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CHAPTER 1. INTRODUCTION.

1.1. Algorithms for diophantine equations.

This monograph deals with certain types of diophantine equations. An equation
is a mathematical formula, expressing equality of two expressions that
involve one or more unknowns (variables). Solving an equation means finding
all solutions, i.e. the values that can be substituted for the unknowns such
that the equation becomes a true statement. An equation 1is called a
diophantine equation if the solutions are restricted to be integers in some

sense, usually the ordinary rational integers (elements of Z ) or some

subset of that.

Examples of diophantine equations that will be studied in this book are

x2 + 7 = 2"
(the Ramanujan-Nagell equation, having only the solutions given by

(xtx,n) = (1,3), (3,4), (5,5, (11,7), (181,15) , see Chapter 4);

X

2% = 37 4 5%

(a purely exponential equation, having only the solutions (x,y,z) = (1,0,0),
(2,1,0), (3,1,1), (5,3,1), (7,1,3) , see Chapter 6);

y2 = x3 - 4-x + 1
(an elliptic curve equation, having only 22 solutions, of which the largest
are (x,y) = (1274,%45473) , see Chapter 8). The three examples mentioned
here are only some examples; we will study much wider classes of equations.
We also study (in Chapter 5) a diophantine inequality (a formula expressing
that one expression is larger than another, where solutions are again

restricted to integers). In the following discussion the statements about

diophantine equations also hold for this inequality.

What the equations treated in this book have in common is that they can all

be solved by the same method. This method consists essentially of three



tep, an application of the Gelfond-Baker theory, and

oximation step. We explain these steps briefly.

equation into a purely exponential equation

diophantine equation or inequality where the unknowns

ents, such as in the second example given above. Each

equation needs a particular kind of transformation, so

oe more specific at this point. In some instances,

this transfo:

rmation is easy, if not

as in the first example above, it uses sone

(1.2)

are constants with t, S5 e N , 0 <6 <1 ., and

gebraic extension of @ , and where the n are

i
now suppose that the number of terms t on the left

(1.1) or (1.2) is equal to 2 . This restriction is essential

step, In which we use results from the so—-called theory of

also known as the Gelfond-Baker theory. (Some
quations of type (1.1) with t > 2 can also be treated

hod, since they can be reduced to exponential

algebraic constants, and the n ; are iIntegral unknowns.

real or complex in some ins tances, or p-adic in




other cases. This relation between equation and linear form in logarithms is
such that for a large solution of the equation the linear form is extremely
close to zero (in the real or complex sense, or in the p-adic sense). The
Gelfond-Baker theory provides effectively computable lower bounds for the
absolute values (respectively p-adic wvalues) of such 1linear forms in
logarithms of algebraic numbers. In many cases these bounds have been
explicitly computed. Comparing the so-found upper and lower bounds it is
possible to obtain explicit upper bounds for the solutions of the exponential
diophantine equation or inequality, leading to upper bounds for the solutions

of the original equation. This second step, unlike the ifirst (transformation)

step, 1s of a rather general nature.

We remark that many authors have given effectively computable upper bounds
for the solutions of a wide variety of diophantine equations, by applying the
method sketched above. For a survey, see Shorey and Tijdeman [1986]. Often
these authors were satisfied with the knowledge of the existence of such
bounds, and they did not actually compute them. If they computed bounds, they
did not always determine all the solutions. In this book, solving an equation

will always mean: explicitly finding all the solutions.

After the second step, the problem of solving the diophantine equation is
reduced to a finite problem, which is treated in the third part of the
method. Namely, since we have found explicit upper bounds for the absolute
values of the (integral) unknowns, we have to check only finitely many
possibilities for the unknowns. However, the word finite does not mean the
same as small or trivial. In fact, the constants appearing in the lower
bounds that the Gelfond-Baker theory provides for linear forms in logarithms
are rather large. Therefore, in practice the upper bounds that can be
obtained in this way for the solutions of purely exponential equations can be
40

for instance as large as 10 . This 1is far too large to admit simple

enumeration of all the possibilities, even with the fastest of computers

today.

Proving the existence of an absolute upper bound for the solutions reduces
the determination of all the solutions from an Infinite task to a finite one.
Thus, the application of the Gelfond-Baker theory (the second step) is in a
sense infinitely many times as difficult a task than the only finite amount
of checking that remains to be done (in the third step). Furthermore, this

checking seems to be a technical problem only, not a mathematical one.



at solving this comparatively

but involves some serious and

is not only no
book hopefully illustrates this opinion.

application of the Gelfond-Baker theory in
med that

ipper bounds, it is generally asst

the actual largest solution. Therefore, it is

Often it is possible to devise such a method

of the original diophantine equation, for

methods for reducing upper bounds

ar forms in lo garithms. They would

antine problem that leads to such

third step of our method of solving

first and second parts are

rt that new developments

iﬂ. th i S th i ‘ :

that have been

by that part of

in the third

ation that is concerned with studying how

approxim

linear form can be for given values of the wvariables.

s been made in this field, the breakthrough

3

gress ha
81 by L. Lovdsz of the so-called L -laticce basis
3

We will show how this L -alg

orithm leads to practically

efficient diophantine approximation algorithms, which can be employed for

many diophantine equations to show that in a certain interval [Xl,XO] no
1ly Xl 0 When

the theoretical upper bound for the solutions is substituted, a new,

is of the order of magnitude of log X

solutions exist. Usus

for X

usually

much better upper bound X is found. For many equations the

1 |
initial upper bound XO is well within reach of practical application of

Ty iy
:—‘“ : o :'%.1
KT X

orithms, within only a few minutes of computer time. This thus leads




in practice to methods for finding all the solutions of many types of
diophantine equations, for which alternative methods have not yet been found

or employed with success.

The method outlined above, and used in this book to solve many examples of
various diophantine equations, is of an "algorithmic" nature. In a sense it
lies between "ad hoc"™ methods and "theoretical™ methods. This we shall
explain below. Let a set of diophantine equations with an unspecified
parameter 1in it be given. As an example of such a set, consider the
generalized Ramanujan-Nagell equation x2 + D = 20 , Where D is a

parameter, and X, n are the unknowns.

An ad hoc method is a method for solving the equation for specific values of
the parameters only. It may not work at all for other than these particular
values. The first example of solving an equation of the type x2 + D = 2"
occurring in the literature is that by Nagell [1948] of D = 7 . The method
he used is of an ad hoc nature, since it depends heavily on the special

choice of /7 for the parameter D

A theoretical method is capable of proving results that hold for some large
set of values of the parameters. The Gelfond-Baker theory is of a theoretical
nature, since it yields upper bounds for the solutions of many equations in
terms of their parameters. Other examples are application of the theory of
quadratic reciprocity, that shows that x2 + D = 2" has no solutions at all

if D is odd, at least 5 , and not congruent to 7 (mod 8) , and

application of the theory of hypergeometric functions, which Beukers [1981]

used to show that the solutions (x,n) of 1(2 + D = 2" satisfy

n < 435 + 10-210g]D| , and if |D] < 27°  then moreover n < 18 + 2'210g|D|

Theoretical methods are often too general to be able to produce all the

solutions of a given equation.

