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How THIS MONOGRAPH IS ORGANIZED 

This work consists of three chapters. The first chapter is of an introductory 
nature, the second and the third contain the theoretical material. Each chapter 
consists of several sections. Some of these sections are subdivided in subsec
tions. The sections do not carry the chapter numbers. The subsections carry 
the section number and a subsection number. Formulas are numbered as fol
lows. If a section contains a subsection, then the formulas in a subsection 
carry the subsection number and the formula number, otherwise formulas 
carry only the formula number. In each (sub)section the numbering starts all 
over again. If we refer to a formula within the same (sub)section we do so by 
calling its number, if we refer to a formula outside the present (sub)section, 
then the chapter number, section number and if necessary the subsection 
number and finally the formula number is called. Formula numbers always go 
between brackets. Theorems, lemmas, corollaries, remarks etc. are numbered 
with the section number, subsection number and their local number. Refer
ences to theorems etc. are made in the same fashion as to formulas. 



1. INTRODUCTION 

1.1 What is adaptive control? 

Chapter I 

Introduction 

3 

This monograph is concerned with the problem of adaptive control. In this 
introductory section we will try to give a non-mathematical description of this 
problem field. Since the motivation for studying control theory stems from 
practical real-life problems rather than from elegant abstract mathematical 
thoughts, we will illustrate the discussion with several examples which in our 
opinion reflect one or more fundamental features of adaptive control. To that 
end we will first give a brief description of the notion of dynamical system and 
of the notion of classical control problem for a dynamical system. 
A dynamical system. the basic object of study in system theory, is a mathemati
cal model of a dynamical phenomenon, for instance a mechanical system. A 
dynamical input/ output system is a dynamical system in which two entities, 
called input and output, can be distinguished. This distinction is such that the 
output is causally dependent on the input. This dependence can be thought of 
as determined by a set of laws, for example the laws of mechanics. The above 
description is in the spirit of the mathematical definition of a dynamical sys
tem as advocated by Willems [61], and the reader is referred to [61] for an ela
borate discussion of this definition. Examples of dynamical input/ output sys
tems will be given in the sequel. 
A control objective for a dynamical input/ output system is defined by a collec
tion of specifications on the behavior of the system. The rules of the game are 
then to manipulate the input of the system in such a way that the 
specifications are met. This can of course be done only if the specifications do 
not contradict the laws of the system. Well-known examples of control prob
lems are: stabilization and optimal control. 
Let us become a little more specific by giving an example. 

ExAMPLE 1 (Inverted pendulum) Consider a rod of length I and mass m 
mounted on a carriage (see [38]). The carriage can move along a horizontal 
rail and the rod can move in the plane passing through the rail and orthogonal 
to the surface. The carriage can be moved along the rail to the left or the right 
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by applying appropriate forces. The measured quantities for this dynamical 
system are the position of the carriage, the velocity of the carriage, the angle of 
the rod and the angular velocity of the rod. It is not difficult to understand 
that the forces on the carriage cause all other variables and should hence be 
considered as the input of the system. The other variables together form the 
output. The control problem we want to discuss for this input/ output dynami
cal system is the following: how to generate an input function such that the 
rod comes to an upright position and remains so. It is not our purpose to dis
cuss possible solutions to this control problem, we merely state that based on 
the physical laws governing this system, the mass m and the length /, a device 
can be designed which carries out the control task. Important to our discus
sion is that the input rule depends on the (physical) laws of the system which 
we want to manipulate. 

□ 

The solution of every non-trivial control problem will depend on the laws of 
the system. It is important to note that the controller itself is a dynamical sys
tem. 
Let us now give a verbal definition of adaptive control. 

DEFINITION An adaptive control problem is a control problem where the laws 
of the system to be controlled are not completely known. 

□ 

The term adaptive stems from the original motivation of adaptive control. Ori
ginally adaptive control was intended to be applied to systems of which the 
laws change (slowly) in time. The controller was then supposed to adapt itself 
to these changes. The bulk of the existing literature, however, is devoted to the 
problem of controlling systems with constant but unknown laws. This mono
graph too is exclusively concerned with systems of which the laws do not 
change in time. However, there is one type of change in time that we do not 
want to exclude, namely abrupt changes of the system laws. The reason for 
this is that it should be possible to connect an adaptive controller to different 
systems. If we would first use the adaptive controller for one system and then 
connect it to another one, the controller is supposed to adapt itself to the new 
system to be controlled. This property reflects a certain universality of adaptive 
controllers. 

REMARK One could define an adaptive controller as a controller which adapts 
itself to operation conditions. However, this description does not provide a 
clear distinction between a classical and an adaptive controller. As an example 
consider Watt's governor for steam engines. This is a device that contracts a 
valve whenever the velocity gets too high so as to temper the steam pressure 
and hence the velocity, and opens it as soon as the velocity goes beyond some 
prescribed threshold. Hence this controller adapts itself to changing operation 
conditions in the sense that the control action depends on these conditions. 
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Nevertheless, it should not be considered an adaptive controller, since it may 
work well for the particular steam engine only. Only if it guarantees good con
trol for different engines, should it be called adaptive. This example illustrates 
the difference between adaptive control and what is usually called constant 
feedback control. 

D 

ExAMPLE l ( continued) Consider the problem of the inverted pendulum. A 
relevant parameter in the laws of the system is for instance the mass of the 
rod. If this parameter is not known, we are faced with an adaptive control 
problem. 

D 

The main problem in adaptive control is of course that once the laws govern
ing the system are unknown, the appropriate controller is also unknown, since 
it depends on the unknown laws. 
How to cope with this problem? 
One way of dealing with the problem of controlling a dynamical system of 
which the laws are unknown is the following. Carry out a number of experi
ments on the system and observe the resulting behavior of the system. If the 
experiments are diverse enough, one may be able to deduce the laws governing 
the system and then design a controller based on these laws. 

ExAMPLE 1 ( continued) Suppose the mass of the rod is unknown. By just mov
ing the carriage slightly, the mass of the rod can be approximately calculated 
from the resulting motion of the rod. 

D 

This type of solution is usually not considered as part of adaptive control and 
is often referred to as off-line identification. The unknown laws are determined 
before the actual control process starts and are not updated anymore. This 
method can be very useful in many situations, but there may be some draw
backs. For instance, the mass of the rod can be determined with a finite accu
racy only. In the case of the inverted pendulum this does not necessarily cause 
serious trouble, since it can be expected that the controller will not be very 
sensitive with respect to small errors in m, but for more complicated systems 
one may wish to check the values of the parameters every now and then, and 
adjust them if necessary. This will certainly be the case if these parameters 
change with time. This last statement may sound a little contradictory, since it 
was assumed that the system laws do not change with time. However, although 
the theory is based on this assumption it is commonly believed that adaptive 
controllers that are designed for systems with constant laws, will at least work 
satisfactorily if the laws change slowly. 

A solution in the spirit of adaptive control is as follows. Adjust the control 
mechanism according to the behavior of the system. This should be done in 
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such a way that every adjustment leads to an improvement of the quality of 
the controller. 

This is a fairly vague description and there are many ways it could be done. 
We will describe two possibilities, but first we would like to speculate a little 
on our own ability of controlling a system adaptively. 

ExAMPLE 1 (continued} Let us once more consider the rod, but now no longer 
mounted on the carriage. Imagine a human being who tries to balance the rod 
on his hand. This can be· seen as an example of an adaptive control problem, 
since the person tries to control a system of which he does not know the 
governing laws exactly. Most people will have little difficulty in balancing the 
rod as long as its weight and length have a reasonable value. So let us indeed 
assume that the person is capable of keeping the rod standing up on his finger 
tip. How is our system-theoretic juggler doing this? Is he trying to discover 
the physical laws the rod obeys? And is he then estimating the relevant param
eters such as length and mass occurring in these laws? And after having done 
that, does he then design a control strategy so as to keep the rod in the desired 
position? It seems to us that it is very unlikely that something like that really 
happens, since the person may have no knowledge of control theory at all. It 
does not belong to our competence to analyze how a human being is able to 
balance a rod without knowing anything about system theory or physics. How
ever, private experience has shown that in order to balance the rod you have 
to keep the tip of the rod in view and compensate for movements of the rod 
( observed by carefully watching the tip) by moving your hand in the appropri
ate (i.e. same} direction. Initially you will not have a good feeling for how fast 
and intense the compensating movements of the hand should be, and as a 
result the rod will make wild and unpredictable movements or it may even fall. 
These wild movements are undesirable from the stability point of view, but 
one can imagine that it enables the juggler to gain a good feeling for how to 
keep the rod upright. 
Now if a person is able to balance one rod, he may initially have trouble in 
balancing another one if its length or its mass differs considerably from the 
first one. This reflects the phenomenon that he has to adapt himself to the new 
rod. 

□ 

We will now discuss two approaches to adaptive control. 

DIRECT ADAPTIVE CONTROL The type of adaptive control that comes close to 
the previous example is usually called direct adaptive control. Roughly speak
ing it consists of a (possibly infinite) family of controllers and of a device that 
on the basis of the observed behavior of the system to be controlled decides 
which of the controllers should be brought into operation. If that controller 
does not result in satisfactory behavior, the device tries another one, and so 
on, with the aim to end up with an appropriate controller. All this should be 
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done in a systematic way. By now there exists a vast amount of literature on 
the direct approach. The term direct refers to the fact that the laws of the con
troller are determined directly without first determining the laws of the system. 

INDIRECT ADAPTIVE CONTROL li there exists a direct method, then the reader 
will not be surprised that also an indirect approach has been developed. In 
the indirect approach one first tries to pry the system laws out of the observed 
behavior of the system. And then, based on the "guessed" laws, the 
corresponding controller is designed. The process of estimating the laws from 
the observed behavior is usually called identification. We will not be specific 
about what we mean by the "corresponding" controller because several 
interpretations are possible. The designed controller may not be the right one, 
since the knowledge of the system laws may be incomplete, especially initially. 
But as time goes by, knowledge of the system laws gradually increases, and 
hence the controller can be designed more and more accurately by adjusting it 
to the knowledge acquired. 

The main difference between the two methods just mentioned on the one hand 
and the off-line identification method on the other hand is that in the first case 
controller adjustment never stops. This implies that identification and control 
are done simultaneously. This is often referred to as on-line identification. In 
this work we will deal exclusively with the indirect approach. Approaches 
other than the two mentioned here are possible, but we will not explain them 
here. Summarizing, the main features of adaptive control are: 
(i) The laws of the system to be controlled are not, or not completely 

known. 
(ii) Control and identification have to be done simultaneously (on-line 

identification) 
(iii) An adaptive controller is universal in the sense that it can be used for a 

whole class of systems: it adapts automatically to the characteristics of 
the system to be controlled. 

An important problem which arises almost naturally in both the direct and the 
indirect approach is the closed-loop identification problem. This problem plays a 
major role in our work and we will therefore try to explain it here. It is best 
illustrated in the indirect method. Recall that this method was based on the 
estimation of the system laws on the basis of the observed behavior of the sys
tem. To determine the laws exactly, the experiments (i.e. trying different con
trollers) have to be diverse enough. If there is no experimentation at all, we 
learn nothing about the system; if the experiments are too poor, we learn only 
a little. It should be clear that if we apply all possible input functions to the 
system, we will induce all possible input/ output relations. In principle these 
relations will determine the laws exactly. It can however not be expected that 
an adaptive controller will generate a rich enough range of inputs. For the 
inputs are not generated arbitrarily, but on the basis of the observed behavior. 
We will illustrate this by means of an example. It is a simplified version of an 
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example in [37], Chapter 12.4. 

ExAMPLE 2 Suppose we have two slot machines. The first one pays one dollar 
per game with probability p (>0) and the second one pays one dollar per 
game with probability q (>0). From a certain point of view it is optimal to 
play on the machine with the highest probability of winning. Now suppose 
these probabilities are not known to the gambler and that the only possibility 
of figuring out these quantities is by playing on the machines. Consider the fol
lowing strategy, which can be seen as an adaptive controller. First play ten 
times on the first machine and then ten times on the second one. Then play 
the twenty-first game on the machine with the highest pay-off thus far. Every 
next game is played on the "best" machine up to that moment. At first sight 
this seems to be a very reasonable and to some extent even natural strategy. 
However, it is not difficult to see that there is a positive probability that we get 
stuck on the worst machine. This can be seen as follows. Suppose that p is 
larger than q. Consider the event that the first ten games on the first machine 
( the best one) were unsuccessful and that on the second machine at least one 
game paid off. The probability of this event may be very small, still it is larger 
than zero. If this event really occurs, then from game twenty-one on all games 
should be played on machine two, because regardless of the outcome of each 
game, the yield of the first machine will stay zero (because we do not play on 
it anymore) whereas that of the second machine will always be positive. The 
reason that this can happen is that there is too little experimentation going on. 
From probability theory we know that p and q can only be estimated con
sistently (i.e. exactly) if we play infinitely often on both machines. This implies 
that experimentation should never stop: one should always be willing to recon
sider one's opinion about p and q. In other words every strategy that claims to 
be able to detect the best machine within a finite number of trials is false. 

□ 

Example 2 may be interpreted as an indirect adaptive control problem. The 
strategy of estimating p and q on the basis of the previous games and then 
proceeding on the machine with the highest estimated probability is too naive, 
since even after an infinite number of games p and q may not be known 
exactly. The example illustrates that the input of the system (in the example: 
the input is the choice of the machine) is not chosen arbitrarily, but is deter
mined by the resulting output of the system (in the example: the output is the 
cumulative yield of each machine). It also shows that the resulting sequence of 
inputs is not rich enough to reveal the laws of the system (in the example: the 
laws are determined by p and q). This phenomenon is known as the closed
loop identification problem. The term closed-loop refers to the fact that the 
inputs are not generated arbitrarily but according to the behavior of the sys
tem. 
In Example 2 the closed-loop identification problem caused a serious difficulty: 
the impossibility of determining the system laws, and hence the impossibility 
of controlling the system optimally. We call this the conflict between 
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identification and control. 
There are also control problems where the closed-loop identification problem 
does not cause these extra difficulties. Again we illustrate this by an example. 

ExAMPLE 3 Let there be given a non-zero real number y(O). For every 
sequence {u(k)heN the sequence {Y(k)heN is defined by: 

y(k + 1) = ay(k) + bu(k) (1) 

We interpret u(k) as the input of the system and y(k) as the output. For every 
(a,b) the law of the system is given by (1). Suppose that we do not know the 
true value of (a,b) but that we do know that it is either (2,2) or (1, 1) and sup
pose furthermore that we want to choose the input in such a way that the out
put becomes identically zero. Assume that the true system law is given by 
(1, 1), this means that the input/output sequence satisfies: 

y(k + 1) = y(k) + u(k) (2) 

This is clearly an adaptive control problem: we have to control the system 
without knowing its law exactly. A typical indirect strategy goes as follows. 
Try the first possibility for the value of (a,b ), that is, postulate that: 

y(k + 1) = 2y(k)+2u(k) (3) 

If this were true, then the only way to make the output y(l) equal to zero, is 
by choosing: 

2 
u(O) = - 2y(O) = -y(O) (4) 

The resulting output will then be: 

y(I) = y(O) + u(O) = y(O) - y(O) = 0 (5) 

And that was exactly what we wanted. It is not difficult to see that once the 
output is zero fork= 1, the zero-input will keep it zero for all k, without ever 
revealing the true value of (a,b )! The surprising conclusion is that although we 
had a wrong guess about the value of (a,b ), we were able to meet the control 
objective. Moreover, the wrongness of our guess will never be revealed by the 
behavior of the system. 

□ 

Example 3 shows that there are adaptive control problems for which the lack 
of experimentation due to the closed-loop identification problem does not 
obstruct the control objective. In that case we speak about the conflux of 
identification and control. 

Example 2 is a special case of an optimal control problem. An optimal control 
problem is a control problem where the control objective is the maximization 
of a yield or the minimization of a cost. It can be argued that for adaptive 
optimal control problems there will always be a conflict between identification 



10 Chapter I 

and control. In chapters two and three we will investigate this problem for the 
Linear Quadratic (LQ) optimal control problem. 
Example 3 is a (very) special case of system regulation: controlling the output 
of the system to zero. The proof that for this type of control problem there is 
no conflict between identification and control will be given in chapter II. It is 
one of the major results of this monograph. 

We have illustrated the problem of adaptive control by some examples. Let us 
now have a brief look at it from a research point of view. Classical control 
theory is based on the assumption that the laws of the system are known 
exactly. As such adaptive control should be seen as a generalization of classical 
control theory. Adaptive control is now a rapidly developing area in system 
theory. The reason for this is twofold. Firstly because of an increasing demand 
for controlling complex systems of which the laws are not exactly known or 
slowly changing with time. The second reason is that the actual implementa
tion of adaptive controllers is more often possible than in the past, due to the 
growing availability of fast digital computers. The second point is particularly 
important since typically the application of an adaptive controller requires 
many computations to be carried out simultaneously with the control process. 
Whereas the original motivation for adaptive control is of a purely practical 
nature, its impact on the theoretical aspects of system theory has been enor
mous, and still forms a challenge to many researchers in the field. Nowadays 
emphasis is on the development of robust adaptive controllers. Controllers 
that not only have good theoretical properties, but are also applicable in prac
tical situations. This should fill the gap between on the one hand adaptive con
trollers that work well in practice but are theoretically not completely under
stood, and on the other hand adaptive controllers that work well in theory but 
are of no practical value since they rely on unrealistic assumptions. This 
monograph is of a theoretical nature and we do not make any claim about the 
applicability of our algorithms. The justification for this kind of work lies in 
the, in principle unverifiable, statement that if problems such as the closed
loop identification problem play a fundamental role on a theoretical level, then 
at least they will have some impact in practice. Also it can be argued that a 
minimum requirement for adaptive algorithms should be that they work well 
in an idealized theoretical environment. 

We would like to conclude this section by describing two examples of success
ful application of adaptive controllers in practical control problems. 

ExAMPLE 4 The ore crusher. An early account of a commercial application of 
adaptive control is given in Borisson and Syding [8]. There the adaptive con
trol of an ore crusher is described. The task of this machine is to crush incom
ing ore to a prescribed maximum size, typically 25mm. The crusher is 
designed in such away that ore which does not meet the specifications after it 
has been crushed is returned in the crusher. The problem is that if a large 
amount of ore is fed back, the capacity of the crusher can be exceeded, 
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resulting in a standstill. The percentage of ore which has to be fed back into 
the crusher varies from 25 to 75 percent. These variations are due to the 
changing average sizes of the incoming ore, the crushability of the ore and the 
condition of the crusher. The control task is the regulation of the amount of 
incoming ore per time unit in such a way that the capacity of the crusher is 
used as efficiently as possible while avoiding overload due to the recycled ore. 
This can be seen as an adaptive control problem since the variations in the 
percentage of recycled ore induce unpredictable changes in the dynamics of the 
system. Originally the crusher was controlled by a classical controller. This 
controller had to be cautious in order to be able to deal with "worst case" 
situations. As a result the crusher operated only at 77% of its capacity. Adap
tively controlled, it operated at 91 % of the capacity. This was mainly due to 
the fact that the adaptive controller could be less cautious and as a result gave 
much better control in average situations. 

□ 

ExAMPLE 5 Ship steering. In a series of papers, see [ 1] and the references 
there, Van Amerongen and several co-workers have reported on the applica
tion of adaptive control in the steering of ships. The reason for applying adap
tive controllers to ship steering, rather than using classical controllers is that 
the conditions under which a ship has to be controlled can change consider
ably. Examples of such conditions are: the depth of the water, the loading of 
the ship, the current of the water, the wave-height etc. These conditions 
influence the dynamics of the ship and can therefore be seen as part of the 
dynamical system describing the ship. A ship can be modeled as a dynamical 
system with two inputs, rudder-angle and thrustpower, and two outputs, 
course-angle and speed [2]. In this model several parameters appear, some of 
which are constant and known and others such as the ones mentioned are sub
ject to unknown changes. Classical control of the ship would call for manual 
adjustment of the controller parameters which can be difficult and time and 
fuel consuming. 
In [l] two control problems for ship steering are considered. The first is 
course-tracking and the second is course-changing. These problems are formu
lated as optimal control problems; the cost criterion to be minimized is the 
fuel consumption. Adaptive algorithms that provide automatic adjustment of 
the controller parameters have been developed, theoretically analyzed, simu
lated and finally tested on full-scale experiments. Compared with classical 
controllers the adaptive controller resulted in more efficient rudder control. 
For the course-tracking problem this led to either a speed increase of 0.3% to 
1.5% when the thrustpower was kept constant, or to a reduction of fuel con
sumption of 1.5% to 3% when the speed was kept constant. Expressed in terms 
of money this appears to be a significant improvement. 

□ 
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1.2 Approaches to adaptive control 
Several approaches to adaptive control have been proposed and reported, all 
with their own features, advantages and disadvantages. At this moment it 
seems that there is little consensus as to what is the best way of defining and 
treating adaptive control. This is partly due to the wide variety of different 
adaptive control problems and partly because of different viewpoints. Before 
focusing on our viewpoint, we would like to give a brief description of the 
mainstreams in the field. 
Although papers on adaptive control have been published since the fifties, see 
[24), we can take [5] as a starting point for the modern literature on the sub
ject. There an algorithm for adaptive control of an ARMAX system is pro
posed. The algorithm is based on certainty-equivalence and minimum-variance 
control. The authors proved that if the parameter estimates converge, not 
necessarily to the true parameter, then asymptotically the variance of the out
put is rninimiz:ed. This is the celebrated self-tuning property. However, they 
did not give a proof of convergence. A rigorous treatment of the self-tuning 
regulator and a proof of its convergence was provided by [23). In [6] the same 
problem is considered, but analyzed in a different way. Based on the geometri
cal properties of the algorithm it was proved that the parameter estimates con
verge to a random multiple of the true system parameters. Asymptotically the 
minimization of the output variance was achieved also. A disadvantage of 
minimum-variance control is that only minimum-phase systems can be han
dled. A survey of adaptive control of stochastic systems is [32). See also [4]. 
Adaptive stabilization of deterministic systems is another highly active part of 
the field. In continuous time both the direct and the indirect approach have 
been used. In the last few years there has been a fascinating discussion on the 
a priori assumptions on which the existing algorithms were based. These 
assumptions were that the system is minimum phase, that an upper bound on 
its order is known, that its relative degree is known and that the sign of the 
high frequency gain is known. The discussion led to the famous Morse
conjecture [47) which was disproven in [48), and later also in [62). The final 
answer was given in [43,44) and [9], where necessary and sufficient conditions 
for adaptive stabilization were derived. In [43,44) and [9] it was proved that 
necessary and sufficient knowledge of the system to be adaptively stabilizable, 
is the order of a stabilizing compensator. The above-mentioned references are 
based on the direct method. The direct method has the advantage that the 
search is done in the controller space, which does not contain singular points. 
In the indirect approach certain singular points (e.g. non-minimal triples) have 
to be avoided, which causes extra difficulties. On the other hand it is not quite 
clear how to use the direct method for more sensitive control problems than 
just stabilization. In [28) the indirect method is used. Adaptive stabilization of 
discrete time systems using various design methods are treated in 
[3,21,31,42,50,53,55], see also Chapter Ill. Some of these references will be 
commented upon in Chapter Ill. 
In Model Reference Adaptive Control the control objective is the design of a 
compensator such that the closed-loop system behaves like a prescribed system 
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for a given reference input signal. See [12] and [58] for a unified treatment. 
The term Dual Control was introduced in [16]. In adaptive control it refers to 
the fact that the input of the system has two tasks. The first one is that of con
trolling the system, the second one is that of learning, that is, reducing the 
uncertainty one has about the system parameters. If the initial uncertainty is 
modeled as an a priori probability distribution on the parameter space, then in 
principle one can write down the corresponding dynamic programming equa
tion, but to our knowledge closed-form solutions have not been reported. 
Approximate solutions have been proposed by [60]. See also [25,32]. 
A very interesting problem, at least at a theoretical level, is that of the adap
tive control of a finite-state Markov chain. It provides a way of studying the 
main issues of adaptive control in an elementary setting. For instance, the 
closed-loop identification problem can very well be illustrated using this class 
of systems. In fact the first explicit account of the closed-loop identification 
problem was described in [7]. Implicitly it was already mentioned in [5]. See 
also [37]. A series of interesting papers on this adaptive control problem has 
been published by Kumar and co-workers. [33,35,36]. Applications to general 
input/ output systems of the ideas developed there can be found in [34]. 
A fundamental problem in system theory is that of robustness. It was 
reported in [57] that existing adaptive control algorithms were not robust with 
respect to unmodeled dynamics. This was the starting point for research in the 
area of robust adaptive control. See [19] and the references given there. 

It follows from the previous description that several approaches to the problem 
are possible. This monograph considers the problem of adaptively controlling 
deterministic linear finite-dimensional time-invariant discrete-time systems of 
known order. It is divided into two main parts. In Chapter II a mathematical 
framework is developed. This chapter consists of four sections. In the first sec
tion a definition of adaptive control is given and two subsets of the parameter 
space are introduced. These sets play a central role in the remainder of the 
monograph, they enable us to study some of the potential possibilities of an 
adaptive control problem without referring to a particular algorithm. It will 
turn out that the question whether or not the closed-loop identification prob
lem causes serious difficulties for a given adaptive control problem, can be for
mulated in terms of these sets. In the second and third sections these sets and 
their relations are investigated for the pole assignment and LQ problem respec
tively. In the last section an (only partially successful) attempt is made to clas
sify all control problems for which the closed-loop identification problem does 
not cause extra difficulties. 
Chapter III is devoted to algorithms based on the considerations of Chapter II. 
It contains four sections. In the first section a general method is described on 
how to modify any indirect adaptive control algorithm so as to assure that the 
singular points (e.g. non-reachable pairs) in the parameter space are avoided. 
In the second section an adaptive pole-assignment algorithm for n-th order sys
tems is proposed. The third section treats adaptive LQ control for a first order 
system. Finally the last section is a contribution to the continuous time 
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adaptive control literature. There an indirect algorithm for adaptive exponen
tial stabilization is proposed. 



l. INTRODUCTION 

Chapter II 

Mathematical Framework 

1.1 Adaptive controllers 

15 

The purpose of this section is to develop a mathematical framework for the 
remainder of the monograph. First we will give a definition of an adaptive 
controller for a specific class of systems. We will then define certain principles 
on which an algorithm might be based. This will finally lead to the definitions 
of a recursive, a neutral, a sensitive and a neutral certainty equivalent adaptive 
control algorithm. This type of algorithm will form the main object of study in 
this monograph. 
In part 2 of this section we will associate two subsets of the parameter space 
with the forementioned class of algorithms. It will tum out that part of the 
potential quality of an algorithm can be studied in terms of these sets. 
The definitions in this section will be motivated and illustrated by simple 
examples. We would like to emphasize that our definitions do not reflect the 
ultimate definition of adaptive control. They should rather be viewed as a 
framework for a reasonable large class of algorithms whose properties we want 
to study. 
This monograph is concerned with linear finite-dimensional deterministic sys
tems only. In setting up a mathematical framework we shall therefore focus 
on this restricted class of systems. Much of what follows can easily be 
extended to more general classes of systems, but we do not want to impress or 
bother the reader with more abstract definitions and structures than are 
needed and used! On the other hand we believe that before concentrating on 
more specific problems, a certain level of generality can be of help in revealing 
and studying fundamental properties. 
In the previous chapter we have seen that several approaches to the problem of 
adaptive control are possible. We will concentrate on the adaptive stabiliza
tion and self-tuning approach. 
Loosely speaking an adaptive control problem can be seen as the problem of 
controlling an unknown but fixed plant. The adjective adaptive does then not 
refer to a controller which adapts itself accordingly to the changed characteris
tics of the plant, but should be understood in the following sense. The 
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controller is first confronted with a system of which it knows very little. 
Nevertheless it has to control it. In the beginning the control cannot be accu
rate, but after some time the behavior of the system will yield its characteris
tics more and more and the control can therefore become more accurate. 
Hence the controller is adapted according to the knowledge gained about the 
system. An important feature of an adaptive controller is that control and 
learning have to be done simultaneously. 
A first verbal definition of an adaptive controller could be given by pointing 
out the difference between a controller and an adaptive controller. To this end 
we will introduce the notion of universal controller. 

