
Resource-Bounded Kolmogorov Complexity Revisited*

Harry Buhrman**1 and Lance Fortnow***2

1 CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands

2 CWI & University of Chicago, Department of Computer Science, 1100 E. 58th St.,

Chicago, IL 60637

Abstract. We take a fresh look at CD complexity, where CDt(x) is the

smallest program that distinguishes x from all other strings in time t(ixi).

We also look at a CND complexity, a new nondeterministic variant of

CD complexity.

We show several results relating time-bounded C, CD and CND com

plexity and their applications to a variety of questions in computational

complexity theory including:

- Showing how to approximate the size of a set using CD complexity

avoiding the random string needed by Sipser. Also we give a new

simpler proof of Sipser's lemma.

- A proof of the Valiant-Vazirani lemma directly from Sipser's earlier

CD lemma.
- A relativized lower bound for CND complexity.

- Exact characterizations of equivalences between C, CD and CND

complexity.
- Showing that a satisfying assignment can be found in output poly

nomial time if and only if a unique assignment can be found quickly.

This answers an open question of Papadimitriou.

- New Kolmogorov-based constructions of the following relativized

worlds:

• There exists an infinite set in P with no sparse infinite subsets

in NP.
• EXP = NEXP but there exists a nondeterministic exponential

time Turing machine whose accepting paths cannot be found in

exponential time.

• Satisfying assignment cannot be found with nonadaptive queries

to SAT.

* At http://www.cs.uchicago.edu;-fortnow /papers/ a full version of this paper includ

ing complete proofs can be found.

** E-mail: buhrman@cwi.nl. Part of this research was done while visiting The Univer

sity of Chicago. Partially supported by the Dutch foundation for scientific research

(NWO) through NFI Project ALADDIN, under contract number NF 62-376 and

SION project 612-34-002, and by the European Union through NeuroCOLT ESPRIT

Working Group Nr. 8556, and HC&M grant nr. ERB4050PL93-0516.

*** Email: fortnow@cs.uchicago.edu. Supported in part by NSF grant CCR 92-53582

and the Fulbright scholar program and NWO.

Reischuk, Morvan (Eds.): STACS'97 Proceedings, LNCS 1200

© Springer-Verlag Berlin Heidelberg 1997

106 H. Buhrman and L. Fortnow

1 Introduction

Originally designed to measure the randomness of strings, Kolmogorov com

plexity has become an important tool in computability and complexity theory.

A simple lower bound showing that there exist random strings of every length

has had several important applications (see [LV93, Chapter 6]).
Early in the history of computational complexity theory, many people natu

rally looked at resource-bounded versions of Kolmogorov complexity. This line

of research was initially fruitful and led to some interesting results. In particu

lar, Sipser [Sip83] invented a new variation of resource-bounded complexity, CD

complexity, where one considers the size of the smallest program that accepts

the given string and no others. Sipser showed that one can approximate the size

of sets using CD complexity with random advice.
Complexity theory has marched on for the past two decades, but resource

bounded Kolmogorov complexity has seen little interest. Now that computa

tional complexity theory has matured a bit, we ought to look back at resource

bounded Kolmogorov complexity and see what new results and applications we

can draw from it.
First, we use algebraic techniques to give a new upper bound lemma for CD

complexity without the random advice required of Sipser's Lemma [Sip83].

We also give a new simpler proof of Sipser's Lemma and show how it implies

the important Valiant-Vazirani lemma [VV86] that randomly isolates satisfy

ing assignments. Surprisingly, Sipser's paper predates the result of Valiant and

Vazirani.
We define CND complexity, a variation of CD complexity where we allow

nondeterministic computation. We prove a lower bound for CND complexity

where we show that there exists an infinite set A such that every string in A has

high CND complexity even if we allow access to A as an oracle. We use this

lemma to prove some negative result on nondeterministic search vs. deterministic

decision.
Once we have these tools in place, we use them to unify several impor

tant theorems in complexity theory. We answer an open question of Papadim

itriou [Pap96] characterizing exactly when the set of satisfying assignments of

a formula can be enumerated in output polynomial-time. We create relativized

worlds where assignments to SAT cannot be found with non adaptive queries

to SAT (first proven by Buhrman and Thierauf [BT96]), and where EXP =
NEXP but there exists a nondeterministic exponential time Turing machine

