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CHAPTER 1. INTRODUCTION. 

1.1. Algorithms for diophantine eq11ations. 

This monograph deals with certain types of diophantine equations. An equation 

is a mathematical formula, expressing equality of two expressions that 

involve one or more unknowns (variables). Solving an equation means finding 

all solucions, i.e. the values that can be substituted for the unknowns such 

that the equation becomes a true statement. An equation is called a 

diophancine equation if the solutions are restricted to be incegers in some 

sense, usually the ordinary rational integers ( elements of ) or some 

subset of that. 

Examples of diophantine equations that will be studied in this book are 

2 n 
X + 7 - 2 

(the Ramanujan-Nagell equation, having only the solutions given by 

(±x,n)-= (1,3), (3,4), (5,5), (11,7), (181,15), see Chapter 4); 

(a purely exponential equation, having only the solutions (x,y,z) = (1,0,0), 

( 2 , 1 , 0 ) , ( 3 , 1 , 1 ) , ( 5 , 3 , 1 ) , ( 7 , 1 , 3 ) , s e e Ch apter 6 ) ; 

2 3 y - X - 4·X + 1 

(an elliptic curve equation, having only 22 solutions, of which the largest 

are (x,y) == (1274,±45473) , see Chapter 8). The three examples mentioned 

here are only some examples; we will study much wider classes of equations. 

We also study (in Chapter 5) a diophantine inequality (a formula expressing 

that one expression is larger than another, where solutions are again 

restricted to integers). In the following discussion the statements about 

diophantine equations also hold for this inequality. 

What the equations treated in this book have in common is that they can all 

be solved by the same method. This method consists essentially of three 
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part.•: a transfoxaation step, an application of the Gelfond-Baker theory, and 

a di.ophantine approximation step. We explain these steps briefly. 

To start with, one transforms the equation into a purely exponential equation 

or inequality. i.e. a diophantine equation or inequality where the unknowns 

a.re all in the expon.ents 1 such as in the second example given above. Each 

typ,e of' diophant1ne equation needs a particular kind of transformation, so 

that it is difficult to be more specific at this point. In some instances, 

such aa in the ••cond e,rample above, this transformation is easy 
1 

if not 

trivial. In other instances, as in the first example above, it uses some 

arguaents from algebraic number theory, or, as in the third example above, a 

lot of th.a"' 

In geMral, such a purely exponential equation has the form 

5 0 n 
- C • n Q OJ 

0 j-l Oj ' 

ar1.d • corr•sponding purely exponential inequality looks like 

s 
t 1 n ij . .. i: e. · n a ·. 

I i•l 1 j-1 ij 

s 
i n 1j 

< min . C • • n a i . 
i . 1 j-1 J 

(1.1) 

(1.2) 

where t, s 1 , c 1 , oij' 6 are constants with t, s
1 

e IN , 0 < 6 < 1 , and 

c 1 , "'ij t..long to some algebraic extension of fl , and where the nij are 

the unknowtls in l . We now suppose that the number of terms t on the left 

hand side of (1.1) or ( 1. 2) is equal to 2 . This restriction is essential 

for the .second step, in which we use results from the so-cal led theory of 

linear fonas in logarithms, also known as the Gelfond-Baker theory. (Some 

•~cial exponential equations of type (1.1) with t > 2 can also be treated 

by th,e Gelfond-Baker :method. since they can be reduced to exponential 

ineqtia.lities of type (1. 2) with t - 2 , cf. Stroeker and Tij deman [ 1982 J, 
Alex (1985"). [1985bl, Tijdeun and W'ang [1988].) 

At1 exponential e,quation or inequality such as (1.1) or (1. 2) with 

gl Vf!s; ri•• to• a linear form in loga.r i thms 

• 
A - log p0 + E n1-log p

1 
• 

i-1 

t - 2 

where the 

Here, the 
tt1 are algebraic constants. and the n

1 
are integral unknowns. 

logarithas are real or coaplex in some instances, or p-adic in 
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other cases. This relation between equation and linear form in logarithms is 

such that for a large solution of the equation the linear form is extremely 

close to zero (in the real or complex sense, or in the p-adic sense). The 

Gelfond-Baker theory provides effectively computable lower bounds for the 

absolute values (respectively p-adic values) of such linear forms in 

logarithms of algebraic numbers. In many cases these bounds have been 

explicitly computed. Comparing the so-found upper and lower bounds it is 

possible to obtain explicit upper bounds for the solutions of the exponentia1 

diophantine equation or inequality, leading to upper bounds for the solutions 
' 

of the original equation. This second step, unlike the first (transformation) 

step, is of a rather general nature. 

We remark that many authors have given effectively computable upper bounds 

for the solutions of a wide variety of diophantine equations, by applying the 

method sketched above. For a survey, see Shorey and Tijdeman [1986]. Often 

these authors were satisfied with the knowledge of the existence of such 

bounds, and they did not actually compute them. If they computed bounds, they 

did not always determine all the solutions. In this book, solving an equation 

will always mean: explicitly finding all the solutions. 

After the second step, the problem of solving the diophantine equation is 

reduced to a finite problem, which is treated in the third part of the 

method. Namely, since we have found explicit upper bounds for the absolute 

values of the (integral) unknowns, we have to check only finitely many 

possibilities for the unknowns. However, the word finice does not mean the 

same as small or crivia.l. In fact, the constants appearing in the lower 

bounds that the Gelfond-Baker theory provides for linear forms in logarithms 

are rather large. Therefore, in practice the upper bounds that can be 

obtained in this way for the solutions of purely exponential equations can be 

for instance as large as 1040 . This is far too large to ad.mi t simple 

enumeration of all the possibilities, even with the fastest of computers 

today. 

Proving the existence of an absolute upper bound for the solutions reduces 

the determination of all the solutions from an infinite task to a finite one. 

Thus, the application of the Gelfond-Baker theory (the second step) is in a 

sense infinitely many times as difficult a task than the only finite amount 

of checking that remains to be done (in the third step). Furthermore, this 

checking seems to be a technical problem only, not a mathematical one. 
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Nev•rthelesst it is the author's opinion that solving this comparatively 

iaaa,ll technical prob le• is not only nontrivial, but involves some serious and 

.lnter·e1111tin3 P:atheaat:ica. This book hopefully illustrates this opinion. 

Notwithstanding the fact that the application of the Gelfond-Baker theory in 

t.he .second step yields very large upper bounds, it is generally assi1m~d that 

thetse upper bounds are far from the actual largest solution. Therefore, it is 

worthvile to search for methods to reduce these upper bounds to a size that 

can be 80re easily handled. Often it is possible to devise such a method 

using directly certain properties of the original diophantine equation, for 

ex.aap'le that large solutions must satisfy certain congruences modulo many or 

large numbers (Grinstead [ 1978) , Brown [ 1985 J , Pinch [ 1988]) , or some 

reciprocity condition (Peth-0 { 1983]). The disadvantage of such methods is 

that they work only for that particular type of diophantine equation, so that 

111 general for each type of equation a new reduction method must be devised. 

It would t.h.erefore be interesting to have methods for reducing upper bounds 

for the solutions of inequalities for linear forms in logarithms. They would 

be useful for aolvin;g any type of diophantine problem that leads to such 

inequalities. 

Sucti -.thods are searched for in the third step of our method of solving 

dioph.antin• aq,.ia.tions. It is •ainly in this third pa.rt that new developments 

can b. reported. The ar~ents we use in the first and second parts are 

mainly claa11ical > and we apply them to types of equations that have been 

studied b•fore~ and also to new types of equations. 

Tl\e aethods that are needed in the third step are provided by that part •of 

the theory" of diophs.ntine approximation that is concerned with studying how 

close to zero a linear form can be for given values of the variables. 

Recently important progress has been made in this field, the breakthrough 

being t:he invention in 1981 by L. Lovasz of the so-called L3-1aticce basis 
3 reduction algorithm. We will show how this L -algorithm leads to practically 

efficient dlophsntine approximation a.lgori thms, which can be employed for 

many diophantine equations to show that in a certain interval [X
1 

,X0 ] no 

solutions exist. Usually x1 is of the order of magnitude of log x0 . When 

for x0 the theoretical upper bound for the solutions is substituted, a new, 

and usually much better upper bound x1 is found. For many equations the 

initial upper bound x0 is well within reach of practical application of 

t:h,ese algorithms, within only a few minutes of computer time. This thus leads 
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in practice to methods for finding all the solutions of many types of 

diophantine equations, for which alternative methods have not yet been found 

or employed with success. 

The method outlined above, and used in this book to solve many examples of 

various diophantine equations, is of an "algorithmic" nature. In a sense it 

lies between "ad hoc" methods and ''theoretical" methods. This we shall 

explain below. Let a set of diophantine equations with an unspecified 

parameter • in 

generalized 

it be • given. 

Ramanujan-Nagell 

As an example 
2 equation x 

parameter, and x, n are the unknowns. 

of 

+ D 

a set, 

where 

consider the 

D a 

An ad hoc method is a method for solving the equation for specific values of 

the parameters only. It may not work at all for other than these particular 

values. The first example of solving an equation of the type x 2 + D - 2n 

occurring in the literature is that by Nagell [1948] of D - 7 . The method 

he used is of an ad hoc nature, since it depends heavily on the special 

choice of 7 for the parameter D. 

A theoretical method is capable of proving results that hold for some large 

set of values of the parameters. The Gelfond-Baker theory is of a theoretical 

nature, since it yields upper bounds for the solutions of many equations • in 

terms of their parameters. Other examples 
2 quadratic reciprocity, that shows that x 

are application of the theory of 

+ D - 2n has no solutions at all 

if D is odd, at least 5 , and not congruent to 7 (mod 8) , and 

application of the theory of hypergeometric functions, which Beukers [ 1981] 

used to show that the solutions (x,n) of x 2 + D ~ 2n satisfy 

n < 435 + l0-
2

loglDI , and if ID)< 296 then moreover n < 18 + 2- 2loglDI . 

Theoretical methods are often too general to be able to produce all the 

solutions of a given equation. 

An algorichmic mechod is a method that is guaranteed to work for any set of 

values of the parameters, but has to be applied separately to each particular 

set of parameter values, in order to produce all the solutions. The methods 

used 
2 

in this 

D-= 2n 

book are mainly of such an algorithmic nature. For the equation 

X + (and 

algorithmic method 

actually for a 

in Chapter 4. 

more general equation) 

In fact, since Beukers' 
• 

we will .. give an 

above-mentioned 

result provides a small upper bound for the solutions, it can be made 

algorithmic by providing a simple method of enumerating all the solutions 
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below the upper bound. However, the algorithmic part of this method • 1S 

trivial, and therefore we still prefer to classify Beukers' method as 

theoretical. In order to make the Gelfond-Baker theory algorithmic, 

en1.1meration of all possibilities is impractical. Therefore more ingenious 

ways of determining all the solutions below a large upper bound have to be 

found. We remark that Beukers' method for the more general equation 

x 2 + D .... pn also has an ad hoc aspect, since it works for some special 

values of p only. Our method of Chapter 4 does not have this disadvantage. 

An ideal towards which one might strive in solving diophantine eq11ations is 

to devise a computer algorithm, a kind of 'diophantine machine', which only 

has to be fed with the parameters of the equation, and after a short time 

gives as output a list of all the solutions. One should have a guarantee (in 

the strictest mathematical sense of proof) that no solutions are missing. 

At first sight the method outlined above, and described in this monograph, 

seems to be a good candidate to be developed into such a general applicable 

algorithm. Namely, the second step is of a quite general nature, providing 

upper bounds for exponential diophantine equations that are explicit in the 

parameters of the equation. Also the third step, the algorithmic diophantine 
, 

approximation part, works in principle for any set of values substituted for 

the parameters. However, the computations have to be performed separately for 

each particular set of values. 

The main difficulties in devising such a 'diophantine machine' are in the 

first part of the method outlined above, especially if some algebraic n1.1mber 

theory is used. Developments taking place in the theory of algorithmic 

algebraic n1.1mber theory on computing fundamental units and on finding 

factorizations of prime n11mhers in algebraic extensions, are of importance 

here. We believe that when suitable algorithms of this kind are available, it 

will be possible in principle to make such a 'diophantine machine' (but 

technical difficulties in the third step should not be underestimated). The 

generality of such an algorithm is restricted by the generality of the first 

step, the transformation to the linear form in logarithms. In this book we 

use computer algorithms only if the magnitude of the computational tasks 

makes this necessary, and keep to "manual•• work otherwise. In this way we 

also try to keep the presentation of the methods lucid. 

The reader should be aware of the fact that the computer programs and their 

6 
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results are part of the proofs of many of our theorems on specific 

diophantine equations. It is however impossible to publish all details of 

these programs and computations. The interested reader may obtain the details 

from the author by request, and is invited to check the computations himself. 

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine 

equations for which computable upper bounds for the solutions can be found 

using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman 

and Schinzel [1977], and Stroeker and Tijdeman [1982]). Some of these 

equations can be completely solved by the methods described in this book, 

among which there are purely exponential equations, equations involving 

binary recurrence sequences, and Thue equations and Thue-Mahler equations. 

Especially the latter two are of importance in various other parts of numher 

theory. For example, they are the key to solving Mordell equations and 

various equations arising in algebraic number theory and arithmetic algebraic 

geometry. The Gelfond-Baker method was used to actually solve a diophantine 

equation for the first time in the work of Baker and Davenport [ 1969] in 

solving the system of diophantine equations 

2 2 
3-x - 2 - y 

• 

Other equations occuring in the literature for which upper bounds for the 

solutions can be computed, cannot be treated as easily by our algorithmic 

methods, because the application of the theory of linear forms in logarithms 

is more complicated for these equations, and moreover the upper bounds are 

essentially too large. An example of this kind is the Catalan equation 

ax - by~ 1 in integers a, b, x, y, all ~ 2 . Catalan conjectured in 1844 

that this equation has only the solution (a,b,x,y) - (3,2,2,3) . Tijdeman 

[1976] proved that the solutions of the Catalan equation are bounded by a 

computable number. This number can be taken to be exp(exp(exp(exp(730)))) 
1 

according to Langevin (1976]. However, we fail to see how the methods that we 

describe in the forthcoming chapters can be applied for completely solving 

the Catalan equation, and we believe that Grosswald's remarks on this topic 

are too optimistic (Grosswald [1984], p. 259, in particular the footnote). 

Another diophantine equation, that for centuries has attracted the attention 

of many mathematicians, is the Fermat equation n n n 
x + y - z in integers x, 

y , z , n , with n ~ 3 and x · y · z "" 0 . It 

solutions. Faltings [1983] proved that for fixed 

7 

is conjectured to have no 

n the n,.Jmber of solutions 



is finite. His proof is ineffective. The Gelfond-Baker theory seems not to be 

strong enough to deal with the Fermat equation in its full generality, not 

even if n is fixed. For a survey df partial results on the Fermat equation 

that have been obtained using this theory, see Tijdeman [1985] and Chapter 11 

of Shorey and Tijdeman [1986). 

We remark that for many diophantine equations recently important progress has 

been made in determining upper bounds for the n11mber of solutions. See e.g. 

Evertse [ 1983), Evertse, Gyory, Stewart and Tijdeman [ 1988] and Schmidt 

[1988) for a survey. These results are often remarkably sharp, but 

ineffective, so that they cannot be used for actually finding the solutions. 

To c·onclude this section we give an overview of the contents of this 

is divided into three parts: Chapter 1 -l.S introductory, monograph. It 

Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal 

with various types of diophantine equations. 

Sections 1. 2 to 1. 5 give a short introduction for the non-specialist to 

respectively the Gelfond-Baker theory, diophantine approximation theory, the 

algorithmic aspects of diophantine approximation, and the procedure for 

reducing upper bounds. Chapter 2 contains the preliminary results that we 

need from algebraic number theory and from the theory of p-adic ri,imbers and 

functions, and quotes in full detail the theorems from the Gelfond-Baker 

theory which we use. It cone ludes with some remarks on nt1roerical methods. 

Chapter 3 gives in detail the algorithms in the field of diophantine 

approximation theory that we apply in the subsequent chapters. In a sense 

this chapter is the heart of the book. 

Chapters 4 to 8 are each devoted to a certain type of diophantine equation. 

Let pl, ... , p 
5 

be a fixed set of distinct primes. Let S be the set of 

positive integers composed of primes p 1 , ... , p
5 

only. 

Chapter 4 deals with elements of binary 

Fibonacci sequences'') that are in S , 

equations, such as 

recurrence sequences ("generalized 

and 

the 

gives applications to mixed 

generalized Ramanujan-Nagell quadratic-exponential 

equation x 2 + k ES ( k fixed). The diophantine approximation part of this 

chapter is interesting for two reasons: the p-adic approximation is very 

simple, and in the case of the recurrence h:a_ving negative discriminant, a 

nice interplay of p-adic and real/complex approximation arguments occurs. The 

8 



research for Chapter 4 was done partly in cooperation with A. Petho from 

Debrecen. The results have been published in Petho and de Weger (1986) and de 
b 

Weger [1986 ]. 

Chapter S deals with the 

x. y ES , and o E (0,1) 

x, y, z ES, which can 

6 diophantine inequality O < x - y < y , where 

is fixed. Chapter 6 deals with x + y - z , where 

be considered as the p-adic analogue of the 

inequality of Chapter 5. These two equations are the simplest examples of 

diophantine equations that can be treated by our method. Since they are 

already purely exponential equations of the form (1.1) or (1.2) with t - 2, 

the first step is trivial: the linear forms in logarithms are directly 

related to the equations. Therefore they serve as good examples to get a 

clear understanding of the diophantine approximation part of our method. The 

results of these chapters have been published in de Weger [1987]. 

2 Chapter 7 studies the equation x + y - z , where x, y ES, and z El. 

This equation is a further generalization of the generalized Ramanujan-Nagell 

equation, studied in Chapter 4. 

In Chapter 8 a procedure is given to solve Thue equations, that ·works in 

principle for Thue equations of any degree. It is applied to find all 
2 3 integral points on the elliptic curve y .... x - 4 · x + 1 . We also mention 

briefly how Thue-Mahler equations can be dealt with. This chapter has been 

written jointly with N. Tzanakis from Iraklion. The results have been 

published in Tzanakis and de Weger [1989 8
], and in de Weger [1989a] . 

.... 

1.2. The Gelfond-Baker method. 

In Section 1.1 we have explained that before applying the Gelfond-Baker 

method to some diophantine equation, the equation should be transformed into 

a purely exponential diophantine equation or inequality with not too many 

terms (cf. ( 1. 1) , ( 1. 2)) . In this section we sketch the arg11rnents from the 

Gelfond-Baker theory that lead to upper bounds for the variables of this 

exponential equation/inequality. 

Let us first treat the case of the inequality (1.2). Since 

asswne that it has the form 

9 

t - 2 we may 



where the are fixed algebraic numbers, are 

positive constants. In the examples we study, we encounter one of the 

following two cases: either all a. are real, or IQ. I - 1 for all i . In 
1 l. 

the real case, if N is large enough, the linear form in logarithms 

s 

A - logla0 1 + I n.-log!Q1 1 
i-1 1 

must satisfy 

< C' •exp(-o ·N) 
0 

(1.3) 

for some C' . In the complex case, the same inequality (1.3) follows for the 
0 

linear form 

A - Log a 0 + 
s 

l n. · Log 
. 1 1 
l""" 

s 

a.+ k·Log(-1) 
1 

- i · ( Arg O!O + I n. ·Arg O!. + k•,r ) 1 

. l l 1 1-

where the Log and Arg functions take their principal values. Now we can 

apply one of the many results from the Gelfond-Baker theory, giving an 

explicit lower bound for IAI in terms of N, e.g. the following theorem. 

THEOR~.+_1 1. {Baker [ 1972)} = Let 

constants c1 , c2 , depending on the a. 
1 

be as above. There exist computable 

only, such that if then 

We usually know that A~ 0. Combining (1.3) and Theorem 1.1 we then obtain 

It follows that N is bounded from above. 

Next, consider the exponential equation (1.1). By t = 2 

s n. 
Qo. n Q. l.. 

. 1 1 1-

r m. 
- i - /3 • TI /3.J 

0 . 1 J J- ' 

10 

• • we can write 1.t as 



where the 

the In. I , 
1. 

resp. ,8 j 

ai, /J j are fixed algebraic ntimbers. Let Hp be the maximum of 

I mj I where i, j run through the set of indices for which cr
1 

are non-units. Let H be the maximum of the lnil' lmjl where 
• • 
1, J run through the set of all indices. Suppose that p is a rational 

prime lying above Pj for some j . There are constants c
1

, c
2 

such that 

s n. 
ord (a0 - TI a. 1 -1) 

p . 1 1. 
1-

Assuming that ord (o.) 
p l. 

- 0 for all i, we may write down a p-adic linear 

form in logarithms 

A -

for which, if m. 
J 

s 
In1 -loga., 

. 1 p 1 1-

is large enough, it follows that 

(1.4) 

We are now in a position to apply the following result from the p-adic 

Gelfond-Baker theory. Here, N .... max In. I . 
1 

TH~OREM l. 2. (van der Poorten [ 1977] • ., Yu , [ 1987] l . Let A , p be as above. 

There exist computable constants 

p , such that if A 0 Chen 

c3 , c4 , depending only on the Q -
1 

and on 

Applying (1.4) and Theorem 1.2 for all possible p we obtain constants c3, 
C' with 

4 

If H ;:s; C ·H 
5 p for some constant CS , then this immediately yields 

bound for H . 

conjugate of the 

If 

a., 
1 

r m. 
/3'. n fJ~J 

0 . 1 J J-= 

H > CS ·Hp , then it can be shown that there 

fi. , denoted with a prime sign, for which 
J 

< exp(-c6 -H) 

an upper 

• exists a 

for a constant c6 (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and 

Tijdeman [1986]). Now we can apply Theorem 1.1. This yields 

11 



It follows that H is bounded from above. 

If it happens 

application of 

that none of the 

Theorem 1.2 suffices. 

a:. ' 1 
f3 • 

J 
• are units, then of course the 

We remark that, in order to be able to completely solve a diophantine 

equation, it is crucial that all constants can be computed explicitly. 

Therefore we can only use the bounds from the Gelfond-Baker theory that are 

completely explicit. We give details of such theorems in Section 2.4. 

1.3. Theoretical diophantine approximation. 

In this section we briefly mention some results from diophantine 

approximation theory, thus giving a background to the next section. We refer 

to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright 

[1979] (Chapters XI and XXIII), for further details. 

The simplest form of diophantine approximation in the real case is that of 

approximation of a real nt.imber by rational n1.1mbers p/q . It is well 

known that if is irrational, then there exist infinitely many solutions 

(p,q) E ZxfN with (p,q) - 1 of the diophantine inequality 

I -e - p -2 - I < q . q 

All convergents from the continued fraction • expansion of are such 

solutions. The convergents are simple to compute for any particular ~ E ~ . 

One way of generalizing this is to study simultaneous approximations to a set 

of real n,imbers 

having the same 

' iJ. -]_ 

6 1 , ... , -en , i.e. rational approximations to ~i all 

denominator. It is well known that the system of inequalities 

I< q-<1+1/n) for i == 1, ... , n 

has infinitely many solutions if at least one of the ~
]. 

irrational. But it is much harder to find solutions of such inequalities than 
in the case n - 1 . Some multi-dimensional continued fraction algorithms 

12 



have been devised (cf. Brentjes [1981} for a survey), but they seem not to 

have the desired simplicity and generality. We shall see later how we can 

apply the so-called L 3-algorithm to this problem. 

Another way of generalizing the simplest case of diophantine approximation is 

to study linear forms, such as 

where 

unknowns 

m 

L - I q. ·'6. , 
j-1 J J 

fJl ' ... ' {J m 
are 

l . Put 

given real n1.1mbers, and are 

existence of a solution 

Q -- max I qi I . A classical theorem guarantees 

(p,q1 , ... ,4m) of the inequality 

-m 
IL-p l<Q . 

the 

the 

Note that the case m - 1 becomes our first inequality on dividing by 

below. 

We can incorporate the two generalizations above in a further generalization, 

that of simultaneous approximation of linear forms. Let real numbers 

given for i ~ 1, ... , n, j - 1, ... , m. Put 

L. 
l. 

m 
L q. ·6 .. for i - 1, ... , n. 

j-1 J l.J 

be 

A celebrated theorem of Minkowski states that there exists a solution 

IL. - p. I< Q-m/n for i = 1, ... , n. 
1 l. 

As we shall show in Section 1. 4, the L 3 -algorithm may be applied to this 

general form. We actually compute solutions of systems of ineq1JaJ.i ties that 

are slightly weaker in the sense that the right hand side is multiplied by a 

small constant larger than 1. 

We now consider inhomogeneous 

there is an inhomogeneous term 

L. 
1 

- /3. + 
l. 

• • approximation. This means 

/3. 
l. 

for 

in the linear form 

i =- 1, ... ' n . 

L. 
l. 

Again, there exists a constant c such that the system 

13 
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-m/n IL - p I< c·Q i i 
for i .... 1, ••• 1 n, 

under some independence condition on the Pi and 6ij , has a solution. This 

is Kronecker's theorem. The simplest case m - n - 1 comes down to 

I q-~ - P +PI< 
-1 c·q • 

The upper bounds given above, that tell us that 

Q-m/n I Li - pi I can be at least as small as 

the order of magnitude of 

, are not only theoretical 

upper bounds, but they predict the heuristically expected order of magnitude 

as well. By this we mean that in a generic situation (i.e. when there are no 

almost-linear relations between the '8. . (and the pl.. ) , it is indeed the 
lJ 

case that for a given Q0 

has the order of magnitude of the upper bound Q-m/n. 

To conclude this section, we remark that there is a p-adic analogue of this 

theory of diophantine approximation, founded by Mahler and Lutz. If we 

replace in the above considerations ~ by ~ , the absolute value 
p I · I by 

the p-adic value 

(pl' · · · 'pn' ql' · · · ' 4m) 

and the measure 

by any convex norm 

Q for an approximation 

on IRn+m , 

then the p-adic analogues of the theorems of Minkowski and Kronecker are 

essentially analogous to the above mentioned results in the real case. See 

Koksma [1937] for references 

detailed analysis of the case 

to Mahler's work, and Lutz [1951], and 
a n - 1 , m - 2 see de Weger [1986 ]. 

1.4. Computational diophantine approximation. 

for a 

In this section we give some idea of practically solving the diophantine 

approximation problems that we encounter in solving diophantine equations. In 

this section we give no rigorous treatment. We neglect worst cases, and 

concentrate on how things are expected to work (according to the heuristics 

of Section, 1.3), and appear to work in practice. In the subsequent chapters 

many examples are given, showing that our methods 

practice. Applying the method in practice may be the 

the necessary Fingerspitzengefuhl for the method. 

are indeed useful • 1.n 

best way of acquiring 

We shall deal with the following computational diophantine approximation 

14 



problem. Let 6.j, fJ. E IR 
l. 1 

be g iven, and let p p q a be l' ... , n' l' ... , ""1n 

integral unknowns with Q - maxlqjl . 

constant Q0 , ass1..1med to be a rather 

Find a lower bound for the value of 

Let Li be as above. Let a positive 

large n11mber, 1050 say, be given. 

where (p1 , ... ,pn,q1 , ... ,qm) runs through the set of values with Q ~ q
0

• 

From the heuristics outlined in Section 1. 3 it follows that one will be 

analogous problem may be formulated. 

Related problems in diophantine approximation theory are those of 

finding a good or the best solution of maxfL.-p1 1 < ! for a fixed 
. 1 

actually 

E > 0 .. 

As we shall see, the L3-algorithm 

solutions. The problem of finding 

1. 

is a very useful tool for 

the best solution however 

finding good 

seems to be 

essentially more difficult. 'W'e note that in most of our applications of 

solving diophantine equations it suffices to have a suitable lower bound for 

maxjL.-p. I for a given Q0 , while it is unnecessary to know explicitly how 
• l. 1 
1 

sharp this bound is. 

The computational tool that we use to solve the afore-mentioned problems is 

the so-called L
3
-lattice basis reduction algorithm, described in Lenstra, 

Lens tra and Lovasz [ 1982] . 'We shall give details of this algorithm in 

Sections 3.4 and 3.5. Below we briefly indicate how it can be used to solve 

diophantine approximation problems. 

Let r be a lattice in Rn. The L3-algorithm accepts as input an arbitrary 

basis ... ' b 

the same lattice 
11 

of r. As output it gives another basis 

r, that is a so-called reduced basis. The 

£ 1 , ... , cr of 
1 

concept reduced 

means something like nearly orthogonal. From a reduced basis it is possible 

to compute lower bounds for the following two quantities: 

~> the length of the non-zero lattice point that is nearest to the origin: 

l(r) ~ min lxl , 
0Jll!xer -

(see Lenstra, Lenstra and Lovasz [1982], Prop. (1.11), and our Lemma 3.4), 
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-➔ for any given point ye Rn, the distance from to the nearest lattice 
• point: 

.. m1n 
xer 

(see Babai [1986], and our Lemmas 3.5 and 3.6). 

The L3-algorithm enjoys the property that these lower bounds are usually near 

to the actual minimal solutions. In a generic situation, where the lattice is 

not too distorted, the vectors £i of the reduced basis all have about the 

same length, which is of the order of magnitude of 

det(r)l/n. 

The value of t(r) as well as the lower bounds computed for it, are about as 

large as that. If is not too close to a lattice point, the same holds for 

l(r, y) . Moreover, the running time of the algorithm is good, both in the 

theoretical sense (it is polynomial-time in the length of the input

parameters), and in practice (cf. Lenstra [1984], p. 7). 

To solve the problem of finding a lower bounds for max f Li-p. I 
i 1 

as formulated 

above, we 

large as 

take the lattice r as follows. Let C be an integer, at least as 

• 

specifying a basis, namely the column vectors 

J3 -

1 
• 

• 
• 

1 

[ C . -611 ] . . . [ C . 6 lm] -C 
• 
• 
• 

• 

• 

• 
• 

n+m, is defined by 

b1 , ... , b + of the matrix 
- Il m 

• 

-C 

(The symbol means that all not explicitly given entries in that area are 

zero). Applying the L
3
-algorithm to this lattice we find a reduced basis, of 

which the basis vectors will have lengths of about cn/(m+n) , which is 
. 

roughly the size of Q0 . Generally speaking, the larger C is, the larger 

the lengths of the basis vectors of a reduced basis will be (and the larger 

the lower bounds for t(r) and t(r,y) will be). 

Let us first treat the homogeneous case, i.e. p
1 

- O for all i. Consider 

16 



the lattice point . It is equal to 

where 

for i - 1, ... , n. 

From the application of the 3 
L -algorithm we find a lower bound for l(r) , of 

be large enough (if this is not the 
3 

C , and perform the L -algorithm 

case, we try a 

again for the 

size Q
0 

. Ye assume it to 

somewhat larger value for 

lattice defined for this C ) . So we may assume that there is a small 

constant such that 
' 

n 2 2 I (i.-C·p.) ~ t(r) -
.. 1 l. l. 1.-

We have IL1-C·L1 1 ~ m-Q0 , so we may assume that for small constants c
2

, c
3 

-1 -maxlL.-p.f > c ·C ·maxlL -C·p. I> 
. 1 1 2 i l. 
1 

By the choice of C this last bound has the required size. 

Next, we study the inhomogeneous case, where not all ~i are zero. We take 

the same lattice r as in the homogeneous case (note that the lattice 

definition depends only on the ~ij and the C ). Consider the point 

From the reduced basis found by 3 
the L -algorithm we have a lower bound for 

t(r,~) . Assume that it is large enough, and of size QO. We take the same 

lattice point 

where 

T x ,.. Jl. ( ql' ... '~'pl' ... p n) 

m 
I q.·(C•,.C,_ .] 

. 1 J l.J J= 
for 

as in the homogeneous case. Then 

i-1, ... ,n. 

The same reasoning as in the homogeneous case now yields the desired result. 

Note that if we have performed the L3-algorithm once for given t,ij , we may 

inhomogeneous cases use the result to treat the homogeneous case, 

with different Pi 's as well, as long as the 

17 
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The above process describes how to find lower bounds for systems of 

diophantine inequalities. It will be clear from the above that it is not 

difficult to find good solutions, i.e. (q1 , ... ,qm. P1 , ... ,pn) with Q S Q0 
and max I L.-p1 I near to the best possible value. In particular, the basis 

• l. 
l. 

vectors of a reduced basis are adequate for the homogeneous case, and for the 

inhomogeneous case the lattice points near to I will be such solutions. The 

lattice points near to are not difficult to find once a reduced basis is 

available. Specifically, if s 1 , ••• , sn e IR are the coordinates of with 

respect to a reduced basis, then one may take the lattice points with 

coordinates (with respect to the reduced basis) 

for i - 1, ... , n. 

that are near to 

In the definition of the matrix above the expressions occur. Using 

these expressions we have constructed a lattice r is completely 

integral, i.e. m+n 3 r c Z • The L -algorithm can be adapted to work exact for 

those lattices, so that rounding-off errors are avoided (cf. Section 3. 5) . 

-The "errors" occur only in the difference between the L. and the C · L. , 
l. l. 

and are thus kept under control by choosing the proper constants 

c 1 , c 2 , c 3 . Of course one should take care to have the numerical values of 

the ~ij and the fii correct to sufficient precision. Ye shall discuss such 

numerical problems briefly in Section 2.5. 

A possible variation of the above diophantine approximation problem is to 

give weights to the linear forms L1 , i.e. to look for a lower bound for 

max 
i 

w •. I 
1 I , 

where the 

easily by 

w. 
l are fixed positive numbers. This situation can be dealt with 

replacing every C in the (n+i) th row of the matrix by 

Another variation is the problem where not all the variables 

same upper bound Q • To illustrate this. assume that 0 , 

m 

L - .I qj·'6 .. 
J-1 . J 

have the 

that 

Now suppose that for some Q1 > Q2 (it will be handy to have Q
2 

I Q
1 

) we 

are interested in the solutions with 

I qJ. ·1 :S Q1 for J. :S m1 , I q I < Q for j > m +l 
j - 2 - 1 · 
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Next, let C be of the size of 
m1+1 m-m1 

Q1 ·Q2 , and take the matrix 

1 
• 

• 

Its determinant • 
l.S 

follows that IL-pl 

• 

1 

the • s1.ze of 

we therefore 

and 

• 

of 

expect 

IL-C·pl 

is of the size of 

Q m+l 
1 
that 

• 

-C 

For a lattice point 

max(lq1I , ... , l4m I) 
1 

, 

are all of the size of Q1 . It 

in accordance with 

the heuristics. This variant is useful when a combination of real and p-adic 

techniques is used, such as for the Thue-Mahler equation (see Section 8.6). 

We conclude this section by giving 

approximation. We assume that the 

the analogous method of p-adic diophantine 

they are p-adic integers. 

any µ e we denote by 

Let µ E IN be such that 

ass11me that µ is large 

'8 •. ' /Ji l.J 
Let ~O - IN u {0} 

~(µ) the unique 

pµ • roughly l.S 

enough (it • the l.S 

are in O , and, moreover, 
p 

. For any p-adic integer 

rational integer such that 

the - Ql+m/n same size as 
0 

analogue of the constant 
• 

' 
C 

that 

and 

and 
• l.n 

the real case above). Take for r the lattice of which a basis is given by 

the col1.1mn vectors of the matrix 

1 
• 

• 
• 

1 

1l .. t} (µ.) 
11 • • • 

,f}(µ) 
lm 

pµ. 
• 

• • • 
• • • 
• • • 

t, (µ.) - . . t, (µ) pµ 
nl nm 

Consider the lattice point 

Then it is obvious that 
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p -i 

Hence the lattice r can be described as the set 

for i - 1, ... , n } . 

The 3 L -algorithm provides a lower bound for the length of the nonzero vectors 

in this set, which is of the same size as 

This yields the desired result, if is taken large enough. 

For the inhomogeneous case, put 

and consider the set 

m 

/3. + I q. ·19 •. 
1 . 1 J 1J J-

for i == 1 , ... , n } . 

Then * XE r - if and only if x + y Er , so * r is a translated lattice. A 

lower bound for l(r,y) now yields the desired result. 

Again variations are possible, as in the real case, e.g. by replacing on the 

(n+i) th row the µ by different µ • . It is even possible in this way to 
1 

treat more than one prime 

row the µ 
p by different 

p at the same time, by replacing on the 
µ. 

1 
pi . 

(n+i) th 

We indicate one more variation for the p-adic case. Suppose we have only one 
m 

linear form A - l q. ·19. 
j-1 J J 

when A is congruent to 

, and one variable p E l , and we want to study 

0 modulo different prime powers • 

Thus we are interested in the set 

20 
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I qj .,a. 
j-1 J 

• p (mod 
µi 

p. ) 
1 

for i - 1, ... , n} 



Then we take El with 

!11111 tJ 
j 

for i - 1, ... , n, , 

for all * j . The ~j can be computed by the Chinese Remainder Theorem. Now 
r, is the lattice generated by the column vectors of 

1 
• 

• 
• 

1 

* tJ 
m 

and we proceed with this lattice as described above. 

We conclude this section with three remarks. Firstly, in the case that the 

dimension of the lattice under consideration is only 2, the L3-algorithm is 

essentially the continued fraction algorithm, and so yields nothing new. For 

the p-adic continued fraction algorithm, see de Weger [1986a]. Secondly, the 

inhomogeneous case of diophantine approximation of one linear foi:m of real 

numbers can also be treated by what is known as Davenport's lemma, cf. Baker 

and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison 

[1971a]). We will return to this in Chapter 3, and explain there why we 

prefer our method. 

Finally, one of the nice features of the above method of practical 

diophantine approximation is that if an extreme solution exists, then in the 

homogeneous case the lattice (with proper constant C or µ ) will be 

distorted. This means that the reduced basis will not be as nice as expected, 

for eJirample there might be a basis vector in it that is substantially shorter 
• 

than the other ones. In the inhomogeneous case the existence of an extreme 

solution means that there is a lattice point extremely near to y_ • The 

algorithm detects such an extraordinary situation at once, and in most cases 

the extremal solution is presented explicitly (e.g. in the homogeneous case 

as one of the vectors of the reduced basis). One can check whether this 

extremal solution actually satisfies the original equation, and then proceed 

by replacing in the above reasoning l(r) or t(r ,y_) by lower bounds for 

all vectors in the lattice except the extremal one. These new lower bounds 

will in general be of the expected size. However, when we solved diophantine 

equations in practice, we have never met such an extraordinary situation. 
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1.5. The procedure for reducing upper bounds. 

2 h b d for the solutions of the We have seen in Section 1. ow upper oun s 

i th re Can be f ound. In i 1 i 1 . ti and equat1· ons occur ng e exponent a nequa 1 es 

Section 1.4 we have studied some diophantine approximation theory from a 

practical point of view. Now these two things come together. 

From the application of the Gelfond-Baker theory we 

following problem. We have a linear form 

A - /J + 
m 

I nj·fJ. , 
j-1 J 

are left with the 

where the 

numbers is 

/3 and tJ. 
J 

are constants (that they are logarithms of algebraic 

now of no importance anymore), and the n. 
J 

are integral unknowns. 

We know that A is extremely close to O , namely 

IAI < c•exp(-S·N) , 

where c, are (small) constants, and 

explicit upper bound N0 for N. This 
N - maxln.l . Finally, 

J 50 
N0 is very large 7 10 

we have 

say. 

an 

It will be clear from Section 1.4 that the methods outlined there are of use 

for solving this problem. For Q
0 

we take N
0

. 

case we expect, by choosing C at least of size 
Ye have n -

_..IIt+l 
.NO , that 

1 . In the real 

for a small constant c' . It follows by combining the two inequalities for 
fAI that 

N < log(c/c')/o + (m/o)·log N
0 

. 

So the upper bound N0 for N is reduced to an upper bound N
1 

of the size 

of log N0 , which is a considerable improvement indeed. We now may apply the 

procedure with N1 instead of N0 , and repeat until no further improvement 

is obtained. In practice it appears almost always to be the case that in that 

situation the reduced upper bound is near to the actual largest solution, 

anyway so small that simple methods of finding all the solutions below that 
bound suffice. 

In the p-adic case an analogous reduction of upper bounds can be reached, 
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following a similar arg'liro~nt. We have for the linear form A (cf. (1.4)), 

ord (A)~ p 

where c 1 , c 2 
Moreover, the 

are small constants, and m. is one of the variables. 

variables 

explicitly known. We take 

are 

µ. 

bounded by a 

such that pµ 

J 
large constant 

is at least of size 

that 
-1 

0 ' 

is 

so 

that the lower bound for the shortest nonzero vector in r (or * r ) .. 
is 

larger 

of the 

than /m-N0 . Then 

translated lattice 

it follows that the elements of the lattice r 
* r ) cannot be solutions of (1.2). Therefore, 

(or 

so that we find a new upper bound for m. t 

J 
that is of the size of µ, which 

is about log N0 / log p . We repeat this 

order to obtain a reduced upper bound for 

procedure for all the mj , in 

. If this is not yet sufficient H 
p 

to derive at once a reduced upper bound for H , then we can do so by 

applying a reduction step for real linear forms, where we may take advantage 

of the fact that for some of the variables a much better upper bound has just 

been found (cf. the second variation in Section 1.4). Again we repeat the 

whole procedure as far as possible. 
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CHAPTER 2. PRELIMINARIES. 

2 .1. Algebraic n,:zmher theory. 

In this section we quote results from algebraic ntirober theory that we use 

throughout the remaining chapters. We refer to Borevich and Shaf arevich 

[ 1966 J or any other textbook on algebraic n,1mber theory for full details. 

Let K be a finite algebraic extension of O , of degree D - [K:C} . There 

are D embeddings a : K ➔ £ • Let a: E K be an element of degree d , and 

let a0 > 0 be the leading coefficient of its minimal polynomial over Z . 

We define the (logarithmic) height h(a:) by 

where the product is taken over all embeddings q • Note that this definition 

does not depend on the field K . Hence, if the conjugates of are 

a - a:1 , .. , ad, then the above definition applied for K - O(a) yields 

h(a) ... 
1 d 
-d . 10 g ( ao . n max ( 1 J I a: • I ) ) . 

. 1 l. 1.-

In particular, if a E ·~, then with a - p/q for p, q E Z with (p,q) - 1 

we have h(a:) - log max(lpl,jql) , and if a E then h(a) ~ logfa:I . 

Let there be s real and 2 · t non-real embeddings (with D - s + 2 • t ) . 

Then Dirichlet's Unit Theorem states that there exists a system of 

r ~ s + t - 1 independent 

of K is given by 

• uni ts e , r such that the group of units 

There are only finitely many roots of unity in K . Any set of independent 

uni ts that generate the torsion-free part of the unit group is called a 

system of fundamental units. 

The number is called an algebraic integer if a
0 

- 1 . Let the norm of an 
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element a EK be defined by 

d 
.... ( n a.) D/d . 

. 1 l. l.== 

For algebraic integers, NK/~(a) E Z . The units are precisely the elements 

of norm ±1. Two elements a 1 fi of K are called associates if there is a 

unit E such that a - e•~. Let (a) denote the ideal generated by a. 

Associated elements generate the same ideal, and distinct genera.tors of an 

ideal are associated. There exist only finitely many non-associated algebraic 

integers in K with given norm. The ring of algebraic integers is denoted by 

OK. Let a 1 , ... , a 0 be elements of OK that are D-linearly independent. 

Then Z-a1 x ... x l-a0 is called an order of K if it is a subring of the 

'maximal order' OK. 

In K any algebraic integer can be written as a product of irreducible 

elements. Here an irreducible element (prime element) is an element that has 

no integral divisors but its own associates. However, this decomposition into 

primes need not be unique. Ideals can also be decomposed into prime ideals, 

and this decomposition is unique. A principal ideal is an ideal generated by 

a single element a. Two fractional ideals are called equivalent if their 

quotient is principal. It is well known that there are only finitely many 

equivalence classes. Their number is called the class number For an 

~ a. ideal a it is always true that is a principal ideal. The norm of the 

(integral) ideal a is defined by NK/O(a.) - #(OK/a.) . 

For a prime ideal :p there is always a rational prime number p such that 

~ is a divisor of (p) . We say that 

index 

degree 

is the largest power to which 

is the integer such that 

f 

lies above p. The ramification 

divides (p) . The residue class 

We denote by ord:p(o) the exact power to which the prime ideal 

the ideal o . For fractional ideals a this n,Jmber can of 

divides 

course be 

negative. For numbers a • we write 

ord (a)~ ord (a)/e 
p :p :p 

ord (er) 
:p 

for ord ((a)) . Note that 
:p 

can be defined for all a EK. We will return to this in Section 2.3, which 

deals with p-adic nt1mber theory. 
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2. 2. Some e11xil iary len1111as. 

In this section we give a few simple auxiliary lemmas. The first one enables 

us to find an upper bound in closed for1n for some real n11mber x > 1 that is 

bounded by a polynomial in log x. See Petho and de Weger [1986], Lemma 2.3. 

LEM.M.t\ .2 _., l , Let a ?t: 0 , h ~ 1 , b > 0 , and 1 et x E 1R , x > 1 satisfy 

X S a h + b · (log x) . 

If b > (e2fh)h then 

h 1/h 1/h h h x < 2 ·(a +b ·log(h ·b)) , 

Proof. We may assume that x is the largest solution of 

By 

where 

h x-a+b·(logx) . 

. Define y 

log c < log(c•log c) 

it follows that 

we infer 

1/h 
by x - (l+y)•c•log c . From 

which implies h h x > c ·(log c) . Hence y > 0. Now, 

Hence 

If 2 
C ~ e it follows that 

1/h 
< a + c•y + c·log c + c•loglog c . 
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If e 

x 1/h ~ c·log c + y·c·log c < c·log c + log c 
log c -

2 
, then note that 

< 2·(a1/h+c·log c) . 

2 h h 
x) . x ~a+ (e /h) ·(log 

c = e
2 in this case. The result follows. 

So we may 

The next lemmas make explicit that x and log(l+x) 

small in the real and complex case, respectively . 

are near if 

LEMMA 2.2. Let a e . If a< 1 and fxl < a then 

(log(l+x)I < 

and 

IX I < 

• 

assume 

D 

IX I -1S 

Proof. Note that log(l+x)/x is a strictly positive and strictly decreasing 

function for lxl < 1. Hence it is for lxl < a always less than its value 

at x = -a . The same is true for the function x/(ex-1) . D 

LEMMA 2.3. Let O <as . If lxl < a then 

IX I < 
• 

a 1-x I 
-=-2 -. s--::-i-n-::-( a-/--:-:=2--:--) • I e - l • 

• 

If a< 2, lei•x-11 < a and lxl < ~ then 

lxl < 2-arcsin(a/2). lei·x_11 . 
a 

• 

I e i · x-1 I I ( 1 
) I h - 2· sin -·x . and tat 

2 
Proof. Note that 2·sin(!:·x)/x 

2 
-l.S a 

positive and even function, that decreases on O :S x <a. Hence it takes its 

minimal value at x - a. The first inequality now follows. The second one 

can be proved in a similar way. D 

2. 3. p-adic n11mbers and functions. 

In this section we mention the facts about p-adic numbers and functions that 

we use. For details we refer to Bachman [1964) and Koblitz [1977], [1980]. 
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We assume that the reader is familiar with the field of p-adic niimbers 0 
p 

and in 

~ coincides with the definition given in Section 2.1. We denote by Op 
p 

the 

all 

p-adic theory is applied. 

Every nonzero number a E ~ 
p 

has a p-adic expansion 

k - ord (a) 
p 

and the p-adic digits u. are in 
l 

• 

{ 0, 1, ... , p-1} , where 

with "\:"' 0. The n1.1mber O can be represented in this way by taking k - 0 

and all digits equal to O and ord (0) - ~ by definition. If ord (o) ~ 0 
' p p 

then Q is called a p-adic integer. The set of p-adic integers is denoted by 

l 
p . A p-adic unit is an with ord (a) .... 0 

p 
. For any p-adic integer 

µ-1 -
Q and any there exists a unique rational integer a<µ) - I u. ·pi 

. 0 l. 1.-

satisfying 

For ord (a)~ k we also write 
p 

k a• 0 (mod p) . The p-adic norm is defined 

by 

-ord (a) 

1°1 - P P . p 

In Section 2 .1 we have seen how to define ord 
p 

extensions of al • For any aEO 
p 

ord:p and 

with ord (a) > 
p l/(p-1) 

the p-adic logarithm log (l+a) 
p by the 

2 3 log (l+a) - Q - Q /2 + a /3 -p 

Taylor series 

on algebraic 

we can define 

This logarithmic function has the well known properties of a logarithm, such 

for all as logp(E1 -e2) - logp(€1) + logp(e2) 

defined. Further, log(€) - 0 if and only if 
p 

for which it is 

is a root of unity. In «.i 
p 

the only roots of unity are the (p-1) th roots of unity (if p is odd). 
Using these properties, this logarithmic function can be extended to all 

( E Op with ordp (c;) ... 0 , as follows. By Fermat's theorem for algebraic 

number fields there is a k E ~ such that ord (€k-1) > l/(p-1) . Then 
p 
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l k 
log(€) - -k·log (1+(€ -1)) . p p 

An equivalent definition is log(€) - log (€/r) p p , where is a root of 

unity such that ord (€-r) > p 0. In this way the p-adic logarithm is a well 

defined function. Note that log(€) 
p lies in the subfield of 

by e . Finally we note that if ord (€) 
p 

ord (e) - ord (log (l+e)) . 
p p p 

> l/(p-1) 

2.4. Lower bounds for linear fo~ms in logarithms. 

then 

0 
p 

generated 

In this section we quote in detail the results from the Gelfond-Baker theory 

that we use. They yield lower bounds for linear forms in logarithms of 

algebraic numbers. We do not always • give the theorems • 
ln their full 

generality, since in this book only linear forms with rational unknowns 

occur, whereas most Gelfond-Baker theorems are formulated for linear forms 

with algebraic unknowns. We selected bounds with fully explicit constants, 

because only such completely explicit results can be used for our purposes. 

