CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.J. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskunde en Informatica

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Research (N.W.O).

CWI Tract

Algorithms for diophantine equations

B.M.M. de Weger

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 11Y50, 11 D61.
ISBN 9061963753
NUGI-code: 811

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Acknowledgements.

The research on which this book reports has been done while I worked for the Netherlands Foundation for Mathematics SMC, with financial support from the Netherlands Organization for the Advancement of Pure Research ZWO. This research took place from 1983 to 1987 at the University of Leiden, under supervision of Professor R. Tijdeman and Dr. F. Beukers.

I am very grateful to my (number theory) teacher, Professor R. Tijdeman (Leiden), for suggesting the research topic, for all his help, comments and criticism, on mathematics and everything else. I am also indebted to:
\rightarrow Dr. F. Beukers (Utrecht), for comments and discussions,
\rightarrow Dr. A. Pethö (Debrecen), my first coauthor, for the cooperation, the hospitality in Cologne in february 1985, and for allowing me to publish our joint work in Chapter 4 of this book,
\rightarrow Prof. N. Tzanakis (Iraklion), my other coauthor, for the cooperation, the many discussions, the hospitality in Iraklion in october-november 1986, for allowing me to publish our joint work in Chapter 8 of this book, and for pointing out some errors in the manuscript,
\rightarrow Prof. L. Wang (Beijing), for carefully checking most of the computations of Chapter 6, and thus finding some errors,
\rightarrow Dr. B.H. Gilding (Enschede), for polishing some of the english,
\rightarrow the Faculty of Applied Mathematics of the University of Twente (Enschede), for providing a good working environment and computing and text-editing facilities,
\rightarrow the Dutch Open University (Heerlen), for (unintentionally) providing textediting facilities, and finally to Alda, for being there and loving me.

SOLI DEO GLORIA.

Benne de Weger,
University of Twente
Enschede, The Netherlands.
February 1989.

Contents.

Chapter 1. Introduction. 1
§ 1.1. Algorithms for diophantine equations. 1
§ 1.2. The Gelfond-Baker method. 9
§ 1.3. Theoretical diophantine approximation. 12
§ 1.4. Computational diophantine approximation. 14
§ 1.5. The procedure for reducing upper bounds. 22
Chapter 2. Preliminaries. 24
§ 2.1. Algebraic number theory. 24
§ 2.2. Some auxiliary lemmas. 26
§ 2.3. p-adic numbers and functions. 27
§ 2.4. Lower bounds for linear forms in logarithms. 29
§ 2.5. Numerical methods. 32
Chapter 3. Algorithms for diophantine approximation. 36
§ 3.1. Introduction. 36
§ 3.2. Homogeneous one-dimensional approximation in the real case: continued fractions. 37
§ 3.3. Inhomogeneous one-dimensional approximation in the real case: the Davenport lemma. 39
§3.4. The L^{3}-lattice basis reduction algorithm, theory. 41
§ 3.5. The L^{3}-lattice basis reduction algorithm, practice. 45
§ 3.6. Finding all short lattice points: the Fincke and Pohst algorithm. 51
§ 3.7. Homogeneous multi-dimensional approximation in the real case: real approximation lattices. 53
§ 3.8. Inhomogeneous multi-dimensional approximation in the real case: an alternative for the generalized Davenport lemma. 56
§ 3.9. Inhomogeneous zero-dimensional approximation in the p-adic case. 60
§3.10. Homogeneous one-dimensional approximation in thep-adic case: p-adic continued fractions andapproximation lattices of p-adic numbers.61
§3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic approximation lattices. 63
§3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic case. 64
§3.13. Useful sublattices of p-adic approximation lattices. 66
Chapter 4. S-integral elements of binary recurrence sequences. 70
§ 4.1. Introduction. 70
§ 4.2. Binary recurrence sequences. 72
§ 4.3. The growth of the recurrence sequence. 74
§ 4.4. Upper bounds. 80
§ 4.5. A basic lemma. 82
§4.6. Trivial cases. 83
§ 4.7. The reduction algorithm in the hyperbolic case. 88
§ 4.8. The reduction algorithm in the elliptic case. 92
§ 4.9. The generalized Ramanujan-Nagell equation. 95
§4.10. A mixed quadratic-exponential equation. 99
Chapter 5. The inequality $0<x-y<y^{\delta}$ in S-integers. 102
§ 5.1. Introduction. 102
\S 5.2. Upper bounds for the solutions. 103
§ 5.3. Reducing the upper bounds in the one-dimensional case. 104
§ 5.4. Reducing the upper bounds in the multi-dimensional case 106
§ 5.5. Tables. 110
Chapter 6. The equation $x+y=z$ in S-integers. 115
§ 6.1. Introduction. 115
§ 6.2. Upper bounds. 116
§ 6.3. The p-adic approximation lattices. 118
$\S 6.4$. Reducing the upper bounds in the one-dimensional case. 120
§ 6.5. Reducing the upper bounds in the multi-dimensional case. 123
§ 6.6. Examples related to the abc-conjecture. 125
§ 6.7. Tables. 127
Chapter 7. The sum of two S-units being a square 136
§ 7.1. Introduction 136
§ 7.2. The case $D=1$. 137
§ 7.3. Towards generalized recurrences. 138
§ 7.4. Towards linear forms in logarithms. 142
§ 7.5. Upper bounds for the solutions: outline. 147
§ 7.6. Upper bounds for the solutions: details. 150
§7.7. The reduction technique. 158
§ 7.8. The standard example. 158
§ 7.9. Tables. 168
Chapter 8. The Thue equation. 178
§ 8.1. Introduction. 178
§ 8.2. From the Thue equation to a linear form in logarithms. 179
§ 8.3. Upper bounds. 184
§ 8.4. Reducing the upper bound 188
§ 8.5. An application: triangular numbers that are a product of three consecutive numbers 191
§8.6. The Thue-Mahler equation, an outline 202
References 205

Chapter 1. Introduction.

Abstract

1.1. Algorithms for diophantine equations.

This monograph deals with certain types of diophantine equations. An equation is a mathematical formula, expressing equality of two expressions that involve one or more unknowns (variables). Solving an equation means finding all solutions, i.e. the values that can be substituted for the unknowns such that the equation becomes a true statement. An equation is called a diophantine equation if the solutions are restricted to be integers in some sense, usually the ordinary rational integers (elements of \mathbb{Z}) or some subset of that.

Examples of diophantine equations that will be studied in this book are

$$
x^{2}+7=2^{n}
$$

(the Ramanujan-Nagell equation, having only the solutions given by $(\pm \mathrm{x}, \mathrm{n})=(1,3),(3,4),(5,5),(11,7),(181,15)$, see Chapter 4);

$$
2^{x}=3^{y}+5^{z}
$$

(a purely exponential equation, having only the solutions $(x, y, z)=(1,0,0)$, $(2,1,0),(3,1,1),(5,3,1),(7,1,3)$, see Chapter 6);

$$
y^{2}=x^{3}-4 \cdot x+1
$$

(an elliptic curve equation, having only 22 solutions, of which the largest are $(x, y)=(1274, \pm 45473)$, see Chapter 8$)$. The three examples mentioned here are only some examples; we will study much wider classes of equations. We also study (in Chapter 5) a diophantine inequality (a formula expressing that one expression is larger than another, where solutions are again restricted to integers). In the following discussion the statements about diophantine equations also hold for this inequality.

What the equations treated in this book have in common is that they can all be solved by the same method. This method consists essentially of three
pates: a transormation step, an application of the Gelfond-Baker theory, and a diophantine approximation step. We explain these steps briefly.

To start with, one cransforms the equation into a purely exponential equation or inequality, i.e. a diophantine equation or inequality where the unknowns are all in the exponents, such as in the second example given above. Each type of diophantine equation needs a particular kind of transformation, so that it is difficult to be more specific at this point. In some instances, such as in the second example above, this transformation is easy, if not crivial. In other instances, as in the first example above, it uses some arguments from algebraic number theory, or, as in the third example above, a lot of them.

In general, such purely exponential equation has the form

$$
\begin{equation*}
\sum_{i=1}^{t} c_{i} \cdot \prod_{j=1}^{s_{i} \alpha_{i j}}=c_{0} \cdot \prod_{j=1}^{s_{0} \alpha_{0 j}} \tag{1.1}
\end{equation*}
$$

and a corresponding purely exponential inequality looks like

$$
\begin{equation*}
\left|\sum_{i=1}^{t} c_{i} \cdot \prod_{j=1}^{s_{i}} \alpha_{i j}^{n_{i j}}\right|<\min \left|c_{i} \cdot \prod_{j=1}^{s_{i j}} \alpha_{i j}^{n_{i j}}\right|^{\delta} \tag{1.2}
\end{equation*}
$$

where t, $s_{1}, c_{1}, a_{i j}, \delta$ are constants with $t, s_{i} \in \mathbb{N}, 0<\delta<1$, and $c_{1,} a_{1 j}$ belong to some algebraic extension of 0 , and where the nij are the unknowns in \mathbb{Z}. We now suppose that the number of terms t on the left hand side of (1.1) or (1.2) is equal to 2 . This restriction is essential for the second step, in which we use results from the so-called theory of Linear forms in logarithms, also known as the Gelfond-Baker theory. (Some special exponential equations of type (1.1) with $t>2$ can also be treated by the Gelfond-Baker method, since they can be reduced to exponential inequalities of type (1.2) with $t=2$, cf. Stroeker and Tijdeman [1982], Alex [1985 ${ }^{\mathrm{a}}$], [1985 ${ }^{\mathrm{b}}$], Tijdeman and Wang [1988].)

An exponential equation or inequality such as (1.1) or (1.2) with $t=2$ gives rise to a linear form in logarithms

$$
A=\log \beta_{0}+\sum_{i=1}^{m} n_{i} \cdot \log \beta_{i}
$$

where the β_{i} are algebraic constants, and the n_{i} are integral unknowns. Here, the logarithms are real or complex in some instances, or p-adic in
other cases. This relation between equation and linear form in logarithms is such that for a large solution of the equation the linear form is extremely close to zero (in the real or complex sense, or in the p-adic sense). The Gelfond-Baker theory provides effectively computable lower bounds for the absolute values (respectively p-adic values) of such linear forms in logarithms of algebraic numbers. In many cases these bounds have been explicitly computed. Comparing the so-found upper and lower bounds it is possible to obtain explicit upper bounds for the solutions of the exponential diophantine equation or inequality, leading to upper bounds for the solutions of the original equation. This second step, unlike the first (transformation) step, is of a rather general nature.

We remark that many authors have given effectively computable upper bounds for the solutions of a wide variety of diophantine equations, by applying the method sketched above. For a survey, see Shorey and Tijdeman [1986]. Often these authors were satisfied with the knowledge of the existence of such bounds, and they did not actually compute them. If they computed bounds, they did not always determine all the solutions. In this book, solving an equation will always mean: explicitly finding all the solutions.

After the second step, the problem of solving the diophantine equation is reduced to a finite problem, which is treated in the third part of the method. Namely, since we have found explicit upper bounds for the absolute values of the (integral) unknowns, we have to check only finitely many possibilities for the unknowns. However, the word finite does not mean the same as small or trivial. In fact, the constants appearing in the lower bounds that the Gelfond-Baker theory provides for linear forms in logarithms are rather large. Therefore, in practice the upper bounds that can be obtained in this way for the solutions of purely exponential equations can be for instance as large as 10^{40}. This is far too large to admit simple enumeration of all the possibilities, even with the fastest of computers today.

Proving the existence of an absolute upper bound for the solutions reduces the determination of all the solutions from an infinite task to a finite one. Thus, the application of the Gelfond-Baker theory (the second step) is in a sense infinitely many times as difficult a task than the only finite amount of checking that remains to be done (in the third step). Furthermore, this checking seems to be a technical problem only, not a mathematical one.

Nevertheless, it is the author's opinion that solving this comparatively small technical problem is not only nontrivial, but involves some serious and interesting mathematics. This book hopefully illustrates this opinion.

Notwithstanding the fact that the application of the Gelfond-Baker theory in the second step yields very large upper bounds, it is generally assumed that these upper bounds are far from the actual largest solution. Therefore, it is worthwile to search for methods to reduce these upper bounds to a size that can be more easily handled. Often it is possible to devise such a method using directly certain properties of the original diophantine equation, for example that large solutions must satisfy certain congruences modulo many or large numbers (Grinstead [1978], Brown [1985]. Pinch [1988]), or some reciprocity condition (Petho [1983]). The disadvantage of such methods is that they work only for that particular type of diophantine equation, so that in general for each type of equation a new reduction method must be devised. It would therefore be interesting to have methods for reducing upper bounds for the solutions of inequalities for linear forms in logarithms. They would be useful for solving any type of diophantine problem that leads to such inequalities.

Such methods are searched for in the third step of our method of solving diophantine equations. It is mainly in this third part that new developments can be reported. The arguments we use in the first and second parts are mainly classical, and we apply them to types of equations that have been studied before, and also to new types of equations.

The methods that are needed in the third step are provided by that part of the theory of diophantine approximation that is concerned with studying how close to zero a linear form can be for given values of the variables. Recently important progress has been made in this field, the breakthrough being the invention in 1981 by L. Lovasz of the so-called L²-laticce basis
 efficient diophantine approximation algorithms, which can be employed for many diophantine equations to show that in a certain interval $\left[X_{1}, X_{0}\right]$ no solutions exist. Usually X_{1} is of the order of magnitude of $\log X_{0}$. When for X_{0} the theoretical upper bound for the solutions is substituted, a new, and usually much better upper bound X_{1} is found. For many equations the initial upper bound X_{0} is well within reach of practical application of these algorithms, within only a few minutes of computer time. This thus leads
in practice to methods for finding all the solutions of many types of diophantine equations, for which alternative methods have not yet been found or employed with success.

The method outlined above, and used in this book to solve many examples of various diophantine equations, is of an "algorithmic" nature. In a sense it lies between "ad hoc" methods and "theoretical" methods. This we shall explain below. Let a set of diophantine equations with an unspecified parameter in it be given. As an example of such a set, consider the generalized Ramanujan-Nagell equation $x^{2}+D=2^{n}$, where D is a parameter, and x, n are the unknowns.

An ad hoc method is a method for solving the equation for specific values of the parameters only. It may not work at all for other than these particular values. The first example of solving an equation of the type $x^{2}+D=2^{n}$ occurring in the literature is that by Nagell [1948] of $D=7$. The method he used is of an ad hoc nature, since it depends heavily on the special choice of 7 for the parameter D.

A theoretical method is capable of proving results that hold for some large set of values of the parameters. The Gelfond-Baker theory is of a theoretical nature, since it yields upper bounds for the solutions of many equations in terms of their parameters. Other examples are application of the theory of quadratic reciprocity, that shows that $x^{2}+D=2^{n}$ has no solutions at all if D is odd, at least 5 , and not congruent to 7 (mod 8), and application of the theory of hypergeometric functions, which Beukers [1981] used to show that the solutions (x, n) of $x^{2}+D=2^{n}$ satisfy $\mathrm{n}<435+10 \cdot{ }^{2} \log |\mathrm{D}|$, and if $|\mathrm{D}|<2^{96}$ then moreover $\mathrm{n}<18+2 \cdot{ }^{2} \log |\mathrm{D}|$. Theoretical methods are often too general to be able to produce all the solutions of a given equation.

An algorithmic method is a method that is guaranteed to work for any set of values of the parameters, but has to be applied separately to each particular set of parameter values, in order to produce all the solutions. The methods used in this book are mainly of such an algorithmic nature. For the equation $x^{2}+D=2^{n}$ (and actually for a more general equation) we will give an algorithmic method in Chapter 4. In fact, since Beukers' above-mentioned result provides a small upper bound for the solutions, it can be made algorithmic by providing a simple method of enumerating all the solutions
below the upper bound. However, the algorithmic part of this method is trivial, and therefore we still prefer to classify Beukers' method as theoretical. In order to make the Gelfond-Baker theory algorithmic, enumeration of all possibilities is impractical. Therefore more ingenious ways of determining all the solutions below a large upper bound have to be found. We remark that Beukers' method for the more general equation $x^{2}+D=p^{n}$ also has an ad hoc aspect, since it works for some special values of p only. Our method of Chapter 4 does not have this disadvantage.

An ideal towards which one might strive in solving diophantine equations is to devise a computer algorithm, a kind of 'diophantine machine', which only has to be fed with the parameters of the equation, and after a short time gives as output a list of all the solutions. One should have a guarantee (in the strictest mathematical sense of proof) that no solutions are missing.

At first sight the method outlined above, and described in this monograph, seems to be a good candidate to be developed into such a general applicable algorithm. Namely, the second step is of a quite general nature, providing upper bounds for exponential diophantine equations that are explicit in the parameters of the equation. Also the third step, the algorithmic diophantine approximation part, works in principle for any set of values substituted for the parameters. However, the computations have to be performed separately for each particular set of values.

The main difficulties in devising such a 'diophantine machine' are in the first part of the method outlined above, especially if some algebraic number theory is used. Developments taking place in the theory of algorithmic algebraic number theory on computing fundamental units and on finding factorizations of prime numbers in algebraic extensions, are of importance here. We believe that when suitable algorithms of this kind are available, it will be possible in principle to make such a 'diophantine machine' (but technical difficulties in the third step should not be underestimated). The generality of such an algorithm is restricted by the generality of the first step, the transformation to the linear form in logarithms. In this book we use computer algorithms only if the magnitude of the computational tasks makes this necessary, and keep to "manual" work otherwise. In this way we also try to keep the presentation of the methods lucid.

The reader should be aware of the fact that the computer programs and their
results are part of the proofs of many of our theorems on specific diophantine equations. It is however impossible to publish all details of these programs and computations. The interested reader may obtain the details from the author by request, and is invited to check the computations himself.

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine equations for which computable upper bounds for the solutions can be found using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman and Schinzel [1977], and Stroeker and Tijdeman [1982]). Some of these equations can be completely solved by the methods described in this book, among which there are purely exponential equations, equations involving binary recurrence sequences, and Thue equations and Thue-Mahler equations. Especially the latter two are of importance in various other parts of number theory. For example, they are the key to solving Mordell equations and various equations arising in algebraic number theory and arithmetic algebraic geometry. The Gelfond-Baker method was used to actually solve a diophantine equation for the first time in the work of Baker and Davenport [1969] in solving the system of diophantine equations

$$
3 \cdot x^{2}-2=y^{2}, \quad 8 \cdot x^{2}-7=z^{2}
$$

Other equations occuring in the literature for which upper bounds for the solutions can be computed, cannot be treated as easily by our algorithmic methods, because the application of the theory of linear forms in logarithms is more complicated for these equations, and moreover the upper bounds are essentially too large. An example of this kind is the Catalan equation $a^{x}-b^{y}=1$ in integers $a, b, x, y, a l l \geq 2$. Catalan conjectured in 1844 that this equation has only the solution $(a, b, x, y)=(3,2,2,3)$. Tijdeman [1976] proved that the solutions of the Catalan equation are bounded by a computable number. This number can be taken to be $\exp (\exp (\exp (\exp (730)))$), according to Langevin [1976]. However, we fail to see how the methods that we describe in the forthcoming chapters can be applied for completely solving the Catalan equation, and we believe that Grosswald's remarks on this topic are too optimistic (Grosswald [1984], p. 259, in particular the footnote).

Another diophantine equation, that for centuries has attracted the attention of many mathematicians, is the Fermat equation $x^{n}+y^{n}=z^{n}$ in integers x, y, z, n, with $n \geq 3$ and $x \cdot y \cdot z \neq 0$. It is conjectured to have no solutions. Faltings [1983] proved that for fixed n the number of solutions
is finite. His proof is ineffective. The Gelfond-Baker theory seems not to be strong enough to deal with the Fermat equation in its full generality, not even if n is fixed. For a survey of partial results on the Fermat equation that have been obtained using this theory, see Tijdeman [1985] and Chapter 11 of Shorey and Tijdeman [1986].

We remark that for many diophantine equations recently important progress has been made in determining upper bounds for the number of solutions. See e.g. Evertse [1983], Evertse, Györy, Stewart and Tijdeman [1988] and Schmidt [1988] for a survey. These results are often remarkably sharp, but ineffective, so that they cannot be used for actually finding the solutions.

To conclude this section we give an overview of the contents of this monograph. It is divided into three parts: Chapter 1 is introductory, Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal with various types of diophantine equations.

Sections 1.2 to 1.5 give a short introduction for the non-specialist to respectively the Gelfond-Baker theory, diophantine approximation theory, the algorithmic aspects of diophantine approximation, and the procedure for reducing upper bounds. Chapter 2 contains the preliminary results that we need from algebraic number theory and from the theory of p-adic numbers and functions, and quotes in full detail the theorems from the Gelfond-Baker theory which we use. It concludes with some remarks on numerical methods. Chapter 3 gives in detail the algorithms in the field of diophantine approximation theory that we apply in the subsequent chapters. In a sense this chapter is the heart of the book.

Chapters 4 to 8 are each devoted to a certain type of diophantine equation. Let p_{1}, \ldots, p_{s} be a fixed set of distinct primes. Let S be the set of positive integers composed of primes p_{1}, \ldots, p_{s} only.

Chapter 4 deals with elements of binary recurrence sequences ("generalized Fibonacci sequences") that are in S, and gives applications to mixed quadratic-exponential equations, such as the generalized Ramanujan-Nagell equation $x^{2}+k \in S$ (k fixed). The diophantine approximation part of this chapter is interesting for two reasons: the p-adic approximation is very simple, and in the case of the recurrence having negative discriminant, a nice interplay of p-adic and real/complex approximation arguments occurs. The
research for Chapter 4 was done partly in cooperation with A. Pethö from Debrecen. The results have been published in Pethö and de Weger [1986] and de Weger [$1986{ }^{\mathrm{b}}$].

Chapter 5 deals with the diophantine inequality $0<x-y<y^{\delta}$, where $x, y \in S$, and $\delta \in(0,1)$ is fixed. Chapter 6 deals with $x+y=z$, where $x, y, z \in S$, which can be considered as the p-adic analogue of the inequality of Chapter 5. These two equations are the simplest examples of diophantine equations that can be treated by our method. Since they are already purely exponential equations of the form (1.1) or (1.2) with $t=2$, the first step is trivial: the linear forms in logarithms are directly related to the equations. Therefore they serve as good examples to get a clear understanding of the diophantine approximation part of our method. The results of these chapters have been published in de Weger [1987].

Chapter 7 studies the equation $x+y=z^{2}$, where $x, y \in S$, and $z \in \mathbb{Z}$. This equation is a further generalization of the generalized Ramanujan-Nagell equation, studied in Chapter 4.

In Chapter 8 a procedure is given to solve Thue equations, that works in principle for Thue equations of any degree. It is applied to find all integral points on the elliptic curve $y^{2}=x^{3}-4 \cdot x+1$. We also mention briefly how Thue-Mahler equations can be dealt with. This chapter has been written jointly with N. Tzanakis from Iraklion. The results have been published in Tzanakis and de Weger [1989 ${ }^{\text {a }}$], and in de Weger [1989 ${ }^{\text {a }}$].

1.2. The Gelfond-Baker method.

In Section 1.1 we have explained that before applying the Gelfond-Baker method to some diophantine equation, the equation should be transformed into a purely exponential diophantine equation or inequality with not too many terms (cf. (1.1), (1.2)). In this section we sketch the arguments from the Gelfond-Baker theory that lead to upper bounds for the variables of this exponential equation/inequality.

Let us first treat the case of the inequality (1.2). Since $t=2$ we may assume that it has the form

$$
\left|\alpha_{0} \cdot \prod_{i=1}^{s} \alpha_{i}^{n_{i}}-1\right|<C_{0} \cdot \exp (-\delta \cdot N)
$$

where the α_{i} are fixed algebraic numbers, $N=\max \left|n_{i}\right|$, and C_{0}, δ are positive constants. In the examples we study, we encounter one of the following two cases: either all α_{i} are real, or $\left|\alpha_{i}\right|=1$ for all i. In the real case, if N is large enough, the linear form in logarithms

$$
\Lambda=\log \left|\alpha_{0}\right|+\sum_{i=1}^{s} n_{i} \cdot \log \left|\alpha_{i}\right|
$$

must satisfy

$$
\begin{equation*}
|\Lambda|<C_{0}^{\prime} \cdot \exp (-\delta \cdot N) \tag{1.3}
\end{equation*}
$$

for some C_{0}^{\prime}. In the complex case, the same inequality (1.3) follows for the linear form

$$
\begin{aligned}
\Lambda= & \log \alpha_{0}+\sum_{i=1}^{s} n_{i} \cdot \log \alpha_{i}+k \cdot \log (-1) \\
& =i \cdot\left(\operatorname{Arg} \alpha_{0}+\sum_{i=1}^{s} n_{i} \cdot \operatorname{Arg} \alpha_{i}+k \cdot \pi\right)
\end{aligned}
$$

where the Log and Arg functions take their principal values. Now we can apply one of the many results from the Gelfond-Baker theory, giving an explicit lower bound for $|\Lambda|$ in terms of N, e.g. the following theorem.

THEOREM 1.1. (Baker [1972]). Let Λ be as above. There exist computable constants C_{1}, C_{2}, depending on the α_{i} only, such that if $\Lambda \neq 0$ then

$$
|\Lambda|>\exp \left(-\left(C_{1}+C_{2} \cdot \log N\right)\right)
$$

We usually know that $\Lambda \neq 0$. Combining (1.3) and Theorem 1.1 we then obtain

$$
\mathrm{N}<\frac{C_{1}+\log C_{0}^{\prime}}{\delta}+\frac{C_{2}}{\delta} \cdot \log N
$$

It follows that N is bounded from above.

Next, consider the exponential equation (1.1). By $t=2$ we can write it as

$$
\alpha_{0} \cdot \prod_{i=1}^{s} \alpha_{i}^{n_{i}}-1=\beta_{0} \cdot \prod_{j=1}^{r} \beta_{j}^{m}
$$

where the α_{i}, β_{j} are fixed algebraic numbers. Let H_{p} be the maximum of the $\left|n_{i}\right|,\left|m_{j}\right|$ where i, j run through the set of indices for which α_{i} resp. β_{j} are non-units. Let H be the maximum of the $\left|n_{i}\right|,\left|m_{j}\right|$ where i, j run through the set of all indices. Suppose that p is a rational prime lying above β_{j} for some j. There are constants c_{1}, c_{2} such that

$$
\operatorname{ord}_{p}\left(\alpha_{0} \cdot \prod_{i=1}^{s} \alpha_{i}^{n_{i}}-1\right) \geq c_{1}+c_{2} \cdot m_{j}
$$

Assuming that $\operatorname{ord}_{p}\left(\alpha_{i}\right)=0$ for all i, we may write down a p-adic linear form in logarithms

$$
\Lambda=\log _{p} \alpha_{0}+\sum_{i=1}^{s} n_{i} \cdot \log _{p} \alpha_{i}
$$

for which, if m_{j} is large enough, it follows that

$$
\begin{equation*}
\operatorname{ord}_{p}(\Lambda) \geq c_{1}+c_{2} \cdot m_{j} . \tag{1.4}
\end{equation*}
$$

We are now in a position to apply the following result from the p-adic Gelfond-Baker theory. Here, $N=\max \left|n_{i}\right|$.

THEOREM 1.2. (van der Poorten [1977], Yu [1987]). Let Λ, p be as above. There exist computable constants C_{3}, C_{4}, depending only on the α_{i} and on p , such that if $\Lambda \neq 0$ then

$$
\operatorname{ord}_{p}(\Lambda)<C_{3}+C_{4} \cdot \log N .
$$

Applying (1.4) and Theorem 1.2 for all possible p we obtain constants C_{3}^{\prime}, C_{4}^{\prime} with

$$
\mathrm{H}_{\mathrm{p}}<\mathrm{C}_{3}^{\prime}+\mathrm{C}_{4}^{\prime} \cdot \log \mathrm{H} .
$$

If $H \leq C_{5} \cdot H_{p}$ for some constant C_{5}, then this immediately yields an upper
bound for H. If $H>C_{5} \cdot H_{p}$, then it can be shown that there exists a conjugate of the α_{i}, β_{j}, denoted with a prime sign, for which

$$
\left|\beta_{0}^{\prime} \cdot \prod_{j=1}^{r} \beta_{j}^{m}\right|<\exp \left(-C_{6} \cdot H\right)
$$

for a constant C_{6} (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and Tijdeman [1986]). Now we can apply Theorem 1.1. This yields

$$
\left|\alpha_{0}^{\prime} \cdot \prod_{i=1}^{s} \alpha_{i}^{n_{i}^{i}}-1\right|>\exp \left(-\left(C_{7}+C_{8} \cdot \log H\right)\right)
$$

It follows that H is bounded from above.

If it happens that none of the α_{i}, β_{j} are units, then of course the application of Theorem 1.2 suffices.

We remark that, in order to be able to completely solve a diophantine equation, it is crucial that all constants can be computed explicitly. Therefore we can only use the bounds from the Gelfond-Baker theory that are completely explicit. We give details of such theorems in Section 2.4.

1.3. Theoretical diophantine approximation.

In this section we briefly mention some results from diophantine approximation theory, thus giving a background to the next section. We refer to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright [1979] (Chapters XI and XXIII), for further details.

The simplest form of diophantine approximation in the real case is that of approximation of a real number θ by rational numbers p / q. It is well known that if θ is irrational, then there exist infinitely many solutions $(p, q) \in \mathbb{Z} \times \mathbb{N}$ with $(p, q)=1$ of the diophantine inequality

$$
\left|\vartheta-\frac{p}{q}\right|<q^{-2}
$$

All convergents from the continued fraction expansion of θ are such solutions. The convergents are simple to compute for any particular $\vartheta \in \mathbb{R}$.

One way of generalizing this is to study simultaneous approximations to a set of real numbers $\vartheta_{1}, \ldots, \vartheta_{n}$, i.e. rational approximations to ϑ_{i} all having the same denominator. It is well known that the system of inequalities

$$
\left|\vartheta_{i}-\frac{p_{i}}{q}\right|<q^{-(1+1 / n)} \quad \text { for } \quad i=1, \ldots, n
$$

has infinitely many solutions (p_{1}, \ldots, p_{n}, q) if at least one of the θ_{i} is irrational. But it is much harder to find solutions of such inequalities than in the case $n=1$. Some multi-dimensional continued fraction algorithms
have been devised (cf. Brentjes [1981] for a survey), but they seem not to have the desired simplicity and generality. We shall see later how we can apply the so-called L^{3}-algorithm to this problem.

Another way of generalizing the simplest case of diophantine approximation is to study linear forms, such as

$$
L=\sum_{j=1}^{m} q_{j} \cdot \vartheta_{j}
$$

where $\vartheta_{1}, \ldots, \vartheta_{m}$ are given real numbers, and q_{1}, \ldots, q_{m} are the unknowns in \mathbb{Z}. Put $Q=\max \left|q_{i}\right|$. A classical theorem guarantees the existence of a solution $\left(p, q_{1}, \ldots, q_{m}\right)$ of the inequality

$$
|L-p|<Q^{-m}
$$

Note that the case $m=1$ becomes our first inequality on dividing by $q=q_{1}$. Also in this case the L^{3}-algorithm is very useful, as we shall see below.

We can incorporate the two generalizations above in a further generalization, that of simultaneous approximation of linear forms. Let real numbers $\theta_{i j}$ be given for $i=1, \ldots, n, j=1, \ldots, m$. Put

$$
L_{i}=\sum_{j=1}^{m} q_{j} \cdot \vartheta_{i j} \text { for } i=1, \ldots, n
$$

A celebrated theorem of Minkowski states that there exists a solution ($p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$) of the system of inequalities

$$
\left|L_{i}-p_{i}\right|<Q^{-m / n} \text { for } i=1, \ldots, n
$$

As we shall show in Section 1.4 , the L^{3}-algorithm may be applied to this general form. We actually compute solutions of systems of inequalities that are slightly weaker in the sense that the right hand side is multiplied by a small constant larger than 1 .

We now consider inhomogeneous approximation. This means that for all i there is an inhomogeneous term β_{i} in the linear form L_{i}, viz.

$$
L_{i}=\beta_{i}+\sum_{j=1}^{m} q_{j} \cdot \vartheta_{i j} \text { for } i=1, \ldots, n
$$

Again, there exists a constant c such that the system

$$
\left|L_{i}-p_{i}\right|<c \cdot Q^{-m / n} \text { for } i=1, \ldots, n \text {, }
$$

under some independence condition on the β_{i} and $\vartheta_{i j}$, has a solution. This is Kronecker's theorem. The simplest case $m=n=1$ comes down to

$$
|\mathrm{q} \cdot \vartheta-\mathrm{p}+\beta|<\mathrm{c} \cdot \mathrm{q}^{-1} .
$$

The upper bounds given above, that tell us that the order of magnitude of $\left|L_{i}-p_{i}\right|$ can be at least as small as $Q^{-m / n}$, are not only theoretical upper bounds, but they predict the heuristically expected order of magnitude as well. By this we mean that in a generic situation (i.e. when there are no almost-linear relations between the $\theta_{i j}$ (and the β_{i}), it is indeed the case that for a given Q_{0} the minimal $\max \left|L_{i}-p_{i}\right|$, taken over all $Q \leq Q_{0}$, has the order of magnitude of the upper bound $Q^{-m / n}$

To conclude this section, we remark that there is a p-adic analogue of this theory of diophantine approximation, founded by Mahler and Lutz. If we replace in the above considerations \mathbb{R} by \mathbb{Q}_{p}, the absolute value $|$.$| by$ the p-adic value $|\cdot|_{p}$, and the measure Q for an approximation $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right)$ by any convex norm $\Phi\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right)$ on \mathbb{R}^{n+m}, then the p-adic analogues of the theorems of Minkowski and Kronecker are essentially analogous to the above mentioned results in the real case. See Koksma [1937] for references to Mahler's work, and Lutz [1951], and for a detailed analysis of the case $n=1, m=2$ see de Weger $\left[1986^{a}\right]$.

1.4. Computational diophantine approximation.

In this section we give some idea of practically solving the diophantine approximation problems that we encounter in solving diophantine equations. In this section we give no rigorous treatment. We neglect worst cases, and concentrate on how things are expected to work (according to the heuristics of Section 1.3), and appear to work in practice. In the subsequent chapters many examples are given, showing that our methods are indeed useful in practice. Applying the method in practice may be the best way of acquiring the necessary Fingerspitzengefühl for the method.

We shall deal with the following computational diophantine approximation
problem. Let $\theta_{i j}, \beta_{i} \in \mathbb{R}$ be given, and let $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$ be integral unknowns with $Q=\max \left|q_{j}\right|$. Let L_{i} be as above. Let a positive constant Q_{0}, assumed to be a rather large number, 10^{50} say, be given. Find a lower bound for the value of

$$
\max _{i}\left|L_{i}-p_{i}\right|
$$

where $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right)$ runs through the set of values with $Q \leq Q_{0}$. From the heuristics outlined in Section 1.3 it follows that one will be satisfied if this lower bound is of the size $Q_{0}^{-m / n}$. For the p-adic case an analogous problem may be formulated.

Related problems in diophantine approximation theory are those of actually finding a good or the best solution of $\underset{i}{\max }\left|L_{i}-p_{i}\right|<\epsilon$ for a fixed $\epsilon>0$. As we shall see, the L^{3}-algorithm is a very useful tool for finding good solutions. The problem of finding the best solution however seems to be essentially more difficult. We note that in most of our applications of solving diophantine equations it suffices to have a suitable lower bound for $\underset{i}{\max }\left|L_{i}-p_{i}\right|$ for a given Q_{0}, while it is unnecessary to know explicitly how sharp this bound is.

The computational tool that we use to solve the afore-mentioned problems is the so-called L^{3}-lattice basis reduction algorithm, described in Lenstra, Lenstra and Lovász [1982]. We shall give details of this algorithm in Sections 3.4 and 3.5. Below we briefly indicate how it can be used to solve diophantine approximation problems.

Let Γ be a lattice in \mathbb{R}^{n}. The L^{3}-algorithm accepts as input an arbitrary basis $\underline{b}_{1}, \ldots, b_{n}$ of Γ. As output it gives another basis $\underline{c}_{1}, \ldots, c_{n}$ of the same lattice Γ, that is a so-called reduced basis. The concept reduced means something like nearly orthogonal. From a reduced basis it is possible to compute lower bounds for the following two quantities:
\rightarrow the length of the non-zero lattice point that is nearest to the origin:

$$
\ell(\Gamma)=\min _{\underline{0} \neq \underline{x} \in \Gamma}|\underline{x}|,
$$

(see Lenstra, Lenstra and Lovász [1982], Prop. (1.11), and our Lemma 3.4),
\rightarrow for any given point $y \in \mathbb{R}^{n}$, the distance from y to the nearest lattice point:

$$
\ell(\Gamma, y)=\min _{x \in \Gamma}|\underline{x}-y|,
$$

(see Babai [1986], and our Lemmas 3.5 and 3.6).

The L^{3}-algorithm enjoys the property that these lower bounds are usually near to the actual minimal solutions. In a generic situation, where the lattice is not too distorted, the vectors c_{i} of the reduced basis all have about the same length, which is of the order of magnitude of

$$
\operatorname{det}(\Gamma)^{1 / n} .
$$

The value of $\ell(\Gamma)$ as well as the lower bounds computed for it, are about as large as that. If y is not too close to a lattice point, the same holds for $\ell(\Gamma, y)$. Moreover, the running time of the algorithm is good, both in the theoretical sense (it is polynomial-time in the length of the inputparameters), and in practice (cf. Lenstra [1984], p. 7).

To solve the problem of finding a lower bounds for $\max _{i}\left|L_{i}-p_{i}\right|$ as formulated above, we take the lattice Γ as follows. Let C be an integer, at least as large as $\dot{Q}_{0}^{1+m / n}$. The lattice Γ, of dimension $n+m$, is defined by specifying a basis, namely the column vectors $\underline{b}_{1}, \ldots, b_{n+m}$ of the matrix
(The symbol \varnothing means that all not explicitly given entries in that area are zero). Applying the L^{3}-algorithm to this lattice we find a reduced basis, of which the basis vectors will have lengths of about $C^{n /(m+n)}$, which is roughly the size of Q_{0}. Generally speaking, the larger C is, the larger the lengths of the basis vectors of a reduced basis will be (and the larger the lower bounds for $\ell(\Gamma)$ and $\ell(\Gamma, y)$ will be).

Let us first treat the homogeneous case, i.e. $\beta_{i}=0$ for all i. Consider
the lattice point $x=\boldsymbol{B} \cdot\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}, \mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right)^{\mathrm{T}}$. It is equal to

$$
\underline{x}=\left(q_{1}, \ldots, q_{m}, \tilde{L}_{1}-c \cdot p_{1}, \ldots, \tilde{L}_{n}-c \cdot p_{n}\right)^{T}
$$

where

$$
\widetilde{L}_{i}=\sum_{j=1}^{m} q_{j} \cdot\left[C \cdot \vartheta_{i j}\right] \text { for } i=1, \ldots, n
$$

From the application of the $L^{3}-a l g o r i t h m$ we find a lower bound for $\ell(\Gamma)$, of size Q_{0}. We assume it to be large enough (if this is not the case, we try a somewhat larger value for C, and perform the L^{3}-algorithm again for the lattice defined for this C). So we may assume that there is a small constant c_{1} such that

$$
\sum_{i=1}^{n}\left(\tilde{L}_{i}-C \cdot p_{i}\right)^{2} \geq \ell(\Gamma)^{2}-m \cdot Q_{0}^{2}>c_{1} \cdot Q_{0}^{2}
$$

We have $\left|\bar{L}_{i}-C \cdot L_{i}\right| \leq m \cdot Q_{0}$, so we may assume that for small constants c_{2}, c_{3}

$$
\max _{i}\left|L_{i}-p_{i}\right|>c_{2} \cdot C^{-1} \cdot \max \left|\bar{L}_{i}-C \cdot p_{i}\right|>c_{3} \cdot Q_{0} / C
$$

By the choice of C this last bound has the required size.

Next, we study the inhomogeneous case, where not all β_{i} are zero. We take the same lattice Γ as in the homogeneous case (note that the lattice definition depends only on the $\vartheta_{i j}$ and the C). Consider the point

$$
y=\left(0, \ldots, 0,-\left[C \cdot \beta_{1}\right], \ldots,-\left[C \cdot \beta_{n}\right]\right)^{T}
$$

From the reduced basis found by the L^{3}-algorithm we have a lower bound for $\ell(\Gamma, Y)$. Assume that it is large enough, and of size Q_{0}. We take the same lattice point $x=B \cdot\left(q_{1}, \ldots, q_{m}, p_{1}, \ldots p_{n}\right)^{T}$ as in the homogeneous case. Then

$$
\underline{x}-y=\left(q_{1}, \ldots, q_{m}, \tilde{L}_{1}-C \cdot p_{1}, \ldots, \bar{L}_{n}-C \cdot p_{n}\right)^{T}
$$

where

$$
\bar{L}_{i}=\left[C \cdot \beta_{i}\right]+\sum_{j=1}^{m} q_{j} \cdot\left[C \cdot \vartheta_{i j}\right] \text { for } i=1, \ldots, n
$$

The same reasoning as in the homogeneous case now yields the desired result. Note that if we have performed the $L^{3}-a l g o r i t h m$ once for given $\theta_{i j}$, we may use the result to treat the homogeneous case, and many inhomogeneous cases with different β_{i} 's as well, as long as the $\vartheta_{i j}$'s are the same.

The above process describes how to find lower bounds for systems of diophantine inequalities. It will be clear from the above that it is not difficult to find good solutions, i.e. $\left(q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}\right)$ with $Q \leq Q_{0}$ and $\max _{i}\left|L_{i}-p_{i}\right|$ near to the best possible value. In particular, the basis vectors of a reduced basis are adequate for the homogeneous case, and for the inhomogeneous case the lattice points near to y will be such solutions. The lattice points near to y are not difficult to find once a reduced basis is available. Specifically, if $s_{1}, \ldots, s_{n} \in \mathbb{R}$ are the coordinates of y with respect to a reduced basis, then one may take the lattice points with coordinates (with respect to the reduced basis) $t_{i} \in \mathbb{Z}$ that are near to s_{i} for $\mathrm{i}=1, \ldots, \mathrm{n}$.

In the definition of the matrix above the expressions [C. ${ }_{i j}$] occur. Using these expressions we have constructed a lattice Γ that is completely integral, i.e. $\Gamma \subset \mathbb{Z}^{m+n}$. The L^{3}-algorithm can be adapted to work exact for those lattices, so that rounding-off errors are avoided (cf. Section 3.5). The "errors" occur only in the difference between the \tilde{L}_{i} and the $C \cdot L_{i}$, and are thus kept under control by choosing the proper constants c_{1}, c_{2}, c_{3}. Of course one should take care to have the numerical values of the $\vartheta_{i j}$ and the β_{i} correct to sufficient precision. We shall discuss such numerical problems briefly in Section 2.5.

A possible variation of the above diophantine approximation problem is to give weights to the linear forms L_{i}, i.e. to look for a lower bound for

$$
\max _{i} w_{i} \cdot\left|L_{i}-p_{i}\right|
$$

where the w_{i} are fixed positive numbers. This situation can be dealt with easily by replacing every C in the $(n+i)$ th row of the matrix by $C \cdot w_{i}$.

Another variation is the problem where not all the variables q_{j} have the same upper bound Q_{0}. To illustrate this, assume that $n=1$, and that

$$
L=\sum_{j=1}^{m} q_{j} \cdot \vartheta_{j}
$$

Now suppose that for some $Q_{1}>Q_{2}$ (it will be handy to have $Q_{2} \mid Q_{1}$) we are interested in the solutions with

$$
\left|q_{j}\right| \leq Q_{1} \quad \text { for } j \leq m_{1}, \quad\left|q_{j}\right| \leq Q_{2} \text { for } j \geq m_{1}+1
$$

Next, let C be of the size of $Q_{1}^{m_{1}+1} \cdot Q_{2}^{m-m_{1}}$, and take the matrix

Its determinant is of the size of $Q_{1}{ }^{m+1}$. For a lattice point $\left(q_{1}, \ldots, q_{m}, \bar{L}-C \cdot p\right)^{T}$ we therefore expect that $\max \left(\left|q_{1}\right|, \ldots,\left|q_{m_{1}}\right|\right)$, $\left(Q_{1} / Q_{2}\right) \cdot \max \left(\left|q_{m_{1}+1}\right|, \ldots,\left|q_{m}\right|\right)$ and $|\bar{L}-C \cdot p|$ are all of the size of Q_{1}. It follows that $|L-p|$ is of the size of $Q_{1}^{-m} 1 \cdot Q_{2}^{-\left(m-m_{1}\right)}$, in accordance with the heuristics. This variant is useful when a combination of real and p-adic techniques is used, such as for the Thue-Mahler equation (see Section 8.6).

We conclude this section by giving the analogous method of p-adic diophantine approximation. We assume that the $\vartheta_{i j}, \beta_{i}$ are in \mathbb{Q}_{p}, and, moreover, that they are p-adic integers. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For any p-adic integer γ and any $\mu \in \mathbb{N}_{0}$ we denote by $\gamma^{(\mu)}$ the unique rational integer such that

$$
\gamma \equiv \gamma^{(\mu)}\left(\bmod \mathrm{p}^{\mu}\right), 0 \leq \gamma^{(\mu)}<\mathrm{p}^{\mu}
$$

Let $\mu \in \mathbb{N}$ be such that p^{μ} is roughly the same size as $Q_{0}^{1+m / n}$, and assume that μ is large enough (it is the analogue of the constant C in the real case above). Take for Γ the lattice of which a basis is given by the column vectors of the matrix

$$
\mathscr{B}=\left[\begin{array}{cccccc}
1 & & & & & \\
\varnothing & & \cdot & & \varnothing & \\
\\
\vartheta_{11}^{(\mu)} & \cdots & \vartheta_{1 m}^{(\mu)} & \mathrm{p}^{\mu} & & \\
\vdots & & \vdots & & \cdots & \\
\vartheta_{\mathrm{n} 1}^{(\mu)} & \cdots & \vartheta_{\mathrm{nm}}^{(\mu)} & & & \\
& & & & \mathrm{p}^{\mu}
\end{array}\right]
$$

Consider the lattice point

$$
\mathscr{B} \cdot\left(q_{1}, \ldots, q_{m}, z_{1}, \ldots, z_{n}\right)^{T}=\left(q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}\right)^{T}
$$

Then it is obvious that

$$
p_{i}=\sum_{j=1}^{m} q_{j} \cdot \vartheta_{i j}^{(\mu)}+z_{i} \cdot p^{\mu}
$$

Hence the lattice Γ can be described as the set

$$
\begin{aligned}
& r=\left\{\left(q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}\right)^{T} \in \mathbb{Z}^{m+n} \mid\right. \\
& \\
& \left.\sum_{j=1}^{m} q_{j} \cdot \vartheta_{i j}=p_{i}\left(\bmod p^{\mu}\right) \text { for } i=1, \ldots, n\right\} .
\end{aligned}
$$

The L^{3}-algorithm provides a lower bound for the length of the nonzero vectors in this set, which is of the same size as $p^{\mu \cdot n /(n+m)}$, and that of Q_{0}. This yields the desired result, if μ is taken large enough.

For the inhomogeneous case, put

$$
\mathrm{y}=\left(0, \ldots, 0,-\beta_{1}^{(\mu)}, \ldots,-\beta_{\mathrm{n}}^{(\mu)}\right)^{\mathrm{T}}
$$

and consider the set

$$
\begin{aligned}
& r^{*}=\left\{\left(q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{n}\right)^{T} \in \mathbb{Z}^{m+n} \mid\right. \\
& \left.\beta_{i}+\sum_{j=1}^{m} q_{j} \cdot \vartheta_{i j} \equiv p_{i}\left(\bmod p^{\mu}\right) \text { for } i=1, \ldots, n\right\} .
\end{aligned}
$$

Then $\underline{x} \in \Gamma^{*}$ if and only if $\underline{x}+y \in \Gamma$, so Γ^{*} is a translated lattice. A lower bound for $\ell(\Gamma, Y)$ now yields the desired result.

Again variations are possible, as in the real case, e.g. by replacing on the ($n+i$) th row the μ by different μ_{i}. It is even possible in this way to treat more than one prime p at the same time, by replacing on the ($n+i$) th row the p^{μ} by different $\mathrm{P}_{\mathrm{i}}^{\mu_{i}}$.

We indicate one more variation for the p-adic case. Suppose we have only one linear form $\Lambda=\sum_{j=1}^{m} q_{j} \cdot \vartheta_{j}$, and one variable $p \in \mathbb{Z}$, and we want to study when Λ is congruent to 0 modulo different prime powers $p_{1}^{\mu_{1}}, \ldots, p_{n}^{\mu_{n}}$. Thus we are interested in the set

$$
\begin{array}{r}
\Gamma^{\prime}=\left\{\left(q_{1}, \ldots, q_{m}, p\right)^{T} \in \mathbb{Z}^{m+1} \mid \sum_{j=1}^{m} q_{j} \cdot \vartheta_{j}=p\left(\bmod p_{i}{ }_{i}\right)\right. \\
\text { for } i=1, \ldots, n\}
\end{array}
$$

Then we take $\theta_{j}^{*} \in \mathbb{Z}$ with

$$
\theta_{j}^{*}=\theta_{j}\left(\bmod p_{i}^{\mu_{i}}\right) \quad \text { for } i=1, \ldots, n, \quad 0 \leq \theta_{j}^{*}<\prod_{i=1}^{n} p_{i}^{\mu_{i}}
$$

for all j. The ϑ_{j}^{*} can be computed by the Chinese Remainder Theorem. Now Γ^{\prime} is the lattice generated by the column vectors of

$$
\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \emptyset \\
& \varnothing & 1 & \\
\theta_{1}^{*} & \cdots & \theta_{m}^{*} & \prod_{i=1}^{n} p_{i}^{\mu_{i}}
\end{array}\right]
$$

and we proceed with this lattice as described above.

We conclude this section with three remarks. Firstly, in the case that the dimension of the lattice under consideration is only 2 , the L^{3}-algorithm is essentially the continued fraction algorithm, and so yields nothing new. For the p-adic continued fraction algorithm, see de Weger [1986 ${ }^{\text {a }}$]. Secondly, the inhomogeneous case of diophantine approximation of one linear form of real numbers can also be treated by what is known as Davenport's lemma, cf. Baker and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison [1971 ${ }^{\text {a }]) . ~ W e ~ w i l l ~ r e t u r n ~ t o ~ t h i s ~ i n ~ C h a p t e r ~} 3$, and explain there why we prefer our method.

Finally, one of the nice features of the above method of practical diophantine approximation is that if an extreme solution exists, then in the homogeneous case the lattice (with proper constant C or μ) will be distorted. This means that the reduced basis will not be as nice as expected, for example there might be a basis vector in it that is substantially shorter than the other ones. In the inhomogeneous case the existence of an extreme solution means that there is a lattice point extremely near to Y. The algorithm detects such an extraordinary situation at once, and in most cases the extremal solution is presented explicitly (e.g. in the homogeneous case as one of the vectors of the reduced basis). One can check whether this extremal solution actually satisfies the original equation, and then proceed by replacing in the above reasoning $\ell(\Gamma)$ or $\ell(\Gamma, Y)$ by lower bounds for all vectors in the lattice except the extremal one. These new lower bounds will in general be of the expected size. However, when we solved diophantine equations in practice, we have never met such an extraordinary situation.
1.5. The procedure for reducing upper bounds.

We have seen in Section 1.2 how upper bounds for the solutions of the exponential inequalities and equations occuring there can be found. In Section 1.4 we have studied some diophantine approximation theory from a practical point of view. Now these two things come together.

From the application of the Gelfond-Baker theory we are left with the following problem. We have a linear form

$$
\Lambda=\beta+\sum_{j=1}^{m} n_{j} \cdot \vartheta_{j}
$$

where the β and ϑ_{j} are constants (that they are logarithms of algebraic numbers is now of no importance anymore), and the n_{j} are integral unknowns. We know that Λ is extremely close to 0 , namely

$$
|\Lambda|<c \cdot \exp (-\delta \cdot N)
$$

where c, δ are (small) constants, and $N=\max \left|n_{j}\right|$. Finally, we have an explicit upper bound N_{0} for N. This N_{0} is very large, 10^{50} say.

It will be clear from Section 1.4 that the methods outlined there are of use for solving this problem. For Q_{0} we take N_{0}. We have $n=1$. In the real case we expect, by choosing C at least of size N_{0}^{m+1}, that

$$
|\Lambda|>c^{\prime} \cdot N_{0}^{-m}
$$

for a small constant c^{\prime}. It follows by combining the two inequalities for $|\Lambda|$ that

$$
N<\log \left(c / c^{\prime}\right) / \delta+(m / \delta) \cdot \log N_{0}
$$

So the upper bound N_{0} for N is reduced to an upper bound N_{1} of the size of $\log N_{0}$, which is a considerable improvement indeed. We now may apply the procedure with N_{1} instead of N_{0}, and repeat until no further improvement is obtained. In practice it appears almost always to be the case that in that situation the reduced upper bound is near to the actual largest solution, anyway so small that simple methods of finding all the solutions below that bound suffice.

In the p-adic case an analogous reduction of upper bounds can be reached,
following a similar argument. We have for the linear form Λ (cf. (1.4)),

$$
\operatorname{ord}_{p}(\Lambda) \geq c_{1}+c_{2} \cdot m_{j}
$$

where c_{1}, c_{2} are small constants, and m_{j} is one of the variables. Moreover, the variables are bounded by a large constant N_{0}, that is explicitly known. We take μ such that p^{μ} is at least of size N_{0}^{m+1}, so that the lower bound for the shortest nonzero vector in Γ (or Γ^{*}) is larger than $/ \mathrm{m} \cdot \mathrm{N}_{0}$. Then it follows that the elements of the lattice r (or of the translated lattice Γ^{*}) cannot be solutions of (1.2). Therefore,

$$
c_{1}+c_{2} \cdot m_{j}<\mu
$$

so that we find a new upper bound for m_{j}, that is of the size of μ, which is about $\log N_{0} / \log p$. We repeat this procedure for all the m_{j}, in order to obtain a reduced upper bound for H_{p}. If this is not yet sufficient to derive at once a reduced upper bound for H, then we can do so by applying a reduction step for real linear forms, where we may take advantage of the fact that for some of the variables a much better upper bound has just been found (cf. the second variation in Section 1.4). Again we repeat the whole procedure as far as possible.

Chapter 2. Preliminaries.

2.1. Algebraic number theory.

In this section we quote results from algebraic number theory that we use throughout the remaining chapters. We refer to Borevich and Shafarevich [1966] or any other textbook on algebraic number theory for full details.

Let K be a finite algebraic extension of \mathbb{Q}, of degree $D=[K: \mathbb{Q}]$. There are D embeddings $\sigma: K \rightarrow \mathbb{C}$. Let $\alpha \in K$ be an element of degree d, and let $a_{0}>0$ be the leading coefficient of its minimal polynomial over \mathbb{Z}. We define the (logarithmic) height $h(\alpha)$ by

$$
\mathrm{h}(\alpha)=\frac{1}{\mathrm{D}} \cdot \log \left(\mathrm{a}_{0}^{\mathrm{D} / \mathrm{d}} \cdot \prod_{\sigma} \max (1,|\sigma(\alpha)|)\right)
$$

where the product is taken over all embeddings σ. Note that this definition does not depend on the field K. Hence, if the conjugates of α are $\alpha=\alpha_{1}, \ldots, \alpha_{d}$, then the above definition applied for $K=\mathbb{Q}(\alpha)$ yields

$$
h(\alpha)=\frac{1}{d} \cdot \log \left[a_{0} \cdot \prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right]
$$

In particular, if $\alpha \in \mathbb{Q}$, then with $\alpha=p / q$ for $p, q \in \mathbb{Z}$ with (p, q) $=1$ we have $h(\alpha)=\log \max (|p|,|q|)$, and if $\alpha \in \mathbb{Z}$ then $h(\alpha)=\log |\alpha|$.

Let there be s real and $2 \cdot t$ non-real embeddings (with $D=s+2 \cdot t$). Then Dirichlet's Unit Theorem states that there exists a system of $r=s+t-1$ independent units $\epsilon_{1}, \ldots, \epsilon_{r}$, such that the group of units of K is given by

$$
\left\{\zeta \cdot \epsilon_{1}^{a_{1}} \cdot \ldots \cdot \epsilon_{r}^{a_{r}} \mid \zeta \text { a root of unity, } a_{i} \in \mathbb{Z} \text { for } i=1, \ldots, r\right\}
$$

There are only finitely many roots of unity in K. Any set of independent units that generate the torsion-free part of the unit group is called a system of fundamental units.

The number α is called an algebraic integer if $a_{0}=1$. Let the norm of an
element $a \in K$ be defined by

$$
\mathrm{N}_{\mathrm{K} / \mathbb{Q}}(\alpha)=\prod_{\sigma} \sigma(\alpha)=\left(\prod_{\mathrm{i}=1}^{\mathrm{d}} \alpha_{\mathrm{i}}\right)^{\mathrm{D} / \mathrm{d}}
$$

For algebraic integers, $N_{K / \mathbb{Q}}(\alpha) \in \mathbb{Z}$. The units are precisely the elements of norm ± 1. Two elements α, β of K are called associates if there is a unit ϵ such that $\alpha=\epsilon \cdot \beta$. Let (α) denote the ideal generated by α. Associated elements generate the same ideal, and distinct generators of an ideal are associated. There exist only finitely many non-associated algebraic integers in K with given norm. The ring of algebraic integers is denoted by O_{K}. Let $\alpha_{1}, \ldots, \alpha_{D}$ be elements of σ_{K} that are \mathbb{Q}-linearly independent. Then $\mathbb{Z} \cdot \alpha_{1} \times \ldots \times \mathbb{Z} \cdot \alpha_{D}$ is called an order of K if it is a subring of the 'maximal order' O_{K}.

In K any algebraic integer can be written as a product of irreducible elements. Here an irreducible element (prime element) is an element that has no integral divisors but its own associates. However, this decomposition into primes need not be unique. Ideals can also be decomposed into prime ideals, and this decomposition is unique. A principal ideal is an ideal generated by a single element α. Two fractional ideals are called equivalent if their quotient is principal. It is well known that there are only finitely many equivalence classes. Their number is called the class number ${ }_{h_{K}}$. For an ${ }_{a}{ }^{h} \mathrm{~K}$ is a principal ideal. The norm of the (integral) ideal a is defined by $N_{K / Q}(a)=\#\left(O_{K} / a\right)$.

For a prime ideal p there is always a rational prime number p such that p is a divisor of (p) . We say that p lies above p. The ramification index e_{p} is the largest power to which p divides (p). The residue class degree f_{p} is the integer such that

$$
N_{K / \mathbb{Q}}(p)=p^{f_{p}}
$$

We denote by ord ${ }_{p}(a)$ the exact power to which the prime ideal p divides the ideal a . For fractional ideals a this number can of course be negative. For numbers α we write $\operatorname{ord}_{p}(\alpha)$ for $\operatorname{ord}_{p}((\alpha))$. Note that

$$
\operatorname{ord}_{p}(\alpha)=\operatorname{ord}_{p}(\alpha) / e_{p}
$$

can be defined for all $\alpha \in \mathrm{K}$. We will return to this in Section 2.3 , which deals with p-adic number theory.

2.2. Some auxiliary lemmas.

In this section we give a few simple auxiliary lemmas. The first one enables us to find an upper bound in closed form for some real number $x>1$ that is bounded by a polynomial in $\log \mathrm{x}$. See Pethö and de Weger [1986], Lemma 2.3.

LEMMA 2.1. Let $\mathrm{a} \geq 0, \mathrm{~h} \geq 1$, $\mathrm{b}>0$, and let $\mathrm{x} \in \mathbb{R}, \mathrm{x}>1$ satisfy

$$
x \leq a+b \cdot(\log x)^{h}
$$

If $\mathrm{b}>\left(\mathrm{e}^{2} / \mathrm{h}\right)^{\mathrm{h}}$ then

$$
x<2^{h} \cdot\left(a^{1 / h}+b^{1 / h} \cdot \log \left(h^{h} \cdot b\right)\right)^{h}
$$

and if $\mathrm{b} \leq\left(\mathrm{e}^{2} / \mathrm{h}\right)^{\mathrm{h}}$ then

$$
x \leq 2^{h} \cdot\left(a^{1 / h}+2 \cdot e^{2}\right)^{h}
$$

Proof. We may assume that x is the largest solution of

$$
x=a+b \cdot(\log x)^{h}
$$

By $\left(z_{1}+z_{2}\right)^{1 / h} \leq z_{1}^{1 / h}+z_{2}^{1 / h}$ we infer

$$
x^{1 / h} \leq a^{1 / h}+c \cdot \log \left(x^{1 / h}\right)
$$

where $c=h \cdot b^{1 / h}$. Define y by $x^{1 / h}=(1+y) \cdot c \cdot \log c$. From

$$
\log c<\log (c \cdot \log c)
$$

it follows that

$$
c^{h} \cdot(\log c)^{h}<b \cdot\left(\log \left(c^{h} \cdot(\log c)^{h}\right)\right)^{h}
$$

which implies $x>c^{h} \cdot(\log c)^{h}$. Hence $y>0$. Now,

$$
\begin{aligned}
(1+y) \cdot c \cdot \log c=x^{1 / h} & \leq a^{1 / h}+c \cdot \log (1+y)+c \cdot \log c+c \cdot \log \log c \\
& <a^{1 / h}+c \cdot y+c \cdot \log c+c \cdot \log \log c
\end{aligned}
$$

Hence

$$
y \cdot c \cdot(\log c-1)<a^{1 / h}+c \cdot \log \log c
$$

If $c \geq e^{2}$ it follows that

$$
\begin{aligned}
& x^{1 / h}=c \cdot \log c+y \cdot c \cdot \log c<c \cdot \log c+\frac{\log c}{\log c-1} \cdot\left(a^{1 / h}+c \cdot \log \log c\right) \\
& \quad<2 \cdot\left(a^{1 / h}+c \cdot \log c\right) \cdot \\
& \text { If } \quad c \leq e^{2} \text {, then note that } x \leq a+\left(e^{2} / h\right)^{h} \cdot(\log x)^{h} \cdot \text { So we may assume } \\
& c=e^{2} \text { in this case. The result follows. }
\end{aligned}
$$

The next lemmas make explicit that x and $\log (1+x)$ are near if $|x|$ is small in the real and complex case, respectively.

LEMMA 2.2. Let $a \in \mathbb{R}$. If $a<1$ and $|x|<a$ then

$$
|\log (1+x)|<\frac{-\log (1-a)}{a} \cdot|x|
$$

and

$$
|x|<\frac{a}{1-e^{-a}} \cdot\left|e^{x}-1\right|
$$

Proof. Note that $\log (1+x) / x$ is a strictly positive and strictly decreasing function for $|x|<1$. Hence it is for $|x|<a$ always less than its value at $x=-a$. The same is true for the function $x /\left(e^{x}-1\right)$.

LEMMA 2.3. Let $0<a \leq \pi$. If $|x|<a$ then

$$
|x|<\frac{a}{2 \cdot \sin (a / 2)} \cdot\left|e^{i \cdot x}-1\right|
$$

If $a<2,\left|e^{i \cdot x}-1\right|<a$ and $|x|<\pi$ then

$$
|x|<\frac{2 \cdot \arcsin (a / 2)}{a} \cdot\left|e^{i \cdot x}-1\right|
$$

Proof. Note that $\left|e^{i \cdot x}-1\right|=2 \cdot\left|\sin \left(\frac{1}{2} \cdot x\right)\right|$. and that $2 \cdot \sin \left(\frac{1}{2} \cdot x\right) / x$ is a positive and even function, that decreases on $0 \leq x<a$. Hence it takes its minimal value at $x=a$. The first inequality now follows. The second one can be proved in a similar way.
2.3. p-adic numbers and functions.

In this section we mention the facts about p-adic numbers and functions that we use. For details we refer to Bachman [1964] and Koblitz [1977], [1980].

We assume that the reader is familiar with the field of p-adic numbers \mathbb{Q}_{p} and the p-adic valuation ord ${ }_{p}$. Note that the ordinary ord ${ }_{p}$ as defined in Q_{p} coincides with the definition given in Section 2.1 . We denote by Ω_{p} the completion of the algebraic closure of \mathbb{Q}_{p}, i.e. the field to which all p-adic theory is applied.

Every nonzero number $\alpha \in \mathbb{Q}_{p}$ has a p-adic expansion

$$
\alpha=\sum_{i=k}^{\infty} u_{i} \cdot p^{i}
$$

where $k=\operatorname{ord}_{p}(\alpha)$ and the p-adic digits u_{i} are in $\{0,1, \ldots, p-1\}$, with $u_{k} \neq 0$. The number 0 can be represented in this way by taking $k=0$ and all digits equal to 0 , and ord ${ }_{p}(0)=\infty$ by definition. If ord $(\alpha) \geq 0$ then α is called a p-adic integer. The set of p-adic integers is denoted by \mathbb{Z}_{p}. A p-adic unit is an $\alpha \in \mathbb{Q}_{p}$ with ord $(\alpha)=0$. For any p-adic integer α and any $\mu \in \mathbb{N}_{0}$ there exists a unique rational integer $\alpha^{(\mu)}=\sum_{i=0}^{\mu-1} u_{i} \cdot p^{i}$ satisfying

$$
\operatorname{ord}_{\mathrm{p}}\left(\alpha-\alpha^{(\mu)}\right) \geq \mu, \quad 0 \leq \alpha^{(\mu)} \leq \mathrm{p}^{\mu}-1
$$

For $\operatorname{ord}_{p}(\alpha) \geq k$ we also write $\alpha \equiv 0(\bmod p k)$. The p-adic norm is defined by

$$
|\alpha|_{p}=p^{-\operatorname{ord}_{p}(\alpha)}
$$

In Section 2.1 we have seen how to define ord d_{p} and ord on algebraic extensions of Q. For any $\alpha \in \Omega_{p}$ with $\operatorname{ord}_{p}(\alpha)>1 /(p-1)$ we can define the p-adic logarithm $\log _{p}(1+\alpha)$ by the Taylor series

$$
\log _{p}(1+\alpha)=\alpha-\alpha^{2} / 2+\alpha^{3} / 3-\ldots
$$

This logarithmic function has the well known properties of a logarithm, such as $\log _{p}\left(\xi_{1} \cdot \xi_{2}\right)=\log _{p}\left(\xi_{1}\right)+\log _{p}\left(\xi_{2}\right)$ for all ξ_{1}, ξ_{2} for which it is defined. Further, $\log _{p}(\xi)=0$ if and only if ξ is a root of unity. In \mathbb{Q}_{p} the only roots of unity are the ($p-1$) th roots of unity (if p is odd). Using these properties, this logarithmic function can be extended to all $\xi \in \Omega_{p}$ with ord $(\xi)=0$, as follows. By Fermat's theorem for algebraic number fields there is a $k \in \mathbb{N}$ such that ord $\left(\xi^{k}-1\right)>1 /(p-1)$. Then

$$
\log _{p}(\xi)=\frac{1}{k} \cdot \log _{p}\left(1+\left(\xi^{k}-1\right)\right)
$$

An equivalent definition is $\log _{p}(\xi)=\log _{p}(\xi / 5)$, where 5 is a root of unity such that $\operatorname{ord}_{p}(\xi-\zeta)>0$. In this way the p-adic logarithm is a well defined function. Note that $\log _{p}(\xi)$ lies in the subfield of Ω_{p} generated by ξ. Finally we note that if ord $(\xi)>1 /(p-1)$ then

$$
\operatorname{ord}_{p}(\xi)=\operatorname{ord}_{p}\left(\log _{p}(1+\xi)\right)
$$

2.4. Lower bounds for linear forms in logarithms.

In this section we quote in detail the results from the Gelfond-Baker theory that we use. They yield lower bounds for linear forms in logarithms of algebraic numbers. We do not always give the theorems in their full generality, since in this book only linear forms with rational unknowns occur, whereas most Gelfond-Baker theorems are formulated for linear forms with algebraic unknowns. We selected bounds with fully explicit constants, because only such completely explicit results can be used for our purposes.

The first result in this field for a linear form in logarithms with at least three terms is due to Baker [1966], and in the p-adic case to Coates [1969], [1970]. For a survey of this theory, see Baker [1977] and van der Poorten [1977]. We will use more recent, sharper results, due to Waldschmidt [1980] and Yu [1987]. Further improvements of the constants have been reached (see the references after Lemma 2.4 below, but too recently to be taken into account here.

First we deal with real/complex linear forms in logarithms. We quote the result of Waldschmidt [1980].

LEMMA 2.4 (Waldschmidt). Let K be a number field with $[K: \mathbb{Q}]=D$. Let $\alpha_{1}, \ldots, \alpha_{n} \in K$, and $b_{1}, \ldots, b_{n} \in \mathbb{Z} \quad(n \geq 2)$. Let V_{1}, \ldots, V_{n} be positive real numbers satisfying $1 / D \leq V_{1} \leq \ldots \leq V_{n}$ and

$$
v_{j} \geq \max \left(h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right| / D\right) \text { for } j=1, \ldots, n
$$

where $\log \alpha_{j}$ for $j=1, \ldots, n$ is an arbitrary but fixed determination of the logarithm of α_{j}. Let $V_{j}^{+}=\max \left(V_{j}, 1\right)$ for $j=n, n-1$, and put

$$
\Lambda=\sum_{j=1}^{n} b_{j} \cdot \log \alpha_{j}
$$

Put $B=\max _{1 \leq i \leq n}\left|b_{i}\right|$. If $\Lambda \neq 0$ then

$$
\begin{gathered}
|A|>\exp \left(-2^{e(n)} \cdot n^{2 \cdot n} \cdot D^{n+2} \cdot v_{1} \cdot \ldots \cdot v_{n} \cdot \log \left(e \cdot D \cdot v_{n-1}^{+}\right)\right. \\
\left.\cdot\left(\log B+\log \left(e \cdot D \cdot v_{n}^{+}\right)\right)\right)
\end{gathered}
$$

where $e(n)=\min (8 \cdot n+51,10 \cdot n+33,9 \cdot n+39)$. If, moreover, it is known that $\left[\mathbb{Q}\left(\sqrt{ } \alpha_{1}, \ldots, \sqrt{ } \alpha_{n}\right): \mathbb{Q}\right]=2^{n}$, then we can take $e(n)=9 \cdot n+26$ and replace the factor $n^{2 \cdot n}$ in the above bound for $|\Lambda|$ by n^{n+4}.