A controller is a device that is able to control one single system. 
A universal controller is a device that is able to control a class of systems. 

This description does not yet explain the word adaptive. In our opinion the 
adjective adaptive should reflect the phenomenon of the adaptation of the con
troller in reaction to increased knowledge of the system. 

ExAMl'LE 1. 1.1 Let the control objective be stabilization. Consider the class of 
first-order linear time-invariant systems in discrete time. 

y(k+ 1) = ay(k)+bu(k), b=#) (l.l) 

Every controller of the form u (k) = .fy (k) with f such that I a + bf I< I will sta
bilize the system. On the other hand the fixed controller 

u(k) = fy(k) (1.2) 

will stabilize every system (a,b) for which I a +bf l<l. Hence the controller] 
is able to control a class of systems, and should therefore b~ called universal 
for the class of systems which satisfy I a + bf I< 1. However f is not universal 
for the class of all systems ( a, b ). 
We conclude that universality depends on the class of systems. Universality 
not only depends on the class of systems but also on the control objective. Let 
us change the control objective from stabilization into a stronger one, namely 
exponential stabilization with a prescribed rate of stability. I.e. let there be 
given aeR, with I a l<l, and consider the problem to find a controller such 
thaty(k + l)=ay(k). For given (a,b) the following feedback will do: 

u(k) = fy(k), 
a-a 

f=-· 
b 

(1.3) 

Now there is exactly one controller for each system. But again, the same con
troller can be used for different systems. More precisely: If (a,b) satisfies: 

a +bf= a, (1.4) 

then f is the controller for ( a, b ). Hence f is universal for every ( a, b) satisfying 
( 1.4), but again f is not universal for the class of all first-order systems. 

□ 

In the first example, the type of universality is usually called robustness. If we 
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equip the class of first order systems with the Euclidean topology, then for 
each controller there is an open subset of systems which can be stabilized with 
that controller. Robustness is not the topic of this monograph, but we will see 
that it is very difficult to make a formal distinction between robust and adap
tive controllers. 
Intuitively one would like to call a controller adaptive if it is able to control a 
reasonable large class of systems, for instance the class of all linear time
invariant first-order systems. Robust controllers are then locally universal and 
adaptive controllers are globally universal. One of the weak points in such a 
description is the term "reasonably large". For if the class of systems is 
sufficiently small, the cliff erence between global and local may totally disap
pear. 
Another attempt to come to a good definition of an adaptive controller is the 
following. Suppose that we have a class of systems and that for each system 
of that class we know a controller. We then have a family of controllers 
parametrized by the elements of the class of systems. The class of controllers 
could then be seen as an overall controller with adjustable parameters. If we 
now include some mechanism to adjust the parameters of the controller, then 
this could be called an adaptive controller. This description comes very close 
to the controller structures which are usually called adaptive. 

Ex.AMPLE 1.1.2 Consider the following class of systems, parametrized by 
(a,b)eR xR+. 

j, = ay +bu, y(0)eR (1.5) 

and suppose we want to stabilize (1.5) without knowing (a,b). Consider the 
following scheme: 

k = y 2 , k(0) = 0. 

u = -ky 

We claim that (1.5) together with (1.6) is stable in the sense that, 

Jim y(t) = 0, Jim k(t) = k 00 • 

t➔OO t➔OO 

(1.6.a) 

(1.6.b) 

(1.7) 

PROOF From (1.6.a) it follows that k(t) is non-decreasing. Hence there are two 
possibilities. Either k tends to infinity or it reaches a finite limit. Suppose k 
tends to infinity. For all t0 we have: 

I 

[ (a - bk(s})ds 

y(t) = y(to) e 0 (1.8) 

Choose t0 such that a - bk(t0 ) < -1, this is possible since k tends to 
infinity and b > 0. Then from (1.5) it follows that: 

I 

ly(t) I~ ly(to) I e -1. dr (1.9.a) 
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(1.9.b) 

We conclude that ye~(O,oo), together with (1.6.a) this implies that k is 
bounded, which is a contradiction. 
Suppose now that k is bounded, then by (1.6.a) it follows thatye~(O,oo), and 
hence by (1.6.b) also ue~(O,oo). By (1.5) we conclude that j,e~(O,oo). 
Finally y, je~(O,oo) implies: 

lim y(t) = 0 
t➔<Xl 

(1.10) 

This finishes the proof. 

REMARK The main reason that this type of adaptive controller stabilizes the 
system is that the sign of the "b" -parameter is known. This means that one 
knows in which direction k should change. The case where the sign of b is not 
known inspired S. Morse to conjecture that then the system could not be sta
bilized adaptively [47]. This conjecture was first disproved in [48], and later 
also in [ 62]. 

One can consider (1.6) as a fixed nonlinear dynamic compensator which is 
universal for every system (a,b)eR XR+. As such it is not clear why one 
should call this controller adaptive. Another way of looking at (1.6) is the fol
lowing. The class of feedback controllers for (1.5) can be parametrized by 
keR. The problem is now to find a keR such that a-bk<O. Now, (1.6.a) 
is a mechanism which adjusts the parameter k in (1.6.b) in such a way that 
asymptotically one ends up with a fixed stability linear controller, namely k ®. 

Indeed, it is not difficult to prove that if y (O):;e:0, then there must hold: 

a-bk® < 0. (1.11) 

Note that the gain adjustment mechanism (k= -y2) is driven by the output of 
the system. 
Hence either one considers (1.6) as a "complicated" ( = nonlinear) fixed con
troller or one considers it as a combination of a parametrized family of simple 
(=linear) controllers and an adjustment procedure driven by the observed 
data. The objective of the adjustment procedure is then to ultimately select a 
controller which stabilizes the system of which the parameter values are 
unknown. In our opinion the term adaptive is best reflected by the second 
viewpoint. 

□ 

From the previous discussion it is clear that a general and natural definition of 
an adaptive controller is not easy to give. Therefore we will now restrict our 
attention to the class of systems which will be the main object of study in this 
monograph, namely the class of linear time-invariant systems of fixed order. 
For the rest of this section we will mainly work in discrete time. 
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We will formulate our definitions in terms of systems in input/output form 
rather than in input/ state/ output form. The latter would lead to complicated 
and awkward definitions, mainly due to the fact that observers have then to be 
included. We will now describe the class of systems and the class of controllers 
under consideration. 

DEFINITION 1.1.3 (class of systems) 

~(n) := {(A,B)ER[z]2 IA(z) = zn-aozn- 1- .. -an-J, 

B(z) = bozn-l + .. +bn-1, 

g.c.d.(A,B)= l} 

INTERPRETATION: with (A,B)ER[z )2 

A(z) = zn-aozn- 1- .. -an-l 

B(z) = bozn- 1+ .. +bn-l 

we associate the input/ output system: 

(1.12) 

D 

(1.13) 

(1.14) 

y(k + 1) = ao_y(k)+ .. +a,,-JY(k-n + l)+bou(k)+ .. +bn-1u(k-n + 1) (1.15) 

DEFINITION 1.1.4 (class of controllers) 

l:c(r) := {(M,N)ER[zf I M(z) = z'-m 1z'- 1 - .. -m,-1, 

N(z) = n0z'+ .. +n,-1, 

g.c.d.(M,N) = 1} 

(1.16) 

DEFINITION 1.1.5 A control objective on ~(n) is determined by a set of 
specifications on the behavior of each element of l:(n ). A solution of order r of 
the control problem is a (possibly multivalued) function: 

F: ~(n) ➔ l:c(r) (1.17) 

D 

INTERPRETATION By a solution of order r of a control objective on ~(n) we 
mean that there exists a (multivalued) function F which assigns to a pair 
(A,B)El°:(n), at least one pair (M,N)El°:c(r) with the property that each pair 
(M,N)EF(A,B) is such that if these two systems are connected in feedback: 

y(k+l) = ao_y(k)+ .. +an-iY(k-n+I) + (1.18.a) 

bou(k)+ .. +bn-1u(k -n + 1) 

(1.18.b) 
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nQY(k)+ .. +nr-J.Y(k-r + 1), 

the resulting behavior of the controlled system is as specified by the control 
objective. Note that it is not necessary to give a precise definition of the 
notion of control objective since this is implicitly done by the map F. 
Examples of control objectives: 
(i) Stability 
(ii) Pole Assignment 
(iii) Linear-Quadratic Control 

We will now give a definition of an adaptive controller for the class of systems 
l:(n). 

DEFINITION 1.1.6 An adaptive controller of order r on ~(n) is a pair (0,/), 
where: 

(1.19) 

□ 

INTERPRETATION An adaptive controller consists of an identification part (the 
function 0), which assigns to every data sequence (think of input/output 
sequence) a system (model) and a control part, given by the function f The 
controller that is assigned to the estimate may also depend on the most recent 
n + 1 outputs and n inputs. Of course this is a special choice; we could also 
allow/ to depend on more inputs and outputs, but since we will not use that, 
we do not want to include this possibility in the definition. An example of this 
type of dependence is obtained when the controller also depends on the pred
iction,. err,.or: 
Let (Ak,Bk) : = O(Y(O), .. ,y(k),y(k + l),u(O), .. ,u(k)). Define: 

(Mk,Nk) : = J(Ak,Bk,y(k + 1) - y(k + 1)) 

where 

y(k+I) := ao(k).y(k)+ .. +an-1(k)y(k-n+l) + 
A A 

bo(k)u(k)+ .. +bn-1(k)u(k-n + 1) 

(1.20) 

(1.21) 

(the coefficients of Ak and Bk are denoted by a;(k) and h;(k) respectively). 

DEFINITION 1.1.7 (certainty equivalence) The adaptive controller (0,/) is said 
to be based on certainty equivalence for the control objective F, solved by 
1:c(r), if for all (A,B)e~(n), and for all xeR2n+I: 

f(A,B,x)eF(A,B). (1.22) 

(if Fis a map then (1.22) implies/ (A,B,x) = F(A,B)). 

□ 



1. Introduction 21 

INTERPRETATION Certainty equivalence means that the applied controller is 
calculated as if the estimation () of the unknown system were indeed the true 
system. That means that the adaptive controller does not actively choose the 
inputs so as to learn more about the system. In that sense the learning is pas
sive. 

DEFINITION 1. 1.8 (recursiveness) An adaptive controller (8,/) is said to be 
recursive of order (/ 1 ,Ii) if there exists 

8: "2,(nf XR12 ➔ "2,(n) (1.23) 

such that for all m=(mo,m-1,m-2, .. )e(R2r 
8(m)=8(8(m - I ,m - 2, .. ), •. ,8(m -I,+ I ,m -I, ,m-1, - I , .. ),mo,m- I , .. ,m -1, + 1) (1.24) 

(form; one can think of an input/output sequence). 
□ 

INTERPRETATION A recursive adaptive controller is an adaptive controller for 
which the estimation part is recursive. The estimation at time k can be calcu
lated on the basis of / 1 past estimates and / 2 past observations. 

DEFINITION 1.1.9 
(i) (neutrality) A recursive adaptive controller (8,f) of order (1,2n + 1) is 

said to be neutral if for all (A,B)e "2,(n), and for all 2n + I-tuples 

[y(k + l),y(k),u(k), .. ,y(k-n + 1),u(k -n + 1)) 

with the property that: 

y(k + l)=aoY(k)+ .. +an-I.Y(k -n + 1) + 

bou(k)+ .. +bn-1u(k -n + 1) 

(1.25) 

(1.26) 

(the coefficients of (A,B) are denoted by a; and b; respectively). the fol
lowing holds: 

8((A,B),y(k + 1), .. ,y(k-n + 1),u(k), .. ,u(k -n + 1)) = (A,B). (1.27.a) 

(ii) (sensitivity) The recursive adaptive controller (8,f) of order (1,2n + 1) is 
said to be sensitive if for all (A,B)e~(n), and for all 2n + I-tuples (25) 
with the property that (1.26) does not hold, the following holds: 

8((A,B),y(k + l), .. ,y(k-n + l),u(k), .. ,u(k -n + 1)) =fa (A,B). (1.27.b) 

□ 

INTERPRETATION A recursive adaptive controller is called neutral if the follow
ing property holds: if the current estimate is compatible with the observed 
data ( i.e. the current estimate is not falsified by the observed data), then the 
next estimate is equal to the current one. That means that the adaptive 
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controller does not actively choose the inputs so as to learn more about the 
system. In that sense the learning is passive. The adaptive controller is called 
sensitive if the estimate is changed if it is not compatible with the observed 
data. 

DEFINITION 1.1.10 (neutral certainty equivalence) An adaptive controller (8,f) 
is called neutral certainty equivalent for F if for all (A,B)e~(n) and for all 
2n + I-tuples 

[y(k + l),y(k),u(k), .. ,y(k -n + l),u(k-n + 1)) (1.28) 

such that: 

y(k + 1) = aQY(k)+ .. +an-I.Y(k-n + l)+bou(k)+ .. +bn-1u(k -n + 1)(1.29) 

the following holds: 

f (A,B,y(k + 1),y(k),u(k), .. ,y(k -n + 1),u(k -n + l))eF(A,B) (1.30) 

□ 

INTERPRETATION Neutral certainty equivalence is weaker than certainty 
equivalence. Loosely speaking it means that one is restricted to use the cer
tainty equivalence principle only if the observed data do not falsify the esti
mate (A,B). This type of adaptive controller can be very useful, since it allows 
one to deviate from certainty equivalence as long as the prediction error is 
nonzero. On the other hand if the prediction is zero, then the estimate could be 
the true system and hence we should apply the controls according to certainty 
equivalence. 
Recursiveness, certainty equivalence and neutrality are widely used principles 
in the adaptive control literature. The algorithms we will present in Chapter 
III will be derived from these principles. 

REMARK 1.1.11 Descriptions of adaptive controllers for continuous-time sys
tems may be found in [9]. See also [22,27,28,29] for a general treatment of 
identification algorithms for continuous-time systems. Most of the algorithms 
in the literature are based on the principles which we have just developed. 
Sometimes the map (f,8) is not explicitly factorized but considered as a map 
that assigns a controller to observed data. Such algorithms are called direct. 
If the factored form is used we speak about indirect algorithms. 
As may be concluded from the previous discussion it is difficult, if not impossi
ble, to give a satisfactory and mathematical definition of adaptive control on a 
general level. For a specific class of systems a definition has been given how
ever. For this class we can now distinguish between adaptive and robust 
(universal) controllers, by saying that a robust controller is a local controller 
and an adaptive controller is a global controller. Here local is with respect to 
some natural topology on the ~-
There is another important difference between robust and adaptive controllers. 
Thus far we have only given definitions without specifying what we would like 



1. Introduction 23 

to do with an adaptive controller. Of course a desirable property of an adap
tive controller is that, at least asymptotically, exactly the right control signals 
are applied. This is a property that robust controllers do not have in general. 
For instance if the control objective is pole-assignment, then if the controller is 
calculated on the basis of a model and the true system is a slight perturbation 
of that model, the poles are not assigned exactly but only approximately. A 
good adaptive controller would adjust the model until the poles are placed 
exactly. 

1.2. Identification in closed~loop: the sets G and H 
In the second part of this section we want to study some of the potential possi
bilities and fundamental limitations of adaptive controllers as defined in the 
first part. 
Let (J, 0) be an adaptive controller for l':(n) and the control objective F. The 
map 9:(R2)N -+ l':(n) represents the identification part of the controller. The 
term identification, however, does not have any meaning as long as we do not 
specify the arguments of 9 and how they are generated. 

AssUMPTION For the rest of this section we will assume that there is given a 
nonzero vector cp(O)e:R2n-I and a fixed but unknown pair (A 0,B0)El°:(n). 
Furthermore it is assumed that each time we refer to a data sequence 
{(y(k + 1),y(k),u(k), .. ,y(k -n + 1),u(k -n + 1)} it satisfies: 

y(k + 1) = a8y(k)+ .. +a~ - 1y(k -n + 1)+b8u(k)+ .. +b~ _1u(k -n + 1) (2.1) 

where the af's and the bJ's are the coefficients of A 0 and B0 respectively. 
Finally we will assume that the initial state of the system (A 0,B0) is : 

(y(O), .. ,y(-n + l),u(-1), .. ,u(-n + 1)) = cp(O) (2.2) 

□ 

In part one we have defined the notion of adaptive controller; we now want to 
define an adaptive control scheme. Loosely speaking this will be an adaptive 
controller (J, 9) together with a rule which tells us how to apply (J, 9) to real 
data coming from some unknown system. 

DEFINITION 1.2.1 An adaptive control algorithm of order r for ~(n) is an 
adaptive controller (9,/) together with the scheme 

(Ak,Bk) = 9(y(k),y(k -1),u(k- l),y(k -2),u(k -2), .. ) 
A A A A 

(Mk,Nk) = f (Ak,Bk,y(k),y(k-1),u(k -1), .. ,y(k -n),u(k -n)) 

u(k) = m1(k)u(k-l)+ .. +mr-1u(k-r+I)+ 

no(k)y(k)+ .. +nr-1(k)y(k -r + 1) 

(2.3.a) 

(2.3.b) 

(2.3.c) 

where the data (u(k),y(k)) satisfy the equations of the unknown system 
(Ao,B0): 
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y(k + 1) = aQY(k)+ .. +an-J.Y(k-n + l)+bou(k) .. +bn-1u(k-n + 1) (2.3.d) 

□ 

REMARK 1.2.2 For the definition of an adaptive control algorithm it is not 
necessary that the unknown system belongs to the class ~(n ). For the evalua
tion of the behavior of the resulting controlled system, however, one has to 
impose something on the unknown system. In this monograph we shall mainly 
study the behavior of the controlled system subject to the assumption that it 
belongs to ~(n }, where n is known. This is what some people nowadays refer 
to as the ideal case. 

□ 

Let us now assume that the data {(u(k),y(k)} is indeed produced by the sys
teip 0o,B0)el:(n). A first natur_!ll 9.uestion is: how does the sequence 
{(Ak,Bk)} behave? If we consider (Ak,Bk) as an estimate for (Ao,Bo), then in 
particular we could like to know whether or not: 

(2.4) 

Or otherwise stated we would like to know whether or not the true system is 
identified. Let us first consider the question of identification. It is well-known 
that for the identification of a system it has to be sufficiently excited by the 
input. For instance, it is clear that if the input of the system is chosen to be 
zero, then no information can be gained about the B-polynomial of the system. 
Several papers appeared which gave conditions on the input signal to ensure 
that from the resulting input/ output behavior the system can be identified 
completely. 

ExAMPLE 1.2.3 Consider the first-order system 

y(k + 1) = ay(k)+bu(k) 

(a,b) unknown, b=/=O. 

(2.5) 

An estimation method for (a,b) which will be used and commented upon in 
Section 111.2 is the projection algorithm. In recursive form it reads as follows: 

a(k + 1) = a(k)+ 2 y(k) 2 (y(k + 1)-a(k)y(k)-b(k)u(k)) (2.6.a) 
y (k)+u (k) 

b(k + 1) = b(k)+ 2 u(k\ (y(k + 1)-a(k)y(k)-b(k)u(k)) (2.6.b) 
y (k)+u (k) 

Now take as control law: 

Uk=(- lfy(k), (2.6.c) 

then (2.6.a,2.6.b) can be written as: 

a(k + 1) = a(k)+ ~ ((ao-a(k))+(bo-b(k)X- lf) (2.6.d) 
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A A I A 

b(k+l) = b(k)+2 ((ao-a(k))(-If +(bo-b(k))) (2.6.e) 

Define: 

vk : = ll(ao,bo) - (a(k),b(k))ll2 (2.7) 

Then from (2.6.c,2.6.d,2.6.e) it follows that: 

-1 A A 

Vk+l -vk,e;;;2 ((ao-ak)+(bo-bk)(-If)2 (2.8) 

The first conclusion is that ll(a0 ,b0) - (a(k),b(k))II converges. Also one can 
easily prove, see Lemma 111.2.2.1, that 

llm(ak+l -ak>2+<hk+1-hk)2 = o c2.9) 
k➔oo 

Choose a subsequence {sk} of 21\1 (the even natural numbers) such that 
(a,. ,b,.) converges, say 

lim(a,.,b,.)=@,b) c2.10) 
k➔OO 

then by (2.9) also: 

klim(a,.+1,h,.+1> = @,b) 
➔00 

(2.11) 

It follows from (2.10) and (2.11) and the fact that sk is even that (a,b) is an 
invariant point of (2.6) for both k even and odd. This gives: 

a = a + ! ((ao-a) + (bo -b)) (2.12) 

and: 

a = a + .l ((ao-a) - (bo-b)) 
2 

(2.12) and (2.13) yield a=a0 , b=b0• This together with (2.8) gives: 

lim (ak,bk) = (ao,bo). 
k➔oo 

(2.13) 

(2.14) 

D 

(2.6.c) is a sufficient condition for the sequence of estimates to converge to the 
true system parameters. Two remarks are in order. It should be emphasized 
that (2.6.c) is just an example of a sufficient condition for identification and 
serves as an illustration that simple conditions on u(k) can be given. On the 
other hand, since it is clear that u(k):::::O can never identify the b-parameter, 
one should at least have some conditions on the "richness" of the input signal. 
We now want to study the richness of the input signals if they are generated 
by an adaptive control algorithm. We will restrict our attention to recursive, 
neutral, sensitive, and neutral certainty equivalent algorithms. In particular 
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algorithms of the form: 
A A - A A 

(Ak+i,BH 1) = 8(Ak,Bk>y(k + l),y(k),u(k), .. ,y(k -n + 1),u(k -n + 1))(2.15.a) 

y(k +I)= a0(k)y(k)+ .. +a,,_ 1(k)y(k-n + l)+ (2.15.b) 
A A 

bo(k)u(k)+ .. +bn-1(k)u(k-n + I) 

(Mk,Nk) = j(Ak,Bk,Y(k)-y(k)) 

u(k) = m1(k)u(k-l)+ .. +m,_1u(k-r + I)+ 

no(k)y(k)+ .. +n,-1(k)y(k-r + I) 

and 8 has the property 

(2.15.c) 

(2.15.d) 

y(k + 1) = y(k + l) => (Ak+i,Bk+i) = (Ak,Bk) (neutrality) (2.16) 

and/ satisfies: 
for all (A,B)el:(n) and for allyeR: 

j(A,B, O)eF(A,B) (neutral certainty equivalence) (2.17) 

Note that by abuse of notation, the third argument of/ is a real number rather 
than a 2n + I-vector as in the original definition off 

REMARK 1.2.4 Why focus on this type of algorithm? 
(i) Recursiveness. For computational reasons. 
(ii) Neutrality. If the predicted output (y(k + 1)) equals the observed output, 

then there is no other obvious choice for the next estimate than the 
current one. 

(iii) Sensitivity. If the prediction error is non-zero then we know for sure that 
the current estimate is wrong. It is reasonable to require that the algo
rithm then changes the estimate. 

(iv) Neutral certainty equivalence. If the predicted output equals the 
observed output, then it is always possible that the estimate on which the 
prediction was based is in fact the true parameter (A 0,B0). If that is the 
case it will be kept constant for ever, due to neutrality. Hence in that 
case it is reasonable to require that a desired control ( eF(A 0 ,B0)) is 
applied. Since (A 0,B0) is not known, the principle follows. 

D 

Note that the convergence proof in Example 1.2.3 was based on the observa
tion that the only invariant point of the estimation scheme was (a0,b0), the 
boundedness of the sequence of estimates and the vanishing difference between 
successive estimates. 
On this level of generality the question of identification can only be studied in 
terms of the invariant points of the estimation part of the algorithm, in the 
sense that every invariant point is a potential limit of the sequence of esti
mates. From the neutrality and sensitivity assumptions it follows that: 
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A A 

(Ak+1,Bk+1) = (Ak>Bk) iff y(k + 1) = y(k + 1) 
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(2.18) 

Hence invariant points are those (A,B)El:(n) for which for all k: y(k) = y(k). 

DEFINITION 1.2.5 

G := {(A,B)El:(n) I for all k:y(k) = y(k)} (2.19) 

where y(k) and u(k) are defined by the algorithm (2.15). G is the set of invari
ant points of the algorithm (2.15) applied to the system (A 0,B0) with initial 
state q,(_O). 

□ 

REMARK Note that although u(k),y(k) andy(k) depend on the particular algo
rithm, G will be the same for all algorithms that satisfy (2.15). 

□ 

The question of identification can now be studied by Aan~yzing G. If 
G = {(A 0 ,B0)}, A th~ boundedness of {(Ak,Bk)} and 
lim (Ak+ 1-Ak,Bk+1-Bk) = 0 is sufficient for identification of (A 0,B0). 

k-+oo 

However, since the input of the system is not generated arbitrarily, but on the 
basis of the observed behavior of the system, it cannot be expected that G will 
consist of nothing more than (A 0 ,B0 ). 

We will illustrate this with an example. 