The first result in this field for a linear form in logarithms with at least 

three terms is due to Baker [1966], and in the p-adic case to Coates [1969], 

[ 1970]. For a survey of this theory, see Baker [ 1977] and van der Poorten 

(1977). We will use more recent, sharper results, due to Waldschmidt (1980] 

and Yu [1987]. Further improvements of the constants have been reached (see 

the references after Lemma 2. 4 below), but too recently to be taken into 

account here. 

First we deal with real/complex linear forms in logarithms. 'We quote the 

result of Waldschmidt [1980]. 

L~t,1MA 2.4 (Waldschmidt). 

a EK, and 
n 

Let K be a number field with 

. . . , b El 
n 

[ K: 0 ] - D . Let: 

. . . , V 
n 

be al, ... , 

posicive real numbers satisfying 1/D :S v1 

( n ~ 2 ) . 

:S . . . :S V 
n 

Let 

and 

V . ~ max ( h ( o: . ) , 11 o g a . I /D J for j - 1 , . . . , n . 
J J J 

where log o:. 
J 

t:he logarithm 

for j = 1, 

of a. . Let 
J 

... , n is an arbitrary but fixed determination of 
+ 

V. = max(V., 1) for j = n, n-1 , and put 
J J 
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n 
A - I b. • log o. . 

j-1 J J 

Put B - max lb.( . If A~ 0 then 
1.:Si:Sn l 

I Al > exp n 

where e(n) - min ( 8-n + 51, lO·n + 33, 9-n + 39 ) . 

then we can take 
2·n replace the factor n in the above bound for 

If, moreover, 

e(n) = 9·n + 26 
n+4 

by n • 

it: -l.S 

and 

Waldschmidt' s main theorem does not give the constant e (n) as detailed as 

we do, but he does so in his proof, cf. p. 283. We remark that improvements 

of the above bounds have recently been found by Blass, Glass, Manski, Meronk 

and Steiner [1988a], [1988b), Loxton, Mignotte, van der Poorten and 

Waldschmidt [ 1987] , Philippon and Waldschmidt [ 1988] , and Wustholz [ 1988] . 

For the case n - 2 , the sharpest bound has been given by Mignotte and 

Waldschmidt [1978], improved again by Mignotte and Waldschmidt [1988]. 

In the p-adic case we quote two results: one due to Schinzel (1967] (Theorem 

1) for the case of a linear form in logarithms with two terms, and another 

for the general case, due to Yu [ 1987] (Theorem 1, see also Yu [ 1988]). We 

note that Yu' s bounds improve much upon the results of van der Poor ten 

[ 1977] . Moreover, van der Poorten' s proofs seem to contain some errors. We 

give Schinzel's result for quadratic fields only. 

½EXMl\ ~,5 1S_chin~e.;L) .. Let p be prime. Let be a squarefree integer, and 

let D be the discriminant of K - 0 (/6) . Let and x - x'' Ix' 
be elements of K ' where ~ I , e '', x' ' x'' are algebraic integers. Put: 

L • log 

where 11,11 denotes the ·m 1 b 1 1 f max1 a a so ute va ue o the conjugat:es of -, E K • 

Let P be a prime ideal of K with norm N:p ,_ pp . Put: v,. .- 2/ p. log p , 

~ - ord:p(p) · If or X is a :p-adic unit and en~ xm, then 

106 7 -2 4 4•p+4 3 
< ·v, ·rp ·L ·p · (log max(lml, ln()+cp·L·pP+2/L) 

• 
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LEMMA 2 . 6 (Yu) • Let ( n ~ 2 ) be nonzero algebraic n11mbers. 

Put 

Let 

L-. ll(a1 , ... ,a
0

) " d -

:p be a prime ideal of 

[ L: Gl] . Let bl, ... , b n be rational integers. 

L, lying above the rational prime p. Let e 
:p 

be the ramification index, and f:p the residue class degree of :p. Write 

L:p for Che complecion of L wit;h respect to ord:p (Chen for all fJ e L:p 

we have 

Let 

• 

ord:p(~) - e:p•ordp(~) ). 

f:p 

Lee q be a rational prime such that 

q .t p · (p -1) . 

V. 
J 

such that: V 1 :S . . . :S V n-1 ' 

min I b. I , 
1<.< b O J -J-n, j'°' 

B ~ lb r , n n 

B > max ( I b 1 I , . . . , I b n I , 2 ) , 

for j - 1, ... , n, 

- max ( 1 , V 1 ) , 
n-

max I b. I , 
1:Sj5n-l J 

Y 2: max -- log B0 , ) . 

Suppose Chat ord (a.) =- 0 for j = 1, ... , n , Chat 
:p J 

1/q 1/q n (L(a1 , ... ,a
0 

):L] q , (2.1) 

that ord (b) s ord (b.) for j - 1, ... , n, and 1 . Then 
p n p J 

bl bn n n+S/2 2-n 2 
ord:p(a1 · ... ·a

0 
-1) < c1(p,n)•a1 -n ·q ·(q-l)·log (n·q)· 

f 
(p :p-1)·(21 1 ) 0 -(f •(log p)/d)-(n+2>.v • ... ·V · 

p-1 :p 1 n 

· ( W ·1log(4·d)) · (log(4·d·V+ )+f · (log p)/B·n) , 
6-n n-1 :p 

where 

a 1 - 56•e/15 if n ~ 7 , a 1 - B·e/3 if n ~ 8 , 

and c1 (p,n) is given by the table on the next page, with for p ~ 5 
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n 

c1 (2,n) 

c1 (3,n) 

Ci(p,n) 

2 

768523 

167881 

87055 

3 

476217 

104028 

53944 

4 

373024 

81486 

42255 

5 

318871 

69657 

36121 

6 

284931 

62243 

32276 

7 ~ 8 

261379 2770008 

57098 116055 

24584 311077 

Remark, Yu [ 1989 J gives a result in which ' independence condition' ( 2 . 1) 

has been removed, with more or less the same constants. This result will be 

easier to apply if d ~ 1. 

2. 5. N,1merical methods. 

In solving diophantine equations using computational methods from diophantine 

approximation theory, as we will do in Chapters 4 to 8, it is necessary to 

have logarithms (real, complex or p-adic) of algebraic Il\Jmbers available to a 

large enough precision (maybe several hundreds of digits). We will not go 

deeply into the problems of computing such approximations, but make only a 

few remarks on it in this section. 

To start with, the precision with which most computers (mainframes as well as 

personal computers) work, is insufficient for our purposes. Usually at most 

double precision (52 bits, equivalent to 15 decimal digits), or at best 

quadruple precision (112 bits, equivalent to 33 decimal digits) is standard 

available. This is not sufficient for our purposes, not only because we may 

require larger precision, but also because we want to have the rounding off 

errors under control, to be sure that no solution of a diophantine equation 

is missed by unexpected consequences of rounding off errors. 

Packages for computations with arbitrary precision are available and very 

useful, e.g. the MP package of R. P. Brent (cf. Brent [ 1978]). It is not 

difficult, as we did, to write one's own package for simple manipulations on 

multi-precision numbers, such as addition, multiplication and division (cf. 

Knuth ( 1981] for efficient algorithms) . To the author's knowledge, no such 

packages are available publicly for manipulations on p-adic numbers, but the 

programs are similar to those for real numbers, and thus relatively easy 

(though maybe laborious) to write yourself. 

Computing roots of polynomials with integral coefficients can be done by 
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Newton's method, both in the real and the p-adic case. One should make sure 

that the result obtained is correct to the desired precision, not (only) by 

substituting the found approximation of the root into the polynomial and 

checking that the result is O within the desired precision, but (also) by 

theoretical error estimates for the Newton method, or by using 'interval 

arithmetic' (see below). 

Computing logarithms can be done by the Newton method too. However, we found 

it easier to use the Taylor series 

2 3 
log(l+x) - x - x /2 + x /3 - . . . , 

or the more rapidly converging series 

l+x ( 3 5 
logl-x - 2· x + x /3 + x /5 + . . . ) • 

For IX I very small this method works fast, whereas for larger IX I the 

following idea works well. Compute approximations to the desired precision of 

log 1.1, log 1.0001, log 1.00000001 , say, and store them. Now compute 

x 1 E (1,1.1) and k1 E ~O such that 

kl 
x - X1·l.l , 

which is a matter of a few di vis ions of a multi-precision n11mber with a 

rational n11mber with small numerator and denominator (11 and 10) only, that 

can be done fast. Next, compute x2 E [1,1.0001) and k
2 

e ~O such that 

and x3 E (1,1.00000001) and k 3 E ~O such that 

k3 
x2 - x 3 •1.00000001 . 

Then compute log x
3 

compute log x by 

by the Taylor -series, which converges very fast, and 

When computing all this, one should take care of having the rounding off 

errors at each addition/multiplication under control. This can e.g. be done 

by using 'interval arithmetic', i.e. doing all computations twice with a few 

more digits than actually needed, rounding off in different directions at 
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each step. Then a sufficiently small interval 

number lies (with mathematical certainty). 

is found in which the exact 

• 
Computation of arctan x is done by the Taylor series 

3 5 
arctan x - x - x /3 + x /5 

The number ,r - 3 .14159. . . can be computed rapidly by this series for 
th

e 

arctan function, by the identity 

,r - 16-arctan 1/5 - 4·arctan 1/239 . 

Doing p-a.dic arithmetic has the advantage above real arithmetic that rounding 

off errors do not tend to become larger, as long as one is not dividing by a. 

n1.1mber with positive p-adic order. If 

computed by the Taylor series 

ord (x) > 0 
p 

. . . , 

and also it may be useful to compute it by 

l+x ( 3 5 log 1 - 2· x + x /3 + x /5 + 
p -x 

. . . ) . 

then log 
p If x ,. 0 (mod p) and 

there exists a k EN 

xiii! 1 (mod p) 

such that xk - 1 (mod p) , 

log x -p 
1 k 
-· log (l+(x -1)) 
k P 

then log (l+x) 
p 

x can be computed, 

and then 

can be 

since 

and the above given Taylor series can be used to compute 

in computing the above mentioned Taylor series there will 

log x. Note that 
p 

be factors p in 

the denominators of the terms. Hence, to find the first µ, p-adic digits of 

the first terms of 

the Taylor series, but the first k terms must be taken into account, where 

k is the smallest integer satisfying 

k·ordp(x) - log k/log p 2: µ. 

For rapid convergence of Taylor series it is desirable to apply them only for 

numbers x with large p-adic order. For example, 

• 

- • • • 

converges not as fast as 
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1 
log 4 - -·log 3 3 3 

1 ( 2 2 4 3 6 64 - 3· 7.3 - 7 ·3 /2 + 7 ·3 /3 - ... ) , 

or as 

1+3/5 ( 3 3 5 5 log3 4 - log3 1 _ 315 - 2· 3/5 + 3 /3·5 + 3 /5·5 + ... ) , 

or as 

2 
1+7·3 /65 _ £. ( 
1-7-3 2/65 3 

5 10 5 
+ 7 · 3 /5 · 65 + . . . ) . 

The above considerations are sufficient for efficiently performing exact 

computations with the L3
-algorithm, as we present it in Section 3.5. We also 

use the simple continued fraction algorithm in some instances. This we do as 

follows. Suppose we want to compute the continued fraction expansion of a 

real number iJ, that we have approximated by rational numbers i1
1

, 1'
2 

such 

that 

for some small e • We can compute the continued fraction expansions of iJ
1 

and exactly. As far as 

continued fraction expansion of 

they 

{} . 

coincide, they coincide also with the 

If the continued fraction expansion of 

~ is needed so far that the k th convergent with denominator qk > x
0 

be 

known exactly, for a given (large) constant x
0

, then 
-2 as small as x
0 

. 

should be at least 

Most of the computer calculations done for the research on which this book 

reports were performed on an IBM 3083 computer at the Centraal Rekeninstituut 

of the University of Leiden, using the Fortran-77 language. Whenever we give 

computation times, actual CPU-time on this machine • is meant. Also some 

computations were done at a VAX. 11/750 computer at the Rekencentrum of the 

University of Twente. 
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CHAPTER 3. ALGORITHMS FOR DIOPHANTINE APPROXIMATION. 

3.1. Introduction. 

In this section we give details of the computational methods we use to reduce 

upper bounds for the solutions of diophantine equations. Our starting point 

will always be a linear form A that is close to O (in the real or p-adic 

sense, with the word ''close'' defined explicitly in terms of an inequality 

involving 

bound for 

the unknowns), together with a large but explicitly known 

the absolute values of the coefficients of A . 
• Our aim 

upper 
• 
1S to 

reduce the upper bound by showing that there are no solutions between the new 

and the old upper bound. 

Let be given numbers, in [R ' 
• or in O , for a fixed prime 

p 
p . Let x1 , ... , xn be unknowns in Z . Put 

A - /3 + 
n 
I X. -~. . 

. 1 l. ]. 
l-

We classify such linear forms according to three criteria: 

-➔ homogeneous if ~ - 0, inhomogeneous if ~ ~ 0; 

.. > one-dimensional if n - 2 multi-dimensional if n ~ 3 ; 

--➔ real if -6. E lR 
]. 

for all i , p-adic if -8. E 0 for all 
l. p 

The reason that the case n - 2 is called one-dimensional 

homogeneous case the linear form 

• 1 . 

• 1S that • in the 

leads to studying the simple, one-dimensional continued fraction expansion of 

--&1/62 . The inhomogeneous case with n - 1 , viz. 

A - fJ + X·-6 

is not of any interest in the real case, but it is of interest in the p-adic 

case. We call this the zero-dimensional case. 
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In the p-adic case we require that the quotients {:}. /{:}. 
1. J 

and P/{:}. are in 
J 

0 
p 

itself, 

subfield of 

whereas the nwnbers 

0 p • 

'6., f3 
1 

are allowed to be in some larger 

Let c, 6 be positive constants. Put X - maxlx1 1 . Let x0 be a (large) 

positive constant. In the real case we shall always assume that 

IAI < C·exp(-o·X) , (3.1) 

X <_ X 0 . (3.2) 

Let c 1 , c 2 be real constants, with c 2 > 0. In the p-adic case we shall 

assume that xj > 0 for some index j e {1, ... ,n} , and 

(3.3) 

(3.4) 

Our aim is to find a constant x1 , of the size of log x0 , such that in the 

real case (3.2) can be replaced by X ~ x1 , and in the p-adic case the bound 

xj ~ x0 (a consequence of (3.4)) can be improved to xj ~ x
1

. 

In the forthcoming sections we will treat all cases, according to the 

classification given above. We insert Sections 3.4, 3.5 on the L3-algorithm, 

which will be our main computational tool, Section 3. 6 on finding short 

vectors in lattices, and Section 3.13 on certain sublattices that are useful 

for our applications. 

3.2. Homogeneous one-dimensional approximation in the real case: continued 

fractions. 

We first study the case 

Put is irrational. Let the continued 

fraction expansion of be given by 

and let the convergents pn/qn for n = 0, 1. 2, ... be defined by 
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p - 1 -1 ' P - a ·p + p n+l n+l n n-1 
• 

It is well known that the convergents satisfy the inequalities 

1 < 
2 

(a 1+2)·q n+ n 

I tJ -
1 I < ----,-2 , 

a ·q n+l n 

and that if p/q satisfies the inequality 

I f1 
p - -q I < 

1 
2 , 

2·q 

(3.5) 

(3.6) 

then p/q must be one of the convergents (cf. Hardy and Wright [ 1979) , 

Theorems 163, 171 and 184). 

We may assume without loss of generality that ltJ1 1 < 1~2 f , that x1 > 

and that (x1 ,x2) - 1 . From (3.1) it follows that there exists a nwnber 

* 

0 , 

* X 

such that X ~ X implies X - x1 and (3.6) for (p,q) - (-x2 ,x1 ) . We now 

have the following criteria. 

* LE~ 3.1.. (i). If (3.1) and (3.2) hold for x 1 , x 2 with X 2: X , t::hen 

(-x2 ,x1) - (pk,qk) for an index k that satisfies 

Moreover, the partial quotient:: ak+l satisfies 

¾+1 > -2 + 

(ii). If for some k with 

Proof. 

an index 

* (i). By X 2: X 

k. Since 

and (3.6) it follows that 

is at least the (k+l) th 

(3.7) 

(3.8) 

(3.9) 

(-x2 ,x1 ) - (pk,qk) for 

Fibonacci number, (3.7) 

follows from 

inequality of 

(ii). Combine 

qk - x1 - X ~ x0 . To prove ( 3. 8) , apply ( 3. 1) and the first 

( 3 . 5 ) . 

(3.9) with the second inequality of (3.5). □ 
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We may apply Lemma 3.l(i) directly, or as follows. 

LEMMA 3. 2. Let: 

where the maximum is t:aken over all indices k satisfying (3. 7). If (3 .1) 

and (3.2) hold for x1 , x 2 with X ~ x1 , then 

1 
-· log 0 

X. 

Remark. From Lemma 3.2 an upper bound for X follows. We can apply LP-mma 

2.1 here, but Lemma 2.1 is sharp for large b only. 

Proof. (3.1) and (3.5) yield 

The result follows by applying Lemma 3.l(i). D 

In practice it does not often occur that A is large. Therefore this lP-roma 

is useful indeed. 

Summarizing, this case comes down to computing the continued fraction of a 

real numher to a certain precision, and establishing that it has no extremely 

large partial quotients. This idea has been applied in practice by Ellison 

[1971b], by Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Tijdeman 

(1982]), and by Hunt and van der Poorten (unpublished) for solving 

diophantine equations, by Steiner [ 1977] in connection with the Syracuse 

(''3·N+l") problem, and by Cherubini and Walliser [1987] (using a small home 

computer only) for determining all imaginary quadratic n1..1mber fields with 

class n11rnber 1. We shall use it in Chapters 4 and 5. 

3. 3. Inhomogeneous one-dimensional approximation in the real case: the 

Davenport lemma. 

The next case is when A has the form 
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where /3 ,. 0 

introduced by 

. We then may use the so-called Davenport 

Baker and Davenport [1969]. It is, like the 

lemma, which was 

homogeneous case, 

based on the continued fraction algorithm. 

Let p/q be a convergent of ~ with q > x0 . We have the following result. 

LEMMA 3. 3 ..... (Davep.po~t}. Suppose that, in the above notation, 

(3.10) 

(by 11 · ll we denot:e the distance to the nearest integer). Then the solutions 

of (3.1), (3.2) satisfy 

(3.11) 

Proof. From (3.5) and (3.10) we infer 

By (3.1), (3.2), and 

2 -1 x0 < q ·c· 162 l·exp(-&·X) , 

this leads to (3.11). D 

If (3.10) is not true for the first convergent with denominator > x0 , then 

one should try some further convergents. If q is not essentially larger 

than x0 , then (3.11) yields a reduced upper bound for X of size log x0 , 

as desired. If no q of the size of x0 can be found that also satisfies 

(3.10) (a situation which is very unlikely to occur, as experiments show), 

then not all is lost, since then only very few exceptional possible solutions 

have to be checked. See Baker and Davenport [1969] for details. 

Summarizing, we see that in this case the essential idea is that an extremely 

large solution of (3.1) and (3.2) leads 

of for which the values of II q · tfo!l 

to a large range of convergents p/q 

are all extremely small. In practice 

it appears to be the case that q·v, is always far enough from the nearest 
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integer ( the values of seem to be distributed randomly over the 

interval [O, 0. 5] ) . This method has been used in practice by Baker and 

Davenport [1969] as we already mentioned, by Ellison, Ellison, Pesek, Stahl 

and Stall [1972], by Steiner [1986], and by Gaal [1988]. We shall use it in 

Chapter 4. Note that the method that we develop in Section 3.8 for the 

multi-dimensional inhomogeneous case, can be used in the one-dimensional case 

as well, as has been demonstrated in de Weger [1989b]. 

3.4. The 3 
L -lattice basis reduction algorithm, theory. 

To deal with linear forms with n ~ 3 , a straightforward generalization of 

the case n - 2 would be to study multi-dimensional continued fractions. For 

a good survey of this field, see Brentjes [ 1981]. However, the available 

algorithms in this field seem not to have the desired efficiency and 

generality. Fortunately, since 1981 there is a useful alternative, which in a 

sense is also a generalization of the one-dimensional continued fraction 

algorithm. 

In 1981, L. Lovasz invented an algorithm, that has since then become known as 

the L
3
-algorithm. It has been published in Lenstra, Lenstra and Lovasz 

[1982], Fig. 1, p. 521. Throughout this and the next section we refer to this 

paper as '1 X.X.r.••. The algorithm computes from an arbitrary basis of a lattice 

in !Rn another basis of this lattice, a so-called reduced basis, which has 

certain nice properties (its vectors are nearly orthogonal). 

The algorithm has many important applications in a variety of mathematical 

fields, such as the factorization of polynomials (llt:., Lenstra [1984]), 

public-key cryptography (Lagarias and Odlyzko [1985]), and the disproof of 

the Mertens Conjecture (Odlyzko and te Riele [1985]). Of interest to us are 

its applications to diophantine approximation, which already had been noticed 

in ~Xl, p. 525. The algorithm has a very good theoretical complexity 

(polynomial-time in the length of the input parameters) , and performs also 

very well in practical computations. 

Let r c IRn be a lattice, that is given by the basis ., • Ill t b 
n 

introduce the concept of a reduced basis of r , according to lll, p. 

The vectors * b. 
-i 

l:Sj < i:sn) 

(for i - 1, . .. , n ) and the real numbers 

are inductively defined by 
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i-1 
* Iµ . . •b. 

. 1 l 'J -J J-
µ,. • .. 

1. 'J 

* Then 2.1 , ... , is an orthogonal basis of 

reduced if 

Rn. We call the lattice basis 

12.1 t ••• , b
0 

of r 

1 
<-- 2 

for l:Sj <i:Sn, 

I b*+µ • b* 12 > ~ • I b* I 2 for 1 < i :5 n . · ··1 ·1 - ·1 -i 1,1- -1- 4 -1-

Hence a reduced basis is nearly orthogonal. For a reduced basis 

we have, by tl£ (1.7), 

for i - 1, ... , n. 

b 
It 

(3.12) 

We remark that a lattice may have more than one reduced basis, and that the 

ordering of the basis vectors is not arbitrary. The L3
-algorithm accepts as 

input any bas is QI' ... ' g_ IL 
of r , and it computes a reduced basis 

£.1 , .. • , C . 
[1 

of that lattice. The properties of reduced bases that are of 

most interest to us are the following. Let 
n 

y E IR be a given point, that is 

not a lattice point. We denote by l(r) the length of the shortest non-zero 

vector in the lattice, viz. 

l(r) .... min l~I , 
0,,-xer - -

and by l(r,y) the distance from to the nearest lattice point, viz. 

l(r.~) - minl~-yl . 
xer -

From. a reduced basis lower bounds for both and l(r ,:i) can be 

computed, according to the following results. Lemma 3.4 is Proposition (1.11) 

from Ul. We recall its proof here, to show the similarity of the proofs of 

Lemma's 3.4 and 3.5. 

LEl1MA, 3.4t (Lenstra, Lenstra and Lov~sz [1982)). Let . . . , C 
11 

be a 

reduced basis of the lattice r . Then 

• 

Proof. Let 0 ,i£ X E r - - be the lattice point with minimal length 
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n * * L r.•b. , 
i-1 1. -i 

* with r. E IR 
]_ 

. Let be the largest index such that 

Then, since £ 1 , ... , £i 

* 
span the same linear space as 

i, and bi+l is the projection of 

this linear space, it follows that 

on the orthogonal complement of 

. Hence, by (3.12), 

i 
O *2 * 2 *2 * 2 2 * 2 

Ir. ·lh-1 ~ ri -112.. I - r. ·lb.. I 
i-=l 

1 1 0 1 0 1 0 1 0 

> I * 12 > -<n-1)_
1 1

2 _ b. _ 2 c
1 

. 
-1 -

0 
D 

LEMMA 3.5. Let be a reduced basis of the lattice r, and let 

y -= 

the 

n 
Is. ·c. for s1 ., ... , 

. 1 l. -1. 
]_-== 

largest index such that 

s E ~ , with noc all 
n 

s. fiE. l . Then 
1.0 

Proof. 

Write 

Let XE r - be the lattice point nearest to 

X -
n * * I r 1 ·h- , 

i-1 1 

* * 

s. 
l. 

:J. • So 

n * * I Si ·h. 
. 1 1. 1.-

Z. Let be 

with r. E l , 
l. 

r., s., 
l. 1 

s. E IR • 
l. 

Let be the largest index such that 

s .. Then, reasoning as in the proof of Lemma 3.4, we find 
11 

* - s. 
11 

• 

Using (3.12) it follows that 

Obviously, - > 1.1 -
then s. E 7l. 

' 11 

The above lemma 

• 
10 

s. 
1.1 

2 * 2 2 -(n-1) 2 
( r. -s . ) · I h. I ~ ( r. -s . ) · 2 · I £ 1 1 • 

1 1 1 1 1 1 1 1 1 1 

If • 

il • 

~ r. 
' l.1 

• - io 
hence 

the result follows at once. If 1
1 

> i
0 

Ir. -s. I~ 1 , and the result follows. D 
1 1 ].1 

• rather weak • l.S in the extraordinary sit,~.ation that 
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extremely close to an integer. If one of the other 

integer, we can apply the following variant. 

s. 
]. 

is not close to an 

LEMMA 3.6. Let be a reduced basis of the lattice r, and let: 
n 
I s .. £1 for E IR with not all • l Suppose t:hat Y.. - sl' . . . ' s s. J.n • 

. 1 1 n 
, 

]. 
1.-

there is index i and constants 61 0 < 02 
l such that an , :S -0 2 

Then 

(n-i0)-o 1 ·max 1£-1 . 
• • l. 
1.>10 

Proof. With notation as in the proof of Lemma 3.5, let t. be the integer 
l. 

nearest to 

* 

s. , for 
l. 

n 

"> l. -

z -- It •C -
. l i -i 
1.-

n * * I t. ·b. 
. 1 l. -1. 
l.-

and t .... s. for i :S 
l l. 

with ti E ~ • Let i 1 be the largest index such that 

We have 

Now, 

and, using (3.12), 

Obviously 1 

* - t. 
1.1 

• 

(n-i ) · o •max 1£. I , 
0 1 i>i l. 

0 

n * *2 *2 I <r.-t.) · 12.1 ~ 
·1]. l. l. 

* * 2 * 2 < r . - t .. ) · I h1 I 
1 1 1 1 1 1.-

the result follows. If 
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, hence Ir. -ti I~ 1 > 6 2 , and the result follows. 
1 1 1 

□ 

Remark. Babai [1986] 

x with 

showed that the 

1~-:tl :s c·l(r,J!) 

3 
L -algorithm can be used to find a 

lattice point - for a constant C depending on the 

dimension of the lattice only. This result can also be used instead of Lemma 

3.5 or 3.6. 

3. 5. 
3 

The L -lattice basis reduction algorithm. practice. 

Below (in Fig. 1) we describe the variant of the L3-algorithm that we use in 

this monograph to solve diophantine equations. This variant has been designed 

to work with integers only, so that rounding-off errors are avoided 

completely. In the algorithm as stated in lX.l, Fig. 1, p. 521, non-integral 

rational numbers may occur, even if the input parameters are all integers. 

Let 

d. 
l. as in lX.X. (1.2), (1.3), (1.24), respectively. The d. can be used as 

l. 
denominators for all numbers that appear in the original algorithm (X.t.X., p. 

523). Thus, put for all relevant indices i, j 

A .. - d. ·µ . .. 
1,J J l.,J 

They are integral, by lX.l (1.28), (1.29). Notice that, with 

d. _, d. 
1

-B .. 
l. 1.- l. 

We can now rewrite the algorithm in terms of 

B., µ . . , thus eliminating all non-integral 
1. 1 ,J 

c., d., A .. 
-1 1 1.,J 

rationals. We 

B .. 
1. 

(3.13) 

(3.14) 

in stead of 

give this variant 

of the L
3
-algorithm in Fig. 1. All the lines in this variant are evident from 

applying (3.13) and (3.14) to the corresponding lines in the original 

algorithm, except the lines (A), (B) and (C), which will be explained below. 

We added a few lines to the algorithm, in order to compute the matrix of the 

transformation from the initial to the reduced basis. Let be the matrix 

with col,;mn vectors ... ., b ' 
11 

the initial basis of the lattice r , 
which is the input for the algorithm. We say: is the matrix associated co 
the basis 12.1 , ... , b

11 
• Let e be the ♦ matrix associated to the reduced 
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(A) £1 :- (dj•£i-l.i,j.£j)/dj-l 

d .. :- (c.,c.)/d. 1 l. -i -1 l.-

k :- 2 ; 

(1) perform(*) for l - k-1 ; 

for j-1, ... ,i-1 ; 

perform(*) for l - k-2, ... , 1 ; 

(2) 

(B) 

if k - n 

k :- k+l ; 

Yic-1 
~ 

-"k-1, j 
l.k. ,J 

l.. k 
l. ' 

·• 

·-• 

• term1.nate ; 

go to ( 1) ; 

·• 

~ 

~-1 

• , 

• 
' 

,T 
yk-1 

,T 
yk 

• -= • 
,T • ,T 

, 
yk yk-1 

for j - 1, ... , k-2 ; 

+ >.. k. 
1. ' 

for i-1, ... , n ; 

) / c\c-1 

for i - k+ 1, ... , n ; 

(C) 2 
<\-1 :- ( <\-2·~ + Ak,k-1) / <\-1 ; 

if k > 2 then k :- k-1 ; 

go to (1) ; 

(*) if 2·1>.k ti> dt then , 

r :- integer nearest to >.k l/dl; 
J 

r·u · -.e, ' 

>.k. :- >.k j - r•>.l. for j - 1, ... , l-1 ; ,J , ,J 

Figure 1. Variant of the L3-algorithm. 
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basis c 1 , ... ,en, which the algorithm delivers as output. Then we define 

this transformation matrix V by 

fl - 11-V • 

More generally, let be the matrix of a transformation from some s0 
to 

B, so ~ - B
0

-'U. Denote the column vectors of 1l by y 1 , ... , 
-1 T T 

row 
-1 

1l 

vectors of 'U by Yi , ... , y;
1 

• We feed the algorithm 

as well. All manipulations in the algorithm done on the 

u 
· r1 ' 

with 

and the 

and 

are also 

done on the 

affect the 

u. , and the 
1 

• • computat1.on time 

,T v. 
-1. 

are 

seriously. 

adjusted accordingly. This does not 

The algorithm now gives as output 

matrices , 'U' and 'U,-l , such that is associated to a reduced basis, 

- B-V, and ~, - 'U•V. Note that V is not computed explicitly, unless 

- (the unit matrix), in which case 'U' - V . It follows that 

-1 
- 1J-'U -1.l' - 1l ·'U' 0 ' 

'U' is the matrix of the transformation from B0 to 

is known, then it is not much extra effort to compute 

We now explain why lines (A), (B) and (C) are correct. 

(A): From l~~ (1.2) it follows that 

Define for j - 0, 1, . . . , 

d. -b. -
J 1. 

i-1 

t;' • 

-1 e 
Note that if 

as well. 

Then c . ( 0) - b . , and 
l. -1 

£ 1 (i-l) ~ £i. The 

j th step, since 

C. (j) 
1. 

is exactly the vector 

computed in (A) at the 

dj · ~i (j-1) -
I I 

d. 1 J-

..\. . . C. 
1,J ~J 

d. 
__ J_._\ ·C 
d. 1 - d. i, j -j 
J- J 

This explains the recursive formula in line (A). It remains to show that the 

occurring vectors C. (j) 
l. 

are integral. This follows from 
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which is integral by lU p. 523, l. 11. 

(B), (C): Notice that the third and fourth line, starting from label (2), in 

the original algorithm, are independent of the first, second and fifth line. 

Thus a permutation of these lines is allowed. We rewrite the first, second 

and fifth line as follows (where we indicate variables that have been changed 

with a prime sign): 

where (3.18) and (3.19) hold for i - k+l, ... , n. 

for i - 0, 1, ... , k-2, and by (3.16) also for 
equivalent to 

• 

which explains (C}. From (3.17) we find 

'1c-2 • • d' , 
7:c-1 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The d. remain unchanged 
.1. 

i - k . Now, ( 3. 15) is 

(3.20) 

hence remains unchanged. From (3.18) we obtain 

.\ , 
i,k-1 

~-1 

l 
l _ k,k-1. 

'-\-1 
• 

.X. k 
.1.' 

<\ ' 

whence, by multiplying by d.. d..' 
-k-1. -k-1 and using (3.20), 

d . ). , 
-k-1 i,k-1 - ( d.. . d' 

-k-1 -k-1 
.\. k 

) • .1.' 

<\ 
- ). ·l. + d.. ). 

k,k-1 i,k-1 -k-2. i,k · 
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Finally, from (3.19) we see 

>... k 1 p - - • 

~ ' 

and (B) follows. 

In our applications we often have a lattice r , of which a basis is given 

such that the associated matrix, 

l 
• 

• 
• 

• • • 

1 

9 8 
n-1 n 

say, has the special form 

where the 9. are large integers, that may have several hundreds of decimal 
1 

digits. We can compute a reduced basis of this lattice directly, using the 

matrix itself as input for the L3-algorithm. But it may save time and 

space to split up the • • computation into several steps with • • 1ncreas1.ng 

accuracy, as follows. 

Let k be a natural number (the number of steps), and let l be a natural 

nwnber such that the 

i==l, ... ,n and . 1 J """ p 

and define w~j) by 
1 

e. 
l 

are blocks of 

have about 

put 

k·l (decimal) digits. For 

consecutive digits of e .. Define for the 
1. 

Thus, the 

relevant n x n matrices 

1 
• 

• 
• 

• • • 

1 
• 

• 
• 

1 

J 

• 
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Then it follows at once that 

Notice that 

j ~ 1 let 

to ! - ! . , 11 
-1 J 

1l. such that 
J 

Now put 

B. 1 J+ 

• since 

and 'Uj-l be 

- 'Uj-l , and 

e~k) - e. . Put 
l 1 

known matrices. 
-1 

'U • We thus 

t-e. +D.·11 .. 
J J J 

11
0 

- J , Bl - at1 . For some 

Then we apply the L3-algorithm 

find matrices e. ,, 
J 

11. , and 
J 

By induction !. , e. and 'tl. are defined for j ~ 1, ... , k . Note that 
J J J 

-1 -1 
S. 1 -'U. - B°·B. ·11. l 

J+ J J J- + fJ. ' 
J 

-1 
:B. ·'U. 1 

J J-
satisfy the same 

- -t.1 , we have 
-1 

B. -11. l - s4. 
J J- J 

recursive relation as the 

for all j . Hence 

.. . . 
J 

Since 

-1 e. - s .. 'lJ.. 1 -1. - sa1. -'tl. , 
J J J- J J J 

and it follows that and s4k are 

lattice, which is r. Moreover, since 

is associated to a reduced basis of r . 

associated to bases of the same 

is output of the L3-algorithm, it 

Let us now analyse the computation time. For a matrix we denote by L(M) 

the maximal number of (decimal) digits of its entries. If the L3-algorithm is 

applied to a matrix B, with as output a matrix e, then according to the 

experiences of Lenstra, Odlyzko (cf. Lenstra [1984], p. 7) and ourselves, the 

computation time is proportional to L(S) 3 in practice. Since e is 

associated to a reduced basis, we assume that 

10 
L(e) ~ log(det r)/n. 

In our situation, 

we have L(ej) 

e . - s4 • • 11 • and 
J J J 

i - 1, ... 7 n-1 

u(j) -
n,h 

L(sd.) ~ l•j t 

J 

~ l• j/n . Put 

the special shape of 

and h - 1 , ... , n , and 

( - • • • 
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It follows that L(~.) ~ L(e.) . So 
J J 

L(~.) ~ max ( L(8-e. 1 ), L(D. 1 -~- 1)) ~ l + l-(j-1)/n. 
J J- J- J-

Instead of applying the L3-algorithm once with as input, we apply it k 

times, with ~l' ... , ~k as input. Thus we reduce the computation time by a 

factor 

. 1 n J-

k3-n3 

k-1 
I (n+j)3 

j-0 

• 

For k between 2.5-n and 3·n this expression is maximal, about 2 
0.4-n . 

So the reduction in computation time is considerable (a factor 10 already for 

n - 5 ) . The storage space that is required is also reduced, since the 

largest numbers that appear in the input have l• (l+(k-1)/n) 

digits. 

instead of l· k 

3.6. Finding all short lattice points: the Fincke and Pohst algorithm. 

Sometimes it is not sufficient to have only a 

l(r ,y) . It may be useful to know exactly all 

lower bound for l(r) or 

such that vectors XE r -
l~I ~ C or l~-yl s C for a given constant C. There exists an efficient 

algorithm for finding all the solutions to these problems. This algorithm was 

devised by Fincke and Pabst [1985], cf. their (2.8) and (2.12). We give a 

description of this algorithm below. 

The input of the algorithm is a matrix whose column vectors span the 

lattice 

points 

r, and a constant C > 0 . The output is a list of all lattice 

X E r with - l~I ~ C, apart from ~ - Q. We give the algorithm in 

Figure 2. We use the notation 

and x. for the column vectors 
-1. 

X = (x .. ) 
l.J 

of :X. 

for matrices 

The algorithm can also be used for finding all vectors XE r of which the -
distance to a given non-lattice point 

Namely, let 

is at most a given constant C. 

Y. -

n 
I s •. hi- , 

. 1 ]_ l.= 

and let r. be the integer nearest to s. for all i. Put 
1 l. 
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q ·-• • • l.J 
q ·-.. . . Jl 

a .. 
1.J 

q. . , 
lJ 

qkt :- qkl -
:- /q .. 

1.l 
r .. 

l.1 

for 1 :S i :S j s n ; 

for 

q .. /q.. for 1 :S i < j :S n ; lJ l.l. 

for i+l s k ~ls n for 1 

l::Si:Sn · , 

r .. 
Jl. 

:- 0 for 1 s j < i < n . - , 

compute a row-reduced version -1 :I of -1 
3? , and 

-1 -1 -1 that 'i' - 1l •t. 

compute 

• 
' 

i ::S n ; 

1l 'U-1 , such 

determine a permutation ,r such that J2~(l)I ~ ... ~ l~K(n)I , 

let 'i'' be the matrix with columns s for i - 1, ... ,n; 
-,r-l(i) 

:,,T.~, . 
1 

q .. ·- for 1 < i < • < a .. J n • - - -l.J lJ 
q .. ·- q .. q .. /q .. q .. . .... • ' • Jl lJ l] l.J ]_ l. 
qkt ·- qkl qki-qil for i+l -• 

• 
]. . - n • • , 

T. . - C • 
• ' l. 

u. ·- 0 • • , 
l. 

(1) z :- /(T./q .. ) • , 
1 ll. 

UB(x.) ·- Lz-uiJ • • , 
]. 

x. . ... r-z-u. 1 1 • -• , 
l. l 

(2) x. • ...,. X + 1 • • • , 
1 l 

if x. S UB(x.) go to (4) • 
) l. l 

, 
(3) • i 1 ]. . - + • • I 

go to (2) ; 

(4) if i - 1, go to (5) ; 

U ·-• • 
]. 

T. 
l. 

i - 1 · t 

m 
I q •. ·X ; 

. ·+1 l.J j J-1 

to (1) ; 

• 
1 

for 1 < • 
l -

< k < l < - - -

• 
' 

(5) 

go 

if x. - 0 
1 

for 

print 

1 :Sis n, terminate; 
compute and X -

< • < J -
n for 

go to (2). 
,r (1) ,r (n) 

Figu~~ 2t The Fincke and Pohst Algorithm. 
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z --
n 
L r .. •b. 

. 1 1. -1. 
].== 

• 

Then 

Z E r 
for some constant C' will do) . Since 

- it suffices to search for all lattice points u with -
and compute for each such u also ~ - ~ + y, since IA-XI< C implies 

3. 7. Homogeneous multi-dimensional approximation in the real case: real 

approximation lattices. 

Let the linear form A have the form 

n 
A - L x .. ,fj_ • 

. 1 1. l. 1.-

'We assume that n ~ 2 . The case n - 2 has already been discussed in 

Section 3.2, but the method of this section works also for n - 2. In fact, 

it is in this case essentially the same method. 

C be a large enough integer, that is of the order of magnitude of Let 

Let E IN be a constant (we will explain its use later). We define the 

approximation lattice r by the matrix 

• 
• 

• = 

• • • 

of which the column vectors Ql, . . "' , 
• sub lattice of ]ln of determinant l.S a 

A lattice point X has the form -

X -

where the x. are integers, and 
l. 

n -A Ix .. [-y·C·-0.] . 
. 1 l. l. 
].== 

b 
n 
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are a basis of the lattice. Then r 
n-1 

. [,'·C•fJ ] which • of • C ..., 
' 

l.S size • n 



Clearly, 

both x
0 

is close to --y·C·A. The length of the vector X now measures -
and IA I , which are exactly the two numbers we want to balance 

with each other. 

we expect IAI '-' 

LJ;:MMA ~ • 7 • Let: 

Heuristics (cf. Section 1.3) tell us that in a generic case 
-n x0 . We now can prove easily the following useful lemma. 

X 
1 

be a positive ntimber such that 

(3.21) 

Then (3.1) has no solutions with 

(3.22) 

Remark. We apply this lemma for x1 ~ x0 . If condition (3.21) then fails, 

we must take a larger constant C . If it holds for a constant C of the 

size X~ , then (3.22) yields a reduced lower bound for X of size log x0 . 

Proof. Let 

the lattice 

xl, ... , xn 

point 

be a solution of (3.1) with 0 < X s x1 . Consider 

-

n 
I X.·b. 

. 1 l. -1 
1.-

with A as above . Then 

and 

2 lxl -
2 n-1 2 

'1. Ix. 
i-1 1 

~2 + A :s; 
2 2 

(n-1) · --y • X 1 
~2 + A , 

n n 
:S L I X • ( • I [ '1 · C • fJ ] -7 · C · fJ • I :S L I X • I , 

i-1 l i 1 i--1 1 

(3.23) 

which is s n-X1 . By (3.1), (3.21) and the definition of l(r) we have 

7·C·c·exp(-S·X) > 1--Y·C·AI ~ IA) - IA-7·C·AI 

2 2 2 
~ I (t(r) -(n-1) • -y -x1) - n-x1 ~ x1 , 

and (3.22) follows at once. D 

Condition (3.21) can be checked by computing a reduced basis of the lattice 

r by the L3-algorithm, and applying Lemma 3.4. The parameter is used to 

keep the "rounding-off error'' 
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relatively small. This is of importance only if C is not very large, 

usually only if one wants to make a further reduction step after the first 

step has already been made. For large C , simply take 7 - 1 . 

It may be necessary, if C is not very large, to use a more refined method 

of reducing the upper bound. To do so, we use the following lemma, which is a 

slight refinement of Lemma 3. 7, together with the algorithm of Fincke and 

Pohst (cf. Section 3.6). It is particularly useful in the situation that one 

has different upper bounds for the Ix. I for different i . 
1 

LEMMA 3.8. Suppose thac for a solucion of (3.1) 

holds. Then 

X< 1 
-· log E, 

n 
7 · C · c/ (IA I - I Ix. I) 

. 1 l. 1.-
• 

(3.24) 

(3.25) 

Proof. Define the lattice point X - as in the proof of Lemma 3.7. By (3.23) 

and (3.24) 

n 
~ (IA I - L Ix. I) /7 · C > 0 . 

. 1 1 1-

The result follows at once by (3.1). D 

We proceed as follows. Choose a constant c
0 

such that if IAI > c
0 

then 

the upper bounds for Ix. I imply (3.24). In that case we have a new upper 
l. 

bound for X from (3.25). In case IAI ~ c0 we have an upper bound for the 

length of the vector ~. We compute all lattice points satisfying this bound 

by the algorithm of Fincke and Pohst, and check them for (3.1). 

Summarizing, the reduction method presented above is based on the fact that a 

large solution of (3 .1) corresponds to an extremely short vector in an 

appropriate approximation lattice. Since we can actually prove by 

computations that such short vectors do not exist, it follows that such large 

solutions do not exist. We will apply these techniques in Chapter 5. 
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3. 8. _ Inhomogeneous multi-dimensional approximation in the real case: an 

alter11ative for the generalized Davenport lemma. 

Let A be the most general linear form that we will study, viz. 

A - /3 + 

where n ~ 2 (the case n - 2 has been dealt with in Section 3.3, but can 

be incorporated here also). To deal with this inhomogeneous case, two methods 

are available_ The first method -1s a generalization of the method of 

Davenport that we discussed in Section 3. 3. The second method is closer to 

the homogeneous case of the previous section. 

First we explain briefly the generalized Davenport method. See Ellison 

[1971a] (where only the case n - 3 is treated). Put 

~! - ~./d for i - 1, ... , n-1 • P' - P/dn, 
l. l n 

h' - A/~ - P' + n 

n-1 
I x. -~~ 

. 1 ]. ]. 
1-

+ X n • 

Let 

q 

a simultaneous approximation to fJi, 
, such that, for i = 1 , ... , 

16 !-p./ql < c'/ql+l/(n-1) 
l. l. 

for a small constant c' . 

L~MMA 3. 9. (Davenport. Ellison). Suppose that 

Then the solutions of (3.1), (3.2) satisfy 

Proof, The result follows at once from 

n-1 
llq-P'II ~ lq·A'+ I X.·(p.-q·6~)1 s 

.. l l. 1 1 
1.-

1 
-1 

q· 6 I ·c·exp(-o·X) + n 
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• 

•• +' fJ' 1 n-
with 
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To apply this generalized Davenport method in practice, it is necessary to 

compute the simultaneous approximations (p
1

, ... , p
0

_
1

, q) . We indicated in 

Section 1. 4 how this can be done with the 

the one associated to the following matrix: 

3 
L -algorithm. As lattice we take 

where C 

• 
• 

(C·-0' ] 
n-1 

-C 
• 

• 
• 

-C 

is a constant of size 

, 

reduced basis, will have length of 

can be written as 

. Then £.l , 

the size of 

for some p 1 , ... , pn-l' q . It is expected that 

n-1 

the first basis vector of a 

q is of size n-1 x0 , and 

are of the size x0 , so that 119!-p./ql are of the size 
l. l. 

as desired. 

The above method has been applied in practice to solve Thue and Thue-Mahler 

equations by Agrawal, Coates, Hunt and van der Poorten [1980] (using multi

dimensional continued fractions instead of the L 3-algorithm), Pe tho and 

Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987a] ~ [1987b]. So 

it has proved to be useful. However, we prefer another method, for several 

reasons. Firstly, it is close to the homogeneous case as described in the 

previous section, whereas the generalized Davenport method has no obvious 

coun~erpart for the homogeneous case. Secondly, it actually produces 

solutions for which the linear form A is almost as near to zero as possible 

under the condition X ~ x0 . Specifically, if a linear relation between the 

t} • 
l. 

exists, but had not been noticed before (a situation that may occur in 

practice, cf. Agrawal, Coates, Hunt and van der Poorten [1980]), the method 

detects these relations, by finding explicitly an extremely short lattice 

vector (resp. a lattice vector extremely near to a given point) giving the 

coefficients of the relation. Thirdly, an analogous method for the p-adic 

case can be given (see Section 3.11). Finally, variations as indicated in 

Section 1.4 are possible. Concerning computation time we think that the two 

57 



methods are about equally fast. 

The method works as follows. Ye take the approximation lattice r exactly as 

in the homogeneous case (cf. the previous section) , 
n chosen properly, i.e. C is of the size x
0

. Compute 

with constants 1, C 

with the L3-algorithm 

a reduced basis 5:.
1

, ... , c of r . Let e 
tl 

be the matrix associated to 

this basis, and compute also the 

and its inverse -1 
1l . Note that 

compute, namely by 

• 
• 

[-y•C•61 ] 
-

-y• [-y•C·6n] • • • 

transformation matrix 
-1 

3J , and hence also 

• 

1 

'U with e - B · 1.l , 
-1 e ' are easy to 

and our version of the L3-algorithm (Fig. 1). Let n 
~El be defined by 

T n 
-:t. - ( 0, ... , 0, -[-y·C·P)) - Es.•£. , 

. 1 l. ]_ 1-

where the coefficients si E IR can be computed by 

To be more precise, if 

y/[-y·C·6 J as nth column, so n 

has u - as nth column, then -1 e has 

Now we apply Lemma 3.5 or 3.6, that provide a lower bound for l(r,~) . Then 

we can apply the following lemma. 