whose accepting paths cannot be found in polynomial time (first proven by Im

pagliazzo and Tardos [IT89]).
These results in their original form require a great deal of time to fully under

stand the proof because either the ideas and/or technical details are quite com

plex. We show that by understanding resource-bounded Kolmogorov complexity,

one can see full and complete proofs of these results without much additional

effort. We also look at when polynomial-time C, CD and CND complexity col

lide. We give a precise characterization of when we have equality of these classes,

and some interesting consequences thereof.

Resource-Bounded Kolmogorov Complexity Revisited 107

2 Preliminaries

We use basic concepts and notation from computational complexity theory texts

like Balcazar, Diaz, and Gabarr6 [BDG88] and Kolmogorov complexity from the

excellent book by Li and Vitanyi [LV93]. We use Ix! to represent the length of

a string x and llAll to represent the number of elements in the set A. All of the

logarithms are base 2. EXP is defined as DTIME(2P01 Y) and NEXP is defined

as NTIME(2P01 Y).

Formally, we define the Kolmogorov complexity function C(x!y) by C(xly) =
minp{IPI : U(p,y) = x} where U is some fixed universal deterministic Turing

machine. We define unconditional Kolmogorov complexity by C(x) = C(xle:).

A few basic facts about Kolmogorov complexity:

- The choice of U affects the Kolmogorov complexity by at most an additive

constant.
- For some constant c, C(x) ::; lxl + c for every x.

- For every n and every y, there is an x such that Ix! = n and C(xfy) 2: n.

We will also use time-bounded Kolmogorov complexity. Fix a fully time

computable function t(n) 2: n. We define the ct(xly) complexity function as

ct(xfy) = min{IPI: U(p, y) = x and U(p) runs in at most t(fxl + jyl) steps}.
p

As before we let ct(x) = ct(xje). A different universal U may affect the com

plexity by at most a constant additive factor and the time by a log t factor.

While the usual Kolmogorov complexity asks about the smallest program to

produce a given string, we may also want to know about the smallest program

to distinguish a string. While this difference affects the unbounded Kolmogorov

complexity by only a constant it can make a difference for the time-bounded

case. Sipser [Sip83] defined the distinguishing complexity CDt by

{
(1) U(p, x, y) accepts. }

CDt . IPI : (2) U (p, z, y) rejects for all z =/= x.
(xfy) = m~n (3) U(p,z,y) runs in at most t(fzl + fyf) steps

for all z E E*.

Fix a universal nondeterministic Turing machine Un. We define the nonde

terministic distinguishing complexity CNDt by

{
(1) Un(P, x, y) accepts. }

CNDt(I) _ . IPI: (2) Un(P, z,y) rejects for all z =/= x.
x Y - m~n (3) Un(P, z, y) runs in at most t(izl + jyf) steps

for all z E E*.

Once again we let CNDt(x) = CNDt(xfe).

We can also allow for relativized Kolmogorov complexity. For example for

some set A, CDt,A(xfy) is defined as above except that the universal machine

U has access to A as an oracle.
Since one can distinguish a string by generating it we have

108 H. Buhrman and L. Fortnow

Lemmal. Vt 3c\t'x,y: cnct(x I y) ~ ct(x I y) + c
where c is a constant. Likewise, since every deterministic computation is also a
nondeterministic computation we get

Lemma2. Vt 3c\t'x,y: CNDct(x I y) ~ cot(x I y) +c.
In Section 6 we examine the consequences of the converses of these lemmas.

3 Approximating Sets with Distinguishing Complexity
In this section we derive a lemma that enables one to deterministically approximate the density of a set, using polynomial-time distinguishing complexity.

