Lemma 3.15 and the strict stability of (/'i + I;j~) it follows that: AK = 0.
Substituting this in E, gives:

E,’ AbTKbf + b  KAbf + AbTKA + b KA4 = 0 (35)
Ey’ — bTKE, gives:
AbTK(A + bf) = 0 (36)

By Corollary 3.17 (4 + bf) is non-singular, and hence Ab = 0. Finally substi-
tuting this in E,, gives A4 = 0.

Now, the implicit function theorem yields the existence of an open neighbor-
hood of fand a C® function defined on that open set to (4,,K). This com-
pletes the proof.

O
PROOF OF THEOREM 3.5 Define:
¢: Ens"")Eab
by:
&(4,b) = (SAS~!,Sb) (37

where S €Gl(n) is the unique non-singular matrix which transforms (4,c) into
standard observable form. Since S depends C“ on 4, it follows that ¢ is C“.
Now, let (4,b)eGy. Define x(0) : =M ¢(0), and x (k) by:

x(k+1) = (Ao + bof (4,b,co))x (k) (3%)

Define:

z(k) :=8x(k) _ (39

then:

z(k+1) = Sx(k+1) = S(Ag + bof (4,b,co)x (k) (40)
= S + bf (4,b,co))x (k) 1)
= S(A + bf (4,b,co))S ~'z(k) (42)
= (SAS™! + Sbf (SAS~1,5b,co))z (k) (43)

From the standard observable form and the recursion for z (k) it follows that
z(k) = M¢(k), where M is derived from (SAS ~!,Sb) as in Section IL.2 (12).
In particular it follows that z(0) = M¢(0). Finally,
y(k) = cox(k) = coS™ 'z (k) = coz(k) = p(k). We  conclude  that
®(4,b)eG. Moreover since by definition of Gy, span {x(k)} = R”, it follows
that ¢(4,b)eG. _ .

Define ¢ : G - G, as follows: Choose (4,b)eG. By Theorem I1.2.4 there
exists TeGl(n) such that for all k: x(k) = Tz(k), and since V(4,b) = R",
this T is unique. Moreover from the proof of Theorem II.2.4 it follows easily
that T depends C“ on (4,b). Define:
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WA4,b) := (TAT',Tb) (44)

Since y(k) = y(k), it follows from x(k) = Tz(k) and V(4,b) = R" that
coT™! = ¢5. Now:

x(k+1) = Agx(k) + bof(4,b,co)z (k) 45)
= (4o + bofATAT ™, Tb,coT~ " ))x (k) (46)
and also:
x(k+1) = Tz(k+1) = T(4 + bf (4,b,co))z(k) ¢
= T(A + bf (4,b,co))T " 'x (k) (48)
= (TAT™! + Tbf (TAT "}, Tb,cq))x (k) (49)
Since V' (4,b) = R", it follows that:
Ag + bof (TAT ™', Tb,co) = TAT™! + Tbf (TAT !, Tb,c,) (50)

hence Y(4,b)e Gy.
Finally, from the uniqueness of the matrices S and T one can easily check
that:

V¢ = idg €2Y)
oy = idg, (52)
This finishes the proof.

O

PROOF OF THEOREM 3.6
(i) Choose (A b)eGo and suppose that (4o + by f(A bco),x (0)) is non-
reachable. Choose an open neighborhood W of (4,b) in G,. By Lemma 3.18
there exists an open_neighborhood V of f (A b ,Co), such that for every feV
the unique pair (4,b)eG, with f(4,b,c9) = f, has the property that
(A b)eW Choose feV such that (49 + bof,x(0)) is reachable and it follows
that G, is dense in G,. Since G is the complement of the zero-set of a continu-
ous function it follows that G is also open in G,.
(ii) Choose (4,b)eG and suppose that ¥ (4,b)7#R". Choose an open neigh-
borhood W of (4,b) in G. From the proof of Theorem 3.5 it follows that there
exists a non-smgular matrix S such that (S4S~!,Sb)eG,. The function ¢ as
defined by (37) is continuous and hence there exists an open neighborhood V'
of (§AS"1,Sb) in Ggo) such that ¢(V)CW. By part (i) we know that
VNG5 2. It is not difficult to check that this implies that W N G5~ 2, which
shows that G is dense in G. Also, since G is the complement of the zero-set of
a collection of polynomials, G is open in G.

O

LeMMA 3.19 There exists a C“-function K:E—P such that K(4,b,c) satisfies
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(7, for all (4,b,c)eE.

PROOF A proof for the continuous time case can be found in [11], we give the
proof for the discrete time case for the sake of completeness.

The implicit function theorem will be used to get the result. Define
L : EXP— R*@*D py:

L(A,b,c,K) := K—ATKA +ATKb(bTKb +r)"'bTKA —cTc (53)

Since r>0 L is C“. Note that V (4,b,c) € E L(A,b,c,K)=0 where KX is the
solution within P of (7). We will now calculate the derivative of L with respect
to K, evaluated in such a triple (4,b,c,K). This will be a linear map
A R#G+D _ R¥n(+D of which the action on AKe R**@*D can be found
by the following calculation: (We will use the private notation =' to denote
equality as far as linear terms in the ”A variable(s)” are concerned).

AAK) =' L(4,b,6,K+AK) (54)

=! K+AK—A"(K+AK)A (55)
+A4T(K+AK)bG (K+AK)b+r)"'bT (K+AK)A —cTe

= AK—A"AKA +A" (K+AK)b(b" Kb+r)~! (56)

(S (—1Yb"AKBG Kb +r)~'1)b" (K +AK)A
j=0

= AK—A"AKA+ATAKBG Kb +r) 16T KA (57)
+A"Kb(b"Kb+r)"'bT AKA
—ATKb( Kb +r)"'bTAKB( Kb +r)"'b" KA

=! AK— {(4 +bf(A,b,¢))T AK(A +bf(4,b,c))} (58)

Since 4 +bf(A4,b,c) is strictly stable, (see [38]) it follows by Lemma 3.15 that 0
¢Spec(A), hence A is non-singular.
Now the implicit function theorem yields the existence of the function K in a
neighborhood of (4,b,¢). Since (4,b,c) was arbitrary and the solution of (7) is
unique (within P), K is well defined on E.

O

CoROLLARY 3.20 fis a C“- function on E.
PrOOF This is immediate from the facts that fis a C“-function of (4,b,c,K)

and Lemma 3.19.
O
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PROOF OF THEOREM 3.7 .
By Theorem 3.6 G, is nonempty. Define Gy’ CR™*" XR"*! XR"" +1)/2 py:

Go:={(,,K) | (4,b)eGo , K = K(4,b)eP }
Define L:E,, XP — R"@*D/2 R**" py:

L(A’b!K) = (L](A,b,K),Lz(A,b,K)), (59)
where: -
LiA,b,K) = K—ATKA + ATKb(bTKb+r)"'bTKA — cfc (60)

Ly(4,b,K) = (A —b(bTKb+r)"'bTKA) — (Ag—bo(bTKb+r)"'6TKA) (61)

Note that (4,b,K)eG,’ if and only if L(4,5,K) = (0,0), and that L is C“. Fix
a triple (4,b,K)eGy/’, and let f = f(4,b,cq). We will show that the derivative
of L with respect to (4,b,K), evaluated in (4,b,K) has full rank. The deriva-
tive of L evaluated in (4,b,K) is a linear map A given by:

A(Ad,Ab,AK) = AK — (A + bfyTAK(A + bf) — AATK(A + bf) 62)
— (A + bpTkaa — ATkabf — FAbTRA
— 7 (AbTKb + bTKAb)f
Ay(A4,Ab,AK) = MM — b(b Kb + r)~'(8bTKA + b AKA (63)
| + b kA4) — Ab( KD + r)'b KA
— b(b Kb + r)"\(0bTKb + b AKb + b’ KAb)f
+ bo(b Kb + r)"\(ABTKA + bTAKA + b KAA)
+ bo(b Kb + r)"\(AbTKD + b' AKD + b KAB)f

Let (M,N)eR"@*D/2xRnX»  We will calculate the inner-product of
A(AA4,Ab,AK) with (M, N) in order to establish a formula for its adjoint:

[A(A4,A0,AK),(M,N)] = 64
Tr(A1(A4,Ab,AK)M) + Tr(Ay(A4,Ab,AK)NT)
= Tr(AKIM — (4 + bHMA + bf)T (65)

— ANTb( Kb + r)"'6" — bINTh(b Kb + )b
+ ANTbob kb + r)'b" + bfNTho(b Kb + r)"'5"])
+ Tr(Ad[—2M (A4 + bf)TK + NT
— NTb("Kb + r)~'6"K + NTbo(b Kb + r)~'b" K]
+ Tr(Ab[—2fMA K — 2/Mf b'K — (6" Kb + r)"'6'NA'K
CH+INT — (Kb + ) NP B K
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—NTbb Kb + P76 K + (Kb + r)"'bINA'K
+(b Kb + r)"'bINF bK + [NTbo(b Kb + r)~'5"K))
Hence by Lemma 3.14: A" = (A],A3,A3,A}), where:
AiMN)y =M — (4 + b)MA + bf)T (66)
— b Kb + r)"ETNjT I;(I;Tf(l; + ) B N BT
+ b3 Kb + " 'oENAT + b6 KB + ) BENF b

AS(M,N) = —2K(4 + bHM + N 67
— Kb(b"Kb + ry"'b"N + Kb(b Kb + r)"'bIN
AS(M,N) = —2K(A + bHMF" + Nf* (68)

— Kb Kb + )" 'b'Nf

— K(A + bYNTbB Kb + r)™!

+ K(A + b)NTbo(b Kb + r)"!
To show that A® is injective, we put A°(M,N) = 0. Which gives the following
equations:

E:M— A+ DM@ + bf)T — b(b"Kb + r)"'6"NAT — (69)
b Kb + N BT + b(b Kb + r)"'bENAT +
b Kb + r)'BINf b =0

Ey: —2K(A + bf)M + N — Kb(5" Kb + r)"'b'N (70)
+ Kb(b Kb + r)"'bIN = 0
Ey: —2K@A + bpMF" + Nf© — Kb(6"Kb + "' Nf - ()

KA + bHNTbB Kb + r)~' + K(A + bNTbo(6 Kb + )™ = 0
- E;}] gives:
— K(A + bpNTb(b Kb + r)™! (72
+ KA + b)NTho(b Kb + r)™! = 0
Substituting (72) in E, gives:
— A +bHMUA + BT =0 (73)
By Lemma 3.15 we conclude that M = 0. Since K(ft + bf) is non-singular,

(72) implies that: —NTb(b Kb +r)' + NTbo(b Kb + r)”! = 0. Substi-
tuting this and M = 0 in E, gives:

N=0 (74)
This shows that G’ is an n-dimensional manifold in R"*" XR"X! X R*® +D/2,
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Since K depends C“ on (j,g), it follows that éo is an n-dimensional C° mani-
fold in R"*" X R"*! XR!*", This completes the proof.
O

LeMMA 3.21 Let (4,b)€ G, denote the solution of (7) by K and let K, be the
solution of (7) with (4,b,c) replaced by (4¢,bg,¢o). Then K=K,.

PrOOF Let xoeR", the optimal cost for the system (4,b,co), starting in x, is
x§ Kx,, the optimal cost for (4,bg) is xJ Koxo. The real cost incurred when
the feedback f(4,b,c) is applied to the system (4¢,by) is equal to the optimal
cost of the system (4,b,cy), since (4,b)eGy and hence both the state and
input trajectory of A +bf (A4,b,co) and Ao +bof (4,b,co) are equal. However,
for (Ao,bo), f(A,b,c)) can do no better than f(4,b9,c9). Hence
x§ Kxo=x} Kox,. Since xo was arbitrary it follows that K=K.

a

COROLLARY 3.22 If (4,5)e G, and f(4,b,co) = f(Ao,bo,co), then K =K.