An algorithmic method is a method that is guaranteed to work for any set of
values of the parameters, but has to be applied separately to each particular
set of parameter values, in order to produce all the solutions. The methods
used in this book are mainly of such an algorithmic nature. For the equation
x2 + D = 2" (and actually for a more general equation) we will give an
algorithmic method in Chapter 4. In fact, since Beukers’' above-mentioned
result provides a small upper bound for the solutions, it can be made

algorithmic by providing a simple method of enumerating all the solutions



below the upper bound. However, the algorithmic part of this method 1is
trivial, and therefore we still prefer to classify Beukers’ method as
theoretical. In order to make the Gelfond-Baker theory algorithmic,
enumeration of all possibilities is impractical. Therefore more ingenious
ways of determining all the solutions below a large upper bound have to be

found. We remark that Beukers’ method for the more general equation

*x2 + D pn also has an ad hoc aspect, since it works for some special

values of p only. Our method of Chapter 4 does not have this disadvantage.

An ideal towards which one might strive in solving diophantine equations is
to devise a computer algorithm, a kind of ‘diophantine machine’, which only
has to be fed with the parameters of the equation, and after a short time
gives as output a list of all the solutions. One should have a guarantee (in

the strictest mathematical sense of proof) that no solutions are missing.

At first sight the method outlined above, and described in this monograph,
seems to be a good candidate to be developed into such a general applicable
algorithm. Namely, the second step is of a quite general nature, providing
upper bounds for exponential diophantine equations that are explicit in the
parameters of the equation. Also the third step, the algorithmic diophantine
approximation part, works in principle for any set of values substituted for
the parameters. However, the computations have to be performed separately for

each particular set of wvalues.

The main difficulties in devising such a ’‘diophantine machine’ are in the
first part of the method outlined above, especially if some algebraic number
theory is used. Developments taking place in the theory of algorithmic
algebraic number theory on computing fundamental units and on finding
factorizations of prime numbers in algebraic extensions, are of importance
here. We believe that when suitable algorithms of this kind are available, it
will be possible in principle to make such a ’‘diophantine machine’ (but
technical difficulties in the third step should not be underestimated). The
generality of such an algorithm is restricted by the generality of the first
step, the transformation to the linear form in logarithms. In this book we
use computer algorithms only if the magnitude of the computational tasks
makes this necessary, and keep to "manual" work otherwise. In this way we

also try to keep the presentation of the methods lucid.

The reader should be aware of the fact that the computer programs and their



results are part of the proofs of many of our theorems on specific
diophantine equations. It is however impossible to publish all details of
these programs and computations. The interested reader may obtain the details

from the author by request, and is invited to check the computations himself.

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine
equations for which computable upper bounds for the solutions can be found
using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman
and Schinzel [1977], and Stroeker and Tijdeman [1982]). Some of these
equations can be completely solved by the methods described in this book,
among which there are purely exponential equations, equations 1involving
binary recurrence sequences, and Thue equations and Thue-Mahler equations.
Especially the latter two are of importance in various other parts of number
theory. For example, they are the key to solving Mordell equations and
various equations arising in algebraic number theory and arithmetic algebraic
geometry. The Gelfond-Baker method was used to actually solve a diophantine
equation for the first time in the work of Baker and Davenport [1969] in

solving the system of diophantine equations

3':-:2-—2wy2, 8-x2m7m22

Other equations occuring in the literature for which upper bounds for the
solutions can be computed, cannot be treated as easily by our algorithmic
methods, because the application of the theory of linear forms in logarithms
ls more complicated for these equations, and moreover the upper bounds are

essentially too large. An example of this kind is the Catalan equation

a® — b’ = 1 in integers a, b, x, vy , all = 2 . Catalan conjectured in 1844

that this equation has only the solution (a,b,x,y) = (3,2,2,3) . Tijdeman
[1976] proved that the solutions of the Catalan equation are bounded by a
computable number. This number can be taken to be exp(exp(exp(exp(730)))) ,
according to Langevin [1976]. However, we fail to see how the methods that we
describe in the forthcoming chapters can be applied for completely solving

the Catalan equation, and we believe that Grosswald’s remarks on this topic

are too optimistic (Grosswald [1984], p. 259, in particular the footnote).

Another diophantine equation, that for centuries has attracted the attention

. < : : n n n . .
of many mathematicians, is the Fermat equation x + y = z in integers x,

y, z, n , with n =3 and Xx-y-z » 0 . It 1is conjectured to have no

solutions. Faltings [1983] proved that for fixed n the number of solutions



is finite. His proof is ineffective. The Gelfond-Baker theory seems not to be
strong enough to deal with the Fermat equation in its full generality, not
even if n 1is fixed. For a survey of partial results on the Fermat equation

that have been obtained using this theory, see Tijdeman [1985] and Chapter 11

of Shorey and Tijdeman [1986].

We remark that for many diophantine equations recently important progress has
been made in determining upper bounds for the number of solutions. See e.g.
Evertse [1983], Evertse, Gyéry, Stewart and Tijdeman [1988] and Schmidt
(1988] for a survey. These results are often remarkably sharp, but

ineffective, so that they cannot be used for actually finding the solutions.

To conclude this section we give an overview of the contents of this
monograph. It is divided into three parts: Chapter 1 1is introductory,
Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal

with various types of diophantine equations.

Sections 1.2 to 1.5 give a short introduction for the non-specialist to
respectively the Gelfond-Baker theory, diophantine approximation theory, the
algorithmic aspects of diophantine approximation, and the procedure for
reducing upper bounds. Chapter 2 contains the preliminary results that we
need from algebraic number theory and from the theory of p-adic numbers and
functions, and quotes in full detail the theorems from the Gelfond-Baker
theory which we use. It concludes with some remarks on numerical methods.
Chapter 3 gives 1in detail the algorithms in the field of diophantine

approximation theory that we apply in the subsequent chapters. In a sense

this chapter is the heart of the book.

Chapters 4 to 8 are each devoted to a certain type of diophantine equation.

Let pl, e Py be a fixed set of distinct primes. Let S be the set of

positive integers composed of primes Pys ---» P_ only.

Chapter 4 deals with elements of binary recurrence sequences ("generalized

Fibonacci sequences") that are in S , and gives applications to mixed

quadratic—exponential equations, such as the generalized Ramanujan-Nagell
. 2 _ :

equation x + k&€ S ( k fixed). The diophantine approximation part of this

chapter is interesting for two reasons: the p-adic approximation is very

simple, and in the case of the recurrence having negative discriminant, a

nice interplay of p-adic and real/complex approximation arguments occurs. The



research for Chapter 4 was done partly in cooperation with A. Pethé from

Debrecen. The results have been published in Pethé and de Weger [1986] and de
Weger [1986b].

Chapter 5 deals with the diophantine inequality 0 < x -y < y6

, Where
x, yeS , and 6 € (0,1) 1is fixed. Chapter 6 deals with X + y = z | where
X, ¥y, 2z € S, which can be considered as the p-adic analogue of the
inequality of Chapter 5. These two equations are the simplest examples of
diophantine equations that can be treated by our method. Since they are
already purely exponential equations of the form (1.1) or (1.2) with t = 2

?

the first step 1is trivial: the linear forms in logarithms are directly

related to the equations. Therefore they serve as good examples to get a

clear understanding of the diophantine approximation part of our method. The

results of these chapters have been published in de Weger [1987].