°I;.rEMMA 3, 19.,_ Let x1 be a positive constant:: such that 

• (3.26) 

Then (3.1) has no solutions with 

(3.27) 

Remark: We apply this lemma for x1 - x0 . If condition (3. 26) then fails, 

we must take a larger constant C . If it holds for a constant c of the 
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size X~, then (3.27) yields a reduced lower bound for X of size log x
0 

. 

Proof. Let X 
n be a solution of (3.1) with 0 < X s x1 . Consider 

the lattice point 

X .... -

with 

- -Put A - ['Y·C·fi] + AO . Then 

and 

2 n-1 2 
..., . I x. 

. 1 1. 1.-

n 

2 2 (n-1) · -y • X 
1 

n 

~2 
+ A ' 

+ I I X • I . I [ ..., . C . ~ • ] --, . C . '6. I 
·1 1. l. 1. l.== 

s 1 + I Ix. I~ 1 + n-X1 ~ (n+l)·X1 . 
. 1 1. 1.-

By (3.1), (3.26) and the definition of t(r,y) the result follows, since 

't·C·c·exp(-6·X) > 1-y·C·AI ~ IAI - IA-~·C·AI 

2 2 2 
~ /(l(r,~) -(n-1)·-y ·X1) - (n+l)·X1 ~ xl. D 

Again we may prove refinements of the above lemr11a, similar to Lemma 3. 8 in 

the homogeneous case. We explained in Section 3.5. how to apply the Fincke 

and Pohst algorithm in the inhomogeneous case. We do not work that out here. 

S11mmarizing, the method described above is based on the fact that a large 

solution of (3.1) in the inhomogeneous case leads to a lattice point 

extremely near to a fixed point in Zn . We can actually prove by some 
• computations that such lattice points do not -exist:, so that such extreme 

solutions do not exist. The method outlined in this section is used in 

Chapter 8. Note that in the case n - 2 the method is essentially the same 

as the Davenport lemma. 
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3.9. Inhomogeneous zero-dimensional approximation in the p-adic case. 

In the p-adic case we start with a very simple linear form A, to which also 

a very simple reduction method applies. Let A be 

for f3, fJ E O such that fi/iJ E ID , and x E Z , x > 0 . It is obvious 
p p 

that in the real case with such a simple linear form A inequality (3.1) has 

only finitely many solutions (we even don't need {3. 2)), that are easy to 

compute. In the p-adic case however, inequality (3.3) may have infinitely 

many solutions, so we do need a bound like (3.4), and a reduction method. 

Put ~• E O . Inequality (3.3) now becomes 
p 

where ci, c 2 are constants with c 2 > 0 . We assume that 

(3.28) 

Then (3.28) has no solutions if ord (~') < 0 . Hence we 
p 

may as stime that 

is a p-adic integer. Let the p-adic expansion of ~, be 

c:0 

where u. E { 0, 1, ... , p-1 } for all 
l. 

i e ~O. Compute the p-adic digits 

u. far enough to be able to apply the following reduction lemma. 
1 

LEMMA 3.11. Let x1 be a positive constant. Let r be the minimal index 

such that 

u ,.. 0 . 
r 

Then (3.28) has no solutions with 

(3.29) 

(3.30) 

Remark. We apply the lemma with x1 = x0 . The ass,1mption behind the lemma 

is that in the p-adic expansion of ~' no long sequences of zeroes appear. 

In fact, 

randomly 

it seems that in our applications the numbers 

over { 0, 1, ... , p-1 } . Then the minimal 
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l. 

r satisfying (3. 29) 



will not be much larger than log x0/log p , and then (3.30) yields a reduced 

upper bound of size log x0 , as desired. 

Proof. satisfy (3.28). Suppose that 

r+l 
(mod p ) . 

By x ~ 0 it follows from (3.29) that 

which contradicts the asswnption x ~ x1 . Hence 

follows from (3.28). 

ord (~'-x) ~ r + 1. Then 
p 

ord (6'-x) ~ r, and (3.30) 
p 

□ 

Remark. In the above proof it is essential that x ~ 0. It is however not 

difficult to formulate a similar result that holds for all x E Z , by 

looking, if p ~ 2 for p-adic digits u. 
l. 

pl! p-1 , and if p =- 2 for p-adic digits 

that are not only ~ 0 but also 

u., u. l 
l. l. + with u. 

l. 
,-4 u. 1 . 1+ 

A method very similar to the one described above was used by Wagstaff [1979], 

[1981], a.o. for solving 
n 

(mod 3) . We apply the method in Chapter 4. 

3.10. Homogeneous one-dimensional approximation in the p-adic case: p-adic 

continued fractions and approximation lattices of p-adic n11mbers. 

Let A have the form 

A .... X ·'6 
1 1 

where 

asswne 

,el' ~2 E Op 

that ord (tl) 
p 

such that 

~ 0 . Now 

and 

A'= A/tJ 1 

So (3.3) now means that the rational number x 2;x1 
the p-adic number ~ . 

is p-adically close to 

In analogy of the real case it seems reasonable to study p-adic continued 

fraction algorithms. However, a p-adic continued fraction algorithm that 

provides all best approximations to a p-adic number seems not to exist. 
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Therefore we introduce the 

done in de 

algorithm, 

'Q'eger 

which 

concept of p-adic approximation lattices, as was 

From this paper we adopt the best approximation 

algorithm of Mahler [1961], 

Chapter IV. This 

is a generalization of the 

algorithm goes back also on the euclidean algorithm, and 

thus is close to a continued fraction algorithm. But it is not a p-adic 

continued fraction algorithm in the sense that a p-adic number is expanded 

into a continued fraction, and that the approximations are then found by 

truncating the continued fraction. 

Recall that for µ E ~O the rational integer 

~(µ) < pµ . We define for 

is defined by 

ord (8-~(µ)) ~ µ and 
p 

0 :S any e ~O the p-adic 

approximation lattice r 
µ. 

by a matrix to which a basis of r is µ 

associated, namely the 

1 0 

(µ.) µ. 
~ p 

matrix 

• 

Then it is easy to see that 

(cf. Lemma 3.13 in the next section, where 

The following algorithm computes a point of 

we prove a more general result). 

minimal length in 

if IAI > IYI , interchange ~ and 

(1) compute KE l such that lx-K-~I 
y :- y_ - K-~; 

• 

' 
is minimal · , 

r 
µ • 

if l~I > Iii , interchange A and y, and go to (1) ; 

print ~. 

Figure~- p-adic approximation algorithm. 

With this algorithm it is possible to compute 

apply the following le,11ma. 

l(r) 
µ 

explicitly. Then we can 

LEMMA 3.12. Let x1 be a constant such chat 

(3.31) 
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Then (3.3) has no solueions with 

(3.32) 

Remark= We take µ 
' .;. 

such that pµ is of the size of 

lemm~ for x1 - x0 . Then we expect that 

that (3.31) is a reasonable condition. 

l(r) 
µ is of the size of x

0
, so 

Proof. Apply the proof of Lemma 3.14 (in the next section) for n - 2. □ 

A method like the one described above has been applied by Agrawal, Coates, 

Hunt and van der Poorten [1980]. We use it in Chapters 6 and 7. 

3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic 

approximation lattices. 

We now study the case 

where 

n ~ 2 

n 
A == L x. ·tJ. t 

. 1 ]_ ]_ 
1.-

fJ. E 0 ]_ p 
. We may 

such that 

assume that 

fJ./-6. E O , X. E 7!. 
l. J p 1. 

ord (6.) is minimal 
p l. 

-6./6 for i = 1, ... , n-1 . 
1 n 

Then '6~ E 7!. for all i . Put 
1. p 

A' - A/fJ 
n 

n-1 
- I x . . ,e~ 

. 1 l. 1. 
l.= 

+ X n • 

for all 

for 

i, j , and with 

Put 

The definition of the p-adic • • approx1mat1.on lattices can be generalized 

directly from the one-dimensional case. Namely, for any µ E N
0 

we define 

r as the lattice associated to the matrix µ 

1 
• 

• 
• 

:B 1 • µ 

{J' (µ) 
1 • • • 

fjl (µ) 
n-1 

pµ 

Then we have the following result. 
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~EMMA J,.13. The lat "t;ice r , associat:ed t;o t:he a.hove defined matrix ! , 
µ µ 

is equal to the set 

ord (A' ) ~ µ } . 
p 

T T E Zn Proof. For any X """ ( x1 , ... , xn) e r there exists a z """ (z1,···,zn) -- µ 
such that ~ Then for 

.. 
X - •Z X """ z. 1 -• i - - l. µ 

n-1 n-1 
X - I z. ·'6! (µ) + z ·pµ I X. -,(J'. 

n • 1 l. l n . 1 l. l. 
1.- 1..-

Hence ord (A' ) ~ µ . Conversely, for any 
p 

1, . . . , n-1 
' 

and 

(mod pµ) • 

T 
X .... ( xl, ... , xn) such 

( ) E Z
n 

ordp A' > µ there obviously exists a ~ such that X """ S •Z . 

that 

D - µ-

Using the 

apply the 

L 3-algorithm we can compute a lower bound for l(r) . Then we can 
µ 

following lemma, which is a direct generalization of Lemma 3.12. 

LEMMA 3.14. Let x1 be a constant such that 

(3.33) 

Then (3.3) has no solutions with 

(3.34) 

Remark. We take µ 

lemma for x
1 

=- x
0 

. 

such that pµ is of the 

Then we expect that l(r ) 
µ 

size of X~, and apply the 

is of the size of x0 , so 

that (3.33) is a reasonable condition. 

prohibits the point (x1 , ... ,xJ from being a lattice point in 

by Lemma 3.13, ord (A') s µ-1, and (3.34) follows from (3.3). p 

We will apply the results of this section in Chapters 6 and 7. 

Then (3.33) 

r . Hence, 
µ. 

□ 

3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic 

case. 

Finally we study an inhomogeneous p-adic form 
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where fJ' 
and n > -
ord (/J) 2!:: 

p 

A - /J + 

fJ. E 0 
l. p 

n 
I X •• {Ji ' 

. 1 1 1.-

such that 

2 • We asstime that 

ord (tJ) 
p n • Put 

{3/6. ; 
J 

-fJ./-fJ. 
1 J 

ord (fJ.) 
p l 

E ~p and x 1 E Z 

is minimal for 

fJ1 - -61/6n for i - 1, ... , n-1 , /3' - P/6n, 

n-1 
I x. -tt~ 

. 1 l. l. 1.-

+ X n • 

for all • • 
l.' J J 

and that 

Then /3 1
1 6~ E 

l. 
z 

p for all i . As p-adic approximation lattices we take the 

lattices r 
µ 

that were defined for the homogeneous case, 

µ E IN
0 

3.11). 

the lattice r 
µ. 

that is associated to the matrix 31 
µ 

Further put 

( ,(µ) )T y - 0, ... , 0, /3 ~ 
n 
~ s. ·C. 
L. 1. -1. 

i ..... l 

n 
E "ll.. , 

• 
l.. e. for any 

(see Section 

where is a reduced basis of , and s. E ~ . By Lemma 3.5 or 
1 

3.6 we can compute a lower bound for 

following lemma. 

. This is useful in view of the 

LEMMA 3.15. The set r (y) = r 
µ µ + is equal to the set 

Proof. Let satisfy 

By Lemma 3.13 we have 

I ord (A' ) ~ µ } . 
p 

r 
µ 

. Note that 

The left hand side is just ord (A') , which proves the lemma. p 

ObviouslyJ the length of the shortest vector • 
in 

lattice) 

for all 

is equal to 

i ) . W'e have 

l(r , y_) ( unless in the case 
µ 

the following useful lemma. 
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µ. 

Y. E r 
µ. 

D 
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• 

, 1. e. s. E Z 
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L~ 3 .16 •. Let x1 be a constant such that: 

(3.35) 

Then (3.3) has no solutions with 

(3.36) 

Remark. We take µ such that pµ is of the size of X~, and apply the 

lemma for x0 - x1 . Then we expect that 

that (3. 35} is a reasonable condition. 

is of the size of 

Proof. Let x be a solution of (3.3) with 
n T 

X :S x1 . Then (3.35) 

prohibits the point (xl, ... 'xn) from being in r (y) . 
µ 

Hence, by Lemma 

3. 15, o rd ( A ' ) :S µ-1 
p 

, and (3.36) follows from (3.3). □ 

We will not apply the above lemma in this book. It is included here only for 

the sake of completeness. However, when solving Thue-Mahler equations (see 

Section 8.6), it will be of use. 

3.13. Useful sublattices of p-adic approximation lattices. 

In our p-adic applications of solving diophantine equations via linear forms, 

we always have linear forms in logarithms of algebraic n~imbers, • • i.e. in 

A - /J + 

the fJ and fj. 's 
l. 

are p-adic logarithms of algebraic numbers, say 

fJ. - log (a.) 
l. p 1. 

In Section 2. 3 we have seen that for a 

for i - 1, ... , n . 

e E 0 p 
.. 

if ord (1±€) > l/(p-1) p 
ord (log (€)) - ord (1±€) p p p . In our applications we apply this to 

n x. 
e - ao. IT a. i , 

i-1 1. 

then 

for which ord (€-1) 
p 

too, on which we based 

is large. This implies that ord (log (e)) 
p p 

the definition of our approximation lattices. 

is large 

However, 

the converse is not necessarily true: 

imply that ord (€-1) p is large. This 
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p p 

is due to the 

being large does not 

fact that the p-adic 



logarithm is a multi-branched function. To be more precise, for any root of 

unity r E (l we 
p 

only the (p-1) th 

have log (r) - 0 p 
roots of unity if 

(cf. 

p 

Section 2 . 3 ) . In 

is odd, and only 

OJ 
p 

±1 

there exist 

as roots of 

unity if p - 2 Let r be • • • 
• a pr1m1t1.ve (p-1) th root of unity if p • 

l.S 

odd, and r - -1 if p - 2 • It follows that ord (log (e)) 
p p being large 

if p - 2) implies that for some k E { 0, 1, .. . . , p-2 } ( or k E { 0, 1 } 

ord (log(€)) 
p p 

k 
-= ord (.;"-s ) . 

p 

The set of x 1 , ... , xn such that ord (€-1) 
p * 

(or ord (€±1) if one wishes) 

is large, turns out to be a sublattice r (or 
µ µ of r . 

µ 
In the following lemma we shall prove this fact, and indicate how a basis of 

such a sublattice can be found. Then we can work with this sublattice instead 

of 

by 

all 

r itself. Of course, in Lemmas 3.12, 3.14 and 3.16 we can replace r 
µ 

a:. E ID µ µ 1. p 
i . We take a:0 ~ 1 (corresponding to ~ ~ 0 , thus to the homogeneous 

for 

case), and leave it to the reader to define appropriate translated lattices 

* rµ(y,), 

LEMMA 3 . 1 7 . ( i) . 

for all i , and 

Put 

Let a 1 , ... , a E (Q 
n p 

be given numbers with ord (a.) - 0 
p 1. 

ord (log (a.)) 
p p 1 

minimal for 

n x. 
n a: .. l. 

. 1 1. 1= 

For any µ E ~O put 

r 
µ 

= ord (log (a:)) . 
p p n 

Then r11 ~ r* ~ r 
µ 

are latt:ices. If p .... 2 

* 
µ* 

then r 
µ 

..... r . If p ~ 3 

µ µ 
(ii). Let h1 , 

T 
£f. = ( x1 , ... , xn) E 

... ' ___ b_ 
Il 

r 
µ 

by 

then ii (r ;r ) 
µ µ 

be a basis of 

i - n. Let 

they are all 

- (p-1)/2 1 

r 
µ • Define 

. . . , X E Z . 
n 

equal . If p -= 3 

fl < r ;r1') - p-1 , µ µ 

k(~) for any 

rk(x) (mod 
µ+µ 

0 
p ) ' k (~) E { 0, 1, ... , p-2 } . 

Let b' 
11 

be a basis of r 
µ 

such that 
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Put for i - 1, ... , n-1 and p ~ 5 

* - -y. ·b' , 
l 11 

and for p 2:: 3 also 

(mod (p-1)) , 

Further puc for p ~ 5 

and for p > 3 also 

lcm(k(b~),p-1)/k(b~) , 
11 11 

Then . . .. , * b n is a basis of * r , 
µ 

and 

* 1-r . I :S < p-1 ) / 4 , 
1 

* b 
11 

* ..., ·b' , 
r n tl 

fl b, 
--Y n · 11 • 

. . .. , is a basis of 

rfl r- r* r- r Proof. (i). It is trivial that ~ :a 
µ µ µ 

The equalities of the lattices for p ~ 2, 3 

, and that they are lattices. 

follow from the fact that ±1 

are the only 

etc. , follow 

roots of unity in ~ 
p 

from 

for 

( ii) . Note that 

(ii) . 

k(~) is (mod (p-1)) 

* 

p - 2, 3. The values of 

a linear function on r 
µ 

~ of rµ are characterized by (p-1)/2 I k(~) , and the points 

* f/(r ;r ) , 
µ µ 

. The 

X -

points 

of r11 
m 

are characterized by (p-1) l'k(~) . It follows from the definitions in the 

lemma that for i - 1, ... , n-1 

Note that 

Write X -

* * k(b.) 
l. 

- -y. • k(b') 
l 11 

* bl' 
e r 

µ 

X 

. . . ' * b l' I1-

as 

n-1 * * 
I y.·b. + . 1 1 -1 

1-

b' and 
IL 

• 0 (mod (p-1)/2) 

• 0 (mod (p-1)) . 

bil bi/ . .. .. .. b' -1 J 11-l' - 11 

for integers y~, y~. Then it follows that 
l. i 

68 

are both bases of r 
µ • 



* So XE r - µ 
This proves 

* • y ·k(b') 
n tl 

(mod (p-1)/2) , 

( mod ( p-1) ) . 

if and only if 

the result. 

and 
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if and only if 
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CHAPTER 4. S-INTEGRAL ELEMENTS OF BINARY RECURRENCE SEQUENCES. 

Acknowledgements. The research for this chapter has been done partly in 

cooperation with A. Petho from Debrecen. The results have been published in 
b 

Petho and de Weger (1986] and de Weger [1986 ]. 

4.1. Introduction. 

In this chapter we present a reduction 

Let A, B, G0 , c1 be integers, and let 

defined by 

algorithm for the following problem. 
00 

the recurrence sequence (G} 0 be n n== 

G - A·G - B·G n+l n n-1 
for n = 1, 2, 

Assume that 
2 

/J. - A - 4-B is not a square, and that the sequence is not 

degenerate (this will be explained below). Let w be a nonzero integer, and 

let be distinct primes. We study the diophantine equation 

s m. 
G - W· n p.

1 

n i-1 1 

• • • 1.n nonnegat1.ve integers n, m1 , ... , ms . 

positive and negative discriminant 

(4.1) 

We will study both the cases of 

(the 'hyperbolic' and 'elliptic' 

cases). It was shown by Mahler [1934] that (4.1) has only finitely many 

solutions. For the case fl > 0 Schinzel [1967] has given an effectively 

computable upper bound for the solutions. 

Mignotte [1984a], [1984b] indicated how in some instances (4.1) with s - 1 

c;an be solved by congruence techniques. It is however not clear that his 

method will work for any equation (4 .1) with s = 1 . Moreover, his method 

seems not to be generalizable for s > 1 . Petho [1985] has given a reduction 

algorithm, based on the Gelfond-Baker method, to treat (4 .1) in the case 

~ > 0 , w - s .... 1 . 

Our reduction algorithms are based on a simple case of p-adic diophantine 

approximation, namely the zero-dimensional case, cf. Section 3. 9. In the 
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hyperbolic case this suffices to be able to find all solutions of (4.1). This 

is based on a trivial observation on the exponential growth of jG I in this 
n 

case. In the elliptic case the situation is essentially more complicated. 

Then info:rn1ation on the growth of I Gn I can be obtained from the complex 

Gelfand-Baker theory. Therefore in this case we have to combine the p-adic 

arguments with the one-dimensional homogeneous or inhomogeneous real 

diophantine approximation method, cf. Sections 3.2 and 3.3. 

We shall give explicit upper bounds for the solutions of (4.1) which are 

small enough to admit the practical application of the reduction algorithms, 

if the parameters of the equation are not too large. Petho [1985] pointed out 

that essentially better upper bounds hold for all but possibly one solutions. 

His reasoning is essentially the same as our reduction technique. 

The generalized Ramanujan-Nagell equation 

s z. 
f1 p.l., 

. 1 1 l.= 

(4.2) 

where k E l is fixed, and x, z 1 , ... , zs E IN0 are the unknowns, can be 

reduced to a finite number of equations of type (4.1) with 6 > 0. Equation 

(4.2) with s-= 1 has a long history (cf. Hasse [1966], Beukers [1981] for a 

survey), and interesting applications in coding theory (cf. Bremner, 

Calderbank, Hanlon, Morton and Wolfskill [1983], MacWilliams and Sloane 

(1977], and Tzanakis and Wolfskill [1986), [1987]). Examples of (4.2) have 

been solved • using the Gelfond-Baker theory by Hunt and van der Poorten 

(unpublished). They used real or complex, not p-adic linear forms • 
in 

logarithms. As far as we know, none of the proposed methods to treat (4.2) 

gives rise to an algorithm which works for arbitrary values of k and the 

p.'s, whereas Tzanakis' elementary method (cf. Tzanakis [1983]) seems to be 
l. 

the only one that can be generalized to s > 1 . Our method has both 

properties. 

This chapter • 
l.S organized as follows. In Section 4.2 we some 

preliminaries on binary recurrence sequences. In Section 4. 3 we study the 

and the elliptic case. The growth of I G I , both in the 
n 

hyperbolic 

hyperbolic case is trivial, and in the elliptic case we give a method for 

solving I G I < v for a fixed v E fR , by proving an upper bound for n 
n 

that has particularly good dependence on v, and by showing how to reduce 

such a bound. Section 4.4 gives upper bounds for the solutions of (4.1). 
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Section 4.5 gives a lemma on which the p-adic part of the reduction procedure 

is based. Then Section 4. 6 treats some special cases, a. o. the 'sy1a1metric' 

recurrences. For this special type of recurrence sequences our reduction 

algorithms fail, but elementary arguments will always work for solving (4.1) 

in these cases. In Section 4. 7 we give the algorithm for reducing upper 

bounds for the solutions of (4.1) in the case A> 0, with some elaborated 

examples. The same is done for the case A< 0 in Section 4.8. 

Section 4. 9 shows how to treat the generalized Ra.manujan-Nagell equation 

(4.2), as an application of the hyperbolic case of (4.1). As an e~ample we 

determine all integers x such that x 2 + 7 has no prime factors larger 

than 20, thus extending the result of Nagell [1948] on the equation 

x
2 

+ 7 - 2n (the original Ramanujan-Nagell equation). Finally in Section 

4.10 we give an application of the elliptic case of (4.1) to a certain type 

the of mixed quadratic-exponential diophantine • equation, analogous to 

application of the hyperbolic case to solving (4. 2). As an example, we 

determine the solutions X, m1 , m2 , n of 

2 ml m2 ml m2 2 
X - 3 ·7 ·X + 2· (3 ·7 ) - 11·2n . 

4.2. Binary recurrence sequences. 

co Let A, B. G0 , G1 El be given. Let the sequence {G} O be defined by n n-

for n 1, 2, • • • • 

Let a, f3 be the roots of 2 
x - A•x + B - 0. We assume that 

(4.3) 

2 
l::. _, A - 4-B 

is not a square, and that a/p is not a root of unity (i.e. the sequence is 

not degenerate). Put 

Then 

G - G ·/3 1 0 
a - /J , • (4.4) 

and µ are conjugates in K - 0(/8) . Ye now have for all n ~ 0 

G 
n 

n n 
- ,A•Q + µ·{3 , (4.5) 

(cf. Shorey and Tijdeman [1986], Theorem C.l). We will show that when we are 

solving (4 .1), we may ass11me without loss of generality that 
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• 

Namely, if 

study (4 .1) with 

then 

G' =- G 
n n / d 

d I G n for all 

instead of with G n 

and thus we may 

. Next suppose that 

d (A,B) . If also d2 I B then it is easy to show that n-1 
d I G for all 

n 
n ~ 2. Then we study (4.1) with 

A' B' such that 
' 

G' .... A' ·G' -
n+l n 

G' - G / dn instead of with G The n+l -n n 
d2 B' · G' are A' - A / d ' 

B' - B / t n-1 
and thus (A',B') - l . If however d

2 i B , then we split the sequence into 

two parts. We study (4.1) first with G' 
n 

.... G 
2 ·n 

and then with 

instead of with G 
n 

. For both sequences { G, } 
n2 

A' ,_ A 

the A' , 

G' .... A' ·G' - B' ·G' n+l n n-1 are given by - 2-B, 

G' 
n 

B' 

B' -

- G 2·n+l ' 
such 

B2 . 

that 

Then 

(A' ,B')..., d, and d 2 I B' , so we are in the previous case. Finally, let p 

be a prime such that p I (G1 ,B) , and let be a prime ideal of al(/.6) 

lying above p . By p I B = o. · /3 we have :p I (o) or :p I (fJ} . Suppose 

:P I (a) . Then :pt (/3) by (A,B) = 1 (note that A - a+ fJ ). Hence 

if 

n n 
ord (A·o +µ·/J) 

:p 

for some n
0 

. Thus ord (G) is constant for n ~ n
0

, and the 
p n 

same is true if :P I <f3) • Thus we may assume that (G1 ,B) - 1. 

LEMMA 4.1. Let n, m1 , 

have for 

•.. ' m s 
be a solution of (4.1). Then, with the above 

• assumptions, we 

ord (a) ... ord 
p. pi 1. 

ord (.A) ord == 
p. p. 

1. 1. 

Proof. Suppose p. I B • 
l. 

p. f G for all n 2: 1 • 
1. n 

Then, by a·/3 == B 1 

i - 1, ... ' s 

(/3) = 0 , 

(µ) 
1 

== - -·ord 
2 p. 

l. 

Then p. ¥ A 
' 1. 

Thus, m. = 0 
1 

eicher m. - 0 or n - 0 or 
l. 

(8) < - 0 • 

hence, from (4. 3) and (B,G1) 

or n - 0 • Next suppose p. 
l. 

ord (a) 
p. 

+ ord (fi) - ord (B) - 0 . 
P- p. 

1. l. 1. 

(4.6) 

1 

B • 

Now., a. and are 

nonnegative. It follows 

algebraic 

that they 

integers, 

are zero. 

so their 

Put E 

p.-adic 
1 

-). . µ . .6. • 

orders are 

Note that 

EE Z, and for all n 2: 0 
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' 

>' 

Pi 
' 

}, 

,; 

Suppose that P- I E , then we infer that p. ( G for all n , since 
l. 

1 . Hence 

ord (>..·/6) + p. 
l. 

1. n 
Next suppose pi l E , then 

ord (µ,·/b.) 
p. 

]. 

- ord (E) - 0. p. 
l 

Since A-/~ and µ·/6 are algebraic integers (note that /6 - a - p ), the 

result fol lows. D 

From Lemma 2.1 it follows that we may assume without loss 

(4.6) holds for i - 1, ... , s. We may also assume that 

of generality that 

ord (w) - 0 for 
p. 

• 
l. - 1, ... , s . The special case s - 0 

> 0 , and will be treated implicitly in 

1. 

in equation (4 .1) is trivial if 

the next section for all b.. 

4.3. The growth of the recurrence sequence. 

First we treat the hyperbolic D. > 0 Note that I a I pi I J9 I • the case • ' 
since 

• degenerate. I a I I fl I We have the sequence l.S not So we may ass,.,m~ > • 

following, almost trivial, result on the exponentiality of the growth of the 
co 

sequence {G} Let n n==O · 

no > max ( 2, 

Note that 7 > 0. 

LEMMA 4.2. Let ~ > 0 . If then IG I~ n 

Proof. By (4.5), lal > IPI and n0 > 0 it follows for n ~ n 0 that 

D 

We apply this to (4.1) as follows. 

COROLLAR"<_( 4.3. Let: a > 0 . Any solution n, m1 , ... , ms of (4 .1) with 

n ~ n 0 satisfies 

n< log(-y/lw!) 
lo'g I a I 
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Proof. Clear, from Lemma 4.2 and (4.1). □ 

Next we study the elliptic case ~ < 0. Since a/,B is not a root of unity, 

B ~ 2 . Since (a,P) and (A,µ) are pairs of complex conjugates, lal - I.Bl 
and IAI - lµI . Let v E ~ , v ~ 1 be given. Ye study the inequality 

JG I :S V n (4.7) 

in the variable n E ~O. Ye apply a result of Waldschmidt (see Section 2.3) 

from the complex theory of linear forms in logarithms, which gives an upper 

bound for n that is particularly good in v. See also Kiss [1979]. Let 

E 

( w, log B ) , 

• - min 

u -3 

- max 

1 
-·max ( 1r, 
2 

log E) , 

c3 - max ( log(w/2-lµI) + c1 -c2 + c1 -log(4-C1/log B), 

¼•loglA·/61) ·4/log B . 

• 

THEOREM 4.4. Lee < 0, v e ~, v ~ 1 . If n ~ 0 sacisfies (4.7) then 

4 
log B. log v . 

Remark. Note that c3 does not depend on v. 

The following corollary of Theorem 4.4 is immediate. 

COROLLARY 4.5. Let < 0. Any solution n, m1 , ... , ms of (4.1) satisfies 

4 B·( loglwl + log 

s 
L m. -log 

. 1 1. 1.-

p. ) . 
1. 

Proof ,(c;:>,f t.heorem 4.4).. Note that la:( .... I.Bl = /B 2:: /2 . First we treat the 

case 

our 

put 

G - 0. Kiss [1979] gives an upper bound for such n, n but since in 

situation (G0 ,G1 ) = (G1 ,B) - (A,B) ~ 1, we can do much better. NamP-ly, 

Rn - (an-.Bn)/(a-,8) for all n E Z . 
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and R 
-n 

-n 
- -B ·R 

G .. 
n 

for all n E Z . Now 
n 

-n 
0 I n - ->.. · /3 · D. • B · R n -n 

0 
• 

Thus we have 

G -0 

no 
+ µ·fJ - 0 implies 

Suppose that :p I (R ,B·R 
1

) for some prime ideal p in ll (/h.) . Then 
n n-

:p I (a·Rn-B-Rn-l) -= (a)n , and :p I (,B·Rn-B·Rn-l) - (/J)n , which contradicts 

(A,B) - 1 . Thus (Rn,B·Rn-l) = 1, and then by (G0 ,G1 ) - 1 we must have 

Thus we find that G = 0 implies 
n 

n - log 

Now we turn to the case G ~ 0. We have from (4.7) 
n 

n 
a . -
/3 

- 1 

r.r > 2 L t '/ .... e2,ri. V' , a/R vve may assttme n _ . e -A µ. fJ 

1 1 
and -- - < cp :S - • Let k E l be such that 

2 2 

I k I :S 1 + ~ · n :S n . Put 
2 

(4.8) 

2wi · r:p • l 1 - e with - - < ,k :S -' 2 ~ 2 
1 I tJ, + n·cp +kl~ - . Then 
2 

-.X - Log -
µ. 

a 
+ n·Log -

/3 
+ 2·k·Log(-l) . 

By lemma 2.3 and (4.8) we have an upper bound for IAI : 

IAI -= 21r· I V' + n·cp + 

-A 
µ 

a . -
{:) 

n 
- 1 

(4.9) 

From G ~ 0 we derive A p1. 0 . Then from lemma 2. 4 we can derive a lower 
n 

bound for IA} . Note that max(n,2lkl) :S 2·n, so that W .... log(2·n) . We 

choose 
l v

1 
-= 2 . The number z - a/f3 satisfies 
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hence h(a//J) :S 
1 
-· log B . And 
2 

z - -)./µ satisfies 

hence h(-°A/µ) :S 
l 
-· log E 
2 

. Thus V -2 V -3 
satisfy the requirements 

for Theorem 2.4. We find 

I J\ I > exp ( -C ·( 
1 

+ log(2·n) + log(2·e-U
3

) ) ) 

Combining (4.9) and (4.10) we find n <a+ b·log n, where 

a,_ 2 
B. log v 

log 

The result now follows from Lemma 2.1, 

' 

• s1.nce 

b = 2 · C /log B - 1. 68lxlo21 . max(,r' l<;1g B)_ •max(,r, log 
1 log B 

2 
which is certainly larger than e . 

(4.10) 

□ 

Remark. Note that v may depend on n. Thus we can find an upper bound for 

the solutions n E !NO of e.g. I G I n 
C 

=:; n for any constant C • 

We now want to reduce the bound found in Theorem 4.3. We do this by studying 

the diophantine inequality 

I 1P + n·<p + k I< (4.11) 

which follows from (4. 9), where v O - v /4 · Iµ I . We have to distinguish 

between the homogeneous case = 0 and the inhomogeneous case ~ 0 . We 

apply the methods that have been described in Sections 3.2 and 3.3 

respectively. Unlike in other chapters, here we give the results in the foxm 

of precisely defined algorithms. 

First we study the homogeneous case ~ = 0. We then use Algorithm H (see the 

next page). Let N be an upper bound for n for the solutions of (4.11), 

for example the bound found in Theorem 4.3. 
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Input: 

* OutRut: new 1 reduced bound N for n. 

(i) (initialization) Choose n
0 

2:: 2/log B such that 

N0 :- N; compute the continued fraction 

] 

and the denominators of the convergents of 

with so large that i :- 0 ; 

(ii) (compute ; compute the largest 

(iii) 

integer Ni+l such that 

N. 1/2 
B 1.+ /N 

i+l 

and I... 1 1.+ 
such that q, ::5 N. 1 < 

"l-. 1 l+ 
l.+ 

(terminate loop) 

if nos Ni+l < N. then 
1 

else 

• 
l. 

* N 

. = • 

·-• 

i + 1 , goto (ii) ; 

max(n0 ,Ni+l) , stop. 

Figure 4. ~LGORITHM H. (reduces upper bound for (4.11) in the case v, =- 0 ). 

LEMMA, 4. 6, Algorithm H terminates. Inequalit:y (4 .11) with l/> - 0 has no 

* solutions with N < n < N. 

Termination is obvious, • since all N. 
1. 

Proof. 
Bx/2/x is an increasing function for x ~ 2/log B 

< . B-n/2/ < _ VQ D 
2 l/2n . 

are integers. Note 

. Hence, if n ~ n0 , 

It follows (cf. (3.6)) that lkl/n 
fkj/n - p /q . Then q Sn, and (cf. 

• 1.s a convergent of 

m m m 
(3.5)), 

Suppose n ~ N. 
l. 

for some i >_ 0 . Then ' H m :S ,., • • ence , 

It follows that if Ni+l ~ n0 

1 

-1 

then n :SN. 1 . 
l+ 
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Next we study the inhomogeneous case v, ,- O . Again, let N be an upper 

bound for n satisfying (4.11) . We now have the following Algorithm I. 

Input: ~' 1/,, B, v
0

, N. 

04tput: new, reduced upper bound 

explicitly given n. 

* N for al 1 but a finite ntiroher of 

(i) (initialization) N0 :~ (NJ ; compute the continued fraction 

and the convergents p./q. 
l. L 

large that: > 4·No and 

for i - 1, ... , t 0 , 

llql -~II> 2·No/qt . 
0 0 

with t
0 

(If such 

so 

cannot be found within reasonable time, Cake t
0 

so large that 

ql > 4-N0 ) ; i :- 0; 
0 

(ii) (compute new bound) 

if II ql . . 1P II > 2 . Ni/ ql. 
1. 1 2 

then Ni+l :- [2-log(ql. -v0/Ni)/log BJ ; 
1 

else compuce KE Z with I K - q ·v, I :S l. 
1. 

1 
- ; compute 
2 

< q 
l. 

1. 

, with K - n ·p 
0 l. 

l. 

a O (mod 

if n -= n 
0 

is a solution of (4.11), then print an 

appropriate message; 

N ·-. 1 . 1+ [2·log(4·ql. -v0 )/log B) ; 
1 

(iii) (terminate loop) 

< Ni if N. 1 1.+ 
then 

else 

i + 1; compute the minimal l. < 
1 

> 4-N. 
1. 

and llql_ ·l/>II > 2·Ni/ql_ (if 
1 1 

exist:, choose the minimal l. with 
l. 

goto (ii) ; 

* N ·.== N . . , 
l. 

stop. 

l. 1 such thac 
].-

such l. does 
l. 

ql > 4·N. ); 
• l. 
l. 

Figure 5. A~GORITHM I, (reduces upper bound for (4.11) in the case lp ~ 0 ). 

LEMMA4.7. Algorithm I terminaces. Inequalit:y (4.11) with v,~0 has for 

* N < n < N only the finicely many solutions found by che algorichm. 

Proof. It is clear that the algorithm terminates. Suppose that 
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some i > 0 . Then if 

1. l. 

> 2·N./q., 
l. v. 

1. 

- n•rp·q II ,l_ 
l. 

, we have 

~ ql · l#n·rp+kl + n/ql 
i i 

< q •v ·B-n/2 
- l. 0 

1 

It fol1ows that n ::S Ni+l . If , then 

• 

I K +n · pl +k · qt I :5 
i i 

I K-q . 1P I l. 
1. 

::S ~ + q •v -B-n/2 
2 l. 0 

l 

+ N./ql 
1 i 

3 
< - + 

4 

If q -v -B-n/2 
!,_ 0 

< 2:. - then K + n·pt. + k-ql. - 0 , since it is an integer. 

By 
1. 

( pl, . ' q{,. ) - 1 
1 ]_ 

only possibility is 

im111ediately. 

4 

it follows that 

n .... n
0 

. If 

l. l. 

n • n 0 (mod ql_) 
l. 

q •v -B-n/2 > ~ 
l. 0 4 ' 

l 

. Since ql. > 
l. 

then n ::S Ni+l 

N. , the 
l. 

follows 

□ 

We remark that in practice one almost always finds an l. 
1 

such that 

, if 

4 .4. Upper bounds. 

N. 
l. 

is large enough. 

In this section we will derive explicit upper bounds for the solutions of 

(4. 1) , both in the hyperbolic and elliptic cases. Our first step is the 

application of the p-adic theory of linear forms in logarithms, which works 

the same way in both cases. We use it to find a bound for m. that is 
1 

polynomial in log n . Then we combine this with the results of Section 4.3 

on the growth of the recurrence sequence, which for the solutions of ( 4 .1) 

yie1d a bound for n that is linear in the m. 
J. 

(Corollaries 4.3 and 4.5). 

Ass1..i1ne that n 0 ~ 2 . Let D be the discriminant of aJ (/11) . Put 

Let d be the squarefree part of 11 • For i - 1, ... , s put 

r.p - 2 if p. I d , cp. - 1 otherwise, i J. 1 
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pi - 2 if pi= 2, d • 5 (mod 8) 

p. - 1 otherwise, 
l. 

or if 
p. 

1. 

c4. 
6 

= 10 · 
2 

1 + 

pi 
cpi·L-pi + 2/L 

' l. p. - log p. 
1 l. 

LEMMA 4.8. The solutions of (4.1) with n ~ n
0 

satisfy 

3 
m. < c4 .·(log n) for i - 1, ... , s . 

1. 1 1. 

Proof. Rewrite (4.1), using (4.5), as 

n 
a -µ. 
- -
f3 A 

Then, by (4.6), 

m. S m. 
1 l. 

s m. 
w -n n l. -·/3 . p. 
>.. • 1 1. 

]_== 

Apply Lemma 2.5 (Schinzel's result) with 

ord 
p. 

l. 

x' =-A·/~. Then we find, using ord (·) - cp.·ord (·) , 
:P- 1 p. 

1. l. 

log n0 

n 
a -µ - -/3 ). 

3 
• 

• 

2 
p. ·log p. log n + 

p. 
l. 

cp. ·L·p. 
1. l. 

+ 2/L ) 
3 

, 
l. 1. 

from which the result follows, • s1.nce n 2: 

Put 

c4 = max ( c4 . ) , 
• ' 1. 1 

m == max(m.) 
• l. 
1 

s 
p = n p .. 

. 1 1. 
l. -

In the case > 0 , let n 0 > max ( 2, logl)./µl/logla//31 J , and put 

c5 = log P / (logia!+ min(O,log(~/lwl))) , 

c6 - max 

In the case ~ < 0, put 

c7 .. max 
4 
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4•lo w 
8 · c3 log B 

3 
c8,i - c4,i·(log c7) 

1/3 
+ log B 

P 1/3 
•log 

for i - 1, ... , s . 

3 

' 

Then we have the following result, giving explicit upper bounds for the 

solutions of (4.1). 

THEOREM .. 4 l, 9 .... Lee n, ml, m be a. solut:ion of (4.1). . .. .. ,. 
s ' 

( i) . If l::,,. > 0 and n ~ no then n < Cs·C6 and m < c6 • 

(ii). If h.<0 then n < c7 and mi < CB • for i - 1, s . . . ' • 
, 1. 

~r,99f
2

e (i). Corollary 4.3 yields n < c5 -m . By Lemma 4.8 we now have 

3 3 
m < c4 -(log n) < c4 -(log c5 -m) . 

If a - 0, h -= 3 , and 
3 2 3 

we find m < 8-C
4 

• (log 27-c4 ,c
5

) . If c4 -c5 :S (e /3) , then 

3 2 3 3 n < c5 -m < c4 -c5 -(log n) ~ (e /3) •(log n) , 

from which we deduce n < 12564. Now, 

(ii). From Lemma 4.8 and Corollary 4.5 we see that 

or 

4-c4 -log P 3 < C 4•lo!lwl 1 n 3 + log B + ---=1~0-g_B_. ( og n) · 

The result now follows from Lemma 2.1, since 

4. 5. A basic lei111u,. 

2 3 
P/log B > (e /3) . D 

We introduce some notation, and then give an almost trivial lemma that is at 

the heart of our reduction methods for both the hyperbolic and the elliptic 

cases. Let for i - 1 •... , s 

e 1 - -ordp.().) , 
1 
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By Lemma 4.1 the p.-adic logarithms of 0.//3 and ->../µ. exist. Note that 
]. 

log (a/{3) ~ 0, since the sequence {G) is not degenerate. Note that for 
P- n 

1. 

conjugated e, e, also loge and 
p 

hence loge' are conjugates, 
p 

E /~-«} . 
p 

Hence both ntimerator 

where 

-Bi E Qj 
pi 

. Hence, if 

{). -
1 

co 
l I u. ,·p. 

l=k. 1.,'ll i 
l. 

k ...... ord (0.) 
1. p. 1 

l. 

and 

fJ. ~ 0 ' l. 

following lemma localizes the elements of 

terms of the p 1-adic expansion of 

and denominator of 6 i 

we can write 

for all 

{ G } 
n with many factors 

LEMMA 4.10. Let n E ~O . If ord (G) +el..> l/(p1-l) p. n 
1 

then 

ord (G) 
p. n 

l. 

- g. + ord (n-~.) . 
1 p. 1. 

1 

Proof. By Lemma 4.1 we have 

ord (G) + e. = 
p.. n 1. 

l. 

ord 
p. 

l. 

n 
ex - -
/3 

-µ 
,\ 

== ord 
pi 

ex . -
f3 

n 
-1 • 

• are 1.n 

l. The 

• p. , 1n 
1. 

With we have by assumption ord (e) > l/(p.-1) . 
p. 1 

Hence ord (e) 
p. 

= ord (log (l+{)) p. . p. 
, and it follows that 

l. 

ord (G) 
p. n 

1 

4.6. Trivial cases. 

1 1. 

+ e. 
1 

ord 
p. 

1. 

Q 
n·log 7i p. p 

l. 

= ord (n--0.) + f. . 
p. 1. 1 

1 

+ log 
p. 

l. 

-). 

µ 

1 

□ 

We have to exclude some trivial cases first. The first trivial case is that 

of ord (0.) < 0 . Then the solutions of (4.1) satisfy mi 5 1/(p1-l) - e 1 , 
p. 1 

l. 

or, by Lemma 4.10, 

m. 
1 

f. - e. + ord (n-~.) . 
l. l. p. l. 

1 
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Since nEZ and ord (fr .. ) < 0 
p.. l. 

we have ord (n--6.) - ord (-B.) 
p.. l. 

l. 

. Hence 
l. 

ord (6.), 
p. l. 

l. 

p. l. 
l. 

l/(p.-1) ) -
1 

e. . 
l. 

The case where all pi-adic digits of -Bi from a certain point on are all 

zero is a special case, because the reduction methods of the next sections 

then do not work. This is so because these reduction methods make use of 

zero-dimensional p-adic diophantine approximation, as explained in Section 

3.9, applied to the p-adic linear form 

for p -= p 1 , ... , p s . This means that we must study the p-adic number 

>. 

If it happens that this number is zero, or that all digits in the p-adic 

on, then obviously the expansion of are zero from a • • certain point 

reduction process of Section 3. 9 breaks down, since it is based on the 

ass"L1mption that the p-adic expansion of 

non-zero digits. 

contains sufficiently many 

This case can be dealt with as follows. Note that il. - r 
]. 

holds for all 

i ~ 1, ... , s with the same r . Thus, by Lemma 4.10, 

m. s max ( g. + 
L 1. 

ord (n-r), 1 
pi 

Then we have, if ~ > 0, by Corollary 4.3, 

s 

g. + 1 
1. 

+ ord (n-r) 
pi 

. (4.12) 

n• log(a:l < I (g.+l)·log p. 
. 1 l l. 

- log(~/lwl) + logln-rl , 
1-

from which a good upper bound for n can be derived (no application of the 

Gelfond-Baker theory is involved, so the constants are relatively small). And 

if 8 < 0 , the proof of Lemma 4.11 below yields 

s m. 
l G I .. I w I . TT p . ]. s Vo . n 

n . 1 l. 1-

~- - 0, whence, by (4.12), 
l. 

for some constant v 0 . Only minor changes in the results and algorithms of 

Section 4.3 suffice to deal with this inequality instead of (4.7). 
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There is however an elementary way of treating this case, using congruences 

only, that is guaranteed to work. We define the following special 'syitl.llletric 

recurrences'. For a, as defined in Section 4.2» let d be the squarefree 

part of 8, and put 

n 
Q R ,... 

n 
- /3n 

/3 Q -

for d - -1 also 

' 
s 

n 
n 

.... Q 
n 

+ fJ ' 

T± _ ( n n 1 ± /(-1) )•Q + ( 1 + /(-1) )·/J , n 

and for d-= -3 also (with w - p -or p for p - ~-(l+/(-3))) 
2 

V (w) -n 
n 

w-a + - n 
W • /J 

for all n El . Note that 

' 

-U (w)·U (w)·R - 3-R3n, n n n 

We have the following lemma. We asst1me that ord (-6) 2:: 0 . 
p 

-

LEMMA 4.11. If 

exist: an r E IN
0 

(if d =- -1 ) 

has 

and a 

only finit:ely many nonzero p-adic digit:s, then t:here 

,r. E G:J such that: G ... ,r. • R , or G - ,c • S or 
n n-r n n-r ' 

d = -3 ) G - x;, • U (w) or ,c • V (w) , 
n n n 

+ 
G - ,c -T- or 

n n ' -
(if 

where w - p or p • Furcher, r - 0 if 8 < 0. 

Proof. By 

definition of 

ord (6) ~ 0 
p 

-fJ we infer 

r 
• 

-,\ 

µ - 0 

we have 6 =- r for some From the 

' 

hence ~ - (/J/a)r·(µ/,\) is a root of unity. It follows that we can write 

G 
n 

r ( n-r n-r ) A•a · a + ~-/J 

First let B - ±1 . Then 8 > 0 and 

GO - A·ar· ( 

Gl _, A·ar·( 

-r 
a: 

1-r 
a: ± 131-r J 

• 
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Note that 

r-1 r-1 ~r +Ar)_ (a +{3 > .... P 

r-1 ( a r-1 
- fJ ' 

r 
a -

( 2, a+ /J) - (1) or (2) , 

( a - /3 ) • 

By it follows that 
r 1 

±>.·a - 1, -
2 

or 1/(a-P) , respectively, 

and the assertion follows. 

Next suppose IBI ~ 2 . Then 

Since , we 

from 

have or. • {J I 
a I /Jr it 

r 
rJ•Q ± /Jr . By 

follows 

(A,B) - 1 we have 

- 0 . So 

the only 

(0.,/3) - then that - r 

G0 == ).- (1+77) E 7l. • The result now follows easily, since for 

possibilities are ±1 for all d, and moreover ±/(-1) 
-

±p, ±p if d = -3 . 

if d - -1 , and 

D 

In the cases of Lemma 4.11 

that the smallest index 

we can treat (4.1) as follows. Lemma 4.10 shows 

Gn grows 
l l 

n - g(m·p ) > 0 such that m·p I 
exponentially with l. Also, 

from Lemma 4.2 and Theorem 4.4. 