ProoF Since (4,b)e Gy, we have A +bf(A4,b,co)=A¢+bof(A,b,cq), which by
Lemma 321 implies that K=>K,. On the other hand, since
f(A,bQCO) = f(A03b09C0): we also have
Ag+bof(Ag,bg,co)=A +bf(Ag,bo,co). We can apply Lemma 3.21 once again,
now with (4¢,boco) and (4,b,c,) interchanged, showing that Ko=K.

O
PROOF OF THEOREM 3.10
PrOOF Choose (4,b)eGNH. Define (4,b)eE,, by:
(4,b) :=y(4,b) (75)

with ¢ defined as in (44). __
Then (4,b)eG,, and also since (4,b)eH: f(A,b,co) = f(Ag,bo,co). Hence
by Corollary 3.22: K = K. Now:

(4,b)eGy = A=Ay+(by—b)f (76)
= 4o + (bo—b)f n

f@beo) = f(Ao,bo,co) = B Kob+r)"'b Kod = —fy (78)

substituting (77) in (78) gives:

b Ko(o+(bo—b)fo)=—(®" Keb+r)fy (19)

which implies:

5" Ko(Ao+bofo)=—1fo (80)

Now, since K, and A, + bof, are non-singular, and b= by is by
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construction_a solution of (80), it follows that b = b,. Substituting this in
(76) gives A = Ag. A = SAS™!, for some SeGl(n). Hence (4,co) and
(SAS~',co) are in standard observable form. This implies that S = I. This
completes the proof of Theorem 3.10 (i).
The proof of part (ii) is immediate.

O
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4. WHEN IS G CONTAINED IN H?

In section II1.2 we have seen that if the control objective is pole assignment,
then G CH. In section II.3 we proved that for LQ-control this is not the case
and that in fact GNH is a negligible subset of G. The natural question now
arises for which control laws the set G is contained in H. In this section we
will investigate this question for control problems that are solvable by state
feedback. The surprising result is that under mild assumptions we can give a
characterization of the control laws for which G CH. Recall from section I1.2
that the crucial properties enabling us to prove that G C H were:

(i) Forall (4,,b,)€E,, and all (4,,b;)€E,:

Ay + b f(A2,b3) = A; + byf(42,b,) m
=
fAy1,b1) = f(A43,by) )]
(i) VSeGI(n), V(4,b,)EE,:
f(SAS™',Sb) = f(4,b)S! 3)

The question we would like to address is the following:

For which functions f :E,, — R'*" do we have properties (i) and (ii)?

To give a complete answer to this question we will make two more assump-
tions:

(iii) fis continuous on E,,.

(iv) There exists (4¢,b9)€E,, such that:

Spec(dg + bof(Ag,bo))NSpec(dy) = & @

CoMMENT

(i) This is the crucial property of f. It is the algebraic translation of the
assumption that GCH.

(ii)) Assumption (ii) reflects that the control objective is a criterion on the
input/output behavior of the system, and does not depend on any
input/state/output realization.

(iii) Continuity is a natural assumption.

(iv) Assumption (iv) is a technical assumption. It means that there is at least
one system such that the open-loop poles differ completely from the
closed-loop poles of the controlled system. A sufficient condition for this
property to hold, is that fis a stabilizing control-law.

O

We can now give a complete characterization of all functions f satisfying
assumptions (i) through (iv). It will turn out that they are all of the pole-

assignment type.
THEOREM 4.1 Let f be such that assumptions (i) through (iv) are satisfied.
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There exists a monic polynomial =, of degree n such that for all (4,b)€E,,:
fd,b) = —[0.011[b:..:4" 6] ' m(A) )

PrOOF Fix (4¢,b¢) such that assumption (iv) holds. Let my be the characteris-
tic polynomial of (49 + bgf(4¢,bo)). Define:

Go := {(4,b)EE,, | Ay + bof(4,b) = A + bf(4,b)} 6)
and: ..

Go := {(4,b)eE, | Ao + bofido,bo) = A + bf (40,bo)) 0]
Then, by (i), Go = Gy. Choose (4,b)e G, then, again by (i):

Ag + bofidg,bo) = 4 + bf(4,b) ®

Hence the characteristic polynomial of (4 + bf (4,b)) is equal to my. By the
uniqueness of the control law that assigns the poles, it follows that for all
(4,b)eGy:

f(4,b) = —[0.011[b:..:4" " 1b] ' mo(A4) )
We will now show that f has the form (9) for all pairs (4,b) that are similar to
a pair in Gy. Choose S €Gl(n), then:

f(SAS™1,Sb) = f(4,b)S ! by assumption (i) (10)
= —[0.01)[b:..:A" " B I mp(4)S ! (1)
= —[0..01)[Sh:.}(SAS 1Y ~1Sb] 'my(SAS 1) (12)

Hence for every pair that is similar to a pair in Gy, we have established the
desired formula. Next we will show that the set of all pairs that can be reached
by a similarity transformation on the elements of G, is open and dense, and
the continuity of fwill then yield the result.

Define:
Q:= {(4,b)eE,, | 3 SeGI(n) with (SAS",Sb)eGo} 13)

Since Gy = 50, (4,b)eQ if and only if the following equation has a non-
singular solution S:

(Ao + bof (Ao,bo)) — ST'AS = S7'bf (A0,b0) (14)
(14) is equivalent to:

S(Ao + bof (Ao,bo)) — AS = bf (40,bo) s)
Define:

Q1:={(4,b)eR™" XR"™™! | Spec(dy + bof (Ao,bo))NSpec(d)=2}  (16)
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Then @, is open and dense in R"*"XR"*!. By Lemma II.3.15 it follows that

(15) has a unique solution S eR"*" for every (4,b)€®,.

Define the linear map L, : R"*" -R"*" by:

Ly(S) := S(Ao + bof (40,b0))— A4S an

L, is injective if and only if Spec(4¢ + bof (Ag,bo))N Spec(4) = D.

Define d; :R"*" — R, by:

di(4) := det(Ly) (18)

L, is a linear map depending linearly on A4, hence d;, is a polynomial in the

coefficients of 4. For every (4,b)€,;, the unique solution of (15) is given by:

nL(Asb)

e A A 19
A7) @

where n;,: R"*" XR"*! — R"*" js a polynomial in the coefficients of (4,b).
Define d : R"*"XR"*! - R, by:

SA,b) =

d(A4,b) := det(n.(4,b)) 20)
and:
Q, :={(4,b)eR"*"XR"*! | d(4,b)#0} 1)

By assumption (iv), (4¢,b9)€®;, and hence S(4¢,bo) = I, from which we
conclude that (4¢,b¢)€8,, and hence 2, is nonem?ty. Since d is polynomial,
it follows that ©, is open and dense in R"*" XR"*!., For a proof of this state-
ment see the remark on genericity in [63]. Finally, it is easy to see that:
2,NQ, C Q, and hence © contains a subset that is open and dense in
R""XR"*!  Suppose there exists (4,b)eE, \ 2. Choose a sequence
(Ay,bi)ER, such that:

kli?; (Ak’bk) = (A’b) (22)

Then, for all k the characteristic polynomial of (4, + b f (Ax,by)) is equal to
m. By the continuity of f, it follows that the characteristic polynomial of
(A + bf (4,b)) is equal to my. Finally take # = my. This completes the proof.

O

We have now established a characterization of all feedback laws, depending
only on (4,b), for which GCH. We would like to extend this classification
result to the more general case where the function f may also depend on the
c-vector.

Consider the rea]izaﬁons:
x(k+1) = Agx (k) + bou(k) z(k+1) = Az(k) + bu(k) (23.a)
y (k) = cox (k) y(k) = coz (k) (23.b)

x(0) = Myp(0) z(0) = M¢(0) (23.¢)
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u(k)=f (4,b,co)z (k) (23.d)

Where (4g,c0) and (4,¢q) are in standard observable form. Recall from the
previous sections that:

G := {(4,b)eE,, | for all k: y(k) = j(k)) 4
H := {(4,b)€E, | for all k:f (4,b,co)z(k) = f(Ao,bo,c0)x(k)} (25)

where we should keep in mind that G and H depend on the initial state ¢(0).
The question now becomes:

For which functions f do we have the property that for all §0)eR*> ™!, G CH?
Again we restrict our attention to control criteria on the input/output behavior
of the system. This means that if the control law is stated in state space form,
then it should satisfy:

f(SAS™1,Sb,cS™Y) = f(A4,b,c)S ! (26)

for every non-singular matrix S. A necessary condition for G CH is given by
the following lemma:

LeMMA 4.2 If for all ¢(0)eR* ™!, GCH, then: For all (4¢,by)€E,, and all
(4,b)eE,, we have:

Ao + bof(4,b,co) = A + bf (A,b,c0) = [f(Ag,bo,c0) = f(A4,b,co) @7

PrOOF Choose ¢(0)eR? ! such that

(Ao + bof (Ag,bg,c0),Mo(0)) is reachable (28)
Choose a triple (4,b,¢() that satisfies:
Ao + bof (4,b,co) = A + bf (4,b,¢cy) 29)

Let S be the unique non-singular matrix such that (S4S ~',coS ) is in stan-
dard observable form.

Then:

oS! =¢q (30)
Define:

x(0):=Mo$(0) and x(k +1) = (4o + bof (4,b,co))x (k) @31)
Define (4,b,c) : = (SAS ~1,8b,coS 1), and z (k) := Sx (k). Then for all k:
z(k+1) = Az (k) + bf (4,b,co)z (k) by (26,29,31) 32
Also:

Jk) = coz(k) = coSx(k) = cox (k) = y(k) (33

Hence (4,b)eG. Since G CH, we also have for all k:
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f@:b,0)z(k) = f (Ao.bo,colx (k) (34)

Which implies:

S (A;b,co)x (k) = f(Ao,bo,co)x (k) (35

Since by (28) {x(k)} spans R", it follows that

S A4,b,c0) = f(Ao,bo,c0) (36)
O

DEFINITION 4.3 Define for (4¢,bo)€E,; the sets:

GO = {(A’b)EEn IAO + boﬂA,b,Co) =A4 + bf(A9b)CO)} (37)

and:

Go := {(A,B)EE, | Ao + boftdo,bo,co) = 4 + bf (Ao,bo,co)) %)
m|

LEMMA 4.4 If fis such that G CH, then Gy = G,.

PrOOF Choose (4,b)€Gy, then by Lemma 4.2, f(4,b,co) = f(Ao,bo,co) and
hence (4,b)€Gy._

Choose (A4,b)eGy. Let SeGl(n) be the unique matrix such that
(SAS~1,coS~!) is in standard observable form. Then ¢, S ™! = ¢¢. From (38)
it follows that:

S(Ao + bof (Ao,bo,co)S™' = S(A + bf (Ao,bo,co))S ™! (39
which implies:

SAoS ™! + Sbof (SAeS ~',8bg,coS ™) = (40)
SAS ™! + Sbf (SA¢S ~1,8bg,coS 1)

Since coS ™! = ¢y, this gives:

SAoS™! + Sbof (SA¢S ~1,8bg,co)) = SAS™! + Sbf (SAoS ~1,Sbg,co)) (41)
We can now apply Lemma 4.2 and conclude:

f(SAS~,8b,co) = f(SAoS~",Sho,co) 42)
which yields:
S A,b,co) = f(Aog,bo,co) (43)

Hence (4,b)eG,.
O

We can now characterize the control laws for which G CH. However, we have
a complete result for the case n =1 only.
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THEOREM 4.5 (n=1) Let f:RXR\ {0} XR\ {0} > R be such that GCH.
Assume that there exists (a;,b;) and (a3,b,) such that:

f(al,bbl) ?‘:f(aZ,bZ’l)’ (44)
then there exists an a€R, such that for all (a,b,c)eRXR\ {0} XR\ {0}:

f(a,b,c) =

45)

PrOOF Fix ¢=1. Choose (al’bl)’(a23b2) such that f(al’bl’l);l:f(aZabZ’l)’
and define:

l:={(a,b) | a +bf (ay,b1,1)=a, +b,f (a1,b1,1)} (46)
I:={(a,b) | a +bf (a2,b3,1)=az +b;f (a2,b,,1)} C)
From Lemma 44 it follows that (g;,b;)el; implies that
f(a,b, )=f(a;,b;,1).(i =1,2). Since f(a;,b;,1)5f (a2,b2,1), we conclude that
LNl N{b5%0} = &, however for the same reason /, Nl,7% . Hence there

exists acR such that /; NI, ={(a,0)} Now, choose @,b), arbitrarily and
define:

T:={(a,b) | a +bf @b, 1)=a+5f @b, 1)} @8)

' Without loss of generality we may assume that f @b, 1)5%f (a1,b;,1), hence
INL#2. As before we also have /N/y N{b5#0} = @. Therefore there exists
acR such that Inll——{(_,O)} Since (a,0)l,, and /;5%{(a,b) | b =0}, we
have: a=a. This gives:

a=a+bf @b,1) | “9
which implies:

f@b,1y=22 (50)
Finally, by assumption (ii) and (50):

f@b,c) = f(abe, ) = = > Le = “;“ 1)
This finishes the proof.