Chapter / studies the equation x + y = 22 , where x, y € S , and 2z € Z

This equation is a further generalization of the generalized Ramanujan-Nagell

equation, studied in Chapter 4.

In Chapter 8 a procedure 1is given to solve Thue equations, that works in
principle for Thue equations of any degree. It is applied to find all
integral points on the elliptic curve y2 = x3 - 4-x + 1 . We also mention
briefly how Thue-Mahler equations can be dealt with. This chapter has been
written jointly with N. Tzanakis from Iraklion. The results have been

published in Tzanakis and de Weger [19893] , and in de Weger [19893'].

1.2. The Gelfond-Baker method.

In Section 1.1 we have explained that before applying the Gelfond-Baker
method to some diophantine equation, the equation should be transformed into
a purely exponential diophantine equation or inequality with not too many
terms (cf. (1.1), (1.2)). In this section we sketch the arguments from the
Gelfond-Baker theory that lead to upper bounds for the variables of this

exponential equation/inequality.

Let us first treat the case of the inequality (1.2). Since ¢t =2 we may

assume that it has the form



s n,
@, ﬂ a, - 1 | < Co*exp(-S*N) :

i=]1
where the a, are fixed algebraic numbers, N = maxlni[ , and C,, & are
positive constants. In the examples we study, we encounter one of the
following two cases: either all a, are real, or lail =1 for all i . In

the real case, if N 1is large enough, the linear form in logarithms

s
A = log[aol + ) ni-log]ail

=1
must satisty
|A] < Cy-exp(=6-N) (1.3)
for some C(') . In the complex case, the same inequality (1.3) follows for the
linear form
S
A=1Lloga, + ) n.-Log a. + k-Log(~1)
0 : i i
i=]
S
- i-(Arg aj + } n -Arg a. + ken ) .

i=1

where the Log and Arg functions take their principal wvalues. Now we can
apply one of the many results from the Gelfond-Baker theory, giving an

explicit lower bound for |A| in terms of N , e.g. the following theorem.

THEOREM 1.1. (Baker [1972 Let A be as above. There exist computable

constants Cl’ C, , depending on the a, only, such that if A » O then

2 i

IA] > exp(m(01+02-1og N)) .

We usually know that A # 0 . Combining (1.3) and Theorem 1.1 we then obtain

C, + log C/ C
SO Sl B T

It follows that N 1is bounded from above.

Next, consider the exponential equation (1.1). By t = 2 we can write it as

S ni r mj
o PR ﬂ Q. - 1 = ﬁ ’ n 5- )
0 11 T 0 5=1 j

10



where the a., ‘Bj are fixed algebraic numbers. Let H be the maximum of

the Inil : Imjl where 1, j run through the set of ip;ldices for which a,
resp. ﬁj are non—-units. Let H be the maximum of the }‘nil : lmjl where
i, j run through the set of all indices. Suppose that p is a rational
prime lying above ﬁj for some j . There are constants Cys €, such that
s n,
ordp (ao-iglai --1] =z c, + cz.mj

Assuming that ordp (ai) = 0 for all i , we may write down a p-adic linear

form in logarithms

s
A= 1log a. + ) n,-log o, ,
p O 101 i p 1

for which, if mj is large enough, it follows that

ordp(A) > Cl + cz-mj * (1.4)

We are now in a position to apply the following result from the p-adic

Gelfond-Baker theory. Here, N = maxlnil

THEOREM 1.2. (van der Poorten [1977], Yu [19871]1). Let A , p be as above.

There exist computable constants C3, C& , depending only on the «a. and on

i
P , such that if A » O then

ordp(A) < C3 + Ca-log N

Applying (l1.4) and Theorem 1.2 for all possible p we obtain constants C3.
C4 with

Hp < C3 + 04'10g H .
If H =< CS*H for some constant C5 , then this immediately yields an upper

P
bound for H . If H>C_-H , then it can be shown that there exists a

> P
conjugate of the a., ﬁj , denoted with a prime sign, for which
. X mj
Iﬁ(')- [1 B < exp(-—CG-H)
j=1 4

for a constant C6 (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and
Tijdeman [1986]). Now we can apply Theorem 1.1. This yields

11



S n,
aé-iﬂlail-—ll > exp[—-(C7+C8«-log H)) .

It follows that H 1is bounded from above.

If it happens that none of the a., ﬂj are units, then of course the
application of Theorem 1.2 suffices.

We remark that, in order to be able to completely soclve a diophantine
equation, it 1is crucial that all constants can be computed explicitly.
Therefore we can only use the bounds from the Gelfond-Baker theory that are

completely explicit. We give details of such theorems in Section 2.4.

1.3. Theoretical diophantine approximation.

In this section we briefly mention some results from diophantine
approximation theory, thus giving a background to the next section. We refer
to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright
[1979] (Chapters XI and XXIII), for further details.

The simplest form of diophantine approximation in the real case is that of
approximation of a real number 4 by rational numbers p/q . It is well
known that if © 1is irrational, then there exist infinitely many solutions

(p,q) € ZxXN with (p,q) = 1 of the diophantine inequality

-2
Iﬂ—§l<q

All convergents from the continued fraction expansion of O are such

solutions. The convergents are simple to compute for any particular ¥ € R

One way of generalizing this is to study simultaneous approximations to a set

of real numbers 131, Cee Gn , 1l.e. rational approximations to -Bi all

having the same denominator. It is well known that the system of inequalities

Py -
|,gi.___}..[<q(1+l/n) for i =1, , N
q
has infinitely many solutions (pl, . ,pn,q) if at least one of the 61 is

lrrational. But it is much harder to find solutions of such inequalities than

ln the case n =1 . Some multi-dimensional continued fraction algorithms

12



have been devised (cf. Brentjes [1981l] for a survey), but they seem not to
have the desired simplicity and generality. We shall see later how we can

apply the so-called‘L3-algorithm to this problemn.

Another way of generalizing the simplest case of diophantine approximation is

to study linear forms, such as

m

L= ) q,-%, ,

j=1 J ]
where 61, c e ey 6111 are given real numbers, and s PR q, are the
unknowns in Z . Put Q = maxlqil . A classical theorem guarantees the
existence of a solution (p,ql,...,qm) of the inequality
—m
| L-p | <Q

Note that the case m = 1 becomes our first inequality on dividing by

q = 4q; - Also in this case the L3-algorithm is very useful, as we shall see

below.

We can incorporate the two generalizations above in a further generalization,

that of simultaneous approximation of linear forms. Let real numbers Gij be
given for i =1, ..., n, j =1, ., m . Put
m
L., = ) q.-9, for 1 =1, ..., n .

i 0%

A celebrated theorem of Minkowski states that there exists a solution

(pl,...,pn,ql,...,qm) of the system of inequalities

-m/n

! L; - Py | < Q for i =1, ..., n .