Waldschmidt's main theorem does not give the constant $e(n)$ as detailed as we do, but he does so in his proof, cf. p. 283. We remark that improvements of the above bounds have recently been found by Blass, Glass, Manski, Meronk and Steiner [1988 ${ }^{\mathrm{a}}$], [1988 ${ }^{\mathrm{b}}$], Loxton, Mignotte, van der Poorten and Waldschmidt [1987], Philippon and Waldschmidt [1988], and Wüstholz [1988]. For the case $n=2$, the sharpest bound has been given by Mignotte and Waldschmidt [1978], improved again by Mignotte and Waldschmidt [1988].

In the p-adic case we quote two results: one due to Schinzel [1967] (Theorem 1) for the case of a linear form in logarithms with two terms, and another for the general case, due to Yu [1987] (Theorem 1, see also Yu [1988]). We note that Y 's bounds improve much upon the results of van der Poorten [1977]. Moreover, van der Poorten's proofs seem to contain some errors. We give Schinzel's result for quadratic fields only.

LEMMA 2.5 (Schinzel). Let p be prime. Let Δ be a squarefree integer, and let D be the discriminant of $K=\mathbb{Q}(\sqrt{ })$. Let $\xi=\xi^{\prime \prime} / \xi^{\prime}$ and $\chi=\chi^{\prime \prime} / \chi^{\prime}$ be elements of K , where $\xi^{\prime}, \xi^{\prime \prime}, \chi^{\prime}, \chi^{\prime \prime}$ are algebraic integers. Put

$$
L=\log \max \left(|e \cdot D|^{1 / 4},\left\|\xi^{\prime} \cdot \chi^{\prime}\right\|,\left\|\xi^{\prime} \cdot \chi^{\prime \prime}\right\|,\left\|\xi^{\prime \prime} \cdot \chi^{\prime}\right\|,\left\|\xi^{n} \cdot \chi^{n}\right\|\right)
$$

where $\|\gamma\|$ denotes the maximal absolute value of the conjugates of $\gamma \in K$. Let p be a prime ideal of K with norm $N p=p^{\rho}$. Put $\psi=2 / \rho \cdot 10 g p$, $\varphi=\operatorname{ord}_{p}(p)$. If ξ or χ is a p-adic unit and $\xi^{n} \neq \chi^{m}$, then

$$
\operatorname{ord}_{p}\left(\xi^{n}-x^{m}\right)<10^{6} \cdot \psi^{7} \cdot \varphi^{-2} \cdot L^{4} \cdot p^{4 \cdot \rho+4} \cdot\left(\log \max (|m|,|n|)+\varphi \cdot L \cdot p^{\rho}+2 / L\right)^{3}
$$

LEMMA 2.6 (Yu). Let $\alpha_{1}, \ldots, \alpha_{n}(n \geq 2)$ be nonzero algebraic numbers. Put $\mathrm{L}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right), \mathrm{d}=[\mathrm{L}: \mathbb{Q}]$. Let $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$ be rational integers. Let p be a prime ideal of L, lying above the rational prime p. Let e_{p} be the ramification index, and f_{p} the residue class degree of p. Write L_{p} for the completion of L with respect to ord ${ }_{p}$ (then for all $\beta \in L_{p}$ we have $\operatorname{ord}_{p}(\beta)=e_{p} \cdot \operatorname{ord}_{p}(\beta)$). Let q be a rational prime such that

$$
q \nmid p \cdot\left(p^{f_{p}}-1\right)
$$

Let

$$
\begin{aligned}
& v_{j} \geq \max \left(h\left(\alpha_{j}\right), f_{p} \cdot(\log p) / d\right) \text { for } j=1, \ldots, n, \\
& \quad \operatorname{such} \text { that } v_{1} \leq \ldots \leq v_{n-1}, V_{n-1}^{+}=\max \left(1, v_{n-1}\right), \\
& B_{0} \geq \min _{1 \leq j \leq n, b_{j} \neq 0}\left|b_{j}\right|, B_{n} \geq\left|b_{n}\right|, B^{\prime} \geq \max _{1 \leq j \leq n-1}\left|b_{j}\right|, \\
& B \geq \max \left(\left|b_{1}\right|, \ldots,\left|b_{n}\right|, 2\right), \\
& W \geq \max \left(\log \left(1+\frac{3}{4 \cdot n} \cdot B, \log B_{0}, f_{p} \cdot(\log p) / d\right) .\right.
\end{aligned}
$$

Suppose that $\operatorname{ord}_{p}\left(\alpha_{j}\right)=0$ for $j=1, \ldots, n$, that

$$
\begin{equation*}
\left[L\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): L\right]=q^{n} \tag{2.1}
\end{equation*}
$$

that $\operatorname{ord}_{p}\left(b_{n}\right) \leq \operatorname{ord}_{p}\left(b_{j}\right)$ for $j=1, \ldots, n$, and $\alpha_{1} b_{1} \ldots \alpha_{n} \neq 1$. Then

$$
\operatorname{ord}_{p}\left[\alpha_{1}^{b} \cdot \ldots \cdot \alpha_{n}^{b_{n}}-1\right)<c_{1}(p, n) \cdot a_{1}^{n} \cdot n^{n+5 / 2} \cdot q^{2 \cdot n} \cdot(q-1) \cdot \log ^{2}(n \cdot q) \cdot
$$

$$
\left(p^{f_{p}}-1\right) \cdot\left(2+\frac{1}{p-1}\right)^{n} \cdot\left(f_{p} \cdot(\log p) / d\right)^{-(n+2)} \cdot v_{1} \cdot \ldots \cdot v_{n} .
$$

$$
\cdot\left(\frac{W}{6 \cdot n}+\log (4 \cdot d)\right] \cdot\left(\log \left(4 \cdot d \cdot V_{n-1}^{+}\right)+f_{p} \cdot(\log p) / 8 \cdot n\right),
$$

where

$$
a_{1}=56 \cdot \mathrm{e} / 15 \text { if } \mathrm{n} \leq 7, a_{1}=8 \cdot \mathrm{e} / 3 \text { if } \mathrm{n} \geq 8 \text {, }
$$

and $C_{1}(\mathrm{p}, \mathrm{n})$ is given by the table on the next page, with for $\mathrm{p} \geq 5$

$$
c_{1}(p, n)=c_{1}(p, n) \cdot\left(2+\frac{1}{p-1}\right)^{2} .
$$

n	2	3	4	5	6	7	≥ 8
$\mathrm{C}_{1}(2, \mathrm{n})$	768523	476217	373024	318871	284931	261379	2770008
$\mathrm{C}_{1}(3, \mathrm{n})$	167881	104028	81486	69657	62243	57098	116055
$\mathrm{C}_{1}^{\prime}(\mathrm{p}, \mathrm{n})$	87055	53944	42255	36121	32276	24584	311077

Remark. Yu [1989] gives a result in which 'independence condition' (2.1) has been removed, with more or less the same constants. This result will be easier to apply if $d \geq 1$.

2.5. Numerical methods.

In solving diophantine equations using computational methods from diophantine approximation theory, as we will do in Chapters 4 to 8 , it is necessary to have logarithms (real, complex or p-adic) of algebraic numbers available to a large enough precision (maybe several hundreds of digits). We will not go deeply into the problems of computing such approximations, but make only a few remarks on it in this section.

To start with, the precision with which most computers (mainframes as well as personal computers) work, is insufficient for our purposes. Usually at most double precision (52 bits, equivalent to 15 decimal digits), or at best quadruple precision (112 bits, equivalent to 33 decimal digits) is standard available. This is not sufficient for our purposes, not only because we may require larger precision, but also because we want to have the rounding off errors under control, to be sure that no solution of a diophantine equation is missed by unexpected consequences of rounding off errors.

Packages for computations with arbitrary precision are available and very useful, e.g. the MP package of R.P. Brent (cf. Brent [1978]). It is not difficult, as we did, to write one's own package for simple manipulations on multi-precision numbers, such as addition, multiplication and division (cf. Knuth [1981] for efficient algorithms). To the author's knowledge, no such packages are available publicly for manipulations on p-adic numbers, but the programs are similar to those for real numbers, and thus relatively easy (though maybe laborious) to write yourself.

Computing roots of polynomials with integral coefficients can be done by

Newton's method, both in the real and the p-adic case. One should make sure that the result obtained is correct to the desired precision, not (only) by substituting the found approximation of the root into the polynomial and checking that the result is 0 within the desired precision, but (also) by theoretical error estimates for the Newton method, or by using 'interval arithmetic' (see below).

Computing logarithms can be done by the Newton method too. However, we found it easier to use the Taylor series

$$
\log (1+x)=x-x^{2} / 2+x^{3} / 3-\ldots
$$

or the more rapidly converging series

$$
\log \frac{1+x}{1-x}=2 \cdot\left(x+x^{3} / 3+x^{5} / 5+\ldots\right)
$$

For $|x|$ very small this method works fast, whereas for larger $|x|$ the following idea works well. Compute approximations to the desired precision of $\log 1.1, \log 1.0001$, $\log 1.00000001$, say, and store them. Now compute $x_{1} \in[1,1.1)$ and $k_{1} \in \mathbb{N}_{0}$ such that

$$
\mathrm{x}=\mathrm{x}_{1} \cdot 1.1^{\mathrm{k}_{1}}
$$

which is a matter of a few divisions of a multi-precision number with a rational number with small numerator and denominator (11 and 10) only, that can be done fast. Next, compute $x_{2} \in\left[1,1.0001\right.$) and $k_{2} \in \mathbb{N}_{0}$ such that

$$
x_{1}=x_{2} \cdot 1.0001^{k_{2}}
$$

and $x_{3} \in[1,1.00000001)$ and $k_{3} \in \mathbb{N}_{0}$ such that

$$
x_{2}=x_{3} \cdot 1.00000001^{k_{3}}
$$

Then compute $\log x_{3}$ by the Taylor series, which converges very fast, and compute $\log x$ by

$$
\log x=\log x_{3}+k_{3} \cdot \log 1.00000001+k_{2} \cdot \log 1.0001+k_{1} \cdot \log 1.1
$$

When computing all this, one should take care of having the rounding off errors at each addition/multiplication under control. This can e.g. be done by using 'interval arithmetic', i.e. doing all computations twice with a few more digits than actually needed, rounding off in different directions at
each step. Then a sufficiently small interval is found in which the exact number lies (with mathematical certainty)

Computation of $\arctan x$ is done by the Taylor series

$$
\arctan x=x-x^{3} / 3+x^{5} / 5-\ldots
$$

The number $\pi=3.14159 \ldots$ can be computed rapidly by this series for the arctan function, by the identity

$$
\pi=16 \cdot \arctan 1 / 5-4 \cdot \arctan 1 / 239 .
$$

Doing p-adic arithmetic has the advantage above real arithmetic that rounding off errors do not tend to become larger, as long as one is not dividing by a number with positive p-adic order. If ord $(x)>0$ then $\log _{p}(1+x)$ can be computed by the Taylor series

$$
\log _{p}(1+x)=x-x^{2} / 2+x^{3} / 3+\ldots
$$

and also it may be useful to compute it by

$$
\log _{p} \frac{1+x}{1-x}=2 \cdot\left(x+x^{3} / 3+x^{5} / 5+\ldots\right)
$$

If $x \neq 0(\bmod p)$ and $x \neq 1(\bmod p)$ then $\log _{p} x$ can be computed, since there exists a $k \in \mathbb{N}$ such that $x^{k} \equiv 1(\bmod p)$, and then

$$
\log _{p} x=\frac{1}{k} \cdot \log _{p}\left(1+\left(x^{k}-1\right)\right)
$$

and the above given Taylor series can be used to compute $\log _{p} x$. Note that in computing the above mentioned Taylor series there will be factors p in the denominators of the terms. Hence, to find the first μ p-adic digits of $\log _{p}(1+x)$, it is not enough to compute only the first $\mu /$ ord (x) terms of the Taylor series, but the first k terms must be taken into account, where k is the smallest integer satisfying

$$
k \cdot \operatorname{ord}_{p}(x)-\log k / \log p \geq \mu
$$

For rapid convergence of Taylor series it is desirable to apply them only for numbers x with large p-adic order. For example,

$$
\log _{3} 4=3-3^{2} / 2+3^{3} / 3-\ldots
$$

converges not as fast as

$$
\log _{3} 4=\frac{1}{3} \cdot \log _{3} 64=\frac{1}{3} \cdot\left(7 \cdot 3^{2}-7^{2} \cdot 3^{4} / 2+7^{3} \cdot 3^{6} / 3-\ldots\right),
$$

or as

$$
\log _{3} 4=\log _{3} \frac{1+3 / 5}{1-3 / 5}=2 \cdot\left(3 / 5+3^{3} / 3 \cdot 5^{3}+3^{5} / 5 \cdot 5^{5}+\ldots\right)
$$

or as

$$
\begin{aligned}
\log _{3} 4= & \frac{1}{3} \cdot \log _{3} \frac{1+7 \cdot 3^{2} / 65}{1-7 \cdot 3^{2} / 65}=\frac{2}{3} \cdot\left(7 \cdot 3^{2} / 65+7^{3} \cdot 3^{6} / 3 \cdot 65^{3}\right. \\
& \left.+7^{5} \cdot 3^{10} / 5 \cdot 65^{5}+\ldots\right)
\end{aligned}
$$

The above considerations are sufficient for efficiently performing exact
 use the simple continued fraction algorithm in some instances. This we do as follows. Suppose we want to compute the continued fraction expansion of a real number ϑ, that we have approximated by rational numbers $\vartheta_{1}, \theta_{2}$ such that

$$
\vartheta_{1}<\vartheta<\vartheta_{2}<\vartheta_{1}+\epsilon
$$

for some small ϵ. We can compute the continued fraction expansions of ϑ_{1} and ϑ_{2} exactly. As far as they coincide, they coincide also with the continued fraction expansion of ϑ. If the continued fraction expansion of ϑ is needed so far that the k th convergent with denominator $q_{k}>X_{0}$ be known exactly, for a given (large) constant X_{0}, then ϵ should be at least as small as X_{0}^{-2}.

Most of the computer calculations done for the research on which this book reports were performed on an IBM 3083 computer at the Centraal Rekeninstituut of the University of Leiden, using the Fortran-77 language. Whenever we give computation times, actual CPU-time on this machine is meant. Also some computations were done at a $\operatorname{VAX} 11 / 750$ computer at the Rekencentrum of the University of Twente.

Chapter 3. Algorithms for diophantine approximation.

3.1. Introduction.

In this section we give details of the computational methods we use to reduce upper bounds for the solutions of diophantine equations. Our starting point will always be a linear form Λ that is close to 0 (in the real or p-adic sense, with the word "close" defined explicitly in terms of an inequality involving the unknowns), together with a large but explicitly known upper bound for the absolute values of the coefficients of Λ. Our aim is to reduce the upper bound by showing that there are no solutions between the new and the old upper bound.

Let $\vartheta_{1}, \ldots, \vartheta_{n}, \beta$ be given numbers, in \mathbb{R}, or in Ω_{p}, for a fixed prime p. Let x_{1}, \ldots, x_{n} be unknowns in \mathbb{Z}. Put

$$
\Lambda=\beta+\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}} \cdot \vartheta_{\mathrm{i}}
$$

We classify such linear forms according to three criteria:
\rightarrow homogeneous if $\beta=0$, inhomogeneous if $\beta \neq 0$;
\rightarrow one-dimensional if $n=2$, multi-dimensional if $n \geq 3$;
\rightarrow real if $\vartheta_{i} \in \mathbb{R}$ for all i, p-adic if $\vartheta_{i} \in \Omega_{p}$ for all i.

The reason that the case $n=2$ is called one-dimensional is that in the homogeneous case the linear form

$$
\Delta=x_{1} \cdot \vartheta_{1}+x_{2} \cdot \vartheta_{2}
$$

leads to studying the simple, one-dimensional continued fraction expansion of $-\vartheta_{1} / \vartheta_{2}$. The inhomogeneous case with $n=1$, viz.

$$
\Lambda=\beta+x \cdot \vartheta
$$

is not of any interest in the real case, but it is of interest in the p-adic case. We call this the zero-dimensional case.

In the p-adic case we require that the quotients θ_{i} / θ_{j} and β / θ_{j} are in ${ }^{Q}$ p itself, whereas the numbers ϑ_{i}, β are allowed to be in some larger subfield of Ω_{p}.

Let c, δ be positive constants. Put $X=\max \left|x_{i}\right|$. Let X_{0} be a (large) positive constant. In the real case we shall always assume that

$$
\begin{align*}
& |\Lambda|<c \cdot \exp (-\delta \cdot X) \tag{3.1}\\
& X \leq X_{O} . \tag{3.2}
\end{align*}
$$

Let c_{1}, c_{2} be real constants, with $c_{2}>0$. In the p-adic case we shall assume that $x_{j}>0$ for some index $j \in\{1, \ldots, n\}$, and

$$
\begin{align*}
& \operatorname{ord}_{p}(\Lambda) \geq c_{1}+c_{2} \cdot x_{j} \tag{3.3}\\
& X \leq X_{0} \tag{3.4}
\end{align*}
$$

Our aim is to find a constant X_{1}, of the size of $\log X_{0}$, such that in the real case (3.2) can be replaced by $X \leq X_{1}$, and in the p-adic case the bound $x_{j} \leq X_{0}$ (a consequence of (3.4)) can be improved to $X_{j} \leq X_{1}$.

In the forthcoming sections we will treat all cases, according to the classification given above. We insert Sections $3.4,3.5$ on the L^{3}-algorithm, which will be our main computational tool, Section 3.6 on finding short vectors in lattices, and Section 3.13 on certain sublattices that are useful for our applications.
3.2. Homogeneous one-dimensional approximation in the real case: continued fractions.

We first study the case

$$
\Lambda=x_{1} \cdot \vartheta_{1}+x_{2} \cdot \vartheta_{2}
$$

Put $\quad \vartheta=-\vartheta_{1} / \vartheta_{2}$. We assume that ϑ is irrational. Let the continued fraction expansion of ϑ be given by

$$
\vartheta=\left[a_{0}, a_{1}, a_{2}, \ldots\right],
$$

and let the convergents p_{n} / q_{n} for $n=0,1,2, \ldots$ be defined by

$$
\left\{\begin{array}{ll}
p_{-1}=1, & p_{0}=a_{0}, \\
q_{-1}=0, & p_{n+1}=a_{n+1} \cdot p_{n}+p_{n-1} .
\end{array} .\right.
$$

It is well known that the convergents satisfy the inequalities

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) \cdot q_{n}^{2}}<\left|\theta-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} \cdot q_{n}^{2}}, \tag{3.5}
\end{equation*}
$$

and that if p / q satisfies the inequality

$$
\begin{equation*}
\left|\theta-\frac{p}{q}\right|<\frac{1}{2 \cdot q^{2}} \tag{3.6}
\end{equation*}
$$

then p / q must be one of the convergents (cf. Hardy and Wright [1979], Theorems 163, 171 and 184).

We may assume without loss of generality that $\left|\vartheta_{1}\right|<\left|\vartheta_{2}\right|$, that $x_{1}>0$, and that $\left(x_{1}, x_{2}\right)=1$. From (3.1) it follows that there exists a number X^{*} such that $X \geq X^{*}$ implies $X=x_{1}$ and (3.6) for (p, q) $=\left(-x_{2}, x_{1}\right)$. We now have the following criteria.

LEMMA 3.1. (i). If (3.1) and (3.2) hold for $\mathrm{x}_{1}, \mathrm{x}_{2}$ with $\mathrm{X} \geq \mathrm{X}^{*}$, then $\left(-\mathrm{x}_{2}, \mathrm{x}_{1}\right)=\left(\mathrm{p}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}}\right)$ for an index k that satisfies

$$
\begin{equation*}
k \leq-1+\log \left(\sqrt{5} \cdot X_{0}+1\right) / \log \left(\frac{1}{2}(1+/ 5)\right) \tag{3.7}
\end{equation*}
$$

Moreover, the partial quotient a_{k+1} satisfies

$$
\begin{equation*}
a_{k+1}>-2+\left|\vartheta_{2}\right| \cdot c^{-1} \cdot \exp \left(\delta \cdot q_{k}\right) / q_{k} \tag{3.8}
\end{equation*}
$$

(ii). If for some k with $q_{k} \geq X^{*}$

$$
\begin{equation*}
a_{k+1}>\left|\vartheta_{2}\right| \cdot c^{-1} \cdot \exp \left(\delta \cdot q_{k}\right) / q_{k} \tag{3.9}
\end{equation*}
$$

then (3.1) holds for $\left(-x_{2}, x_{1}\right)=\left(p_{k}, q_{k}\right)$.
Proof. (i). By $X \geq X^{*}$ and (3.6) it follows that $\left(-x_{2}, x_{1}\right)=\left(p_{k}, q_{k}\right)$ for an index k. Since q_{k} is at least the ($k+1$) th Fibonacci number, (3.7) follows from $q_{k}=x_{1}=X \leq X_{0}$. To prove (3.8), apply (3.1) and the first inequality of (3.5).
(ii). Combine (3.9) with the second inequality of (3.5).

```
We may apply Lemma 3.1(i) directly, or as follows
```

LEMMA 3.2. Let

$$
A=\max \left(a_{k+1}\right)
$$

where the maximum is taken over all indices k satisfying (3.7). If (3.1) and (3.2) hold for $\mathrm{X}_{1}, \mathrm{x}_{2}$ with $\mathrm{X} \geq \mathrm{X}_{1}$, then

$$
X<\frac{1}{\delta} \cdot \log \left(c \cdot(A+2) /\left|\theta_{2}\right|\right)+\frac{1}{\delta} \cdot \log X
$$

Remark. From Lemma 3.2 an upper bound for X follows. We can apply Lemma 2.1 here, but Lemma 2.1 is sharp for large b only.

Proof. (3.1) and (3.5) yield

$$
\left(a_{n+1}+2\right) \cdot q_{n}^{2}>q_{n} \cdot\left|\vartheta_{2}\right| /|\Lambda|>q_{n} \cdot\left|\vartheta_{2}\right| \cdot c^{-1} \cdot \exp (\delta \cdot x)
$$

The result follows by applying Lemma 3.1(i).

In practice it does not often occur that A is large. Therefore this lemma is useful indeed.

Summarizing, this case comes down to computing the continued fraction of a real number to a certain precision, and establishing that it has no extremely large partial quotients. This idea has been applied in practice by Ellison [1971b], by Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Tijdeman [1982]), and by Hunt and van der Poorten (unpublished) for solving diophantine equations, by Steiner [1977] in connection with the Syracuse ("3•N+1") problem, and by Cherubini and Walliser [1987] (using a small home computer only) for determining all imaginary quadratic number fields with class number 1 . We shall use it in Chapters 4 and 5.
3.3. Inhomogeneous one-dimensional approximation in the real case: the Davenport lemma.

The next case is when Λ has the form

$$
\Lambda=\beta+x_{1} \cdot \vartheta_{1}+x_{2} \cdot \vartheta_{2},
$$

where $\beta \neq 0$. We then may use the so-called Davenport lemma, which was introduced by Baker and Davenport [1969]. It is, like the homogeneous case, based on the continued fraction algorithm.

Put again $\vartheta=-\vartheta_{1} / \vartheta_{2}$, and put $\psi=\beta / \vartheta_{2}$. Then we have

$$
\frac{\Lambda}{\vartheta_{2}}=\psi-x_{1} \cdot \vartheta+x_{2}
$$

Let p / q be a convergent of ϑ with $q>X_{0}$. We have the following result.

LEMMA 3.3. (Davenport). Suppose that, in the above notation,

$$
\begin{equation*}
\|q \cdot \psi\|>2 \cdot X_{0} / q \tag{3.10}
\end{equation*}
$$

(by $\|\cdot\|$ we denote the distance to the nearest integer). Then the solutions of (3.1), (3.2) satisfy

$$
\begin{equation*}
\mathrm{x}<\frac{1}{\delta} \cdot \log \left(\mathrm{q}^{2} \cdot \mathrm{c} /\left|v_{2}\right| \cdot \mathrm{X}_{0}\right) \tag{3.11}
\end{equation*}
$$

Proof. From (3.5) and (3.10) we infer

$$
2 \cdot \mathrm{X}_{0} / \mathrm{q}<\left\|q \cdot\left(\psi-\mathrm{x}_{1} \cdot \vartheta+\mathrm{x}_{2}\right)+\mathrm{x}_{1} \cdot(\mathrm{q} \cdot \vartheta-\mathrm{p})\right\|<\mathrm{q} \cdot\left|\Lambda / \vartheta_{2}\right|+\left|\mathrm{x}_{1}\right| / \mathrm{q}
$$

By (3.1), (3.2), and

$$
x_{0}<q^{2} \cdot c \cdot\left|\vartheta_{2}^{-1}\right| \cdot \exp (-\delta \cdot X)
$$

this leads to (3.11).

If (3.10) is not true for the first convergent with denominator $>\mathrm{X}_{0}$, then one should try some further convergents. If q is not essentially larger than X_{0}, then (3.11) yields a reduced upper bound for X of size $\log X_{0}$, as desired. If no q of the size of X_{0} can be found that also satisfies (3.10) (a situation which is very unlikely to occur, as experiments show), then not all is lost, since then only very few exceptional possible solutions have to be checked. See Baker and Davenport [1969] for details.

Summarizing, we see that in this case the essential idea is that an extremely large solution of (3.1) and (3.2) leads to a large range of convergents p / q of ϑ for which the values of $\|q \cdot \psi\|$ are all extremely small. In practice it appears to be the case that $q \cdot \psi$ is always far enough from the nearest
integer (the values of $\|q \cdot \psi\|$ seem to be distributed randomly over the interval $[0,0.5]$). This method has been used in practice by Baker and Davenport [1969] as we already mentioned, by Ellison, Ellison, Pesek, Stahl and Stall [1972], by Steiner [1986], and by Gaál [1988]. We shall use it in Chapter 4. Note that the method that we develop in Section 3.8 for the multi-dimensional inhomogeneous case, can be used in the one-dimensional case as well, as has been demonstrated in de Weger [1989 ${ }^{\text {b }}$].

3.4. The L^{3}-lattice basis reduction algorithm, theory.

To deal with linear forms with $n \geq 3$, a straightforward generalization of the case $n=2$ would be to study multi-dimensional continued fractions. For a good survey of this field, see Brentjes [1981]. However, the available algorithms in this field seem not to have the desired efficiency and generality. Fortunately, since 1981 there is a useful alternative, which in a sense is also a generalization of the one-dimensional continued fraction algorithm.

In 1981, L. Lovász invented an algorithm, that has since then become known as the L^{3}-algorithm. It has been published in Lenstra, Lenstra and Lovász [1982], Fig. 1, p. 521. Throughout this and the next section we refer to this paper as "L2\&". The algorithm computes from an arbitrary basis of a lattice in \mathbb{R}^{n} another basis of this lattice, a so-called reduced basis, which has certain nice properties (its vectors are nearly orthogonal).

The algorithm has many important applications in a variety of mathematical fields, such as the factorization of polynomials ($2 \mathscr{L}$, Lenstra [1984]), public-key cryptography (Lagarias and Odlyzko [1985]), and the disproof of the Mertens Conjecture (Odlyzko and te Riele [1985]). Of interest to us are its applications to diophantine approximation, which already had been noticed in $\mathscr{L L E}$, p. 525. The algorithm has a very good theoretical complexity (polynomial-time in the length of the input parameters), and performs also very well in practical computations.

Let $\Gamma \subset \mathbb{R}^{n}$ be a lattice, that is given by the basis $\underline{b}_{1}, \ldots, \underline{b}_{n}$. We introduce the concept of a reduced basis of Γ, according to $\mathcal{L E L}, ~ p .516$. The vectors \underline{b}_{i}^{*} (for $i=1, \ldots, n$) and the real numbers $\mu_{i, j}$ (for $1 \leq j<i \leq n)$ are inductively defined by

$$
\underline{b}_{i}^{*}=\underline{b}_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \cdot \underline{b}_{j}^{*}, \quad \mu_{i, j}=\left(\underline{b}_{i}, \underline{b}_{j}^{*}\right) /\left(\underline{b}_{j}^{*}, \underline{b}_{j}^{*}\right) .
$$

Then $\underline{b}_{1}^{*}, \ldots, b_{n}^{*}$ is an orthogonal basis of \mathbb{R}^{n}. We call the lattice basis $\underline{b}_{1}, \ldots, b_{n}$ of Γ reduced if

$$
\begin{aligned}
& \left|\mu_{i, j}\right| \leq \frac{1}{2} \text { for } 1 \leq j<i \leq n, \\
& \left|\underline{b}_{i}^{*}+\mu_{i, i-1} \cdot b_{i-1}^{*}\right|^{2} \geq \frac{3}{4} \cdot\left|\underline{b}_{i-1}^{*}\right|^{2} \text { for } 1<i \leq n .
\end{aligned}
$$

Hence a reduced basis is nearly orthogonal. For a reduced basis $\underline{b}_{1}, \ldots$, b_{n} we have, by $22 \mathscr{L}$ (1.7),

$$
\begin{equation*}
\left|\underline{b}_{i}^{*}\right| \geq 2^{-(n-1) / 2} \cdot\left|\underline{b}_{1}\right| \text { for } i=1, \ldots, n \tag{3.12}
\end{equation*}
$$

We remark that a lattice may have more than one reduced basis, and that the ordering of the basis vectors is not arbitrary. The L^{3}-algorithm accepts as input any basis $\underline{b}_{1}, \ldots, b_{n}$ of Γ, and it computes a reduced basis c_{1}, \ldots, c_{n} of that lattice. The properties of reduced bases that are of most interest to us are the following. Let $y \in \mathbb{R}^{n}$ be a given point, that is not a lattice point. We denote by $\ell(\Gamma)$ the length of the shortest non-zero vector in the lattice, viz.

$$
\ell(\Gamma)=\min _{\underline{O} \neq \underline{x} \in \Gamma}|\underline{x}|,
$$

and by $\ell(\Gamma, Y)$ the distance from y to the nearest lattice point, viz.

$$
\ell(\Gamma, y)=\min _{\underline{x} \in \Gamma}|\underline{x}-y| .
$$

From a reduced basis lower bounds for both $\ell(\Gamma)$ and $\ell(\Gamma, y)$ can be computed, according to the following results. Lemma 3.4 is Proposition (1.11) from LER. We recall its proof here, to show the similarity of the proofs of Lemma's 3.4 and 3.5.

LEMMA 3.4. (Lenstra, Lenstra and Lovasz [1982]). Let c_{1}, \ldots, c_{n} be a reduced basis of the lattice Γ. Then

$$
\ell(\Gamma) \geq 2^{-(n-1) / 2} \cdot\left|\underline{c}_{1}\right| .
$$

Proof. Let $\underline{0} \neq \underline{x} \in \Gamma$ be the lattice point with minimal length $|\underline{x}|=\ell(\Gamma)$. Write

$$
\underline{x}=\sum_{i=1}^{n} r_{i} \cdot \underline{c}_{i}=\sum_{i=1}^{n} r_{i}^{*} \cdot \underline{b}_{i}^{*}
$$

with $r_{i} \in \mathbb{Z}, r_{i}^{*} \in \mathbb{R}$. Let i_{0} be the largest index such that $r_{i_{0}} \neq 0$. Then, since c_{1}, \ldots, c_{i} span the same linear space as $\underline{b}_{1}^{*}, \ldots, b_{i}^{*}$ for all i, and \underline{b}_{i+1}^{*} is the projection of \underline{c}_{i+1} on the orthogonal complement of this linear space, it follows that $r_{i_{0}}=r_{i_{0}}$. Hence, by (3.12),

$$
\begin{gathered}
\ell(\Gamma)^{2}=|\underline{x}|^{2}=\sum_{i=1}^{i_{0}} r_{i}^{* 2} \cdot\left|\underline{b}_{i}^{*}\right|^{2} \geq r_{i_{0}}^{* 2} \cdot\left|\underline{b}_{i_{0}}^{*}\right|^{2}=r_{i_{0}}^{2} \cdot\left|\underline{b}_{i_{0}}^{*}\right|^{2} \\
\geq\left|\underline{b}_{i_{0}}^{*}\right|^{2} \geq 2^{-(n-1)} \cdot\left|\underline{c}_{1}\right|^{2}
\end{gathered}
$$

LEMMA 3.5. Let c_{1}, \ldots, c_{n} be a reduced basis of the lattice Γ, and let $y=\sum_{i=1}^{n} s_{i} \cdot c_{i}$ for $s_{1}, \ldots, s_{n} \in \mathbb{R}$, with not all s_{i} in \mathbb{Z}. Let i_{0} be the largest index such that $s_{i_{0}} \notin \mathbb{Z}$. Then

$$
\ell(\Gamma, y) \geq 2^{-(n-1) / 2} \cdot\left\|s_{i_{0}}\right\| \cdot\left|c_{1}\right|
$$

Proof. Let $x \in \Gamma$ be the lattice point nearest to y. So $|x-y|=\ell(\Gamma, y)$. Write

$$
\underline{x}=\sum_{i=1}^{n} r_{i} \cdot c_{i}=\sum_{i=1}^{n} r_{i}^{*} \cdot \underline{b}_{i}^{*}, \quad y=\sum_{i=1}^{n} s_{i} \cdot c_{i}=\sum_{i=1}^{n} s_{i}^{*} \cdot \underline{b}_{i}^{*}
$$

with $r_{i} \in \mathbb{Z}, r_{i}^{*}, s_{i}, s_{i}^{*} \in \mathbb{R}$. Let i_{1} be the largest index such that $r_{i_{1}} \neq s_{i_{1}}$. Then, reasoning as in the proof of Lemma 3.4, we find

$$
r_{i_{1}}-s_{i_{1}}=r_{i_{1}}^{*}-s_{i_{1}}^{*}
$$

Using (3.12) it follows that

$$
\ell(\Gamma, y)^{2} \geq\left(r_{i_{1}}-s_{i_{1}}\right)^{2} \cdot\left|\underline{b}_{i_{1}}^{*}\right|^{2} \geq\left(r_{i_{1}}-s_{i_{1}}\right)^{2} \cdot 2^{-(n-1)} \cdot\left|\underline{c}_{1}\right|^{2}
$$

Obviously, $i_{1} \geq i_{0}$. If $i_{1}=i_{0}$ the result follows at once. If $i_{1}>i_{0}$ then $s_{i_{1}} \in \mathbb{Z}, s_{i_{1}} \neq r_{i_{1}}$, hence $\left|r_{i_{1}}-s_{i_{1}}\right| \geq 1$, and the result follows. \square The above lemma is rather weak in the extraordinary situation that s_{i} is
extremely close to an integer. If one of the other s_{i} is not close to an integer, we can apply the following variant.

LEMMA 3.6. Let c_{1}, \ldots, c_{n} be a reduced basis of the lattice Γ, and let $y=\sum_{i=1}^{n} s_{i} \cdot c_{i}$ for $s_{1}, \ldots, s_{n} \in \mathbb{R}$, with not all s_{i} in \mathbb{Z}. Suppose that there is an index i_{0} and constants $\delta_{1}, 0<\delta_{2} \leq \frac{1}{2}$ such that

$$
\begin{aligned}
& \left\|s_{i}\right\| \leq \delta_{1} \text { for } i=i_{0}+1, \ldots, n \\
& \left\|s_{i_{0}}\right\| \geq \delta_{2} .
\end{aligned}
$$

Then

$$
\ell(\Gamma, y) \geq 2^{-(n-1) / 2} \cdot \delta_{2} \cdot\left|c_{1}\right|-\left(n-i_{0}\right) \cdot \delta_{1} \cdot \max _{i>i_{0}}\left|c_{i}\right|
$$

Proof. With notation as in the proof of Lemma 3.5, let t_{i} be the integer nearest to s_{i}, for $i \geq i_{0}+1$, and $t_{i}=s_{i}$ for $i \leq i_{0}$. Put

$$
\underline{z}=\sum_{i=1}^{n} t_{i} \cdot \underline{c}_{i}=\sum_{i=1}^{n} t_{i}^{*} \cdot \underline{b}_{i}^{*}
$$

with $t_{i}^{*} \in \mathbb{R}$. Let i_{1} be the largest index such that $r_{i_{1}} \neq t_{i_{1}}$. Then

$$
r_{i_{1}}-t_{i_{1}}=r_{i_{1}}^{*}-t_{i_{1}}^{*}
$$

We have

$$
\ell(\Gamma, y)=|x-y| \geq|\underline{x}-\underline{z}|-|\underline{z}-\underline{y}| .
$$

Now,

$$
|\underline{z}-y| \leq \sum_{i=i_{0}+1}^{n}\left|s_{i}-t_{i}\right| \cdot\left|c_{i}\right| \leq\left(n-i_{0}\right) \cdot \delta_{1} \cdot \max _{i>i_{0}}\left|c_{i}\right|
$$

and, using (3.12),

$$
\begin{array}{r}
|\underline{x-z}|^{2}=\sum_{i=1}^{n}\left(r_{i}^{*}-t_{i}^{*}\right)^{2} \cdot\left|\underline{b}_{i}^{*}\right|^{2} \geq\left(r_{i_{1}}^{*}-t_{i_{1}}^{*}\right)^{2} \cdot\left|\underline{b}_{i_{1}}^{*}\right|^{2} \\
\geq\left(r_{i_{1}}-t_{i_{1}}\right)^{2} \cdot 2^{-(n-1)} \cdot\left|\underline{c}_{1}\right|^{2}
\end{array}
$$

Obviously, $i_{1} \geq i_{0}$. If $i_{1}=i_{0}$ the result follows. If $i_{1}>i_{0}$ then
$t_{i_{1}} \in \mathbb{Z}, t_{i_{1}} r_{i_{1}}$, hence $\left|r_{i_{1}}-t_{i_{1}}\right| \geq 1>\delta_{2}$, and the result follows.

Remark. Babai [1986] showed that the L^{3}-algorithm can be used to find a lattice point x with $|x-y| \leq c \cdot \ell(\Gamma, y)$ for a constant c depending on the dimension of the lattice only. This result can also be used instead of Lemma 3.5 or 3.6 .

3.5. The L^{3}-lattice basis reduction algorithm, practice.

Below (in Fig. 1) we describe the variant of the L^{3}-algorithm that we use in this monograph to solve diophantine equations. This variant has been designed to work with integers only, so that rounding-off errors are avoided completely. In the algorithm as stated in $\mathscr{L E P}$, Fig. 1, p. 521, non-integral rational numbers may occur, even if the input parameters are all integers.

Let $\Gamma \subset \mathbb{Z}^{n}$ be a lattice with basis vectors $\underline{b}_{1}, \ldots, \underline{b}_{n}$. Define \underline{b}_{i}^{*}, $\mu_{i j}$, d_{i} as in $\mathcal{L E L}$ (1.2), (1.3), (1.24), respectively. The d_{i} can be used as denominators for all numbers that appear in the original algorithm (ERX, p. 523). Thus, put for all relevant indices i, j

$$
\begin{align*}
& \underline{c}_{i}=d_{i-1} \cdot \underline{b}_{i}^{*} \tag{3.13}\\
& \lambda_{i, j}=d_{j} \cdot \mu_{i, j}
\end{align*}
$$

They are integral, by $\mathcal{L Z X}$ (1.28), (1.29). Notice that, with $B_{i}=\left|\underline{b}_{i}^{*}\right|^{2}$,

$$
\begin{equation*}
d_{i}=d_{i-1} \cdot B_{i} \tag{3.14}
\end{equation*}
$$

We can now rewrite the algorithm in terms of $c_{i}, d_{i}, \lambda_{i, j}$ in stead of \underline{b}_{i}^{*}, $B_{i}, \mu_{i, j}$, thus eliminating all non-integral rationals. We give this variant of the L^{3}-algorithm in Fig. 1. All the lines in this variant are evident from applying (3.13) and (3.14) to the corresponding lines in the original algorithm, except the lines (A), (B) and (C), which will be explained below.

We added a few lines to the algorithm, in order to compute the matrix of the transformation from the initial to the reduced basis. Let \mathcal{B} be the matrix with column vectors b_{1}, \ldots, b_{n}, the initial basis of the lattice Γ, which is the input for the algorithm. We say: \mathcal{B} is the matrix associated to the basis $\underline{b}_{1}, \ldots, \underline{b}_{n}$. Let Q be the matrix associated to the reduced
$d_{0}:=1$;
$c_{i}:=\underline{b}_{i}$;
(A)
$\left.\begin{array}{l}\lambda_{i, j}:=\left(\underline{b}_{i}, c_{j}\right) ; \\ c_{i}:=\left(d_{j} \cdot \underline{c}_{i}-\lambda_{i, j} \cdot \underline{c}_{j}\right) / d_{j-1} \\ d_{i}:=\left(\underline{c}_{i}, \underline{c}_{i}\right) / d_{i-1}\end{array}\right\}$ for $j=1, \ldots, i-1 ; \quad$ for $i=1, \ldots, n ;$
$k:=2$;
(1) perform (*) for $\ell=k-1$;
if $4 \cdot d_{k-2} \cdot d_{k}<3 \cdot d_{k-1}^{2}-4 \cdot \lambda_{k, k-1}^{2}$ go to (2);
perform (*) for $\ell=k-2, \ldots, 1$;
if $k=n$ terminate ;
$\mathrm{k}:=\mathrm{k}+1$; go to (1) ;
(2) $\left[\begin{array}{c}\underline{b}_{k-1} \\ \underline{b}_{k}\end{array}\right]:=\left[\begin{array}{c}\underline{b}_{k} \\ \underline{b}_{k-1}\end{array}\right]$;
$\left[\begin{array}{c}u_{k-1} \\ \underline{u}_{k}\end{array}\right]:=\left[\begin{array}{c}u_{k} \\ \underline{u}_{k-1}\end{array}\right] ;\left[\begin{array}{c}\underline{v}_{k-1}^{T} \\ \underline{v}_{k}^{\prime T}\end{array}\right]:=\left[\begin{array}{c}\underline{v}_{k}^{T} \\ \underline{v}_{k-1}^{T}\end{array}\right] ;$
$\left[\begin{array}{c}\lambda_{k-1, j} \\ \lambda_{k, j}\end{array}\right]:=\left[\begin{array}{c}\lambda_{k, j} \\ \lambda_{k-1, j}\end{array}\right]$ for $j=1, \ldots, k-2$;
(B) $\quad\left[\begin{array}{c}\lambda_{i, k-1} \\ \lambda_{i, k}\end{array}\right]:=\left(\lambda_{i, k-1} \cdot\left[\begin{array}{c}\lambda_{k, k-1} \\ d_{k}\end{array}\right]+\lambda_{i, k} \cdot\left[\begin{array}{c}d_{k-2} \\ -\lambda_{k, k-1}\end{array}\right]\right) / d_{k-1}$
for $i=k+1, \ldots, n$;
(C) $\quad d_{k-1}:=\left(d_{k-2} \cdot d_{k}+\lambda_{k, k-1}^{2}\right) / d_{k-1}$; if $k>2$ then $k:=k-1$; go to (1) ;
(*) if $2 \cdot\left|\lambda_{k, \ell}\right|>d_{\ell}$ then

$$
\left\{\begin{array}{l}
r:=\text { integer nearest to } \lambda_{k, \ell} / d_{\ell} ; \\
\underline{b}_{k}:=\underline{b}_{k}-r \cdot \underline{b}_{\ell} ; \underline{u}_{k}:=\underline{u}_{k}-r \cdot \underline{u}_{\ell} ; \underline{v}_{\ell}^{\prime}:=\underline{v}_{\ell}^{\prime}, T+r \cdot \underline{v}_{k}^{\prime} T \\
\lambda_{k, j}:=\lambda_{k, j}-r \cdot \lambda_{\ell, j} \text { for } j=1, \ldots, \ell-1 ; \\
\lambda_{k, \ell}:=\lambda_{k, \ell}-r \cdot d_{\ell} .
\end{array}\right.
$$

Figure 1. Variant of the L^{3}-algorithm.
basis c_{1}, \ldots, c_{n}, which the algorithm delivers as output. Then we define this transformation matrix γ by

$$
E=s . v .
$$

More generally, let ψ be the matrix of a transformation from some \mathbb{B}_{0} to B, so $B=\mathscr{B}_{0} \cdot U$. Denote the column vectors of Ψ by $\underline{u}_{1}, \ldots, u_{n}$, and the row vectors of $थ^{-1}$ by $\underline{v}_{1}^{T}, \ldots, \frac{v}{n}^{T}$. We feed the algorithm with \mathscr{U} and u^{-1} as well. All manipulations in the algorithm done on the b_{i} are also done on the \underline{u}_{i}, and the $\underline{v}_{i}^{\prime}$ are adjusted accordingly. This does not affect the computation time seriously. The algorithm now gives as output matrices \mathcal{E}, U^{\prime} and u^{-1}, such that \mathcal{E} is associated to a reduced basis, $\mathcal{E}=\mathcal{B} \cdot V$, and $U^{\prime}=\mathcal{U} \cdot V$. Note that V is not computed explicitly, unless $u=g$ (the unit matrix), in which case $U^{\prime}=V$. It follows that

$$
\varepsilon=\mathcal{B} \cdot \mathfrak{u}^{-1} \cdot \tilde{U}^{\prime}=\boldsymbol{B}_{0} \cdot \mathfrak{u}^{\prime},
$$

so U^{\prime} is the matrix of the transformation from \mathscr{B}_{0} to \mathcal{E}. Note that if \mathcal{B}_{0}^{-1} is known, then it is not much extra effort to compute \mathcal{P}^{-1} as well.

We now explain why lines (A), (B) and (C) are correct.
(A): From $2 \mathscr{L}$ (1.2) it follows that

$$
\underline{c}_{i}=d_{i-1} \cdot \underline{b}_{i}-\sum_{k=1}^{i-1} \frac{d_{i-1}}{d_{k-1} \cdot d_{k}} \cdot \lambda_{i, k} \cdot c_{k} .
$$

Define for $\mathrm{j}=0,1, \ldots, \mathrm{i}-1$

$$
{c_{i}}(j)=d_{j} \cdot \underline{b}_{i}-\sum_{k=1}^{j} \frac{d_{j}}{d_{k-1} \cdot d_{k}} \cdot \lambda_{i, k} \cdot \underline{c}_{k} .
$$

Then $c_{i}(0)=\underline{b}_{i}$, and $\underline{c}_{i}(i-1)=c_{i}$. The $c_{i}(j)$ is exactly the vector computed in (A) at the j th step, since

$$
\begin{aligned}
& \frac{d_{j} \cdot c_{i}(j-1)-\lambda_{i, j} \cdot c_{j}}{d_{j-1}} \\
& \quad=d_{j} \cdot \underline{b}_{i}-\frac{j-1}{\sum_{k=1} \frac{d_{j}}{d_{k-1} \cdot d_{k}} \cdot \lambda_{i, k} \cdot c_{k}-\frac{d_{j}}{d_{j-1} \cdot d_{j}} \cdot \lambda_{i, j} \cdot c_{j}=c_{i}(j) .} .
\end{aligned}
$$

This explains the recursive formula in line (A). It remains to show that the occurring vectors $c_{i}(j)$ are integral. This follows from

$$
d_{j} \cdot \sum_{k=1}^{j} \frac{1}{d_{k-1} \cdot d_{k}} \cdot \lambda_{i, k} \cdot c_{k}=d_{j} \cdot \sum_{k=1}^{j} \mu_{i, k} \cdot b_{k}^{*},
$$

which is integral by 222 p. 523 , \&. 11.
(B), (C): Notice that the third and fourth line, starting from label (2), in the original algorithm, are independent of the first, second and fifth line. Thus a permutation of these lines is allowed. We rewrite the first, second and fifth line as follows (where we indicate variables that have been changed with a prime sign):

$$
\begin{align*}
& B_{k-1}^{\prime}:=B_{k}+\mu_{k, k-1}^{2} \cdot B_{k-1} ; \tag{3.15}\\
& B_{k}^{\prime}:=B_{k-1} \cdot B_{k} / B_{k-1}^{\prime} ; \tag{3.16}\\
& \mu_{k, k-1}^{\prime}:=\mu_{k, k-1} \cdot B_{k-1} / B_{k-1}^{\prime} ; \tag{3.17}\\
& \mu_{i, k-1}^{\prime}:=\mu_{k, k-1}^{\prime} \cdot \mu_{i, k-1}+\left(1-\mu_{k, k-1} \cdot \mu_{k, k-1}^{\prime}\right) \cdot \mu_{i, k} ; \tag{3.18}\\
& \mu_{i, k}^{\prime}:=\mu_{i, k-1}-\mu_{k, k-1} \cdot \mu_{i, k} ; \tag{3.19}
\end{align*}
$$

where (3.18) and (3.19) hold for $i=k+1, \ldots, n$. The d_{i} remain unchanged for $i=0,1, \ldots, k-2$, and by (3.16) also for $i=k$. Now, (3.15) is equivalent to

$$
\begin{equation*}
\frac{d_{k-1}^{\prime}}{d_{k-2}}=\frac{d_{k}}{d_{k-1}}+\frac{\lambda_{k, k-1}^{2}}{d_{k-1}^{2}} \cdot \frac{d_{k-1}}{d_{k-2}}, \tag{3.20}
\end{equation*}
$$

which explains (C). From (3.17) we find

$$
\frac{\lambda_{k, k-1}^{\prime}}{d_{k-1}^{\prime}}=\frac{\lambda_{k, k-1}}{d_{k-1}} \cdot \frac{d_{k-1}}{d_{k-2}} \cdot \frac{d_{k-2}^{\prime}}{d_{k-1}^{\prime}},
$$

hence $\lambda_{k, k-1}$ remains unchanged. From (3.18) we obtain

$$
\frac{\lambda_{i, k-1}^{\prime}}{d_{k-1}^{\prime}}=\frac{\lambda_{k, k-1}}{d_{k-1}^{\prime}} \cdot \frac{\lambda_{i, k-1}}{d_{k-1}}+\left(1-\frac{\lambda_{k, k-1}}{d_{k-1}} \cdot \frac{\lambda_{k, k-1}}{d_{k-1}^{\prime}}\right) \cdot \frac{\lambda_{i, k}}{d_{k}},
$$

whence, by multiplying by $\alpha_{k-1} \cdot d_{k-1}^{\prime}$ and using (3.20),

$$
\begin{aligned}
d_{k-1} \cdot \lambda_{i, k-1}^{\prime}= & \lambda_{k, k-1} \cdot \lambda_{i, k-1}+\left(d_{k-1} \cdot d_{k-1}^{\prime}-\lambda_{k, k-1}^{2}\right) \cdot \frac{\lambda_{i, k}}{d_{k}} \\
& =\lambda_{k, k-1} \cdot \lambda_{i, k-1}+d_{k-2} \cdot \lambda_{i, k}
\end{aligned}
$$

Finally, from (3.19) we see

$$
\frac{\lambda_{i, k}^{\prime}}{d_{k}}=\frac{\lambda_{i, k-1}}{d_{k-1}}-\frac{\lambda_{k, k-1}}{d_{k-1}} \cdot \frac{\lambda_{i, k}}{d_{k}}
$$

and (B) follows.

In our applications we often have a lattice Γ, of which a basis is given such that the associated matrix, say, has the special form

$$
\&=\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \varnothing \\
& \emptyset & & \\
& & 1 & \\
\theta_{1} & \cdots & \theta_{n-1} & \theta_{n}
\end{array}\right]
$$

where the θ_{i} are large integers, that may have several hundreds of decimal digits. We can compute a reduced basis of this lattice directly, using the matrix itself as input for the $L^{3}-a l g o r i t h m$. But it may save time and space to split up the computation into several steps with increasing accuracy, as follows.

Let k be a natural number (the number of steps), and let ℓ be a natural number such that the Θ_{i} have about $k \cdot \ell$ (decimal) digits. For $\mathrm{i}=1, \ldots, \mathrm{n}$ and $\mathrm{j}=1, \ldots, \mathrm{k}$ put

$$
\theta_{i}^{(j)}=\left[\theta_{i} / 10^{l \cdot(k-j)}\right]
$$

and define $\Psi_{i}^{(j)}$ by

$$
\theta_{i}^{(j+1)}=10^{l} \cdot \theta_{i}^{(j)}+\Psi_{i}^{(j)}
$$

Thus, the $\Psi_{i}^{(j)}$ are blocks of ℓ consecutive digits of θ_{i}. Define for the relevant j the $n \times n$ matrices

$$
\begin{aligned}
& A_{j}=\left[\begin{array}{cccc}
1 & & & \\
& \ddots & \varnothing & \\
\varnothing & \ddots & 1 & \\
\theta_{1}^{(j)} & \ldots & \theta_{n-1}^{(j)} & \theta_{n}^{(j)}
\end{array}\right], \quad D_{j}=\left[\begin{array}{ccc}
\varnothing & \\
& & \\
\Psi_{1}^{(j)} & \ldots & \Psi_{n}^{(j)}
\end{array}\right], \\
& \&=\left[\begin{array}{llll}
1 & & & \varnothing \\
& \ddots & & \\
\varnothing & & 1 & \\
& & & \\
& 10^{\ell}
\end{array}\right] .
\end{aligned}
$$

Then it follows at once that

$$
A_{j+1}=8 \cdot A_{j}+D_{j}
$$

Notice that $A_{k}=A$, since $\theta_{i}^{(k)}=\theta_{i}$. Put $U_{0}=9, \quad \mathscr{B}_{1}=A_{1}$. For some $j \geq 1$ let \mathscr{B}_{j} and \mathcal{U}_{j-1} be known matrices. Then we apply the L^{3}-algorithm to $\mathscr{B}=\mathscr{B}_{j}, \mathcal{U}=\mathcal{U}_{j-1}$, and \tilde{U}^{-1}. We thus find matrices $\mathbb{e}_{j}, \mathcal{U}_{j}$, and $u_{j}{ }^{-1}$ such that

$$
e_{j}=\mathbb{B}_{j} \cdot u_{j-1}^{-1} \cdot u_{j} .
$$

Now put

$$
B_{j+1}=8 \cdot E_{j}+D_{j} \cdot U_{j}
$$

By induction $\mathscr{B}_{j}, \mathcal{E}_{j}$ and \mathcal{U}_{j} are defined for $j=1, \ldots, k$. Note that

$$
\mathscr{B}_{j+1} \cdot U_{j}^{-1}=\mathscr{E} \cdot B_{j} \cdot U_{j-1}^{-1}+D_{j}
$$

so the $\mathscr{B}_{j} \cdot U_{j-1}^{-1}$ satisfy the same recursive relation as the \mathbb{A}_{j}. Since $\mathscr{B}_{1} \cdot U_{0}^{-1}=A_{1}^{j}$, we have $\mathscr{B}_{j} \cdot U_{j-1}^{-1}=\AA_{j}$ for all j. Hence

$$
e_{j}=\mathscr{B}_{j} \cdot u_{j-1}^{-1} \cdot u_{j}=s_{j} \cdot u_{j}
$$

and it follows that E_{k} and d_{k} are associated to bases of the same lattice, which is Γ. Moreover, since \mathcal{C}_{k} is output of the L^{3}-algorithm, it is associated to a reduced basis of Γ.

Let us now analyse the computation time. For a matrix M we denote by $L(M)$ the maximal number of (decimal) digits of its entries. If the L^{3}-algorithm is applied to a matrix \mathcal{B}, with as output a matrix \mathcal{E}, then according to the experiences of Lenstra, Odlyzko (cf. Lenstra [1984], p. 7) and ourselves, the computation time is proportional to $L(B)^{3}$ in practice. Since E is associated to a reduced basis, we assume that

$$
L(E) \cong{ }^{10} \log (\operatorname{det} \Gamma) / n
$$

In our situation, $L\left(A_{j}\right) \cong \ell \cdot j, L\left(D_{j}\right) \cong \ell$, and by $\operatorname{det} \ell_{j}=\operatorname{det} A_{j}=\theta_{n}^{(j)}$ we have $L\left(e_{j}\right) \cong \ell \cdot j / n$. Put $\mathcal{e}_{j}=\left(c_{i, h}^{(j)}\right), \quad u_{j}=\left(u_{i, h}^{(j)}\right)$. Then by $e_{j}=d_{j} \cdot u_{j}$ and the special shape of d_{j} we have $c_{i, h}^{(j)}=u_{i, h}^{(j)}$ for $\mathrm{i}=1, \ldots, \mathrm{n}-1$ and $\mathrm{h}=1, \ldots, \mathrm{n}$, and

$$
u_{n, h}^{(j)}=\left[-c_{1, h}^{(j)} \cdot \theta_{1}^{(j)}-\ldots-c_{n-1, h}^{(j)} \cdot \theta_{n-1}^{(j)}+c_{n, h}^{(j)}\right) / \theta_{n}^{(j)}
$$

It follows that $L\left(U_{j}\right) \cong L\left(E_{j}\right)$. So

$$
L\left(\mathbb{B}_{j}\right) \cong \max \left(L\left(\mathbb{E} \cdot \mathbb{E}_{j-1}\right), L\left(\mathbb{D}_{j-1} \cdot \mathbb{U}_{j-1}\right)\right] \cong \ell+\ell \cdot(j-1) / n .
$$

Instead of applying the L^{3}-algorithm once with A as input, we apply it k times, with $\mathscr{B}_{1}, \ldots, \mathscr{B}_{k}$ as input. Thus we reduce the computation time by a factor

$$
\frac{L(\notin)^{3}}{\sum_{j=1}^{k} L\left(B_{j}\right)^{3}} \cong \frac{(\ell \cdot k)^{3}}{\sum_{j=1}^{k} \ell^{3} \cdot\left(1+\frac{j-1}{n}\right)^{3}}=\frac{k^{3} \cdot n^{3}}{\sum_{j=0}^{k-1}(n+j)^{3}} .
$$

For k between $2.5 \cdot n$ and $3 \cdot n$ this expression is maximal, about $0.4 \cdot n^{2}$. So the reduction in computation time is considerable (a factor 10 already for $n=5$). The storage space that is required is also reduced, since the largest numbers that appear in the input have $\ell \cdot(1+(k-1) / n)$ instead of $\ell \cdot k$ digits.

3.6. Finding all short lattice points: the Fincke and Pohst algorithm.

Sometimes it is not sufficient to have only a lower bound for $\mathbb{\ell}(\Gamma)$ or $\mathcal{L}(\Gamma, Y)$. It may be useful to know exactly all vectors $x \in \Gamma$ such that $|\underline{x}| \leq C$ or $|x-y| \leq C$ for a given constant C. There exists an efficient algorithm for finding all the solutions to these problems. This algorithm was devised by Fincke and Pohst [1985], cf. their (2.8) and (2.12). We give a description of this algorithm below.

The input of the algorithm is a matrix \mathbb{B} whose column vectors span the lattice Γ, and a constant $C>0$. The output is a list of all lattice points $\underline{x} \in \Gamma$ with $|\underline{x}| \leq C$, apart from $\underline{x}=\underline{0}$. We give the algorithm in Figure 2. We use the notation $\boldsymbol{X}=\left(\mathrm{X}_{\mathrm{ij}}\right)$ for matrices $\boldsymbol{x}=\mathbb{A}, \mathcal{B}, \mathbb{R}, \boldsymbol{y}$, \boldsymbol{U}, and x_{i} for the column vectors of x.

The algorithm can also be used for finding all vectors $\underline{x} \in \Gamma$ of which the distance to a given non-lattice point y is at most a given constant C. Namely, let

$$
y=\sum_{i=1}^{n} s_{i} \cdot b_{i}
$$

and let r_{i} be the integer nearest to s_{i} for all i. Put
$\mathbb{A}:=\mathbb{B}^{\mathrm{T}} \cdot \boldsymbol{B}$;
$q_{i j}:=a_{i j}$ for $1 \leq i \leq j \leq n ;$
$q_{j i}:=q_{i j}, \quad q_{i j}:=q_{i j} / q_{i i}$ for $1 \leq i<j \leq n$;
$q_{k \ell}:=q_{k \ell}-q_{k i} \cdot q_{i \ell}$ for $i+1 \leq k \leq \ell \leq n$ for $1 \leq i \leq n$;
$r_{i i}:=/ q_{i i}$ for $1 \leq i \leq n$;
$r_{i j}:=r_{i i} \cdot q_{i j}, \quad r_{j i}:=0$ for $1 \leq j<i \leq n ;$
compute $\mathbb{R}^{-1} ;$
compute a row-reduced version \mathscr{S}^{-1} of \mathbb{R}^{-1}, and $ข$, \mathcal{U}^{-1} such that $\rho^{-1}=U^{-1} \cdot \mathbb{R}^{-1}$;
compute $\boldsymbol{\rho}=\boldsymbol{R} \cdot \boldsymbol{u}$;
determine a permutation π such that $\left|\underline{s}_{\pi(1)}\right| \geq \ldots \geq\left|\underline{s}_{\pi(n)}\right|$, let \boldsymbol{f}^{\prime} be the matrix with columns $\underline{s}_{\pi^{-1}(i)}$ for $i=1, \ldots, n$;
$\otimes:=\rho^{\mathrm{T}} . \boldsymbol{\rho}^{\prime}$;
$q_{i j}:=a_{i j}$ for $1 \leq i \leq j \leq n$;
$q_{j i}:=q_{i j}, \quad q_{i j}:=q_{i j} / q_{i i}$ for $1 \leq i<j \leq n$;
$q_{k \ell}:=q_{k \ell}-q_{k i} \cdot q_{i \ell}$ for $i+1 \leq k \leq \ell \leq n$ for $1 \leq i \leq n$;
$\mathrm{i}:=\mathrm{n}$;
$\mathrm{T}_{\mathrm{i}}:=\mathrm{C}$;
$U_{i}:=0 ;$
(1) $Z:=\gamma\left(T_{i} / q_{i i}\right)$;
$\mathrm{UB}\left(\mathrm{x}_{\mathrm{i}}\right):=\left\lfloor\mathrm{Z}-\mathrm{U}_{\mathrm{i}}\right\rfloor$;
$x_{i}:=\left\lceil-z-U_{i}\right\rceil-1 ;$
(2) $x_{i}:=x_{i}+1$;
if $x_{i} \leq \mathrm{UB}\left(\mathrm{x}_{\mathrm{i}}\right)$, go to (4);
(3) $\mathrm{i}:=\mathrm{i}+1$;
go to (2) ;
(4) if $\mathrm{i}=1$, go to (5) ;
i : $=\mathbf{i}-1$;
$U_{i}:=\sum_{j=i+1}^{m} q_{i j} \cdot x_{j} ;$
$T_{i}:=T_{i+1}-q_{i+1, i+1} \cdot\left(x_{i+1}+U_{i+1}\right)^{2} ;$
go to (1) ;
(5) if $\mathrm{x}_{\mathrm{i}}=0$ for $1 \leq i \leq n$, terminate ;
compute and print $\underline{x}=u \cdot\left(x_{\pi^{-1}(1)}, \cdots, x_{\pi^{-1}(n)}\right)^{T}$;
go to (2).

Figure 2. The Fincke and Pohst Algorithm.

$$
\underline{z}=\sum_{i=1}^{n} r_{i} \cdot b_{i} .
$$

Then $|\underline{y}-\underline{z}|<C^{\prime}$ for some constant $C^{\prime} \quad\left(C^{\prime}=\frac{n}{2} \cdot \sum\left|\underline{b}_{i}\right|\right.$ will do). Since $\underline{z} \in \Gamma$ it suffices to search for all lattice points \underline{u} with $|\underline{u}| \leq C+C^{\prime}$, and compute for each such \underline{u} also $\underline{x}=\underline{z}+\underline{u}$, since $|\underline{x}-\underline{y}|<C$ implies

$$
|\underline{u}| \leq|\underline{x}-y|+|y-\underline{z}| \leq C+C^{\prime} .
$$

3.7. Homogeneous multi-dimensional approximation in the real case: real approximation lattices.

Let the linear form A have the form

$$
\Lambda=\sum_{i=1}^{n} x_{i} \cdot \vartheta_{i} .
$$

We assume that $n \geq 2$. The case $n=2$ has already been discussed in Section 3.2, but the method of this section works also for $n=2$. In fact, it is in this case essentially the same method.

Let C be a large enough integer, that is of the order of magnitude of X_{0}^{n}. Let $\gamma \in \mathbb{N}$ be a constant (we will explain its use later). We define the approximation lattice Γ by the matrix

$$
\mathscr{B}=\left(\begin{array}{cccc}
\gamma & & & \varnothing \\
\varnothing & \cdot & & \\
& & \gamma & \\
{\left[\gamma \cdot C \cdot \vartheta_{1}\right]} & \cdots & {\left[\gamma \cdot C \cdot \vartheta_{n-1}\right]} & {\left[\gamma \cdot C \cdot \vartheta_{n}\right]}
\end{array}\right) \text {, }
$$

of which the column vectors $\underline{b}_{1}, \ldots, b_{n}$ are a basis of the lattice. Then r is a sublattice of \mathbb{Z}^{n} of determinant $\gamma^{n-1} \cdot\left[\gamma \cdot C \cdot \vartheta_{n}\right]$, which is of size C. A lattice point \underline{x} has the form

$$
\underline{x}=\sum_{i=1}^{n} x_{i} \cdot \underline{b}_{i}=\left(\gamma \cdot x_{1}, \ldots, \gamma \cdot x_{n-1}, \tilde{\Lambda}\right)^{T},
$$

where the x_{i} are integers, and

$$
\bar{\Lambda}=\sum_{i=1}^{n} x_{i} \cdot\left[\gamma \cdot C \cdot \vartheta_{i}\right] .
$$

Clearly, $\bar{\Lambda}$ is close to $\gamma \cdot C \cdot \Lambda$. The length of the vector \underline{x} now measures both X_{0} and $|\Lambda|$, which are exactly the two numbers we want to balance with each other. Heuristics (cf. Section 1.3) tell us that in a generic case we expect $|\Lambda| \cong X_{0}^{-n}$. We now can prove easily the following useful lemma.

LEMMA 3.7. Let X_{1} be a positive number such that

$$
\begin{equation*}
\ell(\Gamma) \geq \gamma\left((\mathrm{n}+1)^{2}+(\mathrm{n}-1) \cdot \gamma^{2}\right) \cdot \mathrm{x}_{1} . \tag{3.21}
\end{equation*}
$$

Then (3.1) has no solutions with

$$
\begin{equation*}
\frac{1}{\delta} \cdot \log \left(\gamma \cdot c \cdot c / X_{1}\right) \leq x \leq X_{1} . \tag{3.22}
\end{equation*}
$$

Remark. We apply this lemma for $X_{1}=X_{0}$. If condition (3.21) then fails, we must take a larger constant C. If it holds for a constant C of the size X_{0}^{n}, then (3.22) yields a reduced lower bound for X of size $\log X_{0}$.

Proof. Let x_{1}, \ldots, x_{n} be a solution of (3.1) with $0<x \leq x_{1}$. Consider the lattice point

$$
\underline{x}=\sum_{i=1}^{n} x_{i} \cdot \underline{b}_{i}=\left(\gamma \cdot x_{1}, \ldots, \gamma \cdot x_{n-1}, \tilde{\Lambda}\right)^{T}
$$

with $\bar{\Lambda}$ as above. Then

$$
|\underline{x}|^{2}=\gamma^{2} \cdot \sum_{i=1}^{n-1} x_{i}^{2}+\tilde{\Lambda}^{2} \leq(n-1) \cdot \gamma^{2} \cdot x_{1}^{2}+\tilde{\Lambda}^{2}
$$

and

$$
\begin{equation*}
|\bar{\Lambda}-\gamma \cdot C \cdot \Lambda| \leq \sum_{i=1}^{n}\left|x_{i}\right| \cdot\left|\left[\gamma \cdot C \cdot v_{i}\right]-\gamma \cdot C \cdot v_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|, \tag{3.23}
\end{equation*}
$$

which is $\leq n \cdot X_{1}$. By (3.1), (3.21) and the definition of $\ell(\Gamma)$ we have

$$
\begin{gathered}
\gamma \cdot C \cdot c \cdot \exp (-\delta \cdot X)>|\gamma \cdot C \cdot \Lambda| \geq|\tilde{\Lambda}|-|\tilde{\Lambda}-\gamma \cdot C \cdot \Lambda| \\
\geq \gamma\left(\ell(\Gamma)^{2}-(n-1) \cdot \gamma^{2} \cdot X_{1}^{2}\right)-n \cdot X_{1} \geq X_{1},
\end{gathered}
$$

and (3.22) follows at once.

Condition (3.21) can be checked by computing a reduced basis of the lattice Γ by the L^{3}-algorithm, and applying Lemma 3.4. The parameter γ is used to keep the "rounding-off error"

$$
\begin{aligned}
& \qquad\left|\left[\gamma \cdot C \cdot \vartheta_{i}\right]-\gamma \cdot C \cdot \theta_{i}\right| \\
& \text { relatively small. This is of importance only if } C \text { is not very large, } \\
& \text { usually only if one wants to make a further reduction step after the first } \\
& \text { step has already been made. For large } C \text {, simply take } \gamma=1 \text {. } \\
& \text { It may be necessary, if } C \text { is not very large, to use a more refined method } \\
& \text { of reducing the upper bound. To do so, we use the following lemma, which is a } \\
& \text { slight refinement of Lemma } 3.7 \text {, together with the algorithm of Fincke and } \\
& \text { Pohst (cf. Section } 3.6 \text {). It is particularly useful in the situation that one } \\
& \text { has different upper bounds for the }\left|x_{i}\right| \text { for different } i \text {. }
\end{aligned}
$$

LEMMA 3.8. Suppose that for a solution of (3.1)

$$
\begin{equation*}
|\bar{A}|>\sum_{i=1}^{n}\left|x_{i}\right| \tag{3.24}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
\mathrm{x}<\frac{1}{\delta} \cdot \log \left[\gamma \cdot c \cdot c /\left(|\bar{\Lambda}|-\sum_{i=1}^{n}\left|x_{i}\right|\right)\right] . \tag{3.25}
\end{equation*}
$$

Proof. Define the lattice point \underline{x} as in the proof of Lemma 3.7. By (3.23) and (3.24)

$$
|\Lambda| \geq\left(|\tilde{\Lambda}|-\sum_{i=1}^{n}\left|x_{i}\right|\right] / \gamma \cdot c>0
$$

The result follows at once by (3.1).