Lemma3. Let S = {x1 , ... ,xd} ~ {0, ... ,2n -1}. For all Xi ES and at least
half of the primes p ~ 4dn2 , Xi ~ Xj mod p for all j ":f i.
Proof: For each Xi,Xj E S, i ":f j, it holds that for at most n different prime numbers p, Xi = Xj modp by the Chinese Remainder Theorem. For Xi there are at most dn primes p such that Xi = x j mod p for some x j E S. The prime number Theorem (see for example [Ing32]) states that for any m there are approximately m/ ln(m) > m/ log(m) primes less than m. There are at least 4dn2 /log(4dn2) > 2dn primes less than 4dn2• So at least half of these primes p must have Xi ~ Xj mod p for all j ":f i. D

Lemma4. Let A be any set. For all strings x E A=n it holds that CDp,A=n (x) :::; 2 log(IAI) + O(log n) for some polynomial p.

Proof: Fix n and let S = A=n. Fix x E S and a prime Px fulfilling the conditions of Lemma 3 for x.
The CD"01Y program for x works as follows:

input y
H y rt A =n then REJECT
else if y mod p,, = x mod p., then ACCEPT
else REJECT

The size of the above program is IPzl +Ix modp.,I + 0(1). This is 2 log(llAll) + O(log n). It is clear that the program runs in polynomial time, and only accepts x. 0

We note that the above Lemma also works for CND" complexity for p some polynomial.

Co roll~~ 5. Let A be a set in P. For each string x E A it holds that: CDP (x) :::; 2log(~A- I)+ O(log(n)) for some polynomial p.

Proof: We will use the same scheme as in Lemma 4, now using that A E p and specifying the length of x, yielding an extra log(n) term for lxl plus an additional 2 log log(n) penalty for concatenating the strings. D

Resource-Bounded Kolmogorov Complexity Revisited 109

Corollary6. 1. A set Sis sparse if and only if for all x E S, CDP,8 (x) :::;

O(log(lxl)), for some polynomial p.

2. A set S E P is sparse if and only if for all x E S, CDP(x) ~ O(log(lxl)),

for some polynomial p.

3. A set SE NP is sparse if and only if for all x ES, CNDP(x) ~ O(log(lxl)),

for some polynomial p.

Proof: Lemma 4 yields that all strings in a sparse set have O(log(n)) CDP

complexity. On the other hand simple counting shows that for any set A there

must be a string x EA such that CNDA(x) ~ log(llAll). D

3.1 Sipser's Lemma

We can also use Lemma 3 to give a simple proof of the following important result

due to Sipser [Sip83].

Lemma 7 Sipser. For every polynomial-time computable set A there exists a

polynomial p and constant c such that for every n, for most r in _l;'P(n) and every

x E A=n,

Proof: For each k, 1 ~ k ~ n, let rk be a list of 4k(n + 1) randomly chosen

numbers less than 2k. Let r be the concatenation of all of the rk.

Fix x E A=n. Let d = IA=n1. Fix k such that 2k-l < 4dn2 ~ 2k. Consider

one of the numbers y listed in rk. By the Prime Number Theorem [Ing32], the

probability that y is prime and less than 4dn2 is at least 2(log ~dn2). The prob-

ability that y fulfills the conditions of Lemma 3 for x is at least 410g14dn2 > fk.

With probability about (1-1/en+l) > (1- 1;2n+l) we have that some yin rk

fulfills the condition of Lemma 3.

With probability at least 1/2, for every x E A there is some y listed in rk

fulfilling the conditions of Lemma 3 for x.

We can now describe x by x mod y and the pointer to y in r. D

Note: Sipser can get a tighter bound than clogn but for most applications

the additional O(logn) additive factor makes no substantial difference.

Comparing our Lemma 4 with Sipser's lemma 7, we are able to eliminate the

random string required by Sipser at the cost of an additional log IA=nl bits.

4 Lower Bounds

In this section we show that there exists an infinite set A such that every string

in A has high CND complexity, even relative to A.

Fortnow and Kummer [FK96] prove the following result about relativized

CD complexity:

110 H. Buhrman and L. Fortnow

Theorem 8. There exists an infinite set A such that for every polynomial p,
CDP,A(x) ;::: lxl/5 for almost all x EA.

We extend and strengthen their result for CND complexity:

2~A) Theorem 9. There exists an infinite set A such that CND ' (x > lxl/4
for all x EA.