As we shall show in Section 1.4, the L3---algorithm may be applied to this

general form. We actually compute solutions of systems of inequalities that

are slightly weaker in the sense that the right hand side is multiplied by a

small constant larger than 1.

We now consider inhomogeneous approximation. This means that for all i
there is an inhomogeneous term ﬁi in the linear form Li , Viz,
m
L. = 8. + . -0 fo i =1, . ¢
1 Bl ngqj gy t

Again, there exists a constant ¢ such that the system

13



-m/n

ILi—-pi|<c=»Q for i=1, ..., n,

under some independence condition on the 2B : and ﬁij , has a solution. This

is Kronecker'’s theorem. The simplest case m = n =1 comes down to

~1
| -8 - p+ 8| <c-q

The upper bounds given above, that tell us that the order of magnitude of

| Li - Pj | can be at least as small as Q-—m/n , are mnot only theoretical

upper bounds, but they predict the heuristically expected order of magnitude
as well. By this we mean that in a generic situation (i.e. when there are no
almost-linear relations between the 6ij (and the ﬁi ), it is indeed the
case that for a given Q, the minimal malei-—-pil , taken over all Q =Q, ,

i

has the order of magnitude of the upper bound Q_m/ H

To conclude this section, we remark that there is a p—adic analogue of this

theory of diophantine approximation, founded by Mahler and Lutz. If we

replace in the above considerations R by @p , the absolute value |-| by
the p-adic value |-]_ , and the measure Q for an approximation
( ) b pan convex norm 9 ) on Rn—km
Pys---sP Gy -0q y any . Pys--+sPnGys--->q ,

then the p-adic analogues of the theorems of Minkowski and Kronecker are
essentially analogous to the above mentioned results in the real case. See
Koksma [1937] for references to Mahler’'s work, and Lutz [1951], and for a

detailed analysis of the case n=1, m= 2 see de Weger [19863] :

1.4. Computational diophantine approximation.

In this section we give some idea of practically solving the diophantine
approximation problems that we encounter in solving diophantine equations. In
this section we give no rigorous treatment. We neglect worst cases, and
concentrate on how things are expected to work (according to the heuristics
of Section 1.3), and appear to work in practice. In the subsequent chapters
many examples are given, showing that our methods are indeed useful in

practice. Applying the method in practice may be the best way of acquiring
the necessary Fingerspitzengefuhl for the method.

We shall deal with the following computational diophantine approximation

14



problem. Let eij . ﬁi € R be given, and let Pys ---> P ql, I be
integral unknowns with Q = maxiqjl . Let I..i be as above. Let a positive
constant QO , assumed to be a rather large number, 1050 say, be given.

Find a lower bound for the value of

max | L,

) 1“pii’
i

=

where (pl, RS L SR ,qm) runs through the set of values with Q < Q0

From the heuristics outlined in Section 1.3 it follows that one will be
satisfied if this lower bound is of the size Qam/n . For the p-adic case an
analogous problem may be formulated.

Related problems in diophantine approximation theory are those of actually

finding a good or the best solution of malei-pil < ¢ for a fixed e > 0 .

As we shall see, the L3-~a1gorithm ls a very useful tool for finding good

solutions. The problem of finding the best solution however seems to be

essentially more difficult. We note that in most of our applications of
solving diophantine equations it suffices to have a suitable lower bound for

malei-pil for a given Qy » while it is unnecessary to know explicitly how
1

sharp this bound is.

The computational tool that we use to solve the afore—-mentioned problems is

the so-called L3--1attice basis reduction algorithm, described in Lenstra,

Lenstra and Lovdsz [1982]. We shall give details of this algorithm in

Sections 3.4 and 3.5. Below we briefly indicate how it can be used to solve

diophantine approximation problems.

let T be a lattice in R" . The L3—-algorithm accepts as 1nput an arbitrary

basis b,, ..., b of I' . As output it gives another basis ¢., ..., ¢ of
1 n 1 n

the same lattice TI' , that is a so-called reduced basis. The concept reduced

means something like nearly orthogonal. From a reduced basis it is possible

to compute lower bounds for the following two quantities:

—> the length of the non-zero lattice point that is nearest to the origin:

L(I') = min |x|
O=xel

J

(see Lenstra, Lenstra and Lovasz [1982], Prop. (1.11), and our Lemma 3.4),

15



—> for any given point y € R , the distance from y to the nearest lattice

point:

{(T,y) = min |x-y| ,
xel

(see Babai [1986], and our Lemmas 3.5 and 3.6).

The L3~—a1gorithm enjoys the property that these lower bounds are usually near
to the actual minimal solutions. In a generic situation, where the lattice is
not too distorted, the vectors ¢ of the reduced basis all have about the

i
same length, which is of the order of magnitude of

det(F)l/n .

The value of {£(I') as well as the lower bounds computed for it, are about as
large as that. If y is not too close to a lattice point, the same holds for
{(I',y) . Moreover, the running time of the algorithm is good, both in the
theoretical sense (it is polynomial-time in the length of the input-

parameters), and in practice (cf. Lenstra [1984], p. 7).

To solve the problem of finding a lower bounds for malei—-pil as formulated

i
above, we take the lattice I' as follows. Let C be an integer, at least as

“1+m/n

large as QO The lattice T , of dimension n + m , is defined by

specifying a basis, namely the column vectors _b_l, C ey ‘bn-i—m of the matrix
1
7
2 1
B = . [C-ﬁll] [C-ft?lm] -C
&
[C*ﬁnll [C-Gm] —-C

(The symbol @ means that all not explicitly given entries in that area are

. 3 . .
zero). Applying the L -algorithm to this lattice we find a reduced basis, of
which the basis wvectors will have lengths of about Cn/ (m+n) which is

4

roughly the size of Q0 . Generally speaking, the larger C is, the larger

the lengths of the basis vectors of a reduced basis will be (and the larger
the lower bounds for {(I') and {(T',y) will be).

Let us first treat the homogeneous case, i.e. ‘Bi = 0 for all i . Consider

16



the lattice point x = 8- (ql,.. 54 Py - .pn]T . It is equal to

= ~ T

X = (ql,.,....,qm,Ll-—C-pl,...,Ln—-C-pn) ,
where

N m

L, = ) qj*[c-aij] for i =1, ..., n .

J= '

From the application of the L3-algorithm we find a lower bound for <&(I') , of
size QO . We assume it to be large enough (if this is not the case, we try a

somewhat larger value for C , and perform the L3—-algorithm again for the

lattice defined for this C). So we may assume that there is a small

constant c:1 such that

n
- 2 2 2 2
) (L;=C-p;)" 2 L))" - m-Q; > ¢, -Q,

=1
We have lfi-C-Li} < m-QO , SO we may assume that for small constants Chy Cq
-1 —
m?lei-pil > ¢, C ~maxILi~C*pi| > €4:Qy/C

By the choice of C this last bound has the required size.