The general result, n>1, has not yet been found. Lemmata 4.2 and 4.4 give
the mathematical translation of the requirement that G C H. However, the idea
on which the proof of Theorem 4.5 is based does not apply in the higher order
case.

O
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Adaptive Control Algorithms

1. AVOIDING SINGULARITIES IN THE PARAMETER SPACE

In almost all control problems, a solution for a particular system can be found
provided that certain regularity conditions on the system are satisfied. For
instance for the pole-assignment problem the system has to be reachable. If
an adaptive control algorithm is based on certainty equivalence, then at each
time instant the controller is calculated on the basis of the current estimate.
This can of course only be done if this estimate satisfies the regularity condi-
tions. In many situations this means that the estimates should not belong to a
certain (small) subset of the parameter space, namely the set of those parame-
ter values for which these conditions are not satisfied. The usual algorithms
cannot assure that estimates will always be regular unless extra knowledge of
the true system is assumed. Typically this extra knowledge will be that the true
system belongs to a known convex subset of the parameter space that does not
contain any singular points. In this section we will present a modification
method for algorithms that work well under the assumption that estimates are
always regular. The modification is such that this assumption can be relaxed
and the asymptotic properties of the algorithm remain unchanged. Other
approaches to this problem are given in [10,31,40,42,46]. In [40] a
modification procedure is proposed which requires a lower bound on the sta-
bilizability of the system. [10] uses excitation signals until the prediction error
comes below some prescribed threshold. Hence tracking and zero-regulation
can be achieved only approximately. In [42] the parameter estimation scheme
is modified to keep the estimates away from the set of non-reachable pairs. In
[31] the identification is done simultaneously in the parameter space and the
controller space. By using an extra (non-linear) feedback driven by the predic-
tion error, these two schemes are brought into agreement with each other. The
extra feedback can be interpreted as an asymptotically vanishing excitation sig-
nal. A drawback of the last two methods is that modification ([42]) and extra
feedback ([31]) does not stop in finite time, and hence the algorithms deviate
from the usual simple schemes during the complete time period. [46] gives a
modification procedure for stochastic systems. The method which we want to
propose here is based on a modification procedure developed in [55]. We will
start with an example.
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ExampLE 1.1 Consider the system:

Yk +1) = aqp(k)+bou(k), be7F#0. M

which we want to control adaptively, according to the control objective:

yk+1) = ay(k) acR (lal<l). ¥)]

the corresponding control law is of the form

f@b) = === (3.2)
u(k) = f(a,by (k). (3.b)

Suppose we want to use an algorithm based on certainty equivalence and neu-
trality, say:

B = (an.by) 4.)

O +1 = 0O u(k),y (k),y (k +1)) 4.p)

ue+1) = 2k +1), 4.
b

then it is clear that to be able to calculate u(k), we must not have I;k=0. In
many cases 0 is a rational function of its arguments. Since the coefficients will
depend on the unknown system parameters, it cannot be guaranteed a priori
that b stays non-zero.

On the other hand from the rationality of 8 it also follows that the set of initial
values 00 for which bk 0 for some k has Lebesgue measure zero, see [45].
However bkr;éO for all finite X might not be enough for the analysis of the
algorithm. One could also want to have that b, is kept bounded away from
zero. For instance one may want that hm bk 0. In general one cannot con-

clude that the set of initial values 0(0) for whmh bk is bounded away from zero
has Lebesgue measure zero. If this property is needed, the usual algorithms
have to be modified.

Recall the projection algorithm for estimating (ag,bo):

A y (k) i
G+ = @ + S&P + uep &k +1)—yk+1) (-2
by = —_ut) -5
biwr = b + JEP + uep Gl+D)—ylk+1) (-b)
uk) = (k) (according to certainty equivalence) (59

k
We will now describe a modification of (5) so as to ensure that for all k:

b | = >0, 6)

for some ¢>0.
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A fundamental property of (5) is, that regardless of the sequences of inputs:

{ll(ao,bo)—(ak,l;k)ll }ken is @ non-increasing sequence. ¥
and:

Jim Gy 41,B41) = @bl =0 ®
which implies:

lim 2 +1) —yk+1. _
ko p(k} + u(k)

(see Lemma’s I11.2.2.2 and II1.2.2.3 for a proof of (7) and (8)). We also know
that if the input is rich enough, that kli_l)lolo (@k,bx) = (ag,bo). Now, since by
assumption_bo#0, this means that if the input is rich enough, then within
finite time b, will be bounded away from zero. The problem is that we do not

know when, since we do not know b,. We propose the following modification
of (5). Choose any sequence:

¢ |0 (10)

Start the algorithm in any initial value (a(0),5(0)), 5(0)5%0, and calculate u (k)
as:

0 &)

A

u(k) =~y (k) (11.a)
be

until |b(k)| <¢. Call this time instant ;. )

Take u(r))=y(n;), u(m +1)=—y(r; +1) (the estimates (a(r, +1),b(r, + 1)) are

calculated according to (5.a,5.b))

Then take

u(k)= "g“"y(k), (11.b)
k

until | by | <e;. Call this time instant 7,.

Take u(r))=y(m), u(n+1)=—y(n,+1)

More general, let 7, be the first time instant j after 7,_;+1 such that
|bj| <e. For je[r —; +2,7 —1] take:

u(j) = =y (j) (11.0)
by

for i=0,1, take:

u(ry+i) = (= 1)y (re +i) (11.d)

Now, in any case u(k) is well-defined for every k, moreover we have the fol-
lowing;:
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LemMMA 1.2 {7, |keN, 7, <oo} is finite.

PROOF Assume the contrary, then Vk Ii('rk)l <¢. Since €0 this means

lim b(r) = 0. (12)
k—00

And hence by (8) also

lim b(r,+i) = 0 Vi. (13)
k—o0

Take a  convergent 'subsequence {(@,,, 5,,‘ )} of {@.,, 13,‘2}. Say
klim (as. ’bs,) = (asb) Then also: klim (al+s,,abl+s,,) = (E’b)’ and
—00 -0

Jim (@24s.624,) = @D).
Hence by (5.a and 11.d), see also the proof of Example I1.1.2.3:

@ =3 = 2(@—a) + (bo—b) (14
and:

- - 1 -

a =a = —(ag—a) — (bo—b)) 15)
Hence:

ag+bo—a—b=0 16)
and:

ag—bp—a+b=0 an
This yields:

lim a(s;) = lim a(s+1) = ao. (18)
k—o0 k—o0

and:

lim b(s,) = lim b(s,+1) = by540, (19)
k-0 k-0

which is already a contradiction, but we even have

Jim (@) = (ao,bo), (20)

by (7). The statement follows.
O

The idea behind this algorithm is that every time that b, comes too close to
zero, we apply a piece of a sufficiently exciting input sequence. If we have to
do this infinitely many times, the complete exciting sequence is applied and the
system is identified. Now if we adapt our strip around zero which b(k) must
not enter, in a decreasing way, we know that b(k) will never enter it after some
finite time instant. This time instant depends on, among other things, the true
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system, hence it is unknown. All we know is that it is finite and that is
enough, because that means that the asymptotic behavior of the algorithm is
not influenced by the modification procedure. So, if the original algorithm
worked well under the assumption that b, stays bounded away from zero, the
modified algorithm also works without that assumption.

Although Example 1.1 may seem to be a little tricky, a fairly general method
can be derived from it. We will now describe this method. First we will give
the assumptions on which the method is based, then we will state the theorem
that describes the main property of the method, we will then comment upon
the assumptions and the theorem and finally we will prove the theorem.

The parameter space is R” XR", equipped with the Euclidean norm. Let the
algorithm be recursive and based on certainty equivalence:

B s1 = 00kp(k +1),...p (k —n + D,u(k),..u(k —n +1) (21.2)
M, Ne) = £ @) (21.b)
u(k) = my@Euk —D)+..+m, _(Kuk —n +1)+ 2l.¢)

no(k)y (k)+..+n, _y(k)y (k —n +1)
The notation is as in IL1. Let @ be the set of regular parameters:

Q = {#eR"XR" | f () is well-defined } 22)
Then (21.b) is well-defined only if for all k:
0,9 (23)

Let the true, to ©be controlled system be represented by
0y = (Ag,Bp)eR" XR". This means that the observed data satisfies:

yk+1) = adyk)+..4+ab_y(k —n +1)+bJu(k)+..+b3_ju(k —n+1) (24)

ASSUMPTIONS:

Al 00 = (Ao,Bo)Eﬂ.

A2 Qs open and dense.

A3  There exists a sequence of controllers (M (k),N"(k))€=,(n), such that if
for all &:
u(k) = my(Kuk —1)+..+m,_;(Kuk —n +1)+

no(k)y (k)+..+ny _y (k)y (k —n +1),

then:
k]jm ﬂk = 00
—00
uniformly in the initial state (y (0),..,y (—n +1),u(—1),..,u(—n +1)).
Ad 0 is such that for every initial state

0 ©O),..y(—n +1,u(—1),.,u(—n+1)), and every initial estimate 6,
there exists a sequence of non-negative real numbers {8y }x<n, such that
for every input sequence {u }x.n, the following holds:

10k +1 — Goll < 116 — ol + &

and: :
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)
2 8k<oo
k=0

MopbrricaTION Choose a sequence {€; }xen, such that:

& 10 (k>) (25.2)
Define:
= iend _ 25.
dk ag(gx)"ak 0" . ( 5 b)

( (R) = boundary (R)). Define the input sequence as follows:

uk) = myuk —1)+..+m, _(kyu(k —n +1) (25.0)
+no(k)y (k)+..+n, (k) (k —n+1)

for 7;+j + I<k<m4,—1, j=0,1,2,3,.,

uk) = my@uk —1)+..+m,_;(Huk —n+1) (25.9)
+noG)y (k) +..+ny 1 () (k —n+1)

fork = 7i+i, j=0,1,2,3,.., i=0,1,2,..,j.
where the sequence {7;}n is defined by:

7o = min{i=>0 | d;<e) (@5.¢)
Tj+] - mm{l>'rj+_]+l ' égij.{.]} ] (25.f)

The minimum is defined to be infinity if the set over which the minimization
takes place is empty.

THEOREM 1.3 Under the assumptions Al,..,A4 and with the modification (25)
the following holds: For all initial _ states
0 ©0),...y(—n +1),u(—1),.,u(—n+1)) and for all initial estimates 6, there
exist an €0 and a KeN|, such that for all k=K

(l) Ty = OO

@) de>e

(iii) 6,9

Before we prove this theorem let us first comment upon it and the assumptions

under which it holds.