The proof of Fortnow and Kummer of Theorem 8 uses the fact that one can
start with a large set A of strings of the same length such that any polynomial
time algorithm on an input x in A cannot query any other y in A. However,
a nondeterministic machine may query every string of a given length. Thus we
need a more careful proof.

This proof is based on the proof of Corollary 10 of Goldsmith, Hemachandra
and Kunen [GHK92]. In Section 5, we will also describe a rough equivalence
between this result and an "X-search" theorem of lmpagliazzo and Tardos [IT89].

Using Theorem 9 we get the following corollary first proved by Goldsmith,
Hemachandra and Kunen [GHK92].

Corollary 10 Goldsmith-Hemachandra-Kunen. Relative to some oracle,
there exists an infinite set in P with no infinite sparse subsets in NP.

Proof: Let A from Theorem 9 be both the oracle and the set in pA. Suppose
A has an infinite sparse subset Sin NPA. Pick a large x such that x ES. Ap
plying Corollary 6(3) it follows that CNDA,P(x) ~ O(log(n)). This contradicts
the fact that x ES~ A and Theorem 9. D

The above argument shows actually something stronger:

Corollary 11. Relative to some oracle, there exists an infinite polynomial-time
computable set with no infinite subset in NP of density less than 2n/9 .

5 Search vs. Decision in Exponential-Time

If P = NP then given a satisfiable formula, one can use binary search to find
the assignment.

One might expect a similar result for exponential-time computation, i.e., if
EXP = NEXP then one should find a witness of a nondeterministic exponential
time computation in exponential time. However, the proof for polynomial-time
breaks down because as one does the binary search the input questions get too
long. lmpagliazzo and Tardos [IT89] give relativized evidence that this problem
is indeed hard.

Theorem 12 [IT89]. There exists a relativized world where EXP = NEXP
but there exists a nondeterministic exponential-time Turing machine whose ac
cepting paths cannot be found in exponential time.

Resource-Bounded Kolmogorov Complexity Revisited

We can give a short proof of this theorem using Theorem 9.

Proof of Theorem 12: Let A be from Theorem 9.

111

We will encode a tally set T such that EXPAE!lT = NEXPAffiT. Let M be

a non deterministic oracle machine such that M runs in time 2n and for all B,

M 8 is NEXP8 -complete.

Initially let T = 0. For every string w in lexicographic order, put l 2w into T

if M AE!lT (w) accepts.

Let B = A E9 T at the end of the construction. Since M (w) could only query

strings with length at most 2Jwl :S w, this construction will give us EXP8 =

NEXPB.
We will show that there exists a nondeterministic exponential time Turing

machine with access to B whose accepting paths cannot be found in time expo

nential relative to B.

Consider the nondeterministic machine M that on input n guesses a string

y of length n and accepts if y is in A. Note that M runs in time 2JnJ :S n.

Suppose accepting computations of M 8 can be found in time 2lnlk = 210gk n

relative to B. By Theorem 9, we can fix some large n such that A=n f. 0 and

for all x E A=n,
(1)

Let Wi = II { 1 m I 1 m E T and 2i < m :S 2i+1 } II· We will show the following

lemma.
2logk n A

Lemma13. CND ' (xlw1, ... ,w10gk n) S logn + 0(1).

Assuming Lemma 13, Theorem 12 follows since for each i, lwd s i + 1. We

thus have our contradiction with Equation (1).

Proof of Lemma 13: We will construct a program pA to nondeterminis

tically distinguish x. We use logn bits to encode n. First p will reconstruct T

using the wi 's.
Suppose we have reconstructed T up to length 2i. By our construction of T,

strings of T of length at most 2i+l can only depend on oracle strings of length

at most 2i+ 1 /2 = 2i. We guess w; strings of the form 1 m for 2i < m s 2H 1 and

non deterministically verify that these are the strings in T. Once we have T, we

also have B =A EB Tso in time 210gk n we can find x. D

Impagliazzo and Tardos [IT89] prove Theorem 12 using an "X-search" prob

lem. We can also relate this problem to CND complexity and Theorem 9.