G grows exponentially with n , as follows 
n 
Hence G l grows doubly exponentially 

g(m·p ) 

with 
ml ms 

w·pl · · · · ·ps l. It follows that a - cannot keep up with G g(a) as 

the m. tend to infinity. It follows that if 
1 

there exists a prime q such that q I G 
g(a) 

ml ms 
pl ..... p s 

but q f a . 

{R }, (S } have special divisibility properties, such as 
n n 

Making 

a I G n 

R IR if and only if n Im, n m 

Sn I Skn for odd k, 

use o.f this kind of properties it can be proved that 

. This gives an upper bound for the solutions of 

those solutions a I G but q f G . We give two examples. n n 

is large enough, 

Now the sequences 

q I G whenever 
n 

( 4 . 1) , since for 

Let - 1, 

or. - 8 + 3-/7, ~ - 8 - 3-/7, A - µ = ~ 
2 

Gl - 8, w - 1, pl - 2, p2 - 11. Then 

, so 'J../ µ is a root of unity. Hence 

~l - ~2 - 0 . Note that we have a sequence of type 

• 

86 

• 

s 
n 

here. Ye have 



n -3 -2 -1 0 1 2 3 

G 2024 127 8 1 8 127 2024 
n 

G (mod 16) 8 -1 8 1 8 -1 8 
n 

G (mod 11) 0 6 8 1 8 6 0 
n 

112 ) G (mod 88 6 8 1 8 6 88 
n 

G (mod 23) 0 12 8 1 8 12 0 
n 

It follows by this table that ord2 (Gn) ~ 0 or 3 , according to n even or 

odd, and ord11 (G0
) > 0 if and only if n • 3 (mod 6) . This can also be 

derived from Lemma 4 .10, 

exactly for odd n ), 

which yields: if ord2 (G0
) ~ 1 (which happens 

then ord2 (G
0

) 3 + ord2 (n) - 3 . Further, if 

ord11 (G
0

) 

ord11 (G
0

) 

~ 1 (which 

1 + ord11 (n) 

happens exactly when n • 3 (mod 6) ) , then 

(e.g. ord11 (G33 ) - 2 , but ord11 (G11 ) - 0 ). 

Now, G3 I G3k holds for all odd k. Note that G3 has exactly 3 factors 

2, and 1 factor 11. But it is larger than 2 3 -11 - 88 . Hence there is 
• a prime q , distinct from 2 

m m 
and 11 , such that q I G 

n 
whenever 

11 ( G . Thus G - 2 1 -11 2 has no solutions with 0 , so that there 
n n 

remain only three solutions: n - -1, 0, 1 . Note that it is not necessary to 

know the value of q explicitly. In this case it is 23 , and indeed it is 

easy to show directly that 23 I G 
n 

if and only if n • 3 (mod 6) . 

Let; A .... 5, B - 13, GO - G1 ,_ 1 . Then f:.. -- -27 a - 1 + 3 • p , , 

A - (l+p)/3. Then A/A p is a root of unity, thus 6 - 0 . We will solve 

G 
n 

±2m . Th e sequence G 
n 

is related to the sequence 
-

H -n 
I-an+ A•an and to n -n 

R = ( a - a )/( a - a ) by G ·H ·R - R /3 . n n n 3n n 
Since R has nice divisibility properties~ 

n 
we have useful infor1nation on 

the 

n 

G 
n 

H 
n 

R n 

prime divisors of G and H . We find; 
n n 

0 

1 

1 

0 

1 2 3 

1 -8 -53 

4 7 -17 

1 5 12 

4 5 6 

-161 -116 1513 

-176 -659 -1007 

-5 -181 -840 

7 

9073 

3532 

-1847 

8 

25696 

30751 

1685 

Now, G • 0 (mod 16) if and only if n • 8 (mod 12) (Le11t1s1a 4. 10 yields: if 

n • 2 (mod 3) ), then 
n 

ord2 (Gn) ~ 2 (which happens 

ord2 (Gn) -

and 

2 + ord2(n) ), Hn • 0 

0 (mod 16) if and R • n 

exactly when 

(mod 16) if 

only if 

and only if n • 4 (mod 12) • 

n • 0 (mod 12) . Note that 
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G -H -R - R /3 - -24 -5-7·11·23 Considering the sequences modulo 5, 7, 11 
4 4 4 12 . 

and 23 we find that 24 -7-11·23 I G •H for all n • 0 (mod 4) , and in fact 
n n 

11 I G whenever 16 I G . Thus G - ±2m implies m S 3 . It follows 
n n n 

from Section 4.3 how to solve IG Is 8 . n 

We note that a process as described above can always be applied when dealing 

with a situation as in Lemma 4.11. This is guaranteed by Lemma 4.10. 

From now on we thus ass11me that ord (-0.) ~ 0 
p. 1 

for all i = 1, ... , s , and 

that infinitely many p.-adic digits 
l 

l. 

u. l 1, 
are nonzero. 

4.7. The reduction algorithm in the hyperbolic case. 

First we give the reduction algorithm (Algorithm P, see the next page) for 

the case /.l > 0 . It is based on Lemma 4. 10 and Corollary 4. 3 only. Let N 

be an upper bound for n for the solutions n. m1 , ... , m
5 

of ( 4. 1) . For 

example, N- as in Theorem 4.9. 

THEOREM 4.12. With all the above assumptions p Algorithm P 

* 
• t::erm1.nat:.es • 

m. > M. for 
1 1 

Equation (4.1) with 1.1 > 0 has no solutions with N s n < N , 

i - l, ... , s. 

Proof. Since the p.-adic expansion of ~-
1 i 

is asswned to be infinite, there 

exist r. 
l. 

with the required properties. It is clear that Si 1 :Sr.< s. Q, 

and that N. SN. l. 
J J-

So 

s. . ~ 0 , 
l.,J 

there is a • 
J 

s .. s s .. l l.,J l.,J-
such that N. :S 

J 

holds 

or 

J l. ]. J 

for all j ~ 1 . Since 

s .. == s .. l 
l,J l.,J-

i =- 1, ... , s. In the latter case, K. remains 
J 

.false. ; in both 

for all 

cases the 

algorithm terminates. We prove by induction on • 
J 

i - 1, ... , s, and n < N. hold for all j . For 

that m. S g. + s .. 
l. :L 1,J 

j - 0, it is clear 

for 

that 

n < 
J 

. Suppose n < N. 1 J-
for some j ~ 1 . Suppose there exists an i 

such that 

hence, by 

s. . 
l., J 

. From Lemma 4.10 we have 

s. . 
1,J l 
L u. I ·p ~ 

l-0 1.,'tl 

- g. ;?; 
l. 

s. . 

s .. 
l. 'J 

+ 1 , 

l., J p ~ N. 1 , J-
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Input; 

Output; 

a,~, A,µ, w, p 1 , 

new, reduced upper 

* and N for n. 

... , p , N . 
s 

bounds M1 for for 

(i) (initialization) Choose an ~ 0 such that 

i -1, ... , s, 

-n 
:- Ill - fµI · la/Pl O; 

g :- ord (.X.) 
1.
• 

p. 
1 

+ ord (log (a/P)) p. p. . 
l l. 

3/2 if pi -
h .. ·- ord (.X.) + 1 if pi -• 

l. p. 
1 

1/2 if p. > -1 

s g. 
g :~ 7 / lwl · n p.

1
; No:~ N; 

. 1 l. 1-

2 

3 

5 

for • 1, 1. - s • 
• • • 7 , 

(ii) (computation of the 

p.-adic digits u. l 

{)_ 's) 
l. 

Compute for i - 1, ... , s the first 

1. l., 

{) -
i 

of 

where r. 
l. 

is so large that 

QO 

l L u. l·p. ' 
l=O 1.' . 1 

u. "' 0 ; 
l., r. 

l. 

(iii) (further initialization, start outer loop) s - 0 l. , 
:- r. + 1 

l. 

(iv) 

(v) 

i ..... 1, s · J0 

·- 1 ,· • • • t ' • 

(start inner loop) i :

(computation of the new 

1; Kj :~ ,false. ; 

bounds for m. , ter1ninate 
l. 

s .. :- min { s E ~o I 
1., J 

s > N d p. _ . 1 an 
l J- u. "' 0 } ; 

1. ts 
if s. . < s. . l l,J 1,J-

then Kj :- .true. ; 

if i < s 

then i :- i + 1 ; goto (v) ; 

.. inner 

for 

loop) 

(vi) ( computation of the new bound for n , ter1ninate outer loop) 
s 

( I s. . · log p. - log g ) /log I a I ) ; 
. 1 1.,J l. 
1.-

if Nj > no and K. - J 
then • :- j + 1 g,oto (iv) J • • , , 

* else N . ... max ( N. ' no ) • 
• , 

J 
M. ( h. ' ) for • 1, !)top. ·- max g. + s. 1. - s • 

• • .. . . ' , 
l. l. l. l., J 

Figure.6. ALGORITHM P. (reduces given upper bounds for (4.1) if ~ > 0 ). 
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which contradicts our asst.1mption. Thus, mi :S gi + si, j 

Then from Corollary 4.3 it follows that 

for i - l 1 ••• , s . 

n< 

hence n < N .. 
J 

s 
l (g.+s .. )·log pi - log(~/lwl) /loglal , 

i-1 l l.,J 

s. . 

D 

In general, one expects that 1,J p. will not be much larger than 
]. 

N. , i.e. not too many consecutive p.-adic digits of will be zero. Then 
J l 

NJ is about as large as log Nj-l . In practice, the algorithm will often 

• terminate in three or four steps, near to the 

computation time is polynomial in s ' the bottleneck 

largest solution. 

of the algorithm is 

The 

the 

computation of the p.-adic logarithms. 
l. 

Remark 2. Petho [ 1985] gives for s - l a different reduction algorithm. 

For a prime pi 

smallest index 

he computes the function 

n ~ 0 such that G ,- 0 
n 

g(u) 

and 

• defined for u E IN as the 

p ':1 I G . Note that if the 
1. n 

p.-adic limit 
l. 

lim g(u) 
U)oO 

exists, then by Lemma 4.10 it is equal to ,(}. . 
]. 

00 
Remark 3. If B - ±1 (hence ~ > 0 ), we can extend the sequence 

to negative in,dices by the recursion formula 

{G } 0 n n== 

(cf. (4.3)). Then (4.5) is true for n < 0 also. We can solve equation (4.1) 

with n E Z not necessarily nonnegative, by applying Algorithm P twice: once 

for 

Note 

00 

{C} 0 , and once for the sequence n n-
tha t G ~ - B n · (µ • a: n+). • /Jn) , and 

log (-µ/A) log (-A/µ) 
pi p. 

defined by G' 
n 

G -n • 

,f}, ,... - ~---- + l .s:, i log ( a://3) - =--10-g--( a_/_fJ_)_ - -vi for i == 1, ... , s. 
Pi pi 

Now, instead of applying Algorithm P twice, we can modify it, so that it 

works for all n E Z , as follows. Lemmas 4. 8 and 4.10 remain correct if we 

replace n by 

replaced by 

I nl . In Theorem 4. 9 the lower bound for 

n0 > max ( 21 lloglµ/AI l/log}a:/,BI, llogj.l./µI I/logia/Pl ) , 

and has to be replaced by 
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-n -n 0 0 
'Y - min ( I A I - Iµ I · I a/ .8 I , Iµ I - I A I · I a:/ /3 I ) • 

Similar modifications should be made in step (i) of Algorithm P. Further, in 

step (ii), r 1 should be chosen so large that 

if 2 then 
ri 

NO and "' 0 1 p. "' p. ~ u. u F p • -p ' l. l. i,ri i,r1 
r -1 

else i > N and u ~ u • 
pi - 0 , 

i,r1 i,r
1
-l 

and similar modifications have to be made in step (v) for s. j . 'With these 
l. ' 

changes, Theorem 4.12 remains true with n replaced by In I . 

We conclude this section with an example. 

Example. Let 

a - 3 + 2 - ✓2, 

A=- 6, B - 1, 

/3 - 3 - 2- ✓2, 

G0 ~ 1, G1 - 4, w - 1, pl - 2~ p2 - 11. Then 

A - ( 1 + 2·/2 )/4-/2, µ - ( -1 + 2-/2 )/4·/2, 

and ~ = 32 . With 60 no - e we find . With the 

modifications 

26 c6 < 2.62x10 

of Remark 3 above we have -y > 0.323, 

26 , c5 · c6 < 4. 62x10 . Hence all solutions of G 
n 

cs< 1.76, 
m m 

- 2 1 -11 2 

satisfy lnl 26 26 < 4.62xl0 , max(m1 ,m2 ) < 2.62xl0 . We perform the reduction 

step. (We • write the p-adic number 
00 l 
I u ·p 

l-0 l 
as Algorithm P step by 

0.u0u 1u 2 .... , and if 

symbols A, B, C, ... 

p 

) . 

> 10 we denote the digits larger than 9 by the 

(i) n0 - 2,,.., > 0.303, g1 = o, g 1 - 1, g > 0.0275, 

1 26 
hl - -1, h2 - 2' No - 4.62x10 . 

(ii) 61 - 0.10111 10111 01000 11100 10100 01001 10001 10010 

(iii) 

00001 11101 01000 10000 01001 10011 10101 01101 

11100 01011 00001 11010 00011 01001 01010 00101 

10001 01011 00000 11001 01011 11101 10100 01011 

001. . . . , 

~2 - 0.A9359 05530 7330A 1A223 96230 3A006 A3366 83368 

8270 .... , 

so (since 

(since 
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(v)-(vi) 

(v)-(vi) 

(v)-(vi) 

S - 10 s - 2 K2 - .true., N2 < 8.7 : 1,2 ' 2,2 ' - . 

,true., N3 < 

6, s 2 4 - 1, K4 - .false., N4 < 
' 

5.8 ; 

5.8 . 

Hence lnl <_ 5 m < 6 , 1 - ' m2 ~ 2 . We have 

n -5 -4 -3 -2 -1 0 l 2 3 

G 
n 

2174 373 64 11 2 1 4 23 134 

So there are 5 solutions: with n- -3 -2 ' ' 
-1 t 0. 1 . 

4.8. The reduction algorithm in the elliptic case. 

4 5 

781 4552 

We now present an algorithm to reduce upper bounds for the solutions of (4.1) 

in the case A< 0. The idea is to apply alternatingly Algorithms P and one 

of Hand I. Let N be an upper bound for n, for example 

Theorem 4.9. 

In:Qut: 

Output; 

a,~, A,µ, w, p 1 , 

new, reduced upper 

i - 1, ... , s . 

... , p , N . 
s * 

bounds N for n , and 

(i) (initialization) N0 :- [N] ; j := 1; 

g ·-• • 
1. 

h. ·- ord (A) • 
l. p. 

l. 

+ ord (log (o/fi)) 
p. p. 

l l 

3/2 if 2 p. .... 
1. 

+ 1 if p . 3 
1. 

1/2 if p. > 5 -1. 

for • 
1. -

M. 
1 

1, 

for 

- . . , 

n = C 
7 

s 

m. 
]_ 

• , 

for 

(ii) (computation of the 

first r. p.-adic 
l l. 

tJ.'s, 
l. 

cp, lp ) Compute for 

of 

i-1, ... , s 

• • • • • • • • • 

where r. 
1. 

fJ • 
l. 

digits u. , 
l , 'l, 

). 
-log (=-) /log -) ,... 

pi µ pi /3 

is so large that: 
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l I u .. ,·p. , 
l==O 1.'"" 1 

and u. 
l.' r. 

1. 

fract::ion 

compute 

. . . ] 

• as 1.n 

• • • • • • • • • 



• • • • • • • • • • 

(iii) 

(iv) 

with Che convergen cs pi/qi for • 1, lo where lo l. - . . . ' , 
large t:hat: ql, -1 :S NO< ql, if 1P - 0 • 

ql > 4·N and , 
0 0 0 0 

II qt II > 2·No/ql if 1P '"' 0 and such lo be found • can 1.n a 
0 0 

reasonable amount of • > 4·N ot:herwise; time, ql 0 0 
(one step of Algorithm P) For • 

1 ' l. - - . . ' s put: 
M. ( h. ' gi + 

• { s E INQ I s > N and ,. 0 :-= max min u . • p. - . 1 l. 'J l. 1. J- l., s 
(one step of Algorithm H 

if l/J - 0 

or I) 

s M. • 
V :-= lwl. n p. l. ,J ; 

. 1 l. 1.-

} 

choose n0 ~ 2/log B such that 

compute the largest integer N. 

no/2 
B /no 2: v/2· l,ul ; 

N./2 J 

N j : = max ( n 0 , N j ) ; 

if N. < N. 1 then compute 
J J- l. 

J 

else if 

else compute 

compute 

such that 

wit:h ql.-1 s 
J 

(iii) ; 

N. < 
J 

, with 

then print an appropriace message; 

if 

N. :- [ 2 · log ( ql · v /Iµ I) /log BJ ; 
J j-1 

N. < N. l 
J J-
then comput:e the minimal 

• 
l.S 

) 

l. < l. 1 such that 
J J-

and 11qt. ·v,II > 2-Nj/ql. (if such 

so 

• , 

l. 
J J J 

does not:: exist::, choose Che minimal lj such that:: 

ql > 4-N. ) ; j :- j + 1; goto (iii) ; 
j J 

(v) (termination) * N : =- N . 1 ; M. : - M . . for i ... 1 , . _ . , s ; stop . J- 1. 1,J 

Figure 7. ALGORITM C. (reduces upper bounds for (4.1) in the case I::..< 0 ). 
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The following theorem now follows at once from the proofs of Lemmas 4.6, 4.7 

and Theorem 4.12. 

THEOREM 4 .13. Algorithm C terminates. Equation (4 .1) wit:h A < 0 has no 

* solutions with N < n < N and m1 > Mi for i - 1, ... , s , apart: from 

those spott:ed by the algoritm. 

We conclude this section with an example. 

Ex.?tnple :. Let A - 1, B - 2, GO - 2, Gl 

( 2 + /-7 )//-7. Let w - ±1, 

- 3 then 8 - -7 , ' a - ( 1 + /-7 )/2 

and ). """ p1 - 3, p2 - 7 . We have with n0 - 2 

the following results: 
22 max(C8 1 ,c8 2) < 2.30xl0 

16 29 30 c4 < 6.40xl0 , c3 < 9.14xlO , c7 < 7.42xl0 , 

, , 
Theorem 4.9 we may choose 

. Further, g1 - 1, g2 - 0, hl - 1, h 2 - 0 . By 
30 N0 = 7.42xl0 . We have 

~ - ( ~ - arctan(/7/3) ) / 2w 

=- [ 0, 2, 1, l, 2, 16, 6, 1, 2, 2, 13, 

1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 

1, 1, 1, 9, 2, 1, 2, 1, 7, 1, 

6,269, 4, 3, 1, 1, 50, 2, 1, 6, 

1, 1, 2, 1, 1, 7, 1, 61, 1, 12, 

3, 7, 4, 7, 3,121, 1, 21, 2, l, 7, ... ] , 

~ - ( ~ - arctan(4•/7/3) ) / 2~ 

- 0.29396 28336 99645 40267 89566 60520 01908 06203 ... , 

61 - 0.20010 12210 00011 02102 00211 00222 02220 12021 

10020 20202 21102 00121 01000 01002 11100 20122 

11111 22202 21021 02212 2200 ... , 

~2 - 0.32542 12042 43561 34020 61561 13452 10116 33152 

25336 45044 11254 55033 .... 

Now we choose t 0 = 61, since 

q61 = 142 51183 31142 44361 19375 51238 81743 > 4-N0 , 

and llq61 ·lfall = o. 244s1 ... > 2·N0/q61 = 0.104... . We have 

find M2 1 - 37 , and we 
' 

N1 - 637 . Next we choose t 1 = 

q 9 = 10102 > 4x637 

Ml 2 = 7, M2 2 = 4 
' ' 

q6 - 1291 > 4x74 , 

and llq9 ·l/>II = o.3s14s ... > 2x631;10102 . 

, and we find N2 = 74 . Next we choose t 2 -

and llq6 ·v,lj = 0.49398 > 2x74/1291 . We have 
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and we find N3 - 60 . In the next step we find no improvement. 

Hence n < 60, m1 ~ 6, m2 ~ 3 . It is a matter 

to check that there are only the following 6 
2 

of straightforward computation 

Gl - 3, G2 - -1, G3 - -7, G5 - 3 , G7 - 1, G17 

solutions 

- 32.72 . 

4.9. The generalized Ramanujan-Nagell equation. 

of G 
n 

m m 
- ±3 1. 7 2 : 

The most interesting application of the reduction algorithms of the preceding 

section seems to be the solution of the generalized Ramanujan-Nagell equation 

(4.2). Let k be a nonzero integer, and let p 1 , ... , p
5 

be distinct prime 

numbers. Then we ask for all nonnegative integers 

x2 + k -
s z. 

IT P-
1 

· . 1 1. 1.-

z 
s 

with 

First note that 0 whenever -k • quadratic nonresidue we z. ... l.S a 
1. 

(mod p .. ) Thus that this - not the for all " Let I k • we assume l.S case 1. • p . 
1. 1. 

for • 1, t and % k for • t+l, Let ord (k) be odd l. p. l. - s . . . , . . . , • 
l. pi 

for • 1, and for • r+l, t Dividing by large enough l. r even 1. -. . .. , . . . _, • 

powers of p .. 
l. 

for i - 1, . . . , t , ( 4. 2) reduces to a finite ntimher of 
• equations 

with for 

s z~ 
TT P-

1 

i ..... r+l 1. 

i .... 1 , . . . , s , and n
0 

composed of 

and squarefree. We distinguish between the 
s-r 

2 combinations of z~ 
1. 

even for i - r+l, ... , s. Suppose that 

and even for • 
1 u+ 1 , ... , s . Put 

y -
u (z!-1)/2 
ll P. i 

. 1 l. 1-r+ 

Then 1 from (4.13), 

u 

u 
n p. 

. 1 1 i-r+ 

s z~/2 
. n p.l. 

. 1 1 1==u+ 
• 

z~ 
l. 

is odd for 

Put D - Do· IT p .. Then (4.14) and (4.15) lead to 
. 1 1. 1.-r+ 
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(4.13) 

only, 

odd or 

... , u 

(4.14) 

(4.15) 



with 

2 
V -

2 D·w - k 2 
s m. 

V - n P11 
i-r+l 

u 
V - y· n pi , 

i-r+l 

2 2 v - D-w - k 2 
s m. 

w - n p.l. 
. 1 l 1-r+ 

k .. 
2 

u 
k1 · TT p. 

. 1 1 1-r+ 

( 4 .16) 

, and also to 

(4.17) 

with v - n0 -x1 , w - y , k 2 =- -k1 •Do . We proceed with either (4.16) or 

(4.17), which is the most convenient (e.g. the one with the smaller lk
2

f ). 

If D - 1 , then (4.16) and (4.17) are trivial. So assume D > 1 . Let f be 

the smallest unit in l + /D·l with e > 1 . It is well known that the 

solutions v I w of v
2 

- D-w
2 

- k fall apart into a finite number of 2 
classes of associated solutions. Let there be T such classes, and choose 

for ,,. - 1, ... , T in the r th class the solution v 
0

, 
1" ' 

w 
,,. '0 

such that 

2 'Yt """ v O + w 0 -/D > 1 is minimal. Then all solutions of 
T, r, V -

are given by v - ±v , w - ±w , with 
r,n r,n 

V - ( r, n 

w - ( 
T, Il 

for n El 

n 
'Y • e 

1' 

n 
.., • € ,,. 

<XI 

00 
{ w } 

, where -y' - v - w • /D . That is, { v } 
t ,,. , 0 r , 0 r , n n==-a> 

are linear binary recurrence sequences. Now, ( 4. 16) and r,n n=--«> 
reduce to T equations of type (4.1). If k

2 
.... 1 , then T =- 1, 

2 k2 I 2·D, k2 ~ 1, then it is easy to prove that 7
7 

-

-1 
1' i - e . If 

' 2 - I k I · -l 1' t 2 e , so that 

v - / I k2 I · .,, 'n + /2 . 

w - / I k2 I · r,n /2·/D. 

( 4. 18) 

and 

(4.17) 

In both cases, (4.16) and (4.17) can be solved by elementary means (see 

Section 4.6, of related interest are St0rmer [1897]
1 Mahler [1935], Lehmer 

[1964], Rumsey and Posner [1964] and Mignotte (1985]). If 

apply the reduction algorithm to one of the equations 
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w -,. , n 

s m1 
TT p .. Note that 

. 1 1 i-r+ 
n is allowed to be negative, since B - ±1 , so 

we can use the modified algorithm of Remark 3, Section 4.7. 

Thus we have a procedure for solving (4.2) completely. It is well known how 

the unit and the minimal solutions v 
0

, w O for r - 1, ... , T can 
1"' 1', 

be computed by the continued fraction algorithm for /D. We conclude this 

section with an example. It extends the result of Nagell [1948] (also proved 

by many others) on the original Ramanujan-Nagell equation x2 + 7 - 2z . 

THEOREM 4 .14. The only nonnegative integers x such chat x2 + 7 has no 

prime divisors larger than 20 are the 16 in the following table. 

X X 
2 

X + 7 X 
2 

X + 7 

0 7 7 56 23 -7 31 968 - 23 -112 

1 8 23 9 88 23 -11 35 1232 -
4 - 2 ·7·11 

2 11 11 128 - 27 53 2816 - 28 -11 -
3 16 24 13 176 24 -11 75 5632 9 - .... 2 ·11 

5 32 25 21 448 2 6 .7 181 32768 - 15 - 2 

273 74536 =- 23 -1-113 

~~oof. Since -7 is a quadratic nonresidue modulo 3, 5 1 13, 17 and 19 , 

we 
• in 

have 
2 

X 

only 

+ 7 ' 

the primes 2, 7 and 11 left. Only one factor 

thus we have to solve the two equations 

z z 
2 1 -11 2 , 

z z 
7-2 1 -11 2 . 

7 can occur 

(4.19) 

(4.20) 

Equation (4. 20) can be solved in an elementary way. We distinguish four 

cases, each leading to an equation of the type 

- C 

with c I 2-D, and either y or z composed of factors 2 and 11 only. 

We have: 

(i) 
z 1/2 z 2/2 

x/7, 1, D .. 7 zl even, z2 even, y 2 · 11 z - C == • , , 
(zl+l)/2 Zz/2 

(ii) odd, z - x/7, 2, D 14 zl z2 even, y 2 -11 C - - • 
' ' 
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z1/2 (z2-l)/2 
C - -7 D _, 77 • 

(iii) odd, y - x, z - 2 · 11 , , 
zl even, z2 

, 
(z -1)/2 (z2-l)/2 

(iv) odd, odd, 2 l -11 C .. -7 D - 154 y - x, z - , • 
zl z2 

, 

In the first example of Section 4.5 we have worked out case (i). We leave the 

other cases to the reader. 

Equation (4.19) can be solved by the reduction algorithm. Again we have four 

cases, each leading to an equation of the type 

2 2 
y - D·z - c 

with z composed of factors 2 and 11 only. Ye have 

z1/2 z 2/2 
-7 D - 1 (i) 2 · 11 , C ..... • 

zl even, z2 even, y - x, z - ' 
, 

(z1-l)/2 z 2/2 
-7, D - 2 (ii) odd, 2 -11 C = • 

zl z2 even, y .... x, z - ' ' 
z1/2 (z 2-l)/2 

(iii) odd, -7, D - 11 zl y - x, z .... 2 • 11 I C == • even, z2 ' 
(z1-l)/2 (z 2-l)/2 

(iv) odd, odd, -7, D - 22 zl z2 y - x, z - 2 · 11 ' 
C = • 

Case (i) is trivial. The other three cases each lead to one equation of type 

(4.1). In the example in Section 4.7 we have worked out case (ii). With the 

following data the reader should be able to perform Algorithm P by hand for 

the cases (iii) and (iv), thus completing the proof. In these cases N < 1030 

is a correct upper bound. 

Case (iii): a - 10 + 3·/11, A - ( 2 + /11 )/2-/11 , 

Case (iv): 

~l - 0.10011 01000 00110 10100 00110 10110 01001 11110 

11011 10010 00001 10110 10111 10100 00110 01101 

01010 10010 11101 11001 10000 10010 01010 11011 

00010 00111 01110 00101 01101 01111 10101 11110 10 .... , 

62 • 0.23075 76425 39004 26090 A92Al 03757 07314 58414 7A238 ... . 

a - 197 + 42·/22 , A - ( 9 + 2·/22 )/2·/22 , 

61 - 0.11101 01101 01110 01010 10111 10001 00100 00011 

10000 00110 10101 01100 01101 01111 01101 10101 

01011 10100 01100 11101 10011 00011 00010 11110 

101010110010011 11111 01001 01110 00000 01110 011 .... , 

6 2 - 0.6A001 68184 22921 902AO 724A4 16769 45650 16482 5A6AA .... . 
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:Bemarks 1 1. The computation • for the above proof was less than 2 time sec. , 

2. Let ~(X,Y) 2 + b-X•Y + 2 
be quadratic form with integral - a·X c•Y a 

coefficients, and 6. - b2 - 4·a•c positive or negative. Let k be a nonzero 

integer, and p p distinct prime numbers. Then we note that 1' ... ' s 

2 (2-a-X+b·Y) 

so that the diophantine equations 

~(X,k) -
s z 1 n p. 

. 1 ]_ 1.-
' 

2 
- l:l.·Y ' 

- k 

in integers X si4 0 and , can both be solved by our method. 
• 

• 

4 .10. A mixed q11adratic-exponential equation. 

In this • section we give an application of Algorithm C to the following 

diophantine equation. Let 

2 ~(X,Y) - a·X + b·X·Y 

be a quadratic form with integral coefficients, such that D .... 2 
b - 4•a•c • 

l. s 

negative. Let q, v, w be nonzero integers, and p 1 , ... , p
5 

distinct prime 

numbers. Consider the equation 

s m .. 
~(X,w• n P11.) -

i-1 

n 
v•q 

in integers X, and n, m1 , ... , m
5 

E ~O. 

-
Let /J, /J be the roots of 

0(/D) . 

equation 

There exists a ,r E 

- h (1r)·(1r) ..... (q) . 

~ ( x , 1) == 0 . Let h 

0 ( /D) such that we 

Put n = n 1 + h-n2 , 

(4.21) 

be the class number of 

have the principal ideal 

with 0 .s n1 < h . Then 
n 

v·q is equivalent to finitely many ideal equations 

- , 

with (o-)•(u) 
- nl 

(a•v• q ) . Hence we have the equations in algebraic n11mbers 

a·X a·/3·Y 
n2 

a•X a·/3·Y 
_n2 

- - -y. 7f - ..., • 7f 

n2 , n2 ' - - -a•X a·/3·Y a·X a·/3·Y - - -y. 7f - - ...., . ,r 
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where is composed of a, units, and common divisors of a·X - a•fi·Y and 
-a•X - a·fJ·Y. Note that there are only finitely many choices for 

possible. Thus, (4. 21) is equivalent to a finite ntimber of equations 

s mi 
a-(~-/J)•w• TI p. 

. 1 1. 

or, if we put 

1-

-
). - 7 /a· (/3-/3) 

s m. 
- W· n p l. • 

i-1 i 

and , 

(4.22) 

Here, is a recurrence sequence with negative discriminant. So 

(4.22) is of type (4.1), and can thus be solved by the reduction algorithm of 

Section 4.8. 

Before giving an example we remark that (4.21) with D > 0 is not solvable 

with the methods of this chapter. This is due to the fact that in C'J (/D) 

with D > 0 there are infinitely many units, hence infinitely many 

possibilities Another generalization of equation (4.21) -l.S to 

replace n 
q 

for 1 . 
t n. 

by TT q.1 
. 1 l. 

. This problem is also not solvable by the method of 
1.-

this chapter, since it does not lead to a binary recurrence sequence if 

t ~ 2 . These problems can however be dealt with by using multi-dimensional 

approximation methods, as presented in Chapter 3 and applied in Chapter 7. 

Ye finally present an example. 

THEOREM 4.15. The equation 

x2 - n = 11·2 

in XE Z, n, m1 , m2 E ~O has only the following 24 solucions: 

n 

1 

1 

2 

3 

3 

4 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

-1 
' 

-4 
' 

-6 
' 

2' 

-7 
' 

-6 
' 

X 

4 

5 

7 

5 

10 

13 

n 

5 

6 

7 

7 

11 

17 

100 

2 

0 

0 

3 

1 

2 

0 

0 

0 

0 

1 

2 

X 

-10 19 , 

-26 27 , 

-37 38 , 

2, 25 

-137, 158 

-829, 1270 



Proof. Put p ~ ( 1 + /-7 )/2 . Then 

2 2 -
X - X·Y + 2-Y - (X-P·Y)·(X-P·Y) . 

Note that 0(/-7) has class number 1 , and that 

Suppose 

2 - 1 + /-7 
2 

-, IX - /J·Y 

• 
1 - /-7 

2 
, 11 - ( 2 + ✓-7 )·( 2 - ✓-7) . 

and -, IX - P·Y. Then -, I Cfi-f:J> -Y - - • 

On the other hand, I 11·2n. It follows that -, - ±1 , hence X - P·Y and 
-

X - P·Y are coprime. Thus we have two possibilities: 

X - P·Y ~ ± ( 2 ± ✓-7 
' 

X - P·Y - ± ( 2 ✓-7 , 

in each equation the 2nd and 3rd ± being independent. Hence we have to 

solve 

so that 

for j - 1, 2 , 

G( 2 ) - -1 . Note that 
1 for 

i - 1, 2 , and v,(l) - -¢( 2 ) . For j .... 1 we have solved ( 4. 22) in the 

example of Section 4.8. It is left to the reader to solve (4.22) for j - 2 . 

This can be done with the nwnerical data given for the case j - 1. □ 

Remark. The computation time for the above proof was less than 3 sec. 

101 



CHAPTER 5. THE INEQUALITY O<x-v< 6 y IN S-INTEGERS .. 

The results of this chapter have been published in de Weger [1987]. 

5.1. Introduction. 

Let S be the set of all positive integers composed of primes from a fixed 

finite set { p1 , ... , ps} , where s ~ 2 , and let 6 E (0,1) . In this 

chapter we study the diophantine inequality 

0 < < Y
s 

X - y (5.1) 

in x, y ES. We give explicit upper bounds for the solutions, and we show 

how the algorithms for homogeneous, one- and multi-dimensional diophantine 

approximation in the real case, that were presented in Chapter 3, can be used 

for finding al 1 solutions of ( 5. 1) for any set of parameters p1 , ... , p s • 

. For s - 2 the continued fraction method (cf. Section 3.2) is used. For 

s ~ 3 we use the L3-algorithm for reducing upper bounds (cf. Section 3.7). 

Tijdeman [1973] (see also Shorey and Tijdeman [1986], Theorem 1.1) showed 

that there exists a computable number c, depending on max(p.) 
l. 

only, such 

that for all x, y ES with x > y ~ 3 , 

x - y > y/(log y)c • 

Thus 1 for any solution of (5 .1) a bound for x, y follows. St0rmer [ 18971 

showed how to solve the • equation 

elementary method (see also Mahler 

x - y = k with k === 1 , 2 with an 

[1935], Lehmer [1964]). Our method can 

solve this equation for arbitrary k E '7l. • For the one-dimensional case 

s = 2 , Ellison [1971b] has proved the following result: for all but finitely 

many explicitly given exceptions, I 2x - 3Y I > exp(x· (log 2 - 1/10)) for 

all x, y E IN . 

Tij deman [ 1982]) 

Cij souw, Korlaar and Tij deman ( appendix to 

have found all the solutions x, y EN of the 

S troeker and 

inequality 

I PX - qy I 0 •X 
< p 

for all primes p, q with p < q < 20 , and with 
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these results for many more values of p, q and with 6 - 0.9 . Further, we 

determine all the solutions of (5.1) for the multi-dimensional case s - 6 , 
1 ( pl , ... , p 6 } = { 2 , 3 , 5 , 7 , 11 , 13 } with o .... 2 . 

In Section 5.2 we derive upper bounds for the solutions of (5.1). In Sections 

5.3 and 5.4 we give a method for reducing such upper bounds in the one- and 

multi-dimensional cases respectively, and work them out explicitly for some 

examples. Section 5. 5 contains tables with n1..1merical data. 

5.2. Upper bounds for the solutions. 

We assume that the primes are ordered as P 1 < ... < p s . For a solution 

x, y of (5 .1), the finitely many z E IN for which Z•X, z·y is also a 

solution of (5 .1) can be found without any difficulty. Therefore we may 

assume that (x,y) = 1 . Put 

Put 

X = max ord (x·y) . 
l:si<s pi 

THEOREM 5.1. The solutions of (5.1) satisfy X < c2 . 

Proof. If 1 
y ::S -·x , then 

2 

0 
y > X 

• 

1 y > -·X. 
2 

Put A - log(x/y) 

0 <A< x/y - 1 < 

. Then 

-(1-o) y 

By X - ( ) X b . max x,y > p 1 , we o tain 

1-5 -(1-S)·X 0 <A< 2 ·pl . 

- y ~ y, which contradicts y ~ 1. So 

(5.2) 

(5.3) 

We apply Waldschmidt's result, Lemma 2.4, to A, with n - s, q - 2. Note 

that the 'independence condition' holds. Since 

p. ~ 3 we have V. ~ log p. for i ~ 2 . Thus 
i i i 
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and if 

a. > -2 
lC+l ' 

(5.9) 

(5.10) 

expansions and the convergents of all numbers • 1.n the 

mentioned ranges for 
19 

q l ~ l.97xl0 < q n- n 

P 1 , P 2 exactly up to the index n such that 

(cf. Section 2. 5 for details of the computational 

method). Note that n < 93 . We checked all convergents for (5. 9), and 

subsequently for (5 .10). It is possible, though unlikely, that there is a 

convergent that satisfies ( 5. 9) but fails ( 5 .10). We met only one such a 

case: p 1 .... 15, Pz = 23 , with log 15/log 23 == [ 0, 1, 6, 2, 1, 51, ... ] , 

so that a 5 - 51, r 4 - 19, q 4 == 22 . Now, (5.9) holds but (5.10) fails, since 

152 · 2 -1 ·(log 19)/20.l = [ 1 3 22 51.4 ... E 5 ,5) . 

We have in this 

is true. But 

case A= 0.002714 ... < 0.002771 ... - 2°· 1 .1s-2 · 2 , so (5.3) 

( 5 .1) is not 
22 19 19 

log(lS -23 )/log(23 ) - 0.9008 ... > o , so 

true. This example illustrates that (5.3) is weaker than (5.1). Therefore all 

found solutions of (5. 3) have been checked for (5 .1) as well. The proof is 

now completed by the details of the computations, which we omit here. □ 

Remarks. 1. Theorem 5.2(a) is used in the proof of Theorem 6.2. 

2. The computations for the proof of Theorem 5. 2 took 35 sec. 

5.4. Reducing the upper bounds in the multi-dimensional case. 

, 

Now let s ~ 3 . Put x. 
1 

ord (x/y) 
p. 

for i - 1, ... , s . Then 
1. 

X - maxlx. J , and 
1 

s 
A == I x. · log p _ . 

. 1 1. 1. 1-

Note that (5. 3) is of the form (3 .1). Hence by Theorem 5 .1 we can use the 

method described in Section 3. 7 for solving (5. 3). We shall do so for the 

example s - 6 ' 
p 

6 
} - { 2 , 3 , 5 , 7 , 11, 13 } ( the first • 

S1.X 

primes), and l - -
2 

• 

106 



We use small refinements of Lemmas 3.7 and 3.8, devised specially for this 

application, as follows. Let notation be as in Section 3.7. 

LEMMA 5.3. Let x1 be a positive number such that 

Then (5.3) has no solutions with for i - 1, ... , s 

LEMMA 5.4. Suppose that 

s 
li\l > I Ix.I . 

. 1 l. 1.-

Then 

Ix. I < log 
l. 

/(1-o)·log p .. 
l. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Remark. Lemmas 5. 3 and 5. 4 are refinements of Lemma 3. 8, in that they 

differentiate between the different x .. Moreover, Lemma 5.3 has slightly 
l. 

sharper condition and conclusion than Lemma 3.7. 

f,roofs .. (of Lemmas 5. 3 and 5 .4). 

3.8, using (5.2) and 

Analogous to the proofs of Lemmas 3. 7 and 

Ix· I 1/2 
1. ( ) -- x < 2· IAI- . p. ::s; max x,y 

1 

THEOREM 5.5. The diophantine inequality 

0 < X - y < /y 

• 
in x, y ES=- { 

x6 
· ... · 13 I xi E IN 0 for 

(x,y) ~ 1 has exactly 605 solutions. Among those, 

The remaining 34 solutions are listed in Table III. 
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□ 
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Remark. The upper bounds for ord (x·y) 
p. 

given for the 571 solutions not 

1 

listed in Table III are chosen such that it takes a reasonable amount of 

computer time to find them all by a brute force method. The list of all 605 

solutions is too extensive to be reproduced here. 

Proof. By the example at the end of Section 5.2 we know that X < x0 for 

method described in Section 3. 7. Take 
6 

• 

c - 10240 (which is chosen so that it is somewhat larger than x0 ), and 

1 . We applied the L3 -algorithm to the corresponding lattice 
39 

r 1 , and 

found a reduced basis C C w1.·th (_c
1

1 > 9.40xl0 . By Lemma 3.4, 
-1' ... ' -6 

39 
l.66xl0 . 

This is 
2 2 37 

larger than /(4•6 +5·1 )-x0 - 1.64 ... xlO , so (5 .11) holds with 

By Lemma 5.3 we find 

240 36 l X < log(lO -/2/6·1.35x10 )/2 -log 2 < 1350.4, 

so X ~ 1350. Next we choose 

basis of the corresponding lattice r 2 was computed, 
5 4 1£

1
1 > 2.7lxl0 . Hence l(r2 ) > 4.79xl0 7 

/149·1350 = 1.64 ... xl04 . Hence Lemma 5.3 yields 

and it follows that 

187 1 

which 

for all • 1. == 

Next we choose C - 1012 , 

fAI > 106 then (5.13) holds 

'"'f - 10
4 

. 

by (5.15), 

We use Lemma 5. 4 

and Lemma 5.4 yields 

and we 

larger 

1, ... , 6 

found 

than 

(5.15) 

as follows. If 

(5.16) 

All 

I .x I 
vectors 

< 106 
in the corresponding lattice r3 

have been computed with the Fincke and 

satisfying (5.15) 

Pohst algorithm, 

and 

cf. 

Section 3. 6. We omit details. We found that there exist only two such 

vectors, but they do not correspond to solutions of (5.1). Hence all 

solutions of (5 .1) satisfy (5 .16). Next, we choose C = 108 , --y =- 104 . If 

108 



Ill> Sxl05 then Lemma 5.4 yields 

(5.17) 

There are 143 vectors 

and IAI ~ 5xl05 . Of 

with 

in the corresponding lattice r
4 satisfying (5.16) 

them, 2 correspond to solutions of (4.1), namely those 

( 7, -5, 3, -9, -3, 8) , - 257674 

(x1 , ... ,x6 ) ~ (-10, 10, -6, 5, -6, 4) , A= 144817 . 

Both also satisfy (5.17). Hence all solutions of (5.1) satisfy (5.17). At 

this point it seems inefficient to choose appropriate parameters C, ~ , and 

a bound for Ill to repeat the procedure with. But the bounds of (5.17) are 

small enough to admit enumeration. Doing so, we found the result. D 

Remark. Theorems 5.2 and 5.5 find applications in solving other exponential 

diophantine equations, see Stroeker and Tijdeman [1982], Alex [1985a]. 

[1985b], Tijdeman and Wang [1988], and Section 6.4 of this book. 

Remark. The computation of the reduced basis of r 1 took 113 sec, where we 

applied the L3-algorithm as we described it in Section 3.5, in 12 steps. The 

direct search for the solutions of (5.17) took 228 sec. The • • remaining 

computations (computation of the log p. up to 250 decimal digits, of the 
i 

reduced basis of r 2 , and of the short vectors in r 3 and r 4 ) took 8 sec. 

Hence in total we used 349 sec. 
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Table L. (Theorem 5.2(a)). ft-, 0, 
I.\> • 
er 0, 

delta ,~ • 
P1 x, p·;I Pi .x, p~1 .. ~ 

---- - - , __ --- ---- --------·----·-·····--············--·-· ·-----· -·-·-·--·--·-·····------------·------·-·········------· . ----······················--·-··-- . --- .. . ... ' I 

0.00000 ,~ ~ 
2 3 8 3 2 9 p, 

0'" 3 3 27 5 2 25 0.21534 ,...... I-' 

2 5 32 3 3 27 0.48832 Et (I) 
fl) 

5 3 125 1 1 2 121 0.28906 a, • 
0 2 7 128 11 2 12 I 0.40575 t"'{ 

2 7 128 5 3 125 0.22754 (I) 

s 
256 3 5 243 0.46694 2 8 

7 3 343 19 2 361 0.49512 V1 
• 

2 9 512 23 2 529 0.45416 N 
........ 

3 7 2187 13 3 2197 0.29941 I.\> ..._., 

3 7 2187 47 2 2209 0.40194 .......... 
• 

13 3 2197 47 2 2209 0.32293 
19 3 6859 83 2 6889 0.38504 
31 3 29791 173 2 29929 0.47828 
2 15 32768 181 2 32761 0.18716 

13 7 627 48517 89 4 627 42241 0.48703 
2 50 1 12589 99068 42624 47 9 1 11913 04731 02767 0.85259 
7 18 I 62841 35979 10449 149 7 l 63043 64614 03549 0.80898 I-' 

19 12 2 21331 49190 66161 83 8 2 25229 22321 39041 0.88568 ,...... 
0 2 51 2 25179 98136 85248 19 12 2 21331 49190 66161 0.88532 

2 51 2 25179 98136 85248 83 8 2 25229 22321 39041 0.76159 
5 22 2 38418 57910 15625 157 7 2 35124 32775 37493 0.87942 

13 14 3 93737 63856 99289 89 8 3 93658 88057 02081 0.76282 
17 13 9 90457 80329 05937 193 7 9 97473 03260 05057 0.86560 
7 19 11 39889 51853 73143 197 7 11 51499 04768 98413 0.87594 

61 9 11 69414 60928 34141 197 7 11 51499 04768 98413 0.88743 
5 23 11 92092 89550 78125 61 9 11 69414 60928 34141 0.89343 
5 23 11 92092 89550 78125 29 11 12 20050 97657 05829 0.89862 

29 11 12 20050 97657 05829 199 7 12 35866 42791 61399 0.88268 
23 12 21 91462 44320 20321 43 10 21 61148 23132 84249 0.88656 
11 16 45 94972 98635 72161 71 9 45 84850 07184 49031 0.84059 
5 24 59 60464 47753 90625 73 9 58 87158 67082 67913 0.88642 

37 11 177 91762 17794 60413 53 10 174 88747 03655 13049 0.89785 
29 12 353 81478 32054 69041 89 9 350 35640 37074 85209 0.88568 
23 13 504 03636 19364 67383 163 8 498 31141 43181 21121 0.89040 
23 13 504 03636 19364 67383 59 10 511 11675 33006 41401 0.89536 
11 17 505 44702 84992 93771 163 8 498 31141 43181 21121 0.89580 

.. 



...... 