ExAMPLE 1.2.6 Consider the system 

y(k + 1) = aoY(k)+bou(k), bo=#l, y(O)=#) 

desired control law: 

u(k) = F(ao,b0)y(k) 

(2.20) 

(2.21) 

Let (a,b) be an invariant point of any algorithm which is neutral and neutral 
certainty equivalent. With invariant we mean that if we start in (a,b) we stay 
there (for instance (a0,b0) itself is invariant). 
Starting at k = 0, we will apply 

u(O) = F(a,b)y(O) (2.22) 

which gives: 

y(l) = (ao+boF(a,b))y(O) 

y(l) = (a+bF(a,b))y(O) 

(2.23) 

(2.24) 

Since (a,b) is invariant we conclude thaty(l)=y(l). In general we will have: 

y(k + 1) = (a0 +b0F(a,b))y(k) (2.25) 

y(k + 1) = (a+bF(a,b))y(k) (2.26) 
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Now, if y(k)=O for all k, we can learn very little of (2.20). Assume that there 
exists k such thaty(k)=fo(). Then after dividing by y(k) we conclude: 

ao+boF(a,b) = a+bF(a,b) (2.27) 

On the other hand one may easily check that if (a,b) satisfies (2.27), then it is 
invariant. Hence: 

G = {(a,b) I ao + b0F(a,b) = a + bF(a,b), b#)} (2.28) 

□ 

In general G will consist of an infinite number of pairs (a,b). The 
phenomenon that G is larger than just {(A 0,b0)} is due to the fact that 
identification takes place in closed-loop: Information is obtained only about 
the closed-loop behavior of the system. It is very likely that there are many 
parameter values that give rise to the same closed-loop behavior. 
However, identification of (A 0 ,B0 ) is not the primary goal of adaptive control. 
The main goal is just control, and identification of (A 0 ,B0 ) may not be 
needed. Otherwise stated we will be happy to have an estimate of the system 
that induces the same sequence of inputs as required by the control objective. 
Hence what we want is to arrive at an estimate (A,B)el:(n) such that: 

j(A,B, O)eF(Ao,Bo) (2.29) 

Let us define the set H as the subset of l:(n) of pairs (A,B) with that property: 

H : = {(A,B)el:(n) I j(A,B, O)eF(A,B)} (2.30) 

The set H may still not be what we are looking for. For if (A,B)eH, then 
(A,B) will certainly give rise to the desired controls, but it is not necessaril_y 
true that if some (A,B) produces the desired inputs, it then belongs to H. 
Namely, it is very well possible that not all the modes of the system are 
excited and in that case only the action of/ (A,B, 0) on the excited modes is 
relevant. Hence we define a slightly more appropriate set: 

DEFINITION 1.2. 7 

H : = {(A,B)el:(n) I for all k :u(k) = u0(k)} 

where: 

(M,N) = f (A,B) 

u(k) = mou(k-I)+ .. +m,_ 1u(k-r+I) + 
nQY(k)+ .. +n,-1y(k -r + 1), 

and there exists 

(Mo,No) e F(Ao,Bo), 

and: 

(2.31) 

(2.32.a) 

(2.32.b) 

(2.32.c) 
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u0(k) = m?u(k -1)+ .. +m~- 1u(k -r + I) + 

n8y(k)+ .. +n~-J.Y(k -r + l) 
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(2.32.d) 

□ 

ExAMPLE _1.2.6 (continued) For the first order case there is no difference 
between H and H: 

H = {(a,b) If (a,b) = f(ao,bo) b=#)} (2.33) 

□ 

Now we come to the most crucial point of this chapter. We have just relaxed 
the requirement of identification and replaced it by the weaker requirement of 
producing the right controls. Hence instead of (2.4), we want to know whether 
or not: 

1im (Ak,Bk)EH (2.34) 
k➔a) 

However since any limit is necessarily invariant we will at least have: 
A A 

1im (Ak,Bk)EG (2.35) 
k➔a) 

Now, (2.34) will automatically be satisfied if: 

G CH (2.36) 

DEFINITION 1.2.8 
(i) The control objective F on l:(n) is said to have the potential weak self

tuning property if G CH. 
(ii) It has the potential self-tuning property if G CH. 

□ 

COMMENT 1.2.9 It is important to know whether or not a control objective has 
the potential weak self-tuning property. For, if it has the property, then every 
limit of an algorithm based on neutrality and neutral certainty equivalence will 
generate the right controls. 
If F does not have the property (i) or (ii), then an algorithm of the type just 
mentioned may not be convenient, because there will always be invariant 
points ( =possible limits) which do not generate the right controls. 

□ 

In the next sections we will investigate this problem for two different control 
objectives. Also we will try to classify all control laws F which have property 
(i). 

REMARK 1.2.10 The problem just encountered is known as the closed-loop 
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identification problem in adaptive control. It has first been studied in [7] for 
the adaptive control of finite state Markov chains. The sets G and H were 
introduced in a slightly different way in [49). 

□ 
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2. G AND H FOR POLE AsSIGNMENT: CONFLUX OF IDENTIFICATION AND 
CONTROL 
In this section we will study the sets G and H as defined in the previous sec
tion for the case where the control objective is to obtain a prescribed 
configuration of the closed-loop poles of the system. The material in this sec
tion is based on Section 4 of [55]. 
Given the system: 

y(k + 1) = 60#.k) + b8u(k), (1) 

where: 

(2) 

where we assume that the associated A and B polynomials have no common 
factors, and 

q,(_k) = (y(k), .. ,y(k -n + l),u(k -1), .. ,u(k-n + 1))7, 

and a monic polynomial 

,reR[z] 

of degree n, find a controller: 

(3) 

(4) 

u(k) = m1u(k-l)+ .. +mn-1u(k-n + l)+nQY(k)+ .. +nn-iY(k -n + 1), (5) 

such that the resulting closed-loop polynomial of the system (1,5) is exactly: 
zn- 1,r(z). The factor zn-l reflects the need of a dead-beat observer. 
The main result of this section is that for this control objective indeed: 

GCH (6) 

This means that potentially adaptive pole assignment can be based on a neu
tral and neutral certainty equivalent algorithm. Potentially because the only 
thing we can conclude from (6) is that the invariant points of such an algo
rithm have the property that they correspond to desired behavior. 
First we will reformulate (1, .. ,5) in input/state/output form. Then we will state 
( 6) as a theorem (Theorem 2.2). Finally we will give the proof of the theorem, 
divided into several steps. 

Let {Ao,bo,co)ERnxn XRnXI XR 1xn be a minimal realization of (1). I.e. 

bo n-1 + +bo 
_ -1 _ oz ·· n-1 

co(zl Ao) bo - n O _ 1 0 (7) 
z -aozn - .. -an-I 

Then, for every initial condition q,(_O) of (1), there exists a x(O)eRn such that: 

x(k + 1) = A 0x(k) + b0u(k), x(O) 

y(k) = cox(k), 

for any input sequence {u(k)}. We will use the standard observable form: 

(8) 

(9) 
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a8 1 0 b8 

0 
Ao:= 0 bo := c0 := [l O .. O] (10) 

1 

0~-l 0 0 b~-l 

and the dead-beat observer: 

x(k) = Mocp(_k), (11) 

where M 0 eRnx2n-I is defined by: 

1 0 0 0 0 0 0 

0 aY a~ 0 On-l bY b~ b~-l 

a~ ag 0 b~ bg 0 
Mo:= (12) 

O~-l b~-l 

0 0~-1 0 0 b~-l 0 0 

We will now describe a neutral and neutral certainty equivalent algorithm in 
state-space terms. Consider the controlled system (1,5), define: 

x(k) = M0cp(_k) (13) 

f(A,b) = -[O, .. ,O,l][b:Ab: ... :An-Ibr1'1T(A) (14) 

PROPERTY 2.1 The sequence {(u(k),y(k))} as defined by (1,5) satisfies: 

u(k) = j(A 0 ,b0)x(k) (15) 

x(k + 1) = A 0x(k) + b0u(k), ,x(O) (16) 

y(k) = c0x(k) (17) 

□ 

The formula (14) is known as Ackermann's formula (see [26]). Property 2.1 
follows from realization theory and the fact that for all reachable pairs (A,b) 
the characteristic polynomial of (A + bf(A,b)) is exactly equal tow. There is 
a one-to-one correspondence between the i/o and i/s/o description if the ini
tial conditions are taken into account. Property 2.1 gives the controller (5) in 
terms of state-feedback. We can now rewrite the control part of an adaptive 
pole assignment algorithm in state-space form: A A 

. Assume available the k-th estimate (ao(k),.;.,O.nAl(k),bo(k), .. ,bn-l(k)) of 
(a8, .. ,a~ -1 ,b8, .. ,b~ -d· Define the matrices Ab bk, Mk, l}y leplacing the 
entries of (10) and (12) by their k-th estimates. Assume that (Ak,bk) is controll
able, and define: 
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A A A A A "n-)A 1 A 

J<Ak,bk> = -[o, .. ,o,1)[bk:Akbk= ... :Ak bkr ,r(Ak> 
A 

z(k) = Mkqi_k) 

and finally: 
A A 

u(k) = /(Ak,bk)z(k), 

where /is defined by (14). 
We will now determine the set G. Define: 

x(k + 1) = A 0x(k) + b0u(k), x(O) = Mo4'-0) 

y(k) = cx(k) 

z(k + 1) = Az(k) + bu(k), 

y(k) = cz(k) 

u(k) = f (A,b)z(k), 

z(O) = Mqi_O) 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

where M is obtained from (12) by dropping the superscripts. Then by 
definition of G (see H.1.2.5), (A,b)eG if and only if for all k: 

y(k) = y(k) (26) 

Hence G is given by: 

G = {(A,b)eE00 I for all k: y(k) = y(k) } 

wherey(k) andy(k) are defined by (22,24). 

(27) 

Now H will be the set of those starting values (A,b), such that at every time 
instant the right input is applied: 

H = {(A,b)eEa1, I for all k: /(A,b)z(k) = f(A 0 ,b0)x(k)} (28) 

where z(k) and x(k) are defined by (21,23). Recall that we wanted to investi
gate the relative location of G and H. The following theorem gives the answer: 

THEOREM 2.2 The sets G and H as defined by (27) and (28) satisfy: 

GCH (29) 

The implication of Theorem 2.2 is that if we start any neutral, neutral cer
tainty equivalent algorithm in a point belonging to G, then the applied inputs 
are exactly as the ones we would have applied if we had known the system 
parameters. 
The proof of Theorem 2.2 will be divided into several steps, that are men
tioned below. The proofs of the intermediate steps will be postponed to the 
appendix to this section. 
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THEOREM 2.3 Let (A 0 ,b0),(A,b)eEre and CV" a linear subspace of Rnxn such 
that: 

(i) For all v ect/": (Ao +b0f(A,b))v eCV" 

(ii) For all veCV": (A 0 +b0f(A,b))v = (A +bf(A,b))v 

Then: 

for all veCV": f(A,b)v=f(Ao,b0)v. 

PROOF See the appendix to this section. 

(30) 

(31) 

(32) 

THEoREM 2.4 Let {(u(k),y(k))}keN be a sequence in R2 and suppose there 
exist (A 1,b1,c1), (A 2,b2,c2), minimal triples of order n, and sequences 
{x(k)<1>,x(k)<2>} in Rn, such that for all k: 

x(k+l)<1> = A 1x(k)<1>+b 1u(k) (33) 

x(k + 1)<2> = A2x(k)<2> +b2u(k) (34) 

y(k) = c1x(k)<1> (35) 

y(k) = c2x(k)<2> (36) 

Define~ = span {x(k)<'>}keN, and d; = dim(~). i = 1,2. 
(i) if d 1 < n, then there exists a non-singular matrix S, such that: 

Sx(k)<1> = x(k)<2>. 
(ii) di = d2. 
(iii) if there exists g 1 such that: u(k) = g 1x(k)<1> and d 1 = n, then there 

exists a non-singular matrix S, such that: Sx(k)<1> = x(k)<2>. 

PROOF See the appendix to this section. 

PROOF OF THEOREM 2.2 
Let (A,b)eG and let (x(k),z(k),u(k),y(k),y(k)} be defined by (21, .. ,25), then 
for all k: 

y(k) = y(k) (37) 

By Theorem 2.4.iii there exists a non-singular matrix S such that for all k: 

Sz(k) = x(k) 

This yields two recursions for x(k): 

x(k + 1) = Aox(k) + b0f (A,b)z(k) 

= (Ao + b0f (A,b))S- 1 x(k) 

= (Ao + bof (SAS- 1,Sb))x(k) 

and: 

(38) 

(39.a) 

(39.b) 

(39.c) 
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x(k + 1) = Sz(k + 1) 

= S(A + bf (A,b))z(k) 

= (SAS- 1 + Sbf(SAS- 1,Sb))x(k) 

35 

(40.a) 

(40.b) 

(40.c) 

Define (A,b) = (SAs- 1 ,Sb) and V = span{x(k)}, then it follows from the 
two recursions (39,40) that: 

(Ao + bof(A,b)) I v = (A + bf(A,b)) I v 

Also it is not difficult to see that: 

(Ao + b0f(A,b))V C V 

Hence from Theorem 2.3 it follows that: 

j(A,b) I v = J(Ao,bo) I v 

In particular: 

f (A,b)x(k) = f (Ao,bo)x(k) 

and hence: 

f(A,b)z(k) = f (Ao,bo)x(k) 

which means that (A,b)eH. 

APPENDIX 
n 

(41) 

(42) 

(43) 

(44) 

(45) 

D 

PRooF OF THEOREM 2.3 Factorize '1T as: 'TT(z) = IT(z -).;). Define 
i =I 

A:= {A1, •• ,An}· Suppose that AcR and that A;-:/:=Aj for all i-:/:=j. Let 'Vbe 
one-dimensional. Then by (30,31) 'Vis generated by an eigenvector v of 
(A +bf(A,b)) corresponding to let us say ).:=A;. Hence by (30,31): 
(Ao+b0f(A,b))v =Av. Suppose (A 0 ,b0) is in standard controllable form. Then 
v is a multiple of [l,A, .. ,An-lJ7, say v =[1,A, .. ,An-lf. The spectrum of 
Ao+b0f(A 0 ,b0 ) is by definition of/equal to A. Hence A is an eigenvalue of 
(A 0 +b0/(A 0,b0)), and there exists v such that (A 0 +b0f(A 0,b0 ))v=Av. From 
the standard controllable form it is easy to see that the only candidates for an 
eigenvector with eigenvalue A are multiples of v, hence v =µ.v, for some µ.#=Q. 
Hence <Ao+bof(Ao,bo))v =(Ao+bof(A,b))v. Since bo-:/:=0, we conclude that 
f(A,b)v =f(Ao,b0 )v. 
If dim'V> 1, then 'V has a basis of eigenvectors and the above reasoning gives 
the result. For general A the proof goes along the same lines, but then one has 
to study several different cases. We skip the details. 

D 

For the proof of Theorem 2.4 we will use the following: 
LEMMA 2.5 Let (A,b) be reachable, and x(0)eRn. Let {u(k)} be a sequence of 
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real numbers. Define: 

x(k + 1) = Ax(k)+bu(k) k = 0, 1,2, .. (46) 

Define~= span {x(k)}keN, and d:=dim ('X). If d<n, then there exists a 
geR1xn such that for all k: 

u(k) = gx(k) 

PROOF Suppose (A,b) is in standard controllable form, i.e. 

A= 

0 1 0 
0 

0 0 
0 
1 

a1 a2 an 

0 

b= 0 

1 

Define aeR1xn by: a :=(ai, .. ,ll,i). Define: 

A:=A-ba 

ii(k): =ax(k)+u(k) 

then: 

x(k + 1) = Ax(k)+bu(k) 

Suppose x(O)=[x1(0), .. ,xn(OW, define HeRnXN by: 

H : = [x(O),x(l),x(2),x(3), ... ] 

then: 

H:= 
Xn(O) u(O) 

Xn(O) u(O) u(l) 

Xn(O) u(O) 

ii(O) 

ii(n -2) u(n -1) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

Since d<n, rank(H)<n. Now His a truncated Hankel matrix, hence its rank 
does not increase if we add the last row, shifted to the left, as then+ 1-th row. 
This shifted row is: 

[ii(o},ii(l },ii(2),u(3), ... J (54) 

Since the rank of the increased matrix is equal to the original one, the last row 
is a linear combination of the first n rows. In other words, there exist 
g1 , .. ,gn eR such that: 

(55) 

where r; denotes the i-th row. Define geR1xn by: g := [.g1, .. ,gn1- Then for 
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all k: 

u(k) = gx(k) 

Define g by: g: = g -a. Finally: 

u(k) = u(k)-ax(k) 

= gx(k)-ax(k) 

= gx(k) 

We will now prove Theorem 2.4: 

PROOF OF THEOREM 2.4: 
(i) Suppose d 1 < n. 

i-1 
y(k+i) = c1[A\x(k)O>+ ~A{b Iu(k+i-j-1)] 

j=O 

Define: 

W:= 

then: 

An-1 
Ct 1 

y(k) 
y(k + l)-c1b1u(k) 

Wx(k)<1> = 

From which we conclude that: 

x(k)<1> 

u(k) 

u(k +n-2) 

1 0 
0 -c1b1 

0 

1 -c1AT-2b1 -c1b1 

I 0 

0 0 1 

y(k) 

y(k+n-1) 

u(k) 

u(k +n -2) 
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(56) 

(57) 

(58) 

(59) 

D 

(60) 

(61) 

(62) 

(63) 
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From which we derive: 
x\1>(k) (k) 

u(k+n-2) 

y(k+n-1) 
= T1 u(k) 

u(k+n-2) 

With T 1 non-singular. In the same way one derives that: 
xf>(k) 

u(k+n-2) 

Hence: 

x(k'/1> 
u(k) 

u(k+n-2) 

y(k) 

y(k+n-1) 
= T2 u(k) 

u(k+n-2) 

x(k'/2> 

u(k) 
=R 

u(k+n-2) 

Chapter II 

(64) 

(65) 

(66) 

where R=T1 T21• Now since u(k+i) = bf(x(k+i+I'f2>-A. 2x(k+i)<2>), 
there exist matrices ~>, .. ,Mn2>eRnxn , such that for all k: 

x(k'j1> = M't2>x(k'f2> + .. + Mn2>x(k +n -1'f2> (67) 

and similarly: 

(68) 

Since by assumption d 1 <n, we conclude from Lemma 2.5 that there exists g 1 

such that u(k) = g 1x(k)(l>, hence x(k+l)<1> = (A. 1 +b 1g 1)x(k)(I>_ Together 
with (68) this gives that there exists a matrix N I such that for all k: 

x(k'f-2> = N 1x(k'f1> (69) 

Denote by ~ the linear span of x(k'f2>keN, and by d2 its dimension. From 
(69) it follows that: d2 =E;; d 1 < n, hence by Lemma 2.5 there exists g2 such 
that for all k: u(k) = g2x(k'f2>. As above we conclude that there exists a 
matrix N 2 such that for all k: 

x(kjl> = N2x(k'f2> (70) 

Finally (69) together with (70) gives the statement. 
(ii) This follows immediately form part (i). 
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(iii) Suppose u(k) = g1x(k)(I>, then just as in the proof of part (i) (68)~ we 
conclude that: 

x(kf> = N 1x(k)<1> 

Since d 1 = d2 = n, it follows that N 1 is non-singular. 

(71) 

D 
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3. G AND H FOR LQ CONTROL: CoNFLICT BETWEEN IDENTIFICATION AND 
CoNTROL 
In this section we will study the sets G and H for the case where the control 
objective is described by a quadratic cost criterion. It will tum out that the 
desirable property: 

GCH (1) 

does not hold for this control objective. In fact we will show that G n H is a 
negligible subset of G. As in the previous section we formulate this somewhat 
disappointing result in state space terms. The results in this section are 
refinements of those obtained in [49,51), and can also be found in [54). 
Theorem 3.10.i was also proven in [41] for the first order case. 

Given the following system: 

x(k + I) = Ax(k) + bu(k) 

y(k) = cx(k), 

where (A,b,c)eRnxn XRnxI XR 1xn is a minimal triple. 

(2) 

(3) 

~°:tr~l objective: find a causal controller such that the following expression is 
m1mm1zed: 

00 

J = ~ (y(kY' + r u(kY') r>O (4) 
k=O 

The solution of this problem is well known (see [38D and is given by: 

u(k)= f(A,b,c)x(k), (5) 

where: 

(6) 

and K is the unique symmetric positive definite solution of the Algebraic Ric
cati equation: 

K-ATKA +AT.Kb(bT.Kb+r)- 1bTKA-cTc =0, (7) 

Moreover, the optimal value of J is given by: 

x(0fKx(0), (8) 

where x (0) is the initial state of the system. Note that the control law not 
only depends on (A,b) but also on c. 
As in the pole assignment case we will consider the standard observable form: 

Ao:= 

a81 0 b8 
0 

0 
1 

0 

ho:= Co:= [l 0 .. 0] (9) 
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Recall the definition of Eo1,: 

Eo1, : = {(.A,b)eR"Xn xRnXl I (.A,b) reachable, (10) 

(c0,.A) in standard observable form} 

and define: 

E,,_, := {(.A,b)eR"xn XR"x 1 I (.A,b,c0) minimal, A non-singular} (11) 

REMAluc We restrict ourselves to non-singular .A-matrices for technical reasons 
only. 

Define: 

P := {KeR"x"I K=KT > O} (12) 

Throughout this section let (.A 0 ,b0 ) be fixed. Also let there be given some 
fixed non-zero nop-minimal initial state +(O)eR2n -I. For (.A,b )eE00, define 
the sequences {x(k)}, {z(k)}, {u(k)}, {Y(k)} and {y(k)} as follows: 
Firstly: 

x(O) := M 0+(0) z(O) := M+(O) (13) 

where the matrices M O and M are derived as in Section 11.2 (12). from 
(.A 0 ,b0 ) and (.A,b) respectively. Assume that x(O) is non-zero. 
Secondly: 

x(k + 1) = .A0x(k) + b0u(k) z(k + 1) = .Az(k) + bu(k) (14) 

y(k) = cox(k) 

where: 

y(k) = coz(k) (15) 

u(k): = f (.A,b,co)z(k) (16) 

The sets G and H, depending on +(0), are then: 

G:={(.A,b)eE00 I forallk:y(k) =y(k)} (17) 

H:={(.A,b)eE00 I for all k: f(A,b,co)z(k) = f(.Ao,bo,co)x(k)} (18) 

We will first state the main result of this section: 

CLAIM 3.1 G nH is a negligible subset of G. 

□ 

Claim 3.1 is of course not a mathematical statement. We will have to do some 
work before we can formalize the contents of the claim. Intuitively it means 
that within the set of invariant points of an adaptive algorithm only a negligi
ble part consists of points that correspond to the desired (optimal) control law. 
This is in contrast to the pole assignment problem where every invariant point 
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corresponds to the desired control law. In this sense adaptive LQ control is 
more difficult. In pole assignment the only concern is convergence of the 
parameter estimates, every limit point will be invariant and will hence produce 
the right controls. In LQ control we have to avoid that the estimates converge 
to sub-optimal invariant points. That means that we have to develop an algo
rithm for which those invariant points can never be attractive! 
It is difficult to get a direct grip on the sets G and G nH, therefore we will 
introduce two other sets, G0 and H 0 , which are easier to analyze and which 
are closely related to G ap.d H. In order to rel_ate G !Ild H with G0 and H O we 
will also define a subset G of G and a subset G0 of G. 

DEFINITION 3.2 

Go:= {(A,b)eE"" I Ao + bo/(A,b,c0) = A +b/(A,b,co)} 

Ho := {(A,b)eEn.r I /(A,b,co) = /(Ao,b0,co)} 

DEFINITION 3.3 For every (A,b)eEob, define: 

"\(A,b) := span {x(k)}keN 

where {x(k)} and {z(k)} are defined by (13,14,15,16). 

DEFINITION 3.4 

Go := {(A,b)eGo I (Ao + b0/(A,b,c0 ),x(O)) is reachable} 

G : = {(A,b)eG I "\(A,b) = Rn} 

- -
THEOREM 3.5 G and G0 are C"' diffeomorphic. 

PROOF See the appendix to this section. 

Tm!ORJ™ 3.6 
(i) 'lo is open and dense in G0• 

(ii) G is open and dense in G. 

PROOF See the appendix to this section. 

(19) 

(20) 

D 

(21) 

D 

(22) 

(23) 

D 

THEOREM 3.7 G0 is an embedded analytic manifold of dimension n. (a 
definition of embedded manifold can be found in the appendix). 

PROOF See the appendix to this section. 
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LEMMA 3.8 For all (A,b)eG nH: "V{A,b) = "V{A 0 ,b0 ). 

PROOF This is immediate from the fact that (A,b)eH implies: for all k: 
f(A,b,co)z(k) = f(Ao,bo,co)x(k). 

□ 

DEFINITION 3.9 ~ : = "V{A 0,b0}, the linear span of the the optimal state tra
jectory. 

□ 

THEOREM 3.10 
(i) If dim(~)= n, then GnH = {(A 0,b0)}. _ 

(ii) If dim(~) < n, then G nH is contained in G \ G. 

PROOF See the appendix to this section. 

CoMMENT Let us now discuss some of the consequences of Theorem 3.10. 
First of all it is the mathematical formalization of Claim 3.1. For suppose qi(_O) 
is such that dim(V0) = n. Then from Theorem 3.10.i we know that 
G nH = {A 0,b0)}, a singleton. Now G contains an open and dense subset 
that is diffeomorphic to an open and dense subset of an n -dimensional mani
fold (by Theorems 3.5, 3.6 and 3.7). In that sense G nH, being a singleton, is a 
negligible subset of G. In ~e other case, where qi(_O) is such that dim(Vo)<n, 
G n H is contained in G \ G. In other words G n H is contained in the boun
dary of a set that is diff eomorphic to an open and dense subset of an n
dimensional manifold. Since the boundary of an n-dimensional manifold has a 
strictly smaller dimension again G n H is a negligible subset of G. 
Now suppose that we want to use a neutral and neutral certainty equivalent 
adaptive algorithm for LQ control. Then almost every invariant point of the 
algorithm will result in sub-optimal behavior. This means that almost every 
invariant point must not be stable, i.e. must not be a possible limit of the algo
rithm. This seems to be very difficult, if not impossible. 

□ 

ExAMPLE 3.11 
In Figure 3.1, we have depicted the sets G and H for a first order system. The 
parameter values were: (a0 ,b0 ) = (1, 1), r = 2. The first part of the picture 
shows the branches of G and H in the right half plane, the second part shows 
the left half plane branches of G and H. The picture illustrates that 
GnH = {a0,b0)}, as was already predicted by Theorem 3.10.i. 
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FIGURE 3.1 G and H for a first order system. 

□ 

APPENDIX 

Let us first recall some preliminaries. 

DEFINITION 3.12 (see [59]). Let X~Rn. Xis an embedded m-dimensional ck. 
manifold, if '<lxeX, 3U~Rn, open, with ieU and a ck.function 
L:U➔Rn-m such that: 
(i) L(i)=O 
(ii) L -l({O})=Xn U 
(iii) The derivative of L with respect to x, evaluated in i, has full rank. 