Definition 14. The X-search problem has a player who given N input variables

not all zero, wants to find a one. The player can ask r rounds of l parallel queries

of a certain type each and wins if the player discovers a one.

lmpagliazzo and Tardos use the following result about the X-search problem

to prove Theorem 12.

Theorem 15 [IT89]. If the type of the queries is restricted to k-DNFs and

N > 2(klr) 2 (l + lV then the player will lose on some non-zero setting of the

variables.

112 H. Buhrman and L. Fortnow

One can use a proof similar to that of Theorem 12 to prove a similar bound for Theorem 15. One needs just to apply Theorem 9 relative to the strategy of the player.
One can also use Theorem 15 to prove a variant of Theorem 9. Suppose Theorem 9 fails. For any A and for every x in A there exists a small program that nondeterministically distinguishes x. For some x suppose we know p. We can find x by asking a DNF question based on p about the ith bit of x.
We do not in general know p but there are not too many possibilities. We can use an additional round of queries to try all programs and test all the answers in parallel. This will give us a general strategy for the X-search problem contradicting Theorem 15.

6 CD vs. C and CND

This section deals with the consequences of the assumption that one of the complexity measures C, CD, and CND coincide for polynomial time. We will see that these assumptions are equivalent to well studied complexity theoretic assumptions. This allows us to apply the machinery developed in the previous sections. We will use the following function classes:

Definition 16. 1. The class FPNP[log(n)] is the class of functions computable
in polynomial time that can adaptively access an oracle in NP at most clog(n) times, for some c.

2. The class FPr:P is the class of functions computable in polynomial time that can non-adaptively access an oracle in NP.

Theorem 17. The following are equivalent:

1. 'Vp2 3p1, c 'Vx, y : CP1 (x I y) :s; CNDP2 (x I y) + clog(lxl).
2. 'Vp2 3p1,c'Vx,y: CDP1 (x I y) :s; CNDP2 (x I y) +clog(lxi).
3. ppNP[log(n)] = FPr:p.

For the next corollary we will use some results from [JT95]. We will use the following class of limited nondeterminism defined in [DT90].

Definition 18. Let f(n) be a function from N i-t N. The class NP[f(n)] denotes that class of languages that are accepted by polynomial-time bounded nondeterministic machines that on inputs of length n make at most f(n) nondeterministic moves.

Corollary19. l/'Vp23p1,cV'x,y: CDP1 (x I y) :s; CNDP2 (x I y)+clog(lxl) then for any k:

1. NP[logk(n)] is included in P.
2. SATE NP[10gr(n)].
3. SATE DTIME(2nO(l/loglogn)).

Resource-Bounded Kolmogorov Complexity Revisited 113

4. There exists a polynomial q such that for every m formulae </J1 , .•. , </>m of n

variables each such that at least one is satisfiable, there exists a i such that

<Pi is satisfiable and

Proof: The consequences in the corollary follow from the assumption that

FPNP[log(n)] = FP~P [JT95]. FPNP[log(n)] = FPrtP follows from Theorem 17.

D
We can use Corollary 19 to get a complete collapse if there is only a constant

difference between CD and CND complexity.

Theorem 20. The following are equivalent:

1. VP2 3pi, c Vx, y : CP1 (x I y) $ CNDP2 (x I y) +c.

2. VP2 3p1,cVx,y: CDP1 (x I y) $ CNDP2 (x I y) +c.

3. P=NP.

In fact Theorem 20 holds if we replace the constant c with alogn for any

a< 1.
For the next corollary we will need the following definition (see [ESY84]).

Definition21. A promise problem is a pair of sets (Q,R). A set Lis called a

solution to the promise problem (Q,R) ifVx(x E Q => (x EL{:> x ER)). For

any function f, JSAT denotes the set of boolean formulas with at most f(n)

satisfying assignments for formulae of length n.

The next theorem states that nondeterministic computations that have few

accepting computations can be "compressed" to nondeterministic computations

that have few nondeterministic moves if and only if CP01Y $ CDP01Y.

Theorem 22. The following are equivalent:

1. Vp2 3p1,cVx,y: CP1 (x I y) $ CDP2 (x I y) +c.

2. {1SAT,SAT} has a solution in P.