Next, we study the inhomogeneous case, where not all ﬂi are zero. We take

the same lattice I as 1n the homogeneous case (note that the lattice

definition depends only on the 6ij and the C ). Consider the point
y = (0,...,0,-[C8,],...,~[C-B_1)"
LR 1 y * v = n
3

From the reduced basis found by the L -algorithm we have a lower bound for

{(T',y) . Assume that it is large enough, and of size QO . We take the same

lattice point x = 3. (ql, e Py - ...pn]T as 1n the homogeneous case. Then
_ = = T
l{_ - x = (q]_’“"qm'L]_“C.pl"“,Lnuc.an ’
where
_ m
L, = [C-B;] + jElqj-[c*eij] for i =1, ..., n .

The same reasoning as in the homogeneous case now yields the desired result.

3

Note that if we have performed the L -algorithm once for given & we may

ij ’
use the result to treat the homogeneous case, and many inhomogeneous cases

with different ﬁi s as well, as long as the 61_]' 's are the same.

17



The above process describes how to find lower bounds for systems of

diophantine inequalities. It will be clear from the above that it is not

difficult to find good solutions, i.e. (ql, oo Qs Pyo--- ,Pn) with Q < QO
and malei-pil near to the best possible value. In particular, the basis
i

vectors of a reduced basis are adequate for the homogeneous case, and for the
inhomogeneous case the lattice points near to y will be such solutions. The
lattice points near to y are not difficult to find once a reduced basis is
available. Specifically, if Sy +--» S € R are the coordinates of y with
respect to a reduced basis, then one may take the lattice points with
coordinates (with respect to the reduced basis) t, € Z that are near to s

i i
for i =1, ..., n .

In the definition of the matrix above the expressions [C-ﬁij] occur. Using
these expressions we have constructed a lattice r that 1is completely

integral, i.e. I C ™" | The L3-algorithm can be adapted to work exact for
those lattices, so that rounding-off errors are avoided (cf. Section 3.5).
The "errors" occur only in the difference between the ii and the C«-Li .
and are thus kept wunder control by choosing the proper constants
C1» C9» Cq . Of course one should take care to have the numerical values of
the ﬁij and the ﬁi correct to sufficient precision. We shall discuss such

numerical problems briefly in Section 2.5.

A possible variation of the above diophantine approximation problem is to

give weights to the linear forms Li , 1L.e. to look for a lower bound for

|

mix wi*l L, - Ps

where the w, are fixed positive numbers. This situation can be dealt with

easily by replacing every C in the (n+i) th row of the matrix by C-w,

i
Another variation is the problem where not all the variables qj. have the
same upper bound Qo . To illustrate this, assume that n = 1 , and that
m
L = -0,
.Elqj j

Now suppose that for some Ql > Q2 (it will be handy to have Q2 l Q1 ) we
are interested in the solutions with

lqjl <Q for j=m , lqjl =Q, for j =z m+l

18



m.+1 m—m

Next, let C be of the size of Ql1 -Q2 1 , and take the matrix
1
1 7
& /9,
' Ql/QZ
(C-0y] ... [C-8_ 1 [C ] [C-6_]  -C
1 1

. : . m+1 . .
Its determinant 1is of the size of Q1 . For a lattice point

~ T
[ql, Ce ,qm,L—-C.p] we therefore expect that max ( | qll e e ey lqml 1y
(Ql/Qz)-max(lqm1+1l,...,lqml) and |L-C-p|] are all of the size of Q, - It

wml u(mwml)

follows that |L-p] 1is of the size of Ql *Qz , in accordance with

the heuristics. This wvariant is useful when a combination of real and p-adic

techniques is used, such as for the Thue-Mahler equation (see Section 8.6).

We conclude this section by giving the analogous method of p-adic diophantine

approximation. We assume that the ﬂij : 51 are in Qp , and, moreover, that
they are p-adic integers. Let ENO = N U {0} . For any p-adic integer vy and

any p € NO we denote by 7(p) the unique rational integer such that

(p)

v = (mod p (1) H

a0 Y <P

, O

IA

Let pu €N be such that pp 1s roughly the same size as Q(l)+m/n , and
assume that u 1is large enough (it is the analogue of the constant € in

the real case above). Take for TI the lattice of which a basis is given by

the column vectors of the matrix

1
&
2 1

() () _p
5 611 T 61m P

! ) 2 ,

(8) (1) N

6:11 ... ﬁnm P
Consider the lattice point
T T

Sﬁ[ql,..‘,qm’zl’.",zn = (ql""3qm?pli""pn)

Then it is obvious that
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1
o (1) W
Py L9ty tEP

Hence the lattice I' can be described as the set

T m+n
r={ (aqy,---+9,,Pys---»P) €T |
- p
2 qj 61 = Pi (mGd P ) for 1 = l’ , 1 }
j=17 ™

The LB-algorit m provides a lower bound for the length of the nonzero vectors
* +
in this set, which is of the same size as p” n/(n+m) , and that of QO

This yields the desired result, if u 1is taken large enough.

For the inhomogeneous case, put
(p) (p)T
y= (0,...,0,-8"", ..., -8 "),
and consider the set

X ' T
I = { [ql,..,,qm,pl,..,,pnj e 2™ l

g. + Xq.-ﬁ,. = P (mod p'u) for i =1, ..., n }

* *
Then x €I’ if and only if x +ye€ I , so T is a translated lattice. A

lower bound for 4(I',y) now yields the desired result.

Again variations are possible, as in the real case, e.g. by replacing on the

(n+i) th row the g by different B o It is even possible in this way to

treat more than one prime p at the same time, by replacing on the (n+i) th

B 1
row the p° by different P:

We indicate one more variation for the p-adic case. Suppose we have only one

m
linear form A = ) qjtﬁj , and one variable p € Z , and we want to study
j=1
"1 “n
when A 1is congruent to 0 modulo different prime powers Py e e ey P

Thus we are interested in the set

, T _ _m+l = H
= { {a.--vq,p)" €277 | F g6, =p (mod Py )
j=1
for i = 1, ...,n}
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Then we take 6* € Z with

]
0, =290, (mdp, ) for i=1, ..., n, 0 =<8, < ﬂp 5
J N 1 J 4 1

*
for all j . The éj can be computed by the Chinese Remainder Theorem. Now

' 1is the lattice generated by the column vectors of

(1
&

=i

* _ n- g
'81 .. O ﬂ Ps
i=1

and we proceed with this lattice as described above.

We conclude this section with three remarks. Firstly, in the case that the
dimension of the lattice under consideration is only 2, the L3—a1gorithm is
essentially the continued fraction algorithm, and so yields nothing new. For
the p-adic continued fraction algorithm, see de Weger [19863] . Secondly, the
inhomogeneous case of diophantine approximation of one linear form of real
numbers can also be treated by what is known as Davenport'’s lemma, cf. Baker
and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison

[19713']). We will return to this in Chapter 3, and explain there why we

prefer our method.

Finally, one of the nice features of the above method of practical
diophantine approximation is that if an extreme solution exists, then in the
homogeneous case the lattice (with proper constant C or p ) will be
distorted. This means that the reduced basis will not be as nice as expected,
for example there might be a basis vector in it that is substantially shorter
than the other ones. In the inhomogeneous case the existence of an extreme
solution means that there is a lattice point extremely near to Yy . The
algorithm detects such an extraordinary situation at once, and in most cases
the extremal solution is presented explicitly (e.g. in the homogeneous case
as one of the wvectors of the reduced basis). One can check whether this
extremal solution actually satisfies the original equation, and then proceed
by replacing in the above reasoning {4(I') or <¢(I',y) by lower bounds for
all vectors in the lattice except the extremal one. These new lower bounds
will in general be of the expected size. However, when we solved diophantine

equations in practice, we have never met such an extraordinary situation.
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1.5. The procedure for reducing upper bounds.