...... 
t-' 

11 
11 
7 

19 
19 
2 

67 
47 
13 
2 
3 
2 
2 
3 
2 

113 
53 
5 

19 
23 
2 
2 
2 

41 
3 

13 
103 

3 
7 

11 
37 
2 
2 
3 
7 
2 

43 
2 
2 

13 

17 505 44702 84992 93771 
17 505 44702 84992 93771 
21 558 54586 40832 84007 
14 799 00668 57828 84121 
14 799 00668 57828 84121 
60 1152 92150 46068 46976 
10 1822 83780 45517 61449 
1 1 2472 15921 50840 12303 
17 8650 41591 93813 37933 
63 9223 37203 68547 75808 
41 36472 99637 71707 86403 
65 36893 48814 74191 03232 
66 73786 97629 48382 06464 
42 1 09418 98913 15123 59209 
68 2 95147 90517 93528 25856 
10 3 39456 73899 22223 14849 
12 4 91258 90425 67261 54641 
30 9 31322 57461 54785 15625 
17 54 80386 85778 48021 85939 
16 61 32610 41568 09986 48961 
73 94 44732 96573 92904 27392 
75 377 78931 86295 71617 09568 
75 377 78931 86295 71617 09568 
14 379 29227 19491 55588 02161 
49 2392 99329 23061 75295 90083 
21 2470 64529 07345 03927 04413 
12 14257 60886 84617 89454 47841 
51 21536 93963 07555 77663 10747 
29 32199 05755 81317 97268 37607 
24 98497 32675 80761 10947 11841 
16 1 23375 11914 21716 63622 74241 
84 1 93428 13113 83406 67952 98816 
84 1 93428 13113 83406 67952 98816 
53 1 93832 45667 68001 98967 96723 
30 2 25393 40290 69225 80878 63249 
90 123 79400 39285 38027 48991 24224 
17 587 44031 06360 42001 88795 53643 
99 63382 53001 14114 70074 83516 02688 

102 5 07060 24009 12917 60598 68128 21504 
28 15 50293 28026 62396 21526 95351 05521 

23 
59 
41 
31 

173 
181 
107 
199 
127 
53 

149 
5 

97 

101 
29 

191 
199 
41 
47 

151 
7 

181 
41 

181 
17 
89 

157 
163 

13 
61 

191 
199 

3 

199 
31 

181 
71 
97 
83 
89 

13 504 03636 19364 67383 
10 511 11675 33006 41401 
11 550 32903 17162 48441 
12 787 66278 37885 49761 
8 802 35917 84760 91681 
8 1151 93665 78235 00641 
9 1838 45921 24201 54507 
8 2459 37419 15531 18401 
9 8594 75474 86093 97887 

11 9269 03592 93721 91597 
9 36197 31987 96201 91349 

28 37252 90298 46191 40625 
10 73742 41268 94928 26049 
10 1 10462 21254 11204 51001 
14 2 97558 23267 57994 63481 
9 3 38298 68155 95733 17311 
9 4 89415 46411 90705 61799 

13 9 25103 10231 50136 29321 
13 54 60999 70612 05831 77327 
10 61 62677 95033 67185 14001 
26 93 87480 33764 77543 05649 
10 377 38596 84695 57044 99801 
14 379 29227 19491 55588 02161 
10 377 38596 84695 57044 99801 
19 2390 72435 68515 13248 47153 
12 2469 90403 56526 21403 03521 
1 1 14285 52404 46318 60195 25093 
11 21580 60662 62396 00904 07387 
22 32118 38877 95485 51051 57369 
14 98768 32533 36131 80951 12441 
1 1 I 23414 74201 97479 41888 22591 
11 1 93813 41794 57931 33178 02199 
53 l 93832 45667 68001 98967 96723 

11 1 93813 41794 57931 33178 02199 
17 2 25501 16774 16274 31786 82911 
12 123 63541 71303 11583 51179 80561 
15 587 32059 59385 49335 38673 30551 
15 63325 11891 36789 38604 32759 54593 
16 5 07282 02989 53863 75247 83563 99681 
16 15 49673 14251 78936 43509 93277 30561 

0.85578 
0.88985 
0.89708 
0.89710 
0.86722 
0.83013 
0.88680 
0.87580 
0.88441 
0.87844 
0.89170 
0.89721 
0.83799 
0.89916 
0.89800 
0.87990 
0.88284 
0.89638 
0.88730 
0.89400 
0.89920 
0.86840 
0.89368 

0.89828 
0.87071 
0.84941 
0.88788 
0.88933 
0.89390 
0.89755 
0.86078 
0.89319 
0.89402 

0.84151 
0.86903 
0.89326 
0.86709 
0.89791 
0.89060 
0.89106 



I-' 
I-' 
I',.) 

P1 

2 
3 
2 
2 
5 
2 
2 
6 
2 
7 

2 
2 
6 

12 
2 
3 
3 

13 
15 
6 

2 
2 

24 
15 
2 
6 

11 
28 
10 
5 

2 
23 
6 
6 
2 

X1 

3 
3 
5 
5 
3 
7 
7 
3 
8 
3 

9 
10 
4 
3 

11 
7 
7 
3 
4 
7 

50 
50 
11 
13 
51 
20 
15 
11 
16 
23 

54 
12 
21 
21 
55 

Table II, (Theorem 5.2(b)). 

p-~I 

8 
27 
32 
32 

125 
128 
128 
216 
256 
343 

512 
1024 
1296 
1728 
2048 
2187 
2187 
2197 

50625 
2 79936 

1 12589 99068 42624 
1 12589 99068 42624 
1 52168 11431 69024 
1 94619 50683 59375 
2 25179 98136 85248 
3 65615 84400 62976 
4 17724 81694 15651 
8 29350 94674 71872 

10 
11 92092 89550 78125 
18 01439 85094 81984 
21 91462 44320 20321 
21 93695 06403 77856 
21 93695 06403 77856 
36 02879 70189 63968 

P2 

3 
5 
3 
6 

1 1 
11 
5 

15 
3 

19 

23 
10 
11 
42 
45 
13 
47 
47 
37 
23 
47 
18 
33 
50 
19 
26 
20 
39 
17 
29 

30 
43 
23 
43 
24 

X2 

2 
2 
3 
2 
2 
2 
3 
2 
5 
2 

2 
3 
3 
2 
2 
3 
2 
2 
3 
4 
9 

12 
10 
9 

12 
11 
12 
10 
13 
11 
11 
10 
12 
10 
12 

P.\'., 
2· 

9 
25 
27 
36 

121 
121 
125 
225 
243 
361 

529 
1000 
1331 
1764 
2025 
2197 
2209 
2209 

50653 
2 79841 

1 11913 04731 02767 
I 15683 13814 26176 
1 53157 89852 64449 
l 95312 50000 00000 
2 21331 49190 66161 
3 67034 44869 87776 
4 09600 00000 00000 
8 14040 60851 91601 
9 90457 80329 05937 

12 20050 97657 05829 
17 71470 00000 
21 61148 23132 84249 
21 91462 44320 20321 
21 61148 23132 84249 
36 52034 74360 56576 

delta 

.00000 
0.21534 
0.48832 
0.40000 
0.28906 
0.40575 
0.22754 
0.40876 
0.46694 
0.49512 

0.45416 
0.46007 
0.49607 
0.48070 
0.41184 
0.29941 
0.40194 
0.32293 
0.30762 
0.36309 

0.85259 
0.89628 
0.85597 
0.83986 
0.88532 
0.84507 
0.89095 
0.89154 
0.87396 
0.89862 
0.89096 
0.88656 
0.81690 
0.88845 
0.88735 

., 
~ 
I-' 
CD 

H 
H 

..-.. 
;;i 
ff) 
0 
11 
(D 

s 
Ul 
• 
N 

,.-,. 
r::r 

......... .._, 
• 



t---1 
t---1 
w 

19 
3 

13 
26 
35 

14 
11 
7 
6 
6 

19 
26 
28 
15 
15 
2 

37 
2 

11 
5 

35 
19 
6 
2 

20 
2 
2 
3 

15 
19 
7 
2 
7 

11 
14 

23 
6 
6 

15 

13 
35 
15 
12 
11 
15 
17 
21 
23 
23 
14 
13 
13 
16 
16 

65 
13 
68 
20 
30 
14 
17 
28 
73 
17 
74 
75 
49 
20 
19 
29 
84 
30 
25 
23 

20 
35 
35 
25 

42 05298 34622 57059 
50 03154 50989 99707 
51 18589 30140 90757 
95 42895 66616 82176 
96 54915 73730 46875 

155 56809 55578 12224 
505 44702 84992 93771 
558 54586 40832 84007 
789 73022 30536 02816 
789 73022 30536 02816 
799 00668 57828 84121 

2481 15287 32037 36576 
6502 11142 24979 47648 
6568 40835 57128 90625 
6568 40835 57128 90625 

36893 48814 74191 03232 
2 43569 22421 60813 05397 
2 95147 90517 93528 25856 
6 72749 99493 25600 09201 
9 31322 57461 54785 15625 

41 39545 12236 93847 65625 
54 80386 85778 48021 85939 
61 40942 21446 48154 97216 
94 44732 96573 92904 27392 

131 07200 00000 

188 89465 93147 85808 54784 
377 78931 86295 71617 09568 

2392 99329 23061 75295 90083 
3325 25673 00796 50878 90625 

19784 19655 66031 35891 23979 
32199 05755 81317 97268 37607 

1 93428 13113 83406 67952 98816 
2 25393 40290 69225 80878 63249 

10 83470 59433 88372 20418 30251 
22 95856 92886 98149 54822 20544 

171 61558 31334 58634 29238 9520) 
171 90707 99748 42259 10286 58176 
171 90707 99748 42259 10286 58176 

25251 16829 40423 48861 69433 59375 

46 
33 
33 
35 
50 

21 
23 
41 
31 
19 
31 
47 
37 
28 
37 

5 
50 
29 
40 
41 
46 
47 
23 
7 

38 
39 
41 
17 
37 
33 
13 
3 

31 
34 
18 

40 
23 
40 
43 

10 
1 1 
11 
11 
10 

13 
13 
11 
12 
14 
12 
11 
12 
13 
12 

28 
12 
14 
13 
13 
13 
13 
16 
26 
14 

14 
14 
19 
15 
16 
22 
53 
17 
17 
21 

17 
20 
17 
18 

42 42074 74827 76576 
50 54210 65137 26817 
50 54210 65137 26817 
96 54915 73730 46875 
97 65625 00000 00000 

154 47237 77391 19461 
504 03636 19364 67383 
550 32903 17162 48441 
787 66278 37885 49761 
799 00668 57828 84121 
787 66278 37885 49761 

2472 15921 50840 12303 
6582 95200 58400 35281 
6502 11142 24979 47648 
6582 95200 58400 35281 

37252 90298 46191 40625 
2 44140 62500 00000 00000 
2 97558 23267 57994 63481 
6 71088 64000 00000 00000 
9 25103 10231 50136 29321 

41 29065 87698 35408 01536 
• 

54 60990 70612 05831 77327 
61 32610 41568 09986 48961 
93 87480 33764 77543 05649 

130 90925 53986 67734 38464 

188 32349 19413 17426 09041 
379 29227 19491 55588 02161 

2390 72435 68515 13248 47153 
3334 46267 95181 53070 88493 

19779 85201 46255 88779 34081 
32118 38877 95485 51051 57369 

1 93832 45667 68001 98967 96723 
2 25501 16774 16274 31786 82911 

10 84280 35605 96593 23542 07744 
22 94682 51895 12940 71398 72768 

171 79869 18400 
171 61558 31334 58634 29238 95201 
171 79869 18400 

25259 93335 73498 06081 18208 06649 

0.87619 
0.88076 
0.88656 
0.88631 
0.88575 

0.87497 
0.85578 
0.89708 
0.85579 
0.89216 
0.89710 
0.86739 
0.89872 
0.89414 
0.85892 

0.89721 
0.87101 
0.89800 
0.87486 
0.89638 
0.87993 
0.88730 
0.86842 
0.89920 
0.86863 

0.88695 
0.89368 
0.87071 
0.89126 
0.84943 
0.89390 
0.89402 
0.86903 
0.87991 
0.87516 

0.89088 
0.89829 
0.88250 
0.88234 



Table III 1 (Theorem 5.5) . 
• 

-I 
0 

21 
l 

19 
6 

-2 
11 
1 

-22 

13 
I 
3 

-26 
3 
8 

25 
-6 

8 
1 

-4 
-4 
16 

-8 
-5 

-25 
2 

-14 
-24 
-5 

2 
18 
7 

-IO 

-11 
4 

-2 
13 
0 
2 

15 
-15 

8 
5 

1 
2 
3 
I 

-13 
-2 

I 
1 

- 13 
- 13 

-t 
2 

-3 
8 

-2 
7 
0 

19 
-1 

5 

-4 
7 

-5 
10 

-1 0 
5 1 

-2 -1 
-1 -3 

0 -8 
-1 1 
-1 -2 

0 2 
-I -8 

1 -I 

3 -I 
9 -4 
0 4 
0 5 

IO -2 
-10 4 
-4 0 
-2 -6 

0 3 
-3 7 

-4 1 
-11 2 

5 1 
0 -8 

-5 11 
1 0 

13 -9 
-2 -4 
-2 12 
10 0 

-9 3 
0 -13 
3 -9 

-6 5 

6 0 
-6 0 
-3 0 
-1 -2 

1 0 
-6 3 
-4 0 

I 1 
0 3 
I 3 

l -6 
-4 0 

2 -7 
3 0 
0 0 
I l 

-5 0 
0 7 

-2 3 
2 0 

-4 7 
6 0 

-1 -6 
3 2 
0 -3 

-2 5 
-2 0 

1 -1 
-1 0 

l -8 

7 -2 
0 2 

-3 8 
-6 4 

17 71561 
17 71875 
20 97152 
31 88646 
57 67168 
88 58304 

143 48907 
143 50336 
288 29034 
293 62905 

337 92000 
351 56250 
627 52536 
671 10351 
781 25000 
878 95808 

1006 63296 
1882 45551 
1929 14176 
1992 97406 

4392 39619 
7812 58401 

14336 
14758 24779 
19773 26743 
40600 88955 
48828 12500 

l 27848 76137 
l 38412 87201 
2 61035 15625 

2 67363 98612 
9 68892 08832 

1305 16915 36000 
2834 49801 04623 
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17 71470 
17 71561 
20 96325 
31 88185 
57 64801 
88 57805 

143 48180 
143 48907 
288 24005 
293 60128 

337 87663 
351 53041 
627 48517 
671 08864 
781 21827 
878 90625 

1006 56875 
1882 38400 
1929 13083 
1992 90375 

4392 30000 
7812 50000 

14335 62273 
14757 89056 
19773 
40600 86272 
48827 86447 

1 27848 44800 
I 38412 03200 
2 61033 83072 

2 67363 28125 
9 68890 10407 

1305 16881 72831 
2834 49760 

x-y 

91 
314 
827 
461 

2367 
499 
727 

1429 
5029 
2777 

4337 
3209 
4019 
1487 
3173 
5183 
6421 
7151 
1093 
7031 

9619 
8401 

37727 
35723 
26743 
2683 

26053 
31337 
84001 

l 32553 

70487 
1 98425 

33 63169 
41 04623 



CHAPTER 6. THE EQUATION X + Y = Z IN S-1NTEGERS. 

The results of this chapter have been published in de Weger [1987). 

6.1. Introduction. 

Let S be the set of all positive integers composed of primes from a fixed 

finite set . . . ' P } , where 
s s ~ 3. This chapter is devoted to the 

diophantine equation 

X + y = Z (6.1) 

in x, y, z e S . Without loss of generality we may assume that x, y, z are 

relatively prime. For any a ES we define 

m(a) = max ord (a) . 
l:s;i:s;s Pi 

It was proved by Mahler [1933] that (6.1) has only finitely many solutions, 

but his proof • 
J.S ineffective. An effective • version, .. 

1.. e. an effectively 

computable upper bound for m(x•y·z) for the solutions x, y, z of (6.1), 

can be derived from the results of Coates [1969], [1970] and Sprind~uk 

[1969], since (6.1) can be reduced to a finite number of Thue equations. See 

also Chapter 1 of Shorey and Tijdeman [1986]. 

We derive an explicit upper bound in Section 6.2. Section 6.3 is devoted to 

some details of the p-adic approximation lattices on which the reduction 

method of Sections 6.4 and 6.5 are based. In Section 6.4 we give a method of 

solving (6.1) in the one-dimensional case s - 3 . This method is based on 

the reduction procedure given in Section 3.10, and we also use a combination 

of p-adic and real approximation techniques, similar to that of Section 4.8. 

But instead of actually performing the real reduction step, we now can simply 

refer to the results of Chapter 5. As an example we find all the solutions of 

the 

of 

slightly 

2, 3 or 

more general equation x ± y - w·z, where x, y, z are powers 

5 , and w E 7l.., lwl :S 1000000 , (w,z) -= 1 . 
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In Section 6.5 we give a procedure for solving (6.1) in the multi-dimensional 

case s ~ 4, based on the reduction procedure described in Section 3.11. We 

work out the example { p 1 , ... , p
6 

} - { 2, 3, 5, 7, 11, 13 } , and actually 

determine all the solutions. This generalizes the result of Alex (1976], who 

gave by elementary arguments a complete solution of (6 .1) for the case 

{ p 1 , ... , p4 } = { 2, 3, 5, 7 } . See also RtJmsey and Posner [1964] and 

Brenner and Foster [ 1982]. We conclude in Section 6. 6 with some remarks on 

the Oesterle-Masser conjecture, also known as the 'abc'-conjecture, which is 

related to equation (6.1). In particular, our method of solving (6.1) leads 

to a method of finding examples that are of interest with respect to the 

abc-conjecture. Finally, we give tables in Section 6.7. 

6.2. Upper bounds. 

We give in this section an upper bound for the solutions of (6.1), based on 

Lemma 2.6 (cf. Yu [1987]). Note that in de Weger (1987] we used the result of 

van der Poorten (1977] instead (see also the Correction to de Weger (1987]). 

We introduce a lot of notation. Assume that < p . Let 
s 

smallest prime with q. ( p .. (p.-1) 
l l 1 

for i - 1, ... , s . Put 

s 
t - [ 2 · s/3] , p ... n p . ' q - max q . , 

. 1 1 . 1 
1- l. 

and as in lemma 2.6 with 

u-

log p 
·(log p )t· ( log(4·1og p) + -~-s 

s s 8-t 

C - U/6·t 1 , C - U-log 4 2 , 

) , 

s 

q. 
l. 

Vi~ max(l,log pi) for i - s-t+l, ... , s , 0 - n V. , 
. 1 1 1==s-t+ 
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Now we state the main result. 

THEOREM 6.1. The solutions of (6.1) satisfy m(x·y·z) ~ c8 . 

Proof. If we consider instead of (6.1) the equivalent equation 

X ± y = Z (6.2) 

then we may assume that 

say. Suppose first that 

X·Y has at most t prime divisors, . . . , 

hence 

m(x·y) ~ p . Then 
s 

5 z 5 2-max(x,y) < 

m(x·y•z) < max ( p , 
s 

' 

Next suppose that m(x·y) 2: p 
s 

and m(z) 2: 2 . Then for some p - p. , 
l. 

m(z) - ord (z) - ord ( 
p p 

x. 
t l.. 

±~ - 1 ) 
y 

- ord (log(~)) . p p y 

Put x/y - n p . J . 
j-1 l.j 

Then m(x·y) - max Ix. I . 
1. <. <t J_. -J- J 

We apply Lem.ma 2. 6 

lemma) with n - t, 

t 2: 2 we have 

B = 
0 Bn = B' = B = m(x·y) . Since 

W,.,.. max 3 
( log(l1 4 _t·B), log B, log p) - log B. 

Note that c1 (p,n) is maximal for p - 2. We obtain 

m(x•y) 2: p 
s 

(Yu' s 

and 

(6.3) 

Obviously (6.3) is true if m(z) < 2 . If in (6.2) the plus sign holds, then 

2: z > max(x,y) ~ 

By (6.3) and c3 > 0 it then follows that 
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(6.4) 

Next suppose that in (6.2) the minus sign holds. Then we apply Lemma 2.4 to 

prove (6.4) for this case, as follows. Suppose (6.4) is false. Then 

I l - 1 I 
X 

which is less than l 
- , by the definition of 
2 

)log r, < (2·log 2)·1 l - l I < (2·log 
X X 

On the other hand, Lemma 2.4 yields 

and c6 . Hence 

flog YI 
X 

+ log(e·V )) ) . 
s 

Thus we obtain 

, 

• 

This contradicts our assumption that 
2 true in all cases. Now, by c4 > e 

(6.3) then yields rn(x·y·z) < c8 . 

( 6. 4) if false. Consequently ( 6. 4) is 

, Lemma 2 .1 yields m(x · y) < c7 , and 

D 

17 Examples. 

If s ==- 6, 

If s .... 3 
' { P1, P2, P3 } 

p6 } - { 2, 3, 

== { 2, 3, 5 } then 

then 

c8 < 3.98xl0 . 

S , 7, 11, 13 } 27 c8 < S.60xl0 . 

6.3. The p-adic approximation lattices. 

As in the proof of Theorem 6.1 we consider (6.2) instead of (6.1). Let p be 

any of the primes 

other primes as p
0

, 

i ~ l, ... , s-2 put 

P1 , ... , p s . We may ass,_1me that p .( x · y . Rename the 

... , p 2 , such that ord (log (p
0
)) is minimal. For s- p p 

(cf. Section 3.11) 
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where u. l E { 0 , 1 , .... , p-1 } . The tJ. 
1, l. 

take the place of the tJ ~ of 
1. 

Section 3.11. Then it is clear from Section 3. 11 how to de fine the p-adic 

approximation lattices 

s-2 

r 
µ for µ E ~O . Put 

A - I X • • ,fJ • - XO • 
- 1 1 1 1.-

Then Lemma 3.13 yields 

I I A I ~ p -µ } 
p 

s-2 X 

log n p.i 
p . 0 l. 1.-

where µ 0 - ordp(logp(p0 )) . In Section 3.13 we studied the set 

s-2 X. 
n p. l ± 1 

. 0 1 p 1.= 
} ' 

which is a sublattice of r 
µ . In Le mrna 3 . 1 7 we showed how a basis of * r 

can be found from a basis of 

if for p ~ 5 it happens to 

r 
µ 

be 

. In practice this 

possible to choose 

µ 
is very easy, especially 

such that not only 

ord (log (p0 )) 
p p 

is minimal, but also • 
l.S a primitive root (mod p) . 

Then, using the 

basis) , 

b~ = b. 
-1 -i 

choose 

notation of Lemma 3.17 (with ho as the last element of the 

r iili Po (mod p) . Then k(h0 ) = 1 , and it follows that 

for • l. .... 1, ... , s-2 . By 

(mod 

a. 
If l. 

pi= Po (mod p) , then it follows that 

* (µ) 
-yl. e a. + -6. 

l. 1. 

* ..,0 = (p-1)/2 . 

a. + 
l. 

µ-1 
I u. l 

l=O 1., 
(mod (p-1)/2) 

Lemma 3.14 (with c 1 - 0, c 2 - 1) now yields: if 

then (6.2) has no solutions with 
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for i - 1, .. , s-2 , 

(6.5) 

(6.6) 
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6.4. Reducing the upper bounds in the one-dimensional case. 

In Section 3 .10 we have described how an upper bound for the solutions of 

(6.1) in the case s - 3 can be reduced. We shall apply that method in this 

section to the following problem. 

THEOREM 6.2. The diophantine equation 

X ± y - W•Z , (6.7) 

where 
xO xl 

x - Po , Y - P1 , 
u 

z - p 

s 106 
, (p,p0 ,p1 ) - (2,3,5), (3,2,5), (5,2,3) , 

x0 , x 1 , u E lN 
O 

, w E l, I w I 
for p - 2 , 412 solutions for 

, and p .t w , ha.s exaccly 291 solutions 

p - 3, and 570 solucions for p - 5 . In 

Table I all solutions with u ~ 3 are given. The solut:ions wich u :S 2 

satisfy x0 :S 14, x 1 :S 9 for p - 2 , x0 :S 23, x 1 :S 10 for p - 3 , and 

x0 :S 25, x 1 :S 15 for p - 5. 

Re,mark= It is easy to find all solutions of (6. 7) with u :S 2 . The Tables 

are presented in Section 6.7. 

Proof. max ord (x·y·z) 
p-2,3,5 p 

Put x- . The example at the end of Section 6.2 

shows that in the case lwl - 1 we have X < 
without difficulties that the effect of the w 

3.98xlo17 

with I w I 
. It can be checked 

s 106 in the proof 

of Theorem 6.1 can be neclected (it disappears in the rounding off) , so that 

for the solutions of (6.7) also holds. Put 

x/y 

* Note that 

6.3, so 

is a p-adic integer. Define the lattices 

r is generated by 

r, r as in Section 
µ µ 

µ 

For p - 2, 3 we have 

b - ....,.b -1 I -:-0 

, 

* 

b .. -o 
0 

• 

r - r , and for µ µ. 

* b - 2·b , -o =-o 

p - 5 a basis of * r 
µ 

• 
l.S 

where --y - 0 if ,(j(µ.) is odd, - 1 is even . Using the 

algorithm given in Section 3.10, 

* r that is reduced in the sense µ 

Fig. 3, we can compute a basis 

* that 1£1 1 = l(rµ) . We did so, 
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in the following table. 

p 

2 

3 

s 

3 

2 

2 

5 

5 

3 

2 

1 

1 

µ 

143 

91 

65 

- 2.68xlo21 144 

- 2.32xlo21 91 

0 5.28xlo22 65 

w 

106-2144 

106-391 

106.565 

114 

182 

189 

78 

78 

119 

The values of ~(µ) can be found in Table III. Making an exception to our 

policy, we give the reduced bases of the * r below (in base p notation): 

p """ 2 : 

C ..., 
-1 

C = -2 

p """' 3 : 

p == 5 : 
C """ -1 

µ 

10 00000 00100 10001 10110 01110 01101 

00001 11101 00101 00100 11100 01111 11010 00011 

- 1 00010 00110 01000 01011 01110 00010 

00101 11000 00000 11100 01111 01011 10111 00001 

10 11011 10000 01011 01101 11000 00111 

11001 10100 11011 00000 11111 10110 10110 00001 

10 01110 11101 10111 11000 00100 10101 

00111 00001 10101 00110 10011 00111 00101 10101 

' 

' 

- 102 01121 02221 00210 12120 20020 22222 10212 20222 

21002 00122 21100 11102 22102 20001 11222 02212 21011 

-10 12210 12111 01102 02010 12112 12210 21122 21011 20102 

- 2 22021 11012 01000 12021 00211 12221 22121 21220 12122 

- 211 32230 21042 22023 30141 33034 21420 

- 22104 43102 43111 03114 30134 23410 

340 34003 02404 12120 03412 22030 32211 
• 

- 414 20001 42202 42210 34043 20120 00432 

1 

From this we found the lower bounds for given above. They are all 
17 larger than /2 • 3. 98xl0 . Hence ( 6. 5) holds for x1 ... x0 , and then we 

infer from (6.6) that u ~ µ + µ 0 - 1 , and lwl ·z s W as shown in the table 

above. We now find the new upper bounds for ly0 1, IY1 1 as follows. If in 

(6.7) the minus sign holds, supposing that min(x,y) > w1019 , we infer 

I I I I T.l • ( ) 0 • 9 x - y = w ·z S w < min x,y . 
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By Theorem 5.2(a), 

with min(x,y) > Y, 
49 10/9 

since W > 10 . Hence min(x,y) S 'W , and thus 

lwl •Z _< t~l0/9 + u. max(x,y) s min(x,y) + w w 

If in (6.7) the plussign holds, then this inequality follows at once. So now 

the bounds given in the above table for IYol, ly1 J follow from 

I I ( ) log(Wl0/9+W) . yi •log p1 Slog max x,y ~ 

We repeat the procedure with µ as in the following table. 

p 

2 

3 

5 

µ 

16 

13 

7 

-
-
1 

167.7 

535.8 

276.1 

161.3 

257.4 

267.3 

17 

13 

7 

W' 

106-217 

106.313 

106 -s7 

31 

49 

49 

21 

21 

31 

The n1Jmbers are now so small that the 

For example, for p - 5, the lattice 

• computations can be performed by hand. 

1 

-45607 

and a reduced basis is 

185 

205 

* b .... -o 

* r7 

0 

156250 

-394 

408 
• 

is generated by 

' 

We find upper bounds for 

three cases, w1019 < 1015 
u and W as given in the above table. In all 

. On supposing min(x,y) > 1015 we infer 

Ix - YI - lwl•z ~ W < lOlS·0. 9 s min(x,y)o. 9 . 

By Theorem 5.2(a) we see that the inequality Ix - y I< min(x,y)0. 9 

only two solutions: ( ) (2 65 s28 ) (284 353 ) H b h x, y - , , , . ow ever , o t 
IX _ y I> 101s-o.9 . 1s So we infer min(x,y) ~ 10 , hence 

15 

has 

have 

by 

max(x,y) :s; 10 + W we obtain the bounds for jy
0

1, fy
1

1 as given above. 

These bounds are small enough to admit enumeration of the remaining cases. D 

Remark. The computer calculations for the above proof took less than 1 sec. 
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6.5. Reducing the upper bounds in the multi-dimensional case. 

In Section 3 .11 we have described how an upper bound for the solutions of 

(6.1) in the case s ~ 3 can be reduced. We shall apply that method in this 

section to the following problem. 

THEOREM 6.3. The diophantine equation 

X + y - Z (6.8) 

-1.n x, y, Z ES== I xi E ~o for i ~ 1, . . . ' 6 } with 

(x,y) - 1 and x ~ y has exactly 545 solutions. Of them, 514 satisfy 

The remaining 31 solutions are given in Table II. 

Remark. From Theorem 6.3 it is easy to compute all 545 solutions of (6.8). 

Proof. In the example at the end of Section 6. 2 we have seen that 

m(x·y·z) . With the notation of Section 6.3 we choose the 

following parameters. 

p 

2 

3 

5 

7 

11 

13 

3 

2 

2 

3 

2 

2 

5 

5 

3 

2 

3 

3 

7 

7 

7 

5 

5 

5 

11 

11 

11 

11 

7 

7 

p 
4 

13 

13 

13 

13 

13 

11 

2 605 

1 385 

1 275 

1 220 

1 165 

1 165 

-

-
2 

3 

5 

6 

-
-
0 

0 

2 

-2 

We computed the six values of the ~~µ) for i 
l. 

in Table III), and the reduced bases of the 

L3-algorithm. Thus we obtained lower bounds for 

table. They are all larger than /5 • 5. 60x1027 

large margin here, we could 

So we apply Lemma 3.14 for 

have taken the µ's 

X - X = 5.60xl027 
1 0 

-
-
1 

-1 

0 

-1 

-
-
1 

-1 

-1 

-2 

-

-
1 

0 

-1 

3 

- 1, 2, 3, 4 (and give them 

* • 
Sl.X lattices r , by the 

* l(r) 
µ, 

• as in 

µ 
the following 

(note that we have a very 

probably about 20% smaller). 

. For every p we thus find 

ordp(z) ::s µ + µ 0 
z , we even have 

- 1. Since (6.2) is invariant under permutations of x, y' 

shown in the next table. 
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p 

2 4.70xlo35 

3 l.15xl036 

5 6.27xl037 

7 3.17xlo36 

11 5.74xlo33 

13 l.73xl036 

Hence m(x•y·z) :S 606 . 

We repeated the procedure with 

ord (x•y·z) s 
p 

606 

385 

275 

220 

165 

165 

and µ as in the following table. 

After computing the reduced bases of the six lattices * r 
µ 

we found the 

following data. Note that in all cases * t(r) 
µ 

p µ 

2 66 

3 42 

5 30 

7 24 

11 18 

13 18 

- - - - -
- - - - -
2 0 0 1 1 

3 -1 0 1 -1 

s 0 -2 2 -1 

6 0 1 1 -2 

* l(r) > 
µ 

1909 

2304 

3417 

2391 

1443 

3196 

~ /5·606 . 

ord (x·y•z) .$ 
p 

67 

42 

30 

24 

18 

18 

Hence m(x-y·z) s 67 . Next, we repeated the procedure with x0 - 67 , and µ 

as in the following table. We found 

p 

2 

3 

5 

7 

11 

13 

µ 

55 

35 

25 

20 

15 

15 

- - - - -
- - - - -
2 1 1 1 0 

3 -1 1 -1 0 

5 -1 -2 2 2 

6 -1 0 3 -2 

To find the solutions of (6.2) with 

* l(I') > 
µ 

364 

301 

622 

693 

192 

658 

ord (x·y·z) :S 
p 

56 

35 

25 

20 

15 

15 

ord (x·y·z) 
p 

below the bounds given in 

the above tab le , we followed the following procedure. Suppose that we are at 

a certain moment interested in finding the solutions with ord (x·y·z) :S f{p) 
p 

where f(p) is given for p - 2, ... , 13 . Choose p, and µ < f(p) - µ 0 , 
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and consider the lattice * r 
µ for these values of p, µ . If a solution 

x, y, z of 
T 

(6.2) 

with 

exists with 

lattice. Its length is bounded by 

i - 0, 

then the vector 

. . . ' 4 ' 
• 
l.S 

• 
l.Il the 

. All vectors in * r 
µ 

with length below this bound can be computed by the algorithm of Fincke and 

Pohst, as given in Section 3.6. Then all solutions of (6.2) corresponding to 

lattice points can be selected. Then we replace f(p) by µ + µ
0 

- 1, and 

we repeat the procedure for newly chosen p, µ . 

We performed this procedure, starting with the bounds for ord (x·y·z) given 
p 

• in the above table for f (p) ~ and with p, m as in Table IV (where 11 
stands for the n11mber of solutions of (5.2) found at that stage). At the end 

we have f(2) == 4 , f(p) """' 1 for p - 3, ... , 13 . The remaining solutions 

can be found by hand. D 

Remarks. 1. Theorems 6.2 and 6.3 have applications in group theory (cf. Alex 

[1976]). We use Theorem 6.3 in Section 7.2. 

2. The computer calculations for the proof of Theorem 6.3 took 438 sec., of 

which 412 were used for the first reduction step. In this first step we 

applied the L
3
-algorithm in 11 steps (cf. Section 3.5), which cost on average 

about 60 sec. per lattice. The remaining 50 sec. were mainly used for the 

computation of the 24 ~~µ),s . 
l. 

6.6. Examples related to the abc-conjecture. 

Let x, y, z be positive integers. Put 

G.... TI p . 
plxyz 

• p prime 

For all x, y, z with (x,y) = 1 and x + y = z we define 

c(x,y,z) - log z / log G 

(called the Masser-ratio, according to Tijdeman (1989]). Recently, Oesterle 

posed the problem to decide whether there exists an absolute constant C 

such that c(x,y,z) < C for all x, y, z . Masser (1985] conjectured the 

stronger assertion that c ( x, y, z) < 1 + e , when z exceeds some bound 

depending on only, for all e > 0. For a survey of related results and 

conjectures, see Stewart and Tijdeman [1986], Vojta [1987], Tijdeman [1989]. 
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It might be interesting to have some empirical results on c(x,y,z) , and to 

search for x, y, z for which it is large. From the preceding sections it 

may be clear that such x, y, z correspond to relatively short vectors in 

appropriate p-adic approximation lattices. 

As a byproduct of the proofs of Theorems 5.5 and 6.3 we computed the value of 

c(x,y,z) , corresponding to many short vectors that we came across 

performing the algorithm of Fincke and Pohst. All examples that we found with 

c(x,y,z) ~ 1.4 are listed below. Our search was rather unsystematic, so we 

do not guarantee that this list is complete in any sense. 

X y z c(x,y,z) 

112 32.56.73 221 -23 1.62599 

1 2-3 7 54 .7 1.56789 
73 310 211 -29 1.54708 

s2 -7937 713 218.37.132 1.49762 

112 39 -13 211.53 1.48887 

37 215 38 -s 1.48291 
21.52 76 -41 136 1.46192 

1 25 -3-52 74 1.45567 

219 -13-103 711 311.53.112 1.45261 

1 212.53 35 -7 2 -43 1.44331 

1 24 -37 -547 58.72 1.43906 
210_7 57 38 -13 1.43501 

3 53 27 1.42657 

5 311 210 -173 1.41268 

Two more examples with c(x,y,z) ~ 1.4 are known: 

X == 1 , 2 y - 3.5.47 , 18 z == 2 · 79 , c(x,y,z) - 1.44965 , 

found by G. Frey (communicated to us by Prof. F. Oort), and 

10 
y - 109·3 , z - c(x,y,z) - 1.62991 

found by E. Reyssat (communicated to us by Prof. M. Waldschmidt), which wins 

the race. Note that these two examples show large primes at two places. 

These results do not seem to yield any heuristical evidence for the truth or 

falsity of the abc-conjecture. 
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6.7. Tables. 

2 9 10 
10 59049 10 
4 81 12 
6 729 10 
2 9 8 
6 729 8 

10 59049 8 
14 4782969 10 
4 81 8 
0 I 8 

8 6561 8 
0 1 6 
4 81 6 
8 6561 6 
6 729 6 
2 9 4 
2 9 6 
0 l 4 
4 81 4 
0 I 2 

2 9 2 
1 3 1 
1 3 3 
2 9 0 
3 27 1 
4 81 0 
4 81 2 
6 729 2 
6 729 4 
3 27 3 

5 243 3 
5 243 1 
7 2187 5 
6 729 0 
7 2187 I 

l 1 177147 1 
3 27 5 
8 6561 0 
7 2187 3 
8 6561 4 

Table I. (Theorem 6.2.) 

P = 2, Po= 3, P1 = 5 

9765625 
9765625 

244140625 
9765625 

390625 
390625 
390625 

9765625 
390625 
390625 

390625 
15625 
15625 
15625 
15625 

625 
15625 

625 
625 

25 

25 
5 

125 
l 
5 
1 

25 
25 

625 
125 

125 
5 

3125 
1 
5 
5 

3125 
1 

125 
625 

127 

• sign 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-l 
-1 

-1 
1 
1 

-1 
l 

-1 
-I 
-1 
-1 

1 

1 
1 
l 

-1 
I 
I 
1 
1 
I 
1 

ti »· 

4 -610351 
4 -606661 
9 -476837 
5 -305153 
3 -48827 
3 -48737 
3 -41447 
7 -38927 
4 -24409 
5 -12207 

6 -6001 
3 -1953 
3 1943 
3 -1133 
4 -931 
3 -77 
8 -61 
4 -39 
5 -17 
3 -3 

4 -1 
3 l 
7 1 
3 1 
5 1 
4 5 
3 7 
6 11 
3 13 
3 19 

4 23 
3 31 
6 83 
3 91 
4 137 

10 173 
4 197 
5 205 
3 289 
4 371 

Table continued 



Table I. (cont.} 

1 
5 
9 
8 

10 
5 
9 
9 

10 
12 

l 
9 

13 
10 
10 
12 
3 
7 

1 l 
3 

11 
1 l 
12 
12 
12 
11 
13 
7 

14 
13 

13 
I 
5 
9 

14 
13 
15 
14 
14 
14 

16 
9 

15 

3 5 
243 5 

19683 3 
6561 2 

59049 6 
243 7 

19683 I 
19683 5 
59049 2 

531441 4 

3 7 
19683 7 

1594323 7 
59049 4 
59049 0 

531441 8 
27 7 

2187 7 
177147 5 

27 9 

177147 3 
177147 7 
531441 0 
531441 6 
531441 2 
177147 9 

1594323 3 
2187 9 

4782969 2 
1594323 1 

1594323 5 
3 9 

243 9 
19683 9 

4782969 6 
1594323 9 

14348907 5 
4782969 8 
4782969 4 
4782969 0 

43046721 0 
19683 11 

14348907 1 

Table l, (cont.) 

3125 
3125 

125 
25 

15625 
78125 

5 
3125 

25 
625 

78125 
78125 
78125 

625 
1 

390625 
78125 
78125 

3125 
1953125 

125 
78125 

I 
15625 

25 
1953125 

125 
1953125 

25 
5 

3125 
1953125 
1953125 
1953125 

15625 
1953125 

3125 
390625 

625 
1 

1 
48828125 

5 

128 

• sign 

1 
1 
1 

-1 
-1 

1 
1 
1 

-1 
-1 

I 
1 
I 

-1 
-1 
-1 

1 
1 
1 
1 

1 
1 
1 

-1 
-1 

1 
1 
1 
1 
1 

1 
1 
1 
l 

-1 
1 
l 

-1 
-1 
-1 

-1 
1 
l 

u 

3 
3 
5 
3 
5 
5 
3 
3 
4 
7 

4 
4 
8 
3 
3 
4 
3 
3 
4 
7 

3 
3 
4 
3 
3 
5 
4 
4 
5 
3 

3 
3 
3 
3 
4 
3 
5 
3 
3 
3 

6 
6 
4 

w 

391 
421 
619 
817 

1357 
2449 
2461 
2851 
3689 
4147 

4883 
6113 
6533 
7303 
7381 
8801 
9769 

10039 
11267 
15259 

22159 
31909 
33215 
64477 
66427 
66571 
99653 

122207 
149467 
199291 

199681 
244141 
244171 
246601 
297959 
443431 
448501 
549043 
597793 
597871 

672605 
763247 
896807 

Table continued 



Table I. (cont.) 

14 
9 
4 

12 
7 
2 
1 
5 
6 

11 

9 
10 
3 

15 
14 
17 
16 
8 

19 
18 

23 
13 
22 
10 
18 
20 
0 

21 
5 

24 

23 
26 

12 
5 
7 
6 

14 
13 
20 
21 

pio X1 

16384 10 
512 9 

16 8 
4096 6 

128 5 
4 4 
2 2 

32 l 
64 3 

2048 4 

512 0 
1024 2 

8 6 
32768 3 
16384 1 

131072 7 
65536 5 

256 7 
524288 2 
262144 0 

8388608 1 
8192 8 

4194304 8 
1024 l l 

262144 9 
1048576 4 

1 9 
2097152 6 

32 10 
16777216 3 

8388608 10 
67108864 7 

4096 16 
32 15 

128 1 
64 8 

16384 2 
8192 9 

1048576 10 
2097152 3 

Table I., (cont.) 

P = 3, Po = 2, P 1 = 5 

P,.\1 
l 

9765625 
1953125 
390625 

15625 
3125 

625 
25 

5 
125 
625 

1 
25 

15625 
125 

5 
78125 

3125 
78125 

25 
1 

5 
390625 
390625 

48828125 
1953125 

625 
1953125 

15625 
9765625 

125 

9765625 
78125 

p = 5, Po = 2, pi = 3 

43046721 
14348907 

3 
6561 

9 
19683 
59049 

27 

129 

• 
sign 

-1 
-1 
-1 
-1 
-1 
-1 

1 
-1 

l 
l 

1 
-I 

1 
-1 

l 
-1 

1 
I 
1 

-1 

-I 
1 

-1 
1 
I 

-1 

• 

1 
1 
1 
1 

1 
1 

sign 

1 
-1 

1 
1 
1 
1 
l 
1 

u 

4 
3 
3 
3 
4 
3 
3 
3 
3 
5 

3 
3 
4 
4 
3 
3 
3 
3 
4 
3 

6 
3 
5 
7 
4 
3 
3 
3 
3 
3 

3 
4 

u 

3 
3 
3 
3 
3 
3 
3 
3 

w 

-120361 
-72319 
-14467 

-427 
-37 
-23 

1 
1 
7 

11 

19 
37 

193 
403 
607 

1961 
2543 
2903 
6473 
9709 

11507 
14771 
15653 
22327 
27349 
38813 
72338 
78251 

361691 
621383 

672379 
829469 

w 

-344341 
-114791 

1 
53 

131 
223 

8861 
16777 



• 

Table II. (Theorem 6.3.) I~ 
er 
'I---' 
(I) 

ordµ(x) ordp( .11
} ordp(z) H 

1-1 
-X' }' ... p=2 3 5 7 1 l 13 p=2 3 5 7 1 1 13 p=2 3 5 7 1 I 13 I• 

' .. - ,,,,..... 

2401 4160 6561 0 0 0 4 0 0 6 0 1 0 0 l 0 8 0 0 0 0 :f 
875 6561 7436 0 0 3 l 0 0 0 8 0 0 0 0 2 0 0 0 l 2 

('D 
0 

1183 6561 7744 0 0 0 I 0 2 0 8 0 0 0 0 6 0 0 0 2 0 11 
Cb 

1125 8192 9317 0 2 3 0 0 0 13 0 0 0 0 0 0 0 0 1 3 0 s 
1183 8192 9375 0 0 0 1 0 2 13 0 0 0 0 0 0 I 5 0 0 0 °' • 

16 14625 14641 4 0 0 0 0 0 0 2 3 0 0 I 0 0 0 0 4 0 w 
• 

81 14560 14641 0 4 0 0 0 0 5 0 l 1 0 l 0 0 0 0 4 0 ......, 

1936 13689 15625 4 0 0 0 2 0 0 4 0 0 0 2 0 0 6 0 0 0 
3718 11907 15625 1 0 0 0 1 2 0 5 0 2 0 0 0 0 6 0 0 0 
5824 9801 15625 6 0 0 1 0 l 0 4 0 0 2 0 0 0 6 0 0 0 

49 16335 16384 0 0 0 2 0 0 0 3 l 0 2 0 14 0 0 0 0 0 
2695 13689 16384 0 0 1 2 1 0 0 4 0 0 0 2 14 0 0 0 0 0 
8019 8788 16807 0 6 0 0 1 0 2 0 0 0 0 3 0 0 0 5 0 0 

t-...1 
3584 14641 18225 9 0 0 I 0 0 0 0 0 0 4 0 0 6 2 0 0 0 
1625 16807 18432 0 0 3 0 0 1 0 () 0 5 0 0 1 1 2 0 0 0 0 w 

0 
3993 16807 20800 0 I 0 0 3 0 0 0 0 5 0 0 6 0 2 0 0 l 

49 28512 28561 0 0 0 2 0 0 5 4 0 0 1 0 0 0 0 0 0 4 
12936 15625 28561 3 1 0 2 I 0 0 0 6 0 0 0 0 0 0 0 0 4 
22000 6561 28561 4 0 3 0 1 0 0 8 0 0 0 0 0 0 0 0 0 4 
15625 17303 32928 0 0 6 0 0 0 0 0 0 0 3 I 5 I 0 3 0 0 

507 32768 33275 0 l 0 0 0 2 15 0 0 0 0 0 0 0 2 0 3 0 
10985 41503 52488 0 0 ] 0 0 3 0 0 0 3 2 0 3 8 0 0 0 0 
10000 49049 59049 4 0 4 0 0 0 0 0 0 3 l 1 0 10 0 0 0 0 
14641 46875 61516 0 0 0 0 4 0 0 I 6 0 0 0 2 0 0 1 0 3 
7168 78125 85293 10 0 0 1 0 0 0 0 7 0 0 0 0 8 0 0 0 1 

20449 97200 117649 0 0 0 0 2 2 4 5 2 0 0 0 0 0 0 6 0 0 
13 151250 151263 0 0 0 0 0 1 1 0 4 0 2 0 0 2 0 5 0 0 

12005 161051 173056 0 0 1 4 0 0 0 0 0 0 5 0 10 0 0 0 0 2 
121 255879 256000 0 0 0 0 2 0 0 9 0 0 0 1 11 0 3 0 0 0 

2197 583443 585640 0 0 0 0 0 3 0 5 0 4 0 0 3 0 1 0 4 0 

91 1771470 1771561 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 6 0 



I-' 
w 
I-' 

Table III 
- -- - -~ -- - : 

- log 5 / log 3 = 
2 2 

0.10101 11101 00001 11110 11000 10101 00000 01001 11101 00010 10000 10011 10110 10000 01011 11100 00001 11010 00000 00001 
00010 11100 11100 10111 01001 01101 11000 01010 01110 01010 11110 00000 00101 00110 00100 00011 01111 01110 01010 11101 
10010 01001 00001 10100 00111 00001 11111 01111 00011 10110 00000 00101 01101 01100 00010 01110 11100 11101 11011 01011 
10111 00100 11111 00100 00100 10001 10010 01011 10010 01101 00000 01100 01111 10111 01101 00110 11110 00000 01100 11010 
00001 00111 11011 11001 01000 10000 00110 11011 11001 01000 01110 11001 00010 00010 11000 01000 00110 01100 11101 11110 
00000 11101 10101 11100 10010 11101 01011 10001 01100 11000 01100 00110 01001 01100 01000 01001 10001 11000 01101 10100 
00110 00011 0111 .... 

- log 7 / log 3 = 
2 2 

0.01001 01011 01111 11100 11010 01111 11111 10010 01000 11100 00011 00100 01011 11110 00101 11010 11110 10001 00000 01110 
01011 00101 10010 00111 10111 01001 10001 11000 11011 10111 01011 01001 01011 00100 11001 11000 10111 01100 00001 01110 
11000 01011 00011 01110 10000 01101 11000 11001 00010 00011 01100 11110 11010 11110 00001 10110 01010 00001 01000 11011 
10010 01000 00011 01011 10010 11001 10000 01101 10111 01001 01000 00101 00011 11001 10000 00011 00101 OOlGu 00000 10011 
11100 01110 11110 10101 00101 01110 11100 10000 01011 00100 01100 11100 00100 01110 10001 00001 10000 00111 10111 00011 
10111 01100 10110 00111 00101 10011 01100 11111 00101 01011 11101 11011 01011 10110 01100 10001 11011 01100 01001 11111 
10001 11110 1010 .... 

- log 11 / log 3 = 
2 2 

0.10011 01110 00001 01001 00110 01010 01110 00100 00101 10000 01000 11001 10010 01111 10110 00011 00101 01110 00011 11101 
10100 01101 01101 10111 10110 01100 10110 11110 00000 11000 01000 11111 10010 10011 10110 01001 01111 00101 00011 11100 
01100 10100 01000 10101 00010 01011 10111 10000 00001 01000 11010 01010 11010 11100 00001 10110 01001 11111 11110 10010 
11101 11100 10010 00100 11000 00000 01110 10100 00101 10010 10010 10010 01111 10100 01001 10111 01000 10101 01110 01000 
11001 11001 10011 11110 10000 11001 10110 10101 00010 11100 11101 11011 10110 00111 11010 11000 01000 10111 11110 10010 
10101 11100 11011 00111 11000 00111 11100 01101 11100 01101 00001 00100 01001 11000 01101 10101 00110 10101 00001 00001 
10101 11001 1111 .... 