We proceed as follows. Choose a constant C_{0} such that if $|\widetilde{\Lambda}|>C_{0}$ then the upper bounds for $\left|x_{i}\right|$ imply (3.24). In that case we have a new upper bound for X from (3.25). In case $|\tilde{\Lambda}| \leq C_{0}$ we have an upper bound for the length of the vector \underline{x}. We compute all lattice points satisfying this bound by the algorithm of Fincke and Pohst, and check them for (3.1).

Summarizing, the reduction method presented above is based on the fact that a large solution of (3.1) corresponds to an extremely short vector in an appropriate approximation lattice. Since we can actually prove by computations that such short vectors do not exist, it follows that such large solutions do not exist. We will apply these techniques in Chapter 5.
3.8. Inhomogeneous multi-dimensional approximation in the real case: an alternative for the generalized Davenport lemma.

Let Λ be the most general linear form that we will study, viz.

$$
\Lambda=\beta+\sum_{i=1}^{n} x_{i} \cdot \vartheta_{i},
$$

where $n \geq 2$ (the case $n=2$ has been dealt with in Section 3.3, but can be incorporated here also). To deal with this inhomogeneous case, two methods are available. The first method is a generalization of the method of Davenport that we discussed in Section 3.3. The second method is closer to the homogeneous case of the previous section.

First we explain briefly the generalized Davenport method. See Ellison [1971 ${ }^{\text {a }}$] (where only the case $n=3$ is treated). Put

$$
\begin{aligned}
& \vartheta_{i}^{\prime}=\vartheta_{i} / \vartheta_{n} \text { for } i=1, \ldots, n-1, \quad \beta^{\prime}=\beta / \vartheta_{n} \\
& \Lambda^{\prime}=\Lambda / \vartheta_{n}=\beta^{\prime}+\sum_{i=1}^{n-1} x_{i} \cdot \vartheta_{i}^{\prime}+x_{n} .
\end{aligned}
$$

Let $\left(p_{1}, \ldots, p_{n-1}, q\right)$ be a simultaneous approximation to $v_{1}^{\prime}, \ldots, \vartheta_{n-1}^{\prime}$ with q of the size of X_{0}^{n-1}, such that, for $i=1, \ldots, n-1$,

$$
\left|\vartheta_{i}^{\prime}-p_{i} / q\right|<c^{\prime} / q^{1+1 /(n-1)}
$$

for a small constant c^{\prime}.

LEMMA 3.9. (Davenport, Ellison). Suppose that

$$
\left\|q \cdot \beta^{\prime}\right\|>2 \cdot(n-1) \cdot X_{0} \cdot c^{\prime} / q^{1 /(n-1)}
$$

Then the solutions of (3.1), (3.2) satisfy

$$
X<\frac{1}{\delta} \cdot \log \left(q^{1+1 /(n-1)} \cdot c /\left|\vartheta_{n}\right| \cdot c^{\prime} \cdot(n-1) \cdot X_{0}\right)
$$

Proof. The result follows at once from

$$
\begin{aligned}
& \left\|q \cdot \beta^{\prime}\right\| \leq\left|q \cdot \Lambda^{\prime}+\sum_{i=1}^{n-1} x_{i} \cdot\left(p_{i}-q \cdot \vartheta_{i}^{\prime}\right)\right| \leq \\
& q \cdot\left|\vartheta_{n}\right|^{-1} \cdot c \cdot \exp (-\delta \cdot x)+(n-1) \cdot X_{0} \cdot c^{\prime} / q^{1 /(n-1)}
\end{aligned}
$$

To apply this generalized Davenport method in practice, it is necessary to compute the simultaneous approximations $\left(p_{1}, \ldots, p_{n-1}, q\right)$. We indicated in Section 1.4 how this can be done with the L^{3}-algorithm. As lattice we take the one associated to the following matrix:

$$
\left[\begin{array}{cccc}
1 & & \\
{\left[C \cdot \vartheta_{1}^{\prime}\right]} & -C & \varnothing \\
\vdots & & \ddots & \\
{\left[C \cdot \vartheta_{n-1}^{\prime}\right]} & \varnothing & & -C
\end{array}\right]
$$

where C is a constant of size X_{0}^{n}. Then c_{1}, the first basis vector of a reduced basis, will have length of the size of $C^{(n-1) / n} \cong x_{0}^{n-1}$. But c_{1} can be written as

$$
\begin{aligned}
& c_{1}=\left(q, q \cdot\left[C \cdot \vartheta_{1}^{\prime}\right]-C \cdot p_{1}, \ldots, q \cdot\left[C \cdot \vartheta_{n-1}^{\prime}\right]-C \cdot p_{n-1}\right]^{T} \\
& \text { for some } p_{1}, \ldots, p_{n-1}, q \text {. It is expected that } q \text { is of size } X_{0}^{n-1} \text {, and } \\
& \\
& q \cdot C \cdot\left|\vartheta_{i}^{\prime}-p_{i} / q\right| \cong\left|q \cdot\left[C \cdot \vartheta_{i}^{\prime}\right]-C \cdot p_{i}\right|
\end{aligned}
$$

are of the size X_{0}^{n-1}, so that $\left|\vartheta_{i}^{\prime}-p_{i} / q\right|$ are of the size

$$
x_{0}^{n-1} / C \cdot x_{0}^{n-1}=C^{-1} \cong X_{0}^{-n} \cong q^{-(1+1 /(n-1))}
$$

as desired.

The above method has been applied in practice to solve Thue and Thue-Mahler equations by Agrawal, Coates, Hunt and van der Poorten [1980] (using multidimensional continued fractions instead of the L^{3}-algorithm), Pethö and Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987 ${ }^{\text {a }], ~[1987 ~}{ }^{\text {b }}$]. So it has proved to be useful. However, we prefer another method, for several reasons. Firstly, it is close to the homogeneous case as described in the previous section, whereas the generalized Davenport method has no obvious counterpart for the homogeneous case. Secondly, it actually produces solutions for which the linear form Λ is almost as near to zero as possible under the condition $X \leq X_{0}$. Specifically, if a linear relation between the ϑ_{i} exists, but had not been noticed before (a situation that may occur in practice, cf. Agrawal, Coates, Hunt and van der Poorten [1980]), the method detects these relations, by finding explicitly an extremely short lattice vector (resp. a lattice vector extremely near to a given point) giving the coefficients of the relation. Thirdly, an analogous method for the p-adic case can be given (see Section 3.11). Finally, variations as indicated in Section 1.4 are possible. Concerning computation time we think that the two
methods are about equally fast.

The method works as follows. We take the approximation lattice Γ exactly as in the homogeneous case (cf. the previous section), with constants γ, C chosen properly, i.e. C is of the size X_{0}^{n}. Compute with the L^{3}-algorithm a reduced basis c_{1}, \ldots, c_{n} of Γ. Let \mathcal{C} be the matrix associated to this basis, and compute also the transformation matrix \boldsymbol{U} with $\mathscr{E}=\mathscr{B} \cdot \boldsymbol{U}$, and its inverse \mathcal{U}^{-1}. Note that \mathcal{B}^{-1}, and hence also \mathcal{E}^{-1}, are easy to compute, namely by

$$
B^{-1}=\left[\begin{array}{rlll}
1 / \gamma & \cdot & & \varnothing \\
\varnothing & \cdot & 1 / \gamma & \\
-\frac{\left[\gamma \cdot C \cdot \vartheta_{1}\right]}{\gamma \cdot\left[\gamma \cdot C \cdot \vartheta_{n}\right]} & \cdots & -\frac{\left[\gamma \cdot C \cdot \vartheta_{n-1}\right]}{\gamma \cdot\left[\gamma \cdot C \cdot \vartheta_{n}\right]} & \frac{1}{\left[\gamma \cdot C \cdot \vartheta_{n}\right]}
\end{array}\right]
$$

and our version of the L^{3}-algorithm (Fig. 1). Let $y \in \mathbb{Z}^{n}$ be defined by

$$
y=(0, \ldots, 0,-[\gamma \cdot C \cdot \beta])^{T}=\sum_{i=1}^{n} s_{i} \cdot c_{i}
$$

where the coefficients $s_{i} \in \mathbb{R}$ can be computed by

$$
\left(s_{1}, \ldots, s_{n}\right)^{T}=e^{-1} \cdot y
$$

To be more precise, if U^{-1} has \underline{u} as nth column, then e^{-1} has $\underline{u} /\left[\gamma \cdot C \cdot \theta_{n}\right]$ as nth column, so

$$
\left(s_{1}, \ldots, s_{n}\right)^{T}=-\underline{u} \cdot[\gamma \cdot C \cdot \beta] /\left[\gamma \cdot C \cdot \vartheta_{n}\right]
$$

Now we apply Lemma 3.5 or 3.6 , that provide a lower bound for $\ell(\Gamma, y)$. Then we can apply the following lemma.

LEMMA 3.10. Let X_{1} be a positive constant such that

$$
\begin{equation*}
\ell(\Gamma, y) \geq \downarrow\left((n+2)^{2}+(n-1) \gamma^{2}\right) \cdot X_{1} \tag{3.26}
\end{equation*}
$$

Then (3.1) has no solutions with

$$
\begin{equation*}
\frac{1}{\delta} \cdot \log \left(\gamma \cdot \mathrm{C} \cdot \mathrm{c} / \mathrm{X}_{1}\right) \leq \mathrm{X} \leq \mathrm{X}_{1} \tag{3.27}
\end{equation*}
$$

Remark. We apply this lemma for $X_{1}=X_{0}$. If condition (3.26) then fails,
we must take a larger constant C we must take a larger constant C. If it holds for a constant C of the
size X_{0}^{n}, then (3.27) yields a reduced lower bound for X of size $\log X_{0}$.

Proof. Let x_{1}, \ldots, x_{n} be a solution of (3.1) with $0<x \leq X_{1}$. Consider the lattice point

$$
\underline{x}=\sum_{i=1}^{n} x_{i} \cdot \underline{b}_{i}=\left(\gamma \cdot x_{1}, \ldots, \gamma \cdot x_{n-1}, \tilde{\Lambda}_{0}\right)^{T}
$$

with

$$
\tilde{\Lambda}_{0}=\sum_{i=1}^{n} x_{i} \cdot\left[\gamma \cdot C \cdot \vartheta_{i}\right] .
$$

Put $\tilde{\Lambda}=[\gamma \cdot C \cdot \beta]+\tilde{\Lambda}_{0}$. Then

$$
|x-y|^{2}=\gamma^{2} \cdot \sum_{i=1}^{n-1} x_{i}^{2}+\bar{\Lambda}^{2} \leq(n-1) \cdot \gamma^{2} \cdot x_{1}^{2}+\bar{\Lambda}^{2}
$$

and

$$
\begin{aligned}
|\tilde{\Lambda}-\gamma \cdot C \cdot \Lambda| & \leq|[\gamma \cdot C \cdot \beta]-\gamma \cdot C \cdot \beta|+\sum_{i=1}^{n}\left|x_{i}\right| \cdot\left|\left[\gamma \cdot C \cdot \vartheta_{i}\right]-\gamma \cdot C \cdot \vartheta_{i}\right| \\
& \leq 1+\sum_{i=1}^{n}\left|x_{i}\right| \leq 1+n \cdot X_{1} \leq(n+1) \cdot X_{1}
\end{aligned}
$$

By (3.1), (3.26) and the definition of $\ell(\Gamma, y)$ the result follows, since

$$
\begin{aligned}
& \gamma \cdot C \cdot c \cdot \exp (-\delta \cdot X)>|\gamma \cdot C \cdot \Lambda| \geq|\widetilde{\Lambda}|-|\tilde{\Lambda}-\gamma \cdot C \cdot \Lambda| \\
& \geq \gamma\left(\ell(\Gamma, y)^{2}-(n-1) \cdot \gamma^{2} \cdot X_{1}^{2}\right)-(n+1) \cdot X_{1} \geq X_{1}
\end{aligned}
$$

Again we may prove refinements of the above lemma, similar to Lemma 3.8 in the homogeneous case. We explained in Section 3.5. how to apply the Fincke and Pohst algorithm in the inhomogeneous case. We do not work that out here.

Summarizing, the method described above is based on the fact that a large solution of (3.1) in the inhomogeneous case leads to a lattice point extremely near to a fixed point in \mathbb{Z}^{n}. We can actually prove by some computations that such lattice points do not exist, so that such extreme solutions do not exist. The method outlined in this section is used in Chapter 8. Note that in the case $n=2$ the method is essentially the same as the Davenport lemma.
3.9. Inhomogeneous zero-dimensional approximation in the p-adic case.

In the p-adic case we start with a very simple linear form Λ, to which also a very simple reduction method applies. Let Λ be

$$
\mathrm{A}=\beta+\mathrm{x} \cdot \vartheta,
$$

for $\beta, \vartheta \in \Omega_{p}$ such that $\beta / \vartheta \in \mathbb{Q}_{p}$, and $\mathbf{x} \in \mathbb{Z}, \quad \mathbf{x}>0$. It is obvious that in the real case with such a simple linear form Λ inequality (3.1) has only finitely many solutions (we even don't need (3.2)), that are easy to compute. In the p-adic case however, inequality (3.3) may have infinitely many solutions, so we do need a bound like (3.4), and a reduction method.

Put $\vartheta^{\prime}=-\beta / \vartheta$. Then $\vartheta^{\prime} \in \mathbb{Q}_{p}$. Inequality (3.3) now becomes

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\vartheta^{\prime}-x\right) \geq c_{1}^{\prime}+c_{2} \cdot x \tag{3.28}
\end{equation*}
$$

where c_{1}^{\prime}, c_{2} are constants with $c_{2}>0$. We assume that

$$
x \geq-c_{1}^{\prime} / c_{2} .
$$

Then (3.28) has no solutions if ord $\left(\vartheta^{\prime}\right)<0$. Hence we may assume that ϑ^{\prime} is a p-adic integer. Let the p-adic expansion of ϑ^{\prime} be

$$
\vartheta^{\prime}=\sum_{i=0}^{\infty} u_{i} \cdot p^{i}
$$

where $u_{i} \in\{0,1, \ldots, p-1\}$ for all $i \in \mathbb{N}_{0}$. Compute the p-adic digits u_{i} far enough to be able to apply the following reduction lemma.

LEMMA 3.11. Let X_{1} be a positive constant. Let r be the minimal index such that

$$
\begin{equation*}
\mathrm{p}^{\mathrm{r}}>\mathrm{X}_{1}, \quad u_{r} \neq 0 \tag{3.29}
\end{equation*}
$$

Then (3.28) has no solutions with

$$
\begin{equation*}
\left(r-c_{1}^{\prime}\right) / c_{2}<x \leq X_{1} \tag{3.30}
\end{equation*}
$$

Remark. We apply the lemma with $X_{1}=X_{0}$. The assumption behind the lemma is that in the p-adic expansion of ϑ^{\prime} no long sequences of zeroes appear. In fact, it seems that in our applications the numbers u_{i} are distributed randomly over $\{0,1, \ldots, p-1\}$. Then the minimal r satisfying (3.29)
will not be much larger than $\log X_{0} / \log p$, and then (3.30) yields a reduced upper bound of size $\log X_{0}$, as desired.

Proof, Let $x \leq X_{1}$ satisfy (3.28). Suppose that ord $\left(\theta^{\prime}-x\right) \geq r+1$. Then

$$
x \equiv \sum_{i=0}^{r} u_{i} \cdot p^{i}\left(\bmod p^{r+1}\right)
$$

By $x \geq 0$ it follows from (3.29) that

$$
x \geq \sum_{i=0}^{r} u_{i} \cdot p^{i} \geq u_{r} \cdot p^{r} \geq p^{r}>x_{1}
$$

which contradicts the assumption $x \leq X_{1}$. Hence ord $\left(\theta^{\circ}-x\right) \leq r$, and (3.30) follows from (3.28).

Remark. In the above proof it is essential that $x \geq 0$. It is however not difficult to formulate a similar result that holds for all $x \in \mathbb{Z}$, by looking, if $p \neq 2$ for p-adic digits u_{i} that are not only $\neq 0$ but also $\neq p-1$, and if $p=2$ for p-adic digits u_{i}, u_{i+1} with $u_{i} \neq u_{i+1}$.

A method very similar to the one described above was used by Wagstaff [1979], [1981], a.o. for solving $5^{n} \equiv 2\left(\bmod 3^{n}\right)$. We apply the method in Chapter 4.
3.10. Homogeneous one-dimensional approximation in the p-adic case: p-adic continued fractions and approximation lattices of p-adic numbers.

Let Λ have the form

$$
\Lambda=x_{1} \cdot \vartheta_{1}+x_{2} \cdot \vartheta_{2}
$$

where $\vartheta_{1}, \vartheta_{2} \in \Omega_{p}$ such that $\vartheta=-\vartheta_{1} / \vartheta_{2} \in Q_{p}$, and $x_{1}, x_{2} \in \mathbb{Z}$. We may assume that $\operatorname{ord}_{p}(\vartheta) \geq 0$. Now

$$
\Lambda^{\prime}=\Lambda / \vartheta_{1}=-x_{1} \cdot \vartheta+x_{2}
$$

So (3.3) now means that the rational number x_{2} / x_{1} is p-adically close to the p-adic number ϑ.

In analogy of the real case it seems reasonable to study p-adic continued fraction algorithms. However, a p-adic continued fraction algorithm that provides all best approximations to a p-adic number seems not to exist.

Therefore we introduce the concept of p-adic approximation lattices, as was done in de Weger $\left[1986^{\text {a }}\right]$. From this paper we adopt the best approximation algorithm, which is a generalization of the algorithm of Mahler [1961], Chapter IV. This algorithm goes back also on the euclidean algorithm, and thus is close to a continued fraction algorithm. But it is not a p-adic continued fraction algorithm in the sense that a p-adic number is expanded into a continued fraction, and that the approximations are then found by truncating the continued fraction.

Recall that for $\mu \in \mathbb{N}_{0}$ the rational integer $\theta^{(\mu)}$ is defined by $\operatorname{ord}_{p}\left(\vartheta-\vartheta^{(\mu)}\right) \geq \mu$ and $0 \leq \vartheta^{(\mu)}<p^{\mu}$. We define for any $\mu \in \mathbb{N}_{0}$ the p-adic approximation lattice Γ_{μ} by a matrix to which a basis of Γ_{μ} is associated, namely the matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
\vartheta^{(\mu)} & p^{\mu}
\end{array}\right]
$$

Then it is easy to see that

$$
\Gamma_{\mu}=\left\{\left(x_{1}, x_{2}\right)^{T} \in \mathbb{Z}^{2} \mid \text { ord }_{p}\left(x_{2}-x_{1} \cdot \vartheta\right) \geq \mu\right\}
$$

(cf. Lemma 3.13 in the next section, where we prove a more general result). The following algorithm computes a point of minimal length in Γ_{μ}.

$$
\begin{aligned}
& \underline{x}:=\left(1, \vartheta^{(\mu)}\right)^{T} ; y:=\left(0, p^{\mu}\right)^{T} ; \\
& \text { if }|\underline{x}|>|y| \text {, interchange } \underline{x} \text { and } y \text {; } \\
& \text { (1) compute } K \in \mathbb{Z} \text { such that }|y-K \cdot \underline{x}| \text { is minimal ; } \\
& y:=y-K \cdot \underline{x} ; \\
& \text { if }|\underline{x}|>|y| \text {, interchange } \underline{x} \text { and } y \text {, and go to (1) ; } \\
& \text { print } \underline{x} \text {. }
\end{aligned}
$$

Figure 3. p-adic approximation algorithm.

With this algorithm it is possible to compute $\ell\left(\Gamma_{\mu}\right)$ explicitly. Then we can apply the following lemma.

LEMMA 3.12. Let X_{1} be a constant such that

$$
\begin{equation*}
\ell\left(\Gamma_{\mu}\right)>\sqrt{ } 2 \cdot \mathrm{X}_{1} \tag{3.31}
\end{equation*}
$$

Then (3.3) has no solutions with

$$
\begin{equation*}
\left(\mu-1-c_{1} \operatorname{rord}_{p}\left(\vartheta_{2}\right)\right) / c_{2}<x_{j} \leq X \leq X_{1} \tag{3.32}
\end{equation*}
$$

Remark. We take μ such that p^{μ} is of the size of X_{0}^{2}, and apply the lemma for $X_{1}=X_{0}$. Then we expect that $\ell\left(\Gamma_{\mu}\right)$ is of the size of X_{0}, so that (3.31) is a reasonable condition.

Proof. Apply the proof of Lemma 3.14 (in the next section) for $n=2$.

A method like the one described above has been applied by Agrawal, Coates, Hunt and van der Poorten [1980]. We use it in Chapters 6 and 7.
3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic approximation lattices.

We now study the case

$$
\Lambda=\sum_{i=1}^{n} x_{i} \cdot \vartheta_{i}
$$

where $\vartheta_{i} \in \Omega_{p}$ such that $\vartheta_{i} / \vartheta_{j} \in \mathbb{Q}_{p}, \quad x_{i} \in \mathbb{Z}$ for all i, j, and with $n \geq 2$. We may assume that ord $\left(\vartheta_{i}\right)$ is minimal for $i=n$. Put

$$
\vartheta_{i}^{\prime}=-\vartheta_{i} / \vartheta_{n} \text { for } i=1, \ldots, n-1 .
$$

Then $\vartheta_{i}^{\prime} \in \mathbb{Z}_{p}$ for all i. Put

$$
\Lambda^{\prime}=\Lambda / \vartheta_{n}=-\sum_{i=1}^{n-1} x_{i} \cdot \vartheta_{i}^{\prime}+x_{n}
$$

The definition of the p-adic approximation lattices can be generalized directly from the one-dimensional case. Namely, for any $\mu \in \mathbb{N}_{0}$ we define Γ_{μ} as the lattice associated to the matrix

$$
\mathscr{B}_{\mu}=\left[\begin{array}{ccccc}
1 & & & \varnothing & \\
\varnothing & & & & \\
& & 1 & \\
\vartheta_{1}^{\prime}(\mu) & \ldots & \vartheta_{n-1}^{\prime}(\mu) & p^{\mu}
\end{array}\right]
$$

Then we have the following result.

LEMMA 3.13. The lattice Γ_{μ}, associated to the above defined matrix ${ }^{B}{ }_{\mu}$, is equal to the set

$$
\Gamma_{\mu}=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{Z}^{n} \mid \operatorname{ord}_{p}\left(\Lambda^{\prime}\right) \geq \mu\right\}
$$

Proof. For any $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \Gamma_{\mu}$ there exists a $\underline{z}=\left(z_{1}, \ldots, z_{n}\right)^{T} \in \mathbb{Z}^{n}$ such that $\underline{x}=\mathscr{B}_{\mu} \cdot \underline{z}$. Then $x_{i}=z_{i}$ for $i=1, \ldots, n-1$, and

$$
x_{n}=\sum_{i=1}^{n-1} z_{i} \cdot \vartheta_{i}^{\prime}(\mu)+z_{n} \cdot p^{\mu} \equiv \sum_{i=1}^{n-1} x_{i} \cdot \theta_{i}^{\prime}\left(\bmod p^{\mu}\right)
$$

Hence $\operatorname{ord}_{p}\left(\Lambda^{\prime}\right) \geq \mu$. Conversely, for any $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ such that $\operatorname{ord}_{p}\left(\Lambda^{\prime}\right) \geq \stackrel{p}{\mu}$ there obviously exists a $\underline{z} \in \mathbb{Z}^{n}$ such that $\underline{x}=\mathcal{B}_{\mu} \cdot \underline{z}$.

Using the L^{3}-algorithm we can compute a lower bound for $\ell\left(\Gamma_{\mu}\right)$. Then we can apply the following lemma, which is a direct generalization of Lemma 3.12.

LEMMA 3.14. Let X_{1} be a constant such that

$$
\begin{equation*}
\ell\left(\Gamma_{\mu}\right)>\sqrt{n} \cdot X_{1} . \tag{3.33}
\end{equation*}
$$

Then (3.3) has no solutions with

$$
\begin{equation*}
\left(\mu-1-c_{1}+\operatorname{ord}_{p}\left(\vartheta_{n}\right)\right) / c_{2}<x_{j} \leq x \leq x_{1} . \tag{3.34}
\end{equation*}
$$

Remark. We take μ such that p^{μ} is of the size of X_{0}^{n}, and apply the lemma for $X_{1}=X_{0}$. Then we expect that $\ell\left(\Gamma_{\mu}\right)$ is of the size of X_{0}, so that (3.33) is a reasonable condition.

Proof. Let x_{1}, \ldots, x_{n} be a solution of (3.3) with $X \leq X_{1}$. Then (3.33) prohibits the point $\left(x_{1}, \ldots, x_{n}\right)^{T}$ from being a lattice point in Γ_{μ}. Hence, by Lemma 3.13, $\operatorname{ord}_{p}\left(\Lambda^{\prime}\right) \leq \mu-1$, and (3.34) follows from (3.3).

We will apply the results of this section in Chapters 6 and 7.
3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic case.

Finally we study an inhomogeneous p-adic form

$$
\Lambda=\beta+\sum_{i=1}^{n} x_{i} \cdot \vartheta_{i}
$$

where $\beta, \vartheta_{i} \in \Omega_{p}$ such that $\beta / \vartheta_{j}, \vartheta_{i} / \vartheta_{j} \in \mathbb{Q}_{p}$ and $x_{i} \in \mathbb{Z}$ for all i, j, and $n \geq 2$. We assume that $\operatorname{ord}_{p}\left(\vartheta_{i}\right)$ is minimal for $i=n$, and that $\operatorname{ord}_{p}(\beta) \geq \operatorname{ord}_{p}\left(\theta_{n}\right)$. Put

$$
\begin{gathered}
\vartheta_{i}^{\prime}=-\vartheta_{i} / \vartheta_{n} \text { for } i=1, \ldots, n-1, \beta^{\prime}-\beta / \vartheta_{n} \\
\Lambda^{\prime}=\Lambda / \vartheta_{n}=\beta^{\prime}-\sum_{i=1}^{n-1} x_{i} \cdot \vartheta_{i}^{\prime}+x_{n}
\end{gathered}
$$

Then $\beta^{\prime}, \vartheta_{i}^{\prime} \in \mathbb{Z}_{p}$ for all i. As p-adic approximation lattices we take the lattices Γ_{μ} that were defined for the homogeneous case, i.e. for any $\mu \in \mathbb{N}_{0}$ the lattice Γ_{μ} that is associated to the matrix \mathscr{B}_{μ} (see Section 3.11). Further put

$$
y=\left(0, \ldots, 0, \beta^{\prime(\mu)}\right)^{T}=\sum_{i=1}^{n} s_{i} \cdot \underline{c}_{i} \in \mathbb{Z}^{n}
$$

where c_{1}, \ldots, c_{n} is a reduced basis of Γ_{μ}, and $s_{i} \in \mathbb{R}$. By Lemma 3.5 or 3.6 we can compute a lower bound for $\ell(\Gamma, y)$. This is useful in view of the following lemma.

LEMMA 3.15. The set $\Gamma_{\mu}(y)=\Gamma_{\mu}+y$ is equal to the set

$$
\Gamma_{\mu}(y)=\left\{\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{Z}^{n} \mid \operatorname{ord}_{p}\left(\Lambda^{\prime}\right) \geq \mu\right\}
$$

Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ satisfy $\underline{x}-y \in \Gamma_{\mu}$. Note that

$$
\underline{x}-y=\left(x_{1}, \ldots, x_{n-1}, x_{n}-\beta^{\prime}(\mu)\right)^{T}
$$

By Lemma 3.13 we have

$$
\operatorname{ord}_{p}\left(\sum_{i=1}^{n-1} x_{i} \cdot \vartheta_{i}-\left(x_{n}-\beta^{\prime}(\mu)\right)\right) \geq p^{\mu}
$$

The left hand side is just ord $\left(\Lambda^{\prime}\right)$, which proves the lemma.

Obviously, the length of the shortest vector in $\Gamma_{\mu}(y)$ (a translated lattice) is equal to $\ell\left(\Gamma_{\mu}, y\right)$ (unless in the case $y \in \Gamma_{\mu}$, i.e. $s_{i} \in \mathbb{Z}$ for all i). We have the following useful lemma.

LEMMA 3.16. Let X_{1} be a constant such that

$$
\begin{equation*}
\ell\left(\Gamma_{\mu}, Y\right)>\sqrt{n} \cdot X_{1} \tag{3.35}
\end{equation*}
$$

Then (3.3) has no solutions with

$$
\begin{equation*}
\left(\mu-1-c_{1}+\operatorname{ord}_{p}\left(\theta_{n}\right)\right) / c_{2}<x_{j} \leq X \leq X_{1} \tag{3.36}
\end{equation*}
$$

Remark. We take μ such that p^{μ} is of the size of X_{0}^{n}, and apply the lemma for $X_{0}=X_{1}$. Then we expect that $\ell\left(\Gamma_{\mu}, Y\right)$ is of the size of X_{0}, so that (3.35) is a reasonable condition.

Proof. Let x_{1}, \ldots, x_{n} be a solution of (3.3) with $X \leq X_{1}$. Then (3.35) prohibits the point $\left(x_{1}, \ldots, x_{n}\right)^{T}$ from being in $\Gamma_{\mu}(y)$. Hence, by Lemma 3.15, ord $\left(\Lambda^{\prime}\right) \leq \mu-1$, and (3.36) follows from (3.3).

We will not apply the above lemma in this book. It is included here only for the sake of completeness. However, when solving Thue-Mahler equations (see Section 8.6), it will be of use.
3.13. Useful sublattices of p-adic approximation lattices.

In our p-adic applications of solving diophantine equations via linear forms, we always have linear forms in logarithms of algebraic numbers, i.e. in

$$
\Lambda=\beta+\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}} \cdot \vartheta_{\mathrm{i}}
$$

the β and ϑ_{i} 's are p-adic logarithms of algebraic numbers, say

$$
\beta=\log _{p}\left(\alpha_{0}\right), \quad \vartheta_{i}=\log _{p}\left(\alpha_{i}\right) \quad \text { for } \quad i=1, \ldots, n .
$$

In Section 2.3 we have seen that for a $\xi \in \mathbb{Q}_{p}$ if ord $(1 \pm \xi)^{*}>1 /(p-1)$ then $\operatorname{ord}_{p}\left(\log _{p}(\xi)\right)=\operatorname{ord}_{p}(1 \pm \xi)$. In our applications we apply this to

$$
\xi=\alpha_{0} \cdot \prod_{i=1}^{n} \alpha_{i}^{x_{i}}
$$

for which ord $(\xi-1)$ is large. This implies that ord $\left(\log _{p}(\xi)\right)$ is large too, on which we based the definition of our approximation lattices. However, the converse is not necessarily true: ord $\left(\log _{p}(\xi)\right)$ being large does not imply that ord $(\xi-1)$ is large. This is due to the fact that the p-adic
logarithm is a multi-branched function. To be more precise, for any root of unity $\quad 5 \in \mathbb{Q}_{p}$ we have $\log _{p}(5)=0$ (cf. Section 2.3). In \mathbb{Q}_{p} there exist only the ($p-1$) th roots of unity if p is odd, and only ± 1 as roots of unity if $p=2$. Let ζ be a primitive ($p-1$) th root of unity if p is odd, and $\zeta=-1$ if $p=2$. It follows that ord $\left(\log _{p}(\xi)\right.$) being large implies that for some $k \in\{0,1, \ldots, p-2\}$ (or $k \in\{0,1\}$ if $p=2$)

$$
\operatorname{ord}_{p}\left(\log _{p}(\xi)\right)=\operatorname{ord}_{p}\left(\xi-\zeta^{k}\right)
$$

The set of x_{1}, \ldots, x_{n} such that ord ${ }_{p}(\xi-1)$ (or ord $(\xi \pm 1)$ if one wishes) is large, turns out to be a sublatice ${ }^{p} \Gamma_{\mu}^{*}$ (or $\Gamma_{\mu}^{\#} \quad{ }^{\mathrm{p}}$ respectively) of Γ_{μ}. In the following lemma we shall prove this fact, and indicate how a basis of such a sublattice can be found. Then we can work with this sublattice instead of Γ_{μ} itself. Of course, in Lemmas $3.12,3.14$ and 3.16 we can replace Γ_{μ} by these sublattices $\Gamma_{\mu}^{*}, \Gamma_{\mu}^{\#}$. For simplicity we assume that $\alpha_{i} \in \mathbb{Q}_{p}$ for all i. We take $\alpha_{0}=1$ (corresponding to $\beta=0$, thus to the homogeneous case), and leave it to the reader to define appropriate translated lattices $\Gamma_{\mu}^{*}(y), \Gamma_{\mu}^{\#}(y)$ for the case $\alpha_{0} \neq 1$ (the inhomogeneous case).

LEMMA 3.17. (i). Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Q}_{p}$ be given numbers with ord ${ }_{p}\left(\alpha_{i}\right)=0$ for all i, and ord $\left.\log _{p}\left(\alpha_{i}\right)\right)$ minimal for $i=n$. Let $x_{1}, \ldots, x_{n} \in \mathbb{Z}$. Put

$$
\xi=\prod_{i=1}^{n} \alpha_{i}^{x_{i}}, \quad \mu_{0}=\operatorname{ord}_{p}\left(\log _{p}\left(\alpha_{n}\right)\right)
$$

For any $\mu \in \mathbb{N}_{0}$ put

$$
\begin{aligned}
& \Gamma_{\mu}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid \underset{p}{\left.\operatorname{ord}_{p}\left(\log _{p}(\xi)\right) \geq \mu+\mu_{0}\right\}}\right. \\
& \Gamma_{\mu}^{*}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid \operatorname{ord}_{p}(\xi \pm 1) \geq \mu+\mu_{0}\right\} \\
& \Gamma_{\mu}^{\#}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid \operatorname{ord}_{p}(\xi-1) \geq \mu+\mu_{0}\right\}
\end{aligned}
$$

Then $\Gamma_{\mu_{\star}}^{\#} \subseteq \Gamma_{\mu}^{*} \subseteq \Gamma_{\mu}$ are lattices. If $\mathrm{p}=2$ they are all equal. If $\mathrm{p}=3$ then $\Gamma_{\mu}^{*}=\Gamma_{\mu}$. If $p \geq 3$ then $\#\left(\Gamma_{\mu} / \Gamma_{\mu}^{*}\right)=(p-1) / 2, \quad \#\left(\Gamma_{\mu} / \Gamma_{\mu}^{\#}\right)=p-1$, $\#\left(\Gamma_{\mu}^{*} / \Gamma_{\mu}^{\#}\right)^{\mu}=2$.
(ii). Let $\underline{b}_{1}, \ldots, \underline{b}_{n}$ be a basis of Γ_{μ}. Define $k(\underline{x})$ for any $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)^{\frac{\underline{b}}{} 1} \in \Gamma_{\mu}$ by

$$
\xi \equiv \zeta^{\mathrm{k}(\underline{x})}\left(\bmod \mathrm{p}^{\mu+\mu_{0}}\right), \quad \mathrm{k}(\underline{\mathrm{x}}) \in\{0,1, \ldots, \mathrm{p}-2\}
$$

Let $\underline{b}_{1}^{\prime}, \ldots, b_{n}^{\prime}$ be a basis of Γ_{μ} such that

$$
k\left(\underline{b}_{n}^{\prime}\right)=\operatorname{gcd}\left(k\left(\underline{b}_{1}\right), \ldots, k\left(\underline{b}_{n}\right)\right] .
$$

Put for $i=1, \ldots, n-1$ and $p \geq 5$

$$
\begin{gathered}
\gamma_{i}^{*}=k\left(\underline{b}_{i}^{\prime}\right) / k\left(\underline{b}_{n}^{\prime}\right)(\bmod (p-1) / 2),\left|\gamma_{i}^{*}\right| \leq(p-1) / 4, \\
\underline{b}_{i}^{*}=\underline{b}_{i}^{\prime}-\gamma_{i}^{*} \cdot \underline{b}_{n}^{\prime},
\end{gathered}
$$

and for $p \geq 3$ also

$$
\begin{gathered}
\gamma_{i}^{\#} \equiv k\left(\underline{b}_{i}^{\prime}\right) / k\left(\underline{b}_{n}^{\prime}\right)(\bmod (p-1)), \quad\left|\gamma_{i}^{\# \#}\right| \leq(p-1) / 2, \\
\underline{b}_{i}^{\#}=\underline{b}_{i}^{\prime}-\gamma_{i}^{\#} \cdot b_{n}^{\prime} .
\end{gathered}
$$

Further put for $p \geq 5$

$$
\gamma_{n}^{*}=\operatorname{lcm}\left(k\left(\underline{b}_{n}^{\prime}\right),(p-1) / 2\right] / k\left(\underline{b}_{n}^{\prime}\right), \quad b_{n}^{*}=\gamma_{n}^{*} \cdot b_{n}^{\prime},
$$

and for $p \geq 3$ also

$$
\gamma_{n}^{\# \#}=\operatorname{lcm}\left(k\left(b_{n}^{\prime}\right), p-1\right) / k\left(\frac{b_{n}^{\prime}}{n}\right), \quad b_{n}^{\#}=\gamma_{n}^{\# /} \cdot \frac{b_{n}^{\prime}}{n} .
$$

Then $\underline{b}_{1}^{*}, \ldots, \frac{b}{n}^{*}$ is a basis of Γ_{μ}^{*}, and $\underline{b}_{1}^{\sharp}, \ldots, \frac{b_{n}^{\# 1}}{n}$ is a basis of $\Gamma_{\mu}^{\#}$.
Proof. (i). It is trivial that $\Gamma_{\mu}^{\sharp} \subseteq \Gamma_{\mu}^{*} \subseteq \Gamma_{\mu}$, and that they are lattices. The equalities of the lattices for $p=2,3$ follow from the fact that ± 1 are the only roots of unity in \mathbb{Q}_{p} for $P=2,3$. The values of $\#\left(\Gamma_{\mu} / \Gamma_{\mu}^{*}\right)$, etc., follow from (ii).
(ii). Note that $k(\underline{x})$ is (mod $(p-1))$ a linear function on Γ_{μ}. The points \underline{x} of Γ_{μ}^{*} are characterized by $(p-1) / 2 \mid k(\underline{x})$, and the points \underline{x} of $\Gamma_{m}^{\text {\#\# }}$ are characterized by ($\mathrm{p}-1$) $\mid \mathrm{k}(\underline{x})$. It follows from the definitions in the lemma that for $i=1, \ldots, n-1$

$$
\begin{aligned}
& k\left(\underline{b}_{i}^{*}\right) \equiv k\left(\underline{b}_{i}^{\prime}\right)-\gamma_{i}^{*} \cdot k\left(\underline{b}_{n}^{\prime}\right) \equiv 0(\bmod (p-1) / 2), \\
& k\left(\underline{b}_{i}^{\#}\right) \equiv k\left(\underline{b}_{i}^{\prime}\right)-\gamma_{i}^{\# \#} \cdot k\left(\underline{b}_{n}^{\prime}\right) \equiv 0(\bmod (p-1)) .
\end{aligned}
$$

Note that $\underline{b}_{1}^{*}, \ldots, \frac{b}{n-1}_{*}^{*}, \frac{b}{n}_{\prime}^{\prime}$ and $\underline{b}_{1}^{\#}, \ldots, \frac{b}{n-1}_{\#}^{\#}, b_{n}^{\prime}$ are both bases of r_{μ}. Write $\underline{x} \in \Gamma_{\mu}$ as

$$
\underline{x}=\sum_{i=1}^{n-1} y_{i}^{*} \cdot b_{i}^{*}+y_{n}^{*} \cdot b_{n}^{\prime}=\sum_{i=1}^{n-1} y_{i}^{\#} \cdot \underline{b}_{i}^{\#}+y_{n}^{\# \#} \cdot b_{n}^{\prime}
$$

for integers $y_{i}^{*}, y_{i}^{\#}$. Then it follows that

$$
\begin{aligned}
& k(\underline{x}) \equiv y_{n}^{*} \cdot k\left(\underline{b}_{n}^{\prime}\right)(\bmod (p-1) / 2), \\
& k(\underline{x}) \equiv y_{n}^{\sharp} \cdot k\left(\underline{b}_{n}^{\prime}\right)(\bmod (p-1)) .
\end{aligned}
$$

So $x \in \Gamma_{\mu}^{*}$ if and only if $\gamma_{n}^{*} \mid y_{n}^{*}$ ，and $x \in \Gamma_{\mu}^{\# \#}$ if and only if $\gamma_{n}^{\# ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻}$ This proves the result．

Chapter 4. S-integral elements of binary recurrence sequences.

Acknowledgements. The research for this chapter has been done partly in cooperation with A. Pethö from Debrecen. The results have been published in Pethö and de Weger [1986] and de Weger [1986 ${ }^{\text {b }}$].

4.1. Introduction.

In this chapter we present a reduction algorithm for the following problem. Let A, B, G_{0}, G_{1} be integers, and let the recurrence sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ be defined by

$$
G_{n+1}=A \cdot G_{n}-B \cdot G_{n-1} \text { for } n=1,2, \ldots \text {. }
$$

Assume that $\Delta=A^{2}-4 \cdot B$ is not a square, and that the sequence is not degenerate (this will be explained below). Let w be a nonzero integer, and let p_{1}, \ldots, p_{s} be distinct primes. We study the diophantine equation

$$
\begin{equation*}
G_{n}=w \cdot \prod_{i=1}^{s} p_{i}^{m_{i}} \tag{4.1}
\end{equation*}
$$

in nonnegative integers n, m_{1}, \ldots, m_{s}. We will study both the cases of positive and negative discriminant Δ (the 'hyperbolic' and 'elliptic' cases). It was shown by Mahler [1934] that (4.1) has only finitely many solutions. For the case $\Delta>0$ Schinzel [1967] has given an effectively computable upper bound for the solutions.

Mignotte [1984 ${ }^{\mathrm{a}}$], [1984 ${ }^{\mathrm{b}}$] indicated how in some instances (4.1) with $s=1$ can be solved by congruence techniques. It is however not clear that his method will work for any equation (4.1) with $s=1$. Moreover, his method seems not to be generalizable for $s>1$. Pethö [1985] has given a reduction algorithm, based on the Gelfond-Baker method, to treat (4.1) in the case $\Delta>0, \quad \mathrm{w}=\mathrm{s}=1$.

Our reduction algorithms are based on a simple case of p-adic diophantine approximation, namely the zero-dimensional case, cf. Section 3.9. In the
hyperbolic case this suffices to be able to find all solutions of (4.1). This is based on a trivial observation on the exponential growth of $\left|G_{n}\right|$ in this case. In the elliptic case the situation is essentially more complicated. Then information on the growth of $\left|G_{n}\right|$ can be obtained from the complex Gelfond-Baker theory. Therefore in this case we have to combine the p-adic arguments with the one-dimensional homogeneous or inhomogeneous real diophantine approximation method, $c f . S e c t i o n s 3.2$ and 3.3.

We shall give explicit upper bounds for the solutions of (4.1) which are small enough to admit the practical application of the reduction algorithms, if the parameters of the equation are not too large. Pethö [1985] pointed out that essentially better upper bounds hold for all but possibly one solutions. His reasoning is essentially the same as our reduction technique.

The generalized Ramanujan-Nagell equation

$$
\begin{equation*}
x^{2}+k=\prod_{i=1}^{s} p_{i}^{z} \tag{4.2}
\end{equation*}
$$

where $k \in \mathbb{Z}$ is fixed, and $x, z_{1}, \ldots, z_{s} \in \mathbb{N}_{0}$ are the unknowns, can be reduced to a finite number of equations of type (4.1) with $\Delta>0$. Equation (4.2) with $s=1$ has a long history (cf. Hasse [1966], Beukers [1981] for a survey), and interesting applications in coding theory (cf. Bremner, Calderbank, Hanlon, Morton and Wolfskill [1983], MacWilliams and Sloane [1977], and Tzanakis and Wolfskill [1986], [1987]). Examples of (4.2) have been solved using the Gelfond-Baker theory by Hunt and van der Poorten (unpublished). They used real or complex, not p-adic linear forms in logarithms. As far as we know, none of the proposed methods to treat (4.2) gives rise to an algorithm which works for arbitrary values of k and the $p_{i}{ }^{\prime} s$, whereas Tzanakis' elementary method (cf. Tzanakis [1983]) seems to be the only one that can be generalized to $s>1$. Our method has both properties.

This chapter is organized as follows. In Section 4.2 we give some preliminaries on binary recurrence sequences. In Section 4.3 we study the growth of $\left|G_{n}\right|$, both in the hyperbolic and the elliptic case. The hyperbolic case is trivial, and in the elliptic case we give a method for solving $\left|G_{n}\right|<v$ for a fixed $v \in \mathbb{R}$, by proving an upper bound for n that has particularly good dependence on v, and by showing how to reduce such a bound. Section 4.4 gives upper bounds for the solutions of (4.1).

Section 4.5 gives a lemma on which the p-adic part of the reduction procedure is based. Then Section 4.6 treats some special cases, a.o. the 'symmetric' recurrences. For this special type of recurrence sequences our reduction algorithms fail, but elementary arguments will always work for solving (4.1) in these cases. In Section 4.7 we give the algorithm for reducing upper bounds for the solutions of (4.1) in the case $\Delta>0$, with some elaborated examples. The same is done for the case $\Delta<0$ in Section 4.8 .

Section 4.9 shows how to treat the generalized Ramanujan-Nagell equation (4.2), as an application of the hyperbolic case of (4.1). As an example we determine all integers x such that $x^{2}+7$ has no prime factors larger than 20, thus extending the result of Nagell [1948] on the equation $x^{2}+7=2^{n} \quad$ (the original Ramanujan-Nagell equation). Finally in Section 4.10 we give an application of the elliptic case of (4.1) to a certain type of mixed quadratic-exponential diophantine equation, analogous to the application of the hyperbolic case to solving (4.2). As an example, we determine the solutions X, m_{1}, m_{2}, n of

$$
x^{2}-3^{m_{1}} \cdot 7^{m_{2}} \cdot x+2 \cdot\left(3^{m_{1}} \cdot 7^{m_{2}}\right)^{2}=11 \cdot 2^{n}
$$

4.2. Binary recurrence sequences.

Let $A, B, G_{0}, G_{1} \in \mathbb{Z}$ be given. Let the sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ be defined by

$$
G_{n+1}=A \cdot G_{n}-B \cdot G_{n-1} \text { for } n=1,2, \ldots
$$

Let α, β be the roots of $x^{2}-A \cdot x+B=0$. We assume that $\Delta=A^{2}-4 \cdot B$ is not a square, and that α / β is not a root of unity (i.e. the sequence is not degenerate). Put

$$
\begin{equation*}
\lambda=\frac{G_{1}-G_{0} \cdot \beta}{\alpha-\beta}, \quad \mu=\frac{G_{0} \cdot \alpha-G_{1}}{\alpha-\beta} \tag{4.4}
\end{equation*}
$$

Then λ and μ are conjugates in $K=\mathbb{Q}(\sqrt{\prime})$. We now have for all $n \geq 0$

$$
\begin{equation*}
G_{n}=\lambda \cdot \alpha^{n}+\mu \cdot \beta^{n} \tag{4.5}
\end{equation*}
$$

(cf. Shorey and Tijdeman [1986], Theorem C.1). We will show that when we are solving (4.1), we may assume without loss of generality that

$$
\left(G_{0}, G_{1}\right)=\left(G_{1}, B\right)=(A, B)=1 .
$$

Namely, if $d=\left(G_{0}, G_{1}\right)$ then $d \mid G_{n}$ for all $n \geq 0$, and thus we may study (4.1) with $G_{n}^{\prime}=G_{n} / d$ instead of with G_{n}. Next suppose that $d=(A, B)$. If also $d^{2} \mid B$ then it is easy to show that $d^{n-1} \mid G_{n}$ for all $n \geq 2$. Then we study (4.1) with $G_{n}^{\prime}=G_{n+1} / d^{n}$ instead of with G_{n}. The A^{\prime}, B^{\prime} such that $G_{n+1}^{\prime}=A^{\prime} \cdot G_{n}^{\prime}-B^{\prime} \cdot G_{n-1}^{\prime}$ are $A^{\prime}=A / d, B^{\prime}=B / d^{2}$, and thus $\left(A^{\prime}, B^{\prime}\right)=1^{n+1}$. If however $d^{2} \quad \gamma^{n-1} B$, then we split the sequence into two parts. We study (4.1) first with $G_{n}^{\prime}=G_{2 \cdot n}$ and then with $G_{n}^{\prime}=G_{2 \cdot n+1}$, instead of with G_{n}. For both sequences $\left\{G_{n}^{\prime}\right\}$ the A^{\prime}, B^{\prime} such that $G_{n+1}^{\prime}=A^{\prime} \cdot G_{n}^{\prime}-B^{\prime} \cdot G_{n-1}^{\prime}$ are given by $\quad A^{\prime}=A^{n}-2 \cdot B, \quad B^{\prime}=B^{2}$. Then $\left(A^{\prime}, B^{\prime}\right)=d$, and $d^{2} \mid B^{\prime}$, so we are in the previous case. Finally, let p be a prime such that $p \mid\left(G_{1}, B\right)$, and let p be a prime ideal of $Q(\sqrt{ })$ lying above p. By $p \mid B=\alpha \cdot \beta$ we have $p \mid(\alpha)$ or $p \mid(\beta)$. Suppose $\mathfrak{p} \mid(\alpha)$. Then $\mathfrak{p} \nmid(\beta)$ by $(\mathrm{A}, \mathrm{B})=1$ (note that $\mathrm{A}=\alpha+\beta$). Hence

$$
\operatorname{ord}_{p}\left(\lambda \cdot \alpha^{n}+\mu \cdot \beta^{n}\right)=\min \left(\operatorname{ord}_{p}\left(\lambda \cdot \alpha^{n}\right), \operatorname{ord}_{p}\left(\mu \cdot \beta^{n}\right)\right)=\operatorname{ord}_{p}(\mu)
$$

if $n \geq n_{0}$ for some n_{0}. Thus ord ${ }_{p}\left(G_{n}\right)$ is constant for $n \geq n_{0}$, and the same is true if $\mathfrak{p} \mid(\beta)$. Thus we may assume that $\left(G_{1}, B\right)=1$.

LEMMA 4.1. Let n, m_{1}, \ldots, m_{s} be a solution of (4.1). Then, with the above assumptions, we have for $i=1$, .., s either $m_{i}=0$ or $n=0$ or

$$
\begin{align*}
& \operatorname{ord}_{p_{i}}(\alpha)=\operatorname{ord}_{p_{i}}(\beta)=0 \tag{4.6}\\
& \operatorname{ord}_{p_{i}}(\lambda)=\operatorname{ord}_{p_{i}}(\mu)=-\frac{1}{2} \cdot \operatorname{ord}_{p_{i}}(\Delta) \leq 0
\end{align*}
$$

Proof. Suppose $p_{i} \mid B$. Then $p_{i} \nmid A$, hence, from (4.3) and $\left(B, G_{1}\right)=1$, $p_{i} \not G_{n}$ for all $n \geq 1$. Thus, $m_{i}=0$ or $n=0$. Next suppose $p_{i} \nmid B$. Then, by $\alpha \cdot \beta=\mathrm{B}$,

$$
\operatorname{ord}_{p_{i}}(\alpha)+\operatorname{ord}_{p_{i}}(\beta)=\operatorname{ord}_{p_{i}}(B)=0
$$

Now, α and β are algebraic integers, so their p_{i}-adic orders are nonnegative. It follows that they are zero. Put $E=-\lambda \cdot \mu \cdot \Delta$. Note that $E \in \mathbb{Z}$, and for all $n \geq 0$

$$
G_{n+1}^{2}-A \cdot G_{n} \cdot G_{n+1}+B \cdot G_{n}^{2}=E \cdot B^{n}
$$

Suppose that $p_{i} \mid E$, then we infer that $p_{i} \nmid G_{n}$ for all n, since $\left(G_{0}, G_{1}\right)=1$. Hence $m_{i}=0$. Next suppose $p_{i} \nmid E$, then

$$
\operatorname{ord}_{p_{i}}(\lambda \cdot / \Delta)+\operatorname{ord}_{p_{i}}(\mu \cdot / \Delta)=\operatorname{ord}_{p_{i}}(E)=0
$$

Since $\lambda \cdot \gamma \Delta$ and $\mu \cdot \gamma \Delta$ are algebraic integers (note that $\downarrow \Delta=\alpha-\beta$), the result follows.

From Lemma 2.1 it follows that we may assume without loss of generality that (4.6) holds for $i=1, \ldots, s$. We may also assume that ord $p_{i}(w)=0$ for $i=1, \ldots, s$. The special case $s=0 \quad$ in equation (4.1) is trivial if $\Delta>0$, and will be treated implicitly in the next section for all Δ.

4.3. The growth of the recurrence sequence.

First we treat the hyperbolic case $\Delta>0$. Note that $|\alpha| \neq|\beta|$, since the sequence is not degenerate. So we may assume $|\alpha|>|\beta|$. We have the following, almost trivial, result on the exponentiality of the growth of the sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$. Let

$$
\begin{aligned}
& n_{0}>\max \left(2, \log \left|\frac{\mu}{\lambda}\right| / \log \left|\frac{\alpha}{\beta}\right|\right), \\
& \gamma=|\lambda|-|\mu| \cdot\left|\frac{\alpha}{\beta}\right|^{-n_{0}} .
\end{aligned}
$$

Note that $\boldsymbol{\gamma}>0$.

LEMMA 4.2. Let $\Delta>0$. If $n \geq n_{0}$ then $\left|G_{n}\right| \geq \gamma \cdot|\alpha|^{n}$.

Proof. By (4.5), $|\alpha|>|\beta|$ and $n_{0}>0$ it follows for $n \geq n_{0}$ that

$$
\left|G_{n}\right| \cdot|\alpha|^{-n}=\left|\lambda+\mu \cdot\left(\frac{\alpha}{\beta}\right)^{-n}\right| \geq|\lambda|-|\mu| \cdot\left|\frac{\alpha}{\beta}\right|^{-n} \geq \gamma .
$$

We apply this to (4.1) as follows.

COROLLARY 4.3. Let $\Delta>0$. Any solution n, m_{1}, \ldots, m_{s} of (4.1) with $n \geq n_{0}$ satisfies

$$
n<\sum_{i=1}^{s} m_{i} \cdot \frac{\log p_{i}}{\log |\alpha|}-\frac{\log (\gamma /|w|)}{\log |\alpha|} .
$$

Proof. Clear, from Lemma 4.2 and (4.1).

Next we study the elliptic case $\Delta<0$. Since α / β is not a root of unity, $B \geq 2$. Since (α, β) and (λ, μ) are pairs of complex conjugates, $|\alpha|=|\beta|$ and $|\lambda|=|\mu|$. Let $v \in \mathbb{R}, v \geq 1$ be given. We study the inequality

$$
\begin{equation*}
\left|G_{n}\right| \leq v \tag{4.7}
\end{equation*}
$$

in the variable $n \in \mathbb{N}_{0}$. We apply a result of Waldschmidt (see Section 2.3) from the complex theory of linear forms in logarithms, which gives an upper bound for n that is particularly good in v. See also Kiss [1979]. Let

$$
\begin{aligned}
& \mathrm{E}=-\lambda \cdot \mu \cdot \Delta, \\
& \mathrm{U}_{2}= \frac{1}{2} \cdot \max (\pi, \log \mathrm{~B}), \mathrm{U}_{3}=\frac{1}{2} \cdot \max (\pi, \log \mathrm{E}), \\
& \mathrm{U}_{2}^{+}= \min \left(\mathrm{U}_{2}, \mathrm{U}_{3}\right), \mathrm{U}_{3}^{+}=\max \left(\mathrm{U}_{2}, \mathrm{U}_{3}\right), \\
& \mathrm{C}_{1}= 3.362 \times 10^{21} \cdot \mathrm{U}_{2} \cdot \mathrm{U}_{3} \cdot \log \left(2 \cdot \mathrm{e} \cdot \mathrm{U}_{2}^{+}\right), \mathrm{C}_{2}=\log \left(4 \cdot \mathrm{e} \cdot \mathrm{U}_{3}^{+}\right), \\
& \mathrm{C}_{3}= \max \left(\log (\pi / 2 \cdot|\mu|)+\mathrm{C}_{1} \cdot \mathrm{C}_{2}+\mathrm{C}_{1} \cdot \log \left(4 \cdot \mathrm{C}_{1} / \log \mathrm{B}\right),\right. \\
&\left.\left.\frac{1}{2} \cdot \log \right\rvert\, \lambda \cdot \sqrt{ }\right)
\end{aligned}
$$

THEOREM 4.4. Let $\Delta<0, v \in \mathbb{R}, v \geq 1$. If $n \geq 0$ satisfies (4.7) then

$$
n<C_{3}+\frac{4}{\log B} \cdot \log v
$$

Remark. Note that C_{3} does not depend on v.

The following corollary of Theorem 4.4 is immediate.

COROLLARY 4.5. Let $\Delta<0$. Any solution n, m_{1}, \ldots, m_{s} of (4.1) satisfies

$$
n<C_{3}+\frac{4}{\log B} \cdot\left(\log |w|+\sum_{i=1}^{s} m_{i} \cdot \log p_{i}\right)
$$

Proof (of theorem 4.4). Note that $|\alpha|=|\beta|=\sqrt{ } B \geq \sqrt{ } 2$. First we treat the case $G_{n}=0$. Kiss [1979] gives an upper bound for such n, but since in our situation $\left(G_{0}, G_{1}\right)=\left(G_{1}, B\right)=(A, B)=1$, we can do much better. Namely, put $\mathrm{R}_{\mathrm{n}}=\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right) /(\alpha-\beta)$ for all $\mathrm{n} \in \mathbb{Z}$. It is easy to show that $\mathrm{R}_{\mathrm{n}} \in \mathbb{Z}$
and $R_{-n}=-B^{-n} \cdot R_{n}$ for all $n \in \mathbb{Z}$. Now $G_{n_{0}}=\lambda \cdot \alpha^{n_{0}}+\mu \cdot \beta^{n_{0}}=0$ implies

$$
\begin{aligned}
G_{n} & =\lambda \cdot \alpha \alpha^{n_{0}} \cdot \alpha \alpha^{n-n_{0}}+\mu \cdot \beta^{n_{0}} \cdot \beta^{n-n_{0}}=\lambda \cdot \alpha^{n_{0}} \cdot \gamma \Delta \cdot R_{n-n_{0}} \\
& =-\lambda \cdot \beta^{-n_{0}} \cdot \gamma \Delta \cdot B^{n} \cdot R_{n_{0}-n} .
\end{aligned}
$$

Thus we have

$$
G_{0}=\left(-\lambda \cdot \beta^{-n_{0}} \cdot \downarrow \Delta\right) \cdot R_{n_{0}} \quad, \quad G_{1}=\left(-\lambda \cdot \beta^{-n_{0}} \cdot \downarrow \Delta\right) \cdot B \cdot R_{n_{0}-1}
$$

Suppose that $\mathfrak{p} \mid\left(R_{n}, B \cdot R_{n-1}\right)$ for some prime ideal p in $\mathbb{Q}(\sqrt{\prime})$. Then $\mathfrak{p} \mid\left(\alpha \cdot R_{n}-B \cdot R_{n-1}\right)=(\alpha)^{n}$, and $p \mid\left(\beta \cdot R_{n}-B \cdot R_{n-1}\right)=(\beta)^{n}$, which contradicts $(A, B)=1$. Thus $\left(R_{n}, B \cdot R_{n-1}\right)=1$, and then by $\left(G_{0}, G_{1}\right)=1$ we must have

$$
\left|\lambda \cdot \beta^{-n} 0 \cdot \gamma \Delta\right|=1
$$

Thus we find that $G_{n}=0$ implies

$$
\mathrm{n}=\frac{2}{\log B} \cdot \log |\lambda \cdot \gamma \Delta|<C_{3}
$$

Now we turn to the case $G_{n} \neq 0$. We have from (4.7)

$$
\begin{equation*}
\left|\left[\frac{-\lambda}{\mu}\right] \cdot\left[\frac{\alpha}{\beta}\right]^{n}-1\right| \leq \frac{v}{|\mu|} \cdot B^{-n / 2} . \tag{4.8}
\end{equation*}
$$

We may assume $\mathrm{n} \geq 2$. Let $-\lambda / \mu=\mathrm{e}^{2 \pi \mathrm{i} \cdot \psi}, \quad \alpha / \beta=\mathrm{e}^{2 \pi \mathrm{i} \cdot \varphi}$, with $-\frac{1}{2}<\psi \leq \frac{1}{2}$ and $-\frac{1}{2}<\varphi \leq \frac{1}{2}$. Let $k \in \mathbb{Z}$ be such that $|\psi+n \cdot \varphi+k| \leq \frac{1}{2}$. Then $|k| \leq 1+\frac{1}{2} \cdot \mathrm{n} \leq \mathrm{n}$. Put

$$
\Lambda=2 \pi i \cdot(\psi+n \cdot \varphi+k)=\log \left[\frac{-\lambda}{\mu}\right]+n \cdot \log \left[\frac{\alpha}{\beta}\right]+2 \cdot k \cdot \log (-1) .
$$

By lemma 2.3 and (4.8) we have an upper bound for $|\Lambda|$:

$$
\begin{array}{r}
|\Lambda|=2 \pi \cdot|\psi+n \cdot \varphi+k| \leq \frac{1}{2} \pi \cdot\left|e^{2 \pi i \cdot(\psi+n \cdot \varphi+\mathrm{k})}-1\right| \\
=\frac{1}{2} \pi \cdot\left|\left[\frac{-\lambda}{\mu}\right] \cdot\left[\frac{\alpha}{\beta}\right)^{n}-1\right| \leq \frac{1}{2} \pi \cdot \frac{v}{|\mu|} \cdot B^{-n / 2} . \tag{4.9}
\end{array}
$$

From $G_{n} \neq 0$ we derive $\Lambda \neq 0$. Then from lemma 2.4 we can derive a lower bound for $|\Lambda|$. Note that $\max (n, 2|k|) \leq 2 \cdot n$, so that $W=\log (2 \cdot n)$. We choose $V_{1}=\frac{1}{2}$. The number $z=\alpha / \beta$ satisfies

$$
B \cdot z^{2}-\left(A^{2}-2 \cdot B\right) \cdot z+B=0
$$

hence $h(\alpha / \beta) \leq \frac{1}{2} \cdot \log B$. And $z=-\lambda / \mu$ satisfies

$$
E \cdot z^{2}-\left(2 \cdot E+\Delta \cdot G_{0}^{2}\right) \cdot z+E=0
$$

hence $h(-\lambda / \mu) \leq \frac{1}{2} \cdot \log E$. Thus $V_{2}=U_{2}^{+}, \quad V_{3}=U_{3}^{+}$satisfy the requirements for Theorem 2.4. We find

$$
\begin{align*}
|\Lambda|>\exp & \left(-C_{1} \cdot\left(\log (2 \cdot n)+\log \left(2 \cdot e \cdot U_{3}^{+}\right)\right)\right) \tag{4.10}\\
& =\exp \left(-C_{1} \cdot\left(\log n+C_{2}\right)\right)
\end{align*}
$$

Combining (4.9) and (4.10) we find $n<a+b \cdot \log n$, where
$a=\frac{2}{\log B} \cdot\left[\log v+\log \frac{\pi}{2 \cdot|\mu|}+C_{1} \cdot C_{2}\right] \quad$,
$b=2 \cdot C_{1} / \log B$.
The result now follows from Lemma 2.1, since

$$
b=2 \cdot C_{1} / \log B=1.681 \times 10^{21} \cdot \frac{\max (\pi, \log B)}{\log B} \cdot \max (\pi, \log E) \cdot \log \left(2 \cdot e \cdot U_{2}^{+}\right)
$$

which is certainly larger than e^{2}.

Remark. Note that v may depend on n. Thus we can find an upper bound for the solutions $n \in \mathbb{N}_{0}$ of e.g. $\left|G_{n}\right| \leq n^{c}$ for any constant c.

We now want to reduce the bound found in Theorem 4.3. We do this by studying the diophantine inequality

$$
\begin{equation*}
|\psi+n \cdot \varphi+k|<v_{0} \cdot B^{-n / 2} \tag{4.11}
\end{equation*}
$$

which follows from (4.9), where $v_{0}=v / 4 \cdot|\mu|$. We have to distinguish between the homogeneous case $\psi=0$ and the inhomogeneous case $\psi \neq 0$. We apply the methods that have been described in Sections 3.2 and 3.3 respectively. Unlike in other chapters, here we give the results in the form of precisely defined algorithms.

First we study the homogeneous case $\psi=0$. We then use Algorithm H (see the next page). Let N be an upper bound for n for the solutions of (4.11), for example the bound found in Theorem 4.3.

Input: $\varphi, \mathrm{B},|\mu|, \mathrm{v}_{0}, \mathrm{~N}$.
Output: new, reduced bound N^{*} for n.
(i) (initialization) Choose $n_{0} \geq 2 / \log B$ such that $B^{n_{0} / 2} / n_{0} \geq 2 \cdot v_{0}$; $\mathrm{N}_{\mathrm{O}}:=\mathrm{N}$; compute the continued fraction

$$
|\varphi|=\left[0, a_{1}, a_{2}, \ldots, a_{\ell_{0}+1}, \ldots\right]
$$

and the denominators $q_{1}, \ldots, q_{\ell_{0}+1}$ of the convergents of $|\varphi|$, with ℓ_{0} so large that $q_{\ell_{0}} \leq N_{0}<q_{\ell_{0}+1} ; i:=0$;
(ii) (compute new bound) $A_{i}:=\max \left(a_{1}, \ldots, a_{i}+1\right)$; compute the largest integer N_{i+1} such that

$$
B^{N_{i+1} / 2} / N_{i+1} \leq v_{0} \cdot\left(A_{i}+2\right),
$$

and ℓ_{i+1} such that $q_{\ell_{i+1}} \leq N_{i+1}<q_{\ell_{i+1}+1}$;
(iii) (terminate loop)

$$
\begin{array}{r}
\text { if } n_{0} \leq N_{i+1}<N_{i} \\
\begin{array}{l}
\text { then } i
\end{array} \quad=i+1, \text { goto (ii) ; } \\
\text { else } N^{*}:=\max \left(n_{0}, N_{i+1}\right), \text { stop } .
\end{array}
$$

Figure 4. ALGORITHM H. (reduces upper bound for (4.11) in the case $\psi=0$).

LEMMA 4.6. Algorithm H terminates. Inequality (4.11) with $\psi=0$ has no solutions with $\mathrm{N}^{*}<\mathrm{n}<\mathrm{N}$.

Proof. Termination is obvious, since all N_{i} are integers. Note that $B^{x / 2} / x$ is an increasing function for $x \geq 2 / \log B$. Hence, if $n \geq n_{0}$,

$$
||\varphi|-|k| / n| \leq v_{0} \cdot B^{-n / 2} / n<1 / 2 n^{2}
$$

It follows (cf. (3.6)) that $|k| / n$ is a convergent of $|\varphi|$, say $|k| / n=p_{m} / q_{m}$. Then $q_{m} \leq n$, and (cf. (3.5)),

$$
\left||\varphi|-p_{m} / q_{m}\right|>1 /\left(a_{m+1}+2\right) \cdot q_{m}^{2}
$$

Suppose $n \leq N_{i}$ for some $i \geq 0$. Then $m \leq \ell_{i}$. Hence,

$$
B^{n / 2} / n \leq v_{0} \cdot n^{-2} \cdot| | \varphi|-|k| / n|^{-1}<v_{0} \cdot\left(a_{m+1}+2\right) \leq v_{0} \cdot\left(A_{m}+2\right)
$$

It follows that if $N_{i+1} \geq n_{0}$ then $n \leq N_{i+1}$.

Next we study the inhomogeneous case $\psi \neq 0$. Again, let N be an upper bound for n satisfying (4.11). We now have the following Algorithm I.

Input: $\varphi, \psi, \mathrm{B}, \mathrm{v}_{0}, \mathrm{~N}$.
Output: new, reduced upper bound N^{*} for all but a finite number of explicitly given n.
(i) (initialization) $N_{0}:=[N]$; compute the continued fraction

$$
|\varphi|=\left[0, a_{1}, a_{2}, \ldots, a_{\ell_{0}}, \cdots\right]
$$

and the convergents p_{i} / q_{i} for $i=1, \ldots, \ell_{0}$, with ℓ_{0} so large that $q_{\ell_{0}}>4 \cdot \mathrm{~N}_{0}$ and $\left\|q_{\ell_{0}} \cdot \psi\right\|>2 \cdot \mathrm{~N}_{0} / \mathrm{q}_{\ell_{0}}$. (If such ℓ_{0} cannot be found within reasonable time, take ℓ_{0} so large that

$$
\left.\mathrm{q}_{\ell_{0}}>4 \cdot \mathrm{~N}_{0}\right) ; \quad \mathrm{i}:=0 ;
$$

(ii) (compute new bound)
if $\left\|q_{\ell_{i}} \cdot \psi\right\|>2 \cdot N_{i} / q_{\ell_{i}}$
then $N_{i+1}:=\left[2 \cdot \log \left(q_{\ell}^{2} \cdot v_{0} / N_{i}\right) / \log B\right]$;
else compute $K \in \mathbb{Z}$ with $\left|K-q_{\ell_{i}} \cdot \psi\right| \leq \frac{1}{2}$; compute
${ }^{n_{0}} \in \mathbb{Z}, \quad 0 \leq n_{0}<q_{\ell_{i}}$, with $K=n_{0} \cdot p_{\ell_{i}} \equiv 0\left(\bmod q_{\ell_{i}}\right) ;$
if $n=n_{0}$ is a solution of (4.11), then print an appropriate message;

$$
N_{i+1}:=\left[2 \cdot \log \left(4 \cdot q_{\ell_{i}} \cdot v_{0}\right) / \log B\right]
$$

(iii) (terminate loop)
if $N_{i+1}<N_{i}$
then $i:=i+1$; compute the minimal $\ell_{i}<\ell_{i-1}$ such that
$q_{\ell_{i}}>4 \cdot N_{i}$ and $\left\|q_{\ell_{i}} \cdot \psi\right\|>2 \cdot N_{i} / q_{\ell_{i}}$ (if such ℓ_{i} does
not exist, choose the minimal ℓ_{i} with $q_{\ell_{i}}>4 \cdot N_{i}$);
goto (ii) ;
else $N^{*}:=N_{i}$; stop.