We have seen in Section 1.2 how upper bounds for the solutions of the
exponential inequalities and equations occuring there can be found. In
Section 1.4 we have studied some diophantine approximation theory from a

practical point of view. Now these two things come together.

From

the application of the Gelfond-Baker theory we are 1left with the

following problem. We have a linear form

I
A=B+ )

n,-¢, ,
jop 4

where the g and 63. are constants (that they are logarithms of algebraic

numbers is now of no importance anymore), and the nj, are integral unknowns.

We know that A 1is extremely close to 0 , namely
Al < c-exp(-§-N) |,

where ¢, § are (small) constants, and N = max|n.,| . Finally, we have an

explicit upper bound NO for N . This N, is very large, 1050 say.

0

It will be clear from Section 1.4 that the methods outlined there are of use

for solving this problem. For Q0 we take NO . We have n = 1 . In the real

tasé we expect, by choosing C at least of size Nm+1

0 , that

-~

|A] > ¢’ Ny,

for a small constant c’

It follows by combining the two inequalities for
§A§ that

N < log(c/ec’) /6 + (m/§) -log NO :

S0 the upper bound N
of log N

0 for N 1is reduced to an upper bound N. of the size

. ¢ - . e 1
0 which is a considerable lmprovement indeed. We now may apply the
procedure with N, instead of N

1 o + and repeat until no further improvement

is obtained. In practice it appears almost always to be the case that in that

situation the reduced
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following a similar argument. We have for the linear form A (cf. (1.4)),

ordp(A) > cy + cz-mj ,
where cl, c2 are small constants, and mj is one of the wvariables.
Moreover, the wvariables are bounded by a large constant NO ., that 1is
explicitly known. We take pu such that p‘u is at least of size ‘ , SO

that the lower bound for the shortest nonzero wvector in T (or T ) 1is

larger than /m-NO . Then it follows that the elements of the lattice I (or

¥
of the translated lattice I' ) cannot be solutions of (1.2). Therefore,

c., + C

-m. <
1 - -

2 ] ’

so that we find a new upper bound for mj , that is of the size of u , which

is about log NO / log p . We repeat this procedure for all the m, , 1in

J

order to obtain a reduced upper bound for Hp . If this is not yet sufficient
to derive at once a reduced upper bound for H, then we can do so by
applying a reduction step for real linear forms, where we may take advantage
of the fact that for some of the variables a much better upper bound has just

been found (cf. the second variation in Section 1l.4). Again we repeat the

whole procedure as far as possible.
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CHAPTER 2. PRELIMINARIES.

2.1. Algebraic number theory.

In this section we quote results from algebraic number theory that we use
throughout the remaining chapters. We refer to Borevich and Shafarevich

[1966] or any other textbook on algebraic number theory for full details.

Let K be a finite algebraic extension of Q@ , of degree D = [K:Q] . There

are D embeddings o : K> € . Let a € K be an element of degree d , and

let ay > O be the leading coefficient of its minimal polynomial over Z

We define the (logarithmic) height h(a) by

1

D/d
5 log[ao

h(a) = [max (1, |o(a) ])) ,
o

where the product is taken over all embeddings o¢ . Note that this definition

does not depend on the field K . Hence, if the conjugates of a are

X = ag, ., @, then the above definition applied for K = Q(a) vyields
1 d
h{(a) = -d--log(aotiﬂlmax(l, [ail)] .

In particular, if o € @ , then with a = p/q for P, q €Z with (p,q) =1
we have h(a) = log max(|p|,|q]) , and if a € Z then h(a) = log|a]

Let there be s real and 2-t non-real embeddings (with D = s + 2-t ).

Then Dirichlet’s Unit Theorem states that there exists a system of

r = s + t -1 independent units e €

10t €. such that the group of units

of K 1is given by

a
{ S"ﬁll*-”'é y | ¢ a root of unity, a. € Z for i=1 Y }
X ? i g o o o g

There are only finitely many roots of unity in K . Any set of independent

units that generate the torsion-free part of the unit group is called a

system of fundamental unirs.

The number a is called an algebraic integer if a5 = 1 . Let the norm of an
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element a € K be defined by

d
Ny (@) = Ed(a) = (iﬂlai)D/d :
For algebraic integers, NK/@ (a) € Z . The units are precisely the elements
of norm 1 . Two elements o, 8 of K are called associates if there is a
unit € such that a = ¢-8 . Let (a) denote the ideal generated by a
Associated elements generate the same ideal, and distinct generators of an
ideal are associated. There exist only finitely many non-associated algebraic
integers in K with given norm. The ring of algebraic integers is denoted by
iDKP' Let Xy, ..., @ be elements of O that are @Q-~linearly independent.

D K

Then Z*al X ... X Z-aD is called an order of K 1if it is a subring of the

‘maximal order’ OK :

In K any algebralic integer can be written as a product of irreducible
elements. Here an irreducible element (prime element) is an element that has
no integral divisors but its own associates. However, this decomposition into
primes need not be unique. Ideals can also be decomposed into prime ideals,
and this decomposition is unique. A principal ideal is an ideal generated by
a single element a . Two fractional ideals are called equivalent 1if their
quotient 1is principal. It is well known that there are only finitely many

equivalence classes. Their number is called the class number kﬁ( .  For an

P

ideal a it is always true that a is a principal ideal. The norm of the

(integral) ideal a 1is defined by NK/@ () = #(DK/Q.)

For a prime ideal P there is always a rational prime number p such that
P 1is a divisor of (p) . We say that P lies above ©p . The ramification
index ep is the largest power to which P divides (p) . The residue class

degree f:p is the integer such that

f

_ 5 P
Ne @®) = P

We denote by ordp(a) the exact power to which the prime ideal P divides
the ideal a . For fractional ideals Q this number can of course be

negative. For numbers o we write ordp(a) for ordp((a)) . Note that

ordp(a) = ordp(a)/ep

can be defined for all o € K . We will return to this in Section 2.3, which

deals with p-adic number theory.
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2.2. Some auxilia ry lemmas.

In this section we give a few simple auxiliary lemmas. The first one enables
us to find an upper bound in closed form for some real number x > 1 that is

bounded by a polynomial in log x . See Peth6é and de Weger [1986], Lemma 2.3.

Let a=20, h=2z1l, b>0, and let x €R, x>1 satisfy
X = a+ b-(log x)h :

If b > (ezm)h then
x < 20 [al/h+b1/h-log(hh-b)]h :

and if b < (e 2/h ) h then

x < 2" (at/Ph2.eQ)h

We may assume that x is the largest solution of

X = a+ b-(log x)h :

1/h 1/h 1/h y
By {zl+zz) < Zy + z, we infer
1/h 1/h

»

. Define y by xl/h = (l+y):c-log ¢ . From
log ¢ < log(c-log c)

it follows that

ch*(lag )® < b. (1og[ch- (log c)h]]h ,

which implies x > ch-(log c)h . Hence y > 0 . Now,

(1+y)-c-log ¢ = xl/h < al/h + c-log(l+y) + c-log ¢ + c-loglog c

< at/h

t C'y + c-log c + c-loglog ¢

Hence

y-¢-{log ¢ - 1) <« a1/ + c-loglog ¢ .