- log 13 / log 3 = 
2 2 

0.11011 10110 10100 10001 01100 01111 10001 00110 01110 00001 01110 01011 11101 10110 11100 00111 11111 11001 11011 11110 
00011 11110 01000 10010 11011 11101 01000 11000 11111 01011 00001 10101 00110 00000 00001 01101 10010 00101 00100 10101 
01011 11100 10011 11011 00000 01110 10100 00011 10000 11101 00010 00000 10011 01011 11011 10000 11010 10010 11010 00100 
10010 00001 01000 10101 10110 01001 01000 11111 01101 00111 11100 10001 01110 11000 01010 10011 11001 01111 01111 00001 
10011 00000 00101 10101 10111 11100 01011 01011 11000 10001 11110 01000 10110 00011 11011 11011 11010 11110 10100 01110 
01000 00111 00000 00000 00011 10111 11111 10100 01111 10010 01100 10101 00111 10110 11010 01111 10000 11101 10111 10001 
00000 01100 1001 .... 

t-3 

~ 
I-' 
(t) 

H 
H 
H 
• 



t-' 
v.) 

N 

Table III. (cont.) 

- log 5 / log 2 = 
3 3 

0.11022 12121 22001 12010 21102 10210 10022 20212 20010 10112 22201 21021 21022 10000 22020 12012 02022 21001 00012 02020 
21210 12202 12200 00000 10120 00211 12021 10120 02100 10222 22122 01201 21111 11121 11001 20222 10000 20121 22221 01002 
20220 12211 22211 00100 20202 00012 11112 10122 21001 21200 12201 12220 11100 01102 20010 11102 10222 00020 21202 21112 
20201 21100 11212 22222 21120 02020 12121 02122 11111 10001 10220 21022 10012 11212 20001 10211 02120 02122 1 .... 

- log 7 / log 2 = 
3 3 

0.20101 10202 20011 121.21 01102 11100 01210 20120 02122 02012 20202 00121 21200 01201 11120 11211 11212 22100 00100 22201 
20021 11112 01122 00011 22100 00000 22011 11100 12010 22110 12122 00222 10220 21102 20001 02101 00121 11002 11012 12201 
21011 20100 01110 02000 21222 12010 02201 22012 01022 02021 00210 10221 00221 20202 02222 22122 00100 12021 21220 02220 
20000 00002 00111 11221 11002 20102 12212 12012 22122 00211 01210 01102 21010 20121 01020 11111 20002 10122 2 .... 

- log 11 / log 2 = 
3 3 

0.21112 20101 00222 20222 01212 01100 12100 01201 01111 01212 01210 20121 20001 12021 01122 21202 12020 00212 11102 11002 
01001 10200 22202 02001 20022 10221 00010 10011 22220 01021 02121 00211 22210 21101 22012 11111 02010 00221 0·0102 20111 
20202 01201 01220 22022 11221 10121 10202 10011 11002 10220 22110 21121 00112 02122 21200 01021 21002 21002 10010 00110 
00101 12202 12000 21012 11010 11020 00222 00012 11201 11010 00122 01120 22200 20112 12122 10202 01211 00210 2 .... 

- log 13 / log 2 = 
3 3 

0.10221 02211 12122 22010 10002 01221 00121 02020 11201 02021 02112 21010 20122 02001 02112 21012 10222 01002 01200 01211 
10111 21100 12121 11010 02000 02212 11111 21220 22020 02000 01222 12112 02100 10110 20002 10222 02112 20112 11100 00211 
20012 11102 22220 00112 00001 11110 11102 22201 01122 22211 22201 11011 22201 01200 22121 02101 22222 22002 01010 01021 
12020 20111 12102 00011 02002 02000 10211 00222 12202 02202 20212 22012 01222 20220 11211 20021 11111 00000 2 .... 

- log 3 / log 2 = 
5 5 

0.33002 02003 04411 23120 44012 01011 00044 43204 30340 00023 14333 12413 43420 40302 10202 44104 32433 24432 03021 12311 
34044 40231 04112 33230 00242 14232 14400 31104 42112 44033 11014 44344 12114 44211 32120 43131 34041 00411 34233 41410 
24120 42032 43014 21421 40044 01142 21004 42021 14011 10404 00214 31110 04441 42431 24423 0243 •... 

- log 7 / log 2 = 
5 5 

0.03044 34433 10114 43203 12033 14002 12341 31312 03421 00343 41423 00040 24241 22103 14240 32214 11401 42230 13040 33404 
04310 43034 13233 23241 43002 44411 41124 22443 42412 30420 11223 43101 01000 42112 10443 34210 03410 14414 02220 24443 
13332 33123 23331 20323 44440 13210 14403 32122 03040 31123 04212 22443 44223 23133 02003 1240 •... 

f>-3 
~ 
tr 
I~ 
-
H 

~ 
I• 

.-... 
0 
0 
~ 
rt 
• ._., 



I-' 
w 
w 

Inbley.,ii1~ .. (cont.) 

- log 11 / log 2 = 
5 5 

0.44032 21012 13124 21134 03320 33422 21041 12112 42420 00220 41143 12040 32144 21100 01304 24013 43401 23313 12022 54404 
· 12413 10214 30123 11014 24110 42444 42030 02413 20241 22304 23423 13414 03234 30000 10334 44322 00330 01104 44410 44113 

31022 33142 14441 44113 21413 23132 31413 32032 01221 40210 24101 30133 13110 13400 22110 2334 .... 

- log 13 / log 2 = 
5 5 

0.12423 02224 01323 24314 23021 32420 14l.j4 41224 04403 11334 43213 33303 03130 32244 11133 43243 23422 11320 41041 31134 
41320 34110 03024 40012 23213 10014 41441 04420 40114 00021 33224 30103 03243 32031 22021 20234 32441 00013 04203 43134 
22012 30332 22422 43110 13302 34431 13241 13230 44204 14432 33210 24121 13144 03230 14301 3040 .... 

- log 2 / log 3 = 
7 7 

0.20603 14521 11264 52354 45:64 60036 
40631 53556 64053 50031 26;36 46625 
41326 32413 65633 52502 526 .... 

- log 5 / log 3 = 
7 7 

13315 13044 46363 40432 02366 04135 21304 53356 32205 44546 66301 00123 63633 04024 
03465 02235 11551 46123 25164 52364 25520 12240 64220 00164 43634 02066 41264 61233 

I 

0.62250 35002 24045 66544 01041 43506 34535 04453 26545 45453 33261 65353 53330 22443 10105 55005 62520 33063 16320 22253 
42306 51054 13301 06465 43020 41555 41121 64255 11350 55053 64515 44465 36222 25605 66346 16142 31340 45522 31033 14255 
21343 24510 62633 00155 361 .... 

- log 11 / log 3 = 
7 7 

0.25035 56505 33553 02331 10224 32143 50543 02561 42352 23430 26326 53446 23462 31210 02416 02335 13066 54240 13006 60451 
00441 56630 66142 56540 44042 52255 15314 10131 40626 10543 02504 04254 45066 50232 65102 41555 41254 02211 54156 34054 
41366 64215 64014 56645 550 .... 

- log 13 / log 3 = 
7 7 

0.21305 11055 56501 22565 55610 32506 13150 66465 56420 46465 21650 16426 11613 41010 66512 26566 50652 02C~5 40431 56566 
43655 56120 34610 53642 61544 36122 61225 42410 23035 15004 26220 14444 23632 33426 15605 51104 34116 04520 65502 65542 
24255 36603 45452 66563 536 .... 

It, 
p,. 
r::r 
I-' 

,(0 

IH 
H 

1H 
I• 

-. 
(') 
0 :; 
rt 
• 
"-"' 
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Tab 1~ I I I ,._ (cont . ) 

- log 3 / log 2 = 
11 11 

0.08248 A4245 06166 43468 58202 44A56 73171 16758 A203A 8A543 28431 86731 11411 4A296 993A7 31A79 00421 95444 80670 57433 
59439 78064 34745 1A710 64682 08044 81761 27049 03452 3661A 40979 29601 898A4 50 ...• 

- log 5 I log 2 = 
11 11 

0.351A9 7223A 31378 09193 42445 306A3 96588 11862 48667 AA6A2 39A03 77139 01693 21678 33652 12687 95AA8 24190 78276 28711 
08399 68022 2A607 55Al7 2231A 80798 76947 73936 21835 30AlA 95324 1A8A3 82999 67 .... 

• 

- log 7 / log 2 = 
11 11 

" 

0.44804 92167 71327 83472 37453 00781 3256A 2A367 85671 88907 799Al 4AAAA 784Al 29329 A6950 17481 86846 17379 94130 77091 
29354 33161 9Al46 03746 52Al4 20214 22541 58A91 50337 7954A 89A01 43809 A8152 52 .... 

- log 13 / log 2 = 
11 11 

0.9011A 94962 52990 39096 3A68A 7556A 1A4A3 44758 57692 20188 42770 072A3 9A977 8819A 97518 14396 07360 899A2 99391 26176 
84077 81181 54473 58532 58A01 91643 28056 63940 99265 27989 37450 85913 91289 56 .... 

• - log 3 / log 2 -
13 13 

0.621B3 15581 OA077 3B5C8 49202 39A32 82105 848C7 70988 B863B 75151 52114 5C25A 04902 6B6C7 377B9 3122B SCACO 13945 A2471 
9B4BA A79C2 7A91C 5A989 C392A CC16A A20Al 75C6B 06BB6 8A3B9 C782B AA7DC AB218 C9 .... 

- log 5 / log 2 = 
13 13 

0.44570 79C51 73665 3796C B7C61 335AO 79906 2B429 51211 4900B 461Bl 621AB 2AC77 C2291 1662A BB03A 8CB9C 77331 74992 llC07 
BBlOl 10301 77310 B8B28 83AB2 57975 7C697 57928 23872 297CB OA414 32B3C A67A8 48 .... 

- log 7 / log 2 = 
13 13 • 

O.AlC78 9C71A 63110 51424 42CA9 OAAA7 B225B B0281 501Bl 976C2 3C05B 09CA3 AB803 C3251 838AC 72502 Al844 03603 644A8 A8501 
173BB BBClC 30466 223C6 C98B4 564C2 47140 28856 C8676 15C30 12892 A3317 163C8 CA .... 

- log 11 / log 2 = 
13 13 

0.1760A A080C 20874 BB876 B2162 75989 CB19B B7CC2 26BB7 87093 5A833 A9375 AB4BA 8COBC 1A698 96C6B A9411 34B75 4B718 63BC3 
571A9 14566 8319B A4B95 B4244 452A8 29623 49AA5 CB804 AC61A CC513 08855 79185 43,.,, 

1-:1 

~ 
f-1 
(b 

H 
'H 
H 
• 

-0 
0 
~ n 
• 
'-' 



Table IV. 

nr. p m 

1 2 44 

2 3 28 

3 5 20 

4 7 16 

5 11 12 

6 13 12 

7 2 33 

8 3 21 

9 5 15 

10 7 12 

11 11 9 

12 3 9 

13 2 22 

14 3 14 

15 5 10 

16 7 8 

17 11 6 

18 13 6 

19 2 21 

20 2 20 

21 2 19 

22 2 18 

23 2 17 

24 2 16 

25 2 15 

26 2 14 

II 

-
-
-

-

-
-
-
-
-
-
-
-

-
-
-

-
-

-
-
-
-

-
-
-
-
-

nr. p m 

27 2 13 

28 2 12 

29 2 11 

30 3 13 

31 3 12 

32 3 11 

33 3 10 

34 3 9 

35 3 8 

36 3 7 

37 5 9 

38 5 8 

39 5 7 

40 5 6 

41 5 5 

42 7 7 

43 7 6 

44 7 5 

45 7 4 

46 11 5 

47 11 4 

48 11 3 

49 13 5 

so 13 4 

51 13 3 

135 

II 

1 

2 

2 

-

-

-
1 

1 

1 

6 

-
-
-
-
6 

-
-
1 

4 

-

1 

4 

-
-
1 

nr. p m # 

52 2 10 2 

53 2 9 3 

54 2 8 6 

55 2 7 15 

56 2 6 16 

57 2 5 26 

58 2 4 31 

59 2 3 44 

60 3 6 5 

61 3 5 8 

62 3 4 16 

63 3 3 35 

64 3 2 54 

65 3 1 87 

66 5 4 1 

67 5 3 5 

68 5 2 18 

69 5 1 36 

70 7 3 -

71 7 2 6 

72 7 1 18 

73 11 2 1 

74 11 1 8 

75 13 2 -

76 13 1 4 

• 



CHAPTER 7. THE SUM OF TWO S-UNITS BEING A SQUARE. 

7.1. Introduction. 

Let ( s ~ 1 ) be distinct primes, and let s be the set of 

positive rational integers which have no prime divisors different from the 

p. . A rational n1.1mber 
l. 

is called an S-unit if its absolute value is a 

quotient of elements of S . Thus the set of S-units is 

xl xs 
{ ± p 1 · ... · p I x. E Z for 

. s l. 

We study the diophantine equation 

2 
X + y ,... Z 

• 
l. 1, ... , s } . 

in S-uni ts x, y , and z E O , where the set of primes 

given. We show how to find all solutions of this equation, 

• 
P11 ... , PS l.S 

using the theory 

of p-adic linear forms in logarithms, and a computational p-adic diophantine 

approximation method. We actually perform all the necessary computations for 

solving the equation completely for { p1 , ... , p
5 

} = { 2, 3, 5, 7 ) . This 

type of equations has applications in arithmetic algebraic geometry (cf. 

Setzer [1975], Pinch [1984]). 

We start with getting rid of the denominators. Let 

There is a d E S such that ld·xl, Jd·yl E S • 

d 1 , d 2 ES and d1 squarefree. Then 

which has the same form as 2 
x + y - z , but now 

x, y, z be a solution. 
2 

Put d - dl -d2 , where 

and d1 -d2 -z E Z. Without loss of generality we may therefore study 

2 
X + y - Z , 

where 

X E S ±y ES, 

z > 0 I 

z E l , 

(x,y) is squarefree . 

136 

(7.1) 

(7.2) 



We shall prove the following results. 

THEOREM 7.1, Let: ... , p be 
s 

comput:able const:ant depending on 

• given. There 

... , p 
s 

exis-Cs 

only, 

an effeccively 

such that any 

solution x, y, z of equation (7.1) wit:h condit:ions (7.2) satisfies 

max ( x , I y I , z ) < C • 

THEOREM 7. 2. Let { pl, ... , p s } = { 2, 3, 5 , 7 } . Equation ( 7. 1) with 

condi-Cions (7.2) has exactly the 388 solut:ions given in Table I. 

Remarks. 1. The Tables are given in Section 7.9. We stress that the aim of 

this chapter is not only to prove these theorems, but to show as well that 

for any given set of primes ... ' p } a result similar to Theorem 7.2 
s 

can be proved along the same lines, in a more or less algorithmic way. 

2. Equation (7.1) with conditions (7.2) can be seen as a further 

generalization of the generalized Ramanujan-Nagell equation 

2 
X + k (7.3) 

(cf. Chapter 4), namely by taking lkl Es arbitrary instead of k E 71. 

fixed. The method of this chapter to solve (7.1) is also a generalization of 

the method of Chapter 4 to solve (7.3). 

Equation (7.1) can be transformed into a number of Pell-like equations. Put 

2 x .... D·u , 

where D, u E S , and D is squarefree. There are only 2 5 possibilities 

for D. Now, (7.1) is equivalent to a finite number of equations 

(7.4) 

-in u E S , ±y E S , z E 7l. , with z > 0 and (u,y) == 1 . We treat 

equation (7 .4) by factorizing its both sides in the field K = ID (/D) . When 

dealing with equation (7.4) we allow z and u to be negative. 

7.2. The case D = 1 . 

First we consider the special case D = 1 . Then (7.4) is equivalent to 
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z - u - y 2 

l 

where 

2-u - y 1 

Y1 e S , ±y
2 

ES , and y1 > IYzl . Subtraction yields 

(7.5) 

where now all variables u, y1 , y2 (apart from the sign) are in S , hence 

l·n Z By (u y) (u y) - 1 . equat1.·on (7.5) is of the form 
. 'l - '2 · 

a+ b ..,. C , 

or 2-a + 2·b - 2•c, where a, b, c are composed of primes 2, P1 , ... , ps 

only, and (a
1
b) - 1 , a 2: b > 0 . In Chapter 6 it was shown how to solve 

a + b - c . For our standard example 

have the following result. 

{ p 
1 

, . . . , p 
5 

} - ( 2 , 3 , 5 , 7 ) we 

LEMMA 7,3. Let 

conditions (7.2) and 

with D ,_ 1 . 

... , p ) .... { 2, 3, 5, 
s 

1 has exactly the 95 

7 } . Equation (7.1) with 

solutions given in Table I 

Proof. From Theorem 6.3 it follows that a + b - c with a, b, c E S , 

(a,b) - 1 , a~ b has exactly 63 solutions. They are easy to compute. Each 

of these gives rise to three possibilities for (7.5): 

if 2 I then (u,y1,Y2) 
l (b,2c,2a), (c,2a,-2b), a - (-a,b,c), 
2 

if 2 I b then (u,yl,y2) (a,2b,2c), 
1 

(c,2a>-2b), - (-b,c,a), 
2 

if 2 I then (u,yl,y2) (a.2b,2c), (b,2c,2a), l 
C - (·c,a 1 -b). 

2 

Of the thus found 189 possibilities, the 95 ones given in Table I with D - 1 

satisfy x ~ y and z > 0 , whereas the others don't. □ 

This completes our treatment of the case D - 1. 

7.3. Towards generalized recurrences. 

From now on, let D > 1 . Put K-= «J(/D) . Let a : K > K be the 

automorphism of K with a(/D) - -/D . For any n'l1mber or ideal X in K we 
• X' for a(X) for • for wr.1. te , convenience. Let :p. 

l. 
- ideal - K such that ord (:p.) > 0 If prime in • p . 

pi l. 1. 

well defined if a choice has been made from the 

/D (mod p) . Put for a solution z 1 u, y of (7.4) 
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i - 1, ... , s be the 

splits in OK, this is 

two possibilities for 



X - z + u•/D. 

Then y - x·x' , and by (u,y) - 1 we have 

min ( ord (u), ord (y)) - 0 . 
P- p. 

1. 1 

(7.6) 

Equation (7.4) leads to the conjugated ideal equations 

s a. b. 
(x) n l. , 1 

:P .. ·l). 
. 1 1 1. l.=-

(7.7) 
s a. b. 

<x I ) _, TT 
l. 1 :p! -:p. 

- 1 1. l. 1.-

where a. , b. E INO , and 
1. 1 

b. - 0 
1 

if :p. =- :p ~ • We need the fol lowing 
1. l. 

auxiliary lemma. 

LEMMA 7.4. If EK and ord (€) - ord (€') for a prime p , Chen 
p p 

ord (€) ~ ord (€-€') . 
p p 

Moreover, if p = 2 and D = 1 (mod 8) , chen 

and, if p - 2 and D = 2, 3 (mod 4) , Chen 

Proof. This is an easy exercise, which we leave to the reader. 

Ye distinguish, as usual, three cases for the factorization of the prime 

□ 

p. 
l. 

in K: it may split, ramify or remain prime. See Borevich and Shafarevich 

[1966), section III.8. 

➔ 

D e 5 

Lemma 

• • p. remains prime 
1. 

(mod 8) • We have 

7.4 we obtain 

ord (y) -
p. 

1. 

• tn 

(p.) 
l. 

It follows, using (7.6), that 

K Then p. .t D • 
1 

= :p ... :p~ 
' 

and from 
l. 1. 

~ 2-ord (x-x') 
p. 

1 
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and if p. -' l. 

ord (x) - ord 
p. p. 

1 l. 

2•ord (2·u·/D) . 
p. 

l. 

2 then 

(x') and 



) 

p. -
]_ 

From 

if p. ~ 2 then ord (y) - 2•a. ~ 0 , 
l. p. l. 

p. 
l 

2 

if p. - 2 
l. 

ramifies • in 

• Ye have 

then 

K • Then 
2 

(p.) - :Pi, 1 

Lemma 7.4 we find 

l 

pi I D 

'P- - :p~ 
1 l. 

if pi "" 
' 

and 

2 , and if 

2 
' 

and D • 

a. - 1 
l. 

2' 3 

then 

(mod 4) 
1 

(x) ord (x') ord .... - -·a. 
2 l. p. pi l. 

if 

• 

ord (y) 
p. 

1 

~ 1 + 2·ord ((x-x')/2·/D) p. 
l. 

- 1 + 2-ord (u) . 
p. 

1. 

By (7.6) we obtain 

ord (y) - a. - 0, 1 , and if a.= 1 p. l 1 
l. 

• 

then ord (u) - 0 . 
p. 

l. 

splits K Then p. i D and if 2 then D E 1 (mod 8) ) p. in p. -• ' 1. 1 l. 
We have ( p.) - :P- -p~' :p. ~ :p ~ Further, ord (:p.) .... 1 ord (:p~) • 

' l. 1 l. l. 1. p. l. p.. l. 
l. 

Hence ord <x) - a. ' 
ord (x') = b. • If a. - b. p. l. pi 1 

l. l. 

ord (y) 
p. 

l. 

- 2-ord (x) 
p. 

1. 

~ 2-ord ((x-x')/2) 
p. 

l. 

we obtain by (7.6) that 

ord (y) - a. 
p. l. 

l. 

b ..... 0 . 
l 

' 

1. 
then from 

- 2-ord (u) 
p. 

]_ 

1. 

- 0 

• 

• 

If a. 1"' b. 
1 1. then ord (y) - ai +bi> 0 , hence 

pi 
ord (u) ~ 0 , by (7.6). 

p. 
l. 

We infer in this case 

ord (y) 
p. - a.+ b. ~ 1 + 2-min(a.,b.) = 1 + 2·ord (x-x') 

1 l.. l l. p. 
l. 

It follows that 

- 1 + 2-ord (2) . 
p. 

l. 

l. 

ord (y) - max(a.,b.) , min(a.,b.) - 0 if pi~ 2 , p. 1. l. l. 1. 
1. 

ord (y) - max(a.,b.) + 1 , min(a.,b.) - 1 if p. - 2 . p. 1 1. l. 1 l. 
l 

Put b 0 ~ min(a.,b.) 
l. J. 

if p. = 2 
l. 

occurs, and 
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b - 0 0 otherwise. (Note that 



min(a .. ,b.) - 1 may occur only if 'Pi pl :p ~ hence only if pi - 2 splits). ' l. l. l. 

Let that the splitting • of us ass1.1me primes P1, PS are pl' .. . . , pt . . . ' 

for some 0 < t < s • Put - -

I - { i j 1 ~ i ~ t , a. > b. } , 
l. 1. 

l' - { i I 1 ~ i ~ t, a. < b. } . 
1 l. 

For i - 1, ... , t , let h. 
l. 

be the smallest positive integer such that 
h. 

1. :p . 
l. 

is a principal ideal, say 

h .. 
1 

l' i (1r.) . 
1. 

If h denotes the class number of K , then h. I h . Now, 
1 

determined up to multiplication by a unit. Thus we may choose 1(" • 
1 

For • 
l. 

if i EI , 

if i E l' . 

1, ... , t , put 

I a. - b. 
1 1 

I = C.·h. + d., 
1. 1 l. 

and O ~ d. ~ h. - 1 . Consider the ideal 
l. 1 

a. """ 
b 0 d. 

<2) . TI 'P i 
. I i l.E 

·TT 
iEI' 

s a. 
. TT :p_i . 

. 1 l. 1=t+ 

• 
l.S 1r. EK 

l. 

such that 

From the above considerations it follows that, for given K, p
1

, ... , p
5 

, 

there are only finitely many possibilities for a. . By (7.7) it follows that 

(namely, 

I a. -b. I -l. l. 

ideal, say 

c. c. 
<x) - a.- TT <1r.) 

1
- TI <w!) 1 

iEI 1 iEI' 1 

I a. -b. I - max ( a • , b . ) if p. 
l. l. 1 l. l. 

max(a., b.) 1 if 2 - p. == 
l. 1 1. 

a. .... (a) 

2 - then min(a. ,b.) ..... 0 and ~ since • , 
' 1. l. 

and b .... 1 ) . Hence 0. • principal l.S a 0 

for an a E OK. Up to multiplication by a unit, there are only finitely many 

possibilities for a. Let be the fundamental unit of K with € > 1. 
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Now, (7.7) leads to the system of • equat.1ons 

c. c. 
+ u/D - ±a n n l. n 1f ! 

l. 
X ,_ z • E • 1f. • 

1. 1. 
iEl iEI' 

, (7.8) 

x' .... z - u/D - ±a' 

where n E Z • Put for nel 

G ( n, m1 , . . . , m ) 
a t 2 

,n • e • ll 1f ~ 

iEl 
l. 

• n 
iEI 

m. 
l. 

1f. 
1 

c. c. 1. ll 
1 

• 1f • 

iEI' 
1. 

• n 
iEI' 

,r ! 
l. 

t 

m. 
1. -

and for each possible 

a' ,n 
--,--• t . 

D n 
iel 

1f ~ 
l. 

m. 
l. 

• TI 
iEI' 

a 

m. 
l. 

,r. 
1. ' 

m. 
a -2 

n 
. t • 

m. 
n ,r_i. 

l. 
iEI 

n 
iEI' 

1f ~ 
l. 

m. 
1. 

+ 
a -2 

, 
,n 

• € • n 
iEI 

1f ! 
1 

m. 
l. 

• n ?r.l.. 

iEI' 1 

Then (7.8) is equivalent to 

• (7.9) 

The functions G 
Q 

and H are 
Q 

generalized 

all variables but one are fixed, then they 

sequences. We show an example in Fig. 8. 

• recurrences 1.n 

become integral 

the sense that if 

binary recurrence 
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107100421. 21907'1143, 44Sl.57089. 916686307, 1175126621 . .5835665103. 78460.5<i249. l6049450427 .32829934901.6715523650.5.111••11•llflllllEllf•• 

4878501. 9978403. 20412129. 41754007, 115409861. 17471004.5 . .557377929. 731034047. 1495:S6670l. 3058865923, 6257545649. 222201. 454523. 929749. 1901847. 3390321. 7957!43. 1627<!189 . .5.5298607. &111.52521. l.5'11113803. 296665.549. 
10121. 2070.5. 42349. 86627. 177201. 362503. 742229. 1535307. 3548761. 17037743. 269092029. 461. 943. 1929. 3947. !1101. 17223. 50ll49. 478l'i7. 9940221. 235016543. 5623359289. 
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l. 23. 549. 13147, 314921. 7545743. 180706lll9. 43211717507 ,llll!MMllllllMllf•ll•'lllllllll:lll!•llllllllfllllflllllllfllll'.llllf•••• 
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46l. 11043. 264529. 6336647. 151790901. 3636067723.87100006649,M•llllllll:MlEllllllllllll.llllllN•llll•llMllll•llllM•••ll•••11•ll*ll*•••• 
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~F=ig'-=u=r~e-=8~. G (n,m) 
a n m 

= -2-n·e ·11' - , n ,m 
• ,r - for D,.. 30, a== 5 + /30, 

a 

11 + 2·/30, 11' - 13 + 2·/30 

10 (horizontally). Numbers 

7.4. Towards linear forms in logarithms. 

Let us write u. 
1 

- ord (u) 
pi 

for • 
l. = 1, 
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-10 

are 

.. . . ' s • 

10 

denoted by 

(vertically) 

asterisks. 

Put for each 

and 



IU - { i I 1 ~ i ~ s , ord (G (n,m1 , ... ,m )) > O occurs 
p. Q t 

1 

for at least one (ntm1 , ... ,mt) E Z x 

Note that • s 1.nce (u 1 y) - 1 the sets 

with the first equation of system (7. 9). 

IU, I, I' are disjunct. We proceed 

Written out in full detail it reads 

C. C. 

. I 1. • I' 1 
1.E 1E 

- o' n ci ci 
~-·€' · n 1r! • n 'Tr. 2 D iEI 1 iEI' 1 

• (7.10) 

Now, I, I'. IU depend on o, which depends on the particular solution of 

equation (7.4) that we presupposed. However, we know that Q belongs to a 

finite set, which can be computed explicitly. So if we can solve (7.10) 

comp1etely for each of this set, then we can find all solutions of (7.9), 

hence of (7 .1). 

The set of the a's may be reduced, without loss of generality, as follows. 

If D = 1 (mod 8) then 

respectively. We only have to consider 

then 

may both occur, with 

2·a , because if u 
0 

u - 2·uo, z - 2·zo 

uo, z - zo 
is a solution 

• 1S 

of a solution of (7. 9) for a - o 0 , 

( 7. 9) for o == 2 · a 0 . Hence it is not necessary to consider a if also 

D 

== 2·a: 
0 

5 (mod 8) 

• 
l.S already 

then with 

being 

a== a 
0 

considered. 

such that 

same 

"'"" 0 

argument, 

also a == 

if 

2-o 
0 

may occur, so that we only have to consider the latter. Note that it may now 

occur that (u,y) - 2 . The condition (u,y) - 1 is used only to ensure that 

IU and I u I' are disjunct. This 

(a,) 
0 

• remains true in the above cases with 

(u, y) == 2 . Further, if (a:0 ) for some 

consider one of the pair 

ao , 
if the 

then we 

I I' 
' 

a:o are then the 

a:0 . Namely, 

belonging to a' 
0 

are 

only have 

belonging 

and then 

G , ( n , m1 , . . . , m ) ao t 

+ -
a:0' c. c. 

,-n , 1.n ~-1. _ 

I , 1. 

0 0 

a 
0 -n TT --.-•€ . 

2 D I 
0 

Ci C. 

TT 
, 1 

11". . 11". 
1 I, 1 

0 

(by using E • E' - ±1 ) , and analogously 

- ± 
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From equation (7.10) we now derive p.-adic linear forms in logarithms, in 
1. 

three different ways, according to i EI, I' or 

3 
if 2 ...., . - 1 1.· f p - - 3 , 1 if > 5 -, • - - p • - I J - ..,i - -2 P]_• - • l 2 l 1 1. 

Then -,. > l/(p.-1) , hence if 
l. 1 

for a ~ E K then 

ord (log (l±e)) - ord (€) . 
p. p. pi 

1 1 

We now have the following result. 

l;..EMMA 7.5. 

(i). For 

Let 

i E 

( i e I U I' ) , 

A. - ord (2/D/a') , 
l. pi 

Q 
A. - log ( ,) 

1 p. Q 
l. 

E + n· log ( , ) + 
p. E 

1 

If u. +A.~;. then 
l. l. l. 

u. + A. - ord (A.) . 
l. l. p. l. 

]. 

(ii). For i EI put: 

a 
K. • - ord ( , ) , 

1. p. a: 
l. 

+ n·log (E') -
p. 

l. 

,r. 

L c. · log ( ~) 
. EI J p. ,r. 
J l. J 

I u. ·log 
·er J J u 

+ I c.•log (w~) + 
jEI J pi J 

I c. · log (ff". ) . 
jeI' J pi J 

h.·c. + K.i - ord (K) l. l. • . p. l. 
l. 

(ii'). For i e I' put 

a:, 
,c~ - ord (-) , 

l. p. a 
1 
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( 7. 11) 

satisfy (7 .10). 



n·log (e) -
p. 

1 

}": u. • log (p.) 
. EI J p. J 
J u 1 

+ L c.·log (1r.) + 
jEI J pi J 

L c. ·log (1r~) . 
jEI' J pi J 

If h.·c. + ~~ ~ ~- chen 
l. 1 1. 1 

h. · c. + ~ ~ .... ord (K ! ) . 
l. l. l. p. l. 

l. 

Rema.r.k;. Note that all the above p i-adic logarithms are well-defined, 

their arguments have p.-adic order zero. This follows from the fact that 
1 

I and I' are disjunct, and if D = 1 (mod 8) from the choice 

• since 

Proof. For (i), divide (7.10) by its second term. For (ii), divide (7.10) by 

its second term, and add 1. For (ii'), divide (7.10) by its first term, and 

add -1. Then in all three cases take the p.-adic order, and apply (7.11). D 
l. 

The linear forms in logarithms 

seem to be inhomogeneous, since 

!'i.., K., K
1
~ , as they appear in Lemma 7. 5, 

1. l. 

the first term has coefficient 1. However, it 

can be made homogeneous by incorporating this first term in the other ones, 

as follows. Put 

* h - 1cm ( 2, h 1 , h 
s 

Note that, by the definition of a, 

) . 

* * h n 0 n. n. s ni h · b 0 ± E • n 11". 1_ fl 1r! 1._ n p. -2 Q 

iEl 1 iEI' 1 i=t+l 1 ' 

where the exponents n. 
l. 

for O :5 i :5 s are integral. It follows that 

Put 

a 
a' 

* A. 
1 

* h 

* h ·A. , 
1. 

n. 

1f, 
iEl 

1. n 
iEI' 

,r 

* * n == h -n + n 0 , 

, n. 
1r 1 

* c. 
J 

Then it follows that 

* * f. A.= n ·log (-) + 
1 p. f.' 

1. 

* 1f. I c.·log <-+) -
. I J p. 11". JE l. J 
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• 

* h ·c. + n .. 
J J 

* 1f. I c.•log (--f) . 
. I' J p. 1r • JE 1. J 

(7.12) 



Note that the prime divisors of D are just the ramifying primes. By (7.12), 

* 
- + -

no n. n. s 
e • n ,r .. l.. n ,r! 1

· n P-
1 

iEI 1 iEI' 1. i-t+l 1 ' 

where l * v. - -•h •ord (4D) E Z for i - t+l, ... , s , and V - 1 0 if 2 

splits, 

l. 2 p -
1 

V - 0 0 
otherwise. If p. - 2 

l. 
splits we have assumed that 

Hence .the last factor vanishes. So put 

* K. 
l. 

* h · K. , 
1 

* * K~ - h · K~ I 
1 1. 

* * u. - h ·u. 
J J 

- ( 

v. '"' 0 } . 
1 

n. - v. ) , 
J J 

Then it follows that 

* K. 
1. 

* - n •log (e') 
pi 

* - l *u. · log (p.) + 
jEI J pi J 

u 

* l c.•log {,r~) + 
jEI J pi J 

* + I c. · log ( ,r. ) , 

jEI' J pi J 

* - n ·log (e) -p. 
l 

* I *u. -log (p.) 
. EI J p. J 
J u 1. 

* + L c.·log (,r.) + 
jEI J pi J 

* + I c.•log (1r~) . 
jEI' J pi J 

This leads to the following reformulation of Lemma 7.5. 

LEMMA 7.6. Let n, c. for i EI u I' , u. for i E IU be a solution of 
1 1. 

(7.10), let 

* * * c. , u .. , Iu 
l l. 

A., IC., IC~ 
1 l. 1 

be as above. 

be as in Lemma 7.5, and let 

(i). Let i E IU. If u. +A.~~- then 
l. l 1. 

(ii). 

(ii, ) . 

Let 

u. + ). . 
l. l. 

* + ord (h) 
pi 

* =- ord (A.) . 
p. 1. 

1. 

i EI . If h.•c. + ,c. ~ ~i then 
l. l. 1. 

* * + ord (h) - ord (K.) . 
pi pi l 

h. ·c. + 1t. 
l. l. 1 

Let i EI' . If h.·c. + K' > ~ then 
l 1 i - 'i 

h. ·C. + K,~ 
l. 1 l. 

* + ord (h) 
p. 

l 

* - ord (K~ ) . 
Pi 1 
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Remark. We will study the linear forms * * * logarithms A., K., K~ for 
* * * 1 1. 1. arbitrary integral values of the variables n > ci, u 1 . Notice that the 

parameter has disappeared completely from these linear forms. This means 

that we have to consider the linear forms for each D only, instead of for 

each a. 

7.5. Upper bounds for the solutions: outline. 

Let us first give a global explanation of our application of the theory of 

p-adic linear forms in logarithms, that gives explicit upper bounds for the 

* * * variables occurring in the linear forms A., K., K~ . Then we give arguments 
1 ]. ]. 

why we choose this way to apply the theory, and not other possible ways. In 

the next section we give full details of the derivation of the upper bounds. 

In the sequel, by the 'constants' c
1

, ... , c
12 

we mean numbers that depend 

only on the parameters of (7.10), not on the unknowns n, c., u .. 
l 1 

Put 

M =- max (c.) , 
iEIUI' 1 

U = max (u.) , 
. I i 
l.E U 

* * * 

B = max { M, U, !nl ) , 

M - max (c.) , U 
iEIUl' 1. 

* * * * * max (u.) , B ~ max ( M, U, In I ) , 
. I 1 
l.E U 

In -v I ) . s s 

Then it follows that 

* * * X ::Sh ·X + N , X :5 
X + N 

* 
(7.13) 

h 

for X = M, U, B . We apply Lemma 2.6 to the p-adic linear forms • 
in 

logarithms. For * A. we find, in view of Lemma 7.6(i), 
1 

(7.14) 

* * and for K., K! we find, in view of Lemma 7.6(ii),(ii'), 
]. 1. 

{7.15) 

Here, c1 , c2 , c3 , c4 are constants that can be written down explicitly. In 

order to find an upper bound for B we try to find c
10

, c
11 

such that 
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(7.16) 

In view of (7 .13) we may insert and delete asterisks any time we like, as 

long as we don't specify the constants. In order to prove (7.16) it remains, 

in view of (7.14) and (7.15), to bound lnl by a constant times log B . We 

will introduce certain constants c5 , c6 , c7 , and distinguish three cases: 

(a). - ( c6 + c7-M) ::Sn s c5 ' 
(b). n > cs ' (7.17) 

(c). n < - < c6 + C ·M) 
7 • 

In case (a) . .. by (7.15), obvious that (7.16) holds. In cases (b) and (c) l. t l.S, 

one of the two ter1ns of 

constants c8 , c9 such that 

G 
Ct 

dominates. We shall show that there exist 

(7.18) 

Then (7.16) follows from (7.14). 

From (7 .16) we derive immediately an explicit upper bound for B , 

hence for all the variables involved. Since the constants 

be very large, also will be very large. To find 

c1 , ... , c4 will 

all solutions we 

proceed by reducing this upper bound, by applying the computational p-adic 

diophantine approximation technique described in Section 3.11, to the p-adic 

linear forms in logarithms * * A. , K. , 
l. l 

* K~ 
1 

. Crucial in that line of argument is 

that the constants CS, ... , c9 are very small compared to 

This method leads to reduced bounds for the p-adic orders of the 1 inear 

forms. Then we can replace (7.14) and (7.15) by much sharper inequalities, 

and repeat the above argument, to find a much sharper inequality for (7.16). 

In general we expect that it is in this way possible to reduce in one step 

the upper bound c12 for B to a reduced bound of size log c
12 

. 

Before going into detail we explain briefly that it is possible 

( 7 .10) partly by the theory of real ( instead of p-adic) linear 

to treat 

for1ns • in 

logarithms, and subsequently by a real computational diophantine 

approximation technique (cf. Section 3. 7), and why we prefer not to do so. 

First, note that K. and 
1. 

therefore more complicated 

have generically more terms than A. 
l. 

~ and are 

to handle. Since K K ,_ . ) 

1. 1 
occur only in case (a), 

this is the most difficult case. Equation (7.10) consist of three terms, each 

of which is purely exponential, i.e. the bases are fixed and the exponents 

are variable. If one of these three terms is essentially smaller than the 
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fl 

other two (more specifically, smaller than the other terms raised to the 

power 5 , for a fixed 6 E (0,1) ), then we can apply the real method. There 

are two ways of doing this. Write (7.10) as 

x - x' - 2-u·ID. 

First, suppose that I x-x' I 0 
< IX' I . Then In I cannot be very large, and we 

are essentially (i.e. apart from a finite domain) in case (a). Unfortunately, 

the region for In I that we can cover in this way becomes smaller as M -➔ co 

example below). Second, suppose that lxl > Ix' t115 
, or (see 

IX I < 

the 

IX, 1
5 

. Then we are essentially in case (b) or (c). But this area can 

be dealt with easier p-adically, 

whereas the real linear forms 

since here we use the linear forms 

in logarithms used this case 

A. I 

1 

will 

generically have more terms. The areas sketched above, in which we can apply 

the real theory, will not cover the whole domain corresponding to case (a) 

(cf. the white regions in Fig. 9 below). Hence we cannot avoid working with 

the p-adic linear forms K. , 
1 

K! 
l. 

. But then it is more convenient to avoid the 

use of real linear forms. 

r 
--- - --.. -

.,__.4.,. ___ 

- - - . -- -· - ----· --
---- - . ---

" "--· . ---,. ·---~-~--" _.,._ ______ , 
- - ··--~~-- . 

·-----·-- . "" " - - --~--··----- ----·· ___ ., 
~~ ..• ,,. - - --· - - ~·--- - ·-- . - --- -· - ------ -· . ----~- - ---------·- ---- -..........-------~-- ~-->•------, ~--~---

A ---- -~-~- ----· - - -__ ,._ ·-· ,,._ 
... _____________ 

. -___ ,,,._,_,, -,u .. ---o 
__ , ____ , ... 

"-••-·------ . - - _ _,.. --~- -· ---"" -- ,,, ___ ---------~· --·- ~- ----· 
' --- ·- ---------- ---~--,----

M --~~---- -~ ·------ .. " """ -- -·----------· ,.. --- ·····-••o- ----

➔ ·- --·- • -··· .. 
~ ••. -- -- ---------- ----- -- . 

• ' I Cl('.;;,_-~--;--""-•-:_- • -- -
x' 2 

~ X -
·-

~ 
• 

miffli B :lil. • ..., 

ffiif~ J I -. 

' I ' ~ 

~ ~ ~ I 
• I ' ' I I • 

D C 

h D • 
I • 

:=:....~ 
X - 2 I x' I 

A :::::.. 
C ::,._ 

::.... 

:::::.. 8 X - I x' I +11 X' I 

X - Ix' I 
X - Ix' I -I IX. I 

X - ✓ 1 x' I i I , I X - -x 
2 

,;F'igu:i;::.e 9 . 
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Let us illustrate the above reasoning with an example. Let a - a' - 1 , 

1 + ..... 0, and 6 - - • 

Then we have x - (l+/2)n·(l+2·/2)M. Fig. 9 above gives in the (n,M)-plane 

the curves X 2-lx'I, 
which are boundaries of the four regions A, B, C, D. We have the following 

possibilities. 

• region 

A 

B 

C 

D 

case 
(essentially) 

(b),(c) 

(b),(c) 

(a) 

(a) 

numher of terms in linear form 

p-adic method 

2 

2 

3 

3 

real method 

3 

-
-
2 

The hardest part is C . It 
6 

can be reduced to 1 
· Ix' I < x < 

C 

s I X ' I - I X ' I and 

lx'I + lx'I <x<c·lx'I for any C > 1 , o E (0,1) , but will never 

disappear. So we cannot avoid the p-adic linear form in case (a), which then 

works in regions C and D together. 

7.6. Upper bounds for the solutions: details. 

We now proceed with filling in the details of the procedure outlined in the 
• • previous section. 

We apply Yu' s lemma (Lemma 2. 6) as follows. We have L - K ... «l ( /D) , so 

d =- 2 . For the a. 
1. 

we have E/E', 1r./1r~ , or 
J J 

to compute the heights of these numbers. We have at once 

h(p.) - log(p.) if p. ~ 3 , h(2) - 1 , 
J J J 

1 h(e) - h(E') = 2·log(e) , 

h ( ,r . ) = h ( ,r ~ ) -= !. · log ( max ( 1 , I 1r • I ) · max ( 1 , I ,r ! I ) ) . 
J J 2 J J 

1(" • I 

J 

Further, let fi - e or p - 1r •• Then the leading coefficient of P/fi' 
J 

a0 - IP·~' I , and we infer 

have 

• 1S 

== log ( max ( I .B I , I .B ' I ) ) • 

Hence 
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log(e) , log ( max ( I 1r. I , I 1r ~ I ) ) 
J J 

• 

The order of the a. is important in two respects: it is required that the 
1. 

v_ 
l. 

for i """' 1 
' . . .. ,, n-1 are in increasing order, and that ord (b) 

p n 
• 1.S 

minimal among the ord (b.) . Since the 
p l. 

assl..llile that V 
n :S V l s . . . :::5 V n-l . In 

product d V+ an appear. 
n-1 

matters for defining 
n-

with the a. in any order, if we define 
l 

max ( 1, v1 , . . . ' 

Further, we take 

B - B = B = B' = max 
0 n 

V ) . 
n 

b. 
1. 

are 

the final 

the unknowns, we should 

bound however, only the 

So the ordering of the v. 
1 

only 

. . . ' lb I, 2, n 
4 f:p/d 

3 -n· (p -1) ) . 

Then ~ f ·(log p)/d :p . By B ~ 2 it follows that 3 
1 + 4n•B < B . 

Hence we can take 

W == log B. 

There are two more conditions to be checked. The first one • 
1S that 

bl bn 
o:l · ... ·on ~ 1 . This is immediate, if we assume the obvious condition that 

not all b. 
l. 

are zero. The second one is 1/q 1/q n . (K(o:1 , ... ,on ):K] - q , which 
• 1S less obvious. For our situation it follows from the following lemma. 

Application of Yu's newest results avoids such a condition (cf. Yu [1989]). 

Nevertheless we include the lemma here, to show that it is often possible to 

prove such a condition, which may in some cases lead to lower constants. 

LEMMA 7.7. Let K = lO ( /D) , w i th as fundamental unit, and h as class 

number. Let 

. 1 1 = ' ... ' s 

... ,_ p 
s 

be distinct prime numbers, and let 

a prime ideal in 
h. 

K lying above p. . Let: 
1 

h. 
l. 

be for 

be a. divisor 

of h such that 
1. 

:p. 
1. 

is principal, and denote a genera.tor by 1{' .. 
l. 

. Let 

either: (1) all p. split, and then 
1 

11" • 

c
0 

- e , c. - _J_, for i = 1, ... , s , 
~ €' ~J 11". 

J 
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or: ( 2) 

for j - l, ... , s . 

Lee q be an odd prime, not dividing h. Then 

Proof. Let 

induction on 

Suppose that 

K .... K( ~l/q) ( cl/q) for i 1 T.T O ~o , and Ki - K1_ 1 <.; i - , ... , s . we use 

q . 
i+l 

[Ki :K] - q . It remains to prove that [Ki+l :Ki] - q , hence 

it suffices to prove that {. l EK. , since 1+ l. 
q is prime. Suppose the 

contrary is true. K. 
l. 

• 
l.S a K-vector space of dimension 

i+l 
q , with as 

basis all the elements 

for 
• ex1.st 

i k./q 
., - ne.J 

kO ' . . . ' k i j -o J 

1, ... , q-1 } 

EK such that 

for j - 0. . .. , 

cl/q -
~ i+l I a. · T 

k k Ko ' . . . ' k . ko , . . . , k . . 
O'"*"J i l. l. 

• 
l. • It follows that there 

(7.19) 

The group of K-embeddings of 

j - 0, ... , i defined by 

K. 
l. 

• into is generated by the a. 
J 

for 

where p is a primitive q th root of unity. Hence all the embeddings are 

given by 

i l. 
- n a_J 

j-0 J 

for l. E { 0, 1, ... , q-1} . It follows that 
J 

i l. i k /q 
na.J(nem) 

j-0 J m==O m 

• 
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• 
J. 

L l.k. 
j-=O J J 

.... p 

~he minimal polynomial of over K • 1S 
q 

X - e . l . Hence the 
1+ 

.conjugates of cl/q 
\. i+l are 

c;l/q 
i+l 

. 1/ 
PJ. ~ q 

'>i+l for j - 0, 1, ... , q-1, all with equal 

piultiplicity. There exist numbers 

j ..., 0 , 1 , ... , q-1 we have 

m. E ( 0, 1, ... , q-1 } such that for 
J 

m. 1/ J. q 
P { i+l . 

tience 
i 
}: l.m. 

j=O J J 1/q 
= p ·€. 1 . l+ 

Now apply to (7.19). Then for each tuple 

• 
1 

I t.m. 
j=O J J 1/q 

P ·{i+l = 

Here we have a system of i+l q linear equations in the i+l 
q 

we find 

unknowns 

a.k k . The determinant of this system is exactly the square root of the 
0, ... , i 

discriminant of K. 
1 

over K, hence nonzero. Consequently there is in 

just one solution of the system. But we know that solution: 

- 0 if (ko,···,ki) 

= e:/q_r-l . 
1. + 1 mo , . . . , mi 

The latter equation now yields an equation over K: 

• 
1. m. 

,Ei+l - aq . n e.J . 
mo,···,m .. 0 J l. J ..... 