Figure 5. ALGORITHM I. (reduces upper bound for (4.11) in the case $\psi \neq 0$).

LEMMA 4.7. Algorithm I terminates. Inequality (4.11) with $\psi \neq 0$ has for $\mathrm{N}^{*}<\mathrm{n}<\mathrm{N}$ only the finitely many solutions found by the algorithm.

Proof. It is clear that the algorithm terminates. Suppose that $n \leq N_{i}$ for
some $i \geq 0$. Then if $\left\|q_{\ell_{i}} \cdot \psi\right\|>2 \cdot N_{i} / q_{\ell_{i}}$, we have

$$
\begin{aligned}
\left\|q_{\ell_{i}} \cdot \psi\right\| & =\left\|q_{\ell_{i}} \cdot(\psi+n \cdot \varphi+k)-n \cdot \varphi \cdot q_{\ell_{i}}\right\| \\
& \leq q_{\ell_{i}} \cdot|\psi+n \cdot \varphi+k|+n / q_{\ell_{i}} \leq q_{\ell_{i}} \cdot v_{0} \cdot B^{-n / 2}+N_{i} / q_{\ell_{i}} .
\end{aligned}
$$

It follows that $n \leq N_{i+1}$. If $\left\|q_{\ell_{i}} \cdot \psi\right\| \leq 2 \cdot N_{i} / q_{\ell_{i}}$, then

$$
\left|\mathrm{K}+\mathrm{n} \cdot \mathrm{p}_{\ell_{i}}+\mathrm{k} \cdot \mathrm{q}_{\ell_{i}}\right| \leq\left|\mathrm{K}-\mathrm{q}_{\ell_{i}} \cdot \psi\right|+\mathrm{q}_{\ell_{i}} \cdot|\psi+\mathrm{n} \cdot \varphi+\mathrm{k}|+\mathrm{n} \cdot\left|\mathrm{p}_{\ell_{i}}-q_{\ell_{i}} \cdot \varphi\right|
$$

$$
\leq \frac{1}{2}+q_{\ell_{i}} \cdot v_{0} \cdot B^{-n / 2}+N_{i} / q_{\ell_{i}}<\frac{3}{4}+q_{\ell_{i}} \cdot v_{0} \cdot B^{-n / 2}
$$

If $q_{\ell_{i}} \cdot v_{0} \cdot B^{-n / 2} \leq \frac{1}{4}$, then $K+n \cdot p_{\ell_{i}}+k \cdot q_{\ell_{i}}=0$, since it is an integer. By $\quad\left(p_{\ell_{i}}, q_{\ell_{i}}\right)=1$ it follows that $n \equiv n_{0}\left(\bmod q_{\ell_{i}}\right)$. Since $q_{\ell_{i}}>N_{i}$, the only possibility is $n=n_{0}$. If $q_{\ell_{i}} \cdot v_{0} \cdot B^{-n / 2}>\frac{1}{4}$, then $n \leq N_{i+1}$ follows immediately.

We remark that in practice one almost always finds an \mathcal{l}_{i} such that $\left\|q_{\ell_{i}} \cdot \psi\right\|>2 \cdot N_{i} / q_{\ell_{i}}$, if N_{i} is large enough.

4.4. Upper bounds.

In this section we will derive explicit upper bounds for the solutions of (4.1), both in the hyperbolic and elliptic cases. Our first step is the application of the p-adic theory of linear forms in logarithms, which works the same way in both cases. We use it to find a bound for m_{i} that is polynomial in $\log n$. Then we combine this with the results of Section 4.3 on the growth of the recurrence sequence, which for the solutions of (4.1) yield a bound for n that is linear in the m_{i} (Corollaries 4.3 and 4.5).

Assume that $n_{0} \geq 2$. Let D be the discriminant of $\mathbb{Q}(\sqrt{ })$. Put

$$
L=\log \max \left(|e \cdot D|^{1 / 4},|\alpha \cdot \lambda \cdot \gamma \Delta|,|\alpha \cdot \mu \cdot \gamma \Delta|,|\beta \cdot \lambda \cdot \gamma \Delta|,|\beta \cdot \mu \cdot \gamma \Delta|\right)
$$

Let d be the squarefree part of Δ. For $i=1, \ldots$, s put

$$
\varphi_{i}=2 \text { if } p_{i} \mid d, \varphi_{i}=1 \text { otherwise, }
$$

$$
\begin{aligned}
& \rho_{i}=2 \text { if } p_{i}=2, d \equiv 5(\bmod 8) \text { or if } p_{i}>2,\left(\frac{d}{p_{i}}\right)=-1, \\
& \rho_{i}=1 \text { otherwise, } \\
& C_{4, i}=10^{6} \cdot\left(\frac{2}{\rho_{i} \cdot \log p_{i}}\right)^{7} \cdot \varphi_{i}^{-3} \cdot L^{4} \cdot p_{i}^{4 \cdot \rho_{i}+4} \cdot\left(1+\frac{\varphi_{i} \cdot L \cdot p_{i}+2 / L}{\log n_{0}}\right)^{3}
\end{aligned}
$$

LEMMA 4.8. The solutions of (4.1) with $n \geq n_{0}$ satisfy

$$
m_{i}<C_{4, i} \cdot(\log n)^{3} \text { for } i=1, \ldots, s
$$

Proof. Rewrite (4.1), using (4.5), as

$$
\left[\frac{\alpha}{\beta}\right]^{\mathrm{n}}-\left(\frac{-\mu}{\lambda}\right]=\frac{\mathrm{w}}{\lambda} \cdot \beta^{-\mathrm{n}} \cdot \prod_{i=1}^{s} \mathrm{p}_{\mathrm{i}}^{\mathrm{m}_{i}}
$$

Then, by (4.6),

$$
m_{i} \leq m_{i}-\operatorname{ord}_{p_{i}}(\lambda)=\operatorname{ord}_{p_{i}}\left(\frac{w}{\lambda} \cdot \beta^{-n} \cdot \prod_{i=1}^{s} p_{i}^{m}\right]=\operatorname{ord}_{p_{i}}\left[\left(\frac{\alpha}{\beta}\right]^{n}-\left[\frac{-\mu}{\lambda}\right]\right)
$$

Apply Lemma 2.5 (Schinzel's result) with $\xi^{\prime \prime}=\alpha, \xi^{\prime}=\beta, \quad \chi^{\prime \prime}=\mu \cdot \sqrt{\prime}$, $x^{\prime}=-\lambda \cdot \sqrt{ }$. Then we find, using ord $p_{i}(\cdot)=\varphi_{i} \cdot \operatorname{ord}_{p_{i}}(\cdot)$,

$$
m_{i}<10^{6} \cdot\left(\frac{2}{\rho_{i} \cdot \log p_{i}}\right)^{7} \cdot \varphi_{i}^{-3} \cdot L^{4} \cdot p_{i}^{4 \cdot \rho_{i}^{+4}} \cdot\left(\log n+\varphi_{i} \cdot L \cdot p_{i}^{\rho_{i}}+2 / L\right)^{3}
$$

from which the result follows, since $n \geq n_{0}$.

Put

$$
C_{4}=\max _{i}\left(C_{4, i}\right), \quad m=\max _{i}\left(m_{i}\right), \quad P=\prod_{i=1}^{s} p_{i}
$$

In the case $\Delta>0$, let $n_{0}>\max (2, \log |\lambda / \mu| / \log |\alpha / \beta|)$, and put

$$
\begin{aligned}
& C_{5}=\log P /(\log |\alpha|+\min (0, \log (\gamma /|w|))] \\
& C_{6}=\max \left(8 \cdot C_{4} \cdot\left(\log 27 \cdot C_{4} \cdot C_{5}\right)^{3}, 841 \cdot C_{4}\right)
\end{aligned}
$$

In the case $\Delta<0$, put

$$
C_{7}=\max \left\{C_{3}+\frac{4}{\log B} \cdot \log \left(2 \cdot\left|G_{0} \cdot \mu \cdot \gamma \Delta\right|\right)\right.
$$

$$
\begin{aligned}
& 8 \cdot\left[\left(C_{3}+\frac{4 \cdot \log |w|}{\log B}\right)^{1 / 3}+\left(\frac{4 \cdot C_{4} \cdot \log P}{\log B}\right)^{1 / 3} \cdot \log \left(\frac{108 \cdot C_{4} \cdot \log P}{\log B}\right)^{3}\right\}, \\
& C_{8, i}=C_{4, i} \cdot\left(\log C_{7}\right)^{3} \text { for } i=1, \ldots, s .
\end{aligned}
$$

Then we have the following result, giving explicit upper bounds for the solutions of (4.1).

THEOREM 4,9. Let n, m_{1}, \ldots, m_{s} be a solution of (4.1).
(i). If $\Delta>0$ and $n \geq n_{0}$ then $n<C_{5} \cdot C_{6}$ and $m<C_{6}$.
(ii). If $\Delta<0$ then $n<C_{7}$ and $m_{i}<C_{8, i}$ for $i=1$, .., s.

Proof. (i). Corollary 4.3 yields $n<C_{5} \cdot m$. By Lemma 4.8 we now have

$$
m<C_{4} \cdot(\log n)^{3}<C_{4} \cdot\left(\log C_{5} \cdot m\right)^{3}
$$

If $C_{4} \cdot C_{5}>\left(e^{2} / 3\right)^{3}$, we apply Lemma 2.1 with $a=0, b=C_{4} \cdot C_{5}, h=3$, and we find $m<8 \cdot C_{4} \cdot\left(\log 27 \cdot C_{4} \cdot C_{5}\right)^{3}$. If $C_{4} \cdot C_{5} \leq\left(e^{2} / 3\right)^{3}$, then

$$
n<C_{5} \cdot m<C_{4} \cdot C_{5} \cdot(\log n)^{3} \leq\left(e^{2} / 3\right)^{3} \cdot(\log n)^{3}
$$

from which we deduce $n<12564$. Now, $m<C_{4} \cdot(\log n)^{3}<841 \cdot C_{4}$.
(ii). From Lemma 4.8 and Corollary 4.5 we see that

$$
\mathrm{n}<C_{3}+\frac{4}{\log B} \cdot \log \left(2 \cdot\left|G_{0} \cdot \mu \cdot \sqrt{ }\right|\right)
$$

or

$$
n<C_{3}+\frac{4 \cdot \log |w|}{\log B}+\frac{4 \cdot C_{4} \cdot \log P}{\log B} \cdot(\log n)^{3}
$$

The result now follows from Lemma 2.1 , since $4 \cdot C_{4} \cdot \log P / \log B>\left(e^{2} / 3\right)^{3}$.

4.5. A basic lemma.

We introduce some notation, and then give an almost trivial lemma that is at the heart of our reduction methods for both the hyperbolic and the elliptic cases. Let for $i=1, \ldots, s$

$$
\begin{aligned}
& e_{i}=-\operatorname{ord}_{p_{i}}(\lambda), \quad f_{i}=\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}\left(\frac{\alpha}{\beta}\right)\right), \quad g_{i}=f_{i}-e_{i} \\
& \theta_{i}=-\log _{p_{i}}\left(\frac{-\lambda}{\mu}\right) / \log _{p_{i}}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

By Lemma 4.1 the p_{i}-adic logarithms of α / β and $-\lambda / \mu$ exist. Note that $\log _{p_{i}}(\alpha / \beta) \neq 0$, since the sequence $\left\{G_{n}\right\}$ is not degenerate. Note that for conjugated ξ, ξ^{\prime} also $\log _{p} \xi$ and $\log _{p} \xi^{\prime}$ are conjugates, hence $\log _{p}\left(\xi / \xi^{\prime}\right) \in \sqrt{ } \cdot \mathbb{Q}_{p}$. Hence both numerator and denominator of ϑ_{i} are in $\checkmark \Delta \cdot \mathbb{Q}_{P_{i}}$, so $\theta_{i} \in \mathbb{Q}_{P_{i}}$. Hence, if $\theta_{i} \neq 0$, we can write

$$
\vartheta_{i}=\sum_{l=k_{i}}^{\infty} u_{i, t} \cdot p_{i}^{l}
$$

where $k_{i}=\operatorname{ord}_{p_{i}}\left(\vartheta_{i}\right) \quad$ and $u_{i, \ell} \in\left\{0,1, \ldots, p_{i}-1\right\}$ for all ℓ. The following lemma localizes the elements of $\left\{G_{n}\right\}$ with many factors p_{i}, in terms of the p_{i}-adic expansion of θ_{i}.

LEMMA 4.10. Let $n \in \mathbb{N}_{0}$. If ord $p_{i}\left(G_{n}\right)+e_{i}>1 /\left(p_{i}-1\right)$ then

$$
\operatorname{ord}_{p_{i}}\left(G_{n}\right)=g_{i}+\operatorname{ord}_{p_{i}}\left(n-\vartheta_{i}\right)
$$

Proof. By Lemma 4.1 we have

$$
\operatorname{ord}_{p_{i}}\left(G_{n}\right)+e_{i}=\operatorname{ord}_{p_{i}}\left[\left(\frac{\alpha}{\beta}\right]^{n}-\left[\frac{-\mu}{\lambda}\right]\right)=\operatorname{ord}_{p_{i}}\left[\left(\frac{-\lambda}{\mu}\right] \cdot\left[\frac{\alpha}{\beta}\right]^{n}-1\right]
$$

With $\quad \xi=(-\lambda / \mu) \cdot(\alpha / \beta)^{n}-1 \quad$ we have by assumption ord $p_{i}(\xi)>1 /\left(p_{i}-1\right)$. Hence $\operatorname{ord}_{p_{i}}(\xi)=\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}(1+\xi)\right)$, and it follows that

$$
\begin{aligned}
\operatorname{ord}_{p_{i}}\left(G_{n}\right) & +e_{i}=\operatorname{ord}_{p_{i}}\left(n \cdot \log _{p_{i}}\left(\frac{\alpha}{\beta}\right)+\log _{p_{i}}\left(\frac{-\lambda}{\mu}\right)\right] \\
& =\operatorname{ord}_{p_{i}}\left(n-\vartheta_{i}\right)+f_{i}
\end{aligned}
$$

4.6. Trivial cases.

We have to exclude some trivial cases first. The first trivial case is that of $\operatorname{ord}_{p_{i}}\left(\vartheta_{i}\right)<0$. Then the solutions of (4.1) satisfy $m_{i} \leq 1 /\left(p_{i}-1\right)-e_{i}$, or, by Lemma 4.10,

$$
m_{i}=f_{i}-e_{i}+o r d_{p_{i}}\left(n-\vartheta_{i}\right)
$$

Since $n \in \mathbb{Z}$ and $\operatorname{ord}_{p_{i}}\left(\theta_{i}\right)<0$ we have ord $p_{i}\left(n-\theta_{i}\right)-o r d_{p_{i}}\left(\theta_{i}\right)$. Hence

$$
m_{i} \leq \max \left(f_{i}+\operatorname{ord}_{p_{i}}\left(\vartheta_{i}\right), 1 /\left(p_{i}-1\right)\right)-e_{i}
$$

The case where all p_{i}-adic digits of θ_{i} from a certain point on are all zero is a special case, because the reduction methods of the next sections then do not work. This is so because these reduction methods make use of zero-dimensional p-adic diophantine approximation, as explained in Section 3.9, applied to the p-adic linear form

$$
\log _{p}\left(\frac{\lambda}{\mu}\right)+\mathrm{n} \cdot \log _{p}\left(\frac{\alpha}{\beta}\right)
$$

for $p=p_{1}, \ldots, p_{s}$. This means that we must study the p-adic number

$$
\vartheta=-\log _{p}\left(\frac{\lambda}{\mu}\right) / \log _{p}\left(\frac{\alpha}{\beta}\right)
$$

If it happens that this number ϑ is zero, or that all digits in the p-adic expansion of ϑ are zero from a certain point on, then obviously the reduction process of Section 3.9 breaks down, since it is based on the assumption that the p-adic expansion of ϑ contains sufficiently many non-zero digits.

This case can be dealt with as follows. Note that $\vartheta_{i}=r$ holds for all $i=1, \ldots, s$ with the same r. Thus, by Lemma 4.10,

$$
\begin{equation*}
m_{i} \leq \max \left(g_{i}+\operatorname{ord}_{p_{i}}(n-r), 1-e_{i}\right] \leq g_{i}+1+\operatorname{ord}_{p_{i}}(n-r) \tag{4.12}
\end{equation*}
$$

Then we have, if $\Delta>0$, by Corollary 4.3,

$$
n \cdot \log |\alpha|<\sum_{i=1}^{s}\left(g_{i}+1\right) \cdot \log p_{i}-\log (\gamma /|w|)+\log |n-r|
$$

from which a good upper bound for n can be derived (no application of the Gelfond-Baker theory is involved, so the constants are relatively small). And if $\Delta<0$, the proof of Lemma 4.11 below yields $\vartheta_{i}=0$, whence, by (4.12),

$$
\left|G_{n}\right|=|w| \cdot \prod_{i=1}^{s} p_{i}^{m_{i}} \leq v_{0} \cdot n
$$

for some constant v_{0}. Only minor changes in the results and algorithms of Section 4.3 suffice to deal with this inequality instead of (4.7).

There is however an elementary way of treating this case, using congruences only, that is guaranteed to work. We define the following special 'symmetric recurrences'. For α, β as defined in Section 4.2 , let d be the squarefree part of Δ, and put

$$
\mathrm{R}_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, \quad \mathrm{S}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}
$$

for $d=-1$ also

$$
\mathrm{T}_{\mathrm{n}}^{ \pm}=(1 \pm \downarrow(-1)) \cdot \alpha^{\mathrm{n}}+(1 \mp \gamma(-1)) \cdot \beta^{\mathrm{n}}
$$

and for $\mathrm{d}=-3$ also (with $\omega=\rho$ or $\bar{\rho}$ for $\rho=\frac{1}{2} \cdot(1+/(-3)$))

$$
\begin{aligned}
& U_{n}(\omega)=(1+\omega) \cdot \alpha^{\mathrm{n}}+(1+\bar{\omega}) \cdot \beta^{\mathrm{n}} \\
& \mathrm{~V}_{\mathrm{n}}(\omega)=\omega \cdot \alpha^{\mathrm{n}}+\bar{\omega} \cdot \beta^{\mathrm{n}}
\end{aligned}
$$

for all $n \in \mathbb{Z}$. Note that

$$
T_{n}^{+} \cdot T_{n}^{-}=2 \cdot S_{2 n}, \quad U_{n}(\omega) \cdot U_{n}(\bar{\omega}) \cdot R_{n}=3 \cdot R_{3 n}, \quad V_{n}(\omega) \cdot V_{n}(\bar{\omega}) \cdot S_{n}=S_{3 n}
$$

We have the following lemma. We assume that ord $(\theta) \geq 0$.
LEMMA 4.11. If ϑ has only finitely many nonzero p-adic digits, then there exist an $r \in \mathbb{N}_{0}$ and $a \in \in \mathbb{Q}$ such that $G_{n}=\kappa \cdot R_{n-r}$, or $G_{n}=\kappa \cdot S_{n-r}$, or (if $d=-1$) $G_{\underline{n}}=\kappa \cdot T_{n}^{ \pm}$, or (if $d=-3^{n}$) $G_{n}=\kappa \cdot U_{n}(\omega)$ or $\kappa \cdot V_{n}(\omega)$, where $\omega=\rho$ or $\bar{\rho}$. Further, $r=0$ if $\Delta<0$.

Proof. By ord $(\vartheta) \geq 0$ we have $\vartheta=r$ for some $r \in \mathbb{N}_{0}$. From the definition of ϑ we infer

$$
\log _{p}\left[\frac{\alpha}{\beta}\right]^{r} \cdot\left[\frac{-\lambda}{\mu}\right]=0
$$

hence $\eta=(\beta / \alpha)^{r} \cdot(\mu / \lambda)$ is a root of unity. It follows that we can write

$$
\mathrm{G}_{\mathrm{n}}=\lambda \cdot \alpha^{\mathrm{r}} \cdot\left(\alpha^{\mathrm{n}-\mathrm{r}}+\eta \cdot \beta^{\mathrm{n}-\mathrm{r}}\right)
$$

First let $B= \pm 1$. Then $\Delta>0$ and

$$
\begin{aligned}
& \mathrm{G}_{0}=\lambda \cdot \alpha^{r} \cdot\left(\alpha^{-r} \pm \beta^{-r}\right)= \pm \lambda \cdot \alpha^{r} \cdot\left(\alpha^{r} \pm \beta^{r}\right) \\
& G_{1}=\lambda \cdot \alpha^{r} \cdot\left(\alpha^{1-r} \pm \beta^{1-r}\right)= \pm \lambda \cdot \alpha^{r} \cdot\left(\alpha^{r-1} \pm \beta^{r-1}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left(\alpha^{\mathrm{r}-1}+\beta^{\mathrm{r}-1}, \alpha^{\mathrm{r}}+\beta^{\mathrm{r}}\right)=(2, \alpha+\beta)=(1) \text { or (2), } \\
& \left(\alpha^{\mathrm{r}-1}-\beta^{\mathrm{r}-1}, \alpha^{\mathrm{r}}-\beta^{\mathrm{r}}\right)=(\alpha-\beta) .
\end{aligned}
$$

By $\left(G_{0}, G_{1}\right)=1$ it follows that $\pm \lambda \cdot \alpha^{r}=1, \frac{1}{2}$ or $1 /(\alpha-\beta)$, respectively, and the assertion follows.
Next suppose $|B| \geq 2$. Then

$$
\mathrm{G}_{0} \cdot \mathrm{~B} \cdot\left(\eta \cdot \alpha^{\mathrm{r}-1}+\beta^{\mathrm{r}-1}\right)=\mathrm{G}_{1} \cdot\left(\eta \cdot \alpha^{\mathrm{r}} \pm \beta^{\mathrm{r}}\right) .
$$

Since $\quad\left(\mathrm{B}, \mathrm{G}_{1}\right)=1$, we have $\alpha \cdot \beta \mid \eta \cdot \alpha^{\mathrm{r}} \pm \beta^{\mathrm{r}}$. By $\quad(\mathrm{A}, \mathrm{B})=1 \quad$ we have $(\alpha, \beta)=(1)$, and from $\alpha \mid \beta^{\mathrm{r}}$ it then follows that $\vartheta=\mathrm{r}=0$. So $G_{0}=\lambda \cdot(1+\eta) \in \mathbb{Z}$. The result now follows easily, since for η the only possibilities are ± 1 for all d , and moreover $\pm(-1)$ if $\mathrm{d}=-1$, and $\pm \rho, \pm \bar{\rho}$ if $\mathrm{d}=-3$.

In the cases of Lemma 4.11 we can treat (4.1) as follows. Lemma 4.10 shows that the smallest index $n=g\left(m \cdot P^{\ell}\right)>0$ such that $m \cdot P^{\ell} \mid G_{n}$ grows exponentially with ℓ. Also, G_{n} grows exponentially with n, as follows from Lemma 4.2 and Theorem 4.4. Hence $G\left(m \cdot p^{\ell}\right)$ grows doubly exponentially with ℓ. It follows that $a=w \cdot p_{1}^{m_{1}} \cdot \ldots \cdot p_{s}^{m_{s}}$ cannot keep up with $G_{g(a)}$ as the m_{i} tend to infinity. It follows that if $p_{1}{ }^{m} \ldots \cdot p_{s}$ is large enough, there exists a prime q such that $q \mid G_{g(a)}$ but $q \nmid a$. Now the sequences $\left\{R_{n}\right\},\left(S_{n}\right)$ have special divisibility properties, such as

$$
\begin{aligned}
& R_{n} \mid R_{m} \text { if and only if } n \mid m, \\
& S_{n} \mid S_{k n} \text { for odd } k, \\
& \operatorname{ord}_{2}\left(S_{n}\right) \leq \operatorname{ord}_{2}\left(S_{3}\right) \text { for all } n \geq 1 .
\end{aligned}
$$

Making use of this kind of properties it can be proved that $q \mid G_{n}$ whenever a $\mid G_{n}$. This gives an upper bound for the solutions of (4.1), since for those solutions a $\mid G_{n}$ but $q \nmid G_{n}$. We give two examples.

Example. Let $A=16, B=1, G_{0}=1, G_{1}=8, w=1, P_{1}=2, P_{2}=11$. Then $\alpha=8+3 \cdot \sqrt{7}, \beta=8-3 \cdot \sqrt{ } 7, \lambda=\mu=\frac{1}{2}$, so λ / μ is a root of unity. Hence $\vartheta_{1}=\vartheta_{2}=0$. Note that we have a sequence of type s_{n} here. We have

n	-3	-2	-1	0	1	2	3
G_{n}	2024	127	8	1	8	127	2024
$G_{n}(\bmod 16)$	8	-1	8	1	8	-1	8
$G_{n}(\bmod 11)$	0	6	8	1	8	6	0
$G_{n}\left(\bmod 11^{2}\right)$	88	6	8	1	8	6	88
$G_{n}(\bmod 23)$	0	12	8	1	8	12	0

It follows by this table that ord $_{2}\left(G_{n}\right)=0$ or 3 , according to n even or odd, and $\operatorname{ord}_{11}\left(G_{n}\right)>0$ if and only if $n \equiv 3(\bmod 6)$. This can also be derived from Lemma 4.10, which yields: if $\operatorname{ord}_{2}\left(G_{n}\right) \geq 1$ (which happens exactly for odd n), then $\operatorname{ord}_{2}\left(G_{n}\right)=3+\operatorname{ord}_{2}(n)=3$. Further, if $\operatorname{ord}_{11}\left(G_{n}\right) \geq 1$ (which happens exactly when $n \equiv 3(\bmod 6)$), then $\operatorname{ord}_{11}\left(G_{n}\right)=1+\operatorname{ord}_{11}(n) \quad\left(\right.$ e.g. $\quad \operatorname{ord}_{11}\left(G_{33}\right)=2$, but $\left.\operatorname{ord}_{11}\left(G_{11}\right)=0\right)$.

Now, $G_{3} \mid G_{3 k}$ holds for all odd k. Note that G_{3} has exactly 3 factors 2 , and 1 factor 11 . But it is larger than $2^{3} \cdot 11=88$. Hence there is a prime q, distinct from 2 and 11 , such that $q \mid G_{n}$ whenever $11 \mid G_{n}$. Thus $G_{n}=2^{m_{1}} \cdot 11^{m_{2}}$ has no solutions with $m_{2} \neq 0$, so that there remain only three solutions: $n=-1,0,1$. Note that it is not necessary to know the value of q explicitly. In this case it is 23 , and indeed it is easy to show directly that $23 \mid G_{n}$ if and only if $n \equiv 3(\bmod 6)$.

Example. Let $A=5, B=13, G_{0}=G_{1}=1$. Then $\Delta=-27, \alpha=1+3 \cdot \rho$, $\lambda=(1+\rho) / 3$. Then $\lambda / \bar{\lambda}=\rho$ is a root of unity, thus $\theta=0$. We will solve $G_{n}= \pm 2^{m}$. The sequence $G_{n}=\lambda \cdot \alpha^{n}+\bar{\lambda} \cdot \bar{\alpha}^{n}$ is related to the sequence $H_{n}=\bar{\lambda} \cdot \alpha^{n}+\lambda \cdot \bar{\alpha}^{n}$ and to $R_{n}=\left(\alpha^{n}-\bar{\alpha}^{n}\right) /(\alpha-\bar{\alpha})$ by $G_{n} \cdot H_{n} \cdot R_{n}=R_{3 n} / 3$. Since R_{n} has nice divisibility properties, we have useful information on the prime divisors of G_{n} and H_{n}. We find:

n	0	1	2	3	4	5	6	7		8
G_{n}	1	1	-8	-53	-161	-116	1513	9073	25696	
H_{n}	1	4	7	-17	-176	-659	-1007	3532	30751	
R_{n}	0	1	5	12	-5	-181	-840	-1847	1685	
	R_{r}		mod or (m	16) whi ${ }_{2}$ (n d 16	if $\begin{aligned} & \text { h }, ~ h a ~ \end{aligned}$		if n exact (mod only		$\begin{gathered} 12) \\ n \\ n=0 \\ n=0 \end{gathered}$	

$\mathrm{G}_{4} \cdot \mathrm{H}_{4} \cdot \mathrm{R}_{4}=\mathrm{R}_{12} / 3=-2^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. Considering the sequences modulo $5,7,11$ and 23 we find that $2^{4} \cdot 7 \cdot 11 \cdot 23 \mid G_{n} \cdot H_{n}$ for all $n=0(\bmod 4)$, and in fact $11 \mid G_{n}$ whenever $16 \mid G_{n}$. Thus $G_{n}= \pm 2^{m}$ implies $m \leq 3$. It follows from Section 4.3 how to solve $\left|G_{n}\right| \leq 8$.

We note that a process as described above can always be applied when dealing with a situation as in Lemma 4.11. This is guaranteed by Lemma 4.10.

From now on we thus assume that $\operatorname{ord}_{p_{i}}\left(\vartheta_{i}\right) \geq 0$ for all $i=1, \ldots, s$, and that infinitely many p_{i}-adic digits $u_{i, \ell}$ of ϑ_{i} are nonzero.

4.7. The reduction algorithm in the hyperbolic case.

First we give the reduction algorithm (Algorithm P, see the next page) for the case $\Delta>0$. It is based on Lemma 4.10 and Corollary 4.3 only. Let N be an upper bound for n for the solutions n, m_{1}, \ldots, m_{s} of (4.1). For example, $N=C_{5} \cdot C_{6}$ as in Theorem 4.9

THEOREM 4.12. With all the above assumptions, Algorithm P terminates. Equation (4.1) with $\Delta>0$ has no solutions with $N^{*} \leq n<N, m_{i}>M_{i}$ for $i=1, \ldots, s$.

Proof. Since the p_{i}-adic expansion of ϑ_{i} is assumed to be infinite, there exist r_{i} with the required properties. It is clear that $s_{i, 1} \leq r_{i}<s_{i, 0}$, and that $N_{j} \leq N_{j-1}$. So $s_{i, j} \leq s_{i, j-1}$ holds for all $j \geq 1$. Since $s_{i, j} \geq 0$, there is a j such that $N_{j} \leq n_{0}$ or $s_{i, j}=s_{i, j-1}$ for all $i=1, \ldots, s$. In the latter case, K_{j} remains false. ; in both cases the algorithm terminates. We prove by induction on j that $m_{i} \leq g_{i}+s_{i, j}$ for $i=1, \ldots, s$, and $n<N_{j}$ hold for all j. For $j=0$, it is clear that $n<N_{0}$. Suppose $n<N_{j-1}$ for some $j \geq 1$. Suppose there exists an i such that $m_{i}>g_{i}+s_{i, j}$. From Lemma 4.10 we have

$$
\operatorname{ord}_{p_{i}}\left(n-\vartheta_{i}\right)=m_{i}-g_{i} \geq s_{i, j}+1,
$$

hence, by $u_{i, s_{i, j}} \neq 0$,

$$
n \geq \sum_{\ell=0}^{s_{i}, j} u_{i, \ell} \cdot p^{\ell} \geq p^{s_{i}, j} \geq N_{j-1}
$$

Input: $\alpha, \beta, \lambda, \mu, \mathrm{w}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{s}}, \mathrm{N}$.
Output: new, reduced upper bounds M_{i} for m_{i} for $i=1, \ldots, s$, and N^{*} for n.
(i) (initialization) Choose an $n_{0} \geq 0$ such that
$\mathrm{n}_{0}>\log |\mu / \lambda| / \log |\alpha / \beta| ; \quad \gamma:=|\lambda|-|\mu| \cdot|\alpha / \beta|^{-\mathrm{n}_{0}} ;$
$\left.g_{i}:=\operatorname{ord}_{p_{i}}(\lambda)+\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}(\alpha / \beta)\right)\right)$
$h_{i}:=\operatorname{ord}_{p_{i}}(\lambda)+\left\{\begin{array}{cl}3 / 2 & \text { if } \\ 1 & p_{i}=2 \\ 1 / 2 & \text { if } \\ p_{i}=3 \\ p_{i} \geq 5\end{array}\right\}$ for $i=1, \ldots, s ;$
$g:=\gamma /|w| \cdot \prod_{i=1}^{s} p_{i}^{g_{i}} ; \quad N_{0}:=N ;$
(ii) (computation of the ϑ_{i} 's) Compute for $i=1$, ..., s the first r_{i} p_{i}-adic digits $\mathrm{u}_{\mathrm{i}, \ell}$ of

$$
\vartheta_{i}=-\log _{p_{i}}\left(\frac{-\lambda}{\mu}\right) / \log _{p_{i}}\left(\frac{\alpha}{\beta}\right)=\sum_{\ell=0}^{\infty} u_{i}, \ell \cdot p_{i}^{\ell}
$$

where r_{i} is so large that $p_{i}^{r_{i}} \geq N_{0}$ and $u_{i, r_{i}} \neq 0$;
(iii) (further initialization, start outer loop) $s_{i, 0}:=r_{i}+1$ for $i=1, \ldots, s ; j:=1$;
(iv) (start inner loop) $i=1 ; K_{j}:=$ false. ;
(v) (computation of the new bounds for m_{i}, terminate inner loop)
$s_{i, j}:=\min \left\{s \in \mathbb{N}_{0} \mid p_{i}^{s} \geq N_{j-1}\right.$ and $\left.u_{i, s} \neq 0\right\} ;$
if $s_{i, j}<s_{i, j-1}$ then $K_{j}:=$ true. ;
if $i<s$
then $i:=i+1$; goto (v);
(vi) (computation of the new bound for n, terminate outer loop)
$N_{j}:=\min \left(N_{j-1},\left(\sum_{i=1}^{S} s_{i, j} \cdot \log p_{i}-\log g\right) / \log |\alpha|\right) ;$
if $N_{j} \geq n_{0}$ and K_{j}
then $j:=j+1$; goto (iv) ;
else $N^{*}:=\max \left(N_{j}, n_{0}\right)$;

$$
M_{i}:=\max \left(h_{i}, g_{i}+s_{i, j}\right) \text { for } i=1, \ldots, s ; \text { stop. }
$$

Figure 6. ALGORITHM P. (reduces given upper bounds for (4.1) if $\Delta>0$).
which contradicts our assumption. Thus, $m_{i} \leq g_{i}+s_{i, j}$ for $i=1, \ldots, s$. Then from Corollary 4.3 it follows that

$$
n<\left[\sum_{i=1}^{s}\left(g_{i}+s_{i, j}\right) \cdot \log p_{i}-\log (\gamma /|w|)\right] / \log |\alpha|,
$$

hence $n<N_{j}$.
Remark 1. In general, one expects that $p_{i}{ }_{i}, j$ will not be much larger than N_{j}, i.e. not too many consecutive p_{i}-adic digits of θ_{i} will be zero. Then N_{j} is about as large as $\log N_{j-1}$. In practice, the algorithm will often terminate in three or four steps, near to the largest solution. The computation time is polynomial in s, the bottleneck of the algorithm is the computation of the p_{i}-adic logarithms.

Remark 2. Pethö [1985] gives for $s=1$ a different reduction algorithm. For a prime p_{i} he computes the function $g(u)$, defined for $u \in \mathbb{N}$ as the smallest index $n \geq 0$ such that $G_{n} \neq 0$ and $p_{i}^{u} \mid G_{n}$. Note that if the p_{i}-adic limit $\lim _{u \rightarrow \infty} g(u)$ exists, then by Lemma 4.10 it is equal to ϑ_{i}.

Remark 3. If $B= \pm 1$ (hence $\Delta>0$), we can extend the sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ to negative indices by the recursion formula

$$
G_{n-1}=A \cdot B \cdot G_{n}-B \cdot G_{n+1} \text { for } n=0,-1,-2, \ldots
$$

(cf. (4.3)). Then (4.5) is true for $n<0$ also. We can solve equation (4.1) with $n \in \mathbb{Z}$ not necessarily nonnegative, by applying Algorithm P twice: once for $\left\{G_{n}\right\}_{n=0}^{\infty}$, and once for the sequence $\left\{G_{n}^{\prime}\right\}_{n=0}^{\infty}$, defined by $G_{n}^{\prime}=G_{-n}$. Note that $G_{n}^{\prime}=B^{n} \cdot\left(\mu \cdot \alpha^{n}+\lambda \cdot \beta^{n}\right)$, and

$$
\vartheta_{i}^{\prime}=-\frac{\log _{p_{i}}(-\mu / \lambda)}{\log _{p_{i}}(\alpha / \beta)}=+\frac{\log _{p_{i}}(-\lambda / \mu)}{\log _{p_{i}}(\alpha / \beta)}=-\vartheta_{i} \quad \text { for } \quad i=1, \ldots, s .
$$

Now, instead of applying Algorithm P twice, we can modify it, so that it works for all $n \in \mathbb{Z}$, as follows. Lemmas 4.8 and 4.10 remain correct if we replace n by $|n|$. In Theorem 4.9 the lower bound for n_{0} must be replaced by

$$
n_{0}>\max (2,|\log | \mu / \lambda| | / \log |\alpha / \beta|,|\log | \lambda / \mu| | / \log |\alpha / \beta|)
$$

and γ has to be replaced by

$$
\gamma=\min \left(|\lambda|-|\mu| \cdot|\alpha / \beta|^{-n_{0}},|\mu|-|\lambda| \cdot|\alpha / \beta|^{-n_{0}}\right) .
$$

Similar modifications should be made in step (i) of Algorithm P. Further, in step (ii), r_{i} should be chosen so large that

$$
\begin{aligned}
& \text { if } p_{i} \neq 2 \text { then } p_{i}^{r_{i}} \geq N_{0} \text { and } u_{i, r_{i}} \neq 0, u_{i, r_{i}} \neq p-1 ; \\
& \text { else } p_{i} r_{i}^{-1} \geq N_{0} \text { and } u_{i, r_{i}} \not u_{i, r_{i}-1} ;
\end{aligned}
$$

and similar modifications have to be made in step (v) for $s_{i, j}$. With these changes, Theorem 4.12 remains true with n replaced by $|n|$.

We conclude this section with an example.
Example. Let $A=6, B=1, G_{0}=1, G_{1}=4, w=1, p_{1}=2, p_{2}=11$. Then $\alpha=3+2 \cdot \sqrt{ } 2, \quad \beta=3-2 \cdot \sqrt{ } 2, \quad \lambda=(1+2 \cdot \sqrt{ } 2) / 4 \cdot \sqrt{ } 2, \quad \mu=(-1+2 \cdot \sqrt{ } 2) / 4 \cdot \sqrt{ } 2$, and $\Delta=32$. With $n_{0}=e^{60}=1.142 \times 10^{26}$ we find $C_{4}<2.49 \times 10^{20}$. With the modifications of Remark 3 above we have $\gamma>0.323, C_{5}<1.76$, $C_{6}<2.62 \times 10^{26}, \quad C_{5} \cdot C_{6}<4.62 \times 10^{26}$. Hence all solutions of $G_{n}=2^{m_{1}} \cdot 11^{m_{2}}$ satisfy $|n|<4.62 \times 10^{26}, \max \left(m_{1}, m_{2}\right)<2.62 \times 10^{26}$. We perform the reduction Algorithm P step by step. (We write the p-adic number $\sum_{\ell=0}^{\infty} u_{\ell} \cdot p^{\ell}$ as $0 . u_{0} u_{1} u_{2} \ldots$, and if $p>10$ we denote the digits larger than 9 by the symbols A, B, C, \ldots).

$$
\mathrm{n}_{0}=2, \gamma>0.303, \mathrm{~g}_{1}=0, \mathrm{~g}_{1}=1, \mathrm{~g}>0.0275
$$

$$
h_{1}=-1, h_{2}=\frac{1}{2}, N_{0}=4.62 \times 10^{26}
$$

$$
\begin{equation*}
\vartheta_{1}=0.1011110111010001110010100010011000110010 \tag{ii}
\end{equation*}
$$

$$
0000111101010001000001001100111010101101
$$

$$
\begin{array}{lllllll}
11100 & 01011 & 00001 & 11010 & 00011 & 01001 & 01010
\end{array} 00101
$$

$$
100010101100000110010101111110110100 \quad 01011
$$

$$
001 \ldots
$$

$\vartheta_{2}=0$. A9359 05530 7330A 1A223 96230 3A006 A3366 83368 8270....
so $r_{1}=90$ (since $u_{1,89}=1, u_{1,90}=0,2^{89}>N_{0}$), $r_{2}=29\left(\right.$ since $\left.u_{2,29}\right)=6,11^{29}>N_{0}$).
(iii) $\quad s_{1,0}=91, s_{2,0}=30$;
(v)-(vi) $s_{1,1}=90, s_{2,1}=29, K_{1}=$ true., $N_{1}<76.9$;

$$
\begin{aligned}
& \text { (v)-(vi) } s_{1,2}=10, s_{2,2}=2, K_{2}=\text { true. }, N_{2}<8.7 ; \\
& \text { (v)-(vi) } s_{1,3}=6, s_{2,3}=1, K_{3}=\text { true. }, N_{3}<5.8 ; \\
& (v)-(v i) \quad s_{1,4}=6, s_{2,4}=1, K_{4}=\text {.false. }, N_{4}<5.8 .
\end{aligned}
$$

Hence $|n| \leq 5, m_{1} \leq 6, m_{2} \leq 2$. We have

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
G_{n}	2174	373	64	11	2	1	4	23	134	781	4552

So there are 5 solutions: with $n=-3,-2,-1,0,1$.

4.8. The reduction algorithm in the elliptic case.

We now present an algorithm to reduce upper bounds for the solutions of (4.1) in the case $\Delta<0$. The idea is to apply alternatingly Algorithms P and one of H and I. Let N be an upper bound for n, for example $n=C_{7}$ as in Theorem 4.9.

Input: $\alpha, \beta, \lambda, \mu, \mathrm{w}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{s}}, \mathrm{N}$.
Output: new, reduced upper bounds N^{*} for n, and M_{i} for m_{i} for

$$
i=1, \ldots, s
$$

(i) (initialization) $\mathrm{N}_{0}:=[\mathrm{N}] ; \mathrm{j}:=1$;

$$
\begin{aligned}
& g_{i}:=\operatorname{ord}_{p_{i}}(\lambda)+\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}(\alpha / \beta)\right) \\
& h_{i}:=\operatorname{ord}_{p_{i}}(\lambda)+\left\{\begin{array}{cl}
3 / 2 & \text { if } p_{i}=2 \\
1 & \text { if } \\
p_{i}=3 \\
1 / 2 & \text { if } \\
p_{i} \geq 5
\end{array}\right\} \text { for } i=1, \ldots, s ;
\end{aligned}
$$

(ii) (computation of the ϑ_{i} 's, φ, ψ) Compute for $i=1, \ldots$, s the first $\mathrm{r}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$-adic digits $\mathrm{u}_{\mathrm{i}, \ell}$ of

$$
\vartheta_{i}=-\log _{p_{i}}\left(\frac{\lambda}{\mu}\right) / \log _{p_{i}}\left(\frac{\alpha}{\beta}\right)=\sum_{\ell=0}^{\infty} u_{i, \ell} \cdot p_{i}^{\ell}
$$

where r_{i} is so large that $p_{i} \geq N_{0}$ and $u_{i, r_{i}} \neq 0$; compute $\psi=\log (-\lambda / \mu) / 2 \pi i$, and the continued fraction

$$
|\varphi|=\left|\frac{1}{2 \pi i} \cdot \log (\alpha / \beta)\right|=\left[0, a_{1}, \ldots, a_{\ell_{0}}, \ldots\right]
$$

$$
\begin{aligned}
& \text { with the convergent } \mathrm{p}_{\mathrm{i}} / \mathrm{q}_{\mathrm{i}} \text { for } \mathrm{i}=1, \ldots, \ell_{0} \text {, where } \ell_{0} \text { is so } \\
& \text { large that } \mathrm{q}_{\ell_{0}-1} \leq \mathrm{N}_{0}<\mathrm{q}_{\mathbb{\ell}_{0}} \text { if } \psi=0 ; \quad \mathrm{q}_{\ell_{0}}>4 \cdot \mathrm{~N}_{0} \text { and } \\
& \left\|q_{\ell_{0}}\right\|>2 \cdot \mathrm{~N}_{0} / \mathrm{q}_{\ell_{0}} \text { if } \psi \neq 0 \text { and such } \ell_{0} \text { can be found in a } \\
& \text { reasonable amount of time, } q_{\ell_{0}}>4 \cdot N_{0} \text { otherwise; } \\
& \text { (iii) (one step of Algorithm P) For } i=1 \text {, ..., s put } \\
& M_{i, j}:=\max \left(h_{i}, g_{i}+\min \left\{s \in \mathbb{N}_{0} \mid p_{i}^{s} \geq N_{j-1} \text { and } u_{i, s} \neq 0\right\}\right) \text {; } \\
& \text { (iv) (one step of Algorithm } H \text { or } I \text {) } \\
& \text { if } \psi=0 \\
& \text { then } A:=\max \left(a_{1}, \ldots, a_{\ell_{j}-1}\right) ; \quad v:=|w| \cdot \prod_{i=1}^{s} p_{i}^{M}, j ; \\
& \text { choose } n_{0} \geq 2 / \log B \text { such that } B^{n_{0} / 2} / n_{0} \geq v / 2 \cdot|\mu| \text {; } \\
& \text { compute the largest integer } N_{j} \text { such that } \\
& B^{N_{j} / 2} / N_{j} \leq(A+2) \cdot v / 4 \cdot|\mu| ; \\
& N_{j}:=\max \left(n_{0}, N_{j}\right) ; \\
& \text { if } N_{j}<N_{j-1} \text { then compute } \ell_{j} \text { with } q_{\ell_{j}-1} \leq N_{j}<q_{\ell_{j}} \text {; } \\
& j:=j+1 \text {; toto (iii) ; } \\
& \text { else if }\left\|q_{\ell_{j-1}} \cdot \psi\right\|>2 \cdot N_{j-1} / q_{\ell_{j-1}} \\
& \text { then } N_{j}:=\left[2 \cdot \log \left(q_{\ell}^{2}{ }_{j-1} \cdot v / 4 \cdot|\mu| \cdot N_{j-1}\right) / \log B\right] \text {; } \\
& \text { else compute } K \in \mathbb{Z} \text { with }\left|K-q_{\ell}{ }_{j-1} \cdot \psi\right| \leq \frac{1}{2} \text {; } \\
& \text { compute } n_{0} \in \mathbb{Z}, 0 \leq n_{0}<q_{\ell}, \text {, with } \\
& K+n_{0} \cdot p_{\ell-1} \equiv 0\left(\bmod q_{\ell_{j-1}}\right) ; \\
& \text { if } n=n_{0} \text { is a solution of (4.1) } \\
& \text { then print an appropriate message; } \\
& N_{j}:=\left[2 \cdot \log \left(q_{\ell}{ }_{j-1} \cdot v /|\mu|\right) / \log B\right] ; \\
& \text { if } N_{j}<N_{j-1} \\
& \text { then compute the minimal } \ell_{j}<\ell_{j-1} \text { such that } \\
& q_{\ell}>4 \cdot N_{j} \text { and }\left\|q_{\ell_{j}} \cdot \psi\right\|>2 \cdot N_{j} / q_{\ell} \text { (if such } \ell_{j} \\
& \text { does not exist, choose the minimal } \ell_{j} \text { such that } \\
& \mathrm{q}_{\ell}>4 \cdot \mathrm{~N}_{\mathrm{j}} \text {) ; } \mathrm{j}:=\mathrm{j}+1 \text {; goo (iii) ; } \\
& \text { (v) (termination) } N^{*}:=N_{j-1} ; M_{i}:=M_{i, j} \text { for } i=1, \ldots, s \text {; stop. }
\end{aligned}
$$

Figure 7. ALGORITM C. (reduces upper bounds for (4.1) in the case $\Delta<0$).

The following theorem now follows at once from the proofs of Lemmas 4.6, 4.7 and Theorem 4.12.

THEOREM 4.13. Algorithm C terminates. Equation (4.1) with $\Delta<0$ has no solutions with $N^{*}<n<N$ and $m_{i}>M_{i}$ for $i=1$, .., s, apart from those spotted by the algoritm.

We conclude this section with an example

Example. Let $A=1, B=2, G_{0}=2, G_{1}=3$, then $\Delta=-7, \alpha=(1+\sqrt{-7}) / 2$ and $\lambda=(2+\sqrt{ }-7) / \sqrt{ }-7$. Let $w= \pm 1, p_{1}=3, p_{2}=7$. We have with $n_{0}=2$ the following results: $C_{4}<6.40 \times 10^{16}, C_{3}<9.14 \times 10^{29}, C_{7}<7.42 \times 10^{30}$, $\max \left(C_{8,1}, C_{8,2}\right)<2.30 \times 10^{22}$. Further, $g_{1}=1, g_{2}=0, h_{1}=1, h_{2}=0$. By Theorem 4.9 we may choose $N_{0}=7.42 \times 10^{30^{1}}$. We have

$$
\varphi=(\pi-\arctan (\sqrt{ } / 3 / 3)) / 2 \pi
$$

$=[0,2,1,1,2,16,6,1,2,2,13$,
$1,1,3,1,1,2,1,2,1,1$,
$1,1,1,9,2,1,2,1,7,1$,
$6,269,4,3,1,1,50,2,1,6$,
$1,1,2,1,1,7,1,61,1,12$,
$3,7,4,7,3,121,1,21,2,1,7, \ldots]$,
$\psi=(\pi-\arctan (4 \cdot \sqrt{ } / 3)) / 2 \pi$
$=0.2939628336996454026789566605200190806203 \ldots$,
$\vartheta_{1}=0.2001012210000110210200211002220222012021$
1002020202211020012101000010021110020122 11111222022102102212 2200... ,
$\vartheta_{2}=0.3254212042435613402061561134521011633152$ 253364504411254 55033... .

Now we choose $\ell_{0}=61$, since

$$
q_{61}=142511833114244361193755123881743>4 \cdot N_{0}
$$

and $\quad\left\|q_{61} \cdot \psi\right\|=0.24487 \ldots>2 \cdot N_{0} / q_{61}=0.104 \ldots$. We have $M_{1,1}=67$, $M_{2,1}=37$, and we find $N_{1}=637$. Next we choose $l_{1}=9$, since $q_{9}=10102>4 \times 637$ and $\left\|q_{9} \cdot \psi\right\|=0.38745 \ldots>2 \times 637 / 10102$. We have $M_{1,2}=7, M_{2,2}=4$, and we find $N_{2}=74$. Next we choose $\mathbb{l}_{2}=6$, since $q_{6}=1291>4 \times 74$, and $\left\|\mathrm{q}_{6} \cdot \psi\right\|=0.49398>2 \times 74 / 1291$. We have $M_{1,3}=6$,
$M_{2,3}=3$, and we find $N_{3}=60$. In the next step we find no improvement. Hence $n \leq 60, m_{1} \leq 6, m_{2} \leq 3$. It is a matter of straightforward computation to check that there are only the following 6 solutions of $G_{n}= \pm 3^{m_{1}} \cdot 7^{m_{2}}$: $G_{1}=3, G_{2}=-1, G_{3}=-7, G_{5}=3^{2}, G_{7}=1, G_{17}=3^{2} \cdot 7^{2}$.

4.9. The generalized Ramanujan-Nagell equation.

The most interesting application of the reduction algorithms of the preceding section seems to be the solution of the generalized Ramanujan-Nagell equation (4.2). Let k be a nonzero integer, and let p_{1}, \ldots, p_{s} be distinct prime numbers. Then we ask for all nonnegative integers x, z_{1}, \ldots, z_{s} with

$$
x^{2}+k=\prod_{i=1}^{s} p_{i}^{z_{i}}
$$

First we note that $z_{i}=0$ whenever $-k$ is a quadratic nonresidue $\left(\bmod p_{i}\right)$. Thus we assume that this is not the case for all i. Let $p_{i} \mid k$ for $i=1, \ldots, t$ and $p_{i} k k$ for $i=t+1, \ldots, s$. Let ord $p_{i}(k)$ be odd for $i=1, \ldots, r$ and even for $i=r+1, \ldots, t$. Dividing by large enough powers of p_{i} for $i=1, \ldots, t,(4.2)$ reduces to a finite number of equations

$$
\begin{equation*}
D_{0} \cdot x_{1}^{2}+k_{1}=\prod_{i=r+1}^{s} p_{i}^{z_{i}^{\prime}} \tag{4.13}
\end{equation*}
$$

with $p_{i} \nmid k_{1}$ for $i=1, \ldots, s$, and D_{0} composed of p_{1}, \ldots, p_{r} only, and squarefree. We distinguish between the 2^{s-r} combinations of z_{i}^{\prime} odd or even for $i=r+1, \ldots, s$. Suppose that z_{i}^{\prime} is odd for $i=r+1, \ldots$, u and even for $i=u+1, \ldots, s$. Put

$$
\begin{equation*}
y=\prod_{i=r+1}^{u} p_{i}^{\left(z_{i}^{\prime}-1\right) / 2} \cdot \prod_{i=u+1}^{s} p_{i}^{z_{i}^{\prime} / 2} \tag{4.14}
\end{equation*}
$$

Then, from (4.13),

$$
\begin{equation*}
D_{0} \cdot x_{1}^{2}-\left(\prod_{i=r+1}^{u} p_{i}\right) \cdot y^{2}=-k_{1} \tag{4.15}
\end{equation*}
$$

Put $D=D_{0} \cdot \prod_{i=r+1}^{u} p_{i}$. Then (4.14) and (4.15) lead to

$$
\left\{\begin{array}{c}
v^{2}-D \cdot w^{2}=k_{2} \tag{4.16}\\
v=\prod_{i=r+1}^{s} p_{i}^{m_{i}}
\end{array}\right.
$$

with $v=y \cdot \prod_{i=r+1}^{u} p_{i}, \quad w=x_{1}, \quad k_{2}=k_{1} \cdot \prod_{i=r+1}^{u} p_{i}$, and also to

$$
\left\{\begin{array}{l}
v^{2}-D \cdot w^{2}=k_{2} \tag{4.17}\\
w=\prod_{i=r+1}^{s} p_{i}^{m_{i}}
\end{array}\right.
$$

with $v=D_{0} \cdot x_{1}, w=y, k_{2}=-k_{1} \cdot D_{0}$. We proceed with either (4.16) or (4.17), which is the most convenient (e.g. the one with the smaller $\left|k_{2}\right|$).

If $D=1$, then (4.16) and (4.17) are trivial. So assume $D>1$. Let ϵ be the smallest unit in $\mathbb{Z}+\sqrt{ } D \cdot \mathbb{Z}$ with $\epsilon>1$. It is well known that the solutions v, w of $v^{2}-D \cdot w^{2}=k_{2}$ fall apart into a finite number of classes of associated solutions. Let there be T such classes, and choose for $r=1, \ldots, T$ in the r th class the solution $v_{r, 0},{ }^{w}{ }_{r, 0}$ such that $\gamma_{t}=v_{\tau, 0}+w_{\tau, 0} \cdot \gamma D>1$ is minimal. Then all solutions of $v^{2}-D \cdot w^{2}=k_{2}$ are given by $v= \pm v_{\tau, n}, w= \pm w_{\tau, n}$, with

$$
\left\{\begin{array}{l}
{ }_{v_{\tau, \mathrm{n}}}=\left(\gamma_{\tau} \cdot \epsilon^{\mathrm{n}}+\gamma_{\tau}^{\prime} \cdot \epsilon^{-\mathrm{n}}\right) / 2 \tag{4.18}\\
{ }^{\mathrm{w}}{ }_{\tau, \mathrm{n}}=\left(\gamma_{\tau} \cdot \epsilon^{\mathrm{n}}-\gamma_{\tau}^{\prime} \cdot \epsilon^{-\mathrm{n}}\right) / 2 \cdot \sqrt{ } \mathrm{D}
\end{array}\right.
$$

for $\quad n \in \mathbb{Z}$, where $\quad \gamma_{t}^{\prime}=v_{r, 0}-w_{r, 0} \cdot \sqrt{D}$. That is, $\left(v_{r, n}\right\}_{n=-\infty}^{\infty}$ and $\left\{w_{\tau, n}\right\}_{n=-\infty}^{\infty}$ are linear binary recurrence sequences. Now, (4.16) and (4.17) reduce to T equations of type (4.1). If $k_{2}=1$, then $T=1, \gamma_{1}=\epsilon$, $\gamma_{\gamma_{2}^{\prime}}^{\prime}=\epsilon^{-1}$. If $k_{2} \mid 2 \cdot D, k_{2} \neq 1$, then it is easy to prove that $\gamma_{\tau}^{2}=\left|k_{2}\right| \cdot \epsilon$, $\gamma_{t}^{\prime 2}=\left|k_{2}\right| \cdot \epsilon^{-1}$, so that

$$
\begin{aligned}
& \mathrm{v}_{\tau, \mathrm{n}}=\gamma\left|\mathrm{k}_{2}\right| \cdot\left[\left(\gamma_{\tau} / /\left|\mathrm{k}_{2}\right|\right)^{2 \mathrm{n}+1}+\left(\gamma_{\tau}^{\prime} / /\left|\mathrm{k}_{2}\right|\right)^{2 \mathrm{n}+1}\right] / 2 \\
& \mathrm{w}_{\tau, \mathrm{n}}=\gamma\left|\mathrm{k}_{2}\right| \cdot\left[\left(\gamma_{\tau} / \sqrt{ }\left|\mathrm{k}_{2}\right|\right)^{2 \mathrm{n}+1}-\left(\gamma_{\tau}^{\prime} / \gamma\left|\mathrm{k}_{2}\right|\right)^{2 \mathrm{n}+1}\right] / 2 \cdot \gamma \mathrm{D}
\end{aligned}
$$

In both cases, (4.16) and (4.17) can be solved by elementary means (see Section 4.6, of related interest are Stormer [1897], Mahler [1935], Lehmer [1964], Rumsey and Posner [1964] and Mignotte [1985]). If $k_{2} \nmid 2 \cdot D$, then we apply the reduction algorithm to one of the equations $v_{r, n}=\prod_{i=r+1}^{s} p_{i}^{m}$,
${ }_{r, n}=\prod_{i=r+1}^{s} p_{i}^{m_{i}}$. Note that n is allowed to be negative, since $B= \pm 1$, so we can use the modified algorithm of Remark 3, Section 4.7.

Thus we have a procedure for solving (4.2) completely. It is well known how the unit ϵ and the minimal solutions $v_{T, 0}$, $w, 0$ for $\tau=1, \ldots, T$ be computed by the continued fraction algorithm for \sqrt{D}. We conclude this section with an example. It extends the result of Nage11 [1948] (also proved by many others) on the original Ramanujan-Nagell equation $x^{2}+7-2$.

THEOREM 4.14. The only nonnegative integers x such that $x^{2}+7$ has no prime divisors larger than 20 are the 16 in the following table.

x	$x^{2}+7$	x	$x^{2}+7$	x	$x^{2}+7$
0	7	7	$56=2^{3} \cdot 7$	31	$968=2^{3} \cdot 11^{2}$
1	$8=2^{3}$	9	$88=2^{3} \cdot 11$	35	$1232=2^{4} \cdot 7 \cdot 11$
2	11	11	$128=2^{7}$	53	$2816=2^{8} \cdot 11$
3	$16=2^{4}$	13	$176=2^{4} \cdot 11$	75	$5632=2^{9} \cdot 11$
5	$32=2^{5}$	21	$448=2^{6} \cdot 7$	181	$32768=2^{15}$

Proof. Since -7 is a quadratic nonresidue modulo 3, 5, 13, 17 and 19 , we have only the primes 2,7 and 11 left. Only one factor 7 can occur in $x^{2}+7$, thus we have to solve the two equations

$$
\begin{align*}
& x^{2}+7=2^{z_{1}} \cdot 11^{z_{2}} \tag{4.19}\\
& x^{2}+7=7 \cdot 2^{z_{1}} \cdot 11^{z_{2}} \tag{4.20}
\end{align*}
$$

Equation (4.20) can be solved in an elementary way. We distinguish four cases, each leading to an equation of the type

$$
y^{2}-D \cdot z^{2}=c
$$

with $c \mid 2 \cdot D$, and either y or z composed of factors 2 and 11 only. We have:
(i) z_{1} even, z_{2} even, $y=2^{z_{1} / 2} \cdot 11^{z_{2} / 2}, z^{2}=x / 7, \quad c=1, D=7$;
(ii) z_{1} odd, z_{2} even, $y=2^{\left(z_{1}+1\right) / 2} \cdot 11^{z_{2} / 2}, z=x / 7, \quad c=2, D=14$;
(iii) z_{1} even, z_{2} odd, $y=x, z=2_{1}^{z_{1} / 2} \cdot\left(z_{2}-1\right) / 2$,
(iv) z_{1} odd, z_{2} odd, $y=x, z=2^{\left(z_{1}-1\right) / 2} \cdot 11_{2}\left(z_{2}-1\right) / 2, c-7, D=77 ;$

In the first example of Section 4.5 we have worked out case (i). We leave the other cases to the reader.

Equation (4.19) can be solved by the reduction algorithm. Again we have four cases, each leading to an equation of the type

$$
y^{2}-D \cdot z^{2}=c
$$

with z composed of factors 2 and 11 only. We have

Case (i) is trivial. The other three cases each lead to one equation of type (4.1). In the example in Section 4.7 we have worked out case (ii). With the following data the reader should be able to perform Algorithm P by hand for the cases (iii) and (iv), thus completing the proof. In these cases $\mathrm{N}<10^{30}$ is a correct upper bound.

Case (iii): $\alpha=10+3 \cdot \sqrt{11}, \lambda=(2+\sqrt{11}) / 2 \cdot \gamma 11$,
$\vartheta_{1}=0.1001101000001101010000110101100100111110$ 1101110010000011011010111101000011001101 0101010010111011100110000100100101011011 $000100011101110001010110101111101011111010 . \ldots$,
$\vartheta_{2}=0.23075764253900426090$ A92AI 037570731458414 7A238.... .
Case (iv): $\alpha=197+42 \cdot \sqrt{22}, \lambda=(9+2 \cdot \sqrt{22}) / 2 \cdot \sqrt{22}$,
$\vartheta_{1}=0.1110101101011100101010111100010010000011$
1000000110101010110001101011110110110101 0101110100011001110110011000110001011110 $1010101100100111111101001011100000001110011 . .$. ,
$\vartheta_{2}=0.6 \mathrm{~A} 0016818422921902 \mathrm{AO} 724 \mathrm{~A} 4167694565016482$ 5A6AA.... .

Remarks. 1. The computation time for the above proof was less than 2 sec. 2. Let $\Phi(X, Y)=a \cdot X^{2}+b \cdot X \cdot Y+c \cdot Y^{2}$ be a quadratic form with integral coefficients, and $\Delta=b^{2}-4 \cdot a \cdot c$ positive or negative. Let k be a nonzero integer, and p_{1}, \ldots, p_{s} distinct prime numbers. Then we note that

$$
4 \cdot \mathrm{a} \cdot \Phi(X, Y)=(2 \cdot \mathrm{a} \cdot \mathrm{X}+\mathrm{b} \cdot \mathrm{Y})^{2}-\Delta \cdot Y^{2}
$$

so that the diophantine equations

$$
\Phi(X, k)=\prod_{i=1}^{s} p_{i}^{z_{i}}, \quad \Phi\left(X, \prod_{i=1}^{s} p_{i}^{z_{i}}\right)=k
$$

in integers $X \neq 0$ and $z_{1}, \ldots, z_{s} \in \mathbb{N}_{0}$, can both be solved by our method.
4.10. A mixed quadratic-exponential equation.

In this section we give an application of Algorithm C to the following diophantine equation. Let

$$
\Phi(X, Y)=a \cdot X^{2}+b \cdot X \cdot Y+c \cdot Y^{2}
$$

be a quadratic form with integral coefficients, such that $D=b^{2}-4 \cdot a \cdot c$ is negative. Let q, v, w be nonzero integers, and p_{1}, \ldots, p_{s} distinct prime numbers. Consider the equation

$$
\begin{equation*}
\Phi\left(X, w \cdot \prod_{i=1}^{s} p_{i}^{m_{i}}\right)=v \cdot q^{n} \tag{4.21}
\end{equation*}
$$

in integers X, and $n, m_{1}, \ldots, m_{s} \in \mathbb{N}_{0}$.

Let $\beta, \bar{\beta}$ be the roots of $\Phi(x, 1)=0$. Let h be the class number of $\mathbb{Q}(\sqrt{ })$. There exists a $\pi \in \mathbb{Q}(\sqrt{ })$ such that we have the principal ideal equation $(\pi) \cdot(\bar{\pi})=\left(q^{h}\right)$. Put $n=n_{1}+h \cdot n_{2}$, with $0 \leq n_{1}<h$. Then $\Phi(X, Y)=v \cdot q^{n}$ is equivalent to finitely many ideal equations

$$
(\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \beta \cdot \mathrm{Y}) \cdot(\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \bar{\beta} \cdot \mathrm{Y})=(\sigma) \cdot(\bar{\sigma}) \cdot(\pi)^{\mathrm{n}_{2}} \cdot(\bar{\pi})^{\mathrm{n}_{2}}
$$

with $(\sigma) \cdot(\bar{\sigma})=\left(a \cdot v \cdot q^{n}\right)$. Hence we have the equations in algebraic numbers

$$
\left\{\begin{array}{l}
\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \beta \cdot \mathrm{Y}=\gamma \cdot \pi^{\mathrm{n}_{2}} \\
\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \bar{\beta} \cdot \mathrm{Y}=\bar{\gamma} \cdot \bar{\pi}^{\mathrm{n}_{2}}
\end{array},\left\{\begin{array}{l}
\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \beta \cdot \mathrm{Y}=\gamma \cdot \bar{\pi}^{\mathrm{n}_{2}} \\
\mathrm{a} \cdot \mathrm{X}-\mathrm{a} \cdot \bar{\beta} \cdot \mathrm{Y}=\bar{\gamma} \cdot \bar{\pi}^{\mathrm{n}_{2}}
\end{array}\right.\right.
$$

where γ is composed of σ, units, and common divisors of $a \cdot X-a \cdot \beta \cdot Y$ and $a \cdot X-a \cdot \bar{\beta} \cdot Y$. Note that there are only finitely many choices for γ possible. Thus, (4.21) is equivalent to a finite number of equations

$$
a \cdot(\bar{\beta}-\beta) \cdot w \cdot \prod_{i=1}^{s} p_{i}^{m_{i}}=\gamma \cdot \pi^{n_{2}}-\bar{\gamma} \cdot \bar{\pi}^{n_{2}}
$$

or, if we put $\lambda=\gamma / a \cdot(\bar{\beta}-\beta)$ and $G_{n_{2}}=\lambda \cdot \pi^{n_{2}}+\bar{\lambda} \cdot \bar{\pi}^{n_{2}}$,

$$
\begin{equation*}
G_{n_{2}}=w \cdot \prod_{i=1}^{s} p_{i}^{m_{i}} \tag{4.22}
\end{equation*}
$$

Here, $\quad\left\{G_{n_{2}}\right\}_{n_{2}}^{\infty}=0$ is a recurrence sequence with negative discriminant. So (4.22) is of type (4.1), and can thus be solved by the reduction algorithm of Section 4.8.

Before giving an example we remark that (4.21) with $D>0$ is not solvable with the methods of this chapter. This is due to the fact that in $\mathbb{Q}(\sqrt{ } D)$ with $D>0$ there are infinitely many units, hence infinitely many possibilities for γ. Another generalization of equation (4.21) is to replace q^{n} by $\prod_{i=1}^{t} q_{i}^{n_{i}}$. This problem is also not solvable by the method of this chapter, since it does not lead to a binary recurrence sequence if $t \geq 2$. These problems can however be dealt with by using multi-dimensional approximation methods, as presented in Chapter 3 and applied in Chapter 7.

We finally present an example.