Al (A4¢,B)eQ. This means that it is assumed that the true system belongs
to 2. If Q is for instance the set of all (4,B) such that the corresponding
polynomials have no common roots, then Al is a standard assumption in
the context of adaptive control. It is hard to imagine that one could do
without Al, because if the assumption would not hold for the true sys-
tem, then it could not be controlled even if we knew (44,B,), let alone
controlled adaptively.

A2 The requirement that 2 is open, together with A1 guarantee that (4,B,)



66 Chapter Il

lies in the interior of {. A4 will then yield that once the estimates are
close enough to (4,By), they will never leave 2. The requirement that
{ is dense is not strictly needed, but is fulfilled in most potential applica-
tions of our method.

A3 A3 means that it is assumed that there exists a sequence of feedbacks
that is sufficiently exciting with respect to the algorithm (5).

Uniform convergence of 6, with respect to the initial conditions should
not be too restrictive. For instance, if 4 satisfies
(l) 0(0,.?‘)’(0),&(1),--,}\}’ (n - l)’M(O)’"’M(n - 1))

= 6(6,y (0),..,y (n —1),u(0),..,u(n —1))

for all feR" XR", y (i), u ()R, AeR.
(@) 0 is continuous in (y(0),..,u(n —1)),
then convergence of 6, implies uniform convergence. Uniform conver-
gence is needed since the exciting sequence is started at different time
instants and hence for different initial conditions.

A4 Is a standard property of many algorithms in the literature for the case
that 8,=0. Our assumption is slightly weaker and is useful if other than
dead-beat observers are used. In the continuous time case, where dead-
beat observers do not exist, a similar property holds with 8,>0. The
geometrical interpretation of A4 is that at each iteration the estimate
comes closer to 6, modulo some summable disturbance. In particular
this implies boundedness of the sequence of estimates.

~ A k_l
l6(k)—boll < 1160)—6oll+ 3 8; (26.2)

j=0

A 0

< [1600)—6ll+ 38, < 0 (26.b)

| j=o0

and, more general, for all k and all /=>1:

~ 1-1
6k +1)— Byl < 118k)—Gpll + 3 8¢ @7

j=k

THE MODIFICATION The input sequence is constructed as follows. Assume
70,-.,7; have already been defined. At time 7; we start to apply the sufficiently
exciting input sequence

u(j+i) = mi@Du@ +i—D+..+m,_ (u@+i—n+1) (28)
+noG)y (G +i)+..+n, Gy (G +i—n+1)

we do this for j time steps. After that, inputs are calculated according to the
certainty equivalence principle until the distance of the estimate to the boun-
dary of @ becomes smaller than ¢;,. This time instant is called 7;., and
again we start to apply the exciting signals, but now for j+1 steps. The
sequence {7;} can be seen as a sequence of stopping times (terminology bor-
rowed from the theory of stochastic processes).
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PRrROOF OF THEOREM 1.3 (i) Assume the contrary. Le. Vk: 7, <oo. Then
lim d(r) = 0. (29)
k—o0

On the other hand, for every €0 there exists k(€), such that for every initial
state (y(0),..,y(n —1),u(0),..,u(n —1)) and 6, such that

160 —Boll <18 — 8ol + Z2°_ 3 (30)
the following holds: Start the algorithm in bo, with the system in state

¢ (0),..y(—n +1),u(—1),..,u(—n +1)):

Bs1 = B(Br,y (k +1),y (), u(k),y (k —n +Dyu(k —n +1)) (3la)
u(k) = my(Kyuk —D+..+m,_, (kyu(k —n+1) (3l.b)

no(k)y (k)+..+ny_ y(k —n+1)
then, by A3, for all k£ =k (e):
16, — 6ol < e (32)

Denote by ¢, the distance between 6, and the boundary of . By Al and A2
¢ > 0. Since for all k:

16— 8o | <118p — 8ol + 32°_ 8. (33)
we know from (30,31.b,32) that there exists k; such that for all k=k,:

sk — Bl < 560 (34
Choose k, such that for all k=k,:
o0
1
28 < e (35)
j=k
then, for all /;,/; = kj:
A rS IZ
16, — 6ol < 116, — Goll + X (36.2)
Jj=h
<lif, — 6l + % (36.)
In particular, if we take:
k3 = -gilg{'rj +_] = kg}, (37)
then, by (34,36) for all k=k;:
1, — Boll < 1By, — o1l + (38.2)
1 1 _ 1
< 39+ 70 = 5% (38.b)
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This implies that for all X = kj:

1
d =5 (39)

Choose k4 such that for all k=k,:
1
« < 7% “0)

then, by (25.1,39), we conclude that:
T, = % @

Finally take:
K =1+ max{k | 7, < o0} 42)
by (41) KX is finite.

(ii) Take € = .

(iii) From (ii) we know that for all k=K, d,>e. Now, since £ is open and
dense this means that for all k=K: 6, Q.
O

The importance of this theorem lies in the fact that it can be used in adaptive
control algorithms in which the complement of an open set must not be
touched.

Suppose we have an adaptive control algorithm which satisfies Al, A2, A3 and
A4. Suppose that the algorithm behaves well asymptotically under the extra
assumption: _

A4 Vk: d(6;,8()) = ¢ for some open set RCR" XR" and ¢>0.

Then Theorem 3 can be used to modify the algorithm so as to ensure that A4’
is satisfied without changing the asymptotic behavior of the algorithm. The
modification is described by (25). Theorem 3 then says that after some finite
time instance the modification is not used anymore.

The conclusion is that assumption A4’ may be replaced by A4 without chang-
ing the asymptotic behavior of the algorithm.

We have described a general method of how to avoid certain open subsets of
the parameter space. The idea on which it is based was first described in [55].
The modification there differs in the sense that the time intervals during which
the exciting inputs are used, are constant in length. For specific classes of sys-
tem and algorithms other modifications based on the same idea may be used,
as can be concluded from the first-order example.



69

2. ADAPTIVE POLE-ASSIGNMENT

2.1 Introduction

In this section we will present an algorithm for adaptive pole-assignment of
single-input/single-output linear time-invariant systems of which only the
order is assumed to be known. This problem has received considerable atten-
tion in the literature, see for instance [3,13,14,15,17,21,31,42,56]. In
[3,14,15,17,21] the problem is studied for systems in input/output form with
the only assumption that the order of the system is known. Algorithms based
on parameter estimation and the certainty equivalence principle are proposed.
In all of these papers stability results are derived under additional assump-
tions. The main reason that these assumptions have to be made seems to be
that during the estimation procedure (unstable) pole-zero cancellation can
occur. This can be avoided by assuming extra knowledge of the true system,
which reduces the results essentially to local ones. Another way of avoiding
that parameter estimates eventually have common factors is to use sufficiently
exciting-signals to assure convergence of the estimates to the true parameter
value. It should be clear that additional injected signals can influence the per-
formance of the system negatively, moreover it is always difficult to guarantee
internal excitation by means of conditions on an external signal, since external
excitation may be annihilated by unpredictable signals in the feedback loop.

In [31,42] algorithms are presented that overcome this difficulty. The reader is
referred to Section III.1 for a discussion of these papers.

The algorithm presented here is based on the ones that were developed in
[50,53,55].

We will use both the input/output description as well as the
input/state/output representation of the systems at hand. The state space
description is more convenient for parts of the analysis and to state the results
in a clear fashion, whereas the input/output description seems to be the right
tool for the estimation part of the algorithm.

The main result is that the asymptotic closed-loop behavior of the adaptive
controlled system equals the behavior we would have obtained knowing the
true system parameters. The proof of this result is independent of the desired
pole locations. Hence even in the somewhat unrealistic situation where one
wants to place the closed-loop poles in the unstable region our algorithm is
applicable. This may look purely academic, but it shows that the adaptation of
the controller parameters does not depend on stability properties of the sys-
tem. The reason that we are able to derive such a result is that we consider the
unknown parameters in the state space description as linear maps of which we
want to know the action on certain subspaces. The variables on which these
maps act can then be normalized without losing any information.

The algorithm is based on neutrality and certainty equivalence. In I1.2 we
proved that for pole assignment the set of invariant points G of any neutral
certainty equivalent algorithm is contained in the set of all parameter values
that give rise to the desired controls, H. The algorithm presented here relies on
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this property. To avoid that parameter estimates eventually become non-
reachable a modification of the type described in the previous section is used.
The rest of this section is subdivided into four subsections. The first contains
the problem statement and a general theorem. The second is devoted to the
case where the state of the system is directly available. That part serves mainly
as a preparation of the general case which is treated in the third part. Finally,
in the fourth subsection we will give simulation results.

2.2. Problem statement
Consider the following time-invariant finite dimensional linear system:

x(k+1) = Ax(k) + bu(k), with initial state x (0), (2.1.2)
y (k) = cx(k) (2.1.b)
(4,b)€E,,, where
E,5:={(4,b)eR"*" X R"*! | (4,b,c) minimal 22
(co,A) in standard observable form }
Also define:
E,.:={(4,b)eR™*" XR"*! | (4,b) reachable } 2.3)

Let A:= {A;,..,A,} CC be such that \eA AeA. Let the control objective be
the assignment of the closed-loop poles to the configuration A. Define

7eR[X] by: m(X)= _1_11(X—A.-).
Define f : E,, —» RiXn by:
fA,b):= —[0.01] [b:4b:...:A" ' b] 'm(4) 2.4

Then the characteristic polynomial of 4 +bf (4,b) is exactly #, and moreover,

since the system is single-input, f(4,b) is the only feedback law with that pro-

perty. (see [26]).

Suppose now that the true value (4¢,bo,co) of the system parameters is

unknown. Then the control objective has to be replaced by a weaker one. As a

modified version of the original control objective we choose the following:
Generate a sequence of inputs such that asymptotically the applied
inputs equal the inputs that would have been calculated on the basis of
the true system parameters.

The following theorem relates the requirements described above to the result-

ing closed-loop behavior of the system.

THEOREM 2.2.1 Let (4,b)eR™*"XR"*!, not necessarily reachable, and let
feR™", Let the sequence {u(k)}xcn and x(0)eR" be given. Define x (k) by:
x(k+1) = Ax(k)+bu(k) 2.5)
Assume that for all k: x(k) 7 0 and suppose:
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. uk)—fxk), _
Ao | ll (kI |=0 (2.6)
Then there exists a sequence of matrices {Ay }n such that for all :

D) x(k+1) = (A+bf +A)x (k) (X))
ii) k]ir?o A =0 2.8)
PROOF Define:

x (k) x (k)

then one can easily check that (2.7) holds. (2.8) follows from (2.6).
O

CoMMENT Theorem 2.2.1 tells us that if the input of a linear system is asymp-
totically given by state feedback, then asymptotically the system will behave as
if this feedback was used. This result holds whether f is stabilizing or not. An
important feature in the assumption of the theorem is the normalization. This
decouples the result from the norm of the state trajectory, and emphasizes that
everything depends only on the directions of the states.

Now consider Theorem 2.2.1 and replace (4,b) by (4¢,bo) and f by f(4¢,bo).
This illustrates what kind of result we get if we are able to produce a sequence
of inputs which satisfies (2.6). In sections 3 and 4 we will present algorithms
which produce such sequences.

2.3. An algorithm for the observed state case

We will now propose an algorithm for the case that the state of the system
(2.1) is observed. This is of course not a very realistic situation, but on a con-
ceptual level it provides a good preparation for the non-observed state case.
The algorithm is a modification of the one described in [50,53]. There an
essential assumption was made on the controllability of the limit points of the
sequence of parameter estimates. By introducing an alternative procedure
when the parameter estimates are close to non-reachable, this assumption can
be relaxed. A drawback is that the analysis of the algorithm becomes more
complicated. However, the superficial reader can take it for granted that
parameter estimates and their limit points are reachable, without losing appre-
ciation of what is going on.