□ 
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[(Mi,M2),(Ni,N2)] := Tr(M1Nf) + Tr(M2Nf). This defines an inner
product on R"•xq, xR"•xq,. (Tr denotes the trace of a matrix) 

□ 

LEMMA 3.14 Let (X, [.,.]x) and (Y, [.,.)y) be finite-dimensional inner-product 
spaces, and F :X ➔ Y a linear map. 
(i) There exists one and only one linear map p•: Y ➔X such that for aUx eX 

and for allyeY [Fx,y)y=[x,F•y)x. F is called the adjoint operator of 
F with respect to [.,:]x and [.,.]y. 

(ii) F is surjective iff p• is injective. 

PROOF See [18). 
□ 

LEMMA 3.15 Let M,Newx,, let A : wx, ➔wxp be defined by: 
A(X)=X-MrXN, then: 

Spec(A)= 1-Spec(M)XSpec(N) = { 1-Aµ I ~eSpec(M), µeSpec(N)} 

("Spec" denotes spectrum) 

PROOF See [39). 
□ 

LEMMA 3:16 For every minimal triple (A,b,c) one has: 
Ker (A +bft.A,b,c)) = Ker A 

PROOF Suppose x 0 eKer (A +bft.A,b,c)), then xk=0 and uk=0, for all k;;;i.l. 
Hence: 

xfKxo = xfcTcxo+ulruo by (4) and (8) 

= xl (er c + ft.A,b,c l rft.A,b,c )pc0 by (5) 

= xf(K - ATK(A +bft.A,b,c))+ ft.A,b,clrft.A,b,c)pc0 by (6) and (7) 

= xf Kxo + xlf(A,b,cl rj(A,b,c')xo 

This implies that: xlft.A,b,cl rft.A,b,cpc0 = 0 and thus that ft.A,b,cpc 0 =0. 
Together with (A +bft.A,b,c)pc0 = 0 this gives Ax0 = 0. 
Suppose on the other hand that Ax0 = 0, then also ft.A,b,cpc0 = 0 (by (6)) 
and thus (A +bft.A,b,c)pc0 = 0. 

□ 

CoROLLARY 3.17 For all (A,b,c)eE,u, A + bf(A,b,c) is non-singular. 

PROOF This follows from Lemma 3.16 and from the fact that by definition of 
Ena, (A,b,c)eEn.s, implies that A is non-singular. 

□ 
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~ -3:_18 For all (.A,b,c0)eG0l _!!lere exists an E > 0 such that 'lff with: 
llf-J(A,b,co)II < E:, there exists (A,b,c0)eE such that: 
(i) f(A,b,co) = l 
(ii) A_p_+ bof(A,b,co) = A + bf<J.,b,co) 
(iii) (A,b) depends continuously on f. 

PROOF Choose (A,b,c0)eG0• We will prove that the map f subject to the con
straint that (A,b,c0)eG0, is locally surjective. To this end it is_enough to prove 
that, locally, (A,b) can be written as a continuous function off. Define: 

L:RnXn xRnXl XR½n(n+l) XRIXn ➔RnXn XRIXnR½n(n+l) 

by: 

L(A,b,K,/) : = (L1 (A,b,K,/),L2(A,b,K,/),L3(A,b,K,/)) 

where: 

(24) 

L1(A,b,K,/) : = Ao + bof - A - bf (25) 

L2(A,b,K,/) := bTKbf + rf+bTKA (26) 

L3(A,b,K,/) := K - ATKA + ATKb(bTKb + ,r1bTKA - clco (27) 
.., # - .. 

By definition of Lit follows that: L(A,b,K,j) = (0,0,0), '!here K_is_ the posi-
tive definite solution of the algebraic Riccati equation andf = f(A,b,c 0). We 
wjll _ n.9!' calculate the derivative of L with respect to (A,b,K) evaluated in 
(A,K,b,j): 

A1 (M,!lb,/lK} = - M - !lbf (28) 

A2(M,!lb,/lK} = flhTiij + ;;r mj + ;;r K!lbj + (29) 

!lbTKA + ;;r MA + ;;r KM 
A3(M,!lb,/lK} = !lK - (A + b'j)T !lK(A + b'j) - (30) 

MT K(A + b'j) - (A + b'j)T KM -
ATK!lbj- l flbTKA - l(ll.TKb + "i/K!lb)j 

To show that A has full rank it is sufficient to show that it is injective: 
Put: 

E1: A1(M,!lb,/lK) = 0 (31) 

E2: A2(M,!lb,/lK} = 0 (32) 

£3: A3(M,!lb,/lK} = 0 (33) 

E 3 + (A + b'j)T KE 1 + Ef K(A + b'j) gives: 

AK - (A + b'j)T AK(A + b'j) = 0 (34) 
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- --By Lemma 3.15 and the strict stability of (A + bf) it follows that: aK. = 0. 
Substituting this in E2 gives: 

El llJ,Tii,j + i/i.Mj + MT.KA + bTKAA = 0 (35) 

E2' - bTKE1 gives: 

MTK(A + bfl = 0 (36) 

- --By Corollary 3.17 (A + bf) is non-singular, and hence M = 0. Finally substi-
tuting this in E 1, gives AA = 0. 
Now, the_ implicit function theorem yields the existence of an open neighbor
hood of / and a C"' function defined on that open set to (A,b,K). This com
pletes the proof. 

PROOF OF THEOREM 3.5 Define: 

4> : Ens-+Eo1, 

by: 

4>(A,b) = (SAS- 1,Sb) 

D 

(37) 

where SeG/(n) is the unique non-singular matrix which transforms (A,c0) into 
standard observa_!,le form. Since S depends C"' on A, it follows that 4> is C"'. 
Now, let (A,b)eG0 • Define x(O) :=M04>(0), and x(k) by: 

x(k + 1) = (Ao + b0/(A,b,c0))x(k) (38) 

Define: 

z(k) : =Sx(k) 

then: 

z(k + 1) = Sx(k + 1) = S(A0 + bof(A,b,c0))x(k) 

= S(A + b/(A,b,c0))x(k) 

= S(A + bf(A,b,c0))S-1z(k) 

= (SAs-• + Sb/(SAs-• ,Sb,co))z(k) 

(39) 

(40) 

(41) 

(42) 

(43) 

From the standard observable form and the recursion for z(k) it follows that 
z(k) = M4>(k), where Mis derived from (SAS- 1,Sb) as in Section 11.2 (12). 
In particular it follows that z(O) = M4>(0). Finally, 
y(k) = c0x(k) = c0S- 1z(k) = c0z(k) = yfk). We conclude that 
4>(A,b)eG. Mpreover since by definition of G0 , span {x(k)} = Rn, it follows 
that 4>(A,b)~G. _ _ 
Define 1/1: G ➔ G0 as follows: Choose (A,b)eG. By Theorem 11.2.4 there 
exists TeG/(n) such that for all k: x(k) = Tz(k), and since V(A,b) = Rn, 
this T is unique. Moreover from the proof of Theorem 11.2.4 it follows easily 
that T depends C"' on (A,b ). Define: 
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(44) 

Since y(k) = y(k), it follows from x(k) = Tz(k) and V(A,b) = Rn that 
c0T- 1 = c0 • Now: 

x(k + l) = Aox(k) + b0/(A,b,co)z(k) 

= (Ao + bo/(TAT- 1 ,Tb,c0T- 1))x(k) 

and also: 

(45) 

(46) 

x(k + 1) = Tz(k + 1) = T(A + bf(A,b,c0))z(k) (47) 

= T(A + bf(A,b,co))T- 1x(k) (48) 

= (TAT- 1 + Tbf(TAT- 1,Tb,c0))x(k) (49) 

Since V(A,b) = Rn, it follows that: 

Ao + b0/(TAT- 1 ,Tb,c0 ) = TAT- 1 + Tbf(TAT- 1,Tb,c0 ) (50) 

hence iK_A,b)eG0• 

Finally, from the uniqueness of the matrices S and Tone can easily check 
that: 

1/J.f#> = idi; 

q,.t/J = idj;0 

This finishes the proof. 

PROOF OF THE9~ 3.6 

(51) 

(52) 

D 

(i) Choose (A,b)eG0 and suppose that (Ao t Pof(A,bc0 ),x(O)) is non
reachable. Choose an open neighborhood ~ oJ (A,b) in G0 • By Lemma_3.18 
there exists an open _n~ghborhood V o!_[(A,b,c01_ such that for every /e V, 
t!!_e_ unique pair JA,b)eG0 with f(A,b,c_0 ) = f, has the property that 
(A,b)~W. Choose/eVsuch tpat (Ao+ b0f,x(O)) is reachable and it follows 
that G0 is dense in G0• Sin~ G is the complement of the zero-set of a continu
ous function it follows that G0 is also open in G0• 

(ii) Choose (A,b)eG and suppose that V(A,b~Rn. Choose an open neigh
borhood W of (A,b) in G. From the proof of Theorem 3.5 it follows that there 
exists a non-singular matrix S such that (SAs-• ,Sb)eG0 • The function f#, as 
defined by (37) is continuous and hence there exists an open neighborhood V 
of (§AS- 1,Sb) in G0) such that f#>(V)CW. By part (i) W(t know that 
V n G0:;i= 0 .)t is not difficult to check ~at this implies that W n G:;i= 0, which 
shows that G is dense in G. t\).so, since G is the complement of the zero-set of 
a collection of polynomials, G is open in G. 

D 

LEMMA 3.19 There exists a C"'-function K:E➔P such that K(A,b,c) satisfies 
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(7) , for all (A,b,c)eE. 

PROOF A proof for the continuous time case can be found in [11 ], we give the 
proof for the discrete time case for the sake of completeness. 
The implicit function theorem will be used to get the result. Define 
L : EXP➔ R½n(n+I> by: 

L(A,b,c,K) := K-A 7KA +A 7Kb(b7 Kb +r)- 1b7KA -c7 c (53) 

Since r>O Lis C"'. Note that V (A,b,c) EE L(A,b,c,K)=O where K is the 
solution within P of (7). We will now calculate the derivative of L with respect 
to K, evaluated in such a triple (A,b,c,K). This will be a linear map 
A: R½n(n+I) ➔ R½n(n+I) of which the action on Me R½n(n+I) can be found 
by the following calculation: (We will use the private notation =1 to denote 
equality as far as linear terms in the "Ii variable(s)" are concerned). 

A(li.K) =1 L(A,h,c,k +li.K) (54) 

=1 K +l:!.K-A 7(.K +li.K)A (55) 

+A 7(.K +li.K}b(b7 (.K +li.K)b+r)-1b7(K +li.K)A-c7 c 

=' l:!.K-A 7 !:!.KA+A 7(K+li.K)b(b 7.Kb+r)-1 (56) 

( f <-IY[b7 ID(b7.Kb+r)-1f)b\K +li.K)A 
j=O 

(57) 

=1 u - { (A + hf(A,h,c)l M(A + hf(A,h,c))} (58) 

Since A +bf(A,b,c) is strictly stable, (see [38D it follows by Lemma 3.15 that 0 
fi.Spec(A), hence A is non-singular. 
Now the implicit f.!n!ction theoreip. yields the existence of the function Kin a 
neighborhood of (A,b,c). Since (A,b,c) was arbitrary and the solution of (7) is 
unique (within P), K is well defined on E. 

□ 

COROLLARY 3.20 f is a C"' - function on E. 

PROOF This is immediate from the facts that/ is a C"'-function of (A,b,c,K) 
and Lemma 3.19. 

□ 
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PROOF OF THEO~ 3. 7 
By Theorem 3.6 Go is nonempty. Define Go'CRnXn xnnXI xnn(n+l)/l by: 

- -G0':={(A,b,K) I (A,b)eG0 , K = K(A,b)eP} 

Define L :Ens X P ➔ nn(n + ))/2 X nn Xn by: 

L(A,b,K) = (L1(A,b,K),L2(A,b,K)), 

where: 

(59) 

L1(A,b,K) = K-ATKA + ATKb(bTKb+r)-1bTKA - coco (60) 

L2(A,b,K) = (A -b(bTKb+r)-1bTKA) - (A 0 -b0(bTKb+r)- 1bTKA) (61) 

Note that(,1,~,K)~Go' if and_only if J.,(A,b,K) = (0,0), and that Lis C"'. Fix 
a triple (A,b,K)eG0', and let/= f(A,b,c 0 )._ W~ will show that the derivative 
of L with respect to (A.zb.z.KJ, evaluated in (A,b,K) has full rank. The deriva
tive of L evaluated in (A,b,K) is a linear map A given by: 

A1 (liA.,Ab,t:J() = M - (A + 'i,jf il(A + 'i,j) - liA T K(A + 'i,j) (62) 

- (A + 'i,j)TKliA - ATKAbj-1 AbTKA 

- l(AbTii + i/KAb)j 

A2(1iA.,Ab,t:J() = liA - 'i,(i/ii + r)- 1(AbTKA + bT AKA (63) 

+ bTKliA) - Ab(bTil + r)- 1bTKA 

- b(bTil + r)-1(AbTii + bT AKb + bTKAb)j 

+ b0(bTil + r)- 1(AbTKA + bT AKA + bTKliA) 

+ b0(bTii + r)-1(AbTii + bT AKb + bTKAb)j 

Let (M,N)eRn(n+I)l2xRnxn_ We will calculate the inner-product of 
A(liA.,Ab,t:J() with (M,N) in order to establish a formula for its adjoint: 

[A(liA.,Ab,t:J(),(M,N)] = (64) 

Tr(A1 (liA,Ab,t:JqM) + Tr(A2(1iA,Ab,t:J()NT) 

= Tr(il[M - (A + bj}M(A + 'i,j)T (65) 

- ANTb(bTil + r)- 1bT - 'i,jNT'i,(i/ii + r)- 1bT 

+ ANTb0(bTil + r)- 1bT + 'i,jNTb0(i/ii + r)- 1bT]) 

+ Tr(liA[-2M(A + 'i,j)Tk + NT 

- NTb(bTil + r)- 1bTK + NTb0(bTil + r)- 1bTK]) 

+ Tr(Ab[-2fl(ATK - 2flllbTK - (bTil + r)- 1bT NAT K 

+ jNT - (bTil + r)- 1bT NlbTK 
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-jNTi,(i,Tii + ,)-1bTK + (bTKb + ,)- 1b'{;NATK 
+(bTKb + r)- 1b'{;N/bK + jNTb0(bTKb + r)- 1bT K]) 

Hence by Lemma 3.14: A* = (Ai,A;,A;,A:}, where: 

51 

Ai(M,N) = M - (A + bflM(A + i,j)T (66) 

- b(bTKb + ,)-1bT NAT - b(bTKb + ,)- 1bT N/bT 
+ b(bTKb + r)- 1b'{;NAT + b(bTKb + r)- 1b'{;N/bT 

A;(M,N) = -2K(A + bflM + N (67) 

- Kb(bTKb + r)- 1bT N + Kb(bTKb + r)- 1b'{;N 
Ai(M,N) = -2K(A + bflM1 + N1 (68) 

- Kb(bTKb + r)- 1bTN/ 
- K(A + bflNTb(bTKb + r)- 1 

+ K(A + bflNTb0(bT Kb + r)- 1 

To show that A• is injective, we put A• (M,N) = 0. Which gives the following 
equations: 

E1: M - (A + bflM(A + i,j)T - b(bTKb + r)- 1bT NAT - (69) 

b(bTKb + r)- 1bT N/bT + b(bTKb + r)- 1b'{;NAT + 

b(bTKb + r)- 1b'{;N/bT = 0 

E2: -2K(A + bflM + N - Kb(bTKb + r)- 1bT N (70) 

+ Kb(bTKb + r)- 1b'{;N = 0 

E3: -2K(A + bflM/ + N/ - Kb(bTKb + r)- 1bT N/ - (71) 

K(A + bflNTb(bTKb + ,)-1 + K(A + bflNTb0(bTKb + r)- 1 = 0 

E3 - E;/ gives: 

- K(A + bflNTb(i/ii + r)- 1 (72) 

+ K(A + bflNTb0(bTKb + r)- 1 = 0 

Substituting (72) in E I gives: 

M - (A + bflM (A + i,j)T = O (73) 

By Lemma 3.15 we congu,SI; _t!tat M = 0. Since lfr(A + bf) is non-singular, 
(72) implies that: - NTb(b Kb + r)- 1 + NTb0(b Kb + r)- 1 = 0. Substi
tuting this and M = 0 in E 2 gives: 

N = 0 (74) 

This shows that Go' is an n-dimensional manifold in nnxnxnnXI xnn(n+l)/l_ 
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- -
Since K depends C"' on (A,b), it follows that G0 is an n-dimensional C"' mani-
fold in Rn xn X Rn x 1 X R 1 xn. This completes the proof. 

□ 

LEMMA 3.21 Let (A,b)eG0 , denote the solution of (7) by Kand let K0 be the 
solution of (7) with (A,b,c0 ) replaced by (A 0 ,b0 ,c0). Then K~K0 . 

PROOF Let x 0 eRn, the optimal cost for the system (A,b,c0 ), starting in x 0 is 
xcf Kxo, the optimal cost for (A 0 ,b0 ) is xcf K0x0 • The real cost incurred when 
the feedback/(A,b,c0) is applied to the system (A 0 ,b0 ) is equal to the optimal 
cost of the system (A,b,c0 ), since (A,b)eG0 and hence both the state and 
input trajectory of A +bf(A,b,c0 ) and A 0 +b0f(A,b,c 0 ) are equal. However, 
for (Ao,bo), f(A,b,c 0) can do no better than /(Ao,bo,co). Hence 
xcf.Kx0 ~xcf K0x0 • Since x0 was arbitrary it follows that K~K0 . 

□ 

COROLLARY 3.22 H (A,b)eG0 andf(A,b,c0 ) = j(A 0 ,b0 ,c0), then K=Ko. 

PROOF Since (A,b)eG0 , we have A +bf(A,b,c0 )=A0 +b0f(A,b,co), which by 
Lemma 3.21 implies that K~K0• On the other hand, since 
f (A,b,co) = j(Ao,bo,co), we also have 
Ao +bo/(Ao,bo,co)=A +bf(A0 ,b0 ,c0 ). We can apply Lemma 3.21 once again, 
now with (A 0 ,b0c0 ) and (A,b,c0 ) interchanged, showing that K0 ~K. 

□ 

PROOF OF THEOREM 3.10 

PROOF Choose (A,b)eGnH. Define (A,b)eEn., by: 

(A,b) : ='1.{_A,b) (75) 

with 1" defined as in ( 44). 
Then (A,b)eG0 , and also since (A,b)eH: j(A,b,c0 ) = f (A 0 ,b0 ,c0). Hence 
by Corollary 3.22: K = K 0 • Now: 
-- - --

(A,b)eGo ~A=A 0 +(b0 -b)f (76) 

= Ao + (bo-b)fo (77) 
-- -T - -1-T -

f(A,b,co) = j(Ao,bo,c0) ~ (b Kob+r) b KoA = -Jo (78) 

substituting (77) in (78) gives: 
-T - - -T -
b Ko(Ao+(bo-b)fo)=-(b Kob+r)fo (79) 

which implies: 
-T 
b Ko(Ao+bofo)=-rj0 (80) 

Now, since K0 and Ao + b0f 0 are non-singular, and b = b0 is by 
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construction a solution of (80), it follows that b = b0 • Substituting this in 
(76) gives A = A0 • A = SAs- 1, for some SeG/(n). Hence (A,c0 ) and 
(SAS- 1,c0) are in standard observable form. This implies that S = I. This 
completes the proof of Theorem 3.10 (i). 
The proof of part (ii) is immediate. 

□ 
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4. WHEN IS G CONTAINED IN It! 
In section 11.2 we have seen that if the control objective is pole assignment, 
then G CH. In section 11.3 we proved that for LQ-control this is not the case 
and that in fact G n H is a negligible subset of G. The natural question now 
arises for which control laws the set G is contained in H. In this section we 
will investigate this question for control problems that are solvable by state 
feedback. The surprising result is that under mild assumptions we can give a 
characterization of the control laws for which G CH. Recall from section II.2 
that the crucial properties enabling us to prove that G CH were: 
(i) For all (A i,b1)eEre and all (A 2,b2)eEre: 

A 1 + bif(A2,b2) = A2 + bJ(A2,b2) (I) 

/(A 1,b1) = /(A2,b2) 

(ii) VSeG/(n), V(A,b,)eEre: 

/(SAs- 1,Sb) = /(A,b)s- 1 

The question we would like to address is the following: 
For which functions f :Ere --+ R I xn do we have properties (i) and (ii)? 

(2) 

(3) 

To give a complete answer to this question we will make two more assump
tions: 
(iii) f is continuous on Ere. 
(iv) There exists (A 0 ,b0)eEre such that: 

Spec(Ao + bo/(A 0,b0))nSpec(A 0) = 0 (4) 

CoMMENT 

(i) This is the crucial property of f. It is the algebraic translation of the 
assumption that G CH. 

(ii) Assumption (ii) reflects that the control objective is a criterion on the 
input/ output behavior of tbe system, and does not depend on any 
input/ state/ output realization. 

(iii) Continuity is a natural assumption. 
(iv) Assumption (iv) is a technical assumption. It means that there is at least 

one system such that the open-loop poles differ completely from the 
closed-loop poles of the controlled system. A sufficient condition for this 
property to hold, is that/ is a stabilizing control-law. 

□ 

We can now give a complete characterization of all functions / satisfying 
assumptions (i) through (iv). It will turn out that they are all of the pole
assignment type. 

THEOREM 4.1 Let / be such that assumptions (i) through (iv) are satisfied. 
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There exists a monic polynomial w, of degree n such that for all (A,b)eE,e: 

(5) 

PROOF Fix (A 0 ,b0 ) such that assumption (iv) holds. Let w0 be the characteris
tic polynomial of (Ao + b0fl.A 0 ,b0 )). Define: 

Go:= {(A,b)eEre I Ao + bofl.A,b) = A + bf(A,b)} (6) 

and: 

Go:= {(A,b)eE,e I Ao + bofl.Ao,bo) = A + bf(Ao,bo)} 

Then, by (i), G0 = G0• Choose (A,b)eG0 , then, again by (i): 

Ao + bofl.A 0 ,bo) = A + bf(A,b) 

(7) 

(8) 

Hence the characteristic polynomial of (A + bf (A,b)) is equal to w0 • By the 
uniqueness of the control law that assigns the poles, it follows that for all 
(A,b)eG0 : 

f (A,b) = -(O .. O1].[b: .. :An -lb r 1wo(A) (9) 

We will now show that/has the form (9) for all pairs (A,b) that are similar to 
a pair in G0 • Choose SeGl(n), then: 

f (SAS- 1,Sb) = f (A,b)s- 1 by assumption (ii) (10) 

= -[O .. O1].[b: .. :An -I b r 1wo(A)s-1 (11) 

= -[O .. Ol].(Sb: .. :(SAS-1f- 1Sbr1wo(SAS-1) (12) 

Hence for every pair that is similar to a pair in G0 , we have established the 
desired formula. Next we will show that the set of all pairs that can be reached 
by a similarity transformation on the elements of G0 is open and dense, and 
the continuity off will then yield the result. 

Define: 

'2 := {(A,b)eEre I 3 SeG/(n) with (SAS- 1,Sb)eGo} (13) 

Since G0 = G0, (A,b )eD if and only if the following equation has a non
singular solution S: 

(Ao + bof(Ao,bo)) - s- 1As = s- 1bf (Ao,bo) (14) 

(14) is equivalent to: 

S(Ao + bof (Ao,b0)) - AS = bf(A 0 ,b0 ) (15) 

Define: 

'21:={(A,b)eRnxnxRnXI I Spec(Ao + bo/(Ao,bo))nSpec(A)=0} (16) 
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Then 0 1 is open and dense in Rnxn XRnxl. By Lemma II.3.15 it follows that 
(15) has a unique solution SeRnxn for every (A,b)e01• 

Define the linear map LA : RnXn ➔anxn by: 

LA(S) := S(Ao + bof(Ao,bo))-AS 

LA is injective if and only if Spec(A 0 + b0J(A 0 ,b0 ))n Spec(A) = 0. 
Define dL :RnXn ➔ R, by: 

dL(A) := det(LA) 

(17) 

(18) 

LA is a linear map depending linearly on A, hence dL is a polynomial in the 
coefficients of A. For every (A,b)e01, the unique solution of (15) is given by: 

nL(A,b) 
S(A,b) = dL(A) , (19) 

where nL: Rn Xn X Rn x 1 ➔ Rn xn is a polynomial in the coefficients of (A,b ). 
Defined : RnXn XRnXI ➔ R • by: 

d(A,b): = det(nL(A,b)) 

and: 

~ :={(A,b)eRnXn XRnXI I d(A,b)=;=O} 

(20) 

(21) 

By assumption (iv), (A 0,b0)e01, and hence S(A 0 ,b0 ) = I, from which we 
conclude that (A 0,b0)e~, and hence~ is nonemfty. Since dis polynomial, 
it follows that ~ is open and dense in Rn xn X Rn x . For a proof of this state
ment see the remark on genericity in [63]. Finally, it is easy to see that: 
0 1 n ~ c 0, and hence O contains a subset that is open and dense in 
Rnxn XRnxt. Suppose there exists (A,b)EEre \ 0. Choose a sequence 
(Aktbk)eO, such that: 

lim (Ak,bk) = (A,b) (22) 
k➔OO 

Then, for all k the characteristic polynomial of (Ak + b,J(Ak,bk)) is equal to 
w0 • By the continuity of f, it follows that the characteristic polynomial of 
(A + bf (A,b)) is equal to w0 • Finally take.,, = w0 • This completes the proof. 