THEOREM 4.15. The equation

$$
x^{2}-3^{m_{1}} \cdot 7^{m_{2}} \cdot x+2 \cdot\left(3^{m_{1}} \cdot 7^{m_{2}}\right)^{2}=11 \cdot 2^{n}
$$

in $X \in \mathbb{Z}, n, m_{1}, m_{2} \in \mathbb{N}_{0}$ has only the following 24 solutions:

n	m_{1}	$\mathrm{~m}_{2}$	X		n	m_{1}	$\mathrm{~m}_{2}$	X
1	1	0	-1,	4	5	2	0	-10,
1	0	0	-4,	5	19			
2	0	0	-6,	7	0	0	-26,	27
3	0	1	2,	5	7	0	0	-37,
3	1	0	-7,	10	78			
4	0	1	-6,	13	3	0	2,	25
				11	1	1	-137,	158
3	2	2	-829,	1270				

Proof. Put $\beta=(1+\sqrt{ }-7) / 2$. Then

$$
\mathrm{X}^{2}-\mathrm{X} \cdot \mathrm{Y}+2 \cdot \mathrm{Y}^{2}=(\mathrm{X}-\beta \cdot \mathrm{Y}) \cdot(\mathrm{X}-\bar{\beta} \cdot \mathrm{Y}) .
$$

Note that $\mathbb{Q}(\sqrt{\prime}-7)$ has class number 1 , and that

$$
2=\frac{1+\gamma-7}{2} \cdot \frac{1-\gamma-7}{2}, \quad 11=(2+\gamma-7) \cdot(2-\downarrow-7) .
$$

Suppose $\gamma \mid \mathrm{X}-\beta \cdot \mathrm{Y}$ and $\gamma \mid \mathrm{X}-\bar{\beta} \cdot \mathrm{Y}$. Then $\gamma \mid(\bar{\beta}-\beta) \cdot \mathrm{Y}=-\sqrt{ }-7 \cdot 3^{\mathrm{m}_{1}} \cdot 7^{\mathrm{m}}{ }^{2}$. On the other hand, $\gamma \mid 11 \cdot 2^{\mathrm{n}}$. It follows that $\gamma= \pm 1$, hence $\mathrm{X}-\beta \cdot \mathrm{Y}$ and $\mathrm{X}-\bar{\beta} \cdot \mathrm{Y}$ are coprime. Thus we have two possibilities:

$$
\begin{aligned}
& \mathrm{X}-\beta \cdot \mathrm{Y}= \pm(2 \pm \gamma-7) \cdot\left(\frac{1 \pm \sqrt{ }-7}{2}\right)^{\mathrm{n}} \\
& \mathrm{X}-\beta \cdot \mathrm{Y}= \pm(2 \pm \gamma-7) \cdot\left(\frac{1 \pm \gamma-7}{2}\right)^{\mathrm{n}}
\end{aligned}
$$

in each equation the 2 nd and $3 \mathrm{rd} \pm$ being independent. Hence we have to solve

$$
G_{n}^{(j)}=\lambda^{(j)} \cdot \beta^{n}+\bar{\lambda}^{(j)} \cdot \bar{\beta}^{\mathrm{n}}=3^{\mathrm{m}_{1}} \cdot 7^{\mathrm{m}} \text { for } \mathrm{j}=1,2 \text {, }
$$

with $G_{n+1}^{(j)}=G_{n}^{(j)}-2 \cdot G_{n-1}^{(j)}$ for $j=1,2$, and $\lambda^{(1)}=\bar{\lambda}^{(2)}=(2+/-7) / \sqrt{ }-7$, so that $G_{0}^{(1)}=G_{0}^{(2)}=1, G_{1}^{(1)}=3, G_{1}^{(2)}=-1$. Note that $\vartheta_{i}^{(1)}=-\vartheta_{i}^{(2)}$ for $i=1,2$, and $\psi^{(1)}=-\psi^{(2)}$. For $j=1$ we have solved (4.22) in the example of Section 4.8. It is left to the reader to solve (4.22) for $j=2$. This can be done with the numerical data given for the case $j=1$.

Remark. The computation time for the above proof was less than 3 sec .

Chapter 5. The inequality $0<x-y<y^{\delta}$ in S-integers.

The results of this chapter have been published in de Weger [1987].

5.1. Introduction.

Let S be the set of all positive integers composed of primes from a fixed finite set $\left\{p_{1}, \ldots, p_{s}\right\}$, where $s \geq 2$, and let $\delta \in(0,1)$. In this chapter we study the diophantine inequality

$$
\begin{equation*}
0<\mathrm{x}-\mathrm{y}<\mathrm{y}^{\delta} \tag{5.1}
\end{equation*}
$$

in $x, y \in S$. We give explicit upper bounds for the solutions, and we show how the algorithms for homogeneous, one- and multi-dimensional diophantine approximation in the real case, that were presented in Chapter 3 , can be used for finding all solutions of (5.1) for any set of parameters p_{1}, \ldots, P_{s}, δ. For $s=2$ the continued fraction method (cf. Section 3.2) is used. For $s \geq 3$ we use the L^{3}-algorithm for reducing upper bounds (cf. Section 3.7).

Tijdeman [1973] (see also Shorey and Tijdeman [1986], Theorem 1.1) showed that there exists a computable number c, depending on $\max \left(p_{i}\right)$ only, such that for all $x, y \in S$ with $x>y \geq 3$,

$$
x-y>y /(\log y)^{c}
$$

Thus, for any solution of (5.1) a bound for x, y follows. Størmer [1897] showed how to solve the equation $x-y=k$ with $k=1,2$ with an elementary method (see also Mahler [1935], Lehmer [1964]). Our method can solve this equation for arbitrary $k \in \mathbb{Z}$. For the one-dimensional case $s=2$, Ellison [1971b] has proved the following result: for all but finitely many explicitly given exceptions, $\quad\left|2^{x}-3^{y}\right|>\exp (x \cdot(\log 2-1 / 10))$ for all $x, y \in \mathbb{N}$. Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Tijdeman [1982]) have found all the solutions $x, y \in \mathbb{N}$ of the inequality

$$
\left|p^{x}-q^{y}\right|<p^{\delta \cdot x}
$$

for all primes p, q with $p<q<20$, and with $\delta=\frac{1}{2}$. We shall extend
these results for many more values of p, q and with $\delta=0.9$. Further, we determine all the solutions of (5.1) for the multi-dimensional case $s=6$, $\left\{p_{1}, \ldots, p_{6}\right\}=\{2,3,5,7,11,13\}$ with $\delta=\frac{1}{2}$.

In Section 5.2 we derive upper bounds for the solutions of (5.1). In Sections 5.3 and 5.4 we give a method for reducing such upper bounds in the one- and multi-dimensional cases respectively, and work them out explicitly for some examples. Section 5.5 contains tables with numerical data.

5.2. Upper bounds for the solutions.

We assume that the primes are ordered as $p_{1}<\ldots<p_{s}$. For a solution x, y of (5.1), the finitely many $z \in \mathbb{N}$ for which $z \cdot x, z \cdot y$ is also a solution of (5.1) can be found without any difficulty. Therefore we may assume that $(x, y)=1$. Put

$$
X=\max _{l \leq i \leq s} \text { ord }_{p_{i}}(x \cdot y)
$$

Put

$$
\begin{aligned}
& C_{1}=2^{9 \cdot s+26} \cdot s^{s+4} \cdot \max \left(1, \frac{1}{\log p_{1}}\right) \cdot\left(\prod_{i=2}^{s} \log p_{i}\right) \cdot \log \left(e \cdot \log p_{s-1}\right) /(1-\delta) \\
& C_{2}=2 \cdot \log 2 / \log p_{1}+2 \cdot C_{1} \cdot \log \left(e \cdot C_{1} \cdot \log p_{s}\right)
\end{aligned}
$$

THEOREM 5.1. The solutions of (5.1) satisfy $X<C_{2}$.
Proof. If $y \leq \frac{1}{2} \cdot x$, then $y^{\delta}>x-y \geq y$, which contradicts $y \geq 1$. So $y>\frac{1}{2} \cdot x$. Put $\Lambda=\log (x / y)$. Then

$$
\begin{equation*}
0<\Lambda<x / y-1<y^{-(1-\delta)}<\left(\frac{1}{2} \cdot x\right)^{-(1-\delta)} \tag{5.2}
\end{equation*}
$$

By $\quad x=\max (x, y) \geq p_{1}^{X}$, we obtain

$$
\begin{equation*}
0<\Lambda<2^{1-\delta} \cdot \mathrm{p}_{1}^{-(1-\delta) \cdot \mathrm{X}} \tag{5.3}
\end{equation*}
$$

We apply Waldschmidt's result, Lemma 2.4 , to Λ, with $n=s, q=2$. Note that the 'independence condition' $\left[\mathbb{Q}\left(\sqrt{ } p_{1}, \ldots, \sqrt{ } p_{n}\right): \mathbb{Q}\right]=2^{n} \quad$ holds. Since $p_{i} \geq 3$ we have $v_{i}=\log p_{i}$ for $i \geq 2$. Thus

$$
\begin{equation*}
a_{k+1}>-2+p_{1}^{q_{k} / 10} \cdot \frac{1}{q_{k}} \cdot \frac{\log p_{2}}{2^{0.1}} \tag{5.9}
\end{equation*}
$$

and if

$$
\begin{equation*}
a_{k+1}>p_{1} q_{k} / 10 \cdot \frac{1}{q_{k}} \cdot \frac{\log p_{2}}{2^{0.1}} \tag{5.10}
\end{equation*}
$$

then (5.3) holds for $\left(x_{1}, x_{2}\right)=\left(q_{k}, r_{k}\right)$. We computed the continued fraction expansions and the convergents of all numbers $\log p_{1} / \log p_{2}$ in the mentioned ranges for p_{1}, p_{2} exactly up to the index n such that $q_{n-1} \leq 1.97 \times 10^{19}<q_{n}$ (cf. Section 2.5 for details of the computational method). Note that $n \leq 93$. We checked all convergents for (5.9), and subsequently for (5.10). It is possible, though unlikely, that there is a convergent that satisfies (5.9) but fails (5.10). We met only one such a case: $P_{1}=15, P_{2}=23$, with $\log 15 / \log 23=[0,1,6,2,1,51, \ldots]$, so that $a_{5}=51, r_{4}=19, q_{4}=22$. Now, (5.9) holds but (5.10) fails, since

$$
15^{2.2} \cdot \frac{1}{22} \cdot(\log 19) / 2^{0.1}=51.4 \ldots \in[51,53) .
$$

We have in this case $A=0.002714 \ldots<0.002771 \ldots=2^{0.1} \cdot 15^{-2.2}$, so (5.3) is true. But $\log \left(15^{22}-23^{19}\right) / \log \left(23^{19}\right)=0.9008 \ldots>\delta$, so (5.1) is not true. This example illustrates that (5.3) is weaker than (5.1). Therefore all found solutions of (5.3) have been checked for (5.1) as well. The proof is now completed by the details of the computations, which we omit here.

Remarks. 1. Theorem 5.2(a) is used in the proof of Theorem 6.2.
2. The computations for the proof of Theorem 5.2 took 35 sec .
5.4. Reducing the upper bounds in the multi-dimensional case.

Now let $s \geq 3$. Put $x_{i}=\operatorname{ord}_{p_{i}}(x / y)$ for $i=1, \ldots, s$. Then $\mathrm{X}=\max \left|\mathrm{x}_{\mathrm{i}}\right|$, and

$$
\Lambda=\sum_{i=1}^{s} x_{i} \cdot \log p_{i}
$$

Note that (5.3) is of the form (3.1). Hence by Theorem 5.1 we can use the method described in Section 3.7 for solving (5.3). We shall do so for the example $s=6,\left\{p_{1}, \ldots, p_{6}\right\}=\{2,3,5,7,11,13\}$ (the first six primes), and $\delta=\frac{1}{2}$.

We use small refinements of Lemmas 3.7 and 3.8 , devised specially for this application, as follows. Let notation be as in Section 3.7.

LEMMA 5.3. Let X_{1} be a positive number such that

$$
\begin{equation*}
\ell(\Gamma) \geq \sqrt{ }\left(4 \cdot n^{2}+(n-1) \cdot \gamma^{2}\right) \cdot X_{1} \tag{5.11}
\end{equation*}
$$

Then (5.3) has no solutions with for $i=1, \ldots, s$

$$
\begin{equation*}
\log \left(\gamma \cdot C \cdot \sqrt{ } 2 / s \cdot X_{1}\right) / \frac{1}{2} \cdot \log p_{i} \leq\left|x_{i}\right| \leq X \leq X_{1} \tag{5.12}
\end{equation*}
$$

LEMMA 5.4. Suppose that

$$
\begin{equation*}
|\bar{\Lambda}|>\sum_{i=1}^{s}\left|x_{i}\right| \tag{5.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|x_{i}\right|<\log \left(\gamma \cdot C \cdot \sqrt{ } 2 /\left(|\lambda|-\sum_{i=1}^{s}\left|x_{i}\right|\right)\right) /(1-\delta) \cdot \log p_{i} \tag{5.14}
\end{equation*}
$$

Remark. Lemmas 5.3 and 5.4 are refinements of Lemma 3.8 , in that they differentiate between the different x_{i}. Moreover, Lemma 5.3 has slightly sharper condition and conclusion than Lemma 3.7.

Proofs (of Lemmas 5.3 and 5.4). Analogous to the proofs of Lemmas 3.7 and 3.8, using (5.2) and

$$
p_{i}^{\left|x_{i}\right|} \leq \max (x, y)=x<2 \cdot|\Lambda|^{-1 / 2}
$$

THEOREM 5.5. The diophantine inequality

$$
\begin{aligned}
& 0<x-y<\sqrt{y} \\
& \text { in } \quad x, y \in S=\left\{2^{x_{1}} \ldots \cdot 13^{x_{6}} \mid x_{i} \in \mathbb{N}_{0} \quad \text { for } \quad i=1, \ldots, 6\right\} \text { with } \\
& (x, y)=1 \text { has exactly } 605 \text { solutions. Among those, } 571 \text { satisfy } \\
& \operatorname{ord}_{2}(x \cdot y) \leq 19, \quad \operatorname{ord}_{3}(x \cdot y) \leq 12, \quad \operatorname{ord}_{5}(x \cdot y) \leq 8, \\
& \operatorname{ord}_{7}(x \cdot y) \leq 7, \quad \operatorname{ord}_{11}(x \cdot y) \leq 5, \quad \operatorname{ord}_{13}(x \cdot y) \leq 5 . \\
& \text { The remaining } 34 \text { solutions are listed in Table III. }
\end{aligned}
$$

Remark. The upper bounds for ord $p_{i}(x \cdot y)$ given for the 571 solutions not listed in Table III are chosen such that it takes a reasonable amount of computer time to find them all by a brute force method. The list of all 605 solutions is too extensive to be reproduced here.

Proof. By the example at the end of Section 5.2 we know that $X<X_{0}$ for $X_{0}=1.35 \times 10^{36}$. We apply the method described in Section 3.7. Take $C=10^{240}$ (which is chosen so that it is somewhat larger than X_{0}^{6}), and $\gamma=1$. We applied the L^{3}-algorithm to the corresponding lattice Γ_{1}, and found a reduced basis c_{1}, \ldots, c_{6} with $\left|c_{1}\right|>9.40 \times 10^{39}$. By Lemma 3.4,

$$
\ell\left(\Gamma_{1}\right)>2^{-5 / 2} \cdot 9.40 \times 10^{39}>1.66 \times 10^{39}
$$

This is larger than $\gamma\left(4 \cdot 6^{2}+5 \cdot 1^{2}\right) \cdot X_{0}=1.64 \ldots \times 10^{37}$, so (5.11) holds with $X_{1}=X_{0}$. By Lemma 5.3 we find

$$
x<\log \left(10^{240} \cdot \sqrt{ } 2 / 6 \cdot 1.35 \times 10^{36}\right) / \frac{1}{2} \cdot \log 2<1350.4
$$

so $X \leq 1350$. Next we choose $C=10^{32}, \gamma=1$, and $X_{0}=1350$. The reduced basis of the corresponding lattice Γ_{2} was computed, and we found $\left|\underline{c}_{1}\right|>2.71 \times 10^{5}$. Hence $\ell\left(\Gamma_{2}\right)>4.79 \times 10^{4}$, which is larger than $\sqrt{ } 149 \cdot 1350=1.64 \ldots \times 10^{4}$. Hence Lemma 5.3 yields for all $i=1, \ldots, 6$

$$
\left|x_{i}\right|<\log \left(10^{32} \cdot \sqrt{2 / 6} \cdot 1350\right) / \frac{1}{2} \cdot \log p_{i}
$$

and it follows that

$$
\begin{align*}
& \left|x_{1}\right| \leq 187, \quad\left|x_{2}\right| \leq 118, \quad\left|x_{3}\right| \leq 80 \tag{5.15}\\
& \left|x_{4}\right| \leq 66, \quad\left|x_{5}\right| \leq 54, \quad\left|x_{6}\right| \leq 50
\end{align*}
$$

Next we choose $C=10^{12}, \gamma=10^{4}$. We use Lemma 5.4 as follows. If $|\lambda|>10^{6}$ then (5.13) holds by (5.15), and Lemma 5.4 yields

$$
\begin{align*}
& \left|x_{1}\right| \leq 67, \quad\left|x_{2}\right| \leq 42, \quad\left|x_{3}\right| \leq 29 \tag{5.16}\\
& \left|x_{4}\right| \leq 24, \quad\left|x_{5}\right| \leq 19, \quad\left|x_{6}\right| \leq 18
\end{align*}
$$

All vectors in the corresponding lattice Γ_{3} satisfying (5.15) and $|\lambda|<10^{6}$ have been computed with the Fincke and Pohst algorithm, cf. Section 3.6. We omit details. We found that there exist only two such vectors, but they do not correspond to solutions of (5.1). Hence all solutions of (5.1) satisfy (5.16). Next, we choose $C=10^{8}, \gamma=10^{4}$. If
$|\lambda|>5 \times 10^{5}$ then Lemma 5.4 yields

$$
\begin{align*}
& \left|x_{1}\right| \leq 42, \quad\left|x_{2}\right| \leq 27, \quad\left|x_{3}\right| \leq 18, \tag{5.17}\\
& \left|x_{4}\right| \leq 15, \quad\left|x_{5}\right| \leq 12, \quad\left|x_{6}\right| \leq 11 .
\end{align*}
$$

There are 143 vectors in the corresponding lattice Γ_{4} satisfying (5.16) and $|\lambda| \leq 5 \times 10^{5}$. Of them, 2 correspond to solutions of (4.1), namely those with

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{6}\right)=(7,-5, \quad 3,-9,-3, \quad 8), \quad \lambda=257674, \\
& \left(x_{1}, \ldots, x_{6}\right)=(-10,10,-6, \quad 5,-6, \quad 4), \quad \lambda=144817 .
\end{aligned}
$$

Both also satisfy (5.17). Hence all solutions of (5.1) satisfy (5.17). At this point it seems inefficient to choose appropriate parameters C, γ, and a bound for $|\lambda|$ to repeat the procedure with. But the bounds of (5.17) are small enough to admit enumeration. Doing so, we found the result.

Remark. Theorems 5.2 and 5.5 find applications in solving other exponential diophantine equations, see Stroeker and Tijdeman [1982], Alex [1985 ${ }^{\text {a }}$, [1985 ${ }^{\text {b }}$], Tijdeman and Wang [1988], and Section 6.4 of this book.

Remark. The computation of the reduced basis of Γ_{1} took 113 sec , where we applied the L^{3}-algorithm as we described it in Section 3.5 , in 12 steps. The direct search for the solutions of (5.17) took 228 sec . The remaining computations (computation of the $\log p_{i}$ up to 250 decimal digits, of the reduced basis of Γ_{2}, and of the short vectors in Γ_{3} and Γ_{4}) took 8 sec . Hence in total we used 349 sec .

Table I. (Theorem 5.2(a)).

110

p_{1}	x_{1}	$p_{1}^{x_{1}}$	p_{2}	x_{2}	p_{2}^{*}	delta
2	3	8	3	2	9	0.00000
3	3	27	5	2	25	0.21534
2	5	32	3	3	27	0.48832
5	3	125	11	2	121	0.28906
2	7	128	11	2	121	0.40575
2	7	128	5	3	125	0.22754
2	8	256	3	5	243	0.46694
7	3	343	19	2	361	0.49512
2	9	512	23	2	529	0.45416
3	7	2187	13	3	2197	0.29941
3	7	2187	47	2	2209	0.40194
13	3	2197	47	2	2209	0.32293
19	3	6859	83	2	6889	0.38504
31	3	29791	173	2	29929	0.47828
2	15	32768	181	2	32761	0.18716
13	7	62748517	89	4	62742241	0.48703
2	50	1125899906842624	47	9	1119130473102767	0.85259
7	18	1628413597910449	149	7	1630436461403549	0.80898
19	12	2213314919066161	83	8	2252292232139041	0.88568
2	51	2251799813685248	19	12	2213314919066161	0.88532
2	51	2251799813685248	83	8	2252292232139041	0.76159
5	22	2384185791015625	157	7	2351243277537493	0.87942
13	14	3937376385699289	89	8	3936588805702081	0.76282
17	13	9904578032905937	193	7	9974730326005057	0.86560
7	19	11398895185373143	197	7	11514990476898413	0.87594
61	9	11694146092834141	197	7	11514990476898413	0.88743
5	23	11920928955078125	61	9	11694146092834141	0.89343
5	23	11920928955078125	29	11	12200509765705829	0.89862
29	11	12200509765705829	199	7	12358664279161399	0.88268
23	12	21914624432020321	43	10	21611482313284249	0.88656
11	16	45949729863572161	71	9	45848500718449031	0.84059
5	24	59604644775390625	73	9	58871586708267913	0.88642
37	11	177917621779460413	53	10	174887470365513049	0.89785
29	12	353814783205469041	89	9	350356403707485209	0.88568
23	13	504036361936467383	163	8	498311414318121121	0.89040
23	13	504036361936467383	59	10	511116753300641401	0.89536
11	17	505447028499293771	163	8	498311414318121121	0.89580

505447028499293771 505447028499293771 558545864083284007 79900668578288412 799006685782884121 1152921504606846976 $\begin{array}{llll}1822 & 83780 & 45517 & 61449\end{array}$ 2472159215084012303 8650415919381337933 9223372036854775808 368939814710186403 36893488147419103232 7378697629483820646
109418989131512359209 29514790517935282585 39456738992222314849 49125890425672615464 93132257461547851562 548038685778480218593 613261041568099864896 944473296573929042739 3777893186295716170956 37778931862957161709568 37929227194915558802161 23929932923061752959008 245764529073450392704413 153693963075558766310747 1219005755813179726810460 821973267580761109411841 23375119148217161094711841 937513113217166362274241
934813113834066795298816
50403636193646738
504036361936467383 550329031716248441
78766278378854976 80235917847609168 15193665782350064 83845921242015450 245937419155311840 859475474860939788 926903592937219159 36197319879620191349
37252902984619140625 $\begin{array}{llll}3725290298 & 4619140625 \\ 737424126894928 & 26049\end{array}$
1046221254112045100 9755823267579946348 38298681559573317311 89415464119070561799 2510310231501362932 56099970612058317732 616267795033671851400 9387480337647754305649 3773859684695570449980 3792922719491555880216 37738596846955704499801 339072435685151324847153 24699040356526214030352 1428552404463186019525093 215806066262396009040738 3211838877 95485 5105157369 987683253336131809511244 23414742015749418882259 938134179457931331780219 9383245667680019896796723 9381341794579313317802199 22550116774162743178682911 1236354171303115835117980561 5873205959385493353867330551 633251189136789386043275954593 $\begin{array}{lllllll}5 & 07282 & 02989 & 53863 & 75247 & 83563 & 99681 \\ 5 & 49673 & 14251 & 78936 & 43509 & 93277 & 30561\end{array}$
0.85578 0.88985 0.89708 0.89710 0.86722 0.83013 0.88680 0.87580 0.88441 0.87844 0.89170 0.89721 0.83799 0.89916 0.89800 0.87990 0.87990 0.88284 0.89638 0.88730 0.89400 0.89920 0.86840 0.89828 0.87071 0.84941 0.88788 0.88933 0.89390 0.89755 0.86078 0.89319 0.89402

Table II, (Theorem 5.2(b)).

113		

> 42052983462257059 50031545098999707 51185893014090757 95428956661682176 96549157373046875 15556809555781222 $\begin{aligned} & 505447028499293771 \\ & 558545864083284007\end{aligned}$ 558545864083284007 789730223053602816 79900668578288412 2481152873203736576 650211142249794764 656840835571289062 6568408355712890625 36893488147419103232 24356922421608130539 295147905179352825856 67274999493256000920 931322574615478515625 5480386857784384785625 41809685144648154 6140942214464815497216 13107200000000000000000
> 1888946593147858085478 3777893186295716170956 23929932923061752959008 33252567300796508789062 321990575581317972683760 -9342813113834066795298816 253934029069225808786324 10834705943388372204183025 229585692886981495482220544
> 1716155831334586342923895201 719070799748422591028658176 719070799748422591028658176 252511682940423488616943359375

[^0]4242074748277657 50542106513726817 50542106513726817 96549157373046875 97656250000000000
15447237773911946 50403636193646738 55032903171624844 78766278378854976 79900668578288412 78766278378854976 2472159215084012303 58295200584003528 6502111422497947648 55295200584003528
37252902984619140625 244140625000000000000 29755823267579946348 71088640000000000000 2510310231501362932 5460990706120583177327 13261041568099864896
32740337647754305649
309092553986677343846
18832349194131742609041

3792922719491555880216 239072435685151324847153 333446267951815307088493 197798520146255887793408 $\begin{array}{lllll}32118 & 38877 & 95485 & 5105157369 \\ 93832 & 45667 & 6800198967 & 96723\end{array}$ 19383245667680019896796723 $\begin{array}{lllllll}2 & 25501 & 16774 & 16274 & 31786 & 82911 \\ 1 & 84280 & 35605 & 96593 & 23542 & 07744\end{array}$ 229468251895129407139872768
1717986918400000000000000000 1716155831334586342923800000 717986918400000000000000000 52599333573498060811820806649

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}			x			y		$x-y$
-1	-11	-1	0	6	0			71561			71470		91
0	4	5	1	-6	0		17	71875		17	71561		314
21	-2	-2	-1	-3	0		20	97152		20	96325		827
1	13	-1	-3	-1	-2			88646		31	88185		461
19	0	0	-8	1	0		57	67168		57	64801		2367
6	2	-1	1	-6	3		88	58304		88	57805		499
-2	15	-1	-2	-4	0		143	48907			48180		727
11	-15	0	2	1	1		143	50336			48907		1429
1	8	-1	-8	0	3		288	29034			24005		5029
-22	5	1	-1	1	3		293	62905		293	60128		2777
13	1	3	-1	1	-6		337	92000		337	87663		4337
1	2	9	-4	-4	0		351	56250		351	53041		3209
3	3	0	4	2	-7		627	52536		627	48517		4019
-26	1	0	5	3	0		671	10351			08864		1487
3	-13	10	-2	0	0		781	25000			21827		3173
8	-2	-10	4	1	1		878	95808		878	90625		5183
25	1	-4	0	-5	0		1006	63296		1006	56875		6421
-6	1	-2	-6	0	7		1882	45551		1882	38400		7151
8	-13	0	3	-2	3		1929	14176		1929	13083		1093
1	-13	-3	7	2	0		1992	97406		1992	90375		7031
-4	-1	-4	1	-4	7			39619		4392	30000		9619
-4	2	-11	2	6	0		7812	58401		7812	50000		8401
16	-3	5	1	-1	-6		14336	00000		14335	62273		37727
-8	8	0	-8	3	2		14758	24779		14757	89056		35723
-5	-2	-5	11	0	-3		19773	26743		19773	00000		26743
-25	7	1	0	-2	5		40600	88955		40600	86272		2683
2	0	13	-9	-2	0		48828	12500		48827	86447		26053
-14	19	-2	-4	1	-1		127848	76137	1	27848	44800		31337
-24	-1	-2	12	-1	0		138412	87201	1	38412	03200		84001
-5	5	10	0	1	-8		261035	15625	2	261033	83072	1	32553
2	-4	-9	3	7	-2		267363	98612	2	67363	28125		70487
18	7	0	-13	0	2	9	968892	08832	9	68890	10407	1	98425
7 10	-5	3	-9	-3	8	1305	16915	36000	1305	16881	72831	33	63169
-10	10	-6	5	-6	4	2834	49801	04623	2834	49760	00000	41	63169 04623

Chapter 6. The equation $x+y=z \quad \mathbb{N}$ S-integers.

The results of this chapter have been published in de Weger [1987].
6.1. Introduction.

Let S be the set of all positive integers composed of primes from a fixed finite set $\left\{p_{1}, \ldots, p_{s}\right\}$, where $s \geq 3$. This chapter is devoted to the diophantine equation

$$
\begin{equation*}
x+y=z \tag{6.1}
\end{equation*}
$$

in $x, y, z \in S$. Without loss of generality we may assume that x, y, z are relatively prime. For any $a \in S$ we define

$$
m(a)=\max _{1 \leq i \leq s} \text { ord }_{p_{i}}(a)
$$

It was proved by Mahler [1933] that (6.1) has only finitely many solutions, but his proof is ineffective. An effective version, i.e. an effectively computable upper bound for $m(x \cdot y \cdot z)$ for the solutions x, y, z of (6.1), can be derived from the results of Coates [1969], [1970] and Sprindzuk [1969], since (6.1) can be reduced to a finite number of Thue equations. See also Chapter 1 of Shorey and Tijdeman [1986].

We derive an explicit upper bound in Section 6.2. Section 6.3 is devoted to some details of the p-adic approximation lattices on which the reduction method of Sections 6.4 and 6.5 are based. In Section 6.4 we give a method of solving (6.1) in the one-dimensional case $s=3$. This method is based on the reduction procedure given in Section 3.10, and we also use a combination of p-adic and real approximation techniques, similar to that of Section 4.8 . But instead of actually performing the real reduction step, we now can simply refer to the results of Chapter 5. As an example we find all the solutions of the slightly more general equation $x \pm y=w \cdot z$, where x, y, z are powers of 2,3 or 5 , and $w \in \mathbb{Z}, \quad|w| \leq 1000000,(w, z)=1$.

In Section 6.5 we give a procedure for solving (6.1) in the multi-dimensional case $s \geq 4$, based on the reduction procedure described in Section 3.11. We work out the example $\left(p_{1}, \ldots, p_{6}\right)=\{2,3,5,7,11,13\}$, and actually determine all the solutions. This generalizes the result of Alex [1976], who gave by elementary arguments a complete solution of (6.1) for the case $\left\{p_{1}, \ldots, p_{4}\right\}=\{2,3,5,7)$. See also Rumsey and Posner [1964] and Brenner and Foster [1982]. We conclude in Section 6.6 with some remarks on the OesterléMasser conjecture, also known as the 'abc'-conjecture, which is related to equation (6.1). In particular, our method of solving (6.1) leads to a method of finding examples that are of interest with respect to the abc-conjecture. Finally, we give tables in Section 6.7.

6.2. Upper bounds.

We give in this section an upper bound for the solutions of (6.1), based on Lemma 2.6 (cf. Yu [1987]). Note that in de Weger [1987] we used the result of van der Poorten [1977] instead (see also the Correction to de Weger [1987]).

We introduce a lot of notation. Assume that $p_{1}<\ldots<p_{s}$. Let q_{i} be the smallest prime with $q_{i} \nmid p_{i} \cdot\left(p_{i}-1\right)$ for $i=1$, ..., s. Put

$$
\begin{aligned}
& t=[2 \cdot s / 3], \quad P=\prod_{i=1}^{s} p_{i}, \quad q=\max _{i} q_{i} \text {, } \\
& C_{1}(2, t) \text { and } a_{1} \text { as in lemma } 2.6 \text { with } n=t \text {, } \\
& U=C_{1}(2, t) \cdot a_{1}^{t} \cdot t^{t+5 / 2} \cdot q^{2 \cdot t} \cdot(q-1) \cdot \log 2(t \cdot q) \cdot \max \frac{\left(p_{i}-1\right) \cdot\left(2+\frac{1}{p_{i}-1}\right)^{t}}{\left(\log p_{i}\right)^{t+2}} . \\
& \cdot\left(\log p_{s}\right)^{t} \cdot\left(\log \left(4 \cdot \log p_{s}\right)+\frac{\log p_{s}}{8 \cdot t}\right), \\
& \mathrm{C}_{1}=\mathrm{U} / 6 \cdot \mathrm{t}, \quad \mathrm{C}_{2}=\mathrm{U} \cdot \log 4, \\
& V_{i}=\max \left(1, \log p_{i}\right) \quad \text { for } i=s-t+1, \ldots, s, \quad \Omega=\prod_{i=s-t+1}^{s} V_{i}, \\
& C_{3}=2^{9 \cdot t+26} \cdot t^{t+4} \cdot \Omega \cdot \log \left(e \cdot v_{s-1}\right), \\
& C_{4}=\max \left(7.4,\left(C_{1} \cdot \log \left(P / p_{1}\right)+C_{3}\right) / \log p_{1}\right) \text {, } \\
& C_{5}=\left(C_{2} \cdot \log \left(P / p_{1}\right)+C_{3} \cdot \log \left(e \cdot V_{s}\right)+0.327\right) / \log p_{1},
\end{aligned}
$$

$$
\begin{aligned}
& C_{6}=\max \left(C_{5},\left(C_{2} \cdot \log \left(P / p_{1}\right)+\log 2\right) / \log p_{1}\right), \\
& C_{7}=2 \cdot\left(C_{6}+C_{4} \cdot \log C_{4}\right), \\
& C_{8}=\max \left(p_{s}, \log \left(2 \cdot\left(P / p_{1}\right)^{p_{s}}\right) / \log p_{1}, C_{2}+C_{1} \cdot \log C_{7}, C_{7}\right) .
\end{aligned}
$$

Now we state the main result.

THEOREM 6.1. The solutions of (6.1) satisfy $m(x \cdot y \cdot z) \leq C_{8}$.
Proof. If we consider instead of (6.1) the equivalent equation

$$
\begin{equation*}
x \pm y=z \tag{6.2}
\end{equation*}
$$

then we may assume that $x \cdot y$ has at most t prime divisors, $p_{i_{1}}, \ldots, p_{i_{t}}$ say. Suppose first that $m(x \cdot y) \leq p_{s}$. Then

$$
p_{1}^{m(z)} \leq z \leq 2 \cdot \max (x, y)<2 \cdot\left(P / p_{1}\right)^{p_{s}},
$$

hence

$$
m(x \cdot y \cdot z)<\max \left(P_{s}, \log \left(2 \cdot\left(P / p_{1}\right)^{P_{s}}\right) / \log P_{1}\right) \leq c_{8}
$$

Next suppose that $m(x \cdot y) \geq p_{s}$ and $m(z) \geq 2$. Then for some $p=p_{i}$,

$$
m(z)=\operatorname{ord}_{p}(z)=\operatorname{ord}_{p}\left(\pm \frac{x}{y}-1\right)=\operatorname{ord}_{p}\left(\log _{p}\left(\frac{x}{y}\right)\right)
$$

Put $x / y=\prod_{j=1}^{t} p_{i_{j}}^{x_{j}}$. Then $m(x \cdot y)=\max _{1 \leq j \leq t}\left|x_{i_{j}}\right|$. We apply Lemma 2.6 (Yu's lemma) with $n=t, B_{0}=B_{n}=B^{\prime}=B=m(x \cdot y)$. Since $m(x \cdot y) \geq p_{s}$ and $t \geq 2$ we have

$$
W=\max \left(\log \left(1+\frac{3}{4 \cdot t} \cdot B\right), \log B, \log p\right)=\log B .
$$

Note that $C_{1}(p, n)$ is maximal for $p=2$. We obtain

$$
\begin{equation*}
m(z)<C_{1} \cdot \log m(x \cdot y)+C_{2} . \tag{6.3}
\end{equation*}
$$

Obviously (6.3) is true if $m(z)<2$. If in (6.2) the plus sign holds, then

$$
\left(P / p_{1}\right)^{m(z)} \geq z>\max (x, y) \geq p_{1}^{m(x \cdot y)}
$$

By (6.3) and $C_{3}>0$ it then follows that

$$
\begin{equation*}
m(x \cdot y)<C_{4} \cdot \log m(x \cdot y)+C_{6} \tag{6.4}
\end{equation*}
$$

Next suppose that in (6.2) the minus sign holds. Then we apply Lemma 2.4 to prove (6.4) for this case, as follows. Suppose (6.4) is false. Then

$$
\left|\frac{y}{x}-1\right|=\frac{z}{x}=\frac{z}{\max (x, y)} \leq \frac{\left(P / p_{1}\right)^{m(z)}}{p_{1}^{m(x \cdot y)}}<\frac{\left(P / p_{1}\right)^{C_{1} \cdot \log m(x \cdot y)+C_{2}}}{P_{1} \cdot \log m(x \cdot y)+C_{6}}
$$

which is less than $\frac{1}{2}$, by the definition of C_{4} and C_{6}. Hence

$$
\left|\log \frac{y}{x}\right|<(2 \cdot \log 2) \cdot\left|\frac{y}{x}-1\right|<(2 \cdot \log 2) \cdot \frac{\left(P / p_{1}\right)^{C_{1} \cdot \log m(x \cdot y)+C_{2}}}{p_{1}^{m(x \cdot y)}}
$$

On the other hand, Lemma 2.4 yields

$$
\left|\log \frac{y}{x}\right|>\exp \left(-C_{3} \cdot\left(\log m(x \cdot y)+\log \left(e \cdot v_{s}\right)\right)\right)
$$

Thus we obtain

$$
\begin{aligned}
& m(x \cdot y) \cdot \log p_{1}<\log (2 \cdot \log 2)+\left(C_{1} \cdot \log m(x \cdot y)+C_{2}\right) \cdot \log \left(P / p_{1}\right) \\
& \quad+C_{3} \cdot\left(\log m(x \cdot y)+\log \left(e \cdot V_{s}\right)\right) \leq\left(\log p_{1}\right) \cdot\left(C_{4} \cdot \log m(x \cdot y)+C_{6}\right)
\end{aligned}
$$

This contradicts our assumption that (6.4) if false. Consequently (6.4) is true in all cases. Now, by $C_{4}>e^{2}$, Lemma 2.1 yields $m(x \cdot y)<C_{7}$, and (6.3) then yields $m(x \cdot y \cdot z)<C_{8}$.

Examples. If $s=3,\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,3,5\}$ then $C_{8}<3.98 \times 10^{17}$.
If $s=6,\left\{p_{1}, \ldots, p_{6}\right\}=\{2,3,5,7,11,13\}$ then $C_{8}<5.60 \times 10^{27}$.

6.3. The p-adic approximation lattices.

As in the proof of Theorem 6.1 we consider (6.2) instead of (6.1). Let p be any of the primes p_{1}, \ldots, p_{s}. We may assume that $p \nmid x \cdot y$. Rename the other primes as p_{0}, \ldots, p_{s-2}, such that ord $\left(\log _{p}\left(p_{0}\right)\right)$ is minimal. For $i=1, \ldots, s-2$ put (cf. Section 3.11)

$$
\vartheta_{i}=-\log _{p}\left(p_{i}\right) / \log _{p}\left(p_{0}\right)=\sum_{\ell=0}^{\infty} u_{i, \ell} \cdot p^{\ell}
$$

where $u_{i, \ell} \in(0,1, \ldots, p-1)$. The ϑ_{i} take the place of the ϑ_{i}^{\prime} of Section 3.11. Then it is clear from Section 3.11 how to define the p-adic approximation lattices Γ_{μ} for $\mu \in \mathbb{N}_{0}$. Put

$$
\Lambda=\sum_{i=1}^{s-2} x_{i} \cdot \vartheta_{i}-x_{0}
$$

Then Lemma 3.13 yields

$$
\begin{aligned}
\Gamma_{\mu}= & \left\{\left(x_{1}, \ldots, x_{s-2}, x_{0}\right)\left||\Lambda|_{p} \leq p^{-\mu}\right\}\right. \\
& =\left\{\left.\left(x_{1}, \ldots, x_{s-2}, x_{0}\right)| | \log _{p}\left[\prod_{i=0}^{s-2} p_{i}\right]\right|_{p} \leq p^{-\left(\mu+\mu_{0}\right)}\right\}
\end{aligned}
$$

where $\mu_{0}=\operatorname{ord}_{p}\left(\log _{p}\left(p_{0}\right)\right)$. In Section 3.13 we studied the set

$$
\Gamma_{\mu}^{*}=\left\{\left(x_{1}, \ldots, x_{s-2}, x_{0}\right)| | \prod_{i=0}^{s-2} p_{i}^{x_{i}} \pm\left. 1\right|_{p} \leq p^{-\left(\mu+\mu_{0}\right)}\right\}
$$

which is a sublattice of Γ_{μ}. In Lemma 3.17 we showed how a basis of Γ_{μ}^{*} can be found from a basis of Γ_{μ}. In practice this is very easy, especially if for $p \geq 5$ it happens to be possible to choose P_{0} such that not only $\operatorname{ord}_{p}\left(\log _{p}\left(p_{0}\right)\right)$ is minimal, but also p_{0} is a primitive root (mod p). Then, using the notation of Lemma 3.17 (with \underline{b}_{0} as the last element of the basis), choose $\zeta \equiv \mathrm{p}_{0}(\bmod \mathrm{p})$. Then $\mathrm{k}\left(\underline{b}_{0}\right)=1$, and it follows that $\underline{b}_{i}^{\prime}=\underline{b}_{i}$ for $i=1, \ldots, s-2$. By $\underline{b}_{i}=\left(0, \ldots, 1, \ldots, 0, \vartheta_{i}^{(\mu)}\right)^{T}$ we have

$$
\mathrm{p}_{\mathrm{i}} \cdot \mathrm{p}_{0}^{\vartheta_{i}^{(\mu)}} \equiv \zeta^{\mathrm{k}\left(\underline{b}_{i}\right)}\left(\bmod \mathrm{p}^{\mu+\mu_{0}}\right)
$$

If $p_{i} \equiv p_{0}^{\alpha_{i}}(\bmod p)$, then it follows that

$$
\begin{aligned}
\gamma_{i}^{*} & \equiv \alpha_{i}+\vartheta_{i}^{(\mu)} \equiv \alpha_{i}+\sum_{\ell=0}^{\mu-1} u_{i, \ell}(\bmod (p-1) / 2) \text { for } i=1, \ldots, s-2, \\
\gamma_{0}^{*} & =(p-1) / 2 .
\end{aligned}
$$

Lemma 3.14 (with $c_{1}=0, c_{2}=1$) now yields: if

$$
\begin{equation*}
\ell\left(\Gamma_{\mu}^{*}\right)>\sqrt{ }(s-1) \cdot X_{1} \tag{6.5}
\end{equation*}
$$

then (6.2) has no solutions with

$$
\begin{equation*}
\mu+\mu_{0} \leq \operatorname{ord}_{p}(z) \leq m(x \cdot y \cdot z) \leq X_{1} \tag{6.6}
\end{equation*}
$$

6.4. Reducing the upper bounds in the one-dimensional case.

In Section 3.10 we have described how an upper bound for the solutions of (6.1) in the case $s=3$ can be reduced. We shall apply that method in this section to the following problem.

THEOREM 6.2. The diophantine equation

$$
\begin{equation*}
x \pm y=w \cdot z \tag{6.7}
\end{equation*}
$$

where $\quad x=p_{0}^{x_{0}}, \quad y=p_{1} x_{1}, \quad z=p^{u}, \quad\left(p, p_{0}, p_{1}\right)=(2,3,5),(3,2,5),(5,2,3)$, $x_{0}, x_{1}, u \in \mathbb{N}_{0}, w \in \mathbb{Z},|w| \leq 10^{6}$, and $p \nmid w$, has exactly 291 solutions for $p=2$, 412 solutions for $p=3$, and 570 solutions for $p=5$. In Table I all solutions with $u \geq 3$ are given. The solutions with $u \leq 2$ satisfy $\mathrm{x}_{0} \leq 14, \mathrm{x}_{1} \leq 9$ for $\mathrm{p}=2, \mathrm{x}_{0} \leq 23, \mathrm{x}_{1} \leq 10$ for $\mathrm{p}=3$, and $x_{0} \leq 25, x_{1} \leq 15$ for $p=5$.

Remark. It is easy to find all solutions of (6.7) with $u \leq 2$. The Tables are presented in Section 6.7.

Proof. Put $X=\max _{p=2,3,5}$ ord $(x \cdot y \cdot z)$. The example at the end of Section 6.2 shows that in the case $|w|=1$ we have $X<3.98 \times 10^{17}$. It can be checked without difficulties that the effect of the w with $|w| \leq 10^{6}$ in the proof of Theorem 6.1 can be neclected (it disappears in the rounding off), so that for the solutions of (6.7) also $X<X_{0}=3.98 \times 10^{17}$ holds. Put

$$
x / y=p_{0}^{y_{0}} \cdot p_{1}^{y_{1}}, \quad \vartheta=-\log _{p}\left(p_{1}\right) / \log _{p}\left(p_{0}\right)
$$

Note that ϑ is a p-adic integer. Define the lattices $\Gamma_{\mu}, \Gamma_{\mu}^{*}$ as in Section 6.3 , so Γ_{μ} is generated by

$$
\underline{b}_{1}=\left[\begin{array}{c}
1 \\
\vartheta(\mu)
\end{array}\right], \quad \underline{b}_{0}=\left[\begin{array}{c}
0 \\
p^{\mu}
\end{array}\right] .
$$

For $p=2,3$ we have $\Gamma_{\mu}^{*}=\Gamma_{\mu}$, and for $p=5$ a basis of Γ_{μ}^{*} is

$$
\underline{b}_{1}^{*}=\underline{b}_{1}-\gamma \cdot \underline{b}_{0}, \quad \underline{b}_{0}^{*}=2 \cdot \underline{b}_{0},
$$

where $\gamma=0$ if $\vartheta^{(\mu)}$ is odd, $\gamma=1$ if $\vartheta^{(\mu)}$ is even . Using the algorithm given in Section 3.10 , Fig. 3 , we can compute a basis c_{1}, c_{2} of Γ_{μ}^{*} that is reduced in the sense that $\left|\underline{c}_{1}\right|=\ell\left(\Gamma_{\mu}^{*}\right)$. We did so, with μ as
in the following table.

p	p_{0}	p_{1}	μ_{0}	μ	$\boldsymbol{\gamma}$	$\left\|c_{1}\right\|>$	$u \leq$	W	$\left\|y_{0}\right\| \leq$	$\left\|y_{1}\right\| \leq$
2	3	5	2	143	-	2.68×10^{21}	144	$10^{6} \cdot 2^{144}$	114	78
3	2	5	1	91	-	2.32×10^{21}	91	$10^{6} \cdot 3^{91}$	182	78
5	2	3	1	65	0	5.28×10^{22}	65	$10^{6} \cdot 5^{65}$	189	119

The values of $\vartheta^{(\mu)}$ can be found in Table III. Making an exception to our policy, we give the reduced bases of the Γ_{μ}^{*} below (in base p notation):
$p=2:$

$$
\begin{aligned}
& \underline{c}_{1}=\left(\begin{array}{rrrrrrrr}
10 & 00000 & 00100 & 10001 & 10110 & 01110 & 01101 \\
00001 & 11101 & 00101 & 00100 & 11100 & 01111 & 11010 & 00011 \\
00101 & 11000 & 00000 & 11100 & 01111 & 01011 & 10111 & 00001
\end{array}\right) \\
& \underline{c}_{2}=\left(\begin{array}{rrrrrrrr}
110 & 11011 & 10000 & 01011 & 01101 & 11000 & 00111 \\
11001 & 10100 & 11011 & 00000 & 11111 & 10110 & 10110 & 00001 \\
00111 & 00001 & 10101 & 00110 & 10011 & 00111 & 00101 & 10101
\end{array}\right)
\end{aligned}
$$

$p=3:$

$$
\underline{c}_{2}=\left(\begin{array}{lllllllll}
-10 & 12210 & 12111 & 01102 & 02010 & 12112 & 12210 & 21122 & 21011 \\
\hline
\end{array}\right.
$$

$p=5:$

$$
\begin{aligned}
& \underline{c}_{1}=\left[\begin{array}{rrrrrrr}
-211 & 32230 & 21042 & 22023 & 30141 & 33034 & 21420 \\
- & 22104 & 43102 & 43111 & 03114 & 30134 & 23410
\end{array}\right), \\
& \underline{c}_{2}=\left[\begin{array}{rrrrrrr}
340 & 34003 & 02404 & 12120 & 03412 & 22030 & 32211 \\
-414 & 20001 & 42202 & 42210 & 34043 & 20120 & 00432
\end{array}\right)
\end{aligned}
$$

From this we found the lower bounds for $\left|c_{1}\right|$ given above. They are all larger than $\sqrt{ } 2.3 .98 \times 10^{17}$. Hence (6.5) holds for $X_{1}=X_{0}$, and then we infer from (6.6) that $u \leq \mu+\mu_{0}-1$, and $|w| \cdot z \leq W$ as shown in the table above. We now find the new upper bounds for $\left|y_{0}\right|,\left|y_{1}\right|$ as follows. If in (6.7) the minus sign holds, supposing that $\min (x, y)>W^{10 / 9}$, we infer

$$
|x-y|=|w| \cdot z \leq w<\min (x, y)^{0.9}
$$

By Theorem 5.2(a), the inequality $|x-y|<\min (x, y)^{0.9}$ has no solutions with $\min (x, y)>W$, since $W>10^{49}$. Hence $\min (x, y) \leq W^{10 / 9}$, and thus

$$
\max (x, y) \leq \min (x, y)+|w| \cdot z \leq W^{10 / 9}+W
$$

If in (6.7) the plussign holds, then this inequality follows at once. So now the bounds given in the above table for $\left|y_{0}\right|,\left|y_{1}\right|$ follow from

$$
\left|y_{i}\right| \cdot \log p_{i} \leq \log \max (x, y) \leq \log \left(W^{10 / 9}+W\right)
$$

We repeat the procedure with μ as in the following table.

p	μ	γ	$\left\|\underline{c}_{1}\right\|>$	$\sqrt{ } 2 \cdot \mathrm{X}_{0}<$	$u \leq$	W	$\left\|y_{0}\right\| \leq$	$\left\|y_{1}\right\| \leq$
2	16	-	167.7	161.3	17	$10^{6} \cdot 2^{17}$	31	21
3	13	-	535.8	257.4	13	$10^{6} \cdot 3^{13}$	49	21
5	7	1	276.1	267.3	7	$10^{6} \cdot 5^{7}$	49	31

The numbers are now so small that the computations can be performed by hand. For example, for $p=5$, the lattice Γ_{7}^{*} is generated by

$$
\underline{b}_{1}^{*}=\left[\begin{array}{c}
1 \\
-45607
\end{array}\right], \quad \underline{b}_{0}^{*}=\left[\begin{array}{c}
0 \\
156250
\end{array}\right)
$$

and a reduced basis is

$$
c_{1}=\left[\begin{array}{r}
185 \\
205
\end{array}\right], \quad c_{0}=\left[\begin{array}{r}
-394 \\
408
\end{array}\right]
$$

We find upper bounds for u and W as given in the above table. In all three cases, $W^{10 / 9}<10^{15}$. On supposing $\min (x, y)>10^{15}$ we infer

$$
|x-y|=|w| \cdot z \leq w<10^{15 \cdot 0.9} \leq \min (x, y)^{0.9}
$$

By Theorem $5.2(a)$ we see that the inequality $|x-y|<\min (x, y) 0.9$ has only two solutions: $(x, y)=\left(2^{65}, 5^{28}\right),\left(2^{84}, 3^{53}\right)$. However, both have $|x-y|>10^{15 \cdot 0.9}$. So we infer $\min (x, y) \leq 10^{15}$, hence by $\max (x, y) \leq 10^{15}+W$ we obtain the bounds for $\left|y_{0}\right|,\left|y_{1}\right|$ as given above. These bounds are small enough to admit enumeration of the remaining cases. \square

Remark. The computer calculations for the above proof took less than 1 sec.

6.5. Reducing the upper bounds in the multi-dimensional case.

In Section 3.11 we have described how an upper bound for the solutions of (6.1) in the case $s \geq 3$ can be reduced. We shall apply that method in this section to the following problem

THEOREM 6.3. The diophantine equation

$$
\begin{equation*}
x+y=z \tag{6.8}
\end{equation*}
$$

in $\quad x, y, z \in S=\left\{2^{x_{1}} \ldots . \ldots 13^{x_{6}} \mid x_{i} \in \mathbb{N}_{0} \quad\right.$ for $\left.\quad i=1, \ldots, 6\right\}$ with $(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{x} \leq \mathrm{y}$ has exactly 545 solutions. Of them, 514 satisfy

$$
\begin{aligned}
& \operatorname{ord}_{2}(x \cdot y \cdot z) \leq 12, \quad \operatorname{ord}_{3}(x \cdot y \cdot z) \leq 7, \quad \operatorname{ord}_{5}(x \cdot y \cdot z) \leq 5 \\
& \operatorname{ord}_{7}(x \cdot y \cdot z) \leq 4, \quad \operatorname{ord}_{11}(x \cdot y \cdot z) \leq 3, \quad \operatorname{ord}_{13}(x \cdot y \cdot z) \leq 3
\end{aligned}
$$

The remaining 31 solutions are given in Table II.

Remark. From Theorem 6.3 it is easy to compute all 545 solutions of (6.8).

Proof. In the example at the end of Section 6.2 we have seen that $m(x \cdot y \cdot z)<X_{0}=5.60 \times 10^{27}$. With the notation of Section 6.3 we choose the following parameters.

p	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	μ_{0}	μ	γ_{0}^{*}	γ_{1}^{*}	γ_{2}^{*}	$\boldsymbol{\gamma}_{3}^{*}$	$\boldsymbol{\gamma}_{4}^{*}$
2	3	5	7	11	13	2	605	-	-	-	-	-
3	2	5	7	11	13	1	385	-	-	-	-	-
5	2	3	7	11	13	1	275	2	0	1	1	1
7	3	2	5	11	13	1	220	3	0	-1	-1	0
11	2	3	5	7	13	1	165	5	2	0	-1	-1
13	2	3	5	7	11	1	165	6	-2	-1	-2	3

We computed the six values of the $\vartheta_{i}^{(\mu)}$ for $i=1,2,3,4$ (and give them in Table III), and the reduced bases of the six lattices Γ_{μ}^{*}, by the L^{3}-algorithm. Thus we obtained lower bounds for $\ell\left(\Gamma_{\mu}^{*}\right)$ as in the following table. They are all larger than $\sqrt{5} .5 .60 \times 10^{27}$ (note that we have a very large margin here, we could have taken the $\mu^{\prime} s$ probably about 20% smaller). So we apply Lemma 3.14 for $X_{1}=X_{0}=5.60 \times 10^{27}$. For every p we thus find $\operatorname{ord}_{p}(z) \leq \mu+\mu_{0}-1$. Since (6.2) is invariant under permutations of x, y, z, we even have ord $(x \cdot y \cdot z) \leq \mu+\mu_{0}-1$, as shown in the next table.

p	$\ell\left(\Gamma_{\mu}^{*}\right) \geq\left\|{s_{1}}_{1}\right\| / 4>$	ord $_{p}(x \cdot y \cdot z) \leq$
2	4.70×10^{35}	606
3	1.15×10^{36}	385
5	6.27×10^{37}	275
7	3.17×10^{36}	220
11	5.74×10^{33}	165
13	1.73×10^{36}	165

Hence $m(x \cdot y \cdot z) \leq 606$.
We repeated the procedure with $X_{0}=606$ and μ as in the following table. After computing the reduced bases of the six lattices Γ_{μ}^{*} we found the following data. Note that in all cases $\ell\left(\Gamma_{\mu}^{*}\right) \geq \sqrt{ } 5.606$.

p	μ	γ_{0}^{*}	γ_{1}^{*}	γ_{2}^{*}	γ_{3}^{*}	γ_{4}^{*}	$\ell\left(\Gamma_{\mu}^{*}\right)>$	ord $_{\mathrm{p}}(\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}) \leq$
2	66	-	-	-	-	-	1909	67
3	42	-	-	-	-	-	2304	42
5	30	2	0	0	1	1	3417	30
7	24	3	-1	0	1	-1	2391	24
11	18	5	0	-2	2	-1	1443	18
13	18	6	0	1	1	-2	3196	18

Hence $m(x \cdot y \cdot z) \leq 67$. Next, we repeated the procedure with $X_{0}=67$, and μ as in the following table. We found

p	μ	γ_{0}^{*}	γ_{1}^{*}	γ_{2}^{*}	γ_{3}^{*}	γ_{4}^{*}	$\ell\left(\Gamma_{\mu}^{*}\right)>$	ord $_{\mathrm{p}}(\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}) \leq$
2	55	-	-	-	-	-	364	56
3	35	-	-	-	-	-	301	35
5	25	2	1	1	1	0	622	25
7	20	3	-1	1	-1	0	693	20
11	15	5	-1	-2	2	2	192	15
13	15	6	-1	0	3	-2	658	15

Hence $m(x \cdot y \cdot z) \leq 56$.

To find the solutions of (6.2) with ord $(x \cdot y \cdot z)$ below the bounds given in the above table, we followed the following procedure. Suppose that we are at a certain moment interested in finding the solutions with ord $p(x \cdot y \cdot z) \leq f(p)$ where $f(p)$ is given for $p=2, \ldots, 13$. Choose p, and $\mu<f(p)-\mu_{0}$,
and consider the lattice Γ_{μ}^{*} for these values of p, μ. If a solution x, y, z of (6.2) exists with ord $_{p}(z) \geq \mu+\mu_{0}$, then the vector $\left(x_{1}, \ldots, x_{4}, x_{0}\right)^{T}$ with $x_{i}=$ ord $_{p_{i}}(x / y)$ for $i=0, \ldots, 4$, is in the lattice. Its length is bounded by $f\left(f\left(p_{0}\right)^{2}+\ldots+f\left(p_{4}\right)^{2}\right)$. All vectors in r_{μ}^{*} with length below this bound can be computed by the algorithm of Fincke and Pohst, as given in Section 3.6. Then all solutions of (6.2) corresponding to lattice points can be selected. Then we replace $f(p)$ by $\mu+\mu_{0}-1$, and we repeat the procedure for newly chosen p, μ.
We performed this procedure, starting with the bounds for ord $(x \cdot y \cdot z)$ given in the above table for $f(p)$, and with p, m as in Table IV (where \# stands for the number of solutions of (5.2) found at that stage). At the end we have $f(2)=4, f(p)=1$ for $p=3, \ldots, 13$. The remaining solutions can be found by hand.

Remarks. 1. Theorems 6.2 and 6.3 have applications in group theory (cf. Alex [1976]). We use Theorem 6.3 in Section 7.2.
2. The computer calculations for the proof of Theorem 6.3 took 438 sec. , of which 412 were used for the first reduction step. In this first step we applied the L^{3}-algorithm in 11 steps (cf. Section 3.5), which cost on average about 60 sec . per lattice. The remaining 50 sec . were mainly used for the computation of the $24 \vartheta_{i}^{(\mu)}$'s.

6.6. Examples related to the abc-conjecture.

Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be positive integers. Put

$$
\mathrm{G}=\prod_{\substack{\mathrm{p} \mid \mathrm{xyz} \\ \text { prime }}} \mathrm{p} .
$$

For all x, y, z with $(x, y)=1$ and $x+y=z$ we define

$$
c(x, y, z)=\log z / \log G
$$

(called the Masser-ratio, according to Tijdeman [1989]). Recently, Oesterlé posed the problem to decide whether there exists an absolute constant C such that $c(x, y, z)<C$ for all x, y, z. Masser [1985] conjectured the stronger assertion that $c(x, y, z)<1+\epsilon$, when z exceeds some bound depending on ϵ only, for all $\epsilon>0$. For a survey of related results and conjectures, see Stewart and Tijdeman [1986], Vojta [1987], Tijdeman [1989].

It might be interesting to have some empirical results on $c(x, y, z)$, and to search for x, y, z for which it is large. From the preceding sections it may be clear that such x, y, z correspond to relatively short vectors in appropriate p-adic approximation lattices.

As a byproduct of the proofs of Theorems 5.5 and 6.3 we computed the value of $c(x, y, z)$, corresponding to many short vectors that we came across in performing the algorithm of Fincke and Pohst. All examples that we found with $c(x, y, z) \geq 1.4$ are listed below. Our search was rather unsystematic, so we do not guarantee that this list is complete in any sense.

x	y	z	$\mathrm{c}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
11^{2}	$3^{2} \cdot 5^{6} \cdot 7^{3}$	$2^{21} \cdot 23$	1.62599
1	$2 \cdot 3^{7}$	$5^{4} \cdot 7$	1.56789
7^{3}	3^{10}	$2^{11} \cdot 29$	1.54708
$5^{2} \cdot 7937$	7^{13}	$2^{18} \cdot 3^{7} \cdot 13^{2}$	1.49762
11^{2}	$3^{9} \cdot 13$	$2^{11} \cdot 5^{3}$	1.48887
37	2^{15}	$3^{8} \cdot 5$	1.48291
$2^{7} \cdot 5^{2}$	$7^{6} \cdot 41$	13^{6}	1.46192
1	$2^{5} \cdot 3 \cdot 5^{2}$	7^{4}	1.45567
$2^{19} \cdot 13 \cdot 103$	7^{11}	$3^{11} \cdot 5^{3} \cdot 11^{2}$	1.45261
1	$2^{12} \cdot 5^{3}$	$3^{5} \cdot 7^{2} \cdot 43$	1.44331
1	$2^{4} \cdot 3^{7} \cdot 547$	$5^{8} \cdot 7^{2}$	1.43906
$2^{10} \cdot 7$	5^{7}	$3^{8} \cdot 13$	1.43501
3	5^{3}	2^{7}	1.42657
5	3^{11}	$2^{10} \cdot 173$	1.41268

Two more examples with $c(x, y, z) \geq 1.4$ are known:

$$
x=1, \quad y=3.5 .47^{2}, \quad z=2^{18} \cdot 79, \quad c(x, y, z)=1.44965
$$

found by G. Frey (communicated to us by Prof. F. Oort), and

$$
x=2, \quad y=109 \cdot 3^{10}, \quad z=23^{5}, \quad c(x, y, z)=1.62991
$$

found by E. Reyssat (communicated to us by Prof. M. Waldschmidt), which wins the race. Note that these two examples show large primes at two places.

These results do not seem to yield any heuristical evidence for the truth or falsity of the abc-conjecture.

6.7. Tables.

Table I. (Theorem 6.2.)
$p=2, p_{0}=3, p_{1}=5$

x_{0}	$p_{0}^{\chi_{0}}$	x_{1}	$p_{1}^{x_{1}}$	sign	u	w
2	9	10	9765625	-1	4	-610351
10	59049	10	9765625	-1	4	-606661
4	81	12	244140625	-1	9	-476837
6	729	10	9765625	-1	5	-305153
2	9	8	390625	-1	3	-48827
6	729	8	390625	-1	3	-48737
10	59049	8	390625	-1	3	-41447
14	4782969	10	9765625	-1	7	-38927
4	81	8	390625	-1	4	-24409
0	1	8	390625	-1	5	-12207
8	6561	8	390625	-1	6	-6001
0	1	6	15625	-1	3	-1953
4	81	6	15625	-1	3	-1943
8	6561	6	15625	-1	3	-1133
6	729	6	15625	-1	4	-931
2	9	4	625	-1	3	-77
2	9	6	15625	-1	8	-61
0	1	4	625	-1	4	-39
4	81	4	625	-1	5	-17
0	1	2	25	-1	3	-3
2	9	2	25	-1	4	-1
1	3	1	5	1	3	1
1	3	3	125	1	7	1
2	9	0	1	-1	3	1
3	27	1	5	1	5	1
4	81	0	1	-1	4	5
4	81	2	25	-1	3	7
6	729	2	25	-1	6	11
6	729	4	625	-1	3	13
3	27	3	125	1	3	19
5	243	3	125	1	4	23
5	243	1	5	1	3	31
7	2187	5	3125	1	6	83
6	729	0	1	-1	3	91
7	2187	1	5	1	4	137
11	177147	1	5	1	10	173
3	27	5	3125	1	4	197
8	6561	0	1	-1	5	205
7	2187	3	125	1	3	289
8	6561	4	625	-1	4	371

Table I. (cont.)

Table I. (cont.)

x_{0}	$p_{0}^{x_{0}}$	x_{1}	$p_{1}^{x_{1}}$	sign	u	w
1	3	5	3125	1	3	391
5	243	5	3125	1	3	421
9	19683	3	125	1	5	619
8	6561	2	25	-1	3	817
10	59049	6	15625	-1	5	1357
5	243	7	78125	1	5	2449
9	19683	1	5	1	3	2461
9	19683	5	3125	1	3	2851
10	59049	2	25	-1	4	3689
12	531441	4	625	-1	7	4147
1	3	7	78125	1	4	4883
9	19683	7	78125	1	4	6113
13	1594323	7	78125	1	8	6533
10	59049	4	625	-1	3	7303
10	59049	0	1	-1	3	7381
12	531441	8	390625	-1	4	8801
3	27	7	78125	1	3	9769
7	2187	7	78125	,	3	10039
11	177147	5	3125	1	4	11267
3	27	9	1953125	1	7	15259
11	177147	3	125	1	3	22159
11	177147	7	78125	1	3	31909
12	531441	0	1	-1	4	33215
12	531441	6	15625	-1	3	64477
12	531441	2	25	-1	3	66427
11	177147	9	1953125	1	5	66571
13	1594323	3	125	1	4	99653
7	2187	9	1953125	1	4	122207
14	4782969	2	25	-1	5	149467
13	1594323	1	5	1	3	199291
13	1594323	5	3125	1	3	199681
1	3	9	1953125	1	3	244141
5	243	9	1953125	1	3	244171
9	19683	9	1953125	1	3	246601
14	4782969	6	15625	-1	4	297959
13	1594323	9	1953125	1	3	443431
15	14348907	5	3125	1	5	448501
14	4782969	8	390625	-1	3	549043
14	4782969	4	625	-1	3	597793
14	4782969	0	1	-1	3	597871
16	43046721	0	1	-1	6	672605
9	19683	11	48828125	1	6	763247
15	14348907	1	5	1	4	896807

Table continued

Table I. (cont.)