ALGORITHM 3.3.2

We will introduce the algorithm inductively. Choose any sequence {¢,} and
any sequence {C;} such that:

&0 and Cpfoo (3.1

INITIALIZATION (d g,bo): arbitrarily, hy = 0, jo = 0, x(0): given.
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RECURSION
8 = d(Ay,be) (32
(d(4,b) denotes the determinant of the controllability matrix of (4,b)).
ifh, =0
then:
{if & =g,
then:
{ k) = f (Aebx (k) (32al)
hevr = Iy (3.2b.1)
Je+1 = Ji } (3.2.d.1)
else (if 8, <¢;,)
{u(k) = G lIx(®)I (32.22)
bty =n (3.2b.2)
T, =k (3.2.c2)
Je+1 = jkt1}} (3.2d.2)
else (if h;>0)
{u®)=0 (32.a.3)
Besr = he—1 (32b.3)
Je+1 = i } (3.2.d.3)
{ x(k+1) = Aox(k)+bou(k) (3.2.¢)
Sk +1) = Agx(k)+beu(k) 324

Apry = A + (@I +IxE)IP) " xk +1) =5k +D)x k)T (32.)
bisr = b + (IR +IxIP) (ke +D—5(k +D(k) }  (3.2)
(]

REMARK The division in (3.2.g) and (3.2.h) can of course only be done if x (k)
or u(k) is non-zero. Therefore, if x (ko) = 0 for some k,, we do not change
the estimates anymore and we take u(k) = O for all k = k. For the analysis
of the algorithm we will assume that x (k)70 for all k. This assumption is also
needed if we want to apply Theorem 2.2.1. . .
CoMMENT Let us first explain how the (k +1)—1th estimate, (A +1,bx+1) of
(Ao,bo) is calculated from (Ay,by,u(k)). Suppose (Ay,b;) has been calculated
and that u(k) has been applied to the true system, this gives:
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x(k +1)=Ayx(k)+bou(k) . (3.3)
Define
fr‘kﬂ 1= {(4,b)eR" " XR"*! | Ax(k)+bu(k)=x(k +1) } (3.9

then Gy 4, is exactly the set of those parameters that are able to explain the
transition from x (k) to x(k +1), given u (k). Since a fortiori (4¢,b0)€ Gy +1, it
is natural to choose (4 +1,bx +1) somewhere in Gy 1, Since G4 is linear
affine, we can take the brthogopal,\projection of (Ax,b;) on Gy4;. One may
check that the recursions for (4,,b,) as defined by (3.2.g, 3.2.h) are indeed
based on this geometrical consideration. As a first consequence we have that
(Ak+1,bk+1) will be closer to (4¢,by) than to (Ak,bk) and hence the sequence
of estimates is bounded. The idea of orthogonal projection is not new, it was
already used in [20] and [6].

The algorithm is obv10us1y recursive. Also, since (A,, +1,bk +1) = (Ak,bk) if and
only if x(k +1) = x(k +1), neutrality and sensitivity are guaranteed.

Also it is based on certainty equivalence except in the case that the special
inputs are applied. In Lemma 2.3.3 we formally prove that these special inputs
are applied only a finite number of times, but first we will explain intuitively
how u(k) calculated. Of course one would prefer to take
uk) = f (A,,,bk)x (k), for all k, however it is always possible that (Ak,bk) is
non-reachable, which makes it impossible to calculate f(A4y,b;). If we assume
extra knowledge of the system, for instance if we assume that (4¢,bo) belongs
to a known convex subset of E,,, then (4y,b;) will be reachable for all &, but
we want to have a global result. Another possibility is to inject sufficiently
exciting input signals to force (Ay,b) to converge to (4¢,bg). In finite time
(Ag,by) will then be in a convex neighborhood of (4,b¢) contained in E,,. But
we do not want to add external signals all the time. What we do is the follow-
ing. 8, measures how close (4x,b;) is to non-reachable. If &; is large, we take
u(k) = f(Ar,bx)x (k), if & is small (measured by the sequence ¢;) we start an
alternative procedure. First we take a large input, large compared to the norm
of x (k). Then we apply n times the zero-input, and the distance checking pro-
cedure starts again. We denote by 7; the time instant at which the alternative
procedure starts for the j —th time. T, is the first time that an estimate (4;,b;)
is closer to the boundary of the set of reachable pairs than €. 7;; is the first
time after 7;+n that an estimate is closer to the boundary of the set of reach-
able pairs than ¢; +,. At time 7;, the input is taken to be C;lix (7;)ll, after which
we apply the zero input for n time steps and the distance checking procedure
starts again. The sequence 7; constructed in this fashion can be interpreted as
a sequence of stopping times (terminology borrowed from the theory of sto-
chastic processes).

As soon as k=oco (which can take quite a long time!), it is easy to see that:

7o = min { j | d(4;,b)) < &) (3.5)
7 =min {j = +n+1|dd,b) < &) (3.6)
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The minimum is understood to be infinity if the set over which the minimiza-
tion takes place is empty.

Suppose now that there is an infinite number of finite stopping times. Then
essentially what happens is the following. Due to the growing inputs at time
Tk, the dynamics of the system (i.e. the matrix 4,), will be dominated by the
input. As a consequence by will be identified asymptotically. Moreover, the
states x (7, + 1) will converge to the subspace spanned by b,. Finally, since we
apply zero-inputs and because of the controllability of (4¢,b¢), the states
x(te+1),...,x(1+n) will asymptotically span the whole state space. This
means that asymptotically we will measure the action of 4y on the whole
state space and hence 4, will be identified too. In other words (A4,b;) will
converge to (4¢,bo). But since (4¢,by) is reachable, it has a positive distance
to the boundary of E,,. However, the assumption that the set of finite stopping
times is infinite and the fact that ¢; tends to zero, imply that the limit points of
(4,,,b,,) are non-reachable. This is a contradiction and hence the number of
finite stopping times is finite. This procedure of avoiding that estimates come
too close to the boundary of the set of reachable pairs is, of course, not
exclusively applicable to pole assignment. It can be used for every adaptive
control problem where pole-zero cancellation of the estimates can occur. It
proves that a search through the (4,b)-space can be done as long as one is wil-
ling to accept temporary alternative inputs. Moreover, the alternative pro-
cedure is started and switched off automatically, which is completely in the
spirit of adaptive control. The inputs u(7y),...,4(Tmax) can be interpreted as an
initial excitation signal, not for identification purposes but only to avoid pole-
zero cancellation of the estimates. The sequences ¢;, C; can be seen as design
parameters.

We know now that after some time instant we will always use
u(k)=f (Ax,bx)x (k). The original motivation of this control policy combined
with the projection on Gy 4, lies in the theory described in I1.2. For suppose
that the sequence of estimates converges to (4,b) say. Then (4,b) is an invari-
ant point of the algorithm and hence it should satisfy:

A+bf(4,b) | & = Ao+bof (4,0) | « E)

where % is the invariant subspace spanned by the asymptotic state trajectory.
From Theorem I1.2.3 we can then conclude that f(4,b) | & = f(A40,bo) | x,
and in particular that asymptotically the applied input equals the desired
input.

O

In the next three lemmata we will derive some basic properties of the algo-
rithm including the finiteness of the set of finite stopping times.

LemMma 2.3.1 II(ﬁk,gk)-—(Ao,bo)ll is a decreasing sequence, hence it converges
to some real constant R = 0.
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Proor This is a direct consequence of the orthogonal projection feature, which
assures that [I(Ax,bx)—(A0,b0)ll = Ak +1,bx +1)— (A o,bo)ll.
O

Although Lemma 2.3.1 is very simple, not to say trivial, it is an important
feature of our algorithm. A direct consequence of 3.1 is that (4,,b;) converges
to a sphere with centre (49,bo) and radius R. If R =0 then (4x,b;)—(4¢,bo)
and we are done. In the sequel we will therefore assume that R >0.

Lewda 232 Bim (A +1,66+1)~(A,bOlll = 0

PROOF Suppose the claim is not true. Then there exists €0 and a sequence
{st}, such that for all k: II[(A,kH, s;+l) (A_\,k,b,k)]ll = e

Now denote II(Ak,bk) (40,bo)ll by r,. Choose 6>0 and let k, be such that
R<r, <R +4 for all k = k,. Using Pythagoras’ theorem we see that for all
k = ko:

Ty —Ti+s, =1, —(r, 2 —€é)* (3.8)
=>R—(R+8F—&) =C 3.9

for some positive constant C and 4 sufficiently small.
Since r is non-increasing we have r;, —r,, = C, which yields:

ry, <r,, —C(k —ko)<R +8—C(k —ko). (3.10)

Hence there exists k such that 7, <R, which is a contradiction.

LeMMA 2.3.3 {7, | keN, 1, <oo} is finite.

PROOF  Suppose the contrary. Assume that (j,k,l;,k) converges, say
klim (4,,,b,) = (4,b). (Otherwise take a suitable subsequence). Then, for all
—00

k:

d4,b) < ¢ @3.11)
Hence (4,b) is non-reachable. Since for all & : (z’ik +1,3k +1)eé’-k+1, we have:
x(k+1) = Ay 41 x(k)+by 4 u(k) (3.12.2)
= Aox(k)+bou(k) (3.12.b)
In particular:
x(me+1) 21k+1x(1k)+i;‘rk+lCk”x(Tk)"
@A DI 14, 2 +by 1 Cellx I G

_ _Aox(m)+boCillx (m)ll
l4ox (1) + bo Cicllx (i)l

(3.14)
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Now:
x(ne+1)  Aex(m)+boCrllx ()l 3.15)
k-0 ".X(Tk"’].)" k—o0 "AoX(’rk)"‘boCkHX(Tk)" I )
4~ _ b,
o llx ()
= lim (3.16)
k—o0 ||A x('rk) +baC "
Olx@ll 0
boC, b
= lim 9 = —2_ = pby (3.17)
k—o0 14 x('rk) b Gyl "bo"
Ol 0"
for some p50. On the other hand, if we take the limit in (3.13), we obtain:
pb (3.18)
Hence:
lim b, = b, (3.19)
k—o0

From (3.2.a.3) and (3.19) we can now conclude that:

x(r+i Ay b
Jim leg'r: +i;" = uAg—‘qu i=1,.,n+1 (3.20)
Since for all k: x(k +1) = ;1k+1x(k)+5k+,uk, we have:
X(me+i+1) = A, 4y 1x(m+i) = Aox(r+i) (3.21)
A x(mp+i Aox(m,+i
Ani let'r:+i;II = u:z(r(k:i)u) 02
Taking limits on both sides gives:
AAL by = AgAi b, i=1,.,n (3.23)
Since (4 ¢,bo) is reachable, we conclude that 4 =4, and hence:
Jim (4,,5,) = (Ao,bo) (324)
And thus
(4,b) = (Ao,bo) (325

Since by assumption (4,b) is non-reachable, we have a contradiction and the
statement follows.
O

COROLLARY 2.3.4 For all k sufficiently large, (;lk,l;k) is reachable and moreover
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all the limit points of {/'ik,l;k} are reachable.

ANALYSIS OF THE ALGORITHM

The properties of the algorithm will be derived in several steps. First we will

state our main result.