D 

We have now established a characterization of all feedback laws, depending 
only on (A,b), for which G CH. We would like to extend this classification 
result to the more general case where the function f may also depend on the 
c-vector. 
Consider the realizations: 

x(k + 1) = A 0x(k) + b0u(k) z(k+ 1) = Az(k) + bu(k) 

y(k) = cox(k) 

x (0) = M o4'<.0) 

y(k) = Coz(k) 

z (0) = M q,(_0) 

(23.a) 

(23.b) 

(23.c) 
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u(k)= f (A,b,co)z(k) (23.d) 

Where (A 0,c0) and (A,c0) are in standard observable form. Recall from the 
previous sections that: 

G : = {(A,b)eEob I for all k: y(k) = y(k)} (24) 

H := {(A,b)eEob I for all k:f(A,b,co)z(k) = f(Ao,bo,co)x(k)} (25) 

where we should keep in mind that G and H depend on the initial state <P(_O). 
The question now becomes: 
For which functions f do we have the property that/or all <P(_O)eR2n- 1, G CH? 
Again we restrict our attention to control criteria on the input/ output behavior 
of the system. This means that if the control law is stated in state space form, 
then it should satisfy: 

f (SAS- 1,Sb,cS-1) = f(A,b,c)s- 1 (26) 

for every non-singular matrix S. A necessary condition for G CH is given by 
the following lemma: 

LEMMA 4.2 If for all <P(_O)eR2n-l, GCH, then: For all (A 0 ,b0 )eEob and all 
(A,b)eE,e we have: 

Ao + bof(A,b,co) = A + bf (A,b,co) => f (A 0 ,bo,co) = f (A,b,co) (27) 

PROOF Choose <P(_O)eR2n-l such that 

(Ao + bo/(Ao,bo,co),M0<P(_O)) is reachable (28) 

Choose a triple (A,b,c0) that satisfies: 

Ao + bof(A,b,co) = A + bf (A,b,c0) (29) 

Let S be the unique non-singular matrix such that (SAs- 1,c0s- 1) is in stan
dard observable form. 
Then: 

CoS-1 = Co 

Define: 

x(O): =Mo<P<_O) and x(k + 1) = (Ao + b0f (A,b,c0 ))x(k) 

(30) 

(31) 

Define (A,b,c0) : = (SAS- 1,Sb,c0S- 1), and z(k): = Sx(k). Then for all k: 

z(k + 1) = Az(k) + bf (A,b,c0 )z(k) by (26,29,31) (32) 

Also: 

y(k) = coz(k) = coSx(k) = c0x(k) = y(k) 

Hence (A,b)eG. Since GCH, we also have for all k: 

(33) 
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/(A,b,c)z(k) = /(Ao,bo,co)x(k) 

Which implies: 

/(A,b,c0)x(k) = /(A 0 ,b0 ,co)x(k) 

Since by (28) {x(k)} spans Rn, it follows that 

/(A,b,co) = /(Ao,bo,co) 

DEFINm:oN 4.3 Define for (A 0 ,b0)eEob the sets: 

Go := {(A,b)eEre I Ao + bo/(A,b,co) = A + b/(A,b,co)} 

and: 

9hapter II 

(34) 

(35) 

(36) 

□ 

(37) 

Go:= {(A,b)eEre I Ao + bo/(Ao,bo,co) = A + b/(Ao,bo,co)} (38) 

□ 

LEMMA 4.4 If/is such that GCH, then G0 = G0 • 

PROOF Choose (A,b)eG0, then by Lemma 4.2, /(A,b,c0) = /(A 0 ,b0 ,c0 ) and 
hence (A,b)eG0 • 

Choose (A,b)eG0• Let SeG/(n) be the unique matrix such that 
(SAs- 1 ,c0s-1) is in standard observable form. Then c0s-1 = c0 • From (38) 
it follows that: 

S(Ao + bo/(Ao,bo,co))S- 1 = S(A + b/(Ao,bo,co))S- 1 

which implies: 

SAos- 1 + Sb0/(SAoS- 1,Sb0 ,c0S- 1) = 
SAS- 1 + Sb/(SAoS- 1,Sbo,coS- 1) 

Since cos- 1 = Co, this gives: 

(39) 

(40) 

SAos- 1 + Sbo/(SAos- 1,Sbo,Co)) = SAs- 1 + Sb/(SAos- 1,Sbo,Co)) (41) 

We can now apply Lemma 4.2 and conclude: 

/(SAS- 1,Sb,co) = /(SAoS- 1,Sbo,co) 

which yields: 

/(A,b,co) = /(Ao,bo,co) 

Hence (A,b)eG0• 

(42) 

(43) 

□ 

We can now characterize the control laws for which G CH. However, we have 
a complete result for the case n = 1 only. 
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THEOREM 4.5 (n-1) Let /:RXR\{0}XR\{0} ➔ R be such that GCH. 
Assume that there exists (a1,b1) and (a2 ,b2) such that: 

/(a1,b1,l) =p f(a2,b2,l), (44) 

then there exists an aeR, such that for all (a,b,c)eR X R \ {0} XR \ {0}: 

a-a 
f (a,b,c) = -b- (45) 

PROOF Fix c=l. Choose (a1,b1),(a2,b2) such that /(a1,b1,l)+/(a2,b2,l), 
and define: 

/1: ={(a,b) I a +bf (a1,b1, l)=a1 +bif (a1,b1, l)} (46) 

/2: = {(a,b) I a +bf (a2,b2, l)=a2 +bJ(a2,b2, l)} (47) 

From Lemma 4.4 it follows that (a1,b1)e/1 implies that 
f (a,b, l)= f (a,,b1, l).(i = 1,2). Since/ (a1,b1, l)+/(a2,b2, 1), we conclude that 
/ 1 n /2 n { b=pO} = 121, however for the same reason / 1 n l2r 121. Hence there 
exists aeR such that /1 n/2={(a,0)} Now, choose (a,b), arbitrarily and 
define: 

7:={(a,b) I a +bf(a,b,l)=a+bf(a,b,l)} (48) 

}Vithout loss of generality we mar. assume that f (a,b, l)+/(a1,b1, 1), hence 
/n/1=pl21. As before we also have ln/1 n{b=pO} = 121. Therefore there exists 
ieR such that /n/1 ={(ci,0)}. Since (a,0)e/1, and /1-::p{(a,b) I b =0}, we 
have: a=i. This gives: 

a=a+bf(a,b,l) (49) 

which implies: 

f(a,b,l)= a:a 
b 

Finally, by assumption (ii) and (50): 

a - a a-a 
f (a,b,c) = f (a,bc, l)c = be c = -b-

This finishes the proof. 

(50) 

(51) 

The general result, n > 1, has not yet been found. Lemmata 4.2 and 4.4 give 
the mathematical translation of the requirement that G CH. However, the idea 
on which the proof of Theorem 4.5 is based does not apply in the higher order 
case. 

□ 
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Chapter Ill 

Adaptive Control Algorithms 

1. AVOIDING SINGULARITIES IN THE PARAMETER SPACE 
In almost all control problems, a solution for a particular system can be found 
provided that certain regularity conditions on the system are satisfied. For 
instance for the pole-assignment problem the system has to be reachable. If 
an adaptive control algorithm is based on certainty equivalence, then at each 
time instant the controller is calculated on the basis of the current estimate. 
This can of course only be done if this estimate satisfies the regularity condi
tions. In many situations this means that the estimates should not belong to a 
certain (small) subset of the parameter space, namely the set of those parame
ter values for which these conditions are not satisfied. The usual algorithms 
cannot assure that estimates will always be regular unless extra knowledge of 
the true system is assumed. Typically this extra knowledge will be that the true 
system belongs to a known convex subset of the parameter space that does not 
contain any singular points. In this section we will present a modification 
method for algorithms that work well under the assumption that estimates are 
always regular. The modification is such that this assumption can be relaxed 
and the asymptotic properties of the algorithm remain unchanged. Other 
approaches to this problem are given in [10,31,40,42,46]. In [40] a 
modification procedure is proposed which requires a lower bound on the sta
bilizability of the system. [ 10] uses excitation signals until the prediction error 
comes below some prescribed threshold. Hence tracking and zero-regulation 
can be achieved only approximately. In [42] the parameter estimation scheme 
is modified to keep the estimates away from the set of non-reachable pairs. In 
[31] the identification is done simultaneously in the parameter space and the 
controller space. By using an extra (non-linear) feedback driven by the predic
tion error, these two schemes are brought into agreement with each other. The 
extra feedback can be interpreted as an asymptotically vanishing excitation sig
nal. A drawback of the last two methods is that modification ([42]) and extra 
feedback ([31 ]) does not stop in finite time, and hence the algorithms deviate 
from the usual simple schemes during the complete time period. [46] gives a 
modification procedure for stochastic systems. The method which we want to 
propose here is based on a modification procedure developed in [55]. We will 
start with an example. 
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ExAMPLE 1.1 Consider the system: 

y(k + 1) = aoY(k)+b0u(k}, bo*O. 

which we want to control adaptively, according to the control objective: 

y(k + 1) = ay(k) aeR (la! <I). 

the corresponding control law is of the form 

a-a 
j(a,b) = -b-· 

u(k) = j(a,b)y(k). 
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(1) 

(2) 

(3.a) 

(3.b) 

Suppose we want to use an algorithm based on certainty equivalence and neu
trality, say: 

A 

8k+l = 8(8k,u(k),y(k),y(k + 1)) 
A 

a-ak 
u(k+l) = -,. -y(k+l), 

bk 
A 

(4.a) 

(4.b) 

(4.c) 

then it is clear that to be able to calculate u(k), we must not have bk =O. In 
many cases 8 is a rational function of its arguments. Since the coefficients will 
depeJld on the unknown system parameters, it cannot be guaranteed a priori 
that bk stays non-zero. _ 
On the,.other hand from the rationality of 8 it also follows that the set of initial 
values 80 fpr which bk =O for some k has Lebesgue measure zero, see [45]. 
However bk*° for all finite k might not be ~ough for the analysis of the 
algorithm. One could also want to have tl}at bk is kept bounded away from 
zero. For instance one may want that lim bk *°· In general one cannot con-

,.. k➔CIJ A 

elude that the set of initial values 8(0) for which bk is bounded away from zero 
has Lebesgue measure zero. ll this property is needed, the usual algorithms 
have to be modified. 
Recall the projection algorithm for estimating (a0 ,b0): 

llk+l = ak + /(k) y- (y(k + 1)-_y(k + 1)) (5.a) 
y(k). + u(k 

bk+1=bk+ Y-u(k) Y-(y(k+l)-_y(k+l)) (5.b) 
y(k + u(k 

A 

a-ak 
u(k) = - .. -y(k) (according to certainty equivalence) 

bk 
(5.c) 

We will now describe a modification of (5) so as to ensure that for all k: 
A 

lbk I ;;;.. t:>0, (6) 

for some t:>0. 
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A fundamental property of (5) is, that regardless of the sequences of inputs: 

{ll(ao,bo)-(ak,bk)ll}keN is a non-increasing sequence. (7) 

and: 

(8) 

which implies: 

fun y (k + 1) - y(k + 1) = 0 
k➔oo y(k'f + u(k'f 

(9) 

(see Lemma's 111.2.2.2 and 111.2.2.3 for a proof i>f (7) and (8)). We also know 
that if the input is rich enough, that fun (ak,bk) = (a0,b0). Now, since by 

k➔OO 

assumptionA b0=F<), this means that if the input is rich enough, then within 
finite time bk will be bounded away from zero. The problem is that we do not 
know when, since we do not know b0 • We propose the following modification 
of (5). Choose any sequence: 

fk i O (10) 

Start the algorithm in any initial value (a(O),b(O)), b(O)=F<), and calculate u(k) 
as: 

A 

a-ak 
u(k) = -, -,. -y(k) 

bk 
(11.a) 

A 

until I b(k) I ::s.;;(1• Call this time instant T1• 

Take u(T1)=y(T1), U(T1 + I)= -y(T1 + 1) (the estimates (a(T1 + l),b(1"1 + 1)) are 
calculated according to (5.a,5.b)) 
Then take 

A 

a-ak 
u(k)=-A -y(k), (1 l.b) 

bk 
A 

until I bk I ::s;;;f2 • Call this time instant T2• 

Take u(T2)=y(T2), u(T2 + l)= -y(T2 + 1) 
~ore general, let Tk be the first time instant j after Tk - I + l such that 
I bj I ::s;;;fk· For j e[Tk-1 +2,Tk -1] take: 

,. 
. a-ak . 

u(j) = -,. -y(j) (11.c) 
bk 

for i =O, 1, take: 

(11.d) 

Now, in any case u(k) is well-defined for every k, moreover we have the fol
lowing: 
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LEMMA 1.2 { -rk I k el\l, -rk < oo} is finite. 

A 

PROOF Assume the contrary, then Vk lb(-rk)I ~£k• Since tk,1,0 this means 
A 

fun b(-rk) = 0. 
k➔«J 

And hence by (8) also 
A 

fun b(-rk + i) = 0 Vi. 
k➔«J 

Take a convergent subsequence 

fun (as.,hs.) = (ii,b). Then also: 
k➔«i ,. -

fun (a2+.,. ,b2+s.) = (ii,b ). 
k➔«J 

Hence by (5.a and 11.d), see also the proof of Example II.1.2.3: 

- - l - -a = a = 2(ao-a) + (b0 -b)) 

and: 

- - 1 -:;:;\ -a = a = -(ao-a, - (b0 -b)) 
2 

Hence: 

ao + bo - a - b = 0 

and: 

ao - bo - a + b = 0 

This yields: 

fun a(sk) = fun a(sk + 1) = ao. 
k➔«i k➔«i 

and: 

fun b(sk) = fun b(sk + 1) = bo:;'=O, 
k➔«i k➔«J 

which is already a contradiction, but we even have 

fun (ak,bk) = (ao,bo), 
k➔«i 

by (7). The statement follows. 

A 
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(12) 

(13) 

Say 
and 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

D 

The idea behind this algorithm is that every time that bk comes too close to 
zero, we apply a piece of a sufficiently exciting input sequence. If we have to 
do this infinitely many times, the complete exciting sequence is appliep and the 
system is identified. Now if we adapt our si!ip around zero which b(k) must 
not enter, in a decreasing way, we know that b(k) will never enter it after some 
finite time instant. This time instant depends on, among other things, the true 
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system, hence it is unknown. All we know is that it is finite and that is 
enough, because that means that the asymptotic behavior of the algorithm is 
not influenced by the modification pr0£<:dure. So, if the original algorithm 
worked well under the assumption that bk stays bounded away from zero, the 
modified algorithm also works without that assumption. 
Although Example 1.1 may seem to be a little tricky, a fairly general method 
can be derived from it. We will now describe this method. First we will give 
the assumptions on which the method is based, then we will state the theorem 
that describes the main property of the method, we will then comment upon 
the assumptions and the theorem and finally we will prove the theorem. 
The parameter space is Rn X Rn, equipped with the Euclidean norm. Let the 
algorithm be recursive and based on certainty equivalence: 
A - A 

8k+I = 8(8k,y(k + l), .. ,y(k-n + 1),u(k), .. ,u(k-n + 1)) 
A A A 

(Mk,Nk) = /(8k) 

u(k) = m1(k)u(k-l)+ .. +1nn-1(k)u(k-n + I)+ 

no(k)y(k)+ .. +nn-1(k)y(k-n + 1) 

The notation is as in Ill. Let O be the set of regular parameters: 

(21.a) 

(21.b) 

(21.c) 

0 = {8eRn xRn I /(8) is well-defined} (22) 

Then (21.b) is well-defined only if for all k: 
A 

8ke0 (23) 

Let the true, to be controlled system be represented by 
80 = (A 0,B0)eRn xRn. This means that the observed data satisfies: 

y(k + 1) = a8_y(k)+ .. +a~-J.Y(k-n + 1)+b8u(k)+ .. +b~_1u(k -n + 1) (24) 

AssuMPTIONS: 

Al 80 = (A 0 ,B0)e0. 
A2 0 is open and dense. 
A3 There exists a sequence of controllers (M*(k),N*(k))e"l:.c(n), such that if 

for all k: 
u(k) = mi(k)u(k-1)+ .. +m:-i(k)u(k-n+l)+ 

n~(k)y(k)+ .. +n:_1 (k)y(k-n + 1), 
then:,.. 
lim Bk = 80 

k-+<X) 

~ormly in the initial state (y(O), .. ,y(-n + l),u(-1), .. ,u(-n + 1)). 
A4 8 is such that for every initial st~te 

(y(O), .. ,y(-n + 1),u(-1), .. ,u(-n + 1)), and every initial estimate B0 , 

there exists a sequence of non-negative real numbers {Bk}keN, such that 
fqr every input sequence { uk }keN, the following holds: 
IIBk+1 - Boll ,e;;; IIBk - Boll + Bk 
and: 
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00 

~ 8k < 00 
k=O 

MODIFICATION Choose a sequence { Ek }keN, such that: 

Ek ..1,0 (k➔oo) 

Define: 
A 
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(25.a) 

dk = inf 119k - 911 (25.b) 
8e8(0) 

( 8('1) = boundary ('1)). Define the input sequence as follows: 

u(k) = m 1(k)u(k-l)+ .. +mn-i(k)u(k-n + 1) (25.c) 

+no(k)y(k)+ .. +nn-1(k)y(k-n + 1) 

for Tj+ j + 1:s;;;;k:s;;;;Tj+l -1, j =0,1,2,3, .. , 

u(k) = mi(i)u(k-1)+ .. +m:-i(i)u(k-n+l) (25.d) 

+no(i)y(k)+ .. +n:-1 (i)y(k -n + 1) 

fork = Tj +i, j =O, 1,2,3, .. , i =O, 1,2, .. ,j. 
where the sequence { 'Tj }keN is defined by: 

To = min{i;;;..O I d;:s;;;;fo} (25.e) 

(25.f) 

The minimum is defined to be infinity if the set over which the minimization 
takes place is empty. 

THEOREM 1.3 Under the assumptions Al, .. ,A4 and with the modification (25) 
the following holds: For all initial _ states 
(y(O), .. ,y(-n + l),u(-1), .. ,u(-n + 1)) and for all initial estimates 90 , there 
exist an E>O and a KeN, such that for all k;;;..K: 
(i) 'Tk = 00 

(ii) ,}k;;;..f. 
(iii) Ok e'1 

Before we prove this theorem let us first comment upon it and the assumptions 
under which it holds. 
Al (A 0 ,Bo)e'1. This means that it is assumed that the true system belongs 

to '1. If '1 is for instance the set of all (A,B) such that the corresponding 
polynomials have no common roots, then A 1 is a standard assumption in 
the context of adaptive control. It is hard to imagine that one could do 
without Al, because if the assumption would not hold for the true sys
tem, then it could not be controlled even if we knew (A 0,B0), let alone 
controlled adaptively. 

A2 The requirement that Dis open, together with Al guarantee that (A 0,B0) 
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lies in the interior of n. A4 will then yield that once the estimates are 
close enough to (A0,B0), they will never leave n. The requirement that 
n is dense is not strictly needed, but is fulfilled in most potential applica
tions of our method. 

A3 A3 means that it is assumed that there exists a sequence of feedbacks 
that is sufficiently exciting_ with respect to the algorithm (5). 
Uniform convergence of (Jk with respczt to the initial conditions should 
not bet too restrictive. For instance, if fJ satisfies 
(i) fJ(fJ1.Ay(O),A)'(l), .. ,Ay(n -1),Au(O), .. ,Au(n -1)) 

= fJ(fJ,y(O), •• ,y(n -1),u(O), .. ,u(n -1)) 
!or all fJeRn XRn ,y(i),u(i)eR, AER. 

(ii) fJ is continuous in (y(O), .. ,u(n -1)), 
then convergence of (Jk implies uniform convergence. Uniform conver
gence is needed since the exciting sequence is started at different time 
instants and hence for different initial conditions. 

A4 Is a standard property of many algorithms in the literature for the case 
that Bk=°· Our assumption is slightly weaker and is useful if other than 
dead-beat observers are used. In the continuous time case, where dead
beat observers do not exist, a similar property holds with 81 >0. The 
geometrical . interpretation of A4 is that at ~ iteration the estimate 
comes closer to 90 modulo some summable .disturbance. In particular 
this implies boundedness of the sequence of estimates. 

A A k-1 
llfJ(k)-fJoll < llfJ(O)-fJoll+ l'; 81 (26.a) 

j=O 
A QO 

< llfJ(O)-fJoll+ l';B1 < oo (26.b) 
j=O 

and, more general, for all k and all /;;;;ai.1: 
A 1-1 

llfJ(k+l)-fJoll < llfJ(k)-fJoll+ l';Bk (27) 
j=k 

THE MODIFICATION The input sequence is constructed as follows. Assume 
,,.0, •• ,,,.1 have already been defined. At time ,,.1 we start to apply the sufficiently 
exciting input sequence 

u(j+i) = mi(i)u(j+i-1)+ .. +m:-i(i)u(j+i-n+l) (28) 

+no(i}y(j +i)+ .. +n:-1 (i}y(j +i-n + 1) 

we do this for j time steps. After that, inputs are calculated according to the 
certainty equivalence principle until the distance of the estimate to the boun
dary of n becomes smaller than fJ + 1• This time instant is called ,,.1 + 1 and 
again we start to apply the exciting signals, but now for j + 1 steps. The 
sequence {,,.1} can be seen as a sequence of stopping times (terminology bor
rowed from the theory of stochastic processes). 
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PROOF OF THEOREM 1.3 (i) Assume the contrary. I.e. Vk: -rk<oo. Then 

fun d(-rk) = 0. 
k➔CO 
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(29) 

On the other hand, for every £>0 there exists k(£), such that for every initial 

state (y(0), .. ,y(n -1),u(0), .. ,u(n -1)) and i0 such that 

(30) 

the following holds: Start the algorithm in i0, with the system in state 
(y(O), •• ,y(-n + 1),u(-1), .. ,u(-n + 1)): 
A A 

Bk+l = 6{6t,y(k + 1),y(k),u(k), .. ,y(k-n + l),u(k-,;·+ 1)) (31.a) 

u(k) = mi(k)u(k-1)+ .. +m:-i(k)u(k-n+l) (31.b) 

n~(k)y(k)+ .. +n:-JY(k-n + 1) 

then, by A3, for all k ;;;..k(£): 
it 

llllk - lloll < £ (32) 

Denote by fo, the distance between 110 and the boundary of 0. By Al and A2 
fo > 0. Since for all k: 

IIBk-lloll<IIBo-lloll+ ~:°=oBk, (33) 

we know from (30,31.b,32) that there exists k 1 such that for all k;;;,.k 1: 

A 1 
llll~. +k - llo II < 4 fo (34) 

Choose k2 such that for all k;;;,.k2 : 

co 1 
~ Bj < -fo (35) 

j=k 4 

then, for all / 1,/2 ;;;,. k2: 

In particular, if we take: 

k3 = min{-rj + j;;;,. k2}, 
J>k, 

then, by (34,36) for all k;;;..k3 : 

A A 1 
llllk - llo II < llllk, - llo II + 4fo 

1 1 1 
.._ -fo + -fo = -fo 

4 4 2 

(36.a) 

(36.b) 

(37) 

(38.a) 

(38.b) 
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This implies that for all k ;;;;;i, k 3 : 

I 
dk ;;;;;i, 2€o 
Choose k 4 such that for all k;;;ai,k4 : 

I 
Ek ,e;;; 4€(), 

then, by (25.f,39), we conclude that: 

Finally talce: 

K = I + max{k I .,.k < oo} 

by (41) K is finite. 

(ii) Talce £ = t:x. 
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(39) 

(40) 

(41) 

(42) 

(iii) From (ii) we know that for allAk;;;ai,K, dk>£. Now, since O is open and 
dense this means that for all k;;;ai,K: liken. 

D 

The importance of this theorem lies in the fact that it can be used in adaptive 
control algorithms in which the complement of an open set must not be 
touched. 
Suppose we have an adaptive control algorithm which satisfies Al, A2, A3 and 
A4. Suppose that the algorithm behaves well asymptotically under the extra 
assumption: A 

A4' 'r/k: d(llk,8(0)) ;;;;;i, £' for some open set OcRn xRn and £'>0. 
Then Theorem 3 can be used to modify the algorithm so as to ensure that A4' 
is satisfied without changing the asymptotic behavior of the algorithm. The 
modification is described by (25). Theorem 3 then says that after some finite 
time instance the modification is not used anymore. 
The conclusion is that assumption A4' may be replaced by A4 without chang
ing the asymptotic behavior of the algorithm. 
We have described a general method of how to avoid certain open subsets of 
the parameter space. The idea on which it is based was first described in [55]. 
The modification there differs in the sense that the ·time intervals during which 
the exciting inputs are used, are constant in length. For specific classes of sys
tem and algorithms other modifications based on the same idea may be used, 
as can be concluded from the first-order example. 
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2. ADAPTIVE PoLE-AssIGNMENT 

2.1 Introduction 
In this section we will present an algorithm for adaptive pole-assignment of 
single-input/ single-output linear time-invariant systems of which only the 
order is assumed to be known. 1bis problem has received considerable atten
tion in the literature, see for instance [3,13,14,15,17,21,31,42,56]. In 
[3,14,15,17,21] the problem is studied for systems in input/output form with 
the only assumption that the order of the system is known. Algorithms based 
on parameter estimation and the certainty equivalence principle are proposed. 
In all of these papers stability results are derived under additional assump
tions. The main reason that these assumptions have to be made seems to be 
that during the estimation procedure (unstable) pole-zero cancellation can 
occur. 1bis can be avoided by assuming extra knowledge of the true system, 
which reduces the results essentially to local ones. Another way of avoiding 
that parameter estimates eventually have common factors is to use sufficiently 
exciting-signals to assure convergence of the estimates to the true parameter 
value. It should be clear that additional injected signals can influence the per
formance of the system negatively, moreover it is always difficult to guarantee 
internal excitation by means of conditions on an external signal, since external 
excitation may be annihilated by unpredictable signals in the feedback loop. 
In [31,42] algorithms are presented that overcome this difficulty. The reader is 
referred to Section III. I for a discussion of these papers. 
The algorithm presented here is based on the ones that were developed in 
[50,53,55]. 
We will use both the input/ output description as well as the 
input/ state/ output representation of the systems at hand. The state space 
description is more convenient for parts of the analysis and to state the results 
in a clear fashion, whereas the input/ output description seems to be the right 
tool for the estimation part of the algorithm. 
The main result is that the asymptotic closed-loop behavior of the adaptive 
controlled system equals the behavior we would have obtained knowing the 
true system parameters. The proof of this result is independent of the desired 
pole locations. Hence even in the somewhat unrealistic situation where one 
wants to place the closed-loop poles in the unstable region our algorithm is 
applicable. 1bis may look purely academic, but it shows that the adaptation of 
the controller parameters does not depend on stability properties of the sys
tem. The reason that we are able to derive such a result is that we consider the 
unknown parameters in the state space description as linear maps of which we 
want to know the action on certain subspaces. The variables on which these 
maps act can then be normalized without losing any information. 
The algorithm is based on neutrality and certainty equivalence. In 11.2 we 
proved that for pole assignment the set of invariant points G of any neutral 
certainty equivalent algorithm is contained in the set of all parameter values 
that give rise to the desired controls, H. The algorithm presented here relies on 
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this property. To avoid that parameter estimates eventually become non
reachable a modification of the type described in the previous section is used. 
The rest of this section is subdivided into four subsections. The first contains 
the problem statement and a general theorem. The second is devoted to the 
case where the state of the system is directly available. That part serves mainly 
as a preparation of the general case which is treated in the third part. Finally, 
in the fourth subsection we will give simulation results. 