If ¢ > ez it follows that
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X = c-log c + y-c-log ¢ < c-log ¢ + mmlggmp-w*(al/h+C*1oglog c)

log ¢ - 1
< 2 (al/h+c log c)
2 2 .h h
If c¢c=<e , then note that x < a + (e“/h) -(log x) . So we may assume
c = e2 in this case. The result follows. u
The next lemmas make explicit that x and log(l+x) are near if x| is

small in the real and complex case, respectively.

LEMMA 2.2. Let ae€lkR . If a<1l and |x| < a then

| log(1+x) | < i“-’iL;lil). ™

and

a

_a-!exmll
1-e

x| <

Proof. Note that log(l+x)/x 1is a strictly positive and strictly decreasing

function for |[x| < 1 . Hence it is for |x| < a always less than its value
at X = —-a . The same is true for the function x/(exml) : 0
LEMMA 2.3. Let O <a=<nxn . If |x|] < a then
a 1-%
X| < g—7T———=-|e -1
%] 2-sin(a/2) | |
i-x
If a< 2, e -1] < a and |x| < n then
- 2-arcsin(a/2 L-X
lxi < ._____._.......‘__g___{__l.; Iel .....1!
a
1-X . 1 . . 1 .
Proof. Note that |e™ "-1| = 2. !s:.n(;-*x)] . and that 2-511’1(-—;*){)/}: is a
positive and even function, that decreases on 0 < x < a . Hence it takes its
minimal value at x = a . The first inequality now follows. The second one
can be proved in a similar way. O

2.3. p-adic numbers and functions.

In this section we mention the facts about p-adic numbers and functions that

we use. For details we refer to Bachman [1964] and Koblitz [1977], [1980].
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We assume that the reader is familiar with the field of p—adic numbers ﬁp

and the p—adic valuation ordp . Note that the ordinary ord as defined in

P
Qp coincides with the definition given in Section 2.1. We denote by Qp the
completion of the algebraic closure of Op  i.e. the field to which all

p—adic theory 1is applied.

Every nonzero number a € @p has a p—adic expansion .

O .
& == E ui*pl ’
i=k

where Kk = crdp(a) and the p-adic digits u, are in (0, 1, ..., p-1 1} ,
with w 0 . The number 0 can be represented in this way by taking k = 0O
and all digits equal to 0 , and ordp(O) = © by definition. If ordp(c:) > 0

then a 1is called a p-adic integer. The set of p-adic integers 1is denoted by

Zp . A p-adic unit is an a € fﬂp with ordp(a) = 0 . For any p—adic integer
pu-1 .
a and any u € INO there exists a unique rational integer a(p) - ) ui*pl
i=0
satisfying
ord (a—a(#))zp , O:S.a(#) Spu-— 1 .

P

For crdp(a) > k we also write a = 0 (mod pk) . The p—adic norm is defined

by

-0rd (o
p( )

lalp = P

In Section 2.1 we have seen how to define ord and ord on algebraic
* P
extensions of Q@ . For any « € ﬂp with ordp(a) > 1/(p~-1) we can define

the p-adic logarithm lcgp(1+a) by the Taylor series
2 3
1ogp(l+a) -a-a /2 +a /3 ~- .

This logarithmic function has the well known properties of a logarithm, such

as logp(fl-fz) = logp(gl) + logp(fz) for all 51, 52 for which it is

defined. Further, 1ogp(§) = 0 if and only if ¢ 1is a root of unity. In @
P

the only roots of unity are the (p-1) th roots of unity (if p 1is odd).
Using these properties,

¢ € 1 with
P

this logarithmic function can be extended to all

ordp(é) =0, as follows. By Fermat’'s theorem for algebraic
number fields there is a k € N such that ord (Ek—-l) > 1/(p-1) Then
5 .
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1 k
lo = —-]10 1+(€ -1 :
8,(8) = rlog (1+(£7-1))
An equivalent definition is 1ogp(€) = 1ogp(€/§') , wWhere § is a root of
unity such that ordp(&-—-g') > 0 . In this way the p-adic logarithm is a well

defined function. Note that 1ogp(§) lies in the subfield of Qp generated
by €& . Finally we note that if crdp(f) > 1/(p-1) then

ordp(ﬁ) == ordp(logp(1+§))

2.4. Lower bounds for linear forms in logarithms.

In this section we quote in detail the results from the Gelfond-Baker theory
that we use. They yield lower bounds for linear forms in logarithms of
algebraic numbers. We do not always give the theorems in their full
generality, since in this book only linear forms with rational unknowns
occur, whereas most Gelfond-Baker theorems are formulated for linear forms
with algebraic unknowns. We selected bounds with fully explicit constants,

because only such completely explicit results can be used for our purposes.

The first result in this field for a linear form in logarithms with at least
three terms is due to Baker [1966], and in the p-adic case to Coates [1969],
[1970]. For a survey of this theory, see Baker [1977] and van der Poorten
[1977]. We will use more recent, sharper results, due to Waldschmidt [1980]
and Yu [1987]. Further improvements of the constants have been reached (see
the references after Lemma 2.4 below), but too recently to be taken into

account here.

First we deal with real/complex linear forms in logarithms. We quote the

result of Waldschmidt [1980].

LLEMMA 2.4 (Waldschmidt). Let K be a number field with [K:Q@] = D . Let
g, ...,anel{, and bl’ ...,bnel (n=>2 ) . Let Vl’ “"'Vn be
positive real numbers satisfying 1/D < Vl < ... = Vn and

Vj;:max[h(aj), llogajl/D ] for j =1, ..., n .
where log a, for j =1, ..., n 1is an arbitrary but fixed determination of
the logarithm of aj, . Let V} = max(VJ. ,1) for j = n, n-1 , and put
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n
A= )b, log a,
j=1 J J

Put B = max lbii . If A = 0 then
1<i=n

e(n)#HZ-n‘ n+2

- +
Al > exp [ -2 DTV ... -V _-log(e-D-V  4)-

1

[ log B + log(e*D*V;) ) ) ’

where e(n) = min [ 8 n+ 51, 10-n + 33, 9-n + 39 ] . If, moreover, L 1S

eniown that {(/al‘ o ,,/an) Q] = 2n . then we can take e(n) = 9-n + 26 and

) n+4
replace the factor n2 " in the above bound for |A| by n

Waldschmidt’s main theorem does not give the constant e(n) as detailed as
we do, but he does so in his proof, cf. p. 283. We remark that improvements

of the above bounds have recently been found by Blass, Glass, Manski, Meronk

and Steiner [198831, [1988b], Loxton, Mignotte, wvan der Poorten and

Waldschm

idt [1987], Philippon and Waldschmidt [1988], and Wistholz [1988].