THEOREM 2.3.5 Consider the (controlled) system (2.1,3.2), there exists a
sequence of matrices {A; }<n, such that:

i) x(k+1) = (Ao+bof Ay, b)x (k) (3.26)
= (Ao +bof(Ag,bo)+Ar)x (k) 3.27)
ii) lim & =0 (3.28)

CoMMENT. Theorem 2.3.5 tells us that asymptotically the action of the closed-
loop matrix is identical to that of the optimal closed-loop matrix. It should be
noticed that we do not claim that the real closed-loop matrix converges to the
optimal one, but only as far as the action on the real state trajectory is con-
cerned. This weaker form of convergence is not surprising, if we realize the
fact that the estimation procedure only receives information about the action
of the real closed-loop matrix on the state trajectory. We propose the term
‘weak self-tuning’ for this kind of behavior. Self-tuning would have implied
that kli_l)lolo Ag+bof (Ax,br) = Ao+ Bgf (4g,bo), which we do not claim. Note

that the above result is valid whether or not A is contained in the unit disk.
This shows that the adaptation part of the algorithm does not depend on the
stability properties of the closed-loop system. The reason that the result holds
even for the unstable case, is that the estimation part of the algorithm depends

on the direction of x (k) (i.e. Ti—%%n-), rather than x (k) itself. The normaliza-

tion plays an important role in the proof of Theorem 2.3.5. Of course for sta-
bility of the closed-loop system it is needed that A is contained in the unit
disk.

O

Lewnaa 236 lim [(Ag+bof (Ae,b)— (i +bf G b)EEL- = 0
k-0 : [lx (&)l
PROOF By Lemma 2.3.3 there exists ko such that u, = f (/‘ik,i»k)x(k) for all
k > kg. Hence by definition of G 4, we have for all k > ky:
Ala - a -a k
[(Ao+bof (Aksbx))—(Ak +1 +br +1f (Ak,bk))]"%('];%ﬁ' =0 (3.29

Using Lemma 2.3.2, Corollary 2.3.4, and taking limits at both sides of (3.29)
gives the statement.
O



78 Chapter Il

THEOREM 2.3.7 k)
" : 1. 7 x =
@ Jim I(tebe) = fedo,bod o 1=0-

@ Jim [(o+boflebu)—(Ao+boftdo,bo))] ui(:)n -0

PROOF (i) Suppose the claim is not true. Then there exist >0 and a subse-
quence {s; }, such that for all k:

(A, by, )~ f (Ao,bo)) "ig’;;" I>e (3.30)

Assume that {s;} was already such that:

Jim (4,.,5,) = @4,) (3.31)
x(s .

Jim -ﬁ;—((:?gi = (3.32)

for some (4,b)eE,, and x" €R”. Then for all I:

Jm A4 brey) = (A.) (3.33)

Define X, and z; by:

Xp = (A+bf (4,b)Yx", k=0,1,2,.. (3.39)

Ze = (Ao+bof Ab)x", k=0,12,. (3.35)

Then by Lemma 2.3.6 and (3.33), we have for all k:

% = I (3.36)

Hence by Theorem I1.2.3 it follows that in particular:

SADb)x" = f(Ag,bo)x’ (337

This contradicts (3.30), and the statement follows.
(ii) This follows from Lemma 2.3.6 and (i).

PROOF of Theorem 2.3.5:
This is now a direct application of Theorem 2.3.7 and Theorem 2.2.1.
O

REMARK In [50,53] Theorem 2.3.5 was proven in a slightly different way.
There the notion of excitation space was introduced. This is the space spanned

by the limit points of {ﬁ%}““' Denote this space by . From Theorem
2.3.7 we can then derive that:

Jim [/ (b —f Aobo)lx = 0 (3.38)
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for all x e, which implies that only on the asymptotic active part of the state
space the action of f(4y,b;) is as desired. This illustrates the term weak self-
tuning. Also it can be proven that % is invariant under 4o +bf (4¢,bo).

2.4. An algorithm for the unobserved state case

We will now propose an adaptive pole assignment algorithm for the class of
single-input/single-output discrete time systems of (known) order n. The algo-
rithm is based on ideas developed in the previous section. There it was
assumed that the state of the system was observed. This assumption is now
relaxed, and hence the algorithm should also contain an observer. Indeed, the
algorithm consists of an estimation part including an adaptive observer and a
control part. However, one can also view the estimation part as an adaptive
partial realization procedure, since no attempt is made to identify the system
parameters completely, and the true state trajectory (whatever that may be,
since there is no such thing as a true state trajectory) is not reconstructed
cither. What we really end up with is not a complete realization of the
unknown system, but an input/state/output description that is suitable for one
input/output sequence, namely the asymptotic one. This section runs very
much parallel to section 2 and the reader is referred to that section for some of
the details and discussions.

We will first give three different descriptions of the system. Secondly we will
introduce the algorithm. Then we will prove some basic properties. Next we
will formulate the main theorem of this section: the characterization of the
asymptotic closed-loop behavior of the controlled system. Finally, we will give
the analysis of the algorithm, ultimately leading to the proof of the main
theorem.

THE SYSTEM:

The true system is supposed to be linear, time-invariant, single-input, single-
output and of known order n. Hence it has an input/output description of the
form:

yk+1) = adyk)+..+a_1y(k —n+1)+bduk)+..+b3 _u(k —n +1) (4.1)

Since we want to work in i/s/o form, we realize (4.1) as follows: Define
(Ag,bg,co)eR™ " X R"*1 XR!*", by:

@ 1...0 ER
. 0 : :
Ay = o 0 by := : co :=1[10.0] 4.2
o 1 :
Lag_l 0...0 ng_l

And define for every k, x(k)eR", by:
x1(k) = y(k) 4.3.2)
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xik) = Xalyj 1y —1=j)+ J by ulk —1—)) i =2,.,n (43b)
j=0 j=0

Then for all &:
x(k+1) = Agx(k)+bou(k) (4.4.2)
y(k) = cox(k) (4.4.)

Although there are of course many other realizations of 4.1, we will refer to 4.4
as the true realization, and to the sequence {x(k)},cn as the true state trajec-
tory.

We will also need the following non-minimal realization of 4.1. Define
Fy € R@&~DX@n=1) gpd g, eR@ ~DX1 py:

@) . ay—; a3y B} . By bY-] (bg'
1 0 0 0 0 0 0
0 : . : . . .
: 0 : :
_ 1 : : : _ 0
Fo:=100 0 0 00 0 0 80 := | 43)
0 1 : 0
: 0 :
: : : : 0 : :
10 . 0 0 0. 1 0 LO
Define:
k) := [y &)y —1),..y(tk —n+1),uk —1),.,u(k—n+ 1)]T (4.6)
then for all k:
Wk +1) = Fod(k)+gou(k) @.7

Moreover, since (Ag,bg) is reachable, so is (Fo,go). Finally define
MeR" @~ py:

1 0 o .. o© 0 0o .. 0]
0 a a; -1 by by by
¢ a4y ajs . 0 b,y bs . 0
M:= HE HE : : N : “8)
. . a,—1 . . b,,._] .
04 0 .. 0 By O .. 0

then for all k& we have by (4.3) that:
x(k) = M¥k) 4.9
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THE ALGORITHM 2.4.11
Choose any sequence {¢, } and any sequence {Cy } such that:

¢J0 and Cifoo

INITIALIZATION (4 o, bq): arbitrarily, hy = 0, jo = 0, $(0): given.

RECURSION
[ ae) 1. . . 0] [ bo(k) |
) . O . ) .
Ak = : 0 bk =
: : 1 :
341G 0 . . . 0] 52 -1(6)]
B(k) := [3o(K),-»an —1(k),Bo(K), - by -1 ()]
10 .. 0 0 .. 0
0 ay(k) a,—1(k) by(k) by —1(k)
. soak) . 0 byk) . 0
My:=| . . ) )
LO Go_1k) . . 0 by k). . 0

8 = d(Ar,br)

81

(4.10)

(4.11.A)

(4.11.B)

(4.11.0)

(4.11.D)

(d(A,b) denotes the determinant of the controllability matrix of (4,b)).

ifh, =0
then:
{if & =g,
then: ‘
(#() = fApb)i (k)
bevr = by
Je+1 = Ji }
else (if 8 <e;,)
{ uk) = Clig()ll
hg+1 = 2n—1

(4.11.a.1)
(4.11b.1)
@4.11.4d.1)

(4.11.a2)
(4.11b.2)
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n, =k (4.11.c2)
Je+1 = Jx+1}) @.11.4.2)
else (if i >0)

{u®) =0 (4.11.2.3)
hesr = he—1 (4.11b.3)
Jes1 =i ) (4.11.4.3)
{y+1) = ayk)+..+ad_1y(k —n+1) @.11.¢)

+bu(k)+..+b8 _u(k —n +1)
Pk +1) = (k) p(k) @116
Ak) = (k)P "y (k +1)—p(k +1)] @.11g)
Gk +1) = ak)+Aky(k—i) i =0,.,n—1 (4.11.h)
bik +1) = bk)y+Nku(k —i) i =0,,n—1 (4.11.)
i) = My9k) @11
Fk+1) = My 0k +1) ) (4.11%)
O

ReMARK The division in (4.11.g) can of course be done only if ¢(k) or u(k) is
non-zero. Therefore if ¢(ko) = 0 for some ky, we do not change the estimates
anymore and we take u(k) = O for all k¥ = k(. For the analysis of the algo-
rithm we will assume that ¢(k) = O for all k. This assumption is also needed if
we want to apply Theorem 2.2.1.

O

CoMMENT The interpretation of the algorithm is more or less the same as for
the observed state case, the main difference being that now also a state trajec-
tory has to be invented too. Define:

a n—1
Gk +1 :={(a0,-,8n —1,00,--,0, 1) |y (k +1)= go (ay (k —i)+biu(k —i)) }(4.12)

Then Gy4, is linear affine and (a3,..,a%—1,83,...50_1)€Gy+;. Define
@o(k +1),..,a, -1 (k +1),bo(k +1),..,b, -1 (k +1)) as the orthogonal projection
of (aO(k)s",an—l(k)’b()(k)r"bn—l(k» on Gk+l' O

THE OBSERVER
The definition of X(k) and z(k +1) is motivated by the following analysis.
At time k +1 we compute (ag(k +1),..,a, —1(k +1),bo(k +1),..,b, -1 (k +1)) on
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the basis of the observed data (u(k —n +1),y(k —n +1),..,u(k),y (k),y (k +1)).
Suppose we want to have an i/s/0 description of this finite i/0 sequence:

X +1) = A(k +DE()+bk + Du()) j=k—n+1,.k (4.13.2)
Y() = cox(j) (4.13b)
Let X be the unique solution of the equations:
~i=1— i@ 2 : .
cody+1% + co DAg+1bg1uk —n +j—1=1) = y(k —n +j) (4.14)
1=0 '
j=1.,n

Then, if (4x +1,bc+1) was the true parameter, X would have been the estimate
of x(k —n+1) based on the dead-beat observer for (49,bo). Since we use
(A +1,bi +1) instead of (4¢,b¢), the observer part of the algorithm can be
interpreted as a certainty equivalence dead-beat observer. Now one may check
that:

Ay — "_2;\ A
3(k) = Ay 1% + S Ay r1bgsiute —n+j—1-1) (4.15)
=0
2 +1) = Ay 41 3(K)+ by 4 u k) (4.16)

where %(k) and z(k +1) are defined by (4.11.) and (4.11.k).
]

The next three lemmata give some essential properties of the algorithm.

LEMMA 24.1 II(ﬁk,l;,‘)—(Ao,bo)ll is a decreasing sequence, hence it converges
to some real constant R = 0.

ProoF See the proof of Lemma 2.3.1.

a
Lewaa 242 lim 1A +1,b+0) = Aiboll = 0
PROOF See the proof of Lemma 2.3.2.

O

LEMMA 2.4.3 {7, | keN, 7, <oo} is finite.

PROOF  Suppose the contrary. Assume that (A - b,k) converges, say
hm (A nsbs) = (4,b). (Otherw1se take a suitable subsequence). Then (4,b)
1s non-reachable Define (Fio2) ER@ ~DX@1 =1 x g@n=DX1 by replacing g

by a,(k) and b? by b,(k) in (4.2). Now the proof is completely analogous to the
proof of Lemma 2.3.3.