2.2. Problem statement 
Consider the following time-invariant finite dimensional linear system: 

x(k + I) = Ax(k) + bu(k), with initial state x(0), 

y(k) = cx(k) 

(A,b)eEob, where 

(2.1.a) 

(2.1.b) 

Eob:={(A,b)eRnxnxRnxl I (A,b,c) minimal (2.2) 

(c0,A) in standard observable form} 

Also define: 

Ere:={(A,b)eRnxnxRnxl I (A,b) reachable} (2.3) 

Let A:= p.1, .. ,~} cc be such that AeA AeA. Let the control objective be 
the assignment of the closed-loop poles to the configuration A. Define 

n 
weR(X] by: w(X)= Il(X-A;). 

i=I 
Define/ : E,e ➔ R I Xn by: 

f(A,b):= -(0 .. 01) [b:Ab: ... :An- 1br 1w(A) (2.4) 

Then the characteristic polynomial of A +bf(A,b) is exactly w, and moreover, 
since the system is single-input,/ (A,b) is the only feedback law with that pro
perty. ( see [261). 
Suppose now that the true value (A 0 ,b0 ,c0) of the system parameters is 
unknown. Then the control objective has to be replaced by a weaker one. As a 
modified version of the original control objective we choose the following: 

Generate a sequence of inputs such that asymptotically the applied 
inputs equal the inputs that would have been calculated on the basis of 
the true system parameters. 

The following theorem relates the requirements described above to the result
ing closed-loop behavior of the system. 

THEOREM 2.2.1 Let (A,b)eRnxn XRnxI, not necessarily reachable, and let 
/eR1xn_ Let the sequence {u(k)}keN and x(0)eRn be given. Define x(k) by: 

x(k + 1) = Ax(k)+bu(k) (2.5) 

Assume that for all k: x(k) =/:= 0 and suppose: 
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fun I u(k)- fx(k) I = 0 
k-+rx, llx (k )II 
Then there exists a sequence of matrices {Ak}keN such that for all k: 

i) x(k + 1) = (A +bf +Ak)x(k) 

ii) fun Ak =0 
k-+rx, 

PROOF Define: 

A . _ b(u(k)-fx(k))x(kf 
k -· x(k)Tx(k) 

then one can easily check that (2.7) holds. (2.8) follows from (2.6). 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

□ 

COMMENT Theorem 2.2.1 tells us that if the input of a linear system is asymp
totically given by state feedback, then asymptotically the system will behave as 
if this feedback was used. This result holds whether f is stabilizing or not. An 
important feature in the assumption of the theorem is the normalization. This 
decouples the result from the norm of the state trajectory, and emphasizes that 
everything depends only on the directions of the states. 
Now consider Theorem 2.2.1 and replace (A,b) by (A 0 ,b0 ) and f by f (A 0 ,b0). 

This illustrates what kind of result we get if we are able to produce a sequence 
of inputs which satisfies (2.6). In sections 3 and 4 we will present algorithms 
which produce such sequences. 

2.3. An algorithm for the observed state case 
We will now propose an algorithm for the case that the state of the system 
(2.1) is observed. This is of course not a very realistic situation, but on a con
ceptual level it provides a good preparation for the non-observed state case. 
The algorithm is a modification of the one described in [50,53]. There an 
essential assumption was made on the controllability of the limit points of the 
sequence of parameter estimates. By introducing an alternative procedure 
when the parameter estimates are close to non-reachable, this assumption can 
be relaxed. A drawback is that the analysis of the algorithm becomes more 
complicated. However, the superficial reader can take it for granted that 
parameter estimates and their limit points are reachable, without losing appre
ciation of what is going on. 
ALGORITHM 3.3.2 
We will introduce the algorithm inductively. Choose any sequence {f:k} and 
any sequence {Ck} such that: 

(k!O and ck too (3.1) 

A A 

INITIALIZATION(A 0 ,b0): arbitrarily,h0 = 0,Jo = 0,x(O): given. 
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RECURSION 

Bk = d(Ak,bk) 

(d(A,b) denotes the determinant of the controllability matrix of (A,b)). 

if hk = 0 

then: 

{ if Bk ~ ~. 

then: 

{ u(k) = f (Ak,bk)x(k) 

hk+l = hk 

]k+1 = ]k} 

else (if Bk<ii.) 

{ u(k) = Ci• llx(k)II 

hk+l = n 

,,.A = k 

]k+l = }k+I}} 

else (if hk>O) 

{ u(k) = 0 

hk+l = hk-1 

]k+I = ]k} 

{ x(k + 1) = A 0x(k)+b0u(k) 

x(k + I) = Akx(k)+bku(k) 

Ak+I = Ak + (llu(k)ll2 +11x(k)ll2)- 1(x(k+l)-x(k+l))x(kf 

bk+I =bk+ (llu(k)ll2 +11x(k)ll2)- 1(x(k+1)-x(k+l))u(k)} 
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(3.2) 

(3.2.a.1) 

(3.2.b.l) 

(3.2.d.1) 

(3.2.a.2) 

(3.2.b.2) 

(3.2.c.2) 

(3.2.d.2) 

(3.2.a.3) 

(3.2.b.3) 

(3.2.d.3) 

(3.2.e) 

(3.2.f) 

(3.2.g) 

(3.2.h) 

D 

REMARK The division in (3.2.g) and (3.2.h) can of course only be done if x(k) 
or u(k) is non-zero. Therefore, if x(k0 ) = 0 for some k0 , we do not change 
the estimates anymore and we take u(k) = 0 for all k ~ k 0 • For the analysis 
of the algorithm we will assume that x (k )::;60 for all k. This assumption is also 
needed if we want to apply Theorem 2.2.1. .. .. 
COMMENT Let us first explajn pow the (k + 1 )- th .. es~ate, (Ak+ 1,bk+ 1) of 
(A 0 ,b0 ) is calculated from (Ak,bk,u(k)). Suppose (Ak,bk) has been calculated 
and that u(k) has been applied to the true system, this gives: 
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x(k + l)=A 0x(k)+b0u(k) 

Define 

Gk+I: = {(A,b)ERnXn xRnX) I Ax(k)+bu(k)=x(k + 1)} 
A 
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(3.3) 

(3.4) 

then Gk + 1 is exactly the set of those parameters that are able to exp!ain the 
transition from x(k) t~ x(k j- 1), given u(k). Sin~ a fortiori (A 0,.b0)EGk+ 1, it 
is natural to choose (Ak+i,bk+I) somewhere in Gk+I· Since Gk+I is linear 
affine, we can take the orthogopal,.projection of (Ak,bk) on Gk+I· One may 
check that the recursions for (Ak,bk) as defined by (3.2.g, 3.2.h) are indeed 
b!lSed ~n this geometrical consideration. As a f!rst,. consequence we have that 
(Ak+I,bk+i) will be closer to (A 0,b0) than to (Ak,bk) and hence the sequence 
of estimates is bounded. The idea of orthogonal projection is not new, it was 
already used in [20] and [6]. ,. ,. 
The algorithm is obviously recursive. Also, since (Ak+ 1,bk+ 1) = (Ak,bk) if and 
only if x (k + 1) = x(k + I), neutrality and sensitivity are guaranteed. 
Also it is based on certainty equivalence except in the case that the special 
inputs are applied. In Lemma 2.3.3 we formally prove that these special inputs 
are applied only a finite number of times, but first we will explain intuitively 
how u (k).. is calculated. Of course one would prefer t,.o ,. take 
u(k) = f (Ak,bk)x(k), for all k, however it is always po~sib!e that (Ak,bk) is 
non-reachable, which makes it impossible to calculate J(Ak,bk)- If we assume 
extra knowledge of the system, for inslfillce if we assume that (A 0,bo) belongs 
to a known convex subset of E,e, then (Ak,bk) will be reachable for all k, but 
we want to have a global result, 1D,other possibility is to inject sufficiently 
e~cit,ing input signals to force (Ak>bk) to converge to (A 0 ,b0 ). In finite time 
(Ak,bk) will then be in a convex neighborhood of (A 0 ,b0 ) contained in E,e· But 
we do not want to add exterl!_al ~ignals all the time. What we do is the follow
ing. 8k mea,.sur~s how close (Ak,bk) is to non-reachable. If 8k is large, we take 
u(k) = J(Ak,bk)x(k), if 8k is small (measured by the sequence t) we start an 
alternative procedure. First we take a large input, large compared to the norm 
of x(k). Then we apply n times the zero-input, and the distance checking pro
cedure starts again. We denote by -rj the time instant at which the alterpatj_ve 
procedure starts for the j - th time. -r1 is the first time that an estimate (Ak,bk) 
is closer to the boundary of the set of reachable pairs than £1• -ri + 1 is the first 
time after -ri + n that an estimate is closer to the boundary of the set of reach
able pairs than £_;+I· At time -rj, the input is taken to be Cillx(-rj)II, after which 
we apply the zero input for n time steps and the distance checking procedure 
starts again. The sequence Ti constructed in this fashion can be interpreted as 
a sequence of stopping times (terminology borrowed from the theory of sto
chastic processes). 
As soon as k = oo (which can take quite a long time!), it is easy to see that: 

A A 

Tk = min { j ~ -rk-1 +n + I I d(Aj,bj)..;; Ek} 

(3.5) 

(3.6) 
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The minimum is understood to be infinity if the set over which the minimiza
tion takes place is empty. 
Suppose now that there is an infinite number of finite stopping times. Then 
essentially what happens is the following. Due to the growing inputs at time 
'l'k, the dynamics of the system (i.e. the matrix A 0), will be dominated by the 
input. As a consequence ho will be identified asymptotically. Moreover, the 
states x(Tk + 1) will converge to the subspace spanned by h0 • Finally, since we 
apply zero-inputs and because of the controllability of (A 0,h0), the states 
x ( .,.k + I), ... , x ( .,.k + n) will asymptotically span the whole state space. This 
means that asymptotically we will measure the action of A O on AtheA whole 
state space and hence A 0 will be identified too. In other words (Ak,hk) will 
converge to (A 0,h0 ). But since (A 0,h0) is reachable, it has a positive distance 
to the boundary of Ere. However, the assumption that the set of finite stopping 
tiples A is infinite and the fact that f._J tends to zero, imply that the limit points of 
(A-r.,h-r.) are non-reachable. This is a contradiction and hence the number of 
finite stopping times is finite. This procedure of avoiding that estimates come 
too close to the boundary of the set of reachable pairs is, of course, not 
exclusively applicable to pole assignment. It can be used for every adaptive 
control problem where pole-zero cancellation of the estimates can occur. It 
proves that a search through the (A,h )-space can be done as long as one is wil
ling to accept temporary alternative inputs. Moreover, the alternative pro
cedure is started and switched off automatically, which is completely in the 
spirit of adaptive control The inputs u(Tk), ... ,u(Tmax) can be interpreted as an 
initial excitation signal, not for identification purposes but only to avoid pole
zero cancellation of the estimates. The sequences f.j, Cj can be seen as design 
parameters. 
We kno1:r Anow that after some time instant we will always use 
u (k) = / (A1,hk)x (k ). 'J\e original motivation of this control policy combined 
with the projection on Gk+ 1 lies in the theory described in 11.2. For suppose 
that the sequence of estimates converges to (A,h) say. Then (A,h) is an invari
ant point of the algorithm and hence it should satisfy: 

A +h/(A,h) I~ = Ao+hof(A,h) I~ (3.7) 

where~ is the invariant subspace spanned by the asymptotic state trajectory. 
From Theorem 11.2.3 we can then conclude that /(A,h) I~ = /(A 0 ,h0) I~. 
and in particular that asymptotically the applied input equals the desired 
input. 

D 

In the next three lemmata we will derive some basic properties of the algo
rithm including the finiteness of the set of finite stopping times. 

LEMMA 2.3.l ll(Ak,hk)-(A 0 ,h0 )11 is a decreasing sequence, hence it converges 
to some real constant R ;;;,. 0. 



2. Adaptive Pole-Assignment 75 

PROOF This is it direct consequence o( the o,rthogonal projection feature, which 
assures that ll(Abbk)-(A 0,bo)II ;;;;. ll(AH1,hH1)-(Ao,ho)II. 

□ 

Although Lemma 2.3.1 is very simple, not to say trivial, it js l!ll important 
feature of our algorithm. A direct consequence of 3.1 is that (A,1c,b;.) converges 
to a sphere with centre (A 0 ,b0) and radius R. If R =0 then (Ak,bk)➔(A 0,b0) 
and we are done. In the sequel we will therefore assume that R >0. 

A A A A 

LEMMA 2.3.2 lim ll[(Ak+1,bk+1)-(Ak,bk)]II = 0 
k➔IY:J 

PROOF Suppose the claim i~ not pue. Thep. ~ere exists t:>0 and a sequence 
{sk}, such that for all k: ll[(As +1,hs +1)-(As ,bs )]II ~ t:. 

A A le 1c A; A; 

Now denote ll(Ak,bk)-(A 0 ,b0 )11 by rk. Choose 8>0 and let k 0 be such that 
R~rs. ~R +8 for all k ;;;;. k 0 • Using Pythagoras' theorem we see that for all 
k;;;;. ko: 

for some positive constant C and 8 sufficiently small. 
Since rk is non-increasing we have rs. - Tsu, ~ C, which yields: 

rs. <rs •• -C(k-ko)~R +8-C(k-ko)-

Hence there exists k such that rs, <R, which is a contradiction. 

LEMMA 2.3.3 { Tk I k EN, Tk < oo} is finite. 

A A 

(3.8) 

(3.9) 

(3.10) 

□ 

PROOFA Suppose the contrary. Assume that (A-r.,b-r.) converges, say 
lim (A-r.,b-r.) = (A,b). (Otherwise take a suitable subsequence). Then, for all 
k➔oo 

k: 

d(A,b) < t:k (3.11) 
A A A 

Hence (A,b) is non-reachable. Since for all k: (Ak+J,bk+J)EGk+J, we have: 
A A 

x(k + 1) = Ak+ 1x(k)+bk+ 1u(k) 

= Aox(k)+b0u(k) 

In particular: 

X(Tk+ 1) 

llx(Tk + 1)11 

A A 

A-r.+1X(Tk)+b-r.+1 Ckllx(Tk)II 
A A 

IIA-r.+1X(Tk)+b-r.+1 Ckllx(Tk)IIII 

Aox(-rk)+ boCkllx(Tk)II 

IIAox(Tk)+boCkllx(Tk)ll11 

(3.12.a) 

(3.12.b) 

(3.13) 

(3.14) 
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Now: 

fun x(Tk + 1) = fun Aox(Tk)+boCkllx(Tk)II 

k➔r:ll llx(Tk + 1)11 k➔r:ll IIAox(Tk)+boCkllx(Tk)II II 
(3.15) 

X(Tk) 
Ao llx(Tk)II +boCk 

X(Tk) 
IIAo llx(Tk)II +boCkll 

(3.16) 

= fun 
boCk ho 

x(Tk) = llboll = pbo (3.l7) 

IIAo llx(Tk)II +boCkll 

for some p#J. On the other hand, if we take the limit in (3.13), we obtain: 

pb 

Hence: 
,. 

fun b,. = ho 
k➔rll • 

From (3.2.a.3) and (3.19) we can now conclude that: 

fun x(Tk+i) = Ab-1bo 

k➔r:ll llx( Tk + i)II IIAb- 1 b0 II 
i = I, .. ,n + l 

,. ,. 
Sinceforallk: x(k+l) = Ak+1x(k)+bk+luk, we have: 

,. 
X(Tk +i + 1) = A.-.+1+1X(Tk +i) = Aox(Tk +i) 

" X(Tk+i) AoX(Tk+i) 
A.-.+i+I llx(Tk+i)II = llx(Tk+i)II 

Taking limits on both sides gives: 

A Ai-lb - A Ai-lb 
.l'U'10 0 - 0 0 0 i = 1, .. ,n 

Since (A 0 ,b0 ) is reachable, we conclude that A =Ao and hence: 
,. ,. 

kfun (A,.,,b,..) = (Ao,b0) 
➔rll 

And thus 

(A,b) = (A 0 ,b0 ) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Since by assumption (A,b) is non-reachable, we have a contradiction and the 
statement follows. 

D 

COROLLARY 2.3.4 For all k sufficiently large, (Ak,bk) is reachable and moreover 
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all the limit points of {Ak,bk} are reachable. 

ANALYSIS OF THE ALGORITHM 

The properties of the algorithm. will be derived in several steps. First we will 
state our main result. 

1imOREM 2.3.5 Consider the (controlled) system (2.1,3.2), there exists a 
sequence of matrices {4k}keN, such that: 

A A 

i) x(k + 1) = (Ao +bof (Ak,bk))x(k) 

= (Ao +bof (Ao,bo)+ak)x(k) 

ii) lim 4k = 0 
k➔co 

(3.26) 

(3.27) 

(3.28) 

COMMENT. Theorem 2.3.5 tells us that asymptotically the action of the closed
loop matrix is identical to that of the optimal closed-loop matrix. It should be 
noticed that we do not claim that the real closed-loop matrix converges to the 
optimal one, but only as far as the action on the real state trajectory is con
cerned. This weaker form of convergence is not surprising, if we realize the 
fact that the estimation procedure only receives information about the action 
of the real closed-loop matrix on the state trajectory. We propose the term 
'weak self-tuning' fo! tips kind of behavior. Self-tuning would have implied 
that lim Ao+bof(Ak,bk) = Ao+B0f(A 0,bo), which we do not claim. Note 

k➔co 

that the above result is valid whether or not A is contained in the unit disk. 
This shows that the adaptation part of the algorithm. does not depend on the 
stability properties of the closed-loop system. The reason that the result holds 
even for the unstable case, is that the estimation part of the algorithm. depends 

on the direction of x(k) (i.e. 11~~!~11 ), rather than x(k) itself. The normaliza

tion plays an important role in the proof of Theorem 2.3.5. Of course for sta
bility of the closed-loop system it is needed that A is contained in the unit 
disk. 

D 

A A 

PROOF By Lemma 2.3.3 there epsts k0 such that uk = f (Ak,bk)x(k) for all 
k > k0 • Hence by definition of Gk+h we have for all k > k0 : 

,. ,. ,. ,. ,. ,. x(k) 
[(Ao +bof (Ak,bk))-(Ak+1 +bk+if (Ak,bk))] llx(k)II = 0 (3.29) 

Using Lemma 2.3.2, Corollary 2.3.4, and taking limits at both sides of (3.29) 
gives the statement. 

D 
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THEOREM 2.3.7 
• • A A x(k) 

(1) k~ ll(f(Ak,bk)-J(Ao,bo)) llx(k)II 11=0. 
• A A x(k) _ 

(ii) k~ [(A 0 +b0/(Ak,bk))-(Ao+bof(Ao,bo))] llx(k)II - 0. 

PROOF (i) Suppose the claim is not true. Then there exist t>O and a subse
quence {sk}, such that for all k: 

A A x(sk) 
ll(f(Ask,bs.)-J(Ao,bo)) llx(sk)ll 11 ;;a. f (3.30) 

Assume that { sk} was already such that: 
A A 

fun (Ast•bs.) = (A,b) 
k➔«J 

fun x(sk) = x• 
k➔«J llx(sk)II 

for some (A,b)eEre and x• eRn. Then for all/: 

Define xk and zk by: 

xk = (A+bf(A,b)f x.. k =O, 1,2, .. 

zk = (A 0 +b0/(A,b)fx*, k=0,1,2, .. 

Then by Lemma 2.3.6 and (3.33), we have for all k: 

Xk = Zk 

Hence by Theorem 112.3 it follows that in particular: 

J(A,b)x* = /(Ao,bo)x• 

This contradicts (3.30), and the statement follows. 
(ii) This follows from Lemma 2.3.6 and (i). 

PROOF of Theorem 2.3.5: 
This is now a direct application of Theorem 2.3.7 and Theorem 2.2.1. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

D 

D 

REMARK In [50,53] Theorem 2.3.5 was proven in a slightly different way. 
There the notion of excitation space was introduced. This is the space spanned 

by the limit points of { ll~~z~II }keN• Denote this space by~ From Theorem 

2.3.7 we can then derive that: 
A A 

fun [f (Ak,bk)-/(Ao,bo)Jx = 0 
k➔«J 

(3.38) 
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for all x e~ which imJ?li~ that only on the asymptotic active part of the state 
space the action of / (Ak,bk) is as desired. This illustrates the term weak self
tuning. Also it can be proven that ~is invariant under Ao+bo/(Ao,bo). 

2.4. An algorithm for the unobserved state case 
We will now propose an adaptive pole assignment algorithm. for the class of 
single-input/single-output discrete time systems of (known) order n. The algo
rithm. is based on ideas developed in the previous section. There it was 
assumed that the state of the system was observed. This assumption is now 
relaxed, and hence the algorithm. should also contain an observer. Indeed, the 
algorithm. consists of an estimation part including an adaptive observer and a 
control part. However, one can also view the estimation part as an adaptive 
partial realization procedure, since no attempt is made to identify the system 
parameters completely, and the true state trajectory (whatever that may be, 
since there is no such thing as a true state trajectory) is not reconstructed 
either. What we really end up with is not a complete realization of the 
unknown system, but an input/ state/ output description that is suitable for one 
input/ output sequence, namely the asymptotic one. This section runs very 
much parallel to section 2 and the reader is referred to that section for some of 
the details and discussions. 
We will first give three different descriptions of the system. Secondly we will 
introduce the algorithm. Then we will prove some basic properties. Next we 
will formulate the main theorem of this section: the characterization of the 
asymptotic closed-loop behavior of the controlled system. Finally, we will give 
the analysis of the algorithm, ultimately leading to the proof of the main 
theorem. 

THE SYSTEM: 

The true system is supposed to be linear, time-invariant, single-input, single
output and of known order n. Hence it has an input/ output description of the 
form: 

y(k + 1) = a8y(k)+ .. +a~-iY(k-n + 1)+b8u(k)+ .. +b~_1u(k-n + 1) (4.1) 

Since we want to work in i/s/o form, we realize (4.1) as follows: Define 
(Ao,bo,co)ERnxnxRnXl XRlxn, by: 

a8 1 0 

0 
Ao:= 0 bo := c0 : = (1 0 .. OJ (4.2) 

1 
0 Dn-l 0 0 

And define for every k, x(k)eRn, by: 

X1(k) = y(k) (4.3.a) 
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n -i n -i 

x;(k) = ~af+j-I.Y(k-1-j)+ ~bf+j-iu(k-1-j) i = 2, .. ,n (4.3.b) 
j=O j=O 

Then for all k: 

x(k + 1) = Aox(k)+b0u(k) 

y(k) = cox(k) 

(4.4.a) 

(4.4.b) 

Although there are of course many other realizations of 4.1, we will refer to 4.4 
as the true realization, and to the sequence {x(k)}keN as the true state trajec
tory. 
We will also need the following non-minimal realization of 4.1. Define 
Foe R<2n-1)x(2n-1) andgoeR<2n-J)xJ by: 

Fo := 

Define: 

a8 a~-2 a~-1 bY b~-2 b~-1 b8 

1 0 0 0 0 0 0 
0 

0 
1 

0 0 0 0 0 
0 1 

0 

·o 0 0 0 

0 0 

0 
1 

0 

0 

0 
Ko:= 1 

0 

0 

(4.5) 

,t,(k) : = [y(k),y(k -1), .. ,y(k -n + l),u(k -1), .. ,u(k -n + I)t (4.6) 

then for all k: 

,t,(k + 1) = F0,t,(k)+g0u(k) (4.7) 

Moreover, since (A 0,b0) is reachable, so is (Fo,go)- Finally define 
MeRnX(2n-l) by: 

1 0 0 0 0 0 0 
0 a1 a2 an-l bi b2 bn-l 

a2 a3 0 b2 b3 0 
M:= (4.8) 

an-l bn-1 
0 tln-1 0 0 bn-l 0 0 

then for all k we have by (4.3) that: 

x(k) = M,t,(k) (4.9) 
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THE ALGORITHM 2.4.11 
Choose any sequence { £k} and any sequence {Ck} such that: 

£kt0 and ck too (4.10) 

INITIALIZATION (Ao,bo): arbitrarily, ho = 0, Jo = 0, <l>(0): given. 

RECURSION 
A 

ao(k) 1 0 bo(k) 

0 
A A 

Ak := 0 bk:= (4.1 I.A) 
1 

A 

an-1(k) 0 0 bn-1 (k) 

O(k) := [ao(k), .. ,an-1(k),bo(k), .. ,bn-l(k)] (4.11.B) 

1 0 0 0 0 
A A 

0 a1(k) an-1(k) b1(k) bn-1(k) 
A 

A a2(k) 0 b2(k) 0 
Mk:= (4.11.C) 

A 

0 an-1(k) 0 bn-1(k) 0 

Bk = d(Ak,bk) (4.11.D) 

(d(A,b) denotes the determinant of the controllability matrix of (A,b)). 

if hk = 0 

then: 

{ if Bk ;;., £j, 

then: 

{ u(k) = f (Ak,bk)z(k) 

hk+I = hk 

}k+I = }k} 

else (if Bk<£_;.) 

{ u(k) = Ci, ll<l>(k)II 

hk+I = 2n-1 

(4.1 I.a.I) 

(4.11.b.l) 

(4.11.d.l) 

(4.11.a.2) 

(4.11.b.2) 
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,,.J, = k 

jk + 1 = jk + 1 }} 

else (if hk >0) 

{ u(k) = 0 

hk+l = hk-1 

ik+l = jk} 

{y(k+l) = a&r(k)+ .. +a~-tY(k-n+l) 

+b8u(k)+ .• +b~-1u(k-n + 1) 

y(k + 1) = S(k) +(_k) 

'A(k) = (ll+(.k)ll2)-1(y(k + 1)-y(k + 1)) 

a1(k + 1) = a,(k)+'>.(k)y(k-i) 
A A 

b,(k + 1) = b,(k)+'>.(k)u(k -i) 

x<k> = Mk+1+<.k> 

z<k + 1> = Mk+1+<.k + 1>} 

i = o, .. ,n-1 

i = o, .. ,n -1 

Chapter Ill 

(4.11.c.2) 

(4.11.d.2) 

(4.11.a.3) 

(4.11.b.3) 

(4.11.d.3) 

(4.11.e) 

(4.11.f) 

(4.11.g) 

(4.11.h) 

(4.lU) 

(4.11.j) 

(4.11.k) 

D 

REMAll The division in (4.11.g) can of course be done only if +(_k) or u(k) is 
non-zero. Therefore if +(_k0) = 0 for some k0, we do not change the estimates 
anymore and we take u(k) = 0 for all k ;;a. k 0• For the analysis of the algo
rithm we will assume that +(_k) =I= 0 for all k. This assumption is also needed if 
we want to apply Theorem 2.2.1. 