In case (1) this leads to the ideal equation 

m. · h. 
J J 
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and in case (2) to 

h c' > i+l 
:pi+l 

i , m.·h. 
- o.q• TI :P~ > J J , 

j-1 J 

(where stands for or p' ) for some fractional ideal Cl (note 

that (e0 ) - (1) ). Because of unique factorization for ideals it follows in 

both cases that q divides all m. · h. 
J J 

for j - 1, 

contradicts the assumption q .f h . 

Remarks. 1. If ord 
p 

> l/(p-1) then 

• 
• ... ' l and hi+l. This 

D 

bl bn 
ord (a1 · ... ·a -1) - ord (b1 •log (a1 )+ ... +b ·log (a)) . 

p n p p n pn 

We prefer to work with the logarithmic version, since that is the one we use 

in the computational method of reducing the upper bounds. 

2 . In order to apply Yu' s lemma we can take for q the smallest odd prime 
f 

that does not divide h•p· (p -:p-1) . 

3. The author is grateful to M.A.J.G. van der Vlugt (Leiden) for discussions 

on the above lemma. 

We now proceed to compute the constants Cl to Cl2 • To find 

* apply Lemma we 2.6 to A. for all • 
E IU Then we find l. I • 

l 

constants 

(where t. 
l. 

Cl., c2 . such that, under the conditions 
, 1 , l 

f /2 
* 4 pi 

B ~ max ( 2 , 3 · ti · (pi -1 ) ) , 

* denotes the number of terms in A. ) , we obtain 

* < c1 . + c2 .·log B 
,l. ,l. 

l 

• 

for 

Cl and c2 
such " each 1 

By Lemma 7. 6(i) and the relation ord:p e ·ord , and assuming that 
:p p 

U ~ max (~.-A.) , 
iEI l 1 

u 

we see that it suffices to take 

C .... 
1 

* max ( -().. +ord (h ) ) + 
·er 1 P • l. u 1 

Then (7 .14) holds. 
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c1 ./e ) , 
,l. :p. 

l. 

C -2 

) , 

max ( 
iEIU 

(7.20) 

c2 .. /e"n , l. ,.. • 
l. 

) . 



Next apply 2.6 * * Lemma to K. and K~ for all • I and I , we l. E 
1. 1 ' ( , ) 

respectively, to obtain c3 and c4 By denote X if i I • X we E • 
• • and X' if E I' There by Lemma 2.6 c3 . and c4 i 
1. • exist constants 

, l. 
' such that under 

h .. C. 
1. l. 

the conditions 

( I ) 

+ K,. 
1. 2: 'Y- ' l. 

* B 2: max ( 2' 

(where again t. 
1. 

denotes the number of terms of ( , >* 
K. ), it follows that 

1 

( , >* 
ord (K. ) 

:p. 1. 
* < c3 . + c4 .·log B 

,l. ,1. 
• 

1. 

Again, by Lemma 7.6(ii),(ii') it follows that, under the conditions 

( , ) 

-y. -K.. 

( 
l. 1 

max h 
iEIUI' i 

it suffices to take 

J , * B > -

( , ) * 
K.. +ord (h ) 

l. p. 

max ( 
iEIUI' 

(7.21) 

C -3 
max ( 

iEIUI' h. 
1. 

1 c3 . 
' l. ) + h. ·e t 

C -4 

c4 . 
max ( ' 1. ) • 

. I I' h. •e 1. :p. 
1. 

l.E U 1 :p. 
1. 

Then (7.15) holds. 

We take c5 to c7 as follows: 

a' 
)/2-log 

Q 
c6 = log(2· Q 

0
, )/2·log t: , f 

I log 
iEl 

1t" • 
1. 

1t" ~ 
l 

+ I log 
iEI' 1r i 

)/2-log e . 

Note that or may be negative, but that always -C 
6 

< c5 . Further, 

is always strictly positive, unless 

take c8 and c9 . Suppose first that 

n > max ( c5 , 0) . 

I - I' =- 0 . Next we show how to 

and the choice of 1r. we find by (7.8) that 
]_ 

X 
x' - a: 

a' 
• 

n 
c 
c , ·TT 

iEI 

,r. 
1 

,r ~ 
1 

C. 
]_ 

. n 
iEI' 

which expresses that the first term of G 
a 
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,r ~ 
1. 

,r. 
1 

c. 
l. 

> -
a 
a' 

2-n 
• E > 2 1 

dominates. Put 



Then we infer 

hence 

u. 
n pi 

1 
- lx-x'l/2·/D > lxl/4•/D 

ieI0 

+ U•log(P) )/log E • 

Next suppose that 

Then we find that the second term of G dominates, namely 
a 

Put 

. x' 
X 

o' ... 

o' 
> - Q 

• 

, C • n 1r. 1 
e' . TI i . n 

1f 1f' '. ieI i iEI' 1 

11" • 
l. 

iEI ,r i iEI ' i 

2·C o' 6 > - ·E - 2 . 

c. 
l. 

M 
a' - • E 
Q 

r - TT min< 1, l1ri'I ) . 
iEI 

n min 
ieI' 

< i, l1r.f ) . 
l. 

-2-(n+C ·M) 
7 

Then we infer 

a' n ci c. 

iEI 1 iEI' 1 

Hence 
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lnl < 

The remaining possibilities 

0 :S n < -(C +C •M) < 6 7 

c
8

-= max 

+ U·log(P) 
l/C7 

/log(e•r ) . 

in cases (b) and (c) are 

we may take, noting that r :S 

c9 ..... (log 
l/C7 

P)/log(e•r ) . 

Then (7.18) holds in the cases (b) and (c). Now take 

and 

I 

Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold. 

Hence, by Lemma 2.1, we infer the following result. 

LEMMA 7.8. In the above notation, 

hold unconditionally, where 

* c12 -= max 

Proof. Clear. 

( , ) 

* -y. -K,. 

iEIUI' i 
max 

iEIUI'UIU 

* max (h · (-y .-A. )+NJ , 
. I l. l 
1.E U 

f /2 :p. 
-3·t.·(p. 1. -1)) 

l. 1. ' 

Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8. 

D 

* 2. In practice, almost always the first term in the max-definition of c
12 

dominates. Moreover, the term N will in practice disappear in the rounding 

off. Similarly, in the definitions of c10 and c
11 

, the dominating factors 

are in practice c
1 

to c
4

. 
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7.7. The reduction technique. 

We now want to reduce the upper bound c12 for B for * B , which 

is equivalent), to a much smaller upper bound. We do so using the p-adic 

computational diophantine approximation technique described in Section 3.11. 

* * We perform this procedure for A - A1 , Ki, * K1 , for the relevant i . W'e 

work in the p-adic approximation lattices 

sublattices described in Section 3.13. The 

r themselves, and not in the 
µ 

computational bottlenecks are the 

computation of the p-adic logarithms to the desired precision, and the 

application of the L3-Algorithm. We refer to Chapter 3 for details. Once we 

have found reduced bounds for 

combine these bounds with Lemma 

(7.18) to find reduced bounds for 

ord (A) 
p 

7. 6 and 

for the above mentioned A • 

with estimates (7.13), (7.17) 

* 

we 

and 

B and B • 

When reduced upper bounds for 

above procedure again, with 

* B, B are found in this way, we may try the 

replaced by their reduced analogons. 

We may repeat the argument as long as improvement is still being made. But at 

a certain stage, usually near to the actual largest solution, the procedure 

will not yield any further improvement. Then we have to find all solutions by 

some other method. One technique that may be useful is the algorithm of 

Fincke and Pohst, described in Section 3.6. Another way is to search directly 

for solutions of the original diophantine equation below the reduced bounds. 

In our present equation this may well be done by employing congruence 

arguments for finding all solutions of the second equation of system ( 7. 9) 

below the obtained bounds. 

7.8. The standard example. 

In this section we shall work out the procedure outlined above for our 

standard example { pl, ... , p s } - { 2, 3, 5, 7 } , thus proving Theorem 

7.2. In Tables II and III we give the necessary data on the fields K - 0(/D) 

for the 15 values of D, and on the factorization of 2, 3, S, 7 in K. 

Explanation of Tables Il and III. For p. - 2, 
l 

generator of the ideal :p. with ord (:p.) 
1 p. 1 

1 

3, 5, 7 

> 0 if 

we give in Table II a 

:Pi is a principal 

ideal, 

h. - 2 
l 

and we give "'P. ,, 
1 

, so l,)21 - (,r.) 

if it is not pr1·nc1.·pal. In all the latter cases, 

1. is principal. An asterisk (*) denotes a splitting 
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prime. Note that for each D at most one of the primes 2, 3, 5, 7 splits, 

so t :S 1 . In the final colwnn of Table II we give for the splitting prime 

p. 
l. 

a generator 1f. 
l. 

of the ideal 

not principal, but ~. · :P. 
l. J 

• 
l.S' 

hi . 
~- . In Table III, when 

1. 

we 

grateful to R.J. Kooman (Leiden) for 

give a generator of it. 

checking these tables. 

and are 

The autor is 

From Tables II and III it is easy to find all possibilities for I I' 
' 

and 

(we 

when 

a. We may assume 

give primes pi 

I'~~. In Table IV we give all possible 

instead of indices i ) . An asterisk (*) 

I, IU, a 

appears 

(a) F (a') . The set is found by checking G (mod p.) for all p. . 
l. Q 1. 

There are 54 cases with I - ~ ( the '' syniroe tric '' cases) , and 54 cases with 

I i= 0 (the ''asymmetric'' cases). We start with the symmetric cases. This 

incorporates all cases with D ~ 3, 5, 35, 42, 210, when none of the primes 

2, 3, 5, 7 splits in ~(/D) . Now. t = 0, hence equation (7.10) becomes 

G (n) -
a 

u. 
± n p.1 . 

. I 1 
lE U 

With A - e + e' El , B = NE - €·e' - ±1 , we have for all n El 

Since 

G (n+2) 
a 

A·G (n+l) - B·G (n) . 
a a 

(a) - (a') , there • 1.s an such that a , ""' . Hence 

(7.22) 

for all n e l , which explains why we call these cases ''symmetric". In this 

situation we can apply elementary congruence arguments, as explained in 

Section 4.5. Ye have the following result. 

LEMMA 7 . 9 . Let 

conditions (7.2) and 

{ p 1 , ... , p 4 } - { 2, 3, 5, 7 } . Equation (7.1) with 

I~ 0 has exactly 91 solutions, that appear in Table 

I marked with an asterisk(*). 

$ketvh of proof. In Table V we give the necessary data for these 54 cases. 

We explain this table, and leave many details to the reader to check. For 

each p ... 2' 3, 5 J 7 • 
ll' h2. h7 If for only we give nl' al' • • • t • a p 

t 1+1 ll 
ll 

• then G (n) for all l and I G (n) for 
• 

p ' n E p at 1S given, 
' a a: 

least one n E Z If • then • nl, al are given, 
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t: 
. i • 

' 

G (n) 
a 

Define if n1 - 0 , and n 2 =- n 1 if 

t 1+1 

is the 

smallest positive index such that 

G (n) 
Q 

whenever 

p I Ga(n2) . Now it is true that 

This is related to syrttmetry properties of the recurrence sequence 
00 

{G (n)} . For q - 2, 3, 5, 7 we have defined 
Q n--oo 

h - ord (G (n2)) . q q a 

Hence 
h2 h3 hS h7 

2 ·3 ·S •7 I G (n) 
a 

whenever G (n) 
a 

. We have taken 

so large that always 

• (7.23) 

Consequently, there exists some prime r ~ 11 that divides 

r divides all G (n) 
t 1+1 

with p I G (n) . It follows that for a solution 
a a 

of equation (7.22) we must have 

ord (G (n)) s t 1 . p Q . 

In this way we find with ease all solutions of (7.22). 

Let us illustrate this with the example D - 3, a - /3 . Then 

1 +/ n G (n) - -·(2 3) + 
Q 2 

1 / n ;·(2- 3) , 

and G (-n) - G (n) . We have for G (n) : 
a a a 

n 0 1 2 3 4 5 6 7 

G (n) 1 2 a 7 26 97 362 • • • • 

mod 4 1 2 -1 2 1 2 -1 2 

mod 3 1 -1 1 -1 1 -1 1 -1 

mod 5 1 2 2 1 2 2 1 2 

mod 49 1 2 7 -23 -1 19 -21 -5 

8 9 10 11 12 13 14 15 

G (14) 50843527 
a 

1 2 -1 2 1 2 -1 2 

1 -1 1 -1 1 -1 1 -1 

2 1 2 2 1 2 2 1 

1 9 -14 -16 -1 12 0 -12 

D 

We see 

if n 

that 

odd . So 

3, 5 ( 

p = 7 

G (n) for all n El, and 2 I G (n) if and only 
Q Q 

is the only interesting case. We have 7 I G (n) if 
Q 
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and only if n s 2 (mod 4) , 

(and in general 

if and only if n • 14 (mod 28) , 

k-1 k-1 n • 2·7 (mod 4.7 ) 

for k ~ 1 , and a similar relation holds for any symmetric recurrence and 

any prime p for which arbitrary high powers of p occur in G (n) , cf. 
a 

Lemma 4.10). Now, t 1 - 0 does not lead to (7.23), since then n
2 

- 2, and 

G
0

(2) = 7 , so that no suitable r exists. But with -t
1 

- 1 we have 

n 2 - 14, and h - h ~ h - 0, h - 2, and (7.23) holds, since 
2 2 3 5 7 

G (14) > 7 . Hence there exists a prime r ~ 11 such that r 
a 2 

thus r I G (n) whenever 7 I G (n) . 

I G (14) 
a 

, and 

It follows that for solutions of 
a 1 0 0 1° 

(7.22) we have G
0

(n) ~ 2 ·3 ·5 ·7 - 14, so that all solutions can be read 

from the above table. Note that it is not necessary that r is known 

explicitly, only that G
0

(n2 ) is large enough. In our example, r - 337 or 

r - 3079 satisfy. 

Finally we treat the remaining 54 cases, where I #- 0 . Then we need the 

non-elementary reduction technique described in Sections 7.5 to 7.7. 

In all our instances, the set I contains only one element, since there is 

only one splitting prime. We denote by 1r 

and we write m for c .. Equation (7.10) 
l. 

the 1r. belonging to this prime, 
l. 

now reads 

u. 
± n p_J . 
jEI J u 

* We computed the constants c1 to c12 , c12 , according to Section 7.6, for 

each of the 54 cases. We omit the details of these computations, and simply 

- the data in Table VI. In this table • for each D the pi E IU give we give 

together with the V. and A. (it turns out that the A. do not depend on 
1. 1. 1 

the Q 
' only on the p. ) . The values ''n 

€ ' 
n 1f, n2, n3, ns, n ., are the 

7 1. 

integers such that 

• • • • 

It follows that in all cases we have * 30 c12 < 3.23xlO . 

The next step is to define the lattices, and find lower bounds for the 

* shortest nonzero vectors in the lattices. We start with treating the A. , of 
J. 

which there are 3 for each of the 10 D's . We have computed the 30 values of 

161 



log 
,r 

log E: 
,r, e , p. p. 

f} - -
1 l. 

or - ' 
log E log 

,r 

E , ,r, p. p. 
l. l. 

such that it is a pi-adic integer, to the desired precision of µ digits. We 

took µ as follows: 

in order 

l.05xlo61 

p. 
l. 

µ p": 
l . 

2 209 8.22x1062 

3 133 2.87xl063 

5 95 2.52x1066 

7 76 l.69xl064 

to have pl: somewhat larger than the 
l. 

. We computed the 30 values of the ~(µ.),s 

maximal *2 c12 , being 

, but do not give them 

here. The lattices r 
µ 

are generated by the column vectors of the matrices 

• 

We performed the p-adic continued fraction algorithm of Section 3.10 for each 

of these 30 lattices. In the table below we give for each D the maximal 

(there is one for each a), and the minimal bound for l(r) 
µ 

one for each i E IU) that we found. We omit further details. 

D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

In all 

yields 

p 

2, 3, 5 

2, 3 I 7 

2, 5, 7 

2, 5, 7 

2, 3 \l 7 

2t 3 , 5 

2, 3, 7 

2, 3, 5 

2' 5, 7 

3, 5' 7 

cases, 

1.5, 

1.5, 

2.0, 

1.5, 

1.5, 

3.5, 

3.0, 

2 . 5 , 

2.5, 

1.5, 

l(r) 
µ 

1.0, 1.0 

1.5, 1.0 

1.0, 0.5 

0.5, 1.0 

1.0, 0.5 

1.5, 0.5 

0. 5 1 0.5 

0.5, 0.5 

0.5, 0.5 

0.5, 0.5 

3.19x1028 

2.72xlo26 

l.07xlo30 

3.22xlo29 

4.80xlo26 

2.15xlo28 

l.90xl026 

4.15x1028 

3.23xlo30 

4.54xlo29 

l(r) > 
µ. 

8.26xlo 30 

2.05xlo31 

2.43xlo31 

2.22x1031 

l.48xlo 31 

l.55xlo31 

7.78xlo30 

l.37xlo31 

2.5lxlo31 

3.96x1031 

. Hence Lem.ma 3.14 with 
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210 

210 

210 

210 

212 

211 

211 

211 
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* ord (A.)<µ+ µO , i E IU, p. l. 
l. 

where 

µ - min ( ord (log (€,)), 
0 p. p. E 

1. 1 

* as given above. By ). . + ord (h ) 2: 0 we obtain from Lemm.a. 7. 6 ( i) upper 
l. p. 

l. 

bounds for i E IU, hence the upper bounds for U, as given above. 

* Next, we treat the K. , one for each D , having 5 terms, namely 
1 

* K. 
1. 

* n ·log (t') 
p. 

l. 

* + m ·log (~') -p. 
l. 

* I u . . 1 o g < PJ ) , 
1<"<4 J p. -J- 1 
j,-i 

where i EI , so p. 
l. 

is the splitting prime. We have the following data. 

D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

p . /D (mod p . ) 
1 l. 

7 

5 

3 

3 

5 

7 

5 

7 

3 

2 

3 

4 

1 

2 

2 

6 

4 

4 

2 

1 (mod 4) 

ord ( log ( · ) ) 
p. p. 

l. l. 

e' ~, 2 3 5 7 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-

1 

1 

-
-
1 

1 

1 

1 

-
2 

1 

-
1 

1 

-
1 

-

1 

1 

2 

-
2 

1 

1 

2 

-
2 

-

1 

3 

From this table our choice for /D (mod p.) 
1. 

becomes clear. It follows that 

ord (log (e')) 
p. p. 

is always the least one of the five 
1. 1. 

table. So we define: 

log (e') ' p. 
1 

log (p.) 
pi J 

log ( c ') ' 
p. 

l. 

ord 's 
p. 

1 

in the above 

(j E (1,2,3,4}, j,-i), 

and we computed these numbers up to µ digits, with µ as follows: 
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pi µ. pµ 
i 

2 539 l.80xl0162 

3 343 4.49x10163 

5 245 l.77xlo171 

7 196 4.36xl0165 

so that p': 
l. 

is somewhat *5 larger than the maximal c 12 . We computed the 40 

values of the ,t} (µ) 
1,2,3,4' but do not give them here. The lattices r are 

µ 
generated by the columns of the following matrices: 

1 

0 

0 

0 
,{J (µ) 

1 

0 

1 

0 

0 
,(}(µ) 

2 

0 

0 

1 

0 
,(J(µ) 

3 

0 

0 

0 

0 

0 

0 • 

We computed the reduced bases of the 10 lattices by the L3-algorithm. Again, 

we omit the computational details. We found data as follows. 

D p in I 

2 7 196 

6 5 245 

7 3 343 

10 3 343 

14 5 245 

15 7 196 

21 5 245 

30 7 196 

70 3 343 

105 2 539 

In all instances, 

* ~. + ord (h) ~ 0 
1 p. 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

l(r ) 
µ 

and 

3.19xlo28 

2.72xlo26 

l.07xlo 30 

3.22xlo29 

4.80xlo26 

2.15xlo28 

l.90xlo26 

4.15xlo 28 

3.23xl030 

4.54xlo29 

l(r) > 
µ 

2.25xlo32 

2.16xlo33 

l.14xlo32 

l.07xl032 

4.92xlo33 

2.78xl032 

4.37x1033 

2.69xlo32 

l.03xlo32 

6.68x1031 

Ms 

196 

245 

343 

343 

245 

196 

245 

196 

343 

540 

* > Is· c12 , so that by Lemmas 3 .14 and 7. 6 ( ii) and 

* h. ~ 1 we have M s ord (K.) < µ + µ
0 

, hence an 
l. p. ]_ 

l. 

upper bound for M as given in the table above. 

Finally, we compute the newt reduced bounds for lnl , and thus for B, by 
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Hence we find data as in the following table. 

D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

0.394 0.394 0.420 1.967 3.859 196 210 

0.152 0.652 0.190 1.345 1.631 245 210 

0.126 0.626 0.357 2.702 2.757 343 210 

0.601 0.191 0.181 1.396 2.337 343 210 

0.102 0.602 0.325 1.861 1.508 245 210 

0.540 0.668 0.257 1.394 1.649 196 212 

0.222 0.722 0.142 1.564 2.386 245 211 

0.414 0.613 0.399 1.239 1.102 196 211 

0.362 0.556 0.390 2.729 1.505 343 211 

0.390 0.579 0.379 3.232 2.545 540 134 

* * * 

812 

343 

581 

492 

318 

350 

505 

233 

320 

344 

* B:S N:s B :S 

812 3 1627 

343 3 689 

581 2 1164 

492 3 987 

318 3 639 

350 2 702 

505 1 1011 

233 3 469 

343 3 689 

540 1 1081 

Here we used B :Sh •B + N and h - 2. So in one step we have reduced 

* the bound B* < 3. 23x1030 
to B :S 1627 . The total computation time was 

1715 sec, on average 0.7 sec for each 2-dimensional lattice, and 170 sec for 

each 5-dimensional lattice. 

We made a further reduction step, now 

* 
using the reduced bound for 

given above in stead of c
12 

. We give the data for the 

tables below. For µ we took µ 1 •µ2 , with µ
1

, µ
2 

as below: 

p 2 3 5 7 
, 

11 7 5 4 

* /2-B * D B < < µl µ :S l(r) ~ µo s u :S - µ 

2 1627 2301 2 22 l.82xl0 3 
1.5 23 

6 689 975 3 33 3.99xl0 4 
1.5 34 

7 1164 1647 3 33 4.SOxlO 4 
2 34 

10 987 1396 3 33 5.9lxl0 4 
1.5 34 

14 639 904 3 33 2.58xl0 4 
1.5 34 

15 702 993 3 33 7.36xl0 4 
3.5 36 

21 1011 1430 3 33 2.00xlO 4 3 35 

30 469 664 2 22 9.98x10 2 2.5 24 

70 689 975 3 33 5.76x10 4 
2.5 35 

105 1081 1529 3 21 3.89xl0 4 
1.5 22 
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We found t(r ) 
µ 

we found, with 

and bounds for U 

µ - µ -µ with µ 2 1 2 
the results given in that table. 

D 

2 1627 3639 7 28 

* as given in the above table. For the K. 
l. 

as above, and µ 1 as in the table below, 

M :s; In I s B :S * B :S 

l.24xl04 1 28 90 90 183 

6 689 1541 6 30 4.04x103 1 30 145 145 293 

7 1164 2603 7 49 l.07xl0 4 1 

10 987 2207 7 49 l.16xl0 4 
1 

14 639 1429 6 30 3.07xl0 3 1 

15 702 1570 6 24 2.70xl03 1 

21 1011 2261 6 30 3.88x10 3 1 

30 469 1049 6 24 2.SOxlO 3 
l 

70 689 1541 6 42 l.90xl0 3 
1 

105 1081 2418 7 77 l.OOxlO 4 
2 

The computation time was 15 sec. 

We made a third step, and give data like above, for 

2 183 258.9 2 22 1821 1.5 23 

6 299 414.4 2 22 875 1.5 23 

7 194 274.4 2 22 1285 2 23 

10 163 230.6 2 22 634 1.5 23 

14 109 154.2 2 22 268 1.5 23 

15 122 172.6 2 22 873 3.5 25 

21 171 241.9 2 22 818 3 25 

30 57 80.7 2 22 998 2.5 24 

70 113 159.9 2 22 585 2.5 24 

105 157 222.1 2 14 281 1.5 15 

and for 

166 

49 

49 

30 

24 

30 

24 

42 

78 

* A. : 
l. 

96 

80 

53 

60 

85 

27 

55 

59 

96 194 

80 163 

53 109 

60 122 

85 171 

27 57 

55 113 

78 157 



D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

* B :S 

183 

293 

194 

163 

109 

122 

171 

57 

113 

157 

409.3 

655.2 

433.8 

364.5 

243.8 

272.9 

382.4 

127.5 

252.7 

351.1 

5 

5 

6 

5 

5 

6 

5 

4 

5 

5 

20 

25 

42 

35 

25 

24 

25 

16 

35 

55 

440 

665 

602 

473 

626 

2700 

645 

129 

366 

354 

and finally for lnl , and in more detail for 

D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

M :S 

20 

25 

42 

35 

25 

24 

25 

16 

35 

56 

23 

23 

23 

23 

23 

25 

24 

24 

24 

0 

14 10 0 

15 0 8 

0 10 8 

0 10 8 

14 0 8 

15 10 0 

14 0 8 

14 10 0 

0 10 8 

14 10 8 

90 

38 

66 

55 

36 

42 

61 

27 

65 

41 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

M :S 

20 

25 

42 

35 

25 

24 

25 

16 

35 

56 

ord (u) 
p. 

1 

for 

Now we will not find any further improvement if we proceed in the same way. 

But the upper bounds are now small enough to admit enumeration of the 

remaining possibilities, making use of mod p arithmetic for p - 2, 3, 5, 7 . 

We did so, and found the remaining solutions, presented in Table I. We used 

only 3 sec computer time for this last step. 

This completes the proof of Theorem 7.2. □ 
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Ia:ble Is (Theorem 7.2.) 11-3 
...., 

~ • 
I,() 

Nr X y z D I Nr X y z D I~ • 
I 

51 l 4375 -4374 1 7 7 2 3 7 ,~ ,; 
2 2401 -2400 l 1 52 6 3 3 6 ID 
3 225 -224 1 1 53 s 4 3 s r,6 

4 126 -125 1 14 54 70 -54 4 70 
...., 

5 81 -80 1 1 55 30 -14 4 30 
~ CD 

;! 14 
6 64 -63 1 1 56 25 -9 4 1 • 

7 50 -49 1 2 57 21 -5 4 21 (I> 

8 49 -48 1 1 58 18 -2 4 2 0 
t1 

9 36 -35 1 1 59 15 1 4 15 (D 

10 28 -27 1 7 60 14 2 4 14 9 
I 

11 25 -24 1 1 61 10 6 4 10 '-' 
• 

12 21 -20 1 21 62 9 7 4 1 N 
13 16 -15 1 l 63 5145 -5120 5 105 • 

14 1S -14 1 15 64 270 -245 5 30 '-" 

15 10 -9 1 10 65 160 -135 s 10 

16 9 -8 l 1 66 105 -80 5 105 
17 8 -7 1 2 67 81 -56 5 1 

18 7 -6 1 7 6 8 70 -45 s '70 

19 6 -5 1 6 69 60 -35 5 15 

20 5 -4 1 5 70 49 -24 5 l 

t--' 

°' 21 4 -3 1 1 71 45 -20 5 5 
00 22 3 -2 1 3 12 40 -15 5 10 

23 2 -1 1 2 73 35 -10 s JS 

24 490 -486 2 10 74 32 - ., 5 2 

25 54 -50 2 6 75 30 -5 5 30 

26 49 -45 2 1 76 28 -3 5 7 
27 25 -21 2 l 77 27 -2 5 3 

28 18 -14 2 2 78 24 1 5 6 

29 14 -10 2 14 79 21 4 5 21 
30 10 -6 2 10 80 20 5 s 5 

31 g -5 2 l 81 18 ., 5 2 

32 7 -3 2 7 82 16 g 5 l 
l3 6 -2 2 6 83 15 10 5 15 
34 5 -1 2 5 &4 50 -14 6 2 

35 l 1 2 3 85 42 -6 6 42 

36 2 2 2 2 86 35 1 6 35 

37 384 -375 3 6 87 30 6 6 30 
38 105 -96 3 105 88 21 15 6 21 
39 84 -75 3 21 89 1750 -1701 7 70 
40 49 -40 3 1 90 945 -896 7 105 

41 30 -21 3 30 91 625 -576 7 1 

42 2S -16 3 1 92 224 -175 7 14 
43 24 -15 3 6 93 189 -140 7 21 
44 21 -12 3 21 94 175 -126 7 7 
45 16 -7 3 1 95 112 -63 7 7 
46 15 -6 3 15 96 105 -56 7 105 
47 14 -5 3 14 97 84 -35 7 21 
48 12 -3 3 3 98 81 -32 7 1 
49 10 -1 3 10 99 70 -21 7 70 
50 8 1 3 2 100 64 -15 7 1 



Ia.ble I. (cont.) 
·i-3 

Nr X y z D I Nr X y z D ,~ 
t-J, 

101 63 -14 151 72 49 11 2 
7 7 ICI> 

102 56 -7 7 14 152 294 -150 12 6 

103 54 -5 7 6 153 150 -6 12 6 IH 

104 50 -1 7 2 154 147 -3 12 3 
I• 

105 48 1 7 3 155 729 -560 13 1 

106 45 4 i 5 156 512 -343 13 2 ,-... 

107 42 7 7 42 157 294 -125 13 6 0 

108 40 9 7 10 158 250 -81 13 10 
0 
::1 

109 35 1 4. 7 35 159 225 -56 13 1 rt 
110 28 21 7 7 160 196 -27 13 1 • 

....... 

111 25 24 7 1 161 189 -20 13 21 

112 750 -686 8 30 162 175 -6 13 7 

113 189 -125 8 21 163 168 1 13 42 

114 162 -98 8 2 164 162 7 13 2 

115 70 -6 8 70 165 160 9 13 10 

116 63 1 8 7 166 144 25 13 1 

117 54 10 8 6 167 120 49 13 30 

118 50 14 8 2 168 105 64 13 105 

119 49 15 8 1 169 250 -54 14 10 

120 375 -294 9 15 170 210 -14 14 210 

t,-1 
121 256 -175 9 1 171 189 i 14 21 

122 105 -24 9 105 172 175 21 14 7 

°' \0 123 96 -15 9 6 173 126 70 14 14 

124 84 -3 9 21 174 960 -735 15 15 

125 80 1 9 s 175 245 -20 15 s 
126 15 6 9 3 176 240 -15 15 15 

121 60 21 9 15 177 224 1 15 14 

128 56 25 9 14 178 210 15 15 210 

129 49 32 9 1 179 120 105 15 30 

130 343 -243 10 7 180 270 -14 16 30 

131 135 -35 10 15 181 250 6 16 10 

132 105 -5 10 105 182 175 81 16 7 

133 98 2 10 2 183 6561 -6272 17 1 

134 90 10 10 10 184 1024 -735 17 l 

135 70 30 10 70 185 625 -336 17 1 

136 625 -504 11 l 186 343 -54 17 7 

137 441 -320 11 1 187 324 -35 11 l 

138 2 5 6 -135 11 1 188 294 -5 17 6 

139 196 -75 11 1 189 288 1 17 2 

140 175 -54 11 7 190 280 9 17 70 

141 135 -14 11 15 191 240 49 17 15 

142 128 -7 11 2 192 225 64 17 l 

143 126 -5 11 14 193 189 100 17 21 

144 125 -4 11 5 194 294 30 18 6 

145 120 1 11 30 195 1225 -864 19 1 

146 112 9 11 7 196 486 -125 19 6 

147 105 16 11 105 197 441 -80 19 1 

148 100 21 11 1 198 375 -14 19 15 

149 96 25 11 6 199 360 1 19 10 

150 81 40 11 1 200 343 18 19 ., 



Nr X y z 

201 336 25 19 
202 280 81 19 
203 256 105 19 
204 490 -90 20 
205 405 -5 20 
206 525 -84 21 

.20, 448 -7 21 
208 420 21 21 
209 336 105 21 
210 129 -245 22 

211 490 -6 22 
212 486 -2 22 
213 1215 -686 23 
214 1029 -500 23 
215 729 -200 23 
216 625 -.96 23 
217 525 4 23 
218 504 25 23 
219 480 49 23 
220 448 81 23 

t...l 
"'-J 221 625 -49 24 
0 222 g45 -320 25 

223 640 -15 25 
224 630 -5 25 
225 576 49 25 
226 490 135 25 
227 686 -10 2 6 
228 675 1 26 
229 1029 -300 27 
230 750 • -21 27 

231 735 -6 27 
232 1134 -350 28 
233 1225 -384 29 
234 840 1 29 
235 729 112 29 
236 625 216 29 
237 441 400 29 
238 6561 -5600 31 
239 2401 -144.0 31 
240 1024 -63 31 

241 960 1 31 
24 2 945 16 31 
243 625 336 31 
244 1029 -5 32 
245 2625 -1536 33 
246 1029 60 33 
247 1792 -567 35 
248 1260 -35 35 
249 1215 10 35 
250 1120 105 35 

Iabl§ .I,. (cont.) 

0 I Nr X y 

21 251 945 280 
70 252 1372 -3 

1 253 1344 25 

10 254 1225 144 
5 255 729 640 

21 256 1458 -14 
7 257 1536 -15 

105 258 1500 21 
21 259 896 625 

1 260 2401 -120 

10 261 1701 -20 
6 262 1680 l 

15 263 1600 81 
21 264 1750 14 

1 265 1800 49 

1 266 1120 729 

21 267 1250 686 
14 268 1920 105 
JO 269 16384 -14175 

7 270 2401 -192 

1 271 2205 4 

105 272 2160 49 
10 273 2625 -224 
70 274 2400 1 

1 275 1701 700 
10 276 2430 70 

14 277 2625 -24 
3 278 2401 200 

21 279 15309 -12500 
30 280 2800 9 

15 281 2025 784 
14 282 3430 -405 

1 283 3024 1 
210 284 3150 -14 

1 285 3200 49 
1 286 4050 -686 
l 287 3456 25 
l 288 2401 1080 
l 289 35721 -32000 
1 290 4096 -375 

15 291 3969 -125 
105 292 2625 1344 

1 293 3969 256 
21 294 4480 9 

105 295 4374 250 
21 296 5145 -384 

7 297 15625 -10584 
35 298 5040 l 
15 299 4096 945 
70 300 4704 625 

z 

35 
31 
31 
37 
li 
38 
39 
39 
39 
41 

41 
41 
41 
42 
43 
43 
44 
45 
47 
47 

47 
47 
49 
49 
49 
50 
51 
51 
53 
53 

53 
55 
55 
56 
57 
58 
59 
59 
61 
61 

62 
63 
65 
67 
68 
69 
71 
71 
71 
73 

I) 

105 ., 
21 

1 
1 
2 
6 

lS 
14 

l 

21 
105 

l 
10 

2 
iO 

2 
30 

1 
1 

s 
15 

105 
6 

21 
30 

1. 05 
l 

21 
7 

1 
70 
21 
14 

2 
2 
6 
1 
1 
l 

1 
105 

1 
70 

6 
105 

1 
35 

1 
6 

1-3 
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O" 

IH 

-n 
0 
:::s 
('"t 
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Istbl.§ I. (cont.) 
1-3 

Nr X y z D I Nr X y z D ,~ .. I 

,~ 301 5145 480 75 105 351 59049 1960 247 l 
302 3375 2401 76 15 352 63000 l 251 70 11-f 303 6804 -875 77 21 353 64000 9 253 10 
304 6561 -320 79 1 354 48384 15625 253 21 305 6250 -9 79 10 355 59049 7000 257 1 
306 3840 2401 79 15 356 69120 49 263 30 

......... 
(") 8505 -1280 85 105 357 85750 307 -486 292 70 0 308 7840 81 89 10 358 83349 2500 293 21 ::s 309 65625 -57344 91 105 359 140625 -43904 311 1 rt 

8505 -224 91 105 360 109375 • 310 -1134 329 7 .._ 
311 10240 -1215 95 10 361 82944 30625 337 l 312 9408 1 97 3 362 128625 256 359 105 
313 9800 1 99 2 363 131781 -140 371 21 314 10206 -5 101 14 364 76545 71680 385 105 315 9375 1029 102 15 365 196830 -33614 404 30 316 10584 25 103 6 366 117649 48000 407 l 317 11250 -14 106 2 367 168070 30 410 70 318 12544 225 113 1 368 179200 6561 431 7 319 10368 2401 ll3 2 369 137200 59049 443 7 320 13230 -5 115 30 370 201684 -1875 447 21 

321 15625 -1701 118 1 371 201600 1 449 14 t-' 322 14336 -175 119 14 372 214375 -6 463 7 -....J 
323 14175 -14 119 7 373 252105 -24S76 477 105 t-' 
324 14406 -6 120 6 374 243000 49 493 30 325 18225 -3584 121 1 375 245760 -735 495 15 326 16128 1 127 7 376 262144 5145 517 1 
327 15625 504 121 1 377 390625 -112896 521 l 328 15625 1536 131 l 3 78 688905 -5 830 105 329 17500 189 133 ., 

379 1058841 -20480 1019 1 330 18144 625 137 14 380 1440000 2401 1201 1 

331 18750 294 138 30 381 1640625 336 1281 105 332 117649 -97200 143 1 382 4214784 25 2053 21 333 21504 105 147 21 383 4782969 4375 2188 1 334 24010 15 155 10 384 5764801 -9600 2399 1 335 23625 1024 157 105 385 19140625 -17496 4373 1 336 25920 I 161 5 386 23049600 1 4801 6 337 26250 -6 162 42 387 76545000 1 8749 42 338 16807 13122 173 7 388 199290375 -686 14117 15 339 30618 7 175 42 
340 32768 -7 181 2 

341 33614 -125 183 14 
342 43740 -1715 205 15 
343 43750 -486 208 70 
344 46305 -80 215 105 
345 50625 -896 223 1 
346 49000 729 223 10 
347 129654 -78125 227 6 

341 55566 -3125 2 2!J 14 
349 60025 -1944 241 1 
350 59535 1 244 15 

• 



Table II. 

D h 

2 1 

3 1 

5 l 

6 1 

7 1 

10 2 

14 1 

15 2 

21 1 

30 2 

35 2 

42 2 

70 2 

105 2 

210 4 

Table III. 

D 

10 

15 

30 

35 

42 

70 

105 

210 

Ne 

l+/2 -1 

2+/3 1 

~(l+/5) -1 
2 

5+2/6 1 

8+3/7 1 

3+/10 -1 

15+4/14 1 

4+/15 1 

2-( 5+/21) 1 
2 

11+2/30 1 

6+/35 1 

13+2/42 1 

251+30/70 1 

41+4/105 1 

29+2/210 1 

-2+/10 

3+/15 

6+/30 

-
6+/42 

-8+/70 

2:.(-9+/105) 
2 

-

/2 

l+/3 

2 

2+/6 

3+/7 

:P1 
4+/14 

:P1 
2 

:P1 

:P1 

:P1 

:pl 

* :P1 

:pl 

/10 

S+/15 

-
5+/35 

-
-
-
-

3 

/3 

3 

3+/6 
·* 2+/7 

* :P2 

3 

:p,, 
L 

2-(3+/21) 
2 

:P2 

3 

:P2 
* :P2 

:P2 

:Pz 

-
l+/15 

-4+/30 

7+/35 

-
42+5/70 

}_(7+/105) 
2 

14+/210 

172 

5 1+212* 

5 7 

/S 7 

* l+/6 7 

5 /7 

7 P3 
* 3+/14 7+2/14 

* :P3 :p 4 
2-(l+/21)* ~(7+/21) 
2 2 

S+/30 

P3 

s 
25+3/70 

10+/105 

:P3 

5--/10 

/15 

-
-
-
-
-

15+/210 

* :P4 

:P4 
7+/42 

:P4 

:P4 

:P4 

-
6-/15 

3+/30 

-
-

7+/70 

21+2/105 

-

1+2/2 

-
-

l+/6 

2+/7 

1+/10 

3+/14 

8+/15 

~(l+/21) 
2 

13+2/30 

-
-

17+2/70 

2".(ll+/105) 
2 

-

-
-5+2/15 

-
/35 

-
-
-
-



Table IV. 

D I 

2 1 -
1 7 

✓2 -
✓2 7 

3 1 -
/3 -

l+/3 -
3+/3 -

5 2 -
2/5 -

6 1 -
1 5 

• 

/6 -
/6 5 

2+/6 -
2+/6 5 

3+/6 -
3+/6 5 

7 1 -
1 3 

/7 -

17 3 

3+/7 -
3+/7 3 

7+3/7 -
7+3/7 3 

10 1 -
1 3 

/10 -
/10 3 

-2+/10 * 3 

5-/10 * 3 

14 1 -
1 5 

/14 -
/14 5 

2357 

235 

3 7 

35 

2357 

2 7 

3 

5 

2357 

23 7 

2357 

23 7 

57 

7 

3 

3 

-
2 

2357 

2 57 

2 

2 5 

7 

57 

35 

5 

2357 

2 57 

3 7 

7 

57 

2 7 

2357 

23 7 

35 

3 

D 

14 

15 

21 

30 

4+/14 

4+/14 

7+2/14 

7+2/14 

1 

1 

/15 

/15 

3+/15 

3+/15 

S+/15 

5+/15 

l+/15 * 
15+/15 * 
6-/15 * 

-5+2/15 * 
2 

2 

2✓21 

2/21 

3+/21 

3+/21 

7+/21 

7+/21 

1 

1 

/30 

/30 

5+/30 

S+/30 

6+/30 

6+/30 

3+/30 

10+/30 

-4+/30 

* 
* 
* 

15-2/30 

173 

* 

I D I 

- 7 35 1 2357 -
5 7 /35 - 23 

2 5+/35 7 - -
5 2 7+/35 - 5 

- 2357 42 1 2357 -
7 235 /42 - -
- 2 6+/42 - 57 

7 2 7+/42 - 3 

- 57 70 1 - 2357 

7 5 1 3 2 57 

- 3 /70 - -
7 3 /70 3 -
7 35 25+3/70 - 3 7 

7 - 25+3/70 3 7 

7 2 5 42+5/70 - 5 

7 23 42+5/70 3 5 

- 2357 7+/70 * 3 5 

5 23 7 10+/70 * 3 7 

-8+/70 * - 2 5 3 57 

35-4/70 * 5 2 3 2 

- 2 7 105 2 - 2357 

5 2 7 2 2 357 

- 23 2/105 - 2 

5 23 2/105 2 -

- 2357 20+2/105 - 23 7 

7 235 20+2/105 2 3 7 

- - 42+4/105 - 2 5 

7 - 42+4/105 2 5 

7+/105 * - 3 7 2 35 

15+/105 * 7 3 2 7 

-9+/105 * - 5 2 57 

35-3/105 * 7 5 2 3 

7 5 210 1 - 2357 

7 3 /210 - -
7 35 14+/210 - 35 

7 2 15+/210 - 7 
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Table V, 

D A B 

2 2 -1 
2 2 -1 

3 4 1 
3 4 l 
3 4 1 
3 4 1 

5 1 -1 
5 l -1 

6 10 l 
6 10 1 
6 10 1 
6 10 1 

7 16 1 
7 16 1 
7 16 l 
7 16 1 

10 6 -1 
10 6 -1 

14 30 l 
14 30 l 
14 30 1 
14 30 l 

15 8 l 
15 8 1 
15 8 1 
15 8 1 

21 5 1 
21 5 l 
21 5 1 
21 5 1 

30 22 1 
30 22 1 
30 22 1 
30 22 1 

35 12 1 
35 12 1 
35 12 1 
35 12 l 

a b no 

l 0 0 
0 1 0 

l 0 0 
0 1 0 
1 1 -1 
3 1 -1 

2 0 0 
0 2 0 

1 0 0 
0 1 0 
2 1 -1 
3 1 -1 

1 0 0 
0 l 0 
3 l -1 
7 3 -1 

1 0 0 
0 1 0 

l 0 0 
a I 0 
4 1 -1 
7 2 -1 

l 0 0 
0 1 0 
3 1 -1 
5 1 -1 

2 0 0 
0 2 0 
3 1 -1 
7 1 -1 

1 0 0 
0 1 0 
5 1 -1 
6 1 -1 

I 0 0 
0 1 0 
5 l -1 
7 1 -1 

p - 2 p - 3 

tl nl al h2 h3 hS h7 ll nl al h2 h3 h5 h7 

2 0 8 3 l 0 0 l 0 12 2 2 1 1 
0 l 6 12 0 2 0 0 

3 0 8 4 0 0 1 l 0 9 0 2 1 0 
1 0 
0 l 4 9 0 2 0 0 
0 0 

4 0 24 5 2 0 1 2 0 36 4 3 0 0 
2 2 18 36 l 3 0 0 

3 0 8 4 0 l 2 0 0 3 l 2 0 0 
0 0 
0 2 4 9 0 3 0 0 
0 0 

4 0 4 5 l 0 0 1 0 3 0 2 1 0 
3 0 
0 0 
0 2 4 9 0 3 l 0 

l 0 4 2 l 0 0 1 0 6 1 2 0 0 
0 l 3 6 0 2 0 0 

3 0 4 4 l 1 0 l 0 6 3 2 1 0 
0 1 3 6 0 2 1 0 
0 0 
1 0 

3 0 4 4 0 0 0 2 0 9 0 3 0 1 
2 0 
0 0 
0 2 4 9 0 3 0 0 

3 0 6 4 l 1 0 1 0 9 3 2 0 0 
1 0 
2 0 
1 1 4 9 l 2 0 0 

1 0 2 2 0 0 0 0 0 3 1 l 0 1 
0 0 
0 1 4 9 0 2 0 1 
0 0 

2 0 4 3 l 0 0 1 0 6 2 2 0 0 
1 l 3 6 1 2 0 0 
0 0 
0 0 

p - 5 

ll nl al h2 h3 h5 h7 

l 0 15 0 0 2 0 
0 

1 0 15 0 l 2 0 
0 
0 
1 7 15 0 0 2 a 
1 0 25 0 0 2 0 
0 

1 0 10 2 0 2 0 
1 5 10 0 0 2 0 
0 
0 

0 0 3 0 2 1 0 
0 
0 
1 7 15 0 2 2 0 

0 0 5 0 0 l 0 
0 

1 0 10 3 1 2 0 
1 5 10 0 1 2 0 
0 
0 

0 0 5 0 0 l 0 
0 
0 2 5 0 0 l 0 
0 

l 0 10 0 0 2 0 
1 5 10 0 0 2 0 
0 
0 

0 0 5 1 0 1 0 
0 
a 
0 2 5 0 0 1 0 

0 0 5 0 0 1 0 
0 
0 
0 2 5 0 0 1 0 

p - 7 

ll nl al h2 h3 hS h7 

1 0 42 1 0 1 2 
1 21 42 0 0 0 2 

1 0 28 3 0 0 2 
l 14 28 0 0 0 2 
0 
0 

l 0 56 0 1 0 2 
1 23 56 0 0 0 2 

2 0 28 3 0 1 3 
2 14 28 0 0 0 3 
0 
0 

0 0 7 0 1 0 1 
0 
0 3 7 0 0 0 1 
0 

0 0 8 3 1 0 1 
0 4 8 0 a 0 l 

0 0 7 2 0 0 1 
0 
0 3 7 0 0 0 l 
0 

1 0 21 0 2 0 2 
a 
l 10 21 0 0 0 2 
0 

0 0 7 0 0 0 1 
0 
0 3 7 0 0 0 1 
0 

0 0 3 1 1 o' l 
0 
1 10 21 0 1 0 2 
0 

0 0 7 0 0 0 1 
0 
0 3 7 0 0 a 1 
0 
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Table V ,_ (cont.) 

D A B a b I no 

42 26 1 1 0 0 
42 26 1 0 1 a 
42 26 1 6 1 -1 
42 26 1 7 1 -1 

70 502 1 1 0 0 
70 502 1 0 1 0 
70 502 1 25 3 -1 
70 502 1 42 5 -1 

105 82 l 2 0 0 
105 82 1 0 2 0 
105 82 1 20 2 -1 
105 82 l 42 4 -1 

210 58 1 l O 0 
210 58 1 0 l 0 
210 58 1 14 l -1 
210 58 l 15 1 -1 

(a•a+b/0) 

p 1111 2 

ll nl al h2 h3 hs h7 

l 0 2 2 0 0 0 
0 
0 
0 

1 0 2 2 1 1 0 
0 
0 
0 

3 0 2 4 0 0 0 
1 
1 
2 

l O 2 2 0 0 0 
0 
0 
0 

p - 3 

tl nl al h2 h3 hs h7 

3 0 9 l 4 2 0 
0 
0 
3 4 9 0 4 0 0 

1 0 3 1 2 1 0 
0 
1 1 3 0 2 0 0 
0 

0 0 3 3 4 0 0 
0 
4 4 9 l 5 0 0 
0 

0 0 3 1 1 0 0 
0 
0 l 3 0 1 0 0 
0 

p - 5 

ll nl al h2 h3 hS h7 

2 O 15 1 3 3 0 
0 
2 7 15 0 0 3 0 
0 

l 0 5 1 l 2 0 
0 
0 
1 2 5 0 0 2 0 

0 0 5 3 0 1 0 
0 
0 
0 2 5 2 0 1 0 

0 0 5 1 0 1 0 
0 
0 2 5 0 0 1 0 
0 

p - 7 

ll nl al h2 h3 hS h7 

0 0 7 1 0 0 1 
0 
0 3 7 0 0 0 1 
0 

0 0 7 1 1 l 1 
0 
0 3 7 0 1 0 1 
0 

0 0 7 3 0 0 1 
0 
0 3 7 1 0 0 1 
0 

0 0 7 l O O l 
0 
0 
o 3 7 o a o 1 

t--3 
ID r:r 
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• 
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,,.....,. 
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D 

2 

6 

7 

10 

14 

15 

21 

30 

70 

105 

D 

2 

6 

7 

10 

14 

p. 
1 

2 3 5 

2 3 7 

2 5 7 

2 5 7 

2 3 7 

2 3 5 

2 3 7 

2 3 5 

2 5 7 

3 5 7 

a 

1 

/2 

1 

/6 

2+/6 

3+/6 

1 

✓7 

3+/7 

7+3/7 

1 

/10 

-2+/10 

5-/10 

1 

/14 

4+/14 

7+2/14 

v. 
l. 