Table I, (cont.)

x_{0}	$p_{0}^{x_{0}}$	x_{1}	$p_{1}^{x_{1}}$	sign	u	w
14	16384	10	9765625	-1	4	-120361
9	512	9	1953125	-1	3	-72319
4	16	8	390625	-1	3	-14467
12	4096	6	15625	-1	3	-427
7	128	5	3125	-1	4	-37
2	4	4	625	-1	3	-23
1	2	2	25	1	3	1
5	32	1	5	-1	3	1
6	64	3	125	1	3	7
11	2048	4	625	1	5	11
9	512	0	1	1	3	19
10	1024	2	25	-1	3	37
3	8	6	15625	1	4	193
15	32768	3	125	-1	4	403
14	16384	1	5	1	3	607
17	131072	7	78125	-1	3	1961
16	65536	5	3125	1	3	2543
8	256	7	78125	,	3	2903
19	524288	2	25	1	4	6473
18	262144	0	1	-1	3	9709
23	8388608	1	5	-1	6	11507
13	8192	8	390625	1	3	14771
22	4194304	8	390625	-1	5	15653
10	1024	11	48828125	1	7	22327
18	262144	9	1953125	1	4	27349
20	1048576	4	625	-1	3	38813
0	1	9	1953125	,	3	72338
21	2097152	6	15625	1	3	78251
5	32	10	9765625	1	3	361691
24	16777216	3	125	1	3	621383
23	8388608	10	9765625	1	3	672379
26	67108864	7	78125	1	4	829469
$p=5, p_{0}=2, p_{1}=3$						
x_{0}	$p_{0}^{x_{0}}$	x_{1}	$p_{1}^{x_{1}}$	sign	u	w
12	4096	16	43046721	-1	3	-344341
5	32	15	14348907	-1	3	-114791
7	128	1	3	-1	3	1
6	64	8	6561	1	3	53
14	16384	2	9	-1	3	131
13	8192	9	19683	1	3	223
20	1048576	10	59049	1	3	8861
21	2097152	3	27	-1	3	16777

Table II. (Theorem 6.3.)

x	y	$\operatorname{ord}_{p}(x)$							$\operatorname{ord}_{p}(y)$				11	13	$p=2$	$\underset{3}{ } \operatorname{ord}_{p}(z)$		7	11	13
2401	4160	6561	0	0	0	4	0	0	6	0	1	0	0	1	0	8	0	0	0	0
875	6561	7436	0	0	3	1	0	0	0	8	0	0	0	0	2	0	0	0	1	2
1183	6561	7744	0	0	0	1	0	2	0	8	0	0	0	0	6	0	0	0	2	0
1125	8192	9317	0	2	3	0	0	0	13	0	0	0	0	0	0	0	0	1	3	0
1183	8192	9375	0	0	0	1	0	2	13	0	0	0	0	0	0	1	5	0	0	0
16	14625	14641	4	0	0	0	0	0	0	2	3	0	0	1	0	0	0	0	4	0
81	14560	14641	0	4	0	0	0	0	5	0	1	1	0	1	0	0	0	0	4	0
1936	13689	15625	4	0	0	0	2	0	0	4	0	0	0	2	0	0	6	0	0	0
3718	11907	15625	1	0	0	0	1	2	0	5	0	2	0	0	0	0	6	0	0	0
5824	9801	15625	6	0	0	1	0	1	0	4	0	0	2	0	0	0	6	0	0	0
49	16335	16384	0	0	0	2	0	0	0	3	1	0	2	0	14	0	0	0	0	0
2695	13689	16384	0	0	1	2	1	0	0	4	0	0	0	2	14	0	0	0	0	0
8019	8788	16807	0	6	0	0	1	0	2	0	0	0	0	3	0	0	0	5	0	0
3584	14641	18225	9	0	0	1	0	0	0	0	0	0	4	0	0	6	2	0	0	0
1625	16807	18432	0	0	3	0	0	1	0	0	0	5	0	0	11	2	0	0	0	0
3993	16807	20800	0	1	0	0	3	0	0	0	0	5	0	0	6	0	2	0	0	1
49	28512	28561	0	0	0	2	0	0	5	4	0	0	1	0	0	0	0	0	0	4
12936	15625	28561	3	1	0	2	1	0	0	0	6	0	0	0	0	0	0	0	0	4
22000	6561	28561	4	0	3	0	1	0	0	8	0	0	0	0	0	0	0	0	0	4
15625	17303	32928	0	0	6	0	0	0	0	0	0	0	3	1	5	1	0	3	0	0
507	32768	33275	0	1	0	0	0	2	15	0	0	0	0	0	0	0	2	0	3	0
10985	41503	52488	0	0	1	0	0	3	0	0	0	3	2	0	3	8	0	0	0	0
10000	49049	59049	4	0	4	0	0	0	0	0	0	3	1	1	0	10	0	0	0	0
14641	46875	61516	0	0	0	0	4	0	0	1	6	0	0	0	2	0	0	1	0	3
7168	78125	85293	10	0	0	1	0	0	0	0	7	0	0	0	0	8	0	0	0	1
20449	97200	117649	0	0	0	0	2	2	4	5	2	0	0	0	0	0	0	6	0	0
13	151250	151263	0	0	0	0	0	1	1	0	4	0	2	0	0	2	0	5	0	0
12005	161051	173056	0	0	1	4	0	0	0	0	0	0	5	0	10	0	0	0	0	2
121	255879	256000	0	0	0	0	2	0	0	9	0	0	0	1	11	0	3	0	0	0
2197	583443	585640	0	0	0	0	0	3	0	5	0	4	0	0	3	0	1	0	4	0
91	1771470	1771561	0	0	0	1	0	1	1	11	1	0	0	0	0	0	0	0	6	0

Table III.

$$
-\log _{2} 5 / \log _{2} 3=
$$

0.101011110100001111101100010101000000100111101000101000010011101101000001011111000000111010000000000 0001011100111001011101001011011100001010011001010111100000000101001100010000011011101110010101110 100100100100011010000111000011111101111000111011000000001010110101100000100111011100111011101101011
 0000011101101011110010010111010101110001011001100001100001100100101100010000100110001110000110110100 0011000011 0111...

$$
-\log _{2} 7 / \log _{2} 3=
$$

0.0100101011011111110011010011111111110010010001110000011001000101111110001011101011110100010000001110 0101100101100100011110111010011000111000110111011101011010010101100100110011100010111011000000101110

 10111011001010000111001011001101100111110010101011111011101101011101101011001000111011011000100111111 $10001111101010 . .$.

$$
-\log _{2} 11 / \log _{2} 3=
$$

0.1001101110000010100100110010100111000100001011000001000110011001001111101100001100101011100001111101

 1100111001100111111010000110011011010101000101110011101110111011000111110101100001000101111111010010 1010111100110110011111000001111110001101111000110100001001000100111000011011010100110101010000100001 $10101110011111 . .$.
$-\log _{2} 13 / \log _{2} 3=$
0.1101110110101001000101100011111000100110011100000101110010111110110110111000011111111110011101111110 0001111110010001001011011111010100011000111110101100001101010011000000000010110110010001010010010101
 10010000010100010101101100100101000111110110100111111001000110111011000010101001111001101111011110000
 01000001110000000

$-\log _{3} 5 / \log _{3} 2=$

0.1102212121220011201021102102101002220212200101011222201210212102210000220201201202022210010001202020

$-\log _{3} 7 / \log _{3} 2=$
 $\begin{array}{lllllllllllllllllllllll}20021 & 1112 & 01122 & 00011 & 22100 & 00000 & 22011 & 11100 & 12010 & 22110 & 12122 & 00222 & 10220 & 21102 & 20001 & 02101 & 00121 & 1100211012 & 12201 \\ 21011 & 20100 & 01110 & 02000 & 21222 & 12000 & 02201 & 22012 & 01022 & 02021 & 00210 & 10221 & 00221 & 20202 & 02222 & 22122 & 00100 & 12021 & 21220 & 02220\end{array}$

$$
-\log _{3} 11 / \log _{3} 2=
$$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}0.21112 & 20101 & 00222 & 20222 & 01212 & 01100 & 12100 & 01201 & 01111 & 01212 & 01210 & 20121 & 20001 & 12021 & 01122 & 21202 & 12020 & 00212 & 11102 & 11002\end{array}$

$-\log _{3} 13 / \log _{3} 2=$

 $12020201111210200011020020200010211002221220202202202122201201222202201121120021111111000002 \ldots$.

$$
-\log _{5} 3 / \log _{5} 2=
$$

 2412042032430142142140044011422100442021140111040400210144434412114442113321204313134041004113423341410

$$
-\log _{5} 7 / \log _{5} 2=
$$

0.0304434433101144320312033140021234131312034210034341423000402424122103142403221411401422301304033404

$-\log _{5} 11 / \log _{5} 2=$

0.4403221012131242113403320334222104112112424200022041143120403214421100013042401343401233131202234404

$$
-\log _{5} 13 / \log _{5} 2=
$$

$0.124230222401323243142302132420141,5441224044031133443213333030313032244111334324323422113204104131134$ 4132034110030244001223211100144144104420401140002133224301030324332031220212023432441000130420343134 $2201230332242243101302344311324113230442041443233210241211314403230143013040 \ldots$...

$$
-\log _{7} 2 / \log _{7} 3=
$$

 $4132632413 \quad 6563352502526 \ldots$.
$-\log _{7} 5 / \log _{7} 3=$
 $\begin{array}{lll}42306 & 51054 & 13301 \\ 21343 & 24510 & 62633 \\ 00155 & 43020 \\ 361 \ldots\end{array}$
$-\log _{7} 11 / \log _{7} 3=$
0.2503556505335530233110224321435054302561423522343026326534462346231210024160233513066542401300660451

$-\log _{7} 13 / \log _{7} 3=$
 $24255366034545266563536 \ldots$

$$
-\log _{11} 3 / \log _{11} 2=
$$

$$
-\log _{11} 5 / \log _{11} 2=
$$

$0.351 A 97223 A 31378$ 09193 $42445306 A 3965881186248667$ AA6A2 $39 A 03771390169321678336521268795 A A 8241907827628711$

$$
-\log _{11} 7 / \log _{11} 2=
$$

$$
-\log _{11} 13 / \log _{11} 2=
$$

$0.9011 A 949625299039096$ 3A68A 7556A 1A4A3 $44758576922018842770072 A 39 A 9778819 A 975181439607360899 A 29939126176$

$$
-\log _{13} 3 / \log _{13} 2=
$$

 $-\log _{13} 5 / \log _{13} 2=$
 $-\log _{13} 7 / \log _{13} 2=$
$0 . A 1 C 789 C 71 A 6311051424$ 42CA9 OAAA7 B225B B0281 501B1 976C2 3C05B 09CAS AB803 C3251 838AC 72502 Al844 $03603644 A 8$ A8501 173BB BBClC $30466223 C 6$ C98B4 564C2 4714028856 C8676 $15 C 3012892$ A3317 $163 \mathrm{C} 8 \mathrm{CA} . .$.

$$
-\log _{13} 11 / \log _{13} 2=
$$

Table IV.

nr.	p	m	非
1	2	44	-
2	3	28	-
3	5	20	-
4	7	16	-
5	11	12	-
6	13	12	-
7	2	33	-
8	3	21	-
9	5	15	-
10	7	12	-
11	11	9	-
12	3	9	-
13	2	22	-
14	3	14	-
15	5	10	-
16	7	8	-
17	11	6	-
18	13	6	-
19	2	21	-
20	2	20	-
21	2	19	-
22	2	18	-
23	2	17	-
24	2	16	-
25	2	15	-
26	2	14	-

nr.	p	m	\#
27	2	13	1
28	2	12	2
29	2	11	2
30	3	13	-
31	3	12	-
32	3	11	-
33	3	10	1
34	3	9	1
35	3	8	1
36	3	7	6
37	5	9	-
38	5	8	-
39	5	7	-
40	5	6	-
41	5	5	6
42	7	7	-
43	7	6	-
44	7	5	1
45	7	4	4
46	11	5	-
47	11	4	1
48	11	3	4
49	13	5	-
50	13	4	-
51	13	3	1

nr.	p	m	\#
52	2	10	2
53	2	9	3
54	2	8	6
55	2	7	15
56	2	6	16
57	2	5	26
58	2	4	31
59	2	3	44
60	3	6	5
61	3	5	8
62	3	4	16
63	3	3	35
64	3	2	54
65	3	1	87
66	5	4	1
67	5	3	5
68	5	2	18
69	5	1	36
70	7	3	-
71	7	2	6
72	7	1	18
73	11	2	1
74	11	1	8
75	13	2	-
76	13	1	4

Chapter 7. The sum of two S-units being a square.

7.1. Introduction

Let $p_{1}, \ldots, p_{s}(s \geq 1)$ be distinct primes, and let s be the set of positive rational integers which have no prime divisors different from the p_{i}. A rational number is called an S-unit if its absolute value is a quotient of elements of S. Thus the set of S-units is

$$
\left\{ \pm p_{1}^{x_{1}} \cdot \ldots \cdot p_{s}^{x_{s}} \mid x_{i} \in \mathbb{Z} \quad \text { for } i=1, \ldots, s\right\}
$$

We study the diophantine equation

$$
x+y=z^{2}
$$

in S-units x, y, and $z \in \mathbb{Q}$, where the set of primes p_{1}, \ldots, p_{s} is given. We show how to find all solutions of this equation, using the theory of p-adic linear forms in logarithms, and a computational p-adic diophantine approximation method. We actually perform all the necessary computations for solving the equation completely for $\left\{p_{1}, \ldots, p_{s}\right\}=\{2,3,5,7\}$. This type of equations has applications in arithmetic algebraic geometry (cf. Setzer [1975], Pinch [1984]).

We start with getting rid of the denominators. Let x, y, z be a solution. There is a $d \in S$ such that $|d \cdot x|,|d \cdot y| \in S$. Put $d=d_{1} \cdot d_{2}^{2}$, where $d_{1}, d_{2} \in S$ and d_{1} squarefree. Then

$$
d_{1} \cdot d \cdot x+d_{1} \cdot d \cdot y=\left(d_{1} \cdot d_{2} \cdot z\right)^{2}
$$

which has the same form as $x+y=z^{2}$, but now $\left|d_{1} \cdot d \cdot x\right|,\left|d_{1} \cdot d \cdot y\right| \in S \subset \mathbb{Z}$ and $d_{1} \cdot d_{2} \cdot z \in \mathbb{Z}$. Without loss of generality we may therefore study

$$
\begin{equation*}
x+y=z^{2} \tag{7.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
x \in S, \quad \pm y \in S, \quad z \in \mathbb{Z} \tag{7.2}\\
x \geq y, \quad z>0 \\
(x, y) \text { is squarefree }
\end{array}\right.
$$

We shall prove the following results.

THEOREM 7.1. Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{s}}$ be given. There exists an effectively computable constant C, depending on p_{1}, \ldots, p_{s} only, such that any solution x, y, z of equation (7.1) with conditions (7.2) satisfies $\max (x,|y|, z)<C$.

THEOREM 7.2. Let $\left\{p_{1}, \ldots, p_{s}\right\}=\{2,3,5,7\}$. Equation (7.1) with conditions (7.2) has exactly the 388 solutions given in Table I.

Remarks. 1. The Tables are given in Section 7.9. We stress that the aim of this chapter is not only to prove these theorems, but to show as well that for any given set of primes $\left\{p_{1}, \ldots, p_{s}\right\}$ a result similar to Theorem 7.2 can be proved along the same lines, in a more or less algorithmic way.
2. Equation (7.1) with conditions (7.2) can be seen as a further generalization of the generalized Ramanujan-Nagell equation

$$
\begin{equation*}
x^{2}+k=p_{1}^{n_{1}} \cdot \ldots \cdot p_{s}^{n} \tag{7.3}
\end{equation*}
$$

(cf. Chapter 4), namely by taking $|k| \in S$ arbitrary instead of $k \in \mathbb{Z}$ fixed. The method of this chapter to solve (7.1) is also a generalization of the method of Chapter 4 to solve (7.3).

Equation (7.1) can be transformed into a number of Pell-1ike equations. Put

$$
x=D \cdot u^{2}
$$

where $D, u \in S$, and D is squarefree. There are only 2^{S} possibilities for D. Now, (7.1) is equivalent to a finite number of equations

$$
\begin{equation*}
z^{2}-D \cdot u^{2}=y \tag{7.4}
\end{equation*}
$$

in $u \in S, \quad \pm y \in S, \quad z \in \mathbb{Z}$, with $z>0$ and $(u, y)=1$. We treat equation (7.4) by factorizing its both sides in the field $K=\mathbb{Q}(\mathbb{D})$. When dealing with equation (7.4) we allow z and u to be negative.

7.2. The case $D=1$.

First we consider the special case $D=1$. Then (7.4) is equivalent to

$$
\begin{gather*}
\left\{\begin{array}{c}
z+u=y_{1}, \\
z-u=y_{2}
\end{array}\right. \\
\text { where } y=y_{1} \cdot y_{2}, y_{1} \in S, \quad \pm y_{2} \in S, \text { and } y_{1}>\left|y_{2}\right| \text {. Subtraction yields } \\
2 \cdot u=y_{1}-y_{2}, \tag{7.5}
\end{gather*}
$$

where now all variables u, y_{1}, y_{2} (apart from the sign) are in s, hence in \mathbb{Z}. By $\left(u, y_{1}\right)=\left(u, y_{2}\right)=1$, equation (7.5) is of the form $a+b=c$, or $2 \cdot a+2 \cdot b=2 \cdot c$, where a, b, c are composed of primes $2, p_{1}, \ldots, p_{s}$ only, and $(a, b)=1, a \geq b>0$. In Chapter 6 it was shown how to solve $a+b=c$. For our standard example $\left\{p_{1}, \ldots, p_{s}\right\}=(2,3,5,7\}$ we have the following result.

LEMMA 7.3. Let $\left(p_{1}, \ldots, p_{s}\right)=(2,3,5,7)$. Equation (7.1) with conditions (7.2) and $D=1$ has exactly the 95 solutions given in Table I with $\mathrm{D}=1$.

Proof. From Theorem 6.3 it follows that $a+b=c$ with $a, b, c \in S$ $(a, b)=1, a \geq b$ has exactly 63 solutions. They are easy to compute. Each of these gives rise to three possibilities for (7.5):

$$
\begin{aligned}
& \text { if } 2 \mid a \text { then }\left(u, y_{1}, y_{2}\right)=\left(\frac{1}{2} a, b, c\right),(b, 2 c, 2 a),(c, 2 a,-2 b) \text {, } \\
& \text { if } 2 \mid b \text { then }\left(u, y_{1}, y_{2}\right)=(a, 2 b, 2 c),\left(\frac{1}{2} b, c, a\right),(c, 2 a,-2 b) \text {, } \\
& \text { if } 2 \mid c \text { then }\left(u, y_{1}, y_{2}\right)=(a, 2 b, 2 c),(b, 2 c, 2 a),\left(\frac{1}{2} c, a,-b\right) .
\end{aligned}
$$

Of the thus found 189 possibilities, the 95 ones given in Table 1 with $D=1$ satisfy $x \geq y$ and $z>0$, whereas the others don't.

This completes our treatment of the case $D=1$.

7.3. Towards generalized recurrences.

From now on, let $D>1$. Put $K=\mathbb{Q}(/ D)$. Let $\sigma: K \rightarrow K$ be the automorphism of K with $\sigma(/ D)=-/ D$. For any number or ideal X in K we write X^{\prime} for $\sigma(X)$, for convenience. Let p_{i} for $i=1, \ldots$, s be the prime ideal in K such that $\operatorname{ord}_{p_{i}}\left(p_{i}\right)>0$. If p_{i} splits in σ_{K}, this is well defined if a choice has been made from the two possibilities for $\sqrt{ }(\bmod p)$. Put for a solution z, u, y of (7.4)

$$
x=z+u \cdot \sqrt{ } D .
$$

Then $y=x \cdot x^{\prime}$, and by $(u, y)=1$ we have

$$
\begin{equation*}
\min \left(\operatorname{ord}_{p_{i}}(u), \operatorname{ord}_{p_{i}}(y)\right)=0 \tag{7.6}
\end{equation*}
$$

Equation (7.4) leads to the conjugated ideal equations

$$
\left\{\begin{array}{l}
(x)=\prod_{i=1}^{s} p_{i}^{a_{i}} \cdot p_{i}^{\prime} b_{i} \tag{7.7}\\
\left(x^{\prime}\right)=\prod_{i=1}^{s} p_{i}^{\prime} a_{i} \cdot p_{i}^{b_{i}}
\end{array}\right.
$$

where $a_{i}, b_{i} \in \mathbb{N}_{0}$, and $b_{i}=0$ if $p_{i}=p_{i}^{\prime}$. We need the following auxiliary lemma.

LEMMA 7.4. If $\xi \in K$ and $\operatorname{ord}_{p}(\xi)=\operatorname{ord}_{p}\left(\xi^{\prime}\right)$ for a prime p, then

$$
\operatorname{ord}_{p}(\xi) \leq \operatorname{ord}_{p}\left(\xi-\xi^{\prime}\right)
$$

Moreover, if $\mathrm{p}=2$ and $\mathrm{D} \equiv 1(\bmod 8)$, then

$$
\operatorname{ord}_{2}(\xi) \leq \operatorname{ord}_{2}\left(\left(\xi-\xi^{\prime}\right) / 2\right)
$$

and, if $\mathrm{p}=2$ and $\mathrm{D} \equiv 2,3(\bmod 4)$, then

$$
\operatorname{ord}_{2}(\xi) \leq \operatorname{ord}_{2}\left(\left(\xi-\xi^{\prime}\right) / 2 \sqrt{ }\right)+\frac{1}{2}
$$

Proof. This is an easy exercise, which we leave to the reader.

We distinguish, as usual, three cases for the factorization of the prime p_{i} in K : it may split, ramify or remain prime. See Borevich and Shafarevich [1966], section III. 8.
$\rightarrow \quad p_{i}$ remains prime in K. Then $p_{i} \nmid D$, and if $p_{i}=2$ then $D \equiv 5(\bmod 8)$. We have $\left(p_{i}\right)=p_{i}=p_{i}^{\prime}$, and from ord $p_{i}(\chi)=\operatorname{ord}_{p_{i}}\left(\chi^{\prime}\right)$ and Lemma 7.4 we obtain

$$
\operatorname{ord}_{p_{i}}(y)=2 \cdot \operatorname{ord}_{p_{i}}(x) \leq 2 \cdot \operatorname{ord}_{p_{i}}\left(x-x^{\prime}\right)=2 \cdot \operatorname{ord}_{p_{i}}(2 \cdot u \cdot \sqrt{ })
$$

It follows, using (7.6), that

$$
\begin{aligned}
& \text { if } p_{i} \neq 2 \text { then } \operatorname{ord}_{p_{i}}(y)=2 \cdot a_{i}=0, \\
& \text { if } p_{i}=2 \text { then } \operatorname{ord}_{2}(y)=2 \cdot a_{i}=0,2 \text {, and if } a_{i}=1 \text { then } \\
& \operatorname{ord}_{2}(u)=0 .
\end{aligned}
$$

$\rightarrow p_{i}$ ramifies in K. Then $p_{i} \mid D$ if $p_{i} \neq 2$, and $D \equiv 2,3(\bmod 4)$ if $p_{i}=2$. We have $\left(p_{i}\right)=p_{i}^{2}, p_{i}=p_{i}^{\prime}$, and $\quad \operatorname{ord}_{p_{i}}(\chi)=\operatorname{ord}_{p_{i}}\left(\chi^{\prime}\right)=\frac{1}{2} \cdot a_{i}$. From Lemma 7.4 we find

$$
\operatorname{ord}_{p_{i}}(y)=2 \cdot \operatorname{ord}_{p_{i}}(x) \leq 1+2 \cdot \operatorname{ord}_{p_{i}}\left(\left(x-x^{\prime}\right) / 2 \cdot / D\right)=1+2 \cdot \operatorname{ord}_{p_{i}}(u)
$$

By (7.6) we obtain

$$
\begin{gathered}
\operatorname{ord}_{p_{i}}(y)=a_{i}=0,1, \text { and if } a_{i}=1 \text { then } \operatorname{ord}_{p_{i}}(u)=0 . \\
\rightarrow p_{i} \text { splits in } K . \text { Then } p_{i} \nmid D, \text { and if } p_{i}=2 \text { then } D \equiv 1(\bmod 8) . \\
\text { We have }\left(p_{i}\right)=p_{i} \cdot p_{i}^{\prime}, p_{i} \neq p_{i}^{\prime} \cdot \text { Further, ord } p_{i}\left(p_{i}\right)=1, \quad \operatorname{ord}_{p_{i}}\left(p_{i}^{\prime}\right)=0 . \\
\text { Hence } \operatorname{ord}_{p_{i}}(x)=a_{i}, \quad \operatorname{ord}_{p_{i}}\left(x^{\prime}\right)=b_{i} \cdot \text { If } a_{i}=b_{i} \text { then from } \\
\operatorname{ord}_{p_{i}}(y)=2 \cdot \operatorname{ord}_{p_{i}}(x) \leq 2 \cdot \operatorname{ord}_{p_{i}}\left(\left(x-x^{\prime}\right) / 2\right)=2 \cdot \operatorname{ord}_{p_{i}}(u)
\end{gathered}
$$

we obtain by (7.6) that

$$
\operatorname{ord}_{p_{i}}(y)=a_{i}=b_{i}=0
$$

If $a_{i} \neq b_{i}$ then $\operatorname{ord}_{p_{i}}(y)=a_{i}+b_{i}>0$, hence ord $p_{i}(u)=0$, by (7.6).
We infer in this case

$$
\begin{aligned}
& \operatorname{ord}_{p_{i}}(y)=a_{i}+b_{i} \geq 1+2 \cdot \min \left(a_{i}, b_{i}\right)=1+2 \cdot \operatorname{ord}_{p_{i}}\left(\chi-\chi^{\prime}\right) \\
& =1+2 \cdot \operatorname{ord}_{p_{i}}(2)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \operatorname{ord}_{p_{i}}(y)=\max \left(a_{i}, b_{i}\right), \quad \min \left(a_{i}, b_{i}\right)=0 \quad \text { if } \quad p_{i} \neq 2, \\
& \operatorname{ord}_{p_{i}}(y)=\max \left(a_{i}, b_{i}\right)+1, \quad \min \left(a_{i}, b_{i}\right)=1 \quad \text { if } p_{i}=2 .
\end{aligned}
$$

Put $b_{0}=\min \left(a_{i}, b_{i}\right)$ if $p_{i}=2$ occurs, and $b_{0}=0$ otherwise. (Note that
$\min \left(a_{i}, b_{i}\right)=1$ may occur only if $p_{i} \neq p_{i}^{\prime}$, hence only if $p_{i}=2$ splits). Let us assume that the splitting primes of p_{1}, \ldots, p_{s} are p_{1}, \ldots, p_{t} for some $0 \leq t \leq s$. Put

$$
\begin{aligned}
& I=\left\{i \mid 1 \leq i \leq t, \quad a_{i}>b_{i}\right\} \\
& I^{\prime}=\left\{i \mid 1 \leq i \leq t, \quad a_{i}<b_{i}\right\}
\end{aligned}
$$

For $i=1, \ldots, t$, let h_{i} be the smallest positive integer such that $p_{i} h_{i}$ is a principal ideal, say

$$
p_{i}^{h_{i}}=\left(\pi_{i}\right)
$$

If h denotes the class number of K, then $h_{i} \mid h$. Now, $\pi_{i} \in K$ is determined up to multiplication by a unit. Thus we may choose π_{i} such that

$$
\begin{aligned}
& \left|\pi_{i}\right|>\left|\pi_{i}^{\prime}\right| \quad \text { if } \quad i \in I, \\
& \left|\pi_{i}\right|<\left|\pi_{i}^{\prime}\right| \quad \text { if } \quad i \in I^{\prime}
\end{aligned}
$$

For $i=1, \ldots, t$, put

$$
\left|a_{i}-b_{i}\right|=c_{i} \cdot h_{i}+d_{i}
$$

with $c_{i}, d_{i} \in \mathbb{N}_{0}$, and $0 \leq d_{i} \leq h_{i}-1$. Consider the ideal

$$
a=(2)^{b_{0}} \cdot \prod_{i \in I} p_{i}^{d_{i}} \cdot \prod_{i \in I^{\prime}} p_{i}^{\prime}{ }_{i} \cdot \prod_{i=t+1}^{s} p_{i}^{a_{i}}
$$

From the above considerations it follows that, for given K, p_{1}, \ldots, p_{s}, there are only finitely many possibilities for a. By (7.7) it follows that

$$
(x)=a \cdot \prod_{i \in I}\left(\pi_{i}\right)^{c} i \cdot \prod_{i \in I^{\prime}}\left(\pi_{i}^{\prime}\right)^{c_{i}}
$$

(namely, $\left|a_{i}-b_{i}\right|=\max \left(a_{i}, b_{i}\right)$ if $p_{i} \neq 2$, since then $\min \left(a_{i}, b_{i}\right)=0$; and $\left|a_{i}-b_{i}\right|=\max \left(a_{i}, b_{i}\right)-1$ if $p_{i}=2$ and $b_{0}=1$). Hence a is a principal ideal, say

$$
a=(\alpha)
$$

for an $\alpha \in O_{K}$. Up to multiplication by a unit, there are only finitely many possibilities for α. Let ϵ be the fundamental unit of K with $\epsilon>1$.

Now, (7.7) leads to the system of equations

$$
\left\{\begin{array}{l}
x=z+u / D= \pm \alpha \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \cdot \prod_{i \in I} \pi_{i}^{\prime} c_{i}^{c_{i}} \tag{7.8}\\
x^{\prime}=z-u / D= \pm \alpha^{\prime} \cdot \epsilon^{\prime}, n \cdot \prod_{i \in I} \pi_{i}^{\prime}{ }_{i} \cdot \prod_{i \in I} \pi_{i}^{c_{i}}
\end{array},\right.
$$

where $n \in \mathbb{Z}$. Put for $n \in \mathbb{Z}, m_{1}, \ldots, m_{t} \in \mathbb{N}_{0}$, and for each possible α

$$
\begin{aligned}
& G_{\alpha}\left(n, m_{1}, \ldots, m_{t}\right)=\frac{\alpha}{2 \sqrt{D}} \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I^{\prime}} \pi_{i}^{\prime} m_{i}-\frac{\alpha^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{\prime} n^{n} \cdot \prod_{i \in I} \pi_{i}^{\prime}{ }^{m_{i}} \cdot \prod_{i \in I}{ }^{\prime} \pi_{i}^{m_{i}}, \\
& H_{\alpha}\left(n, m_{1}, \ldots, m_{t}\right)=\frac{\alpha}{2} \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} \cdot \prod_{i \in I} \pi^{\prime}{ }^{m_{i}}+\frac{\alpha}{2} \cdot \epsilon^{\prime} n \cdot \prod_{i \in I} \pi_{i}^{\prime}{ }^{m_{i}} \cdot \prod_{i \in I} \pi_{i}^{m_{i}} .
\end{aligned}
$$

Then (7.8) is equivalent to

$$
\left\{\begin{array}{l}
\pm u=G_{\alpha}\left(n, c_{1}, \ldots, c_{t}\right) \tag{7.9}\\
\pm z=H_{\alpha}\left(n, c_{1}, \ldots, c_{t}\right)
\end{array}\right.
$$

The functions G_{α} and H_{α} are generalized recurrences in the sense that if all variables but one are fixed, then they become integral binary recurrence sequences. We show an example in Fig. 8.

Figure 8. $\quad G_{\alpha}(n, m)=\frac{\alpha}{2 \sqrt{D}} \cdot \epsilon^{n} \cdot \pi^{m}-\frac{\alpha^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{\prime n} \cdot \pi^{\prime m} \quad$ for $\quad D=30, \quad \alpha=5+\sqrt{30}$, $\epsilon=11+2 \cdot \sqrt{ } 30, \quad \pi=13+2 \cdot \sqrt{30}$, with $-10 \leq n \leq 10 \quad$ (vertically) and $0 \leq m \leq 10$ (horizontally). Numbers $\geq 10^{12}$ are denoted by asterisks.
7.4. Towards linear forms in logarithms.

Let us write $u_{i}=\operatorname{ord}_{p_{i}}(u)$ for $i=1, \ldots, s$. Put for each α

$$
\begin{aligned}
I_{U}= & \left\{i \mid 1 \leq i \leq s, \operatorname{ord}_{p_{i}}\left(G_{\alpha}\left(n, m_{1}, \ldots, m_{t}\right)\right)>0\right. \text { occurs } \\
& \text { for at least one } \left.\left(n, m_{1}, \ldots, m_{t}\right) \in \mathbb{Z} \times \mathbb{N}_{0}^{t}\right\} .
\end{aligned}
$$

Note that since $(u, y)=1$ the sets I_{U}, I, I are disjunct. We proceed with the first equation of system (7.9). Written out in full detail it reads

$$
\begin{equation*}
\frac{\alpha}{2 \sqrt{D}} \cdot \epsilon^{n} \cdot \prod_{i \in I} \pi_{i}^{c_{i}} \cdot \prod_{i \in I} \pi_{i}^{\prime}{ }_{i}-\frac{\alpha^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{\prime n} \cdot \prod_{i \in I} \pi_{i}^{\prime} c_{i} \cdot \prod_{i \in I} \pi_{i}^{c_{i}}= \pm \prod_{i \in I_{U}}^{u_{i}} \tag{7.10}
\end{equation*}
$$

Now, I, I^{\prime}, I_{U} depend on α, which depends on the particular solution of equation (7.4) that we presupposed. However, we know that α belongs to a finite set, which can be computed explicitly. So if we can solve (7.10) completely for each α of this set, then we can find all solutions of (7.9), hence of (7.1).

The set of the $\alpha^{\prime} s$ may be reduced, without loss of generality, as follows. If $D \equiv 1(\bmod 8)$ then $b_{0}=0,1$ may both occur, with $\alpha=\alpha_{0}, 2 \cdot \alpha_{0}$ respectively. We only have to consider $2 \cdot \alpha_{0}$, because if $u=u_{0}, z=z_{0}$ is a solution of (7.9) for $\alpha=\alpha_{0}$, then $u=2 \cdot u_{0}, z=2 \cdot z_{0}$ is a solution of (7.9) for $\alpha=2 \cdot \alpha_{0}$. Hence it is not necessary to consider $\alpha=\alpha_{0}$ if also $\alpha=2 \cdot \alpha_{0}$ is already being considered. By the same argument, if $\mathrm{D} \equiv 5(\bmod 8) \quad$ then with $\alpha=\alpha_{0}$ such that $\operatorname{ord}_{2}\left(\alpha_{0}\right)=0$ also $\alpha=2 \cdot \alpha_{0}$ may occur, so that we only have to consider the latter. Note that it may now occur that $(u, y)=2$. The condition $(u, y)=1$ is used only to ensure that I_{U} and $I \cup I$, are disjunct. This remains true in the above cases with $(u, y)=2$. Further, if $\left(\alpha_{0}\right) \neq\left(\alpha_{0}^{\prime}\right)$ for some α_{0}, then we only have to consider one α of the pair $\alpha_{0}, \alpha_{0}^{\prime}$. Namely, if the I, I belonging to α_{0} are I_{0}, I_{0}^{\prime}, then the I, I^{\prime} belonging to α_{0}^{\prime} are I_{0}^{\prime}, I_{0}, and then

$$
\begin{aligned}
& G_{\alpha_{0}^{\prime}}\left(n, m_{1}, \ldots, m_{t}\right)=\frac{\alpha_{0}^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{n} \cdot \prod_{I_{0}^{\prime}} \pi_{i}^{c_{i}} \cdot \prod_{I_{0}} \pi_{i}^{\prime}{ }_{i}-\frac{\alpha_{0}}{2 \sqrt{D}} \cdot \epsilon^{, n} \cdot \prod_{I_{0}^{\prime}} \pi_{i}^{\prime}{ }^{c_{i}} \cdot \prod_{I_{0}} \pi_{i}^{c_{i}} \\
& = \pm\left[\frac{\alpha_{0}^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{,-n} \cdot \prod_{I_{0}} \pi_{i}^{\prime}{ }^{c_{i}} \cdot \prod_{I_{0}^{\prime}} \pi_{i}^{c_{i}}-\frac{\alpha_{0}}{2 \sqrt{D}} \cdot \epsilon^{-n} \cdot \prod_{I_{0}} \pi_{i}{ }^{c_{i}} \cdot \prod_{I_{0}^{\prime}} \pi_{i}^{\prime}{ }^{c_{i}}\right] \\
& =\mp G_{\alpha_{0}}\left(-n, m_{1}, \ldots, m_{t}\right) \text {, }
\end{aligned}
$$

(by using $\epsilon \cdot \epsilon^{\prime}= \pm 1$), and analogously

$$
H_{\alpha_{0}^{\prime}}\left(n, m_{1}, \ldots, m_{t}\right)= \pm H_{\alpha_{0}}\left(-n, m_{1}, \ldots, m_{t}\right)
$$

From equation (7.10) we now derive p_{i}-adic linear forms in logarithms, in three different ways, according to $i \in I, I$ or I_{U}. Put

$$
\gamma_{i}=\frac{3}{2} \text { if } p_{i}=2, \quad \gamma_{i}=1 \text { if } p_{i}=3, \quad \gamma_{i}=\frac{1}{2} \text { if } p_{i} \geq 5
$$

Then $\gamma_{i}>1 /\left(p_{i}-1\right)$, hence if ord $p_{i}(\xi) \geq \gamma_{i}$ for a $\xi \in K$ then

$$
\begin{equation*}
\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}(1 \pm \xi)\right)=\operatorname{ord}_{p_{i}}(\xi) \tag{7.11}
\end{equation*}
$$

We now have the following result.

LEMMA 7.5. Let $n, c_{i}\left(i \in I \cup I^{\prime}\right), u_{i}\left(i \in I_{U}\right)$ satisfy (7.10).
(i). For $i \in I_{U}$ put

$$
\begin{aligned}
\lambda_{i}= & \operatorname{ord}_{p_{i}}\left(2 \sqrt{ } / \alpha^{\prime}\right) \\
\Lambda_{i}= & \log _{p_{i}}\left(\frac{\alpha}{\alpha^{\prime}}\right)+n \cdot \log _{p_{i}}\left(\frac{\epsilon}{\epsilon^{\prime}}\right)+\sum_{j \in I} c_{j} \cdot \log _{p_{i}}\left(\frac{\pi_{j}}{\pi_{j}^{\prime}}\right) \\
& -\sum_{j \in I^{\prime}} c_{j} \cdot \log _{p_{i}}\left(\frac{\pi_{j}}{\pi_{j}^{\prime}}\right)
\end{aligned}
$$

If $u_{i}+\lambda_{i} \geq \gamma_{i}$ then

$$
u_{i}+\lambda_{i}=\operatorname{ord}_{p_{i}}\left(\Lambda_{i}\right)
$$

(ii). For $i \in I$ put

$$
\kappa_{i}=\operatorname{ord}_{p_{i}}\left(\frac{\alpha}{\alpha^{\prime}}\right)
$$

$$
K_{i}=\log _{p_{i}}\left(\frac{\alpha^{\prime}}{2 \sqrt{D}}\right)+n \cdot \log _{p_{i}}\left(\epsilon^{\prime}\right)-\sum_{j \in I_{U}} u_{j} \cdot \log _{p_{i}}\left(p_{j}\right)
$$

$$
+\sum_{j \in I} c_{j} \cdot \log _{p_{i}}\left(\pi_{j}^{\prime}\right)+\sum_{j \in I} c_{j} \cdot \log _{p_{i}}\left(\pi_{j}\right)
$$

If $h_{i} \cdot c_{i}+\kappa_{i} \geq \gamma_{i}$ then

$$
h_{i} \cdot c_{i}+\kappa_{i}=\operatorname{ord}_{p_{i}}\left(k_{i}\right)
$$

(ii'). For $i \in I^{\prime}$ put

$$
\kappa_{i}^{\prime}=\operatorname{ord}_{p_{i}}\left(\frac{\alpha^{\prime}}{\alpha}\right)
$$

$$
\begin{aligned}
& K_{i}^{\prime}= \log _{p_{i}}\left(\frac{\alpha}{2 \sqrt{D}}\right)+n \cdot \log _{p_{i}}(\epsilon)-\sum_{j \in I_{U}} u_{j} \cdot \log _{p_{i}}\left(p_{j}\right) \\
&+\sum_{j \in I} c_{j} \cdot \log _{p_{i}}\left(\pi_{j}\right)+\sum_{j \in I^{\prime}} c_{j} \cdot \log _{p_{i}}\left(\pi_{j}^{\prime}\right) . \\
& \text { If } h_{i} \cdot c_{i}+\kappa_{i}^{\prime} \geq \gamma_{i} \text { then } \\
& h_{i} \cdot c_{i}+\kappa_{i}^{\prime}=\operatorname{ord}_{p_{i}}\left(K_{i}^{\prime}\right) .
\end{aligned}
$$

Remark. Note that all the above p_{i}-adic logarithms are well-defined, since their arguments have p_{i}-adic order zero. This follows from the fact that I_{U}, I and I^{\prime} are disjunct, and if $D \equiv 1(\bmod 8)$ from the choice $\alpha=2 \cdot \alpha_{0}$.

Proof. For (i), divide (7.10) by its second term. For (ii), divide (7.10) by its second term, and add 1 . For (ii'), divide (7.10) by its first term, and add -1 . Then in all three cases take the p_{i}-adic order, and apply (7.11).

The linear forms in logarithms $\Lambda_{i}, K_{i}, K_{i}^{\prime}$, as they appear in Lemma 7.5 , seem to be inhomogeneous, since the first term has coefficient 1. However, it can be made homogeneous by incorporating this first term in the other ones, as follows. Put

$$
h^{*}=\operatorname{lcm}\left(2, h_{1}, \ldots, h_{s}\right)
$$

Note that, by the definition of α,

$$
\begin{equation*}
\alpha^{h^{*}}= \pm \epsilon^{n_{0}} \cdot \prod_{i \in I}^{\pi_{i}} n_{i} \cdot \prod_{i \in I},_{i}^{\prime} n_{i}^{n_{i}} \cdot \prod_{i=t+1}^{s} p_{i}^{n_{i}} \cdot 2^{h^{*} \cdot b_{0}} \tag{7.12}
\end{equation*}
$$

where the exponents n_{i} for $0 \leq i \leq s$ are integral. It follows that

$$
\left[\frac{\alpha}{\alpha^{\prime}}\right)^{h^{*}}= \pm\left[\frac{\epsilon}{\epsilon^{\prime}}\right)^{n_{0}} \cdot \prod_{i \in I}\left(\frac{\pi}{\pi^{\prime}}\right)^{n_{i}} \cdot \prod_{i \in I^{\prime}}\left[\frac{\pi^{\prime}}{\pi}\right)^{n_{i}}
$$

Put

$$
\Lambda_{i}^{*}=h^{*} \cdot \Lambda_{i}, \quad n^{*}=h^{*} \cdot n+n_{0}, \quad c_{j}^{*}=h^{*} \cdot c_{j}+n_{j}
$$

Then it follows that

$$
\Lambda_{i}^{*}=n^{*} \cdot \log _{p_{i}}\left(\frac{\epsilon}{\epsilon^{\prime}}\right)+\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\frac{\pi_{j}}{\pi_{j}^{\prime}}\right)-\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\frac{\pi_{j}}{\pi_{j}^{\prime}}\right)
$$

Note that the prime divisors of D are just the ramifying primes. By (7.12),

$$
\left(\frac{\alpha}{2 \sqrt{D}}\right)^{h^{*}}= \pm \epsilon^{n_{0}} \cdot \prod_{i \in I}^{\pi_{i}} n_{i} \cdot \prod_{i \in I} \pi_{i}^{n_{i}} \cdot \prod_{i=t+1}^{s} p_{i}^{n_{i}-\nu_{i}} \cdot 2^{h^{*} \cdot\left(b_{0}-\nu_{0}\right)},
$$

where $\nu_{i}=\frac{1}{2} \cdot h^{*} \cdot \operatorname{ord}_{p_{i}}(4 D) \in \mathbb{Z} \quad$ for $i=t+1, \ldots, s$, and $\nu_{0}=1$ if 2 splits, $\nu_{0}=0$ otherwise. If $p_{i}=2$ splits we have assumed that $b_{0}=1$. Hence the last factor vanishes. So put

$$
\begin{aligned}
& K_{i}^{*}=h^{*} \cdot K_{i}, \quad K_{i}^{\prime}=h^{*} \cdot K_{i}^{\prime}, \quad u_{j}^{*}=h^{*} \cdot u_{j}-\left(n_{j}-\nu_{j}\right), \\
& I_{U}^{*}=I_{U} \cup\left\{i \mid t+1 \leq i \leq s, \quad \nu_{i} \neq 0\right\} .
\end{aligned}
$$

Then it follows that

$$
\begin{aligned}
k_{i}^{*}= & n^{*} \cdot \log _{p_{i}}\left(\epsilon^{\prime}\right)-\sum_{j \in I} I_{U}^{*}{ }_{j}^{*} \cdot \log _{p_{i}}\left(p_{j}\right)+\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\pi_{j}^{\prime}\right)+ \\
& +\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\pi_{j}\right), \\
k_{i}^{\prime *}= & n^{*} \cdot \log _{p_{i}}(\epsilon)-\sum_{j \in I} A_{U}^{u_{j}^{*}} \cdot \log _{p_{i}}\left(p_{j}\right)+\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\pi_{j}\right)+ \\
& +\sum_{j \in I} c_{j}^{*} \cdot \log _{p_{i}}\left(\pi_{j}^{\prime}\right) .
\end{aligned}
$$

This leads to the following reformulation of Lemma 7.5.

LEMMA 7.6. Let n, c_{i} for $i \in I U I^{\prime}, u_{i}$ for $i \in I_{U}$ be a solution of (7.10), let $\lambda_{i}, \kappa_{i}, \kappa_{i}^{\prime}$ be as in Lemma 7.5, and let $h^{*}, \Lambda_{i}^{*}, K_{i}^{*}, K_{i}^{\prime}, n_{i}^{*}$, $c_{i}^{*}, u_{i}^{*}, I_{U}^{*}$ be as above.
(i). Let $i \in I_{U}$. If $u_{i}+\lambda_{i} \geq \gamma_{i}$ then

$$
u_{i}+\lambda_{i}+\operatorname{ord}_{p_{i}}\left(h^{*}\right)=\operatorname{ord}_{p_{i}}\left(\Lambda_{i}^{*}\right)
$$

(ii). Let $i \in I$. If $h_{i} \cdot c_{i}+\kappa_{i} \geq \gamma_{i}$ then

$$
h_{i} \cdot c_{i}+\kappa_{i}+\operatorname{ord}_{p_{i}}\left(h^{*}\right)=\operatorname{ord}_{p_{i}}\left(K_{i}^{*}\right)
$$

(ii'). Let $i \in I^{\prime}$. If $h_{i} \cdot c_{i}+\kappa_{i}^{\prime} \geq \gamma_{i}$ then

$$
h_{i} \cdot c_{i}+\kappa_{i}^{\prime}+\operatorname{ord}_{p_{i}}\left(h^{*}\right)=\operatorname{ord}_{p_{i}}\left(K_{i}^{\prime *}\right)
$$

Remark. We will study the linear forms in logarithms $\Lambda_{i}^{*}, K_{i}^{*}$, K_{i}^{*} for arbitrary integral values of the variables $n^{*}, c_{i}^{*}, u_{i}^{*}$. Notice that the parameter α has disappeared completely from these linear forms. This means that we have to consider the linear forms for each D only, instead of for each α.
7.5. Upper bounds for the solutions: outline.

Let us first give a global explanation of our application of the theory of p-adic linear forms in logarithms, that gives explicit upper bounds for the variables occurring in the linear forms $\Lambda_{i}^{*}, K_{i}^{*}, K_{i}^{*}$. Then we give arguments why we choose this way to apply the theory, and not other possible ways. In the next section we give full details of the derivation of the upper bounds. In the sequel, by the 'constants' C_{1}, \ldots, C_{12} we mean numbers that depend only on the parameters of (7.10), not on the unknowns n, c_{i}, u_{i}.

Put

$$
\begin{aligned}
& M=\max _{i \in I U I}\left(c_{i}\right), \quad U=\max _{i \in I_{U}}\left(u_{i}\right), \quad B=\max (M, U,|n|) \\
& M^{*}=\max _{i \in I U I}\left(c_{i}^{*}\right), \quad U^{*}=\max _{i \in I_{U}}\left(u_{i}^{*}\right), B^{*}=\max \left(M^{*}, U^{*},\left|n^{*}\right|\right) \\
& N=\max \left(\left|n_{0}\right|, \ldots,\left|n_{t}\right|,\left|n_{t+1}{ }^{-\nu} t+1, \ldots,\left|n_{s}{ }^{-\nu}\right|\right)\right.
\end{aligned}
$$

Then it follows that

$$
\begin{align*}
& \qquad X^{*} \leq h^{*} \cdot X+N, X \leq \frac{X^{*}+N}{h^{*}} \\
& \text { for } X=M, U, B \text {. We apply Lemma } 2.6 \text { to the p-adic linear forms in } \\
& \text { logarithms. For } \Lambda_{i}^{*} \text { we find, in view of Lemma } 7.6(i) \text {, } \\
& \qquad U<C_{1}+C_{2} \cdot \log \left(B^{*}\right) \text {, } \tag{7.14}\\
& \text { and for } K_{i}^{*}, K_{i}^{\prime *} \text { we find, in view of Lemma } 7.6(i i) \text {, (ii'), } \\
& \qquad M<C_{3}+C_{4} \cdot \log \left(B^{*}\right) \text {. } \tag{7.15}\\
& \text { Here, } C_{1}, C_{2}, C_{3}, C_{4} \text { are constants that can be written down explicitly. In } \\
& \text { order to find an upper bound for } B \text { we try to find } C_{10}, C_{11 ~ s u c h ~ t h a t ~}^{\prime}
\end{align*}
$$

$$
\begin{equation*}
B<C_{10}+C_{11} \cdot \log \left(B^{*}\right) . \tag{7.16}
\end{equation*}
$$

In view of (7.13) we may insert and delete asterisks any time we like, as long as we don't specify the constants. In order to prove (7.16) it remains, in view of (7.14) and (7.15), to bound $|n|$ by a constant times log B. We will introduce certain constants C_{5}, C_{6}, C_{7}, and distinguish three cases:
(a). $-\left(C_{6}+C_{7} \cdot M\right) \leq n \leq C_{5}$,
(b). $n>C_{5}$,
(c). $n<-\left(C_{6}+C_{7} \cdot M\right)$.

In case (a) it is, by (7.15), obvious that (7.16) holds. In cases (b) and (c) one of the two terms of G_{α} dominates. We shall show that there exist constants C_{8}, C_{9} such that

$$
\begin{equation*}
|n|<C_{8}+C_{9} \cdot U \tag{7.18}
\end{equation*}
$$

Then (7.16) follows from (7.14).

From (7.16) we derive immediately an explicit upper bound C_{12} for B, hence for all the variables involved. Since the constants C_{1}, \ldots, C_{4} will be very large, also C_{12} will be very large. To find all solutions we proceed by reducing this upper bound, by applying the computational p-adic diophantine approximation technique described in Section 3.11 , to the p-adic linear forms in logarithms $\Lambda_{i}^{*}, K_{i}^{*}, K_{i}^{\prime *}$. Crucial in that line of argument is that the constants C_{5}, \ldots, C_{9} are very small compared to C_{1}, \ldots, C_{4}. This method leads to reduced bounds for the p-adic orders of the linear forms. Then we can replace (7.14) and (7.15) by much sharper inequalities, and repeat the above argument, to find a much sharper inequality for (7.16). In general we expect that it is in this way possible to reduce in one step the upper bound C_{12} for B to a reduced bound of size $\log C_{12}$.

Before going into detail we explain briefly that it is possible to treat (7.10) partly by the theory of real (instead of p-adic) linear forms in logarithms, and subsequently by a real computational diophantine approximation technique (cf. Section 3.7), and why we prefer not to do so. First, note that K_{i} and K_{i}^{\prime} have generically more terms than Λ_{i}, and are therefore more complicated to handle. Since K_{i}, K_{i}^{\prime} occur only in case (a), this is the most difficult case. Equation (7.10) consist of three terms, each of which is purely exponential, i.e. the bases are fixed and the exponents are variable. If one of these three terms is essentially smaller than the
other two (more specifically, smaller than the other terms raised to the power δ, for a fixed $\delta \in(0,1)$), then we can apply the real method. There are two ways of doing this. Write (7.10) as

$$
x-x^{\prime}=2 \cdot u \cdot \sqrt{D}
$$

First, suppose that $\left|x-\chi^{\prime}\right|<\left|x^{\prime}\right|^{\delta}$. Then $|n|$ cannot be very large, and we are essentially (i.e. apart from a finite domain) in case (a). Unfortunately, the region for $|n|$ that we can cover in this way becomes smaller as $M \rightarrow \infty$ (see the example below). Second, suppose that $|x|>\left|x^{\prime}\right|^{1 / \delta}$, or $|x|<\left|x^{\prime}\right|^{\delta}$. Then we are essentially in case (b) or (c). But this area can be dealt with easier p-adically, since here we use the linear forms Λ_{i}, whereas the real linear forms in logarithms used in this case will generically have more terms. The areas sketched above, in which we can apply the real theory, will not cover the whole domain corresponding to case (a) (cf. the white regions in Fig. 9 below). Hence we cannot avoid working with the p-adic linear forms K_{i}, K_{i}^{\prime}. But then it is more convenient to avoid the use of real linear forms.

Figure 9.

Let us illustrate the above reasoning with an example. Let $\alpha=\alpha^{\prime}=1$, $\epsilon=1+\sqrt{2}, \pi_{1}=1+2 \cdot \sqrt{2}, s=1, I=\{1\}, p_{1}=7, I^{\prime}=\varnothing$, and $\delta=\frac{1}{2}$. Then we have $\chi=(1+/ 2)^{n} \cdot(1+2 \cdot \sqrt{2})^{M}$. Fig. 9 above gives in the $(n, M)-p l a n e$ the curves $\quad x=x^{\prime 2}, 2 \cdot\left|x^{\prime}\right|,\left|x^{\prime}\right|+\lambda\left|x^{\prime}\right|,\left|x^{\prime}\right|,\left|x^{\prime}\right|-\left|x^{\prime}\right|, \frac{1}{2} \cdot\left|x^{\prime}\right|, \gamma\left|x^{\prime}\right|$, which are boundaries of the four regions A, B, C, D. We have the following possibilities.

	case region (essentially)	number of terms in linear form p-adic method	real method
A	(b),(c)	2	3
B	(b),(c)	2	-
C	(a)	3	-
D	(a)	3	2

The hardest part is C. It can be reduced to $\frac{1}{c} \cdot\left|x^{\prime}\right|<x<\left|x^{\prime}\right|-\left|x^{\prime}\right|^{\delta}$ and $\left|x^{\prime}\right|+\left|x^{\prime}\right|^{\delta}<x<c \cdot\left|x^{\prime}\right|$ for any $c>1, \delta \in(0,1)$, but will never disappear. So we cannot avoid the p-adic linear form in case (a), which then works in regions C and D together.

7.6. Upper bounds for the solutions: details.

We now proceed with filling in the details of the procedure outlined in the previous section.

We apply Yu's lemma (Lemma 2.6) as follows. We have $L=K=\mathbb{Q}(\sqrt{ } \mathrm{D})$, so $\mathrm{d}=2$. For the α_{i} we have $\epsilon / \epsilon^{\prime}, \pi_{j} / \pi_{j}^{\prime}$, or $\epsilon, \epsilon^{\prime}, p_{j}, \pi_{j}, \pi_{j}^{\prime}$. We have to compute the heights of these numbers. We have at once

$$
\begin{aligned}
& h\left(p_{j}\right)=\log \left(p_{j}\right) \quad \text { if } \quad p_{j} \geq 3, h(2)=1, \\
& h(\epsilon)=h\left(\epsilon^{\prime}\right)=\frac{1}{2} \cdot \log (\epsilon) \\
& h\left(\pi_{j}\right)=h\left(\pi_{j}^{\prime}\right)=\frac{1}{2} \cdot \log \left(\max \left(1,\left|\pi_{j}\right|\right) \cdot \max \left(1,\left|\pi_{j}^{\prime}\right|\right)\right) .
\end{aligned}
$$

Further, let $\beta=\epsilon$ or $\beta=\pi_{j}$. Then the leading coefficient of β / β^{\prime} is $a_{0}=\left|\beta \cdot \beta^{\prime}\right|$, and we infer

$$
\mathrm{h}\left(\frac{\beta}{\beta^{\prime}}\right)=\frac{1}{2} \log \left(\left|\beta \cdot \beta^{\prime}\right| \cdot \max \left(1,\left|\frac{\beta}{\beta^{\prime}}\right|\right) \cdot \max \left(1,\left|\frac{\beta^{\prime}}{\beta}\right|\right)\right)=\log \left(\max \left(|\beta|,\left|\beta^{\prime}\right|\right)\right)
$$

Hence

$$
h\left(\frac{\epsilon}{\epsilon^{\prime}}\right)=\log (\epsilon) \quad, \quad h\left(\frac{\pi_{j}}{\pi_{j}^{\prime}}\right)=\log \left(\max \left(\left|\pi_{j}\right|,\left|\pi_{j}^{\prime}\right|\right)\right)
$$

The order of the α_{i} is important in two respects: it is required that the V_{i} for $i=1, \ldots, n-1$ are in increasing order, and that ord $\left(b_{n}\right)$ is minimal among the ord $p_{i}\left(b_{i}\right)$. Since the b_{i} are the unknowns, we should assume that $V_{n} \leq V_{1} \leq \ldots \leq V_{n-1}$. In the final bound however, only the product $V_{1} \ldots \cdot V_{n}$ and V_{n-1}^{+}appear. So the ordering of the V_{i} only matters for defining V_{n-1}^{+}. It follows that we can take

$$
V_{i}=\max \left(h\left(\alpha_{i}\right), f_{p} \cdot(\log p) / d\right)
$$

with the α_{i} in any order, if we define

$$
\mathrm{V}_{\mathrm{n}-1}^{+}=\max \left(1, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right)
$$

Further, we take

$$
B=B_{0}=B_{n}=B^{\prime}=\max \left(\left|b_{1}\right|, \ldots,\left|b_{n}\right|, 2, \frac{4}{3} \cdot n \cdot\left(p^{f_{p} / d}-1\right)\right)
$$

Then $\log \left(1+\frac{3}{4 n} \cdot B\right) \geq f_{p} \cdot(\log p) / d$. By $B \geq 2$ it follows that $1+\frac{3}{4 n} \cdot B<B$. Hence we can take

$$
W=\log B
$$

There are two more conditions to be checked. The first one is that $\alpha_{1}{ }^{b_{1}} \cdot \ldots \cdot \alpha_{n}{ }_{n} \neq 1$. This is immediate, if we assume the obvious condition that not all b_{i} are zero. The second one is $\left[\mathrm{K}\left(\alpha_{1}^{1 / q}, \ldots, \alpha_{n}^{1 / q}\right): K\right]=q^{n}$, which is less obvious. For our situation it follows from the following lemma. Application of Yu's newest results avoids such a condition (cf. Yu [1989]). Nevertheless we include the lemma here, to show that it is often possible to prove such a condition, which may in some cases lead to lower constants.

LEMMA 7.7. Let $K=\mathbb{Q}(\sqrt{ })$, with ϵ as fundamental unit, and h as class number. Let p_{1}, \ldots, p_{s} be distinct prime numbers, and let p_{i} be for $i=1, \ldots, s$ a prime ideal in k lying above p_{i}. Let h_{i} be a divisor of h such that \mathfrak{p}_{i} is principal, and denote a generator by π_{i}. Let either: (1) all p_{i} split, and then

$$
\xi_{0}=\frac{\epsilon}{\epsilon^{\prime}}, \quad \xi_{j}=\frac{\pi_{j}}{\pi_{j}^{\prime}} \quad \text { for } i=1, \ldots, s
$$

or: (2)

$$
\xi_{0}=\epsilon \text { or } \epsilon^{\prime}, \xi_{j}=\pi_{j} \text { or } \pi_{j}^{\prime} \text { for } j=1, \ldots, s .
$$

Let q be an odd prime, not dividing h . Then

$$
\left[K\left(\xi_{0}^{1 / q}, \ldots, \xi_{s}^{1 / q}\right): K\right]=q^{s+1}
$$

Proof. Let $K_{0}=K\left(\xi_{0}^{1 / q}\right)$, and $K_{i}=K_{i-1}\left(\xi_{i}^{1 / q}\right)$ for $i=1, \ldots$, s. We use induction on i to prove that $\left[K_{s}: K\right]=q^{s+1}$. Note that $\left[K_{0}: K\right]=q$. Suppose that $\left[K_{i}: K\right]=q^{i+1}$. It remains to prove that $\left[K_{i+1}: K_{i}\right]=q$, hence it suffices to prove that $\xi_{i+1} \notin K_{i}$, since q is prime. Suppose the contrary is true. K_{i} is a K-vector space of dimension q^{i+1}, with as basis all the elements

$$
\tau_{k_{0}}, \ldots, k_{i}=\prod_{j=0}^{i} \xi_{j}^{k_{j} / q}
$$

for $k_{j} \in(0,1, \ldots, q-1)$ for $j=0, \ldots, i$. It follows that there exist $a_{k_{0}}, \ldots, k_{i} \in K$ such that

$$
\begin{equation*}
\xi_{i+1}^{1 / q}=\sum_{k_{0}, \ldots, k_{i}} a_{k_{0}}, \ldots, k_{i}{ }^{\cdot \tau_{k_{0}}, \ldots, k_{i}} \tag{7.19}
\end{equation*}
$$

The group of k -embeddings of K_{i} into \mathbb{C} is generated by the σ_{j} for $\mathrm{j}=0, \ldots$, i defined by

$$
\begin{aligned}
\sigma_{j}\left(\xi_{\ell}^{1 / q}\right) & =\xi_{\ell}^{1 / q} \text { for } \ell=0, \ldots, i, \quad \ell \neq j, \\
\sigma_{j}\left(\xi_{j}^{1 / q}\right) & =\rho \cdot \xi_{j}^{1 / q},
\end{aligned}
$$

where ρ is a primitive q th root of unity. Hence all the embeddings are given by

$$
\varphi_{\ell_{0}}, \ldots \ell_{i}=\prod_{j=0}^{i} \sigma_{j}^{\ell_{j}}
$$

for $\ell_{j} \in\{0,1, \ldots, q-1\}$. It follows that

$$
\varphi_{\ell_{0}}, \ldots, \ell_{i}\left(\tau_{k_{0}}, \ldots, k_{i}\right)=\prod_{j=0}^{i} \sigma_{j}^{\ell}\left(\prod_{m=0}^{i} \xi_{m}^{k_{m} / q}\right)=\prod_{j=0}^{i} \rho^{\ell_{j} k_{j}} \cdot \tau_{k_{0}}, \ldots, k_{i}
$$

$$
=\rho^{\sum_{j=0}^{i} \ell_{j} k_{j}} \cdot \tau_{k_{0}}, \ldots, k_{i} .
$$

The minimal polynomial of $\xi_{i+1}^{1 / q}$ over K is $x^{q}-\xi_{i+1}$. Hence the conjugates of $\xi_{i+1}^{1 / q}$ are $\rho^{j} \cdot \xi_{i+1}^{1 / q}$ for $j=0,1, \ldots, q-1$, all with equal multiplicity. There exist numbers $m_{j} \in\{0,1, \ldots, q-1\}$ such that for $j=0,1, \ldots, q-1$ we have

$$
\sigma_{j}\left(\xi_{i+1}^{1 / q}\right)=\rho^{m_{j}} \cdot \xi_{i+1}^{1 / q} .
$$

Hence

$$
\varphi_{\ell_{0}}, \ldots, \ell_{i}\left(\xi_{i+1}^{1 / q}\right)=\rho^{\sum_{j=0}^{i} \ell_{j} m_{j}} \cdot \xi_{i+1}^{1 / q} .
$$

Now apply $\varphi_{\ell_{0}}, \ldots, \ell_{i}$ to (7.19). Then for each tuple $\left(\ell_{0}, \ldots, \ell_{i}\right)$ we find

$$
\rho^{\sum_{j=0}^{i} \ell_{j} m_{j}} \cdot \xi_{i+1}^{1 / q}=\sum_{k_{0}, \ldots, k_{i} a_{k_{0}}, \ldots, k_{i} \cdot \rho^{\sum_{j=0}^{i} \ell_{j} k_{j}} \cdot \tau_{k_{0}}, \ldots, k_{i} .}
$$

Here we have a system of q^{i+1} linear equations in the q^{i+1} unknowns $a_{k_{0}}, \ldots, k_{i}$. The determinant of this system is exactly the square root of the discriminant of K_{i} over K, hence nonzero. Consequently there is in $\mathbb{C}^{q^{i+1}}$ just one solution of the system. But we know that solution:

$$
\begin{aligned}
& a_{k_{0}}, \ldots, k_{i}=0 \quad \text { if } \quad\left(k_{0}, \ldots, k_{i}\right) \neq\left(m_{0}, \ldots, m_{i}\right), \\
& a_{m_{0}}, \ldots, m_{i}=\xi_{i+1}^{1 / q} \cdot \tau_{m_{0}}^{-1}, \ldots, m_{i} .
\end{aligned}
$$

The latter equation now yields an equation over K :

$$
\xi_{i+1}=a_{m_{0}}^{q}, \ldots, m_{i} \cdot \prod_{j=0}^{i} \xi_{j}^{m_{j}}
$$

In case (1) this leads to the ideal equation

$$
\left[\frac{p_{i+1}}{p_{i+1}^{\prime}}\right]^{h_{i+1}}=a^{q} \cdot \prod_{j=1}^{i}\left[\frac{p_{j}}{p_{j}^{\prime}}\right]^{m_{j} \cdot h_{j}},
$$

and in case (2) to

$$
\mathfrak{p}_{i+1}^{(\prime)^{h}}{ }_{i+1}=a^{q} \cdot \prod_{j=1}^{i} p_{j}^{(\prime)^{m_{j}} \cdot h_{j}},
$$

(where $p^{(\prime)}$ stands for p or p^{\prime}) for some fractional ideal a (note that $\left(\xi_{0}\right)=(1)$). Because of unique factorization for ideals it follows in both cases that q divides all $m_{j} \cdot h_{j}$ for $j=1, \ldots, i$ and h_{i+1}. This contradicts the assumption $q \nmid h$.

Remarks. 1. If $\operatorname{ord}_{p}\left({ }^{b_{1}} 1 \ldots \cdot \alpha_{n}^{b_{n}}-1\right)>1 /(p-1)$ then

$$
\operatorname{ord}_{p}\left(\alpha_{1} b_{1} \cdot \ldots \cdot \alpha_{n}^{b_{n}}-1\right)=\operatorname{ord}_{p}\left(b_{1} \cdot \log _{p}\left(\alpha_{1}\right)+\ldots+b_{n} \cdot \log _{p}\left(\alpha_{n}\right)\right)
$$

We prefer to work with the logarithmic version, since that is the one we use in the computational method of reducing the upper bounds.
2. In order to apply Yu's lemma we can take for q the smallest odd prime that does not divide $h \cdot p \cdot\left(p^{f} p-1\right)$.
3. The author is grateful to M.A.J.G. van der vlugt (Leiden) for discussions on the above lemma.

We now proceed to compute the constants C_{1} to C_{12}. To find C_{1} and C_{2} we apply Lemma 2.6 to Λ_{i}^{*}, for all $i \in I_{U}$. Then we find for each such i constants $C_{1, i}, C_{2, i}$ such that, under the conditions

$$
u_{i}+\lambda_{i} \geq \gamma_{i}, \quad B^{*} \geq \max \left(2, \frac{4}{3} \cdot t_{i} \cdot\left(p_{i} f_{p_{i}} / 2,1\right)\right),
$$

(where t_{i} denotes the number of terms in Λ_{i}^{*}), we obtain

$$
\operatorname{ord}_{p_{i}}\left(\Lambda_{i}^{*}\right)<C_{1, i}+C_{2, i} \cdot \log B^{*}
$$

By Lemma $7.6(i)$ and the relation ord $_{p}=e_{p} \cdot$ ord $_{p}$, and assuming that

$$
\begin{equation*}
U \geq \max _{i \in I_{U}}\left(\gamma_{i}-\lambda_{i}\right), \quad B^{*} \geq \max _{i \in I_{U}}\left(2, \frac{4}{3} \cdot t_{i} \cdot\left(p_{i}^{f_{p_{i}}}-1\right)\right), \tag{7.20}
\end{equation*}
$$

we see that it suffices to take

$$
c_{1}=\max _{i \in I_{U}}\left(-\left(\lambda_{i}+\operatorname{ord}_{p_{i}}\left(h^{*}\right)\right)+c_{1, i} / e_{p_{i}}\right), \quad c_{2}=\max _{i \in I_{U}}\left(c_{2, i} / e_{p_{i}}\right)
$$

Then (7.14) holds.

Next we apply Lemma 2.6 to K_{i}^{*} and K_{i}^{*}, for all $i \in I$ and I^{\prime} respectively, to obtain C_{3} and C_{4}. By $X^{(\prime)}$ we denote X if $i \in I$, and X^{\prime} if $i \in I^{\prime}$. There exist by Lemma 2.6 constants $C_{3, i}$ and $C_{4, i}$ such that under the conditions

$$
h_{i} \cdot c_{i}+\kappa_{i}^{(0)} \geq \gamma_{i}, \quad B^{*} \geq \max \left(2, \frac{4}{3} \cdot t_{i} \cdot\left(p_{i} p_{i}-1\right)\right)
$$

(where again t_{i} denotes the number of terms of $K_{i}^{(\prime) *}$), it follows that

$$
\operatorname{ord}_{p_{i}}\left(K_{i}^{(\prime) *}\right)<C_{3, i}+C_{4, i} \cdot \log B^{*}
$$

Again, by Lemma 7.6 (ii), (ii') it follows that, under the conditions

$$
\begin{equation*}
M \geq \max _{i \in I \cup I}\left(\frac{\gamma_{i}-\kappa_{i}^{(\prime)}}{h_{i}}\right), \quad B^{*} \geq \max _{i \in I \cup I}\left(2, \frac{4}{3} \cdot t_{i} \cdot\left(p_{i} p_{i}-1\right)\right) \tag{7.21}
\end{equation*}
$$

it suffices to take

$$
C_{3}=\max _{i \in I \cup I}\left(\frac{\kappa_{i}^{(\prime)} \operatorname{tord}_{p_{i}}\left(h^{*}\right)}{h_{i}}+\frac{c_{3, i}}{h_{i} \cdot e_{p_{i}}}\right), \quad C_{4}=\max _{i \in I \cup I}\left(\frac{C_{4, i}}{h_{i} \cdot e_{p_{i}}}\right)
$$

Then (7.15) holds.

We take C_{5} to C_{7} as follows:

$$
\begin{aligned}
& C_{5}=\log \left(2 \cdot\left|\frac{\alpha^{\prime}}{\alpha}\right|\right) / 2 \cdot \log \epsilon \quad, \quad C_{6}=\log \left(2 \cdot\left|\frac{\alpha}{\alpha^{\prime}}\right|\right) / 2 \cdot \log \epsilon \\
& C_{7}=\left(\sum_{i \in I} \log \left|\frac{\pi_{i}}{\pi_{i}^{\prime}}\right|+\sum_{i \in I} \log \left|\frac{\pi_{i}^{\prime}}{\pi_{i}}\right|\right) / 2 \cdot \log \epsilon
\end{aligned}
$$

Note that C_{5} or C_{6} may be negative, but that always $-C_{6}<C_{5}$. Further, C_{7} is always strictly positive, unless $I=I^{\prime}=\varnothing$. Next we show how to take C_{8} and C_{9}. Suppose first that

$$
n>\max \left(C_{5}, 0\right)
$$

Then, from $\epsilon \cdot \epsilon^{\prime}= \pm 1$ and the choice of π_{i} we find by (7.8) that

$$
\left|\frac{\chi}{\chi^{\prime}}\right|=\left|\frac{\alpha}{\alpha^{\prime}}\right| \cdot\left|\frac{\epsilon}{\epsilon^{\prime}}\right|^{n} \cdot \prod_{i \in I}\left|\frac{\pi_{i}}{\pi_{i}^{\prime}}\right|^{c_{i}} \cdot \prod_{i \in I}\left|\frac{\pi_{i}^{\prime}}{\pi_{i}}\right|^{c_{i}} \geq\left|\frac{\alpha}{\alpha^{\prime}}\right| \cdot \epsilon^{2 \cdot n}>2
$$

which expresses that the first term of G_{α} dominates. Put

$$
P=\prod_{i \in I_{U}} p_{i}
$$

Then we infer

$$
\begin{aligned}
\mathbb{P}^{U} & \geq \prod_{i \in I_{U}} p_{i}^{u_{i}}=\left|x-x^{\prime}\right| / 2 \cdot \sqrt{D}>|x| / 4 \cdot \sqrt{D} \\
& =\frac{|\alpha|}{4 \sqrt{D}} \cdot \epsilon^{n} \cdot \prod_{i \in I}\left|\pi_{i}\right|^{c} \cdot \prod_{i \in I}\left|\pi_{i}^{\prime}\right|^{c}>\frac{|\alpha|}{4 \sqrt{D}} \cdot \epsilon^{n}
\end{aligned}
$$

hence

$$
n<\left(\log \left(\frac{4 \sqrt{D}}{|\alpha|}\right)+U \cdot \log (P)\right) / \log \epsilon
$$

Next suppose that

$$
n<\min \left(-\left(C_{6}+C_{7} \cdot M\right), 0\right)
$$

Then we find that the second term of G_{α} dominates, namely

$$
\begin{aligned}
\left|\frac{\chi^{\prime}}{\chi}\right| & =\left|\frac{\alpha^{\prime}}{\alpha}\right| \cdot\left|\frac{\epsilon^{\prime}}{\epsilon}\right|^{n} \cdot \prod_{i \in I}\left|\frac{\pi_{i}^{\prime}}{\pi_{i}}\right|^{C_{i}} \cdot \prod_{i \in I^{\prime}}\left|\frac{\pi_{i}}{\pi_{i}^{\prime}}\right|^{c_{i}} \\
& \geq\left|\frac{\alpha^{\prime}}{\alpha}\right| \cdot \epsilon^{-2 \cdot n} \cdot\left[\left.\prod_{i \in I}\left|\frac{\pi_{i}^{\prime}}{\pi_{i}}\right| \cdot \prod_{i \in I}\left|\frac{\pi_{i}}{\pi_{i}^{\prime}}\right|\right|^{M}=\left|\frac{\alpha^{\prime}}{\alpha}\right| \cdot \epsilon^{-2 \cdot\left(n+C_{7} \cdot M\right)}\right. \\
& >\left|\frac{\alpha^{\prime}}{\alpha}\right| \cdot \epsilon^{2 \cdot C_{6}}=2 .
\end{aligned}
$$

Put

$$
\Gamma=\prod_{i \in I} \min \left(1,\left|\pi_{i}^{\prime}\right|\right) \cdot \prod_{i \in I^{\prime}} \min \left(1,\left|\pi_{i}\right|\right)
$$

Then we infer

$$
\begin{aligned}
P^{U} \geq & \left|x-\chi^{\prime}\right| / 2 \cdot \sqrt{D}>\left|x^{\prime}\right| / 4 \cdot \sqrt{D}=\frac{\left|\alpha^{\prime}\right|}{4 \sqrt{D}} \cdot \epsilon^{|n|} \cdot \prod_{i \in I}\left|\pi_{i}^{\prime}\right|^{c} \cdot \prod_{i \in I}\left|\pi_{i}\right|^{c_{i}} \\
& \geq \frac{\left|\alpha^{\prime}\right|}{4 \sqrt{D}} \cdot \epsilon^{|n|} \cdot \prod_{i \in I} \min \left(1,\left|\pi_{i}^{\prime}\right|\right)^{c} i \cdot \prod_{i \in I^{\prime}} \min \left(1,\left|\pi_{i}\right|\right)^{c}{ }_{i} \\
& \geq \frac{\left|\alpha^{\prime}\right|}{4 \sqrt{D}} \cdot \epsilon^{|n|} \cdot \Gamma^{M}>\frac{\left|\alpha^{\prime}\right|}{4 \sqrt{D}} \cdot \epsilon^{|n|} \cdot \Gamma^{-\left(|n|-C_{6}\right) / C_{7}} .
\end{aligned}
$$

Hence

$$
|n|<\left[\log \left(\frac{4 / D}{\left|\alpha^{\prime}\right|} \cdot \Gamma^{-C_{6} / C_{7}}\right)+U \cdot \log (P)\right] / \log \left(\epsilon \cdot \Gamma^{1 / C_{7}}\right) .
$$

The remaining possibilities in cases (b) and (c) are $C_{5}<n \leq 0$ and $0 \leq n<-\left(\mathrm{C}_{6}+\mathrm{C}_{7} \cdot \mathrm{M}\right)<-\mathrm{C}_{6}$. So we may take, noting that $\Gamma \leq 1$,

$$
\begin{gathered}
C_{8}=\max \left[\log \left(\frac{4 / D}{|\alpha|}\right) / \log \epsilon, \log \left(4^{4 / D} \cdot \Gamma^{-C_{6} / C_{7}}\right) / \log \left(\epsilon \cdot \Gamma^{1 / C_{7}}\right),-C_{5},-C_{6}\right] \\
C_{9}=(\log P) / \log \left(\epsilon \cdot \Gamma^{1 / C_{7}}\right) .
\end{gathered}
$$

Then (7.18) holds in the cases (b) and (c). Now take

$$
\begin{aligned}
& C_{10}=\max \left(C_{1}, C_{3},\left|C_{5}\right|,\left|C_{6}\right|+C_{3} \cdot C_{7}, C_{8}+C_{1} \cdot C_{9}\right), \\
& C_{11}=\max \left(C_{2}, C_{4}, C_{4} \cdot C_{7}, C_{2} \cdot C_{9}\right) .
\end{aligned}
$$

Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold. Hence, by Lemma 2.1, we infer the following result.