For the case n = 2 , the sharpest bound has been given by Mignotte and

Waldschmidt [1978], improved again by Mignotte and Waldschmidt [1988].

In the p-adic case we quote two results: one due to Schinzel [1967] (Theorem
1} for the case of a linear form in logarithms with two terms, and another
for the general case, due to Yu [1987] (Theorem 1, see also Yu [1988]). We
note that Yu’s bounds improve much upon the results of wvan der Poorten

[1977]. Moreover, van der Poorten’s proofs seem to contain some errors. We

give Schinzel’s result for quadratic fields only.

EMMA 2.5 (Schinzel). Let p be prime. Let A be a squarefree integer, and

let D be the discriminant of K = Q(YA) . Let E = EM /€7

and x = x"/x'
be elements of K , where ¢', €", x', x"

are algebraic integers. Put

L = log max | [e-D{l/4

el dext s demexll lemexl )
where |v| denotes the maximal absolute value of the conjugates of v € K .
Let Yy be a prime ideal of K

with norm Np = pp . Put Y = 2/p-10g P
@ = ord (p)

. If & or x is a p-adic unit and En 4 xm , then

Ordp(fn"xm) < 106*\67~¢“2*L4. 4. p+i

P *[log max(lml,[n])-kcp-L*pp+2/L)3 .
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LEMMA 2.6 (Yu Let « ce e, O ( n>=2) be nonzero algebraic numbers.

1’ n
Put L.H:Q(al,..,,an) , d= [L:Q] . Let bl’ C ey bn be rational integers.
Let Pp be a prime ideal of L , lying above the rational prime p . Let ep

be the ramification index, and fp the residue class degree of P . Write

Lp for the completion of L with respect to m:'d?{J (then for all B8 € L

we have ordp(ﬁ) = e -ordp(ﬁ) ). Let q be a rational prime such that

P

£
qd{ p-(p P_1)

Let
Vj > max (’h(aj), fp'(log p)/d) for j =1, ..., n ,
..§..
such that V, < ... =<V_ ., V . =max(1,V__,) ,
BO > min Ib.| |, Bn > Ibn] , B' = max |b.]| ,
L<j=n,b, =0 J 1<j<n-1
B = max | [bll, . lbn], 2 ),
3
W =2 max [ log(l+zfg-B, log BO, fp.(log p)/d ) :
Suppose that ordp(aj) =0 for j=1, ..., n , that
(L(ay/9, .. e/ YLy = 7, (2.1)
bl bn
that ord (b_) < ord (b,) for j=1, ..., n, and a, ... -« = 1 . Then
P n P ] i n
b1 °h n n+5/2 2-n 2
ord?(al e -1) < C,(p,n)-a,-n . q . (q-1) -log " (n-q) -
fp 1 \n - (n+2)
(p -1)~(2+E:T) -(fp'(log p)/d] 'vl"";vn'
(+log(4-d)) - (Log(4-d-VE y+f_-(log p)/8-n)
6-n n—1 P 47
where

a, = 56-e/15 if n=<7, a, =8.e/3 if n = 8

1

4

1
and Cl(p,n) is given by the table on the next page, with for p = 5

, 1.2
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n | ) 3 4 5 6 7 > 8

1(2,1'1) :8523 46217 373024 318871 284931 261379 2770008
01(3,11) 167881 104028 81486 69657 62243 57098 116055

Ci(p,n) 87055 53944 42255 36121 32276 24584 311077
Remark. Yu [1989] gives a result in which ’independence condition’ (2.1)

has been removed, with more or less the same constants. This result will be

easier to apply if d =1 .

2.5. Numerical methods.

In solving diophantine equations using computational methods from diophantine
approximation theory, as we will do in Chapters 4 to 8, it is necessary to
have logarithms (real, complex or p-adic) of algebraic numbers available to a
large enough precision (maybe several hundreds of digits). We will not go
deeply into the problems of computing such approximations, but make only a

few remarks on it in this section.

To start with, the precision with which most computers (mainframes as well as
personal computers) work, is insufficient for our purposes. Usually at most
double precision (52 bits, equivalent to 15 decimal digits), or at best
quadruple precision (112 bits, equivalent to 33 decimal digits) is standard
available. This is not sufficient for our purposes, not only because we may
require larger precision, but also because we want to have the rounding off
errors under control, to be sure that no solution of a diophantine equation

is missed by unexpected consequences of rounding off errors.

Packages for computations with arbitrary precision are available and very
useful, e.g. the MP package of R.P. Brent (cf. Brent [1978]). It is not
difficult, as we did, to write one’s own package for simple manipulations on
multi-precision numbers, such as addition, multiplication and division (cf.
Knuth [1981] for efficient algorithms). To the author’'s knowledge, no such
packages are available publicly for manipulations on p-adic numbers, but the

programs are similar to those for real numbers, and thus relatively easy

(though maybe laborious) to write yourself.

Computing roots of polynomials with integral coefficients can be done by
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Newton'’'s method, both in the real and the p-adic case. One should make sure
that the result obtained is correct to the desired precision, not (only) by
substituting the found approximation of the root intoc the polynomial and
checking that the result is O within the desired precision, but (also) by
theoretical error estimates for the Newton method, or by using 'interval

arithmetic’ (see below).

Computing logarithms can be done by the Newton method too. However, we found

it easier to use the Taylor series
2 3
log(l+x) = x - x°/2 + x7 /3 -

or the more rapidly converging series

1+x 3 5
10g~i—:§u2'(x+x/3+x/5+..,)
For |[x| very small this method works fast, whereas for larger |x| the

following idea works well. Compute approximations to the desired precision of

log 1.1 , 1log 1.0001 , 1log 1.00000001 , say, and store them. Now compute
3 € (1,1.1) and kl = [NO such that
k
X = xl*l,,l 1 ,

which 1is a matter of a few divisions of a multi-precision number with a
rational number with small numerator and denominator (11 and 10) only, that

can be done fast. Next, compute x, € [1,1.0001) and k. € N such that

2 2 0
k2
X, = x2v1.0001 :
and X, € [1,1.00000001) and k3 = NO such that
Kq
X, = xX,+-1.00000001

2 3

Then compute log X4 by the Taylor series, which converges very fast, and

compute log x by

log x = log x, + k,-log 1.00000001 + k

, ; .log 1.0001 + k

-log 1.1 .

2 1

When computing all this, one should take care of having the rounding off
errors at each addition/multiplication under control. This can e.g. be done
by using 'interval arithmetic’, i.e. doing all computations twice with a few

more digits than actually needed, rounding off in different directions at
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i i ] i the exact
each step. Then a sufficiently cmall interval is found 1n which

number lies (with mathematical certainty).

Computation of arctan X is done by the Taylor series

’ /5 —

3
gretan X = X — X /3 + X

The number = = 3.14159... can be computed rapidly by this series for the

x = 16-arctan 1/5 - &4-arctan 1/239
Doing p-adic arithmetic has the advantage above real arithmetic that rounding

- - w % & a
of f errors do not tend to become larger, as long as one 1s not dividing by

number with positive p-adic order. 1f ordp(x) > 0 then 1ogp(1+x) can be

computed by the Taylor series
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