D 

COMMENT The interpretation of the algorithm is more or less the same as for 
the observed state case, the main difference being that now also a state trajec
tory has to be invented too. Define: 

A n-1 
Gk+t :={(ao,-•,tln-1,bo,•••bn-1)ly(k + l)= ~ (a;)'(k-i)+b1u(k-i)} }(4.12) 

i=O 

Then Gk+l is linear .. affine anq (a8, .. ,a~-1,b8, .. ,b~-i)eGk+t• Define 
(ao(k+l),..,a,,-1(k+l),bo(k+l), .. ,bn-1{k+l)) as the orthogonal projection 
of (ao(k), .. ,a,,-1(k),bo(k), .. ,bn-l(k)) on Gk+l· 

D 

Tm! OBSERVEll 

The definition of i(k) and z(k + 1) is motivated by tJie following analysis. 
At time k + 1 we compute (ao(k + 1), .. ,a,,-1(k + l),bo(k + l), .. ,bn-1(k + 1)) on 
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the basis of the observed data (u(k -n + I),y(k -n + I), .. ,u(k),y(k),y(k + 1)). 
Suppose we want to have an i/s/o description of this finite i/o sequence: 

x(j + I) = A(k + I)x(j)+b(k + I)u(j) j =k -n + I, .. ,k (4.13.a) 

y(j) = cox(}) (4.13.b) 

Let x be the unique solution of the equations: 

Aj-1- j-2A/ A 
O 0 

c0Ak+1x + c0 l:Ak+tbk+1u(k-n+1-I-l) =y(k-n+J) (4.14) 
/=O . 

j = I, .. ,n 

Then, if (Ak+t,bk+i) was the true parameter, x would have been the estimate 
of x(k -n + 1) based on the dead-beat observer for (A 0 ,b0 ). Since we use 

A A 

(Ak+t,bk+I) instead of (A 0,b0), the observer part of the algorithm can be 
interpreted as a certainty equivalence dead-beat observer. Now one may check 
that: 

,. "n-l_ n-2A/ A . 
x(k) = Ak+1x + l:Ak+1bk+1u(k-n + 1-1-1) 

/=O 

z(k + 1) = Ak+1X(k)+bk+lu(k) 

where x(k) and z(k + 1) are defined by (4.11.j) and (4.11.k). 

The next three lemmata give some essential properties of the algorithm. 

A A 

(4.15) 

(4.16) 

D 

LEMMA 2.4.1 ll(Ak,bk)-(A 0 ,b0 )11 is a decreasing sequence, hence it converges 
to some real constant R ;;;;i,, 0. 

PROOF See the proof of Lemma 2.3.1. 

□ 

PROOF See the proof of Lemma 2.3.2. 

□ 

LEMMA 2.4.3 { ,,.k I k eN, ,,.k < oo} is finite. 

A A 

PROOFA Suppose the contrary. Assume that (A,..,b,..) converges, say 
fun (A,. ,b,.) = (A,b). (Otherwise take a suitable subsequence). Then (A,b) 
k➔otJ • • 

is non-reachable. J?efine (.Fk,gk)eR<2n-l)X(2n-I)xR<2n-I)XI by replacing a? 
by a;(k) and b? by b;(k) in (4.2). Now the proof is completely analogous to the 
proof of Lemma 2.3.3. 

□ 
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,. ,. 
CoROLLARY 2.4.4 For a!). k,.sufficiently large, (Ak,bk) is reachable and moreover 
all the limit points of {Ak,bk} are reachable. 

D 

The analysis of ~-1 !) is as follows: first we will prove that the sequences 
{z(k + l)} and {(Ak,bk)} provide asymptotically a realization of the controlled 
system. Then we will apply Theorem 11.2.4 to the limiting behavior of the sys
tem to connect the true state trajectory with the constructed one. 

ANALYSIS OF THE ALGORITHM 

'Iiu!OREM 2.4;5 Consider the (controlled) system (2.1,4.11). Assume that there 
exists AeA such that A =fa 0. Then there exists a sequence of matrices {4k}keN, 

such that for k sufficiently large: 

(i) x(k + 1) = Aox(k)+b0/(Ak,bk)z(k) (4.17) 

= (Ao +bof (A 0 ,b0)+4_t)x(k)) (4.18) 

(ii) fun 4.t = 0 
k-+oo 

(4.19) 

REMARK .Just as in Theorem 2.3.5 we do not claim that (A 0 ,b0 ) is identified, 
nor is /(A 0 ,b0 ) identified. Even the state trajectory is not reconstructed. The 
coqstqicted state trajectory z(k) will in general not be,. eq_ual to x(k), nor will 
/(Ak,bk) be close to /(Ao,bo). In the limit, both /(At,bAJ and z(k) may be 
wrong, but the resulting input sequence u(k) = /(Ak,bk)z(k) will be as 
desired, and that is what really matters. Again this could be seen as a weak 
form of self-tuning. As in section 5, the above result is valid whether or not A 
is contained in the unit disk. This shows that the adaptation part of the algo
rithm does not depend on the stability properties of the closed-loop system. 
The reason that the result holds even for the unstable case, is that the estima-

tion part of the algorithm depends on the direction of 4'(.k) (i.e. ll~~~II ), 
rather than 4'(.k) itself. This normalization plays an important role in the proof 
of Theorem 2.4.5. Of course, for stability of the closed-loop system it is 
needed that A is contained in the unit disk. 

D 

Define: 
n-1 n-1 

dk = 114'{.k)II = [ l':y2(k - J)+ l°: u2(k -J)J* (4.22) 
j=O j=l 

LEMMA 2.4.6 
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(4.23) 

PROOF From Lemma 2.4.3 and (4.11.a.1) we deduce that for k sufficiently 
large: 

z(k + 1) = Ak+1x(k)+bk+if <Ak,bk>z<k> (4.24) 

Hence: 

z(k + 1) = (Ak+1Mk+1 +bk+if<Ak,bk)Mk)q,(_k) (4.25) 
A A 

Now, since ll(Ak,bk)-(Ak+1,bk+ 1)11 A➔ 0, the continuity off on E, the con-
trollability of the limit points of (Ak,bk), we conclude: 

I " A " A 

fun 11-d [z(k + 1)-(Ak+I +bk+if (Ak,bk))z(k)II (4.26) 
k➔rx:i k 

(4.27) 

□ 

THEOREM 2.4. 7 

fun 
11
J(Ao,bo)x(k)-J(Ak,bk)z(k) II = 0 

k➔rx:i dk 
(4.28) 

PROOF Suppose the claim is not true. Then there exist €>0 and a sequence 
{ tk} such that for all k: 

llf(Ao,bo)x(k)d~f(Ak,bk)z(k) II ;;.i, £ (4.29) 

• . . . X (tk) . X (t~1)) • 
Let x be a limit pomt of -d-. Say fun -d- = x , for some subse-

,. k➔rx:i ,~•> 
quence {t~1>} of {tk}. Let {tf>} be a subsequence of {t~1>}, such that: 

and: 

fun z(tf>) = z. 
k➔rx:i dtf 

Then for all/: 

(4.30) 

(4.31) 

(4.32) 
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Define sequences {x(k)*} and {z(k)*} as follows: 

x(O)* = x• z(O)* := z• 

z(k)* = (A +bf(A,b)'/'z• 

x(k + I)* = Aox(k)* +b0f(A,b)z(k)* 

Chapter Ill 

(4.33) 

(4.34) 

(4.35) 

Then, by Lemma 2.4.6, the fact that cz(k) = cx(k), and (4.32), for all k: 

cx(k)* = cz(k)° (4.36) 

hence by Theorem 11.2.4 there exists a non-singular matrix S such that for all 
k: 

Sz(k)* = x(k)* 

Hence from the proof of Theorem 11.2.2 we conclude: 

j(A,b)z• = j(Ao,bo)x• 

which contradicts ( 4.29). 

(4.37) 

(4.38) 

D 

REMARK Theorem 2.4.7 tells us that asymptotically the applied input equals 
the desired input if we normalize the state trajectory with the norm of q,(_k). 
For the derivation of the same result, but this time normalized with the norm 
of x(k) (in order to be able to apply Theorem 2.2.1), we will study, as an 
intermediate step, the behavior of the non-minimal realization (4.7) of (4.1). 
We have for all k: 

q,(_k + I) = Foq,(_k)+g0u(k) 

Define h0 eR1xc2n-t) by: 

h0 : = j(A 0 ,b0 )M 

Then the desired input is: 

(4.39) 

(4.40) 

u(k) = j(Ao,bo)x(k) = j(A 0 ,b0 )Mq,(_k) = h0q,(_k) (4.41) 

Hence the desired closed-loop representation of (4.39) is given by: 

q,(_k + I) = (Fo + g0h0 )q,(_k) (4.42) 

However, the applied control is: 

(4.43) 

D 

The following theorem characterizes the asymptotic closed-loop behavior of the 
realization ( 4.11,4.39). 

THEOREM 2.4.8 There exists a sequence of matrices {l11c}keN such that: 
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A A A 

(i) cp(k + 1) = (Fo + go/ (Ak>bk)Mk>P(k) 

= (Fo+goho+a~>P(k) 

(ii) lim a~ = o 
k➔oo 
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(4.44) 

(4.45) 

(4.46) 

PROOF The proof follows immediately from Theorem 2.4. 7 and Theorem 2.2.1 
□ 

LEMMA 2.4.9 Let { Mk heN be a sequence of matrices in Rn xn, such that 
1im Mk = M =I= 0. Choose x(0)eRnxn and define: 
k➔«i 

x(k + 1) = Mkx(k) (4.47) 

Assume that for all k x (k) =I= 0. Denote by CX, the linear span of the limit 
. x(k) 

pomts of llx(k)II . Then: 

(i) MCX. C CX, 

(ii) for all x e CX, ,x=/=O : Mx =I= 0 

PR ") S • . limi . f { x(k) } S lim x(sk) 
OOF 1 uppose x 1s a t pomt o llx(k)II . ay k➔oo llx(sk)II 

for some subsequence {sk}- Then: 

Mx• = k~ llx(~k)II Ms.x(sk) = k~ llx(~k)II x(l +sk) 

= lim llx(l +sk)II x(l +sk) = 1im IIMs.x(sk)II x(l +sk) 

k➔oo llx(sk)II llx(l +sk)II k➔oo llx(sk)II llx(l +sk)II 

x(sk) x(l +sk) • . x(l +sk) 
= IIMs. llx(sk)ll II llx(l +sk)II = IIMx Ilk~ llx(l +sk)II 

Hence Mx • eX. By linearity the result follows. 
ii) After a change of basis, M and Mk can be decomposed as: 

_ [M11 O] _ [M11(k) Mu(k)] 
M - M21 0 ' Mk - M21(k) M22(k) 

such that M II is non-singular. Then: 

lim x,(k+l) = lim (M11(k).x,(k)+M12(k).x2(k)) O 
k➔oo llx(k)II k➔oo llx(k)II =I= 
This yields: 

x(k) 
llx(k)II ➔ coker(M) 

(4.48) 

(4.49) 

• = X' 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 
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By linearity the statement follows. 
□ 

CoROLLARY 2.4.10 Let x• be a limit point of xd:), then: x• -=j::. 0. 

PROOF One may check that AcSpec(G0). Since by assumption at least one of 
the "A's is nonzero, we conclude by Lemma 2.4.9 that there exists µ. > 0 such 
that for i: 

cp(k +i) ;;;. ; (4.56) 
dk µ 

• x(tk) 
Now suppose x = 0. Say -d- -+ 0, then: ,. 
llx(tk+ 1)11 IIAox(k)+bof (A,.,b,.)z(k)II 

ll(A O + bof(A o,bo))x(tk)+ bo(f (A,. ,b,. )z(tk)-f (A o,bo)x(tk))II =--------------------0 d,, 

(4.57) 

(4.58) 

In the same way we obtain: 

llx(tk+l)II 
d . -+ 0 (4.59) ,. 

This implies: 

(y(tk),y(tk + l), .. ,y(tk +n -1),u(tk),u(tk + 1), .. ,u(tk +n -1)) 
d -+ O (4.60) ,. 

</>(A+n-1) 
d -+ 0 (4.61) 

'• 
which contradicts (4.56). 

□ 

COROLLARY 2.4.11 

lim II (u(k)- f (Ao,bo)x(k)) II = 0 
k➔oo llx(k)II 

(4.62) 

d 
PROOF Since by the previous corollary llx(~)II ~ 8, for some 8 > 0, we have: 

lim II (u(k)- f (Ao,bo)x(k)) II (4_63) 
k➔oo llx(k)II 

= lim II (u(k)-J(Ao,bo)x(k)) dk II = 0 
k-+oo dk llx(k)II 
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D 

PROOF OF THEOREM 2.4.5 

The proof of Theorem 2.4.5 is now just an application of Theorem 2.2.1 and 
Corollary 2.4.11. 

D 

2.5. Simulations 
The algorithms presented in sections 2 & 3 have been simulated extensively. As 
could be expected, convergence gets slower as the order of the system 
increases. The asymptotic behavior of the controlled system was characterized 
in terms of the action of the asymptotic closed-loop matrix on the state trajec
tory. The weak self-tuning property, however, can be better illustrated by a 
comparison between the applied input and the desired input. In many cases 
the assumption (2.6) in Theorem 2.2.1 implies that: 

lim ~ = 1 (5.1) 
k➔co fx(k) 

We will now give the graphs of the output of a second order unstable non

minimum phase system and of u(k5 (where superscripts a and d stand for 
u(k, 

"applied" and "desired" respectively). The applied algorithm is the one intro-
duced in section 6 (non-observed state case). The true system has the realiza
tion: 

x(k+ I) = [~I ~] x(k) + [!] u(k) 

y(k) = [1 O]x(k) 

The system was initially guessed as: 

" [-3 }] " [2] Ao = 1 0 bo = 3 

The desired closed-loop characteristic polynomial was chosen to be: 

X 2 - 1.7X + 0.72 

(5.2.a) 

(5.2.b) 

(5.3) 

(5.4) 

H we look at figures 5.1 and 5.2, we see that initially the system behaves badly. 
Then after a certain learning period, the quotient of applied and desired input 
is close to 1 and the system begins to stabilize. One may check that y (k) tends 
to zero exponentially fast, the exponent tending to the slowest desired pole: 
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0.9. At iteration 32 there is a peak in the graph of u(k5. The explanation is 
u(k, 

that the state was suddenly too far away from the subspace it was converging 
to. Outside this subspace the control law was still far away from the desired 

one. After 150 iterations u(k5 is very close to 1, even though the true sys-
u(k, 

tern has not been identified at all. The simulation~ sho!V that the Euclidean 
distance between the true system parameters and (A 150 ,b 150) was almost 2.24 
(initially 2.65). After · 150 iterations the closed-loop poles were 0.89998 and 
0.81490. The larger deviation of the second pole from the desired one can be 
explained by the fact that the state trajectory converges to the invariant sub
space belonging to the other pole. Hence information about the invariant sub
space belonging to the second pole gets poor very quickly. This illustrates the 
weak self-tuning feature: only the poles which are excited asymptotically are 
placed properly. 

2 
e9 
1 

- e9 
::s 0 B-< g eO 

-1 
e9 
-2 
e9 0 20 40 60 80 100 

number of iterations 
FIGURE 2.5.1 The output of the system 

30 
25 

- 20 
5 15 ·.:::: 
0 IO & lJ 5 

~ " 0 

0 20 40 60 80 100 

number of iterations 
FIGURE 2.5.2 The quotient of applied and desired input 

□ 

120 140 160 
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3. AN ADAPTIVE LQ CoNTR0LLER FOR A FIRST ORDER SYSTEM 
In the previous section we have presented an algorithm for adaptive pole 
assignment. It appeared that the algorithm could be based on neutrality and 
certainty equivalence and that identification of the system parameters was not 
necessary. In Chapter.II we proved that if the control objective was the minim
ization of a quadratic cost functional, then there is a serious conflict between 
identification and control. In terms of the sets G and H this meant that G n H 
is a negligible subset of G, the set of invariant points of an algorithm. 
In this section we will present an algorithm for adaptive LQ-control which is 
based on dual control rather than on certainty equivalence only. By this we 
mean the following. The input will consist of two parts. A pure control part, 
based on certainty equivalence, and an excitation part. The excitation part of 
the input will be chosen in such a way that the set G will shrink to a singleton, 
namely the true system parameter. The excitation part could also be called an 
active learning part. The excitation part will contain a design parameter. 1bis 
parameter reflects the trade-off between identification on the one hand and 
optimal control on the other hand. The smaller the parameter is the better the 
optimal costs can be approached, but also the slower is the convergence of the 
parameter estimates. Another important feature of the excitation part of the 
input is that it is proportional to the output of the system and hence regula
tion ( output going to zero) is not in contradiction with the presence of an exci
tation signal as would have been the case if the excitation consisted of an addi
tive signal. We will consider the first order case only, the general case will be 
treated elsewhere. 

Consider the system: 

y(k + 1) = aQY(k) + b0u(k), b0 =/= 0, y(O)eR 

Cost functional: 
00 

J = ~ y 2(k) + ru2(k), r > 0 
k=O 

Define/ :RX R \ {O} ➔ R, by: 

f(a b) ·= -abp(a,b) 
' · (b 2p(a,b) + r) 

where p(a,b) is the positive solution of: 

0 2b2p2 
p - a2p + --- - 1 = 0 

b2p + r 

then the optimal control is: 

u(k) = f (ao,bo)y(k) 

and the optimal value of J is given by: 

(l) 

(2) 

(3) 

(4) 

(5) 
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* 2 J = p (ao,bo)Y (0) (6) 

Formula's (3,4,5,6) are the first order versions of II.3 (5,6,7,8). If (ak>bk) is an 
estimate of (a0 ,b0 ) at time k, then a certainty equivalence adaptive control 
scheme would take: 

(7) 

We know however that (7) would result in an undesirably large set of invariant 
points if in addition the estimation part of the algorithm is neutral. Therefore 
we will slightly perturb (7) so as to ensure that (a0 ,b0 ) will be the only invari
ant point of the algorithm. Consider the following perturbation of (7): 

u(k) = f (ak,bk)y(k) + (-1'/'ak)'(k) = [f (ak,bk) + (- l'/'ak]y(k) (8) 

where { ak} is a sequence of positive real numbers. The second term of (8) is 
the excitation part of the controls. ~ow assume that the input of the system 
(1) is generated by (8) and that (ak>bk) is produced by a neutral estimation 
scheme, then we have: 

LEMMA 3.1 If there exist positive constants 8 and M such that for all k: 
8 ,e;;; ak ,e;;; M, then, if for all k y(k) =/= 0: 

G = {(ao,bo)} (9) 

PROOF Recall from 11.l.2 (2.19) that: 

G = {(a,b) I for all k: y(k) = y(k)} 

Hence (a,b)eG implies that for all k: 

y(k + 1) = (ao + hof (a,b) + ho(- 1'/'ak)y(k) 

= (a +bf (a,b) + b(- lfak)y(k) = y(k + 1) 

Since {ak} is bounded there exists a subsequence {sk} of 2N, such that: 

lim a9 exists, say a 
k➔OCJ • 

lim a1 +s exists, say a' 
k➔OCJ • 

Hence it follows from (11) that: 

ao + hof(a,b) + boa= a + bf(a,b) + ha 

ao + bof(a,b) - boa' = a + bf (a,b) - ba' 

Subtracting (13.b) from (13.a) gives: 

(a + a')bo = (a + a')b 

Since by assumption a and a' are both positive, we conclude: 

b = b0 

(11.a) 

(11.b) 

(12.a) 

(12.b) 

(13.a) 

(13.b) 

(14) 

(15) 
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Substituting (15) in (13.a) gives: 

a= a0 

The statement follows. 
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(16) 

D 

CoMMENT From Lemma 3.1 we conclude that if we use (8), then for a suitable 
choice of the sequence { ak }, boundedness { (ak,bk)} already implies conver
gence to (a0 ,b0 ). On the other hand it is intuitively clear that the existence of 
{ ak} will cause the behavior of the system to deviate from the desired 
(optimal) behavior. We will first study the behavior of the controlled system as 
dependent on the choice of { ak }. We will do this for the case the initial guess 
of the system parameters is (a0 ,b0 ) itself and { ak} is constant. 

LEMMA 3.2 Consider the closed-loop system: 

y(k + 1) = aQY(k) + b0u(k) 

u(k) = f(ao,bo)y(k) + a(-lfy(k) 

for some fixed a > 0. Then: 
(i) For a su.ffi.ciently small: 1im y (k) = 0. 

k➔ao 
ao 

(ii) 1im [J• - ~ y 2(k) + ru2(k)] = 0. (where J• is defined by (6)). 
a,1.0 . k=O 

(17.a) 

(17.b) 

PROOF (i) Obvious. Take O <a< 1 - I a0 + bof(ao,bo) 1- Since 
I (ao + bof(ao,bo) I < 1, the statement follows. 
(ii) First observe that: 

ao 
= (1 + rf(ao,boY)y2(0) ~ (ao + bof(ao,bo)fk (18.b) 

k=O 

- (1 + rf (a b ~). 2(0) l (18 ) 
- 0 ' OJ !Y 1-(ao + bof(ao,bo)Y .c 

Second: 
ao 

J• < ~y2(k) + u2(k) 
k=O 

ao 
= ~ y 2(k) + r(f (ao,bo) + (-If a)2y2(k) 

k=O 

(19.a) 

(19.b) 

Since (19.b) is absolute summable for a su.ffi.ciently small, we may interchange 
the order of summation and taking the limit, and the statement follows. 

D 
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COMMENT From Lemma 3.2 we conclude that we can approach the optimal 
costs arbitrarily closely by choosing a sufficiently small. 
We will now combine the conclusions of Lemma's 3.1 and 3.2 to develop an 
adaptive algorithm. 

ALGORITHM 

ak+l = ak + · y(k) (y(k + 1) - y(k + 1)) 
u2(k) + y 2(k) 

bk+I =bk+ u(k) (y(k+I) - y(k+l)) 
u2(k) + y 2(k) 

Pk = o - 1 "k + b,J(ak,bk) 1) 
u(k) = (f (ak,bk) + (- I)2af1k)y(k) 

y(k + I) = ak)'(k) + bku(k) 

(20.a) 

(20.b) 

(20.c) 

(20.d) 

(20.e) 

LEMMA 3.3 The sequence {(ak,bk)} as defined by (20) has the following two 
properties. A 

(i) {ll(ao,Po) -A (abbk)II} is~ non-increasing sequence. 
(ii) lim ll(ak+l,bk+I) -· (ak,bk)II = 0. 

k➔oo 

PROOF See Lemma's IIl.2.1 and 111.2.2. 
□ 

To simplify the discussion we will make an extra assumption. This assumption 
will be relaxed later on. 

ASSUMPTION Assume that there exists a positive constant y such that for all k: 

(21) 

□ 

THEOREM 3.4 
(i) for all a > 0: lim (ak,bk) = (ao,bo). 

k➔oo 

(ii) lim f1k = (1- I ao +bof (ao,bo) I . 
k➔oo 

(iii) for all O < a < 1: lim y(k) = 0. 
k➔oo 

(iv) ~ lim 2 
1 ( f y 2(k) + ni(k) - p(a0,bo).y2(2N))] = 0. 

aio N➔oo y (2N) k =2N 

(v) ~ lim 2 
1 ( f y 2(k) + ru2(k) - p(a0 ,b0 )y2(2N + 1))] = 0. 

a,1.0 N➔oo y (2N + 1) k=2N+l 

PROOF (i) Since by assumption I bk I ;;;.,,, Y, and since {(ak,bk)} is bounded, 
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ther~ exists a compact set CCRXR,.\ {O} such that for all k (at,bk)eC. Since 
Pk is I! contlllUOUS function of (ak,bk)eC, and since by the strict stability of 
ak + b,J(ak,bk), Pk > 0, we conclude that there exist positive constants 8 
and M such that for all k: 

8 ~a.Pk~ M 

Now Lemma 3.1 yields the result. 
This follows from (i) 
(iii) This follows from (i) and the fact that O < a. < 1. 
(iv) Define: 

00 

J'J, := ~ y 2(k) + ni(k), 
k=N 

Now: 

2(~) ( l: y 2(k) + ni(k)) 
y k=2N 

1 00 A = 2(2N ~ (y2(2N)(l + r(f(ak,bk) + (-l'fapk'f) 
y ) k=2N 

k-1 ,. 

( II (ao + bo(f(a1,b1) + (-I)ia.P1)'f)] 
j=2N 

00 A 

= ~ [(I + rf (a1+2N,b1+2N) + <- rf +2N a.P1+2N'f) 
l=O 

1-1 A 

( II (ao + bo(f(a,,.+2N,bm+2N) + (-1)"'+2Na.Pm+2N)'f)] 
m=O 

1-1 

( II (ao + bo(f(a,,.+2N,bm+2N) + (-l)"'a.Pm+2N)'f)) 
m=O 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Since (27) is summable for all N sufficiently large and a. sufficiently small, we 
may interchange the summation and taking the limit. By (i) this yields: 

J!A, 00 

lim 2 = ~ [(1 + r(f (a0 ,b0) + (- If a.p•j) (28) 
N➔00 J (2N) l=O 

l-1 
( II (ao + bof (ao,bo) + (- l)"'a.p•)'f)), 
m=O 

where p• = lim Pk• Again since (28) is absolute summable for a. sufficiently 
k➔00 

small, it follows that: 
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fun fun J!N = l! (1 + rf(ao,boY,)(ao + bof(ao,bo}f 
a.J,O n➔oo y2(2N) l=O 

The statement now follows from (6) and (18.b). 
(v) Completely analogous to (iv). 

CoMMENT 

Chapter Ill 

(29) 

□ 

(i) Regardless of the value of a, as long it is positive, (a0 ,b0 ) is identified. 
This is of course due to the excitation term in the control. 

(iii) For a sufficiently small, the closed-loop system is globally asymptotically 
stable. The reason that this property holds despite the excitation term in 
the input is that the excitation is in closed loop. Otherwise stated, the 
excitation is proportional to the output, which implies that it damps out 
as the output gets smaller. This is in contrast to the case where an open
loop signal is injected to the system, as has often been proposed in the 
literature. In that case regulation of the output can never be achieved, 
since the excitation signal will always be active. Another important 
advantage of closed-loop excitation is that it can never be dominated by 
the other signals in the loop. For if the signals in the loop are large then 
also the excitation signal will be large. 

(iv,v) Asymptotically the optimal costs can be approached arbitrarily well, by 
taking a sufficiently,. small. It should however be noted that the conver
gence speed of (ak,bk) will decrease as a gets smaller. Hence there is a 
trade-off between identification and control. 

□ 

MODIFICATION OF THE A!,GORITHM 

The assumption that I bk I ;;.., y can be relaxed by using the modification 
described in the pole assignment algorithm or by any other method based on 
111.1. We skip the details, since they are completely the same as in the pole 
assignment algorithm. 

OPTIMAL CHOICE OF a 
In Theorem 3.4.ii we claimed that the controlled system will be asymptotically 
stable provided that the design parameter a lies between zero and one. The 
question arises which value of a is in some sense optimal. First we look at this 
problem from the identification point of view. 
Recall from Section 111.2 that the estimation algorithm (20) was based on the 
orthogonal projection of (ak,bk) on Gk+l, where: 

A 

Gk+t = {(a,b) I ay(k) + bu(k) = y(k + I)} (30) 

= {(a,b) I a+ b(f (ak,bk) + af3k(- If)= ao + bo(f (ak,i,k + aak(- If)} 
A A 

Now, one observes immediately that if Gk and Gk+ 1 are orthogonal, then: 
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A 
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(31) 

l}ence as far as fast identification is concerned it would be good if Gk and 
Gk+ 1 are as orthogonal as possible within the given structure. 