3. For all time constructible f, (f SAT,SAT} has a solution in NP[2log(f(n))+

O(log(n))).

Corollary 23. FPNP[log(n)] = FPrtP implies the following:

1. For any k the promise problem (210gk(n)SAT,SAT) has a solution in P.

2. For any k, the class of languages that is accepted by nondeterministic ma

chines that have at most 210gk(n) accepting paths on inputs of length n is

included in P

Proof: This follows from Theorem 17, Theorem 22, and Corollary 19. D

114 H. Buhrman and L. Fortnow

7 Satisfying Assignments

We show several connections between CD complexity and finding satisfying as
signments of boolean formulae. By Cook's Theorem [Coo71], finding satisfying
assignments is equivalent to finding accepting computation paths of any nonde
terministic polynomial-time computation.

7.1 Enumerating Satisfying Assignments

Papadimitriou (Pap96] mentioned the following proposition:

Proposition 24. There exists a Turing machine that given a formula </> will
output the set A of satisfying assignments of</> in time polynomial in l</>I and
llAll·

We can use CD complexity to show the following.

Theorem 25. Proposition 24 is equivalent to (ISAT, SAT) has a solution in P.

In Proposition 24, we do not require the machine to halt after printing out
the assignments. If the machine is required to halt in time polynomial in </> and
~All we have that Proposition 24 is equivalent to P =NP.

Proof of Theorem 25: The implication of (ISAT, SAT) having a solution
in P is straightforward. We concentrate on the other direction.

Let d = llAll· By Lemma 4 and Theorem 22 we have that for every element
x of A, Cq (xl<f>) ::; 2 log d + clog n for some polynomial q and constant c. We
simply now try every program p in length increasing order and enumerate p(</;)
if it is a satisfying assignment of <f>. D

7.2 Computing Satisfying Assignments

In this section we turn our attention to the question of the complexity of gener
ating a satisfying assignment for a satisfiable formula (WT93, HNOS96, Ogi96,
BKT94]. It is well known [Kre88] that one can generate (the leftmost) satisfying
assignment in FPNP. A tantalizing open question is whether one can compute
some (not necessary the leftmost) satisfying assignment in FP~P. Formalizing
this question, define the function class F sat by f E F sat if when <p E SAT then
f (cp) is a satisfying assignment of cp.

The question now becomes F sat n FP~P = 0? Translating this to a CND
setting we have the following.

Lemma 26. F sat n FP~P =j:. 0 if and only if for all </> E SAT there exists
a satisfying assignment a of</> such that CNDP(a I <P) :=:; clog(l<t>I) for some
polynomial p and constant c.

Toda and Watanabe [WT93] showed that F sat n FP~P =j:. 0 relative to a
random oracle. On the other hand Buhrman and Thierauf [BT96] showed that
there exists an oracle where F sat n FP~P = 0. Their result also holds relative
to the set constructed in Theorem 9.

Resource-Bounded Kolmogorov Complexity Revisited 115

Theorem 27. Relative to the set A constructed in Theorem 9, F sat n FPf;P =
0.

Proof: For some n, let cf> be the formula on n variables such that cf>(x) = T if

and only if x E A. Suppose F sat n FPf;P =J. 0. It now follows by Lemma 26 that

there exists an x E A such that CNDP,A(x) ::; O(log(lxl)) for some polynomial

·. 2MA

p, contrad1ctmg the fact that for all x EA, CND ' (x) 2 !xl/4. D

7 .3 Isolating Satisfying Assignments

In this section we take a Kolmogorov complexity view of the statement and proof

of the famous Valiant-Vazirani lemma [VV86]. The Valiant-Vazirani lemma gives

a randomized reduction from a satisfiable formula to another formula that with

a non negligible probability has exactly one satisfying assignment.

We state the lemma in terms of Kolmogorov complexity.

Lemma 28. There is some polynomial p such that for all <P in SAT and all r

such that lrl = p(lc/>I) and C(r) 2 lrl, there is some satisfying assignment a of cp

such that CDP(al(c/>,r))::; O(logj<;f>I).

The usual Valiant-Vazirani lemma follows from the statement of Lemma 28

by choosing r and the O(log 1<1>1) program randomly.