O
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CoRroLLARY 2.4.4 For all k sufficiently large, (ﬁk,gk) is reachable and moreover
all the limit points of {4,,b;} are reachable.
O

The analysis of (4.11) is as follows: first we will prove that the sequences
{z(k +1)} and {(4;,b;)} provide asymptotically a realization of the controlled
system. Then we will apply Theorem I1.2.4 to the limiting behavior of the sys-
tem to connect the true state trajectory with the constructed one.

ANALYSIS OF THE ALGORITHM
THEOREM 2.4.5 Consider the (controlled) system (2.1,4.11). Assume that there

exists A€ A such that A 5= 0. Then there exists a sequence of matrices {Ay }xen,
such that for k sufficiently large:

@) x(k +1) = Aox (k)+bof (A, bz (k) @.17)
= (Ao t+bof (Ao,bo)+Ar)x (k) (4.18)
@) lim A =0 (4.19)

ReEMARK Just as in Theorem 2.3.5 we do not claim that (4,b¢) is identified,
nor is f(A4g,bo) identified. Even the state trajectory is not reconstructed. The
constructed state trajectory z(k) will in general not be equal to x(k), nor will
f (Ak,bk) be close to f(A4¢,bp). In the limit, both f(4y,b,) and z(k) may be
wrong, but the resulting input sequence u(k) = f(Ay,bi)z(k) will be as
desired, and that is what really matters. Again this could be seen as a weak
form of self-tuning. As in section 5, the above result is valid whether or not A
is contained in the unit disk. This shows that the adaptation part of the algo-
rithm does not depend on the stability properties of the closed-loop system.
The reason that the result holds even for the unstable case, is that the estima-
tion part of the algorithm depends on the direction of ¢(k) (i.e. —ﬂ—)—l),

(i)l
rather than ¢(k) itself. This normalization plays an important role in the proof

of Theorem 2.4.5. Of course, for stability of the closed-loop system it is
needed that A is contained in the unit disk.

a
Define:

d, = k)l = [E‘,lyz(k ~ j)+"§u2(k — 4.22)
j=0 j=

LeMMA 2.4.6
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lim u-d‘Tls(k+1)~(2k+8u(2k,8k)ﬁ(k)lll =0 (4.23)

PrOOF From Lemma 2.4.3 and (4.11.a.1) we deduce that for k sufficiently
large:

Bk +1) = A4 5(K) Fby 1 f Ar,br)z (k) (4.24)
Hence: '
Bk +1) = (g 41 My 41+ by +1f (AxbOMa(k) (4.25)

Now, since I(4x,b)—(Ax +1,b% +)ll = 0, the continuity of f on E, the con-
trollability of the limit points of (4,b;), we conclude:

. ] - - ~ ~ » A
fim 120 + D~ b f Grdicol 426)
= Jim 1Che+1 B +beif bS8 @27)

N 1
— s\ My + by 1 f i DM ~2E ) = 0
(Ax +1 My by 41 f (Ax, i) k||¢(k)||"

O
THEOREM 2.4.7
kﬁ_ﬂ "f(Ao,bo)x(k)d:f(Aksbk)Z(k) =0 (4.28)

PROOF Suppose the claim is not true. Then there exist €0 and a sequence
{#} such that for all k:

I|f (Ao,bo)x (k) — f (Ax, br)z(k) = e

4.2

7 (429)

. ! ) _ .
Let x* be a limit point of x(k). Say lim x (1) = x , for some subse-

d‘k k—c0 d,{"

quence {#{D} of {#,}. Let {#2} be a subsequence of {#{"}, such that:
lim (4p,bp) = (4,b) (4.30)
—00
and:

2ef) _ .
e z 4.31)
Then for all /:

lim (Appbiee) = (Ab) (432)
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Define sequences {x (k)" } and {z(k)’} as follows:

x(0) = x" 20 := 2" (4.33)
z(k)" = (4 +bf (4,b))z" (4.34)
x(k+1) = Agx (k) +bof (4,b)z(k)’ (4.35)
Then, by Lemma 2.4.6, the fact that cz(k) = cx(k), and (4.32), for all k:
cx(k) = cz(k)” (4.36)

hence by Theorem I1.2.4 there exists a non-singular matrix S such that for all
k:

Sz(k)' = x(k)" 4.37)
Hence from the proof of Theorem I1.2.2 we conclude:
fAb)" = f(do,bo)x" 43%)
which contradicts (4.29). .

REMARK Theorem 2.4.7 tells us that asymptotically the applied input equals
the desired input if we normalize the state trajectory with the norm of ¢(k).
For the derivation of the same result, but this time normalized with the norm
of x(k) (in order to be able to apply Theorem 2.2.1), we will study, as an
intermediate step, the behavior of the non-minimal realization (4.7) of (4.1).
We have for all k:

Wk +1) = Fod(k)+gou(k) (4.39)
Define hgeR!*@ D py:
ho := f(Ao,bo)M (4.40)
Then the desired input is:
u(k) = f(Ao,bo)x (k) = f(Ao,bo)Me(k) = hog(k) 441)
Hence the desired closed-loop representation of (4.39) is given by:
Mk +1) = (Fo+goho)p(k) 4.42)
However, the applied control is:
u(k) = f AbE() = f A, boMd(k) (443
O

The following theorem characterizes the asymptotic closed-loop behavior of the
realization (4.11,4.39).

THEOREM 2.4.8 There exists a sequence of matrices {Ay }xcn such that:
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@) ¢k +1) = (Fo+gof (b )M, k) (4.44)
= (Fo+goho A1 )é(k) (4.45)
(ii) klim A}‘ =90 (4.46)

PrROOF The proof follows immediately from Theorem 2.4.7 and Theorem 2.2.1
a

LEMMA 249 Let {M;};.n be a sequence of matrices in R"*", such that
klim M, = M = 0. Choose x(0)eR"*" and define:
—00

x(k+1) = Myx(k) (447)

Assume that ior all k x(k) = 0. Denote by X the linear span of the limit
N X .

points of xOl” Then:

i MXC¥% (4.48)

(ii) for all xe%X ,x%0 : Mx =0 (4.49)

PROOF i) Suppose x" is a limit point of {_x(l_cl_}. Say lim o) x",

‘ Ilx () k>o Xl
for some subsequence {s;}. Then:
e 1 _
Mx = klin; N M; x(sx) klixg TGl x(1+s;) (4.50)
- Ix(A+s )l x(1+s) M, x (sl x(1+5¢) @5s1)
koo Xl Ix(Q+s)l — k->e  lx@Ol  x(1+s)ll )
_ x(s) . x(1+s) ey X(1+s)
= M ol e rsor xS ol 4.52)

Hence Mx" € X. By linearity the result follows.
ii) After a change of basis, M and M, can be decomposed as:

3 M, 0 My (k) Myk)
M= Ay 0| M= | Mouk) Muh) @9
such that M, is non-singular. Then:
xi(k+1) (Myk)x,(k)+M(k)xa(k))
A —edor  Am @ *0 @59
This yields:
X)) over(M) (4.55)

[l (&)l
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By linearity the statement follows.
O

COROLLARY 24.10 Let x" be a fimit point of £ then: x° £ 0.
k

PROOF One may check that A CSpec(G,). Since by assumption at least one of
the N’s is nonzero, we conclude by Lemma 2.4.9 that there exists p > 0 such
that for i:

-‘K’idkﬁ)- > (4.56)
N . x(%) )
ow suppose x = 0. Say 7 " 0, then:
A
+ 4 ox (k) +bof (Ay, ,b, (O
"x(tl; DI _ ox (k) 0‘{( 1201, )2(K) @57)
3 b
14 0 +bof(A40,bo))x(t)+bo(f (Ay, b, J2(t)— f (Ao, bo)x(t )l
_ - -0 (4.58)
, A
In the same way we obtain:
+
—"i‘-(f;’;—’.)" -0 (4.59)
(Y
This implies:
@)yt D, .yt +n— lz;u(tk),u(tk +1,..,u(ty +n—1)) 0 (4.60)
(A
+n—1
ﬂf’-‘-;"—l >0 4.61)
(3
which contradicts (4.56).
O
COROLLARY 2.4.11
(k) —f(Ao,bo)x (k)
T gor 170 (“62

q
PROOF Since by the previous corollary ﬂx—(’l‘cw < ¢, for some § > 0, we have:

@) —f (Ao,bo)x (k)
Jm | GOl

I (4.63)

@) —f(Aobo)x(K)  d
= Jfm a4 xRl

=0
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PROOF OF THEOREM 2.4.5

The proof of Theorem 2.4.5 is now just an application of Theorem 2.2.1 and
Corollary 2.4.11.
a

2.5. Simulations

The algorithms presented in sections 2 & 3 have been simulated extensively. As
could be expected, convergence gets slower as the order of the system
increases. The asymptotic behavior of the controlled system was characterized
in terms of the action of the asymptotic closed-loop matrix on the state trajec-
tory. The weak self-tuning property, however, can be better illustrated by a
comparison between the applied input and the desired input. In many cases
the assumption (2.6) in Theorem 2.2.1 implies that:

Jim fﬂx@% =1 G0
We will now give the graphs of the output of a second order unstable non-
minimum phase system and of u(k v
"applied” and ”desired” respecti:"ely). The applied algorithm is the one intro-
duced in section 6 (non-observed state case). The true system has the realiza-
tion:

(where superscripts a and d stand for

-11
x(k+1) = [ 6 0] x(k) + ; u(k) (5.2.a2)
y(k) = [1 0}x(k) (5.2.b)

The system was initially guessed as:

a - 3 ]. A 2
The desired closed-loop characteristic polynomial was chosen to be:
X2 — 17X + 0.72 ' G4

If we look at figures 5.1 and 5.2, we see that initially the system behaves badly.
Then after a certain learning period, the quotient of applied and desired input
is close to 1 and the system begins to stabilize. One may check that y (k) tends
to zero exponentially fast, the exponent tending to the slowest desired pole:
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0.9. At iteration 32 there is a peak in the graph of 1‘—(%% The explanation is
u

that the state was suddenly too far away from the subspace it was converging

to. Outside this subspace the control law was still far away from the desired

one. After 150 iterations iLllzt is very close to 1, even though the true sys-
u

tem has not been identified at all. The simulations show that the Euclidean
distance between the true system parameters and (4 s0,b,50) Was almost 2.24
(initially 2.65). After 150 iterations the closed-loop poles were 0.89998 and
0.81490. The larger deviation of the second pole from the desired one can be
explained by the fact that the state trajectory converges to the invariant sub-
space belonging to the other pole. Hence information about the invariant sub-
space belonging to the second pole gets poor very quickly. This illustrates the
weak self-tuning feature: only the poles which are excited asymptotically are
placed properly.

]

2
€9

1
e9

0
e0

-1
e9
2 \ N N

9 9 20 40 60 8 100 120 140 160

output

number of iterations
FIGURE 2.5.1 The output of the system

30
25
20
15
10

quotient

0 20 40 60 80 100 120 140 160

number of iterations
FIGURE 2.5.2 The quotient of applied and desired input
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3. AN ADAPTIVE LQ CONTROLLER FOR A FIRST ORDER SYSTEM

In the previous section we have presented an algorithm for adaptive pole
assignment. It appeared that the algorithm could be based on neutrality and
certainty equivalence and that identification of the system parameters was not
necessary. In Chapter II we proved that if the control objective was the minim-
ization of a quadratic cost functional, then there is a serious conflict between
identification and control. In terms of the sets G and H this meant that GNH
is a negligible subset of G, the set of invariant points of an algorithm.

In this section we will present an algorithm for adaptive LQ-control which is
based on dual control rather than on certainty equivalence only. By this we
mean the following. The input will consist of two parts. A pure control part,
based on certainty equivalence, and an excitation part. The excitation part of
the input will be chosen in such a way that the set G will shrink to a singleton,
namely the true system parameter. The excitation part could also be called an
active learning part. The excitation part will contain a design parameter. This
parameter reflects the trade-off between identification on the one hand and
optimal control on the other hand. The smaller the parameter is the better the
optimal costs can be approached, but also the slower is the convergence of the
parameter estimates. Another important feature of the excitation part of the
input is that it is proportional to the output of the system and hence regula-
tion (output going to zero) is not in contradiction with the presence of an exci-
tation signal as would have been the case if the excitation consisted of an addi-
tive signal. ‘We will consider the first order case only, the general case will be
treated elsewhere.