PllOPOSAL I From now on we will allow a to depend on k, therefore instead of 
a we write ak. Take: 

- (a + I (ak,bk't)½ 
~- A A ~ 

1 - 1 "k + bJ <ak,bk> 1 

□ 

If we take this .. value .. for ak, th!91 y,e have tpe follo~g property: 
PllOPBRTY If (ak-hbk-1) = (ak,bk), then Gk and Gk+l are orthogonal. 

A A 

PllOOF One can easily check that the product of the slopes of Gk and Gk+ 1 is 
-1, which implies that they are orthogonal. 

□ 

'l}te ~uence of ,.accepting Proposal I ~ the f<?llowing. If for some k 
(ak-hbk-i) and (ak,bk) are very close, then Gk and Gk+l are almost orthogo
nal, and hence (ak + 1,bk + 1) will be very close to (a0,b0). Hence if the esti
mates hesj~te to converge then they are forced to speed up. On the other hand 
if (ak-hbk-1) are not close, then there is already a certain speed of conver
gence. 
The conclusion is that the choice (32) for ak is good for identification pur
poses. However, since ak will then be larger than one, it is clear that the result
ing closed-loop system will not be asymptotically stable. That means that 
although (32) may be good for identification, it is bad for control. We will now 
propose a modification of (32). 

PllOPOSAL 2 Choose Ae(O, 1) and let g:R ➔ R+ LJ {O} be a continuous func
tion such that: 

(i) g(O) = 0 

(ii) VxeR: g(x) = g(:-x) 

(iii) 1im g(x) = 1 
l:➔00 

Take: 

ak = A + (1 - A) g( y(k) - y(k)) (1 ~ /(a~,bk~)½ .. 
ly(k)I 1 - I ak + b,J(ak,bk) I 

(33) 

□ 
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The idea be~d Proposal 2 is the following. Since Vk a.k ;;;.A>OA we still have 
that fun (ak,bk) = (ao,bo), This means that as long as (ak,bk) =I=- (ao,bo), 

k➔«J 

y(~~~Nk) will be non-~o, and then the influence of the term involving g 

is still present. Hg( y(~) ~{(k)) is close to one, then the value of a.k will be 

close to that of ProposJi' 1. is a consequence qie initial behavior of the esti
mation part will be good. Then, as soon as (ak>bk) comes close to (a0 ,b0 ), the 
normalized prediction error will be small and a.k will be close to A. Hence Pro
posal 2 can be viewed as a modification of the initial behavior of the estima
tion scheme without influencing the asymptotic properties of the controlled 
system. 

Simulations 
We have simulated the algorithm for different systems and for different values 
of r. Also we experimented with different values of A in proposal 2. Since 
G nH = {(a0,b0)}, almost every point in G corresponds to sub-optimal 
behavior of the system. For (a,b)EG we can easily determine the real cost 
incurred if we apply 

u(k) = f(a,b)y(k), (34) 

to the true system (a0 ,b0 ), namely: 

1 «J 

--2 ~ y(k)2 + ru(k)2 
y(O) k=O 

= -½r i (1 + rf(a,b)2)y(k)2 
y(O, k=O 

«J 

= ~ (1 + rf (a,b}2)(ao + bof(a,b))2k 
k=O 

«J 

= ~ (1 + rf (a,b)2)(a + bf (a,b))2k since (a,b)EG 
k=O 

= p(a,b) 

(35) 

(36) 

(37) 

(38) 

(39) 

Where p(a,b) is the positive solution of (4). The last equality follows from (6) 
and (18.b), with (a0 ,b0 ) replaced by (a,b). From the fact that we apply (34) 
whereas we should have applied u(k) = / (a0 ,b0)y(k), we conclude that for all 
(a,b)EG: 

p(a,b) ;;;. p(ao,bo) (40) 

(see also Lemma II.3.21). Now the larger the difference between p(a,b) and 
p(a0 ,b0 ), the more sub-optimal is (a,b). However, for small values of r the 

control law f (a,b) will be approximately equal to ~a. This implies that for 

small values of r, G is approximately equal to H (see H.2). Hence the sub-
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optimality of the limit of the sequence of estimates can be illustrated best for a 
large value of r. Let us now discuss a particular simulation: 
True system: 

a0 = 1, b0 = 2 

Cost criterion: 

r = 100 

Initial guess of the (ao,bo): 

oo = 6 ho = 9 

(41) 

(42) 

(43) 

The number of iterations was 100. Figure 3.1 shows the trajectories of the 
estimates (ok,bk)-
(i) Figure 3.1.a shows the trajectory for the algorithm (20) with a = 0. 

After 100 iterations we found: 

0 100 = 4.08 (44.a) 
A 

b100 = 10.00 (44.b) 

p(o100,b100) = 16.7 compare withp(ao,bo) = 5.52 (44.c) 

(ii) Figure 3.1.b shows the trajectory for the algorithm (20) with a = 0.2. 

(iii) 

After 100 iterations we found: 

0100 = 1.67 
A 

b100 = 10.00 

p(o100,b100) = 7.03 compare withp(ao,bo) = 5.52 

(45.a) 

(45.b) 

(45.c) 

Figure 3.1.c shows the traject':;l. ~or the algori~ (~O) with Proposal 2, 
A = 0.2 and g(x) = 1 - e-1 " . After 100 iterations we found: 

0100 = 1.00 (46.a) 
A 

b100 = 2.00 (46.b) 

p(o100,b100) = 5.52 compare withp(ao,bo) = 5.52 (46.c) 

It is obvious which of the three simulations gave the best convergence results. 
However, although in (46) the true parameter was identified, there were addi
tional costs involved due to the excitation term. That is the price one has to 
pay if one wants to do adaptive LQ control. 
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4. AN ADAPTIVE POLE ASSIGNMENT ALGORITHM FOR A FIRST ORDER 
CONTINUOUS-TIME SYSTEM 

4.1. Introduction 
The bulk of this monograph is concerned with discrete-time systems. How
ever, many of the results presented in section II.b carry over to the 
continuous-time case. The algorithm for pole assignment for discrete-time sys
tems relies heavily on the fact that G c H. We did not set up a formalism for 
adaptive control of continuous-time systems, hence strictly speaking G and H 
are not even defined in that case. Nevertheless, if we replace the difference 
equations in discrete-time by differential equations, we can again think of 
invariant points of an algorithm as possible limits. And again we can ask our
selves the question whether or not an invariant point corresponds to the (or a) 
desired controller. 
An important difference between discrete and con-inuous time is that in 
continuous-time there do not exist dead-beat observers, since differentiation of 
the signals is undesirable. This causes certain complications in the higher 
order case. See [27,28,29,30]. 
In this section we want to present an adaptive pole assignment algorithm for a 
first order continuous-time system. The motivation for doing this is twofold. 
The first reason is that it shows that some of the ideas used in the discrete-time 
case, can be used in the continuous-time case also. This holds in particular for 
some of the geometrical arguments from Section III.2. And also for the 
method of keeping estimates away from non-controllable as described in Sec
tion III. I. The other source of inspiration is formed by the discussion on adap
tive stabilization of continuous-time systems as commmented upon in the 
introduction of this monograph. See [43,44,47,48,62]. We wanted to design an 
algorithm that not only stabilizes the system, but does so with a prescribed 
rate of stability. The material in this section is based on [54]. 
We will first formulate the problem mathematically, then we will describe the 
algorithm and its geometrical and asymptotic properties. It will tum out that, 
like in the discrete-time case, the controlled system behaves asymptotically the 
same as if the parameters were known, although they are not necessarily 
identified. Finally, we comment upon the possibility of implementing the algo
rithm. 

4.2. The algorithm 
We will first give the system description and the problem statement. Then we 
will give the algorithm in a form suitable for analysis and relatively easy to 
understand. This will involve the derivative of the output. In the next sub
section we show that the algorithm is implementable without differentiating the 
output. 
Let the true system be given by: 

j = OQY + b0 u, y 0 eR, (2.1) 
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where (a0 ,b0 ) is fixed but unknown. The only assumption we make is that the 
system is controllable, that is b0 :::fo 0. Choose any aeR, and let the desired 
closed-loop behavior be: 

y = ay. (2.2) 

The unique feedback-law that achieves the control objective is: 

u(t) = j(a0,b0)y(t) (2.3) 

where/ is defined by: 

a-a 
f (a,b) = -b- (2.4) 

Our algorithm will be based on closed-loop identification of (a0 ,b0 ) and the 
certainty equivalence principle. On the basis of the available data an estima
tion (a(t),b(t)) is made of (a0 ,b0}, and then we take u(t) = j(a(t},b(t))y(t). 
This can of course only be done when b(t) :::fo 0. Therefore our algorithm con
sists of two parts. Roughly speaking it works as follows. At every time instant 
ta check is made whether b(t) is not too close to zero.Hnot, we calculate the 
input according to certainty equivalence. In the other case we apply a special 
input for a certain time period to bias b (t) away from zero. The crucial obser
vation is that within finite time b(t) will be bounded away from zero and 
hence within finite time we will use certainty equivalence forever. 

THE ALGOllITHM 

Choose sequences {£k}keN and {CkheN such that: 

£k ! 0 and Ck t 00 (2.5) 

Choose (a(0),b(0)) arbitrarily and j = 0, z(0) = 0. Define the functions 
a(t), b(t}, z(t), u(t) and the sequence -rk by the following conditional 
differential equations: 

a = 2 Y 2 (j - ay - bu) (2.6.a) 
y +u 

. u . 
b = 2 2 (y - ay - bu) (2.6.b) 

y +u 
i = -I{z > O} (2.6.c) 

if z(t) > 0 then: 

u(t) = Cj)'(t) (2.6.1) 

else: 

if I b(t) I ;.;,, £1 then: 

u(t) = j(a(t),b(t))y(t) (2.6.2.a) 

else (if I b(t) I < £1) 
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j:=j+l 

z(t):=j 

'1'j:=t 

u(t):=C_;Y(t) 
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(2.6.2.b) 

(2.6.2.c) 

(2.6.2.d) 

(2.6.2.e) 

□ 

CoMMENT The equations for a and b are the continuous versions of the projec
tion algorithm for discrete-time ((21) and (55]). They can be derived from the 
discrete-time equations by using infinitesimal arguments. As in (55), the 
sequence { TdkeN can be seen as a sequence of stopping times. As soon as 
t = oo it is easy to see that: 

'f'J = inf {t I I b(t) I ~ ti} 

'1'k+J = inf {t;;;i,,,.k+k I I b(t) I~ £Hi} 

(2.7.a) 

(2.7.b) 

The infunum is understood to be infinity if the set over which it is taken, is 
empty. Define: 

(2.8) 

Outside Ik, u(t) is calculated according to certainty equivalence. For telk we 
take: u(t) = Ck.Y(t). Before we analyze the algorithm formally, let us try to 
explain intuitively that ,,.k = oo for some finite k. Suppose b0 > 0 and 
b(O) < 0. Since b(t) tries to estimate b0 , it can be expected that b(t} has to 
pass through the set {b = O}. H b(t) = 0, we cannot calculate f (a(t),b(t)). 
Now as soon as b(t) comes too close to zero (measured by the sequence {ek}), 
we start to apply special inputs: from time ,,.k to time ,,.k + k we take 
u(t)=Ck.Y(t). Assume for the moment that this alternative procedure has to be 
started infinitely often (i.e. for every k : ,,.k < oo ). Then due to the growing 
inputs and the increasing time interval during which they are applied, it can be 
proven that b(,,.k+k) will converge to b0 • Then, using the geometrical proper
ties of the trajectory of (a(t),b(t)), we prove that since by assumption 
I bo I > 0, I b(t) I will eventually be bounded from below by some t>O. This 

implies that, since tk tends to zero, the alternative procedure will not be 
started again as soon as tk < £. This contradicts the assumption. Hence after 
some finite time instant t0 we will always apply u(t) = f (a(t),b(t))y(t). This 
method of avoiding zero-division is of course closely related to the method 
described in III.a. The formal proof of the above reasoning will be given in 
Lemma 4.2.3. 

Define: 

g(a(t),b(t)) = ck if telk 

= f (a(t),b(t)) otherwise 

□ 

(2.9.a) 

(2.9.b) 
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then: for all t: 

u (t) = g(a (t),b (t))y (t) (2.10) 

LEMMA 4.2.1 (a 0 -a (t)'r + (b 0 - b (t)'r is non-increasing. 

PROOF Define V(a,b):=(a 0 -af + (b 0 -b}2, then along trajectories of 
(a(t),b(t)), it follows from (2.1), (2.6.a), (2.6.b) and (2.10) that: 

1 · -1 
-2 V(a,b) = - 2 -(a0 -a+(b0 -b)g)2 ~ 0 

g +I 
(2.11) 

□ 

From Lemma 4.2.1 we conclude that (a(t),b(t)) converges to a circle with 
radius R;;;;.O for some Rand center (a0 ,b0). For te[-rk+k,-rk+ 1), the trajec
tory of (a(t},b(t)) has the following interesting geometrical property: 

LEMMA 4.2.2 For all k and for all te[-rk+k,-rk+i): 

(a(t)-a)2 + b(t)2 = (a(-rk+k))2 + (b(-rk+k)'r =: ~ (2.12) 

PROOF Define W(a,b) := (a -a}2 + b2 • Along trajectories of (a(t),b(t)) for 
te[-rk+k,-rk+I) we have: 
1 . . 
2 W(a,b) = (a -a)a + bb (2.13) 

= ( a-a + bf(a,b) xL-a-bf(a,b)) = 0 (2.14) 
1 + J(a,b'r 1 + J(a,b}2 y 

The statement follows. 
□ 

COMMENT Lemma 4.2.1 and 4.2.2 imply that for te[-rk+k,-rk+i), (a(t),b(t)) 
moves on a circle Sk with radius rk and center (a,O}, in such a way that the 
distance between (a(t),b(t)) and (a0 ,b0) is decreasin_g. Define /0 as the line 
passing through (a,O) and (a0 ,b0), and denote by (ak,bk) the point of intersec
tion of Sk and 10 , which is closest to (a0 ,b0). Then (a(t),b(t)) moves along Sk 
in the direction of (ak>bk). Since (a(t),b(t)) cannot leave this point along Sk 
without increasing the distance from (a0,b0), it follows that if (a(t),b(t)) 
reaches (ak,bk) before Tk+J, it will stay there for ever. In other words it will 
then converge to (ak,bk) and as a consequence -rk+I will be infinity. In the 
next lemma we will prove that (a(t),b(t)) will indeed converge to (ak,bd, for 
some k. 

LEMMA 4.2.3 { -rk I -rk < oo } is a finite set. 
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PllooF The proof will rely heavily on the geometrical properties of the trajec
tory of (a(t),b(t)). See Figure 4.1 for a pictorial explanation. Now suppose 
the claim is not true. From (2.6.b) and (2.6.1) it follows that on Ik we have: 

· Ck 
b = 2 (ao-a +(bo-b)Ck) (2.15) 

l+Ck 

From Lemma 4.2.1 we know that {a(t)} is bounded and hence, since Ck tends 
to infinity and since also the length of Ik tends to infinity, we conclude that: 

lim b(Tk+k) = b0 (2.16) 
k➔ao 

Suppose that: 

lim (a0 -a(t))2 +(b0 -b(t))2 = R 2 > 0 (2.17) 
k➔ao 

then by (2.16): 

(2.18) 

Hence at least one of the points a0 + R is a limit point of a ( Tk + k ). Assume 
without loss of generality that: 

lim a(Tk+k) = a0 -R (2.19) 
k➔ao 

For Tk+k ,i;;; t <Tk+h (a(t),b(t)) moves along Sk, hence by (2.16) and (2.18) 
we conclude that: 

I 

1im rk = [b3 +(a-a0 + R)2]2 =: r 
k➔ao 

(2.20) 

In other words, the sequence ~f circles Sk converges to a circle S with center 
(a,O) and radius r. Define (a,b) as the point of intersection of Sand 10 which 
is closest to (a0,b0), then: 

(2.21) 

Straightforward calculations give: 

2 a0 -a b = (t +<-->2 >- 1, 2 (2.22) 
bo 

This implies that: I b I > 0. One may also check that ~ign(b) = sign(b0), and 
hence it follows that in going from (a0 -R,b0 ) to (a,b) along S and without 
increasing the distance from (a0,b0), we don~ pass through {b = O}. Let Pk 
be the path from (a(Tk+k),b(Tk+k)) to (ak,bk) along Sk, then it follows that 
there exist £ > 0 and k0 such that for all k ;;.a,, k0 : 

inf { I b 11 3a such that: (a,b)ePk } ;;.a,, £ (2.23) 

Now choose k 1 ;;.a,, k 0 such that for all k ;;.a,, k 1: £k < £. Then in going along 
Pk,, I b(t) I will never become smaller than £k,+h and hence (a(t),b(t)) will 
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converge to (ak,,bk,). From (2.7) it follows that Tk,+I = oo. This contradicts 
the assumption, and the statement follows. 

FIGURE 4.1: Behavior of (a (t),b (t)). 

I 
I 
I 
I 

I 
I 

CoROLLARY 4.2.4 There exists t0 and t: > 0, such that for all t ;;;;i, t0 : 

(i) I b (t) I ;;;;i, t: 

(ii) u (t) = f (a (t),b (t))y (t) 

(iii) sign(b(t)) = sign(b0) 

a 

□ 

lo 

(2.24) 

(2.25) 

(2.26) 

□ 

We will now study the asymptotic behavior of (a(t),b(t)). From now on we 
will assume that t ;;;;i, t O• One of the main results of this section is: 

THEOREM 4.2.5 lim f (a(t),b(t)) = f (a0,b0) 
1➔00 

PROOF From Lemma 4.2.3 we know that: lim (a(t),b(t)) = (a,b)E/0. Now 
1➔00 

a-a0 
lo = {(a,b) I a +b---,;;;- = a}. One may check that (a,b)E/0 and b =I=- 0 

a-a a-ao . , . . 
implies: -b- = ---,;;;-, which 1s eqwvalent to / (a,b) = f (a 0 ,b0 ). Since 
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b =I- 0, the statement follows. 
D 

COMMENT Theorem 4.2.5 states that asymptotically the applied feedback-law 
equals the desired one. We do not claim that lim (a(t),b(t)) = (a 0 ,b0). The 

l-->00 

reason that nevertheless 2.5 holds is based on the following observations. 
Since identification takes place in closed-loop, the following set of parameter
values is certainly invariant under the algorithm: 

G := {(a,b) I a +bf(a,b) = ao+bof(a,b)} 

By substituting for/ we see that: 

a-a0 
G = {(a,b) I a +b-;;;- = a, b =I- O } 

C lo = {(a,b) I /(a,b) = f (ao,bo) } U {(a,0)} 

(2.27) 

(2.28) 

(2.29) 

It is not surprising that (a(t),b(t)) converges to G, since G is invariant under 
the algorithm. It is however due to the functional form off that every point of 
G corresponds to the desired control-law. In III.I we proved that there are no 
other control-laws with that property. 

D 

We will now characterize the asymptotic closed-loop behavior of the controlled 
system. 

THEOREM 4.2.6 There exists a function 8 : R - R, such that: 

(i) j = (a+B(t))y (2.30) 

(ii) lim 8(t) = 0 (2.31) 
l➔OO 

PROOF (i) Take B(t) = b0(f (a(t),b(t))-f (a0 ,b0)), then: 
ao + bof (a(t),b(t)) = a+B(t),which gives (2.30). 
(ii) This follows from Theorem 4.2.5. 

D 

REMARK Note that Theorem 4.2.6 holds whether or not a< 0. This shows 
that the adaptation part of the algorithm does not depend on the stability of 
the closed-loop system. If we assume that a < 0, we obtain the following: 

COROLLARY 4.2.7 If a < 0, then the system is exponentially stable: for all 
£ > 0 there exists t, such that for all t ;;;. t,: 

ly(t() I e<a-i'!,.t-t,) ,,;;;;; ly(t) I,,;;;;; ly(t() I e<a+t)(t-1,) (2.32) 

D 
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4.3. Implementation 
The form in which the algorithm has been described in the previous sub
section is not directly implementable, since it depends on the derivative of the 
output. In this sub-section we will show that differentiating the output can be 
avoided. First we will show this for te[Tk+k,'Tk+J), and then for teh. 
For tE['Tk+k,'Tk+J), the equation for a can be written as: 

. b2 . 
a = b2 + (a-at <f - a) (3.1) 

From (2.12) we know that for te[Tk+k,'Tk+i): b 2 + (a - at = 11, hence 
(3.1) can be written as: 

11 - (a-at l'... 
a = ----( - a) (3.2) 

11 y 

Or, equivalently: 

11 a i -----= -a 
11 - (a - at Y 

(3.3) 

Integrating both sides of (3.3) gives: 

1 rk + a - a 
-2 rklog(. ) = log IY I - at+ck 

rk - a+ a 
(3.4) 

where ck is determined by a ( 'Tk + k ), b ( 'Tk + k ), and y ( 'Tk + k ). Taking exponen
tials at both sides of (3.4) and solving for a gives, for te['Tk +k, 'Tk +1): 

-=1. -~ 
a(t) = [I + (dke-at IY I '• r 1 [a - rk + (rk + a)(dke-01 IY I) 2 ] (3.5) 

where dk = ec•, and: 

1 rk + a ( 'Tk + k) - a 
ck = -2 rklog( ( +k) + ) - log I y('Tk + k) I -('Tk + k)a (3.6) 

rk - a 'Tk a 

.!. 
rk = [(a(Tk+k) - a)2 + b(Tk+kt] 2 (3.7) 

Finally, from (2.12) we derive: 

.!. 
b(t) = sign(b(Tk+k))[11 - (a(t) - at ] 2 

We will now study the equations for telk. For telk, we have: 

I . 
a= (l'.. - a - bCk) 

1 + cl y 

C . 
b= k (l'.. - a - bCk) 

1 + Ci Y 

(3.8) 

(3.9) 

(3.10) 
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From which we deduce: 
I , , 

a(t) = a(Tk) + 2 (log IY I - f a(s)ds - Ck f b(s)ds) (3.11) 
1 +ck ... ... 

C , , 
b(t) = b(Tk) + k 2 (log IY I - f a(s)ds - Ck f b(s)ds) (3.12) 

1 +Ck '"• '"• 
Hence both parts of the algorithm are implementable. The implementable 
form of the algorithm is now obtained by replacing (2.6.a) by (3.11) and (2.6.b) 
by (3.12). 
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EPILOGUE 
We have presented a mathematical framework for a class of adaptive controll
ers. Based on this framework we studied two well-known control problems in 
terms of the sets G and H. These sets proved to be useful instruments to 
determine what kind of algorithm was potentially suitable for a particular 
adaptive control problem. It turned out that for the pole assignment problem 
an algorithm based on certainty equivalence and neutral certainty equivalence 
could be developed. The situation for LQ control was more complicated. The 
analysis in 11.3 already showed that algorithms based on certainty equivalence 
could result in sub-optimal behavior. By adding a closed-loop probing signal 
this problem was overcome. 
A delicate matter is the problem of avoiding certain "dangerous" regions in 
the parameter space. We have proposed a fairly general method for modifying 
algorithms so as to assure that these regions are indeed avoided without chang
ing the asymptotic properties of the algorithm. A variant of this method was 
applied to the pole assignment algorithm and the adaptive LQ controller. 
Although the set-up was mainly meant to be used in discrete time, we were 
able to develop an adaptive control algorithm for a first order continuous time 
system, based on similar ideas. 
Some questions have not completely been answered. Let us list a few: 
(i) The multi.variable case has not been addressed. For the pole assignment 

problem single-input is important, since that yields the uniqueness of 
the control law that assigns the poles. The weak self-tuning property is 
guaranteed by Theorem 11.2.4, which relies on the uniqueness of the con
trol law. In the multi-input case uniqueness of the control law no longer 
holds and hence we can not hope to obtain a similar result as for the 
single-input case. However, it should not be too difficult to extend the 
results for the adaptive pole assignment problem to the multi-output 
case. 
For adaptive LQ-control for higher order systems the problems are of a 
different nature. Regarding Theorem 11.3.10 we have to assure that the 
sequence of estimates converges to the true parameter. The problem of 
generalizing the ideas on which the first order algorithm was based is still 
under consideration. 

(ii) The classification problem from 11.4 has only been solved partly. The 
general case where the control law may also depend on the output-vector 
is still under investigation. 

(iii) We have considered the continuous time case for first order systems only. 
It is our aim to generalize the idea to higher order systems. 

The most important question is of course how to apply our ideas in practical 
situations. It is obvious that direct application of theoretical results like ours 
is not feasible, since we did not address robustness issues. Maybe our work 
should be seen as a starting point for further refinements. In our opinion the 
big challenge is to come up with algorithms which have a hierarchy of proper
ties. They should work perfect in the ideal noise-free and disturbance free case, 
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and they should be robust with respect to all kinds of disturbances, such as 
noise, unmodelled dynamics, non-linearities and time changes. This reflects in 
a certain sense the ideal adaptive controller, but it is not yet clear how to 
achieve this goal. In our opinion an important part of the adaptive control 
problem should be the modelling issue. Modelling pur sang is a difficult prob
lem, let alone in combination with control. Maybe the combination of model
ling and control will provide a good framework for adaptive control in the 
future. 
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NOTATIONAL CONVENTIONS 
We use the following notation: 
N: the natural numbers. 
R: the real numbers. 
C: the complex numbers. 
G/(n): the general linear group. 
Rkxl: k x I matrices with coefficients in R. 
R + : the positive real numbers, exclusive zero. 
R[z]: the ring of polynomials in one indeterminate and coefficients in R. 
l':(n) class of single-input/single-output systems of order n. 
l':c(r): class of controllers for l':(n) of order r. 
c0 : this notation is exclusively reserved for then-vector [1,0, ... ,0]~R1xn. 
Estimates of parameters are denoted by "hats", like a and B. A variable, 
parameter or estimate at time k is denoted by subscript k, like ak> or it is 
denoted by a(k). 
HA eR[z] is a polynomial of degree n, then we denote the coefficients of A by 
lower case characters; an,··•,ao. 

E := {(A,b,c)eRnxn XRnXI XR 1xn I (A,b,c) minima] } 

Ere := {(A,b)eRnxn XRnXI I (A,b) reachable} 

Eo1, := {(A,b)eRnxn XRnxl I (A,b) reachable 

(c0,A) in standard observable form} 

Ens := {(A,b)eRnxn XRnXI I (A,b,co) minima] 

A non-singular } 

P := {KeRnXn I K =KT> 0} 

A □ denotes the end of a remark, proof, theorem etc. 
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