LEMMA 7.8. In the above notation,

$$
\mathrm{B}^{*}<\mathrm{C}_{12}^{*}, \quad \mathrm{~B}<\mathrm{C}_{12}
$$

hold unconditionally, where

$$
\begin{aligned}
C_{12}^{*}= & \max \left(2 \cdot\left(N+h^{*} \cdot C_{10}+h^{*} \cdot C_{11} \cdot \log \left(h^{*} \cdot C_{11}\right)\right), \max _{i \in I_{U}}\left(h^{*} \cdot\left(\gamma_{i}-\lambda_{i}\right)+N\right),\right. \\
& \max _{i \in I \cup I}\left(h^{*} \cdot \frac{\gamma_{i}-\kappa_{i}^{(\prime)}}{h_{i}}+N\right), 2, \max _{i \in I \cup I^{\prime} \cup I_{U}}\left(\frac { 4 } { 3 } \cdot t _ { i } \cdot \left(p_{i} f_{p_{i}} / 2\right.\right. \\
C_{12}= & \left.\frac{1}{h^{*}} \cdot\left(C_{12}^{*}+N\right)\right],
\end{aligned}
$$

Proof. Clear.

Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8.
2. In practice, almost always the first term in the max-definition of C_{12}^{*} dominates. Moreover, the term N will in practice disappear in the rounding off. Similarly, in the definitions of C_{10} and C_{11}, the dominating factors are in practice C_{1} to C_{4}.

7.7. The reduction technique

We now want to reduce the upper bound C_{12} for B (or C_{12}^{*} for B^{*}, which is equivalent, to a much smaller upper bound. We do so using the p-adic computational diophantine approximation technique described in Section 3.11 .

We perform this procedure for $\Lambda=\Lambda_{i}^{*}, K_{i}^{*}, K_{i}^{*}$, for the relevant i. We work in the p-adic approximation lattices Γ_{μ} themselves, and not in the sublattices described in Section 3.13. The computational bottlenecks are the computation of the p-adic logarithms to the desired precision, and the application of the $L^{3}-A l g o r i t h m$. We refer to Chapter 3 for details. Once we have found reduced bounds for ord (Λ) for the above mentioned Λ, we combine these bounds with Lemma 7.6 and with estimates (7.13), (7.17) and (7.18) to find reduced bounds for B and B^{*}.

When reduced upper bounds for B, B^{*} are found in this way, we may try the above procedure again, with C_{12}, C_{12}^{*} replaced by their reduced analogons. We may repeat the argument as long as improvement is still being made. But at a certain stage, usually near to the actual largest solution, the procedure will not yield any further improvement. Then we have to find all solutions by some other method. One technique that may be useful is the algorithm of Fincke and Pohst, described in Section 3.6. Another way is to search directly for solutions of the original diophantine equation below the reduced bounds. In our present equation this may well be done by employing congruence arguments for finding all solutions of the second equation of system (7.9) below the obtained bounds.

7.8. The standard example

In this section we shall work out the procedure outlined above for our standard example $\left\{p_{1}, \ldots, p_{s}\right\}=\{2,3,5,7\}$, thus proving Theorem 7.2. In Tables $I I$ and III we give the necessary data on the fields $K=\mathbb{Q}(\sqrt{ })$ for the 15 values of D, and on the factorization of $2,3,5,7$ in K.

Explanation of Tables If and III. For $p_{i}=2,3,5,7$ we give in Table II a generator of the ideal p_{i} with ord $p_{i}\left(p_{i}\right)>0 \quad$ if p_{i} is a principal ideal, and we give "pi" if it is not principal. In all the latter cases, $h_{i}=2$, so $p_{i}^{2}=\left(\pi_{i}\right)$ is principal. An asterisk ($*$) denotes a splitting
prime. Note that for each D at most one of the primes $2,3,5,7$ splits, so $t \leq 1$. In the final column of Table II we give for the splitting prime p_{i} a generator π_{i} of the ideal $p_{i} h_{i}$. In Table III, when p_{i} and p_{j} are not principal, but $\mathfrak{p}_{i} \cdot p_{j}$ is, we give a generator of it. The autor is grateful to R.J. Kooman (Leiden) for checking these tables.

From Tables II and III it is easy to find all possibilities for I, I^{\prime} and α. We may assume $I^{\prime}=\varnothing$. In Table IV we give all possible I, I_{U}, α (we give primes p_{i} instead of indices i). An asterisk ($*$) appears when $(\alpha) \neq\left(\alpha^{\prime}\right)$. The set I_{U} is found by checking $G_{\alpha}\left(\bmod p_{i}\right)$ for all p_{i}.

There are 54 cases with $I=\varnothing$ (the "symmetric" cases), and 54 cases with $I \neq \varnothing$ (the "asymmetric" cases). We start with the symmetric cases. This incorporates all cases with $D=3,5,35,42,210$, when none of the primes $2,3,5,7$ splits in $\mathbb{Q}(\sqrt{ })$. Now, $t=0$, hence equation (7.10) becomes

$$
\begin{equation*}
G_{\alpha}(n)=\frac{\alpha}{2 \sqrt{D}} \cdot \epsilon^{n}-\frac{\alpha^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{\prime n}= \pm \prod_{i \in I_{U}} p_{i}^{u_{i}} \tag{7.22}
\end{equation*}
$$

With $A=\epsilon+\epsilon^{\prime} \in \mathbb{Z}, \quad B=N \epsilon=\epsilon \cdot \epsilon^{\prime}= \pm 1$, we have for all $n \in \mathbb{Z}$

$$
G_{\alpha}(n+2)=A \cdot G_{\alpha}(n+1)-B \cdot G_{\alpha}(n)
$$

Since $(\alpha)=\left(\alpha^{\prime}\right)$, there is an $n_{0} \in \mathbb{Z}$ such that $\alpha^{\prime}= \pm \epsilon{ }^{n_{0}} \cdot \alpha$. Hence

$$
\left|G_{\alpha}\left(n_{0}-n\right)\right|=\left|G_{\alpha}(n)\right|
$$

for all $n \in \mathbb{Z}$, which explains why we call these cases "symmetric". In this situation we can apply elementary congruence arguments, as explained in Section 4.5. We have the following result.

LEMMA 7.9. Let $\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{4}\right\}=\{2,3,5,7$). Equation (7.1) with conditions (7.2) and $I=\varnothing$ has exactly 91 solutions, that appear in Table I marked with an asterisk (*).

Sketch of proof. In Table V we give the necessary data for these 54 cases. We explain this table, and leave many details to the reader to check. For each $p=2,3,5,7$ we give $\ell_{1}, n_{1}, a_{1}, h_{2}, \ldots, h_{7}$. If for a p only ℓ_{1} is given, then $p^{\ell_{1}+1} \nmid G_{\alpha}(n)$ for all $n \in \mathbb{Z}$, and $p^{1} \mid G_{\alpha}(n)$ for at least one $n \in \mathbb{Z}$. If n_{1}, a_{1} are given, then

$$
p^{\ell_{1}+1} \mid G_{\alpha}(n) \Leftrightarrow n \not n_{1}\left(\bmod a_{1}\right)
$$

Define $n_{2}=a_{1}$ if $n_{1}=0$, and $n_{2}=n_{1}$ if $n_{1} \neq 0$. Then n_{2} is the smallest positive index such that $p^{\ell_{1}+1} \mid G_{\alpha}\left(n_{2}\right)$. Now it is true that

$$
G_{\alpha}\left(n_{2}\right) \mid G_{\alpha}(n) \text { whenever } n \equiv n_{1}\left(\bmod a_{1}\right),
$$

This is related to symmetry properties of the recurrence sequence $\left\{G_{\alpha}(n)\right\}_{n=-\infty}^{\infty}$. For $q=2,3,5,7$ we have defined

$$
h_{q}=\operatorname{ord}_{q}\left(G_{\alpha}\left(n_{2}\right)\right)
$$

Hence $2^{h_{2}} \cdot 3^{h_{3}} \cdot 5^{h_{5}} \cdot 7^{h_{7}} \mid G_{\alpha}(n)$ whenever $p^{\ell_{1}+1} \mid G_{\alpha}(n)$. We have taken ℓ_{1} so large that always

$$
\begin{equation*}
G_{\alpha}\left(n_{2}\right)>2^{h_{2}} \cdot 3^{h_{3}} \cdot 5^{h_{5}} \cdot 7^{h_{7}} \tag{7.23}
\end{equation*}
$$

Consequently, there exists some prime $r \geq 11$ that divides $G_{\alpha}\left(n_{2}\right)$, hence r divides all $G_{\alpha}(n)$ with $p^{\ell_{1}^{+1}} \mid G_{\alpha}(n)$. It follows that for a solution of equation (7.22) we must have

$$
\operatorname{ord}_{p}\left(G_{\alpha}(n)\right) \leq \ell_{1}
$$

In this way we find with ease all solutions of (7.22).

Let us illustrate this with the example $D=3, \alpha=\sqrt{3}$. Then

$$
G_{\alpha}(n)=\frac{1}{2} \cdot(2+\sqrt{3})^{n}+\frac{1}{2} \cdot(2-\sqrt{3})^{n},
$$

and $G_{\alpha}(-n)=G_{\alpha}(n)$. We have for $G_{\alpha}(n)$:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathrm{G}_{\alpha}(\mathrm{n})$	1	2	7	26	97	362	\ldots					$G_{\alpha}(14)$	$=50843527$			
\bmod	4	1	2	-1	2	1	2	-1	2	1	2	-1	2	1	2	-1
\bmod	3	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
\bmod	5	1	2	2	1	2	2	1	2	2	1	2	2	1	2	2
$\bmod 49$	1	2	7	-23	-1	19	-21	-5	1	9	-14	-16	-1	12	0	-12

We see that $2^{2}, 3,5 \nmid G_{\alpha}(n)$ for all $n \in \mathbb{Z}$, and $2 \mid G_{\alpha}(n)$ if and only if n odd. So $p=7$ is the only interesting case. We have $7 \mid G_{\alpha}(n)$ if
and only if $n \equiv 2(\bmod 4), \quad 7^{2} \mid G_{\alpha}(n)$ if and only if $n=14(\bmod 28)$. (and in general

$$
7^{k} \mid G_{\alpha}(n) \Leftrightarrow n=2 \cdot 7^{k-1}\left(\bmod 4 \cdot 7^{k-1}\right)
$$

for $k \geq 1$, and a similar relation holds for any symmetric recurrence and any prime p for which arbitrary high powers of p occur in $G_{\alpha}(n)$, cf. Lemma 4.10). Now, $\ell_{1}=0$ does not lead to (7.23), since then $n_{2}=2$, and $G_{\alpha}(2)=7$, so that no suitable r exists. But with $\ell_{1}=1$ we have $\mathrm{n}_{2}=14$, and $\quad \mathrm{h}_{2}=\mathrm{h}_{3}=\mathrm{h}_{5}=0, \quad \mathrm{~h}_{7}=2$, and (7.23) holds, since $G_{\alpha}(14)>7^{2}$. Hence there exists a prime $r \geq 11$ such that $r \mid G_{\alpha}(14)$, and thus $r \mid G_{\alpha}(n)$ whenever $7^{2} \mid G_{\alpha}(n)$. It follows that for solutions of (7.22) we have $G_{\alpha}(n) \leq 2^{1} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1^{\alpha}}=14$, so that all solutions can be read from the above table. Note that it is not necessary that r is known explicitly, only that $G_{\alpha}\left(n_{2}\right)$ is large enough. In our example, $r=337$ or $r=3079$ satisfy.

Finally we treat the remaining 54 cases, where $I \neq \varnothing$. Then we need the non-elementary reduction technique described in Sections 7.5 to 7.7 .

In all our instances, the set I contains only one element, since there is only one splitting prime. We denote by π the π_{i} belonging to this prime, and we write m for c_{i}. Equation (7.10) now reads

$$
\frac{\alpha}{2 \sqrt{D}} \cdot \epsilon^{n} \cdot \pi^{m}-\frac{\alpha^{\prime}}{2 \sqrt{D}} \cdot \epsilon^{, n} \cdot \pi^{\prime m}= \pm \prod_{j \in I_{U}} p_{j}^{u_{j}}
$$

We computed the constants C_{1} to C_{12}, C_{12}^{*}, according to Section 7.6 , for each of the 54 cases. We omit the details of these computations, and simply give the data in Table VI. In this table we give for each D the $p_{i} \in I_{U}$ together with the ν_{i} and λ_{i} (it turns out that the λ_{i} do not depend on the α, only on the p_{i}). The values ${ }^{n} n_{\epsilon}, n_{\pi}, n_{2}, n_{3}, n_{5}, n_{7}$ " are the integers such that

$$
\alpha^{2}= \pm \epsilon^{n} \epsilon \cdot \pi^{n} \pi \cdot 2^{n_{2}} \cdot \ldots \cdot 7^{n_{7}}
$$

It follows that in all cases we have $C_{12}^{*}<3.23 \times 10^{30}$.

The next step is to define the lattices, and find lower bounds for the shortest nonzero vectors in the lattices. We start with treating the Λ_{i}^{*}, of which there are 3 for each of the 10 D 's. We have computed the 30 values of

$$
\vartheta=-\frac{\log _{p_{i}}\left[\frac{\pi}{\pi^{\prime}}\right]}{\log _{p_{i}}\left[\frac{\epsilon}{\epsilon^{\prime}}\right]} \text { or }-\frac{\log _{p_{i}}\left[\frac{\epsilon}{\epsilon^{\prime}}\right]}{\log _{p_{i}}\left[\frac{\pi}{\pi^{\prime}}\right]} \text {, }
$$

such that it is a p_{i}-adic integer, to the desired precision of μ digits. We took μ as follows:

p_{i}	μ	$\mathrm{p}_{\mathrm{i}}^{\mu}$
2	209	8.22×10^{62}
3	133	2.87×10^{63}
5	95	2.52×10^{66}
7	76	1.69×10^{64}

in order to have p_{i}^{μ} somewhat larger than the maximal $C_{12}^{* 2}$, being 1.05×10^{61}. We computed the 30 values of the $\vartheta^{(\mu)}$'s , but do not give them here. The lattices Γ_{μ} are generated by the column vectors of the matrices

$$
\left[\begin{array}{cc}
1 & 0 \\
\vartheta^{(\mu)} & \mathrm{p}^{\mu}
\end{array}\right] .
$$

We performed the p-adic continued fraction algorithm of Section 3.10 for each of these 30 lattices. In the table below we give for each D the maximal C_{12}^{*} (there is one for each α), and the minimal bound for $\ell\left(\Gamma_{\mu}\right)$ (there is one for each $i \in I_{U}$) that we found. We omit further details.

D	P	μ_{0}	$C_{12}^{*} \leq$	$\ell\left(\Gamma_{\mu}\right)>$	$U \leq$
2	$2,3,5$	$1.5,1.0,1.0$	3.19×10^{28}	8.26×10^{30}	210
6	$2,3,7$	$1.5,1.5,1.0$	2.72×10^{26}	2.05×10^{31}	210
7	$2,5,7$	$2.0,1.0,0.5$	1.07×10^{30}	2.43×10^{31}	210
10	$2,5,7$	$1.5,0.5,1.0$	3.22×10^{29}	2.22×10^{31}	210
14	$2,3,7$	$1.5,1.0,0.5$	4.80×10^{26}	1.48×10^{31}	210
15	$2,3,5$	$3.5,1.5,0.5$	2.15×10^{28}	1.55×10^{31}	212
21	$2,3,7$	$3.0,0.5,0.5$	1.90×10^{26}	7.78×10^{30}	211
30	$2,3,5$	2.5,	$0.5,0.5$	4.15×10^{28}	1.37×10^{31}
70	$2,5,7$	2.5,	$0.5,0.5$	3.23×10^{30}	2.51×10^{31}
105	$3,5,7$	$1.5,0.5,0.5$	4.54×10^{29}	3.96×10^{31}	134

In all cases, $\ell\left(\Gamma_{\mu}\right)>\sqrt{2} \cdot \mathrm{C}_{12}^{*}$. Hence Lemma 3.14 with $\mathrm{n}=2, \mathrm{c}_{1}=0, \mathrm{c}_{2}=1$
yields

$$
\operatorname{ord}_{p_{i}}\left(\Lambda_{i}^{*}\right)<\mu+\mu_{0}, \quad i \in I_{U}
$$

where

$$
\mu_{0}=\min \left(\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}\left(\frac{\epsilon}{\epsilon^{\prime}}\right)\right), \operatorname{ord}_{p_{i}}\left(\log _{p_{i}}\left(\frac{\pi}{\pi^{\prime}}\right)\right)\right),
$$

as given above. By $\lambda_{i}+\operatorname{ord}_{p_{i}}\left(h^{*}\right) \geq 0$ we obtain from Lemma 7.6(i) upper bounds for u_{i}, $i \in I_{U}$, hence the upper bounds for U, as given above.

Next, we treat the K_{i}^{*}, one for each D, having 5 terms, namely

$$
k_{i}^{*}=n^{*} \cdot \log _{p_{i}}\left(\epsilon^{\prime}\right)+m^{*} \cdot \log _{p_{i}}\left(\pi^{\prime}\right)-\sum_{\substack{1 \leq j \leq 4 \\ j \neq i}} u_{j}^{*} \cdot \log _{p_{i}}\left(p_{j}\right),
$$

where $i \in I$, so p_{i} is the splitting prime. We have the following data.

D	$\mathrm{p}_{\mathrm{i}} \quad \sqrt{ } \mathrm{D}\left(\bmod \mathrm{p}_{\mathrm{i}}\right)$		$\operatorname{ord}_{p_{i}}\left(\log _{p_{i}}(\cdot)\right)$					
			ϵ	π^{\prime}	2	3	5	7
2	7	3	1	2	1	1	1	-
6	5	4	1	1	1	1	-	2
7	3	1	1	1	1	-	1	1
10	3	2	1	1	1	-	1	1
14	5	2	1	1	1	1	-	2
15	7	6	1	1	1	1	1	-
21	5	4	1	1	1	1	-	2
30	7	4	1	1	1	1	1	-
70	3	2	1	1	1	-	1	1
105	2	$1(\bmod 4)$	2	4	-	2	2	3

From this table our choice for $/\left(D\left(\bmod p_{i}\right)\right.$ becomes clear. It follows that ${ }^{\circ}{ }^{\mathrm{p}_{\mathrm{p}}}\left(\log _{\mathrm{p}_{i}}\left(\epsilon^{\prime}\right)\right)$ is always the least one of the five ord ${ }_{p_{i}}$'s in the above table. So we define:

$$
\vartheta_{1}=-\frac{\log _{p_{i}}\left(\pi^{\prime}\right)}{\log _{p_{i}}\left(\epsilon^{\prime}\right)}, \quad \vartheta_{2,3,4}=-\frac{\log _{p_{i}}\left(p_{j}\right)}{\log _{p_{i}}\left(\epsilon^{\prime}\right)}, \quad(j \in\{1,2,3,4\}, j \neq i),
$$

and we computed these numbers up to μ digits, with μ as follows:

p_{i}	μ	$\mathrm{p}_{\mathrm{i}}^{\mu}$
2	539	1.80×10^{162}
3	343	4.49×10^{163}
5	245	1.77×10^{171}
7	196	4.36×10^{165}

so that p_{i}^{μ} is somewhat larger than the maximal $C_{12}^{* 5}$. We computed the 40 values of the $\vartheta_{1,2,3,4}^{(\mu)}$, but do not give them here. The lattices Γ_{μ} are generated by the columns of the following matrices:

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\vartheta_{1}^{(\mu)} & \vartheta_{2}^{(\mu)} & \vartheta_{3}^{(\mu)} & \vartheta_{4}^{(\mu)} & \mathrm{p}^{\mu}
\end{array}\right] .
$$

We computed the reduced bases of the 10 lattices by the L^{3}-algorithm. Again, we omit the computational details. We found data as follows.

D	p in I	μ	μ_{0}	$C_{12}^{*} \leq$	$\ell\left(\Gamma_{\mu}\right)>$	$M \leq$
2	7	196	1	3.19×10^{28}	2.25×10^{32}	196
6	5	245	1	2.72×10^{26}	2.16×10^{33}	245
7	3	343	1	1.07×10^{30}	1.14×10^{32}	343
10	3	343	1	3.22×10^{29}	1.07×10^{32}	343
14	5	245	1	4.80×10^{26}	4.92×10^{33}	245
15	7	196	1	2.15×10^{28}	2.78×10^{32}	196
21	5	245	1	1.90×10^{26}	4.37×10^{33}	245
30	7	196	1	4.15×10^{28}	2.69×10^{32}	196
70	3	343	1	3.23×10^{30}	1.03×10^{32}	343
105	2	539	2	4.54×10^{29}	6.68×10^{31}	540

In all instances, $\ell\left(\Gamma_{\mu}\right)>\sqrt{ } \cdot C_{12}^{*}$, so that by Lemmas 3.14 and 7.6 (ii) and $\kappa_{i}+\operatorname{ord}_{p_{i}}\left(h^{*}\right) \geq 0$ and $h_{i} \geq 1$ we have $M \leq \operatorname{ord}_{p_{i}}\left(K_{i}^{*}\right)<\mu+\mu_{0}$, hence an upper bound for M as given in the table above.

Finally, we compute the new, reduced bounds for $|\mathrm{n}|$, and thus for B , by

$$
|n|<\max \left(C_{5}, C_{6}+C_{7} \cdot M, C_{8}+C_{9} \cdot U\right)
$$

Hence we find data as in the following table.

D	$\mathrm{C}_{5}<$	$\mathrm{C}_{6}<$	$\mathrm{C}_{7}<$	$\mathrm{C}_{8}<$	$\mathrm{C}_{9}<$	$\mathrm{M} \leq$	$\mathrm{U} \leq$	$\|\mathrm{n}\| \leq$	$B \leq$		$\mathrm{B}^{*} \leq$
2	0.394	0.394	0.420	1.967	3.859	196	210	812	812	3	1627
6	0.152	0.652	0.190	1.345	1.631	245	210	343	343	3	689
7	0.126	0.626	0.357	2.702	2.757	343	210	581	581	2	1164
10	0.601	0.191	0.181	1.396	2.337	343	210	492	492	3	987
14	0.102	0.602	0.325	1.861	1.508	245	210	318	318	3	639
15	0.540	0.668	0.257	1.394	1.649	196	212	350	350	2	702
21	0.222	0.722	0.142	1.564	2.386	245	211	505	505	1	1011
30	0.414	0.613	0.399	1.239	1.102	196	211	233	233	3	469
70	0.362	0.556	0.390	2.729	1.505	343	211	320	343	3	689
105	0.390	0.579	0.379	3.232	2.545	540	134	344	540	1	1081

Here we used $B^{*} \leq h^{*} \cdot B+N$ and $h^{*}=2$. So in one step we have reduced the bound $B^{*}<3.23 \times 10^{30}$ to $B^{*} \leq 1627$. The total computation time was 1715 sec , on average 0.7 sec for each 2-dimensional lattice, and 170 sec for each 5-dimensional lattice.

We made a further reduction step, now using the reduced bound for B^{*} as given above in stead of C_{12}^{*}. We give the data for the Λ_{i}^{*} in the tables below. For μ we took $\mu_{1} \cdot \mu_{2}$, with μ_{1}, μ_{2} as below:

p	2	3	5	7
μ_{2}	11	7	5	4

D	$\mathrm{B}^{*} \leq$		$\sqrt{2} \cdot \mathrm{~B}^{*}<$	μ_{1}	$\mu \leq$	$\ell\left(\Gamma_{\mu}\right) \geq$	$\mu_{0} \leq$
2	1627	2301	2	22	1.82×10^{3}	1.5	23
6	689	975	3	33	3.99×10^{4}	1.5	34
7	1164	1647	3	33	4.50×10^{4}	2	34
10	987	1396	3	33	5.91×10^{4}	1.5	34
14	639	904	3	33	2.58×10^{4}	1.5	34
15	702	993	3	33	7.36×10^{4}	3.5	36
21	1011	1430	3	33	2.00×10^{4}	3	35
30	469	664	2	22	9.98×10^{2}	2.5	24
70	689	975	3	33	5.76×10^{4}	2.5	35
105	1081	1529	3	21	3.89×10^{4}	1.5	22

We found $\ell\left(\Gamma_{\mu}\right)$ and bounds for U as given in the above table. For the K_{i}^{*} we found, with $\mu=\mu_{1} \cdot \mu_{2}$ with μ_{2} as above, and μ_{1} as in the table below, the results given in that table.

D	$\mathrm{B}^{*} \leq$	$/ 5 \cdot \mathrm{~B}^{*}<$	μ_{1}	$\mu \leq$	$\ell\left(\Gamma_{\mu}\right) \geq$	$\mu_{0} \leq$	$M \leq$	$\|n\| \leq$	$B \leq$	$B^{*} \leq$
2	1627	3639	7	28	1.24×10^{4}	1	28	90	90	183
6	689	1541	6	30	4.04×10^{3}	1	30	145	145	293
7	1164	2603	7	49	1.07×10^{4}	1	49	96	96	194
10	987	2207	7	49	1.16×10^{4}	1	49	80	80	163
14	639	1429	6	30	3.07×10^{3}	1	30	53	53	109
15	702	1570	6	24	2.70×10^{3}	1	24	60	60	122
21	1011	2261	6	30	3.88×10^{3}	1	30	85	85	171
30	469	1049	6	24	2.50×10^{3}	1	24	27	27	57
70	689	1541	6	42	1.90×10^{3}	1	42	55	55	113
105	1081	2418	7	77	1.00×10^{4}	2	78	59	78	157

The computation time was 15 sec .

We made a third step, and give data like above, for Λ_{i}^{*} :

D	$\mathrm{B}^{\star} \leq$	$\downarrow 2 \cdot \mathrm{~B}^{*}<\mu_{1}$	$\mu \leq$	$\ell\left(\Gamma_{\mu}\right) \geq$	$\mu_{0} \leq$	$\mathrm{U} \leq$	
2	183	258.9	2	22	1821	1.5	23
6	299	414.4	2	22	875	1.5	23
7	194	274.4	2	22	1285	2	23
10	163	230.6	2	22	634	1.5	23
14	109	154.2	2	22	268	1.5	23
15	122	172.6	2	22	873	3.5	25
21	171	241.9	2	22	818	3	25
30	57	80.7	2	22	998	2.5	24
70	113	159.9	2	22	585	2.5	24
105	157	222.1	2	14	281	1.5	15

and for K_{i}^{*} :

D	$\mathrm{B}^{\star} \leq$	$\sqrt{ } 5 \cdot \mathrm{~B}^{\star}<\mu_{1}$	$\mu \leq$	$\ell\left(\Gamma_{\mu}\right) \geq \mu_{0} \leq$	$M \leq$		
2	183	409.3	5	20	440	1	20
6	293	655.2	5	25	665	1	25
7	194	433.8	6	42	602	1	42
10	163	364.5	5	35	473	1	35
14	109	243.8	5	25	626	1	25
15	122	272.9	6	24	2700	1	24
21	171	382.4	5	25	645	1	25
30	57	127.5	4	16	129	1	16
70	113	252.7	5	35	366	1	35
105	157	351.1	5	55	354	2	56

$$
\text { and finally for }|n| \text {, and in more detail for } \text { ord }_{p_{i}}(u) \text { for } i \in I_{U}
$$

D	$\mathrm{M} \leq$	$u_{2} \leq$	$u_{3} \leq$	$u_{5} \leq$	$u_{7} \leq$	$\|n\| \leq$
2	20	23	14	10	0	90
6	25	23	15	0	8	38
7	42	23	0	10	8	66
10	35	23	0	10	8	55
14	25	23	14	0	8	36
15	24	25	15	10	0	42
21	25	24	14	0	8	61
30	16	24	14	10	0	27
70	35	24	0	10	8	65
105	56	0	14	10	8	41

Now we will not find any further improvement if we proceed in the same way. But the upper bounds are now small enough to admit enumeration of the remaining possibilities, making use of mod p arithmetic for $p=2,3,5,7$. We did so, and found the remaining solutions, presented in Table I. We used only 3 sec computer time for this last step.

\longrightarrow ô

Table II.

D	h	ϵ	$N \epsilon$	p_{1}	p_{2}	p_{3}	\mathfrak{P}_{4}	π_{i}
2	1	$1+\sqrt{2}$	-1	$\sqrt{ } 2$	3	5	$1+2 \sqrt{2}$ *	$1+2 \sqrt{ } 2$
3	1	$2+\sqrt{3}$	1	$1+/ 3$	$\sqrt{ } 3$	5	7	-
5	1	$\frac{1}{2}(1+\sqrt{5})$	-1	2	3	15	7	-
6	1	$5+2 \sqrt{6}$	1	$2+16$	$3+16$	$1+16^{*}$	7	$1+/ 6$
7	1	$8+3 \sqrt{7}$	1	$3+17$	$2+\sqrt{7}{ }^{*}$	5	$\sqrt{ } 7$	$2+17$
10	2	$3+\sqrt{10}$	-1	p_{1}	$p_{2}{ }^{\text {* }}$	p_{3}	7	$1+\sqrt{10}$
14	1	$15+4 \sqrt{14}$	1	$4+\sqrt{14}$	3	$3+114^{*}$	$7+2 \sqrt{ } 14$	$3+\sqrt{14}$
15	2	$4+\sqrt{15}$	1	p_{1}	p_{2}	\mathfrak{P}_{3}	P_{4}	$8+\sqrt{15}$
21	1	$\frac{1}{2}(5+\sqrt{21})$	1	2	$\frac{1}{2}(3+\sqrt{2} 2)$	$\frac{1}{2}(1+\sqrt{ } 21)^{7}$	$\frac{1}{2}(7+\sqrt{2})$	$\frac{1}{2}(1+/ 21)$
30	2	$11+2 \sqrt{ } 30$	1	p_{1}	p_{2}	$5+\sqrt{30}$	$\mathrm{p}_{4}{ }^{*}$	$13+2 \sqrt{ } 30$
35	2	$6+\sqrt{35}$	1	p_{1}	3	p_{3}	p_{4}	-
42	2	$13+2 \sqrt{42}$	1	p_{1}	p_{2}	5	$7+\sqrt{42}$	-
70	2	$251+30 \sqrt{70}$	1	\mathfrak{p}_{1}	$p_{2}{ }^{*}$	$25+3 \sqrt{70}$	P_{4}	$17+2 \sqrt{70}$
105	2	$41+4 \sqrt{ } 105$	1	p_{1}^{*}	p_{2}	$10+\sqrt{105}$	p_{4}	$\frac{1}{2}(11+/ 105)$
210	4	$29+2 \sqrt{210}$	1	\mathfrak{p}_{1}	p_{2}	p_{3}	P_{4}	-

Table III.

D	$p_{1} \cdot p_{2}$	$p_{1} \cdot p_{3}$	$p_{1} \cdot p_{4}$	$p_{2} \cdot p_{3}$	$\mathfrak{p}_{2} \cdot \mathfrak{p}_{4}$	$p_{3} \cdot p_{4}$
10	$-2+/ 10$	$\checkmark 10$	-	$5-\sqrt{10}$	-	-
15	$3+\sqrt{15}$	$5+/ 15$	$1+\sqrt{15}$	$\checkmark 15$	$6-\sqrt{15}$	$-5+2 \sqrt{ } 15$
30	$6+\sqrt{30}$	-	$-4+\sqrt{30}$	-	$3+\sqrt{30}$	-
35	-	$5+\sqrt{35}$	$7+\sqrt{35}$	-	-	$\sqrt{ } 35$
42	$6+142$	-	-	-	-	-
70	$-8+\sqrt{70}$	-	$42+5 \sqrt{ } 70$	-	$7+170$	-
105	$\frac{1}{2}(-9+/ 105)$	-	$\frac{1}{2}(7+/ 105)$	-	$21+2 \sqrt{105}$	-
210	-	-	$14+\sqrt{210}$	$15+/ 210$	-	-

Table IV.

D	α	I	I_{U}	D	α	I	I_{U}	D	α	I	I_{U}
2	1	-	2357	14	4+114	-	7	35	1	-	2357
	1	7	235		$4+14$	5	7		$\sqrt{35}$	-	23
	$\sqrt{ } 2$	-	37		$7+2 \sqrt{14}$	-	2		$5+/ 35$	-	7
	$\sqrt{ } 2$	7	35		$7+2 \sqrt{14}$	5	2		7+/35	-	5
3	1	-	2357	15	1	-	2357	42	1	-	2357
	$\sqrt{ } 3$	-	27		1	7	235		142	-	-
	$1+/ 3$	-	3		115	-	2		$6+\sqrt{42}$	-	57
	$3+13$	-	5		115	7	2		$7+\sqrt{42}$	-	3
5	2	-	2357		$3+15$	-	57	70	1	-	2357
	$2 \sqrt{5}$	-	237		$3+115$	7	5		1	3	257
6	1	-	2357		$5+/ 15$	-	3		170	-	-
	1	5	237		$5+115$	7	3		170	3	-
	$\sqrt{6}$	-	57		$1+/ 15^{*}$	7	35		$25+3 / 70$	-	37
	$\sqrt{6}$	5	7		$15+/ 15^{*}$	7	-		$25+3 \sqrt{70}$	3	7
	$2+16$	-	3		$6-115^{*}$	7	25		$42+5 \sqrt{ } 70$	-	5
	$2+\sqrt{6}$	5	3		$-5+2 \sqrt{15}{ }^{*}$	7	23		$42+5 \sqrt{70}$	3	5
	$3+16$	-	-	21	2	-	2357		$7+170$ *	3	5
	$3+16$	5	2		2	5	237		$10+\sqrt{70}$ *	3	7
7	1	-	2357		$2 \sqrt{21}$	-	25		$-8+\sqrt{70}$ *	3	57
	1	3	257		$2 \sqrt{21}$	5	2		35-4/70*	3	2
	$\sqrt{ } 7$	-	2		$3+21$	-	27	105	2	-	2357
	17	3	25		$3+\sqrt{21}$	5	27		2	2	357
	$3+17$	-	7		$7+21$	-	23		$2 \sqrt{105}$	-	2
	$3+17$	3	57		$7+/ 21$	5	23		$2 \sqrt{105}$	2	-
	$7+3 \sqrt{7}$	-	35	30	1	-	2357		$20+2 \sqrt{105}$	-	237
	$7+3 \sqrt{7}$	3	5		1	7	235		$20+2 \sqrt{105}$	2	37
10	1	-	2357		$\sqrt{30}$	-	-		$42+4 / 105$	-	25
	1	3	257		$\sqrt{ } 30$	7	-		$42+4 \sqrt{105}$	2	5
	$\sqrt{10}$	-	37		$5+\sqrt{30}$	-			$7+105^{*}$	2	35
	$\sqrt{10}$	3	7		$5+/ 30$	7	3		$15+1105^{*}$	2	7
	$-2+110$ *	3	57		$6+\sqrt{30}$	-	5		$-9+\sqrt{105 *}$	2	57
	$5-110^{*}$	3	27		$6+\sqrt{30}$	7	5		35-3/105*	2	3
14	1	-	2357		$3+130 *$	7	5	210	1	-	2357
	1	5	237		$10+\sqrt{30}{ }^{*}$	7	3		$\sqrt{ } 210$	-	-
	$\sqrt{14}$	-	35		$-4+\sqrt{30}{ }^{*}$	7	35		$14+/ 210$	-	35
	$\sqrt{14}$	5	3		15-2/ 30 *	7	2		$15+\sqrt{210}$	-	7

Table VI.

D		P_{i}			ν_{i}	λ_{i}		
2	2	35	5	3	00	1.5	0	0
6	2	37		3	10	1.5	0.5	0
7	2	5		2	01	1	0	0.5
10	2	5	7	3	10	1.5	0.5	0
14	2	3	7	3	01	1.5	0	0.5
15	2	3	5	2	11	1	0.5	0.5
21	2	3	7	2	11	0	0.5	0.5
30	2	35	5	3	11	1.5	0.5	0.5
70	2	5	7	3	11	1.5	0.5	0.5
105	3	5	7		11	0.5	0.5	0.5

D	α	$\mathrm{n}_{6} \mathrm{n}_{\pi} \mathrm{n}_{2} \mathrm{n}_{3} \mathrm{n}_{5} \mathrm{n}_{7}$						I_{U}		I_{U}^{*}			N		c_{12}^{*}
2	1	0	0	0	0	0	0	2	35	2	3	5	3	0	3.190×10^{28}
	12	0	0	1	0	0	0	3	5	2	3	5	2	0	3.190×10^{28}
6	1	0	0	0	0	0	0	2	37	2	3	7	3	0	2.712×10^{26}
	$\sqrt{6}$	0	0	1	1	0	0	7		2	7		2	0	4.604×10^{22}
	$2+16$	1	0	1	0	0	0	3		2	3		2	0	2.090×10^{22}
	$3+\sqrt{6}$	1	0	0	1	0	0	2		2	3		3	0	2.090×10^{22}
7	1	0	0	0	0	0	0	2	57	2	5	7	2	0	1.065×10^{30}
	$\sqrt{7}$	0	0	0	0	0	1	2	5	2	5		2	0	2.146×10^{28}
	$3+\sqrt{7}$	1	0	1	0	0	0	5	7	2	5	7	1	0	1.065×10^{30}
	$7+3 \sqrt{ } 7$	1	0	1	0	0	1	5		2	5		1	0	2.146×10^{25}
10	1	0	0	0	0	0	0	2	57	2	5	7	3	0	3.214×10^{29}
	$\sqrt{10}$	0	0	1	0	1	0	7		2	7		2	0	8.414×10^{24}
	$-2+\sqrt{10}$	-1	1	1	0	0	0	5	7	2	5	7	2	1	3.214×10^{29}
	$5-\sqrt{10}$	-1	1	0	0	1	0	2	7	2	7		3	1	8.414×10^{24}
14	1	0	0	0	0	0	0	2	37	2	3	7	3	0	4.791×10^{26}
	$\sqrt{ } 14$	0	0	1	0	0	1	3		2	3		2	0	4.347×10^{22}
	$4+\sqrt{14}$	1	0	1	0	0	0	7		2	7		2	0	8.143×10^{22}
	$7+2 \sqrt{14}$	1					1	2		2			3	0	8.371×10^{18}

D	α	n	n_{π}						I_{U}			I_{U}^{*}	N	κ	c_{12}^{*}
15	1	0	0	0	0	0	0	2	35		2	35	2	0	2.144×10^{28}
	115	0	0	0	1	1	0	2			2		2	0	9.427×10^{19}
	$3+115$	1	0	1	1	0	0	5			2	5	1	0	1.694×10^{24}
	$5+/ 15$	1	0	1	0	1	0	3			2	3	1	0	1.035×10^{24}
	$1+\sqrt{15}$	0	1	1	0	0	0	3	5		2	35	1	1	2.144×10^{28}
	$15+\sqrt{15}$	0	1	1	1	1	0				2		1	1	9.427×10^{19}
	6-115	-1	1	0	1	0	0	2	5		2	5	2	1	1.694×10^{24}
	$-5+2 \sqrt{15}$	-1	1	0	0	1	0	2	3		2	3	2	1	1.035×10^{24}
	2	0	0	2	0	0	0	2	37		2	37	1	0	1.898×10^{26}
	$2 \sqrt{21}$	0	0	2	1	0	1	2			2		0	0	2.640×10^{18}
	$3+\sqrt{21}$	1	0	2	1	0	0	2	7		2	7	1	0	3.220×10^{22}
	$7+/ 21$	1	0	2	0	0	1	2	3		2	3	1	0	1.435×10^{22}
30	1	0	0	0	0	0	0	2	35		2	35	3	0	4.141×10^{28}
	130	0	0	1	1	1	0				2		2	0	2.022×10^{20}
	$5+\sqrt{30}$	1	0	0	0	1	0	3			2	3	3	0	2.217×10^{24}
	$6+130$	1	0	1	1	0	0	5			2	5	2	0	3.276×10^{24}
	$3+\sqrt{30}$	0	1	0	1	0	0	5			2	5	3	1	3.276×10^{24}
	$10+\sqrt{30}$	0	1	1	0	1	0	3			2	3	2	1	2.217×10^{24}
	$-4+130$	-1	1	1	0	0	0	3	5		2	35	2	1	4.141×10^{28}
	15-2/30	-1	1	0	1	1	0	2			2		3	1	2.022×10^{20}
70	1	0	0	0	0	0	0	2	57		2	57	3	0	3.229×10^{30}
	170	0	0	1	0	1	1				2		2	0	2.115×10^{21}
	$25+3 \sqrt{70}$	1	0	0	0	1	0	7			2	7	3	0	8.482×10^{25}
	$42+5 \sqrt{70}$	1	0	1	0	0	1	5			2	5	2	0	7.003×10^{25}
	$7+\sqrt{70}$	0	1	0	0	0	1	5			2	5	3	1	7.003×10^{25}
	$10+\sqrt{70}$	0	1	1	0	1	0	7			2	7	2	1	8.482×10^{25}
	$-8+170$	-1	1	1	0	0	0	5	7		2	57	2	1	3.229×10^{30}
	35-4/70	-1	1	0	0	1	1	2			2		3	1	2.115×10^{21}
105	2	0	0	2	0	0	0	3	57		3	57	1	0	4.533×10^{29}
	$2 \sqrt{105}$	0	0	2	1	1	1						0	0	4.295×10^{16}
	$20+2 \sqrt{105}$	1	0	2	0	1	0	3	7		3	7	1	0	1.690×10^{25}
	$42+4 \sqrt{105}$	1	0	2	1	0	1	5			5		1	0	8.655×10^{20}
	$7+105$	0	1	2	0	0	1	3	5		3	5	1	1	1.396×10^{25}
	$15+\sqrt{105}$	0	1	2	1	1	0	7			7		1	1	1.049×10^{21}
	$-9+\sqrt{105}$	-1	1	2	1	0	0		7		5	7	1	1	2.485×10^{25}
	35-3/105	-1	1	2	0	1	1	3			3		1	1	5.880×10^{20}

Chapter 8. The Thue equation.

Acknowledgements. The research for this chapter has been done in cooperation with N. Tzanakis from Iraklion. The results have been published in Tzanakis and de Weger [1989 ${ }^{\text {a }}$].

8.1. Introduction.

Let $F(X, Y) \in \mathbb{Z}[X, Y]$ be a binary form with integral coefficients, of degree at least three, and irreducible. Let m be a nonzero integer. The diophantine equation

$$
F(X, Y)=m
$$

in $X, Y \in \mathbb{Z}$ is called a Thue equation. It plays a central role in the theory of diophantine equations. In 1909 Thue proved that it has only finitely many solutions (cf. Thue [1909]). His proof was ineffective. An effective proof was given by Baker [1968]. See Chapter 5 of Shorey and Tijdeman [1986] for a survey of results on Thue equations. By using Lemma 2.4 in Baker's argument, we derive a fully explicit upper bound for the solutions of the Thue equation. Then we show how the methods developed in Chapter 3 can be used to actually find all the solutions of a Thue equation. Our method works in principle for any Thue equation, and in practice for any Thue equation of not too large degree, provided that some algebraic data on the form F are available. See also Tzanakis [1989] for a short introduction.

Variants of the method we use here have been used in practice to solve Thue equations by Ellison, Ellison, Pesek, Stahl and Stall [1975], Steiner [1986], Pethö and Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987 ${ }^{\text {a }}$], [1987^{b}]. In all these cases $\mathrm{m}=1$, whereas de Weger [1989 ${ }^{\mathrm{b}}$] treats an example with $m>1$, using the method described in this chapter. When determining all cubes in the Fibonacci sequence, Pethö [1983] solved a Thue equation by the Gelfond-Baker method, but with a completely different way to find all the solutions below the upper bound. And there are numerous Thue equations that have been solved by different (usually ad hoc) methods.

8.2. From the Thue equation to a linear form in logarithms

In this section we show how the general Thue equation leads to an inequality involving a linear form in the logarithms of algebraic numbers with rational integral coefficients (unknowns). Let

$$
F(X, Y)=\sum_{i=0}^{n} f_{i} \cdot X^{n-i} \cdot Y^{i} \in \mathbb{Z}[X, Y]
$$

be a binary form of degree $n \geq 3$ and let m be a nonzero integer. Consider the Thue equation

$$
\begin{equation*}
F(X, Y)=m, \tag{8.1}
\end{equation*}
$$

in the unknowns $X, Y \in \mathbb{Z}$. If F is reducible over \mathbb{Q}, then (8.1) can be reduced to a system of finitely many equations of type (8.1) with irreducible binary forms. For such equations of degree 1 or 2 it is well known how to determine the solutions. Therefore we may assume from now on that F is irreducible over \mathbb{Q} and of degree ≥ 3. Let $g(x)=F(x, 1)$. If $g(x)=0$ has no real roots then one can trivially find small upper bounds for $\max (|X|,|Y|)$ for the solutions (X,Y) of (8.1). Therefore, throughout this chapter we assume that the algebraic equation $g(x)=0$ has at least one real root. We number its roots as follows: $\xi^{(1)}, \ldots, \xi^{(s)}$ (with $s \geq 1$) are the real roots and $\xi^{(s+1)}=\overline{\xi^{(s+t+1)}}, \ldots, \xi^{(s+t)}=\overline{\xi^{(s+2 t)}}$ are the non-real roots, so that we have $t(\geq 0)$ pairs of complex-conjugate roots, and $s+2 \cdot t=n$.

Consider the field $K=\mathbb{Q}(\xi)$, where $g(\xi)=0$. We will define three positive real numbers $Y_{1}<Y_{2}<Y_{3}$, that will divide the set of possible solutions (X,Y) of (8.1) into four classes: \rightarrow the 'very small' solutions, with $|Y| \leq Y_{1}$. They will be found by enumeration of all possibilities,
\rightarrow the 'small' solutions, with $Y_{1}<|Y| \leq Y_{2}$. They will be found by evaluating the continued fraction expansions of the real roots $\xi^{(i)}$. \rightarrow the 'large' solutions, with $Y_{2}<|Y| \leq Y_{3}$. They will be proved not to exist by a computational diophantine approximation technique,
\rightarrow the 'very large' solutions, with $|Y|>Y_{3}$. They will be proved not to exist by the theory of linear forms in logarithms.

The value of Y_{3} follows from the Gelfond-Baker theory of linear forms in logarithms. The value of Y_{2} follows from the restrictions that we use as we
try to prove that no 'large' solutions exist. The value of Y_{1} follows from Lemma 8.1 below. This lemma shows that if $|Y|$ is large enough then X / Y is 'extremely close' to one of the real roots $\xi^{(i)}$. In a typical example Y_{3} may be as large as $10^{10^{50}}, Y_{2}$ as 10^{10}, and Y_{1} as small as 10 .

LEMMA 8.1. Let $X, Y \in \mathbb{Z}$ satisfy (8.1). Put $\beta=X-\xi \cdot \mathrm{Y}$,

$$
\begin{aligned}
& Y_{0}=\left\{\begin{array}{ll}
{\left[\begin{array}{ll}
{\left[\frac{2^{n-1} \cdot|m|}{\min \left|g^{\prime}\left(\xi^{(s+i)}\right)\right| \cdot \min \left|\operatorname{Im} \xi^{(s+i)}\right|}\right.} \\
1 \leq i \leq t
\end{array}\right]} \\
1 & \text { if } t \geq 1, \\
\text { if } t=0
\end{array},\right. \\
& C_{1}=\frac{2^{n-1} \cdot|m|}{\min \left|g^{\prime}\left(\xi^{(i)}\right)\right|}, \quad c_{2}=\frac{1}{2} \cdot \min _{1 \leq i \leq j \leq n}\left|\xi^{(i)}-\xi^{(j)}\right|, \\
& Y_{1}=\max \left[Y_{0},\left\lceil\left(4 \cdot C_{1}\right)^{1 /(n-2)}\right]\right) \text {. }
\end{aligned}
$$

(i). If $|Y|>Y_{0}$ then there exists an $i_{0} \in\{1, \ldots, s\}$ such that

$$
\begin{aligned}
& \left|\beta^{\left(i_{0}\right)}\right| \leq C_{1} \cdot|Y|^{-(n-1)} \\
& \left|\beta^{(i)}\right| \geq C_{2} \cdot|Y| \text { for } i \in\{1, \ldots, n\}, i \neq i_{0}
\end{aligned}
$$

(ii). If $|\mathrm{Y}|>\mathrm{Y}_{1}$ then X / Y is a convergent from the continued fraction expansion of $\xi^{\left(i_{0}\right)}$.

Proof. Let $i_{0} \in(1, \ldots, n)$ be such that $\left|\beta^{\left(i_{0}\right)}\right|=\min _{1 \leq i \leq n}\left|\beta^{(i)}\right|$. We have from (8.1)

$$
\left|f_{0}\right| \cdot \prod_{i=1}^{n}\left|\beta^{(i)}\right|=|m|
$$

By the minimality of $\left|\beta^{\left(i_{0}\right)}\right|$ we have for all i

$$
|Y| \cdot\left|\xi^{(i)}-\xi^{\left(i_{0}\right)}\right|=\left|\beta^{(i)}-\beta^{\left(i_{0}\right)}\right| \leq\left|\beta^{(i)}\right|+\left|\beta^{\left(i_{0}\right)}\right| \leq 2 \cdot\left|\beta^{(i)}\right|
$$

Hence $\left|\beta^{(i)}\right| \geq C_{2} \cdot|Y|$. Further,

$$
\left|\beta^{\left(i_{0}\right)}\right|=\frac{|m|}{\left|f_{0}\right|} \cdot \prod_{i \neq i_{0}}\left|\beta^{(i)}\right|^{-1} \leq \frac{|m|}{\left|f_{0}\right|} \cdot \prod_{i \neq i_{0}}\left[\frac{1}{2} \cdot|Y| \cdot\left|\xi^{(i)}-\xi^{\left(i_{0}\right)}\right|\right]^{-1}
$$

$$
=\frac{2^{n-1} \cdot|m|}{\left|f_{0} \cdot \prod_{i \neq i}\left(\xi^{(i)}-\xi^{\left(i_{0}\right)}\right)\right| \cdot|Y|^{n-1}}=\frac{2^{n-1} \cdot|m|}{\left|g^{\prime}\left(\xi^{\left(i_{0}\right)}\right)\right| \cdot|Y|^{n-1}} .
$$

Now, if $i_{0}>s$ (and hence $t \geq 1$) then, by the definition of Y_{0},

$$
\begin{aligned}
\left|\frac{X}{\bar{Y}}-\xi^{\left(i_{0}\right)}\right| & =\frac{\left|\beta^{\left(i_{0}\right)}\right|}{|Y|} \leq \frac{2^{n-1} \cdot|m|}{\left|g^{\prime}\left(\xi^{\left(i_{0}\right)}\right)\right|} \cdot|Y|^{-n} \\
& \leq\left[\frac{Y_{0}}{|Y|}\right]^{n} \cdot \min _{s+1 \leq i \leq s+t}\left|\operatorname{Im} \xi^{(i)}\right|
\end{aligned}
$$

which is impossible if $|Y|>Y_{0}$. Hence $i_{0} \leq s$, and now (i) follows at once. Moreover, if $|Y|>Y_{1}$, then

$$
\left|\frac{X}{\bar{Y}}-\xi^{\left(\mathrm{I}_{0}\right)}\right|=\left|\beta^{\left(\mathrm{i}_{0}\right)}\right| \cdot|Y|^{-1} \leq c_{1} \cdot|Y|^{-n} \leq \frac{1}{4} \cdot Y_{1}^{\mathrm{n}-2} \cdot|Y|^{-n} \leq \frac{1}{2} \cdot|Y|^{-2}
$$

and thus $\left|\frac{X}{\bar{Y}}-\xi^{\left(\mathrm{I}_{0}\right)}\right|<\frac{1}{2} \cdot|Y|^{-2}$, since $\xi^{\left(\mathrm{I}_{0}\right)}$ is irrational. Now (ii) follows from a well known result on continued fractions, cf. (3.6).

Now let $|Y|>Y_{1}$ and $i_{0} \in\{1, \ldots, s\}$ as in Lemma 8.1. Choose $j, k \in\{1, \ldots, n\}$ such that i_{0}, j, k are pairwise distinct and either $j, k \in\{1, \ldots, s\}$ or $j+t=k$ (so that $\xi^{(k)}=\overline{\xi^{(j)}}$), but further the choice of j, k is free. By $\beta^{(i)}=X-Y \cdot \xi^{(i)}$ for $i=i_{0}, j$, k we get, on eliminating the X and Y,

$$
\beta^{\left(\mathrm{i}_{0}\right)} \cdot\left(\xi^{(\mathrm{j})}-\xi^{(\mathrm{k})}\right)+\beta^{(\mathrm{j})} \cdot\left(\xi^{(\mathrm{k})}-\xi^{\left(\mathrm{i}_{0}\right)}\right)+\beta^{(\mathrm{k})} \cdot\left[\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(\mathrm{j})}\right)=0
$$

or, equivalently,

$$
\begin{equation*}
\frac{\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(\mathrm{j})}}{\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(k)}} \cdot \frac{\beta^{(\mathrm{k})}}{\beta^{(\mathrm{j})}}-1=-\frac{\xi^{(\mathrm{k})}-\xi^{(\mathrm{j})}}{\xi^{(\mathrm{k})}-\xi^{\left(\mathrm{i}_{0}\right)}} \cdot \frac{\beta^{\left(\mathrm{i}_{0}\right)}}{\beta^{(\mathrm{j})}} . \tag{8.2}
\end{equation*}
$$

By Lemma 8.1, the right hand side of (8.2) is 'extremely small'. Put, if $j, k \in\{1, \ldots, s)$ (let us call it 'the real case')

$$
\Lambda=\log \left|\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\left.\xi^{\left(i_{0}\right)_{-\xi}}-k\right)} \cdot \frac{\beta^{(k)}}{\beta^{(j)}}\right|
$$

and if $j, k \in\{s+1, \ldots, s+2 \cdot t\}$ (let us call it 'the complex case')

$$
\Lambda=\frac{1}{i} \cdot \log \left[\frac{\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(\mathrm{j})}}{\xi^{\left(\mathrm{i}_{0}\right)_{-\xi}^{(k)}}} \cdot \frac{\beta^{(\mathrm{k})}}{\beta^{(\mathrm{j})}}\right],
$$

where, in general, for $z \in \mathbb{C}, \log (z)$ denotes the principal value of the logarithm of z (hence $-\pi<\operatorname{Im} \log (z) \leq \pi$). By $\xi^{(\mathrm{k})}=\overline{\xi^{(j)}}$ we have $\Lambda \in \mathbb{R}$ and $|\Lambda| \leq \pi$.

The following lemma shows how small $|\Lambda|$ is.

LEMMA 8.2. Put

$$
\begin{aligned}
& C_{3}=\max _{i_{1} \neq i_{2} \neq i_{3} \neq i_{1}}\left|\frac{\xi^{\left(i_{1}\right)}-\xi^{\left(i_{2}\right)}}{\left.\xi_{1}\right)-\xi^{\left(i_{3}\right)}}\right|, \\
& Y_{2}^{*}=\max \left[Y_{1},\left\lceil\left(2 \cdot C_{1} \cdot C_{3} / C_{2}\right)^{1 / n}\right\rceil\right] .
\end{aligned}
$$

If $|\mathrm{Y}|>\mathrm{Y}_{2}^{*}$ then

$$
|\Lambda|<\frac{1.39 \cdot C_{1} \cdot C_{3}}{C_{2}} \cdot|Y|^{-n} .
$$

Proof. Consider first the real case. From $|Y|>Y_{2}^{*}$ and Lemma 8.1 it follows that the right hand side of (8.2) is absolutely less than $\frac{1}{2}$ and, consequently,

$$
\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi^{(k)}} \cdot \frac{\beta^{(k)}}{\beta^{(j)}}>0 .
$$

It follows that the left hand side of (8.2) is equal to $e^{\Lambda}-1$, and now (8.2) implies, in view of Lemma 8.1 and the definition of C_{3},

$$
\left|e^{\Lambda}-1\right|<C_{3} \cdot \frac{C_{1} \cdot|Y|^{-(n-1)}}{C_{2} \cdot|Y|}=\frac{C_{1} \cdot C_{3}}{C_{2}} \cdot|Y|^{-n} .
$$

On the other hand, $\left|e^{\Lambda}-1\right|<\frac{1}{2}$ implies (cf. Lemma 2.2)

$$
|\Lambda| \leq 2 \cdot \log 2 \cdot\left|e^{\Lambda}-1\right| \leq 1.39 \cdot\left|e^{\Lambda}-1\right|,
$$

which proves our claim in the real case.
In the complex case the left hand side of (8.2) is equal to $e^{i \Lambda}-1$, and, as in the real case, we derive

$$
\left|e^{i \Lambda}-1\right|<\frac{C_{1} \cdot C_{3}}{C_{2}} \cdot|Y|^{-n}<\frac{1}{2}
$$

Since $\left|e^{i \Lambda}-1\right|=2 \cdot|\sin \Lambda / 2|$, it follows that $|\sin \Lambda / 2|<\frac{1}{4}$, and therefore by Lemma 2.3

$$
|\Lambda| \leq 2 \cdot \frac{1 / 4}{\sin 1 / 4} \cdot|\sin \Lambda / 2|=\frac{1 / 4}{\sin 1 / 4} \cdot\left|e^{i \Lambda}-1\right| \leq 1.02 \cdot\left|e^{i \Lambda}-1\right|,
$$

which proves the lemma in the complex case.

In the ring of integers of the field K (as well as in any other order R of K) there exists a system of fundamental units $\epsilon_{1}, \ldots, \epsilon_{r}$, where $r=s+t-1$ (Dirichlet's Unit Theorem). Note that since F is irreducible and we have supposed $s>0$, the only roots of unity belonging to K are ± 1. We shall not discuss here the problem of finding such a system (for efficient methods see e.g. Berwick [1932], Billevic [1956], [1964], Pohst and Zassenhaus [1982], Buchmann [1985], [1986]). We simply assume that a system of fundamental units is known. On the other hand, there exist only finitely many non-associates $\mu_{1}, \ldots, \mu_{\nu}$ in K such that $f_{0} \cdot N\left(\mu_{i}\right)=m$ for $i=1, \ldots, \nu$ (we use $N(\cdot)$ to denote the norm of the extension K / \mathbb{Q}). We also assume that a complete set of such μ_{i} 's is known. Let M be the set of all $5 \cdot \mu_{i}$, where ζ is a root of unity in K. (In the important case $\left|f_{0}\right|=|m|=1$, it is clear that $M=(-1,1)$. Then, for any integral solution (X, Y) of (8.1) there exist some $\mu \in M$ and $a_{1}, \ldots, a_{r} \in \mathbb{Z}$, such that

$$
\beta=\mu \cdot \epsilon_{1}{ }_{1}{ }^{1} \ldots \cdot \epsilon_{\mathrm{r}}{ }^{a_{r}} .
$$

Thus, the initial problem of solving (8.1) is reduced to that of finding all integral r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ such that $\mu \cdot \epsilon_{1}{ }_{1} \ldots \epsilon_{r}{ }_{r}$ for some $\mu \in M$ be of the special shape $X-Y \cdot \xi$, with $X, Y \in \mathbb{Z}$. As we have seen, X and Y can be eliminated, so that we obtain (8.2). Thus the problem reduces to solving finitely many equations of the type

$$
\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi^{(k)}} \cdot \frac{\mu^{(k)}}{\mu^{(j)}} \cdot \prod_{i=1}^{r}\left[\frac{\epsilon_{i}^{(k)}}{\epsilon_{i}^{(j)}}\right]^{a_{i}}-1=-\frac{\xi^{(k)}-\xi^{(j)}}{\xi^{(k)}-\xi^{\left(i_{0}\right)}} \cdot \frac{\mu^{\left(i_{0}\right)}}{\mu^{(j)}} \cdot \prod_{i=1}^{r}\left[\frac{\epsilon_{i}^{\left(i_{0}\right)}}{\epsilon_{i}^{(j)}}\right]^{a_{i}}
$$

(the so-called 'unit equation'). In the real case we have

$$
\begin{equation*}
\Lambda=\log \left|\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi^{(k)}} \cdot \frac{\mu^{(k)}}{\mu^{(j)}}\right|+\sum_{i=1}^{r} a_{i} \cdot \log \left|\frac{\epsilon_{i}^{(k)}}{\epsilon_{i}^{(j)}}\right|, \tag{8.3}
\end{equation*}
$$

and in the complex case

$$
\begin{equation*}
\Lambda=\operatorname{Arg}\left[\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi^{(k)}} \cdot \frac{\mu^{(k)}}{\mu^{(j)}}\right]+\sum_{i=1}^{r} a_{i} \cdot \operatorname{Arg}\left[\frac{\epsilon_{i}^{(k)}}{\epsilon_{i}^{(j)}}\right]+a_{0} \cdot 2 \pi \tag{8.4}
\end{equation*}
$$

with $a_{0} \in \mathbb{Z}$, and $-\pi<\operatorname{Arg}(z) \leq \pi$ for every $z \in \mathbb{C}$. Note that Λ in the real case, and $i \cdot \Lambda$ in the complex case, is a linear form in (principal) logarithms of algebraic numbers, where the coefficients a_{i} are integers. The Gelfond-Baker theory provides an explicit lower bound for $|\Lambda|$ in terms of $\max \left|a_{i}\right|$. Using this in combination with Lemma 8.2 we can find an explicit upper bound for $\max \left|a_{i}\right|$. This is what we do in the next section.

8.3. Upper bounds.

Let $A=\max _{1 \leq i \leq r}\left|a_{i}\right|$. First we find an upper bound for A in terms of $|Y|$.

LEMMA 8.3. Let $I=\left(h_{1}, \ldots, h_{r}\right\} \subset(1, \ldots, n)$. Put

$$
U_{I}=\left(\log \left|\epsilon_{\ell}^{\left(h_{i}\right)}\right|\right)_{1 \leq i \leq r, 1 \leq \ell \leq r}
$$

(where i indicates a row and ℓ a column of the matrix),

$$
U_{I}^{-1}=\left(u_{i \ell}\right), \quad N\left[U_{I}^{-1}\right]=\max _{1 \leq i \leq r} \sum_{\ell=1}^{r}\left|u_{i \ell}\right|
$$

Put also

$$
\begin{aligned}
& \mu_{-}=\min _{\substack{\leq i \leq n \\
\mu \in M}}\left|\mu^{(i)}\right|, \quad \mu_{+}=\max _{1 \leq i \leq n}^{\mu \in M}\left|\mu^{(i)}\right| \\
& C_{4}=\frac{\frac{1}{2}+\max _{1 \leq i_{1}<i_{2} \leq n^{\prime} \mid \xi^{\left(i_{1}\right)}}^{\mu_{-}}{ }_{-\xi^{\left(i_{2}\right)} \mid}^{I}}{C_{5}=\min \left((n-1) \cdot \min N\left[U_{I}^{-1}\right], \max _{I} N\left[U_{I}^{-1}\right]\right)}
\end{aligned}
$$

Then, for

$$
|Y|>\max \left(Y_{1}, 2 \cdot|m|^{1 / n}, \mu_{+} / C_{2}\right),
$$

we have

$$
A<C_{5} \cdot \log \left(C_{4} \cdot|Y|\right) .
$$

Proof. By $\beta=\mu \cdot \epsilon_{1}{ }^{a_{1}} \cdot \ldots \cdot \epsilon_{r}{ }_{r}$ we have

$$
\left[\begin{array}{cc}
\log \mid \beta^{\left(h_{1}\right)} & \left(h_{1}\right) \tag{8.5}\\
\vdots & \\
\log \mid \beta^{\left(h_{r}\right)} / \mu & \left(h_{r}\right)
\end{array}\right]=U_{I} \cdot\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{r}
\end{array}\right]
$$

On the other hand, for every $h \in\{1, \ldots, n\}$, using the end of the proof of Lemma 8.1,

$$
\begin{aligned}
& \left|\beta^{(\mathrm{h})}\right|=\left|\mathrm{X}-\mathrm{Y} \cdot \xi^{(\mathrm{h})}\right| \leq\left|\mathrm{X}-\mathrm{Y} \cdot \xi^{\left(\mathrm{i}_{0}\right)}\right|+|\mathrm{Y}| \cdot\left|\xi^{\left(\mathrm{I}_{0}\right)}-\xi^{(\mathrm{h})}\right| \\
& \leq \frac{1}{2 \cdot|Y|}+|Y| \cdot\left|\xi^{\left(i_{0}\right)}-\xi^{(h)}\right| \\
& <\left(\frac{1}{2}+{ }_{1 \leq i_{1}<i_{2} \leq n}^{\max }\left|\xi^{\left(i_{1}\right)}-\xi^{\left(i_{2}\right)}\right|\right) \cdot|Y| \text {, }
\end{aligned}
$$

and therefore

$$
\left|\frac{\beta^{(h)}}{\mu^{(h)}}\right|<C_{4} \cdot|Y| \text { for } h=1, \ldots, n
$$

Note that $C_{4} \cdot|Y|>1$. Indeed, by

$$
\prod_{i=1}^{n}\left|\mu^{(i)}\right|=\frac{|m|}{\left|f_{0}\right|} \leq|m|
$$

it follows that $\min _{1 \leq i \leq n}\left|\mu^{(i)}\right| \leq|m|^{1 / n}$, hence $\mu_{-} \leq|m|^{1 / n}$. Therefore

$$
C_{4} \cdot|Y| \geq\left(\frac{1}{2}+\max _{1 \leq i_{1}<i_{2} \leq n}\left|\xi^{\left(i_{1}\right)}-\xi^{\left(i_{2}\right)}\right|\right) \cdot|Y| \cdot|m|^{-1 / n}>\frac{|Y|}{2|m|^{1 / n}}>1 .
$$

Then,

$$
\begin{equation*}
\log \left|\frac{\beta^{(h)}}{\mu^{(h)}}\right|<\log \left(C_{4} \cdot|Y|\right) \text { for } h=1, \ldots, n, \log \left(C_{4} \cdot|Y|\right)>0 \tag{8.6}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
|\log | \frac{\beta^{(i)}}{\mu(i)}\left|\mid<(n-1) \cdot \log \left(C_{4} \cdot|Y|\right) \quad \text { for } \quad i=1, \ldots, n\right. \tag{8.7}
\end{equation*}
$$

Indeed, in view of (8.6), a stronger inequality is true if $\left|\beta^{(i)} / \mu^{(i)}\right| \geq 1$. Suppose now that $\left|\beta^{(i)} / \mu^{(i)}\right|<1$. By

$$
\prod_{h=1}^{n}\left|\frac{\beta^{(h)}}{\mu^{(h)}}\right|=1
$$

it follows that

$$
|\log | \frac{\beta^{(i)}}{\mu^{(i)}}\left||=-\log | \frac{\beta^{(i)}}{\mu^{(i)}}\right|=\sum_{\substack{h=1 \\ h \neq i}}^{n} \log \left|\frac{\beta^{(h)}}{\mu^{(h)}}\right|<(n-1) \cdot \log \left(C_{4} \cdot|Y|\right)
$$

in view of (8.6). Now the inequality

$$
A<(n-1) \cdot \min _{I} N\left[U_{I}^{-1}\right] \cdot \log \left(C_{4} \cdot|Y|\right)
$$

follows from (8.5), (8.7), the definition of $N\left[U_{I}^{-1}\right]$ and the fact that, as we have not put so far any restriction on I, this could be chosen so that $N\left[U_{I}^{-1}\right]$ be minimal. It remains to show that

$$
A<\max _{I} N\left[U_{I}^{-1}\right] \cdot \log \left(C_{4} \cdot|Y|\right)
$$

Choose I such that $i_{0} \notin I$. Then, by Lemma 8.1, for every $h \in I$, $\left|\beta^{(h)} / \mu^{(h)}\right|>C_{2} \cdot|Y| / \mu_{+}>1$ and now, in view of (8.6),

$$
|\log | \frac{\beta^{(h)}}{\mu^{(h)}}\left|\mid<\log \left(C_{4} \cdot|Y|\right)\right.
$$

which implies our assertion.