3 0 0 

3 1 0 

2 0 1 

3 1 0 

3 0 1 

2 1 1 

2 1 1 

3 1 1 

3 1 1 

1 1 1 

0 0 

0 0 

0 0 

0 0 

1 0 

1 0 

0 0 

0 0 

1 0 

1 0 

0 0 

0 0 

-1 1 

-1 1 

0 0 

0 0 

1 0 

1 0 

a 
1 

0 

1 

1 

0 

0 

0 

1 

1 

a 
1 

1 

0 

0 

1 

1 

0 

1.5 0 0 

1.5 0.5 0 

1 0 0.5 

1.5 0.5 0 

1.5 0 0.5 

1 0.5 0.5 

0 0.5 0.5 

1.5 0.5 0.5 

1.5 0.5 0.5 

0.5 0.5 0.5 

0 0 0 2 

0 0 0 3 

0 0 0 2 

1 0 0 7 

0 0 0 3 

1 0 0 2 

0 0 0 2 

0 0 1 2 

0 0 0 5 

0 0 1 5 

a a a 2 

a 1 0 7 

a 0 0 5 

3 5 

5 

3 7 

5 7 

5 

7 

5 7 

7 

a 1 0 2 7 

0 0 0 2 3 7 

0 0 1 3 

0 0 0 7 

0 0 1 2 

176 

N 

2 3 5 3 0 3.190xlo28 

2 3 5 2 0 3.190xlo28 

2 3 7 3 0 2.712xlo26 

2 7 2 0 4.604xlo22 

2 3 2 0 2.090xlo22 

2 3 3 0 2.090xlo22 

2 5 7 2 0 l.065xl030 

2 5 2 0 2.146xlo28 

2 5 7 1 0 l.065xl030 

2 5 1 0 2.146xlo25 

2 5 7 3 0 3.214xlo29 

2 7 2 0 8.414xlo24 

2 5 7 2 1 3.214xlo29 

2 7 3 1 8.414xlo24 

2 3 7 3 0 4.791xlo26 

2 3 2 0 4.347xl022 

2 7 2 0 8.143xlo22 

2 3 0 8.371xlo18 



Table VI 1 (cont.) 

D °' n n 
1r n2 n3 ns c 

15 1 0 0 0 0 0 

/15 0 0 0 1 1 

3+/15 1 0 1 1 0 

5+/15 1 0 1 0 l 

l+/15 0 1 1 0 0 

15+/15 0 1 1 1 1 

6-/15 -1 1 0 1 0 

-5+2/15 -1 1 0 0 1 

21 2 0 0 2 0 0 

2/21 0 0 2 1 0 

3+/21 1 0 2 1 0 

7+/21 1 0 2 0 0 

30 1 0 0 0 0 0 

/30 0 0 1 1 1 

S+/30 1 0 0 0 1 

6+/30 1 0 1 1 0 

3+/30 0 1 0 1 0 

10+/30 0 1 1 0 1 

-4+/30 -1 1 1 0 0 

15-2/30 -1 1 0 1 1 

70 1 0 0 0 0 0 

/70 0 0 1 0 1 

25+3/70 1 0 0 0 1 

42+5/70 1 0 1 0 0 

7+/70 0 1 0 0 0 

10+/70 0 1 1 0 1 

-8+/70 -1 1 1 0 0 

35-4/70 -1 1 0 0 1 

105 2 0 0 2 0 0 

2/105 0 0 2 1 1 

20+2/105 1 0 2 0 1 

42+4/105 1 0 2 1 0 

7+/105 0 1 2 0 0 

15+/105 0 1 2 1 1 

-9+/105 -1 1 2 1 0 

35-3/105 -1 1 2 0 l 

* n7 IU IU 

0 2 3 5 2 3 5 

0 2 2 

0 5 2 5 

0 3 2 3 

0 3 5 2 3 5 

0 2 

0 2 5 2 5 

0 2 3 2 3 

0 2 3 7 2 3 7 

1 2 2 

0 2 7 2 7 

1 2 3 2 3 

0 2 3 5 2 3 5 

0 2 

0 3 2 3 

0 5 2 5 

0 5 2 5 

0 3 2 3 

0 3 5 2 3 5 

0 2 2 

0 2 5 7 2 5 7 

1 2 

0 7 2 7 

1 5 2 5 

1 5 2 5 

0 7 2 7 

0 5 7 2 5 7 

1 2 2 

0 3 5 7 3 5 7 

1 

0 3 7 3 7 

1 5 5 

1 3 5 3 5 

0 7 7 

0 5 7 5 7 

1 3 3 

177 

N IC 

2 0 

2 0 

1 0 

1 0 

1 1 

1 1 

2 1 

2 1 

1 0 

0 0 

1 0 

1 0 

3 0 

2 0 

3 0 

2 0 

3 1 

2 1 

2 1 

3 1 

3 0 

2 0 

3 0 

2 0 

3 1 

2 1 

2 1 

3 1 

1 0 

0 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 1 

* Cl2 

2.144xlo28 

9.427xlo19 

l.694xlo24 

1.035xlo24 

2.144x1028 

9.427xlo19 

l.694xl024 

l.035xl024 

l.898xlo26 

2.640xlo18 

3.220xlo22 

l.435xlo22 

4.141xlo28 

2.022xlo20 

2.217xlo24 

3.276xlo24 

3.276xlo24 

2.217xlo24 

4.14lxto28 

2.022xl0 2 0 

3.229xlo30 

2.115xlo21 

8.482xlo25 

7.003xlo25 

7.003xl0 2 

8.482xl02 

3.229xl0 3 

2.115xl02 

4.533xl02 

4.295xl01 

l.690xl02 

8.65Sxl02 

l.396xl02 

l.049xl02 

2.485xl02 

5.880xl02 

5 

5 

0 

1 

9 

6 

5 

0 

5 

1 

5 

0 



CHAPTER 8. THE T HUE EQUATION. 

Acknowledgements. The research for this chapter has been done in cooperation 

with N. Tzanakis from Iraklion. The results have been published in Tzanakis 
a and de Weger [1989 ]. 

8.1. Introduction. 

Let F(X,Y) E Z[X,Y] be a binary form with integral coefficients, of 

degree at least three, and irreducible. Let 

diophantine equation 

F(X,Y) - m 

m be a nonzero integer. The 

in X, Y E l is called a Thue equation. It plays a central role in the 

theory of diophantine equations. In 1909 Thue proved that it has only 

finitely many solutions (cf. Thue [ 1909]). His proof was ineffective. An 

effective proof was given by Baker [ 1968]. See Chapter S of Shorey and 

Tijdeman [1986] for a survey of results on Thue equations. By using Lemma 2.4 

in Baker's argument, we derive a fully explicit upper bound for the solutions 

of the Thue equation. Then we show how the methods developed in Chapter 3 can 

be used to actually find all the solutions of a Thue equation. Our method 

works in principle for any Thue equation, and in practice for any Thue 

equation of not too large degree, provided that some algebraic data on the 

form F are available. See also Tzanakis (1989] for a short introduction. 

Variants of the method we use here have been used in practice to solve Thue 

equations by Ellison, Ellison, Pesek, Stahl and Stall [1975], Steiner [1986), 

Petho and Schulenberg [1987], and Blass, Glass, Meronk and Steiner [1987a], 
b b 

[ 1987 ] . In all these cases m - 1 whereas de Weger [ 1989 ] treats an 

example with m > l , using the method described in this chapter. When 

determining all cubes in the Fibonacci sequence, Petho [1983) solved a Thue 

equation by the Gelfond-Baker method, but with a completely different way to 

find all the solutions below the upper bound. And there are n1Jmerous Thue 

equations that have been solved by different (usually ad hoc) methods. 
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8. 2. From the Thue eq1.1ation to a linear fo1.m in logarithms. 

In this section we show how the general Thue equation leads to an inequality 

involving a linear form in the logarithms of algebraic numbers with rational 

integral coefficients (unknowns). Let 

F(X,Y) ..... 
n . . 
I f.-xn-i·Y1 e l[X,Y] 

. 0 l. 1. .... 

be a binary form of degree n ~ 3 and let m be a nonzero integer. Consider 

the Thue equation 

F(X,Y} = m, (8.1) 

in the unknowns X, YE Z. If F is reducible over ~ , then (8.1) can be 

reduced to a system of finitely many equations of type (8.1) with irreducible 

binary forms. For such equations of degree 1 or 2 it is well known how to 

determine the solutions. Therefore we may asswne from now on that F • 
l.S 

irreducible over and of degree ~ 3. Let g(x) ""'F(x,l) . If g(x) - 0 

has no real roots then one can trivially find small upper bounds for 

max(IXI, IYI) for the solutions (X,Y) of (8.1). Therefore, throughout this 

chapter we asstime that the algebraic equation g(x) ""' 0 has at least one 

real root. We number its roots as follows: e(l), ... , €(s) (with s ~ 1 ) 

are the real roots and .;(s+l) - e(s+t+l), ... , -E(s+t) -= f(s+2t) are the 

non-real roots, so that we have t ( ~ 0) pairs of complex-conjugate roots, 

and s + 2-t - n. 

Consider the field 

positive real nwnbers 

K - 0(€) , where g(e) - 0 . We will define three 

Y1 < Y2 < Y3 , that will divide the set of possible 

solutions (X,Y) of (8.1) into four classes: 

--➔ the 'very small' solutions, with 

enumeration of all possibilities, 

IYI :5 Y1 . They will be found by 

· ➔ the 'small' solutions, with 

evaluating the continued fraction expansions of the real roots 

be found 

e<i) . 
by 

-➔ the 'large' solutions, with Y2 < IYI :S Y3 . They will be proved not to 

exist by a computational diophantine approximation technique, 

-.:.•) the 'very large' solutions, with !YI> Y3 . They will be proved not to 

exist by the theory of linear forms in logarithms. 

The value of Y3 
follows from the Gelfond-Baker theory of linear forms in 

logarithms. The value of Y
2 

follows from the restrictions that we use as we 
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try to prove that no 'large' solutions exist. The value of Y1 follows from 

'extremely close' to one of the real roots 
1050 

10 3 y2 may be as large as as and Y1 as small as 10 . 

LEMMA 8.1. Let X, YE l satisfy (8.1). Put ~ - X - €·Y, 

(i). If 

y -
0 

1 

2n-l. I ml 1/n 

min fg'(E(s+i))I. min I Im e<s+i)I 
l~i~t lsi~t 

cl - min lg' (~(i)) I ' 
lsi.ss 

• 

then there ex.z.·sts an 1.· E { 1 s} 0 , ... ' 

for i E { 1, ... , n } , i J4 iO . 

if t ~ 1 

if t ..... 0 

such that 

, 

(ii). If IYI > Y1 then X/Y is a convergent from the continued fraction 

(io) 
expansion of e . 

Proof. Let i 0 E { 1, ... , n } be such that 

have from (8.1) 

0 . 1 1-
- Im I . 

By the minimality of we have for all .. 
l. 

( .) (io) 
r y 1 · 1 e 1 -e 1 

Hence 

-1 
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Now, if (and hence 

X - -y 

< - y • 

-

t ~ 1 ) then, by the definition of Y
0

, 

min I Im e(i) I , 
s+l:Si:Ss+t 

• 

which is impossible if IYI > Y0 . Hertce i 0 :S s , and now (i) follows at 

once. Moreover, if IYI > Y1 , then 

X - -y 

(i) 
- j,B O l·IYl-1 

:5 cl. I y ,-n :5 

and thus 
X < io) 2 

I - - e I < 2-. IYI-
Y 2 

• , s 1.nce 
(i) 

e o is irrational . Now 

follows from a well known result on continued fractions, cf. (3.6). 

(ii) 

D 

Now let IYI > Y 1 
j, k E { 1, ... , n } 

and i O E { 1 , . . . , 

such that i 0 , j, k 

s } 

are 

as in Lemma 8.1. Choose 

pairwise distinct and either 

j, k E { 1, 

choice of 

. . . , s } or j + 

is free. By 

t = k (so that E(k) ~ E(j) ), but further the 

j, k we get, 

on eliminating the X and Y, 

or, equivalently, 

• - 1 = - • • (8.2) 

By Lem.ma 8.1, the right hand side of (8.2) is 'extremely small'. Put, if 

j, k E {1, ... , s } (let us call it 'the real case') 

A - log 

and if j, k E { s+l, ... , s+2·t } (let us call it 'the complex case') 
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1 A== --;;-•Log 
l. 

, 

where, in general, for z e C , Log(z) denotes the principal value of the 

logarithm of z (hence -,r < Im Log(z) ~ 1r ) • By 

A E 1R and I A I s 1r • 

The following lemma shows how small IAf 

LEMMA 8.2. Put 

C ,_ 
3 

max 
i 1""i 2"' i 3'°' il 

If then 

• 
l.S. 

' 

• 

we have 

Proof. Consider first the real case. From and Lemma 8 .1 it 

follows that the right hand side of (8.2) is absolutely less than 

consequently, 

• > 0 . 

l -
2 

and, 

It follows that the left hand side of (8.2) is equal to 

(8.2) implies, in view of Lemma 8.1 and the definition of 

A e - 1 , and now 

On the other hand, 

I l-(n-1) C • y 
1 

A 1 le -11 < - implies (cf. Lemma 2.2) 
2 

A A IAI s 2·log 2· fe -11 s 1.39· le -11 , 

which proves our claim in the real case. 

c3 , 

In the complex case the left hand side of (8.2) is equal to 

as in the real case, we derive 

182 

iA 
e - 1 , and, 



C ·C 
1 3 . I Y 1-n < 2:. . 
c2 2 

Since - 2· fsin A/21 , it follows that lsin A/21 < l 
- , and therefore 
4 

by Lemma 2.3 

I A I :S 2 · l/4 · I sin A/2 I -
sin 1/4 

1/4 ·leiJ\_11 s 
sin 1/4 

which proves the lemma in the complex case. D 

In the ring of integers of the field K (as well as in any other order R 

of K ) there exists a system of fundamental units c 1 , ... , er , where 

r - s + t - 1 (Dirichlet's Unit Theorem). Note that since F is irreducible 

and we have supposed s > 0, the only roots of unity belonging to K are 

±1 . We shall not discuss here the problem of finding such a system (for 

efficient methods see e.g. Berwick [1932], Billevi~ [1956], [1964], Pohst and 

Zassenhaus [1982), Buchmann [1985], [1986]). We simply assume that a system 

of fl1ndamental units is known. On the other hand, there exist only finitely 

many non-associates µ
1

, ... 1 µv in K such that f 0 -N(µi) == m for 

i - 1, ... , v (we use N(·) to denote the norm of the extension K/0 ). We 

also assume that a complete set of such µ., s 
1. 

is known. Let M be the set 

of all r · µ,. , where 
l. 

is a root of unity in K. (In the important case 

If I= 0 1ml - 1 , it is clear that M ,_ { -1, 1 } ) . Then, 

and 

for any integral 

solution 

such that 

(X,Y) of (8.1) there exist some µEM . .. ... ' a E Z , 
r 

• 

Thus, the initial problem of solving (8.1) is reduced to that of finding all 

integral r-tuples (a1 , ... ,ar) 

of the special shape X - Y-~ , 

al ar 
such that µ,•e 1 · ... ·Er for some 

with X, YE Z . As we have seen, 

µEM be 

X and Y 

can be eliminated, so that we obtain (8. 2). Thus the problem reduces to 

solving finitely many equations of the type 

(k) ai (io) (io) a. 
~(k)_{(j) 

1 
e • r E • 

- _µ. • n 1 
- 1 - -

µ 
·TT 

1 
• 

l ~j) (k) ( iO) µ (j ) E ~j) ( iO) (k) µ. (j) i-1 i-1 
~ -e 1 ~ -e 1 

(the so-called 'unit equation'). In the real case we have 
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A - log 

and in the complex case 

A - Arg • 

r 
+ l a.• log 

. 1 1. 1-

r 
+ l a. •Arg 

. 1 l. 1.-

(8.3) 

( 8 .4) 

with a 0 E Z , and -~ < Arg(z) :S ~ for every z EC . Note that A in the 

real case, and i • A in the complex case, is a linear form in (principal) 

logarithms of algebraic n,.1mbers, where the coefficients a. 
l. 

The 

of 

Gelfond-Baker theory provides an explicit lower bound for 

maxla. I . Using this in combination with Lemma 8.2 we 
l. 

are 

can 

• integers. 
• 1.n terms 

find an 

explicit upper bound for maxi a. I . This is what we do in the next section. 
]_ 

8.3. Upper bounds. 

Let A - max la. I . First we find an upper bound for A in terms of IYI . 
1 . l. 

:S1.:Sr 

LEMMA 8.3. Let I - { h1 , ... , hr } c { 1, ... , n) . Put 

u -I 

(h.) 

(where i indicates a row and l a column of the matrix), 

Put also 

Then, for 

r 
max I I u. ll . 

l:Si:Sr l=l 1. 

_ min I ( i) I 
µ_ l~isn µ ' 

µ =- max I ( i ) I 
+ lsisn µ ' 

µEM 

1 
- + 
2 

µEM 

max ( i 1) ( i 2 ) 

c4 - ______ µ ______ _ 

C ,_ 
5 

-

( -1 (n-l)·min N[UI ], 
I 

max 
I 
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we have 

Proof. By fJ - we have 

(hl) (hl) 
log(p /µ I al 

• • 
• - u . • (8.5) • • • I 

(h ) (h ) 
a 

r 
I r r log /3 /µ I 

On the other hand, for every h E { 1, ... , n} , using the end of the proof 

of Lemma 8.1, 

and therefore 

.8(h) 

(h) 
µ 

1 
~ 2·IYI + 

max (il) (i2) 

for h - 1, ... , n. 

Note that c4 - IYI > 1 . Indeed, by 

i=-1 

it follows that 

Then, 

1ml < 1ml I f 0 I -

min lµ(i)I s lmll/n, hence 
l:!Si~n 
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µ s 1ml . Therefore -

2lmll/n 
1 ♦ 

(8.6) 



Next we show that 

tJ(i) 

log (i) 
µ 

it follows that 

13< i) 
log (i) 

µ 

< (n-l)•log(C4 • IYI) for i - 1, ... , n. 

/3 ( i) 
- -log (i) 

µ 

n I ,B(h) 
- h=-llog (h) 

µ 

in view of (8.6). Now the inequality 

I 

(8.7) 

follows from (8.5), (8.7), the definition of and the fact that, as 

we have not put so far any restriction on 

be minimal. It remains to show that 

I , this could be chosen so that 

Choose I 
I.B(h) /µ(h)I 

such that i 0 fl. I . Then, by Lemma 8 .1, 

> c2 - IYI/µ+ > l and now, in view of (8.6), 

,B(h) 

log (h) 
µ 

which implies our assertion. 

Lemmas 8.2 and 8.3 immediately yield 

LEMMA 8. 4 ,. Puc 

If I YI 

C ..., 
6 

> Y' 
2 

t:hen 

IAI < c6 -exp~n·A) . 
5 
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Next we apply Lemma 2 .4 (Waldschmidt). It yields in the real case (ass11ming 

that A'°' 0) 

and in the complex case this holds when A is replaced by 

(8.8) 

A ' - max I a • I . 
O<"< l. _1 r 

The precise values for c7 and c8 are given in Section 2.3. It should be 

noted that in the complex case a 0 makes now its appearance, while it was 

not present in Lemmas 8.3 and 8.4. In order to obtain an upper bound for A, 

we must find an upper bound for A' in terms of A. Indeed, using 

we find from (8.4) and the proof of lemma 8.2 that if A~ 2 then 

+ ~-r-A + IAl/2~ < 1 + r·A ~ r·A. 
2 

Thus we may apply (8.8) in both cases with the same A if we replace c8 by 

in the real case, 

in the complex case. 

We can now give an upper bound for A. 

LEMMA 8.5. Puc 

C -9 

2·C 
5 

n . ( 

Proof. As we have seen 

(eiA_ll <~ and case, 
2 

• the proof of in 

• the complex 1n 

Lemma 

case. 

(8.2) implies A "" 0 • Therefore Lemma 8.4 and 

A< 
cs 
n · ( log 

The result now follows from Lemma 2.1. 

8.2, 

Note 

(8.8) 

A <~ in the real le -11 
2 

that 
(io) 

p 0 Hence f3 • 

yield 

.. 

□ 

Remark. From this upper bound for A an upper bound for can be 

derived, thus a value for Y
3 

(cf. Section 8.2). We shall not do this. Note 

that Y' 2 
(cf. Lemma 8.4) is not necessarily equal to (cf. Section 8.2). 
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8.4. Reducing the upper bound. 

We are now left with a problem of the following type. Let be given real 

... ' µ ( q ~ 2 , the case q - 1 is trivial). Write 

where the 

A .... 6 

a.' s 
]. 

q 

belong to 

given positive numbers, 

l , and put A - max la1 1 . If K1 , 
l:Si:Sq 

In our case, it follows from (8.3) or (8.4) how to define q, 

K2 , K3 are 

satisfying 

(8.9) 

and the 

µi's , and from Lemmas 8. 4 and 8. 5 how to define K1 , K2 , K3 . In general, 

K1 and K2 are 'small' constants, whereas K3 is 'very large'. Put 

so that A - 6 + A0 . We apply the methods of Chapter 3 to problem (8.9). 

Below we distinguish three cases. In the first two we suppose that the 

are ~-independent. 

(i). Let 5 - 0 , so that Then the linear form is homogeneous, and 
' 

we apply the method of Section 3. 7. 

(ii) Let 8 "' 0 . Then the linear form is inhomogeneous, and we apply the 

method of Section 3. 8. 

µ. , s 
l 

0-dependent. Let (iii). Suppose now that the 

approximation lattice for the linear 

are 

form A , as defined 

r be the 

Section 3. 7. 

Then we expect the lower bound for l~I (~er, x ~ Q) in general to be 

'very small', since the vector having as coordinates the coefficients of the 

dependence relation will give rise to a very short vector in the lattice. So 

the reduction process, as applied in the two previous cases, will not work. 

In such a case we work as follows. Let M be a maximal subset of 

{µ1,···,µq} 

of subscripts 

find integers 

consisting of 0-independent numbers. With an appropriate choice 

we may assume that M - { µl' ... ' µp } ' 

1:Si:Sp<j :Sq d>O and 

p 
I d ... µ. 

. 1 l.J ]. 
l. -

d .. 
1J 

for 

for 

j - p+l, ... ' q . 

p < q. Then we can 

such that 

(These numbers d, d.. can be found as coordinates of extremely short 
1J 

vectors in reduced bases) . On the other hand, ( 8. 9) is equivalent to 
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• 

where A' - d·A and Ki - d-K1 . Now, with 5' - d•5 and 

we obtain 

a~ - d•a. 
l. 1 

p 
A' - 6' + la~·µ .. 

. 1 l. l. 
1-

Put D - max ( Id I , Id .. I 
l.J 

: l:S i:Sp<j :Sq) . Then 

la~I :S (q-p+l)·D·A 
l. 

for . 1 
1. == ' ... ' p .. 

(8.10) 

Therefore, put A' - max la~ I , then A'~ (q-p+l)·D·A, and (8.10) implies 
1 . l. 

:Sl.~p 

' A' < K' 3 ' 
(8.11) 

where 

A' - o' + a'·µ' + 1 1 
. . . + a' . µ, 

p p I 

K' -3 

Now, to solve (8.11) we apply the reduction process described in (i) or (ii), 

depending on whether 6' - 0 or o ' "' 0 , and maybe more than once, if 

necessary, until we find a very small upper bound for A' . After having 

found all solutions (ai, ... , a~) of (8 .11), 

for IA' I . It is reasonable to expect that 

we have a lower bound L > 0 

L is not 'extremely small' , 

because the integers ai, ... , a~ 

make I A' I 'extremely small' . 

being 'small' 

Now combine 

in absolute value cannot 

with the first 

inequality of (8.10) to get 

A< 

Since L is not 'very small', as argued heuristically, the above upper bound 

for A is 'small'. 

Returning now to the general case, we point out that if the reduced upper 

bound for A (found after some reduction steps as described above) is not 

small enough to admit enumeration of the remaining possibilities • in a 
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reasonable time, then it might be necessaryt or at least advisable, to use 

the technique of Fincke and Pohst, cf. Section 3.6. However, when solving a 

Thue equation, and not only an inequality for a linear form in logarithms, it 

may be better to avoid this method, and to use continued fractions of the 

roots € ( i) . In practice we can search for the solutions (X, Y) of ( 8 .1) 

satisfying Y1 < IY I ::S C as follows, referring to Lemma 8 .1. Here e.g. 

C = Y2 , and we can imagine C here as being a 'large' constant compared to 

Y1 , but not 'very large' (cf. the introduction of Y1 , Y2 in Section 8.2). 

Let 

Since 

be a rational approximation of 

< 1 
6•C2 . 

X/Y must be a convergent, 
(io) 

fraction expansion of E . Denote by a 0 , a 1 , 

quotients in this expansion. First we claim that ~+l 

1 

say, 

(8.12) 

from the continued 

• • • the partial 

. Indeed, by (3.5) 

X - -y ::S • 

If ak+l - 1 or 

since IYI > Y1 > 

2, then we 
(4 ·C )l/(n-2) 

1 

would have lyl n-2 < 4 C hi h • l , W C is absurd, 

< 

Therefore, 

::S 

and this means that 

-

+ 

. Thust ak+l ~ 3 , and by (3.5) we have 

- 1 <--+ 
6-c2 

1 
2 

2-q 
k 

is in fact a convergent from the continued 

fraction expansion of e too. Moreover, in view of the inequalities 

- < -

8k+l must be sufficiently large compared to qk, namely 

(8.13) 
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This inequality can be checked easily for all k such that :S C • 

To s,Jrn up, we propose the following process for every real root for 
• 1, (note that • • priori l. = . . . , s 10 1S a 0 not known) . ( 1) Compute a 

- (io) 
rational approximation e of e satisfying (8.12) (a truncation of its 

its continued fraction with 

partial quotients a 0 , a 1 , a 2 , ... , ak+l and convergents pi/qi for all 

i ,_ 1, ... , k with qk :S C < qk+l . (3) Test all these convergents for the 

conditions (8.13) and F(p1 ,qi) - m. Concerning this last test, note that if 

X/Y-= p 1/qi , then X ,... Z·pi , Y - Z·qi for some Z e Z with Zn I m • 

This simple observation excludes in general most of the reducible quotients 

X/Y, and all of them if m is an n-th-powerfree integer. 

• -decimal expansion will do). (2) Expand e • 1.nto 

Having tested for all solutions in the range I YI :S C we may suppose that 

IYI > C . For such solutions (X,Y) we can obtain a lower bound for the 

corresponding A as follows (the idea is due 

of Blass, Glass, Meronk and Steiner [1987b]). 

{l, ... ,n} 

and put 

let 

E. -
J 

be the number +l or 

. Then 

. 1 J_ l. .... 

to A. Petho, cf. also Section 1 

For every (i,j) E {l, ... ,r} x 

-1 for which ~ 1 , 
l. 

and hence for any pair j 1 , j 2 with j 1 ~ j 2 we have 

(jl) (j2) 
fJ -/3 

e -e 
and from this we can find a lower bound for A, if we know that IYI > C . 

Of course, for an other pair we may find a different lower bound, 

and therefore we can take the larger one. 

8.5. An application: triangular numbers that are a product of three 

consecutive n11mhers. 

In this section we prove, as an application of the general theory described 

in the previous sections, the following result. The problem was posed by S.P. 
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Mohanty (cf. Mohanty [1988]; the proof in this paper is incorrect). Then-th 

triangular n11mber is 
l 

for n E ~ defined as T - -·n•(n+l) . n 2 

THEOREM 8.6. The only triangular numbers that: are a product: of three 

• * consecuc1.ve integers, are T - 4-5·6 15 I 
T - 5-6-7 20 I 

T - 9-10-11 44 ' 
636-637-638 . 

Proof. We have the diophantine equation n·(n+l) - 2·m·(m+l)·(m+2) 

n, m E ~ . Put x - 2·m + 2 , y - 2·n + 1 . Then we are lead to the equation 
2 3 y - x - 4-x + 1 in x, y E ~, with x ~ 4 even and y ~ 3 odd. Theorem 

8.7 below now completes the proof. □ 

THEOREM 8.7. The elliptic curve 

2 3 y - X - 4·X + 1 (8.14) 

has only the following 22 integral points: 

(x,±y) - (-2,1), (-1,2), (0,1), (2,1), (3,4), (4,7), (10,31), 

(12,41), (20,89), (114,1217), (1274,45473) , 

We prove this theorem in two main steps. First, we reduce the problem to the 

solution of two quartic Thue equations. Then we solve these equations using 

the general theory developed in the previous sections. 

Let L be the totally real field ~(~) , where 

~ 3 - 4-V> + 1 = 0. 

Let 
V>(3) 

the conjugates of be 
(1) (2) 

~ - 0.254 ... , 1P - -2.114 ... , 

== 1. 860... . From a table of Delone and Faddeev ( [ 1964], p. 141) we see 

that the class number of L • 1S 1, its ring of integers is Z[v,J , • its 

discriminant is 229, and a pair of independent units is v,, 2 - V'. From 

Table I of Buchmann [ 1986] we see that -7 + 2 -v,2 , 2 · v, + 1/J2 is a pair of 
2 -1 2 -1 

fundamental units in l[V'] . By -7 + 2·~ - -1P •(2-~) , 2-~ + ~ - (2-1P) 

we see that V>, 2 - ~ is also a pair of fundamental units in l[~] . 

The equation (8.14) of the elliptic curve can be written as 

(8.15) 
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and the factors on the right hand side are relatively prime. Indeed, if 

were a common prime divisor of them, then would divide 

2 2 
( X + X•~ + (~ -4) ) - ( X + - 4 ' 

which is prime, since its norm is -229 . Therefore we would have that w is 

a unit times this prime, and then by (8.15), x - ~ - unitx(3-~2-4)xsquare. 
2 

Take norms, then we get y - ±229xsquare , which is clearly impossible. 

Now (8.15) implies 

, i, j E ( 0, 1 ) . (8.16) 

Since (8.14) is trivial to solve for x 5 0 (the only solutions with x 5 0 

are the first three pairs stated in the theorem), we may assume that x ~ 1 . 
(1) Since j - 0.254 ... , we see that the minus sign in (8.16) is impossible. 

Then, by ~( 2 ) - -2.114 ... , i ~ 1 . We conclude therefore that 

' 
u, v, w E Z , j E { 0, 1 } . (8.17) 

First case: j - 0. Then (8.17) implies, on equating corresponding 

coefficients in both sides, 

X -
2 u -2-v-w , 

2 
w -2·u-v-8·v·w (8.18) 

Note that w is odd and v is even, hence 4 I 2-u·w, so u is even. Put 

u - 2-u 1 , v - 2-v
1 

. The last equation of (8.18) now reads 

2 
w 0 . 

Consider this as a quadratic equation in 
2 

w • Its discriminant must be a 

square, z say. Then 

2 
4·v 

1 - z 
2 

J ± z ) . 

Note that and z have the same parity. 'We may ass11me u ~ 0 . 

that Since 
2 2 

- 0 First suppose ul and z are even. w + u 1 ·W + vl 
• odd, find 2 (mod 4) and • odd . Put l.S we ul - vl l.S u -, 1 

2-z Then 
2 2 2 where and vl are odd. By z .... u2 - V - zl u2 1 • 1 

, 

there • E 'l/_ such that exist m, n 
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2 + n2 u 2 - m 

It follows that 

2 2 
u - 4 · (m +n ) , 

Since the , 

2 
- n 

and thus that of n ' is of no • importance, we may 

assume 

sign of z 

w - -(m+n) 2 . After substitution in the second equation of (8.18) we 

obtain the Thue equation 

The left hand side can be factored as 

( m + 3 
n ) · ( m 2 

+ 35-m ·n - 2 3 
29 · m · n + n ) , 

and therefore it can be solved very easily. Its only solutions are 

±(m,n) = (1,0), (0,1) . They lead to ±(u,v,w) - (4,2,-1), (4,-2,-1) , and 

then by (8.18) we find x = 20, 12 respectively, which furnish the solutions 

(x,±y) - (20,89), (12,41) for (8.14). 

Secondly, we 

u 1 2!:: 0 there 

suppose that 
• exist m, n E 

It follows that 

2 + n 

2 2 
u - 2 • (m +n ) 

, 

u1 and 

l. with 

V """ 

z are odd. Then 

z - m 

w -
2 

-m 

2 2 
- n • 

or w - -n 

• 1.s even, so by 

2 
• 

We may assume that w- 2 S b - . -m . u st1.tut1.ng this in the second equation of 

(8.18) we find the Thue equation 

The left hand side is again reducible. The only solutions, as is easily seen, 

are ±(m,n) - (1,0), (1,1), (1,-1) . Since m and n cannot have the same 

parity, only the first pair is accepted. It leads to 

and hence to (x,±y) = (4,7) for (8.14). 

(u,v,w) - (2,0,-1) , 

Second ca~e: j = 1 . Then, equating the coefficients in (8.17) we get 

2 
+ 4-w + 2·u•w - 4-v•w , (8.19) 
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2 2 
u + 4-v + 18•w2 - 4·u•v + 8•u·w - 18·v•w - 1 t 

2 2 
2-v + 9·w - 2·u·v + 4•u•w - 8-v•w - 0 . 

• 

The first relation of (8.20) can be replaced by 

2 
u - 2-v·w - 1 . 

(8.20) 

(8.21) 

Note that u is odd. Put z - v - 2-w. Then the second equation of (8.20) 

yields 

2 
w - 2 · z • (u-z) . 

First we suppose that z is odd. Then there exist m, n E Z such that 

2 z == m , u - z 
2 

== 2·n l 

where we use that u ~ 0 and (u,w) - 1 . Thus, choosing signs properly 1 

2 2 2 
u - m + 2·n , v - m + 4·m·n, w - 2·m·n. 

Substituting this in (8.21) we obtain the Thue equation 

4 3 2 2 4 
m - 4-m ·n - 12-m •n + 4·n - 1 . (8.22) 

In Theorem 8. 8 ( i) below we prove that this equation has only the solutions 

±(m,n) - (1,0) leading to (u,v,w) """(1,1 1 0), and finally for (8.14) to 

(x,±y) - (3,4) . 

Secondly we suppose that z is even. Then there exist m, n E Z with 

2 
z - 2-m , 

2 
u - z = n • 

Thus, choosing signs properly, we find 

' 
w - 2-m·n. 

Now, substituting into (8.21), we obtain the Thue equation 

4 2 2 
n - 12-n ·m -

3 8·n·m + 4-rn
4 

- 1 . (8.23) 

In Theorem 8. 8 ( ii) below we prove that this equation has only the solutions 

±(m,n) - (0,1), (1,-1), (3,1)> (-1,3) . They lead respectively to 

(u,v,w)-= (1,0,0), (3,-2,-2), (19,30,6), (11,-10,-6), which lead for (8.14) 
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to the solutions (x.±y) - (2,1), (10,31), (1274,45473), (114,1217) . Thus 

this result completes the proof of Theorem 8.7, provided 

(8. 22), (8. 23) have as their only solutions the pairs 

above. We now proceed to prove this. 

the Thue equations 

THEOR~M 8 1 8 1 (i). The Thue equation 

4 + 4.y - 1 

has only the solutions ±(X,Y) - (1,0) . 

(ii). The Thue equation 

4 2 2 3 4 
X - 12·X ·Y - 8·X·Y + 4-Y - 1 

(m,n) 

has only the solutions ±(X,Y) - (1,0), (1,-1), (1,3), (3,-1) . 

mentioned 

(8.24) 

(8.25) 

Proof. We use the notation and results of Sections 8. 2 and 8. 3. Let the 

algebraic numbers and <p be defined by 

4 3 
(fJ - 4-<p 

Since ~ - 2/6, it follows that and ~ generate the same field K over 

~ . In the notation of Section 8.2 we have n - 4, s ~ 4> t - 0 , and € - ~ 

or ~ _, ({). Simple computations show that for ~ - 6, we can take 

µ - µ - 1 - + c4 - B.3374 . 

In these computations we estimated c
1

, c
3

, c
4 

from above and c
2 

from 

below, using the following approximations for the conjugates of and cp: 

6(1) (1) -1.080 286 352 -1.851 ~ 360 980 cp == ' ' 
t)(2) 3.722 935 260 (2) ~ 0.537 210 524 ) cp - , 

t,( 3) 0.334 111 716 ~ 
(3) 

:a;; 5.986 021 747 

~(
4

) ~ -2.976 760 624, cp(4 ) ~ -0.671 871 290 . 

Now we work in the order R of K with l-basis { 1, fJ, 

2 
- - - 4 + ,(j 

1 3 
6·-0 - -·'6 ER 2 • 

On the other hand, (8.24) and (8.25) are respectively equivalent to 
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No /D (X-Y •t)) - 1 and 

a solution of (8.24) or 

Noril\<;o<X-Y·~) - 1, which means that if (X,Y) 

(8.25), then X - Y•-{) or X - Y·~, respectively, is 

• LS 

a unit of the order R. A system of fundamental units of R is given by 

We do not prove this fact here. For a proof, see Tzanakis and de W'eger 

[1989a], Section III.2 and Appendix I. 

Thus the solution of (8.24) and (8.25) is reduced to finding all 

(a1 ,a2 ,a3 ) E 

X - Y•-{) or 

13 such that the unit 
al a2 a3 

±c 1 . E 2 . f 3 has the special shape 

X - Y·~, respectively. In the notation of Lemma 8.3 we have, 

after some numerical computations, that we leave to the reader to check, that 

• min 
I 

- 0.634950 ... , max 
I 

- 1.210070 ... , 

(here, of course, I - { 1, 2, 3, 4} ). Therefore we can take in Lemma 8.4 

cs-= 1.211 . 

Also, 

4 c6 - 6.3877lxlO , Y2 = 3. 

(The values of c
5 

and c6 are estimated from above.) 

Now, relation (8.3) becomes in our case 

A ,_ log + 
3 
I a. · log 

. 1 1. 1.-

(8.26) 

where € - or ~. As mentioned in Section 8.2, once i 0 is fixed, we can 

choose j, k arbitrarily. Thus we can choose 

j - 3, k - 4 if i 0 = 1 or 2 , 
(8.27) 

• 
J 1, k - 2 if i 0 = 3 or 4 . 

Therefore, for each ,; E { -{), r.p } we have four possibilities for A . For 

each of these eight cases we have, as will be shown below, 

C -7 
38 

5.7lxl0 , 

and therefore, by Lemma 8.5, if IYI > 3, then for 
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40 
the upper bound c9 .... 3.26xl0 . As is easily checked, the only solutions of 

either (8.24) or (8.25) with IYI $ 3 are those listed in the statement of 

the theorem. Therefore we may assume that IYI > 3 , so that 

A < 3. 26xlo40 . 

Before we apply the reduction method of Section 3.8 we show that the 

application of Lemma 2.4 yields the above constants c 7 , c 8 . We apply this 

result in the case of A given by (8.26). In this case, we compute the 

for the various a. 's appearing in A , as 
l. 

follows. If 

for i - 1, 2, 3 , then a 1 is a unit and hence (appearing in the 

computation of h(o.) ) is equal to 1. Clearly, every 
1 

conjugate of 

absolute value less than 

H. -
l. 

max I (h) I 
l:Sh:$4 E i 

min 1 (h) I ' 
l:S~4 1 e i 

and H. ~ 1 . Therefore, h(a.) s H. , and we can take 
1 1 1 

V .... max 
1 

( log 

Since the latter term equals the logarithm of either 

inverse, it follows that 

V. - log H. . 
1 l. 

(i ) . (i ) 
a. - I€ 0 -e(J)l/1€ 0 -e(k)I 

l. 
If , then all conjugates of a. 

1 

a. 
1 

or its 

• are in 

absolute value less than Therefore, h(oi) :S (log a 0 )/d + log c3 , 

An upper and d are as in the definition of h(o) for a - a. . 
1 

where 

bound be computed as follows. Consider the algebraic 

i, h E { l, ... , 4} with i ,,,,_ h . It can be for 

checked that the n11mbers 

Now, for each permutation 

are algebraic integers for or rp • 

x(a) - (independent of 

P(X) - n ( X - x(a) J . 
aeS4 

Consider also the number 

a 4 ), and the 
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Note that 

where D 

therefore 

1 
12·D' 

2 

is the discriminant of the defining polynomial of 

~
2 

- 229 . On the other hand, the coefficients of P(X) 

€ t and 

are up to 

the sign the elementary symmetric functions of 

they are sy111metrical expressions of the ~ ( i) 's 

x(o) for a e s4 , and so 

with rational coefficients. 

This means that P(X) E O[X] . On the other hand, by the definition of 

any coefficient of P(X) multiplied by ~4 is a polynomial of the , 
Xih s 

with coefficients in z and the ref ore it is an algebraic integer. Combine 

this with the fact that P(X) E ~[X] to see that 2292 •P(X) e Z[X] . Hence, 
• since 

229 2 . 

that 

a. is a root of 
1 

To conclude, we have 

P(X} , its leading coefficient a
0 

is at most 

h(a.) 
l. 

~ 2-(log 229)/d + log c3 and it is clear 

we have d ~ 2 , so we can take 

Simple computations now show that 

log H1 = 4.074586 .. . log H2 ~ 5.667432 ... , 

log H
3 
~ 4.821584 ... , 

1.262065 ... if - iJ ' 

log c3 - 1.893823 ... if - cp , 

log 229 + log c3 ~ 7.327545 .... 

Therefore we apply Lemma 2.4 (Waldschmidt) with n - 4, D ~ 24, e(n) - 73, 

for 

V = 
1 

e ... 

a ... 
1 

or <.p 1 

Thus we find that 

with 

' 
, a -3 

and c8 == 6.17 . 
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We have now to apply the reduction process described in Section 3.7. In our 

situation we have to solve (8.9) with 

4 - 6.3877lxl0 , 4 
1.211 > 3.303 , 

40 K3 - 3.26xl0 

( K2 is estimated from below), and 

where for and the µ, , s 
i we have, in view of (8.26) and (8.27): 

or 

S - 5 1 : """' 1 0 g 

(4) 
€ • 

== log l. µ. 
(3) 1 

S - o 3 

€ • 
l. 

:-= log 

(2) 
€ • 

1. 

(1) 
€ • 

1 

e(l)_€(3) 

e<l)_e<4) 

' 
for 

e<3)_e<1) 
€(3)_€(2) 

, for 

• 
l 

or o 2 :- log 
€(2)_€(3) 

€(2)_€(4) 
, 

where e - 6 or ~, 

== 1, 2, 3 , 

or 

where 

e<4)_e<1) 

€(4)_€(2) 

or 

, 

i - 1, 2, 3 . 

(8.28) 

(8.29) 

N1-1merical details are given in the preprint 

[1989a] (to be obtained from the author). 

with the lattice with associated matrix 

version of Tzanakis 
140 

We take c 0 - 10 , 

and de Weger 

and we work 

s4 .... 

1 

0 

0 

1 

0 

0 • 

Note that in each of the four cases of (8.28) (resp. 

lattice, (resp. r 2 ) , say. In each case 

(8.29)) we have the same 

o ,,.,. 0 , and we had no 

n1-1merical evidence that the µ.. 's are 0-dependent. Therefore we worked as in 
1 

case (ii) of Section 8.4. 

For each r. we have applied the integral version of the 
1. 

each time we have computed the integral 3x3-matrices ~, ~, 

L3-algorithm, and 
-1 

~ , as defined 

in Section 3.7. In our cases, the coordinates of the vectors of the reduced 

bases (i.e. the elements of ) turned out to have 46 to 48 digits, i.e. the 

lengths of the reduced basis vectors are of the size of 
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In each of the eight cases we computed the coordinates sl' s2' s3 of 

with res pee t to the reduced bas is 12.
1

, 12.
2

, !!
3 

computations we found 

of the lattice. From our 

in the case of lattice r 1 , 

in the case of lattice r
2 

, 

II s 3 11 > 0. 029 in all 8 cases. 

This means that in view of Lemma 3.5, in all cases 1
0 

- 3 , and 

Then the assumptions of Lemma 3.10 are fulfilled with n - 3, 7 - 1, C - c 0 , 
40 

c = K1 , o - K2 , x0 ~ X1 = K3 , since /27-K3 < l.112xl0 , which implies 

1 140 4 40 
A< 3.3o3·log(l0 ·6.3877lxl0 /3.26xl0 ) < 72.8. 

It follows that A ::; 72. We repeat the procedure with 

in the case of lattice r1 , 

in the case of lattice r 2 , 

11s 3 11 > 0.143 in all 8 cases. 

K - 72 
3 

This means that in view of Lemma 3.5, in all cases i 0 .... 3, and 

l 4 2 ~(r.,x) > 0.143·-·l.092xl0 > 7.807xl0 . 
1. 2 

and 

Then the assumptions of Lemma 3.10 are fulfilled, 

which implies 

• since 
2 < 3. 742x10 , 

A< 

It follows that A s 10 . We enumerated all remaining possibilities~ and 

found no other solutions of (8.24) and (8.25) than those mentioned. □ 

The computations for the proof of Theorem 8.8 took 35 sec. 
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8.6. The Thue-Mahler equation, an outline. 

Let F(X,Y) be as in Section 8.1. Let p1 , ... , ps be fixed distinct prime 

numhers. The diophantine equation 

s n. 
F(X,Y) - + II l. - p. 

. 1 J.. 1-

in the variables X, YEl, n
1

, ... , n
5 

eN0 , with (X,Y) -1, is known 

as a Thue-Mahler equation. It was proved by Mahler (1933] that this equation 

has only finitely many solutions, and by Coates (1970] that they can, at 

least in principle, be determined effectively, since an effectively 

computable upper bound for the variables can be derived from the p-adic 

theory of linear forms in logarithms. For the history of this equation we 

refer to Shorey and Tijdeman [1986], Chapter 7. 

We believe that it is possible to solve Thue-Mahler equations, not only in 

principle, but in practice. This can be done by reducing the above mentioned 

upper bounds, using a combination of real and p-adic computational 

diophantine approximation techniques, based on the L3-algorithm for reducing 

bases of lattices (cf. Sections 3.7 and 3.8 for the real case, 3.11 and 3.12 

for the p-adic case, Section 1. 5 for a short outline of how to combine the 

real and p-adic techniques> and Sections 4. 8 and 6. 4 for some explicit 

examples of such combined techniques). The method can be considered as a 

p-adic analogue of the method for solving Thue equations, on which we 

reported in the preceding sections. 

Such an idea (but without using 3 the L -algorithm) was used by Agrawal, 

Coates, Hunt and van der Poorten [1980], who solved the equation 
• 

This is to the author's knowledge the only example in the literature where a 

Thue-Mahler equation has been solved by the Gelfond-Baker method. Other 

methods may apply as well for solving Thue-Mahler equations. For example, 

has been solved by Tzanakis [1984] by a different method. The advantage of 

the Gelfond-Baker method above many other ideas is that it works in principle 

for any Thue-Mahler equation, because it is not very much dependent on the 

parameters of the particular equation that one wants to solve. 
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Both examples of Thue-Mahler equations mentioned above are of the simplest 

kind, in view of the fact that the cubic field 0(6) , where is a root of 

F(x,1) - 0, has only one fundamental unit, and there occurs only one prime. 

Therefore it is sufficient to use two-dimensional real continued fractions 

and one-dimensional p-adic continued fractions, instead of the more 

complicated L3-algorithm (which anyway was not yet available in 1980, when 

Agrawal, Coates, Hunt and van der Poorten did their work). With the use of 
3 

the L -algorithm the method can in principle be extended to the general 

situation, where there are more than one fundamental units, and more than one 

primes. In a forthcoming publication, Tzanakis and the present author plan to 

give details and worked-out examples (Tzanakis and de Weger [1989b]). 

, 
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