We show how to derive the Valiant-Vazirani Lemma from Sipser's Lemma

(Lemma 7). Note Sipser's result predates Valiant-Vazirani by a couple of years.

Proof of Lemma 28: Let n = lcf>I.

Consider the set A of satisfying assignments of <;f>. We can apply Lemma 7

conditioned on c/; using part of r as the random strings. Let d = Llog llAllJ. We

get that every element of A has a CD program of length bounded by d + clog n

for some constant c. Since two different elements from A must have different

programs, we have at least l/nc of the strings oflength d+clogn must distinguish

some assignment in A.

We use the rest of r to list n 2c different strings of length d + clogn. Since

r is random, one of these strings w must be a program that distinguishes some

assignment a in A. We can give a CD program for a in O(logn) bits by giving

d and a pointer tow in r. D

Acknowledgments

We would like to thank Jose Balcazar and Leen Torenvliet for their comments on

this subject. We thank John Tromp for the current presentation of the proof of

Lemma 4. We also thank Sophie Laplante for her important contributions to Sec

tion 6. We thank Richard Beigel, Bill Gasarch and Leen Torenvliet for comments

on earlier drafts. We thank the anonymous reviewers for helpful comments.

116 H. Buhrman and L. Fortnow

References

[BDG88] J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complexity I. Springer-
Verlag, 1988. . [BKT94] H. Buhrman, J. Kadin, and T. Thierauf. On functions computable with
nonadaptive queries to NP. In Proc. Structure in Complexity Theory 9th
Annual Conference, pages 43-52. IEEE computer society press, 1994.

[BT96] H. Buhrman and T. Thierauf. The complexity of generating and checking
proofs of membership. In C. Pueach and R. Reischuk, editors, 13th Annu_al
Symposium on Theoretical Aspects of Computer Science, number 1046 lil
Lecture Notes in Computer Science, pages 75-86. Springer, 1996.

[Coo71) S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd A CM
Symposium Theory of Computing, pages 151-158, Shaker Heights, Ohio,
1971.

[DT90] J. Diaz and J. Toran. Classes of bounded nondeterminism. Math. Systems
Theory, 23:21-32, 1990.

[ESY84] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise prob
lems with applications to public-key cryptography. Information and Con
trol, 61(2):159-173, May 1984.

[FK96] L. Fortnow and M. Kummer. Resource-bounded instance complexity. The
oretical Computer Science A, 161:123-140, 1996.

[GHK92] J. Goldsmith, L. Hemachandra, and K. Kunen. Polynomial-time compres
sion. Computational Complexity, 2(1):18-39, 1992.

[HNOS96] L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing so
lutions uniquely collapses the polynomial hierarchy. SIAM J. Comput.,
25(4):697-708, 1996.

[Ing32) A.E. Ingham. The Distribution of Prime Numbers. Cambridge Tracts in
Mathematics and Mathematical Physics. Cambridge University Press, 1932.

[IT89] R. lmpagliazzo and G. Tardos. Decision versus search problems in super
polynomial time. In Proc. 30th IEEE Symposium on Foundations of Com
puter Science, pages 222-227, 1989.

[JT95] Jenner and Toran. Computing functions with parallel queries to NP. The
oretical Computer Science, 141, 1995.

[Kre88] M. Krentel. The complexity of optimization problem. J. Computer and
System Sciences, 36:490-509, 1988.

[LV93] Ming Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, 1993.

[Ogi96] M. Ogihara. Functions computable with limited access to NP. Information
Processing Letters, 58:35-38, 1996.

[Pap96] C. Papadimitriou. The complexity of knowledge representation. Invited
Presentation at the Eleventh Annual IEEE Conference on Computational
Complexity, May 1996.

[Sip83) M. Sipser. A complexity theoretic approach to randomness. In Proc. 15th
ACM Symposium on Theory of Computing, pages 330-335, 1983.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Computer Science, 47:85-93, 1986.

[WT93] 0. Watanabe and S. Toda. Structural analysis on the complexity of inverse
functions. Mathematical Systems Theory, 26:203-214, 1993.