Lemmas 8.2 and 8.3 immediately yield

LEMMA 8.4. Put

$$
C_{6}=\frac{1.39 \cdot C_{1} \cdot C_{3} \cdot C_{4}^{n}}{C_{2}}, \quad Y_{2}^{\prime}=\max \left(Y_{2}^{*}, 2 \cdot|m|^{1 / n}, \mu_{+} / C_{2}\right)
$$

If $|\mathrm{Y}|>\mathrm{Y}_{2}^{\prime}$ then

$$
|\Lambda|<C_{6} \cdot \exp \left(\frac{-n}{C_{5}} \cdot A\right)
$$

Next we apply Lemma 2.4 (Waldschmidt). It yields in the real case (assuming that $\Lambda \neq 0$)

$$
\begin{equation*}
|\Lambda|>\exp \left(-C_{7} \cdot\left(\log A+C_{8}\right)\right) \tag{8.8}
\end{equation*}
$$

and in the complex case this holds when A is replaced by $A^{\prime}=\max _{0 \leq i \leq r}\left|a_{i}\right|$. The precise values for C_{7} and C_{8} are given in Section 2.3. It should be noted that in the complex case a_{0} makes now its appearance, while it was not present in Lemmas 8.3 and 8.4. In order to obtain an upper bound for A, we must find an upper bound for A^{\prime} in terms of A. Indeed, using

$$
\operatorname{Arg}\left(z_{1} \cdot z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)+k \cdot 2 \pi, k \in\{-1,0,1\},
$$

we find from (8.4) and the proof of lemma 8.2 that if $A \geq 2$ then

$$
\left|a_{0}\right|<\frac{1}{2}+\frac{1}{2} \cdot r \cdot A+|\Lambda| / 2 \pi<1+r \cdot A \leq r \cdot A
$$

Thus we may apply (8.8) in both cases with the same A if we replace C_{8} by

$$
\begin{array}{ll}
C_{8}^{\prime}=C_{8} & \text { in the real case }, \\
C_{8}^{\prime}=C_{8}+\log r & \text { in the complex case. }
\end{array}
$$

We can now give an upper bound for A.

LEMMA 8.5. Put

$$
C_{9}=\frac{2 \cdot C_{5}}{n} \cdot\left(\log C_{6}+C_{7} \cdot C_{8}^{\prime}+C_{7} \cdot \log \frac{C_{5} \cdot C_{7}}{n}\right)
$$

If $|\mathrm{Y}|>\mathrm{Y}_{2}^{\prime}$, then $\mathrm{A}<\mathrm{C}_{9}$.
Proof. As we have seen in the proof of Lemma $8.2,\left|e^{\Lambda}-1\right|<\frac{1}{2}$ in the real case, and $\left|e^{i \Lambda}-1\right|<\frac{1}{2}$ in the complex case. Note that $\beta^{\left(i_{0}\right)} \neq 0$. Hence (8.2) implies $\Lambda \neq 0$. Therefore Lemma 8.4 and (8.8) yield

$$
A<\frac{C_{5}}{n} \cdot\left(\log C_{6}+C_{7} \cdot C_{8}^{\prime}+C_{7} \cdot \log A\right)
$$

The result now follows from Lemma 2.1.

Remark. From this upper bound for A an upper bound for $|Y|$ can be derived, thus a value for Y_{3} (cf. Section 8.2). We shall not do this. Note that Y_{2}^{\prime} (cf. Lemma 8.4) is not necessarily equal to Y_{2} (cf. Section 8.2).
8.4. Reducing the upper bound.

We are now left with a problem of the following type. Let be given real numbers $\delta, \mu_{1}, \ldots, \mu_{q}(q \geq 2$, the case $q=1$ is trivial). Write

$$
\Lambda=\delta+a_{1} \cdot \mu_{1}+\ldots+a_{q} \cdot \mu_{q}
$$

where the a_{i} 's belong to \mathbb{Z}, and put $A=\max \left|a_{i}\right|$. If K_{1}, K_{2}, K_{3} are given positive numbers, then find all q-tuples $\left(a_{1}, \ldots, a_{q}\right) \in \mathbb{Z}^{q}$ satisfying

$$
\begin{equation*}
|\Lambda|<K_{1} \cdot \exp \left(-K_{2} \cdot A\right), \quad A<K_{3} \tag{8.9}
\end{equation*}
$$

In our case, it follows from (8.3) or (8.4) how to define q, δ and the $\mu_{i}^{\prime} s$, and from Lemmas 8.4 and 8.5 how to define K_{1}, K_{2}, K_{3}. In general, K_{1} and K_{2} are 'small' constants, whereas K_{3} is 'very large'. Put

$$
\Lambda_{0}=a_{1} \cdot \mu_{1}+\ldots+a_{q} \cdot \mu_{q}
$$

so that $\Lambda=\delta+\Lambda_{0}$. We apply the methods of Chapter 3 to problem (8.9).

Below we distinguish three cases. In the first two we suppose that the μ_{i} 's are \mathbb{Q}-independent.
(i). Let $\delta=0$, so that $\Lambda=\Lambda_{0}$. Then the linear form is homogeneous, and we apply the method of Section 3.7.
(ii) Let $\delta \neq 0$. Then the linear form is inhomogeneous, and we apply the method of Section 3.8.
(iii). Suppose now that the μ_{i} 's are Q-dependent. Let Γ be the approximation lattice for the linear form Λ, as defined in Section 3.7. Then we expect the lower bound for $|\underline{x}| \quad(\underline{x} \in \Gamma, \underline{x} \neq \underline{0}$) in general to be 'very small', since the vector having as coordinates the coefficients of the dependence relation will give rise to a very short vector in the lattice. So the reduction process, as applied in the two previous cases, will not work. In such a case we work as follows. Let M be a maximal subset of $\left\{\mu_{1}, \ldots, \mu_{q}\right\}$ consisting of \mathbb{Q}-independent numbers. With an appropriate choice of subscripts we may assume that $M=\left\{\mu_{1}, \ldots, \mu_{p}\right\}, p<q$. Then we can find integers $d>0$ and $d_{i j}$ for $1 \leq i \leq p<j \leq q$ such that

$$
d \cdot \mu_{j}=\sum_{i=1}^{p} d_{i j} \cdot \mu_{i} \quad \text { for } j=p+1, \ldots, q .
$$

(These numbers $d, d_{i j}$ can be found as coordinates of extremely short vectors in reduced bases). On the other hand, (8.9) is equivalent to

$$
\begin{equation*}
\left|\Lambda^{\prime}\right|<K_{1}^{\prime} \cdot \exp \left(-K_{2} \cdot A\right), A<K_{3}, \tag{8.10}
\end{equation*}
$$

where $\Lambda^{\prime}=d \cdot \Lambda$ and $K_{1}^{\prime}=d \cdot K_{1}$. Now, with $\delta^{\prime}=d \cdot \delta$ and

$$
a_{i}^{\prime}=d \cdot a_{i}+\sum_{j=p+1}^{q} d_{i j} \cdot a_{j}
$$

we obtain

$$
\begin{gathered}
\Lambda^{\prime}=\delta^{\prime}+\sum_{i=1}^{p} a_{i}^{\prime} \cdot \mu_{i} \\
\text { Put } D=\max \left(|d|,\left|d_{i j}\right|: 1 \leq i \leq p<j \leq q\right) \text {. Then } \\
\quad\left|a_{i}^{\prime}\right| \leq(q-p+1) \cdot D \cdot A \text { for } i=1, \ldots, p .
\end{gathered}
$$

$$
\text { Therefore, put } A^{\prime}=\max _{1 \leq i \leq p}\left|a_{i}^{\prime}\right| \text {, then } A^{\prime} \leq(q-p+1) \cdot D \cdot A \text {, and (8.10) implies }
$$

$$
\begin{equation*}
\left|\Lambda^{\prime}\right|<K_{1}^{\prime} \cdot \exp \left(-K_{2}^{\prime} \cdot A^{\prime}\right), \quad A^{\prime}<K_{3}^{\prime} \tag{8.11}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Lambda^{\prime}=\delta^{\prime}+a_{1}^{\prime} \cdot \mu_{1}^{\prime}+\ldots+a_{p}^{\prime} \cdot \mu_{p}^{\prime}, \quad K_{1}^{\prime}=d \cdot K_{1} \\
& K_{2}^{\prime}=K_{2} /(q-1+p) \cdot D, \quad K_{3}^{\prime}=(q-p+1) \cdot K_{3} .
\end{aligned}
$$

Now, to solve (8.11) we apply the reduction process described in (i) or (ii), depending on whether $\delta^{\prime}=0$ or $\delta^{\prime} \neq 0$, and maybe more than once, if necessary, until we find a very small upper bound for A^{\prime}. After having found all solutions ($a_{1}^{\prime}, \ldots, a_{p}^{\prime}$) of (8.11), we have a lower bound $L>0$ for $\left|\Lambda^{\prime}\right|$. It is reasonable to expect that L is not 'extremely small', because the integers $a_{1}^{\prime}, \ldots, a_{p}^{\prime}$ being 'small' in absolute value cannot make $|\Lambda '|$ 'extremely small'. Now combine $\left|\Lambda^{\prime}\right| \geq L$ with the first inequality of (8.10) to get

$$
A<\frac{1}{K_{2}} \cdot \log \left(\frac{K_{1}}{L}\right)
$$

Since L is not 'very small', as argued heuristically, the above upper bound for A is 'small'.

Returning now to the general case, we point out that if the reduced upper bound for A (found after some reduction steps as described above) is not small enough to admit enumeration of the remaining possibilities in a
reasonable time, then it might be necessary, or at least advisable, to use the technique of Fincke and Pohst, cf. Section 3.6. However, when solving a Thue equation, and not only an inequality for a linear form in logarithms, it may be better to avoid this method, and to use continued fractions of the roots $\xi^{(i)}$. In practice we can search for the solutions (X, Y) of (8.1) satisfying $Y_{1}<|Y| \leq C$ as follows, referring to Lemma 8.1. Here e.g. $C=Y_{2}$, and we can imagine C here as being a 'large' constant compared to Y_{1}, but not 'very large' (cf. the introduction of Y_{1}, Y_{2} in Section 8.2).

Let $\bar{\xi}$ be a rational approximation of $\xi^{\left(i_{0}\right)}$, such that

$$
\begin{equation*}
\left|\bar{\xi}-\xi^{\left(i_{0}\right)}\right|<\frac{1}{6 \cdot c^{2}} \tag{8.12}
\end{equation*}
$$

Since $|Y|>Y_{1}, X / Y$ must be a convergent, p_{k} / q_{k} say, from the continued fraction expansion of $\xi^{\left(i_{0}\right)}$. Denote by $a_{0}, a_{1}, a_{2}, \ldots$ the partial quotients in this expansion. First we claim that $a_{k+1} \geq 3$. Indeed, by (3.5)

$$
\frac{1}{\left(a_{k+1}+2\right) \cdot|Y|^{2}} \leq \frac{1}{\left(a_{k+1}+2\right) \cdot q_{k}^{2}}<\left|\xi^{\left(i_{0}\right)}-\frac{p_{k}}{q_{k}}\right|=\left|\xi^{\left(i_{0}\right)}-\frac{X}{Y}\right| \leq \frac{C_{1}}{|Y|^{n}}
$$

If $a_{k+1}=1$ or 2 , then we would have $|Y|^{n-2}<4 \cdot C_{1}$, which is absurd, since $|Y|>Y_{1}>\left(4 \cdot C_{1}\right) 1 /(n-2)$. Thus, $a_{k+1} \geq 3$, and by (3.5) we have

$$
\left|\xi^{\left(i_{0}\right)}-\frac{p_{k}}{q_{k}}\right|<\frac{1}{a_{k+1} \cdot q_{k}^{2}} \leq \frac{1}{3 \cdot q_{k}^{2}}
$$

Therefore,

$$
\left|\tilde{\xi}-\frac{p_{k}}{q_{k}}\right| \leq\left|\tilde{\xi}-\xi^{\left(i_{0}\right)}\right|+\left|\xi^{\left(i_{0}\right)}-\frac{p_{k}}{q_{k}}\right|<\frac{1}{6 \cdot c^{2}}+\frac{1}{3 \cdot q_{k}^{2}} \leq \frac{1}{2 \cdot q_{k}^{2}}
$$

and this means that $\mathrm{p}_{\mathrm{k}} / \mathrm{q}_{\mathrm{k}}$ is in fact a convergent from the continued fraction expansion of $\bar{\xi}$ too. Moreover, in view of the inequalities

$$
\frac{1}{\left(a_{k+1}+2\right) \cdot q_{k}^{2}}<\left|\xi^{\left(i_{0}\right)}-\frac{p_{k}}{q_{k}}\right| \leq \frac{C_{1}}{|Y|^{n}} \leq \frac{c_{1}}{\left|q_{k}\right|^{n}}
$$

a_{k+1} must be sufficiently large compared to q_{k}, namely

$$
\begin{equation*}
a_{k+1}>\frac{\left|q_{k}\right|^{n-2}}{c_{1}}-2 \tag{8.13}
\end{equation*}
$$

This inequality can be checked easily for all k such that $q_{k} \leq C$.

To sum up, we propose the following process for every real root $\xi^{\left(i_{0}\right)}$ for $i_{0}=1, \ldots, s$ (note that i_{0} is a priori not known). (1) Compute a rational approximation $\bar{\xi}$ of $\xi^{\left(i_{0}\right)}$ satisfying (8.12) (a truncation of its decimal expansion will do). (2) Expand $\bar{\xi}$ into its continued fraction with partial quotients $a_{0}, a_{1}, a_{2}, \ldots, a_{k+1}$ and convergents p_{i} / q_{i} for all $i=1, \ldots, k$ with $q_{k} \leq C<q_{k+1}$. (3) Test all these convergents for the conditions (8.13) and $F\left(p_{i}, q_{i}\right)=m$. Concerning this last test, note that if $X / Y=p_{i} / q_{i}$, then $X=Z \cdot p_{i}, \quad Y=Z \cdot q_{i}$ for some $Z \in \mathbb{Z}$ with $Z^{n} \mid m$. This simple observation excludes in general most of the reducible quotients X / Y, and all of them if m is an n-th-powerfree integer.

Having tested for all solutions in the range $|Y| \leq C$ we may suppose that $|Y|>C$. For such solutions (X,Y) we can obtain a lower bound for the corresponding A as follows (the idea is due to A. Pethö, cf. also Section 1 of Blass, Glass, Meronk and Steiner $\left.\left[1987^{b}\right]\right)$. For every $(i, j) \in(1, \ldots, r\} \times$ $\{1, \ldots, n\}$ let $\varphi_{i j}$ be the number +1 or -1 for which $\left|\epsilon_{i}^{(j)}\right|^{\nu j} \geq 1$, and put $E_{j}=\prod_{i=1}^{r}\left|\epsilon_{i}^{(j)}\right|^{\varphi_{i j}}$. Then

$$
\left|\beta^{(j)}\right|=\left|\mu^{(j)}\right| \cdot \prod_{i=1}^{r}\left|\epsilon_{i}^{(j)}\right|^{a} \leq \mu_{+} \cdot E_{j}^{A}
$$

and hence for any pair j_{1}, j_{2} with $j_{1} \neq j_{2}$ we have

$$
|Y|=\frac{\left|\beta^{\left(j_{1}\right)}-\beta^{\left(j_{2}\right)}\right|}{\left|\xi^{\left(j_{1}\right)}-\xi^{\left(j_{2}\right)}\right|} \leq \mu_{+} \frac{E_{j_{1}}^{A}+E_{j_{2}}^{A}}{\left|\xi^{\left(j_{1}\right)}-\xi{ }_{-\xi}^{\left(j_{2}\right)}\right|}
$$

and from this we can find a lower bound for A, if we know that $|Y|>C$. Of course, for an other pair j_{1}, j_{2} we may find a different lower bound, and therefore we can take the larger one.
8.5. An application: triangular numbers that are a product of three consecutive numbers.

In this section we prove, as an application of the general theory described in the previous sections, the following result. The problem was posed by S.P.

Mohanty (cf. Mohanty [1988]; the proof in this paper is incorrect). The n-th triangular number is for $n \in \mathbb{N}$ defined as $T_{n}=\frac{1}{2} \cdot n \cdot(n+1)$.

THEOREM 8.6. The only triangular numbers that are a product of three consecutive integers, are $\quad T_{3}=1.2 .3, \quad T_{15}=4.5 .6, \quad T_{20}=5.6 .7$, $T_{44}=9.10 .11, \quad T_{608}=56.57 .58, \quad T_{22736}=636.637 .638$.

Proof. We have the diophantine equation $n \cdot(n+1)=2 \cdot m \cdot(m+1) \cdot(m+2)$ in $n, m \in \mathbb{N}$. Put $x=2 \cdot m+2, y=2 \cdot n+1$. Then we are lead to the equation $y^{2}=x^{3}-4 \cdot x+1$ in $x, y \in \mathbb{N}$, with $x \geq 4$ even and $y \geq 3$ odd. Theorem 8.7 below now completes the proof.

THEOREM 8.7. The elliptic curve

$$
\begin{equation*}
y^{2}=x^{3}-4 \cdot x+1 \tag{8.14}
\end{equation*}
$$

has only the following 22 integral points:

$$
\begin{aligned}
(x, \pm y)= & (-2,1),(-1,2),(0,1),(2,1),(3,4),(4,7),(10,31) \\
& (12,41),(20,89),(114,1217),(1274,45473)
\end{aligned}
$$

We prove this theorem in two main steps. First, we reduce the problem to the solution of two quartic Thue equations. Then we solve these equations using the general theory developed in the previous sections.

Let L be the totally real field $\mathbb{Q}(\psi)$, where

$$
\psi^{3}-4 \cdot \psi+1=0
$$

Let the conjugates of ψ be $\psi^{(1)}=0.254 \ldots, \psi^{(2)}=-2.114 \ldots$, $\psi^{(3)}=1.860 \ldots$. From a table of Delone and Faddeev ([1964], p. 141) we see that the class number of L is 1 , its ring of integers is $\mathbb{Z}[\psi]$, its discriminant is 229 , and a pair of independent units is $\psi, 2-\psi$. From Table I of Buchmann [1986] we see that $-7+2 \cdot \psi^{2}, 2 \cdot \psi+\psi^{2}$ is a pair of fundamental units in $\mathbb{Z}[\psi]$. By $-7+2 \cdot \psi^{2}=-\psi^{-1} \cdot(2-\psi), 2 \cdot \psi+\psi^{2}=(2-\psi)^{-1}$ we see that $\psi, 2-\psi$ is also a pair of fundamental units in $\mathbb{Z}[\psi]$.

The equation (8.14) of the elliptic curve can be written as

$$
\begin{equation*}
y^{2}=(x-\psi) \cdot\left(x^{2}+x \cdot \psi+\left(\psi^{2}-4\right)\right) \tag{8.15}
\end{equation*}
$$

and the factors on the right hand side are relatively prime. Indeed, if π were a common prime divisor of them, then π would divide

$$
\left(x^{2}+x \cdot \psi+\left(\psi^{2}-4\right)\right)-(x+2 \cdot \psi) \cdot(x-\psi)=3 \cdot \psi^{2}-4
$$

which is prime, since its norm is -229 . Therefore we would have that π is a unit times this prime, and then by (8.15), $x-\psi=$ unitx $\left(3 \cdot \psi^{2}-4\right) \times$ square. Take norms, then we get $y^{2}= \pm 229 \times$ square, which is clearly impossible.

Now (8.15) implies

$$
\begin{equation*}
x-\psi= \pm \psi^{i} \cdot(2-\psi)^{j} \cdot \alpha^{2}, \quad \alpha \in \mathbb{Z}[\psi], \quad i, j \in(0,1) \tag{8.16}
\end{equation*}
$$

Since (8.14) is trivial to solve for $x \leq 0$ (the only solutions with $x \leq 0$ are the first three pairs stated in the theorem), we may assume that $x \geq 1$. Since $\psi^{(1)}=0.254 \ldots$, we see that the minus sign in (8.16) is impossible. Then, by $\psi^{(2)}=-2.114 \ldots, \quad i \neq 1$. We conclude therefore that

$$
x-\psi=(2-\psi)^{j} \cdot\left(u+v \cdot \psi+w \cdot \psi^{2}\right)^{2}, \quad u, \quad v, w \in \mathbb{Z}, j \in\{0,1\}
$$

First case: $j=0$, Then (8.17) implies, on equating corresponding coefficients in both sides,

$$
\begin{equation*}
x=u^{2}-2 \cdot v \cdot w, \quad w^{2}-2 \cdot u \cdot v-8 \cdot v \cdot w=1, \quad v^{2}+4 \cdot w^{2}+2 \cdot u \cdot w=0 \tag{8.18}
\end{equation*}
$$

Note that w is odd and v is even, hence $4 \mid 2 \cdot u \cdot w$, so u is even. Put $u=2 \cdot u_{1}, v=2 \cdot v_{1}$. The last equation of (8.18) now reads

$$
w^{2}+u_{1} \cdot w+v_{1}^{2}=0
$$

Consider this as a quadratic equation in w. Its discriminant must be a square, z^{2} say. Then

$$
u_{1}^{2}-4 \cdot v_{1}^{2}=z^{2}, \quad w=\frac{1}{2}\left(-u_{1} \pm z\right)
$$

Note that u_{1} and z have the same parity. We may assume $u \geq 0$.
First suppose that u_{1} and z are even. Since $w^{2}+u_{1} \cdot w+v_{1}^{2}=0$ and w is odd, we find $u_{1}=2(\bmod 4)$, and v_{1} is odd. Put $u_{1}=2 \cdot u_{2}$, $z=2 \cdot z_{1}$. Then $u_{2}^{2}-v_{1}^{2}=z_{1}^{2}$, where u_{2} and v_{1} are odd. By $u_{2} \geq 0$ there exist $m, n \in \mathbb{Z}$ such that

$$
u_{2}=m^{2}+n^{2}, \quad v_{1}=m^{2}-n^{2}, \quad z_{1}=2 \cdot m \cdot n
$$

It follows that

$$
u=4 \cdot\left(m^{2}+n^{2}\right), \quad v=2 \cdot\left(m^{2}-n^{2}\right) \quad, \quad w=-(m+n)^{2}
$$

Since the sign of z, and thus that of n, is of no importance, we may assume $w=-(m+n)^{2}$. After substitution in the second equation of (8.18) we obtain the Thue equation

$$
m^{4}+36 \cdot m^{3} \cdot n+6 \cdot m^{2} \cdot n^{2}-28 \cdot m \cdot n^{3}+n^{4}=1
$$

The left hand side can be factored as

$$
(m+n) \cdot\left(m^{3}+35 \cdot m^{2} \cdot n-29 \cdot m \cdot n^{2}+n^{3}\right)
$$

and therefore it can be solved very easily. Its only solutions are $\pm(m, n)=(1,0),(0,1)$. They lead to $\pm(u, v, w)=(4,2,-1),(4,-2,-1)$, and then by (8.18) we find $x=20,12$ respectively, which furnish the solutions $(x, \pm y)=(20,89),(12,41)$ for (8.14).

Secondly, we suppose that u_{1} and z are odd. Then v_{1} is even, so by $u_{1} \geq 0$ there exist $m, n \in \mathbb{Z}$ with

$$
u_{1}=m^{2}+n^{2}, \quad 2 \cdot v_{1}=2 \cdot m \cdot n, \quad z=m^{2}-n^{2}
$$

It follows that

$$
u=2 \cdot\left(m^{2}+n^{2}\right), \quad v=2 \cdot m \cdot n, \quad w=-m^{2} \quad \text { or } \quad w=-n^{2}
$$

We may assume that $w=-m^{2}$. Substituting this in the second equation of (8.18) we find the Thue equation

$$
m^{4}+8 \cdot m^{3} \cdot n-8 \cdot m \cdot n^{3}=1
$$

The left hand side is again reducible. The only solutions, as is easily seen, are $\pm(m, n)=(1,0),(1,1),(1,-1)$. Since m and n cannot have the same parity, only the first pair is accepted. It leads to $(u, v, w)=(2,0,-1)$, and hence to $(x, \pm y)=(4,7)$ for (8.14).

Second case: $j=1$. Then, equating the coefficients in (8.17) we get

$$
\begin{equation*}
x=2 \cdot u^{2}+v^{2}+4 \cdot w^{2}+2 \cdot u \cdot w-4 \cdot v \cdot w \tag{8.19}
\end{equation*}
$$

$$
\left\{\begin{array}{r}
u^{2}+4 \cdot v^{2}+18 \cdot w^{2}-4 \cdot u \cdot v+8 \cdot u \cdot w-18 \cdot v \cdot w=1 \tag{8.20}\\
2 \cdot v^{2}+9 \cdot w^{2}-2 \cdot u \cdot v+4 \cdot u \cdot w-8 \cdot v \cdot w=0
\end{array}\right.
$$

The first relation of (8.20) can be replaced by

$$
\begin{equation*}
u^{2}-2 \cdot v \cdot w=1 \tag{8.21}
\end{equation*}
$$

Note that u is odd. Put $z=v-2 \cdot w$. Then the second equation of (8.20) yields

$$
w^{2}=2 \cdot z \cdot(u-z)
$$

First we suppose that z is odd. Then there exist $m, n \in \mathbb{Z}$ such that

$$
z=m^{2}, u-z=2 \cdot n^{2}
$$

where we use that $u \geq 0$ and $(u, w)=1$. Thus, choosing signs properly,

$$
u=m^{2}+2 \cdot n^{2}, \quad v=m^{2}+4 \cdot m \cdot n, w=2 \cdot m \cdot n
$$

Substituting this in (8.21) we obtain the Thue equation

$$
\begin{equation*}
m^{4}-4 \cdot m^{3} \cdot n-12 \cdot m^{2} \cdot n^{2}+4 \cdot n^{4}=1 \tag{8.22}
\end{equation*}
$$

In Theorem $8.8(i)$ below we prove that this equation has only the solutions $\pm(m, n)=(1,0)$, leading to $(u, v, w)=(1,1,0)$, and finally for (8.14) to $(x, \pm y)=(3,4)$.

Secondly we suppose that z is even. Then there exist $m, n \in \mathbb{Z}$ with

$$
z=2 \cdot m^{2}, \quad u-z=n^{2}
$$

Thus, choosing signs properly, we find

$$
u=2 \cdot m^{2}+n^{2}, \quad v=2 \cdot m^{2}+4 \cdot m \cdot n, \quad w=2 \cdot m \cdot n
$$

Now, substituting into (8.21), we obtain the Thue equation

$$
\begin{equation*}
n^{4}-12 \cdot n^{2} \cdot m^{2}-8 \cdot n \cdot m^{3}+4 \cdot m^{4}=1 \tag{8.23}
\end{equation*}
$$

In Theorem 8.8 (ii) below we prove that this equation has only the solutions $\pm(m, n)=(0,1),(1,-1),(3,1),(-1,3)$. They lead respectively to $(u, v, w)=(1,0,0),(3,-2,-2),(19,30,6),(11,-10,-6)$, which lead for (8.14)
to the solutions $(x, \pm y)=(2,1),(10,31),(1274,45473),(114,1217)$. Thus this result completes the proof of Theorem 8.7 , provided the Thue equations (8.22), (8.23) have as their only solutions the pairs (m,n) mentioned above. We now proceed to prove this.

THEOREM 8.8. (i). The Thue equation

$$
\begin{equation*}
X^{4}-4 \cdot X^{3} \cdot Y-12 \cdot X^{2} \cdot Y^{2}+4 \cdot Y^{4}=1 \tag{8.24}
\end{equation*}
$$

has only the solutions $\pm(\mathrm{X}, \mathrm{Y})=(1,0)$.
(ii). The Thue equation

$$
\begin{equation*}
X^{4}-12 \cdot X^{2} \cdot Y^{2}-8 \cdot X \cdot Y^{3}+4 \cdot Y^{4}=1 \tag{8.25}
\end{equation*}
$$

has only the solutions $\pm(\mathrm{X}, \mathrm{Y})=(1,0),(1,-1),(1,3),(3,-1)$.

Proof. We use the notation and results of Sections 8.2 and 8.3. Let the algebraic numbers ϑ and φ be defined by

$$
\vartheta^{4}-12 \cdot \vartheta^{2}-8 \cdot \vartheta+4=0, \varphi^{4}-4 \cdot \varphi^{3}-12 \cdot \varphi^{2}+4=0
$$

Since $\varphi=2 / \vartheta$, it follows that ϑ and φ generate the same field K over Q. In the notation of Section 8.2 we have $n=4, s=4, t=0$, and $\xi=\vartheta$ or $\xi=\varphi$. Simple computations show that for $\xi=\vartheta, \varphi$ we can take

$$
\begin{gathered}
Y_{0}=1, \quad C_{1}=0.843, \quad C_{2}=0.589, \quad Y_{1}=2, \quad C_{3}=6.645 \\
Y_{2}^{*}=3, \quad \mu_{-}=\mu_{+}=1, \quad C_{4}=8.3374
\end{gathered}
$$

In these computations we estimated C_{1}, C_{3}, C_{4} from above and C_{2} from below, using the following approximations for the conjugates of ϑ and φ :

$$
\begin{aligned}
& \vartheta^{(1)} \cong-1.080286352, \varphi^{(1)} \cong-1.851360980, \\
& \vartheta^{(2)} \cong 3.722935260, \varphi^{(2)} \cong 0.537210524, \\
& \vartheta^{(3)} \cong 0.334111716, \varphi^{(3)} \cong 5.986021747, \\
& \vartheta^{(4)} \cong-2.976760624, \varphi^{(4)} \cong-0.671871290 .
\end{aligned}
$$

Now we work in the order R of K with \mathbb{Z}-basis $\left\{1, \vartheta, \frac{1}{2} \cdot \vartheta^{2}, \frac{1}{2} \cdot \vartheta^{3}\right\}$ (note that $\frac{1}{2} \cdot \vartheta^{2}$ is an algebraic integer). Note that

$$
\varphi=\frac{2}{\vartheta}=4+6 \cdot \vartheta-\frac{1}{2} \cdot \vartheta^{3} \in \mathrm{R}
$$

On the other hand, (8.24) and (8.25) are respectively equivalent to
$\operatorname{Norm}_{K / \mathbb{Q}}(X-Y \cdot \theta)=1$ and $\operatorname{Norm}_{K / \mathbb{Q}}(X-Y \cdot \varphi)=1$, which means that if (X,Y) is a solution of (8.24) or (8.25), then $X-Y \cdot \vartheta$ or $X-Y \cdot \varphi$, respectively, is a unit of the order R. A system of fundamental units of R is given by

$$
\epsilon_{1}=1+\vartheta, \quad \epsilon_{2}=3+\vartheta, \quad \epsilon_{3}=\frac{1}{2} \cdot \vartheta^{2} .
$$

We do not prove this fact here. For a proof, see Tzanakis and de Weger [1989 ${ }^{\text {a }}$], Section III. 2 and Appendix I.

Thus the solution of (8.24) and (8.25) is reduced to finding all $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3} \quad$ such that the unit $\pm \epsilon_{1}{ }^{a_{1}} \cdot \epsilon_{2}{ }^{a_{2}} \cdot \epsilon_{3}{ }^{a_{3}}$ has the special shape $X-Y \cdot \vartheta$ or $X-Y \cdot \varphi$, respectively. In the notation of Lemma 8.3 we have, after some numerical computations, that we leave to the reader to check, that

$$
\min _{I} N\left[U_{I}^{-1}\right]=0.634950 \ldots, \max _{I} N\left[U_{I}^{-1}\right]=1.210070 \ldots
$$

(here, of course, $I=\{1,2,3,4\}$). Therefore we can take in Lemma 8.4

$$
C_{5}=1.211
$$

Also,

$$
C_{6}=6.38771 \times 10^{4}, \quad Y_{2}^{\prime}=3
$$

(The values of C_{5} and C_{6} are estimated from above.)

Now, relation (8.3) becomes in our case

$$
\begin{equation*}
\Lambda=\log \left|\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi(k)}\right|+\sum_{i=1}^{3} a_{i} \cdot \log \left|\frac{\epsilon_{i}^{(k)}}{\epsilon_{i}^{(j)}}\right| \tag{8.26}
\end{equation*}
$$

where $\xi=\vartheta$ or φ. As mentioned in Section 8.2 , once i_{0} is fixed, we can choose j, k arbitrarily. Thus we can choose

$$
\left\{\begin{array}{l}
j=3, k=4 \text { if } i_{0}=1 \text { or } 2 \tag{8.27}\\
j=1, k=2 \text { if } i_{0}=3 \text { or } 4
\end{array}\right.
$$

Therefore, for each $\xi \in\{\vartheta, \varphi\}$ we have four possibilities for Λ. For each of these eight cases we have, as will be shown below,

$$
c_{7}=5.71 \times 10^{38}, \quad c_{8}=6.17
$$

and therefore, by Lemma 8.5, if $|Y|>3$, then for $A=\max _{1 \leq i \leq 3}\left|a_{i}\right|$ we have
the upper bound $C_{9}=3.26 \times 10^{40}$. As is easily checked, the only solutions of either (8.24) or (8.25) with $|Y| \leq 3$ are those listed in the statement of the theorem. Therefore we may assume that $|Y|>3$, so that

$$
A<3.26 \times 10^{40} .
$$

Before we apply the reduction method of Section 3.8 we show that the application of Lemma 2.4 yields the above constants C_{7}, C_{8}. We apply this result in the case of Λ given by (8.26). In this case, we compute the V_{i} 's for the various α_{i} 's appearing in Λ, as follows. If $\alpha_{i}=\left|\epsilon_{i}^{(k)} / \epsilon_{i}^{(j)}\right|$ for $i=1,2,3$, then α_{i} is a unit and hence a_{0} (appearing in the computation of $h\left(\alpha_{i}\right)$) is equal to 1 . Clearly, every conjugate of α_{i} is in absolute value less than

$$
H_{i}=\frac{\max _{1 \leq h \leq 4}\left|\epsilon_{i}^{(h)}\right|}{\min \left|\epsilon_{i}^{(h)}\right|},
$$

and $H_{i} \geq 1$. Therefore, $h\left(\alpha_{i}\right) \leq H_{i}$, and we can take

$$
v_{i}=\max \left(\log H_{i},|\log | \epsilon_{i}^{(k)} / \epsilon_{i}^{(j)}| |\right) .
$$

Since the latter term equals the logarithm of either $\left|\epsilon_{i}^{(k)} / \epsilon_{i}^{(j)}\right|$ or its inverse, it follows that

$$
v_{i}=\log H_{i}
$$

If $\alpha_{i}=\left|\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(\mathrm{j})}\right| /\left|\xi^{\left(\mathrm{i}_{0}\right)}-\xi^{(k)}\right|$, then all conjugates of α_{i} are in absolute value less than C_{3}. Therefore, $h\left(\alpha_{i}\right) \leq\left(\log a_{0}\right) / d+\log C_{3}$, where a_{0} and d are as in the definition of $h(\alpha)$ for $\alpha=\alpha_{i}$. An upper bound for a_{0} can be computed as follows. Consider the algebraic numbers $x_{i h}=\frac{1}{2} \cdot\left(\xi^{(i)}-\xi^{(h)}\right)$ for $i, h \in\{1, \ldots, 4\}$ with $i \neq h$. It can be checked that the numbers $x_{\text {ih }}$ are algebraic integers for $\xi=\theta$ or φ. Now, for each permutation $\sigma=\left(\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right) \in \mathrm{S}_{4}$ we consider the number $\chi(\sigma)=\chi_{\sigma_{1} \sigma_{2}} / \chi_{\sigma_{1} \sigma_{3}}$ (independent of σ_{4}), and the polynomial

$$
\mathrm{P}(\mathrm{X})=\prod_{\sigma \in \mathrm{S}_{4}}(\mathrm{X}-\chi(\sigma))
$$

Consider also the number

$$
\Delta=\prod_{1 \leq i<h \leq 4} x_{i h} .
$$

Note that

$$
\Delta^{2}=\frac{1}{2^{12}} \cdot \prod_{1 \leq i<h \leq 4}\left(\xi_{i}-\xi_{h}\right)^{2}=\frac{1}{2^{12}} \cdot D
$$

where D is the discriminant of the defining polynomial of ξ, and therefore $\Delta^{2}=229$. On the other hand, the coefficients of $P(X)$ are up to the sign the elementary symmetric functions of $x(\sigma)$ for $\sigma \in S_{4}$, and so they are symmetrical expressions of the $\xi^{(i)}{ }^{(1)}$ with rational coefficients. This means that $P(X) \in \mathbb{Q}[X]$. On the other hand, by the definition of Δ, any coefficient of $P(X)$ multiplied by Δ^{4} is a polynomial of the $x_{\text {in }}$'s with coefficients in \mathbb{Z} and therefore it is an algebraic integer. Combine this with the fact that $P(X) \in \mathbb{Q}[X]$ to see that $229^{2} \cdot P(X) \in \mathbb{Z}[X]$. Hence, since α_{i} is a root of $P(X)$, its leading coefficient a_{0} is at most 229^{2}. To conclude, we have $h\left(\alpha_{i}\right) \leq 2 \cdot(\log 229) / d+\log C_{3}$ and it is clear that $\left|\log \alpha_{i}\right| / d \leq \log C_{3}$. Since $\alpha_{i} \notin \mathbb{Q}$ we have $d \geq 2$, so we can take

$$
\mathrm{V}_{\mathrm{i}}=\log 229+\log \mathrm{C}_{3}
$$

Simple computations now show that

$$
\begin{aligned}
& \log H_{1}=4.074586 \ldots, \quad \log H_{2}=5.667432 \ldots \\
& \log H_{3}=4.821584 \ldots, \\
& \log C_{3}=1.262065 \ldots \text { if } \xi=\vartheta, \\
& \log C_{3}=1.893823 \ldots \text { if } \xi=\varphi, \\
& \log 229+\log C_{3} \leq 7.327545 \ldots .
\end{aligned}
$$

Therefore we apply Lemma 2.4 (Waldschmidt) with $n=4, \mathrm{D} \leq 24, \mathrm{e}(\mathrm{n})=73$,

$$
\alpha_{1}=\left|\frac{\epsilon_{1}^{(k)}}{\epsilon_{1}^{(j)}}\right|, \quad \alpha_{2}=\left|\frac{\epsilon_{3}^{(k)}}{\epsilon_{3}^{(j)}}\right|, \quad \alpha_{3}=\left|\frac{\epsilon_{2}^{(k)}}{\epsilon_{2}^{(j)}}\right|, \quad \alpha_{4}=\left|\frac{\xi^{\left(i_{0}\right)}-\xi^{(j)}}{\xi^{\left(i_{0}\right)}-\xi}(k)\right|,
$$

for $\xi=\vartheta$ or φ, and $b_{1}=a_{1}, b_{2}=a_{3}, b_{3}=a_{2}, b_{4}=1, \quad B=A$, $\mathrm{V}_{1}=\log \mathrm{H}_{1}, \quad \mathrm{~V}_{2}=\log \mathrm{H}_{3}, \quad \mathrm{~V}_{3}=\mathrm{V}_{3}^{+}=\log \mathrm{H}_{2}, \mathrm{~V}_{4}=\mathrm{V}_{4}^{+}=\log 229+\log \mathrm{C}_{3}$. Thus we find that

$$
|\Lambda|>\exp \left(-C_{7} \cdot\left(\log A+C_{8}\right)\right)
$$

with $C_{7}=5.71 \times 10^{38}$ and $C_{8}=6.17$.

We have now to apply the reduction process described in Section 3.7. In our situation we have to solve (8.9) with

$$
K_{1}=C_{6}=6.38771 \times 10^{4}, \quad K_{2}=\frac{n}{C_{5}}=\frac{4}{1.211}>3.303, \quad K_{3}=3.26 \times 10^{40}
$$

(K_{2} is estimated from below), and

$$
\Lambda=\delta+a_{1} \cdot \mu_{1}+a_{2} \cdot \mu_{2}+a_{3} \cdot \mu_{3}
$$

where for δ and the μ_{i} 's we have, in view of (8.26) and (8.27):
or

$$
\left\{\begin{array}{l}
\delta=\delta_{3}:=\log \left|\frac{\xi^{(3)}-\xi^{(1)}}{\xi^{(3)}-\xi^{(2)}}\right| \text { or } \delta=\delta_{4}:=\log \left|\frac{\xi^{(4)}-\xi^{(1)}}{\xi^{(4)}-\xi^{(2)}}\right|, \tag{8.29}\\
\quad \text { where } \xi=\vartheta \text { or } \varphi \\
\mu_{i}=\log \left|\frac{\epsilon_{i}^{(2)}}{\epsilon_{i}^{(1)}}\right|, \text { for } i=1,2,3 .
\end{array}\right.
$$

Numerical details are given in the preprint version of Tzanakis and de Weger [1989 ${ }^{\text {a }}$] (to be obtained from the author). We take $c_{0}=10^{140}$, and we work with the lattice with associated matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
{\left[c_{0} \cdot \mu_{1}\right]} & {\left[c_{0} \cdot \mu_{2}\right]} & {\left[c_{0} \cdot \mu_{3}\right]}
\end{array}\right)
$$

Note that in each of the four cases of (8.28) (resp. (8.29)) we have the same lattice, Γ_{1} (resp. Γ_{2}), say. In each case $\delta \neq 0$, and we had no numerical evidence that the μ_{i} 's are \mathbb{Q}-dependent. Therefore we worked as in case (ii) of Section 8.4.

For each Γ_{i} we have applied the integral version of the L^{3}-algorithm, and each time we have computed the integral 3×3-matrices $\mathscr{B}, U, \mathcal{U}^{-1}$, as defined in Section 3.7. In our cases, the coordinates of the vectors of the reduced bases (i.e. the elements of \mathcal{B}) turned out to have 46 to 48 digits, i.e. the lengths of the reduced basis vectors are of the size of $c_{0}^{1 / 3}$, as expected.

In each of the eight cases we computed the coordinates s_{1}, s_{2}, s_{3} of

$$
\underline{x}=\left(\begin{array}{c}
0 \\
0 \\
-\left[c_{0} \cdot \delta\right]
\end{array}\right)
$$

with respect to the reduced basis $\underline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}$ of the lattice. From our computations we found

$$
\begin{aligned}
& \left|\underline{b}_{1}\right|>3.247 \times 10^{46} \text { in the case of lattice } \Gamma_{1}, \\
& \left|\underline{b}_{1}\right|>4.846 \times 10^{46} \text { in the case of lattice } \Gamma_{2}, \\
& \left\|s_{3}\right\|>0.029 \text { in all } 8 \text { cases. }
\end{aligned}
$$

This means that in view of Lemma 3.5, in all cases $i_{0}=3$, and

$$
\ell\left(\Gamma_{i}, \underline{x}\right)>0.029 \cdot \frac{1}{2} \cdot 3.247 \times 10^{46}>4.708 \times 10^{44}
$$

Then the assumptions of Lemma 3.10 are fulfilled with $n=3, \gamma=1, c=c_{0}$, $c=K_{1}, \delta=K_{2}, X_{0}=X_{1}=K_{3}$, since $\gamma 27 \cdot K_{3}<1.112 \times 10^{40}$, which implies

$$
\mathrm{A}<\frac{1}{3.303} \cdot \log \left(10^{140} \cdot 6.38771 \times 10^{4} / 3.26 \times 10^{40}\right)<72.8 .
$$

It follows that $A \leq 72$. We repeat the procedure with $K_{3}=72$ and $c_{0}=10^{12}$. We found from our computations

$$
\begin{aligned}
& \left|\underline{b}_{1}\right|>1.293 \times 10^{4} \text { in the case of lattice } \Gamma_{1} \\
& \left|\underline{b}_{1}\right|>1.092 \times 10^{4} \text { in the case of lattice } \Gamma_{2}, \\
& \left\|s_{3}\right\|>0.143 \text { in all } 8 \text { cases. }
\end{aligned}
$$

This means that in view of Lemma 3.5, in all cases $i_{0}=3$, and

$$
t\left(\Gamma_{i}, \underline{x}\right)>0.143 \cdot \frac{1}{2} \cdot 1.092 \times 10^{4}>7.807 \times 10^{2}
$$

Then the assumptions of Lemma 3.10 are fulfilled, since $\sqrt{2} 7 \cdot \mathrm{~K}_{3}<3.742 \times 10^{2}$, which implies

$$
A<\frac{1}{3.303} \cdot \log \left(10^{12} \cdot 6.38771 \times 10^{4} / 72\right)<10.5
$$

It follows that $A \leq 10$. We enumerated all remaining possibilities, and found no other solutions of (8.24) and (8.25) than those mentioned.

The computations for the proof of Theorem 8.8 took 35 sec .
8.6. The Thue-Mahler equation, an outline.

Let $F(X, Y)$ be as in Section 8.1. Let P_{1}, \ldots, p_{s} be fixed distinct prime numbers. The diophantine equation

$$
F(X, Y)= \pm \underset{i=1}{s} p_{i}^{n}
$$

in the variables $X, Y \in \mathbb{Z}, n_{1}, \ldots, n_{s} \in \mathbb{N}_{0}$, with $(X, Y)=1$, is known as a Thue-Mahler equation. It was proved by Mahler [1933] that this equation has only finitely many solutions, and by Coates [1970] that they can, at least in principle, be determined effectively, since an effectively computable upper bound for the variables can be derived from the p-adic theory of linear forms in logarithms. For the history of this equation we refer to Shorey and Tijdeman [1986], Chapter 7.

We believe that it is possible to solve Thue-Mahler equations, not only in principle, but in practice. This can be done by reducing the above mentioned upper bounds, using a combination of real and p-adic computational diophantine approximation techniques, based on the L^{3}-algorithm for reducing bases of lattices (cf. Sections 3.7 and 3.8 for the real case, 3.11 and 3.12 for the p-adic case, Section 1.5 for a short outline of how to combine the real and p-adic techniques, and Sections 4.8 and 6.4 for some explicit examples of such combined techniques). The method can be considered as a p-adic analogue of the method for solving Thue equations, on which we reported in the preceding sections.

Such an idea (but without using the L^{3}-algorithm) was used by Agrawal, Coates, Hunt and van der Poorten [1980], who solved the equation

$$
X^{3}-X^{2} \cdot Y+X \cdot Y^{2}+Y^{3}= \pm 11^{n}
$$

This is to the author's knowledge the only example in the literature where a Thue-Mahler equation has been solved by the Gelfond-Baker method. Other methods may apply as well for solving Thue-Mahler equations. For example,

$$
X^{3}+3 \cdot Y^{3}=2^{n}
$$

has been solved by Tzanakis [1984] by a different method. The advantage of the Gelfond-Baker method above many other ideas is that it works in principle for any Thue-Mahler equation, because it is not very much dependent on the parameters of the particular equation that one wants to solve.

Both examples of Thue-Mahler equations mentioned above are of the simplest kind, in view of the fact that the cubic field $\mathbb{Q}(\theta)$, where θ is a root of $F(x, 1)=0$, has only one fundamental unit, and there occurs only one prime. Therefore it is sufficient to use two-dimensional real continued fractions and one-dimensional p-adic continued fractions, instead of the more complicated L^{3}-algorithm (which anyway was not yet available in 1980 , when Agrawal, Coates, Hunt and van der Poorten did their work). With the use of the L^{3}-algorithm the method can in principle be extended to the general situation, where there are more than one fundamental units, and more than one primes. In a forthcoming publication, Tzanakis and the present author plan to give details and worked-out examples (Tzanakis and de Weger [1989 ${ }^{\text {b }}$]).

References.

After each reference we mention in brackets the section(s) in which the reference occurs.

Agrawal, M.K., Coates, J.H., Hunt, D.C. and van der Poorten, A.J. [1980], Elliptic curves of conductor 11, Math. Comp. 35, 991-1002. (3.8;3.10; 8.6)

Alex, L.J. [1976], Diophantine equations related to finite groups, Comm. Algebra 4, 77-100. (6.1;6.5)
Alex, L.J. [1985 ${ }^{\mathrm{a}}$], on the diophantine equation $1+2^{a}=3^{b_{5}}{ }^{c}+2^{d_{3}}{ }_{5} f^{f}$, Math. Comp. 44, 267-278. (1.1;5.4)
Alex, L.J. [1985 ${ }^{\mathrm{b}}$], On the diophantine equation $1+2^{a}=3^{b} 7^{c}+2^{d_{3}} \mathrm{e}^{\mathrm{f}}$, Arch. Math. 45, 538-545. (1.1;5.4)
Babai, L. [1986], On Lovász lattice reduction and the nearest lattice point problem, Combinatorica 6, 1-13. (1.4;3.4)
Bachman, G. [1964], Introduction to p-adic Numbers and Valuation Theory, Academic Press, New York and London. (2.3)
Baker, A. [1966], Linear forms in the logarithms of algebraic numbers, Mathematika 13, 204-216. (2.4)
Baker, A. [1968], Contributions to the theory of diophantine equations, I, On the representation of integers by binary forms, II, The diophantine equation $y^{2}=x^{3}+k$, Phil. Trans. R. Soc. London, A 263, 173-208. (8.1)

Baker, A. [1972], A sharpening of the bounds for linear forms in logarithms I, Acta Arith. 21, 117-129. (1.2)
Baker, A. [1977], The theory of linear forms in logarithms, Transcendence Theory: Advances and Applications, A. Baker (ed.), Academic Press, London, pp. 1-27. (2.4)
Baker, A. and Davenport, H. [1969], The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}, Q . J I$. Math. Oxford (2) 20, 129-137. (1.1;1.4;3.3)
Berwick, W.E.H. [1932], Algebraic number fields with two independent units, Proc. London Math. Soc. 34, 360-378. (8.2)
Beukers, F. [1981], On the generalized Ramanujan-Nagell equation, Acta Arith. I: 38, 389-410; II: 39, 113-123. (1.1;4.1)

Billevic, K.K. [1956], On the units of algebraic fields of third and fourth degree (Russian), Mat. Sbornik Vol. 40, 82, 123-137. (8.2)
Billevic, K.K. [1964], A theorem on the units of algebraic fields of n-th degree (Russian), Mat. Sbornik Vol. 64, 106, 145-152. (8.2)
Blass, J., Glass, A.M.W., Meronk, D.B. and Steiner, R.P. [1987 ${ }^{\text {a }], ~ P r a c t i c a l ~}$ solutions to Thue equations of degree 4 over the rational integers, Preprint, Bowling Green State University. (3.8;8.1)
Blass, J., Glass, A.M.W., Meronk, D.B. and Steiner, R.P. [1987 ${ }^{\text {b }}$], Practical solutions to Thue equations over the rational integers, Preprint, Bowling Green State University. (3.8;8.1;8.4)
Blass, J., Glass, A.M.W., Manski, D.K., Meronk, D.B. and Steiner, R.P. [1988 ${ }^{\text {a }}$], Constants for lower bounds for linear forms in the logarithms of algebraic numbers I: The general case, Preprint, Bowling Green State University. (2.4)

Blass, J., Glass, A.M.W., Manski, D.K., Meronk, D.B. and Steiner, R.P. [1988 ${ }^{\mathrm{b}}$], Constants for lower bounds for linear forms in the logarithms of algebraic numbers II: The homogeneous rational case, Preprint, Bowling Green State University. (2.4)
Borevich, Z.I. and Shafarevich, I.R. [1966], Number Theory, Academic Press, New York. (2.1;7.3)

Bremner, A., Calderbank, R., Hanlon, P., Morton, P. and Wolfskill, J. [1983], Two-weight ternary codes and the equation $y^{2}=4 \times 3^{\alpha}+13$, J. Number Theory 16, 212-234. (4.1)
Brenner, J.L. and Foster, L.L. [1982], Exponential diophantine equations, Pacific J. Math. 101, 263-301. (6.1)
Brent, R.P. [1978], A Fortran multiple-precision arithmetic package, ACM Trans. Math. Software 4, 57-70; and: Algorithm 524. MP, a Fortran multiple-precision arithmetic package, ACM Trans. Math. Software 4 , 71-81. (2.5)
Brentjes, A.J. [1981], Multi-dimensional Continued Fraction Algorithms, MC Tract 145, Centr. Math. Comput. Sci., Amsterdam. (1.3;3.4)
Brown, E. [1985], Sets in which $x y+k$ is always a square, Math. Comp. 45, 613-620. (1.1)
Buchmann, J. [1985], The generalized Voronoi-algorithm in totally real algebraic number fields, Proceedings EUROCAL ' 85 , Linz, Austria, Vol. 2, Lecture Notes in Comput. Sci. 204, Springer Verlag, Berlin, pp. 479-486. (8.2)

Buchmann, J. [1986], A generalization of Voronoi's unit algorithm I \& II, J. Number Theory 20, 177-191\&192-209. (8.2;8.5)

Cassels, J.W.S. [1957], An Introduction to Diophantine Approximation, Cambridge University Press, Cambridge. (1.3)

Cherubini, J.M. and Walliser, R.V. [1987], On the computation of all imaginary quadratic fields of class number one, Math. Comp. 49, 295-300. (3.2)

Coates, J. [1969], An effective p-adic analogue of a theorem of Thue, Acta Arith. 15, 279-305. (2.4;6.1)

Coates, J. [1970], An effective p-adic analogue of a theorem of Thue II: The greatest prime factor of a binary form, Acta Arith. 16, 399-412. (2.4; 6.1;8.6)

Delone, B.N. and Faddeev, D.K. [1964], The theory of irrationalities of the third degree, Transl. of Math. Monogr., Vol 10, A.M.S., Providence R.I. (8.5)

Ellison, W.J. [1971a], Recipes for solving diophantine problems by Baker's method, Sém. Théorie des Nombres, Université de Bordeaux I, 1970-1, Lab. Th. Nombr. C.N.R.S., Exp. 11, 10 pp. (1.4;3.8)
Ellison, W.J. [1971 ${ }^{\mathrm{b}}$], On a theorem of S. Sivasankaranarayana Pillai, Sém. Théorie des Nombres, Université de Bordeaux I, 1970-1, Lab. Th. Nombr. C.N.R.S., Exp. 12, 10 pp. (3.2;5.1)

Ellison, W.J., Ellison, F., Pesek, J., Stahl, C.E. and Stall, D.S. [1972], The diophantine equation $y^{2}+k=x^{3}$, J. Number Theory 4, 107-117. (3.3;8.1)

Evertse, J.-H. [1983], Upper Bounds for the Numbers of Solutions of Diophantine Equations, MC Tract 168, Centr. Math. Comput. Sci., Amsterdam. (1.1)

Evertse, J.-H., Györy, K., Stewart, C.L. and Tijdeman, R. [1988], S-unit equations and their applications, New advances in transcendence theory (Proc. Symp. Durham July 1986), A. Baker (ed.), Cambridge University Press, Cambridge, pp. 110-174. (1.1)
Faltings, G. [1983], Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, 349-366. (1.1)
Fincke, U. and Pohst, M. [1985], Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44, 463-471. (3.6)
Gaal, I. [1988], On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp. 51, 359-373. (3.3)
Grinstead, C.M. [1978], On a method of solving a class of diophantine equations, Math. Comp. 32, 936-940. (1.1)

Grosswald, E. [1984], Topics from the Theory of Numbers, 2nd. ed.,
Birkhäuser, Boston. (1.1)
Hardy, G.H. and Wright, E.M. [1979], An Introduction to the Theory of Numbers, (5th ed.), Oxford University Press, Oxford. (1.3;3.2)
Hasse, H. [1966], Über eine diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung, Nagoya Math. J. 27, 77-102. (4.1)

Hunt, D.C. and van der Poorten, A.J., Solving diophantine equations $\mathrm{x}^{2}+\mathrm{d}=\mathrm{a}^{\mathrm{u}}$, unpublished. (3.2;4.1)
Kiss, P. [1979], Zero terms in second order linear recurrences, Math. Sem. Notes Kobe Univ. (Japan) 7, 145-152. (4.3)
Knuth, D.E. [1981], The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, (2nd ed.), Addison-Wesley, Reading Mass. (2.5)
Koblitz, N. [1977], p-adic Numbers, p-adic Analysis, and Zeta-functions, Springer Verlag, New York. (2.3)
Koblitz, N. [1980], p-adic Analysis: a Short Course on Recent Work, Cambridge University Press, Cambridge. (2.3)
Koksma, J.F. [1937], Diophantische Approximationen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 4, Springer Verlag, pp. 407-571. (1.3)
Lagarias, J.C. and Odlyzko, A.M. [1985], Solving low-density subset sum problems, J. Assoc. Comput. Mach. 32, 229-246. (3.4)
Langevin, M. [1976], Quelques applications de nouveaux résultats de van der Poorten, Sém. Delange-Pisot-Poitou 1975/76, Paris, Exp. G12, 11 pp. (1.1)

Lehmer, D.H. [1964], On a problem of Störmer, Illinois J. Math. 8, 57-79. (4.9;5.1)

Lenstra, A.K. [1984], Polynomial-time Algorithms for the Factorization of Polynomials, Dissertation, University of Amsterdam. (1.4;3.4;3.5)
$\mathscr{L E L}=$ Lenstra, A.K., Lenstra, H.W. Jr. and Lovász, L. [1982], Factoring polynomials with rational coefficients, Math. Ann. 261, 515-534. (1.4; 3.4;3.5)

Loxton, J.H., Mignotte, M., van der Poorten, A.J. and Waldschmidt, M. [1987], A lower bound for linear forms in the logarithms of algebraic numbers, C.R. Math. rep. Acad. Sci. Canada 11, 119-124. (2.4)

Lutz, É. [1951], Sur les approximations diophantiennes linéaires P-adiques, Thèse, Université de Strasbourg. (1.3)
MacWilliams, F.J. and Sloane, N.J.A. [1977], The Theory of Error-Correcting Codes, North-Holland, Amsterdam. (4.1)
Mahler, K. [1933], Zur Approximation algebraischer Zahlen I: Über den grössten Primteiler binärer Formen, Math. Ann. 107, 691-730. (6.1;8.6)

Mahler, K. [1934], Eine arithmetische Eigenschaft der rekurrierenden Reihen, Mathematika B (Leiden) 3, 153-156. (4.1)
Mahler, K. [1935], Über den grössten Primteiler spezieller Polynome zweiten Grades, Arch. Math. Naturvid. B 41, 3-26. (4.9;5.1)
Mahler, K. [1961], Lectures on Diophantine Approximations I: g-adic Numbers and Roth's Theorem, University of Notre Dame Press, Notre Dame. (3.10)

Masser, D.W. [1985], Open Problems, Proc. Symp. Analytic Number Th., W.W.L. Chen (ed.), London, Imperial College. (6.6)
Mignotte, M. [1984 $\left.{ }^{\text {a }}\right]$, On the automatic resolution of certain diophantine equations, Proceedings of EUROSAM 84, Lecture Notes in Comput. Sci. 174 , Springer Verlag, Berlin, pp. 378-385. (4.1)
Mignotte, M. [1984 ${ }^{\mathrm{b}}$], Une nouvelle résolution de l^{\prime} équation $x^{2}+7=2^{n}$, Rend. Sem. Fac. Sci. Univ. Cagliari 54, Fasc. 2, 41-43. (4.1)
Mignotte, M. [1985], $P\left(x^{2}+1\right) \geq 17$ si $x \geq 240$, C. R. Acad. Sci. Paris 301 , Série I, No. 13, 661-664. (4.9)
Mignotte, M. and Waldschmidt, M. [1978], Linear forms in two logarithms and Schneider's method, Math. Ann 231, 241-267. (2.4)

Mignotte, M. and Waldschmidt, M. [1988], Linear forms in two logarithms and Schneider's method (II), Preprint, I.R.M.A., Université Louis Pasteur, Strasbourg. (2.4)
Mohanty, S.P. [1988], Integer points of $y^{2}=x^{3}-4 x+1$, J. Number Theory 30, 86-93. (8.5)
Nage11, T. [1948], Losning Oppg. 2, 1943, s. 29 (Norwegian), Norsk Mat. Tidsskr. 30, 62-64. (1.1;4.1;4.9)

Odlyzko, A.M. and te Riele, H.J.J. [1985], Disproof of the Mertens conjecture, J. reine angew. Math. 357, 138-160. (3.4)
Pethö, A. [1983], Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30, 117-127. (1.1;8.1).
Pethö, A. [1985], On the solution of the diophantine equation $G_{n}=p$, Proceedings EUROCAL ' 85 , Linz, Austria, Vol 2, Lecture Notes in Comput. Sci. 204, Springer Verlag, Berlin, pp. 503-512. (4.1;4.7)
Pethö, A. and Schulenberg, R. [1987], Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34, 189-196. (3.8;8.1)
Pethö, A. and de Weger, B.M.M. [1986], Products of prime powers in binary recurrence sequences I : The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47, 713-727. (1.1; 2.2;4)

Philippon, P. and Waldschmidt, M. [1988], Lower bounds for linear forms in logarithms, New advances in transcendence theory (Proc. Symp. Durham July 1986), A. Baker (ed.), Cambridge University Press, Cambridge, pp. 280-312. (2.4)
Pinch, R.G.E. [1984], Elliptic curves with good reduction away from 2, Math. Proc. Camb. Phil. Soc. 96, 25-38. (7.1).
Pinch, R.G.E. [1988], Simultaneous Pellian equations, Math. Proc. Camb. Phil. Soc. 103, 35-46. (1.1)
Pohst, M. and Zassenhaus, H. [1982], On effective computation of fundamental units I \& II, Math. Comp. 38, 275-291 \& 293-329. (8.2)
van der Poorten, A.J. [1977], Linear forms in logarithms in the p-adic case, Transcendence Theory: Advances and Applications, A. Baker (ed.), Academic Press, London, pp. 29-57. (1.2;2.4;6.2)
Rumsey, H. Jr. and Posner, E.C. [1964], On a class of exponential equations, Proc. Am. Math. Soc. 15, 974-978. (4.9;6.1)

Schinzel, A. [1967], On two theorems of Gelfond and some of their applications, Acta Arith. 13, 177-236. (2.4;4.1)
Schmidt, W.M. [1988], The number of solutions of Thue equations, New advances in transcendence theory (Proc. Symp. Durham July 1986), A. Baker (ed.), Cambridge University Press, Cambridge, pp. 337-346. (1.1)
Setzer, B. [1975], Elliptic curves of prime conductor, J. London Math. Soc. 10, 367-378. (7.1)
Shorey, T.N., van der Poorten, A.J., Tijdeman, R. and Schinzel, A. [1977], Applications of the Gel'fond-Baker method to diophantine equations, Transcendence Theory: Advances and Applications, A. Baker (ed.), Academic Press, London, pp. 59-77. (1.1)
Shorey, T.N. and Tijdeman, R. [1986], Exponential Diophantine Equations, Cambridge University Press, Cambridge. (1.1;1.2;4.2;5.1;6.1;8.1;8.6)
Sprindžuk, V.G. [1969], Effective estimates in 'ternary' exponential diophantine equations (Russian), Dokl. Akad. Nauk BSSR 12, 293-297. (6.1)

Steiner, R.P. [1977], A theorem on the Syracuse problem, Proc. Seventh Manitoba Conf. Numer. Math. Comp., pp. 553-559. (3.2)
Steiner, R.P. [1986], On Mordell's equation $y^{2}-k=x^{3}$: a problem of Stolarsky, Math Comp. 46, 703-714. (3.3;8.1)
Stewart, C.L. and Tijdeman, R. [1986], On the Oesterlé-Masser conjecture, Monatsh. Math. 102, 251-257. (6.6)

Stormer, C. [1897], Quelques théorèmes sur l'équation de Pell $\mathrm{x}^{2}-\mathrm{Dy}^{2}= \pm 1$ et leurs applications, Vid. Skr. I Math. Natur. K1. (Christiana), 1897, No. 2, 48 pp. (4.9;5.1)
Stroeker, R.J. and Tijdeman, R. [1982], Diophantine equations, (with an Appendix by P.L. Cijsouw, A. Korlaar and R. Tijdeman), Computational Methods in Number Theory, H.W. Lenstra and R. Tijdeman (eds.), MC Tract 155, Centr. Math. Comp. Sci., Amsterdam, pp. 321-369. (1.1;3.2;5.1;5.4)
Thue, A. [1909], Über Annäherungswerten algebraischer Zahlen, J. reine angew. Math. 135, 284-305. (8.1)
Tijdeman, R. [1973], On integers with many small prime factors, Compositio Math. 26, 319-330. (5.1)
Tijdeman, R. [1976], On the equation of Catalan, Acta Arith. 29, 197-209. (1.1)

Tijdeman, R. [1985], On the Fermat-Catalan equation, Jahresber. Deutsche Math. Verein. 87, 1-18. (1.1)
Tijdeman, R. [1989], Diophantine equations and diophantine approximations, Proceedings NATO Advanced Study Institute on Number Theory and Applications, Banff, April-May 1988, R.A. Mollin (ed.), NATO ASI Series, Reidel, Dordrecht, to appear. (6.6)
Tijdeman, R. and Wang, L. [1988], Sums of products of powers of given prime numbers, Pacific J. Math. 132, 177-193. (1.1;5.4)
Tzanakis, N. [1983], On the diophantine equation $y^{2}-D=2^{k}$, J. Number Theory 17, 144-164. (4.1)
Tzanakis, N. [1984], The complete solution in integers of $X^{3}+2 Y^{3}=2^{n}$, J. Number Theory 19, 203-208. (8.6)

Tzanakis, N. [1989], On the practical solution of the Thue equation, an outline, Proceedings Colloquium on Number Theory, Budapest, July 1987, K. Györy (ed.), North Holland, Amsterdam, to appear. (8.1)

Tzanakis, N. and de Weger, B.M.M. [1989 ${ }^{\text {a }}$, On the practical solution of the Thue equation, J. Number Theory 31, 99-132. Preprint version with numerical details: Memorandum No. 668, Faculty of Applied Mathematics, University of Twente, October 1987. (1.1;8)
Tzanakis, N. and de Weger, B.M.M. [1989 ${ }^{\text {b }}$], Solving the diophantine equation $x^{3}-3 \cdot x \cdot y^{2}-y^{3}= \pm 3^{n_{0}} \cdot 17^{n_{1}} \cdot 19^{n_{2}}$, to appear. (8.6)
Tzanakis, N. and Wolfskill, J. [1986], On the diophantine equation $\mathrm{y}^{2}=4 \mathrm{q}^{\mathrm{n}}+4 \mathrm{q}+1$, J. Number Theory 23, 219-237. (4.1)
Tzanakis, N. and Wolfskill, J. [1987], The diophantine equation $x^{2}=4 q^{a / 2}+4 q+1$ with an application in coding theory, J. Number Theory 26, 96-116. (4.1)

Vojta, P. [1987], Diophantine Approximations and Value Distribution Theory, Lecture Notes in Mathematics 1239, Springer Verlag, Berlin. (6.6)

Wagstaff, S.S. Jr. [1979], Solution of Nathanson's exponential congruence, Math. Comp. 33, 1097-1100. (3.9)
Wagstaff, S.S. Jr. [1981], The computational complexity of solving exponential congruences, Congressus Numerantium, University of Winnipeg, Canada, Vol. 31, pp. 275-286. (3.9)
Waldschmidt, M. [1980], A lower bound for linear forms in logarithms, Acta Arith. 37, 257-283. (2.4)
de Weger, B.M.M. [1986 ${ }^{\text {a }}$, Approximation lattices of p-adic numbers, J. Number Theory 24, 70-88. (1.3;1.4;3.10)
de Weger, B.M.M. [1986 ${ }^{\text {b }}$], Products of prime powers in binary recurrence sequences II: The elliptic case, with an application to a mixed quadratic-exponential equation, Math. Comp. 47, 729-739. (1.1;4)
de Weger, B.M.M. [1987], Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26, 325-367. Erratum: J. Number Theory 31 [1989], 88-89. (1.1;5;6)
de Weger, B.M.M. [1989 $\left.{ }^{\text {a }}\right]$, On the practical solution of Thue-Mahler equations, an outline, Proceedings Colloquium on Number Theory, Budapest 1987, K. Györy (ed.), North Holland, Amsterdam, to appear. (1.1;8.6)
de Weger, B.M.M. [1989 ${ }^{\text {b }}$], A diophantine equation of Antoniadis, Proceedings NATO Advanced Study Institute on Number Theory and Applications, Banff, April-May 1988, R.A. Mollin (ed.), Reidel, Dordrecht, to appear. (3.3;8.1)

Wüstholz, G. [1988], A new approach to Baker's theorem on linear forms in logarithms III, New advances in transcendence theory (Proc. Symp. Durham July 1986), A. Baker (ed.), Cambridge University Press, Cambridge, pp. 399-410. (2.4)
Yu, K.R. [1987], Linear forms in the p-adic logarithms, Report MPI/87-20, Max Planck Institut für Mathematik, Bonn. To appear in Acta Arith. (1.2;2.4;6.2)

Yu, K.R. [1988], Linear forms in logarithms in the p-adic case, New advances in transcendence theory (Proc. Symp. Durham July 1986), A. Baker (ed.), Cambridge University Press, Cambridge, pp. 411-434. (2.4)
Yu, K.R. [1989], Linear forms in p-adic logarithms, to appear. (2.4;7.6)

[^0]: $\begin{array}{ll}46 & 10 \\ 33 & 1\end{array}$
 10
 11
 11
 11
 10
 13
 13
 11
 12
 14
 12
 11
 12
 13
 12
 28
 12
 14
 13
 13
 13
 13
 16
 26
 14
 14
 14
 19
 15
 16
 22
 53
 17
 17
 21
 17
 20
 17
 18