Consider the system:

y(k+1) = aqy(k) + bou(k), by # 0, y(0)eR )

Cost functional:

J = § yik) + ru*(k), r>0 ®
k=0

Define f:RXR\ {0} — R, by:
—abp (a,b
’b = _H_LL
f(ab) G @b) + 1) ©))
where p(a,b) is the positive solution of:
2p2,2

—a%p +22P =
then the optimal control is:
u(k) = f(a0,boly (k) )

and the optimal value of J is given by:
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J* = p(ag,bo)y*(0) ©)

Formula’s (3,4,5,6) are the first order versions of I1.3 (5,6,7,8). If (&k,l;k) is an
estimate of (ag,bo) at time k, then a certainty equivalence adaptive control
scheme would take:

u(k) = f @by (k) 0]

We know however that (7) would result in an undesirably large set of invariant
points if in addition the estimation part of the algorithm is neutral. Therefore
we will slightly perturb (7) so as to ensure that (ag,b) will be the only invari-
ant point of the algorithm. Consider the following perturbation of (7):

u(k) = f @by () + (= Doy (k) = [f @b + (— ey (k) @®

where {a;} is a sequence of positive real numbers. The second term of (8) is
the excitation part of the controls. Now assume that the input of the system
(1) is generated by (8) and that (a,b;) is produced by a neutral estimation
scheme, then we have:

LemMa 3.1 If there exist positive constants § and M such that for all k:
8 < ap < M, then, if for all k y(k) # 0:

G = {(a0;b0)} )

Proor Recall from II.1.2 (2.19) that:

G = {(@,b) | for all k: y (k) = 5(K)} (10)

Hence (a,b)€ G implies that for all k:

y(k+1) = (ag + bof (a,b) + bo(— D)y (k) (11.a)
= (a+bf (a,b) + b(— D)y (k) = y(k +1) (11.b)

Since {ay} is bounded there exists a subsequence {s} of 2N, such that:

k]i_{xol° a;, exists, say a (12.a)

kli—{Eo a4, €xists, say o (12.b)

Hence it follows from (11) that:

ag + bof(a,b) + boa = a + bf (a,b) + ba (13.2)

ag + bof(a,b) — bga’ = a + bf (a,b) — b’ (13.b)

Subtracting (13.b) from (13.a) gives:

(a + a)by = (a + )b (14)

Since by assumption a and & are both positive, we conclude:
b= bo (15)
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Substituting (15) in (13.a) gives:
a=ag (16)

The statement follows.
O

CoMMENT From Lemma 3.1 we conclude that if we use (8), then for a suitable
choice of the sequence {a;}, boundedness {(a,b;)} already implies conver-
gence to (ag,bo). On the other hand it is intuitively clear that the existence of
{ax} will cause the behavior of the system to deviate from the desired
(optimal) behavior. We will first study the behavior of the controlled system as
dependent on the choice of {a;}. We will do this for the case the initial guess
of the system parameters is (a,b¢) itself and {a; } is constant.

LemMA 3.2 Consider the closed-loop system:
y(k+1) = agy(k) + bou(k) (17.2)
u(k) = f(ag,bo)y (k) + a(—1fy(k) (17.b)
for some fixed @ > 0. Then:
(@ For a sufficiently small: klim y(k) = 0.
—00

o0
(i) 1351[.1' — S yX(k) + ru*(k)] = 0. (where J" is defined by (6)).
. k=0
PROOF (i) Obvious. Take 0 <a <1 — |ag + bof(ag,bo)| Since

| (@0 + bof(ag,bo) | < 1, the statement follows.
(ii) First observe that:

T = 5520 + of @oboy'® (18.)
= (1 + 1f (a0,b0)**(0) kio (@0 + bof (ag,bo))* (18.b)
= 2.0\ 1
(1 + 1f (30,00} )y*(0) 1=(as + bof @o.bo)} (18.0)
Second:
I < 30 + v k) (19.2)
k=0
= éoyz(k) + 7(f(@0,bo) + (—Dfayy*(k) (19.b)

Since (19.b) is absolute summable for a sufficiently small, we may interchange
the order of summation and taking the limit, and the statement follows.
O
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CoMMENT From Lemma 3.2 we conclude that we can approach the optimal
costs arbitrarily closely by choosing a sufficiently small.

We will now combine the conclusions of Lemma’s 3.1 and 3.2 to develop an
adaptive algorithm.

ALGORITHM

- ~ k ~
o1 = b Wﬁ;’%w +1) — j(k +1)) (20.2)

- k R
beer = by + —%—kékj%(y(kw — jc+1)) (20)
Be=(Q1—|a + bkf(ak’bk) 1) (20.c)
uk) = (f Gbe) + (—1PaBy (k) 20.4)
Pk +1) = Gy k) + beu(k) 20.)

LemMA 3.3 The sequence {(ﬁk,l;k)} as defined by (20) has the following two
properties.

®  {liG@o,bo) — (ak,bk)ll} is a non-increasing sequence.

(i) kll_g}o"(akﬂ,bkﬂ) — @bl = 0.

PRrROOF See Lemma’s I11.2.1 and I11.2.2.
Od

To simplify the discussion we will make an extra assumption. This assumption
will be relaxed later on.

ASSUMPTION Assume that there exists a positive constant y such that for all k:

| b | =¥ ~ @n
O
THEOREM 3.4

@ foralla>0: lim (@rsbr) = (ao,bo).

@ Jim B = (1= | ao+bof @0:bo) | -

(iii) fora]10<a<1'1imy(k)=0

@) ( 2 y2(k) + (k) = p(ao.bo)y*@N))] = 0.

a}0 N->oo yz(ZN)
. b 2 2 2 =
\)) 1}5(!)1[”11_1330 _y2(2N+l) (k 22N+1 yo(k) + ru“(k) — p(ag,bo)y“(2N +1))] =0.

PROOF (i) Since by assumption | b | = v, and since {(a,b;)} is bounded,
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there exists a compact set CCRXR \ {0} such that for all £ (&k,gk)e C. Since
By is a continuous function of (a,b;)eC, and since by the strict stability of
a, + bif (@k,b), B > 0, we conclude that there exist positive constants &
and M such that for all k:

S<afp <M 22)

Now Lemma 3.1 yields the result.

This follows from (i)

(iii) This follows from (i) and the fact that 0 < a < 1.
(iv) Define:

%= S k) + nidk), @3)
k=N

Now:

Q2 2
2(2N) ( ZZN)’ (k) + ru*(k))

YR+ (f @rsbi) + (—1FaBe)) (24)

2N + r(f @obi) + (= 1FaBi)?) 25)

k=1 A .
(.]_:I (@0 + bo(f @) + (—1YeaB)))]

8

’2 [ + of Graawsbrvan) + (=1 ey on)) (26)

1-

( II (@0 + bo(f (@m +ansbmaan) + (=1 P aB, LR

00

12 [(a+ ’f(al+2N’bI+2N) + (= aB+on)) @7

( I_Io(ao + bo(f (@m +2Nsbmraw) + (=1 B 4 2]

Since (27) is summable for all N sufficiently large and a sufficiently small, we
may interchange the summation and taking the limit. By (i) this yields:

Nli—?:oyz(ZN) = 2_‘.0 [ + 7(f(a0,b0) + (—1)aB)) (28)

-1
(1-—10 (a0 + bof (@0,bo) + (—1)"af))],

where 8° = Jim . Again since (28) is absolute summable for « sufficiently
—>00
small, it follows that:
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aQ

. . N ) ‘ )
lim lim — Ny = 2 (1 + 7 @0nbo)as + bof @o.bo) @)

The statement now follows from (6) and (18.b).
(v) Completely analogous to (iv).

O

COMMENT

(i) Regardless of the value of a, as long it is positive, (a¢,b¢) is identified.
This is of course due to the excitation term in the control.

(iii) For a sufficiently small, the closed-loop system is globally asymptotically
stable. The reason that this property holds despite the excitation term in
the input is that the excitation is in closed loop. Otherwise stated, the
excitation is proportional to the output, which implies that it damps out
as the output gets smaller. This is in contrast to the case where an open-
loop signal is injected to the system, as has often been proposed in the
literature. In that case regulation of the output can never be achieved,
since the excitation signal will always be active. Another important
advantage of closed-loop excitation is that it can never be dominated by
the other signals in the loop. For if the signals in the loop are large then
also the excitation signal will be large.

(iv,v) Asymptotically the optimal costs can be approached arbitrarily well, by
taking a sufficiently small. It should however be noted that the conver-
gence speed of (a,b;) will decrease as a gets smaller. Hence there is a
trade-off between identification and control.

(]

MODIFICATION OF THE ALGORITHM

The assumption that | b, | = y can be relaxed by using the modification
described in the pole assignment algorithm or by any other method based on
III.1. We skip the details, since they are completely the same as in the pole
assignment algorithm.

OPTIMAL CHOICE OF a

In Theorem 3.4.ii we claimed that the controlled system will be asymptotically
stable provided that the design parameter a lies between zero and one. The
question arises which value of a is in some sense optimal. First we look at this
problem from the identification point of view.

Recall from Section IIL.2 that the estimation algorithm (20) was based on the
orthogonal projection of (a,b;) on Gy ., where:

G +1 = {(a,b)|ay (k) + bu(k) = y (k + 1)} (30)
= {(@b)|a + b(f @) + aBi(— 1)) = ag + bo(f (@, br + acy(— 1))}
Now, one observes immediately that if ék and ék +1 are orthogonal, then:
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@ +1:0+1) = (@o,bo) @31)

Hence as far as fast identification is concerned it would be good if G, and
Gy +1 are as orthogonal as possible within the given structure.

PROPOSAL 1 From now on we will allow a to depend on k, therefore instead of
a we write a;. Take:

(@a+f @b )
1 — | a + bef (@b |

o = (32)

O

If we take this value for ay, then we have the following property:
PROPERTY If (@ _1,b;—1) = (&,by), then Gy and G 4, are orthogonal.

PROOF One can easily check that the product of the slopes of ék and ék 4118
— 1, which implies that they are orthogonal.
O

The consequence of accepting Proposal 1 is the following. If for some k
(@ —1,bx —1) and (ax,by) are very close, then Gy and Gy 4+, are almost orthogo-
nal, and hence (a4, +;) will be very close to (ag,bo). Hence if the esti-
mates hesitate to converge then they are forced to speed up. On the other hand
if (@ —1,bx 1) are not close, then there is already a certain speed of conver-
gence.

The conclusion is that the choice (32) for a; is good for identification pur-
poses. However, since a;, will then be larger than one, it is clear that the result-
ing closed-loop system will not be asymptotically stable. That means that
although (32) may be good for identification, it is bad for control. We will now
propose a modification of (32).

PrOPOSAL 2 Choose A€(0,1) and let g:R — R* | {0} be a continuous func-
tion such that:
® g®=0
(i) VxeR: g(x) = g(—x)
(iii) lim g(x) =1
X—>00
Take:

A VI
* ( & @l “1- | @ + bif (@b | 2
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The idea behind Proposal 2 is the following. Since Vk a;=A>0, we still have
that 11m (ak,bk) (ag,bo). This means that as long as (ak,bk)yé(ao,bo)

-ﬂlily%)l&l will be non-zero, and then the influence of the term involving g

is still present. If g(ﬂ—u—l) is close to one, then the value of a; will be

close to that of Proposaf’ L. Als a consequence the initial behavior of the esti-
mation part will be good. Then, as soon as (a;,b;) comes close to (aq,bo), the
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